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[TepiAnym

To cloud computing eivat éva amd Toug ONUAVTIKOTEPOLVG KAASOUG TNG ETOTIUNG TWV
VTIOAOYLOTWV OTIS PHEPES puag. Ot cloud vmtodouég Exovv 1161 LVIOOBETNOEL ELPEWS ATLO
tio TANOWPA LOVTEPVWV EQGAPLOY WYV, EVM GUVEXWS NVEAVETAL 0 apLlOUOG KaL TA €18
TWV EQAPLOYWV TIOV XPTGLUOTIOOVV cloud cuoTHHATA YIo TNV ATTOSOTIKOTEPN
EKTEAEOT] TOUG. ZTA TAXIOLA TNG CUYKEKPLUEVNG SITAWUATIKNG Epyaciag Oa peAetndel
1] CUUTIEPLPOPA AVTLITIPOCWTEVTIKWV OLKOYEVELWV aTo cloud dtav ekteAovvtal o€
cloud meparrovta. [Siaitepn éupaocn Ba S00el 6TOV TTPOGSLIOPLOUO TNG
aAANAETiSpaon G TTOL SnULOVPYEITAL AOYW TNG «OLVUTIAPENG» SLAPOPETIKWV
EQPUPLOYWV KATA TO SLAUOLpAoo KOWVwV TTOpwv oTo data center Kol 6Tn LEAETT NG
eMibpaong mov £xeL TNV emidoon Tous. H avaAvon TG CUUTEPLPOPAS KAL TNG
emiboong Twv eapuoywv oe dStapolpaldueva meptBairovta Oa Ste€oyOel
AapBavovtag VIO TIG SLLPOPETIKES AVAYKES KAOE EQAPUOYNS VLA XP1IOT TWV
SLaopwv TOPWV TOL GLGTHUATOS (TL.X. EMEEEPYATTIKN LoYV, pviun, diktuvo K.T.A.). Ta
ovumepacpata mov Ba pokLPovv Ba a&lomomBovv yia TV avamtun evog
aAyopiBpov §pooAdYNoNG TWV EQAPLOYWV OE SLAPOPETIKOVG CLVSVAGOVG,
QVAAOYX LE TIG ATIALTIOELS TOUG YLA TTOPOVG, LE TPOTIO TIOV VA ETILTPETIEL TNV

amOSOTIKOTEPN ALOTION O TWV TTOPWV TWV Server Kal KAADTEPT CUVOALKT eTtiSoon.
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Abstract

Cloud computing is one of the most important computer science parts of nowadays. A
wide range of modern applications have already become cloud-based, while more and
more applications of all kinds are planning to do the same aiming to a more efficient
operation. In this thesis we will study the behavior of some representative families of
cloud applications whenever they are executed in cloud environments. We will
especially focus on determining the interference that is caused by the “coexistence” of
different application during they share common resources on a data center, and study
how this affects their performance. The analysis of the behavior and the performance
of the applications in shared environments will take place considering the different
needs each application has for different resources (like processing power, memory,
network etc.). The conclusions that will be drawn by this analysis will be used to
create a scheduling algorithm that will place the applications in different
combinations, based on their needs for resources, in a way that will allow better

server utilization and a good overall performance.

Keywords
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scheduler, resource sharing, server utilization






Evxaplotieg

OanBeAa va evxaplotiiow Tov kaBnynt Nektdpio KolOpn, o omolog ntav o
EMPAETWV TNG SIMAWUATIKNG OV EPYACIAG KL OV €8wOE TNV eVKaAlpia va TNV
EKTIOVI|OW OTO XWPOU TOV EPYACTNPLOV VTTOAOYLOTWV CUOTNHATWY. Emédeda va
EPYAOTW OTO CUYKEKPLUEVO EPYACTIPLO SLOTL KATA TN SIAPKELX TWV OTIOUSWV LoV
KEVTPLOE TOV EVOLAPEPOV OV LE TA APOya 0PYAVWUEVH LAOT|LATA TOV, EVG LoV
€dwaoe kal TV evkalpia va €pBw o€ ema@) Pe pLepkons eEALPETIKOVGS avOpWTTOUVS Kol
EMOTNHOVEG. OEAW va euyaplotiow Waitepa tnv ABavacia Acikn kat to Fewpylo
I'kovpa, uéAn tov gpyactnpiov, mou kab 0An ) SldpKelx TG SIMTAWUATIKNG [LOV
gpyaciag, Lov Tapelxav yvwoelg, kaBodrynon Kal EUTLotoovvn, OVTAS TAvVTA
TPOOLVOL KXl GLUVEPYACILOL OTIOTESNTTOTE TOUG XpeLdoTnka. Emiong, Ba 10eAda va
EVXAPLOTNIOW GUVOALKA TO TIPOCWTILKO TOV EPYNGTNPLOV, TO OTIOLO LoV TIAPELXE
xprowun Bonbela Kat TEXVIKN VTTOOTHPLEN OTAV AVTIUETOTILOA SUCKOALEG.

OaMBeAa aKOUN VA ELXAPLOTIIOW BEPUA TNV OLKOYEVELA L0V YLX T1) 0THPLEN IOV LoV
TIPOCEPEPE KATA TN SLAPKELX TWV OTIOVSWV LoV KL TTOU AKOUA L0V TIPOCPEPEL
Evxaplotw toug @idoug pou Kat TNV KOTEAQ fov TTov oTabnkav SimAa Lov OTIOTE TO
XPELAOTNKA, TOOO OTLG EVXAPLOTEG OGO KL OTLG SUCAPECTESG OTLYUEG.
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1 Introduction

1.1 Cloud computing

Cloud computing, is one of most rapidly developing and evolving computer
technologies at moment. Cloud computing, or just “the cloud”, as we simply refer to it,
has quickly evaded peoples’ lives in the last few years. Although cloud computing is so
widespread, there is no strict definition about it. Cloud is strongly connected with the
idea of centralized computing, which refers to computing power at a central location,
that has multiple terminals attached to a main computer. A simplified definition of
cloud computing is the following:

Cloud computing is computing in which large groups of remote servers
are networked to allow centralized data storage and online access to
computer services or resources

Wikipedia.org

Cloud computing can vary a lot. There are different service models, deployment
models, architectures and an extendible variety of possible uses. Users can have
different and conflicting requirements too. We will try to explain the main concept of
cloud computing, and how important it is for the future of technology.

1.1.1Evolution

Since cloud computing cannot be strictly defined, it is impossible to determine when
its concept was conceived. The term “cloud” has not been widely used before 2006.
Cloud has its origins back to the 1950s, when the first large scale mainframe computers
were deployed, and became accessible via terminal computers without computing
capabilities. The first forms of cloud computing were inseparable with the terms of
supercomputer and HPC (high performance computing), while its first uses were

mostly scientific, financial and academic.

It was during the 1990s when scientists created the first large scale computers that
could be shared among multiple users. Telecommunication companies used these

infrastructures to provide VPN services with a lower cost and good Quality of Service
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(QoS). Time-sharing became a field of research and optimization algorithms were
developed to provide better efficiency to users.

At the late 2000s the first cloud platforms were created, providing tools for developers,
for making centralized computers easier to be managed and shared. In the last few
years, cloud computing quickly became mainstream or even a trend. A high number of
the world’s most powerful technological companies developed their own clouds,
providing services that started to vary and extend rapidly. New products and client
needs were created, and many widely used services moved to the cloud. Today, cloud
users are not limited to scientists, developers or people who need high-performance
computing power, but almost everyone has access to some very popular cloud services.
File storage, file and settings synchronization across multiple devices and backup
creation, are some tasks people’s PCs, smartphones and tablets do every day.

&tV

& OneDrive

b
Spotify' Google Drive

Some very popular cloud-based services

Today, cloud computing enjoys days of glory. Hundreds of new services are developed
every year, managing to attract millions of users, while many of them change the way
we communicate, socialize or even the way we live. The majority of the most used
online services have already moved to the cloud or have plans to do so. There is no
doubt that cloud is the future of computing, and it will attract our attention for the next

years.

1.1.2Characteristics

Cloud’s popularity and success, relies on some very important characteristics.
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e On-demand self-service:
Users must be able to change the resources provided to them alone. Programming

APIs, and web user interface are some common ways achieving this.

e Broad network access:
Cloud services can be accessed remotely, without demanding user’s physical
presence.

e Resource pooling:
Physical resources are able to be shared among multiple users, without conflicts.
Virtualization is usually the best solution to achieve this.

e Rapid elasticity:
Each user’s resources can be altered either on demand or automatically, so every
client has the necessary resources he needs.

e Measured service:
Users’ usage of resources is monitored and reported to both clients and service
providers. This makes services transparent and better controlled, allowing service

providers to alter their clients’ resources according to their needs.

1.1.3Advantages

Compared to the classic computing model, the cloud has some serious advantages that

make it special. The most important are mentioned below.

High performance

Tasks like scientific experiments, physics simulation or data analysis, can usually be
very demanding and seriously costly. Universities, scientific research centers or even
governments are not always able to acquire, maintain and use their own high
performance computer systems that are capable of satisfying their needs. Cloud
computing offers a solution for immediate access to high performance computing.

Clients can rent computing power from cloud providers. The provided computing
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power can be as powerful as clients need it, for as long as they need it, helping them

save time, money or even space.

