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ITegiAnym

Ta texynta vevpwvika diktva keEdICovv o dNUOPla T TeAevtala XQOVIa,
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ovyxoovwv Hardware mAatdpogpwv mooodpépet véeg duvatotnteg.
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miBavo meodPANua. H xorjon twv oevagiwv ocuotiHatog oTig HOVTEQVEG OVOKEVEG
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Abstract

Artificial Neural Networks gain popularity in recent years, as modern processors
evolve towards a parallel approach. Traditional, sequential, logic-based digital
computing excels in many areas, but has been less successful for other types of
problems. The development of artificial neural networks began approximately 60
years ago, motivated by a desire to try both to understand the brain and to emulate
some of its strengths and is constantly gaining attention as modern Hardware
platforms evolve and offer new promising capabilities for Neural Networks
development.

System Scenarios is also a developing field in science of Hardware which aims to
convert the increasingly dynamic nature of embedded systems into an optimization
opportunity instead of a potential problem. The use of system scenarios scheduling
in modern devices allows us to exploit resources of the system in a sophisticated
manner, since every different form of execution differs in terms of hardware
requirements. Acknowledging the scenario to be executed, it is possible to modificate
resources allocation and achieve greater performance.

The goal of this diploma thesis is to provide a sufficient hardware/software co-design
implementation which enables neural networks as the basic unit of a structure that
detects Scenarios in real applications. The choice of neural networks was made
because of their inherited parallelism and their ability to develop dynamic behavior.
The implementation with Neural Networks is presented side by side with a straight —
forward implementation in order to feature the advantages of each and highlight the
differences.

The thesis is organized as follows:

In Chapter 1, there is an introduction in Wireless Systems and System Scenarios,
along with a proposed methodology (Zompakis et al, 2012) for using System
Scenarios in real applications. A description of Scenario detection in real - time
follows accompanied by related work on this problem. Finally, an outline of the
suggested solution by current thesis is presented.

Chapter 2 is a brief description of Artificial Neural Networks. Historical background,
topologies, and types of ANNs are examined. Special emphasis is given to training
methods and more specifically, to Levenberg — Marquadt algorithm, which is the
selected training function.

Analytical methodology for our solution is presented in Chapter 3. The workflow
shows the steps sequentially towards the final implementation. The said chapter also
contains extended justification for the neural network selected specifications. The last
part is a detailed analysis of the VHDL modules of the implementation, which apart
from technical information also include timeline diagrams. The intention for using



timeline diagrams for each module separately is to analytically present in a
schematic way the exact tasks performed in the inferred hardware.

Chapter 4 is dedicated to the presentation and analysis of the results of our case
study. Important implementation parameters, such as operating frequency, chip area
and dynamic ability are measured and compared for the two separate solutions.

Finally, Chapter 5 summarizes the results and conclusions of the current study and
suggests future work for the improvement of the existent implementation.

Keywords

System Scenarios; Dynamic Scheduling; Neural Networks; detection; fpga;
vhdl
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Chapter 1 Introduction

1.1 Embedded Systems

1.1.1 Overview

In recent years, the wireless technology has opened new horizons in the means and
ways that users communicate [1]. We are living in a very competitive environment,
where the radio devices become outdated soon after their engineering. Radios exist
in a multitude of items such as cell phones, vehicles, tablet pcs and digital TVs. The
different types of applications demand different type of communication standards.
Although all these systems have almost similar components, the ways these
components behave differ greatly. To cope with these challenges, communication
systems adopt open architectures with flexible interfaces. The new specifications are
introduced to the existing infrastructure without requiring new expenditures. Thus,
while migrating from one generation to the next, the new devices are compatible
with the conventional and the state of the art networks. The modern 4G networks
provide high quality of services (QoS) exploiting new innovative products, which
combine smart transceivers and high performance signal processing elements [2].
This trend highlights challenges that the classic hardware-based radios cannot cope
with.

More precisely, the traditional radio chips are designed for specific operations each
of them is realized through a single communication standard. A typical handset has
several chips to establish a variety of wireless links, one to talk to a cell phone,
another to communicate with a Wi-Fi base station, a third to process GPS signals. All
these chips support particular spectrum areas and modulation schemes. Thus, after
the device engineering, they are exploitable only for the purpose that they are
designed. This confines the scalability of a potential radio device and restricts the
update capabilities at the improvement of the user interface without providing real
operation extensions. However, this approach was not able to answer the ever-
changing requirements of the modern transceivers.

In addition, the standardization at the development of the new handsets is a key
issue, which occupies the radio industry. This is highly desirable because it allows
new products come quickly into the market limiting the design and the development
cost. It is fact that a family of products with common hardware architecture will
require much less implementation effort. In this direction, the particular functionality
can be performed by modifiable software. The software definition of the
functionality opens significant opportunities at the follow-on-support services. New
features and capabilities can be added to the existing devices without requiring any
extra hardware equipment. Software upgrades can remotely activate new revenue
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generating features. Bug-fix and reprogramming services are able to reduce the costs
while a device is in service. Thus, the cost reduction in the end-users allows them to
communicate with whomever they need, whenever they need to and in whatever
manner is appropriate.

Another open issue is the efficient utilization of the available spectrum area. Radio
bandwidth is a scarce resource, which have to be distributed with a dynamic way.
The conventional radios, which are modifiable only by physical interventions, don’t
provide the necessary flexibility. Thus, the interest to explore ways using the
spectrum with a more efficient way is quite high. The right exploitation of the
frequency bandwidth depends on a number of factors, which combine the
geographical characteristics of the area and the transmission activity in it. The main
reason for insufficient bandwidth utilization is the spectrum fragmentation. Even in
an environment with high density of wireless transmissions, the spectrum
exploitation can be poor. The reason is the substantial amounts of unused spectrum
segments “white spaces” which are congested by gaps between the transmission
channels, which ensure the avoidance of the interference. Wireless devices being able
to access unused or restricted spectrum segments that may be available for usage in
other geographical areas or under other regulatory regimes, can improve the
spectrum utilization. In this regard, reconfigurability is the key point for the radio
industry.

Taking into consideration all the previous challenges, wireless industry requires a
multiband reconfigurable implementation with an open architecture capable to cope
with the rapid development of the communication standards. The reconfigurability
refers to a radio that supports multiple frequencies bands and multiple modulation
schemes which adapt its configuration at the running state. An extra motivation for
such an implementation is the fact that the standard wireless processes like filtering,
decoding, signal modulation, can also benefit from the reconfigurability offered by a
general-purpose architecture [36]. A well-known example of a platform with these
capabilities is Software Defined Radio (SDR) [37], which combines numerous
communication standards in a single device. Many of its functionalities are
implemented in software, running on one or multiple generic processors, leaving
only the high performance functions implemented in hardware. These kinds of
software radios will be future proof as the whole system will be based on
reprogramming, leading the same hardware behaving differently at different
instances.

1.1.2 SDR Operation Specs

Software Define Radio (SDR) is an efficient merging of technologies, which combines
software and hardware in such a way that the physical layer functions are
modifiable. The Wireless Innovation Forum, in collaboration with the Institute of
Electrical and Electronic Engineers (IEEE) P1900.1 group, establishes a definition of
SDR that provides a clear view of the technologies involved and their benefits.
Software Defined Radio is defined as: "Radio in which some or all of the physical
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layer functions are software defined” [2]. SDR defines a collection of hardware and
software technologies where some or all of the radio’s operating functions (also the
physical layer processing) are implemented through modifiable software or
firmware operating on programmable processing technologies. The use of SDR
technologies enables greater degree of freedom in adaptation, higher performance
levels and better quality of service. Adaptation has the notion of sensing the
operations changes, calibrating the system parameters for succeeding a better
performance. This characteristic makes software-defined radios remarkable flexible.
In a theoretical basis, the right software in a SDR chip can implement every
individual function, which takes place in a wireless device. The idea is to transfer the
critical wireless functions in software, allowing adding new operations without
hardware changes. Thus, SDR architectures tend to become a general purpose
platform which can realize every wireless implementation.

After a long period from the first introducing of the Software Defined Radio concept
[37] SDR seems to be a promising solution for integrating the existing and the
emerging communication standards into one platform. The first SDR approach
limited only at the level of the replacement parts of the radio hardware by ones that
are reconfigurable and reprogrammable. After this concept was extended including
reconfiguration of applications and services, as well as network-based
reconfiguration support, provided by a dedicated network infrastructure. The cause
of this development is that applications and services are likely to be affected by
changing transmission quality and changing Quality of Service (QoS) resulting from
vertical handover from one radio mode to another and, therefore, service aspects
have to be taken into account in handover decision-making.

The advanced SDR technology has to handle not only the primary performance
challenges but also the restrictions of the mobility. In the last decades, SDR devices
have become much more complex due to the introduction of a lot of new
functionality in one application, and due to supporting various services
simultaneously including a wide range of communication protocols and services.
Thus, the SDR platforms communicate with other platforms using multiple complex
communication schemes. The connection flexibility is restricted mainly by the tight
platform constrains. These handsets have stringent requirements on size,
performance and energy consumption. Optimizing energy efficiency is key for
maximizing battery lifetime between recharges. In addition, the modern SDR system
architectures enlarge the gap between average and worst-case execution time of
applications to increase total performance. An efficient utilization of the available
resources based on the running situations and with the minimum configuration cost
is needed. System adaptation can be implemented either at application level,
selecting an effective task mapping technique, or at platform level, e.g. with dynamic
frequency scaling technique (DFS).

Thus, the development of proper methods in resource scheduling is without doubt,
an imperative need. Traditional design approaches based on the worst-case leave a
lot of room of optimization if the increasing resource usage dynamism can be
properly predicted at runtime.
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1.2 System Scenarios

1.2.1 Overview

In the past years, the functions demanded for embedded systems have become so
numerously and complex that the development time is increasingly difficult to
predict and control [3]. This complexity, together with the constantly evolving
specifications, has forced designers to consider implementations that they can change
rapidly. For this reason, and also because the hardware manufacturing cycles are
more expensive and time-consuming than before, software implementations have
become more popular. As often the application source code is already written, the
trend is to reuse the applications, as this is the best approach to improve the quality
and the time to market for the products a company creates and, thereby, to maximize
profits [4]. Most of these applications are written in high level languages to avoid the
dependency on any type of hardware architecture and to increase developers’
productivity.

In the context of this software intensive approach, the job of the embedded designers
is to evaluate multiple hardware architectures and to select the one that fits best
given the application constraints and the final product requirements (i.e., price,
energy, size, performance). The explored architectures lay between fixed single
processor off-the-shelf architectures and fully design time configurable multi-
processor hardware platforms [5]. The off-the-shelf components are cheaper to use,
as no extra development is needed, but they are not very flexible (e.g., video
accelerators) or cannot be tuned for a specific application (e.g., general-purpose
processors, if performance is considered). Hence, they usually are good candidates
for simple systems that are produced in small volumes. On the other extreme,
configurable multi-processor platforms offer more flexibility in tuning, but they
imply an additional design cost. Hence they are used when the production volume is
large enough for economically viable manufacturing, or when no existing off-the-
shelf component is good enough.

Given an embedded system application, to find the most suitable architecture, or to
fully exploit the features of a given one under the real-time constraints, estimations
of the amount of resources required by each part of the application are needed. To
give guaranties for the system quality, the estimations should be pessimistic, and not
optimistic, as over-estimations are acceptable, but underestimations are generally
not. Currently used design approaches use worst case estimations, which are
obtained by statically analyzing the application source or object code [6]. However,
these techniques are not always efficient when analyzing complex applications (e.g.,
they do not look at correlations between different application components), and they
lead to system over-dimensioning.
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Hence, the problem System Scenarios aiming to resolve is :

“The need for a systematic methodology that, given a dynamic streaming application with
many operation modes, finds and efficiently exploits the most suitable hardware architecture
under the final system constraints (i.e., performance, price, size and energy consumption),
without ending in an explosion problem”.

This problem is quite broad, as it ranges from single to multi-processor architectures,
and it covers multiple types of resources (e.g., computation, communication, storage)
and constraints.

1.2.2 Description and Methodology

Scenario based design has been used for a long time in different design areas [38]
and especially at the development of the embedded system domain [7]. Scenarios
describe, in an early design phase of a development process, the future system
functionality including the interaction with the user. The scenarios are narrative
descriptions of envisioned usage episodes. In case of object oriented software
engineering a unified modelling language (UML) and use-case diagram enumerate,
from functional and timing point of view, all possible user actions and the system
reactions that are required to meet a proposed system function. These scenarios are
called use-case scenarios [7]. In our study, we concentrate on a different kind of
scenarios, so-called system scenarios, which characterize the system from the
resource usage perspective.

The system scenario methodology has been described in a fully systematic way in
[4]. The aim is to capture the data dependent dynamic behavior inside a thread in
order to better schedule a multi-thread application on a heterogeneous multi-
processor architecture. Usually, most of these applications are streaming and have to
deliver a given throughput, which imposes specific time constraints. [8] presents a
design methodology that provides a systematic way of detecting and exploiting
system scenarios for streaming applications. A scenario is defined as the application
behavior for a specific type of input data, i.e. a group of execution paths for that
particular group of input data. The system scenario concept was also outlined in [9],
where the tasks are written using a combination of a hierarchical finite state machine
(FSM) with a synchronous dataflow model (SDF). The disadvantage of this method is
that the applications must be written using a limited model, which is a time
consuming and error-prone operation.

The system scenario methodology is a design approach for handling the complexity
analysis of applications with multidimensional costs and strict constraints. The main
challenges are: 1) the optimal application mapping on the platform and 2) the
efficient management of the platform resources. The methodology key points are: 1)
the splitting of the design problems in separate steps at design time and 2) the
implementation of only the optimal solutions at run time. In particular, by classifying
and clustering the possible system executions into system scenarios, a run-time
resource manager can heavily reduce the average cost resulting from this execution
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compared to the conventional worst-case bounding approach, while still meeting all
constraints.

As a first step in explaining the methodology, we have to introduce the concept of a
Run-Time Situation (RTS). As RTS we define a piece of system execution that is
treated as a unit because it has uniform behavior internally. The system scenario
methodology comprises 5 individual steps, 1) RTS identification, 2) RTS
characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5)
scenario switching.

1) RTS identification This methodology starts with the characterization of
all possible RTSs, which occur in the system. We identify all the variables (RTS
parameters) that affect the state of the system from a functionality or implementation
point of view. System variables can be classified in two categories; control and data
variables. Control variables define the execution paths of an application and
determine which conditional branches are taken or how many times a loop will
iterate. They have a higher impact on execution time, as they decide how often each
part of the program is executed. Hence we focus on them. The data variables
represent the data processed by the application.

2) RTS characterization In most cases, the cost characterization of the RTSs is
not a simple determination of one cost value but it leads to a Pareto surface of
potential exploitation points in the multidimensional exploration space. Each RTS
can be characterized by a number of cost factors obtained from profiling the
application on a platform or by using high-level cost estimators. Cost axes may
include quality level, user benefit, code size, execution time, total energy
consumption, including the impact of the system operating conditions. It quantifies
all the costs for each different platform configuration per RTS. The two typical costs
for a system are: 1) the energy consumption, 2) the performance as it is expressed by
the total delay (latency) for an operation execution. Hence the exploration space is
usually two dimensional.
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Figure 1.1 Clustering Overhead Representation [1, p.45]
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3) Clustering of RTSs in System Scenarios An individually handling of
every RTS, would lead to excessive overheads at run-time, since the source code and
all configuration settings would need to be stored for each RTS and applied at run-
time. So they have to be clustered into scenarios. But clustering introduces
overestimation, which is characterized as clustering overhead, and is caused by the
deviation between the real cost of the RTS and the estimated cost which is the
representative cost for the scenario of the RTS. This overestimation will be incurred
in every appearance of this RTS. Thus, the total overestimation will be proportional
not only to the distance between RTS cost and scenario cost but also to the frequency
of this RTS.

