EOviko Metoofo IToAvteyveio

Lo

"':3

Yyol HAektpoddymv Mnyovikov

Kot Mnyavikov Y toloylotaov

Touéag Teyvoloyiac ITAnpopopikng kot
YmoAoylotav

S
@

3
~ ’{‘\!’
Na
POMHOEVS .
nvp$opo

3

&
4
H

u

IIpocappoostikoc Ataporpacuos X@mpov
Koataotdocmv Mopkofravav Movtérov yia
Elaotikn Awayeiprion Hopov

AITIAOMATIKH EPT'AXIA

AQAOX B. KGNXTANTINOX

Empiénov : Nextdprog Kolopng
Kobnynmg E.M.IL

ABnva, lavovdprog 2016

EOviko Metoofo IToAvteyveio

o
%

Yyol HAektpoddymv Mnyovikov

Kot Mnyavikov Y toloylotaov

Touéag Teyvoloyiac ITAnpopopikng kot
YmoAoylotav

“‘/‘\\ 'L
By
25
‘\

i
NPOMHOEVS .
QS >
nvp$opo

Ly

tn,

IIpocappoostikoc Ataporpacuos Xmpov
Kotaotaceowv Mapkopraveov Movtéhov Yo
Elaotikn Awoyeiprion Iopov

AIITAQMATIKH EPT'AXIA

AQAOX B. KGNXTANTINOX

Empiénov : Nextdprog Kolopng
KaOnyntg E.M.IL

EykpiOnke and v tpruein e€etaotikn emrponn) v 11n lavovapiov 2016.

Nextdprog Kolvpng Anpntplog Toovpdkog I'edpyrog I'codpag
Kabnyntmg E.M.IL. Enikovpog Kadnyntig LIL. Aéxtopoc E.M.IL.

ABnva, lavovdprog 2016

Aodrog B. Kovotavrivog

Authopatovyoc Hiektpoddyog Mnyovikoc kor Mnyovikdg Ymoroyiotov
E.M.IIL.

Copyright © Amlog B. Keovortavtivog, 2016.
Me emoolaén mavtdg dikaidpatog. All rights reserved.

ATaryopevETaL 1] VTLYPOLOT], OTOONKEVOT) KOl SLOVO LY TG TAPOVGOS EPYAGING, €& OAOKAPOV
N TUNHOTOS ALTNG, Y1 EUTOPIKO oKomod. Emitpénetol n avatimmor, amofkevon Kot S1ovou
Yl GKOTO U1 KEPOOOKOTMIKO, EKTOOEVTIKNG 1| EPEVVNTIKNG QVONG, VIO TNV TPoLIOHeDT
VoL OVOPEPETOL M TNYN TPOEAEVONC KOl Vo, dtoTtnpeitan to mapdv pnvoua. Epotiuata mov
a@opovV TN YPNOT TNG EPYACING Y10 KEPOOGKOTIKO GKOTO TPEMEL VAL omeLBVVOVTOL TPOG TOV

GLYYPOPEQ.
Ot amdyelg Kol T0 GLUTEPACUATO TOV TEPLEXOVTAL GE OVTO TO EYYPOPO EKPPALOLV TOV

oLYYPOQEN Kot OV TTPEMEL Vo epunveLdel 0Tl avTimpoomnevovy TIG emionueg 0€oelg Tov
EBvikod Metaofiov [Tolvteyveiov.

IHepiinyn

Ta cvotpato VTOAOYIoTIKOD VEQOVS (cloud computing) £xovv amoTEAEGEL EVaV OO TOVG
TOYVTEPU AVOTTUGCOUEVOVS KAGAOOVS TNG TANPOPOPIKNG KOTA TN SbPKELN TV TEAELTAIWV
eT®v. Me Vv avamtuén texvoroyLIOV OGS Ol UN-CYECLOKES PACELS dedoUEVMVY, Ol OTolEg
eEumnpetodv GNUEPO TEPAGTIONS OYKOVS OEOOUEVMV YVOOTOV ©¢ Big Data, | avaykn yio
avamtuén gpyoreimv Ta omoia va EAEYYOLY Kot Vo GLVTOVILOLV aVTE TOL GLOTHHOTA Elval
ONUOVTIKOTEPT oo TOTE. Mia amd TIg LEYOAVTEPES TPOKANGELS G aWTO TO Tedio, €lval 1
avantuén pefddmv HEGH TV OmoimV va YiveTol SLUVOUIKT KATOVOUN TOP®V GE OLTEG TIG
EPAPUOYES, oL 100 YVOOTY WG eaatikotyto. (elasticity).

Epdcov n ehaotikdtta givorl po popen tpofALatog Ayng omo@doemy, yio T Avon
oV 6710 TaPEAOGV Exel mpotabel | xprion Mapkofiavav Awadikaoiov Aropaoewv (Markov
Decision Processes) xoi Q-Learning yio T LOVTEAOTOINGT QLTOV TV GLOTNUATOV. Opmd,
10 TAN00G TOV TAPAUETP®OV 01 0TO1EG ETNPEALOVV T1 GCLUTEPLPOPE EVOS TETOLOV GUGTHLATOG
elval vrepPorikd peydhog, e AMOTEAEGIA QVTEG O TOPUOOCIOKES pEBodOL va glvat avemop-
Kelg, apol akOpa Kol av Yivel O10KPITOTTOINGT TOV GUVEXDV LETOPANTAOV TO TANO0C TOV Ka-
TAGTAGE®V TOV Oa OTOTOVVTOV Y10 VO, VOTOPOGTHCOVY OAOVS TOVG SVVATOVS GLVOVAGHOVE
TOVG AVEAVEL EKOETIKA e TO TANB0G TV TAPAUETPOV.

210 TAaico 0VTHG TG EPYAGIOG, TPOTEIVOVLE TNV ¥PNOT| TPOTOTO|GEMV GTO TOPUSO-
GLOKE OVTA LOVTELD EVIGYVTIKNG EKULEONONC, O1 0TTOlEG TTPOYLATOTOLOVY OLVOLKO OLOLOTPOL-
GO TOV YMPOL KOTAGTAGEDV YPNOILOTOLOVTOG AEVTpa ATOQAGE®Y. Y AOTOL0VUE KO TTEIPOL-
HaTICONOOTE e JLPOPETIKEG VAOTOMGCELS TETOLMV OAYOPIOU®V G GEVAPLO TPOCOUOIMONG
EUMVELGUEVA OO TO YDPO TNG dlayelpLoNg TOPOV GE VTOAOYIGTIKE VEPT), KO SIOTIGTMOVOLLLE
OTL 01 AMOGELG AVTEG EMTVYYAVOLV KAAVTEPEG EMOOCELS OO TOPASOGIUKES AVGELG GE TETOL0V
gldovg mpoPAnpata. TELOC, doKALOVIE TNV TPOTEVOUEVT] AVOT| LOG GE £VOL TPOYLOTIKO
HBase cluster pe m ypnomn tov TIRAMOLA, €vO¢ GuGTHLOTOG SLoYEIPIONG UN-OXECIOKDY
Bacemv dedopéEvmV.

A&Ee1c KAheo1d

Elaotikdtra, Awyeipion [opwv, Yroroyiotikd Népog, MaproPiavég Atadikaciec ATopd-
cewv, Aévipa Amopdoewv, HBase, NoSQL, TIRAMOLA

Abstract

Cloud computing has been one of the fastest evolving industries over the last decade. With
the introduction of Big Data and technologies such as distributed non-relational databases,
the need for tools that can control and orchestrate those technologies is important as ever.
One of the biggest challenges in the field, is developing methods of dynamically allocating
resources for these applications, a concept known as elasticity.

Since in its core elasticity is a decision making problem, Markov Decision Processes
and Q-Learning have been proposed in the past as methods of modeling those systems and
making optimal decisions. However, the number of parameters that affect the behavior of
these systems is exceedingly large, making traditional methods inadequate to model their
full complexity, since even if the parameters are discretized the required number of states
needed to model them grows exponentially with their number.

In this work, we propose using modifications of traditional reinforcement learning algo-
rithms that partition the state space dynamically using Decision Trees. We implement and
experiment with such algorithms in simulation scenarios inspired from the field of cloud
computing, and find that they can outperform traditional solutions in these types of scenarios.
Finally, we proceed to test our solution in a real HBase cluster running on top of an Open-
Stack IaaS provider with the help of TIRAMOLA, an open-source, cloud-enabled framework
for the management of NoSQL clusters.

Key words

Elasticity, Resource Management, Cloud Computing, Markov Decision Process, Decision
Tree, HBase, NoSQL, TIRAMOLA

Evyaprotieg

Me Vv ekndvnon g mapovong PYOciog OAOKANPMOVETOL 0 KOKAOS GTOLOMV OV GTN
Yyxol Hiektpoddywv Mrnyavikdv kot Mnyovikdv Yroroyiot®v tov EGvikod Metoofiov
[Tolvteyveiov, 0 omoiog amoterel T0 dHTEPO MPONTLYLOKO KUVKAO GTTOVIMV LOV GTO GUYKE-
KPLUEVO 1dpupLa.

®a nBeia apya va evyapiomom tov Kadnynt k. Nextdpro Kolvpn yio tn dvvatdmrta
OV LoV £dMOE VO AGYOANOD LE TO GVYYPOVO KoL EVOLOQEPOV B TS TOPOVONG EPYOCIAGC.
Eniong, 0o n0ela va evyopiotiom tov petaddaktopikd epevvni lodvvn Kovotavtivov yuo
TN oLVEYN TAPOKOAOVONGN Kot TO YPOHVO OV APLEPWGE Y10, VO SIEVKOADVEL TNV OAOKANP®OT
™G epyaciag, 0AAG Kol TO avoryTd LVaAd To omoio emédelEe oe KAOE TpeAn 10€a oL Y0l KOTA
T O1dpKeLa TG cvvepYaciag pag. Oa NBeha EMTAEOV VOl EVYAPLGTIIC® OAOKATPO TO TPOGH-
ik Tov Epyactmpiov YnoAoyiotik®v ZuoTtnUdToV, Kot 1010iTtepo TOV VIOYNPLO 10GKTOPO
Xpnoto Mavtd, yio v QUeEST) AvTOTOKPLIoT TOVG OTOTEOTOTE KATESTT avarykaio 1) fonfeid
TOVG.

Téhog, Ba NBeha Vo EVYOPIGTCW® TOVG YOVELG LOL Y10 TNV OTEPLOPLOTN GTHPIEN TOV OV
TOPEDOV KO TV DIOPOVI TTOL EMESEIEAV KATA TNV ATOKTNGN Kol TOV d00 TITA®V 6Toud®mV
Hov.

Adrog B. Kevetavtivog,

AbMva, 111 Ilavovapiov 2016

Contents

Hepidnqym L o
Abstract L
Evyapwotieg L
Contents
Listof Figures
1. Ewoayoyn e
L1 Kivntpo o e e

1.2 Zyetikég Epyooieg. o . o

1.3 TIpotetvOuevn AVOT o e e

1.4 Opyavoon Kewévooo

1.5 Teyxyvohoywod YmOBabBpo
1.51 HDFS

1.52 HBase.

1.53 OpenStack e

1.54 Ganglia e

1.6 Evioyotucq Expdbmon oL
1.6.1 Awdwoociec Amopdcewv Markov L.

1.7 Tleptypo@ TNGUAOTOMNGNG .« « « « « v v v v e e e e e e e e e e e e e e

1.8 Amoteléopata [Ipocopoimong L

1.9 Tlepopotikn ASIOAOYNOT o o o e e
110 ZOUREPAGHOTO . . . v v v v v e e e e e e e e e e e e e e

2. Introduction
2.1 Motivation. e e

22 RelatedWork

2.3 Proposed Solution
2.4 ThesisStructure e

3. Elastic Resource Management
3.1 HDFS . . . e

32 HBase e e

12

32.1 TheHBasedatamodel 48

3.2.2 The HBasearchitecture 50
33 OpenStack 50
3.3.1 The OpenStack Architecture 50
34 Ganglia e e 52
35 Tiramola. e 54
3.5.1 The Decision MakingModule 54
Reinforcement Learning00 57
4.1 Introduction 57
4.1.1 The goal of Artificial Intelligence 57
4.1.2 Machine Learning 57
4.2 Reinforcement Learning 58
421 Definition 58
4.2.2 The goal of Reinforcement Learning 58
4.2.3 Exploration vs Exploitation 59
4.3 Markov Decision Processes L. 60
43.1 MarkovModels 60
4.3.2 Optimal Policy Calculation 61
4.3.3 Exploration Strategies 64
434 Learning from Experience 65
435 Q-Learning 65
4.3.6 The Model-Based Approach 66
Decision Tree based Reinforcement Learning 69
5.1 DecisionTrees e 69
5.2 Decision Tree based Q-learning 70
53 ContinuousUTree 73
5.4 Description of our Implementation 74
541 OVEIVIEW v vt o e e e e e e e 74
54.2 Splitting Criteria 76
543 Performingthesplit. 77
54.4 Statistical Tests e 78
Simulation Resultso oo 81
6.1 Parameterization 81
6.1.1 Statistical Significance, 83
6.1.2 Minimum Information Gain 90
6.1.3 Minimum Number of Experiences to Performa Split 92
6.1.4 Splitting CriteriaOverview 98
6.1.5 Splitting Strategy 99
6.1.6 Initial Size of the Decision Tree 103
6.1.7 DiscountFactor 105
6.1.8 Exploration Strategy 109
6.1.9 Update Algorithm 113

6.1.10 LearningRate. 115

6.2 Performance 118
6.2.1 SimpleCluster, 118

6.2.2 ComplexCluster 123

7. Experimental Resultso 0oL 129
7.1 Experimental Setup 129
7.1.1 Cloud Management 129

7.1.2 Cluster Management 130

7.1.3 Generating the Workload 131

7.1.4 Collecting Metrics 131

7.2 Results. 132
7.2.1 SystemBehavior L. 132

7.2.2 Effect of the initial number of states 135

7.2.3 Using Different Models 135

7.2.4 Restricting the Splitting Parameters 138

8. Epilogue 141
8.1 Conclusions 141

82 FutureWork 143
Bibliography 145

13

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.8

1.9
1.10

1.12

1.13

3.1
32
3.3
3.4
3.5
3.6
3.7
3.8

4.1

H apyrtektovicitoo HDFES o oo 26
HoapyrtektovikimcHBase o oo 27
To tpquota tov OpenStacko L 28
H apyttektovikn tov cvetquatoc Nova 29
H apytektovikiptov Ganglia 30
I'papun avamapdotoon pog anAng Aladikaciog Amopdcewv Markov pe

d00 KaTAoTACELS Kot dVO dpacels dtobéotpeg oe Kabe katdotaon 31
O Sy ®p1opds oG KOTAGTAONG GTO OEVTPO ATOPACEDY € V0 VEES KATO-
otdoeis. H mpot xatdotaon avikadiotd v moAd 6tov mivako KotaoTd-
GEWV KOl 1| OEVTEPT) TPOGKOAAATOL GTO TEAOGTOV. . . .« v v v v v o v v . 33
Ewoepydpevo @optio kol SIEKTEPOUMOTIKT dLVATOTNTO TNG GLGTASNS GE Uil
dokipaotikn ektédeon pe 5000 Pparta ekraidevong, 2000 Buata aglohd-

ynong Kot cuvtedeotn e€gpgvvnonge = 1.0 oL Lo 35
2HyKplon G amddooNg TV TEGGUPMV aAyopiOuwy L. L. 36
ZOUTEPIPOPA TOV GUGTAUATOG VIO £Va UITOVOEEG PopTio, S00 Prinata ex-

