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Περίληψη

Στη παρούσα διπλωματική εργασία, μελετάμε προβλήματα χωροθέτησης από τη σκο-

πιά του σχεδιασμού μηχανισμών. Επικεντρωνόμαστε σε παίγνια, όπου ένα ορισμένο

πλήθος από εγκαταστάσεις οι οποίες προσφέρουν ένα συγκεκριμένο τύπο υπηρεσίας,

πρόκειται να τοποθετηθούν σε ένα μετρικό χώρο, με βάση τη ζήτηση που δηλώνουν

ένα σύνολο από στρατηγικούς παίκτες. Οι παίκτες έχουν ως στόχο να ελαχιστοποιήσουν

το κόστος σύνδεσής τους, δηλαδή το γινόμενο της ζήτησης τους επί την απόσταση τους

από την κοντινότερη εγκατάσταση και για αυτό ενδέχεται να δηλώσουν ψευδή ζήτηση.

Ενδιαφερόμαστε ιδίως για μηχανισμούς που είναι φιλαλήθεις, δηλαδή εξασφαλίζουν ότι

κανένας παίκτης δε θα ωφεληθεί δηλώνοντας ψευδή ζήτηση, δε χρησιμοποιούν χρημα-

τικά ανταλλάγματα και προσεγγίζουν το βέλτιστο συνολικό κόστος. Πραγματοποιούμε

μια ανασκόπηση της βιβλιογραφίας σχετικά με το σχεδιασμό μηχανισμών χωρίς χρήμα-

τα για προβλήματα χωροθέτησης. Επίσης, παρουσιάζουμε πρόσφατα αποτελέσματα που

αφορούν το σχεδιασμό μηχανισμών με χρήση money burning, όπου οι πληρωμές που ο-

φείλουν να καταβάλουν οι παίκτες είναι στη μορφή μειωμένης ποιότητας της υπηρεσίας

που λαμβάνουν. Τέλος, αναπτύσσουμε μια νέα προσέγγιση στο σχεδιασμό φιλαληθών

μηχανισμών για το συγκεκριμένο πρόβλημα χωροθέτησης, χρησιμοποιώντας την τεχνική

money burning. Παρουσιάζουμε τα αποτελέσματά μας για την ευθεία των πραγματικών

αριθμών, όσο και για γενικούς μετρικούς χώρους.

Λέξεις Κλειδιά – Σχεδιασμός Φιλαληθών Μηχανισμών, Χωροθέτηση, Money Burn-
ing
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Abstract

In this thesis, we study Facility Location problems from a mechanism design per-
spective. We focus on games, where a number of facilities that provide a certain type
of service, are placed in a metric space based on the demands reported by strategic
agents. The agents seek to minimize their connection cost, namely the product of their
demand times the distance of their location to the nearest facility, and may misreport
their demand. We are interested in mechanisms that are truthful, i.e. ensure that no
agent can benefit from misreporting his demand, do not resort to monetary transfers,
and approximate the optimal social cost. We survey recent results in Mechanism De-
sign without Money for Facility Location problems. We also survey Money Burning
Mechanism Design, where the payments charged to the agents are not in the form of
monetary transfers, but service degradation. We then develop an approach to design-
ing both deterministic and randomized truthful mechanisms for our Facility Location
game, using a money burning technique. We present our results for the real line setting,
as well as general metric spaces.

Keywords— Mechanism Design without Money, Facility Location, Money Burn-
ing
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Chapter 1

Introduction

The advent of the Internet has radically changed the way people interact with each
other. This massive network of networks can be viewed as an interconnected system
of strategic entities, in which the multiple participants, each one optimizing their own
objective, affect each other’s outcome. However, the competing incentives of different
participants may lead to complex environments that unavoidably create many possible
courses of action; agents may even intentionally misreport data in order to optimize
their actions and achieve their goals.

From a Computer Science perspective, modelling and analyzing systems that are
the outcome of the strategic interactions among agents, required a different approach;
to optimize system-wide objectives in stategic environments, classical algorithm design
is no longer enough. Meanwhile, Game Theory studies the general principles of inter-
actions between rational agents and provides solution concepts that prescribe how the
rational agents should act when they try to maximize their own payoffs.

The fruitful combination of Game Theory and algorithms gave rise to the devel-
opment of Algorithmic Mechanism Design. Given a set of players with private utilities
and a desired outcome, Mechanism Design aims to design a game such that at the
equilibrium of the designed game no agent has an incentive to deviate. Therefore,
Mechanism Design is sometimes called reverse Game Theory; Game Theory studies
the outcome of systems of selfish agents taking the rules of the game as given, while
Mechanism Design looks to find processes that can give the agents the incentives to
behave in a desired and predictable way, i.e. transforms the selfish behaviour of agents
into a favorable outcome for themselves, and the designer of the mechanism as well.
In other words, the mechanism is a function which based on the information received
from the agents, chooses an outcome and probably an appropriate payment scheme.

17



18 Chapter 1. Introduction

Computational efficiency issues and algorithmic methods have later been incorporated
into Mechanism Design introducing the subfield of Algorithmic Mechanism Design.
As a result, the problem of designing a mechanism became actually a computational
problem.

Algorithmic mechanism design deals with game-theoretic versions of a plethora of
optimization problems such as routing in computer networks, auctions and scheduling.
In this thesis, we focus on Facility Location games. The problem of Facility Location
is classical and has a long history within Operations Research, Social Choice Theory
and Algorithms. During the past few years, it has received considerable attention in
the field of Algorithmic Mechanism Design.

Many variants of the Facility Location problem have been studied under the um-
brella of mechanism design. In general, in a Facility Location game one or more facil-
ities are placed in a metric space to serve a set of agents. The goal of the mechanism
designer is to guarantee truthfulness, i.e. that agents report to the mechanism their
true private information, as well as to optimize a related objective function. In the
classical Facility Location setting, each agent’s private information is his location. An
agent may have the incentive to lie in order to be as close to a facility as possible, thus
minimizing his individual cost; the cost of an agent is defined as the distance between
his true location and the closest facility. The objective of the mechanism designer may
be the minimization of the social cost (namely the sum of agents’ individual costs) or
the maximum cost. For instance, this model fits naturally in real-life problems such as
building a public building such as a library based on the preferences of the residents
of a city. Nevertheless, this setting is just one of the many other variants of Facility
Location that have also been extensively studied.

Although the classic Mechanism Design relies on payments to obtain optimal re-
sults, in some settings, including Facility Location games, money transfers are impos-
sible or undesirable. Procaccia and Tennecholtz [30] first proposed that approximation
can ensure strategy-proofness without resorting to payments, thus initiating the re-
search on Approximate Mechanism Design without Money. Staying within the confines
of this money-free framework, in this thesis we are interested in the study of approxi-
mate, truthful mechanisms which do not use money.

In addition to Approximate Mechanism Design without Money, we are also inter-
ested in Money Burning Mechanism Design, introduced by Hartline and Roughgarden
in [20]. Inspired by the ability of computer systems such as networks to degrade ser-
vice quality, Hartline and Roughgarden consider an other way of overriding the use of
monetary payments: agents are are required to burn money and the payments take
the form of wasted resources instead of actual money. In the last part of this thesis,
we apply money burning to obtain truthful approximate mechanisms for a Facility



1.1. Organization of the Thesis 19

Location setting.

Scope of this Thesis. In this thesis, we survey classic Mechanism Design literature
as well as recent results in Mechanism Design without Money for Facility Location
problems. We propose a new Facility Location setting, where a number of facilities
that provide a certain type of service, are placed in a metric space based on the demands
reported by strategic agents. The agents seek to minimize their connection cost, namely
the product of their demand times the distance of their location to the nearest facility.
The locations of agents are public knowledge, but their splittable demands are private.
Our goal is to design mechanisms that are truthful and approximate the optimal social
cost in this Facility Location setting.

1.1 Organization of the Thesis

The purpose of Chapter 1 is to introduce the basic concepts of Algorithmic Mech-
anism Design. We will present several classic results and related work on the field. In
the last two sections of this Chapter, we focus on two well-known mechanisms: the
VCG mechanism and the Exponential Mechanism. We present their properties, ap-
plying the theory of Algorithmic Mechanism Design. In Chapter 4, we will revisit the
VCG mechanism, but from a different perspective.

In Chapter 2, we examine problems related to Facility Location. We survey the
most important results in the rich literature on Facility Location games. We also
make a short introduction to Social Choice Theory and to results relevant to Facility
Location. We are particularly interested in Mechanism Design without Money, thus
we focus our attention to recent research in Approximate Mechanism Design without
Money, where approximation is used to obtain truthfulness, while sacrificing a fraction
of the optimal social cost.

In Chapter 3, we survey Money Burning. We summarize the essential parts of
the paper [20] by Hartline and Roughgarden, who introduced the framework of Money
Burning. We then briefly refer to several recent papers, where a money burning tech-
nique is applied.

Finally, in Chapter 4, we propose a novel approach to designing truthful mecha-
nisms for Facility Location. We consider a Facility Location setting that has not been
studied from a mechanism design perspective before, and we combine the main con-
cept of Money Burning with results in Facility Location literature, in order to design
mechanims with payments in the form of additional individual (and social) cost. We
present a randomized as well a deterministic mechanism and study their properties in
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the real line setting as well as in general metric spaces.

1.2 Mechanism Design

In this Chapter, we mainly survey some of the classic results in mechanism design
and define most of the notation and terminology used in the classic mechanism design
literature. We also present some examples of mechanisms, such as the seminal VCG
Mechanism and the Exponential Mechanism.

1.2.1 Notation and Basic Concepts in Mechanism Design

Informally, a mechanism could be described in one sentence as a pair of an al-
gorithm and a payment rule that prescribe an allocation and a payment method for
the agents. Payments are usually required to achieve computational efficiency. How-
ever, monetary transfers are sometimes difficult to be implemented or even illegal to
be used. Assuming the existence of payments, we formally define the following model
for a general mechanism design problem:

The basic setting. There is a set of n agents (players) and a set O of feasible outcomes
of the mechanism, where outcome is an allocation combined with a price charged to
each agent i. Each agent i has a private valuation vi : O → [0, 1] for the outcomes. If
an agent does not want to be truthful, he may not reveal its truthful valuation to the
mechanism, but strategically report a false valuation bi : O → [0, 1], that we will call
the agent’s bid. The agents submit their bids to the mechanism. The central entity or
the designer of the mechanism collects the reported bids and chooses an allocation rule
x(b) ∈ O and a payment rule p(b) ∈ Rn. Each agent i also has a quasi-linear utility
ui(b) = vi(x(b))− pi(b).

Notation. Let v denote the vector of agents’ valuations and b the vector of reported
bids. We will denote by v−i the vector of all agents’ valuations except i and by b−i the
vector of all agents’ bids except i.

As previously mentioned, an agent may strategically misreport its valuation to
satisfy its goals. Mechanism Design theory focuses on the simple idea of incentive
compatibility or truthfulness, i.e. the allocation and payment rules are such that each
agent’s best strategy is to thruthfully reveal its private information to the mechanism.
The agent maximizes its utility by bidding its real valuation regardless of other agents’
bids. Formally,
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Definition 1.2.1. An mechanism is incentive compatible or truthful iff for each agent
i ∈ [n] with valuation vi, ∀b−i :

vi ∈ arg max
bi
{vi(x(bi, b−i))− pi(bi, b−i)}

An other naturally desirable property of a mechanism would be individual ratio-
nality. Agents have to pay money to the mechanism, but this payment should not be
greater than the valuation they have for the item they get.

Definition 1.2.2. An mechanism is individually rational iff the (expected) utility of
each agent i ∈ [n] is always non-negative assuming truthful bidding, i.e.

vi(x(vi, b−i))− pi(vi, b−i) ≥ 0

The Revelation Principle for dominant strategies. It is natural to assume that
each agent will follow the best possible strategy that leads to a payoff larger than any
other, regardless of the strategies played by the other agents. Such a strategy is a
dominant strategy.

Definition 1.2.3. A bid profile bi is a dominant strategy for agent i ∈ [n] if ∀b−i, b′i:

u(bi, b−i) ≥ u(b′i, b−i)

In a direct revelation mechanism each agent is asked to report its individual infor-
mation to the mechanism. Thanks to the powerful Revelation Principle, we can focus
our attention on the set of direct revelation mechanisms, where the bidders reveal
their true valuation for an outcome o ∈ O. The Revelation Principle states that for
every mechanism in which every agent has a dominant strategy, there is an equivalent
truthful direct revelation mechanism.

Theorem 1.2.4 (Revelation Principle, [28]). If there exists an mechanism that imple-
ments an allocation rule x(·) in dominant strategies, then there exists a direct truthful
mechanism that implements x(·) .

Myerson’s Lemma. Myerson’s Lemma belongs to the foundation theory of Mech-
anism Design and it is extremely powerful. The Lemma states that a mechanism is
dominant strategy truthful if and only if the allocation rule is monotone. On the top
of that, there is no ambiguity in how to assign payments to achieve truthfulness. The
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resulting payment formula has a simple and intuitive format. Indeed, we can interpet
the payment formula as follows: as agent i increases his reported value per unit of
resource, he pays for each additional part of resource at a rate equal to the minimum
report needed to win that part.

Lemma 1.2.5 (Myerson’s Lemma, [27]). A mechanism for a single-parameter problem
is dominant strategy truthful if and only if for every agents i and fixed reported bids
b−i of other agents,

• xi(bi) is a monotone non-decreasing function of agent i’s bid bi

• the payment rule is given by the explicit formula

pi(bi, b−i) =

∫ bi

0

z
d

dz
xi(z, b−i)dz (1.1)

assuming p(0) = 0.

Gibbard-Satterthwaite Impossibility Theorem. An allocation rule is onto if for
any outcome o ∈ O there is a valuation v : O → [0, 1] such that x(v) = o. An allocation
rule x(·) is dictatorial if there is no agent i such that for any bid vector b−i, x(vi, b−i) =
arg maxo vi(o). The main impossibility result states that:

Theorem 1.2.6 (Gibbard-Satterthwaite, [18, 32]). There is no thruthful allocation
rule x(·) that satisfies all of the following conditions:

• there are at least three different outcomes, |O| ≥ 3

• the allocation rule x(·) is onto

• the allocation rule x(·) is not dictatorial

The above result implies that the general mechanism design is an impossible prob-
lem. However, we can avoid this negative result if we modify the setting by introducing
money. The existence of money is a reasonable and convenient solution in many set-
tings and payments of the agents will extend the range of possible solutions. A second
direction is to restrict the domain of agents’ utility functions; a very common assump-
tion is that agents have quasilinear utilities.