The similarity between costs of different RTSs or in general sets of RTSs (scenarios)
has to be quantified e.g., by defining the normalized, potentially weighted, distance
between two N-dimensional Pareto surfaces as the size of an N-dimensional volume
that is present between these two sets. Based on this distance, the quality of potential
scenario options can be quantified, e.g., to decide whether or not to cluster RTSs in
different scenarios [5]. Clustering is implemented using a cost function related to the
target objective optimization and takes into account: 1) how often each RTS occurs at
run-time and 2) the distance of their Pareto curves. The scenario characterization
(Pareto curve) results from taking the worst-case cost point among the RTSs.

4) Detection of System Scenarios After the generation of system scenarios
the next step is the realization of a detection algorithm, which can recognize at run-
time the scenario to be executed. The detection mechanism will be embedded in the
middleware (e.g. RTOS) of the targeted platform adding some overhead on both
execution time and memory footprint. It is critical to keep this overhead small while
maintaining the benefits by exploiting the knowledge from the scenario recognition.
The detection is implemented by monitoring the changes of the RTS parameters at
run-time. Their value range has great impact on the final overhead. The challenge is
to discover heuristic techniques which can detect the scenarios with minimum cost.

Figure 1.2 illustrates the implementation of a detection algorithm for a given
application with 3 RTS parameters (bandwidth, number of antennas, coding). The
detection algorithm starts from inner node £1, if the current bandwidth is equal to 20
MHz. If the condition is true the detection goes to line 3. At the new instruction line,
we are at the inner node 2 and we have a new RTS parameter (number of antennas)
to check and a new instruction to run. The procedure continues until the decision
diagram reaches a detected system scenario.
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5) Switching Having identified the system scenarios and the suitable
detection approach, the next step is the implementation of a run-time algorithm,
which will decide on the switching of the system configuration in real time. From the
identification part, we have characterized every scenario so we can estimate, at
design time, the tuning configuration for every scenario which respects the
application constrains with the minimum energy cost. The tuning configurations can
be related with the voltage scaling and the frequency scaling or other power saving
techniques like processor resizing [10] and cache resizing [11]. So every system
scenario corresponds to an optimal set of system configurations (e.g. an E-T Pareto
curve of potential working points) and this information is stored in the system
scenario list.

What we need now is the implementation of a mechanism which will react to the
detection of a new scenario being triggered, and then decide whether to switch from
the current scenario or not, while exploiting this information and taking into
consideration the switching cost. If the new scenario is not expected to last very long
and the gain G is limited then we cannot afford a high switching cost because that
will probably be lower than G. As switching cost, we define the cost for the
switching from one scenario to another. This cost will normally depend heavily on
the initial and final state.

17



1.3 Motivation — Problem Statement

System Scenarios methodology steps are the following : 1) RTS identification, 2) RTS
characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5)
scenario switching. The subject of the current thesis is to feature the demands and
characteristics of the step referring to scenario detection and develop efficient
solutions that could be used in real — time applications.

The step of detection is directly dependent on the previous step of clustering. There
could be many different approaches regarding RTS clustering, e.g a fully analytical
approach that includes many RTSs in its exploration would make the procedure of
detection more demanding than an approach that includes only a few RTSs. Taken
this into account, we can come to the first conclusion that a universal detector is not
suitable for every case, as we have specific requirements that result from each
problem.

Another important aspect is this of integration. The development of a mechanism
that will run in parallel to the main implementation and recognize at run-time the
Scenario that the specific combination of RTSs define is the key point for a successful
implementation of run — time scheduling in wireless devices. This mechanism is not
directly part of the device hardware; it is complementary and its function is to
interact with elements from the main architecture and this interaction is critical to
have response time which will be significantly lower than the average time of
Scenario execution. Since response time is a prerequisite, external circuits to perform
this task are not considered as possible solutions. This mechanism should be
embedded to the system so as to share resources and transfer data more efficiently.

Moreover, there is high demand for accuracy. The process of detecting the current
scenario is deterministic and should be treated as such. Recognition of a false
scenario could trigger a change to an unsuitable state where resource allocation is not
sufficient for the current task. Using a hypothetical probabilistic approach, there
would be mispredictions of two types: (i) over-prediction, when a scenario with a
higher cost is selected, and (ii) under-prediction, when a scenario with lower cost is
selected [4] . The first type does not produce critical effects, just leading to a less cost
effective system; the second type often reduces the system quality, e.g., by increasing
the number of deadline misses when the cost is a cycle budget for an MP3 decoder
application.

A proposed solution (Gheorghita et al 2007) is to construct a graph as a decision

diagram, and make use of a restricted programming language to prevent added
overhead, as shown in Figure 1.3.
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Figure 1.3 Example of detector implementation [4]

It examines, for the current frame to process, the values of a set of variables, and
based on them it predicts in which scenario the application runs. In this approach,
the decision diagram is implemented as a program in a restricted programming
language, and it is executed by a simple execution engine. The program is in the
application source represented by a data array. This split allows an easy calibration
of the decision diagram, which consists of changing the values of several array
elements.

This approach is a straight — forward implementation of the detection scheme and
while it looks suitable at occasions where RTS identification and clustering involves a
limited amount of parameters, in case of a broader RTS identification, the additional
overhead and cost of the decision diagram is a restraining factor of the specific
implementation. Thus, we will suggest alternative methods that adjust the final
solution depending on the scaling of the problem.

1.4 Proposed Solution

Our goal is to propose a scenario detection methodology and proceed towards
developing the tools needed for its implementation. The solution is focused towards
minimizing the detection overhead. The latter is the most critical parameter that we
should take into consideration, because it affects in direct way the performance of
our system. Achieving timing closure in our implemented mechanism enables the
supported system to recognize scenarios and switch states at run — time in a pace that
maximizes the gains of this process.

A hardware implementation was preferred instead of software implementation. This
decision was due to two main reasons: a) the already reported need to reduce the
timing overhead and b) recent evolution of reconfigurable Hardware (FPGAs)
provides with the necessary flexibility for the design and parameterization of the
specific task. Moreover, the detection scheme is designated to be used in real
applications of wireless devices, so a direct hardware implementation seems more
usable.
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Two separate solutions were developed in order to exploit the features that appear
when using System Scenarios. The first solution is a straight — forward approach, a
deterministic LUT which accepts as input the pre-defined combination of RTSs and
returns in its output the specific scenario. The second solution is a Neural Network
with the minimum number of layers in order to prevent additional overhead. The
input and output stages of the second solution are the same with the ones of first
solution, but the internal stages are by far different than the simplified LUT
implementation. The most interesting part was to study the trade-offs that these
implementations introduce among response time, implementation cost and dynamic
behavior. These trade-offs were explicitly researched within the case study presented
in Chapter 4.

The LUT implementation is perfectly suitable when the stage of clustering produces
a dataset of RTSs and Scenarios that are manageable in terms of size. The final
product is a circuit that performs input — output mapping in order to identify the
coded Scenario at every moment. We use compression techniques to reduce its size
and complexity, while exploiting the advantages of modern synthesizers which have
the capability to handle and simplify large logic functions.

An alternative solution which enables Neural Networks as detectors is introduced
and thoroughly examined through its various aspects. The specific implementation
takes advantage of the well — known ability of neural networks to generalize via
training and thus provide correct output results for unknown data. Migration of
Neural Networks from conventional processors to hardware platforms boosts their
performance, but it is always a demanding and complicated task, so much effort was
put on to optimize the parameters of the Neural Network so as to adapt in a more
efficient way into Hardware environment. In order to achieve a highly flexible
solution, there was developed a special software along with a graphical user
interface, which acts as a Neural Network generator. Experimenting with various
parameters of the Hardware implementation enables us to come to useful
conclusions as far as the trade-offs are concerned.

Finally, a full methodology is introduced which targets to evaluate by using specific
measurements such as response time and chip area, the tradeoffs among the different
variations of implementing the scheme of detection. This methodology is analyzed
and explained step by step in its theoretical level in Chapter 3, while Chapter 4
contains analytical results of the Case Studies in which the methodology was tested.

The flowchart of the described methodology is given in Figure 1.4, where each step is
presented in a separate box. The main idea behind this methodology is to generate an
optimal Scenario Detection solution, according to the user’s desired style of
implementation. Unlike the static implementation, which is as simple as it is shown,
with only few sequential steps required, the finding of the optimal dynamic
implementation demands a repetitive process, which summarizes in the following
steps:
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Normalize the values of RTS Parameters
Define specific combination of RTS values that do not trigger a change in

Scenarios (optional)

Choose the size of the hidden layer and train the Network using the largest

fraction of the Dataset.

Simulate the Neural Network using the whole Dataset.
Evaluate the prediction percentage and compare with the previous
measurement. If a better prediction is achieved, repeat the process adding
nodes. If not, recall the previous instantiation and proceed to the next step.
The optimal solution of the implementation is achieved, and is followed by
the sequential steps of Synthesis, Implementation and Bitstream Generation.
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Figure 1.4 Flowchart of the proposed Methodology
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Chapter 2 Neural Networks

2.1 Overview

Today’s computers can perform complicated calculations, handle complex control
tasks and store huge amounts of data [24]. However, there are classes of problems
which a human can solve easily, but a computer can only process with high effort.
Examples are character recognition, image interpretation or text reading. These kinds
of problems have in common, that it is difficult to derive a suitable algorithm.

Unlike computers, the human brain can adapt to new situations and enhance its
knowledge by learning. It is capable to deal with incorrect or incomplete information
and still reach the desired result. This is possible through adaption. There is no
predefined algorithm, instead new abilities are learned. No theoretical background
about the problem is needed, only representative examples.

The neural approach is beneficial for the above addressed classes of problems. The
technical realization is called neural network or artificial neural network. They are
simplified models of the central nervous system and consist of intense
interconnected neural processing elements. The output is modified by learning. It is
not the goal of neural networks to recreate the brain, because this is not possible with
today’s technology. Instead, single components and function principles are isolated
and reproduced in neural networks.

The development of artificial neural networks began approximately 60 years ago but
early successes were overshadowed by rapid progress in digital computing. Also,
claims made for capabilities of early models of neural networks proved to be
exaggerated, casting doubts on the entire field.

Recent renewed interest in neural networks can be attributed to several factors.
Training techniques have been developed for the more sophisticated network
architectures that are able to overcome the shortcomings of the early, simple neural
networks. High-speed digital computers make the simulation of neural processes
more feasible. Technology is now available to produce specialized hardware for
neural networks. However, at the same time that progress in traditional computing
has made the study of neural networks easier, limitations encountered in the
inherently sequential nature of traditional computing have motivated some new
directions for neural network research.

Neural networks are of interest to researchers in many areas for different reasons
[12]. Electrical engineers find numerous applications in signal processing and control
theory. Computer engineers are intrigued by the potential for hardware to
implement neural networks efficiently and by applications of neural networks to
robotics. Computer scientists find that neural networks show promise for difficult
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problems in areas such as artificial intelligence and pattern recognition. For applied
mathematicians, neural networks are a powerful tool for modeling problems for
which the explicit form of the relationships among certain variables is not known.

Biological Inspiration
The model for the neural processing elements is nerve cells. A human brain consists
of about 10" of them. All biological functions —including memory —are carried out

in the neurons and the connections between them. The basic structure of a neuron
cell is given in Figure 2.1.

Dendrites

Axon

O Cell Body \N

Figure 2.1. Schematic drawing of biological neurons

Dendrites Carry electric signals from other cells into the cell body
Cell Body Sum and threshold the incoming signals

Axon Signal transfer to other cells

Synapse  Contact point between axon and dendrites

Every neuron receives electrochemical impulses from multiple sources, like other
neurons and sensor cells. The response is an electrical impulse in the axon which is
transferred to other neurons or acting organs, such as muscles. Every neuron features
about 100-10.000 connections.

There are two types of synapses: excitatory and inhibitory. The neural activity
depends on the neuron’s intrinsic electric potential. Without stimulation, the
potential rests at about -70mV. It is increased (excitatory synapse) or decreased
(inhibitory synapse) by the collected inputs. When the sum of all incoming potentials
exceeds the threshold of the neuron, it will generate an impulse and transmit it over
the axon to other cells.
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The interaction and functionality of biological neurons is not yet fully understood
and still a topic of active research. One theory about learning in the brain suggests
metabolic growth in the neurons, based on increased activity. This is expected to
influence the synaptic potential.

2.2 Neural Network Fundamentals

2.2.1 Definition

Neural Network is an interconnected group of artificial neurons that uses a
mathematical or computational model for information processing based on a
connectionist approach to computation [24]. To achieve good performance, neural
networks employ a massive interconnection of simple computing cells referred to as
"neurons" or "processing units." We may thus offer the following definition of a
neural network viewed as an adaptive machine:

“A neural network is a massively parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experiential knowledge and making it
available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.”

The procedure used to perform the learning process is called a learning algorithm, the
function of which is to modify the synaptic weights of the network in an orderly
fashion to attain a desired design objective.

Each neuron is connected to other neurons by means of directed communication
links, each with an associated weight. The weights represent information being used
by the net to solve a problem. Each neuron has an internal state, called its activation
or activity level, which is a function of the inputs it has received. Typically, a neuron
sends its activation as a signal to several other neurons. It is important to note that a
neuron can send only one signal at a time, although that signal is broadcast to several
other neurons.

For example, consider a neuron Y, illustrated in Figure 2.2, that receives inputs from
neurons Xi, X2 and Xs. The activations (output signals) of these neurons are Xi, Xz,
and Xs respectively. The weights on the connections from Xi, X2 and Xs to neuron Y
are Wi, W2, and W, respectively. The net input, y_in, to neuron Y is the sum of the
weighted signals from neurons Xi, X2 and X3, i.e., y_in = wixi + waxz + waxs [Eq 2.1].
The activation y of neuron Y is given by some function of its net input, y = f(y_in)
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Figure 2.2. A simple (artificial) neuron

Common transfer functions fall into the following categories:

Linear The simplest case. Examples are identity and linear function with saturation.
Threshold A threshold function generates binary outputs. Unipolar or bipolar
coding is possible. Another name is hard limit function.

Sigmoid Functions in the sigmoid class are continuous, differentiable, monotone and
have a limited co-domain, usually in the range of [0;1] or [-1;1]. Examples are logistic
function and the sigmoid function itself.

2.2.2 Characteristics

Artificial neural networks, apart from their complex structure, are encountered in
literature in a huge variation of architecture and implementation aspects. However,
we could highlight their main common attributes and briefly explain them [13].
Learning Neural Networks must be trained to learn an internal representation of the
problem.

Generalization This attribute refers to the neural network producing reasonable
outputs for inputs not encountered during training (learning). This information-
processing capability makes it possible for neural networks to solve complex (large-
scale) problems.

Associative Storage Information is stored according to its content.

