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ITepiAndm

O mdpoy oL UTNEEGLY GTO UTOAOYLOTIXO VEQOC AELTOURYOUV GE TEQIBGANOY oV TO-
YOVIOUOO o TEETEL VO LXAVOTIOLACOLY XAUE oveyXn TV YeNoT®Y Yo UTOAOYLO TX00C
mopoug. Ilap” dAa autd oL MeEpIoGOTEPES UTNEEGiEg Toug UToyENooToOVTAL XaddS Ot
Yenotes ouveyilouv va axorouoly Tapadoctoxés HEVOBOUC XATAVOURS TWV TOPWY Xol
(ntéive mopamdve Topoug and dcoug TeaypaTxd yeewdlovtat. Ol Tdpoy ol UTERPOETHVOLY
TOL UTOAOYLO TG TOUC GUC THUTA TROCTAMVTOS VoL HELWCOLY TO XOGTOC XAl VoL AUEHCOLY
NV anodoTixdTNTA Twv Datacenters SlatnodvTog THLTOY POV TNV TOLOTNTH TV UTNEECLHOV
TOL TOEEYOLY GTOUG YPHOTES. XE AUTH TNV £pYAola TopoLGLELoUUE Wiat vEa pédodo ypovo-
OPOUOAOYNONG TIOU GTOYEVEL Vo BEATIOCEL TNV ATOBOTIXOTNTA TOV QUOIXGY UNY AVIUATOV
BLUTNEOVTAC TNV TOLOTNTO TWY UTNEECLWV GTIC EXOVIXES UMY AvVES xou AauBdvovTag urtddn
NV enidpaon mou aoxel 1o éva TEdYpaUUe oty enidooT Tou dAlou. Ta vo anodellouue
TNV ATOTEAECUATIXOTNTO TNE TEOCEYYLIONG HOC TOPOUCIALOUUE TEWROUATIXG ATOTEAEGUOTA
YLou o URElDl YXHEUA TEOYRUUUATOY TOU EXTEAOUVTOL OTO UTOAOYLOTIXG VEPOG.
AéEerg-KA€1d1d— amodoTixoTnTo TOP®Y, UTOAOYIGTIXG VEPOC, YEOVOSROHOAOYNOT),
TopoxohoLino






Abstract

Modern Infrastructure-as-a-Service Clouds operate in a competitive environment
that caters to any user need for computing resources. However, most cloud services are
under-utilized as users moving into the Cloud follow traditional provisioning methods
and thus over-provision resources. Cloud operators use over-subscription in an effort
to consolidate costs and increase the efficiency of datacenters but such solutions en-
danger the Quality of Service perceived by the users. In this thesis, we present a novel
scheduling approach that aims to improve physical host efficiency while preserving VM
QoS by taking into account host oversubscription and the resulting workload interfer-
ence. To validate our approach, we present experimental results on a wide variety of
characteristic user workloads.

Keywords— resource efficiency, cloud computing, scheduling, monitoring






Euyapiotieg

Oa fdeha va evyoploThow Tov emPBAénovto xadnynty pwou, x.Nextdpio Kolbpn, ya
70 gp€YIoUa TTOU WOV EBWOE VO YVWPEIOW TOV TOUEN TWV UTOAOYLOTIXMY CUCTNUATWY XAl
TN ouveyT) xoodHyNoT TOL OTNY axadNUGiXY| oL Topela. OEAw axdun Vo EVYUPLOTHCW
10 Aéxtopa x. T'ewpylo I'koluor xou Ghar tar Y€AN Tou cpyaotnelou mou pou mapetyay
CLVEY WS XDOBHYNON X YVWOOELS EVEM UE TEQLEBUANY UE EUTLOTOCUVY OTIOTE YEEIICTNXE.
‘Eva dwitepo euyaplote ogello otov unodhgio dwddxtopa Bayyéhn Ayyéhou yia tny
ouéptoTn Bordeld Tou xou Yl TNV dELoTn cLUVEpYasio oL Elyaue XAt TN OLdEXE TNG
exnoVNoNG TNG Topovcag AimAnuaTixig epyaciog. Télog, Vehw va euyoaptotriow Vepud
NV 0WOYEVELS JoU Yo TN SLoiext) oTHRIEN TNG, Toug Gihoug Lo Yia 6o Ttepdoaue Wall xau
N Paidpa oo GAo Tar TopaTdvey xoddE XAl Yol TN CUVEYT| TUEOTEUVGT TNG VoL TEOCTo W
TEVTAL YLol TO XAAUTERO.
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Chapter 1

Introduction

1.1 Motivation

An ever growing amount of computation is done in the cloud. Public cloud
providers such as Amazon EC2[2], Windows Azure[3] and Google Compute Engine[4]
serve thousands of clients and host tens of thousands of applications every day. There
are also private enterprise clouds using technologies like Openstack[5] and VMware
vCloud[6]. This type of computing is more flexible and cost effective for users as they
can increase the resources they demand on the fly without having to purchase or up-
grade hardware. Moreover, operators can drive the costs down by creating large scale
Datacenters (DC) and provide shared resources to multiple clients. Many actions have
been taken in order to increase the cost efficiency of DCs. Prime examples are the
use of commodity hardware and the reduction of the cost of cooling systems. An-
other relevant method is dynamic voltage scaling in order to reduce the processors’
frequency and thus the energy consumption when they are underutilized. However,
all these techniques have reached the point of diminishing returns|7, 8] while the cost
of upgrading the hardware is huge. Furthermore, energy costs consist a large frac-
tion of the total cost of ownership of the datacenter and the fact that servers are not
energy-proportional when their utilization is low contributes to this phenomenon. The
server utilization in DCs is very low due to varying workloads, server heterogeneity
and Quality-of-Service(QoS) agreements between the provider and the client.