Objective functions. In a mechanism design problem, the designer has to choose
an outcome o ∈ O that depends on the agents’ private valuations. The quality of



1.3. Examples of mechanisms 23

a possible outcome can be measured using various objectives; considering different
objectives there may exist different desired outcomes.

The most common objective fuction is the social welfare. In mechanism design,
the social welfare is a measure of how much the agents value an outcome o ∈ O. For
example, in auction design the goal is to award the item to the agent with the highest
valuation, maximizing the social welfare.

Definition 1.2.7. For an outcome o ∈ O, the social welfare of a mechanism is defined
as follows:

SW (o) =
n∑
i=1

vi(o)

1.3 Examples of mechanisms

1.3.1 The VCG Mechanism

For the simple setting of a single item for sale and n bidders, the famous Vickrey
mechanism or sealed-bid second-price auction is a simple, yet efficient solution. In
a Vickrey auction, the item is awarded to the highest bidder, but the amount the
mechanism charges the winner is the second highest bid. Every losing bidder pays
nothing. Under these allocation and payment rules, a bidder has an incentive to report
its true valuation for the item, and thus social welfare optimality is achieved. If the
valuation vi of bidder i is the highest among all bids, then the bidder i maximizes its
utility only by bidding thruthfully and winning. If there exists a bid bj, j 6= i such that
bj > vi, then bidder i has no incentive to receive negative utility by overbidding.

The main idea behind the Vickrey mechanism’s payment rule is charging every
bidder i his “externality” - or the welfare loss the presence of the bidder i causes to
the other bidders. In a sequence of works by Vickrey [37], Clarke [10] and Groves [19],
this idea becomes the key to solving the more general setting of multiple items for sale,
where a bidder may have different valuations for different items or outcomes. A formal
statement of the Vickrey-Clarke-Groves (VCG) mechanism is the following:

The VCG mechanism requires computing the optimal solution arg maxo∈O
∑n

i=1 bi(o)
which usually can not be implemented in polynomial time. Despite its computational
inefficiency, the VCG mechanism is a truthful mechanism that has many strong prop-
erties and can be applied to a large range of settings. For example, it satisfies the
property of no positive transfers, where no player is paid anything by the mechanism,
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The VCG mechanism is a mechanism (x, p) where

• Allocation rule: x(b) = arg maxo∈O
∑n

i=1 bi(o)

• Payment rule: pi(b) = maxo∈O
∑

j 6=i bj(o)−
∑n

j 6=i bj(x(b))

Mechanism 1.1: The VCG Mechanism

i.e. it holds that for every agent i and every bid profile b : pi(b) ≥ 0. This property
follows immediately from the definition of pi.

Under the assumption that bi ≥ 0, the VCG mechanism is also individually ra-
tional. To prove this, fix an agent i and let ω∗ = x(b) = arg maxo∈O

∑n
i=1 bi(o) and

ω = arg maxo∈O
∑

i 6=j bi(o). We have that

ui(b) = vi(x(b))− pi(b) = [vi(ω
∗) +

∑
j 6=i bj(ω

∗)]−
∑

j 6=i bj(ω) ≥∑n
j=1 bj(ω

∗)−
∑n

j=1 bj(ω) ≥ 0,

since bi(ω) ≥ 0 and ω∗ was chosen as to maximize arg maxo∈O
∑n

i=1 bi(o).

Theorem 1.3.1. The VCG mechanism is truthful.

Proof. Let ω∗ = x(b) = arg maxo∈O
∑n

j=1 bj(o). We have to prove that for each agent
i, ∀vi, bi, b−i :

ui(vi, b−i) ≥ ui(bi, b−i)

Indeed,

ui(bi, b−i) = vi(ω
∗)− pi(bi, b−i) = [vi(ω

∗) +
∑

j 6=i bj(ω
∗)]− [maxo∈O

∑
j 6=i bj(o)]

The term maxo∈O
∑

j 6=i bj(o) does not depend on bi, so agent i can only influence
- through the choice of ω∗ - the term [vi(ω

∗) +
∑

j 6=i bj(ω
∗)] in order to maximize

its utility ui(bi, b−i). If we set bi = vi then the term [vi(ω
∗) +

∑
j 6=i bj(ω

∗)] becomes
equal to

∑n
j=1 bj(ω

∗), where ω∗ = argmaxo∈O
∑n

j=1 bj(o) is the outcome chosen by the
mechanism. Therefore, the best strategy for agent i is bidding its true valuation vi.
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1.3.2 The Exponential Mechanism

Algorithmic Mechanism Design has mainly focused on the design of incentive
compatible mechanisms. However, thruthful bidding may not always be a dominant
strategy for an agent as he may achieve its optimal payoff by bidding a false valua-
tion. Moreover, an agent might not bid truthfully for privacy reasons; bidding its true
valuation implies that the agent reveals personal - probably sensitive or important -
information. As a result, we need to design mechanisms that are both incentive com-
patible and near optimal subject to a social welfare objective and at the same time
protect the privacy of agent’s personal information.

McSherry and Talwar [24] introduced the exponential mechanism and Huang and
Kannan [21] used this result to design an incentive compatible and individually ratio-
nal mechanism that still ensures differential privacy. The ε- differential privacy of a
mechanism means that the probability of an outcome can increase by a factor of exp(ε)
or less when a single agent misrepresents its information.

Definition 1.3.2. A mechanism is ε-differentially private if for any set of outcomes
S ⊆ O, and for any two valuation vectors v = (v1, ..., vi, ..., vn) and v′ = (v1, ..., v

′
i, ..., vn)

that differ only in the value of a single agent i, we have

Pr[x(v) ∈ S] ≤ exp(ε) ·Pr[x(v′) ∈ S]

Given an arbitrary range O of outcomes, a set of n inputs each from a domain D
and a quality function q : Dn → O that maps a pair of an input data set D and an
outcome o ∈ O to a real number, the exponential mechanism of McSherry and Talwar
[24] is a general differential privacy mechanism. Intuitively, the purpose of using a
quality function is to assign a score to a pair of an input x ∈ Dn and an output o ∈ O,
giving higher preference to outcomes with higher scores.

If D is a reported bid profile and the quality function q is the social welfare∑n
i=1 vi(o), then the Exponential Mechanism EXPO

ε (v) with Social Welfare Quality
Score is the following:

Choose outcome o∗ ∈ O with probability Pr[o∗] =
exp(

ε

2

∑n
i=1 vi(o

∗))∑
o∈O exp(

ε

2

∑n
i=1 vi(o))

The exponential mechanism can be a useful tool because of two basic properties:
it is ε-differential private and chooses with high probability a high welfare outcome
o ∈ O. The next theorem illustrates this properties.
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Theorem 1.3.3. ([24], [12]) Let o be the output of the Exponential Mechanism EXPO
ε (v)

and OPT (v) = maxo∗∈O
∑n

i=1 vi(o
∗). The exponential mechanism is ε-differentially

private and ensures that

Pr[
n∑
i=1

vi(o) ≤ OPT (v)− 2 · log |O|
ε

− 2t

ε
] ≤ exp(−t)

Huang and Kannan [21] used the connection between the exponential mechanism
and the Gibbs measure to introduce a payment scheme such that the exponential
mechanism becomes truthful. The payment rule is defined below in Mechanism 1.2,

where H(D) =
∑

r∈R PrD[r] · log
1

PrD[r]
is the Shannon entropy of a distribution D.

1. Choose outcome o∗ ∈ O with probability Pr[o∗] =
exp(

ε

2

∑n
i=1 bi(o

∗))∑
o∈O exp(

ε

2

∑n
i=1 bi(o))

2. For 1 ≤ i ≤ n, charge agent i price

pi = −Eo∼EXPOε (b)[
∑

k 6=i bk(o)]−
2

ε
H(EXPO

ε (b))+
2

ε
ln(
∑

o∈O exp(
ε

2

∑
k 6=i bk(o)))

Mechanism 1.2: The incentive compatible Exponential Mechanism with payments [21]

We note that the payment formula can be written in a VCG-like form as

pi = (Eo∼EXPOε (b−i)[
∑
k 6=i

bk(o)] +
2

ε
H(EXPOε (b−i)))− (Eo∼EXPOε (b)[

∑
k 6=i

bk(o)] +
2

ε
H(EXPOε (b)))

Indeed,

·Eo∼EXPOε (b−i)[
∑

k 6=i bk(o)] +
2

ε
H(EXPOε (b−i)) =

2

ε

∑
o∈O Pr[o] · ( ε

2

∑
k 6=i bk(o) + ln

1

Pr[o]
)

=
2

ε

∑
o∈O Pr[o] · ln(

exp(
ε

2

∑
k 6=i bk(o))

Pr[o]
) =

2

ε
(
∑

o∈O Pr[o]) · ln (exp(
ε

2

∑
k 6=i bk(o)))

=
2

ε
ln(
∑

o∈O exp(
ε

2

∑
k 6=i bk(o)))

Theorem 1.3.4. ([21]) The Exponential Mechanism with payments is truthful and
individually rational.



Chapter 2

Mechanism Design for Facility
Location Games

In this Chapter, we briefly review the most relevant results in the rich literature on
Facility Location games. The basic underlying setting of the papers that we present,
consists of n agents located in metric space and k facilities that need to be placed.
However, there exist some differences among the various settings, which we analyze
throughout this Chapter. At the end of the Chapter, we summarize the main models
and variants of Facility Location games.

2.1 Social Choice Theory: Facility Location and

Single Peakedness

The first results that are relevant to Facility Location games come from the field
of Social Theory. For this reason, this section starts with a brief summary of the basic
definitions about social choice functions.

Social Choice. Social Choice Theory is the mathematical study of collective decision
processes and procedures, i.e. making decisions based on the preferences of multiple
agents. In the general setting, there is a set N of n agents and a set A of alternatives.
Each agent has a private linear order �i∈ L over the alternatives in A. A social choice
function f : Ln → A is a mapping from agents’ preferences to an alternative.

Some properties of the social functions are the following:

27
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• Unanimous : A social choice function f is unanimous if, when all player prefer
a certain outcome more than anything else, then that outcome must be the
alternative chosen by the mechanism. Formally, if ∃a ∈ A such that ∀b ∈ A and
∀i ∈ N a �i b, then f(�1, ...,�n) = a.

• Strategyproof or Truthful : A social choice function f is strategyproof if for all
�1, ...,�n and for each agent i: f(�1, ...,�i, ...,�n) �i f(�1, ...,�′i, ...,�n), for
every �′i.

• Dictatorship: An agent i is a dictator in a social choice function f if for all
�1, ...,�n : f(�1, ...,�n) = a where a �i b ∀b, b 6= a.

• Onto: A social choice function f is onto if ∀a ∈ A, ∃x ∈ Ln such that f(x) = a.

It becomes clear that there is a strong relation between Social Choice and Mech-
anism Design for Facility Location.

The Social Choice setting (related to Facility Location). [26] We consider
a set of n agents (n is odd) and a set A of alternatives. The set Ui of agent i’s
possible preferences is a subset of A. We say that alternative a defeats by majority
vote alternative b if the set of agents that strictly prefer a to b are more than the half of
the number of agents. We assume that the sets U1, ..., Un are such that for every profile
(u1, ..., un) ∈ U1 × ... × Un there exists a unique Condorcet winner, i.e. an alternative
C(u1, ..., un) that defeats any other alternative by majority rule.

A setting where a Condorcet winner always exists is the real line (A = R) and
we restrict the setting to the real line. An other assumption we make is that agents’
preferences have a single most preferred point on the real line. Formally, each agent
has a single peak xi ∈ A such that for all b < a ≤ xi: a �i b and for all xi ≤ a < b:
a �i b. We assume that each agent submits only his peak.

In [26], Moulin states that

Theorem 2.1.1. [26] Assuming single peakedness, a rule f is strategy-proof, onto and
anonymous if and only if there exist a1, a2, ..., an−1 ∈ [0, 1] such that for all peaks
(x1, ..., xn) ∈ Rn,

f(x1, ..., xn) = median(x1, x2, ..., xn, a1, ..., an−1)

To prove the strategyproofness, let o be the outcome of the rule. If o = xi for an
agent i, then this outcome implies a zero cost for this agent. Otherwise, without loss
of generality we can assume that o > xi. In this case, if agent i reports his peak at
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x′i ≤ o, then he can not manipulate the mechanism. However, if i submits a peak at
x′i > o, then according to the median rule the facility would be placed at a location
that is more distant to him than o is.

2.2 Approximate Mechanism Design without Money

As discussed in Chapter 1, the Gibbard- Satterthwaite Theorem shows that for
non-restricted settings any non-trivial truthful mechanism is dictatorial. One way to
overcome the problem is by introducing monetary payments. Mechanism Design with
Money deals with mechanisms which employ payments. When monetary transfers are
allowed, the mechanism designer can many times achieve optimality, truthfulness and
efficiency. For instance, the VCG mechanism for our Facility Location games is not only
strategyproof, but also achieves an optimal solution; of course, the only restriction is
that payments are allowed. However, in many social choice settings, including Facility
Location problems, monetary payments may be unavailable due to legal or ethical
considerations. In addition, the VCG mechanism presupposes the computation of the
optimal solution for a given objective function, but for many problems finding the
optimal solution in a computationally efficient way is impossible. Therefore, many
researchers have turned their interest to mechanisms without monetary payments.

There are types of problems where there exists no optimal truthful mechanism
without money. Nevertheless, we can sacrifice to some extent the optimality of the
solution in order to achieve truthfulness without money. This was first proposed as
Approximate Mechanism Design without Money and was initiated by Procaccia and
Tennenholtz in their seminal paper [30, 31].

For the next sections, we formally define the setting as follows.

