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Περίληψη 
 

Τα τεχνητά νευρωνικά δίκτυα κερδίζουν σε δημοφιλία τα τελευταία χρόνια, 

καθώς οι μοντέρνοι επεξεργαστές εξελίσσονται με βάση την προσέγγιση στην 

παραλληλοποίηση. Οι παραδοσιακοί, σειριακοί ψηφιακοί υπολογισμοί 

επικρατούν σε πολλούς τομείς, αλλά είναι λιγότερο επιτυχείς για άλλου τύπου 

προβλήματα. Η εξέλιξη των νευρωνικών δικτύων ξεκίνησε πριν από 60 χρόνια 

περίπου, με κίνητρό να προσπαθήσουμε να καταλάβουμε αλλά και να 

μιμηθούμε τον εγκέφαλο, και συνεχώς κερδίζουν έδαφος, αφού η εξέλιξη των 

σύγχρονων Hardware πλατφόρμων προσφέρει νέες δυνατότητες. 

 

Τα σενάρια συστήματος είναι επίσης ένας εξελισσόμενος τομέας στην επιστήμη 

του Hardware, που έχει σαν σκοπό να μετατρέψει την αυξανόμενα δυναμική 

φύση των ενσωματωμένων συστημάτων σε ευκαιρία βελτιστοποίησης αντί για 

πιθανό πρόβλημα. Η χρήση των σεναρίων συστήματος στις μοντέρνες συσκευές 

μας επιτρέπει να διανέμουμε τους πόρους του συστήματος με έναν αποδοτικό 

τρόπο, αφού κάθε εφαρμογή που εκτελείται έχει και διαφορετικές απαιτήσεις. 

Γνωρίζοντας το σενάριο εκτέλεσης, είναι δυνατό με δυναμική ανάθεση πόρων, 

να πετύχουμε καλύτερη απόδοση. 

 

Ο στόχος της παρούσας Διπλωματικής Εργασίας είναι να παρέχει μία 

υλοποίηση, η  οποία χρησιμοποιεί τεχνητό νευρωνικό δίκτυο ως το βασικό δομικό 

στοιχείο, και πραγματοποιεί εντοπισμό σεναρίων σε πραγματικές εφαρμογές. Η 

επιλογή των νευρωνικών δικτύων έγινε εξαιτίας της παράλληλης δομής τους, 

και της ικανότητάς τους να αναπτύσσουν δυναμική συμπεριφορά. Η  υλοποίηση 

παρουσιάζεται συγκριτικά με μία στατική υλοποίηση με σκοπό να αναδείξουμε 

και να επισημάνουμε τις διαφορές και τα πλεονεκτήματα της καθεμιάς. 
 

Λέξεις Κλειδιά 

Σενάρια συστήματος; δυναμική ανάθεση; Νευρωνικά δίκτυα, εντοπισμός; fpga; 

vhdl. 
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Abstract 

 
Artificial Neural Networks gain popularity in recent years, as modern processors 

evolve towards a parallel approach. Traditional, sequential, logic-based digital 

computing excels in many areas, but has been less successful for other types of 

problems. The development of artificial neural networks began approximately 60 

years ago, motivated by a desire to try both to understand the brain and to emulate 

some of its strengths and is constantly gaining attention as modern Hardware 

platforms evolve and offer new promising capabilities for Neural Networks 

development. 

 

System Scenarios is also a developing field in science of Hardware which aims to 

convert the increasingly dynamic nature of embedded systems into an optimization 

opportunity instead of a potential problem. The use of system scenarios scheduling 

in modern devices allows us to exploit resources of the system in a sophisticated 

manner, since every different form of execution differs in terms of hardware 

requirements. Acknowledging the scenario to be executed, it is possible to modificate 

resources allocation and achieve greater performance.  

 

The goal of this diploma thesis is to provide a sufficient hardware/software co-design 

implementation which enables neural networks as the basic unit of a structure that 

detects Scenarios in real applications. The choice of neural networks was made 

because of their inherited parallelism and their ability to develop dynamic behavior. 

The implementation with Neural Networks is presented side by side with a straight – 

forward implementation in order to feature the advantages of each and highlight the 

differences. 

 

The thesis is organized as follows: 

 

In Chapter 1, there is an introduction in Wireless Systems and System Scenarios, 

along with a proposed methodology (Zompakis et al, 2012) for using System 

Scenarios in real applications. A description of Scenario detection in real - time 

follows accompanied by related work on this problem. Finally, an outline of the 

suggested solution by current thesis is presented.  

 

Chapter 2 is a brief description of Artificial Neural Networks. Historical background, 

topologies, and types of ANNs are examined. Special emphasis is given to training 

methods and more specifically, to Levenberg – Marquadt algorithm, which is the 

selected training function. 

 

Analytical methodology for our solution is presented in Chapter 3. The workflow 

shows the steps sequentially towards the final implementation. The said chapter also 

contains extended justification for the neural network selected specifications. The last 

part is a detailed analysis of the VHDL modules of the implementation, which apart 

from technical information also include timeline diagrams. The intention for using 
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timeline diagrams for each module separately is to analytically present in a 

schematic way the exact tasks performed in the inferred hardware. 

 

Chapter 4 is dedicated to the presentation and analysis of the results of our case 

study. Important implementation parameters, such as operating frequency, chip area 

and dynamic ability are measured and compared for the two separate solutions. 

 

Finally, Chapter 5 summarizes the results and conclusions of the current study and 

suggests future work for the improvement of the existent implementation.  

 

 

Keywords 

System Scenarios; Dynamic Scheduling; Neural Networks; detection; fpga; 

vhdl. 
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Chapter 1 Introduction 
 

 

1.1 Embedded Systems 
 

1.1.1 Overview  
 
In recent years, the wireless technology has opened new horizons in the means and 

ways that users communicate [1]. We are living in a very competitive environment, 

where the radio devices become outdated soon after their engineering. Radios exist 

in a multitude of items such as cell phones, vehicles, tablet pcs and digital TVs. The 

different types of applications demand different type of communication standards. 

Although all these systems have almost similar components, the ways these 

components behave differ greatly. To cope with these challenges, communication 

systems adopt open architectures with flexible interfaces. The new specifications are 

introduced to the existing infrastructure without requiring new expenditures. Thus, 

while migrating from one generation to the next, the new devices are compatible 

with the conventional and the state of the art networks. The modern 4G networks 

provide high quality of services (QoS) exploiting new innovative products, which 

combine smart transceivers and high performance signal processing elements [2].  

This trend highlights challenges that the classic hardware-based radios cannot cope 

with. 

More precisely, the traditional radio chips are designed for specific operations each 

of them is realized through a single communication standard. A typical handset has 

several chips to establish a variety of wireless links, one to talk to a cell phone, 

another to communicate with a Wi-Fi base station, a third to process GPS signals. All 

these chips support particular spectrum areas and modulation schemes. Thus, after 

the device engineering, they are exploitable only for the purpose that they are 

designed. This confines the scalability of a potential radio device and restricts the 

update capabilities at the improvement of the user interface without providing real 

operation extensions. However, this approach was not able to answer the ever-

changing requirements of the modern transceivers. 

In addition, the standardization at the development of the new handsets is a key 

issue, which occupies the radio industry. This is highly desirable because it allows 

new products come quickly into the market limiting the design and the development 

cost. It is fact that a family of products with common hardware architecture will 

require much less implementation effort. In this direction, the particular functionality 

can be performed by modifiable software. The software definition of the 

functionality opens significant opportunities at the follow-on-support services. New 

features and capabilities can be added to the existing devices without requiring any 

extra hardware equipment. Software upgrades can remotely activate new revenue 
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generating features. Bug-fix and reprogramming services are able to reduce the costs 

while a device is in service. Thus, the cost reduction in the end-users allows them to 

communicate with whomever they need, whenever they need to and in whatever 

manner is appropriate. 

 

Another open issue is the efficient utilization of the available spectrum area. Radio 

bandwidth is a scarce resource, which have to be distributed with a dynamic way. 

The conventional radios, which are modifiable only by physical interventions, don’t 

provide the necessary flexibility. Thus, the interest to explore ways using the 

spectrum with a more efficient way is quite high. The right exploitation of the 

frequency bandwidth depends on a number of factors, which combine the 

geographical characteristics of the area and the transmission activity in it. The main 

reason for insufficient bandwidth utilization is the spectrum fragmentation. Even in 

an environment with high density of wireless transmissions, the spectrum 

exploitation can be poor. The reason is the substantial amounts of unused spectrum 

segments “white spaces” which are congested by gaps between the transmission 

channels, which ensure the avoidance of the interference. Wireless devices being able 

to access unused or restricted spectrum segments that may be available for usage in 

other geographical areas or under other regulatory regimes, can improve the 

spectrum utilization. In this regard, reconfigurability is the key point for the radio 

industry. 

 

Taking into consideration all the previous challenges, wireless industry requires a 

multiband reconfigurable implementation with an open architecture capable to cope 

with the rapid development of the communication standards. The reconfigurability 

refers to a radio that supports multiple frequencies bands and multiple modulation 

schemes which adapt its configuration at the running state. An extra motivation for 

such an implementation is the fact that the standard wireless processes like filtering, 

decoding, signal modulation, can also benefit from the reconfigurability offered by a 

general-purpose architecture [36]. A well-known example of a platform with these 

capabilities is Software Defined Radio (SDR) [37], which combines numerous 

communication standards in a single device. Many of its functionalities are 

implemented in software, running on one or multiple generic processors, leaving 

only the high performance functions implemented in hardware. These kinds of 

software radios will be future proof as the whole system will be based on 

reprogramming, leading the same hardware behaving differently at different 

instances. 

 

1.1.2 SDR Operation Specs 

 

Software Define Radio (SDR) is an efficient merging of technologies, which combines 

software and hardware in such a way that the physical layer functions are 

modifiable. The Wireless Innovation Forum, in collaboration with the Institute of 

Electrical and Electronic Engineers (IEEE) P1900.1 group, establishes a definition of 

SDR that provides a clear view of the technologies involved and their benefits. 

Software Defined Radio is defined as: "Radio in which some or all of the physical 
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layer functions are software defined” [2].  SDR defines a collection of hardware and 

software technologies where some or all of the radio’s operating functions (also the 

physical layer processing) are implemented through modifiable software or 

firmware operating on programmable processing technologies. The use of SDR 

technologies enables greater degree of freedom in adaptation, higher performance 

levels and better quality of service. Adaptation has the notion of sensing the 

operations changes, calibrating the system parameters for succeeding a better 

performance. This characteristic makes software-defined radios remarkable flexible. 

In a theoretical basis, the right software in a SDR chip can implement every 

individual function, which takes place in a wireless device. The idea is to transfer the 

critical wireless functions in software, allowing adding new operations without 

hardware changes. Thus, SDR architectures tend to become a general purpose 

platform which can realize every wireless implementation. 

 

After a long period from the first introducing of the Software Defined Radio concept 

[37] SDR seems to be a promising solution for integrating the existing and the 

emerging communication standards into one platform. The first SDR approach 

limited only at the level of the replacement parts of the radio hardware by ones that 

are reconfigurable and reprogrammable. After this concept was extended including 

reconfiguration of applications and services, as well as network-based 

reconfiguration support, provided by a dedicated network infrastructure. The cause 

of this development is that applications and services are likely to be affected by 

changing transmission quality and changing Quality of Service (QoS) resulting from 

vertical handover from one radio mode to another and, therefore, service aspects 

have to be taken into account in handover decision-making. 

 

The advanced SDR technology has to handle not only the primary performance 

challenges but also the restrictions of the mobility. In the last decades, SDR devices 

have become much more complex due to the introduction of a lot of new 

functionality in one application, and due to supporting various services 

simultaneously including a wide range of communication protocols and services. 

Thus, the SDR platforms communicate with other platforms using multiple complex 

communication schemes. The connection flexibility is restricted mainly by the tight 

platform constrains. These handsets have stringent requirements on size, 

performance and energy consumption. Optimizing energy efficiency is key for 

maximizing battery lifetime between recharges. In addition, the modern SDR system 

architectures enlarge the gap between average and worst-case execution time of 

applications to increase total performance. An efficient utilization of the available 

resources based on the running situations and with the minimum configuration cost 

is needed. System adaptation can be implemented either at application level, 

selecting an effective task mapping technique, or at platform level, e.g. with dynamic 

frequency scaling technique (DFS). 

 

Thus, the development of proper methods in resource scheduling is without doubt, 

an imperative need. Traditional design approaches based on the worst-case leave a 

lot of room of optimization if the increasing resource usage dynamism can be 

properly predicted at runtime.  
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1.2 System Scenarios 

 

 

1.2.1 Overview 

 
In the past years, the functions demanded for embedded systems have become so 

numerously and complex that the development time is increasingly difficult to 

predict and control [3]. This complexity, together with the constantly evolving 

specifications, has forced designers to consider implementations that they can change 

rapidly. For this reason, and also because the hardware manufacturing cycles are 

more expensive and time-consuming than before, software implementations have 

become more popular. As often the application source code is already written, the 

trend is to reuse the applications, as this is the best approach to improve the quality 

and the time to market for the products a company creates and, thereby, to maximize 

profits [4]. Most of these applications are written in high level languages to avoid the 

dependency on any type of hardware architecture and to increase developers’ 

productivity. 

 

In the context of this software intensive approach, the job of the embedded designers 

is to evaluate multiple hardware architectures and to select the one that fits best 

given the application constraints and the final product requirements (i.e., price, 

energy, size, performance). The explored architectures lay between fixed single 

processor off-the-shelf architectures and fully design time configurable multi-

processor hardware platforms [5]. The off-the-shelf components are cheaper to use, 

as no extra development is needed, but they are not very flexible (e.g., video 

accelerators) or cannot be tuned for a specific application (e.g., general-purpose 

processors, if performance is considered). Hence, they usually are good candidates 

for simple systems that are produced in small volumes. On the other extreme, 

configurable multi-processor platforms offer more flexibility in tuning, but they 

imply an additional design cost. Hence they are used when the production volume is 

large enough for economically viable manufacturing, or when no existing off-the-

shelf component is good enough.  

 

Given an embedded system application, to find the most suitable architecture, or to 

fully exploit the features of a given one under the real-time constraints, estimations 

of the amount of resources required by each part of the application are needed. To 

give guaranties for the system quality, the estimations should be pessimistic, and not 

optimistic, as over-estimations are acceptable, but underestimations are generally 

not. Currently used design approaches use worst case estimations, which are 

obtained by statically analyzing the application source or object code [6]. However, 

these techniques are not always efficient when analyzing complex applications (e.g., 

they do not look at correlations between different application components), and they 

lead to system over-dimensioning. 
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Hence, the problem System Scenarios aiming to resolve is : 

“The need for a systematic methodology that, given a dynamic streaming application with 

many operation modes, finds and efficiently exploits the most suitable hardware architecture 

under the final system constraints (i.e., performance, price, size and energy consumption), 

without ending in an explosion problem”. 

 

This problem is quite broad, as it ranges from single to multi-processor architectures, 

and it covers multiple types of resources (e.g., computation, communication, storage) 

and constraints. 

 

1.2.2 Description and Methodology 

 
Scenario based design has been used for a long time in different design areas [38] 

and especially at the development of the embedded system domain [7]. Scenarios 

describe, in an early design phase of a development process, the future system 

functionality including the interaction with the user. The scenarios are narrative 

descriptions of envisioned usage episodes. In case of object oriented software 

engineering a unified modelling language (UML) and use-case diagram enumerate, 

from functional and timing point of view, all possible user actions and the system 

reactions that are required to meet a proposed system function. These scenarios are 

called use-case scenarios [7]. In our study, we concentrate on a different kind of 

scenarios, so-called system scenarios, which characterize the system from the 

resource usage perspective. 

 

The system scenario methodology has been described in a fully systematic way in 

[4]. The aim is to capture the data dependent dynamic behavior inside a thread in 

order to better schedule a multi-thread application on a heterogeneous multi-

processor architecture. Usually, most of these applications are streaming and have to 

deliver a given throughput, which imposes specific time constraints. [8] presents a 

design methodology that provides a systematic way of detecting and exploiting 

system scenarios for streaming applications. A scenario is defined as the application 

behavior for a specific type of input data, i.e. a group of execution paths for that 

particular group of input data. The system scenario concept was also outlined in [9], 

where the tasks are written using a combination of a hierarchical finite state machine 

(FSM) with a synchronous dataflow model (SDF). The disadvantage of this method is 

that the applications must be written using a limited model, which is a time 

consuming and error-prone operation. 

