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>0vtoun Iepiindmn

Y10 TP®TO UEPOg aUTAC TNG Epyaoiog, oyedldloupe Tov ahyoprduo yior TV avdhucT xou To-
&wvovnon tou ofjpatoc HKTY, o nepiBddirov MATLAB. H Bdorn 6edoyéviv mou €yet emheyel
o¢ Tyt yioo HKT' etvon  MIT-BIH Arrhythmia Database. H Sour| tou ahyoplduou amote-
Aefton amd Tor axdhoudor oTABL: PLATEAOIOUA, VI VEUCT) TUAUWY, XUTOUXEPUAUTIONS GE ToAU0oUS,
eCoywyn yapoxtnelo Tixwy, tadwvounon. H eloodog etvor éva ofua HKI, guitpdpeton, evronilo-
vTon ot xapdtoxol mahpol mou mepthoufdvovtal o auTo, To ofud YwEIlETHL O UEUOVWUEVOUS
ToAL00C, EEGYOVTOL ToL YoPUXTNEIO TG Yvwpelouata yio xdde ToAud, xou 1 €€060¢ TOU TEAXOU
otadiou ebvon 1) xatdTaln yio xdie nahud ¢ 'Normal’ 1) ’Abnormal’. T v vAomoinom auvtov
v otadiwy, yenoworowiviow MATLAB built-in cuvaptioeic, n Bihodvxn LIBSVM yia
Tov Todtvounth SVM mou yenowonoteiton, xadade eniong xat cuVOETHOEIS TOU TUREYOVTOL Umd
™ Bdon dedopévewy oto WEDB Matlab toolkit. To otddio tng tadvounong amoteAeiton and
évay tagvounty SVM, wioa pédodo emonteuduevng unyovixic uddnone. Xenoulonololue apyela
oyohopol mou mepthopfdvovton otr Bdor dedouévwy, ta ool TepLAaUPdvouy Bidyvwor yia
x&de moahud mou mepiéyeton oe éva apyeto HKI, mou €yel npaypatomoinel and yuatpols. To
TEOPBANUO TOL EVTOTIG TNXE OE ALT6 TO OMUEiD TN AVIAUCTS, Elvon OTL UTdEYEL Lol avavTLo ToLy o
TWV XUEOLAXWY TUAUMY TTOU 0VLY VEVOVTOL OE Lo NYOYEAPNOT) ATtd TG CUVIRTACELS TTOU TOREYO-
VIO 0TV €QYUAEIOV XY, HE TOUS Loty VWOUEVOUS TahoUg amd Toug yiatpols. Autd cupfaivel
ETELDT OL OVLY VEUTEC TUAUMY ABUVATOLY Vo EVTIOTIGOUY GAOUS TOUG TUALOUS %o UEPIXES havio-
OUEVES avLy VELTELS AofBdvouy emtiong pépoc. To mpdBAnua autéd LeMEpdoTNXE UE TN SLORPKOT
HLoG OLodXaalog TOL UG ETUTEETEL VO AVTLO TOLYICOUUE TOUS GWOTA OVLY VEUUEVOUS TOAUOUS UE
TIC AvTIOTOLYEC DLy VOELS 0T OEYEL OYOMACUMY. 2TN CUVEYELXL, UTOPOUUE VoL EXTEAECOUUE
wor eEEpENVNOT GTO YWEO OYEDIACHOV YLOL TOL BLUPORETIXG. YORUXTNEIO TG YVWEIoUTO TOU €-
EdyovTon amd TO GHUN 0TO OTAdI0 NG eCaYWYNE YopeaxTnelo Tixwy. Xenotwonotolue Discrete
Wavelet Transform w¢ uédodo elaywyhic yopuxtneiotixmy. To yapaxtnelotind autd yenot-
ueoLY ¢ elcodog yia To oTdd NS TaEvounone. Ot UETEES TTOU YPNOYOTOLOUVTOL Yol Vo
emAECEL 0 OyedloTAC To xoAUTEpo design elvan 1 axpifela xou 1 uTOAOYIO TG *OGTOG TOU
oTtadlou Tagvounorng.

2170 0e0TEPO YEPOS TNE AVIAUOTS, TEOTEVOUUE TNV TEoc¥1xT EVOS ETTAEOV GTABIOU GTNY OAYO-
evdur| dopn. Autd To oTddlo lvon ToTOVETNUEVO axEBOC TPV TO TEAXS GTABIO TNG TaVOUTN-
one, xou amotehetton and €va tadvountr SVM mou Yo haufdver ¢ elcodo tar yapaxTnelo Tixd
Yvwpelopota Tou e€4yovTol XoTd TO TEONYOUUEVO OTABI0 xou Yo ToEVOUEL TOUC EVTOTLOUEVOUC
TohpoUg w¢ aknelc 1 deudelc aviyvedoeg. Kdde ahntvr aviyveuon do cuveyloer péypel 1o
TEMXO OTdd0, vy xdde Peudric aviyvevon Vo meénel va anoppinteton. Mo e€epedivnon oo
Y @0 oYEBUOUOU YIVETUL OUOlwE OTWS EYVE GTNY oY LXr) douT).

Y10 TeheuTaio pépog TG avduong, N dpy x| dAYOoRLIUIXY| POT| UAOTOLELTOL OTNV EVOOUATWUEVT
mhot@opua Galileo tng Intel. T var yiver awto, o oyopripog yetatpéneton oe C xdouxa. XNty
TEMXY| TOU Uop®t|, To TEOYpauUa SaBdlel delypo-Oetypa éva gngromoinuévn ota 360 detyuarta
avd deutepoiento orjuo HKTY, xon 1 pory avdiuon extedelton yioo xde obvoro 3000 deryudtov
mou SwfBdleton. O 10 xohOTEpES OYEBLOTIXES EMAOYES, oL 10 Mo amauTnTiXéC OE UTONOYICTIXG
%6070¢, xS xon 11 evdidueoeg emAoYEg, OTKE TEOExUaY antd TNV eLEQENVNOT TOU YMEOU
oyedlool 6To TEWTo PEPog TNE cpyactac, uhomo|inxay oto Galileo. Ou axpifeiec mou e-
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TTE0Y VMUY HTOV TEVE OO IXOVOTOLNTIXES XAl TO UTOAOYLO TG x60TOC YTy TETOW, (OTE N
avéivon HKI' xou ta€ivounon va unopet va extereclel oe mporypotind ypeovo.

AéZeic xAewdid: Avihuon ECG, Tolvounon xopdlaxold toiuol, Support-Vector-Machine
(SVM), Discrete-Wavelet-Transform (DWT), Internet-of-Things (IoT), Evowpatwuévo ou-
O THUTA
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Abstract

In the first part of this work, we design the algorithm for ECG signal analysis and classi-
fication and implement it in Matab environment. The database chosen as source for ECG
recordings is the MIT-BIH Arrhythmia database, provided by PhysioNet. The structure
of the algorithm consists of the following stages: filtering, heartbeat detection, heartbeat
segmentation, feature extraction, classification. The input is an ECG signal, it is filtered,
the heartbeats included in it are detected, the signal is segmented into beats, features are
extracted from each beat, and the output of the final stage is a label (Normal or Abnor-
mal) for each heartbeat. For the implementation of these stages we used Matlab built-in
functions, the LIBSVM library for the SVM classifier used, and also functions provided by
PhysioNet in the WFDB Matlab toolkit. The classification stage consists of a SVM classifier,
a supervised machine learning method. We use annotations files included in the database,
which provide diagnosis labeling of each heartbeat included in each ECG recording, done
by doctors. The problem detected at this point of the analysis, is that there is a mismatch
in the heartbeats detected in a recording by the functions provided in the toolkit, and the
heartbeats annotated by the doctors. This happens because heartbeat detectors fail to de-
tect all heartbeats and some false detections also take place. We overcome this problem by
forming a procedure that allows us to match the correctly detected heartbeats with their
corresponding labels in the annotation files. Next, we perform a design space exploration
over different features extracted from the signal in the feature extraction stage. We use
discrete wavelet transform as feature extraction method. These features serve as input for
the classification stage. The metrics used to decide upon the best design are the accuracy
and computational cost of the classification stage.

In the second part of the analysis, we suggest the addition of an extra stage to the algorith-
mic structure. This stage is placed right before the final classification stage, and consists
of an SVM classifier that would take as input the features extracted in the previous stage
and classify the heartbeats as true or false detections. True beats will continue to the final
stage, while false beats will be discarded. A design space exploration is performed similarly
as done in the initial structure.

In the last part of the analysis, the initial algorithmic flow is implemented on the Intel IoT
based Galileo board. To do so, the algorithm is converted in C code. In its final form,
the program reads sample by sample a digitized at 360 samples per second ECG signal,
and the analysis flow is executed for every set of 3000 samples that is read. The 10 best
configurations, the 10 most demanding in computational cost configurations, as well as 11
configurations from inbetween, as resulted from the design space exploration in the first part
of the work, were implemented on the Galileo board. The accuracies achieved were above
satisfactory, and the computational cost was such so that the ECG analysis and classification
can be performed in real-time.

Keywords: ECG analysis, ECG heartbeat classification, Support-Vector-Machine (SVM),
Discrete-Wavelet-Transform (DWT), Internet-of-Things (IoT), Embedded Systems



Extetopevn Ilepiindmn

Ou xopdloryyetoxég todroele, 1 xVpLa antior Tou TEdwEou Yavdtou 6Tov x6cUo, efvar Ui opdda
acVEVELWY TIOU apopoly oty xapdtd 1 Tor arpopodea ayyela. IlepthauBdvouyv aciéveeg tng
otegoviaiag apTnelag OTwe 1 oTNUAY YN X0t TO EUPEAYH TOU HUOXEDI0U, XOWKOE YVOGTO ¢
%0pBLax ) TEOGBOAT|, TNV UTERTACIXT XoedLaxY| VOGO, pELUATIXT XapdtoTdieia, puoxopdlomdieL,
HONTUXY| LOQUOEUY T, EVOOXEOITLON, 00RTIXG AVELVPUOUATY, TEQLPEQLXY| UOTNELIXT] VOOO oL PAE-
Bucr) YpouPwon. Ilepiocdrepol dvipmnol tedatvouy xde ypdvo amd xapdiayyelaxes Tadfoels,
ToEd amd omoldAToTE GAAT outia, xohoTOVTAS TN w¢ TN Voluepo éva antior Yoavdtou ot mo-
yxoowo eninedo. Toautdypova, xadoe o nayxdouog TAnduouds Eenepvd Tar 7 SLOEXATOUUDEL
xaL TEpLocOTEPOL dvilpwrol @Tdvouy 6Tn Teitn Nhixio, o apriudc TwY YavdTeny oand xoEdLoyYELo-
%€¢ voooug eCaxorovlel va eivon oe dvodo. Mougwva pe tov Hoyxoouo Opyavioud Tyelag,
o€ TayxOoUlo eTinedo, o apriudg Twv VavdTtenv Tou ogelloviol 6 xoEdLYYELUXES TOY|OELC
o riinxe xotd 41% petald tou 1990 xou tou 2013, dnAadh ond 12,3 exatopudpla Yavdtoug oe
17,3 exatoppvpto Yavdtouc. 3tic Hvwpévee Hohteleg to 11% twv avipdnwy yetall 20 %ot
40 éyouv xapdloryyetaxd voohata, eve o 37% petald 40 xat 60, to 71% 1wy atdpeny yetalld
60 xou 80, xat 10 85% twv ovip®drey dve v 80 eTkv. Autd To vmid Tococté pali ue Tov
oUEAVOUEVO PUIPO VYNOWOTNTAS, XEVOLY ETUTAXTIXH TNV AVEYXN Yo OTEVY) XAl GUVEYT LaTEIX
ToEoXOAOVUNON Xou PEOVTIDA TV AGVEVKY TOU TEoY 0LV antd TETOLEC Ao VEVELEC.

H ovdhuon tou nhextpoxapdioypoagpiuatoc (HKI) éyet yenowomnomiel extetapévo yia ) di-
Gy vewor TOAGY xoedloxmy acveveliny. H autdpotn xon oxpi3ric avoryvieton twy apeuiutcy
o€ €va NAEXTEOXEOLOY RPN Elvor amopadtnTn Yiot T owoTh Yepanela Tou actevoie. Ta te-
Aeutaio ypovia, dudgpopol alyoplduol éyouv avamtuydel yioo TV avdAuon xar TV Tagvouno
Tou HKI'. H mieiodnepla autodv twv ahyopiduny oxoroudolv tny eEAg Bopr: aviyVEUCT) TV
x0Edtox@y ooy o éva HKT', eqapuoyr| uedddwy e€oywyhc yapaxTnoio TIXMY Y VORLOUATLY
0TOUC TAAULOUC, X Yeron UEVOOmY Tavounong Yo Ty e€oymYn Tng Otdyveorng.

Me tnv avdmtuln tne Te)vohoyiag, Ol POPETEC GUGKEVES (wearable devices) nailouv OOV TL-
%6 poho otny xataypopy) Tou HKI'. "Etol, n épeuva mou dieldyeton oTov Touéd TG ouTOUa-
¢ avaivone HKI' éyel, oe éva peydho pépog, mpooavatoMoTel oTNY avamTudr amodoTIXGY
oAyoplduwy Tou EeMEpVoUV TOUC TEQLOPIOUOUS TMV EVOOUATOUEVWY QPORTITCOV X0l PORETMY CU-
oxevwyv. Emniéov, autéc ol ouoxeuéc mpoopllovtal cuvidng we pépog Vg dixtlou, 6Tou To
HKT" aviyvebeton and gopntole awodntrpes, otn cuvéyeta Slofi3dleTton oTn QOpETr GUOXELN
omou enelepydleton xan avohOETOL, oL TEALXS OTEAVETOL OE L0l OTOUAUXQUOUEVT] CUCXEUT Yid
TEPOAUTER® aVIAUOT Xt amoUxeuoT. Autd 1o BixTUO WUCVNTHPWY, UTOAOYIC TIXWY GUGKEUMY
X0l CUOXELWY UETABooTE TAnpogopioc avapépetar we Internet of Things (IoT). e autd to
TAololo, To avTiXEluEVo NG TapoVouC BIMAWUATIXAC EpYaciag eivon Vo avamTOZOUUE AOYIOULIXO
mou Va urootnellel v avdiuon tou HKI yia v elorywyr| yopaxTnolo Tiny xal TEYVIXES
TaEVOUNoNE Yior TN Bidyvworn tne xopdtoxnic tddnone. H viomoinon yivetaw ndve otny evow-
wotwpévn mhatgépua Galileo tng Intel, n omola evon pio amd tig npotewvoueveg cuoxeueg IoT
¢ Intel.