Efforts to co-schedule different jobs in the same server cause interference, a con-
sequential degradation to their performance and required in the past extreme resource
reservation. Many solutions have been proposed in order to increase utilization while

9



10 Chapter 1. Introduction

reducing interference such as exploiting heterogeneity of servers to use energy effi-
cient ones for low demand workloads[9] and awareness of shared resources (last level
cache, memory channel, network adapter) between different cores[10]. Delimitrou and
Kozyrakis introduced Paragon[11] which combines the above techniques and addresses
several open problems. It is a heterogeneity- and interference-aware system which clas-
sifies incoming jobs using mini-benchmarks [12], taking into consideration both varying
workloads with phases and short-running jobs, and places them to servers trying to
avoid violation of QoS agreements.

Leverich and Kozyrakis [13] quantify the impact to latency-sensitive workload per-
formance when such applications operate in a shared cluster environment and are thus
co-located with other user workloads. They show that, contrary to the traditional view,
some latency-critical workloads can be co-located to improve DC resource utilization,
and still achieve good QoS, using a variety of techniques. Lo et al [14] safely co-locate
low priority best-effort batch workloads along latency critical services using software
and hardware isolation techniques that ensure that the latter’s performance does not
violate Quality of Service.

Other approaches examined in depth cases of over-subscription. Roytman et al
[15] examine both the case of consolidating VMs while keeping performance within
some bounds and the case of consolidating VMs as much as possible while trying
to minimize performance degradation. In DeepDive [16] Novakovic et al present a
system that detects and identifies interference in multiple levels trying to minimize the
overhead. Shirinbab and Lundberg [17] identify and quantify performance bottlenecks
for VMs when running in oversubscribed virtual environments. Adami et al [18] also
explore over-subscription in DCs, particularly when it comes to network resources, as
applications’ network requirements have become more stringent.



1.2. Contribution 11

1.2 Contribution

Throughout this work we restrict our attention to the problem of scheduling a set
of workloads within a server using as little information as possible. First, we composed
a set of diverse workloads running inside Virtual Machines (VMs) that stress different
components of a computer system. Then, we executed them in different configura-
tions and obtained data about their resource usage and performance. We obtained
the baseline-"optimal” performance of each benchmark by placing each one isolated
to a server. We also examined space- and time-sharing characteristics of every pair
of workloads. Building on these results we designed and implemented two schedulers
which determine the pinning of a given set of workloads with known characteristics
that must run on a specific server and compared their performance to the commonly
used round robin scheduler. The first scheduler is based on resource usage while the
other on expected slowdown. Our approach has a dual goal, in case of underscription
to consolidate workloads and save cores and in case of oversubscription to place them
in such a way as to improve total performance. The methodology is robust and can
be easily adapted to match every system’s architecture while only basic and easily ex-
tracted characteristics of each workload have to be known in order for the schedulers to
operate. We succeeded in both our goals as in our experiments we observed significant
savings in core usage as well as a substantial performance increase when consolida-
tion was impossible. To our knowledge this is the first effort which uses time-sharing
between workloads while minimizing interference with the goal of achieving further
resource efficiency.
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Chapter 2

Related Work

2.1 Large Scale Cluster Management

2.1.1 Quasar

Delimitrou and Kozyrakis [19] examined the utilization of a production cluster at
Twitter which was managed by Mesos [20]. Mesos is a cluster manager which provides
efficient resource isolation and sharing across different frameworks (Hadoop, MPT etc.).
It employs fine grained resource sharing improving cluster utilization in comparison to
a static partitioning of a cluster, where each partition runs a separate framework.
However, despite the use of Mesos the aggregate CPU utilization over the period of
a month was found to be less than 20%. Google which uses the more advanced Borg
manager achieves utilization between 25% and 30% [21] while cloud facilities that do
not co-locate workloads are closer to industry average utilizations of 6% — 12%. This
underutilization contributes both to capital and operating expenses due to the energy
disproportionality of servers.

Delimitrou and Kozyrakis, identifying that only a small fraction of workloads run-
ning on a cluster provide a right-sized reservation, developed Quasar cluster manager.
The key features of Quasar are the following:

e Performance-centric approach: Instead of asking from the user the low-level re-
source requirements of the application, it demands performance constraints and
then determines the least amount of available resources that are needed to meet

13



14 Chapter 2. Related Work

these constraints. This approach is more robust as it allows adjustments of the
resources allocated to varying workloads, better handling of unknown workloads
and simplifies the user’s role.

e Using only a small amount of profiling information it employs fast classification
techniques to determine the impact of different resource allocations and assign-
ments to application performance.

e Joint resource allocation and assignment with the ability of reclassification thus
avoiding both overprovisioning for idle workloads and performance degradation
for high load ones.

In Paragon [11] Delimitrou and Kozyrakis used collaborative filtering inspired from
Netflix Challenge[22] in order to classify workloads regarding interference and hetero-
geneity. Heterogeneity classification requires profiling runs in two different servers while
in interference classification microbenchmarks [12] are injected and the workload’s sen-
sitivity to them is quantified. Quasar extends the classification engine of Paragon in
two ways. It uses collaborative filtering to estimate the impact of scale-up (more re-
sources allocated to the workload per server) and scale-out (more servers allocated to
the workload) on workloads performance and adjusts all classifiers mentioned above
according to the application type. The output of the classification phase functions
as the input of a greedy scheduler which determines resource allocation and adjust-
ment based on server ranking. Another key aspect of Quasar cluster manager is its
on-the-fly phase detection. Workloads are both periodically sampled in place through
the injection of microbenchmarks and constantly monitored for Quality of Service vi-
olation. In case a phase change is detected, the system deals with it conservatively.
It first tries intra-server scale-up or scale-down and if this is not sufficient scale-out
or migration is considered. Quasar is evaluated using five scenarios, a single batch
job, multiple batch jobs,a low-latency service, stateful latency-critical services and a
large scale mixed scenario. In all these scenarios Quasar improved aggregate cluster
utilization and individual application performance.