 

The system scenario methodology is a design approach for handling the complexity 

analysis of applications with multidimensional costs and strict constraints. The main 

challenges are: 1) the optimal application mapping on the platform and 2) the 

efficient management of the platform resources. The methodology key points are: 1) 

the splitting of the design problems in separate steps at design time and 2) the 

implementation of only the optimal solutions at run time. In particular, by classifying 

and clustering the possible system executions into system scenarios, a run-time 

resource manager can heavily reduce the average cost resulting from this execution 
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compared to the conventional worst-case bounding approach, while still meeting all 

constraints. 

 

As a first step in explaining the methodology, we  have to introduce the concept of a 

Run-Time Situation (RTS). As RTS we define a piece of system execution that is 

treated as a unit because it has uniform behavior internally. The system scenario 

methodology comprises 5 individual steps, 1) RTS identification, 2) RTS 

characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5) 

scenario switching. 

 

1) RTS identification    This methodology starts with the characterization of 

all possible RTSs, which occur in the system. We identify all the variables (RTS 

parameters) that affect the state of the system from a functionality or implementation 

point of view. System variables can be classified in two categories; control and data 

variables. Control variables define the execution paths of an application and 

determine which conditional branches are taken or how many times a loop will 

iterate. They have a higher impact on execution time, as they decide how often each 

part of the program is executed. Hence we focus on them. The data variables 

represent the data processed by the application. 

 

2) RTS characterization  In most cases, the cost characterization of the RTSs is 

not a simple determination of one cost value but it leads to a Pareto surface of 

potential exploitation points in the multidimensional exploration space. Each RTS 

can be characterized by a number of cost factors obtained from profiling the 

application on a platform or by using high-level cost estimators. Cost axes may 

include quality level, user benefit, code size, execution time, total energy 

consumption, including the impact of the system operating conditions. It quantifies 

all the costs for each different platform configuration per RTS. The two typical costs 

for a system are: 1) the energy consumption, 2) the performance as it is expressed by 

the total delay (latency) for an operation execution. Hence the exploration space is 

usually two dimensional.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 1.1  Clustering Overhead Representation [1, p.45] 



16 
 

3) Clustering of RTSs in System Scenarios    An individually handling of 

every RTS, would lead to excessive overheads at run-time, since the source code and 

all configuration settings would need to be stored for each RTS and applied at run-

time. So they have to be clustered into scenarios. But clustering introduces 

overestimation, which is characterized as clustering overhead, and is caused by the 

deviation between the real cost of the RTS and the estimated cost which is the 

representative cost for the scenario of the RTS. This overestimation will be incurred 

in every appearance of this RTS. Thus, the total overestimation will be proportional 

not only to the distance between RTS cost and scenario cost but also to the frequency 

of this RTS. 

 

The similarity between costs of different RTSs or in general sets of RTSs (scenarios) 

has to be quantified e.g., by defining the normalized, potentially weighted, distance 

between two N-dimensional Pareto surfaces as the size of an N-dimensional volume 

that is present between these two sets. Based on this distance, the quality of potential 

scenario options can be quantified, e.g., to decide whether or not to cluster RTSs in 

different scenarios [5]. Clustering is implemented using a cost function related to the 

target objective optimization and takes into account: 1) how often each RTS occurs at 

run-time and 2) the distance of their Pareto curves. The scenario characterization 

(Pareto curve) results from taking the worst-case cost point among the RTSs. 

 

4) Detection of System Scenarios   After the generation of system scenarios 

the next step is the realization of a detection algorithm, which can recognize at run-

time the scenario to be executed. The detection mechanism will be embedded in the 

middleware (e.g. RTOS) of the targeted platform adding some overhead on both 

execution time and memory footprint. It is critical to keep this overhead small while 

maintaining the benefits by exploiting the knowledge from the scenario recognition. 

The detection is implemented by monitoring the changes of the RTS parameters at 

run-time. Their value range has great impact on the final overhead. The challenge is 

to discover heuristic techniques which can detect the scenarios with minimum cost. 

 

Figure 1.2 illustrates the implementation of a detection algorithm for a given 

application with 3 RTS parameters (bandwidth, number of antennas, coding). The 

detection algorithm starts from inner node ξ1, if the current bandwidth is equal to 20 

MHz. If the condition is true the detection goes to line 3. At the new instruction line, 

we are at the inner node 2 and we have a new RTS parameter (number of antennas) 

to check and a new instruction to run. The procedure continues until the decision 

diagram reaches a detected system scenario.  
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5) Switching    Having identified the system scenarios and the suitable 

detection approach, the next step is the implementation of a run-time algorithm, 

which will decide on the switching of the system configuration in real time. From the 

identification part, we have characterized every scenario so we can estimate, at 

design time, the tuning configuration for every scenario which respects the 

application constrains with the minimum energy cost. The tuning configurations can 

be related with the voltage scaling and the frequency scaling or other power saving 

techniques like processor resizing [10] and cache resizing [11]. So every system 

scenario corresponds to an optimal set of system configurations (e.g. an E-T Pareto 

curve of potential working points) and this information is stored in the system 

scenario list. 

 

What we need now is the implementation of a mechanism which will react to the 

detection of a new scenario being triggered, and then decide whether to switch from 

the current scenario or not, while exploiting this information and taking into 

consideration the switching cost. If the new scenario is not expected to last very long 

and the gain G is limited then we cannot afford a high switching cost because that 

will probably be lower than G. As switching cost, we define the cost for the 

switching from one scenario to another. This cost will normally depend heavily on 

the initial and final state. 

 

 

 

 

Figure 1.2.  Decision diagram of a wireless Application [1, p.47] 
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1.3 Motivation – Problem Statement 

 

 
System Scenarios methodology steps are the following : 1) RTS identification, 2) RTS 

characterization, 3) RTS clustering into system scenarios, 4) scenario detection and, 5) 

scenario switching. The subject of the current thesis is to feature the demands and 

characteristics of the step referring to scenario detection and develop efficient 

solutions that could be used in real – time applications. 

 

The step of detection is directly dependent on the previous step of clustering. There 

could be many different approaches regarding RTS clustering, e.g a fully analytical 

approach that includes many RTSs in its exploration would make the procedure of 

detection more demanding than an approach that includes only a few RTSs. Taken 

this into account, we can come to the first conclusion that a universal detector is not 

suitable for every case, as we have specific requirements that result from each 

problem. 

 

Another important aspect is this of integration. The development of a mechanism 

that will run in parallel to the main implementation and recognize at run-time the 

Scenario that the specific combination of RTSs define is the key point for a successful 

implementation of run – time scheduling in wireless devices. This mechanism is not 

directly part of the device hardware; it is complementary and its function is to 

interact with elements from the main architecture and this interaction is critical to 

have response time which will be significantly lower than the average time of 

Scenario execution. Since response time is a prerequisite, external circuits to perform 

this task are not considered as possible solutions. This mechanism should be 

embedded to the system so as to share resources and transfer data more efficiently.  

 

Moreover, there is high demand for accuracy. The process of detecting the current 

scenario is deterministic and should be treated as such. Recognition of a false 

scenario could trigger a change to an unsuitable state where resource allocation is not 

sufficient for the current task. Using a hypothetical probabilistic approach, there 

would be mispredictions of two types: (i) over-prediction, when a scenario with a 

higher cost is selected, and (ii) under-prediction, when a scenario with lower cost is 

selected [4] . The first type does not produce critical effects, just leading to a less cost 

effective system; the second type often reduces the system quality, e.g., by increasing 

the number of deadline misses when the cost is a cycle budget for an MP3 decoder 

application. 

 

A proposed solution (Gheorghita et al 2007) is to construct a graph as a decision 

diagram, and make use of a restricted programming language to prevent added 

overhead, as shown in  Figure 1.3. 
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It examines, for the current frame to process, the values of a set of variables, and 

based on them it predicts in which scenario the application runs. In this approach, 

the decision diagram is implemented as a program in a restricted programming 

language, and it is executed by a simple execution engine. The program is in the 

application source represented by a data array. This split allows an easy calibration 

of the decision diagram, which consists of changing the values of several array 

elements. 

 

This approach is a straight – forward implementation of the detection scheme and 

while it looks suitable at occasions where RTS identification and clustering involves a 

limited amount of parameters, in case of a broader RTS identification, the additional 

overhead and cost of the decision diagram is a restraining factor of the specific 

implementation. Thus, we will suggest alternative methods that adjust the final 

solution depending on the scaling of the problem. 

 

 

 

1.4 Proposed Solution 

 
Our goal is to propose a scenario detection methodology and proceed towards 

developing the tools needed for its implementation. The solution is focused towards 

minimizing the detection overhead. The latter is the most critical parameter that we 

should take into consideration, because it affects in direct way the performance of 

our system. Achieving timing closure in our implemented mechanism enables the 

supported system to recognize scenarios and switch states at run – time in a pace that 

maximizes the gains of this process. 

 

A hardware implementation was preferred instead of software implementation. This 

decision was due to two main reasons: a) the already reported need to reduce the 

timing overhead and b) recent evolution of reconfigurable Hardware (FPGAs) 

provides with the necessary flexibility for the design and parameterization of the 

specific task. Moreover, the detection scheme is designated to be used in real 

applications of wireless devices, so a direct hardware implementation seems more 

usable. 

     Figure 1.3 Example of detector implementation [4] 
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Two separate solutions were developed in order to exploit the features that appear 

when using System Scenarios. The first solution is a straight – forward approach, a 

deterministic LUT which accepts as input the pre-defined combination of RTSs and 

returns in its output the specific scenario. The second solution is a Neural Network 

with the minimum number of layers in order to prevent additional overhead. The 

input and output stages of the second solution are the same with the ones of first 

solution, but the internal stages are by far different than the simplified LUT 

implementation. The most interesting part was to study the trade-offs that these 

implementations introduce among response time, implementation cost and dynamic 

behavior. These trade-offs were explicitly researched within the case study presented 

in Chapter 4. 

 

The LUT implementation is perfectly suitable when the stage of clustering produces 

a dataset of RTSs and Scenarios that are manageable in terms of size. The final 

product is a circuit that performs input – output mapping in order to identify the 

coded Scenario at every moment. We use compression techniques to reduce its size 

and complexity, while exploiting the advantages of modern synthesizers which have 

the capability to handle and simplify large logic functions. 

 

An alternative solution which enables Neural Networks as detectors is introduced 

and thoroughly examined through its various aspects. The specific implementation 

takes advantage of the well – known ability of neural networks to generalize via 

training and thus provide correct output results for unknown data. Migration of 

Neural Networks from conventional processors  to hardware platforms boosts their 

performance, but it is always a demanding and complicated task, so much effort was 

put on to optimize the parameters of the Neural Network so as to adapt in a more 

efficient way into Hardware environment. In order to achieve a highly flexible 

solution, there was developed a special software along with a graphical user 

interface, which acts as a Neural Network generator. Experimenting with various 

parameters of the Hardware implementation enables us to come to useful 

conclusions as far as the trade-offs are concerned. 

 

Finally, a full methodology is introduced which targets to evaluate by using specific 

measurements such as response time and chip area, the tradeoffs among the different 

variations of implementing the scheme of detection. This methodology is analyzed 

and explained step by step in its theoretical level in Chapter 3, while Chapter 4 

contains analytical results of the Case Studies in which the methodology was tested. 

 

The flowchart of the described methodology is given in Figure 1.4, where each step is 

presented in a separate box. The main idea behind this methodology is to generate an 

optimal Scenario Detection solution, according to the user’s desired style of 

implementation. Unlike the static implementation, which is as simple as it is shown, 

with only few sequential steps required, the finding of the optimal dynamic 

implementation demands a repetitive process, which summarizes in the following 

steps : 
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i) Normalize the values of RTS Parameters 

ii) Define specific combination of RTS values that do not trigger a change in 

Scenarios (optional) 

iii) Choose the size of the hidden layer and train the Network using the largest 

fraction of the Dataset. 

iv) Simulate the Neural Network using the whole Dataset. 

v) Evaluate the prediction percentage and compare with the previous 

measurement. If a better prediction is achieved, repeat the process adding 

nodes. If not, recall the previous instantiation and proceed to the next step. 

vi) The optimal solution of the implementation is achieved, and is followed by 

the sequential steps of Synthesis, Implementation and Bitstream Generation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Flowchart of the proposed Methodology 
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Chapter 2    Neural Networks 
 

 

2.1  Overview 
 
Today’s computers can perform complicated calculations, handle complex control 

tasks and store huge amounts of data [24]. However, there are classes of problems 

which a human can solve easily, but a computer can only process with high effort. 

Examples are character recognition, image interpretation or text reading. These kinds 

of problems have in common, that it is difficult to derive a suitable algorithm. 

 

Unlike computers, the human brain can adapt to new situations and enhance its 

knowledge by learning. It is capable to deal with incorrect or incomplete information 

and still reach the desired result. This is possible through adaption. There is no 

predefined algorithm, instead new abilities are learned. No theoretical background 

about the problem is needed, only representative examples.  

 

The neural approach is beneficial for the above addressed classes of problems. The 

technical realization is called neural network or artificial neural network. They are 

simplified models of the central nervous system and consist of intense 

interconnected neural processing elements. The output is modified by learning. It is 

not the goal of neural networks to recreate the brain, because this is not possible with 

today’s technology. Instead, single components and function principles are isolated 

and reproduced in neural networks. 

 

The development of artificial neural networks began approximately 60 years ago but 

early successes were overshadowed by rapid progress in digital computing. Also, 

claims made for capabilities of early models of neural networks proved to be 

exaggerated, casting doubts on the entire field. 

 

Recent renewed interest in neural networks can be attributed to several factors. 

Training techniques have been developed for the more sophisticated network 

architectures that are able to overcome the shortcomings of the early, simple neural 

networks. High-speed digital computers make the simulation of neural processes 

more feasible. Technology is now available to produce specialized hardware for 

neural networks. However, at the same time that progress in traditional computing 

has made the study of neural networks easier, limitations encountered in the 

inherently sequential nature of traditional computing have motivated some new 

directions for neural network research. 

 

Neural networks are of interest to researchers in many areas for different reasons 

[12]. Electrical engineers find numerous applications in signal processing and control 

theory. Computer engineers are intrigued by the potential for hardware to 

implement neural networks efficiently and by applications of neural networks to 

robotics. Computer scientists find that neural networks show promise for difficult 
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problems in areas such as artificial intelligence and pattern recognition. For applied 

mathematicians, neural networks are a powerful tool for modeling problems for 

which the explicit form of the relationships among certain variables is not known. 

 

Biological Inspiration 

 

The model for the neural processing elements is nerve cells. A human brain consists 

of about 1011 of them. All biological functions—including memory—are carried out 

in the neurons and the connections between them. The basic structure of a neuron 

cell is given in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dendrites    Carry electric signals from other cells into the cell body 

Cell Body   Sum and threshold the incoming signals 

Axon           Signal transfer to other cells 

Synapse      Contact point between axon and dendrites 

 

Every neuron receives electrochemical impulses from multiple sources, like other 

neurons and sensor cells. The response is an electrical impulse in the axon which is 

transferred to other neurons or acting organs, such as muscles. Every neuron features 

about 100–10.000 connections. 
 

There are two types of synapses: excitatory and inhibitory. The neural activity 

depends on the neuron’s intrinsic electric potential. Without stimulation, the 

potential rests at about −70mV. It is increased (excitatory synapse) or decreased 

(inhibitory synapse) by the collected inputs. When the sum of all incoming potentials 

exceeds the threshold of the neuron, it will generate an impulse and transmit it over 

the axon to other cells. 

 

        Figure 2.1. Schematic drawing of biological neurons  
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The interaction and functionality of biological neurons is not yet fully understood 

and still a topic of active research. One theory about learning in the brain suggests 

metabolic growth in the neurons, based on increased activity. This is expected to 

influence the synaptic potential. 