Y10 TPOTO UEPOC aUTAC TNS epyaoiog, oyedidloupe Tov akyoprduo yior TV ovdhuoT xou To-
&wounon tou HKI', xou 1 viomoinon yivetan oe nepfdirhov Matlab. H Bdorn dedopévwy mou
yenownornotinxe we¢ mnyn yioo HKI etvow y MIT-BIH Arrhythmia database, mou mopéyeton
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an6 N PhysioNet. H Bdon 6edopévwv amoteheltan and 48 nuiwea anoondoyato HKI amd
0Vo xavaha. To dedopéva €youv guitpapiotel pe Cwvomeputd giktpo otor 0.1-100Hz xan 7
|meromoinom €yer yiver oe 360 Belypota avé deutepdrenTo avd xavdht. Amo ta 48 HKI', ota
ThadoLo TG TUPOLCUS AVIAUCTS, YENOULOTOLAUNXOY Ol XATUYRUPES TOU TEMTOU XUVAALOD oo
o 45 HKT', mou avtiotoryoly oe anoywyr) MLIL H Bdorn dedouévemy mapéyet enlone onuetdoels
yioe x&de HKIY, 6mou xopdloldyol €youv tomoletrhoel tior eTxéTar SLdyvwone yia xdle ToAuo
mou mepthopfBdveton oto HKI'. O mivaxac 1 detyver toug thmoug moAucdy Tou Tepléyovial 6T
Bdomn BEBOUEVGLY %ol TNV AVTIOTOLYIOT TOUG OTOUG TUTOUS TOAUGY OTWS TEOTEVOVTAL omd TOV
opyoviopd American Heart Association (AHA), xou o mivaxog 2 Selyvel o 060G T8 ETUXETCOVY
¢ Bdong mou avtioTolyoly o xdle TOTO TOAUOU.

Table 1: Avtiotolyion twv tinwy toduny e MIT-BIH Bdong ue tng opddeg mahumy tou

(right bundle
branch block)

AHA
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heartbeat N \% F E P Q (0]
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To oyfua 1 anexovilel ) Sour| Tou akyopituou avdhuone xar tagvounone HKI. H npd
amorywy? Tou dngromoinuévou HKI epoapudleton we elcodog oto chotnua. I'o v vhomoinon
VTGV TV 6TadlwY Yenotdoroolvtot built-in cuvaptrceic Tou Matlab, n Bi3Aot#xn LIBSVM

Vil




Table 2: Aprdudc nahumy e Bdong mou avtioTolyoly ot xdie oudda

Heartbeat
Rl N v I F L E P | QO] toa
class
number of

93411 | 7129 | 1785 | 106 | 7028 | 33 | 665 | 110157
beats
% of total

84.8 | 6.47 | 1.62 | 0.096 | 6.38 | 0.03 | 0.6 100
beats

yioe Tov SVM classifier mou yenowonotettar, xoadog eniong xou cuVapTACELS TOU TaEEYOVTAL OO
1 PhysioNet octo WEDB Matlab toolkit.

R
e Heartbeat Heartbeat Feature T
P T Filtering ) . . Classification
Detection Segmentation Extraction
a
s

Yyfuo 1: Tpotewvduevn por| avdiuong

1. Filtering. M povddo qihtpaplopatog Aettoupyel g 6Tddlo mpoenedepyaoiog, TEOXEL-
uévou va agapedel o HopuBoc and to ohua. Xenowonojinxe 1 cuvdptnon filter() tou
Matlab yio v eyoapuoyt| evog Lwvorepatol giltpou ot 1-50Hz.

2. Heartbeat Detection. To @uitpopiouévo orjua 6tn cuvéyela dlafi3dletar oTn povada
aviyveuong moAuwy, 1 onola mpoomodel vor evtonioel GAOUS TOUG xUEOLIXOUS TOALOUS
TOL TEPIEYOVTAL 0TO G El06d0L. [N T0 oxoTd aUTd YENoWOoTOLVVTAL Ol GUVIPTACELS
wars() xau ecgpuwave() tou WEFDB Matlab toolkit. ITpdta, n cuvdptnon wars e@op-
uoleton 6To oA, 1 omola pog divel Tig Véoelg Ghwy Twv cuumAéyuata QRS mou Beédnxay
oto ofua. Aut 1 mhnpogopla uall ue To ohua, elval 1 €lcodog Yl THY ecgpuwave, 1
omofa pag dver v axplr) Véomn dAwv 1wV xopugny R mou Beédnxay oto orjua. H o-
viyveuon tou QRS, xou edixd 1) aviyveuon tou xOpatoc R oto HKI etvor o edxoAn amd
OTL Yt GAASL TUAUOTO TOU GHHATOC AOY® TNS Lop@ic xat Tou udgniol Tou mAdtoug. Kde
aviyveuon xopuerc R avtiotoryel oty aviyveuor evog xopdlonol Tahuou.

3. Heartbeat Segmentation. Axoloudel n povddo xataxepuatiopo), 6Tou To G ELGOB0U
Ywelletar 6g UEPOVOUEVOUS XoedLo00g TAAL0US, GUUPWYIL UE TIC TANEOQOplEC Tou Ttpo-
€pyovTon amb 1o TEONYOUUEVO GTAd0. Aol eviomioTnxay ol xopupéc R yio xde mauo,
UTOPOUUE VoL Tpoywecouue 6To dopeptond Tou HKI' ot pepovougvoug xapdloxole moi-
woOg. It var yivel autd, Vo mpénel va anogacicouue oyeTnd ue éva topddupo, To omoio
€yovtog w¢ x€vtpeo TN Véon tng xopuenc R, Yo xahimtelr ohdxAnen 0 XupaTopop®r Tou
xapdtaxol ToApo. Emkéyouue we mhdtog mopodipou tar 257 delyuto.
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4. Feature Extraction. ITpoxewévou va emiteuydel peyohltepn anddoon talvounong, uio
Hovada e€aywyNe YAPUXTNRIOTIXGY elval To emduevo otddlo. Exel, yio xdde maporyodue-
VO TOAUO, e€dyeTon Evar BIGVUOUA YORUXTNPIC TIXWY, TOU TEPLEYEL EVOL UXPOTERO oELIUo
ototyeiwv and ta delyporta HKI' mou oymuatilouv tov xopbloxd mokuo. §2¢ unyovioud
eCaywyNC YopoxTneto Tixdy, yenotponoolue Discrete Wavelet Transform (DWT). Q¢
Bdomn yenotuonoteiton Daubechies tdéng 2 (db2), xou Tporypotonotovvton 4 eninedo amo-
oOwvdeone. H ouvdptnon wavedec() tou Matlab ypnotwonowidnxe yio Ty anoctvieon
ToU ofaTog, xou ot cuvapthoele appcoef() xou detcoef() yio Ty e€oywyn Twv approx-
imation xou detail coefficients, avtiotorya. Anéd 0 Swdwacio auth TapdywvTo 8 oet
amo coefficients. Emeidr| n xupatopop@r Tou mokuol anotehelton and 257 delypota, o o-
ewluog Tov coefficients yio To TpdTO, BedTEPO, TEiTO XA TETAETO ETiNEdO elvon avticToya
130, 66, 34, 18. Apa, yia xdde nahud mofpvouue 494 coefficients. Telwxd, 1o Sudvuoua
TOL YENOWEVEL w¢ l00d0¢ Yo To 0Tdd TN Todvounong mpoxOnTtel and design space
exploraation mdvew o€ GAOUC TOUC GUVOLUCUOUC TWV 8 AUTWY OET.

5. To otddo e tadvounone amoteieiton amd évav todivounty| Support Vector Machine
(SVM), wo emPrenduevn uédodo pnyovixhic udinone. O to€vountic autods YoexTn-
eilel xde mohuo elte w¢ 'Normal” 7 "Abnormal’. Tlpoxeyévou va napoydel to povtého
Tou SVM, Jo mpénet vor dnuioupyNooude €va GOVORO BEBOUEVKY eXTIUUBEUCTS ot EVa
obvoho emahfievorng, yenotwonowwvrag to 45 emheypéva apyeta HKI and tn Bdor 6edo-
uéveyv. ‘Omnwe meprypddaye mponyoupévee, oha ta apyeio HKIM mpdta guitpopio txay,
eviomiotnxay oL R x0pugec xon oTn CUVEYELX To OHUATY YWEICTNXAY GE UEUOVOUEVOUS
TOUALOUE, BLopopp@vovTag eva 60voho 104.581 xoapdtoxmy maAuony. o xdie toAuod ypeeto-
(oo TE €Val BIAVUOUA YUROXTNELO TIXAY X0l Lol THT-0Toy0. To didvuoua yoeaxTnelo Ti-
x@v amoterettan and T DWT coefficients mou e&niydnooav 6to nponyoluevo otddio. (¢
TIA-0TOY O, YENOLLOTOLOVUE TIC ETIXETO TTOU THUEEYOVTAL OO TOUC YIATEOUE Yol XGUE Toh-

uo.

To mpéfinua mou eviomictnxe oc autd To onueio g avdiuong, civon OTL UTEEYEL Wi avo-
vTioTotylo TV xoedlox@y TeAU®Y Tou aviyvedovtar o éva HKI' amd Tt ouvaptAoeg mou
napéyovtan 6to WEDB Matlab toolkit, xou autdhv mou undpyouy oyoMacuévol and Toug YLo-
TeoUg.  Autd cupfalvel ETELDT OL AVLYVEUTES X0EOLOXOU TUAUOD oBUVITOOY VoL OV VEUGOLY
ONOUC TOUC TOALOUC Xa ET{OTC TEUYUATOTOOOVTAL X UEQIXES AaVIUGUEVES oV VEUCELS. LTNV
EOVA 2, 0L udLEOL xUXAOL BELYVOUY TOUC TAALOUE OTWE £YOUV XATAYRAPEL A6 TOUG YLATEOUC,
EVK OL UTOAOLTIOL OTIKG EVTOTUO TNXAY AmO TIC CLUVARTHOELS, xan xatotdoovton oc: True, False
xan Missed. ITpoxewévou vo amo@acicouue oe ol and TIG TEELG AUTES XAUTNYOopIEC avrxel xdie
EVTOTULOPEVOC TAAUOC, 0plloUUE Uiot amanToVUEYT) Amdo TGO A6 TOUS TEY U TIX0UE TOAL00E TTOU
€youv eviomotel and Toug yiateole. Mo To oxomd auTd BLadyouUE Uiol CTATIOTIXT UEAETN
Tave o OAo T BEdoUEVa TG Bdong, Yl T extiunon tng yeovixic Sudoxelog peTall B0o
OLUBOY UMY TOAUWY xot TNG OLdpxetac tou cupmAsyuatog QRS. To anoteréuoata oe seconds
paivovton oTtny ewodva 3. Eivar mpogavég 6T 1) Ty TOU Tapouctdlel TNV TO Loy UET) CUUTERL-
popd. etvar To clumAeyuo QRS xar w¢ ex todtou 1 puéon tuy| tou, 1 omola etvor mepimou 0,11
deutepdienta Vo yenotponondel yio Tov mpocdloploud tou {nrotuevou xotw@itou T. T dery-
wotohndio oe cuyvotnta fs = 360Hz, to clumieypo QRS xatohouBdver tepinou 40 delyuota
oedouévmy. Opiloupe to xotdght T ©¢ 0 wod g didpxela Tou cuumiéyuatog QRS, dniody
20 delyporta. XN CUVEYELL, 1) THEUXATE OLadIXacio YENOWOTOLAUNXE Y10l TO YUPUXTNEIOUO TKV
EVIOTUOUEVGY TOAUMY, X0l TNV avTloTolynor Toug Ue xdmow eTxéta.  Me 1n dradicocio auth
avtiotoryiCoupe Toug True makuolc ye Ti¢ eTiéTeg Toug ota apyela oyohaouol. Xtoug False
TohpoUg amodidoupe eTixéta "Abnoral’. oty emPBauféwon tng emhoyic auTthc, EXToUdEVOUNE
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Figure 3: Xpovuxr Sidpxelor HeTall 800 BLabOYIXMY TOALMY XL OLIOXELN TOU CUUTAEYUATOS

QRS

evay Tavoun Tt povo e True naipole xou tou elodyouue False naipole npog tadvounon. To
armotéheopo oy 6Tt tepimou 86% & awtdv tavouiinxoay we Abnormal. Puoixd, or Missed
nahpol aryvoolvtan. Tehixd, mapdyeton Evo oOvoro 104581 moAU®Y, UE TO BLEAVUCUOL YOEUX T
PLOTIXMY TOUG XAl TIS TYEC-0TOYoUS. O ool amd Toug TeAUoNE aUTOUE YENOYLOTOLOUVTOL (G
TO GET EXTAUBEVOTG, XAl OL UTOAOLTOL ¢ TO GET enMaAevong.

H Swidixaota exnaideuone tou talivounty yiveton offline. Méow design space exploration e-
TAEYETOL TO OLEVUCUA YOQUXTNEIC TIXWY TIOU OIVEL TOV XOAUTERO TUEIVOUNTH Xl TOQRAYETOL TO
uovTélo tou tadvountr. AuTto OTr CUVEYELL YENOWOTOLETOL 0TO GTAB0 TNS TACVOUUNONG Yid
TOV YURUXTNPIOUO TV ToAGY o€ real time.

Ou yetpwéc mou yenowonotinxay yio to design space exploration eivou: Accuracy (num-
ber of correctly classified points/tota number of points) xat Computaional cost(number of
support vectros * size of feature vector). H Swdixacio mopovoidletar oty exdva 4. To
amoteréopato Tou design space exploration mapovoidlovion oty exdva 5. Biénoupe mwc
oe bheg oyedOV TG MEPINTWOEIC To accuracy Cemepvdel 1o 97%. O xolbtepoc tadvountic



Algorithm 1 Derived R matching

procedure MATCHING (D _time_series, A_time_series)
True_beats, False_beats, Missed_beats < ||

1:

2

3

4: iD, i A+ 0

5: len_D < length(D_time_series)
6 len_A < length(A_time_series)

7 while i_D <> len_D AND i A <> len_A do

8 if abs(D_times(i-R) — A_times(i_A)) <= T then
9: True_beats < True_beats + D_times(i_D)

10: iD<+iD+1

11: iA—iA+1

12: else if D_times(i_D) — A_times(i_A) > T then
13: Missed_beats <— Missed_beats+A _times(i_A)
14: iA+—iA+1

15: else if A_times(i-A) — D_times(i_-D) > T then
16: False_beats «<— False_beats + D_times(i_D)
17: iD<+iD+1

18: end if

19: end while

20:

21: return True_beats, False_beats, Missed_beats

22: end procedure

Derived
metrics of
examined
models

FEIIE NO, P dt t iterati
. , Frocee 0 next iteratio|
selection |

anut data set} ,CHPUt data set Training Input Train cIasmfiej
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customization data set model
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Figure 4: Design space exploration framework

TEOXUTITEL Y10l OLAVUOUA YAQUXTNRIC TIXGY ToU Tepléyel Tow approximate coefficients tou 4ou
uévo emmédou decomposition. Mtnv mepintwon auty éyoupe, accuracy 98.9%, péyedoc Sua-
aviouaTog yapaxTneloTnxwy 18 xou 2493 support vectors. Autd ta anoteAéopota detyvouv
OTL, o8 olYXELoN PE To anoTeréouata Tou avagépovion otny BiBhoypagpia, o Talvountr mou
Vo TOYUNKE O MEAETY) QUTY| TUPEYEL TEPLOCGOTEQD Amd LxavoToNTXY anddooT). (dotdoo, Ju
TEETEL VoL oNUELIEl OTL AOYW TWV TOLUALWY OTIG OYETIXEC Epyaoieg otny PubAoypaplo w¢ Teog
TIC YPNOWOTOLOUUEVES TEYVIXES, 1) TIOEOY T LI ATOAVTGS BIXOUNG X AVTIXEWEVIXHC GUYXQELONG
elvon TOAD 60GXOMY.

