EONIKO METXOBIO [TOATYTEXNEIO
TMHMA HAEKTPOAOIQN MHXANIKON KAT MHXANIKQN YIIOAOTTIETON

TOMEAY TEXNOAOI'TAY IIAHPO®OPIKHY KAI YIIOAOT'TXTOQN
EPTAYXTHPIO AOI'TKHY. KAI EIIIXTHMHY, YIIOAOTIXTOQN

ITpoceyyiotixol AAyoprdpor Agopordynone MapReduce
Epyaoiov

AITAQOMATIKH EPTAYIA

TOV

Baotieiouv-Opéotn K.

IMoradiysevoérouviou

EnmBArénmv: Anuftene Pwtdxng
Enixovpoc Kodnyntic E.M.IL

Adrva, Todhog 2015

EOGNIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOT'QON MHXANIKQN KATI MHXANIKOQN YIIOAOT'IXTOQN
TOMEAY TEXNOAOI'TAY IIAHPO®OPIKHY KAI YIIOAOT'IXTOQN
EPTAYTHPIO AOT'TKHY. KAI EIIIXTHMHY. TIIOAOT'TETOQN

IToooeyyiotixol Ahyoprduolr Agopordynone MapReduce
Epyaociov

AITAQMATIKH EPTAYTA

ToLV

Baotiieiov-Opéotn K.

IManodiyevoéToviou

EmBAenwv: Anufteng Potdnnmg
Enixovpoc Kadnyntic E.M.IL

Evyxpldnxe and v tpwelr e€etaotinr emitpont| otic 9 Touiiou 2015.

Anuftene Pwtdnne T'edpyioc I'vodpac Twdvvne MAAnc
Enixoupoc Kadnynthic E.M.IL. Aéxropac E.M.II Kodnynthc O.ILA.

Adrva, ToOhog 2015

Baociieiog-Opéotng K. Ilanadiyevonouviog
Awmhopatodyog Hhextpohdyog Mnyovixdg xon Mrnyavixde YTroroyiotoy E.M.IL

Copyright © Baolieioc-Opéotne K. Ianadiyevonoviog, 2015.

Me empOhaln movtog duxandpoatoc. All rights reserved.

Anayopebetan 1 avtiypagy|, anodrixeucr xar Slavoun tng mopoloug epyasiag, €€ 0hoxhpou
1) TUARATOS AUTYG, Yio EUToELX6 oxond. Emtpénetan 1) avatinwot), anodrixeuon xon Slovoun
Yot OXOTO U1 XEEOOCKOTUNO, EXTIUOEUTIXNC 1) EPELYNTIXTE PUOTE, UTO TNV TpolnodeoT) va
AVUPERETOL 1) TINYY) TEOEAELOTC Xl VoL BlaTrpeiton To ooy urvuue. EpwtAuata mou ago-
eolV TN YeNon TNe €pyactag Ylol XEEOOOXOTUNO OXOTO TEETEL VoL AmeVYUVOVTOL TEOS TOV

CUYYPUPEA.

Ou andelg xou T CUUTERAOUATO TTIOL TERLEYOVTAL GE AUTO TO EYYPAUPO EXPEALOUV TOV CUY-
Yoapéa xan OeV TEETEL Vo epunveudel 0Tl avTitpocnnedouy Ti¢ emlonues Véoeig Tou Edvixou

Metodpiou Hohuteyvelou.

Euvyapiotieg

Oa Hieha v evyopioThow Yepud tov emPBAémovta xadnynth tne epyooioc authc, x. Arn-
unten Potdnm, yia T cuvey) xadodrynon, TNV UTOUOVH Xt TOUS TEOBANUATIONOUE TOU UoU
€0eoe o O T BLdpxeta aUTAHSC TNE Yeovids. Ot cupfouléc Tou ftay xadoploTixhc onuaciog
TO00 YLOL TNV EXTOVNOT| TNG ERYAOLOC QUTAC OGO %O YLoL T CUVEYLON TNG OXAUONUOEXAC oL

Topelag.

O fleha va euyaploTAOW WLLTEPWS Tov X. T'ewpyio I'volua yio To evilagpépov Tou xou yia
TNV EUYEVIXT| TIOQOY WENOT) TWV Unyovnudtwy Tou Egyaotrneiou Trohoylotxoy Yuotnudtemy

Yot TNV EXTEAEDT) TWV TELRUUATWY TNG EpYaciog auThS.

Oa fideha Vo euyapLoTHOW axoua Tov %. lodvvn MAAn mou diatéheoe péhog Tng Teweholg
ETUTPOTAC HOV.

XpwoTdw €vo UEYINO EUYPIGTE GTNY OLXOYEVELX XL GTOUC PIAOUC Lo, ot orolol ueTéTpedory
ONoL AUTE TOL YEOVIXL BLBACUTOC, EQYUCLMY X0l EEETACEWY UERXE Amd Tl XOAUTERA YEOVLOL
e u€ypel Twea LoNg Uov.

Téhog, Yo fileha Vo ELYAPLOTACEK TA VALY VWO TARLA XU TIG HOUYES XAPETEQLES TOU XEVTPOU

yiot TNV GUUPOAT TOUC OTN LY YEAPY| TOU XEWEVOL oUTOU.

ITepiindm

To MapReduce anotehel €éva TpoYpoUATIO TIXG HOVTERO XS xou Ylor GYETIXY) LAoTolno
Yoo TNV TEdAANATY encéepyaoior UEYIAWY TOCOTHTWY BEGOUEVWY OE GUCTAdES TOAUTOEN-
VOV UTOAOYIG TGOV GLCTNUATWY. 2XTo MapReduce, xdle epyacio nepihouBdver duo chvoha
UTOERYAOLRY, T map xou Tic reduce. Evd ol unogpyaoieg xdlde cuvdrou unopolv va e-
ATEAEGTOOY TORdAANAaL, Tot 600 auTd cUvoha ogellouy va exteEAecTOOY axohoudioxd. Me
Ghho Aoya, xdde reduce unogpyocio umopel vo Eexvioel TNy exTEAECT] TNG UOVO PETE TNV
OMOXATIPWOT TwVY avTioTolywy map unocpyouciwy. O dpouoroyntiic MapReduce epyaoiidv
nailel €va TOAD LG TIXG EORO GTNV ATOBOCT] TOU GAOU CUCTAUNTOC. X T1 BLTAGUTIXY
oaTH, WEAETAUE TO TEOPBANUA TN dpouordynone MapReduce epyooiov and tn oxomd tng
Yewplag SpoUoAGYNONS Xl TV TEOCEYYIo TGV ahyopiduwy. Iupoucidlovue pepind yve-
0 T8 AMOTEAECUOTA OYETIXG UE T OPOUOAGYT|OT) EQYIUCLOY OE TURUANNAES UNYAVES XD dC X
ue T dpopordynon MapReduce epyaciwv. H Bacuxy| cuvelopopd tng epyaociag autrc etvor
1 TelpapaTX?] a&loAGYNOT EVOS TOAUGVLULXOL Yedvou 54-TpoceyyloTixol alyopiduou yio
70 pofAnua Spouordynone MapReduce epyacidv e acuoy€TioTeg Unyavéc Ue oTOYO TNV
ehayloTonolnom tou Befapnuévou UEGOU YEOVOU OAOXAPWOTNG. XTN MEAETY auTH Oetyvouue
OTL OE TELROPATIXEG CUVUTXES O "EUTELRINOS” AOYOC TIPOGEY YIONC ATODOEWVUETAL TOA) XUAUTE-
eo¢ amd auTdY Tou €xel detydel VewpnTind Yio BUPOPETIXES HUTAVOUES YPOVOY EXTEAEOTS
xan oprdpole epyaoteyv. Emniéov, mpoteivouue €va Ypryopo xat "dmincto’ ahyoptiyo yio To
(B0 TEOPBANUA 0 OTOlOg ATOBELXVIETOL UPXETA AVTAYWVIO TIXOS Yo CUYXEXQOWEVES ELGOBOUC.
Téhog, nepthaufSdvouue oTa TERAUATE YAC TNV UOVIEAOTOMNOT TNG UETAPORAS OEDOUEVHV

am6 map oe reduce unogpyaoieg Y€ow TNe eloaywync Twv ‘shuffle’ unoepyoaoiwy.

A€Zeig-KAedid: Xpovodpouohdynon xat opydvemon topwy, Ilpoceyyiotixol alyodpriuot,
Alyoprduxr avdiuor, Map-Reduce

Abstract

MapReduce is a programming model and an associated implementation for the parallel
processing of data sets in large clusters. In MapReduce, each job is associated with two
sets of tasks, the map and the reduce. While the tasks of each set can be scheduled
in parallel, the two sets must be scheduled sequentially i.e. the reduce after the map
tasks. The centralized scheduler of MapReduce plays a critical role in the performance
of the system. In this thesis, we study the problem of scheduling MapReduce tasks
from the view of scheduling theory and approximation algorithms. We present several
known results concerning the problem of scheduling parallel machines as well as the
problem of scheduling MapReduce tasks itself. The main contribution of this thesis is the
experimental evaluation of a polynomial time 54-approximation algorithm for the non-
preemptive scheduling of MapReduce tasks on unrelated machines with the objective
of minimizing the total weighted completion time. In this study, we show that the
empirical approximation ratio of this algorithm is much better than the theoretically
proven guarantee on various processing time distributions and number of jobs. We
also propose a fast, greedy heuristic for the same problem that appears to be very
competitive for certain inputs. Finally, we include in our experiments the modelling of

data transmission between map and reduce tasks, via the introduction of “shuffle” tasks.

Keywords: Scheduling and resource allocation, Approximation algorithms, Algorithm

analysis, Map-Reduce

Contents

Introduction] 1
[Prefminaries "
(L1 Definitionsl.« .« L 7
(1.2 Machine Environmentl o oo oL 8
1.3 Objective Functions and Metrics| 9
(1.4 Precedence Constraintsl 10
[1.5 A Typical Notation for Scheduling Problems|. 11
[1.6 Complexity Issues| 12
[1.7 Approximating an Optimal Solution 12
[1.8 Online and Offline Scheduling| 13
2 Scheduling Parallel Machines| 15
[2.1 List Scheduling and Longest Processing Time First| 15
2.2 An Exact Algorithm for the Average Completion Time Problem on Iden- |
[tical Machines|. 18
2.3 Minimizing Total Weighted Completion Time on Identical Machines| . . . 19
2.4 Minimizing Makespan on Unrelated Machines| 21
[2.5 Minimum-Weight Bipartite Matching to Schedule Positions| 25
2.6 Minimizing Total Weighted Completion Time of Tasks on Unrelated Ma- |

chinesl

Contents

[3 Precedence Constraints and Shop Scheduling|

3.1 Chains, Flows and Shops|.

3.2 A Greedy 2-approximation Algorithm For Open Shops|

[3.3 Two Machine Flow Shop Makespan Minimization|

3.4 A Randomized Algorithm for the Flow Shop Scheduling Problem|

[4 Scheduling MapReduce Jobs Minimizing Total Completion Time)|

4.2 Offline Algorithms| o

[5 Scheduling MapReduce Jobs and Shuffle Tasks|

b.1 A constant approximation algorithm..

19.2.2 The Shuffle Tasks are Executed on Different Input Processors| . . .

0.3 A Greedy Heuristic|.

[6 Experimental Evaluation|

6.7 Resultsl.

[6.7.1 Uncorrelated Input| 0oL

31

31

32

33

35

38

38

39

39

41

42

42

43

47

47

50

51

92

93

55

List of Figures

16.7.2 Job-Processor Correlated Input| 61
16.7.3 Job-Processor Correlated Input with Shuffle Tasks| 62
6.8 Fvaluationl. 62

/Conclusion| 64

List of Figures

1.1 A graph representing the precedence constraints among jobs.| 11
2.1 A Pseudoforest of Job and Machine Nodes) 23
[2.2 Bipartite Graph Modelling Positions.|. 26
3.1 Examples of Chain- and Tree- Like Precedence Constraints.| 32
[6.1 Implementation sketch of Algorithm-MR.|. 58
6.2 Implementation sketch of Greedy-MR.|. 59
6.3 Uncorrelated Resultsl 60
6.4 Processor-Job Correlated Results 61

Introduction

Massive Parallelism

According to the well-celebrated Moore’s Law: ”The number of transistors on inte-
grated circuits doubles approximately every two years”. So far so good but, what does
this self-fulfilling prophecy practically mean? The more transistors one can "fit” on a
constant size silicon, the more complex logic he can implement. In the terminology of
computer architecture, complex logic can be translated into faster clock speeds, larger
caches, better branch predictors, deeper instruction level pipelines and out-of-order ex-
ecution units. The ”best-effort” parallel execution of serial machine code, the so-called
Instruction Level Parallelism, combined with faster clock speeds were some of the basic
features that caused our experience as computer users to be improved year after year.
The same piece of code used to perform faster and faster as the logic on integrated cir-
cuits was becoming more complex. Unfortunately, at the beginning of the 21st century
as Herb Sutter stated ”the free lunch is over”. What happened is that logic became
very complex and the number of transistors could not improve the serial execution with
respect to the power consumption constraints. This turning point has been called the
”ILP wall” and we hit it around 2004. In order to exceed this barrier, the wide use of

multiprocessors was at that point a demand.

Although multiprocessing systems were introduced into personal computers quite re-
cently, the idea of massive parallelism as well as the use of multiprocessor and mul-
ticomputer systems is not novel. In fact, supercomputers have been used for decades
mainly for scientific based applications. Some examples of these "number crunching”
applications are engineering simulations, DNA analysis and high-frequency trading al-
gorithms. The first multicore supercomputers were introduced around 1960 with less
than ten processors while at the end of the 20th century this number exceeded thousand.
Nowadays, according to top500.org, Tianhe-2, a supercomputer developed by China’s
National University of Defense Technology counts a total of 3,120,000 cores and a total
memory of 1,375 TiB.

Introduction 2

Due to the sudden growth in the market of parallel computers, the demand for developing
fast and reliable parallel code by software companies is increasing day after day. However,
the development of parallel code is a process far from trivial. In fact, the traditional
way somebody develops an algorithm, study programming or even think of a solution
is innately serial. Therefore, writing parallel code using the primitive tools provided by
an operating system is a time-consuming and error-prone activity. To deal with these
difficulties it was crucial to separate the transformation of an algorithm into lines of
code and its parallelization. For this reason, various high-level libraries and assisting
runtime systems have been created in order to simplify the parallel code production and
release the programmer from the burden of orchestrating the coordination of multiple
tasks. Typical examples of these systems are OpenMP, Java Threads, Cilk, Intel Thread
Building Blocks and different versions of the Message Passing Interface (MPI) paradigm.

The MapReduce Paradigm

Due to the popularity of internet technology, the amount of data stored on the web is
huge. For this reason, given the competition, companies that are active in the online
market such as search engines, e-mail providers, social networking services etc. need to
process everyday tons of raw data. However, given the amount of information, even the
execution of a conceptually trivial functionality may demand hundreds or even thousands
of processing units in order to complete in a reasonable amount of time. An important
parallel programming model and an associated implementation that can be used to
perform this kind of operations is MapReduce. The term MapReduce originally referred
to the way Google [I] processed large data sets on its clusters. Nowadays, MapReduce is
considered a parallel computation paradigm with various existing implementations such
as Google’s MapReduce [1], Apache Hadoop [2, 8], Disco Project [4] and Infinispan [5].

The MapReduce paradigm is based on a simple idea. The input data is considered as
a stream of records consisting of key-value pairs. The execution of a MapReduce job is
divided into two basic phases: the map and the reduce phase. In the map phase, a group
of map tasks is executed on map machines. Every map task, takes as input a subset of
the input’s key-value pairs and execute on them a programmer defined map function,
producing as an output new key-value pairs. After the execution of all map tasks and
therefore the completion of the map phase, the reduce phase begins. In the same way, in
the reduce phase, a set of reduce tasks is executed on reduce processors. These tasks take
as input the key-value pairs generated in the map phase and apply to them a reduce
function, under the constraint that all records with the same key will be processed
together on the same reduce machine. During the execution of a MapReduce job in the

aforementioned way, the map tasks and the reduce tasks are executed in parallel on the

Introduction 3

corresponding machines but no reduce task can start its execution unless all map tasks
have finished their work. Between the map and reduce phases, the redistribution of the
produced key-value pairs among processors takes place in order to satisfy the reduce

key-constraints. This exchange of data is called shuffle phase.

The simplicity of the described MapReduce model makes it more than suitable for the
parallel programming of various operations on large data sets. Typical examples are dis-
tributed sorting, construction of reversed web-link graphs, distributed pattern matching
etc. While it is the programmer’s responsibility to appropriately define the map and
reduce functions, the role of MapReduce implementation is crucial for the parallelization
and execution of those functions on raw data. Although the MapReduce paradigm is
an inherently distributed protocol, the coordination of the whole execution is central-
ized. Characteristics of the MapReduce such as efficient parallelization, scheduling, fault
tolerance, network bandwidth, data locality and machine availability are the responsi-
bilities of a single node called the master node. These operations that the MapReduce

implementation hides from the programmer are certainly the core of its power.

