

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ανίχνευση Δυναμικών Σεναρίων Συστήματος Σε Ασύρματες

Εφαρμογές με χρήση Νευρωνικών Δικτύων

Διπλωματική Εργασία

του

Ευάγγελου Ν. Ζαφειράτου

Επιβλέπων : Δημήτριος Σούντρης

 Αν. Καθηγητής Ε.Μ.Π

Αθήνα, Μάρτιος 2015

 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

 ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ανίχνευση Δυναμικών Σεναρίων Συστήματος Σε Ασύρματες

Εφαρμογές με χρήση Νευρωνικών Δικτύων

Διπλωματική Εργασία

του

Ευάγγελου Ν. Ζαφειράτου

Επιβλέπων : Δημήτριος Σούντρης

 Αν. Καθηγητής Ε.Μ.Π

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 30η Μαρτίου 2015.

(Υπογραφή) (Υπογραφή) (Υπογραφή)

……………………… ……………………… ………………………

Δημήτριος Σούντρης Κιαμάλ Πεκμεστζή Γεώργιος Οικονομάκος

Αν. Καθηγητής Ε.Μ.Π Καθηγητής Ε.Μ.Π Επ. Καθηγητής Ε.Μ.Π

Αθήνα, Μάρτιος 2015

……………………………………

Ζαφειράτος Ευάγγελος

Διπλωματούχος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π

Copyright © ΖΑΦΕΙΡΑΤΟΣ ΕΥΑΓΓΕΛΟΣ, 2015

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας

εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό.

Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση

να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό

πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο

εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι

αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου

5

Περίληψη

Τα τεχνητά νευρωνικά δίκτυα κερδίζουν σε δημοφιλία τα τελευταία χρόνια,

καθώς οι μοντέρνοι επεξεργαστές εξελίσσονται με βάση την προσέγγιση στην

παραλληλοποίηση. Οι παραδοσιακοί, σειριακοί ψηφιακοί υπολογισμοί

επικρατούν σε πολλούς τομείς, αλλά είναι λιγότερο επιτυχείς για άλλου τύπου

προβλήματα. Η εξέλιξη των νευρωνικών δικτύων ξεκίνησε πριν από 60 χρόνια

περίπου, με κίνητρό να προσπαθήσουμε να καταλάβουμε αλλά και να

μιμηθούμε τον εγκέφαλο, και συνεχώς κερδίζουν έδαφος, αφού η εξέλιξη των

σύγχρονων Hardware πλατφόρμων προσφέρει νέες δυνατότητες.

Τα σενάρια συστήματος είναι επίσης ένας εξελισσόμενος τομέας στην επιστήμη

του Hardware, που έχει σαν σκοπό να μετατρέψει την αυξανόμενα δυναμική

φύση των ενσωματωμένων συστημάτων σε ευκαιρία βελτιστοποίησης αντί για

πιθανό πρόβλημα. Η χρήση των σεναρίων συστήματος στις μοντέρνες συσκευές

μας επιτρέπει να διανέμουμε τους πόρους του συστήματος με έναν αποδοτικό

τρόπο, αφού κάθε εφαρμογή που εκτελείται έχει και διαφορετικές απαιτήσεις.

Γνωρίζοντας το σενάριο εκτέλεσης, είναι δυνατό με δυναμική ανάθεση πόρων,

να πετύχουμε καλύτερη απόδοση.

Ο στόχος της παρούσας Διπλωματικής Εργασίας είναι να παρέχει μία

υλοποίηση, η οποία χρησιμοποιεί τεχνητό νευρωνικό δίκτυο ως το βασικό δομικό

στοιχείο, και πραγματοποιεί εντοπισμό σεναρίων σε πραγματικές εφαρμογές. Η

επιλογή των νευρωνικών δικτύων έγινε εξαιτίας της παράλληλης δομής τους,

και της ικανότητάς τους να αναπτύσσουν δυναμική συμπεριφορά. Η υλοποίηση

παρουσιάζεται συγκριτικά με μία στατική υλοποίηση με σκοπό να αναδείξουμε

και να επισημάνουμε τις διαφορές και τα πλεονεκτήματα της καθεμιάς.

Λέξεις Κλειδιά

Σενάρια συστήματος; δυναμική ανάθεση; Νευρωνικά δίκτυα, εντοπισμός; fpga;

vhdl.

6

Abstract

Artificial Neural Networks gain popularity in recent years, as modern processors

evolve towards a parallel approach. Traditional, sequential, logic-based digital

computing excels in many areas, but has been less successful for other types of

problems. The development of artificial neural networks began approximately 60

years ago, motivated by a desire to try both to understand the brain and to emulate

some of its strengths and is constantly gaining attention as modern Hardware

platforms evolve and offer new promising capabilities for Neural Networks

development.

System Scenarios is also a developing field in science of Hardware which aims to

convert the increasingly dynamic nature of embedded systems into an optimization

opportunity instead of a potential problem. The use of system scenarios scheduling

in modern devices allows us to exploit resources of the system in a sophisticated

manner, since every different form of execution differs in terms of hardware

requirements. Acknowledging the scenario to be executed, it is possible to modificate

resources allocation and achieve greater performance.

The goal of this diploma thesis is to provide a sufficient hardware/software co-design

implementation which enables neural networks as the basic unit of a structure that

detects Scenarios in real applications. The choice of neural networks was made

because of their inherited parallelism and their ability to develop dynamic behavior.

The implementation with Neural Networks is presented side by side with a straight –

forward implementation in order to feature the advantages of each and highlight the

differences.

The thesis is organized as follows:

In Chapter 1, there is an introduction in Wireless Systems and System Scenarios,

along with a proposed methodology (Zompakis et al, 2012) for using System

Scenarios in real applications. A description of Scenario detection in real - time

follows accompanied by related work on this problem. Finally, an outline of the

suggested solution by current thesis is presented.

Chapter 2 is a brief description of Artificial Neural Networks. Historical background,

topologies, and types of ANNs are examined. Special emphasis is given to training

methods and more specifically, to Levenberg – Marquadt algorithm, which is the

selected training function.

Analytical methodology for our solution is presented in Chapter 3. The workflow

shows the steps sequentially towards the final implementation. The said chapter also

contains extended justification for the neural network selected specifications. The last

part is a detailed analysis of the VHDL modules of the implementation, which apart

from technical information also include timeline diagrams. The intention for using

7

timeline diagrams for each module separately is to analytically present in a

schematic way the exact tasks performed in the inferred hardware.

Chapter 4 is dedicated to the presentation and analysis of the results of our case

study. Important implementation parameters, such as operating frequency, chip area

and dynamic ability are measured and compared for the two separate solutions.

Finally, Chapter 5 summarizes the results and conclusions of the current study and

suggests future work for the improvement of the existent implementation.

Keywords

System Scenarios; Dynamic Scheduling; Neural Networks; detection; fpga;

vhdl.

8

Table of Contents

Chapter 1 Introduction

1.1 Embedded Systems ………………………………….………….…………. 10

1.1.1 Overview ………………..………………………………………… 10

1.1.2 SDR Operation Specs ……………………………………………… 11

1.2 System Scenarios …………………………..……………………………… 13

1.2.1 Overview ……………….………………………………………….. 13

1.2.2 Description and Methodology …………….…………………….. 15

1.3 Motivation – Problem Statement ………………………………………... 18

1.4 Proposed Solution …………………………………………………..…….. 19

Chapter 2 Neural Networks

 2.1 Overview …………………………………………………………………… 22

 2.2 Neural Networks Fundamentals …………………………………………. 24

 2.2.1 Definition …….………………………………………………………… 24

 2.2.2 Characteristics …………………………………………………………. 25

 2.2.3 Network Architecture ………………………………………………… 26

 2.3 Neural Networks Types …………………………………………………... 27

 2.3.1 Overview ……………………………………………………………….27

 2.3.2 Perceptron ………………………………………………………………27

 2.3.3 ADELINE, MADELINE ………………………………………………. 28

 2.3.4 Backpropagation ………………………………………………………. 30

 2.3.5 Hopfield ………………………………………………………………... 31

 2.3.6 ART ……………………………………………………………….…….. 31

 2.3.7 Cascade Correlation …………………………………………………... 32

 2.4 Fundamentals of Learning and Training functions …………………….. 33

 2.4.1 Learning methods …………………………………………………….. 33

 2.4.2 Training functions …………………………………………………….. 34

 2.4.2.1 Levenberg – Marquadt Algorithm ………………………………… 34

 2.5 Hardware adaptation of Neural Networks ……………………………... 35

 2.5.1 Hardware Platforms Overview ……………………………………… 35

 2.5.2 ASIC ……………………………………………………………………. 36

 2.5.3 FPGA …………………………………………………………………… 36

 2.5.4 Neural Networks in Hardware ……………………………………… 37

 2.5.5 FPGA and Neural Networks ………………………………………… 38

Chapter 3 Implementation

 3.1 Implementation Aspects ………………………………………………….. 39

 3.1.1 Neural Network Architecture ……………………………………….. 39

 3.1.2 Data Discretization …………………………………………………… 41

 3.1.3 Input Normalization ………………………………………….………. 42

 3.2 Methodology ……………………………………………………………….. 42

9

 3.2.1 Overview ……………………………………………….……………… 42

 3.2.2 Static Implementation ………………………………..……………….. 43

 3.2.3 Dynamic Implementation ……………………………………….…… 44

 3.2.4 Neural Networks Builder …………………………….………….…… 46

 3.3 Anatomy of the Design …………………………………….……………… 46

 3.3.1 Project Hierarchy ……………………………………………………… 46

 3.3.2 Neural Library Module ………………………………………………. 47

 3.3.3 Log Sigmoid Module …………………………………………………. 49

 3.3.4 Hidden LUTs Module ………………………………………………… 54

 3.3.5 Output LUTs Module ………………………………………………… 56

 3.3.6 Hidden Node Module ………………………………………………... 57

 3.3.7 Output Node Module ………………………………………………… 61

 3.3.8 Ann Module …………………………………………………………… 63

 3.3.9 Hybrid Module ……………………………………….……………….. 67

Chapter 4 Case Study

 4.1 System Modeling ……………………………………………….………….. 70

 4.2 Case Study (I) ………………………………………………………………. 73

 4.3 Case Study (II) ……………………………………………………………… 77

Chapter 5 Conclusions & Future Work ……………………………………….. 80

References ………………………………………………………………………… 81

Appendix A ………………………………………………………………………. 84

Appendix B ……………………………………………………………………….. 92

Appendix C ……………………………………………………………………….. 96

10

Chapter 1 Introduction

1.1 Embedded Systems

1.1.1 Overview

In recent years, the wireless technology has opened new horizons in the means and

ways that users communicate [1]. We are living in a very competitive environment,

where the radio devices become outdated soon after their engineering. Radios exist

in a multitude of items such as cell phones, vehicles, tablet pcs and digital TVs. The

different types of applications demand different type of communication standards.

Although all these systems have almost similar components, the ways these

components behave differ greatly. To cope with these challenges, communication

systems adopt open architectures with flexible interfaces. The new specifications are

introduced to the existing infrastructure without requiring new expenditures. Thus,

while migrating from one generation to the next, the new devices are compatible

with the conventional and the state of the art networks. The modern 4G networks

provide high quality of services (QoS) exploiting new innovative products, which

combine smart transceivers and high performance signal processing elements [2].

This trend highlights challenges that the classic hardware-based radios cannot cope

with.

More precisely, the traditional radio chips are designed for specific operations each

of them is realized through a single communication standard. A typical handset has

several chips to establish a variety of wireless links, one to talk to a cell phone,

another to communicate with a Wi-Fi base station, a third to process GPS signals. All

these chips support particular spectrum areas and modulation schemes. Thus, after

the device engineering, they are exploitable only for the purpose that they are

designed. This confines the scalability of a potential radio device and restricts the

update capabilities at the improvement of the user interface without providing real

operation extensions. However, this approach was not able to answer the ever-

changing requirements of the modern transceivers.

In addition, the standardization at the development of the new handsets is a key

issue, which occupies the radio industry. This is highly desirable because it allows

new products come quickly into the market limiting the design and the development

cost. It is fact that a family of products with common hardware architecture will

require much less implementation effort. In this direction, the particular functionality

can be performed by modifiable software. The software definition of the

functionality opens significant opportunities at the follow-on-support services. New

features and capabilities can be added to the existing devices without requiring any

extra hardware equipment. Software upgrades can remotely activate new revenue

11

generating features. Bug-fix and reprogramming services are able to reduce the costs

while a device is in service. Thus, the cost reduction in the end-users allows them to

communicate with whomever they need, whenever they need to and in whatever

manner is appropriate.

Another open issue is the efficient utilization of the available spectrum area. Radio

bandwidth is a scarce resource, which have to be distributed with a dynamic way.

The conventional radios, which are modifiable only by physical interventions, don’t

provide the necessary flexibility. Thus, the interest to explore ways using the

spectrum with a more efficient way is quite high. The right exploitation of the

frequency bandwidth depends on a number of factors, which combine the

geographical characteristics of the area and the transmission activity in it. The main

reason for insufficient bandwidth utilization is the spectrum fragmentation. Even in

an environment with high density of wireless transmissions, the spectrum

exploitation can be poor. The reason is the substantial amounts of unused spectrum

segments “white spaces” which are congested by gaps between the transmission

channels, which ensure the avoidance of the interference. Wireless devices being able

to access unused or restricted spectrum segments that may be available for usage in

other geographical areas or under other regulatory regimes, can improve the

spectrum utilization. In this regard, reconfigurability is the key point for the radio

industry.

Taking into consideration all the previous challenges, wireless industry requires a

multiband reconfigurable implementation with an open architecture capable to cope

with the rapid development of the communication standards. The reconfigurability

refers to a radio that supports multiple frequencies bands and multiple modulation

schemes which adapt its configuration at the running state. An extra motivation for

such an implementation is the fact that the standard wireless processes like filtering,

decoding, signal modulation, can also benefit from the reconfigurability offered by a

general-purpose architecture [36]. A well-known example of a platform with these

capabilities is Software Defined Radio (SDR) [37], which combines numerous

communication standards in a single device. Many of its functionalities are

implemented in software, running on one or multiple generic processors, leaving

only the high performance functions implemented in hardware. These kinds of

software radios will be future proof as the whole system will be based on

reprogramming, leading the same hardware behaving differently at different

instances.

1.1.2 SDR Operation Specs

Software Define Radio (SDR) is an efficient merging of technologies, which combines

software and hardware in such a way that the physical layer functions are

modifiable. The Wireless Innovation Forum, in collaboration with the Institute of

Electrical and Electronic Engineers (IEEE) P1900.1 group, establishes a definition of

SDR that provides a clear view of the technologies involved and their benefits.

Software Defined Radio is defined as: "Radio in which some or all of the physical

12

layer functions are software defined” [2]. SDR defines a collection of hardware and

software technologies where some or all of the radio’s operating functions (also the

physical layer processing) are implemented through modifiable software or

firmware operating on programmable processing technologies. The use of SDR

technologies enables greater degree of freedom in adaptation, higher performance

levels and better quality of service. Adaptation has the notion of sensing the

operations changes, calibrating the system parameters for succeeding a better

performance. This characteristic makes software-defined radios remarkable flexible.

In a theoretical basis, the right software in a SDR chip can implement every

individual function, which takes place in a wireless device. The idea is to transfer the

critical wireless functions in software, allowing adding new operations without

hardware changes. Thus, SDR architectures tend to become a general purpose

platform which can realize every wireless implementation.

After a long period from the first introducing of the Software Defined Radio concept

[37] SDR seems to be a promising solution for integrating the existing and the

emerging communication standards into one platform. The first SDR approach

limited only at the level of the replacement parts of the radio hardware by ones that

are reconfigurable and reprogrammable. After this concept was extended including

reconfiguration of applications and services, as well as network-based

reconfiguration support, provided by a dedicated network infrastructure. The cause

of this development is that applications and services are likely to be affected by

changing transmission quality and changing Quality of Service (QoS) resulting from

vertical handover from one radio mode to another and, therefore, service aspects

have to be taken into account in handover decision-making.

The advanced SDR technology has to handle not only the primary performance

challenges but also the restrictions of the mobility. In the last decades, SDR devices

have become much more complex due to the introduction of a lot of new

functionality in one application, and due to supporting various services

simultaneously including a wide range of communication protocols and services.