The basic setting (Facility Location). Agents and facilities are located in a metric
space (X, d), where d : X×X → R is the distance function. The function d is a metric,
i.e. it is non-negative, symmetric and satisfies the triangle inequality. There exists a set
N of n agents and each agent i has a location xi ∈ X, which is his private information.
We refer to the tuple (x1, ..., xn) as the location profile. For a location profile x, let x−i
denote the locations of all agents except for agent i.

Agent i reports his location to the mechanism M . A number of k facilities should
be placed based on agents’ reported locations. A deterministic mechanism is a mapping
from a location profile to to a tuple consisting of the locations of the k facilities. A
randomized mechanism is a probability distribution over deterministic mechanisms.
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In the classical setting, each agent has a cost function cost[xi,M(x)] that he
wants to minimize. A mechanism M is strategyproof if for any location profile x,
any agent i and any location y, cost[xi, F (x)] ≤ cost[xi, F (y, x−i)]. A mechanism
M is group-strategyproof if for any location profile x, any non-empty set of agents
S ⊆ N , and any location profile yS for them, there exists some agent i ∈ S such that
cost[xi,M(x)] ≤ cost[xi,M(yS,x−S)].

2.2.1 1-Facility and 2-Facility Location

2.2.1.1 Facility Location on the Real Line

In [31], the authors use approximation to obtain truthfulness without payments
and apply their framework to Facility Location games. In the general setting, agents
are located on the real line and submit their locations to the authority. Given their
location profiles, the mechanism selects the location of the facility (or the facilities).
In the basic setting, only one facility must be located, but the results are extended to
the 2-Facility Location game on the real line and then to domains where each agents
controls multiple facilities. We will focus only on the first two facility location settings.

The setting. Procaccia and Tennenholtz study a limited version of the general set-
ting. The underlying metric space is the real line and the cost function of agent i is
cost(y, xi) = min{|y1 − xi|, |y2 − xi|}, where y1 and y2 are the locations of facilities.
In games where only one facility y is located, cost(y, xi) = |y − xi|. Two objective
functions are considered: minimizing social cost and minimizing maximum cost in a
strategyproof way. The social cost with respect to a location profile x ∈ Rn is defined
as sc(y,x) =

∑
i∈N cost(y, xi). The maximum cost is mc(y,x) = maxi∈N cost(y, xi).

1-Facility Location. The obvious approach to solve the 1-Facility Location game on
the real line is to choose the median locationmed(x) in x. Fortunately, this mechansism
is also truthful; the proof is as follows. If n is odd, then any agent that is to the left
of med(x) has higher cost than that of med(x). The same holds for any agent to
the right of med(x). If n is even, then any point in the interval [xn/2, xn/2 + 1] is an
optimal Facility Location; in this case we consider med(x) = xn/2. Consequently, this
mechanism is strategyproof and achieves an approximation ratio of 1 for the social
cost. This argument is easily generalized for coalitions of agents, thus the mechanism
is also group-strategyproof.

The Two-Extremes Mechanism for 2-Facility Location. For a location pro-
file x ∈ Rn, let lt(x) denote the leftmost location in x, namely lt(x) = mini∈N xi.
The rightmost location is rt(x) = maxi∈N xi. For the 2-Facility Location game, the
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mechanism that outputs the optimal solution is not truthful. A group strategyproof
(n− 1)-approximation mechanism is given by choosing rt(x) and lt(x).

Lu et al. in [22] provided a lower bound for the 2-Facility Location Game: any
deterministic strategyproof mechanism for the 2-facility game in the line metric space
has an approximation ratio of at least n−1

2
. The same holds for any metric space which

can be locally viewed as a line, such as the circle. The Two-Extremes Mechanism is sur-
prisingly the only deterministic anonymous strategyproof mechanism with a bounded
approximation ratio for 2-Facility Location on the line. [17]

2.2.1.2 1-Facility Location on Trees, Circles and Graphs

Trees. In [33], Schummer and Vohra study rules that choose a location on a net-
work, based on agents’ single-peaked preferences. Later in [1], Alon et al. provide a
mechanism for the 1-Facility Location problem on trees. The mechanism that selects
the median of the reported locations is group-strategyproof and achieves the optimal
social cost. Finding the median in a tree is simple. We first fix an arbitrary node as
the root of the tree. Then, as long as the current node has a subtree that contains
more than half of the agents, we move down this subtree, until it not possible to find
such a subtree. In this case, we return the current node. Their result follows from
similar arguments as the ones given for a median on a line. An agent can only change
the location chosen by the mechanism only by pushing the returned Facility Location
away from its true location.

Circles and General Graphs. For non-tree networks, the network contains at least
a cycle. Any strategy proof mechanism that is onto must is a dictatorship when all
agents are located in the cycle [33]. This gives a tight lower bound of n − 1 on the
approximation ratio of any strategyproof mechanism. For randomized mechanisms,
Alon et al. design a mechanism that is random dictator, i.e. it chooses one of the
agents’ locations with probability equal to 1

n
. It follows immediately from the triangle

inequality that the random dictator is (2 − 2/n)-approximation mechanism for the
social cost. The random dictator is group-strategyproof for the circle, but for general
connected graphs if only if the maximum degree is equal to 2.

2.2.1.3 The Proportional Mechanism for the 2-Facility Location game

Lu et al. in [22] also introduced a truthful 4-approximation randomized mecha-
nism for the 2-Facility Location problem in metric spaces. The so called Proportional
Mechanism proceeds as follows: the first facility is selcted uniformly at ramdom over
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all reported locations of agents and the second facility is assigned to another agent
i with probability proportional to the distance of agent i to the first facility. The
approximation ratio of 4 for the proportional mechanism is tight even on the line.

The Proportional Mechanism is strategyproof for the 2-Facility Location, but it
is not for 3 or more facilities. An illustrating counterexample for 3 facilities is the
following. We consider a location profile where there exist n0 agents at location 0, n1

agents at location 1, n2 agents at location 1 + x and 1 agent at location 1 + x+ y. Let
y = 100, n1 = 50, n2 = 4 and x = 105. If n0 is large enough so that the first facility is
always placed at 0. If any of the n1 agents at location 1 reports 1 + x (instead of 1) as
his true location, then he can manipulate the mechanism.

2.2.1.4 The maximum cost objective function

An other objective that has been considered is minimizing the maximum cost.
The maximum cost of a Facility Location y with respect to a location profile x is
mc(y,x) = maxi∈Ncost(y, xi), whereas the maximum cost of a distribution P with
respect to x is mc(P,x) = Ey∼P [mc(y,x)].

1-Facility Location. [1, 31] For 1-Facility Location games, the approximation ratio
achieved by any deterministic mechanism is at least 2. The dictatorship mechanism
that chooses the agent at x1 provides a 2-approximation for the maximum cost (be-
cause for all agents i ∈ N : d(x1, xi) ≤ d(x1, y) + d(y, xi) ≤ 2 ·max{d(y, x1), d(y, xi)} ≤
2 · mc(y,x)), thus it is the best possible mechanism. Given a location profile x on
the real line setting, a randomized mechanism for the same problem return the left-
most agent lt(x) and the rightmost agent rt(x) with probability 1

4
respectively and

the center cen(x) of the interval [lt(x), rt(x)] with probability 1
2
. This mechanism a

group strategyproof 3/2-approximation mechanism for the maximum cost. When the
underlying metric space is a tree, Alon et al. provided a randomized strategyproof
(2− 2

n+2
)-approximation mechanism.

Remark 2.2.1. (VCG-like payments) We observe that if payments are allowed, we can
obtain a truthful optimal solution for the maximum cost, by using VCG-like payments:
each agent i ∈ N pays the distance between the optimal Facility Location when x is the
input location profile and the optimal Facility Location when x−i is the input location
profile.

2-Facility Location. [31] For the 2-Facility Location game on the real line, the mech-
anism that chooses the leftmost lt(x) and the rightmost rt(x) location is a deterministic
group-strategyproof 2-approximation mechanism for the maximum cost.



2.2. Approximate Mechanism Design without Money 33

Given a location profile x, let the left boundary location be lb(x) = max{xi :
i ∈ N : xi ≤ cen(x)} and the right boundary location be rb(x) = min{xi : i ∈
N : xi ≥ cen(x)}. They also define dist(x) = max{lb(x) − lt(x), rt(x) − rb(x)}. A
randomized strategyproof 5/3-approximation mechanism for the maximum cost in the
two Facility Location on the real line is the following: Compute dist(x) and return
(lt(x) + dist(x), rt(x) − dist(x)) with probability 1/6, (lt(x), rt(x)) with probability
1/2 and (lt(x) + dist(x)/2, rt(x)− dist(x)/2) with probability 1/3.

2.2.2 k-Facility Location

2.2.2.1 The Winner-Imposing Proportional Mechanism for k-Facility Lo-
cation

In [29], Nissim, Smorodinsky and Tennenholtz consider imposing mechanisms,
namely mechanisms able to penalize lying agents by restricting the set of allowable
post-actions for the agents. As a result, liars can not fully exploit their outcome.

This extension to the standard mechanism design model fits naturally in Facility
Location games. In [15], Fotakis and Tzamos considered the imposing variant of the
k-Facility Location game, where an authority can impose on some agents the facilities
where they will be served. In particular, an imposing mechanism requires that an agent
must connect only to the facility nearest to his reported location, thus increasing his
connection cost if he misreports his location.

Definitions and Notation. The definition of metric distance function d is extended
as follows: for x ∈M and a non-empty M ′ ⊆M , d(x,M ′) = inf{d(x, y) : y ∈M ′}.

A deterministic mechanism F maps a location profile x to a tuple of non-empty
sets (C,C1, ..., Cn), where C ⊆ M is the facility set of F and each Ci ⊆ C contains
the facilities where agent i must connect to. Let F (x) denote the facility set of F and
F i(x) to denote the facility subset of each agent i.

Definition 2.2.2. A mechanism is imposing if each agent i can only connect to the
facility in F (x) closest to his reported location, namely where {z ∈ F (x) : d(xi, z) =
d(xi, F (x))} ⊆ F i(x).
A mechanism F that allocates facilities to the agents, i.e. F (x) ⊆ {x1, x2, ..., xn}, is
winner-imposing if for every agent i, F i(x) = {xi} if xi ∈ F (x), and F i(x) = F (x)
otherwise.

The mechanism. In [15], the authors introduce the winner-imposing version of the
Proportional Mechanism [22], to obtain the truthful 4 log k-approximation mechanism
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WIProp for the k-Facility Location in metric spaces. The mechanism works in k
rounds. For each round l = 1, ..., k, let Cl be the set of the l facilities that WIProp
has placed in the first l rounds. Initially, C0 = ∅.

Input: location profile (x1, x2, ..., xn)

Round 1: Choose agent i1 uniformly at random from N. Place the first facility at xi1 .
Connect i1 to F1. Set C1 = {xi1}.

Round l = 2, 3, ..., k: Select agent il with probability equal to
d(xil ,Cl)∑
i∈N d(xi,Cl)

Place the

l-th facility at xil . Connect il to Fl. Set Cl+1 = Cl ∪ {xil}.

Finally, the set of the facilities that the mechanism outputs, is Ck. Each agent not
allocated a facility is served by the facility in Ck that is closest to his true location.

Mechanism 2.1: The Winner-Imposing Proportional Mechanism

Theorem 2.2.3. For any k ≥ 1, WIProp is a strategyproof mechanism for the k-
Facility Location game.

Proof. For each l = 0, 1, ..., k, we let cost[xi, f(y, x−i)|Cl] be the expected connection
cost of an agent i at the end of WIProp, given that i reports the location y and that
the facility set of WIProp at the end of round l is Cl. We have that

cost[xi, f(y, x−i)|Cl] =
d(y, Cl)d(xi, Cl) +

∑
j 6=i d(xj, Cl)cost[xi, f(y, x−i)|Cl ∪ {xj}]

d(y, Cl) +
∑

j 6=i d(xj, Cl)

By induction on l, it can be proved that for any y, any l = 0, 1..., k and any Cl

cost[xi, f(y, x−i)|Cl] ≥ cost[xi, f(x)|Cl]

implying that the mechanism is truthful.

For the basis case l = k, it is easy to see that if agent i’s location is not in Ck ,
his connection cost is d(xi, Ck) and does not depend on her reported location y.
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We inductively assume that

cost[xi, f(y, x−i)|Cl] ≥ cost[xi, f(x)|Cl]

holds for l+ 1 and any facility set Cl+1, and show that it also holds for and any facility
set Cl.

If l ≥ 1,

cost[xi, f(y, x−i)|Cl] ≥
d(xi, y)d(y, Cl) +

∑
j 6=i d(xj, Cl)cost[xi, f(x)|Cl ∪ {xj}]

d(y, Cl) +
∑

j 6=i d(xj, Cl)
≥

≥
d(xi, y)d(y, Cl) + (d(xi, Cl) +

∑
j 6=i d(xj, Cl))cost[xi, f(x)|Cl]

d(y, Cl) +
∑

j 6=i d(xj, Cl)

If d(xi, Cl) ≥ d(y, Cl), the previous equation implies that cost[xi, f(y, x−i)|Cl] ≥
cost[xi, f(x)|Cl]. Otherwise, we continue and get that

cost[xi, f(y, x−i)|Cl] >
d(xi, y) + d(xi, Cl) +

∑
j 6=i d(xj, Cl)cost[xi, f(x)|Cl]

d(y, C) +
∑

j 6=i d(xj, Cl)
≥ cost[xi, f(x)|Cl]

For l = 0,

cost[xi, f(y, x−i)] ≥
1

n
cost[xi, f(x)|{xj}] = cost[xi, f(x)]

The proof is complete.

Approximation ratio. In [36], it is proved that the Winner-Imposing Proportional
Mechanism has an approximation ratio of at most 4k for the k-Facility Location game.
Here, we extend the ideas in [36] by adopting the technique proposed by Arthur and
Vassilvitskii [2]. In [2], the authors design k-means++, an algorithm that solves the k-
means clustering problem. The k-means clustering problem is NP-hard and is defined
as follows: given an integer k and a set X of n points in Rd, choose k centers so as
to minimize the total squared distance D2 between each point and its closest center.
The k-means++ algorithm that is O(log k)-competitive with the optimal clustering, is
similar to the Proportional Mechanism. The algorithm selects the first center uniformly
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at random and in k − 1 rounds it choosed each of the next k − 1 centers x ∈ X with
probability equal to D(x)2∑

x∈X D(x)2
(this is the so called D2 weighting process).

