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Περίληψη

Το Τίμημα της Αναρχίας ορίζεται ως ο λόγος του κόστους της χειρότερης ισορροπίας

Nash προς την καλύτερη δυνατή έκβαση του στρατηγικού παιγνίου και χρησιμοποιεί-
ται για την μοντελοποίηση της απόδοσης ενός παιγνίου. Σε πολλά περιβάλοντα έχουν

βρεθεί άνω και κάτω φράγματα για το Τίμημα της Αναρχίας. Θα παρουσιάσουμε μια

θεώρια η οποία χαρακτηρίζει παίγνια με κάποια ευρωστία στη δομή τους, η οποία επι-

τρέπει τον υπολογισμό τέτοιων φραγμάτων (κάποιες φορές με ακρίβεια) με πιο χαλαρές

προυποθέσεις ως προς τον ορισμό της ισορροπίας στην οποία θα φτάσουν οι παίχτες

. Στη συνέχεια, θα δείξουμε πως εφαρμόζεται αυτή η θεωρία στις Δημοπρασίες, ε-

πιτρέποντας μας να κάνουμε προβλέψεις άνω φραγμάτων σε καταστάσεις που οι ίδιοι

παίχτες συμμετέχουν σε πολλές δημοπρασίες ταυτόχρονα. Τέλος θα παρουσιάσουμε

και μια θεωρία η οποία χρησιμοποιεί αποτελέσματα από Computational Complexity και
Communication Complexity για να δώσει κάτω φράγματα στο Τίμημα της Αναρχίας,
συμπληρώνοντας την ανάλυση που έγινε για τα άνω φράγματα.

Λέξεις Κλειδιά

Τίμημα της Αναρχίας, Στρατηγικά Παίγνια, Υπολογιστική Πολυπλοκότητα, Πολυ-

πλοκότητα Επικοινωνίας, Δημοπρασίες, Ισορροπία Nash , Σχεδιασμός Μηχανισμών
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Abstract

The price of anarchy (POA), defined as the ratio of the worst-case objective function
value of a Nash equilibrium of a game and that of an optimal outcome, quantifies
the inefficiency of selfish behavior. In many cases both upper and lower bounds for
the POA have been found. We will present an approach that defines some games as
’robust’, allowing bounds of the POA (often tight) to automatically extend to weaker
definitions of equilibria reached by the players. Next we will show how a variation of
this approach applies to auctions, giving us the tools to find how upper bounds on
the POA for isolated auctions extend when players take part in many such auctions
at the same time or sequentially. Lastly, we will exploit results from Computational
Complexity and Communication Complexity to show a way to find lower bounds
for auctions and other games, complementing our previous upper bound analysis.

Keywords

Price of Anarchy, Strategic Games, Computational Complexity, Communications
Complexity, Auctions, Nash Equilibrium, Mechanism Design, Congestion Games
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Chapter 1

Introduction

1.1 Auctions and Strategic Games

The problem of allocating discrete, sparse resources among players has long been
studied in Economics and lately is getting a lot of attention in Computer Science as
well. One way to approach this problem is to model it through auctions, strategic
situations in which the strategic players (which can be any number of entities) try
to obtain certain outcomes by using money to leverage their preferences. As an
auction we can classify an vast amount of situations where players pay (or lose some
fractional resource) in order to gain something more valuable to them.

The auction setting is interesting for a variety of reasons. First, auctions are
widely used in real life in consumer, corporate or government settings. One could
argue that today they are more relevant than ever, since the emergence of the
World Wide Web gave rise to many more opportunities for allocation of resources
like bandwidth or space for ads on a webpage and the number of strategic players
has increased as well because over the internet humans and computers interact in the
same way. Companies like Google, and many more, rely on running an inconceivable
amount of auctions in order to properly outsource their resources and generate a
large part of their income. Governments use auctions not so much for their own
gain, but as a fair way to distribute sparse resources to those who need them the
most.

There are many auction types, with some types being used in practice and others
formulated from theory. One of most common auctions used in practice are the En-
glish auction, instantly recognizable to anyone interested in buying art. It consist of
the auctioneer increasing prices in a stepwise fashion, until only one bidder remains.
Another type of auction, also for one item is the first price auction, in which bidders
submit one closed bid and the auctioneer gives the item to the highest of them. The
idea behind all these auctions is that whoever wants the item most will be most
willing to pay.

When the goal is maximizing social welfare, disregarding the payments and focus-
ing on making players happy, an early theoretical breakthrough lead to an optimal
auction: the Vickrey-Clarke-Groves mechanism (or VCG) [Vic61, Cla71, Gro73].
This auction (which can also be used as a recipe to create optimal mechanisms in a
variety of settings) achieves its performance by internalizing externalities. In other

13



14 Chapter 1. Introduction

words, ensuring the winning players pay proportionately to the loss they caused to
the rest of society. However, even though optimal, the VCG is rarely used in prac-
tice because it is quite complicated to explain to players and largely inefficient in a
variety of settings. Revenue maximization has proven to be far more elusive with
initial results from Myerson for single item auction [Mye81] and recent developments
for multiple items by Giannakopoulos [GK14].

However, many of the auction derived from theory are impractical to implement.
Consequently, a reasonable alternative would be to analyze preexisting auctions
and maybe fine-tune them. Especially interesting is the case of auctioning multiple
items. Trying to use the VCG for this case is almost impossible, since it would re-
quire an exponential amount of bids from each participant. Not only that, but bids
would have to be submitted secretly and at the same time. A line of research from
Christodoulou et al [CKS08], Bhawalkar and Roughgarden [BR11], Paes Leme et
al [LST12], Caragiannis et al [CKKK11] and others has focused on quantifying the
efficiency of simple mechanisms (like the first price auction) when running simulta-
neously and sequentially. Finally, there was a significant advancement by Syrgkanis
and Tardos [ST13] which unified the previous approaches by finding their underlying
characteristics. Through their research, we have a deeper understanding of simple
mechanisms, as well as concrete proof of their efficiency. As a reference point, an
optimal auction (say VCG) is only e

e−1 times better than the much simpler parallel
first price auction.

Auctions have been studied from both the Economic standpoint, in terms of
generated revenue or welfare to society, and from Computer Science, to make sure
they are easy to use and tractable to implement. In this thesis we showcase the use
techniques from the modern algorithmic game theory toolbox, to show that simple
auctions have very good efficiency. The goal is double: to formally define auctions
and prove their efficiency and show the intricacies of these techniques and how they
can be used in different settings. We will focus on showing good qualities in terms
of maximizing the benefit to society, disregarding payments and revenue.

1.2 Outline of this thesis

This thesis is divided into several chapters and is written in a way to be useful
for readers with a modest mathematical background, as it assumes very little in the
way of Economics or CS. The second chapter will lay all the groundwork required
in order to model situations of strategic interaction between selfish players. The
basics of Game Theory will be presented, with a focus on the efficiency of different
equilibria. The basics of Mechanism Design will be shown as well.

In Chapter 2 we will present the first major new technique of algorithmic game
theory, Smooth Games. Although not directly useful for auctions, it is still relevant
for a deeper understanding of the techniques to follow. In Chapter 3 an immedi-
ate follow-up to Smooth Games will be discussed, which is specifically tailored for
measuring efficiency in parallel auctions, as well as helping us design them. Both
these chapters will provide tools to get upper bound proofs for games, which will
be complemented by another technique from Chapter 5 that produces very robust
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lower bounds.
In Chapters 3 and 5, there will be a treatment of congestion games using similar

techniques, to be juxtaposed with auctions and to provide a gentler introduction to
some more complex proofs.





Chapter 2

Preliminaries

2.1 Strategic Games

Game Theory is the study of strategic decision making. It is a branch of math-
ematics that models and studies strategic situations where players choose different
actions towards maximizing some goal. The nature of Game Theory is very general
and encompasses a large variety of situations across different sciences.

In this chapter we will lay the necessary groundwork onto which auctions, among
other settings, will be analysed. As expected, the main mathematical object studied
in Game Theory is the (strategic) game, comprised by of following sets:

• A set N of n players

• For each player i, a set Si of his available strategies. An instance of the game
where every player has chosen a strategy is called an outcome and defined by
a vector s ∈ S1 × . . .× Sn = S.

• Each player also has a utility ui : S → R which is a representation of his ’gain’
or ’payoff’ from each outcome.

Players are assumed to be strategic and will chose strategies in order to maximize
their payoff. Also, everything is assumed to be public information and players choose
their action at the same time. For this reason, these games are also called one-shot
games.

Just to get things started, imagine the following game theoretic scenario, where
two prisoners (the players) can either cooperate or defect. Defecting will reduce
their sentence, but if they both defect they will serve for longer than if they both
cooperated.

Cooperate Defect
Cooperate -2,-2 -5,0

Defect 0,-5 -4,-4

Since we have only two players, we can represent the whole game concisely by a
matrix. One player chooses the row and the other the column. Each cell of the
matrix has two values, which are the payoffs for each player. The numbers can be

17



18 Chapter 2. Preliminaries

thought of as years in prison and are negative since players want to maximize their
gain, or in this case minimize their loss.

This simple example shows how the incentives of each player are influenced by
his valuation. For example, if the row player chooses to cooperate, the other player
would prefer to defect. However, we need some way to define which outcome (among
the 4 available) players will choose, since right now we can calculate each player’s
gain for any outcome but we aren’t sure what constitutes a ’good’ move.

2.1.1 Equilibria

Equilibria are a solution concept for strategic games. They represent a stable
situations reached by selfish, strategic players who try to maximize their own gain,
after perfect play. The pivotal assumption of Game Theory is that players will
be able to reach an equilibrium, thus our goal is to find them and quantify their
properties.

2.1.1.1 Pure Nash Equilibria

Out of many different possible ’solutions’ to a game, the most important is the
pure Nash Equilibrium. It was devised by John Nash in 1950 and was (among other
theoretical breakthroughs) instrumental in revitalizing Game Theory and helping it
transcend to other disciplines.

Definition 1 (Pure Nash Equilibrium (PNE)). An outcome s ∈ S is a PNE if for
each player i we have

ui(s
′
i, s−i) ≤ ui(s)

for any s′i ∈ Si.

By the way, the notation s−i means every element of the vector but si, so (s′i, s−i)
replaces si for s′i in s. The PNE describes a stable outcome where no player can
increase his gain through unilateral change of strategy. That’s why it’s reasonable
to assume that whenever possible players will reach a PNE, since in other outcomes
there would be players who have chosen the wrong action. Another way of looking
at the PNE is as an outcome where every player plays his best response against the
others.

Let’s try and find a PNE of the previous game. The only outcome that is a
PNE is s = (defect,defect). The gain of each player is u1(s) = u2(s) = −4 and
their only alternative strategy is to cooperate which leads to u1(cooperate,defect) =
u2(defect,cooperate) = −5 which is worse. So, s is a PNE, even though players could
have both cooperated and gotten u1(cooperate,cooperate) = u2(cooperate,cooperate) =
−2 which is preferable for both. The power of Game Theory lies in it’s ability to
justify poor outcomes caused by perfect strategic, selfish play.

In general, games could have more than one PNE or none at all. Also, there
is good reason to suspect that PNE’s may not be tractable [DGP09], making the
assumption that players will reach them less reasonable and motivating the formu-
lation of pore permissive solution concepts.



2.1 Strategic Games 19

2.1.1.2 Mixed Nash Equilibria

Consider the classic 2 player game of rock-paper-scissors. Two players chose
simultaneously either rock, papers or scissors and the winner is declared according
to the following rules:

• Rock beats Scissors

• Scissors beats Paper

• Paper beats Rock

This game can be modeled as follows:

Rock Paper Scissors
Rock 0,0 0,1 1,0

Paper 1,0 0,0 0,1
Scissors 0,1 1,0 0,0

This game has no PNE because for any outcome s either the row or column player
does not win but can change his action and beat his opponent.

Mathematically, the problem is that players do not have fine control over the
outcome of the game and changing their actions causes them to ’overshoot’ the
equilibrium. A solution is to convexify their set of actions using probability. In this
setting, every player i chooses probability distribution σi over his strategies Si. This
leads to the following equilibrium definition.

Definition 2 (Mixed Nash Equilibrium (MNE)). A product distribution over out-
comes σ = ×iσi is a mixed Nash equilibrium (MNE) if for each player i:

Es−i∼σ−i
[ui(s

′
i, s−i)] ≤ Es∼σ[ui(s)]

for any s′i ∈ Si

In this setting, rock-paper-scissors does have an equilibrium σi = (1/3, 1/3, 1/3)
for both players. Knowing the opponent will choose an action uniformly at random,
any strategy chosen has expected utility equal to 1/3.

Fortunately, MNE’s are guaranteed to exist, as famously proven by Nash in 1951
[Nas51].

Theorem 1. Any game with a finite number of players choosing among a finite
number of strategies has at least one MNE

2.1.1.3 Correlated and Coarse Correlated Nash Equilibria

Despite the generality of the MNE, there still exist certain situations where we
would like more flexibility, as is apparent from the following game.

Cross Stop
Cross -100,-100 +1,0
Stop 0,+1 0,0
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This game corresponds to two vehicles at a crossroad, where only one can cross
at a time. This game has two PNE’s, (Cross,Stop) and (Stop,Cross). In both of
them however, one player knows his payoff will be poor, even though the game
is completely symmetrical. The MNE, where each player crosses with probability
1

101
doesn’t fare much better because most of the time no car will cross the road,

meaning very small expected utility for both players.

This situation could be easily rectified by having a coordinator guide the play-
ers, or in game theoretic terms, have a correlated equilibrium (CE), introduced in
[Aum74]. In a correlated equilibrium, we can image the coordinator picking ran-
domly strategies and assigning them to the players.

Definition 3 (CE). A probability distribution σ over outcomes is a CE if for any
player i:

Es−i∼σ−i
[ui(s

′
i, s−i)|(si)] ≤ Es∼σ[ui(s)]

for any s′i ∈ Si. Note that σ needs not be a product distribution.

In the previous game, there exists a correlated equilibrium where the coordi-
nator chooses strategies (Cross,Stop) and (Stop,Cross) uniformly at random. The
expected utility of each player is 0.5 (significantly better that the MNE) and the
game is still completely symmetric.

It is important to note the following relation:

PNE ⊂ MNE ⊂ CE

which is fairly obvious, considering each time we relax the constraints over which
players are assigned strategies.

There is one last interesting equilibrium concept we need to note, even though
we will only briefly use it. It is the coarse correlated equilibrium (CCE) and it is
similar to CE, where players are not signaled about their strategy. Intuitively, one
can think of the difference between CE and CCE as:

• In a CE you agree to play the game, then you are assigned a strategy and then
you decide what to play knowing what the coordinator proposed

• In a CCE you can either deviate up front or participate in the game and
immediately play whatever the coordinator proposes to you

Formally, the definition is:

Definition 4 (CCE). A probability distribution σ over outcomes is a CCE if for
any player i:

Es−i∼σ−i
[ui(s

′
i, s−i)] ≤ Es∼σ[ui(s)]

for any s′i ∈ Si.

We also have that CE ⊂ CCE.
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2.1.2 Price of Anarchy

Up to now we have defined some solution concepts and agreed that strategic
players will be able to reach them. However, we do not have any property of these
equilibria in order to differentiate between them. Intuitively, we can sense that some
equilibria are worse than others, but it is time to formalize this notion.

As every player has his utility function, we define a ’global’ utility function of
the game, called either the welfare or the cost, depending on whether we are trying
to maximize or minimize it, defined by W : S → R. Usual candidates for the welfare
maximization objective are:

• The social surplus objective:
∑n

i=1 ui(s), where we sum each players utility

• The egalitarian objective: minni=1 ui(s), where we try to make sure all players
gain at least some utility.

A cost minimization objective might look like
∑n

i=1 ci(s) which is similar to the
previous expression, only we are trying to minimize it (and the players want to
minimize their cost ci).

Of course we are mostly interested in the welfare of either some equilibrium
or the optimal outcome. The most common measure to compare the efficiency of
different equilibria is the Price of Anarchy (or POA) defined by Koutsoupias and
Papadimitriou in [KP09].

Definition 5. For a welfare maximization game G = (N,S, u), a welfare function
W : S → R and equilibrium concept E the POA is:

POA =
maxs∈SW (s)

mins∈EW (s)

Equivalently, for cost minimization we have:

POA =
maxs∈EC(s)

mins∈SC(s)

To get a feel for the POA (and inefficiency in general), we present the following
scenario, known as the pollution game.

• We have n players

• Each player has two actions: pollute or be environmentally friendly

• The cost of each player i is ci(s) =
∑

j 6=i:sj=pollute 1 + 3ei where ei = 1 if he is
eco-friendly, else ei = 0.

In other words, if a player pollutes he increases everyone else’s cost by 1 but if he is
eco-friendly he only increases his own by 3.