The MapReduce Scheduling Problem

As we have mentioned before, the scheduling of MapReduce jobs is a centralized activ-
ity motivating the study of new scheduling problems. A MapReduce job, in terms of
scheduling theory, consists of two sets of tasks, the map and the reduce ones. The tasks
of each set can be executed in parallel on any available corresponding processor in an
arbitrary order. However, in the MapReduce scheduling problem, there is one crucial
constraint one must keep in mind. The execution of any reduce task of a job cannot start
before the completion of all map tasks of the same job. This precedence rule, emerging
directly from the nature of MapReduce, models the situation where key-value pairs are
transmitted from map to reduce tasks. This general model combined with more specific
details such as the type of machines or the exact metric to be optimized defines new
scheduling problems. Given the fact that the performance of the centralized scheduler
of a MapReduce system is crucial for the efficient exploitation of the inherent paral-
lelism, recent studies deal with this issue from both a practical as well as a theoretical

viewpoint.

From the practical point of view, there has been a great deal of empirical work [6HI]
comparing the performance of various heuristics for the MapReduce scheduling problem.
This work demonstrates the advantages or trade-offs of different scheduling policies
under various objective functions. Typical examples are the work of Yoo and Sim [10]:
”A Comparative Review for Job Scheduling for MapReduce” and the work of Wolf et
al. "FLEX: a slot allocation scheduling optimizer for MapReduce workloads” [I1]. In

Introduction 4

the latter, Wolf et al. formalize the problem of slot allocation by the Hadoop Fair
scheduler and present various heuristic allocation schemes. In these papers, there exist
no theoretically proven guarantees of the heuristics’ performance in the language of

scheduling theory.

There have been various theoretical approaches concerning MapReduce from its analysis
as a computational model [12H14], studying its power and limitations, to the development
of MapReduce algorithms for well-known problems [I5H20]. As far as the MapReduce
scheduling problem is concerned, Chang et al. [2I] proposed a simple model, equivalent
to the well-known concurrent open shop problem [22], where there are no dependencies
between map and reduce tasks and the assignment of tasks to processors is given. In
this direction, Chen et al. [23] generalized the last model by considering dependencies
between tasks and presented a LLP-based 8-approximation algorithm for this problem. In
the same work, they involved in their model the existence of data shuffle by presenting

a 58-approximation algorithm for this extension.

In their recent work, ”On scheduling in map-reduce and flow-shops”, Moseley et al
[24] deal with the MapReduce scheduling problem following a different direction. They
associated the MapReduce problem with the so-called Flexible Flow Shop problem [25]
20]. In the FFS scheduling problem, there is a set of jobs, each job has an arbitrary
number of tasks and each task corresponds to a stage. Although, tasks can be scheduled
on any available processor, they also have to be executed in their strict stage order. In
other words, a task corresponding to the second stage cannot start before the execution
of all tasks of the first stage of the same job. Given this new setting, Moseley et al.
propose algorithms for different variants of the problem, considering offline and online
scheduling cases as well as identical and unrelated processors. In all cases, the objective
function of the scheduling problem is to minimize the average completion time of all

jobs.

In their work ”Scheduling MapReduce Jobs and Data Shuffle on Unrelated Processors”,
Fotakis et al. [27] generalized the last model by considering the objective of weighted
average completion time. More specifically, in this model each job has multiple tasks
for the map and reduce stage, the assignment of tasks to processors is flexible, there are
precedence constraints between map and reduce tasks of the same job and the processing
time of each task depends on the processor where it is assigned to in order to capture
issues of data locality. Based on this model, they proposed a LP-based 54-approximation
algorithm, which becomes an 81-approximation considering the significant cost of data

communication, via the modeling of shuffle tasks.

Introduction 5

Contribution of this Thesis

The main contribution of this thesis, is the experimental evaluation of the algorithm
of Fotakis et al. and the estimation of its empirical approximation ratio under various
types of input. More specifically, we show that for realistic inputs, the performance of
this algorithm is much better than the theoretically proven 54-approximation. In fact,

for every type of input the empirical approximation ratio lay within the interval [1.5, 3.5].

In order to study the performance of the algorithm on normal inputs, we implement the
algorithm and compare the objective values of the produced schedules with a LP-based
lower bound to the optimal schedule. We test the performance of this algorithm for
two different processing time distributions. In the first case, the processing times of
tasks on machines are uniformly distributed, while in the second case, there is a strong
correlation among the processing time of a task, the job that this task belongs to and the
machine it runs on. More specifically, in the second case, the average processing time
of the tasks of a job depends on the job, while at the same time some processors has
more capabilities than others for all tasks. Moreover, we experiment on the influence of
the existence of the shuffle phase and how the algorithm performs in this case. This is
achieved by the introduction to our experiments of the shuffle tasks, in order to model

the data transmission time from a map to a reduce processor.

In addition to this, we propose a fast, greedy heuristic for the MapReduce problem,
released from the overhead of LP solving. We test the performance of this heuristic
in comparison with the algorithm of Fotakis et al. on the same inputs. Based on the
experimental results, we try to explain intuitively the reasons behind the performance

of the two algorithms under various processing time distributions and number of jobs.

To the side of this experimental evaluation, we present in this thesis a complete analysis
of the algorithm of Fotakis et al. as well as other known results for the MapReduce
problem. Lastly, we present various well-known results and algorithms from the theory

of parallel machine scheduling and shop scheduling.

Outline of this Reading

In Chapter 1, we present some fundamental definitions and terminology concerning
scheduling problems. In Chapter 2, we present some classic results of the parallel
scheduling literature with varying types of machines and metrics to be optimized. In
Chapter 3, examine the application of precedence constraints on our problems and
present some algorithms for ”job shop” scheduling. In Chapter 4, we survey some

known results concerning the exact problem of scheduling MapReduce Jobs while in

Introduction 6

Chapter 5 we present a constant approximation algorithm for so-far most general ver-
sion of the same problem. Lastly, in Chapter 6 we present our experimental evaluation
of this latter algorithm comparing it with a lower bound on the same problem as well

as with a fast heuristic.

Chapter 1

Preliminaries

In this chapter we examine some basic definitions and notation concerning the theory
of scheduling parallel machines. We discuss a general scheduling problem formulation,
different types of machines and various metrics that may be optimized in a scheduling
problem. Moreover, we consider problems with precedence constraints and we present a
standard notation for describing many scheduling problems. We conclude this chapter
with a reference to some complexity issues, an introduction to the notion and use of
approximation analysis and a clarification of the difference between online and offline

algorithms.

1.1 Definitions

How can we formally define a scheduling problem? To begin, although the relevant
literature is vast, we will try to present a general model for the majority of problems.
Imagine we have a set M of machines or processors and a set J of jobs that need to
be processed. In this text, we are going to use the terms ”machines” and ”processors”
interchangeably. Of course, the terms "machines” and ”jobs” depend on the problem’s
context and may refer to any type of available resources and tasks to be completed. To
the rest of this text, unless otherwise noted, let m = |[M| and n = |J|, the number of

machines and jobs respectively.

Each job is associated with a specific processing time which, in the general case, depends
on the machine which it is assigned on. We denote p; ; the processing time of a job j
when it is executed by the machine 7. In other words, we can say that each job has a
vector of processing times consisting of one element for each machine it can be scheduled
on. It is clear that the processing time generally refers to the time domain. Throughout
this text we measure the magnitude of processing time by units of time, while in the

relevant literature it can be found as cycles, seconds etc.

7

Chapter 1. Preliminaries 8

Many scheduling problems include the notion of release date or release time of a job.
We say that a job j has a release time r; if it is not available for scheduling before time
rj. Likewise, we can define a due date or deadline d; for a job j to denote that j has to
be completed before time d;. The key difference between the notions of due date and
deadline is that in the former case, a job is allowed to be completed after time d; with
a specific penalty included, while in the latter case a job has to be completed before d;

in order for a schedule to be valid.

Another crucial characteristic of a scheduling problem is the notion of preemption. We
say that a schedule is preemptive if there is at least one point in time where the execution
of a job is stopped before its completion and continued in a later point in time. In the
majority of problems discussed in this reading preemptions are not allowed. In this case
we refer to the resulting schedule as non-preemptive. Likewise, we denote a schedule to
be migratory (resp. non-migratory) if a job is allowed (resp. not allowed) to "migrate”

to another machine during its execution.

1.2 Machine Environment

In the previous section, we defined p; ; to be the processing time of a job j if it is executed
on the machine 7. A very interesting question is, fixing a job j, what can one say about

the distribution of its processing time over machines.

There are three basic types of machines that have been studied extensively:

e Identical Machines. In this case, all machines has the same capabilities. In
other words, the processing time p; ; of a job j stays the same for every machine
1 that the job can be scheduled on. In this case, we can simplify the notation and

denote by p; the processing time of a job.

e Uniform Machines. This is the case where each machine is associated with a
specific speed that is independent from the job it is executed on it. Again, we
can simplify the notation by defining p; the processing time of a job on a 1-speed
machine and by fixing a vector of machines’ processing speeds. For instance, a job
J with p; = 6 needs six units of time on a 1-speed machine and two units of time

on a 3-speed machine.

e Unrelated Machines. In this type of machines, the processing time of a job
depends completely on the machine it is scheduled on. In this case, the demand
for a vector of processing times for each job is exigent, as the processing times are
not correlated in any simple way. For example, imagine we have two machines and
two jobs: one possible scenario of processing times is p1;1 = 2, p21 =3, p12 =1

and P22 = 1.

Chapter 1. Preliminaries 9

A quite straight-forward remark concerning the types of machines is the fact that each
type generalizes all its previous. It is easy to see that unrelated machines can easily sim-
ulate uniform and identical machines and that uniform machines can simulate identical
if we set all speeds to be equal to one. A very useful corollary of this remark is that
every algorithm that works for a specific type of machines is definitely working for all

its previous.

Throughout this reading, we will concentrate our attention to the unrelated and identical

case, leaving aside the uniform machines case.

1.3 Objective Functions and Metrics

Before we discuss the various types of objective functions of different scheduling problems
we would like to make a clarification of some terms. There are two main aspects one must

always have in mind when designing a scheduling algorithm: feasibility and optimality.

We call a schedule feasible if it does not violate any constraints of the problem. For in-
stance, in a typical problem, a feasible schedule must not exclude any job from scheduling
and at the same time respect all the precedence constraints, release dates or deadlines.
If a specific schedule does not respect all the constraints we call it infeasible. Note that
the notion of feasibility extends to be a characteristic of the problem itself: we call a
problem instance infeasible if there is no algorithm that can create a feasible solution.
A quick example to illustrate the infeasibility of a problem is the following: consider
a scheduling problem of jobs with release dates and deadlines on identical machines.
Imagine there is a job j with p; = 3, r; = 1 and d; = 2. In this case, it is obvious that

no algorithm can schedule this job in order to meet its deadline.

While the feasibility issue of a scheduling problem is in most cases trivial, the main
concern of an algorithm designer is that of optimality. What makes a schedule optimal
or, in other words, given two schedules for a problem, which one is better? In order
to compare schedules we need to define first what is called in the field of mathematical
optimization an objective (cost) function or metric.

For each scheduling problem we define a function f : S +— R, where S is the set of all
possible schedules and R the set of real numbers. We say that a schedule s’ € S minimizes
fif f(s') < f(s) Vs, s € S and mazimizes [if f(s') > f(s) Vs,s’ € S. Tt follows
that given a scheduling setting and an objective function f, we denote as minimization
problem (resp. mazximization problem) the search for a schedule that minimizes (resp.
maximizes) f. This schedule is called optimal and the value of f for this schedule is

called optimal value.

Chapter 1. Preliminaries 10

Now we are ready to discuss some fundamental objective functions that are most studied

in literature:

e Makespan or Length. Given a schedule on parallel machines, we denote as

makespan the finishing time of the job that finishes last.

e Average Completion Time. This metric refers to the average completion time
of all jobs in a schedule. Note that given that the number of jobs for a problem
is constant, the optimization of the average completion time is equivalent to the
optimization of the sum of the completion times of jobs. This is the reason why this
metric in literature is frequently called total completion time or sum of completion

times.

e Average (Weighted) Completion Time. This cost function is similar to the
average completion time with the difference that each job is associated with a
specific weight w; which denotes its significance. In this case the completion time
of a job is multiplied by its weight before the calculation of the average. Likewise,

this objective function can be found as total weighted completion time in literature.

Of course, there is a variety of objective functions beyond the aforementioned such as
lateness, tardiness, absolute or squared deviation and unit penalty for problems with due

dates or total (weighted) flow time for problems with release dates.

It is crucial to realise that different metrics imply and represent different needs. Specif-
ically, the minimization of the makespan is usually suitable for one-user multiple-job
environments where the user demands all his jobs to be completed as soon as possible.
On the other hand, the minimization of the average completion time is more compatible
with multi-user environments, where the notion of fairness is more important. Obvi-
ously, the term ”weighted”, when used, implies users and jobs with different significance

or priority.

1.4 Precedence Constraints

Another well-studied aspect of scheduling problems is that of scheduling jobs with re-
spect to precedence constraints. In a few words, we say that a job ¢ must precede a job j,
denoted by i > j, if the execution of the latter can start only after the completion of the
former job. The use of scheduling models with precedence constraints emerges directly
from the nature of parallel processing systems. It is a very common phenomenon for a
job to produce data which is prerequisite for another job to begin execution. Usually
the precedence hierarchy of jobs is depicted as a Directed Acyclic Graph. Here is an

example:

Chapter 1. Preliminaries 11

T~

FIGURE 1.1: A graph representing the precedence constraints among jobs.

As we can see, the nodes of the graph are jobs and there is a directed edge from node i
to j for each precedence constraint of the form i > j. The fact that the graph is acyclic
is also obvious. Imagine there was a directed cycle of jobs, which one can be executed

first? The answer of course is none, and the problem is clearly infeasible.

1.5 A Typical Notation for Scheduling Problems

Given the wide variety of scheduling problems in literature, Graham, Lawler, Lenstra
and Kan introduced [33] a quick and elegant way of describing scheduling problems.
Their 3-field problem classification is a set of three labels of the form «|3|y. Each label

reflects different characteristics of a scheduling problem:

e Field «, describes the machine environment of the problem. Typical a values
are 1, P, Q and R for the single machine, identical parallel, uniform parallel and
unrelated parallel machines respectively. Moreover, another example of common
notation is the use of an index that denotes the number of machines on parallel
environments. For instance, Ps represents an environment of five identical parallel

machines.

e Field 3, is the second field and reflects additional properties of a problem. Some
of the most typical properties that belongs to this field are r; for problems with
release dates, d; for due dates or deadlines, prec for precedence constraints or
pmin for problems where preemption is allowed. Another value of this field can

be p; j = 0 or 1 denoting processing times with zero or unit value.

e Field ~, is the last field of the notation and represents the type of the objective
function. Typical values of v are C,q, for makespan minimization,) | C; for the

total completion time and) w;C}; for the total weighted completion time.

Chapter 1. Preliminaries 12

For example, 1|prec|Lpq,; is the problem of minimizing the maximum lateness on a
single machine subject to given precedence constraints. In the same way, R|pmitn|)_ C;
is the problem of minimizing the total completion time on unrelated machines when

preemption is allowed.

1.6 Complexity Issues

At this point, we would like to discuss the complexity characteristics of different schedul-
ing problems. Unfortunately, given the jungle of the studied scheduling problems, only a
small percentage of those accepts a polynomial-time algorithm that estimates an optimal
solution. We concentrate our attention to parallel machine scheduling. In this case, the
simplest problem that accepts a polynomial-time algorithm is Py,|| > C;. Unfortunately

we cannot argue the same for the problems P, ||Cpae and Py || > w;Cj, when m > 2.

Usually, we are able to prove that a problem does not accept a polynomial-time algo-
rithm, unless P # N P, with the help of what is called a reduction. Intuitively, we say
that a problem P is reducible to problem P, if an algorithm for solving problem P»
efficiently could also be used as a subroutine to solve P;. An example is the follow-
ing: think of the problems P||Cynqy and P|7j|Ciyaq. Given that the first problem does
not accept a polynomial time algorithm we can conclude that the same holds for the
second problem. Imagine the contrary and that there is an efficient algorithm solving
P|rj|Cmaz; then if we take an instance of P||Cpqq and add a ”dummy” zero release date

for every job then we would be able to solve the problem efficiently.

1.7 Approximating an Optimal Solution

As we have seen, the majority of parallel scheduling problems do not accept polynomial-
time algorithms. This means that for a slightly more than ”small” input, an optimal
schedule cannot be estimated efficiently. So what can we do for those problems? Hope-
fully, the story does not end here. In many cases we can construct algorithms running

in polynomial-time and producing an approximation to the optimal value.

More formally, a p-approzimation algorithm for a minimization problem is an algorithm
that runs in polynomial-time on the size of the input and produces a solution SOL such
that:

OPT < SOL < pSOL

, where OPT the objective value of an optimal solution.

The value p is called approximation ratio or guarantee of the algorithm. Generally

p = f(I), where I a problem instance. In other words, the approximation ratio of an

Chapter 1. Preliminaries 13

algorithm is a function of the problem instance. As a result, the main target in the area
of approximation algorithms is to find algorithms with the lowest possible upper bounds
of approximation ratios. In literature, there exist algorithms with constant, logarithmic,

linear or other function of the input size approximation ratios.

