EONIKO METzOBIO INOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQN
KAl MIHXANIKQN YNOAOTIZTON

CMHOEVS
nvp$opo

%

hnr

Touéag Texvohoyiag MAnpodoptkng Kat YIToAoOyLoTwWY

MeAétn kot Eykataotaon EpyaAeiwv Eviomiopol Kot
Nayidsvong KakoBouAwv Evepyewwv (Honeypots) o€ Ytodopég
NedoimoAoyiotikig (Cloud Infrastructures)

AINMAQMATIKH EPTAZIA

AIKATEPINH ZAPAOY

EmBAénwv: Nektaplog Kolupng
KaBnyntic E.M.M.

ABriva Maptiog 2015

EONIKO METzOBIO INOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQN
KAl MIHXANIKQN YNOAOTIZTON

¢

vs
[

J .
LA 20\ <
OMHOE
=
nvp$opos

I R)
hnr

Touéag Texvohoyiag MAnpodoptkng Kat YIToAoOyLoTwWY

MeAétn kot Eykataotaon EpyaAsiwv Eviomiopol Kkat
Nayidsvong KakoBouAwv Evepyewwv (Honeypots) o€ Ytodopég
NedoimoAoyiotikig (Cloud Infrastructures)

AINMAQMATIKH EPTAZIA

AIKATEPINH ZAPAOY

EmBAénwv: Nektaplog Kolupng
KaBnyntnic E.M.M.

EykpiOnke amod tnv tpiueln e€etaotikn ntpont tTnv 23n Maptiov 2015

Nektdaplog Kolupng Anuntplog wtakng Fewpylog Mkovpog
KaBnyntig E.M.M Emtik. Ka®nyntic E.M.NM Néktopag E.M.N

ABnva Maprtiog 2015

Awkatepivn ZapAovu

AutAwpatolyog HAektpoAdyog Mnxavikog kat Mnxavikdg Yrioloylotwy E.M.IM.

Copyright © Alkatepivn ZapAou, 2015.
Me emiipUAagn mavtog Sikatwpartoc. All rights reserved.

AmnoyopeuUetal n avtiypadn, anobnkeuon kot Stavopun tng mapoloag epyaociag, € oAokAnpou A
TUAMUATOC QUTAG, Yla EUIMOPLKO OKOTIO. EMITpEMETAL N AVATUTIWGT, AMOBKELON Kol SLavVoUn yla
OKOTIO Hn KEPOOOKOTILKO, EKMALSEUTIKAG 1 EPEUVNTIKAG ¢UoNng UMO Ttnv mpolmndbeon va
avadEpeTal n mnyn MPoEAEUONG Kal va Slatnpeitat To mapov uivuua. Epwtiuata mou adopolv
TN Xpnon tTng epyoaociag yLo KEpSOOKOTILKO OKOTIO TIPETIEL VO aTteuBUVOVTOL TTPOC TOV CUYYypadEa.

OL amoPelg Kol TA CUUMEPACMOTA TIOU TIEPLEXOVIAL OE AUTO To €yypado ekppdlouv Tov
ouyypadEéa Kal Sev MPEMEL va epUNVEUBEL OTL AVTUTPOCWIEVOUV TIC eMioneg B€oelg Tou EBviKOU
MetooBilou MoAutexvelou.

NepiAnyn

H mapoloa SumAwpoTiK €XEL WG OTOXO TNV MeAETN Sladopwv sdwv epyoleiwv mayideuong
KakOBouAou AoylopikoU (Honeypots), Tnv edappoyr TG umdpxouoag Texvoloyiag otnv umodoprn)
¢ umnpeoiog ~okeanos (laaS) kot TéAog¢ TNV efoywyr OTATIOTIKWY OTOTEAEOUATWY Kol
OUUTEPACUATWV.

Apxwa mapouaotalovral kal eme€nyolvral ol SltadopeTIKEG Katnyopieg Twv Honeypots kat pe Baon
elblka kpttnpla afloAoynong emAéyetal To KATOAANAOTEPO TPOC UAomoinon. Xtn GOUVEXELa,
mapouctalovral ol TEXVIKEG TToU Xpnolpomolndnkayv yia tnv opbr puBdulon Twv MAPAPETPWY TOU
gpyaAeiov KaBwWG emMioNg KoL T CUUTIANPWHATIKA EPYAAELQ TTOU XpNOLUOTIOLNONKAY, TIPOKELLEVOU
va Kotootel ekt n Aswtoupyia Tou epyaleiou kot n e€oywyr TwWV OMOTEAECUATWY. TEAOC,
napouatalovral kKot afloAoyoUVTal Ta AMOTEAECHOTO TTOU Ttapnxnoav.

Ma tnv uAomoinon tTng CUYKEKPIEVNG SUMAWUATIKAG eANdOnoav umtodn ot 6Ao kal auéavopeveg
onaltioel aocdAAELOG OTA UTTOAOYLOTIKA CUCTAUATO Of TAPAYWYLKA TieplBAAAovVTa, OMWG aAUTO
¢ umnpeociog ~okeanos, kat n avaykolotnta UMopéng mMoAAWV Kot SladopeTikwy PeBOSwY
OVTLUETWITLONG TWV €KACTOTE MEPLOTATIKWY aopaleiag Aoyw tng aufavopevng mMOAUTIAOKOTNTOG
KoL CUXVOTNTAG EUPAVIONG OLUTWV.

Mo toug mapandvw AOyouc, N OAOKANPWHUEVN TPOCEYYLON TIOU TAPOUCLAETAL OTNV Tapouoa
epyooia Bewpeital OTL KAAUTTEL TOUC TTAPATIAVW OTOXOUC Kol amoteAel pio Wbavikr Abon 6owv
opopd ToV EVIOTILOUO Kal TNV epunveia KakoBouAwv mpoomabelwyv enibeong mpog TG UTTOSOUEC
¢ umnpeoiog ~okeanos.

NE€eLc KAELOLA

Honeypot, Honeyd, HoneyBot, ~okeanos, Nmap, TCP/IP, FTP, FTPS, acddAela mAnpodopLlakwyv
cuotnudtwy, cloud computing, cyber attacks, TLS/SSL, port scanning, web scanning, brute force
attempts.

Abstract

The purpose of this diploma thesis is the examination of the different types of Honeypots, the
deployment of the existing technology on ~okeanos (laaS) platform and finally, the extraction of
statistical results and conclusions about the types of cyber attacks that target ~okeanos service.

Firstly, we present and explain the different types of Honeypots and afterwards, based on specific
evaluation criteria, we select the most suitable tool to implement. Then, we describe the
techniques that were used for the appropriate configuration of the tool. Also, we outline the
additional tools that were used for the successful operation of the tool and for the export of the
statistical results. Finally, we present and evaluate the results that were produced.

The need for the implementation of the present diploma thesis was based on the increasing
security requirements of the ~okeanos’ production environment and the necessity of different
incident handling methods due to the complexity and the frequency of the attacks that are
reported from ~okeanos’ incident response team (CERT).

For these reasons, we consider that this diploma thesis presents an integrated approach, which
meets the above objectives as a solution for the identification and the interpretation of the
malicious attempts that target ~okeanos service.

Key Words

Honeypot, Honeyd, HoneyBot, ~okeanos, cloud computing, Information Security, Nmap, TCP/IP,
FTP, FTPS, cyber attacks, TLS/SSL, port scanning, web scanning, brute force attempts.

2tov Avtwvn

Euxoplotieg

Apxika, Ba nBeha va suxaplotiow Tov KaBnyntn pou k. Nektdplo Kolupn yla TNV gumotoouvn
TIoU Pou £6¢el€e, avaBETovtag pou TNV mopoloo SUTAWMOTIKY OAAQ KAl YLl TNV UTIOOTHPLER ToU
KB’ 6An TN SLApKeLa TNG EKTOVNONG TNG.

Akoun, Ba nBela suxaplotiow tov K. AAEEavdpo Zaxapr, YrnevBuvo Acdaleiag tou EAET, yia tnv
TMOAUTIUN KaBodrynor| Tou o€ OAa Ta otdadia eE€ALENG TNG UAomoinong TG SUTAWMATIKAG aAAG Kall
yla tnv npoBupia va emiAUostL omoladnmote amopia pou mapouctalotav oto PeToED.

Eniong, odpellw va guxaplotriow tov k. Fewpylo Kapyuwtdkn, Ataxelplotr Awktvou tou EAET, ya
TNV auépLotn ocuvelodopd TOU Kal TNV APECSN AVTIATIOKPLON 00wV adopa OTNV EMIAUCH TEXVIKWV
SUGOKOALWV TTOU TTAPOUCLACTNKAV KOTA TN SLAPKELA TNG EKMOVNONG TNG SUTAWMOTLKAC.

AKOUN, va euxapLoTnow tov K. Kwvotavtivo ToUmouAidn, Mnxaviko Juotnuatwy tou EAET, yila tn
oUMBOAN Tou o€ Kailpla onuela TG uAomoinong Kalt tov K. Taupo Kpouotoupn, MpoypopupatLoTh
Awadiktuakwv Edappoywv tou EAET, yia thv BorjBela tou O0mou Atav avaykaio.

Télog Ba nBela va uXaPLOTHOW TOUG KOVIWVOUG MOU avBpwroug yla TV UTIOMOVH Kal Tnv
CUUMAPACTACN TOUG OAo auTd To SlaoTnua.

Contents

TEDIANIII ettt ettt et e et e e et e e et e e e etteeebee e baeesabeeebaeeaabaesbesesabaesbaeebaeeenbeeeeabeeanbeeenaeesreeenns 5
ADSTIACE ..ttt b e b e bt a e et e et e e bt e e b e e saeenat e s b e e bt e reennes 7
0o 7o o1 £ PR 10
{67 01 (=T 01 (OO OPPTP 11
(0 0 F=T o o =T ot USSRt 13
T oo [¥Tord o] o EUA OO OO PSP PP PRV 13
1.1 MOTIVATION c ettt e s e e 14
1.2 THESIS STIUCTUI .. .eiiiiiieeiee ettt ettt ettt et e s e s bt e e st e e sbb e e sateesabeeesabeesabeessaeesabeeanns 15
(0 0T T o1 =T PSPPSR 17
Theoretical Background — HONEYPOLS ANAIYSISeeeeiieiiiiiiiieeeciiee ettt e e e e e ree e e e 17
2.1 VOKEANOS USE CASE ...veeutienteeriteiiieeite et et et te st sat e st e bt e sbee bt e sbeesae e st e e be e bt e sbeesbeesatesabesabeebeennes 18
2.2 Definition Of HONEYPOL......oii ittt et e e et e e e sarae e e s abaeeessnnaeeeean 19
2.3 TYPES OF HONBYPOLS...ciiiiiiiiiiciiiie ettt e st e e st e e st e e e s abae e e sataeeessnssaeesnnnaeaaens 19
D T Y=Y V= o [o T g 1LY o Lo 1 P STPRR 20
2.3.2 ClieNnt-Side NONEYPOLS.ciiccuiieeieiiee ettt ee ettt e et e e et e e e et a e e e e ataee e e abaeeeeeasaeeeesssaneesansaneanan 20
2.3.3 LOW interaction NONEYPOLScccccuviiiieiiiieecciiee e ettt e e ectee e e et e e e e eta e e e s bbeeeseasaeeeeensseeesannaeeanan 20
2.3.4 High interaction NONEYPOLS.cciiciiiiicciiie ettt et e e e e e e sare e e ssaaeeaeas 21
P T o 1V o 1o I o T aT=1Y o To | USRS 21
2.4 Evaluation of different types of HONEYPOLSooeeuiiiieiiiiiee et e 22
28 Y1 [0 1= V7 ISR 22
2.5.1 Architecture Of HONEYuviieiee ettt et e e et e e e et ae e e e eaaeeaean 23
2.5.2 Honeyd’s Personality ENGINEcuuiiiiciiiiiiiiee ettt s st e ssaae e s esaae e e e seae e e ssaaeeaeas 25
2.5.3 HONEYd’'S COUNTEI MEASUIES....cciiiiieeeeiirieeeitteeeeitreeesirreeeesatreeeesssseesassseeeessseeesassaeesasseeenns 27
LS (o] 1= o N 28
(01 0= o =1 5 7SR 31
Honeypots Implementation - ~Okeanos Use Case.........ceeecureeeeiiieeeiiiiieecsiieeeessreeeesiteeeessevneesesaveeas 31
3.1 SOIUTION AFCHITECTUIE ..eoueiiiieciieet ettt s st e b e sanesane e 32
3.2 Nmap ~0KeaN0S POt SCANNMING.....ccuuiiiieeee e eccieeee e e e e e et e e e e e e esbrre e e e e e e e e esanrraeeeeeeseesnnrreneeens 33
3.2.1 Results of NmMap POt SCANNING ..c..vviieeiiie et ettt et e e et e e e e ear e e e e e bee e e eeabaeeeeeareeas 34
3.3 Honeyd IMpPlementation ...t erree e e e e e et a e e e e e s e nnrraaeee s 37
3.3.1 Honeyd Configuration file ANAlYSISccuiieiiiiiieiiieeeccee e e e e 37
3.3.2 ~OKeaN0S CONFIGUIATION ...eiiiieiiie ittt et e e e e e e e are e e e s abe e e e s nbeeeeenreeas 39
3.3.3 Honeyd RUNNING COMMANG.......ccuuiiiiiiee e cecciteeee e e ettt e e e e e e estere e e e e e e e e eennrraae e e e e e eeennsenaeeeas 41