By applying the technique used for the proof of the approximation ratio of the
k-means++ algorithm, we have the following theorem.

Theorem 2.2.4. For any k ≥ 1, WIProp is a O(log k)-approximation mechanism
for the k-Facility Location game.

Proof. We fix a location profile (x1, x2, ..., xn), and compare the cost of WIProp with
input location profile (x1, x2, ..., xn) to the cost of a set C∗ = {c∗1, ..., c∗k} of optimal
Facility Locations for this location profile. The p-th optimal cluster Np consists of the
agents whose nearest facility in C∗ is c∗p and optp =

∑
i∈Np d

∗
i denotes the optimal cost

of the agents in cluster Np, where d∗i = d(xi, C
∗) is agent i’s distance to the nearest

facility in C∗.

Given a set C of facilities chosen by WIProp, we use additional notation for the
covered and uncovered clusters. Let H(C) = {p ∈ [k] : C ∩ Np = ∅} be the set of
indices of the optimal clusters covered by C, and let U(C) = [k] \H(C) be the set of
indices of the optimal clusters not covered by C. If Cl is the facility set of WIProp
at the end of round l, then let Hl = H(Cl) and Ul = U(Cl) be the sets of indices of
the optimal clusters covered and not covered, respectively, by WIProp at the end of
round l. Let also D(N ′, C) =

∑
i∈N ′ d(xi, C) for a subset of agents N ′ ⊆ N . For a set

of indices I ⊆ [k], we let N(I) = ∪p∈INp be the set of agents in the optimal clusters
indexed by I.

The expected cost E[D(N,Ck)] of the agents in WIProp is equal to the expected
cost of the optimal clusters covered and not covered by the mechanism:

E[D(N,Ck)] = E[D(N(Uk), Ck)] +
∑
p∈Hk

E[D(Np, Ck)|p ∈ Hk]

For the covered clusters, we use the following lemma.

Lemma 2.2.5. [22] For every optimal cluster Np, E[D(Np, Ck)|p ∈ Hk] ≤ 4OPTp.

The proof is by induction on the number of rounds l. For the basis case l = 1, we
have that E[D(Np, C1)|c1 ∈ Np] ≤ 2OPTp. If Np is covered at round l > 1, then using
the triangle inequality we get

E[D(Np, Cl)|cl ∈ Np] =
∑
i∈Np

di

D(Np, Cl−1)

∑
j∈Np

min{dj , d(xi, xj)} ≤
∑
i∈Np

di

D(Np, Cl−1)

∑
j∈Np

min{dj , d∗i + d∗j}
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If D(Np, Cl−1) ≤ optp, it follows immediately that E[D(Np, Cl)|cl ∈ Np] ≤ optp.
Otherwise, we have that E[D(Np, Cl)|cl ∈ Np] ≤ 4optp.

Next, for the optimal clusters not covered by WIProp, we observe that Lemma
3.4 [2] can be applied with the only difference that E[D(Np, Ck)|p ∈ Hk] ≤ 4OPTp,
due to Lemma 2.2.5.

Consequently, we conclude that the mechanism O(log k)-approximates the optimal
cost.

Note. In Chapter 4, we revisit the idea of the Proportional Mechanism to design a
truthful mechanism without money.

Remark 2.2.6. (Deterministic Mechanisms for k-Facility Location)[17] For every k ≥
3, there do not exist any deterministic anonymous strategyproof mechanisms with a
bounded approximation ratio for k-Facility Location on the line, even there are only
k + 1 agents. We recall that a mechanism is anonymous if for all agent profiles x and
permutations on agent locations, the output of the mechanism does depend only on
the locations of the agents and not their identities.

2.2.2.2 k-Facility Location with k + 1 agents

Escoffier et al. [13] consider strategyproof mechanisms for k-Facility Location
games with k + 1 agent and present their results for the general metric spaces as well
as for tree metrics. For general metric spaces, Escoffier et al. design the Inversely
Proportional mechanism, that works as follows. Given a location profile x, if there are
at most n−1 distinct locations in x then the mechanism opens facilities at all locations
in x. Otherwise, it chooses placement Pi(x) with probability

pi(x) =

1
d(xi,Pi(x))∑n
j=1

1
d(xj ,Pj(x))

where Pi(x) denotes the placement of (n− 1) facilities at the reported locations of all
but agent i, i.e. Pi(x) = {x1, ..., xi−1, xi+1, ..., xn}. Two kinds of objectives are studied:
social cost (egalitarian social cost) and maximum cost (utilitarian social cost). The
Inversely Proportional Mechanism is strategyproof, an n/2- approximation with respect
to the social cost and an n-approximation with respect to the maximum cost.

Finally, they prove that no randomized strategyproof mechanism on a line metric
space has an approximation ratio smaller than 10− 4

√
5.
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2.2.2.3 k-Facility Location on the Real Line for Concave Cost Functions

In this section, we summarize the results presented in [16]. The connection cost of
each agent is given by a non-negative increasing concave function c(d) of the distance
d. The main contribution of [16] consists of two randomized mechanisms for the real
line setting: EqualCost and PickTheLoser.

The mechanism EqualCost. We have a three-phase mechanism. At the first
step of EqualCost, the mechanism finds1 an optimal covering of all agent locations
with k disjoint intervals [ai, ai + l] that minimizes the interval length. At the second
step, the mechanism constructs a random variable X(l) ∈ [0, l] such that all locations
x ∈ [0, l] have the same expected connection cost C(l) = E[c(|x−X(l)|)] (see [16] for
the technical details). It can be proved that the expected cost C(l) is an increasing
function of the interval length l. At the final step and for every interval [ai, ai + l],
the mechanism places a facility at ai + X, if i is odd, or at ai + l − X, if i is even.
EqualCost is group-strategyproof and has an approximation ratio of at most 2 for
the objective of maximum cost, for any concave cost function c.

EqualCost has a good performance for the objective of maximum cost, but not
for the objective of social cost. For instance, when we have k facilities and only k + 1
agents, as in the previous section, then one could easily satisfy all but one agents.
Nevertheless, EqualCost has a high cost. For that reason, a second mechanism is
considered on the line.

The mechanism PickTheLoser for k facilities and k+1 agents. The mechanism
sorts the locations of agents in an increasing order such that xi < xi+1 and constructs
two sets E and O of agents consisting of the even and odd numbered agents, respec-
tively. For every odd numbered agent i ∈ O, the mechanism places a facility at xi.
For each agent i ∈ E, PickTheLoser samples a number si uniformly in (0, 1), and

computes i’s scaled cost
minj 6=i c(|xj−xi|)

si
. Finally, PickTheLoser selects the agent with

the smallest scaled cost as the loser. All other even numbered agents get a facility.

2.2.2.4 Summary of the approximability results on k-Facility Location
games

In the following table, we present the known precise approximation ratios for each
problem or the best known lower and upper bounds.

1The minimum feasible interval length l can be computed by checking all n2/2 possible candidate
values (the value of l is equal to the distane between two agent locations). Using binary search over
the space of candidate values, we can compute the optimal l given the number k of intervals.



2.2. Approximate Mechanism Design without Money 39

Social Cost k=1 k=2 2 < k < n− 1 k = n− 1
Deterministic 1 [26] n− 2 [31] ∞ [17] ∞ [17]
Randomized 1 [26] [1.045, 4] [23, 22] [1.045, n] [16] [1.045, 2] [16]

Maximum Cost k=1 k=2 2 < k < n− 1 k = n− 1
Deterministic 2 [31] 2 [31] ∞ [17] ∞ [17]
Randomized 1.5 [31] [1.5, 5/3] [31] [1.5, 2] [16] 1.5 [13]

Figure 2.1: Summary of the approximability results on k-Facility Location games

Note. The lower bound on the approximation ratio of deterministic mechanisms for
k ≥ 3 is only shown for anonymous mechanisms. The randomized upper bounds for
the case of k ≥ 3 (maximum cost, social cost) and for the case of k = n − 1 (social
cost) hold for any concave cost function.

2.2.3 Variants of Facility Location games

2.2.3.1 Facility Location with Uniform Opening Cost

In [15], a Facility Location game with a uniform facility opening cost is also con-
sidered. The objective is to place facilities so as to minimize the social cost and the
total facility opening cost, which is a constant price multiplied by the number of fa-
cilities opened. The number of facilities is not fixed. They present a winner-imposing
randomized truthful 8-approximation mechanism (ofl). Given a random permutation
on the location profile x, ofl places the first facility at x1 and connects agent 1 to it.
We set C1 = {x1}. For each of the following i = 2, ..., n agents, it opens a facility at
xi and connects agent i to it, with probability d(xi, Ci−1). We set Ci = Ci−1 ∪ {xi}.
Each agent not allocated a facility connects to the facility in Cn closest to his true
location. For the real line setting, a deterministic non-imposing group strategyproof
O(log n)-approximate mechanism is presented.

2.2.3.2 Obnoxious Facility Location

An other Facility Location game is obnoxious facility location where the facility
is undesirable and all agents try to be as far away from the facility as possible. Two
underlying metric spaces have been considered: the real line and networks.

Real line (path).[7] In the basic setting, the n agents are located on a interval with
left and right endpoints a and b, and the mechanism must select the location of a
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single obnoxious facility. As in [31], the distance function between two points x and y
is d(x, y) = |x−y|; this function also represents the cost of each agent, but, in contrast
to previous work, each agent wants to maximize his distance from the obnoxious facility.
For simplicity, we assume that the agents are located in the interval [0, 2]. The first
mechanism designed by Cheng et al. is the following: If the number n1 of agents
located on the interval [0, 1] is less or equal than the number n2 = n − n1 of agents
located on (1, 2], then select the left endpoint 0; otherwise select the right endpoint 2.
This mechanism is group-strategyproof and guarantees an approximation ratio of 3. In
fact, they show that any deterministic mechanism which only selects one of endpoints
as the facility location cannot do better. For the real line setting, a lower bound of 2
for any strategy-proof deterministic mechanism is proved. They also study randomized
mechanisms for the same problem. The best approximation ratio (equal to 3

2
is achieved

by the mechanism that returns the left endpoint with probability a =
2n1n2+n2

2

n2
1+n

2
2+4n1n2

and

the right endpoint with probability 1− a.

Networks.[8] For trees and circles, Cheng et al. study both deterministic and random-
ized mechanisms. We can parameterize the circle G such that any point x ∈ G can be
viewed as a real number x ∈ [0, 1]. Point x = 1 coincides with point x = 0. The mech-
anism that chooses the point 3

4
if the number n1 of agents located on the arc [0, 1/2]

is less or equal than the number n2 = n− n1 of agents located on the arc (1/2, 1) and
otherwise returns the point 1

4
is group-strategyproof with tight approximation ratio of

3. For a tree T (V,E), a 3-approximate group-strategyproof mechanism is considered.
The mechanism constructs two subtrees Ta and Tb using the following method. First,
we construct a new graph tree T by adding only the nodes where agents are located as
well as their incident edges. Tree T ′ is then partioned into two subtrees. Let mab be
the midpoint in the diameter P [a, b] of T ′ with endpoints [a, b]. We assume that mab is
on edge [r, s] where r is closer to a than to b, so by deleting [r, s] we get two subtrees
T ′a and T ′b. The mechanism given a location profile x and a diameter P [a, b], places
the facility at y = b if the number of agents on Ta is greater or equal to the number of
agents on T ′b, otherwise it chooses the location y = a.

2.2.3.3 Facility Location games with dual preferences

In a recent result [39], games with agents with dual preferences are considered,
meaning that both preferences of agents exist in the Facility Location game, as some
agents prefer staying as close as possible to a certain facility (or facilities) but prefer
staying as far away as possible from an other facility (or facilities). The underlying
metric space is the real line segment (0, l).

In the dual character Facility Location game, a single facility has to be placed and
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each agent i has a preference value pi which indicates whether he want to stay close to
the facility (1 - desirable) or not (0 - obnoxious). Based on their preference, the utility
u(xi, pi, y) of each agent is defined as the distance between the agent and the facility at
y, if pi = 0; if pi = 1, his utility is defined l − d(xi,y). Each agents wants to maximize
his utility. The social utility is defined as su(x,p, y) =

∑n
i=1 u(xi, pi, y). An agent

may misreport his preference, his location or both. If an agent can misreport both
his preference and location, the locations are transformed to x∗i = l − xi if pi = 1 and
x∗i = xi if pi = 0. Given the transformed location profile, the mechanism that builds
the facility at 0 if the number of agents in [0, 1/2) is less than or equal to the number
of those in [1/2, l] and otherwise it builds the facility at 1, is a group-strategyproof
mechanism with an approximation ratio of 1/3 for the objective of social utility.

In the two-opposite Facility Location game with limited distance, two facilities need
to be built on the real line segment. An additional constraint for the construction of
two facilities is that the distance between them cannot exceed a certain value C, 0 <
C < l. The social utility of this game is defined as su(y0, y1,x) =

∑n
i=1 u(xi, y0, y1) =∑n

i=1(d(xi, y0)− d(xi, y1)), where y0 and y1 are the locations of the two facilities. Zou
and Li consider two cases. When the number of agents is even (n = 2k), they design
a deterministic group-strategyproof mechanism with approximation ratio 1

k
. When

the number of agents is odd (n = 2k − 1), another deterministic group strategy-proof
mechanism is given with approximation ratio 1

2k−1 . Furthermore, they prove that the
approximation ratios for these mechanisms are the best for any deterministic strategy-
proof mechanism in their settings.

2.2.3.4 The least squares objective

In [14], Feldman and Wilf study the sum of squared distances (SOS) function that
is sd(y,x) =

∑n
i=1 d(y, xi)

2.

On the real line, with respect to the miniSOS objective (minimizing the sum of
squared distances), the mechanism that chooses the median location [31] in x is a strat-
egyproof 2-approximation mechanism and this ratio is tight with respect to determinis-
tic strategyproof mechanisms. The random dictator mechanism [1] is a 2-approximate
randomized mechanism. An other 1.5-approximate randomized mechanism is the one
that choose the average point with probability 1/2 and applies the random dictator
with probability 1/2.

