EONIKO METZOBIO IIOAYTEXNEIO
2XOAH HAEKTPOAOTI'QON MHXANIKON KAI MHXANIKQN YIIOAOT'IETON
TOMEAZX TEXNOAOTIAX IIAHPO®OPIKHE KAI YTIOAOTIETOQN

Xye0waopog Kot Yromoinon Hiateoppoag ELactikig
Awayeiprong Epyoaieiov Enelepyaciog Meyaimv
Agdopévov e Yrnoroyiotikd NEQn

AITIAQMATIKH EPT'AXIA

TOVL

Nwéraov A. Xarpavtin

Emprénov : Nektaprog Kolopng
Kabnynmce E.M.IL

ABnva, IovAlog 2015

EOGNIKO METZOBIO ITIOAYTEXNEIO

YXOAH HAEKTPOAOI'GN MHXANIKQN
KAI MHXANIKQN YITOAOT'IETQN

TOMEAZXZ TEXNOAOI'TAZ ITAHPO®OPIKHZ
KAI YIIOAOT'IETQN

Yyeotoopnog Kot Yaomoinon Hiateoppoag EAactikng
Awayeipiong Epyoieiov Enelepyacioc Meydrlomv
Agdopévov e YrnoroyioTika Néon

AITIAQMATIKH EPT'AXIA

TO0L

Nwkoraov A. Xarfavtin

Empiémov : Nextapiog Kolopng
KaOnynmgc E.M.IL

moypogn) 0y,
I'ed@pyrog Nkovpag Anpntpog Toovpakog
Kanynmg EM.IL Aéxtopag E.MIL Enix. Kanynmtg lovio Mav.

ABnva, TovAlog 2015

Nwkoraog Xarpavting
Authopoatovyog Hiektpodldyog Mnyavikdg ko Mnyovikodg Ynoroyiotov E.MLIL.

Copyright © 2015 — All rights reserved
Me em@OAaEN TOVTOC SIKAULMUOTOC,

Amayopevetal 1 avTlypaen, amobKkevon Kot Slovoun Tng Topovcas epyaciog, €& oAokAnpov 1
TUHOTOC OWTNG, Yo, EUTOoPkd okomd. Emitpénetar n avatdnwon, amobrkevorn Kot diavoun yio
OKOTO U1 KEPSOGKOTIKS, EKTOIOEVTIKNG 1| EPEVVITIKNG PVONG, VIO TNV TPoHTOOEST VO avapépeTal N
7y wpoélevong kol va dtatnpeitatl To Topdv punvopo. Epotiuata mov agopoldv ot xpnom g
gpyociog ywu KePOOOKOMIKO oOKOMO mPEMEL Vo omevbdvoviol TPOg TOV GLYYPOPEQ.

In loving memory of my mother

Hepidnyn

Or epopuoyés Meyadwv Aedousvaov omaitodv v 0mopln GHUOVTIKOYV GE OYKO DTOOOUDYV
TPOKEIUEVOD VO, TPAYUOTOTOL]GOVY OTOOOTIKY ETELEPYOTIO TE EVA. EDAOYO YPOVIKO O10.GTHLA.
Qoto00, 1 TOCOTHTO, TWV DTOLOYIGTIKMV TOPOV TOV GTOITOOVIOL OEV EIVOL TAVIQ YVWOTH EK
TV TPOTEPOV Kol eCOPTATAL TOGO OO TOV OYKO TV OE00UEVOV TOL VIOPOALOVTOL TE
emeepyocio 000 Kol amo To 100G TG emelepyaaios avtis. To vTOLOYIGTIKG VEPN TPOTPEPOVY
mv evelilio ™S OTOKTNONG TOPOV KOTO. TOPOYYeErLQ, UE GuETO TPOmo KoBWS kai g
XPNOYOTOINGHS TOVG Y10, 000 YPOVO OVTO VAL OTOPOITHTO UE TO AVOLOYO KOOTOG. LG €k
TO0TOD, GLYVO, 01 EPOPUOYES emeCepyooios Meydlwv Aedouévwv ypnoyuomoiody DTOOOUES
vroAoyioTikob vépoug. Xe avtiy v epyooio. wapovoialovue o BARBECUE (a joB AwaRe
Big-data Elasticity CloUd managEment system) — wa mlarpdpua eloctikng owoyeipiong
TOPV 0€ VTOAOYIOTIKG VEQPN Yia epapuoyés Meydlwv Agdouévav. Ermexteivovue tig
vmapyovoeg teyvoloyieg, Apache Hadoop xa: YARN wote va éxovv eniyvawon twv epyaoidv
OV TOVG VIOPOILOVTAL TPOS EKTEAETN, DAOTOIOVIOS WUIG HOPPH ODTOUATHG, EAOCTIKNG KOl
aueons amodoons mopwv Paciouévy oty Acttovpyia tov TIRAMOLA, éva gpyaleio elaotikng
owoyeipions mopwv vroloyiotikwv vepwv. To cbotnua BBQ ypnowomoiei o pébodo
onuiovpyias mpopil yio kabe mpoypouua emecepyoodios Meyddwv Agdouévav.
Xpnoywomoimvrag 1o GUYKEKPIUEVA TPOPYIA, UTOPEL Vo TPOPAETEL TOCOL TOPOL OTAUTODVTAL VI
TNV EKTEAEON ULOG OUYKEKPIUEVIS EPYATIOS (0 OUYKEKPIUEVO YPOVO), ‘TOYMVEL' THV EKTEAEON
TG TEAEVTAIOG OOTE VO, OTOKTHOEL TPOOHOCH G OVTOVS (NTOVTIAS TOVS OO TOV EKAOTOTE
wapoyo g vanpeaiog tov vépovs uéow tov TIRAMOLA, tovg puoppomoiel ware vo. givou
ETOIUOL VIO YpNon Kal Tl oLVEXELQ. EKTEAEL TNV vTofinbeion epyadia. Metd 1o TEPaAS avTHS O1
EMTAEOV TOPOL ETMLTTPEPOVTOL OTO DTOAOYIOTIKO VEPOG. 2TV TOPOVOC OOVAELC. TOPOVTIALOVUE
116 eowTepikeS Aettovpyies twv Hadoop kar YARN kou meprypdpovue tig tpomonoioeis oty
01001KA010. EKTEAEONS TOD UAS ETETPEYAY THV OTPOCKOTTH OTOKTHGH KOI EVOWUCTWOGCH TWV

emmAéov vmoloylotikwv wopwv. Emimpocbétwe, tporomoiotue tov TIRAMOLA aarte va eivau

o€ Béan ue) ypnon twv TpoYil o1GPopwmv TPOYPOLUUCTOY avilvoons Meydlwy Aedouévay va
vmoloyilel Tovg amaurToduUEVOVS TOPovS. TéAog, dievepyolue pio melpouoticy alloloynon tov
OVOTHUOTOS KOL OTOOEIKVOOVUE TH Aeltovpyikotnta tov. Ilpoopépovue 10 cboTHUO (OG

AoyLouIKo ovoLyToD KWoiKa.

AéEarig Khewdra: Hadoop, MapReduce, YARN, elasticity, cloud provisioning, TIRAMOLA,
profiling

Abstract

Big Data applications require vast amounts of infrastructural resources in order to perform
efficient processing in a timely manner. Nevertheless, the amount of required resources is
not known a-priory and depends on both the size of the processed data and the type of the
required processing. Cloud computing offers the flexibility of acquiring on-the-fly
infrastructural resources and utilize them for as long as they are needed in an elastic and
pay-as-you go manner. Therefore, Big Data Applications are typically deployed in a cloud
setting. In this thesis we present BARBECUE, a joB AwaRe Big-data Elasticity CloUd
managEment system by expanding Apache Hadoop and YARN, to perform job-aware on-
the-fly resource allocation utilizing cloud elasticity based on TIRAMOLA, a state of the art
elasticity framework. BBQ utilizes profiling to detect the correct amount of resources for a
specific job, stalls its execution to acquire them from the cloud using TIRAMOLA, configure
them, executes the job and after its completion returns the extra resources to the cloud. In
this work we present the internals of job execution and scheduling of Hadoop and YARN
and we describe our exact modifications in the job execution workflow to allow seamless
acquisition and deployment of extra needed resources. We modify TIRAMOLA to employ
profiling in order to detect the correct amount of resources. We perform a thorough
experimental evaluation in an actual cloud deployment in which we showcase BBQ'’s

functionality and we offer the entire BBQ system as open source.

Keywords: Hadoop, MapReduce, YARN, elasticity, cloud provisioning, TIRAMOLA, profiling

Table of Contents

LT T OO TP PRRPPRPRTRIN 7
AADSITACT ...t bbb 9
1 EKTETOHEVI EIOOYMYN ottt sr e nr e en e nnenne s 17
O R 31 1 T o o T PP T PP PRUTR PR 19
1.2 AT KEULEVOU . .e.utiitietieitee ettt ettt ettt ettt s be et h ettt e b e e sb e e ek e e eb e e e se e e be e sb e e sbeesnneenneenreanns 21

2 INEFOTUCTION ...ttt b bttt et bbb n e 23
2.1 TheSiS CONTIIDULION ...ttt 25
2.2 TEXESITUCTUIE ...ttt 26

K R = - Tod (o {1 o o ISR 29
KT8 A O [o 10 To l 0] 1 2] 01U 1141 [SRS S R 29
3.11 ClOU EIASTICITY ...t 29

3.2 BHG DALA. ...t 30
3.3 MapReduce Programming MOELccoeviiiiiiiiiiiie et 31
3.3.1 An example 0f MApREAUCE...........ccci it 32
3.3.2 WordCount With MAPREAUCE.........ceii et 33

K I AN o - To] T I F- To (0o o PSSR 34
3D RBVIBW. .ttt 34
351 “Automated, on-the-fly" Elasticity: a fine line...........ccoovviiiiniiciineee 35

4 REIAIE WOTK......eiieieeeee ettt 37
Ot O (0 11 1o OSSR 37
4.2 Cluster provisioning for MapReduce Big Data analysiscc.ccooerereriniiniinienenenenenens 38

5 Technical Overview of the Hadoop PIatform..........ccocooiiiiiiiiiiiieeeee e 41
51 Apache Hadoopl1.0 and MapreduCel.Occoeoveieieininenesie e 41
5.2 Apache Hadoop2.0 YARN and MapreduCe2.0..........cccevereerrieeiene e 43
521 MapReduce Application Execution Overview with YARN...........cccocovveviiviiieiennn, 45

5.2.2 EValuating YARN ...t e enes 46

5.2.3 Hadoop MapReduce 2.0 EXECUtioN OVEIVIEWcccccveviiiicrieieie e 47

5.3 OBSEIVALIONS. ... ettt bbb 50
B TIRAMOLA ettt b e h e he et b e b e e bt e b b e nb e e b b e nre e 53
T The BBQ SYSTEIM ..ottt b b 55
7.1 (2] ST @ Lo 01 =T (1] = SR 56
7.11 Module Interaction - INtEGrationcccoereieiiiiiiiese s 57
7.1.2 BBQ HAU00P ...t 57
7.2 Cost function and resource calculation algorithm...........ccccoiiiiiiicicc e 63
7.3 BBQ EXECULION OVEIVIBW......ccvviiviiieiiiie ettt sttt ete e sbe st et sstaeeteesbe e sbessraesaaesntesnras 64
8 EXPErimMENtal RESUILS.......ccueiieiieciece sttt s be b be s re et e sbe e e e sreenes 67
8.1 EXPErimENtal SELUDocviiieiiiecie ettt sttt st e r e p e nreenes 67
8.1.1 Hardware Setup and SOftware USEd..........ccveiiiieiiie e 67
8.1.2 Hadoop Memory Configurationcccccvevieiiiicic i 67
8.1.3 DALASEES USEU ...t 68
8.1.4 BeNChMArk USEAcuoiiiiiiiicie e 68
ST (1<) 11011 1 (TSSOSO 68
8.2.1 Model Construction for the WordCount Benchmarkcc.cccoviieiienncnncnne, 68
8.2.2 MOGEI EVAIUALIONviiiii e 70
8.2.3 ODSEIVALIONS ...ttt et 71
O CONCIUSIONS ...ttt bbbt bbbttt e et b bbb 73
9.1 Fitfor Lambda architecture — a use Case eXamPpPIecocvirerereieiee e 74
0.2 FULUIE WOTK ...ttt 75
O Yo T & O 1 - OSSR 77
Table of Figures
Figure 4-1. Hadoop MapReducel.0 ArChitECIUIEc.ooiiieiiiieie et 42
Figure 4-2. Hadoop MapReducel.0 Execution Overview form the Google paper.......c..cccooeeeerennees 43
Figure 4-3. Hadoop MapReduce2.0 EXeCUtION OVEIVIEWcceoeierieneieeienesee e e siee e 44
Figure 4-4. YARN Architecture (in yellow and pink two applications running.).........cccccocveeenenee. 46
FIQUIE 4-5. IMAD PRESE.eceeeeeeite ettt sttt ettt e sttt e tesae e s e teene e tesaeeeeseeeneennennean 47

Figure 4-6. Map phase: SPIIING........ccio it nneas 48

Figure 4-7. YARN Infrastructure vs MapReduce framework.............ccocurereneieieisieenese e 49

Figure 4-8. Parallel processing in MapReduce, from the Google paperccoovvvininincienenenns 50
Figure 5-1. Original TIRAMOLA AICHITECIUIE..........coiiriiiieieiseses st 54
Figure 6-1. BBQ SyStem AICNITECIUIEcviiiiiiieiese e 57
Figure 6-2. JOD SUDMISSION.........iiiiiiiieieee e 59
FIQUIE 6-3. IMRAPPIVIESTET ...ttt bbbt b e nn e n e 60
FIgUure 6-4 RESOUICEMANAGETc..oiviiiie et ste ettt ettt sb e te e besae s e e besseestesreeseesreeseesresneas 61
Figure 6-5. Resource calculation and adjustment Sequence Diagramcccccccevvvveveieivesesiiesennnas 62
Figure 7-1. Model BUIING. ...c.ooviiiiie ettt sre et sbesne s 70

Figure 8-1. Lambda architeCIUIE.coviieie et te b sre s 74

Evyoprotieg

®a Ndera va guyaplotnom O6Aovg tovg kabnyntég pov oto E.MLIL., kupiwg dpme tov xab.
Nektapro Kolopn, yio tv eumotoochvn Kol TV VTOUOVH oL Hov €0e1ge Kabmg Kot Tig
Wwitepa Oeppéc evyapiotieg pov oto mpoécono tov Ap. Imdvvn Kovotavtivov, epeovnm
tov Epyaotnpiov Ymoroyiotikdv Zvomnudtmv, o omoiog vanpée eEalpeTikdg apwyos Kot
VROGTNPIKTAG otV mpoomdBeld pov avt. Evyopiotd emiong 1o Olayeplot) tov
VIOAOYIOTIKOV cuotnpdtev Tov Epyactnpiov, k. Iodvvn IMavvakdmovro yio v dyoyn
ocvvepyosio KaBag kot tov K. Evdyyeho Ayyélov, HEAOG TG €PELVNTIKNG OUAOOG Y10 TIC
Kaipieg mapatnpnioelg kot v Ponderd tov. Téhog, Oa MBeha va evyoplioTo® TV
OLKOYEVELA OV Y10 TNV GLUTAPACTOGCT) TOL LoV Topeiye Kob OAN TN SLApKELD TOV GTOVOIDOV

LLOV KOl 10101TEPA OTIG — APKETEG — OVOKOAES GTLYLLEC.