Distributed Storage The redundant information storage is distributed over all
neurons.

Robustness Sturdy behavior in the case of disturbances or incomplete inputs.
Performance Massive parallel structure which is highly efficient.
VLSI Implementability The massively parallel nature of a neural network makes it

potentially fast for the computation of certain tasks. This same feature makes a
neural network well suited for implementation using very-large-scale-integrated
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(VLSI) technology. One particular beneficial virtue of VLSI is that it provides a
means of capturing truly complex behavior in a highly hierarchical fashion [1000].

2.2.3 Network Architecture

The performance of neural networks originates from the connection of individual
neurons to a network structure which can solve more complex problems than the
single element. Literature [25] suggests that it is possible to distinguish between two
network topologies:

1. Feed - forward networks
- First Order
- Second Order

2. Recurrent networks

They are illustrated in Fig 2.4.
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Figure 2.4 Neural Networks Architectures
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1. Feed-Forward Networks

Feed-forward networks organize the neurons in layers. Connections are only allowed
between neurons in different layers and must be directed toward the network
output. Connections between neurons in the same layer are prohibited. Feed-forward
networks of first order only contain connections between neighboring layers. In
contrast, second order networks permit connections between all layers.

The network inputs form the input layer. This layer does not include real neurons
and therefore has no processing ability. It only forwards the network inputs to other
neurons. The output layer is the last layer in the network and provides the network
outputs. Layers in between are called hidden layers, because they are not directly
reachable from the outside.

2. Recurrent Networks

Opposite to feed-forward, recurrent networks also allow connections from higher to
lower layers and inside the same layer. In many cases, the organization into layers is
completely dropped. For example, a recurrent network may consist of a single layer
of neurons with each neuron feeding its output signal back to the inputs of all the
other neurons. The presence of feedback loops has a profound impact on the learning
capability of the network and on its performance. Moreover, the feedback loops
involve the use of particular branches composed of unit-delay elements which result
in a nonlinear dynamical behavior, assuming that the neural network contains
nonlinear units.

2.3 Neural Network Types

2.3.1 Overview

There are many different neural network types which vary in structure, application
area or learning method. Among them the networks in the following page should be
presented here. They were selected according to their significance and to show the
neural network variety.

2.3.2 Perceptron

The Perceptron neuron was introduced 1958 by Frank Rosenblatt [26]. It is the oldest
neuronal model which was also used in commercial applications. Perceptrons could
not be connected to multi-layered networks because their training was not possible
yet. The neuron itself implements a threshold function with binary inputs and
outputs. It is depicted in Figure 2.5.
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Figure 2.5 Perceptron Neuron

Neuron training is possible with different supervised learning methods e.g.
perceptron learning rule, Hebb rule or delta rule. The Perceptron can only handle
linear separable problems. Graphically speaking, the problems are separated by a
line for 2 inputs or by a plane for 3 inputs, as visualized in Figure 2.6.

20 30D

Figure 2.6 Linear separable problems

2.3.3 ADELINE, MADELINE

The ADALINE is also a single neuron which was introduced in 1960 by Bernhard
Widrow. “ADALINE” stands for “Adaptive Linear Neuron” and “Adaptive Linear
Element”, respectively.

The ADALINE neuron implements a threshold function with bipolar output. Later it
was enhanced to allow continuous outputs. Inputs are usually bipolar, but binary or
continuous inputs are also possible. In functionality it is comparable to the
Perceptron. The major field of application is adaptive filtering, as shown in Figure
2.7. The neuron is trained with the delta rule.
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Figure 2.7 ADALINE neuron as adaptive filter

MADALINE

“MADALINE” spells “Many ADALINEs” — many ADALINEs whose outputs are
combined by a mathematical function. This approach is visualized in Figure 2.8.
MADALINE is no multi-layered network, because the connections do not carry
weight values. Still, through the combination of several linear classification borders
more complex problems can be handled. The resulting area shape is presented in
Figure 2.9.
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Figure 2.8 MADALINE

Figure 2.9 Complex contiguous classification areas
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2.3.4 Backpropagation

The most popular neural network type is the Backpropagation network. It is widely
used in many different fields of application and has a high commercial significance.
Backpropagation was first introduced by Paul Werbos in 1974 [27]. Until then it was
impossible to deal with disjointed complex classification areas, like the ones in Figure
2.10. For this purpose hidden layers are needed, but no training method was
available. The Backpropagation algorithm now enables training of hidden layers.

The term “Backpropagation” names the network topology and the corresponding
learning method. In literature, the network itself is often called “Multi-Layer
Perceptron Network”. The Backpropagation network is a feed-forward network of
either 1st or 2nd order. The neuron type is not fixed, only a sigmoid transfer function
is required.

'\‘
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\NASA
Class 1 W?
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- X,
S

Figure 2.10 Disjointed complex classification areas

Standard Backpropagation learns very slow and possibly reaches only a local
minimum. Therefore variants exist which try to improve certain aspects of the
algorithm [28, Chapter 12].
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2.3.5 Hopfield

The Hopfield network was presented in 1982 by John Hopfield [29]. It is the most
popular neural network for associative storage. It memorizes a number of samples
which can also be recalled by disturbed versions of themselves. This is exemplarily
depicted in Figure 2.11.

T 1

Start (t=0) Convergence

Figure 2.11 Associative pattern completion

The structure is sketched in Figure 2.12. It is a feed-back network, where every
neuron is connected to all other neurons. The connection weights between two
neurons are equal in both directions. The neuron implements a binary or bipolar
threshold function. The input and output co-domains match the threshold function

type.

NN

Wbl

Figure 2.12 Hopfield Network

Learning is possible by calculating the weight values according to the Hopfield
learning rule.

2.3.6 ART

Adaptive Resonance Theory (ART) is a group of networks which have been
developed by Stephen Grossberg and Gail Carpenter since 1976. ART networks learn
unsupervised by subdividing the input samples into categories. Most unsupervised
learning methods suffer the drawback that they tend to forget old samples, when
new ones are learned. In contrast, ART networks identify new samples which do not
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fit into an already established category. Then a new category is opened with the
sample as starting point. Already stored information is not lost.

The disadvantage of ART networks is their high complexity which arises from the
elaborate sample processing. The structure is presented in Figure 2.13. Various
versions of ART networks exist which differ in structure, operation and input value

co-domain.
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Figure 2.13 ART Network [28, p.16-3]

2.3.7 Cascade Correlation

The Cascade Correlation network was developed in 1990 by Scott E. Fahlman and
Christian Lebiere [30]. It is an example of a growing network structure. Usually it is
difficult to find a suitable network structure for a given problem. In the majority of
cases try-and-error is used, possibly supported by heuristic methods. In Cascade
Correlation networks the structure is part of the training process. Starting from the
minimal network, successive new neurons are added in hidden layers. The new
neurons are trained while previously learned weights are kept. The overall network
structure is feed-forward 2nd order as depicted in Figure 2.14.

Output
Neurons

2nd added
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1st
added
Neuron

Input Neurons

Figure 2.14 Cascade Correlation Network
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2.4 Fundamentals of Learning and Training functions

2.4.1 Learning Methods

The most interesting characteristic of neural networks is their capability to
familiarize with problems by means of training and, after sufficient training, to be
able to solve unknown problems of the same class. This approach is referred to as
generalization. We introduce some essential paradigms of learning by presenting the
differences between their regarding training sets. A training set is a set of training
patterns, which we use to train our neural network.

Unsupervised Learning It is the biologically most plausible method, but is not
suitable for all problems. Only the input patterns are given; the network tries to
identify similar patterns and to classify them into similar categories. The training set
only consists of input patterns, the network tries by itself to detect similarities and to
generate pattern classes. The most popular example is Kohonen’s self-organizing
maps [31], [32].

Reinforcement Learning In this specific type of learning the network receives a
logical or a real value after network receives reward or punishment completion of a
sequence, which defines whether the result is right or wrong. Intuitively it is clear
that this procedure should be more effective than unsupervised learning since the
network receives specific criteria for problem-solving. The training set consists of
input patterns, after completion of a sequence a value is returned to the network
indicating whether the result was right or wrong and, possibly, how right or wrong
it was.

Supervised Learning In supervised learning the training set consists of input
patterns as well as their correct results in the form of the precise activation of all
output neurons. Thus, for each training set that is fed into the network the output,
for instance, can directly be compared with the correct solution and the network
weights can be changed according to their difference. The objective is to change the
weights to the effect that the network cannot only associate input and output
patterns independently after the training, but can provide plausible results to
unknown, similar input patterns, i.e. it generalizes.
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2.4.2 Training Functions

Supervised learning suggests that there must be a defined pattern (training function)
based on which, a neural network is trained and adjusts the value for its weights.
The scheme for this procedure is as follows :

e Entering the input pattern (activation of input neurons)

e Forward propagation of the input by the network, generation of the output

e Comparing the output with the desired output (teaching input), provides error
vector (difference vector)

e  Corrections of the network are calculated based on the error vector

e Corrections are applied.

2.4.2.1 Levenberg Marquadt Algorithm

The Levenberg — Marquadt algorithm is a numerical optimization method, more
specifically it is a variation of Newton’s method that was designed for minimizing
functions that are sums of squares of other nonlinear functions. This is very well
suited to neural network training where the performance index is the mean squared
error. A flowchart of the algorithm is presented in following figure, while analytical
mathematical background is provided in Appendix A.
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Figure 2.15 Block diagram for training using Levenberg—Marquardt algorithm [23]
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Therefore, the training process using Levenberg-Marquardt algorithm could be
designed as follows:

i. With the initial weights (randomly generated), evaluate the total error (SSE).

ii. Do an update as shown in the Equation to adjust weights.

iii. With the new weights, evaluate the total error.

iv. If the current total error is increased as a result of the update, then retract the step
(such as reset the weight vector to the precious value) and increase combination
coefficient u by a factor of 10 or by some other factors. Then go to step ii and try an
update again.

v. If the current total error is decreased as a result of the update, then accept the step
(such as keep the new weight vector as the current one) and decrease the
combination coefficient u by a factor of 10 or by the same factor as step iv.

vi. Go to step ii with the new weights until the current total error is smaller than the
required value.

2.5 Hardware adaptation of Neural Networks

2.5.1 Hardware Platforms Overview

With the passing of time, integrated circuit (IC) technology has provided a variety of
implementation formats for system designers [14]. The implementation format
defines the technology to be used, how the switching elements are organized and
how the system functionality will be materialized. The implementation format also
affects the way systems are designed and sets the limits of the system complexity.
Today the majority of IC systems are based on complementary metal-oxide
semiconductor (CMOS) technology. In modern digital systems, CMOS switching
elements are prominent in implementing basic Boolean functions such as AND, OR,
and NOT. With respect to the organization of switching elements, regularity and
granularity of elements are essential parameters. The regularity has a strong impact
on the design effort, because the reusability of a fairly regular design can be very
simple. The problem raised by the regularity is that the structure may limit the
usability and the performances of the resource. The granularity expresses the level of
functionality encapsulated into one design object. Examples of fine-grain, medium-
grain, and coarse-grain are logic gates, arithmetic and logic units (ALUs), and
intellectual property components (processor, network interfaces, etc.), respectively.
The granularity affects the number of required design objects and, thereby, the
required design or integration effort.

Depending on how often the structure of the system can be changed, the three main
approaches for implementing its functionality are dedicated systems, reconfigurable
systems, and programmable systems. In a dedicated system, the structure is fixed at
the design time, as in application-specific integrated circuits (ASICs). In
programmable systems, the data path of the processor core, for example, is
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configured by every instruction fetched from memory during the decode-phase. The
traditional microprocessor-based computer is the classical example. In reconfigurable
systems, the structure of the system can be altered by changing the configuration
data, as in field programmable gate arrays (FPGAs).

2.5.2 ASIC

Application-specific integrated circuits (ASICs) refer to those integrated circuits
specifically built for preset tasks [6]. Why use an ASIC solution instead of another
off-the-shelf technology —programmable logic device (PLD, FPGA), or a
microprocessor/microcontroller system? There are, indeed, many advantages in
ASICs with respect to other solutions: increased speed, lower power consumption,
lower cost (for mass production), better design security (difficult reverse
engineering), better control of I/O characteristics, and more compact board design
(less complex PCB, less inventory costs). However, there are important
disadvantages: long turnaround time from silicon vendors (several weeks),
expensive for low-volume production, very high NRE cost (high investment in CAD
tools, workstations, and engineering manpower), and, finally, once committed to
silicon the design cannot be changed. Application-specific components can be
classified into full-custom ASICs, semi-custom ASICs, and field programmable ICs.

2.5.3 FPGA

The field-programmable gate array (FPGA) is a semiconductor device that can be
programmed after manufacturing. Instead of being restricted to any predetermined
hardware function, an FPGA allows you to program product features and functions,
adapt to new standards, and reconfigure hardware for specific applications even
after the product has been installed in the field—hence the name "field-
programmable". You can use an FPGA to implement any logical function that an
application-specific integrated circuit (ASIC) could perform, but the ability to update
the functionality after shipping offers advantages for many applications.

Unlike previous generation FPGAs using I/Os with programmable logic and
interconnects, today's FPGAs consist of various mixes of configurable embedded
SRAM, high-speed transceivers, high-speed I/Os, logic blocks, and routing.
Specifically, an FPGA contains programmable logic components called logic
elements (LEs) and a hierarchy of reconfigurable interconnects that allow the LEs to
be physically connected. You can configure LEs to perform complex combinational
functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic
blocks also include memory elements, which may be simple flipflops or more
complete blocks of memory.

As FPGAs continue to evolve, the devices have become more integrated. Hard
intellectual property (IP) blocks built into the FPGA fabric provide rich functions
while lowering power and cost and freeing up logic resources for product
differentiation. Newer FPGA families are being developed with hard embedded
processors, transforming the devices into systems on a chip (SoC).
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Compared to ASICs or ASSPs, FPGAs offer many design advantages, including;:
. Rapid prototyping

. Shorter time to market

. The ability to re-program in the field for debugging
d Lower NRE costs

. Long product life cycle to mitigate obsolescence risk

2.5.4 Neural Networks in Hardware

Pure software solutions on general-purpose processors tend to be slow because they
do not take advantage of the inherent parallelism, whereas hardware realizations
usually rely on optimizations that reduce the range of applicable network topologies,
or attempt to increase processing efficiency by means of low-precision data
representation. For the development of neural networks software simulators are
sufficient. On the other hand, in production use computer based simulation is not
always acceptable.

Compared to software simulation, hardware implementation benefits from the
following points:

d Higher operation speed by exploring intrinsic parallelities

d Reduced system costs in high volume applications

. In stand-alone installments no PC needed for operation

. Optimization toward special operation conditions possible, e. g. small

size, low power, hostile environment

The highly interconnected nature of neural networks prohibits direct structure
mapping to hardware for all but very small networks. Direct mapping also requires
many processing elements. In particular, one multiplier for each neuron input.
Alternative approaches are required to reduce connections and hardware costs.