The optimal outcome is for every player to remain eco-friendly, incurring a wel-
fare of

∑
i ui(s) = 3n. However, the only PNE of this game is for everyone to

pollute, since changing to pollution increases utility by 3 (decreasing the other
player’s utilities does not matter to selfish players). The welfare of this PNE is∑

i ui(s
′) = n(n− 1) leading to a POA of 3n

n(n−1) = 3
n−1

Armed with these tools, we are ready to tackle various strategic scenarios where
selfish players compete for the better outcome.
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2.1.3 Extensive From Games

This is a minor detour from the flow of this chapter, as we will only use extensive
form games for one theorem later on.

In the games defined previously, everything happens at once, which is in contrast
to most of the ’games’ played which usually involve more than one step. Think for
example of playing chess or buying stocks one day after another for some time. In
both these situations strategies are dynamic and depend on the flow of the game.

Extensive form games capture this element of having multiple rounds. Informally,
think of an extensive form game as a tree, where players take turn and decide which
node to descend to. This is represented by:

• A finite set of players {1, . . . , n}

• A finite set of nodes X which form the game tree. A set Z ⊆ X contains the
terminal nodes.

• A set of functions:

– i(x): determines which player chooses an action at node x

– A(x): the set of possible actions at x

– n(x, a): the node to move to having chosen action a at node x

• Utility functions for each player, as before ui : Z → R

• The information partition h(x). For each node x this denotes the set of nodes
that are player i(x) could be on, based on the information available to him. It
will become clearer with an example.

We also define the set of available information for player i:

Hi = {h(x) : ∀x ∈ X with i(x) = i}

Having that, a player’s pure strategy is a function si : Hi → Ai with ∀x : si(h(x)) ∈
A(h(x)) , which maps his available information to an action. Note that this isn’t
just one move, but a whole contingency plan for all different paths the game might
follow.

Just to clarify, we will present rock-paper-scissors as a turn based game. The
nodes are {start, R, P, S,RR,RP,RS, PR, PP, PS, SR, SP, SS} denoting the move
of the first and second player. The first player begins and has h(start) = start as it’s
the beginning of the game. The second player however, might have h(R) = h(P ) =
h(S) = {R,P, S} or h(R) = R, h(P ) = P and h(S) = S. In the first case he does
not know what player 1 has chosen since his information set shows he could be on
either node. In the second case however, he knows exactly where he is on the game
tree and can beat player 1.

The PNE (and MNE) is described in exactly the same way, only instead of single
strategies we have these strategy functions. The only issue with the PNE is that if
a player decides to deviate, the rest of the game is up for grabs, since the PNE only
describes one path of the game tree.
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The other important solution concept of extensive form games is the Subgame
Perfect Equilibrium, first described as an analog to the PNE by nobel laureate
Reinhard Selten. Image being on node y. From now till the end of the game, what
happened before does not matter. It’s as if there is a new extensive form game
starting from that node. We call this an induced subgame.

Definition 6. Let G be an extensive form game. A subgame G′ of G consists of a
subset Y of the nodes of X created by a non-terminal node y and all of it’s successors
which has the property that if q ∈ Y , q′ ∈ h(q) then q′inY . The information sets,
actions, terminal nodes and payoffs remain the same.

A subgame perfect equilibrium is a subset of the PNE that guarantees that every
possible subgame is also in a PNE.

Definition 7 (Subgame Perfect Equilibrium (SPE)). A strategy profile s is in a
subgame perfect equilibrium if it induces a PNE in every subgame G′.

Since a game is a subgame of itself, every SPE is also a PNE.
The POA for games in extensive form is exactly the same as in one-shot games.

Also, although extensive form games are an obvious superset of normal form games
(just include every node in each information set, thus players do not know anything
when choosing their action), we can also convert them to one shot games, albeit with
an enormous and complicated set of strategies. However, knowing the terminology
of extensive form games gives us the ability to construct more detailed arguments,
especially when discussing subgame perfect equilibria.

2.2 Introduction to Mechanism Design

The goal of this thesis is twofold. Besides showing how certain techniques from
the modern algorithmic toolbox are used for analyzing games, we are also interested
in designing games with desirable properties ourselves.

As Tim Roughgarden often says, Mechanism Design is the science of rule making.
One can think of it as reverse Game Theory. Instead of having a game found in
the wild handed to us for studying, we design our own one on top of some strategic
foundation, according to our goals.

2.2.1 Mechanism Design Setting

A mechanism design setting is a set (N,X ,V) where:

• N = {1, . . . , n} is the set of players

• X ⊆ ×iXi is the set of outcomes

• V = ×iVi is the set of valuations vi : Xi → R ∈ Vi for each player.

This setting just makes a connection between players and desirable outcomes without
mentioning the actions through which the players will reach them. The valuation of
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an outcome is similar to the utility function and signifies how much a player wants
an outcome. For example, we could model an auction with one item a by taking n
players, each of them with outcomes Xi = ∅, a and valuations vi(∅) = 0, vi(a) = vi
where the overall outcome X only contains outcomes where at most one player gets
the item. How the players might obtain the item or how much they will pay for it is
irrelevant to the setting and can be imposed by the mechanism designed later. The
setting only describes a social scenario.

2.2.2 Mechanism Design

In order to make a strategic game out of the previous setting we need to complete
our model with some interaction from the players. We complement the previous
setting with a mechanism M = (A, X, P ) where:

• A = ×iAi is the set of actions of each player

• X : A → X is the allocation function. Xi is the allocation for each player.

• P : X → Rn is the payment function, with Pi for each player.

We assume that after payments, each player has utility

uvii (xi, pi) = vi(xi)− pi

This preference is called quasilinear, since it’s first term is a function of the outcome
(but the actual value is determined by the player) and the second term produces
a linear change in utility through payments, which we can control. This gives the
designed great influence over the outcome choses by the players.

As an example, consider the auction setting described in the previous section.
One possible mechanism is the first price auction, which we will study in detail in the
following chapters. In a first price auction, every player submits a hidden bid and
the auctioneer awards the top bidder the item and charges him his bid. Formally:

• Players can bid any nonnegative value bi ∈ Ai = R+.

• Only the highest bidder gets the item:

xi =

{
a bi = maxi bi

0 otherwise

• Only the winner pays his bid

pi =

{
bi i = j

0 otherwise

A different formulation could be what is called the second price auction. Here
the allocation function remains the same, but winner pays the second highest bid
pj = maxi 6=j bi.
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Both these mechanisms imply strategic games as defined previously. This is
because the utility of the players is implicitly a function of their actions: ui(x) =
ui(X(a)) = u′i(a), thus an n player mechanism induces the game G = (N,A, u′)
which accepts equilibria as normal.

For example, in the second price auction one PNE is when everyone bids his
actual valuation vi.

Theorem 2. The outcome a = (v1, . . . , vn) is a PNE of the second price auction

Proof. Let i be any player and b1, b2 the bids above and below his respectively. The
only way he can influence the outcome is by increasing or decreasing his bid enough
to change the relative order of bids. If he bids b′i > b2, he will either still lose the
auction and leave his utility unchanged or get ui(b

′
i, b2) = v1 − b2 < 0. If he bids

b′i < b1 then he will lose for utility 0. In any case, he cannot gain positive utility by
changing his bid, thus bidding vi = bi is a PNE.

The first price auction does not have a PNE like that, since if the top two bids
are b1 > b2, the winner can bid b′1 = b1+b2

2
to pay less and increase his utility.

Actually, to be absolutely precise, there could be PNE if for example two players
have the same valuation vi = vj and bid bi = bj = vi. In this case, as long as the
winning player is picked consistently no player can raise his utility by deviating. As
a side note, in the first price auction you cannot gain utility by bidding your actual
valuation.

With mechanisms we can still use the POA as an inefficiency metric. In auctions
our goal is to maximize the social welfare which is usually defined as SW (a) =∑

i vi(X(a)). Sometimes it is also defined as the sum of valuations plus the payments
which cancel out, since we can consider payments as ’gains’ of the auctioneer. As
we can see, the second price auction is has a POA of 1, since the PNE is optimal as
the highest bidder also has the highest valuation.

2.2.3 Mechanism Design and Incomplete Information

The mechanisms we have described until now are not particularly realistic, espe-
cially in the auction setting, because the players’ valuations is public information.
Without getting into to much detail, one way to solve this is to use probability dis-
tributions over valuations. In this setting each player has a distribution Fi ∼ Vi over
his valuations. This distribution is public information, instead of the actual valua-
tion. The mechanism definition is left unchanged, but since players don’t know their
valuation beforehand their actions are encoded in the form of functions si : Vi → Ai.
The standard solution concept for these games is the Bayes-Nash equilibrium (BNE),
defined as follows:

Definition 8 (BNE).

∀ai ∈ Ai : Ev[ui(s(v))] ≥ Ev[ui(ai, s−i(v)−i)]

As expected, the social welfare of an outcome s is defined in expectation:

SW (s) =
∑
i

Evui(s(v))
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with the POA being similar.

In this setting, the second price auction retains it’s equilibria of bidding your own
valuation and the POA is still 1. However, the first price auction has a completely
non trivial POA of e

e−1 [CKST13].

2.2.4 Truthfullness

The last part of mechanism design we will lightly touch upon is truthfulness. We
call a mechanism truthful when the players maximize their gain by submitting their
true value, instead of strategizing. This is a particularly valuable property because
it means that as designers we can be certain about the players actions and how to
assign the optimal outcome and the players have a very easy optimal strategy.

Before formally defining truthfulness, we give the definition of an ’optimal’ (or
dominant as it’s most commonly called) strategy.

Definition 9. A strategy si is dominant for player i if for every s′i, s−i we have

ui(si, s−i) ≥ ui(s
′
i, s−i)

This means that a dominant strategy always guarantees maximum utility, no
matter what the other players are doing. If a game has an optimal strategy for
every player, the resulting strategy vector is obviously a PNE called a dominant
strategy equilibrium.

Technically, we can only define truthfulness for mechanisms where Ai = Vi, also
called direct revelation mechanisms. A direct revelation mechanism is truthful if
choosing action vi(the actual valuation) is a dominant strategy. In mechanisms
where these sets are different the player can only implicitly be truthful. The second
price auction is a truthful game. This is easy to prove, just take a second look at the
PNE proof and observe that we did not care about the remaining players’ bids. We
proved that bidding truthfully was optimal irrespective of the other players actions.

Not every game with a dominant strategy however is truthful. As a toy example,
consider the second price auction where the payment is twice the second highest
bid. Here the dominant strategy is to bid vi

2
, which is not truthful. The following

important theorem, due to Allan Gibbard [Gib73], clarifies this relationship.

Theorem 3 (Revelation Principle). For every mechanism M in which every par-
ticipant has a dominant strategy there is an equivalent direct revelation mechanism
M ′

Proof. Since mechanism M has a dominant strategy equilibrium, assume si : Vi →
Ai to be each players strategy (we kept the function notation because this applies
to the incomplete information setting as well).

Mechanism M ′ is direct revelation and works in the following way. It accepts
players reported valuations (which may be untrue) and then feeds actions si(vi) to
mechanism M and forwards the resulting allocation and payments to the players.
Thus, reporting the true valuation is still a dominant strategy and M ′ is truthful.
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In other words, we can delegate choosing the dominant strategy to a direct
revelation mechanism.

We will use dominant strategies in more complicated settings such as the com-
binatorial auction. Here we have n players, a set U of m items and each player has
a valuation vi : 2U → R over all possible allocations. A truthful mechanism would
require exponential communication from the players which is just not feasible in
practice. An alternative would be to run independent single item auctions for each
item, which as we will see remains quite efficient.
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Smooth Games

3.1 Overview

In many situations POA bounds are not only exceedingly difficult to calculate
but might not offer a great deal of insight. This could be because of the absence
of specific equilibria or because the assumption that the players will be able to
reach them may not always be reasonable. As such, alternative tools that provide
expressiveness (in terms of bounds) in these conditions may be required. Smooth
Games, introduced and proven to be practical by Tim Roughgarden in [Rou09], are
such a toolset.

Before getting into formal definitions, Smooth Games utilize the age-old mathe-
matical technique of restricting the scope in favor of structure. Smooth Games are
a natural subset of cost minimization (or maximization) games which entail bounds
to configurations much more expressive than the Nash equilibrium.

Essentially, Smooth Games capitalize on the robust nature many important
games exhibit. By calling a game robust, we mean that certain worst-case bounds
similar to the POA hold even when players haven’t reached a Nash equilibrium.
Moreover, Smooth Games are very useful in a more practical sense: bounds ac-
quired via smoothness techniques extend to various common equilibrium concepts,
as we will soon see. In some cases smoothness bounds bind the POA tightly.

3.2 Defining Smooth Games

Just to clarify, we will be using cost minimization games in order to showcase
smoothness arguments. By cost minimization game we mean a game where the
goal of each player is to minimize his own cost while the goal of the designer is to
minimize the joint cost function C(s) =

∑k
i=1Ci(s).

Definition 10. A cost minimization game is (λ-µ)-smooth if for every two outcomes
s and s∗ we have:

k∑
i=1

Ci(si∗, s−i) ≤ λ · C(s∗) + µ · C(s) (3.1)

29
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What we have achieved here is quantifying the difference between any two out-
comes by using the cost of unilateral deviation. In contrast, most equilibrium con-
cepts give us a weaker amount of knowledge: the Nash equilibrium is only an in-
equality between one specific outcome and all the others. The term ’smooth’ now
becomes apparent. In smooth games, the social cost of unilateral deviation is nicely
bounded and represents a ’smooth’ transition between two outcomes.

The cornerstone of this chapter is following short but deep proof that uses
smoothness to give an upper bound on the POA.

Theorem 4. If a game is (λ-µ)-smooth with λ > 0 and µ < 1 then each of it’s pure
Nash equilibria s has cost at most λ/(1− µ) times that of an optimal solution s∗

Proof.

C(s) =
k∑
i=1

Ci(s) (3.2)

≤
k∑
i=1

Ci(s
∗
i , s−i) (3.3)

≤ λ · C(s∗) + µ · C(s) (3.4)

Inequality (3.2) follows from the definition of social cost; inequality (3.3) comes from
applying the Nash equilibrium hypothesis once for each player for deviation s∗i and
inequality (3.4) comes from the definition of smoothness. Rearranging terms gives
us the claimed inequality

During this proof we did not exploit our definition to the fullest. For example,
we did not use any combination of outcomes and we used equality for our objective
function. However, giving a more general definition for smoothness is what allows
us to use this bound beyond pure Nash equilibria.

Note that even though a POA bound derived by this proof would give us an
inequality between the pure Nash equilibrium and any other outcome, we ’proved’
something more. Using any two outcomes and joining them by the cost of unilateral
deviation is what makes this proof reveal interesting structural properties of the
game, beyond pure Nash equilibria.

For completeness the definition of smoothness for payoff-maximization is:

k∑
i=1

πi(si∗, s−i) ≥ λ · V (s∗)− µ · V (s) (3.5)

Here V (·) is an objective function that satisfies V (s) ≥
∑k

i=1 πi(s), or in other words
it is payoff dominated. Similarly, the POA for such games is λ

1+µ
.

We formally define a lower bound on what can be proven by smoothness argu-
ments.

Definition 11 (Robust POA). The robust price of anarchy of cost-minimization
game is

inf

{
λ

1− µ
: (λ, µ) such that the game is (λ, µ)-smooth

}
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This definition allows us to express the quality of smoothness argument bounds
with a single number and compare it to the regular POA.

Before moving on to specific examples, a remark may be in order. First of all,
there are classes of games, like valid utility games, which are smooth, even though
they may have no pure Nash equilibria. Essentially, the smoothness argument pro-
vides us with POA bounds if a pure Nash equilibrium exists. Combined with the
extensibility of bounds proven by smoothness arguments, we see that Smooth Games
are not about just PNE’s but give insights that are used alongside the standard tools
for evaluating inefficiency of equilibria.

3.2.1 Examples

One class of games that we will be using throughout this chapter is the Conges-
tion Game, introduced by Rosenthal in [Ros73] and at first studied due to the fact
that they always had a PNE, despite their generality at modelling various strategic
sharing scenarios in society. The Congestion Game is a cost-minimization game de-
fined by a set E of resources, a set of k players with strategy sets S1,. . .Sk ⊆ 2E and
a cost function ce : Z+ → R. We will assume these functions are nonnegative and
nondecreasing. Given a strategy profile s = (s1, . . . sk) with si ∈ Si for each i we
define the load of each resource as the number of players using it: xe = |{i : e ∈ si}|.
The cost for each player i is Ci(s) =

∑
e∈si ce(xe). The total cost is:

C(s) =
k∑
i=1

Ci(s) =
∑
e∈E

ce(xe) · xe

Intuitively, congestions games model situations where players must share a set of
resources which in this case get more expensive the more they are used.