Thus, the SDR platforms communicate with other platforms using multiple complex

communication schemes. The connection flexibility is restricted mainly by the tight

platform constrains. These handsets have stringent requirements on size,

performance and energy consumption. Optimizing energy efficiency is key for

maximizing battery lifetime between recharges. In addition, the modern SDR system

architectures enlarge the gap between average and worst-case execution time of

applications to increase total performance. An efficient utilization of the available

resources based on the running situations and with the minimum configuration cost

is needed. System adaptation can be implemented either at application level,

selecting an effective task mapping technique, or at platform level, e.g. with dynamic

frequency scaling technique (DFS).

Thus, the development of proper methods in resource scheduling is without doubt,

an imperative need. Traditional design approaches based on the worst-case leave a

lot of room of optimization if the increasing resource usage dynamism can be

properly predicted at runtime.

13

1.2 System Scenarios

1.2.1 Overview

In the past years, the functions demanded for embedded systems have become so

numerously and complex that the development time is increasingly difficult to

predict and control [3]. This complexity, together with the constantly evolving

specifications, has forced designers to consider implementations that they can change

rapidly. For this reason, and also because the hardware manufacturing cycles are

more expensive and time-consuming than before, software implementations have

become more popular. As often the application source code is already written, the

trend is to reuse the applications, as this is the best approach to improve the quality

and the time to market for the products a company creates and, thereby, to maximize

profits [4]. Most of these applications are written in high level languages to avoid the

dependency on any type of hardware architecture and to increase developers’

productivity.

In the context of this software intensive approach, the job of the embedded designers

is to evaluate multiple hardware architectures and to select the one that fits best

given the application constraints and the final product requirements (i.e., price,

energy, size, performance). The explored architectures lay between fixed single

processor off-the-shelf architectures and fully design time configurable multi-

processor hardware platforms [5]. The off-the-shelf components are cheaper to use,

as no extra development is needed, but they are not very flexible (e.g., video

accelerators) or cannot be tuned for a specific application (e.g., general-purpose

processors, if performance is considered). Hence, they usually are good candidates

for simple systems that are produced in small volumes. On the other extreme,

configurable multi-processor platforms offer more flexibility in tuning, but they

imply an additional design cost. Hence they are used when the production volume is

large enough for economically viable manufacturing, or when no existing off-the-

shelf component is good enough.

Given an embedded system application, to find the most suitable architecture, or to

fully exploit the features of a given one under the real-time constraints, estimations

of the amount of resources required by each part of the application are needed. To

give guaranties for the system quality, the estimations should be pessimistic, and not

optimistic, as over-estimations are acceptable, but underestimations are generally

not. Currently used design approaches use worst case estimations, which are

obtained by statically analyzing the application source or object code [6]. However,

these techniques are not always efficient when analyzing complex applications (e.g.,

they do not look at correlations between different application components), and they

lead to system over-dimensioning.

14

Hence, the problem System Scenarios aiming to resolve is :

“The need for a systematic methodology that, given a dynamic streaming application with

many operation modes, finds and efficiently exploits the most suitable hardware architecture

under the final system constraints (i.e., performance, price, size and energy consumption),

without ending in an explosion problem”.

This problem is quite broad, as it ranges from single to multi-processor architectures,

and it covers multiple types of resources (e.g., computation, communication, storage)

and constraints.

1.2.2 Description and Methodology

Scenario based design has been used for a long time in different design areas [38]

and especially at the development of the embedded system domain [7]. Scenarios

describe, in an early design phase of a development process, the future system

functionality including the interaction with the user. The scenarios are narrative

descriptions of envisioned usage episodes. In case of object oriented software

engineering a unified modelling language (UML) and use-case diagram enumerate,

from functional and timing point of view, all possible user actions and the system

reactions that are required to meet a proposed system function. These scenarios are

called use-case scenarios [7]. In our study, we concentrate on a different kind of

scenarios, so-called system scenarios, which characterize the system from the

resource usage perspective.

The system scenario methodology has been described in a fully systematic way in

[4]. The aim is to capture the data dependent dynamic behavior inside a thread in

order to better schedule a multi-thread application on a heterogeneous multi-

processor architecture. Usually, most of these applications are streaming and have to

deliver a given throughput, which imposes specific time constraints. [8] presents a

design methodology that provides a systematic way of detecting and exploiting

system scenarios for streaming applications. A scenario is defined as the application

behavior for a specific type of input data, i.e. a group of execution paths for that

particular group of input data. The system scenario concept was also outlined in [9],

where the tasks are written using a combination of a hierarchical finite state machine

(FSM) with a synchronous dataflow model (SDF). The disadvantage of this method is

that the applications must be written using a limited model, which is a time

consuming and error-prone operation.

The system scenario methodology is a design approach for handling the complexity

analysis of applications with multidimensional costs and strict constraints. The main

challenges are: 1) the optimal application mapping on the platform and 2) the

efficient management of the platform resources. The methodology key points are: 1)

the splitting of the design problems in separate steps at design time and 2) the

implementation of only the optimal solutions at run time. In particular, by classifying

and clustering the possible system executions into system scenarios, a run-time

resource manager can heavily reduce the average cost resulting from this execution

15

compared to the conventional worst-case bounding approach, while still meeting all

constraints.

As a first step in explaining the methodology, we have to introduce the concept of a

Run-Time Situation (RTS). As RTS we define a piece of system execution that is

treated as a unit because it has uniform behavior internally. The system scenario

methodology comprises 5 individual steps, 1) RTS identification, 2) RTS

characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5)

scenario switching.

1) RTS identification This methodology starts with the characterization of

all possible RTSs, which occur in the system. We identify all the variables (RTS

parameters) that affect the state of the system from a functionality or implementation

point of view. System variables can be classified in two categories; control and data

variables. Control variables define the execution paths of an application and

determine which conditional branches are taken or how many times a loop will

iterate. They have a higher impact on execution time, as they decide how often each

part of the program is executed. Hence we focus on them. The data variables

represent the data processed by the application.

2) RTS characterization In most cases, the cost characterization of the RTSs is

not a simple determination of one cost value but it leads to a Pareto surface of

potential exploitation points in the multidimensional exploration space. Each RTS

can be characterized by a number of cost factors obtained from profiling the

application on a platform or by using high-level cost estimators. Cost axes may

include quality level, user benefit, code size, execution time, total energy

consumption, including the impact of the system operating conditions. It quantifies

all the costs for each different platform configuration per RTS. The two typical costs

for a system are: 1) the energy consumption, 2) the performance as it is expressed by

the total delay (latency) for an operation execution. Hence the exploration space is

usually two dimensional.

 Figure 1.1 Clustering Overhead Representation [1, p.45]

16

3) Clustering of RTSs in System Scenarios An individually handling of

every RTS, would lead to excessive overheads at run-time, since the source code and

all configuration settings would need to be stored for each RTS and applied at run-

time. So they have to be clustered into scenarios. But clustering introduces

overestimation, which is characterized as clustering overhead, and is caused by the

deviation between the real cost of the RTS and the estimated cost which is the

representative cost for the scenario of the RTS. This overestimation will be incurred

in every appearance of this RTS. Thus, the total overestimation will be proportional

not only to the distance between RTS cost and scenario cost but also to the frequency

of this RTS.

The similarity between costs of different RTSs or in general sets of RTSs (scenarios)

has to be quantified e.g., by defining the normalized, potentially weighted, distance

between two N-dimensional Pareto surfaces as the size of an N-dimensional volume

that is present between these two sets. Based on this distance, the quality of potential

scenario options can be quantified, e.g., to decide whether or not to cluster RTSs in

different scenarios [5]. Clustering is implemented using a cost function related to the

target objective optimization and takes into account: 1) how often each RTS occurs at

run-time and 2) the distance of their Pareto curves. The scenario characterization

(Pareto curve) results from taking the worst-case cost point among the RTSs.

4) Detection of System Scenarios After the generation of system scenarios

the next step is the realization of a detection algorithm, which can recognize at run-

time the scenario to be executed. The detection mechanism will be embedded in the

middleware (e.g. RTOS) of the targeted platform adding some overhead on both

execution time and memory footprint. It is critical to keep this overhead small while

maintaining the benefits by exploiting the knowledge from the scenario recognition.

The detection is implemented by monitoring the changes of the RTS parameters at

run-time. Their value range has great impact on the final overhead. The challenge is

to discover heuristic techniques which can detect the scenarios with minimum cost.

Figure 1.2 illustrates the implementation of a detection algorithm for a given

application with 3 RTS parameters (bandwidth, number of antennas, coding). The

detection algorithm starts from inner node ξ1, if the current bandwidth is equal to 20

MHz. If the condition is true the detection goes to line 3. At the new instruction line,

we are at the inner node 2 and we have a new RTS parameter (number of antennas)

to check and a new instruction to run. The procedure continues until the decision

diagram reaches a detected system scenario.

17

5) Switching Having identified the system scenarios and the suitable

detection approach, the next step is the implementation of a run-time algorithm,

which will decide on the switching of the system configuration in real time. From the

identification part, we have characterized every scenario so we can estimate, at

design time, the tuning configuration for every scenario which respects the

application constrains with the minimum energy cost. The tuning configurations can

be related with the voltage scaling and the frequency scaling or other power saving

techniques like processor resizing [10] and cache resizing [11]. So every system

scenario corresponds to an optimal set of system configurations (e.g. an E-T Pareto

curve of potential working points) and this information is stored in the system

scenario list.

What we need now is the implementation of a mechanism which will react to the

detection of a new scenario being triggered, and then decide whether to switch from

the current scenario or not, while exploiting this information and taking into

consideration the switching cost. If the new scenario is not expected to last very long

and the gain G is limited then we cannot afford a high switching cost because that

will probably be lower than G. As switching cost, we define the cost for the

switching from one scenario to another. This cost will normally depend heavily on

the initial and final state.

Figure 1.2. Decision diagram of a wireless Application [1, p.47]

18

1.3 Motivation – Problem Statement

System Scenarios methodology steps are the following : 1) RTS identification, 2) RTS

characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5)

scenario switching. The subject of the current thesis is to feature the demands and

characteristics of the step referring to scenario detection and develop efficient

solutions that could be used in real – time applications.

The step of detection is directly dependent on the previous step of clustering. There

could be many different approaches regarding RTS clustering, e.g a fully analytical

approach that includes many RTSs in its exploration would make the procedure of

detection more demanding than an approach that includes only a few RTSs. Taken

this into account, we can come to the first conclusion that a universal detector is not

suitable for every case, as we have specific requirements that result from each

problem.

Another important aspect is this of integration. The development of a mechanism

that will run in parallel to the main implementation and recognize at run-time the

Scenario that the specific combination of RTSs define is the key point for a successful

implementation of run – time scheduling in wireless devices. This mechanism is not

directly part of the device hardware; it is complementary and its function is to

interact with elements from the main architecture and this interaction is critical to

have response time which will be significantly lower than the average time of

Scenario execution. Since response time is a prerequisite, external circuits to perform

this task are not considered as possible solutions. This mechanism should be

embedded to the system so as to share resources and transfer data more efficiently.

Moreover, there is high demand for accuracy. The process of detecting the current

scenario is deterministic and should be treated as such. Recognition of a false

scenario could trigger a change to an unsuitable state where resource allocation is not

sufficient for the current task. Using a hypothetical probabilistic approach, there

would be mispredictions of two types: (i) over-prediction, when a scenario with a

higher cost is selected, and (ii) under-prediction, when a scenario with lower cost is

selected [4] . The first type does not produce critical effects, just leading to a less cost

effective system; the second type often reduces the system quality, e.g., by increasing

the number of deadline misses when the cost is a cycle budget for an MP3 decoder

application.

A proposed solution (Gheorghita et al 2007) is to construct a graph as a decision

diagram, and make use of a restricted programming language to prevent added

overhead, as shown in Figure 1.3.

19

It examines, for the current frame to process, the values of a set of variables, and

based on them it predicts in which scenario the application runs. In this approach,

the decision diagram is implemented as a program in a restricted programming

language, and it is executed by a simple execution engine. The program is in the

application source represented by a data array. This split allows an easy calibration

of the decision diagram, which consists of changing the values of several array

elements.

This approach is a straight – forward implementation of the detection scheme and

while it looks suitable at occasions where RTS identification and clustering involves a

limited amount of parameters, in case of a broader RTS identification, the additional

overhead and cost of the decision diagram is a restraining factor of the specific

implementation. Thus, we will suggest alternative methods that adjust the final

solution depending on the scaling of the problem.

1.4 Proposed Solution

Our goal is to propose a scenario detection methodology and proceed towards

developing the tools needed for its implementation. The solution is focused towards

minimizing the detection overhead. The latter is the most critical parameter that we

should take into consideration, because it affects in direct way the performance of

our system. Achieving timing closure in our implemented mechanism enables the

supported system to recognize scenarios and switch states at run – time in a pace that

maximizes the gains of this process.

A hardware implementation was preferred instead of software implementation. This

decision was due to two main reasons: a) the already reported need to reduce the

timing overhead and b) recent evolution of reconfigurable Hardware (FPGAs)

provides with the necessary flexibility for the design and parameterization of the

specific task. Moreover, the detection scheme is designated to be used in real

applications of wireless devices, so a direct hardware implementation seems more

usable.

 Figure 1.3 Example of detector implementation [4]

20

Two separate solutions were developed in order to exploit the features that appear

when using System Scenarios. The first solution is a straight – forward approach, a

deterministic LUT which accepts as input the pre-defined combination of RTSs and

returns in its output the specific scenario. The second solution is a Neural Network

with the minimum number of layers in order to prevent additional overhead. The

input and output stages of the second solution are the same with the ones of first

solution, but the internal stages are by far different than the simplified LUT

implementation. The most interesting part was to study the trade-offs that these

implementations introduce among response time, implementation cost and dynamic

behavior. These trade-offs were explicitly researched within the case study presented

in Chapter 4.

The LUT implementation is perfectly suitable when the stage of clustering produces

a dataset of RTSs and Scenarios that are manageable in terms of size. The final

product is a circuit that performs input – output mapping in order to identify the

coded Scenario at every moment. We use compression techniques to reduce its size

and complexity, while exploiting the advantages of modern synthesizers which have

the capability to handle and simplify large logic functions.

An alternative solution which enables Neural Networks as detectors is introduced

and thoroughly examined through its various aspects. The specific implementation

takes advantage of the well – known ability of neural networks to generalize via

training and thus provide correct output results for unknown data. Migration of

Neural Networks from conventional processors to hardware platforms boosts their

performance, but it is always a demanding and complicated task, so much effort was

put on to optimize the parameters of the Neural Network so as to adapt in a more

efficient way into Hardware environment. In order to achieve a highly flexible

solution, there was developed a special software along with a graphical user

interface, which acts as a Neural Network generator. Experimenting with various

parameters of the Hardware implementation enables us to come to useful

conclusions as far as the trade-offs are concerned.

Finally, a full methodology is introduced which targets to evaluate by using specific

measurements such as response time and chip area, the tradeoffs among the different

variations of implementing the scheme of detection. This methodology is analyzed

and explained step by step in its theoretical level in Chapter 3, while Chapter 4

contains analytical results of the Case Studies in which the methodology was tested.

The flowchart of the described methodology is given in Figure 1.4, where each step is

presented in a separate box. The main idea behind this methodology is to generate an

optimal Scenario Detection solution, according to the user’s desired style of

implementation. Unlike the static implementation, which is as simple as it is shown,

with only few sequential steps required, the finding of the optimal dynamic

implementation demands a repetitive process, which summarizes in the following

steps :

21

i) Normalize the values of RTS Parameters

ii) Define specific combination of RTS values that do not trigger a change in

Scenarios (optional)

iii) Choose the size of the hidden layer and train the Network using the largest

fraction of the Dataset.

iv) Simulate the Neural Network using the whole Dataset.

v) Evaluate the prediction percentage and compare with the previous

measurement. If a better prediction is achieved, repeat the process adding

nodes. If not, recall the previous instantiation and proceed to the next step.

vi) The optimal solution of the implementation is achieved, and is followed by

the sequential steps of Synthesis, Implementation and Bitstream Generation.

Figure 1.4 Flowchart of the proposed Methodology

22

Chapter 2 Neural Networks

2.1 Overview

Today’s computers can perform complicated calculations, handle complex control

tasks and store huge amounts of data [24]. However, there are classes of problems

which a human can solve easily, but a computer can only process with high effort.

Examples are character recognition, image interpretation or text reading. These kinds

of problems have in common, that it is difficult to derive a suitable algorithm.

Unlike computers, the human brain can adapt to new situations and enhance its

knowledge by learning. It is capable to deal with incorrect or incomplete information

and still reach the desired result. This is possible through adaption. There is no

predefined algorithm, instead new abilities are learned. No theoretical background

about the problem is needed, only representative examples.