However, Quasar has a few shortcomings. First, even though it makes high qual-
ity decisions, it needs information about the full cluster state which might make the
decision overhead unacceptable. Furthermore, it requires a significant amount of infor-
mation about incoming workloads (workload type, QoS constraints, framework) which
might not be available in non state-of-the-art clusters.
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2.1.2 Tarcil

In order to deal with the low scheduling speed of Quasar Delimitrou et al. devel-
oped Tarcil [23] which achieves high-quality and high-speed decisions making it ideal
for large clusters. Tarcil uses the workload’s resource and sensitivity preferences as
they are obtained in Paragon and Quasar. Then, admission control is used in order to
determine, in case of high load, whether there are satisfactory resources for the work-
load. If this is not the case, the workload is queued until appropriate resources are
found or a timeout has expired. If the job is admitted Tarcil performs sampling-based
scheduling.

In this approach the resources are divided in Resource Units which consist of
one cpu and the equivalent share of the server’s memory, disk and network capacity.
The interference and tolerance profile of a workload is expressed as a single number
between 0 and 1. If that number is high, the workload is resource intensive and thus
requires Resource Units of high quality. Then, the same is done for every Resource
Unit in the server and these profiles are normally distributed between 0 and 1. When
a scheduling decision needs to be made only a small number of Resource Units are
sampled as candidates. The positive aspect of sampling-based scheduling is that the
larger the cluster, the better the scheduler performs as in general the distribution
of the Resource Units’ profiles approximates more closely uniformity. According to
the experimental results, Tarcil improves scheduling speed,quality and predictability
increasing cluster utilization.

2.1.3 User’s Side

There are several different ways with which users can provide their application
with resources. They can use reserved,on-demand or hybrid provisioning. In reserved
provisioning, servers are reserved for a long period of time. This comes with high
upfront cost but compensated by low per-hour cost and predictable performance. In
on-demand provisioning servers become available progressively as they become nec-
essary having no upfront cost. However, this comes with high per-hour costs and
unpredictable performance as the provider is responsible for determining the need for
resources. Finally, hybrid provisioning combines the other two approaches that use
both reserved (long-term) and on-demand (short-term) resources. The main challenge
in this approach is to decide which resources to use for each job and this selection
determines whether this policy is beneficial or not. If implemented correctly it has the
potential to combine that best of the two worlds.
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’ Configuration H Cost Predictability | Flexibility ‘ Usage ‘
Reserved high  upfront | high no long-term
low per-hour
On-demand no upfront | low yes short-term
high per-hour
Hybrid medium  up- | medium yes long-term
front medium
per-hour

Table 2.1: System Configurations

2.2 Other Approaches

In addition to the systems mentioned previously other more specialized methods
have been examined with the goal of improving the utilization of datacenters. Lo et
al. developed Heracles [14], a feedback based controller that enables the safe coloca-
tion of best-effort tasks alongside a latency critical service. Heracles tries to enable
aggresive colocation of such workloads using multiple hardware and software isolation
mechanisms.

At this point we will present several mechanisms used for resource isolation as
they are very useful for achieving better performance in datacenter workloads:

e cpuset cgroups provide a mechanism for assigning a set of CPUs to a set of tasks.
The dynamic allocation of cores to workloads is necessary in order to achieve core
isolation.

e (Clache Isolation Technology is a hardware mechanism available to recent Intel
chips which implements way partitioning of the shared Last Level Cache (LLC).
As a result of this, in a highly-associative LLC it is possible to dynamically make
fine-grained partitions and dynamically assign them to different jobs.

e Linuz traffic control is a software mechanism used for network traffic isolation
and can set bandwidth limits for workloads running on the server.

Roytman et al also tackle the problem of VM consolidation in PACMan [15],
taking into account the average degradation of workloads’ performance, mainly due to
their interference, vs energy efficiency. Evaluation of their system with SPEC CPU
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2006 benchmarks shows that PACMan realizes 30% savings in energy costs and up to
52% reduction in performance degradation compared to consolidation approaches that
do not consider degradation. However, given their experimental setup, performance
degradation is only considered in terms of CPU utilization, while real-world workloads
may suffer degradation due to the sharing of other host’s resources. Furthermore, the
PACMan scheduler requires an extensive amount of information which is unlikely to
be available in real systems.

Kannan et al [24] present a number of prototypes to alleviate co-scheduled VM
demands on the shared resources of CMP platforms. By following their suggestions on
proper management of sharing the last-level cache among co-scheduled VMs, we can
design scheduling algorithms that do not suffer from non-deterministic performance
degradation. Although such degradation can happen when workloads are dependent on
memory bandwidth, our approach currently focuses on more general-purpose workload
co-scheduling.

Apart from generic schedulers in cloud infrastructures, various efforts such as [25],
[26] mainly focus on specific types of workloads, e.g., map-reduce jobs. For instance,
Omegal[26] is a shared-state, optimistic, transaction-based scheduler that appears as
an attractive platform for development of specialized schedulers, and illustrates its
flexibility by adding a MapReduce scheduler with opportunistic resource adjustment
that benefits 50—70% of MapReduce jobs. Although both of these approaches are
intriguing, they do not address VM scheduling, take into account only a particular
workload type (variable CPU-time map-reduce jobs) and demonstrate that in the over-
subscribed case they offer little improvement relative to centralized schedulers.

Finally, Podzimek et al [27] experiment with various CPU-pinning strategies of
different VM and LXC-container workloads. They conclude that less common CPU
pinning configurations (such as “per-chip” for heavily loaded systems) improve energy
efficiency at partial background loads, indicating that systems hosting co-located work-
loads could benefit from dynamic CPU pinning based on CPU load and workload type.
In our work, we observe similar performance and energy efficiency variation, and we
adopt an architecture-neutral approach for our CPU-pinning strategy, which we do not
claim as optimal, but sufficient and general enough to be applied to a large variety of
commodity hardware based DCs.
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Chapter 3

Architecture

3.1 Monitoring System

In order to be able to predict the behavior of workloads, consolidate them and
ultimately improve their performance a monitoring system is of great importance.
The parameters that we use in our analysis and that we need to monitor is the per
VM CPU, DiskIO, NetIO and Memory Bandwidth utilization as a percentage of the
total resources of the system. Our first approach was to use ganglia[28] a distributed
monitoring system primarily used for clusters and grids. It manages to achieve very
low per-node overheads and high concurrency while its setup and operation are simple.
However it presented a few shortcomings that rendered it useless for our case. First,
because of its architecture each VM reports the metrics of interest as it perceives
them. Nevertheless, these metrics were not very accurate as they were taken from
within the VM and not from the physical host. Second and most important, ganglia
cannot measure Memory Bandwidth usage, a critical parameter that we wanted to
incorporate into our analysis.