Exterauévny Eicaymyn

H guepdvion kot xabiépmon tov Yroloyiotikddv Nepov (3.1), noig mpwv amd mepinov pia
dekoetio, €yl emeépel po Ptk oAloy OTOV TPOTO LE TOV OMOI0 Ol EQUPUOYEC
avamtoooovtal, dtoyelpilovol Kot AEITovpyouy kabdc ol ¥pNoTEG UTOPOLY VO, EXOVV GUECT
KoL EDKOAT TPOGPROOT) GE AMEPIOPIOTOVE TOPOVG GE Eva Pay-as-you-go miaicto. Emumiéov, 1
ékpnén tov dedopévev oL SMUIOVLPYOLVTOL, KOTOVOAMDVOVTIOL, —OmToOnKevovTal Kot
eneepydlovtal oAlalel Tov TpomO pe Tov omoio gueavifovtol KOvOTOUIEG TPOG Lo To
OEOOLLEVO-KEVTPIKT] TPOGEYYIOT), OOV Ol 10éeC e€AyovTol MG amotéAecua g emesepyaciog
TEPACTIOV TOCOTNTOV dEBOUEVMV, OGS omoTuTdveTaL 6to £pyo ‘The Fourth Paradigm’ [1].
‘Exovtag mpocPacn oe — BepnTikd — ameploOpioT) VIOAOYIOTIKN 1oY0 Kot amofnKevTiKohg
TOPOVG, YPNOTES Kal EMXEPNOELS givan mAéov og Béon va avtamokpifovv otnv avEavopevn
avaykn g dlayeiplong TV TEPACTIOV TOGOTHTOV dedopévev. Mg, ooppmva pe v IBM,
nepinov 2,5 tetpdkig exatoupvpla bytes va dnupovpyodvrar ke pépa [2], motdc0, véEg
TPOKANGEIS £YOVV EUPAVIOTEL GYETIKA E TOV TPOTO TOL Ol LIOSOUEG VEQ®V dlayepilovtan
€101 MOTE Ol TOPOL TOV TPOGPEPOLY VO, YPTCILOTOOVVTAL OGO TO OLVOTO KOAVTEPA (710

Am0d0TIKA).

M oepd and epyoreia emeepyacioc Meydhwv Aedopévov avomtoydnkov katd ta
TPONYOOUEVO £T1] KOL YPNGLLOTOOVVTOL OO TOAAEG OPYOVMGELS KOl ETOIPEIEC 68 OAO TOV
Kkoouo. To mo dnuo@irég omd avtd eival o ovotnua Apache Hadoop [3], pa viomoinon
avolktod kmdwka tov MapReduce framework tng Google [4]. To Hadoop mpoc@épet ta
Boowkd apyétomo emefepyociog Kot amoOfKELONG VI KALUOKOVUEVY] KOTOVEUTLEV
eneEepyasio. Mo TAnBopa amd mo ToAOTAOKA Kol EEIOIKEVIEVO CLGTINHOTO TAPAAANANG
enefepyaciog, KoTtdAANAo yio Meydho Agdopéva ypnowyomoodv ¢ Pdon to Hadoop:

mAateopueg Mmyaviking Mdabnong 6mwg to Apache Mahout [5], mhaicwa ene€epyooiog

17

dounuévev dedopévmv, omwg to Hive [6] kot Pig [7], NoSQL ocvotjuata, énmg to Apache
HBase [8] &ivor pepikd omd To GLGTHUOTO TOV GMOTEAOVV TO OIKOGVGTNHA TOL Apache

Hadoop.

‘Eva amd 1o mo a&loonpelonTa yopakInplotiKd g xpnong Ymoloylotikdv Nepdv givat 1
elaotikotyra (3.1.1), dnhadn, n dvvatdtnta £vOg cuoTHUaTog Tov PBoociletal o o TéTol
TEYVOLOYIO VO ATOKTNGEL 1] VO ATEAEVOEPMGEL SUVOUIKE VTOAOYIGTIKOVG TOPOVS OVAAOYA LE
™™ (Aon. H elootikdtra emtpémel otoug ¥pnoteg va dlayepilovral Toug dabéciong
VTOAOYIGTIKOVG TOPOLG AVAAOYOL LE TIG OVAYKEG TOVG, HE TI GUPPIKVMOT 1 TNV EXEKTACT] TOV
VTodopmy 1oL ypnowwomowovv. H elactikotnTo €ivol, emopéveg, Kpioym Yoo T
BeAtiotomoinon tng dwyeipiong tov mopwv. [Ipokeévou va emnttevydei n PéATIGT amddoon

YPNOTEG KAAOVVTOL VO, ATAVTIGOVY GE EPMTNOELS OTTMG 01 AKOAOVOEC:

e [locovg mopovg ypetdlopat;

o [lote Tpémel va SECUEVCM/ATOSEGEVG® TOPOVG;

o T gidovg mOpovg mpémel va, {NTtHcw omd TNy Amoyn Tov €i00VE KOl TNG TOCOTNTAG
(Onhadn, ypetdlopor TEPIGGOTEPO ATOONKELTIKO YDPO, N YPpeGlopnol TEPIOCHTEPT
eneEePYAOTIKN 10%D;)

o Jl6c0 Oa mpémel va mepEve pEypl ot mOPoL Tovg omoiovg ypetdlopan kot {iTnoa

givar dobéouot;

Kabng n avérivon Meydhmv Agdopévmv yivetor OAO KOl TLO amapaiTnTy] Yo TNV £PEVVA, Ol
ypoteg tov Hadoop eivar emotipoveg mpoépyoviar omd TOUEIS EVIEADS OLOPOPETIKOVGS
petalld Tovg, UE EVIEAMG Ol0POoPeTKO LVIOPabpo (O0mmwg my. M ProAoyic, M OWKOVOULKN
EMOTAUN, KAT.) yopic Pabid yvdon Tov cLGTNUATOV, OOTE VO KATOVOOLV Tl OKPPB®G
ovpPaivel Kotd ™ OdpKeLlo TG EKTELEOTG — GTO TOAD YouNAd eminedo, N TOGOL TOPOL Elvar
EMOPKEIG 1] ATOLTOVVTAL Y10 TV EKTEAECT] T®V £PYACLDV TOVC. O PECOG XPNOTNG EVOLOQEPETL
UOVO YloL TNV EKTEAECT] TOV EPYACIOV TOVL [E OTOTEAECUOTIKO TPOTO, OGOV QPOpPd Yyio
TOPASELY LD, TO KOGTOG Kot ToV ypdvo ektédeons. Mia tumikn ektédeon epyaoiog oto Hadoop
avtipetoniletol ue batch tpdmo: o1 ypfioTtec mapEYovv ToV TPOG EKTELEST] KOJIKO 0€ dLOSIKY
pnopoen, o torobecia 6mov Ppickovial dedopéva, enl TV omoimv Qo eKTEAESTEL O KMOOIKAG,
Kot 0 ypovompoypoupatiot tov Hadoop Eekva o gpyacio mov 0&lomotel Tovg d100£61110VG
mopovg TG vIodoung (dniadn, évav aplBpd kouPov emelepyaciog) dote va mapoybel to
{nrovpevo amotérecpo. Ot tpéyovoeg ekddoel; Tov Hadoop dev emitpémovv T duvopkn,
dueon oriayn peyéBovg tng vmodoung KATA Tr JIAPKELD LIOG VEAG VTOPBOANG €PYACLOV.
AxoOpo KOl OTIG O TPOCPATEG €KOOCEIS, OTAV W0 VEX gpyaciot LTOPAAAETOL Yoo TNV

exTéLEDT), TO daféoipo péyebog tng vwodoung eivar oTaTIKO Kot dev pmopel va aAAdEeL pHéypt

18

N epyocio va olokAnpooel v ektéieon te. H advvapio avty eloyiotomotel v eveMéia

Kot 0dnyet og Kaxn dlayeipion.

dvowd, vrdpyovv "cloud-ready" ekddcelg Tov Hadoop mov mpoceépovv oto ypnotn
duvatodtnta vo aALdEEL To péyeBog Tng VITOJOUNG TOV, UE TNV MO OEWCNUEI®TN aVTH TNg
Amazon (Elastic Map Reduce [9]). TTap' 6Aa avtd, €rovv o akOAovOa petovekthpata: o) H
oAhayn peyéBovg yiveral, Onmg eényeital mopandve TP and TV EKTEAECT TNG EpYUTiag: Ogv
umopel va cupPel SuvopiKd KoTd TN OLUPKELD TNG eKTEAEOTG KOl B) 0 YpNOoTNg TPEMEL Va
OTOPAGIGEL GYETIKA LLE TIC TOLOTIKES KOl TOCOTIKES QMTOLTI|GELS TG EPAPLOYNG TOV GE TOPOLG ,

KATL 1OV, OTWOC UVAPEPETOL TAPOUTAV®, OEV UTOPEL TAVTO VO YiVEL GOOTAL.

Olo To0 TopamTdved LG 00NYoDV GTO GULUTEPOCUO. OTL £va. oOoTNUe oV Bo emiTpénel éva
nepPailov o€ €va TEPIPAALOV VTOAOYIGTIKOD VEQOLS VO TPOGOPUOLeTal 0TS VITOPANOeioeg
gpyooieg mov KoAgital va dekmepadosl umopel va omodeyfel guepyeTikd yio, T dlayeipion
Tov Topwv. To chomua avtd Ba Tpémnel va eivar o BEom Vo ATaVTAGEL OTIC EPMOTNGELS TOV
TOPOVGIAGTNKAY TOPUTAVED Y10 TO ¥PNOTN Kol VO ETOMGOEL T ANy amopdcemv GYETIKG, Ue

) Swyeipion TV TOp®V.

1.1 Xvveiopopa

[No mv avtipetdmon tov OBegpdtov mov oavagépovial Topandve, o autn T STpipn
nopovoiaovpe to ovotuae BARBECUE (ev ocuvvtopia, BBQ) — a joB AwaRe Big-data
Elasticity CloUd managEment system — pe tv enéktaon tov Apache Hadoop kot YARN,
TOV EVOOUATOUEVO SLOYEPIOTH TOPOV Kol XPOVOTpoypappatioty tov Hadoop, ®ote va
extelel autopaTn €AaOTIKN J1dPEcT TV TOP®V £XOVTOG EMYVMOOT] TOV OTUITNCEDV TNG
gpyaciog mov ekteAeitar. ‘Exovpe eniong tpomomomost 1o cvotnue “TIRAMOLA’ [11], wa
TAOTEOpUO Yoo TNV TopakoAovOnon kot dvvapkn dwyeipnon NoSQL cvotnudtov
Bacwopéva oe vmodopég Ymoroyiotik@v Nepdv, dOTE va UTOPECEL VO SLOYEPIOTEL pia

vrodoun Apache Hadoop.

E&etdote 10 axdAov00 mapddetypa: Evag xpnote amobnkevet £vo, ueydho VoA dedouEvmV
oe éva ukpo apbud otrywdtunemy tov Hadoop Amazon EC2 (VMs). O ypiiotng 0élet va
exteLécEL Aettovpyio enelepynciag O10TEPO AMAITNTIKY GE VITOAOYIGTIKOVE TOPOLG TOV® GTO
npoovoeepBivta dedopéva, N onoia B mapdyel o pikpn €000 dedOUEV®V: GE VTR TNV
TEPIMTMOOT, 0 YPNOTNG TPEMEL VO ATOPUGIGEL TI GOGCTH TOCOTNTO TOV EMTAEOV TOPWV TOV
amottoHvtal, vo Tovg {ntinoel omd ToV TAPOYO TNG VANPESIOG KOl Vo, KAVEL TIG KOTAAANAES

pLOUICELS, VO TPOYMPNOEL OTNV EKTEAECT] TNG EPYUCIOC KOl GTN CUVEXELD VO, ATEAEVOEPDTEL

19

Tovg emmAéov Topovs. To BBQ pmopei va ehoyloTomOmGEL TNV TPOSTADELD TOV UTOLTEITOL
Y vo extehectel M mpoavapepBeica epyacio Kol TALTOXPOVA VO TPOGPEPEL TN PEATIOM)

YPNON TOV TOPWV.