TOIOEVOMG « « v v v o e e e e e e e e e e e e e e e e 37
SOUTEPLPOPA TOV GLGTHUATOS VIO EVa NUTOVOEWES popTio, 1500 Pruata

EKTIOUOEVUOTG + « & v v v e e e e e e e e e e e e e e e e e 38
ZOUTEPLPOPA TOV GUOTHLATOG VIO EVa NUITOVOELEG popTio, 20000 fruata

EKTTOHOEVOTG « « « v v v v o e e e e e e e e e e e e e e 38
ZOUTEPIPOPA TOV GUOTHUATOG VIO EVOL NUTOVOELDES POPTIO EVOALUCTOLLE-

VOO OWOUG & v v v o v e e e e e e e e e e e e e e e 39
The HDFS Architecture 47
The HBase architecture 49
The fundamental building blocks of OpenStack 51
The Nova system architecture 52
The Ganglia architecture [Mass04] 33
The Ganglia implementation [Mass04] 54
Tiramola’s architecture oL 55

Example of Tiramola choosing the centroid of a clustering based on the value
of the throughput A [Tsoul3] 56

A simple Markov Chain with three states and nine transition probabilities
betweenthestates L 61

16

4.2

5.1
5.2

53
54

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16
6.17

Graph representation of a simple Markov Decision Process with two states

and two actions available ineachstate 62
A simple decisiontreeo 69
An example of the G algorithm partitioning the state space based on two bits

oftheinput [Chap91] 71
State space partition using a decision tree [PyeaO1] 72

Splitting a state in the decision tree into two new states. The first state replaces
the old state in the states vector and the second one is appended at the end. . 75

Incoming load and cluster capacity in a sample run with 5000 training steps,

2000 evaluationstepsande =1.0 82
Accuracy of the four statistical criteria using the Parameter test, for different
values of the maximum type lerror. 84
Accuracy of the four statistical criteria using the Q-value test at the median
point, for different values of the maximum type [error 84
Accuracy of the four statistical criteria using the Q-value test at multiple
points, for different values of the maximum type [error 85
Number of splits for the four statistical criteria using the Parameter test, for
different values of the maximum typelerror 86
Number of splits for the four statistical criteria using the Q-value test at the
median point, for different values of the maximum type L error 86
Number of splits for the four statistical criteria using the Q-value test at
multiple points, for different values of the maximum type [error 87
Performance of the four statistical criteria using the Parameter test, for different
values of the maximum type lerror. 88
Performance of the four statistical criteria using the Q-value test at the median

point, for different values of the maximum type [error 88
Performance of the four statistical criteria using the Q-value test at multiple
points, for different values of the maximum type L error 89
Percentage of splits performed on parameters that affected the behavior of

the system for different values of the minimum information gain 90
The total number of splits for different values of the minimum information

AN e e e e 91
The total number of splits performed on parameters that affected the behavior

of the system for different values of the minimum information gain 91
The sum of rewards obtained for different values of the minimum information
AN . . . L e e e 92
The performance of the algorithm as a function of the minimum number of
experiences required in either side of a split when allowing multiple splitting
POINES e e e e e e 93
Zoominonfigure 6.15 94
The total number of splits performed by all tests as a function of the minimum
number of experiences required in either side of the split when allowing
multiple splittingpoints 94

6.18
6.19

6.20

6.21

6.22
6.23

6.24
6.25
6.26
6.27
6.28

6.29
6.30

6.31
6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41
6.42

Zoominonfigure 6.17 95
The percentage of splits performed on parameters that affect the behavior of
the cluster as a function of the minimum number of experiences in either side
of the split when allowing multiple splitting points 95
The performance of the algorithm as a function of the minimum number of
experiences required in either side of a split when allowing a single splitting
POINt L e e e e e 96
The total number of splits performed by all tests as a function of the minimum
number of experiences required in either side of the split when allowing a
single splitting point 96
Zoominonfigure 6.21 97

The percentage of splits performed on parameters that affect the behavior of
the cluster as a function of the minimum number of experiences in either side
of the split when allowing a single splitting point 97
Performance comparison of all the splitting criteria using their optimal settings 99
Performance comparison for ten different splitting strategies 100
The size of the decision tree at the end of the evaluation phase for all splitting
SIrategies e e e e e e e e e 101
The percentage of decision nodes of the final decision tree that partition the
state space using parameters that affect the performance of the system . . . 101
A decision tree implementing a 2-dimensional grid on the values of two
PAramMeters e e e e e e e e e e e 104
The effect of starting with an existing decision tree on the performance . . . 104
The number of splits performed and the final number of states as a function
of the initial size of the decisiontree 105
Performance for four different models as a function of the discount factor . 106
The effect of ignoring transitions on MDPDT splits for different values of
the discountfactor. 107
The effect of ignoring transitions on the total amount of splits performed by
MDPDT as a function of the discount factor 107
The effect of ignoring transitions on the accuracy of the splits for both models
as a function of the discount factor oL 108
The performance of four algorithms for different levels of the exploration
constant e 110
Zoominonfigure 6.35 110
Total number of splits as a function of the exploration constant 111
Percentage of splits on parameters that affect the behavior of the system as a

function of the exploration constant 111
MDP behavior when € = 0.0. The fluctuations in the capacity of the cluster
are caused by the types of the requests. The size of the cluster remains constant. 112

MDP behavior when ¢ = 0.5. The exploration is focused around the better

regions of the state space., 112
MDP behavior when € = 1.0. The exploration is completely random. 113
Performance of MDPDT and MDP for different update algorithms 114

18

6.43

6.44
6.45

6.46

6.47
6.48

6.49

6.50

6.51

6.52

6.53
6.54
6.55
6.56

6.57

6.58

6.59

6.60

6.61

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

The performance of Q-learning and QDT for different values of the learning
TAte . . L L e e e 116
Zoom in on the performance of the 2-dimensional Q-learning model 116
The total number of splits performed by QDT for different values of the
learningrate v 117
The percentage of splits performed on parameters that affect the behavior of
the system as a function of the learningrate 117
The performance of four different MDP models in the simple cluster scenario 119
The performance of four different Q-Learning models in the simple cluster
SCENATIO . .+ v v v e v e e e e e e e e e e e e e e 120
Performance comparison between MDP and Q-Learning in the simple cluster
SCENATIO . .« « v v v e v e e e e e e e e e e e e e e e 120
Performance comparison of the decision tree based models in the simple
cluster scenario 121
Performance comparison of the full-model decision tree based model with its

fixed size counterpart in the simple cluster scenario 121
Performance comparison of the Q-Learning decision tree based model with

its fixed size counterpart in the simple cluster scenario 122
Performance for all models in the simple cluster scenario 122
The penalty to the capacity of each VM in the complex cluster scenario . . 124

The performance of four different MDP models in the complex cluster scenario 124
The performance of four different Q-Learning models in the complex cluster
SCENATIO . .« v v v v v e e e e e e e e e e e e e 125
Performance comparison between MDP and Q-Learning in the complex cluster
SCEMATIO . .« v v v v vt e e e e e e e e e 125
Performance comparison of the decision tree based models in the complex

cluster scenario e 126
Performance comparison of the full-model decision tree based model with its

fixed size counterpart in the complex cluster scenario 126
Performance comparison of the Q-Learning decision tree based model with

its fixed size counterpart in the complex cluster scenario 127
Performance for all models in the complex cluster scenario 127
System behavior under a sinusoidal load (minimal dataset) 132
System behavior under a sinusoidal load (small dataset) 132
System behavior under a sinusoidal load (large dataset) 133
System behavior under a sinusoidal load with alternating amplitude 133
System behavior under a slow sinusoidalload 134
System behavior under a square pulseload 134
The effect of the initial number of states in the behavior of MDPDT 136
Comparison of the behavior of all fourmodels 137

System behavior when allowing splits with only the cluster size plus one
additional parameter 138

7.10 Resulting size of the decision tree when allowing splits with only the cluster
size plus one additional parameter

19

Chapter 1

Ewsoayoyn

1.1 Kivntpo

H expnktikn avantoén tov cuotnudtov vToAoyiopov vépovg (cloud computing) v
tehevtaio dexoetio £xel oAAAEEL prlikd T dopun Kot TovV TPOTO AELTOVPYIOG TOV EQUPLOYDV
KOl TV LINPESLOV. Agdopéva dmg £yypapo epyaciog, OV Kol YOS, 0EGOUEVO KOWV®-
VIK®OV SIKTO®V Kot TOAAG ok amodnkedoviat oe vanpeciec vEPoug Kat yivovtot dabéoiua
TOYKOGUMG HEG® LINPEGLOV SLOOIKTHOV. O GYKOG OVTMV TOV SESOUEVOV LETPLETAL OE TPL-
oekatoppvpla Gigabytes (1] Zetabytes). H avaykn avdyxn yio omobnkevon kot enegepyasio
VTOV TOL OYKOL dedOUEVMV TPOKAAESE TN Onovpyie Hog Gepds amd vEES TEXVOLOYiES
Kol opYLTEKTOVIKEG. O1 TaPad0CI0KES OYEGIOKES PAGELS SEGOUEVOV AOY® TNG APYLTEKTOVIKNG
TOVG 0V NTAV OLVATOV V. PIAOEEVIIGOVY ALTO TOV OYKO TV OEOOUEVMV, LE OTOTEAEGLLOL VOL
onuovpynOet Lo oelpd amod véeg, Un oxec1okEC PACELS Y10 VO EKTTANPMGCOVY dLTO TO GKOTO.
O1 Bdoelg dedopéEVmV aVTEG £ivol GYESIAGIEVES MOTE VO, TPEXOVY G UEYOAN KOTOVEUTLEVOL
cvoTiuata, Kot Oyt amid Stoyepilovtal To SOUOPAGHO TV SES0UEVOV KOL TO GUVTOVIGUO
TOV SIPOPETIKADOV VITOAOYIGTMV GTOVS OTOI0VE TPEXOVV, HALA £XOLV TN SVVATOTNTA VO XEIPL-
GTOVV KOl A0TOYIEG GTO VAIKO TMV VITOAOYIGTMV, KATL TOV GE aLTH TNV KAIpaKA elval avomo-
(PEVKTO.

‘Exovtag) duvatdtnta vo EKTEAEGTOVV GE YIAMADES VITOAOYIGTEG, TO. GUGTNHLOTO QVTE
OLYVA TPEYOLV OE EIKOVIKA TEPPAAAOVTO, TO OTTOT0 TOPEYOVTOAL OO KATOLOV TAPOYO VI PE-
olwwv vrodoung (Infrastructure as a Service). Avtol ot Tapoyol £xovv TN dvvatdTNTa VoL
VROGTNPIEOVY TN AE1TOLPYIO YIAAO®V EIKOVIKMV UNYOVOV, KOl GUYVO LITOPOVV Vo vENGouV
N VO LEWGOVY SVVAULKA TNV TOGHTNTO TOV TOP®V TOL TOPEXOVV G KAOE YpNoTY, Lo 10€0
Yvoot) o eractikdtnta (elasticity). llapdia avtd, 6TIG TEPIGCOTEPES MEPMTMGELS, Ol HEDO-
d01 HECH TV OTOIMV EMTVYXAVETOL OVTH 1] EAACTIKOTNTA EIVaL ATAOTKES, KO OTOLTOVV OO
TO XPNOTN VO OpICEL GLYKEKPIUEVA KprTnpla He PAon ta omoio avEAVETOL 1] LELDOVETOL T
TOPEYOUEVT] TOGOTNTA TOPWV.

[ToA) cvyva dpme, avtég ot pEBodoL ANYNG ATOPAGEMY AdLVATOVV VO ETITOYOVV KOAT
amdO00N 0€ TOAVTAOKO KO SUVAUIKA TEPIPAAAOVTA, OPOV 1 OTAOTKT VUGN TOLG OEV TOVG
EMTPENEL VO, TAPOVV GTPOUTNYIKES ATOPAGELS. Mid 10 GLGTNATIKN TPOGEYYIoN 6TO TPOPAN-
Lo UTOpEl VoL YIVEL e T (P1ON TEXVIKMV EVIGYVTIKNG EKPLAONoNg Omwg Maprofiavav Alvoi-
owv Aropacewv (Markov Decision Processes) W O-Learning. Avtoi ot adyopifot amoteAovv
KAMOIKEG ADGELS G€ TPOPANUATO ANYNG ATOPAGE®V, KOl TOPEYOVY £YYUNCELS PEATIOTOTNTOG
Vo AoYIKEG TPOHTODECELC.

Axoua Kot 0vTEG 01 AVGELS OLMG £XOVV TOVG TEPLOPIGLOVG TOVG. XE oL TUTTIKN Bedpnon

21

EVIOYLTIKNG EKPLAONOMG, 0 KOGHOG Umopel va fpiokeTal o€ pio GEPE amd SOLVATEG KATOGTAGELS
(states), ko o€ KaOe T€T0100 KOTAOTOON oL GEPA 0md OpAcelS (actions) givor dtobEouec.
Metd v extéleon Kamolag dpdong, o dpdotng emPpafevetor pe po Pabuwtn evioyvon
(reinforcement), ka1 0 KOGHOG petafaivel o€ pa Koavovpla katdotact. Ot alyopiBpot sivol
BérTioTotvId TV £vvola OTL HEYIGTOTOLOVV KATO10 LAKPOTPOOEG O HETPO OLTMV TV EVIGYD-
cewv. EmmAéov, avt 1 BedtiototnTa enttuyydveTon vd Ty tpodnddeon 6t GuUTEPIPOPE
TOV KOGHOV glval id1a kKABe opd mov PpiokeTal G po GUYKEKPLUEVT] KaTdoTaon (Ha 1010Th-
To YVOOTH ©G 1010TNTa Markov). Avtd onuaivel 0Tt 01 KOTOGTACELS TOV Bl ETAEYOVV YO TN
LLOVTEAOTTOINGT) TOL KOGLOV Oa TPEMEL Vo VoL ETOPKAOG AETTOUEPEIS DOTE VO AVTIKOTOMTP-
Couv 0AOKAN PN TNV TOAVTAOKOTNTO TOV GLUGTILOTOC.

