
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Κατασκευή Actuated Tangibles και Αλληλεπίδραση με Επιφάνειες
Αφής

Διπλωματική Εργασία

Χαρίσης Παπαχαρίσης

Επιτηρητές:
Ignacio Aedo, Καθηγητής, Universidad Carlos III de Madrid (UC3M)
Στέφανος Κόλλιας, Καθηγητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ)
Andrea Bellucci, Ερευνητής, Universidad Carlos III de Madrid (UC3M)
Κώστας Καρπούζης, Ερευνητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ)

Αθήνα, Δεκέμβριος 2014

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
Faculty of Electrical and Computer Engineering
Department of Information Technology and Computer Science

Construction of Actuated Tangibles and Interaction with Interactive
Tabletops

Thesis Dissertation

Charisis Papacharisis

Supervisors:
Ignacio Aedo, Full Professor, Universidad Carlos III de Madrid (UC3M)
Stefanos Kollias, Full Professor, National Technical University of Athens (NTUA)
Andrea Bellucci, Researcher, Universidad Carlos III de Madrid (UC3M)
Kostas Karpouzis, Researcher, National Technical University of Athens (NTUA)

Athens, December 2014

Ευχαριστίες

Η εργασία εκπόνηθηκε σε συνεργασία του τομέα Τεχνολογίας Πληροφορικής και Υπολογιστών,
της σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ του Εθνικού Μετσόβιου
Πολυτεχνείου, και του DEI lab του τμήματος Πληροφορικής (Computer Science department)
του Πανεπιστημίου Carlos III της Μαδρίτης (Universidad Carlos III de Madrid), στα πλαίσια του
προγράμματος ανταλλαγής Erasmus στο οποίο συμμετείχα κατά το ακαδημαϊκό έτος 2013-2014.

Θα ήθελα λοιπόν να ευχαριστήσω τον υπεύθυνο καθηγητή του εν λόγω εργαστηρίου Ignacio
Aedo, για την ανάθεση διπλωματικής στη συγκεκριμένη έδρα.
Ιδιαίτερες ευχαριστίες για τον επιβλέποντα για τη συγκεκριμένη διπλωματική Andrea Bellucci,
για την πολύτιμη καθοδήγηση και ενθάρρυνση σε όλη τη διάρκειά εκπόνησης της εργασίας,
όπως και μετά την περάτωσή της.
Επιπλέον, ευχαριστώ θερμά τους επιτηρητές μου στο Εθνικό Μετσόβιο Πολυτεχνείο, κκ.
Στέφανο Κόλλια και Κώστα Καρπούζη, που μου έδωσαν την ευκαιρία να πραγματοποιήσω την
διπλωματική μου μέσω του εν λόγω προγράμματος, όπως και για την συνολική υποστήριξή
τους.
Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για την συμπαράστασή τους καθ’όλη τη
διάρκεια των σπουδών μου.

Acknowledgements

This work was fulfilled in cooperation between the Information Technology and Computer
Science department, of the Electrical and Computer Engineering faculty, of the National
Technical University of Athens and the DEI lab of the Computer Science department of the
Universidad Carlos III de Madrid, as part of the exchange program Erasmus in which I
participated during the academic year 2013-2014.

I would like to thank therefore, the professor in charge of the DEI lab, Ignacio Aedo, for
assigning to me a thesis in this laboratory.
Special thanks go to the supervisor of this thesis, Andrea Bellucci, for the precious guidance and
motivation throughout the whole project, as well as after its completion.
In addition, I would like to thank my supervisors in the National Technical University of Athens,
Stefanos Kollias and Kostas Karpouzis, for offering me the opportunity to carry out my thesis
through this program, and for their support in general.
Finally, I would like to thank my family for their encouragement throughout my studies.

Abstract

Αν και η ιδέα της αλληλεπίδρασης με απευθείας φυσική επαφή γίνεται όλο και πιο κοινή χάρη
στην ύπαρξη ολοένα και περισσότερων touch devices, η χρήση διαδραστικών tangibles πάνω σε
επιφάνειες και οι κοινωνικές τους προεκτάσεις, αποτελεί κάτι σχετικά νέο.

Αντικείμενο της εν λόγω διπλωματικής εργασίας είναι να ερευνήσει την λειτουργία των actuated
tangibles και του συνδέσμου που προσφέρουν μεταξύ του «ψηφιακού» και του «φυσικού»
κόσμου, καθώς και την χρηστικότητα που εισάγουν. Χάρη στην διαισθητικότητα που
χαρακτηρίζει την λειτουργία της αφής, ο χρήστης εξοικειώνεται πολύ γρήγορα με την χρήση
τόσο της επιφάνειας όσο και του actuated tangible. Ως εκ τούτου, γίνεται αντιληπτή η ιδιαίτερη
σημασία της λειτουργικότητας τους όπως επίσης και οι πολλές δυνατότητες που αυτή
προσφέρει.

Η διπλωματική εργασία επικεντρώνεται στην ανάπτυξη ενός actuated tangible όπως επίσης και
στην αλληλεπίδραση του με οθόνες αφής, για παράδειγμα: ένα tablet. Εκτός αυτού, ο στόχος μας
είναι να ερευνήσουμε τις αξιοσημείωτες προοπτικές που εισάγουν τα actuated tangibles σε
διάφορους τομείς, δίνοντας έμφαση στον σχεδιασμό και οργάνωση σε καταστάσες εκτάκτου
ανάγκης (emergency cases).

Λέξεις-Κλειδιά: actuated tangibles, interaction, tangible user interfaces, interactive tabletops,
TUI, Arduino, TUIC, emergency response, planification

Abstract

Although the concept of interaction through direct physical contact is becoming more
commonplace with the growing availability of many touch devices, the use of interactive
tangibles on digital tabletops and their social aspects is relatively new.

The goal of this thesis is to examine the function of the actuated tangibles and the interlink they
offer between the ‘digital’ and ‘physical’ world, as well as the usability they introduce. Thanks to
the intuitiveness that characterizes the sense of touch, the user is getting very quickly familiar
with the usage not only of the touch screen, but of the actuated tangible as well. For this reason,
the importance of their functionality is easily noticeable, as well as the numerous prospects that it
offers.

The dissertation focuses on the development of an actuated tangible as well as its interaction
with touch screens, for example: a tablet. In addition, our goal is to explore the remarkable
potential that the use of actuated tangibles introduces in various sectors, emphasizing in the field
of emergency planification.

Key words: actuated tangibles, interaction, tangible user interfaces, interactive tabletops, TUI,
Arduino, TUIC, emergency response, planification

10

Table of Contents

Brief Description..12

Chapter One: Introduction..16

1.1 Motivation...16

1.2 Structure...17

Chapter Two: History of Actuated Tangibles and Related Work.................................18

2.1 History of Actuated Tangibles..18

2.2 Related Work and other Examples..23

Chapter Three: Uses of TUIs and Emergency Planification.......................................27

3.1 Uses of TUIs...27

3.2 Emergency Response Planning..29

Chapter Four: Project Description..33

4.1 Electronic Part...33

4.2 Programming Part..42

4.3 The Project..45

Chapter 5: Limitations, Strengths and Future Work..48

5.1 Limitations...48

5.2 Strengths...49

5.3 Future Work...50

Chapter 6: Conclusion..53

Chapter 7: References..55

Chapter 8: Appendix...58

11

12

Brief Description

Κατά την διάρκεια των τελευταίων δυο δεκαετιών, οι απτές διεπαφές χρήστη (Tangible User
Interfaces-TUIs) έχουν κάνει αισθητή την εμφάνισή τους ως ένας νέος τύπος διεπαφής ο οποίος
λειτουργεί ως σύνδεσμος μεταξύ του ψηφιακού και του φυσικού κόσμου. Στηριζόμενα στη
γνώση των χρηστών και στις ικανότητές τους για αλληλεπίδραση με τον ‘πραγματικό’ κόσμο, τα
TUIs αποτελούν μια εξαιρετική δυνατότητα να βελτιώσουμε τον τρόπο που αλληλεπιδρούμε με
την ψηφιακή πληροφορία.

Ποικίλες τεχνολογικές προσεγγίσεις στον τομέα των διεπαφών χρήστη (User Interfaces-UIs)
επόμενης γενιάς έχουν αλληλοεπηρεαστεί, οδηγώντας σε μεικτές προσεγγίσεις που συνδυάζουν
διαφορετικές ιδέες ή μηχανισμούς αλληλεπίδρασης.

Οι απτές διεπαφές χρήστη (TUIs) συνδυάζουν δυναμικά στοιχεία (τυπικά των αναπαραστάσεων
ψηφιακής πληροφορίας) με φυσικά χαρακτηριστικά. Τα TUIs, όπως επίσης και οι multi-touch
επιφάνειες, παρέχουν απτό feedback στον χρήστη. Αυτό επιτρέπει στα άτομα να αλληλεπιδρούν
με τις συσκευές εισόδου με τον ίδιο τρόπο που θα αλληλεπιδρούσαν με αντικείμενα
καθημερινής φύσης, εφαρμόζοντας δεξιότητες του ‘πραγματικού κόσμου’ χωρίς την ανάγκη
κάποιας πρότερης εκπαίδευσης ή της παροχής οδηγιών.
Τα πλεονεκτήματα αυτών των διεπαφών χρήστη συνεπάγονται την ταυτόχρονη μείωση της
απαιτούμενης νοητικής προσπάθειας εκ μέρους των χρηστών (κατά την διάρκεια της
αλληλεπίδρασής τους με την εκάστοτε εφαρμογή) και την απλούστευση της αλληλεπίδρασης
αυτής καθεαυτής.

Ειδικότερα, οι αυτοενεργοποιούμενες διεπαφές χρήστη (actuated TUIs) επιτρέπουν στα
δεδομένα να είναι συνδεδεμένα με φυσικά αντικείμενα και να αντιπροσωπεύονται από αυτά (π.χ.
δυναμικά-μεταβαλλόμενα δεδομένα μπορούν να συνδεθούν με την δυναμική των αντικειμένων,
δηλαδή την μεταβολή κάποιου χαρακτηριστικού τους).
Επιπλέον, προσφέρουν μια πιο ελκυστική, διασκεδαστική αλληλεπίδραση και επιτρέπουν την
χρήση της κίνησης ως μια εκφραστική εναλλακτική εξόδου.

Μέχρι πρόσφατα, αυτή η σύζευξη μεταξύ ‘απτού’ και ‘ψηφιακού’ ήταν μονόδρομη.
Μπορούσαμε να μεταβάλλουμε την ψηφιακή πληροφορία μέσω φυσικών χειρισμών, αλλά ο
ψηφιακός κόσμος δεν είχε επίπτωση στα απτά στοιχεία της διεπαφής μας. Η χρήση της φυσικής
κίνησης, ωστόσο, είναι στενά συνδεδεμένη με την φιλοσοφία των απτών περιβαλλόντων
χρήστη. Η εξερεύνηση της αυτο-ενεργοποίησης (self-actuation) φαίνεται να είναι μια φυσική
κατεύθυνση για την έρευνα στο πεδίο των διεπαφών χρήστη. Πράγματι, μια από τις πιο

13

γοητευτικές ιδιότητες του ψηφιακού κόσμου είναι η ‘πλαστικότητα’: τα ψηφιακά αντικείμενα
είναι εύκολο να δημιουργηθούν, τροποποιηθούν, αναπαραχθούν και διανεμηθούν.

Τα φυσικά αντικείμενα από την άλλη πλευρά είναι άκαμπτα και στατικά, κάτι το οποίο
περιορίζει την χρηστικότητά τους στις απτές διεπαφές χρήστη. Αν μπορούσαμε να αλλάζουμε
δυναμικά τις φυσικές ιδιότητες των στοιχείων απτής διεπαφής (τα σχήματα, την υφή, την θέση,
την ταχύτητα της κίνησής τους, και ούτω καθεξής) οι δυνατότητες σχεδιασμού απτών διεπαφών
χρήστη θα μπορούσαν να επεκταθούν τρομερά.

Χάρη στην διαισθητικότητα που προσφέρει η λειτουργία της αφής, οι απτές διεπαφές χρήστη
παρουσιάζουν μεγάλη χρηστικότητα, κάτι που έχει αποδειχθεί επανειλημμένα με την
χρησιμοποίησή τους σε ποικίλους τομείς. Η εκπαίδευση, ο προγραμματισμός, ο αστικός
σχεδιασμός, η ψυχαγωγία και η μουσική αποτελούν μερικούς μόνο από αυτούς.
Αδιαμφισβήτητα, η συνδρομή τους μπορεί να είναι καθοριστική και στο πεδίο του προληπτικού
σχεδιασμού καταστάσεων εκτάκτου ανάγκης. Ένα πεδίο που χαρακτηρίζεται από πολλά
ενδιαφερόμενα μέρη (σωστικά συνεργεία, πολίτες, στοιχεία υποδομής, κλπ) καθώς και συνεχή
ροή πληροφορίας. Ως εκ τούτου, η ευελιξία και προσαρμοστικότητα, που απαιτεί ο σχεδιασμός
αντιμετώπισης τέτοιων συνθηκών από τους εμπειρογνώμονες, μπορεί να διευκολυνθεί από την
διασθητικότητα που χαρακτηρίζει της απτές διεπαφές χρήστη.