Scalability

As cloud resources can be extended on demand, clients can scale their applications
efficiently as much as they need to. Cloud systems usually allow their users to see
unlimited resources, although in fact there are limits depending on the actual
computing hardware. Virtualization makes resource expansion an easy task, allowing

virtual resources (that are visible to the clients) to surpass the physical ones.

Reliability

Modern cloud systems usually guarantee some minimum performance expectancy to
their clients, usually called Quality of Service (QoS). There are no standard metrics for
measuring a system'’s performance capabilities. The most commonly used unit of high
performance computing power is FLOPS (FLoating-point Operations Per Second).

Independency

Virtualization, allows clients to design, implement and run applications on virtual
environments without dealing with cloud’s platform characteristics. The same
applications can be reused to different clouds, with different architecture, or even
different operating systems. Clients can always use the operating system and the
applications they are familiar with, while the virtualization level will allow execution

on every server.

Expandability

Modern cloud infrastructures are designed to be easily expandable, allowing the
physical resources to be adjusted in order to satisfy clients’ needs with the minimum
operating cost. Cloud’s architecture allows easier changes infrastructure changes
compared to classical computing model. There are various techniques and technologies

in development to make cloud cluster’s expansion work with a plug-and-play feature.
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1.1.4Virtualization

Virtualization, in computing, refers to executing something in a virtual environment,
instead of an actual one, using virtual resources, such as processors, memory and
network. A virtual machine (VM), is a virtual computer system. Virtual machines, are
also mentioned as hardware virtualization. They emulate a real computer with an
operating system installed and virtual resources and devices attached to them.

Creation and execution of virtual machines, requires the appropriate software, called
hypervisor. A computer that executes one or more virtual machines, is called host, while
the virtual machines are called guests.

Cloud computing has been taking advantage of virtualization since its very first years.
The most important advantages of virtualization are mentioned below:

Failsafe
When a guest system fails, the host is not affected. Virtual machines are seen as
processes from the host and they are not affected by the failure of the guests’ virtual

resources.

Resource management
A virtual machine creates and uses its own virtual resources, which make it strongly
limited. Physical resources can be shared and simultaneously used from multiple

guests, achieving one of the most important goals of the cloud computing.

Independency

A guest operating system, can be hosted on any physical machine that is capable of
virtualization. Cloud computing provides independency from physical machine’s
characteristics by using virtualization. Users are usually able to choose the operating
system they want to work with and they do not have to deal with any of the

characteristics of the host machine.

Snapshotting
The state of a virtual machine and its attached devices and resources, is called
snapshot. The snapshot of a specific moment can be created, so the virtual machine can

revert back to this state at any time. This is an extremely useful technique for creating
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backups and making the machines failsafe, allowing them to perform risky operations
without limits. On case of failure, the latest snapshot is reverted, minimizing the risk of
losing data.

Migration

Snapshotting allows a virtual machine to be saved, stopped, moved and resumed to
another physical machine, making migration an easy task. This is a very useful property
for the cloud computing, as resource management in centralized computing usually
requires migration of guests. Migrating virtual machines is much easier than migrating

processes.

1.1.5Challenges

While the cloud is rapidly developing, it needs to accomplish some business goals.
Operating and maintaining a cloud cluster with the best cost efficiency is a parameter
that can make a cloud product either profitable or injurious. Everything that takes part
in the cloud can affect the cost and the final product’s outcome accordingly. A cloud
operator seeks a way to provide the best quality of service, with the minimum cost,
consuming the minimum energy and computer resources possible. To achieve this, a
suitable architecture must be deployed, using the best software and hardware
optimizations possible. Design, optimization, implementation, and maintenance of a
cloud system is a brand new field of research, offering many ways to provide solutions

for a better cost efficiency, creating business opportunities.

1.2 About this thesis

1.2.1Motivation

With a cloud cluster given as resource, a service provider wants to achieve the optimal
results for their clients’ needs. To achieve this, they must ensure they will operate with:
e Minimum cost

e Minimum energy consumption

e Best optimization for their computing resources

18



e Maximum server utilization
e Best quality of service for their clients

In this thesis, we are about to focus on server utilization and quality of service. We
believe, that different types of tasks, that require different types of resources, can have
different interactions when they are placed in physical machines differently. By
scheduling virtual tasks on physical machines depending on their behavior, we can
come up with better server utilization without damaging the clients’ application
performance, and therefore the quality of service.

Let’s take a look at an example of this theory. Consider two virtual tasks, one disk-
bound and one network-bound. We have a choice to make. We can either place them
and execute them on different physical machines, or place them on one physical
machine so they run alongside. An execution on the same host could possibly affect
both negatively, but it might not do so. Each one of these two tasks, performs some
input/output operations, reserving different virtual and physical resources. These
resources can be the same or independent. In this example, it is likely that the two
virtual machines will not have a serious slowdown on their performance, because they

rely on two almost independent hardware resources.

1.2.2Short description

At first, we will define some basic types of applications that we want to focus on, and
choose a specific and representative application of each type. We will measure, study
and analyze the interactions between these different applications as they happen when
hosted on virtual machines, so we have a basic knowledge about the interference

between them.

After that, we will define different types of problems, depending on difficulty. On each
one of these cases, we will try to create an algorithm for efficient and resource-aware
scheduling. The results of each problem will be analyzed and evaluated separately. We
compare our algorithm to other state-of-the-art competing decision systems and

evaluate it using our starting goals for the system.
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1.2.3Goal

Our goal is to create an algorithm that takes a sequence of virtual machines (guests),
hosting different types of tasks, and a set of physical servers (hosts), and schedules the
guests to the hosts with an efficient way. To create this decision making system, we
need a base of knowledge. Our basic knowledge will be the set of the possible
interactions between the available types of applications, expanding it as much as
needed in more difficult problems. Our algorithm can be consider as resource-aware,

since we categorize the guests, schedule them with respect on what resources they use.

Cloud systems that do not use a resource-aware algorithm for scheduling usually use
some classic techniques, like round-robin and random schedulers. We will compete
with these techniques, and evaluate our results compared to theirs. We will analyze the
average performance of the guests’ hosted applications, and define some metrics of
fairness and quality of service.

We intend to prove that scheduling guests according to their type can lead to better
overall performance, better overall fairness between the clients, and a better quality of
service. We also believe that combining guests by respecting their resource usage will
lead to better utilization of the physical resources and less interference between the
guests. By better server utilization, cloud providers can achieve better results with the
same or even less physical resources, reducing their operation cost and achieving a

better performance-to-cost ratio.

Since the research of this thesis focuses on the virtualization level, the results of this
research can be used on most cloud infrastructures that include a virtualization level
on their services. The prerequisites for such use, are for the service provider to have
information about the behavior of each guest and also be able to schedule them freely
at their cloud infrastructure. Clouds that follow the “platform as a service” (PaaS) or
the “software as a service” (SaaS) service model, are potential users of a resource-
aware scheduling algorithm like the one we want to create. The PaaS and SaaS service
models provide to the customers either a platform (Virtual Machine) or a software
(that is hosted on virtual machines), allowing the service provider to schedule those

virtual machines according to their needs.
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1.2.4Related work

With cloud computing developing quickly, there is big interest in developing
optimization techniques in many possible levels. Optimizations can be either on
hardware level or software level. Let's ignore hardware optimization techniques, and
focus on software. Profiling applications and scheduling them depending on their
behavior is the most common software optimization technique. A profiler, is a program
that takes an executable as input and analyzes its interaction with the hardware, from
basic resource usage (CPU, memory, disk etc.), to advanced information (like cache
miss or hits). These data can be very valuable for a scheduler that is resource-aware,
since it can predict some behavior patterns and come up with better results.

Some relevant published work, that outlines related schedulers to our own, includes:

e DeepDive: Transparently Identifying and Managing Performance
Interference in Virtualized Environments tapamopm
This paper describes an algorithm that is executed alongside virtual machines
and detects interference between them. It can also store information about
interference between different types of applications, so it can predict potential
problems in the future.

e PACMan: Performance Aware Virtual Machine Consolidation mapamopt)
This paper describes an algorithm that takes a set of virtual and physical
machines as input, and by profiling the guests in a first phase, it schedules them
to the hosts efficiently in a second phase. The algorithm can run in two different
modes, achieving either the best average slowdown or the best maximum
slowdown.

In this thesis, we won’t develop or use a profiler, since the information about each
virtual machine’s behavior is known in advance. We focus on how we can use these
information combined with already known interactions to create an efficient

scheduling algorithm.
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) Experimental environment

2.1 Physical servers and hypervisor

We had two physical server available for the following experiments.

Server 1 Server 2

Intel(R) Xeon(R) E5335 @ 2.00GHz Intel(R) Xeon(R) E5-2650 @ 2.00GHz
8 cores 8 cores

1 thread / core 2 threads / core

8 GB RAM 64 GB RAM

64 GB SWAP No swap

Both of those servers were located on the same local network. They were connected on

the exact same way with a third server which was used from the network benchmarks.

The first one was used for the two first experiments, and the second one for the last
experiment. Further information about resources management and sharing between

the guests are provided at each experiment’s description.