For the game on a tree, the median of a tree is an strategyproof 2-approximation
mechanism for the miniSOS objective. Feldman and Wilf also design a randomized
mechanism that obtains 1.83-approximation for trees, based on their results for the
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family of randomized strategyproof mechanisms for locating a facility on a tree.

2.2.3.5 Facility Location games with weighted agents on a line

In addition to the basic setting, in [38] each agent has a weight wi. Let Wmax =
maxwi denote the maximum weight in the input agent profile, and Wmin = minwi as
the minimum weight. Agents prefer to stay close to the facility. The cost of agent i is
measured by the weight times the distance away from the facility. The social cost and
the maximum cost objectives are defined accordingly.

In the following table, a summary of the results in [38] is given.

1-Facility Location Upper bound Lower bound
Social Cost Wmax

Wmin

Wmax

Wmin

Maximum Cost Wmax

Wmin
+ 1 Wmax

Wmin
+ 1

2-Facility Location Upper bound Lower bound
Social Cost (n− 2)Wmax

Wmin

n−1
2
· Wmax

Wmin

Maximum Cost Wmax

Wmin
+ 1 Wmax

Wmin
+ 1

Obnoxious 1-Facility Location Upper bound Lower bound

Social Utility 3 · Wmax

Wmin

Wmin

2Wmax
+ 3

2

Figure 2.2: Summary of the results on Facility Location games with weighted agents

2.3 Summary

In a Facility Location n agents are located in a metric space (X, d) and k facilities
need to be placed. The metric function d represents the cost of an agent which is usually
equal to the distance between the facility and this agent. Various metric spaces have
been considered, such as graphs ([33, 1, 35, 14], Euclidean or general metric spaces (eg.
[15]), the real line (eg. [31, 16]), the cycle (eg. [22, 1]). Each agent aims at minimizing
or maximizing his individual cost. In the former case, we have the classical Facility
Location game; in the latter case, we have an obnoxious game (eg. [7, 8]), i.e. a game
where an undesirable facility has to be located. In a recent result [39], settings with
dual preferences are also considered.

The first and classic Facility Location game has its roots in Social Choice Theory
(eg. [26, 3, 25]), where this type of preferences are known as single-peaked. In [30], Facil-
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ity Location games are first studied under the Approximate Mechanism Design without
Money perspective. This paper initiated a series of results related to mechanism de-
sign without money for Facility Location. Their common goal is to design strategyproof
(truthful) or even group-strategyproof mechanisms that are approximately optimal with
respect to a given objective function. Several objective functions have been studied in-
cluding minimizing the social cost and the maximum cost (eg. [31, 22, 13, 16]) or
maximizing the obnoxious social welfare (eg. [7, 8]) and the social utility [39]. In [14],
the objective of least squares has also been considered for trees.

Furthermore, several other extensions of the standard model have been studied.
For 1-facility games, in [31, 22] each agent controls multiple locations. In [15], a Facility
Location game with a uniform facility opening cost is considered. The objective is to
place facilities so as to minimize the social cost and the total facility opening cost. For
the real line setting, facility location games with weighted agents and facility location
games with threshold agents have also been studied [38]. Although at the time that this
thesis is written, only an extected abstract of [34] is avalaible, for completeness we also
refer to a recent result about richer model of the classical k-Facility Location problem
where the facilities are heterogeneous, meaning that they serve different purposes, and
agents have interest only in some of them.
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Chapter 3

Money Burning

As discussed in Chapter 1, monetary transfers are usually essential for Mechanism
Design, in order to escape the Gibbard–Satterthwaite impossibility result. However,
there are settings where payments are undesirable or infeasible. In Chapter 2, we
survey Approximate Mechanism Design without Money where approximation is used
to obtain truthful mechanisms that approximate the optimal result and do not resort
to payments. In [20], Hartline and Roughgarden consider an other way of overriding
the use of payments and introduce the idea of Money Burning.

Most computer systems such as networks have the ability to reduce service quality,
introduce computational challenges or add delay. Consequently, users are required to
burn money, as all these factors are payments that take the form of wasted resources
instead of actual money. In such settings, the objective is no more the maximization of
social welfare, but becomes the maximization of the residual surplus (or social utility),
measured by the social welfare minus the payments charged.

3.1 Optimal Mechanism Design and Money Burn-

ing

In [20], Hartline and Roughgarden consider single-unit and multi-unit auctions and
present a template for designing truthful prior-free mechanisms that achieve at least
a constant fraction of the optimal social utility of Bayesian mechanisms. In addition,
they compare the social utility of a truthful mechanism to the maximum social welfare
and obtain a logarithmic fraction of the total social welfare. In this section, we review

45
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the most important results of the paper [20].

3.1.1 Bayesian Mechanism Design

We extend the model presented in Chapter 1 to the Bayesian setting. For com-
pleteness, we recall the basic definitions, where necessary. As considered in Chapter 1,
agents aim to maximize their quasilinear utility, i.e. ui = vixi − pi. The mechanism’s
objective is to maximize the residual surplus, defined as

∑
i(vixi − pi). The main dif-

ference between this setting and the setting in Chapter 1 is that the payment pi of
agent i is burnt, meaning that pi denotes the amount of money that is equivalent to
the service degradation.

Definitions and Notation. We consider mechanisms that allocate an item or service
to a subset of n agents. Agent valuations v = (v1, ..., vn) are independently drawn from
a known prior distribution with cumulative distribution function F (z) and probability
density function f(z). Let F denote the product distribution of agent values. Agent i’s
strategy is a mapping from their true valuation vi to a course of actions, thus inducing
a distribution on agent actions. Agents’ actions are in Bayes-Nash equilibrium if no
agent, given his own valuation and the distribution on other agents’ actions, can in-
crease his expected payoff via alternative actions. Due to the Revelation Principle (see
Theorem 1.2.4), we can focus only on direct truthful mechanisms, meaning mechanisms
in which truthtelling is a Bayes-Nash equilibrium.

Given the distribution of agent valuations, the mechanism provides an outcome,
i.e. an allocation vector x(v) = (x1(v1), ..., xn(vn)) and a payment vector p(v) =
(p1(v1), ..., pn(vn)). In the non-Bayesian setting, if agent i wins the good, then xi is 1,
otherwise xi is 0. In the Bayesian setting, xi(vi) denotes the probability (over other
agents’ valuations v−i) that agent i gets the item when his valuation is vi, namely
xi(vi) = Ev−i [xi(vi,v−i)].

We restate Myerson’s Lemma (see Chapter 1) for the Bayesian setting. Bayesian
Incentive Compatibility is a property of a direct mechanisms requiring that truth be a
Bayesian equilibrium.

Theorem 3.1.1 (Myerson’s Lemma, [27]). Every Bayesian incentive compatible mech-
anism satisfies the following two properties:

1. Allocation monotonicity: For all i and vi > v′i, xi(vi) ≥ xi(v
′
i)

2. Payment identity: For all i and vi, pi(vi) = vixi(vi)−
∫ vi
0
xi(v)dv
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Definition 3.1.2. [27] If agent i’s valuation is distributed according to F , where we
assume that F has support [a, b] and positive density function f throughout [a, b], then
his vitrual valuation for payment is

φ(vi) = vi −
1− F (vi)

f(vi)
(3.1)

The virtual surplus of allocation x is
∑

i φ(vi)xi.

Lemma 3.1.3. [27] In a Bayesian incentive compatible mechanism with allocation rule
x(·), the expected payment of agent i satisfies Ev[pi(v] = Ev[φ(vi)xi(v)]

3.1.2 Bayesian Optimal Money Burning

Generalization of Myerson’s Ironing procedure. Myerson [27] applies an “iron-
ing” procedure to transform a possible non-monotone virtual function into a monotone
ironed virtual valuation function. In [20], Hartline and Roughgarden generalize the
ironing technique of Myerson. The authors define the virtual valuation for utility
as θ(vi) = 1−F (vi)

f(vi)
and extend Lemma 3.1.3 to prove that in a Bayesian incentive-

compatible mechanism with allocation rule x, the expected utility of agent i satisfies
Ev[ui(v] = Ev[θ(vi)xi(v)]. Consequently, the maximization of the expected virtual
utility implies a Bayesian optimal mechanism for residual surplus.

However, θ(·) is not always a non-decreasing function. In such cases, the ironing
procedure is applied and the authors provide a theorem that shows that the maximiza-
tion of the ironed virtual surplus for utility is equivalent to the maximization of the
expected residual surplus subject to incentive compatibility. Let now f(v)

1−F (v)
denote the

hazard rate of distribution F at v. The monotone hazard rate (MHR) assumption is
that the hazard rate is monotone non-decreasing. There exist also settings where the
hazard rate is monotone in the opposite direction (anti-MHR) and settings where it is
neither monotone increasing nor monotone decreasing. For every case, they obtain the
following results:

• For agents with i.i.d valuation distribution functions that satisfy the MHR con-
dition, an optimal money-burning mechanism for allocating k units is a k-unit
lottery.

• For agents with i.i.d valuation distribution functions that satisfy the anti-MHR
condition, an optimal money-burning mechanism for allocating k units is a k-unit
Vickrey auction.
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• For agents with i.i.d valuation distribution functions that satisfy the non-MHR
condition, an optimal money-burning mechanism for allocating k units is an
indirect k-unit Vickrey auction.

3.1.3 Prior-Free Money Burning Mechanism Design

Performance benchmark. As their next step, Hartline and Roughgarden develop
a general template for prior-free, i.e. worst-case, optimal mechanism design. They
introduce a family of mechanisms OptF, where OptF corresponds to a mechanism that
maximizes the expected residual surplus for valuations drawn from an i.i.d. distribution
F, and then define a prior-free performance benchmark as

G(v) = sup
F

OptF(v)

In other words, the benchmark competes simultaneously with all Bayesian optimal for
some i.i.d. distribution on a fixed (worst-case) valuation profile.

A mechanism M β-approximates the benchmark G if for every valuation profile
v, its expected residual surplus is at least G(v)/β. This implies that on any i.i.d.
distribution, the mechanism M achieves at least a β fraction of the expected residual
surplus of every mechanism. An example of such a mechanism M is the k-unit p-
lottery ; they show that for every valuation profile v, there is a k-unit p-lottery with
expected residual surplus at least G(v)/2. The definition of k-unit p-lotteries is as
follows:

Definition 3.1.4. [20] The k-unit p-lottery allocates to agents with value at least p at
price p. If there are more than k such agents, the winning agents are selected uniformly
at random.

As a last step, they design a mechanism that O(1)-approximates the benchmark.
The mechanism is Random Sampling Optimal Lottery (RSOL) and is defined as follows:

Definition 3.1.5. [20] With a set S = {1, ..., n} of n agents and a k identical units of
an item, the Random Sampling Optimal Lottery (RSOL) is the following mechanism:

1. Choose a subset S1 ⊂ S of the agents uniformly at random, and let S2 denote the
rest of the agents. Let p2 denote the price charged by the optimal k-unit p-lottery
for S2.

2. With probability 1
2
, run a k-unit p2-lottery on S1.
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3. Otherwise, run a k-unit Vickrey auction on S1.

The theorem below states one of the most important results of the paper.

Theorem 3.1.6. [20] RSOL O(1)-approximates the benchmark G.

Lower Bounds. The authors also establish a lower bound of 4/3 on the approximation
ratio of every prior-free money-burning mechanism. Determining the best-possible
approximation ratio is still an open question.

Theorem 3.1.7. [20] No prior-free mechanism money-burning mechanism can achieve
approximation ratio better than 4/3 with respect to the benchmark G, even for the case
of two agents and one unit of an item. For two bidders and one unit of an item, there
is a prior-free mechanism that 3/2-approximates the benchmark G.

The power of Money Burning. If we compare the social utility of a truthful mech-
anism to the maximum social welfare, then the best possible approximation guarantee
for k-unit auctions is Θ(1 + log(n

k
)), where n is the number of agents.

3.2 Applications of Money Burning

In this section, we refer to some recent results where money burning techniques
are applied. All of the following papers share in common the following constraint :
the settings the study eschew monetary transfers completely. This establishes several
limits to what the mechanism designer can achieve since the use of money usually
ensures truthfulness.

Mechanism Design for Fair Division. In [11], Cole et al. study the problem of
fair division (or cake-cutting) from a mechanism design perspective. In their setting,
there exist n agents and m items; each item is divisible, meaning that it can be divided
into pieces and then allocated to different agents. Each bidder is assigned a weight
bi ≥ 1 which allows for comparison of valuations. These weights are defined by the
mechanism. They find a truthful way to implement good approximation outcomes in
settings where monetary payments are not an option.

Their main result is the Partial Allocation mechanism, that discards a fraction
of the allocated resources in order to ensure truthfulness by the agents. The Par-
tial Allocation mechanism has 3 steps and uses the proportionally fair allocation,
i.e. a feasible allocation x∗ such that for any other feasible allocation, it holds that
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∑
i∈N

bi[vi(x
′)−vi(x∗)]
vi(x∗)

≤ 0. A notable property of the proportionally fair solution is that
it gives a good tradeoff between fairness and efficiency. However, it cannot be im-
plemented using truthful mechanisms without the use of payments. The mechanism
succeeds to use the proportionally fair solution to obtain a truthful allocation rule
without money.

First, the Partial Allocation mechanism computes the proportionally fair alloca-
tion x∗ based on the reported bids. Second, for each player i, it removes this player
and computes the proportionally fair allocation x∗−i that would arise in his absence.

Finally, it allocates to each player i a fraction fi =
∏
i′ 6=i[vi′ (x

∗)]bi′∏
i′ 6=i[vi′ (x

∗
−i)]

bi′
of everything that he

receives according to x∗. The mechanism is truthful and guarantees that every player
will receive at least a 1/e fraction of his proportionally fair valuation.

A more careful look at the PA mechanism reveals a connection with the well known
VCG mechanism, if we simply consider the surrogate valuation ui(·) = bi log vi(·) for
each player i.