1.8 Online and Offline Scheduling

In practice, there are many scheduling problems where jobs arrive over time and the
scheduler does not know anything about their existence until their arrival. This is called
an online scheduler. There are two subcategories of online scheduling depending on
the existence or not of clairvoyance. A clairvoyant scheduler, learns all the relevant
information for a job (processing time, weight, etc) by the time of its arrival while a
non-clairvoyant learns nothing for a job but the fact that it has arrived. In order to
clarify the difference between the two types of scheduler let us demonstrate with an
example. The scheduler of an operating system is clearly an online scheduler. In the
general case, this scheduler may accept and run a job that needs live interaction with
the user without knowing the time the user will spend on the job or the importance of
this job to the user. In this case the scheduler may be considered non-clairvoyant. If the
user could inform in any way the scheduler about the time his job is going to spend or
the weight-importance of this job, then this scheduler could be considered a clairvoyant

one.

A standard way of measuring the effect of non-clairvoyance on an online scheduler is the
competitive ratio. For a minimization problem we can formally define the competitive

ratio of a schedule S(I), produced on input I as following:

, where A(I) the objective value of an adversary A who can specify the input I and

schedule I optimally.

Unfortunately, the notion of competitive ratio has been criticized as impractical as it
usually produces ”unrealistically” high ratios for usual inputs and consequently the
designer or prospective user of an algorithm fails to differentiate between the performance

of two online algorithms in practice.

In order to surpass the drawbacks of the competitive ratio, the notion of resource aug-
mentation was introduced. Intuitively, resource augmentation suggests that if we give
more resources in terms of quality or quantity to a non-clairvoyant scheduler then, the

approximation ratio of this problem may eventually be bounded. Formally, we say that

Chapter 1. Preliminaries 14

an online scheduler is s-speed c-approrimation algorithm if:

n

s(1
max

<
I Al(I =€

~—

, where Sg(I) the produced schedule with s > 1 resources. Note that in these cases the

approximation ratio may also be found as competitive ratio of an online algorithm.

Resource augmentation, gives to the user of a scheduling algorithm a practical way to
balance the loss of clairvoyance by buying more or more powerful processors. A typical
example of the power of resource augmentation is included in the seminal paper of
Kalyanasundaram and Pruhs: ”Speed is as Powerful as Clairvoyance”. In their work
[34], they propose a (1 + €)-speed f(%)—approximation algorithm for the classic uni-
processor CPU scheduling problem 1|r;, pmtn|>_ F;.

Chapter 2
Scheduling Parallel Machines

The purpose of this chapter is to introduce the reader to the problem of scheduling
parallel machines. For this reason, we present a collection of well-known algorithms and
results on both cases of identical and unrelated machines and we discuss a variety of
typical methods for the optimization of different metrics such as makespan and total

(weighted) completion time.

2.1 List Scheduling and Longest Processing Time First

We begin our discussion on parallel scheduling algorithms with the simple Graham’s
List Scheduling algorithm [38]. Even though the algorithm’s description and analysis
may seem trivial even for the unfamiliar with the design of approximation algorithms
reader, the purpose of this presentation is to present a general technique for proving

approximation guarantees.

The problem we discuss is Py, ||Cpaz, which, as we have stated in the previous chapter,
is NP-hard for m > 2. The List Scheduling algorithm is nothing else but the following

simple procedure:

List Scheduling: Take an arbitrary sequence of jobs and assign them one-by-one to

the so-far least loaded machine.

Before we begin the analysis of the algorithm, we should make a significant remark. An
approximation ratio is a guarantee that the objective function of the feasible solution
found by an algorithm would lay within a factor of the optimal value. Since most of the
problems where the demand for approximation algorithms is exigent are NP-hard, as
we know from fundamental complexity, it is difficult to compute the optimal objective
value. So how can we prove an approximation guarantee if we do not have a clue of

what the optimal value is? As a matter of fact, many times we do have a clue. There

15

Chapter 2. Scheduling Parallel Machines 16

are cases where it is an easy task to estimate a so-called lower bound on the optimal
value. If we compare the result of an approximation algorithm with such a lower bound,
then we can prove a guarantee without knowing the exact optimal value. Indeed, we are
certain by definition that this value would be at least its lower bound. The proof of the

following theorem about the List Scheduling algorithm demonstrates these ideas.

Theorem 2.1. List Scheduling is a polynomial-time 2-approximation algorithm for

the problem of makespan minimization on identical machines.

Proof. For the problem of makespan minimization on identical machines there are two

very useful lower bounds. If we denote by C _ the optimal makespan then the following

max

inequalities hold:
. 1
Cmax > E Z Dj

jeT
and
C* > maxp;
maxr = jeg p]

It is quite straight-forward why these inequalities consist lower bounds for the makespan
problem. The former suggests that the solution is greater or equal to the total processing
demand divided by the number of machines, a quantity that is obviously the most ” fair”
load-balancing one can achieve. The latter implies that the makespan must be at least

the maximum processing time of any job on a machine.

In order to prove the approximation ratio, consider a schedule produced with List
Scheduling and define C),q4, to be its makespan. We fix a job j to be the job finishing
last and, as a consequence, its completion time equals Cpuqz. As we can see Chae =
sj +pj, where s; is the starting time of job j. By definition of our algorithm we can see
that just before the time s;, all the machines are working, producing a total amount of

work ms;, which is definitely smaller than the total processing requirement. In other

ms; < ij

jeT

words:

Consequently:

1
Sj = E ij < C:na:c
JjeJ

Therefore, for the cost of the produced schedule it follows:

1
Craz = Sj +pj < E ;pj + 1}1;};(]9]‘ < 2C7tzaw
J

Chapter 2. Scheduling Parallel Machines 17

Intuitively, the main drawback of the algorithm lies in the fact that a job with relatively
large processing time has to be scheduled last. With the following example one can see

2 _ m unit

that the analysis of this algorithm is tight: Imagine we have m machines, m
time jobs and one job whose processing time equals m. In case the large job is at the end
of the list the following problem rises: the unit time jobs would be equally distributed
to the m machines giving a load of m — 1. As a result, when the large job is scheduled
a solution with makespan 2m — 1 is produced. If we compare this solution with the
optimal C*

ez = M we asymptotically get an approximation factor of 2.

A quite obvious optimization for the algorithm is to sort the list of jobs before the
assignment in a non-increasing processing time order. This algorithm is called Longest

Processing Time First. The following theorem holds:

Theorem 2.2. Longest Processing Time First is a polynomial-time %—approximation

algorithm for the problem of minimizing makespan on identical parallel machines.

Proof. After the sorting procedure of the algorithm we can make the following observa-
tions: If we have at most m jobs then the result of the algorithm is optimal i.e. one job
per machine. Now, if we have more than m jobs then, for the processing time of a job
j where j > m it holds: o

max

Pj < 9
It is easy to see that assuming the contrary, then it should be the case that a job
scheduled last on a machine would have larger processing time than the sum of processing
times of all other jobs scheduled on the same machine. This fact leads to a contradiction

even for the case of two jobs per machine.

Using the last result and following the analysis of the previous theorem, for the last

finishing job j it holds:

1 3
Cma:r =385 +Pj < E ij +pj < icmaz
JjeTJ

O]

Note that a more careful analysis of the Longest Processing Time First algorithm
can yield a %—approximation guarantee. The proof lies on the fact that if the processing

the algorithm produces an optimal schedule with at most

times are greater than %C’me

two jobs per machine.

Chapter 2. Scheduling Parallel Machines 18

2.2 An Exact Algorithm for the Average Completion Time

Problem on Identical Machines

In this section we present a greedy algorithm that produces an optimal solution for the
problem of minimizing the total completion time on identical parallel machines. The
algorithm is an extension of the well-known Shortest Processing Time First rule for the

total completion time on a single machine.

Shortest Processing Time First: Order jobs in a non-increasing processing time

order and assign them in a cyclic way to machines.

Theorem 2.3. Shortest Processing Time First is a polynomial-time exact algorithm

for the problem of minimizing total completion time on identical machines.

Proof. Without loss of generality we assume that n is divided by m. If this is not the
case, we can add to our problem instance an appropriate number of ”dummy” jobs with

zero processing time that clearly do not affect the resulting optimal schedule.

An alternative way one can express the resulting cost of an algorithm for this problem

is the following:

m times
Z Cj=apin+apan+- - +apmn+
JjeJ
m times
+ ozn_l,l(n — 1) + an_l,g(n — 1) + 4 an_Lm(n — 1) +
m times

+-rtagrtaigt+ o tarm

In the expression above oy is variable denoting the processing time of a job which is
scheduled on machine k£ and precedes [— 1 jobs on the same machine. This is the reason
why this processing time is multiplied by a factor of [, as it clearly contributes [times
to the objective function, one for its own completion time and one for the completion
time of each job it precedes. Given this new form of objective function, for any given
schedule the objective value can be estimated by assigning every p; to an a; and by
setting the unassigned o j, variables to zero. The problem now is to find an assignment

that minimizes the objective function.

Hopefully, the Hardy-Littlewood-Pdlya inequality, also known as rearrangement inequal-
ity [39], gives an elegant proof for the lower bound on any expression of this type.

Specifically, we know that for every choice of real numbers z; < xo < --- < x,, and

Chapter 2. Scheduling Parallel Machines 19

y1 < y2 < -+ <y, and for any permutation x, (1), Ty(2) - - - To(n) it is the case:

TpY1 + -+ 21Yn S Zo)Y1 - F To)Yn S T1Y1 o+ TnYn

In a few words, the lowest possible value can be achieved if we multiply the variables
in a reversed order of their indices i.e. if we multiply the greatest x, with the lowest
y1 and so on. It is not hard to verify that the Shortest Processing Time algorithm
achieves exactly this lower bound and as a result the produced objective value has to be

optimal. O

2.3 Minimizing Total Weighted Completion Time on Iden-

tical Machines

In their seminal work: ”Scheduling to Minimize Average Completion Time: Off-line and
On-line Approximation Algorithms”, Hall et al. present [40] a collection of approxima-
tion algorithms for classic scheduling problems. In this part, we are going to present an
approximation algorithm for the P|| > w;C}; problem. Before we describe the algorithm

and the analysis, we are going to prove some useful lemmas concerning this problem.

If for any set S C {1...n} of jobs we define p(S) = >, ¢p; and p?(9) = Ejesp?, then

the following lemma holds:

Lemma 2.4. Let Cy,Cy,...,C, the completion times of jobs in a feasible schedule for
P||> w;C;. Then the C; satisfy the inequalities:

ijC’] > 2— (p(S)? +p*(S)) for each S C N
JES

Proof. Let us assume a feasible schedule where there is no unforced idle time. In this
schedule the jobs are indexed without loss of generality in a way that C; < --- < C,. In
an induced schedule of jobs {1...j}, job j finishes last on machine ¢ which, by definition,
is the most heavily loaded machine with respect to this subset of jobs. Since there is no

idle time, for the load of machine ¢ it holds:

C; >

== S n

ke{l...j}

1
m

If we multiply the last inequality with p;, follow the same analysis for each induced

subset of the form {1...7}, then by summation we get:

n
> piCi > — Zp] Zpk
j=1 TS k=

Chapter 2. Scheduling Parallel Machines 20

With usual arithmetic we can simplify the last inequality so that for S = {1...n} it
holds:

SoniCi > o) + ()

JES
The lemma in its general case follows directly from the fact that for each possible subset

of jobs we can apply the same analysis restricted to the schedule of these jobs. O

Using the previous lemma, we see that for a subset of jobs S = {1...j}, where C}, < C;
for each k € {1...j} it is the case that:

) =Y m = Y Cnn 2 5= (0(S) +1%(5) = 5 ()’

2m
keS kesS

From this analysis the following lemma immediately follows:

ﬁ(p(S)2 +p%(S)). Then for each j =1,...,n, where S = {1,...,j} it is the case that:

Lemma 2.5. Let Cy...C, with C; < --- < C,, of n jobs satisfying ZjESijj >

Now, consider the following linear programming formulation:

Minimize: Z w;C}
s.t: Cj > pj Vie{l...n}
1
E:mCBZ§EQ%92+p%$) VS C{l...n}
JjES

Given this LP formulation, the algorithm Schedule-by-C; works as follows: Given an
optimal solution Cj...C, to the LP, assuming without loss of generality that C; <
. < C,, the algorithm sorts the jobs in a non-decreasing order of Cj and schedules

iteratively each job j to the earliest available p; units of time on any machine.

Theorem 2.6. The schedule found by Schedule-by-éj is a (3 — %)-appmximation
algorithm for the problem of minimizing total weighted completion time on parallel ma-

chines.

Proof. If we denote as C; the completion time of job j scheduled by Schedule-by-C_'j,
then for the induced schedule of jobs {1...j} it is the case that:

Cj < sj+pj

Chapter 2. Scheduling Parallel Machines 21

, where s; denotes the starting time of job j. Since by definition of the algorithm, before

time s; all machines are busy it holds s; > Lp(S'\ {j}). Given this we have :

1 1 1
< g < i < 1= p.
Cj<sj+pj < mp(S\{J}Hpg_mp(S)Jr(m)pg

From the previous lemma and the constraints of the LP we know that C; > p; and

205 > %p(S). Given that Cj is clearly a lower bound to the optimal solution it is the

case:
1. -
Cj=B-_)C;
If we apply the last inequality to the objective function the theorem follows. O

An interesting observation is that the second set of constraints of the LP formulation
contains exponentially many constraints. Hopefully, it has been proven [41] that we can
solve this exact LP via the Ellipsoid Method, if we use as constraints only the subsets
of the form {1...j}, Vj € J.

2.4 Minimizing Makespan on Unrelated Machines

In this section we present a constant approximation algorithm for the problem of makespan
minimization on unrelated machines. This result, apart from its significance in the field
of approximation algorithms, is in fact a very useful tool for the MapReduce scheduling

algorithms we examine in the next chapters.

As we can easily see, list scheduling algorithms cannot directly apply in the unrelated
machine setting and definitely do not yield constant approximation guarantees. Hope-
fully, thanks to the work of Lenstra, Shmoys and Tardos, a 2-approximation algorithm

[42] was proved using linear programming techniques.

The key tool used in this algorithm is the following Rounding Theorem. Let J;(t) denote
the set of jobs that require no more than ¢ units of time on machine ¢ and M;(t) the
set of machines that can process job j in no more than ¢ units of time. Let x;; a 0-1
assignment variable indicating whether job j is assigned to machine i. We consider the
generalized decision version of our scheduling problem defining for each machine ¢ a
deadline d; and restricting the schedule to include assignments from jobs to machines
with processing time at most ¢. In this setting consider the following mathematical

formulations:

Chapter 2. Scheduling Parallel Machines 22

IP(P,d,t)
Z rij =1 Vie{l...n}
iGMj(t)
> piwi; <di+t Vie{l...m}
JEJi(t)
:L'Z'jE{O,l} ,VjEJi(t),’izl...m
LP(P,d,t)
Z ;=1 Vie{l...n}
iEMj(t)
Z PijTij < d; Vi€ {l...m}
JEJi (L)
l’ij>:0 ,VjGJi(t),iZI...m

Theorem 2.7 (Rounding Theorem). If the linear program LP(P,J:t) has a feasible
solution, then any vertex T of this polytope can be rounded to a feasible solution T of the

integer program I P(P, cZ:t) and this rounding can be done in polynomial time.

Proof. 1f we denote by u the number of x; ; variables involved for a specific ¢, we can see
that the mathematical formulations above have n +m 4+ u constraints each. As we know
from the theory of linear programming each optimal solution correspond to a vertex of
the pointed polyhedron and each vertex is determined by w linearly independent rows
of the constraints matrix, each one satisfied with equality. If we observe the constraints
of the LP we can see that for each feasible solution at most m + n variables may have
non-zero value. Now, if we denote by « the number of integrally assigned jobs and by
8 the number of fractionally assigned ones, then by definition it holds o + 8 = n. A
job that is fractionally assigned is involved to at least two non-zero x;; variables and,
therefore, a + 25 < m 4+ n. Combining the two relations we can see that the number of

fractionally assigned jobs is at most m.

For any feasible solution z, we define a bipartite graph G(z) = (J, M, E), where J and
M the sets of nodes corresponding to jobs and machines respectively and E the set of
edges defined as £ = {(4, j)|z;; > 0}. From the previous observations we can see that
G(z) has no more edges than vertices and in fact each connected component of the graph
has the same property. This type of graph whose connecting components are trees or

trees plus one edge is called pseudoforest. In order to prove this proposition, for each

Chapter 2. Scheduling Parallel Machines 23

connected component of G(z), let C' denote the set of its nodes and M¢, Jo the sets of
machines and jobs involved respectively. Let Z¢ the restriction of Z to variables Z; ; such
that i € M¢c and j € Jo. If we also denote by Z~ the rest of the variables and reorder
the columns of the variable vector, we see that & = (Z¢, 7). In order for the connected
component C' to maintain the same property about the number of fractionally assigned
jobs all we need to show is that Z¢ is an extreme point of LP(PC,JC,t). Suppose
it is not, then there should exist two points y; and yo enough close to Z¢o such that
Fc = L(y1 +y2). In this case, it holds that & = £ ((y1,%¢) + (y2, %)), which leads to a

contradiction given the fact that Z is should be an extreme point.

An example of a produced pseudoforest is shown in the next graph:

M M

FIGURE 2.1: A Pseudoforest of Job and Machine Nodes.

The key observation is that we can use this pseudoforest to round the fractional solution
of the LP to a feasible solution of the IP. This can be done quite easily: for each integrally
assigned job keep this assignment to the solution. For each connected component that
is a tree start from any job node and greedily assign one machine to each job. Lastly,
for each connected component that contains a cycle, given the fact that our graph is a
bipartite, this cycle must have an even length. Therefore, we can ”break” the cycle if

we arbitrarily begin from any edge and assign jobs to machines in an alternating way.