The neural approach is beneficial for the above addressed classes of problems. The

technical realization is called neural network or artificial neural network. They are

simplified models of the central nervous system and consist of intense

interconnected neural processing elements. The output is modified by learning. It is

not the goal of neural networks to recreate the brain, because this is not possible with

today’s technology. Instead, single components and function principles are isolated

and reproduced in neural networks.

The development of artificial neural networks began approximately 60 years ago but

early successes were overshadowed by rapid progress in digital computing. Also,

claims made for capabilities of early models of neural networks proved to be

exaggerated, casting doubts on the entire field.

Recent renewed interest in neural networks can be attributed to several factors.

Training techniques have been developed for the more sophisticated network

architectures that are able to overcome the shortcomings of the early, simple neural

networks. High-speed digital computers make the simulation of neural processes

more feasible. Technology is now available to produce specialized hardware for

neural networks. However, at the same time that progress in traditional computing

has made the study of neural networks easier, limitations encountered in the

inherently sequential nature of traditional computing have motivated some new

directions for neural network research.

Neural networks are of interest to researchers in many areas for different reasons

[12]. Electrical engineers find numerous applications in signal processing and control

theory. Computer engineers are intrigued by the potential for hardware to

implement neural networks efficiently and by applications of neural networks to

robotics. Computer scientists find that neural networks show promise for difficult

23

problems in areas such as artificial intelligence and pattern recognition. For applied

mathematicians, neural networks are a powerful tool for modeling problems for

which the explicit form of the relationships among certain variables is not known.

Biological Inspiration

The model for the neural processing elements is nerve cells. A human brain consists

of about 1011 of them. All biological functions—including memory—are carried out

in the neurons and the connections between them. The basic structure of a neuron

cell is given in Figure 2.1.

Dendrites Carry electric signals from other cells into the cell body

Cell Body Sum and threshold the incoming signals

Axon Signal transfer to other cells

Synapse Contact point between axon and dendrites

Every neuron receives electrochemical impulses from multiple sources, like other

neurons and sensor cells. The response is an electrical impulse in the axon which is

transferred to other neurons or acting organs, such as muscles. Every neuron features

about 100–10.000 connections.

There are two types of synapses: excitatory and inhibitory. The neural activity

depends on the neuron’s intrinsic electric potential. Without stimulation, the

potential rests at about −70mV. It is increased (excitatory synapse) or decreased

(inhibitory synapse) by the collected inputs. When the sum of all incoming potentials

exceeds the threshold of the neuron, it will generate an impulse and transmit it over

the axon to other cells.

 Figure 2.1. Schematic drawing of biological neurons

24

The interaction and functionality of biological neurons is not yet fully understood

and still a topic of active research. One theory about learning in the brain suggests

metabolic growth in the neurons, based on increased activity. This is expected to

influence the synaptic potential.

2.2 Neural Network Fundamentals

2.2.1 Definition

Neural Network is an interconnected group of artificial neurons that uses a

mathematical or computational model for information processing based on a

connectionist approach to computation [24]. To achieve good performance, neural

networks employ a massive interconnection of simple computing cells referred to as

"neurons" or "processing units." We may thus offer the following definition of a

neural network viewed as an adaptive machine:

“A neural network is a massively parallel distributed processor made up of simple processing

units, which has a natural propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.”

The procedure used to perform the learning process is called a learning algorithm, the

function of which is to modify the synaptic weights of the network in an orderly

fashion to attain a desired design objective.

Each neuron is connected to other neurons by means of directed communication

links, each with an associated weight. The weights represent information being used

by the net to solve a problem. Each neuron has an internal state, called its activation

or activity level, which is a function of the inputs it has received. Typically, a neuron

sends its activation as a signal to several other neurons. It is important to note that a

neuron can send only one signal at a time, although that signal is broadcast to several

other neurons.

For example, consider a neuron Y, illustrated in Figure 2.2, that receives inputs from

neurons X1, X2 and X3. The activations (output signals) of these neurons are X1, X2,

and X3 respectively. The weights on the connections from X1, X2 and X3 to neuron Y

are W1, W2, and W3, respectively. The net input, y_in, to neuron Y is the sum of the

weighted signals from neurons X1, X2 and X3, i.e., y_in = w1x1 + w2x2 + w3x3 [Eq 2.1].

The activation y of neuron Y is given by some function of its net input, y = f(y_in)

25

Common transfer functions fall into the following categories:

Linear The simplest case. Examples are identity and linear function with saturation.

Threshold A threshold function generates binary outputs. Unipolar or bipolar

coding is possible. Another name is hard limit function.

Sigmoid Functions in the sigmoid class are continuous, differentiable, monotone and

have a limited co-domain, usually in the range of [0;1] or [−1;1]. Examples are logistic

function and the sigmoid function itself.

2.2.2 Characteristics

Artificial neural networks, apart from their complex structure, are encountered in

literature in a huge variation of architecture and implementation aspects. However,

we could highlight their main common attributes and briefly explain them [13].

Learning Neural Networks must be trained to learn an internal representation of the

problem.

Generalization This attribute refers to the neural network producing reasonable

outputs for inputs not encountered during training (learning). This information-

processing capability makes it possible for neural networks to solve complex (large-

scale) problems.

Associative Storage Information is stored according to its content.

Distributed Storage The redundant information storage is distributed over all

neurons.

Robustness Sturdy behavior in the case of disturbances or incomplete inputs.

Performance Massive parallel structure which is highly efficient.

VLSI Implementability The massively parallel nature of a neural network makes it

potentially fast for the computation of certain tasks. This same feature makes a

neural network well suited for implementation using very-large-scale-integrated

 Figure 2.2. A simple (artificial) neuron

26

(VLSI) technology. One particular beneficial virtue of VLSI is that it provides a

means of capturing truly complex behavior in a highly hierarchical fashion [1000].

2.2.3 Network Architecture

The performance of neural networks originates from the connection of individual

neurons to a network structure which can solve more complex problems than the

single element. Literature [25] suggests that it is possible to distinguish between two

network topologies:

1. Feed – forward networks

- First Order

- Second Order

2. Recurrent networks

They are illustrated in Fig 2.4.

 Figure 2.4 Neural Networks Architectures

27

1. Feed-Forward Networks

Feed-forward networks organize the neurons in layers. Connections are only allowed

between neurons in different layers and must be directed toward the network

output. Connections between neurons in the same layer are prohibited. Feed-forward

networks of first order only contain connections between neighboring layers. In

contrast, second order networks permit connections between all layers.

The network inputs form the input layer. This layer does not include real neurons

and therefore has no processing ability. It only forwards the network inputs to other

neurons. The output layer is the last layer in the network and provides the network

outputs. Layers in between are called hidden layers, because they are not directly

reachable from the outside.

2. Recurrent Networks

Opposite to feed-forward, recurrent networks also allow connections from higher to

lower layers and inside the same layer. In many cases, the organization into layers is

completely dropped. For example, a recurrent network may consist of a single layer

of neurons with each neuron feeding its output signal back to the inputs of all the

other neurons. The presence of feedback loops has a profound impact on the learning

capability of the network and on its performance. Moreover, the feedback loops

involve the use of particular branches composed of unit-delay elements which result

in a nonlinear dynamical behavior, assuming that the neural network contains

nonlinear units.

2.3 Neural Network Types

2.3.1 Overview

There are many different neural network types which vary in structure, application

area or learning method. Among them the networks in the following page should be

presented here. They were selected according to their significance and to show the

neural network variety.

2.3.2 Perceptron

The Perceptron neuron was introduced 1958 by Frank Rosenblatt [26]. It is the oldest

neuronal model which was also used in commercial applications. Perceptrons could

not be connected to multi-layered networks because their training was not possible

yet. The neuron itself implements a threshold function with binary inputs and

outputs. It is depicted in Figure 2.5.

28

Neuron training is possible with different supervised learning methods e.g.

perceptron learning rule, Hebb rule or delta rule. The Perceptron can only handle

linear separable problems. Graphically speaking, the problems are separated by a

line for 2 inputs or by a plane for 3 inputs, as visualized in Figure 2.6.

2.3.3 ADELINE, MADELINE

The ADALINE is also a single neuron which was introduced in 1960 by Bernhard

Widrow. “ADALINE” stands for “Adaptive Linear Neuron” and “Adaptive Linear

Element”, respectively.

The ADALINE neuron implements a threshold function with bipolar output. Later it

was enhanced to allow continuous outputs. Inputs are usually bipolar, but binary or

continuous inputs are also possible. In functionality it is comparable to the

Perceptron. The major field of application is adaptive filtering, as shown in Figure

2.7. The neuron is trained with the delta rule.

 Figure 2.5 Perceptron Neuron

 Figure 2.6 Linear separable problems

29

MADALINE

“MADALINE” spells “Many ADALINEs” – many ADALINEs whose outputs are

combined by a mathematical function. This approach is visualized in Figure 2.8.

MADALINE is no multi-layered network, because the connections do not carry

weight values. Still, through the combination of several linear classification borders

more complex problems can be handled. The resulting area shape is presented in

Figure 2.9.

 Figure 2.7 ADALINE neuron as adaptive filter

 Figure 2.8 MADALINE

 Figure 2.9 Complex contiguous classification areas

30

2.3.4 Backpropagation

The most popular neural network type is the Backpropagation network. It is widely

used in many different fields of application and has a high commercial significance.

Backpropagation was first introduced by Paul Werbos in 1974 [27]. Until then it was

impossible to deal with disjointed complex classification areas, like the ones in Figure

2.10. For this purpose hidden layers are needed, but no training method was

available. The Backpropagation algorithm now enables training of hidden layers.

The term “Backpropagation” names the network topology and the corresponding

learning method. In literature, the network itself is often called “Multi-Layer

Perceptron Network”. The Backpropagation network is a feed-forward network of

either 1st or 2nd order. The neuron type is not fixed, only a sigmoid transfer function

is required.

Standard Backpropagation learns very slow and possibly reaches only a local

minimum. Therefore variants exist which try to improve certain aspects of the

algorithm [28, Chapter 12].

 Figure 2.10 Disjointed complex classification areas

31

2.3.5 Hopfield

The Hopfield network was presented in 1982 by John Hopfield [29]. It is the most

popular neural network for associative storage. It memorizes a number of samples

which can also be recalled by disturbed versions of themselves. This is exemplarily

depicted in Figure 2.11.

The structure is sketched in Figure 2.12. It is a feed-back network, where every

neuron is connected to all other neurons. The connection weights between two

neurons are equal in both directions. The neuron implements a binary or bipolar

threshold function. The input and output co-domains match the threshold function

type.

Learning is possible by calculating the weight values according to the Hopfield

learning rule.

2.3.6 ART

Adaptive Resonance Theory (ART) is a group of networks which have been

developed by Stephen Grossberg and Gail Carpenter since 1976. ART networks learn

unsupervised by subdividing the input samples into categories. Most unsupervised

learning methods suffer the drawback that they tend to forget old samples, when

new ones are learned. In contrast, ART networks identify new samples which do not

 Figure 2.11 Associative pattern completion

 Figure 2.12 Hopfield Network

32

fit into an already established category. Then a new category is opened with the

sample as starting point. Already stored information is not lost.

The disadvantage of ART networks is their high complexity which arises from the

elaborate sample processing. The structure is presented in Figure 2.13. Various

versions of ART networks exist which differ in structure, operation and input value

co-domain.

2.3.7 Cascade Correlation

The Cascade Correlation network was developed in 1990 by Scott E. Fahlman and

Christian Lebiere [30]. It is an example of a growing network structure. Usually it is

difficult to find a suitable network structure for a given problem. In the majority of

cases try-and-error is used, possibly supported by heuristic methods. In Cascade

Correlation networks the structure is part of the training process. Starting from the

minimal network, successive new neurons are added in hidden layers. The new

neurons are trained while previously learned weights are kept. The overall network

structure is feed-forward 2nd order as depicted in Figure 2.14.

 Figure 2.13 ART Network [28, p.16-3]

 Figure 2.14 Cascade Correlation Network

33

2.4 Fundamentals of Learning and Training functions

2.4.1 Learning Methods

The most interesting characteristic of neural networks is their capability to

familiarize with problems by means of training and, after sufficient training, to be

able to solve unknown problems of the same class. This approach is referred to as

generalization. We introduce some essential paradigms of learning by presenting the

differences between their regarding training sets. A training set is a set of training

patterns, which we use to train our neural network.

Unsupervised Learning It is the biologically most plausible method, but is not

suitable for all problems. Only the input patterns are given; the network tries to

identify similar patterns and to classify them into similar categories. The training set

only consists of input patterns, the network tries by itself to detect similarities and to

generate pattern classes. The most popular example is Kohonen’s self-organizing

maps [31], [32].

Reinforcement Learning In this specific type of learning the network receives a

logical or a real value after network receives reward or punishment completion of a

sequence, which defines whether the result is right or wrong. Intuitively it is clear

that this procedure should be more effective than unsupervised learning since the

network receives specific criteria for problem-solving. The training set consists of

input patterns, after completion of a sequence a value is returned to the network

indicating whether the result was right or wrong and, possibly, how right or wrong

it was.

Supervised Learning In supervised learning the training set consists of input

patterns as well as their correct results in the form of the precise activation of all

output neurons. Thus, for each training set that is fed into the network the output,

for instance, can directly be compared with the correct solution and the network

weights can be changed according to their difference. The objective is to change the

weights to the effect that the network cannot only associate input and output

patterns independently after the training, but can provide plausible results to

unknown, similar input patterns, i.e. it generalizes.

34

2.4.2 Training Functions

Supervised learning suggests that there must be a defined pattern (training function)

based on which, a neural network is trained and adjusts the value for its weights.

The scheme for this procedure is as follows :

 Entering the input pattern (activation of input neurons)

 Forward propagation of the input by the network, generation of the output

 Comparing the output with the desired output (teaching input), provides error

vector (difference vector)

 Corrections of the network are calculated based on the error vector

 Corrections are applied.

2.4.2.1 Levenberg Marquadt Algorithm

The Levenberg – Marquadt algorithm is a numerical optimization method, more

specifically it is a variation of Newton’s method that was designed for minimizing

functions that are sums of squares of other nonlinear functions. This is very well

suited to neural network training where the performance index is the mean squared

error. A flowchart of the algorithm is presented in following figure, while analytical

mathematical background is provided in Appendix Α.

Figure 2.15 Block diagram for training using Levenberg–Marquardt algorithm [23]

35

Therefore, the training process using Levenberg–Marquardt algorithm could be

designed as follows:

i. With the initial weights (randomly generated), evaluate the total error (SSE).

ii. Do an update as shown in the Equation to adjust weights.

iii. With the new weights, evaluate the total error.

iv. If the current total error is increased as a result of the update, then retract the step

(such as reset the weight vector to the precious value) and increase combination

coefficient μ by a factor of 10 or by some other factors. Then go to step ii and try an

update again.

v. If the current total error is decreased as a result of the update, then accept the step

(such as keep the new weight vector as the current one) and decrease the

combination coefficient μ by a factor of 10 or by the same factor as step iv.

vi. Go to step ii with the new weights until the current total error is smaller than the

required value.

2.5 Hardware adaptation of Neural Networks

2.5.1 Hardware Platforms Overview

With the passing of time, integrated circuit (IC) technology has provided a variety of

implementation formats for system designers [14]. The implementation format

defines the technology to be used, how the switching elements are organized and

how the system functionality will be materialized. The implementation format also

affects the way systems are designed and sets the limits of the system complexity.

Today the majority of IC systems are based on complementary metal-oxide

semiconductor (CMOS) technology. In modern digital systems, CMOS switching

elements are prominent in implementing basic Boolean functions such as AND, OR,

and NOT. With respect to the organization of switching elements, regularity and

granularity of elements are essential parameters. The regularity has a strong impact

on the design effort, because the reusability of a fairly regular design can be very

simple. The problem raised by the regularity is that the structure may limit the

usability and the performances of the resource. The granularity expresses the level of

functionality encapsulated into one design object. Examples of fine-grain, medium-

grain, and coarse-grain are logic gates, arithmetic and logic units (ALUs), and

intellectual property components (processor, network interfaces, etc.), respectively.

The granularity affects the number of required design objects and, thereby, the

required design or integration effort.

Depending on how often the structure of the system can be changed, the three main

approaches for implementing its functionality are dedicated systems, reconfigurable

systems, and programmable systems. In a dedicated system, the structure is fixed at

the design time, as in application-specific integrated circuits (ASICs). In

programmable systems, the data path of the processor core, for example, is

36

configured by every instruction fetched from memory during the decode-phase. The

traditional microprocessor-based computer is the classical example. In reconfigurable

systems, the structure of the system can be altered by changing the configuration

data, as in field programmable gate arrays (FPGAs).

