

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΚΛΙΚΗΣ ΔΙΑΤΑΞΗΣ ΣΕ ΣΤΑΘΜΟ ΕΠΑΓΩΓΙΚΗΣ ΦΟΡΤΙΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΟΧΗΜΑΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΜΠΕΖΕΝΤΕΣ Κ. ΝΙΚΟΛΑΟΣ

Επίβλεψη: Χατζηαργυρίου Νικόλαος Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΚΛΙΚΗΣ ΔΙΑΤΑΞΗΣ ΣΕ ΣΤΑΘΜΟ ΕΠΑΓΩΓΙΚΗΣ ΦΟΡΤΙΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΟΧΗΜΑΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΜΠΕΖΕΝΤΕΣ Κ. ΝΙΚΟΛΑΟΣ

Επίβλεψη: Χατζηαργυρίου Νικόλαος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την Ιουλίου 2015.

..... Χατζηαργυρίου Νικόλαος Καθηγητής Ε.Μ.Π. Παπαθανασίου Αθ. Σταύρος Αν. καθηγητής Ε.Μ.Π. Γεωργιλάκης Παύλος

Παύλος Επ. καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2015

..... Μπεζεντές Κ. Νικόλαος Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. Copyright© Μπεζεντές Νικόλαος, 2015. Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

ΠΕΡΙΛΗΨΗ

Σκοπός της διπλωματικής εργασίας είναι η μελέτη της κυκλικής διάταξης ενός σταθμού επαγωγικής φόρτισης ηλεκτρικών οχημάτων. Η μαγνητοστατική ανάλυση της συγκεκριμένης διάταξης πραγματοποιείται με το υπολογιστικό πρόγραμμα Maxwell. Αρχικά προσδιορίζεται η περιοχή του ρεύματος στην οποία δύναται να λειτουργεί η διάταξη επαγωγικής φόρτισης που μελετάται, ώστε να αποφευχθεί ο κορεσμός που επέρχεται στα σιδηρομαγνητικά υλικά της διάταξης. Προσομοιώσεις που πραγματοποιήθηκαν εξετάζουν την εξάρτηση της μεταφερόμενης ισχύος τόσο από τα γεωμετρικά χαρακτηριστικά της διάταξης (πάχος φερρίτη, συνολική διάμετρος της διάταξης κλπ.) αλλά και τα χαρακτηριστικά των τυλιγμάτων που ενσωματώνει (αριθμός ελιγμάτων, σχετική θέση του τυλίγματος στη διάταξη). Μελετάται επίσης η επίδραση της μετατόπισης στην επαγωγική φόρτιση των ηλεκτρικών οχημάτων εξετάζοντας τόσο την επίδραση της οριζόντιας μετατόπισης, αλλά και του διακένου μεταξύ σταθμού και οχήματος στη μέγιστη ισχύ που δύναται να μεταφερθεί. Αναπτύσσεται, τέλος, ένα εργαλείο για τον πλήρη προσδιορισμό των χαρακτηριστικών εκείνων της διάταξης που απαιτούνται για τη μεταφορά μίας ζητούμενης ισχύος. Το εργαλείο αυτό, δεχόμενο ως είσοδο τη ζητούμενη ισχύ την οποία καλείται να μεταφέρει η διάταξη, την επιθυμητή εξωτερική διάμετρο της διάταξης καθώς και το επιθυμητό διάκενο λειτουργίας δίνει ως έξοδο τα πλήρη χαρακτηριστικά της διάταξης για τη μεταφορά της ζητούμενης ισχύος. Το εργαλείο που αναπτύχθηκε εφαρμόσθηκε σε μία σειρά περιπτώσεων για τη μεταφορά συγκεκριμένων τιμών ισχύος, εξετάζοντας τη χρήση διατάξεων διαφόρων εξωτερικών διαμέτρων αλλά και σε διαφορετικά διάκενα.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ

Επαγωγική φόρτιση, Ηλεκτρικό όχημα, κυκλική διάταξη, Ansoft Maxwell, μετατόπιση, διάκενο.

ABSTRACT

The scope of this thesis is the study of the circular pad of an inductive charging power station for electric vehicles. The magnetostatic analysis of this system is implemented by the computer program "Maxwell". Initially, we determine the current region in which the inductive charging system operates in order to avoid saturation that occurs in the pad's ferromagnetic materials. The performed simulations test the influence of both the geometric characteristics of the system (ferrite thickness, total pad's diameter, etc.) and the characteristics of the windings (number of coils, the position of the coil on the pad) in the transferred power. We also studied the effect of the misalignment in the maximum power that can be transferred in wireless charging of electric vehicles, considering both the horizontal displacement and the air gap between the station and the vehicle. Finally, we developed a tool which fully determines the pad's characteristics which are necessary to transfer a particular amount of power. This tool takes as input the requested power that the system has to transfer, the desirable external diameter of the pad and the desirable air gap and provides as output all the pad's characteristics for the requested amount of power. The tool that we developed was applied in a number of cases in order to transfer particular levels of power, considering the use of circular pads with different external diameters and different air gaps.

KEY WORDS

Inductive charging, Electric vehicle, circular pad, Ansoft Maxwell, displacement, air gap

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον καθηγητή κύριο Χατζηαργυρίου και τον Γιάννη Καρακίτσιο για την καθοδήγηση και την βοήθεια κατά την εκπόνηση της διπλωματικής εργασίας. Ακόμη, ευχαριστώ την οικογένεια μου για την στήριξη που μου έδειξε όλα αυτά τα χρόνια των σπουδών μου.

Περιεχόμενα

1.1 Εισαγωγή 14 1.2 Ασύρματη μεταφορά ηλεκτρικής ενέργειας 14 1.2.1 Ορισμός και προέλευση 14 1.2.2 Εφαρμογές της Ασύρματης Μεταφοράς Ισχύος 14 1.3 Επαγωγική φόρτιση ηλεκτρικών οχημάτων 15 1.4 Τύποι μαγνητικών συζευκτών στη στατική φόρτιση 17 1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler) 18 1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση 25 1.5.1 Ενιαία Διάταξη 25 1.5.1.5 Διάταξη 27 1.6 Τεχνικές αντιστάθμισης 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγυγτισστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.1 Σεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Σύλιγμα πρωτε	1° Κεφάλαιο: Επαγωγική μεταφορά ηλεκτρικής ενέργειας	. 14
1.2 Ασύρματη μεταφορά ηλεκτρικής ενέργειας	1.1 Εισαγωγή	. 14
1.2.1 Ορισμός και προέλευση 14 1.2.2 Εφαρμογές της Ασύρματης Μεταφοράς Ισχύος 14 1.3 Επαγωγική φόρτιση ηλεκτρικών σχημάτων 15 1.4 Τύποι μαγνητικών συζευκτώς (Double-sided coupler) 17 1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler) 18 1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση 25 1.5.1 Ενιαία Διάταξη 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος 28 1.5.2 Τμηματική Διάταξη 32 1.6 Τεχνικές αντιστάθμισης 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.1 Έλεγχος του πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Σισαγωγή 39 2.2 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 50 2.4 Ορισμός Ομικών Συνθηκών 52	1.2 Ασύρματη μεταφορά ηλεκτρικής ενέργειας	. 14
1.2.2 Εφαρμογές της Ασύρματης Μεταφοράς Ισχύος 14 1.3 Επαγωγική φόρτιση ηλεκτρικών σχημάτων 15 1.4 Τύποι μαγνητικών συζευκτώς στη στατική φόρτιση 17 1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler) 18 1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση 25 1.5.1 Ενιαία Διάταξη 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος 28 1.5.2 Τμηματική Διάταξη 32 1.6 Τεχνικές αντιστάθμισης 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 44 2.3.2 Τύλιγμα πρωτεύοντος 50	1.2.1 Ορισμός και προέλευση	. 14
1.3 Επαγωγική φόρτιση ηλεκτρικών οχημάτων	1.2.2 Εφαρμογές της Ασύρματης Μεταφοράς Ισχύος	. 14
1.4 Τύποι μαγνητικών συζευκτών στη στατική φόρτιση 17 1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler) 18 1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση. 25 1.5.1 Ενιαία Διάταξη. 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος 28 1.5.2 Τμηματική Διάταξη. 31 1.6 Τεχνικές αντιστάθμισης. 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύοντος 36 1.9 Ασφάλεια. 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 44 2.5 Ορισμός Ομιακών Συθηκών 52 2.5 Ορισμός Ομοιακών Συθηκών 54 2.6 Ορισμός Ομακών Συθηκών 54 2.6 Ορισμός Ομακών Συθηκών 54 2.6 Ορισμός Ομακών Συθηκών <td>1.3 Επαγωγική φόρτιση ηλεκτρικών οχημάτων</td> <td>. 15</td>	1.3 Επαγωγική φόρτιση ηλεκτρικών οχημάτων	. 15
1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler) 18 1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση. 25 1.5.1 Ενιαία Διάταξη. 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος. 28 1.5.2 Τμηματική Διάταξη. 31 1.6 Τεχνικές αντιστάθμισης. 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος. 35 1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος. 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον. 36 1.9 Ασφάλεια. 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος. 43 2.3.2 τύλιγμα πρωτεύοντος. 43 2.3.3 Φερρίτης Δευτερεύοντος. 44 2.4 Ορισμός Ολικών 52 2.5 Ορισμός Οριακών Συνθηκών. 52 2.5 Ορισμός Ομακών Συνθηκών. 52 2.5 Ορισμός Ομακών Συνθηκών. 54 2.6 Ορισμός Παραμέτ	1.4 Τύποι μαγνητικών συζευκτών στη στατική φόρτιση	. 17
1.4.2 Μονής όψης (Single-sided coupler) 19 1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση 25 1.5.1 Ενιαία Διάταξη 25 1.5.1 Ενιαία Διάταξη 25 1.5.1 Ενιαία Διάταξη 28 1.5.2 Τμηματική Διάταξη 31 1.6 Τεχνικές αντιστάθμισης 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Τύλιγμα αλευτερεύοντος 50 2.4 Ορισμός Ολικών 52 2.5 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58 <td>1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler)</td> <td>. 18</td>	1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler)	. 18
1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση. 25 1.5.1 Ενιαία Διάταξη. 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος. 28 1.5.2 Τμηματική Διάταξη. 31 1.6 Τεχνικές ανιστάθμισης. 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος. 35 1.7.2 Έλεγχος του πρωτεύοντος. 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος. 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια. 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 48 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Ορισμός υλικών 52 2.5 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Γαραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58	1.4.2 Μονής όψης (Single-sided coupler)	. 19
1.5.1 Ενιαία Διάταξη 25 1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος. 28 1.5.2 Τμηματική Διάταξη 31 1.6 Τεχνικές αντιστάθμισης. 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος. 35 1.7.2 Έλεγχος του πρωτεύοντος. 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος. 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια. 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος. 43 2.3.2 Τύλιγμα πρωτεύοντος. 48 2.3.3 Φερρίτης Δευτερεύοντος. 49 2.3.4 Τύλιγμα Δευτερεύοντος. 50 2.4 Ορισμός Ολικών. 52 2.5 Ορισμός Οριακών Συνθηκών. 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης. 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων. 58	1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση	. 25
1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος 28 1.5.2 Τμηματική Διάταξη 31 1.6 Τεχνικές αντιστάθμισης 32 1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 49 2.3.4 Τύλιγμα Δευτερεύοντος 50 2.4 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58	1.5.1 Ενιαία Διάταξη	. 25
1.5.2 Τμηματική Διάταξη	1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος	. 28
1.6 Τεχνικές αντιστάθμισης	1.5.2 Τμηματική Διάταξη	. 31
1.7 Μέθοδοι ελέγχου 35 1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell" 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 48 2.3.3 Φερρίτης Δευτερεύοντος 50 2.4 Ορισμός υλικών 52 2.5 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58	1.6 Τεχνικές αντιστάθμισης	. 32
1.7.1 Έλεγχος του δευτερεύοντος 35 1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 48 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 58 3° Κεφάλαιο: Ορισμός της Περιοχής Δευτερεσμοχίας 58	1.7 Μέθοδοι ελέγχου	. 35
1.7.2 Έλεγχος του πρωτεύοντος 35 1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 48 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58	1.7.1 Έλεγχος του δευτερεύοντος	. 35
1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος 36 1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 43 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Ορισμός υλικών 52 2.5 Ορισμός Οριακών Συνθηκών 54 2.6 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58	1.7.2 Έλεγχος του πρωτεύοντος	. 35
1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον 36 1.9 Ασφάλεια 37 20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό 39 2.1 Εισαγωγή 39 2.1 Εισαγωγή 39 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell 39 2.3 Σχεδίαση της διάταξης 42 2.3.1 Φερρίτης πρωτεύοντος 43 2.3.2 Τύλιγμα πρωτεύοντος 48 2.3.3 Φερρίτης Δευτερεύοντος 49 2.4 Ορισμός Οριακών Συνθηκών 50 2.4 Ορισμός Παραμέτρων της Ανάλυσης 56 2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων 58 3° Κεφάλαιο: Ορισμός Λειτουργίας 51	1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος	. 36
1.9 Ασφάλεια	1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον	. 36
20 Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell"	1.9 Ασφάλεια	. 37
 2.1 Εισαγωγή	2ο Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμι "Ansoft Maxwell"	‹ó 39
 2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell	2.1 Εισαγωγή	. 39
 2.3 Σχεδίαση της διάταξης	2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell	. 39
 2.3.1 Φερρίτης πρωτεύοντος	2.3 Σχεδίαση της διάταξης	. 42
 2.3.2 Τύλιγμα πρωτεύοντος	2.3.1 Φερρίτης πρωτεύοντος	. 43
 2.3.3 Φερρίτης Δευτερεύοντος	2.3.2 Τύλιγμα πρωτεύοντος	. 48
 2.3.4 Τύλιγμα Δευτερεύοντος	2.3.3 Φερρίτης Δευτερεύοντος	. 49
 2.4 Ορισμός υλικών	2.3.4 Τύλιγμα Δευτερεύοντος	. 50
 2.5 Ορισμός Οριακών Συνθηκών	2.4 Ορισμός υλικών	. 52
2.6 Ορισμός Παραμέτρων της Ανάλυσης	2.5 Ορισμός Οριακών Συνθηκών	. 54
2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων58 3° Κεφάλαιο: Ορισμός της Περιοχής Δειτομονίας	2.6 Ορισμός Παραμέτρων της Ανάλυσης	. 56
3° Κεφάλαιο: Ορισμός της Περιοχής Δειτομονίας 61	2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων	. 58
	3° Κεφάλαιο: Ορισμός της Περιοχής Λειτουργίας	. 61

3.1 Εισαγωγή	61
3.2 Μεταφερόμενη Ισχύς	61
3.3 Προσομοιώσεις και αποτελέσματα	62
3.4 Προσδιορισμός περιοχής λειτουργίας	66
4° Κεφάλαιο: Επίδραση των χαρακτηριστικών της Διάταξης στη Μεταφερόμενη Ισχύ	67
4.1 Εισαγωγή	67
4.2 Χαρακτηριστικά Φερρίτη	67
4.2.1 Πάχος Φερρίτη	67
4.2.2 Εξωτερική διάμετρος φερρίτη	69
4.2.3 Διάμετρος της τρύπας φερρίτη	71
4.3 Χαρακτηριστικά Τυλιγμάτων	75
4.3.1 Μετατόπιση τυλίγματος	75
4.3.2 Αριθμός ελιγμάτων	76
4.4 Συμπεράσματα	79
5ο Κεφάλαιο: Προσδιορισμός χαρακτηριστικών της διάταξης για τη μεταφορά δεδομέν ζητούμενης ισχύος	'nς 83
5.1 Ανάπτυξη του προτεινόμενου εργαλείου	83
5.1.1. Ελαχιστοποίηση παραμέτρων	83
5.1.2 Πραγματοποίηση προσομοιώσεων	89
5.1.3 Ανάπτυξη του προτεινόμενου εργαλείου	93
5.2 Εφαρμογή	99
5.2.1 Περίπτωση Α	99
5.2.2 Περίπτωση Β	101
5.2.3 Περίπτωση Γ	103
5.2.4 Συμπεράσματα εφαρμογών	109
6° Κεφάλαιο: Επίδραση της Μετατόπισης στη Μεταφερόμενη Ισχύ	112
6.1 Εισαγωγή	112
6.2 Επίδραση της μετατόπισης στη μεταφερόμενη ισχύ	113
6.3 Επίδραση της μετατόπισης σε συνάρτηση με το διάκενο στη μεταφερόμενη ισχύ	114
Κεφάλαιο 7: Συμπεράσματα και επεκτάσεις	119
7.1 Συμπεράσματα	119
7.2 Επεκτάσεις	120
Αναφορές	121
Παράρτημα	123

1º Κεφάλαιο: Επαγωγική μεταφορά ηλεκτρικής ενέργειας

1.1 Εισαγωγή

Στο κεφάλαιο αυτό γίνεται μια περιγραφή της επαγωγικής μεταφοράς ηλεκτρικής ενέργειας για τη φόρτιση ηλεκτρικών οχημάτων. Παρουσιάζονται γενικές αρχές για τα είδη των διατάξεων, τις τεχνικές αντιστάθμισης, τις μεθόδους ελέγχου που μπορούν να χρησιμοποιηθούν, καθώς και τα όρια ασφαλείας που πρέπει να τηρούνται ώστε η τεχνολογία αυτή να μην είναι επιβλαβής για τον άνθρωπο.

1.2 Ασύρματη μεταφορά ηλεκτρικής ενέργειας

1.2.1 Ορισμός και προέλευση

Ασύρματη μεταφοράς ισχύος (AMI) - wireless transfer power (WTP), ονομάζεται η διαδικασία κατά την οποία μεταφέρεται ηλεκτρική ενέργεια από ένα ηλεκτρικό σύστημα σε ένα άλλο, χωρίς την χρήση καλωδίων ή άλλων αγώγιμων υλικών.

Η ασύρματη μεταφορά ισχύος απασχολούσε για περισσότερο από τριάντα χρόνια τους επιστήμονες, τώρα όμως έχει εξελιχθεί σε μία πολύ σημαντική τεχνολογία για μία μεγάλη ποικιλία εφαρμογών. Η επαγωγική μεταφορά ισχύος προέκυψε αμέσως μετά από την διατύπωση των νόμων του Ampere και του Faraday. Στη συνέχεια, τη μεγαλύτερη πρόοδο την έκανε ο Tesla, ο οποίος απέδειξε ότι μπορεί να μεταφερθεί σημαντική ποσότητα ισχύος σε εναλλασσόμενες συχνότητες χρησιμοποιώντας υψηλά συντονισμένα πηνία.

1.2.2 Εφαρμογές της Ασύρματης Μεταφοράς Ισχύος

Η τεχνολογία της ασύρματης μεταφοράς ηλεκτρικής ισχύος βρίσκει την εφαρμογή της σε πολλές ηλεκτρικές συσκευές και διεργασίες της καθημερινότητας των ανθρώπων. Μερικά παραδείγματα είναι οι οικιακές συσκευές, οι τηλεοράσεις, ο φωτισμός και η φόρτιση κινητών τηλεφώνων ή φορητών υπολογιστών. Μ' αυτήν την τεχνολογία διευκολύνεται η εγκατάστασή τους και η χρήση τους γίνεται ακόμη πιο απλή και ασφαλής. Μερικές ακόμη εφαρμογές της τεχνολογίας αυτής είναι στους αυτοματισμούς εργοστασίων, στον φωτισμό, σε ηλεκτρονικά συστήματα, σε ιατρικά εμφυτεύματα και σε συστήματα ασφαλείας.

Η σημαντικότερη χρήση της όμως, είναι κυρίως στην στατική και στην δυναμική φόρτιση των ηλεκτρικών οχημάτων, όπου αυτή η τεχνολογία μπορεί να προσφέρει ασυναγώνιστες δυνατότητες, ιδιαίτερα μάλιστα εάν επιτευχθούν συστήματα πιο ισχυρά, αποδοτικότερα, και ασφαλέστερα.

1.3 Επαγωγική φόρτιση ηλεκτρικών οχημάτων

Σήμερα, η εξάντληση των πετρελαϊκών πόρων καθώς και η αυξανόμενη περιβαλλοντική ευαισθητοποίηση για τις βλαβερές συνέπειες των ορυκτών καυσίμων, έχουν οδηγήσει σε ραγδαία αύξηση της ζήτησης για ηλεκτρικά οχήματα. Υπολογίζεται ότι οι μεταφορές και οι συγκοινωνίες παράγουν το 23% των εκπομπών του CO₂ που είναι υπεύθυνες για το φαινόμενο του θερμοκηπίου [1]. Υπάρχουν όμως, κάποια σημεία στα οποία τα συμβατικά υπερτερούν των ηλεκτρικών οχημάτων. Τα κυριότερα μειονεκτήματα της αντικατάστασης των συμβατικών κινητήρων εσωτερικής καύσης με ηλεκτρικούς κινητήρες είναι το σχετικά υψηλό κόστος της μπαταρίας του ηλεκτρικού οχήματος, όπως επίσης και οι περιορισμένες αποστάσεις που μπορεί να διανύσει ένα ηλεκτρικό όχημα με μία φόρτιση της μπαταρίας. Αυτό σχετίζεται κυρίως, με τις σχετικά χαμηλές πυκνότητες ενέργειας των ορυκτών καυσίμων. Για να ξεπεράσουν το πρόβλημα της περιορισμένης αυτονομίας των οχημάτων τους, οι χρήστες των ηλεκτρικών οχημάτων θα πρέπει να αναζητούν κάθε είδους ευκαιρία ώστε να φορτίζουν την μπαταρίας του οχήματος τους.

Οι επαγωγικοί σταθμοί φόρτισης, που προσφέρουν την ικανότητα να μεταφέρουν ασύρματα ισχύ στο όχημα, θα ήταν μία ιδανική λύση σε μία τέτοια προσέγγιση. Το όχημα αρχίζει να φορτίζει όταν τοποθετηθεί πάνω από τον φορτιστή διευκολύνοντας αρκετά τον οδηγό, απαλλάσσοντάς τον από τη διαδικασία να συνδέσει το αυτοκίνητο στο ηλεκτρικό δίκτυο με καλώδια. Οι επαγωγικοί σταθμοί φόρτισης εξαλείφουν επίσης και κάθε είδους κίνδυνο σχετικό με τη χρήση καλωδίων. Το καλώδιο που χρησιμοποιείται στην ενσύρματη φόρτιση, έχει έναν εν δυνάμει κίνδυνο, καθώς φθαρμένα καλώδια ή καλώδια που χρησιμοποιούνται σε βροχερό ή χιονισμένο περιβάλλον μπορούν να προκαλέσουν ηλεκτροπληξία. Επιπλέον, η επαγωγική φόρτιση θα μπορούσε να ευνοήσει τη μαζική ανάπτυξη των σταθμών φόρτισης σε δημόσιους χώρους. Το επαγωγικό σύστημα μεταφοράς ηλεκτρικής ισχύος είναι τοποθετημένο υπογείως, μηδενίζοντας τα θέματα που σχετίζονται με την έκθεσή του σε άσχημες καιρικές συνθήκες, σκόνες, χημικά, καθώς επίσης αποφεύγονται οι βανδαλισμοί όπως η κλοπή του χάλκινου καλωδίου. Έτσι, η φόρτιση του ηλεκτρικού οχήματος γίνεται ευκολότερη, ασφαλέστερη και αξιόπιστη.

Σχήμα 1. 1: Γενική περιγραφή ενός συστήματος επαγωγικής φόρτισης

Τα προβλήματα που σχετίζονται με το υψηλό κόστος των μπαταριών, όπως η περιορισμένη ικανότητα για κάλυψη μεγάλων αποστάσεων των ηλεκτρικών οχημάτων, μπορούν να επιλυθούν επιτυχώς λαμβάνοντας υπόψη την περίπτωση των επαγωγικών σταθμών φόρτισης κατά την διαδρομή. Τέτοιου είδους σταθμοί προσφέρουν την δυνατότητα της ασύρματης μεταφοράς ισχύος στα οχήματα κατά τη διάρκεια σύντομων στάσεων κοντά σε ένα φανάρι ή ακόμη και δυναμικά καθώς το όχημα κινείται στον δρόμο. Τα ηλεκτρικά οχήματα είναι τώρα ικανά να φορτίζουν την μπαταρία τους σε διάφορα σημεία κατά τη διάρκεια του ταξιδιού τους, μειώνοντας την ανάγκη να σταματήσουν σε σταθμούς φόρτισης. Μελέτες έχουν δείξει ότι μια μείωση της μάζας μίας μπαταρίας μέχρι 17.3% είναι δυνατή με τη χρήση επαγωγικών συστημάτων μεταφοράς ισχύος, οδηγώντας έτσι σε μείωση του κόστους της μπαταρίας έως και 58% [2].

Η γενική περιγραφή της επαγωγικής φόρτισης παρουσιάζεται στο Σχήμα 1. 1, όπου φαίνονται τα επιμέρους στάδια για την φόρτιση του ηλεκτρικού οχήματος ασύρματα. Αρχικά, η εναλλασσόμενη τάση, που παρέχεται από το δίκτυο, μετατρέπεται σε πηγή συνεχούς τάσης με έναν AC to DC ανορθωτή. Μετά, η DC τάση μετατρέπεται σε AC τάση με εναλλασσόμενο ρεύμα υψηλής συχνότητας ώστε να διεγείρει το πηνίο μεταδόσεως μέσω ενός δικτύου αντιστάθμισης. Μια διόρθωση του συντελεστή ισχύος απαιτείται συνήθως για τον AC to DC ανορθωτή, ενώ ένας υψηλής συχνότητας μετασχηματιστής απομόνωσης συνδέεται ορισμένες φορές μεταξύ του DC-AC αντιστροφέα και της πρωτεύοντος πλευράς του πηνίου για επιπλέον ασφάλεια και προστασία (Σχήμα 1. 2). Το ρεύμα υψηλής συχνότητας στο πηνίο εκπομπής δημιουργεί ένα εναλλασσόμενο μαγνητικό πεδίο, το οποίο επάγει μία εναλλασσόμενη τάση στο πηνίο-δέκτη. Τα πηνία μετάδοσης και λήψης λειτουργούν σαν ένας ασθενώς συζευγμένος μετασχηματιστής που επιτρέπει την μετάδοση της ισχύος μέσω ενός σχετικά μεγάλου διακένου. Η τάση εξόδου και η απόδοση μπορούν να βελτιωθούν σημαντικά χρησιμοποιώντας ένα κατάλληλο κύκλωμα αντιστάθμισης για το δευτερεύον του συστήματος, όπως απεικονίζεται στο Σχήμα 1. 1. Τελικά, η εναλλασσόμενη τάση ανορθώνεται σε DC τάση, ώστε να φορτίσει την μπαταρία του οχήματος.

Σχήμα 1. 2: Μετασχηματιστής απομόνωσης [4].

Η ισχύς εξόδου (P_{out}) ενός ΙΡΤ συστήματος υπολογίζεται από την τάση ανοικτού κυκλώματος (V_{oc}) και από το ρεύμα βραχυκύκλωσης (I_{sc}) του δευτερεύοντος pad καθώς επίσης και από τον συντελεστή ποιότητας (Q):

$$P_{out} = P_{su}Q = V_{oc}I_{sc}Q = \omega M I_1 \frac{M I_1}{L_2} = \omega I_1^2 \frac{M^2}{L_2}Q \qquad (1)$$

Όπου P_{su} είναι η μη αντισταθμισμένη ισχύς και ισούται με το γινόμενο των V_{oc} και I_{sc} , ω είναι η γωνιακή συχνότητα του I_1 , Μ είναι η κοινή αυτεπαγωγή μεταξύ των δύο πλαισίων και η L_2 είναι η αυτεπαγωγή του δευτερεύοντος με το πρωτεύον να είναι ανοικτοκυκλωμένο. Εδώ ο συντελεστής ποιότητας Q καθορίζεται από το εξωτερικό φορτίο ή από τον ελεγκτή που ελέγχει την τάση και το ρεύμα εξόδου [4].

Από την περιγραφή που προηγήθηκε είναι φανερό ότι ένα τυπικό επαγωγικό σύστημα μεταφοράς ηλεκτρικής ισχύος περιέχει τα παρακάτω κύρια μέρη:

- Τα μαγνητικά συζευγμένα πηνία μετάδοσης και λήψης
- Τα δίκτυα αντιστάθμισης για το πρωτεύον και το δευτερεύον του συστήματος
- Τους μετατροπείς μαζί με τα συστήματα ελέγχου που χρειάζονται για την λειτουργία τους

1.4 Τύποι μαγνητικών συζευκτών στη στατική φόρτιση

Σχήμα 1. 3: Παραδείγματα μαγνητικών ζεύξεων: (α) το δευτερεύον εισέρχεται στο πρωτεύον τύλιγμα και πυρήνα ώστε να πετύχουμε την σύνδεση [5],[6] (β) Απλός πυρήνας μετασχηματιστή που χρησιμοποιείται σαν σύστημα μεταφοράς ισχύος [7], (γ) Γεωμετρία που δημιουργήθηκε χωρίς την χρήση φερρίτη [8].