To cvotud pog emTpénel v aueon, avtopatn enéktacn evog Hadoop cluster aciopévo og
vodoun VIEOAOYIoTIKOD VEEovg (3.5.1) pe otdyxo ™ Peitioon g amddoong Katd TNV
eneepyacio TEPAOTIOV TOGOTHT®V O€0OUEVOV, TPOKEWEVOL Vo avtamokpifel og
GLYKEKPIUEVOLS TeEpLopicpovg. Ot meplopicpol umopodv va, 0pioTodv omd TO YPNoTN Kol
emnpedlovy GUECO TIG AVAYKES TNG VTOAOYIOTIKNG VTOJOUNG 0€ VITOAOYIoTIKY oyv. To BBQ
YPNOWOTOLEL TNV EAAGTIKY 1310TNTA TOL VEQOVS MoTE va emitevydel n Pédtiom adlomoinon
TOV TOP®V UE EVO EVIEAMG Ol0LpaVT Yio TO ¥PNoTN TPpomo. Ymobétovpe OTL 01 TEPLOPIGHOL
avtoi Tov ¥pnotn cuVNOMG gival £vag GUVILAGUOG EVOG AV 0plov GTO YPOVO EKTEAEGTC KOl
eVOC KAT®M Opiov GTO OKOVOUKO KOGTOG, ONANON, £VOG TEPLOPIGHOG TOV TOTOL «Oéiw 7
EPYOTIO, OV VO. EKTEAETTEL YwpiS vo. mAnpwow mepioootepa. oo X USD/ywpic va mepiuéve
nepioootepo omo Y apeg”. Metd v vmoPfoln g o véag epyaciag, To BBQ avtouato kot
SPOVAG AVIXVEDEL TN COGT TOGOTNTO TOV TOPMV TOV OTOLTOVVTIOL COUPOVA e TO PEYEBOG
TOV GLVOAOL JESOUEVAOV Kot TO €100G TNG epyacioc, dECUEVEL KOl SOUOPPDVEL AVTOVS TOVG
ndpovg, kabvotepel T pong NG Epyaciag HEYPL 1 SUOPPMOCT) VO, OAOKANPmOEL, TNV eKTeEAET
K0OLL, OTY] GUVEXELD, OTOOEGUEVEL TOVG EMTAEOV TOPOLS Y10 VO AOPELYHOVV TTEPITTEG dUmMAVEC.

To BBQ amoteAeitan and tpio S10KpITEC OVIOTNTEG:

e M tpomomompévn €kdoor tov Hadoop
e Mo tporonompévn ékdoon tov TIRAMOLA

e M ovtotta Afyng Amopdcewv, Pdcel g onoiog o TIRAMOLA 0a AdPet tic
OTOQAGCELG Y10 TN SECUEVCT] TOPMV.

Ot tpomomomuéveg exdooelc twv TIRAMOLA kot Apache Hadoop omotelodv Tig kbhpieg
ovtotNTeEG TG ePapuoyng poc. H povdda Ayme omoedcewv upmopei va evtayfel oto
vrocvotnpa Tov TIRAMOLA. Mmopel gokodra va eneepyaotel | va Eavaypagel, yopig va
emnpedlovtor To vwoAowma tv Koppdtia tov TIRAMOLA, coupova pe TG avaykeg Tov
xpnotn. [a Toug oKomohe aVTHG TNG EpYaciog, EXOVUE OMULOVPYNOEL VO LOVTEAO KOGTOLG,
10 omoio — pe Paon v gpyacia tov Tian kot Chen [12] — amotvrdvel ™ oyéon petad tov
peyébovg TV dedopévev €16000V, TOVG OBEGILOVE TTOPOVG TOV GULOTHUATOG, KOl TNG
moAvmAokotnTo TG epyaciog MapReduce mov mpdkerton vo ekterectel. Avtd yiveton
TPOKEEVOL VO VTTOAOYIGTEL 1] TOCOTNTA TOV TOPMV OV OTOLTOVVTOL Yol TNV KOVOTOiNom
TOV TEPLOPICUMDY TOL YPNOTI OYETIKG HE TO YPOVO EKTEAECNG YPNOOTOLDVTOG TO
OTOTEAECUOTO LOG YEPOKIvTNG dtodikaciog dnuovpyiog mpopil pe ovvolo OESOUEVMV

Spopwv peyedmv. Ot mapauetpotl Tov poviédov yio ke mpoypoupo MapReduce pumopoiv

20

VO VTOAOYIGTOUV a0 TEWPAUATO GE EVO KPS apldud kopfov — po dtedikacio yvmortn mg
profiling [13]. Xpnowomoidvtag ovtd T0 HOVIELO KOGTOVG, WTOPOVUE VO ADGOVLUE
wpoPAnpata andpacns, OT®s 0 Kabopiopds g PEATIOTNG TOGOTNTOS TOPWV TOV UTOPOVV V.
EAO(LOTOTOMGOLVY TO OIKOVOLIKO KOGTOG LE Ui xpovikn mpobecpia 1 v glayiotomoinon
TOV YPOVOL VIO OKovopko Tpoimoroyioud. Exovpe, eniong, emPePfordost melpapaticd to
amoTEAECUOTO KOl OTOdgiEel OTL TO oVOTNUA 7OV TAPOLGIALovUE divel, TPAypoTl, TO

OVOLEVOLLEVE, OTOTEAEGLLOTO.

To Aoyiopkd mov ypnoonoleitol Kot Topdydnke yioo TG avayKeS NG MOpOVGOGC

, It I3 ; , 2 I4 J
SIMA®UOTIKNAG EPYACIOG EIVOL OVOIKTOD KOJIKO KOl S100EGLO Y10 TEPAUATICUO.

1.2 Aoun xewuévoo

270 TPOTO KEPALOLO TOPOLGLALOVIE EV GUVTOUIOL GTOV AVOYVMDGTI TO TPOPANLLA TOV £YOVUE
EMAEEEL VO OVTIUETOTIGOVUE KOl GUVTONO TTEPLYPAPOVUE TN GLUPOAN pog. Ot texvoroyieg
OV ovaEpovTal €00 O TUPOLGLOGTOVY EMIOG UE UEYOADTEPT AEmTOUEPELN KOl 0€ PAbOC
OTO EMOUEVE KEPAAOLN. XTO OEVTEPO KEPAAOLO, B0 YIVEL L0l EKTEVEGTEPT] EICUYMYN OTIG
TEYVOAOYIEC KOL TIC €VVOlEG OV MON 7O TAV® ovapEpOnkay, Y AOYOLG GOQENVELNS Kol
mnpomrac. Ot mo onuavtikég 10t teg Toug Ba emonuaviovv, evd Bo eénynoovue pe
7OV TPOTO M KGBE W10, 0md VTG €iye KATO0 AVTIKTUTTO GTO GYXESAGUO Kot TNV VAOTOINoN
T0V ovotnuatog pag. KAsivoviog 1o Ke@diato, VTOPAAAOVUE TIG TOPOTNPNOES HOGC Kot
KAVOLUE L0 TTEPLYPOPT] TOV YOPOUKTIPIOTIKOV OV SOLPOPOTOOLY TO £PY0 HaG amd O, Ti
vapyel Non owbécipo wg vanpesio. To tpito KePdrawo mapovoidlel to €pyo GAA®V
EMOTNUOVOV KOl UNYOVIKOV OV £XOVV OVIHETOTICEL KOl EMLYEPNOEL VO dDGOVV AVCELS OF
Tapopole TpofAnpata, Omwg N dayeipion didbeong mOPpwV 6€ TEPPAALOVTA VTOALOYIOTIKMV
vepmv Kol 1 TpoPreyn xpdvov extédeong yio mpoypappote MapReduce. Xto tétapto Kot
TEUNTO KEPOAoo €yovpe TmpoPel ot evdeheyn e&étoon TOV TEYVOAOYIDV OV
ypnowonotovvral, dnAadn to Apache Hadoop kor TIRAMOLA. Ilapovcialovps tnv
OPYLTEKTOVIKY] TOLG KOl KOVOLUE TOPATNPNOELS OYETIKA HE TN AsTovpyic TOLG —
TOPOTNPNCELS TOL YPNCOTOMONKAY KATA TO GYESIAGUO Kol TV LAomoinon tov BBQ. 10
éKTO KEPAAOIO TaPOLGIALOVUE TNV TEPOUATIKT Hog Odrtaln Kot o&loAoyobue To
OTOTELECUOTE TOV TEPAUATOV, GUYKPIVOVTAC TO LE TIC OPYIKEC UG Tpoodokies. Télog, 610
EBOOUO KEPAANIO TPOCPEPOVIE CUUTEPAGUOTA LOC OYETIKG HE TN AELTOVPYIKOTNTH TOV
GUOTNHOTOC, TPoTEivOVE KATOlEG PEATIDOELS Kol TELOC KAVOLLLE L0 GUVTOUT OVOCoKOTN o)

™G TPOOOOV LG O GYECT LE TOVE GTOYOVG TTOV Elyov apykd TebEL.

21

22

Introduction

The emergence of Cloud Computing (3.1), just about a decade ago, has brought a radical
change in the way applications are deployed, managed and operated, as application owners
can have instantly and hassle-free access to unlimited resources in a pay-as-you go manner.
Moreover, the explosion of the data being created, consumed, stored and processed is
changing the way discoveries are being performed, towards a more data-centric approach,
where insights are being extracted from vast amounts of data, as illustrated in the Fourth
Paradigm book [1]. Having access to — theoretically — unlimited computing power and storage
resources, users and companies are now able to respond to the growing need of managing
huge amounts of data. With, according to IBM, approximately 2.5 quintillion bytes created
every day [2], however, new challenges have appeared concerning the way cloud

infrastructures are being managed so that their resources are utilized to the full extent.

A number of Big Data processing tools have been developed in the previous years and they
are being used by many organizations and companies worldwide. The most popular tool is the
Apache Hadoop system [3], an open-source implementation of Google’s MapReduce
framework [4]. Hadoop offers the basic processing and storage primitives for scalable
distributed processing. On top of Hadoop a number of more complex systems that utilize the
basic “nuts and bolts” are being employed: Machine Learning Frameworks such as Apache
Mahout[5], Data processing Frameworks such as Hive [6] and Pig [7], NoSQL systems such

as Apache HBase [8] are a few of the systems that form the Apache Hadoop ecosystem.

One of the most notable strengths of Cloud Computing is elasticity (3.1.1), i.e., the ability to
dynamically acquire or release computing resources in response to demand. Cloud Elasticity
allows users to manage available computing resources according to their needs by shrinking

or expanding the infrastructure they are using. Elasticity is, thus, crucial in optimizing

23

resource management. To achieve optimum performance users are asked to answer questions

such as the following:

e How many resources do | need?
e When should I ask for/release resources?

e What kind of resources should I ask for in terms of type and quantity (i.e., do | need

more storage, or do | need more processing power?)
e How long do I have to wait until the resources | asked for are available?

As Big Data analysis is becoming more and more essential to research, Hadoop users can be
scientists from different fields, such as biology, finance, etc., without deep systems
knowledge in order to understand exactly what is happening during the execution, or how
many resources are sufficient/needed to execute their tasks. They are only interested in

executing their work in an efficient manner, in terms, for instance, of cost and execution time.

A typical task execution in Hadoop is treated as a batch job submission: users provide the
execution code in a binary format, a location to the data over which the code will be executed,
and the Hadoop scheduler launches a job that harness the available infrastructure resources
(i.e., a number of processing nodes) in order to produce the output. Current Hadoop
implementations do not allow for dynamic on-they-fly infrastructure resizing during a new
job submission. Even in the latest Hadoop versions, when a new job is being submitted for
execution, the available size of the infrastructural resources is static and cannot be changed
until the job finishes its execution. This shortcoming minimizes flexibility and leads to
suboptimal deployments, where the exact resources need to be configured prior to or after the

job execution.

There are Apache Hadoop “cloud-ready” versions that offer the user the ability to resize his
infrastructure, with the most notable one that of Amazon’s (Elastic Map Reduce [9]).
Nevertheless, they have the following shortcomings: a) The resizing is done prior to a job
execution, i.e., it cannot happen dynamically during the execution and b) the user must decide
on its own the correct amount of resources, something that, as previously described, cannot

always be done correctly.

All of the above lead us to the conclusion that systems allowing a cloud environment to adapt
to the submitted task(s) it is requested to perform can prove beneficial to resource
management. These systems should be able to answer the questions presented above for the

user and make decisions concerning resource provisioning and management accordingly.

24

2.1 Thesis Contribution

To address the issues stated above, in this thesis we are introducing BARBECUE (in short,
BBQ) a joB AwaRe Big-data Elasticity CloUd managEment system by expanding Apache
Hadoop and YARN [10], its generic resource scheduler, to perform job-aware on-the-fly
elastic resource allocation. We have also modified TIRAMOLA [11], a modular, cloud-
enabled framework for monitoring and adaptively resizing NoSQL clusters, changing its
monitoring and decision making modules to allow it to manage Hadoop clusters.

Consider the following motivating example: a user stores a large dataset in a small number of
a Hadoop Cluster of Amazon EC2 instances (VMs). The user wants to execute a resource
intensive processing operation over the aforementioned dataset, which will produce a small
data output: in that case, the user must manually decide the correct amount of extra resources
needed, deploy and configure them, execute the job, and then terminate the extra resources.
BBQ can minimize the effort required to perform the aforementioned task and perform the

optimal resource allocation at the same time.

Our system allows the on-the-fly automatic expansion of a Hadoop cluster on the cloud
(3.5.1) to improve performance while processing huge amounts of data in order to meet
constraints. Constraints can be set by the user and directly affect the provisioning needs of the
cluster, using the elastic property of the cloud to achieve optimum resource utilization in a
completely user-transparent manner. We assume that these user-set constraints typically are a
combination of an upper bound in execution time and lower bound in financial cost', i.e., a
constraint of the type “I want to execute my job without paying more than X USD and without
waiting more than Y hours”. Upon the submission of a new job, BBQ automatically and
transparently detects the correct amount of resources needed according to the dataset size and
job type, deploys and configures these resources, stalls the job execution workflow until the
deployment is finished, executes the workload and then terminates the extra launched

resources to avoid extra unnecessary costs.

BBQ consists of three modules:
¢ A modified — cloud aware — version of Hadoop
e A modified — job aware — version of TIRAMOLA

e A pluggable Decision Making module, based on which TIRAMOLA will make the

provisioning decisions.

Y In the virtual machine (VM) based cloud infrastructure (e.g., Amazon EC2), the cost of cloud resources is
calculated based on the number of VM instances used in time units (usually, in hours).

