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Περίληψη

Η Μέθοδος Πολλαπλασιαστικών Συντελεστών αποσκοπεί στην τυποποίηση μίας

πολύ χρήσιμης ιδέας η οποία συναντάται σε μία ποικιλία ερευνητικών αντικειμένων

και εφαρμόζεται πιο συχνά σε προβλήματα βελτιστοποίησης ή μηχανικής μάθησης. Οι

αλγόριθμοι που λειτουργούν με βάση αυτή την ιδέα, διατηρούν μία κατανομή πιθανότη-

τας (την οποία μπορούμε να φανταστούμε με τη μορφή βαρών) επάνω στα στοιχεία

ενός συγκεκριμένου συνόλου, η οποία ανανεώνεται με ένα πολλαπλασιαστικό κανόνα.

Παράλληλα, η ανάλυσή τους βασίζεται σε μία ‘συνάρτηση δυναμικού’, που αντικατοπ-

τρίζει τις αλλαγές στα βάρη. Σε αυτή τη διπλωματική εργασία, θα παρουσιάσουμε

το πλαίσιο της Μεθόδου, καθώς και πολλές από τις εφαρμογές της, επικεντρώνοντας

το ενδιαφέρον μας σε αυτές που εμφανίζονται στο πεδίο της Αλγοριθμικής Θεωρίας

Παιγνίων, και πιο συγκεκριμένα του Σχεδιασμού Μηχανισμών. Τα κριτήρια επιλογής

των εφαρμογών ήταν τόσο η σημαντικότητά τους στο αντίστοιχο ερευνητικό πεδίο

στο οποίο ανήκουν, όσο και η δομή τους που κάνει εύκολη την παρουσίασή τους ως

υπο-περιπτώσεις της γενικής Μεθόδου.

Λέξεις Κλειδιά: Μέθοδος Πολλαπλασιαστικών Συντελεστών, Αλγοριθμική Θεω-

ρία Παιγνίων, ΄Αμεσος Σχεδιασμός Μηχανισμών, Φιλαλήθεις Συνδυαστικές Δημο-

πρασίες
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Abstract

The Multiplicative Weights Update Method is the formulation of a framework
capturing a very useful idea encountered in many diverse fields and applicable to
a wide variety of optimization and learning problems. The algorithms that fit in
this framework maintain a probability distribution (i.e. weights) over a certain
set that is updated iteratively by a multiplicative rule, while the analysis of these
algorithms relies on quantifying the change in an exponential potential function.
In this thesis, we are going to introduce the framework and present a variety
of its applications, concentrating our interest in the field of Algorithmic Game
Theory, and even more specifically in Mechanism Design. The applications we
consider, are chosen having in mind their importance in their respective fields and
their structure which helps us point out that they are all instances of our (more
general) meta-algorithm.

Keywords: Mupltiplicative Weights Update Method, Algorithmic Game Theory,
Online Mechanism Design, Truthful Combinatorial Auctions
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Chapter 1

Introduction

1.1 The Multiplicative Weights Update Method

It is very often that people need to make a decision having only limited or
even worse no knowledge on the matter. If this decision is to be made once, all
we can do is to choose what is best for us based on our knowledge at the time.
But if this decision making procedure was to be repeated, our knowledge would
grow in each round since we would receive the consequences of our decision, forcing
us to re-evaluate our choices, and in this way increasing our chances of making
a better decision in the future. This natural learning procedure is the root of an
idea encountered in various algorithms. The idea is to maintain a distribution (i.e.
weights) over a set and use a multiplicative rule to update the weights of each
member of the set. In the decision problem, the set would be the possible choices
we have and the multiplicative weights update rule would help us re-evaluate them.

Interestingly, all these algorithms belong to many diverse fields, they do not
necessarily look similar when examined in detail, and most of them have discov-
ered independently this main multiplicative idea. Even though the fact that the
idea can be generalized had already been noticed ([30]), it was only recently ([1])
that the idea was formulated as a meta-algorithm, which treats the aformentioned
algorithms as special cases. The significance of the meta-algorithm stems from its
simplicity and the variety of its applications. Of course, in some cases its results
are not optimal since information of the specific problem might be ignored for
the sake of generality. In these cases, certain adjustments should be considered
in order to yield even better results than those that occur by the straightforward
application of the meta-algorithm.

In this thesis, we are interested in the impact of this method on Algorithmic
Game Theory and more specifically on Mechanism Design, both of which are
introduced in the next section.
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1.2 Algorithmic Game Theory

In every possible model of a society, there is an interaction between its mem-
bers. The decisions and actions of a member affect the others and vice versa.
Unfortunatelly, more often than not, the incentives of the members are conflict-
ing.

Algorithmic Game Theory considers these members as selfish players taking
part in a game, meaning that they interact with each other in an effort to maximize
their personal benefit. It is the study aiming to predict or even guide the players’
behaviour in order to serve the benefits of the society as a whole or, at times, the
benefits of a specific group.

1.2.1 Mechanism Design

The rules regulating the aformentioned game are the mechanism of the game.
Usually, the players try to use those rules to manipulate the decision making
procedure in order to achieve a better outcome for themselves. A very important
research area studies exactly the impact of these manipulations to the greater
good. The way to avoid them and to guide the players’ behaviour is through
Mechanism Design. More specifically, we try to align the goal of the mechanism
with the individual goals of the players.

13



1.3 Notation and Preliminaries

1.3.1 Algorithmic Notions

Optimization problems seek a feasible solution of the problem that, in addition,
maximizes (respectively, minimizes) a certain function. The value of this function
on the solution is the cost of the solution. By OPT, we usually denote the optimal
cost.

Definition 1. An approximation algorithm is an algorithm that finds a feasible
solution for the optimization problem whose cost is at least (respectively, at most)
1
ρOPT (respectively, ρOPT) if it is a maximization (respectively, minimization)
problem. The parameter ρ is called the approximation ratio and may depend on
other parameters of the input instance.

A useful way to represent optimization problems is via a linear program (LP),
in which the set of all feasible solutions is represented by a polyhedron. Specifically,
a maximization linear program in its canonical form is the following:

max cTx
Ax ≤ b
x ≥ 0

where c and b are vectors, A is a matrix of coefficients and the desired solution is
x. The most common problems that we face can be formulated into an Integer LP,
meaning that the coefficients of x are integer. Since such a program is difficult to
solve, we usually solve the LP with the last constraint relaxed and round the result
into an integer solution via a randomized or deterministic rounding procedure.

Definition 2. A randomized algorithm is one that uses uniformly random bits
in addition to its input in order to make decisions, therefore the decisions the
algorithm makes in each input can not be predicted from the start.

Another variant of an algorithm depends on the way they access their input.

Definition 3. As opposed to the commonly used algorithms, online algorithms
access their input in a serial manner, in the sense that it is revealed to them while
the algorithm is running and it is not available from the start. The comparison
between the performance of the online and the offline algorithm of a problem gives
us their competitive ratio.

14



1.3.2 Game-Theoretic Notions

As we discussed, each player makes decisions based on his incentive. Those
decisions, are called strategies, denoted si for each player i ∈ {1, . . . , n}. There is
also a set of outcomes O and each agent has a private valuation function vi : O → R
from a set of possible valuations Vi, which represents how “satisfied” he is from this
outcome. A valuation profile is the vector of the valuation functions of all players
v = (v1, . . . , vn) and by v−i we will denote the valuation profile of all players except
i.

The Mechanism is therefore called to find the allocation f : V1 × . . . × Vn →
O, which returns the outcome of the mechanism depending on the valuations he
receives as input, according to an allocation rule.

The problem is that the valuations of the players are private and they do not
have to reveal them unless it helps them reach the desired outcome. So the actual
input of f is a set of bids which may or may not be the true valuation functions
of the players. This is why the players need to have benefit in reporting their true
valuations.

Definition 4. An allocation rule is truthful iff ∀i ∈ N, vi ∈ Vi, v−i ∈ V−i, v′i ∈ Vi:

vi(f(v−i, vi)) ≥ vi(f(v−i, v
′
i))

where (v−i, v
′
i) is the valuation profile where i’s valuation function is replaced by

v′i.

If a strategy (i.e. the bids) of a player always leads to as good an outcome as
any other strategy then this strategy is the best a player can do and so it is his
dominant strategy. Formally:

Definition 5. The valuation function t ∈ Vi is a dominant strategy for agent i if
∀ v−i ∈ V−i, t′ ∈ Vi:

vi(f(v−i, t)) ≥ vi(f(v−i, t
′))

We will restrict the types of mechanisms we study to those in which every
player only reveals their bid (direct mechanisms), and we will do so without loss
of generality, as the next theorem states.

Theorem 6 (Revelation Principle). Any mechanism that implements a certain
allocation rule f in dominant strategies, can be transformed to a direct truthful
mechanism implementing f .

A negative result, shows that there is no non-trivial (non-dictatorial) alloca-
tion rule for games with more than 3 outcomes that is truthful. After this result,
modifications had to be made in order to yield practical mechanisms. The mecha-
nisms we will discuss, will give to the designer the ability to impose payments on
the players, depending on the outcome of the mechanism. Therefore, a mechanism

15



in addition to providing an allocation, is also called to impose payments according
to another function, namely the payment rule p : V → Rn. Now, the players aim
to maximize the quantity vi(f(vi, v−i))− p(vi, v−i), which we call utility. The new
definition of truthfulness is the following:

Definition 7. A mechamism M = (f, p) is defined as truthful iff ∀i ∈ N, vi ∈
Vi, v−i ∈ V−i, v′i ∈ Vi:

vi(f(v−i, vi))− p(v−i, vi) ≥ vi(f(v−i, v
′
i))− p(v−i, v′i)

Definition 8. An allocation rule f is impementable if there exists a payment rule
p such that the mechanism (f, p) is truthful.

Most mechanisms belong into one of two categories: Revenue maximizing and
Social Welfare Maximizing. The definitions of those two quantities are the follow-
ing:

Definition 9. For a mechanism M = (f, p), we define as the revenue of the
mechanism the quantity

Rev(v) =
∑
i

pi(v)

Definition 10. For an outcome o ∈ O we define as social welfare (SW) the
quantity

SW (o) =
∑
i

ui(o)

Usually, we are concerned with Social Welfare, as it represents the “happiness”
of the total of the players or as we mentioned before “the greater good”.

Finally, a well-known mechanism that maximizes the Social Welfare and man-
ages to be truthful is the VCG-Mechanism (by Vickrey, Clarke and Groves). This
mechanism, requires from each agent to pay the loss of “happiness” he causes to
all the other players by his presence in the game. In addition, in most cases it has
the natural property which guarantees that no player loses by participating in the
game (utilities≥ 0) and the payments are not negative (the mechanism does not
give money to the players).