2.5.2 ASIC

Application-specific integrated circuits (ASICs) refer to those integrated circuits

specifically built for preset tasks [6]. Why use an ASIC solution instead of another

off-the-shelf technology—programmable logic device (PLD, FPGA), or a

microprocessor/microcontroller system? There are, indeed, many advantages in

ASICs with respect to other solutions: increased speed, lower power consumption,

lower cost (for mass production), better design security (difficult reverse

engineering), better control of I/O characteristics, and more compact board design

(less complex PCB, less inventory costs). However, there are important

disadvantages: long turnaround time from silicon vendors (several weeks),

expensive for low-volume production, very high NRE cost (high investment in CAD

tools, workstations, and engineering manpower), and, finally, once committed to

silicon the design cannot be changed. Application-specific components can be

classified into full-custom ASICs, semi-custom ASICs, and field programmable ICs.

2.5.3 FPGA

The field-programmable gate array (FPGA) is a semiconductor device that can be

programmed after manufacturing. Instead of being restricted to any predetermined

hardware function, an FPGA allows you to program product features and functions,

adapt to new standards, and reconfigure hardware for specific applications even

after the product has been installed in the field—hence the name "field-

programmable". You can use an FPGA to implement any logical function that an

application-specific integrated circuit (ASIC) could perform, but the ability to update

the functionality after shipping offers advantages for many applications.

Unlike previous generation FPGAs using I/Os with programmable logic and

interconnects, today's FPGAs consist of various mixes of configurable embedded

SRAM, high-speed transceivers, high-speed I/Os, logic blocks, and routing.

Specifically, an FPGA contains programmable logic components called logic

elements (LEs) and a hierarchy of reconfigurable interconnects that allow the LEs to

be physically connected. You can configure LEs to perform complex combinational

functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic

blocks also include memory elements, which may be simple flipflops or more

complete blocks of memory.

As FPGAs continue to evolve, the devices have become more integrated. Hard

intellectual property (IP) blocks built into the FPGA fabric provide rich functions

while lowering power and cost and freeing up logic resources for product

differentiation. Newer FPGA families are being developed with hard embedded

processors, transforming the devices into systems on a chip (SoC).

37

Compared to ASICs or ASSPs, FPGAs offer many design advantages, including:

• Rapid prototyping

• Shorter time to market

• The ability to re-program in the field for debugging

• Lower NRE costs

• Long product life cycle to mitigate obsolescence risk

2.5.4 Neural Networks in Hardware

Pure software solutions on general-purpose processors tend to be slow because they

do not take advantage of the inherent parallelism, whereas hardware realizations

usually rely on optimizations that reduce the range of applicable network topologies,

or attempt to increase processing efficiency by means of low-precision data

representation. For the development of neural networks software simulators are

sufficient. On the other hand, in production use computer based simulation is not

always acceptable.

Compared to software simulation, hardware implementation benefits from the

following points:

• Higher operation speed by exploring intrinsic parallelities

• Reduced system costs in high volume applications

• In stand-alone installments no PC needed for operation

• Optimization toward special operation conditions possible, e. g. small

 size, low power, hostile environment

The highly interconnected nature of neural networks prohibits direct structure

mapping to hardware for all but very small networks. Direct mapping also requires

many processing elements. In particular, one multiplier for each neuron input.

Alternative approaches are required to reduce connections and hardware costs.

Classification

It is possible to split up the hardware approaches into two groups:

• Fixed network structure in hardware, targeting one particular task

• Flexible neurocomputer, suitable for many different network types and

structures

Another division follows the appearance of the implementation :

Neurocomputers as complete computing systems based on neural network

techniques

PC Accelerator Boards to speed up calculations in PC, either accelerating the

operation of a software simulator or as stand-alone neural network PC card

Chips for system integration

38

Cell Libraries/IP for System-On-Chip (SoC) with the need for a neural network

component

Embedded Microcomputers implementing software neural networks

2.5.5 FPGA and Neural Networks

The traditional hardware approach leads to a fixed network structure. The

implementations are usually small and fast, but some applications need more

flexibility. Especially in the course of development it is advantageous to evaluate a

number of different implementations. This can be achieved by using Field

Programmable Gate Arrays (FPGAs) which are in-system reconfigurable.

This reconfiguration feature can be exploited in a number of ways [16]:

• Rapid prototyping of different networks and parameters

• Build a multitude of neural networks and load the most appropriate one on

startup

• Recent FPGAs can be reconfigured at runtime, this allows density

enhancements by dynamic reconfiguration. Usually time-multiplex of different

processing stages (like learning and propagation) is performed.

• Topology adaption at runtime or start-up is imaginable

FPGA implementations of neural networks have a great develop in recent years,

because of its reconcilability and short design time, such as FPGA neurocomputers

(Omondi et al., 2006), Arithmetic precision for implementing BP networks on FPGA

(Moussa et al., 2004), FPGA Implementation of Very Large Associative Memories

(Hammerstrom et al., 2006), and so on. But there remains a performance problem. If

the problem could be solved, the FPGA approach will make hardware ANN a bright

future.

39

Chapter 3 Implementation

Traditional programming languages such as C/C++ (augmented with special

constructions or class libraries) are sometimes used for describing electronic circuits.

They do not include any capability for expressing time explicitly and, consequently,

are not proper hardware description languages. Nevertheless, several products

based on C/C++ have appeared: Handel-C, System-c, and other Java-like based such

as JHDL or Forge. Using a proper subset of nearly any hardware description or

software programming language, software programs called synthesizers can infer

hardware logic operations from the language statements and produce an equivalent

netlist of generic hardware primitives to implement the specified behavior.

However, a specialized hardware description language, such as VHDL, is more

suitable for an exact depiction on Hardware because it provides the designer with a

higher level of control on the final netlist. Thus we choose VHDL as the language to

develop our project.

In order to validate and complete the implementation we also need a Software based

simulation for Neural Networks. There are many suitable software for this purpose,

which allow custom Neural Network building while offering a high degree of

parameterization. After experimenting with some of this Software, we arrived at the

decision that MatLab is the most suitable of all. MatLab environment contains a

powerful tool for Neural Networks [17], which is called “nntool”. It can simulate

various kinds of ANNs, as well as different learning methods and activation

functions, already implemented in MatLab language and provided as built–in

functions. This diversity was exploited by our need for a highly accurate

implementation.

3.1 Implementation Aspects

3.1.1 Neural Network Architecture

As far as neural networks are concerned, their diversity is so vast, as we have already

seen in Chapter 2, that we should specify the basic architecture that we are going to

use for our design. Those decisions are justified in the next paragraphs.

1) Ann Structure

The problem described is purely deterministic; actually we need to build a ‘black

box’ which will be able to resolve a complicated non-linear function. Judging from

relative implementations in literature regarding Classification problems, a multilayer

feedforward ANN seems the most reasonable choice to perform such a task.

40

2) Number of Inputs

While the number of ANN inputs is defined by the number of RTS of the dataset,

what needs to be determined is the length of bits for each input. The latter is critical

to the precision of our final implementation, and while the minimum amount of bits

is dependent on the maximum value we encounter in the entire dataset, it is helpful

to introduce a user-defined level of precision (number of bits), which will enhance

the system with greater stability.

3) Number of Layers

ANNs can possibly have as many layers wanted, actually the deeper the network,

the better its learning capability is. There are however, two separate factors that are

determinant for the decision of the number of layers.

 It is generally proven, that a single hidden layer with the appropriate number

of neurons is sufficient for an ANN that is constructed to resolve non-linear

functions [18].

 The existence of two or more hidden layers puts on delay in the

implementation, since there are more stages of processing from the input

layer to the output neurons.

The above converge to the decision of using a single hidden layer.

4) Number of Output Nodes (Neurons)

A hardware implementation of input-output mapping should include an output

layer which shows the stage selected by the combination of inputs. One possible

implementation is to use as many neurons as the number of unique stages included

in the output stage, with each neuron acting as a switch, YES(‘1’) or NO(‘0’). In that

case, only one neuron should be activated each time, while the others should be

turned off(‘0’).

However, there is a different approach that requires even fewer resources. This

approach also involves output nodes acting as switches, but it uses the minimum

number of them. The amount of output nodes is determined by the number of

unique Scenarios, using the following type :

))_(2(log_ SCENARIOSNceilOUTPUTSN .

For instance, if we were to implement an ANN for a dataset with 4 Scenarios, we

would simulate our ANN with 2 output nodes.

5) Number of Hidden Nodes (Neurons)

The number of hidden nodes is a decision that we cannot be certain of. It depends on

three parameters, the most important of them non measurable. Number of Inputs,

Number of Outputs and last but not least, the complexity of the data.

41

A trial and error procedure will specify the number of hidden nodes to be used in the

final implementation. Firstly, we make a rough estimation about the number.

Depending on the results of the training, we modify this number. If training

produces very little or no errors, we remove nodes until we reach the minimum

number adequate for the ANN to be efficient. Otherwise, if training produces many

errors, we add nodes until errors are minimized.

6) Activation Function

The function that seems more suitable for a hardware implementation is the logistic

sigmoid function (logsig). It is a function that drives input in the range [0, 1], an

attribute that is convenient because the two edges represent the two binary states.

After experimentation, we also found that the specific activation function provided

more accurate results when training networks in software (MATLAB), compared to

the results of a) hyperbolic tangent function (tansig)

and b) combinations of tansig and logsig in hidden and output layers.

7) Training Function

Since we use a Neural Network to perform a deterministic task and not just as a

predictor as its primary usage usually is, there is demand for the maximum accuracy

achievable. If we chose to train our network in hardware (on-chip learning), besides

the obvious difficulty, we would reduce dramatically the efficiency of the network,

due to the restrictions introduced by the specification of the chips (lack of adequate

memory resources, which are necessary for the sophisticated training algorithms that

are used).

There is a lot of software suitable for neural network training; surely one of the most

extensive is MatLab, via Neural Network Toolbox. After experimentation with some

of the training functions provided, we came to Levenberg – Marquadt algorithm,

which is a backpropagation variation. Its advantage is that it converges faster

compared to other algorithms and its drawback is that it uses large matrixes for

computations, so it requires more memory resources compared to others. However,

there are no restrictions on the size of network that we can train using this algorithm.

3.1.2 Data Discretization

Most software simulators use floating point values for neural network calculation.

This is not suitable for hardware implementations, because floating point

computations are hardware-expensive. Fixed point data is preferred for fast and

resource efficient hardware implementations. However Xilinx tools do not directly

support fixed point library, as the latter became part of IEEE library only recently, in

VHDL – 2008 edition, while Xilinx compilers are oriented to previous VHDL

42

versions. So, we have to manually add the specific libraries and add some

modifications, in order to enhance better performance:

1. When specifying the rounding routine to use in fixed point operations, there are

two options: round and truncate. Rounding provides more accurate results, but

with the cost of added logic. So, we make the choice of truncating, while keeping

in mind that we should have adequate bits so as not to lose critical information

due to truncation.

2. Overflowing routine also offers two options: Saturate and wrap. Saturation is

more accurate routine, but in terms of hardware consumes important resources,

so we go with wrap option.

3.1.3 Input Normalization

Convergence in Neural Networks is usually faster if the average of each input

variable over the training set is close to zero. To see this, consider the extreme case

where all the inputs are positive. Weights to a particular node in the first weight

layer are updated by an amount proportional to δx where δ is the (scalar) error at

that node and x is the input vector. When all of the components of an input vector

are positive, all of the updates of weights that feed into a node will be the same sign

(i.e. sign(δ)). As a result, these weights can only all decrease or all increase together

for a given input pattern. Thus, if a weight vector must change direction it can only

do so by zigzagging which is inefficient and thus very slow.

This normalization will be performed in various ways, depending on the

implementation. After instantiating many networks, we consider as most effective

the normalization of input values in the range [-1,25 1,25].

3.2 Methodology

3.2.1 Overview

The following flowchart describes a methodology to create a detection scheme based

on the needs of the problem and evaluate its hardware footprint. There are two

separate implementations proposed, the one that is static and uses a straight –

forward approach, and the one that simulates the function of a neural network, with

dynamic behavior. The static implementation is ideal in cases where we are aware of

all the cases of combined RTSs and the Scenario those represent. Moreover, it is

applicable when this dataset of RTSs and Scenarios is kept to a relatively small size.

On the contrary, dynamic implementation with the use of an artificial neural

network is by far more elastic, in terms that we have developed techniques to reduce

the –already hardware expensive– produced neural network. Apart from the

reduced cost, it also offers the luxury of predicting undescribed situations which

resemblance other situations that have been used to train the network. This attribute

43

is significant, whereas it is also challenging to develop reliable training techniques so

as our design will benefit from this attribute at the maximum rate.

We will specify the theoretical steps involved within these implementations and in

Chapter 4 the case study will provide with those arithmetical results which are

useful to perform comparisons.

3.2.2 Static Implementation

Our study concentrates on implementing a detection scheme using artificial neural

network. In order to compare our main implementation with another functional one,

we developed a static implementation which is consisted of the following steps:

 RTS Identification & Clustering

This step is common for both implementations. The extraction of RTSs out of an

actual system specification and its clustering to form a limited number of Scenarios is

part of System Scenarios methodology, which has been presented in Chapter 1. It is

actually a demanding task which presupposes a total awareness of the parameters of

the system we are going to describe. After extracting the RTS and Scenarios values,

we need to present them in a proper format, which will allow us to handle them in a

systematic way.

Figure 3.1 Flowchart of the proposed Methodology

44

 RTS Normalization

Normalization regarding the current implementation refers to a form of compression

for RTS values. It might seem insignificant, but it is actually a critical step. Scenario

selection is made by traversing an array that is consisted of concatenated RTS values.

If the length of that parameter exceeds a critical value, the complexity this array

introduces, becomes a restraining factor, thus it may become nearly impossible for

the synthesizer to implement it properly.

 Simulation

Simulation of the implementation is performed by using a testbench which is

produced at the same time that the code of the detector is produced, so it is adapted

to the existing parameters. If simulation finishes with zero errors, we can proceed to

the next step.

 Synthesis, Implementation & Bitstream Generation

These steps, as well as Simulation, are performed within the proper Software

environment. During our study, we used Xilinx ISE software to perform the current

steps. The final product is the code which will be used to instantiate the respective

FPGA platform.

3.2.3 Dynamic Implementation

Our main effort is towards an implementation that enables the use of neural

networks. The current methodology is based on the experimental results as

presented in literature and more analytically in [1000] that artificial neural networks

problems match a unique number (or small range of numbers) of hidden layer

nodes, to maximize their performance and avoid unwanted overtraining and over-

generalization. Thus, taken this into consideration, we developed techniques for

improving the performance of a neural network detector, so the next steps present

the methodology that we used in order to achieve this improvement.

 RTS Identification & Clustering

This step has already been described. It is identical to that of the static

implementation.

 RTS Normalization

Normalization of input variables is essential to neural networks. The values of these

RTS parameters that were extracted during the RTS identification stage, need to

follow that rule. The reason why we should normalize input has been explained in

the previous sub-chapter and is effective in our designed neural network too.

45

 Use Switch Criteria

This step is optional. It enables a more sophisticated method of classifying, which is

ruled by specific criteria, varying amongst different Scenarios. We can use this self-

designed setting in order to reduce the amount of times that computations need to

take place, as we can take advantage of the information provided by the criteria we

hold and force the neural network to run only when it is necessary.

 Training

Training of the neural network is performed through a software platform, in our case

MatLab. Our dataset is separated in three fragments: training, validation and testing.

We use only the training fragment, which by the rules should be the largest of the

three to train the network. There are various parameters that can affect the results of

training. Two of the most significant factors are 1) the size of the network (the size of

hidden layer should be adequate to store the non-linear relationships between input

and output, but not too large, in order to prevent network from overfitting or

overtraining) and 2) the complexity of the problem (whereas this factor is not

measurable, it has an immense impact on the performance of training).

 Simulation

Evaluation of our design can be achieved through Simulation. There are two possible

causes for errors during Simulation. In this critical stage, we will use the fragment of

the dataset which is unknown for the network, since we did not use it during

training, in order to evaluate the number of cases the network provides correct

output.

 Prediction Evaluation (Pn)

Out of the cases presented to the network, there is a small fragment that is unknown

for it as it has never been trained with these values. The percentage of accurate

predictions on this fragment provides the desired outcome, which is the prediction

ability of the network.

 Pn > Pn-1

This is the stage of decision. If the current percentage of prediction is larger than the

previous measurement, we should continue the process by adding some nodes to the

implementation and repeating the stages from the beginning. It is indication that

there is still room for improvement for our network. If the percentage is lower

though, our network is saturated, so we should seek the optimal solution in our exact

previous instantiation, with fewer hidden nodes.

