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AmaryopeleToL 1 avIypaQt], amrofnKevoT Kot SLOVO U TG TUPOVGAS EpYATiag, €& OAOKAN POV 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emitpéneton 1 avartdnwon, amodnikevon kot dtovoun yio. okomd
U1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVNTIKNG PVONGC, VIO TNV TPoUTOOEGN VO avapEPETAL 1) TTNYN
npoélevong kot va dratnpeiton to Tapdv pnvope. Epotipata mov apopoldv ) ypnon g epyaciog
Y10 KEPOOOKOTIKO OKOTTO TPEMEL VA, ameLBVVOVTAL TPOG TOV GLYYPUPEQ.

O1 0mOYELS KO TOL GUUTEPAC AT TTOL TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GLYYPAPEN Kol

dev mpémetl va eppnvevdet 6T avtimpocwrevovy Ti enioneg B€oelg Tov EBvikod Metoofiov ITolvte-
yVeiov.



Iepiinyn

2V TapoHoo SITAMUATIKY], 6YEIALOVE Kot VAOTOLOVE VA KOTOVEUNUEVO GUGTNLO, TO OTtoio £mL-
tpénel TV ektédeon SQL epoTUATOV TOV TPAYLOTOTOOVUV CUVEVMGT LG PONG OECOUEVMV TPOY-
LaTIKOD ¥pOVOL Kot evOg e&mTtepiicod cuvolov dedopévav. H mepintoon yprong yio v onoio vAo-
TOLOVLLE OVTO TO cvoTNpa givorl 1 extédeon topN SQL epoTHAT®V TOL TPOYUATOTOIOVV GUVEVMOT)
LL0G PONG SIKTVOK®Y SESOUEVAOV TPAYUATIKOD ¥POVOL, TOV TOPAYETOL Amd dEIYHATOANYio Kivnong
evog IXP, kot eEmtepikdv cuvOAOY dedoUEVODV oV TTEpAapfavouv Autonomous System kot DNS
TANpoPopieS.

TN va gmitvyovpe YapnAd xpovo amdKPIoNS 6T EPMTALATO, 1] CUVEVMGT TPOYLATOTOEITOL GE TPOY-
LOTIKO YpOVO YPMCLLOTOLMVTOC TO Storm processing framework kat 1 omokavovikomomuévn pon| -
dopévav amobnkevetar oe éva Phoenix table, emitpénoviag £Tol 68 OAoL TOL ETOUEVO, EPMOTHLLATO VL
EKTEAODVTOL YOPIg Vo yperdletol Eavd 0 VTOAOYIGHAC TNG GUVEVMOTG KATA TO Xpovo ektédeonc. To
ovotnpa xproonotel Tig kataveunuéveg teyvoroyieg Kafka, Storm xon HBase, ot onoleg e€aopa-
Allovv TV KAMPOKOGOTNTE TOV Kl TNV avoyn Tov o opdipate. EmmAéov, 1o Storm mpocspépet
EMEKTAGIUOTITA OTO GUGTNHO EMTPENOVIAG HOG VO TPOCHEGOVE e EDKOAO TPOTO VEX £EDTEPIKA
cvvola dedopévav Kabe LeyEBoug, Ta 0Toio CLVEVMVOVTOL LLE T1) POT] SIKTVOK®OV OEOOUEVMV.

EminpocOeta, epappodlovpe éva cuvdvaouod Bertictomocemy oto HBase cluster kot oto Phoenix
table, o1 omoieg PEIO®VOLV aKOUA TEPIGTOTEPO TO YPOVO amdKPIoNg TV epaTnudtoy. Télog, a&lolo-
YOULLE TNV EMIO00T SLOPOPOV TOPAUETPMV TOV GLUGTILUTOG KOl TEPAUOTILONOCTE LE TNV KALOK®OGC1-
poTNTO TOL GLGTHLLATOG.

A&Ee1g KAEO1A

EneEepyacia oe Ipaypatikd Xpdvo, Avarvon Aktvokdv Agdopévov, Kataveunpévo Xvotmpota,
Kafka, Storm, Hadoop, HBase, Phoenix






Abstract

In this thesis, we design and implement a distributed system that allows the execution of low latency
SQL queries that join a real-time data stream and an external dataset. The use case for which we
implement this system is the execution of topN SQL queries that join a real-time network data stream,
generated by sampling IXP traffic, and external datasets containing Autonomous System and DNS
information.

To achieve low query latency, the join is performed in real time using the Storm processing framework
and the denormalized data stream is stored at a Phoenix table, allowing all subsequent queries to be
performed without the need to compute the join on query time. The system utilizes distributed tech-
nologies such as Kafka, Storm and HBase, which ensure its scalability and fault tolerance. Moreover,
Storm provides extensibility to the system, allowing us to easily add more external datasets of any
size that are joined with the network data stream.

We also apply a combination of optimizations to the HBase cluster and the Phoenix table that further
reduce query latency. Finally, we evaluate the performance of the system for various parameters while
tuning and applying optimizations, and experiment with the system’s scalability.

Key words

Real-time Processing, Network Analytics, Distributed Systems, Kafka, Storm, Hadoop, HBase, Phoe-
nix
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, the Internet is continuously growing, driven by ever greater amounts of online
information and knowledge, commerce, entertainment and social networking. Recent studies forecast
that global Internet traffic will grow with a compound annual growth rate of 26% over the next years,
reaching 136.1 Exabytes per month in 2019, up from 42.4 Exabytes per month in 2014 [10]. The key
elements that will shape Internet traffic in the coming years include the increase in the number of the
Internet users, the proliferation of networked devices such as tablets and smartphones, faster broad-
band speeds, advanced video services and increased IP traffic deriving from cellular data connections

[11].

Large portions of the Internet traffic are routed through Internet Exchange Points (IXPs). An IXP
consists of one or more network switches, to which Internet Service Providers (ISPs) connect and ex-
change Internet traffic between their networks. The IXP allows these networks to interconnect directly,
rather than through their upstream transit providers, thereby reducing costs, latency and bandwidth.

Recent studies have shown that large IXPs have visibility to a large fraction of the Internet and fit
the role of being global Internet vantage points [32]. Therefore, one can extract information about the
global state of the Internet by analyzing the traffic of a large IXP over a sufficient period of time. The
typical approach to perform network traffic analysis on a large IXP is by sampling the traffic over a
period of time and saving the capture in a file. Then the capture is processed in a centralized manner by
a script, where the network traffic analysis is performed. This approach has two main drawbacks. From
the one hand it does not scale for a larger amount of network data. From the other hand processing
offline network traffic captures limits the “freshness” of the data.

Over the past years, a variety of distributed technologies and frameworks have been developed to
process and store big data [2, 39, 3]. Distributed technologies such as Kafka, Storm, HDFS, HBase
and Phoenix can be used to implement scalable systems that process and analyze data streams in real
time. By using such technologies for processing and analyzing the IXP network traffic, the issues
mentioned in the previous paragraph can be alleviated.

1.2 Objectives

The objective of this thesis is the design and implementation of a distributed system that allows the
execution of SQL queries that join a real-time data stream and an external dataset. The top priority of
the system is minimizing the execution latency of these queries, which contains two sub-objectives.
From the one hand, the latency between the issue of the query and the moment we receive the query
response must be minimized. From the other hand, the delay between the data generation and the
moment they are available for querying must also be as small as possible, since we are dealing with a
real-time data stream.
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The rest of the prerequisites for the design and the implementation are the scalability, fault tolerance
and extensibility of the system. All of the system’s components should use distributed technologies to
ensure scalability with the data stream throughput. Moreover, the technologies used should provide
fault tolerance, since the system will be constantly running over extended periods of time, processing
real-time data. Finally the system should be extensible, by allowing additional external datasets of any
size to be joined with the data steam without the need for drastic changes in the implementation.

The use case for which we implement this system is the execution of SQL queries that join a real-time
network data stream, generated by sampling IXP traffic, and external datasets containing Autonomous
System and DNS information. The network data stream contains useful fields extracted from the head-
ers of the sampled packet, whereas the external datasets can map IP addresses to Autonomous Systems
and domain names. The critical difference between these two external datasets is their size, which as
we will see affects the way the join can be performed. The specific queries that we intend to perform
in this use case are topN AS and topN DNS queries, which return the top 10 Autonomous System and
domain name pairs respectively for the IXP traffic over a specified time window.

The novelty of this thesis consists in combining state-of-the-art distributed technologies and tech-
niques to minimize the execution latency of SQL queries that join a real-time data stream and an
external dataset. We present an implementation that performs the join once during processing and al-
lows subsequent queries to execute without the need to perform it again. Moreover, we provide a way
of extending the system by adding external datasets of any size that are joined with the data stream.
Finally, we apply a combination of optimizations that increase the system’s performance.

1.3 Related Work

Over the recent years, various systems have been proposed to perform network analytics. In the fol-
lowing list we present some of them that are related to this thesis:

e Datix [37] is a distributed analytics system for network traffic data that relies on smart partition-
ing storage schemes to support fast join algorithms and efficient execution of filtering queries.
However, Datix is built upon batch processing technologies such as MapReduce and Hive, which
limits its scope to offline data processing.

e Bro [24] is a network monitoring framework that can be used for collecting and analyzing real-
time network traffic. A Bro cluster can be deployed to achieve scalability. Unfortunately Bro
does not integrate a storage solution for the processed data.

e DBStream [28] is a real-time network traffic monitoring system which allows fast and flexible
analysis across multiple data sources. It is based on the Data Stream Warehousing paradigm,
which provides the means to handle both real-time and historical data. The crucial drawback of
DBStream is that it is lacking scalability.

e CelllQ [35] is areal-time cellular network analytics system that supports complex analysis tasks.
This system is not fit for our IXP traffic use case, because it is optimized for cellular network
analytics, by leveraging the spatial and temporal locality cellular network data.

e FCCE [38] is a distributed, low latency key-value data management system. It is optimized to
extract, store, retrieve, and correlate features from diverse data sources, including real-time data
streams. While it can be used for our use case, FCCE does offer SQL support and only provides
put and get operations similar to those of HBase.
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1.4 Thesis Outline

In Chapter 2 we provide the necessary theoretical background so that the reader can familiarize them-
selves with the frameworks and technologies used in in the thesis. More specifically, we present the
characteristics, architecture and key concepts of Kafka, Storm, HDFS, HBase and Phoenix.