2V TEPITTOON TNG OOXEIPIONG KATAVEUNUEV®V, LT GYECLOKOV BAGEMV OEO0UEVMV TTOV
eKTEAOVVTOL € TEPBAALOVTO VEQOVG OULMG, O 0p1OLOS TV TaPAUETP®V Ol 0Toies ennpedlovv
TN GLUTEPLPOPA TOL GLGTIHLOTOC Eivar EEUPETIKA PeYOAOS (TANO0C Kot YOpaKTNPIGTIKA TOV
HNYavav, 0£d0UEVaL AmdGO0GN G TPAY LATIKOD YPOVOV, XAPUKTNPICTIKA TOV POPTIOL KAT). AKO-
U1 Kot 0V Ot TIHEG TOV TOPAUETPOV VTOV SL0KPLTOTOO0VV, 0 0pIoUOG OGS SLOPOPETIKNG
KOTAOTAONG Yo KAOe Evay amd TOVS GUVOVAGHOVE SUPOPETIKMY TIUMV TOVG B 001 yoVoE
oe ekfetikd peydro apBpd Kotaotdoemv. 'Eva poviého evioyutikng ekpnddnong avtig e
KAMpokog oyl oamAd oev Bo pmopovoe va avarapactadel ot pviun, oAAL TOAD TEPIGGOTEPO
Ba Mrav advvarto vo ekmodevdel, apob To TANB0¢ TV gumepldy Tov Bo amatrtovviay Bo nTov
emiong exBetikd peydro. To aviikeipevo avtg g epyaciog cvuvendmg, ivor 1 avalntnon
HeBOOWV 01 0Toieg UTOPOVV Vo EEMEPACOVV QLTI TI OVGKOALN, EVD TOVTOYPOVA TAPEYOLV TOL
{010 TAEOVEKTLOTAL LLE TIG TOPAOOGLUKES LeBAOOVG EVIGYLTIKNG EKUAONONG.

1.2 Xyetikéc Epyaoieg

210 &pBpo [Chap91] ot suyypapeic mpoteivouv o tpotoroinot tov Q-learning mov £yet
duvatdtnta yevikevong enl g €166d0v. To mpdPAnpa 10 omoio Tpoomtabovv va ETAVGOVY
glvat 0 EAeyy0G EVOC YOPAKTPA GE £VOL SIGOLAGTOTO NAEKTPOVIKO Ty Vidl, OOV 1 £16000G 1
omoia mailel To pOAO TNG KOTAGTOGNG TOV KOGUOVL lval pa oepd amd bits Tov avTioToryovV
TNV AVATOPACTOCT TOL oY VIOV 6Ty 006vn. E@dcov to unKoc avtg g cPoA0GELPAC
etvar peyahdtepo amd pepikég ekatovtdoeg bits, To pHéyebog Tov ydpov KATAGTAGEWY ToL Hal
amorteito Oa frav peyakvtepo and 219 kataotdoelc, kol cuven®g eivol avaykaiog kamolog
TpOTOG yevikevong ent ¢ €16600v. O mpotevOUEVOS alyop1Oog dtapolpdlel oTadloKd TO
YDPO KATACTAGE®V [E PAomn TiC TIEG HepOVOIEVOV bits TG e16000v. O €Aeyy0g Y10 TO TO10
bit mpénetl va ypnoorombei kébe popd yio To Slapopacud avtd yiveTon e T ypnon evog
#-GTOTIOTIKOV TEOT.

10 GpBpo [Pyeall], mpoteiveton évag akydpiBuog Paciopévog oto Q-learning o omoiog
YPNOUOTOLEL EVOL OEVTPO OTMOPACEMY Y10 TO SVVOUIKO OLOUOPACUO EVOG GUVEXOVS YMDPOL
Kataotdoev. To kivnTpo eivol 1 KoTaokewr] EAEYKTOV Yo SV0 POUTOTIKEG EPAPLOYES OTTOV
0 YMPOG KATACTACEWMV vt VIEPPOAKA HeYAAOG Y1t VO SIOUOPACTEL LE KAUGIKEG TEYVIKES
dwakprroroinonc. O adyopOpog KaTaokeLALEL £vaL 0EVTPO OmOPAcEDY PacI{OUEVOS GE TUYLES
TOPAUETPOV TNG €160J0V, Kot datnpel éva poviého Q-learning ota OAAO TOL OEVTPOVL.
AL0QOPETIKA KPITPLOL EAEYYOVTOL Y10 TO GTAGILO TV KOUP®V, Kot 1) amddocn Tov adyopiod-

22

LoV GUYKPIVETOL LLE TOPAOOGLOKES LEBODOVS EVICYLTIKNG EKULAONONG Kot VELPWVIKE STV,

10 apBpo [Uthe98], mpoteiveton Evag akydpiBuog mAnpovg povtédov Pacilopevos oe
dévipa amopdoemv, o oroiog ovopaleton Continuous U Tree. O alyopiBuog ywpiletal o
dvo pdceic. Katd m @don oviloyns dedouévav, ol KATUOTAGELS TOV LOVTEAOL TOPAUEVOVY
otabepéc, aALd eumelpieg cLALEYOVTAL Ko amobnikevovtot yro perhovtikn ypnon. Kotd m
@aon emelepyoaiag, ol AmOONKELUEVEG TANPOPOPIES XPNOUYLOTOOVVTOL Y10, TOV KaBopiopd
TOV KATAOTACEWDV TOV LOVTELOL 01 0Ttoieg Ba mpémet va. dtoywprotovv og véeg. Otav ot véeg
KOTOOTACELS TOV LOVIEAOV £Y0VV AmOPUCIoOEl, Ol 101G TANPOPOPIES YPNCIULOTOIOVVTOL Y10
TOV VTOAOYIOUO TMV GLVOPTHOEMY LETAPAONS KOt AUOPNG TOL HOVTEAOV, KOt Ot a&ieg TV
KOTOOTAGEWDY KoL TOV dpacewv vtoloyifovrat ek vEov. O adydplOrog cuveymG EVOALAGCETOL
HETOED TV dV0 PAGEMV, ETEKTEIVOVTOG TEPLOJIKE TO OEVTPO ATOPAGEMVY KOl LITOAOYILoVTaG
€K VEOU TIG a&leg TOV KATAOTAGEMY TOL LOVTEAOV.

210 apBpo [Tsoul3], ot cvyypapeic mapovsialovv tov TIRAMOLA, éva framework
aVOLYTOV KMOKO TO OTOI0 EKTEAEITOL GE VITOAOYIGTIKO TTEPIPAAAOV VEQPOLS KOl TPOTOTOLEL
duvaptkd 1o péyehog oG GLGTASAS VITOAOYICTMV TAV® GTOVG OTOIOVG TPEYEL L0l U1 CYECLOL-
K1, Kotavepunuévn Paon dedopuévav cOUPOVO LE TOMTIKEG OPIGUEVEG amtd TO ypnotn. To
oVoTNHO AmoPOGiLeL To BEATIOTO PEYEOOC TG GVOTAVNG KO TPOPOiVEL VTOUATA OTIC KATOA-
ANAEG EVEPYELEG Y10L VOL TO TPOTOTOMGEL SEGUEVOVTAG 1) ATELELOEPDVOVTOG EIKOVIKES UNYOVEG
oo ToV TAPOYO LTOSOUNG, KOl EVOMUATOVOVTAG TEC TNV LITOAoW cvotdda. H cvotdda
povtelonoteiton cav po Ardwasio Ayng Aropdcemv Markov, 0Tov 01 KOTOGTACELS oV~
TOPLGTOVV OLPOPETIKA LEYEDT TNG CLOTASNG Kol 01 dPACELS EVEPYEIEC O OTTOIEG TPOTOTOLOVV
10 né€yefog me. ot TV amopdvmon TV o GYETIKMV KOTOYEYPUUUEVOV EUTEIPLOV OO
T1G omoieg va pmopet va mpoPrepbei n kKatdotaon oty omoia o petafel n cvotdda petd
NV EKTEAECT] LOG EVEPYELOG, PN OLLOTTOLEITAL O OAYOP1OLOG cGLGTAdOTOINONG A-means, Ko 1
avapevopevn avtapopn vroroyiletat pe fdon 1o KEvrpo Papovg TG TPOKHTTOLGAS TEPLO-
NG

210 apBpo [Kass14], ot cvyypageig enexteivouv tov TIRAMOLA ®ote va €xettn duvato-
™mra vo avoyvopilel dtaupopeTikods Timovg epotnudtov. Ipaypatonoteitor po avaivon
G EMMTOONS TOV OLLPOP®V TOTOV EPMOTNUATOV GTIV OTOS00T HOG KOTOVEUNIEVNS, UN
oxeolaKNg Pfaonc dedopévav dtaupdpwv peyebmv, Kot 1 amoktnOeico yvdon ypnoyLonoteiton
and tov TIRAMOLA ®ote va TpoyaToTomaoel To akpiPeis ano@acels Tpomonoinong Tov
pey£€00vg TG LOTASNG VITOAOYIGTMV OV EAEYYEL.

210 apBpo [Nask], mtapovsialetol o TPOGEYYIoN EPAPUOYNG EAACTIKOTNTAG LEGH TNG
SLVOUIKNG TPOYLLOTOTOINONG EVOC TOGOTIKOTOMUEVOL EAEYYoL pog Aladikaciog ATopd-
ocewv Markov, ypnoipomoidvtog Thovotikd EAeyyo HOVTEA®Y. MeAeTdVTAL (o GEPA 0md
LOVTEAQ TTOV OTOGKOTOVV GTNV VAOTOINGN EAAGTIKOTITOS XPTCLLOTOUDVTOG LETPNOELS OO
L0 TPOYLLOTIKNY U1 OXEGLOKT] BAoT Sedopévav VTTO cuVEXMG LeTAPAAAOLEVO eEMTEPIKO POp-
tio. H ovotdda vroloyiotdv povieronoleitat cav pa Awadikacio Atopdoewv Markov, pe
TOALOTAEG KATOOTAGEL Y10 KAOE péyefog TG GVOTAONS, KOl UN-VIETEPUIVIOTIKEC LETAPACELS
peTaEY TV Kataotdoewy. Ot TiéG pog PeTpikng kabopilovv Tov tpodmo opadomoinong oe
KOTOOTAGELS, KOl Ol ThovOTNTEG HETAPaong eivot avAAoYES Le TOV aptBpd Tov onpeimv ava
KOTAGTAOT).

>10 GapBpo [Masol5], ot cvyypapeic mpoteivouv o péBodo opadomoinong EIKOVIKOV
unyavov. O yevikdg okomdg g pebodov etvar va yeptotel puoikovg KOUPovg dote va

23

AmTOPUYEL TNV VREPPOPTMOT 1] TNV AOPAVELL TNG VTTOOOUNG, KOt VAL BEATIGTOTOWGEL TNV TOTO-
B£1nom TV eIKoVIK®OV unyovov og ovtovs. O adyopOpog Fuzzy Q-learning ypnoylonoteiton
ooV aVTIKATAGTOON TOV O-learning, Y10, VoL TEPLOPIGEL TO YDPO KATAGTAGEMV KO VO, ETLTOYV-
velr v ekpddnon. H expdbnon mpayuotonoleiton He Hior GUVEPYUTIKN TPOGEYYION, OOV
noAlamAol dpdioTeg HOPALovTaL TN YVMON TOVG HEC® £VOG GYNUOTOG emKowvwviag black-
board. O xataotdoelg kabopilovtat amd Levyn HETPCEMV TOV AVTIGTOLOVV GTN YPNOLLLO-
moinom ™G KEVIPIKNG Hovadag enelepyaciag Kot Tov aplfpod TV EIKOVIKOV UNYovOV, Kot
01 dpdioelg amoPacilovy TIG 0PLoKES TYES HLOG TTOATIKNG LETAKIVIIONG EIKOVIKAOV UNYOVOV,
KaBdS Kot To Kprtnplo emAoyng tovs. H suvdptmon avtapoiprg vroroyiletat amd v Koto-
VAA®OOT EVEPYELNG GE GLVOVOAGHO HE ToV apBud TV mapaPidcemv e SLA (Service Level
Agreement).

1.3 IIpotetvopevn Avon

H epappoyn oty omoio 6Toy€0EL N CLYKEKPEVT EpYOCia EIVOLT KATAGKELT) EVOC GLGTY-
HOTOG TO Omoi0 Vo ToipveL Pe SUVAUIKO TPOTO OMOPAGELS OAAAYNG TOV YOPOKTIPIOTIKOV
KOl TOV PEYEDOVE LOG GLOTASNG VITOAOYIGTAOV TOL EKTEAOVVIOL GTO EIKOVIKO TEPIPAAALOV
evOG TapOY oL VTOSOUNS VEPOVGS. AVTO To TPOPANLLL £YEL SVO OTNUAVTIKES TPOKANGELS TTOL Bal
TPENEL VO, ANPOOLY VTTOYV:

o Ymdpyet £voc peydhog aplOpdg TopapuéTpmy Tov EXNPEALovY T GUUTEPLPOPE TOV GL-
OTNUOTOG, TOAAES Omd TIG 0Toieg Oev elvar drakprtéc. Me dAAa Adya, 1 Avon B mpémet
va €1 TN SLVATOTNTO VO YEVIKEDGEL EML EVOG TOAVOLAGTATOV KOl GLVEXOVG YDPOV KOTOL-
OTOGEWV.

e To ypovikd ddotnua mov pecorafel HeTaED OVO SLUOOYIKMOV ATOPAGEWV VoL TNG TA-
Eemc TV Alywv Aemtdv. AVTo €11 000 onuavTiKég ovvénelec. [IpdTov, n Anyn dedoue-
vov yivetar pe apyd tpomo, mpdypa mov onuoivel 0Tt o adydpiBpog Ba tpémetl va kdvet
660 yivetal KahOTepT Xpnom Tov dedopévav Tov £xel otn d1dbeon Tov. Agvtepov, V-
YEL VO LEYOAO YpOVIKO OldoTnua SafEcIHo Yoo Ayn anmopdcemy, Tov onuaivel 0Tt
elval eIkt 1 XPNOMN LIOAOYICTIKA AKPPOTEPOV AVGEWMV Y10 TO GKOTO OTO.