Clearly, with the aforementioned rounding one can see that if the LP has a feasible

solution then 7 is a feasible solution to the IP such that for each machine i:

Z PijTij < Z PijTij + Max pij < di+1t
jedi) =0 JEND
Note that the rounding from a fractional to an integral solution this way can be done in

polynomial time. O

Using this Rounding Theorem, we can construct a 2-approximation algorithm for the
problem of minimizing makespan on unrelated machines. Before we present the al-
gorithm, we introduce some useful definitions and theorems about p-relaxed decision

procedures:

Definition 2.8. A p-relazed decision procedure or oracle can be seen as a decision oracle

with two possible outcomes: "no” and ”almost”. More specifically, for a minimization

Chapter 2. Scheduling Parallel Machines 24

problem the oracle takes as input a problem instance and a target objective d. It returns
either "no” or a solution with objective at most pd. If the oracle returns ”no”, then

there is not a solution with objective at most d.

In the following, we present a useful theorem that links the existence of a p-relaxed
decision oracle with the existence of a p-approximation algorithm for the problem of

makespan minimization on unrelated machines.

Lemma 2.9. If there is a polynomial p-relaxed decision procedure for the minimum
makespan problem on unrelated machines, then there is a polynomial p-approximation

algorithm for this problem.

Proof. In order to prove the lemma, we can create a p-approximation algorithm using
binary search over the domain of possible makespan. Given a target objective d, then
d is an upper bound and % is clearly a lower bound to the problem’s objective value.
During the binary search procedure, if the oracle answers "no” for a target makespan
t, then we restrict the search space to values over t. If the oracle returns a schedule
with makespan at most pt, then we keep the best schedule we have found so far and we
restrict the search space to values less than ¢. It is easy to see that in O(logd) time, the
algorithm converges to the highest value that the oracle answers "no”. If we denote s
this point, then the best objective value that we have kept during this procedure would
be at most ps. Given that the optimal value is definitely more than s then it is the
case that the best objective value found would lay within a factor of p of the optimal.
This procedure gives as a polynomial-time p-approximation algorithm for the problem

of makespan minimization on unrelated machines.]

Now, the next theorem proves the existence of a 2-approximation algorithm for the

problem we discuss:

Theorem 2.10. There is a 2-approximation algorithm for the problem of makespan
minimization on unrelated machines that runs in time bounded by a polynomial of the

mput size.

Proof. From the lemmas we have already proved, it suffices to construct a 2-relaxed
decision procedure for the problem. Let (P,d) a problem instance. If we recall the
LP(P,d.t) of the rounding theorem and set di = dy = --- = dp, = t = d then we
can see the following: if the LP(P,d, d) has not a feasible solution, then the IP(P,d,d)
cannot have either. On the other hand if the LP(P, CZ d) has a feasible solution, then it
can be rounded to a feasible solution of the I P(P, d, d). As we have already shown in
this rounded solution, the deadline of each machine can be extended for at most ¢ units

of time. Given we have set all deadlines and ¢ equal to d, then the rounding yields a

Chapter 2. Scheduling Parallel Machines 25

solution at most 2d. This use of the rounding theorem clearly satisfies the definition of

a 2-relaxed decision procedure.]

2.5 Minimum-Weight Bipartite Matching to Schedule Po-

sitions

In this section we examine the problem of total completion time on unrelated machines.
Extending the analysis we have done for the total completion time on the identical
machines case, we can reformulate the objective function in a similar manner using 0-1

assignment variables.

Let x;y; denote the variable indicating that a job j is scheduled on a machine i in
the k-th last place among the jobs scheduled on the same machine. It is clear that if
T;k; = 1, then the job is scheduled under these conditions and the opposite. Using this

notation we can reformulate the objective function as following;:
m n n
22D kpigin,
i=1 j=1 k=1

In the previous relation we can see that if a job is scheduled on k-th from the last
job position on a machine, it contributes k times its processing time to the objective

function.

The solution of the following IP clearly gives the solution to the original problem:

m n n
Minimize: E E g kpi,jxi,k,j

i=1 j=1 k=1
s.t: Y wigi=1 ,¥jef{l...n} (1)
=1 k=1
wgpy <1l Vie{l..m}Vke{l...n} (2)
j=1
x@]ﬁje{o,l} ,ViE{l...m}, Vj,ke{l...n} (3)

In the previous formulation constraints (1) suggest that every job must be scheduled on
exactly one position on some machine while constraints (2) restrict more than one jobs

to be scheduled on the same position of a machine.

The interesting fact about this formulation is that it is the exact IP formulation of the
Weighted Bipartite Matching Problem. Consider we have a bipartite graph G(A, B, E),
where A is the set of nodes corresponding to the jobs and B the set of nodes corre-

sponding to all available scheduling positions. It holds that |A| = n and |B| = nm, as

Chapter 2. Scheduling Parallel Machines 26

nm is the number all possible places a job can be scheduled on. This bipartite graph
is complete and the weight of each edge from a job j to the node (i, k) is defined to be
kp; k. It is clear now that finding a minimum weight matching on this graph imme-
diately yields a schedule of minimum objective. Here is an example for the problem of

scheduling two jobs on two machines:

M1
k=1

p1,2

M1 2p1,2
k=2

p2,2

M2
k=1 2 p2,

M2
k=2

FIGURE 2.2: Bipartite Graph Modelling Positions.

Hopefully, it is a known result that the LP-relaxation if this IP, obtained by relaxing the
values of z; ;. ; to be non-negative, has the same feasible set of solutions with the original
IP. In other words, it can be proven that the extreme points of the LP-relaxation only
correspond to integral solutions. From this fact we immediately obtain a polynomial-
time exact algorithm for R||)_ C;. Note that a well-known combinatorial algorithm for

the problem of minimum weight bipartite matching is the Hungarian algorithm [43].

2.6 Minimizing Total Weighted Completion Time of Tasks

on Unrelated Machines

As far as the problem R|| > w;C} is concerned, Hall et al.[40] developed an LP-based
%-approximation algorithm even for the presence of release dates. Instead of presenting
this algorithm, we choose to discuss a harder version of this problem. The problem we
present is that of scheduling job orders on unrelated machines under the same objective,
which was proposed in the work of Correa, Skutella and Verschae: ”The Power of
Preemption on Unrelated Machines” [44]. Because of the fact that this algorithm will
be used as a subroutine for MapReduce scheduling algorithms in the next, we are going
to use the notation from the work of Fotakis et al.: ”Scheduling MapReduce Jobs and

Data Shuffle on Unrelated Processors” [27].

In this problem, we have a set P of processors and a set J of jobs. Each job j has

a set T; of tasks and each task T} ; can be executed on processor i in p;y ; units of

Chapter 2. Scheduling Parallel Machines 27

time. We denote by T the set of all jobs’ tasks. The completion time of each job
C; is determined by the completion time of the job’s task C} ; that finishes last i.e.
C; = maxk|Tkj€T{Ck,j}. Each job is associated with a weight w; and our objective is

to minimize the total weighted completion time.

In this algorithm, which we will refer to as TaskScheduling in the rest of this reading,
we are going to schedule the tasks of jobs on exponentially growing time-intervals. For
this reason, consider a parameter 6 € (0,1) and a maximum possible value P for the time
horizon of this problem. To ensure that P is an upper bound to the completion time of
each scheduling problem of this kind we define P = ZTM o7 MaX;ep pik, j- Let L be the
smallest integer such that (140)“~! > P. We discretize the time horizon into a set of the
following intervals: £ = {[1,1], (1, (1 +8)], (1 +6),(14+6)],..., (1 + &)= (1 +0)1}.
In the following, we denote by I, the time interval ((1 4+ &)1, (1 + §)f]. We assume
without loss of generality that all processing times are positive integers. Clearly, the

number of intervals is polynomial in the size of instance and in %

We introduce a set of variables y; 1 ;, indicating that a task T} ; is completed on pro-
cessor ¢ within the interval I,. Using this notation we introduce the following linear

programming formulation:

minimize E w;C;

JjeJ

subject to: Z Yik,je = 1, VI,; €T (1)
i€EPLEL
Cj 2 O, VI €T (2)
SN (146 ik < Cry, VT, €T (3)
1€P lel

N7 pikg D Yikge < (1+0), VieP.leL (4)

Ty ;€T t<t
Pikg > (148) = yirje =0, Vie P, Ty, € T,L €L (5)
Yikje = 0, Vie P,Tp; €T, LeL

In this linear program, constraints (1) ensure that every task is completed on a processor
in some time interval. Constraints (2) assure that the completion time of a job must be
at least the completion time of all its tasks. Constraints (3) impose a lower bound on
the completion time of a task while constraints (4) are feasibility constraints indicating
that the total processing time of jobs executed up to an interval I, should be at most
(1 +0)*. Lastly, constraints (5) indicate that if a task T} ; has processing time greater

than (1 +)¢ on a machine i cannot complete its execution within the interval I.

In the algorithm TaskScheduling, we begin from a fractional solution of the LP:
(Ui ke, j,05 C_’k’j, C;). We partition the set of tasks T},j into sets S(€) = {T}; € TI(1+6)t <

Chapter 2. Scheduling Parallel Machines 28

aCy.; < (1+06)*}, where a > 1 a fixed parameter. After this, we schedule integrally on
the processors the of tasks of each set S(¢) in an increasing order of ¢ using the rounding
theorem of Lenstra, Shmoys and Tardos we have seen for the makespan minimization

on unrelated machines.

In the following, we begin the analysis of the algorithm by presenting some useful lemmas
and observations. First of all, we argue that this linear formulation, even if we restrict
the y; ;¢ variables to take integral values {0,1} is a (1 4 ¢) relaxation of the original
problem. In order to see this, take any feasible schedule. From this schedule we can
directly assign to the variables y; 1. j ¢ values zero or one depending on the interval and
processor the tasks complete their execution. Then, from the constraints (2), (3) we see
that the completion time of a job and therefore the objective function can be at most
a factor of (14 J) lesser than the optimal. As a result, this LP is a lower bound to the

optimal schedule for this problem.

For the tasks in S(¢) the following lemma holds:

Lemma 2.11. Tasks in S(£) alone can be fractionally scheduled on processors P with

makespan at most —2<(1+ 6)".

Proof. First, we need to prove that for any task T}, ; € S(£) it must hold: > ;cp > yspiq Uik jt <
1. Suppose it is not the case and Y, p dotses1 ikt > 1 then from (3) we have:

Chj > Z Z(l +0) G

1€P Lel

=D A+ Tigge+ DD 1+ ik

1€P t>0+1 1€P t<t

>3 A+ i

1€P t>0+1

> 140D ik

i€P t>0+1

> —(1+96)

Qlm

Since Ty, j € S(¢), then by definition of S(¢) this is a contradiction.

Now, using the fact that) ., 5 th“l Uikt < é, from (1) we can see that:

Zzgi,k,j,t > a; !

i€P t<L

Using these observations we can transform a ; . ; ¢ solution into y;‘: kil by setting y;‘: kit =
0fort>{¢+1 and y;k,k,j,t = %4 Uikt for t < L. We can easily see that constraints (1)

and (5) of the LP are satisfied for this transformation:

Chapter 2. Scheduling Parallel Machines 29

For (1):

* _ *
E Yikje = E Yik,jt

icPLeLl 1€P <L

= >
- a_lyz,k,],t

i€P <L

— > 7
_ o
a — 1) yl’).])
1E€EP <L
a a—1

Ta—1 «
=1

In the same way we can see that constraints (4) are satisfied if we multiply the right-hand

side of the inequality with ~%5:

DD O T e < DD (1 5)t71%gi’k’j’t

i€P lel i€P t<t

— a(i 1 Z Z(l + 5)t*1gi7k7j7t

i€P t<t

(140)*

o
-1

<

Thus, we see that tasks in S(¢) can be fractionally scheduled alone in P with makespan

at most —2(1+ 6)" and therefore the lemma holds. O]

Now, using the rounding theorem for makespan minimization on unrelated processors
we have seen in a previous section of this chapter we can turn this fractional schedule of
tasks in S(¢) into an integral one with makespan at most —2<(1+6)¢ plus the maximum
processing time of such a task. From (5) we know that this processing time is bounded

by (14 6)*. Therefore the following lemma holds:

Lemma 2.12. Tasks in S(¢) alone can be integrally scheduled on processors P with
makespan at most (=25 +1)(1+6)" . Also, by definition of S({) the completion time of
a task in this schedule is at most a(z%5 + 1)(1 + 6)Cy ;.

If we take the union of these schedules in an increasing order of ¢, by applying the

algorithm for makespan minimization on each schedule we can see that for each task

Chapter 2. Scheduling Parallel Machines 30

Ty ; € S(¢) executed on the machine ¢ it holds:

Cry € ——=(1+8) + Y (1+0)
o <t
(1 + 6)€+1 -1
1)

a ' (1 5)€+1
< —(1+ + —
_a—l(9) 1)

o' 1
:Ei7u+5ﬁ+a+5xr+®f

o' 1 ¢
= +14=)(1+
(a—l 5)(%)

=(af1+1+%x1+®u+ﬁy4

« 1 _
o1 +1+5)(1+5)Ck,j

- ‘
<
_a_1(1+6) +

< of

Since the values (Cj ;) consist a lower bound for the objective it follows that for the

produced schedule:

O < . .
Z w;Cj < Z wj %}?JX Ck.,;j
jET jET
1 _
(i 1T 1+ 5)(1 +6) Z wj nT1a>_<C'k,j
jeg wi
1 _
+1+5xr+®§:wﬂy
JET

< af

«

«

* 1+ YHa+sopT

<
a(a—l 1)

, where OPT the optimal objective value of the problem.

Choosing o = 3 and § = § the quantity o(z%; + 1+ 3)(1 +) is minimized, leading to

the following theorem:

Theorem 2.13. Algorithm TaskScheduling is a polynomial-time 277—cqopm:z:z’mation

for the problem of minimizing the weighted completion time of jobs’ tasks on unrelated

processors.

Chapter 3

Precedence Constraints and Shop

Scheduling

In this chapter we present some basic types of scheduling problems where precedence
constraints between jobs are involved. We introduce some definitions on some of the
main scheduling issues in literature concerning shop scheduling and present some known

algorithms as examples.

3.1 Chains, Flows and Shops

Before we start, let us recall the notion of precedence constraints between jobs. We say
that a job J; must precede Js if Jo cannot start its execution before the completion of
J1. In the next, we denote this fact by Ji > Jo. Precedence constraints between jobs
are very useful for modelling many real-world applications, varying from the concept of

assembly line in factories to the classic fork-join model in operating systems.

In the general case, the precedence relations define a strict partial order as the relation
7" satisfies the properties of irreflexibility, transitivity and asymmetry. Therefore,
every set of precedence constraints can be depicted as a Directed Acyclic Graph. Typical
examples of such graphs are the chain of jobs, modelling for example the assembly line

or the tree, modelling the fork-join task model.

In scheduling theory, there is a wide class of problems under the term shop scheduling.
In this shop scheduling problems, each job consists of a set of operations and each
operation has an associated machine on which it has to be processed. The target of
shop scheduling problems is to schedule the operations of all jobs in such a way, that
at most one operation of a specific job can be processed at a time. There are three

well-studied subcategories of shop scheduling: Open Shop, Flow Shop and Job Shop. In

31

Chapter 3. Precedence Constraints and Shop Scheduling 32

)
DOEORD
SANTIT

FIGURE 3.1: Examples of Chain- and Tree- Like Precedence Constraints.

the Open Shop problems the operations of a job can be performed in any possible order.
In the Job Shop problems the operations of a job must be performed in a specific order
while in the Flow Shop case for each job there is one operation per machine and the
execution order is fixed and the same for all jobs. The objective of these problems is
usually to minimize the makespan of the schedule with respect to the aforementioned

constraints.

3.2 A Greedy 2-approximation Algorithm For Open Shops

In the following, we present a 2-approximation algorithm for the problem O||Cj4,- In
this problem we have a set M of machines, a set J of jobs and a set O = {Oy,..., O}
of operations. Each operation belongs to a job j and has to be executed on a specific
machine ¢. For this problem, there is a trivial 2-approximation algorithm. This greedy
rule suggests that whenever a machine becomes idle, schedule on this machine any
available operation that has to be processed by this machine. Recall that for an open
shop problem an operation is considered to be ”available” at a time ¢ if no other operation

of the same job is running at this time.

Theorem 3.1. The greedy algorithm is a 2-approzimation for O||Craz .