In Chapter 3 we describe the system’s design and implementation. We provide a high-level overview
of the system and its characteristics, followed by detailed information for its components, including
the data generation and input part, the Kafka topic, the Storm topology and the Phoenix table.

In Chapter 4 we present the optimizations that we apply on the HBase cluster and the Phoenix table to
increase the system’s performance. More specifically, we describe the effects of HDFS short-circuit
local reads, compression and data block encoding, disabling BlockCache on the Reverse DNS table
and salting.

In Chapter 5 we evaluate the performance of the system. Firstly we describe the datasets used, as well
as the evaluation cluster. Next, we perform experiments to evaluate the performance and the scalability
of the Kafka, Storm, HBase and Phoenix components of the system.

In Chapter 6 we provide some concluding remarks as well as propositions for future work on the
system.
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Chapter 2

Theoretical Background

2.1 Kafka

Apache Kafka [36, 5] is a distributed, partitioned, replicated commit log service, that provides the
functionality of a messaging system. It is used for collecting and delivering high volumes of data with
low latency. Apache Kafka was originally developed by LinkedIn, and was subsequently open sourced
in 2011. In 2012 Kafka became an Apache Top-Level Project.

The basic concepts of Kafka are the following:
e A topic defines a stream of messages of a particular type.
e A producer is a process that publishes messages to a topic.

e The published messages are stored at a cluster comprised of servers called brokers. All coordi-
nation between the brokers is done through a Zookeeper cluster [9].

e A consumer is a process that subscribes to one or more topics and processes the feed of published
messages.

producer producer

BROKER 1 BROKER 2 BROKER 3
topic 1/part] topicl/part] topic]/part]
fpart2 /part2 [part2
topic2/part 1 topic2/part] topic2/part1
consumer consumer

Figure 2.1: Kafka architecture

For each topic, the Kafka cluster maintains a partitioned log with the structure depicted in Figure 2.2.
A partition is essentially a commit log to which an ordered, immutable sequence of messages that
is continually appended. Every message is assigned an offset: a sequential id number that uniquely
identifies the message within the partition. Kafka only provides a total order over messages within a
partition, not between different partitions in a topic.

All published messages remain stored at the brokers for a configurable period of time, whether or
not they have been consumed. Kafka’s performance is effectively constant with respect to data size,
allowing a big volume of data to be retained. The only metadata retained for each consumer is the
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Figure 2.2: Kafka topic structure

offset of the consumer in the topic. By controlling this offset the consumer can read messages in any
order. For example a consumer can advance its offset linearly as it reads messages or even reset to an
older offset to reprocess them.

The partitions in the topic serve several purposes. Firstly, they allow the topic to scale in size, by being
distributed over the brokers of the cluster. Moreover, the partitions are replicated across a configurable
number of brokers to provide fault tolerance. For each partition one broker acts as the leader, handling
all the requests for the partition, and zero or more brokers act as followers, replicating the leader.
Finally, partitions act as the unit of parallelism and provide load balancing for the write and read
requests of the producers and the consumers respectively.

2.2 Storm

2.2.1 Introduction

Apache Storm [39, 8] is a real-time fault-tolerant distributed stream data processing system. It was
originally created by BackType and was subsequently open sourced after being acquired by Twitter in
2011. Storm is an Apache Top-Level Project since 2014. The basic Storm data processing architecture
consists of streams of tuples flowing through topologies. A topology is a directed graph where the
vertices represent computation and the edges represent the data flow between the computation com-
ponents. Vertices are divided into spouts and bolts, that define information sources and manipulations
respectively.

Storm demonstrates the following key properties:

e Scalable: Storm topologies are inherently parallel and run across a cluster of machines. Different
parts of a topology can be scaled individually by tweaking their parallelism. Moreover, nodes
can be added or removed from the Storm cluster without disrupting the existing topologies.

e Resilient: Storm is designed to be fault-tolerant. If there are faults or failures during the execu-
tion of a topology, Storm will reassign the tasks as necessary.

e Efficient: Storm must have good performance characteristics, since it is used in real-time appli-
cations. To achieve this Storm uses a number of techniques, including keeping all its storage and
computational data structures in memory.

e Reliable: Storm guarantees every tuple will be fully processed by tracking the lineage of every
tuple as it advances through the topology.
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e Easy to monitor: Storm provides easy-to-use administration tools that help end-users immedi-
ately notice if there are failures or performance issues associated with it.

2.2.2 Storm Architecture

A Storm cluster consists of one master node and one or more worker nodes. The master node runs the
Nimbus daemon that is responsible for distributing the execution code around the cluster, assigning
tasks to machines and monitoring for failures.

Every worker node runs a Supervisor daemon that listens for work assigned to its machine and starts
and stops worker processes as necessary based on what Nimbus has assigned to it. Each worker process
executes a subset of a topology.

Supervisor

Supervisor Workers

g
]

Mimbauis rlp—| | Supervisor Workers
NG

Supervisor

Figure 2.3: Storm architecture

All coordination between Nimbus and the Supervisors is done through a Zookeeper cluster. The Nim-
bus daemon and Supervisor daemons are fail-fast and stateless, because all state is kept in Zookeeper
or on local disk. This design leads to Storm clusters being incredibly stable, allowing the cluster to
recover even if Nimbus or the Supervisors are killed and restarted afterwards.

2.2.3 Topologies

The core abstraction in Storm is the stream, an unbounded sequence of tuples. A tuple is a named list
of values, and a field in a tuple can be an object of any type. The basic primitives Storm provides for
doing stream transformations are spouts and bolts.

A spout is a source of streams in a computation. Usually a spout reads from a queuing broker such as
Kafka, but a spout can also generate its own stream or read from a streaming API.

A bolt consumes any number of input streams, does some processing, and possibly emits new streams.
Most of the logic of a computation goes into bolts, such as functions, filters, streaming joins, streaming
aggregations, databases queries, etc.

Networks of spouts and bolts are packaged into a topology, which is the top-level abstraction is sub-
mitted to Storm clusters for execution. A fopology is a graph of stream transformations where each
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vertex is a spout or bolt. Edges in the graph indicate which bolts are subscribing to which streams.

Topologies run indefinitely when deployed.

|

=&

Figure 2.4: Example storm topology

Each component in a Storm topology (spout or bolt) executes in parallel. The degree of parallelism
for each component can be configured and Storm will spawn that number of threads across the cluster
to do the execution.

2.2.4 Parallelism in Storm

There are three main entities that are used to actually run a topology in a Storm cluster: worker pro-
cesses, executors and tasks [26]. The relationships between them are illustrated in Figure 2.5.
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Figure 2.5: The relationships between worker processes, executors and tasks

A worker process runs a JVM and executes a subset of a topology. Each worker process belongs to a
specific topology and may run one or more executors.

An executor is a thread spawned by a worker and may run one or more tasks for the same topology
component. All of the tasks belonging to the same executor are run serially, since every executor
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always corresponds to one thread.

A task performs the actual data processing for a topology component. Each spout or bolt is executed as
many tasks across the cluster. The number of tasks for a component is static, in contrast to the number
of executors for a component which can be changed after the topology has been started. By default,
Storm will run one task per executor.

2.2.5 Stream Groupings

A stream grouping defines how a stream between two components (spout to bolt or bolt to bolt) is
partitioned among the tasks of each component. For example, the way tuples are emitted between the
sets of tasks corresponding to Bolt A and Bolt B in Figure 2.6 is defined by a stream grouping.

Figure 2.6: Task-level execution of a topology

Storm supports the following stream groupings:

Shuffle grouping: Tuples are randomly and evenly distributed across the bolt’s tasks.

Fields grouping: The stream is partitioned by the fields specified in the grouping. This guaran-
tees that tuples with the same values on the specified fields are emitted to the same task.

All grouping: The stream is replicated across all the bolt’s tasks.

Global grouping: The entire stream goes to a single one of the bolt’s tasks.

Local grouping: If there are one or more of the bolt’s tasks in the same worker process, tuples
will be shuffled to just those in-process tasks.

2.3 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) [2, 30] is a distributed file system designed to run on
commodity hardware, inspired by the Google File System [33]. It can reliably store very large files
across machines in a large cluster and provides high throughput access to large data sets. The HDFS
is the storage part of the Hadoop framework, an Apache Top-Level Project since 2006.

Each file on HDFS is stored as a sequence of blocks of the same size, except for the last block. Blocks
belonging to a file are replicated for fault tolerance. The block size and replication factor are config-
urable per file.
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The HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode and one
DataNode per node in the cluster. The NameNode is a master server that manages the file system
namespace and regulates access to files by clients. Each DataNode manages storage attached to the
node that it run on. The HDFS exposes a file system namespace and allows user data to be stored in
files. Every file is split into blocks that are stored in a set of DataNodes. The NameNode determines
the mapping of blocks to DataNodes and executes file system namespace operations like opening,
closing, and renaming files and directories. The DataNodes are responsible for serving read and write
requests from the file system’s clients and also perform block creation, deletion, and replication upon
instruction from the NameNode.