3.1.1 libvirt Statistics

The reasons mentioned above along with the fact that our system is limited to a
single server led us to the decision to build our own monitoring system. It is imple-
mented as a daemon written in Python running on the physical host. It uses libvirt [29]
in order to gather the CPU mapping and then the CPU, DiskIO and NetIO utilization
of the running VMs.

19



20 Chapter 3. Architecture

Libvirt is a collection of software which includes a daemon (libvirtd), an API
library and a command line utility (virsh). It is used for VM Management, Remote
machine support, Storage management, Network interface management and
Virtual NAT and Route based networking. The component that proved to be
the most useful in our case was the API library. The daemon uses the library’s Python
bindings in order to obtain the statistics mentioned above. It associates each VM with
the core, the block interface and the network interface it uses and gets the data about
its execution on them from the hypervisor, in our case QEMU-KVM.

3.1.2 Perf Statistics

The measurement of the Memory Bandwidth usage is not as simple as that of
other resources as hardware support is needed. Every modern processor is equipped
with a set of Performance Monitoring Units (PMUs) which are hardware counters that
measure microarchitectural events such as clock cycles and cache misses. In our work
we use Intel Westemere processors which belong to one of the first families of pro-
cessors to feature a PMU capable of measuring the per process DRAM requests, an
event necessary to our analysis. There exists an official kernel interface, which is called
perf_events and provides a high level and generic interface to count and sample hard-
ware and software events. Its main advantage is that users just have to pass the events
to measure with the kernel being responsible for the programming of these events onto
the correct counters and the management of the PMUs. The tool we use in order
to capture the events of our interest is perf [30], a command line tool used to collect
performance data from many different sources such as kernel software counters and
hardware counters. The important parameter is that it is possible to measure both
on system wide and on per process mode. The tool is built on top of the perf_events
interface. For the counting of events the perf stat command is used. The occurrences
of events are simply aggregated and presented on standard output at the end of an
application run or a time period.

In order to calculate the Memory Bandwidth usage we use the following perf events
as in [31]:

The consumed Memory Bandwidth of an entire socket is calculated using:

consumedM emoryBandwidth =
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64 x (UNC-QMC_NORMALWRITES+UNC_-QMC_NORMAL_READS)

TimeW indow
Hardware Events Description
UNC_QMC_NORMAL_READS Memory Reads
UNC_QMC_NORMAL_WRITES Memory Writes
OFFCORE_RESPONSE Requests serviced by DRAM

Table 3.1: Performance Counters

while for the per VM Memory Bandwidth Utilization we use:

64 x OFFCORE_RESPONSE

M BandwidthUtilization =
cmorybandut wzation TimeWindow x total M emoryBandwidth

The monitoring system stores the per minute average of these metrics in a logfile
along with a timestamp.

3.2 Scheduler

The most important component of our system is the scheduler. Scheduling is fun-
damental to computation and an intrinsic part of the execution system. In our case,
the scheduler’s job is to place incoming workloads on the cores of a server using only
limited information about them. We assume that the set of jobs that must run on
the server is predefined and can not change regardless of the overhead they introduce.
Interserver workload scheduling is not considered as it is orthogonal to our approach.
After the datacenter management system assigns some VMs to run on a server, our
scheduler takes over and pins them to available cores according to a policy. We have
designed, implemented and evaluated three schedulers. The first is a commonly used
round robin scheduler while the other two are based on resource utilization and ex-
pected interference of the incoming workloads accordingly and try to find a suitable
balance between performance and resource efficiency.
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Datacenter

DC
Management
System

Server

DC-level Scheduling

Server

Scheduler

Intra-node Scheduling

Figure 3.1: System Architecture

The general architecture of the two latter schedulers is described in algorithm [1].
They run as daemons in the background waking up at regular intervals, i.e. case every
minute. Every time they wake up they obtain a list of the idle and the running work-
loads on the server. We consider a workload to be idle if its CPU usage during the last
time window was below 2.5%. Using the VirtIO API every idle workload is pinned on
a specific CPU of the server and considered to consume zero resources. Then, the run-
ning workloads are pinned on the cores of the server according to the implementation
of the SelectPinning procedure. Our approach has two discrete but complementary
goals. If the server is undersubscribed it tries to consolidate workloads with minimal
performance degradation with the goal of saving cores for other jobs or turning them
off. In case of oversubscription, it finds a ”good” placement that reduces performance
degradation induced by workload co-location.
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3.2.1 Round Robin Scheduler

In our analysis we use as baseline a simple round robin scheduler as described by
algorithm [2]. In the beginning of the workload scenario it is given as input the list of
workloads. Then it iterates over it and places every workload to a different core and
then it starts over. It is interference- and resource-unaware being also unable to detect
whether a workload is in running state or idle, since it is agnostic to the monitoring
metrics. As a result of this, we assume that throughout the runtime of a scenario all

o o

Figure 3.3: VM Rescheduling

cores hosting a job are considered active even if the VM that hosts the job is idle.
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1 Improved Scheduler

1: procedure SCHEDULE:

2: while True do

3: sleep 60

4: idleJobs ¢ GetIdleJobs()

5: runningJobs < GetRunningJobs ()
6: for job in idleJobs do

7: PlaceVM(0, job)

8: end for

9: for job in runningJobs do

10: targetCPU < SelectPinning(job)
11: PlaceVM(targetCPU, job)