 

 

 

2.2      Neural Network Fundamentals 
 

2.2.1   Definition 
 

Neural Network is an interconnected group of artificial neurons that uses a 

mathematical or computational model for information processing based on a 

connectionist approach to computation [24]. To achieve good performance, neural 

networks employ a massive interconnection of simple computing cells referred to as 

"neurons" or "processing units." We may thus offer the following definition of a 

neural network viewed as an adaptive machine: 

 

“A neural network is a massively parallel distributed processor made up of simple processing 

units, which has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects: 

1.   Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.” 

 

The procedure used to perform the learning process is called a learning algorithm, the 

function of which is to modify the synaptic weights of the network in an orderly 

fashion to attain a desired design objective.  

  

Each neuron is connected to other neurons by means of directed communication 

links, each with an associated weight. The weights represent information being used 

by the net to solve a problem. Each neuron has an internal state, called its activation 

or activity level, which is a function of the inputs it has received. Typically, a neuron 

sends its activation as a signal to several other neurons. It is important to note that a 

neuron can send only one signal at a time, although that signal is broadcast to several 

other neurons. 

 

For example, consider a neuron Y, illustrated in Figure 2.2, that receives inputs from 

neurons X1, X2  and X3. The activations (output signals) of these neurons are X1, X2, 

and X3 respectively. The weights on the connections from X1, X2 and X3 to neuron Y 

are W1, W2, and W3, respectively. The net input, y_in, to neuron Y is the sum of the 

weighted signals from neurons X1, X2  and X3, i.e., y_in = w1x1 + w2x2 + w3x3 [Eq 2.1]. 

The activation y of neuron Y is given by some function of its net input, y = f(y_in) 
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Common transfer functions fall into the following categories: 

 

Linear  The simplest case. Examples are identity and linear function with saturation. 

Threshold A threshold function generates binary outputs. Unipolar or bipolar 

coding is possible. Another name is hard limit function. 

Sigmoid Functions in the sigmoid class are continuous, differentiable, monotone and 

have a limited co-domain, usually in the range of [0;1] or [−1;1]. Examples are logistic 

function and the sigmoid function itself. 

 

 

2.2.2     Characteristics 
 

Artificial neural networks, apart from their complex structure, are encountered in 

literature in a huge variation of architecture and implementation aspects. However, 

we could highlight their main common attributes and briefly explain them [13]. 

Learning  Neural Networks must be trained to learn an internal representation of the 

problem.  

Generalization This attribute refers to the neural network producing reasonable 

outputs for inputs not encountered during training (learning). This  information-

processing capability makes it possible for neural networks to solve complex (large-

scale) problems. 

 

Associative Storage Information is stored according to its content. 

 

Distributed Storage The redundant information storage is distributed over all 

neurons. 

 

Robustness Sturdy behavior in the case of disturbances or incomplete inputs. 

 

Performance Massive parallel structure which is highly efficient. 

 

VLSI Implementability The massively parallel nature of a neural network makes it 

potentially fast for the computation of certain tasks. This same feature makes a 

neural network well suited for implementation using very-large-scale-integrated 

            Figure 2.2. A simple (artificial) neuron  
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(VLSI) technology. One particular beneficial virtue of VLSI is that it provides a 

means of capturing truly complex behavior in a highly hierarchical fashion [1000]. 

 

2.2.3  Network Architecture 
 
The performance of neural networks originates from the connection of individual 

neurons to a network structure which can solve more complex problems than the 

single element. Literature [25] suggests that it is possible to distinguish between two 

network topologies: 
 

1. Feed – forward networks 

- First Order 

- Second Order 

2. Recurrent networks 

 

They are illustrated in Fig 2.4. 

 

 
   

 

 

 Figure 2.4 Neural Networks Architectures 
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1. Feed-Forward Networks 

 
Feed-forward networks organize the neurons in layers. Connections are only allowed 

between neurons in different layers and must be directed toward the network 

output. Connections between neurons in the same layer are prohibited. Feed-forward 

networks of first order only contain connections between neighboring layers. In 

contrast, second order networks permit connections between all layers.  

 

The network inputs form the input layer. This layer does not include real neurons 

and therefore has no processing ability. It only forwards the network inputs to other 

neurons. The output layer is the last layer in the network and provides the network 

outputs. Layers in between are called hidden layers, because they are not directly 

reachable from the outside. 

 

2. Recurrent Networks 

 
Opposite to feed-forward, recurrent networks also allow connections from higher to 

lower layers and inside the same layer. In many cases, the organization into layers is 

completely dropped. For example, a recurrent network may consist of a single layer 

of neurons with each neuron feeding its output signal back to the inputs of all the 

other neurons. The presence of feedback loops has a profound impact on the learning 

capability of the network and on its performance. Moreover, the feedback loops 

involve the use of particular branches composed of unit-delay elements which result 

in a nonlinear dynamical behavior, assuming that the neural network contains 

nonlinear units. 

 

 

 

2.3 Neural Network Types 
  

2.3.1  Overview  
 

There are many different neural network types which vary in structure, application 

area or learning method. Among them the networks in the following page should be 

presented here. They were selected according to their significance and to show the 

neural network variety. 

 

2.3.2  Perceptron 
 

The Perceptron neuron was introduced 1958 by Frank Rosenblatt [26]. It is the oldest 

neuronal model which was also used in commercial applications. Perceptrons could 

not be connected to multi-layered networks because their training was not possible 

yet. The neuron itself implements a threshold function with binary inputs and 

outputs. It is depicted in Figure 2.5. 
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Neuron training is possible with different supervised learning methods e.g. 

perceptron learning rule, Hebb rule or delta rule. The Perceptron can only handle 

linear separable problems. Graphically speaking, the problems are separated by a 

line for 2 inputs or by a plane for 3 inputs, as visualized in Figure 2.6. 
 

 

   

 

2.3.3   ADELINE, MADELINE 
 

The ADALINE is also a single neuron which was introduced in 1960 by Bernhard 

Widrow. “ADALINE” stands for “Adaptive Linear Neuron” and “Adaptive Linear 

Element”, respectively.  

 

The ADALINE neuron implements a threshold function with bipolar output. Later it 

was enhanced to allow continuous outputs. Inputs are usually bipolar, but binary or 

continuous inputs are also possible. In functionality it is comparable to the 

Perceptron. The major field of application is adaptive filtering, as shown in Figure 

2.7. The neuron is trained with the delta rule. 
 

 

 

 

                         Figure 2.5 Perceptron Neuron 

                       Figure 2.6 Linear separable problems 
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MADALINE 

 
“MADALINE” spells “Many ADALINEs” – many ADALINEs whose outputs are 

combined by a mathematical function. This approach is visualized in Figure 2.8. 

MADALINE is no multi-layered network, because the connections do not carry 

weight values. Still, through the combination of several linear classification borders 

more complex problems can be handled. The resulting area shape is presented in 

Figure 2.9. 

 

 

 
 

 

 

 

 

 

 

 

 

                       Figure 2.7 ADALINE neuron as adaptive filter 

       Figure 2.8 MADALINE  

       Figure 2.9 Complex contiguous classification areas 
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2.3.4    Backpropagation 
 

The most popular neural network type is the Backpropagation network. It is widely 

used in many different fields of application and has a high commercial significance. 

Backpropagation was first introduced by Paul Werbos in 1974 [27]. Until then it was 

impossible to deal with disjointed complex classification areas, like the ones in Figure 

2.10. For this purpose hidden layers are needed, but no training method was 

available. The Backpropagation algorithm now enables training of hidden layers. 

 

The term “Backpropagation” names the network topology and the corresponding 

learning method. In literature, the network itself is often called “Multi-Layer 

Perceptron Network”. The Backpropagation network is a feed-forward network of 

either 1st or 2nd order. The neuron type is not fixed, only a sigmoid transfer function 

is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Standard Backpropagation learns very slow and possibly reaches only a local 

minimum. Therefore variants exist which try to improve certain aspects of the 

algorithm [28, Chapter 12]. 

 

 

 

 

 

 

 

 

 

 

        Figure 2.10 Disjointed complex classification areas 
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2.3.5 Hopfield 
 
The Hopfield network was presented in 1982 by John Hopfield [29]. It is the most 

popular neural network for associative storage. It memorizes a number of samples 

which can also be recalled by disturbed versions of themselves. This is exemplarily 

depicted in Figure 2.11. 

 

 
The structure is sketched in Figure 2.12. It is a feed-back network, where every 

neuron is connected to all other neurons. The connection weights between two 

neurons are equal in both directions. The neuron implements a binary or bipolar 

threshold function. The input and output co-domains match the threshold function 

type. 

 

 

 

 
 

 

 

 

 

 

Learning is possible by calculating the weight values according to the Hopfield 

learning rule. 

 

2.3.6 ART 
 
Adaptive Resonance Theory (ART) is a group of networks which have been 

developed by Stephen Grossberg and Gail Carpenter since 1976. ART networks learn 

unsupervised by subdividing the input samples into categories. Most unsupervised 

learning methods suffer the drawback that they tend to forget old samples, when 

new ones are learned. In contrast, ART networks identify new samples which do not 

        Figure 2.11 Associative pattern completion 

             Figure 2.12 Hopfield Network 
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fit into an already established category. Then a new category is opened with the 

sample as starting point. Already stored information is not lost. 

 

The disadvantage of ART networks is their high complexity which arises from the 

elaborate sample processing. The structure is presented in Figure 2.13. Various 

versions of ART networks exist which differ in structure, operation and input value 

co-domain. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.7 Cascade Correlation 

 
The Cascade Correlation network was developed in 1990 by Scott E. Fahlman and 

Christian Lebiere [30]. It is an example of a growing network structure. Usually it is 

difficult to find a suitable network structure for a given problem. In the majority of 

cases try-and-error is used, possibly supported by heuristic methods. In Cascade 

Correlation networks the structure is part of the training process. Starting from the 

minimal network, successive new neurons are added in hidden layers. The new 

neurons are trained while previously learned weights are kept. The overall network 

structure is feed-forward 2nd order as depicted in Figure 2.14. 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 2.13 ART Network [28, p.16-3] 

       Figure 2.14 Cascade Correlation Network 
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2.4 Fundamentals of Learning and Training functions 

 

2.4.1 Learning Methods 

 

The most interesting characteristic of neural networks is their capability to 

familiarize with problems by means of training and, after sufficient training, to be 

able to solve unknown problems of the same class. This approach is referred to as 

generalization. We introduce some essential paradigms of learning by presenting the 

differences between their regarding training sets. A training set is a set of training 

patterns, which we use to train our neural network. 

 

Unsupervised Learning It is the biologically most plausible method, but is not 

suitable for all problems. Only the input patterns are given; the network tries to 

identify similar patterns and to classify them into similar categories. The training set 

only consists of input patterns, the network tries by itself to detect similarities and to 

generate pattern classes. The most popular example is Kohonen’s self-organizing 

maps [31], [32]. 

 

Reinforcement Learning  In this specific type of learning the network receives a 

logical or a real value after network receives reward or punishment completion of a 

sequence, which defines whether the result is right or wrong. Intuitively it is clear 

that this procedure should be more effective than unsupervised learning since the 

network receives specific criteria for problem-solving. The training set consists of 

input patterns, after completion of a sequence a value is returned to the network 

indicating whether the result was right or wrong and, possibly, how right or wrong 

it was. 

 

Supervised Learning In supervised learning the training set consists of input 

patterns as well as their correct results in the form of the precise activation of all 

output neurons. Thus, for each training set that is fed into the network the output, 

for instance, can directly be compared with the correct solution and the network 

weights can be changed according to their difference. The objective is to change the 

weights to the effect that the network cannot only associate input and output 

patterns independently after the training, but can provide plausible results to 

unknown, similar input patterns, i.e. it generalizes. 
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2.4.2 Training Functions 
 

Supervised learning suggests that there must be a defined pattern (training function) 

based on which, a neural network is trained and adjusts the value for its weights. 

The scheme for this procedure is as follows : 

 

 Entering the input pattern (activation of input neurons) 

 Forward propagation of the input by the network, generation of the output 

 Comparing the output with the desired output (teaching input), provides error 

vector (difference vector) 

 Corrections of the network are calculated based on the error vector 

 Corrections are applied. 

 

 

 

2.4.2.1  Levenberg Marquadt Algorithm 

 

The Levenberg – Marquadt algorithm is a numerical optimization method, more 

specifically it is a variation of Newton’s method that was designed for minimizing 

functions that are sums of squares of other nonlinear functions. This is very well 

suited to neural network training where the performance index is the mean squared 

error. A flowchart of the algorithm is presented in following figure, while analytical 

mathematical background is provided in Appendix Α.  

 

 

Figure 2.15 Block diagram for training using Levenberg–Marquardt algorithm [23] 
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Therefore, the training process using Levenberg–Marquardt algorithm could be 

designed as follows: 

 

i. With the initial weights (randomly generated), evaluate the total error (SSE). 

ii. Do an update as shown in the Equation to adjust weights. 

iii. With the new weights, evaluate the total error. 

iv. If the current total error is increased as a result of the update, then retract the step 

(such as reset the weight vector to the precious value) and increase combination 

coefficient μ by a factor of 10 or by some other factors. Then go to step ii and try an 

update again. 

v. If the current total error is decreased as a result of the update, then accept the step 

(such as keep the new weight vector as the current one) and decrease the 

combination coefficient μ by a factor of 10 or by the same factor as step iv. 

vi. Go to step ii with the new weights until the current total error is smaller than the 

required value. 

 

 

2.5 Hardware adaptation of Neural Networks  
 

2.5.1  Hardware Platforms Overview 
 
With the passing of time, integrated circuit (IC) technology has provided a variety of 

implementation formats for system designers [14]. The implementation format 

defines the technology to be used, how the switching elements are organized and 

how the system functionality will be materialized. The implementation format also 

affects the way systems are designed and sets the limits of the system complexity. 

Today the majority of IC systems are based on complementary metal-oxide 

semiconductor (CMOS) technology. In modern digital systems, CMOS switching 

elements are prominent in implementing basic Boolean functions such as AND, OR, 

and NOT. With respect to the organization of switching elements, regularity and 

granularity of elements are essential parameters. The regularity has a strong impact 

on the design effort, because the reusability of a fairly regular design can be very 

simple. The problem raised by the regularity is that the structure may limit the 

usability and the performances of the resource. The granularity expresses the level of 

functionality encapsulated into one design object. Examples of fine-grain, medium-

grain, and coarse-grain are logic gates, arithmetic and logic units (ALUs), and 

intellectual property components (processor, network interfaces, etc.), respectively. 

The granularity affects the number of required design objects and, thereby, the 

required design or integration effort. 

 

Depending on how often the structure of the system can be changed, the three main 

approaches for implementing its functionality are dedicated systems, reconfigurable 

systems, and programmable systems. In a dedicated system, the structure is fixed at 

the design time, as in application-specific integrated circuits (ASICs). In 

programmable systems, the data path of the processor core, for example, is 
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configured by every instruction fetched from memory during the decode-phase. The 

traditional microprocessor-based computer is the classical example. In reconfigurable 

systems, the structure of the system can be altered by changing the configuration 

data, as in field programmable gate arrays (FPGAs). 

 

2.5.2 ASIC 

 
Application-specific integrated circuits (ASICs) refer to those integrated circuits 

specifically built for preset tasks [6]. Why use an ASIC solution instead of another 

off-the-shelf technology—programmable logic device (PLD, FPGA), or a 

microprocessor/microcontroller system? There are, indeed, many advantages in 

ASICs with respect to other solutions: increased speed, lower power consumption, 

lower cost (for mass production), better design security (difficult reverse 

engineering), better control of I/O characteristics, and more compact board design 

(less complex PCB, less inventory costs). However, there are important 

disadvantages: long turnaround time from silicon vendors (several weeks), 

expensive for low-volume production, very high NRE cost (high investment in CAD 

tools, workstations, and engineering manpower), and, finally, once committed to 

silicon the design cannot be changed. Application-specific components can be 

classified into full-custom ASICs, semi-custom ASICs, and field programmable ICs. 

 

2.5.3  FPGA 

 
The field-programmable gate array (FPGA) is a semiconductor device that can be 

programmed after manufacturing. Instead of being restricted to any predetermined 

hardware function, an FPGA allows you to program product features and functions, 

adapt to new standards, and reconfigure hardware for specific applications even 

after the product has been installed in the field—hence the name "field-

programmable". You can use an FPGA to implement any logical function that an 

application-specific integrated circuit (ASIC) could perform, but the ability to update 

the functionality after shipping offers advantages for many applications. 