Classification

It is possible to split up the hardware approaches into two groups:

. Fixed network structure in hardware, targeting one particular task
. Flexible neurocomputer, suitable for many different network types and
structures

Another division follows the appearance of the implementation :

Neurocomputers as complete computing systems based on neural network
techniques

PC Accelerator Boards to speed up calculations in PC, either accelerating the
operation of a software simulator or as stand-alone neural network PC card
Chips for system integration
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Cell Libraries/IP for System-On-Chip (SoC) with the need for a neural network
component
Embedded Microcomputers implementing software neural networks

2.5.5 FPGA and Neural Networks

The traditional hardware approach leads to a fixed network structure. The
implementations are usually small and fast, but some applications need more
flexibility. Especially in the course of development it is advantageous to evaluate a
number of different implementations. This can be achieved by using Field
Programmable Gate Arrays (FPGAs) which are in-system reconfigurable.

This reconfiguration feature can be exploited in a number of ways [16]:
. Rapid prototyping of different networks and parameters

. Build a multitude of neural networks and load the most appropriate one on
startup
. Recent FPGAs can be reconfigured at runtime, this allows density

enhancements by dynamic reconfiguration. Usually time-multiplex of different
processing stages (like learning and propagation) is performed.
d Topology adaption at runtime or start-up is imaginable

FPGA implementations of neural networks have a great develop in recent years,
because of its reconcilability and short design time, such as FPGA neurocomputers
(Omondi et al., 2006), Arithmetic precision for implementing BP networks on FPGA
(Moussa et al., 2004), FPGA Implementation of Very Large Associative Memories
(Hammerstrom et al., 2006), and so on. But there remains a performance problem. If
the problem could be solved, the FPGA approach will make hardware ANN a bright
future.
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Chapter 3 Implementation

Traditional programming languages such as C/C++ (augmented with special
constructions or class libraries) are sometimes used for describing electronic circuits.
They do not include any capability for expressing time explicitly and, consequently,
are not proper hardware description languages. Nevertheless, several products
based on C/C++ have appeared: Handel-C, System-c, and other Java-like based such
as JHDL or Forge. Using a proper subset of nearly any hardware description or
software programming language, software programs called synthesizers can infer
hardware logic operations from the language statements and produce an equivalent
netlist of generic hardware primitives to implement the specified behavior.

However, a specialized hardware description language, such as VHDL, is more
suitable for an exact depiction on Hardware because it provides the designer with a
higher level of control on the final netlist. Thus we choose VHDL as the language to
develop our project.

In order to validate and complete the implementation we also need a Software based
simulation for Neural Networks. There are many suitable software for this purpose,
which allow custom Neural Network building while offering a high degree of
parameterization. After experimenting with some of this Software, we arrived at the
decision that MatLab is the most suitable of all. MatLab environment contains a
powerful tool for Neural Networks [17], which is called “nntool”. It can simulate
various kinds of ANNs, as well as different learning methods and activation
functions, already implemented in MatLab language and provided as built-in
functions. This diversity was exploited by our need for a highly accurate
implementation.

3.1 Implementation Aspects

3.1.1 Neural Network Architecture

As far as neural networks are concerned, their diversity is so vast, as we have already
seen in Chapter 2, that we should specify the basic architecture that we are going to
use for our design. Those decisions are justified in the next paragraphs.

1) Ann Structure

The problem described is purely deterministic; actually we need to build a ‘black
box” which will be able to resolve a complicated non-linear function. Judging from
relative implementations in literature regarding Classification problems, a multilayer
feedforward ANN seems the most reasonable choice to perform such a task.
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2)  Number of Inputs

While the number of ANN inputs is defined by the number of RTS of the dataset,
what needs to be determined is the length of bits for each input. The latter is critical
to the precision of our final implementation, and while the minimum amount of bits
is dependent on the maximum value we encounter in the entire dataset, it is helpful
to introduce a user-defined level of precision (number of bits), which will enhance
the system with greater stability.

3)  Number of Layers

ANNSs can possibly have as many layers wanted, actually the deeper the network,
the better its learning capability is. There are however, two separate factors that are
determinant for the decision of the number of layers.

» Itis generally proven, that a single hidden layer with the appropriate number
of neurons is sufficient for an ANN that is constructed to resolve non-linear
functions [18].

* The existence of two or more hidden layers puts on delay in the
implementation, since there are more stages of processing from the input
layer to the output neurons.

The above converge to the decision of using a single hidden layer.

4)  Number of Output Nodes (Neurons)

A hardware implementation of input-output mapping should include an output
layer which shows the stage selected by the combination of inputs. One possible
implementation is to use as many neurons as the number of unique stages included
in the output stage, with each neuron acting as a switch, YES("1") or NO('0"). In that
case, only one neuron should be activated each time, while the others should be
turned off(‘0").

However, there is a different approach that requires even fewer resources. This
approach also involves output nodes acting as switches, but it uses the minimum
number of them. The amount of output nodes is determined by the number of
unique Scenarios, using the following type :

N _OUTPUTS = ceil (log 2(N _ SCENARIOS)).

For instance, if we were to implement an ANN for a dataset with 4 Scenarios, we
would simulate our ANN with 2 output nodes.

5)  Number of Hidden Nodes (Neurons)
The number of hidden nodes is a decision that we cannot be certain of. It depends on

three parameters, the most important of them non measurable. Number of Inputs,
Number of Outputs and last but not least, the complexity of the data.
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A trial and error procedure will specify the number of hidden nodes to be used in the
final implementation. Firstly, we make a rough estimation about the number.
Depending on the results of the training, we modify this number. If training
produces very little or no errors, we remove nodes until we reach the minimum
number adequate for the ANN to be efficient. Otherwise, if training produces many
errors, we add nodes until errors are minimized.

6) Activation Function

The function that seems more suitable for a hardware implementation is the logistic
sigmoid function (logsig). It is a function that drives input in the range [0, 1], an
attribute that is convenient because the two edges represent the two binary states.
After experimentation, we also found that the specific activation function provided
more accurate results when training networks in software (MATLAB), compared to
the results of a) hyperbolic tangent function (tansig)

and b) combinations of tansig and logsig in hidden and output layers.

7)  Training Function

Since we use a Neural Network to perform a deterministic task and not just as a
predictor as its primary usage usually is, there is demand for the maximum accuracy
achievable. If we chose to train our network in hardware (on-chip learning), besides
the obvious difficulty, we would reduce dramatically the efficiency of the network,
due to the restrictions introduced by the specification of the chips (lack of adequate
memory resources, which are necessary for the sophisticated training algorithms that
are used).

There is a lot of software suitable for neural network training; surely one of the most
extensive is MatLab, via Neural Network Toolbox. After experimentation with some
of the training functions provided, we came to Levenberg — Marquadt algorithm,
which is a backpropagation variation. Its advantage is that it converges faster
compared to other algorithms and its drawback is that it uses large matrixes for
computations, so it requires more memory resources compared to others. However,
there are no restrictions on the size of network that we can train using this algorithm.

3.1.2 Data Discretization

Most software simulators use floating point values for neural network calculation.
This is not suitable for hardware implementations, because floating point
computations are hardware-expensive. Fixed point data is preferred for fast and
resource efficient hardware implementations. However Xilinx tools do not directly
support fixed point library, as the latter became part of IEEE library only recently, in
VHDL - 2008 edition, while Xilinx compilers are oriented to previous VHDL
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versions. So, we have to manually add the specific libraries and add some

modifications, in order to enhance better performance:

1. When specifying the rounding routine to use in fixed point operations, there are
two options: round and truncate. Rounding provides more accurate results, but
with the cost of added logic. So, we make the choice of truncating, while keeping
in mind that we should have adequate bits so as not to lose critical information
due to truncation.

2. Overflowing routine also offers two options: Saturate and wrap. Saturation is
more accurate routine, but in terms of hardware consumes important resources,
so we go with wrap option.

3.1.3 Input Normalization

Convergence in Neural Networks is usually faster if the average of each input
variable over the training set is close to zero. To see this, consider the extreme case
where all the inputs are positive. Weights to a particular node in the first weight
layer are updated by an amount proportional to 6x where 0 is the (scalar) error at
that node and x is the input vector. When all of the components of an input vector
are positive, all of the updates of weights that feed into a node will be the same sign
(i.e. sign(0)). As a result, these weights can only all decrease or all increase together
for a given input pattern. Thus, if a weight vector must change direction it can only
do so by zigzagging which is inefficient and thus very slow.

This normalization will be performed in various ways, depending on the
implementation. After instantiating many networks, we consider as most effective
the normalization of input values in the range [-1,25 1,25].

3.2 Methodology

3.2.1 Overview

The following flowchart describes a methodology to create a detection scheme based
on the needs of the problem and evaluate its hardware footprint. There are two
separate implementations proposed, the one that is static and uses a straight —
forward approach, and the one that simulates the function of a neural network, with
dynamic behavior. The static implementation is ideal in cases where we are aware of
all the cases of combined RTSs and the Scenario those represent. Moreover, it is
applicable when this dataset of RTSs and Scenarios is kept to a relatively small size.

On the contrary, dynamic implementation with the use of an artificial neural
network is by far more elastic, in terms that we have developed techniques to reduce
the —already hardware expensive- produced neural network. Apart from the
reduced cost, it also offers the luxury of predicting undescribed situations which
resemblance other situations that have been used to train the network. This attribute
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is significant, whereas it is also challenging to develop reliable training techniques so
as our design will benefit from this attribute at the maximum rate.

We will specify the theoretical steps involved within these implementations and in
Chapter 4 the case study will provide with those arithmetical results which are

useful to perform comparisons.
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Figure 3.1 Flowchart of the proposed Methodology

3.2.2 Static Implementation

Our study concentrates on implementing a detection scheme using artificial neural
network. In order to compare our main implementation with another functional one,
we developed a static implementation which is consisted of the following steps:

> RTS Identification & Clustering

This step is common for both implementations. The extraction of RTSs out of an
actual system specification and its clustering to form a limited number of Scenarios is
part of System Scenarios methodology, which has been presented in Chapter 1. It is
actually a demanding task which presupposes a total awareness of the parameters of
the system we are going to describe. After extracting the RTS and Scenarios values,
we need to present them in a proper format, which will allow us to handle them in a
systematic way.
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» RTS Normalization

Normalization regarding the current implementation refers to a form of compression
for RTS values. It might seem insignificant, but it is actually a critical step. Scenario
selection is made by traversing an array that is consisted of concatenated RTS values.
If the length of that parameter exceeds a critical value, the complexity this array
introduces, becomes a restraining factor, thus it may become nearly impossible for
the synthesizer to implement it properly.

> Simulation

Simulation of the implementation is performed by using a testbench which is
produced at the same time that the code of the detector is produced, so it is adapted
to the existing parameters. If simulation finishes with zero errors, we can proceed to
the next step.

> Synthesis, Implementation & Bitstream Generation

These steps, as well as Simulation, are performed within the proper Software
environment. During our study, we used Xilinx ISE software to perform the current
steps. The final product is the code which will be used to instantiate the respective
FPGA platform.

3.2.3 Dynamic Implementation

Our main effort is towards an implementation that enables the use of neural
networks. The current methodology is based on the experimental results as
presented in literature and more analytically in [1000] that artificial neural networks
problems match a unique number (or small range of numbers ) of hidden layer
nodes, to maximize their performance and avoid unwanted overtraining and over-
generalization. Thus, taken this into consideration, we developed techniques for
improving the performance of a neural network detector, so the next steps present
the methodology that we used in order to achieve this improvement.

> RTS Identification & Clustering

This step has already been described. It is identical to that of the static
implementation.

> RTS Normalization

Normalization of input variables is essential to neural networks. The values of these
RTS parameters that were extracted during the RTS identification stage, need to
follow that rule. The reason why we should normalize input has been explained in
the previous sub-chapter and is effective in our designed neural network too.
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» Use Switch Criteria

This step is optional. It enables a more sophisticated method of classifying, which is
ruled by specific criteria, varying amongst different Scenarios. We can use this self-
designed setting in order to reduce the amount of times that computations need to
take place, as we can take advantage of the information provided by the criteria we
hold and force the neural network to run only when it is necessary.

» Training

Training of the neural network is performed through a software platform, in our case
MatLab. Our dataset is separated in three fragments: training, validation and testing.
We use only the training fragment, which by the rules should be the largest of the
three to train the network. There are various parameters that can affect the results of
training. Two of the most significant factors are 1) the size of the network (the size of
hidden layer should be adequate to store the non-linear relationships between input
and output, but not too large, in order to prevent network from overfitting or
overtraining) and 2) the complexity of the problem (whereas this factor is not
measurable, it has an immense impact on the performance of training).

> Simulation

Evaluation of our design can be achieved through Simulation. There are two possible
causes for errors during Simulation. In this critical stage, we will use the fragment of
the dataset which is unknown for the network, since we did not use it during
training, in order to evaluate the number of cases the network provides correct
output.

> Prediction Evaluation (Pn)

Out of the cases presented to the network, there is a small fragment that is unknown
for it as it has never been trained with these values. The percentage of accurate
predictions on this fragment provides the desired outcome, which is the prediction
ability of the network.

> Pna>Pna

This is the stage of decision. If the current percentage of prediction is larger than the
previous measurement, we should continue the process by adding some nodes to the
implementation and repeating the stages from the beginning. It is indication that
there is still room for improvement for our network. If the percentage is lower
though, our network is saturated, so we should seek the optimal solution in our exact
previous instantiation, with fewer hidden nodes.
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» Synthesis, Implementation & Bitstream Generation

These steps are identical to those of static implementation and form the pure
technical part of the methodology.

3.2.4 Neural Networks Builder

Based on the options described previously in this Chapter, we have an outline for the
project we want to build. But going deeper into its details, it is easily noticeable that
the aspects of the structure are so many, and there is also a different approach
matching each case. The solution on this scale of variation is to create a generator,
which will describe Neural Networks in VHDL language based on the given dataset
and user choices. This generator was developed in MatLab language taking into
consideration the most important design aspects. Finally, a GUI was developed to
provide convenience in handling the different parameters, and the set of MatLab files
was compressed into a single MatLab application named “Build Neural Networks”.
We present the GUI environment followed by a brief explanation for each option in
Appendix B.

3.3 Anatomy of the Design

3.3.1 Project Hierarchy

The produced files from MatLab App, combined together, form the Project of the
Hybrid Neural Network. The network has a top-down hierarchy, so we will examine
each file’s underlying logic and design aspects, starting backwards, from the small,
independent modules lying inside larger modules, to the bigger and more complex
ones. The Project Hierarchy for the basic architecture is shown in Figure 3.2

Project Hierarchy

Ann

Hidden Hidden Output Output
Node Node Node Node

Hidden Log Hidden Log Output Output
LUTs Sigmoid LUTs Sigmoid LUTs LUTs

Figure 3.2 Schematic Depiction of Project Hierarchy
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Two Library files, which are not depicted in the Figure, are also used in the Project.
Fixed_float_types_c.vhdl and fixed_pkg_c.vhdl [33] contain various type definitions
and functions regarding fixed point type representation.

Log_sigmoid, which is the implementation of activation function in Hardware, and
Ann, the implementation of Artificial Neural Network, constitute the Templates of
the Project, since they do not contain any data dependable on the specific dataset.
The rest of VHDL files are directy dependent both on the dataset values and on user
choices about neural architecture, bits precision, etc.

The rest of this chapter is dedicated to provide extensive analysis of each individual
file from both functional and structural perspective. For better understanding, we
cite pieces of code along with comments and explanations. Schematics are also used
to project the functions and interactions between different modules. Details about
schematics are provided in Appendix C.