Definition 11 (VCG mechanism [29, 12, 20]). The VCG mechanism is defined by
(f, p) such that

f(v) = argmaxo
∑
i

vi(o)

pi(v) =
∑
j 6=i

vj(f(v−i))−
∑
j 6=i

vj(f(v))

16
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Chapter 2

The Multiplicative Weights
Update Method

In this Chapter, we are going to present the Multiplicative Weights Update
Method as shown in [1]. First, we will give an example in a simpler setting which
makes it easier to understand the general meta-algorithm that follows it. Next, we
will show how the method has been used to yield good results in an important field
and how the use of specific information about the problem can help increase the
approximation ratio as we discussed in Chapter 1. Finally, we will briefly describe
other applications of the method that demonstrate its generality and importance.

18



2.1 The Weighted Majority Algorithm

We will first describe the Weighted Majority Algorithm introduced in [24] which
is based on a very simple setting and leads naturally to the generalized meta-
algorithm. To do so, we consider the Prediction from Expert Advice Problem
where we want to predict the movement of a stock (“up” or “down”) each day
without any knowledge other than the predictions of n experts.

The algorithm maintains weights for the experts (initialized to 1), making a
prediction in each round based on the weighted majority of the experts’ predictions.
In other words, if the total weight of all experts predicting “up”(“down”) is more
than half the weight of all the experts then we predict “up”(“down”), breaking
ties arbitrarily. At the end of each round, the weight of each expert that predicted
incorrectly is decreased, depicting the fact that we now trust him less than before
and do not want his opinion to play such an important role in the next decision.

In particular, let w
(t)
i be the weight of the ith expert for i = 1, . . . , n, during

round t = 1, . . . , T . The algorithm is the following:

Weighted Majority Algorithm
Initialization: Fix an η ≤ 1

2 . Set w
(1)
i = 1 ∀i ∈ {1, . . . , n}.

At every step t = 1, . . . , T :

1. If
∑
i∈U

w
(t)
i , where U is the set of experts predicting “up”(resp., “down”), is

greater than Φ(t)/2, where Φ(t) =
∑

iw
(t)
i is the potential function, then pre-

dict “up”(resp., “down”). Break ties arbitrarily.

2. Depending on the movement of the stock, adjust the weight of each expert i
that predicted incorrectly as follows:

w
(t+1)
i = w

(t)
i (1− η)

The most interesting property of the Weighted Majority Algorithm is that it
guarantees that our performance is roughly as good as it would be if we were to
consult only the expert that made the fewest mistakes overall, i.e. the best expert.
The following theorem quantifies this guarantee.

Theorem 12. Let M (T ) be the total number of mistakes our algorithm has made

and m
(T )
i the total number of mistakes expert i has made. Then the following

bound holds for every i:

M (T ) ≤ 2(1 + η)m
(T )
i +

2 lnn

η

Clearly, the bound is tighter for the least m
(T )
i .

19



In order to understand the bound better, imagine the extreme case in which
the mistakes made by the best expert are close to none. Then the quantity 2 lnn

η
dominates the sum. This quantity depends only on the number of the experts and
the fixed parameter η and not on the mistakes of any of the experts. It represents
the mistakes the algorithm cannot avoid to make, since this is the only way to
increase its knowledge and finally locate the best expert. As one would expect,
increasing the number of experts n means that the algorithm can be fooled more
easily so it needs to perform more experiments until it rejects the bad experts.
On the contrary, increasing the parameter η means that each mistake decreases
significantly the importance of an expert and helps the algorithm to distinguish
the good ones faster.

On the other hand, if the mistakes of the best expert are too many then it

is the quantity 2(1 + η)m
(T )
i that dominates the sum. Imagine that instead of

following our algorithm, we chose deterministicaly “up” or “down” in each round.
Then we expect that with probability 1

2 our guess would be the same as the best
expert’s, so our mistakes would be within a factor 2 of the expected mistakes of the
best expert. Again, this quantity increases if we increase η and, intuitively, this
is because a larger η helps in distinguishing the best expert and ignore the rest,
making the best expert’s mistakes very important to the decision and therefore
able to cause more damage.

The proof of the theorem relies on the potential function and is very similar
to the analyses of other algorithms based on this idea. Thus, it is presented now
in detail:

Proof. By induction, it is easy to see that

w
(t+1)
i = (1− η)m

(t)
i (2.1)

Each time the algorithm makes a mistake, at least the weighted half of the experts
must have made a mistake, therefore their weights decrease by a factor (1− η).
If a ≥ n/2 is the number of experts that predicted incorrectly then

Φ(t+1) ≤ Φ(t)
(n− a

n
+
a

n
(1− η)

)
= Φ(t)

(
1− a

n
η
)
≤ Φ(t)(1− η/2) (2.2)

It is easily shown by induction from 2.2 that

Φ(T+1) ≤ Φ(1)(1− η/2)M
(T )

= n(1− η/2)M
(T )

(2.3)

Finally, for every i it holds:

Φ(T+1) ≥ w
(T+1)
i

2.3,2.1
=⇒

n(1− η/2)M
(T ) ≥ (1− η)m

(T )
i

ln(·)
=⇒
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M (T ) ln(1− η/2) + lnn ≥ m(T )
i ln(1− η) =⇒

M (T )(− ln(1− η/2)) ≤ lnn+m
(T )
i (− ln(1− η))

To obtain the result, we need to make some observations on the last inequality.

� LHS= M (T )(η2 + 1
2(η2 )2 + . . .) ≥M (T ) η

2 . This holds because all we did was to
replace ln(1− x) with its Taylor series expansion which certainly converges
since |x| = | − η/2| ≤ 1.

� RHS≤ lnn+m
(T )
i (η + η2). This is also true, being a well known inequality

that holds for η ≤ 1/2.

It follows that M (T ) η
2 ≤ lnn+m

(T )
i (η+η2) =⇒M (T ) ≤ 2(1+η)m

(T )
i + 2 lnn

η .
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2.2 The Multiplicative Weights Update Al-

gorithm

In the stock movement problem, the cost of an expert is binary in each round:
if the outcome of the round is that the stock is “up” then the cost of every expert
predicting “down” is 1, while the cost of the rest is 0. In the general setting, we
still have n decisions (experts) but the costs of our decisions are not necessarily

binary. In each round t, each decision i incurs a certain cost m
(t)
i , revealed to us

after we have made our choice, which is based on the outcome of the round. These

cost vectors m(t) represent the penalties (or rewards in case of m
(t)
i ≤ 0) that will

affect the weight of decision i in the next round. The main difference between the
Weighted Majority Algorithm and the generalized Multiplicative Weights Algorithm
is the way we make our choice in each round. In this general framework, we pick
a decision with a probability that depends on its weight. The algorithm is the
following:

Multiplicative Weights Update Algorithm
Initialization: Fix an η ≤ 1

2 . With each expert i, associate the weight w
(1)
i = 1.

At every step t = 1, . . . , T :

1. Choose decision i with probability p
(t)
i = w

(t)
i /Φ(t), where Φ(t) =

n∑
i=1

w
(t)
i .

2. Based on the costs m(t), adjust the weight of each decision i as follows:

w
(t+1)
i = w

(t)
i (1− ηm(t)

i )

Note that the positive costs represent penalties and therefore decrease the
decision’s weight while the negative ones (rewards) increase it. In order to discuss
the performance of this algorithm, we need to define the expected cost in round

t as Ei∈p(t) [m
(t)
i ] = m(t)p(t), so the total expected cost is

T∑
t=1

m(t)p(t). Again,

we compare this with the decision that performs best overall (i.e. has the least
T∑
t=1

m
(t)
i ). The next theorem is equivalent to Theorem 12.

Theorem 13 (Main Theorem). Let all costs satisfy m
(t)
i ∈ [−1, 1] and η ≤ 1/2.

The following bound holds for every i after T rounds:

T∑
t=1

m(t)p(t) ≤
T∑
t=1

m
(t)
i + η

T∑
t=1

|m(t)
i |+

lnn

η

Clearly, the bound is tighter for the best decision.
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The assumption that the costs’ width is at most 1 is not unnatural, since
we can assume that they are normalized. Furthermore, it can be proven via the
probabilistic method that the bound is tight (up to constants in the additive error)
for every online decision-making algorithm.

If we take the convex combination of the n inequalities guaranteed by Theorem
13 then we have the following corollary, which is very useful in applications.

Corollary 14. After T rounds, for any distribution p it holds:

T∑
t=1

m(t)p(t) ≤
T∑
t=1

(m(t) + η|m(t)|)p(t) +
lnn

η

where |m(t)| = (|m(t)
1 |, . . . , |m

(t)
n |).

A dual result can be obtained when the vector m(t) represents gains instead of
losses, in which case we want a lower bound guarantee for the expected gain. The
bound is the following, and it is a result of simply running the algorithm with cost
vector −m(t):

T∑
t=1

m(t)p(t) ≥
T∑
t=1

(m(t) − η|m(t)|)p(t) − lnn

η
(2.4)
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2.3 The Plotkin-Shmoys-Tardos Framework

One of the main applications that demonstrates the power of the method is the
PST Framework for packing/covering LPs [27]. The goal is to check the feasibility
of the following convex program:

Ax ≥ b, x ∈ P
where A ∈ Rm×n, b ∈ Rm, and P is a convex set in Rn.

Intuitively, P is a convex set that represents the “easy” constraints of a linear
program such as non-negativity and Ax ≥ b represent the m constraints that are
“hard” to satisfy. To solve the problem approximately, we design an algorithm
that either returns an x ∈ P such that Aix ≥ bi − ε holds for all i for an error
parameter ε > 0, or fails to return such an x, thus proving that the system is
infeasible. By Ai we denote the ith row of the matrix A, i.e. the ith constraint.

In order to design such an algorithm we need to assume the existence of an
Oracle which given a convex set P ⊆ Rn, and a probability vector p on the m
constraints, returns a vector x ∈ P that satisfies the inequality pTAx ≥ pT b, if
such an x exists.

We apply our method to the problem, corresponding:

� Each decision i ∈ {1, . . . ,m} to the constraint Aix ≥ bi.

� Each outcome with the x(t) ∈ P presented by the Oracle in round t.

� Each coordinate of the penalty vector m
(t)
i = (Aix

(t) − bi)/ρ.

The parameter ρ is equal to the largest value Aix
(t)− bi for every i and t and it is

called the width. The width plays an important role in both the convergence time
and the approximation result.