Mo ™MV avTETOMION TOV GUYKEKPUEVOV TPOKANCE®Y, GTNV TTapaypago 1.7 mpotei-
VOLUE pot AOGT LE TO TOPOKAT® YOPAKTNPIOTIKA:

e Yio0etovpe o mpocéyyion Paciopévn og TAnpn poviéda Markov avti yio pia tpocéy-
yion Baciopévn oto O-Learning. 'Exovtag 61t 0160gom pag xpdvo g tdéEng v pept-
KOV AETTOV Y10, ANYT| 0TOPACE®V, VOl pEAAGTIKO VO SLOTPOVLE EVOL TANPEC LOVTELO
Awdkocioc Atopdoemv Markov yio to cOGTHE oG, amodnKevovTog 0E00UEVA Y10 TIG
avTopoBEg Kot TIG LETAPACELS TOV GUGTNUATOG, KOl VO, YPNGLLOTO00UE alyopiBuovg
onwg Prioritized Sweeping xou Value Iteration Yo, TV EVUEPOOT TOV TIHUOV GE KAOE
Brua. To yeyovog Ot ot gumelpieg cLAAEYyovTol pe apyd pvBud meplopilel to péyebog
TOL HOVTEAOV KOl KAVEL OLVOTY] TNV EKTEAECT] TOADTAOK®V VITOAOYICUMV.

o Emiléyovpe 1t yprion evdg adyopiBuov Pacilopevov oe 0Evipa amoPACE®Y Yoo TV
TPOYLOTOTOINOT SLVOUIKOD SOUOIPOCHOD TOL ¥MDPOL KotaoTtacemv. Ot adydpOpot

24

nov PBacilovtal o dEvTpa amoPdcemV, eV avTIBESEL e TOVG TAPASOCIAKOVS aAyopi-
LOVG EVIGYLTIKTG KpdONong, dev mepropilovion amd éva otabepd aplfud Kotaotdoemv
0 omoiog mpémel va Kaboplotel otV apyf TG EKTEAEONC, OAAL LTOpohV SVVAUIKE Vol
ONpovpyoHV VEEG KOTAGTAGELS OTav aVTO Ypeldletal, OTWS EMTAGGEL 1] GUUTEPLPOPE
TOV GLOTNLATOG. AVTO Gl ATAN TOVG EMTPEMEL VAL AELITOVPYHCOVY GE VO TOAVIIACTOTO
KOl GLVEYN Y DPO KOTAGTAGEWV, OAAG ETioNg va mpocaprolovy to péyeddg tovg avdioya
LLE TNV TOGOTNTA TOV 0EO0UEVOV EKTOLOEVLGNC TOV O1a0éTovy. E@ocov avtd ta povtéha
EeKvouy pe Evay iKpO aplBud KoTaoTAGE®Y, EIVOL EDKOAOTEPO VO EKTAOELOOVV LE pial
pupn| tocotTo dedopévav. Kabng opme tepiocdtepa dedopéva yivovral dtabécia,
0 aplBuog TV Kataotdoemv avEdvertal, kot pali tov avédvetal Kot 1 akpifelo Tov
HovTéLOVL.

e Eivol amopaitntn mpodmodHeon yio) ypriyopn EKTaid€uon TOL LOVIEAOV TO VA, [UT] OTO-
TaAd ToTé dedopéva ekmaidevong. [to okomd avtod, OTav pia Kotdotaon ovikadicto-
To oo dVO VEES, Ta OedoUEVA TTOL glyay ¥PNOLOTONOEL Yo TNV EKTAIOEVOT) TNG TAALAG
KOTAGTAOMNG (PNOLLOTOI00VTOL EOVA Yo TNV eKmaidgvon g véac. Me avtd tov 1pomo,
TOPOLO TTOV OMUIOVPYOVVTOL VEEG KATACTAGELS KATA TN OAPKELN TNG AEITOLPYIOG TOV
OLOTNHOTOG, OLTEG Ol VEEG KATOOTAGELS EIGEPYOVTAL GTO GUOTNHO O] EKTOOEVUEVES
Kot ot a&ieg Tovg avtikatontpilovv OAeG TIG umelpieg mov £xovv GLAAEYEL Amd TNV apyn
¢ Agrtovpyiag Tov cuotipatos. o va emtevyBel avtd, vAomolovpe Evav akydpiBuo o
010{0G TPAYLATOTOLEL LY WPIoUO KOl ETAVEKTAIOELOT KATACTAGEMV LE TOTIKO TPOTO,
Yopig va yperaletor N KaBoAK) ETOVEKTOIOELON TOV HOVTEAOV. AVTO LG ETITPETEL
VoL ONUOVPYOVUE VEEG KOTAOTACELS ATOJ0TIKA e KAOE VEQ eumelpion TOV GLAAEYETOAL,
TPAYLLO TTOVL OYL LOVO E1VOL VTTOAOYIGTIKA YPNYOPOTEPO, ALY PEATIOVEL KO TN dVVATO-
™Mo AYNG OmoPAcE®Y TOV 0Ayopifpov.

1.4 Opyavoon Keipévovo

Yt kepdroua 1.1 €wg 1.3 opilovue to mpoPANUa 6to omoio eotTidlel avt) N epyacia,
OVOPEPOVILE CUVOTITIKA GYETIKEG EPYOTIESG TAV® GE TOPEUPEPT| TPOPANLATO Kot TEPLYPEAPOV-
LLE GLVOTITIKG TNV TPOTEVOLLEVT] AVGT LLOG.

210 ke@AA10 1.5 Tapovsialovpe Ta epyadeio KO TIG TEXVOAOYIES TOV PN CILOTOMGALE
KOTA TN OEPKELN TOV TEPAPATOV Hoc. ZuyKekpipéva, teptypapetor to HDF'S (Hadoop Dis-
tributed File System), €vo. KOTAVEUNUEVO GUGTNUO OPYEI®V TOL dNUOLPYNONKE omd TNV
Apache. ITdvo and 1o HDFS tpéyer 1 HBase, (o Katavepunuévrn Kot U oXEGLOKT Paon
dedopévmv. O Tdpoyoc vVToSoUNG €Ml TOV OTTOIOV ETPEXAV O EIKOVIKES UNYOVES LLOG YPTCLLO-
mowovoe 1o OpenStack, evd 01 PETPIKEG TOV NTAV OTOPOATNTES YlOL TN ANYN ATOPAGEMV
ocvAAéyovtav pe T Pondewo tov Ganglia. Olo ta TPonyoOUEVE EAEYYOVTOV KOl GLVTOVI-
Covtav and tov TIRAMOLA, éva framework avotytod k®d1Ko To 0010 TpayLatomotlel duva-
LIKT TPOGOPUOYN TOV YOPUKTNPLOTIKAOV UING GLGTAONG VITOAOYIGTMV £l TG OTolog TPEYEL
po katavepmuévn Baon dedopévov.

210 KepdAaro 1.6, meprypagpovpe T Aladikacieg Atopdoewv Markov, ot omoleg amote-
AovV 1 BewpnTikn Bdon g TpocsEyyons pag. Avaivovpe) Oewpio Tiow ond avTég, Kot
TEPLYPAPOVLLE TO TAEOVEKTILOTO KOl LELOVEKTILLOLTO, YVMOOTMV TPOCEYYICEMV TAV® GE QVTEG,.

25

210 kepdiaro 1.7 eotialovpe ota Aévpa AToQAGE®V, KO TEPLYPAPOVLE GE AETTOUEPELDL
TNV VAOTOINoT pag, Eva TANpeg povtéro Atadwkaciog Atopdoemv Markov to omoio ypnoyo-
motel £va AEvipo ATOQAGE®Y Y10 VoL ETLTVYEL YEVIKELON ML TNG 16000V TOVL.

210 ke@aiawo 1.8 mapovoidlovpe amoteAéouata amd Lo GEPE o TPOGOUOLDGELS. ZTO-
YOG OLTAV TOV TPOGOUOIDCEMY VAL VO SIEPEVVIIGOVV TOV TPOTO GUUTEPUPOPAS TMV OAYO-
piBuwv mov cuintOnkav oto kePdroto 1.6, kKot va a&loAoyncovy v amddoon TG TPOTACTG
HaG 6€ GUYKPLOT LE TAPOUOOGIOKES TPOTAGELS GTO YMPO TNG EVIGYVTIKNG EKUAONoNC.

210 Ke@dAo1o 1.9 mapovstalov e TEPAPATIKG ATOTEAEGLLOTO OTTO TN YPNOT) TV TPOTACNG
LLOG GE 10 TTPOYLLOTIKT] GLGTAON VITOAOYIGTAOV TTOV TPEYEL G Evav ThPoyo vrodoung Open-
Stack, eni g omoiag extedeiton pa kKotaveunpévn Paon dedopévov HBase.

Té\og, oto kKepdraro 1.10 suvoyilovpe kot aElOAOYOVUE TA ATOTEAEGLOTA TTOV TPOEKV-
yav omd T 0eaymyn e Tapovong EpYNciag.

1.5 Teyvoroyiko YnopaOpo

1.5.1 HDFS

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Namenode

Metadata ops M

Read Datanodes Datanodes

' | [
(R - - Replication 0 e %D
ju

m O Blocks
Rack 1 Wite Rack 2

Figure 1.1: H opyitextovikr| tov HDFS

To HDFS (Hadoop Distributed File System) givou éva kotavepunuévo cuotnuo apyeiov
10 omoio glval GYEOIAGUEVO MOTE Va. elval avBEKTIKO G€ 0GTOYIEG TOV VAKOV TAV® GTO 0010
exteAeitat. Amotelel o vaomoinon avorytod kmdka tov GFS (Google File System), kot
anokAiver amd 10 mpdtumo POSIX dote va mapéyel omodoTikKOTEPO TIG VINPEGIEC TOL G
EPOPUOYES TTOL OTTALTOVY VYNANG TOYVTNTAG TPOSPaoT] 6€ PHEYAAOVS OYKOLG d1000) KA ao-
OnkevUEVOVY OESOUEVMV.

Xpnowonotel apyitektovikn slave/master, 6mov to poAo tov master avarapfavel o Na-
menode, 0 0moiog etvat veHBVVOG Y10 TV OPYAVOGT TOL GUGTHLATOG APYEIDV KL TNV TALPOYN
npdcPacng oe avTd 6ToVG TEAATEG. O YDPOS OVOUAT®V £V 1EPAPYIKA OPYOVOUEVOC, KoL
01 TEAATEC TOV £YOVV TN OLVOTOTNTO ONUIOVPYING KOl XEPIOUOD KOTAAOY®OV KOt apyEiwV
HE TPOTO avAAOYO 0LTOD T®MV TOPASOGIOK®Y cuoTnuatwv apyeimv. To poio twv slaves

26

avaAiapPBavoovv ot Datanodes, ot onoiot grio&evovv ta dedopéva Tov gival amodnkevpéva
6T0 GUGTN O, KO EEVTNPETOVYV OUTHHOTO EYYPAPNS KO avAyvVOonS amd Toug TeAdteS. Tavto-
YPOVa, KOTOTY EVTOANG Tov Namenode, dnuovpyodv, KoTasTpéPouvv, 1| avtypdgeovy blocks,
ta. omoia fvon To TUNpaTo oTo omoia eivar amobnkevpéva ta apyeio Tov EAoEevodvTatl 6To
GUGTNLO.

O tpdmog pe tov omoio o Namenode evnuUepOVETOL Y10 TV TPEYOLGA KOTAGTOCT TOV
blocks givo pe v amoostoAn and Tovg Datanodes mpog avtdv avd mpokabopiopéva ypovikd
dwotiuato unvopdtov ta oroia ovoudlovtor Heartbeats. Av kdmolog Datanode amotdyet
va amooteidel Eva €To10 pjvopa Tpog to Namenode, o tedevtaiog vwodétel 61 0 Datanode
éxel 1ebel eKTOG Aettovpyiog, oTAUATA TNV TPO®ONON TPOS AVTOC ATNUATOV EEVTNPETNONG
Kol emyelpel va avatonobetnoetl o véoug kOUPovg ta blocks ta omoia ftov amodnkevuéva
GE OVTOV.

1.5.2 HBase

Client

HRegionServer HRegionServer

HRegion | { HRegion

g Store (MemStore) Store (MemStore) Store (MemStore) Store (MemStore)
g [StoreFile] StoreFile StoreFile .../ : [StoreFile || StoreFile } StoreFile]
I HFile HFile HFle]) | HFile HFile | HFile
¥ ~ ~ (¥ ~ ~o
[II&III{HII]III]IIIIII]I--- c'?,i';ﬁ,J[III\IIIIIIII\II\IIIIHIIII--- c‘:;;ﬁtJ

ooogoo || ONoO oooogo || ooogoo Dﬁﬁgm
OO0000 || 000000 [fFooodoo || oooooo [y
000000 || 000000 || 000000 || 000000 || 000000

DataNode DataNode DataNode DataNode DeﬁNode

Hadoop

Figure 1.2: H apyttextovikr tng HBase

H HBase eivat o katovepnpévn faomn dedopévav avorytoh KOdKa, 1 oroin ekteleitol
névo and o HDFS kot e€etdikeveton oty amodnkevon apaidv dedopévov. O oyxedlacpog
akoAovBei o BigTable tng Google, ko 10 HovtéAo TV ded0UEVAOV TNG OlopopoTotEiToL omd
TIG TAPUOOGLUKEG OYECIUKES PAGEIS OEOOUEVDV.

Ta dedopéva g HBase amofnievovral o€ pua oglpd anod wivakeg (fables). Kébe mivokag
amoteleiton omd oelpés (rows), o€ KaOe pia amod Tig omoieg avtioToryel va povadtkd kiewdi. Ot
OEPEC £VOG Tivaka etvar Tatvopunuéveg pe Ao to KAELO18 TOVS, TPAYLLOL TO OTTO10 EMTPETEL
GTOV TPOYPOUUATICT VO EAEYEEL TOV TPOTO pE TOV omoio glvar TaSvounpéva to dedopéva.
Kd&Be oepd amotereitor omd £va 6hHvVoro and otkoyéveleg oTNAGV (column families), ol omoieg
elva 1dteg og kAOe oepd Tov mivaxka kot opifovron katd T Onpovpyio Tov. Ot OKOYEVELES
OTNAGV amoTEAOVVTOL OO GTNAES (columns), 01 omoieg eivorl OU®S dSuVATOV VO O10POPOTOLOV-
vt oo oelpd o€ 6Epd. O GVVIVACUOG TOV KAELDI0U UIOIC GELPAG TOV TIVOKQ, UG OTKOYEVELOG

27

OTNA®OV KoL LG GTAANG avTIoTOKEL 68 £val povadikd kel (cell) tov mivaka, To omoio eriose-
Vel TV TN Tov, Tov elval pa cepd amo bits.

H HBase ypnowonotel apyrtektovikn master/slave. O Master Server giho&evel 6Aa. tal
peTadedOUEVA Yo OAOVS TOVG TIVAKEG TNG PACNGS, KOl TPAYUATOTOEL OAEG TIG OALOYEG OTN
popon toug. Ta dedopéva elvar dtoywpiopéva o pa oelpd omd meployés (regions), Kot KaOe
Region Server avaiapfaver va grhoéevioet kdmoleg and avtés. H xatavoun twv meploymv
otoug Region Servers eAéyyetal ond 1o Master Node, pe kpttiplo v 100KOTAVOUN TOL
@opTiov 6€ OAOVG TOVG KOUPOVG ToL cuathipatoc. H apyttektovikn avt g HBase g divel
™ duvaTOHTNTO VO PLAOEEVIGEL TOAD HEYAAOVG GYKOVG apaidV SES0UEVOV, EVED TO YEYOVOG
ot ekteleiton mave amd to HDFS ¢ emttpénet va mapéyet vynin d1a0ecitdtnto Kot avoyn
OTO GPAALOTA, EVO TOVTOYPOVO JIEVKOADVEL TN GuvEPYsia TG He GAAa epyaleio TG 010G
owoyévelag 6mwg To MapReduce.

1.5.3 OpenStack

= &
Dashboard
L .
‘ \
provides Ul for provides Ul for
provides Ul for *

@ @ - retrieves / stores i @ retrieves/stores

Compute images in disk files in
@ Image
/\ -

authenticates authenticates
with with authenticates

E

Identity

Figure 1.3: Ta tpunqpato tov OpenStack

To OpenStack givat po TAAT@Op L 0voLYTOD KOSIKO 1] 0010 TOPEYEL VI PEGTIES VITOAOYL-
oTkoV vépovuc. Exel tn duvatdtmra va grho&evioet eEapetikd HeYEAoVS aplfovg EIKOVIKOV
UNYOVAOV Kol 0E00UEVMV, KO VO, EKTEAEITOL GE EKATOUUVPLO PUGTKE [0V LLOTO, VTTOGTN P~
Covtag po peydAn ykapo omd texvoroyies EIKOVIKOTOINGNC.