Example 3.2.1 (Congestion Game with Affine Cost Functions). We will use the
smoothness framework to derive POA bounds for the case where cost functions
are affine: ce(x) = ae · x + be. This case has been studied by Koutsoupias and
Christodoulou in [CK05]. Using the lemma:

x(y + 1) ≤ 5

3
x2 +

1

3
y2

which is true for all nonnegative integers x, y we will show that congestion games
with affine cost functions are 5

3
, 1
3

smooth.
Using the lemma, we have:

ax(y + 1) + bx ≤ 5

3
ax2 +

1

3
ay2 + bx

≤ 5

3
ax2 +

1

3
ay2 +

5

3
bx+

1

3
by

≤ 5

3
(ax2 + bx) +

1

3
(ay2 + by)

for all a, b ≥ 0.
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Consider two outcomes s, s∗ with induced loads x,x∗. For outcome (s∗i , s−i)
the number of players using each resource can increase by at most one. Adding
everything together:

k∑
i=1

Ci(s
∗
i , s−i) ≤

k∑
i=1

∑
e∈s∗i

ce(xe + 1) (3.6)

≤
∑
e∈E

(ae(xe + 1) + be)x
∗
e (3.7)

≤
∑
e∈E

5

3
(aex

∗
e + be)x

∗
e +

∑
e∈E

1

3
(aexe + be)xe (3.8)

≤ 5

3
C(s∗) +

1

3
C(s) (3.9)

Where (3.6) and (3.7) are just writing out the objective function and doing a reversal
and regrouping of sums and (3.8) is utilizing the lemma to split the two outcomes
into smooth game form. Thus, by smoothness the POA of affine congestion games
is at most λ

1−µ = 5
2
.

Example 3.2.2 (Location Game). To show a different approach, our next example
is one where the goal is payoff maximization. The Location Game was designed by
Tim Roughgarden and is based on the valid utility game[Vet02].

The Location game is defined by:

• A set F of possible locations

• A set of k players, where player i chooses only one among Fi ⊂ F locations.

• A set M of markets. Each market has a value vj which is known to all the
players. Every players ’sells’ the same goods to each market. The market only
buys from the player who sells the cheapest according to market equilibrium.
More on that later.

• For each location i ∈ F and market j ∈M there is a ’distance’ cost cij.

Before defining the payoffs we will create a toy example to clarify how the prices
are agreed.

p1,m1 m2 p2

1 2

Here we have 2 players, p1,p2 and markets m1,m2 located on this line segment
with their respective distances. Assuming all markets buy at a cost of 3, at which
price would the players sell?

At m1 player 1 has zero distance while p2 has c21 = 3. Player 2 cannot sell to m1

at any positive price, so p1 sells for the maximum he can, which is 3. At m2 however,
things are more interesting. Player 1 has distance 1 and player 2 has distance 2.
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This means that in order to be profitable every player must sell his goods for more
that the cost of distance. Which means that p1 sells for 1 and p2 sells for 2. Player
1 of course maximizes his profits by selling for 2− ε and the market buys from him.
When designing the actual payoff function we will disregard this ε because it does
not add any meaningful information.What we can see is that the only player who
sells at a market is the one located closest to it. The location of the other players
defines his price.

In general, in a strategy profile s of a location game, the payoff of player i is
defined as:

πi(s) =
∑
j∈M

πij(s) (3.10)

where, assuming C is the set of chosen locations (by all the players) and i chose
j ∈ C we have:

πij(s) =

{
0 ifclj > vj or l is not the closest location of C to i

δ
(2)
j (s)− cij otherwise

(3.11)

Where δ
(2)
j (s) is equal to the minimum of vJ and the second smallest distance be-

tween a location in C and market j. Following our example, since p2 has a distance
of 2 to m2, p1 can sell his goods for 2 and beat him. There is a subtlety here when
players both are at an equal minimal distance from a market. In this case both play-
ers get nothing. If this sounds unnatural, it can be considered a subgame perfect
equilibrium were prices are sequentially undercut until they reach 0.

The maximization objective in this setting is the social surplus, which we define:

V (s) =
∑
j∈M

max{vj − dj(s), 0} (3.12)

where dj(s) is the smallest distance. The max is somewhat cumbersome, especially
when all we are trying to write is that every market is served by the closest location
unless the distance is higher than vj. To slightly abuse the notation for convenience
we will use V (T ) for the surplus when players occupy locations T ⊂ F . Each player
is interchangeable and V (s) only uses the strategy profile to find these positions.

We start by proving some simple properties of this game.

P1 For any strategy profile s we have

k∑
i=1

πi(s) ≤ V (s) (3.13)

This follows because every market j ∈M serviced by player i gives him payoff
d
(2)
j (s) − dj(s) but adds vj − dj(s) to the social surplus. By definition, vj ≥
d
(2)
j (s)

P2 For any strategy profile s we have

πi(s) = V (s)− V (s−i) (3.14)



34 Chapter 3. Smooth Games

There are two cases. If market j is not used by any player in s−i but the new
player uses it, then its contribution to both sides of the equation is vj − dj(s).

If market j changes user when the player is added, the payoff for the player is
d
(2)
j (s)−dj(s) since the new player is closer. The difference in social surplus is

vj−dj(s)− (vj−d(2)j (s)) which is exactly the same. Summing over all markets
gives us the desired equation.

P3 The function V (·) is monotonic and submodular. Monotonicity means that
V (T1) ≤ V (T2) for T1 ⊂ T2. This follows immediately from (3.12).

Submodularity models diminishing returns and is defined as

V (T2 ∪ {l})− V (T2) ≤ V (T1 ∪ {l})− V (T1)

for all l ∈ C and T1 ⊂ T2. The proof is similar to the previous property.

Theorem 5. The location game is (1, 1)-smooth.

Proof. Our proof will follow the standard smoothness argument procedure, which is
to write the PNE hypothesis once for each player, not using again and disentangle
the payoffs for two outcomes using the previous properties.

We begin by the letting s be the PNE and s∗ any other outcome. We have

πi(s) ≥ πi(s
∗
i , s−i) (3.15)

Summing over all players and using (3.13) we have:

V (s) ≥
k∑
i=1

πi(s) (3.16)

≥
k∑
i=1

πi(s
∗
i , s−i) (3.17)

=
k∑
i=1

[V (s∗i , s−i)− V (s−i)] (3.18)

≥
k∑
i=1

[V (s∗1, . . . , s
∗
i , s−i)− V (s∗1, . . . , s

∗
i−1, s−i)] (3.19)

= V (s∗1, . . . , s
∗
k, s1, . . . , sk)− V (s) (3.20)

≥ V (s∗)− V (s) (3.21)

Where (3.18) from (3.14), (3.19) from submodularity, (3.20) from rolling out the
telescoping sum and (3.21) from monotonicity.

Solving for the POA, we get 1
2
.
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3.3 Extension Theorems

One extra reason to use smoothness techniques when studying games is that
bounds proven by the standardized smoothness argument automatically extend to
more general equilibrium concepts. This is quite useful, since analysis of a game
usually starts by pure Nash equilibra which often are specific and easier to think
about, with the logical next step being moving on to mixed Nash equilibria and so
forth.

Game Theory is quite intricate and we know of many games where the mixed
Nash equilibrium is worse than the pure. This means that there can never be an
extension theorem using just the POA without other properties of the game. Smooth
Games automatically have a POA bound that does not depend on the game itself
directly, but on the two smoothness parameters (λ, µ). This gives us an extra layer
of abstraction that makes POA proofs reusable.

The intuition behind the extension theorems lies inside the canonical smoothness
bound proof, which can be succinctly described in list fashion:

• Choose an outcome s of the game. It doesn’t need to be the optimal.

• Invoke the Nash equilibrium hypothesis once for each player (for the previous
outcome) without bringing extra inequalities into the proof that might be
specific to the equilibrium or the outcome.

• Combine the previous inequalities, along with the definition of smoothness to
come up with a bound

Bounds proven this way do not make use of any specific equilibria properties or
configurations and are very robust to extensions and alterations.

3.3.1 One-Shot Games

The first extension theorem concerns randomized equilibrium concepts. Just a
very quick reminder mixed Nash,correlated and coarse correlated equilibria to show
how they generalize:

Es∼σ [Ci(s)] ≤ Es−i∼σ−i
[Ci(s

′
i, s)] (3.22)

Es∼σ [Ci(s)|si] ≤ Es−i∼σ−i
[Ci(s

′
i, s)|si] (3.23)

Es∼σ [Ci(s)] ≤ Es−i∼σ−i
[Ci(s

′
i, s)] (3.24)

Where in (3.22) σ = (σ1,. . .σk) is a product distribution. We only need to show the
extension theorem for coarse correlated equilibria, since the same bound applies for
the rest.

Theorem 6 (Extension Theorem - One-shot). For every cost minimization game G
with robust POA ρ(G), every coarse correlated equilibrium σ of G and every outcome
s∗ of G we have

Es∼σ[C(s)] ≤ ρ(G) · C(s∗)
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Proof. The proof is quite straightforward, similar to the first theorem:

Es∼σ[C(s)] = Es∼σ

[
k∑
i=1

Ci(s)

]
(3.25)

=
k∑
i=1

[Es∼σCi(s)] (3.26)

≤
k∑
i=1

[Es∼σCi(s
∗
i , s−i)] (3.27)

= Es∼σ

[
k∑
i=1

Ci(s
∗
i , s)

]
(3.28)

≤ Es∼σ [λ · C(s∗) + µ · C(s)] (3.29)

≤ λ · C(s∗) + Es∼σ [µ · C(s)] (3.30)

Where (3.26) and (3.28) by linearity of expectation, (3.27) by the definition of the
coarse correlated equilibrium and the inequality (3.29) by (λ, µ)-smoothness.

Inequality (3.30) holds for every (λ, µ) for which the game is smooth. We can
therefore rearrange terms and reach (or get arbitrarily close to) the robust POA,
thus proving the theorem.

3.3.2 Repeated Play and No-Regret Sequences

The previous extension theorem can be easily proven for sequences of outcomes
with certain properties. Consider sequence of outcomes s1, . . . , st of an (λ, µ) smooth
game and s∗ the optimal outcome. For every i, t we can define:

δi(s
t) = Ci(s

t)− Ci(s∗i , st−i) (3.31)

This is player i’s ’improvement’ for deviating to s∗. Summing over all players and
deploying the definition of smoothness, we get

C(st) ≤ λ

1− µ
· C(s∗) +

∑k
i=1 δi(s

t)

1− µ
(3.32)

We are only interested in sequences of outcomes when every player experiences
vanishing average regret :

1

T

T∑
i=1

Ci(s
t) ≤ 1

T

[
min
s′i

T∑
t=1

Ci(s
′
i, s−i)

]
+ o(1) (3.33)

where o(1) is some function which goes to 0 as T → ∞. Regret is defined as the
difference in cost for a certain player had he chosen the best fixed response for
s1, . . . , st. The previous equation shows vanishing average regret, since playing st is
asymptotically competitive against any time invariant best response strategy. This
can be considered a generalisation of the Nash equilibrium for learning scenarios.
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Averaging (3.33) over T steps we get

1

T

T∑
i=1

Ci(s
t) ≤ λ

1− µ
· C(s∗) +

1

1− µ

k∑
i=1

(
1

T

T∑
t=1

δi(s
t)

)
(3.34)

By the no regret guarantee, we have that

1

T

T∑
t=1

δi(s
t)→ 0

as T →∞. Since this holds for every player, we can restate in more formal fashion.

Theorem 7. For every cost minimization game G with robust POA ρ(G), every
outcome sequence s1, . . . , sT that satisfies (3.33) for every player and every outcome
s∗ of G,

1

T

T∑
i=1

Ci(s
t) ≤ [ρ(G) + o(1)] · C(s)

as T →∞

Blum et al. investigated bounds of this type in [BHLR08].
This theorem applies to a much broader scale than it’s equivalent on PNE’s

because there exist online learning algorithms which require much fewer restrictions
on the game and it’s players than the existence of a Nash equilibrium. Even more,
online learning algorithms are often quite simple where a PNE may be intractable.
A thorough investigation of online learning algorithms in game theoretic settings
can be found in [CBL06].

Even more general than our previous theorem, we can extend smoothness bounds
to mixed-strategy no regret sequences which in turn cover an even larger number of
settings. In this case we would have

1

T

T∑
i=1

Est∼σtCi(s
t) ≤ [ρ(G) + o(1)] · C(s)

3.4 Tight Classes of Games

A natural question is wether POA bounds that come from the smoothness argu-
ments, a restricted class of proofs, are tight. Before showing certain classes of games
for which it is impossible to obtain tight bounds through smoothness, we need to
formally define what tight means.

Introducing some new notation, let G define the set of cost-minimization games
with a nonnegative cost function. Let A(G) denote the set of (λ, µ) values such that
every game in G is (λ, µ)-smooth. Let Ĝ ∈ G denote the games with at least one
PNE and ρpure(G) the POA of such equilibria in G ∈ G. The 3 line smoothness

argument (3.2)-(3.4) shows that for every (λ, µ) ∈ A(G) and every G ∈ Ĝ we have
that ρpure(G) ≤ λ

1−µ
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Definition 12 (Tight Class of Games). A set G of cost-minimization games is tight
if:

sup
G∈Ĝ

ρpure(G) = inf
(λ,µ)∈A(G)

λ

1− µ
(3.35)

The right hand side is the best upper bound that can be proven by smoothness
argument while the left hand side is the actual worse POA amongst all the games
with at least one PNE. Obviously, the right hand side is at least as large as the left,
so the condition we have hear is reminiscent of a satisfied min-max. Although there
might be specific games which have specific equilibria with better bounds, any proof
that is general enough to encompass all instances of games in the class Ĝ is at most
as good as the best smoothness bound.

Of course, showing that a class of games is tight for PNE’s also extends to
equilibria we discussed in the previous section. The proof is very simple.

Corollary 7.1. A tight class of games is also tight for MN, correlated and coarse
correlated equilibria

Proof.

sup
G∈Ĝ

ρpure(G) ≤ supG∈Ĝρmixed(G) (3.36)

≤ supG∈Ĝρcorrelated(G) (3.37)

≤ supG∈Ĝρcoarse(G) (3.38)

≤ inf
(λ,µ)∈A(G)

λ

1− µ
(3.39)

Where inequalities (3.36)-(3.38) hold because each equilibrium concept is a superset
of the previous one.

But, because supG∈Ĝ ρpure(G) = inf(λ,µ)∈A(G)
λ

1−µ by definition of a tight class, we
have that all the bounds are equal and tight.

3.4.1 Congestion Games are Tight

In Example 3.2.2 we used the smoothness framework to showcase how a POA
proof would go. The resulting bound was 5

2
and although we did not investigate the

tightness of this result, it turns out it actually is tight, in terms of Definition 12.
Congestion Games can be parametrized in two ways:

• Imposing limitations on the structure of the shared resources

• Restricting the set of allowable cost functions

Previous research in this area by [ADG+06, AAE05, CK05] investigated tight bounds
for variants of the original definition of Congestion Games. In all these cases, the
bound was defined in relation to the cost functions. For example for polynomial
cost functions of maximum degree d and nonnegative coefficients it was found that
the worst-case POA bound was exponential in d but independent of the number of
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players or the way resources were shared. This is not to say that the sets S1,. . .Sk ∈
2E that players choose their strategy from have no impact on the POA. They allowed
strategies for each player does have an effect, but there is already some structure
since all strategies are subsets of the available resources E. However, leaving the
class of cost functions C unrestricted imposes much higher difficulty and it might
even unreasonable to expect a worst-case bound for each set C to be meaningful, let
alone expressible in closed form.

We will now show that for any set C, whose functions are nonnegative and non-
decreasing, the induced set of congestion games G(C) forms a tight class. Restated
without jargon, knowing that every congestion game has at least one PNE[Ros73]:

sup
G∈G(C)

ρpure(G) = inf
(λ,µ)∈A(G(C))

λ

1− µ
(3.40)

By Corollary 7.1 this bound will remain tight for those equilibrium concepts as
well.

3.4.1.1 Simplifying the Smoothness Constraints

We have already shown that Congestion Games are smooth for affine cost func-
tion, now we need to do the same for the general case. The proof presented in this
chapter is basically the same as presented in [Rou09] with more details when needed.

We will be using the same properties we used in Example 3.2.2, namely:

• The objective cost function and every player’s cost function is additive over
the resources.

• If one player deviates from the current strategy profile he can at most increase
the load of each resource by 1.

This means that, as we did before, we can simplify the range where (λ, µ) parameters
of interest are found by considering what happens to one resource.

Let C be a nonempty set of nondecreasing, nonnegative cost functions. We will
disallow the all zero cost function, meaning that c(x) ≥ 0 for x ≥ 0. This is done only
for convenience, since we can simulate the zero cost function by c(x) = ε without
affecting the equilibria or the optimal cost more by than a bounded multiple of ε.
Let A(C) (not A(G(C)), we are trying to find bounds independent of structure) be
the set of parameters (λ, µ) with µ < 1 that satisfy:

c(x+ 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x (3.41)

for every cost function c ∈ C and every nonnegative integer x and every positive
integer x∗. The reason for unbounded integers is that we want to be independent of
the number of players as well. Only x∗ needs to be positive since it represents that
one player deviated to it. The induced load of the first outcome, x, can be 0.