46

 Synthesis, Implementation & Bitstream Generation

These steps are identical to those of static implementation and form the pure

technical part of the methodology.

3.2.4 Neural Networks Builder

Based on the options described previously in this Chapter, we have an outline for the

project we want to build. But going deeper into its details, it is easily noticeable that

the aspects of the structure are so many, and there is also a different approach

matching each case. The solution on this scale of variation is to create a generator,

which will describe Neural Networks in VHDL language based on the given dataset

and user choices. This generator was developed in MatLab language taking into

consideration the most important design aspects. Finally, a GUI was developed to

provide convenience in handling the different parameters, and the set of MatLab files

was compressed into a single MatLab application named “Build Neural Networks”.

We present the GUI environment followed by a brief explanation for each option in

Appendix B.

3.3 Anatomy of the Design

3.3.1 Project Hierarchy

The produced files from MatLab App, combined together, form the Project of the

Hybrid Neural Network. The network has a top-down hierarchy, so we will examine

each file’s underlying logic and design aspects, starting backwards, from the small,

independent modules lying inside larger modules, to the bigger and more complex

ones. The Project Hierarchy for the basic architecture is shown in Figure 3.2

Figure 3.2 Schematic Depiction of Project Hierarchy

47

Two Library files, which are not depicted in the Figure, are also used in the Project.

Fixed_float_types_c.vhdl and fixed_pkg_c.vhdl [33] contain various type definitions

and functions regarding fixed point type representation.

Log_sigmoid, which is the implementation of activation function in Hardware, and

Ann, the implementation of Artificial Neural Network, constitute the Templates of

the Project, since they do not contain any data dependable on the specific dataset.

The rest of VHDL files are directy dependent both on the dataset values and on user

choices about neural architecture, bits precision, etc.

The rest of this chapter is dedicated to provide extensive analysis of each individual

file from both functional and structural perspective. For better understanding, we

cite pieces of code along with comments and explanations. Schematics are also used

to project the functions and interactions between different modules. Details about

schematics are provided in Appendix C.

3.4.2 Neural Library Module

This file forms a package, which is called “neural_library”. This package is

practically a library that contains constants, user-defined types, component

declarations and functions. The usefulness of this library is that it contains, in

concentrated form, elements that are used throughout the entire design. Each of the

other files includes this package, by adding the line “use work.neural_library.all;” in

the declaration part of the code, so they are capable to use any of the types, functions

or constants contained. In other words, these are the global variables of the design.

The application produces the following Constants, which provide information about

the basics of the design. Apart from N_INPUTS, N_HIDDEN and N_OUTPUTS

which have an obvious significance, the next ones define the length of decimal

numbers used. UPPER_LIMIT stands for the length of integer part, while

DOWN_LIMIT stands for the length of fraction part with a negative sign. N_BITS is

then calculated: UPPER_LIMIT +DOWN_LIMIT + Sign. The level of precision that

determines those lengths is user-defined.

Since we have the task to run a Neural Network, operations with decimal numbers

are inevitable. For this purpose we name a new type (fixedX) which is a flexible type

of signed fixed – point type. When we make an assignment of fixed – point number

we need to specify the length of integer and fraction part. These values are already

determined by the constants UPPER_LIMIT and DOWN_LIMIT. FixedX_vector is an

array of fixedX numbers. Since we have frequent parallel multiplications and

 CONSTANT N_INPUTS : integer := 5;

 CONSTANT N_HIDDEN : integer := 60;

 CONSTANT N_OUTPUTS : integer := 4;

 CONSTANT N_BITS : integer := 20;

 CONSTANT UPPER_LIMIT : integer := 10;

 CONSTANT DOWN_LIMIT : integer := -9;

48

additions, it is convenient to declare these values as an array, rather than separately.

Finally, we define zero constant, which is an array of ‘0’ bits.

The next part of library holds the auto generated types that define the possible states

of Finite State Machines. Not only each node’s function is controlled by a unique

FSM, but there is also a FSM to control the function of the neural network.

Hidden_node_modes type describes the FSM that hidden nodes use. The number of

states provides us with information about the number of Clock Cycles required until

a hidden node completes its tasks, since they are executed sequentially. The final

state is activation_function, where the node output is generated and sent as input to

output_nodes. Respectively, output_node_modes type describes the FSM of output

nodes. The states are idle, multiply, accumulate, but we have emitted activation_function

state. The reasons for that will be explained in the appropriate chapter.

Ann_modes type represents a Finite State Machine that controls the computational

row of the Neural Network. Details are provided later.

The following types are used to hold the values of inputs (input_vector,

ann_input_vector) and the intermediate values produced by the hidden nodes

(hidden_vector). Since our inputs are of different lengths, it would be a waste of

valuable Input Ports in our targeted hardware platform, to use an array of same –

length elements, so we use this record type, where each input is given exactly the

amount of bits required.

Ann_input_vector also contains the values of input, but after they have been

compressed. It can be seen by the cited code, that the length of inputs is significantly

smaller in this case. The purpose for this compression will be discussed later.

subtype fixedX IS sfixed(10 downto -9);

type fixedX_vector IS array (INTEGER RANGE <>) OF fixedX;

CONSTANT zero : fixedX := (others => '0');

type hidden_node_modes IS (

 idle,

 multiply,

 accumulate_1,

 accumulate_2,

 accumulate_3,

 activation_function

);

type output_node_modes IS (

 idle,

 multiply,

 accumulate_1,

 accumulate_2,

 accumulate_3,

 accumulate_4,

 accumulate_5,

 accumulate_6

);

type ann_modes is (

 idle,

 run,

 run_next,

 turn_off_output

);

type node_modes is (

 idle,

 run

);

49

CONSTANT hidden_bias : fixedX_vector(1 to 60) := (

"11111001110100111000",

"00000001101110100111",

"00000001000010110011",

"00000100001011000110",

"00000001000010100010",

"11111110010101010110",

.

.

.

"00000001001001011010");

CONSTANT output_bias : fixedX_vector(1 to 4) := (

"11111111100111100011",

"11111101011000011110",

"00000010010101011110",

"00000101001111011001");

Hidden_vector is the type we need in order to hold the intermediate values produced

after the hidden nodes have completed processing, the so – called hidden output.

The size of the array is the number of hidden nodes (60 in this case).

Weights and biases are the structural elements of an artificial neural network. They

are the stored “knowledge” of the machine. All operations involve the use of input

values, weights and biases. The application stores the values of biases after the

training, converts them in binary representation and prints them in the library as a

fixedX_vector constant. Weight values are provided to the network in a different way,

in which we will also refer to.

type hidden_vector IS array (1 TO 60) OF

STD_LOGIC_VECTOR(7 downto 0);

type input_vector IS

 record

 one : STD_LOGIC_VECTOR(7 downto 0);

 two : STD_LOGIC_VECTOR(4 downto 0);

 three : STD_LOGIC_VECTOR(2 downto 0);

 four : STD_LOGIC_VECTOR(7 downto 0);

 five : STD_LOGIC_VECTOR(1 downto 0);

 end record;

type ann_input_vector IS

 record

 one : STD_LOGIC_VECTOR(2 downto 0);

 two : STD_LOGIC_VECTOR(3 downto 0);

 three : STD_LOGIC_VECTOR(1 downto 0);

 four : STD_LOGIC_VECTOR(1 downto 0);

 five : STD_LOGIC_VECTOR(0 downto 0);

 end record;

50

These types and constants shown next, are exclusively used during Simulation

process. We will make a brief reference, as they are not directly used for the design.

N_EXAMPLES shows the size of the dataset we made use of. Latency constant stores

the number of Clock Cycles in which the final implementation will perform and is

presented for informative reasons.

Input_bitvector and ann_input_bitvector contain exactly the same information as

input_vector and ann_input_vector, but we use BIT type instead of STD_LOGIC,

because STD_LOGIC type cannot perform specific operations we need during the

Simulation. Vector_length shows the length of a vector, which is the outcome of the

concatenation of all inputs. This vector will be used to form the complementary

LUTs that “fix” the errors of the Network.

Counters, MATRIXES and ERROR_MATRIXES pertain to measure the errors and

hold the data of the network when such an error is produced.

There are also various Component Declarations in neural_library package, but it

would be meaningless to refer to extensively, as they are simple copies of their

respective Entities. Finally, two simple functions, to_sl and to_slv convert BIT types to

STD_LOGIC and BIT_VECTOR types to STD_LOGIC_VECTOR. They are also

exclusively used during simulation.

CONSTANT N_EXAMPLES : integer := 2560;

CONSTANT latency : integer := 20;

type input_bitvector IS

 record

 one : BIT_VECTOR(7 downto 0);

 two : BIT_VECTOR(4 downto 0);

 three : BIT_VECTOR(2 downto 0);

 four : BIT_VECTOR(7 downto 0);

 five : BIT_VECTOR(1 downto 0);

 end record;

type ann_input_bitvector IS

 record

 one : BIT_VECTOR(2 downto 0);

 two : BIT_VECTOR(3 downto 0);

 three : BIT_VECTOR(1 downto 0);

 four : BIT_VECTOR(1 downto 0);

 five : BIT_VECTOR(0 downto 0);

 end record;

CONSTANT vector_length : integer := 12;

type counters IS ARRAY(1 to 4) OF INTEGER;

type MATRIXES IS ARRAY(1 to 1000) OF

 BIT_VECTOR(vector_length-1 downto 0);

type ERROR_MATRIXES IS ARRAY(1 to 4) OF MATRIXES;

51

3.4.3 Log Sigmoid Module

The Schematic in Fig. 3.3 depicts the behavioral flow of the log_sigmoid module,

which performs the activation function. Logistic sigmoid function is the following :

xe
xf

1

1
)(, and its plot is shown next

Since we need to use the specific function in a hardware implementation, we should

find ways to avoid the “expensive” in terms of logic and time consuming operations

of division and exponential. Among many implementations of logsig function found

in literature, we ended up in the most suitable for our purpose, which is described in

[19].

Figure 3.3 Log Sigmoid Module

Figure 3.1 Log-Sigmoid Transfer Function

52

This design takes advantage of two basic attributes of the function:

)(xf practically 0 if 8x , and)(xf practically 1, if 8x .

 It is a symmetrical function,)(xf)(1 xf .

Of course, it is a clocked function which begins when the enable bit that arrives from

the node FSM is ‘1’.

Next lines of code perform comparisons of input with -8 and 8. Instead of simply

using comparing signs (< , >) which would enable substractors in the underlying

hardware circuit, we use some clever logic.

 Temp1 variable is ‘1’ only when all bits from the sign bit downto the 4th Least

Significant bit of the Integer part are ‘1’, since it uses 2’s complement to represent

negative numbers. Yet, in that case input is no smaller than -8.

 Temp2 variable is ‘0’ only when all bits from the sign bit down to the 4th Least

Significant bit of the Integer part are ‘0’. Yet, in that case input is no greater than 8.

If input meets one of these conditions, output is given and process is terminated. If

not, the process goes to second computational stage.

We examine the sign bit (input(UPPER_LIMIT)) to see if input is positive. If yes, we

use variable x to store the 3 LSB of integer part and 3 MSB of fraction part of input,

which will be used in the next computational stage. If input is negative we use

minus_input variable to store its absolute value. We will compute the output of –x as

we take advantage of the function’s attribute)(xf)(1 xf .

PROCESS(CLK) IS

BEGIN

 IF (CLK'event) AND (CLK = '1') THEN

 IF (enable = '1') THEN

temp1 := '1';

temp2 := '0';

FOR i IN 3 to UPPER_LIMIT LOOP

 temp1 := temp1 AND input(i);

 temp2 := temp2 OR input(i);

END LOOP;

smaller_than_8 := temp1;

greater_than_8 := temp2;

IF (smaller_than_8 = '0' AND input(UPPER_LIMIT) = '1')

 THEN output <= "00000000";

ELSIF (greater_than_8 = '1' AND input(UPPER_LIMIT) = '0')

 THEN output <= "10000000";

53

The next stage is a two-level AND-OR gate implementation as described in [19],

which stores in y variable a 8 - bit STD_LOGIC_VECTOR. Those bits consist of the

sign bit and 7 bits of the fractional part of the output. As a result, we have a

quantized form of the function’s output. The final computational stage is a condition

that determines the output.

Again, we should check if input is positive. If yes, y variable drives the output, but if

not, we should subtract y variable from 1, store the result in mid variable, and then

convert the result in STD_LOGIC_VECTOR type.

ELSE

 IF (input(UPPER_LIMIT) = '0') THEN

 FOR i IN 5 downto 0 LOOP

 x(i) := input(i-3);

 END LOOP;

 ELSIF (input(UPPER_LIMIT) = '1') THEN

 minus_input := - input;

 FOR i IN 5 downto 0 LOOP

 x(i) := minus_input(i-3);

 END LOOP;

 END IF;

pre_output := to_ufixed(y,0,-7);

CASE input(UPPER_LIMIT) IS

 WHEN '0' =>

 output <= y;

 WHEN '1' =>

 mid := resize(ONE - pre_output,0,-7);

 output <= to_slv(mid);

 WHEN OTHERS => null;

END CASE;

54

3.4.4 Hidden LUTs Module

This module is a concentration of Look up Tables. The word “hidden” indicates that

hidden nodes make use of these LUTs. But what exactly is their function? We already

mentioned that weights and biases are the structural elements of an artificial neural

network. Bias values are declared in the neural_library package, however we did not

encounter weight values declaration until now. The reason why this is happening is

a major aspect of our selected architecture.

The first operations when a node is enabled are parallel multiplications. Every input

coming from the previous layer is being multiplied by its respective weight. The

outcome of these multiplications is then accumulated and sent to the activation

function to produce the output value of the node. This is described by relationship:

))((biasinputweightfoutput , where f() is the activation function.

The problem that arises from these specifications is that we should use a rather large

number of multipliers, even for medium – sized networks. The example network

given, with 5 Input Nodes, 60 Hidden Nodes and 4 Output Nodes would require

5x60 + 60x4 = 540 multipliers. Modern FPGAs have no problem to support this

amount of logic, but apart from the Area restrictions in our chip, which is always a

Figure 3.4 Hidden LUT Module

55

parameter that matters, when designing a Project, the use of multipliers – unless

pipelined - will slow down our design, since multiplications require significantly

more time than additions.

There are however two facts that allow us to follow another path. The first is always

a fact regardless the characteristics of our dataset: Since training takes place only

once, the weights produced are going to be constant numbers. There is no condition

that will change their values. So, the first operand of multiplications is a constant,

thus the complexity is reduced, since we multiply number x constant. The second

fact, which allows us to completely emit multipliers from the design comes from the

observation of the dataset: If every single input has a relatively small number of

possible values, then multiplications are further more simplified, so as to being

capable to take the form of a Look Up Table.

The application prints separate entities for every node. The input as we see next, is of

ann_input_vector type. As we have already described, the values stored using this

type have originated from the compression of actual input values. The fact that we

do not use inputs, but a compressed form of the latter, is an additional way to save

valuable resources in our design. There is also a bit that controls their function. When

Enable = ‘1’, hidden_LUTS are activated.

While LUTs are implemented using case statements, there are as many LUTs in every

node as the number of inputs in the design. Possible outputs have been calculated

within “Build_Neural” application, and then reformed to signed binary numbers of

already given specifications. Moreover, there are Comment Lines next to the LUTs

that show the physical meaning for every selection.

ENTITY hiddenNode_1 IS

 PORT (

 CLK : IN STD_LOGIC;

 input : IN ann_input_vector;

 Enable : IN STD_LOGIC;

 Lut_output : OUT fixedX_vector(1 to 5)

);

END ENTITY;

56

3.4.5 Output LUTs Module

Obviously, output_LUTS are the equivalent modules for output nodes, as

hidden_LUTS are for hidden nodes. There is only a slight difference between the two

modules. We previously examined the module performing the activation function

and we mention again that the output of a hidden node is also the input for an

output node. This value in in the range [0, 1] as we know, because this is the range of

logsig function. Moreover, after experimenting, we decided to use seven bits to hold

the fraction part of this value. The criterion on this decision is that it provides the

best trade-off balance, between error propagation and activation function size-

complexity.

So, provided the values of possible hidden outputs are fixed, we know the exact size

of multiplication output LUTs. The size of these tables is 129 positions, 27 + 1. They

are also implemented as separate entities, each one dedicated to its respective node.

Case statements implement parallel LUTs within every node.

Figure 3.5 Output LUT Module

57

3.4.6 Hidden Node Module

Hidden nodes along with output nodes are the processing units of the Network.