Κατά συνέπεια, αποφασίσαμε να κατασκευάσουμε ένα αυτοενεργοποιούμενο φυσικό
αντικείμενο (actuated tangible), ένα μικρό όχημα, και να μελετήσουμε την κίνησή του πάνω σε
μια οθόνη αφής. Με αυτόν τον τρόπο, σκοπεύαμε να παρατηρήσουμε το επίπεδο
αλληλεπίδρασης που η αυτο-ενεργοποίησή του προσφέρει, και να συλλογιστούμε πάνω στην
μελλοντική πιθανή του χρήση, κυρίως στον τομέα του σχεδιασμού και πρόληψης σε
καταστάσεις εκτάκτου ανάγκης (emergency/disaster response).

Η εργασία μας μπορεί να περιγραφεί συνοπτικά ως εξής: Με μια εφαρμογή tablet, ζητείται από
τον χρήστη μέσω γραπτού μηνύματος στην οθόνη να ορίσει οποιαδήποτε ευθεία διαδρομή,
προσδιορίζοντας το αρχικό και το τελικό σημείο αυτής. Έπειτα, τοποθετώντας το όχημα στο
αρχικό σημείο, το αυτοκίνητο αρχίζει την κίνησή του προς το τελικό, όπου και σταματά
αυτόματα, χάρη στην συνεχή ανατροφοδότηση θέσης που λαμβάνει από το tablet που
χρησιμοποιήσαμε.
Στην συνέχεια, ο χρήστης πατώντας το πλήκτρο ‘Reset’ που εμφανίζεται στην οθόνη, είναι σε
θέση να ορίσει εκ νέου μια τροχιά.

Το project αποτελείται από τρία στάδια: 1) τον σχεδιασμό του ηλεκτρονικού κυκλώματος
απαραίτητου για την κίνηση του οχήματος, και την συνολική κατασκευή αυτού, 2) την
υλοποίηση της tablet εφαρμογής για την δημιουργία του μονοπατιού, 3) την ασύρματη
επικοινωνία μεταξύ του tablet και του αυτοκινήτου, για την παροχή της απαιτούμενης

14

ανατροφοδότησης.
Πρακτικά, το σύστημά μας χαρακτηρίζεται από τρία στοιχεία: Το αυτοκίνητο μας, το tablet και
τον server (δηλαδή έναν υπολογιστή συνδεδεμένο σειριακά με έναν Arduino Uno καθώς και μια
ακόμα RF αντέννα).

Όσον αφορά στο ηλεκτρονικό τμήμα, το κύκλωμα του οχήματός μας περιελάμβανε, μεταξύ
άλλων:
Έναν μικροεπεξεργαστή Arduino Pro Mini, τον ελεγκτή κινητήρων TB6612FNG, δύο κινητήρες
με μειωτές για τις πίσω ρόδες, μια RF αντέννα για την ασύρματη επικοινωνία του οχήματος με
τον server μας, δύο μπαταρίες των 12V για την τροφοδοσία του κυκλώματος και των κινητήρων,
ρυθμιστές τάσεις στα 3.3V και 5V για την τροφοδοσία των επιμέρους στοιχείων του
κυκλώματος, κλπ. Το σασί του οχήματος υλοποιήθηκε με 3D printing (τυπώθηκαν συγκεκριμένα
δύο τμήματα: η κύρια πλατφόρμα αυτού και ένας προφυλακτήρας).

Η οθόνη του tablet είναι χωρητική, και ως εκ τούτου για την επικοινωνία του οχήματός μας με
αυτήν χρησιμομοποιήσαμε έναν τύπο capacitive foam (χωρητικού αφρολέξ) το οποίο βρίσκεται
προσαρτημένο κάτω από τον προφυλακτήρα του οχήματος. Το αφρολέξ αυτό είναι αντίστοιχης
φύσης με το υλικό που χρησιμοποιείται σε στυλούς για iPad. Το εν λόγω στοιχείο συνδέσαμε σε
ένα γειωμένο pin του μικροεπεξεργαστή του αυτοκινήτου, προσομοιώνοντας έτσι το ανθρώπινο
άγγιγμα όταν το capacitive foam έρχεται σε επαφή με την οθόνη.

Όσον αφορά στο προγραμματιστικό κομμάτι, για το τμήμα των Arduino (Pro Mini του
αυτοκινήτου και Uno του server) χρησιμοποιήσαμε το περιβάλλον Arduino IDE (ανοικτό
λογισμικό, φιλικό προς τον χρήστη). Αντίστοιχα, για το τμήμα του tablet (αλλά και του server)
έγινε χρήση του περιβάλλοντος Processing (βασισμένο σε Java, με έμφαση στον γραφικό
προγραμματισμό). Τα εν λόγω περιβάλλοντα είναι ιδιαίτερα συμβατά και παρουσιάζουν κοινά
στοιχεία, κάνοντας τον συνδυασμό τους μια πολύ ελκυστική επιλογή για την υλοποίηση του
project.
Η ασύρματη επικοινωνία μεταξύ των επιμέρους scripts του Processing (tablet και server)
επιτυγχάνεται μέσω μια σύνδεσης server-client, χρησιμοποιώντας το πρωτόκολλο OSC (Open
Sound Control, ανεπτυγμένο από το πανεπιστήμιο UC Berkeley).

Η εφαρμογή μας συνοψίζεται ως εξής:

Το tablet υπολογίζει συνέχεια την εναπομείνουσα απόσταση μεταξύ του αυτοκινήτου και του
τελικού σημείου, σε pixels. Φυσικά, η αρχική τιμή αυτής της διαρκώς μειούμενης απόστασης
είναι η απόσταση μεταξύ του αρχικού και του τελικού σημείου, όπως ορίστικαν εξαρχής από τον
χρήστη. Αυτή η απόσταση μεταφέρεται ασύρματα, μέσω μηνυμάτων OSC, στον υπολογιστή.

15

Στην συνέχεια, ο υπολογιστής στέλνει την εν λόγω πληροφορία (απόσταση) στον σειριακά
συνδεδεμένο Arduino Uno, o oποίος λειτουργεί ως η διεπαφή του server με το αυτο-
ενεργοποιούμενο στοιχείο μας (όχημα).
Ο Uno μεταφέρει τα δεδομένα στον Pro Mini, χάρη στην RF αντέννα.

Αναφορικά με το όχημα, ο Arduino Pro Mini χειρίζεται τον ελεγκτή κινητήρων, και επομένως
την κίνηση (ή όχι) του αυτοκινήτου. Προφανώς, καθώς το όχημα κινείται, η απόσταση μέχρι τον
στόχο διαρκώς μειώνεται και αυτή η πληροφορία μεταφέρεται στον Pro Mini, χάρη στον server.
Όταν η τιμή αυτής μειωθεί περισσότερο από ένα ορισμένο κατώφλι (στην περίπτωσή μας, 100
pixels) αυτό συνεπάγεται πως το αυτοκίνητο έχει πρακτικά φτάσει στον στόχο του. Kατά
συνέπεια, ο μικροεπεργαστής σταματά την κίνηση των κινητήρων, και κατ’επέκταση του
συνολικού οχήματος.
Στην συνέχεια, όταν ο χρήστης ορίσει εκ νέου ένα μονοπάτι, η νέα ‘συνολική απόσταση’ γίνεται
ξανά μεγαλύτερη από το καθοριστικό κατώφλι και το όχημα αρχίζει ξανά την κίνησή του, μέχρι
να φτάσει τελικά στον νέο στόχο.

16

Chapter One: Introduction

1.1 Motivation

During the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface
type that interlinks the digital and physical worlds. Drawing upon users’ knowledge and skills of
interaction with the ‘real’ world, TUIs demonstrate a potential to enhance the way in which we
interact with digital information.
Various technological approaches in the area of the next generation’s user interfaces (UIs) have
been influencing each other, resulting in mixed approaches that combine different ideas or
interaction mechanisms.

Tangible user interfaces (TUIs) combine the dynamic qualities -typical of digital information
representations- with physical affordances. TUIs, in combination with multi-touch tables,
provide passive haptic feedback for hand gestures. This allows people to interact with the input
devices in the same way they interact with everyday objects, applying real world skills without
the need of training or instructions. The benefits of these user interfaces include the simultaneous
reduction of cognitive load placed on users (while they interact with an application) and
simplification of the interaction itself.

Specifically, actuated TUIs allow data to be connected to, and represented by, physical objects
(e.g. dynamic data can be linked to dynamics of the objects). They also facilitate more engaging,
playful interaction and afford the use of movement as an expressive output modality.

Until recently, the coupling between ‘tangible’ and ‘digital’ has usually been in one direction; we
could change digital information through physical handles, but the digital world had no effect on
tangible interface elements. The use of physical motion, however, strongly relates to tangible UI
philosophy. The exploration of self-actuation seems to be a natural direction for tangible user
interfaces research to take. Indeed, one of the most attractive properties of the digital world is
malleability: digital objects are easy to create, modify, replicate, and distribute. Physical objects
on the other hand are rigid and static, which limits their utility in tangible UIs. If we could
dynamically change physical properties of tangible UI elements: their shape, texture, position,
speed of motion, and so on, the design vocabulary of tangible user interfaces would expand
tremendously.

Therefore, we decided to construct an actuated tangible (a small vehicle) and study its movement
onto a touch screen. By that means, we intended to experience the level of interaction that its
self-actuation introduces, and reflect on its potential future use, primarily in the sector of
emergency/disaster response.

17

Our project could be briefly described like this: With a software application created, the user is
able to define any straight route on the screen, setting the initial and final points. Afterwards,
placing the vehicle on the initial point, the car starts moving towards the final one, where it stops
automatically, thanks to the continuous position-feedback that receives from the tablet we used.
The user is then able to define a new route.

1.2 Structure

The project consists of three stages that are going to be analyzed more extensively later: 1) the
design of the electrical circuit and the total construction of the vehicle, 2) the implementation of
the tablet app for the path creation, 3) the wireless communication between the tablet and the car
for the provision of the feedback required.

Provided that, the thesis follows the following structure:

In the first chapter, we have made the introduction and we have presented our implementation in
general terms.
In the second chapter, we make some references on the history of Tangible User Interfaces and
the related existing work.
In the third chapter, we examine the different uses of TUIs as well as the sectors where they can
contribute positively. Here we make a further examination of the field of emergency planning,
which is the sector that interests us the most for future applications.
In the fourth chapter, we describe the different stages that our project went through (as
mentioned above) and the procedure that was followed, in greater detail.
In the fifth chapter, we describe the limitations, strengths and future work possibilities that
characterize our implementation.
Finally, in the conclusion, we extract our outcomes and present our ideas and expectations
regarding future development of the work presented.

18

Chapter Two: History of Actuated Tangibles and Related Work

2.1 History of Actuated Tangibles

Actuation

To begin with, there is a crucial question to ask: What is actuation?
Actuation means: ‘to put in action, to move’. Therefore, we define actuated interfaces as
interfaces in which physical components move in a way that can be detected by the user.

There are many types of actuation, for example:
 Change in spatial position of objects or their parts, e.g. their position, orientation;
 Change in speed of motion of objects or their parts, e.g. speed of rotation, speed of linear

motion, direction of motion;
 Change in surface texture of objects or their parts, e.g. visible or perceived by touch;
 Change in force applied to the user, e.g. change in force amplitude, direction, or torque.

In order to take advantage of the benefits of a tabletop TUI not only for input but also for output,
the interface has to be bidirectional. Some form of actuation mechanism is required, so that not
only the user but also the computer can actively move the tangibles.

In 2003, Koleva [33] conducted an analysis of the types of coupling between the physical and
digital and compared this with systems available at the time, revealing an asymmetry. Whereas
many systems used physical objects to control digital objects, only few examples of ‘tangibles
that push back’ were found. Most systems supported only one-way communication, either being
an ambient display or a data manipulation tool. Although actuation had been a part of the vision
of TUIs from the very start, given the technical difficulties, it is only lately emerging as a strong
trend.

Gibson in 1960s underlined that giving the users freedom to actively and repeatedly move their
hands and fingers while exploring the shape of objects increases the amount of information
received through haptic sense. Note that such free exploratory movements are difficult to create
with indirect haptic devices (like haptic stylus) since they usually allow for only one point of
contact.

From another perspective, Ishii underlined the importance of tailored design of a tangible for a
specific function to benefit from natural affordances, at the same time preserving a balance to a

19

more general approach for the reason of reusability. There are several examples in related work
how the functionality of a tangible can be customized.

Different Approaches

Throughout the years, different technologies have been influencing each other, resulting in
totally new approaches that combine different views or interaction mechanisms. For instance, we
can mention Tangible Augmented Reality Interfaces and Tangible Tabletops:

Tangible Augmented Reality (Tangible AR) Interfaces combine tangible input with an augmented
reality display or output. The virtual objects are ‘attached’ to physical objects that the user
manipulates. A 3D-visualization of the virtual object is overlaid onto the physical manipulative
which is tagged with a visual marker (detectable with computer vision). The digital imagery
becomes visible through a display, often in the form of see-through glasses, a magic
lens, or an augmented mirror. Such a display typically shows a video image where the digital
imagery is inserted at the same location and 3D orientation as the visual marker.

Tangible Tabletop Interaction combines interaction techniques and technologies of interactive
multi-touch surfaces and TUIs. Many tangible interfaces use a tabletop surface as base for
interaction, embedding the tracking mechanism in the surface. With the advancement in
interactive and multi-touch surfaces the terminology has become more specific, tabletop
interaction referring predominantly to finger-touch or pen-based interaction. But simultaneously,
studies within the research area of interactive surfaces increasingly investigate mixed
technologies, typically utilizing a few dedicated tangible input devices and artifacts on a multi-
touch table.

Hornecker and Buur [34] suggest the term tangible interaction to describe a field of approaches
related to, but broader than TUIs. They argue that, many systems developed within arts and
design aimed at creating rich physical interactions, share characteristics with TUIs.