Optimal Provision-After-Wait in Healthcare. In [5], Braverman et al. utility
optimization in health care service allocation. Specifically they study the problem of
allocating medical treatments to a population of patients. Each patient has a demand
for exactly one unit of treatment and chooses to be treated in one of k hospitals. Each
patient has a value for each hospital. Patients do not pay anything for a treatment and a
third party (the payer) with a budget B covers the different costs of each hospital. Due
to the budget constraints, the payer can only cover a limited number of treatments in
the more expensive hospitals, thus the access to over-demanded hospitals is regulated
through waiting times. The objective is to compute the appropriate waiting times
and to assign in a feasible way a number of treatments to each hospital, so that in
equilibrium social welfare is maximized subject to the budget constraint.

In this setting, money is allowed, but money and waiting times are not inter-
changeable quantities. Waiting times have a welfare-burning effect, because neither
the patients or the payer benefit from the waiting times. On the contrary, the waiting
times represent a loss in the social welfare. This is the reason why the efficiency of the
mechanism is measured again as the sum of the total utility of each agent, where the
utility of an agent is defined as the total value he receives minus his total waiting time.

Although Braverman et al. study the welfare-burning phenomenon, they focus on
the complexity of computing efficient equilibrium allocations, instead of approximate
truthful mechanisms, which we are interested in.
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Incentive Compatible Two-Tiered Resource Allocation without Money. In
[6], Cavallo considers the resource allocation problem with two types of good. There
exists only a single isntance of a high-value good (type A) and an unlimited number
of identical lower-value goods (type B). Each agent has use only for a single good, so
it is natural to assume that each agent prefers the good of type A, but he also prefers
to receive a good of type B, instead of nothing. Type B goods are in fact a useful
substitute for money, serving as a means of incentivizing truthful reporting of agents’
private values.

The expected utility of agent i is defined as ui(qi, pi) = qivi + pi, where vi is agent
i’s private utility for the type-A good, qi is the probability of obtaining the type-A
good and pi ∈ [0, 1 − qi] the probability of winning a type-B good. The mechanism
designer seeks to maximize the social welfare, i.e. the sum of agent utilities. There is
a trivial non-monetary mechanism wherein misreporting types can never manipulate
the mechanism. The mechanism randomly chooses an agent i, allocating to him the
type-A good, and giving to all others a type-B good.

Adapting the theorems proved in [20], Cavallo shows that for any i.i.d. value
distribution with monotonically increasing hazard rate, no dominant strategy incentive
compatible mechanism can do better than random allocation. Nevertheless, in other
cases such mechanisms can have more positive results. For example, we may consider
settings where a specific agent has a far higher value than all others for the type-A
good.
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Chapter 4

Money Burning Mechanism Design
for Facility Location

In this Chapter, we study a Facility Location setting from a mechanism design
perspective. A set of n agents are located in a metric space and k facilities must be
placed, but in addition to the Mechanism Design results for Facility Location that we
presented in Chapter 2, facilities offer a certain type of service and agents have private
splittable demands for this service. In contrast to the settings previously studied, in
our model agents’ locations are public knowledge and agents can misreport only their
demands.

To solve the problem, we introduce a novel approach that has not been used before
in Facility Location games. We combine the Money Burning main ideas with Facility
Location, in order to obtain truthful mechanisms that approximate the optimal social
cost. Adapting the VCG mechanism, we first design a VCG-like mechanism where
payments are in the form of additional individual cost. In the second section of this
chapter, we revisit Proportional Mechanism from a Money Burning perspective and
design a truthful mechanism. We present our results for the real line setting, as well
as general metric spaces.

4.1 Model and Definitions

Let N = {1, .., n} be a set of n strategic agents located in a metric space (X, d),
where d : X×X → R+ is a metric on X, namely a function that is non-negative, sym-
metric, and satisfies the triangle inequality. In our model the metric d(x, x′) represents

53
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the distance between the locations x ∈ X and x′ ∈ X.

Each agent i ∈ N has a location xi ∈ X, which is public information. There is
one type of service offered and each agent i has a demand wi ∈ [1,+∞) for it. Let
w = (w1, ..., wn) denote the input vector of agents’ demands. The demand wi is private,
which means that an agent may report a demand that is different from his true value
in order to manipulate the mechanism. However, he can only report a demand that is
at least equal to his real demand wj. This assumption is reasonable, since wi denotes
the precise quantity that each agent needs. If agent i reports wi ≥ wi, then the entire
demand wi must be served by the mechanism, but agent i does not use the excessive
quantity wi − wi that he gets.

The demand of agents has to be served by a set F = {F1, ..., Fk} of k facilities
and each facility can serve unlimited amount of demand. Let also di(x) denote the
distance between the location of agent i and location x. For a set of facilities C ⊆ F ,
we define di(C) as di(C) = inf{di(c) : c ∈ C}.

The demand wi that an agent i ∈ N has, can be split to different facilities. Let
w

(j)
i ≥ 0 denote the part of agent i’s total reported demand that is served by the facility

Fj; of course, the sum of them satisfies the condition
∑k

j=1w
(j)
i = wi. The locations of

the k facilities which serve each part w
(j)
i are decided by the mechanism.

Mechanism design. In the mechanisms that we study, the mechanism may determine
the order in which the facilities serve the demand of an agent i. For example, in a setting
with k ≥ 2 facilities, where half of agent’s i demand is served by facility F1 and the
other half by facility F2, such that di(F1) < di(F2), agent i is not allowed to consume
the service from F1 before consuming the complete service available to him from F2.

In the mechanisms described in this chapter, the demand wi of an agent i is
always split to at most 2 facilities F1 and F2, where di(F1) ≤ di(F2). The most distant

facility F2 serves agent i first, until all the demand w
(2)
i is served. To sum up, the

mechanism maps an input demand vector to a tuple S = (S1, ..., Sn), where Si =

((w
(i1)
i , Fi1), (w

(i2)
i , Fi2)) such that Fi1 , Fi2 ⊆ F , di(Fi1) ≤ di(Fi2) and w(i1) +w

(i2)
i = wi.

We write Mi(w) to denote Si.

Social Cost. Given a set of facilities F and an assignment S of demands w to the
facilities in F , the cost of agent i is defined as

costi[M(w)] = costi[Mi(w)] = min{w(i1)
i di(Fi1 ) + w

(i2)
i di(Fi2 ), w

(i2)
i di(Fi2 ) + max{wi − w

(i2)
i , 0}di(Fi1 ),

min{w(i2)
i , wi}di(Fi2 )}

The social cost of a mechanism M(w) is SC[M(w)] =
∑n

i=1 costi[M(w)].
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Truthfulness. A mechanism M is truthful if for every agent i costi[M(wi, w−i)] ≥
costi[M(wi, w−i)]. Similarly, a randomized mechanism M is truthful (in expectation)
if E[costi[M(wi, w−i)]] ≥ E[costi[M(wi, w−i)]] for every agent i.

Our goal is to design a truthful mechanism that picks the locations of the facilities
and determines the assignment of agents’ demands w

(j)
i , i ∈ N , j ∈ F to facilities,

while minimizing the social cost.

Approximation ratio. A mechanism M achieves an approximation ratio a if for all
input demand vectors w the social cost of M(w) is at most a times the optimal social
cost for w. For the randomized mechanism that we design, we will use the expected
social cost as a measure for the approximation ratio.

4.2 The Money Burning VCG Mechanism

Notation. For each agent i ∈ N we define an ordering Fi,1, Fi,2, ..., Fi,k of the k facilities
according to its increasing distance from each facility. Thus, the closest facility to agent
i is Fi,1 and the most distant facility is Fi,k. Let also opt(wj, w−j) (or opt) denote
the total cost of agents in the optimal solution, namely min{

∑n
i=1widi(Fi,1)}.

By excluding agent j, we have a set N \{j} of n−1 agents other than j. Similarly,
for each agent i we define an ordering F−ji,1 , F

−j
i,2 , ..., F

−j
i,k of the k facilities according to

its increasing distance from each facility. Let opt(w−j) (or opt−j) denote the total
cost in the optimal solution for agents N \ {j}, namely min{

∑
i 6=j widi(F

−j
i,1 )}.

Remark 4.2.1. The locations F 1, F 2, ..., Fm in the solution opt−j may not be unique;
for simplicity’s sake, in the proof of Lemma 4.2.3 and Theorem 4.2.5 opt−j denotes
the optimal solution min{

∑
i 6=j widi(F

−j
i,1 )}, such that for agent j the distance dj(F

−j
j,1 )

is the smallest possible.

The mechanism. In a general multi-parameter setting with a social welfare max-
imization objective, the main idea behind the VCG mechanism is that each agent i
pays his “externality”, i.e. the welfare loss the presence of agent i causes to the other
agents. In settings where monetary transfers are permitted, it is easy to interpret this
welfare loss as the price each agents pays for the good(s) he receives. Though in our
cost minimization setting money is not allowed, we can establish an analogy between
the classical VCG mechanism and our social cost burning VCG mechanism.

Remark 4.2.2. Regarding equation 4.2, we note that this is the total cost of an agent
that truthfully reports his demand, i.e. wj = wj. However, the real cost of a probably
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Input: agents’ reported demands w1, w2, ..., wn

Placement of Facilities: The facilities are placed at the locations that the optimal
solution indicates:

(F 1, F 2, ..., Fm) = arg min
x1,...,xk∈X

n∑
i=1

wi min{di(x1), di(x2), ..., di(xn)} (4.1)

Cost Computation: For each agent j, facility Fj,1 serves only w
(1)
j of his reported

demand wj. The facility Fj,k serves the rest w
(2)
j = wj −w(1)

j . From the perspective of
the mechanism designer, the total cost of agent j is equal to

costj(wj, w−j) = w
(1)
j dj(Fj,1)+w

(2)
j dj(Fj,k) = wjdj(Fj,1)+w

(2)
j [dj(Fj,k)−dj(Fj,1)] (4.2)

where w
(2)
j satisfies the following formula:

w
(2)
j [dj(Fj,k)− dj(Fj,1)] =

∑
i 6=j

widi(Fi,1)−
∑
i 6=j

widi(F
−j
i,1 ) (4.3)

Mechanism 4.1: The Money Burning VCG Mechanism

lying agent is equal to

{
wjdj(Fj,1) + w

(2)
j [dj(Fj,k)− dj(Fj,1)] if w

(2)
j ≤ wj

wjdj(Fj,k) if w
(2)
j > wj

(4.4)

Equation 4.2 implies that each agent j receives his cost in the opt solution plus an
additional cost introduced by the mechanism as a “payment”. The payment does not
involve any money; however, the quantity w

(2)
j [dj(Fj,m)− dj(Fj,1)] indeed corresponds

to a payment: a burnt payment in the form of service cost. Setting the “payment”
w

(2)
j [dj(Fj,m)− dj(Fj,1)] to be equal to

∑
i 6=j widi(Fi,1)−

∑
i 6=j widi(F

−j
i,1 ), the core idea

of the classical VCG mechanism is actually embodied in our social cost burning mech-
anism.

We next prove some simple properties of the Money Burning VCG (or MBurn-
ingVCG) Mechanism.
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Lemma 4.2.3. Let wj denote the demand that agent j submits to the mechanism and
wj ≤ wj his true, private demand. The following properties hold true:

(i) The total cost of agent j is at most equal to wjdj(F
−j
j,1 ), i.e.

wjdj(Fj,1) +
∑
i 6=j

widi(Fi,1)−
∑
i 6=j

widi(F
−j
i,1 ) ≤ wjdj(F

−j
j,1 )

The above inequality implies that dj(Fj,1) ≤ dj(F
−j
j,1 ) (see also Remark 4.2.1).

(ii) If agent j’s distance to the closest facility F−jj,1 in opt−j is at most equal to his
distance to the most distant facility Fj,k in every optimal solution opt, namely

dj(Fj,k) ≥ dj(F
−j
j,1 ) for each optimal solution opt, then w

(2)
j ≤ wj. In other

words, the mechanism is feasible.

(iii) If dj(Fj,k) ≥ dj(F
−j
j,1 ) for each optimal solution opt(wi, w−i), then the Money

Burning VCG Mechanism is truthful.

Proof. We prove each part separately:

F−jj,1

j

Fj,1

Fj,k

j

Figure 4.1: Optimal solution for N \ {j} (left) - Optimal solution for N (right)

(i) According to Remark 4.2.1, we have asummed that dj(F
−j
j,1 ) := minopt−j{dj(F−jj,1 )}.

Suppose now for the sake of contradiction that there exists an optimal solution
opt′ such that

wjdj(F
opt′

j,1 ) +
∑
i 6=j

widi(F
opt′

i,1 )−
∑
i 6=j

widi(F
−j
i,1 ) > wjdj(F

−j
j,1 )

Consequently, wjdj(F
opt′
j,1 ) +

∑
i 6=j widi(F

opt′
i,1 ) >

∑
i 6=j widi(F

−j
i,1 ) + wjdj(F

−j
j,1 ),

thus the solution opt−j has a total social cost that is lower than the optimal cost
opt′. This contradicts the optimality of OPT ′, therefore the proof is complete.
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(ii) For the nontrivial case where dj(Fj,k) > dj(F
−j
j,1 ), Lemma 4.2.3 (i) imply that∑

i 6=j

widi(Fi,1)−
∑
i 6=j

widi(F
−j
i,1 ) ≤ wjdj(F

−j
j,1 )− wjdj(Fj,1)

We apply equations 4.2 and 4.3 and obtain that

w
(2)
j =

∑
i 6=j widi(Fi,1)−

∑
i 6=j widi(F

−j
i,1 )

dj(F
−j
j,k )− dj(Fj,1)

≤
wjdj(F

−j
j,1 )− wjdj(Fj,1)

dj(F
−j
j,k )− dj(Fj,1)

= wj

(iii) Let j be an agent that reports a demand wj other than his true demand wj,
wj < wj. The real cost of agent j is equal to

costj(wj, w−j) =

{
wjdj(Fj,1) + w

(2)
j [dj(Fj,k)− dj(Fj,1)] if w

(2)
j ≤ wj

wjdj(Fj,k) if w
(2)
j > wj

(4.5)

where w
(2)
j [dj(Fj,k)− dj(Fj,1)] =

∑
i 6=j widi(Fi,1)−

∑
i 6=j widi(F

−j
i,1 ).

We consider two cases.