Inequality (3.41) is a worst case on the cost change of the unilateral deviation.
Since we are hoping our bounds are tight, we expect limiting our (λ, µ) to the worst
case won’t be a problem.
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We define γ(C) to be the best POA that can be proved by smoothness for games
G(C)) by the condition (3.41). That is:

γ(C) = inf

{
λ

1− µ
: (λ, µ) ∈ A(C)

}
(3.42)

For completeness, we define γ(C) =∞ for A(C) = ∅.
We will prove a useful lemma:

Lemma 3.4.1 (Nonnegativity of µ). For every nonempty set C of strictly positive
functions and every (λ, µ) ∈ A(C), µ > 0

Proof. Taking x = n and x∗ = 1 in (3.41) with any cost function i̧nC we get:

µ ≤ c(n+ 1)− λ · c(1)

c(n)n
≤ 1− λ

n
(3.43)

Where we have that c is nondecreasing. Since n can become arbitrarily large we can
only assume that µ ≥ 0 and nothing more.

We now need to show that only considering parameters that satisfy (3.41) does
not affect the tightness of our bound. More concretely, we will show that any game
in G(C) is smooth for all parameters in A(C) which in turn implies:

Lemma 3.4.2. For every set of cost function C 6= ∅, the robust POA of every game
in G(C) is at most γ(C).

Proof. If γ(C) is not finite, we are done.
For γ(C) < ∞, assume c ∈ C is not strictly positive. Hence there exists z ≥ 0

such that c(z) = 0 and c(z + 1) > 0. Substituting x = x∗ = z into (3.41) we get
c(z + 1) ≤ 0 thus A(C) = ∅ and γ(C) =∞ by definition leading to a contradiction.
We can then assume that every c ∈ C is strictly positive.

Let G ∈ G(C) and (λ, µ) ∈ A(C). By the previous assumption and Lemma 3.4.1
µ ≥ 0. For every outcome pair s and s∗ of G with induced loads x and x∗ we have:

k∑
i=1

Ci(s
∗
i , s−i) ≤

∑
e∈E:x∗e>0

ce(xe + 1)x∗e (3.44)

≤
∑

e∈E:x∗e>0

[λ · ce(x∗e)x∗e + µ · ce(xe)xe] (3.45)

≤
∑
e∈E

[λ · ce(x∗e)x∗e + µ · ce(xe)xe] (3.46)

= λ · C(s∗) + µ · C(s) (3.47)

In inequality (3.44) we are just summing the costs going through the resources
instead of the players. From the perspective of the deviating player, when he moves
to resource e the cost can at most be ce(xe + 1), because the other players stayed
put. If x∗e players deviate to e we get the first inequality.
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One may ponder why we sum over e ∈ E : x∗e > 0 since obviously∑
e∈E:x∗e>0

ce(xe + 1)x∗e =
∑
e∈E

ce(xe + 1)x∗e

The reason is that we need x∗e > 0 in order to expand to inequality (3.45) by (3.41)
and the definition of A(C). The we use that µ ≥ 0 to get to the standard definition
of smoothness with (3.47).

We have now reduced our search for parameters (and the accompanying upper
bound) to A(C) which is only dependent on the cost functions and easier to calculate
as an optimization problem for specific sets C.

3.4.1.2 Characterization of the Optimal Smoothness Parameters

After carefully considering (3.41) we conclude that we are dealing with an opti-
mization problem with two parameters, λ and µ. We want to minimize the function
λ

1−µ over the feasible region A(C).
We can see that as λ and µ increase (3.41) continue to hold while our objective

function λ
1−µ is increasing. Broadly, the feasible region is similar to the intersec-

tion of two halfplanes with equality in (3.41) being satisfied somewhere along the
’southwestern’ boundary’ of A(C) for specific xe and x∗e.

Right now, we will assume that the set C is finite, that every cost function is
strictly positive and that there is an upper bound on the load of each resource.
Formally, let A(C, n) be the set of (λ, µ) parameters with µ < 1 that satisfy (3.41)
for every c ∈ C, x ∈ {0, 1. . .n} and x∗ ∈ {1, 2. . .n}. As before, we define

γ(C, n) = inf

{
λ

1− µ
: (λ, µ) ∈ A(C, n)

}
(3.48)

The set A(C, n) is not empty because it contains maxc∈C(
c(n+1)
c(1)

, 0).

What we have achieved by bounding and ’discretizing’ our problem (but keep-
ing the feasible region continuous) is ability to prove in a mostly hassle free way
the existence of points that transform (3.41) into an equality. The next seemingly
complicated lemma proves what we argued about, that the bound γ(C,n)equality
usually appears at the intersection of two lines for which inequality (3.41) holds
true.

Lemma 3.4.3. Let C be a finite set of strictly positive cost functions and n a positive
integer. Suppose there exists (λ̂, µ̂) ∈ A(C, n) such that:

λ̂

1− µ̂
= γ(C, n) (3.49)

Then there exist c1, c2 ∈ C, x1, x2 ∈ {0, 1. . .n}, x∗1, x∗2 ∈ {1, 2. . .n} and η ∈ [0, 1]
such that

cj(xj + 1)x∗j = λ̂ · cj(x∗j)x∗ + µ̂ · cj(xj)x (3.50)

for j = 1, 2 and

η · c1(x1 + 1)x∗1 + (1− η)c2(x2 + 1)x∗2 = ηc1(x1)x1 + (1− η)c2(x2)x2 (3.51)
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Proof. Let

Hc,x,x∗ = {(λ, µ) : c(x+ 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x} (3.52)

This set is the feasible region for specific configurations. The union of all these
sets needs not be A(C). We use these sets to allow greater freedom when analyzing
sections of the feasible region. Write ∂Hc,x,x∗ for it’s boundary which is comprised
by the (λ, µ) which that satisfy equality. Define

βc,x,x∗ =
c(x)x

c(x+ 1)x∗
(3.53)

which is well defined since x∗ > 0 and c strictly positive. If x ≥ 1 then we can
uniquely express λ in terms of µ on the curve θHc,x,x∗ . Solving for λ

1−µ in the
equality from the definition of Hc,x,x∗ we get

λ

1− µ
=
c(x+ 1)

c(x∗)

1− βc,x,x∗µ
1− µ

(3.54)

If x = 0, the only interesting case is

Hc,0,1 = {(λ, µ) : λ ≥ 1}

because if x∗ > 1 the inside inequality becomes c(1) ≤ λc(x∗) which is superseded
by the previous case. In that case we have βc,0,1 = 0 and λ

1−µ = 1
1−µ for points in

∂Hc,x,x∗ .
In any case, what we need to remember is that λ and µ are defined by each other

on the boundary, µ is a decreasing function of λ and as λ increases along the line
Hc,x,x∗ the value λ

1−µ is:

• strictly increasing if βc,x,x∗ > 0

• constant if βc,x,x∗ = 0

• strictly decreasing if βc,x,x∗ < 0

We use this knowledge to pinpoint (λ̂, µ̂) ∈ A(C, n). Since λ
1−µ is strictly increas-

ing in both λ and µ (λ̂, µ̂) must be on the boundary of A(C). Because neither λ
or µ can move freely, this point must be in A(C) ∩H(c, x, x

∗) for some c, x, x∗ that
satisfy (3.50).

We define two cases, according to βc,x,x∗ . If βc,x,x∗ = 1 we have that c(x+ 1)x∗ =
c(x)x from the definition of β (3.53). If we take x1 = x1 = x, x∗1 = x∗2 = x∗,
c1 = c2 = c and an arbitrary value of η we can plug everything in (4.47) and we are
done.

If βc,x,x∗ > 1, without loss of generality, then λ̂, µ̂ is an endpoint of the line
segment A(C, n)∩∂Hc,x,x∗ . Also, it is the endpoint of another line segment A(C, n)∩
∂Hc′,y,y∗ which has βc,x,x∗ < 1. The reason for both line segments is that (λ̂, µ̂) is a
boundary point and we cannot decrease both λ and µ.
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Putting everything together, both pairs c, x, x∗ and c′, y, y∗ satisfy equality (3.50)
for λ̂, µ̂. Moreover, by definition (3.53) we have that:

βc,x,x∗ > 1⇒ c(x+ 1)x∗ > c(x)x

βc,y,y∗ > 1⇒ c′(y + 1)y∗ < c′(y)y

Relabeling c1 = c,c2 = c′ and x1, x2 → x, y, plugging into (4.47) and considering
that for η = 0 the left hand side is larger but for η = 1 the right hand we conclude
that there exists η ∈ [0, 1] which gives us the desired equality.

For this lemma we assumed that the infimum in (3.48) is attained for some point
in A(C,n). The next lemma treats the remaining case.

Lemma 3.4.4. Let C be a finite set of strictly positive cost functions and n a positive
integer. Suppose no point (λ, µ) ∈ A(C,n) satisfies λ

1−µ = γ(C, n). Then, there exists
c such that

γ(C, n) =
c(n)n

c(1)
(3.55)

and
c(n+ 1) ≥ c(n)n (3.56)

Proof. The idea behind the proof is that the infimum of (3.48) is not attained is if
the set A(C, n) has an unbounded boundary face A(C, n) ∩Hc,x,x∗ with βc,x,x∗ < 1.

Since the proof is mathematically demanding but does not offer any new insights,
the curious reader is pointed towards [Rou09].

3.4.1.3 Lower Bound Construction: The Finite Case

We will now present a lower bound construction. As before, we are still working
under the assumption that C is finite, contains strictly positive, nondecreasing cost
functions and there is an upper bound on the load of each resource.

We need to construct a game for which the inequalities (3.44)-(3.47) from Lemma 3.4.2
are replaced by equalities for some outcomes. The construction follows a theme that
appears often in congestion games. We devise a setting when each player has only
two strategies: one which he uses a small number of resources and one which uses
many. Those strategies are carefully crafted so that we only have 2 pure Nash equi-
libria. In each of them, all players all use they same strategy, either few or many
resources. We try to make the outcome were everyone is using a few strategies the
optimal one and then measure the other PNE’s inefficiency.

More concretely, image a game with k players and resources. The cost function of
each resource is linear, unless all players use a resource, when it becomes extremely
large. Player i has 2 strategies: use resource i or use all the others. If every
player uses his own resource, we have a PNE, because deviating and using all other
resources has greater cost. However, every player using all resources but his own is
also a PNE. This time, deviating to using only one resource will cause that resource
to incur the large cost.

Doing something as simple for every C is not that easy, but it’s possible using
the properties of (λ̂, µ̂) that we discovered in the previous section.
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Theorem 8 (Main Construction). Let C be a non-empty finite set of strictly positive
cost functions and n a positive integer. There exist congestion games with cost
functions in C and (pure) POA arbitrarily close to γ(C, n)

Proof. As before, we deal with two cases separately. We begin by analyzing the case
were the value γ(C, n) is not attained by any (λ, µ) ∈ A(C, n). Let c ∈ C be the
cost function satisfying the properties of Lemma 3.4.4. We define a congestion
game similar to the above example. Let E = {e1, e2. . . en} and n + 1 players, each
of them having strategies ei and Er {ei} where i is the player. If all players choose
their first strategy, the total cost of the outcome is (n+ 1)c(1). If they choose their
alternative strategy, the cost is (n+ 1)c(n)n.

Every player using his many-resource strategy is a PNE, by (3.56), because his

cost before deviating is c(n)n. Dividing the two costs, we get a POA of c(n)n
c(1)

as

(3.55) proving our first case.

The construction when γ(C, n) is attained within the region A(C, n) is more com-

plicated. Let λ̂
1−µ̂ = γ(C,n). By Lemma 3.4.3 we have c1, c2, x1, x

∗
1, x2, x

∗
2 with prop-

erties (3.50) and (4.47). We define a congestion game with k = maxx1 + x∗1, x2 + x∗2
players and strategies E1 ∪ E2, where E1, E2 are disjoint. Each set contains k re-
sources, labelled 1 to k which are arranged in a cycle. The cost of resources is η ·c1(x)
from E1 and (1− η) · c2(x) from E2 .

Each of the players has two strategies. Player i’s first strategy is Pi uses xj
resources from Ej starting from the i-th resource of each cycle and wrapping around
if necessary, for j = 1, 2. His second strategy, Qi is similar. In Qi he uses x∗j
resources from Ej ending in i−1, wrapping around again if needed. We have choses
k so it is large enough that the cycle parts Pi and Qi do not overlap.

Let y and y∗ denote the two outcomes where each players chooses strategy Pi
and Qi respectively. Every players chooses the same number of resources from each
set Ei, just rotated by 1. Taking into account that the number of resources of Ei
is equal to the number of players, we get that if players choose Pi then ye = x1 for
e ∈ E1 and ye = x2 for e ∈ E2. If they choose Qi, we get about the same: ye∗ = x∗1
for e ∈ E1 and y∗e = x∗2 for e ∈ E2. Thus xi(

∗) show both the number of resources
used and their load and our setting is completely symmetric.

We need to show that y is a PNE. For player i we have

Ci(y) =
∑

e∈Pi∩E1

η · c1(ye) +
∑

e∈Pi∩E2

(1− η)c2(ye) (3.57)

= ηc1(x1 + 1)x∗1 + (1− η)c2(x2 + 1)x∗2 (3.58)

=
∑

e∈Qi∩E1

η · c1(ye + 1) +
∑

e∈Qi∩E2

(1− η)c2(ye + 1) (3.59)

= Ci(y
∗
i ,y−i) (3.60)

Where (3.58) from Lemma 3.4.3 and (3.59) because Pi and Qi are disjoint, meaning
deviating to Qi from Pi the player i only uses resources which are already used by
x1 or x2 players. We have showed that deviation does not lead to any decrease in
cost, thus y is a PNE.
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We now need to compare the costs of the outcomes. In similar fashion to (3.59)

C(y) =
k∑
i=1

Ci(y) (3.61)

= k · [η · c1(x1 + 1)x∗1 + (1− η) · c2(x2 + 1)x∗2] (3.62)

= kη[λ̂c1(x
∗
1)x
∗
1 + µ̂c2(x1)x1] + k(1− η)[λ̂c1(x

∗
2)x
∗
2 + µ̂c2(x2)x2] (3.63)

= λ̂ · C(y) + µ̂ · C(y∗) (3.64)

Rearranging the terms we get the desired lower bound.

The attentive reader may have spotted that we used functions η · c1(x) and
(1− η) · c2(x) which may not be in C. However, we using standard techniques such
as converting to rationals and scaling we can get arbitrarily close to this bound. In
broad strokes, we can convert η to rationals which will not impact the PNE and
only change the POA by an arbitrarily small amount. Then we scale these functions
up so they are integer multiples. If we needed to scale up by m, instead of actually
scaling the costs we just multiply the number of resources my m. Thus we are still
using original cost functions, but the compound cost for each player is the same as
the scaled up version. PNE’s and POA’s are not changed. Similar techniques are
explained in more detail in [Rou03].

3.4.1.4 Lower Bound Construction: The General Case

The only thing left is to consider how the previous proof extends to the general
case, when we C is infinite and contains just nondecreasing nonnegative functions.

Theorem 9. For every nonempty set C of cost functions, the set of congestion games
with cost functions in C is tight.

Proof. As usual, we first treat the case where C contains functions that are not
strictly positive. We will show that in this case, there exists a congestion game
with infinite POA. Suppose c ∈ C satisfies c(z) = 0 and c(z + 1) > 0 for some
z ≥ 1. Perform the main construction of Theorem 8 using c1 = c2 = c,η = 1

2
,

x1 = x∗1 = x∗2 = z and x2 = z + 1. The outcome y has cost kc(z)z = 0. The other
outcome has positive cost. Precisely, it’s cost is C(y) = k

2
c(z)z+ k

2
c(z+1)(z+1) > 0.

As before, we need to prove that the first outcome is a PNE

Ci(y
∗
i ,y−i) =

1

2
(zc(z + 1) + zc(z + 2))

≥ 1

2
(z + 1)c(z + 1)

= Ci(y)

Deviating increases the cost, thus outcome y is a PNE and has infinite POA.
We can now assume that C only contains strictly positive cost functions. We will

also assume that C is countable, which means that we can order the cost functions
and use Cn to denote first n of them. We will use Theorem 8 which applies to
every Cn.
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Broadly, our argument starts by an assumption and shows that all paths we can
go from there lead to the construction of game with the desired POA. We start
assuming that there are infinitely many games which are not tight, because we have
proven that finite games are tight for finite C. Then we do case analysis on all the
possible values of (λ, µ), since even thought we assumed that there infinite subsets
of C which induce are games with loose POA bounds, any finite subset Cn is tight.
Every item of the list will represent one analyzed case.

• Assume that for infinitely many n, γ(Cn) is not attained by any (λ, µ) ∈
A(Cn, n). By Lemma 3.4.4 there are congestion games in C with arbitrarily
high POA. Thus by the previous construction we have (λn, µn) ∈ A(Cn, n)
with λn

1−µn = γ(Cn, n) for all sufficiently large n.

• By using the definition of (λ, µ), rearranging constraint (3.41) and choosing
arbitrary c ∈ C,x = n and x∗ = 1 we get that

λ ≥ c(n+ 1)− µc(n)n

c(1)
≥ 1− µn (3.65)

For all (λ, µ) ∈ A(Cn, n). If µn < −1, then dividing the previous inequality by
1− µn we get

λn
1− µn

>
1− µnn
1− µ

>
n

2

By Theorem 8 we can construct games with arbitrarily high POA.