12: end for

13: end while
14: end procedure

2 Round Robin Scheduler
1: procedure SCHEDULER (JOBS,NCORES):
2: targetCore < 0

3 for job in JOBS do

4 PlaceVM(targetCore, job)

5: targetCore < (targetCore + 1) 7% NCORES
6 end for

7: end procedure

3.2.2 Resource Based Scheduler (RBS)

The first scheduler is based on the resource utilization of the workloads and is
described by algorithm [3]. Through an initial classification phase we obtain the CPU,
DiskIO, NetIO and Memory Bandwidth utilization of every workload as percentage
of the total resources of the server when running alone on it. If there are N jobs or
workload classes those are represented by a N x M matrix, U, where M : the number
of metrics taken into consideration (four in our case). If there is a core, ¢, with a list
A, of n workloads, ay, .., a,, in total, we define as load L(c, A.) the following:

L(c,A.) = Z max(0, » (Ulaj,i]) — threshold)
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We also keep a dictionary of the pinning of all the running jobs that have already
been placed to the server. When the decision for the placement of a job, a, 1, is taken,
the scheduler checks if there is a core, ¢, whose load, L(c, A. U a,41), after the new job
is added, is zero. If this is the case, the workload’s virtual CPU is pinned on that core.
If no such core exists, we follow a different approach. The scheduler first determines
the load of every core on the server with, L(c, A. U a,1), and without, L(c, A,.), the
new workload and then places it to the core whose load will increase the least with the
new job. After the placement is made, it updates the resource usage of the system’s
cores, i.e. the CPU Usage of the selected core, the Memory Bandwidth usage for all
cores in the same socket and the NetIO and DiskIO usage for all cores in the server. In
our experiments we have selected 120% as threshold not allowing aggressive workload
co-location. This process is repeated at every scheduling interval for all VMs but leaves
the pinning unchanged if the sets of running and idle jobs remain unchanged too.

3 Resource Utilization Scheduler
1: procedure SELECTPINNING(JOB):

2: for i in range(cpus) do

3: if L(i, A; U job) = 0 then

4: return i

5: end if

6: end for

7 minInter <— L(0, Ag U job) — L(0, Ag)
8: minCPU < O

9: for i in range(1,cpus) do

10: temp < L(i, A; U job) — L(i, A;)
11: if temp<minInter then

12: minInter < temp

13: minCPU < i

14: end if

15: end for

16: return minCPU

17: end procedure

3.2.3 Interference Based Scheduler (IBS)

The second scheduler is based on minimizing the interference between co-located
workloads and is described by algorithm [4]. We assume that we have knowledge of
the slowdown each job suffers when pinned on the same CPU with every other job,
i.e. if there are N jobs or workload classes it is represented by a N x N matrix, S,
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containing this information. If there is a workload, a;, placed in a core, ¢, with a list
A, of n workloads, ay, .., a,, in total, we define as interference I(a;, c) the following:

Prod(a;,c, A.) HS a;, a;l

J#Z

Sum(a;, ¢) + Prod(a;, c)

I<az’> C, AC) = 2

Where Sum(a;, ¢, A.) is the sum of the slowdowns job a; suffers when placed alone
with each other workload that is pinned on core ¢ and Prod(a;,c, A.) is the equivalent
product.

Moreover, we define the interference of a core, I(c), to be the maximum of the
interferences of all the jobs placed in that core.

I(c, A.) = max I(a;, c)

J=1

When the decision for the placement of a job, a,1, needs to be taken, the scheduler
checks if there exists a core, ¢ whose inteference after the job is placed I(c, Ac U ay41)
is below a given threshold. If this is the case, the workload’s virtual CPU is pinned
on that core. If no such core exists, the scheduler first determines the interference of
every core on the server with the new workload and then pins it on the core whose
interference is minimum after the placement. We have selected 1.5 as the threshold
used in this case, creating a rather aggresive scheduler.

In comparison to other approaches[15], where each possible workload set is eval-
uated live, we do not assume knowledge of the performance degradation suffered by
each VM, when consolidated with any set of other VMs. Having just the one-by-one
slowdowns available we derived a way to calculate the slowdown a workload suffers
when consolidated with multiple other VMs. Our first approach was to use the prod-
uct of the slowdowns of the workload of interest with all other workloads in the same
core as a metric. While this seems reasonable and might be accurate for workloads
with large slowdowns, if the one-by-one slowdowns between a set of workloads is small,
ie. 1 —1.2, a large number of them could have been placed in the same core without
violating the threshold even though their performance could degrade severely. In order
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to tackle this issue we calculate the average between the product and the sum of the
slowdowns of workloads in the same core taking this way also into account the number
of the workloads placed in a core.

4 Interference Scheduler
1: procedure SELECTPINNING(JOB):

2: for i in range(cpus) do
3: if (i, A; U job) < Threshold then
4: return i

5: end if

6: end for

7 minInter < (0, Ay U job)

8: minCPU < 0

o} for i in range(1,cpus) do
10: temp < I(i, A; U job)
11: if temp<minInter then
12: minInter < temp
13: minCPU <+ 1
14: end if
15: end for
16: return minCPU

17: end procedure
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Chapter 4

Experimental Setup

4.1 Setup

Our experimental setup consists of a single server with two Intel Xeon X5650
Processors. The server has twelve 2.66-GHz cores, divided into two six-core sockets
that share 12 MB of LLC. The server also features 48 GB of DRAM and one 1-Gb
network port. The following summarize the benchmarks used to evaluate the different
schedulers. Benchmarks include batch and latency-critical workloads which are large
consumers of resources on private and public clouds. A different Virtual Machine (VM)
is created for each benchmark. Furthermore, we assume that all VMs have a single
virtual core which is pinned to a real core.

4.2 Benchmarks

In our study we have used five different benchmarks in order to capture a wide
range of behaviors and potential sources of interference. We stressed all four basic
components of a computer system (CPU, NetIO, Memory Bandwidth and DiskIO) to
different degrees while we observed its performance.