 

Unlike previous generation FPGAs using I/Os with programmable logic and 

interconnects, today's FPGAs consist of various mixes of configurable embedded 

SRAM, high-speed transceivers, high-speed I/Os, logic blocks, and routing. 

Specifically, an FPGA contains programmable logic components called logic 

elements (LEs) and a hierarchy of reconfigurable interconnects that allow the LEs to 

be physically connected. You can configure LEs to perform complex combinational 

functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic 

blocks also include memory elements, which may be simple flipflops or more 

complete blocks of memory. 

As FPGAs continue to evolve, the devices have become more integrated. Hard 

intellectual property (IP) blocks built into the FPGA fabric provide rich functions 

while lowering power and cost and freeing up logic resources for product 

differentiation. Newer FPGA families are being developed with hard embedded 

processors, transforming the devices into systems on a chip (SoC). 
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Compared to ASICs or ASSPs, FPGAs offer many design advantages, including:  

• Rapid prototyping 

• Shorter time to market 

• The ability to re-program in the field for debugging 

• Lower NRE costs 

• Long product life cycle to mitigate obsolescence risk 

 

 

2.5.4  Neural Networks in Hardware 
 
Pure software solutions on general-purpose processors tend to be slow because they 

do not take advantage of the inherent parallelism, whereas hardware realizations 

usually rely on optimizations that reduce the range of applicable network topologies, 

or attempt to increase processing efficiency by means of low-precision data 

representation. For the development of neural networks software simulators are 

sufficient. On the other hand, in production use computer based simulation is not 

always acceptable. 

 

Compared to software simulation, hardware implementation benefits from the 

following points: 

•  Higher operation speed by exploring intrinsic parallelities 

•  Reduced system costs in high volume applications 

•  In stand-alone installments no PC needed for operation 

•  Optimization toward special operation conditions possible, e. g. small 

           size, low power, hostile environment 

 

The highly interconnected nature of neural networks prohibits direct structure 

mapping to hardware for all but very small networks. Direct mapping also requires 

many processing elements. In particular, one multiplier for each neuron input. 

Alternative approaches are required to reduce connections and hardware costs. 

 

Classification 
 

It is possible to split up the hardware approaches into two groups: 

•  Fixed network structure in hardware, targeting one particular task 

•   Flexible neurocomputer, suitable for many different network types and 

structures 

 

Another division follows the appearance of the implementation : 

 

Neurocomputers as complete computing systems based on neural network 

techniques 

PC Accelerator Boards to speed up calculations in PC, either accelerating the 

operation of a software simulator or as stand-alone neural network PC card 

Chips for system integration 
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Cell Libraries/IP for System-On-Chip (SoC) with the need for a neural network 

component 

Embedded Microcomputers implementing software neural networks 

 

 

2.5.5 FPGA and Neural Networks 
 
The traditional hardware approach leads to a fixed network structure. The 

implementations are usually small and fast, but some applications need more 

flexibility. Especially in the course of development it is advantageous to evaluate a 

number of different implementations. This can be achieved by using Field 

Programmable Gate Arrays (FPGAs) which are in-system reconfigurable. 

 

This reconfiguration feature can be exploited in a number of ways [16]: 

•  Rapid prototyping of different networks and parameters 

•  Build a multitude of neural networks and load the most appropriate one on 

startup 

•  Recent FPGAs can be reconfigured at runtime, this allows density 

enhancements by dynamic reconfiguration. Usually time-multiplex of different 

processing stages (like learning and propagation) is performed. 

•  Topology adaption at runtime or start-up is imaginable 

 

FPGA implementations of neural networks have a great develop in recent years, 

because of its reconcilability and short design time, such as FPGA neurocomputers 

(Omondi et al., 2006), Arithmetic precision for implementing BP networks on FPGA 

(Moussa et al., 2004), FPGA Implementation of Very Large Associative Memories 

(Hammerstrom et al., 2006), and so on. But there remains a performance problem. If 

the problem could be solved, the FPGA approach will make hardware ANN a bright 

future. 
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Chapter 3    Implementation 

 

 

 

Traditional programming languages such as C/C++ (augmented with special 

constructions or class libraries) are sometimes used for describing electronic circuits. 

They do not include any capability for expressing time explicitly and, consequently, 

are not proper hardware description languages. Nevertheless, several products 

based on C/C++ have appeared: Handel-C, System-c, and other Java-like based such 

as JHDL or Forge. Using a proper subset of nearly any hardware description or 

software programming language, software programs called synthesizers can infer 

hardware logic operations from the language statements and produce an equivalent 

netlist of generic hardware primitives to implement the specified behavior. 

 

However, a specialized hardware description language, such as VHDL, is more 

suitable for an exact depiction on Hardware because it provides the designer with a 

higher level of control on the final netlist. Thus we choose VHDL as the language to 

develop our project.  

 

In order to validate and complete the implementation we also need a Software based 

simulation for Neural Networks. There are many suitable software for this purpose, 

which allow custom Neural Network building while offering a high degree of 

parameterization. After experimenting with some of this Software, we arrived at the 

decision that MatLab is the most suitable of all. MatLab environment contains a 

powerful tool for Neural Networks [17], which is called “nntool”. It can simulate 

various kinds of ANNs, as well as different learning methods and activation 

functions, already implemented in MatLab language and provided as built–in  

functions. This diversity was exploited by our need for a highly accurate 

implementation. 

 

3.1 Implementation Aspects 
 

3.1.1 Neural Network Architecture 

 
As far as neural networks are concerned, their diversity is so vast, as we have already 

seen in Chapter 2, that we should specify the basic architecture that we are going to 

use for our design. Those decisions are justified in the next paragraphs. 

 

1) Ann Structure 

 

The problem described is purely deterministic; actually we need to build a ‘black 

box’ which will be able to resolve a complicated non-linear function. Judging from 

relative implementations in literature regarding Classification problems, a multilayer 

feedforward ANN seems the most reasonable choice to perform such a task. 
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2) Number of Inputs 

 

While the number of ANN inputs is defined by the number of RTS of the dataset, 

what needs to be determined is the length of bits for each input. The latter is critical 

to the precision of our final implementation, and while the minimum amount of bits 

is dependent on the maximum value we encounter in the entire dataset, it is helpful 

to introduce a user-defined level of precision (number of bits), which will enhance 

the system with greater stability. 

 

3) Number of Layers 

 

ANNs can possibly have as many layers wanted, actually the deeper the network, 

the better its learning capability is. There are however, two separate factors that are 

determinant for the decision of the number of layers. 

 It is generally proven, that a single hidden layer with the appropriate number 

of neurons is sufficient for an ANN that is constructed to resolve non-linear 

functions [18]. 

 The existence of two or more hidden layers puts on delay in the 

implementation, since there are more stages of processing from the input 

layer to the output neurons.  

The above converge to the decision of using a single hidden layer. 

 

4) Number of Output Nodes (Neurons) 

    

A hardware implementation of input-output mapping should include an output 

layer which shows the stage selected by the combination of inputs. One possible  

implementation is to use as many neurons as the number of unique stages included 

in the output stage, with each neuron acting as a switch, YES(‘1’) or NO(‘0’). In that 

case, only one neuron should be activated each time, while the others should be 

turned off(‘0’).  

 

However, there is a different approach that requires even fewer resources. This 

approach also involves output nodes acting as switches, but it uses the minimum 

number of them. The amount of output nodes is determined by the number of 

unique Scenarios, using the following type : 

))_(2(log_ SCENARIOSNceilOUTPUTSN  .  

 

For instance, if we were to implement an ANN for a dataset with 4 Scenarios, we 

would simulate our ANN with 2 output nodes. 

 

5) Number of Hidden Nodes (Neurons) 

     

The number of hidden nodes is a decision that we cannot be certain of. It depends on 

three parameters, the most important of them non measurable. Number of Inputs, 

Number of Outputs and last but not least, the complexity of the data.  
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A trial and error procedure will specify the number of hidden nodes to be used in the 

final implementation. Firstly, we make a rough estimation about the number. 

Depending on the results of the training, we modify this number. If training 

produces very little or no errors, we remove nodes until we reach the minimum 

number adequate for the ANN to be efficient. Otherwise, if training produces many 

errors, we add nodes until errors are minimized.  

 

6) Activation Function 

 

The function that seems more suitable for a hardware implementation is the logistic 

sigmoid function (logsig). It is a function that drives input in the range [0, 1], an 

attribute that is convenient because the two edges represent the two binary states. 

After experimentation, we also found that the specific activation function provided 

more accurate results when training networks in software (MATLAB), compared to 

the results of a) hyperbolic tangent function (tansig)  

and b) combinations of tansig and logsig in hidden and output layers. 

 

 

7) Training Function 

 

Since we use a Neural Network to perform a deterministic task and not just as a 

predictor as its primary usage usually is, there is demand for the maximum accuracy 

achievable. If we chose to train our network in hardware (on-chip learning), besides 

the obvious difficulty, we would reduce dramatically the efficiency of the network, 

due to the restrictions introduced by the specification of the chips (lack of adequate 

memory resources, which are necessary for the sophisticated training algorithms that 

are used). 

 

There is a lot of software suitable for neural network training; surely one of the most 

extensive is MatLab, via Neural Network Toolbox. After experimentation with some 

of the training functions provided, we came to Levenberg – Marquadt algorithm, 

which is a backpropagation variation. Its advantage is that it converges faster 

compared to other algorithms and its drawback is that it uses large matrixes for 

computations, so it requires more memory resources compared to others. However, 

there are no restrictions on the size of network that we can train using this algorithm. 

 

3.1.2 Data Discretization 
 

Most software simulators use floating point values for neural network calculation. 

This is not suitable for hardware implementations, because floating point 

computations are hardware-expensive. Fixed point data is preferred for fast and 

resource efficient hardware implementations. However Xilinx tools do not directly 

support fixed point library, as the latter became part of IEEE library only recently, in 

VHDL – 2008 edition, while Xilinx compilers are oriented to previous VHDL 
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versions. So, we have to manually add the specific libraries and add some 

modifications, in order to enhance better performance: 

1. When specifying the rounding routine to use in fixed point operations, there are 

two options: round and truncate. Rounding provides more accurate results, but 

with the cost of added logic. So, we make the choice of truncating, while keeping 

in mind that we should have adequate bits so as not to lose critical information 

due to truncation. 

2. Overflowing routine also offers two options: Saturate and wrap. Saturation is 

more accurate routine, but in terms of hardware consumes important resources, 

so we go with wrap option. 

 

3.1.3 Input Normalization 
 

Convergence in Neural Networks is usually faster if the average of each input 

variable over the training set is close to zero. To see this, consider the extreme case 

where all the inputs are positive. Weights to a particular node in the first weight 

layer are updated by an amount proportional to δx where δ is the (scalar) error at 

that node and x is the input vector. When all of the components of an input vector 

are positive, all of the updates of weights that feed into a node will be the same sign 

(i.e. sign(δ)). As a result, these weights can only all decrease or all increase together 

for a given input pattern. Thus, if a weight vector must change direction it can only 

do so by zigzagging which is inefficient and thus very slow. 

This normalization will be performed in various ways, depending on the 

implementation. After instantiating many networks, we consider as most effective 

the normalization of input values in the range [-1,25  1,25]. 

 

 

3.2   Methodology 

 

3.2.1 Overview 

 
The following flowchart describes a methodology to create a detection scheme based 

on the needs of the problem and evaluate its hardware footprint. There are two 

separate implementations proposed, the one that is static and uses a straight – 

forward approach, and the one that simulates the function of a neural network, with 

dynamic behavior. The static implementation is ideal in cases where we are aware of 

all the cases of combined RTSs and the Scenario those represent. Moreover, it is 

applicable when this dataset of RTSs and Scenarios is kept to a relatively small size.  

 
On the contrary, dynamic implementation with the use of an artificial neural 

network is by far more elastic, in terms that we have developed techniques to reduce 

the –already hardware expensive– produced neural network. Apart from the 

reduced cost, it also offers the luxury of predicting undescribed situations which 

resemblance other situations that have been used to train the network. This attribute 
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is significant, whereas it is also challenging to develop reliable training techniques so 

as our design will benefit from this attribute at the maximum rate.  

 

We will specify the theoretical steps involved within these implementations and in 

Chapter 4 the case study will provide with those arithmetical results which are 

useful to perform comparisons. 

 
 

 

3.2.2 Static Implementation 

 
Our study concentrates on implementing a detection scheme using artificial neural 

network. In order to compare our main implementation with another functional one, 

we developed a static implementation which is consisted of the following steps:  

 

 RTS Identification & Clustering 

 

This step is common for both implementations. The extraction of RTSs out of an 

actual system specification and its clustering to form a limited number of Scenarios is 

part of System Scenarios methodology, which has been presented in Chapter 1. It is 

actually a demanding task which presupposes a total awareness of the parameters of 

the system we are going to describe. After extracting the RTS and Scenarios values, 

we need to present them in a proper format, which will allow us to handle them in a 

systematic way. 

 

 

Figure 3.1 Flowchart of the proposed Methodology 
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 RTS Normalization 

 

Normalization regarding the current implementation refers to a form of compression 

for RTS values. It might seem insignificant, but it is actually a critical step. Scenario 

selection is made by traversing an array that is consisted of concatenated RTS values. 

If the length of that parameter exceeds a critical value, the complexity this array 

introduces, becomes a restraining factor, thus it may become nearly impossible for 

the synthesizer to implement it properly. 

 

 Simulation 

 

Simulation of the implementation is performed by using a testbench which is 

produced at the same time that the code of the detector is produced, so it is adapted 

to the existing parameters. If simulation finishes with zero errors, we can proceed to 

the next step. 

 

 Synthesis, Implementation & Bitstream Generation 

 

These steps, as well as Simulation, are performed within the proper Software 

environment. During our study, we used Xilinx ISE software to perform the current 

steps. The final product is the code which will be used to instantiate the respective 

FPGA platform. 

 

 

3.2.3 Dynamic Implementation 

 
Our main effort is towards an implementation that enables the use of neural 

networks. The current methodology is based on the experimental results as 

presented in literature and more analytically in [1000]  that artificial neural networks 

problems match a unique number (or small range of numbers ) of hidden layer 

nodes, to maximize their performance and avoid unwanted overtraining and over-

generalization. Thus, taken this into consideration, we developed techniques for 

improving the performance of a neural network detector, so the next steps present 

the methodology that we used in order to achieve this improvement.  

 

 RTS Identification & Clustering 
 

This step has already been described. It is identical to that of the static 

implementation. 

 

 RTS Normalization 
 

Normalization of input variables is essential to neural networks. The values of these 

RTS parameters that were extracted during the RTS identification stage, need to 

follow that rule. The reason why we should normalize input has been explained in 

the previous sub-chapter and is effective in our designed neural network too.  
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 Use Switch Criteria 

 

This step is optional. It enables a more sophisticated method of classifying, which is 

ruled by specific criteria, varying amongst different Scenarios. We can use this self-

designed setting in order to reduce the amount of times that computations need to 

take place, as we can take advantage of the information provided by the criteria we 

hold and force the neural network to run only when it is necessary.  

 

 Training 
 

Training of the neural network is performed through a software platform, in our case 

MatLab. Our dataset is separated in three fragments: training, validation and testing. 

We use only the training fragment, which by the rules should be the largest of the 

three to train the network. There are various parameters that can affect the results of 

training.  Two of the most significant factors are 1) the size of the network (the size of 

hidden layer should be adequate to store the non-linear relationships between input 

and output, but not too large, in order to prevent network from overfitting or 

overtraining) and 2) the complexity of the problem (whereas this factor is not 

measurable, it has an immense impact on the performance of training).  

 

 Simulation 

 

Evaluation of our design can be achieved through Simulation. There are two possible 

causes for errors during Simulation. In this critical stage, we will use the fragment of 

the dataset which is unknown for the network, since we did not use it during 

training, in order to evaluate the number of cases the network provides correct 

output. 

 

 Prediction Evaluation (Pn) 

 
Out of the cases presented to the network, there is a small fragment that is unknown 

for it as it has never been trained with these values. The percentage of accurate 

predictions on this fragment provides the desired outcome, which is the prediction 

ability of the network. 