Y10 8e0TEPO PéPOC TNC epyaciog, TEOTEVOUNE TNV TPoc¥1xn EVOC emTAEoY GTadiou OTNV OAYO-
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Yyfua 5: Design space exploration tou toéivounts| didyvwong

erduixr) dour. Autd To oTddIo Elval TOTOVETNUEVO oxEIBOE TEWY TO TEAIXO OTAOL0 TaEVOUNoNC,
xou amoteleltan amd éva tadvounty SVM nou Ya Aoufdver we €lcodo Tor yapaxTeto Tixd Yvo-
elopoto Tou e€dyovton xotd 10 TEONYOUUEVO GTAB0 ot Yo Tadvouel Toug TohuoUs we aindeic
1 peudelc aviyvedoeic. Ou akndeic mahuol Yo cuveyiCouv u€ypl To TEAMXO GTABLO, EVG oL Peudeic
mohuol Yo amoppintovtan. Xto oyfjuc 6 golvetar 1 xawvoLpyla BoUT|, HE TO XOXXVO xOUTL Vo
aroteAel To emmAov otddlo Tou Filtering Classifier. It va mopoydel to povieho SVM

R
L Heartbeat Heartbeat Feature True Diagnosis
P X Filtering . ) . s
Detection Segmentation Extraction Beat Classifier
Q
s

Discard False
False beat:
Heartbeats

TOU TOELVOUNTH PLATEARICUOTOS, SNULOLEYOUUE XavoVRYLY OET BEBOUEVMY EXTOLOEUOTC oL ETT-
Adevone. T to oOvoro TV ToAu®Y Tou Tpoéxuday and Tn BdoT, }ENoYOTOLVUE X0t TEAL (C
odvuoua yapaxtneto Tnxwy T DWT coefficients mou npoxdntouy and to npornyoluevo 6tddto,
eved ot Tiéc-otdyol Tidovton we True 7 False, Bdon tou adyopituou mou meprypddope mo téve.
Tehixd, mpoxOntouy 100231 true xou 4350 false mohyot. Or piool modpol and xdie xatnyopia
oyNuatiCouv 10 OET EXTABEVCTC XAl OL UTOAOLTOL TO OET ETUAAVEVOTG, TPOXEWEVOU VoL UTHPYEL
fon avohoyio TwV xaTnyopudy oTo 500 CET. XTr CUVEYELD, epupdleTon 1 (Bia Sadxacio design
space exploration yio TNV emAOY?) TOU BLUVUOUATOS YAUQUXTNOIC TXWY Xt TN dnutoupyio Tou
uovtélou SVM. Ye auth v meplntwon, EMXEVIPOVOUICTE OTIC HETEXES: Sensitivity (num.

Yyfuo 6: Extetopévn pot| avdiuong
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of correctly classified positive points/total number of positive points) xou Specificity (num.
of correctly classified negative points/total number of negative points). To anotehéopora
Topouctdlovtar 6to oyfua 7. H mo Aoy wtpd Ao elvon outr) mou yeyiotonotel o sensi-
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Yyfua 7: Design space exploration yla tov mpo tng Sudyvewong tavounth guteopioyatog

tivity wote va ehayiotonontoly ol True mokupol mou Tadivouolvtar we False. Kotd ouvénela,
av MdBoupe unddm v TAedda (sensitivity, specificity, computations), npoxintel 1 emioyy
(99.992%, 65.56%, 272900). Qot600, TopaTNEoVUE OTL UE UixeY| Uelwon Tou sensitivity éyou-
ue tnv emhoyn (99.88%, 85.1%, 94512) e mohd UxpOTERO UTOAOYLO TN HOOTOC Kol OPXETE.
auénuévo specificity.

Ytov mivoxa 3 ouYXEIVOUNE Tol AMOTEAEOUOTA TNG AEYLIXNC XOL TNG EXTETUUEVNG OAYORLIULXC
dopric. Mnopolue va dolue 6TL 1 axpifeta Tng dtdyvwong tng extetauevn poric ebvan 0.01 Aw-
yotepo ot olyxpion e TN Poaoian yeouur eonc Swdyveor. o va to e&nyrfoouvue autd, Yo
emxevipwiel ot dhheg petprioec. ‘Ocov agopd tnv sensitivity, 1 extetapévn poy| didyvemon
otepeiton 0,05% oe olyxplon pe 10 0 Booixd cevdplo. Autd cupPaiver BT, UTdpyEL €vac
uxpog apiuog and True modpolg ol omofol ecolpéva QUATEdEOVTAL WG PeUBEl xaL wg ex
ToUTOU, 7 sensitivity tng TAfpoug potic pemvetar. Avtidétwe, Adyw Tou OTL 0 TAEVOUNTAS QUA-
TPUpPIoUOTOC amoppE(TEL €var UEYAAO aptdud Peuddv Tahuwy, 1 specificity g extetapévng porg
oLdryvwong etvar aunuévn oe olyxplon pe o Pacind cevdplo. To yeyodiTepo TASOVEX TN TOU
Ta&vounTt @uitpaplopatog elvon 61L, oy Vewpioouue OTL 1) o7 BLdYVWwGCT) TEOXAAEL GUVOYEQUO
x&e opd mou évag xapdloxde makpde Yewpeitar Abnormal, undpyer nepinov 75% ueiwon oe
auTo0g TOUg GLVAYERUOUE Tou avixouv ot False beats, onhady| (eudeic cuvayepuole. To o-
vtitipo eivar 61t 0 tadvountrc grktpopiopatog xatahoufdver xotd uéoo dpo 27% Tou yedvou
exTéAeomg TG TARPOUS OY|G OLdY VGOT.

Y10 tehevtalo pépog NG avdAuomg, 1 apywt alyopwluxy cory epopudleton oto loT-based
Galileo board tnc Intel. T vor yiver autd, o alyodprduoc petatpéncton o C xwdxa. TNV
TEMXY| TOL Yop@Y, To TpdYeauua dloBdlet detyua mpog delypa éva HKI dngronoinuévo oe 360
Oelypota vl BEUTEPOAETTO, XL 1) POT| avdAvoTg exTeAeltan yioo xdde clvoro 3000 deryudtev
Tou SLoBdleTon.
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Table 3: Boowr| xan extetauévn pory avdhuong

Analysis | Accuracy | Sensitivity | Specificity | Number of
flow (%) (%) (%) False alarms
Baseline 97.87 99.40 99.40 2175
Extended 97.86 99.35 99.46 550

1. Filtering. To ofjua twv 3000 derypdtwy opywd grhtpdpeton. Xenoiwonolovvton To (Ol
FIR ¢ihtpa mou yenowonotinxay oto Matlab.

2. Heartbeat Detection. Ytnv viomoinom oe C, yio 10 6010 0T YENOULOTOLOVUE HOVO TN
ouvdptnon wars(), xadott uévo ya auth diveton tyaioc xwoixag oe C. Auty| pog divel
Véomn e apyfic Tou ocuumAéyuoatoc QRS. Aut n mAnpogopia, avti va T uetofiBdoouue
OTN GLVETNOT ecgpuwave() yto vo mdpoupe T V€on g xopupric R, ) yenoworolotue
©¢ oNuelo avaPopdc yiol TOV TOAUO, Xal TEOCURUOLOUNE TO Topdupo avaAOYX, WOTE Vol
XAAUTITEL %o TI8AL OAO TO €0pOC TOL TOUAUOU.

3. Heartbeat Segmentation. To mapdiupo ce auty T mepintwon emAéyetan we e€ng: e
ornuelo avapopds to onueto apyng Tou cuumiéypatog QRS, 86 delyporta mpwv xou 170
OelypaTo UETA amd auTO.

4. Feature Extractions. It to otédto autd, uhomoteiton 1y ouvdptnon e Matlab wavedec()
oe C. Xpnowonowsvtog 1 cuvdptnon wiilters() naipvouue o piktpa anocivieone mou
oyetiCovton pe to yenowwonooluevo wavelet (’db2’). Axoua, epopuélovue symmetric-
padding oto orjua, Tou etvor 1 default phduion Touv Matlab yio DWT. Tehixd, vhomololue
N GLVEAET Tou ofuaTog Pe xdie @ikTteo.

5. Classification. T'w T0 TEAxd 01O TG TECVOUNOTG, YENoomowlue T BBAodrxn
LIBSVM  nou neptaaufdver tnyoio xddwa e svmtrain() oe C. Metatpénouye to po-
viého SVM mou maprydel amd tny Bl cuvdptnorn oe Matlab, otn popgr| mou ypeetdleton
n ouvdptnon oe C. Lty opyr| Tou tpoypduuatog xohelton n load_svm_model() (tne LIB-
SVM) xau goptdvel To HoVTERO auTd ula Popd, Xou GTN CUVEYELN YETOHIOTOLE(TAL VLol TO
OTAO0 TaEVOUNoNG o€ xdde TOAUO.

Or 10 xoAdTepeg emAoyeg, ol 10 o anoutnTixég o UTOAOYIOTXO xOGTOG, Xxadg xou 11 péoeg
TEPINTWOOELS, OTWS TEOXVUTTOUV and TNV eEEpEOVNOT TOU BIIGTAUATOS GYEDLIOUOY GTO TEWTO
uépog tne epyaociog, vhomoinxay mdve oto Galileo. Ou oxpiBeiec mou emtedydnxoay Aoy
TEPLOGOTERO UG IXUVOTIONTIXES XL TO UTOAOYLOTIXO XOOTOC HTAY TETOLO WOTE 1) ovaAUGT
xon tovounon HKI vo ymopel va mpaypoatonomdel oe mporyuatind ypedévo. XMtov mivaxo 4
ToEoUCIALoVTaL Ol ETIAOYEC UAOTIOMNONE XU OTOV TVAXA & Tol ATOTEAEOUATO TWV PETEHOEWY
yioo qUTEG.  XTo oyfus 8 BAETOUUE TNV XAPEXWOT TOU YEOVOU EXTEAECTC YLl TO GTAOLO
TagVOUNONG, XIS aLEAVOVTOL Ol UTOUTOUUEVOL UTOAOYLOUOL OTA DLOPORETIXG UOVTEAA. 3TO
oyfua 9 mapouctdlovTon ol U€col % YeovoL extéheonc yia xde oTddlo, and o 10 xahiTepa
wovtéla mou e€etdotnxay. O avtiotoryor % ypdvor extéheonc yia xdlde otddio, yio 11 pyéoec
TEQITTWOELS, aivoviar oto oyfua 10, xou oto oyfue 11 v o 10 o Popid umohoyioTind
UOVTERAL.
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% of total execution time
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computations

Lo 8: Khpdnwon tou ypdvou eXTENEOTS O CUUPVIN UE TOUG ATULTOUUEVOUG
UTOAOYIOUOUS Yl X8UE BLapopeTINd UOVTERD

W filtering (53.28%)

B wgrs (1.18%)
DWT (1.4%)

B SVM (44.14%)

Eyua 9: Méoor % ypdvor extéheone yia xdde otédlo, yior o 10 xohdtepa povTélo
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Table 4: Ta emAeyyeva npog vAoToinoy poviéia tou DSE

configuration DWT number of feature vector | Accuracy | Computational
coefficients support vectors size (%) cost
1 cA4 2493 18 98.99 44874
2 cA3 2490 34 98.93 84660
3 cA4, cD4 2513 36 98.90 90468
4 cA3, cA4 2408 52 98.99 125216
5 cA3, cD4 2696 52 98.80 140192
6 cA4, cD3 2913 52 98.62 151476
7 cA3, cA4, cD4 2449 70 98.88 171430
8 cA2 2920 66 98.62 192720
9 cA3, cD3 3017 68 98.67 205156
10 cA4, cD3, cD4 2931 70 98.62 205170
11 cA2, cA3, cA4 2595 118 98.84 306210
12 cA4, cA3, cA4, cD4 2650 136 98.79 360400
13 cD3, cD4 8378 52 94.83 435656
14 cA3, cA4, cD1 3258 182 98.36 592956
15 cA4, cD2, cD3, cD4 3861 184 98.00 710424
16 cA3, cA4, cD1, c¢D3, cD4 3510 234 98.26 821340
17 cAl, cA2, cA3, 3122 300 98.60 936600
cA4, cD3, cD4
18 cA2, cD1, cD3, cD4 4240 248 97.70 1051520
19 cD2, cD3 11635 100 93.25 1163500
20 cA2, cA3, cD1, cD2, cD3 3885 330 98.02 1282050
21 cAl, cA3, cD1, cD2, cD4 3955 378 97.81 1494990
22 cAl, cA2, cA3, cA4, 3592 496 98.22 1781632
cD1, c¢D2, cD3, cD4
23 cAl, cA2, cA3, 3876 460 98.13 1782960
cD1, cD2, cD3
24 cAl, cA2, cD1, cD2, cD3 4204 426 97.78 1790904
25 cAl, cA2, cA3, cD1, 3761 478 98.01 1797758
cD2, cD3, cD4
26 cAl, cD1, cD2, cD3, cD4 4760 378 97.28 1799280
27 cAl, cA2, cD1, 4077 444 97.65 1810188
cD2, cD3, cD4
28 cD1, cD3, cD4 10815 182 92.70 1968330
29 cD1, cD2, cD4 11413 214 92.04 2442382
30 cD1, cD2, cD3, cD4 10854 248 92.45 2691792
31 cD1, cD2, cD3 12791 230 90.64 2941930
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Table 5: AnoteAéopata Twv vhonooewy oto Intel Galileo