Implementation Technologies

The breadth of technologies, devices, and techniques used for prototyping and implementing
TUIs can be bewildering. Thus, we use a number of organizing properties to discuss and
compare common TUI implementation technologies. Following, we describe three
implementation technologies that are often used in the development of TUIs: RFID, computer
vision, and microcontrollers.

RFID
Radio-Frequency Identification (RFID) is a wireless radio-based technology that enables to sense
the presence and identity of a tagged object when it is within the range of a tag reader (an
antenna). There are generally two types of RFID tags: active RFID tags, which contain a battery

20

and thus can transmit a signal autonomously; and passive RFID tags, which have no battery and
require an external source to initiate signal transmission. In general, RFID tags contain a
transponder comprising of an integrated circuit for storing and processing information, and an
antenna for receiving and transmitting a signal.
Most RFID-based TUIs employ passive inexpensive RFID tags and hence consist of two parts: a
tag reader that is affixed to a computational device and a set of tagged objects. The
communication between a tag and a reader only occurs when both are proximate. The actual
distance varies based on the size of the antenna and that of the RFID tag, as well as the strength
of its field.

Due to the cost of larger antennas, RFID is usually constrained to short distance detection, with
objects required to be placed directly on -or swiped past- the reader. Some tag readers are
capable of detecting multiple tags simultaneously, or writing small amounts of data to individual
tags. Other tag readers are read-only or only capable of detecting a single tag at a time. When a
tag is detected, the tag reader passes an ASCII ID string to the computer. The TUI application
can then interpret the ID input string, determine its context, and provide feedback. Multiple TUIs
are implemented using RFID technology.

Computer Vision
In the context of TUIs, computer
vision is often used for spatial,
interactive surface applications
because it is capable of sensing the
position of multiple objects on a 2D
surface in real time while
providing additional information
such as orientation, color, size,
shape, etc. Computer vision
systems can be characterized as
being either of the artificial
intelligence variety (where
sophisticated algorithms are used for
automatically interpreting a
picture) or of the tag variety (where the system tracks specifically define fiducial markers that
are attached to physical objects).

Tag-based systems tend to be more robust, more accurate, and computationally cheaper than
systems of the artificial intelligence variety. Thus, tag-based computer vision is often used in the
development of TUIs. Examples include Urp [21], a tangible user interface for urban planning;
the reacTable [22], a tangible electro-acoustic musical instrument, and Tern, a tangible
programming language for children.

Performance and reliability of vision-based systems is susceptible to variations in lighting and
motion blur. Using color to identify objects can be relatively robust, but limits object recognition
to a small number of high contrast colors. A way to improve the robustness and speed of
detection is to paint tokens so they reflect infrared light and to employ a camera filter. This will

Figure 2.1 Photo of the reacTable TUI

21

result in the camera only detecting the painted objects, but reduces the systems’ ability to
distinguish different objects.

Microcontrollers, Sensors, and Actuators
Microcontrollers act as a gateway between the physical world and the digital world. They are
small and inexpensive computers that can be embedded in a physical object or in the physical
environment. Microcontrollers receive information from the physical world through sensors, and
affect the physical world through actuators.
There is a wide variety of sensors and actuators available to be used in embedded systems.
Sensor technology can capture a wide range of physical properties including light intensity,
reflection, noise level, motion, acceleration, location, proximity, position, touch, altitude,
direction, temperature, gas concentration, and radiation.

Actuators affect the digital world by producing light, sound, motion, or haptic feedback.
Microcontrollers may also be connected to RFID readers. Frequently used actuators include
LEDs, speakers, motors, and electromagnets.
Many TUI systems are built using embedded microcontrollers. Examples include Posey [35], a
poseable hub and strut construction toy; System and Flow Blocks, an educational TUI for
simulating system dynamics; or Senspectra [23], a physical modeling toolkit for sensing and
visualization of structural strain.

While some of the microcontrollers used for developing TUIs require low-level programming
skills, several easy-to-use prototyping platforms are currently available for educational purposes
as well as for TUI developers from non-technical backgrounds.

Arduino [14] is an open source physical computing platform based on a simple I/O board and a
development environment. Arduino can be used to develop stand-alone interactive devices or can
be connected to software running on a computer. The Arduino development environment is a
cross-platform Java application that provides a code editor and compiler and is capable of
transferring firmware serially to the board. It is also well connected with Processing [15], a
development environment aimed at the electronic arts and visual design communities. The
Arduino programming language is related to Wiring, a C-like language.

Tool Support for Tangible Interaction

Several toolkits and software libraries have emerged to support the implementation of functional
TUI prototypes.

Phidgets [24] provides a set of “plug and play” USB-attached devices (e.g., I/O boards, sensors,
and actuators) that are analogous to widgets in graphical user interfaces. For example, Phidets
allows any analog sensor to be plugged into its board, as long as it modulates a 5-V signal.
Similarly, any on/off switch and other digital I/O devices can be plugged to the board and
controlled by a binary value. Phidgets are aimed to support software developers in the

22

implementation of mechatronic TUI prototypes composed of wired sensors and actuators. Such
TUIs are capable of both physical input and physical output. The main advantage of Phidgets is
that they are centrally controlled through a conventional computer rather than through a standard
microprocessor. Thus, the integration of digital capabilities such as networking, multimedia, and
device interoperation becomes easier.

iStuff [25] uses Java to control a set of light-weight wireless physical devices. iStuff is aimed at
enabling interaction designers to rapidly prototype applications for an environment called the
iRoom. Through an intermediary software called the Patch Panel, interaction designers can
define high-level events and dynamically map them to input and output events.

We have already discussed Arduino in the previous section on implementation technologies. It is
a toolkit consisting of the Arduino board and programming environment. Different from Phidgets
and iStuff, which entail specifically built sensors and actuators that are easily plugged together
and are centrally controlled through a conventional computer, Arduino interfaces with standard
electronics parts. Arduino thus does not ‘black-box’ the electronics, but requires physical wiring,
circuit building, and soldering.

The major advantage of the tools discussed above is that they lower the threshold for
implementing fully functional TUI prototypes by hiding and handling low-level details and
events. Hence, they significantly reduce the duration of each design/implementation/test cycle.

Two-handed Interaction

Regarding new design processes and forms of interaction, it is worth mentioning few words
about the two-handed interaction:
While early HCI studies on two-handed interaction viewed two handed input as a technique for
performing two subtasks in parallel, later studies showed that two-handed interaction provides
additional benefits in the context of spatial manipulations and 3D input.

Hinckley found that for 3D input, two-handed interaction can provide additional benefits:
(a) users can effortlessly move their hands relative to one another or relative to a real object, but
moving a single hand relative to an abstract 3D space requires a conscious effort;

(b) while one-handed 3D input can be fatiguing, two-handed interaction provides additional
support. When hands can rest against one another or against a real object, fatigue can be greatly
reduced;

(c) using two hands, a user can express complex spatial relations as a single cognitive chunk.
This not only makes the interaction parallel, but also results in an interface which more directly
matches the user’s task.

Hinckley [36] noted: ‘In related experimental work, we have demonstrated that using two hands
can provide more than just a time saving over one-handed manipulation. Two hands together
provide the user with information which one hand alone cannot. Using two hands can impact

23

performance at the cognitive level by changing how users think about a task: using both hands
helps users to reason about their tasks.’

2.2 Related Work and other Examples

Regarding the related existing work, Brave demonstrated the first distributed actuated tabletop
TUI with the PSyBench (1998) [20]. Using two synchronized motorized chessboards, his system
could position one object at a time with an electromagnet but could not control the rotation.

With his Actuated Workbench(2002) [8], Pangaro introduced the concept of actuated tangibles
used for two-way communication with a computer system. They built an array of electromagnets
under the surface of a table to position small pucks fitted with permanent magnets and an LED
for optical tracking. However, TUIs with an actuation mechanism built into the table involve
high technological effort and are not very flexible in the size of the interaction volume or the
mobility of the setup.

Early examples of actuated TUIs include the peek-a-boo surrogates which are rotated by a servo
motor, and the Navigational Blocks which are equipped with orientation sensors and
electromagnets, and programmed to attract or repel each other to give actuated feedback on
whether a particular configuration yields any output for a database search. The Actuated
Workbench used magnetic force to move objects on a table. A later incarnation of the same idea
is Pico, a TUI that can sense and move small objects on top of a surface. This type of system is
described by Poupyrev as self-rearranging displays that consist of multiple parts that rearrange
themselves in space, in contrast to Shape displays that directly create 3D physical shape.

Actuated tangibles with autonomous behavior can also be interpreted as robots. Jacobsson
presented the see-Puck [27] and the GlowBots [28], a collection of LED displays on
autonomously moving robotic platforms that communicate with each other, resulting in a
continuously changing LED pattern on the surface and reacting to people picking up and
relocating them. Robotic tangibles might extend to an architectural scale: Biloria presented a
series of experiments developing real-time interactive spatial prototypes, using pneumatics for
actuation e.g., shape-shifting furniture and room units.
As an example of shape-shifting displays, Poupyrev presented Lumen [30], a low resolution 13
Χ 13 pixel bit-map display where each pixel can individually move up and down. This enables a
moving physical shape or texture augmenting a 2D visual display as well as tangible 3D controls
that can literally be pressed down. Sprout I/O [29] combines textiles and shape-memory alloys to
create a kinetic display from soft textile that can sense touch.
The Linguabytes project provides a nice example of using actuation in a subtle way, almost
unnoticeably easing a task. This learning system helps multi-handicapped toddlers with motor
impairment. It directs their hand when they place a physical piece on a platform (if the RFID tag
is detected, electromagnets pull the piece into place) and has a slider that automatically limits
range depending on its position.

24

Other TUIs employ actuation as vibrotactile feedback on information being detected and sucked
into a handheld device. Actuation, being the technical basis for product movement, is
investigated also in product design, where movement (or ‘behavioral expression’) provides a
means to increase product expressiveness. Movement can make abstract shapes come seemingly
alive, as human perception has an intrinsic tendency for animism.
For example, the Mac laptop’s softly and rhythmically blinking LED gives the impression of
breathing. Products can also move physically, movement constituting a fourth dimension of
design. Product movement can even express emotions through variation in speed, acceleration,
type and volume of path, rhythm, and randomness.

Another approach when it comes to actuated tangibles, is the ‘Shape display’ [7].
Shape displays attempt to create 3D physical shapes directly and some of the shape displays
share following common properties:

 They display relief-like
shapes by physically
displacing a surface of the
device. This is done either
by changing the properties
of the materials, e.g.
Protrude, Flow or Snoil, or
by using mechanically
actuation, such as in case
of Aegis Surface, FEELEX
and etc.

 They combine dynamic shapes
with images, e.g. Aegis Surface,

Lumen or Feelex. Combining shape with image is important. For example, if our goal is to
display a 3D shape, it is natural to assume that the shape’s surface would have color and patterns,
as in the case of real objects.
That would require image producing capabilities. Based on these observations, the shape
displays can be generalized as an extension of traditional bitmapped displays where each pixel
has an additional attribute: height.
The actual mechanism of displacement, the shape and the arrangement of the pixels depends on
implementation. We call this design approach an ‘RGBH graphics’, where RGB is a color
components and H is a height of a pixel.

Regarding more recent work, Touchbugs [2] are active tangibles that are able to move across
surfaces by employing vibrating motors and can communicate with camera-based multi-touch
surfaces using infrared LEDs. Touchbugs’ embedded inertial sensors and computational
capabilities open a new interaction space by providing autonomous capabilities for tangibles that
allow goal directed behavior.
They are small tangibles that use directed bristles and vibration motors for actuation (giving
them the ability to move independently). Their infrared LEDs allow multiple Touchbugs to be

Figure 2.2 Demonstration of the ‘Shape display’ function

25

spatially tracked (position
and orientation) on optical
multi-touch tables and to
communicate information
about their internal state to
the table. Embedded inertial
sensors, which capture
displacement and orientation,
provide rich opportunities for
interaction design including
direct physical manipulation,
as well as symbolic and
metaphorical gestures. This
novel combination of sensing
and actuation capabilities
goes beyond simple changes of (virtual) states (e.g. by the use of buttons) offering significantly
more potential of expressive interaction.

Apart from the above, a novel class of actuated tabletop tangibles is called magnetic widgets, or
Madgets [6]. Besides moving Madgets across the table, the user can take advantage of new
actuation dimensions, such as height, force feedback, and power transfer. Furthermore, Madgets
are low-cost, easy to prototype, and do not require any built-in electronics or power source for
actuation or tracking.
Madgets introduce the following very useful characteristics:

 Force feedback. Beside the inherent haptic feedback of tangible controls, actuation can
provide active force feedback as an additional output channel.

 Resistance. By default, moveable parts such as the turning arm of a knob can be rotated
freely. Actuation, however, allows us to change the resistance or the perceived friction of
an object by adapting the PWM signal. By attracting a slider knob we can make it harder
to move.

 Vibration feedback. The tangential actuation can be used to let Madgets vibrate. This can
act as an audiohaptic signal
that a Madget needs
attention, e.g., when a
critical value is reached or
when a remote user has
changed a value. Vibration
patterns could also be used
to create more complex
feedback.

 Inductive energy transfer.
Induction is a well understood
charging technique for devices
ranging from electric tooth brushes

Figure 2.3 Touchbugs

Figure 2.4 Madgets in action

26

to mobile phones. This basic principle can be applied to transfer power from the table to Madgets
in order to support electronics without the need for batteries or cables.

Another actuated tangible is called ACTO [9], and it is principally characterized by the concept
of reusability and rapid prototyping.