We selected QEMU for hypervisor, as it was preinstalled and it can be used with KVM,
allowing virtual machines have a near-native performance. QEMU is a free and open-
source hypervisor software that performs hardware virtualization. It is very popular
across Linux users because and it provides support for many different CPU
architectures and allows easy management of virtual resources. We define our
requirements for virtual resources that each VM will use from the command line, when
we launch the hypervisor. KVM can be used as a QEMU’s module, straight from the
command line. The use of KVM, allows the virtual machines’ applications to run almost
like they were running natively, and it is a part of software optimizations we use to

boost virtual applications’ performance.
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2.2 Virtual Machines

All the virtual machines used on the following experiment have Ubuntu Server 12.04
installed. We created a virtual machine using the services of Okeanos, which provides
free cloud services to the Greek academic community. We also installed the
benchmarks and the scripts that were necessary for our tests. Using the SNF image
creator software, we created a disk image file, representing the hard disk of the above
virtual machine. This file was a raw copy of the whole virtual hard disk data and it is
compatible with QEMU. The chosen file format allowed us to create new virtual
machines by just copying the original image into a new file. The ease of this procedure
reveals virtualization’s elasticity that we mentioned before.

2.3 The applications

The most important part of our experiment is to choose the appropriate applications
that will allow us to safely conclude about interference between different application

types.

Our first step, is to define the different application categories that we want to examine.
We assume that any application can belong to one of these possible families. We
consider that every physical machine has the following basic structure.
There are five basic components:
» The central processing unit (CPU)
* The main system’s memory (RAM) that is connected with the CPU through a
data bus
» The disk that is connected with the motherboard through an independent bus
(or cable)
» The network card that connects the server with the rest of infrastructure and

furthermore, the internet.
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Motherboard From the perspective of operating

Memory
BUS

systems theory, the five different
colored components are able to work
almost independently. For example, a

CPU-bound application needs as much

computing power is possible, small
amounts of memory (slightly affects the

memory bus and the memory

Network availability) and usually, no disk or

!
o= ]

application, which needs large amounts of memory, affects the RAM availability and

network resources. A memory-bound

creates data traffic on the memory bus (not necessarily a big one). A memory-
bandwidth-bound application, causes lots of data traffic in the memory bus, but it does
not consume large amounts of memory. Disk and network bound applications, use the
desired resources without seriously affecting any other. Every application needs
processing power and memory to operate, but we assume that when an application is
not CPU-bound or memory-bound it cannot affect these resources in a harmful way. So
from now on, we will categorize applications into these five families: CPU, memory

bandwidth, memory size, disk, network.

Interference between applications running on virtual machines within the same
physical host might differ with interference the same applications cause to each other
when running in the same computer directly. An ideal application of each family is the
one that does not affect other resources at all, but this is not really possible. So we have
to work with applications that cause a minimal and ignorable workload to the virtual
resources that are not targeted.

2.3.1Why use benchmarks

In our experiments we chose to work with a benchmark from each application family.
Benchmarks are extreme examples of an application family that measure the limits of
a specific part of the computer. This will help us understand interference between
applications, as we want each application to isolate and stress only one virtual or
physical resource that matches the categorization we made above. For example, an

application that measures how quickly the computer calculates a specific range of
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magic numbers, is a CPU benchmark that evaluates CPU’s performance and it will
slightly affect the memory, the disk or the network.

Using benchmarks as applications will also help us test our algorithms under more
stressful conditions. An average application that is CPU-bound does not stress the CPU
as much as a benchmark, an average memory-bound application does not consume the

whole memory, and the same applies for the rest of the application types.

Interference prediction between any two applications is a difficult job. Applications
that belong to the same family and use the same resources can have very different
behavior, and therefore different interference. So we want to study what happens on
the worst case scenario. We suppose that the use of benchmarks as applications will
cause the maximum interference possible between the virtual machines. We also
surmise the stressing the virtual resources as much as possible will also cause the

maximum possible stress on the physical resources too.

2.3.2Benchmarks choice and explanation

We present the benchmarks that we selected to use and describe their jobs.

CPU benchmark: Sysbench

This program calculates a specific amount of prime numbers passed as parameter and
measures the total runtime as a metric of performance. This application has
multithread support, while the total amount of threads created is passed as parameter.
We chose to create as many threads as the amount of virtual cores that exist in each
VM, so we make sure that the program takes advantage of all the CPU cores that it has

and CPU utilization is the maximum possible.

Network benchmark: Netperf

We used netperf to measure the network throughput, using the TCP stream test
between the virtual machine and a server located in the same local network. The
results were measured in Megabits / second. This application is executed in a single
thread.
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Memory bandwidth benchmark: MBW

This benchmark performs three tests that measure system’s memory bandwidth. The
only parameter we defined the amount of repeats that each test performs. The metric
of performance used was the average memory throughput of these three tests
measured in Megabytes / second. This application is executed in a single thread.

Memory size benchmark: Custom
We created a custom Python script that performs the following:

1. Allocates the maximum amount of memory allowed from system

2. Loops N times writing one random character on each page. It also calculates and

writes a random hash every 8th page.

Let’s explain the logic behind the procedure. This application manages to be memory-
size-bound, by reserving the maximum possible virtual memory. Memory allocation
through a system call does not necessarily mean that system’s memory has reserved
the space for all of these data on the main system’s memory. By writing each page we
make sure that the system moves every one of them to the system’s RAM, forcing real
allocation of memory.
Consecutive page writes might lead to a memory bandwidth application, as pages are
transferred between CPU and RAM without a break. This is why we need to have a
considerable CPU time too. We achieve this by using hashing, a calculation that takes
up to 1 or 2 seconds (on average) of CPU time, allowing memory data bus to be
disengaged. As a metric, we use the total runtime, because the script’s operation are
depended on the system’s memory availability. Both CPU and memory bus can affect
the runtime too, but not as much as the page availability. If memory fills up and pages
start moving to the system’s SWAP, then when a page that cannot be found on system’s
main memory will be brought back from the SWAP which is located to the hard drive.
Fetching the page will result a time penalty that is incomparable bigger than the time
penalty that might be added from CPU or memory bus stress.

This application is single threaded. The full Python code can be found on the appendix.
Disk benchmark: HDparm
Hdparm can be used as a benchmarking tool for measuring the performance of a hard

disk. It performs both read and write speed tests, with both cached and non-cached

data. We will ignore the cached data tests because we want to measure the real disk
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performance only. The average speed of both read and write tests will be used as a
metric, measured in Megabytes / second. Hdparm runs in a single thread.
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3 Problem one: Placing couples of Virtual
Machines into physical servers

Before we start with problem description, we need to explain the process we will

follow.

What we deal with, is interference and performance slowdown. We want to
experiment, study and -if possible- predict interference between different
combinations of VMs, running a specific benchmark from those defined above. Before
we proceed with predictions, we first have to create our knowledge base that will be
used to predict more complex combinations’ interference. The first step is to create a
table with the possible combinations between two VMs running a benchmark. We will
use labels on the virtual machines based on the benchmark that they are assigned to
execute. For example, a disk-VM, is a virtual machine that executes hdparm inside,
which is a disk-bound benchmark, so we expect the virtual machine to behave as a disk-

bound application too.

3.1 Problem description

Ideally, in a cloud cluster, we have as many physical servers as the number of the virtual
machines we need to host. Each VM is hosted by one physical machine, allowing
optimal performance for the virtual machines and their applications, without any
interference from other applications that run one the same server. This is a scenario
that mostly fits HPC applications, where the performance of the guests is the most

important parameter of the service’s success.

We want to start by solving a simple problem:

We are given N physical machines and 2N virtual machines that need be scheduled
and hosted.

Each server will host exactly 2 VMs after the scheduling algorithm runs, so we can call
this problem as “coupling VMs to servers”. We suppose that all scheduling algorithms

cannot have any information about future input, so the VM that will be the next one
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coming in the queue is passed as input. The scheduling algorithms will decide about
what server the provided VM will be hosted on, based on the current state of the cloud
cluster and the type of VM given. This means that the algorithm that we will design will
be deterministic, having the same output every time that is given the same input,
independently from possible future input. This is useful because:
1. A deterministic algorithm is easier to be understood, having similar outputs
when given similar inputs.
2. Itis compliant with the nature of the real problem. In real cloud applications the
future input is normally unknown and it depends on the clients’ behavior and
needs.

3.2 Measuring slowdown hetween possible couples

As mentioned before, the base of our knowledge that we will use to predict interference
between VMs, is the slowdown of each application caused by interference when
another application runs alongside. After running all the possible combinations, the
following table is formed:

CPU Network Bandwidth ~ Mem.Size Disk

(sysbench) (netperf) (mbw) (hdparm)
CPU (sysbench) 1,00 0,97 0,96 1,00 1,00
Network (netperyf) 0,99 0,95 0,85 0,92 0,99
Bandwidth (mbw) 1,00 0,93 0,57 0,87 0,96
Mem.Size 1,02 0,92 0,82 0,60 0,95
Disk (hdparm) 0,82 0,76 0,84 0,91 0,51

Let’'s explain the table. Each cell has one number, which refers to performance

slowdown. By performance slowdown we refer to the following ratio:

performance metric with interference from another VM

Slowdown = - -
performance metric when running alone

Each cell refers to slowdown caused to the application indicated by its row, when it is
running alongside the application indicated by its column. Let’s see some examples:
* The cell on row 1 and column 1 has the value 1.00, meaning that when a CPU

benchmark runs alongside another, there is no performance slowdown.
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* The cell on row 3 and column 2 has the value 0.93, meaning that when a memory
bandwidth benchmark runs alongside a network benchmark, the first one has a
performance slowdown of 7%, or equally, it performs slower than when it is
executed isolated, by 0.93 times.

* To find out what happened to the network benchmark when combined like
above, we must take a look at the cell on row 2 and column 3. Its value is 0.83,
meaning that the network benchmark had a bigger performance slowdown of
17%.