filtering beat detection feature extraction classification
average | % of total | average | % of total | average | % of total | average | % of total
configuration | (in sec) | ex. time | (insec) | ex. time | (in sec) | ex. time | (in sec) | ex. time
1 0.77127 70.01 0.01691 1.53 0.00210 1.91 0.02925 26.55
2 0.77807 61.88 0.01707 1.36 0.00192 1.53 0.04430 35.23
3 0.62330 60.49 0.01373 1.33 0.00171 1.66 0.03762 36.52
4 0.62322 54.80 0.01381 1.21 0.00166 1.46 0.04836 42.53
) 0.62386 52.48 0.01379 1.16 0.00171 1.44 0.05341 44.92
6 0.62326 50.45 0.01380 1.12 0.00173 1.40 0.05811 47.03
7 0.65056 48.14 0.01451 1.07 0.00178 1.32 0.06685 49.47
8 0.68187 45.72 0.01504 1.01 0.00147 0.99 0.07799 52.29
9 0.62327 44.76 0.01396 1.00 0.00158 1.13 0.07394 53.10
10 0.62284 44.03 0.01385 0.98 0.00173 1.22 0.07604 53.76
11 0.62648 36.43 0.01390 0.81 0.00171 0.99 0.10622 61.77
12 0.62396 33.13 0.01388 0.74 0.00171 0.91 0.12284 65.23
13 0.62414 25.97 0.01386 0.58 0.00170 0.71 0.17479 72.74
14 0.71297 23.17 0.01594 0.52 0.00199 0.65 0.23284 75.67
15 0.62899 20.30 0.01380 0.45 0.00177 0.57 0.24380 78.68
16 0.62782 18.38 0.01395 0.41 0.00176 0.51 0.27556 80.69
17 0.65934 16.99 0.01470 0.38 0.00184 0.47 0.31877 82.15
18 0.62769 15.04 0.01393 0.33 0.00175 0.42 0.35130 84.20
19 0.73301 12.75 0.01622 0.28 0.00185 0.32 0.49811 86.65
20 0.65047 12.75 0.01433 0.28 0.00173 0.34 0.44180 86.63
21 0.71573 11.15 0.01593 0.25 0.00206 0.32 0.56645 88.28
22 0.62523 09.02 0.01401 0.20 0.00181 0.26 0.62759 90.52
23 0.62374 09.28 0.01376 0.20 0.00169 0.25 0.60676 90.27
24 0.62314 09.29 0.01374 0.20 0.00171 0.25 0.60542 90.25
25 0.69495 08.90 0.01530 0.20 0.00204 0.26 0.70780 90.64
26 0.62363 09.45 0.01389 0.21 0.00179 0.27 0.59465 90.07
27 0.63113 08.91 0.01399 0.20 0.00183 0.26 0.64231 90.64
28 0.62258 08.50 0.01389 0.19 0.00177 0.24 0.66672 91.06
29 0.62295 06.95 0.01380 0.15 0.00177 0.20 0.83134 92.70
30 0.70772 06.32 0.01552 0.14 0.00199 0.18 1.04530 93.36
31 0.65894 05.89 0.01472 0.13 0.00176 0.16 1.05047 93.83
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CHAPTER 1

Introduction

1.1 Problem Statement

Cardiovascular diseases, the leading cause of premature death in the world, are a group
of diseases that involve the heart or blood vessels. They include coronary artery diseases
such as angina and myocardial infarction, commonly known as a heart attack, hypertensive
heart disease, rheumatic heart disease, cardiomyopathy, atrial fibrillation, congenital heart
disease, endocarditis, aortic aneurysms, peripheral artery disease and venous thrombosis.
More people die annually from cardiovascular diseases than from any other cause, making it
the number one cause of death globally. At the same time, as the global population pushes
past 7 billion and more people reach old age, the number of deaths from cardiovascular dis-
eases is still on the rise. According to the World Health Organization, globally, the number
of deaths due to cardiovascular diseases increased by 41% between 1990 and 2013, climbing
from 12.3 million deaths to 17.3 million deaths. In the United States 11% of people between
20 and 40 have CVD, while 37% between 40 and 60, 71% of people between 60 and 80,
and 85% of people over 80 have CVD. These high percentages together with the increasing
mortal rate, urge the need for close and continuous medical supervision and care of patients
suffering from such diseases.

Meanwhile, technology scaling and improvement in electronic device manufacturing have
enabled the use of medical wearable devices. Such devices can be autonomous and provide
constant monitoring of patients without them being hospitalized. Since cardiovascular dis-
eases are in the vast majority chronic ones, wearable technology can be extremely useful
for the patient, covering his need for an all-day basis monitoring, while also improving his

quality of life and minimizing healthcare cost by reducing the need for his hospitalization.



Another beneficial factor towards the actualization of the required medical supervision of
cardiovascular disease patients, is the large-scale availability of data in the healthcare do-
main. Digital archives of the data generated from monitors and therapeutic devices in
intensive care units and operating rooms, compose large databases. These medical data
bases provided for the most part by medical research institutes, can be used for research
purposes, in the effort of developing the necessary software infrastructure for medical ap-
plications. To do so, machine learning algorithms are needed in order to handle the big
amounts of data. Machine learning techniques are able to examine and to extract knowl-
edge from large databases in an automatic way, which makes them a greatly valuable tool

for this type of research.

1.2 Related Work and Motivation

The investigation of the electrocardiogram (ECG) signal has been extensively used for the
diagnosis of many cardiac diseases. The computer-based automatic and accurate recog-
nition of the arrhythmias from an electrocardiographic record is essential for the correct
treatment of the patient. In recent years, numerous research and various algorithms have
been developed for the exertion of analyzing and classifying the ECG signal. The majority
of these algorithms follow the structure of: detecting the heartbeats in an ECG signal, ap-
plying feature extraction methods on the ECG heartbeats, and using classification methods
to conclude to a diagnosis.

In most of the studies, MIT-BIH database [6] is used as the source of ECG recordings.
Some techniques are based on the detection of a single arrhythmia type and its discrim-
ination from normal sinus rhythm, or the discrimination between two different types of
arrhythmia. Other classes of proposed methods for arrhythmia detection and classification
are based on the detection of different heart rhythms and their classification into two or
three arrhythmia types and the normal sinus rhythm. Another field of interest is the ECG

beat-by-beat classification, where each heartbeat is classified into one of several rhythm

types.



ECG feature extraction has been studied from early time and lots of advanced techniques
as well as transformations have been proposed for accurate and fast ECG feature extrac-
tion. For example, morphology and the waveform geometry [7, 8], Wavelet transform [9, 10],
Hilbert transform [11], Fourier transform [12], Hermite function [13, 14], power spectral fea-
tures [15], higher order spectral methods [16], nonlinear transformations such as Lyapunov
exponents [17] have been used as appropriate sources for feature extraction.

The classifying methods which have been proposed during the last decade include Fuzzy
Logic methods [18, 19|, Artificial Neural Network [20, 10, 21}, Hidden Markov Model [22],
Genetic Algorithm [15], Support Vector Machines [9, 23, 24, 25|, Self-Organizing Map [13],
Cluster analysis [26] and other methods with each approach exhibiting its own advantages
and disadvantages.

There are varieties of reported performances of automatic arrhythmia classification systems
in the existing literature. As mentioned above, the methods used and the number of arrhyth-
mia types that are classified show a great deal of variance which makes it very difficult to
fairly compare the performances of different algorithms. Although there has been a tremen-
dous amount of improvement in technology and the various approaches to the problem,
automatic ECG heartbeat detection and classification with high reliability is still an open
research area.

With the development of technology, wearable devices are playing an important role in ECG
monitoring. Thus, the research conducted in the field of automatic ECG analysis has been,
in a big part, oriented in developing efficient algorithms that overcome the constraints of
embedded portable and wearable devices. Furthermore, these devices are usually intended
to be part of a network, where the ECG signal is detected by wearable sensors, then sent to
the wearable device where it is processed and analyzed, and finally sent to a remote device
for further analysis and storage. This network of sensors, computing devices and commu-
nicator devices is referred to as the Internet of Things (IoT). In this context, the scope of
this diploma thesis is to develop the software infrastructure that will support ECG signal
analysis for feature extraction and the corresponding classification techniques for diagnosis

of the heart condition. The implementation is done on Intel’s Galileo embedded platform,



which is one of Intel’s proposed IoT devices.

1.3 Summary of conducted work

In the first part of this work, we design the algorithm for ECG signal analysis and classi-
fication and implement it in Matab environment. The database chosen as source for ECG
recordings is the MIT-BIH Arrhythmia database, provided by PhysioNet. The structure
of the algorithm consists of the following stages: filtering, heartbeat detection, heartbeat
segmentation, feature extraction, classification. The input is an ECG signal, it is filtered,
the heartbeats included in it are detected, the signal is segmented into beats, features are
extracted from each beat, and the output of the final stage is a label (Normal or Abnor-
mal) for each heartbeat. For the implementation of these stages we used Matlab built-in
functions, the LIBSVM library for the SVM classifier used, and also functions provided
by PhysioNet in the WFDB Matlab toolkit. The classification stage consists of a SVM
classifier, a supervised machine learning method. We use annotations files included in the
database, which provide diagnosis labeling of each heartbeat included in each ECG record-
ing, done by doctors. The problem detected at this point of the analysis, is that there is a
mismatch in the heartbeats detected in a recording by the functions provided in the toolkit,
and the heartbeats annotated by the doctors. This happens because heartbeat detectors
fail to detect all heartbeats and some false detections also take place. We overcome this
problem by forming a procedure that allows us to match the correctly detected heartbeats
with their corresponding labels in the annotation files. Next, we perform a design space
exploration over different features extracted from the signal in the feature extraction stage.
These features serve as input for the classification stage. The metrics used to decided upon
the best design are the accuracy and computational cost of the classification stage.

In the second part of the analysis, we suggest the addition of an extra stage to the algorith-
mic structure. This stage is placed right before the final classification stage, and consists
of an SVM classifier that would take as input the features extracted in the previous stage

and classify the heartbeats as true or false detections. True beats will continue to the final



stage, while false beats will be discarded. A design space exploration is performed similarly
as done in the initial structure.

In the last part of the analysis, the initial algorithmic flow is implemented on the Intel IoT
based Galileo board. To do so, the algorithm is converted in C code. In its final form,
the program reads sample by sample a digitized at 360 samples per second ECG signal,
and the analysis flow is executed for every set of 3000 samples that is read. The 10 best
configurations, the 10 most demanding in computational cost configurations, as well as 11
configurations from inbetween, as resulted from the design space exploration in the first part
of the work, were implemented on the Galileo board. The accuracies achieved were above
satisfactory, and the computational cost was such so that the ECG analysis and classification

can be performed in real-time.

1.4 Description of Chapters

The current thesis is structured as follows:

In chapter 2, the theoretical background of the concepts used in this thesis, is presented.
Firstly, the electrocardiogram (ECG) signal is discussed in detail: the genesis of the elec-
trical pulse from the heart, the recording of this electrical activity, and the interpretation
of the ECG waveform produced. The database used as the source of the ECG recordings
on which we apply the analysis that follows, is presented next: the MIT-BIH Arrhythmia
Database, provided by PhysioNet. We then introduce two essential tools in signal process-
ing and analysis, Discrete Wavelet Transform (DWT) and Support Vector Machines (SVM),
that will be applied on the ECG signal during the analysis that follows.

In chapter 3, the implementation in Matlab environment of the ECG signal analysis and
classification algorithm that is being proposed in this thesis, is discussed. All building
blocks of the algorithmic structure are described in detail. The design alternatives are being
explored, and the selection of the final configuration is made. Finally, the results of the
implementation are being evaluated and compared to results of related work.

In chapter 4, we propose an extended implementation of the analysis flow presented in the



previous chapter. We address the problem this extended flow aims at, and describe the extra
block added to the algorithmic structure. We, then, compare the results of the extended
flow to those of the basic flow proposed in Chapter 3.

In chapter 5, the implementation of the proposed ECG signal analysis on the target em-
bedded platform is discussed. We, firstly, present the Iot-based target platform, which is
the Intel Galileo Board. Then, the implementation of the proposed algorithm in C code is
described. Finally, the experimental results from the implementation of the algorithm on
the Intel Galileo are demonstrated.

In chapter 6, a series of conclusions and respective observations derived from the analysis

made in this thesis are discussed, and also directions for future work are pointed out.



CHAPTER 2

Theoretical Background

2.1 The ECG Signal

The electrocardiogram (ECG) signal has been established as one of the most fundamental
bio-signals for monitoring and assessing the health status of a patient. It is produced by
recording the electrical activity of the heart over a period of time using electrodes placed
on a patient’s body. The cardiac muscle contracts in response to electrical depolarization
of the muscle cells, and the sum of this electrical activity is what the electrodes record.
The ECG signal is used to examine rhythm disorders, electricity changes treatment and
possible ischemia or myocardial infarction based on the intensity, duration and shape of the

waveform reflecting depolarization and repolarization of the atria and ventricles.

SAN

SAN, sinoatrial node; AVN, atrio-
ventricular node; RA, right atrium;
LA, left atrium, RV, right ventricle;
LV, left ventricle.

Figure 2.1: Basic physiology of the heart [1]



The heart has a specialized system that allows the genesis of rhythmic electrical pulses and
the quick conduction of these pulses around the myocardium to cause effective contraction
(excitation-contraction coupling). This system is susceptible to damage, particularly due
to ischaemia (coronary heart disease). The electrical impulses start with the spontaneous
depolarization of the sinoatrial (SA) node, an area which consists of specialized pacemaker
cells, and are transmitted within the atria and ventricles through the electrical conduction
system of the heart. The transmission of the electrical depolarization from atria to ven-
tricles occurs through the atrioventricular (AV) node. The consequence of the initiation of
the SA node depolarization is the depolarization of the atria. This corresponds to the P
wave on the ECG waveform. The conduction through the AV node has a delay of around
150ms, which is represented by the PR interval on the ECG waveform. This delay allows the
contraction of the atria while the ventricles are in a relaxation phase (increased ventricular
filling, increased cardiac output), and reduces the frequency of contraction of the ventricles.
Disorders in the AV node are presented as an increased PT interval, or inability to transfer
the atrial depolarization to the ventricles. In rare cases there is an ectopic bundle (bundle
of Kent) which allows conduction from the atria to the ventricles without delay (prestim-
ulation), reducing the PR interval and indicating predisposition to arrhythmias (reentry
mechanism). Immediately after the AV node, the electrical stimulus is conducted by high
speed, through the bundle of His and the Purkinje fibers, to the myocardium of the ven-
tricles. The depolarization of the ventricles occurs next, which is represented as the QRS
complex on the ECG waveform, followed by the contraction of the ventricles. The repolar-
ization of the ventricles is represented as the T wave on the ECG waveform. Normally the
ventricles depolarize and contract almost simultaneously. Nevertheless, if the conduction
is stopped at one of the bundles, then the interventricular septum and the left ventricle
depolarize first, the depolarization of the right ventricle follows, and therefore the duration
of the QRS complex increases and its morphology changes.