To OpenStack Compute, eniong yvwotd g Nova, avorappdvet) dayeipion g vmodo-
ung tov OpenStack, mapéyovtag éva interface kot éva API yio to yepiopd peydrov Siktdmv
ewovikav unyovov. To OpenStack Image avaloppdavel tnv amodnkKevon 1OV EIKOVIKOV Un-
xovov, Kot tapéxet Eva API péow tov omoiov pmopovv va Tpaypatomrotnfodv epmTHUATH Yo
TIG EIKOVIKEG UNYOVEG TTOV €Vl 0moONKEVUEVEG GTO SIAPOPA GLGTHUOTO OTOONKEVGNC TOV

28

Scheduler

compute worker(s)

queue

network controller(s)

API
endpoints

volume worker(s)

Figure 1.4: H apyitektovikn tov cuotuatog Nova

Swyepiletan. Téhog, T0 OpenStack Object givon évag amoOnKeELTIKOG YDPOS LE SLVATOTNTO
euoeviag moAlmv Petabytes dedouévav. Ot vmmpeoieg tov OpenStack yivovtat dtobécieg
péosm tov OpenStack Dashboard, mov mopéyetl £va ypapiko interface yio Tovg ¥pNoTeES Kot
TOVG JOXELPLOTEG TOV GUGTHUATOG.

1.5.4 Ganglia

To Ganglia givor éva Katavepunpévo cOOTNUA ETIPAEYNG VTOAOYICTIKOV GUGTNUATOV,
10 omoio avomtuyOnKe amd To Tavemotio tov Berkeley. Xpnowonotel éva kavdir multi-
cast yio va Stopotpdlet 0eS0UEVA TOV 0POPOVY TNV KOTAGTACT LUIOG GVGTAS0S VITOAOYIOTAV,
KOl GUVOEEL TIG OLPOPETIKES GLGTAOEG TOV E£XEL VIO TNV EMOMTEIN TOV HEG® EVOS OEVTPOL
oLVVOECEMV HETAED KOUPBOV-avTITPOoSOTOV TG KAOE cvotddac. Ta dedopéva amrobnkedovton
og popen XML, avtarlidocovtol ypnotpomolidvtag to tpwtdékorilo XDR kat ontikonolov-
vton pécm tov gpyaieiov RRDtool.

O Ganglia Monitoring Daemon (gmond) eyxafictatatl oe kdOe kOpPo ¢ cvotoryiag,
OLAAEYEL HETPIKES TOV GLGTNLOTOG KOL TIG OVOKOWVMVEL GTO KOVAAL TNG GLOTOLI0G LECM
nakétwv UDP. Aoteleiton omd o oelpd amd vijpato, to TEPIocOTEPN EK TOV OTOIWV OvaL-
AQpBAVOLY VoL GUAAEYOLV TIC TYES LG GUYKEKPIULEVNG LETPIKNG. Ta dedopéva mov petadido-
VIOl 6TO KOVAAL amofnkevovtol amd dAovg Toug daipoveg gmond ¢ cuototyiog, MoTE va
etvar dvuvar 1 avdkon tovg and omoovonmote and avtovs. O Ganglia Meta Daemon
(gmetad) avorappdvet T 51060VIECT SLUPOPETIKMY GVGTOYLDV VITOAOYIGTAOV TOL TALPOKO-
AovBovvron amd To Ganglia, kot TovTOYPOVE GLAAEYEL, amodnkevel, Kot KAveL O100EG1LES TIG
UETPIKES TTOVL £Y0ovV cLAAEYEL. H amobnkevon kat ontikonoinon twv dedopévmy yivetor omd
10 gpyareio RRDtool, 1o omoio e€e1dikevetan 6Ty amobKeLOT ¥POVOCEP®Y OEOOUEVMV Kol

29

client

connect< > data

gmetad
poll poll

gmetad

Cluster Cluster

Figure 1.5: H apyrtektovikn tov Ganglia

TNV TAPOVGINGT TOLG GE LOPYPT] YPAPNUAT®V.

1.6 Ewvioyvtikn ExpaOnon

e éva TUTIKO GEVAPLO EVIGYVLTIKNG EKUAONOMG £vag dpdong £xel T duvaTOTNTA VAL Ki-
Veital 6€ KAmolo TePPAALOV TPAYUATOTOIMVTOG dpdoels. Metd v extéleon Kabe dpdong
N Katdotaorn oty onoio Ppicketal 0 KOGUOG duvNTIKA HeTABAAAETAL, KOl TO TEPPAALOV
EMGTPEPEL GTO OPACTN LA EVIGYDOH, 1| OO0 ATOTEAEL Ll AplOUNTIKNY TIUH TTOV TOL YVOGTO-
To1El TO TOGO OMOTEAECUATIKTY TV 1] Opdion Tov mpaypatoromnke. O okondg Kot cuvE-
TELNL TOV OPAOTN EIVOL VAL LEYIOTOTTOMGEL KATO10 LOKPOTPOOEGHO HETPO TV EVIGYVGEDV TOV
AapPavet.

Tomkd, Eva LOVTELO EVIGYLTIKNG EKULAONONG amotedeiTol Omd T TOPAKATO:

i "Eva 6vvolo and kotootdoeg S
ii "Eva 6vvolo and dpdoeic A
iii "Eva cbvolo and Pabuwtég evioyvoels

To tomikd PETpo TV EVIoYLGEMV TOL TPOoTADEl VO PLEYICTOTOMGEL O OPAGTNG OE £val
OEVAPLO EVIGYVTIKNG EKUAONONG €lval TO OMOUEI®UEVO ABPOICUO TOV EVIGYVCEDY TTOV Oa
AGPet kaB’ 0An t ddpkela e {ong Tov.

30

E

thn] (1.1)

t=0

H so0ywyn evog cuvielestn KOETIKNG AMOUEI®ONG OTIS EVIOYVGELG KAVEL TO TPOKVTTTOV
dBpotopa va elvar memepacpévo Kot Tantdypova mbel to dpdotn va cVAAEEEL TIG dtabéotpeg
EVIOYVGELS GTOV EANYIGTO duvaTO YPOVO, Tpdypa ov givor cuviBwg emBounTo.

1.6.1 Awdwkaoieg Amopdoewv Markov

T(sp,a2,51)

T(s2,a2,87)
T(s1,82,81) R(s2,a0)

R(sq,a0) T(s4,82,87)

R(s1.aq) T(s4.21,82)

R(s5,a
F(s1,81,81) (s2:a1)
T(sp,a4,80)

T(s0,a4,84)

Figure 1.6: I'pagikn avamapdotoaon pog aning Aadikaciog Atopdcemv Markov pe dvo
KOTOGTACELS KOl dVO dpdcels dabéoieg og kdbe katdoToom

Mo Awdikacio Atopdoewv Markov poviedomotel €va 6EVAPLo EVIGYLTIKNG EKILAONOMG
PLEG® GLUVOPTNGEOV PeTdfaong Kot avtapolBng yia Kabe (evyos KataoTdoemy Kot OpAcEmV.
H a&ia piog katdotoong ovimpooomnedel T0 AOpOIcHA TOV OTOUEIOUEVOV EVICYVCEDV TOV
Ba AdPet 0 dpdong av mailetl PéEATioTO EEKIvVTOS OO TN GLYKEKPIUEVN KoTAoTOoT. AVTi-
otoya, N a&ia evog (ehyovg KatdoTaons-0paong eival To AOPOIGHA TOV ATOUEIOUEVOV EVI-
oyVoe®V oL Ba AdPel 0 OpAoTnC oV EEKIVIGEL VoL TOULEL A0 TNV GUYKEKPIUEVT] KATAGTOON,
EKTEAEGEL TN GLYKEKPLUEVT Opdom kot TaiEetl BEATIOTA peTEmELTAL.

Vi(s)=E (1.2)

> A Rl (s1)

Q*(s,a) = R(s,a) + F

> ' R(s:, W*(st))] (1.3)

t=1

31

Agdopévav TV cuvaptToe®V HETARooNS Kot avTapolBng, ot a&lec TV KATaoTAGE®MY Kol
N PEATIOTN OTPATNYIKT UTOPOVV VO, VTOAOYIGTOVV ETAVOVTOS TO GUGTNUO EEICMCEMV:

V*(s) = max (R(s, a)+ -y Z T(s,a, s')V*(s’)> (1.4)

acA(s) s'eS

(s) = arg max (R(s, a) +y Z T(s,a, 3')V(s’)> (1.5)
s'es

Ye meplPdAiovta OOV Ol GLVOPTNCELS HETAPOONS Kot avTapolPng dev ivan YvooTég
UmopovV gite va mpooeyyliohovv pe faon Tig eumelpiec Tov amokTovvTol KaOdc 0 OpacTtng
Kiveitan péca oto mepPdArov, gite 0 SpAoTng umopel va emyelpnoet va pabet angvbeiog tig
a&leg TV dphoemV amd TIG EUTEPIES TOV GLAAEYEL, YPNCLOTOLDOVTOS EVAY AAYOPIOLO YVOGTO
¢ Q-learning. KOs popd mov ekteheitan po 0pAaon a amd Hio KATAGTACT] S, TPOYLOTOTOLE -
Tl petdfoon otny Kordotoon s kal Aapfaveton gvioyvon r, 1 ektiunon ywo v a&io Tov
Cevyovug s, a evUEPDOVETOL LECH TNG OYEOTG:

Q(s,a) + (1 —a)Q(s,a) + « (r + 7 max | Q(s', a’)) (1.6)

a’€A(s

1.7 Ileprypoa@n ™S vAomoinong

Onwg avagpépdnke mponyovpeva, 1 Vapén evog Heydiov aptfpod TopapéTpwy ol 0moieg
emnpedlovV TN GLUTEPLPOPA TOL GUGTILOTOG KAVEL 0OVVATN TV OVOTOPAGTOCT) TOV LE VO
KAaowko povtédo Markov, dedopévov 6TL 6€ AT TNV TEPITTMOT 0 AP1OUOS TOV KATUCTAGEMV
mov Ba yperdlovtay yuo TNV TEPLYPAPT) TNG CLUTEPLPOPAS TOL Ba Tay ekBETIKA PeYEAOG mG
PO ToV aplipd TV TapauéTpov. ['a TV avIETOTION VTS TG SVoKOANG, TpoTEIVOLLLE
™ xpnoonoinon evog aryopiBpov o omoiog ¥pNoIonTolEl £vo dEVIPO ATOPAGE®Y YLl TN
SLOUEPLOT) TOL YDPOL KATUOCTACEMV GE TEPLOYES OTOV 1| GLUTEPLPOPE TOL GVOCTHATOG ELVaL
evioia.

O alyopBpog Eekvd Exovtog pio KoTAoTaoN 1 0ol AvamoPloTé OAOKANPO TO YMPO
KOTOOTAGEWV, 1] 0Toia apykomoteital wg M pila Tov d0évpov aropdcewy. Tavtdypova, Evag
Voo omd KOTAGTAGELS SLOTNPEITAL, O OTOT0G OPYIKOTOLEITOL DOTE VAL TEPLEYEL T LOVAOTKT)
apywn kotdotoaon. H tpéyovoa katdotoon Tov KOoUoL avarapiotatal amd Eva GOVOAO omd
LETPNOELS. ATO QVTEC TIC LETPNGELS, 1] KATAGTOGT) TOV LOVTEAOV TTOV TOVG OVTIOTOLYEL imopel
va Bpebel pécm Tov SEVTPOL OMOPAGEWMV.

Metd v ektédeon Kdmolog 0pAong, Ol GLVOPTNGELS LETAPOONG Kot AvTOUOPG EvNpLe-
POVOVTOL KATAAANAO OGTE VO AVTIKOTOTTPILOVY TN UEXPL TOPO KATAYPAPEIGO CLUTEPLPOPA
TOV GLGTNUOTOC. XTI GUVEXELWD, 1) TETPASO TOV TPONYOVLEVOL KOl TOV TPEYOVTOS GLVOAOV
LETPNCEWDV, GE GLVIVAGHO LE TN OPAGCT] TOL TPAYLOTOTOWONKE Kot TNV EVIGYLOT| OV OTO-
KTNONKe amobnikebovial 6TV apyikn Katdotaorn e petdfaons. AkoAovBms, evuepdvo-
VIO Ol EKTIUNGELS Y1 TIG AEIEG TOV KATACTAGEMY KOl TOV dPAGEMY TOV LOVTEAOV.

211 GLVEYELD, TPOYLLOTOTOIEITOL £VOG EAEYYOG Y10 TOV EVOEXOUEVO SLOYMPICHUO TNG apyL-
KNG Katdotaong g tedevtaiog petdafoonc oe 600 véec. O €heyyoc awtog yiveton pe Bdon

32

(a) To dévtpo amodcewv mpv t0 dywpt- (b) Ta dedopéva ekmaidevong ¢ Ko-

GUO TG KATAOTOGNG TAOTOONG 0mToONKELOVTAL KOl Ol GUVOP-
Toelg petdfacng Kot avVTOUOPNG
undevifovrot

(¢c)H «otdotoon avtikaBictator amd (d) To dedopéva ekmaidevorng omokadi-
évav k6ppo amdéeaong kot Vo véeg OTOVTOL KOl Ol CLUVOPTNGCELS UETAPaong
KOTOOTACELG KOl OvTOUOLPBIG ovad oV PYoLVTaL amto

Ta dedopéva

4\V

Figure 1.7: O Soyopopodg HoG KoTdoTaong OT0 OEVIPO AMOPACE®V O 000 VEEG
kataotdoelg. H mpotn kotdotoon aviwkobiotd v moAd otov mivako
KOTOOTACEWMV Kot 1 OEVTEPN TPOGKOAAATAL GTO TELOG TOV.

TIG KOTOYEYPOUUEVES EUTEPIEG KATA TIG 0moleg eKTEAEGTNKE M TpEYovca PéATIoT dpdom.
IMa tov éheyyo avtd, cvykpivovtar pe po otatiotikn pEBodo ot Tipég kibe mopapéTpov
Yo TIG opadeg twv onueiov mov £yovv atio peyoldtepn 1 pkpdtepn amd Vv aéio g
Tpéyovoag katdotaong. Ot afieg twv onueiwv vroloyiCoviar wg g(m,a) = r + vV (s)
6mov r 1 evioyvon mov amokTHONKE PETA TV eKTELEON NG Opdong Kot s’ 1 KatdoToon
TOV HOVTEAOV TNV omoia LeTEPT 0 dpdotnc. O dtaywpiopog Oa yivel ¥pnoILOTOIDOVTAG TV
TIUN TG TOPAUETPOL TTOL o Tapdyel TNV eAdylotn mMOavOTNTO GOEAANATOC, OTMG ALt Oa
TPOKVLYEL OO TO GTOTIOTIKO EAEYYO, GTOV LEGO OPO TOV UEGHOV OPMV TOV VO GLVOLMY TILMOV.

33

H otatiotikn pébodog eErEyyov mov ypnooromdnke nrov 1o Mann-Whitney U test, To omoio
Baciletoan oTov LVIOAOYICUO TOL APOROL TV cLYKpicEOV PETAED TOV GTOWEI®Y T®V dVO
mAnBvoumdv mov kepdilovion amd otoryeio evoc amd avtoHs. O Sy ®PIGUAC TNG KATACTOONS
TPOY®PA oV 1 TOUVOTNTA GPAALOTOS TOV Ot VTTOAOYIGEL TO GTATIGTIKO TEGT EIVOL LIKPOTEPT
amo éva TpokaBoptoéVo Oplo.