Our method implies that we call the Oracle in each round and update the
weights and consequently the distribution over the constraints. It is somewhat
counter-intuitive, though, for the more satisfied constraints to receive a larger
penalty. To understand this better, one should think of the Oracle’s procedure.
It searches for an x that satisfies a single inequality which is produced as a convex
combination of the constraints, with coefficients analogous to the weights. So if a
constraint is far from being violated, its coefficient should be decreased in order
to make the Oracle focus on other, more “difficult” constraints. By application
of Theorem 13, the next result occurs:

Corollary 15. After T = O(ρ
2

ε2
lnm) rounds, the algorithm finds a solution x that

satisfies the constraints within an additive error, i.e. Aix ≥ bi − ε, if one exists,
otherwise it concludes that the system is infeasible.

Proof. First, notice that m(t)p(t) ≥ 0 holds by the Oracle’s guarantee. Thus, for

the LHS of the inequality of Theorem 13 it holds that
T∑
t=1

m(t)p(t) ≥ 0. For the

RHS:
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T∑
t=1

m
(t)
i + η

T∑
t=1

|m(t)
i |+

lnm

η

= (1 + η)
∑
≥0

m
(t)
i +

[
(1− η)

∑
<0

m
(t)
i

]
+

lnm

η

= (1 + η)
∑
≥0

m
(t)
i +

[
(1 + η)

∑
<0

m
(t)
i + 2η

∑
<0

|m(t)
i |
]

+
lnm

η
(|m(t)

i | ≤ 1)

≤ (1 + η)

T∑
t=1

m
(t)
i + 2ηT +

lnm

η
(m

(t)
i ≤ 1)

≤
T∑
t=1

m
(t)
i + 3ηT +

lnm

η

Multiplying by ρ
T and substituting the cost variables with their values, we get

the following inequality:

1

T

T∑
t=1

[Aix
(t) − bi] + 3ηρ+

ρ lnm

ηT
≥ 0⇔ Aix ≥ bi − ε (2.5)

Where the error parameter is ε = 6ρη, the number of rounds is T = d12ρ
2 lnm
ε2

e and
the solution x is the average of the outcomes that the Oracle returns.

As for the case of infeasibility, if at some round t the Oracle fails to return
a solution then by linear programming theory (Farkas’ lemma), it is proven that
the system is infeasible, and the distribution p(t) is the witness.

This result is very intuitive because it shows the tradeoff between the rounds
that the algorithm runs and the error we obtain. In order to get a solution very
close to the optimal, the algorithm must run for a long time, as one would expect.

Furthermore, if we set P = {x : x ≥ 0, cTx = cost(OPT)} where cT is the
vector of the objective function of the covering LP, then our solution x will also
have optimum cost, as all xt ∈ P and x is the average of those outcomes. In the
next section, we present an application of the PST Framework regarding a problem
with LP formulation that uses this remark.
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2.3.1 The Oracle

Let us define an (`, ρ)-bounded Oracle to be an algorithm which given a
probability vector p, solves the previous feasibility problem but also satisfies the
inequalities: Aix − bi ∈ [−`, ρ] ∀i ∈ I and Aix − bi ∈ [−ρ, `] ∀i ∈ I (for a fixed
subset I ⊆ [m]).

In the previous analysis, we assumed that the absolute values of the costs
corresponding to the Oracle’s outcomes are bounded by ρ. If we allow (`, ρ)-
bounded Oracles, then our results would be tighter. For the sake of simplicity,
though, the previous analysis is restricted to (ρ, ρ)-bounded Oracles.

Another point left unspecified in the previous analysis is the procedure of the
Oracle. It is not the subject of this thesis to describe the algorithm used to find
a point in a convex set satisfying a single inequality, but the running time of such
an algorithm matters to our framework. Fortunatelly, we can assume a running
time of O(m) per call.

Last but not least, the results hold even for ε/c-approximate Oracles, for a
constant c. In this case, the number of rounds T is multiplied with a constant
factor, therefore the asympotic result remains the same.
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2.4 Width Reduction: Approximating Maxi-

mum Multicommodity Flow

The Maximum Multicommodity Flow Problem is represented by a LP and
therefore gives a good example of the PST Framework. Unfortunatelly, strait-
forward application of the framework yields an algorithm with non-polynomial
running time, which is caused by the fact that the width ρ depends on the capac-
ity of the edges of the graph (and the number of the iterations T of the algorithm
depends on ρ, as we can see from Corollary 15). Garg and Könemann [19] man-
aged to reduce the width parameter ρ and derive a better algorithm which gives
an (1 − ε)2 approximation factor in O(Tspm logm/ε2) running time, where Tsp is
the time needed to find the shortest paths between the k source-sink pairs of the
commodities.

First, let P be the set of all paths between the sounce-sink pairs and fp the
flow on path p ∈ P . We need to maximize the flow on all the source-sink pair
paths, while the total flow of all paths using edge e cannot exceed the capacity
of e. The LP formulation of the Maximum Multicommodity Flow Problem is the
following:

max
∑
p∈P

fp∑
p3e

fp ≤ ce : ∀e ∈ E

fp ≥ 0 : ∀p ∈ P
Equivalently, we need to find a flow f such that:∑

p3e
fp ≤ ce : ∀e ∈ E, x ∈ P

where P :=
{
f :

∑
p∈P

fp = FOPT , fp ≥ 0 : ∀p ∈ P
}

.

Note that we can easily find (via binary search on the lower bound of the
objective) the value FOPT that guarantees that our solution is of optimal cost.

A careful application of our method, would correspond:

� Each decision e ∈ {1, . . . , |E|} to the constraint
∑
p3e

fp
ce
≤ 1.

� Each outcome with the flow through path p(t) that satisfies
∑
e
w

(t)
e
∑
p3e

fp
ce
≤ 1,

presented by the Oracle in round t.

� Each coordinate of the penalty vector m
(t)
e = (

∑
p3e

fp
ce
− 1)/ρ.

where the width parameter is ρ = max
f∈P

max
e

(
∑
p3e

fp
ce
− 1) = FOPT

min
e
ce
− 1, which unfor-

tunatelly may be exponential on the size of the input graph, as we discussed.
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Note that it suffices for the Oracle to minimize the quantity
∑
e
w

(t)
e
∑
p3e

fp
ce

since the RHS of the inequality is 1. Minimizing
∑
e
w

(t)
e
∑
p3e

fp
ce

=
∑
p
fp
∑
e∈p

w
(t)
e
ce

,

would mean to pass a flow of FOPT cost through a path p(t) ∈ P of shortest

length, where the length of each edge is w
(t)
e /ce.

Garg and Könemann managed to modify the method in a way that reduces
the width parameter. They did so by removing the optimality constraint of the
convex set P , meaning that the Oracle no longer needs to pass a flow of optimal
cost through the paths, but passes as much flow as it can, provided that it does
not exceed the minimum capacity of the edges of the path. More specifically, the

Oracle finds the shortest path p(t) with respect to edge lengths w
(t)
e /ce and routes

as much flow as is allowed by the minimum capacity edge of the path, c(t). The

coordinates of the cost vector are now m
(t)
e = c(t)/ce for every edge on the chosen

path and m
(t)
e = 0 for all other edges. Therefore the width parameter is reduced

to 1. The algorithm is the following:

Maximum Multicommodity Flow Algorithm
Initialization: Fix η ≤ 1

2 . With each edge e, associate the weight w
(1)
e = δ and set

fp = 0

At every step t, until some w
(t)
e ≥ 1, do:

1. Choose shortest source-sink path p(t) using lengths w
(t)
e /ce.

2. Increase flow fp = fp + c(t), where c(t) is the bottleneck capacity of p(t).

3. Adjust the weight of each edge e as follows:

w
(t+1)
i = w

(t)
i (1 + η

c(t)

ce
)

Return: f scaled to be primal feasible

One would notice that the initialization is different, and this is because the
variable δ is chosen during the approximation analysis in a way that enhances
the result. Also, the final flow needs to be scaled down, since, as in the original
framework, the outcomes of each round are not guaranteed to be a feasible solution
for the system of inequalities. Finally, the termination rule is slightly different and
it helps us infer the number of iterations T .

At first the Garg-Könemann algorithm seems to have more modifications than
similarities with the algorithm implied by the PST Framework. But a closer look
in those modifications helps us realize that they are ideas that are natural to the
problem. From there on, the analysis uses the Corollary 14, with gains instead
of losses, since our problem is a maximization problem and the edge weights are
increased every time an edge is used so that it is less likely to be a part of the
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shortest path in the next round. So even if the straightforward application of the
framework does not yield good results, a few natural modifications of it give very
good approximation and running time results, using the framework’s analysis.

For illustrative purposes, we present next the analysis of the approximation
ratio and the running time but if the reader understood the previous section’s
analysis, then it can be ignored since it does not provide any further intuition.

Proof. The weight of each edge is increased by a factor (1 + η)1/ce for each unit of
flow routed through e. Let fe be the total amount of flow passing through e and

e∗ the first edge for which: w
(T )
e∗ ≥ 1. Then

δ(1 + η
fe∗

ce∗
) ≥ 1⇒ fe∗

ce∗
≥

ln 1
δ

ln(1 + η)
(2.6)

where the latter follows from the fact that (1− η)|x| ≤ (1− η|x|) for |x| ≤ 1.
From Theorem 13, the total expected cost (gain) and the total cost (gain)

incurred by e∗, fe∗/ce∗ , are related as follows:

T∑
t=1

∑
e∈p(t)

c(t)
ce
w

(t)
e∑

e
w

(t)
e

≥ ln(1 + η)

η

fe∗

ce∗
− lnm

η

2.6⇒
T∑
t=1

∑
e∈p(t)

c(t)
ce
w

(t)
e∑

e
w

(t)
e

≥
ln 1

δ

η
− lnm

η
=

ln 1
mδ

η

(2.7)

Now we claim that
T∑
t=1

∑
e∈p(t)

c(t)
ce

w
(t)
e

∑
e
w

(t)
e

≤ F/FOPT where F =
T∑
t=1

c(t) is the total

flow routed in all rounds. Suppose fOPTp is the flow that the optimal solution
assigns to path p. For any set of lenghts we/ce the shortest path satisfies:∑

e
we∑

e∈p

we
ce

≥
∑
p′

fOPTp′ = FOPT (2.8)

Therefore by 2.7: F
FOPT

≥ ln 1
mδ
η

In order to get a feasible flow we scale down F by log1+η
1+η
δ so choosing

δ = (1 + η)((1 + η)m)−1/η the approximation ratio becomes (1 − η)2. If we set
η = ε then we have (1− ε)2.