Οι επαγωγικοί συζευκτές που σχεδιάστηκαν στα μέσα της δεκαετίας του 1990, [5], [6] χρειάζονταν ένα ειδικό σύστημα που έπρεπε να συνδεθεί με το φορτιστή και να εισέλθει σε αυτόν όπως απεικονίζεται στο Σχήμα 1. 3(α). Τέτοιοι φορτιστές δύσκολα μπορούν να θεωρηθούν ως ασύρματα συστήματα μεταφοράς ισχύος, καθώς ναι μεν η ισχύς μεταφέρεται επαγωγικά, αλλά γίνεται και χρήση καλωδίων. Άλλα παραδείγματα από νεότερα επαγωγικά συστήματα μεταφοράς ισχύος (Σχήμα 1. 3β) και περιέχουν συζευκτές σχεδόν ίδιους όπως ένας απλός πυρήνας μετασχηματιστή [7]. Συνήθως, όμως, αυτού του είδος ο σχεδιασμός μπορεί να μεταφέρει ισχύ μεταξύ ενός πολύ μικρού διακένου. Ένας διαφορετικός σχεδιασμός συζευκτών, παρόμοιων με αυτούς που κατασκευάζονται σήμερα παρουσιάζεται στην αναφορά [8] και δίνεται στο Σχήμα 1. 3(γ). Ο σχεδιασμός αυτός αποτελείται μόνο από πηνία χωρίς τη χρήση φερρίτη, ωστόσο τα πηνία χωρίς φερρίτη(aircore coils), είναι πολύ ευαίσθητα στα γύρω σιδηρομαγνητικά αντικείμενα. Όταν ένα τέτοιο πηνίο εγκαθίσταται σε ένα αυτοκίνητο, η μαγνητική ροή ενδέχεται να εισέλθει στο σασί και να προκαλέσει υψηλές απώλειες δινορρευμάτων. Για να γίνει περισσότερο πρακτική η φόρτιση ενός ηλεκτρικού οχήματος, χρησιμοποιείται συνήθως φερρίτης στο σχεδιασμό της διάταξης, προκειμένου να ενισχύσει και να καθοδηγήσει τη μαγνητική ροή [3].

Για να καλύψουμε τις απαιτήσεις για τη φόρτιση ηλεκτρικών οχημάτων μεταξύ μεγαλύτερων διακένων, δημιουργήθηκαν νέοι σχεδιασμοί που περιλαμβάνουν φερρίτη. Οι μαγνητικοί συζευκτές που περιλαμβάνουν φερρίτη στο σχεδιασμό πηνίου μπορούν να ταξινομηθούν ως «διπλής όψης» (Σχήμα 1. 4 α) ή ως «μονής όψης» (Σχήμα 1. 4 β), ανάλογα με το πώς διαχέεται η μαγνητική ροή στην περιοχή.

Σχήμα 1. 4: Κύρια μαγνητική ροή ενός (α) διπλής όψης και (β) μονής όψης [3].

1.4.1 Διπλής όψης Συζευκτές (Double-sided coupler)

Τυπικά παραδείγματα συζευκτών «διπλής όψης» ([9], [10], [11], [12]) περιλαμβάνουν τη χρήση ενός σωληνοειδούς πηνίου τυλιγμένο γύρω από μία πλάκα φερρίτη (Σχήμα 1.5). Στον τύπο διπλής όψης η μαγνητική ροή διαχέεται και στις δύο πλευρές. Όμως, μόνο μία από αυτές τις ροές είναι απαραίτητη για τη μεταφορά ισχύος και συγκεκριμένα αυτή που διαχέεται προς την κάτω πλευρά, αφού η άλλη μπορεί να προκαλέσει μεγάλες απώλειες δινορρευμάτων στο σασί του αυτοκινήτου. Γι' αυτόν το λόγο, μια θωράκιση αλουμινίου συνήθως προστίθεται προκειμένου να καταστείλει το ανεπιθύμητο τμήμα της μαγνητικής ροής. Καθώς η μισή της κύριας μαγνητικής ροής προκαλεί υψηλές μαγνητικές απώλειες, οι φορτιστές διπλής όψης δεν καθιστούν την ιδανική επιλογή. Αν και βελτιώσεις σε αυτά τα συστήματα υπάρχουν και περιέχουν αρκετά περίπλοκους σχεδιασμούς, όπως στο Σχήμα 1. 5(γ), ωστόσο οι μαγνητικές απώλειες μπορεί να είναι μέχρι και 10%, πολύ περισσότερες από το 2-4% των απωλειών που είναι συνήθως επιθυμητές [11]. Τα διπλής όψης πλαίσια παράγουν επίσης μία ισχυρή οριζόντια ροή έξω από τα όρια της πλάκας. Προκαλείται έτσι μία διαρροή η οποία είναι ιδιαίτερα δύσκολο να περιοριστεί. Αυτές, λοιπόν, οι ανησυχίες δεν ενθαρρύνουν την χρήση των συζευκτών διπλής όψης στα επαγωγικά συστήματα ισχύος.

Σχήμα 1. 5: Τυπικά παραδείγματα από διπλής όψης συζευκτές α[11],β[13],γ[1]

1.4.2 Μονής όψης (Single-sided coupler)

Από την άλλη μεριά, στους «μονής όψης» συζευκτές το μεγαλύτερο μέρος της ροής βρίσκεται μόνο στην μία πλευρά του συζευκτή (Σχήμα 1. 4 β). Επιπλέον, η διαρροή της μαγνητικής ροής στο πίσω μέρος αυτών των συζευκτών είναι σημαντικά περιορισμένη, απαιτώντας έτσι πολύ λιγότερη προσπάθεια για θωράκιση. Δύο παραδείγματα «μονής όψης» συζευκτών φαίνονται στο Σχήμα 1. 6.

Στο σχήμα 1.6 έχουμε ένα μονοπολικό κυκλικό πλαίσιο και ένα τετράπλευρο διπολικό πλαίσιο, σχεδιασμένο από το πανεπιστήμιο του Auckland, όπου ονομάζεται DD pad. Το όνομα αυτό το πήρε από το σχήμα της μαγνητικής ροής που δημιουργεί [3]. Εκτός από το μηχανικό υποστηρικτικό υλικό, μια διάταξη μονής όψης αποτελείται από τρία κύρια στρώματα. Στο στρώμα της κορυφής βρίσκεται το πηνίο. Κάτω από το πηνίο, τοποθετείται ένα στρώμα φερρίτη για την ενίσχυση και την καθοδήγηση της μαγνητικής ροής. Η χαμηλότερη στρώση αποτελεί τη θωράκιση. Για να μεταφερθεί η ισχύς χρειάζεται να τοποθετηθούν τα πηνία κοντά και αντικριστά το ένα με το άλλο. Με το στρώμα της θωράκισης πετυχαίνουμε να περιορίσουμε το μεγαλύτερο ποσοστό της μαγνητικής ροής στο χώρο μεταξύ των δύο pads.

Σχήμα 1. 6: Δύο τυπικά μονής όψης pads (α) κυκλικό pad και (β) DD pad [4].

1.4.2.1 Κυκλική διάταξη (Circular pad)

Ο πρώτος τυπικός μονής όψης συζευκτής είναι η κυκλική διάταξη (circular pad), αποτελούμενη από ένα κυκλικό πηνίο τοποθετημένο πάνω σε ένα στρώμα φερρίτη. Το σύστημα που κατασκευάζεται στην αναφορά [15], (Σχήμα 1. 7α), περιέχει δύο πλακίδια (pads), καθένα από τα οποία έχει διάμετρο 400mm, λειτουργεί στα 100kHz και είναι ικανό να μεταφέρει 1kW σε ένα διάκενο των 300mm. Όμως στο συγκεκριμένο σχέδιο δεν λαμβάνεται ιδιαίτερα υπόψη ούτε η επίδραση της απόκλισης της ευθυγράμμισης μεταξύ των δύο πηνίων, ούτε η διαρροή της ροής. Σε μια προσπάθεια να βελτιστοποιήσουμε το σχεδιασμό των κυκλικών συζευκτών, περισσότερο περίπλοκα σχέδια προτάθηκαν στην αναφορά [17], οδηγώντας σε ένα σύστημα ίδιο με αυτό του Σχήμα 1. 7(β). Το σύστημα αυτό λειτουργεί στα 20kHz, μεταφέρει 2kW ισχύ σε διάκενο των 200mm, καθώς επίσης είναι ανεκτικό σε πλευρικές μετατοπίσεις των ±150mm. Η απόδοση αυτού του ιδιαίτερου σχεδιασμού ήταν πάνω από 85%, καθώς μειώθηκαν οι απώλειες του ηλεκτρομαγνητικού πεδίου, επεκτείνοντας τον φερρίτη έξω από το πηνίο κυρίως για να συμπεριλάβει την επιστροφή της κύριας ροής. Επίσης συμπεριλήφθηκε ένας αλουμινένιος δακτύλιος για να βοηθήσει στο σχηματισμό της ροής και να την κατευθύνει προς το απέναντι πλαίσιο. Τα πλεονεκτήματα των κυκλικών διατάξεων είναι ότι το όχημα μπορεί να τις πλησιάσει από οποιαδήποτε κατεύθυνση και οι απώλειες είναι σχετικά χαμηλές για μια δεδομένη μεταφορά ισχύος. Όμως, λαμβάνοντας υπόψη την ισχύ και τις απαιτήσεις για το μέγεθος από την αυτοκινητοβιομηχανία, η ισχύς εξόδου που προέρχεται από τέτοιους σχεδιασμούς σε ένα μεγάλο διάκενο είναι αρκετά χαμηλή, όπως επίσης και η ανοχή στην μετατόπιση δεν είναι τόσο καλή όσο θα επιθυμούσαμε, αφού εάν η απόκλιση είναι της τάξης των $\pm 40\%$ της διαμέτρου της διάταξης, τότε η συζευγμένη ισχύς μηδενίζεται.

Σχήμα 1. 7: (α) Τομή ενός κυκλικού pad [15] και (β) μία περισσότερο πολύπλοκη κυκλική διάταξη [14],[17].

Στο Σχήμα 1. 8 φαίνεται πως είναι ανεπτυγμένο ένα κυκλικό pad και παρουσιάζονται αναλυτικά τα μέρη από τα οποία αποτελείται.

Σχήμα 1. 8: Αναλυτική περιγραφή κυκλικού pad [17].

1.4.2.2 DD Διάταξη (DD pad)

Ένας άλλος νέος τύπος πολωμένης μονής όψης συζευκτή είναι η **Double-D (ή DD)** διάταξη, σχεδιασμένη από το πανεπιστήμιο του Auckland και απεικονίζεται στο Σχήμα 1. 9 [14].

Σχήμα 1. 9: Σχεδιασμός της διάταξης DD [14].

Σχήμα 1. 10: Απλοποιημένο μοντέλο DD-pad [4].

Η συγκεκριμένη διάταξη μπορεί να χρησιμοποιηθεί και για τη μεταφορά ισχύος σε μεγαλύτερα διάκενα, σε σχέση με την κυκλική διάταξη: το ύψος της μαγνητικής ροής ενός κυκλικού pad είναι το ¼ της διαμέτρου του, ενώ το ύψος της μαγνητικής ροής του DD pad είναι περίπου το ½ του μήκους του pad [2][14] (Σχήμα 1. 6). Συγκρίνοντας κυκλικά και DD ζεύγη με σχεδόν πανομοιότυπα χαρακτηριστικά [14][18], προκύπτει ότι η DD διάταξη είναι περισσότερο ανεκτική στις οριζόντιες μετατοπίσεις και είναι ικανή να μεταφέρει μεγαλύτερα ποσά ισχύος. Λαμβάνοντας υπόψη την διαλειτουργικότητα μεταξύ της κυκλικής και της DD διάταξης αποδεικνύεται ότι ένα κυκλικό πρωτεύον μπορεί να μεταφέρει ισχύ αποτελεσματικά σε ένα DD δευτερεύον σύστημα.

1.4.2.3 DDQ Διάταξη

Για να αποφύγουμε ανησυχητικά θέματα, όπως αύξηση της θερμοκρασίας, αλλά και για να αυξήσουμε την αντοχή στην οριζόντια μετατόπιση, ένα επιπρόσθετο τετραγωνικό

πηνίο εν ονόματι Q-coil θα μπορούσε να εγκατασταθεί στη DD διάταξη, οδηγώντας στο σχεδιασμό DDQ [18],[19],[20] (Σχήμα 1. 11). Τέτοια πηνία χρησιμοποιούμε για να αυξήσουμε τη μεταφορά ισχύος και να κάνουμε το σύστημα περισσότερο ανθεκτικό στις πλευρικές μετατοπίσεις είτε σε στατική είτε σε δυναμική φόρτιση. Το "Q" πηνίο προστίθεται στους δέκτες. Ο πομπός δεν χρειάζεται περαιτέρω μορφοποίηση, αφού παράγει την επιθυμητή μαγνητική ροή. Οι λωρίδες από φερρίτη κάτω από τα πηνία DD πρέπει να προεξέχουν όπως φαίνεται στο Σχήμα 1. 12, ώστε να βελτιωθεί η ζεύξη με το τετραγωνικό πηνίο.

Σχήμα 1. 11: Διάταξη μονής όψης DDQ [14].

Σχήμα 1. 12: Δέκτης DDQ pad [18].

Οι ζώνες φόρτισης για DD, DDQ και κυκλικά pads φαίνονται στο Σχήμα 1. 13, υποθέτοντας ότι μεταφέρονται 2kW και μια μέγιστη τιμή ίση με 6 για το Q είναι επιτρεπτή. Πλήρης μεταφορά ισχύος μπορεί να γίνει οπουδήποτε μέσα στις ελαφρώς σκιασμένες περιοχές. Η ζώνη φόρτισης της DDQ διάταξης, είναι περίπου 800mm σε μήκος και 460mm σε πλάτος, ενώ είναι πέντε φορές μεγαλύτερη από τη ζώνη φόρτισης ενός κυκλικού pad με ακτίνα 130mm που φαίνεται στο κέντρο του Σχήμα 1. 13 [18]. Η επιτρεπόμενη μετατόπιση με τη χρήση μιας DDQ διάταξης είναι 3 φορές μεγαλύτερη σε σχέση με την κυκλική διάταξη [14]. Όμως, λόγω του επιπλέον Q πηνίου στην πλευρά του δέκτη, η DDQ διάταξη χρησιμοποιεί σχεδόν διπλάσιο χαλκό από ένα κυκλικό[18].

Σχήμα 1. 13: Ζώνες φόρτισης [18].

1.4.2.4 BP Διάταξη

Τα πλεονεκτήματα της DDQ διάταξης μπορούν να επιτευχθούν και με τη χρήση της διπολικής διάταξης "bipolar pad – BP" χρησιμοποιώντας 20-30% λιγότερο χαλκό [19] [20]. Οι «BP» διατάξεις αποτελούνται από δύο πηνία και τα κύρια χαρακτηριστικά τους φαίνονται στο Σχήμα 1. 14. Τα πηνία είναι τμηματικώς επικαλυπτόμενα και βρίσκονται στο ίδιο επίπεδο, εκτός από το σημείο εκείνο στο οποίο το ένα πρέπει να ανασηκωθεί λίγο ώστε να επικαλύψει το άλλο. Σε όλες τις περιπτώσεις θέλουμε η αλληλεπαγωγή των δύο αυτών πηνίων να είναι μηδενική. Αυτό όμως είναι πρακτικά δύσκολο να επιτευχθεί, οπότε προσπαθούμε να την περιορίσουμε όσο το δυνατόν περισσότερο [19]. Τέλος, ενώ η διάταξη DDQ είναι ευέλικτη στο τι Q πηνίο θα χρησιμοποιηθεί, τα πηνία στο BP πρέπει να είναι πανομοιότυπα.

Σχήμα 1. 14: BP pad [19].

1.5 Μαγνητικοί Συζευκτές για χρήση σε Δυναμική Φόρτιση

Η δυναμική φόρτιση αναφέρεται επίσης ως «online EV» (OLEV) ή «roadway power EV» (RPEV) και είναι ένας ασύρματος τρόπος φόρτισης του ηλεκτρικού οχήματος κατά την οδήγηση [21]. Η δυναμική αυτή φόρτιση θα μπορούσε να επιλύσει το πρόβλημα της περιορισμένης απόστασης που μπορεί να διανύσει ένα ηλεκτρικό όχημα, που είναι και ο βασικότερος παράγοντας που αποτρέπει τους καταναλωτές να εμπιστευτούν τα ηλεκτρικά οχήματα. Τα μαγνητικά εξαρτήματα σε ένα δυναμικό σύστημα φόρτισης είναι παρόμοια με αυτά που έχουμε σε ένα στατικό σύστημα. Έχουν ένα πρωτεύον μαγνητικό ζεύγος, συνήθως θαμμένο στο έδαφος κάτω από τον δρόμο και ένα πηνίο στο δευτερεύον, το οποίο είναι τοποθετημένο στο Η/Ο. Υπάρχουν δύο κύρια είδη μαγνητικών ζευγών στο πρωτεύον για την δυναμική φόρτιση:

- Ενιαία Διάταξη
- Τμηματική διάταξη

1.5.1 Ενιαία Διάταξη

Το πρώτο είδος μαγνητικών συζευκτών για χρήση σε διατάξεις δυναμικής φόρτισης ηλεκτρικών οχημάτων είναι μία μεγάλη ενιαία διάταξη στο πρωτεύον η οποία συνήθως παίρνει το όνομά της από το σχήμα του φερρίτη που περιέχει. Το πρώτο αυτό είδος χωρίζεται σε τέσσερις γενιές (Σχήμα 1. 15):

- Διάταξη τύπου Ε
- Διάταξη τύπου U
- Διάταξη τύπου W
- Διάταξη τύπου Ι

Σχήμα 1. 15: (α) Διάταξη τύπου Ε, (β) Διάταξη τύπου U, (γ) Διάταξη τύπου W και (δ) Διάταξη τύπου Ι.

1.5.1.1 Διάταξη τύπου Ε (E-type coupler)

Η πρώτη γενιά χρησιμοποιεί πυρήνες σχήματος Ε και απεικονίζεται στο Σχήμα 1. 15(α). Οι πλάγιες αποκλίσεις στην ευθυγράμμιση οδηγούν σε περιορισμένη ισχύ στην έξοδο. Η διάταξη τύπου Ε μπορεί να μεταφέρει 3kW στο όχημα (για ονομαστικό φορτίο 2 Ohm) με μία απόδοση 80%, μέσα από ένα διάκενο 1cm, σε μία ονομαστική συχνότητα 20 kHz και ονομαστικό ρεύμα πρωτεύοντος 100A. [22]

1.5.1.2 Διάταξη τύπου U

Η πρώτη γενιά συζευκτών μετέφερε ισχύ μέσω 1cm διακένου, ενώ σε ρεαλιστικές συνθήκες απαιτείται ένα μεγαλύτερο διάκενο. Για να αυξηθεί το διάκενο, δημιουργήθηκε η διάταξη τύπου U με ένα πολύ λεπτό πλαίσιο, που ονομάζεται "monorail" (Σχήμα 1. 15β) [23].

Αυτό το σύστημα μπορεί να μεταφέρει 52kW μέσω δέκα pickups καθένα από τα οποία μεταφέρει 5.2kW από 17cm διακένου, πετυχαίνοντας μέγιστη απόδοση μεταφοράς ενέργειας της τάξης του 72%. Η ονομαστική συχνότητα στην οποία λειτουργεί η διάταξη είναι 20kHz και το ονομαστικό ρεύμα στο πρωτεύον 200Α. [22]

1.5.1.3Διάταξη τύπου W

Η 2^η γενιά δυναμικής φόρτισης χρειαζόταν αυξημένο μήκος ράγας για τους αγωγούς επιστροφής ώστε να μειωθεί το ηλεκτρομαγνητικό πεδίο. Με αυτούς τους αγωγούς επιστροφής, ωστόσο, το κόστος κατασκευής αυξήθηκε. Για να λυθεί το πρόβλημα και να μειώσουμε τον αριθμό των πυρήνων φερρίτη, ένας καινούριος σχεδιασμός συστάθηκε, η διάταξη τύπου W (Σχήμα 1. 15γ).

Η διάταξη τύπου W δεν χρειάζεται αγωγούς επιστροφής και αποτελείται από ένα διπλό αγωγό. Τοποθετώντας τον φερρίτη δύο διατάξεων τύπου U, τον έναν πίσω από τον άλλο, δημιουργούμε τον φερρίτη της διάταξης W. Το πλάτος του πόλου του πυρήνα στη συγκεκριμένη διάταξη είναι μικρό και σε συνδυασμό με το μεγάλο μήκος του pickup, μπορεί να μεταφέρει ισχύ σε μεγάλο διάκενο. Η διαδρομή απ' όπου επιστρέφει η μαγνητική ροή διπλασιάζεται και γι' αυτό αυξάνεται η μεταφερόμενη ισχύς. Όμως η μέγιστη πλάγια μετατόπιση W_D μπορεί να είναι το ¼ του μήκους του πρωτεύοντος πηνίου. Στην τρίτη γενιά, με την δομή του πυρήνα που μοιάζει με «ψαροκόκαλο» (Σχήμα 1. 15γ), η ποσότητα του πυρήνα μειώνεται στο 1/5 από αυτόν της 2^{ης} γενιάς [21].

Οι διατάξεις αυτές επιτρέπουν τη μεταφορά 15kW ανά pickup μέσω ενός διακένου των 20cm. Η μέγιστη απόδοση μεταφοράς ισχύος μιας διάταξης τύπου W είναι 74% [22].

1.5.1.4 Διάταξη τύπου Ι

Η διάταξη τύπου Ι ονομάζεται έτσι λόγω του σχήματος των πυρήνων στο πρωτεύον (Σχήμα 1. 15δ) και παρουσιάζεται στις αναφορές [22],[23],[24]. Χρησιμοποιώντας μία καινούρια δομή πυρήνα, ο προσανατολισμός της μαγνητικής ροής εναλλάσσεται κατά μήκος του δρόμου, ως εκ τούτου, δημιουργείται ένα σύστημα μεταφοράς ισχύος με στενό πλάτος ράγας 10cm, μεγάλου διακένου 20cm και μεγάλης πλευρικής μετατόπισης έως 24cm. Το συγκεκριμένο αυτό σύστημα μπορεί να μεταφέρει έως 35kW ισχύ, ενώ η μέγιστη απόδοση 74% μπορεί να επιτευχθεί στα 27kW [24].

Η πυκνότητα της μαγνητικής ροής μεγιστοποιείται στο κέντρο του πόλου και μειώνεται σταδιακά καθώς αποκλίνει από αυτό Σχήμα 1. 16. Η εναλλαγή της πολικότητας των πόλων είναι ιδανική στο να μειωθεί το μαγνητικό πεδίο που δημιουργείται από το πρωτεύον. Μια νέα αρχιτεκτονική για να μειωθεί περαιτέρω το μαγνητικό πεδίο παρουσιάζεται στο [25], χρησιμοποιώντας συμπληρωματικά πηνία στο δευτερεύον καθώς

και συγκεκριμένες διαμορφώσεις των πηνίων αυτών και των συνδέσεων του απαιτούμενου ανορθωτή.

Μετρήσεις έδειξαν ότι με τη συγκεκριμένη διάταξη έχουμε 1μΤ στο 1m από το δρόμο, σε αντίθεση με τους προηγούμενους τύπους που έχουμε 20μΤ στο ίδιο σημείο [24]. Το όριο είναι 6.25 μΤ σύμφωνα με τα όρια που θέτει η ICNIRP στα 20kHz.

Σχήμα 1. 16: Φάσμα μαγνητικής ροής της διάταξης I-type [24].

1.5.1.5 Διάταξη «κατακερματισμένων» αγωγών ισχύος

Το πρόβλημα στην ενιαία διάταξη είναι ότι το δευτερεύον πηνίο καλύπτει μόνο ένα μικρό τμήμα της διαδρομής του πρωτεύοντος, κάνοντας τον συντελεστή ζεύξης πολύ μικρό, δημιουργώντας προβλήματα απόδοσης και ηλεκτρομαγνητικών παρεμβολών [3]. Για να μειωθούν τέτοιου είδους θέματα, το πρωτεύον χωρίζεται σε τμήματα [26],[27] που ενεργοποιούνται όταν το όχημα βρίσκεται από πάνω τους (Σχήματα 1.21 και 1.22).

Υπάρχουν τρία είδη «κατακερματισμένων» αγωγών ισχύος. Τα δύο πρώτα και παλαιότερα είναι ο συγκεντρωμένος και ο διεσπαρμένος διακοπτικός τύπος (Σχήμα 1. 17).

Σχήμα 1. 17: (α) συγκεντρωμένος διακοπτικός τύπος και (β) διεσπαρμένος διακοπτικός τύπος [26].

Ο τρίτος και νεότερος τύπος «κατακερματισμένων» αγωγών ισχύος είναι η ράγα μορφής Χ (Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.) και έχει τρεις εκδοχές:

- Μονή ράγα με πυρήνες τύπου U
- Διπλή ράγα με πυρήνες τύπου W
- Ράγα με πυρήνες τύπου Ι

Σχήμα 1. 18: X-rail type [26]

Στη διάταξη με πυρήνες τύπου Ι μπορούμε να πετύχουμε επιπλέον μείωση του ηλεκτρομαγνητικού πεδίου (EMF) με τη χρήση περιστρεμμένων ζευγών καλωδίων και πλέγματος χαλκού (Σχήμα 1. 19 και Σχήμα 1. 20).

Σχήμα 1. 19: Περιστρεμμένα καλώδια για τη διάταξη X-rail [26].

Σχήμα 1. 20: Μέτρηση (α) χωρίς πλέγμα χαλκού, (β) με πλέγμα χαλκού μικρής διαμέτρου, (γ) με πλέγμα χαλκού μεγάλης διαμέτρου και (δ) με διπλό πλέγμα χαλκού.[26]

Παρόλο που το ηλεκτρομαγνητικό πεδίο πάνω από τα επαγωγικά στοιχεία μειώνεται σημαντικά, πάντα υπάρχει ένα ρεύμα υψηλής συχνότητας που διαρρέει τους αγωγούς με αποτέλεσμα την μικρή απόδοση του συστήματος [3],[26].

1.5.2 Τμηματική Διάταξη

Το δεύτερο είδος των διατάξεων δυναμικής φόρτισης αποτελείται από διάφορα μικρά τμήματα όμοια με τα πλαίσια στους στατικούς φορτιστές [14], [28], [29]. Στην περίπτωση αυτή κάθε τμήμα τροφοδοτείται από έναν ανεξάρτητο μετατροπέα ισχύος και τα τμήματα μπορούν να ενεργοποιηθούν μόνο όταν το όχημα περάσει από πάνω τους (Σχήμα 1. 21).

Σχήμα 1. 21: Δυναμικός σταθμός φόρτισης με πολλά πρωτεύοντα [29].

Για να γίνει αυτό, τα ενεργοποιημένα τμήματα του πρωτεύοντος θα πρέπει ιδανικά να είναι μικρότερα από το μήκος του οχήματος ώστε η σύζευξη ισχύος να γίνει πιο συγκεντρωμένη. Παρόλο που η αποδοτικότητα και η ηλεκτρομαγνητική επαγωγή μπορούν να είναι τόσο καλές όσο και στην στατική φόρτιση, το κόστος για να υλοποιηθεί ένα σύστημα που ένας μετατροπέας ισχύος να αντιστοιχεί σε καθένα pad είναι τεράστιο.

Μία ειδική μέθοδος έτσι ώστε ένα πρωτεύον pad να οδηγείται από ένα μετατροπέα παρουσιάζεται στο [28] (Σχήμα 1. 22). Το σύστημα έχει δύο στάδια ζεύξης, ένα στάδιο ισχυρής ζεύξης μεταξύ των L_P και L₁ και ένα στάδιο ασθενής ζεύξης μεταξύ των L₂ και L_s. Γι' αυτό ονομάζεται σύστημα διπλής ζεύξης.

Μια καινούρια τεχνική για οδήγηση περισσότερων pads από ένα μετατροπέα παρουσιάζεται στο [29]. Το σύστημα που προτείνεται εδώ (Σχήμα 1. 23) ενισχύει το πεδίο σε ένα pad μόνο όταν το όχημα περνά από πάνω του, ενώ διατηρεί ένα μικρό ρεύμα στα υπόλοιπα επαγωγικά πηνία.

Σχήμα 1. 22: Οδήγηση ενός πρωτεύοντος πλαισίου με ένα μετατροπέα [28].

1.6 Τεχνικές αντιστάθμισης

Σε ένα σύστημα μεταφοράς ισχύος (IPTS) τα πλαίσια (pads) είναι χαλαρά συζευγμένα με μία μεγάλη διαρροή αυτεπαγωγής. Ως εκ τούτου, είναι απαραίτητο ένα δίκτυο αντιστάθμισης από πυκνωτές ώστε να μειωθεί η άεργος ισχύς στο δευτερεύον πηνίο (pick-up coil) και στην πλευρά σύνδεσης στο δίκτυο.

Η επιλογή αντιστάθμισης εξαρτάται ιδιαίτερα από το συντελεστής ζεύξης, k, ο οποίος δίνεται από τον τύπο:

$$k = \frac{M}{\sqrt{L_P * L_S}}$$

Όπου το M είναι η αλληλεπαγωγή και τα L_P και L_S είναι η αυτεπαγωγή του πρωτεύοντος και του δευτερεύοντος αντίστοιχα.[8]

Στα πρώτα επαγωγικά συστήματα, η αντιστάθμιση γίνεται μόνο στο πρωτεύον ή μόνο στο δευτερεύον. Όταν ο συντελεστής ζεύξης μειώνεται κάτω από 0.3 στα συστήματα ΙΡΤ των ηλεκτρικών οχημάτων, τότε συνίσταται να γίνεται αντιστάθμιση και στο πρωτεύον και στο δευτερεύον ώστε να έχουμε καλύτερα χαρακτηριστικά [8].