Proof. The proof of this theorem follows very naturally after we define two very impor-
tant and useful lower bounds concerning open shop problems. First of all, if we denote
by p; the total processing need of the operations of a job j and define P, = max;ec 7 pj,

then it is definitely the case that Pp,q, < C;,,., Where C

rae the optimal makespan. In

the same way, if we denote as m; the total processing time of operations of all jobs that
have to be executed on machine ¢, then the for the value Il,,,, = max;caq m; it holds
Hmax S C*

max-*
Let us fix a job j whose operation o finishes last on machine i. There are two reasons

why o may not have been scheduled on the same machine a previous time moment

t: either machine i was busy at time ¢ executing an operation of another job, either

Chapter 3. Precedence Constraints and Shop Scheduling 33

another operation of j was under processing at this time by another machine. From

these observations we argue that:

Craz = Co,j <pj+m < Praz + nas < 20;1(”

3.3 Two Machine Flow Shop Makespan Minimization

In this section, we examine the two-machines case flow shop problem, which contrary to
the general case with an arbitrary number of machines, accepts a polynomial-time exact
algorithm. More specifically, we have two machines M; and M5 and set J of jobs, each
consisting of two operations, one for each machine. We denote Ojl» and O? the operations
of job j for machine M7 and M, respectively and pjl-, p? the processing times of the two
operations. For each job j, the Ojl» operation must be executed before sz-. Using the

usual notation this problem is denoted by F5||Cinaz-

The polynomial-time exact algorithm for this problem is the well-known Johnson’s Rule
[49]. This rule schedules the operations on each machine in the same job-order, making
greedy choices depending on the processing times of operations. In the following, we

describe the algorithm:

Data: Set of jobs, and processing times of operations
Result: A schedule with minimum makespan
List the processing times of all operations.

while there are unscheduled jobs do
From the unscheduled jobs, select the operation O; of a job j with minimum

processing time.

if O; is for machine M; then
| Schedule j at the first available position

else
| Schedule j at the last available position

end

end
Algorithm 1: Johnson’s Rule
Theorem 3.2. Johnson’s Rule is a polynomial-time exact algorithm for two-machine

flow shop makespan minimization problem.

Proof. First of all, it is clear that there exists an optimal schedule in which between
operations on machine M; there is no idle time. Consequently, we are searching for an

optimal schedule without idle time between O]1~S and our goal is to minimize the idle

Chapter 3. Precedence Constraints and Shop Scheduling 34

time on machine M,. Furthermore, with a simple interchange argument we can see that
there exists an optimal schedule in which the order of job operations remains the same
for both the machines. In other words, for a job 7, sz is scheduled after the execution

of Ojl- the first time machine M5 becomes available.

We prove the optimality of Johnson’s Rule by a simple interchange argument. We

classify the jobs of an instance into two sets:

e Set A: The set of jobs j, where pjl- > pjz.

e Set B: The set of jobs j, where pjl- < p?.

Suppose we have an optimal schedule that is exactly the same with a schedule produced
by Johnson’s Rule until a job ¢ and exactly after £, there are two jobs j and k that the
two algorithms have scheduled in a different order. Without loss of generality, suppose
the optimal algorithm has scheduled k after j and the Johnson’s Rule j after k. If we
denote as C’; the completion time of a job j on machine ¢ then for the optimal schedule
it holds:

Cj, = Cf +pj +pi

C,? = maX{CJZ,C;%} +pi
= max {max {C? +p?,C’} —i—p?},cgl +pjl' + P} + D
= max {max {C7 + p;,C; +pj +p3},C} + pj + pp} + Di
= max {C? + p? + p}, C} + p} + 92 + 2, C} + p} + ph + p})

If we interchange the order of jobs j and k, then in the same way it holds:

Cjt = C} +pj + ;i

C? = max {C} + pt + p3,C} + pi + vk + 93, C} + Pk + p} + 17}
Johnson’s Rule would interchange the two jobs if any of the following conditions holds:

ojandkeAandp?sz.
ojandkeBandp}cgp}.

e k€ Band je€ A.

Chapter 3. Precedence Constraints and Shop Scheduling 35

Clearly, it is always the case that C,i = le»l. All we have to do is to examine the relation

between C’,f and C’;-Z for all possible scenarios.

For the first condition, it holds p? < pi, p; > p? and p,l€ > pz. As we can see the first
terms of C,% and C']’.2 are equal. Also, the second and third term of C’J’-2 are lesser than the

third term of C’,%. In a similar way, we prove the that C,? > C;-Q for the second condition.

If the third condition holds then it is the case that p,lg < pz and pjl- > pjz. Therefore, the
second term of C']/-2 is smaller than the third term of C,% and the third term of the former

is smaller than the second term of the latter.

From the previous analysis we see that any optimal schedule can be turned into a
scheduled produced by Johnson’s Rule without loss. Consequently, Johnson’s Rule

is optimal. O

3.4 A Randomized Algorithm for the Flow Shop Schedul-

ing Problem

In this section, we present a randomized algorithm for the flow shop scheduling problem
[50] for a non-fixed number of machines. Recall that in a flow shop problem we have
n jobs and m machines. Each job has a set of m operations, one for each machine.
We denote by p; ; the processing time of the operation of job j on machine ¢ and by
Pmae = Max p; j the maximum processing time of all operations. In this kind of problems,
the operations of all jobs must be executed in a specific machine order and this order is
the same for all jobs. Therefore we can enumerate the machines without loss of generality
with respect to this order. It is well-known that the problem of makespan minimization

in flow shops is strongly NP-hard for more than two machines.

The first step of our algorithm is to divide the time domain of each machine into time-
slots of size s, where s > 2ppq.- Assuming that all operation have size at least 1, then
each slot contains at least one operation. In order for our algorithm to work, we assume
that the slots have the property of independence i.e. the order of operations that are
executed on a slot-machine pair is independent of the order on other slot-machine pairs.
For this reason, we restrict the operations of a slot not to overpass the slot boundaries
as well as the operations of a job not to change machine in the middle of a slot. Given

these restrictions we can prove the following lemma:

Lemma 3.3. Any optimal flow shop schedule with makespan OPT can be transformed

into a schedule satisfying the slotting constraints with makespan at most —>—QOPT +

S—Pmax
(m—1)s.

Chapter 3. Precedence Constraints and Shop Scheduling 36

Proof. Firstly, we divide the time domain of the optimal schedule in time-slots of size
S — Pmaz- This may probably lead to the straddling of two neighbouring time-slots of
the same machine by some operations. Now, if we increase the size of each slot by pmaq,
then we can fit these ”problematic” operations to the first slot they cross with safety.

This transformation can augment the makespan of the optimal schedule at most by a

S
S—Pmaz

the slotting transformation, we need to ensure that no job will "migrate” in the middle

multiplicative factor of In order to satisfy the second independence constrain of
of a slot. This can be accomplished if we shift all operations of a slot in machine ¢ by
1 — 1 slots. Given that we begin the numbering of machines from ¢ = 1, this can cost to

the makespan an additive factor of (m — 1)s. O

We now obtain an approximation for the flow shop scheduling problem satisfying the
slotting constraints. In this direction we define the following graph: Let G(V, E) be a
directed graph having a vertex for each pair of (time-slot,machine). We also add to the
set of vertices two nodes s; and t; for each job. As far as the edges are concerned, we
add a directed edge from each vertex («,i) to vertex (8,i+ 1), where i € {1...m — 1}
and a < . In addition, each vertex s; has edges to all vertices corresponding to the
first machine and each vertex ¢; accepts edges from all vertices corresponding to the last

machine.

Given G(V, E') we define a multicommodity flow instance, where each job j is associated
with a commodity and s; and ¢; the source and sink nodes of this commodity respectively.

If for a vertex u = (a, i) we denote by z,_ ; the flow of the commodity j, then we require

that:

Z TujPij < 8

JjeT
Given this instance, we wish to route one unit of flow for each commodity j. It is now
clear that an integral multicommodity flow for this instance corresponds to a flow shop
schedule satisfying the slotting constraints. It is a known result [41] that the feasibility of

a multicommodity flow can be determined in polynomial time using linear programming.

With the use of this structure, in our algorithm we try to ”guess” the number of time-
slots required by the schedule. Clearly, the infeasibility of a multicommodity flow implies
that our guess is too small. If we denote by k the number of slots for which the multicom-
modity flow instance is feasible then for the minimum makespan 7' of the corresponding

flow shop schedule under slotting constraints it is the case that 7' > (k — 1)s.

At this point, we are ready to describe the algorithm Random-FS. First, we find the
minimum number of slots, where the corresponding multicommodity flow instance is
feasible. Let F' be this flow, then in F', we define the weight of a commodity j on an
specific path from s; to ¢; to be the flow of this commodity passing through this path.

Chapter 3. Precedence Constraints and Shop Scheduling 37

Clearly, the total weight of all paths corresponding to a specific commodity is one. Then,
Random-F'S picks for each commodity one path with probability equal to its weight.
The set of n picked paths correspond to an integral multicommodity flow and therefore
a slot constrained flow shop schedule, which may be infeasible in terms of time slot
capacity. In other words, in this randomized rounded flow, for the sum of flow passing

through a time-slot it may hold that: .. 7 zy jpij > s.

For the algorithm Random-FS, the following theorem can be proven:

Theorem 3.4. Random-F'S is a polynomial time randomized algorithm for flow shop

scheduling which with probability at least % finds a schedule with makespan at most:

2(1 4 0)OPT + m(1 + d)pmaz log. 2m(n +m — 1)

146)(1+9)
C = (6)6

, where and § a constant chosen so that ¢ > 1.

Chapter 4

Scheduling MapReduce Jobs
Minimizing Total Completion

Time

In this chapter, we survey some known results on the problem of scheduling MapReduce
jobs. The algorithms we discuss in this part were mainly presented in the work of
Moseley et al. ”On Scheduling Map-Reduce Jobs and Flow-Shops” [24] and include
online and offline algorithms for scheduling MapReduce tasks or identical as well as

unrelated parallel machines minimizing the total flow time.

4.1 The General Model

In the next sections, unless stated otherwise, we are going to alternate the notation as
it follows. Let J be the set of MapReduce jobs. In this setting, a job consists of two
set of tasks, the map and the reduce set. Tasks in each set can run in parallel while the
two sets must run sequentially. In other words, in order to start the processing of any
reduce task, all map tasks of the same job must have completed their execution. Let
J € J denote a generic job. In this case, {J"} and {J!} denote the sets of map and
reduce tasks of J. Let p,(e) denote the processing time of a task or job on machine i,
given that we may have a single task case if {J™} and {J]'} are singletons or multiple

task case elsewhere.

Throughout this section we use b € {m,r} to capture both map and reduce related
statements. Let J%* = argmax; p(J?) the task with maximum processing time in a b-
set of tasks and let J* = arg max{p(J™*), p(J"*)} be the task with maximum processing

time in all sets.

38

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 39

Moreover, let a; the time of arrival of job J. Given a schedule o of jobs, let s, (e) denote
the starting time of a job or task in o and C,(e) the completion time respectively. We
denote by Pa both the set and the number of map machines and by Pr the set and

number of reduce machines respectively.

We define the flowtime of a job J, with respect to a schedule o, to be flow,(J) =
Co(J) —ay. Let flow, = > ;¢ 7 flow,(J) be the total (average) flowtime of o. Note here
that for the offline case where jobs are available from the beginning, thus ay = 0,VJ € J,

the total flowtime is equal to the total completion time of a schedule.

A schedule o is called viable in the MapReduce setting if all map (resp. reduce) tasks
of a job J are schedule only on map (resp. reduce) machines and all map tasks of a job
J must have completed their execution before the starting of a reduce task of the same
job. Also this schedule is called non-migratory if each task is processed by exactly one

machine.

4.2 Offline Algorithms

In this section we present two algorithms for scheduling offline MapReduce jobs on
identical and unrelated machines respectively. The objective for both algorithms is to
minimize the total completion time. The produced schedules in every case are viable

and non-migratory.

4.2.1 Identical Machines

In order to create an algorithm for the identical machines case, we firstly simulate the
schedules of map tasks alone (resp. reduce tasks alone), on a single Pys-speed (resp. Pg-
speed) machine. Using the results of these simulations we create a viable MapReduce

parallel schedule with the assistance of the MR-Identical algorithm.

We claim that if we use the Shortest Remaining Processing Time Rule (SRPT) for
simulating schedules oj; and op the algorithm above produces a MapReduce schedule
which is a 12—approximation for the problem of minimizing total completion time. In

order to prove this claim it is crucial to verify the correctness of the following lemma:

Lemma 4.1. Given schedule o, and o, there is a viable, non-migratory schedule o
such that for all jobs J it is the case that Cy(J) < 4max{CZ" (J),C; (J),p(J*)}.

Proof. A useful observation is that for any task J? that was available for scheduling
by our algorithm by time a,(J?) it holds that C,(J?) < a,(J?) + 2w;. Assuming the

contrary we can see that by definition of width, in the time interval [a(J?), Cy(J?) —

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 40

1: Simulate the schedules o, of only the map tasks on a single Pj;-speed machine
and o, of only the reduce tasks on a single Pr-speed machine.
wy e max{C2, (7). C5, (1), p(J")}
for each job J € J by w; non-decreasing do
for each map task J/™ of job J do
Assign J™ to the least loaded machine
end for
for each reduce task J; of job J do
Let x be the earliest available reduce machine
if x is available before time w; then
Idle x till time 2wy
end if
Assign J| to x
13: end for
14: end for

I
e

Algorithm 2: MR-Identical

p(J*)], only tasks of width at most w; are executed, representing a total volume of work
strictly more than Pyw;. However, since o, and o, are simulated by a single Py;-speed
machine and a single Pr-speed machine respectively this implies that o, must complete

strictly more than P,w; volume of work by time wj, leading to a contradiction.

As we can see the algorithm schedules map task in a non-decreasing order of wjy non-
preemptively to the so-far least loaded map machine. Therefore, since for all map tasks

as(J]") = 0, from the previous observation it is the case that Cy(J]") < 2w;.

For the reduce tasks, by definition of the algorithm, the reduce tasks of a job of width
wy are not consider for scheduling before time 2w ;. Again, in the produced schedule, the
reduce tasks are scheduled on reduce machines only in a non-preemptive, non-migrating
way. By the previous observation, if we set a,(J/") = 2wy then it is the case that

Co(J) = C5(J) < dwy = dmax{C (J), C5 (J),p(J*)}. O

As we know, the SRPT rule is optimal for the average flowtime (completion time) for
the single machine case where there is one task per job and no precedence constraints.
Since having more than one task per job is irrelevant in our case, the total completion
time of only map and only reduce on a Pjs-speed and a Pgr-speed respectively consist
lower bounds for our objective. Let OPT denote the optimal schedule. Then it is the
case that max{ flow,,,, flows,} < flowopr. Also, an obvious lower bound to the total
completion time is the sum of the processing times of the ”largest” tasks of each job.

Thus Y~ ;c7p(J*) < flowopr. Keeping these in mind and using the previous lemma

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 41

we can see that:

flow, = Z Co(J)

JeJg
<> dmax{C (1), Ch (), p(J*)}
JeJg
<4 cr I+ Y.)+ > pr)
JeJ JeJ JeJ
= 4(flow,,, + flows, + > p(J*))

JeJ
< A(flowopr + flowopr + flowopr)

<12 Z Copr
JeJg

Theorem 4.2. There exists a non-migratory 12-approximation algorithm for flowtime

(completion time) in the offline, identical machines, multiple task, MapReduce setting.

4.2.2 Unrelated Machines

We now turn our attention to the unrelated machine setting. In this problem, restricting
ourselves to the single task case, we work in a quite similar way as in the identical machine
case. First, we simulate schedules o, and o, of only map and only reduce tasks on P,
and P, machines respectively. Given these schedules we again define the width of each
job as wy = max{Cy,, (J),Cs.(J)}. In this case, the assignment of tasks to machines
is maintained from schedules o,, and o, to . The algorithm works as follows: first we
reorder the map tasks on each machine in a non-decreasing order of w;. For the reduce
tasks, on each time and on each reduce machine, we schedule the available reduce task
with the smaller width. Similarly to the identical machines case the following lemma

gives a generic lower bound to the completion time of each task in o.

Lemma 4.3. For any task J° that becomes available at time a,(J?) it holds that Cy(J%) <
ao (J°) 4+ wy.

Proof. Let us assume the contrary: there exists a job J assigned to a machine ¢ such
that Cy(J®) > a,(J®) +wy. Then in the time interval [a,(J°), C,(J?)], by definition of
width and since there are no idle times, machine ¢ processes more than w; units of work
of tasks with width at most wy. This is a contradiction since it would imply that oy

processes strictly more than w; units of work by time w;.]

Using the previous lemma we can now prove the following theorem:

Theorem 4.4. There exists a non-migratory 6-approrimation algorithm for the flowtime

(total completion time) in the offline, unrelated machine single task MapReduce setting.

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 42

Proof. We can see that a,(J™) = 0 for all map tasks and also a,(J") = max jme j{Cs(J™)} <
wy. Applying the previous lemma we can prove that C,(J) = C,(J") < 2wy.

In [51], Skutella presented a %—approximation algorithm for minimizing total completion
time on unrelated machines, where we have single-task jobs and no precedence con-
straints. Therefore, if we use this algorithm to simulate schedules o, and o, we see that

2 max{ flows,,, flows, } < flowopr. Thus:

flow, = Z Cy(J)

< 2(flowy,, + flow,,)

< 6flowopr

4.3 Online Scheduling

We turn our attention now to the case of scheduling online MapReduce jobs on iden-
tical and unrelated machines respectively. The objective for both algorithms is, again,
to minimize the total completion time with the creation of viable and non-migratory

schedules.

4.3.1 Identical Machines

In the identical machine case, we consider the online scheduling of a fixed sequence of
jobs. Like the offline case, we simulate schedules o,, and o, on a single Pas-speed and
a single Pr-speed machine respectively. For this case, we are going to limit ourselves
to a simple presentation of the algorithm and a brief proof sketch. The analysis of
this algorithm is quite technical and the simple ideas used will be demonstrated in the

analysis of the unrelated machine case.