• We now assume that µn ≥ −1 for all sufficiently large n. Let’s now assume
that λn grows unbounded as n increases. Again, by Theorem 8 we are done.

• Assume that λn < M for some M for all sufficiently large n. Knowing that λ ≥
1 (easily proven by plugging x = 0,x∗ = 1 in (3.41)) we have that (λn, µn) ∈
[1,M ] × [−1, 1] which is closed. By the Bolzanno-Weierstrass theorem, there
exists a subsequence of (λn, µn) which converges to (λ∗, µ∗) since the domain
is contains all it’s limit points. If µ∗ = 1 then there are infinite pairs (λn, µn)
with µ → 1 and µ increasing in n. Again, by Theorem 8 we can construct
games with arbitrarily high POA by picking a correct pair (λn, µn) from the
subsequence.

• This time assume the subsequence converges on (λ∗, µ∗) with µ∗ < 1. Because
the function λ

1−µ is continuous the subsequence λn
1−µn also converges on λ∗

1−µ∗ , so
by the known theorem we can construct games with POA arbitrarily close to
λ∗

1−µ∗ We are not done yet thought, we need to show that (λ∗, µ∗) ∈ A(Cn, n).

• We claim that (λ∗, µ∗) /∈ A(Cn, n). This means that there exist x ≥ 0, x∗ >
0, c ∈ C for which

c(x+ 1)x∗ > λ∗c(x∗)x∗ + µ∗c(x)x

. However, moving everything to the left hand side yields a function which is
continuous in (λ, µ). Since for all (λn, µn) we have that

c(x+ 1)x∗ − λnc(x∗)x∗ − µnc(x)x ≤ 0
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it cannot converge to a negative value. Thus (λ∗, µ∗) /∈ A(Cn, n) and by
definition γ(Cn, n) ≤ λ∗

1−µ∗ .

After all this, we have proven that under any circumstance we can either make a
game with arbitrarily high POA or find a tight bound by smoothness argument.

The proof is not over yet. It remains to show that the same results hold for
uncountable C. This is done by a standard technique known as a density argument,
which proves that we can approximate any result in the real number domain by a
sufficiently close rational analogue (since the rationals are ’dense’ within the reals).
A rough description of the rest of the proof would be that using the countability of
rational numbers, we construct rational approximations of cost functions and show
that the equilibria and POA change by an arbitrarily small amount.





Chapter 4

Composable and Efficient
Mechanisms

4.1 Introduction

In the previous chapter we discussed a method of proving POA bounds which
has great theoretical applications for studying games, is often natural to use and
extends to various more permissive equilibrium concepts among other properties it
also has. In this chapter we will follow a different approach along the same path.
We will build upon our definition of smoothness and refine it, yielding the notion of
smooth mechanisms.

Our goal this time is not to study the properties of games, but to design them.
Smooth Mechanisms, introduced and proven to be useful by Vasilis Syrgkanis and
Eva Tardos in [ST13] are a class of mechanisms with similar properties as smooth
games but which are also quantifiably efficient when run in parallel or in sequence.
This is of great importance to the effective implementation of mechanism in society,
since the same mechanisms are used by players at the same time in a variety of
settings. Imagine having many different buyers and sellers on eBay competing for
the best prices or having multiple Search Engines wanting to post the most profitable
adwords.

While each of these settings when studied in isolation has many well studied
mechanisms with reasonable performance guarantees, the efficiency of the overall
market is not entirely clear. One solution, which has its merits from a theoretical
standpoint, would be to implement a centralized mechanism that coordinates users.
In practice however, this is impossible and we are better off designing simple auctions
users will be able to undestand.

To state the goal of this chapter very succinctly, we will try to define local
properties of mechanisms which guarantee efficiency in a market setting where the
same mechanism is used by the same agents for a variety of different purposes.

49
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4.2 Smooth Mechanism Design Setting

4.2.1 Mechanism Design Setting

Before we begin, it will be useful to formalize the notion of mechanism for our
setting. We will try to adapt traditional mechanism design notation conventions
to facilitate writing expressions which include multiple mechanisms with the same
participants. Moreover, we will assume that our mechanisms are quasilinear in
money and players are risk neutral.

We begin by restating the mechanism design setting. A mechanism design setting
consists of a set of players n, a set of outcomes X ⊆ ×Xi where Xi is the set of
allocations for player i. To complete the picture, each player also has a valuation
vi : Xi → R+. We use Vi to denote the set of possible valuations for player i. Since
we will be discussing auctions, we will consider users with quasilinear preferences
with payments. For player i, given an allocation xi ∈ Xi and a payment pi we have
utility:

uvii (xi, pi) = vi(xi)− pi (4.1)

You may have noticed that allocation space can be any subset of the product space
of individual allocations. This may seem counterintuitive at first, but is actually
quite general, in a similar way that the correlated equilibrium is a subset of the
product space but superset of the mixed Nash equilibrium. As such, this formulation
can handle a wide variety of auction settings which may contain externalities or
cooperation between players. Just to give a few examples, this framework can easily
handle the combinatorial auction where Xi is the power set of items sold and X does
not contain allocations were an item is sold more than once. Combinatorial Public
Projects were X〉 is the power set of projects and X is the subset of the product
space where each coordinate is the same. Position Auctions where Xi is the set of
positions each player can attain and X is a subset where no two players occupy the
same position. Using this subset of product structure for our allocation space also
gives us an easy way to argue about the induced mechanism and valuation for player
i, when many mechanisms run in parallel. As the proofs in the following sections
will show, this is the reason we can exploit locally good properties of mechanisms
to infer good global performance.

There is no need to use the same construction of the valuation space, which is
V = ×Vi. If we want to show externalities or shared outcomes between players, we
can choose specific vi’s and exploit the structure of the allocation space. Having
both is just redundant.

Given an allocation X and a valuation space V = ×Vi we have mechanism
M = (A, X, P ). Here A = ×Ai is the set of actions player i has (actions are
performed independently and simultaneously), X : A→ X is the allocation function
and P : X → Rn is the payment function. Each player gains some items according
to his action and the allocation rule and pays a certain price.

Mechanisms we will study will also contain an extra (mostly technical) caveat.
We will give players the opportunity to opt out of the mechanisms and gain zero
utility. This will only be useful when for proving certain extension theorems were we
will need to guarantee that no player will get negative utility because of incomplete
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information or randomness.

4.2.2 The Composition Framework

We are finally getting into the more interesting part of this chapter. As we have
already discussed, we need a framework which allows us to study mechanisms that
run simultaneously or sequentially as is more common in practice, instead of in
isolation.

To be consistent we will assume n players and m mechanisms and we will use
superscripts to show the mechanisms and subscripts to show the player. We will
also favor using j when indexing mechanisms and i for players. As before, each
mechanism isMj = (Aj, Xj, P j) whereAj = ×Aji , Xj : Aj → X j and P j : Aj → Rn

+

In order to somehow link the mechanisms together, the valuation space Vi =
×jVji of each player contains functions of the form vi : ×jX j

i → R+. The individual
allocation across all mechanisms is still denoted by Xi. The players continue to have
quasilinear utilities in this setting. The generalization is quite natural: using vectors
to group allocations and payments from all mechanisms we have xi = (x1i ,. . .xmi )
and pi = (p1i ,. . . , pmi ):

uvii (xi) = vi(xi)−
m∑
j=1

pii
j (4.2)

We now need to show how the player’s actions are composed. We will study
two types of composition: simultaneous and sequential. In the case of simultaneous
composition, each player i plays on all mechanisms at the same time, using action
aji on each mechanism j. In the case of sequential compositions we still use aji for
actions but if index j signifies the sequence of the mechanisms we also have that
aji = aji (h

j) where hj is the history of observed actions (and possibly valuations)
that have been revealed until mechanism j.

Putting everything together, simultaneous composition can be viewed as one
global mechanism M = (A, X, P ) where Ai = ×jA)ij, X(a) = (Xj(aj))j and
P (a) =

∑m
j=1 P

j(aj). Sequential mechanisms are somewhat more complicated and
can be represented as a game in extensive form or as a complicated mechanism were
actions are functions of the previously observed history of play. We will not delve
too deep into this definition, as it is only marginally used in one proof which is not
too complicated anyway.

As always, our efficiency measure of an action profile a will be the social welfare

SW v(a) =
∑
i

vi(Xi(a) (4.3)

For every valuation v ∈ ×Vi there exists an optimal allocation x∗(v) (but not nec-
essarily an accompanying action profile) that maximizes the social welfare over all
allocations x ∈ X . For this allocation we have

OPT (v) =
∑
i

vi(x
∗
i (v)) (4.4)

As usual, we efficiency (or lack thereof) of a mechanism will be measured using
the Price of Anarchy.
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4.2.3 Valuations

One important but complicated and somewhat ’dry’ topic concerning mecha-
nisms is the user’s valuations. As is common when studying any type of auction
(the mechanisms we will focus on), we consider valuations that are complement free
across mechanisms. The reason being that having complements amongst allocation
or externalities between users makes inferring good global behavior from local prop-
erties impossible. Since most of our individual mechanisms will usually be single
item auctions complement free can be easily captured by additive, subadditive or
submodular valuations. In order to generalize our setting, we will extend these no-
tion to classes of valuations where individual mechanisms have arbitrary allocation
spaces and no assumptions will be made on the per mechanism valuations of each
player.

Each player (the index i will be dropped because we will only argue about one
arbitrary player) has a valuation of the form v : X → R+ where X = ×X j. Notice
this is not a subset of a product space, since mechanisms are completely independent
and linked together only by the players’ valuations.

Every valuations considered will be monotone. This means v(S) ≤ v(T ) for any
S ⊆ T , or in other words, the more players get the happier they will be. Going back
to having only single item auctions as mechanisms, the holy grail of complement
free valuations is the subadditive valuation:

v(S1 ∪ S2) ≤ v(S1) + v(S2) (4.5)

For sets of items S1 and S2 acquired by the player across all mechanisms. Unfortu-
nately, not all extendability results hold under this condition.

In order to get around this issue we will design some valuations which are gen-
eral enough, are a subset of subadditive valuations across mechanisms and leave few
assumptions about the individual per mechanism valuations. The first such valua-
tion is the fractionally subadditive, which is a variation on the original fractionally
subadditive valuation introduced by Feige in [Fei09]

Definition 13 (Fractionally Subadditive). A valuation is fractionally subadditive
across mechanisms if

v(x) ≤
∑
l

alv(yl) (4.6)

whenever each coordinate xj is covered in the set of solutions yl, that is∑
l:xj=ylj

al ≥ 1

At first this definition may seem rather arcane. In essence, the solutions yl are
the backbone of our valuation. Using those we try to make a fractional cover of
any other outcome and then show that the valuation of that outcome is less than a
weighted additive valuation of the covering solution. Again, considering only single
item auctions, this definition is a subset of subadditive valuations.

A second important and much more useful set of valuation is the XOS valuation
introduced in [LLN01] and proven to be equivalent to fractionally subadditive by
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Feige in [Fei09]. Here we will use a modification of XOS because we have a vector
of outcomes across mechanisms. The equivalence between the two valuations still
holds however.

Definition 14 (XOS). A valuation is XOS if there exists a set L of additive valu-
ations vlj(xj) such that

v(x) = maxl∈L

m∑
j=1

vlj(xj) (4.7)

This time instead of choosing from a fractional set cover, we are picking the
additive valuation that maximizes the players gain for a given allocation. Again,
XOS valuations are a subset of subadditive.

Theorem 10. XOS ⊂ Subadditive

Proof. Let x be an allocation given to a player. Split this allocation into x1 + x2 =
x arbitrarily. From the definition of the XOS valuation, we have l ∈ L be the
maximizing additive valuation. Let l1, l2 ∈ L be the maximizing valuations for x1

and x2 accordingly. Now we have:

v(x) = maxl∈L

m∑
j=1

vlj(xj) (4.8)

≤ maxl∈L

m∑
j=1

vlj(x
1
j) +maxl∈L

m∑
j=1

vlj(x
2
j) (4.9)

= v(x1) + v(x2) (4.10)

Where the inequality holds by definition, because instead of choosing l1 and l2 we
could have chosen l and gotten an equality.

Again, XOS valuations are equivalent to fractionally subadditive but in most
cases in this chapter they will be much easier to use.

Now that we have the necessary valuation classes to show how players may
participate in multiple mechanisms, it’s time to move on to the main definition of
this chapter.

4.3 Smooth Mechanisms

We finally introduce the notion of a smooth mechanism, taking inspiration from
the work done by Roughgarden in the previous chapter and extending it to better
support players with quasilinear preferences especially in auction settings.

Definition 15 (Smooth Mechanism). A mechanism M is (λ, µ)-smooth if for any
valuation profile v ∈ ×Vi and for any action profile a there exists a randomized
action a∗i (v, ai) for each player such that:∑

i

uvii (a∗i , a−i) ≥ λOPT (v)− µ
∑
i

Pi(a) (4.11)
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for some λ, µ ≥ 0. We denote by uvii (a) the expected utility of a player if a is a
vector of randomized strategies. In general, boldface action will denote expectation.

One natural way of interpreting the smooth mechanism condition is as guaran-
teeing an approximate analog of market clearing prices.

Although appearing similar, this notion of smoothness differs significantly from
the Smooth Games studied in the previous chapter. There are two main differences.
First of all, there is no direct comparison between outcomes, as with the previous
chapter. Vaguely, OPT (v) could play the role of the optimal outcome and

∑
i Pi(a)

could be interpreted as having similar value to the players gain for action profile
a. To make this more concrete, we can transform our mechanism into a game
by adding one more player with no actions and utility

∑
i Pi(a). Now, an (λ, µ)-

smooth mechanism could be seen as a (λ, µ−1)-smooth game where the term −(µ−
1)
∑

i u
vi
i (a) is dropped in order to make the expression easier to use for quasilinear

preferences.
The biggest difference however, is that the players know the others valuation

and their own action when deviating. So, while Smooth Games required for us to
connect either two arbitrary outcomes or one arbitrary with the optimal, here we
only need to provide a randomized deviation that already knows the valuation and
previous action. This makes smooth mechanism quite a lot easier to use. Since we
are summing everything in the left hand side of the inequality (without affecting
OPT (v) or Pi(a)) we can focus on trying to maximize the gain of each player when
he already knows the others’ valuation. Then we can optimize in (λ, µ) to achieve
the best POA bound.

However, relying on the knowledge of one’s action for the randomized deviation
also limits the extension of POA to correlated equilibria, instead of coarse correlated
as normal smooth games. Intuitively, this is because we cannot use the smooth
mechanism hypothesis in the coarse correlated equilibrium setting, since players are
not signaled about their action. On the other hand, relying on your own previous
actions allows bounds to extend to sequential composition of mechanisms.

4.3.1 Price of Anarchy and Extension Theorems

4.3.2 Extension to general equilibria

Before moving on to composition, we need to show that smooth mechanisms have
low price of anarchy for a variety of equilibria when run in isolation. The proofs are
fairly similar to the ones in the previous chapter.

Theorem 11. If a mechanism is (λ, µ)-smooth and the players have the option to
withdraw (gaining 0 utility) then the expected cost at any correlated equilibrium of
the game is at least λ

max{1,µ} of the optimal social welfare

Proof. Let a be a correlated equilibrium over action profiles a ∈ A such that for any
player i and any strategy ai

Ea−i
[uvii (ai, a−i)] ≥ Ea−i

[uvii (a′i, a−i)|ai] (4.12)
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Plugging a∗(v, ai) for a′i we get:

Ea−i
[uvii (ai, a−i)] ≥ Ea−i

[uvii (a∗i (v, ai), a−i)|ai] (4.13)

Adding for all players, taking advantage of the smooth mechanism property and
taking expectations over ai we get:

Ea[
∑
i

uvii (a)] ≥ Ea[
∑
i

uvii (a∗i (v, ai), a−i)|ai] (4.14)

≥ λOPT (v)− µEa

∑
i

Pi(a) (4.15)

Using uvii (a) = vi(Xi(a))− Pi(a) we get:

Ea[
∑
i

vi(a)] ≥ λOPT (v)− (1− µ)
∑
i

EaPi(a) (4.16)

If µ ≤ 1 then Ea[
∑

i vi(XI(a))] ≥ OPT (v) and we are done. If µ > 1 and knowing
that players can withdraw, thus always have non negative utility vi(Xi(a)) ≥ Pi(a):

µEa[
∑
i

vi(Xi(a))] ≥ Ea[
∑
i

vi(a)] + (µ− 1)
∑
i

EaPi(a) (4.17)

≥ λOPT (v) (4.18)

Thus, we indeed have that the POA is at least λ
max{1,µ}

It is important to take note that this proof would not have been enough for coarse
correlated equilibria, however it obviously is enough for mixed Nash equilibria. In
a coarse correlated equilibrium, player i is not signaled about his strategy so he is
unable to deviate to a∗i . In an MNE he isn’t signaled either though. However, this
is not an issue because in an MNE the distribution of the other players’ actions is
independent of his own. Thus, our player can calculate every a∗i (v, ai) corresponding
to any of his actions, and then sample these deviations.