Regarding the running time: Any edge can be the minimum capacity edge
at most log1+η

1
δ times. So within mlog1+η

1
δ = O(mlogm

η2
) iterations, the algorithm

must terminate. Each iteration involves k shortest path computations thus O(mk)

time. The overall running time is, therefore, O(km
2logm
ε2

) (for η = ε).
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2.5 Other applications

As we stated earlier, important applications of the method are met in many
diverse fields such as Machine Learning (The Boosting Algorithm), Semi-Definite
Programming (0.878 approximation for Max Cut), Graph Theory (Sparsest Cuts),
and the proof of Yao’s XOR lemma. We will list some applications in this section
that illustrate the usefullness of the idea and are easier to understand without
demanding additional knowledge of their respective fields.

2.5.1 Approximating NP-hard problems: Set Cover

NP-hard problems which can be formulated in integer packing/covering lin-
ear programs can be approximated within O(log n) of the optimal solution. The
randomized algorithm that gives this result uses randomized rounding to find an
integer solution based on the solution of the LP relaxation of the problem. The
deterministic algorithm simulates the randomized algorithm using Raghavan’s de-
randomization method of pessimistic estimators ([28]).

Combining the ideas above, N.Young introduced in [30] a technique called
oblivious rounding, which yields an algorithm that uses the multiplicative update
rule. In the paper, N.Young uses his technique on the Set Cover problem, which
is a representative of the class of NP-hard problems and proves that it gives the
well-known O(log n)-approximation greedy algorithm. We will now show how the
Multiplicative Weights Update Method gives us the O(log n) approximation of Set
Cover and finally we will try to give the intuition behind Young’s framework and
its connection to our method.

The Set Cover problem is defined as follows: We are given as input a set of
elements U = {1, . . . , n} and a collection C of sets whose union equals U . The
required output is the minimum number of sets from C covering U .

In the Multiplicative Weights Update Method we correspond:

� Each decision to an element i ∈ {1, . . . , n} that has to be covered.

� Each outcome to the set Cj(t) ∈ C, returned by the Oracle, which maxi-

mizes the expected cost under p(t) and as a result, the number of uncovered
elements that it covers.

� Each coordinate of the penalty vector m
(t)
i =

{
1 if i ∈ Cj(t)
0 otherwise.

The algorithm for η = 1 corresponds to the degenerate case in which the weight
of an element is reduced to zero when it is covered and therefore the weights of
the uncovered (at the time) elements form a uniform distribution. This is why

maximizing the expected cost
∑
i∈C

pi = |C∩Suncovered|
|Suncovered| is the same as choosing C

to maximize the number of uncovered elements that it covers. There is a slight
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technical requirement for η ≤ 1/2 but we can adjust the weights in a way so that
the analysis is the same.

The algorithm described above yields a dlnne approximation since in T =
dlnneOPT rounds it covers all the elements while only one set is chosen in each
round, making the cost of our solution equal to the number of rounds.

The idea behind Young’s oblivious rounding was Chernoff’s bounds. The most
known such bound shows that the sum of independent random variablesX1, . . . , Xn

is highly concentrated around its mean and the way to prove this is by using

Markov’s inequality on the quantity e
η
n∑
i=1

Xi
. Notice that if we have a partial

sum with a “potential function” e
η
∑
i
Xi

then adding a new Xj to the sum would
mean to multiply the potential function with eηXj (which is equal to (1 − ηXj)

for small ηXj). Therefore, one can bound the probability of failure by E[e
η
∑
i
Xi

],
so the latter is a pessimistic estimator of this probability and by choosing in each
round the Xi that decreases the pessimistic estimator, we achieve the desired
approximation ratio.

2.5.2 Algorithmic Game Theory: Zero-Sum Games

The Multiplicative Weights Update Method has many applications in Algo-
rithmic Game Theory, which we will discuss on Chapter 3. But, zero-sum games
provide a very intuitive and easy example of the method’s application.

A zero-sum game is a situation in which a player’s gain (respectively, loss) is
exactly balanced by the losses (respectively, gains) of the other players. Thus, the
total gains and losses sum to zero. In a two player zero-sum game, there is a n×m
size matrix M , each entry M(i, j) of which is w.l.o.g. in [0, 1] and represents the
payoff of the column player when he plays strategy j and the row player plays
strategy i. Furthermore, if the row (respectively, column) player chooses his strat-
egy from a distribution p (respectively, q) over the rows (respectively, columns)
then the expected loss (respectively, payoff) that he receives if the column (respec-
tively, row) player chooses strategy j (i) is M(p, j) = Ei∈p[M(i, j)] (respectively,
M(i,q) = Ej∈q[M(i, j)]). According to John von Neumann’s min-max theorem,
if every player chooses a distribution (which is exactly a mixed strategy) in order
to optimize their utility then they obtain the same value, also known as the game
value:

λ∗ = min
p

max
j
M(p, j) = max

q
min
i
M(i,q) (2.9)

Suppose that we wish to solve the zero-sum game approximatelly, meaning
to find row and column strategies (p̃ and q̃ respectively) such that, for an error
parameter ε:
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min
i
M(i, q̃) ≥ λ∗ − ε (2.10)

and

max
j
M(p̃, j) ≤ λ∗ + ε (2.11)

The problem already uses a payoff (loss) matrix so the Multiplicative Weights
Update Method would seem a natural idea for a solution, as is originally proved
in [18]. We correspond:

� Each decision to a pure strategy of the row player i ∈ {1, . . . , n}.

� Each outcome to the pure column strategy j(t), returned by the Oracle,
which maximizes M(p(t), j(t)) in round t (the Oracle operates in O(n)
time).

� Each coordinate of the penalty vector m
(t)
i = M(i, j(t)), as ρ = 1 (note that

this is exactly i’s loss).

After T = O(log n/ε2) rounds, using the method’s guarantee, we conclude
that p̃ = p(t̃), where t̃ is the round with the minimum value of M(p(t), j(t)), is a
distribution that corresponds to a value ε close to λ∗ and so is the distribution q̃

which assigns to each column j the probability |{t∈{1,...,T}|j
(t)=j}|

T .

The general saddle point problem

The above problem can be considered as a special case of the following problem.
Suppose we have two bounded convex sets X and Y in Rm and Rn respectively
and we are given a Membership Oracle for each set, that is an algorithm which
determines in polynomial time in the dimension of the space whether a point
belongs in the set or not. We are also given a function F : (X,Y ) → R which
is continuous and convex-concave, meaning that the function F (·, y) : X → R is
convex ∀y ∈ Y and F (x, ·) : Y → R is concave ∀x ∈ X. The goal is to find a
saddle point, i.e. (x∗, y∗) such that infx∈Xsupy∈Y F (x, y) = supy∈Y infx∈XF (x, y)
or at least approximate it. An ε-approximate saddle point would be a point (x∗, y∗)
which satisfies the inequality supy∈Y F (x∗, y) ≤ infx∈XF (x, y∗) + ε.

The reason why this problem can be considered as a generalization of the
previously described two player zero-sum game problem is the following: imagine
the row player who needs to minimize his loss having to choose a strategy from
a convex set X and the column player who needs to maximize his payoff having
to choose a strategy from another convex set Y . For given strategies x ∈ X and
y ∈ Y , the loss (respectively, payoff) of the row (respectively, column) player
would be given by the value of the function at this point, F (x, y). Therefore,
by the definition of saddle points, we can see that the game value we defined in
zero-sum games, namely λ∗, is exaclty a saddle point.
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This general problem can not be solved by direct application of the Multiplica-
tive Weights Update Method because the sets X,Y are not necessarily bounded
and the oracle we have assumed is weaker than the ones assumed previously. But an
extension of the method, combined with sampling techniques will yield an efficient
solution, whose running time depends on the width parameter as expected. The
algorithm we are going to present is randomized and it returns an ε-approximate

saddle point within an expected number of O
(
ρ2(n+m) ln R

ε
ε2

)
iterations, where R is a

parameter we are going to introduce shortly. In each such iteration, the algorithm
computes two approximate samples from log-concave distributions (for example,
the normal distribution, the exponential distribution or the uniform distribution)

which causes the overall running time to be O∗
(
ρ2(n+m)6 ln R

ε
ε2

)
.

Definition 16. A function is called logarithmically concave or log-concave for
short, if its domain is a convex set and the logarithm of the function is a concave
function.

The above result only holds under an assumption, which is a very common
assumption when dealing with Membership Oracles. We assume that we
know two points x0 ∈ X and y0 ∈ Y and positive numbers rX , rY , RX , RY such
that Bm(x0, rX) ⊆ X ⊆ Bm(0, RX) and Bn(y0, rY ) ⊆ Y ⊆ Bn(0, RY ) where
Bk(u0, rU ) is the k-dimensional ball with center u0 and radius rU . The parameter
R = max{RY , RX , 1

rX
, 1
rY
}.

The algorithm is the following, introduced in [16]:

Randomized Fictitious Play
Initialization: Choose x(0) ∈ X and y(0) ∈ Y arbitrarily.
At every step t = 1, . . . , T , do:

1. Choose x′ ∈ X and y′ ∈ Y independently with probability
px′ (t)
‖p(t)‖1 and

qy′ (t)

‖q(t)‖1
respectively, where

px′(t) = e−
εtF (x′,y(t))

2

qy′(t) = e
εtF (x(t),y′)

2

‖p(t)‖1 =

∫
x′∈X

px′(t)dx
′

‖q(t)‖1 =

∫
y′∈Y

qy′(t)dy
′

2. Update the coordinates x(t+ 1) = t
t+1x(t) + 1

t+1x
′, y(t+ 1) = t

t+1y(t) + 1
t+1y

′

Return:
(
x(t), y(t)

)
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2.5.3 The Theory of Evolution: Coordination Games
between genes

As impressive as it sounds, the Multiplicative Weights Update Method can
be used to study how the frequency of appearence of a genotype (combination
of two genes) changes from generation to generation in a sexual species, namely
the population genetic dynamics. Each genotype ij has what is called its fitness
value wij , which is the expected number of offspring this genotype produces by
mating randomly and can be considered to be in [1 − s, 1 + s], according to the
weak selection assumption with strength s. These values form a matrix, a linear
transformation of which is called the differential fitness landscape. It is proven
in [11] that the population genetic dynamics is precisely the multiplicative update
dynamics in a game where the players are the genes, all payoff functions are iden-
tical, and the payoff matrix is the differential fitness landscape. The multiplicative
update dynamics imply that given a mixed strategy profile xp of player p, this
has to be updated in the following multiplicative way: The probability of player p
playing strategy a is

xp(a)(1 + ηq(a))

1 + ηq̄

where q(a) is the expected payoff of strategy a and q̄ is the expected payoff to p
(fixed for every player in a coordination game).