25

The modified versions of TIRAMOLA and Apache Hadoop platform are the primary modules
of our implementation. The Decision Making module can be viewed as a sub-module of
TIRAMOLA. It is pluggable and can be easily edited or rewritten, without affecting the rest
of TIRAMOLA’s components, according to the user’s needs. For the purposes of this work,
we have built up a cost model, which — based on the work of Tian and Chen [12] — describes
the relationship between the size of input data, the available system resources (container
capacity in the cluster), and the complexity of the target MapReduce job. This is done in order
to estimate the amount of resources required to meet user-set execution time constraints using
a manual profiling procedure and datasets of various sizes. The model parameters for any
MapReduce programs can be learned from test runs with a small number of nodes — a process
known as profiling[13]. Using this cost model, we can solve decision problems, such as the
optimal amount of resources that can minimize the financial cost with a time deadline or
minimize the time under certain financial budget. We have also experimentally confirmed the
results and established that the system we are introducing can gives us, indeed, the expected

results.

The software used and produced for the needs of this diploma thesis is Open Source? and can

be downloaded for experimentation.

2.2 Text Structure

In the first chapter we briefly introduce the reader to the problem we have chosen to tackle
and shortly presented our contribution. The technologies mentioned here will also be
presented in length in the following chapters. In the second chapter, the reader will be
introduced to some of the technologies and concepts already mentioned, for clarity and
completeness. Their most important properties will be highlighted; we will also explain in
which way each one of them has had an impact in the design and implementation of our
system. Closing it out, we present our observations and make a statement describing the
features that differentiate our work from what is already available as a service. The third
chapter presents the work of other scientists and engineers who have encountered and
addressed similar problems, such as cloud provisioning and execution time prediction. In the
fourth and fifth chapters we make a thorough examination of the technologies used, namely
the Apache Hadoop framework and TIRAMOLA, an automated elasticity provisioning
framework over cloud management platforms. We present their architecture and make

observations on their functionality — observations which were used during the designing and

2 http://sourceforge.net/projects/bbgproject/

26

implementation of BBQ. In the sixth chapter we present our experimental setup and evaluate
our results, also comparing them to our initial expectations. Finally, in the seventh chapter we
offer our conclusions regarding the system's functionality suggest some improvements and

last but not least review our progress in comparison to the objectives set.

27

28

Background

3.1 Cloud Computing

According to the US National Institute of Standards and Technology, cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service

provider interaction [14].

In the Cloud Computing model, a user can unilaterally provision computing resources, such
as server time and network storage, automatically without requiring human interaction with
the service provider. Resources can be elastically provisioned and released to scale rapidly
depending on demand. To the user, the capabilities available for provisioning often appear to

be unlimited and can be appropriated in any quantity at any time.

The most common Service Model in which cloud computing is used is Software as a Service
(SaaS), according to which, the user is provided the capability to use the provider’s
applications which run on a cloud infrastructure. SaaS applications can be accessible from
various client devices through either a thin client interface, such as a web browser (e.g., web-
based email), or a program interface. The user does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific application

configuration settings.
3.1.1 Cloud Elasticity

Elasticity has originally been defined in physics as a material property capturing the

capability of returning to its original state after a deformation. In economical theory,

29

informally, elasticity denotes the sensitivity of a dependent variable to changes in one or more
other variables. In both cases, elasticity is an intuitive concept and can be precisely described
using mathematical formulas. The concept of elasticity has been transferred to the context of
cloud computing and is commonly considered as one of the central attributes of the cloud
paradigm. According to a paper published in 2013 by the Karlsruhe Institute of Technology
[15], elasticity is the degree to which a system is able to adapt to workload changes by
provisioning and deprovisioning resources in an autonomic manner, such that at each point in
time the available resources match the current demand as closely as possible. Normally,
resources of a given resource type can only be provisioned in discrete units like CPU cores,
virtual machines (VMs), or physical nodes.

3.2 Big Data

Big data is an evolving term that describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be mined for information. Although
big data doesn't refer to any specific quantity, the term is often used when speaking about
petabytes and exabytes of data. Typically these massive amounts of data are collected over
time and are difficult to analyze and handle using common database management tools. The
data are analyzed for marketing trends in business as well as in the fields of manufacturing,
medicine and science. The types of data include business transactions, e-mail messages,
photos, surveillance videos, activity logs and unstructured text from blogs and social media,
as well as the huge amounts of data that can be collected from sensors of all varieties, such as
black box (consisting of data such as voices of the flight crew, recordings of microphones and

earphones, and the performance information of aircrafts), stock exchange, power grid data.

The first documented use of the term “big data” appeared in a 1997 paper by scientists at
NASA [16], describing the problem they had with visualization. According to it, graphic
representation “provides an interesting challenge for computer systems: data sets are
generally quite large, taxing the capacities of main memory, local disk, and even remote disk.
We call this the problem of big data. When data sets do not fit in main memory (in core), or
when they do not fit even on local disk, the most common solution is to acquire more

resources.”

In 2008, a number of prominent American computer scientists used the term in their paper
“Big-Data Computing: Creating revolutionary breakthroughs in commerce, science, and
society” [17], predicting that “big-data computing” will “transform the activities of

companies, scientific researchers, medical practitioners, and our nation’s defense and

30

intelligence operations.” The term “big-data computing,” however, is never defined in the
paper.

However, he now mainstream definition of big data was articulated as far back as 2001 by
industry analyst Doug Laney and is since known as the three Vs of big data [18]: volume,

velocity and variety.

o Volume. In the past, excessive data volume was a storage issue, but with decreasing
storage costs, other issues emerge, including how to determine relevance within large

data volumes and how to use analytics to create value from relevant data.

e Velocity. Data is streaming in at unprecedented speed and must be dealt with in a
timely manner. There is an increasing need to deal with torrents of data in near-real
time. Reacting quickly enough to deal with data velocity is a challenge for most

organizations.

e Variety. Data today comes in all types of formats (e.g., structured, numeric data in
traditional databases, data created from line-of-business applications, unstructured
text documents, email, video, audio data and financial transactions). Managing,
merging and governing different varieties of data is something many organizations

still grapple with.

These three aspects of what we usually simply refer to as “Big Data” are the reasons why
traditional processing algorithms have proved ineffective with them. The sheer volume and
variety of these data makes processing them a very demanding task, even more so if the
requirement for velocity is taken into account. In 2004, a groundbreaking paper presented by
researchers working for Google, introduced the MapReduce programming model [4], which is
presented in the following section, which has since been a very popular for Big Data

processing using a cluster worker nodes.

3.3 MapReduce Programming Model

MapReduce is a programming model for processing large data sets with a parallel, distributed
algorithm on a cluster. The model is inspired by the Map and Reduce functions commonly
used in functional programming, although their purpose in the MapReduce framework is not
the same as their original forms. It was developed at Google, initially for indexing Web pages
and replaced their previous indexing algorithms and heuristics in 2004. MapReduce works by
breaking the processing into two phases: the map phase and the reduce phase. Each phase has
key-value pairs as input and output, the types of which may be chosen by the programmer.

The programmer also specifies two functions:

31

http://whatis.techtarget.com/definition/algorithm
http://whatis.techtarget.com/definition/heuristic

e Map, a function that parcels out work to different nodes in the distributed cluster.

e Reduce, another function that collates the work and resolves the results into a single

value.

The key contributions of MapReduce are not the actual map and reduce functions, but its
scalability — up to clusters of thousands of workers — and fault-tolerance. For a better
understanding of the MapReduce programming model, an example is presented in the next

section.
3.3.1 An example of MapReduce

The map function takes a value and outputs key:value pairs. For instance, if we define a map
function which processes a string and outputs the length of the word as the key and the word
itself as the value value delimited with the symbol “:” then map(‘mapreduce’) would return
9:mapreduce and map(hadoop) would return 6: hadoop. The map function is stateless and
only requires the input value to compute its output value. This allows us to run the map
function against values in parallel and provides a huge advantage. Before we examine the
reduce function, the MapReduce framework groups all of the values together by key (using a

994

function called the “combiner””), so if the map functions output the following key:value pairs:

: the
and
:you
: then

: what

3

3

3

4

4

4 : when
5 : nikos

5 : where

6: hadoop
8 : savannah
8 : research
9

: mapreduce
They get grouped as:

: [the, and, you]

: [then, what, when]
: [nikos, where]

: [hadoop]

o 01~ W

32

8 : [savannah, research]

9 : [mapreduce]

Each of these lines would then be passed as an argument to the reduce function, which
accepts a key and a list of values. In this instance, we might be trying to figure out how many
words of certain lengths exist, so our reduce function will just count the number of items in
the list and output the key with the size of the list, like:

© o0 o o1 M~ W
P N PN W W

The reductions can also be done in parallel, again providing a huge advantage. As an analogy,
you can think of map and reduce tasks as the way a census was conducted in Roman times,
where the census bureau would dispatch its people to each city in the empire. Each census
taker in each city would be tasked to count the number of people in that city and then return
their results to the capital city. There, the results from each city would be reduced to a single
count (sum of all cities) to determine the overall population of the empire. This mapping of
people to cities, in parallel, and then combining the results (reducing) is much more efficient
than sending a single person to count every person in the empire in a serial fashion. In the
next section, we will present WordCount, another example of a MapReduce program which

has been used as a benchmark for the experiments conducted for the needs of this thesis.’
3.3.2 WordCount with MapReduce

The most common example of MapReduce is for counting the number of times words occur
in a corpus. Suppose our working dataset is a copy of the internet, and we want a list of every

word on the internet as well as how many times it occurred.

The way this problem would be approached would be to tokenize the documents to be
processed, and pass each word to a mapper. The mapper would then emit the word along with
a value of 1. The grouping phase would iterate through all the keys (in this case words), and
make a list of 1's. The reduce phase would then take a key (the word) and a list (a list of 1's

for every time the key appeared on the internet) as input, and sum the list. The reducer would

3 Example as it appears in : http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

33

then output the word, along with its count. When this process would have been completed, we

would have a list of every word on the internet, along with how many times it appeared.

3.4 Apache Hadoop

MapReduce frameworks provide a specific programming model and a run-time system for
processing and generating large datasets that is amenable to a variety of real-world tasks. For
programs written in this model, the run-time system automatically parallelizes the processing
across large-scale clusters of machines, handles machine failures, and schedules inter-
machine communication to make efficient use of the network and storage. The Apache
Hadoop software library is such a framework that allows for the distributed processing of
large data sets across clusters of computers using simple programming models. It is designed
to scale up from single servers to thousands of machines, each offering local computation and
storage. Rather than rely on hardware to deliver high-availability, the library itself is designed
to detect and handle failures at the application layer, so delivering a highly-available service
on top of a cluster of computers, each of which may be prone to failures. Hadoop was derived
from Google's MapReduce [4] and Google File System (GFS) [19] papers. In the earlier
versions of Hadoop, the framework was strictly on to be used with MapReduce applications.
In 2013, Apache YARN (YARN: Yet Another Resource Negotiator) [10] was integrated in the
Hadoop project, allowing for execution of any type of applications — not just MapReduce.

A number of enterprises now use Hadoop in production deployments for applications such as
Web indexing, data mining, report generation, log file analysis, financial analysis, scientific
simulation, and bioinformatics research. MapReduce frameworks are well suited to run on
cloud computing platforms. Cloud-based services are now available that make it easy to set
up and run MapReduce programs using Hadoop. Amazon Elastic MapReduce [9] is a hosted
framework that runs dynamically-provisioned Hadoop clusters using Amazon Elastic
Compute Cloud (EC2) [20] and Simple Storage Service (S3) [21] — dynamic provisioning in
this case indicating that users can ask for any number of compute instances running Hadoop.
Alone, Hadoop is a software market which in 2012 IDC predicted will be worth $813 million
in 2016, but it’s also driving a Big Data market the research firm predicts will hit more than
$23 billion by 2016 [22].

3.5 Review

The sections above make the reasons why Hadoop was our platform of choice quite clear.

Being designed to support “embarrassingly parallel” algorithms, such as MapReduce

34

programs, a Hadoop cluster is perfectly suited to be the cornerstone of any system which is
designed for the processing of Big Data. It is also clear why a cloud service could be an ideal
infrastructure to host a Hadoop cluster, since its properties fit the needs of the Big Data

processing platform.

Cloud Services (i.e. Amazon Elastic MapReduce) have made access to a Hadoop cluster on a
cloud possible for many users for whom owning a proprietary cluster is not a viable option
but still a Hadoop cluster takes a lot of effort to configure and manage. Configuration has to
be made after the purpose of the cluster has been very well defined. Such a cluster would
need careful provisioning — meaning that it would require the user to possess the expertise to
predict the resources which are suitable for both the size of data to be processed and the
programs and algorithms which will be used to do the processing.

Although cloud services do offer elasticity, they still require the user to be an expert and
perform the cluster provisioning. They also fail to use the elastic property of their cloud
infrastructure in a dynamic way. Our system offers a different form of elasticity, which lifts
provisioning duties off the user’s responsibilities and can allow anyone. The following
paragraph will focus on that aspect of our work and explain the term “automated, on-the-fly”

elasticity.
3.5.1 “Automated, on-the-fly"" Elasticity: a fine line

A Hadoop cluster is, of course, elastic — meaning that:
a. It can scale out, since scalability is one of the framework’s signature properties
b. The set up of a cluster can be modified at any time by adding or removing nodes.

Taking advantage of the elastic property of a Hadoop cluster, however, is not simple. Adding
a new node to an existing cluster would mean that its software is up-to-date, and its cluster-
specific configuration matches that of the rest of the nodes of the cluster. Similarly, removing
existing nodes from a Hadoop cluster should guarantee that no data loss might incur as a
consequence. Assuming that these conditions are met, elasticity can be accomplished. In
services such as Amazon Elastic MapReduce, these requirements are already met, albeit with

some restrictions (e.g. single node clusters cannot be expanded) [23].