Its development follows a modular design strategy for actuated tangible user interface objects
(ACTOs). Because of the high grade of modularity, typically integral parts like the actuation
mechanism or physical configuration can be individually customized and interchanged, allowing
reusability for different scenarios and setups. The ACTOs can be equipped with different I/O
devices, ranging from simple buttons to complex sensors. The system is also very mobile and can
be set up quickly anywhere. The concept targets in minimizing the time spent on the redesign of
the system for different experiments.

27

Chapter Three: Uses of TUIs and Emergency Planification

Here we firstly present the big variety of applications where the actuated tangibles can benefit
the users, and afterwards we take a closer look in the domain of emergency response.

3.1 Uses of TUIs

TUIs for Learning

A large number of TUIs can be classified as computer-supported learning tools or environments.
There are several underlying reasons for this. First, learning researchers and toy designers have
always followed the strategy of augmenting toys to increase their functionality and
attractiveness. Second, physical learning environments engage all senses and thereby support the
overall development of the child.

A range of projects often combine augmented reality techniques with tangible interface notions.
Africano present ‘Ely the Explorer’ [37], an interactive play system that supports collaborative
learning about geography and culture while practicing basic literacy skills. The system mixes
touch-screen technology, use of physical knobs to interact with screen content, tangible toys, and
RFID-tagged cards. Related to literacy education is WebKit, a system supporting the teaching of
rhetorical skills to school children. A more recent development is TUI’s supporting learning for
children with special needs. Digital construction kits such as Topobo [38] and Lego
MindstormsTM are increasingly used within educational robotics specifically for special needs
education.

Problem Solving and Planning

Generally speaking, tangible representation is most compelling in spatial or geometric
application domains such as urban planning and architecture where the physical arrangement and
manipulation of objects has a direct mapping to the represented problem. It has been found that
using a TUI can support designers’ spatial cognition, reduce cognitive load, and enable more
creative immersion in the problem. However, several studies have also demonstrated the benefits
of tangible interaction with abstract information tasks.

Urp is a TUI for urban planning that allows users to collaboratively manipulate a series of
physical building models and tools upon a surface, in order to perform an analysis of shadows,

28

proximities, reflections, wind, and visual space. While users place and manipulate building
models upon the surface, the interface overlays digital information onto the surface, activating
and updating multiple simulations.
Physical Intervention in Computational Optimization (Pico) is a TUI based on a tabletop surface
that can track and move small objects on top of it. The position of these physical objects
represents and controls application variables. The Pico interface has been used to control an
application for optimizing the configuration of cellular telephone network radio towers. While
the computer autonomously attempts to optimize the network, moving the objects on the table,
the user can constrain their motion with his or her hands, or using other kinds of physical objects
(e.g., rubber bands).

Information Visualization

By offering rich multimodal representation and allowing two-handed input, tangible user
interfaces hold a potential for enhancing the interaction with visualizations. Several systems
illustrate the use of tangible interaction techniques for exploring and manipulating information
visualizations.
GeoTUI [32] is a TUI for geophysicists that provides physical props for the definition of cutting
planes on a geographical map that is projected upon a surface. The system enables geophysicists
to select a cutting plane by manipulating a ruler prop or selection handles upon the projected
map.

Tangible Programming

The concept of tangible programming, the use of tangible interaction techniques for constructing
computer programs, has been around for almost three decades since Radia Perlman’s Slot
Machine interface [26] was developed to allow young children to create physical Logo programs.

Several TUIs allow children to teach an electronic toy to move by repeating a set of guiding
motions or gestures. Examples include Topobo, Curlybot, and StoryKits [31]. This approach for
programming is often referred to as programming by demonstration or, as suggested by Laurel,
programming by rehearsal. Many tangible programming systems use physical constraints to form
a physical syntax that adheres to the syntax of a programming language. For example, Tern
consists of a collection of blocks shaped like jigsaw puzzle pieces, where each piece represents
either a command (e.g. repeat) or a variable (e.g. 3).

Entertainment, Play, and Education

Many museum interactives that combine hands-on interaction with digital displays can be
interpreted as TUIs. For example, at the Waltz dice game, in the Vienna ‘Haus der Music’

29

(Museum of Sound), visitors roll with two dice to select melodic lines for violin and recorder,
from which a short waltz is automatically generated. An exhibition about DNA at the Glasgow
Science Museum includes several exhibits that allow visitors to tangibly manipulate DNA
strands to understand how different selections effect genes.

Leitner presents a truly mixed reality gaming table that combines real and virtual game pieces.
Real objects are tracked by a depth camera and can become obstacles or a ramp in a virtual car
race, or real and virtual dominos are connected to tumble into each other.

Music and Performance

Music applications are one of the oldest and most popular areas for TUIs, becoming ubiquitous
around the millennium. Music TUIs are either designed for the novice where they provide an
intuitive and easily accessible toy, or aim at the professional that appreciates physical
expressiveness, legibility, and visibility when performing electronic music in front of an
audience.
The Audiopad system [39] allows users to manipulate and mix sound samples by placing
tangible tokens onto an augmented surface. New samples can be dragged onto the surface from a
menu on the rim.

Biomedical Purposes

Science demands high levels of accuracy, which limits the types of tools available to researchers.
In the study of any protein, there are two major questions: what does it do and how does it do
that? Until now, tools like protein viewers and articulated models are mostly static, and as such,
provide limited scope. The next step in this area is an advanced augmented reality environment
that incorporates haptic information in the tangible model.
Actuated tangible interfaces can improve protein study by providing physical handles to
manipulate and understand the complex 3d shapes and movements that determine protein
function, as Brown and Raffle demonstrated [40].

3.2 Emergency Response Planning

Emergency response planning is a major sector that has attracted the attention of plenty of
researchers nowadays.
Emergency response planning is a process that involves many different stakeholders who may
communicate concurrently with several channels and exchange different information artifacts.
The planning typically occurs in an emergency operations centre (EOC) and involves personnel
both in the room and also in the field. The EOC provides an interesting context for examining the

30

use of tablets, tabletops and actuated tangibles, and their role in facilitating information and
communication exchange in an emergency response planning scenario.

Large scale emergencies and disasters highlight the vulnerability of modern society to collapses
of infrastructure that is crucial to daily life (e.g. roads, phone service, and electricity). A
significant challenge with emergencies also arises from the different types that can occur, from
unplanned events like natural disasters, train derailments, and chemical spills, to planned large-
scale events like the Olympics and the World Cup.

Emergency response has always been both a challenging case and an experimental base for the
emerging technology. In the early 20th century, strategy and emergency response took place
around draft tables. Experts worked around these draft tables with strategic information artifacts;
their goal was to maintain control in dynamic and critical situations. Later on, computer-
supported collaborative work focused on enabling information representation with distributed
displays.
Today, we are looking for even more efficient methods, in order to maximize our performance
and one very efficient style of interaction is combining tangible user interfaces (TUIs) with
tabletops. This is beneficial because such situations require intuitive and direct manipulation of
sophisticated information layers.

Emergency response planning is comprised of many important tasks, from detecting and
monitoring the emergency to the deployment of resources and communication management.
Emergency response planning is also inherently a peripheral process; critical information about
an emergency can arrive from numerous sources (e.g. first responders, reporters, or online
sources) and information processing and analysis are typically done in parallel with the primary
emergency response-planning activity, frequently with interruptions. In any case, accurate and
timely information is as crucial as is rapid and coherent coordination among the responding
organizations.

Key Emergency Response Management (ERM) functions are navigating through the map (e.g.
specific zoom in a certain region while the rest of the map remains unchanged), filtering data,
selecting information recipients, searching datasets, drawing time-dependent freeform areas, and
assigning tasks (e.g. to fire-fighters, medical personnel, etc). Under time pressure the mouse and
keyboard could be insufficient; therefore, intuitive graspable solutions, such as tangible user
interfaces (TUIs), are undoubtedly better suited for ERM.

Besides digital pen and touch gestures, physical tokens can be used in disaster planning systems
on tabletops. They act as input as well as output, improving the experience of the users. They can
change simulation parameters according to their physical position above the tabletop, and
provide feedback through their change of position/state/reaction. The manipulation of physical
tokens to interact with emergency systems has reduced the learning curve of these systems.

For example, CoTracker [1] is a tangible tabletop system, currently developed, with high
potential for ERM teamwork. On an interactive map expert team members can discuss an
operational picture using TUIs like bricks, frames (and pens, as well).

31

Research has been done on how to access and distribute key information in an ERM situation.
Rauschert [42] examined how speech and gesture recognition can be coupled with a knowledge-
based dialogue management system for storing and retrieving geospatial data. They showed how
a multimodal, multiuser Geographical Information System (GIS) interface benefits collaborative
work on large displays. Wigdor pointed out the importance of hosting experts in a shared
horizontal workspace and allowing them to work on their particular subtasks without interfering
with each other. Another possibility is the CERMIT system [41], where light-emitting tangible
devices and mobile phones were used to interact with the tabletop environment.

While we usually assign generic functions to devices-physical tools (like rulers, dials, and pens)
and use them in many different cases, we seldom create specialized case-specific devices such as
a frame for multilayered data access or a palette for sketching. Ullmer and Ishii proposed that
specialized TUIs could offer richer interaction capabilities but at the cost of reduced flexibility.
The degree of cognitive support offered by a TUI has been shown to be a function of the TUIs
degree of specialization.
While malleable solutions have a lower degree of specialization, tools like frame, palette, ruler,
and caliper are more specialized. The inherently complex structure of an ERM case requires
rather specialized TUIs. This is why CoTracker employs tailor-made tangibles.

Another interesting new prototype is
the prototype is the ePlan Multi-Surface
[10], a multi-surface environment for
emergency response planning exercises
that was designed with domain experts
from C4i Consultants Inc.

There are several crucial questions
about the approach that should be
followed to achieve better functionality:
Is it better to have multiple tangible
devices, each with a limited number of
dedicated functions (that is: more
space-multiplexing), or a limited
number of devices where users of one
device can choose among several

functions (that is: more time-multiplexing)? Should user interface designers employ generic or
specialized tangible devices? What is a good balance between generic and specialized tangible
devices?

In general, it is understood that collaborative use of large interactive surfaces benefits the ERM
domain. There are several possible approaches: use of multi-touch surfaces, employment of
tangible objects like graspable devices, mechanic tools, clay-like materials, or combinations of
these approaches.

Figure 3.1 ePlan multi-surface

32

Speaking about ERM, we should mention as well, the exceptional work of James Patten. Both
his ‘Sensetable’ and ‘Thumbles’ projects, although not exclusively directed to ERM use, can
contribute significantly towards that orientation.

 Sensetable [16] is a system
which tracks the positions of
intelligent objects on a tabletop
surface, and projects
information onto the objects
themselves. Sensetable has
been applied to situations like
business supply chain
management, urban planning,
interactive visual art, and the
performance and composition
of electronic music.

 Thumbles [17] are small robots that drive around on a tabletop surface under computer control to
create a new type of interface. Users interact by grasping and moving the Thumbles around, and
the computer can respond by moving them as well. Thumbles combine the versatility of a
graphical user interface with the tactile advantages of interacting with physical objects. The
robots rearrange themselves on the table based on what the user wants to do. For example, the
Thumbles can represent characters in a video game, or molecules in a chemistry simulation.
Thumbles are particularly well suited for these problems, particularly when teams of people must
work together to develop a solution.

Figure 3.2 The Thumbles combine the advantages of a GUI
with the intuitiveness that a physical object implies

33

Chapter Four: Project Description

Here we firstly make a presentation of the electronic part of the project and the process it went
through. Then, we describe the programming aspect of our work and in the last sub-chapter we
refer at the function of the total application.

4.1 Electronic Part

Regarding the electronic stage of the
project, the aim was to create a
relatively small and light physical
object (car) suitable for examining its
movement on the tablet that was
provided by the laboratory.
 For the completion of this stage, we
made use of the following elements:

-An Arduino Pro Mini microprocessor,
particularly the version that operates at
5V. This board was ideal in order to
accomplish small dimensions and a
low cost implementation.
-An FTDI USB cable, for the

uploading of Arduino sketches.
-The car chassis, that was created with 3D printing.
-Two motors with regulators, operating at 6V, mounted
at the two back wheels (dimensions 24 x 10 x 12 mm).
Thanks to the regulators, the appropriate power could be
achieved.
-Two back rubber wheels.
-The TB6612FNG Motor Controller, responsible for the
control and regulation of the motion of the back wheels.
-A metallic ‘free’ wheel (diameter: 9.5mm), mounted at
the center of the front part of the chassis (replacing the
two front wheels)
-The nRF24L01 RF Antenna (2.4GHz) [19], operating
at 3.3V, for the transmission of messages between the
car and the Arduino Uno, that was playing the role of
our server.

Figure 4.1 View of our actuated tangible from above

Figure 4.2 Front view of the vehicle

34

-Two small 12V batteries: One for the power supply of the motors and the other for the supply of
the rest of the circuit.
-One 3.3V voltage regulator (LD1117V33), necessary for the powering of the RF antenna.
-One 5V voltage regulator (L805CV), necessary for the powering of the Arduino Pro Mini.
-A two-way switch, connected in series with the battery of the circuit, in order to switch on and
off the power.
-Male and female pins and cables for the connections required.

Few words about our main components:

 The Arduino Pro Mini is a microcontroller board based on the ATmega168. It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs, an on-board
resonator, a reset button, and holes for mounting pin headers. A six pin header can be connected
to an FTDI cable or Sparkfun breakout board to provide USB power and communication to the
board. There are two version of the Pro Mini. One runs at 3.3V and 8 MHz, the other at 5V and
16 MHz.(we used the second one).