29
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4.2.1 Blackscholes

Blackscholes[32] was our choice for CPU-heavy workload. It calculates the prices
for a portfolio of European options solving analytically the Black-Scholes partial dif-
ferential equation:

v arS2 0%V ov
E+—2 (9_52+r3ﬁ_rv_0

This benchmark represents the wide range of PDE solvers that may run on cloud
scenarios. The program’s performance is limited by the number of floating point op-
erations per second the processor can execute.

4.2.2 Hadoop

Hadoop|[33] is a framework for distributing large datasets on computer clusters of
commodity hardware. It consists of a storage part (Hadoop Distributed File System)
and a processing part (MapReduce). It works by splitting files into blocks and dis-
tributing them among nodes in the cluster. In order to process data it transfers code
to the nodes and the execution is made parallel.

HDFS uses a master-slave architecture. Each cluster has a single master node
(Namenode) which manages the file system namespace and regulates access to files by
clients. Moreover, there are Datanodes, usually one per node in the cluster, which
manage storage that is directly attached to each node. The NameNode executes file
system namespace operations like opening, closing, and renaming files and directories.
It also determines the mapping of blocks to DataNodes. The DataNodes are responsible
for serving read and write requests from the file system’s clients. The DataNodes also
perform block creation, deletion, and replication upon instruction from the NameNode.
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Hadoop Cluster
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Figure 4.1: Hadoop Architecture [1]

Computations within the Hadoop framework are done using the MapReduce paradigm.
The input of a MapReduce program is a set of key/value pairs which produce as an
output a different set of key/value pairs. Each MapReduce computation consists of
three steps:

e Map: Where each worker applies a "map” function to its local data and writes
the output to temporary storage.

e Shuffle: Where the results of the previously executed "map” are redistributed
among the nodes based on the output key so that each worker has all the data
related to a specific key.

e Reduce: Where each worker processes the data related to its output key.

MapReduce offers highly scalable parallel computations which can be executed
in commodity hardware as well as fault tolerance. The latter is achieved with the
replication of data and the ability of another worker to take over the work of a failed
worker node. Moreover, NameNode, which in early versions of Hadoop was considered
a single point of failure, has high availability with an active/passive failover.
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Hadoop and MapReduce are used in a wide range of applications. Prime examples
are distributed sorting, distributed pattern finding, Singular Value Decomposition as
well as the complete restructuring of Google’s web index.

| |

Figure 4.2: MapReduce Paradigm

The Hadoop workload we have chosen is Teragen, a program which generates
random data to be used by a subsequent Terasort run and stores them in a file within
HDFS. The goal of Terasort is to sort 1TB of data a feat Yahoo! has managed to
complete within 209 seconds. We preferred Teragen over Terasort due to its continuous
and fairly stable DiskIO usage.

4.2.3 Jacobi

A large portion of scientific computing workloads consists of stencil computations.
In a stencil computation kernel an array of elements is updated iteratively according to
a fixed pattern. Some notable uses of such kernels are computational fluid dynamics,
image processing and solving of PDEs. As a representative of this class of workloads
the following Jacobi 2D kernel was chosen due to its simplicity and wide usage:
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for i:=1 to N
for j:=1 to N

Jacobi 2D is characterized by high CPU and memory bus usage, a fact that renders it
more sensitive to interference than plain CPU heavy workloads such as blackscholes.

4.2.4 LAMP

LAMP is an acronym originating from the ”Linux, Apache, MySQL and PHP”
phrase that refers to a particular software combination which is very popular for web
servers. Linux is a free and open source operating system used in the majority of
servers. Apache web server supports a wide range of features due to its modular
architecture. MySQL is used as LAMP’s relational database system while PHP is the
main language used for server sided programming.

JE'-.F'.-FI che
web
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Figure 4.3: LAMP Architecture

The LAMP workload that we used consisted of a group of threads which hit our server
with PHP, HTML and REST requests as well as tried to load an image. The main
parameter taken into consideration regarding the server’s performance in this case is
the latency as it is experienced from the clients. We have formulated two variations of
the workload, one with a large number of threads and heavy load and a ”lighter” one
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in order to simulate periods of low traffic in a website. We expect it to be sensitive to
interference as it is based on a very thick software stack.

4.2.5 Media Streaming

Media streaming nowadays is one of the most common cloud applications. The
creation of Youtube and other similar video hosting services since 2005 and the recent
emergence of Netflix, Amazon Instant Video and Hulu are stressing Internet to its
limit and need vast server farms in order to retain quality of service. For example, the
services mentioned before accounted for 56% of all downstream Internet bandwidth
during peak periods in North America for March 2015 according to Sandvine, a Cana-
dian bandwidth-management systems vendor. As a result of this, it is imperative to
simulate the behavior of such workloads and try to minimize costs while retaining per-
formance.

We have chosen the Cloudsuite Media Streaming benchmark[34] as the basis of our
workload. It consists of two components, a client and a server. The client component
emulates real world clients by sending requests to stress a streaming server. Each
client requests a number of videos of different length and quality through the RTSP
protocol. We substituted Faban driver with bash scripting using xargs command as
the method to control the number of threads that simultaneously "hit” the server as
the former introduced significant overhead. Darwin Streaming Server is used as the
server as it supports RTSP and is relatively lightweight. The significant metric in this
case is the server’s throughput towards a group of clients and we use it in order to
quantify performance degradation. Finally, we have created three different versions of
this workload, simulating low, medium and high load.
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Experimental Results