N o N 7Y o] (o170 1= o | SRR 42

[e Y=Y RV G 1o LIPS 43

3.5 ANAIYSIS OF LOG FIl@ cneerieiieieee et e s e nree s 47
(0 0T T o1 =T o PSPPSR 49
Representation — Analysis — Comparison of Honeyd and HoneyBot Statistical Results.................... 49
L I o T g TV o I =T U USSR 50
4.2 HONEYBOT RESUILS ..ottt e e et e e e e et e e e et a e e s e ante e e esnbaeeeeeareeas 53
4.2 Comparison Honeyd’s’ and HONeYBOt'S RESUILSccuveiiviiiiiiiiiiee e 55
4.2 Explanation of data @analysSis t0O0]ccueeiiieiiiii i s 56
(0 0T oY =T ot J U USPRRRNt 57
CONCIUSIONS .ottt b e s h et ettt e bt e sbeeshe e sateeab e et e e bt e abeesbeesaeeeabeenteenbeesbeesanenas 57
5.1 CONCIUSIONS. ...eieutieeetee ettt ettt et ettt sib e ettt e st esbt e e s abeesabeeesabeesabeeebeeesabeeesabeesabeesanteesaseeennes 58
5.2 FULTUIE WOTK ettt et sttt ettt sab e s bt e e sbbe e sabe e e sabeesabeeeanbeesabeeenanes 59
RO EIENCES...c ettt et ettt e sttt e st e sttt e bt e e sttt e sabeesabeesbteesabeesbte e abeesareeesareenn 61

APPENDIX L.ttt e e e e s e e e e s et e e raeeesas 63

Chapter 1

Introduction

This chapter presents the incentives that led to the
implementation of this diploma thesis. Furthermore, it
outlines the overall structure in terms of its chapters and
their respective contents.

1.1 Motivation

Nowadays, Information Security, a term which was not widely spread before the nineties, is
becoming increasingly popular as the need for more secure communications grows.

Information Security, spans a rapidly growing domain of expertise of computer science, which is
aimed, according to NIST “Glossary of Key Information Security Terms”, the protection of
information and information systems from unauthorized access, use, disclosure, disruption,
modification, or destruction in order to provide confidentiality, integrity, and availability. Protecting
information and information systems from unauthorized access, use, disclosure, disruption,
modification, or destruction in order to provide [1]:

e integrity, which means guarding against improper information modification or destruction,
and includes ensuring information non repudiation and authenticity;

e confidentiality, which means preserving authorized restrictions on access and disclosure,
including means for protecting personal privacy and proprietary information

e qvailability, which means ensuring timely and reliable access to and use of information.

Throughout the expansion of the Internet the need for secure systems is considered a vital part of
their design and implementation. On a daily basis, thousands of incidents take place, intending to
destabilize the foundations of telecommunication facilities. The following examples clearly
illustrate the above. A very recent and severe incident was the “Anthem Data Breach” [2],
resulting in the exposure of 80 million patients’ medical records. According to Joseph Swedish,
President and CEO of Anthem, the data stolen included client names, dates of birth, physical and
email addresses, medical IDs and Social Security numbers. Another incident of equal importance,
was the “Carbanak Apt: The Great Bank Robbery”, which is still in progress, and led according to
the Kaspersky Report [3], in the abduction of $1 billion, from more than 100 banks in 30 countries.

At this point, it should be stressed that every security incident, apart from causing severe issues
regarding the functionality of computer networks, also induces detrimental economical and ethical
effects to companies or individuals.

Another developing field, that indicates a security oriented way of thinking, concerns the Internet
of Things (loT) ecosystem. As the number of connected loT devices constantly increase, security
concerns are also exponentially multiplied. Moreover, the concepts of security should be
redesigned [4] in order to fulfil the purposes of cloud-based infrastructures.

Last but not least, besides Internet of Things, Cloud Computing in general, demands more
sophisticated security solutions, as hacking attacks become more elaborate. The European Union
Agency for Network and Information Security (ENISA) in a recent report [5] indicates the
importance of security reinforce of Cloud Computing Infrastructures, due to their critical services.

In particular, the following two cases could be distinguished:

e (Cloud computing services which are used by operators of critical infrastructure to support
the delivery of their core services, in cases where the reliability of the underlying cloud
technology is itself essential to the safe functioning of the critical service.

e Cloud computing services which are critical in themselves, i.e. if failing there would be a
significant impact on health safety, security or economic well-being of EU citizens or the
effective functioning EU governments.

The above constituted a strong incentive in my desire to discover the challenges behind the
implementation of a security mechanism, in a production Cloud Computing Environment, such as
~okeanos.

~Okeanos [6] is an Infrastructure as a Service (laaS) platform provided by the Greek Research and
Technology Network to the Greek Academic and Research Community. Okeanos enables the
creation and management of virtual machines through an intuitive environment. ~Okeanos
infrastructure counts thousands of active Virtual Machines, hosting numerous services of each
kind. Therefore, monitoring and protection of the infrastructure is of paramount importance.

Greek Research and Technology Network, considering the need to ensure the security of its
infrastructure, has proceeded to the creation of GRNET-CERT office. GRNET-CERT is the Computer
Emergency Response Team of the Greek Research & Technology Network (GRNET). The activities of
GRNET-CERT encompass a fairly wide area of applications in the computer security field. The main
activity of the team is the effective response to security incidents involving GRENT’s infrastructure.
This is accomplished by acting as an intermediary between affected parties and offering, when
required, technical advice leading to the resolution of the incident. Incidents are recorded,
analyzed and monitored until they are considered resolved.

The purpose of this diploma thesis is the deployment of honeypots, in ~okeanos infrastructure, in
order to investigate the types of attacks and how these attacks vary geographically. Furthermore,
the conclusions extracted from honeypots will contribute to amelioration of the knowledge base of
incident handling techniques.

Definition of honeypot

A honeypot is a decoy system configured to be intentionally vulnerable, deployed to gather
information about attackers and their exploitation methods. While honeypots are not typically the
target of highly sophisticated attacks, they are subject to many undefined attacks, and provide a
window into the types of threats being launched against the cloud. [7]

1.2 Thesis Structure

This diploma thesis implements an integrated solution concerning an additional method for the
security incident handling process within the scope of the ~okeanos service. Firstly, the ~okeanos
platform was examined for open and presumably vulnerable services. Afterwards, those results
were used for the appropriate configuration of the Honeypot tools. Then, the log file with the
results collected by the Honeypot had to be transferred in a secure way, due to the risk of
infrastructure compromise. Finally, the results were statistically processed and evaluated, offering
an overview of the platform’s status and its potential risks.

Throughout the process of the aforementioned implementation the main guideline was the
maintenance of the security of the process and assurance of the stability of the productive
environment of ~okeanos service.

The structure of the diploma thesis is presented below:

Chapter 2 outlines the theoretical background of the diploma thesis. It provides a detailed
description of the ~okeanos platform, as well as the types of honeypots and explains the
architecture of the honeypot implemented within the scope of this work and the reasons behind it.

Chapter 3 presents the details of the implementation of the Honeyd tool in the ~okeanos
infrastructure and explains every step during the process as well as the tools and techniques used
for the support of the implementation.

Chapter 4 presents the results obtained by two honeypots, namely Honeyd and HoneyBot,
and explains the techniques that were used for the parsing of both their respective log
files.

Chapter 5 outlines the conclusions derived through the evaluation of statistical
interpretation of the obtained data and refers to future work which could lead to
confrontation of specific incidents.

Chapter 2

Theoretical Background — Honeypots Analysis

This chapter provides a presentation of the ~okeanos
platform, and deepens to the analysis of this specific use
case in information security. Additionally, it outlines the
types of Honeypots and their characteristics and evaluates
their functionality using a number of certain criteria.

2.1 ~Okeanos Use Case

The goal of the ~okeanos platform is to deliver production-quality laaS to GRNET's direct and
indirect customers, i.e. IT departments of academic institutions and students/researchers
respectively.

The ~okeanos service contains:

e Compute/Network Service (codename: cyclades)
e File Storage Service (codename: pithos+)

e |dentity Management (codename: astakos)

e Image Registry (codename: plankton)

e Billing Service (codename: aquarium)

e Volume Storage Service (codename: archipelago)

The above are combined with a number of activities (monitoring, issue handling, helpdesk
operations) to deliver the end-user experience. [8]

For the purposes of this diploma thesis, ~okeanos analysis will be focused on the security aspect,
through the Computer Network Service “Cyclades”. End users, during the creation of a Virtual
Machine in “Cyclades”, are able to assign an IPv4 to it and after its creation they have complete
administrative rights on it, which means that they could install anything between a web server to
some sort of malware, thereby potentially compromising the network infrastructure’s security

CERT'’s reports for 2012-2013 show that in 2013 there has been a huge incident increase. (Figure
2.1) The overall number for incidents each period has a significant correlation with the number of
activated users of ~okeanos service [9]. An additional way to gain an insight on the amounts of
attacks targeting ~okeanos infrastructure, would be the deployment of a Honeypot and the
statistical analysis of its log data. The different types of Honeypots were examined and evaluated
against specific criteria, in order to determine the optimal choice, taking ~okeanos’ unique features
into account.

Incidents per Year

300
250
200
150
100

50

2012 2013

Figure 2.1: Incident increase (2012 — 2013)

2.2 Definition of Honeypot

A Honeypot tool is a security resource whose value lies in being probed, attacked, or
compromised [10]. More concretely, a honeypot should be viewed as a decoy system configured to
be intentionally vulnerable, deployed to gather information about attackers and their exploitation
methods. While honeypots are not typically the target of highly sophisticated attacks, they are
subject to many undefined attacks, and provide a window into the types of threats being launched
against the cloud.

Honeypots allow researchers to:
e (Collect new and emerging malware
e Identify the source of the attacks

e Determine attack vectors
e Build a profile of the target infrastructure if using specific infrastructure domains

2.3 Types of Honeypots

The different categories of honeypots are shown below (figure 2.2) and subsequently their
properties are explained in detail:

Types of honeypots

/

Type of attacked resources

/ \ Level of interaction
Server-side Honeypot Client-side Honeypot / \

High interaction Low interaction

Hybrid

Figure 2.2: Types of honeypots

2.3.1 Server-side honeypots

Server-side honeypots are designed with the objective to detect attacks on network services.
This particular type of Honeypots took its name by the fact that they emulate the behavior of a
server. More specifically, server-side honeypots emulate the exposure of one or multiple open
ports or whole applications and listen passively for incoming connections, established by
remote (likely malicious) clients. Server-side honeypots have the ability to detect threats
involving scanning methods aiming to identify potential victims to compromise. Server-side
honeypots are widely used and for this reason most of the times the term Honeypot is by
default associated with them.

2.3.2 Client-side honeypots

On the other hand client-side honeypots are designed to detect attacks on client applications.
A client application is a software module that establishes a connection to a server and
proceeds to interaction with it. Client-side honeypots function differently from server-side
honeypots in that they detect malicious behavior of either the server or the content it serves
by establishing active connections to services that the server hosts. The main targets of the
most popular client-side honeypots are frequently-used applications such as web browsers,
together with associated extensions and plugins, propagated via web pages. Moreover, client-
side honeypots have the ability to examine various forms of attachments. Finally, the term that
is generally used to describe this specific type of honeypots is “Honeyclients”.

2.3.3 Low interaction honeypots

The main characteristic of low-interaction honeypots is that they operate by emulating a set of
resources. More precisely, server-side honeypots emulate services and honeyclients emulate
client applications. Low-interaction honeypots adopt only a subset of characteristics of the
resources that they try to mimic and therefore the interaction with an attacker is limited to a
certain extent by the accuracy of emulation, in comparison to actual resources. The level of
emulation is determined by the quality of the configuration of the low-interaction honeypot.
The interaction between the attacker and the honeypot also depends on the degree of
accuracy of the emulation that has been accomplished by the honeypot. In cases where the
accuracy is poor, the adversary may identify the service as fake and terminate the before the
actual malicious actions are been performed.