Metadata (Name, replicas, ...):
Metadata ops .v /home/ffooldata, 3, ...

Block ops
Read Datanodes Datanodes

* | |
O O B = Replication g 8 -

O = J Blocks
- \ \. J

Rack 1 Write Rack 2
Figure 2.7: HDFS architecture
2.4 HBase

2.4.1 Introduction

Apache HBase [3] is a distributed non-relational database modeled after Google’s BigTable [31], that
runs on top of the HDFS. It provides a fault-tolerant way of storing large quantities of sparse data,
while allowing random, real-time access to them. HBase is an Apache Top-Level Project since 2010.

HBase offers the following key features:

e Linear and modular scalability: HBase clusters expand by adding RegionServers that are
hosted on commodity class servers, increasing storage and as well as processing capacity.

e Strictly consistent reads and writes: HBase guarantees that all writes happen in an order and
all reads are seeing the most recent committed data.

e Automatic sharding of tables: HBase tables are distributed on the cluster via regions, and
regions are automatically split and redistributed as data grows.

e Automatic failover support between RegionServers: If a RegionServers fails, the regions it
was hosting are reassigned between the available RegionServers.

o Integration with Hadoop MapReduce: HBase supports massively parallelized processing via
MapReduce for using HBase as both source and sink.
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BlockCache and Bloom filters: HBase supports a BlockCache and Bloom filters for real-time
queries.

2.4.2 HBase Data Model

The data model of HBase is very different from that of relational databases. As described in the
Bigtable paper [31], it is a sparse, distributed, persistent multidimensional sorted map. The map is
indexed by a row key, column key, and a timestamp.

(rowkey, column, timestamp) — value

The basic elements of the HBase data model and the relations between them are presented below:

table: HBase organizes data into tables.

row: Within a table, data is stored according to its row. A row consists of a row key and one
or more columns with values associated with them. Rows are identified uniquely and sorted
alphabetically by their row key.

column: A column consists of a column family and a column qualifier, which are delimited by
a : (colon) character.

column family: Data within a row is grouped by column family. Column families physically co-
locate a set of columns and their values. Each column family has a set of storage properties. For
these reasons, column families must be declared up front at schema definition. Every row in a
table has the same column families, though a given row might not store data in all of its families.

column qualifier: Data within a column family is addressed via its column qualifier. Though
column families are fixed at table creation, column qualifiers are mutable and may differ greatly
between rows.

cell: A combination of row, column family, and column qualifier uniquely identifies a cell. The
data stored in a cell is that cell’s value.

timestamp: Values within a cell are versioned. A timestamp is written alongside each value, and
is the identifier for a given version of a value.

Row
ROWHKEY Column Family Column Family
Column Column Column

Figure 2.8: HBase data model

000

There are four primary data model operations in HBase:

Get: Returns the values for a specified row.

Put: Adds a row to a table, if the key is new. If the key already exists, the row is updated.
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e Scan: Returns the values for a range of rows. Filters can also be used to narrow down the results.

e Delete: Marks a row for deletion by adding a Tombstone marker. These rows are cleaned up
during the next major compaction of the table.

2.4.3 HBase Architecture

In HBase, tables are divided horizontally by row key range into Regions. Regions are vertically divided
by column families into Stores, which are stored as files at the HDFS (HFiles). Figure 2.9 illustrates
the architecture of HBase.

Client \ >
HMaster

) . y Zookeeper
Region Region Region
server server server
Region Region Region |,
—___________J - L d
Region J Region Region
L% \ J L% J
| ! !
HDFS

Figure 2.9: HBase architecture

An HBase cluster is composed of two types of servers in a master/slave type architecture [1]. The
HMaster is responsible for monitoring all RegionServer instances in the cluster and is the interface
for all metadata changes. RegionServers are responsible for serving and managing regions. They are
collocated with the HDFS DataNodes, which enables data locality for the data served by the Region-
Servers. HBase uses ZooKeeper as a distributed coordination service to maintain server state in the
cluster. Zookeeper maintains which servers are alive and available, and provides server failure notifi-
cation.

Every RegionServer has the following components:

e WAL: The Write Ahead Log stores new data that has not yet been persisted to permanent storage.
It is used for recovery in the case of failure.

e BlockCache: Keeps data blocks resident in memory after they are read. Least Recently Used
data is evicted when full.

e MemStore: Stores in-memory new data which has not yet been written to disk. There is one
MemStore per column family per region. Once the MemStore fills, its contents are written to
disk as additional HFiles.

e HFile: Stores the rows as sorted key-values on disk.
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Figure 2.10: RegionServer components

2.5 Phoenix

2.5.1 Introduction

Apache Phoenix [6] is relational database layer for HBase, targeting low latency queries over HBase
data. Phoenix provides a JDBC driver that hides the intricacies of HBase, enabling users to create,
delete, and alter SQL tables, views, indexes, and sequences, upsert and delete rows singly and in bulk,
and query data through SQL. Phoenix began as an internal project by the company Salesforce and was
subsequently open-sourced and became a top-level Apache project on 2014.

2.5.2 Phoenix Data Model
The relational elements of the Phoenix data model are mapped to their respective counterparts in the
HBase data model:

e A Phoenix table is mapped to an HBase table.

o The Phoenix table’s columns that are included in the primary key constraint are mapped together
to the HBase row key.

e The rest of the columns are mapped to HBase columns, consisting of a column family and a
column qualifier.

Columns in a Phoenix table are assigned an SQL datatype. Phoenix serializes data from their datatype
to byte arrays when upserting, because HBase stores everything as a byte array. In this way Phoenix
allows typed access to HBase data.

2.5.3 Phoenix Architecture

On the client-side, Phoenix is a JDBC driver that hides an HBase client from the user. The Phoenix
driver compiles queries and other statements into native HBase client calls, enabling the building of
low latency applications.

On the server-side, a Phoenix jar is installed in every RegionServer, allowing Phoenix to take advan-
tage of coprocessors and custom filters that HBase provides in order to increase performance. Copro-
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cessors perform operations on the server-side, thus minimizing client/server data transfer and custom
filters prune data as close to the source as possible.
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Figure 2.11: Phoenix and HBase architecture

2.5.4 TopN Queries

TopN queries return the top N rows, where top rows are determined by the ORDER BY clause and N
is defined by the LIMIT clause of the SQL query. An example topN query for a pair of columns is
presented below.

SELECT columni, column2, COUNT(*) AS pairCount
FROM tableName

WHERE column3 > 0

GROUP BY columnl, column2

ORDER BY pairCount DESC

LIMIT 10;

The execution of this query needs to make a pass through all the rows that satisfy the WHERE clause and
sort the results of the GROUP BY, which is very computationally expensive for large tables. In order
to decrease execution time, Phoenix handles these queries in a different way, using the approximate
algorithm described below.

Firstly, the Phoenix client issues parallel scans filtering rows according to the WHERE clause of the
query. The parallel scans are chunked by region boundaries and guideposts. Guideposts are a set of
keys per region per column family collected by Phoenix at an equal byte distance from each other, that
act as hints to improve the parallelization of queries on their region. The rows that satisfy the WHERE
clause are grouped for each chunk in parallel on the server-side by the topN coprocessor, according
to the GROUP BY clause. The topN coprocessor of each RegionServer keeps only the top N rows for
each chunk. Afterwards, the Phoenix client receives the partial top N rows for each chunk, does a final
merge sort and returns the top N rows requested by the query.
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Chapter 3

System Description

3.1 System Overview

As mentioned before, the objective of this thesis is the design and implementation of a distributed sys-
tem that allows the execution of SQL queries that join a real-time data stream and an external dataset.
The prerequisites for the system are scalability, fault tolerance, extensibility, but most importantly en-
abling the execution of low latency SQL queries. This means that the latency between the issue of the
query and the moment we receive the query response must be minimized. The delay between the data
generation and the moment they are available for querying must also be as small as possible, since we
are dealing with a real-time data stream.

Performing an SQL join combines records from two tables. The join effectively creates a third table
which combines the information from both of them. Performing a join can be expensive in terms of
the time it takes to compute it, especially if one or both of the tables are large in size. Since minimizing
the join query latency is our priority, we can store the stream of data combined with the external data
information in a single denormalized table. Denormalization is the process of attempting to optimize
the read performance of a database by adding redundant data, an example of which can be seen in
Table 3.1. A Storm topology can compute the join of the data stream and the external dataset in real
time and store the denormalized data stream at a Phoenix table in HBase.

LastName | DepartmentID ‘

Jones 2 ] DepartmentID \ DepartmentName ‘
Wagner 1 1 Sales

Gray 1 2 Engineering
Draper 3 3 Marketing
Nolan 2 (b) Department table

(a) Employee table

’LastNarne DepartmentID | DepartmentName

Jones 2 Engineering
Wagner 1 Sales
Gray 1 Sales
Draper 3 Marketing
Nolan 2 Engineering

(¢) Denormalized table

Table 3.1: Denormalization example

This design decision allows all subsequent queries that combine the data stream and the external
dataset to be performed directly on the denormalized Phoenix table, without the need to perform the
computationally expensive join on query time. Denormalization introduces a trade-off, speeding up
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reads from queries while slowing down writes to the table, since the join is performed by the Storm
topology. However, if the system processing rate can handle the real-time data generation rate, slower
writes are not a problem.