Για να αντισταθμίσουμε μια αυτεπαγωγή διαρροής, ο απλούστερος τρόπος είναι να προσθέσουμε έναν πυκνωτή σε κάθε μεριά. Όπως φαίνεται στο Σχήμα 1. 24, ανάλογα με τον τρόπο σύνδεσης των πυκνωτών στο πρωτεύον και στο δευτερεύον υπάρχουν τέσσερεις βασικές τοπολογίες: series-series(SS), series-parallel(SP), parallel-parallel(PP), parallel-series(PS).

Σχήμα 1. 24: Βασικές τοπολογίες αντιστάθμισης [8]

Ο πυκνωτής στο δευτερεύον C_s σχεδιάζεται συνήθως ώστε να είναι συντονισμένος με την αυτεπαγωγή L_s του δευτερεύοντος (pick-up) για να μειωθεί η άεργος ισχύς (VA capacity) του pick-up πηνίου. Στην περίπτωση αυτή η τιμή του πυκνωτή C_s δίνεται από την ακόλουθη σχέση:

$$C_s = \frac{1}{L_s \omega_0^2}$$

Όπου $ω_0$ υποδηλώνει τη συχνότητα συντονισμού ($ωo=2*\pi*f$, όπου f η συχνότητα ρεύματος του πρωτεύοντος τυλίγματος).

Για να μειωθεί η φαινόμενη ισχύς του μετατροπέα ισχύος, ο πυκνωτής στο πρωτεύον μπορεί να επιλεγεί έτσι ώστε να κάνει την τάση και το ρεύμα εισόδου συμφασικά σε μία συγκεκριμένη σύζευξη και κατάσταση φορτίου, που ονομάζεται μέθοδος «Μηδενικής-φάσης-γωνίας» - «Zero-phase-angle» (ZPA) [3].

Για να πετύχουμε τη **ZPA** στο πρωτεύον, η χωρητικότητα για τους διάφορους τύπους παρουσιάζεται στον πίνακα του **Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.** Για την **SS μέθοδο**, η χωρητικότητα είναι μία σταθερή τιμή ανεξάρτητη από τον συντελεστή ζεύξης (k) και από τις συνθήκες φορτίου. Απ' την άλλη πλευρά, για την **SP αντιστάθμιση** η χωρητικότητα εξαρτάται από τον συντελεστή k, καθώς για **PS** και **PP**, η τιμή της χωρητικότητας εξαρτάται και από την σύζευξη και από τις συνθήκες φορτίου [3]. Για να υπολογίσουμε την χωρητικότητα του πρωτεύοντος, στις δύο τελευταίες περιπτώσεις, προσδιορίζεται ένας συντελεστής ποιότητας φορτίου στο δευτερεύον. Για εν σειρά αντιστάθμιση στο δευτερεύον, $Q_S = \frac{\omega_0 L_2}{R_L}$. Για παράλληλη αντιστάθμιση, $Q_S = \frac{R_L}{\omega_0 L_2}$, όπου ω_0 είναι η συχνότητα συντονισμού.

Primary compensation capacitance		
Topology	Primary Capacitance C_1	
SS	$\frac{C_2 L_2}{L_1}$	
SP	$\frac{C_2L_2}{L_1} \cdot \frac{1}{1-k^2}$	
PS	$\frac{C_2L_2}{L_1} \cdot \frac{1}{Q_s^2k^4 + 1}$	
PP	$\frac{C_2 L_2}{L_1} \cdot \frac{1 - k^2}{Q_s^2 k^4 + (1 - k^2)^2}$	

Σχήμα 1. 25: Πίνακας για τον υπολογισμό της χωρητικότητας του πρωτεύοντος [3].

Μία νέα τεχνολογία αντιστάθμισης παρουσιάζεται στο [31], ονομάζεται **SPS**, συνδυάζοντας τα χαρακτηριστικά των SS και PS σχεδιασμών, και είναι ιδιαίτερα ανεκτική σε οριζόντιες μετατοπίσεις μεταξύ πρωτεύοντος και δευτερεύοντος. (Σχήμα 1. 26). Με τη σωστή αναλογία των δύο πυκνωτών στο πρωτεύον [31], πετυχαίνουμε σταθερή ισχύ εξόδου με υψηλή αντοχή στην μετατόπιση χωρίς να αναπροσαρμόσουμε την τροφοδοσία στο πρωτεύον.

Σχήμα 1. 26: SPS τοπολογία [31].

1.7 Μέθοδοι ελέγχου

Για να ελέγξουμε την ροή ισχύος σε ένα σύστημα επαγωγικής μεταφοράς υπάρχουν τρεις κύριες επιλογές:

- Έλεγχος του δευτερεύοντος
- Έλεγχος του πρωτεύοντος
- Έλεγχος και των δύο

1.7.1 Έλεγχος του δευτερεύοντος

Στην περίπτωση που χρησιμοποιείται η ενιαία διάταξη που περιγράφηκε παραπάνω για να μεταφερθεί ισχύς σε περισσότερα από ένα pick-up, ο έλεγχος του δευτερεύοντος υιοθετείται. Στην περίπτωση αυτή το ρεύμα και η συχνότητα του φορτιστή διατηρούνται σταθερά και καθένα από τα δευτερεύοντα ρυθμίζει την ισχύ που χρειάζεται ανάλογα με το φορτίο του [14]. Ένα πρωτότυπο δευτερεύον σύστημα που ενσωματώνει τη χρήση πηνίουπυκνωτή-πηνίου για την ασύρματη μεταφορά ισχύος παρουσιάζεται στο [32]. Το σύστημα αυτό, βασιζόμενη στον έλεγχο της συχνότητας ρυθμίζει τη ροή ισχύος, διατηρώντας ένα σταθερό ρεύμα εξόδου. Μία ακόμη μέθοδος ελέγχου που συνδυάζει μια παράλληλη αντισταθμισμένη δεξαμενή συντονισμού με έναν ειδικού τύπου μετατροπέα ("tristate boost converter"), παρουσιάζεται στο [33].

1.7.2 Έλεγχος του πρωτεύοντος

Παρόλο που ο έλεγχος του πρωτεύοντος από μόνος του δεν είναι επιθυμητός για συστήματα με πολλά δευτερεύοντα πηνία (pickup), αφού οποιαδήποτε αλλαγή στο πρωτεύον θα μπορούσε να επηρεάσει ταυτόχρονα την μεταφερόμενη ισχύ σε όλα τα pickup, τον χρησιμοποιούμε για εφαρμογές φόρτισης όπου μόνο μία πηγή τροφοδότησης αντιστοιχεί σε κάθε ένα συζευγμένο φορτίο [14]. Για να γίνει αυτός ο έλεγχος, απαιτείται ρύθμιση του ρεύματος του πρωτεύοντος και της συχνότητας, ενώ χρειάζονται ένας απλός ανορθωτής και ένα φίλτρο στο δευτερεύον. Η τεχνική ελέγχου μπορεί να συμπεριλάβει ένα σταθερό ρεύμα στο πρωτεύον (Σχήμα 1. 27) [24] ή τεχνικές ελέγχου της τάσης στον πυκνωτή της αντιστάθμισης του πρωτεύοντος ώστε να προσδιοριστεί η μεταφερόμενη ισχύς στο pickup[34].

Σχήμα 1. 27: Έλεγχος με σταθερό ρεύμα στο πρωτεύον

Ένας έλεγχος της συχνότητας στο πρωτεύον έχει προτιμηθεί σε κάποιους σχεδιασμούς, όπου είναι επιθυμητό η συχνότητα να μην είναι σταθερή αλλά να αλλάζει ανάλογα με τις διαφοροποιήσεις στην ευθυγράμμιση ή στο διάκενο. Η μέγιστη αποτελεσματικότητα μπορεί να επιτευχθεί από την ρύθμιση της συχνότητας έτσι ώστε η διαφορά φάσης μεταξύ της τάσης και του ρεύματος στο φορτιστή να είναι πάντοτε μηδενική. Παρατηρείται ότι μεταβάλλοντας τη συχνότητα συντονισμού, μπορεί να διατηρηθεί η βέλτιστη απόδοση ακόμη και κάτω από σημαντικές οριζόντιες και κατακόρυφες μετατοπίσεις μεταξύ του πρωτεύοντος και του δευτερεύοντος [35].

Πρέπει να σημειωθεί ότι στην περίπτωση που χρησιμοποιηθεί έλεγχος μεταβάλλοντας τη συχνότητα λειτουργίας, το σύστημα θα μπορούσε να έχει έως τρεις συχνότητες μηδενικής φάσης, από τις οποίες μόνο μία είναι η συχνότητα συντονισμού. Αυτό το φαινόμενο όπου υπάρχουν περισσότερες από μία συχνότητες μηδενικής φάσης ονομάζεται "bifurcation" [36].

1.7.3 Έλεγχός πρωτεύοντος και δευτερεύοντος

Ένας ελεγκτής που μεταβάλει και το ρεύμα του πρωτεύοντος και το συντελεστή ποιότητας Q στο δευτερεύον αποτελεί την καλύτερη επιλογή ελέγχου. Για δυναμικά συστήματα μεταφοράς ισχύος, η χρήση συστημάτων ελέγχου τόσο στο φορτιστή όσο και στην πλευρά του οχήματος προτιμάται, όπου στο φορτιστή ορίζουμε το ρεύμα ανάλογα με τις απαιτήσεις ισχύος του οχήματος, ενώ ο ελεγκτής στο δευτερεύον μετέχει περαιτέρω στη ρύθμιση της μεταφερόμενης ισχύος.

1.8 Χρήση καλωδίων Litz σε πρωτεύον και δευτερεύον

Για να λειτουργήσει ικανοποιητικά μια διάταξη επαγωγής πρέπει να λειτουργεί σε συχνότητα δεκάδων χιλιάδων Hertz. Ωστόσο, σε υψηλές συχνότητες εμφανίζεται το επιδερμικό φαινόμενο, κατά το οποίο η πυκνότητα του ρεύματος παρουσιάζει
ανομοιογένεια, ως αποτέλεσμα να γίνεται μεγαλύτερη στο φλοιό και μικρότερη στο εσωτερικό του αγωγού. Το συγκεκριμένο πρόβλημα περιορίζεται με τη χρήση ενός ειδικού τύπου καλωδίου, του καλωδίου Litz.

Το καλώδιο Litz περιέχει πολλά λεπτά σύρματα, το καθένα από τα οποία είναι μονωμένο (Σχήμα 1. 28)¹. Τα σύρματα έχουν μικρότερη διάμετρο από το βάθος στο οποίο εμφανίζεται το επιδερμικό φαινόμενο, ενώ παράλληλα είναι συνεστραμμένα, ώστε το καθένα να περνάει τόσο από το κέντρο του καλωδίου όσο και από την επιφάνειά του, εξασφαλίζοντας ότι από όλα θα περάσει το ίδιο ρεύμα. Σε σύγκριση με τα συνήθη καλώδια το καλώδιο Litz παρουσιάζει πολύ μικρότερη AC αντίσταση στις υψηλές συχνότητες. Για το λόγο αυτό τόσο για το πρωτεύον τύλιγμα όσο και για το δευτερεύον χρησιμοποιούνται καλώδια Litz.

Σχήμα 1. 28: Καλώδια Litz

1.9 Ασφάλεια

Όπως είδαμε και παραπάνω, η ασύρματη μεταφορά ηλεκτρικής ισχύος είναι μία καινούρια τεχνολογία με πολλά οφέλη. Παρόλα αυτά, κατά την επαγωγική μεταφορά

¹<u>http://www.litzwire.com/litz_types.htm</u>

ισχύος, δημιουργείται ένα μαγνητικό πεδίο υψηλής συχνότητας μεταξύ του πρωτεύοντος πηνίου και του δευτερεύοντος. Αυτή η σύζευξη της μαγνητικής ροής μεταξύ των δύο πηνίων είναι θεμελιώδης αρχή για την ασύρματη μεταφορά ισχύος και δεν μπορεί να εξαλειφθεί ή να παρακαμφθεί. Ακόμη, το μεγάλο διάκενο μεταξύ των πηνίων, προκαλεί μία υψηλή διαρροή πεδίου. Έτσι λοιπόν, είναι αναγκαίο, η συχνότητα και το πλάτος του μαγνητικού πεδίου που δημιουργούνται κατά την ασύρματη μεταφορά ισχύος, να ελέγχεται ώστε να βρίσκεται μέσα σε ασφαλή όρια για τον άνθρωπο.

Μια ασφαλής περιοχή πρέπει πάντα να προσδιορίζεται για ένα IPT σύστημα. Πρέπει να διαβεβαιώνουμε ότι η πυκνότητα της μαγνητική ροής ακολουθεί τα όρια ασφαλείας όταν οι άνθρωποι βρίσκονται σε συνηθισμένες θέσεις ως προς το σύστημα ασύρματης μεταφοράς, όπως για παράδειγμα να στέκονται όρθιοι έξω από το αυτοκίνητο ή να κάθονται μέσα σε αυτό.

Μία σειρά από οδηγίες – συστάσεις έχουν δημοσιευθεί σχετικά με τα όρια ασφαλείας για εκπομπές ηλεκτρομαγνητικών πεδίων σε συγκεκριμένες συχνότητες. Σύμφωνα με την International Commission on Non-Ionizing Radiation Protection (ICNIRP) υπάρχουν δύο εκδοχές κανόνων: Η πρώτη δημοσιεύτηκε το 1998 και περιελάμβανε όρια για την έκθεση σε ηλεκτρομαγνητικά πεδία τόσο σε επαγγελματικό όσο και σε γενικό επίπεδο. Μετά από δέκα χρόνια εμπειρίας στην επίδραση της υγείας από τα ηλεκτρομαγνητικά πεδία, έχουμε τη δεύτερη εκδοχή [2]το 2010, με αυξημένα όρια τόσο για το ευρύ κοινό όσο και για τον επαγγελματικά εκτιθέμενο πληθυσμό.

Όρια για την έκθεση σε Ηλεκτρομαγνητικά πεδία ορίζονται επίσης από το πρότυπο**"IEEE** Std. C95. 1-2005" [3], ενώ διακρίνονται επίσης Ευρωπαϊκές συστάσεις και οδηγίες όπως η Σύσταση 1999/519/EC που καθορίζει τα όρια για το ευρύ κοινό [38] και η Οδηγία 2004/40/EC [39] που καθορίζει τα όρια για τον επαγγελματικά εκτιθέμενο πληθυσμό.

2ο Κεφάλαιο: Μαγνητοστατική μελέτη της διάταξης επαγωγικής φόρτισης με το λογισμικό "Ansoft Maxwell"

2.1 Εισαγωγή

Για την πραγματοποίηση της μαγνητικής μελέτης της διάταξης χρησιμοποιήθηκε το λογισμικό "Ansoft Maxwell". Μέσω αυτού του προγράμματος μπορούμε να σχεδιάσουμε και να αναλύσουμε 3-D και 2-D ηλεκτρομαγνητικές και ηλεκτρομηχανικές συσκευές, όπως ηλεκτρικοί κινητήρες, μετασχηματιστές, αισθητήρες και πηνία. Το Maxwell χρησιμοποιεί τη μέθοδο των πεπερασμένων στοιχείων για την επίλυση στατικών και μεταβαλλόμενων προβλημάτων στο πεδίο του χρόνου και της συχνότητας ηλεκτρομαγνητικών και ηλεκτρικών και παι της συχνότητας ηλεκτρομαγνητικών και ηλεκτρικών πεδίων.

Η μέθοδος πεπερασμένων στοιχείων είναι μια αριθμητική μέθοδος για τον υπολογισμό προσεγγιστικών λύσεων μερικών διαφορικών εξισώσεων (εξισώσεις Gauss, Faraday, Ampere, κλπ). Με την ανάλυση αυτή το αρχικό πρόβλημα χωρίζεται σε μικρότερα τμήματα. Όσο πιο μικρά είναι τα τμήματα στα οποία χωρίζουμε το αρχικό πρόβλημα, τόσο ακριβέστερη είναι η προσεγγιστική λύση που παίρνουμε.

2.2 Σχεδίαση νέου προβλήματος στο Ansoft Maxwell

Μια συνοπτική περιγραφή του περιβάλλοντος εργασίας του προγράμματος Maxwell φαίνεται στο Σχήμα 2. 1.

Σχήμα 2. 1: Η επιφάνεια εργασίας του προγράμματος Maxwell

Όλες οι εντολές βρίσκονται στο "MENU". Η "TOOLBAR" περιέχει γραφικά σύμβολα που χρησιμοποιούνται ευρέως στην σχεδίαση. Τα αποτελέσματα της σχεδίασης φαίνονται γραφικά στο "MODELER WINDOW" και επιγραμματικά στο "HISTORY TREE". Το "PROPERTY WINDOW" εμφανίζει τις ιδιότητες των επιλεγμένων αντικειμένων. Οι κύριες φάσεις μοντελοποίησης είναι προσβάσιμες μέσω του "PROJECT MANAGER WINDOW". Το "MESSAGE WINDOW" εμφανίζει μηνύματα (πληροφορίες, προειδοποιήσεις και σφάλματα), ενώ το "PROGRESS WINDOW" δείχνει την πρόσδο της τρέχουσας διαδικασίας λύσης. Η "STATUS BAR" συνήθως περιέχει πληροφορίες που καθοδηγούν το χρήστη στη διαδικασία μοντελοποίησης (εμφανίζει την τρέχουσα κατάσταση ή αναμενόμενη είσοδο από το χρήστη κατά τη διαδικασία της εκτέλεσης μιας εντολής).

Για τη σχεδίαση ενός μοντέλου στο Maxwell, ακολουθούμε τα επόμενα βήματα:

Κάνουμε εκκίνηση του προγράμματος από την επιφάνεια εργασίας.
 Κλικ Project>Insert Maxwell 3D Design (Σχήμα 2. 2)

Σχήμα 2. 2 Εισαγωγή προβλήματος τρισδιάστατης γεωμετρίας

Υπάρχουν αρκετοί τύποι λύσης, ανάλογα με το κάθε πρόβλημα που θέλουμε να λύσουμε. Για αυτό το σχέδιο θέλουμε μαγνητοστατική λύση (Σχήμα 2.3), οπότε:

- 1. Click Maxwell3D>Solution Type από το menu
- 2. Επιλέγουμε "Magnetostatic".
- 3. Ок.

Σχήμα 2. 3: Επιλογή τύπου λύσης.

Οι μονάδες μέτρησης ρυθμίζονται με τον ακόλουθο τρόπο (Σχήμα 2. 4):

- 1. Click Modeler>Units.
- 2. Επιλέγουμε mm.
- 3. Oĸ.

Import Export Import From Clipboard	I 3D	
Group Objects By Material Assign Material Movement Mode Grid Plane Snap Mode New Object Type		Set Model Units
<u>C</u> oordinate System List Edge Surface Boolean		Select units: mm
<u>U</u> nits		
Measure	· 17+	
<u>G</u> enerate History <u>D</u> elete Last Operation <u>P</u> urge History Upg <u>r</u> ade Version	A	
<u>F</u> illet C <u>h</u> amfer	44	
Model Analys <u>is</u> Model <u>H</u> ealing Validation Settings	:日本	

Σχήμα 2. 4: Ρύθμιση των μονάδων μέτρησης.

Τα κύρια στάδια για τη μελέτη μίας μαγνητοστατικής ανάλυσης είναι:

- Σχεδίαση της διάταξης στο Maxwell
- Ορισμός Υλικών
- Ορισμός Οριακών Συνθηκών
- Ορισμός Παραμέτρων της Ανάλυσης
- Επεξεργασία και απεικόνιση των αποτελεσμάτων

2.3 Σχεδίαση της διάταξης

Το πρώτο στάδιο για τη διεξαγωγή μίας μελέτης στο Maxwell είναι η σχεδίαση της διάταξης. Πρέπει, αρχικά, να σιγουρευτούμε ότι το "Drawing plane" έχει την τιμή ΧΥ και στο "Movement Mode" έχει επιλεγεί το 3D (Σχήμα 2. 5).

Η διάταξη η οποία θέλουμε να κατασκευάσουμε και να μελετήσουμε είναι η εξής [37]

Σχήμα 2. 6: Η διάταξη που θα μελετήσουμε.

Το πρωτεύον και το δευτερεύον σχεδιάζονται με τις διαστάσεις που φαίνονται στο Σχήμα 2. 6: κατασκευάζονται δύο κυκλικές διατάξεις πάχους 6mm και εξωτερικής ακτίνας 205mm για το πρωτεύον και 165mm για το δευτερεύον, ενώ η εσωτερική ακτίνα είναι κοινή και για τα δύο, ίση με 45mm.

Στη συγκεκριμένη εργασία δε θα μοντελοποιήσουμε το καλώδιο Litz με την ακρίβεια που περιγράφεται στην προηγούμενη ενότητα (Σχήμα 1. 28). Μία τέτοια μοντελοποίηση θα ήταν ιδιαίτερα δύσκολο να πραγματοποιηθεί σχεδιαστικά και επιπλέον θα προσέθετε έναν πάρα πολύ μεγάλο χρόνο για την εκτέλεση των προσομοιώσεων. Αντίθετα, δεδομένου ότι τα καλώδια Litz αποτρέπουν την εμφάνιση του επιδερμικού φαινομένου, τα καλώδια μοντελοποιούνται από το τμήμα του αγωγού που τα διαπερνά.

Στην αναφορά [4] ορίζεται ένα ρεύμα λειτουργίας ίσο με 50Α για το πρωτεύον, ενώ τα ελίγματα σε πρωτεύον και δευτερεύον ορίζονται ίσα με 10 και 5 αντίστοιχα. Θεωρώντας 0,33Α ανά καρέ καταλήγουμε ότι για τα 10 ελίγματα του πρωτεύοντος απαιτείται μία διατομή αγωγού 15mm*100mm. Παρόμοια, θεωρώντας επίσης 0,33Α ανά καρέ και για το δευτερεύον, καταλήγουμε ότι η διατομή του δευτερεύοντος τυλίγματος θα είναι 15mm*50mm.

2.3.1 Φερρίτης πρωτεύοντος

Παρακάτω περιγράφεται αναλυτικά ο σχεδιασμός της κυκλικής διάταξης φερρίτη του πρωτεύοντος.

 Αρχικά κατασκευάζουμε έναν κύλινδρο με ακτίνα 205mm και πάχος 6mm. Click Draw>Cylinder (Σχήμα 2. 7).

Ansoft Maxwell - Project - Ma	axwell3DDesign1 - 3D Modeler - [Project - Maxwell3D
Image: Project Image: Project Manager Image: Project Manager	Draw Modeler Maxwell 3D Tools Window H ↓ Line ↓
H Maxwell3DDesign1 (M H → Definitions	
Project	Bondwire Sweep User Defined Primitive
<mark>Βήμα 1ο</mark>	Plane Point Line Segment Pagion

Σχήμα 2. 7: Σχεδιασμός φερρίτη πρωτεύοντος - Βήμα 1ο

Στη συνέχεια ορίζουμε το κέντρο της διάταξης. Εδώ είναι το σημείο (0,0,0). Για να το κάνουμε αυτό, πατάμε το κουμπί "Tab" αμέσως μετά το βήμα 1 και θέτουμε στην "STATUS BAR", X=0, Y=0, Z=0 και πατάμε "Enter" (Σχήμα 2.8).

Σχήμα 2. 8: Σχεδιασμός φερρίτη πρωτεύοντος - Βήμα 2ο

 Ορίζουμε την ακτίνα στην "STATUS BAR", όπου X=205mm, Y=0, Z=0 και πατάμε "Enter" (Σχήμα 2. 9).

Βήμα	<mark>α 30</mark>						
Enter the radius	dX:	205	dY:	0	dZ:	0	Relative 🔹 Cartesian 💌

Σχήμα 2. 9: Σχεδιασμός φερρίτη πρωτεύοντος - Βήμα 3ο

4. Ορίζουμε το πάχος του κυλίνδρου, X=0, Y=0, Z=6mm και πατάμε "Enter" (2.10). Έτσι σχεδιάζεται στο MODELER WINDOW ο παραπάνω κύλινδρος (2.11).

	Βήμα	4 <mark>0</mark>					
Enter the height.	dX:	0	dY:	0	dZ:	6	Relative V Cartesian V mn

Σχήμα 2. 11: Ο κύλινδρος φερρίτη που σχεδιάσαμε

5. Στη συνέχεια θέλουμε να δημιουργήσουμε μία τρύπα ακτίνας 45mm στο κέντρο του παραπάνω σχήματος. Κατασκευάζουμε έτσι έναν κύλινδρο με ακτίνα 45mm και πάχος 6mm με κέντρο το (0,0,0) σύμφωνα με τα βήματα 1-4 και μετά τον αφαιρούμε από τον αρχικό (Σχήμα 2. 12).

Σχήμα 2. 12: Σχεδιασμός κυλίνδρου για την δημιουργία τρύπας στο εσωτερικό

Για να αφαιρέσουμε τον κόκκινο κύλινδρο, ακολουθούμε την εξής διαδικασία:

1. Στο history tree, επιλέγουμε **Cylinder1**, πατάμε και κρατάμε το **Ctrl**, and επιλέγουμε τον **Cylinder2** (Σχήμα 2. 13).

Σχήμα 2. 13: Σχεδιασμός φερρίτη πρωτεύοντος

2. Click Modeler>Boolean>Subtract (Σχήμα 2. 14):

Σχήμα 2. 14: Σχεδιασμός φερρίτη πρωτεύοντος

Subtract	×
Blank Parts	- Tool Parts
Cylinder1	Cylinder2
Clone tool object	ts before operation
ОК	Cancel

Οπότε εμφανίζεται το παράθυρο που απεικονίζεται στο Σχήμα 2.15.

Σχήμα 2. 15: Σχεδιασμός φερρίτη πρωτεύοντος

Όπου στο "Tool Parts" βάζουμε τον Cylinder2 που θέλουμε να αφαιρέσουμε και πατάμε ΟΚ. Έτσι παίρνουμε το ζητούμενο σχήμα (Σχήμα 2. 16):

Σχήμα 2. 16: Τελικό σχήμα του πρωτεύοντος

Στο παράθυρο της επιφάνειας εργασίας του προγράμματος "PROPERTIES WINDOW" (Σχήμα 2. 17), επιλέγοντας το Cylinder1, εμφανίζονται οι ιδιότητες του σχήματος αυτού. Από αυτό το παράθυρο μπορούμε να τροποποιήσουμε το όνομα του σχήματος, να αλλάξουμε το χρώμα του, τη διαφάνειά του και το υλικό του.

P	roperties			× ×
	Name	Value	Unit	E
	Name	Cyli		
	Material	"va		"Vi
	Solve Inside	~		
	Orientation	Global		
	Model	~		
	Display Wirefr			
	Color	Edit		
	Transparent	0		
	•			•
Ļ	Attribute			

Σχήμα 2. 17: Παράθυρο "Properties window".

2.3.2 Τύλιγμα πρωτεύοντος

Με παρόμοια διαδικασία φτιάχνουμε το τύλιγμα του πρωτεύοντος. Το κέντρο της κυκλικής διάταξης θα είναι το (0,0,6), η ακτίνα του εξωτερικού κυλίνδρου θα είναι 185mm και του εσωτερικού 45mm, ενώ το πάχος είναι 15mm. Αφαιρούμε τον εσωτερικό κύλινδρο από τον εξωτερικό και προκύπτει το πρωτεύον κυκλικό pad.

- **Cylinder3:** ακτίνα 205mm και πάχος 15mm.
- Cylinder4: ακτίνα 85mm και πάχος 15mm.
- Επιλέγουμε πρώτα τον Cylinder3 και μετά τον Cylinder4 και ακολουθούμε τη διαδικασία για να κάνουμε "Subtract" (Βήμα 5-b όπως περιγράφεται προηγουμένως).

Η διαδικασία περιγράφεται στο Σχήμα 2. 18.

Σχήμα 2. 18: Σχεδιασμός του πρωτεύοντος.

2.3.3 Φερρίτης Δευτερεύοντος

- Αρχικά σχεδιάζουμε το κομμάτι από φερρίτη του δευτερεύοντος, το όποιο σχεδιάστηκε στην αρχή να απέχει από το πρωτεύον 30mm. Το κέντρο του θα είναι στη θέση X=0mm, Y=0mm και Z=66mm. Το Z υπολογίζεται ως εξής, 6+15=21mm είναι το πάχος του πρωτεύοντος, 30mm είναι η απόσταση μεταξύ πρωτεύοντος και δευτερεύοντος, ενώ άλλα 15mm είναι το πάχος του δευτερεύοντος τυλίγματος. Ακολουθούμε τα βήματα που περιγράφηκαν προηγουμένως για να κατασκευάσουμε δύο κυλίνδρους με τις ακόλουθες διαστάσεις:Cylinder5: ακτίνα 165mm και πάχος 6mm.
- **Cylinder6:** ακτίνα 45mm και πάχος 6mm.

Στη συνέχεια επιλέγουμε πρώτα τον **Cylinder5** και μετά τον **Cylinder6** και ακολουθούμε τη διαδικασία για να κάνουμε "Subtract".(Σχήμα 2. 19).

2.3.4 Τύλιγμα Δευτερεύοντος

- Το τύλιγμα του δευτερεύοντος θα έχει κέντρο το σημείο (0,0,41). Το Ζ υπολογίζεται ως εξής, 21mm είναι το πάχος του πρωτεύοντος και άλλα 30mm είναι το διάκενο μεταξύ πρωτεύοντος και δευτερεύοντος. Ακολουθούμε τα βήματα που περιγράφηκαν προηγουμένως για να κατασκευάσουμε δύο κυλίνδρους με τις ακόλουθες διαστάσεις: Cylinder7: ακτίνα 135mm και πάχος 15mm.
- **Cylinder8:** ακτίνα 85mm και πάχος 15mm.