The greatest advantages of low-interaction honeypots are that their deployment is very
straightforward and they are very simple to maintain. In addition, the emulation constrains the
attack to a supervised environment and thus reduces the risk of the system becoming
compromised. Moreover, low-interaction honeypots are very useful as the user has the ability
to maintain the control over the attack and to determine its current stage. Low-interaction
honeypots, however, have some disadvantages. The main disadvantage is that, in many cases,
no matter how thorough a configuration was accomplished by the creators, emulated
resources tend to behave in a different way than real ones. This behavior divergence could
potentially allow the attacker to detect the targeted service as honeypot and end the attack

attempt prematurely. Finally, this specific type of honeypots has some inherent limitations
which forbid emulating not-yet-known vulnerabilities namely, 0-day vulnerabilities.

2.3.4 High interaction honeypots

The prime difference between low-interaction honeypots and high-interaction honeypots is
that the latter provide real operating systems and resources, both services and client
applications, and they do not emulate them. In other words, high-interaction Honeypots are
essentially actual systems with the only difference being that they are intended to serve as
attack targets. High-interaction honeypots can use both bare metal or virtual environments for
their purposes.

The dominant advantage of high-interaction honeypots is the fact that they exhibit realistic
operating system and resources behavior, preventing the adversary from detecting the
system’s actual purpose and thereby minimizing the possibility of the attack ending before the
malicious actions are performed. Also, they can detect the attacks on not-yet-known
vulnerabilities, i.e. 0-day vulnerabilities.

Another difference between these two categories of honeypots is the quality of the collected
data. High-interaction honeypots gather a great variety of data, which contain more
information and details about the attack. However, the main characteristic of high-interaction
honeypots, i.e. the fact that they provide real operating systems and resources, may also be
considered as a drawback since their deployment and usage, including their configuration and
management, requires significant effort and cost. In addition, their complexity makes it hard
for the user to take control of the attack steps. This could increase the risk of compromising
real systems, and losing control of the honeypot. Finally, determining which elements of
system/application behavior are suspicious or malicious and which are benign is not
straightforward. All disadvantages mentioned above stem from the fact that high-interaction
honeypots require elaborated deployment.

2.3.5 Hybrid Honeypots

Hybrid honeypots, as their name describes, combine the characteristics of both low-interaction
and high-interaction honeypots in order to be more effective. Hybrid honeypots achieve the
amelioration of the threat detection performance as they make use of a high-interaction
server-side honeypot to learn how to handle unknown traffic and then they redirect the traffic
to low-interaction server-side honeypots to further analyze the attack.

2.4 Evaluation of different types of Honeypots

The need to evaluate the different available Honeypots, in order to choose the most appropriate to
implement, according to the needs of the present diploma thesis, led to the introduction of the
following criteria based on which they will be assessed:

- Cost (preferable under BSD license)

- Ease of use and setting up
- Usefulness for CERTs

Based on the above criteria and in accordance with the tables of the European Network and
Information Security Agency (ENISA) [11], it was concluded that among honeypots of high and low
interaction the latter category was preferable. Low interaction honeypots have the great
advantage of being simpler with respect to configuration and maintenance. Additionally, the
majority of low interaction honeypots are open source which makes them a low-cost solution.

Moreover, the choice of the right tool within the low interaction category was once more
established based on the above criteria. Concretely, more particular importance was given the final
characteristic, i.e. usefulness for CERT. One of the predominant choices was Honeyd, a tool that
satisfies all three criteria, mentioned earlier. Honeyd was finally chosen because it contains a wide
range of possibilities, which makes it very useful for CERTs, providing the capability of
implementing scripts management and simulation of complex network topologies.

The next section elucidates the characteristics and properties of Honeyd tool, focusing on the
potential adjustment of its parameters.

2.5 Honeyd

Honeyd [12] is a honeypot developed by security researcher Niels Provos and it is available as open
source software, licensed under GNU General Public License v2.0, as part of Honeynet program
[13]. Honeyd was ground-breaking in that it could create multiple virtual hosts on the network, as
opposed to just using a single physical host. The honeypot can emulate various operating systems
(which differ in how they respond to certain messages) and services. Since Honeyd emulates
operating systems at the TCP/IP stack level, it can fool even sophistic network analysis tools such as
Nmap. Upon attack, Honeyd can passively attempt to identify the remote host [14].

Honeyd supports the creation of a template bound with an IPv4 address, which determines the
behaviour of virtual hosts and networks. The Honeyd tool, is simple to implement as all parameters
are adjusted in a simple text file (text file: honeyd.conf), resulting in requiring minimal effort.

Honeyd is able to handle virtual honeypots on multiple IPv4 addresses simultaneously, in order to
populate the network with numerous virtual honeypots simulating different operating systems and
services. To increase the realism of the simulation, the framework is able to simulate arbitrary
network topologies. To simulate address spaces that are topologically dispersed and for load
sharing, the framework also needs to support network tunnelling. Honeyd is designed to reply to
network packets whose destination IPv4 address belongs to one of the simulated honeypots. For
Honeyd to receive the correct packets, the network needs to be configured appropriately. There
are several ways to do this, e.g., creation of special routes for the virtual IPv4 addresses that point
to the Honeyd host, use of Proxy ARP, or use of network tunnels.

2.5.1 Architecture of Honeyd

The Honeyd’s architecture [15] is presented in Figure 2.3 and contains the above components:

- aconfiguration database

- acentral packet dispatcher

- protocol handlers for ICMP, TCP and UDP protocols
- apersonality engine

- an optional routing component

Firstly, the incoming packet is processed by the central packet dispatcher. Before it can process a
packet, the dispatcher must query the configuration database to find a honeypot configuration that
corresponds to the destination IPv4 address. If no specific configuration exists, a default template
is used. Then the packet dispatcher examines the length of the packet and verifies its checksum. If
the packet belongs to the category of the major internet protocols (ICMP, TCP and UDP) honeyd
knows how to handle it. Otherwise, the packet is logged and then discarded.

Afterwards, the packet and corresponding configuration is forwarded to the protocol-specific
handler. The ICMP protocol handler supports most ICMP requests. By default, all honeypot
configurations respond to echo requests and process destination unreachable messages. For TCP
and UDP, the framework can establish connections to arbitrary services. More specifically, Honeyd
contains a simplified TCP state machine, in which the three-way handshake for connection
establishment and connection teardown via FIN or RST is fully supported, but receiver and
congestion window management is not fully implemented. In addition, UDP datagrams are passed
directly to the application, a process that is described in the next paragraph. When the framework
receives a UDP packet for a closed port, it sends an “ICMP port unreachable” message unless
instructed otherwise by the configured personality. In sending “ICMP port unreachable messages”,
the framework allows network mapping tools like traceroute to discover the simulated network
topology.

Network

I

Configuration 1

1 Personality Engine
A

Personality Routing

I
Y
i

--p Packet Dispatcher g

i Routing %
ICMP TCP uppP
) I
1"‘--\ \ 4
_ Services

Figure 2.3: Architecture of Honeyd

As mentioned before, for each packet, Honeyd can create connections to arbitrary services. The
behaviour of a service depends entirely on the external application. When a connection request is
received, the framework checks if the packet is part of an established connection. In that case, any
new data is sent to the already started service application. If the packet contains a connection
request which is not part of an existing connection, a new process is created to run the appropriate
service. Instead of creating a new process for each connection, the framework supports
subsystems and internal services.

A subsystem is an application that runs in the name space of the virtual honeypot. The subsystem-
specific application is started when the corresponding virtual honeypot is instantiated. A subsystem
can bind to ports, accept connections, and initiate network traffic. While a subsystem runs as an
external process, an internal service is a Python script that executes within Honeyd. Internal
services require even less resources than subsystems but can only accept connections and not
initiate them.

In every case, before a packet is sent to the network, it is processed by the personality engine. The
personality engine adjusts the packet’s content so that it appears to originate from the network
stack of the configured operating system.

2.5.2 Honeyd’s Personality Engine

Honeyd uses the term personality to refer to the network stack behaviour of a virtual honeypot.
This characteristic is used when an adversary tries to scan an infrastructure with a fingerprinting
tool. The main purpose of this is to gather information about a target system. The most commonly
utilized fingerprinting tools are Nmap and Xprobe. It is important that honeypots do not stand out
when fingerprinted and therefore Honeyd simulates the network stack behaviour of a given
operating system, to make them appear real to a probe.

The personality engine makes a honeypot’s network stack behave as specified by introducing
changes into the protocol headers of every outgoing packet so that they match the characteristics
of the configured operating system. The framework uses Nmap’s fingerprint database as its
reference for a personality’s TCP and UCP behaviour and Xprobe’s fingerprint database as a
reference for a personality’s ICMP behaviour. Also, Honeyd can have a different personality for
each template. The user can configure Honeyd to impersonate more than 130 systems, including
different versions of Windows, Mac OS, Linux, Digital UNIX, Sun Microsystems' Sun Solaris,
FreeBSD, NetBSD, OpenBSD and many network infrastructure devices. For example, Honeyd can be
configured to respond to a port scan where port 80 is open and also respond to an attempt to get
header information from a Web server by returning a standard head request reply that includes
information such as the server type. Honeyd also enables the creation custom personalities to
extend its functionality.

In the next paragraph, we clarify how the information provided by Nmap’s fingerprints, is used to
change the characteristics of a honeypot’s network stack. Each Nmap fingerprint has a format
similar to the example shown in Figure 2.4 [15]:

Fingerprint IRIX 6.5.15m on SGI 02
TSeq(Class=TD%gcd=<104%S|=<1AE%IPID=1%TS=2HZ)
T1(DF=N%W=EF2A%ACK=S++%Flags=AS%0ps=MNWNNTNNM)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%O0ps=)
T3(Resp=Y%DF=N%W=EF2A%ACK=0%Flags=A%O0ps=NNT)
T4(DF=N%W=0%ACK=0%Flags=R%0ps=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=0%Flags=R%0Ops=)
T7(DF=N%W=0%ACK=S%Flags=AR%0ps=)

PU(Resp=N)

Figure 2.4: An example of an Nmap fingerprint

The string after the Fingerprint word describes the personality name. The lines after the name
show the different tests that Nmap performs in order to determine the operating system of a
remote host. The first test determines how the network stack of the remote operating system
creates the initial sequence number (ISN) for TCP SYN segments. Nmap indicates the difficulty of

predicting ISNs in the Class field. Predictable ISNs pose a security problem because they allow an
adversary to spoof connections.

Source Port (16) Diestination Port (16)

Sequence Number (32)

Acknowledgement Number (32)

Data Reserved | Flags (6) Window (16)
offset (6)
Checksum (16) Urgent (16)

Options and Padding

Dara (Varies)

Figure 2.5: Structure of TCP heade

The meaning of each test is presented below:
- Tseq: TCP sequence ability test
- T1: SYN packet with a number of TCP options to open port
- T2: NULL packet with a number of TCP options to open port
- T3:SYN/FIN/URG/PSH packet with a number of TCP options to open port
- T4: ACK packet with a number of TCP options to open port
- T5:SYN packet with a number of TCP options to closed port
- T6: ACK packet with a number of TCP options to closed port
- T7: SYN/FIN/JURG/PSH packet with a number of TCP options to closed port
- PU: UDP packet to a closed port

The framework keeps track of every virtual honeypot that is created. Every honeypot record
includes information about ISN generation, the boot time of the honeypot and the current IP
packet identification number. This is necessary, because the subsequent ISNs generated by the
personality engine should follow the distribution specified by the fingerprint. Nmap’s fingerprinting
is mostly concerned with an operating system’s TCP implementation.

The framework uses the fingerprint to determine the frequency with which TCP timestamps are
updated. For most operating systems, the update frequency is 2 Hz. Generating the correct
distribution of initial sequence numbers is not straightforward. Nmap obtains six ISN samples and
analyzes their consecutive differences. Nmap recognizes several ISN generation types: constant
differences, differences that are multiples of a constant, completely random difference, time
dependent and random increments.

To differentiate between the latter two cases, Nmap calculates the greatest common divisor (gcd)
and standard deviation for the collected differences. The framework keeps track of the last ISN that
was generated by each honeypot and its generation time. For new TCP connection requests,
Honeyd uses a formula that approximates the distribution described by the fingerprint’s gcd and
standard deviation. In this way, the generated ISNs match the generation class that Nmap expects
for the particular operating system.