From a high level, the system implemented for our IXP network data use case consists of 4 major parts
that can be seen in Figure 3.1. In the first part, the network data is generated by the switches of an
IXP and collected by a host running a Kafka producer. There, the useful fields are extracted from the
headers of the captured packets and published to the Kafka topic. The second component of the system
is the Kafka topic that temporarily stores the data stream at the Kafka cluster. In the next part, the data
stream is processed by a Storm topology. The topology contains the IP to AS Bolt, that performs the
join of the data stream and the AS dataset in-memory, since the size of the dataset is small enough.
It also contains the IP to DNS Bolt, that performs the join of the data stream and the Reverse DNS
dataset using Get operations on the HBase table where the dataset is stored, since it does not fit in the
bolt’s memory. Finally, in the last part the denormalized network data is stored at a Phoenix table in
HBase, allowing Phoenix clients to perform low latency SQL queries to it.
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Figure 3.1: Storm architecture overview

The system’s scalability is achieved by using distributed frameworks and technologies for its imple-
mentation. Kafka topics consist of partitions that are distributed over a cluster of Kafka brokers. Storm
topologies run over a cluster of Supervisors and multiple instances of any component of the topology
(spout or bolt) can run at the same time. The output Phoenix table is stored in HBase, and subsequently
in the HDFS, which are both distributed technologies that run on clusters of DataNodes and Region-
Servers respectively. Moreover, Phoenix can parallelize queries to take full advantage of the HBase
cluster.

Fault tolerance is very important for our system since it will be constantly running for extended
periods of time, processing real-time data. First of all, Kafka topic partitions can be replicated across
multiple Kaftka brokers, allowing data input by the Kafka producer and consumption by the Storm
topology even in the case of a broker failure. Storm topologies are also fault-tolerant and in case of
a Supervisor failure Nimbus reassigns the tasks as necessary. Storm also keeps track of failed tuples
and is able to replay them, since Kafka retains a topic’s data for a configurable period of time. This
allows us to restart Storm topologies without skipping any data. Finally, the output Phoenix table that
is stored in HBase is replicated by the underlying HDFS, allowing its data to be available in the case
of a DataNode or RegionServer failure.

Using the Storm framework provides extensibility to our system. Extending the functionality of the
Storm topology for a new dataset is as simple as adding an extra bolt to the topology. For example, the
processing for the join of the data stream with a new external dataset can be added by implementing
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the new bolt and placing it before the output Phoenix Bolt. We discern two cases with respect to the
size of the external dataset. If the dataset’s size is small enough, we can load it in the bolt’s memory
and perform the join in-memory. Otherwise, when the dataset does not fit in memory, we store it in
an HBase table and perform the join using Get operations.

In the following Sections of this Chapter we offer a detailed description for all of the system’s com-
ponents.

3.2 Data Generation and Input

3.2.1 IXP Switch

The data stream that is processed by our system is generated by an sFlow agent running on a switch
that processes traffic in an IXP. sFlow [21] is an industry standard technology for monitoring high
speed switched networks and is supported by multiple network device manufacturers. The sFlow agent
performs random sampling to the packets processed by the switch. By default, the agent samples the
first 128 bytes of 1 in every 2048 packets.

The flow samples are sent as sFlow datagrams (UDP packets) to the sFlow collector, described in
Subsection 3.2.2. The sFlow collector can accept sFlow datagrams from multiple sFlow agents, allow-
ing us to process a data stream that combines flow samples generated by multiple switches that are
used in the same IXP.

3.2.2 Kafka Producer

The sFlow datagrams are sent by the sFlow agents of the IXP switches to an sFlow collector running
at a specified host. This sFlow collector collects the flow samples from all of the switches and makes
them available for further processing. In our implementation we use sflowtool [22], a tool functions
as an sFlow collector and translates the flow samples to a simple-to-parse ASCII format.

The same host runs a Katka producer script that preprocesses the flow samples and publishes the useful
fields to a Kafka topic. This script reads the output of our sFlow collector sflowtool and extracts the
following useful fields for each sampled packet:

e sourcelIP: source IP address in dot-decimal notation
e destinationIP: destination IP address in dot-decimal notation

e protocol: IP protocol number (6 for TCP, 17 for UDP)

sourcePort: source port number

destinationPort: destination port number

ipSize: total length of the IP packet

dateTime: Unix timestamp of the packet’s capture time in microseconds. This field is generated
by the script while preprocessing each packet.

After the extraction, we compose a message containing the fields in CSV format. The script is running
a Kafka producer that publishes these messages to the Kafka topic netdata that is stored at the Kafka
cluster.

Algorithm 1 outlines the script implementation.
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Algorithm 1 Kafka Producer
1: for line in sFlowToolOutput do

2: fields = line.split(",")

3: sourcelP = fields[9]

4: destinationIP = fields[10]

5: protocol = fields[11]

6: sourcePort = fields[14]

7: destinationPort = fields[15]

8: ipSize = fields[17]

9: dateTime = int(time.time()*1000000)
10: message = "{},{},{},{},{},{},{}".format(sourcelP, destinationIP, protocol, sourcePort, desti-

nationPort, ipSize, dateTime)

11: kafkaProducer.send messages("netdata", message)
12: end for

Messages can be sent to a Kafka topic either synchronously or asynchronously [5]. Synchronous
send publishes the messages immediately, whereas asynchronous send accumulates them in mem-
ory batches multiple messages in a single request. As we will see in Subsection 5.3.1 batching can
greatly increase the performance of the producer, therefore we choose to use asynchronous send.

3.3 Kafka Topic

The preprocessed messages containing the useful fields in CSV format are stored at the netdata
Kafka topic in the Kafka cluster. To ensure scalability and load balancing, we set the number of the
topic’s partitions equal to the number of the brokers of the Kafka cluster. In this way, the write and
read requests of the producer and the consumers respectively are distributed over the cluster.

To provide fault tolerance, we also set a replication factor of 2 for the topic. This means that every
partition is replicated and stored in 2 brokers, the leader that handles all the requests for the partition,
and the follower that is replicating the leader. In case of failure of the topic leader, the follower can
take over and handle the requests for the partition.

As we mentioned in Section 2.1, all published messages remain stored at the brokers for a configurable
period of time, whether or not they have been consumed. This allows the Storm topology to replay
previously read messages in case of failure. The default data retention window for the topic is 7 days.

3.4 Storm Topology

The Storm topology is the heart of our system. This is where the processing of the data stream is
performed. The topology consists of one spout and four bolts in a pipeline setup: Katka Spout, Split
Fields Bolt, IP to AS Bolt, IP to DNS Bolt and Phoenix Bolt. In short, the topology reads messages
from a Kafka topic, extracts the useful fields from the messages, performs the join of the data stream
and the external datasets and finally stores the denormalized data stream in a Phoenix table. The
topology has acking enabled, which guarantees that every message from the topic will be processed
and will be replayed in case of failure.

The overview of the Storm topology for our network data use case can be seen in Figure 3.2. The
functionality of the topology can be extended by adding more bolts that perform the join of the data
stream and another external dataset right before the Phoenix Bolt.
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Figure 3.2: Storm topology overview

3.4.1 Kafka Spout

The source of data stream in our topology is the Kafka Spout. The spout is a Kafka consumer that
reads messages from the netdata Kafka topic and emits them to the Split Fields Bolt. The maximum
parallelism of the Kafka spout is the number of the topic’s partitions, because any instances of the
spout further than that would not read any data.

The Kafka Spout stores the offset of the consumer for each partition of the topic in Zookeeper. In this
way, if a failure happens the topology can be restarted and resume reading messages from the last one
that was executed successfully by the topology.

3.4.2 Split Fields Bolt

The tuple emitted by the Kafka Spout has a single field: a message from the topic containing the useful
fields of the packet in CSV format. The Split Fields Bolt extracts these fields from the message. In
addition to that the bolt computes the integer representations of the source and destination IP addresses,
which are usually more useful than the IP addresses in dot-decimal notation.
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After processing the Kafka message, the Split Fields Bolt emits a tuple containing the following fields:
sourcelP, sourcelPInt, destinationIP, destinationIPInt, protocol, sourcePort, destinationPort, ipSize,
dateTime.

3.4.3 1P to AS Bolt

The join of the data stream and the Autonomous System dataset is performed by the IP to AS Bolt.
The Autonomous System dataset maps IP address ranges to AS number and name. The data contained
in the dataset are stored in CSV format and have 3 fields: the first IP address contained in the AS,
the last [P address contained in the AS and the AS number and name. The IP addresses are stored in
their integer representation format. The dataset file must be stored in a location accessible by all of the
Supervisors, such as the HDFS. Further information on the dataset is available in Subsection 5.1.2.

The defining characteristic of the Autonomous System dataset is that its size (13 MB) is small enough
to fit in the memory, which is the optimal way to perform the join of the stream and the dataset. During
the initialization of the topology the prepare method of the IP to AS Bolt is called and loads the dataset
in a TreeMap structure. A TreeMap is a map implementation based on red-black trees, a variation of
binary search trees, that allow searching in O(logn) time [12]. For each record of the dataset we insert
two records in the TreeMap, containing the start and the stop IP address for each AS along with the
AS number and name, as seen in Algorithm 2.