Στη συνέχεια επιλέγουμε πρώτα τον **Cylinder7** και μετά τον **Cylinder8** και ακολουθούμε τη διαδικασία για να κάνουμε "Subtract" (Σχήμα 2. 20).

Σχήμα 2. 20: Τύλιγμα δευτερεύοντος.

Οπότε το τελικό μοντέλο που σχεδιάσαμε είναι το ακόλουθο (Σχήμα 2. 21):

Σχήμα 2. 21: Η τελική διάταξη - πρωτεύον και δευτερεύον.

2.4 Ορισμός υλικών

Για την κατασκευή του πρωτεύοντος και του δευτερεύοντος της διάταξης χρησιμοποιείται φερρίτης, η B-H καμπύλη του οποίου απεικονίζεται στο Σχήμα 2. 22 και είναι αυτή που δίνεται στην αναφορά [2]. Η συγκεκριμένη αναφορά δίνει ως στοιχεία του φερρίτη ότι χρησιμοποιείται το υλικό "FDK 6H40" με μαγνητική επαγωγή κορεσμού Bs=0.53T και αρχική μαγνητική διαπερατότητα μi=2400.

Σχήμα 2. 22: Μη γραμμική καμπύλη Β-Η

Για να ορίσουμε τον φερρίτη, επιλέγουμε το "prwteuon_ferrite" και το "deutereuon_ferrite" και στη συνέχεια από το παράθυρο "Properties Window" κάνουμε click στην επιλογή "Edit" που αντιστοιχεί στο "Material", όπως φαίνεται στο παρακάτω Σχήμα 2. 23:

Σχήμα 2. 23: Επιλογή υλικού

Ο φερρίτης όμως δεν είναι γραμμικός, όπως είπαμε παραπάνω, ακολουθεί δηλαδή τη μη γραμμική καμπύλη "BH curve" της παραπάνω εικόνας (Σχήμα 2. 22). Έτσι, θα πρέπει να εισάγουμε τις τιμές της καμπύλης στο υλικό. Η διαδικασία αυτή παρουσιάζεται στο Σχήμα 2. 24. Επιλέγουμε από τη λίστα των υλικών το "Ferrite" και πατάμε "View/Edit Materials...". Στο επόμενο παράθυρο, επιλέγουμε από την στήλη "Name" το "Relative Permeability", στο "Type" βάζουμε "Non Linear" και πατάμε το "BH Curve" που εμφανίζεται στην στήλη "Value". Εμφανίζεται ένας πίνακας στον οποίο πρέπει να βάλουμε τις τιμές της παραπάνω καμπύλης, ώστε να την σχεδιάσουμε. Μόλις ολοκληρώσουμε την εισαγωγή των τιμών, πατάμε OK σε όλα τα παράθυρα και έτσι έχουμε ορίσει το υλικό των κομματιών "prwteuon_ferrite" και "deutereuon_ferrite".

Σχήμα 2. 24: Χαρακτηριστικά φερρίτη.

Η αγωγιμότητα των καλωδίων είναι ίση με $5.8 * 10^7 S/_m$, σύμφωνα με την αναφορά [3]. Για να ορίσουμε το υλικό των τυλιγμάτων του πρωτεύοντος και του δευτερεύοντος, επιλέγουμε τα "prwteuon_copper" και "deutereuon_copper", πατάμε "Edit" στο "material", όπως περιγράφηκε πιο πάνω, διαλέγουμε το Copper (με αγωγιμότητα $5.8 * 10^7 S/_m$) από τα υλικά και πατάμε ΟΚ.

2.5 Ορισμός Οριακών Συνθηκών

Το Ansoft Maxwell δίνει τη δυνατότητα σχεδιασμού μίας περιοχής (Region) που καλύπτει τη διάταξη που πρόκειται να μελετηθεί. Εξ' ορισμού η μαγνητική ροή ορίζεται παράλληλα στις επιφάνειες της "Region" που έχει σχεδιαστεί, επομένως δε χρειάζεται να οριστούν κάποιες επιπλέον οριακές συνθήκες.

Ωστόσο, η "Region" σχεδιάζεται με τέτοιο τρόπο ώστε η μαγνητική ροή να περιορίζεται 30cm πάνω από το δευτερεύον και εντός μίας επιφάνειας 1x1.4m προσπαθώντας έτσι να προσομοιώσουμε την κάτω επιφάνεια του οχήματος. Αντίστοιχα προσπαθούμε να προσομοιώσουμε μία επιφάνεια εντός του εδάφους, και 30 εκατοστά προς το κάτω μέρος του πρωτεύοντος, ορίζοντας έτσι μία περιοχή εντός της οποίας περιορίζεται η μαγνητική ροή (Σχήμα 2. 25).

Σχήμα 2. 25: Σχεδίαση "Region"

Στη συνέχεια επιλέγουμε: "Pad Individual Directions" και δημιουργούμε το πλαίσιο που φαίνεται στην πάνω εικόνα βάζοντας τις κατάλληλες τιμές:

Πίνακας 2. 1: Διαστάσεις "Region"	Τίνακαα	2.1:	Διαστάσεις	"Region"
-----------------------------------	---------	------	------------	----------

Direction	Padding Type	Value	Units
+X	Absolute offset	0.5	meter
-X	Absolute offset 0.5		meter
+Υ	Absolute offset	0.7	meter
-Y	Absolute offset	0.7	meter
+Z	+Z Absolute offset		meter
-Z	-Z Absolute offset		meter

Επίσης, ορίζουμε το υλικό του "Region", το οποίο είναι ο αέρας: Material>Edit>Air.

2.6 Ορισμός Παραμέτρων της Ανάλυσης

Αρχικά πρέπει να αναφερθεί ότι απαραίτητα για τη μελέτη που θα ακολουθήσει στα επόμενα κεφάλαια, είναι τα ακόλουθα μεγέθη:

- L1: Αυτεπαγωγή του πρωτεύοντος τυλίγματος
- L2: Αυτεπαγωγή του δευτερεύοντος τυλίγματος
- Μ: Αμοιβαία επαγωγή μεταξύ των δύο τυλιγμάτων

Το Ansoft Maxwell δίνει τη δυνατότητα υπολογισμού των μεγεθών αυτών, αρκεί να ορίσουμε έναν Πίνακα ("Matrix") που περιλαμβάνει τα μεγέθη αυτά (Σχήμα 2. 26α). Στη συνέχεια πρέπει να οριστούν οι αγωγοί για τους οποίους απαιτούνται οι υπολογισμοί (Σχήμα 2. 26β) καθώς και ο αριθμός των ελιγμάτων (Σχήμα 2. 26γ).

			Matr	rix				×
		=	Se	etup Post Process	ing			
-	<u>A</u> ssign	<u>F</u> orce						
/	<u>L</u> ist	Torque		Name: Matrix1				
1	<u>R</u> eassign	<u>M</u> atrix						
	<u>D</u> elete All				Source	Include	Description	n
	<u>V</u> isualization			Current1		~	PrimaryCoil	
-		_		Current2		~	SecondaryCoil	

1	n	۱
1	n	
۱	М	,

N	/lat	rix		
	S	etup	Post Process	sing
			Entry	Tums
		Current 1		10
			Current2	5

(γ)

Σχήμα 2. 26: (α) Ορισμός "Matrix" για υπολογισμούς αυτεπαγωγών, (β) Ορισμός των αγωγών για τον υπολογισμό των αυτεπαγωγών και της μεταξύ τους αμοιβαίας επαγωγής και (γ) ορισμός του αριθμού των τυλιγμάτων

Στη συνέχεια πρέπει να οριστούν οι παράμετροι για την ανάλυση που θα πραγματοποιηθεί. Από την επιλογή "Analysis" επιλέγουμε "Add Solution Setup" (Σχήμα 2. 27α). Οι "Default" επιλογές στις δύο πρώτες καρτέλες του παραθύρου "Solve Setup" που ανοίγει αρκούν για την μετέπειτα ανάλυση.

S ¶20	ß	<u>P</u> aste	Ctrl+V
- 👰 Optim		Add Solution Setup	
🔤 Resul		<u>L</u> ist	
: 1		Analyze All	_
		Revert to Initial <u>T</u> emp	erature
es		Revert to Initial Mesh	
		Apply Mesh <u>O</u> peration	ns
		<u>C</u> lear Linked Data	

(α)

Σχήμα 2. 27: (α) Προσθήκη επιλογών για την επίλυση του προβλήματος, (β) "default" επιλογές για την καρτέλα "General" (γ) "Default" επιλογές για την καρτέλα "Convergence"

Solve Setup	×
General Convergence Expression Cache Solver Defaults	
Name: Setup1 🔽 Enabled	
Adaptive Setup	
Maximum Number of Passes: 10	
Percent Error: 1	
Parameters	
Solve Matrix: (• After last pass C Only after converging	

Solve Setup

(β)

(γ)

Ωστόσο στην τρίτη καρτέλα "Expression Cache" το Maxwell δίνει τη δυνατότητα να ορίσουμε συγκεκριμένη ακρίβεια για επιλεγμένα μεγέθη. Δεδομένου ότι ενδιαφέρουν ιδιαίτερα οι τιμές των αυτεπαγωγών και της αμοιβαίας επαγωγής, ορίζουμε μία ακρίβεια 0,1μΗ για κάθε ένα από τα μεγέθη αυτά (Σχήμα 2. 28).

(α)

(β)

Σχήμα 2. 28: Ορισμός ακρίβειας για τον υπολογισμό των αυτεπαγωγών L1 και L2, και της αμοιβαίας επαγωγής, M

2.7 Επεξεργασία και απεικόνιση των αποτελεσμάτων

Μετά την επίλυση του προβλήματος το Ansoft Maxwell δίνει τη δυνατότητα υπολογισμού διαφόρων μεγεθών, όπως για παράδειγμα την κατεύθυνση και το μέγεθος του ρεύματος που διαρρέει τα τυλίγματα (Σχήμα 2. 30), μέσω των κατάλληλων επιλογών (Σχήμα 2. 29).

Σχήμα 2. 29: Επιλογές για απεικόνιση του ρεύματος και της κατεύθυνσής του στο Maxwell

Σχήμα 2. 30: Κατεύθυνση και μέγεθος του ρεύματος που διαρρέει τα τυλίγματα.

Το Maxwell δίνει επίσης τη δυνατότητα υπολογισμού και απεικόνισης του μαγνητικού πεδίου στα διάφορα σημεία του χώρου (Σχήμα 2. 31α) ή την κατεύθυνση του μαγνητικού αυτού πεδίου (Σχήμα 2. 31β).

Σχήμα 2. 31: (α) Μαγνητικό πεδίο και (β) Κατεύθυνση μαγνητικού πεδίου

Ωστόσο, οι τιμές των μεγεθών που κυρίως μας ενδιαφέρουν είναι οι αυτεπαγωγές L1,L2 των τυλιγμάτων καθώς και η μεταξύ τους αμοιβαία επαγωγή. Το Maxwell υπολογίζει τις τιμές αυτές, όπως περιγράφεται στο Σχήμα 2. 32.

Σχήμα 2. 32: Απεικόνιση των τιμών για τις αυτεπαγωγές και την αμοιβαία επαγωγή μεταξύ των τυλιγμάτων πρωτεύοντος και δευτερεύοντος.

3° Κεφάλαιο: Ορισμός της Περιοχής Λειτουργίας

3.1 Εισαγωγή

Σε αυτό το κεφάλαιο θα μελετήσουμε τις τιμές των μεγεθών που είναι απαραίτητες για τον υπολογισμό της μέγιστης δυνατής μεταφερόμενης ισχύος σε ένα σύστημα μεταφοράς επαγωγικής ενέργειας. Θα μελετηθεί η συμπεριφορά της διάταξης ασύρματης φόρτισης για ένα εύρος ρευμάτων και με βάση τα αποτελέσματα θα προσδιοριστεί η περιοχή λειτουργίας που ενδείκνυται για τη συγκεκριμένη διάταξη.

3.2 Μεταφερόμενη Ισχύς

Το κύκλωμα περιλαμβάνει δύο πηνία με αυτεπαγωγές L_1 και L_2 με αμοιβαία επαγωγή M (Σχήμα 3. 1). Για ρεύμα στο πρωτεύον ίσο με I_1 σε συχνότητα ω , η τάση που επάγεται στο L_2 είναι V_{oc} = $j\omega MI_1$ και ονομάζεται τάση ανοικτού κυκλώματος. Εάν το δευτερεύον είναι βραχυκυκλωμένο, το ρεύμα βραχυκύκλωσης είναι:

$$I_{SC} = \frac{V_{OC}}{j\omega L_2} = (M/L_2) * I1.$$

Πολλαπλασιάζοντας την τάση ανοικτού κυκλώματος *V_{oc}* με το ρεύμα βραχυκύκλωσης *I_{sc}*, παίρνουμε τη μέγιστη φαινόμενη ισχύ *P_{out}*. Η ισχύς αυτή μας δίνει μία μέτρηση για το πόσο καλή είναι η μαγνητική ζεύξη της διάταξης [14]. Έτσι, η φαινόμενη ισχύς σε VA που μεταφέρεται με αυτήν τη διάταξη για κάθε διάκενο δίνεται από τη Σχέση 3. 1:

$$P_{out} = \frac{\omega_0 * I_1^2 * M^2}{L_2}$$

Σχέση 3. 1: Η φαινόμενη ισχύς [14].

Όπου $ω_0 = 2 * \pi * f = 2 * \pi * 20000$

Σχήμα 3. 1: Κύκλωμα διάταξης [3]

Παρατηρούμε ότι για ένα σταθερό ρεύμα στο πρωτεύον και μία δεδομένη συχνότητα λειτουργίας, η μεταφερόμενη ισχύς εξαρτάται από την τιμή της αυτεπαγωγής L2

και την τιμή της αμοιβαίας επαγωγής Μ. Στο πρόγραμμα Maxwell για την πραγματοποίηση μίας οποιασδήποτε ανάλυσης είναι απαραίτητος ο ορισμός της τιμής του ρεύματος τόσο στο πρωτεύον όσο και στο δευτερεύον για την πραγματοποίηση μίας μαγνητοστατικής ανάλυσης.

Ωστόσο, δεν είναι δυνατό να γνωρίζουμε εξαρχής την ακριβή τιμή του ρεύματος που διαρρέει τα δύο τυλίγματα. Άλλωστε η τιμή του ρεύματος εξαρτάται σημαντικά και από τους πυκνωτές συντονισμού που τοποθετούνται στο κύκλωμα, οι οποίοι όμως για να προσδιοριστούν πρέπει να γνωρίζουμε προηγουμένως και την ακριβή τιμή των επαγωγών L1 και L2.

Η τιμή του ρεύματος σε πρωτεύον και δευτερεύον καθιστά επομένως μία σημαντική επιλογή, την οποία θα προσπαθήσουμε να ορίσουμε στο κεφάλαιο αυτό.

3.3 Προσομοιώσεις και αποτελέσματα

Η διάταξη του συστήματος μεταφοράς ηλεκτρικής ισχύος που μελετάμε, οι διαστάσεις του και τα γεωμετρικά χαρακτηριστικά του φαίνονται στο Σχήμα 2. 6 του προηγούμενου κεφαλαίου. Εκτελείται μία σειρά προσομοιώσεων για να προσδιορίσουμε τη συμπεριφορά της διάταξης σε ένα μεγάλο εύρος ρευμάτων καθώς και σε διαφορετικά διάκενα. Ιδιαίτερα ενδιαφέρουν σε κάθε προσομοίωση οι τιμές της αυτεπαγωγής L₂ και της αμοιβαίας επαγωγής M, αφού αυτές οι δύο τιμές διαμορφώνουν την ισχύ.

Για τιμή διακένου 100mm και για τιμές ρεύματος 100A, 500A, 1000A, 2000A και 3000A, οι τιμές για την αυτεπαγωγή L2 και τη αμοιβαία επαγωγή M απεικονίζονται στο Διάγραμμα 3. 1:

Διάγραμμα 3. 1: L2(μH) και Μ(μH) – Ρεύμα πρωτεύοντος (Α) για διάκενο 100mm.

Παρατηρούμε ότι η αυτεπαγωγή L2 και η αμοιβαία επαγωγή M, είναι σταθερές για τιμές ρεύματος έως 1000A, ενώ για το διάστημα 1000 έως 3000A συντελείται μείωση και στις δύο τιμές.

Ο όρος M^2/L_2 (που διαμορφώνει τη μεταφερόμενη ισχύ σύμφωνα με τη σχέση 3.1) για κάθε τιμή του ρεύματος, δίνεται στο διάγραμμα ...

Διάγραμμα 3. 2: Διάγραμμα του όρου M²/L₂ με το ρεύμα.

Παρατηρούμε ότι ο λόγος M²/L₂ είναι σχεδόν σταθερός έως 1000A και στη συνέχεια μειώνεται. Την ίδια μορφή θα έχει και η ισχύς, αφού είναι ανάλογη με το κλάσμα αυτό (σχέση 3.1). Επομένως είναι ιδιαίτερα σημαντικό να περιορίσουμε τη λειτουργία της διάταξης σε ένα σχετικά χαμηλό ρεύμα μικρότερο από 1000A όταν εξετάζουμε ένα διάκενο 100mm.

Ανάλογα αποτελέσματα εξάγονται και από τη μελέτη της συμπεριφοράς της διάταξης σε άλλες τιμές διακένου.

Για τιμές διακένου 1, 10 και 50 mm και για τιμές ρεύματος 100A, 500A, 1kA, 2kA και 3kA, έχουμε τα επόμενα διαγράμματα:

Διάγραμμα 3. 3: L2(μH) και M(μH) - Ρεύμα πρωτεύοντος (A) για διάκενο 1mm.

Διάγραμμα 3. 4: L2(μΗ) και Μ(μΗ) - Ρεύμα πρωτεύοντος (Α) για διάκενο 10mm.

Διάγραμμα 3. 5: L2(μΗ) και Μ(μΗ) – Ρεύμα πρωτεύοντος (Α) για διάκενο 50mm.

Για ένα διάκενο ίσο με 1 mm, παρατηρούμε ότι η αυτεπαγωγή L2 και η αμοιβαία επαγωγή M παραμένουν σχεδόν σταθερές για τις τιμές του ρεύματος 100, 500 και 1000A, ενώ μειώνονται για τις δύο τελευταίες τιμές 2000A και 3000A. Για ένα διάκενο ίσο με 10mm οι τιμές των L2 και M είναι σταθερές μέχρι τα 1700A περίπου και στη συνέχεια ακολουθούν πτωτική πορεία. Τέλος, για ένα διάκενο ίσο με 50mm, οι τιμές των L2 και M είναι σταθερές μέχρι τα 1700A.

Ο όρος M²/L₂ που βρίσκεται στον τύπο της ισχύος (σχέση 3.1) απεικονίζεται στο παρακάτω διάγραμμα:

Διάγραμμα 3. 6: Σύγκριση του λόγου M^2/L_2 για όλα τα διάκενα.

Παρατηρούμε ότι για όλα τα διάκενα ο λόγος M^2/L_2 είναι σταθερός έως 1000Α και στη συνέχεια μειώνεται. Παρόμοια μορφή θα έχει και η ισχύς, αφού είναι ανάλογη με τον

κλάσμα αυτό (σχέση 3.1). Επομένως η μεταφερόμενη ισχύς δύναται να λάβει τη μέγιστη τιμή της σε χαμηλά ρεύματα και εκτός της περιοχής κορεσμού.

3.4 Προσδιορισμός περιοχής λειτουργίας

Από τις προσομοιώσεις που διεξαγάγαμε, διαπιστώνουμε ότι οι τιμές για την αυτεπαγωγή L2 και την αμοιβαία επαγωγή M παραμένουν σχεδόν σταθερές και ανεξάρτητες του ρεύματος όταν το ρεύμα είναι μικρότερο από 1000Α. Αντίθετα οι τιμές αυτές μεταβάλλονται σημαντικά ανάλογα με το ρεύμα όταν η περιοχή λειτουργίας μετατίθεται στην περιοχή κορεσμού (με ένα ρεύμα μεγαλύτερο από 1000Α). Επομένως ορίζοντας μία περιοχή λειτουργίας κοντά στα 50Α (ρεύμα πολύ μικρότερο από τα 1000Α όπου επέρχεται κορεσμός) μπορούμε να δεχθούμε ότι οι τιμές L2 και M δεν εξαρτώνται ιδιαίτερα από μικρές μεταβολές στο ρεύμα.

4° Κεφάλαιο: Επίδραση των χαρακτηριστικών της Διάταξης στη Μεταφερόμενη Ισχύ

4.1 Εισαγωγή

Σ' αυτό το κεφάλαιο θα μελετήσουμε πώς τα διάφορα γεωμετρικά χαρακτηριστικά της διάταξης αλλά και πώς τα χαρακτηριστικά των τυλιγμάτων επηρεάζουν την μεταφερόμενη ισχύ. Σχετικά με τα γεωμετρικά χαρακτηριστικά θα εξεταστεί το πάχος, η εξωτερική διάμετρος, η διάμετρος της τρύπας στο εσωτερικό της πλάκας φερρίτη του πρωτεύοντος και του δευτερεύοντος. Στη συνέχεια, θα εξεταστεί η επίπτωση στη μεταφερόμενη ισχύ από τις αλλαγές που γίνονται στα τυλίγματα του χαλκού. Μελετάται η εσωτερική ακτίνα των τυλιγμάτων, ο αριθμός των ελιγμάτων και η θέση του τυλίγματος πάνω στον κυλινδρικό δακτύλιο του φερρίτη.

Τα χαρακτηριστικά της αρχικής διάταξης σύμφωνα με την αναφορά [37] δίνονται στον Πίνακας 4. 1:

	ΠΡΩΤΕΥΟΝ	ΔΕΥΤΕΡΕΥΟΝ	
Πάχος φερρίτη (mm)	6	6	
Εξωτερική διάμετρος φερρίτη (mm)	410	330	
Διάμετρος τρύπας φερρίτη (mm)	90	90	
Εξωτερική διάμετρος τυλίγματος (mm)	370	270	
Εσωτερική διάμετρος τυλίγματος (mm)	170	170	
Αριθμός ελιγμάτων	10	5	
Διάκενο (mm)	50		
Συχνότητα (Hz)	20000		
Ρεύμα πρωτεύοντος Ι₀ (A)	50		

Πίνακας 4. 1: Διαστάσεις της αρχικής διάταξης.

4.2 Χαρακτηριστικά Φερρίτη

4.2.1 Πάχος Φερρίτη

Σ' αυτές τις προσομοιώσεις μεταβάλλαμε το πάχος του πρωτεύοντος και του δευτερεύοντος φερρίτη από 1mm έως 96mm. Δύο ενδεικτικά σχήματα που αναπαριστούν αυτές τις αλλαγές είναι τα Σχήμα 4. 1 και Σχήμα 4. 2. Έτσι, πήραμε τις μετρήσεις του Πίνακας 4. 2. Η φαινόμενη ισχύς υπολογίστηκε από την σχέση 3.1:

$$P_{out} = \frac{\omega_0 * I_1^2 * M^2}{L_2}$$

Σχήμα 4. 1: Πάχος φερρίτη πρωτεύοντος (α) 1mm και (β) 56mm.

Σχήμα 4. 2: Πάχος φερρίτη δευτερεύοντος (α) 1mm και (β) 56mm.

	Г	ΙΡΩΤΕ Υ	ON	ΔΕΥΤΕΡΕΥΟΝ		
Πάχος Ferrite	L2	Μ	Pout	L2	М	Pout
(mm)	(μH)	(µH)	(VA)	(μH)	(μH)	(VA)
1	13.442	13.182	4061.146	13.285	13.08	4045.794
6	13.497	13.374	4163.277	13.497	13.374	4163.277
16	13.521	13.481	4222.652	13.603	13.615	4281.052
26	13.543	13.56	4265.347	13.669	13.768	4356.672
36	13.561	13.621	4298.096	13.743	13.929	4435.149
46	13.586	13.692	4335.029	13.783	14.036	4490.481
56	13.596	13.733	4357.823	13.822	14.132	4539.272
66	13.596	13.759	4374.339	13.856	14.22	4584.703
76	13.602	13.78	4385.767	13.889	14.302	4626.712
86	13.624	13.836	4414.346	13.911	14.362	4658.235
96	13.618	13.838	4417.568	13.927	14.41	4684.036

Πίνακας 4. 2: Μετρήσεις για το πάχος φερρίτη πρωτεύοντος και δευτερεύοντος.

Με τα δεδομένα του παραπάνω πίνακα προκύπτει το **Σφάλμα! Το αρχείο προέλευσης της** αναφοράς δεν βρέθηκε.

Διάγραμμα 4. 1: Μεταβολή ισχύος για αλλαγή πάχους φερρίτη σε πρωτεύον και δευτερεύον.

Η πρώτη εικόνα που παίρνουμε ως συμπέρασμα από τις παραπάνω προσομοιώσεις είναι ότι καθώς μεγαλώνουμε το πάχος του φερρίτη είτε του πρωτεύοντος, είτε του δευτερεύοντος, η ισχύς που μεταφέρεται αυξάνεται.

Παρόλα αυτά, η αύξηση της ισχύος είναι πολύ μικρή σε σχέση με τη μεταβολή του πάχους φερρίτη. Για το πρωτεύον, από το Διάγραμμα 4. 1, φαίνεται ότι η ισχύς αυξάνεται μόλις κατά 6.1% μεταβάλλοντας το πάχος φερρίτη από 6 σε 96mm. Για το δευτερεύον, από το ίδιο διάγραμμα, φαίνεται ότι η μέγιστη ισχύς αυξάνεται μόλις κατά 12.5% μεταβάλλοντας το πάχος φερρίτη από 6 σε 96mm.

Βλέποντας τις διαφορές στην ισχύ και συνυπολογίζοντας το μεγάλο κόστος του φερρίτη, καταλήγουμε στο συμπέρασμα ότι το πάχος φερρίτη πρωτεύοντος και δευτερεύοντος δεν συμβάλει καθοριστικά στην αύξηση της μεταδιδόμενης ισχύος.

4.2.2 Εξωτερική διάμετρος φερρίτη

Σε αυτήν τη σειρά προσομοιώσεων, αλλάζουμε αρχικά την εξωτερική διάμετρο του φερρίτη πρωτεύοντος και στη συνέχεια του δευτερεύοντος, διατηρώντας τα υπόλοιπα χαρακτηριστικά της διάταξης σταθερά. Οι αλλαγές στο φερρίτη δευτερεύοντος φαίνονται στο Σχήμα 4.3.

Σχήμα 4. 3: Εξωτερική διάμετρος φερρίτη δευτερεύοντος (α) 270mm και (β) 500mm.

Οι μετρήσεις από τα παραπάνω πειράματα είναι:

ΕΞΩΤΕΡΙΚΗ ΔΙΑΜΕΤΡΟΣ ΦΕΡΡΙΤΗ ΠΡΩΤΕΥΟΝΤΟΣ	L1	L2	М	Pout
(mm)	(µH)	(µH)	(µH)	(VA)
370	51.157	13.326	12.594	3739.19
410	54.854	13.497	13.374	4163.28
500	57.927	13.697	14.171	4606.02
600	59.209	13.814	14.546	4811.91
700	59.697	13.864	14.711	4903.95
800	60.036	13.884	14.787	4947.61
900	60.135	13.902	14.834	4972.66
1000	60.234	13.912	14.862	4987.87

Πίνακας 4. 3: Μετρήσεις και ισχύς για μεταβολή εξωτερικής διαμέτρου φερρίτη στο πρωτεύον.

ΕΞΩΤΕΡΙΚΗ ΔΙΑΜΕΤΡΟΣ				
ΦΕΡΡΙΤΗ ΔΕΥΤΕΡΕΥΟΝΤΟΣ	L1	L2	Μ	Pout
(mm)	(μH)	(μH)	(µH)	(VA)
270	52.434	11.857	11.49	3497.96
330	54.854	13.497	13.374	4163.28
400	57.753	14.179	14.772	4834.85
500	60.576	14.558	15.813	5396.06
600	61.902	14.717	16.26	5643.80
700	62.503	14.768	16.444	5752.32
800	62.768	14.806	16.541	5805.45

Πίνακας 4. 4: Μετρήσεις και ισχύς για μεταβολή εξωτερικής διαμέτρου φερρίτη στο δευτερεύον.

Διάγραμμα 4. 2: Φαινόμενη ισχύς – Εξωτερική διάμετρος φερρίτη.

Παρατηρούμε ότι καθώς αυξάνουμε την εξωτερική διάμετρο του φερρίτη του πρωτεύοντος, η ισχύς αυξάνεται (Διάγραμμα 4. 2). Βλέπουμε ότι για εξωτερική διάμετρο, από 370 έως 600mm, η ισχύς αυξάνεται με μεγάλο ρυθμό, ενώ από 600 έως 800mm ο ρυθμός της αύξησης γίνεται μικρότερος.

Παρόμοιο φαινόμενο έχουμε και για την αύξηση της εξωτερικής διαμέτρου του δευτερεύοντος (Διάγραμμα 4. 2). Για εξωτερική διάμετρο φερρίτη 270 έως 600mm, η ισχύς αυξάνεται σχεδόν γραμμικά, ενώ από 600 έως 800mm, η ισχύς παρουσιάζει μικρή αύξηση.

Συγκρίνοντας τις δύο αυτές καμπύλες, παρατηρούμε ότι η μεταβολή της εξωτερικής διαμέτρου του φερρίτη πρωτεύοντος από 370 σε 800mm προκαλεί μία αύξηση ισχύος περίπου 33.39%, ενώ η μεταβολή του δευτερεύοντος από 270 σε 800mm προκαλεί μία αύξηση ισχύος περίπου 65.97%. Έτσι, προκύπτει ότι η εξωτερική διάμετρος του φερρίτη δευτερεύοντος παίζει καθοριστικό ρόλο στη μεταφορά ισχύος ανάμεσα στα δύο pads.