For the IP header, Honeyd adjusts the generation of the identification number. It can either be
zero, increment by one, or random. For ICMP packets, the personality engine uses the PU test
entry to determine how the quoted IP header should be modified using the associated Xprobe
fingerprint for further information. As the packet leaves the Honeyd process, the personality
engine modifies the content of the packet headers to mimic the desired operating system. This is
the limit of interaction that the adversary has with the system since there are no actual services to
interact with but only scripts. Also, some operating systems modify the incoming packet by
changing fields from network to host order and as a result quote the IP and UDP header
incorrectly. Honeyd introduces these errors, if necessary, into the quoted IP header to match the
behaviour of network stacks. Figure 2.6 shows an example for an ICMP destination unreachable
message

0 78 15 16 31
type(3) code(3) checksum
destination port
unreachable unreachable

unused (set to 0)

IP header (including options) +
first 8 bytes of UDP header

Figure 2.6: The diagram shows the structure of an ICMP port unreachable message.

2.5.3 Honeyd’s counter measures

The following paragraph presents an overview of the counter measures used by Honeyd tool. [16]:

e Faked OS personality: When an OS is scanned it activates a personality, which can be
viewed as a defensive measure. The faking of OS consumes the time of attackers when
they perform scanning. This is a passive measure as there is no intent to tackle the
attacker. This is static since the OS personalities once set do not change.

e fFaked network topology: When the topology is scanned the fake network topology is
activated, which can be viewed as a defensive measure. The faking of network topology
consumes the time of attackers when they perform scanning. This is a passive measure as
there is no intent to combat the attacker. This is static since the topology once set does not
change.

e Faked TCP/IP stack: Honeyd activates TCP/IP handshake sequence only when scanned,
which is also a defensive measure. This manipulates the TCP/IP sequence responses sent to
the attacker, making it an active counter measure. This is dynamic as TCP/IP stack changes
on the initiation of each operating system scan. Hence it helps in misleading the attacker of
the fake operating system as active fingerprinting used by attackers will receive
information of the operating system emulated by honeyd.

e Faked services: The faked services inform the attacker about the potential targets making it
an active. Services are exposed when they are scanned. Since it informs the attacker of
services and weakness that doesn’t really exist, it is effective in deception.

e Faked buffer overflow: Fake buffer overflow is activated only when it is initiated through
attacks. The attacker sees the system as penetrable and thus their time as well as effort is
consumed. This is a passive measure as there is no intent to combat the attacker. Buffer
overflow is triggered only when the correct attack takes place. This acts and appears as a
system crashing down and forces the attacker to believe that it is exploitable.

2.6 HoneyBot

The data collected from Honeyd will be compared with the results of another honeypot, HoneyBOT
[17], which is already implemented in the ~okeanos platform.

HoneyBOT is a Windows-based low-interaction honeypot solution, which emulates vulnerabilities
in network services. HoneyBOT works by opening many UDP and TCP listening sockets on the
honeypot machine and then emulates vulnerabilities on these ports. When an attacker connects to
these services they are “tricked” into thinking they are attacking a real server. The honeypot safely
captures all communications with the attacker and logs these results for future analysis.

HoneyBOT can be configured in two modes [18].

- Mode 1 honeypot: In this mode the HoneyBot listens on all TCP and UDP ports. Each

connection attempt is established and timed out. In case of TCP protocol usage, when an
external host sends a SYN packet to the honeypot, the honeypot replies with a SYN/ACK.
Hence, it is possible to record the initial exchanged bytes.

- Mode 2 Blackhole: In this mode, the HoneyBot is completely passive and simply captures

the packets, received by the network. In this case, the initial interactions cannot be
recorded due to the missing established handshake.

Figure 2.7 shows a sample of HoneyBot’s log file. The HoneyBot has the ability to select the
export logs to CSV (Comma Separated Value) option to create a daily extract of the log file
as a CSVfile.

24,5,2014-11-01,2:15:59,758,+3:00,118.1 21.38.181,47975,83.212.101.19,23, TCP,RX,FF,1
253,5,2014-11-01,2:16:0,367,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥,FC18,2
26,5,2014-11-01,2:16:2,207,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥X,FF,1
27,5,2014-11-01,2:16:2,831,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥,FC20,2
28,5,2014-11-01,2:16:4,423,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥X,FF,1
29,5,2014-11-01,2:16:5,31,+3:00,118.121.38.181,47975,83.212.101.19,23,TCP,RX,FC23,2
30,5,2014-11-01,2:16:6,591,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥X,FF,1
31,5,2014-11-01,2:16:7,215,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,R¥,FC27,2
32,5,2014-11-01,2:16:8,975,+3:00,118.121.38.181,47975,83.212.101.19,23, TCP,RX,FIN,0
33,6,2014-11-01,2:20:54,536,+3:00,68.36.73.233,2663,83.21 2.101.19,8080, TCP, RX,5YN,0

Figure 2.7: HoneyBot’s log file

The log file includes information about the date, the time and the time zone. Also, presents the
remote IPv4 and Port that were used by the adversary and the local IPv4 and Port that were used
by the tool. Moreover, it gives information about the size of each received packet and about the
type of the connection.

Chapter 3

Honeypots Implementation - “Okeanos Use Case

This chapter provides a detailed description of the
implementation of the Honeyd tool on the ~okeanos
infrastructure and explains every step during the process as
well as the tools and techniques used for the support of
the implementation.

3.1 Solution Architecture

The architecture that was decided to be implemented, considering Honeyd’s special characteristics
and ~okeanos’ needs, is presented in figure 3.1:

r_‘ Internet
’

prem—
T 9

okeanos

Production Network

Honeyd Host .
Security Analyst

oo o S
Honeypots
\ 4
Log file » FTPS »| Log Parser »| Results and Charts

Figure 3.1: System Architecture

The main idea behind the above architecture was creating a system that gathers data about the
variety of services having been installed in ~okeanos infrastructure and then using these data in
order to configure the Honeyd tool appropriately in for it to “fake” them convincingly.
Subsequently, Honeyd’s logs are securely transferred to another Virtual Machine. There, a log
parser analyses data and enables the extraction of statistical results. Finally, all information
extracted from the Honeyd tool is analyzed by a security analyst so as to plan for the actions to
meet the CERT demands.

3.2 Nmap ~okeanos port scanning

Nmap ("Network Mapper") is a free and open source utility for network discovery and security
auditing, designed to rapidly scan large networks. Nmap uses raw IP packets in novel ways to
determine what hosts are available on the network, what services (application name and version)
those hosts are offering, what operating systems (and OS versions) they are running, what type of
packet filters/firewalls are in use, and dozens of other characteristics [19].

The purpose of using Nmap was to discover open ports in ~okeanos infrastructure. The results of
Nmap scanning indicate the appropriate design of Honeyd’s configuration. More specifically, the
ports found open in ~okeanos will determine which ports and services, Honeyd should preferably
emulate in order to be highly convincing in simulating a real host.

The command executed against ~okeanos’ hosts is shown below (Figure 3.2):

nmap -T4 -A -v 83.212.96-127.0-255

Figure 3.2: Nmap command

The next paragraph explains the syntax of the Nmap command [19]:
e Timing template: -T

Nmap offers a simpler approach for timing controls, with six timing templates. They can be
specified with the -T option and their number (0-5) or their name. The template names are
paranoid (0), sneaky (1), polite (2), normal (3), aggressive (4), and insane (5). The first two
are for IDS evasion. Polite mode slows down the scan to use less bandwidth and target
machine resources. Normal mode -T3, is the default mode and does not offer any extra
functionality. Aggressive mode speeds scans up by making the assumption that scanned
network is reasonably fast and reliable. Finally insane mode assumes that the network is
extraordinarily fast or the user is willing to sacrifice some accuracy for speed. These
templates allow the user to specify how aggressive they wish to be, while leaving Nmap to
pick the exact timing values. The templates also make some minor speed adjustments for
which fine-grained control options do not currently exist. For example, -T4 prohibits the
dynamic scan delay from exceeding 10 ms for TCP ports and -T5 caps that value at 5 ms.
Templates can be used in combination with fine-grained controls, and the fine-grained
controls specified will take precedence over the timing template default for that
parameter. Using -T4 when scanning reasonably modern and reliable networks, is highly
recommended. Also, using -T4, is suggested If examination is on a decent broadband or
Ethernet connection. Option -T2 is suggested rarely because the scan may take ten times
longer than a default scan. Machine crashes and bandwidth problems are rare with the
default timing options (-T3) and so is normally recommend that for cautious scanners.
While -TO and -T1 may be useful for avoiding IDS alerts, they will take an extraordinarily
long time to scan thousands of machines or ports, so for such a long scan, is better to set
manually the exact timing values you need rather than rely on the canned -TO and -T1
values.

e Aggressive scan options: -A

This option enables additional advanced and aggressive options. Presently this enables OS
detection (-O), version scanning (-sV), script scanning (-sC) and traceroute (--traceroute).
The purpose of this option is to enable a comprehensive set of scan options without people
having to remember a large set of flags. However, because script scanning with the default
set is considered intrusive, —A option should not be used against target networks without
permission. This option only enables features, and not timing options (such as -T4) or
verbosity options (-v). Options which require privileges (e.g. root access) such as OS
detection and traceroute will only be enabled if those privileges are available.

e Increase verbosity level: -v

Choosing this option increases the verbosity level, causing Nmap to print more information
about the scan in progress. Open ports are shown as they are found and completion time
estimates are provided when Nmap scan endures more than a few minutes. It could be
used twice or more for even greater verbosity: -vv, or alternatively a verbosity level could
be set directly, for example -v3. Most changes only affect interactive output, and some also
affect normal and script kiddies output. The other output types are meant to be processed
by machines, so Nmap can give substantial detail by default in those formats without
fatiguing a human user. However, there are a few changes in other modes where output
size can be reduced substantially by omitting some detail.

3.2.1 Results of Nmap port scanning

The following tables represent some general information produced by Nmap scanning tool against
~Okeanos Infrastructure that took place on 11/11/2014.Table 3.1 illustrates the total number of
Ports found open, the amount of IP addresses which have been scanned as well as the number of
active Hosts. The most frequently Open Ports categorized by type are presented in Table 3.2.

Total Number

Open Ports 14258

IP addresses 8192

4630

Table 3.1: Nmap scan summary

At this point, it is necessary to be mentioned that the above results concerning active hosts, could
be considered a good estimation of the real situation of ~okeanos infrastructure, as shown in
~okeanos main page (https://okeanos.grnet.gr/home/). Thus, they are considered valuable
information for the configuration of Honeyd tool.

The table below shows that the most commonly open port is port 22 TCP, which is used for secure
logins (ssh), file transfers (scp, sftp) and port forwarding. The next most often open port is Port 80
used by Hypertext Transfer Protocol (HTTP), the foundation of data communication for the World
Wide Web.

The pie chart below constitutes an alternative representation of the data outlined in Table 2.

Port Type
Open Port
Number
22:Tep 2888
80: Tcp 1685
3389: Tcp 1616
445: Tcp 798
135: Tcp 787

Table 3.2: Top 5 Open Ports in actual numbers

For the creation of the pie chart, the following statistical formulas were implemented in Python:
e Top 5 open ports:

P
Port Number (%) = Ff * 100
t

e Rest ports:

P, — P,
Rest Port Number (%) = —5 " 100
t

Where,
- P; :represents the total number of open ports
- Pr :represents the number appearances of each open port

- P, : represents the sum of the number of appearances of the five most frequently open

ports

Figure 3.3 shows the five most frequently appeared ports among the total ports found open from

Nmap scanning.

(80, "tcp’)

(3389, "tcp’)
\ (22, 'tcp)

(445, 'tcp')

(135, "tep’)

Other

Figure 3.3: Pie chart of Open Ports

The pie chart above and the two tables as well, were created from a python script parsing Nmap
outputs, written exclusively for diploma thesis purposes. The source code can be found in the

appendix.

3.3 Honeyd Implementation

The honeyd host was installed on an Ubuntu 12.04 LTS virtual machine. The fake wired network
and routing topology was created by writing a configuration file that honeyd used. A number of
virtual systems were created. Each virtual system was shown as if it ran a particular operating
system. The virtual systems were also provided with multiple scripts that ran on various ports.
These imitated the services on the virtual systems and would help in deceiving the attacker. A part
of the configuration file with the list of templates is presented in the Table 3.3 (the whole file can
be found in the appendix).

3.3.1 Honeyd Configuration file Analysis

The configuration of Honeyd was achieved with the creation of templates inside the appropriate
configuration file. The template was formed from a set of commands, explained below.

e Create: creates new templates.

e Set: assigns a personality from the Nmap fingerprint file to a template

e Add: specifies which services are remotely accessible and what application should run on
each port

e Bind: assigns a template to an IP address

More specifically, the set command assigns a personality from the Nmap fingerprint file to a
template. The set command also defines the default behaviour for the supported network
protocols. The default behaviour is one of the following values: block, reset, or open. Block means
that all packets for the specified protocol are dropped by default. Reset indicates that all ports are
closed by default. Open means that they are all open by default. The latter settings make a
difference only for UDP and TCP. The add command specifies the services that are remotely
accessible.