Algorithm 2 IP to AS Bolt
1: function prepare
2: asMap = new TreeMap<Long, String[]>()
3 for line in ipToASFile do
4 fields = line.split(",")
5: asMap.put(fields[0], [fields[2], "start"])
6: asMap.put(fields[1], [fields[2], "stop"])
7
8
9

end for
: end function
: function ipToAS(ipInt)
10: as = "null"
11: key = asMap.ceilingKey(ipInt)
12: if key !=null then

13: value = asMap.get(key)

14: if (key == iplnt) || (value[1].equals("stop")) then
15: as = value[0]

16: end if

17: end ifreturn as

18: end function

19: function execute(tuple)

20: sourcelPInt = tuple.getField("sourcelPInt")

21: destinationIPInt = tuple.getField("destinationIPInt")
22: outputValues = tuple.getValues()

23: outputValues.add(ipToAS(sourcelPlnt))

24: outputValues.add(ipToAS(destinationIPInt))

25: collector.emit(outputValues)

26: end function

The helper method ipToAS takes an IP address in integer representation format as input and returns
the name and number of the AS it belongs. More specifically, by using the TreeMap’s ceilingKey
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and get methods we find the first AS boundary IP address larger or equal to the input IP address. If
this address is equal to the input IP address or corresponds to the last address of an AS IP address
range, then the AS it belongs is the one we are looking for and its number and name is returned by the
method. Otherwise the IP address provided does not belong to any AS according to the dataset and
the ipToAS method returns the String "null".

For every tuple received by the bolt, the execute method is called. Using the sourcelPInt and destina-
tionIPInt fields as input to the method ipToAS we determine the sourceAS and destinationAS fields
that denote the source and destination AS number and name respectively. The new fields are appended
to the received fields and all of them are emitted to the next bolt of the topology.

3.4.4 1P to DNS Bolt

The join of the data stream and the Reverse DNS dataset is performed by the IP to DNS Bolt. The
Reverse DNS dataset maps IP addresses to domain names. The data contained in the dataset have 2
fields: the IP address in dot-decimal notation and the corresponding domain name. Further information
on the dataset is available in Subsection 5.1.3.

The defining characteristic of the Reverse DNS dataset is that its size (55 GB uncompressed) is larger
than the memory size, therefore loading it in every bolt’s memory is not an option. To make the
dataset available to the bolts, we store it in the rdns HBase table, where the IP addresses are used as
the row key and the domain names are stored in the column d:dns. This allows the bolt to perform
Get operations on the table for an IP address row key to receive the corresponding domain name.

HBase can perform low latency Get operations by using Bloom filters [29]. A Bloom filter, is a data
structure which is designed to predict whether a given element is a member of a set of data. A positive
result from a Bloom filter is not always accurate, but a negative result is guaranteed to be accurate. In
HBase, Bloom filters a lightweight in-memory structure that reduces the number of disk reads for a
given Get operation to only the HFiles likely to contain the desired row.

The helper method ipToDNS takes an IP address in dot-decimal notation as input and returns corre-
sponding domain name. More specifically, a Get operation is performed on the rdns HBase table for
the input [P address row key. If the Get is successful, the corresponding domain name is the value of
the column d: dns of the returned row, and is afterwards returned by the method. Otherwise the IP ad-
dress provided does not have a corresponding domain name according to the dataset and the ipToDNS
method returns the String "null".

For every tuple received by the bolt, the execute method is called. Using the sourcelP and destina-
tionlP fields as input to the method ipToDNS we determine the sourceDNS and destinationDNS fields
that denote the source and destination domain names respectively. The new fields are appended to the
received fields and all of them are emitted to the next bolt of the topology.

Algorithm 3 outlines the IP to DNS Bolt implementation.
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Algorithm 3 IP to DNS Bolt
1: function ipToDNS(ip)
: table = new HTable("rdns")

2

3 g =new Get(ip)

4 res = table.get(g)

5: dns = res.getValue("d", "dns")

6: if dns == null then

7 dns = "null"

8 end ifreturn dns

9: end function

10: function execute(tuple)

11: sourcelP = tuple.getField("sourcelP")

12: destinationIP = tuple.getField("destinationIP")
13: outputValues = tuple.getValues()

14: outputValues.add(ipToDNS(sourcelP))

15: outputValues.add(ipToDNS(destinationIP))
16: collector.emit(outputValues)

17: end function

3.4.5 Phoenix Bolt

The last component of the topology is the Phoenix Bolt, which inserts the denormalized data stream
into the netdata Phoenix table. The table is described in detail in Section 3.5. This bolt uses the
Phoenix JDBC driver and performs an UPSERT VALUES query that includes all the fields received by
the bolt. UPSERT queries are the only way to insert data in a table in Phoenix. This query inserts the
row if not present, otherwise it updates the row’s values in the table. In our case where the primary
key of the table is the packet timestamp which is monotonically increasing this query behaves like
INSERT VALUES.

UPSERT INTO netdata VALUES (dateTime, sourceIP, sourceIPInt, destinationIP,
destinationIPInt, protocol, sourcePort, destinationPort, ipSize, sourceAS,
destinationAS, sourceDNS, destinationDNS);

3.5 Phoenix Table

After being computed by the Storm topology, the denormalized data stream is stored at the netdata
Phoenix table in HBase. The design of this table is important because it affects the way queries are
executed. In our use case, the queries performed will be topN AS or topN DNS queries over a time
window for the data.

The queries performed on the table have a time window constraint. To benefit from HBase Scan
operations that perform sequential reads, we want to use the packet’s capture timestamp as the row
key in the underlying HBase table. In this way, the HBase table is sorted by capture timestamp and
the data for any time window are stored sequentially. To achieve this in Phoenix, we use the packet’s
capture timestamp as the primary key of the Phoenix table. The capture timestamp in microseconds
can be used as the primary key since it is unique for each packet.

The use case queries concern either AS or DNS information. In HBase only the column families needed
for the query are cached. Having separate column families containing AS, DNS and other information
reduces query latency by reducing the data that have to be cached during each query [4]. Therefore
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we separate the table’s columns in 3 column families: one for the AS fields, another for DNS fields
and a default column family that contains the rest of the packet’s fields.

In HBase every cell value is always (when stored, transferred or cached) accompanied by its row key,
column name and timestamp. Since the table will store millions of cells the column names will be
repeated several millions of times in our data [4]. This means that if the column names are large then
the table size will be significantly increased. This is why we try to minimize the column names by
keeping the column family and column qualifier names as small as possible.

Another way to reduce the table size is by utilizing Phoenix data types. Using the appropriate data
type for each column reduces the size of each row, which improves query performance. For example,
instead of storing the capture timestamp as string, we use the BIGINT type. The current UNIX times-
tamp in microseconds has 16 digits. As a string this needs 16 bytes to be stored, whereas a BIGINT
needs only 8 bytes.

Having all the aforementioned design choices taken into consideration we create the netdata Phoenix
table with the columns listed below. The dots in the column names separate the column families from
the column qualifiers created in the underlining HBase table.

e t: Unix timestamp of the packet’s capture time in microseconds, used as the primary key
e d.ipS: source IP address in dot-decimal notation
e d.ipSI: integer representation of the source IP address
.ipD: destination IP address in dot-decimal notation
.1pDI: integer representation of the destination IP address
.proto: IP protocol number of the packet
.portsS: source port number

.portD: destination port number

[ ]
o o o o o o o o ~+

.size: total length of the IP packet

e as.asS: AS number and name of the source IP address

e as.asD: AS number and name of the destination IP address
e dns.dnsS: domain name of the source IP address

e dns.dnsD: domain name of the destination IP address

The Phoenix SQL statement used to create the final netdata table, including the optimizations that
will be described in Chapter 4, is the following.

CREATE TABLE netdata (
t BIGINT PRIMARY KEY,

.1pS VARCHAR,
.ipSI BIGINT,
.ipD VARCHAR,
.ipDI BIGINT,
.proto SMALLINT,
.portS INTEGER,
.portD INTEGER,
.size INTEGER,
as.asS VARCHAR,
as.asD VARCHAR,
dns.dnsS VARCHAR,
dns.dnsD VARCHAR

O 0O 0 Q0 Q0 Q0 o Q

)
SALT_BUCKETS = 4,
DEFAULT_COLUMN_FAMILY = 'd',
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DATA_BLOCK_ENCODING = 'NONE',
COMPRESSION = 'SNAPPY';
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Chapter 4

HBase and Phoenix Optimizations

4.1 HDFS Short-Circuit Local Reads

In the HDEFS, all reads normally go through the DataNode. When a RegionServer asks the DataNode
to read a file, the DataNode reads that file from the disk and sends the data to the RegionServer over
a TCP socket. The downside of this approach for local reads is the overhead of the TCP protocol
in the kernel, as well as the overhead of DataTransferProtocol used for the communication with the
DataNode.

When the RegionServer is co-located with the data and short-circuit local reads are enabled, local
reads bypass the DataNode [17, 18]. This allows the RegionServer to read the data directly from the
local disk. Short-circuit local reads provide a substantial performance boost in data transfer from the
disk to the BlockCache when the data is local.

We evaluate the effect of enabling HDFS short-circuit local reads in Subsection 5.6.1.

4.2 Compression and Data Block Encoding

Physical data size on disk can be decreased by using compression and data block encoding [4]. Com-
pression reduces the size of large opaque byte arrays in cells and can significantly reduce the storage
space needed to store uncompressed data. Data block encoding attempts to limit duplication of infor-
mation in keys, taking advantage of some of the fundamental designs and patterns of HBase, such as
sorted row keys and the schema of a given table. Compression and data block encoding can be used
together on the same column family.

Aside from on-disk data size, compression and data block encoding can reduce the data size in the
BlockCache. Data is cached by default on their encoded format. In addition to that, compressed Block-
Cache can be enabled, allowing compressed data to be cached in their compressed and encoded on-disk
format.