 The RF antenna is a 2.4 GHz Radio module that is based on the Nordic Semiconductor
nRF24L01+ chip. The Nordic nRF24L01+ integrates a complete 2.4GHz RF transceiver, RF
synthesizer, and baseband logic including the Enhanced ShockBurst™ hardware protocol
accelerator supporting a high-speed SPI interface for the application controller. It operates at
3.3V and the usual (limit) distance of its function -quoted by different suppliers- is 100 meters.

 The TB6612FNG motor driver can control up to two DC motors at a constant current of 1.2A
(3.2A peak). Two input signals (IN1 and IN2) can be used to control the motor in one of four
function modes - CW, CCW, short-brake, and stop. The two motor outputs (A and B) can be
separately controlled, the speed of each motor is controlled via a PWM input signal with a
frequency up to 100kHz. Logic supply voltage (VCC) can be in the range of 2.7-5.5VDC, while
the motor supply (VM) is limited to a maximum voltage of 15VDC.

With regards to the creation of the chassis,
we used the Makerbot Replicator2X 3D
printer. The design of the chassis was made
with the Google SketchUp 2014 and the
printing by using the MakerWare software.

Specifically, we printed two 3D parts for the
car:

Firstly, the main body: Mainly a rectangular
platform of dimensions 6x6mm (so that the
soldered circuit would fit on it) and a slot
spacious enough to facilitate the cableFigure 4.3 The Makerbot Replicator2X 3D printer we

used to print our components

35

connections between the motor controller pins and the motors. The edges of the platform are
extended towards down at a length of 1.5mm with the appropriate openings for the wheel
motors. These features are visible in the figure 4.4.
In addition, at the back part of the body we included a thin extension for the mounting of the
extra metallic wheel, using two screws, as shown in the pictures presented later.
Secondly, we printed a bumper to accommodate the smooth contact of the car with the surface
through capacitive material (specifically: anti-static conductive foam) glued at the bottom part of
the bumper. The capacitive material was essential for the constant detection of the car’s position,
thanks to the capacitive sensing technology of the tablet (explained later in detail).
Generally, we intended to maintain the design as simple as possible focusing on its functionality
without adding extra parts that could potentially incommode the future debugging (for example,
a car hood).

Regarding the designing process of the electrical layout, we had to deal with few trial-and-error
scenarios.
In particular, in the beginning we used nano-motors (of dimensions 6x15mm) trying to minimize
the total size of the vehicle as much as possible. After implementing this choice, we noticed that
the car, although quite light, did not move easily. The reason was that this type of motors is
operating at 12000 rpm, resulting at many revolutions per minute but, at the same time, at less
torque. Therefore, we decided to opt for motors with reducers, in order to achieve better torque,
which proved to be more efficient. The final motors are operating at 3000rpm offering a
reduction rate 10:1.

In addition, since the idea was to keep
the size limited, we intended to use
lithium coin cells (Cr 2032) for the
powering of the circuit. Finally, the
change of our motors resulted inevitably at
higher power requirements. As a
consequence, we chose two 12V
cylindrical batteries (of 33mAh
capacity), of fairly small size. One of
them was responsible for the powering of
the two motors and the other one for the
supply of the rest of our circuit.

In the beginning, we tried to create the
two back wheels using 3D printing, but
we faced some practical problems. In concrete, the rolling surface of the wheels was not equally
smooth and the hole required for the mounting of the motors either was not printed exactly in the
middle, or was bigger than expected. It turned out that the 3D printing process was not able to
support such detailed manufacturing, when it was coming to such small dimensions.

Here you can see the 3D Sketchup designs for the platform and the bumper, as well as their
preview in the Makerware environment, just before printing:

Figure 4.4 Our car parts (platform and bumper) after
printing

36

Figure 4.5 3D sketch of the platform

Figure 4.6 3D sketch of the bumper

Figure 4.7 Makeware preview of the bumper

37

Figure 4.8 Makeware preview of the platform

Here you can see the pin layout of the motor controller (viewed from below) that briefly explains
the function of each one of the pins.

Figure 4.9 Pin layout of the motor controller TB6612FNG

The circuit we designed and followed during the soldering process is the following one: Here
you can see the PCB layout of the electrical circuit, viewed from above.

38

Figure 4.10 PCB of the electrical circuit (designed with the Fritzing program)

Some comments on the previous layout:

The supply consists of two 12V batteries. The first battery leads to a toggle switch offering the
ability to power off and on the circuit, as required. Then we have placed a 5V regulator to
produce the necessary 5V potential, crucial for the operation of the Arduino Pro Mini.
The exit of that regulator is supplied to the Input pin of a second regulator that regulates its
Output at 3.3V. Subsequently, we produce the supply needed for the RF antenna (and the motor
controller), since this component operates at 3.3V.
The other 12V battery is connected directly to the appropriate pin (VM) of the TB6612FNG
motor controller that corresponds to the powering of the two motors. These motors are attached

39

to the A01, A02 and B01, B02 pins of
the controller, respectively.

With regards to the Arduino Pro Mini,
we soldered its pins (2-8) with the
appropriate controller pins (AIN1,
PWMA, AIN2, PWMB, STBY, BIN1,
BIN2 respectively) to achieve the
connections required, as indicated in
this scheme:

Last but not least, the pins ‘2’ (3.3V)
and ‘3’ (GND) of the above Fritzing
layout, as well as the pins 9-13 of the Arduino are attached to the RF module enabling the
transfer of data to and from the server. Below you can see the correspondence between the RF
and the Arduino pins.

Figure 4.12 Pin allocation of the RF antenna

Signal RF Module Arduino pin for RF24 Library
GND 1 GND
VCC 2 3.3V
CE 3 9
CSN 4 10
SCK 5 13
MOSI 6 11
MISO 7 12

Figure 4.11 Indicated connections between Arduino and motor
controller

40

Capacitive Sensing Technology

It is worth focusing a little on how the capacitive sensing technology functions, since we take
advantage of its qualities throughout the execution of our project.

Firstly, the capacitive sensing technology is based on the capacitive coupling, that is the transfer
of energy within an electrical network by means of the capacitance between circuit nodes. Many
types of sensors use capacitive sensing, including sensors to detect and measure proximity,
position or displacement, humidity, fluid level, and acceleration. Human interface devices based
on capacitive sensing, such as trackpads, can
replace the computer mouse. In general, it is
acclaimed that capacitive touch screens are more
responsive than resistive touch screens, but less
accurate. There are two major types of
capacitive touch technology: surface capacitive
and projected capacitive.

The surface capacitive touch panel is coated
with conductive layer on one side of the
insulator, and small voltage is applied to the
layer. Once a conductor, such as human finger,
touches the other side of insulator, a capacitor is
formed.
 By means of measuring the change of capacitance from the four corners of the panel, the panel’s
controller can determine the location of the touch. Currently, multi-touch devices are generally
made by projected capacitive technology (PCT).

Single conductive layers of X-Y grid or two separate, orthogonal conductive layers are etched on
projected capacitive touch panels. The multi-touch controller of PCT sense changes at each

point along the grid. In other words,
every point on the grid generates its own
signal and relays multi-touch points to
the system. For instance, SmartSkin
used capacitive sensing and a mesh-
shaped antenna to detect multiple hand
positions and object’s shapes.
Moreover, Diamondtouch developed at
Mitsubishi Electric Research
Laboratories, is another interactive table
system based on capacitive sensing and
supports the ability to distinguish among
multiple users.

In our case, we take advantage of the
surface capacitance of the capacitive tablet screen. In this basic technology, only one side of the

Figure 4.13 Projected capacitive touch screen

http://en.wikipedia.org/wiki/Resistive_touchscreen
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Trackpad
http://en.wikipedia.org/wiki/Human_interface_device
http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Level_sensor
http://en.wikipedia.org/wiki/Hygrometer
http://en.wikipedia.org/wiki/Capacitive_displacement_sensor
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Electrical_network

41

insulator is coated with conductive material. A small voltage is applied to this layer, resulting in a
uniform electrostatic field.
When a conductor, such as a human finger, touches the uncoated surface, a capacitor is
dynamically formed. Because of the sheet resistance of the surface, each corner is measured to
have a different effective capacitance. The sensor's controller can determine the location of the
touch indirectly from the change in the capacitance as measured from the four corners of the
panel: the larger the change in capacitance, the closer the touch is to that corner.

So, our conductive foam is pinned to one analog Arduino pin and when it touches the surface, a
capacitor is formed, respectively. Therefore, as the car moves across the screen, the exact
location of the vehicle is easily tracked. In the same time, the distance between its current
location and the final point is dynamically recalculated.
What happens is that the car sends continuously a message to the Arduino Uno regarding the
pixels remaining as it approaches the final target. Finally, when the distance remaining is less
than a prearranged limit (in our case, we opted for 100 pixels) the car (or more specifically the
Pro Mini attached in the car construction) receives the order from our server to stop the
movement and pauses the motors’ motion. The exact way of communication between the tablet
and the car is explained later.

Apart from the above, since we are presenting the electronic aspect of the project, we are entitled
to mention some information regarding the TUIC technology, since we will comment on that in
the ‘future work’ section.

TUIC Technology

We have to mention that TUIC [4] is based in the capacitive sensing, which is used in our case.
TUIC is a technology that enables tangible interaction on capacitive multi-touch devices, such as
iPads, iPhones, and 3M’s multi-touch displays, without requiring any hardware modifications.
TUIC simulates finger touches on capacitive displays using passive materials and active
modulation circuits embedded inside tangible objects, and can be used with multi-touch gestures
simultaneously.
TUIC consists of three approaches to sense and track objects: spatial, frequency, and hybrid
(spatial plus frequency), which enables tangible interaction on unmodified capacitive multi-touch
panels. TUIC uses passive materials and active modulation circuits to simulate multi-touch
gestures. These multi-point patterns and gestures are designed to be easily distinguishable from
human gestures, and to encode object IDs. TUIC tags can be embedded inside tangible objects to
sense the objects’ identification, movement, and rotation.

The frequency approach, called TUIC-f, utilizes the fast response time supported by capacitive
touch sensing. It encodes data in the time domain by simulating finger touches at the same
location at various frequencies. There are two advantages of an active frequency tag:

 Firstly, only a single touch point is required to encode data, enabling more tags to be used
simultaneously. Also, it is possible to build a tag with a smaller footprint. Secondly, a tag can

http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Controller_(computing)
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Voltage

42

change its frequency dynamically and the corresponding object ID or state. This enables the tag
to represent a button or a dial, supporting the types of tangible interaction in Sensetable and
SLAP, for example.
There are several limitations to frequency tags. The first is the delay in sensing object IDs
because several cycles may need to be observed. Second, fast movement causes a second touch
point to be registered at a different location, and is difficult to distinguish from a human gesture.

Another very useful way to take advantage of the TUIC approach, is the creation of
authentication keys.
In general, users encounter two problems while keying the PINs or passwords on mobile devices
such as iPhones or iPads. First is pressing the wrong keys on the virtual keyboards. Second,
entering passwords in public space, like a bus or elevator, potentially exposes the passwords to
bystanders. We could use TUIC tags as authentication keys to replace PINs and passwords.
In this scenario, users can carry these tags, say fastened to a key-ring, and simply place the
tags on a device’s display for authentication. In addition, the key assures contact-based, secure
authentication that prevents remote attacks.

4.2 Programming Part

About the seρver part we had to use:
 An Arduino Uno, operating at 5V, connected serially (with USB cable) with our PC.

 Another nRF24L01 RF Antenna (2.4GHz),
operating at 3.3V, for the transmission of
messages between the car and the Arduino
Uno.

 A computer, serially connected to the Uno,
necessary to run the appropriate server
sketches.

The Arduino Uno is a microcontroller board based
on the ATmega328. It has 14 digital input/output
pins (of which 6 can be used as PWM outputs), 6
analog inputs, a 16 MHz ceramic resonator, a
USB connection, a power jack, an ICSP header,
and a reset button. It contains everything needed
to support the microcontroller; simply connects to

a computer with a USB cable. Each of the 14 digital
pins on the Uno can be used as an input or output,
using pinMode(), digitalWrite(), and digitalRead()
functions. It operates at 5 volts.

Now, regarding the programming languages used:
The programs of the vehicle (Pro Mini) and the
server (specifically, the Uno part) are written in

Arduino- Code, which is basically a C/C++ variant. The open-source Arduino environment is

Figure 4.15 The (server) Arduino Uno,
connected with the RF antenna

http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode

43

very user-friendly and facilitates the writing of programs and quick uploading to the i/o board.
The environment is written in Java and based on Processing, avr-gcc, and other open source
software. A developer can specify the pins used for the components and their nature (input or
output, analog, digital or PWM). Apparently, we had to import the necessary libraries for the use
of the RF antenna (<nRF24L01.h>, <RF24.h>) and the serial communication of the Arduinos
with peripheral devices (<SPI.h>).

For the server part and the tablet interface, we used the Processing IDE. Processing is an open
source programming language and integrated development environment (IDE) built for the
electronic arts, new media art, and visual design communities. The language builds on the Java
language, using a simplified syntax and graphics programming model.
In addition, Processing communicates very well with the Arduino IDE, which made it a very
useful choice for our project.

Figure 4.16 View of the Arduino IDE

Figure 4.17 View of the Processing IDE

44

For the wireless communication between the two Processing scripts (that is, the tablet part and
the server part) we used a server-client socket connection.

In few words, normally a server runs on a specific computer and has a socket that is bound to a
specific port number. The server just waits, listening to the socket for a client to make a
connection request.