2.5.4 Network Congestion Control: TCP/IP Rule

The TCP/IP protocol, which is commonly used in communication networks
today, uses a congestion control rule known as multiplicative decrease, additive
increase. Even though it does not seem to fit perfectly into our framework, it
does seem related. As one can easily prove, this rule converges to an allocation of
(1± ε) 1

n of bandwidth to each user after T ≥ log(ne ) rounds.
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Chapter 3

The Multiplicative Weights
Update Method in Online
Mechanism Design

In Online Mechanism Design, the players arrive dynamically and the mecha-
nism has to make a decision irrevocably without any further information about the
players who are “next in line”. The Multiplicative Weights Update Method has
many applications in Online Mechanism Design, as expected since it is a learning
procedure applied in exaclty those situations where decisions are taken in each
round. As we did in Chapter 2, we will make a selection of the applications that
have had the most impact in the area. In this Chapter though, we will present
them in a chronological order (for the most part), because most of the applica-
tions rely on previous work and we believe that this order will help illustrate the
evolution of the ideas in a more natural way.
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3.1 Online Routing

One of the first settings (in 1993), in which the idea of the method seemed to
appear, was online routing problems.

In this setting ([3]), there is a network, modeled as a graph G(V,E, u) with
|V | = n nodes and capacities u(e) on its edges e ∈ E which correspond to the band-
width available in each connection. At any time, a request can be made. That is a
request to make a connection of a certain bandwidth between two nodes in a cer-
tain period of time. Formally, a request i is a tuple (si, ti, ri(τ), T s(i), T f (i), ρ(i))
where the first two coefficients are the source and the destination, ri is the function
of traffic rate required by the request over the period τ ∈ [T s(i), T f (i)) (we will
assume for simplicity that they are constant), and ρ(i) is the profit of the request,
which is assumed proportional to its rate and duration. The Mechanism then de-
cides whether it will admit the request or reject it. In case it admits it, it also has
to guarantee that the connection will be succesful, allocating the required band-
width along a path Pi between the source and destination node, which is again
chosen by the mechanism. The goal is of course to maximize the total profit, i.e.∑
Pi 6=∅

ρ(i) and it can be viewed as maximization of either revenue or social welfare.

Before we continue to present the algorithm, we should make some remarks.
Firstly, this setting is a little peculiar because of the continuity of time. We can
not use an algorithm that runs in rounds, since a request can be made at any
time, so the algorithm must run each time we have a request. Moreover, there
occurs the question of how we will evaluate such an algorithm. As it turns out,
the algorithm can be proved competitive comparing the performance of the offline
algorithm at any given interval and the performance of the online algorithm at the
same interval, extended evenly by duration 2T = 2 max τ .

In order to move on to the algorithm, we need to introduce one more quantity:
the relative load λ. When we say that the competitive ratio of an online algorithm
is λ with respect to relative load, it means that given any sequence of events (i.e.
requests) that can be satisfied by the offline algorithm, the online algorithm would
be able to satisfy them if the capacities of the edges were all increased by a factor
λ. We define the relative load of an edge e, at time τ , right before the kth request
by:

λe(τ, k) =

k∑
i=1

−1
∑
e∈Pi

ri(τ)

u(e)

Obviously, in order for the capacity constraints to be satisfied, λe(τ, k) ≤ 1 needs
to hold.
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We are now ready to present the algorithm:

New Connection Algorithm
Initialization: Fix a parameter µ = 2nT + 1 and with all edges e at all times τ ,
associate the cost ce(τ, j) = u(e)(µλe(τ,j) − 1).
If there is a path Pj from s to t such that:

∑
τ

rj(τ)

u(e)
ce(τ, j) ≤ ρ(j) (3.1)

Then route the connection on Pj and update the relative load of its edges:

∀e ∈ Pj , ∀τ ∈ [T s(j), T f (j)): λe(τ, j + 1) = λe(τ, j) +
rj(τ)

u(e)
(3.2)

Else block it.

The algorithm already reminds us of the Maximum Multicommodity Flow
algorithm described in Section 2.4 of the previous chapter. We keep a cost for
each edge at all times which is updated in a multiplicative way, increasing it for
the period that it is used in order to avoid using it for future connections during
that time. Of course, in this case, we can not let the bandwidth used in each edge
exceed its capacity, and fortunatelly this is achieved by this algorithm if we make
the assumption that rj(τ) ≤ mine{u(e)}

log µ , which essentially translates to the fact
that the rates of the requests have to be significantly smaller than the minimum
capacity of the graph.

As one could possibly guess by now, the competitive ratio is a logarithmic func-
tion. In particular, the online algorithm is an O(logµ) = O(log nT ) approximation
of the offline. We will not prove this result since we will analyze later results in
much more extent, but essentially, it occurs from the following obsevations: The
sum of the costs is less than Θ(log µ) times the total profit of the online algorithm
beacuse of the assumption we made and the sum of the offline profit caused by
requests that we did not choose to route is less than the sum of the costs, because
of the condition 3.1. It seems that the assumption helps us achieve feasibility and a
good approximation ratio. What’s more, it is proven that without this assumption
a logarithmic approximation ratio can not be achieved by any online algorithm.

An important drawback of this algorithm is that the competitive ratio and the
parameters of the algorithm itself depend on the time T which is the maximum
duration of a request. This could be arbitrarily big with respect to the input
n or even unknown. In order to fix this, the authors of [4] introduced one year
later another algorithm which uses relative loads and the multiplicative technique
and achives a O(log n) competitive ratio allowing O(log n) reroutes of requests,
using a stability condition which is more easily checked, guarantees the desired
approximation ratio and is weak enough so that it is not very often violated (at
least not more than O(log n) times).
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3.2 Combinatorial Auctions

Combinatorial Auctions (CAs) are a very interesting area of Mechanism De-
sign, mainly because of their applications in real life. In a combinatorial auction,
m non-identical items are auctioned simultaneously to n players, i.e. bidders. In
the general case, each player has a valuation function vj , which corresponds a
non-negative value to each bundle of items, and the problem is to find a feasible
allocation of the items, which maximizes the social welfare and impose paymens
to the players. A bundle is a subset of the auctioned items. In the case of single-
minded bidders the sets are of size 1. The classic case in which there are no more
than a single copy of each item is called single-unit case. More interesting phenom-
ena can be modeled using the multi-unit case, in which every item i ∈ {1, . . . ,m}
has Bi copies of itself, and in most settings, it suffices to allow B copies of each
item.

As it has been described up until now, this problem seems to be just an instance
of the VCG Mechanism given in Chapter 1. What we have ommited from the
introduction, is the fact that VCG has certain drawbacks that can’t be ignored.

The most important among them is that the mechanism requires choosing the
outcome that maximizes the social welfare. In the combinatorial auction’s case,
the set of possible outcomes is exponential in size, (mn even in the single-unit case)
therefore computing the optimal outcome is impossible in polynomial time. When
valuations are arbitrary even describing the valuation function to the mechanism is
impossible in practice, since there are exponentially many points of the valuation
function to be accessed (2m bundles even in the single-unit case). Even the idea of
approximation algorithms is not helpful in this scenario, because an approximation
allocation rule does not guarantee truthfulness.
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3.2.1 Online Truthful Multi-Unit Auctions for known
bidders

The first breakthrough in this area, in 2003 ([5]), introduces a truthful mecha-
nism for non single-minded bidders, auctioning B copies of each item with a good
approximation ratio for both online and offline scenarios. The best result until
then dealt with known single-minded bidders and achieved a O(

√
m) approxima-

tion ratio, which is the best possible in this case. The new result is based on an
assumption, which however is very natural to the setting: the bidders desire no
more than a single copy of each item. In fact, the assumption is that the demand
of each player for each item is bounded by a lower and upper fraction of the copies.
But it is easier to think of this percentage as 1

B . Finally, we consider the items to
have no multiplicity and allow the bundles to have fractional demands.

The way this algorithm overcomes the obstacle of choosing the optimal allo-
cation is by transfering this decision on the players. Specifically, it announces the
prices of each item and in each round asks the player himself (we can imagine
it as a Demand Oracle) to choose the fraction of each item he wants to buy,
in exchange for the same fraction of the item’s price. Notice that it may still be
NP-hard to choose the best bundle but this is now the players’ problem!

The connection to the multiplicative weights update idea comes from the way
the prices are updated and was inspired by the cost update rule in the online
routing algorithms of the previous section. The price of each item P (i) is initialized
at a certain value P0 and it is multiplied by a parameter r per unit allocation. We

denote by l
(i)
j the fraction of item i that has already been sold when the jth player

arrives. The general structure of the algorithm is the following:

General Multi-Unit CA Algorithm
Initialization: Fix the parameters P0 and r. With all items i ∈ {1, . . . ,m}, asso-

ciate the sold fraction l
(i)
1 = 0.

For each bidder j = 1, . . . , n

1. Update each item’s i price: P
(i)
j = P0r

l
(i)
j .

2. Query j’s Demand Oracle on the current prices and allocate the fractions

it returns, x
(1)
j , . . . , x

(m)
j .

3. Determine bidder’s j total payment as
m∑
i=1

x
(i)
j P

(i)
j .

4. Update the sold fraction of every item: l
(i)
j+1 = l

(i)
j + x

(i)
j .

The truthfulness of the Mechanism derives from the obsevation that if the price
parameters do not depend on the valuations of the players then the player has no
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incentive to lie since the choice of the bundles is his and because of the “take-it-or-
leave-it” structure of the algorithm he cannot manipulate it. Of course, even then,
the case of manipulation from coalitions remains possible. However, in the online
algorithm these parameters depend on the maximum and minimum valuation vmax

and vmin and they have to be considered known a priori for the mechanism to be
truthful. More specifically, the parameters that satisfy certain assumptions that
guarantee truthfulness are P0 = vmin

2n and r = B(2mρ)1/(B−1), where ρ = vmax
vmin

.

The approximation ratio is O(B(mρ)1/(B−1)), so it is close to being an optimal
approximation for settings in which the range of the valuations is relatively small
and B = Ω(logm). Intuitively, large values of B give better performance because
it allows the algorithm to run longer and to “learn” the right value for each item,
depending on its “popularity”.