Every hidden node module should instantiate a log_sigmoid submodule, which will

be enabled at the final stages of computation, to evaluate the result of the node

output. Moreover, a single hidden node instantiates the appropriate hidden_LUT

entity, which holds for the particular node, the weight values.

The following cited piece of code shows the entity of a hidden node module. Two

generic values show the number of inputs in the network (“Num_Inputs”) and the

serial number of the specific hidden node (“Position”). Since all hidden nodes share

the same code, the differentiation made by the latter parameter is essential as will be

seen next, for linking every hidden node with the according hidden_LUT. “Node_en”

input acts as a switch, which is handled by the central ANN FSM. “Node_mode” is

also a parameter provided by ANN FSM and defines the exact action that the node

will perform. “Node_flag” is an indicator that the specific node has completed all

stages of computation and is ready to accept new inputs, while “node_output” is the

provided result of these computations and in terms of artificial neural networks it is

the hidden output of the network. This output is the result of the log_sigmoid

function, its range of values is [-1, 1] so it is always an 8 – bit parameter, with 7 out

of 8 bits expressing its decimal part.

Figure 3.6 Hidden LUT module

58

Every node is linked to a unique hidden_LUT module which performs the

multiplication as described in previous sub-chapter. The following code shows how

this link is achieved for the hidden node with serial number 1 and the parameters

passed to the log_sigmoid module as well as the parameter that is returned from

log_sigmoid module (“weight_x_input”) which is used in the next stages of

computation.

Every hidden node integrates a log_sigmoid sub-module. The instantiation is shown

next, with the parameters “sig_input” and “sig_enable” that are passed to the sub-

module representing the input and control bit, respectively. “Node_output” is the

result of the log_sigmoid function, which happens to be the later stage of

computation within the node. Thus, the specific signal will be the output parameter

of the node.

Main control functions of the Artificial Neural Networks are performed in the ann

module, while node modules consist of the main processing units. The FSM of the

ann module can possibly set the nodes in two possible modes: either “run” or “idle”(

this setting can be expanded to include a “learning” mode).

“Run” mode along with the “node_en” bit sets the node to read data from its input

and perform sequentially the functions that is designed to. “Idle” mode sets the node

ENTITY hidden_node is

 GENERIC (

 Num_Inputs : INTEGER := 4;

 Position : INTEGER

);

 PORT (

 input : IN ann_input_vector;

 node_en : IN STD_LOGIC;

 node_mode : IN node_modes;

 CLK : IN STD_LOGIC;

 node_flag : BUFFER STD_LOGIC :='1';

 node_output : OUT STD_LOGIC_VECTOR(7 downto 0)

);

 node1: IF (Position = 1) GENERATE

 lut1: hiddenNode_1 port map(

 CLK,

 input,

 LUT_enable,

 weight_x_input

);

 END GENERATE node1;

 sigmoid_0 : log_sigmoid port map(

 sig_input,

 sig_enable,

 CLK,

 node_output

);

59

to an idle state, which is the state that declares at the current time the node does not

perform any computations.

The following figure depicts the possible states of a hidden node, and the incoming

modes set by the Ann FSM.

There is a distinction between hidden node mode and hidden node state. This choice

intends to provide stability to our design, as the node state is isolated from the

incoming node mode signals, so an unexpected change in the value of hidden node

mode will not affect the current action of the node until it finishes and transits into

idle state. The first actions when the incoming “node_mode” signal’s value is “run” are

described by VHDL in the cited piece of code below and are namely:

 Unsetting the “node_flag” so it will be unavailable from the main ann module to

be assigned new tasks until it finishes current computations.

 Setting the “LUT_enable” bit, that is, switching on and transferring control to the

hidden_LUT module.

 Set the node FSM to its initial state, which is “multiply”.

In case of an incoming “idle” signal the actions performed are:

 Setting the “node_flag” so it is ready to accept new tasks.

 Zero the intermediate accumulators used during the computational stages

WHEN idle =>

 CASE node_mode IS

 WHEN run =>

 node_flag <= '0';

 LUT_enable <= '1';

 node_state <= multiply;

 WHEN idle =>

 node_flag <= '1';

 temp_accumulator <= (others => zero);

Figure 3.7 Hidden Node FSM

60

The slowest part of the design is the part of additions. A number of operands which

is equal to the number of inputs from the previous layer need to be summed, and the

sum will be used as input to the log_sigmoid function in order to provide the final

output of the node. The scheme of additions is of critical importance, because if we

choose adders with many operands this will eventually be the bottleneck of our

system and will have negative effect in timing performance. Eventually, we choose to

add operands in pairs of two, thus the formed adder tree will have a depth of

ceil(log2(N_inputs)). The cited code shows an example of the described adder tree,

which in this case handles 6 inputs, so the depth of the tree will be ceil(log2(6)) = 3,

that means that 3 Hardware cycles are required to produce the final sum. The code

of adder tree is followed by the final state of the node, which switches on the

log_sigmoid sub-module and sets the node into an idle state.

WHEN accumulate_1 =>

 temp_accumulator(1) <= resize(weight_x_input(1) + weight_x_input(2),11,-8);

 temp_accumulator(2) <= resize(weight_x_input(3) + weight_x_input(4),11,-8);

 temp_accumulator(3) <= resize(weight_x_input(5) + weight_x_input(6),11,-8);

 temp_accumulator(4) <= resize(bias + weight_x_input(7),11,-8);

 node_state <= accumulate_2;

WHEN accumulate_2 =>

 temp_accumulator(5) <= resize(temp_accumulator(1) + temp_accumulator(2),11,-8);

 temp_accumulator(6) <= resize(temp_accumulator(3) + temp_accumulator(4),11,-8);

 node_state <= accumulate_3;

WHEN accumulate_3 =>

 temp_accumulator(7) <= resize(temp_accumulator(5) + temp_accumulator(6),11,-8);

 node_state <= activation_function;

WHEN activation_function =>

 sig_input <= temp_accumulator(7);

 sig_enable <= '1';

 node_state <= idle;

61

3.4.7 Output Node Module

Output nodes are almost identical to hidden nodes. Slight modifications are made to

enhance timing performance. The entity of output node holds exactly the same

signals as this of hidden node, except for the output signal, which in that case of is

the final output of the neural network and is only a single bit per each node. On the

same way as hidden nodes, every output node is linked to an output_LUT module,

in which we have already referred to as an indirect way to perform multiplications.

This link is based on the logic that we used to link hidden nodes to their respective

LUT modules, and is shown below.

The modification made is in the design of the output_node FSM. Since we decided

that the neural network will use binary logic to show its output, every output node is

obliged to 2 possible values, 0 or 1. However, the final result is provided by the

log_sigmoid function, which gives as output continuous values in the range [0,1]. In

order to save valuable hardware resources we performed a logical leap by observing

closely the graph of log-sigmoid function and specifically its result for input with

zero value. It is logsig(0) = 0.5, logsig(0-) < 0.5 and logsig(0+) > 0.5. This attribute

allows us to set this value as threshold and force all negative values to give output ‘0’

and all positive values ‘1’. Based on this thinking, we emitted the log_sigmoid

module, thus the output is provided by determining the sign of the final adder. The

FSM of the output node is controlled by the Ann FSM and it shows great

resemblance with that of hidden node.

Figure 3.8 Output Node module

 node1: IF (Position = 1) GENERATE

 lut1: outputNode_1 port map(

 CLK,

 input,

 LUT_enable,

 weight_x_input

);

 END GENERATE node1;

62

The final action of the output node has been already described, and the code that

carries out this action is given below. The assignments made in this piece of code

namely:

 The final adder of the tree adder scheme. Notice that this assignment refers to a

variable and not a signal. This differentiation allows us to use the value of the

variable within the same Clock Cycle.

 Invert the most significant bit of the variable, which in our selection of signed

numbers depicts the sign of the variable. If the result of the final adder is

positive we should drive the output to the value ‘1’ whereas value ‘0’ should be

given if negative. Thus, inversion is appropriate.

 Set the “node_flag” so it is ready to accept new tasks.

 Set the node FSM to idle state.

Figure 3.9 Output Node FSM

WHEN accumulate_6 =>

 final_accumulator := resize(temp_accumulator(58) + temp_accumulator(59),6,-8);

 node_output <= NOT final_accumulator(UPPER_LIMIT);

 node_flag <= '1';

 node_state <= idle;

63

3.4.8 Ann Module

Figure 3.10 Ann Module

64

Ann module is the top module of the Neural Network design. There are few

computations performed by this module; its purpose is to instantiate the number of

hidden and output nodes and distribute tasks to them whenever is necessary. The

entity of the module contains some generic values which determine the size of the

Ann. We briefly name the rest signals. “Input” is provided as a vector of fixed

numbers, “ann_mode” is an input signal that handles the function of the network,

”Enable” bit acts as a switch, while “reset” is useful to recall the network to its initial

state when it has already proceed to computational stages and is necessary to stop.

“Output” is a vector of bits, sized equal to the Number of outputs which eventually

shows the number of selected Scenario in binary representation.

The number of nodes is passed as a generic value, so the ann module should be able

to read these numbers and instantiate as many nodes. The signals that are used to

handle the functions of hidden nodes are the following:

 “Hidden_layer_en” : A vector of bits; each of them enables a specific hidden node.

We can either simultaneously enable all hidden nodes, or in a more

sophisticated approach, make a selection of the nodes we enable.

 “Hidden_layer_mode” : This signal defines the state of the hidden nodes.

In the same way ann module creates and instantiates the appropriate number of

output nodes. It also uses handling signals as the ones mentioned previously.

ENTITY ann IS

 GENERIC (

 N_I : INTEGER := N_INPUTS;

 N_H : INTEGER := N_HIDDEN;

 N_O : INTEGER := N_OUTPUTS

);

 PORT (

 input : IN ann_input_vector ;

 ann_mode : IN ann_modes;

 CLK : IN STD_LOGIC;

 Enable : IN STD_LOGIC :='0';

 reset : IN STD_LOGIC :='0';

 Ready : OUT STD_LOGIC :='1';

 output : OUT STD_LOGIC_VECTOR(1 to N_OUTPUTS)

);

END ENTITY ann;

hidden_layer : FOR i IN 1 to N_H GENERATE

 hidden_nodes : hidden_node generic map(N_I,

 i

)

 port map(

 input,

 hidden_layer_en(i-1),

 hidden_layer_mode,

 CLK,

 hidden_node_flag(i-1),

 hidden_output(i)

);

 END GENERATE hidden_layer;

65

The ann code consists of three processes, the main process that controls all main

functions and two sub-processes. These sub-processes behave like large AND gates

that combine the “flag” signals from all the hidden and output nodes. The output of

these gates becomes ‘1’ only when all the nodes’ flag either on the hidden or the

output layer are set to ‘1’, so it is an indication that we can proceed to the next stage

of computations.

The most secure way to see how these sub-processes are useful is to cite the code at

the beginning of the main process and see how the signals that are the products of

these sub-processes are used. We can descriptively name the condition that must be

met to enter the main code of the process which is actually the function of the Ann

FSM :

1. CLK signal is in its positive edge.

2. “Enable” signal is set to 1.

3. “Reset” signal is set to 0.

4. Both “Hidden_layer_mode” and “Output_layer_mode” signals are set to idle. This

practically means that control has not been transferred neither to hidden nor to

output nodes.

5. Both “Hidden_layer_flag” and “Output_layer_flag” as they are produced by the

large AND gates are set to 1.

and_gate1: PROCESS(hidden_node_flag) IS

variable temp : STD_LOGIC;

BEGIN

 temp := '1';

 FOR i IN hidden_node_flag'range LOOP

 temp := temp AND hidden_node_flag(i);

 END LOOP;

 hidden_layer_flag <= temp;

END PROCESS;

fsm: process(CLK) IS

BEGIN

 IF (CLK = '1' AND CLK'EVENT) THEN

 IF (Enable = '1') THEN

 IF (reset = '1') THEN

 ann_state <= idle;

 Ready <= '1';

 ELSE

 IF (hidden_layer_mode /= idle OR output_layer_mode /= idle) THEN

 hidden_layer_mode <= idle;

 output_layer_mode <= idle;

 ELSIF (hidden_layer_flag = '1' AND output_layer_flag = '1') THEN

66

The next fragment of code describes the function of the ann FSM, which has the

responsibility to share tasks and collect the results. It behaves as a regulator that

assures a safe processing flow. “Run” state sets the enable signals of the hidden

nodes and orders their respective FSMs to start computations, whereas “run_next”

state switches off hidden nodes while switching on output nodes.

The next schematic depicts the ann FSM and its interaction with nodes FSMs.

CASE ann_state is

 WHEN run =>

 hidden_layer_mode <= run;

 hidden_layer_en <= (others => '1');

 ann_state <= run_next;

 WHEN run_next

 hidden_layer_en <= (others => '0');

 output_layer_mode <= run;

 output_layer_en <= (others => '1');

 ann_state <= turn_off_output;

 WHEN turn_off_output =>

 output_layer_en <= (others =>'0');

 Ready <= '1';

 ann_state <= idle;

Figure 3.11 Ann FSM

67

3.4.9 Hybrid Module

Figure 3.12 Hybrid Module

68

Under specific circumstances, it is useful to use a complementary LUT to hold some

of the Scenario values. In that case, neural module will be used as a Component into

the Hybrid module, which becomes the top module. There are four stages involved

in this module, the first two are common for all cases, and the last two are

complementary, only one out of them will be selected on a specific run of the

module. The first stage is named “read_input” and it performs the following :

 It uses one register per input, which acts as a sensor. In every Clock Cycle this

register is compared to the input, and if it does not locate a change in at least one

input, it drives the output to the last computed result. If it does locate a change,

it proceeds to the next actions.

 It performs a sort of compression for the new input located. This compression is

very useful in cases where input has a large value, so it needs a significant

amount of bits to be represented. Afterwards only as many bits as needed to

represent the possible states of this value are used. Since multiplications are

performed using LUTs, the literal values of inputs are not directly needed, to the

contrary we can use their “symbolic” values, which are the result of the

compression.

 Based on the signals that show whether a change in each input was located, it

enables the Ann module or keeps reading input.

The cited code describes the functions of sensor and compression for one single

input.

The decision at the end of the stage, which determines whether a change in Scenario

is possible based on the combination of inputs, so it will be needed to

enable Ann module.

WHEN read_input =>

 IF (hold_input.one /= input.one) THEN

 hold_input.one <= input.one;

 input_flag(1) := '1';

 CASE input.one IS

 WHEN "01" => new_input.one <= "0";

 WHEN "10" => new_input.one <= "1";

 WHEN others => NULL;

 END CASE;

 ELSE

 input_flag(1) := '0';

 END IF;

flag := input_flag(1) OR input_flag(2) OR input_flag(3) OR input_flag(4);

 IF (flag = '1') THEN

 enable <= '1';

 ann_function <= run;

 stage <= correct;

 output_flag <= '0';

 ELSE

 enable <= '0';

 ann_function <= idle;

 output_flag <= '1';

 END IF;

69

The second stage is a memory-like structure which is used to store an array of

Scenarios. These scenarios are selected when their respective combined RTSs are

given as the incoming address in this structure and bypass the structure of neural

network. For shortcut reasons, we only show the instantiation of the variable that

acts as address and the first values of the LUT.

The third stage of execution is selected only in certain cases; when the combination of

inputs is not contained in the complementary LUT we described, our system follows

this execution, which is depicted in the Schematic as Execution 1. The program stalls

until the output of the ann is provided, and then it drives this signal to the hybrid

output. It also sets the flag of this module, a sign that calls for further action, and

moves back into the first stage.

The fourth stage is the alternative and it describes the case when the specific Scenario

coded by the current inputs forms a register in the memory-like component, so the

function of ann module is not necessary and Execution 2 shown by the schematic

takes place.

WHEN correct =>

 LUT_decision := '1';

 test_vector := new_input.one & new_input.two & new_input.three & new_input.four;

 CASE test_vector IS

 WHEN "000000111001110000" => LUT_output <= "000000001";

 WHEN "000000000111100000" => LUT_output <= "000000001";

 WHEN "010100010001100000" => LUT_output <= "000000001";

 WHEN "000000111001100000" => LUT_output <= "000000001";

 WHEN "000000100111100000" => LUT_output <= "000000001";

 WHEN "000000111001010000" => LUT_output <= "000000001";

 WHEN "000000000111000000" => LUT_output <= "000000001";

WHEN drive_ann =>

 IF (ann_ready = '1') THEN

 output <= ann_output;

 reg_output <= ann_output;

 output_flag <= '1';

 enable <= '0';

 stage <= read_input;

 END IF;

WHEN drive_LUTS =>

 output <= LUT_output;

 reg_output <= LUT_output;

 ann_stop <= '0';

 output_flag <= '1';

 enable <= '0';

 stage <= read_input;

70

Chapter 4 Case Study

In the context of the current case study, we describe the extraction of RTSs from a

wireless system based on the study made in [20], followed by the experimental

results regarding detection implementation.