3.4.2 Neural Library Module

This file forms a package, which is called “neural_library”. This package is
practically a library that contains constants, user-defined types, component
declarations and functions. The usefulness of this library is that it contains, in
concentrated form, elements that are used throughout the entire design. Each of the
other files includes this package, by adding the line “use work.neural_library.all;” in
the declaration part of the code, so they are capable to use any of the types, functions
or constants contained. In other words, these are the global variables of the design.

The application produces the following Constants, which provide information about
the basics of the design. Apart from N_INPUTS, N_HIDDEN and N_OUTPUTS
which have an obvious significance, the next ones define the length of decimal
numbers used. UPPER_LIMIT stands for the length of integer part, while
DOWN_LIMIT stands for the length of fraction part with a negative sign. N_BITS is
then calculated: UPPER_LIMIT +DOWN_LIMIT + Sign. The level of precision that
determines those lengths is user-defined.

CONSTANT N INPUTS : integer := 5;
CONSTANT N HIDDEN : integer := ;
CONSTANT N OUTPUTS : integer := 4;
CONSTANT N BITS : integer := ;
CONSTANT UPPER LIMIT : integer := ;
CONSTANT DOWN LIMIT : integer := -9;

Since we have the task to run a Neural Network, operations with decimal numbers
are inevitable. For this purpose we name a new type (fixedX) which is a flexible type
of signed fixed — point type. When we make an assignment of fixed — point number
we need to specify the length of integer and fraction part. These values are already
determined by the constants UPPER_LIMIT and DOWN_LIMIT. FixedX_vector is an
array of fixedX numbers. Since we have frequent parallel multiplications and
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additions, it is convenient to declare these values as an array, rather than separately.
Finally, we define zero constant, which is an array of ‘0" bits.

subtype fixedX IS sfixed( downto -9);
type fixedX vector IS array (INTEGER RANGE <>) OF fixedX;
CONSTANT zero : fixedX := (others => '0');

The next part of library holds the auto generated types that define the possible states
of Finite State Machines. Not only each node’s function is controlled by a unique
FSM, but there is also a FSM to control the function of the neural network.
Hidden_node_modes type describes the FSM that hidden nodes use. The number of
states provides us with information about the number of Clock Cycles required until
a hidden node completes its tasks, since they are executed sequentially. The final
state is activation_function, where the node output is generated and sent as input to
output_nodes. Respectively, output_node_modes type describes the FSM of output
nodes. The states are idle, multiply, accumulate, but we have emitted activation_function
state. The reasons for that will be explained in the appropriate chapter.

Ann_modes type represents a Finite State Machine that controls the computational
row of the Neural Network. Details are provided later.

type hidden node modes IS ( type ann modes is (
idle, idle,
multiply, run,
accumulate 1, run_next,
accumulate 2, turn_ off output
accumulate 3, ) ;
activation function
); type node modes is (
idle,
type output node modes IS ( run
idle, )
multiply,

accumulate 1,
accumulate 2,
accumulate 3,
accumulate 4,
accumulate 5,
accumulate 6

)

The following types are used to hold the values of inputs (input_uvector,
ann_input_vector) and the intermediate values produced by the hidden nodes
(hidden_vector). Since our inputs are of different lengths, it would be a waste of
valuable Input Ports in our targeted hardware platform, to use an array of same —
length elements, so we use this record type, where each input is given exactly the
amount of bits required.

Ann_input_vector also contains the values of input, but after they have been
compressed. It can be seen by the cited code, that the length of inputs is significantly
smaller in this case. The purpose for this compression will be discussed later.
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Hidden_vector is the type we need in order to hold the intermediate values produced
after the hidden nodes have completed processing, the so — called hidden output.
The size of the array is the number of hidden nodes ( 60 in this case).

type hidden vector IS array (1 TO ¢0) OF
STD LOGIC VECTOR(/ downto 0);

type input vector IS

record
one : STD LOGIC VECTOR(/ downto 0);
two : STD LOGIC VECTOR(4 downto 0);
three : STD _LOGIC VECTOR(2 downto 0);
four : STD _LOGIC VECTOR(7 downto 0);
five : STD LOGIC VECTOR(1l downto 0);

end record;

type ann_input vector IS

record
one : STD LOGIC VECTOR(2 downto 0);
two : STD LOGIC VECTOR(3 downto 0);
three : STD LOGIC VECTOR(1l downto 0);
four : STD LOGIC VECTOR(1l downto 0);
five : STD LOGIC VECTOR(O downto 0);

end record;

Weights and biases are the structural elements of an artificial neural network. They
are the stored “knowledge” of the machine. All operations involve the use of input
values, weights and biases. The application stores the values of biases after the
training, converts them in binary representation and prints them in the library as a

fixedX_vector constant. Weight values are provided to the network in a different way,
in which we will also refer to.

CONSTANT hidden bias : fixedX vector(l to 60) := (
"11111001110100111000",
"0o000001101110100111",
"0oo00001000010110011 ™,
"00000100001011000110",
"00000001000010100010",

"11111110010101010110",

"00000001001001011010™) ;
CONSTANT output bias : fixedX vector(l to 4) := (

"11111111100111100011",
"11111101011000011110",
"oooooo010010101011110",

0000070700171 1T07TT007T™Y ¢
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These types and constants shown next, are exclusively used during Simulation
process. We will make a brief reference, as they are not directly used for the design.

N_EXAMPLES shows the size of the dataset we made use of. Latency constant stores
the number of Clock Cycles in which the final implementation will perform and is
presented for informative reasons.

Input_bitvector and ann_input_bitvector contain exactly the same information as
input_vector and ann_input_vector, but we use BIT type instead of STD_LOGIC,
because STD_LOGIC type cannot perform specific operations we need during the
Simulation. Vector_length shows the length of a vector, which is the outcome of the
concatenation of all inputs. This vector will be used to form the complementary
LUTs that “fix” the errors of the Network.

Counters, MATRIXES and ERROR_MATRIXES pertain to measure the errors and
hold the data of the network when such an error is produced.

CONSTANT N EXAMPLES : integer :=
CONSTANT latency : integer := ;

type input bitvector IS

record
one : BIT VECTOR(7/ downto 0);
two : BIT VECTOR(4 downto 0);
three : BIT VECTOR(Z downto 0);
four : BIT VECTOR(7 downto 0);
five : BIT VECTOR(1L downto 0);

end record;

type ann_input bitvector IS

record
one : BIT VECTOR(2 downto 0);
two : BIT VECTOR(Z downto 0);
three : BIT VECTOR(1l downto 0);
four : BIT VECTOR(1L downto 0);
five : BIT VECTOR(O downto 0);

end record;

CONSTANT vector length : integer := ;
type counters IS ARRAY (1l to 4) OF INTEGER;
type MATRIXES IS ARRAY (! to ) OF

BIT VECTOR(vector length-1 downto 0);
type ERROR MATRIXES IS ARRAY (!l to 4) OF MATRIXES;

There are also various Component Declarations in neural_library package, but it
would be meaningless to refer to extensively, as they are simple copies of their
respective Entities. Finally, two simple functions, fo_sl and to_slv convert BIT types to
STD_LOGIC and BIT_VECTOR types to STD_LOGIC_VECTOR. They are also
exclusively used during simulation.
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3.4.3 Log Sigmoid Module

X <-8

I

Log

Sigmoid M LUT

|

X=>8

CLK

| Cycle 1

Figure 3.3 Log Sigmoid Module

The Schematic in Fig. 3.3 depicts the behavioral flow of the log_sigmoid module,
which performs the activation function. Logistic sigmoid function is the following :

f(x)= L, and its plot is shown next
1+e™ a
Nl
0
-1

a = logsig(n)

Figure 3.1 Log-Sigmoid Transfer Function

L

Since we need to use the specific function in a hardware implementation, we should
find ways to avoid the “expensive” in terms of logic and time consuming operations
of division and exponential. Among many implementations of logsig function found
in literature, we ended up in the most suitable for our purpose, which is described in

[19].
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This design takes advantage of two basic attributes of the function:
e f(X)= practically 0if X<-8, and f(x)=practically 1, if Xx>8.
e Itisasymmetrical function, f(—x)=1—f(x).

Of course, it is a clocked function which begins when the enable bit that arrives from
the node FSM is ‘1".

PROCESS (CLK) IS

BEGIN
IF (CLK'event) AND (CLK = '1') THEN
IF (enable = '1') THEN

Next lines of code perform comparisons of input with -8 and 8. Instead of simply
using comparing signs (<, >) which would enable substractors in the underlying
hardware circuit, we use some clever logic.

. Temp1 variable is ‘1" only when all bits from the sign bit downto the 4t Least
Significant bit of the Integer part are ‘1, since it uses 2’s complement to represent
negative numbers. Yet, in that case input is no smaller than -8.

J Temp?2 variable is ‘0" only when all bits from the sign bit down to the 4% Least
Significant bit of the Integer part are ‘0. Yet, in that case input is no greater than 8.

If input meets one of these conditions, output is given and process is terminated. If
not, the process goes to second computational stage.

templ := ;

temp2 := '0';

FOR i IN to UPPER LIMIT LOOP
templ templ AND input (i) ;
temp?2 temp2 OR input (i) ;

END LOOP;

smaller than 8 := templ;
greater than 8 := temp2;

IF (smaller than 8 = 'O' AND input (UPPER _LIMIT) = '1"'")
THEN output <= "00000000";

ELSIF (greater than 8 = 'l' AND input (UPPER LIMIT) = '0"')
THEN output <= "10000000";

We examine the sign bit (input(UPPER_LIMIT)) to see if input is positive. If yes, we
use variable x to store the 3 LSB of integer part and 3 MSB of fraction part of input,
which will be used in the next computational stage. If input is negative we use
minus_input variable to store its absolute value. We will compute the output of —x as
we take advantage of the function’s attribute f(—x) = 1— f(x).
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ELSE

IF (input (UPPER LIMIT) = '0') THEN
FOR i IN downto LOOP
x (i) := input(i-3);
END LOOP;
ELSIF (input (UPPER LIMIT) = '1') THEN
minus_input := - input;
FOR i IN downto LOOP
x(i) := minus_input(i-3);
END LOOP;
END IF;

The next stage is a two-level AND-OR gate implementation as described in [19],
which stores in y variable a 8 - bit STD_LOGIC_VECTOR. Those bits consist of the
sign bit and 7 bits of the fractional part of the output. As a result, we have a
quantized form of the function’s output. The final computational stage is a condition
that determines the output.

Again, we should check if input is positive. If yes, y variable drives the output, but if
not, we should subtract y variable from 1, store the result in mid variable, and then
convert the result in STD_LOGIC_VECTOR type.

pre output := to ufixed(y,0,-7);
CASE input (UPPER LIMIT) IS
WHEN '0' =>
output <= vy;
WHEN '1l' =>
mid := resize(ONE - pre output,0,-7);

output <= to_slv(mid);
WHEN OTHERS => null;
END CASE;
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3.4.4 Hidden LUTs Module
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Figure 3.4 Hidden LUT Module

This module is a concentration of Look up Tables. The word “hidden” indicates that
hidden nodes make use of these LUTs. But what exactly is their function? We already
mentioned that weights and biases are the structural elements of an artificial neural
network. Bias values are declared in the neural_library package, however we did not
encounter weight values declaration until now. The reason why this is happening is
a major aspect of our selected architecture.

The first operations when a node is enabled are parallel multiplications. Every input
coming from the previous layer is being multiplied by its respective weight. The
outcome of these multiplications is then accumulated and sent to the activation
function to produce the output value of the node. This is described by relationship:

output = f (Z (weight xinput) + bias) , where £() is the activation function.

The problem that arises from these specifications is that we should use a rather large
number of multipliers, even for medium - sized networks. The example network
given, with 5 Input Nodes, 60 Hidden Nodes and 4 Output Nodes would require
5x60 + 60x4 = 540 multipliers. Modern FPGAs have no problem to support this
amount of logic, but apart from the Area restrictions in our chip, which is always a
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parameter that matters, when designing a Project, the use of multipliers — unless
pipelined - will slow down our design, since multiplications require significantly
more time than additions.

There are however two facts that allow us to follow another path. The first is always
a fact regardless the characteristics of our dataset: Since training takes place only
once, the weights produced are going to be constant numbers. There is no condition
that will change their values. So, the first operand of multiplications is a constant,
thus the complexity is reduced, since we multiply number x constant. The second
fact, which allows us to completely emit multipliers from the design comes from the
observation of the dataset: If every single input has a relatively small number of
possible values, then multiplications are further more simplified, so as to being
capable to take the form of a Look Up Table.

The application prints separate entities for every node. The input as we see next, is of
ann_input_vector type. As we have already described, the values stored using this
type have originated from the compression of actual input values. The fact that we
do not use inputs, but a compressed form of the latter, is an additional way to save
valuable resources in our design. There is also a bit that controls their function. When
Enable =’1’, hidden_LUTS are activated.

ENTITY hiddenNode 1 IS

PORT (
CLK : IN STD LOGIC;
input : IN ann _input vector;
Enable : IN STD LOGIC;
Lut output : OUT fixedX vector(l to 5)
)
END ENTITY;

While LUTs are implemented using case statements, there are as many LUTs in every
node as the number of inputs in the design. Possible outputs have been calculated
within “Build_Neural” application, and then reformed to signed binary numbers of
already given specifications. Moreover, there are Comment Lines next to the LUTs
that show the physical meaning for every selection.
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3.4.5 Output LUTs Module
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Figure 3.5 Output LUT Module
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Obviously, output LUTS are the equivalent modules for output nodes, as
hidden_LUTS are for hidden nodes. There is only a slight difference between the two
modules. We previously examined the module performing the activation function
and we mention again that the output of a hidden node is also the input for an
output node. This value in in the range [0, 1] as we know, because this is the range of
logsig function. Moreover, after experimenting, we decided to use seven bits to hold
the fraction part of this value. The criterion on this decision is that it provides the
best trade-off balance, between error propagation and activation function size-
complexity.

So, provided the values of possible hidden outputs are fixed, we know the exact size
of multiplication output LUTs. The size of these tables is 129 positions, 27 + 1. They
are also implemented as separate entities, each one dedicated to its respective node.
Case statements implement parallel LUTs within every node.
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Figure 3.6 Hidden LUT module

Hidden nodes along with output nodes are the processing units of the Network.
Every hidden node module should instantiate a log_sigmoid submodule, which will
be enabled at the final stages of computation, to evaluate the result of the node
output. Moreover, a single hidden node instantiates the appropriate hidden_LUT
entity, which holds for the particular node, the weight values.