Between all of our compression options, Snappy [23] is the most fitting to our use case, since mini-
mizing query latency is our priority. It does not aim for maximum compression, but instead aims for
very high speeds and reasonable compression. Compared to gzip, Snappy is an order of magnitude
faster for most inputs, but the compression ratio is 20% to 100% lower.

Regarding data block encoding, Fast Diff [4] is enabled by default in HBase. The format in which
non-encoded data are stored in the HFile often results in multiple similar keys for each row, as seen
in Figure 4.1.

Fast Diff works similar to Diff encoding, but uses a faster implementation. The most important feature
of Diff encoding is an extra column which holds the length of the prefix shared between the current
key and the previous key. In addition, the timestamp is stored as the difference from the previous row’s
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timestamp, rather than being stored in full. Figure 4.2 shows the same data with Figure 4.1 stored with
Diff encoding.

Key Len Vallen Key Value
24 RowKey:Family:Qualifier@d
24 RowKey:Family:Qualifierl
25 RowKey:Family:QualifierN
25 RowKeyZ :Family:Qualifierl
25 RowKeyZz:Family:Qualifier2

Figure 4.1: Column family stored with no encoding

Flags Key Len Vallen Prefix Len Key Timestamp Type Value
0 24 512 0 RowKey:Family:Qualifier@ 1340466835163 4
5 320 23 1 0
3 23 N 120 8
0 25 576 6 2:Family:Qualifierl 25 4
5 384 24 2 1124

Figure 4.2: Column family stored with Diff encoding

Both compression (with compressed BlockCache enabled) and data block encoding reduce the in-
cache data size. This means that more rows can be cached at the same time, while data transfer time
from the disk to the BlockCache for the same data is reduced. However, every time the cached data
is used in a query they must be decompressed or decoded or both. These performance hits increase
query latency, while is our priority is to minimize it.

To achieve the best in-cache query latency we decide to use Snappy compression for our final Phoenix
table, in conjunction with enabled compressed BlockCache and no data block encoding. The experi-
ment on which we base this decision is presented in Subsection 5.6.2.

4.3 Disabling BlockCache on the Reverse DNS Table

The Reverse DNS dataset is stored in the rdns HBase table. This table is stored with Snappy com-
pression and no data block encoding to reduce on-disk size and avoid the decoding performance hit
on read. The on-disk size of the compressed table is 12GB.

We inspect the read access pattern on the table by the IP to DNS Bolt. Since the IP addresses on the
packets are random, the reads are performed on the table rdns are random too. Every read caches the
HFile it hits, which does not provide any benefit since rdns does not fit into the BlockCaches of the
RegionServers. Moreover, constantly caching different HFiles of rdns throws out of the cache HFiles
of the output Phoenix table netdata. Subsequent queries will have to cache these HFiles again, which
increases the query latency.

To alleviate this problem we disable BlockCache on rdns, thus allowing the netdata table to fully
take advantage of the cache.
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4.4 Salting

Rows in HBase are sorted lexicographically by row key. The row key for the underlying HBase table
where our Phoenix table is stored must be the timestamp associated with the packet, in order to op-
timize scans for queries over a specified time window. Since the timestamp is always increasing for
live data, the row key is also monotonically increasing.

However, monotonically increasing row keys are a common source of hotspotting [ 16]. When records
with sequential keys are being written to HBase all writes hit one Region which is served by one
RegionServer. This uneven write load distribution limits the write throughput to the capacity of a
single RegionServer instead of making use of multiple nodes in the HBase cluster. In addition to that,
hotspotting overwhelms the RegionServer responsible for hosting that Region, causing performance
degradation and potentially leading to Region unavailability.

Salting the row key provides a way to mitigate the problem [20, 16]. Salting refers to adding a
randomly-assigned prefix to the row key, to cause it to sort differently than it otherwise would. The
number of possible prefixes correspond to the number of Regions you want to spread the data across.
For example we can salt the row key by using the following:

newKey = (++index % BUCKETS_NUMBER) + originalKey

In this listing, the newKey is produced by prefixing the originalKey with a salt denoting the salt
bucket. The salted records are be split into multiple buckets served by different RegionServers. The
row keys of bucketed records are no longer in the original sequence, however records within in each
bucket preserve their original sequence, as seen in Figure 4.3.

0_0000000001
/ 0_0000000005
0000000001

00000000002 1_0000000002

00000000003 _» 1_0000000006
00000000004 -
00000000005 ~
00000000006 —

2_0000000003
3_0000000004

Figure 4.3: HBase row key prefix salting

Since data is placed in multiple buckets during writes, we have to read from all of those buckets when
doing scans based on original start and stop keys and merge-sort the data. These scans can be run in
parallel on the different RegionServers serving the salt buckets, which may lead to an increase in read
performance.

Phoenix provides a way to transparently salt the row key with a salting byte for a particular table. To
distribute the load evenly among all the nodes of the HBase cluster, we set the number of salt buckets
equal to the number of the RegionServers. The effect of salting on writes and reads is evaluated in
Subsections 5.4.5 and 5.6.4 respectively.
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Chapter 5

Evaluation

5.1 Datasets

5.1.1 IXP Traffic Dataset

The data used for the evaluation of the system is network traffic collected by GR-IX [15]. GR-IX is the
Greek IXP, through which ISPs exchange traffic between their networks without using their upstream
transit providers. GR-IX was founded in 2009 as a successor of AIX (Athens Internet Exchange),
which was in operation since 2000. The exchange is managed and operated by the Greek Research
and Technology Network (GRNET).

GR-IX is handling aggregate traffic peaking at multiple Gigabytes per second. Using the packet sam-
pling tool sFlow, IP packets were captured with a random sampling rate of 1 out of 2000 over a period
of six months (July 2013 to February 2014). During this period of time 1.9 billion packets were cap-
tured, which translates to an average of 110 packets sampled per second. The captured packets were
preprocessed to extract the following useful fields:

e sourcelIP: source IP address in dot-decimal notation

destinationIP: destination IP address in dot-decimal notation

protocol: IP protocol number (6 for TCP, 17 for UDP)

e sourcePort: source port number

destinationPort: destination port number

ipSize: total length of the IP packet

dateTime: Unix timestamp of the packet’s capture time

5.1.2 Autonomous System Dataset

One of the external datasets used by the topology is the GeoLite ASN IPv4 database [14]. This dataset
maps IPv4 address ranges to Autonomous System Numbers (ASN) and is updated by MaxMind every
month. The dataset comes in a CSV file, having a size of 13 MB. This file is stored at HDFS in order
to be available to the Storm Supervisors. The data contained in it have the following fields:

e ipIntStart: integer representation of the first IP address contained in the AS
e ipIntEnd: integer representation of the last IP address contained in the AS

e as: AS number and name
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5.1.3 DNS Dataset

The other external dataset used by the topology is the Rapid7 Reverse DNS dataset [19]. This dataset
maps [Pv4 addresses to domain names. Rapid7 Labs creates this data by performing a DNS PTR
lookup for all IPv4 addresses. It is updated every 2 weeks and is made available at The Internet-Wide
Scan Data Repository (scans.io). The data format is a gzip-compressed CSV file, having a size of
5.7 GB compressed and 55 GB uncompressed, while containing 1.2 billion records. The fields of the
dataset are:

e ip: IP address in dot-decimal notation
e dns: domain name

The Reverse DNS dataset is stored in the rdns HBase table. The field ip is used as the row key and
dns is stored at a column.

5.2 Cluster Description

To execute the following experiments, we use virtual machines (VMs) operating on the OpenStack
cluster hosted by the Computing Systems Laboratory (CSLab) of the School of Electrical and Com-
puter Engineering, NTUA.

For the performance tuning experiments we create 10 virtual machines:

e Zookeeper: This is a Zookeeper server in standalone mode, running the QuorumPeerMain appli-
cation. Zookeeper is providing coordination between the nodes of the Kafka, Storm and HBase
clusters.

e Master: This node is running the master applications for all the clusters. Master runs a Nim-
bus daemon for Storm, a NameNode and SecondaryNameNode for HDFS and an HMaster for
HBase.

e Storm cluster: The Storm cluster consists of 4 virtual machines running the Supervisor daemon.

e Kafka and HBase cluster: The Kafka and HBase clusters are co-hosted on 4 virtual machines.
Each machine runs a Kafka server, an HDFS DataNode and HRegionServer for HBase. The
RegionServer is allowed to have 5 GB of maximum heap size. Kafka CPU usage is very low
during all of the benchmarks (around 3%), therefore co-hosting it with HBase does not interfere
with performance.

The deployment diagram for the clusters is presented in Figure 5.1. Each of the virtual machines has
the specifications listed in Table 5.1. The versions of the software used in our experiments are listed
in Table 5.2.

To conduct the scalability experiments, we increase the number of nodes in the Storm and Kafka/
HBase clusters up to 16 for each. The rest of the deployment details remain the same.

Component \ Description
CPU 4 cores @ 2.4 GHz
RAM 8 GB
Disk 80 GB

Table 5.1: Virtual machine hardware specifications
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Figure 5.1: Cluster deployment diagram

Software Version
Zookeeper 34.6
Kafka 2.10-0.8.2.1
Storm 0.94
Hadoop 2.6.0
HBase 1.1.0.1
Phoenix | 4.4.0-HBase-1.1

Table 5.2: Software versions

5.3 Kafka Performance and Scalability

To measure Kafka performance and scalability we use the performance tools ProducerPerformance
and TestEndToEndLatency shipped with the Kafka installation. For the following experiments, we set
the size of the messages generated by the tools to 62 bytes, to match the average size of the messages
produced by real IXP traffic. The topic we use has 4 partitions and a replication factor of 2 for fault
tolerance. Replication during the experiments is asynchronous, meaning that the broker acknowledges
the write as soon as it has written it to its local log, without waiting for the other replicas to also
acknowledge it.