As we have stated before, the algorithm firstly simulates the online schedules o, and o,.
After the simulation, the width of a job .J is defined as w; = max{(max{CZ" (J),C; (J)}—
ay),p(J*)}, where ay the arrival time of a job J and p(J*) the processing time of the
larger task of this job. A job is said to be in class k if wy € [2%,281). Let U";"(t)

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 43

be the total processing time of map tasks in class k assigned to the map machine x by
time t. In the same way, let U;nk’m(t) denote total processing time of reduce tasks in
class k assigned to the reduce machine x by time ¢. Schedule o is created by the online

algorithm OMR-Identical(t). Moseley et al. [24] proved the following lemma for

1: Simulate the schedules o, and o;,.
2: if t is the first time all map tasks for job J are finished in ¢, and all reduce tasks
for job J are finished in o, then
Let k be J’s class.
for each map task J/™ of job J do
Assign J/™ to the map machine z with the minimum U”}*(¢).
UL (t) « UZ(t) + p(J7)
end for
end if
if t is the first time that all map tasks for job .J are finished in schedule ¢ then
10: Let k be J’s class.
11: for each reduce task J; of job J do

12: Assign J! to the reduce machine x with the minimum U/ (t).
B UTE() e URE() + p(])

14: end for

15: end if

16: On each map and reduce machine, run the task assigned to that machine such that

its associated job has minimum width.
Algorithm 3: OMR-Identical(t)

OMR-Identical:

Theorem 4.5. Given online schedule o, and 0., OMR-Identical produces a viable,

online, non-migratory (1 + €)-resource augmented schedule o such that C,(J) < aj +

% max{(max{C7"' (J),C; (J)} —az),p(J*)}.

Now, if we simulate o, and o, using the SRPT rule and following the analysis of the
identical machines offline case, then applying the above theorem we can easily prove the

following.

Theorem 4.6. OMR-Identical(t) with oy, and o, simulated using SRPT rule yields
a non-migratory (1 + €)-speed O(e%) competitive algorithm for the average flowtime in

the online, identical machines, multiple task, MapReduce setting, where 0 < e < 1.

4.3.2 Unrelated Machines

In this setting we again consider the single task case, where jobs arrive over time and a
the arrival time of a job J. In this case, our algorithm simulates schedules o/, and ¢, in an
online way. We define as width of a job the quantity wy = max{C,,, (J),Cs, (J)} —ay;.

Our algorithm, as expected, creates a schedule o by scheduling at each time ¢ on a

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 44

machine ¢ the task of the available job with minimum width. The resulting schedule is

clearly online, non-migratory and viable.

It has been proven [52] that there is no online algorithm with bounded competitive
ratio for the objective of flowtime. Therefore, like the previous case, we use resource
augmentation, giving to our schedule a minimum advantage of € over the adversary.
The following lemma is a first step towards a (1 + €)-speed O(e%)—competitive online

algorithm.

Lemma 4.7. Let a > 0 and suppose the task J°, b € {m,r}, is available for scheduling
by our schedule o at time ay + awy. The it is the case that C’U(Jb) <aj+ %an.

Proof. Suppose the job J? is assigned to a machine z in o3,. Let t;, be the earliest time
such that every task processed by machine z in o during the interval [t, C,(J°)] has
width at most wy. Given that J? is available at time aj + aw; and from the fact that
machine = processes at any time the available jobs of minimum width, it must be the

case that ¢, < aj+ awy.

Also, it must be the case that any task J’ scheduled during [t,, C,;(J°)] arrived at earliest
tp, — awy. This is because J' must have wy < wy as it is scheduled before J° by our

algorithm. Therefore, ay >ty — awy > t, — awy.

Now, given that in schedule o machine x has speed (1+¢), then it produces a total work
of (1+¢)(Cy(J*) —t3). Then, it must hold that in ¢;, machine must complete at least

this amount of work during the interval [t, — awy, Cy(J?)]. Therefore:

, given that 0 < e < 1. O

We now prove the following theorem:

Theorem 4.8. Given online non-migratory schedules oy, and o,, there is a viable,
online, non-migratory (1 + €)-resource augmented schedule o such that all tasks for job

J are completed by time ay + %5 (max{Cy,, (J),Co,(J)} — ay)

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 45

Proof. Given that that map task J,, is available to o for scheduling at time aj + %w 7

then from the above lemma we can see that by setting oo = 1 it holds that:
m 2
Co(J™) < ay+ —wi

Similarly, given now that all map tasks of a job J must have complete their execution
in ¢ by time a; + %wJ, then by setting again a = % for the completion time of tasks J"

and therefore for the completion time of job J it is the case that:
4
Co(J) =Co(J™) S ay+ 5wy
€
O

Chadha et al. [53] proved a (1 + €)-speed O(E%)—competitive online non-migratory algo-
rithm for the average flowtime on unrelated machines, when there is only one task per
job and no precedence constraints. With the use of their algorithm we can prove the

following theorem:

Theorem 4.9. There exists a non-migratory (1 + €)-speed O(ﬁ%)—competitive online
algorithm for the average flowtime objective in the online, unrelated machines, single

task, MapReduce setting.

Proof. Given the result in [53], we can generate schedules o, and o, in a way such that

if we denote by OPT the optimal flowtime it is the case that:
Q(e®) max{ flow,,,, flowy,} < OPT

By applying the previous theorem we can see that:

flowy <Y " (Co(J) — ay)

JeJ

SéZwJ

JeJ

é Z(maX{Cam(J), Co.(J)} —ay)
JeJg

4
= Z max{Cy, (J) —as,Cs.(J) —as}
JeJg

IN

IN

< ;iz S (Co(T) = ag + Co, () — ay)
JeJ

4
S ?(flowo'm + flowo'r)

< 0(6l4>opT

Chapter 4. Scheduling MapReduce Jobs Minimizing Total Completion Time 46

Since we can simulate 0, and o, with the algorithm of Chadha et al. only with a

minimum advantage € over the adversary, the theorem follows.]

Chapter 5

Scheduling MapReduce Jobs and
Shuffle Tasks

In this chapter, we present a constant approximation algorithm for the MapReduce
scheduling problem on unrelated processors, where the objective is to minimize the
total weighted completion time of jobs. To the best of our knowledge, this problem
formulation is the most general version of MapReduce scheduling so-far, as we enable
each job to have an arbitrary number of map and reduce tasks. Furthermore, we propose
a fast heuristic for the same problem and we include in our analysis the modelling of

data shuffle, i.e. the overhead of the communication cost between map and reduce tasks.

5.1 A constant approximation algorithm.

In the following we present Algorithm-MR for the problem of minimizing total weighted
completion time of MapReduce tasks on unrelated machines. Before we begin the presen-
tation we introduce some notation: We denote by M and R the sets of map and reduce
tasks respectively and by Paq and Pr the disjoint sets of map and reduce machines.
The notation 7y, ; represent the task k of a job j and p; j ; represent the processing time

of T ; on machine 1.

Algorithm-MR works as follows. At first, the algorithm schedules separately the map
and reduce tasks on the corresponding machines, using the algorithm TaskSchedul-
ing as a subroutine. Recall from chapter 2 that the algorithm TaskScheduling is a
%—approximation algorithm for the problem of scheduling jobs with multiple tasks on
unrelated machines in order to minimize the total weighted completion time. We denote
by or and o the two produced schedules and by ng/’ and C’,‘?; the completion time
of a map or reduce task 7y ; in the respective oy, schedule, where b € {m,r}. After the

simulation of map and reduce schedules, we use the completion times of jobs in these

47

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 48

schedules to merge them, keeping a constant approximation guarantee using a simple

routine. In this direction, we define for each job the quantity w; = max{C]‘-’M, C;R}.

1: Run TaskScheduling on both the sets of tasks M and R creating schedules o
and o respectively.

2: Assign each task on the same processors as they are in schedules o and og.

3: for each job j € J do

4 Fix wj = max{C7™,C®} to be the width of job j

5: end for

6: for each time ¢ where a processor ¢ € P becomes available do

7. if i =Ppq then

8: Among the unscheduled map tasks in ¢, schedule task 7 ; € M with the
smallest w; with processing time p; ;. ;. Let C} ; be the completion time of task
Trod-

9 else

10: Among the unscheduled reduce tasks, which have w; > ¢, schedule task
Tk,; € R with the smallest w; with processing time p; ;. ;. Let C} ; be the
completion time of task 7Ty ;.

11: end if

12: Let Cj; be the completion time of task 7Ty ;.

13: end for

14: for each job j € J do
15: Compute the completion time Cj = maxy, j/eR\jfzj{Ck,j’}'

16: end for
Algorithm 4: Algorithm-MR

At this point, we are going to prove the following theorem about Algorithm-MR:

Theorem 5.1. Algorithm-MR is a 5/-approximation algorithm for the MapReduce

scheduling problem of minimizing total weighted completion time on unrelated processors.

Proof. In the following, we denote by () the completion time of a job produced by
Algorithm-MR, by C]OP T the completion time in an optimal schedule, by CJ.OPTM and
C’]-OPTR the optimal completion times for the problems of scheduling only map and only
reduce tasks respectively and by C;M and C;R the completion times for the schedules

oy and og produced using TaskScheduling.

Clearly, the optimal solutions to the problems of scheduling only map or only reduce

tasks consist lower bounds to the optimal solution of the problem. Therefore, it holds:

~OPTy ~OPT
> wiCy <y wiC
JjeJ JjeJ

OPT, OPT
S w P < 3 i
JjeT JjeJ

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 49

Directly from the analysis of TaskScheduling on chapter 2 it follows that for schedules

om and o it is the case:

27 OPT.
D Wil < 5) wi P

JjeET JjeT
or 27 OPTx
D wiCi < 5) wiC
jegJ JjeTJ

For the merging routine, we first need to prove that the produced schedule is a non-
preemptive one. While for the map tasks this argument is obvious, for the reduce tasks
we need to be more careful. The only way we can have preemption during the execution
of a reduce task Ty ; is the case where another task 7y j» of width less than w; becomes
available. However this cannot be the case, because by definition of the algorithm, 7y

should be available before 7;, ; and therefore should have been scheduled first.

Furthermore, we can prove that a map task of width w; is completed before time w;.
Suppose this is not the case and a map task, finishes its execution at time ¢t > w;. Then,
it should be the case that during the interval [0,¢], all machines are busy processing
tasks of width less than w;. This is a contradiction, as in this case the machine ¢ where
the task is scheduled should process more than w; units of work by time w; in schedule

OM-

In the same way, we can prove that a reduce task of width w; that is available for
scheduling at time 7 on processor « must complete its execution by time at most r + w;.
Suppose that a reduce task finishes its execution at time ¢ > r+w; on processor 7. Then,
in the interval [r,t] on processor i there is not idle time and only tasks of width at most
w; are executed. This is again a contradiction as in this case in schedule o by time at

most w; there must have been processed more than w; units of work by the processor i.

A useful remark is that even for the case of non necessarily disjoint map and reduce

processors the same analysis applies if we define w; = C’J‘-’M + C]‘-TR.

Now, if we set r = 0 for the map tasks it follows that in the produced schedule o, for
a map task 7 ; it holds that: Cj; < w;. Similarly, since all map tasks of a job of
width wy have completed their execution by time wy, then the reduce tasks of the same
job are released by time r < w;. Using the previous argument we can see that for the

completion time of these reduce tasks it is the case that Cj, ; < 2w;.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 50

Therefore, for the resulting schedule it must be the case that:

> wiCy=> " w; 5 e :j{Ck,j'}

JET JjeT k.d
S Z wj2wj
JjeT
=2 Z wj max{C7*, C7*}
Jjeg
<2 wi(CJM+ CIR)
jeT
27 opTy | 27 OPT
<25 Y w4y w7
JjeJ jeJ
<54 w,COPT
JjeJ
With this analysis we conclude that this Algorithm-MR is a polynomial time 54-
approximation for the problem of scheduling MapReduce tasks on unrelated processors

minimizing the weighted completion time. O

5.2 Data Shuffle

An important aspect affecting the performance of MapReduce systems is the overhead
of data transmission. For this reason, we include in our model another phase which
we will refer to as Shuffle phase. Shuffle phase takes place between the execution of
map and reduce phases. In this phase, the key-value pairs are transmitted from map
to reduce tasks of each job. In this section, we are going to extend the analysis of our
algorithm in order to include shuffle tasks, modelling in this way the time overhead of
data transmission. In the following we will refer to this problem as MapShuffleReduce
problem.

In this extended model, the following properties must hold:

e Each shuffle task can start its execution only after the completion of the corre-

sponding map task.

e For every map task the number of shuffle tasks with produced data is equal to the
number of reduce tasks of the same job. Of course, when there is no data to be
transmitted between a map and a reduce task, the corresponding shuffle task has

zero processing time.

e The shuffle tasks must be executed non-preemptively.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 51

e The processing times of shuffle tasks transmitted to the same reduce processor

cannot overlap with each other.

In order to include the shuffle tasks we introduce some additional notation. We introduce
a set of shuffle tasks 7 ;, where 1 <r < |7 ; € R| for each map task 7y ; € M of job
j. We denote by H, the set of shuffle tasks. Each of these tasks is associated with a
transfer time ¢, j, which is independent from the assignment of the involved map and

reduce tasks to processors.

In the following, we discuss two different variations of the MapShuffleReduce problem

and present two constant approximation algorithms for both.

5.2.1 The Shuffle Tasks are Executed on their Reduce Processors

In the first case, we consider the problem where the shuffle tasks are executed on the
same reduce processor as the corresponding reduce task. In this case, all we have to do
is to increase the processing time of each reduce task by the sum of the processing times
of the correlated shuffle tasks. For this reason, we consider a reduce task 7., € R of a
job j and let s7 = {7, ;|7 ; € M}, the set of shuffle task that must complete before
7 starts its execution. In other words, we can reformulate the input in the following

way. For each reduce task 7, € R running on processor i we set:

/
Dirj < Pigj + E brk,j
Trk, €55

For this new input, we can now use Algorithm-MR to obtain a feasible schedule.
The question here is whether the approximation factor of 54 we have proved for the
simple MapReduce problem holds also for this case. It suffices to show that there
exists an optimal schedule for this version of the MapShuffleReduce problem, where the
shuffle tasks are executed on the reduce processors exactly before the execution of the

corresponding reduce task. We show this in the following lemma:

Lemma 5.2. There is an optimal schedule of shuffle tasks and reduce tasks on processors
of the set Pr such that:

(i) There are no idle periods.

(ii) All shuffie tasks in s% are executed together and complete exactly before the reduce

task T, ; starts its execution.

Proof. Consider a feasible schedule ¢. In this schedule there are three cases when idle
time can occur: either between the execution of two shuffle tasks or two reduce tasks,

either between a shuffle and a reduce task. In the first two cases, since there are no

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 52

precedence constraints between shuffle or reduce tasks and given the fact that we as-
sume that these types of tasks are available from time zero, skipping the idle time can
only reduce the completion time of these tasks and therefore the objective value of our
problem. For the third case, it suffices to notice that since the completion of each shuffle
task must precede the completion of the corresponding reduce task, skipping the idle

time again can only reduce the objective function of o.

In order to prove (ii), consider a feasible schedule o violating this condition. Consider
a task 7,; € R to be the last reduce task of a job j completed on a processor i € Pg.
Then, if we fix its completion time and schedule all the corresponding shuffle tasks to be
executed just before 7, ; in an arbitrary order, then it is easy to see that the completion
time of j remains unchanged, while the completion time of the tasks 7, y € R preceding
7r; on the same processor may decrease. Thus, it follows that any feasible schedule

/

o of the reduce and shuffle tasks can be transformed into a schedule ¢’, satisfying the

properties of the lemma. O

From the previous lemma we see that a schedule without idle times and with the shuffle
tasks executed just before the reduce task consists a lower bound for every feasible

schedule ¢ and thus for the optimal schedule.

Therefore, the following theorem holds:

Theorem 5.3. There exists a 54-approximation for the MapShuffleReduce scheduling

problem, when the shuffle tasks are executed on reduce processors.

5.2.2 The Shuffle Tasks are Executed on Different Input Processors

In the second variation of the MapShuffleReduce problem we discuss, the shuffle tasks are
executed on a set of different ”input” processors Ps. When the shuffle tasks are executed
on different processors, we prove that we lose only a factor of 2 in the approximation
ratio of the ShuffleReduce schedule.

Lemma 5.4. Consider two optimal schedules o and o’ of shuffle tasks and reduce tasks
on processors of the set Pr U Ps and on processors of the set Pr respectively. Let also

,ﬂij , glj be the completion times of any reduce task Ty j in o and o’ respectively. Then,
it holds that Cf; < 2CF .

Proof. Consider an optimal schedule ¢ on the Pr U Ps processors. We fix a reduce
task T ; € R of a job j, the reduce processor it € Pr where it is executed on ¢ and
the corresponding input processor i° € Ps. Let B (k) the set of reduce tasks that are
executed on i before Ty ; and Sh(k) the set of shuffle tasks that are executed on i¥

corresponding to the reduce tasks of the set B(k) U {7y ;}.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 53

In o it is the case that:

Crj=max{ Y pirpg D teis)

E,jEB(k‘) E,l’jESh(k)

Now, we transform o into a new schedule ¢’ by maintaining the order and assignment
of reduce tasks and by scheduling the shuffle tasks of each reduce task on its reduce
processor and exactly before its starting. In this schedule, for the completion time of a

reduce task 7y ; it holds:

!
Cli= > pirpi+ D, tery <2CF;
Tr,;€B(k) Tq,1,; ESh(k)

O]

Using this lemma we see that we can schedule only map tasks with a %—approxima‘cion
factor and the shuffle-reduce tasks with an approximation factor of 27. Now applying

the same analysis as for Algorithm-MR the next theorem follows:

Theorem 5.5. There exists a 81-approximation for the MapShuffleReduce scheduling

problem, when the shuffie tasks run on independent 7input” processors.