In addition to the template name, Honeyd needs to specify the protocol, port and the command to
execute for each service. Instead of specifying a service, Honeyd also recognizes the keyword proxy
that allows forwarding network connections to a different host. The framework has the ability to
expand the following four variables for both the service and the proxy statement: Sipsrc, Sipdst,
Ssport, and Sdport. Variable expansion allows a service to adapt its behaviour depending on the
particular network connection it is handling. It is also possible to redirect network probes back to
the host that is doing the probing.

The bind command assigns a template to an IP address. If no template is assigned to an IP address,
the default template is activated. Honeyd also enables the ability of routing topology creation, with
the command route. However, this ability lies beyond the scope of the present diploma thesis
mainly due to complexity of ~okeanos infrastructure concerning network configuration.

Default Template
create default
Set default behavior

set default default tep action block
setdefault default udp action block
set default defaulticmp action block

#H### Linux Suse 8.0 template

create suse80

setsused0 personality "Linux 2.4.7 (X86)"

setsused0 default tcp action reset

setsused0 default udp action block

setsused0 defaulticmp action open

setsused0 uptime 73233

setsused0droprate in 4

add suse80 tcp port 21 "sh scripts/unix/linux/suses.0/proftpd.sh Sipsrc Ssport Sipdst Sdport”
add suses0 tcp port 22 "sh scripts/unix/linux/suse8.0/ssh.sh Sipsrc Ssport Sipdst $dport"

add suse80 tcp port 23 "sh scripts/unix/linux/suses.0/telnetd.sh Sipsrc Ssport Sipdst Sdport”
add suse80 tcp port79 "sh scripts/unix/linux/suses.0/fingerd.sh Sipsrc Ssport Sipdst Sdport”
add suse80 tcp port 80 "sh scripts/unix/linux/suses.0/apache.sh Sipsrc Ssport Sipdst Sdport”
add suse80 tcp port110 "sh scripts/unix/linux/suses.0/qpop.sh Sipsrc $sport Sipdst Sdport”
add suse80 tcp port143 "sh scripts/unix/linux/suses.0/cyrus-imapd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port515 "sh scripts/unix/linux/suses.0/lpd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 3128 "sh scripts/unix/linux/suses.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 8080 "sh scripts/unix/linux/suses.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 8081 "sh scripts/unix/linux/suses.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 udp port 514 "sh scripts/unix/linux/suse8.0/syslogd.sh Sipsrc $sport Sipdst Sdport”
setsusedlethernet "aa:36:29:2e:2e:23"

bind 83.212.86.185 suse80

Table 3.3: Honeyd configuration file (sample)

3.3.2 ~Okeanos configuration

This section presents and explains the need for the configuration of ~okeanos platform, after the
configuration of Honeyd was completed. ~Okeanos platform implements in a different way the
routing rules of the packets that each virtual machine receives. Each virtual machine is assigned
with a unique MAC address. However this address does not appear at each packet received from
~okeanos as the source address of the VM. Instead, the MAC address of the virtual machine is
connected with the MAC address of its host machine via APP Proxy protocol, i.e. one host answers
ARP requests intended for another machine. Each host uses an ARP Proxy in order to send a packet
from a specific virtual machine on the Internet and respectively to receive a packet from the
Internet about a specific virtual machine. Figure 3.4 gives more details about this specific
implementation.

Host
Internet
MAC VM1
... Proxy Arp
MAC VM1
MAC HOST | %
4
MAC VM2
MAC VM2 OkeOﬂOS

Figure 3.4: Illustration of ARP Proxy in ~Okeanos Infrastructure

Honeyd creates virtual hosts and produces a random MAC address for each one of them. Thus,
without the appropriate configuration of ~okeanos, the Honeyd will fail to run properly. For the
purpose of the present diploma thesis, the ~okeanos account that was used had several IPv4
addresses from the range 83.212.84.0/22 assigned to it. The virtual machine that hosted the

Honeyd tool used one IP and the rest of them were used for the virtual hosts created by the tool.
The default file of Honeyd (/etc/default/honeyd) was configured as shown below:

- INTERFACE = ethl
- NETWORK = 83.212.84.0/22

Afterwards, the remaining IPv4 were used for the configuration of the honeyd via bind command.
Figure 3.4 and figure 3.5 present the commands that were executed throughout the process of
~okeanos’ configuration.

ip route add 83.212.86.XXX dev tapYY table 22

Figure 3.4: Network configuration

Where,

- tapYY =tap device established in the host referring to the VM interface

- tableZZ = routing table which enables the routing of honeyds’ network from the side of the
host. E.g. iptables -l FORWARD -i tapYY -s 83.212.86.XXX -j ACCEPT

iptables -1 FORWARD -i tapYY -5 83.212.86.XXX -] ACCEPT

Figure 3.5: Network configuration

This configuration enables ~okeanos to process the packets send/received from Honeyd’s
virtual hosts without permitting its firewall rules to block them.

3.3.3 Honeyd Running command

After, the appropriate changes were made in the ~okeanos network infrastructure, Honeyd was
able to run by executing the following command (Figure 3.4). The description of each attribute of
Honeyd running command is given in Table 3.5.

Jusrf/bin/honeyd -d-f fetc/honeypot/honeyd.conf -1 fvar/log/honeypot/honeyd.log -p
[etc/honeypot/nmap.prints -a /etc/honeypot/nmap.assoc -0 fetc/honeypot/pf.os -x
Jetc/honeypot/xprobe2.conf -u 0 -g 0 --disable-webserver -i eth1 83.212.86.0/24

Figure 3.5: Honeyd running command

It should be mentioned that Honeyd reads the data stored in the configuration file that the user
chooses with the option —f. Also, the user can determine the directory, where log file data can be
stored with the -l option. Option —0 enables Honeyd to read the database for passive
fingerprinting. The names of the operating systems specified in file pOf-file are recognized by
Honeyd’s parser and can be used for dynamic templates. With —x Honeyd reads xprobe style
fingerprints. This file determines how honeyd reacts to ICMP fingerprinting tools. The remaining
options are clarified in Table 4.

Option Description

-d Enable verbose debugging messages

-f file Read the configuration in file

-1 logfile Log packets and connections to the logfile specified by logfile

-a assoc Read the file that associates nmap style with xprobe style fingerprints
-0 pof-file Read the database for passive fingerprinting

-X xprobe Read xprobe style fingerprints

-u uid Set the UID that Honeyd is running as

-g gid Set the GID that Honeyd is running as

--disable-webserver Disables the builtin webserver

-i interface Listen on interface

Table 3.4: Honeyd command options

3.4 FTPS Deployment

The File Transfer Protocol (FTP) is a standard network protocol used to transfer computer files
from one host to another host over a TCP-based network, such as the Internet. The objectives of
FTP are 1) to promote sharing of files (computer programs and/or data), 2) to encourage indirect or
implicit (via programs) use of remote computers, 3) to shield a user from variations in file storage
systems among hosts, and 4) to transfer data reliably and efficiently. [20]

FTP is built on client-server architecture and uses separate control and data connections between
the client and the server. FTP users may authenticate themselves using a clear-text sign-in
protocol, normally in the form of a username and password, but can connect anonymously if the
server is configured to allow it. For secure transmission that protects the username and password,
and encrypts the content, FTP is often secured with SSL/TLS (FTPS).

The security extensions to FTP offer a comprehensive set of commands and responses that can be
used to add authentication, integrity, and confidentiality to the FTP protocol. The TLS protocol is a
popular (due to its wholesale adoption in the HTTP environment) mechanism for generally securing
a socket connection. [21]

SSL/TLS offers some of the following positive attributes:

e Flexible security levels. SSL/TLS can support confidentiality, integrity, authentication, or
some combination of all of these. During a session, this allows clients and servers to
dynamically decide on the level of security required for a particular data transfer.

e Ability to provide strong authentication of the FTP server.

e Formalized public key management. By use of well established client identity mechanisms
(supported by TLS) during the authentication phase, certificate management may be built
into a central function.

e (Co-existence and interoperation with authentication mechanisms that are already in place
for the HTTPS protocol. This allows web browsers to incorporate secure file transfer using
the same infrastructure that has been set up to allow secure web browsing.

The choice of implementing FTPS for the transfer of Honeyd Log file was based on the idea of
securing ~okeanos infrastructure, in case of a compromise of the Virtual Machine hosting Honeyd.

The steps for FTPS Server deployment in a virtual machine are presented below. Additionally, the
implementation of FTP client which was installed in the Honeyd machine is explained.

FTPS Server Side

The FTP daemon, chosen to be installed in ~okeanos virtual machine was vsftpd. Afterwards, the
configuration file was updated with the following lines.

Step 1: Basic Setup

- Anonymous_enable = NO
- Local_enable = YES
- Write_ enable = YES

The first security measure was taken to restrict user administrative privileges and “jail” them in a
specific directory. Constraining the users to a certain disk space reassures that a potential
adversary will not have the ability to overwrite important system data. The following changes were
also made to the configuration file.

Step 2: Chroot users

- Chroot_local_users = YES
- Chroot_list_ enable = NO

The second security measure was the activation of TLS/SSL option. At this point, it should be
mentioned that vsftpd uses the certificate Ubuntu creates upon its installation the “snake-oil”
certificate.

Step 3: TLS/SSL/FTPS

- ssl_enable=YES

- allow_anon_ssl=NO

- force_local_data_ssI=YES

- force_local_logins_ssI=YES
- ssl_tlsv1=YES

- ssl_sslv2=YES

- ssl|_sslv3=YES

Note: the configuration file of vsftpd can be found in the appendix.
The next step for securing the FTPS connection is that users are permitted to connect only if they
possess a username and a password. A virtual user was created to fulfill this purpose. The followed

actions are described below.

Step 4: Create a new group of FTP access for FTP users

- sudo groupadd ftpaccess

Step 5: Change the config file /etc/ssh/sshd config, replacing the “Subsystem sftp
Jusr/lib/openssh/sftp-server” line with the following:

- Subsystem sftp internal_sftp
- Match group ftp access

- Chroot Directory %h

- X11 Forwarding no

- Allow TcpForwarding no

- Force Command internal_sftp

Also the next line should be commented

- #UsePAM yes

The final stage is the creation of a user with a username and a password that will have access to
the directory “/home/HoneyLogs/www”.

Step 6: Create user

- sudo useradd —m Honeylogs —g ftpaccess —s /usr/bin/nologin
_ SudO paSSWd 3k 3k sk 3k 3k sk 3k sk 3k k %k k

- sudo chow root /home/HoneylLogs

- sudo mkdir /home/HoneylLogs/www

- sudo chown Honeylogs : ftpaccesss /home/HoneylLogs/www

FTPS Client Side

Once the deployment of FTPS Server was completed, the client side of the FTPS connection was
implemented. The tool that was selected for this purpose was FileZilla, an open source software
distributed free of charge under the terms of the GNU General Public License [22].

FileZilla was chosen because it is easy to use, with an ergonomic graphical user interface and
completely compatible with FTPS connections.

The functionality of ftp client was controlled by a few settings made at FileZilla menu. The FileZilla
was installed in Honeyd machine. The host attribute was completed by the lpv4 of the virtual
machine hosting FTPS server. The protocol chosen was the SFTP- SSH File Transfer Protocol. The
specific directory was chosen from FileZilla directory menu and the username and the password
were supplemented in the appropriate field. (Figure 3.6)

M Site Manager

Select Entry: .
General | Advanced | Transfer Settings | Charset
¥ i MySites
i; lew site] Hosk: 83.212.119.132 Port:
Protocol: SFTP - SSH File Transfer Protocol =
Logon Type: | Normal -
User: HoneydLogs
PaSSWOI'd: FEERREREERERRERR RN
Accounkt:
Commenks:
Mew Site Mew Folder
New Bookmark Rename
Delete Copy

Figure 3.6: FTPS client -Connection setup

After the completion of the FileZilla setup, the transmission of the log file from Honeyd Virtual
Machine to FTPS Server Machine was feasible. The file log.out was selected from directory menu
and was sent to the selected directory of FTPS server. Figure 3.7 shows that the transmission was
successful.