- If w
(2)
j > wj, then it holds that

costj(wj, w−j) = wjdj(Fj,k) ≥ wjdj(F
−j
j,1 ) ≥ wjdj(F

−j
j,1 ) ≥ costj(wj, w−j)

where the last inequality follows from Lemma 4.2.3 (i).

- If w
(2)
j ≤ wj, then

costj(wj, w−j) = wjdj(Fj,1) +
∑
i 6=j

widi(Fi,1)−
∑
i 6=j

widi(F
−j
i,1 )

The term
∑

i 6=j widi(F
−j
i,1 ) is independent of wj, therefore the problem of mini-

mizing costj(wj, w−j) reduces to the problem of minimizing the term wjdj(Fj,1)+∑
i 6=j widi(Fi,1). Submitting the true demand wj results in the mechanism choos-

ing an outcome that minimizes agent j’s cost; wj is the demand that achieves the
optimal sum min{wjdj(Fj,1)+

∑
i 6=j widi(Fi,1)}, therefore agent j has no incentive

to lie. This completes the proof.

Theorem 4.2.4. The social cost of Money Burning VCG Mechanism is at most n
times the optimal solution.
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Proof. The proof follows immediately from the formula of agent j’s total cost

wjdj(Fj,1) +
∑
i 6=j

widi(Fi,1)−
∑
i 6=j

widi(F
−j
i,1 )

Summing over all the agents in N , we get that the social cost of the mechanism
M is SC(M(w)) = nopt(w)−

∑
i opt

−i(w−i).

If we consider k = n−1, then opt−i(w−i) = 0 for each i. Consequently, the social
cost is n times the optimal.

From Lemma 4.2.3, we have that a sufficient condition for the truthfulness of MBurn-
ingVCG is dj(Fj,k) ≥ dj(F

−j
j,1 ) for each optimal solution opt(wi, w−i). In the next sec-

tion, we apply MBurningVCG to a metric line setting and prove that the mechanism
is truthful.

4.2.1 The Money Burning VCG Mechanism on the line

In this section, we will restrict our attention to a simpler setting. When the metric
space is the line, we prove that MBurningVCG is truthful. We note that the metric
function d(x, y), d : R×R→ R+ is a non-negative and non-decreasing function of the
distance |x− y| of two points x and y on the line.

Theorem 4.2.5. The Money Burning VCG Mechanism is truthful on the line.

Proof. Due to Lemma 4.2.3, it suffices to show that dj(Fj,m) ≥ dj(F
−j
j,1 ) for every

optimal solution opt.

The proof is by case analysis.

1. The optimal solution opt−j has placed all the facilities F−jj,1 , F
−j
j,2 , ..., F

−j
j,k on the

right side - or without loss of generality on the left side - of the location xj of
agent j.

For each facility F we use two additional definitions. Let Aright(F ) ⊆ N denote
the set of agents that their nearest facility is F and their location is on the right
side of F . Similarly, let Aleft(F ) ⊆ N denote the set of agents that their nearest
facility is F and their location is on the left side of F . The quantity cmin is
defined as cmin = minopt−j{dopt

−j
j (F−jj,1 )} (see also Remark 4.2.1).
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Suppose that it is possible that the facilities Fj,1, Fj,2, ..., Fj,k of the optimal so-
lution opt are located within a distance dj(Fj,i) < cmin, ∀i ∈ [k].

j F−jj,1 F−jj,2 F−jj,k
opt−j

cmincmin

j Fr
opt

cmincmin

Figure 4.2: Case 1: All facilities F−jj,1 , F
−j
j,2 , ..., F

−j
j,k are on the right side of agent j

We focus on the rightmost facility Fr. (We note that Fr is not necessarily the
most distant facility Fj,k.)

If j does not connect to Fr then we have the following relations

Aopt−j

right (F−jj,1 ) ⊆ Aopt
right(Fr)

Aopt−j

left (F−jj,1 ) ⊇ Aopt
left(Fr)

From the preceding relations, it can be easily seen that the optimal location of
Fr can not be closer to agent j than F−jj,1 is. Suppose not. Let Aopt−j

right (F−jj,1 ) ≡
Aopt
right(Fr) and Aopt−j

left (F−jj,1 ) ≡ Aopt
left(Fr). Then placing Fr on the left side of F−jj,1

is not optimal, due to Remark 4.2.1. A careful examination shows that the same
holds for the other cases.

If j connects to Fr, then either j ∈ Aopt
left(Fr) or j ∈ Aopt

right(Fr). In the latter case,

it still holds that Aopt−j

right (F−jj,1 ) ⊆ Aopt
right(Fr), so the proof is similar to the previous

one.

In the former case (j ∈ Aopt
left(Fr)), we prove by contradiction that Fr can not be

the rightmost facility. Indeed, due to the fact that there are k ≥ 2 facilities and
Fr is the rightmost facility, the rest k − 1 facilities must be on the left side of
agent j. These k − 1 facilities form a set F ′.
We define the sets of agents Sr = Aopt

right(Fr) \ (Aopt
right(Fr) ∩ Aopt

right(Fr)) and Sl =
∪F∈F ′(Aopt

right(F ) ∪ Aopt
right(F )). We have that

∑
i∈Sr di(Fr) >

∑
i∈Sr di(F

−j
j,1 ) and

∑
i∈Sl di(F

′) <
∑

i∈Sl di(F
−j
j−1)

Due to the optimality of the solution opt−j,
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∑
i∈Sr

di(Fr)−
∑
i∈Sr

di(F
−j
j,1 ) >

∑
i∈Sl

di(F
−j
j−1)−

∑
i∈Sl

di(F ′)

or equivalently,∑
i∈Sr

di(Fr) +
∑
i∈Sl

di(F ′) >
∑
i∈Sr

di(F
−j
j,1 ) +

∑
i∈Sl

di(F
−j
j−1)

Consequently, placing at least one of the facilities in F ′ to the location where
facility F−jj,1 was, leads to a better solution. Thus, Fr can not be the rightmost
facility in an optimal solution opt.

Therefore, dj(Fj,k) ≥ dj(F
−j
j,1 ) ≥ cmin.

2. The optimal solution opt−j has placed the facilities F−jj,1 , F
−j
j,2 , ..., F

−j
j,k both on

the right and left side of the location xj of agent j.

In the optimal solution opt, let Fr and Fl be the rightmost and leftmost facilities,
respectively. We assume that dj(Fl) < cmin and dj(Fr) < cmin.

We consider two subcases.

(2a) Let Fr 6= Fj,1 and Fl 6= Fj,1 (in this case there must be k ≥ 3 facilities).
This means that agent j does not connect to either Fr or Fl. In the optimal
solution opt−j, let also F−jj,1,left denote the closest facility to agent j on
his left side. In other words, the definition does not necessarily imply that
F−jj,1,left ≡ F−jj,1 . However, there is no other facility that is located on the left

side of agent j and it is closer to j than the facility F−jj,1,left is. In the optimal

solution opt−j, let also F−jj,1,right denote his closest facility on his right side.

It is either F−jj,1,left ≡ F−jj,1 or F−jj,1,right ≡ F−jj,1 , but we assume without loss of

generality that F−jj,1,right ≡ F−jj,1 .

We have again that

Aopt−j

right (F−jj,1 ) ⊆ Aopt
right(Fr)

� If Aopt−j

left (F−jj,1 ) ⊇ Aopt
left(Fr), then the proof is similar to the first part of

Case 1.

� If Aopt−j

left (F−jj,1 ) ! Aopt
left(Fr), then a set S of agents, which in opt−j

do not connect to F−jj,1 , connect to Fr in the optimal solution opt.

Consequently, the agents in S must connect to F−jj,1,left in the opt−j

solution. Formally, for each agent i ∈ S we have that di(Fr) ≤ dj(Fl) ≤
di(F

−j
j,1,left) ≤ di(F

−j
j,1 ).
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The assumptions Fr 6= Fj,1 and Fl 6= Fj,1 imply that Aopt−j

right (F−jj,1,left) ⊇
Aopt
right(Fl). Moreover, Aopt−j

left (F−jj,1,left) ⊆ Aopt
left(Fl).

This is symmetrical to case 1, therefore using a similar approach we get
that dj(Fj,k) ≥ dj(Fl) ≥ cmin.

jF−jj,1,left F−jj,1
opt−j

cmincmin

S

jFl Fr
optopt

cmincmin

S

Figure 4.3: Case 2a: Agent j does not connect to either Fr or Fl

(2b) Suppose without loss of generality that Fl ≡ Fj,1.

We have that Aopt−j

right (F−jj,1,right) ⊆ Aopt
right(Fr).

� If Aopt−j

left (F−jj,1,right) ⊇ Aopt
left(Fr), then the proof is similar to the first part

of Case 1.

� If Aopt−j

left (F−jj,1,right) ! Aopt
left(Fr), then there exists a set S of agents such

that
di(Fr) ≤ di(Fj,1) < di(F

−j
j,1,left) ≤ di(F

−j
j,1,right) (4.6)

for each agent i ∈ S.

jF−jj,1,left F−jj,1,right
opt−j

cmincmin

S

A

jFj,1 Fr
opt

cmincmin A

S

Figure 4.4: Case 2b: Agent j connects to Fl ≡ Fj,1

Let A be the set of agents that connect to F−jj,1,right, i.e.

A = Aopt−j

right (F−jj,1,right) ∪ A
opt−j

left (F−jj,1,right)

For the total cost of agents in A∪ S (where j /∈ (A∪ S)) we have that

∑
i∈A

di(F
−j
j,1,right) +

∑
i∈S

di(F
−j
j,1,right) ≥

∑
i∈A

di(Fr) +
∑
i∈S

di(Fr) (4.7)
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because of the optimality of opt.
In the optimal solution opt−j, if we replace the facility F−jj,1,right with

Fr, we create a solution that it is equal or better than opt−j, but
dj(Fr) < cmin. Equation 4.7 contradicts our assumption in Remark
4.2.1 and this completes the proof.

4.2.2 Applying the Money Burning VCG Mechanism to gen-
eral metric spaces

Although the Money Burning VCG Mechanism works on the line, it does not work
for all metric spaces. The following example illustrates a case, in which the mechanism
is not truthful.
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(a) The metric graph G
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(b) Agent 1 reports w1 = 1
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(c) Agent 1 reports w1 = 1000

Figure 4.5: Applying the Money Burning VCG Mechanism to metric graph G

Example 4.2.6. Let G be a metric graph. The locations of the 4 agents are x1, x2,
x3 and x4. We define the metric d as follows: d(x1, x2) = d(x1, x3) = d(x2, x3) = 1000
and d(x1, x4) = d(x2, x4) = d(x3, x4) = 500. We want to locate 2 facilities.

The true demands of agents are w1 = 1, w2 = 10, w3 = 10 and w4 = 1. If all agents
report their true demands, then the optimal solution opt places the two facilities at x2
and x3 and we have opt = 1 ·1000+10 ·0+10 ·0+1 ·500 = 1500. The optimal solution
opt−1 places again the two facilities at x2 and x3. The optimal cost (for agents 2, 3
and 4) is opt−1 = 10 · 0 + 10 · 0 + 1 · 500 = 500. In this case, the social cost of agent 1
is cost1(1, 10, 10, 1) = 1000.

Next, we assume that agent 1 reports a demand w1 = 1000 instead of w1 = 1.
The optimal solution opt places the two facilities at x1 and x4 and we have opt =
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1000 · 0 + 10 · 500 + 10 · 500 + 1 · 0 = 10000. The optimal cost (for agents 2, 3 and 4)
is again opt−1 = 500. The “payment” of agent 1 is equal to 10000− 500 = 9500, but
his total social cost is cost1(1000, 10, 10, 1) = w1 · d(x1, x4) = 150, because w1 < w

(2)
1 .

Consequently, we have cost1(1000, 10, 10, 1) < cost1(1, 10, 10, 1), thus agent 1 has the
incentive to lie. This implies that the mechanism is not truthful in this setting.

4.3 Money Burning Proportional Mechanism

In this section, we follow a different approach to design a truthful mechanism
for general metric spaces. We return to the basic idea of the randomized mechanism
called Proportional Mechanism which was presented in Chapter 2. In brief, the Money
Burning Proportional Mechanism or MBurningPropMech allocates the k facilities
to k different agents and as in the Proportional Mechanism, the j-th facility is placed at
agent i’s location with probability proportional to the current cost of agent i. However,
we also introduce a money burning payment scheme; except for the first round of
the mechanism, every agent that gets a facility in rounds 2 to k pays an additional
individual cost. The details of the mechanism can be found in Mechanism 4.2.

4.3.1 Payments and truthfulness

The question naturally arises why the already known Proportional Mechanism
is truthful or not. The following examples provide intuition as to why payments
in the form of additional individual cost are necessary in order to design a truthful
proportional-like mechanism.

1
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2
10

1000 1000

200

3
5

Figure 4.6: Remark 4.3.1: The Proportional Mechanism is not truthful

Remark 4.3.1. (Proportional Mechanism is not truthful without payments.) While
the (winner-imposing) Proportional Mechanism achieves truthfulness in the classic



4.3. Money Burning Proportional Mechanism 65

setting of k-Facility Location without resorting to payments, this is not true for our
setting.

A counterexample for 3 agents and 2 facilities is the following (see also Figure 4.6).
All agents that get a facility pay nothing, thus if agent 1 reports his demand truthfully,
then agent 1’s expected total cost is 1

4
·0+ 1

4
·[1

3
·0+ 2

3
·(5·200)]+ 2

4
·[1

6
·0+ 5

6
·(5·200)] = 1750

3
.

However, if agent 1 reports w1 = 10 > w1, then agent 1’s expected total cost is
2
5
· 0 + 1

5
[1
2
· 0 + 1

2
· (5 · 200)] + 2

5
· [2

7
· 0 + 5

7
· (5 · 200)] = 2700

7
< 1750

3
. This means that

agent 1 has the incentive to lie.

Remark 4.3.2. (Proportional Mechanism with payments only at Round 1 is not truth-
ful.) An other observation is that even a relatively high payment in the first round
of the mechanism does not guarantee truthfulness. Here, we consider a version of the
Proportional Mechanism, where there is a payment only for the agent that gets the
(second) facility at Round 2. The payment is equal to the best current cost of this
agent.