5.3 A Greedy Heuristic

The time complexity of Algorithm-MR combined with TaskScheduling is clearly
dominated by the time needed for the optimization of the linear programs. In this section
we present a natural greedy heuristic not burdened by any LP solving complexity. In

the following, we will refer to this heuristic as Greedy-MR.

In order to find a ”satisfying” solution to the MapReduce problem, there are two things
one must take into account. The fair load-balancing of tasks to processors and the
efficient sequencing of task in every processor are both crucial aspects for the quality of
a schedule. Algorithm Greedy-MR creates a feasible schedule by separating the load-
balancing from the sequencing nature of the problem and by using known ”best-effort”

heuristics for the optimization of each one.

As we can see the algorithm proceeds in two basic steps: the load balancing and the
sequencing. The idea in the assignment part is based on the work of Aspnes et al.
”On-line Routing of Virtual Circuits with Applications to Load Balancing and Machine
Scheduling” [54]. Using a parameter « € (0,1) for tuning the sensitivity of the assign-
ment, each map or reduce task is assigned to the map or reduce machine respectively
that minimizes the quantity o O+Piki — A" where b € {m, r} and A®(i) the current

load of a map or reduce machine 3.

Chapter 5. Scheduling MapReduce Jobs and Shuffle Tasks 54

Greedy-MR: Creates a fast feasible schedule for the MapReduce problem.

1: Fix a parameter o € (0,1)
2: Take an arbitrary order O of the jobs.
3: Let AP(i) be the current load of a b € Py, Pr processor. In this phase all these
variables are equal to zero.
4: for each job j € O do
for each task 73 ; € M of job j do
Assign Ty, j to the processor ¢ such that

. . M (; . . M (;
i = argminep, {a® OFPiri — oA O

7: AM(Z) — AM(Z) + Dik,j
. end for
for each task 7;; € R of job j do
10: Assign T, ; to the processor 7 such that i = arg miniepR{aAR(i)+pi,k,j — aAR(i)}
11: AR(G) « AR(D) + pig
12: end for
13: end for

14: Reorder the tasks in each processor using the following rule:
15: for each job j € J do
16: Let pg; be the processing time of a task on the processor it has been assigned.

17: Define the quantity w; < Y)
4 Y i 27, jeM PRI, eR Phy

18: end for

19: for i € Py do

20: Reorder the tasks assigned to 4 in a non-increasing order of wj.

21: end for

22: for ¢ € Pr do

23: Reorder the tasks assigned to 7 in a non-increasing order of w;, with respect to
the precedence constrains emerged by the completion of map tasks.

24: end for
Algorithm 5: Greedy-MR

After the assignment, the algorithm proceeds with the sequencing of tasks on each

processor using a simple rule. For the tasks of job j we define the quantity w; <«
wj

27, jeM P2, eR Phi

the assignment. We then schedule the map tasks of each map processor in a non-

, where py ; the processing time of a map or reduce task given

increasing order of w;. After this, we schedule the reduce tasks of each reduce processor
again in non-increasing order of wj, taking into account at each time ¢ only the reduce
tasks that have been released. Recall that in the MapReduce setting, by "released” we
refer to the tasks of jobs whose map tasks have already complete their execution. The
sequencing part of Greedy-MR uses the same idea as the well-celebrated Smith Rule
whose optimality is known for the single machine context. In this direction, we try to
schedule jobs of high weight first while we schedule jobs of high accumulative processing

time last.

Chapter 6

Experimental Evaluation

At this point, we present the experimental evaluation of the MapReduce scheduling al-
gorithm we present in the previous chapter. The study of the ”empirical” approximation
ratio of the algorithm, i.e. how the algorithm performs on "normal” inputs, is the main
contribution of this thesis. In this chapter we describe implementation issues, different
models of inputs and technical information. We close this thesis with the presentation

and analysis of the results.

6.1 Experimental Experience

In order to estimate the performance of Algorithm-MR we compare the produced
objective value with the solution produced by the heuristic Greedy-MR as well as
with a lower bound derived from an LP-relaxation for the combined case of map and
reduce tasks. This comparison was performed for a fixed number of disjoint map and
reduce machines and a fixed number of map and reduce tasks per job. The parameters of
the problem we experiment on are the number of jobs and the distribution of processing

times.

More specifically, for the experiments we consider a fixed number of 40 map and 40
reduce machines. Fach job has a fixed number of 30 map tasks and 10 reduce tasks.
The weight w; of each job j is selected uniformly at random from the interval [1,|7]],
where | 7| the total number of jobs. We experiment for a varying number of jobs from
5 to 50 increasing the number each time by 5 jobs. For each possible configuration of
the problem we run ten experiments using ten randomly generated instances with these

configurations.

55

Chapter 6. Ezperimental Evaluation 56

6.2 Lower Bound

In order to estimate the empirical approximation ratio of the two algorithms we create
an LP formulation similar to the one of algorithm TaskScheduling but for the mixed
problem of map and reduce tasks. Again, we denote as £ = {[1,1], (1,(1 +)], ((1 +
§),(L+8)2,..., (1 +8)F 1 (14 6)}, where (1 + §)* is an upper bound to the time
horizon of any possible MapReduce schedule. Recall that we denote as Pys and Pgr the
map and reduce processors respectively and with M and R the set of map and reduce

tasks.

The lower bound is computed using the following LP:

minimize E w;C;

JjeTJ
subject to: Z Yikjt > 1, VT, € M (la)
1EP A LEL
Z Yikje = 1, VT, € R (1b)
i€Pr L
Cj 2 Chj, VT, € R (2a)
Crj > Comj+ D D PikjYikijt Vj € T VT € R, VT, € M (2b)
i€PRr LeL
> 1 +0) ke < Chys YT}, € M (3a)
i€Pp LEL
Z Z(l + 5)£_lyi,k:,j,€ < Ckj, VT ; € R (3b)
1€EPR LEL
¢ .
D ik) Yikge < (1+0) Vi€ Pl € L (4a)
TkijM t<t
7 Pikg Y Yikge < (146" Vi € Pr, (€ L (4D)
Ty ;€ER t</t
Pikg > (14+0)" = yirje =0, Vi€ PuUPR, T € MUR, L e L (5)
Yik,je = 0, Vi€ PuUPR,Tp; € MURLE L

Clearly, this linear relaxation consists a lower bound to the MapReduce problem. The
role of the constraints is the same as in the LP of the TaskScheduling algorithm.
Again here, constraints (2a) denote that the completion time of a job is the maximum
completion time of its reduce tasks while constraints (2b) denote the precedence con-
straints of between map and reduce tasks. The term ZiEPR > ver Pik,jYik,je added to
the completion time of each map task is in fact the ”squashed area” lower bound to the

execution of a reduce task.

Chapter 6. Ezperimental Evaluation 57

6.3 Processing Time Distributions

For the sake of the experiments, we model the processing time of tasks using two different
approaches: the Uniform or Uncorrelated distribution and the Processor-Job Correlated

distribution.

In the first uncorrelated case, the processing times {p; j ; }iep,, of the map tasks T}, ; €
M of each job j € J are selected uniformly at random (u.a.r) from the interval [1,100].
In the same way, the processing times {p; 1 j }iepr of the reduce Tasks are set to thrice

a value selected u.a.r from [1,100] plus some "noise” selected u.a.r from [1,10].

In order to capture the issues of data locality on machines as well as the mean processing
time of tasks of different jobs the need for a more sophisticated distribution of processing
times is exigent. For this reason, in the processor-job correlated case [55] the processing
times {p; k. j }icp,, of the Map tasks T} ; € M of each job j are uniformly distributed in
[; B, ;B + 10], where o , 5; are selected u.a.r. from [1,20], for each processor i € M
and each job j € J respectively. As before, the processing time of each reduce task is
set to three times a value selected u.a.r. from [a;0;, ;854 10] plus some "noise” selected

u.a.r from [1,10].

Note that in both cases the rule of thumb of three times more processing time require-
ment on average for the reduce tasks is based on the model of Chang et al. in ” Scheduling

in mapreduce-like systems for fast completion time” [21].

6.4 Shuffle Tasks

Apart from the two aforementioned processing time distributions, we include in our
experiments a third set of benchmarks, modelling the existence of shuffle tasks. In this
case, the processing times of map and reduce tasks follow the processor-job correlated
distribution while for each possible pair of map and reduce task of a job j there exists
a shuffle task with specific transfer time. This processing time of the shuflie task is
equal to %—Oﬁj. Recall that j3; is a job-specific value selected u.a.r from [1,20]. In our
experiments we examine the case where shuffle tasks are executed on the same reduce
processor as the corresponding reduce task and exactly before its execution. For this
reason, we compare the performance of algorithms Algorithm-MR and Greedy-MR
with the lower bound, after we increase the processing time of each reduce task by the

sum of processing times of the shuffle tasks.

Chapter 6. Ezperimental Evaluation 58

6.5 Implementation

In the following, we describe in a few words the implementation of the algorithms we
compare, Algorithm-MR. and Greedy-MR.

As we can see in figure for the Algorithm-MR, the "main” script begins with the
input reading and the initialization of variables. After this, the TaskScheduling sub-
routine is called two times, one for the map and one for the reduce tasks of the instance.
Given the two produced partial schedules, the script calls the Merge subroutine in order

to combine the two schedules.

TaskScheduling

Solve LP —— 5 intervakindexed
LP formulation

Algorithm-MR parate tasks into groups

I feasibility LP for
Integrally assign tasks to ——» makespan

processors minimizing the minimization
makespan of each group

Map
Tasks
Create map schedule

Create reduce

Tasks

Merge the two schedules

Define width

Sequence tasks according
to their width and respecting
the precedence constraints

FIGURE 6.1: Implementation sketch of Algorithm-MR.

The TaskScheduling subroutine creates schedules for only map or only reduce tasks
on map and reduce processors respectively. In this direction, as we have described in
previous chapter, algorithm TaskScheduling solves the corresponding LP with expo-
nentially growing time intervals. Given this fractional solution, the algorithm separates
tasks into groups with respect to their completion times. The last step of this subrou-
tine, is to integrally assign the tasks of each group on the processors trying to minimize
the makespan of every group. For this reason, TaskScheduling uses the algorithm for
makespan minimization on unrelated machines we have described in a previous chapter.
Note that, for the tasks of each group, the algorithm performs a binary search over the
possible makespan, starting with the upper bound provided by the theoretical analysis
of this algorithm.

Given the two produced schedules, the Merge subroutine, greedily merges the two
schedules into one, with the use of the width of each job, as described in the previous

chapter.

The implementation of Greedy-MR . follows in general the same basic phases, separat-

ing completely this time the assignment of tasks to processors and the sequencing of the

Chapter 6. Ezperimental Evaluation 59

assigned tasks of each processor. As we can see in figure the assignment of tasks
on processors is performed by the subroutine Greedy Assign, using the simple rule we
described in the previous chapter. After the creation of the two assignment schedules
for the map and the reduce tasks, the subroutine Generalized Smith Merge merges
the two schedules using the weight to total processing time ratio for sequencing and

respecting the precedence constraints between map and reduce tasks of each job.

Greedy Assign

Greedy Rule for the
assignment of tasks on
unrelated processors

Greedy-MR

Create map schedule
Create reduce

Merge the two schedules

Generalized Smith

Merge

Calculate weight to total
processing time ratio

Sequence tasks according
to their ratio respecting the
precedence constraints

FIGURE 6.2: Implementation sketch of Greedy-MR.

6.6 Technical Information

The algorithms Algorithm-MR, Greedy-MR as well as the lower bound were im-
plemented using Python 2.7. The solver used for the linear programs was Gurobi
Optimizer 6.0. The experiments were performed on a machine with 4 packages (In-
tel(R) Xeon(R) E5- 4620 @ 2.20GHz) of 8 cores each (16 threads with hyperthread-
ing) and a total memory of 256 GB. The operating system was a Debian GNU /Linux
6.0. The used scripts as well as the benchmarks of the results are available at: http:

//www.corelab.ntua.gr/~opapadig/mrexperiments/|.

6.7 Results

In the following, we present the results of the experiments. In all cases, we present
scatter graphs of the objective values produced by all our algorithms as well as the
empirical approximation ratios in all trials. Furthermore, for each number of job we
present graphically the average value of objective values for all trials as well as the

average approximation ratios.

http://www.corelab.ntua.gr/~opapadig/mrexperiments/
http://www.corelab.ntua.gr/~opapadig/mrexperiments/

Chapter 6. Ezperimental Evaluation 60

6.7.1 Uncorrelated Input

-10° -10°
T T
21 @
+ Greedy-MR 5 @ - —— Greedy-MR
o Algorithm-MR g QO 15| |—e—Algorithm-MR b
- 1.5 |o Lower Bound o % A s —=— Lower Bound
DN o of B
s Q2 T 1 8
v A A
< & D)
e B %) ,,\:r/Jj
0.5 g | g 051 ')
* 2
0 E 0 E
| | | | | | | | | | |
0 10 20 30 40 50 10 20 30 40 50
(i) Number of Jobs (ii) Number of Jobs
T T T T T T T T T
3l Greedy-MR o i 2.6 [|—— Greedy-MR f———0 |
o Algorithm-MR ° ° 2 —o— Algorithm-MR e
o5 8 o % ° g § 24 1
@t
2 25| o PG o BG R)
g 258 BE pp P g 227]
= % B & &7 & FL s z
9 o o * + 4 Y 2L B
2 ol O gt g T+ | <
2 o F =
+ o 1.8 N
< z g% 2
15 o 1 Z 16| 1
*% =
o
! ! ! ! ! ! Lap ! ! ! ! L
0 10 20 30 40 50 10 20 30 40 50
(iii) Number of Jobs (iv) Number of Jobs

FIGURE 6.3: Uncorrelated Results
Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a
lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-
tios of Greedy-MR and Algorithm-MR, for uncorrelated tasks’ processing

times.

By figure (i)-(ii) we note that Greedy-MR performs quite better than Algorithm-
MR in general. For number of jobs n < 10, Greedy-MR . gives up to 21% better solu-
tions on average. However, as the number of jobs increases, the gap between Greedy-
MR and Algorithm-MR is shrinking, e.g., for n = 45 and n = 50 Greedy-MR
gives 6% and 5% (on average) better solutions, respectively. In terms of performance
guarantee, as we can see in figure (iii)-(iv) the (empirical) approximation ratio of
Algorithm-MR ranges from 1.68 to 2.58 (on average), while the approximation ratio
of Greedy-MR ranges from 1.43 to 2.42 (on average). Clearly, both algorithms are far

away from Algorithm-MR’s approximation guarantee of 54.

Chapter 6. Ezperimental Evaluation 61

6.7.2 Job-Processor Correlated Input

-10° -10°
AT — 3F -
+
+ Greedy-MR - —— Greedy-MR
3|1 |oAlgorithm-MR ; N Q. —— Algorithm-MR
o Lower Bound ++ 3 2 |—=— Lower Bound B
o} +y B
= 10 bl
S 20 +r f o% | A
< & &9 =
N H % o a0 1+ —
#++ & % 5]
1 g @ @ b [
+ % % ﬁ u} < i
> — -
G423 7 -
0 == an b | ol i |
| | | | | | | | | | |
0 10 20 30 40 50 10 20 30 40 50
(i) Number of Jobs (ii) Number of Jobs
5 l T T T T T] 4 [T T T T T ‘
P + Greedy-MR o —— Greedy-MR
o oAlgorithm-MR = —e— Algorithm-MR
+ N £ oas|]
8 Al L ! . | p 3.5
= o :+ o R é
N Qv Frwehe woa 2) |
2 %O Op e + tr A
= 3r > o £ orh oy =
2 0o & g) o @
%o o g 25t .
- ﬁ % 2 & < —e.
2 0 T ® T4 s
I I I I I I 2k I I I I |
0 10 20 30 40 50 10 20 30 40 50
(iii) Number of Jobs (iv) Number of Jobs

FIGURE 6.4: Processor-Job Correlated Results
Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a
lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-
tios of Greedy-MR and Algorithm-MR, for processor-job correlated tasks’

processing times.

By figure (i)-(ii) it is clear that Algorithm-MR outperforms Greedy-MR for
all different values of n. More specifically, Algorithm-MR . leads to 11% — 34% (on
average) smaller values of the objective function, compared to Greedy-MR. This is
mainly due the fact that by generating processor-job correlated tasks’ processing times
the assignment and sequencing procedure becomes more sophisticated. So, both the
online assignment and the common WSPT policy, are not quite efficient; actually, even
when there is a small number of jobs, n = 5, Algorithm-MR gives on average 11% (on
average) smaller solutions. The approximation ratio of Algorithm-MR, in figure
(iii)-(iv), ranges from 2.13 to 3.12 (on average), while, for Greedy-MR, the approxi-
mation ratio ranges from 3.19 to 3.95 (on average). Again, both algorithms are very far
from Algorithm-MR’s approximation guarantee of 54. Furthermore, it is important
to note that Algorithm-MR improves its performance guarantee as the input becomes
more and more involved (for n > 40), while simultaneously produces better solutions
(of more than 30%) than Greedy-MR.