4.2.3 Διάμετρος της τρύπας φερρίτη

Εδώ, οι αλλαγές στη διάταξη αφορούν την διάμετρο της τρύπας του φερρίτη. Θα μεταβάλλουμε αρχικά την διάμετρο του πρωτεύοντος και μετά του δευτερεύοντος, κρατώντας τα υπόλοιπα χαρακτηριστικά σταθερά. Οι αλλαγές αυτές φαίνονται στα σχήματα Σχήμα 4. 4 καιΣχήμα 4. 5.

Σχήμα 4. 4: Διάμετρος τρύπας φερρίτη πρωτεύοντος (α) 0mm και (β) 230mm.

Σχήμα 4. 5: Διάμετρος τρύπας φερρίτη δευτερεύοντος (α) 120mm και (β) 230mm.

	ΠΡΩΤΕΥΟΝ			ΔΕΥΤΕΡΕΥΟΝ		
ΔΙΑΜΕΤΡΟΣ ΤΡΥΠΑΣ ΦΕΡΡΙΤΗ	L2	м	Pout	L2	М	Pout
(mm)	(µH)	(µH)	(VA)	(µH)	(µH)	(VA)
0	13.592	13.58	4262.516	13.67	13.597	4248.812
30	13.589	13.575	4260.318	13.658	13.578	4240.669
60	13.555	13.507	4228.323	13.61	13.517	4217.474
90	13.497	13.374	4163.277	13.497	13.374	4163.277
120	13.353	13.035	3997.543	13.212	13.041	4043.925
150	13.168	12.516	3737.328	12.632	12.457	3859.266
170	13.013	12.014	3484.558	11.913	11.861	3709.978
200	12.771	11.067	3012.9	10.277	10.695	3496.593
230	12.55	10.12	2563.7	8.8913	9.657	3295.104

Οι μετρήσεις και η φαινόμενη ισχύς που προκύπτει από τις παραπάνω προσομοιώσεις δίνονται στον ακόλουθο πίνακα:

Πίνακας 4. 5: Μετρήσεις και ισχύς για μεταβολή της διαμέτρου της τρύπας φερρίτη.

Διάγραμμα 4. 3: Φαινόμενη ισχύς – Διάμετρος τρύπας φερρίτη.

Βλέποντας το Διάγραμμα 4. 3, παρατηρούμε ότι η διάταξη χάνει ένα πολύ μικρό ποσό ισχύος για διαμέτρους τρύπας φερρίτη πρωτεύοντος από 0 έως 100mm, με την ισχύ να διατηρείται σχεδόν σταθερή για αυτές τις διαμέτρους. Πάνω όμως από τα 100mm, η ισχύς μειώνεται απότομα. Αυτό σχετίζεται με το γεγονός ότι η πλάκα φερρίτη του πρωτεύοντος δεν είναι ικανή να οδηγήσει το μαγνητικό πεδίο προς το δευτερεύον και έτσι χάνεται η μαγνητική ζεύξη. Το Σχήμα 4. 6, δείχνει ακριβώς πως η μεγαλύτερη τρύπα αφήνει να περάσει μαγνητική ροή και κάτω από τη διάταξη. Γι' αυτό λοιπόν το λόγο, παρουσιάζεται μείωση της μεταφερόμενης ισχύος. Με την αύξηση της διαμέτρου της τρύπας φερρίτη στο πρωτεύον από 0 σε 230mm, έχουμε μία απώλεια ισχύος περίπου 39.85%.

Για το δευτερεύον, παρατηρούμε ότι η ισχύς παραμένει σχεδόν σταθερή για μεταβολές 0 έως 100mm στην διάμετρο της τρύπας φερρίτη δευτερεύοντος, ενώ στη συνέχεια, από 100 έως 230mm μειώνεται. Με την αύξηση της διαμέτρου της τρύπας φερρίτη στο δευτερεύον από 0 σε 230mm, έχουμε μία απώλεια ισχύος περίπου 22.45%. Το Σχήμα 4. 7, συνηγορεί σ' αυτό το αποτέλεσμα, δείχνοντας πώς διαχέεται η μαγνητική ροή στο χώρο.

Σχήμα 4. 6: Πυκνότητα μαγνητικής ροής για διάμετρο τρύπας πρωτεύοντος (α) 120mm και (β) 230mm.

Σχήμα 4. 7: Πυκνότητα μαγνητικής ροής για διάμετρο τρύπας δευτερεύοντος (α) 120mm και (β) 230mm.

4.3 Χαρακτηριστικά Τυλιγμάτων

4.3.1 Μετατόπιση τυλίγματος

Σε αυτές τις προσομοιώσεις, μετατοπίζουμε το τύλιγμα του πρωτεύοντος. Μεταβάλουμε δηλαδή την εσωτερική ακτίνα του τυλίγματος κρατώντας τον αριθμό των ελιγμάτων σταθερό, όπως φαίνεται στο Σχήμα 4. 8. Ξεκινάμε με εσωτερική ακτίνα 45mm και εξωτερική 145mm και τελειώνουμε όταν η εσωτερική ακτίνα γίνει 105mm και η εξωτερική 205mm. Τα υπόλοιπα χαρακτηριστικά της διάταξης παραμένουν τα ίδια (Πίνακας 4. 1: Διαστάσεις της αρχικής διάταξης.

).

Σχήμα 4. 8: Εσωτερική ακτίνα τυλίγματος πρωτεύον (α) 45mm, (β) 75mm και (γ) 105mm.

Τα αποτελέσματα των μετρήσεων δίνονται στον Πίνακας 4. 6 και προκύπτει το Διάγραμμα 4. 4.

Εσωτερική		ΠΡΩΤΕΥ	ON	ΔΕΥΤΕΡΕΥΟΝ				
ακτίνα τυλίγματος	L2	м	Pout	L2	м	М		
(mm)	(μH)	(µH)	(VA)	(µH)	(μH)	(µH)		
45	13.482	10.274	2459.658	6.3146	6.4223	2052.037		
55	13.488	11.421	3038.16	8.14	8.2111	2602.125		
65	13.486	12.332	3542.695	9.9656	10.021	3165.691		
75	13.487	12.984	3926.915	11.766	11.769	3698.283		
85	13.487	13.357	4155.778	13.487	13.357	4155.778		
95	13.498	13.438	4202.906	15.047	14.69	4505.506		
105	13.482	13.168	4040.501	16.293	15.636	4714.115		
115	-	-	-	16.994	16.094	4788.31		

Πίνακας 4. 6: Αποτελέσματα μετρήσεων για μεταβολή στην εσωτερική ακτίνα τυλίγματος πρωτεύοντος και δευτερεύοντος.

Διάγραμμα 4. 4: Ισχύς - εσωτερική ακτίνα τυλίγματος.

Από το Διάγραμμα 4. 4, βλέπουμε για το πρωτεύον τύλιγμα ότι η ισχύς αυξάνεται καθώς το τύλιγμα χαλκού μετατοπίζεται προς τις εξωτερικές θέσεις. Πάνω από την ακτίνα 90mm παρατηρούμε μια ελαφρά πτώση της ισχύος. Η μέγιστη βελτίωση της μεταφερόμενης ισχύς που μπορούμε να πετύχουμε μετατοπίζοντας το τύλιγμα του πρωτεύοντος από εσωτερική ακτίνα 45mm σε 95mm είναι περίπου 70.87%. Επίσης, από το ίδιο διάγραμμα, βλέπουμε την ίδια συμπεριφορά ισχύος και για το δευτερεύον. Αυξάνεται δηλαδή μετατοπίζοντας το τύλιγμα του δευτερεύοντος προς τα έξω.

4.3.2 Αριθμός ελιγμάτων

Στην ενότητα αυτή μεταβάλουμε τον αριθμό των ελιγμάτων τόσο στο πρωτεύον όσο και στο δευτερεύον. Αρχικά, κρατώντας τον αριθμό ελιγμάτων στο δευτερεύον σταθερό, αλλάζουμε τον αριθμό των ελιγμάτων στο πρωτεύον. Κρατάμε την εξωτερική ακτίνα τυλίγματος σταθερή στα 205mm και μεταβάλλουμε την εσωτερική (Σχήμα 4.9).

Σχήμα 4. 9: Αριθμός ελιγμάτων πρωτεύοντος (α) Ν=2, (β) Ν=6 και (γ) Ν=12.

Στη συνέχεια, διατηρώντας σταθερό τον αριθμό ελιγμάτων στο πρωτεύον αλλάζουμε τον αριθμό ελιγμάτων του δευτερεύοντος. Κρατάμε σταθερή την εξωτερική ακτίνα του τυλίγματος στα 135mm και αλλάζουμε την εσωτερική (Σχήμα 4. 10).

Σχήμα 4. 10: Αριθμός ελιγμάτων δευτερεύοντος (α) N=1, (β) N=4 και (γ) N=6.

	ΠΡΩΤΕΥΟΝ							
Αριθμός Ελιγμάτων	L1	L2	м	Pout				
	(µH)	(µH)	(µH)	(VA)				
2	4.4428	13.469	2.5401	150.4929				
4	14.874	13.474	5.4089	682.1364				
6	28.216	13.486	8.3821	1636.712				
8	42.139	13.49	11.134	2886.957				
10	54.781	13.487	13.357	4155.778				
12	64.663	13.482	14.868	5151.108				

Οι μετρήσεις δίνονται στους παρακάτω πίνακες:

Πίνακας 4. 7: Μετρήσεις για τον αριθμό τυλιγμάτων στο πρωτεύον.

	ΔΕΥΤΕΡΕΥΟΝ						
Αριθμός Ελιγμάτων	L1	L2	м	Pout			
	(µH)	(µH)	(μH)	(VA)			
1	54.759	0.8884	3.2221	3671.296			
2	54.759	3.1319	6.2303	3893.677			
3	54.786	6.232	8.9564	4043.797			
4	54.774	9.7876	11.338	4126.165			
5	54.781	13.487	13.357	4155.778			
6	54.843	17.065	15.008	4146.572			

Διάγραμμα 4. 5: Ισχύς – Αριθμός ελιγμάτων για το πρωτεύον.

Διάγραμμα 4. 6: Ισχύς – Αριθμός ελιγμάτων για το δευτερεύον.

Το διάγραμμα 4.5 δείχνει πόσο σημαντικός είναι ο αριθμός των ελιγμάτων του πρωτεύοντος για την διάταξη. Η μεταφερόμενη ισχύς φαίνεται ότι αυξάνεται συνεχώς καθώς προσθέτουμε επιπλέον ελίγματα στο πρωτεύον. Η αύξηση που παρατηρούμε για διάταξη με 12 ελίγματα στο πρωτεύον σε σχέση με μια διάταξη με 2 ελίγματα είναι τεράστια και ισούται με το 3322.89%. Αντίθετα, το διάγραμμα 4.6 δείχνει ότι ο αριθμός των ελιγμάτων στο δευτερεύον δεν επηρεάζει σημαντικά την μεταφερόμενη ισχύ. Η διαφορά της διάταξης με 1 και με 6 ελίγματα είναι περίπου 12.9%. Ωστόσο το μικρό μέγεθος του δευτερεύοντος που εξετάζεται δεν επιτρέπει τη χρήση μεγάλου αριθμού ελιγμάτων. Σε περίπτωση μεγαλύτερου δευτερεύοντος και ελίγματα περισσοτέρων από 6 ενδέχεται τα αποτελέσματα να ήταν διαφορετικά.

Μάλιστα, εξετάζοντας τη μεταβολή της ισχύος για αριθμό ελιγμάτων (από 2 έως 12) στο δευτερεύον σε μια διάταξη με διάμετρο φερρίτη δευτερεύοντος 400mm (πολύ μεγαλύτερη σε σχέση με πριν), παρατηρούμε ότι η αύξηση της μεταφερόμενης ισχύος από τη διάταξη με 2 ελίγματα στη διάταξη με 12 ελίγματα, είναι πολύ μεγάλη και υπολογίζεται στο 2572%.

Διάγραμμα 4. 7: Ισχύς και αριθμός ελιγμάτων για δευτερεύον με εξωτερική διάμετρο φερρίτη 410mm.

4.4 Συμπεράσματα

Από τις προσομοιώσεις που κάναμε για τα γεωμετρικά χαρακτηριστικά του πρωτεύοντος και του δευτερεύοντος καταλήγουμε στα εξής συμπεράσματα:

Το πάχος φερρίτη πρωτεύοντος και δευτερεύοντος δεν παίζει καθοριστικό ρόλο στην μεταφερόμενη ισχύ. Από την άλλη μεριά όμως, η εξωτερική διάμετρος φερρίτη επηρεάζει αρκετά τη μεταφερόμενη ισχύ. Στο Διάγραμμα 4. 8 φαίνεται αυτή η διαφορά των δύο χαρακτηριστικών στο πρωτεύον. Ανάλογα συμπεράσματα βγάζουμε και για το δευτερεύον (Διάγραμμα 4.9).

Διάγραμμα 4. 8: Σύγκριση επίδρασης πάχους και εξωτερικής διαμέτρου φερρίτη στη μεταφερόμενη ισχύς για το πρωτεύον.

Διάγραμμα 4. 9: Σύγκριση επίδρασης πάχους και εξωτερικής διαμέτρου φερρίτη στη μεταφερόμενη ισχύς για το δευτερεύον.

- Η διάμετρος της τρύπας φερρίτη επίσης έχει καθοριστική σημασία στη διαμόρφωση της μεταφερόμενης ισχύος. Το Διάγραμμα 4. 3 δείχνει ότι καθώς αυξάνεται η διάμετρος της τρύπας τόσο στο πρωτεύον όσο και στο δευτερεύον, η μεταφερόμενη ισχύς μειώνεται.
- Όσο αφορά τα χαρακτηριστικά των τυλιγμάτων, από το Διάγραμμα 4. 10 που αφορά το πρωτεύον βλέπουμε ότι η εσωτερική ακτίνα δεν μεταβάλει σημαντικά την ισχύ. Παρόλα αυτά για την τιμή των 95mm επιτυγχάνουμε τη μέγιστη μεταφερόμενη ισχύ. Μία παρόμοια συμπεριφορά παρατηρούμε και στο δευτερεύον, όπου η μέγιστη μεταφερόμενη ισχύς παρατηρείται όταν το τύλιγμα βρίσκεται όσο το δυνατό πιο «εξωτερικά» της διάταξης.
- Ο αριθμός των ελιγμάτων της διάταξης καθορίζει σε μεγάλο βαθμό την μεταφερόμενη ισχύ στο πρωτεύον όπως φαίνεται στο Διάγραμμα 4. 10. Στο δευτερεύον αριθμός ελιγμάτων φαίνεται να μεταβάλλει ελάχιστα την ισχύ Ωστόσο το μικρό μέγεθος του δευτερεύοντος που εξετάζεται δεν επιτρέπει τη χρήση μεγάλου αριθμού ελιγμάτων. Μάλιστα εξετάζοντας ένα μεγαλύτερο δευτερεύον παρατηρούμε ότι η μεταφερόμενη ισχύς εξαρτάται σημαντικά από τον αριθμό των ελιγμάτων.

Διάγραμμα 4. 10: Σύγκριση επίδρασης αριθμού τυλιγμάτων και εσωτερικής ακτίνας τυλίγματος στη μεταφερόμενη ισχύς για το πρωτεύον.

5ο Κεφάλαιο: Προσδιορισμός χαρακτηριστικών της διάταξης για τη μεταφορά δεδομένης ζητούμενης ισχύος

Στο προηγούμενο κεφάλαιο είδαμε την επίδραση των διαφόρων χαρακτηριστικών της διάταξης στη μεταφορά ισχύος. Ένα σημαντικό ερώτημα που τίθεται, ωστόσο είναι η επιλογή μίας συγκεκριμένης διάταξης (με συγκεκριμένη διάμετρο τρύπας φερρίτη, δεδομένο αριθμό τυλιγμάτων, δεδομένη εξωτερική ακτίνα κλπ), για τη μεταφορά συγκεκριμένης ισχύος. Π.χ. ο προσδιορισμός όλων των γεωμετρικών χαρακτηριστικών, αλλά και των χαρακτηριστικών των τυλιγμάτων, ώστε να είναι δυνατή η μεταφορά ισχύος 15kW. Στο κεφάλαιο αυτό θα προσπαθήσουμε να απαντήσουμε σε αυτό το ερώτημα, αναπτύσσοντας ένα εργαλείο που θα επιτρέπει τον υπολογισμό των χαρακτηριστικών μίας κυκλικής διάταξης επαγωγικής φόρτισης για μία συγκεκριμένη ισχύ.

5.1 Ανάπτυξη του προτεινόμενου εργαλείου

Είδαμε στο 4° Κεφάλαιο ότι η μεταφερόμενη ισχύς εξαρτάται από χαρακτηριστικά της διάταξης όπως η διάμετρος τρύπας φερρίτη η εξωτερική διάμετρος της διάταξης, αλλά και το πάχος φερρίτη. Επίσης η μεταφερόμενη ισχύς εξαρτάται και από τα χαρακτηριστικά των τυλιγμάτων, όπως η εσωτερική ακτίνα τυλίγματος και ο αριθμός των ελιγμάτων. Τα χαρακτηριστικά αυτά μάλιστα δύναται να είναι διαφορετικά για το πρωτεύον και το δευτερεύον. Είναι φανερό επομένως ότι πρέπει να γίνει μία προσπάθεια ώστε να ελαχιστοποιηθούν οι εξεταζόμενοι παράμετροι για την κυκλική διάταξη που εξετάζουμε διατηρώντας τις παραμέτρους εκείνες που επηρεάζουν σημαντικά τη μεταφορά ισχύος.

5.1.1. Ελαχιστοποίηση παραμέτρων

Αρχικά υιοθετούμε την προσέγγιση που ακολουθείται συχνά στη βιβλιογραφία [40], [41], και θεωρούμε ότι το πρωτεύον και το δευτερεύον έχουν τις ίδιες διαστάσεις. Ιδανικά ένα μεγαλύτερο δευτερεύον δύναται να «συγκεντρώσει» μεγαλύτερο μέρος της μαγνητικής ροής, ωστόσο είναι πρακτικά δύσκολο να εφαρμοστεί στο κάτω μέρος ενός οχήματος (η διάταξη επαγωγικής φόρτισης που τοποθετείται στο όχημα πρέπει να είναι όσο το δυνατό μικρότερη). Αντίθετα ένα πολύ μεγάλο πρωτεύον σε σύγκριση με ένα μικρότερο πρωτεύον, αν και θα ευνοούσε την τοποθέτηση στο όχημα μίας μικρής διάταξης θα δημιουργούσε ένα διαρρέον μαγνητικό πεδίο που θα δημιουργούσε έντονα ερωτήματα σχετικά με την ασφάλεια της διάταξης.

Για να εξετάσουμε την αναλογία μεταξύ διαστάσεων πρωτεύοντος και δευτερεύοντος στη μεταφερόμενη ισχύ πραγματοποιήθηκαν προσομοιώσεις για διαφορετικού μεγέθους πρωτεύον και δευτερεύον αλλά και για ίδιο πρωτεύον και δευτερεύον (Πίνακας 5.1). Στις προσομοιώσεις αυτές για πρωτεύον διπλάσιο του δευτερεύοντος, η διάμετρος φερρίτη πρωτεύοντος είναι 410mm και του δευτερεύοντος 205mm, ενώ τα ελίγματα σε πρωτεύον και δευτερεύον είναι 10 και 5 αντίστοιχα. Όταν το πρωτεύον είναι όμοιο με το δευτερεύον οι εξωτερικές διάμετροι των πλακών φερρίτη είναι 410mm (με ίδια ελίγματα σε πρωτεύον και δευτερεύον), ενώ όταν το δευτερεύον είναι διπλάσιο του πρωτεύοντος, η διάμετρος του πρωτεύοντος είναι 410 χιλιοστά και του δευτερεύοντος είναι 820 χιλιοστά, ενώ τα ελίγματα σε πρωτεύον και δευτερεύον είναι 20 και 10 αντίστοιχα. Η αυτεπαγωγή L1 είναι και στις τρεις περιπτώσεις περίπου ίση και μεταβάλλονται η αυτεπαγωγή L2 και η αμοιβαία επαγωγή Μ. Για όμοια πρωτεύον και δευτερεύον, η L2 είναι περίπου ίση με την L1 και σε συνδυασμό με την τιμή της Μ, προκύπτει ότι μεταφέρεται η μεγαλύτερη ποσότητα ισχύος. Για δευτερεύον ίσο με το μισό του πρωτεύοντος, οι L2 και Μ μειώνονται με αποτέλεσμα να έχουμε μια μικρή μεταφορά ισχύος. Τέλος, για δευτερεύον ίσο με το διπλάσιο του πρωτεύοντος, οι L2 και Μ παίρνουν τις μεγαλύτερες τιμές τους και έτσι η ισχύς που μεταφέρεται είναι υψηλή, αλλά μικρότερη από την πρώτη περίπτωση. Οι προσομοιώσεις αυτές συμφωνούν με την επιλογή που γίνεται συχνά στη βιβλιογραφία [40], [41] για πρωτεύον και δευτερεύον με όμοια χαρακτηριστικά, την οποία προσέγγιση θα ακολουθήσουμε και εμείς στη συνέχεια.

	L1(µH)	L2(μH)	M(μH)	Pout(VA)
ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ	51.967	51.851	17.475	7400.944
ΔΕΥΤΕΡΕΥΟΝ = ΜΙΣΟ ΤΟΥ ΠΡΩΕΤΕΥΟΝΤΟΣ	50.228	5.6661	2.6235	1526.468
ΔΕΥΤΕΡΕΥΟΝ = ΔΙΠΛΑΣΙΟ ΤΟΥ ΠΡΩΕΤΕΥΟΝΤΟΣ	53.579	418.7	44.193	5861.569

Πίνακας 5. 1: Προσομοιώσεις για διαφορετικού μεγέθους πρωτεύον και δευτερεύον αλλά και για ίδιο πρωτεύον και δευτερεύον.

Στο 4° Κεφάλαιο είδαμε ότι το πάχος του φερρίτη είναι το χαρακτηριστικό που επηρεάζει λιγότερο τη μεταφορά ισχύος. Προσομοιώσεις που έγιναν για ίδιο πρωτεύον και δευτερεύον (Διάγραμμα 5. 1) δείχνουν επίσης ότι η ισχύς επηρεάζεται πολύ λίγο από το πάχος του φερρίτη που χρησιμοποιείται. Αυξάνοντας το πάχος φερρίτη από 1mm σε 96mm, η μεταφερόμενη ισχύς αυξάνεται κατά 21%. Η αύξηση αυτή είναι πολύ μικρή και δεν δικαιολογεί την χρησιμοποίηση τέτοιας ποσότητας φερρίτη.

Από την άλλη πλευρά, βλέπουμε ότι η εξωτερική διάμετρος φερρίτη, αλλά και η διάμετρος της τρύπας φερρίτη παίζουν σημαντικότερο ρόλο στη διαμόρφωση της μεταφερόμενης ισχύος. Από το Διάγραμμα 5. 2 φαίνεται ότι καθώς αυξάνουμε την εξωτερική διάμετρο από 370mm σε 1000mm η ισχύς αυξάνεται κατά 119.73%. Επίσης, από το Διάγραμμα 5. 3 συμπεραίνουμε ότι με μηδενική διάμετρο τρύπας φερρίτη, η ισχύς που μεταφέρεται είναι 83.3% μεγαλύτερη από την διάταξη με διάμετρο τρύπας ίση με 230mm.

Διάγραμμα 5. 1: Ισχύς – Πάχος φερρίτη για ίδιο πρωτεύον και δευτερεύον.

Διάγραμμα 5. 2: Ισχύς - Εξωτερική διάμετρος φερρίτη για ίδιο πρωτεύον και δευτερεύον.

Διάγραμμα 5. 3: Ισχύς – Διάμετρος τρύπας φερρίτη για ίδιο πρωτεύον και δευτερεύον.

Για κατασκευαστικούς λόγους επιλέγουμε ένα πάχος φερρίτη ίσο με 6mm. Άλλωστε ένα μικρότερο πάχος φερρίτη ενδέχεται να οδηγήσει σε φαινόμενα κορεσμού όπως περιγράφεται και στην αναφορά [40].

Πέρα από τα γεωμετρικά χαρακτηριστικά της διάταξης η μεταφερόμενη ισχύς είδαμε στο Κεφάλαιο 4 ότι επηρεάζεται και από τον αριθμό των ελιγμάτων. Προσομοιώσεις που έγιναν για ίδιο πρωτεύον και δευτερεύον επιβεβαιώνουν το παραπάνω. Αυξάνοντας τον αριθμό των ελιγμάτων, η ισχύς μεγαλώνει. Η διαφορά της ισχύος για διάταξη με 12 ελίγματα είναι περίπου 2572%.

Διάγραμμα 5. 4: Ισχύς – Αριθμός ελιγμάτων για ίδιο πρωτεύον και δευτερεύον.

Σχετικά με τη θέση του τυλίγματος στο πρωτεύον και στο δευτερεύον προσομοιώσεις για ίδιο πρωτεύον και δευτερεύον (Διάγραμμα 5. 5) δείχνουν ότι η καλύτερη δυνατή θέση για τη μέγιστη μεταφερόμενη ισχύ είναι όσο το δυνατό εξωτερικά στη διάταξη (Σχήμα 5. 1). Μάλιστα σε αυτό το συμπέρασμα οδηγούμαστε ανεξάρτητα της ακτίνας τρύπας φερρίτη (Διάγραμμα 5. 6) αλλά και ανεξάρτητα της συνολικής διαμέτρου της διάταξης (Διάγραμμα 5. 7). Σε κάθε περίπτωση η τοποθέτηση του τυλίγματος όσο το δυνατό εξωτερικά της διάταξης οδηγεί στη μεταφορά της μέγιστης ισχύος. Επομένως θεωρούμε ότι η βέλτιστη θέση για τη μεταφορά της μέγιστης δυνατής ισχύος είναι όσο το δυνατό εξωτερικά της διάταξης.

Διάγραμμα 5. 5: Ισχύς - Εσωτερική ακτίνα τυλίγματος για ίδιο πρωτεύον και δευτερεύον.

Σχήμα 5. 1: Το τύλιγμα στην πιο εξωτερική θέση.

Διάγραμμα 5. 6: Ισχύς – Εσωτερική ακτίνα τυλίγματος για ίδιο πρωτεύον και δευτερεύον για διαφορετική ακτίνα τρύπας φερρίτη.

Διάγραμμα 5. 7: Ισχύς – Εσωτερική ακτίνα τυλίγματος για ίδιο πρωτεύον και δευτερεύον για διαφορετική εξωτερική διάμετρο φερρίτη.

Στο σημείο αυτό έχουμε μειώσει τις παραμέτρους του προβλήματος και καλούμαστε να επιλέξουμε για μία διάταξη δεδομένης εξωτερικής ακτίνας ποιες είναι οι κατάλληλες επιλογές για την ποσότητα φερρίτη που χρειάζεται να χρησιμοποιηθεί (δεδομένου ότι το πάχος του φερρίτη είναι ίσο με 6mm, αρκεί η εύρεση της τιμής της διαμέτρου τρύπας του φερρίτη) καθώς και ο αριθμός ελιγμάτων που απαιτούνται. Είναι φανερό ότι για την εξωτερική διάμετρο της διάταξης που ζητείται θα πρέπει να πραγματοποιηθεί μία σειρά προσομοιώσεων μεταβάλλοντας τόσο τον αριθμό των ελιγμάτων αλλά ταυτόχρονα και τη διάμετρο της τρύπας του φερρίτη.

5.1.2 Πραγματοποίηση προσομοιώσεων

Έστω ότι ζητείται μία διάταξη εξωτερικής διαμέτρου 600mm και καλούμαστε να δώσουμε τα χαρακτηριστικά για τη μεταφορά δεδομένης ισχύος, έστω 15kW σε ένα διάκενο 50mm. Είναι φανερό ότι θα πρέπει να πραγματοποιηθεί μία σειρά προσομοιώσεων για ένα εύρος ελιγμάτων (Εδώ επιλέγουμε μέχρι12 ελίγματα) και για διάφορες τιμές στη διάμετρο τρύπας φερρίτη (εδώ επιλέγουμε από 0 έως 600mm), με τα υπόλοιπα χαρακτηριστικά της διάταξης να φαίνονται στον ακόλουθο πίνακα.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Εξωτερική διάμετρος φερρίτη (mm)	600
Ακτίνα τρύπας φερρίτη (mm)	0-300
Εξωτερική ακτίνα τυλίγματος (mm)	300
Εσωτερική ακτίνα τυλίγματος (mm)	180-280
Διάκενο (mm)	50
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 2: Χαρακτηριστικά διάταξης με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 50mm.

Τα αποτελέσματα των προσομοιώσεων δίνονται στον ακόλουθο πίνακα και απεικονίζονται στο Διάγραμμα 5.8:

	N=2	N=4	N=6	N=8	N=10	N=12
Διάμετρος τρύπας φερρίτη	Pout(VA)	Pout(VA)	Pout(VA)	Pout(VA)	Pout(VA)	Pout(VA)
0	546.6429	2716.512	6958.417	13249.15	21221.87	30279.52
100	544.7926	2705.551	6925.997	13181.7	21087.91	30151.58
200	533.4629	2636.83	6715.806	12713.29	20148.45	28301.51
300	507.4211	2476.842	6191.264	11481.28	17652.7	24092.25
400	458.509	2155.899	5170.878	9074.197	13104.68	16600.06
500	370.9635	1597.8	3477.143	5706.331	8159.512	10601.12
600	276.3074	1159.208	2606.539	4487.426	6633.518	8889.534

Πίνακας 5. 3: Αποτελέσματα προσομοιώσεων.