The ECG is measured by placing a series of electrodes on the surface of the body. It is
possible to measure cardiac potentials that way because the body acts as a conductor of the

electrical currents generated by the heart. The wave of electrical depolarization spreads from



the atria down though the interventricular septum to the ventricles. So the direction of this
depolarization is usually from the superior to the inferior aspect of the heart. The direction
of the wave of depolarization is normally towards the left due to the leftward orientation of
the heart in the chest and the greater muscle mass of the left ventricle than the right. This
overall direction of travel of the electrical depolarization through the heart is known as the
electrical axis.

The fundamental principles of ECG recording are the following: A wave of depolarization
heading toward the positive electrode is recorded as a positive voltage (upward deflection). A
wave of depolarization heading toward the negative electrode is recorded as a negative volt-
age (downward deflection). A wave of repolarization heading toward the positive electrode
is recorded as a negative voltage (downward deflection). A wave of repolarization heading
toward the negative electrode is recorded as a positive voltage (upward deflection). A wave
of depolarization or repolarization traveling perpendicular to an electrode axis results in a

biphasic deflection of equal positive and negative voltages.
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Figure 2.2: Orientation of the limb leads [2]

By convention, electrodes are placed on each arm and leg, and six electrodes are placed at
defined locations on the chest. These electrode leads are connected to a device that measures

potential differences between selected electrodes to produce the characteristic ECG tracings.



The limb leads record the ECG in the coronal plane, and so can be used to determine the
electrical axis (which is usually measured only in the coronal plane). The limb leads are
called leads I, II, ITII, AVR, AVL and AVF. A horizontal line through the heart and directed
to the left (exactly in the direction of lead I) is conventionally labeled as the reference point
of 0 degrees. The directions from which other leads ‘look’ at the heart are described in terms
of the angle in degrees from this baseline. The chest leads record the ECG in the transverse
or horizontal plane, and are called V1, V2, V3, V4, V5 and V6.

In this study, the ECG signals we examine are modified limb lead II, a bipolar lead parallel
to the standard limb lead II, but acquired using electrodes placed on the torso, a requirement
for long-term ECG monitoring.

P PR QRS S T U

Wave Segment  Complex Segment Wave Wave

Figure 2.3: Schematic representation of normal ECG [3]

In the ECG waveform, the P wave represents the wave of depolarization that spreads from
the SA node throughout the atria, and is usually 0.08 to 0.1 seconds (80-100 ms) in duration.
The brief isoelectric (zero voltage) period after the P wave represents the time in which the
impulse is traveling within the AV node (where the conduction velocity is greatly retarded)
and the bundle of His. Atrial rate can be calculated by determining the time interval be-
tween P waves. The period of time from the onset of the P wave to the beginning of the
QRS complex is termed the P-R interval, which normally ranges from 0.12 to 0.20 seconds
in duration. This interval represents the time between the onset of atrial depolarization

and the onset of ventricular depolarization. If the P-R interval is >0.2 sec, there is an AV

10



conduction block, which is also termed a first-degree heart block if the impulse is still able
to be conducted into the ventricles.

The QRS complex represents ventricular depolarization. Ventricular rate can be calculated
by determining the time interval between QRS complexes. The duration of the QRS com-
plex is normally 0.06 to 0.1 seconds. This relatively short duration indicates that ventricular
depolarization normally occurs very rapidly. If the QRS complex is prolonged (> 0.1 sec),
conduction is impaired within the ventricles. This can occur with bundle branch blocks or
whenever a ventricular foci (abnormal pacemaker site) becomes the pacemaker driving the
ventricle. Such an ectopic foci nearly always results in impulses being conducted over slower
pathways within the heart, thereby increasing the time for depolarization and the duration
of the QRS complex. The shape of the QRS complex in the above figure is idealized. In fact,
the shape changes depending on which recording electrodes are being used. The shape will
also change when there is abnormal conduction of electrical impulses within the ventricles.
The isoelectric period (ST segment) following the QRS is the time at which the entire ven-
tricle is depolarized and roughly corresponds to the plateau phase of the ventricular action
potential. The ST segment is important in the diagnosis of ventricular ischemia or hypoxia
because under those conditions, the ST segment can become either depressed or elevated.
T wave.

The T wave represents ventricular repolarization and is longer in duration than depolariza-
tion (i.e., conduction of the repolarization wave is slower than the wave of depolarization).
Sometimes a small positive U wave may be seen following the T wave. This wave represents
the last remnants of ventricular repolarization. Inverted or prominent U waves indicates
underlying pathology or conditions affecting repolarization.

The Q-T interval represents the time for both ventricular depolarization and repolarization
to occur, and therefore roughly estimates the duration of an average ventricular action po-
tential. This interval can range from 0.2 to 0.4 seconds depending upon heart rate. At high
heart rates, ventricular action potentials shorten in duration, which decreases the Q-T in-
terval. Because prolonged Q-T intervals can be diagnostic for susceptibility to certain types

of tachyarrhythmias, it is important to determine if a given Q-T interval is excessively long.
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In practice, the Q-T interval is expressed as a ”corrected Q-T (QTc)” by taking the Q-T
interval and dividing it by the square root of the R-R interval (interval between ventricular
depolarizations). This allows an assessment of the Q-T interval that is independent of heart
rate. Normal corrected Q-Tc intervals are less than 0.44 seconds. There is no distinctly vis-
ible wave representing atrial repolarization in the ECG because it occurs during ventricular
depolarization. Because the wave of atrial repolarization is relatively small in amplitude, it

is masked by the much larger ventricular-generated QRS complex.

2.2 MIT-BIH Database

As already stated, for the purposes of this study, data from the MIT-BIH arrhythmia
database [27] were used. This database is a result of the collaboration of Beth Israel Dea-
coness Medical Center and MIT, and it is one of the most utilized databases for research
purposes.

The database is composed of 48 half-hour excerpts of two-channel (two leads) ambulatory
ECG recordings, obtained from 47 subjects. Of these, twenty three recordings were chosen
at random from a collection of over 4000 24-hour ambulatory ECG recordings, serving as a
representative sample of routine clinical recordings. The remaining twenty five recordings
were selected from the same set to include a variety of rare but clinically important phe-
nomena (complex ventricular, junctional and supraventricular arrhythmias), which would
not be well represented in a small random sample. The subjects included 25 men aged 32
to 89 years and 22 women aged 23 to 89 years. Approximately 60% of the subjects were
inpatients and 40% outpatients. The data are bandpass filtered at 0.1-100Hz and digitized
at 360 samples per second per channel with 11-bit resolution over a 10 mV range. In 45
recordings, the first lead is a modified limb lead IT (MLII), and for the resting 3 recordings
it is lead V5. The second lead is lead V1 for 40 of the recordings, and it is either lead II,
V2, V4 or V5 for the other recordings.

The MIT-BIH database also provides annotations for each record, where cardiologists placed

a label for every beat detected in the record. There are approximately 110.000 annotations.
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Table 2.1 lists the heartbeat types included in the database and their mapping to the Amer-

ican Heart Association (AHA) heartbeat classes (N, V, F, E, P, Q and O). Table 2.2 shows

the percentages of beat labels that correspond to each heartbeat class. The percentages

are disproportionate, as the largest beat class, ‘N’ (normal beat), covers 84,8% of the beats

found in the database.

In the algorithmic analysis that follows, data from the first-channel lead (MLII) of all records

of the database were used, apart from records 102, 104, 114, whose first-channel lead is not

a MLII. Two arrhythmia groups are examined, 'Normal’ (N), and ’Abnormal’ (V, F, E, P,

Q, 0).

Table 2.1: Mapping the MIT-BIH heartbet types to the AHA heartbeat classes

AHA
heartbeat N Vv F E P Q (o]
class
F
N \% ) E P Q !
(fusion of . i .
(normal) (premature (ventricular | (paced) | (unclassifiable) (ventricular
. ventricular
ventricular d escape) flutter wave)
an
contraction)
normal)
MIT-BIH L f P
heartbeat (left bundle (fusion of (non-
types branch paced and conducted P
block) normal) wave)
R

(right bundle
branch block)

A
(atrial

premature)

a
(aberrated
atrial

premature)

J
(nodal

premature)

S

(supraventricular

contraction)

e
(atrial

escape)

J
(nordal

escape)
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Table 2.2: Beats of full database corresponding to each class

Heartbeat
Rl N v I F L E P | QO] toa
class
number of

93411 | 7129 | 1785 | 106 | 7028 | 33 | 665 | 110157
beats
% of total

84.8 | 6.47 | 1.62 | 0.096 | 6.38 | 0.03 | 0.6 100
beats

2.3 Discrete Wavelet Transform

The Wavelet Transform (WT) is similar to the Fourier transform, with the extension that it
is capable of providing the time and frequency information simultaneously, hence giving a
time-frequency representation of the signal. This is essential when analyzing non-stationary
signals (whose frequency response varies in time), such as the ECG signal, where the time
localization of the frequency spectral components are needed. Generally, the wavelet trans-

form can be expressed by the following equation:

inf

Fa,b) = (2)4{a,p) () dex

—inf

where the * is the complex symbol and function ¢ is the transforming function called the
mother wavelet. Dilation, also known as scaling, compresses or stretches the mother wavelet
and translation shifts it along the time axis. The WT can be categorized into continuous
and discrete. Continuous, in the context of the WT, implies that the scaling and translation
parameters change continuously. However, calculating wavelet coefficients for every possible
scale can represent a considerable effort and result in a vast amount of data. Therefore,
discrete wavelet transform (DWT) is often used.

In the DWT, a time-scale representation of a digital signal is obtained using filtering tech-
niques. Filters of different cutoff frequencies are used to analyze the signal at different scales.
The signal is passed through a series of high pass filters to analyze the high frequencies, and
it is passed through a series of low pass filters to analyze the low frequencies.

The resolution of the signal, which is a measure of the amount of detail information in the

14



signal, is changed by the filtering operations, and the scale is changed by upsampling and
downsampling operations. Downsampling a signal corresponds to reducing the sampling
rate, or removing some of the samples of the signal. Upsampling a signal corresponds to
increasing the sampling rate by adding new samples to it (usually zeros or interpolated
values).

The DWT analyzes the signal at different frequency bands with different resolutions by de-
composing the signal into a coarse approximation and detail information. DWT employs two
sets of functions, called scaling functions and wavelet functions, which are associated with
low pass and high pass filters, respectively. The decomposition of the signal into different
frequency bands is simply obtained by successive highpass and lowpass filtering of the time
domain signal. The original signal x[n] is first passed through a halfband highpass filter g[n]
and a lowpass filter h[n]. After filtering, half of the samples can be eliminated according to
the Nyquist’s rule, since the signal now has a highest frequency of p/2 radians instead of
p. The signal can therefore be downsampled by 2, simply by discarding every other sample.

This constitutes one level of decomposition and can mathematically be expressed as follows:

Ynigh|k] = Zx[n] * g2k — n]

n

Yiow K] = Z *h[2k — n]

n

where ypignlk] and y.,[k] are the outputs of the highpass and lowpass filters, respectively,
after downsampling by 2.

This decomposition halves the time resolution since only half the number of samples now
characterizes the entire signal. However, this operation doubles the frequency resolution,
since the frequency band of the signal now spans only half the previous frequency band,
effectively reducing the uncertainty in the frequency by half. The above procedure can be

repeated for further decomposition.
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2.4 Support Vector Machines

Support vector machines (SVMs) are machine learning algorithms, based on the statistical
learning theory, that analyze data and recognize patterns. They are used for classification
and regression analysis. Given a set of training examples, each labeled for belonging to one of
two categories (supervised learning), an SVM training algorithm builds a model that assigns
new examples into one category or the other, making it a non-probabilistic binary linear
classifier. SVMs can only handle binary classification problems. Multiclass classification
can be obtained through the combination of multiple binary classifiers.

An essential component of SVMs is the separating hyperplane. In a binary classification
task, the hyperplane is the geometrical division or separation between the two categories.
In a one- dimensional space, this is a single point, in a two-dimensional space a line, in
a three-dimensional space a plane. We can extrapolate this procedure mathematically to
higher dimensions. The general term for a separator in such a high dimensional space is a
hyperplane. The SVM algorithm will try to find the optimal hyperplane, called maximum
margin hyperplane that offers the best classification. This is achieved by the hyperplane
that has the largest distance to the nearest training-data point of any class, since in general
the larger the margin the lower the generalization error of the classifier. The decision of the
optimal hyperplane is fully specified by a (usually small) subset of the data which defines the
position of the separator. These points are referred to as the support vectors. In order for
the SVM to be able to deal with errors in the data by allowing a few misclassification, soft
margins can be set around the hyperplane. They determine the number of examples that
are allowed to push their way through the margin of the hyperplane at a certain distance
without affecting the final result.

A SVM is a kernel-based technique that makes use of a kernel function. While the original
problem may be stated in a finite dimensional space, it often happens that the categories to
discriminate are not linearly separable in that space. For this reason, it is proposed that the
original finite-dimensional space be mapped into a much higher-dimensional space, making
the separation easier in that space. A kernel function will add a dimension to data, in order

to obtain the most optimal classification. Any given dataset with consistent labels can be
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brought into a dimension where it can be linearly separated by a hyperplane.

Figure 2.4: Separation of data classes possible in a higher-dimensional space

The set of instance-label pairs (x,3;), @=1,...,] where z; € R” and y € {1, -1}, are said

to be linearly separable if there exists a vector w and a scalar b such that:

yiwTe +b)>1, i=1,..,1

The optimal hyperplane:

wg$+b0:0

is the unique one which separates the input data with a maximal margin.
To allow classification with an error term, we introduce some non-negative variables & > 0,
1=1,...,1

Finally, the SVM requires the solution of the following optimization problem:

I
1
MMy b ¢ §wTw +C Z &
i=1
subject to yi(wz; +0) > 1 -,
& > 0.

where C is the penalty parameter of the error term.
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By introducing Lagrange multipliers, a;, the solution is given by:

!
w = E Yi O T
i=1

Only a small fraction of the «; coefficients are non-zero. The corresponding pairs of z;
entries are the support vectors and they fully define the decision boundary.

The hyperplane decision function can be written as follows:

flz) = Sgn[z yici (K (z, ;) + 0]

where K (z,z;) is the kernel function with which the input data are mapped to a higher
dimensional space.