The performance of the offline algorithm is better because we can choose the
parameters to depend only on vmax and by modifying the general algorithm, using
a “2nd” price (VCG-like) mechanism for the player with the maximum valuation,
the mechanism remains truthful with no further assumptions. In addition, the
approximation ratio is the same except that it does no depend on ρ. However,
it is the online case we are mostly concerned with, since it fits the Multiplicative
Weights Update Method better.

Using Randomness

Another work regarding the same problems was published at the same year
([2]) introducing a solution of randomized truthful mechanisms which have a good
approximation ratio in expectation. This was a result of applying the general tech-
nique of the paper used to convert an online algorithm A to a truthful mechanism
which uses A as a black box.

The approximation ratio is O(log ρ+α), where α is the competitive ratio of A
and ρ is the same valuation ratio as before. The randomization lies in the accep-
tance condition: Bidder j takes the set which maximizes the difference between
his bid bj(s) and the minimum bid cj(s) (i.e. the cost) for which A accepts. But
this is only if his bid is at least cj(s) +m, where m ∈ [0, ρ] is a random quantity,

which follows the distribution m =

{
0 with probability 1/2

2i with probability 1
2 log ρ

.

Although the approximation ratio is good only in expectation, this algorithm
is truthful even for coalitions (but not for players who merge their requests into a
single one). There are, as usual, some properties that the original online algorithm
has to satisfy but they are natural to almost all common settings. Algorithm A,
however, still has to provide a good approximation guarantee and the best known
is the one from the previous section. More randomization algorithms for these
problems appeared later, which we will analyze in subsequent sections.
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3.2.2 Truthful Multi-Unit Auctions for single-minded
bidders

In the previous section, one of the problems we had to face was that additional
information were needed about the range of the bidders’ valuations and the ap-
proximation ratio depended on them. If we allow single-minded bidders then there
exists a truthful greedy combinatorial auctions algorithm which does not need any
additional information on the bidders and gives a better approximation result that
depends only on m and B. This algorithm, introduced among other results in [7],
has approximation ratio O(m1/B), using similar multiplication rules.

3.2.3 Online Truthful Multi-Unit Auctions

Finally, in an effort to rid the algorithms of previous assumptions and find an
online algorithm that is efficient even for B = o(logm) and holds for the case of
non single-minded bidders, the authors of [23], introduced two new algorithms, one
deterministic and one randomized. These are the algorithms that we are going to
analyze in extent, mainly because they yield the best results.

The initial idea is very similar to the one from [5], since it is the multiplicate
weights update idea applied on the prices of the items and calls each player’s i De-
mand Oracle Di instead of computing the utility maximization bundle. The new
idea, is that the mechanism uses the concept of oblivious randomized rounding, in
the sense that there is a probability that each bundle returned by the Demand
Oracle is not assigned to the corresponding player. More specifically, the first
(deterministic) algorithm, does not return a feasible solution, meaning that it sells
more than B copies of each item but has constant approximation ratio. The over-
selling is fixed in the second (randomized) algorithm.

The algorithm is given two parameters:

� 0 ≤ L ≤ umax

� µ ≥ 1

such that there is at most one bidder whose valuation exceeds µL.
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Overselling Multiplicative Price Update Algorithm
Initialization: For each item e ∈ U : p1e = p0 = L

4Bm .
For each bidder i = 1, . . . , n

1. Give bidder i bundle
Si = Di(U, p

i) (3.3)

2. Update all sold items e ∈ Si: pi+1
e = pie · 21/B

By overselling, this algorithm achieves a constant factor approximation, since,
as we stated earlier, letting the algorithm sell more gives us more information
about the players’ valuation of the items and helps us find the “right” price for
them. Technically, the first parameter of the Demand Oracle in 3.3 may differ
between rounds (it could be any Ui ⊆ U). The analysis holds for the most part
for any sequence U1, . . . , Un but the last lemma regarding the approximation ratio
uses unrestricted oracles, meaning that it has to be U1 = . . . = Un = U .

Lemma 17. The allocation S maps at most sB copies of each item to the bidders,
where s = log(4µBm) + 2

B (s is called the overselling factor).

This is an easy result to prove, given the assumption that there is only one
who could buy a copy after its price is higher than µL. We note here that µ can
be erased from the factor if we assume that the bidders come in a random order
(and not arbitrarily-in an adversarial way).

Regarding the approximation ratio:

Lemma 18. The following two inequalities bounding the total valuation hold:

� v(S) ≥ B
∑
e∈U

p∗e −Bmp0.

� v(S) ≥ v(OPT )−B
∑
e∈U

p∗e.

The first inequality follows from the assumption that the utilities of the bidders
are not negative and the second from the fact that every bundle Ti assigned by the
optimal solution would have less or equal utility to the chosen bundle Si at the time.

Summarizing the results:

Theorem 19. The Overselling Algorithm produces an infeasible allocation that
assigns at most B log(4µBm) + 2 copies to the bidders and achieves social welfare
v(S) ≥ 1

4v(OPT ).

Combining the above lemmata and the inequality Bmp0 = L
4 ≤

v(OPT )
4 , it is

easy to prove the theorem.
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Before we continue to fix the overselling problem attempting to preserve the
constant approximation ratio, we will give the main idea behind it. If we want
to preserve the ratio, we have to still “use” some of the bidders to find out how
popular each item is. But this time, we will not sell it, since we are limited by the
number of copies B. To manage to do both, we introduce a constant probability
q. With probability q we actually sell the item and with probability 1 − q we
don’t. We “sacrifice” it to gain information. It is already obvious that it is very
important that this probability is chosen correctly.

MPU Algorithm with Oblivious Randomized Rounding
Initialization: For each item e ∈ U : p1e = p0 = L

4Bm , b1e = B.
For each bidder i = 1, . . . , n

1. Set
Si = Di(Ui, p

i) ,for Ui = {e ∈ U | bie > 0} (3.4)

2. Update each item e ∈ Si: pi+1
e = pie · 21/B.

3. With probability q set Ri = Si, else set Ri = ∅.

4. Update each item e ∈ Ri: bi+1
e = bie − 1.

Step 4 and the definition of Ui in 3.4 guarantee that the algorithm does not
oversell. Let us now discuss the approximation ratio. Since this is now a random-
ized algorithm, the competitive ratio is the maximum ratio of the optimal offline
algorithm to the expectation of the online algorithm, where the latter is denoted
E[v(R)].

Theorem 20. If q is sufficiently small such that for any i ∈ [n] and any bundle
T ⊆ U ,

E[vi(T ∩ U)] ≥ 1

2
vi(T ) (3.5)

then E[v(S)] ≥ 1
8v(OPT ) and E[v(R)] ≥ q

8v(OPT ). Therefore, we have an O(1q )
approximation of the optimal social welfare.

The proof uses similar arguments as the previous, except from the obvious
implication that E[v(S)] ≥ 1

8v(OPT ) ⇒ E[v(R)] ≥ q
8v(OPT ) which is due to the

linearity of expectation.
The conclusion of this theorem is that we need to find a way to choose prob-

ability q to be as large as possible but to satisfy 3.5 at the same time. This is
contradictory because in order for the last inequality to hold, Ui should be as large
as possible, therefore we should not sell items very often, meaning that q has to be
small. Imagine that for q = 0 we sell no items so E[vi(T ∩ Ui)] = E[vi(T ∩ U)] =
E[vi(T )] = vi(T ) ≥ 1

2vi(T ).
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There is no known way to decide q at every setting. In the case of CAs with
bundles with maximum cardinality d, it is proven that condition 3.5 holds for
1
q = O(d1/B logm).

Finally, we note that the randomized mechanism is universally truthful since
every deterministc mechanism it uses is truthful and probability q does not depend
on the bids.
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3.3 The Resource Allocation Framework on

inputs with stochastic properties

Up to this point, we have compared the performance of the online algorithms
to the best offline solution in the worst case of the input. This approach has
known inapproximability bounds for many interesting problems and it also may
in fact be too strict. If instead we assumed certain stochastic properties of the
input, for example that the input comes from a known or unknown distribution,
we would possibly be more just to the performance of the algorithms. N. Devanur,
K. Jain et al.([13, 14, 8]) explored this direction on a class of problems that can
be considered as a generalization of both CAs and many advertizing problems,
called the Resource Allocation Framework while at the same time introducing fast
approximation algorithms for mixed packing-covering LPs using the Multiplicative
Weights Update Method. This particular application of the method is the subject
of this subsection.

Firstly, we will desribe the problems we are going to use. A very well known
canonical problem from the Resource Allocation Framework is the Adwords prob-
lem, where there are n advertizers and m queries (we can imagine them as key-
words in a search engine) arriving online. Each advertizer i has a bid for keyword
j, denoted bij , and a total budget Bi. The goal is to allocate the keywords to
the advertizers (bidders) so that no one exceeds their budget and the revenue is
maximized. A relaxation of the LP representing this problem is the following:

max
∑
i,j
bijxij∑

j
bijxij ≤ Bi : ∀i ∈ {1, . . . , n}∑

i
xij ≤ 1 : ∀j ∈ {1, . . . ,m}

xij ≥ 0 : ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}
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Given the Adwords problem, we can understand more easily the Resource
Allocation Framework. In this framework, there are requests arriving online and
the algorithm has to decide the way to serve these requests by choosing among
some options k ∈ K (may be exponential on m and n) which define the amount
of the resources the algorithm will provide. By serving a request j with option k
of course, there is an amount aijk of resource i that is consumed and also a profit
wjk. Denoting by Ci the total capacity of resource i, the corresponding LP for the
Resource Allocation Framework is the following:

max
∑
j,k

wjkxjk∑
j,k

aijkxjk ≤ Ci : ∀i ∈ {1, . . . , n}∑
k

xjk ≤ 1 : ∀j ∈ {1, . . . ,m}

xjk ≥ 0 : ∀j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . ,K}

Finally, the mixed packing-covering problem consists of deciding whether the fol-
lowing mixed packing and covering system of inequalities has a feasible solution.∑

j,k

aijkxjk ≤ ci : ∀i ∈ {1, . . . , n}∑
j,k

bijkxjk ≥ di : ∀i ∈ {1, . . . , n}∑
k

xjk ≤ 1 : ∀j ∈ {1, . . . ,m}

xjk ≥ 0 : ∀j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . ,K}

The Gap Version of this problem is the problem of distinguishing with prob-
ability at least 1 − δ between the cases where there is a feasible solution to the
LP and where there is no feasible solution even if the packing and the covering
constraints are relaxed by a multiplicative factor of (1+ ε) and (1− ε) respectively.

Since the problems are now clear, we will describe the results which were based
on an application of the Multiplicative Weights Update Method and then we will
explain how it was essentially applied.