Our definition of the term automated, on-the-fly elasticity, though, exceeds the simple
operations of expanding or shrinking an idle Hadoop cluster by provisioning or
deprovisioning cloud resources. We mean a job-specific form of elasticity, which allows the
acquisition of resources to boost the performance of a specific MapReduce job. When a
MapReduce job is submitted to the Hadoop platform in order to be executed against a large

dataset, BBQ will work as a fully integrated system and automatically:

35

e Chose to either request resources or not, leaving the cluster as is,
e Configure the new cluster nodes, if one or more are eventually added,
e Configure the MapReduce program to utilize the cluster in an optimal way.

Automatic resource provisioning takes into account a set of constraints to be met, provided by
the user in a high-level context (as mentioned above, either an upper bound for execution time
or a lower bound for financial cost), as well as the complexity of the program to be executed
and the size of the data to be processed.

36

Related Work

Researchers have proposed ways to predict the resources a Hadoop MapReduce framework
would require to execute a certain MapReduce program in order to use the cloud in an
optimal way since the popular MapReduce platform started becoming the Big Data analytics
go-to tool. Most of these studies involve building profiles of the programs in question by
running sample executions of them with different datasets/configurations/deployments and
recording performance metrics for each execution such as completion time, etc. Before we

move on, we present a short description of profiling techniques.

4.1 Profiling

Producing a system that could make predictions about cluster performance and execution time
solely based on the size of the input data would be ideal. Unfortunately, the variety of
operations the incoming (Big) Data can be put through is vast and the algorithms that can

implement those are countless. This renders one-fits-all solutions practically impossible.

In order to be able to make accurate estimations though, it is possible to build profiles of
certain programs. Profiles are often used by Big Data engineers. Profiling data on a
MapReduce program can itself be considered Big Data, as there are countless variables to be
possibly taken into account. A profile can be built by running the program in question
multiple times, changing a number of (independent) variables that could affect its
performance — such as input data size or type (compression, format), cluster size,
configuration settings etc.) - and then keeping records of metrics that are considered
important. The profiling data can then be processed and help create a mathematical model

which can produce predictions about actual jobs.

37

When a system which relies on profiling is set up for the first time, the profiling data have to
be collected through experiments, executed precisely for that purpose. A program's profile
can however continue to evolve as long as the system is alive, by collecting data and

reviewing the profiles built every time a job that matches it, is executed.

Another interesting aspect of profiling is the fact that more than one program can match a
profile. Once a program has been matched to an existing profile, future predictions can
become even more accurate, supposing that the initial model was accurate itself. In order to
match a new program to an existing profile, a preliminary run would have to be completed,

collecting profiling data and then comparing them against those of the existing profiles.

4.2 Cluster provisioning for MapReduce Big Data analysis

Tian and Chen [12] introduce and evaluate a method to optimize resource provisioning to
minimize the financial charge for a specific job. In this paper, the whole process of
MapReduce processing is studied and the authors build up a time cost function that explicitly
models the relationship between the amount of input data, available system resources, and the
complexity of the program to be executed for the target MapReduce job. We have used this
cost function in order to design our system’s decision making module — which uses the

aforementioned cost function to solve optimization problems.

Kambatla et al. present a platform which uses profiling in order to detect the ideal
configuration setup for MapReducel.0 programs [24]. Their system uses a database which
matches a set of profile fingerprint signatures, unique for every MapReduce program, to each
program’s ideal configuration, detected by running a number of experiments; incoming
programs are executed using a small fraction of the original dataset and a portion of the
resources of the cluster in order for their own unique signature to be produced. The new
profiling data is then compared against the database of known profiles and the best
configuration of the program with the closest matching profiling signature is used. This
approach is based on the MapReducel.0 framework, where map and reduce slots-per-node
values where explicitly set by the user. Such settings cannot be used in a Hadoop2.0 context,
where the concept of separately defined map and reduce slots has been obsolete. A similar

context can be found in the work of Babu [25].

Starfish: A Self-tuning System for Big Data Analytics [26] is a powerful, complex tool for
predicting optimal provisioning and configuration settings for Hadoop clusters, which relies
on building detailed profiles of programs. Profiling can happen both dynamically — during the

execution of a MapReduce job — or virtually, by using heuristics as explained in [27]. It then

38

uses the profiling data to make predictions on optimum configuration settings and cluster
provisioning. It also includes a what-if-engine, which can predict the performance of a
MapReduce job given a cluster configuration and input. Additionally, Verma et al. have
designed and documented a similar system which also uses profiling in order to make

provisioning predictions [28].

All of the systems mentioned above are implemented on a level on top of Hadoop. The BBQ
system offers a simpler implementation which is fully integrated within Hadoop, also
integrating an automatic provisioning platform in BBQ TIRAMOLA. Additionally, the
systems described above focus on modifying Hadoop configuration settings — something only
possible when launching MapReduce programs on dedicated clusters, created especially for
that purpose. BBQ Hadoop is designed in the perspective of YARN, as a persistent
infrastructure layer offering a framework for the execution of MapReduce programs. Hadoop
configurations are considered as bound to the infrastructure (i.e. we allow 3 YARN
Containers — 5.2 — per node in a cluster with quad-core VMs). The fact that the decision
making module is pluggable means that a more complex, robust implementation can replace

the current one and expand BBQ’s functionality.

The existence of so many works on the same topic proves that in effect the problem of cluster
provisioning for Big Data processing cannot have an all-for-one solution. Different types of
applications need to use the provided resources in very different ways — some are compute-
heavy, spending a large portion of execution time to process input data while others are
read/write-heavy, spending a large portion of execution time to read or write data down to
persistent storage. It makes perfect sense that different types of applications require a
different approach when it comes to cluster provisioning and configuration. Some of the
systems mentioned above give the user the option to build a profile of a certain MapReduce
program based on which configuration and performance will be optimized in the future. We
argue that in most cases such an option gives very little advantage, since users who need
access to Big Data analysis tools usually use specific ones, chosen to fit their requirements.
There are cases where pre-configuring the system for specific applications, as BBQ currently
does, might be the best practice. BBQ detaches the decision making module and the policies
which resource provisioning follows in an elegant way, which might provide no automation
during the profiling process but can manage and provision a Hadoop cluster used with these

specific applications more efficiently instead.

39

40

Technical Overview of

the Hadoop Platform

5.1 Apache Hadoop1.0 and Mapreducel.0

Before the Hadoop MapReduce framework is presented in detail, some background

information about the evolution of the project would be useful to be presented.

In the first versions of the project, Hadoop MapReduce could be broken down into three

major facets:

e The end-user MapReduce API for programming the desired MapReduce application.

o The MapReduce framework, which is the runtime implementation of various phases

such as the map phase, the sort/shuffle/merge aggregation and the reduce phase.

e The MapReduce system, which is the backend infrastructure required to run the user’s
MapReduce application, manage cluster resources, schedule thousands of concurrent
jobs etc.

This separation of concerns had significant benefits, particularly for the end-users — they
could completely focus on the application via the APl and allow the combination of the
MapReduce Framework and the MapReduce System to deal with issues such as resource

management, fault-tolerance, scheduling etc.

The Apache Hadoop MapReduce System was composed of the JobTracker, the master, and

the per-node slaves called TaskTrackers.

Vi1

MapReduce Status ~——————#
Job Submission ====-- [

Figure 5-1. Hadoop MapReducel.0 Architecture[29]

The JobTracker was responsible for resource management (managing the worker nodes i.e.
TaskTrackers), tracking resource consumption and availability and also job life-cycle
management — scheduling individual tasks of the job, tracking progress, providing fault-

tolerance for tasks etc.

The TaskTrackers had simple responsibilities, namely launching or tearing down tasks on

orders from the JobTracker and heartbeating task-status information to the JobTracker.

As Hadoop became more and more successful, it was also becoming obvious that a radical
overhaul of the framework was needed. The main problem with Hadoop1.0 was the fact that it
was intertwined with MapReduce. In fact, MapReduce Applications were the only kind of
programs supported by the early versions of Hadoop. In addition to that, several other aspects
needed to be addressed, regarding scalability, cluster utilization, ability for customers to
control upgrades to the stack i.e. customer agility.

42

(1) fork .* . s s
S (1) fark ¢1) fork

A)

@) " assign
,as’sign reduce .
o0 map -
Split 0 o (6) writ
e
split 1 TaskTracker Ogtpu[
(5 remote read file O
split 2 |3) read @ (4) local write
5 sk Trac output
split 3 Ll | TaskTracker
p O file 1
split 4
TaskTracker
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 5-2. Hadoop MapReducel.0 Execution Overview form the Google paper[4]

5.2 Apache Hadoop2.0 YARN and Mapreduce2.0

From version 2.0 on, the Hadoop project included Apache YARN [10]. The fundamental idea
of YARN is to split up the two major responsibilities of the JobTracker, resource
management and job scheduling/monitoring, into separate daemons: a global
ResourceManager (RM) and per-application ApplicationMaster (aM), completely
separating the framework from the application layer. This way, some of the former
JobTracker’s functions are now moved to a central allocator which can use an abstract

description of tenants’ requirements, but remains ignorant of the semantics of each allocation.

The ResourceManager IS the ultimate authority that arbitrates resources among all the
applications in the system. The per-application ApplicationMaster is, in effect, a
framework specific entity and is tasked with negotiating resources from the
ResourceManager and working with the NodeManager(S), the per-node slave(s), to execute

and monitor the component tasks.

The ResourceManager has a pluggable scheduler, which is responsible for allocating
resources to the various running applications subject to familiar constraints of capacities,

queues etc. The Scheduler performs its scheduling function based on the resource

43

requirements of the applications, which are declared to the rm through the am; it does so
based on the abstract notion of a Resource Container which incorporates resource elements
such as memory, CPU, disk, network etc. Depending on the application demand, scheduling
priorities, and resource availability, the RM dynamically allocates Container — to applications
to run on particular nodes. The container is a logical bundle of resources (e.g., 2GB RAM,
1 CPU) bound to a particular node. YARN completely departs from the static partitioning of
resources for mappers and reducers; it treats the cluster resources as a (discretized)

continuum, which allows for better resource utilization.

Resource i _

e Manager

MapReduce Status -~

Job Submission ~----- -
Node Status — >
Resource Request ----.----- »

Figure 5-3. Hadoop MapReduce2.0 Execution Overview[29]

The per-application applicationMaster has the responsibility of negotiating appropriate
resource Containers from the Scheduler, tracking their status and monitoring for
progress. It coordinates the logical plan of a single program by requesting resources from the
RM, generating a physical plan from the resources it receives, and coordinating the execution
of that plan around faults. From the system perspective, the applicationMaster itself runs

as anormal cContainer.

The NodeManagers are responsible for launching the applications’ containers, monitoring
their resource usage (CPU, memory, disk, network) and reporting these metrics to the
ResourceManager, through a periodical heartbeat. NMs are also responsible for monitoring

resource availability, reporting faults, and container lifecycle management (e.g., starting,

44

killing). The rM assembles its global view of the cluster state from these shapshots of

individual NMs’ states.

5.2.1 MapReduce Application Execution Overview with YARN

In this section an overview of the execution of a Hadoop MapReduce program as a YARN
application will be presented, highlighting the points of significance which allowed our
modifications to help achieve our initial objectives. These modifications will be presented and
thoroughly explained in following chapters.

Jobs are submitted to the RM via a public submission protocol and go through an admission
control phase during which security credentials are validated and operational and
administrative checks are performed. Accepted jobs are passed to the scheduler to be run.
Once the scheduler confirms that it has enough resources, the application state is changed
from ACCEPTED to RUNNING. Besides internal bookkeeping, this involves the allocation of a
container for the am and its spawn on a node in the cluster. A record of accepted applications

is kept in persistent storage and can be recovered in case of an rRM restart or failure.

The applicationMaster is the “head” of a job, managing all lifecycle aspects and
execution pipeline events including dynamically increasing and decreasing resources
consumption, managing the flow of execution — e.g., running reducers against the output of
maps, handling faults and computation skew, performing other optimizations. In fact, the AM
can run user code, which can allow for the development of new types of applications — but
can also cause security issues, exactly because of the fact that they can be user-created.
YARN assumes that applicationMasters are buggy or even malicious and therefore
treats them as unprivileged code (does not give them permissions to YARN configuration
files; they can only access application-relative resources). ApplicationMasters Can be
written in any programming language since all communication with the rv and N is encoded
using extensible communication protocols. However YARN comes with a default
ApplicationMaster for MapReduce applications, a class named MRAppMaster. Typically,
an AM will need to harness the resources (CPUs, RAM, disks etc.) available on multiple
nodes to complete a job. As mentioned previously, to obtain containers aM issues resource
requests to the rm. The rRM will attempt to satisfy the resource requests coming from each
application according to availability and scheduling policies. When a resource is allocated on
behalf of an aM, the rRM generates a lease for the resource, which is pulled by a subsequent am
heartbeat. Once the ApplicationMaster discovers that a container is available for its use, it

encodes an application-specific launch request with the lease. In MapReduce, the code

45

running in the container is either a map task or a reduce task. Overall, a YARN deployment
provides a basic, yet robust infrastructure for lifecycle management and monitoring of

containers, while application-specific semantics are managed by each framework.
5.2.2 Evaluating YARN

With the advent of YARN, the user is no longer constrained by the MapReduce development
model, but can instead design and develop more complex distributed applications. In fact, the
MapReduce model can simply be one more in the set of possible applications that the YARN
architecture can execute, in effect exposing more of the underlying framework for customized
development. This is powerful because the usage model of YARN is potentially limitless.
YARN can become a layer on top of which a number of distributed applications can run,
rendering the YARN cluster a multipurpose entity with an exciting potential of Big Data
processing — essentially undertaking the role of a cluster Operating System.

ResourceManager
} RM -- NodeManager
client > <
Client -- RM [Scheduler] < S
[AMService]
{\
RM -- AM T

| |

MPl || Container >
}I\Ana Umbilical Container
(Contaimer i————— Jmoledl ., (Gontainer)

AM
‘ Node Manager ’ ‘ Node Manager . ‘ Node Manager ’

i 1 . [

Figure 5-4. YARN Architecture (in yellow and pink two applications running.)[30]

46

5.2.3 Hadoop MapReduce 2.0 Execution Overview

In this section an overview of the execution of a Hadoop MapReduce program as a YARN
application will be presented, highlighting the key points.