5.1 Workload Phase Analysis

The first thing we did before we evaluated the different schedulers was to examine
the dynamic behavior of the workloads. We did that by executing a short-running
version of each workload isolated on the server while monitoring its consumption of
resources. The monitoring employed a very small time window, i.e. metrics taken once
every second, in order to detect even short variations in resource usage. The results
are depicted in figures [5.1] through [5.8] as percentage of the total resources available.
When one or more metrics do not appear in the figure it means that their use by
the workload was negligible. We observe that while the resource needs of the Hadoop
benchmark [5.8] seem to vary greatly during its execution, a ten second average of
these metrics is pretty stable. Moreover, the Media Streaming benchmark’s variations,
[5.5]-[5.7], have a fairly stable NetIO throughput and CPU utilization if we exclude
the ramp-up and ramp-down phases in the beginning and the end of the workloads’
execution. The latency critical, [5.3] and [5.4], and the other batch workloads, [5.1]
and [5.2], showcase regular resource consumption. Hence, for the rest of our analysis
we consider the workloads to have stable performance and resource usage.
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The next step in our analysis was to do the necessary experiments in order to
produce the data used by the schedulers. RBS needs the CPU, DisklO, NetIlO and
Memory Bandwidth utilization of every workload as percentage of the total resources
of the server when running alone on it. Using the monitoring system we obtained
the average of these four metrics over the total running time of each workload and
constructed the N x 4 matrix U[5.1], for our case N = 8. The results are as expected
with the batch workloads having large CPU utilization while the media streaming and
low latency workloads have NetlO and CPU utilization according to their load, with
the latter showing a significantly lower need for network resources.

Resource Usage (%)

Resources H Blackscholes ‘ Jacobi ‘ Low LAMP ‘ High LAMP
CPU 100 100 59 96
Memory Bandwidth 0 18 0 0
NetIO 0 0 9.9 12
DiskIO 0 0 1 2

Resources H Low Streaming | Medium Streaming ‘ High Streaming Hadoop

CPU 36 66 73 76
Memory Bandwidth 0 0 0 0
NetIO 28 50 75 0
DiskIO 0 0 0 19

Table 5.1: U matrix used by RBS
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IBS, on the other hand, needs much more extensive and difficultly obtainable in-
formation. It requires knowledge of the slowdown each job suffers when pinned on the
same CPU with every other job, i.e. if we have N workloads (in our case N = 8)
the N x N matrix S [5.2]. In order to obtain this information we first execute each
workload alone on the server and measure its performance which we use as baseline.
Then we executed the workloads in pairs, pinned on the same core and measure their
performance again in comparison to the baseline. For example, if a batch workload’s
running time in isolation is sixty minutes and when co-scheduled with a Media Stream-
ing job it becomes ninety minutes we say that it suffers a slowdown of 1.5. During this
procedure we observed many interesting results. For instance, the low load stream-
ing workload remains almost completely unaffected regardless of what type of VM is
pinned next to it. On the other hand, high load streaming benchmark is very sensitive
to interference as its performance easily degrades to a large degree. The Blackscholes,
Jacobi and Hadoop benchmarks perform as expected from their resource usage while
the low load LAMP is impervious to interference, at least when co-scheduled with just
one other workload. However, the high load LAMP workload is very sensitive as its
performance degrades severely regardless of the type of the co-located workload except
for the low load LAMP.

In addition to the above, we executed the workloads again in pairs, but this
time pinned on different cores in the same socket, and measured their performance
in comparison to the baseline. As expected, their performance was affected when
both were utilizing the same resource (e.g. two Media Streaming Workshops utilizing
NetlO or two Hadoop workloads utilizing DiskIO) or their software stack (LAMP)
was somehow sensitive to the utilization of a common resource such as LLC by the
workload placed next to them. This information will be used in future work in order
to further improve IBS.
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5.3 Schedulers’ Performance

The schedulers were evaluated through the execution of three diverse scenarios.
They consist of batch and latency-critical workloads which are large consumers of
resources on private and public clouds.

5.3.1 Random Scenario

The first scenario we examine is a random scenario containing all types of work-
loads. The server is shared between batch, media streaming and latency critical bench-
marks. This is a must-examined scenario in order to evaluate the schedulers’ perfor-
mance in unknown and unexpected conditions. The workloads arrive in the server with
30-sec inter-arrival time. We define as Subscription Ratio (SR) the ratio of the num-
ber of jobs placed in the server to the number of cores the server has, i.e. in our case
(12-core server) a subscription ratio of 0.5 means that 6 jobs are placed in the server
while a ratio of 2 shows that we have placed 12 jobs. The metrics we evaluate are the
average performance of all workloads of the scenario compared to their performance in
an isolated environment (represented by 100 in the scale) and the core minutes that
the total scenario run consumes. As the scenario is random all algorithms are expected
to perform mediocre in terms of performance. When the server is underscribed, i.e.
SR < 1, RBS and IBS should result to large savings in core minutes suffering only
minimal performance degradation over RRS. The experimental results support this es-
timation as for SR = 0.5 RBS saves 32% in cores minutes with only 2.5% performance
degradation over RRS while IBS saves too 32% in core minutes suffering though 7%
performance degradation. For SR = 1 IBS performs better, reducing by 34.5% core
minutes while allowing the performance of the workloads degrade by 8.5%, with RBS
offering an improvement of 24% with 8% performance degradation. When the server
is oversubscribed we expect RBS and IBS to produce better performance due to better
selection of the workloads that will time-share as time-sharing is necessary for all sched-
ulers in this case and not just introduced in order to save core minutes. Further gains
for IBS and RBS are expected from their ability to detect idle workloads and rearrange
the running ones in order to improve their performance and free cores. These gains
should be important in this scenario, especially regarding the core minutes consumed,
due to the diversity of the workloads used and the subsequent variation in their finish
times that allows the detection of idle workloads to yield significant improvements. For
SR = 1.5 we observe improvements for RBS and IBS over RRS both in core minutes
(30% — 35%) and performance (10%). However, for SR = 2 the performance is about
stable with the core minutes improving 11.5% (RBS) to 15% (IBS). This behavior can
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be explained by the fact that in this case the server is severely oversubscribed with the
workload placement not mattering so much in terms of performance while the small
improvements to core minutes consumption can be attributed to the detection and
consolidation of idle workloads.