Some typical examples of kernel functions used are the following:

linear: K (x;,z;) = x] z;

polynomial: K (z;,z;) = (yalz; +r)4~v>0

radial basis function(RBF): K(z;,z;) = exp(—v||z; — z;]]*),7 > 0

sigmoid: K (z;, ;) = tanh(yalz; +r)
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CHAPTER 3

Design and Exploration of ECG
Analysis Flow

3.1 Algorithmic Structure

Along with the MIT-BIH annotated ECG records, a library of software for physiologic signal
processing and analysis is provided by PhysioNet [28]. The initial stage of this study was
implemented in Matlab environment, and so the WFDB Toolbox for Matlab was used for
the reading and processing of the database.

More specifically, the functions that were used, are:

e rdsamp, to read a record and obtain a vector of the sample amplitudes for each signal

(two leads) contained in the record, and a vector representing the sampling intervals

e rdann, to read the annotation file of a record and obtain a vector with the sample

numbers where labels have been placed, as well as the type of the labels
e wqrs, to find the QRS complexes of the beats contained in an ECG signal record

e ccgpuwave, to find the peaks of each wave of the beats contained in an ECG signal

record

Figure 3.1 illustrates the structure of a typical analysis algorithm for heartbeat classification,
which is the one that was implemented in this study. The first lead of the digitized ECG
signal is applied as the input to the system. A filtering unit is used as a preprocessing
stage, to remove baseline wander and noise from the ECG signal. The filtered signal is

then passed to the heartbeat detection unit, which attempts to locate all the heartbeats
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Figure 3.1: Proposed ECG analysis flow

contained in the input ECG signal. Next in the flow, is the segmentation unit, where the
input signal is segmented into single heartbeats, accordingly with the information extracted
from the previous stage. In order to achieve greater classification performance, a feature
extraction unit is included. There, for each produced heartbeat, a feature vector is extracted,
containing a smaller number of elements than the ECG samples forming the heartbeat. This
vector serves as input for the classification stage, where the heartbeat is labeled as either

‘N’ (normal) or ‘ABN’ (abnormal) by a single classifier.

The stages in more detail:

1. Filtering
All ECG records were filtered with a band-pass filter, in order to remove noise [29].

ECG noise can be classified into the following categories:

Power line interference

Electrode pop or contact noise

Patient-electrode motion artifacts

Electromyographic (EMG) noise

Baseline wandering

Among these, the power line interference and the baseline wandering are the most
significant and they can strongly affect ECG signal analysis. The Matlab function
filter() was used to filter the signals with a band-pass filter of bandwidth 1Hz to

50Hz. The filtered ECG signals were used in the rest of the processing.
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2. Heartbeat detection
Firstly, the wqrs function is applied to the signal, which gives us the locations of all
QRS complexes found in the signal. This information along with the ECG signal, are
the inputs to ecgpuwave function, which gives us the exact position of all the R peaks
found in the signal. QRS detection, especially detection of R wave in heart signal, is
easier than other portions of ECG signal due to its structural form and high ampli-
tude. Each R peak detection corresponds to the detection of a single heartbeat. The
ecgpuwave program by Laguna el al. has been validated on the Common Standards in
Electrocardiography Multilead database [30] and the MIT-BIH QT database [31] and
its performance in detecting significant points in ECG signals is comparable to those

given by experts.

3. Heartbeat segmentation
Having located the R peaks of each heartbeat waveform, we can proceed to segment
the ECG signal into single heartbeats. To do that, we have to decide on a window
width, which having as center the detected position of the R peak, will cover the whole
of the heartbeat waveform. We choose a window width of 257 samples, as suggested

in [9].

4. Feature extraction
As a feature extraction mechanism we use Discrete Wavelet Transform (DWT) [32],
since it has been proven to produce very accurate results. The wavelet base for the
DWT is Daubechies of order 2 (db2) and we perform 4 levels of decomposition as
proposed in [9]. The Matlab function wavedec() was used to perform the wavelet
analysis on the signal, and functions appcoe f() and detcoef() were used to extract the
approximation and detail coefficients, respectively. The DW'T is used to compute com-
pressed parameters of the heartbeat data which are called features. These parameters
characterize the behavior of the heartbeat. The method of using a smaller number
of parameters to represent the heartbeat is particularly important for recognition and
diagnostic purposes. The 4 levels of decomposition produce 8 sets of coefficients each

one for 4 levels of detailed and 4 levels of approximate coefficients. Since the heart-
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beat on which the DW'T is applied consists of 257 samples, the number of wavelet
coefficients for the first, second, third and fourth level, are respectively 130, 66, 34 and
18. Thus, 494 wavelet coefficients are obtained for each heartbeat. The final feature
vector that serves as input to the classification stage, resulted from a design space
exploration performed on all combinations of these 8 sets of coefficients, as will be

discussed later on.

. Classification

The last stage of the structure, consists of a binary classifier, which labels each heart-
beat as either ‘Normal” or ‘Abnormal’. In this study, we focus on using a Support
Vector Machine (SVM) classifier [33], mainly due to its ability to support non-linear
classification with efficient accuracy and computation cost. The Matlab interface of
LIBSVM [34], a library for Support Vector Machines, was used for the implementation
of the SVM classifier.

A classification task usually involves separating data into training and testing sets.
Each instance in the training set contains one “target value” (the heartbeat class label
— ‘Normal” or ‘Abnormal’ — acquired from the annotations) and several “attributes”
(the feature vector produced from the previous stage). The goal of the SVM is to
produce a model which, based on the training data, predicts the target values of the
test data given only the test data attributes.

As kernel function, we use the radial basis function (RBF):

K (z;, ;) = exp(—y||zi—z;|[*), 7 > 0

where v is a kernel parameter. The RBF is a reasonable choice as kernel function. This
kernel nonlinearly maps samples into a higher dimensional space so it, unlike the linear
kernel, can handle the case when the relation between class labels and attributes is
nonlinear, with smaller complexity in the model selection than the polynomial kernel
does.

There are two parameters, C' and v, which need to be tuned, so that the model which
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best predicts the unknown data is selected. Parameter v is set to 1/k, where k means
the number of attributes in the input data, and parameter C' is set to 1, which is the

default option recommended by LIBSVM.

The training process of the SVM model can be done offline. Having a training data set and
a testing data set for evaluation, we perform the design space exploration that is described
below to decide upon the feature vector which gives the model with the best performance
results (different feature sets generate different SVM models). Then, with a fixed feature
vector, the SVM model is produced offline. This model is used for classification of heartbeats
inputted in the algorithmic flow, in real time. The complete algorithmic analysis including

the offline training and the online heartbeat classification is shown in Fig. 3.2.

Offline Training

Training and testing datasets formed from 45 ECG
records from the MIT-BIH Arrhythmia Database
(104581 heartbeats in total)

For each heartbeat:

e DWT coefficients
e the corresponding target diagnosis value

Training process using LibSVM:
B ¢ svmtrain()
e svmpredict()

Online ECG Signal Processin SVM model

. : Filterin Heartbeat Heartbeat Feature Classification
N g Detection Segmentation Extraction

Figure 3.2: Offline training and online classification.

3.2 Creating Classification Datasets

In order for the SVM model to be produced, we need to form the training data set and
the testing data set, using the 45 selected ECG records from the MIT-BIH database. As
the previous flow indicates, all records were firstly filtered, the R-peaks were located, and
then the records were segmented into single heartbeats, forming a set of 104581 heartbeats.

As stated before, for each heartbeat we need a vector of attributes and a target value.
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The vector of attributes is the feature vector which contains the DWT coefficients of the
heartbeat and is formed at the feature extraction stage. As target value, we use the label
given for each heartbeat in the annotation files. In reality, QRS detectors fail to correctly
identify all QRS waves contained in the input signal. An ECG signal in the form of a
time series is provided as input to the detector, which generates a set of points in time
corresponding to the R peaks. However comparing the detected points with the respective
annotations, there is a mismatch not only in the number of identified R peaks but also in
their exact time value. In Fig. 3.3, black circles indicate the R peaks defined by medical
experts. The rest of the circles indicate points as they have been identified by the R peak
detector used. According to the proximity of these points compared to the annotated R
peaks, the detected R peaks can be classified as (i) True, (ii) False or (iii) Missed. A True R
peak is one close to an R peak annotation (green circle in Fig. 3.3). A False R peak is one
which is far from the corresponding R peak annotation and is erroneously identified by the
detector (red circle in Fig. 3.3). In case that the detector has failed to identify the second

R peak of Fig. 3.3, it is considered to be a missed one.

08 R peak correctly identified (RP R peaks designated
-© 7 by detectors / True beat \ <——  bydoctors
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0.6 1 R peak not identified
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=
g' 0.2 1 R peak erroneously identified
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Figure 3.3: Correct vs. faulty QRS detection [4]

In order to derive the class of a detected R peak, we use the distance from the actual R
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peak. Thus, there is the need to define a threshold T to characterize the heart-beat class.
A statistical analysis of the ECG signals provided by the MIT-BIH database was conducted
and focused on deriving a robust estimation about the time lapse between two consecutive
heart beats and the duration of the QRS complex. The results regarding these durations
are summarized in fig. 3.4. The values are in seconds and they are measured using the
entire MIT-BIH database and the corresponding annotations. It is evident that the value
which exhibits the most robust behavior is the QRS complex duration and therefore its
median value which is approximately 0.11 seconds will be used to determine the threshold
T. With an ECG’s sampling frequency Fs = 360Hz, QRS complex is approximately 40 data
samples wide. We define the threshold T as half the duration of the QRS complex, ergo 20

samples. Having defined the threshold T, a rule based procedure was realized to quantify

QRS complex 1 H]:H
RR interval | R | ) —

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Latency (seconds)

Figure 3.4: Latency values of heartbeats

the detected R peak by a detector as (i) True, (ii) False or (iii) Missed, using as reference
input the respective annotated R peaks. The two discrete time series, i.e. D: detected
and A: annotated R peaks, are traversed in parallel and an index in each one (ip and iga,
respectively) indicates which R peaks are compared. If the detected and annotated R peaks
under examination are at most T time units away, |D[ip| — A[ia]| < T, then the detected is
considered True and both indexes are increased. If the detected R peak follows after more
than T points, D[ip] — A[ia] > T, then the annotated R peak is considered a missed one
and i4 is increased. Conversely, if the annotated R peak precedes for more than T points,
Alia]l — Dlip] > T, the detected one is considered False and i_D is increased. This process
takes place at the ECG analysis flow at design time and in no case are doctor annotated

files utilized in ECG analysis flow at run-time.
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Algorithm 2 Derived R matching

procedure MATCHING (D _time_series, A_time_series)
True_beats, False_beats, Missed_beats < ||

1:

2

3

4: iD, i A+ 0

5: len_D < length(D_time_series)
6 len_A < length(A_time_series)

7 while i.D <> len_.D AND i_A <> len_A do

8 if abs(D_times(i-R) — A_times(i_A)) <= T then
9: True_beats < True_beats + D_times(i_D)

10: iD+iD+1

11: iA—iA+1

12: else if D_times(i_D) — A_times(i_A) > T then
13: Missed_beats <— Missed_beats+A _times(i_A)
14: iA+—iA+1

15: else if A_times(i-A) — D_times(i_-D) > T then
16: False_beats «<— False_beats + D_times(i_D)
17: iD<+iD+1

18: end if

19: end while

20:

21: return True_beats, False_beats, Missed_beats

22: end procedure

This procedure allows us to match the true detected heartbeats with their corresponding
labels in the annotation files. As for the falsely detected heartbeats, we set the target value
as ‘Abnormal’. This seems as a logical assumption, but to validate this choice, we train a
classifier with only true detected heartbeats and evaluate it under false heartbeats testing
scenarios. The result was that about 86% of the heartbeats were indeed classified as Abnor-
mal. Of course, the missed heartbeats are not taken into consideration, since they are not
detected during the heartbeat detection stage.

Finally, we have a data set of 104581 heartbeats (100231 true heartbeats and 4350 false
heartbeats), along with a vector of their corresponding target values, and a matrix with the
DWT coefficients for each heartbeat. Half of the heartbeats are used as the training data

set for the SVM model, and the rest of the heartbeats are used as the testing data set.
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3.3 Design Space exploration for SVM tuning

The design goal is to create an SVM based classifier which given a heartbeat to be classified

in a binary manner aims at:

spros __ Num. of correctly classified Positive points
* SGHSIthIty o Total number of Positive points
to be maximized i.e. the best possible recognition of Normal heartbeats is achieved.
° Spe(:1ﬁc1ty — Num. of correctly classified Negative points

Total number of Negative points

to be maximized i.e. the best possible recognition of Abnormal heartbeats is achieved.

Number of correctly classified points
Total number of points

e Accuracy =

to be maximized

e Minimizing the computational cost

To achieve these design goals, we performed a design space exploration on the feature vectors
produced by the DWT feature extraction phase. As already discussed, the 4 levels of
decomposition performed on the input heartbeat, produce 8 sets of coefficients, 4 sets of
detailed coefficients (dcl, dc2, de3, dcd) and 4 sets of approximate coefficients (acl, ac2,
ac3, acd). As a feature vector we use combinations of these 8 sets. The implemented
exploration framework is illustrated in Fig. 3.5. To reduce exploration execution we input
to it the data set accompanied by the extracted sets of DWT coefficients for each heartbeat.

DWT is calculated only once, thus saving a great amount of time.

From that point on, there is an iteration over the combinations of coefficients that the de-
signer would like to evaluate as a feature vector for the description of heartbeat. In more
detail we refer to combinations of coefficients as picking any of the 8 sets of coefficients
and testing them as the selected features for the building of the classifier. Each combina-
tion results in a different classifier both in accuracy and number of support vectors. The
product of number of support vectors and size of feature vector is a reliable metric for in-
ducing the computational requirements of the produced classifier since it is the number of

multiplications required for a new heart beat to be classified [33].
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Figure 3.5: Design space exploration framework
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Figure 3.6: Design space exploration of diagnosis classifier

Figure 3.6 presents the results of the design space exploration, regarding accuracy and
computational cost. As we can see, in almost all cases the accuracy is above 97%, with
only a few exceptions. The best result comes of the feature vector which only contains the
approximate coefficients of the 4th level of decomposition. In this case, we have an accuracy

of 98.9%, a feature vector of size 18, and 2493 support vectors.
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3.4 Result Evaluation

Table 3.1: Result comparison

Authors Classes Feature set Classifier Performance
measures
This study 2 beat groups 4-level DWT SVM 98.9% ACC
de Chazal et al. | 5 beat groups R-R interval, | Linear Discrimi- | 73% SEN, 96%
[7] heartbeat inter- | nant SPE
vals, morphology
Yeh et al. [26] 5 beats types QRS-dur, QTP- | Cluster analysis 94.3% ACC
int, ratio-RR,
area-R’ST’
Ubeyli [9] 4 beat types Statistics of | SVM 98.61% ACC
4-level DWT
Giiler and Ubeyli | 4 beat types Hos features of | CNN 96.94% ACC
[20] DWT Coefficient
Lagerhlom et al. | 4 beat groups Hermite func- | SOM 82.2%  SEN,
[13] tions, RR-interval 98.9% SPE
Asl el al. [24] 6 beat types Linear  analysis | SVM 99.16% ACC
features, non-
linear analysis
features, feature
reduction by
GDA

The comparison of the system constructed in this study with similar systems in the liter-

ature is a difficult task due to varieties in the classification techniques, number of classes,

data sources, and measures used for reporting performance results. Nevertheless, some con-

clusions can be drawn.