New site - sftp://HoneydLogs@®83.212.119.132 - FileZilla

d Bt ¢ % >« TR
Host: |sftp://83.212.1 Username: HoneyLogs Password: ssssssssssssss Port: | | Quickconnect ~
EIC INVES WLOL TS USEH WEIRALUPS VY UUL =~ 1 EHIVLE,. wWw i/ lUy. UuL
Status: File transfer successful, transferred 2.5 MBin 1 second
Status: Retrieving directory listing...
Command: ls
Status: Listing directory /fwww |
Status: Directory listing successful
Local site: ' /home/user/Desktop/ v Remotesite:!/wvm I -
v ./ v -/
bin Www
* ® boot
¥ cdrom
> % dev
Filename » Filesize Filetype Last modified Filename ¢ Filesize Filetype Lastmodified Permission Ow
conf_templ... 4.4KB txtfile 06/30/2014 09.... ..
==
log.out 2.9 MB outfile 11/07/201408:,..' n 308 File 01/28/2018 .. -twer—r— 1
log.out~ 1.1KB out-file 11/02/2014 05.... log.out 2.9MB out-file 02/26/2015... W=~ 104
log3.out 1.2MB out-file 02/20/2015 05....
log3.out- 08 out-file 02/20/201505:....
logd.out 12.8 MB out-file 02/26/2015 01....
log4.out- 12.8 MB out~-file 02/26/201501:...
testHoneyd... 1.5KB File 06/14/2014 11....
testHoneyd... 08 File 06/14/2014 10:...
Selected 1 file. Total size: 2.9 MB 2 files. Total size: 2.9 MB
Server/Local file Directio Remote file Size Priority Status
Queued files Failed transfers I Successful transfers (1) I
498 | Queue: emply e

Figure 3.7: Transmission process through FTPS

Figure 3.8 illustrates that a user with restricted administrative privileges, cannot have access to any
directory other than the one he is “jailed” into. The system prohibits the file transfer, as it knows
that the user does not have the privileges to write in this area.

site - sftp:/fHoneydLo L212.119.132 - FlleZilla

d [Fiolels s 4 G Cal= N Y
Host: |sfip:(f83.212.1 Username: Honeylogs Password: |sesssssesssss Pork: Quickconnect | ~
LT [AVEN R g WO R T T T R A R L
Command: put "fhome/user/Desktopflogd.out~""logd.out~"
Error: Mogd.out~: open for write: permission denied
Error: File transfer failed
Stakus: Starting upload of fhomefuser/Desktop/logd.out-
Status: Retrieving directory listing...
Local site: | fhome/user/Desktop/ + | | Remotesite: |/ .
¥ - Ili - ”r
® bin
* @ boot
® cdrom
o dev
Filename Filesize Filetype Last modifled Filename # Filesize Filetype Last modified Permission Ow
conf_templ... 4.4 KB Ext-file 06/30/2014 09:... L .
log.out 2.9MB outfile 11/07/2014 08:... B www Directory 02/26/2015... drwxr-xr-x 100
log.out- 1.1 KB out--file 11/02/2014 05:... bash... 22086 File 04/03/2012 «ow-r-r- 100
log3.out 1.2 MB out-file 02/20/2015 05:... bashre 3.5KB File 04/03/2012 -TW-r== 100
log3.out-~ 08 out--file 02/20/2015 05:... .profile G75B File 04/03/2012 aw-r-r-= 100
log4.out 128 MB out-file 02/26/201501:.. exam... B.5KB desktop-.. 04/16/2012 -rw-r-r- 100
W log4.out- 12.8 MB out—file 02/26/201501:...
testHaneyd... 1.5KB File 06/14/201411:..
testHoneyd... 0B File 06/14/201410:...
Selected 1 file. Total size: 12.8 MB 4 files and 1 directory. Total size: 12.9 KB
Server/Local file Directio Remote file Size Priority Status

|| Queued files Failed transfers (2) | Successful transfers (2)

& = [Queve: empty e

Figure 3.8: Example of an unsuccessful transmission due to restricted administrative privileges

3.5 Analysis of Log file

In this section, the analysis of the results taken from Honeyd’s log file is described. The original log
file created by honeyd contains the records in the format shown in figure 3.9.

2014-11-06-13:27:11.8123 honeyd log started ------
2014-11-06-13:27:21.4979 icmp(1) - 83.212.84.72 10.0.0.1: 8(0): 84
2014-11-06-13:52:10.7885 tcp(6) $192.168.0.2 42532 10.0.0.2 5900

2015-02-20-00:54:38.0262 tcp(6) - 116.231.232.184 60601 83.212.86.184 3389: 48 S [Windows XP SP1]

Figure 3.9: Honeyd Record Format

The structure of the records is described in Table 3.5. The First field is the timestamp of the packet
and the second shows the protocol type along with the number. The next field identifies whether
the packet is starting the connection (S), is intermediate (-) or ending the connection (E). The next
two fields store the IPv4 address and port number where the packet originated, i.e. the source IPv4
and the source port. In addition, the next field holds the IPv4 address and the port number of the
honeypot where the packet was headed to, i.e. the destination IPv4 and the destination port. Next
field provides the size of the packet. Then, in the case of a TCP packet, the flag (SYN, ACK, FIN, RST
etc.) that appears in the header of the packet is recorded after the packet size. The last field
provides information regarding the operating system of the source machine.

Description Example

Date 2015-02-20-0054:28.0262
Protocol tcp(6)- lemp(1)-udp(17)
T s/-/E

Source IP 116.231.212.184

Source Port 60601

Destination IP 83.212.86.184
Destination Port 3389

Info 48 packetsize S Tepflag
Comment [Windows XP SP1]

Table 3.5: Description of record contents

The information that is stored in each record of the log file generated by honeyd should be parsed
with an analysis tool. The following paragraph describes, briefly, the algorithms that were
implemented for the statistical processing of the log files which were created by honeyd. The
source code can be found in the appendix.

The required information for extracting statistical results is the Source IPv4 and the Destination
Port. The destination port is needed for the determination of the attack type. The field of the
Source IPv4 is equally essential, since it contains the information about the country where the
attack originated from.

The algorithm takes as an input each line of the log file and then it calculates the total number of
the unique ports and IPs found in the file. Afterwards, it identifies the country of origin of each IPv4
address, by using the geolite2 python library.

The algorithm that was implemented for the statistical interpretation of HoneyBot’s log files was
based on the same principles that were described above.

Chapter 4

Representation — Analysis — Comparison of Honeyd and
HoneyBot Statistical Results

This chapter presents the results obtained by two
honeypots, namely Honeyd and HoneyBot, and
explains the techniques that were used for the parsing
of their respective log files.

4.1 Honeyd Results

This section presents the results obtained from Honeyd. More specifically, it shows the number
and the type of ports which were attacked in ~okeanos platform. In addition, the log file provides
the information about source IPv4 addresses and consequently, the information about the country
where the attack originated from.

Figure 4.1 shows the number of ports that were abused in a period of a half month.

Ports

22
m23
m3128
445

m 80

m 8080
m 139
m110
64608
W 64609
5060
w1433
9064
64604
w143
m21

i other

Figure 4.1: Most frequently attacked ports — Honeyd log file

From the information given in the above chart, it can be easily concluded that the majority of the
attacks were on ports 22 and 23. These ports represent SSH and TELNET services respectively and
this chart outlines that over 50% of the attack volume was targeting these two ports.

The type of the attack, BRUTE FORCE attempt, can be identified from the type of service (SSH,
TELNET). In addition, a large number of attack attempts were found on port 3128, which hosts Web
caches (Squid) service. Scans on port 3128 usually look for badly configured proxy servers in order
to use them to hide further intrusion attempts or to bypass company (or country wide) firewall
rules restricting access to certain web sites. These scans usually come in sets that scan several
ports frequently used by proxies (80, 8080 etc.) Port 3128 is usually used by 'squid’, a very popular
web proxy server that is also able to proxy other protocols (e.g. ftp). Another target was port 445
for Microsoft-DS SMB file sharing service and port 110 Post Office Protocol v3 (POP3), third version
of a widespread method of receiving email. Finally, another observation was the attacks on
WEB ports like 80 and 8080 amounting to about10% of the total attack attempts. The type
of the aforementioned attacks, were PORT and WEB SCANNING.

By analysing the origin of the attack traffic, 132 countries were identified, attacking or
crawling/scanning the Honeypot. The country with the greatest attack rate was China (CN) as 24%
of all attack traffic originated from there. The second country was the United States (US) with a
rate of 18%. Other high rate attacking countries were South Korea (KR), Brazil (BR), Russian
Federation (RU), France (FR), Taiwan (TW) and Turkey (TR) (Figure 4.2). The map below visualizes
the above results, for a more comprehensive representation. (Figure 4.3)

It should be mentioned that from the total amount of countries that were examined, only the first
fifty had a number of attacks greater than 10. Therefore, the percentages may not seem that great,
but that is only because the numbers of countries with a small rate of attacks are quite a lot.

1600
1400
1200
B China
HUSA
1000
H South Korea
800 - M Brasil
B Russian Federation
600 — H France
H Taiwan
400
B Turkey
200 -
0 —

Countrieswith the highest number of attack attempts

Figure 4.2: Countries with the highest number of attack attempts — Honeyd log file

Figure 4.3: Visualization of Attacks per Country

4.2 HoneyBot Results

This section presents the results obtained from HoneyBot. More specifically, it shows the number
and the type of ports which were attacked in ~okeanos platform. In addition, the log file provides
the information about source IPv4 addresses and consequently, the information about the country
where the attack originated from.

Figure 4.4 presents the number of ports that were been attacked in a period of two months.

Ports

m21
23
22
m 110
25
8080
m 30
W 443
19

M other

Figure 4.4: Most attacked ports — HoneyBot log file

From the information given in the above chart, it can be easily concluded that the majority of the
attacks were on ports 21, 23 and 22. These ports represent FTP, TELNET and SSH services
respectively and this chart shows that over 75% of the attack volume was targeting these three
ports. The type of the attack, BRUTE FORCE attempt, can be identified from the type of service
(FTP, TELNET, SSH). In addition, a large number of attack attempts were found on port 110, 110
Post Office Protocol v3 (POP3), third version of a widespread method of receiving email. Another

observation was the attacks on WEB ports like 8080, 443 and 80 with a total of around 6%.
The type of the aforementioned attacks, were PORT and WEB SCANNING.

By analysing the origin of the attack traffic, 103 countries were identified, attacking or
crawling/scanning the Honeypot. Again China (CN) and the United States (US) were the countries
with the greatest attack rate, 36% and 12% respectively. Other countries with high attacking rate
were Germany (DE), Turkey (TR), South Korea (KR), the Netherlands (NL), and France (FR) (Figure
4.5). The map below visualizes the above results, for a more qualitative representation (Figure 4.6).

Once more, it should be mentioned that from the total amount of countries that were examined,
only the first forty had a number of attacks greater than 10. Therefore, the percentages may not
seem that great, but that is only because the numbers of countries with a small rate of attacks are
quite a lot.

1400
1200
1000 B China
W USA
200 H Germany
B Turkey
600 B South Korea
M Russian Federation
400 - Netherlands
H France
200 -
0 |

Countries with the highest number of attack attempts

Figure 4.5: Countries with the highest number of attack attempts — HoneyBot log file

Figure 46: Visualization of Attacks per Country

4.2 Comparison Honeyd’s’ and HoneyBot’s Results

The results that were presented in the above two sections, are quite similar. Both honeypots were
attacked on similar ports, such as SSH (22), TELNET (23) and web ports 80, 8080. Also, the
percentages showing the maximum targeted ports was referring to same types of ports SSH (22),
TELNET (23). This was anticipated, since the connection to the majority of ~okeanos hosts is
performed through the SSH and TELNET protocol. In addition, the increased number of attacks on
web ports indicates a high amount of ~okeanos service users having installed web applications to
their virtual machines lacking knowledge on how to protect them. As a result the ~okeanos
infrastructure is threatened to be compromised.

The countries emerging as the origins of the highest portion of attack traffic were almost the same.
Both tools received the majority of the number of attacks from China and the United States. Other
countries targeting both tools as part of the ~okeanos infrastructure were South Korea, Turkey and
France. Most of these countries are widely known for their hacking activity, so high attack traffic on
an academic service whose users are not familiar with security measures is not surprising.

The next paragraph outlines the evaluation of Honeyd and HoneyBot, based on their performance
and the quality of their results. Both tools gather similar types of characteristics. They keep the
source and destination IPv4 and also the source and the destination port of each packet. This
information is very useful and allows the security analyst to have a quick and valid insight on the
infrastructure security status infrastructure constantly.

However, it seems that the amount of data gathered from each tool is different. Honeyd in a
timeframe of half month managed to collect 6080 attacks. On the other hand, HoneyBot in a time
frame of two months gathered 3575. This observation does not lead to the conclusion that Honeyd
is a better tool than HoneyBot, taking into account the configuration approach followed in the
latter, i.e. analyzing the behaviour of the existing ~okeanos VMs to allow for a more convincing
imitation of their respective services. The conclusions that can be safely drawn from the above
results are the following:

- The honeypot configuration approach is critical with respect to the amount of attacks it will
be able to capture and consequently to the quality of data that it will gather

- Honeyd is capable of capturing high quality data with minimal effort for the actual
configuration of the tool.