5.3.1 Producer Batch Size

The producer can be configured to accumulate data in memory and to send out larger batches in a
single request for each partition [5]. Batching leads to larger network packets and larger sequential
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disk operations on the brokers, which allows Kafka to turn a stream of random message writes into
linear writes. This increases performance on both the producer and the broker.

We experiment with different batch sizes and measure the message input throughput for our topic. The
effects of batching on throughput can be observed in Table 5.3 and Figure 5.2.

’ Batch size ‘ Throughput (messages/sec) ‘

100 12658
200 25516
400 49397
800 104597
1600 188730
3200 293877
6400 381859

Table 5.3: Producer batch size effect on topic throughput

Producer batch size throughput

Throughput [thousand
messages/sec)

0 1000 2000 3000 4000 5000 6000 7000

Batch size

Figure 5.2: Producer batch size effect on topic throughput

Even though a bigger batch size can increase throughput by orders of magnitude, it also increases
the time a message is waits in the producer to be sent in the next batch. Since even a low batch size
100 can achieve greater throughput (12658 messages/sec) than the storm topology in the maximum
configuration of our scalability experiment (3988 messages/sec as we will see in Section 5.5), we opt
to choose a small batch size in order to reduce message latency. To allow the producer to handle bursts
of more packets, we use batch size 200 for our producer. The rest of the experiments are performed
with batch size 200.

5.3.2 [End-to-End Latency

Kafka end-to-end latency is the time it takes for a message sent by a producer to be delivered to a
consumer. For this experiment, the performance tool TestEndToEndLatency creates a producer and a
consumer and repeatedly times how long it takes for a producer to send a message to the Kafka cluster
and then be received by the consumer.

The average Kafka end-to-end latency is measured at 2.871 msec. Other latency percentiles are pre-
sented in Table 5.4.
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Percentile | Latency (msec) ‘

50th 2
99th 4
99.9th 10

Table 5.4: End-to-end latency percentiles

5.3.3 Multiple Producers

In this experiment we use multiple producers that create messages for a single topic and measure the
aggregate message input throughput for the topic. The producers are running on different machines.

Figure 5.3 shows that the aggregate message input throughput increases linearly with the number of

the simultaneous producers. This allows us to expand our system to collect and store in Kafka data
from multiple different producer sources.

Multiple producers throughput
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Figure 5.3: Topic throughput scalability with the number of producers

5.3.4 Kafka Scalability

Partitions allow the topic to scale in size by being distributed over the brokers of the cluster and act
as the unit of parallelism, providing load balancing over the write and read requests of the producers
and the consumers respectively.

To evaluate the scalability of the Kafka topic with the Kafka cluster size, we measure the message
input throughput for clusters with different numbers of brokers. The number of the topic’s partitions
is adjusted according to the number of the brokers.

As we can see in Figure 5.4 topic throughput scales almost linearly with Kafka cluster size.
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Kafka cluster size versus throughput
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Figure 5.4: Topic throughput scalability with Kafka cluster size

5.4 Storm Performance Tuning

The Storm metrics for the following experiments were extracted from the Storm Web UI, which pro-
vides information on the running Storm topologies. The CPU metrics were extracted from the Ganglia
monitoring system [13] running on the VMs of the evaluation cluster.

5.4.1 Parallelism Tuning

To achieve maximum topology throughput, we experiment with the parallelism of its components
(spout and bolts). Parallelism tuning in Storm is performed with the help of the capacity metric.

The capacity metric tells us what percentage of the time in the last 10 minutes the bolt spent executing
tuples. If this value is close to 1, then the bolt is ’at capacity’ and is a bottleneck in our topology. The
solution to at-capacity bolts is to increase the parallelism of that bolt. The listing used to compute the
capacity metric is:

capacity = (executedTuplesNumber * averageExecutelLatency) / measurementTime

During the parallelism tuning experiments, when we see that a bolt’s capacity is close to 1, we in-
crease its parallelism in the next experiment. We continue tuning until we achieve maximum topology
throughput. The parallelism and capacity for each bolt during the parallelism tuning experiments are
presented on Table 5.5. The name of each experiment denotes the parallelism of each component of
the topology: Kafka Spout - Split Fields Bolt - IP to AS Bolt - IP to DNS Bolt - Phoenix Bolt.

Note that capacity is computed based on topology statistics, therefore its value may sometimes appear
to be larger than 1. The parallelism of the Kafka Spout is always 4 to match the number of the topic’s
partitions.

As we can see in Figure 5.5 we can achieve maximum topology throughput with the parallelism com-
bination 4-4-4-16-28. We use these parallelism settings for the rest of the benchmarks.

We also record the average CPU utilization for the Storm and HBase clusters during the tuning exper-
iments and present them in Figure 5.6. We notice that the processors of the Storm and HBase clusters
are not saturated at maximum topology throughput, which indicates that the topology workload is I/O
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intensive. This was expected since the IP to DNS Bolt and the Phoenix Blot perform reads and writes
respectively to HBase tables.

Experiment Split Fields Bolt IP to AS Bolt IP to DNS Bolt Phoenix Bolt
P Parallelism \ Capacity | Parallelism \ Capacity | Parallelism \ Capacity | Parallelism \ Capacity
4-4-4-4-4 4 0.013 4 0.011 4 0.600 4 0.987
4-4-4-12-12 4 0.021 4 0.042 12 0.491 12 1.068
4-4-4-12-20 4 0.040 4 0.043 12 1.043 20 0.911
4-4-4-16-28 4 0.043 4 0.062 16 0.879 28 1.049
4-4-4-16-36 4 0.067 4 0.077 16 0.816 36 1.086
Table 5.5: Bolt capacity during parallelism tuning experiments
Parallelism tuning throughput
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Figure 5.5: Topology throughput during parallelism tuning experiments
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Figure 5.6: Average CPU utilization for the Storm and HBase clusters during parallelism tuning ex-
periments
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5.4.2 Maximum Pending Tuples

Storm topologies have a maximum spout pending tuples parameter. This value puts a limit on the
number of tuples that can be in flight (have not yet been acked or failed) in a Storm topology at any
point of time. The need for this parameter comes from the fact that Storm uses queues to dispatch tuples
from one task to another task. If the consumer side of the queue is unable to keep up with the tuple
rate, then the queue starts to build up. Eventually, tuples timeout at the spout and get replayed to the
topology, thus adding more pressure on the queues. To avoid this failure case, Storm allows the user to
put a limit on the number of tuples that are in flight in the topology. Setting a small maximum pending
tuples number can starve the topology from tuples, while a sufficiently large value can overload the
topology with a huge number of tuples to the extent of causing failures and replays.

We experiment with the maximum pending tuples value, while feeding the topology with messages at
the maximum rate determined in Subsection 5.4.1 (around 2800 messages/sec). The results presented
in Table 5.3 indicate that we can achieve maximum throughput by setting the value of the maximum
pending tuples parameter over 100. To allow the topology to handle bursts of more messages, we use
the value 200 for the maximum pending spout tuples parameter. In the case of a message burst, the
in-flight tuples will spend more time in the internal queues of the topology, but their number will still
be limited by the parameter to avoid failures by overloading.

Maximum pending tuples | Throughput (messages/sec) ‘

10 1347
50 2075
100 2782
200 2723
500 2752

Table 5.6: Effect of maximum pending tuples on topology throughput

5.4.3 Bolt Execute Latencies

A useful metric that allows us to identify the bottlenecks in our topology is the execute latency of each
bolt. Execute latency is the average time a tuple spends in the execute method of a bolt.

We record the execute latencies for each bolt of the topology at maximum throughput and present
them in Table 5.7. We also compare their relative sizes in Figure 5.7. It is clear that the tuples spend
practically all of their execute time in the [P to DNS Bolt and the Phoenix Bolt. This was expected since
these bolts perform reads and writes to HBase tables, while the other bolts execute simple commands
in memory.

Bolt Execute latency (msec) ‘
Split Fields Bolt 0.047
IP to AS Bolt 0.052
IP to DNS Bolt 4.779
Phoenix Bolt 7.784

Table 5.7: Average execute latency for each bolt of the topology
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Figure 5.7: Relative sizes of execute latencies for the bolts of the topology

5.4.4 Total System Latency

An important performance indicator for our system is total system latency, the time it takes for a
message to be sent by the Kafka producer to the topic, consumed by the Kafka Spout, processed by
the bolts of the topology and eventually be stored in the Phoenix table and made available for queries.

To compute total system latency we feed the topology with real-time messages and query the table for
the row with the latest timestamp. By comparing this timestamp to the current time we can measure the
total system latency. Total system latency is measured at 1.161 sec on average at maximum topology
throughput.

5.4.5 Salting Write Performance

HBase sequential write suffers from RegionServer hotspotting since the row key is monotonically
increasing. Salting the row key provides a way to balance load among the RegionServers, as we de-
scribed in Section 4.4.

In this experiment we use a salted and a non-salted table, and compare the throughput of the topology,
the write request and CPU utilization on the RegionServers, as well as the execute latency of the
Phoenix Bolt. The salted table has 4 salt buckets that are split among the 4 RegionServers of the
HBase cluster.

Figures 5.8 and 5.9 demonstrate that salting serves its purpose by eliminating write hostspotting.
Whereas all the write requests were directed to a single RegionServer for the non-salted table, the
load is evenly distributed for the salted table. Note that higher aggregate CPU utilization while us-
ing the salted table is linked to better utilization of the cluster’s resources, leading to higher topology
throughput.