4.1 System Modeling

Antennas Signal Power We consider an uplink Wireless transmission channel of

a MIMO-OFDM system based on the IEEE 802.11ac communication protocol [34].

The transmission data rate, for which we can achieve a successful transmission, is

defined by the bandwidth, the capacity and the noise on the channel. A fundamental

trade-off exists between Bit-Error-Rate (BER), which is correlated with the provided

QoS, and antenna signal power. A potential run-time reconfiguration manager can

adjust the signal power and the memory subsystem to the running situation. The

scheduler selects the energy optimal configuration scheme (number of spatial

streams, bandwidth, modulation and coding (MC) schemes) which respect the

running constrains, based on the targeted communication standard (WLAN

802.11ac) characterization [34]. More precisely, the scheduler chooses the

communication scheme, which requires the minimum SNR for the current data rate

requirements under given conditions of external distortion. This presupposes that

the scheduler has perfect updated knowledge of the channel condition and the

application deadlines. The antenna signal power is adjusted to give the required data

rate.

The aforementioned fundamental bound between signal power and data rate under

specific noise conditions is mathematically expressed by the Shannon–Hartley

theorem:

,where C is the channel capacity in bits per second; B is the bandwidth of the channel

in hertz; S is the average received signal power over the bandwidth, measured in

Watt; N is the average noise or interference power over the bandwidth, measured in

Watt; and S/N is the signal-to-noise ratio (SNR).

This equation shows that a theoretical minimum SNR exists for achieving a target

capacity with specific available channel bandwidth. The minimum SNR for a specific

level of noise defines the minimum required signal power for an error-free

transmission. For example, if the available bandwidth is Bw the theoretical minimum

SNR for a transmission with bit-rate Cb without errors is:

 SNR£ 2
Cb

Bw -1 (2)

71

The average signal power, S, can be written as S=EbC, where Eb is the average energy

per bit. The average noise power, N, can also be redefined as, N=N0B, where N0 is the

noise power (Watts/Hz). The Shannon–Hartley theorem can be written in the form:

The ratio C/B represents the bandwidth efficiency of the system in bits/second/Hz.

Knowing the SNR levels, we can characterize the total signal power efficiency of

every configuration (minimum Signal Power) to achieve the targeted capacity. If the

configuration supports multiple antennas (multiple spatial streams) the total signal

power is estimated as the sum of the signal of each antenna.

The theoretical minimum SNR for an error-free transmission is impossible to reach in

practice. The modulation schemes define how close to this theoretical SNRmin the

transmission can be. Every modulation scheme is characterized by a minimum SNR

that allows the demodulation of the transmitted symbols without errors. Knowing

the minimum SNR for every modulation scheme (MS), we can define the minimum

Signal Power for every MS for specific levels of noise. The equation that defines the

symbol error probability (Ps) for every MS, with respect to SNR is the following [35]:

M is the number of symbols used, Es the average received signal power, N0 the

average noise signal power and erfc is the complementary error function.

The graphical expression of this equation for the modulation schemes of the 802.11ac

is presented in Figure 4.1. Channel coding improves the SNR by a factor R [18]. So

the curves can be normalized for equal energy per information bit (pre-coding)

bearing in mind that the energy per transmitted bit is less than the energy per

information bit by a factor equal to the code rate R. The graphical expression of the

symbol error probability for the modulation and coding (MC) schemes of the

802.11ac can be found in Figure 4.2.

Figure 4.1 Symbol Error Probabilities for

802.11ac Modulation Schemes

Figure 4.2 Symbol Error Probabilities

for 802.11ac Coding & Mod Schemes

72

In this context, every system scenario RTS is characterized by a two-dimensional cost

1) the total signal power and 2) the bit error rate (BER). The signal power is inversely

proportional to the symbol error probability and correspondingly to bit error

probability as shown in Figure 5.1 and Figure 5.2. Each RTS is characterized by a

curve in the two-dimensional space of total signal power. This curve is derived by

the respective curve at Figure 3 that corresponds at the MCs of the RTS. Based on the

bits-per-symbol of MCs (BPSK: 1bps, QPSK: 2bps, etc.), the short guard interval (SGI)

and the noise level of the RTS, the Ps (symbol error probability) to SNR curve can be

transformed to BER to Signal Power curve.

Besides the above-mentioned technical analysis the most unstable parameter for a

transmission is the user profile, e.g., the distance between receiver and transmitter,

the existence of other communication channels or others sources of distortion. These

are factors that influence the channel transmission and are directly influenced by the

user behavior. For example, if the user moves in a saturated spectrum area or in a

noisy environment high communication channel interference is expected.

Correspondingly, if the user changes position very rapidly, (for example, driving a

car) this has impact on the normal demodulation of the transmitted signal (Doppler

Effect).

Memory Banks The SNR level and the changing environment on the wireless

channel also affects the memory requirements. In more detail, the conditions of the

channel determine the coding and modulation scheme needed for a successful

communication and, consequently the required data rate. The coding phase

transforms an m-bit data string into an n-bit string in order to be encoded, when the

given coding rate is m/n. The modulation phase conveys a varying number of bit

streams together, based on the chosen modulation. The data rate constraint defines

the storage and transmission requirements for the data. As a result, the memory

footprint depends on the data rate of the channel and is dynamic for a changing

environment. Energy consumption on the memory subsystem depends on the

number of accesses and the energy per access, which are different based on the size

and the type of memory.

The observation that the memory requirements at run-time vary significantly due to

dynamic variations on the transmission channel and the protocol, is exploited

through use of system scenarios. Instead of defining the memory requirements for

the worst-case data rate and tuning the system according to this, system scenarios

are generated for different situations. The combination of the coding and the

modulation parameters define the data rate for each RTS. The data rate is the

identification variable and the cost factor is its memory footprint. Based on the cost

factor, the different memory footprints are clustered into scenarios. The clustering of

RTSs is based both on their distance on the memory size axis and the frequency of

their occurrence. The key feature needed in the platform architecture is the ability to

efficiently support different memory sizes that correspond to the system scenarios

generated by the methodology. Execution of different system scenarios then leads to

different energy costs, as each configuration of the platform results in a specific

73

memory energy consumption. The dynamic memory platform is achieved by

organizing the memory area in a varying number of banks that can be switched

between different energy states.

4.2 CASE STUDY (I)

Our development platform is the Xilinx Virtex 6 XC6XCX75T platform [21]. Since our

implementation is not directed exclusively to the specific platform, but it is designed

to have general applicability, we only mention the basic characteristics of the

platform, shown in Table 4.1. It is not the latest design, but it is large enough to fit the

current implementation. It is worth to mention that the current platform also holds

special hardware blocks, as shown in Figure 4.3. And it handles arithmetic

operations using a number of special blocks named DSP48E1s [22], 864 in total. The

latter could be a presumptive constraint for the multiplication operations on neural

networks, so we use optimized architecture to overcome this potential problem.

Device
Slice

Registers

Slice

 LUTs

Bonded

IOBs

Virtex - 6

XC6VCX75T
708,480 354,240 720

 Table 4.1. Main Specifications of the Virtex 6 – XC6VCX75T (Package FF484)

 Figure 4.3 Virtex–6 Blocks

We extracted results for two different Clustering options (2560 and 5120 RTS) for a

series of dynamic implementations following the methodology steps, and for the

static implementation as well. The most important metrics of Synthesis,

Implementation and Simulation stages are depicted in the following pages.

74

Implementation
(# Hidden Nodes)

QoS Metric Hardware Metrics

Prediction
(Perc.)

Latency
(Cycles)

Frequency
(MHz)

Slice LUTs
(Utilization)

Power
(W)

40 61% 22 290,43 4% 7,43

50 73% 22 286,04 5% 7,41

60 74% 22 250,62 6% 7,43

70 81% 23 222,52 8% 7,43

80 78% 23 222,42 9% 7,45

Static - 2 417,88 < 1% 7,3

It can be easily noticed, that in terms of Hardware cost, the Static Implementation is

superior than the implementations with the use of Neural Networks. However, its

dynamic ability is non – existent, since it can only detect the Scenarios it has been

trained of. Each metric is shown separate in the next diagrams.

The best-tuned neural network is the one with 70 Nodes. From that stage on,

additional hidden nodes do not provide with more prediction capacity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

40 50 60 70 80

P
er

ce
n

ta
g

e

Hidden Nodes

Case Study 1 - Prediction

75

The size of Complementary LUTs in each implementation is an indication of the

effectiveness of the training. Complementary LUT is the structure that is instantiated

during Simulation and has as many entries as the number of error cases. If we had

not been using cross – validation technique for better generalization results, we

would expect that with the increase of hidden nodes, a reduction of the size of

Complementary LUT. But since we use validation, ‘early stopping’ prevents the

network from overfitting to the known data. It is worth to notice that the

implementation with the best prediction capacity is the one with the smallest

Complementary LUT size.

Our designs are structured in such way that latency is directly dependent only on the

size of hidden layer, because at this stage they infer a tree adder, the length of which

defines the total latency in CLK cycles. An increase in latency by one CLK cycle is

noticed at the transition from the implementation with 60 nodes to that with 70

nodes.

80

100

120

140

160

180

200

C
o

m
p

le
m

en
ta

ry
 L

U
T

 S
iz

e

Implementation

Case Study 1 - 2560 RTS

40 Nodes

50 Nodes

60 Nodes

70 Nodes

80 Nodes

21

22

23

24

40 50 60 70 80

C
L

K
 C

y
cl

es

Hidden Nodes

Case Study 1 - Latency

76

The implementations are synchronized at a certain frequency. Additional nodes do

not affect the critical path in terms of additional logic, but the complexity of the

circuit becomes higher, so it is more difficult for the tools that do the placement in

the FPGA platform. The gradual reduction of frequency is due to rooting delays.

Finally, we can see the total delay of each implementation, the response time from

the moment that RTSs are given to the input stage, to the output stage, where the

number of Scenario is produced. The slowest implementation needs 103 ns, but it is

worth to notice, that our customization offers shortcuts for the extraction of

scenarios, it is therefore feasible to complete the process in significantly lower

fragment of time.

The results for the Clustering with 5120 RTS can be seen next:

0

50

100

150

200

250

300

350

40 50 60 70 80

M
H

z

Hidden Nodes

Case Study 1 - Frequency

0

20

40

60

80

100

120

40 50 60 70 80

n
s

Hidden Nodes

Case Study 1 - Delay

77

4.3 Case Study (II)

Implementation
 (# Hidden Nodes)

QoS Metric Hardware Metrics

Prediction
(Perc.)

Latency
(Cycles) Frequency (MHz)

Slice LUTs
(Utilization)

Power
(W)

80 82% 23 197,12 11% 7,47

90 79% 23 178,83 13% 7,49

100 79% 23 171,23 14% 7,49

110 89% 23 166,86 17% 7,48

120 83% 23 166,78 18% 7,5

Static - 2 348,79 1% 7,34

Starting with 80 hidden nodes, gradually we increase the size of hidden layer, until

the network’s dynamic ability is saturated. This point was discovered for the

implementation with 110 nodes.

74%

76%

78%

80%

82%

84%

86%

88%

90%

80 90 100 110 120

P
er

ce
n

ta
g

e

Hidden Nodes

Case Study 2 - Prediction

78

Again, we notice that the implementation with the best prediction capacity, is also

the one with the smallest size of Complementary LUT. The combination of these

factors makes the current implementation in both ways the most suitable.

Migrating from the implementation with 80 Nodes to that with 120 Nodes does not

add a single CLK Cycle. There is balance in this metric.

120

130

140

150

160

170

180
C

o
m

p
le

m
en

ta
ry

 L
U

T
 S

iz
e

Implementation

Case Study 2 - 5120 RTS

80 Nodes

90 Nodes

100 Nodes

110 Nodes

120 Nodes

22

23

24

80 90 100 110 120

C
L

K
 C

y
cl

es

Hidden Nodes

Case Study 2 - Latency

79

Additional nodes result in reduction of operating frequency, as we had seen on the

previous Case Study. The added size and complexity of the circuit is the reason for

this deterioration on frequency performance.

Finally, the total delay is increasing gradually, so the performance in terms of timing

cost is deteriorating. This result is expected, as the number of CLK cycles remains

stable, while frequency reduces.

0

50

100

150

200

250

80 90 100 110 120

M
H

z

Hidden Nodes

Case Study 2 - Frequency

105

110

115

120

125

130

135

140

80 90 100 110 120

n
s

Hidden Nodes

Case Study 2 - Delay

80

Chapter 5 Conclusions & Future Work

Our work was focused towards developing a non-existing implementation for

Scenario Detection, which apart from the usual process of responding to a

combination of inputs and providing the suitable output, will also have dynamic

ability, that is to predict during unknown situations the Scenario to be implemented.

This was achieved with high level of success, as we developed highly accurate

Neural Networks, with prediction ability up to 90%. The systematic way by which a

methodology to extract the optimal solution in terms of efficiency, and the scientific

documentation that this methodology was based on, suggests that it is a rather

reliable solution.

Besides the numerous interventions that targeted in optimizing the implementation

in terms of efficiency and cost, there is still room for improvement from the technical

point of view. Some ideas would be:

 Ternary adders could be added in place of the existent which add only two

operands. Since the stage of additions is the most time consuming part of the

design, the reduction of the stages of the tree adder that would be inferred with

the use of ternary adders, would significantly reduce the latency of the

implementation, without affecting the critical path, that is the operating

frequency.

 The implementation has been designed with minimum levels of logic at each

CLK Cycle, so the final Timing delay in the Critical path is due to routing delays.

The solution to reduce routing cost in the Hardware would be an analytical

floorplanning, which is performed with the use of the Software tools that

provide us all the suitable tools.

There are also many ways of customization using the existent implementation. One

such customization could be an energy – saving solution which would enable at each

stage, only the neurons that would be necessary for each case. Even better, we could

create the ANN the way we create it at the moment, and with the use of genetic

algorithms we could reduce the number of neurons that do not eventually

participate in computations. This solution is towards a more compact

implementation, with less hardware footprint and better possibilities to be

embedded into a small chip.

Finally, the biggest challenge would be to create a system which would be

instantiated as an artificial neural challenge, but its parameters for training would be

given only during run-time. Thus, the system should have the capability to perform

on-chip training, and periodically evolve, depending on the scale of the different

inputs it will encounter. Perhaps the structure of Cascade Correlation Networks is

the most suitable to perform the specific task. Anywise, on - chip training is

extremely demanding, since constraints in hardware devices would reduce the

81

wanted precision and therefore undermine the capability of the network for proper

training.

References

[1] N. Zompakis, “Development of a Systematic Methodology for Dynamic

Resource Management for Embedded Systems,” NTUA, 2014.

[2] “www.wirelessmotivation.org.” .

[3] S. V. Georghitta, Dealing with Dynamism in Embedded System Design ,

Application Scenarios. 2007.

[4] W. B. Frakes, “Software reuse research: status and future,” IEEE Trans. Softw.

Eng., vol. 31, no. 7, pp. 529–536, Jul. 2005.

[5] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and

software design methodology for embedded systems,” IEEE Des. Test Comput.,

vol. 18, no. 6, pp. 23–33, 2001.

[6] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using

implicit path enumeration,” in Proceedings of the 32nd ACM/IEEE conference on

Design automation conference - DAC ’95, 1995, pp. 456–461.

[7] S. V. Gheorghita, F. Vandeputte, K. De Bosschere, M. Palkovic, J. Hamers, A.

Vandecappelle, S. Mamagkakis, T. Basten, L. Eeckhout, H. Corporaal, and F.

Catthoor, “System-scenario-based design of dynamic embedded systems,”

ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1, pp. 1–45, Jan. 2009.

[8] S. Gheorghita, T. Basten, and H. Corporaal, “Application Scenarios in

Streaming-Oriented Embedded System Design,” in 2006 International

Symposium on System-on-Chip, 2006, pp. 1–4.

[9] S. Lee, K. Choi, and S. Yoo, “An intra-task dynamic voltage scaling method for

SoC design with hierarchical FSM and synchronous dataflow model,” in

Proceedings of the 2002 international symposium on Low power electronics and

design - ISLPED ’02, 2002, p. 84.

[10] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” ACM

SIGARCH Comput. Archit. News, vol. 31, no. 2, p. 336, May 2003.