Epdcov amopaciotel o Sty @plopog Hog KoTdoTaonS Tov LOVIEAOL o€ 000, undevilovral
0l CLVOPTNAGELS UETAPAONG KOl AVTOUOPNG TOL APOPOVV TN CLYKEKPUUEVT] KATAGTAOY| GE
OAEG TIC LIOAOITEG KATOGTAGELS TOV HOVTEAOV. Tawtdypova, o1 KaTayeypoUUEVEG EUTEPIES
OV 0POPOVV UETAPAGELS OO KO TPOG TNV KATAGTOCT) 0VTH S10TPovVTIOL DCTE VAL YPTOLLLO-
TomOoLV Y10, TNV EXAVOPOPE TOV HOVTEAOV GE GUVETN KATAGTAOT) LETA TO JLOYWPLIGHO.

21 oLvEKEWD N KATACTOON avTIKaBioTOTOL GTO EVIPO OMOPACEDY Ao £vo VEO KOUPO
amdPaAoNG, 0 0Tolog £xEl MG TOUdLA TOL TIG dVO VEEG KaTaoTAcelg mov Ba mwpootebohv 61O
povtéro. H tpd™ amd avtég avTikafiotd tnv ToAld 6ToV TIVaKe TOV KATOUCTACE®DY, EVE N
devtePN TPOSKOAAATOL 6TO TEAOG TOV. TELOG, 01 GLUVAPTNGELS HETAPOONG Kot OVTAUOPNG GE
OAOKANPO TO HOVTELD EMEKTEIVOVTOL DGTE VO OVTIKATOTTPILOVV TNV E1G0YMYN HOG ETTAEOV
KOTAOTOONG, KOl EKTALOEVOVTOL YPNCUYLOTOUDVTOG TO TPOSMPIVA amodnkevpuéva dedopéva
exmoaidevons. Mg avtd Tov TPOTO TO HOVIEAO EMOVOPEPETUL GTNV KATAGTAOT) TOL Ba TV
av M ekmaidevon Tov eiyxe mpaypatorombel €€ apync He avTO TO SAYWPICUO TOV YDPOL
KOTOGTOGEWV.

1.8 Amoteréopata Ilpocopoimong

Mo v a&loddynon g AOoNG LOS TPOYLOTOTOWGOLE Lo GELPA 0T TEWPALATA GE GEVA-
Pl TPOCOUOIMONG GVOTAIMY EIKOVIKAOV UNYOVAV, Ol OTOIEG EKTEAOVV [0 KOTOVEUNUEVT|
Baon dedopévav mov poptileTan e EPOTAUATO SIUPOPETIKAOV TOTAOV (£YYPAPES KO OVOLYVD-
o¢€1g). Ot adydp1Botl kaAoVVTOL VO, TAPOVY ATOPAGELS Y10, T OLVOLKT 0ALYT) TOL peYEBovG
G oLOTAdNG, N amddoon g omoiag e&aptdtal Ol Lovo amd To péEyedoOg e, aArd Kot
amto TOV TUTO TV eloePYOUEVOV epaTnUaTOV. H cuvdptnon aviapopng emPpapevel Toug
alyopiBpovg 6tav avédvovv 1o péyebog e cvoTAdug doTe Vo pumopel va eEummpetel ta
EI0EPYOUEVA EPOTNUATA, OAAAL TOVG TIH®PEL OTOV dIVOVV TEPIGGOTEPOVS OO TOVG OTALLTOV-
pevoug topovg. o va mparyatomomacouvy emttvyeic evépyeleg, Oa mpémet Ot poévo va drakpi-
VOLV TOV TPOTO LE TOV 0010 aTEC aALALoVY TO nEyefog TG GLGTANNG KOl TNV EXLPPON| TOV
€16epYOLEVOV POPTIOV, OAAG KoL TV ETLPPON TOL THTTOV TV EPOTNUATOV. T YopaKTNPIoTIKA
TOV 6eVAPIOL TPOGOUOIWGNS GLVOYILOVTAL TOPAKATO.

e To péyeboc g ocvotadag umopet va kopaivetat petald 1 kot 20 IKOVIKOV Pnyovoy.

o Ordvvatég dpdoelg o kdbe Pripa etvor va mpocHEcet pia EIKOVIKT Uy oV 6T GLGTAdA,
VO, APOLPEGEL L0 ELKOVIKT) U0V 1] VO UV KAVEL TimoTO.

e To g1oepydpevo eoptio gival pio NUTOVOELDNG GLVAPTNOT) TOV XPOVOL:

load(t) = 50 + 50sin (22£)

e To TOGOGTO TV EIGEPYOUEVOV EPOTNUATOV TOL EIVOL ATAEG OVOYVMOGELS Eivat Emiomng
L0 HUTOVOEIONG GLVAPTNGN TOV XPAVOL LE SLOPOPETIKT TEPI0O0:
r(t) = 0.75 + 0.25sin (22%)

340

34

o Av ums(t) ivar 0 aplBpog TV EIKOVIKOV Unyovov, o aptdpdc Tov epeTraTev avd
deVTEPOLENTO TOV UTOPEL VO EELTINPETNOEL 1] GLGTASA diveTOL O TN GYEON:
capacity(t) = 10 - vms(t) - r(t)

e H cvvdaptnon avrapopng e€aptdtot omd tnv KatdoToon TG GVOTAONG LETA TNV EKTE-
Aeom pog Opaong Kot dtvetat amod T oyéon:
R; = min(capacity(t + 1), load(t + 1)) — 3 - vms(t + 1)

Sample Run
250
Incoming Load
—— Cluster Capacity
200
2 150
Q
@
n
Q 1|
w
‘ |
g 100 i | 1
x] |
| heatll
so Il M |
\ } ' U
0 J Iy Y
0 1000 2000 3000 4000 5000 6000 7000
Time Step

Figure 1.8: Eicepyopevo @optio Kot OlEKTEPUIMTIKY] SLVOATOTNTO TNG GLOTAONG CE 0L
dokipaotikn ektédeon pe 5000 Bruata eknaidcvong, 2000 Prpata aEloAdynong
Kot cuvtereotn e€epevvnong e = 1.0

[Mo va edéyEovpie tn duvatdtta Tov odyopiBumy vo dtauptepicovy pe amodotikd TpoOTo
TO YOPO KOTAGTAGEWV, EKTOG OO TIG TPELS TOPAUETPOVS TOV EMNPEALOVY TNV ATAOCT| TOV
ocvotnpotog (LEyeBog ™S GVOTAONS, EIGEPYOUEVO POPTIO KOl TOGOGTO TOV EPOTNUATMV TOL
elval avayvmoelg), N €16000¢ mepleiye kol 7 emMTAEOV TOPAUETPOVS Ol TIUES TWV OTOIWV
Kopaivovtay toyaio. o voa emtoyovy oty ANyn anoedcemv, ot alyopibuotl Oa mpémel va
SLOHOPECOVY TO XDPO KATAGTAGE®MV LE BACT) TIG TPELS ONUOVTIKEG LETOPANTES TOV AVALPEPQL-
LLE KOLL VO 0lyVOT)GOVV TIG VITOAOLTEG.

O1 TPOCOUOIDGELS TEPLELY OV L0 PACT] EKTOOELONG Kol Lo eaon a&toAdynong. Katd
SLapKeELL TNG PAOMNG EKTOOEVOTG, EMAEYOTAV L TUY i Opdon e ThavoTnTa €, N 1) BEATIOT
dpdion mov mpdtewve 0 ekdotote ahydpBuog pe mbavotta 1 —e (otpatnykn e-greedy). Katd
) S1dpKeto aEL0AGYNONG EKTEAOVVTOV LOVO 01 TPOTEWVOUEVES EVEPYELEG KAOE adyopiBuov. To
HETPO GUYKPLoNG TV aAyopifumv ival To GLVOMKO TOGO TOV AVIAUOBAV TOL KATAPEPOYV
va GLAAEEOVY KaTd TN dtdpkela TG paong aloAdynong.

Ot adyop1Bpot Tov ypnooTodnkay ce AT TO TEIPOUO EIVOL O TOPOKAT®:

35

Performance of all models (100 runs)

55000

-
. |

—=]

50000 %=

45000

40000

35000

30000

Total Rewards

== MDPDT (starting with 50 states)
35000 QDT (starting with 50 states)
== MDP (1000 states)

20000 Q-learning (1000 states)

15000
2k 5k 10k 20k

Training Data

Figure 1.9: Z0ykpion g amdd0ong TV T€664pwV aAyopifumy

e MDP: Awdikacio AMyng Amopdcewv Markov mAnpovg povtédov. ‘Exetr mpokabopt-
opévo aplipd KOTOGTACEMV Kol SloTtnpel AVOALTIKA TIC CLVOPTACELS LETAPAONG Kol
avTapolpng ywo kabe dpaon. Ieprypdpetan otnv mapdypago 4.3.6.

o O-Learning: O dNUOPIAESTEPOG TPOTOC ANYNG OMOPACEMY YMPIG O10THPNON TANPOVG
povtéhov g dadtkacioc. Emiong éxet mpokabopiopévo aptBpud kataotdoewmv oAl dev
dratnpet suvapToelg petdfaonc kot avtapolpg. Ieptypdoetor oty mapdypoeo 4.3.5.

e MDPDT: H Bacilopevn o€ d4vipa amopacE®Y VAOTOINGT TANPOLS LOVTEAOD TTOV TTPO-
teivetal o€ avt Vv gpyacio. H TAnpng viomoinom g neprypdpeton oty mopdypapo
5.4.

o ODT: Alyop1Bpog mov ypnowonotet 0évipa amopdoemv aAld foaciletor o Q-learning.
[Tpoteiveton oto Gpbpo [Pyealdl] ko meprypdpeton oty mapdypopo 5.2.

H ocbykpion tov aryopifumv otabepov aptBpod KaTaoTdoE®V e TOVE AVTIGTOTYOVE TOV
Bacilovtat og dévipa AmoPAcE®Y G€ aVTO TO TPOPAN LA lvar AdKN, OEOOUEVOL OTL O1 OV TE-
POL TPETEL VOL TPALYLLOLTOTOMGOLVV TO SLOLULOIPOAGHO TOV XDPOV KATOCTAGEWV G€ £va TEPPAA-
Aov pe BopvPo ywpig va yvopilovv €K TOV TPOTEP®V TNV TOTOAOYIOL TOV, EVM Ol TPDOTOL
dEbetav amd TV apyn TS EKTEAECTG VOV OLOIOHOPPO OLOLUOLPOGHO TOV YMPOV KATOGTO-
cewv pe Baon akpPog Tig HeTAPANTEG TOL emnpéalay TN GLUTEPLPOPE TOV GLGTHLOTOG.
[Mopdra ovtd, 01 el yOPIOLOL TOL XPNGLULOTOLOVV OEVTPO ATOPAGEDY TETVUYOV WOLOHTEPA KAAEG
eMOOOELS, Kal Pe TNV TTapoyn Alyng mAnpopopiag vd) poper S0 apyIK®V KOTAGTACE®DY
KaTapepav va toug Eemepdoovy (ewova 1.9). EmmAéov, to yeyovag 0Tt £xovv T duvatOTNT
v avEAVOLY SUVAIIKA TO TANH0G TV KOTAGTAGEDMV TOVG, TOVG £dMGE TN dLVOTHTNTO VO
EKTOOEVTOVY TTOAD YP1Yopa OTAY LANPYOV TOAD Alya dedopéva eKmaidevong, oAAG OToV To

36

dedopéva Eyvay tepiocdtepa avEncav Suvapikd to LEyedog Toug Kot Ty akpifeld toug, Kot
KOTAPEPOY VO, S10TNPTICOLV TO TPOPESIGLLAL.

Ao, cLYKPIVOVTOG TNV AOd00T TV AAYOPIOLL®Y TAPOVS LOVTELOVL [LE TOVG AVTIGTOL-
0V Toug Tov Pacilovion oto QO-learning, TAPATNPOVUE O CAPT] VTEPOYY| TOV TPDOTMOV
Evavtl TV 0e0TEP®V. AVTO NTOV OVOUEVOUEVO, OEOOUEVOL OTL S1OTNPOVV GNUOVTIKA TEPLC-
cOTEPT TANPOPOPIN Y10l TO GUGTNHO Kol £XOVV TN SOLVATOTITO VO SILUOLPAGOVV TV TATPOPO-
pio TOV TPOKVITEL A KATOLn VEQ EUTELPiO 0TI VTOAOMES KOTAGTAGELS AETA, X AP GTOV
alyopOuo Prioritized Sweeping. ®vcikd, T0 TAEOVEKTNO OVTO EPYETOL LE TO TIUNUO TOV
ONUOVTIKA LEYOADTEPOV YPOVOL EKTEAEONG, OAAA OE £val TEPIPAALOV VTTOAOYIGTMOV VEPOVG
0 OTOTOVIEVOG YPOVOG ava OpAcT Yo TNV EVNUEPWGT OA®V TOV HOVIEA®MV €lval oVTMG 1|
GAA®G 0L LOVTOG.

1.9 Ileypoapatikn ASoroynon

45000
—— Incoming Load

m— (Cluster Size - - 15

A | |
W W WY

15000 3
0 200 400 600 800 1000 1200 1400 1600

Cluster Size

Incoming Load (req/sec)
e i

Time (min)

Figure 1.10: Zvunepipopd TOL GLGTHUOTOS VO €vo. MuTovoeés eoptio, 500 Pruarta
exmaidgvong

Mo v mepapatiky aEoAdynomn g AVong xpnoLomoOnke pio GuGTAdN ATOTELOVUEVT
amd 4 émg 15 ewovikég unyavég. Kabe swcovikn punyovn elxe 1GB pvqun RAM, 10GB yopo
amofrkevong kot pio eikovikn CPU, evod o Master Node iye 4GB RAM, 10GB y®po amob)-
kevong ko4 sewovikég CPUs. oty ekmaidevon tov adyopifuwv mov Bacilovtay e dévipa
amopdoemv ypnolworomonke Eva chvoro and 12 petafAntés, ol omoiec mepteAdpufovoy:

e To péyeboc g cVOTASNG LTOAOYICTMOV
e Tnv mocotnta g wvhiung RAM avad sikovikn pnyovn

37

45000

= Incoming Load 15
= Cluster Size

13

35000
11

Incoming Load (reqisec)
[{=]
Cluster Size

25000

15000 3
300 400 500 600

8
g

Time (min)

Figure 1.11: Xvunepipopd 100 GLOTHUATOG VIO Eva MULTOVOEWEG poptio, 1500 Prparta
ekmaidevong

45000

= Incoming Load

— Cluster Size =

13

35000
11

Incoming Load (req/sec)
[i=]
Cluster Size

25000

15000 3
300 400 500 600

g
g

Time (min)

Figure 1.12: Xoumepipopd T0v GLGTNUATOS LTO £val NUTOVOEWES poptio, 20000 Prypoto
exmaidgvong

e To mocooto ¢ ehevBepmg pvung RAM

e Tov apBud tov eikovikav CPU avé sikovikr| punyavn

38

45000

m— |icoming Load 15
= Cluster Size
40000
13
35000
o |
E 11
(=0
£ &
g 30000 | e
2 9 B
= =
= =]
:
£ 25000
7
20000 5
15000 3
0 200 400 600 800 1000 1200 1400

Time (min)

Figure 1.13: Xvunepipopd oV GUGTHLATOG VIO £VOL NULTOVOEIDEC POPTIO EVOALUGGOUEVOL
VYoug

Tn xpnowonoinon g CPU

Tnv amobnkevTikn avoOTNTO 0VA EIKOVIKT UIYovN)

Tov apBud Tov artnuatov £16600V/€£600V aVE SEVTEPOLENTO AVE EIKOVIKT U0V

To moc0aT6 TOL YPOVOL Katd Tov omoio 1 CPU avéueve Aettovpyieg £16660v-££600V

Muo ypoppukn TpoBAeEYn Yia To VYOG TOV EIGEPYOLEVOL POPTIOV

Tnv avadoyia reads kot updates oto artyuato Tov dexdTav 1 faon

To péco latency Tov artnudtov mov e&uanpeTovviay
e Tn péon ypnoonoincn Tov HIKTHOL

To povtélo apyucomomonke Pe 6 KATACTAGELS, KOl GTI GUVEXELN APEONKE VO S1OLUOIPAGEL
TO YOPO KATACTACEWMV pE Bdon To KPLTplo ddomacns KOUP®V mTov TepLypaenKe 6TV VO-
mra 1.7. Mo ogpd and 15 gikovikég unyovég avéAaBov vo TpayLatonolohy EpMTHLATO
Pog T Pdomn, kot o alyoplfpog mov weprypdyape avEAaPe va eAEyyeL To pnéEyehog g Ko va
10 TPOGOUPUOLEL GTO E1GEPYOUEVO POPTIO HEGM 5 O100EGIUOV dPACEWV.