4.2 Explanation of data analysis tool

The tool that was created for the analysis of the results produced by the two honeypots was
developed in Python. Both tools’ log files store the information of each packet in a row. The Python
script reads every line and assigns each attribute to a variable. By processing the elements of each
variable the amount and type of ports that were targeted and the number of IPv4 addresses where
the attacks originated from were extracted. Finally, based on the information about each IPv4
address the source country of each attack was established.

For the statistical analysis of the results three functions were created. The first one is called
find_unique and its purpose is to identify the unique elements in a list and return a dictionary
containing the elements as keys and the number of appearances as values. The second one is called
find_max and is used to sort the keys of a dictionary in descending order based on its values and
return the pairs as a list. The last one is called draw_map, and as its name indicates, it was used for
the creation of a map which shows the countries with the maximum attacking rate.

Chapter 5

Conclusions

This chapter outlines the conclusions derived through the
evaluation of statistical interpretation of the obtained data
and refers to future work which could lead to effective
addressing of specific security incidents.

5.1 Conclusions

The present diploma thesis describes the implementation of a Honeypot in the production
environment of ~okeanos platform. Cloud computing infrastructures, such as ~okeanos, receive on
a daily basis a great volume of attacks. The main objective of the diploma thesis was the
exploration of the types of attacks that target ~okeanos platform. The tools that were used in this
direction were Honeyd and HoneyBot. Both tools gave results of excellent quality and importance.
Another objective was the creation of a tool that could help the security analyst to extract valuable
conclusions about the status of the infrastructure in terms of security.

The tool created within the scope of this diploma thesis gives the capability of knowing the
attacking trends of each period, the services that attract the majority of the attacks and the origin
of each attack. All the above information is useful with respect configuring ~okeanos network in
order to avoid the attacks which constitute the greatest threat for the infrastructure.

The information obtained by the two Honeypots and the analysis of their results could become an
integral part of the incident handling process for two main reasons. The first reason is that they can
be used for adding new or tuning existing configuration parameters e.g. adding some firewall rules
or excluding some services from the infrastructure. Secondly, the results are very useful for
educational services. In the information security field the weakest link in the chain is the human
factor, so it is very important that the users of the service are well informed about the risks that
they are facing. In this way they could learn to use stronger credentials and take all the necessary
security measures.

The main purpose of this diploma thesis, which was the implementation of an integrated solution
concerning an additional method of incident handling process of ~okeanos platform, was achieved.
This document presents the deployment of Honeyd, based on the needs of ~okeanos service.
Furthermore, it outlines a method for transferring the log data securely with FTPS protocol and
finally, it describes the methods that were used for the statistical process of the results. The
implementation was successful and the collected data provide an insight into the potential threats
and the vulnerabilities that should be taken into account in effectively securing ~okeanos service.

In conclusion, the prevailing idea in the field of information security is that “one can never assume
that one is safe”. On the contrary, one should always be vigilant and take the appropriate measures
to ensure a high level of protection. This diploma thesis is considered to have fulfilled its purpose in
this respect as it gives the security analyst a valuable tool to use in order to more effectively the
production environment he works for.

5.2 Future Work

The purpose of this section is to present the ideas and suggest potential avenues that should be
explored in extending the implementation of the solution that has been created within the scope
of this diploma thesis.

Firstly, the results that have been produced from Honeyd could be further processed from a tool
that is currently being developed within Grnet, named ASPIDA. The ASPIDA tool provides
information about the services that are hosted on ~okeanos virtual machines, about the IPs that
have been found in black lists and plenty of other services that extend the scope of the present
diploma thesis. The information provided by Honeyd could be part of the services that are included
in ASPIDA tool. At this point we should mention that we have created a suitable dictionary-based
data structure in Python for the interconnection of the data produced by the Honeyd with the REST
API| of ASPIDA tool. Consequently, all the experiments would be executed from one integrated tool
and the results would be gathered in the same way from a centralized platform. Moreover, the
present implementation could be a part of other tools that have been developed from Grnet for
security purposes.

An additional direction for future work concerns the deployment of supplementary services of
Honeyd. Honeyd is capable of emulating many different services and network topologies. In
addition, the present implementation could be used for the creation of a cluster of virtual
machines that could host not only different types of Honeypots but also other security tools. This
“security” cluster could be used as a tremendously powerful tool, which would allow the CERT
team to manage each security issue in a more complete and comprehensive way.

References

[1]Kissel, Richard. "Glossary of key information security terms." NIST Interagency Reports NIST IR
7298 (2013): 3.

[2]http://www.forbes.com/sites/danmunro/2015/02/05/health-data-breach-at-anthem-is-a-
blockbuster-could-affect-80-million/

[3]https://25zbkz3k00wn2tp5092n6di7b5k-wpengine.netdna
ssl.com/files/2015/02/Carbanak_APT_eng.pdf

[4]Weber, Rolf H. "Internet of Things—New security and privacy challenges." Computer Law &
Security Review 26.1 (2010): 23-30.

[S]ENISA: Cloud Security Incident Reporting — Framework for reporting about major cloud security
incidents-December 2013.

[6]https://okeanos.grnet.gr

[7]JALERT LOGIC, ‘CLOUD SECURITY REPORT, Research on the Evolving State of Cloud Security’ (Spring
2014) [Available at:

https://www.rackspace.com/knowledge center/sites/default/files/whitepaper_pdf/ALERT-LOGIC-
CLOUD-SECURITY-REPORT-Spring-2014.pdf]

[8]V. Koukis, P. Louridas, ‘~okeanos laaS’, (26-30 March, 2012) [Available at:
https://okeanos.grnet.gr/static/medialibrary/2012/04/vkoukis-egicf2012.pdf]

[9]JA. Zaharis, ‘An Analysis of Network Security Incidents’,2013 [Available at:
https://cert.grnet.gr/sites/cert.grnet.gr/files/GRNET_CERT_2013v.1.1.pdf]

[10]Lance Spitzner, ‘Honeypots: Tracking Hackers’, Addison-Wesley Professional (September 20,
2002)

[11]ENISA: Proactive Detection of Security Incidents-Honeypots - 2012/11/20
[12]http://www.honeyd.org/
[13]https://www.honeynet.org/

[14]Peter, Eric, and Todd Schiller. "A practical guide to honeypots.” Washington Univerity
(2011).

[15]Provos, Niels. "A Virtual Honeypot Framework." USENIX Security Symposium. Vol. 173. 2004.

[16]A Honeypot System for Efficient Capture and Analysis of Network Attack Traffic, Abhay Nath
Singh, R.C.Joshi 2011

[17]bttp://www.atomicsoftwaresolutions.com/

https://okeanos.grnet.gr/static/medialibrary/2012/04/vkoukis-egicf2012.pdf

[18]HoneyBot Services: ‘Client Data Collection’,Team
http://www.circl.lu/assets/files/honeybotclient.pdf]

[19]http://nmap.org/
[20]http://tools.ietf.org/html/rfc959
[21]http://tools.ietf.org/html/rfc4217

[22]https://filezilla-project.org/index.php

CIRCL

[Available

at:

APPENDIX

Default Template
create default
Set default behavior

set default default tcp action block
set default default udp action block
set default default icmp action block

Standard Windows 2000 computer

create win2k

set win2k personality "Microsoft Windows 2000 Server SP2"

set win2k default tcp action reset

set win2k default udp action reset

set win2k default icmp action allow

set win2k uptime 3567

set win2k droprate in 13

add win2k tcp port 21 "sh scripts/win32/win2k/msftp.sh Sipsrc Ssport Sipdst Sdport"

add win2k tcp port 80 "sh scripts/win32/win2k/iis.sh Sipsrc Ssport Sipdst Sdport"

add win2k tcp port 110 "sh scripts/win32/win2k/exchange-pop3.sh Sipsrc Ssport Sipdst Sdport"
add win2k tcp port 143 "sh scripts/win32/win2k/exchange-imap.sh Sipsrc Ssport Sipdst Sdport"
add win2k tcp port 389 "sh scripts/win32/win2k/Idap.sh Sipsrc Ssport Sipdst Sdport"

add win2k tcp port 5901 "sh scripts/win32/win2k/vnc.sh Sipsrc Ssport Sipdst Sdport"

This will redirect incomming windows-filesharing back to the source
add win2k udp port 445 proxy Sipsrc:445

add win2k tcp port 445 proxy Sipsrc:445

set win2k ethernet "aa:36:29:2e:2e:23"

bind 83.212.86.180 win2k

HiHHE Linux Suse 8.0 template

create suse80

set suse80 personality "Linux 2.4.7 (X86)"

set suse80 default tcp action reset

set suse80 default udp action block

set suse80 default icmp action open

set suse80 uptime 79239

set suse80 droprate in 4

add suse80 tcp port 21 "sh scripts/unix/linux/suse8.0/proftpd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 22 "sh scripts/unix/linux/suse8.0/ssh.sh Sipsrc $sport Sipdst Sdport"

add suse80 tcp port 23 "sh scripts/unix/linux/suse8.0/telnetd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 79 "sh scripts/unix/linux/suse8.0/fingerd.sh Sipsrc $sport Sipdst Sdport”
add suse80 tcp port 80 "sh scripts/unix/linux/suse8.0/apache.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 110 "sh scripts/unix/linux/suse8.0/qpop.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 143 "sh scripts/unix/linux/suse8.0/cyrus-imapd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 515 "sh scripts/unix/linux/suse8.0/lpd.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 3128 "sh scripts/unix/linux/suse8.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 8080 "sh scripts/unix/linux/suse8.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 tcp port 8081 "sh scripts/unix/linux/suse8.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse80 udp port 514 "sh scripts/unix/linux/suse8.0/syslogd.sh Sipsrc Ssport Sipdst Sdport"
set suse80 ethernet "aa:36:29:2e:2e:2a"

bind 83.212.86.185 suse80

#it## Suse7.0 computer

create suse70

set suse70 personality "Linux 2.2.12 - 2.2.19"

set suse70 default tcp action reset

set suse70 default udp action block

set suse70 default icmp action open

set suse70 uptime 97239

set suse70 droprate in 2

add suse70 tcp port 21 "sh scripts/unix/linux/suse7.0/proftpd.sh Sipsrc Ssport Sipdst Sdport
add suse70 tcp port 22 "sh scripts/unix/linux/suse7.0/ssh.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 23 "sh scripts/unix/linux/suse7.0/telnetd.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 79 "sh scripts/unix/linux/suse7.0/fingerd.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 80 "sh scripts/unix/linux/suse7.0/apache.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 110 "sh scripts/unix/linux/suse7.0/gpop.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 143 "sh scripts/unix/linux/suse7.0/cyrus-imapd.sh Sipsrc Ssport Sipdst Sdport
add suse70 tcp port 515 "sh scripts/unix/linux/suse7.0/lpd.sh Sipsrc Ssport Sipdst Sdport"

add suse70 tcp port 3128 "sh scripts/unix/linux/suse7.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 8080 "sh scripts/unix/linux/suse7.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse70 tcp port 8081 "sh scripts/unix/linux/suse7.0/squid.sh Sipsrc Ssport Sipdst Sdport"
add suse70 udp port 514 "sh scripts/unix/linux/suse7.0/syslogd.sh Sipsrc Ssport Sipdst Sdport"
set suse70 ethernet "aa:36:29:2e:2e:2a"

bind 83.212.86.184 suse70

Figure 6.1: configuration file of Honeyd

#Config file /etc/vsftpd.conf

#

The default compiled in settings are fairly paranoid. This sample file

loosens things up a bit, to make the ftp daemon more usable.

Please see vsftpd.conf.5 for all compiled in defaults.

#

READ THIS: This example file is NOT an exhaustive list of vsftpd options.
Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's
capabilities.

#

Run standalone? vsftpd can run either from an inetd or as a standalone
daemon started from an initscript.

listen=YES

#

Run standalone with IPv6?

Like the listen parameter, except vsftpd will listen on an IPv6 socket

instead of an IPv4 one. This parameter and the listen parameter are mutually
exclusive.

#listen_ipv6=YES

#

Allow anonymous FTP? (Beware - allowed by default if you comment this out).
anonymous_enable=NO

#

Uncomment this to allow local users to log in.

local_enable=YES

#

Default umask for local users is 077. You may wish to change this to 022,
if your users expect that (022 is used by most other ftpd's)
#local_umask=022

#

Uncomment this to allow the anonymous FTP user to upload files. This only
has an effect if the above global write enable is activated. Also, you will
obviously need to create a directory writable by the FTP user.
#anon_upload_enable=YES

#

Uncomment this if you want the anonymous FTP user to be able to create
new directories.

#anon_mkdir_write_enable=YES

#

Activate directory messages - messages given to remote users when they
go into a certain directory.

dirmessage_enable=YES

#

If enabled, vsftpd will display directory listings with the time

#in your local time zone. The default is to display GMT. The

times returned by the MDTM FTP command are also affected by this

option.

use_localtime=YES

#

Activate logging of uploads/downloads.

xferlog_enable=YES

#

Make sure PORT transfer connections originate from port 20 (ftp-data).
connect_from_port_20=YES

#

If you want, you can arrange for uploaded anonymous files to be owned by
a different user. Note! Using "root" for uploaded files is not

recommended!