82

[11] D. H. Albonesi, “Selective cache ways: on-demand cache resource allocation,”

in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International

Symposium on Microarchitecture, pp. 248–259.

[12] L. Fausett, Fundamentals of Neural Networks: architectures, algorithms, and

applications. Melbourne: Prentice-Hall, 1994.

[13] R. Lange, “Design of a Generic Neural Network FPGA-Implementation,”

Chemnitz University of Technology, 2005.

[14] J.-P. Deschamps, G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits:

FPGA, ASIC and Embedded Systems. Wiley, 2006.

[15] J.-P. Deschamps, G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits.

Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

[16] J. Zhu and P. Sutton, Field Programmable Logic and Application, vol. 2778. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003.

[17] M. H. Beale, M. T. Hagan, and H. B. Demuth, “Neural Network Toolbox TM

User’s Guide R 2014 a,” 2014.

[18] A. Elisseefl and F. Lyon, “Size of multilayer networks for exact learning:

analytic approach,” in Advances in Neural Information Processing Systems, 1996.

[19] M. T. Tommiska, “Efficient digital implementation of the sigmoid function for

reprogrammable logic,” IEE Proc. - Comput. Digit. Tech., vol. 150, no. 6, p. 403,

2003.

[20] N. Zompakis, I. Filippopoulos, P. G. Kjeldsberg, F. Catthoor, and D. Soudris,

“Systematic Exploration of Power-Aware Scenarios for IEEE 802.11ac WLAN

Systems,” in 2014 17th Euromicro Conference on Digital System Design, 2014, pp.

28–35.

[21] Xilinx, “Virtex-6 FPGA Data Sheet,” vol. 152, pp. 1–65, 2014.

[22] Xilinx, “DSP48E1 Slice User Guide,” vol. 369, pp. 1–52, 2011.

[23] B. M. W. Hao Yu, Intelligent Systems. CRC Press, 2011, pp. 12–1,12–16.

[24] S. Haykin, Neural networks : a comprehensive foundation, 2nd ed., Upper

Saddle River, NJ: Prentice Hall, 1999.

[25] Scherer, Andreas: Neuronale Netze: Grundlagen und Anwendungen.

Braunschweig: Vieweg, 1997

83

[26] Rosenblatt, Frank: The Perceptron: A probabilistic model for information

 storage and organization in the brain. In: Psychological Review 65 (1958),

 no.6, p. 386–408

[27] Werbos, Paul J.: Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences, Harvard University, Diss., 1974

[28] Hagan, Martin T. ; Demuth, Howard B. ; Beale, Mark: Neural Network

Design. Boston : PWS Publishing Company, 1996

[29] Hopfield, J. J.: Neural Networks and Physical Systems with Emergent

Collective Computational Abilities. In: Proceedings of the National Academy

of Sciences, 1982, p. 2554–2558

[30] Fahlman, S. E. ; Lebiere, C.: The Cascade-Correlation Learning Architecture.

In: Touretzky, D. S. (Ed.): Advances in Neural Information Processing

Systems vol. 2. Denver 1989 : Morgan Kaufmann, San Mateo, 1990, p. 524–532

[31] Teuvo Kohonen. Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69, 1982.

[32] T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, 1998.

[33] D. Bishop, “Fixed point package.” [Online]. Available:

 http://www.eda.org/vhdl-200x/vhdl-200x-ft/packages/fixed_pkg.vhd

[34] “IEEE 802.11ac, 2011. Specification frame work for ac: IEEE 802.1109/0992r21,”

[35] Proakis, “Digital Communication Systems,” 4th Ed., McGraw Hill, 2001.

[36] Muhammad Imran TAJ “Network on chip based Multiprocessor System on

Chip for Wireless Software Defined and Cognitive Radios”, PhD Thesis,

Université Paris-Est, ESIEE Paris, Laboratoire LIGM Feb, 2012.

[37] J. Mitola, "The Software Radio," IEEE National Telesystems Conference, 1992.

[38] P. Marchal, C. Wong, A. Prayati, N. Cossement, F. Catthoor, R. Lauwereins,

D. Verkest, "Impact of task-level concurrency transformations on the MPEG4

IM1 player for weakly parallel processor platforms", on Compilers and

Operating Systems for Low Power (COLP'00) in conjunction with Intnl. Conf.

on Parallel Arch. And Compilation Techniques (PACT), Philadelphia PN,

Oct. 2000.

84

Appendix A

A.1 Introduction

The Levenberg–Marquardt algorithm which was independently developed by

Kenneth Levenberg and Donald Marquardt, provides a numerical solution to the

problem of minimizing a nonlinear function. It is fast and has stable convergence. In

the artificial neural-networks field, this algorithm is suitable for training small- and

medium-sized problems.

Many other methods have already been developed for neural-networks training. The

steepest descent algorithm, also known as the error backpropagation (EBP)

algorithm, dispersed the dark clouds on the field of artificial neural networks and

could be regarded as one of the most significant breakthroughs for training neural

networks. Many improvements have been made to EBP, but these improvements are

relatively minor. The EBP algorithm is still widely used today; however, it is also

known as an inefficient algorithm because of its slow convergence. There are two

main reasons for the slow convergence: the first reason is that its step sizes should be

adequate to the gradients). Logically, small step sizes should be taken where the

gradient is steep so as not to rattle out of the required minima (because of

oscillation). So, if the step size is a constant, it needs to be chosen small. Then, in the

place where the gradient is gentle, the training process would be very slow. The

second reason is that the curvature of the error surface may not be the same in all

directions, such as the Rosenbrock function, so the classic “error valley” problem [28]

may exist and may result in the slow convergence.

The slow convergence of the steepest descent method can be greatly improved by the

Gauss–Newton algorithm [28]. Using second-order derivatives of error function to

“naturally” evaluate the curvature of error surface, The Gauss–Newton algorithm

can find proper step sizes for each direction and converge very fast; especially, if the

error function has a quadratic surface, it can converge directly in the first iteration.

But this improvement only happens when the quadratic approximation of error

function is reasonable. Otherwise, the Gauss–Newton algorithm would be mostly

divergent.

The Levenberg–Marquardt algorithm blends the steepest descent method and the

Gauss–Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss–

Newton algorithm and the stability of the steepest descent method. It’s more robust

than the Gauss–Newton algorithm, because in many cases it can converge well even

if the error surface is much more complex than the quadratic situation. Although the

Levenberg–Marquardt algorithm tends to be a bit slower than Gauss–Newton

algorithm (in convergent situation), it converges much faster than the steepest

descent method.

85

The basic idea of the Levenberg–Marquardt algorithm is that it performs a combined

training process: around the area with complex curvature, the Levenberg–Marquardt

algorithm switches to the steepest descent algorithm, until the local curvature is

proper to make a quadratic approximation; then it approximately becomes the

Gauss–Newton algorithm, which can speed up the convergence significantly.

A.2 Algorithm Derivation

In this part, the derivation of the Levenberg–Marquardt algorithm will be presented

in four parts: (1) steepest descent algorithm, (2) Newton’s method, (3) Gauss–

Newton’s algorithm, and (4) Levenberg– Marquardt algorithm.

Before the derivation, let us introduce some commonly used indices:

• p is the index of patterns, from 1 to P, where P is the number of patterns.

• m is the index of outputs, from 1 to M, where M is the number of outputs.

• i and j are the indices of weights, from 1 to N, where N is the number of weights.

• k is the index of iterations.

Other indices will be explained in related places.

Sum square error (SSE) is defined to evaluate the training process. For all training

patterns and network outputs, it is calculated by

 (A.1)

where

 x is the input vector

 w is the weight vector

 ep,m is the training error at output m when applying pattern p and it is defined as:

 (A.2)
where

 d is the desired output vector

 o is the actual output vector

A.2.1 Steepest Descent Algorithm

The steepest descent algorithm is a first-order algorithm. It uses the first-order

derivative of total error function to find the minima in error space. Normally,

gradient g is defined as the first-order derivative of total error function (A.1):

 (A.3)

86

With the definition of gradient g in (A.3), the update rule of the steepest descent

algorithm could be written as

 (A.4)

where α is the learning constant (step size).

The training process of the steepest descent algorithm is asymptotic convergence.

Around the solution, all the elements of gradient vector would be very small and

there would be a very tiny weight change.

A.2.2 Newton’s Method

Newton’s method assumes that all the gradient components g1, g2, …, gN are

functions of weights and all weights are linearly independent:

 (A.5)

where F1,F2, …, FN are nonlinear relationships between weights and related

gradient components.

Unfold each gi (i = 1, 2,…, N) in Equations A.5 by Taylor series and take the first-

order approximation:

 (A.6)

By combining the definition of gradient vector g in (A.3), it could be determined that

 (A.7)

87

By inserting Equation A.7 to A.6:

(A.8)

Comparing with the steepest descent method, the second-order derivatives of the

total error function need to be calculated for each component of gradient vector. In

order to get the minima of total error function E, each element of the gradient vector

should be zero. Therefore, left sides of the Equations A.8 are all zero, then

(A.9)

By combining Equation A.3 with A.9

(A.10)

There are N equations for N parameters so that all Δwi can be calculated. With the

solutions, the weight space can be updated iteratively.

88

 Equations A.10 can be also written in matrix form

(A.11)

where the square matrix is Hessian matrix:

 (A.12)

By combining Equations A.3 and A.12 with Equation A.11

 (A.13)

(A.14) So

Therefore, the update rule for Newton’s method is

 (A.15)

As the second-order derivatives of total error function, Hessian matrix H gives the

proper evaluation on the change of gradient vector. By comparing Equations A.4 and

A.15, one may notice that well-matched step sizes are given by the inverted Hessian

matrix.

A.2.3 Gauss – Newton Algorithm

If Newton’s method is applied for weight updating, in order to get Hessian matrix H,

the second-order derivatives of total error function have to be calculated and it could

89

be very complicated. In order to simplify the calculating process, Jacobian matrix J is

introduced as

 (A.16)

By integrating Equations A.1 and A.3, the elements of gradient vector can be

calculated as

(A.17)

Combining Equations A.16 and A.17, the relationship between Jacobian matrix J and

 gradient vector g would be

 (A.18)

where error vector e has the form

 (A.19)

90

Inserting Equation A.1 into A.12, the element at ith row and jth column of Hessian

matrix can be calculated as

(A.20)

where Si,j is equal to

 (A.21)

As the basic assumption of Newton’s method is that Si,j is closed to zero [29], the

relationship between Hessian matrix H and Jacobian matrix J can be rewritten as

 (A.22)

By combining Equations A.15, A.18, and A.22, the update rule of the Gauss–Newton

algorithm is presented as

 (A.23)

Obviously, the advantage of the Gauss–Newton algorithm over the standard

Newton’s method (Equation A.15) is that the former does not require the calculation

of second-order derivatives of the total error function, by introducing Jacobian

matrix J instead. However, the Gauss–Newton algorithm still faces the same

convergent problem like the Newton algorithm for complex error space

optimization. Mathematically, the problem can be interpreted as the matrix JTJ may

not be invertible.

A.2.4 Levenberg – Marquadt Algorithm

In order to make sure that the approximated Hessian matrix JTJ is invertible,

Levenberg–Marquardt algorithm introduces another approximation to Hessian

matrix:

 (A.24)
where

 μ is always positive, called combination coefficient

 I is the identity matrix

From Equation A.24, one may notice that the elements on the main diagonal of the

approximated Hessian matrix will be larger than zero. Therefore, with this

approximation (Equation A.24), it can be sure that matrix H is always invertible.

91

By combining Equations A.23 and A.24, the update rule of Levenberg–Marquardt

algorithm can be presented as

 (A.25)

As the combination of the steepest descent algorithm and the Gauss–Newton

algorithm, the Levenberg–Marquardt algorithm switches between the two

algorithms during the training process. When the combination coefficient μ is very

small (nearly zero), Equation A.25 is approaching to Equation A.23 and

Gauss–Newton algorithm is used. When combination coefficient μ is very large,

Equation A.25 approximates to Equation A.4 and the steepest descent method is

used.

If the combination coefficient μ in Equation A.25 is very big, it can be interpreted as

the learning coefficient in the steepest descent method (A.4):

 (A.26)

92

Appendix B

This section intends to provide information about the Neural Network Tool that was

developed in MatLab environment for the purposes of our study.

Train/Validation Files

Firstly, we have to insert our input files, which should be .dat files and their format

should be strictly arranged.

Training File contains the part of the dataset that we want to be engaged to the

training procedure, while Validation File contains the part used to evaluate the

performance of our network and its ability to generalize.

Every column represents an input, while every row represents a combination of

inputs and their output. The last column stands for the output values. MatLab will

accept as a delimiter a comma, a semicolon, or even a space for the separation of the

values. We should note here a design restriction, which is that input values from the

Figure B.1 Neural Network tool

93

dataset should be positive integer numbers, and output values should be continuous

integer numbers beginning with 1.

Switch Criteria

“Switch Criteria” button is an optional choice. It enables a more sophisticated method

of classifying, which is ruled by specific criteria, varying amongst different Scenarios.

Application requests a .dat file which should keep to the following rules :

 The file should have as many set of Criteria as the number of Scenarios.

 A number specifies the number of Criteria for each set and is followed by as

many lines it defines.

 0s and 1s are used to represent changes in Inputs. Thus, line 1;0;0;1;0 implies that

when the first and fourth input do not change, a change in Output is never

triggered.

No Training

“No Training Values” button is another optional choice. It is useful in cases of having

extreme values in our dataset that could slow down convergence while training the

dataset, or even affect negatively in the performance of the Network. These values

are given as a .dat file following the rules already explained, however it should be

noted that those values should not be erased from the original dataset; they are just

copied to a new file. Also, for reasons explained later, this option cannot be

combined along with “Separate” Complementary LUTs.

Analysis Results

Underlying functions process input files and provide information about the

impending Neural Network that is going to be built. Input Nodes, Output Nodes, No

Scenarios and Cases, which is a measurement of the size of the dataset. Also, there is a

box titled “Recommendation” which makes use of an algorithm that estimates the least

number of Hidden Neurons that would provide the maximum efficiency. It is worth

to mention that this is just a rough estimation; the decision about the size of a Neural

Network is more like a trial – and – error process.

Multiplication Style

This option is of major significance. If it is feasible, we could choose to bypass the

costly multiplications, and use LUTs instead, in a manner that we will explain later

in this chapter. If the use of multipliers is necessary, though, we choose the

respective option in this pop – up menu.

94

Bits Precision

When implementing an Artificial Neural Network in FPGA, precision is one of the

most important aspects. The desired level of precision is handled as an input

parameter, and throughout Simulation of the final circuit, the user could define the

impact in his own design, and balance the tradeoff between less logic and better

performance.

Activation Function

There are two possible options regarding Activation Function. The underlying

implementations perform the same task, whereas ‘Extended’ form provides better

precision, because it covers twice as many cases as ‘Normal’ form, thus using more

logic. If there is requirement for a very – high precision implementation, then the

‘Extended’ form of Activation Function should be chosen. We should also note that

the letter could have a slightly negative impact in Frequency.

Complementary LUTs

This option indicates the style by which the Neural Networks transforms into a

Hybrid Network; that is embedding complementary LUTs in the stage of Simulation,

which perform the task of covering the cases where the Neural Network itself is

unable to provide the correct output.

• “Single” option infers the implementation of a large LUT, which contains all

the cases of miscalculation. When this LUT is enabled, the function of NN is not

triggered, and output is provided by the LUT.

• “Multiple” option infers as many LUTs as the output bits, each one holding

the inputs that cause an error in this specific bit. When enabled, it does not bypass

the function of NN, just inverts the erroneous bits.

Clock Trigger

By the option “Clock Trigger” we are allowed to define the CLK edge which triggers

our final circuit. It is included to provide some flexibility for the final design.

Training Parameters

This parameter is not directly linked with the VHDL implementation, its purpose is

to simplify the stage of training Neural Networks. We can determine the exact

number of NN instantiations trained in our System. Out of these instances, the one

with the better performance will be selected and converted into RTL description.

95

Create Neural

The final action when all settings have been fixed is to press “Create Neural” button,

which will pass the chosen parameters to the built – in MatLab toolbox in order to

train our Neural Network. A message appears indicating the state of the Application.

While the Neural Network is being trained and afterwards evaluating the results and

producing the appropriate files, the state is set to “Processing”. If this procedure is

completed without errors, the state is set to “Successful”.

96

Appendix C

The following legend intends to define the simplified shapes used for the structural

and functional analysis of the modules. Each rectangle represents a single module,

while shapes imply the following functions :

* Two units of the same kind imply a parallel array of such units.