One of the results is that problems that belong to the general class of the
Resource Allocation Framework (such as the Adwords problem) have an algorithm
that yields an 1− ε approximate solution given that there is a bound to the largest

bid to budget ratio of the form γ = O
(

ε2

log(n/ε)

)
and that the inputs are either

drawn from an unknown independent identical distribution (i.i.d.) or follow the
adversarial stochastic model. The latter is a model introduced in that same series
of papers, in which an adversary picks a different distribution on each round but
is constrained not to pick “too bad” distributions, meaning that the algorithm
is given in each round T an OPTT and the adversary is constrained to pick a
distribution with E[OPT ] ≥ OPTT . Very similarly, in cases where γ is unbounded,
a greedy algorithm gives an 1− 1/e approximation.
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The last result and the first to analyze is that there is an algorithm that solves
the Gap Version of the mixed packing-covering problem. Moreover, this algorithm
uses an Oracle like the one introduced for the PST Framework, which given an in-
put vector v and a request j returns an allocation xj from the unary polytope Pj =
{xj ∈ RK |

∑
k

xjk ≤ 1} that maximizes the product v · xj . The Oracle calls the

algorithm makes are only O
(
γm log(n/δ)

ε2

)
, where γ = max

{{
aijk
ci

}
i,j,k

,
{
bijk
di

}
i,j,k

}
is the parameter we defined for the Adwords problem generalized to the setting
of the mixed packing-covering problem. Notice how this is an improvement of the
PST Framework’s results, since the number of calls depend linearly on γ and m,
instead of quadratically.

We are now going to explain the technique that was used to prove these results
and how the Multiplicative Weights Update Method was an important part of it.
We are going to use a simpler problem to help focus on the technique itself. In
this setting, each item i arrives online - drawn from an i.i.d. - and we either pay
for an item its cost ci or we put it in a bag which has capacity G. The goal is to
minimize the total cost paid and we are going to assume again for simplicity that
the optimal cost is G. The LP of the problem follows:

min
∑
i
ciyi∑

i
xi ≤ G

xi + yi ≥ 1 : ∀i ∈ {1, . . . , n}
xi, yi ≥ 0 : ∀i ∈ {1, . . . , n}

The solution comes in two stages. First, we assume that the distribution on the
inputs and the optimal offline solution is known and we develop an algorithm that
achieves the desired competitive ratio but also its analysis has certain properties.
It is these properties of the analysis that lead to the second stage and to developing
an algorithm that is unaware of the knowledge of the previous one but still achieves
the promised ratio.

If we knew the distribution on the input in our problem, then we could choose
a threshold a to help us decide whether the item will be put in the bag (if ci ≥ a)
or we are going to buy it (if ci < a). In this way, a would be chosen so that the
probability p = Pr[ci ≥ a] = G

m . We define the random variable Xt which is 1
iff in step t the item is put in the bag and the random variable Yt which is ci iff
it is bought. In the dual case, the random variables are 0. Their means are the

same quantity, namely G
m . If we also define the sums St =

t∑
i=1

Xi and Vt =
t∑
i=1

Yi

then the probability of exceeding the capacity of the bag is Pr[Sm ≥ G(1 + ε)]
and the probability of returning a sub-optimal solution is Pr[Vm ≥ G(1 + ε)].
These probabilities together are the probability of failure of the algorithm, and the
analysis basically bounds this using Chernoff bounds as used in the multiplicative
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weights update idea in [30].
It is easy to prove that the (scaled) failure probability after t steps, denoted

by FP t is given by FP tX +FP tY = Πt
i=1(1 + εXi) + Πt

i=1(1 + εYi) and the expected
failure probability after t+1 steps is less than FP tX(1+εE[Xi])+FP tY (1+εE[Yi]) =
(FP tX+FP tY )(1+εGm), by our observation about the means of the random variables.
Notice that this expected value grows once again in a multiplicative way as the
algorithm proceeds and it is this quantity that we need to minimize. Therefore,
we need to choose whether or not to put the item in the bag depending on whether
the quantity FP tX is bigger than ciFP

t
Y or not. As a result, the desired “unaware”

algorithm using the same threshold idea, but this threshold can vary between
the different steps of the algorithm and it is updated in a multiplicative way.
To summarize, the root of the Multiplicative Weights Update Method in this
technique lies in the fact that the performance of the algorithm again depends
on a random variable (the expectation of which is the potential function), and
by using a pessimistic estimator of this variable’s changes over the course of the
algorithm, we can achieve the desired tradeoff of the method (since minimizing this
pessimistic estimator does not require any further knowledge of the distribution
or the optimal solution’s value).

In the CAs setting, the algorithm is very naturally translated into a posted-
prices algorithm we have already discussed and yields a guarantee of 1−O(ε) for

γ = 1
mini ci

= O
(

ε2

log(n/ε)

)
and given a desired social welfare W ∗ can also avoid

updating the prices at each step maintaining the guarantee for an i.i.d. input.
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3.4 Auctions with budget constraints

In a lot of marketing settings, the auction model assumes bidders with budget
constraints. It is a very natural assumption to make, since in some very common
auctions, such as sponsored search auctions, the values are too big for the bidders’
liquid assets. In these models, the objective function that needs to be maximized
can not be one of the common ones, such as social welfare or revenue, as it has
been proven. For example, there is an impossibility result that states that there
is no truthful mechanism that achieves more than n-approximation of the optimal
social welfare, where n is the number of bidders, even if the budgets are known to
the auctioneer. Another very popular measure of efficiency for budget constrained
auctions, is Pareto efficiency. An outcome is considered Pareto efficient if there
is no other outcome for which at least one bidder is better-off and all the others
are not worse-off. Unfortunatelly, this measure is not quantifiable and has already
given some impossibility results. A new measure proposed in [15] is liquid welfare
which is, intuitively, the minimum between how much a player is willing to pay
for an outcome and how much he is able to pay (i.e. his budget). More formally:

Definition 21. Liquid Welfare of an outcome x, denoted W̄ (x), is the sum over
all bidders of the minimum value between their valuation for the outcome and their

budget, i.e. W̄ (x) =
n∑
i=1

v̄i(xi), where v̄i(xi) = min{vi(xi), Bi}.

Based on the Multiplicative Weights Update Method and the technique pre-
sented before from [5], the authors of [15] gave an algorithm that is a O(log n)-
approximation for the liquid welfare in the case where the bidders are submodular,
meaning that their valuation functions are concave, and their budgets are private.
We must note that in this setting there is only one divisible good, therefore the
valuation functions are vi(xi) : [0, 1]→ R+. The result can be translated into the
case of m identical indivisible goods (which is closer to the combinatorial auctions’
usual setting) adjusting the approximation ratio to O(logm).

Firstly, we are going to describe a subroutine used in the algorithm, the Sell-
without-r subroutine: In this subroutine, we are given a player r and his modified
valuation v̄i(

1
2) for half the good and we need to decide on the prices in which we

are going to sell to each bidder arriving, except bidder r.

1. Divide the remaining segment
[
0, 12

]
of the good into k = 8 log n equal parts

(each of size 1
2k ).

2. Associate with each part i a price per unit pi = 2i

8 v̄i(
1
2).

3. Each bidder chooses the available segment that maximizes his utility, given
of course that the price he pays does not exceed his budget. Formally, player

i gets xi = argmax{vi(xi)−
zi+xi∫
zi

p(t)dt}, where zi =
∑
j<i

xj and the payment
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function p(t) has value pi for the interval t ∈
[

1
2k (i−1), 1

2k i
]
. We denote the

payment of bidder i by πi =
zi+xi∫
zi

p(t)dt.

The mechanism defines the first two players, r1 and r2 with the maximum
v̄i(

1
2). It then runs the subroutines Sell-without-r1 returning outcome (x(1), π(1))

and Sell-without-r2 returning outcome (x(2), π(2)). For every bidder except r1
return the allocation and payments implied by outcome (1). Finally, for bidder

r1 choose either to allocate x
(2)
1 with the corresponding payment or half the good

with payment 2v̄i(
1
2) depending on the utility of those outcomes for bidder r1.

It is easy to see with exaustive analysis that the mechanism described above
is indeed truthful and also that the final allocation is feasible. More importantly,
by case analysis it is proven to be a O(log n)-approximation for the liquid welfare,
when it is one of the hardest impossibility cases with respect to Pareto efficiency.
In a slightly more general setting, where the bidders are subadditive, the result
can be extended to a O(log2 n)-approximation.
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Chapter 4

The Multiplicative Weights
Update Method in Regret
Theory

As it was described in Chapter 1, Algorithmic Game Theory models society as
a game where players interact with each other strategically, aiming to maximize
their personal gain. A very natural question that occurs is whether this game
reaches a point of balance, where players do not need to change their strategy
anymore, referred to as an equilibrium. And if it does reach such a point, how
long does it take to get there? As one can imagine, players reach this point by
learning from the consequences of their strategies and re-evaluating their choices.
Therefore, it doesn’t come as a surprise that players tend to follow decision-making
algorithms which are special cases of the Multiplicative Weights Update Method.
In order to demonstrate the relation between those, we are going to introduce the
concept of regret.
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4.1 The Model

We consider again a game which is played in T rounds. In this game, the
player is given a set of strategies S, where |S| = n. In each round t, the player
picks a mixed strategy, that is he decides on a probability distribution p(t) over
his strategies. Afterwards, an adversary picks a cost vector over his strategies c(t),

where |c(t)i | ≤ 1, for each i ∈ {1, . . . , n}. Finally, the cost incurred in each round

is
T∑
t=1

p(t)c(t).

Notice that this is a single player game against an unknown adversary so at a
first glance it doesn’t seem to model the society very well. Fortunatelly, this is not
accurate, since we can imagine the cost vector of the adversary to be a function of
all the other players in the game. We will discuss this in more detail later in the
chapter.

We have now set the rules of the game, but what we mainly want to know is
what the goal should be. Of course, it is to minimize the total cost at the end
of the rounds. But what should we compeete against? The first benchmark that
comes to mind is the minimum total cost, given by the best decision sequence in
hindsight, which would be possible if we knew the cost vector up front and decided

on the probability distribution which gives 1 to the action si with the min c
(t)
i in

each round. This quantity seems to be too much to ask, since we know nothing
about the cost vector before we make each round’s decision. An example which
demonstrates this fact is the following simple setting:

Imagine that there are only two strategies s1 and s2. The adversary decides

on the costs as follows: if p
(t)
1 ≥ 1/2 then the cost vector is c(t) = (1, 0) and

c(t) = (0, 1) otherwise. In this case, the best decision sequence in hindsight has
total cost 0 while the expected total cost of our player is T/2.