Colors are relative to performance, with red being a sign of bigger slowdown (worse
performance), and green being a sign of less slowdown (better performance). A full
row shows us how much a benchmark affects the others, while a column shows how a
benchmark gets affected when combined with others.

Overall, we observe some behavior patterns. The more obvious are the following:
* (CPU benchmark is less affected by other VMs running on the same physical
machine, no matter their type.
» Disk benchmark is more vulnerable to interference caused by other VMs,
especially when it is combined with itself.
* Combing application types with themselves is generally a bad idea, causing

more slowdown.

3.3 Running model

The physical machines are equipped with an 8-core CPU and 8GB of RAM, as mentioned
on a previous section. Every virtual machine we used on this experiment is equipped
with 4 virtual cores and 4GB of virtual memory, exactly half of the physical resources.
All the applications run in a single thread, except the CPU benchmark (sysbench) that
we set to run with 4 threads, exactly as many as the virtual CPU cores. We chose to
create 4 threads with sysbench to have the best CPU utilization. If we create more
threads that the virtual CPU cores, then the application will start to slowdown, as

different threads will have to compete for the same virtual cores.

In this scheduling problem the virtual threads do not exceed the physical cores. The
worst case scenario is when two CPU benchmarks run alongside, with 4 threads each.

This means that the applications that are executed inside the virtual machines will be
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running almost without interruption. We make sure that the physical machines have
no other intensive tasks running except from our tests. The fact that each VM has CPU
and memory resources exactly half of the physical ones, means that the two VMs can
run in parallel with the best utilization possible.

3.4 Algorithm design

We need to create an algorithm that will place the VMs in the physical servers. It is

important to remind that we will have N servers and 2N virtual machines given in this

problem. The algorithm will accept as input the next VM that needs to be scheduled

and the current status of the cloud, meaning the list of the physical servers and their
state. The state of a physical server can be described with the list of VMs that it hosts.

The implementation of the scheduling algorithm

physical servers requires some basic design decisions to be taken

E E E E ﬁ E first. A scheduler’s goals can vary, but the most

important parameters that we need to take care

of are the average slowdown, the maximum

Scheduling slowdown and the performance variance. The

algorithm offered quality of service can be measured on

the value of these metrics. Ideally, we should be
able to provide a minimum value for each
parameter that we can guarantee it will not be
violated. We preferred to specify a minimum

value for each metric that the algorithm will try
The scheduler decides where the new

to respect, but if it is impossible to abide by, the
VM will be placed

algorithm should continue by placing the VM on
the server that each time has the minimum average slowdown. We believe that this
tactic will lead us to the minimum violation of the QoS values that we have initially
planned to keep.

We also need to define how the algorithm will choose a server so the final combinations
are as near to optimal as possible. We used a very simple procedure that can be
summed up in these steps:

1. Scan the servers serially
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2. If a server hosts the maximum number of VMs allowed (2 on this case), then
continue

3. Ifaserver is empty, place the VM there and exit

4. Checkif a possible insertion of the next VM on this server will cause violation of
standards

5. Ifthere are no violations put the VM on this server and exit

6. Ifthere are violations, calculate the average slowdown of the server’s VMs after
the insertion of the new one. If this score is better than the best-so-far, replace
it and mark this server as the best. Continue looping through the server list

7. Ifthe loop exits with a server marked as best, it means we failed to find a server
without violations. Then we place the VM to that server which will have
minimum average slowdown.

8. If the loops exits without any server marked as best, it means that all servers
reached the maximum number of VMs allowed, so we dismiss the VM. This will
not happen unless we provide more than 2N VMs as input.

The scheduling algorithm written in pseudo-language:
algorithm place_vm:
input: array of servers, vm /* to be added */
output: destination_server
destination_server = -1 /* none */
max_performance =0

for i from O to server.length do
if (server[i] hasthe maximum number of VMs )
continue
else if ( server[i]is empty )
destination_server =i
return destination_server /* We choose this server and exit */

score_i = combine(i, j)//combine(i, j)is the slowdown added to i by j
score_j = combine(j, i) //combine(j, i)is the slowdown added to j by i
/* We check for average or distinct scores that violate our QoS */
has_violations = check_for_violations_of _QoS( score_i, score_j)

if ( not has_violations )
destination_server =i
return destination_server /* We choose this server and exit */
/* We always keep the best score so far, even if it violates standards of QoS */
else if ( scores_after.average > max_performance )
destination_server =i
max_performance = scores_after.average
done
/* This happens only when every server is full */
if ( destination_server ==-1)
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dismiss vm and exit
else

return destination_server
end

In the above algorithm there is a procedure called has_violations that checks for quality
of service violations. This procedure has two parameters that are common for all the
servers:

Minimum score: a number between 0 and 1.0

A server that hosts a VM with excepted performance slowdown less than this score
violated the standards.

Minimum average: a number between 0 and 1.0, usually bigger than the minimum
score.

A server that has an average expected slowdown less than this number violates the

standards.

These values need to be balanced between the minimum and the maximum
interference that occurs in the slowdown map we created. The minimum average can
be greater than the average slowdown of all the possible combinations, as we have the
goal to create a mix of pairs that have an overall performance better than the average.
The minimum score can be a value lower than the average, but not by much, so we avoid
big variance on applications’ performance. After some experiments with various

values, we chose to set the minimum score to 0.75 and the minimum average to 0.8.

3.5 Other algorithms

To evaluate our scheduling algorithm we need to compare it with other popular
schedulers that are used in real cloud systems and are not aware of the resources a VM
uses. In our scheduling problem we have not different priority levels between the
guests. The most common schedulers of this category are the round-robin, the random
and the least-used one (which places the next VM to the server that has the minimum
amount of guests at that point). Here is a detailed description of the algorithms we used

and tested in this problem.

Round robin

33



Destination server is initially set as 1 (meaning the first server). On every call the
destination is increased by 1, so the VMs are placed on next to another until every
server is full (with 2 VMs each). If the last server is reach, then the destination server |
set as 1 again, leading to cycles.

destination = 1 //global variable

placeRoundRobin:
destination = (last_destination++) % servers

while ( destination is full )
destination = (last_destination++) % servers;

last_destination = destination
return destination

Round robin (full first)

Destination server is initially set as 1. This algorithms start placing the VMs on the same
server until it reaches the maximum amount allowed, and then it moves to the next
one.

destination =1 //global variable

placeRoundRobinFull:
if (destination is full )
destination++
return destination

Random

Destination server is chosen randomly each time, as long as it is not full.

placeRandom:
var destination = -1
do{
/* Random selection of server */
destination = random( 0, servers )
}
while ( destination is full and not all servers are checked )
return destination
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Optimal

The complexity of this problem is relatively small, allowing us to search for the optimal

combination of VMs that offers the best results for a specific metric. We chose to have

the best average performance as goal.

3.6 Testing platform

In order to test the different schedulers, we created a platform that emulates a cloud

cluster in Javascript. We also developed an HTML user interface for visualizing the

TOTAL AVERAGE SLOWDOWN

ADD A NEW VM

cPU NETWORK DISK 0'83
VARIANCE
PLACE 2N VMS 402%
MAXIMUM SLOWDOWN
FULFILL 0.57
:
OVERSUBSCRIBE SERVERS USED
3
a0
OTHER
SERVERS VIOLATING GOAL

PHYSICAL MACHINES 1

cPU METWORK

Benchmarks  Estimated performance
cpu (sysbench) 097

network (netperf) 099
SERVER 1
DISK

Benchmarks  Estimated performance

memsize (custom) 0.95
disk (hdparm) 001

SERVER 2

Benchmarks Estimated performance

b (mbw) 057

cluster’s servers, the VMs hosted
the
performance of each application

in them, and expected
that is executed.

This is the main window on the
left. In this use case, the cloud
cluster consists of three servers.
The first server has two guests
(VMs),

benchmark

one running the CPU
(sysbench), and
another running the network
benchmark (netperf). Below the
VMs there is a table that the
expected performance slowdown
colorized

is calculated and

accordingly. Each server has a label on the top right corner that informs us if it is used,

unused or if it violates the standards of quality of service. On the right, there is a sidebar

with statistics that are useful for evaluating the cloud’s total performance. On the top

of the page there are some action buttons we created for controlling the content of the

servers and for choosing between different schedulers.
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3.7 Tests & results

We emulated a cloud with 50 physical servers and 100 virtual machines to test the
performance of the schedulers. We created three different test cases that we will
analyze below. For each test case, we read the queue of virtual machines one by one
and call the scheduler every time. For example, consider the following array as input:
[cpu, memory_bw, disk]

This means that there are 3 virtual machines that need to be hosted, arriving as input
to the scheduler on that exact order. The following functions will be executed:
Schedule( cpu )

Schedule( memory_bw )

Schedule( disk )

Each call of the Schedule function (no matter which algorithm is selected to handle it)
will return a destination server that the virtual machine will be hosted on.

The 3 different input types are the following:

Serial

In this case, there are 20 virtual machines of each application family that are coming
sorted by their type:

[epu, cpu, cpu,... network, network,... memory_bw, memory_bw,... memory_size,..., disk,
disk, ...]

Exchanging

There are 20 virtual machines of each application family in this case too. This time the
input changes in same order every time:

[cpu, network, memory_bw, memory_size, disk, cpu, network, memory_bw, memory_size,
disk, ... ]

Random
A totally random array of VMs that is common for all schedulers.
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Graphs

Average slowdown
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Ours Random Round Robin Round Robin ( full Optimal
first)

B Random ® Serial M Exchanging

This graph shows the average performance of all the VMs after they are all placed in
servers. The vertical axis shows the average performance of each scheduler and for all
possible inputs (grouped by the schedulers).