The client knows the
hostname of the
machine on which the
server is running and
the port number on
which the server is
listening. To make a
connection request, the client tries to rendezvous with the server on the server's machine and
port. The client also needs to identify itself to the server so it binds to a local port number that it
will use during this connection. This is usually assigned by the system.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a
new socket bound to the same local port and also has its remote endpoint set to the address and
port of the client. It needs a new socket so that it can continue to listen to the original socket for
connection requests while tending to the needs of the connected client.

If anything goes
wrong with the
connection, for
example the host is
not there or is
listening on a
different port, an
exception is
thrown.

In terms of libraries, we made use of the oscP5, a library written by Andreas Schlegel [18] for
the programming environment Processing. OSC is the acronym for Open Sound Control, a
network protocol developed at CNMAT (Center for New Music and Audio Technology), UC
Berkeley.

The following schematic represents the wireless communication accomplished between the
actuated tangible and the tablet, through the server.

Figure 4.18 The server listens for clients’ requests

Figure 4.19 Server accepting the client’s request and establishing a connection

http://www.processing.org/
http://www.sojamo.de/

45

Figure 4.20 A schematic of the Wi-Fi communication between the actuated tangible and the tablet (made
with Microsoft Visio)

In the Appendix you can check the code of the four sketches we used (Arduino-car part,
Arduino-server part, Processing-server part, Processing-tablet part).

Lastly, a note regarding the control of the motors by the controller: Each motor has three control
pins: two for direction, and one for speed.
When one direction pin is HIGH and the other is LOW, the motor will spin towards one
direction. If we ‘flip’ the HIGH-LOW values of the two pins controlling direction, the motor will
start moving to the opposite direction. On the other hand, if we set the direction pins both HIGH
or both LOW, the motor stops.
The PWM pin allows you to ‘analogWrite’ to this pin to control the speed of that one motor.
Using ‘analogWrite(0)’ the motor stops. On the contrary, using analogWrite (255) it will go full
speed. Setting any analog value between 0 and 255 can control respectively the speed of the
motor. The above points can be easily seen in the ‘Car part Arduino’ sketch in the Appendix.

4.3 The Project

To start with, our system consists of:
-the tangible object (the small car we designed and constructed)
-the tablet
-the server, namely a computer with an Arduino Uno serially connected to it, by a USB cable.

46

In the beginning, the user is prompted by a text message on the screen of the tablet to define the
path after a few seconds. Then, he can select any two points of the surface as the initial and final
ones.
That way, a straight route
is immediately created, as
indicated at the same
time on the screen with
the visible creation of a
path.

Afterwards, the user
places the vehicle on the
initial point -or within a
small distance from it,
predefined by a specific
radius of tolerance. The
car should face the final
point.
After its placement on the
monitor, the car starts
moving towards the final
point, where it finally
stops automatically.

After this trial, the user can press the “Reset”
touch button that appears at the lower right
corner of the screen, redefining once again
another path of different length.
And so on.
Our application works like this:The tablet
constantly calculates the distance between the
car and the final point, in terms of pixels. Of
course, the initial value of this (decreasing)
distance is the distance between the initial and
final point of the path -defined by the user.Τhat
distance is transmitted wirelessly to the
computer, through OSC messages. Then, the
computer sends that info to the serially
connected Arduino Uno, which functions as the
interface of the server with the vehicle. The Uno
transmits the distance left to the Pro Mini,
thanks to the RF module.
When it comes to the car, the Pro Mini controls
the motor controller and subsequently, the
movement (or not) of the vehicle. Apparently, as
the car keeps moving, the distance to the target

Figure 4.21 Our system consists of the tangible, the tablet and the server

Figure 4.22 For the communication between the Pro
Mini and the Uno, each of them uses an RF module

47

is being reduced continuously and this info is still being transferred to the Pro Mini, owing to the
server. When that value gets lower than a predefined threshold (in our case, 100 pixels) that
implies that the car has practically reached the target. Therefore, the microprocessor (Pro Mini)
stops the motion of the motors.

Afterwards, when the user sets another path, the new “total distance” surpasses again the
threshold and the car starts moving, until it reaches finally the new target.

Figure 4.23 Our actuated tangible in the middle of its itinerary (from the initial-green point to the final-red
one).

48

Chapter 5: Limitations, Strengths and Future Work

5.1 Limitations

There are specific limitations that characterize our system:

 Until now, our implementation examines the simple case of a straight line path, where the
car is facing towards the target. Provided that, it is understood that if the vehicle is facing
towards an irrelevant direction, it firstly has to turn towards the final point.

 The tangible cannot rotate around its center, or move backwards and therefore can get
stuck at the corners of a table.

 On the long run, we would be interested to develop an emergency response application
using more than one objects simultaneously. But the problem appearing here is that, the
number of tangibles that can be used at the same time is constrained by the number of
touch points and the size of the screen.

 Due to factors such as irregular surfaces and slight differences in the friction all over the
tabletop, the car is unlikely to move by default in a straight line. Consequently, a
feedback control loop is required to stabilize the motion for these situations.

 Inevitably, we face a power supply constrain. Since our intention was to reduce the
dimensions of the project as much as possible, we had to reach a compromise when it
comes to the size (and battery life) of the batteries used. It is noticed that our 12V
batteries do not last very long. The solution we can apply here is to use rechargeable
ones.

 One of the biggest challenges for TUIs is scalability. Successful applications for small
problems or data sets often do not scale up to complex problems involving many
parameters and large data sets. Although our project is adequate for this fairly small
representation, we could face difficulties in larger representations.

 Poupyrev pointed out that while digital objects are malleable, easy to create, modify,
replicate, and distribute, physical objects are rigid and static. As physical objects are not
mutable, the system cannot transform these into different objects or alter their physical
properties (e.g. change their color). Specificness of objects, while promoting learnability,
conflicts with abstraction and versatility. That is the case in our situation, as well, where
the car has a totally defined shape and context, lacking abstraction.

49

5.2 Strengths

 The tangible object is small and light, avoiding impediment or fatigue of the user. In
addition, it works wirelessly, being charged autonomously (thanks to its batteries). That
means that it does not require cable connection to keep operating.

 The project can be executed/demonstrated in practically any flat surface (with the
precondition that the surface is capacitive).

 Active tangibles (in our case, the car) can provide a great extent of flexibility. For
example, the included inexpensive microprocessor (Pro Mini) could allow the integration
of a wide range of components (like extra sensors/ accelerometers) in the future, if we
choose to modify the project.

Furthermore, we should mention some additional strengths/advantages that apply generally when
it comes to actuated tangibles -consequently, in our very project, as well:

 For a flexible TUI, scalability and actuation are important factors. An actuation
mechanism that is integrated into the table would mean that, in case of extension of the
working volume (or even: in case of the change of the display technology) we would face
an immense effort. In our situation,
including the actuation mechanism into the
tangible allows costs to scale with the
number of tangibles and stay almost
unrelated to the size of the table. In fact it
would be preferable, if the actuation
mechanism would be interchangeable as
well and no special surface would be
required.

 Tangible artifacts can act as resources for
action in several ways. They allow a very
wide range of actions and can be
manipulated independently of the system
(‘offline’, or for other purposes). This makes
them resources for physical manipulation,
for example in making use of epistemic
action.
Tangibles support referential, social, and
contextually oriented action, making it easy
to make references by pointing, touching, or
performing publicly visible actions. They can be a shareable resource. Tangibles can also
be resources for perception and sensory experience, allowing for bodily engagement.

Figure 5.1 View of our car from below. We can
observe the presence of the two batteries and

the ‘free wheel’ that replaces two conventional
front ones.

50

 Space-Multiplexing and Directness of Interaction: In tangible interfaces that employ
multiple interaction objects, input is space-multiplexed. Different physical objects
represent different functions or different data entities. This enables the system designer to
take advantage of shape, size, and position of the physical controller to increase
functionality and decrease complexity of interaction. Consequently, in our case we can
introduce new objects with different characteristics that would be associated with
different acts.

 Tangible interfaces can be interpreted as a specific implementation of the original notion
of Ubiquitous Computing. In the sense that, Ubiquitous Computing is aimed at allowing
users to remain situated in the real world, and at retaining the primacy of the physical
world. Yet, while embedded in context, the design goal for tangible interfaces is not the
invisibility of the interface, but rather the physicality of the interface.

 Our physical body and the physical objects with which we interact play a central role in
shaping our understanding of the world. Children learn abstract concepts through bodily
engagement with tangible manipulatives. Professionals such as designers, architects, and
engineers often use physical artifacts to reason about complex problems. One of the
strengths of TUIs compared to traditional user interfaces is that they enhance this
connection of body and cognition by facilitating tangible thinking- thinking through
bodily actions, physical manipulation, and tangible representations.

5.3 Future Work

 Our solution takes into account the case of the straight line. Given that, it is understood
that a solution should be implemented for more complex paths and random trajectories.
For this, we could use a gyroscope (or an accelerometer) to sense its deviation from the
initial orientation. The gyroscope measures the angular velocity of the device around
three perpendicular axes.

 Our current tangible is not well suited for tilted surfaces. Therefore, we also want to
integrate a more sophisticated tracking solution. Including the use of accelerometer and a
gyroscope to sensor the orientation would result to a large data set transmitted, a wide
range of additional features in fact available. In addition, these sensors allow the
recognition of simple motions (like tapping on the device) or gestures such as shaking,
which could be used as a direct input or captured for later analysis.

 The device could also have the ability to detect if it is laid on its back or if a user is
holding it (using motion classification). In this case, the vibrating motors can be used as
an output to provide variable haptic feedback or to attract the attention of the user.

51

 Since the surface used is capacitive, we should take advantage of the TUIC approach (as
mentioned in the 5.1 section). Specifically speaking, the idea is to send a tone from the
car (essentially, the Pro Mini) to the screen at a specific frequency. To achieve this we
could use a Tone library of the Arduino IDE, or send PWM from a pin. As a result, the
car would be recognized by this ‘unique’ kind of identity –its frequency- enabling
consequently the use of different objects on the same screen.
Each one of them would be individually recognized by our system. Consequently, we
could potentially modify the app so that the screen provides additional info to the user
regarding each object when it is placed (like its name, purpose, etc) offering a much more
vivid experience for him.

 In the paper ‘Introducing Robots to Interactive Tabletops’ [5] it is mentioned that when
placing actuated TUIs or robots on an interactive tabletop, we expect them to be able to
engage and attract attention beyond what is possible by visual aspects of the tabletop.
However, robots can be viewed as unique entities, affording social attributes that are not
demonstrated by actuated TUIs. Robots beyond their physicality and form can provide a
sense of agency, a sense of being, and requiring enhanced awareness from their user, in
ways that are not that remote from being aware of another human user.

These characteristics allow the robots to take on different social roles, i.e. story teller, a
companion, assistant, tool or
just an attractive and engaging
toy. These abilities of the
robot to become a social
partner in an interaction
scenario can dramatically
enhance the interaction
experience on digital
tabletops. An example of this,
is a recently proposed work
from researchers in the
Department of Computer
Science, University of
Calgary: the ‘Spidey’.
In our case, we could expand
the application constructing
and putting to use more
anthropomorphic actuated
tangibles, or introducing
robot-like devices as well.
The concept would be to create this feeling of familiarity for the user and enhance his
experience.

 As we have mentioned, we would like to concentrate more in potential use of our
application in ERM-focused applications. To start with, an emergency response plan

Figure 5.2 Side view of our car from below. Here it is connected with the
FTDI cable that enables the loading of sketches from the computer.

52

clearly varies depending on the situation. In particular, there are different parameters we
should take in notice, concerning the environment (natural, social, etc) and the
infrastructure related to each case. Anyway, we are accepting the hypothesis that in the
majority of the cases, the Response Management functions remain quite similar (e.g. as
mentioned before: navigating through the map, filtering data, selecting information
recipients, drawing time-dependent freeform areas, assigning tasks).
Ideally, in order to create an adequate Emergency Response application, we might have to
model the majority of the factors that intervene (like citizens, buildings, vehicles,
medical/fire services, etc) making the planning more ‘tangible’ and intuitive.
Under this scope, the idea presented previously, regarding the introduction of ‘robots’ to
interactive tabletops [5], seems very appealing.
In our project, we made a step towards the modeling of the ‘vehicles’, but we still need to
surpass our limitations to improve its functionality.
Hopefully, in the future we could incorporate our approach into a broader project that
would take into account more complex conditions. Meaning an ERM application that will
include the models of different entities as well (that is, the other stakeholders of the
emergency scenario, as stated before).

In general, the philosophy behind the design of such an application needs to answer to the
controversial debate: Should user interfaces utilize generic or specialized tangible
devices? What is the advisable equilibrium between generic and specialized ones?
We propose that, when it comes to future research in the ERM field, we should focus on
developing a system with few generic devices but with a high degree of specialization. In
that way, we will limit the number of devices to avoid complicating the system.
Subsequently, although the system will require some cognitive effort from the users in the
beginning, it will make (on the long run) our application less time-consuming and more
efficient under the stressful conditions of an emergency case, thanks to this
specialization.

53

Chapter 6: Conclusion

In the last decade TUI research has become an established research area in HCI, as attested by
the growing body of work and the number of venues dedicated for TUI research. Seeking to
provide seamless interfaces between people, digital information, and the physical environments,
TUI research shows a potential to enhance the way in which people interact with and leverage
digital information.
However, TUI research is still in its infancy. Extensive research is required to better understand
the implications of interlinking the physical and digital worlds, to design tangible interaction
techniques for complex real-world application domains, and to develop technologies that bridge
the digital and physical worlds.