 

 Pn > Pn-1 

 

This is the stage of decision. If the current percentage of prediction is larger than the 

previous measurement, we should continue the process by adding some nodes to the 

implementation and repeating the stages from the beginning. It is indication that 

there is still room for improvement for our network. If the percentage is lower 

though, our network is saturated, so we should seek the optimal solution in our exact 

previous instantiation, with fewer hidden nodes. 
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 Synthesis, Implementation & Bitstream Generation 

 

These steps are identical to those of static implementation and form the pure 

technical part of the methodology.  

 

3.2.4  Neural Networks Builder 
 
Based on the options described previously in this Chapter, we have an outline for the 

project we want to build. But going deeper into its details, it is easily noticeable that 

the aspects of the structure are so many, and there is also a different approach 

matching each case. The solution on this scale of variation is to create a generator, 

which will describe Neural Networks in VHDL language based on the given dataset 

and user choices. This generator was developed in MatLab language taking into 

consideration the most important design aspects.  Finally, a GUI was developed to 

provide convenience in handling the different parameters, and the set of MatLab files 

was compressed into a single MatLab application named “Build Neural Networks”. 

We present the GUI environment followed by a brief explanation for each option in 

Appendix B. 

 

3.3 Anatomy of the Design 
 

3.3.1 Project Hierarchy 

 
The produced files from MatLab App, combined together, form the Project of the 

Hybrid Neural Network. The network has a top-down hierarchy, so we will examine 

each file’s underlying logic and design aspects, starting backwards, from the small, 

independent modules lying inside larger modules, to the bigger and more complex 

ones. The Project Hierarchy for the basic architecture is shown in Figure 3.2 

 

Figure 3.2 Schematic Depiction of Project Hierarchy 
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Two Library files, which are not depicted in the Figure, are also used in the Project. 

Fixed_float_types_c.vhdl and fixed_pkg_c.vhdl [33] contain various type definitions 

and functions regarding fixed point type representation. 
 

Log_sigmoid, which is the implementation of activation function in Hardware, and 

Ann, the implementation of Artificial Neural Network, constitute the Templates of 

the Project, since they do not contain any data dependable on the specific dataset. 

The rest of VHDL files are directy dependent both on the dataset values and on user 

choices about neural architecture, bits precision, etc.  

The rest of this chapter is dedicated to provide extensive analysis of each individual 

file from both functional and structural perspective. For better understanding, we 

cite pieces of code along with comments and explanations. Schematics are also used 

to project the functions and interactions between different modules. Details about 

schematics are provided in Appendix C. 

 

 

3.4.2 Neural Library Module 

 
This file forms a package, which is called “neural_library”. This package is 

practically a library that contains constants, user-defined types, component 

declarations and functions. The usefulness of this library is that it contains, in 

concentrated form, elements that are used throughout the entire design. Each of the 

other files includes this package, by adding the line “use work.neural_library.all;” in 

the declaration part of the code, so they are capable to use any of the types, functions 

or constants contained. In other words, these are the global variables of the design.  

 

The application produces the following Constants, which provide information about 

the basics of the design. Apart from N_INPUTS, N_HIDDEN and N_OUTPUTS 

which have an obvious significance, the next ones define the length of decimal 

numbers used. UPPER_LIMIT stands for the length of integer part, while 

DOWN_LIMIT stands for the length of fraction part with a negative sign. N_BITS is 

then calculated: UPPER_LIMIT +DOWN_LIMIT + Sign. The level of precision that 

determines those lengths is user-defined. 

 

 

 

 

 

 

 
Since we have the task to run a Neural Network, operations with decimal numbers 

are inevitable. For this purpose we name a new type (fixedX) which is a flexible type 

of signed fixed – point type. When we make an assignment of  fixed – point number 

we need to specify the length of integer and fraction part. These values are already 

determined by the constants UPPER_LIMIT and DOWN_LIMIT. FixedX_vector is an 

array of fixedX numbers. Since we have frequent parallel multiplications and 

  CONSTANT N_INPUTS    : integer := 5; 

  CONSTANT N_HIDDEN    : integer := 60; 

  CONSTANT N_OUTPUTS   : integer := 4; 

  CONSTANT N_BITS      : integer := 20; 

  CONSTANT UPPER_LIMIT : integer := 10; 

  CONSTANT DOWN_LIMIT  : integer := -9; 
 



48 
 

additions, it is convenient to declare these values as an array, rather than separately. 

Finally, we define zero constant, which is an array of ‘0’ bits. 

 

 

 

 

 

The next part of library holds the auto generated types that define the possible states 

of Finite State Machines. Not only each node’s function is controlled by a unique 

FSM, but there is also a FSM to control the function of the neural network.  

Hidden_node_modes type describes the FSM that hidden nodes use. The number of 

states provides us with information about the number of Clock Cycles required until 

a hidden node completes its tasks, since they are executed sequentially. The final 

state is activation_function, where the node output is generated and sent as input to 

output_nodes. Respectively, output_node_modes type describes the FSM of output 

nodes. The states are idle, multiply, accumulate, but we have emitted activation_function 

state. The reasons for that will be explained in the appropriate chapter. 

 

Ann_modes type represents a Finite State Machine that controls the computational 

row of the Neural Network. Details are provided later. 

 

 
The following types are used to hold the values of inputs (input_vector, 

ann_input_vector) and the intermediate values produced by the hidden nodes 

(hidden_vector). Since our inputs are of different lengths, it would be a waste of 

valuable Input Ports in our targeted hardware platform, to use an array of same – 

length elements, so we use this record type, where each input is given exactly the 

amount of bits required. 

Ann_input_vector also contains the values of input, but after they have been 

compressed. It can be seen by the cited code, that the length of inputs is significantly 

smaller in this case. The purpose for this compression will be discussed later. 

subtype fixedX      IS sfixed(10 downto -9); 

type fixedX_vector  IS array (INTEGER RANGE <>) OF fixedX; 

CONSTANT zero       : fixedX  := (others => '0'); 

 

 

 

 

 

 

type hidden_node_modes IS ( 

      idle, 

      multiply, 

      accumulate_1, 

      accumulate_2, 

      accumulate_3, 

      activation_function 

  ); 

 

type output_node_modes IS ( 

      idle, 

      multiply, 

      accumulate_1, 

      accumulate_2, 

      accumulate_3, 

      accumulate_4, 

      accumulate_5, 

      accumulate_6 

  ); 

 

type ann_modes is ( 

  idle, 

  run, 

  run_next, 

  turn_off_output 

); 

 

type node_modes is ( 

  idle, 

  run 

); 
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CONSTANT hidden_bias : fixedX_vector(1 to 60) := ( 

                                           

"11111001110100111000", 

                                           

"00000001101110100111", 

                                           

"00000001000010110011", 

                                           

"00000100001011000110", 

                                           

"00000001000010100010", 

                                           

"11111110010101010110", 

. 

. 

. 

                                           

"00000001001001011010"); 

CONSTANT output_bias : fixedX_vector(1 to 4) := ( 

                                           

"11111111100111100011", 

                                           

"11111101011000011110", 

                                           

"00000010010101011110", 

                                           

"00000101001111011001"); 
 

Hidden_vector is the type we need in order to hold the intermediate values produced 

after the hidden nodes have completed processing, the so – called hidden output. 

The size of the array is the number of hidden nodes ( 60 in this case). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Weights and biases are the structural elements of an artificial neural network. They 

are the stored “knowledge” of the machine. All operations involve the use of input 

values, weights and biases. The application stores the values of biases after the 

training, converts them in binary representation and prints them in the library as a 

fixedX_vector constant. Weight values are provided to the network in a different way, 

in which we will also refer to. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

type hidden_vector IS array (1 TO 60) OF   

STD_LOGIC_VECTOR(7 downto 0); 

 

type input_vector IS 

  record 

    one   : STD_LOGIC_VECTOR(7 downto 0); 

    two   : STD_LOGIC_VECTOR(4 downto 0); 

    three   : STD_LOGIC_VECTOR(2 downto 0); 

    four   : STD_LOGIC_VECTOR(7 downto 0); 

    five   : STD_LOGIC_VECTOR(1 downto 0); 

  end record; 

 

type ann_input_vector IS 

  record 

    one   : STD_LOGIC_VECTOR(2 downto 0); 

    two   : STD_LOGIC_VECTOR(3 downto 0); 

    three   : STD_LOGIC_VECTOR(1 downto 0); 

    four   : STD_LOGIC_VECTOR(1 downto 0); 

    five   : STD_LOGIC_VECTOR(0 downto 0); 

  end record; 
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These types and constants shown next, are exclusively used during Simulation 

process. We will make a brief reference, as they are not directly used for the design. 

 

N_EXAMPLES shows the size of the dataset we made use of. Latency constant stores 

the number of Clock Cycles in which the final implementation will perform and is 

presented for informative reasons.  

Input_bitvector and ann_input_bitvector contain exactly the same information as 

input_vector and ann_input_vector, but we use BIT type instead of STD_LOGIC, 

because STD_LOGIC type cannot perform specific operations we need during the 

Simulation. Vector_length shows the length of a vector, which is the outcome of the 

concatenation of all inputs. This vector will be used to form the complementary 

LUTs that “fix” the errors of the Network. 

 

Counters, MATRIXES and ERROR_MATRIXES pertain to measure the errors and 

hold the data of the network when such an error is produced. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
There are also various Component Declarations in neural_library package, but it 

would be meaningless to refer to extensively, as they are simple copies of their 

respective Entities. Finally, two simple functions, to_sl and to_slv convert BIT types to 

STD_LOGIC and BIT_VECTOR types to STD_LOGIC_VECTOR. They are also 

exclusively used during simulation. 

 

 

 

 

 

CONSTANT N_EXAMPLES : integer := 2560; 

CONSTANT latency    : integer := 20; 

 

type input_bitvector IS 

  record 

    one   : BIT_VECTOR(7 downto 0); 

    two   : BIT_VECTOR(4 downto 0); 

    three   : BIT_VECTOR(2 downto 0); 

    four   : BIT_VECTOR(7 downto 0); 

    five   : BIT_VECTOR(1 downto 0); 

  end record; 

 

type ann_input_bitvector IS 

  record 

    one   : BIT_VECTOR(2 downto 0); 

    two   : BIT_VECTOR(3 downto 0); 

    three   : BIT_VECTOR(1 downto 0); 

    four   : BIT_VECTOR(1 downto 0); 

    five   : BIT_VECTOR(0 downto 0); 

  end record; 

 

CONSTANT vector_length   : integer := 12; 

type counters       IS ARRAY(1 to 4) OF INTEGER; 

type MATRIXES       IS ARRAY(1 to 1000) OF 

  BIT_VECTOR(vector_length-1 downto 0);       

type ERROR_MATRIXES IS ARRAY(1 to 4) OF MATRIXES; 
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3.4.3 Log Sigmoid Module 

 

 

 

 
The Schematic in Fig. 3.3 depicts the behavioral flow of the log_sigmoid module, 

which performs the activation function.  Logistic sigmoid function is the following : 

xe
xf




1

1
)( , and its plot is shown next     

 

 

 

 

 

 

 

 
 

Since we need to use the specific function in a hardware implementation, we should 

find ways to avoid the  “expensive” in terms of logic and time consuming operations 

of division and exponential. Among many implementations of logsig function found 

in literature, we ended up in the most suitable for our purpose, which is described in 

[19].  

 

Figure 3.3 Log Sigmoid Module 

Figure 3.1 Log-Sigmoid Transfer Function 
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This design takes advantage of two basic attributes of the function: 

 )(xf  practically 0 if 8x , and )(xf practically 1, if 8x . 

 It is a symmetrical function,   )( xf  )(1 xf . 

 

Of course, it is a clocked function which begins when the enable bit that arrives from 

the node FSM is ‘1’. 

 

 

 

 

 
 

Next lines of code perform comparisons of input with -8 and 8. Instead of simply 

using comparing signs (< , >) which would enable substractors in the underlying 

hardware circuit, we use some clever logic.  

 Temp1 variable is ‘1’ only when all bits from the sign bit downto the 4th Least 

Significant bit of the Integer part are ‘1’, since it uses 2’s complement to represent 

negative numbers. Yet, in that case input is no smaller than -8. 

 Temp2 variable is ‘0’ only when all bits from the sign bit down to the 4th  Least 

Significant bit of the Integer part are ‘0’. Yet, in that case input is no greater than 8. 

If input meets one of these conditions, output is given and process is terminated. If 

not, the process goes to second computational stage. 

 

 

 

 

 

 

 

 

 

 

 

 
We examine the sign bit (input(UPPER_LIMIT)) to see if input is positive. If yes, we 

use variable x to store the 3 LSB of integer part and 3 MSB of fraction part of input, 

which will be used in the next computational stage. If input is negative we use 

minus_input variable to store its absolute value. We will compute the output of –x as 

we take advantage of the function’s attribute  )( xf  )(1 xf . 

 

 

 

 

 

PROCESS(CLK) IS 

 

BEGIN 

  IF (CLK'event) AND (CLK = '1') THEN 

    IF (enable = '1') THEN  

        
 

temp1 := '1'; 

temp2 := '0'; 

FOR i IN 3 to UPPER_LIMIT LOOP 

  temp1 := temp1 AND input(i); 

  temp2 := temp2 OR input(i); 

END LOOP; 

     

smaller_than_8 := temp1; 

greater_than_8 := temp2; 

         

IF (smaller_than_8 = '0' AND   input(UPPER_LIMIT) = '1')  

    THEN output <= "00000000"; 

ELSIF (greater_than_8 = '1' AND input(UPPER_LIMIT) = '0') 

    THEN output <= "10000000"; 
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The next stage is a two-level AND-OR gate implementation as described in [19], 

which stores in y variable a 8 - bit STD_LOGIC_VECTOR. Those bits consist of the 

sign bit and 7 bits of the fractional part of the output. As a result, we have a 

quantized form of the function’s output. The final computational stage is a condition 

that determines the output. 

 

Again, we should check if input is positive. If yes, y variable drives the output, but if 

not, we should subtract y variable from 1, store the result in mid variable, and then 

convert the result in STD_LOGIC_VECTOR type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELSE 

   IF (input(UPPER_LIMIT) = '0') THEN 

     FOR i IN 5 downto 0 LOOP 

        x(i) := input(i-3); 

     END LOOP; 

   ELSIF (input(UPPER_LIMIT) = '1') THEN 

      minus_input := - input; 

      FOR i IN 5 downto 0 LOOP 

         x(i) := minus_input(i-3); 

      END LOOP; 

   END IF; 
 

pre_output :=  to_ufixed(y,0,-7); 

CASE input(UPPER_LIMIT) IS 

  WHEN '0' =>  

    output <=  y; 

  WHEN '1' => 

    mid := resize(ONE - pre_output,0,-7); 

    output <= to_slv(mid); 

  WHEN OTHERS => null; 

END CASE; 
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3.4.4 Hidden LUTs Module 
 

 
 
This module is a concentration of Look up Tables. The word “hidden” indicates that 

hidden nodes make use of these LUTs. But what exactly is their function? We already 

mentioned that weights and biases are the structural elements of an artificial neural 

network. Bias values are declared in the neural_library package, however we did not 

encounter weight values declaration until now. The reason why this is happening is 

a major aspect of our selected architecture.  

 

The first operations when a node is enabled are parallel multiplications. Every input 

coming from the previous layer is being multiplied by its respective weight. The 

outcome of these multiplications is then accumulated and sent to the activation 

function to produce the output value of the node. This is described by relationship: 

))(( biasinputweightfoutput   , where f() is the activation function. 

 

The problem that arises from these specifications is that we should use a rather large 

number of multipliers, even for medium – sized networks. The example network 

given, with 5 Input Nodes, 60 Hidden Nodes and 4 Output Nodes would require 

5x60 + 60x4 =  540 multipliers. Modern FPGAs have no problem to support this 

amount of logic, but apart from the Area restrictions in our chip, which is always a 

Figure 3.4 Hidden LUT Module 
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parameter that matters, when designing a Project, the use of multipliers – unless 

pipelined - will slow down our design, since multiplications require significantly 

more time than additions.  