Chapter 6. Ezperimental Evaluation 62

6.7.3 Job-Processor Correlated Input with Shuffle Tasks

-107 -107
T T
21 |+ Greedy-MR T T Greedy-MR / i
o Algorithm-MR Q. - —— Algorithm-MR g
1.5} |0 Lower Bound i —5— Lower Bound //
o} w
> S 1 N
g A
v 1+ = Pl
W %J 0.5 N
0.5 g
=
0 0 N
.
0 10 20 30 40 50 10 20 30 40 50
(i) Number of Jobs (ii) Number of Jobs
A T T T — 3.5 T T T]
+ Greedy-MR - /;3"/"6\ —— Greedy-MR
o Algorithm-MR e 3l / N —— Algorithm-MR
E / ~
=)
= & 2.5 1
5 <
2 o 21 i
[L &
< 2 g
2
= 15) ,
1 Il Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 10 20 30 40 50
(iii) Number of Jobs (iv) Number of Jobs

FIGURE 6.5: Data Shuffle Results
Comparing (i)-(ii) solutions of Greedy-MR with Algorithm-MR and a
lower bound on the optimal cost, and (iii)-(iv) (empirical) approximation ra-
tios of Greedy-MR and Algorithm-MR, for processor-job correlated tasks’

processing times including shuffle tasks.

By Fig. [6.5] (i)-(ii) it is clear that Greedy-MR is better than Algorithm-MR for all
different values of n. More specifically, Greedy-MR leads to 9% — 60% smaller values
of the objective function, compared to Algorithm-MR. However, as the number of
jobs is increasing the gap between the performance of the two algorithms is shrinking.
For example for n = 5, Greedy-MR. produced a 60% better solution, while for n = 50
the percentage falls to 10% on average, with some trials where the Algorithm-MR
appears to give slight better solutions. The approximation ratio of Algorithm-MR, in
ﬁgure (iii)-(iv), ranges from 2.02 to 3.81, while, for Greedy-MR, the approximation
ratio ranges from 1.24 to 2.31. In this case, both algorithms are again very far from
Algorithm-MR’s approximation guarantee of 54. Moreover, it is important to note

that both algorithms’ empirical ratios converge to 2 as the number of jobs is increasing.

6.8 Evaluation

Considering the results of the previous section, one can see that the performance of
Algorithm-MR and Greedy-MR. depends highly on the type of processing time dis-

tribution, on the number of jobs as well as on the existence or not of shuffle tasks.

Chapter 6. Ezperimental Evaluation 63

More specifically, we see that in the uncorrelated case the performance of Greedy-MR
is slightly better. This can be explained and attributed to the distribution of processing
times. In the uniform case we can see that for all jobs, the estimated mean processing
time is constant. In other words, given that the processing times are selected u.a.r from
[0,100], the probability for a task to have processing time p is equal to the probability
to have 100 — p. This "rough” smooth analysis suggests that for the load balancing part
of Greedy-MR, the processors may behave in the mean case as identical. Moreover, in
this case where there are not many ”anomalies” in the load balancing part, the Weighted
Shortest Processing Time First rule we apply for sequencing is known for behaving well

on identical processors.

The previous arguments about the performance of Greedy-MR in the uncorrelated case
are reinforced by the experimental results on the job-processor correlated case. In this
case, since many processors may have advantage over others for all jobs, the load balanc-
ing part of Greedy-MR in not working very well this time. The relatively sophisticated
load balancing of Algorithm-MR . seems now to outperform that of Greedy-MR.

With the introduction of shuffle tasks in our experiments we see that the Greedy-
MR gives, again, much better solutions than Algorithm-MR. This fact can also be
attributed to the distribution of processing times. In this case, since the processing times
of shuffle tasks do not depend on the corresponding machines and due to the fact that
these tasks are executed on the reduce processors, two conclusions can be deduced. The
first is that the total contribution of the map schedule to the objective becomes negligible
given the severe enlargement of the reduce tasks. The second is that, in this case, since
by definition, the shuffle tasks’ processing times depend only on 3; and therefore are
constant for a fixed job j, then the processing times of the extended reduce tasks behave
also as constant. As we can see, the load balancing of constant size tasks is the easiest
case so-far for by the load balancing part of Greedy-MR. This fact, together with
the Weighted Shortest Processing Time First rule, can explain the good performance of
Greedy-MR over Algorithm-MR.

Conclusion

The theory as well as the experimentation have been proven fundamental tools for the
evaluation of MapReduce scheduling algorithms. From linear programming relaxations
and greedy rules to randomized approaches and graph theoretic reductions are some of
the ways theory produces algorithms with various time complexities and approximation
guarantees. It is the experimentation, however, that shows us how close or far from
the reality these guarantees are and whether the trade-off between speed and optimality
is worth considering. What we have seen in this work, is that an approximation ratio
proven using the scheduling theory may be partially misleading given the performance

of the algorithm in practice.

More specifically, we have shown that the algorithm for scheduling MapReduce tasks on
unrelated processors minimizing the total weighted completion time performs quite well
for normal and ”rational” inputs. Indeed, it produces schedules with objective values
close to the optimal, despite the proven worst-case approximation factor of 54. The
same conclusion holds for case where we model the intermediate data exchange between
map and reduce tasks. Moreover, we have seen that a really fast and simple heuristic
for the same problem, despite its probably non-constant approximation ratio, may also
produce schedules with noteworthy objective values, even better than its sophisticated

competitor for specific instances.

In the pursuit of optimality and efficient use of the available hardware, the model of
scheduling MapReduce jobs can be extended in various directions. One of them is the
introduction of malleable MapReduce jobs. In this case, the scheduler, apart from the
assignment and sequencing of tasks to processors, has the ability to decide the so-called
”grain size” i.e. the number of tasks where the total volume of work is going to be
divided into. Another possible extension is to study the effect of the natural topology
of processors on the cost of data transferring between tasks. More specifically, in non-
uniform memory access (NUMA) architectures the communication time between two
tasks may be crucially affected from the location of the nodes where these tasks are

executed on.

64

Conclusion 65

As we have seen, massive parallelism is no more the future; it is now a reality relent-

lessly producing problems and demanding results and solutions: both theoretical and

empirical.

Bibliography

1]

[10]

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107-113, January 2008. ISSN 0001-0782.

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.
ISBN 0596521979, 9780596521974.

apache.org. http://apache.org. Accessed: 2015-06-12.
discoproject.org. http://discoproject.org/. Accessed: 2015-06-12.
infinispan.org. http://infinispan.org. Accessed: 2015-06-12.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. Quincy: Fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Princi-
ples, SOSP ’09, 2009. ISBN 978-1-60558-752-3.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, pages 265278, 2010. ISBN 978-1-60558-577-2.

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ton Stoica.
Improving mapreduce performance in heterogeneous environments. In Proceedings

of the §th USENIX Conference on Operating Systems Design and Implementation,
OSDI'08, pages 2942, Berkeley, CA, USA, 2008. USENIX Association.

Thomas Sandholm and Kevin Lai. Mapreduce optimization using regulated dy-
namic prioritization. In Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’09, pages
299-310, 2009. ISBN 978-1-60558-511-6.

Dongjin Yoo and Kwang Mong Sim. A comparative review of job scheduling for
mapreduce. In Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE
International Conference on, pages 353—-358, Sept 2011.

66

http://apache.org
http://discoproject.org/
http://infinispan.org

Bibliography 67

[11]

[12]

[13]

[14]

[17]

[18]

Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vibhore Kumar, Su-
jay Parekh, Kun-Lung Wu, and Andrey balmin. Flex: A slot allocation scheduling
optimizer for mapreduce workloads. In Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware, Middleware ’10, pages 1-20, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 978-3-642-16954-0.

Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Cliff Stein, and Zoya
Svitkina. On distributing symmetric streaming computations. ACM Trans. Algo-
rithms, 6(4):66:1-66:19, September 2010. ISSN 1549-6325.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, pages 938-948, 2010. ISBN 978-0-898716-98-6.

Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper
and lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377,
2012.

Jeffrey D. Ullman. Designing good mapreduce algorithms. XRDS, 19(1):30-34,
September 2012. ISSN 1528-4972.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-reduce.
In Proceedings of the 19th International Conference on World Wide Web, WWW
10, pages 231-240, 2010. ISBN 978-1-60558-799-8.

Cheng tao Chu, Sang K. Kim, Yi an Lin, Yuanyuan Yu, Gary Bradski, Kunle
Olukotun, and Andrew Y. Ng. Map-reduce for machine learning on multicore. In
B. Scholkopf, J.C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281-288. MIT Press, 2007.

Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environ-
ment. In Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pages 99-110, 2010. ISBN 978-1-60558-945-9.

U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, and J. Leskovec. Hadi: Fast
diameter estimation and mining in massive graphs with hadoop. CMU-ML, 2008.

Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. Mor-
gan and Claypool Publishers, 2010. ISBN 1608453421, 9781608453429.

Hyunseok Chang, M. Kodialam, R.R. Kompella, T.V. Lakshman, Myungjin Lee,
and S. Mukherjee. Scheduling in mapreduce-like systems for fast completion time.
In INFOCOM, 2011 Proceedings IEEE, pages 3074-3082, April 2011.

Bibliography 68

22]

[24]

28]

[29]

Monaldo Mastrolilli, Maurice Queyranne, Andreas S. Schulz, Ola Svensson, and
Nelson A. Uhan. Minimizing the sum of weighted completion times in a concurrent
open shop. Oper. Res. Lett., 38(5):390-395, September 2010. ISSN 0167-6377.

Fangfei Chen, Murali S. Kodialam, and T. V. Lakshman. Joint scheduling of pro-
cessing and shuffle phases in mapreduce systems. In INFOCOM’12, pages 1143—
1151, 2012.

Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamés Sarlés. On schedul-
ing in map-reduce and flow-shops. In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 289—
298, 2011. ISBN 978-1-4503-0743-7.

CarlosD. Paternina-Arboleda, JairoR. Montoya-Torres, MiltonJ. Acero-Dominguez,
and MariaC. Herrera-Hernandez. Scheduling jobs on a k-stage flexible flow-shop.
Annals of Operations Research, 164(1):29-40, 2008. ISSN 0254-5330. doi: 10.1007/
$10479-007-0257-2. URL http://dx.doi.org/10.1007/s10479-007-0257-2.

Petra Schuurman and Gerhard J. Woeginger. A polynomial time approximation
scheme for the two-stage multiprocessor flow shop problem. Theoretical Com-
puter Science, 237(1-2):105 — 122, 2000. ISSN 0304-3975. URL http://www.
sciencedirect.com/science/article/pii/S0304397598001571

Dimitris Fotakis, Ioannis Milis, Orestis Papadigenopoulos, Emmanouil Zampetakis,
and Georgios Zois. Scheduling mapreduce jobs and data shuffle on unrelated pro-

cessors. CoRR, abs/1312.4203, 2013. URL http://arxiv.org/abs/1312.4203.
Top500.0org. http://top500.org. Accessed: 2015-06-11.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008. ISBN 0123705916,
9780123705914.

Herb Sutter. The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s Journal 30 (8), 2005. URL http://www.gotw.ca/publications/

concurrency-ddj.htm.

Parallel processing systems, lecture notes, cslab ece ntua. URL http://www.cslab.

ece.ntua.gr/courses/pps.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
ISBN 0070131511.

http://dx.doi.org/10.1007/s10479-007-0257-2
http://www.sciencedirect.com/science/article/pii/S0304397598001571
http://www.sciencedirect.com/science/article/pii/S0304397598001571
http://arxiv.org/abs/1312.4203
http://top500.org
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.cslab.ece.ntua.gr/courses/pps
http://www.cslab.ece.ntua.gr/courses/pps

Bibliography 69

33]

[34]

[35]

[43]

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Dis-
crete Optimization II Proceedings of the Advanced Research Institute on Discrete
Optimization and Systems Applications of the Systems Science Panel of NATO and
of the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM
Banff, Aha. and Vancouver, volume 5 of Annals of Discrete Mathematics, pages 287
— 326. Elsevier, 1979. URL http://www.sciencedirect.com/science/article/
pii/S016750600870356X.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J.
ACM, 47(4):617-643, July 2000. ISSN 0004-5411.

David Karger, Cliff Stein, and Joel Wein. Algorithms and theory of computa-
tion handbook. chapter Scheduling Algorithms, pages 20-20. Chapman & Hal-
1/CRC, 2010. ISBN 978-1-58488-820-8. URL http://dl.acm.org/citation.cfm?
1d=1882723.1882743.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publish-
ing Company, Incorporated, 3rd edition, 2008. ISBN 0387789340, 9780387789347.

Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 3rd edition, 2001. ISBN 3540415106.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563-1581, 1966.

G.H. Hardy, J.E. Littlewood, and G. Pdélya. Inequalities. Cambridge Mathematical
Library. Cambridge University Press, 1952. ISBN 9780521358804.

Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to
minimize average completion time: Off-line and on-line approximation algorithms.

Math. Oper. Res., 22(3):513-544, August 1997. ISSN 0364-765X.

David P. Williamson and David B. Shmoys. The Design of Approzimation Algo-
rithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011. ISBN
0521195276, 9780521195270.

J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Math. Program., 46(3):259-271, February 1990.
ISSN 0025-5610.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly, 2:83-97, 1955.

http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://dl.acm.org/citation.cfm?id=1882723.1882743
http://dl.acm.org/citation.cfm?id=1882723.1882743

Bibliography 70

[44]

[47]

[48]

[52]

[53]

[54]

José R. Correa, Martin Skutella, and José Verschae. The power of preemption on
unrelated machines and applications to scheduling orders. Math. Oper. Res., 37(2):
379-398, 2012.

H. Karloft. Linear Programming. Progress in Computer Science and Applied Series.
Birkhéuser, 1991. ISBN 9783764335618. URL https://books.google.gr/books?
1d=XYfvfbsCx3gC.

Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994. ISBN 0201530821.

Vijay V. Vazirani. Approzimation Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001. ISBN 3-540-65367-8.

Mikhail J. Atallah and Susan Fox, editors. Algorithms and Theory of Computa-
tion Handbook. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1998. ISBN
0849326494.

S. M. Johnson. Optimal Two- and Three-stage Production Schedules with Setup
Times Included. Naval Research Logistics Quarterly, 1(1):61-68, 1954.

Naveen Garg, Chaitanya Swamy, and Sachin Jain. A randomized algorithm for flow

shop scheduling.

Martin Skutella. Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM, 48(2):206-242, March 2001. ISSN 0004-5411.

M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117-129, 1976.

Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A com-
petitive algorithm for minimizing weighted flow time on unrelatedmachines with

speed augmentation. In Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, STOC 09, pages 679-684, 2009. ISBN 978-1-60558-506-2.

James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line
routing of virtual circuits with applications to load balancing and machine schedul-
ing. J. ACM, 44(3):486-504, May 1997. ISSN 0004-5411.

A. M. A. Hariri and C. N. Potts. Heuristics for scheduling unrelated parallel ma-
chines. Comput. Oper. Res., 18(3):323-331, March 1991. ISSN 0305-0548.

David B. Shmoys and Eva Tardos. An approximation algorithm for the generalized
assignment problem. Math. Program., 62(3):461-474, December 1993. ISSN 0025-
5610.

https://books.google.gr/books?id=XYfvf5sCx3gC
https://books.google.gr/books?id=XYfvf5sCx3gC

Bibliography 71

[57] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing
constraint violation (extended abstract). In Proceedings of the Twenty-fourth An-
nual ACM Symposium on Theory of Computing, STOC 92, pages 771-782, 1992.
ISBN 0-89791-511-9.

	Introduction
	1 Preliminaries
	1.1 Definitions
	1.2 Machine Environment
	1.3 Objective Functions and Metrics
	1.4 Precedence Constraints
	1.5 A Typical Notation for Scheduling Problems
	1.6 Complexity Issues
	1.7 Approximating an Optimal Solution
	1.8 Online and Offline Scheduling

	2 Scheduling Parallel Machines
	2.1 List Scheduling and Longest Processing Time First
	2.2 An Exact Algorithm for the Average Completion Time Problem on Identical Machines
	2.3 Minimizing Total Weighted Completion Time on Identical Machines
	2.4 Minimizing Makespan on Unrelated Machines
	2.5 Minimum-Weight Bipartite Matching to Schedule Positions
	2.6 Minimizing Total Weighted Completion Time of Tasks on Unrelated Machines

	3 Precedence Constraints and Shop Scheduling
	3.1 Chains, Flows and Shops
	3.2 A Greedy 2-approximation Algorithm For Open Shops
	3.3 Two Machine Flow Shop Makespan Minimization
	3.4 A Randomized Algorithm for the Flow Shop Scheduling Problem

	4 Scheduling MapReduce Jobs Minimizing Total Completion Time
	4.1 The General Model
	4.2 Offline Algorithms
	4.2.1 Identical Machines
	4.2.2 Unrelated Machines

	4.3 Online Scheduling
	4.3.1 Identical Machines
	4.3.2 Unrelated Machines

	5 Scheduling MapReduce Jobs and Shuffle Tasks
	5.1 A constant approximation algorithm.
	5.2 Data Shuffle
	5.2.1 The Shuffle Tasks are Executed on their Reduce Processors
	5.2.2 The Shuffle Tasks are Executed on Different Input Processors

	5.3 A Greedy Heuristic

	6 Experimental Evaluation
	6.1 Experimental Experience
	6.2 Lower Bound
	6.3 Processing Time Distributions
	6.4 Shuffle Tasks
	6.5 Implementation
	6.6 Technical Information
	6.7 Results
	6.7.1 Uncorrelated Input
	6.7.2 Job-Processor Correlated Input
	6.7.3 Job-Processor Correlated Input with Shuffle Tasks

	6.8 Evaluation

	Conclusion