The following cited piece of code shows the entity of a hidden node module. Two
generic values show the number of inputs in the network (“Num_Inputs”) and the
serial number of the specific hidden node (“Position”). Since all hidden nodes share
the same code, the differentiation made by the latter parameter is essential as will be
seen next, for linking every hidden node with the according hidden_LUT. “Node_en”
input acts as a switch, which is handled by the central ANN FSM. “Node_mode” is
also a parameter provided by ANN FSM and defines the exact action that the node
will perform. “Node_flag” is an indicator that the specific node has completed all
stages of computation and is ready to accept new inputs, while “node_output” is the
provided result of these computations and in terms of artificial neural networks it is
the hidden output of the network. This output is the result of the log_sigmoid
function, its range of values is [-1, 1] so it is always an 8 — bit parameter, with 7 out
of 8 bits expressing its decimal part.
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ENTITY hidden node is

GENERIC (
Num TInputs : INTEGER := 4;
Position : INTEGER
)
PORT (
input : IN ann _input vector;
node en : IN STD LOGIC;
node mode : IN node modes;
CLK : IN STD LOGIC;
node flag : BUFFER STD LOGIC :='1"';

node output : OUT STD LOGIC VECTOR(7 downto 0)
);

Every node is linked to a unique hidden LUT module which performs the
multiplication as described in previous sub-chapter. The following code shows how
this link is achieved for the hidden node with serial number 1 and the parameters
passed to the log_sigmoid module as well as the parameter that is returned from
log_sigmoid module (“weight_x_input”) which is used in the next stages of
computation.

nodel: IF (Position = 1) GENERATE
lutl: hiddenNode 1 port map (
CLK,
input,
LUT enable,

weight x input
)
END GENERATE nodel;

Every hidden node integrates a log_sigmoid sub-module. The instantiation is shown
next, with the parameters “sig_input” and “sig_enable” that are passed to the sub-
module representing the input and control bit, respectively. “Node_output” is the
result of the log sigmoid function, which happens to be the later stage of
computation within the node. Thus, the specific signal will be the output parameter
of the node.

sigmoid 0 : log sigmoid port map (
sig input,
sig enable,
CLK,
node output

) ;

Main control functions of the Artificial Neural Networks are performed in the ann
module, while node modules consist of the main processing units. The FSM of the
ann module can possibly set the nodes in two possible modes: either “run” or “idle”(
this setting can be expanded to include a “learning” mode).

“Run” mode along with the “node_en” bit sets the node to read data from its input
and perform sequentially the functions that is designed to. “Idle” mode sets the node
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to an idle state, which is the state that declares at the current time the node does not
perform any computations.

The following figure depicts the possible states of a hidden node, and the incoming
modes set by the Ann FSM.

Ann FSM

Hidden Node FSM

activation
function

-

Figure 3.7 Hidden Node FSM

There is a distinction between hidden node mode and hidden node state. This choice

intends to provide stability to our design, as the node state is isolated from the

incoming node mode signals, so an unexpected change in the value of hidden node

mode will not affect the current action of the node until it finishes and transits into

idle state. The first actions when the incoming “node_mode” signal’s value is “run” are

described by VHDL in the cited piece of code below and are namely:

e  Unsetting the “node_flag” so it will be unavailable from the main ann module to
be assigned new tasks until it finishes current computations.

e  Setting the “LUT _enable” bit, that is, switching on and transferring control to the
hidden_LUT module.

e  Set the node FSM to its initial state, which is “multiply”.

In case of an incoming “idle” signal the actions performed are:
e  Setting the “node_flag” so it is ready to accept new tasks.
e  Zero the intermediate accumulators used during the computational stages

WHEN idle =>
CASE node mode IS

WHEN run =>
node flag <= '0';
LUT enable <= '1';
node state <= multiply;

WHEN idle =>
node flag <= '1";
temp accumulator <= (others => zero);




The slowest part of the design is the part of additions. A number of operands which
is equal to the number of inputs from the previous layer need to be summed, and the
sum will be used as input to the log_sigmoid function in order to provide the final
output of the node. The scheme of additions is of critical importance, because if we
choose adders with many operands this will eventually be the bottleneck of our
system and will have negative effect in timing performance. Eventually, we choose to
add operands in pairs of two, thus the formed adder tree will have a depth of
ceil(log2(N_inputs)). The cited code shows an example of the described adder tree,
which in this case handles 6 inputs, so the depth of the tree will be ceil(log2(6)) = 3,
that means that 3 Hardware cycles are required to produce the final sum. The code
of adder tree is followed by the final state of the node, which switches on the
log_sigmoid sub-module and sets the node into an idle state.

WHEN accumulate 1 =>

temp accumulator(l) <= resize(weight x input(l) + weight x input(2), ,=8)
temp accumulator(?) <= resize(weight x input(3) + weight x input(4), ,=8)
temp accumulator(3) <= resize(weight x input(5) + weight x input(6), ,=8)

temp accumulator(4) <= resize(bias + weight x input(7),11,-8);
node state <= accumulate 2;

WHEN accumulate 2 =>
temp accumulator(5) <= resize(temp accumulator(l) + temp accumulator(2),11,
temp accumulator (6) <= resize(temp accumulator(3) + temp accumulator (4)
node state <= accumulate 3;

WHEN accumulate 3 =>
temp accumulator (/) <= resize(temp accumulator(5) + temp accumulator(c),ll,
node_ state <= activation_ function;

WHEN activation function =>

sig input <= temp accumulator(7);
sig enable <= '1"';

node_state <= idle;
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3.4.7 Output Node Module
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Figure 3.8 Output Node module

Output nodes are almost identical to hidden nodes. Slight modifications are made to
enhance timing performance. The entity of output node holds exactly the same
signals as this of hidden node, except for the output signal, which in that case of is
the final output of the neural network and is only a single bit per each node. On the
same way as hidden nodes, every output node is linked to an output_LUT module,
in which we have already referred to as an indirect way to perform multiplications.
This link is based on the logic that we used to link hidden nodes to their respective
LUT modules, and is shown below.

nodel: IF (Position = 1) GENERATE
lutl: outputNode 1 port map (
CLK,
input,
LUT enable,

weight x input

END GENERATE nodel;

The modification made is in the design of the output_node FSM. Since we decided
that the neural network will use binary logic to show its output, every output node is
obliged to 2 possible values, 0 or 1. However, the final result is provided by the
log_sigmoid function, which gives as output continuous values in the range [0,1]. In
order to save valuable hardware resources we performed a logical leap by observing
closely the graph of log-sigmoid function and specifically its result for input with
zero value. It is logsig(0) = 0.5, logsig(0-) < 0.5 and logsig(0+) > 0.5. This attribute
allows us to set this value as threshold and force all negative values to give output ‘0
and all positive values ‘1. Based on this thinking, we emitted the log_sigmoid
module, thus the output is provided by determining the sign of the final adder. The
FSM of the output node is controlled by the Ann FSM and it shows great
resemblance with that of hidden node.
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The final action of the output node has been already described, and the code that
carries out this action is given below. The assignments made in this piece of code
namely:

e The final adder of the tree adder scheme. Notice that this assignment refers to a
variable and not a signal. This differentiation allows us to use the value of the
variable within the same Clock Cycle.

e Invert the most significant bit of the variable, which in our selection of signed
numbers depicts the sign of the variable. If the result of the final adder is
positive we should drive the output to the value ‘1" whereas value ‘0" should be
given if negative. Thus, inversion is appropriate.

e Set the “node_flag” so it is ready to accept new tasks.

e  Set the node FSM to idle state.

WHEN accumulate 6 =>

final accumulator := resize(temp accumulator(58) + temp accumulator(59),6,-8);
node output <= NOT final accumulator (UPPER LIMIT) ;
node flag <= 'l';

node state <= idle;
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Ann module is the top module of the Neural Network design. There are few
computations performed by this module; its purpose is to instantiate the number of
hidden and output nodes and distribute tasks to them whenever is necessary. The
entity of the module contains some generic values which determine the size of the
Ann. We briefly name the rest signals. “Input” is provided as a vector of fixed
numbers, “ann_mode” is an input signal that handles the function of the network,
” Enable” bit acts as a switch, while “reset” is useful to recall the network to its initial
state when it has already proceed to computational stages and is necessary to stop.
“Output” is a vector of bits, sized equal to the Number of outputs which eventually
shows the number of selected Scenario in binary representation.

ENTITY ann IS
GENERIC (

N I : INTEGER := N INPUTS;
N H : INTEGER := N HIDDEN;
N O : INTEGER := N_OUTPUTS
);

PORT (
input : IN ann _input vector ;
ann_mode : IN ann modes;
CLK : IN STD LOGIC;
Enable : IN STD LOGIC :='0';
reset : IN STD LOGIC :='0';
Ready : OUT STD LOGIC =1y
output : OUT STD LOGIC VECTOR(! to N_OUTPUTS)

);
END ENTITY ann;

The number of nodes is passed as a generic value, so the ann module should be able
to read these numbers and instantiate as many nodes. The signals that are used to
handle the functions of hidden nodes are the following:

e “Hidden_layer_en” : A vector of bits; each of them enables a specific hidden node.
We can either simultaneously enable all hidden nodes, or in a more
sophisticated approach, make a selection of the nodes we enable.

e  “Hidden_layer_mode” : This signal defines the state of the hidden nodes.

hidden layer : FOR i IN to N _H GENERATE
hidden nodes : hidden node generic map( N I,
i
)
port map (
input,
hidden layer en(i-1),
hidden layer mode,
CLK,
hidden node flag(i-1),
hidden output (i)
)
END GENERATE hidden layer;

In the same way ann module creates and instantiates the appropriate number of
output nodes. It also uses handling signals as the ones mentioned previously.
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The ann code consists of three processes, the main process that controls all main
functions and two sub-processes. These sub-processes behave like large AND gates
that combine the “flag” signals from all the hidden and output nodes. The output of
these gates becomes ‘1" only when all the nodes’ flag either on the hidden or the
output layer are set to ‘1, so it is an indication that we can proceed to the next stage
of computations.

and gatel: PROCESS(hidden node flag) IS

variable temp : STD LOGIC;

BEGIN
temp := '1"';
FOR i IN hidden node flag'range LOOP
temp := temp AND hidden node flag(i);
END LOOP;

hidden layer flag <= temp;

END PROCESS;

The most secure way to see how these sub-processes are useful is to cite the code at

the beginning of the main process and see how the signals that are the products of

these sub-processes are used. We can descriptively name the condition that must be

met to enter the main code of the process which is actually the function of the Ann

FSM :

CLK signal is in its positive edge.

“Enable” signal is set to 1.

“Reset” signal is set to 0.

Both “Hidden_layer_mode” and “Output_layer_mode” signals are set to idle. This

practically means that control has not been transferred neither to hidden nor to

output nodes.

5. Both “Hidden_layer_flag” and “Output_layer_flag” as they are produced by the
large AND gates are set to 1.

Ll

fsm: process(CLK) IS
BEGIN
IF (CLK = 'l' AND CLK'EVENT) THEN
IF (Enable = '1') THEN
IF (reset = '1') THEN
ann_state <= idle;
Ready <= '1";
ELSE
IF (hidden layer mode /= idle OR output layer mode /= idle) THEN
hidden layer mode <= idle;
output layer mode <= idle;
ELSIF (hidden layer flag = 'l' AND output layer flag = 'l') THEN
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The next fragment of code describes the function of the ann FSM, which has the
responsibility to share tasks and collect the results. It behaves as a regulator that
assures a safe processing flow. “Run” state sets the enable signals of the hidden
nodes and orders their respective FSMs to start computations, whereas “run_next”
state switches off hidden nodes while switching on output nodes.

CASE ann_state is
WHEN run =>
hidden layer mode <= run;

hidden layer en <= (others => 'l');
ann_state <= run next;

WHEN run next
hidden layer en <= (others => '0');

output layer mode <= run;
output layer en <= (others => 'l');
ann_state <= turn off output;

WHEN turn off output =>
output layer en <= (others =>'0");
Ready <= '1"';
ann_state <= idle;

The next schematic depicts the ann FSM and its interaction with nodes FSMs.
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Figure 3.11 Ann FSM
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Under specific circumstances, it is useful to use a complementary LUT to hold some
of the Scenario values. In that case, neural module will be used as a Component into
the Hybrid module, which becomes the top module. There are four stages involved
in this module, the first two are common for all cases, and the last two are
complementary, only one out of them will be selected on a specific run of the
module. The first stage is named “read_input” and it performs the following :

e It uses one register per input, which acts as a sensor. In every Clock Cycle this
register is compared to the input, and if it does not locate a change in at least one
input, it drives the output to the last computed result. If it does locate a change,
it proceeds to the next actions.

e It performs a sort of compression for the new input located. This compression is
very useful in cases where input has a large value, so it needs a significant
amount of bits to be represented. Afterwards only as many bits as needed to
represent the possible states of this value are used. Since multiplications are
performed using LUTs, the literal values of inputs are not directly needed, to the
contrary we can use their “symbolic” values, which are the result of the
compression.

e Based on the signals that show whether a change in each input was located, it
enables the Ann module or keeps reading input.

The cited code describes the functions of sensor and compression for one single
input.

WHEN read input =>
IF (hold input.one /= input.one) THEN
hold input.one <= input.one;
input flag(1l) ="'y
CASE input.one IS

WHEN "01" => new input.one <= "0";
WHEN "10" => new _input.one <= "1";
WHEN others => NULL;
END CASE;
ELSE
input flag(1l) = '0';
END IF:;

The decision at the end of the stage, which determines whether a change in Scenario
is possible based on the combination of inputs, so it will be needed to
enable Ann module.

flag := input flag(l) OR input flag(2?) OR input flag(3) OR input flag(4);
IF (flag = '1') THEN
enable <= '1"';
ann_function <= run;
stage <= correct;
output flag <= '0';
ELSE
enable <= '0";

ann_function <= idle;
output flag <= '1';
END IF;
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The second stage is a memory-like structure which is used to store an array of
Scenarios. These scenarios are selected when their respective combined RTSs are
given as the incoming address in this structure and bypass the structure of neural
network. For shortcut reasons, we only show the instantiation of the variable that
acts as address and the first values of the LUT.

WHEN correct =>

LUT decision := 'l';
test vector := new input.one & new_input.two & new input.three & new_ input.four;
CASE test vector IS

WHEN "000000111001110000™ => LUT output <= "000000001";

WHEN "000000000111100000™ => LUT output <= "000000001";

WHEN "010100010001100000™ => LUT output <= "000000001";

WHEN "000000111001100000™ => LUT output <= "000000001";

WHEN "000000100111100000™ => LUT output <= "000000001";

WHEN "000000111001010000™ => LUT output <= "000000001";

WHEN "000000000111000000"™ => LUT output <= "000000001";

The third stage of execution is selected only in certain cases; when the combination of
inputs is not contained in the complementary LUT we described, our system follows
this execution, which is depicted in the Schematic as Execution 1. The program stalls
until the output of the ann is provided, and then it drives this signal to the hybrid
output. It also sets the flag of this module, a sign that calls for further action, and
moves back into the first stage.

WHEN drive ann =>

IF (ann _ready = 'l') THEN
output <= ann_output;
reg output <= ann_output;
output flag <= '1l';
enable <= '0"';
stage <= read input;

END IF;

The fourth stage is the alternative and it describes the case when the specific Scenario
coded by the current inputs forms a register in the memory-like component, so the
function of ann module is not necessary and Execution 2 shown by the schematic
takes place.

WHEN drive LUTS =>

output <= LUT output;
reg_output <= LUT output;
ann_stop <= '0";
output flag <= '1';
enable <= '0"';
stage <= read input;
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Chapter 4 Case Study

In the context of the current case study, we describe the extraction of RTSs from a
wireless system based on the study made in [20], followed by the experimental
results regarding detection implementation.