Maximum slowdown (fairness)

0,8
0,6
0,4
N I I I
0
Ours Random Round Robin Round Robin ( full Optimal
first)

B Random ® Serial M Exchanging

The maximum slowdown is the first metric of a scheduler’s fairness. The value of this
metric is the worst performance of all the tests that ran in the servers. The bigger the

maximum slowdown it is, the more fair the algorithm is.
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The variance measures how far a set of numbers is spread out. As the variance grows,
bigger differences occur between the virtual machines’ performance. The smallest the
variance is, the better fairness we achieve, because each application’s performance will
be near the average.

This graph shows the

Average variance :
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4,00% scheduler, as it s

3,00% calculated from all inputs.
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3.8 Evaluation

The average slowdown graph shows no big differences between the different
schedulers. The round robin techniques have the worst results, with big difference
between different inputs. Our algorithm has the best results with all three inputs, and
without big variance when the input changes. It also satisfies our initial goal of quality
of service on all cases, by keeping the average slowdown above the value of 0.8 that we

set as parameter. The random scheduler has similar results to ours, but slightly worse.
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Our algorithm achieves to be very near the optimal values of maximum slowdown. This
means that we achieved to satisfy our goals about the quality of service, as on both
three cases the maximum slowdown is high than 0.75. This is a good indicator of an
overall fair scheduler, because there are no big fluctuations between applications’
performance. The other schedulers fail to be fair with any input, scoring an average
maximum slowdown value by far less than ours.

Variance, is the most important indicator of fairness, as a low value means that all the
applications have about the same amount of slowdown. Our algorithm achieves to have
a very low variance that is very near the optimal value and by far lower than the other
algorithms result.

Overall, we achieved to create an algorithm that respects the clients’ needs by offering
a quality of service, and we did not violate our starting goals on any case. Of course our
algorithm will not be able to satisfy these standards for every case, as the client’s
applications start to be more intensive. If we have input with more disk-bound
applications that cause more interference, the overall performance will start to
descent. We study the behavior of all the schedulers when input is balanced between
application types and there is no oversubscription. Additionally, we managed to create
a very fair scheduler compared to the others, without sacrificing the overall average
performance. So finally, we completely achieved our goals on this problem.
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4 Problem two: Packing physical servers
with Virtual Machines

4.1 Problem description

Moving on, we want to test our algorithm under more stressful situations. This time we
will test the performance when the physical machines have as many virtual threads as
their physical cores, and therefore the maximum utilization. Here is the problem’s
description:

Given N physical servers and M virtual machines we need to schedule the guests to
the hosts so every server hosts as many virtual threads as its physical cores.

Contrary to the previous problem, this time we will need to place more than two virtual
machines on each server. In this case we do not know how our applications will
perform and interact between each other, as we have not measured more complex

combinations than couples.

Having in mind that each application is single threaded, except the CPU benchmark that
runs in 4 threads, then to fill up a server with 8 virtual threads we might need 8
different virtual machines (in case we do not have a CPU-bound one). This makes the
complexity of the problem too big. It is impossible to measure every possible

combination of applications, so we need to develop a prediction system.

Our goals it to use the interference map that we created in the previous problem in
order to predict the expected slowdown of each virtual machine that runs alongside

with more than one other VM.

4.2 Running model

To proceed with the development of the prediction system, we must understand what
happens inside the server first. The servers have 8 CPU cores and 8 GB of memory as
they had in the previous problem. Each virtual machine has 4 virtual CPU cores and 4

GB of memory. A virtual machine that hosts a single threaded application will keep
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busy only one virtual and physical core at a time, or so we suppose. For example, when
we place a CPU application alongside 4 other types of benchmarks, we suppose that all
the applications will run in parallel in the physical cores with a minimal interruption.
The virtual cores that are not used will not cause any interference as they remain

inactive.

CPU-bound VM Disk-bound VM Memory BW -bound VM (| Memory-bound VM || Network-bound VM

Virtual cores Virtual cores Virtual cores Virtual cores Virtual cores

| o

Virtualization level

Physical level

Server

Physical cores

The above schema shows what we believe that happens inside a server that hosts one

guest from each application family. The active virtual threads are exactly equal to the
number of the physical cores, so all the active threads can run in parallel. Some
applications mostly perform input / output (I0) operations, so they may not remain in
running mode during their execution. What is important about their performance is
that the CPU has available cores whenever they need to return in running mode. The
rest of the physical resources, such as memory, are equally shared too, when needed.

This time, interference between the applications is bigger and more complex, as
everyone affects its “neighbors” in a different way each. We cannot know in which way
each application affects the other. Every commonly used resource between two
applications is a possible threat for slowdown. For example, a network benchmark can
be affected from a CPU-bound by competing for processing time, and by a memory-
bandwidth-bound application by competing for the memory data bus, causing a
slowdown value each. If these three applications run in parallel, the network
benchmark will be affected from both of its “neighbors” in two different ways, causing

a slowdown that is a combination of the two different slowdown values.

Let’s consider a server that hosts one application of each family, named A, B, C, D and
E. We want to guess what happens to the A-type application when we know what

happens to it when it runs with each one of the rest. We already have this information
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from the interference map that we created in the previous problem. So let's assume
that in our interference map we have the following row that provides us the
information about what happens to application A when combined with others:

B-type C-type D-type E-type
A-type X Y Z W

The worst case scenario about A-type application’s performance, is that it gets affected
from any other application in a completely independent way. This means that
application B causes a slowdown equal to X, then the C application adds a slowdown
equal to Y, and moving on with the rest of the application we end up having a total
slowdown equal to X*Y*Z*W. Let’s call this predicted value as worst, in order to refer

to it easier.

On the other hand, the best case scenario, is that application A is affected on the same
way from each other. This could possibly happen if every application stresses only one
physical resource, allowing greater independency between each other. Nevertheless,
every application will use some CPU and memory resources, causing at least a minimal
interference between each other. In this case, application will be slowed down no more
than the minimum value between the different combinations of the above table, which
will be the combination that causes the maximum interference. This time, let’s call this

performance expectancy for application A as best, which is be equal to max(X, Y, Z, W).

At last, we believe that the real performance of the application we study, will finally be
a value somewhere between the values of the two scenarios we defined above. Let’s
simply say the average of these two values. So we predict that the final performance

expectancy of application A will be:
slowdown = (best + worst) / 2
In order to either accept or reject this prediction model, we ran some random

combinations of VMs and measured their actual performance. Then we compared the

real results with our predictions to see how close they were.

42



SERVER 0 used | | SERVER 5 used
CPU BW DISK CPU NETWORK BV
Benchmarks  Estimated performance real Difference Benchmarks Estimated performance real Difference
cpu (sysbench) 096 1.00  +0.04 cpu (sysbench) 0495 095 0.00
bw (mbw) 0.96 096 -0.00 netwark (netperf) 081 0.86 +0.05
disk (hdparm) 0.75 072 -0.03 bw (mbw) 0.84 0.87 +0.03
memsize (custom) 0.79 0.70 -0.09
SERVER 1 used
cpu DISK SERVER 6 violates standards
Benchmarks Estimated performance real Difference ey HEToRK o oISk
cpu (sysbench) 1.00 1.00 0.00 Benchmarks Estimated performance real Difference
memsize (custom) 095 0.96 +0.01 cpu (sysbench) 0.95 0.96 +0.01
disk (hdparm) 0.78 0.83 +0.05 network (netperf) 081 0.80 -0.01
bw (mbw) 0.82 0.83 +0.01
SERVER 2 T memsize (custom) 0.77 0.78 +0.01
CPU METWORK Bl disk (hdparm) 0.62 0.58 -0.04
Benchmarks Estimated performance real Difference SERVER 7
cpu (sysbench) 0.95 0.97 +0.02
network (netperf) 0.85 0.87 +0.02 e HEnone oK
bw (mbw) 0.93 093 -0.00 Benchmarks Estimated performance real Difference
cpu (sysbench) 0.97 0.96 -0.01
SERVER 3 violates standards network (netperf) 0.91 0.96 +0.05
CPU NETWORK BW BW DISK memsize (custom) 0.90 0.91 +0.01
Benchmarks Estimated performance real Difference disk (hdparm) 0.66 0.85 I
cpu (sysbench) 0.93 094 +0.01 SERVER 8
network (netperf) 078 074 -0.04
bw (mbw) 054 068 +014 il I B .
disk (hdparm) 0.60 059 -0.01 Benchmarks Estimated performance real Difference
cpu (sysbench) 096 1.00  +0.04
SERVER A4 bw (mbw) 085 084 001
CPU NETWORK BW DISK memsize (custom) 0.80 0.64 -0.16
Benchmarks Estimated performance real Difference disk (hdparm) 0.2 0
cpu (sysbench) 0.95 0.94 -0.01
network (netperf) 0.84 0.85 +0.01
bw (mbw) 091 090 -0.01
disk (hdparm) 0.64 0.80 +0.16

The “difference” column indicated how close we got with our predictions and it is
colored based on the difference between the prediction and the real result. Green
colored difference means we got a more accurate prediction, while the red color means

a less accurate one.
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Overall, this model of prediction seems to have pretty accurate results, although there
are some big deviations. Predicting each combination with a high accuracy is not an
easy algorithm to implement and it might require a deeper and more detailed analysis
of the problem. We do not necessarily need high accuracy predictions to proceed
further. Ideally, we want our prediction model to have the ability to decide which
combination will have the best results between a set of different possible ones. We do
not need to know how much better that will be, but it is important to have the ability to
recognize the good combinations over the bad ones, or if it possible to decide which is
the best one.