These results show that, compared to reported results in the literature, the classifier de-

signed in this study provides above satisfactory performance. However, it should be noted

due to the varieties in the related works in the literature as mentioned previously, providing

a completely fair and objective comparison is very difficult.
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CHAPTER 4

Extended ECG Analysis Flow for
Faulty Heartbeat Detection

4.1 Problem Addressed: Faulty Heartbeat Detection

As described previously, QRS detectors fail to correctly identify all points of interest. We
evaluated the accuracy of the three detection algorithms found in the Physionet tool-suite:
(i) WQRS, (ii) SQRS, (ili) GQRS. In Table 4.1, it is shown that the false and missed
heartbeats are significantly lower than the true detected heartbeats, but still a considerable
number. In an effort to create a successful ECG analysis flow this erroneous behavior should
be minimized.

In addition, we evaluated the typical ECG analysis flow proposed in the previous chapter
under false heartbeats testing scenarios. In that flow the classifier is only trained to de-
termine Normal or Abnormal heartbeats using as reference the annotated R peaks. We
reported that about 86% of the false heartbeats were classified as Abnormal. This shows
that faulty detected heartbeats severely affect the diagnostic abilities offered by the ECG

analysis flow, as most of them create ’false alarms’.

Table 4.1: Beat categories for different detectors

Detector || False beats | Missed beats | True beats
wqrs 3823 3571 100293
sqrs 3231 4312 99552
gqrs 3473 3419 100445
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4.2 Extended Algorithmic Structure

As a solution to this problem, we propose a machine-learning based classifier that extends
the typical ECG analysis flow with the responsibility of distinguishing whether an R peak
determined by one of the aforementioned detectors is True or False.

The extended structure is shown in Fig. 4.1. The red box indicates the extra stage of
Filtering, where a classifier characterizes the beat detected on the respective previous stage,
either as True and passes it on to the next stage, or as False and discards it. All other stages
are the same as the ones described in the typical ECG analysis flow. The filtering stage is
placed after the feature extraction stage. This is very important since this way the filtering
classifier is based on the same features extracted for the diagnosis classifier (of the final

stage), meaning that it does not burden the flow with an extra feature extraction process.

. e Heartbeat Heartbeat Feature True Diagnosis
P - Filtering ) i i .
Detection Segmentation Extraction Beat Classifier
s .
Discard False
False beat:
Heartbeats

Figure 4.1: Extended ECG analysis flow

For the filtering classifier, we chose to use again an SVM based classifier, for the same
reasons stated in the previous chapter.

In order to produce the SVM model we need to form different training and testing data
sets, then the ones used for the model of the diagnosis classifier. Again, we use all 45 ECG
records selected from the MIT-BIH database and using the WQRS detector we get a set of
104581 heartbeats. The selection of WQRS as detector is made based on the fact that it
has a good accuracy on true beats detection, a low missed beats detection, and at the same
time detects the most false beats, compared to the other two available detectors (Table 4.1).
The later is desired, so that the data sets of true and false beats are as less imbalanced as
possible. For each heartbeat we need a vector of attributes and a target value. The vector

of attributes is the feature vector which contains the DWT coefficients of the heartbeat and
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is formed at the feature extraction stage. As target value, we label each heartbeat as either
True or False. This label is given based on the Derived R matching algorithm described in
the previous chapter. Applying this algorithm to the detected heartbeats, we get a data
set of 100231 true heartbeats and 4350 false heartbeats. In order for the two sets to have
comparable analogy of true and false beats, half of the true heartbeats and half of the false
heartbeats are used to form the training data set, and the rest of the heartbeats are used to
form the testing data set.

The same design space exploration procedure, described in the previous chapter, is applied
for the selection of the feature vector which gives the SVM model with the best performance
results. The performance metrics are in this case adjusted as follows:

Num. of correctly classified Positive points
Total number of Positive points

Sensitivity =

to be maximized i.e. the best possible recognition of True heartbeats is achieved.

Num. of correctly classified Negative points
Total number of Negative points

e Specificity =

to be maximized i.e. the best possible recognition of False heartbeats is achieved.

Number of correctly classified points
Total number of points

e Accuracy =

to be maximized

e Minimizing the computational overhead inflicted by the extra SVM false beat classifier

on the overall ECG analysis flow to sustain real-time operation.

The main challenge of the target classification problem is that false beats are much less in
number compared to true beats. This creates a very imbalanced training data set and if
no action is taken to take this into account during training phase then the classifier fails
at acceptably classifying false beats. In other words, since the goal of the training phase
is to adequately train the classifier according to the input dataset, if a classifier which can
successfully identifies only true beats is produced, then the overall classification accuracy of
the model is high since true beats vastly dominate the training data set.

In cases of imbalanced datasets, accuracy is not the most reliable metric, since it can be

misleading in the way described above. So we rather focus on the other three metrics,
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sensitivity, specificity and computational cost.

Fig. 4.2 presents the results of the design space exploration applied on all the different
combinations of the 8 sets of DW'T coefficients. We can see that in all cases sensitivity
is above 99.75% or in other words the True beats misclassified as False are relatively low.

Furthermore, specificity i.e. the False beats successfully filtered is above 72% and reaching

up to 88%.
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Figure 4.2: Design space exploration of pre-diagnosis filtering classifier

In an effort to determine the best of the design alternatives, we highlighted the region of
Pareto optimal design points which maximize sensitivity and specificity while minimizing
computational requirements of the trained classifier. The most medically reasonable choice
is to decide the design alternative which maximizes sensitivity in order to reduce the True
beats classified as False as much as possible. Inevitably, this impacts on the classifier’s
ability to filter false beats. Consequently if ones takes into account the tuple (sensitivity,
specificity, computations), this results in (99.992%, 65.56%, 272900). However, we notice
that a small reduction in sensitivity leads to a design alternative with (99.88%, 85.1%, 94512)
which means that an increase 19.54% in specificity was achieved by a classifier which is 3
times less computationally demanding by sacrificing only 0.112% in sensitivity. In absolute

numbers, this configuration has misclassified only 60 True beats out of testing data set of
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50116. For even smaller computational cost, the tuple (99.85%, 82.62%, 30744) forms yet

another design alternative.

4.3 Results Evaluation

Table 4.2: Baseline vs extended diagnosis flow

Analysis | Accuracy | Sensitivity | Specificity | Number of
flow (%) (%) (%) False alarms
Baseline 97.87 99.40 99.40 2175
Extended 97.86 99.35 99.46 550

Table 4.2 summarizes comparative results between the typical and proposed ECG analysis
flows. The feature vector used on the diagnosis classification stage of both flows is the one
selected from the DSE of the diagnosis filtering classifier. The feature vector of the filtering
classifier consists of the detail coefficients of the 3rd and 4rth level of decomposition (c¢D3,
cD4), and corresponds to the tuple (99.97%, 69.98%, 92560).

Taking a closer inspection on the results, we can see that accuracy of the extended diagnosis
flow is 0.01 less compared to the baseline diagnosis flow. To explain that, we will focus on the
other metrics. Regarding sensitivity, the extended diagnosis flow lacks 0.05% compared to
the baseline one. This is because, there is a small number of True beats who are erroneously
filtered as False and therefore sensitivity of the complete flow decreases. On the contrary, due
to the fact that the filtering classifier discards a large number of False beats, the specificity
of the extended diagnosis flow is increased compared to the baseline one. We do not observe
a steep rise due to the fact that most of the discarded False beats are successfully classified
as Abnormal in the baseline flow. Apart from the provided metrics regarding the behavior
of the two diagnosis flows, the greatest advantage of the filtering classifier is that, supposing
that the diagnosis flow raises an alarm whenever a heart beat is considered to be Abnormal,
there is about 75% reduction in these alarms owned to False beats, i.e. False alarms. The
trade-off is that the filtering classifier imposes an average 27% in the required execution

time of the complete diagnosis flow.
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CHAPTER 5

ECG Analysis Flow on Embedded
IoT Platform

5.1 IoT Platform

The Internet of Things (IoT) is increasingly being recognized by researchers and analysts
as one of the most sophisticated technologies that has the potential to not only affect the
health, safety and productivity of billions of people but also has a major economic impact.
It primarily consists of physical objects or "things”that are embedded with sensors, actua-
tors, computing devices and data communication capabilities. These are linked to networks
for data transportation. The Internet of Things allows objects to be sensed and controlled
remotely across existing network infrastructure, creating opportunities for more direct inte-
gration between the physical world and computer-based systems, and resulting in improved
efficiency, accuracy and economic benefit. Multiple traditional fields of technologies such as
embedded systems, wireless sensor networks, control systems and others, all contribute to
enabling the Internet of Things.

Healthcare is one of the most rapidly expanding application areas of IoT technology. Remote
health management, managing lifestyle-related diseases and conditions, fitness programs,
care at home, chronic diseases and care for the elderly are some of the important use cases.
IoT devices can be used to enable remote health monitoring and emergency notification
systems. These health monitoring devices can range from blood pressure and heart rate
monitors to advanced devices capable of monitoring specialized implants, such as pacemak-
ers or advanced hearing aids. Specialized sensors can also be equipped within living spaces
to monitor the health and general well-being of senior citizens and of chronic patients, while

also ensuring that proper treatment is being administered.
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Fig. 5.1 demonstrates an loT-based ECG monitoring design. Electrodes are used to sense
the ECG voltage on the skin, amplifiers to increase the magnitude of the signal, and ADC to
get digital samples. The signal is then sent to a wearable [oT based device to be processed.
The data transfer can be conducted via a Bluetooth module. The output of the computing
devise, the heartbeat diagnosis in the case of ECG signal classification, is finally sent via

Internet connection to a remote device for further analysis and storage.

On-body data acquisition device

Wearable loT
Amplifier [——B  ADC [, ey B s based device
= ) ECG signal
Short-range, low power processing
communication

(e.g. Bluetooth) v
T (f::))

\ | | o Wide area connection _"' X
= . ‘ | | (e.g. Wifi) N
et T T PR PR T IR T iﬁ\

Remote device
further analysis and
storage

Figure 5.1: Iot-based ECG monitoring design

For the purposes of the current study, we choose to implement the ECG signal analysis
and classification algorithm developed, on the Intel Galileo board. The Galileo is the first
product to feature the Intel Quark SoC X1000, a chip designed for small-core products
and low power consumption, and targeted at markets including the Internet of Things and
wearable computing. The Quark SoC X1000 is a 32-bit, single core, single-thread, Pentium
(P54C/i586) instruction set architecture (ISA)-compatible CPU, operating at speeds up
to 400 MHz. The use of the Pentium architecture gives the Galileo the ability to run
a fully-fledged Linux kernel. What’s more, an on-board Ethernet port provides network
connectivity, while also the underside provides a mini-PCI Express slot, designed for use

with Intel’s wireless network cards to add cheap Wi-Fi connectivity to designs.
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Figure 5.2: Intel Galileo board [5]

The Galileo board’s technical specifications:

Operating system: Yocto Project-based Linux

Processor: Single-Core 400MHz Intel Quark X1000

Memory: 256MB RAM

Dimensions: 107mm x 74mm x 23mm

Weight: 50g (excluding PSU)

GPIO: 14x Digital Input/Output Pins, 6x Analogue Input Pins
Networking: 1x Wired 10/100 Ethernet, Optional PCle Wireless

Expansion: USB 2.0 Host, Micro-SD Card

The Quark X1000 features:

Up to 400MHz clock speed

16KB L1 Cache

512KB SRAM

Single core, single thread
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e Integrated SDIO, UART, SPI, USB, I12C, Ethernet, RTC

5.2 Implementation in C

Since in the first part of this study, the algorithmic analysis was done in Matlab environment,
the code had to be converted in C, in order to continue with its implementation on the IoT
platform. The online ECG signal processing and classification is the real-time part of the
analysis that will be implemented on the embedded platform, while the offline training
procedure (see fig. 3.2) is considered to already have been implemented on some other
platform. The different stages of the analysis flow are implemented in C, as described below,
and combined into a single program. The program reads sample by sample a digitized (at
360 samples per second) ECG signal. The analysis flow is executed for every set of 3000

samples that is read.

1. Filtering
The signal, consisting of 3000 samples, is firstly filtered. For the filtering stage, the

same FIR filters that were used in the Matlab environment are implemented in C.

2. Heartbeat detection
Following, the stage of heartbeat detection is implemented. In the Matlab implemen-
tation we use two functions provided by PhysioNet in the WFDB Toolbox for Matlab,
wqrs() and ecgpuwave(). PhysioNet also provides the source codes of these two func-
tions, wqrs in C and ecgpuwave in Fortran. Since we only have wqrs in C, we alter
the algorithm to only apply wqrs to the signal, with no substantial divergence in the
output of this stage. Wqrs is a QRS complex detection function, that returns the
approximate position of the QRS complex onset. Instead of passing this information
to ecgpuwave, in order to get the exact position of the R peak and then apply the
257-sample window on the next stage of the heartbeat segmentation, we keep the QRS
onset information as the heartbeat reference point, and adapt the window to cover the

heartbeat waveform.
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Wqrs analyzes an ECG signal, detecting QRS onsets, using a nonlinearly-scaled ECG
curve length feature. The algorithm averages the first 8 seconds of the length-transformed
input to determine on some initial thresholds that it uses. This is the reason we choose

a 3000-samples (8.33 seconds) waveform as the minimum input of our program.

3. Heartbeat segmentation
For the implementation of the heartbeat detection stage, we adapt the window to
cover the PR and the QT intervals (see fig. 2.3). Based on statistics over the ECG
waveform [35], we decide on a window of 86 samples before the QRS onset, and 170
samples after the QRS onset (window width of 257 samples). Comparing the output
of the two implementations up to this stage, we see that the resulted heartbeat is
satisfactory in both the Matlab and the C implementation, as demonstrated in fig. 5.3
for a random ECG waveform. The heartbeats detected in the 3000-sample signal are

passed one by one to the next stages.