Apykd exmondevoape 1o povtédo yuoo S00 mepimov Prpata Ko otn cvvéyelo {ntoape
oo Tov aAyOp1Bo va eKTEAEGEL TN PEATIOTY OTPATNYIKN OV £lxe KaTaPEPEL vaL EAyeL PEYPL
exeivn ™ otryun. Katd m ddpketa g eknaidevong elyav mpaypoatonombei 17 dwaywpiopol
Kataotdoewv (4 ypnowonowwvtag to pEyedog e cvototyiog, Kot 13 ypnoponoldvog to
E10EPYOUEVO (POPTIO), AVEAVOVTOG TO GLUVOMKO aPlBUd KATOGTAGE®MY TOV HOVTEAOL o€ 22.
O ap1Buoc avtdg TOV KATUOTACEDV NTAV APKETOC DOTE VO EMTPEYEL GTOV OAYOPLOUO Vo

39

apyioet va akolovBel emapr®dg to eloepydpuevo eoptio (ewova 1.10). Katd) ddpkela g
extéleong mpoypotoromnkav 12 emmAéov daympicopoi (4 pe 1o péyebog g cvotoyiog,
7 pe 1o eoepyOuevo goptio ko ko 1 pe 1o péco latency), pe ocvvémela n akpifeia Tov
LOVTELOL GTAOIOKA VO BEATIOVETOL Ko VoL aKOAOVOEL TO e16EpYOUEVO POPTIO LIE LEYOADTEPN
aroteleopatikdtnta. Metd and 1500 fripota extédeonc, n axpifeio tov povtédov iye avén-
Ol aoOntd, £roviag mAéov 66 KATAGTAGELS Kol 0KOAOVODVTOG TO E1GEPYOUEVO QOPTIO pE
peyaAvtepn otabepdtta (eikdva 1.11). Téhog, perd amd 20000 Prjpato ekmaidevong, to
ovotnuo glye otabepomombel TANpwg Kot Exoviag TALOV 576 KATAOCTAGES KATAPEPVE V.
TAPOVGLACEL [oL TOAD akpiPn cvumepipopd (ekdveg 1.12 ko 1.13).

1.10 Xvpmepdaopota

Kotd 1 didpkelo avtig e epyaciog iyape tm OuvatOTNTO VO TEPUUATIGTOVUE [LE
aAyOpOLOVS EVIGYLTIKNG eKpLdON oG o1 oToiot facilovTal og SEVTPA ATOPAGE®MY Y10l TO SLVOL-
LKO S10UOPAGHO TOV YDPOL KATAGTACE®MY. XTO KEPAANLO 0VTO B GUVOWYICOVLE TOL GVLUTE-
PAGLLOTO, TTOL TPOEKLY OV OTO QTN TNV EPYACIAL.

e H anddoon twv aryopibumv mov Baciloviot e dEVTPa amoPacE®V NTAV 1010{TEP AVTO-
YOVIOTIKN KOl GE TOAAEC TEPIMTMGELS EEMEPACE AT TMOV TAPUOOGLUKDOV LOVTEA®V.
Av106 opeileTor Oyl LOVO 6T SVVATOTNTA TOVS VO VAOTOMGOVV £VOLV OTOSOTIKO SLOLLLOL-
POGO TOL YDPOL KATAGTAGEMV, AALA KOl GTO YEYOVOS OTL LEAVOLVY SLVOLLIKA TO LEYE-
00¢ toug kaBmg TEPLEGOTEPA dedOUEVA EKTTOdEVOTG YivovTon dtaféatpa.

e H ypnomn evOg 6TaTIOTIKOD TECT Y10, TO SO WPLICHO TV KATOGTAGEWV TAPEYXEL TOAD KOAN
npootacio Evavti tov BopHPov, EPOCOV XPNGUYLOTOLEITOL LLE ETAPKDG AVGTNPA KPLTHPLAL.
Amevavtiag, n ypnon kprrnpiov mov Bacifoviay otny ELoyIeTomoinom e TANPopopiag
€0€1Ee vo amodidel AMyoTepo, AmoUTMOVTOC TOAD QVGTNPOTEPEG TPOLTODECELS Yo TV
amoeLY AaOdV.

e To Mann Whitney U test ekteAoOUEVO €T TOV TILOV TOV TAPAUETPOV COLPOVO LLE
TO KPUTHPLO OV TEPLYPAPNKE OMEdMGE KAADTEPQ OO GALO GTATIGTIKA TEGT OTMS TO
Student’s t-test, To teot Tov Welch kot 10 et TV Kolmogorov-Smirnov.

e O amottoOpeVOg EMTALOV XPOVOG VITOAOYIGLOV Yidt TN SEEOYMYN TV CTUTIGTIKAOV TEGT
KOL TO OOYOPICHO TV KOTAOTAGE®MV NTAV GYETIKA UIKPOG, KOl O GUVOAMKOG YpOVOG
extéleong tov aryopifuov eEakorovBovoe va kabopileTon amd TV EMAOYY| TOL OAYO-
piOpoL EVNUEPMONG TOV TILAOV, OTTMG KO GTNV TEPITTMOT TWV TAPUOOGLUKDY LOVTEADV.

e H Béitiot otpatnykn mov tpoékvuye pe BAoT TIG TPOGOUOIDGELS TOV £YVOV HTAV 1
évapén g ektédeong Tov aAdyopiBuov £xovtag Eva pukpd aptBpd amnd Kotactacels (avti
piog HOVAOTKNG KOTAGTOONG) KOl 0 EAEYYOG Y10 SLOYMPICUO TNG OPYIKNG KATAOTOONG
LET oo KAOE TopaTnpovEV LETABOON.

40

Chapter 2

Introduction

2.1 Motivation

The explosive growth of cloud computing over the last decade has radically changed
the way applications and services are built. Data such as business documents, audio and
video, social media content and much more are nowadays stored within the cloud and made
accessible worldwide through web applications. The volume of this data is counted in trillions
of gigabytes (or Zetabytes). The need to store and process this volume of information gave
birth to a number of new technologies and paradigms.

Traditional SQL database systems were unable to scale up to this volume of data, and in
order to fulfill the need for storage on this scale, NoSQL databases were introduced. These
databases are designed to run on large scale distributed systems, managing not only the dis-
tribution of data and the coordination of the machines, but also tolerating hardware failures
which are unavoidable on this scale.

Being able to easily scale to thousands of machines, these systems often run within a
virtual environment, provided by an IaaS (Infrastructure as a Service) provider. Large scale
[aaS providers have themselves the ability to host thousands of VMs, and often provide the
ability to automatically scale up and down their services according to user requirements, a
concept known as elasticity. However, in most cases, the methods used to implement this
elasticity are threshold based, and require the user to manually select the conditions under
which any elasticity action is performed.

These methods of decision making however, are often unable to perform well in such a
complicated and dynamic environment, since their simplistic nature has no capability of per-
forming strategic decisions. A more sophisticated approach to the problem is through the use
of Reinforcement Learning algorithms such as Markov Decision Processes and Q-Learning.
These algorithms are natural solutions in situations where decision making is necessary, and
offer guarantees of optimality under reasonable conditions.

Even these more sophisticated methods though have their limitations. In the typical rein-
forcement learning setting, the world is assumed to be in one of a finite number of states, and
from each state a number of actions are available. Upon the execution of an action, a scalar
reinforcement is received and the world transitions to a new state. An algorithm is optimal
in the sense that it chooses actions that maximize some predefined long-term measure of the
reinforcements. However, this optimality is achieved under the assumption that the behavior
of the system is the same each time it finds itself in any specific state. This means that the
states need to be fine-grained enough to capture all the complexity of the system.

41

In the case of the management of a NoSQL cluster however, the number of parameters
that affect the behavior of the system is exceedingly large, and many of them are continuous
instead of discrete (size and characteristics of the cluster, live performance metrics, charac-
teristics of the load etc). Even if we were to discretize their values, defining a different state
for each of their different combinations would result in an exponential number of states. A
reinforcement learning model of this scale is not only unrealistic to represent in memory, but
even more so impossible to train, since the amount of experiences required to learn the be-
havior of the system would also be exponential. The subject of this work therefore, is to seek
methods that can overcome this difficulty, while at the same time providing all the benefits
that traditional reinforcement learning algorithms do.

2.2 Related Work

In [Chap91], the authors propose a modification of Q-learning that uses a decision tree to
generalize over the input. The goal of the agent is to control a character in a two dimensional
video game, where the state is a bit string representing the pixels of the on-screen representa-
tion of the game. Since the input consisted of a few hundreds of bits, the state space consisted
2190 states and thus generalization was necessary. The proposed algorithm grad-
ually partitioned the state space based on values of individual bits of the state. A ¢ statistic
was used to determine if and with what bit a state needs to be split.

of more than

In [Pyea0l], a Q-learning algorithm that uses a decision tree to dynamically partition
the state space is proposed. The motivation is to build reinforcement learning agents for two
applications in the field of robotics where the state space is too large for classical lookup-table
approaches. The algorithm builds a decision tree based on values of parameters of the input,
and maintains a Q-learning model on the leaves of the tree. Different criteria are examined for
the splitting of the nodes, and the performance of the algorithm is tested against lookup-table
based approaches as well as neural networks.

In [Uthe98], a full-model, decision tree based algorithm is proposed, called Continuous U
Tree. The algorithm is split into two phases. During the Data Gathering phase, the states of
the MDP model remain unchanged, but experience tuples are stored for future use. During the
Processing Phase, the stored experiences are used to determine the states of the model that
need to be split into new states. Once the new states of the model have been decided, the stored
experiences are used to calculate the transition and reward function for the new set of states,
and the values of the states and Q-states are calculated. The algorithm continuously alternates
between the two phases, periodically extending the decision tree and globally recalculating
the current status of the MDP.

In [Gask99], the authors propose Wire-fitted Neural Network Q-Learning, a modification
of Q-Learning that generalizes over continuous state and action spaces. The solution uses a
neural network coupled with a novel interpolator to approximate the Q-function. The neural
network calculates the Q-fuction given the current state as input. When a new estimate of the
Q-value is acquired after executing an action, a new expected output of the neural network
is calculated using the wire-fitter partial derivatives. Finally, the neural network is trained to
output the new Q-function.

42

In [Tsoul3] the authors present TIRAMOLA, a cloud-enabled open-source framework
to perform automatic resizing of NoSQL clusters according to user-defined policies. The
system decides on the most advantageous cluster size, and proceeds to automatically modify
it by requesting/releasing VM resources from the provider and orchestrating them inside the
cluster. The cluster is modeled as a Markov Decision Process, where the states represent
different cluster sizes and the actions resizing decisions that modify that size. In order to
isolate the most relevant experiences to the expected resulting state of each action, K-means
clustering was used and the expected reward was calculated using the centroid of the cluster.

In [Kass14] the authors extend TIRAMOLA to identify different workload types. An
analysis of how different query types are handled by modern NoSQL clusters of varying size
is performed, and the resulting knowledge is utilized to fine tune TIRAMOLA’s policies in
order to take more accurate scaling decisions.

In [Nask], an approach to enforcing elasticity through the dynamic instantiation and on-
line quantitative verification of Markov Decision Processes is proposed, using probabilistic
model checking. Various concrete elasticity models and elasticity policies are studied and
evaluated using traces from a real NoSQL database cluster under constantly evolving exter-
nal load. The NoSQL cluster is modeled as a Markov Decision Process with multiple states
per size of the cluster, and non-deterministic transitions are added among the states. The val-
ues of a metric determine the clustering, and the transition probabilities are proportional to
the number of points in each state.

In [Maso15], the authors propose a method of consolidating Virtual Machines in clusters.
The general goal of the method is to manage physical host nodes in order to avoid overload-
ing and underloading, and to optimize the placement of VMs. Fuzzy Q-learning is used as
a substitute to Q-learning, to consolidate the state space and accelerate the learning of the
action values. A cooperative approach to learning is proposed, where multiple agents share
their knowledge through a blackboard communication schema. The states are identified by
(CPU utilization, Number of V Ms) tuples, while the actions decide on the threshold
values of a VM migration policy, as well as the selection criterion. The reward function is
calculated using the energy consumption combined with the number of SLA violations.

2.3 Proposed Solution

The application this work is aimed at is building an agent that makes resizing decisions
for an HBase cluster running on an IAAS provider. That problem provides two important
challenges that need to be taken into consideration:

e There is a large number of variables that affect the behavior of the system, many of
which are not discrete. In other words the solution must be able to generalize over a
multi-dimensional continuous state space.

e The time interval between two decisions is in the order of minutes. This has two impor-
tant consequences. First, collecting data to train the algorithm takes time. This means
that the algorithm needs to make as good use of any data it has acquired as possible.
Second, there is a lot of time to make decisions, which allows us to be more wasteful in
terms of the computational power required by our solution.

43

To tackle these challenges, in section 5.4 we implement a solution with the following
characteristics:

e We adopt a full-model based approach over a Q-learning approach. Having time in the
order of minutes to make decisions, it is realistic to maintain a full MDP model of the
system by storing reward and transition data, and running algorithms like prioritized
sweeping or value iteration with each step to update it. The fact that experiences are
acquired at a slow rate limits the size of the model and makes running expensive calcu-
lations in each step possible.

e We opt for a decision tree based algorithm in order to dynamically partition the state
space. Decision tree based algorithms, unlike traditional approaches, are not limited by
a fixed number of states that needs to be defined beforehand, but can dynamically create
new states when needed, as instructed by the behavior of the system. This does not only
allow them to work on a multi-dimensional continuous state space, but also to adjust
their size based on the amount of training data available. Since these models start with
a small number of states, it is easier to train them with a minimum amount of data. As
more data are acquired, the number of states dynamically increases, and with it increases
the accuracy of the model.

e It is essential in our approach that we never waste collected information. Therefore,
when an old state is replaced with two new ones, the data that had been used to train
that old state is used again to train the two new ones. This way, even though new states
are introduced to the model, these new states are already trained and their values and Q-
values already represent all the experiences acquired since the start of the model’s life. In
order to accomplish this, we implement an algorithm that can perform splits and retrain
the new states in a fine-grained manner, without having to globally retrain the model
from zero. This allows us to perform splits efficiently as each new experience comes in
which is not only computationally more efficient, but also achieves better performance.