Actuation seems to be the next frontier in tangible user interfaces. There is a lot of space for
further development. New emerging technologies, will potentially allow creating efficient and
inexpensive actuated tangible interfaces in the future that can be used in communication,
information, presentation, emergency planning and other applications. Developing such
applications would perhaps require stepping outside of the boundaries of the classic tangible UI
domain and combining expertise from robotics, haptic interfaces, design and architecture.

In this paper, we intended to explore the usability of the actuated tangibles and the level of
interaction that they introduce. To acquire a first-hand experience, we decided to design and
construct an actuated tangible object ourselves. Consequently, blending the fields of electronics
and computers we developed our physical object (vehicle) and an appropriate tablet application
testing its functionality.

In particular, the user is asked to define a path on the tablet selecting any two points of the
surface as the initial and final ones. That way, he is able to designate any straight-line trajectory.
Afterwards, the user places the vehicle on the initial point and the car starts moving towards the
final point, where it stops automatically. Then, he can press the ‘Reset’ touch button available,
redefining once again another path of a different length.
The application is based on the wireless communication of the tablet with the Arduino Pro Mini
microprocessor that is responsible for the motion of the tangible. The messages are transmitted
through our server that consists of a computer and an Arduino Uno.

Furthermore, we referred at the history of tangible interaction that led to today’s evolution and
examined the existing implementation technologies. In addition, we presented the previous work
in the field of Tangible User Interfaces, commenting on a variety of TUIs with completely
different philosophy, function and target (e.g. Pangaro’s ‘Workbench’, Shape displays,
Touchbugs, Madgets). The type of actuation can also vary significantly (e.g. vibrotactile, change
of orientation, use of the third dimension).

54

In addition, we emphasized on the numerous uses of TUIs (like problem solving, entertainment,
learning) and took a closer look at the field of emergency planning and its principal functions
and aspects. Then, we analyzed our application in greater detail and we explored the limitations
and strengths that lay among its characteristics. Finally, we commented on the future work and
possible improvements of our implementation, and we stressed out the usefulness of tangible
interaction in emergency case management (ERM), aiming to canalize our project towards that
direction.

55

Chapter 7: References

[1] Kunz, A., Yantaç, A. E., Alavi, A., Woźniak, P., Landgren, J., Sárosi, Z., & Fjeld, M.,
(2013, June), Tangible Tabletops for Emergency Response: An Exploratory Study

[2] Diana Nowacka, Karim Ladha, Nils Y. Hammerla, Daniel Jackson, Cassim Ladha, Enrico
Rukzio, Patrick Olivier, (2013, May), Touchbugs: Actuated Tangibles on Multi-Touch
Tables

[3] Shaer, O. & Hornecker, E., (2010), Tangible User Interfaces Past: Present, and Future
directions

[4] Neng-Hao Yu, Li-Wei Chan, Seng-Yong Lau, Sung-Sheng Tsai, I-Chun Hsiao, Dian-Je
Tsai, Lung-Pan Cheng, Fang-I Hsiao, Mike Y. Chen, Polly Huang, Yi-Ping Hung, (2011),
TUIC: Enabling Tangible Interaction on Capacitive Multi-touch Display

[5] Sowmya Somanath, Mario Costa Sousa, Ehud Sharlin, (2013, February), Beyond
Actuated Tangibles: Introducing Robots to Interactive Tabletops

[6] Malte Weiss, Florian Schwarz, Simon Jakubowski, Jan Borchers, (2010, October),
Madgets: Actuating Widgets on Interactive Tabletops

[7] Ivan Poupyrev, Tatsushi Nashida, Makoto Okabe, (2007), Actuation and Tangible User
Interfaces: the Vaucanson Duck, Robots, and Shape Displays

[8] Gian Antonio Pangaro, (1997), The Actuated Workbench: 2D Actuation in Tabletop
Tangible Interfaces

[9] Emanuel Vonach, Georg Gerstweiler, Hannes Kaufmann, (2014, November), ACTO: A
Modular Actuated Tangible User Interface Object

[10] Apoorve Chokshi, Teddy Seyed, Francisco Marinho Rodrigues, Frank Maurer, (2014,
November), ePlan Multi-Surface: A Multi-Surface Environment for Emergency
Response Planning Exercises

[11] Eckard Riedenklau, Thomas Hermann, Helge Ritter, (2014, February), An Integrated
Multi- Modal Actuated Tangible User Interface for Distributed Collaborative Planning

[12] Andreas Kunz, Asim Evren Yantaç, Ali Alavi, Paweł Woźniak, Jonas Landgren, Morten
Fjeld, Zoltán Sárosi, (June 2013), Tangible Tabletops for Emergency Response: An
Exploratory Study

[13] Wikipedia web page, <http://en.wikipedia.org/wiki/Main_Page>

56

 [14] Arduino web page, <http://www.arduino.cc/>

 [15] Processing web page, <https://www.processing.org/>

 [16] James Patten, The Sensetable project, <http://www.jamespatten.com/sensetable.php>

 [17] James Patten, Thumbles project, <http://www.pattenstudio.com/thumbles/>

 [18] Sending and Receiving OSC Data Using Processing, Codasign web page,
<http://learning.codasign.com/index.php?
title=Sending_and_Receiving_OSC_Data_Using_Processing>

 [19] nRF24L01 2.4GHz How-To, Arduino Info web page, <http://arduino-
info.wikispaces.com/Nrf24L01-2.4GHz-HowTo>

 [20] Scott Brave, Colyn Bulthaup and Professor Hiroshi Ishii, (1998), PSyBench, Tangible
Media Group web page, <http://tangible.media.mit.edu/project/psybench/>

 [21] John Underkoffler, Hiroshi Ishii, (1999), Urp: a luminous-tangible workbench for urban
planning and design

 [22] ReacTable web page, < http://www.reactable.com/>

 [23] Vincent LeClerc, Amanda Parkes, Hiroshi Ishii, (2007), Senspectra: a computationally
augmented physical modeling toolkit for sensing and visualization of structural strain

 [24] Phidgets web page < http://www.phidgets.com/>

 [25] Rafael Ballagas, Meredith Ringel, Maureen Stone, Jan Borchers, (2003), iStuff: A
physical user interface toolkit for ubiquitous computing environments

 [26] Leonel Morgado, Maria Cruz, Ken Kahn, (2006), Radia Perlman: A pioneer of young
children computer programming

 [27] Jacobsson, Bodin, Holmquist, (2008), The See-Puck: A Platform for Exploring Human-
Robots Relationships

 [28] Jacobsson, Fernaeus, Holmquist, (2008), Glowbots: Designing and Implementing
Engaging Human Robot interaction

[29] Coelho, Maes, (2008), Sprout I/O: A textually rich interface

[30] Poupyrev, Nashida, Mauyama, Rekimoto, Yamaji, (2004), Lumen: interactive visual
and shape display for calm computing

57

[31] Andrew Sears,Julie A. Jacko, (2003) Human-Computer Interaction: Design Issues,
Solutions, and Applications

[32] Couture, Riviere, Reuter, (2008), GeoTUI: A Tangible User Interface for Geoscience

[33] Boriana Koleva, Steve Benford, Kher Hui Ng, Tom Rodden, (2003), A Framework for
Tangible User Interfaces

[34] Hornecker, Buur, (2006), Getting a Grip on Tangible Interaction: A Framework on
Physical Space and Social Interaction

[35] Michael Philetus Weller, (2008), Posey: Instrumenting a poseable hub and strut
construction toy

[36] Ken Hinckley, (2002), Input Technologies and Techniques

[37] Diana Africano, (2003), Ely: the Explorer- Interactive Play system

[38] Hayes Solos Raffle, Hiroshi Ishii (2004, May), Topobo: A 3-D Constructive Assembly
 System with Kinetic Memory

[39] J. Patten, B. Recht, and H. Ishii, (2002), Audiopad: A tag-based interface for musical
performance

[40] Ashlie Brown, Hayes Raffle, (2009, April), Opportunities for Actuated Tangible
Interfaces to Improve Protein Study

[41] Tommaso Piazza, Hannes Heller, Morten Fjeld, (2009), CERMIT: Co-located and

Remote Collaborative System for Emergency Response Management

[42] Rauschert, Agrawal, Sharma, Fuhrmann, Brewer, MacEachren, (2002), Designing a
human-centered, multimodal GIS interface to support emergency management

58

Chapter 8: Appendix

Arduino Server Part:

 //CONNECTIONS for nRF24L01 Modules:
 // 1 - GND
 // 2 - VCC 3.3V !!! NOT 5V
 // 3 - CE to Arduino pin 9
 // 4 - CSN to Arduino pin 10
 // 5 - SCK to Arduino pin 13
 // 6 - MOSI to Arduino pin 11
 // 7 - MISO to Arduino pin 12
 // 8 - UNUSED

/*-----(Import needed libraries)-----*/
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

/*-----(Declare Constants and Pin Numbers)-----*/
#define CE_PIN 9
#define CSN_PIN 10

// NOTE: the "LL" at the end of the constant is "LongLong" type
const uint64_t pipe = 0xE8E8F0F0E1LL; // Define the transmit pipe

/*-----(Declare objects)-----*/
RF24 radio(CE_PIN, CSN_PIN); // Create a Radio

/*-----(Declare Variables)-----*/
int received; // Data received from the serial port
int received1;
int received2;
int ledPin = 13; // Set the pin to digital I/O 13
int pixel_distance;

void setup() {
 pinMode(ledPin, OUTPUT); // Set pin as OUTPUT
 Serial.begin(9600); // Start serial communication at 9600 bps

 radio.begin(); //start radio for the antenna communication
 radio.openWritingPipe(pipe);
}

void loop() {
 if (Serial.available() >1) {

59

// If at least two bytes are available to read (that is, the distance value),

 received1 = Serial.read(); //read the first byte it and store it in received1
 received2 =Serial.read(); //read the second byte it and store it in received2
 received=received1*256+received2; //reconstruct the number
 digitalWrite(ledPin, HIGH);

 //set the pin 13 as High to indicate the info received

 Serial.print ("Uno received: ");

 // At the receiving end, verify the received value
 Serial.println(received);

 }
 else {
 //Serial.println("maybe not serial available");

 //test message if there is not serial connection
 }

 pixel_distance=received;
 radio.write(&pixel_distance, sizeof(int));
 //send the distance to the car, through the Antenna RF24
}

Arduino Car Part:

 //CONNECTIONS for nRF24L01 Modules:
 // 1 - GND
 // 2 - VCC 3.3V !!! NOT 5V
 // 3 - CE to Arduino pin 9
 // 4 - CSN to Arduino pin 10
 // 5 - SCK to Arduino pin 13
 // 6 - MOSI to Arduino pin 11
 // 7 - MISO to Arduino pin 12
 // 8 - UNUSED

/*-----(Import needed libraries)-----*/
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

/*-----(Declare Constants and Pin Numbers)-----*/
#define CE_PIN 9
#define CSN_PIN 10

60

// NOTE: the "LL" at the end of the constant is "LongLong" type
const uint64_t pipe = 0xE8E8F0F0E1LL; // Define the transmit pipe

int STBY = 6; //standby

//Motor A
int PWMA = 3; //Speed control
int AIN1 = 2; //Direction
int AIN2 = 4; //Direction

//Motor B
int PWMB = 5; //Speed control
int BIN1 = 7; //Direction
int BIN2 = 8; //Direction

/*-----(Declare objects)-----*/
RF24 radio(CE_PIN, CSN_PIN); // Create a Radio

/*-----(Declare Variables)-----*/
int pixel_dist=0;

void setup() {
 //Serial.begin(9600);
 //Serial.println("Nrf24L01 Receiver Starting");
 radio.begin(); //start radio for the antenna communication
 radio.openReadingPipe(1,pipe);
 radio.startListening();
}

void loop() {

 if (radio.available()) { // Read the data payload until we've received everything
 bool done = false;
 if (!done) {
 done = radio.read(&pixel_dist, sizeof(int)); // Fetch the data payload
 //Serial.print("Car received distance: ");
 //Serial.println(pixel_dist);
 }
 }
 else {
 //Serial.println("No radio available ");

 //test message if there is not serial connection
 }

 if (pixel_dist>100) {

 //if the distance from the target is more than 100px, keep moving
 move(1,20, 0); //motor 1, speed=20, right
 move(2,16, 1); //motor 2, speed=16, right
 }
 else {
 stop(); //otherwise, stop
 }

61

}

void move(int motor, int speed, int direction){
 //Move specific motor at speed and direction
 //motor: 0 for B 1 for A
 //speed: 0 is off, and 255 is full speed
 //direction: 0 clockwise, 1 counter-clockwise

 digitalWrite(STBY, HIGH); //disable standby

 boolean inPin1 = LOW;
 boolean inPin2 = HIGH;

 if(direction == 1){
 inPin1 = HIGH;
 inPin2 = LOW;
 }

 if(motor == 1){
 digitalWrite(AIN1, inPin1);
 digitalWrite(AIN2, inPin2);
 analogWrite(PWMA, speed);
 }
 else {
 digitalWrite(BIN1, inPin1);
 digitalWrite(BIN2, inPin2);
 analogWrite(PWMB, speed);
 }
}

void stop(){
 //enable standby
 digitalWrite(STBY, LOW);
}

Processing Server Part:

//import libraries
import oscP5.*;
import netP5.*;
import processing.serial.*;

//declaration of variables
Serial myPort;

62

OscP5 oscP5;
NetAddress myRemoteLocation;

int counter=0;

int sendvalue;
String val;

void setup() {
 size(400,400);
 String portName = Serial.list()[3];