This seems too unfair a benchmark, therefore we must start limiting the goal
we compare to in order to get better and more logical results. To this direction,

we fix the best action in hindsight, that is the action si∗ with the min
T∑
t=1

c
(t)
i∗ . This

is the point where we should introduce regret.

Definition 22. The (time-averaged) external regret of the probability distribution
sequence p(1), . . . ,p(T ) with respect to strategy si∗ is

1

T

∣∣∣ T∑
t=1

p(t)c(t) −
T∑
t=1

c
(t)
i∗

∣∣∣
From now on we will refer to this quantity simply as regret.

52



We seek online decision-making algorithms that satisfy the so called no-regret
property.

Definition 23. An online decision-making algorithm is called no-regret if for every
adversary, the expected regret with respect to every fixed strategy in S is o(1) while
T →∞.

We have to note that in this chapter we assume that the player learns the whole
cost vector after each round and that the adversary is adaptive, that is he knows
the mixed strategies decided by the player in all the previous rounds. There is also
a special case where the adversary’s knowledge is limited to the mixed strategy
decided by the player in the current round. In this case, we call the adversary
oblivious. Another variation is to allow the player to learn only the realized cost
of the current round instead of the cost vector, and this is called the bandit model.
Similar results like the ones we are going to discuss later on exist for these varia-
tions as well.

Impossibility Results

Firstly, we can not expect to find a deterministic no-regret algorithm. To un-
derstand this one should simply think of an example where at each round, the
algorithm commits to a single strategy. The obvious move for the adversary is to
set the cost of this strategy at 1, and the cost of every other at 0. Then, the total
cost of the algorithm is T while the total cost of the best strategy in hindsight is at
most T

n (otherwise, the sum of the costs that every strategy would have gathered
at the end of the rounds would be more that T ). Thus, the algorithm would have
regret n−1

n T , which is not o(1) as T →∞.

We are now convinced that no deterministic algorithm would work. But there
are limitations to randomized algorithms, too.

There is no randomized algorithm that vanishes external regret faster than
Θ(
√

(lnn)/T ). For n = 2 actions this translates to the following: there is no ran-
domized algorithm that vanishes regret faster than Θ(1/

√
T ). We will show the

latter via an example, which is essentially the reason that the general case (for n
actions) holds.

Consider an adversary that chooses uniformly at random between the cost
vectors (1, 0) and (0, 1), independently on each day t. In this case, no matter
what the decision-making algorithm chooses on each day, the total expected cost
at the end of T rounds is T/2. However, in hindsight, one of the two actions
has total cost T

2 − Θ(
√
T ) with constant probability (where the Θ(

√
T ) emerges

from the deviation). This implies that there is a distribution over all the oblivious
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adversaries such that every algorithm (randomized or not) has expected regret
Ω(1/

√
T ), where the expectation is taken over the algorithm’s coin flips and the

choice of the adversary (which are 2T in total). Therefore, for every algorithm,
there exists an adversary that causes expected regret at least Ω(1/

√
T ) after T

rounds.
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4.2 Regret and Coarse-Correlated Equilibria

4.2.1 No-Regret algorithms

Even though the previously stated impossibility results may seem discouraging,
the good news is that no-regret algorithms exist. They in fact depict a very natural
human learning behaviour and what’s more, they match those impossibility results.

Theorem 24. There exist very simple no-regret algorithms, which guarantee ex-
pected regret O(

√
(lnn)/T ) with respect to every fixed action.

As a result, there exists an online decision-making algorithm that for every ε > 0
has expected regret at most ε with respect to every fixed action, after O(lnn/ε2)
rounds.

A very popular no-regret algorithm is Hedge which fits clearly the Multiplica-
tive Weights Update Method. Formally, Hedge is given an action set A and it is
the following algorithm:

Hedge Algorithm
Initialization: Fix a ε ≤ 1

2 . With each action a, associate the weight w(1)(a) = 1.
At every step t = 1, . . . , T :

1. Choose action a with probability p(t)(a) = w(t)(a)/Φ(t), where Φ(t) =∑
a∈A

w(t)(a).

2. Based on the cost vector returned by the adversary c(t), adjust the weight of
each action a as follows:

w(t+1)(a) = w(t)(a)(1− ε)c(t)(a)

The analysis of the previous algorithm gives the optimal regret bound presented
in Theorem 24 and is very easy to derive as it follows step by step the analysis
of the Multiplicative Weights Update Method from Chapter 2. It is important to
note that, as in the original method, the parameter ε is determined based on the
total number of rounds T . The good news is that if T is not known a priori, the
bounds still stand if we set each day t a different ε =

√
(lnn)/t̄, where t̄ is the

smallest power of 2 that is larger than t.
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4.2.2 No-Regret Dynamics

It is now time to pass from single-player to multi-player. The new setting is
no-regret dynamics and the rules are the following:

In each day t ∈ {1, . . . , T}:

� Each player i simultaniously and independently chooses a mixed strategy

p
(t)
i using a no-regret algorithm (not necessarily Hedge).

� At the end of each day, player i receives a cost vector c
(t)
i where c(t)(si) is

the expected cost of strategy si and it is computed by Es−i˜σ−i

[
Ci(si, s−i)

]
.

The time-averaged history of joint play under no-regret dynamics converges
to the set of coarse correlated equilibrium (CCE), which is the biggest set in our
hierarchy of equilibria. This forges a fundamental connection between a static
equilibrium concept and outcomes generated by natural learning dynamics. It
means that these equilibria, of the more general and less restrictive form, are es-
sentially easy to find via natural learning procedures. More formally:

Suppose after T rounds of no-regret dynamics, every player has regret at most

ε for each of his strategies. Let σ(t) = Πk
i=1p

(t)
i denote the outcome distribution at

time t and σ = 1
T

T∑
t=1

σ(t) the time-averaged history of these distributions. Then σ

is a ε-approximate equilibrium in the sense that

Es˜σ

[
Ci(s)

]
≤ Es−i˜σ−i

[
Ci(s

′
i, s−i)

]
+ ε

for every player i and unilateral deviation s′i.

The proof uses only the definition of no-regret algorithms and coarse-correlated
equilibria.
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4.3 Swap-Regret and Correlated Equilibria

After proving that the biggest set of equilibria is tractable (a set of players can
actually approximately reach such a point in not too many rounds of playing the
game), we are moving to the next biggest set, the set of correlated equilibria, and
ask the same question. Can regret theory still help us in this query?

Firstly, we introduce correlated equilibria.

Definition 25. A correlated equilibrium of a game is a distribution σ over the
outcomes such that, for every player i with strategy set Si, and every switching
function δ : Si → Si

Es˜σ

[
Ci(s)

]
≤ Es−i˜σ−i

[
Ci(δ(si), s−i)

]
.

An ε-approximate correlated equilibrium is accordingly the one which satisfies
the latter inequality with an additive error ε. Notice that if we set δ to be a
constant function, that is δ(si) = s′i for all si ∈ Si, then we get a coarse-correlated
equilibrium. Correlated equilibria are harder to reach because they give us more
to compare to.

In order to search for algorithms that the players can follow to reach such an
equilibrium, we introduce a new concept of regret, swap-regret and the correspond-
ing no-swap-regret algorithms.

Definition 26. An online decision-making algorithm is called no-swap-regret if
for every adversary, the expected swap-regret

1

T

[ T∑
t=1

c(a(t))(t) −
T∑
t=1

c(δ(a(t)))(t)
]

with respect to every switching function δ : A→ A is o(1) as T →∞.

Suppose after T rounds of no-swap-regret dynamics, every player has swap-

regret at most ε for each of his strategies. Let σ(t) = Πk
i=1p

(t)
i denote the outcome

distribution at time t and σ = 1
T

T∑
t=1

σ(t) the time-averaged history of these distri-

butions. Then σ is a ε-approximate equilibrium in the sense that

Es˜σ

[
Ci(s)

]
≤ Es−i˜σ−i

[
Ci(δ(si), s−i)

]
+ ε

for every player i and switching function δ : Si → Si.
The proof is very simple, using again only the definitions.
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What remains is to see whether no-swap-regret algorithms exist or not. If
they do and they are easy to follow, we can conclude that games do reach corre-
lated equilibria approximately. Fortunatelly, there is a proof given in [6] that if
no-regret algorithms exists (which they do), then no-swap-regret algorithms also
exist. Therefore, the answer in the initial question is positive.

The proof is a black box reduction, using no-regret algorithms as the black
boxes. Let n denote the number of actions. Then we assume M1, . . . ,Mn to be
no-regret algorithms. As we have already discussed, this means that they receive
cost vectors as input and have probability distributions as output. The main al-
gorithm (the no-swap-regret algorithm) works as follows:

In each day t = 1, . . . , T :

� Receive distributions q
(t)
i , i = 1, . . . , n over actions from the corresponding

algorithms Mi.

� Compute a distribution p(t) (we will choose this later on).

� Receive cost vector c(t).

� Return to each algorithm Mi the cost vector p(t)(i) · c(t).

The time-averaged expected cost of the main algorithm is

1

T

T∑
t=1

n∑
i=1

p(t)(i) · c(t)(i).

We need to prove that the latter quantity is at most 1
T

T∑
t=1

n∑
i=1

p(t)(i) · c(t)(δ(i))

plus a term that is o(1) when T →∞, for every switching function δ.

We know that Mi s are no-regret algorithms. Therefore, if Ri is their regret,
then for every fixed action k:

1

T

T∑
t=1

n∑
j=1

q
(t)
i (j)p(t)(i) · c(t)(j) ≤ 1

T

T∑
t=1

p(t)(i) · c(t)(k) +Ri.

If we instantiate k = δ(i) and add all those inequalities for all i = 1, . . . , n we
get:

1

T

T∑
t=1

n∑
j=1

n∑
i=1

q
(t)
i (j)p(t)(i) · c(t)(j) ≤ 1

T

T∑
t=1

n∑
i=1

p(t)(i) · c(t)(k) +

n∑
i=1

Ri.

58



If we choose p(t)(i) =
n∑
j=1

q
(t)
j (i)p(t)(i) then the above inequality is exactly what

we need to prove, since the last quantity tends to 0 when T →∞. Can we define
p(t) like this? Imagine a Markov chain where the set of states is A and we move

from j to i with probability q
(t)
j (i). The definition of the stationary distribution of

this Markov chain is the equality we need to show for p(t). But we know that at
least one stationary distribution exists and we can find it via eigenvector compu-
tation in polynomial time. Therefore, the desired p(t) distribution exists and can
be computed easily. �
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