YARN treats each application submitted for execution in the same way, regardless of its type,
in our case MapReduce. The resource management layer has no access to any kind of
information relative to the application. Instead, the ApplicationMaster is responsible for

managing all lifecycle aspects and submit resource requests to the ResourceManager.

As mentioned above, when a client submits an application to the ResourceManager, the
latter allocates a container for the am, which spawns on a node in the cluster. The am is

responsible for the execution of the application. The rM is a single point of failure in YARN.

The input data is then automatically partitioned into a set of M splits, called FileSplits.
The ApplicationMaster Will launch one MapTask for each map split. Typically, there is a
map split for each input file. If the input file is too big (bigger than the HDFS block size) then
we have two or more map splits associated to the same input file, which is the most common

case.
5.2.3.1 Map Phase

The MRAppMaster immediately asks for containers needed by all MapTasks: One MapTask
container required for each MapTask. All container requests for MapTasks try to exploit data

locality. A request for a new container will be served by the allocation of:

This is however only a hint to the ResourceScheduler, which is free to ignore data locality

if the suggested assignment is in conflict with its goal.

When a container is finally assigned, it is populated by an instance of the class yarnchiid,
which is responsible for the invocation of both map and reduce tasks. In the case of a
MapTask, an instance of the program provided by the user as the map function becomes

initiated and starts executing using the new container’s resources.

{ INIT H EXECUTION 1 [SHUFFLE
SPILLING ’
L J
Task time Task
Start Finish

Figure 5-5. Map phase [30]

47

Each MapTask’s execution timeline can be analyzed in 4 phases:

e Initiation phase: the environment in which the MapTask will run is being created.
This includes the instantiation of metadata classes relevant to the input, output and

execution context,

e Execution phase: for each (key, value) tuple within the map split, the

Mapper.run () function, provided by the user is executed,

e Spilling phase: it runs on a separate thread; the map output is stored in an in-
memory buffer; when this buffer is almost full then it starts spilling its content into
local files, using a user-defined partitioning function to split the output in partitions,

each corresponding to a single reducer”,

e Shuffle phase: after all map output has been spilled it is merged and packaged for the
reduce phase.

Circular buffer

SplitRecord

m
n (*
= .

_ (In memory) Output file 4 reducers
w Sort by key [| I] ==
E 4 partitions
TS

Figure 5-6. Map phase: spilling [30]

* For efficiency reasons, sometimes it makes sense to use a combiner class to perform a reduce-type function. If a
combiner is used then the map key-value pairs are not immediately written to the output. Instead, they will be
collected in lists, one list per each key value. When a certain number of key-value pairs have been written, this
buffer is flushed by passing all the values of each key to the combiner's reduce method and outputting the key-

value pairs of the combine operation as if they were created by the original map operation.

48

Job Submitter acelling
I\ Manager
g
2
Qo
=
b Node Manager Node Manager
£
£
£
o
g g 4
Container —) Container Container <
v . v
MapTask ReduceTask
x o
5 Application
] Master
E
i
L
: b
o
=
=
@
E_ Task | Task Attempt
=

Task ——>{ Task Atempt &K——

Figure 5-7. YARN Infrastructure vs MapReduce framework [30]

5.2.3.2 Reduce Phase

The MapReduce ApplicationMaster (MRAppMaster) waits until a preset portion of
MapTasks has finished. Then, if all MapTasks have containers assigned and are running or
have already finished then all remaining reducers are being scheduled for execution.
Otherwise, the MRAppMaster tries to assign containers to either new MapTasks Of
ReduceTasks. MapTask requests have a higher priority than ReduceTasks requests, as all
MapsTasks have to be completed for the ReduceTasks to finish as well. Data locality is not
a factor in assigning ReduceTask containers, as map output files are scattered around every

node of the cluster.

Similarly to what happens when a Container for a MapTask is finally assigned, it is populated

by an instance of the class yarnchild. In the case of a ReduceTask, an instance of the

49

program provided by the user as the reduce function becomes initiated and starts executing

using the new container’s resources.

In proportion to what we saw with the MapTasks above, each ReduceTask’s execution

timeline can be analyzed in 3 phases:

e Initiation phase: the environment in which the ReduceTask will run is being
created. This includes the instantiation of metadata classes relevant to the input,

output, possible compression codecs and the shuffle phase context,

e Shuffle phase: several parallel fetchers are spawn and start collecting the map output
files from remote NodeManagers, copying them either in memory or in the local
disk; all input files are added in a queue of files to be merged in order to compile the
input for the Reduce function

o [Execution phase: some more ReduceTask Mmetadata classes are instantiated; for
each (key, [<values>]) tuple, the Reducer.run () function, provided by the user, is

executed.

r O MapTaki | | MapTak2 | | MapTask3 |
[o o :
| |] | |

| o s O —
	1	1							
	1	1							
	1								
klv klv k2w		k	\		k3\k4.\	L-I\k5\		kd:v	kl:v k3:v
[I o !

Partitioning Function Partitioning Function Partitioning Function

==

Ir Sort and Group | | Sort and Group ||
I kv vy [k3 ||
I I | !
! ' HOROK
I I [!
I I [L
L[L[
I I | !
I Reduce Task 1 I | Reduce Task 2"

Figure 5-8. Parallel processing in MapReduce, from the Google paper [4]

5.3 Observations

The initial task to be achieved in order to create a system which can offer automated, on-the-
fly elasticity for Hadoop MapReduce programs was to track down the various actors in the
YARN-Hadoop platform and carefully study their interactions. We had to find a way to
obtain metadata information (i.e. number of input splits, number of reducers to be run, type of

MapReduce job) about a MapReduce job as soon as it is submitted to YARN but before the

50

execution starts fanning out to the NameNodes, because by then the application configuration
and context files will have been created, and any cluster resource changes would not be
detected by the job for execution. This information would then have to be fed to a decision
making module which would process it and — taking into account the user-set restrictions,
which also affect provisioning needs, as stated in the introductory section of this thesis —
finally make a decision about whether to expand or not the cluster, and if yes by how many

nodes, act on it and allow the execution to be continued.

In the presentation of YARN and MapReduce2.0 execution overviews above, it became
obvious that YARN’s ResourceManager and the application-specific
ApplicationMaster (in the case of MapReduce, the MRAppMaster) are the two
coordinators of the whole execution framework. The ResourceManager is the module
aware of the total amount of the cluster resources (infrastructure context), while the
MRAppMaster can have access to the MapReduce job metadata (job context). These two
actors will prove to be of great significance in our implementation, as presented in the sixth
chapter in which the architecture and full functionality of our system will be revealed, as well
as the interactions between the various modules and the necessary modifications which the

Hadoop framework has went under.

51

52

TIRAMOLA

TIRAMOLA [11] is a modular, cloud-enabled framework for monitoring and adaptively
resizing noSQL clusters. The system was originally designed to incorporate a decision-
making module which allowed for optimal cluster resize actions in order to maximize any
guantifiable reward function provided together with life-long adaptation to workload or

infrastructural changes.
Its main components are:
¢ A main class which orchestrates its various modules,

e A class which implements the interaction with the cloud provider — the cloud
management module (e.g. offers functions which launch virtual machines - VMs,

request list of active ones etc.)

e A class which implements the interaction with the noSQL cluster and uses the
functions of the class above — the cluster coordinator module (e.g. offers functions
which add/remove nodes to the cluster)

e A decision making module

When launched, the TIRAMOLA daemon does one of the following two things:
a. It starts a fresh cluster, automatically spawning new virtual machines and
populating them with a precooked image of the software used and also copying

predesigned configuration files in the VMs to set up the noSQL systems and start

the services or
b. It assumes control of an existing cluster.

It then monitors the cluster, by reading metrics provided by an external source and
periodically feeds those to the decision making module in an infinite loop. The latter decides

whether the cluster is overprovisioned, underprovisioned or neither of the two according to a

53

selected user policy. Depending on the decision made, it can release one or more VMs which
had been until now active nodes of the cluster, make a request to the cloud provider to launch
new VMs (which are then automatically configured and added to the cluster), or simply do
nothing.

Decision Making) (};’

|
|
|
: Get fresh NoSQL Hardware
|
|
|

| User policies
|
metrics Cluster resize resize :
|
|

— Cluster Cloud
|
\G’Iomtormg) (Coordinator)G\r‘lanagement é
o ~_A__ \\ ________ -~ Adjust

Collect Manage resources

Performance Metrics NoSQL nodes

Add/delete
k VMs

Cloud
Provider

Figure 6-1. Original TIRAMOLA Architecture [11]

54

The BBQ system

The system we introduce in this diploma thesis is a modified version of Apache Hadoop
which supports automated, on-the-fly cluster elasticity for the execution of MapReduce
programs in a cloud environment, subject to user-defined restrictions. For this
implementation, we have given the user the option to set an upper bound for execution time or
a lower bound for financial cost, assuming a cloud provider charges the use of virtual
machines per time units. These user-set constraints can directly affect the provisioning needs
of the cluster. The cloud provisioning and cluster management module is a modified version
of TIRAMOLA. As stated in section (Error! Reference source not found.), the
modifications to the Hadoop code are transparent to the user. The modified Hadoop
framework is designed to analyze incoming MapReduce jobs, collect metadata about them
(i.e. number of input splits, number of reducers to be run, type of MapReduce program) and
emit them to TIRAMOLA. TIRAMOLA is responsible for processing the metadata and the
constraints the user has set and finally make a decision about whether to expand the working
cluster by adding a number of nodes — and if yes, how many — or not; TIRAMOLA is then
expected to act on the decision it reached and, when the acquired resources — if any — are

available, notify the Hadoop framework to start the execution of the submitted job.

After the program submitted has been executed and if the cluster stays in an idle state for
more than a specified time, TIRAMOLA starts releasing nodes — until it shrinks to a
minimum cluster size.

Hadoop has also been optimized to improve the reduce phase cluster utilization, taking under
consideration the fact that many jobs will be executed in an expanded cluster compared to the
one they were submitted to. By default, MapReduce programs executed in Hadoop are set to
use only one ReduceTask. Of course, a multi-node cluster using just one reducer would be

waste of resources, as all worker nodes but one would remain idle during the reduce phase.

55

Typically the number of reducers is set by the user. That policy, however, implies that the

user is an expert, fully aware of the specifics of
a. The cluster,
b. The program being executed and
C. The data being processed.

In our case, none of these conditions is true. So, instead of relying on the user to select the
number of ReduceTasks to be run, our system binds the number of reduce tasks to be
launched with the number of active nodes in the — now expanded — cluster by overriding the
default and replacing it with a number of approximately twice the total capacity of the cluster
in ReduceTask containers® [31]. This way we can ensure that there will be as few resources

during the reduce phase as possible.

Last but not least, the decision making module of TIRAMOLA can be considered as a
separate module, as it is pluggable and can be modified according to the user’s needs. In order
to test our system, we decided to work on an implementation of the work by Tian and
Chen[12]. The two authors suggest using a simplified model and regression analysis to

produce a cost function for the prediction of execution time of MapReduce programs.

In the following sections, we will present the architecture of our BBQ Hadoop system and
explain what modifications were needed for its implementation to the original Hadoop/YARN
and TIRAMOLA versions. We will also expose the interactions between the various modules

and how these bring us the desired result.

7.1 BBQ architecture

As explained in the introductory section, a rough overview of the BBQ system would focus
on three main modules:

e A modified — cloud aware — version of Hadoop

e A modified — job aware — version of TIRAMOLA

e A pluggable Decision Making module, based on which TIRAMOLA will make the

provisioning decisions.

The TIRAMOLA Coordinator can be viewed an intermediate layer between the BBQ flavor
Hadoop cluster and its own Decision Making module, as it stands in the center of all

interactions, as seen below:

® For this we have assumed that our cloud based cluster consists of virtual machines of the same size in terms of
resources. This is the typical case in a cloud based cluster.

56

TIRAMOLA '_. Submit
C Decision Making)'\ MIR jobs

TCP comme ™" i e e .

Hardware/\ . . Gkl
Cluster resize .o ResourceManager

resize L
/ \4 L A
- Enquire about

Cloud Cluster cluster size
Management Coordinator

R . N MRAppMaster

Adjust Manage
resources cluster nodes

Adjust number
of reducers

Add/delete % @ ﬁ

VMs Virtual Hadoop Cluster

Cloud
Provider

Figure 7-1. BBQ System Architecture

BBQ Hadoop can itself be put under the microscope and analyzed as a collection of actors,
interacting with each other and with TIRAMOLA.

7.1.1 Module Interaction - Integration

In order for TIRAMOLA and Hadoop to eventually be integrated, we have had to design a
communication protocol. We chose to implement a TCP socket connection through which the
metadata required by TIRAMOLA would be shipped, in json format [32].

The transmitted message is of the form:

{maps: <number of MapTasks>, reducers:<number of ReduceTasks>}.

7.1.2 BBQ Hadoop

In section (5.3), we stated that finding a way to extract job-specific metadata was the first task
in mind when designing the BBQ system. More specifically, the information that needs to be
obtained before the job execution begins is the number of map and reduce tasks which are
going to be launched. As stated earlier, the number of map tasks cannot be user-defined: it
depends on the input — the data the user desires to process — and is equal to the number of the

splits in which it is partitioned by the Hadoop framework. On the other hand, the number of

57

reduce tasks can be set by the user. For our implementation, we have chosen to give the user
the option to let the BBQ flavored Hadoop to adjust the number of reducers to be executed by

entering a negative value to the corresponding attribute while running the job through YARN.

Following through on our observations recorded in section (5.3), we examined the Hadoop
MapReduce execution pipeline very closely and noticed that the number of input splits is
initially calculated during the execution of the Job. submit () ® method, which submits the
program to the YARN platform. We also noticed that during the job submission process an
ApplicationSubmissionContext’ object is also created, in which various metadata about
the program are stored. The ApplicationSubmissionContext object is then passed on to
RMAppManager, a class which manages the list of applications for the YARN
ResourceManager. Running a method called submitApplication, the RMAppManager
processes the metadata stored in ApplicationSubmissionContext and then starts the

Application.