//change the list number to a 1 or 2 etc. to match the right port of your PC

 myPort = new Serial(this, portName, 9600);
 //serial communication with Arduino Uno, using the Port #portName. Baud rate: 9600 bps

 myPort.bufferUntil('\n');

 oscP5 = new OscP5(this,5001);
 // initialize oscP5 object, telling it to listen for incoming messages at port 5001
 //in the meantime, in the server sketch: "myRemoteLocation = new netAddress ("163.117.137.206",5001)"
}

void draw() {

}

void serialEvent(Serial myPort) {
 val = myPort.readStringUntil('\n'); //put the incoming data into a String -
 //the '\n' is our end delimiter indicating the //end of a complete packet

 if (val != null) { //make sure our data isn't empty before continuing
 val = trim(val); //trim whitespace and formatting characters (like carriage return)
 println(val);
 }
}

void oscEvent(OscMessage theOscMessage) {
//Whenever an OSC message is received, it is passed to the oscEvent() function.

 counter++;
 // get the first value as an integer
 String firstValue = theOscMessage.get(0).stringValue();

 // get the second value as a float
 float secondValue = theOscMessage.get(1).floatValue();

 if (counter>=2) { //If we have received the distance value
 println("OSC Message Received: "); // print out the message
 println("My value is: " + secondValue);

63

 sendvalue= round(secondValue);
 println("I send to Uno: " + sendvalue);

 delay(25);
 myPort.write(sendvalue/256);

 myPort.write(sendvalue%256);
 //pass value to Arduino Uno, serially (split into two bytes)

 }
}

//the delay() of the Processing API is normally a bad practise, because it halts the //whole program. for this reason, this is a self-
made //function, that serves as an //alternative, mainly based on the "millis()" function
void delay(int del)
{
 int time = millis();
 while(millis() - time <= del); //delay of "del" milliseconds
}

Processing Tablet Part:

//import libraries
import oscP5.*;
import netP5.*;

//declaration of variables
OscP5 oscP5;
NetAddress myRemoteLocation;

int [] posX=new int[2];
int [] posY=new int[2];
int counter=0;
boolean bDisplayMessage=true;
boolean check_flag=false;
float radius=100.0;

float init_distance;
float distance;
float distance_from_line;
int x1, y1, x2, y2, x3, y3;
int mouseCount = 0;
boolean been_on_first=false;
float init_time;
float final_time;
float total_time;
boolean time1_got=false;
boolean time2_got=false;

PShape s;

64

void setup() {

 oscP5 = new OscP5(this,5002);

// initialize oscP5 object, telling it to listen for incoming messages at port 5002
 myRemoteLocation = new NetAddress("163.117.137.206",5001);

// set the remote location to be the localhost on port 5001

 size(displayWidth, displayHeight); //set the size at Full Screen mode
 textFont(createFont("Arial",30));
 reset(); //call the reset function (reset variables and background colour)

}

void draw() {

 if (bDisplayMessage==true) { //a message appears, prompting the user to define a
 background(180, 120, 150); //path in a few seconds
 fill(0);
 textAlign(CENTER, CENTER);
 text("Please define path in",displayWidth/2, displayHeight/2);
 text(7- millis()/1000 + " seconds", displayWidth/2,displayHeight/2+50);

 if (millis() >7000)
 {
 bDisplayMessage = false;

 // After 7 seconds, stop displaying the message, thus proceed with path definition
 background(255);
 }
 }

 if (counter==2) { //if both initial and final point are set, draw path.
 drawPoints();
 }

 if (check_flag==true) { //if the path has been drawn
 if (mouseOverCircle(posX[0], posY[0], radius)) {
 fill(0, 255, 0);
 been_on_first=true; //boolean variable to guarantee that the car //has passed from the initial point in the beginning

 if (time1_got==false) { //if the car passes by the initial point
 init_time=millis(); //save the "beginning time", for future use
 time1_got=true;
 }
 }
 else {
 fill(255, 0, 0);
 }

 ellipse(posX[0], posY[0], radius, radius);

 //make a circle around the initial point

 if (mouseOverCircle(posX[1], posY[1], radius)) {

65

//if the car passes by the final point
 if (been_on_first==true) {
 fill(218,112,240);
 textAlign(CENTER);
 textSize(20);
 text("Target reached! ",x2, y2+90); //announce that we reached the //target

 if (time2_got==false) { //if the car reaches the target
 final_time=millis(); //save the time, for future use
 time2_got=true;
 }

 total_time= final_time- init_time; //calculation of total time of //the itinerary
 fill(150,112,240);
 textAlign(CENTER);
 textSize(25);
 text("Initial distance: "+ init_distance+" px",displayWidth-150,displayHeight-100); //display in px the total distance

 fill(150,112,240);
 textAlign(CENTER);
 textSize(25);
 text("Total time: "+ total_time +" ms",displayWidth-150,displayHeight-60); //display in ms the total time spent
 }

 fill(0, 255, 0);
 }
 else {
 fill(255, 0, 0);
 }
 ellipse(posX[1], posY[1], radius, radius); //make a circle around the final point

}

//Reset Button
 if (bDisplayMessage==false) { //if the first seven seconds have passed
 if(hover(displayWidth-200,displayHeight-200,100,50)) { //if the user hovers his //finger above the "reset" box
 rectMode(CORNER); //make the "reset" box green
 fill(120, 255, 120);
 rect(displayWidth-200,displayHeight-200,100,50);
 fill(0);
 textSize(26);
 textAlign(CENTER, CENTER);
 text("reset",displayWidth-150,displayHeight-180);
 }
 else { //if not, make the "reset" box red
 strokeWeight(1);
 rectMode(CORNER);
 fill(255, 120, 120);
 rect(displayWidth-200,displayHeight-200,100,50);
 fill(0);
 textSize(26);
 textAlign(CENTER, CENTER);
 text("reset",displayWidth-150,displayHeight-180);
 }
 }

66

}

void reset() { //reset the variables and the background color
 bDisplayMessage=true;
 check_flag=false;
 been_on_first=false;
 mouseCount = 0;
 background(255);
 counter=0;
 time1_got=false;
 time2_got=false;
}

 void mousePressed (){

 OscMessage myMessage = new OscMessage("/test"); //create a new OscMessage
 if ((bDisplayMessage == false) && (!(hover(displayWidth/2-130, displayHeight-200, 260,200)))) { //after the first seven seconds,
 //and when not hovering above the area where "distance" is displayed
on the screen
 if(hover(displayWidth-200,displayHeight-200,100,50)){ //if the user presses //the reset button
 reset(); //reset and start again
 }
 else {

 if (mouseCount== 0) { //if the user presses the screen for the first //time, define the initial point
 x1 = mouseX;
 y1 = mouseY;
 fill(0);
 textAlign(CENTER);
 textSize(20);
 text("point 1 ("+x1+", "+y1+")",x1, y1+120); //and print the related //message on the screen

 mouseCount++;
 }
 else if (mouseCount==1) { //if the user presses the screen for the second //time, define the final point
 x2 = mouseX;
 y2 = mouseY;
 mouseCount++;

 //additional information
 fill(0);
 textAlign(CENTER);
 textSize(20);
 text("point 2 ("+x2+", "+y2+")",x2, y2+120); //and print the related //message on the screen
 distance = calculateDist(x1, y1, x2, y2); //calculate and store the //initial distance, for future use
 init_distance=distance;

 fill(0);
 textAlign(CENTER);
 textSize(25);
 text("distance: "+distance, displayWidth/2, displayHeight-100);

67

 //print the distance

 myMessage.add("distance: "); //add the string "distance: " to the //osc message
 myMessage.add(distance); // add a float to the osc message

 oscP5.send(myMessage, myRemoteLocation); // send the message

 }
 else {
 distance_from_line= getDistance(posX[0], posY[0],posX[1], posY[1], mouseX, mouseY);
//calculate the position of the car with regards to the path defined

 if (distance_from_line<100) {
//if the car is moving inbetween an acceptable (small) distance from the line (maximum 100px)
 rectMode(CENTER);
//clear the previous distance-from-target appearing on the screen
 noStroke();
 fill(255);
 rect(displayWidth/2, displayHeight-100, 200,40);
 stroke(0);

 x3 = mouseX;
 y3 = mouseY;
 distance = calculateDist(x3, y3, x2, y2);
//calculate the new distance-from-target of the car
 fill(0);
 textAlign(CENTER);
 textSize(25);
 text("distance: "+distance, displayWidth/2, displayHeight-100); //print the new distance-from-target on the screen
 }
 }

 myMessage.add("distance: "); //add the string "distance: " to the osc //message
 myMessage.add(distance); // add a float to the osc message

 oscP5.send(myMessage, myRemoteLocation); // send the message

 if (counter<2) { //if one of the two points (initial or final) is being defined
 ellipseMode(CENTER);
 fill(100);
 ellipse(mouseX,mouseY, radius, radius); //create a circle around //it with a specific radius
 posX[counter]=mouseX; //and save its coordinates
 posY[counter]=mouseY;
 }
 counter++; //increase the touch counter
 }
 }
 }

 void mouseDragged() {

 if (mouseCount==2) { //if both initial and final point have been received

68

 OscMessage myMessage = new OscMessage("/test"); //create a new //OscMessage

 distance_from_line= getDistance(posX[0], posY[0],posX[1], posY[1], mouseX, mouseY); //calculate the position of the
car with regards to the path defined

 if (distance_from_line<100) { //if the car is moving inbetween an //acceptable (small) distance from the line (maximum
100px)

 rectMode(CENTER); //clear the previous distance-from-//target appearing on the screen

 noStroke();
 fill(255);
 rect(displayWidth/2, displayHeight-100, 200,40);
 stroke(0);

 x3 = mouseX; //calculate the new distance-from-//target of the car
 y3 = mouseY;
 distance = calculateDist(x3, y3, x2, y2);
 fill(0);
 textAlign(CENTER);
 textSize(25);
 text("distance: "+distance, displayWidth/2, displayHeight-100); //print the new distance-from-target on the screen
 }

 myMessage.add("distance: "); // add the string "distance: " to the osc //message
 myMessage.add(distance); // add a float to the osc message

 oscP5.send(myMessage, myRemoteLocation); //send the message to the //laptop with WiFi

 }

}

/* the "drawPoints" function draws the straight line from point (posX[0], posY[0]) to point (posX[1], posY[1]) */
 void drawPoints() {
 beginShape(LINES);
 for (int i = 0; i < 2; i++) {
 vertex(posX[i], posY[i]);
 }
 endShape();
 check_flag=true; //this boolean variable gets true when the line is finally drawn
 }

/* the "mouseOverCircle" function returns "True" if the mouse (or equally, the finger touching the screen)
 *is hovering above the circle that has-> Coordinates of center:(x,y), Radius: radius */

 boolean mouseOverCircle(int x, int y, float radius) {
 return (dist(mouseX, mouseY, x, y) < radius);
}

69

/* the "calculateDist" function returns the distance (in pixels) between the points (x1,y1), (x2,y2) */

float calculateDist(int x1, int y1, int x2, int y2) {
 float b = sq(x2-x1) + sq(y2-y1);
 float a = floor(sqrt(b));
 return a;
}

/* the "hover" function returns "true" if the mouse (or equally, the finger touching the screen)

 *is hovering above the rectangle that has: Coordinates of the down-left corner (x,y), Width w, Height h */

 boolean hover(int x, int y, int w, int h) {
 if(mouseX >= x && mouseX <= x+w && mouseY >= y && mouseY <= y+h) {
 return true;
 }
 else {
 return false;
 }
 }

/* The "getDistance" function calculates the point A on the line (x1,y1) -> (x2,y2) that is closest to the point (x,y)
 * Specifically, the result is a PVector- where result.x and result.y are the coordinates of that point A on the line.
 * The result.z variable contains the Distance from (x,y) to the line, which is finally returned (in pixels) . */

float getDistance(int x1, int y1, int x2, int y2, int x, int y) {
 PVector result = new PVector();

 float dx = x2 - x1;
 float dy = y2 - y1;
 float d = sqrt(dx*dx + dy*dy);
 float ca = dx/d; // cosine
 float sa = dy/d; // sine

 float mX = (-x1+x)*ca + (-y1+y)*sa;

 if(mX <= 0) {
 result.x = x1;
 result.y = y1;
 }
 else if(mX >= d) {
 result.x = x2;
 result.y = y2;
 }
 else {
 result.x = x1 + mX*ca;
 result.y = y1 + mX*sa;
 }

70

 dx = x - result.x;
 dy = y - result.y;
 result.z = sqrt(dx*dx + dy*dy);

 return result.z; //the result returned is the distance from point (x,y) to the line
}

//the delay() of the Processing API is normally a bad practice, because it halts the //whole program. For this reason, this is a self-
made function, that serves as an //alternative, mainly based on the "millis()" function

void delay(int del)
{
 int time = millis();
 while(millis() - time <= del); } //delay of "del" milliseconds

	Brief Description
	Chapter One: Introduction
	1.1 Motivation
	1.2 Structure

	Chapter Two: History of Actuated Tangibles and Related Work
	2.1 History of Actuated Tangibles
	2.2 Related Work and other Examples

	Chapter Three: Uses of TUIs and Emergency Planification
	3.1 Uses of TUIs
	3.2 Emergency Response Planning

	Chapter Four: Project Description
	4.1 Electronic Part

	
	4.2 Programming Part
	4.3 The Project

	Chapter 5: Limitations, Strengths and Future Work
	5.1 Limitations
	5.2 Strengths
	5.3 Future Work

	Chapter 6: Conclusion
	Chapter 7: References
	Chapter 8: Appendix