The prediction model will be an important parameter for our algorithm. The final
evaluation will judge if it was able to make good decisions and if it needs any

improvements.

Below is the algorithm that predicts the interference between combinations of 3 or

more VMs in the same server. It is written in pseudo-language.

algorithm predict_performace:

input: server[ array of VMs ]

output: predicted_delay // An array with the predicted performance for each VM
for each VM in server as i:
best =1.0

worst =1.0

for each VM in server as j:
/* We avoid combining with itself */
if (i==])
continue

/* We add up the delay of each possible combination of VMs */
worst = worst * combine(i, ) // combine(i,])is the slowdown added to i by j

if (combine( i, j) < best)
best = combine( i, j)

predicted_delayli] = (best + worst) / 2

return predicted_delay
end
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4.3 Algorithm design

We will extend the previously designed algorithm for this problem. The main idea

remains the same.

Our main goal is to preserve a quality of service but this time we can have up to 8 guests
on one host, as we need to fulfill the physical machines’ cores. This makes it more
difficult to remain in the initial goal, especially after the third VM is added, because
interference is becoming much bigger than it was on the previous problem. As soon as
we violate the QoS values for the average and the maximum slowdown, the algorithm
will continue on, choosing each time the server that will have the best performance
after the VM that has been given as input is inserted there.

The algorithm written in pseudo-language:

algorithm place_vm:
input: array of servers, vm /* to be added */
output: destination_server
destination_server = -1 /* none */
max_performance =0

for i from 0O to server.length do
if (server[i] hasthe maximum number of VMs )
continue
else if ( server[i]is empty )
destination_server =i
return destination_server /* We choose this server and exit */

/* This will return the array of scores that the server will have after we add the VM */
scores = predict_performance( vm, server[i])

/* We check for average or distinct scores that violate our QoS */

has_violations = check_for_violations_of_QoS( scores )

if ( not has_violations )
destination_server =i
return destination_server /* We choose this server and exit */
/* We always keep the best score so far, even if it violates standards of QoS */
else if ( scores.average > max_performance )
destination_server =i
max_performance = scores.average
done
/* This happens only when every server is full */
if ( destination_server ==-1)
dismiss vm and exit
else
return destination_server
end
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This problem is more difficult version of the previous one. We will compete the same
algorithms again, but this time, it is impossible to search for the optimal combinations.
Problem’s size is exponentially bigger. If an equal number of VM from each family is
given as input, then the servers will host one VM from each family on average, in order
to fulfill their physical cores. This means that we have about 5N guests to schedule to
N hosts. Each guest has N possible options that need to be evaluated by our algorithm,
so its complexity will be O( 5N?).

Choosing a guest’s destination needs to be a very quick task. When a client’s application
is ready to start execution we should be able to provide the immediate start. A late
placement can introduce latency on our services, negatively affecting our quality of
service. The search of the optimal solution would introduce the following problems:

1. To calculate the optimal combination of the guests we need an algorithm that
will migrate the guests to another host when a better set-up is discovered. We
have chosen to avoid migrations on our implementation, since they add an extra
latency on runtime that we cannot measure.

2. On every new guest given as input, we will need to re-calculate the optimal
solution that might differ a lot from the previous one. This means that we might
need to migrate VMs on every step of the scheduler’s process, which is
something unwanted that will add too much latency on the guests’ performance.

As mentioned before, the scheduler needs to be deterministic and quick. The
complexity of our scheduler allows it to run quickly even with a high number of servers.
We need to consider that the rest of the schedulers (random and round-robin) make
their decisions immediately, and this is part of the competition and the quality of
service too. A further analysis is made on chapter 7.

4.4 Tests & results

In this problem, we emulated a cloud with 3 physical servers and 15 virtual machines
that need to be scheduled. We kept the same input tests we had on the previous

problem: random, serial and exchanging.
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In the previous problem, every server had two guests, which means that we already
knew how they will react and interfere. This time, every combination that is created by
the scheduler needs to be really executed so we receive the real results and compare
them with the predicted ones. The prediction system has to be evaluated too.

Predicted results

Predicted average slowdown

Ours Random Round Robin Round Robin (full first)

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

B Random m Serial M Exchanging

1 Predicted maximum slowdown

Ours Random Round Robin Round Robin (full first)
W Random M Serial M Exchanging

0,9
08
0,7
0,6
0,5
0,4
0,3
0,2
0,1
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Predicted variance
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Real results (experimental)

Experimental average slowdown
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Variance
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0,00%
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Those graph do not reveal a great improvement of performance with our scheduler, so
we wanted to try another input, without balanced numbers of VMs from each family.
We created the following input array:

[cbu, network, disk, cpu, memory_bandwidth, disk, cpu, memory_size, memory_bandwidth,
memory_bandwidth, memory_size]

These virtual machines have not enough virtual threads to fulfill the physical cores of each
server. So it can be consider a problem with lower difficulty. We want to examine what

happens if we stress the cloud a little bit less than before. This test has less network-bound
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guests and more CPU and memory-bandwidth-bound ones so we see how the
different schedulers react to an unbalanced input.

Average slowdown

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
Ours Random Round Robin (cycle) Round Robin (full first)
M Predicted Measured
. Maximum slowdown Variance
6,00%
0,8 5,00%
4,00%
0,6 !
3,00%
0,4
2,00%
0,2 1,00%
0 0,00% .
Ours Random Round Robin Round Robin Ours Random  Round Robin Round Bobin
(cycle) (full first) (cycle) (full first)
M Predicted Measured M Predicted Measured

4.5 Evaluation

According to the prediction system, we expected the average performance of the guests
to be slightly better or at least equal to the other schedulers’ results. We expected a bit
better performance on average of all input tests. Maximum slowdown is expected to be

better on average too, while variance will be greatly lower on every case.

In the experimental results, numbers do not quite match exactly the predictions. The
prediction system is responsible for this. Our prediction model is quite primitive. What
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we did, was to define the limits of the performance of each application, and arbitrary,
predict that the application’s performance will be in the average of the two limits. This
might work well sometimes, but the real interference that causes the applications to
slow down is much more complex and difficult to be predicted. We propose some ideas
for a better prediction system on the “future extensions” section.

Let’s ignore the last test for now.

The average performance of the guests does not fluctuate a lot between the different
schedulers. Our algorithm failed to achieve better results, even at minimum, as we had
predicted before the experiments. On the other hand, it does not have worse results
that the other schedulers either. The problem’s difficulty adds some performance
limits, but without an optimal combination calculation we do not know how close we
got to those.

Although on average we failed to make a noticeable improvement, we still need to
evaluate our fairness. The maximum slowdown (or equally, the minimum
performance) has an average value slightly bigger (and better) that the others, but not
enough to become noticeable from the client’s perspective. We also had a lower
average variance, which is the most important fairness metric. The difference between
our variance percentage and the rest of the schedulers’ is not enough to advertise it as
a success, but it proves that our algorithm still respects that need, even if it cannot
maintain the initial goal.

The quality of service in this case is almost always violated, so the algorithm just
ignores it after a specific point, choosing the best server on every step. We could
possibly lower down the QoS values, in order to try to maintain some standards in our
guests’ performance, even if these are not good enough. It is important to be able to
guarantee to our clients the minimum expected performance. If we set the QoS
variables at a very low value, then our scheduler would act like the round robin that
fulfils each server serially, as it would keep adding the incoming virtual machines to
the first server that would have free space since it does not violate these low standards.
Since we kept the values that we had set at the previous problem, the algorithm will
most probably place couples of VMs on each server, and after that it will start to fail
finding server that do not violate the QoS, so it will simply choose the best option on

each step.
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Moving on to the last input, we want to see what changed when a less stressful input
was provided. First of all, the average slowdown of our scheduler has an important
different from the others, achieving the highest score. Once again, the experimental
results differ from the predicting ones, confirming that the prediction model needs
improvements. We also managed to be fairer again this time, having a greatly higher
value of the minimum performance, both on predictions and experiments. Variance is
incomparable better too, concluding that we were overall fairer than our competitors.
Keeping in mind that this problem is categorized somewhere between those two first
problems, based on the difficulty and the number of virtual tasks, we cannot claim that
we scored better on this problem, but that we make it to be more fair when the physical
limits allow it. We perform a more detailed analysis and evaluation of our algorithm on
chapter 7.
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5 Problem three: Oversubscription

5.1 Problem description

To understand how our scheduler works and whether it provides better results than
its competitors, we have to test it with a variety of different kinds of inputs. We started
from the easier ones and we keep moving to more and more difficult. This time, we
want to see what happens when the virtual cores that the guests use surpass the
physical ones, meaning that the server will be oversubscribed.

In this problem we used the second server, due to some technical issues, and because
it is more powerful. As the problem get more difficult and stressful for the physical
machines, a more powerful server will help us save time. The virtual machines have
the same virtual cores (4) and memory (4GB), but this time we used the virtio drivers
(part of the KVM module) for the virtual hard drive to enhance the guest’s performance.