 

There are however two facts that allow us to follow another path. The first is always 

a fact regardless the characteristics of our dataset: Since training takes place only 

once, the weights produced are going to be constant numbers. There is no condition 

that will change their values. So, the first operand of multiplications is a constant, 

thus the complexity is reduced, since we multiply number x constant. The second 

fact, which allows us to completely emit multipliers from the design comes from the 

observation of the dataset: If every single input has a relatively small number of 

possible values, then multiplications are further more simplified, so as to being 

capable to take the form of a Look Up Table. 

 

The application prints separate entities for every node. The input as we see next, is of 

ann_input_vector type. As we have already described, the values stored using this 

type have originated from the compression of actual input values. The fact that we 

do not use inputs, but a compressed form of the latter, is an additional way to save 

valuable resources in our design. There is also a bit that controls their function. When 

Enable = ‘1’, hidden_LUTS are activated. 

 

     

 

 

 

 

 

 
While LUTs are implemented using case statements, there are as many LUTs in every 

node as the number of inputs in the design. Possible outputs have been calculated 

within “Build_Neural” application, and then reformed to signed binary numbers of 

already given specifications. Moreover, there are Comment Lines next to the LUTs 

that show the physical meaning for every selection.  

 

 

 

 

 

 

 

 

 

 

 

 

ENTITY hiddenNode_1 IS 

  PORT ( 

        CLK             : IN  STD_LOGIC; 

        input           : IN  ann_input_vector; 

        Enable          : IN  STD_LOGIC; 

        Lut_output      : OUT fixedX_vector(1 to 5) 

  ); 

END ENTITY; 
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3.4.5 Output LUTs Module 
 

 

 

 
Obviously, output_LUTS are the equivalent modules for output nodes, as 

hidden_LUTS are for hidden nodes. There is only a slight difference between the two 

modules. We previously examined the module performing the activation function 

and we mention again that the output of a hidden node is also the input for an 

output node. This value in in the range [0, 1] as we know, because this is the range of 

logsig function. Moreover, after experimenting, we decided to use seven bits to hold 

the fraction part of this value. The criterion on this decision is that it provides the 

best trade-off balance, between error propagation and activation function size-

complexity.  

 

So, provided the values of possible hidden outputs are fixed, we know the exact size 

of multiplication output LUTs. The size of these tables is 129 positions, 27 + 1. They 

are also implemented as separate entities, each one dedicated to its respective node. 

Case statements implement parallel LUTs within every node. 

 

 

 

 

 

Figure 3.5 Output LUT Module 
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3.4.6 Hidden Node Module 

 

 

 
Hidden nodes along with output nodes are the processing units of the Network. 

Every hidden node module should instantiate a log_sigmoid submodule, which will 

be enabled at the final stages of computation, to evaluate the result of the node 

output. Moreover, a single hidden node instantiates the appropriate hidden_LUT 

entity, which holds for the particular node, the weight values. 

 

The following cited piece of code shows the entity of a hidden node module. Two 

generic values show the number of inputs in the network (“Num_Inputs”) and the 

serial number of the specific hidden node (“Position”). Since all hidden nodes share 

the same code, the differentiation made by the latter parameter is essential as will be 

seen next, for linking every hidden node with the according hidden_LUT. “Node_en” 

input acts as a switch, which is handled by the central ANN FSM. “Node_mode” is 

also a parameter provided by ANN FSM and defines the exact action that the node 

will perform. “Node_flag” is an indicator that the specific node has completed all 

stages of computation and is ready to accept new inputs, while “node_output” is the 

provided result of these computations and in terms of artificial neural networks it is 

the hidden output of the network. This output is the result of the log_sigmoid 

function, its range of values is  [-1, 1] so it is always an 8 – bit parameter, with 7 out 

of 8 bits expressing its decimal part. 

 

 

 

 

 
 

 

Figure 3.6 Hidden LUT module 
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Every node is linked to a unique hidden_LUT module which performs the 

multiplication as described in previous sub-chapter. The following code shows how 

this link is achieved for the hidden node with serial number 1 and the parameters 

passed to the log_sigmoid module as well as the parameter that is returned from 

log_sigmoid module (“weight_x_input”) which is used in the next stages of 

computation. 
 

 

 

 

 

 

 

 

 

 
Every hidden node integrates a log_sigmoid sub-module. The instantiation is shown 

next, with the parameters “sig_input” and “sig_enable” that are passed to the sub-

module representing the input and control bit, respectively. “Node_output” is the 

result of the log_sigmoid function, which happens to be the later stage of 

computation within the node. Thus, the specific signal will be the output parameter 

of the node. 

 

 

 

 

 
 

Main control functions of the Artificial Neural Networks are performed in the ann 

module, while node modules consist of the main processing units. The FSM of the 

ann module can possibly set the nodes in two possible modes: either “run” or “idle”( 

this setting can be expanded to include a “learning” mode).  

 

“Run” mode along with the “node_en” bit sets the node to read data from its input 

and perform sequentially the functions that is designed to. “Idle” mode sets the node 

ENTITY hidden_node is  

 GENERIC (                                                

  Num_Inputs : INTEGER := 4;  

  Position   : INTEGER                                 

 ); 

 PORT ( 

  input       : IN ann_input_vector;                   

  node_en     : IN STD_LOGIC;                          

  node_mode   : IN node_modes;                        

  CLK         : IN STD_LOGIC;                         

  node_flag   : BUFFER STD_LOGIC :='1';              

  node_output : OUT STD_LOGIC_VECTOR(7 downto 0) 

   ); 
 

  node1: IF (Position = 1) GENERATE 

      lut1: hiddenNode_1 port map( 

                             CLK, 

                             input, 

                             LUT_enable, 

                             weight_x_input 

                         ); 

  END GENERATE node1; 

  sigmoid_0 : log_sigmoid port map( 

      sig_input, 

      sig_enable, 

      CLK, 

      node_output 

          ); 
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to an idle state, which is the state that declares at the current time the node does not 

perform any computations.  

 

The following figure depicts the possible states of a hidden node, and the incoming 

modes set by the Ann FSM. 

 

 

There is a distinction between hidden node mode and hidden node state. This choice 

intends to provide stability to our design, as the node state is isolated from the 

incoming node mode signals, so an unexpected change in the value of hidden node 

mode will not affect the current action of the node until it finishes and transits into 

idle state. The first actions when the incoming “node_mode” signal’s value is “run” are 

described by VHDL in the cited piece of code below and are namely: 

 Unsetting the “node_flag” so it will be unavailable from the main ann module to 

be assigned new tasks until it finishes current computations. 

 Setting the “LUT_enable” bit, that is, switching on and transferring control to the 

hidden_LUT module. 

 Set the node FSM to its initial state, which is “multiply”. 

 
In case of an incoming “idle” signal the actions performed are: 

 Setting the “node_flag” so it is ready to accept new tasks. 

 Zero the intermediate accumulators used during the computational stages 

 

 

 

 

 

 

 

WHEN idle =>  

  CASE node_mode IS 

    WHEN run => 

      node_flag  <= '0';                              

      LUT_enable <= '1';                              

      node_state <= multiply; 

    WHEN idle => 

      node_flag        <= '1';                        

      temp_accumulator <= (others => zero);          

Figure 3.7 Hidden Node FSM 
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The slowest part of the design is the part of additions. A number of operands which 

is equal to the number of inputs from the previous layer need to be summed, and the 

sum will be used as input to the log_sigmoid function in order to provide the final 

output of the node. The scheme of additions is of critical importance, because if we 

choose adders with many operands this will eventually be the bottleneck of our 

system and will have negative effect in timing performance. Eventually, we choose to 

add operands in pairs of two, thus the formed adder tree will have a depth of 

ceil(log2(N_inputs)). The cited code shows an example of the described adder tree, 

which in this case handles 6 inputs, so the depth of the tree will be ceil(log2(6)) = 3, 

that means that 3 Hardware cycles are required to produce the final sum.  The code 

of adder tree is followed by the final state of the node, which switches on the 

log_sigmoid sub-module and sets the node into an idle state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WHEN accumulate_1 =>  

  temp_accumulator(1) <= resize(weight_x_input(1) + weight_x_input(2),11,-8); 

  temp_accumulator(2) <= resize(weight_x_input(3) + weight_x_input(4),11,-8); 

  temp_accumulator(3) <= resize(weight_x_input(5) + weight_x_input(6),11,-8); 

  temp_accumulator(4) <= resize(bias + weight_x_input(7),11,-8); 

  node_state <= accumulate_2;  

WHEN accumulate_2 =>  

  temp_accumulator(5) <= resize(temp_accumulator(1) + temp_accumulator(2),11,-8); 

  temp_accumulator(6) <= resize(temp_accumulator(3) + temp_accumulator(4),11,-8); 

  node_state <= accumulate_3; 

WHEN accumulate_3 =>  

  temp_accumulator(7) <= resize(temp_accumulator(5) + temp_accumulator(6),11,-8); 

  node_state <= activation_function; 

WHEN activation_function =>  

  sig_input     <= temp_accumulator(7); 

  sig_enable    <= '1';       

  node_state    <= idle; 
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3.4.7 Output Node Module 
 

 

 
Output nodes are almost identical to hidden nodes. Slight modifications are made to 

enhance timing performance. The entity of output node holds exactly the same 

signals as this of hidden node, except for the output signal, which in that case of is 

the final output of the neural network and is only a single bit per each node. On the 

same way as hidden nodes, every output node is linked to an output_LUT module, 

in which we have already referred to as an indirect way to perform multiplications. 

This link is based on the logic that we used to link hidden nodes to their respective 

LUT modules, and is shown below. 

 

 

 

 

 

 

 
The modification made is in the design of the output_node FSM. Since we decided 

that the neural network will use binary logic to show its output, every output node is 

obliged to 2 possible values, 0 or 1. However, the final result is provided by the 

log_sigmoid function, which gives as output continuous values in the range [0,1]. In 

order to save valuable hardware resources we performed a logical leap by observing 

closely the graph of log-sigmoid function and specifically its result for input with 

zero value. It is logsig(0) = 0.5, logsig(0-) < 0.5 and logsig(0+) > 0.5. This attribute 

allows us to set this value as threshold and force all negative values to give output ‘0’ 

and all positive values ‘1’. Based on this thinking, we emitted the log_sigmoid 

module, thus the output is provided by determining the sign of the final adder.  The 

FSM of the output node is controlled by the Ann FSM and it shows great 

resemblance with that of hidden node. 

 

 

Figure 3.8 Output Node module 

  node1: IF (Position = 1) GENERATE 

      lut1: outputNode_1 port map( 

                             CLK, 

                             input, 

                             LUT_enable, 

                             weight_x_input 

                         ); 

  END GENERATE node1; 
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The final action of the output node has been already described, and the code that 

carries out this action is given below. The assignments made in this piece of code 

namely: 

 The final adder of the tree adder scheme. Notice that this assignment refers to a 

variable and not a signal. This differentiation allows us to use the value of the 

variable within the same Clock Cycle. 

 Invert the most significant bit of the variable, which in our selection of signed 

numbers depicts the sign of the variable. If the result of the final adder is 

positive we should drive the output to the value ‘1’ whereas value ‘0’ should be 

given if negative. Thus, inversion is appropriate. 

 Set the “node_flag” so it is ready to accept new tasks. 

 Set the node FSM to idle state. 

 

Figure 3.9 Output Node FSM 

WHEN accumulate_6 =>  

  final_accumulator := resize(temp_accumulator(58) + temp_accumulator(59),6,-8); 

  node_output <= NOT final_accumulator(UPPER_LIMIT); 

  node_flag   <= '1'; 

  node_state  <= idle; 
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3.4.8 Ann Module 

Figure 3.10 Ann Module 
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Ann module is the top module of the Neural Network design. There are few 

computations performed by this module; its purpose is to instantiate the number of 

hidden and output nodes and distribute tasks to them whenever is necessary. The 

entity of the module contains some generic values which determine the size of the 

Ann. We briefly name the rest signals. “Input” is provided as a vector of fixed 

numbers, “ann_mode” is an input signal that handles the function of the network, 

”Enable” bit acts as a switch, while “reset” is useful to recall the network to its initial 

state when it has already proceed to computational stages and is necessary to stop. 

“Output” is a vector of bits, sized equal to the Number of outputs which eventually 

shows the number of selected Scenario in binary representation. 

 

 
The number of  nodes is passed as a generic value, so the ann module should be able 

to read these numbers and instantiate as many nodes. The signals that are used to 

handle the functions of hidden nodes are the following: 

 “Hidden_layer_en” : A vector of bits; each of them enables a specific hidden node. 

We can either simultaneously enable all hidden nodes, or in a more 

sophisticated approach, make a selection of the nodes we enable. 

 “Hidden_layer_mode” : This signal defines the state of the hidden nodes.  

In the same way ann module creates and instantiates the appropriate number of 

output nodes. It also uses handling signals as the ones mentioned previously. 

ENTITY ann IS 

  GENERIC (                      

      N_I : INTEGER := N_INPUTS;       

      N_H : INTEGER := N_HIDDEN;   

      N_O : INTEGER := N_OUTPUTS    

   );                                

  

  PORT ( 

      input           : IN  ann_input_vector ;  

      ann_mode        : IN  ann_modes; 

      CLK             : IN  STD_LOGIC; 

      Enable          : IN  STD_LOGIC :='0'; 

      reset           : IN  STD_LOGIC :='0'; 

      Ready           : OUT STD_LOGIC :='1'; 

      output          : OUT STD_LOGIC_VECTOR(1 to N_OUTPUTS) 

  ); 

END ENTITY ann; 

hidden_layer : FOR i IN 1 to N_H GENERATE                

   hidden_nodes : hidden_node generic map( N_I, 

                                           i 

                              ) 

                              port    map( 

                                           input, 

                                           hidden_layer_en(i-1), 

                                           hidden_layer_mode, 

                                           CLK, 

                                           hidden_node_flag(i-1), 

                                           hidden_output(i) 

                              ); 

    END GENERATE hidden_layer; 
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The ann code consists of three processes, the main process that controls all main 

functions and two sub-processes. These sub-processes behave like large AND gates 

that combine the “flag” signals from all the hidden and output nodes. The output of 

these gates becomes ‘1’ only when all the nodes’ flag either on the hidden or the 

output layer are set to ‘1’, so it is an indication that we can proceed to the next stage 

of computations. 

 

 

  

  

  

  

 

The most secure way to see how these sub-processes are useful is to cite the code at 

the beginning of the main process and see how the signals that are the products of 

these sub-processes are used. We can descriptively name the condition that must be 

met to enter the main code of the process which is actually the function of the Ann 

FSM : 

1. CLK signal is in its positive edge. 

2. “Enable” signal is set to 1. 

3. “Reset” signal is set to 0. 

4. Both “Hidden_layer_mode” and “Output_layer_mode” signals are set to idle. This 

practically means that control has not been transferred neither to hidden nor to 

output nodes. 

5. Both “Hidden_layer_flag” and “Output_layer_flag” as they are produced by the 

large AND gates are set to 1.  

and_gate1: PROCESS(hidden_node_flag) IS 

 

variable temp : STD_LOGIC; 

 

BEGIN 

  temp := '1'; 

  FOR i IN hidden_node_flag'range LOOP 

    temp := temp AND hidden_node_flag(i); 

  END LOOP; 

  hidden_layer_flag <= temp; 

   

END PROCESS; 

fsm: process(CLK) IS 

BEGIN 

  IF (CLK = '1' AND CLK'EVENT) THEN 

    IF (Enable = '1') THEN 

      IF (reset = '1') THEN 

        ann_state <= idle; 

        Ready     <= '1'; 

 ELSE 

        IF (hidden_layer_mode /= idle OR output_layer_mode /= idle) THEN 

    hidden_layer_mode <= idle; 

    output_layer_mode <= idle; 

        ELSIF (hidden_layer_flag = '1' AND output_layer_flag = '1') THEN 
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The next fragment of code describes the function of the ann FSM, which has the 

responsibility to share tasks and collect the results. It behaves as a regulator that 

assures a safe processing flow. “Run” state sets the enable signals of the hidden 

nodes and orders their respective FSMs to start computations, whereas “run_next” 

state switches off hidden nodes while switching on output nodes. 

 

 

 

 

 

 

 

 

 

 
The next schematic depicts the ann FSM and its interaction with nodes FSMs.  