We provide a counterexample with k = 3 facilities and n = 4 agents (see Figure
4.7) to show that such a mechanism is not truthful. Indeed, if agent 4 reports a
demand w4 = 100 instead of w4 = 1, then we can easily see that his expected cost
decreases. Though the possible payment at Round 2 was really high, in expectation
agent 4 will benefit from lying. In fact, due to the fact that all distances are equal to
1, the agent can manipulate the mechanism by misreporting a higher demand. Thus,
the probability that he gets a facility is directly proportional to his reported demand.
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1
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Figure 4.7: Remark 4.3.2: The Proportional Mechanism with payments only at Round 2 is
not truthful

It becomes clear that Proportional Mechanism without payments is not truthful
and that (non-monetary) payments are needed for more than one rounds. In the
next section, we present our randomized money burning proportional-like mechanism
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MBurningPropMech with payments at all rounds 2 to k; an interesting question is
whether payments are necessary for every round r > 1.

4.3.2 The Mechanism

Let wj and wj denote the true and the reported demand of an agent j, respectively.
The mechanism takes as input only the demands w1, ..., wn reported by the n agents,
given that their locations x1, ..., xn are public knowledge. The mechanism works in
k + 1 rounds and at each round r = 1, ..., k selects the location of the next facility
among the locations x1, ..., xn of the agents. The mechanism also decides the single
facility or the two facilities that each agent has to connect to. At round k + 1 the
remaining n − k agents, i.e. agents that have not been selected by the mechanism
during rounds 1 to k, connect to the facility that it is closest to their location.

For each round r = 1, ..., k, we define the set Cr of locations of the r facilities
placed in round 1 to r, as well as the set Ar of agents that have not been connected
to any facility yet. We set C0 = ∅ and A0 ≡ A. The mechanism is given on the next
page.

Theorem 4.3.3. MBurningPropMech is truthful.

Proof. For each round r = 1, .., k, let costj[wj|Cr−1] be the expected total cost of agent
j ∈ Ar−1 with reported demand wj, given that the mechanism has already placed the
first r − 1 facilities. Thus, the ex-ante total cost of an agent who participates in the
mechanism is costj[wj] = costj[wj|C0]. We also assume that wj ≤ wj, where wj is
agent j’s true demand.

At round r, agent j ∈ Ar−1 is selected with probability
wjdj(Cr−1)∑

i∈Ar−1
widi(Cr−1)

and its

final cost is equal to min(awj, wj)dj(Cr−1). If, instead of agent j, a different agent
i ∈ Ar−1, i 6= j is chosen, then the expected cost of agent j is costj[wj|Cr−1∪{xi}]. To
sum up, we get the following formula:

costj [wj |Cr−1] =

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}] + min{wj , awj}dj(Cr−1)wjdj(Cr−1)∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)
(4.9)

We will show that costj[wj|C0] ≥ costj[wj|C0], i.e. the mechanism is truthful.
First, we prove, by induction on r, that costj[wj|Cr−1] ≥ costj[wj|Cr−1] for every
r = 2, ..., k, wj, wj s.t. wj ≥ wj. For the next part of the proof, we rest on the
induction hypothesis that costj[wj|Cr] ≥ costj[wj|Cr].
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Round 1: One location xj1 out of x1, ..., xn is chosen uniformly at random. The first
facility is placed at xj1 and agent j1 connects to this facility. The cost of agent j1 is
zero. We set C1 = {xj1} and A1 = A0 \ {j1}.

Round r = 2, 3, ..., k: The location xjr of the r-th facility is selected with probability

equal to
wjrdjr (Cr−1)∑
j∈Ar wjdj(Cr−1)

. The facility at xjr serves only max(wjr −awjr , 0) of agent jr’s

actual demand wjr , where

a =

∑
i∈Ar−1,i 6=j widi(Cr−1) min{dj(Cr−1), dj(xi))}

dj(Cr−1)(2
∑

i∈Ar−1,i 6=j widi(Cr−1) + dj(Cr−1))
(4.8)

The facility in Cr−1 that it is closest to xjr , serves the rest min(awjr , wjr) of agent
jr’s demand wjr . The total cost of agent jr is min(awjr , wjr)djr(Cr−1). We also set
Cr = Cr−1 ∪ {xjr} and Ar = Ar−1 \ {jr}.

Round k+1: Finally, the set of the facilities is Ck. The demand of every agent i ∈ Ak
is served by the facility in Ck that is closest to this agent i.

Mechanism 4.2: The Money Burning Proportional Mechanism

Let ε > 0 be a small constant, s.t. w′j = wj + ε.

dcostj[wj|Cr−1]
dwj

= lim
ε→0

costj[wj + ε|Cr−1]− costj[wj|Cr−1]
ε

(4.10)

where
costj [wj+ε|Cr−1]−costj [wj |Cr−1]

ε
is equal to

A(ε) =
1

ε(
∑
i∈Ar−1,i 6=j widi(Cr−1) + (wj + ε)dj(Cr−1))(

∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))

·

[
(

∑
i∈Ar−1,i6=j

widi(Cr−1) + wjdj(Cr−1))
∑

i∈Ar−1,i 6=j
widi(Cr−1)wjcostj [wj + ε|Cr−1 ∪ {xi}]

+(
∑

i∈Ar−1,i 6=j
widi(Cr−1) + wjdj(Cr−1))a(wj + ε)dj(Cr−1)(wj + ε)dj(Cr−1)

(
∑

i∈Ar−1,i 6=j
widi(Cr−1) + (wj + ε)dj(Cr−1))

∑
i∈Ar−1,i 6=j

widi(Cr−1)wjcostj [wj |Cr−1 ∪ {xi}]
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−(
∑

i∈Ar−1,i 6=j
widi(Cr−1) + (wj + ε)dj(Cr−1))awjdj(Cr−1)wjdj(Cr−1)

]

As ε approaches 0, the limit of the function is

lim
ε→0

A(ε) = lim
ε→0

∑
i∈Ar−1,i 6=j widi(Cr−1)[

costj [wj+ε|Cr−1∪{xi}]−costj [wj |Cr−1∪{xi}]
ε ]∑

i∈Ar−1,i 6=j widi(Cr−1) + (wj + ε)dj(Cr−1)

+ lim
ε→0

ad2j (Cr−1)w
2
j ε+ 2ad2j (Cr−1)wj∑

i∈Ar−1,i 6=j widi(Cr−1) + (wj + ε)dj(Cr−1)

− lim
ε→0

dj(Cr−1)(aw
2
jd

2
j (Cr−1) +

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}])

ε(
∑

i∈Ar−1,i 6=j widi(Cr−1) + (wj + ε)dj(Cr−1))(
∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))
=

=

∑
i∈Ar−1,i 6=j widi(Cr−1)

dcostj [w|Cr−1∪{xi}]
dw

∣∣∣
w=wj∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)
+

2ad2j (Cr−1)wj∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)

−
dj(Cr−1)(aw

2
jd

2
j (Cr−1) +

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}])

(
∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))2

We require the function
dcostj [wj |Cr−1]

dwj
= limε→0A(ε) to be positive (or at least zero)

for every wj. By the induction hypothesis it holds that
dcostj [w|Cr−1∪{xi}]

dwj

∣∣∣
w=wj

for every

i ∈ Ar−1, hence it suffices to solve the following inequality for a:

2ad2j (Cr−1)wj∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)

−
dj(Cr−1)(aw2

jd
2
j (Cr−1) +

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}])

(
∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))2

≥ 0

We obtain that

a ≥
∑

i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}]
wjdj(Cr−1)(2

∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))

(4.11)

Using the inequality wj min{dj(Cr−1), dj(xi))} ≥ costj[wj|Cr−1 ∪ {xi}], a should
suffice to be equal to:

a =

∑
i∈Ar−1,i 6=j widi(Cr−1) min{dj(Cr−1), dj(xi))}

dj(Cr−1)(2
∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))
(4.12)
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The parameter a should not depend on demand wj, therefore we set a to be equal
to

a =

∑
i∈Ar−1,i 6=j widi(Cr−1) min{dj(Cr−1), dj(xi))}

dj(Cr−1)(2
∑

i∈Ar−1,i 6=j widi(Cr−1) + dj(Cr−1))
(4.13)

Up to this point, we have proved that costj[wj|Cr−1] ≥ costj[wj|Cr−1] for every
round r = 2, .., k, when min{awj, wj} = awj. We now consider the case min{awj, wj} =
wj. We need to study the monotonicity of the function

f(wj) =

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}] + wjdj(Cr−1)wjdj(Cr−1)∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)
(4.14)

The derivative of f is

df(wj)

dwj
=

(
∑
i∈Ar−1,i 6=j widi(Cr−1)

dcostj [wj |Cr−1∪{xi}]
dwj

+ wjd
2
j (Cr−1))(

∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))

(
∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))2

−
dj(Cr−1)(

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}] + wjwjd

2
j (Cr−1))

(
∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))2

=

=

∑
i∈Ar−1,i 6=j widi(Cr−1)

dcostj [wj |Cr−1∪{xi}]
dwj∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)
+

wjd
2
j (Cr−1)

∑
i∈Ar−1,i6=j widi(Cr−1)− dj(Cr−1)

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}]

(
∑
i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1))2

and by applying the induction hypothesis, as well as the inequality

wjdj(Cr−1) ≥ costj[wj|Cr−1 ∪ {xi}],

we obtain that
df(wj)

dwj
≥ 0.

Consequently, if wj ≥ wj, then

costj[wj|Cr−1] = f(wj) ≥ f(wj) =

=

∑
i∈Ar−1,i 6=j widi(Cr−1)costj [wj |Cr−1 ∪ {xi}] + awjdj(Cr−1)wjdj(Cr−1)∑

i∈Ar−1,i 6=j widi(Cr−1) + wjdj(Cr−1)

≥ costj[wj|Cr−1]
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In conclusion, so far we have showed that costj[wj|Cr−1] ≥ costj[wj|Cr−1] for
rounds r = 2, ..., k. To prove the truthfulness of the mechanism, we need to show that
costj[wj] ≥ costj[wj]. It is easy to see that for r = 1

costj [wj ] = costj [wj |C0] =
1

n

∑
i 6=j

costj [wj |C0 ∪ {xi}]

≥ 1

n

∑
i 6=j

costj [wj |C0 ∪ {xi}] = costj [wj |C0] = costj [wj ] (4.15)

The basis case is for r = k, thus we need to prove that costj[wj|Ck−1] ≥ costj[wj|Ck−1].
We have the following equations:

costj [wj |Ck−1] =

∑
i∈Ak−1,i 6=j widi(Ck−1)wj min{dj(xi), dj(Ck−1)}+min{wj , awj}dj(Ck−1)wjdj(Ck−1)∑

i∈Ak−1,i 6=j widi(Ck−1) + wjdj(Ck−1)

costj [wj |Ck−1] =

∑
i∈Ak−1,i6=j widi(Ck−1)wj min{dj(xi), dj(Ck−1)}+ awjdj(Ck−1)wjdj(Ck−1)∑

i∈Ak−1,i 6=j widi(Ck−1) + wjdj(Ck−1)

First, we consider the case where min{wj, awj} = wj and focus on the monotonic-
ity of the function f(wj) = costj[wj|Ck−1]. The derivative of f is

df(wj)

dwj
= dj(Ck−1)

wjdj(Ck−1)(
∑
i∈Ak−1,i 6=j widi(Ck−1))−

∑
i∈Ak−1,i 6=j widi(Ck−1)wj min{dj(xi), dj(Ck−1)}

(
∑
i∈Ak−1,i 6=j widi(Ck−1) + wjdj(Ck−1))2

and
df(wj)

dwj
≥ 0, because dj(Ck−1) ≥ min{dj(xi), dj(Ck−1)}.

Consequently, we obtain that

costj [wj |Ck−1] ≥

∑
i∈Ak−1,i6=j widi(Ck−1)wj min{dj(xi), dj(Ck−1)}+ wjdj(Ck−1)wjdj(Ck−1)∑

i∈Ak−1,i 6=j widi(Ck−1) + wjdj(Ck−1)
≥ costj [wj |Ck−1]

Next, we assume that min{wj, awj} = awj. Using a technique similar to the
general case, we get that a given by 4.8 will satisfy the inequality costj[wj|Ck−1] ≥
costj[wj|Ck−1].

The theorem below shows that the mechanism is feasible, as well as that an agent
does not need to pay more than 1/2 of his current cost at the round that he gets a
facility.

Theorem 4.3.4. The mechanism is feasible, i.e. it holds that a ≤ 1/2 < 1.

Proof. The property follows immediately from the inequality

dj(Cr−1) ≥ min{dj(Cr−1), dj(xi)}
for every i ∈ Ar−1.
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4.4 Conclusion and future work

Summary of results. In this Chapter, we studied a Facility Location problem where
n agents with private splittable demands are located in a metric space and k facilities
that serve a specific type of service must be placed. We combined a money burning
technique with well-known results in the field of Mechanism Design in order to design
truthful approximate mechanisms for this Facility Location problem.

On our first attempt, we used the VCG mechanism as a basis for designing a
VCG-like mechanism (MBurningVCG) that enforces non-monetary payments. We
provided a sufficient condition for the truthfulness of MBurningVCG and proved
that MBurningVCG is a truthful n-approximate mechanism on the line.

In addition, based on the Proportional Mechanism without money, we designed
a truthful Money Burning Proportional Mechanism (MBurningPropMech) which
works in k rounds and uses a money burning technique. The main idea is that the r-th
facility is placed at agent i’s location with probability proportional to the current best
cost of agent i. If agent i gets a facility in rounds r = 2 to k, then MBurningProp-
Mech requires agent i to serve part of his reported demand at a non-zero total cost,
while the rest of agent i’s demand is served at zero cost.

Directions for future research. Current work includes modifying MBurning-
PropMech in order to get a good, bounded approximation ratio; payments should
remain as small as possible. One other direction could be studying settings where
agents’ locations are private, so each agent can lie about his true demand, his true
location or both. Furthermore, an extension to our Facility Location could include
different types of services. In such a heterogeneous model, each facility will serve a
different subset of services and each agent will have a demand for some of the service
types offered.
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