Οι παραπάνω προσομοιώσεις δίνουν, τη δυνατότητα εύρεσης του αριθμού τυλιγμάτων και της διαμέτρου τρύπας φερρίτη σε περίπτωση ζήτησης μεταφοράς δεδομένης ισχύος (π.χ. 15kW) για μία διάταξη με ακτίνα 600mm και διάκενο ίσο με 50mm. Ο τρόπος εύρεσης της ακριβής τιμής της διαμέτρου και των αριθμών των ελιγμάτων θα περιγραφεί στη συνέχεια. Ωστόσο θα πρέπει να είμαστε σε θέση να βρούμε τα κατάλληλα χαρακτηριστικά για τη μεταφορά δεδομένης ισχύος, όχι μόνο για το συγκεκριμένο διάκενο αλλά και για επιπλέον εξωτερικές διαμέτρου. Για παράδειγμα ενδέχεται να ζητηθεί η μεταφορά ισχύος 15kW με μία κυκλική διάταξη επαγωγικής φόρτισης με διάμετρο 600mm αλλά σε ένα διάκενο 100mm. Μπορεί επίσης να ζητηθεί η μεταφορά ισχύος 15kW σε ένα διάκενο 50mm αλλά με μία διάταξη διαμέτρου 400mm λόγω χρήσης ενός μικρότερου οχήματος. Για το λόγο αυτό πραγματοποιούνται επιπλέον προσομοιώσεις:

- για εξωτερική διάμετρο φερρίτη 600mm και διάκενο 100mm,
- για εξωτερική διάμετρο φερρίτη 400mm και διάκενο 50mm και
- για εξωτερική διάμετρο φερρίτη 400mm και διάκενο 100mm.

Τα υπόλοιπα χαρακτηριστικά φαίνονται στους πίνακες Πίνακας 5. 4, Πίνακας 5. 5, Πίνακας 5. 6 και προκύπτουν τα αντίστοιχα διαγράμματα Διάγραμμα 5. 9, Διάγραμμα 5. 10 και Διάγραμμα 5. 11.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Εξωτερική διάμετρος φερρίτη (mm)	600
Ακτίνα τρύπας φερρίτη (mm)	0-300
Εξωτερική ακτίνα τυλίγματος (mm)	300
Εσωτερική ακτίνα τυλίγματος (mm)	180-280
Διάκενο (mm)	100
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 4: Χαρακτηριστικά διάταξης με εξωτερική διάμετρο 600mm και διάκενο 100mm.

Διάγραμμα 5. 9: Επιφάνεια ισχύος της διάταξης με εξωτερική διάμετρο 600mm και διάκενο 100mm.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Εξωτερική διάμετρος φερρίτη (mm)	400
Ακτίνα τρύπας φερρίτη (mm)	0-200
Εξωτερική ακτίνα τυλίγματος (mm)	200
Εσωτερική ακτίνα τυλίγματος (mm)	80-180
Διάκενο (mm)	50
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 5: Χαρακτηριστικά διάταξης με εξωτερική διάμετρο 400mm και διάκενο 50mm.

Διάγραμμα 5. 10: Επιφάνεια ισχύος της διάταξης με εξωτερική διάμετρο 400mm και διάκενο 50mm.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Εξωτερική διάμετρος φερρίτη (mm)	400
Ακτίνα τρύπας φερρίτη (mm)	0-200
Εξωτερική ακτίνα τυλίγματος (mm)	200
Εσωτερική ακτίνα τυλίγματος (mm)	80-180
Διάκενο (mm)	100
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 6: Χαρακτηριστικά διάταξης με εξωτερική διάμετρο 400mm και διάκενο 100mm.

Διάγραμμα 5. 11: Επιφάνεια ισχύος της διάταξης με εξωτερική διάμετρο 400mm και διάκενο 100mm.

5.1.3 Ανάπτυξη του προτεινόμενου εργαλείου

Έχοντας κάνει τις απαραίτητες προσομοιώσεις, μπορούμε να εκμεταλλευτούμε τις μετρήσεις που πήραμε και με βάση αυτές να προσδιορίζουμε την κατάλληλη διάταξη που μπορεί να μεταφέρει την ισχύ (P_{ref}) που μας ζητείται σε κάθε περίπτωση. Οι μετρήσεις L2 και Μ χρησιμοποιούνται σαν είσοδο στο εργαλείο που φτιάχνουμε ώστε να μας δώσει στην έξοδο τα ζητούμενα χαρακτηριστικά. Χρησιμοποιώντας το πρόγραμμα ΕΧCEL, κατασκευάζουμε μία διαδικασία μέσω της οποίας, για την ζητούμενη ισχύ P_{ref}, υπολογίζεται ο αριθμός ελιγμάτων και η διάμετρος της τρύπας φερρίτη, σε κάθε μία από τις παραπάνω διατάξεις.

Συνήθως, η ισχύς P_{ref} μας ζητείται σε kW. Για αυτόν το λόγο, μετατρέπουμε τους προηγούμενους πίνακες φαινόμενης ισχύος σε πίνακες ενεργού με βάση την παρακάτω σχέση [4]:

$$P = P_{out} * Q$$

Η Pout είναι η φαινόμενη ισχύς που έχουμε υπολογίσει παραπάνω, ενώ Q είναι ο συντελεστής ποιότητας, υπολογίζεται από το κύκλωμα της αντιστάθμισης. Συνηθισμένες τιμές του συντελεστή Q στη βιβλιογραφία δίνονται μεταξύ 4 και 6 [40]. Ο συντελεστής ποιότητας ορίζεται από τη διάταξη ελέγχου, η οποία όμως δεν είναι στόχος μελέτης στη διπλωματική αυτή, και για το λόγο αυτό θεωρούμε ένα συντελεστή ποιότητας ίσο με 4.

Η διαδικασία για την επιλογή της διαμέτρου τρύπας φερρίτη καθώς και του αριθμού των ελιγμάτων που απαιτούνται για τη μεταφορά μίας ζητούμενης ισχύος (έστω π.χ. 15kW) λειτουργεί ως εξής: πηγαίνουμε στα τρισδιάστατα διαγράμματα που απεικονίζουν τη μεταφορά ενεργού ισχύος (Σχήμα 5. 2) και εκεί θεωρούμε το επίπεδο που τέμνει την επιφάνεια στη ζητούμενη ισχύ (P_{ref}). Στη συνέχεια με τη μέθοδο της γραμμικής παρεμβολής προσδιορίζουμε τον αριθμό των ελιγμάτων και της

τρύπας φερρίτη που χρειάζεται να έχει η συγκεκριμένη διάταξη ώστε να μεταφέρει τη ζητούμενη ισχύ.

Σχήμα 5. 2: Τομή επιπέδου των 15kW.

Αναλυτικά η παραπάνω διαδικασία, για την ισχύ των 15kW, περιγράφεται στα ακόλουθα βήματα:

 Πάμε στην τρισδιάστατη επιφάνεια ισχύος σε kW της διάταξης με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 50mm και παίρνουμε το επίπεδο που αντιστοιχεί στα 15kW. Οπότε προκύπτει το παρακάτω διάγραμμα:

Διάγραμμα 5. 12: Τομή της επιφάνειας ισχύος της διάταξης με 600mm εξωτερική διάμετρο και διάκενο 50mm, με το επίπεδο των 15kW.

Κάθε σημείο της περιμέτρου που δημιουργείται από την τομή, δίνει και τα χαρακτηριστικά της διαμέτρου της τρύπας φερρίτη και του αριθμού των ελιγμάτων με τα οποία μπορούμε να μεταφέρουμε την συγκεκριμένη ισχύ.

- Στη συνέχεια υπολογίζουμε αυτά τα σημεία με μαθηματικό τρόπο.
- Αρχικά υπολογίζουμε την ισχύ που μεταφέρεται για τους αριθμούς ελιγμάτων 1, 3,
 5, 7, 9 και 11 που για τους οποίους δεν έχουμε πάρει μετρήσεις. Οπότε, χρησιμοποιούμε τη γραμμική παρεμβολή στον Πίνακας 5. 7, για τον οποίο έχουμε πάρει μετρήσεις.

Διάμετρος			-		-				
τρύπας		P(W)							
φερρίτη	N=2	N=4	N=6	N=8	N=10	N=12			
0	2186.571	10866.05	27833.67	52996.59	84887.47	121118.1			
100	2179.171	10822.21	27703.99	52726.81	84351.63	120606.3			
200	2133.852	10547.32	26863.22	50853.17	80593.79	113206.1			
300	2029.684	9907.367	24765.05	45925.1	70610.79	96369.01			
400	1834.036	8623.595	20683.51	36296.79	52418.73	66400.23			
500	1483.854	6391.201	13908.57	22825.32	32638.05	42404.47			
600	1105.23	4636.832	10426.16	17949.7	26534.07	35558.14			

Πίνακας 5. 7: Ισχύς σε W για την διάταξη με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 50mm.

Για παράδειγμα, για να υπολογίσουμε την τιμή της μεταφερόμενης ισχύος για αριθμό ελιγμάτων ίσο με 3 και διάμετρο τρύπας φερρίτη ίση με 0mm κάνουμε τα εξής: $10866.05 - 2186.57 \quad 4 - 2$

$$\frac{0866.05 - 2186.57}{x - 2186.57} = \frac{4 - 2}{3 - 2} \Rightarrow x = 6526.3W$$

Κάνοντας τα ίδια και για τα υπόλοιπα στοιχεία του πίνακα, παίρνουμε ολοκληρωμένο τον πίνακα ισχύος αυτής της διάταξης.

 Η τιμή των 15kW, για την παραπάνω διάταξη, εντοπίζεται σε δέκα σημεία στον πίνακα της ισχύς, όπως φαίνεται στο Σχήμα 5.3:

Διάμετρος																
τρύπας						P(W)										
φερρίτη	1	2	3	4		5		6		7		8	9	10	11	12
0	1093.3	2186.6	6526.3	10866.0	15000	19349.9		27833.7		40415.1		52996.6	68942.0	84887.5	103002.8	121118.1
100	1139.6	2179.2	6500.7	10822.2	15000	19263.1		27704.0		40215.4		52726.8	68539.2	84351.6	102479.0	120606.3
200	1166.9	2133.9	6340.6	10547.3	15000	18705.3		26863.2		38858.2		50853.2	65723.5	80593.8	96899.9	113206.1
300	1164.8	2029.7	5968.5	9907.4	15000	17336.2		24765.1		35345.1		45925.1	58267.9	70610.8	83489.9	96369.0
						15000										
400	1117.0	1834.0	5228.8	8623.6		14653.6	15000	20683.5		28490.2		36296.8	44357.8	52418.7	59409.5	66400.2
))					×			15000				97		3		
500	991.9	1483.9	3937.5	6391.2		10149.9		13908.6	15000	18366.9		22825.3	27731.7	32638.0	37521.3	42404.5
										15000						
600	852.6	1105.2	2871.0	4636.8		7531.5		10426.2		14187.9	15000	17949.7	22241.9	26534.1	31046.1	35558.1

Σχήμα 5. 3: Σημεία στα οποία εμφανίζεται η ισχύς των 15kW.

- Από αυτά τα σημεία αυτά κρατάμε μόνο όσα αντιστοιχούν σε ακέραιο αριθμό ελιγμάτων, αφού η διάταξη εκ κατασκευής απαιτεί μόνο ακέραιο αριθμό ελιγμάτων. Σ' αυτήν την περίπτωση έχουμε μόνο τρία τέτοια σημεία και είναι σημειωμένα με κίτρινο χρώμα.
- Για το ένα από αυτά τα σημεία ξέρουμε ότι χρειάζονται 6 ελίγματα και ψάχνουμε την διάμετρο της τρύπας φερρίτη. Από γραμμική παρεμβολή έχουμε:

$$\frac{20683.51 - 13908.57}{15000 - 13908.57} = \frac{500 - 400}{500 - x} \Rightarrow x = 483.89mm$$

 Αφού κάνουμε την ίδια διαδικασία και για τα υπόλοιπα σημεία, ο πίνακας που προκύπτει είναι:

Αριθμός ελιγμάτων	Διάμετρος τρύπας φερρίτη(mm)				
5	387.1				
6	483.89				
7	580.57				

Πίνακας 5. 8: Τρόποι μεταφοράς 15kW με διάμετρο φερρίτη 60 εκατοστών και διάκενο 5 εκατοστών.

Επομένως για τη μεταφορά ισχύος ίσης με 15kW καταλήγουμε στον παραπάνω πίνακα. Παρατηρούμε ότι η ζητούμενη ισχύς μπορεί να μεταφερθεί με 5, 6 ή 7 ελίγματα με διαφορετική διάμετρο τρύπας φερρίτη κάθε φορά. Παρατηρούμε ότι για 7 ελίγματα η ζητούμενη ισχύς είναι δυνατό να μεταφερθεί με μία διάμετρο τρύπας φερρίτη ίση με 577.79mm, σχεδόν δηλαδή με μηδενική χρήση φερρίτη: Ο όγκος φερρίτη που χρησιμοποιείται σε αυτή την περίπτωση είναι: 108106.4mm³. Η χρήση φερρίτη που απαιτείται σε κάθε περίπτωση δίνεται στο Διάγραμμα 5. 13. Από το διάγραμμα αυτό βλέπουμε ότι για την ίδια μεταφερόμενη ισχύ ο όγκος φερρίτη που απαιτείται, μειώνεται καθώς αυξάνεται ο αριθμός των ελιγμάτων. Αν και για 7 ελίγματα είναι δυνατό να επιτύχουμε μεταφορά ισχύος ίση με 15kW, με σχεδόν μηδενική χρήση φερρίτη, το ίδιο αποτέλεσμα μπορεί να επιτευχθεί και με μικρότερο αριθμό ελιγμάτων αλλά με μεγαλύτερη χρήση φερρίτη. Ανάλογα με τις απαιτήσεις σε φερρίτη ή αριθμό ελιγμάτων, ο οποίος αριθμός καθορίζει και το μήκος των καλωδίων litz που απαιτούνται για τη διάταξη, είναι δυνατό να επιλέξουμε την κατάλληλη διάταξη. Για παράδειγμα, αν ενδιαφέρει μία διάταξη με όσο το δυνατό λιγότερο αριθμό ελιγμάτων (για λόγους περιορισμού του αναπτυσσόμενου πεδίου και του κόστους λόγω του μήκους καλωδίων Litz) αρκεί η επιλογή μίας διάταξης με 5 ελίγματα και διάμετρο τρύπας φερρίτη ίσης με 387.1mm. Η διάταξη στην οποία καταλήγουμε επομένως σε αυτή την περίπτωση για τη μεταφορά μίας ισχύος ίσης με 15kW με μία συνολική διάμετρο ίση με 0.6 μέτρα φαίνεται στο Σχήμα 5.4.

Διάγραμμα 5. 13: Απαιτούμενος όγκος φερρίτη για τον αντίστοιχο αριθμό ελιγμάτων.

Σχήμα 5. 4: Διάταξη με την οποία μεταφέρεται 15kW ισχύς.

5.2 Εφαρμογή

Εξετάζουμε τη λειτουργία του εργαλείου που αναπτύχθηκε σε μία σειρά περιπτώσεων που περιγράφονται στη συνέχεια:

- Περίπτωση Α: Μεταφορά 15kW με διάμετρο διάταξης ίσης με 400mm: Στην εφαρμογή αυτή θα εξετάσουμε τη διάταξη εκείνη η οποία δύναται να μεταφέρει μία ισχύ ίση με 15kW, αλλά περιορίζοντας τώρα τη διάμετρο στα 400mm. Στην περίπτωση αυτή το διάκενο θεωρείται ίσο με 50mm.
- Περίπτωση Β:
 - Υποπερίπτωση Ι: Στην εφαρμογή αυτή θέλουμε και πάλι τη μεταφορά ισχύος ίση με 15kW με μία διάταξη διαμέτρου ίσης με 0.6 μέτρα αλλά αυτή τη φορά σε ένα διάκενο ίσο με 100mm.
 - Υποπερίπτωση ΙΙ: Για να εξετάσουμε την επίδραση του διακένου στη μεταφερόμενη ισχύ αναζητούμε τη διάταξη διαμέτρου ίσης με 0.4 μέτρα που είναι δυνατό να μεταφέρει μία ισχύ 15kW σε ένα διάκενο ίσο με 100mm.
- Περίπτωση Γ: Στην εφαρμογή αυτή θα εξετάσουμε γενικότερα την επίδραση του μεγέθους της διάταξης (όγκος φερρίτη και εξωτερική διάμετρος) αλλά και του διακένου στη δυνατότητα μεταφοράς ισχύος. Για το λόγο αυτό αναζητούνται εκείνες οι διατάξεις με ικανότητα μεταφοράς ισχύος ίσης με 5kW, 15kW και 30kW, με τη χρήση διατάξεων εξωτερικής διαμέτρου ίσης με 400mm ή 600mm σε ένα διάκενο 50mm ή 100mm.

5.2.1 Περίπτωση Α

Χρησιμοποιώντας το εργαλείο που αναπτύξαμε αναζητούμε τα χαρακτηριστικά μίας διάταξης επαγωγικής φόρτισης με εξωτερική διάμετρο 400mm που είναι ικανή να μεταφέρει 15kW, σε ένα διάκενο 50mm. Αυτό επιτυγχάνεται επιλέγοντας τα ακόλουθα χαρακτηριστικά για τον αριθμό ελιγμάτων και την τρύπα του φερρίτη:

- 1. N=7 και D=111.97mm
- 2. N=8 και D=216.69mm
- 3. N=9 και D=249.74mm
- 4. N=10 και D=273.5mm
- 5. N=11 και D=287.6mm
- 6. N=12 και D=299.88mm

Ο όγκος φερρίτη που χρησιμοποιείται ανάλογα με τον αριθμό των ελιγμάτων δίνεται στο Διάγραμμα 5. 14. Επίσης, εδώ διακρίνουμε ότι καθώς αυξάνεται ο αριθμός ελιγμάτων, μειώνεται η ποσότητα φερρίτη που χρειαζόμαστε για να μεταφέρουμε την συγκεκριμένη ισχύ.

Διάγραμμα 5. 14: Απαιτούμενος όγκος φερρίτη πρωτεύοντος – Αριθμός ελιγμάτων, για εξωτερική διάμετρο φερρίτη 400mm και διάκενο 50mm.

Αν θέλουμε να πετύχουμε ένα συμβιβασμό ως προς τη χρήση φερρίτη και καλωδίου Litz, μπορούμε να επιλέξουμε 9 ελίγματα και μία διάμετρο ίση με 249.87mm. Η διάταξη αυτή φαίνεται στο Σχήμα 5.5 και τα χαρακτηριστικά της είναι στον Πίνακας 5.9.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Αριθμός ελιγμάτων	9
Εξωτερική διάμετρος φερρίτη (mm)	400
Ακτίνα τρύπας φερρίτη (mm)	124.87
Εξωτερική ακτίνα τυλίγματος (mm)	300
Εσωτερική ακτίνα τυλίγματος (mm)	220
Διάκενο (mm)	100
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 9: Χαρακτηριστικά της διάταξης για μεταφορά 15kW με τον τρόπο No3 της περίπτωσης Α.

5.2.2 Περίπτωση Β

Στη συγκεκριμένη περίπτωση αναζητούμε τα χαρακτηριστικά μίας διάταξης επαγωγικής φόρτισης με εξωτερική διάμετρο 600mm και 400 mm (υποπερίπτωση Β-Ι και Β-ΙΙ αντίστοιχα) που είναι ικανές να μεταφέρουν 15kW σε ένα διάκενο 100mm.

5.2.2.1 Υποπερίπτωση Ι

Στη συγκεκριμένη υποπερίπτωση αναζητούμε τα χαρακτηριστικά μίας διάταξης επαγωγικής φόρτισης με εξωτερική διάμετρο 600mm που είναι ικανή να μεταφέρει 15kW, σε ένα διάκενο 100mm. Εφαρμόζοντας το εργαλείο που αναπτύχθηκε βλέπουμε ότι παίρνουμε 15kW επιλέγοντας τα ακόλουθα χαρακτηριστικά για τον αριθμό ελιγμάτων και την τρύπα του φερρίτη:

- 1. N=7 και D=241.38mm
- 2. N=8 και D=385.01mm
- 3. N=9 και D=445.5mm
- 4. N=10 και D=484.24mm
- 5. N=11 και D=541.99mm

Ο όγκος φερρίτη για αυτήν τη διάταξη και αυτές τις περιπτώσεις δίνεται στο παρακάτω διάγραμμα:

Διάγραμμα 5. 15: Απαιτούμενος όγκος φερρίτη ανάλογα με τον αριθμό των ελιγμάτων για τη διάταξη με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 100mm.

Επιλέγοντας μία συμβιβαστική λύση μεταξύ του απαιτούμενου φερρίτη για την κατασκευή της διάταξης, αλλά και του μήκους των απαιτούμενων αγωγών, επιλέγουμε έναν αριθμό ελιγμάτων ίσο με 9 και μία τρύπα φερρίτη ακτίνας 222.75mm (Σχήμα 5. 6). Τα υπόλοιπα χαρακτηριστικά φαίνονται στον Πίνακας 5. 10.

	ΠΡΩΤΕΥΟΝ - ΔΕΥΤΕΡΕΥΟΝ
Πάχος φερρίτη (mm)	6
Αριθμός ελιγμάτων	9
Εξωτερική διάμετρος φερρίτη (mm)	600
Ακτίνα τρύπας φερρίτη (mm)	222.75
Εξωτερική ακτίνα τυλίγματος (mm)	300
Εσωτερική ακτίνα τυλίγματος (mm)	220
Διάκενο (mm)	100
Συχνότητα (Hz)	20000
I _b (A)	50

Πίνακας 5. 10: Χαρακτηριστικά της διάταξης για μεταφορά 15kW με τον τρόπο Νο2 της περίπτωσης Β-Ι.

Σχήμα 5. 6: Διάταξη για 15kW με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 100mm.

5.2.2.2 Υποπερίπτωση ΙΙ

Στην υποπερίπτωση αυτή αναζητούμε και πάλι τα χαρακτηριστικά μίας διάταξης επαγωγικής φόρτισης που είναι ικανή να μεταφέρει 15kW, σε ένα διάκενο ίσο με 100mm, αλλά εξετάζουμε μία διάταξη μικρότερης εξωτερικής διαμέτρου (400mm). Εφαρμόζοντας το εργαλείο που αναπτύχθηκε. παρατηρούμε ότι δεν είναι δυνατό να μεταφέρουμε 15kW σε ένα διάκενο 100mm με μία διάταξη διαμέτρου ίσης με 0.4 μέτρα αφού η μέγιστη ισχύς που μπορεί να μεταφέρει αυτή η διάταξη (ανεξαρτήτου αριθμού ελιγμάτων και τρύπας φερρίτη)είναι 11285.91W.

Παρατηρούμε δηλαδή ότι το διάκενο παίζει καθοριστικό ρόλο στη μεταφερόμενη ισχύ. Αν και με μία εξωτερική διάμετρο διάταξης ίση με 400mm είναι δυνατό να μεταφέρουμε μία ισχύ 15kW σε ένα διάκενο ίσο με 50mm, (Εφαρμογή Α), κάτι τέτοιο δεν είναι δυνατό να γίνει με ένα διάκενο 100mm. Στο διάκενο αυτό είναι απαραίτητο να επιλέξουμε μία μεγαλύτερου μεγέθους διάταξη.

5.2.3 Περίπτωση Γ

Στην περίπτωση αυτή θα εξετάσουμε τη δυνατότητα μεταφοράς ισχύος 5kW, 15kW και 30kW. Σε κάθε περίπτωση θα εξετάζουμε τόσο το διάκενο μεταξύ πρωτεύοντος και

δευτερεύοντος (50 ή 100 mm), αλλά και διατάξεις διαφορετικής διαμέτρου (40 ή 60 εκατοστών).

Μεταφορά Ισχύος 15kW

Σχετικά με τη μεταφορά ισχύος 15kW είδαμε ότι είναι δυνατό να επιτευχθεί με τη χρήση διατάξεων διαμέτρου 40 και 60 εκατοστών σε ένα διάκενο 5 εκατοστών. Παρατηρούμε στο Διάγραμμα 5. 16 ότι για να μεταφέρουμε την ίδια ισχύ με μία διάταξη μικρότερης διαμέτρου θα πρέπει να αυξήσουμε τόσο τον αριθμό ελιγμάτων, αλλά και να μειώσουμε την τρύπα του φερρίτη στο εσωτερικό της διάταξης.

Για ένα διάκενο 10 εκατοστών η μεταφορά 15kW ισχύος είναι δυνατό να πραγματοποιηθεί με μία διάταξη διαμέτρου 60 εκατοστών, αλλά όχι με μία μικρότερη διάταξη. Παρατηρούμε βέβαια ότι για να επιτευχθεί η μεταφορά της ίδιας ισχύος των 15kW σε ένα μεγαλύτερο διάκενο (διατηρώντας την εξωτερική διάμετρο σταθερή) θα πρέπει να χρησιμοποιήσουμε περισσότερα ελίγματα αλλά και να αυξήσουμε τον όγκο του φερρίτη που χρησιμοποιούμε (Διάγραμμα 5. 17). Πιο συγκεκριμένα για τη μεταφορά ισχύος 15kW στο διάκενο των 50 χιλιοστών παρατηρούμε ότι αρκούν 7 ελίγματα με μία σχεδόν μηδενική χρήση φερρίτη. Αντίθετα για τη μεταφορά ισχύος 15kW στο διάκενο των 20 χιλιοστών με 7 ελίγματα θα πρέπει να αυξηθεί η χρήση φερρίτη κατά 1215.3%.

Διάγραμμα 5. 18: Εξάρτηση του όγκου του απαιτούμενου φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 15kW με διάταξη διαμέτρου 60 εκατοστών σε διάκενο 50 και 100 χιλιοστών.

<u>Μεταφορά Ισχύος 5kW</u>

Εφαρμόζοντας το εργαλείο που αναπτύξαμε για τη μεταφορά ισχύος 5 kW και διατάξεις διαμέτρου 400 και 600 mm για διάκενο 50 και 100 mm παρατηρούμε ότι η ισχύς των 5kW μπορεί να μεταφερθεί με τους εξής τρόπους:

Εξωτερική διάμετρος φερρίτη 600mm και διάκενο 50mm	
N=3	D=417.72
N=4	D=579.3
Εξωτερική διάμετρος φερρίτη 600mm και διάκενο 100mm	
N=5	D=444.76
N=6	D=548.8
Εξωτερική διάμετρος φερρίτη 400mm και διάκενο 50mm	
N=5	D=283.4
N=6	D=362.3
Εξωτερική διάμετρος φερρίτη 400mm και διάκενο 100mm	
N=8	D=199.8
N=9	D=238.78
N=10	D=266.83
N=11	D=283.27
N=12	D=297.49

Από το Διάγραμμα 5. 19 παρατηρούμε ότι μπορούμε να μεταφέρουμε 5kW ισχύ με εξωτερική διάμετρο φερρίτη ίση με 400mm και 600mm. Η διαφορά μεταξύ αυτών των δύο διατάξεων είναι ότι για να μεταφερθεί η ισχύς των 5kW με τη διάμετρο των 400 χιλιοστών θα πρέπει να έχουμε μικρότερη τρύπα φερρίτη και περισσότερα τυλίγματα σε σχέση με τη διάταξη εξωτερικής διαμέτρου φερρίτη 600mm.

Διάγραμμα 5. 19: Εξάρτηση της τρύπας του φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 5kW με διατάξεις διαμέτρου 40 και 60 εκατοστών σε ένα διάκενο 50 χιλιοστών.

Επίσης, στο Διάγραμμα 5. 20 διαπιστώνουμε ότι για να μεταφερθεί η ίδια τιμή ισχύος των 5kW με διάταξη εξωτερικής διαμέτρου φερρίτη 600mm, αλλά σε ένα μεγαλύτερο διάκενο ίσο με 100mm, θα πρέπει να αυξηθεί ο αριθμός των ελιγμάτων, ενώ η διάμετρος της τρύπας φερρίτη παραμένει στα ίδια επίπεδα. Στη διάταξη με διάμετρο 40 εκατοστών (Διάγραμμα 5. 21), βλέπουμε ότι πέρα από την αύξηση του αριθμού των ελιγμάτων, χρειάζεται και μείωση της τρύπας φερρίτη για να επιτευχθεί η μεταφορά της

ισχύς στο μεγαλύτερο διάκενο με την ίδια εξωτερική διάμετρο φερρίτη. Έτσι, ο όγκος φερρίτη αυξάνεται (Διάγραμμα 5.22).

Διάγραμμα 5. 20: Εξάρτηση της τρύπας του φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 5kW με διάταξη διαμέτρου 60 εκατοστών σε διάκενο 50 και 100 χιλιοστών.

Διάγραμμα 5. 21: Εξάρτηση της τρύπας του φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 5kW με διάταξη διαμέτρου 40 εκατοστών σε διάκενο 50 και 100 χιλιοστών.

Διάγραμμα 5. 22: Απαιτούμενος όγκος φερρίτη για διάταξη με διάμετρο 400mm ανάλογα με τον αριθμό των ελιγμάτων για διάκενο 50 και 100mm.