 

CASE ann_state is                                    

   WHEN run =>       

     hidden_layer_mode <= run;   

     hidden_layer_en <= (others => '1'); 

     ann_state <= run_next; 

   WHEN run_next  

     hidden_layer_en <= (others => '0');  

     output_layer_mode <= run; 

     output_layer_en <= (others => '1'); 

     ann_state <= turn_off_output; 

   WHEN turn_off_output =>                         

     output_layer_en <= (others =>'0'); 

     Ready     <= '1'; 

     ann_state <= idle; 

Figure 3.11 Ann FSM 
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3.4.9 Hybrid Module 

Figure 3.12 Hybrid Module 
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Under specific circumstances, it is useful to use a complementary LUT to hold some 

of the Scenario values. In that case, neural module will be used as a Component into 

the Hybrid module, which becomes the top module. There are four stages involved 

in this module, the first two are common for all cases, and the last two are 

complementary, only one out of them will be selected on a specific run of the 

module. The first stage is named “read_input” and it performs the following : 

 It uses one register per input, which acts as a sensor. In every Clock Cycle this 

register is compared to the input, and if it does not locate a change in at least one 

input, it drives the output to the last computed result. If it does locate a change, 

it proceeds to the next actions. 

 It performs a sort of compression for the new input located. This compression is 

very useful in cases where input has a large value, so it needs a significant 

amount of bits to be represented. Afterwards only as many bits as needed to 

represent the possible states of this value are used. Since multiplications are 

performed using LUTs, the literal values of inputs are not directly needed, to the 

contrary we can use their “symbolic” values, which are the result of the 

compression. 

 Based on the signals that show whether a change in each input was located, it 

enables the Ann module or keeps reading input. 

 

The cited code describes the functions of sensor and compression for one single 

input. 

 

 

 

 

 

 

 

 

 
The decision at the end of the stage, which determines whether a change in Scenario 

is possible based on the combination of inputs, so it will be needed to 

enable Ann module. 

WHEN read_input => 

  IF (hold_input.one /= input.one) THEN 

    hold_input.one <= input.one; 

    input_flag(1)       := '1'; 

    CASE input.one IS 

      WHEN "01"  => new_input.one <= "0"; 

      WHEN "10"  => new_input.one <= "1"; 

      WHEN others => NULL; 

    END CASE; 

  ELSE 

    input_flag(1)  := '0'; 

  END IF; 

flag := input_flag(1) OR input_flag(2) OR input_flag(3) OR input_flag(4);  

  IF (flag = '1') THEN 

    enable       <= '1'; 

    ann_function <= run; 

    stage        <= correct; 

    output_flag  <= '0'; 

  ELSE 

    enable       <= '0'; 

    ann_function <= idle; 

    output_flag  <= '1'; 

  END IF; 
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The second stage is a memory-like structure which is used to store an array of 

Scenarios. These scenarios are selected when their respective combined RTSs are 

given as the incoming address in this structure and bypass the structure of neural 

network. For shortcut reasons, we only show the instantiation of the variable that 

acts as address and the first values of the LUT. 

 

The third stage of execution is selected only in certain cases; when the combination of 

inputs is not contained in the complementary LUT we described, our system follows 

this execution, which is depicted in the Schematic as Execution 1. The program stalls 

until the output of the ann is provided, and then it drives this signal to the hybrid 

output. It also sets the flag of this module, a sign that calls for further action, and 

moves back into the first stage. 

 

 

 

 

 

 
 

The fourth stage is the alternative and it describes the case when the specific Scenario 

coded by the current inputs forms a register in the memory-like component, so the 

function of ann module is not necessary and Execution 2 shown by the schematic 

takes place. 

 

 

 

 

 

 

 

 

 

 

 

WHEN correct => 

  LUT_decision := '1'; 

  test_vector := new_input.one & new_input.two & new_input.three & new_input.four; 

  CASE test_vector IS 

    WHEN "000000111001110000"  =>  LUT_output <= "000000001"; 

    WHEN "000000000111100000"  =>  LUT_output <= "000000001"; 

    WHEN "010100010001100000"  =>  LUT_output <= "000000001"; 

    WHEN "000000111001100000"  =>  LUT_output <= "000000001"; 

    WHEN "000000100111100000"  =>  LUT_output <= "000000001"; 

    WHEN "000000111001010000"  =>  LUT_output <= "000000001"; 

    WHEN "000000000111000000"  =>  LUT_output <= "000000001"; 

WHEN drive_ann => 

  IF (ann_ready = '1') THEN 

    output        <= ann_output; 

    reg_output    <= ann_output; 

    output_flag   <= '1'; 

    enable        <= '0'; 

    stage         <= read_input; 

  END IF; 

WHEN drive_LUTS => 

  output          <= LUT_output; 

  reg_output      <= LUT_output; 

  ann_stop        <= '0'; 

  output_flag     <= '1'; 

  enable          <= '0'; 

  stage           <= read_input; 
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Chapter 4    Case Study 
 

 
In the context of the current case study, we describe the extraction of RTSs from a 

wireless system based on the study made in [20], followed by the experimental 

results regarding detection implementation. 

 

4.1 System Modeling  
 

Antennas Signal Power     We consider an uplink Wireless transmission channel of 

a MIMO-OFDM system based on the IEEE 802.11ac communication protocol [34]. 

The transmission data rate, for which we can achieve a successful transmission, is 

defined by the bandwidth, the capacity and the noise on the channel. A fundamental 

trade-off exists between Bit-Error-Rate (BER), which is correlated with the provided 

QoS, and antenna signal power. A potential run-time reconfiguration manager can 

adjust the signal power and the memory subsystem to the running situation. The 

scheduler selects the energy optimal configuration scheme (number of spatial 

streams, bandwidth, modulation and coding (MC) schemes) which respect the 

running constrains, based on the targeted communication standard (WLAN 

802.11ac) characterization [34]. More precisely, the scheduler chooses the 

communication scheme, which requires the minimum SNR for the current data rate 

requirements under given conditions of external distortion. This presupposes that 

the scheduler has perfect updated knowledge of the channel condition and the 

application deadlines. The antenna signal power is adjusted to give the required data 

rate.  

 

The aforementioned fundamental bound between signal power and data rate under 

specific noise conditions is mathematically expressed by the Shannon–Hartley 

theorem: 

 

 

 

,where C is the channel capacity in bits per second; B is the bandwidth of the channel 

in hertz; S is the average received signal power over the bandwidth, measured in 

Watt; N is the average noise or interference power over the bandwidth, measured in 

Watt; and S/N is the signal-to-noise ratio (SNR).  

This equation shows that a theoretical minimum SNR exists for achieving a target 

capacity with specific available channel bandwidth. The minimum SNR for a specific 

level of noise defines the minimum required signal power for an error-free 

transmission. For example, if the available bandwidth is Bw the theoretical minimum 

SNR for a transmission with bit-rate Cb without errors is:  

                                                               SNR£ 2
Cb

Bw -1       (2) 
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The average signal power, S, can be written as S=EbC, where Eb is the average energy 

per bit. The average noise power, N, can also be redefined as, N=N0B, where N0 is the 

noise power (Watts/Hz). The Shannon–Hartley theorem can be written in the form: 

 

 
 
 

The ratio C/B represents the bandwidth efficiency of the system in bits/second/Hz. 

Knowing the SNR levels, we can characterize the total signal power efficiency of 

every configuration (minimum Signal Power) to achieve the targeted capacity. If the 

configuration supports multiple antennas (multiple spatial streams) the total signal 

power is estimated as the sum of the signal of each antenna. 

 

The theoretical minimum SNR for an error-free transmission is impossible to reach in 

practice. The modulation schemes define how close to this theoretical SNRmin the 

transmission can be. Every modulation scheme is characterized by a minimum SNR 

that allows the demodulation of the transmitted symbols without errors. Knowing 

the minimum SNR for every modulation scheme (MS), we can define the minimum 

Signal Power for every MS for specific levels of noise. The equation that defines the 

symbol error probability (Ps) for every MS, with respect to SNR is the following [35]: 

 

 
 
 

M is the number of symbols used, Es the average received signal power, N0 the 

average noise signal power and erfc is the complementary error function. 

 
The graphical expression of this equation for the modulation schemes of the 802.11ac 

is presented in Figure 4.1. Channel coding improves the SNR by a factor R [18]. So 

the curves can be normalized for equal energy per information bit (pre-coding) 

bearing in mind that the energy per transmitted bit is less than the energy per 

information bit by a factor equal to the code rate R. The graphical expression of the 

symbol error probability for the modulation and coding (MC) schemes of the 

802.11ac can be found in Figure 4.2. 

 
Figure 4.1 Symbol Error Probabilities for 

802.11ac Modulation Schemes 

Figure 4.2 Symbol Error Probabilities 

for 802.11ac Coding & Mod Schemes 
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In this context, every system scenario RTS is characterized by a two-dimensional cost 

1) the total signal power and 2) the bit error rate (BER). The signal power is inversely 

proportional to the symbol error probability and correspondingly to bit error 

probability as shown in Figure 5.1 and Figure 5.2. Each RTS is characterized by a 

curve in the two-dimensional space of total signal power. This curve is derived by 

the respective curve at Figure 3 that corresponds at the MCs of the RTS. Based on the 

bits-per-symbol of MCs (BPSK: 1bps, QPSK: 2bps, etc.), the short guard interval (SGI) 

and the noise level of the RTS, the Ps (symbol error probability) to SNR curve can be 

transformed to BER to Signal Power curve. 

 

Besides the above-mentioned technical analysis the most unstable parameter for a 

transmission is the user profile, e.g., the distance between receiver and transmitter, 

the existence of other communication channels or others sources of distortion. These 

are factors that influence the channel transmission and are directly influenced by the 

user behavior. For example, if the user moves in a saturated spectrum area or in a 

noisy environment high communication channel interference is expected. 

Correspondingly, if the user changes position very rapidly, (for example, driving a 

car) this has impact on the normal demodulation of the transmitted signal (Doppler 

Effect). 

 

Memory Banks   The SNR level and the changing environment on the wireless 

channel also affects the memory requirements. In more detail, the conditions of the 

channel determine the coding and modulation scheme needed for a successful 

communication and, consequently the required data rate. The coding phase 

transforms an m-bit data string into an n-bit string in order to be encoded, when the 

given coding rate is m/n. The modulation phase conveys a varying number of bit 

streams together, based on the chosen modulation. The data rate constraint defines 

the storage and transmission requirements for the data. As a result, the memory 

footprint depends on the data rate of the channel and is dynamic for a changing 

environment. Energy consumption on the memory subsystem depends on the 

number of accesses and the energy per access, which are different based on the size 

and the type of memory. 

 

The observation that the memory requirements at run-time vary significantly due to 

dynamic variations on the transmission channel and the protocol, is exploited 

through use of system scenarios. Instead of defining the memory requirements for 

the worst-case data rate and tuning the system according to this, system scenarios 

are generated for different situations. The combination of the coding and the 

modulation parameters define the data rate for each RTS. The data rate is the 

identification variable and the cost factor is its memory footprint. Based on the cost 

factor, the different memory footprints are clustered into scenarios. The clustering of 

RTSs is based both on their distance on the memory size axis and the frequency of 

their occurrence. The key feature needed in the platform architecture is the ability to 

efficiently support different memory sizes that correspond to the system scenarios 

generated by the methodology. Execution of different system scenarios then leads to 

different energy costs, as each configuration of the platform results in a specific 
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memory energy consumption. The dynamic memory platform is achieved by 

organizing the memory area in a varying number of banks that can be switched 

between different energy states.   

 

 

4.2 CASE STUDY (I) 

 
Our development platform is the Xilinx Virtex 6 XC6XCX75T platform [21]. Since our 

implementation is not directed exclusively to the specific platform, but it is designed 

to have general applicability, we only mention the basic characteristics of the 

platform, shown in Table 4.1. It is not the latest design, but it is large enough to fit the 

current implementation. It is worth to mention that the current platform also holds 

special hardware blocks, as shown in Figure 4.3. And it handles arithmetic 

operations using a number of special blocks named DSP48E1s [22], 864 in total. The 

latter could be a presumptive constraint for the multiplication operations on neural 

networks, so we use optimized architecture to overcome this potential problem.  

 

Device 
Slice 

Registers 

Slice 

 LUTs 

Bonded 

IOBs 

Virtex - 6 

XC6VCX75T 
708,480 354,240 720 

             Table 4.1. Main Specifications of the Virtex 6 – XC6VCX75T (Package FF484)  

                                                      
 
 

 

 

 

 

 

 

 

 

 

 
                                                          Figure 4.3 Virtex–6 Blocks 

 

 

We extracted results for two different Clustering options (2560 and 5120 RTS) for a 

series of dynamic implementations following the methodology steps, and for the 

static implementation as well. The most important metrics of Synthesis, 

Implementation and Simulation stages are depicted in the following pages. 
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Implementation  
(# Hidden Nodes) 

QoS Metric Hardware Metrics 

Prediction 
(Perc.) 

Latency 
(Cycles) 

Frequency 
(MHz) 

Slice LUTs 
(Utilization) 

Power 
(W) 

40 61% 22 290,43 4% 7,43 

50 73% 22 286,04 5% 7,41 

60 74% 22 250,62 6% 7,43 

70 81% 23 222,52 8% 7,43 

80 78% 23 222,42 9% 7,45 

Static - 2 417,88 < 1% 7,3 

 
It can be easily noticed, that in terms of Hardware cost, the Static Implementation is 

superior than the implementations with the use of Neural Networks. However, its 

dynamic ability is non – existent, since it can only detect the Scenarios it has been 

trained of. Each metric is shown separate in the next diagrams. 

 

 
 
The best-tuned neural network is the one with 70 Nodes. From that stage on, 

additional hidden nodes do not provide with more prediction capacity. 
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The size of Complementary LUTs in each implementation is an indication of the 

effectiveness of the training. Complementary LUT is the structure that is instantiated 

during Simulation and has as many entries as the number of error cases. If we had 

not been using cross – validation technique for better generalization results, we 

would expect that with the increase of hidden nodes, a reduction of the size of  

Complementary LUT. But since we use validation, ‘early stopping’ prevents the 

network from overfitting to the known data. It is worth to notice that the 

implementation with the best prediction capacity is the one with the smallest 

Complementary LUT size. 

 

 
 

Our designs are structured in such way that latency is directly dependent only on the 

size of hidden layer, because at this stage they infer a tree adder, the length of which 

defines the total latency in CLK cycles. An increase in latency by one CLK cycle is 

noticed at the transition from the implementation with 60 nodes to that with 70 

nodes. 
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The implementations are synchronized at a certain frequency. Additional nodes do 

not affect the critical path in terms of additional logic, but the complexity of the 

circuit becomes higher, so it is more difficult for the tools that do the placement in 

the FPGA platform. The gradual reduction of frequency is due to rooting delays. 

 

 
 

Finally, we can see the total delay of each implementation, the response time from 

the moment that RTSs are given to the input stage, to the output stage, where the 

number of Scenario is produced. The slowest implementation needs 103 ns, but it is 

worth to notice, that our customization offers shortcuts for the extraction of 

scenarios, it is therefore feasible to complete the process in significantly lower 

fragment of time. 

 

The results for the Clustering with 5120 RTS can be seen next: 
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4.3 Case Study (II) 
 

 

Implementation 
 (# Hidden Nodes) 

QoS Metric Hardware Metrics 

Prediction 
(Perc.) 

Latency 
(Cycles) Frequency (MHz) 

Slice LUTs 
(Utilization) 

Power 
(W) 

80 82% 23 197,12 11% 7,47 

90 79% 23 178,83 13% 7,49  

100 79% 23 171,23 14% 7,49  

110 89% 23 166,86 17% 7,48  

120 83% 23 166,78 18% 7,5 

Static - 2 348,79 1% 7,34 

 

 

 

 
 

Starting with 80 hidden nodes, gradually we increase the size of hidden layer, until 

the network’s dynamic ability is saturated. This point was discovered for the 

implementation with 110 nodes. 
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Again, we notice that the implementation with the best prediction capacity, is also 

the one with the smallest size of Complementary LUT. The combination of these 

factors makes the current implementation in both ways the most suitable. 

 

 
 

Migrating from the implementation with 80 Nodes to that with 120 Nodes does not 

add a single CLK Cycle. There is balance in this metric. 
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Additional nodes result in reduction of operating frequency, as we had seen on the 

previous Case Study. The added size and complexity of the circuit is the reason for 

this deterioration on frequency performance. 