Our first try is to create test cases with virtual threads twice the number of the physical
cores. We need to have 16 virtual threads on each server, which is a big amount of VMs
that need to be spawned considering that only the CPU-bound ones run multithreaded.
It would be convenient for us to run each benchmark in 4 threads, so we achieve better
utilization with a smaller number of guests. To achieve this, we made a major change
this time. On every guest that is not CPU-bound, we created 4 instances of the
benchmark they run. This means we had to rerun every benchmark family in this new
environment and having 4 instances of each benchmark - except the CPU one which
was already multithreaded - so we have a new comparison basis to calculate the
slowdown from now on. This means that we are not able to compare results of this
problem directly with those of the previous problems, but only compare the results of

the different schedulers to each other.
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5.2 Running model

We now have full utilization of all virtual cores and also an equal number of virtual

threads from each VM, no matter what benchmark is executed inside. Because of the

OVCrSUbSCFiptiOH, CPU-bound VM Disk-bound VM Memory BW -bound VM | Memory-bound VM |[ Network-bound VM

the Vlrtual threads Virtual cores Virtual cores Virtual core:

cannot run all ] o o ..

Virtualization level

Virtual cores.

EOEE

together in parallel,

Physical level

but only the half of Server

them will be running [ vsimemoy ]

Physical cores

at every moment, .
while the rest will

wait their turn for

CPU-time.

Interference keeps getting more complex as the problems get more difficult. Our
previously deployed prediction model is clearly irrelevant with this running model.
That model could give an estimation of performance when all of the virtual processes
shared the CPU without interruptions, or at least without serious interruptions caused
from other applications than the benchmarks. This time something very different
happens. Combinations of applications that run together at a time are formed in a
completely random way and they keep changing very quickly as the server’s scheduler
will recycle the CPU space between the virtual processes that compete each other.
While the virtual tasks start and stop execution, the interference keeps changing with
the same frequency.

A very primitive practice to develop a new prediction model, could be the following:
form every possible combination of the virtual processes that can run along in the CPU
at a specific time, predict their performance depending on the previous problem’s
prediction model, and then calculate the average slowdown for each benchmark family.
This is based to the idea that each one of the possible combinations has the same
probability to be formed within the server’s CPU. Depending on that fact, and assuming
the previous prediction model was accurate enough, we could predict the estimated
average slowdown. But this is not going to work well. First of all, the previous
prediction model was not accurate enough to predict results and produce a major

improvement of quality of service. This will affect the results of this hypothetical
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predictor in a negative way. Additionally, it is a blind guess to assume that all possible
combinations between the virtual tasks can form with the same probability. For
example, an operating system that uses a gang scheduling algorithm will schedule tasks
from the same virtual machine (and therefore the same system process) together with
a higher probability, without being complete random.

5.3 Example tests & algorithm design

Instead of developing a prediction system, we went on and began testing some very
basic combinations of VMs that will help us understand what is happening. We ignored
the memory size benchmark at this first testing, in order to focus on how the CPU
benchmark behaves when combined with the input/output benchmarks. Both memory
bandwidth, disk and network benchmarks perform input/output operations to a
specific computer’s resource. We started by combining CPU with these three
benchmarks, in every possible ratio:
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CPU - Disk combinations CPU - Memory bandwidth
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Let’s try to expound the graphs.

First of all, we see that the CPU benchmark has about a 50% slowdown when there are
four VMs running it alongside. This is exactly what we expected, as the virtual threads
are exactly twice as the physical cores of the system. When we combined CPU
benchmark with the disk and network ones, the less CPU VMs we had, the better their
performance was. This can be easily explained, as the less CPU-bound VMs we have,
the less virtual processes compete for CPU time. Both disk and network benchmarks
are input/output bound, and they do not stress the processor, so they affect the CPU
benchmark less that it does to itself.

The CPU-Network combination graph reveals that network benchmark is affected by
the lack of CPU time. The best combination between these two types, is when we have
1 CPU and 3 network bound VMs. Network has less self-interference than the CPU. This
is why the combination of 4 network-bound VMs has a good total performance.

The Disk-Network combination graph reveals some very good combinations. 2 disks

and 2 networks have an average performance near 1.0, meaning almost no slowdown
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at all, and the combination of 1 disk and 3 network reveals an overall performance
boost! The fact that network benchmark is improved when there two other VMs that
run the same one, can be explained with better network utilization. Given the fact that
there are 4 hdparm threads running in parallel in each disk VM and they are all using
the same disk with virtio drivers, we can conclude that the interference is caused
between disk VMs that saturate the number of concurrent IO workers on the physical
disk. We can assume that the number of spindles is between 4 and 8.

The CPU-Disk combination graph shows the same behavior pattern with the CPU-
Network combination, having the same best case scenario when we have 1 CPU guest.
The CPU-Memory bandwidth combination graph informs us that this is a bad mixing at
any ratio, having very bad performance on all cases.

The combination of the four different families of benchmarks graph reveals a good
average performance. This is very useful information for creating a scheduling
algorithm for this problem.

We have some very basic and useful information on our hands about how different
benchmarks behave and interact with each other, but not enough to come up with a
scheduling plan that will guarantee us good results. We decided to run some more
combination tests to have a better understanding of the overall behavior patterns.
Each graph from those below presents a different combination:

1 1 1

0,9 0,9

0,8 0,8 0,8
0,7 0,7

0,6 0,6 0,6
0,5 0,5

0,4 0,4 0,4
0,3 0,3

0,2 0,2 0,2
0,1 0,1

0 0 0

CPU CPU MBW Disk Network Network MBW  Disk MBW MBW Disk Disk

We will use those results as base of knowledge, as we will try to create a scheduler for
this problem.
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After observing the additional combination graphs, we can create some basic rules that
we can follow to either have a better performance or avoid the worse combinations.

Below we collect and sum up those rules:

Try Avoid
Combine different types of VMs CPU combined with Memory bandwidth
Combine Disk with Network VMs Two or more CPU-bound VMs
Combine many Network-bound VMs Two or more MBW-bound VMs

We do not want to deploy a full prediction system, as we did in the past problem. As we
have already mentioned, prediction is a very difficult task in a complex running model
like the one we have here. We simplified our algorithm design by following the
behavior patterns of our tests, and turning the above rules into a scheduling algorithm.
Of course these rules must be ranked in a series of significance, so the scheduler will
try to satisfy all rules, starting from the most important and moving on to the next rule
as long as it fails. Let’s sum up those rules in order:

1. Combine different types of VMs (place the VM on a server that does not include
already one of this type)
No more than two CPU-bound VMs in one server
No more than two memory-bandwidth-bound VMs in one server
Do not combine CPU with memory bandwidth

Place disk and network VMs together

A

Place many network VMs together

We hope that the behavior patterns we noted on the tests we made will be followed on
the average scenario, so our scheduler will lead to better results. The possible
combinations of VMs on this problem is huge, so we cannot explore those behavior
patterns deeply. We ran some basic combinations and we achieved to generalize the
behavior patterns on a higher scale. The success of the scheduler will judge how well
or bad aimed our conclusions were.
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5.4 Results

We created 3 different input cases with 16 guest machines each. In all cases, the guests
arrive sorted by their category, meaning that first will arrive all the CPU ones, then all
the network ones, and so on.

Before we proceed with the results, we need to describe our competitors once again.
We kept the same schedulers again, but this time we renamed them so they are
recognized by the patterns they create within the physical machines:

Packed

This is the round robin algorithm that first fulfills each host. Combined with a sorted-
by-category input, the result will be that each host will have as many guests of one
family as possible. It seems a bad idea, but we still need to see its results.

Separable
This is the classic round robin algorithm. Combined with the sorted-by-category input

it will result a separation of same VMs to different servers, depending on the ratio of
the different guests.

Random
A completely random scheduler, with random results. It does not create any patterns

at all.

So let’s proceed with the test cases and the results. We marked the results of our
algorithm with red to be clearer.
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Test case one: 4 VMs of each one of the four categories

Slowdown Variance
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Test case two: 6 CPU, 6 network, 2 memory bandwidth, 2 disk

Slowdown Variance
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Test case three: 4 CPU, 2 network, 6 disk, 4 memory bandwidth
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5.5 Evaluation

The packed technique was proven to be a very bad idea, as we expected, having both
low performance and big variance. Our algorithm seems to behave steadily, avoiding
performance fluctuations. The separable technique has mostly similar results, as it will
create similar combinations to the servers, but in the last case we surpass both its
performance and variance. The random scheduler results an overall average
performance worse than ours, with a big variance too, but it is not too bad, like the
packed one. We also notice that the maximum slowdown value of our algorithm is the
best on both three cases, which is a very important metric of fairness. Once again we
made it to be fairer than our competitors, and also have a stable behavior with different
inputs.

At the beginning of the tests, we mentioned that four CPU-bound VMs running
alongside result an average performance of 0.5, meaning that the performance of each
benchmark is exactly the half of what is was when it ran isolated. Some test have an
average performance much greater than 0.5, even if we have a number of virtual
threads twice the number of the physical cores. This strengthens our theory that
different types of applications can run with high independency and a low interference,
as they occupy different physical resources. The processor is not stressed from the
input-output-bound applications, allowing them to run alongside with a small
slowdown caused by resource sharing.

The important part of the results is not the difference we made. The problem’s size is
huge and we cannot be sure that this behavior will be met on the average case. What is
the most important information from those experiments is that we have a serious profit
margin. Although the problem got harder, and the stress of the physical machine grew
accordingly, we still have a chance to optimize performance and fairness. Our
scheduler is still primitive and it might need serious improvements to have a stable
behavior and a stable performance gain, but it is still a very good start to be based on.
We suggest some possible extensions of our scheduler on the “future extensions”
paragraph of the next chapter.
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6 Conclusions

6.1 Total evaluation

Having in mind the goals we set on the beginning of this thesis, as we mentioned them
on the first chapter, under the "goal” paragraph, we want to evaluate what we achieved

by our experiments.