Our first expansion of the original Hadoop source code took place here. Initially, we parsed
the additional metadata required into ApplicationSubmissionContext. The code we
modified resides in the YARNRunner class. We then modified the
RMAppManager.submitApplication () method so that it extracts the aforementioned data
from the ApplicationSubmitionContext Object. We added a new class to the Hadoop
source code, implementing a blocking TCP client, which also parses the metadata into json
format, connects to the TCP server run by TIRAMOLA. The
RMAppManager.submitApplication () Uses an instance of this class to emit the metadata
it has collected to TIRAMOLA, and waits for an answer from the server. When a message of
success is received — meaning the cluster has been successfully expanded by a number of
nodes or remained unchanged, then the socket unblocks and the execution continues. In the
case where no successful expansion could be completed, then, again, the socket unblocks and

the execution continues with the resources currently available.

These changes conclude the expansion required to implement cluster elasticity. In Figure 7-2
we present an overview of the submission process. Highlighted in color are the classes or
methods of interest which were modified. In Figure 7-4, we have similarly highlighted the

RMAppManager . submitApplication () method which was altered.

6 https://hadoop.apache.org/docs/stable2/api/org/apache/hadoop/mapreduce/Job.html
! https://hadoop.apache.org/docs/stable2/api/org/apache/hadoop/yarn/api/records/ApplicationSubmission
Context.html

58

Hadoop
Client

Job.
waitForCompletion ()

Job.connect()

new Cluster()

YarnClient

ProtocolProvider.

create()

Y
Job.
submit()
A 4
JobSubmitter.
submitioblinternal()

ClientProtocol. Upload files v‘v]?i:)eSNuebmemTi;;
getNewJoblID () and config 0 P

new
YARNRunner()

JobSplitw riter.
createSplitFile

30 A 4

ClientProtocol.

YarnClient

ProtocolProvider.

create()

. N —
implements submitiob ()

createApplicationContext()

Figure 7-2. Job submission

In order implement the reducer phase cluster utilization optimization described above, we had

to study closely the MapReduce framework of Hadoop. In Hadoop MapReduce, the number

of ReduceTasks to be spawn needs to be known at the same time as the number of

MapTasks IS, since the latter need that information to complete the partitioning phase as seen

in section (5.2.3.1). This means that any adjustments must be made before the execution of

the MapTasks begins but obviously after the cluster size adjustments have been completed,

59

since our implementation binds the number of Reduce tasks to be launched to the number of
nodes in the cluster. This presents a significant challenge, because the number of the reducers
is by default static in the Hadoop MapReduce framework and is not supposed to be decided
during execution time. To make sure that the correct number of ReduceTasks will be set, the
relative information will have to be extracted from the ResourceManager — the only module

of YARN which has full awareness of the cluster.

new
MRAppMaster()

MRAppMaster
main()

A

y

MRAppMaster
initAndStartAppM aster()

MRAppMaster
Servicelnit()

MRAppMaster.

serviceStart()

new
new
new ContainerAllocat new MRApPpMaster.

i ntainerLauncher
RunningApp or DefaultSpeculator() Co Re au ¢ createdob ()
Context() Router() outer()

A 4

new
RMClusterNodes
Requestor()

Figure 7-3. MRAppMaster

As explained in paragraph (5.2.1), when a new YARN Application is launched, the
ResourceManager reserves a container for its ApplicationMaster — OF MRAppMaster
for MapReduce jobs — which is responsible for the communication between the MapReduce
framework and the YARN Server. During the initialization stage a MapReduce Application,
an HDFS staging directory where the job configuration files and other temporary data are
stored is created. Every new task that spawns, even the MRAppMaster, creates a local copy of
that staging directory in order to have quick access to the job configuration®. Since the

ApplicationMaster occupies the first container leased and is launched before any other

8https://support.pivotal.io/hc/en-us/articles/201925118-How-to-find-and-review-logs-for-y.:-;lrn-mapreduce-jobs - as
described in Pivotal’s support webpage. Pivotal is an Enterprise Hadoop developper

60

Tasks start running, we expanded its initialization function — serviceInit () — by allowing

it to reach into the HDFS staging directory and overwrite the setting that corresponds to the

number of ReducerTasks to be launched. This way, all the MapTask instances that will

spawn later, will have access to the modified configuration file.

ResourceManager.
main()

/\

new
ResourceManager()

mi.t()

X

new
RMContextimpl()

ResourceManager.
setupDispatcher()

ResourceManager
createAdminService()

>

ResourceManager
start()

servicelnit()

ResourceManager.

ResourceManager
startWebApp()

Servicelnit()

RMActiveServices.

new
NodeslList
Manager()

new
ResourceScheduler

0

new
Application
M asterService ()

new
RMAppManager()

Figure 7-4 ResourceManager

getClusterNodes()

subm itApplication()

In order to complete this second expansion of the Hadoop platform, though, we also needed to

create a way to make the MRappMaster cluster aware so that it can calculate the optimized

number of ReduceTasks to be launched and replace with it the default value. The core of

this optimization is the dynamic binding of the number of ReduceTasks to the number of

61

active nodes in the cluster. As highlighted in section (5.2.1), ApplicationMasters are
completely ignorant of the cluster infrastructure. The YARN module which possesses this

kind of information is the ResourceManager.

YARN TIRAMOLA

MRAppMaster JobSubmitter RMAppManager ICPCommunicator Scheduler ICPServer MyDecisionMaker Coordinator Cloud Provider

T I I I I
| | | |
] [™ ™
AppSubmissionContext

.

(mappers=nl,reducers=n2)
L

{mappers:nl,reducers:n2}

(mappers:nl,reducers:in2)
|

PolicyManager.act

<add k nodes>

|
I
|
ﬁ ____________

|
——————————— -4

e

getClusterNumNodes()

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T

'
> adjustNumberofReducers
' N

Figure 7-5. Resource calculation and adjustment Sequence Diagram

To render the MRappMaster cluster aware, we expanded the communication protocol
between the MRAppMaster and the ResourceManager’s ApplicationMasterService
by implementing a class named RMClusterNodesRequestor, Which submits a request
about the number of active nodes in the cluster to the ResourceManager and returns that
number as a result as well as a number of Abstract classes required by the protocol design.
This enquiry also takes place in the MRAppMaster initialization method, serviceInit ()
and precedes what was described in the previous paragraph. In Figure 7-3 we can see the
architectural overview of MRAppMaster. RMClusterNodesRequestor () has been
implemented from scratch, while the AppMaster.serviceInit () method has been
modified to include the new class. The getClusterNodes () method, which extracts the
information required from the ResourceManager, has been added to the

ApplicationMasterService class as seen in Figure 7-4.

62

In Figure 7-5, we present an overview of all actors within the BBQ system and their

interactions during the execution of a MapReduce job on a Hadoop YARN cluster.

7.2 Cost function and resource calculation algorithm

The resource calculation algorithm has been based on an implemented of a cost function built
as presented in the work of Fengguang Tian, Keke Chen[12]. The authors suggest that the
execution time of a MapReducel.0 program can be modeled by a cost function of three
variables, M — the size of the input, calculated in input splits, m — the number of map slots and
R — the total number of reduce tasks.

T(M,m, R)

Translating the variables above into Hadoop2.0+ vocabulary, m would be the capacity of the
cluster in map task containers. Since we have selected to modify the number of
ReduceTasks as we previously described in (7) and since cloud clusters typically consist of
identical — in terms of resources — nodes, R can also be derived from the number of active
nodes in the cluster, n. The capacity of the cluster in MapTasks, m, is also a product of n, it

follows that:

T(M,m,R)=T(M,n)

In the virtual machine (VM) based cloud infrastructure (e.g., Amazon EC2), the cost of cloud
resources is calculated based on the number of VM instances used in time units (typically in
hours). According to the capacity of a virtual machine (CPU cores, memory, disk and network
bandwidth), a virtual node can only run a fixed number of Map/Reduce containers. For
simplicity, we have chosen to assign map and reduce task containers the same resources —
which means that the total capacity of the cluster in MapReduce Task containers is kn where k

the number of containers per node.

If the price of renting one VM instance for an hour is u, the total financial cost is determined
by the result unT(M,n). Therefore, given a financial budget ¢, the problem of finding the best

resource allocation to minimize the job time can be formulated as

minimize T(M,n)
subject to unT(M,n) <,
m=>0,and R > 0.

63

If the constraint is about the time deadline z for finishing the job, the problem of minimizing
the financial cost can be formulated as

minimize unT(M,n)
subject to T(M,n) <z,m >0, and R > 0.

In the paper, the execution time of a MapReduce program can be derived by the following

model. To calculate the desired parameters we can use the method of linear regression

T(M,m R) = + M+ M+ Ml <M>+ M+ (=R +
(M,m,R) = By Blm ﬁzR .33R09 R Ba Bs &

Modifying the function above to suit our needs, we get the cost function:

M M M
T(M,m) = o+ fs— + B~ log (E)+34M+B5n+£,

where n = the (updated)number of nodes in the cluster.

In order to calculate the values of g; for a specific MapReduce program we ran multiple jobs
changing the two variables involved in every experiment (input size and number of nodes in

the cluster) and recorded the execution times.

Once the cost function of a program has been built we can use it to solve the optimization
problems such as calculating the optimal amount of resources that can minimize the financial

cost with a time deadline or minimize the time under certain financial budget.

The experiments conducted are presented in detail in the following chapter.

7.3 BBQ Execution Overview

To wrap up our presentation of the functionality of the BBQ system, we present an execution

overview of a MapReduce job.
When a new job arrives for execution, the system performs the following steps:

TIRAMOLA'’s main class now runs a blocking TCP server, waiting for incoming connections

from YARN’s RMAppManager.

YARN’s JobSubmitter class has also been modified. This is the class that sets up the
configuration for the job that is about to be executed and then passes it to YARN. It is
responsible for reading the input data and creating an ApplicationSubmissionContext
instance. Through it, the metadata required can now be passed to the YARN Resource

Manager.

YARN’s RMAppManager class has been modified so that it runs a blocking TCP client. This

is the class that reads the information provided by Jobsubmitter. This class also has access

64

to metrics of the Hadoop cluster. Every time a new job is submitted for execution, the
RMAppManager reads the input data size and the TCP client sends a message including the
metadata needed by the decision making module, serialized in json format, to TIRAMOLA’s
server. Then it waits for TIRAMOLA’s response.

TIRAMOLA'’s Coordinator receives the message and passes the information from the
RMAppManager 0N t0 the takeDecision method from TIRAMOLA’S DecisionMaker
class as an argument. takeDecision uses the algorithm presented in (7.2) to decide the
number of virtual machines to be deployed (if there is such need) — in order to respect the

user’s restrictions, initializes and launches these additional VM.

When the required number of nodes has finally been added to the cluster, the Coordinator
sends a message to RMAppManager’ s client, unblocking the map-reduce job, which starts
running on the expanded cluster. The application is now being executed. During the
initialization of the MRAppMaster, the ApplicationMaster for MapReduce applications,
the Hadoop framework will now request information from the YARN Scheduler about the
size of the cluster in order to automatically adjust the number of the reducer instances to be
spawn. This number should not be significantly smaller than the total capacity of the cluster
in Containers, as that could cause a very small part of the now expanded cluster to be utilized.
Then, it will reach in the HDFS staging directory of the job and accordingly modify the
job.xml file, where the job configuration is stored. The execution pipeline will continue as

usual until the MapReduce job is completed.

Since the additional nodes are deployed in order to enhance the cluster’s computing power,
they are not needed when there are no MapReduce jobs running. Therefore, if Coordinator’s
server does not receive an incoming connection for a specified amount of time, a timeout
exception is thrown. The exception causes DecisionMaker to launch takeDecision, only
to release a node this time - unless the number of nodes in the cluster already is the minimum

allowed.

65

66

8.1 Experimental Setup

Experimental Results

8.1.1 Hardware Setup and Software Used

The experiments are conducted in the CSlab private OpenStack [33] cloud. Each node had

four processors, 4GB memory, and a 300GB hard drive. The virtual machines run on Ubuntu

14.04LTS operating system. The version 2.6.0 of Hadoop is installed in the cluster, running

over Oracle Java 1.8.0.2. One node serves as the master node and the other as the slave nodes.

TIRAMOLA runs on a separate machine, with 1 processor, 2GB memory and a 10GB hard

drive. The version of TIRAMOLA used is written in Python3.4. The single master node runs

theResourceManager, while each slave node run NodeManagers.

8.1.2 Hadoop Memory Configuration

Memory allocation has been made according to Hortonworks’ suggestions[29].

YARN and MapReduce settings were set as follows:

Variable Definition Value
yarn.scheduler.minimum- Minimum memory allocation for a | 512
allocation-mb single container
yarn.scheduler.maximum- Maximum memory allocation for a | 3072
allocation-mb single container
mapreduce.map.memory.mb Memory allocation for map task | 1024

containers

67

mapreduce.reduce.memory.mb Memory allocation for reduce | 1024

containers

The settings above allow every machine to run at most 3 MapReduce containers at the same

time. As mentioned in (7), we have selected to run a number of approximately

1.8 * (max_number_of_active_containers) = 1.8 * 3 * number_of _nodes

reduce tasks.
8.1.3 Datasets Used

To run the tests we used 3 sample datasets from Wikipedia dumps. With the following sizes:

e 43GB
e 23.8GB
e 50.2GB

8.1.4 Benchmark Used

The tests were run using the WordCount benchmark. WordCount is a sample MapReduce
program in the Hadoop package. The Map function splits the input text into words and the
result is locally aggregated by word with a Combiner; the Reduce function sums up the local

aggregation results <word, count> by words and output the final word counts.

8.2 Experiments

8.2.1 Model Construction for the WordCount Benchmark

Initially, a number of jobs were run using various permutations of (M, n), M being the total
number of splits of the input datasets and n the number of active nodes on the cluster. The

jobs were timed and the results are displayed in the table below:

Exp No Input Data Size | Input Data Size Number of Time (minutes)
(GB) (HDFS blocks) active nodes

1 4.3 17 2 13,15

2 4.3 17 3 8,45

3 24 93 3 56,63

68

24

93

30,53

49

196

87,05

Using linear regression to analyze our data, we manually construct a model for the execution

time as a function of input data size (M) and the active number of nodes (n) in the cluster.