4.3.3 Extension to Incomplete Information

We now turn to the incomplete information setting. As we have showed before,
in the incomplete information setting instead of having the actual valuations be
common knowledge we have distributions over valuations. Each player has a dis-
tribution Fi ∼ Vi over his valuations which is independent and known to the other
players.

Just to recap, in the incomplete information setting a mechanism is still rep-
resented as M = (A, X, P ). The difference is the way actions are picked. Since
valuations are not known a priori, every player i has a function si : Vi → Ai. We
will calculate the POA of smooth mechanisms around the Bayes-Nash equilibrium:

∀ai ∈ Ai : Ev[uvii (s(v))] ≥ Ev[uvii (ai, s−i(v)−i)] (4.19)
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Given a strategy s : ×Vi → ×Ai, as before we will compare the social welfare

Ev[SW v(s(v))] (4.20)

with the optimal welfare

Ev[OPT (v)] (4.21)

We continue to prove that even in the incomplete information setting, smooth
mechanisms defined as in Definition 15 achieve (in expectation) the same fraction
of the optimal welfare as in the complete information setting, irrespective of the
distribution of valuations. We shall prove this result for pure Bayes-Nash equilibria,
but the proof can be generalized in a straightforward way up to mixed Bayes-Nash
equilibria.

Before we begin proving, we need to address one issue about the deviating strat-
egy of any player i: a∗i (v, ai). It depends on his action and the valuation of the other
players, which is not public knowledge in the incomplete information setting. To
surpass this difficulty, each player i will use random sampling to substitute knowing
valuations v−i and then come up with good deviations.

Theorem 12. If a mechanism is (λ, µ)-smooth and players have the possibility to
withdraw, then for any set of independent distribution Fi over valuations, every
mixed Bayes-Nash equilibrium s of the game has expected social welfare at least

λ
max{1,µ} of the expected optimal social welfare.

Proof. We will prove this result around the pure Bayes-Nash equilibrium s(v). In
order to prove this, we need to discover a way for our players to use the random-
ized deviation given in the definition of smooth mechanisms, plug those deviations
into the Bayes-Nash equilibrium hypothesis and try to rearrange terms to suit our
purpose.

We will focus on the randomized deviation of arbitrary player i. When player
i needs to submit his action, he only knows about his own valuation vi, his own
action si(vi), the distribution of the other players’ valuations and the Bayes-Nash
equilibrium s(·). To get around the lack of knowledge of the other players’ valuations
he performs random sampling w ∼ ×iFi on all valuation profiles, including his ’own’.
Then he devises a randomized action

a∗i ((vi, w−i), si(wi)) (4.22)

Essentially the player uses his best guess of the other players valuation combined
with his own actual valuation, but instead of using his actual action he deviates
around his action in the sampled equilibrium s(w). This method is reminiscent of
a bluffing technique introduced in [Syr12] for sequential auctions. It is important
to note that there is no actual bluffing going on here as players only submit one
action. However, the randomized deviation does depend on wi which is speculative
information.
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From the definition of the Bayes-Nash equilibrium deviating instead of playing
si(vi) is not profitable:

Ev[uvii (s(v))] ≥ Ev,w[uvii (a∗i ((vi, w−i), si(wi)), s−i(v−i))] (4.23)

= Ev,w[uwi
i (a∗i ((wi, w−i), si(vi)), s−i(v−i))] (4.24)

= Ev,w[uwi
i (a∗i (w, si(vi)), s−i(v−i))] (4.25)

The first inequality comes from the definition of the Bayes-Nash equilibrium. The
second and third equalities hold because the distributions of vi and wi are the same,
thus we can substitute them in this case.

Summing over all players:

Ev[
∑
i

uvii (s(v))] ≥ Ev,w[
∑
i

uwi
i (a∗i (w, si(vi)), s−i(v−i))] (4.26)

≥ Ev,w[λOPT (w)− µ
∑
i

Pi(s(v))] (4.27)

≥ λEw[OPT (w)]− µEv[
∑
i

Pi(s(v))] (4.28)

≥ λEv[OPT (v)]− µEv[
∑
i

Pi(s(v))] (4.29)

In (4.27) we have used the definition of the smooth mechanism. We get OPT (w)
instead of OPT (v) since we are calculating the utilities around w. Finally, in (4.29)
we use linearity of expectation to separate terms in a more useful form. The rest
of the proof goes exactly as in the complete information case: if µ ≤ 1 we are
finished, if µ > 1 we use that players can withdraw and get the desired fraction of
the expected optimal social welfare.

Having established good POA bounds for both the complete and incomplete in-
formation setting, without assuming anything about our valuations (we might need
a specific valuation to prove smoothness but these result do not impose new restric-
tions) we are ready to move on to quantifying the efficiency of such mechanisms
when run in parallel or in sequence.

4.4 Compositionality of Smooth Mechanisms

4.4.1 Simultaneous Composition

As we briefly discussed during our revision of valuations, we do need specific
valuation profiles across mechanism in order to guarantee good behaviour under
composition. We will begin by proving POA bounds of simultaneous composition of
mechanisms. The following proof also holds for fractionally subadditive valuations,
but will be proven for XOS because it is more natural. It is important to note that
the following proof is not by itself enough to prove POA bounds for general subaddi-
tive valuations. There may be some connection between simultaneous composition
and subadditivity, but if there is it will have different bounds that those proven here.
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Theorem 13. Consider the simultaneous composition of m mechanisms. Suppose
that each mechanism M j is (λ, µ)-smooth when the mechanism restricted valuations
come from a class (Vji )i∈[n]. If the valuation vi : Xi → R+ of each player across
mechanisms is fractionally subadditive, and can be expressed as an XOS valuation
by component valuations vkij ∈ V

j
i then the global mechanism is also (λ, µ)-smooth.

Proof. The main argument behind this proof is best described in the following steps:

• Consider the optimal outcome for any given XOS valuation

• Using the XOS valuation definition, obtain purely additive valuations that are
easier to use. Have one such valuation for the optimal outcome and one for
the deviation.

• Rewrite these 2 additive valuations as the induced per mechanism valuations,
fixing one mechanism and considering all the others ’constant’.

• Use the smooth mechanism definition to connect per mechanism deviations to
the optimal social welfare.

• Add over all players and all mechanism and perturb the sum to reach the
desired inequality

More specifically, assume a valuation profile v and let x∗ ∈ X be its accompany-
ing allocation vector which optimizes social welfare. From the XOS definition, let
v∗ij be the additive valuation chosen for x∗, indexed by player and mechanism. By
definition, we have that for any xi ∈ Xi vi(xi) ≥

∑
j v
∗
ij(x

∗
ij). Note we are summing

over mechanisms. To complete our setting, assume a is the action profile submitted
by the players.

Using this information, we need to show how players will devise a randomized
deviation ai(v, ai) such that:∑

i

uvii (a∗i , a−i) ≥ λ
∑
i

vi(x
∗
i )− µ

∑
i

Pi(a) (4.30)

To define such a deviation, we focus on arbitrary player i and mechanism M j

and devise the best randomized deviation locally using the smoothness property.
For mechanism M j each player has valuation v∗ij on X j

i and let v∗j be the valuation
profile for this mechanism. We have assumed that mechanism M j is smooth for
valuations coming from Vji . This is not too strong of an assumption, since Vji
only contains additive valuations. For most purposes (regarding auctions at least)
mechanisms are usually smooth in this case. As a result of this, players can deviate
to a∗ij = a∗ij(v

∗
j , a

j
i ) used by the smoothness of M j. By the smoothness property we

have: ∑
i

u
v∗ij
ij ≥ λOPT (v∗j )− µ

∑
i

Pi(a
j
i ) (4.31)

= λ
∑
i

(v∗ij(x
∗
ij))− µ

∑
i

Pi(a
j
i ) (4.32)
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Where the last equality comes from the definition of the XOS valuation. This is one
instance where the proof about subadditive valuations would differ, since we cannot
make this claim in the general case.

To produce the deviation necessary for the global mechanism, we bundle to-
gether all the individual, mechanism-wise deviations. Thus, for player i his global
randomized deviation is a∗ia

∗
i (v, ai) where

(a∗i )j = a∗ij(v
∗
j , a

j
i ) (4.33)

consisting of the independent randomized deviation around the induced ’optimal’
XOS valuation from each mechanism j as previously described. For each action a∗i
in the support of a∗i we denote Xi(a

∗
i , a−i) the allocation vector of this particular

deviation and action profile. By the XOS property and the induced optimal additive
valuation v∗i we have that:

vi(Xi(a
∗
i , a−i)) ≥

∑
j

v∗ij(X
j
i (a
∗
i , a−i)) (4.34)

Summing over mechanisms, the expected utility of player i performing this random-
ized deviation is:

uvii (a∗i , a−i) ≥ Ea∗i

∑
j

[v∗ij(X
j
i (a
∗
ij, a

j
−i)− P

j
i (a∗ij, a

j
−i)] (4.35)

Adding over all players, we have:∑
i

uvii (a∗i , a−i) ≥
∑
i,j

Ea∗i
[v∗ij(X

j
i (a
∗
ij, a

j
−i)− P

j
i (a∗ij, a

j
−i)] (4.36)

Here we notice that the right hand side sum (over players, fixing one arbitrary
mechanism) can be rewritten as:∑

i

Ea∗i
[v∗ij(X

j
i (a
∗
ij, a

j
−i)− P

j
i (a∗ij, a

j
−i)] =

∑
i

Ea∗i
[u
vj
ij (a∗ij, a

j
−i)] (4.37)

We have used quasi-linearity and grouped terms to get the utility of all players par-
ticipating in mechanism j and deviating from action profile aj according to valuation
v∗ij. Combining (4.36) and (4.37) and using the smoothness of each mechanismMj:∑

i

uvii (a∗i , a−i) ≥
∑
i,j

Ea∗i
[u
vj
ij (a∗ij, a

j
−i)] (4.38)

≥
∑
j

(λOPT (vj)− µ
∑
i

P j
i (aj)) (4.39)

= λ
∑
ij

v∗ij(x
∗
ij)− µ

∑
ij

P j
i (aj) (4.40)

= λ
∑
i

v∗i (x
∗
i )− µ

∑
i

Pi(a) (4.41)
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Where we used the definition of the XOS valuation twice. Once in the first inequal-
ity using that the starred versions of allocations and component valuations form
the optimal social welfare and once in the last equality: v∗i (x

∗
i ) =

∑
j v
∗
ij(x

∗
ij) by

definition of component valuations.
We have finally produced a randomized deviation and proven that the overall

mechanism is also (λ, µ)-smooth

This is a significant result because traditionally, even for restricted valuations,
producing good mechanisms when multiple goods where involved is exceedingly
tricky. As a side note, truthfulness is not preserved under simultaneous composition
(we will present one example shortly). However, having such an elegant way of
extending POA bounds, especially when truthful mechanisms perform poorly at the
same tasks, surpasses this limitation.

4.4.2 Sequential Composition

There are many scenarios when mechanisms may not be run in parallel but in
sequence. Actually, most of them are run this way. Imagine a network trying to
allocate resources on the fly or a company trying to bid on public projects while
securing a loan. Also when participating in any high risk situation (buying and
selling stocks for example) players do may not want to simultaneously wager on
outcomes. They might prefer to play slower and have more control over their actions.

Unfortunately, since we required to define a specific class of complement free
valuation in order to guarantee decent behavior in simultaneous composition, one
can image how difficult it is to do the same for sequential. In the sequential case we
need to account for signaling and leaking of information as time goes on and more
mechanisms are played. In this regard, going from local smoothness to smoothness
in parallel does not seem that complicated, since players actually want to do as
good as they can in each mechanism. Because there is no sharing of information,
locally good behavior leads to global smoothness and i’ts a happy coincidence that
the (λ, µ) remain the same.

However, as [LST12, Syr12] have shown, sequential composition leads to terrible
POA bounds even for auctions that are tame and truthful in the isolated case. To
counter this, we will be able to prove sequential composition only under an extremely
limiting valuation set.

Definition 16 (Unit-demand). A valuation vi is unit demand across m mechanisms
if for xi ∈ ×jX j

i we have:

vi(xi) = max
j∈[m]

vji (x
j
i ) (4.42)

Where vji are per mechanism valuations.

Or in other words, the overall valuation of an outcome is equal to it’s most
valuable component, as dictated by mechanism-wise valuations. Notice that as in
the case of simultaneous composition, we have not made any assumptions about
the valuation of each mechanism. Moreover, unit-demand valuations are a subset
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of XOS. The proof is very simple, and relies on viewing unit-demand valuations as
XOS where all elements except one of each additive component valuation is zero.

The reason why this valuation was chosen is because essentially players only need
to perform well once, at their ’best’ mechanism. This makes smoothness arguments
where players only make one good deviation work.

Something to take note is that we in proving sequential composition we cannot
take independent randomized deviations as before. As the mechanism unfolds, each
new action and deviation will depend on the previously observer history (even though
our valuation is restrictive). The statement of the theorem and it’s proof rely to a
certain extent on extensive form games, however our limited explanation provided
in the introduction will suffice to graps the essence of the proof, which is the leaking
of information and choosing the right point to deviate. As before, truthfulness is
sacrificed.

Theorem 14. Consider the sequential composition of m, (λ, µ)-smooth mechanisms
defined on valuation spaces Vji . If each valuation vi : Xi → R+ is of the form
vi(xi) = maxj∈[m] v

j
i (x

j
i ), with vji ∈ V

j
i then the global mechanism is also (λ, µ +

1)-smooth, regardless of what information was released to the players during the
sequential rounds

Proof. Consider a valuation profile v and an action profile a of the (complete) se-
quential composition. Our goal is to design randomized deviations for each player
to prove overall smoothness. Keep in mind that this time we do not have just
a∗ij = a∗ij(v, a

j
i ), since this formulation misses the information released throughout

the mechanisms. Instead, we have a∗ij = a∗ij(h
j
i ) where hji encapsulates the history

of play up to mechanism Mj.
As we did with simultaneous composition, we start arguing about the optimal

outcome. Let x∗ be the optimal allocation for valuation profile v. Given unit demand
valuations for each player i of the form:

vi(xi) = max
j∈[m]

vji (x
j
i ) (4.43)

where vji ∈ V
j
i . To denote the actual maximizing valuation and mechanism pair

we will use j∗i = argmaxj∈[m]v
j
i (x
∗
ij), in other words vi(xi) = v

j∗i
i (xij∗i ). So for each

player, j∗i represents his most valued individual outcome, disregarding payments.
To prove the theorem, we will construct a randomized deviation a∗i (v, ai) for each

player such that:∑
i

uvii (a∗i (v, ai), a−i) ≥ λ
∑
i

vi(x
∗
i )− (1 + µ)

∑
i

Pi(a) (4.44)

We will focus our attention on player i. His randomized deviation will be a∗i =
a∗i (v, ai) = (a∗i (h

j
i , v, ai)) where he will play exactly as ai until mechanism j = j∗i

where he will play a randomized strategy a∗ij depending on the mechanismMj∗i
and

the observer actions. As we see, the deviations is a function of the observed history,
which goes against the rules of smooth mechanisms where they only depend on v
and ai. Knowing that we can convert a sequential mechanism from an extensive
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from game to a normal form game with much more complicated actions, in order
to keep the notation simple and expose the spirit of the proof we will slightly abuse
our rules.

Continuing, the utility of player i is at least:

uvii (ai, a−i) ≥ Ea∗ij [v
j
i (X

j
i (a
∗
ij, a

j
−i(h

j
−i)))− P

j
i (a∗ij, a

j
−i(h

j
−i))]− P

j−
i (a) (4.45)

≥ Ea∗ij [v
j
i (X

j
i (a
∗
ij, a

j
−i(h

j
−i)))− P

j
i (a∗ij, a

j
−i(h

j
−i))]− Pi(a) (4.46)

where P j−
i (a) is the price paid by the player to mechanisms beforeMj and aj−i(h

j
−i)

is the action profile submitted by the rest of the players at mechanism j when
they played action profile a up to that mechanism, producing history hji . Although
the previous inequality seems confusing, it holds due to the following argument:
the utility of player i deviating to a∗ij is whatever he gains up to mechanism j plus
whatever he gains after that. Since the second part can be made equal to 0, obviously
his gain up to j is at least his expected gain at j minus the total payment.