 

 
 

Finally, the total delay is increasing gradually, so the performance in terms of timing 

cost is deteriorating. This result is expected, as the number of CLK cycles remains 

stable, while frequency reduces. 
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Chapter 5    Conclusions & Future Work 
 

 
Our work was focused towards developing a non-existing implementation for 

Scenario Detection, which apart from the usual process of responding to a 

combination of inputs and providing the suitable output, will also have dynamic 

ability, that is to predict during unknown situations the Scenario to be implemented. 

This was achieved with high level of success, as we developed highly accurate 

Neural Networks, with prediction ability up to 90%. The systematic way by which a 

methodology to extract the optimal solution in terms of efficiency, and the scientific 

documentation that this methodology was based on, suggests that it is a rather 

reliable solution. 

 

Besides the numerous interventions that targeted in optimizing the implementation 

in terms of efficiency and cost, there is still room for improvement from the technical 

point of view. Some ideas would be: 

 

 Ternary adders could be added in place of the existent which add only two 

operands. Since the stage of additions is the most time consuming part of the 

design, the reduction of the stages of the tree adder that would be inferred with 

the use of ternary adders, would significantly reduce the latency of the 

implementation, without affecting the critical path, that is the operating 

frequency. 

 The implementation has been designed with minimum levels of logic at each 

CLK Cycle, so the final Timing delay in the Critical path is due to routing delays. 

The solution to reduce routing cost in the Hardware would be an analytical 

floorplanning, which is performed with the use of the Software tools that 

provide us all the suitable tools. 

 

There are also many ways of customization using the existent implementation. One 

such customization could be an energy – saving solution which would enable at each 

stage, only the neurons that would be necessary for each case. Even better, we could 

create the ANN the way we create it at the moment, and with the use of genetic 

algorithms we could reduce the number of neurons that do not eventually 

participate in computations. This solution is towards a more compact 

implementation, with less hardware footprint and better possibilities to be 

embedded into a small chip. 

 

Finally, the biggest challenge would be to create a system which would be 

instantiated as an artificial neural challenge, but its parameters for training would be 

given only during run-time. Thus, the system should have the capability to perform 

on-chip training, and periodically evolve, depending on the scale of the different 

inputs it will encounter. Perhaps the structure of Cascade Correlation Networks is 

the most suitable to perform the specific task. Anywise, on - chip training is 

extremely demanding, since constraints in hardware devices would reduce the 
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wanted precision and therefore undermine the capability of the network for proper 

training.  
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Appendix A 

 

A.1 Introduction 

 
The Levenberg–Marquardt algorithm which was independently developed by 

Kenneth Levenberg and Donald Marquardt, provides a numerical solution to the 

problem of minimizing a nonlinear function. It is fast and has stable convergence. In 

the artificial neural-networks field, this algorithm is suitable for training small- and 

medium-sized problems. 

 

Many other methods have already been developed for neural-networks training. The 

steepest descent algorithm, also known as the error backpropagation (EBP) 

algorithm, dispersed the dark clouds on the field of artificial neural networks and 

could be regarded as one of the most significant breakthroughs for training neural 

networks. Many improvements have been made to EBP, but these improvements are 

relatively minor. The EBP algorithm is still widely used today; however, it is also 

known as an inefficient algorithm because of its slow convergence. There are two 

main reasons for the slow convergence: the first reason is that its step sizes should be 

adequate to the gradients). Logically, small step sizes should be taken where the 

gradient is steep so as not to rattle out of the required minima (because of 

oscillation). So, if the step size is a constant, it needs to be chosen small. Then, in the 

place where the gradient is gentle, the training process would be very slow. The 

second reason is that the curvature of the error surface may not be the same in all 

directions, such as the Rosenbrock function, so the classic “error valley” problem [28] 

may exist and may result in the slow convergence. 

 

The slow convergence of the steepest descent method can be greatly improved by the 

Gauss–Newton algorithm [28]. Using second-order derivatives of error function to 

“naturally” evaluate the curvature of error surface, The Gauss–Newton algorithm 

can find proper step sizes for each direction and converge very fast; especially, if the 

error function has a quadratic surface, it can converge directly in the first iteration. 

But this improvement only happens when the quadratic approximation of error 

function is reasonable. Otherwise, the Gauss–Newton algorithm would be mostly 

divergent. 

 

The Levenberg–Marquardt algorithm blends the steepest descent method and the 

Gauss–Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss–

Newton algorithm and the stability of the steepest descent method. It’s more robust 

than the Gauss–Newton algorithm, because in many cases it can converge well even 

if the error surface is much more complex than the quadratic situation. Although the 

Levenberg–Marquardt algorithm tends to be a bit slower than Gauss–Newton 

algorithm (in convergent situation), it converges much faster than the steepest 

descent method. 
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The basic idea of the Levenberg–Marquardt algorithm is that it performs a combined 

training process: around the area with complex curvature, the Levenberg–Marquardt 

algorithm switches to the steepest descent algorithm, until the local curvature is 

proper to make a quadratic approximation; then it approximately becomes the 

Gauss–Newton algorithm, which can speed up the convergence significantly. 

 

 

A.2 Algorithm Derivation 

 
In this part, the derivation of the Levenberg–Marquardt algorithm will be presented 

in four parts: (1) steepest descent algorithm, (2) Newton’s method, (3) Gauss–

Newton’s algorithm, and (4) Levenberg– Marquardt algorithm. 

Before the derivation, let us introduce some commonly used indices: 

• p is the index of patterns, from 1 to P, where P is the number of patterns. 

• m is the index of outputs, from 1 to M, where M is the number of outputs. 

• i and j are the indices of weights, from 1 to N, where N is the number of weights. 

• k is the index of iterations. 

Other indices will be explained in related places. 

Sum square error (SSE) is defined to evaluate the training process. For all training 

patterns and network outputs, it is calculated by 

 

    

                                                         (A.1) 

 
where 

    x is the input vector 

    w is the weight vector 

    ep,m is the training error at output m when applying pattern p and it is defined as: 

 

                                                                            (A.2) 
where 

    d is the desired output vector 

    o is the actual output vector         

 

A.2.1 Steepest Descent Algorithm 

 
The steepest descent algorithm is a first-order algorithm. It uses the first-order 

derivative of total error function to find the minima in error space. Normally, 

gradient g is defined as the first-order derivative of total error function (A.1):             

 

   

                                   (A.3)                   
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With the definition of gradient g in (A.3), the update rule of the steepest descent 

algorithm could be written as  

 

                                                         (A.4) 

 
where α is the learning constant (step size). 

The training process of the steepest descent algorithm is asymptotic convergence. 

Around the solution, all the elements of gradient vector would be very small and 

there would be a very tiny weight change. 

 

A.2.2 Newton’s Method 

 
Newton’s method assumes that all the gradient components g1, g2, …, gN are 

functions of weights and all weights are linearly independent: 

  

  

  

 (A.5) 

 

 

 
where F1,F2, …, FN are nonlinear relationships between weights and related 

gradient components. 

Unfold each gi (i = 1, 2,…, N) in Equations A.5 by Taylor series and take the first-

order approximation: 

 

 

 

 

 (A.6) 

 

 

 
 

 

 

By combining the definition of gradient vector g in (A.3), it could be determined that 

 

  

  

   (A.7) 
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By inserting Equation A.7 to A.6: 

 

 

 

 

(A.8) 

 

 

 

 

 
Comparing with the steepest descent method, the second-order derivatives of the 

total error function need to be calculated for each component of gradient vector. In 

order to get the minima of total error function E, each element of the gradient vector 

should be zero. Therefore, left sides of the Equations A.8 are all zero, then 

 

 

 

 

(A.9) 

 

 

 

 

 

 

 

 

 
By combining Equation A.3 with A.9 

 

 

 

 

(A.10) 

 

 

 

 

 

 
There are N equations for N parameters so that all Δwi can be calculated. With the 

solutions, the weight space can be updated iteratively. 



88 
 

    Equations A.10 can be also written in matrix form 

 

 

 

 

 

(A.11) 

 

 

 

 
where the square matrix is Hessian matrix: 

 

  

  

  

  

 (A.12) 

 

 

 

 

 
By combining Equations A.3 and A.12 with Equation A.11 

  

 (A.13) 
 

 

(A.14) So                                                                                                                                      

 

Therefore, the update rule for Newton’s method is 

  

 (A.15) 

 
As the second-order derivatives of total error function, Hessian matrix H gives the 

proper evaluation on the change of gradient vector. By comparing Equations A.4 and 

A.15, one may notice that well-matched step sizes are given by the inverted Hessian 

matrix. 

 

A.2.3 Gauss – Newton Algorithm 

 
If Newton’s method is applied for weight updating, in order to get Hessian matrix H, 

the second-order derivatives of total error function have to be calculated and it could 
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be very complicated. In order to simplify the calculating process, Jacobian matrix J is 

introduced as 

  

  

  

  

  

  

  

  

  

 (A.16) 

 

 

 

 

 

 

 

 

 

 
By integrating Equations A.1 and A.3, the elements of gradient vector can be 

calculated as 

 

 

(A.17) 

 

 
Combining Equations A.16 and A.17, the relationship between Jacobian matrix J and 

 gradient vector g would be 

 (A.18) 

 
where error vector e has the form 

  

  

  

  

  

  

 (A.19) 
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Inserting Equation A.1 into A.12, the element at ith row and jth column of Hessian 

matrix can be calculated as 

 

 

(A.20) 

 

 

 
where Si,j is equal to 

  

 (A.21) 

 

 
As the basic assumption of Newton’s method is that Si,j is closed to zero [29], the 

relationship between Hessian matrix H and Jacobian matrix J can be rewritten as 

 (A.22) 

 
 

By combining Equations A.15, A.18, and A.22, the update rule of the Gauss–Newton 

algorithm is presented as 

  

 (A.23) 

 
Obviously, the advantage of the Gauss–Newton algorithm over the standard 

Newton’s method (Equation A.15) is that the former does not require the calculation 

of second-order derivatives of the total error function, by introducing Jacobian 

matrix J instead. However, the Gauss–Newton algorithm still faces the same 

convergent problem like the Newton algorithm for complex error space 

optimization. Mathematically, the problem can be interpreted as the matrix JTJ may 

not be invertible. 

 

 

A.2.4 Levenberg – Marquadt Algorithm 

 
In order to make sure that the approximated Hessian matrix JTJ is invertible, 

Levenberg–Marquardt algorithm introduces another approximation to Hessian 

matrix: 

 (A.24) 
where 

    μ is always positive, called combination coefficient 

    I is the identity matrix 

From Equation A.24, one may notice that the elements on the main diagonal of the 

approximated Hessian matrix will be larger than zero. Therefore, with this 

approximation (Equation A.24), it can be sure that matrix H is always invertible. 
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By combining Equations A.23 and A.24, the update rule of Levenberg–Marquardt 

algorithm can be presented as 

  

 (A.25) 

 
As the combination of the steepest descent algorithm and the Gauss–Newton 

algorithm, the Levenberg–Marquardt algorithm switches between the two 

algorithms during the training process. When the combination coefficient μ is very 

small (nearly zero), Equation A.25 is approaching to Equation A.23 and 

Gauss–Newton algorithm is used. When combination coefficient μ is very large, 

Equation A.25 approximates to Equation A.4 and the steepest descent method is 

used. 

 

If the combination coefficient μ in Equation A.25 is very big, it can be interpreted as 

the learning coefficient in the steepest descent method (A.4): 

  

 (A.26) 
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Appendix B 
 
This section intends to provide information about the Neural Network Tool that was 

developed in MatLab environment for the purposes of our study. 

 

 

 
Train/Validation Files  

 

Firstly, we have to insert our input files, which should be .dat files and their format 

should be strictly arranged.  

 

Training File contains the part of the dataset that we want to be engaged to the 

training procedure, while Validation File contains the part used to evaluate the 

performance of our network and its ability to generalize. 

 

Every column represents an input, while every row represents a combination of 

inputs and their output. The last column stands for the output values. MatLab will 

accept as a delimiter a comma, a semicolon, or even a space for the separation of the 

values. We should note here a design restriction, which is that input values from the 

Figure B.1 Neural Network tool 
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dataset should be positive integer numbers, and output values should be continuous 

integer numbers beginning with 1. 

 

Switch Criteria 

 

“Switch Criteria” button is an optional choice. It enables a more sophisticated method 

of classifying, which is ruled by specific criteria, varying amongst different Scenarios. 

Application requests a .dat file which should keep to the following rules : 

 The file should have as many set of Criteria as the number of Scenarios. 

 A number specifies the number of Criteria for each set and is followed by as 

many lines it defines. 

 0s and 1s are used to represent changes in Inputs. Thus, line 1;0;0;1;0 implies that 

when the first and fourth input do not change, a change in Output is never 

triggered.  

 

No Training 

 

“No Training Values” button is another optional choice. It is useful in cases of having 

extreme values in our dataset that could slow down convergence while training the 

dataset, or even affect negatively in the performance of the Network. These values 

are given as a .dat file following the rules already explained, however it should be 

noted that those values should not be erased from the original dataset; they are just 

copied to a new file. Also, for reasons explained later, this option cannot be 

combined along with “Separate” Complementary LUTs. 

 

Analysis Results 

 

Underlying functions process input files and provide information about the 

impending Neural Network that is going to be built. Input Nodes, Output Nodes, No 

Scenarios and Cases, which is a measurement of the size of the dataset. Also, there is a 

box titled “Recommendation” which makes use of an algorithm that estimates the least 

number of Hidden Neurons that would provide the maximum efficiency. It is worth 

to mention that this is just a rough estimation; the decision about the size of a Neural 

Network is more like a trial – and – error process. 

 

Multiplication Style 

 

This option is of major significance. If it is feasible, we could choose to bypass the 

costly multiplications, and use LUTs instead, in a manner that we will explain later 

in this chapter. If the use of multipliers is necessary, though, we choose the 

respective option in this pop – up menu. 
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Bits Precision 

 

When implementing an Artificial Neural Network in FPGA, precision is one of the 

most important aspects. The desired level of precision is handled as an input 

parameter, and throughout Simulation of the final circuit, the user could define the 

impact in his own design, and balance the tradeoff between less logic and better 

performance. 

 

Activation Function 

 

There are two possible options regarding Activation Function. The underlying 

implementations perform the same task, whereas ‘Extended’ form provides better 

precision, because it covers twice as many cases as ‘Normal’ form, thus using more 

logic. If there is requirement for a very – high precision implementation, then the 

‘Extended’ form of Activation Function should be chosen. We should also note that 

the letter could have a slightly negative impact in Frequency. 

 

Complementary LUTs 

 
This option indicates the style by which the Neural Networks transforms into a 

Hybrid Network; that is embedding complementary LUTs in the stage of Simulation, 

which perform the task of covering the cases where the Neural Network itself is 

unable to provide the correct output. 

• “Single” option infers the implementation of a large LUT, which contains all 

the cases of miscalculation. When this LUT is enabled, the function of NN is not 

triggered, and output is provided by the LUT. 

• “Multiple” option infers as many LUTs as the output bits, each one holding 

the inputs that cause an error in this specific bit. When enabled, it does not bypass 

the function of NN, just inverts the erroneous bits. 

 

Clock Trigger 

 

By the option “Clock Trigger” we are allowed to define the CLK edge which triggers 

our final circuit.  It is included to provide some flexibility for the final design. 

 

Training Parameters 

 

This parameter is not directly linked with the VHDL implementation, its purpose is 

to simplify the stage of training Neural Networks. We can determine the exact 

number of NN instantiations trained in our System. Out of these instances, the one 

with the better performance will be selected and converted into RTL description. 
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Create Neural 

 

The final action when all settings have been fixed is to press “Create Neural” button, 

which will pass the chosen parameters to the built – in MatLab toolbox in order to 

train our Neural Network. A message appears indicating the state of the Application. 

While the Neural Network is being trained and afterwards evaluating the results and 

producing the appropriate files, the state is set to “Processing”. If this procedure is 

completed without errors, the state is set to “Successful”. 
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Appendix C 
 
The following legend intends to define the simplified shapes used for the structural 

and functional analysis of the modules. Each rectangle represents a single module, 

while shapes imply the following functions : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Two units of the same kind imply a parallel array of such units. 

 