4.1 System Modeling

Antennas Signal Power We consider an uplink Wireless transmission channel of
a MIMO-OFDM system based on the IEEE 802.11ac communication protocol [34].
The transmission data rate, for which we can achieve a successful transmission, is
defined by the bandwidth, the capacity and the noise on the channel. A fundamental
trade-off exists between Bit-Error-Rate (BER), which is correlated with the provided
QoS, and antenna signal power. A potential run-time reconfiguration manager can
adjust the signal power and the memory subsystem to the running situation. The
scheduler selects the energy optimal configuration scheme (number of spatial
streams, bandwidth, modulation and coding (MC) schemes) which respect the
running constrains, based on the targeted communication standard (WLAN
802.11ac) characterization [34]. More precisely, the scheduler chooses the
communication scheme, which requires the minimum SNR for the current data rate
requirements under given conditions of external distortion. This presupposes that
the scheduler has perfect updated knowledge of the channel condition and the
application deadlines. The antenna signal power is adjusted to give the required data
rate.

The aforementioned fundamental bound between signal power and data rate under
specific noise conditions is mathematically expressed by the Shannon-Hartley
theorem:

C- Bmg:[ni] W

4

,where C is the channel capacity in bits per second; B is the bandwidth of the channel
in hertz; S is the average received signal power over the bandwidth, measured in
Watt; N is the average noise or interference power over the bandwidth, measured in
Watt; and S/N is the signal-to-noise ratio (SNR).

This equation shows that a theoretical minimum SNR exists for achieving a target
capacity with specific available channel bandwidth. The minimum SNR for a specific
level of noise defines the minimum required signal power for an error-free
transmission. For example, if the available bandwidth is Bw the theoretical minimum
SNR for a transmission with bit-rate Co without errors is:

G

NRE2B" -1 ()
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The average signal power, S, can be written as S=EvC, where Es is the average energy
per bit. The average noise power, N, can also be redefined as, N=NoB, where No is the
noise power (Watts/Hz). The Shannon-Hartley theorem can be written in the form:

C_ log (1 +—E-"(:
B\ NB )

The ratio C/B represents the bandwidth efficiency of the system in bits/second/Hz.
Knowing the SNR levels, we can characterize the total signal power efficiency of
every configuration (minimum Signal Power) to achieve the targeted capacity. If the
configuration supports multiple antennas (multiple spatial streams) the total signal
power is estimated as the sum of the signal of each antenna.

The theoretical minimum SNR for an error-free transmission is impossible to reach in
practice. The modulation schemes define how close to this theoretical SNRmin the
transmission can be. Every modulation scheme is characterized by a minimum SNR
that allows the demodulation of the transmitted symbols without errors. Knowing
the minimum SNR for every modulation scheme (MS), we can define the minimum
Signal Power for every MS for specific levels of noise. The equation that defines the
symbol error probability (Ps) for every MS, with respect to SNR is the following [35]:

() ]

M is the number of symbols used, Es the average received signal power, No the
average noise signal power and erfc is the complementary error function.

5, M—gry =

The graphical expression of this equation for the modulation schemes of the 802.11ac
is presented in Figure 4.1. Channel coding improves the SNR by a factor R [18]. So
the curves can be normalized for equal energy per information bit (pre-coding)
bearing in mind that the energy per transmitted bit is less than the energy per
information bit by a factor equal to the code rate R. The graphical expression of the
symbol error probability for the modulation and coding (MC) schemes of the
802.11ac can be found in Figure 4.2.

Symbol Error Probability Ps
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Figure 4.1 Symbol Error Probabilities for Figure 4.2 Symbol Error Probabilities
802.11ac Modulation Schemes for 802.11ac Coding & Mod Schemes
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In this context, every system scenario RTS is characterized by a two-dimensional cost
1) the total signal power and 2) the bit error rate (BER). The signal power is inversely
proportional to the symbol error probability and correspondingly to bit error
probability as shown in Figure 5.1 and Figure 5.2. Each RTS is characterized by a
curve in the two-dimensional space of total signal power. This curve is derived by
the respective curve at Figure 3 that corresponds at the MCs of the RTS. Based on the
bits-per-symbol of MCs (BPSK: 1bps, QPSK: 2bps, etc.), the short guard interval (SGI)
and the noise level of the RTS, the Ps (symbol error probability) to SNR curve can be
transformed to BER to Signal Power curve.

Besides the above-mentioned technical analysis the most unstable parameter for a
transmission is the user profile, e.g., the distance between receiver and transmitter,
the existence of other communication channels or others sources of distortion. These
are factors that influence the channel transmission and are directly influenced by the
user behavior. For example, if the user moves in a saturated spectrum area or in a
noisy environment high communication channel interference is expected.
Correspondingly, if the user changes position very rapidly, (for example, driving a
car) this has impact on the normal demodulation of the transmitted signal (Doppler
Effect).

Memory Banks The SNR level and the changing environment on the wireless
channel also affects the memory requirements. In more detail, the conditions of the
channel determine the coding and modulation scheme needed for a successful
communication and, consequently the required data rate. The coding phase
transforms an m-bit data string into an n-bit string in order to be encoded, when the
given coding rate is m/n. The modulation phase conveys a varying number of bit
streams together, based on the chosen modulation. The data rate constraint defines
the storage and transmission requirements for the data. As a result, the memory
footprint depends on the data rate of the channel and is dynamic for a changing
environment. Energy consumption on the memory subsystem depends on the
number of accesses and the energy per access, which are different based on the size
and the type of memory.

The observation that the memory requirements at run-time vary significantly due to
dynamic variations on the transmission channel and the protocol, is exploited
through use of system scenarios. Instead of defining the memory requirements for
the worst-case data rate and tuning the system according to this, system scenarios
are generated for different situations. The combination of the coding and the
modulation parameters define the data rate for each RTS. The data rate is the
identification variable and the cost factor is its memory footprint. Based on the cost
factor, the different memory footprints are clustered into scenarios. The clustering of
RTSs is based both on their distance on the memory size axis and the frequency of
their occurrence. The key feature needed in the platform architecture is the ability to
efficiently support different memory sizes that correspond to the system scenarios
generated by the methodology. Execution of different system scenarios then leads to
different energy costs, as each configuration of the platform results in a specific
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memory energy consumption. The dynamic memory platform is achieved by
organizing the memory area in a varying number of banks that can be switched
between different energy states.

4.2 CASE STUDY (1)

Our development platform is the Xilinx Virtex 6 XC6XCX75T platform [21]. Since our
implementation is not directed exclusively to the specific platform, but it is designed
to have general applicability, we only mention the basic characteristics of the
platform, shown in Table 4.1. It is not the latest design, but it is large enough to fit the
current implementation. It is worth to mention that the current platform also holds
special hardware blocks, as shown in Figure 4.3. And it handles arithmetic
operations using a number of special blocks named DSP48E1s [22], 864 in total. The
latter could be a presumptive constraint for the multiplication operations on neural
networks, so we use optimized architecture to overcome this potential problem.

) Slice Slice Bonded
Device .
Registers | LUTs IOBs
Virtex - 6
708,480 | 354,240 720
XC6VCX75T

Table 4.1. Main Specifications of the Virtex 6 - XC6VCX75T (Package FF484)
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Figure 4.3 Virtex—6 Blocks

We extracted results for two different Clustering options (2560 and 5120 RTS) for a
series of dynamic implementations following the methodology steps, and for the
static implementation as well. The most important metrics of Synthesis,
Implementation and Simulation stages are depicted in the following pages.
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QoS Metric Hardware Metrics
Implementation Prediction | Latency Frequency Slice LUTs Power
(# Hidden Nodes) (Perc.) (Cycles) (MHz) (Utilization) (W)
40 61% 22 290,43 4% 7,43
50 73% 22 286,04 5% 7,41
60 74% 22 250,62 6% 7,43
70 81% 23 222,52 8% 7,43
80 78% 23 222,42 9% 7,45
Static - 2 417,88 <1% 7,3

It can be easily noticed, that in terms of Hardware cost, the Static Implementation is
superior than the implementations with the use of Neural Networks. However, its
dynamic ability is non — existent, since it can only detect the Scenarios it has been
trained of. Each metric is shown separate in the next diagrams.

Case Study 1 - Prediction

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% T T T T )
40 50 60 70 80
Hidden Nodes

Percentage

The best-tuned neural network is the one with 70 Nodes. From that stage on,
additional hidden nodes do not provide with more prediction capacity.
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Case Study 1 - 2560 RTS
.,?:1.) 200 -
o 180 -
5 B 40 Nodes
= 160 -
E m 50 Nodes
€ 140 1 = 60 Nodes
v
£ 120 - m 70 Nodes
g 100 m 80 Nodes
o
© g0

Implementation

The size of Complementary LUTs in each implementation is an indication of the
effectiveness of the training. Complementary LUT is the structure that is instantiated
during Simulation and has as many entries as the number of error cases. If we had
not been using cross — validation technique for better generalization results, we
would expect that with the increase of hidden nodes, a reduction of the size of
Complementary LUT. But since we use validation, ‘early stopping” prevents the
network from overfitting to the known data. It is worth to notice that the
implementation with the best prediction capacity is the one with the smallest
Complementary LUT size.

Case Study 1 - Latency

24 -
823 -
o
>~
C
5
O 22 - ® @

21 T T T T 1

40 50 60 70 80
Hidden Nodes

Our designs are structured in such way that latency is directly dependent only on the
size of hidden layer, because at this stage they infer a tree adder, the length of which
defines the total latency in CLK cycles. An increase in latency by one CLK cycle is
noticed at the transition from the implementation with 60 nodes to that with 70
nodes.
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Case Study 1 - Frequency

40 50 60 70 80
Hidden Nodes

The implementations are synchronized at a certain frequency. Additional nodes do
not affect the critical path in terms of additional logic, but the complexity of the
circuit becomes higher, so it is more difficult for the tools that do the placement in
the FPGA platform. The gradual reduction of frequency is due to rooting delays.

Case Study 1 - Delay

120
100
80

60

ns

40

20

40 50 60 70 80
Hidden Nodes

Finally, we can see the total delay of each implementation, the response time from
the moment that RTSs are given to the input stage, to the output stage, where the
number of Scenario is produced. The slowest implementation needs 103 ns, but it is
worth to notice, that our customization offers shortcuts for the extraction of
scenarios, it is therefore feasible to complete the process in significantly lower
fragment of time.

The results for the Clustering with 5120 RTS can be seen next:
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4.3 Case Study (1)

QoS Metric Hardware Metrics
Implementation Prediction | Latency Slice LUTs Power
(# Hidden Nodes) (Perc.) (Cycles) | Frequency (MHz) | (Utilization) (W)
80 82% 23 197,12 11% 7,47
90 79% 23 178,83 13% 7,49
100 79% 23 171,23 14% 7,49
110 89% 23 166,86 17% 7,48
120 83% 23 166,78 18% 7,5
Static - 2 348,79 1% 7,34
Case Study 2 - Prediction
90% -
88% -
86% -
£ 84% -
s
-
78% -
76% -
74% T T T
80 90 100 110 120
Hidden Nodes

Starting with 80 hidden nodes, gradually we increase the size of hidden layer, until
the network’s dynamic ability is saturated. This point was discovered for the
implementation with 110 nodes.
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Case Study 2 - 5120 RTS

.g 180 -
o 170
[5 m 80 Nodes
— i
2 160 m 90 Nodes
<
"é 150 1 100 Nodes
E) 140 - M 110 Nodes
E' H 120 Nodes
£ 130 -
o

120

Implementation

Again, we notice that the implementation with the best prediction capacity, is also
the one with the smallest size of Complementary LUT. The combination of these
factors makes the current implementation in both ways the most suitable.

Case Study 2 - Latency

24 -
(€]
Y
S
>~
O 23 - ® & @ @ o
x
=
@

22 T T T T 1
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Migrating from the implementation with 80 Nodes to that with 120 Nodes does not
add a single CLK Cycle. There is balance in this metric.
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Case Study 2 - Frequency
250 -
200 - \ — \
< 150 -
o
= 100 -
50 -
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80 90 100 110 120
Hidden Nodes

Additional nodes result in reduction of operating frequency, as we had seen on the
previous Case Study. The added size and complexity of the circuit is the reason for
this deterioration on frequency performance.

Case Study 2 - Delay
140 -
135 -
130 -
125

ns

120 -
115 +
110 -

105 T T T T 1
80 90 100 110 120

Hidden Nodes

Finally, the total delay is increasing gradually, so the performance in terms of timing
cost is deteriorating. This result is expected, as the number of CLK cycles remains
stable, while frequency reduces.
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Chapter 5 Conclusions & Future Work

Our work was focused towards developing a non-existing implementation for
Scenario Detection, which apart from the usual process of responding to a
combination of inputs and providing the suitable output, will also have dynamic
ability, that is to predict during unknown situations the Scenario to be implemented.
This was achieved with high level of success, as we developed highly accurate
Neural Networks, with prediction ability up to 90%. The systematic way by which a
methodology to extract the optimal solution in terms of efficiency, and the scientific
documentation that this methodology was based on, suggests that it is a rather
reliable solution.

Besides the numerous interventions that targeted in optimizing the implementation
in terms of efficiency and cost, there is still room for improvement from the technical
point of view. Some ideas would be:

e Ternary adders could be added in place of the existent which add only two
operands. Since the stage of additions is the most time consuming part of the
design, the reduction of the stages of the tree adder that would be inferred with
the use of ternary adders, would significantly reduce the latency of the
implementation, without affecting the critical path, that is the operating
frequency.

e The implementation has been designed with minimum levels of logic at each
CLK Cycle, so the final Timing delay in the Critical path is due to routing delays.
The solution to reduce routing cost in the Hardware would be an analytical
floorplanning, which is performed with the use of the Software tools that
provide us all the suitable tools.

There are also many ways of customization using the existent implementation. One
such customization could be an energy — saving solution which would enable at each
stage, only the neurons that would be necessary for each case. Even better, we could
create the ANN the way we create it at the moment, and with the use of genetic
algorithms we could reduce the number of neurons that do not eventually
participate in computations. This solution is towards a more compact
implementation, with less hardware footprint and better possibilities to be
embedded into a small chip.

Finally, the biggest challenge would be to create a system which would be
instantiated as an artificial neural challenge, but its parameters for training would be
given only during run-time. Thus, the system should have the capability to perform
on-chip training, and periodically evolve, depending on the scale of the different
inputs it will encounter. Perhaps the structure of Cascade Correlation Networks is
the most suitable to perform the specific task. Anywise, on - chip training is
extremely demanding, since constraints in hardware devices would reduce the
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wanted precision and therefore undermine the capability of the network for proper

training.
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Appendix A

A.1 Introduction

The Levenberg-Marquardt algorithm which was independently developed by
Kenneth Levenberg and Donald Marquardt, provides a numerical solution to the
problem of minimizing a nonlinear function. It is fast and has stable convergence. In
the artificial neural-networks field, this algorithm is suitable for training small- and
medium-sized problems.

Many other methods have already been developed for neural-networks training. The
steepest descent algorithm, also known as the error backpropagation (EBP)
algorithm, dispersed the dark clouds on the field of artificial neural networks and
could be regarded as one of the most significant breakthroughs for training neural
networks. Many improvements have been made to EBP, but these improvements are
relatively minor. The EBP algorithm is still widely used today; however, it is also
known as an inefficient algorithm because of its slow convergence. There are two
main reasons for the slow convergence: the first reason is that its step sizes should be
adequate to the gradients). Logically, small step sizes should be taken where the
gradient is steep so as not to rattle out of the required minima (because of
oscillation). So, if the step size is a constant, it needs to be chosen small. Then, in the
place where the gradient is gentle, the training process would be very slow. The
second reason is that the curvature of the error surface may not be the same in all
directions, such as the Rosenbrock function, so the classic “error valley” problem [28]
may exist and may result in the slow convergence.