Performance of random scenario
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5.3.2 Latency-critical Heavy Scenario

Latency-critical services are major tenants in cloud facilities. As a result of this,
a skewed workload distribution has been observed in cloud services as most users host
latency-critical but low load applications, as modeled in this scenario. The scenario
also includes a small number of batch workloads and a single low load media streaming
workload. The latency critical services are more sensitive both to time- and space-
sharing interference in comparison to batch and media streaming benchmarks. Due to
the low load it is possible for RBS and IBS to consolidate jobs in less cores than RRS
for SR up to 1.5. This leads to a significant reduction of core minutes consumption of
at least 30% and up to 50% for IBS in SR = 1 with the performance degradation never
exceeding 10%. For SR = 2 RBS attains a 10.5% reduction in core minutes consumed,
together with a 14% improvement in performance by avoiding the co-scheduling of
workloads that behave really bad together. IBS, due to its aggresive nature, provides
an increased 25% core minute improvement, however accompanied by a lower 5.5%
performance improvement over RRS.

Performance of latency critical heavy scenario
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Core consumption in latency critical heavy scenario
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Figure 5.10: LC Scenario

5.3.3 Dynamic Scenario

Usage of cloud services is time-dependent as VMs go through execution phases.
For example, a VM used both for development and deployment of an application is ex-
pected to have very low resource requirements during development and high consump-
tion during deployment. Furthermore, the load of internet services varies depending on
the time of day, e.g. low traffic in the morning vs high traffing in the evening, and/or
the date, e.g. low traffic during holiday periods. In order to model this behavior we
designed a scenario where 24 random VMs are placed in the server where they become
active in 12- or 6-job batches. RRS, being unaware of the monitoring system’s met-
rics and making static decisions about the pinning, needs to reserve the whole server
continuously regardless of the state of the VMS (idle/running). On the other hand,
RBS achieves around 18% improvement in peformance by avoiding the time-sharing
of active and sensitive workloads while leaving a large number of cores unused due to
the detection and consolidation of idle workloads. IBS consolidates workloads even
more aggresively using less cores than RBS but with the offset of a reduced (13%)
improvement of their performance.
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Cores Used in Dynamic Scenario: 12-job batches
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Chapter 6

Discussion

6.1 Results’ Evaluation

In order to evaluate the performance of the scheduling algorithms presented in
the previous chapter, we consider the amount of on-host CPU time saved through VM
consolidation over the workload performance variation (slowdown or speedup). Host
CPU time can be construed as a measure of the total resource usage on the host, and
thus lower CPU consumption relates to more efficient use of resources. Also, since most
of the fraction of electricity consumed by a running server is proportionate to CPU
utilization, lowering CPU utilization is also beneficial in terms of energy consumption.
Thus, evaluating the gains in terms of efficiency vs the performance trade-off will
accurately highlight better performing schedulers in light of the main performance
indicator for VM consolidation.

To measure scheduler performance we use:

(Parc — Prrs) n (Crrs — Carc)

M =
Prrs Crpgs

where M is the scheduler performance metric, P is the average performance of all
workloads scheduled (using RRS or some other scheduling ALGorithm) and C is the
CPU time consumed by all the co-scheduled workloads when run to completion. The
metric is designed to take into account the gains in performance and efficiency in
conjunction and penalize severe performance degradation with regards to the simple
round-robin scheduler.

With regards to the experimental results presented in the previous chapter, we
can conclude that both the Threshold-Based Scheduler (RBS) and Interference-Based
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Table 6.1: Metric evaluation of algorithms vs RRS

SR RBS RS IBS RS RBS LS IBS LS
0.5 || 0.3017322721 | 0.2569134853 | 0.3016877948 | 0.3262783336
1 0.1645904566 | 0.2598010751 | 0.3119356019 | 0.4184069583
1.5 || 0.4024503311 | 0.4777130243 | 0.285943619 | 0.3956368481
2 | 0.07868456622 | 0.1507817439 | 0.2476092701 | 0.3072840804

Schedulers' Performance
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Figure 6.1: Metric evaluation of RBS and IBS scheduling performance.

Scheduler (IBS) outperform round-robin placement of VMs on the compute host in
terms of resource consumption and, in the over-subscribed cases, in performance as
well. Considering our composite metric, with results depicted in Table 6.1 and Figure
6.1 for graphic comparison, the performance of both schedulers peaks for SR around 1-
1.5, i.e. when the server is conservatively oversubscribed. Interference-based scheduling
seems to significantly outperform RBS in all cases, except for SR = 0.5 in the random
scenario. The schedulers’ performance is minimum for SR = 2 as in that case there
are few things they can do in order to improve performance and reduce core minutes
consumption other than consolidate idle workloads. Whatever the pinning is, for SR =
2, the performance degradation that workloads suffer is severe.

Although the 120% setting used in our experiments limits RBS, it is selected in
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order to provide the best results of this scheduler class given our experimental setup.
IF'S seems more aggressive in our results but this is an artifact of the workload selection
and amount of interference allowed. IFS can vary the intensity of VM consolidation
depending on the way chosen to avoid workload interference.

6.2 Conclusions

In this thesis we implement and evaluate a number of scheduling algorithms that
range from round-robin, to resource-based, to workload interference-aware scheduling.
We test these algorithms using three realistic scenarios on a host and measure their
performance in terms of preserving VM QoS and decreasing overall host utilization.
Our approach treats the global, DC-level VM consolidation problem as a set of discreet
optimizations for the placement of VM workloads on each physical host.

We examine the effects of VM oversubscription on workload QoS and show that
by taking into account workload interference both host efficiency and VM performance
can be improved. Also, our experimental results show that VM consolidation can,
if performed with care, be acceptable in terms of performance degradation even for
latency-critical applications.

To extend our work, further examination of resource-based and interference-aware
schedulers for larger subscription ratios is planned, in order to validate the savings
observed in our experiments to a wider range of scenarios. We also plan to make
a wider exploration of local vs global consolidation approaches using a private cloud
to pit our approach against infrastructure-scale schedulers and take into account the
space-sharing interference between workloads.
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