Summing over all players and mechanisms, we get:∑
i

uvii (a∗i , a−i) ≥
∑
j

∑
i:j∗i =j

Ea∗ij [v
j
i (X

j
i (a
∗
ij, a

j
−i(h

j
−i)))−P

j
i (a∗ij, a

j
−i(h

j
−i))]−

∑
i

Pi(a)

(4.47)
Note that: ∑

i:j∗i =j

Ea∗ij [v
j
i (X

j
i (a
∗
ij, a

j
−i(h

j
−i)))− P

j
i (a∗ij, a

j
−i(h

j
−i))] (4.48)

is exactly the utility gained by each player that deviated to a∗ij at Mj, while the

remaining players play actions a−i(h
j
−i) and all players with j = j∗i have valuations

vji : X j
i → R+ and the rest have 0 valuation for any outcome. Also note that the

history of play remains hji , caused by the original action profile a.
By the smoothness of mechanism Mj, for the induced valuation profile (where

only players with j∗i = j have nonzero value) there must exist a strategy a∗ij =

a∗ij(v, a
j
i (h

j
i )) such that:∑

i

uji (a
∗
ij, a

j
−i(h

j
−i)) =

∑
i:j∗i =j

Ea∗ij [v
j
i (X

j
i (a
∗
ij, a

j
−i(h

j
−i)))− P

j
i (a∗ij, a

j
−i(h

j
−i))] (4.49)

≥ λOPT (vj)− µ
∑
i

P j
i (aj−i(h

j
−i)) (4.50)

≥ λ
∑
i:j∗i =j

vji (x
∗
ij)− µ

∑
i

P j
i (aj−i(h

j
−i)) (4.51)

since the value of the optimal outcome is at least the value of outcome x∗j . Again,

the payment is of the correct form, since it only depends on history hji caused by
strategies a, before the deviation. Plugging this result back to (4.47), we get:∑

i

uvii (a∗i , a−i) ≥
∑
j

[λ
∑
i:j∗i =j

vji (x
∗
ij)− µ

∑
i

P j
i (aj−i(h

j
−i))]− Pi(a) (4.52)

≥ λOPT (v)− (1 + µ)
∑
i

Pi(a) (4.53)
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And we finally reach the desired result.

The main point of this proof is how the specific qualities of the unit-demand
valuation are put into play. Basically, the two most interesting techniques are only
analyzing the utility of each player up until he deviates (without affecting the rest
of the game) and still obtaining a significant portion of the optimal outcome, both
of which would have been impossible with an XOS valuation.

4.5 Case Study: Auctions

4.5.1 First Price Auction

We will now attempt to use the tools devised in this chapter to study our first
type of mechanism, the first price auction.

Consider a first price auction with n players with arbitrary valuation profiles v ∈
×Vi, submitting bids bi. Of course, the optimal social welfare is OPT (v) = maxi vi
and total price paid by the players maxi bi. Given bids (actions) b, we would need
to produce unilateral deviation b∗i = b∗i (v, bi) to optimize the following:

∑
i

uvii (b∗i , b−i) = λmax
i
vi − µmax

i
bi (4.54)

Although the valuations are public information, the deviating players only know
their own bid. As such, we cannot aggressively optimize because we need to take
into account scenarios where players may bid above their valuation.

Having all players deviate less that their value guarantees the left hand side being
non negative. This covers most paradoxical bids, but is not enough when the players
actually bid intelligently i.e. maxi vi ≥ smaxi bi. Moreover, we can craft bids where
any player but argmaxivi cannot have positive utility. This can be done by having
the second highest player bid above his valuation and the top player bidding just
over that. Thus we can only rely on the top valued player to maximize the sum of
utilities in the worst case. So we can safely assume all other players deviate to 0.

Our first candidate deviation will be having the top player (let’s call him h) bid
half his valuation bh = vh

2
. Now, if vh ≥ 2bh he will get uvhh = vh

2
. If not, he will get

0. By setting λ = 1
2

and µ = 1, if vh ≥ 2bh we have λvh−µbh ≤ vh
2

else λvh−µbh ≤ 0.
Thus the first price auction is (1

2
, 1)-smooth, having a POA of 2.

However, we can do better. To maximize his utility, player h can submit a
randomized bid, drawn from the distribution

f(x) =
1

vh − x
(4.55)
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and support [0, (1− 1
e
)vh]. In this case, his utility is

uvii (bi, b−i) ≥
∫ (1− 1

e
)vh

maxi6=h bi

(vh − x)
1

vh − x
dx (4.56)

≥
∫ (1− 1

e
)vh

maxi6=h bi

dx (4.57)

≥ (1− 1

e
)vh −max

i 6=h
bi (4.58)

showing that the first price auction is indeed (1 − 1
e
, 1)-smooth with a POA of e

e−1
which is a tighter upper bound than 2. This is not that impressive on its own,
but it’s extension to m simultaneous first price auctions with XOS valuations is.
Although this bound had been already proven in [Syr12], this construction provides
more direct insight into the role of the valuation and player strategies.

4.5.2 Second Price Auction

Despite having several very nice properties independently, like being truthful and
optimal, the second price auction is not smooth. The main culprit for this is the
loose connection between the payments and value of each outcome.

To show that a mechanism is not smooth, we need to find valuations v ∈ ×Vi and
bid profile b such that the smoothness condition is not achieved for any randomized
bid b∗i = b∗i (v, bi).

Assume a 2 player second price auction and take any valuation v. Without loss
of generality, assume v1 > v2. As our bid profile, we take b1 = v2 and b2 = v1. The
utilities of the players are u1 = 0 and u2 = v2 − v2 = 0. As a result, the right hand
side of the smoothness condition is:

λv1 − µv2 (4.59)

Let’s now try to maximize each players utility through deviation. Since b2 = v1,
player 1 cannot achieve positive utility. Also, because b1 = v2, player 2 neither
player 2 can. So we have:

0 ≥ λv1 − µv2 ⇔ (4.60)

v2
v1
≥ λ

µ
(4.61)

This cannot hold for all v1, v2 and a specific pair of λ, µ. So, the second price auction
is not a smooth game.

It is also somewhat interesting to see that the restriction of the randomized
deviation not to depend on b was key in this proof, although it did not matter at all
in proving the first price auction were smooth. It did however indirectly affect the
smoothness constrains (λ, µ). However, having deviations independent of b is what
makes these POA bounds extend, by forbiding from exploiting the full information
PNE structure too much.
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The importance of this restriction becomes readily apparent when considering se-
quential composition of second price auction with unit-demand valuations. Remem-
ber that sequential first price auctions with the same valuations are (1− 1

ε
, 2)-smooth

by theorem 14. The following construction is from [LST12].

4.5.2.1 Arbitrarily High POA in Sequential Second Price Auctions with
Unit-Demand Valuations

Assume a sequential second price auction with unit-demand valuations of 4 items
and 4 players. We will denote items by A1, B1, A∗, B∗ auctioned in that order and
players by valuations v1, va, vb, vc. Their valuations are:

• v1(A1) = 1− ε and v1(B1) = δ

• va(A∗) = 1

• vb(A∗) = vb(B∗) = 2

• vc(A∗) = vc(B∗) = 2

Any value not accounted for is 0. We begin by focusing our attention to the last two
items, A∗ and B∗. Here we have 2 subgame perfect equilibria. In the first, denoted
Spe1, player b bids 1 + ε and 0 and c bids 0 and ε, gaining utilities 1 and 2 each.
The second, Spe2, is symmetrical by swapping b for c, gaining 2 and 1 this time.
Remember that vb prefers Spe2 and vc prefers Spe1.

We will construct an Spe which exhibits high POA.

• If players b or c win auction A1 at 0 price, then Spe2 will be used.

• If player 1 wins auction A1 then Spe1 will be implemented.

• If player 1 loses auction A1 but sets a positive price then if either b or c win
B1 Spe2 is implemented else Spe1

To sum up, player b wants to win A1 at 0 price, or let player c win the first auction
and then win B1 to secure outcome Spe2. On the other hand, player c wants either
player 1 to win A1 or player 1 to win B1. Thus, player c does not have any incentive
to bid on either A1 or B1.

We are left with players 1 and b. If player b wins A1, then at B1 he has utility
2 if he wins and 1 if he loses. Thus, he bids 1 at B1 and beats player 1 who bids
at most δ. Knowing he has utility 1 − ε at B1, player b can bid 1 at A1. However,
player 1 knows he can’t win B1, thus bids nothing on A1.

So we are end up with the following equilibrium: only player b bids 1 on A1,
player 1 takes B1 for free and then Spe2 is played. This might be obtuse, but no
player can win by deviating. Keep in mind the only payments happen at auctions
A∗ and B∗.

Now suppose that instead of having just A1 and B1 we have n players and
corresponding Ai, Bi for each one, with the same valuations as player 1 had for
A1, B1. For each of these pairs of auctions, we can keep the previous rules, meaning
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Spe2 will happen only if player b plays ’correctly’ on n auctions, else Spe1 will be
implemented. Since there are no payments to accumulate and c does not have new
incentive to disturb b’s plan, since valuations are unit demand, we have achieved
an equilibrium where n pairs of auctions go as described and Spe2 concludes the
mechanism.

The social welfare of our bad equilibrium is nδ + 4, where as the value of the
optimal outcome is (1 − ε)n + 4, leading to a POA of (1−ε)n+4

nδ+4
which can be made

arbitrarily high.

4.6 Weakly Smooth Mechanisms

All the inefficiencies of the second price auction we studied were caused by play-
ers bidding, in one way or another, above their valuation. When proving why the
second price auction was not a smooth mechanism, recall that one player made a
blatantly high bid, which at best could get him 0 utility. In the case of sequen-
tial composition, overbidding was rampant but more subtle: player b signaled his
preference, by submitting a high bid on an item he didn’t specifically need.

Weakly smooth mechanisms attempt to address this issue, by disallowing over-
bidding, after having precisely defined it. In single price auctions overbidding is eas-
ily identified: players bid more than the items value. In more complicated settings
where the connection between reported bids, valuations and payments is less direct
overbidding needs to be defined. The definition used generalizes no-overbidding as-
sumptions from [BR11, CKKK11, CKS08]. We start of by defining willingness to
pay.

Definition 17 (Willingness-to-pay). Given a mechanism (A, X, P ) a players max-
imum willingness-to-pay for an allocation xi is when using strategy ai is defined as
the maximum he could ever pay conditional on allocation xi:

Bi(ai, xi) = max
a−i:Xi(a)=xi

Pi(a) (4.62)

This is the most a player could pay for a combination ai, xi (as if the other
players conspired against him). Based on that, we can move on to no-overbidding.

Definition 18 (No-overbidding). A randomized action profile a satisfies the no-
overbidding assumption if:

Ea [Bi(ai, Xi(a))] ≤ Ea [vi(Xi(ai))] (4.63)

The meaning of this definition is obvious: no one can expect to pay more than
what he expects to get.

Definition 19 (Weakly Smooth Mechanism). A mechanism is weakly (λ, µ1, µ2)-
smooth for λ, µ1, µ2 ≥ 0 if for any type profile v ∈ ×iVi and for any action profile a
there exists a randomized action a∗i (v, ai) for each player i, such that:∑

i

uvii (a∗i (v, ai), a−i) ≥ λOPT (v)− µ1

∑
i

Pi(a)− µ2

∑
i

Bi(ai, Xi(a)) (4.64)
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On it’s own this isn’t too interesting. For now we relaxed the smoothness condi-
tion and made sure there is a more direct connection between risky play and value
gained, avoiding pitfalls we encountered in second price auctions. Combined with
the no-overbidding assumption we reach interesting theorems.

Theorem 15. If a mechanism is weakly (λ, µ1, µ2)-smooth then any correlated equi-
librium in the full information setting and any mixed Bayes-Nash equilibrium in the
incomplete information setting that satisfies the no overbidding assumption achieves
efficiency at least λ

µ2+max{1,µ1} of the expected optimal

It’s proof is fairly similar to the one we already did for the complete information
setting. Moreover, sequential and simultaneous composition theorems also carry
over.

Theorem 16. Consider the mechanism defined by the sequential composition of
m mechanisms. Suppose that each mechanism j is weakly (λ, µ1, µ2)-smooth when
the mechanism restricted valuations of the players come from a class of valuations
(Vji )i∈[N ].

• If the valuation vi : Xi → R+ of each players across mechanisms is XOS with
component valuations vlij ∈ V

j
i then the global valuation is also (λ, µ1, µ2)-

smooth

• If the valuation vi : Xi → R+ of each players across mechanisms is unit-
demand with valuations from vij ∈ Vji then the global valuation is also (λ, µ1 +
1, µ2)-smooth

Proof. The proof is identical to the one for smooth mechanisms. In those proofs, our
technique was to express randomized deviations as a function of induced valuations,
add over mechanisms and players and try to salvage as much of the optimal as
possible while grouping payments together, to reach the correct form of a smoothness
condition.

For this proof we can do exactly the same, but we will also have to account
for the Bi(·, ·) terms. Fortunately, due to the independence of action spaces and
allocations across mechanisms, willingness-to-pay of a player is additive.

∑
j

Bj
i (a

j
i , x

j
i ) =

∑
j

max
aj−i:X

j
i (a

j
i )=x

j
i

P j
i (aj) (4.65)

= max
a−i:Xi(ai)=xi

∑
j

P j
i (aj) (4.66)

= max
a−i:Xi(ai)=xi

Pi(a) = Bi(ai, xi) (4.67)

Using this the new term can be handled exactly like the payments.

We will now show that the second price auction is (1, 0, 1)-smooth. Assume a
second price auction with n players. The highest player valuation is vh and the
highest bid submitted is b. The randomized deviation will be player h bidding vh
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and everybody else bidding 0. Only player h can have positive utility. The sum
of willingness-to-pay is b because players who did not submit the highest bid win
nothing, while the highest bidder might pay up to b. Plugging into the smoothness
condition we have:

uh(vh, a−h) ≥ vh − 0− b (4.68)

If vh < b then player h wins nothing and the right hand side is negative. Else, player
h has utility vh − b.

Thus, the second price auction is a smooth game and under the no overbidding
assumption has certain decent compositional properties. However, it’s POA is 1

2

which is worse than the first price auction’s e
e−1



Chapter 5

Lower Bounds through
Computational Complexity

5.1 Motivation

In this chapter we will try to derive lower bounds on the POA using techniques
from computational complexity, instead of arguing directly about the players actions
and strategic behavior. This foundations of this line of research have been laid by
Tim Roughgarden in [Rou14] and the main proofs shown in this chapter appear in
this paper.

Up to this point, all solution concepts to games were studied with no mention
of the computational aspects of the underlying process. We did this, despite several
important results of algorithmic game theory hinting that computing Nash equilibria
might even be intractable [CDT09, DGP09, EY10, HM10]. This may imply that
computing Nash equilibria can solve problems that have no efficient solution.

The POA connects the cost of the worst equilibrium of our solution concept with
the best optimal solution. This means that in some problems, easy to compute,
’tractable’ equilibria may be significantly suboptimal, especially if the underlying
optimization problem is intractable. With any luck, this can lead to lower bounds
on the POA, in a way similar to computing polynomial approximate solution to
hard problems. We will examine this relationship in two cases, starting off with
the relatively tame Congestion Game, following up on our analysis from previous
chapters and then setting the basics of multi-party communication protocols to
establish similar lower bound proofs for auctions.

5.2 Cost Minimization in Congestion Games

We start by a refresher on Congestion Games. We define a Congestion Game
by:

• A ground set of resources E

• A set of n players, each of them with action sets A1, . . . , An ∈ 2E
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• A cost function ce : Z+ → R+ for each resource, which is a function of the
number of players using it

For any given action profile a ∈ A1 × . . . × An, we define the load xe of resource
e ∈ E as the number of players using it. The cost to player i is defined as Ci(a) =∑

e∈ai ce(xe) and the total cost of an outcome:

C(a) =
n∑
i=1

∑
e∈ai

ce(xe) =
∑
e∈E

ce(xe)xe

As we have already mentioned, the intricacies of calculating the POA for congestion
games lies in the chosen set of C of cost functions, which has already been thoroughly
investigated by [ADG+06, CK05, Rou09] to name a few.

To find a lower POA bound, we first need to convert this game theoretic problem
in an optimization one. Let us restrict our analysis for polynomial cost functions
with nonnegative coefficients of degree d contained in the set Cd. There exist tight
lower bounds following an intricate construction from [ADG+06]. The optimization
problem derived will be called CostMinimization(d) or CM(d) for short: given a
description of a congestion games with cost functions in Cd, compute the cost of
the optimal outcome. Suppose the players strategies and the polynomial coefficients
are part of the input. This problem is known to be NP-complete by reduction from
3-Partition, proven by [MS12]. We will use this to show that there are no ’easy’ to
compute Nash equilibria with good POA.

Theorem 17. Fix any d ≥ 1.

1. There is a polynomial time reduction R from an NP-complete problem Π that
computes a parameter C∗ and maps ’yes’ and ’no’ of Π to instances of CM(d)
with cost at most C∗ and at least ρC∗ respectively.

2. NP 6= CoNP

Then the worst case pure POA in congestion games with cost function in Cd is at
least ρ.

The proof of this theorem relies on some simple propositions. The first, proven
by Rosenthal ([Ros73]) in 1973:

Proposition 17.1. Every Congestion Game has at least one PNE.

The second proposition is:

Proposition 17.2. Deciding whether an action profile of a Congestion Game is a
PNE can be solved in polynomial time.

Proof. Just remember that the action available for each player are part of the input.
Thus, given an action profile a we can go over all players one by one and try every
different action, stopping if we find one that decreases this player’s cost.

The last proposition is the simplest:
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Proposition 17.3. The problem of computing the cost of an action profile can be
solved in polynomial time.

Proof. Fairly obvious. We can go through each players action and compute the loads
for each resource in polynomial time. Then we need to evaluate the costs of each
resource (also done in polynomial time) and add everything together.

Armed with these propositions, we can go on and prove the theorem.