04L 1 ; 4

0.2+ i : il
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1

Figure 5.3: Heartbeat segmentation output for random ECG waveform: the green circles
show the begining and end of the heartbeat as determined by the Matlab implementation,
and the reb circles show the begining and end of the heartbeat as determined by the
implementation in C.

4. Feature extraction
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For the stage of feature extraction the Matlab function wavedec() is implemented in
C. We use Matlab function w filters() to acquire the wavelet decomposition low-pass
and high-pass filters associated with wavelet Daubechies of order 2 ("db2’). We apply
symmetric-padding (boundary value symmetric replication) to the signal, since it is the
default discrete wavelet transform extension mode of Matlab. Then, the convolution
of the signal with each filter is implemented to produce the approximation and detail
coefficients for each of 4 levels of decomposition, according to the following process:
Given a signal s of length n, the DW'T consists of log, n stages at most. The first step
produces, starting from s, two sets of coefficients: approximation coefficients CA1, and
detail coefficients CD1. These vectors are obtained by convolving s with the low-pass
filter Lo_D for approximation, and with the high-pass filter Hi_D for detail, followed
by dyadic decimation (downsampling). The length N of each filter is equal to the
order of the Daubechies wavelet. The signals F and G are of length n + 2N — 1 and
the coefficients cAl and c¢D1 are of length floor((n — 1)/2) + N. The next step splits
the approximation coefficients cA1l in two parts using the same scheme, replacing s by

cAl, and producing cA2 and ¢D2, and so on (fig. 5.4).

. high-pass filter 42 dAl
4% low-pass filter 42 cAl T
» high-pass filter | {2 » dA2
» low-pass filter 2 » cA2 W
"—» high-pass filter 42 dA3
» low-pass filter 42 cA3 T
» high-pass filter | {2 » dA4
» low-pass filter | {2 cA4

Figure 5.4: 4 levels of DWT
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This stage is implemented parametrically in terms of the coefficients that compose the
feature vector of the heartbeat used in the classification stage. For each decomposition
level, the coefficients produced are stored in a matrix if they are part of the final feature
vector, or else they are only used for the computation of the next decomposition level.

The process stops whenever all required coefficients have been produced.

5. Classification
For the final stage of classification, we use the LIBSVM library which includes the
source code of sumpredict() in C. We convert the SVM model under examination
produced by the same function in the Matlab environment into the format that is
used in the C implementation, using a generator. In the beginning of the program,
the function load_suvm_model(), which is included in the LIBSVM library, is called
to load the SVM model from that file that we have created. The SVM model is only
created once, in that initialization section of the program, and used in the classification

stage for each heartbeat.

In fig. 5.5 we illustrate the overall framework. This includes the exploration phase conducted
in the Matlab environment, meaning the DSE which resulted in a set of Pareto solutions.
In the customization phase, having selected a desirable solution, the feature vector is set
accordingly and the corresponding SVM model is produced by a generator which converts
the Matlab SVM model to the appropriate format for the C implementation. Finally, the
runtime phase is the implementation of the algorithm in C, for the configuration selected,

conducted on the Galileo board.

5.3 Experimental Results

From the offline training procedure, we get the SVM model which is being used at the
classification stage of the analysis flow (see fig. 3.2). The configurations of this model,
derived from the design space exploration for the SVM tuning, described in chapter 3.3.

The metrics taken into consideration for the selection were, as mentioned there, accuracy
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Figure 5.5: Structure of algorithm implemented in C.

and computational cost. The first, is independent of the implementation platform, while the
latter depends on the system resources. During the DSE, the computational cost was not
measured as the absolute execution time of heartbeat classification on the platform used,
but it was rather computed theoretically as the product of number of support vectors and
size of feature vector, since it is the number of multiplications required for a new heart beat
to be classified, as mentioned already. In order to verify these theoretical computations with
the absolute execution time of heartbeat classification on the embedded platform, and make
the final SVM model selection, we selected the 10 best , the 10 worst, and 11 configurations

from inbetween (Table 5.1), as resulted from the DSE, to implement on the platform.

The results of the time averages and the percentage of total execution time, for each stage
of the analysis flow, for the selected configurations, are shown in Table 5.2. The time
averages for the filtering and the heartbeat detection stage, correspond to the 3000 sample
input, while the time averages of the feature extraction and the classification stage are per
heartbeat detected. As input we used 101*3000 samples (303000 out of 650000 samples

contained in each ECG signal record) from 43 records (out of 48 total records of MIT-BIH
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database). In the total of 4343 sets of 3000 samples inputed to each configuration, 45529
heartbeats were detected each time, and it was seen that approximately 10 heartbeats were
contained in each set of 3000 samples. Therefore, for the estimation of the percentage of
the total execution time of each stage, it was assumed that for every 3000 sample input,
10 heartbeats are detected. In the best cases examined, the total execution time is much
less than the approximate 9 seconds required for the 3000 samples of the signal to be read.
This means that the ECG signal analysis and classification proposed, can be performed in

real-time.

As we can see in fig. 5.6, the scaling of execution time of the classification stage for the differ-
ent configurations, is as expected from the theoretical approach, meaning the computations

required in each configuration.

100

40

30

% of total execution time

20
10

0
84660 125216 151476 192720 205170 360400 592956 821340 1061520 1282050 1781632 1790904 1799280 1968330 2691792
44874 90468 140192 171430 205156 306210 435656 710424 936600 1163500 1494990 1782960 1797758 1810183 2442382 2941930

computations

Figure 5.6: Scaling of execution time in accordance with the computations required in each
configuration.

In fig. 5.7, we present the average % of total execution time for each stage of the algorithm,
of the 10 best configurations examined. Fig. 5.8 presents the corresponding % execution
times of each stage, for 11 configurations from the inbetween. Fig. 5.9 presents the same %
execution times, for the 10 most computationally demanding configurations. The classifica-

tion stage takes up more than 90% of the total execution time.
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| filtering (53.28%)

mwqrs (1.18%)
DWT (1.4%)

B SVM (44.14%)

Figure 5.7: Avarege % of total execution time for each stage, for the 10 best configurations.

H filtering (20.55%)

mwqrs (0.46%)
DWT (0.57%)

B SVM (78.43%)

Figure 5.8: Average % of total execution time for each stage, for 11 configurations from
inbetween.

W filtering (8.25%)

mwgrs (0.18%)
DWT (0.23%)

B SVM (91.34%)

Figure 5.9: Average % of total execution time for each stage, for the 10 most
computationally demanding configurations.
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Table 5.1: Selected configurations from DSE

configuration DWT number of feature vector | Accuracy | Computational
coefficients support vectors size (%) cost
1 cA4 2493 18 98.99 44874
2 cA3 2490 34 98.93 84660
3 cA4, cD4 2513 36 98.90 90468
4 cA3, cA4 2408 52 98.99 125216
5 cA3, cD4 2696 52 98.80 140192
6 cA4, cD3 2913 52 98.62 151476
7 cA3, cA4, cD4 2449 70 98.88 171430
8 cA2 2920 66 98.62 192720
9 cA3, cD3 3017 68 98.67 205156
10 cA4, cD3, cD4 2931 70 98.62 205170
11 cA2, cA3, cA4 2595 118 98.84 306210
12 cA4, cA3, cA4, cD4 2650 136 98.79 360400
13 cD3, cD4 8378 52 94.83 435656
14 cA3, cA4, cD1 3258 182 98.36 592956
15 cA4, cD2, cD3, cD4 3861 184 98.00 710424
16 cA3, cA4, cD1, c¢D3, cD4 3510 234 98.26 821340
17 cAl, cA2, cA3, 3122 300 98.60 936600
cA4, cD3, cD4
18 cA2, cD1, cD3, cD4 4240 248 97.70 1051520
19 cD2, cD3 11635 100 93.25 1163500
20 cA2, cA3, cD1, cD2, cD3 3885 330 98.02 1282050
21 cAl, cA3, cD1, cD2, cD4 3955 378 97.81 1494990
22 cAl, cA2, cA3, cA4, 3592 496 98.22 1781632
cD1, c¢D2, cD3, cD4
23 cAl, cA2, cA3, 3876 460 98.13 1782960
cD1, cD2, cD3
24 cAl, cA2, cD1, cD2, cD3 4204 426 97.78 1790904
25 cAl, cA2, cA3, cD1, 3761 478 98.01 1797758
cD2, cD3, cD4
26 cAl, cD1, cD2, cD3, cD4 4760 378 97.28 1799280
27 cAl, cA2, cD1, 4077 444 97.65 1810188
cD2, cD3, cD4
28 cD1, cD3, cD4 10815 182 92.70 1968330
29 cD1, cD2, cD4 11413 214 92.04 2442382
30 cD1, cD2, cD3, cD4 10854 248 92.45 2691792
31 cD1, cD2, cD3 12791 230 90.64 2941930
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Table 5.2: Results from the implementations on Intel Galileo

filtering beat detection feature extraction classification
average | % of total | average | % of total | average | % of total | average | % of total
configuration | (in sec) | ex. time | (insec) | ex. time | (in sec) | ex. time | (in sec) | ex. time
1 0.77127 70.01 0.01691 1.53 0.00210 1.91 0.02925 26.55
2 0.77807 61.88 0.01707 1.36 0.00192 1.53 0.04430 35.23
3 0.62330 60.49 0.01373 1.33 0.00171 1.66 0.03762 36.52
4 0.62322 54.80 0.01381 1.21 0.00166 1.46 0.04836 42.53
) 0.62386 52.48 0.01379 1.16 0.00171 1.44 0.05341 44.92
6 0.62326 50.45 0.01380 1.12 0.00173 1.40 0.05811 47.03
7 0.65056 48.14 0.01451 1.07 0.00178 1.32 0.06685 49.47
8 0.68187 45.72 0.01504 1.01 0.00147 0.99 0.07799 52.29
9 0.62327 44.76 0.01396 1.00 0.00158 1.13 0.07394 53.10
10 0.62284 44.03 0.01385 0.98 0.00173 1.22 0.07604 53.76
11 0.62648 36.43 0.01390 0.81 0.00171 0.99 0.10622 61.77
12 0.62396 33.13 0.01388 0.74 0.00171 0.91 0.12284 65.23
13 0.62414 25.97 0.01386 0.58 0.00170 0.71 0.17479 72.74
14 0.71297 23.17 0.01594 0.52 0.00199 0.65 0.23284 75.67
15 0.62899 20.30 0.01380 0.45 0.00177 0.57 0.24380 78.68
16 0.62782 18.38 0.01395 0.41 0.00176 0.51 0.27556 80.69
17 0.65934 16.99 0.01470 0.38 0.00184 0.47 0.31877 82.15
18 0.62769 15.04 0.01393 0.33 0.00175 0.42 0.35130 84.20
19 0.73301 12.75 0.01622 0.28 0.00185 0.32 0.49811 86.65
20 0.65047 12.75 0.01433 0.28 0.00173 0.34 0.44180 86.63
21 0.71573 11.15 0.01593 0.25 0.00206 0.32 0.56645 88.28
22 0.62523 09.02 0.01401 0.20 0.00181 0.26 0.62759 90.52
23 0.62374 09.28 0.01376 0.20 0.00169 0.25 0.60676 90.27
24 0.62314 09.29 0.01374 0.20 0.00171 0.25 0.60542 90.25
25 0.69495 08.90 0.01530 0.20 0.00204 0.26 0.70780 90.64
26 0.62363 09.45 0.01389 0.21 0.00179 0.27 0.59465 90.07
27 0.63113 08.91 0.01399 0.20 0.00183 0.26 0.64231 90.64
28 0.62258 08.50 0.01389 0.19 0.00177 0.24 0.66672 91.06
29 0.62295 06.95 0.01380 0.15 0.00177 0.20 0.83134 92.70
30 0.70772 06.32 0.01552 0.14 0.00199 0.18 1.04530 93.36
31 0.65894 05.89 0.01472 0.13 0.00176 0.16 1.05047 93.83
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In this work, we develop an algorithm for ECG analysis and classification, and implement
it on an IoT-based embedded platform. This algorithm is our proposal for a wearable ECG
diagnosis device, suitable for 24-hour continuous monitoring of the patient.

The proposed algorithm is composed of five stages: filtering, heartbeat detection, heartbeat
segmentation, feature extraction, classification. The Discrete Wavelet Transform was used
for feature extraction, whereas a Support Vector Machine based classifier was adopted for
the heartbeat classification. Design space exploration conducted on different feature vec-
tors describing a heart beat, resulted in a variety of classifiers with different accuracy and
computational characteristics. In almost all cases, the accuracy achieved is above 97%. The
best result comes of the feature vector which contains the approximate coefficients of the 4th
level of decomposition, with 98.9% accuracy, a feature vector of size 18, and 2493 support
vectors.

Implementing the 10 best configurations of the design space exploration, on the Galileo
board, we demonstrate that the computational cost is such, that the ECG analysis and
classification can be performed in real-time.

Furthermore, we analyzed the ability of R peak detectors to successfully identify R peaks in
an ECG signal. Based on a significant number of erroneously identified peaks we proposed
a Support Vector Machine based classifier to be incorporated in the ECG analysis flow in
order to identify and discard these false R peaks. The proposed false beat filtering classifier
is able to filter up to 75% of false R peaks while keeping the number of True beats misclas-

sified as False less than 0.01%. The required high accuracy creates a complex classifier but
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design space exploration on different feature vectors enabled us to keep its computational

requirements low, resulting in 27% in the execution time of the ECG analysis flow.

6.2 Future Work

Our work focuses on the development of a typical analysis flow over a one-lead ECG signal,
distinguishing two heartbeat groups (Normal - Abnormal). This flow can be expanded by
examining more heartbeat classes, as these are suggested by the MIT-BIH database, using
multi-class SVMs. The implementation of the algorithmic flow in C code, can be completed
by adding the extra stage of the filtering classifier proposed in the extended structure of the
analysis.

Furthermore, the ecgpuwave function, provided in Fortran and in Matlab code, and used
in the Matlab implementation, can be converted in C code, and be included in the C
implementaion. This would be especially useful if a different method for feature extraction
is used, such as waveform morphology, where more information on fiducial points is needed
than that obtained by only using the wqrs function.

Another major course of action, would be the energy analysis of the application implemented
on the Galileo board. For the target platform being a wearable device, the computations
involved in the application must be achieved at very low power levels (e.g. 1-10 mW). The
satisfying execution times achieved in this study, allow the examination of different methods
to reduce power consumption to a desirable level. One such method would be to underclock
the CPU.

Finally, this work can be extended by completing the IoT-based ECG monitoring design
shown in 5.1. This would involve the implementation of the input data transfer from the
on body data acquisition device to the application through a Bluetooth module, as well as
the implementation of the wide area communication between the application running on the

wearable device and a remote server, where the output data would be stored.
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