<u>Μεταφορά Ισχύος 30kW</u>

Εφαρμόζοντας το εργαλείο που αναπτύξαμε για τη μεταφορά ισχύος 30 kW και διατάξεις διαμέτρου 400 και 600 mm για διάκενο 50 και 100 mm παρατηρούμε ότι η ισχύς των 30kW μπορεί να μεταφερθεί με τους εξής συνδυασμούς:

Εξωτερική διάμετρος φερρίτη 600mm και διάκενο 50mm	
N=7	D=377.97
N=8	D=446.74
N=9	D=486.36
N=10	D=543.22
Εξωτερική διάμετρος φερρίτη 600mm και διάκενο 100mm	
N=10	D=264.16
N=11	D=340.77
N=12	D=378.4
Εξωτερική διάμετρος φερρίτη 400mm και διάκενο 50mm	
N=11	D=120.73
N=12	D=154.4

Βλέπουμε ότι είναι αδύνατη η μεταφορά 30kW με τη διάταξη που η διάμετρος φερρίτη είναι 400mm και το διάκενο 100mm.

Για ένα διάκενο ίσο με 50mm, παρατηρούμε ότι για να μεταφέρουμε ισχύ 30kW με διάταξη διαμέτρου 40 εκατοστών (Διάγραμμα 5. 23), θα πρέπει να μειώσουμε κατά πολύ την τρύπα του φερρίτη σε σχέση με τη διάταξη διαμέτρου 60 εκατοστών και να έχουμε μεγάλο αριθμό ελιγμάτων.

Διάγραμμα 5. 23: Εξάρτηση της τρύπας του φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 30kW με διατάξεις διαμέτρου 40 και 60 εκατοστών σε ένα διάκενο 50 χιλιοστών.

Διάγραμμα 5. 24: Εξάρτηση της τρύπας του φερρίτη από τον αριθμό των ελιγμάτων για τη μεταφορά 30kW με διάταξη διαμέτρου 60 εκατοστών σε διάκενο 50 και 100 χιλιοστών.

5.2.4 Συμπεράσματα εφαρμογών

Από το Διάγραμμα 5. 25 μπορούμε να εξάγουμε συμπεράσματα για την διάμετρο της τρύπας της διάταξης και τον αριθμό ελιγμάτων για τις τρεις τιμές ισχύος που εξετάσαμε. Παρατηρούμε λοιπόν, ότι για μια διάταξη με εξωτερική διάμετρο φερρίτη 600mm και διάκενο 50mm, όσο πιο μικρή είναι η τιμή ισχύος που θέλουμε να μεταφέρουμε, τόσο μικρότερο αριθμό ελιγμάτων χρειαζόμαστε στη διάταξη. Απ' την άλλη μεριά, η διάμετρος της τρύπας του φερρίτη κυμαίνεται στα ίδια επίπεδα και για τις τρεις τιμές ισχύος.

Διάγραμμα 5. 25: Σύγκριση διαμέτρου τρύπας φερρίτη και αριθμού ελιγμάτων για τιμές ισχύος 5, 15 και 30kW για διάταξη διαμέτρου 600mm και διακένου 50mm.

Από το Διάγραμμα 5. 26 για τη διάταξη με διάμετρο 40 εκατοστά, παρατηρούμε ότι για να μεταφέρουμε μία μεγαλύτερη ισχύ απαιτείται μικρότερη διάμετρος τρύπας φερρίτη καθώς και μεγαλύτερος αριθμός ελιγμάτων.

Διάγραμμα 5. 26: Σύγκριση διαμέτρου τρύπας φερρίτη και αριθμού ελιγμάτων για τιμές ισχύος 5, 15 και 30kW για διάταξη διαμέτρου 400mm και διακένου 50mm.

Παρατηρούμε επίσης ότι ιδιαίτερα σημαντικό ρόλο στη μεταφορά ισχύος παίζει και το διάκενο στο οποίο αναμένεται να λειτουργεί η διάταξη. Για ένα μικρό διάκενο 5 εκατοστών η διάταξη εξωτερικής διαμέτρου είναι δυνατό να μεταφέρει μία μέγιστη ισχύ ίση με 37 kW περίπου (Διάγραμμα 5. 27). Αντίθετα σε ένα διάκενο ίσο με 10 εκατοστά η διάταξη διαμέτρου 400mm μπορεί να μεταφέρει μία σημαντικά μικρότερη ισχύ που παρουσιάζει ένα μέγιστο στα 11 kW περίπου. Διατάξεις μεγαλύτερου μεγέθους, ωστόσο, μπορούν να μεταφέρουν ικανοποιητικά ποσά ισχύος ακόμα και σε ιδιαίτερα μικρά διάκενα: Από το Διάγραμμα 5. 28 βλέπουμε ότι η διάταξη εξωτερικής διαμέτρου 60 εκατοστών είναι δυνατό να μεταφέρει έως και 50kW περίπου σε ένα διάκενο ίσο με 5 εκατοστά. Επομένως, σε περίπτωση που ζητείται η μεταφορά μεγάλων ποσοτήτων ισχύος σε ιδιαίτερα μικρά διάκενα είναι απαραίτητη η χρήση μεγαλύτερου μεγέθους διατάξεων.

Διάγραμμα 5. 27: Μέγιστη μεταφορά ισχύος για διάταξης εξωτερικής διαμέτρου 400 και 600mm σε ένα διάκενο ίσο με 5 εκατοστά.

Διάγραμμα 5. 28: Μέγιστη μεταφορά ισχύος για διάταξης εξωτερικής διαμέτρου 400 και 600mm σε ένα διάκενο ίσο με 10 εκατοστά.

6° Κεφάλαιο: Επίδραση της Μετατόπισης στη Μεταφερόμενη Ισχύ

6.1 Εισαγωγή

Τα ηλεκτρικά οχήματα για να φορτίσουν την μπαταρία τους με την επαγωγική μέθοδο, πρέπει να σταθμεύσουν πάνω από το πρωτεύον pad της διάταξης του φορτιστήπου είναι θαμμένο στο έδαφος- ώστε να συνδεθεί επαγωγικά με το δευτερεύον - που είναι εγκατεστημένο στο όχημα - και να αρχίσει η φόρτιση. Ωστόσο, αναμένεται μία μετατόπιση κατά το οριζόντιο επίπεδο, μεταξύ φορτιστή και της διάταξης που βρίσκεται στο όχημα, η οποία ενδέχεται να συμβάλλει αρνητικά στην μεταφορά ισχύος. Στο κεφάλαιο αυτό θα μελετηθεί η επίδραση της μετατόπισης μεταξύ πρωτεύοντος και δευτερεύοντος στη μέγιστη δυνατή μεταφερόμενη ισχύ για την κυκλική διάταξη που μελετάται.

Τα δύο πλαίσια που μελετάμε είναι κυκλικά, κάτι που σημαίνει ότι έχουν παντού τα ίδια χαρακτηριστικά και έτσι δεν παίζει ρόλο προς τα πού θα μετατοπιστεί το δευτερεύον. Για παράδειγμα, είτε μετατοπιστεί προς τα θετικά του άξονα Υ, είτε προς τα αρνητικά, το αποτέλεσμα θα είναι το ίδιο (Σχήμα 6. 1). Σ' αυτό το κεφάλαιο θα εξετάσουμε πως επιδρά η μετατόπιση του δευτερεύοντος πλαισίου, κατά τον θετικό άξονα Υ, στην μεταφορά ισχύος. Στα επόμενα υποκεφάλαια, θα πάρουμε μετρήσεις για διάφορες τιμές μετατόπισης και θα παραθέσουμε τα αντίστοιχα αποτελέσματα και συμπεράσματα.

Σχήμα 6. 1: Σύστημα αξόνων στο Ansoft Maxwell.

6.2 Επίδραση της μετατόπισης στη μεταφερόμενη ισχύ

Σ' αυτό το κεφάλαιο θα εξετάσουμε την μεταφερόμενη ισχύ για διάφορες μετατοπίσεις και για διάφορες τιμές διακένου. Στο προηγούμενο κεφάλαιο είδαμε ότι με μία διάταξη εξωτερικής διαμέτρου 600 mm και με διάμετρο τρύπας φερρίτη στα 100mm (τα χαρακτηριστικά της διάταξης φαίνονται στον (Πίνακας 6.1) είναι δυνατό να μεταφερθεί μία ισχύς ίση με 13181.7VA για διάκενο ίσο με 50mm. Για αυτή τη διάταξη πραγματοποιούνται προσομοιώσεις σε διαφορετική μετατόπιση κάθε φορά ώστε να εξεταστεί η επίδραση της μετατόπισης στη μεταφορά ισχύος. Τα αποτελέσματα των προσομοιώσεων φαίνονται στον ακόλουθο

	Διάκενο 5cm
Μετατόπιση (cm)	Pout(VA)
-25	571,00
-20	1352,91
-15	3130,81
-10	6285,61
-5	10429,52
0	12990,80
5	10429,52
10	6285,61
15	3130,81
20	1352,91
25	571,00

Πίνακας 6.2.

Στο Διάγραμμα 6. 1 παρατηρούμε ότι η καμπύλη της ισχύος είναι σαν μια «καμπάνα». Για την ίδια μετατόπιση στα αρνητικά και στα θετικά του άξονα των Υ, η ισχύς που μεταφέρεται είναι η ίδια, λόγω συμμετρίας της διάταξης. Η μέγιστη ισχύς παρατηρείται για μηδενική μετατόπιση και καθώς μεγαλώνει η μετατόπιση, μειώνεται η ισχύς που μεταφέρεται. Μάλιστα για μετατόπιση μεγαλύτερη από 10 εκατοστά η ισχύς που μεταφέρεται μειώνεται περισσότερο από 50% σε σχέση με τη μέγιστη δυνατή μεταφερόμενη ισχύ (σε μηδενική μετατόπιση). Για μετατόπιση 25cm, η ισχύς παίρνει σχεδόν μηδενική τιμή.

Εξωτερική διάμετρος φερρίτη	600mm
Διάμετρος τρύπας φερρίτη	100mm
Εξωτερική διάμετρος τυλίγματος χαλκού	600mm
Αριθμός ελιγμάτων	8
lp	50A

Πίνακας 6. 1: Χαρακτηριστικά διάταξης του κεφαλαίου 6.3.

	Διάκενο 5cm
Μετατόπιση (cm)	Pout(VA)
-25	571,00
-20	1352,91

-15	3130,81
-10	6285,61
-5	10429,52
0	12990,80
5	10429,52
10	6285,61
15	3130,81
20	1352,91
25	571,00

Πίνακας 6. 2: Αποτελέσματα προσομοιώσεων για διάκενο 5cm.

Διάγραμμα 6. 1: Ισχύς και μετατόπιση για διάκενο 5cm.

6.3 Επίδραση της μετατόπισης σε συνάρτηση με το διάκενο στη μεταφερόμενη ισχύ

Είδαμε προηγουμένως ότι η μετατόπιση έχει σημαντική επίδραση στη μέγιστη μεταφερόμενη ισχύ που δύναται να μεταφερθεί με μία διάταξη επαγωγικής φόρτισης. Ωστόσο, μελετήσαμε μόνο την περίπτωση ενός διακένου ίσου με 5 εκατοστά. Στη βιβλιογραφία αναφέρεται σημαντική εξάρτηση της μετατόπισης σε συνάρτηση με το διάκενο για διατάξεις επαγωγικής φόρτισης [17]. Εκτελούμε μία σειρά προσομοιώσεων για μετατοπίσεις 0cm, 5cm, 10cm, 15cm, 20cm και 25cm. ενώ οι τιμές διακένου που θα εξετάζονται είναι 10cm, 15cm, 20cm και 25cm. Στο Σχήμα 6. 2 φαίνονται κάποιες περιπτώσεις που μελετάμε.

Σχήμα 6. 2: Το μοντέλο που μελετάμε με (α) μετατόπιση 5cm και διάκενο 5cm, (β) μετατόπιση 5cm και διάκενο 25cm, (γ) μετατόπιση 10cm και διάκενο 5cm, (δ) μετατόπιση 10cm και διάκενο 25cm και(ε) μετατόπιση 15cm και διάκενο 5cm.

Εκτελώντας τα παραπάνω πειράματα στο υπολογιστικό πρόγραμμα Maxwell, παίρνουμε τους παρακάτω πίνακες με τα αποτελέσματα:

	Μετατόπιση 0cm			Με	τατόπιση 5	Scm
ΔIAKENO(cm)	L1(μΗ)	L2(µH)	Μ(μH)	L1(μΗ)	L2(µH)	M(μH)
5	96.036	96.038	63.018	95.6	95.393	56.275
10	85.787	85.758	37.635	85.227	84.48	34.27
15	82.321	82.331	24.589	82.454	82.457	23.448
20	81.046	81.08	16.821	81.226	81.171	16.192
25	80.533	80.539	11.795	80.569	80.597	11.398
	Μετατόπιση 10cm			Μετατόπιση 15cm		
ΔIAKENO(cm)	L1(μΗ)	L2(µH)	M(μH)	L1(μΗ)	L2(µH)	M(μH)
5	96.89	96.855	44.021	97.58	97.479	31.168
10	86.548	86.516	29.562	87.187	87.21	22.596
15	82.872	82.843	20.443	83.157	83.022	16.321
20	81.354	81.294	14.41	81.537	81.458	11.854
25	80.691	80.603	10.271	80.721	80.61	8.607
	Μετ	ατόπιση 2	0cm	Μετ	ατόπιση 2	5cm

ΔIAKENO(cm)	L1(μΗ)	L2(µH)	Μ(μH)	L1(μH)	L2(μH)	Μ(μ Η)
5	97.545	97.301	20.47	98.083	98.056	13.35
10	87.422	87.202	15.723	88.423	88.412	10.912
15	83.464	83.222	11.928	84.564	84.582	8.8401
20	81.659	81.509	8.929	82.839	82.844	7.1053
25	80.942	80.694	6.6709	82.061	82.056	5.6819

Πίνακας 6. 3: Αποτελέσματα μετρήσεων.

Χρησιμοποιώντας τον τύπο 3.1 και τις τιμές των αυτεπαγωγών και της αμοιβαίας επαγωγής του παραπάνω πίνακα, παίρνουμε την μεταφερόμενη ισχύ οπότε και κατασκευάζουμε τον επόμενο πίνακα.

Μετατόπιση:	0cm	5cm	10cm	15cm	20cm	25cm
ΔIAKENO (cm)	Pout (VA)	Pout (VA)	Pout (VA)	Pout (VA)	Pout (VA)	Pout (VA)
5	12990.8	10429.52	6285.613	3130.81	1352.908	571.0028
10	5188.706	4367.412	3173.373	1839.275	890.6237	423.1042
15	2307.11	2094.758	1584.832	1007.976	537.0899	290.2594
20	1096.326	1014.729	802.4525	541.9335	307.2911	191.4492
25	542.6746	506.3937	411.1726	288.7118	173.2517	123.6023

Πίνακας 6. 4: Ισχύς σε VA για κάθε μετατόπιση και διάκενο.

Στη συνέχεια, φτιάχνουμε τον πίνακα που μας δείχνει τη μεταβολή της ισχύος ΔΡ μεταξύ δύο τιμών διακένων (gapi και gapj), για κάθε μετατόπιση:

$$\Delta P_{i-j} = P_{gap_i} - P_{gap_j}$$
, gapi < gapj

 $\Delta P_{i-j} = P_{gap_i} - P_{gap_j}$, gapi < gapj Όπου P_{gap_i} και P_{gap_j} είναι η μεταφερόμενη ισχύς για το διάκενο gap_i και gap_j.

Στην πρώτη στήλη του πίνακα έχουμε τις τιμές του διακένου, μεταξύ των οποίων γίνεται η σύγκριση της ισχύος. Οι υπόλοιπες στήλες δίνουν την διαφορά της ισχύος που αντιστοιχεί σ' αυτές τις τιμές διακένου, για κάθε μετατόπιση που εξετάστηκε.

	x=0cm	x=5cm	x=10cm	x=15cm	x=20cm	x=25cm
Δgap	ΔΡ(VA)	ΔP(VA)	ΔP(VA)	ΔP(VA)	ΔΡ(VA)	ΔΡ(VA)
5-10	7802.097	6062.109	3112.24	1291.535	462.2843	147.8986
5-15	10683.69	8334.763	4700.781	2122.834	815.8181	280.7434
5-20	11894.48	9414.792	5483.16	2588.876	1045.617	379.5535
5-25	12448.13	9923.128	5874.44	2842.098	1179.656	447.4004
10-15	2881.597	2272.654	1588.54	831.2992	353.5338	132.8448
10-20	4092.38	3352.683	2370.92	1297.342	583.3326	231.655
10-25	4646.031	3861.018	2762.2	1550.563	717.372	299.5019
15-20	1210.783	1080.03	782.3798	466.0426	229.7988	98.81015
15-25	1764.435	1588.365	1173.66	719.2642	363.8382	166.657
20-25	553.6515	508.335	391.28	253.2217	134.0394	67.8469

Πίνακας 6. 5: Διαφορά ισχύος μεταξύ δύο διακένων, ανά μετατόπιση.

Από τον πίνακα φαίνεται ότι καθώς μεταφερόμαστε από ένα μικρότερο διάκενο "i" σε ένα μεγαλύτερο διάκενο "j", η διαφορά ΔΡ είναι πάντα μεγαλύτερη του μηδενός, δηλαδή Pi>Pj. Αυτό συμβαίνει για οποιαδήποτε τιμή της μετατόπισης εξετάζουμε. Μπορούμε να συμπεράνουμε επομένως ότι καθώς μεταφερόμαστε σε ένα μεγαλύτερο διάκενο, εξετάζοντας πάντα την ίδια μετατόπιση, η μεταφερόμενη ισχύς θα μειώνεται. Αυτό άλλωστε φαίνεται και από το **Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν** βρέθηκε.

Διάγραμμα 6. 2: Ισχύς(VA) - Μετατόπιση(cm) ανά διάκενο.

Παρατηρούμε στο Διάγραμμα 6.2 ότι η μεγαλύτερη ισχύς είναι δυνατό να μεταφερθεί σε ένα διάκενο ίσο με 5 εκατοστά. Πηγαίνοντας σε διάκενο ίσο με 10 εκατοστά η ισχύς που είναι δυνατό να μεταφερθεί με μηδενική μάλιστα μετατόπιση μειώνεται κατά 60% περίπου. Η διαφορά είναι ακόμα μεγαλύτερη αν μεταφερθούμε σε ένα διάκενο ίσο με 25 εκατοστά όπου παρατηρούμε μία μείωση ισχύος ίση με 96% περίπου. Είναι σαφές επομένως ότι για εφαρμογές μεγαλύτερης μεταφοράς ισχύος ενδείκνυται η λειτουργία σε μικρότερα διάκενα. Ωστόσο παρατηρούμε από το Διάγραμμα 6.2 ότι σε μεγαλύτερα διάκενα η ισχύς μεταβάλλεται λιγότερο έντονα με την μετατόπιση. Για ένα διάκενο ίσο με 5 εκατοστά, η ισχύς μειώνεται κατά 19.7% όταν μεταφερόμαστε από μία μηδενική μετατόπιση σε μία μετατόπιση 5 εκατοστών, ενώ για ένα διάκενο 20 εκατοστών η αντίστοιχη μείωση είναι ίση με 7.44%. Στο διάκενο των 5 εκατοστών η μείωση ισχύος είναι ακόμα μεγαλύτερη καθώς η μετατόπιση γίνεται μεγαλύτερη. Μάλιστα για μία μετατόπιση ίση με 15 εκατοστά η μείωση της ισχύος είναι ίση με 75.9% (σε σύγκριση με μηδενική μετατόπιση). Αντίθετα η αντίστοιχη μετατόπιση για το διάκενο των 20 εκατοστών είναι ίση με 50.57%. Είναι επομένως φανερό για μικρά διάκενα ότι ενώ η μεταφερόμενη ισχύς που δύναται να μεταφερθεί είναι μεγαλύτερη, η εξάρτηση της ισχύος από την μετατόπιση είναι ιδιαίτερα έντονη. Για το λόγο αυτό σε διατάξεις επαγωγικής φόρτισης που εξασφαλίζουν τη μεταφορά μεγάλων ποσών ισχύος χρησιμοποιούνται ειδικά διαμορφωμένα συστήματα που καθορίζουν τη λειτουργία σε ένα μικρό διάκενο [42], αλλά επίσης εξασφαλίζουν και μία μικρή μετατόπιση μεταξύ πρωτεύοντος και δευτερεύοντος [43].

Αντίθετα σε μεγαλύτερα διάκενα η μεταφερόμενη ισχύς είναι μειωμένη, ωστόσο διατηρείται σχεδόν σταθερή σε οποιαδήποτε μετατόπιση. Φυσικά ιδιαίτερα μεγάλες μετατοπίσεις (μεγαλύτερες των 25 εκατοστών) οδηγούν σε μηδενική σχεδόν μεταφορά ισχύος, για οποιοδήποτε εξεταζόμενο διάκενο.

Κεφάλαιο 7: Συμπεράσματα και επεκτάσεις

7.1 Συμπεράσματα

Η επαγωγική φόρτιση βρίσκει εφαρμογή σε πολλούς τομείς της καθημερινότητας, βελτιώνοντας και καλυτερεύοντας τις ζωές των ανθρώπων. Πιο συγκεκριμένα, η επαγωγική φόρτιση ηλεκτρικού οχήματος, δύναται να κάνει αποδοτικότερη τη χρήση του ηλεκτρικού οχήματος, ώστε να γίνει πιο εύχρηστο προς τους χρήστες του, αλλά και περισσότερο αυτόνομο όσον αφορά τις αποστάσεις που μπορεί να διανύσει.

Στην διπλωματική αυτή μελετήσαμε την κυκλική διάταξη επαγωγικής φόρτισης για χρήση σε φόρτιση ηλεκτρικών οχημάτων. Η μαγνητοστατική μελέτη της διάταξης πραγματοποιήθηκε με το υπολογιστικό πρόγραμμα "MAXWELL". Αρχικά προσδιορίσθηκε η περιοχή του ρεύματος στην οποία δύναται να λειτουργεί η διάταξη επαγωγικής φόρτισης που μελετήσαμε, ώστε να αποφύγουμε τον κορεσμό που επέρχεται στα σιδηρομαγνητικά υλικά της διάταξης. Οι προσομοιώσεις που έγιναν έδειξαν ότι οι αυτεπαγωγές L1, L2 και η αμοιβαία επαγωγή Μ, μένουν ανεπηρέαστες από αυτό το φαινόμενο για ρεύματα μέχρι 1000Α. Επομένως η επιλογή ενός ρεύματος ίσο περίπου με 50Α αποτελεί μία ιδιαίτερα καλή επιλογή για τη διάταξη που μελετήθηκε.

Στη συνέχεια εξετάσθηκε η επιρροή των γεωμετρικών χαρακτηριστικών της διάταξης (εξωτερική διάμετρος, διάμετρος εσωτερικής τρύπας φερρίτη και πάχος φερρίτη) καθώς και των χαρακτηριστικών των τυλιγμάτων (αριθμός ελιγμάτων και θέση του τυλίγματος) στη μεταφερόμενη ισχύ. Μετά από σειρές προσομοιώσεων παρατηρείται ότι η μεταφορά της ισχύος επηρεάζεται κυρίως από την εξωτερική διάμετρο του φερρίτη και τη διάμετρο της τρύπας του φερρίτη, ενώ αντίθετα το πάχος του φερρίτη δε φαίνεται να επιδρά σημαντικά στη μεταφερόμενη ισχύ μεταξύ σταθμού και οχήματος. Σχετικά με τα χαρακτηριστικά των τυλιγμάτων, ο αριθμός ελιγμάτων φαίνεται να παίζει καθοριστικό ρόλο στη μεταφορά ισχύος, ενώ όσων αφορά τη σχετική θέση του τυλίγματος παρατηρείται ότι το τύλιγμα του χαλκού θα πρέπει να βρίσκεται στην πιο εξωτερική θέση που θα μπορούσε να είναι.

Αναπτύξαμε, ακόμη, μία διαδικασία μέσω της οποίας προσδιορίζουμε τα γεωμετρικά χαρακτηριστικά μίας διάταξης επαγωγικής φόρτισης για τη μεταφορά μίας συγκεκριμένης τιμής ισχύος. Το εργαλείο που αναπτύχθηκε δέχεται ως είσοδο τη ζητούμενη ισχύς την οποία καλείται να μεταφέρει η διάταξη, την επιθυμητή εξωτερική διάμετρο της διάταξης καθώς και το επιθυμητό διάκενο λειτουργίας και δίνει ως έξοδο τα πλήρη χαρακτηριστικά της διάταξης για τη μεταφορά της ζητούμενης ισχύος. Το εργαλείο αυτό εφαρμόσθηκε σε μία σειρά εφαρμογών για την εύρεση των κατάλληλων διατάξεων για τη μεταφορά διαφόρων τιμών ισχύος. Τα αποτελέσματα υποδεικνύουν ότι για διατάξεις συγκεκριμένης εξωτερικής διαμέτρου όταν απαιτούνται μεγάλες τιμές ισχύος χρειαζόμαστε περισσότερο όγκο φερρίτη αλλά και μεγαλύτερο αριθμό ελιγμάτων στα τυλίγματα της διάταξης (άρα και χρήση μεγαλύτερου όγκου χαλκού). Παρατηρούμε επίσης ότι ιδιαίτερα σημαντικό ρόλο στη μεταφορά ισχύος παίζει και το διάκενο στο οποίο αναμένεται να λειτουργεί η διάταξη, καταλήγοντας ότι σε περίπτωση που ζητείται η μεταφορά μεγάλων ποσοτήτων ισχύος σε ιδιαίτερα μικρά διάκενα είναι απαραίτητη η χρήση μεγάλου μεγέθους διατάξεων. Τέλος, μελετήσαμε την επίδραση της μετατόπισης στη μεταφερόμενη ισχύ μεταξύ σταθμού και οχήματος, αλλά και τη συμπεριφορά της διάταξης σε μετατοπίσεις διαφορετικών διακένων. Προσομοιώσεις που έγιναν έδειξαν ότι η ισχύς μειώνεται αρκετά καθώς αυξάνεται η μετατόπιση, ενώ την ίδια συμπεριφορά έχει και καθώς αυξάνεται το διάκενο. Παρατηρείται επίσης ότι σε μικρότερα διάκενα η ισχύς μεταβάλλεται έντονα με την μετατόπιση με αποτέλεσμα σημαντική μείωση της μεταφερόμενης ισχύος ακόμα και για πολύ μικρές μετατοπίσεις. Αντίθετα σε μεγαλύτερα διάκενα, αν και η μεταφερόμενη ισχύς είναι σημαντικά μειωμένη, είναι ωστόσο λιγότερο εξαρτώμενη από την μετατόπιση.

7.2 Επεκτάσεις

Κάποια θέματα τα οποία μπορούν να διερευνηθούν περαιτέρω είναι:

- Χρήση της κυκλικής διάταξης για τη μεταφορά ισχύος καθώς το όχημα κινείται. Η διάταξη που μελετήθηκε θα μπορούσε να χρησιμοποιηθεί για δυναμική φόρτιση ηλεκτρικών οχημάτων χρησιμοποιώντας ως μία βάση τα αποτελέσματα που παρουσιάζονται στο 6° κεφάλαιο. Η μετατόπιση του οχήματος που μελετήθηκε μπορεί να δώσει κάποια ενδεικτικά αποτελέσματα για την κίνηση του οχήματος πάνω από το φορτιστή, ωστόσο η μελέτη της δυναμικής φόρτισης είναι ένα ιδιαίτερα περίπλοκο πρόβλημα που αξίζει να μελετηθεί περαιτέρω.
- Εφαρμογή των αποτελεσμάτων της διπλωματικής για τη δημιουργία μίας πειραματικής διάταξης: Στο 5° κεφάλαιο δίνονται τα στοιχεία που απαιτούνται για την κατασκευή μίας γεωμετρίας με δεδομένα γεωμετρικά χαρακτηριστικά και με τις ακριβείς ιδιότητες των τυλιγμάτων που απαιτούνται, ώστε να μεταφερθεί μία ζητούμενη ισχύς. Τα στοιχεία αυτά μπορούν να χρησιμοποιηθούν, ώστε να κατασκευαστεί η αντίστοιχη διάταξη επαγωγικής μεταφοράς ενέργειας.
- Να μελετηθεί το κύκλωμα της αντιστάθμισης που θα συνδεθεί με την διάταξη που μελετήσαμε και πώς η αντιστάθμιση δύναται να επηρεάσει κάθε φορά τη μεταφερόμενη ισχύ.
- Μπορεί επίσης να μελετηθεί η επίδραση των διατάξεων ελέγχου στο πρωτεύον και/ή στο δευτερεύον στη μεταφερόμενη ισχύ αλλά και στη λειτουργία της συγκεκριμένης διάταξης επαγωγικής φόρτισης.