The first and most important goal was to prove that a resource-aware scheduler can
lead to a better average performance. During the tests we competed to some classic
schedulers which take decisions being unaware of the resources a guest uses. In most
of the experiments we made we had better results than our competitors’, and when we
failed to be better, we had approximately similar slowdown. This pretty much proves
our initial theory that scheduling based on the resources each guest stresses will create

more efficient guest combinations.

We need to examine the results from different perspectives to have a full image of what
we managed to achieve and whether we did it good enough to satisfy our goals.

Average performance
The simplest metric of our scheduler’s efficiency and possibly the most important. We

did not manage to make a big difference in most of the problems, but we also did not
have much worse values. If we compare our results with the best one of the rest of the
schedulers, we notice that in most cases we had only a little performance gain, which
is a very good sign.

Fairness (maximum slowdown & variance)

When we implemented our scheduler in both three problems, we wanted it to be fair.
We are judging fairness of the schedulers by two metrics: maximum slowdown and
variance. We managed to have a very slow value of variance throughout all the
experiments, and in most cases it was much lower than the rest of the schedulers. This
fact confirms that our scheduler was fairer and more respectful to the client’s
performance. A lower variance value means that different clients will have less

performance difference between each other, which is a very important parameter in
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modern clouds. The maximum slowdown revealed much higher values for our
scheduler on the first problem, and a similar behavior like the average slowdown on
the other two. So as a metric of fairness, maximum slowdown was useful to prove the

superiority of our algorithm on the first problem.

Stability

Our algorithm did not manage to make big difference in average performance values
mainly because we compared it with the best of our competitors each time. If we
compare each metric of efficiency with each one of the other schedulers alone, we will
notice that we have a much more stable behavior. While the other algorithms have a
very different behavior with a different input, we manage to have similar behavior
when the input changes. The results of the round-robin schedulers are based on the
order that the guests arrive. The random scheduler creates very different combinations
each time it is called, even with the exact same input, and this is why it has very big
variance values. On the other hand, our scheduler manages to reserve good results
even with much different inputs. This is a very important characteristic, because it
allows us to predict our results based on the size of the input and we can avoid big and

unwanted fluctuations on performance.

6.2 Future extensions

The purposes of the thesis were to prove that a resource-aware scheduler for a cloud
cluster can enhance its total performance and boost the quality of service without
additional physical resources. As we mentioned before, this is important for a cloud
service provider in order to increase the service quality-to-cost ratio. We analyzed the
performance of the system we developed in the previous paragraph, but we also need
to examine the limits of the scheduling system and its possible extensions, so it can
become cleverer and more efficient. Below are some possible extensions that can be

attached to what we already developed:

Migration support & optimal scheduler

The simplest but really important feature that needs to be added is migration support.
As we mentioned at the beginning of the experiments, we did not use migrations of
guests along the servers as it requires additional software, but most importantly,

because it would add an overhead that would be impossible to measure in terms of
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performance. While guests were arriving in the cloud cluster our scheduler placed
them to the best server without moving those guests that have been already placed.
While the number of the guests grows, the optimal combination might differ a lot from
what we have formed, but since migration was not supported, there was no point
searching for this optimal combination. Support for migration, combined with an
algorithm that searches for better combinations given the set of the guests that exist in
the cloud as input, but without restrictions in moving them around, could lead to better

results.

It is important to mention that migration has a serious penalty, since it is a task that
requires some time that cannot be ignored when calculating a guest’s performance. So
migrating the guests cannot take place every time a new VM arrives and a new better
combination of the guests is discovered. We should introduce a new feature to our
algorithm. We want to search for better combinations whenever the overall
performance starts getting too bad. We could tolerate performance penalty until a
specific point, and when this is violated, we could start searching for better
combinations every time a new guest arrives. If we find what we searched for, we
should decide if it is worth to try moving the guests around to create the desired setup.
If the new setup provides only a small performance boost, it might not worth it. The
same will happen if it requires lots of migrations, because the penalty of migrations
might balance the performance gain. We believe that this algorithm could lead to better
results, especially when we have many guests like we had at the second problem, where

we failed to make a big difference from our competitors.

Better prediction system

During the second problem we experienced unexpected performance in experiments
that caused our algorithm to have results close to its competitors’ ones. We mentioned
that the prediction system should be able to recognize which is the best combination
between a set of guests. To achieve this, we can try to create a technique that provides
more accurate predictions for the expected performance, but this is most probably a
very difficult and complex task to deal with. We could make a more clever prediction
system by adding memory to it. While the clients run in various different combinations,
the scheduler can get information about their performance. This might require some
software installation on client’s side, so the client can inform the server about its
slowdown, but we do not want to engage with the design issues on this thesis. This

information will be stored to a database, so the next time that the prediction system
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will be called to predict a previously created combination of VMs, it will no longer take
a guess, but it will provide the experimental measurements. This will allow our
prediction system to get wiser as the time passes and it keeps storing useful
information. The more information it stores, the more accurate it will be in the future,
allowing us to make the best decisions between the possible combinations. While the
database grows and our knowledge expands, we can also make improvements to our

prediction model’s mathematical formula, based on the results.

Profiler

We have already described why we chose to experiment with benchmarks instead of
some more common applications. In a real cloud system, the average client’s needs are
not as intensive as the ones of the benchmarks we chose to run. The majority of
applications use most of the computer’s resources, so they won’t behave like our
benchmarks did. In order to find out what resources an application (or a VM) uses, we
need to use profiling software.

A profiler is a program that performs analysis to another program, monitors the
resources it uses and recognizes its behavior patterns. We can use a profiling software
that analyzes the virtual machines that run on a server and provides us information
about the resources it uses. We can either categorize VMs to the one family from those
we have defined, based on the resource that the VM stresses the most, or categorize it
to more than one family with a percentage of relevance. For example, an application
can act 80% of the time as a CPU-bound process, and 20% as a disk-bound process. We
should also extend our scheduler’s abilities so it can work with VMs that act varyingly,
which is tough and complex task, but it still is a perspective that can boost the system'’s
flexibility and efficiency.

Overall, there are many possible ways to extend our system, even in different
directions and with different approaches. The main idea remains the same: clients are
treated with respect to whatever resources they need. What we developed was a
primitive version of a system that satisfies this need. Different cloud systems, with
different characteristics might lead to a very different behavior and results when our
scheduler is used. Additionally, different kinds of guest applications can lead to

unpredictable results.
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The most imperative need for this system is intelligence. An intelligent system can
adapt at different cloud clusters, study their behavior, and configure its decision
making system accordingly. A system like this can be called plug-n-play. For example,
the interference map that we used for the first two problems changes when we move
to a new cloud. The scheduling system should be able to recalculate it on a new
environment. An intelligent system can also have memory and profiling tools, as we
have already proposed. As a result, intelligence will add elasticity to it, being platform-
independent, providing better results while it keeps getting wiser and also being able
to work with any client.

The results of this thesis and the studies about interference between different types of
applications can have various uses. For example, as long as we have spotted some very
good combinations during our experiments that have a minimal interference between
each other, we can suggest those to a cloud provider for a long-term use. Imagine a
cloud service provider that hosts 2 different services, one CPU-bound and one
network-bound service. If we have ensured that those two types of applications have a
minimal interference, we can suggest to this cloud provider to use the same physical
machines to host both of the services on a permanent basis. This will allow a near-
optimal performance without any additional servers at all.

What we have developed already is just the core of an intelligent resource-aware
scheduling system that can be extended in multiple ways, depending on our needs. In
this thesis we intended to prove that a system like this can lead to better results. As
long as we were encouraged by our results, we can continue the development with a
new direction, creating a system that provides efficient scheduling in cloud

environments.
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/ Appendix

7.1 Code

Python script used for memory size benchmark:

#!/usr/bin/python
import random
import time
import hashlib

memstep = 128 #in Megabytes
pagesize = 4096

#start of execution
start = time.time()

#The huge string is initialy empty
huge_str="

while True:
try:
huge_str += bytearray( memstep * 1000000 )
except MemoryError:
break

memsize = len( huge_str)
print "Allocated %d MBs in %.2f seconds" % ( memsize/1000000, time.time() - start )
edit_start = time.time()
times =4
hashes =0
#We loop for "times" times
for jin range(0, pagesize, pagesize/times):
cycle = time.time()
#Every loop edits every page once, so our step is the pagesize
foriin range(0, memsize, pagesize):
#A standard random edit, one character long
huge_str[i +j ] = str( random.choice( 'abcdefghijkimno') )
#We want some hashes to
if (1% (memsize/pagesize)/8 ==0):

hash_t = time.time()
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m = hashlib.shal()

m.update( random.choice( 'abdcefghijkimnopgrtsuvxyz' ) )

hash = m.hexdigest()

hashes +=1

print( "\tHash %d, got %.4f seconds" % (hashes, time.time() - hash_t) )

huge_str[ i : m.digest_size ] = hash

print( "Cycle time: %.2f seconds" % (time.time() - cycle) )

print( "Edited every single page within %.2f seconds" % (time.time() - edit_start) )
print( "Total execution time: %.2f seconds" % (time.time() - start) )
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