The model created is

1 M M M
T(M,m) = (6.729z +4.691— (In (0.186z) + 45.685))

The time cost function for WordCount shows us that the expected execution time is a function

of the fraction of the size of the input over the number of active nodes in the cluster.

In the following table we can compare the actual execution times of our experiments against

the model’s estimation:

Exp No Input Data Size Number of Actual Time Model
(HDFS blocks) active nodes (minutes) Prediction
Time
(minutes)
17 2 13,15 12,097
17 3 8,45 8,5095
93 3 56,63 50,840
93 4 30,53 36,134
196 4 87,05 88,230

The graph below shows that the model does indeed match the real time measurements to a

satisfying degree — also, using R? as a measure of goodness of fit [34], we get a very

acceptable measure of 0,98%.

69

Time (mins)

100
90

80

70

60
50

[X 4

40

® Model Prediction

30
20

L X

10 *®

2 3 4

Experiment Number

@ Real Time
Measurements

Figure 8-1. Model building.

We then proceed to test our results and constructed model by executing some new

WordCount operations on different datasets.

8.2.2 Model Evaluation

For the evaluation of our mode, we give our BBQ cluster an expected execution time for

various values of input data size and initial number of nodes, with no restriction to financial

cost. The BBQ system is asked to execute the requested program within the set time limits,

which means that it will have to automatically manage its resources in order to achieve the

execution times requested.

Using similar datasets, we test our model:

Exp Input Data Size | Number of Number Actual Maximum
No (HDFS blocks) | starting active | of nodes Time Requested
- nodes - n added (minutes) Time
M (minutes)
6 27 2 +0 19.21 30
7 43 3 +1 18.17 20
8 43 2 +2 19.83 20
9 71 1 +2 43.15 40

70

We notice that the results are acceptable, despite some expected overhead caused by the
spawning and initialization of the new nodes. In one case the overhead causes the execution
to exceed the maximum requested time but only for a few minutes (<10% of the total actual
time). This can be avoided by adding a constant factor to the Time cost function presented

above.

8.2.3 Observations

There are a couple issues which are raised concerning the use of BBQ. First of all, there is the
overhead caused by the spawning and initialization of the new nodes, as mentioned above.
According to Mao et al. [35], VM startup time can be considered of trivial cost and should not
cause substantial problems. The authors state that launching VMs in a cloud environment
should not be a bottleneck, as long as the precooked images of their hard drives are not

extremely large. In our case these images only include an installation of Ubuntu and Hadoop.

A second issue could be the one of data locality. Newly spawn nodes do not possess local
copies of the data which they will be asked to process. Hadoop2.0 tries to make use of data
locality whenever possible, so this situation could cause an amount of considerable delay.
According to Ananthanarayanan et al. [36], data locality — in terms of disk locality — tends to
be trivial in datacenter environments, as disk operations remain slow while, on the contrary,
data are able to move around the cluster faster than ever. This means that the value we gain by
adding processing power to our cluster can completely overshadow the data transfer

overhead.

71

72

Conclusions

We have successfully proved the fact that Hadoop MapReduce can run on an elastic
infrastructure with necessary changes and additions to the initial Hadoop source code. We
managed to automate cloud provisioning which now happens on-the-fly, without the user
having to worry about the setup of the infrastructure or the architecture of it. The
experimental results have confirmed that such a service could be useful and profitable if

offered to users.

The system we are introducing, taking advantage of the facts that

a. the Hadoop MapReduce framework splits the input data before it starts executing

a program and

b. the YARN Resource Manager is the only module aware of the cluster and the

single blocking point of failure for the framework,

collects and transmits metrics specific to the application which is executed to the

TIRAMOLA cluster provisioning module.

Taking into consideration that the time for the launch of a large number of virtual machines is
not significantly larger than that of a single one, according to Mao et al [35], BBQ simple way
to boost execution time by utilizing a cloud’s resources in a responsible way. The simplicity
of BBQ’s design and architecture could make it an ideal platform for the execution of
independent MapReduce Jobs — in comparison to job workflows which other systems may
support. To establish the utility value of the BBQ platform we will present a real use case

example in the following section.

73

9.1 Fit for Lambda architecture — a use case example

In this example we will present the BBQ system as a part of a lambda architecture model.
Lambda architecture [37] is a data-processing architecture designed to deal with massive
guantities of structured or unstructured data by taking advantage of both batch- and stream-
processing methods. This approach to architecture attempts to balance latency, throughput,
and fault-tolerance by using batch processing to provide comprehensive and accurate views of
historical data, while simultaneously using real-time stream processing to provide views of
online data. The two view outputs can be joined before presentation providing the user with a
complete picture of the data in store. The rise of lambda architecture is correlated with the
growth of big data, real-time analytics, and the drive to mitigate the latencies of MapReduce.

Lambda Architecture

Hadoop

Al data = . Frocompute views BATCH LAYER

aro aroz aFoN _‘\ SERVING LAYER

Batch views (HOFS | impala)

Realiime views [Apache HBawe)

QFo 1 QFD 2 aFD N —

------------- e o
’!h \\L/ Starm

Process siroam = ——————— Incremant vieas SPEED LAYER
Realtrme
incremen|

Figure 9-1. Lambda architecture.

In Figure 9-1. Lambda architecture., we can see an overview of a Lambda architecture based
system and some of the technologies which can be used for its implementation. In general the
Lambda Architecture is composed of three layers: the batch layer, the serving layer and the

speed layer.

The batch layer contains the immutable, constantly growing, append-only master dataset
stored on a distributed file system like HDFS [38]. With batch processing (MapReduce) batch
views are computed from this raw dataset. Hadoop is a perfect fit for the concept of the batch

layer.

The task of the serving layer is to load and expose the batch views in a datastore so that they

can be queried. This serving layer datastore does not require random writes — but must

74

http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Map-reduce

support batch updates and random reads — and can therefore be extraordinarily simple
(candidates could be ElephantDB [39], Impala [40] or Voldemort [41]).

The speed layer deals only with new data not accounted for in the batch processing. It
compensates for the high latency updates of the serving layer by being implemented on top of
stream processing systems (Storm [42], S4 [43], Spark [44]) and random read/write datastores
to compute the realtime views (HBase [8]). These views remain valid until the data have been
handed over and processed by the batch and serving layer. To get a complete result, the batch

and realtime views must be queried and the results merged together.

Now, suppose an organization using an implementation of Lambda architecture decides to
select BBQ Hadoop as the platform on which the batch layer is built. Since batch operations
are expensive and only take place in regular time windows, they could use a cloud storage
service implementing an HDFS file system to save their data and then, by only keeping a
server running all the Hadoop and TIRAMOLA master services alive — i.e.
ResourceManager, Coordinator — they could efficiently produce the batch views
required, allowing the system to automatically spawn and add processing nodes to the cluster
whenever such an operation is required to be executed, while keeping its execution time under
control. In fact, the dedicated BBQ master server can be hosted in a local machine, thus

further reducing the running costs of the organization.

9.2 Future work

The system that was designed and implemented for the needs of this diploma thesis can be
used as a basis for future expansion. In this thesis we have assumed that our cloud-provided
clusters only have an active job to execute. BBQ can however be further expanded to take
into account cluster load and scheduling policies. Relevant job metadata can be extracted
from YARN and be passed on to TIRAMOLA. This could prove to a very interesting topic
for future research, as existing solutions tend to treat Hadoop clusters as one-purpose entities,
an idea which comes in contrast with the powerful impact the integration of YARN has made.
BBQ Hadoop has been designed as a permanent infrastructure layer for big data processing,
which means there should be cases where large humbers of jobs are submitted to the cluster.
It is interesting, in this case to examine scheduling and load management challenges which

the option of expanding an existing cluster creates.

75

https://github.com/nathanmarz/elephantdb
http://www.project-voldemort.com/voldemort/
http://storm-project.net/
http://incubator.apache.org/s4/
http://spark-project.org/
http://hbase.apache.org/

76

[1]
(2]
(3]
[4]
[5]
(6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

Works Cited

T. Hey, S. Tansley, and K. Tolle, “The Fourth Paradigm: Data-Intensive Scientific
Discovery, 2009,” Microsoft Res., 20009.

IBM, “IBM - What is big data?” [Online]. Available: http://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html. [Accessed: 12-May-2015].
Apache Hadoop, “Apache Hadoop.” [Online]. Available: https://hadoop.apache.org/.
[Accessed: 12-May-2015].

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

Apache Mahout, “Apache Mahout: Scalable machine learning and data mining.”
[Online]. Available: http://mahout.apache.org/. [Accessed: 12-May-2015].

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy, “Hive: a warehousing solution over a map-reduce framework,” Proc. VLDB
Endow., vol. 2, no. 2, pp. 1626-1629, 2009.

Apache Pig, “Apache Pig.” [Online]. Available: https://pig.apache.org/. [Accessed: 12-
May-2015].

Apache HBase, “Apache HBase.” [Online]. Available: http://hbase.apache.org/.
[Accessed: 12-May-2015].

Amazon, “AWS | Amazon Elastic MapReduce (EMR) | Hadoop MapReduce in the
Cloud.” [Online]. Available: http://aws.amazon.com/elasticmapreduce/. [Accessed: 12-
May-2015].

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, and others, “Apache Hadoop Yarn: Yet Another Resource
Negotiator,” in Proceedings of the 4th annual Symposium on Cloud Computing, 2013, p.
5.

I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris, and S. Sioutas,
“Tiramola: elastic nosql provisioning through a cloud management platform,” in
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, 2012, pp. 725-728.

F. Tian and K. Chen, “Towards optimal resource provisioning for running mapreduce
programs in public clouds,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, 2011, pp. 155-162.

F. Gabbay and A. Mendelson, “Can program profiling support value prediction?,” in
Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on, 1997, pp. 270-280.

P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

7

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]
[37]

[38]

N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What It Is,
and What It Is Not.,” in ICAC, 2013, pp. 23-27.

M. Cox and D. Ellsworth, “Application-controlled demand paging for out-of-core
visualization,” in Proceedings of the 8th conference on Visualization’97, 1997, p. 235-ff.
R. Bryant, R. H. Katz, and E. D. Lazowska, Big-data computing: creating revolutionary
breakthroughs in commerce, science and society. December, 2008.

D. Laney, “3D data management: Controlling data volume, velocity and variety,” META
Group Res. Note, vol. 6, 2001.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM SIGOPS
operating systems review, 2003, vol. 37, pp. 29-43.

Amazon, “AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.”
[Online]. Available: http://aws.amazon.com/ec2/. [Accessed: 12-May-2015].

Amazon, “AWS | Amazon Simple Storage Service (S3) - Online Cloud Storage for Data
& Files.” [Online]. Available: http://aws.amazon.com/s3/. [Accessed: 12-May-2015].

C. W. Olofson and D. Vesset, Worldwide Hadoop-MapReduce ecosystem software 2012—
2016 forecast. May, 2012.

Amazon, “Resize a Running Cluster - Amazon Elastic MapReduce.” [Online]. Available:
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage-
resize.html. [Accessed: 14-May-2015].

K. Kambatla, A. Pathak, and H. Pucha, Towards optimizing hadoop provisioning in the
cloud. HotCloud, 2009.

S. Babu, “Towards automatic optimization of MapReduce programs,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010, pp. 137-142.

H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu, “Starfish:
A Self-tuning System for Big Data Analytics.,” in CIDR, 2011, vol. 11, pp. 261-272.

H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, 2011, p. 18.

A. Verma, L. Cherkasova, and R. H. Campbell, “Resource provisioning framework for
mapreduce jobs with performance goals,” in Middleware 2011, Springer, 2011, pp. 165—
186.

Hortonworks, “Determine YARN and MapReduce Memory Configuration Settings -
Hortonworks Data Platform.” [Online]. Available:
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-
2.0.9.1/bk_installing_manually _book/content/rpm-chapl-11.html. [Accessed: 12-May-
2015].

E. Coppa, “Hadoop Internals.” [Online]. Available:
http://ercoppa.github.io/HadooplInternals/. [Accessed: 24-May-2015].

Apache, “HowManyMapsAndReduces - Hadoop Wiki.” [Online]. Available:
http://wiki.apache.org/hadoop/HowManyMapsAndReduces?action=recall&rev=7.
[Accessed: 19-May-2015].

T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” 2014.
OpenStack, “OpenStack Open Source Cloud Computing Software.” [Online]. Available:
https://www.openstack.org/. [Accessed: 24-May-2015].

A. C. Cameron and F. A. Windmeijer, “An R-squared measure of goodness of fit for
some common nonlinear regression models,” J. Econom., vol. 77, no. 2, pp. 329-342,
1997.

M. Mao and M. Humphrey, “A performance study on the vm startup time in the cloud,”
in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, 2012, pp.
423-430.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and 1. Stoica, “Disk-locality in datacenter
computing considered irrelevant,” 2011.

“Lambda Architecture » A lambda-architecture.net.” [Online]. Available: http://lambda-
architecture.net/. [Accessed: 02-Jun-2015].

D. Borthakur, “HDFS architecture guide,” Hadoop Apache Proj., p. 53, 2008.

78

[39]

[40]
[41]

[42]
[43]

[44]

“nathanmarz/elephantdb,” GitHub. [Online]. Available:
https://github.com/nathanmarz/elephantdb. [Accessed: 02-Jun-2015].

Cloudera, “Impala.” [Online]. Available: http://impala.io/. [Accessed: 02-Jun-2015].
“Voldemort.” [Online]. Available: http://www.project-voldemort.com/voldemort/.
[Accessed: 02-Jun-2015].

Apache, “Storm, distributed and fault-tolerant realtime computation.” [Online].
Available: https://storm.apache.org/. [Accessed: 02-Jun-2015].

Apache, “S4: Distributed Stream Computing Platform.” [Online]. Available:
http://incubator.apache.org/s4/. [Accessed: 02-Jun-2015].

Apache, “Apache Spark'™ - Lightning-Fast Cluster Computing.” [Online]. Available:
https://spark.apache.org/. [Accessed: 02-Jun-2015].

79