Salting also decreases the Phoenix Bolt’s execute latency by 74%, as we can see in Figure 5.10. The
execute latency of the Bolt when writing to the non-salted table was increased due to the strain put on
the RegionServer that handled all the write requests.

Finally, Figure 5.11 demonstrates that salting massively increases the topology throughput by 140%.

53



54

Write requests/sec

CPU utilization

Salting versus HBase write requests

1200

1024

1000

865 BG6B BGBIF BG5S

MNorn-saited table Salted table

Figure 5.8: Salting effect on HBase write request distribution
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Figure 5.11: Salting effect on topology throughput

5.5 Storm Scalability

To evaluate the scalability of the topology with Storm and HBase cluster size, we measure the topol-
ogy throughput for different cluster sizes. We increase Storm and HBase cluster sizes simultaneously,
meaning that on each test there are as many Supervisors as RegionServers. We also adjust accordingly
the number of partitions for the topic, the component parallelism in the topology and the number of
salt buckets for the table. After any change to the size HBase cluster we distribute the rdns table
evenly among the RegionServers and compact it for data locality.

The topology throughput scalability with Storm and HBase cluster size can be seen in Figure 5.12.
The average CPU utilization for the Storm and HBase clusters during the scalability experiments is
presented in Figure 5.13.
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Figure 5.12: Topology throughput scalability with Storm and HBase cluster size
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Figure 5.13: Average CPU utilization during scalability experiments

We notice that the topology throughput does not scale linearly with Storm and HBase cluster size
and the processors are underused for larger cluster sizes. This indicates that the evaluation cluster
setup is suffering from disk I/O saturation. As we increase the nodes for each cluster by adding more
VMs, the underlying OpenStack cluster infrastructure remains the same, thus the aggregate disk 1/0
throughput does not increase proportionally with cluster size. This explains the diminishing increases
in throughput as we increase the cluster size. If the aggregate disk I/O throughput was increasing
according to the cluster size, for example by assigning every node with a dedicated disk, then the
topology throughput would then scale linearly with cluster size.

5.6 HBase and Phoenix Performance Tuning

The comparison basis of the following benchmarks is our final Phoenix table, after all optimizations
are applied. The table uses Snappy compression and no data block encoding, is split in 3 column
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families and is salted in 4 buckets. All the tables are compacted and their regions are distributed
evenly among the RegionServers. Queries are performed over 10 million rows that are already cached
in the BlockCache, unless stated otherwise.

We perform the following two types of queries:

SELECT COUNT(*) FROM TABLE netdata;

The count query iterates over the rows of the default column family. This query is useful to measure
read performance without any additional calculations.

SELECT as.asS, as.asD, COUNT(*) AS pairCount
FROM netdata

GROUP BY as.asS, as.asD

ORDER BY pairCount DESC

LIMIT 10;

The topN AS query returns the top 10 AS pairs in this table ordered by the number of exchanged
packets. We also perform the fopN DNS alternative on some benchmarks, however this query is more
computationally intensive, since the GROUP BY clause creates many more distinct pairs for domain
names than for autonomous systems. This leads to significantly bigger sets that have to be sorted
during the calculations and thus subsequently larger query latency.

5.6.1 HDFS Short-Circuit Local Reads

As we described on Section 4.1, when HDFS short-circuit local reads are enabled, the RegionServer
reads local data directly from the disk instead of going through the DataNode. This speeds up data
transfer from the disk to the BlockCache when the data is local.

In this experiment we perform a count query over 1 million rows, at first with HDFS short-circuit
local reads disabled and afterwards enabled. We measure the total query latency, which includes data
transfer time to the BlockCache as well as query processing time.

When HDFS short-circuit local reads are enabled total query time is reduced by 62%, as we can see
in Figure 5.14.

HDFS short-circuit reads latency
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Figure 5.14: Enabling HDFS short-circuit for local reads effect on count query latency
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5.6.2 Compression and Data Block Encoding

Compression and data block encoding can be used to reduce on-disk data size as well as in-cache data
size, as we described in Section 4.2. However this comes with a performance hit for decompression,
decoding or both when reading the cached data.

In our experiment we compare on-disk size and in-cache query latency for the following tables:
o The first table has Fast Diff encoding enabled for all of its column families.

e The second table has Snappy compression enabled for all of its column families. Compressed
BlockCache is enabled.

o The last table has both Fast Diff encoding enabled and Snappy compression enabled for all of
its column families. Compressed BlockCache is enabled.

As we can see in Figure 5.15, using both compression and data block encoding reduces the data size
further than the other options. Reduced data size allows more rows can me cached at the same time
and reduces data transfer time from the disk to the BlockCache.

However, the best in-cache query latency is achieved by compression alone, as seen in Figure 5.16.
The data size difference between the second and the third tables is not big enough to outweigh the
query latency advantage of the compressed table. This is the reason why we chose compression and
no data block encoding for our final table.
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Figure 5.15: Compression and data block encoding eftect on the on-disk size of a 10 million row table
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Figure 5.16: Compression and data block encoding effect on query latency

5.6.3 Number of Column Families

We compare query performance between our final table, that includes three column families (d, as,
dns), and the table containing the same data in one column family. Data is cached by column family,
which means that count queries only cache the default family and topN AS queries cache only the as

family.

The total size of the final table is divided between the three column families, with the percentages
shown in Figure 5.17. We measure the total query latency, including data transfer time to the Block-
Cache, for queries over 1 million rows on the aforementioned tables and present the performance boost

that multiple column families offer in Figure 5.18.
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Figure 5.17: Relative sizes of the three column families of the table
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Figure 5.18: Total query latency for tables with different column family setups

5.6.4 Salting Read Performance

As we mentioned in Section 4.4, aside from write throughput salting can also improve read through-
put. Phoenix scans the salted data, sorted within each bucket, in parallel and merge-sorts them at the

Phoenix client.

In this experiment we perform a count and a topN AS query on a non-salted and a salted table and
compare the query latency. Salting speeds up count and topN AS queries by 68%, as we can see in

Figure 5.19.
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Figure 5.19: Salting effect on query latency
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5.7 HBase and Phoenix Scalability

5.7.1 Table Rows
To evaluate the query latency scalability of our table with the size of the data included in the table, we

measure the query latency for tables with different numbers of rows. Figures 5.20 and 5.21 show that
the query latency scalability with the size of the data is close to linear.
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Figure 5.20: Count and topN AS query latency scalability with table size
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Figure 5.21: TopN DNS query latency scalability with table size

5.7.2 HBase Cluster Size

To evaluate the scalability of our table with the HBase cluster size, we measure the query latency for
clusters with different numbers of RegionServers. The number of the table’s salt buckets is adjusted
according to the number of the RegionServers. The results of this experiment are presented in Figure
5.22.
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Figure 5.22: Query latency scalability with HBase cluster size

5.7.3 Multiple Simultaneous Queries

In this experiment we perform simultaneously the same query from multiple Phoenix clients and mea-
sure the average query latency. The clients are running on different machines.

Figure 5.23 shows that multiple queries performed at the same time from different have an additive im-
pact on the average query latency. Since reducing query latency is our priority, multiple simultaneous
queries should be avoided.
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Chapter 6

Conclusion

6.1 Concluding Remarks

This thesis deals with the design and implementation of a distributed system that allows the execution
of low latency SQL queries that join a real-time data stream and an external dataset. The use case for
which we implement this system is the execution of topN SQL queries that join a real-time network
data stream, generated by sampling IXP traffic, and external datasets containing Autonomous System
and DNS information.

To achieve low query latency, we implemented a Storm topology that reads the data stream from a
Kafka topic, performs the join in real time and stores the denormalized data stream at a Phoenix table
in HBase. This allows all subsequent queries to be performed without the need to compute the join on
query time. The system’s scalability and fault tolerance are ensured by using Kafka, Storm and HBase
for its implementation. Storm also provides extensibility to the system, allowing us to easily add more
external datasets of any size that are joined with the network data stream.

We also applied a combination of optimizations to the HBase cluster and the Phoenix table that further
reduce query latency. More specifically, we use multiple column families for the Phoenix table to
reduce the data cached during each query. We enabled HDFS short-circuit for faster local reads. To
increase read and write performance, we also enabled compression and salting on the Phoenix table
and disabled data block encoding. In addition to that, we disabled BlockCache on the Reverse DNS
table, to allow the Phoenix table to fully take advantage of the cache.

Finally, we evaluated the performance of the system using a cluster of VMs. We recorded and analyzed
the performance for every component of the system, including the Kafka topic, the Storm topology and
the Phoenix table, while tuning the system and applying the aforementioned optimizations. The results
demonstrated that our system can process packets with a satisfactory throughput, with a low total
system latency and allows queries to be executed with low execute latency. We also experimented with
the system’s scalability with the cluster size, however in our evaluation setup it did not demonstrate
linear scaling for large cluster sizes, because the aggregate disk I/O throughput was not increasing
proportionally with cluster size.

6.2 Future Work

Regarding future work that can evolve our system, we propose the following:

e Properly evaluate the system’s scalability using a cluster of physical nodes, each one assigned
with a dedicated disk.

e Compare the Storm topology of our system to implementations in other distributed stream pro-
cessing frameworks, such as Storm Trident [25], Spark Streaming [40] and Samza [7]. Storm
Trident and Spark Streaming are batching the data stream to achieve higher throughput.
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e Compare Phoenix to other low latency SQL-on-HBase querying engines, such as Apache Drill
[34] and Spark SQL [27].
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