The slow convergence of the steepest descent method can be greatly improved by the
Gauss—-Newton algorithm [28]. Using second-order derivatives of error function to
“naturally” evaluate the curvature of error surface, The Gauss—Newton algorithm
can find proper step sizes for each direction and converge very fast; especially, if the
error function has a quadratic surface, it can converge directly in the first iteration.
But this improvement only happens when the quadratic approximation of error
function is reasonable. Otherwise, the Gauss—-Newton algorithm would be mostly
divergent.

The Levenberg-Marquardt algorithm blends the steepest descent method and the
Gauss—Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss—
Newton algorithm and the stability of the steepest descent method. It's more robust
than the Gauss-Newton algorithm, because in many cases it can converge well even
if the error surface is much more complex than the quadratic situation. Although the
Levenberg-Marquardt algorithm tends to be a bit slower than Gauss—-Newton
algorithm (in convergent situation), it converges much faster than the steepest
descent method.
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The basic idea of the Levenberg—-Marquardt algorithm is that it performs a combined
training process: around the area with complex curvature, the Levenberg-Marquardt
algorithm switches to the steepest descent algorithm, until the local curvature is
proper to make a quadratic approximation; then it approximately becomes the
Gauss—Newton algorithm, which can speed up the convergence significantly.

A.2 Algorithm Derivation

In this part, the derivation of the Levenberg-Marquardt algorithm will be presented
in four parts: (1) steepest descent algorithm, (2) Newton’s method, (3) Gauss—
Newton'’s algorithm, and (4) Levenberg— Marquardt algorithm.

Before the derivation, let us introduce some commonly used indices:

¢ p is the index of patterns, from 1 to P, where P is the number of patterns.

¢ m is the index of outputs, from 1 to M, where M is the number of outputs.

¢ i and j are the indices of weights, from 1 to N, where N is the number of weights.

¢ k is the index of iterations.

Other indices will be explained in related places.

Sum square error (SSE) is defined to evaluate the training process. For all training
patterns and network outputs, it is calculated by

P M

E(xw)= 2> D eh (A1)

=1 m=1
where

x is the input vector
w is the weight vector
epm is the training error at output m when applying pattern p and it is defined as:

E';r,m = '{fp.m _ﬂp.nr (AZ)
where
d is the desired output vector
o is the actual output vector

A.2.1 Steepest Descent Algorithm

The steepest descent algorithm is a first-order algorithm. It uses the first-order
derivative of total error function to find the minima in error space. Normally,
gradient g is defined as the first-order derivative of total error function (A.1):

(A.3)

DE(x,w) [ 0E  OE oF |
g — a — v
W

a'WJ aHr'z a}"lr'.-\r
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With the definition of gradient g in (A.3), the update rule of the steepest descent
algorithm could be written as

Wisr = Wi — O (A4)

where « is the learning constant (step size).

The training process of the steepest descent algorithm is asymptotic convergence.
Around the solution, all the elements of gradient vector would be very small and
there would be a very tiny weight change.

A.2.2 Newton’s Method

Newton’s method assumes that all the gradient components g1, g2, ..., gN are
functions of weights and all weights are linearly independent:

- 2 =F (anz "'WN)

) gEZPE{HI]:lHIE”'HIN] (A5)

En = Fy (wy,wy - 'Wrx']

where F1,F2, ..., FN are nonlinear relationships between weights and related
gradient components.
Unfold each gi (i =1, 2,..., N) in Equations A.5 by Taylor series and take the first-
order approximation:

8 “Emﬂ“%ﬂwl + %; Aw, +---+ﬂﬂwh
awl au:? a“'lj\_'
82 = 820 +ﬁﬂw: + og: Aws +---+ 9g: Awy (A.6)
: a1"1'}] ng a“_:h_
En = 8no T % Aw, + 9 Aw; +---+ En Awy,;
i a“’] a‘-"l-’z awl.\r

By combining the definition of gradient vector g in (A.3), it could be determined that

3 doE

L ) A7
dg; dw; o0 E (A7)
aw, ow; dw,ow;
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By inserting Equation A.7 to A.6:

2 2 2
81 = 8o +a—}§ﬁwt +£ﬁwz T +a—EﬁW.\f
owy dw, 0w dwidwy
0°E o’E d°E
) = +————Aw +——Aw, - —Awy A8
. 827 820 ow,0W, I w3 dw, 0wy ! (A9)
2 2 EE
= +—— AW +—— AW, +---+ Awy
En = 8no ow oW, l dwyow, owy !

Comparing with the steepest descent method, the second-order derivatives of the
total error function need to be calculated for each component of gradient vector. In
order to get the minima of total error function E, each element of the gradient vector
should be zero. Therefore, left sides of the Equations A.8 are all zero, then

2 2 2
U"-'gln"‘aE__:ﬂ | T aE ﬂﬂ’z‘l‘ + E ﬂwn\r
dw; dw,dw, Widwy
d°E d°E o’E (A2
O=g.p+ Awi+——Aw; +--- + Aw;
R T T Pl Iwowy
2 2 2
D=gyot+t—— AW +—Aw, +--- + Awy
S0 awhrawl l aw_n;au’g ’ aw;:. g
By combining Equation A.3 with A.9
| OE o’E 9°E o°E
——=—gpy=—— AW+ ——— AW+ ——— Awy
ow, gro ow; ' dw,dw, oW, dw "
dE 0°E d’E 0°E
— =—g,p=——AW, +——Aw, +--+——— Awy,
1 dw, 820 ow,0w, ] ow; ? dw,0w Yo (Ad0)
dE d’E d’E d9’E
e g —— AW ——— AWy 4 —— Awy,
awy, owdw, AW 0w, owy,

There are N equations for N parameters so that all Awi can be calculated. With the
solutions, the weight space can be updated iteratively.
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Equations A.10 can be also written in matrix form

_OE] | 9E 'E  9E
—g, ] ow, a*:“l_ aWI:a'W: an?“’N [ Aw, |
_ dE d°E d°E d°E
g | |- LK N
=| oIwy |=| ow.ow ows3 dwrdwy | X
(A.11)
—&x , , g Awy
R J’E ’E  9E | Y -
dwy | | dwyow, dw dw, oWy,
where the square matrix is Hessian matrix:
[ O’F 9E PE |
aw; ow,dw, dw,dwy
o’E o’E o’E
H =| dw,ow, ow; ow,0w,, (A12)
d’E d°E d°E
| dwyOw, W OW, Iwn,
By combining Equations A.3 and A.12 with Equation A.11
—g=HAw (A.13)
So Aw=-H"g (A.14)
Therefore, the update rule for Newton’s method is
Wi =wi —Hi' g (A.15)

As the second-order derivatives of total error function, Hessian matrix H gives the
proper evaluation on the change of gradient vector. By comparing Equations A.4 and
A.15, one may notice that well-matched step sizes are given by the inverted Hessian
matrix.

A.2.3 Gauss — Newton Algorithm

If Newton’s method is applied for weight updating, in order to get Hessian matrix H,
the second-order derivatives of total error function have to be calculated and it could
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be very complicated. In order to simplify the calculating process, Jacobian matrix J is

introduced as

I de, de, dey, |
dey dey dey
oW, dw, oWy
dey dey o dey y
ow, oW, oWy

(A.16)
J= .

dep, dep, dep,

dw, ow,  dwy

dep dep dep

ow, aw, Wy,

dep u dep i o aﬁ’ﬂ
| dw, aw, owy |

By integrating Equations A.1 and A.3, the elements of gradient vector can be

calculated as
0= aw ( zp ;sz m] Zz[a‘e ] (A7)

=1 m=1

Combining Equations A.16 and A.17, the relationship between Jacobian matrix ] and

gradient vector g would be

g=Je (A.18)

where error vector e has the form

(A.19)




Inserting Equation A.1 into A.12, the element at im row and jm column of Hessian
matrix can be calculated as

(1P Mo
2 2 E E €p.m .
b= d°E _ [2 p=1 m=1 " ] _ :f : Ejﬂ aﬁp.m aEp,m 1S (A.20)
" aHr'"aW'j aHf"[aH"_f' aHf'j aHr'J, v

=1 m=l

d’e
- a'w,:a‘-"l-’j

As the basic assumption of Newton’s method is that Sij is closed to zero [29], the
relationship between Hessian matrix H and Jacobian matrix J can be rewritten as

(A.22)
H=J"]

By combining Equations A.15, A.18, and A.22, the update rule of the Gauss—Newton
algorithm is presented as

Wi =wi—(T1T:) Tiex (A23)

Obviously, the advantage of the Gauss-Newton algorithm over the standard
Newton’s method (Equation A.15) is that the former does not require the calculation
of second-order derivatives of the total error function, by introducing Jacobian
matrix J instead. However, the Gauss-Newton algorithm still faces the same
convergent problem like the Newton algorithm for complex error space
optimization. Mathematically, the problem can be interpreted as the matrix JTJ] may
not be invertible.

A.2.4 Levenberg — Marquadt Algorithm

In order to make sure that the approximated Hessian matrix JTJ is invertible,
Levenberg-Marquardt algorithm introduces another approximation to Hessian
matrix:
where

u is always positive, called combination coefficient

I is the identity matrix
From Equation A.24, one may notice that the elements on the main diagonal of the
approximated Hessian matrix will be larger than zero. Therefore, with this
approximation (Equation A.24), it can be sure that matrix H is always invertible.
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By combining Equations A.23 and A.24, the update rule of Levenberg-Marquardt
algorithm can be presented as

Wi = Wi _(L{j.ﬁ. + IJI)_l J.e. (A.25)

As the combination of the steepest descent algorithm and the Gauss—Newton
algorithm, the Levenberg-Marquardt algorithm switches between the two
algorithms during the training process. When the combination coefficient p is very
small (nearly zero), Equation A.25 is approaching to Equation A.23 and
Gauss—-Newton algorithm is used. When combination coefficient u is very large,
Equation A.25 approximates to Equation A.4 and the steepest descent method is
used.

If the combination coefficient p in Equation A.25 is very big, it can be interpreted as
the learning coefficient in the steepest descent method (A.4):

o =— (A.26)
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Appendix B

This section intends to provide information about the Neural Network Tool that was

developed in MatLab environment for the purposes of our study.

.
B build_neural
i

Input
Nodes

Output
Nodes

No Scenarios

ARCHITECTURE

Recommendation @ |

Hidden
Nodes

Multiplication Style

|LUTs

Bits Precision

Activation Function

{Normal

Complementary LUTs

| Single

CHIP PARAMETERS

Clock Trigger

|Rising Edge

TRAINING PARAMETERS

NN Instantiations

Create Neural

Train/Validation Files

Firstly, we have to insert our input files, which should be .dat files and their format
should be strictly arranged.

Training File contains the part of the dataset that we want to be engaged to the
training procedure, while Validation File contains the part used to evaluate the

Figure B.1 Neural Network tool

performance of our network and its ability to generalize.

Every column represents an input, while every row represents a combination of
inputs and their output. The last column stands for the output values. MatLab will
accept as a delimiter a comma, a semicolon, or even a space for the separation of the
values. We should note here a design restriction, which is that input values from the
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dataset should be positive integer numbers, and output values should be continuous
integer numbers beginning with 1.

Switch Criteria

“Switch Criteria” button is an optional choice. It enables a more sophisticated method

of classifying, which is ruled by specific criteria, varying amongst different Scenarios.

Application requests a .dat file which should keep to the following rules :

e  The file should have as many set of Criteria as the number of Scenarios.

e A number specifies the number of Criteria for each set and is followed by as
many lines it defines.

e (s and 1s are used to represent changes in Inputs. Thus, line 1;0;0;,1;0 implies that
when the first and fourth input do not change, a change in Output is never
triggered.

No Training

“No Training Values” button is another optional choice. It is useful in cases of having
extreme values in our dataset that could slow down convergence while training the
dataset, or even affect negatively in the performance of the Network. These values
are given as a .dat file following the rules already explained, however it should be
noted that those values should not be erased from the original dataset; they are just
copied to a new file. Also, for reasons explained later, this option cannot be
combined along with “Separate” Complementary LUTs.

Analysis Results

Underlying functions process input files and provide information about the
impending Neural Network that is going to be built. Input Nodes, Output Nodes, No
Scenarios and Cases, which is a measurement of the size of the dataset. Also, there is a
box titled “Recommendation” which makes use of an algorithm that estimates the least
number of Hidden Neurons that would provide the maximum efficiency. It is worth
to mention that this is just a rough estimation; the decision about the size of a Neural
Network is more like a trial — and — error process.

Multiplication Style

This option is of major significance. If it is feasible, we could choose to bypass the
costly multiplications, and use LUTs instead, in a manner that we will explain later
in this chapter. If the use of multipliers is necessary, though, we choose the
respective option in this pop — up menu.
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Bits Precision

When implementing an Artificial Neural Network in FPGA, precision is one of the
most important aspects. The desired level of precision is handled as an input
parameter, and throughout Simulation of the final circuit, the user could define the
impact in his own design, and balance the tradeoff between less logic and better
performance.

Activation Function

There are two possible options regarding Activation Function. The underlying
implementations perform the same task, whereas ‘Extended’ form provides better
precision, because it covers twice as many cases as ‘Normal’ form, thus using more
logic. If there is requirement for a very — high precision implementation, then the
‘Extended’ form of Activation Function should be chosen. We should also note that
the letter could have a slightly negative impact in Frequency.

Complementary LUTs

This option indicates the style by which the Neural Networks transforms into a
Hybrid Network; that is embedding complementary LUTs in the stage of Simulation,
which perform the task of covering the cases where the Neural Network itself is
unable to provide the correct output.

. “Single” option infers the implementation of a large LUT, which contains all
the cases of miscalculation. When this LUT is enabled, the function of NN is not
triggered, and output is provided by the LUT.

. “Multiple” option infers as many LUTs as the output bits, each one holding
the inputs that cause an error in this specific bit. When enabled, it does not bypass
the function of NN, just inverts the erroneous bits.

Clock Trigger

By the option “Clock Trigger” we are allowed to define the CLK edge which triggers
our final circuit. It is included to provide some flexibility for the final design.

Training Parameters

This parameter is not directly linked with the VHDL implementation, its purpose is
to simplify the stage of training Neural Networks. We can determine the exact
number of NN instantiations trained in our System. Out of these instances, the one
with the better performance will be selected and converted into RTL description.
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Create Neural

The final action when all settings have been fixed is to press “Create Neural” button,
which will pass the chosen parameters to the built — in MatLab toolbox in order to
train our Neural Network. A message appears indicating the state of the Application.
While the Neural Network is being trained and afterwards evaluating the results and
producing the appropriate files, the state is set to “Processing”. If this procedure is
completed without errors, the state is set to “Successful”.
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Appendix C

The following legend intends to define the simplified shapes used for the structural
and functional analysis of the modules. Each rectangle represents a single module,
while shapes imply the following functions :

LEGEND
A single Clock Period
Add Adder of 2 operands
LUT — Look Up Table

| Enable a sub - module

-

%/ } Disable a sub - module

Multiplexer

Set Module State as Ready

{ /\ Set Module State as Busy

Idle - Perform no action

/ I Transfer Control to a sub - module

* Two units of the same kind imply a parallel array of such units.
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