Αναφορές

- M. Budhia, G. Covic, and J. Boys, "A new IPT magnetic coupler for electric vehicle charging systems," in IECON 2010 36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 2487-2492
- [2] A. Lorico, J. Taiber, T. Yanni, "Effect of Inductive Power Technology Systems on Battery-Electric Vehicle Design", IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, Nov. 2011
- [3] Siqi Li and Chunting Chris Mi, "Wireless Power Transfer for Electric Vehicle Applications", Emerging and Selected Topics in Power Electronics, IEEE Journal of (early access articles)
- [4] G. A. Covic and J. T. Boys, "Inductive power transfer," Proc. IEEE, vol. 101, no. 6, pp. 1–14, Jun. 2013
- [5] Klontz, K.W.; Esser, A.; Bacon, R.R.; Divan, D.M.; Novotny, D.W.; Lorenz, R.D., "An electric vehicle charging system with 'universal' inductive interface", Power Conversion Conference, 1993 Yokohama, Page(s): 227 – 232
- [6] Severns, R.; Yeow, E.; Woody, G.; Hall, J.; Hayes, J., "An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging" Applied Power Electronics Conference and Exposition, 1996. APEC '96. Conference Proceedings, Eleventh Annual Volume: 1, Page(s): 32 - 38 vol.1
- [7] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, "A contactless electrical energy transmission system," Industrial Electronics, IEEE Transactions on, vol. 46, pp. 23-30, 1999
- [8] Chwei-Sen Wang; Stielau, O.H.; Covic, G.A., "Design considerations for a contactless electric vehicle battery charger", Industrial Electronics, IEEE Transactions on Volume: 52, Issue: 5, 2005, Page(s): 1308 – 1314
- [9] Takanashi, H.; Sato, Y.; Kaneko, Y.; Abe, S.; Yasuda, T., "A Large Air Gap 3 kW Wireless Power Transfer System for Electric Vehicles", Energy Conversion Congress and Exposition (ECCE), 2012, Page(s): 269 – 274
- [10] Covic, G.A.; Boys, J.T.; Kissin, M.L.G.; Lu, H.G., "A Three-Phase Inductive Power Transfer System for Roadway-Powered Vehicles", Industrial Electronics, IEEE Transactions on Volume: 54, Issue: 6, 2007, Page(s): 3370 – 3378
- [11] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, "Compact contactless power transfer system for electric vehicles," in Power Electronics Conference (IPEC), 2010 International, 2010, pp. 807-813.
- [12] G. A. J. Elliot, J. T. Boys, and G. A. Covic, "A Design Methodology for Flat Pick-up ICPT Systems," in Industrial Electronics and Applications, 2006 1ST IEEE Conference on, 2006, pp. 1-7.
- [13] Chigira, M.; Nagatsuka, Y.; Kaneko, Y.; Abe, S.; Yasuda, T.; Suzuki, A., "Small-Size Light-Weight Transformer with New Core Structure for Contactless Electric Vehicle Power Transfer System", Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, Page(s): 260 – 266
- [14] Covic, G.A. ; Boys, J.T., "Modern Trends in Inductive Power Transfer for Transportation Applications", Emerging and Selected Topics in Power Electronics, IEEE Journal of, Volume: 1, Issue: 1, 2013, Page(s): 28 41
- [15] R. Mecke and C. Rathge, "High frequency resonant inverter for contactless energy transmission over large air gap," in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 1737-1743 Vol.3.
- [16] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, "Ferrite core couplers for inductive chargers," in Proc. Power Convers. Conf., vol. 2. 2002, pp. 850–854.
- [17] M. Budhia, G. A. Covic, and J. T. Boys, "Design and optimization of magnetic structures for lumped inductive power transfer systems," IEEE Trans. Power Electron. Soc., vol. 26, no. 11, pp. 3096–3108, Nov. 2011
- [18] M. Budhia, J. T. Boys, G. A. Covic, and H. Chang-Yu, "Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems," Industrial Electronics, IEEE Transactions on, vol. 60, pp. 318-328, 2013.
- [19] G. A. Covic, M. L. G. Kissin, D. Kacprzak, N. Clausen, and H. Hao, "A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 1832-1838.
- [20] M. Budhia, G. A. Covic, J. T. Boys, and H. Chang-Yu, "Development and evaluation of single sided flux couplers for contactless electric vehicle charging," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 614-621.
- [21] L. Sungwoo, H. Jin, P. Changbyung, C. Nam-Sup, C. Gyu-Hyeoung, and R. Chun-Taek, "On-Line Electric Vehicle using inductive power transfer system," in Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 2010, pp. 1598-1601.
- [22] H. Jin, L. Wooyoung, C. Gyu-Hyeong, L. Byunghun, and R. Chun-Taek, "Characterization of novel Inductive Power Transfer Systems for On-Line Electric Vehicles," in Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 1975-1979
- [23] H. Jin, L. Sungwoo, P. Changbyung, C. Gyu-Hyeoung, and R. Chun-Taek, "High performance inductive power transfer system with narrow rail width for On-Line Electric Vehicles," in Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 2010, pp. 647-651.
- [24] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, "Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles," Power Electronics, IEEE Transactions on, vol. 26, pp. 3666-3679, 2011.
- [25] Sungwoo Lee; Wooyoung Lee; Jin Huh; Hyun-Jae Kim; Changbyung Park; Gyu-Hyeong Cho; Chun-Taek Rim, "Active EMF cancellation method for I-type pickup of On-Line Electric Vehicles", Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, Page(s): 1980 - 1983

- [26] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, "New Cross-Segmented Power Supply Rails for Roadway-Powered Electric Vehicles," Power Electronics, IEEE Transactions on, vol. 28, pp. 5832-5841, 2013
- [27] Seungyong Shin ; Jaegue Shin ; Yangsu Kim ; Seokhwan Lee ; Boyune Song ; Guho Jung ; Seongjeub Jeon, "Hybrid inverter segmentation control for Online Electric Vehicle", Electric Vehicle Conference (IEVC), 2012 IEEE International, Page(s): 1 – 6
- [28] G. R. Nagendra, J. T. Boys, G. A. Covic, B. S. Riar, and A. Sondhi, "Design of a double coupled IPT EV highway," in Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, 2013, pp. 4606-4611
- [29] K. Lee, Z. Pantic, and S. Lukic, "Reflexive Field Containment in Dynamic Inductive Power Transfer Systems," Power Electronics, IEEE Transactions on, vol. PP, pp. 1-1, 2013.
- [30] U. K. Madawala and D. J. Thrimawithana, "A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 4789-4796, 2011.
- [31] J. L. Villa, J. Sallan, J. F. Sanz Osorio, and A. Llombart, "High-Misalignment Tolerant Compensation Topology For ICPT Systems," Industrial Electronics, IEEE Transactions on, vol. 59, pp. 945-951, 2012.
- [32] J. U. W. Hsu, A. P. Hu, and A. Swain, "A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier," Industrial Electronics, IEEE Transactions on, vol. 56, pp. 2771-2781, 2009.
- [33] Z. Pantic and S. M. Lukic, "Framework and topology for active tuning of parallel compensated receivers in power transfer systems," IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4503–4513, Nov. 2012.
- [34] Thrimawithana, D.J, Madawala, U.K., "A primary side controller for inductive power transfer systems", Industrial Technology (ICIT), 2010 IEEE International Conference on, pp. 661 – 666, 2010
- [35] S. Krishnan, S. Bhuyan, V. P. Kumar, W. Wenjiang, J. A. Afif, and L. Khoon Seong, "Frequency agile resonance-based wireless charging system for Electric Vehicles," in Electric Vehicle Conference (IEVC), 2012 IEEE International, 2012, pp. 1-4.
- [36] Chopra, S. ; Bauer, P., "Analysis and design considerations for a contactless power transfer system", Telecommunications Energy Conference (INTELEC), 2011 IEEE 33rd International, pp. 1 - 6, 2011
- [37] "Wireless Power Transfer using Maxwell and Simplorer", Zed (Zhangjun) Tang, Mark Christini, Takahiro Koga, ANSYS, Inc.
- [38] Council recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz): http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:199:0059:0070:EN:PDF
- [39] DIRECTIVE 2004/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (18th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC)
- [40] M. Budhia, G. A. Covic, and J. T. Boys, "Design and optimization of circular magnetic structures for lumped inductive power transfer systems," IEEE Trans. Power Electron. Soc., vol. 26, no. 11, pp. 3096–3108, Nov. 2011
- [41] M. Budhia, J. T. Boys, G. A. Covic, and H. Chang-Yu, "Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems," Industrial Electronics, IEEE Transactions on, vol. 60, pp. 318-328, 2013.
- [42] I. Karakitsios, E. Karfopoulos, N. Hatziargyriou, "Static and Dynamic Fast Inductive Charging: The FastInCharge project concept", MedPower Conference, Athens, Nov. 2014
- [43] J. Hudece, J. Kufen, O. Langen, J. Dankerty, L. Ecksteinz, "A System for Precise Positioning of Vehicles Aiming at Increased Inductive Charging Efficiency", MedPower Conference, Athens, Nov. 2014

Παράρτημα

Εδώ θα παραθέσουμε τις μετρήσεις των προσομοιώσεων, οι οποίες έχουν χρησιμοποιηθεί για την κατασκευή διαγραμμάτων στη διπλωματική, όμως δεν έχουν παρουσιαστεί παραπάνω.

Μετρήσεις κεφαλαίου 3.

Διάκενο 1mm							
Ρεύμα(Α)	100	500	1000	2000	3000		
L1(µH)	76.723	76.694	76.597	72.271	65.938		
L2(µH)	21.228	21.222	21.203	19.222	17.066		
Μ(μΗ)	33.84	33.826	33.785	30.937	27.489		

Διάκενο 10mm							
Ρεύμα(Α) 100 500 1000 2000 3000							
L1(µH)	68.44	68.641	68.317	67.64	46.664		
L2(µH)	18.103	18.148	18.075	17.721	11.373		
Μ(μΗ)	27.257	27.344	27.205	26.729	16.462		

Διάκενο 50mm							
Ρεύμα(Α) 100 500 1000 2000 3000							
L1(µH)	54.938	54.917	54.946	40.429	37.388		
L2(µH)	13.519	13.514	13.501	9.5501	8.8927		
Μ(μΗ)	13.425	13.42	13.423	8.3285	7.447		

Διάκενο 100mm						
Ρεύμα(Α) 100 500 1000 2000 3000						
L1(μΗ)	51.392	51.372	51.302	37.479	35.359	
L2(µH)	12.432	12.431	12.413	8.9177	8.4764	
Μ(μΗ)	6.6956	6.691	6.6788	4.0845	3.7594	

Μετρήσεις για το κεφάλαιο 5.

Για το Διάγραμμα 5.1 οι μετρήσεις είναι:

	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ		
Παχος φερριτη	L1	L2	Μ
	(μH)	(μH)	(μH)
1	56.946	56.991	33.777

6	58.097	58.085	34.816
16	58.979	59.021	35.705
26	59.682	59.678	36.361
36	60.207	60.208	36.875
46	60.655	60.659	37.327
56	60.976	60.986	37.656
66	61.321	61.316	37.999
76	61.661	61.658	38.315
86	61.88	61.859	38.549
96	62.118	62.098	38.79

Για το Διάγραμμα 5.2 οι μετρήσεις είναι:

Εξωτερική	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
Διάμετρος φερρίτη	L1	L2	Μ	
	(μH)	(μH)	(µH)	
370	52.634	52.636	30.006	
410	58.097	58.122	34.816	
500	65.619	65.583	42.165	
600	71.556	71.526	48.101	
700	74.269	74.279	50.835	
800	76.209	76.198	52.758	
900	77.354	77.362	53.923	
1000	78.373	78.386	54.959	

Το διάγραμμα 5.3 προκύπτει από τις μετρήσεις:

Διάμετοος τούπας	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ				
φερρίτη	L1	L2	м		
	(μH)	(μH)	(μH)		
0	59.05	59.032	35.744		
30	58.972	58.989	35.696		
60	58.767	58.79	35.482		
90	58.097	58.122	34.816		
120	56.77	56.769	33.515		
150	54.587	54.583	31.509		
170	52.407	52.405	29.642		
200	47.829	47.825	26.101		
230	43.052	43.039	22.544		

Το Διάγραμμα 5.4 προκύπτει από τις μετρήσεις:

Αριθμός ΙΔ	ΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ

Τυλιγμάτων	ΔΕΥΤΕΡΕΥΟΝ		
	L1	L2	м
	(μH)	(μH)	(μH)
2	4.6665	4.6662	2.0984
4	15.745	15.737	8.0319
6	29.935	29.946	16.56
8	44.733	44.73	26.028
10	58.097	58.085	34.816
12	68.475	68.467	41.55

Το Διάγραμμα 5.5 προκύπτει από τις μετρήσεις:

Εσωτερική ακτίνα	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
τυλίγματος	L1	L2	М	
	(μH)	(μH)	(μH)	
45	33.741	33.739	18.111	
55	40.157	40.151	22.472	
65	46.517	46.497	26.875	
75	52.573	52.577	31.073	
85	58.097	58.122	34.816	
95	62.886	62.834	37.935	
105	66.237	66.236	40.03	

Για τα Διαγράμματα 5.6 και 5.7 χρησιμοποιήθηκαν οι μετρήσεις:

1. Εσωτερική	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ		
ακτινα	L1 L2		М
τυλιγματος	(μH)	(μH)	(μH)
45	32.145	32.144	9.8667
100	69.441	69.428	29.829
125	87.055	87.01	40.061
150	103.34	103.33	49.265
175	116.4	116.37	55.823
200	122.49	122.27	57.701

2. Εσωτερική	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ		
ακτινα	L1	L2	М
ιυλιγματός	(µH)	(µH)	(μH)
100	62.044	62.027	24.311
125	82.098	82.067	35.614
150	99.599	99.572	45.677

175	113.68	113.55	53.117
200	120.62	120.41	55.841

3. Εσωτερική	ΙΔΙΟ Δ	ΠΡΩΤΕΥΟΝ ΕΥΤΕΡΕΥΟ	ΡΩΤΕΥΟΝ ΚΑΙ /ΤΕΡΕΥΟΝ		
ακτινα	L1	L1 L2			
ιυλιγματος	(µH)	(μH)	(μH)		
45	30.498	30.491	8.2711		
55	36.112	36.089	10.656		
65	41.656	41.628	12.965		
75	47.074	47.058	15.391		
85	52.121	52.089	17.686		
95	56.657	56.618	19.756		
105	60.088	60.023	21.376		

Το διάγραμμα 5.8 προκύπτει από τις μετρήσεις:

N=2						
	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ					
1. Διαμετρος τρυπας	L1	L2	М	Mag_B		
φερριτη	(µH)	(μH)	(µH)	(E-05 T)		
0	7.4854	7.4859	3.6091	2.0698		
50	7.4809	7.4831	3.6067	2.0719		
100	7.4785	7.4764	3.6007	2.0429		
150	7.4566	7.4574	3.5819	2.0504		
200	7.4253	7.4267	3.5512	2.1321		
250	7.3778	7.3795	3.5036	2.0554		
300	7.312	7.3095	3.436	2.1099		
400	7.09	7.0883	3.2164	2.0689		
500	6.664	6.6656	2.8055	2.0476		
600	5.1753	5.1749	2.1334	2.8162		
	١	\= 4				
2. 4. /	IΔI	Ο ΠΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΕΡΕ	YON		
2. Διαμετρος τρυπας φερρίτη	L1	L2	М	Mag_B		
φερριτη	(µH)	(µH)	(µH)	(E-05 T)		
0	27.951	27.946	15.545	3.0145		
50	27.938	27.935	15.538	2.9189		
100	27.901	27.897	15.5	2.998		
150	27.81	27.807	15.411	2.9726		
200	27.623	27.621	15.226	3.1308		
250	27.356	27.369	14.963	2.9328		
300	26.992	26.974	14.583	2.9949		

400	25.665	25.672	13.273	2.9542		
500	22.927	22.921	10.797	3.3729		
600	17.301	17.301	7.9899	5.0928		
	N=	=6				
	ΙΔΙΟ ΠΡΩΤΕ	ΞΥΟΝ ΚΑΙ ΔΕΥ	TEPEYON			
3. Διάμετρος τρύπας	L1	L2	М	Mag B		
φερριτη	(μH)	(µH)	(µH)	(E-05 T)		
0	58.634	58.616	36.032	3.2965		
50	58.615	58.598	36.013	3.4111		
100	58.509	58.489	35.909	3.4153		
150	58.229	58.219	35.627	3.3474		
200	57.719	57.721	35.127	3.3245		
250	56.91	56.925	34.326	3.3871		
300	55.738	55.735	33.142	3.3309		
400	51.757	51.76	29.188	3.5479		
500	42.149	42.138	21.596	4.4982		
600	33.451	33.441	16.657	6.8006		
N=8						
	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ					
4. Διάμετρος τρύπας φερρίτη	L1	L2	Μ	Mag_B		
φερριτη	(μH)	(µH)	(µH)	(E-05 T)		
0	96.959	96.947	63.942	3.5256		
0 50	96.959 96.936	96.947 96.934	63.942 63.926	3.5256 3.4849		
0 50 100	96.959 96.936 96.708	96.947 96.934 96.719	63.942 63.926 63.704	3.5256 3.4849 3.4248		
0 50 100 150	96.959 96.936 96.708 96.136	96.947 96.934 96.719 96.133	63.942 63.926 63.704 63.134	3.5256 3.4849 3.4248 3.4764		
0 50 100 150 200	96.959 96.936 96.708 96.136 95.017	96.947 96.934 96.719 96.133 95.017	63.942 63.926 63.704 63.134 62.009	3.5256 3.4849 3.4248 3.4764 3.4397		
0 50 100 150 200 250	96.959 96.936 96.708 96.136 95.017 93.154	96.947 96.934 96.719 96.133 95.017 93.164	63.942 63.926 63.704 63.134 62.009 60.148	3.5256 3.4849 3.4248 3.4764 3.4397 3.511		
0 50 100 150 200 250 300	96.959 96.936 96.708 96.136 95.017 93.154 90.509	96.947 96.934 96.719 96.133 95.017 93.164 90.509	63.942 63.926 63.704 63.134 62.009 60.148 57.513	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867		
0 50 100 150 200 250 300 400	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491		
0 50 100 150 200 250 300 400 500	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504		
0 50 100 200 250 300 400 500 600	96.95996.93696.70896.13695.01793.15490.50981.30761.43551.782	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354		
0 50 100 150 200 250 300 400 500 600	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 N=	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354		
0 50 100 250 250 300 400 500 600	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 N= I∆IC	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕ	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354		
0 50 100 150 200 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 Ν= ΙΔΙΟ L1	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕΥ Μ	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354 VON Mag_B		
0 50 100 150 200 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 ► L1 (μH)	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2 (μH)	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕΥ Μ (μΗ)	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354 (ON Mag_B (E-05 T)		
0 50 100 250 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη 0	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 L1 (μH) 140.38	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2 (μH) 140.36	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕΥ Μ (μΗ) 97.373	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354 7.7354 7.7354 7.7354 7.7354 7.7354 7.7354 7.7354		
0 50 100 150 200 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη 0 100	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 L1 (μH) 140.38 139.87	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2 (μH) 140.36 139.9	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕΥ Μ (μΗ) 97.373 96.906	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354 7.7354 (CON Mag_B (E-05 T) 3.5442 3.4263		
0 50 100 250 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη 0 100 200	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 Ν= ΙΔΙ (μΗ) 140.38 139.87 136.58	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2 (μΗ) 140.36 139.9 136.6	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕΥ Μ (μΗ) 97.373 96.906 93.599	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354		
0 50 100 150 200 250 300 400 500 600 5.Διάμετρος τρύπας φερρίτη 0 100 200 300	96.959 96.936 96.708 96.136 95.017 93.154 90.509 81.307 61.435 51.782 IΔIC L1 (μH) 140.38 139.87 136.58 127.67	96.947 96.934 96.719 96.133 95.017 93.164 90.509 81.3 61.435 51.742 10 Ο ΠΡΩΤΕΥΟΝ L2 (μΗ) 140.36 139.9 136.6 127.69	63.942 63.926 63.704 63.134 62.009 60.148 57.513 48.459 33.405 27.186 ΚΑΙ ΔΕΥΤΕΡΕ Μ (μΗ) 97.373 96.906 93.599 84.705	3.5256 3.4849 3.4248 3.4764 3.4397 3.511 3.4867 3.5491 5.8504 7.7354 (CN Mag_B (E-05 T) 3.5442 3.4263 3.4263 3.4972 3.5694		

500	81.555	80.972	45.859	6.8493
600	70.903	70.904	38.693	8.38
	N-	-17		
		- 12 Ο ΠΡΟΤΕΥΟΝ		VON
6. Διάμετρος τρύπας	11	12		Mag P
φερρίτη	LI	LZ	IVI	IVIAg_D
1-1-1-1	(μH)	(µH)	(µH)	(E-05 T)
0	186.2	186.16	133.95	3.7125
100	185.37	185.39	133.39	3.5405
100 200	185.37 179.19	185.39 179.18	133.39 127.05	3.5405 3.6458
100 200 300	185.37 179.19 164.46	185.39 179.18 164.42	133.39 127.05 112.29	3.5405 3.6458 3.573
100 200 300 400	185.37 179.19 164.46 132.45	185.39 179.18 164.42 132.47	133.39 127.05 112.29 83.664	3.5405 3.6458 3.573 4.7147
100 200 300 400 500	185.37 179.19 164.46 132.45 100.75	185.39 179.18 164.42 132.47 101.06	133.39 127.05 112.29 83.664 58.397	3.5405 3.6458 3.573 4.7147 7.56

Το διάγραμμα 5.9 προκύπτει από τις μετρήσεις:

N=2				
1 1.	ΙΔΙΟ Π	ΙΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΙ	PEYON
1. Διαμετρος τούπας φερρίτη	L1	L2	М	Mag_B
τρυλίας φερριτη	(μH)	(μH)	(µH)	(E-05 T)
0	7.1261	7.0999	2.2277	1.9896
100	7.1163	7.094	2.2225	1.9542
200	7.1213	7.0965	2.2068	1.9874
300	7.0476	7.0263	2.1365	1.9092
400	6.9178	6.8953	2.0016	1.8384
500	6.6055	6.5826	1.7488	2.0232
600	5.1971	5.1587	1.3729	2.2198
		N=4		
	ΙΔΙΟ Π	ΙΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΙ	EPEYON
2. Διαμετρος	L1	L2	м	Mag_B
τρυλίας φερριτη	(μH)	(µH)	(µH)	(E-05 T)
0	26.145	26.075	9.5014	5.6602
100	26.109	26.032	9.4741	5.8851
200	25.958	25.899	9.3406	5.7055
300	25.575	25.51	8.9548	5.9355
400	24.76	24.687	8.1644	6.1985
400				
500	22.69	22.577	6.7199	6.4472
500 600	22.69 17.367	22.577 17.227	6.7199 5.1488	6.4472 8.16

	ΙΔΙΟ Π	ΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΕ	PEYON
3. Διαμειρος τούπας φερρίτη	L1	L2	М	Mag_B
τροπας φερριτη	(µH)	(µH)	(µH)	(E-05 T)
0	53.508	53.391	21.766	7.0208
100	53.557	53.386	21.753	6.9735
200	53.043	52.938	21.298	7.5291
300	51.939	51.823	20.201	7.1056
400	49.488	49.33	17.887	6.8248
500	41.571	41.414	13.563	9.2596
600	33.572	33.28	10.783	10.507
		N=8		
	ΙΔΙΟ Π	ΙΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΕ	PEYON
4. Διαμετρος τούπας φερρίτη	L1	L2	М	Mag_B
τροπας φερριτη	(µH)	(µH)	(µH)	(E-05 T)
0	86.589	86.396	38.322	7.9876
100	86.407	86.24	38.172	7.9152
200	85.576	85.391	37.321	8.1938
300	82.901	82.71	34.717	7.6993
400	77.17	76.953	29.712	8.0088
500	60.904	60.532	21.355	10.748
600	51.966	51.481	17.694	12.563
	١	N=10		
Ε Διάμετοος	ΙΔΙΟ Π	ΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΕ	PEYON
3.Διαμετρος τούπας φεροίτη	L1	L2	М	Mag_B
though tobberil	(μH)	(µH)	(μH)	(E-05 T)
0	122.75	122.56	57.987	8.4076
100	122.65	122.39	57.842	8.1099
200	120.77	120.59	56.004	8.5462
300	115.87	115.62	51.208	8.3767
400	103.89	103.57	41.769	9.2914
500	80.569	80.03	29.695	12.003
600	71.091	70.362	25.29	12.906
	Ν	V=12		
6 Διάμετοος	ΙΔΙΟ Π	ΡΩΤΕΥΟΝ	ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας φερρίτη	L1	L2	Μ	Mag_B
, , , , , , - ,	(µH)	(μH)	(µH)	(E-05 T)
0	160.13	159.9	79.471	8.2336
100	159.79	159.51	79.124	8.2793
200	156.71	156.45	76.057	8.5376
300	148.31	148.04	68.087	8.618

400	125.51	125.1	52.25	10.901
500	100	99.237	38.117	14.807
600	90.003	89.171	33.141	15.041

Το διάγραμμα 5.10 προκύπτει από τις μετρήσεις:

N=2				
1. Διάμετρος	ΙΔΙΟ Γ	ΊΡΩΤΕΥΟΝ	Ι ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας	L1	L2	м	Mag_B
φερρίτη	(µH)	(μH)	(µH)	(E-06 T)
0	4.3911	4.3913	1.8578	4.0441
100	4.3805	4.3809	1.8478	4.3322
200	4.3028	4.3029	1.7678	4.1835
300	4.0528	4.0535	1.5328	3.912
400	3.0876	3.0877	1.1104	5.5457

N=4				
2. Διάμετρος	ΙΔΙΟ Γ	ΊΡΩΤΕΥΟΝ	Ι ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας	L1	L2	М	Mag_B
φερρίτη	(µH)	(μH)	(μH)	(E-06 T)
0	15.52	15.511	7.6027	5.8692
100	15.395	15.394	7.4916	7.5198
200	15.004	15.006	7.0811	5.2064
300	13.439	13.443	5.6943	5.4024
400	9.8862	9.8844	3.9782	9.9089

N=6				
3. Διάμετρος	ΙΔΙΟ Γ	ΊΡΩΤΕΥΟΝ	Ι ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας	L1	L2	М	Mag_B
φερρίτη	(µH)	(µH)	(µH)	(E-06 T)
0	30.681	30.682	16.603	5.2533
100	30.452	30.463	16.381	6.7921
200	29.017	29.024	14.957	5.7688
300	23.583	23.585	10.785	8.8883
400	18.211	18.211	7.8713	12.48

N=8		
4. Διάμετρος	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ	

τρύπας	L1	L2	М	Mag_B
φερρίτη	(μH)	(μH)	(μH)	(E-06 T)
0	47.404	47.399	27.382	5.7884
100	47.066	47.049	-27.023	10.524
200	43.505	43.5	23.606	8.298
300	32.784	32.777	15.758	10.885
400	26.749	26.75	12.091	13.601

N=10				
5.Διάμετρος	ΙΔΙΟ Γ	ΊΡΩΤΕΥΟΝ	Ι ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας	L1	L2	М	Mag_B
φερρίτη	(µH)	(µH)	(µH)	(E-06 T)
0	63.519	63.527	38.22	7.3512
100	62.613	62.593	37.317	7.0843
200	55.856	55.855	31.075	8.1283
300	41.054	41.053	20.269	13.124
400	34.678	34.676	16.122	15.621

N=12				
6. Διάμετρος	ΙΔΙΟ Γ	ΙΡΩΤΕΥΟΝ	Ι ΚΑΙ ΔΕΥΤΕ	PEYON
τρύπας	L1	L2	М	Mag_B
φερρίτη	(µH)	(μH)	(μH)	(E-06 T)
0	77.59	77.599	47.841	5.6705
100	75.967	75.945	46.245	7.4536
200	63.859	63.842	35.983	8.3826
300	47.841	47.847	23.888	12.998
400	41.33	41.374	19.486	18.145

Το διάγραμμα 5.11 προκύπτει από τις μετρήσεις:

N=2				
1. Διάμετρος	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
τρύπας	L1	L2	м	Mag_B
φερρίτη	(µH)	(μH)	(µH)	(E-06 T)
0	4.215	4.2059	1.04	9.2201
100	4.2099	4.2028	1.0352	8.8905
200	4.1605	4.1524	0.98971	8.258
300	4.0046	3.993	0.86713	8.622
400	3.089	3.0768	0.65202	10.573

N=4				
2. Διάμετρος	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
τρύπας	L1	L2	М	Mag_B
φερρίτη	(μH)	(μH)	(μH)	(E-06 T)
0	14.647	14.629	4.167	10.297
100	14.608	14.6	4.1344	17.28
200	14.344	14.327	3.8862	10.285
300	13.204	13.183	3.1813	12.719
400	9.8861	9.844	2.3211	13.449

N=6				
3. Διάμετρος τρύπας	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
	L1	L2	м	Mag_B
φερρίτη	(µH)	(μH)	(µH)	(E-06 T)
0	28.425	28.402	8.9318	12.867
100	28.325	28.331	8.8328	14.382
200	27.506	27.459	8.1116	13.025
300	23.183	23.136	6.0534	17.619
400	18.199	18.129	4.5744	26.738

N=8				
4. Διάμετρος τρύπας	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
	L1	L2	М	Mag_B
φερρίτη	(μH)	(μH)	(μH)	(E-06 T)
0	43.318	43.282	14.553	12.772
100	43.11	43.068	14.359	16.232
200	41.07	41.007	12.771	15.796
300	32.194	32.123	8.8939	22.529
400	26.8	26.693	6.9984	23.428

N=10				
5.Διάμετρος	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
τρύπας φερρίτη	L1	L2	М	Mag_B
	(µH)	(µH)	(µH)	(E-06 T)
0	57.526	57.476	20.165	15.662

100	57.197	57.144	19.846	13.561
200	52.72	52.64	16.832	17.42
300	40.407	40.291	11.5	22.831
400	34.714	34.567	9.2942	26.565

N=12				
6. Διάμετρος	ΙΔΙΟ ΠΡΩΤΕΥΟΝ ΚΑΙ ΔΕΥΤΕΡΕΥΟΝ			
τρύπας	L1	L2	М	Mag_B
φερρίτη	(μH)	(μH)	(μH)	(E-06 T)
0	69.764	69.708	25.021	13.82
100	68.801	68.744	24.313	20.76
200	60.202	60.11	19.528	20.45
300	47.141	47	13.57	25.745
400	41.354	41.199	11.185	28.075