Proof of 17. Let α be the worst case POA of congestion games with functions in Cd
and consider the following nondeterministic protocol P for instances of the CM(d)
problem produced by the reduction R:

1. Given the Congestion Game produced by R, nondeterministically guess a PNE
a

2. Deterministically verify that it is indeed a PNE. This step is necessary, because
a nondeterministic Turing Machine tries to find the path that outputs ’yes’,
thus we need this filter

3. Compute the cost C of said PNE

4. Output ’yes’ if and only if C < ρC∗, where C∗ is the parameter given by the
reduction

By the definition of the POA the cost C is at most α the cost of the optimal outcome.
Thus, if α < ρ then our procedure outputs ’yes’ if there is an outcome with cost less
than C∗, since C ≤ αC∗ ≤ ρC∗. It outputs ’no’ whenever every outcome has cost
at least C∗. This reduces an problem in NP to finding equilibria for Congestion
Games, which is a PLS complete problem. Thus, as proven in [JPY88], this would
imply NP = coNP leading to a contradiction. So we have α ≤ ρ.

This theorem reduced proving POA lower bounds for Congestion Games to prov-
ing hardness of approximation results for the optimization problems CM(d). This
class of optimization problems (either for polynomials or for other cost functions)
has not been well studied. However, we present this method as it is interesting on
it’s own and provides insights for the more complicated case with auctions.

5.3 Welfare Maximization in Combinatorial Auc-

tions

In this section we will attempt to provide a similar lower bound POA argu-
ment, but for some types of combinatorial auctions. The main differences from
the previous analysis will be the super-polynomial number of player actions (which
do not need super-polynomial space to define as input for the optimization prob-
lem) and that lower bounds will come from communications and not computational
complexity, although it can be argued that problems which are difficult to prove in
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a communication setting have an underlying computationally hard computational
problem.

We begin by defining the combinatorial auction and it’s accompanying commu-
nication setting. A combinatorial auction setting is defined by:

• n bidders and a set U of m distinct items.

• Each bidder i has a valuation function vi : 2U → R+. We will consider
valuations that satisfy v(∅) = 0 and monotonicity v(S) ≤ v(T ) for S ⊆ T .

• We also assume that each valuation is integral and polynomial bounded from
above in m,n.

An allocation is a partition of items S1, . . . , Sn where each player gets his corre-
sponding set. The welfare of an allocation is

w(S1, . . . , Sn) =
n∑
i=1

vi(S)

The setting we have just described is not a complete auction, but only a welfare
maximization setting.

As we did in the previous chapter, the concrete mechanism we will study is the
simultaneous first price auction (or S1A for short). We will auction the m items one
by one by first price auctions at the same time. The only difference from the standard
first price auction is that we will restrict the bids to be integral and bounded from
above by Vmax, the highest valuations. As such, the action set of every player i is
Ai = 0, 1, . . . , Vmax

m. The utility of every player is quasilinear with his valuation
following the previous restrictions. In the case of a tie, we will give the item to the
lexicographically first player. Note that restricting our bids will not be detrimental,
since proving a lower bound on the POA of this auctions will obviously extend to
the general setting.

The underlying complexity problem is determining the allocation that maximizes
(at least approximately) the welfare. This is irrespective of the S1A and is a prop-
erty of the welfare maximization setting of the combinatorial auction. Instead of
measuring computational complexity (as we did with Congestion Games) we will
obtain hardness results from communication complexity.

We will use the standard communication complexity model in this setting, de-
fined in [NS06]. The goal is to have the players communicate in a standardized
fashion, in order to reach an good allocation they all agree on. This model is also
known as the Number in Hand (NIH) model, where everyone knows only his own
valuation vi. Communication between players can be done in many ways, but im-
age having a blackboard where everyone writes, one at a time, for everyone else to
see. Communication is defined with a protocol. There are two kinds of protocols
in this model. Deterministic protocols specify what players can say and in which
order, hoping that players will eventually reach an agreement over the allocation.
Nondeterministic protocols, which we will use, start off by having an oracle (which
knows all valuations and has infinite computational powers) write some advice on
the blackboard for the rest of the players to read. A protocol is deemed tractable
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if polynomial in both m and n. Remember, that the input for this setting is n2m

since players have a valuation for each subset of items.
Remember that the communication protocol in the end has to serve as proof of

the allocations good approximation of the optimal welfare. As a result, just having
the oracle write the optimal allocation is not enough because there is no way for
the players to verify it. Since players’ valuations contain exponential information, it
seems logical that an exponential amount of communication bits is needed as proof.
Just to give a taste of such theorems we present the following from [DNS10].

Theorem 18. Let δ > 0 be any arbitrarily small constant. For subadditive player
valuations and every n ≤ m0.5−δ, every nondeterministic communication protocol
that distinguishes between instances with optimal welfare at least 2n and instances
with optimal welfare at most n+ 1 requires an exponential amount (in m) of bits in
the worst case.

Before stating the theorem of S1A, we need to point out one more difference.
First of all, single items auctions may not have PNE’s, but by Nash’s theorem they
have at least one MNE. On top of that, since players have an exponential number
of actions (up to (Vmax+ 1)m we need a more compact way to handle equilibria. For
this purpose, we define approximate mixed Nash equilibria.

Definition 20 (Approximate MNE). A product distribution over outcomes σ =
×iσi is an ε-MNE if for each player i:

Es−i∼σ−i
[ui(s

′
i, s−i)] ≤ Es∼σ[ui(s)] + ε

for any s′i ∈ Si

We also define a t-uniform mixed strategy for player i as a distribution over at
most t actions from Ai.

We use the following important theorem, due to Lipton et al. [LMM03].

Theorem 19. Let G be a game with n players, each with at most N with all payoffs
between −Vmax and Vmax. For every ε > 0, G has a (12n2 ln(n2N))/ε2-uniform
eVmax-MNE.

All the tools are available to state the main theorem.

Theorem 20. Let V denote a set of valuation profiles with all valuations bounded
above by Vmax. Assume that any nondeterministic communication protocol that can
distinguish between v ∈ V having maximum welfare at least W ∗ or at most W ∗/ρ
requires communication exponential in m for sufficiently large m,n.

Then for every polynomial p(m,n) the worst case POA of p(m,n)−1Vmax-MNE
in S1A with valuation profiles in V is at least ρ.

Proof. Fix a polynomial p(n,m) and consider the following nondeterministic proto-
col P .

1. Using Lipton’s theorem, compute a t-uniform, p(n,m)−1Vmax-MNE x where
t = (12n2 ln(n2N))p(n,m)2 and N = (Vmax + 1)m. Notice t is polynomial in
m,n thus the oracle can broadcast this allocation in polynomial bits.
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2. Verify that x is indeed a p(n,m)−1Vmax-MNE. This is done offline by each
player, who then broadcasts that the accepts it.

3. Compute the expected welfare W of x. Again, each player broadcasts his
welfare using his private valuation.

4. Output ’yes’ if and only if W > W ∗/ρ

This is a well defined, nondeterministic protocol that uses communication polyno-
mial in m,n. As before, assuming the worst case POA is α we have that in the case
of α < ρ, the protocol outputs ’yes’ whenever there is an allocation with welfare
at least W ∗ and ’no’ whenever all allocations have welfare less that W ∗/ρ. This
contradicts the assumption of needing exponential communication for this task for
sufficiently large m. Thus, we have that α ≥ ρ.

This theorem essentially reduces proving lower POA bounds for S1A to proving
exponential lower bounds for nondeterministic communication protocols. Also note
that slight variations of the previous theorem may work for many simple auction
types, since the reliance on the S1A is just to easily verify the εVmax-MNE and it’s
welfare.

Combining theorem 20 and theorem 18 we can show that S1A have a POA of
at least 2 for subadditive valuations. This had already been proven by Christodoulou
et al. [CKST13], while the upper bound was found by Feldman et al. [FFGL13]. In
the following table we summarize POA bounds for different valuations of the S1A.

Valuation Communication Lower Bound Upper Bound
Subadditive 2([DNS10]) 2

XOS e
e−1([DNS10]) e

e−1 ([ST13])

Submodular 2e
2e−1 ([DV13]) e

e−1 ([ST13])

As we can see, for the XOS case the upper and lower bounds match for S1A. The
upper bound proof was detailed in the previous chapter, completing the analysis
of the simultaneous first price auction. The first price auction, even though it is
not truthful nor has PNE’s, is a very simple mechanism that achieves a POA of
2 for general subadditive valuations and about 1.58 for XOS which is exceptional
performance.



Chapter 6

Conclusion

6.1 Remarks

We have presented 3 modern algorithmic game theory tools and shown their
applications for auctions and congestion games. The problem of allocating different
items to players using the first price auction has been thoroughly examined and
concluded with a matching upper and lower POA bound of e

e−1 for XOS valuations.
However, the techniques used to reach these bounds are quite general and we hope
the reader will be able to apply them to settings of his own.

6.2 Future Work

Although the methods from chapters 3 and 4 are tailored to work with auctions,
the idea behind them could be promising in other settings as well, the most obvious
of which changing the social welfare to SW (a) = maxi ci(a) and trying to apply
similar techniques to scheduling, which still contains a variety of open problems and
gaps in known POA bounds. But, as with any approach to scheduling, this may be
extremely complicated and time consuming and likely will only work for a restricted
setting.

A different approach would be to use some other method for determining player
preferences other than payments and try to prove similar composability theorems
as those in Chapter 2. For example, one could use resource burning or probabilistic
verification and punishment afterwards.

Finally, the approach of Chapter 5 gives rise to new problems in complexity
theory generated from game theory, which may contain settings that were not con-
sidered interesting enough until now. Also, it may motivate finding more accurate
complexity results for more restricted classes of problems, such as congestion games
with polynomial coefficients.

75





Bibliography

[AAE05] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The Price of Routing
Unsplittable Flow. In Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, pages 57–66, New York,
NY, USA, 2005. ACM.

[ADG+06] Sebastian Aland, Dominic Dumrauf, Martin Gairing, Burkhard Monien,
and Florian Schoppmann. Exact Price of Anarchy for Polynomial Con-
gestion Games. In Bruno Durand and Wolfgang Thomas, editors, STACS
2006, number 3884 in Lecture Notes in Computer Science, pages 218–
229. Springer Berlin Heidelberg, 2006.

[Aum74] Robert J. Aumann. Subjectivity and Correlation in Randomized Strate-
gies. Journal of Mathematical Economics, 1(1):67–96, 1974.

[BHLR08] Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, and Aaron
Roth. Regret minimization and the price of total anarchy. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages
373–382. ACM, 2008.

[BR11] Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for com-
binatorial auctions with item bidding. In Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Algorithms, pages
700–709. SIAM, 2011.

[CBL06] NicolG• Cesa-Bianchi and GG•bor Lugosi. Prediction, learning, and
games. Cambridge University Press, Cambridge; New York, 2006.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity
of computing two-player Nash equilibria. Journal of the ACM (JACM),
56(3):14, 2009.

[CK05] George Christodoulou and Elias Koutsoupias. The Price of Anarchy of
Finite Congestion Games. In Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’05, pages 67–73, New
York, NY, USA, 2005. ACM.

[CKKK11] Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos,
and Maria Kyropoulou. On the efficiency of equilibria in generalized
second price auctions. In Proceedings of the 12th ACM conference on
Electronic commerce, pages 81–90. ACM, 2011.

77



78 Bibliography

[CKS08] George Christodoulou, AnnamG•ria KovG•cs, and Michael Schapira.
Bayesian combinatorial auctions. In Automata, Languages and Program-
ming, pages 820–832. Springer, 2008.

[CKST13] George Christodoulou, AnnamG•ria KovG•cs, Alkmini Sgouritsa, and
Bo Tang. Tight Bounds for the Price of Anarchy of Simultaneous First
Price Auctions. arXiv:1312.2371 [cs], December 2013. arXiv: 1312.2371.

[Cla71] Edward H. Clarke. Multipart pricing of public goods. Public Choice,
11(1):17–33, September 1971.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a Nash equilibrium. SIAM Journal
on Computing, 39(1):195–259, 2009.

[DNS10] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approxima-
tion algorithms for combinatorial auctions with complement-free bidders.
Mathematics of Operations Research, 35(1):1–13, 2010.

[DV13] Shahar Dobzinski and Jan VondrG•k. Communication Complexity of
Combinatorial Auctions with Submodular Valuations. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’13, pages 1205–1215, New Orleans, Louisiana, 2013.
SIAM.

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of
Nash equilibria and other fixed points. SIAM Journal on Computing,
39(6):2531–2597, 2010.

[Fei09] Uriel Feige. On Maximizing Welfare When Utility Functions Are Sub-
additive. SIAM Journal on Computing, 39(1):122–142, January 2009.

[FFGL13] Michal Feldman, Hu Fu, Nick Gravin, and Brendan Lucier. Simultaneous
auctions are (almost) efficient. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 201–210. ACM, 2013.

[Gib73] Allan Gibbard. Manipulation of Voting Schemes: A General Result.
Econometrica, 41(4):587–601, 1973.

[GK14] Yiannis Giannakopoulos and Elias Koutsoupias. Duality and optimality
of auctions for uniform distributions. In Proceedings of the fifteenth ACM
conference on Economics and computation, pages 259–276. ACM, 2014.

[Gro73] Theodore Groves. Incentives in Teams. Econometrica, 41(4):617–631,
July 1973.

[HM10] Sergiu Hart and Yishay Mansour. How long to equilibrium? The com-
munication complexity of uncoupled equilibrium procedures. Games and
Economic Behavior, 69(1):107–126, May 2010.



Bibliography 79

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
How easy is local search? Journal of Computer and System Sciences,
37(1):79–100, August 1988.

[KP09] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria.
Computer science review, 3(2):65–69, 2009.

[LLN01] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial
Auctions with Decreasing Marginal Utilities. In Proceedings of the 3rd
ACM Conference on Electronic Commerce, EC ’01, pages 18–28, New
York, NY, USA, 2001. ACM.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing
large games using simple strategies. In Proceedings of the 4th ACM
conference on Electronic commerce, pages 36–41. ACM, 2003.

[LST12] Renato Paes Leme, Vasilis Syrgkanis, and G•va Tardos. Sequential auc-
tions and externalities. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 869–886. SIAM, 2012.

[MS12] Carol A. Meyers and Andreas S. Schulz. The complexity of welfare
maximization in congestion games. Networks, 59(2):252–260, 2012.

[Mye81] Roger B. Myerson. Optimal auction design. Mathematics of operations
research, 6(1):58–73, 1981.

[Nas51] John Nash. Non-Cooperative Games. Annals of Mathematics, 54(2):286–
295, September 1951.

[NS06] Noam Nisan and Ilya Segal. The communication requirements of effi-
cient allocations and supporting prices. Journal of Economic Theory,
129(1):192–224, July 2006.

[Ros73] Robert W. Rosenthal. A class of games possessing pure-strategy Nash
equilibria. International Journal of Game Theory, 2(1):65–67, December
1973.

[Rou03] Tim Roughgarden. The price of anarchy is independent of the network
topology. Journal of Computer and System Sciences, 67(2):341–364,
2003.

[Rou09] Tim Roughgarden. Intrinsic robustness of the price of anarchy. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of comput-
ing, pages 513–522. ACM, 2009.

[Rou14] Tim Roughgarden. Barriers to near-optimal equilibria. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 71–80. IEEE, 2014.



80 Bibliography

[ST13] Vasilis Syrgkanis and Eva Tardos. Composable and efficient mechanisms.
In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 211–220. ACM, 2013.

[Syr12] Vasilis Syrgkanis. Bayesian games and the smoothness framework. arXiv
preprint arXiv:1203.5155, 2012.

[Vet02] A. Vetta. Nash equilibria in competitive societies, with applications
to facility location, traffic routing and auctions. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceed-
ings, pages 416–425, 2002.

[Vic61] William Vickrey. Counterspeculation, Auctions, and Competitive Sealed
Tenders. The Journal of Finance, 16(1):8–37, March 1961.


	Introduction
	Auctions and Strategic Games
	Outline of this thesis

	Preliminaries
	Strategic Games
	Equilibria
	Price of Anarchy
	Extensive From Games

	Introduction to Mechanism Design
	Mechanism Design Setting
	Mechanism Design
	Mechanism Design and Incomplete Information
	Truthfullness


	Smooth Games
	Overview
	Defining Smooth Games
	Examples

	Extension Theorems
	One-Shot Games
	Repeated Play and No-Regret Sequences

	Tight Classes of Games
	Congestion Games are Tight


	Composable and Efficient Mechanisms
	Introduction
	Smooth Mechanism Design Setting
	Mechanism Design Setting
	The Composition Framework
	Valuations

	Smooth Mechanisms
	Price of Anarchy and Extension Theorems
	Extension to general equilibria
	Extension to Incomplete Information

	Compositionality of Smooth Mechanisms
	Simultaneous Composition
	Sequential Composition

	Case Study: Auctions
	First Price Auction
	Second Price Auction

	Weakly Smooth Mechanisms

	Lower Bounds through Computational Complexity
	Motivation
	Cost Minimization in Congestion Games
	Welfare Maximization in Combinatorial Auctions

	Conclusion
	Remarks
	Future Work