#chown_uploads=YES

#chown_username=whoever

#

You may override where the log file goes if you like. The default is shown
below.

#xferlog_file=/var/log/vsftpd.log

#

If you want, you can have your log file in standard ftpd xferlog format.

Note that the default log file location is /var/log/xferlog in this case.
#xferlog_std_format=YES

#

You may change the default value for timing out an idle session.
#idle_session_timeout=600

#

You may change the default value for timing out a data connection.
#data_connection_timeout=120

#

It is recommended that you define on your system a unique user which the
ftp server can use as a totally isolated and unprivileged user.
#nopriv_user=ftpsecure

#

Enable this and the server will recognise asynchronous ABOR requests. Not
recommended for security (the code is non-trivial). Not enabling it,

however, may confuse older FTP clients.

#async_abor_enable=YES

#

By default the server will pretend to allow ASCIl mode but in fact ignore
the request. Turn on the below options to have the server actually do ASCII
mangling on files when in ASCIl mode.

Beware that on some FTP servers, ASCII support allows a denial of service
attack (DoS) via the command "SIZE /big/file" in ASCIl mode. vsftpd

predicted this attack and has always been safe, reporting the size of the
raw file.

ASCIl mangling is a horrible feature of the protocol.
#ascii_upload_enable=YES

#ascii_download_enable=YES

#

You may fully customise the login banner string:

#ftpd_banner=Welcome to blah FTP service.

#

You may specify a file of disallowed anonymous e-mail addresses. Apparently
useful for combatting certain DoS attacks.

#deny_email_enable=YES

(default follows)

#banned_email_file=/etc/vsftpd.banned_emails

#

You may restrict local users to their home directories. See the FAQ for

the possible risks in this before using chroot_local_user or

chroot_list_enable below.

#chroot_local_user=YES

#

You may specify an explicit list of local users to chroot() to their home

directory. If chroot_local_user is YES, then this list becomes a list of

users to NOT chroot().

(Warning! chroot'ing can be very dangerous. If using chroot, make sure that
the user does not have write access to the top level directory within the
chroot)

chroot_local_user=YES

chroot_list_enable=NO

(default follows)

#chroot_list_file=/etc/vsftpd.chroot_list

#

You may activate the "-R" option to the builtin Is. This is disabled by

default to avoid remote users being able to cause excessive I/O on large
sites. However, some broken FTP clients such as "ncftp" and "mirror" assume
the presence of the "-R" option, so there is a strong case for enabling it.
#ls_recurse_enable=YES

Customization

#Some of vsftpd's settings don't fit the filesystem layout by default.

#

This option should be the name of a directory which is empty. Also, the
directory should not be writable by the ftp user. This directory is used

as a secure chroot() jail at times vsftpd does not require filesystem

access.

secure_chroot_dir=/var/run/vsftpd/empty

#

This string is the name of the PAM service vsftpd will use.
pam_service_name=vsftpd

#

This option specifies the location of the RSA certificate to use for SSL
encrypted connections.
rsa_cert_file=/etc/ssl/private/vsftpd.pem

ssl_enable=YES

allow_anon_ssI=NO

force_local data_ssI=YES

force_local_logins_ssI=YES

ssl_tlsv1=YES

ssl_sslv2=YES

ssl_sslv3=YES

Filezilla uses port 21 if you don't set any port

in Servertype "FTPES - FTP over explicit TLS/SSL"

Port 990 is the default used for FTPS protocol.

Uncomment it if you want/have to use port 990.
#listen_port=990

Figure 6.2: configuration file of Vsftpd

#The following piece of code processes the data taken from Nmap tool report. It finds the total
number of open ports found in each host and then creates a dictionary containing the name of the
port and its appearance frequency. Finally it calculates the most frequently open ports and plots them
in a pie chart.

from __future__ import division

from libnmap.parser import NmapParser
from libnmap.process import NmapProcess
import operator

from matplotlib import pyplot as plt
import numpy as np

from utilities import *

#Passing the data of the Nmap report to variable nmap_report
nmap_report = NmapParser.parse_fromfile('/home/user/Desktop/Okeanos_Nmap/11-11-2014.xml')
hosts = nmap_report.hosts

open_ports_number = 0

open_ports_final =]

for host in hosts:
open_ports = host.get_open_ports()
open_ports_number += len(open_ports) #finally has the total number of open ports
open_ports_final += open_ports #finally has the total list of open ports

#Creating dictionary containing the name of the port and its appearance frequency
unique_open_ports = find_unique(open_ports_final)

port_results = find_max(unique_open_ports)

max_ports = port_results[0]

max_value = port_results[1]

#Transforming the max_value into percentage for statistical use

N=5

top_N_ports =]

top_N_values =]

total_max_value_percent =[]

for s in range(N):
top_N_ports.append(max_ports[s])
top_N_values.append(max_value[s])
max_value_percent = (top_N_values[s]/open_ports_number)*100
total_max_value_percent += [max_value_percent]

rest_open_ports = ((open_ports_number-sum(top_N_values))/open_ports_number)*100
total_max_value_percent = total_max_value_percent+[rest_open_ports]

#Labeling and coloring of the pie chart

labels = top_N_ports+['Other']

colors = ['yellowgreen', 'lightcoral’, 'gold', 'lightskyblue','violet', 'lightgrey']
explode = (0, 0, 0, 0, O, 0) #no offsetting of slice

#Ploting the pie chart

plt.pie(total_max_value_percent, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%,
shadow=False)

plt.axis('equal’) # Set aspect ratio to be equal so that pie is drawn as a circle

plt.show()

Figure 6.3: Visualization of data from Nmap tool

#The following piece of code processes the data taken from HoneyBot log file. It finds the number
of attacked ports (source_ports) of each host, the number of attacker ips (dest_ips) and the number
of attacker countries.

import requests

from utilities import *

from geoip import geolite2

from mpl_toolkits.basemap import Basemap
import operator

from matplotlib import pyplot as plt

import numpy as np

logs = open('Honeyd_Log.out')

c = 0 #key of dictionary that contains the id of each variable (e.g. date, source_ip, line)
tool = dict() #name of the dixtionary

date =]
prot = (]
t={]
source_ip =[]
source_port =]
dest_ip =]
Figure 6.4: Parser of the Honeyd log file

for line in logs:
if line.find('------ ")==-1: #exclude first and last line that contain no useful info
fields = line.split(' ') #Parcing the fields of every line
date.append('-'.join(fields[0].split('-')[0:3]))
prot.append(fields[1])
t.append(fields[2])
source_ip.append(fields[3])
if prot[-1]!="icmp(1)": # exclude icmp packets
source_port.append(fields[4])
dest_ip.append(fields[5])
pointer = str(fields[6]).find(":") # editing the format of fields[6] elements
fields[6] = str.replace(str(fields[6]), "\n", "")
if pointer!=-1:
dest_port.append(str(fields[6])[0:pointer])
else:
dest_port.append(str(fields[6]))

#Finding unique destination ports and their appearance frequency
dictionary_of dest_ports = find_unique(dest_port)

port_results = find_max(dictionary_of_dest_ports)
max_unique_ports = port_results[0]

max_unique_port_value = port_results[1]

#Finding unique source ips and their appearance frequency
dictionary_of_source_ip = find_unique(source_ip)
ip_results = find_max(dictionary_of_source_ip)
max_unique_ips = ip_results[0]

max_unique_ip_value = ip_results[1]

#Finding geolocation of each source ip and each country's appearance frequency
max_unique_ips = map(str, max_unique_ips)
country_name =[]
for country in max_unique_ips:
if country!='0"
ip_info = geolite2.lookup(country)
if ip_info!=None: #Avoiding zero entries
country_name.append(ip_info.country)

unique_countries = find_unique(country_name)
countries_results = find_max(unique_countries)
max_unique_countries = countries_results[0]
max_unique_country_value = countries_results[1]

#Draw the most attacking country on map
draw_map(countries_results)

"""#Dictionary format for use in ASPIDA Tool
tool.update({ (c,'date'): date,
(c,'source_ip'): source_ip,
(c,'destination_ip'): dest_ip,
(c,'raw’'): line
1
c+=1

#Connection with the REST API of ASPIDA Tool

r = requests.post("url", params=tool) #Response object

import csv #The following piece of code processes the data taken from HoneyBot log file. It finds the number of
import sys # attacked ports (source_ports) of each host, the number of attacker ips (dest_ips) and the number
import operator # of attacker countries.

from mpl_toolkits.basemap import Basemap

from matplotlib import pyplot as plt

import numpy as np

from geoip import geolite2

from utilities import *

import copy

f=open('Log_20141124.csv', 'rt')
reader = csv.reader(f)

date = [0]

dest_ip = [0]

dest_port = [0]

source_ip = [0]

source_port = [0]

for row in reader:
date.append(row[2])
dest_ip.append(row[6])
dest_port.append(row([7])
source_ip.append(row|[8])
source_port.append(row[9])

#Finding unique source ports and their appearance frequency
dictionary_of source_ports = find_unique(source_port)
port_results = find_max(dictionary_of source_ports)
max_unique_ports = port_results[0]

max_unique_port_value = port_results[1]

#Finding unique destination ips and their appearance frequency
dictionary_of_dest_ip = find_unique(dest_ip)

ip_results = find_max(dictionary_of_dest_ip)

max_unique_ips = ip_results[0]

max_unique_ip_value = ip_results[1]

#Finding geolocation of each destination ip and each country's appearance frequency
max_unique_ips = map(str, max_unique_ips)
country_name =[]
for cin max_unique_ips:
if cl='0"
ip_info = geolite2.lookup(c)
if ip_info!=None: #Avoiding zero entries
country_name.append(ip_info.country)

unique_countries = find_unique(country_name)
countries_results = find_max(unique_countries)
max_unique_countries = countries_results[0]
max_unique_country_value = countries_results[1]

#Draw the most attacking country on map
print draw_map(countries_results)

Figure 6.4: Parser of the HoneyBOT log file

import operator

#This function takes as input a list of elements and returns a dictionary with the rate of appearance of
each unique element

def find_unique(list_of _elements):

unique_elements = set(list_of_elements) #find unique elements
value_per_element = dict()
#Dictionary initialization
for kin unique_elements:
value_per_element[k] =0

#The number of times each unique element has been found in the list is stored in the dictionary
for unique_element in unique_elements:
for element in list_of _elements:
if element == unique_element:
value_per_element[element]+=1
return value_per_element

Figure 6.5: find_unique function

#This function takes as input the return of the "find_unique" function and returns the unique elements
with their max value

def find_max(dictionary_of elements):
#Finding most frequently occurring elements and their appearance value
max_unique_elements = []
max_unique_value =[]
results = sorted(dictionary_of_elements.items(), key=operator.itemgetter(1), reverse=True)
for i in range(len(dictionary_of_elements)):
max_unique_elements.append(results[i][0])

max_unique_value.append(results[i][1])

return [max_unique_elements, max_unique_value]

Figure 6.6: find_max function

#This function takes an input a list of countries with the major frequency appearance and prints a map with

them

from __future__ import division

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

import numpy as np

def draw_map(countries_results):

lists

Open the data file containing countries' latitudes and longitudes
data_file = open('country_latlon.csv')

#Creation of a dictionary with these data
world = dict()

for line in data_file.readlines():
fields = line.split(',")
world[fields[0]] = (fields[1], fields[2].strip())

Store the latitudes, longitudes and the frequency appearance of each country in the appropriate

N = 8 #The number of countries that are going to printed on the map

lons =[]

lats =[]

attacks_size =[]

foriin range(N):
lats.append(float(world[countries_results[0][i]][0]))
lons.append(float(world[countries_results[0][i]1[1]))
attacks_size.append(countries_results[1][i]/sum_countries)

sum_countries = sum(countries_results[1])

--- Build Map ---

worldmap = Basemap(projection='mill', resolution = 'i', area_thresh = 100000.0, lat_0=0, lon_0=0)
worldmap.drawcoastlines(color = 'ForestGreen')

worldmap.drawcountries(linewidth =1, color = 'ForestGreen')
worldmap.drawmapboundary(fill_color = 'Snow')

worldmap.drawrivers(color = 'Snow"')

worldmap.fillcontinents(color = 'Snow', lake_color='Snow')

n=0
for lon, lat, attack in zip(lons, lats, attacks_size):
if attack>0.1:
n=20
else:
n=10

x,y = worldmap(lon, lat)
worldmap.plot(x, y, 'ro', markersize = n)
plt.show()
return

Figure 6.7: draw_map function