2.4 Thesis Structure

In Chapter 2 we define the problem this work is focusing on, we briefly reference related
work on the subject and outline our solution.

In Chapter 3 we present the technologies used in our practical experiments. We used the
Hadoop Distributed File System (HDFS), a distributed file system developed by Apache.
On top the HDFS runs HBase, a distributed non-relational database. The infrastructure was
provided by the Openstack 1aaS provider, and the metrics needed to perform elasticity deci-
sions were collected using Ganglia. Finally, all the above were controlled and orchestrated by
Tiramola, a cloud-enabled framework for monitoring and adaptively resizing NoSQL clus-
ters.

In Chapter 4 we analyze Markov Decision Processes, which is the theoretical basis of our
approach. We lay out the theory behind them, and describe the advantages and disadvantages
of well known algorithms within that context.

44

In Chapter 5 we focus on Decision Trees, and describe how they have been combined
with Markov Decision Processes in the past to perform dynamic partitioning of the state
space. Here we present our proposal, a full-model Markov Decision Process based algorithm
using a Decision Tree to generalize over its input.

In Chapter 6 we present results from a number of simulation experiments. The focus
of the experiments is to provide some insight on the behavior of the algorithms discussed
in Chapters 4 and 5, and evaluate the performance of our proposal, compared to traditional
reinforcement learning solutions.

In Chapter 7 we present results from testing our solution in a real cluster running HBase
on an OpenStack [aaS provider.

Finally, in Chapter 8 we summarize and evaluate our results, and point at subjects we did
not have the opportunity to experiment with as future work.

45

Chapter 3

Elastic Resource Management

In this chapter, we provide an overview of the tools and technologies used throughout
this work. In section 3.1 we describe the HDFS, a distributed file system designed to provide
high throughput access to application data. In section 3.2, we focus on HBase, a distributed,
non-relational database running on top of Hadoop and HDFS. In section 3.3, we review Open-
Stack, an open-source software platform providing Infrastructure as a Service, upon which
HDFS and HBase can be utilized. In section 3.4, we describe Ganglia, a distributed monitor-
ing system able to gather metrics from clusters and grids. Finally, in section 3.5, we describe
Tiramola, a cloud-enabled framework for monitoring and adaptively resizing NoSQL clus-
ters.

3.1 HDFS

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Namenode

Metadata ops "

Read Datanodes Datanodes

@ . mm =
Em Replicat
- % ‘ eplication ‘ %Blocks

o -

Rack 1 Wite Rack 2

Figure 3.1: The HDFS Architecture

The Hadoop Distributed File System (HDFS) [Bort08] is a distributed file system de-
signed to run on commodity hardware. It is essentially an open source implementation of
the Google File System (GFS) [GhemO03], and it attempts to provide scalability and fault tol-
erance while deployed on low-cost hardware. It specializes in dealing with big amounts of
data, and diverges from the POSIX standard to better suit applications that require streaming
access to file system data.

47

HDEFS uses a master/slave architecture. The Namenode takes on the role of the master, and
is responsible for coordinating the filesystem and providing access to its files to the clients.
Even though data in the HDFS are stored in multiple physical machines, the Namenode main-
tains a traditional hierarchical file organization. Clients can create files and directories, move
and rename them in a manner similar to other existing file systems. Any change to the file
system is recorded by the Namenode, who is responsible for maintaining the file system
namespace. If the Namenode is not active, clients lose the ability to access the data stored in
the HDFS, making it the single point of failure of the system. However, in order to increase
reliability, a secondary Namenode is active at all times, and can recover the file system in
case of a Master failure.

The slaves in HDFS are called DataNodes, and their responsibility is to store file data and
serve read and write requests from the file system’s clients. At the same time, they perform
block creation, deletion and replication upon instruction of the NameNode. Each file in the
file system is stored in multiple equally sized blocks (typically 64MB), and each of these
blocks is hosted in multiple DataNodes in order to increase fault tolerance. It is possible for
applications to specify or change the replication factor for each separate file.

In order for the NameNode to have an up-to-date knowledge of the active blocks in
the system, Heartbeat messages are periodically sent to it from each of the DataNodes. If
a DataNode fails to transmit a heartbeat message, the NameNode assumes that the DataNode
is dead, stops forwarding new requests to it and attempts to quickly restore the replication
factor of its blocks.

The placement of the blocks is decided by the NameNode. The criteria by which this is
done is not only to increase fault tolerance, but also to improve performance. In the common
case where the replication factor is three, HDFS’s placement policy is to put one replica on
one node in the local rack, another on a node in a different (remote) rack, and the last on
a different node in the same remote rack. This policy reduces the required communication
between different racks during writes, while at the same time does not leave the system vul-
nerable to a single rack failure. However, it does reduce the aggregate network bandwidth
used when reading data since a block is placed in only two unique racks rather than three.

Any change to the file system is recorded by the NameNode in a log called the EditLog.
When the NameNode starts up, it loads the stored image of the file system and applies to
it the changes recorded in the EditLog. The metadata required for the NameNode to have
a full view of the file system are very compact, allowing it to maintain all this information
in memory even when the cluster hosts a very large amount of data. After updating it, the
image of the file system is flushed back to the disk, and the EditLog is truncated to a new
checkpoint.

3.2 HBase

3.2.1 The HBase data model

HBase is an open source, distributed database for storing structured data. Its design is
based on Google’s BigTable [Chan08], and runs on top of the HDFS to enhance its storing
capabilities. Its data model is different from traditional relational databases. It does not sup-

48

HRegionServer HRegionServer
HRegion i1 (HRegion
Q Store (MemStore) Store (MemStore) Store (MemStore Store (MemStore)
% :
m StoreFile StoreFile | StoreFile S [StoreFile StoreFile } —_— StoreFile]
I HFile HFile | HFile

v Y ~ W ~ ~
[IIIIIII{HIIIIII]IIIIIIiI--- ('?“Zﬁ,J[III\IIIIIIII\II\IIIIHIIII--- C‘:;;ﬁt]

0ooo

DataNode
ES

Oooooogd (| dOoooog (| oododd (| oooodd

DataNode DataNode DataNode DataNode

Doogoo || O8oo OooogO || coogoo DES%D
OO0O0000 || O00000 [FO000doo || 000000 0000
O

Hadoop

Figure 3.2: The HBase architecture

port a structured query language like SQL, but instead uses a key/value model where data are
organized in columns. The building blocks of HBase’s data model are the following:

e Table: The biggest building block in the database.

e Row: Each table consists of a number of rows. Each row possesses a unique key through
which it can be identified, and all rows within a table are sorted based on that key. This
enables the programmer to control the way data are stored and allows for easy and
efficient access to ranges of rows.

o Column Family: Data within each row are split to separate column families that are the
same for each row and need to be specified upon table creation (even though some rows
may not contain data in all column families). Data stored within each column family
are also physically stored in adjacent locations in order to more efficiently serve queries
requesting data from them.

e Column: Each column family contains a number of columns. Unlike column families,
columns are allowed to differ from row to row, and can change dynamically.

e Cell: A combination of a row key, a column family and a column uniquely identifies a
cell. Each cell stores a byte array, which is its value.

e Timestamp: HBase has a built-in data versioning and recovery mechanism through the
use of its timestamps. Instead of storing a single value in each cell, HBase stores a
number of recent values. That number can be configured to be different for each column
family, and is by default equal to three. If not specified, HBase will store data using the
current timestamp and read the data with the latest timestamp, though the user is free to
read and write the versions of the data he specifies.

49

3.2.2 The HBase architecture

HBase uses a Master/Slave architecture, and is made up of the following components:

e Master Server: The Master Server in HBase holds the metadata for all the tables stored
in the database, and performs schema changes and table creation or deletion operations.
At the same time, it controls the distribution of the regions among the Region Servers
in order to evenly balance the workload.

e Region Servers: Each Region Server is responsible for serving and managing a number
of regions. Even though data stored in the HDFS are spread across different physical
locations, each region server stores the data that correspond to the regions it serves
within the local HDFS DataNode in order to be able to serve requests locally.

e ZooKeeper: ZooKeeper is a centralized service for maintaining configuration infor-
mation, naming, providing distributed synchronization, and providing group services.
HBase uses ZooKeeper to track the state of the servers in the cluster and handle com-
munication between the master and the region servers.

HBase’s architecture allows it to easily scale and store large amounts of sparse data. The
fact that it runs on top of HDFS provides high availability and fault tolerance, and makes
HBase easy to integrate with other tools within the Hadoop ecosystem, such as MapReduce.
Finally, having only a single server responsible for each piece of data, allows it to guarantee
strong consistency and perform atomic row operations.

3.3 OpenStack

OpenStack is an open source platform for cloud computing. It begun in 2010 as a joint
project of Rackspace Hosting and NASA. As of 2015 it is managed by the OpenStack Foun-
dation, a non-profit organization created specifically to promote OpenStack.

The main characteristics of OpenStack are:

e Scalablility: 1t is already deployed to host Petabytes of data, run on up to 1 million
physical machines, host up to 60 million virtual machines and billions of stored objects
[Sefr12].

o Compatibility and Flexibility: It supports a wide range of virtualization technologies,
including ESX, Hyper-V, KVM, LXC, QEMU, UML, Xen and XenServer.

e Open source: The entire OpenStack code can be studied, and if needed modified and
adapted.

3.3.1 The OpenStack Architecture

The OpenStack architecture consists of three main components:

50

B =
Dashboard |

L .
‘ \
provides Ul for provides Ul for

provides Ul for *
@ @ - retrieves / stores i @ retrieves/stores

Compute images in disk files in
@ Image
/\ 9
authenticates authenticates
with with authenticates
\ * with
=
Identity

Figure 3.3: The fundamental building blocks of OpenStack

e OpenStack Compute: OpenStack Compute, also known as Nova, is a platform whose
aim is to manage the OpenStack infrastructure. It provides an interface and an API
that allows the management of large networks of virtual machines and redundant and
scalable architectures. It is written in Python, and is designed to scale horizontally on
standard hardware with no proprietary requirements.

e /mage: Imaging Service manages the storage of the images of virtual machines, that can
later be used as a template for new ones. It provides a RESTful API to perform queries
for information about the images hosted on different storage systems.

e Object: Object Storage is a storage space that is designed for long term storage of large
volumes, and can host up to multiple Petabytes of data. Objects and files are written to
multiple disk drives spread throughout servers in the data center, while data replication
is used to provide data integrity across the cluster.

The OpenStack services can be accessed through the OpenStack Dashboard (Horizon),
which provides a graphical interface for users and administrators to access, provision, and
automate cloud-based resources. Its design also accommodates third party products and ser-
vices, such as billing, monitoring, and additional management tools. OpenStack Identity
(Keystone) provides a mapping of users to the OpenStack services they can access. It acts
as a common authentication system across the cloud operating system, and supports multiple
forms of authentication including standard username and password credentials, token-based
systems and AWS-style logins.

51

Scheduler

compute worker(s)

queue
network controller(s)

API
endpoints

volume worker(s)

Figure 3.4: The Nova system architecture

3.4 Ganglia

Ganglia [Mass04] is a scalable distributed monitoring system for high performance com-
puting systems such as clusters and Grids, developed by the University of California, Berke-
ley. It is based on a multicast, listen/announce protocol to monitor the state of the cluster,
and uses a tree of point to point connections between representative cluster nodes to feder-
ate clusters and aggregate their state. Data are represented in XML format, exchanged using
the XDR protocol and stored and visualized with the RRD tool. It manages to achieve very
low per node overhead and high concurrency, and is available in a wide range of operating
systems.

The Ganglia architecture consists of the following components:

e gmond. The Ganglia Monitoring Daemon (gmond) is installed in every node of the
cluster from which metrics are to be collected. Its job is to collect the required metrics
with the help of the operating system, as well as announce them to a multicast channel
through UDP. It is organized as a collection of threads, most of which are assigned with
the task of collecting data for a specific metric.

The collect and publish thread takes on the responsibility of gathering the metrics col-
lected by the local threads and publishing it on a well-known multicast channel in peri-
odic messages called heartbeats. The listening threads are responsible for listening on
the multicast channel for data transmitted by other nodes and storing it in a local hash
table. This allows the data for the whole cluster to be available through any one of its
nodes. Finally, a number of XML export threads accept and process client requests to
provide access to that data.

52

client

connect< > data

gmetad
poll poll

gmetad

Cluster Cluster

Figure 3.5: The Ganglia architecture [Mass04]

e gmetad: Federation in Ganglia is achieved using a tree of point-to-point connections
amongst representative cluster nodes to aggregate the state of multiple clusters. At each
node in the tree, a Ganglia Meta Daemon (gmetad) periodically polls a collection of child
data sources, parses the collected XML, saves all numeric, volatile metrics to round-
robin databases and exports the aggregated XML over TCP sockets to clients. Data
sources may be either gmond daemons, representing specific clusters, or other gmetad
daemons, representing sets of clusters.

Data collection in gmetad is done by periodically polling a collection of child data
sources which are specified in a configuration file, dedicating a unique data collection
thread to each child source. Collected data is parsed in an efficient manner (using a SAX
XML parser and a GNU gperf-generated hash table) to reduce CPU overhead and the
memory footprint.

e RRDtool: Storage and visualization of the historical monitoring information for the grid
is managed by RRDtool (Round Robin Database). RRDtool is specialized in storing time
series data and is able to maintain different time granularities ranging from minutes
to years in compact, constant size databases. Additionally, RRDtool is able to plot the
historical trends of these metrics on graphs that are used by the Ganglia PHP web front-
end, to be presented through a web interface.

53

Application Application

Gmond ﬁ Gmeltric ﬁ Gmond

Multicast Channel

: i

Listening Threads

Collect *
and
_ In-Memory Storage
Publish *
Thrfad XML Export Threads
|
Metric Data XML Application
(/proc, kvm, kstat) (Gmetad)

Figure 3.6: The Ganglia implementation [Mass04]

3.5 Tiramola

Tiramola [Tsoul3] is a modular cloud-enabled framework for monitoring and adaptively
resizing NoSQL clusters. Its implementation is open-source, and contains modules that can
control a number of different NoSQL databases, including Cassandra, HBase, Riak and Volde-
mort.

Tiramola’s decision-making module is the unit that is responsible for materializing user
defined policies into cluster-resizing actions. The user policies come in the form of reward
functions that can evaluate the state of the cluster, and point Tiramola towards states that are in
accordance to the user’s needs. The state of the cluster is acquired by Tiramola’s Monitoring
module, which collects a number of metrics from both the cluster and the user, and makes
them available to the decision-making module. Once a resizing action has been decided, the
Cloud Management module communicates with the cloud provider as well as the virtual
machines in order to modify and configure the cluster into its new state.

3.5.1 The Decision Making Module

Tiramola models the cluster as a Markov Decision Process (MDP). The states of the MDP
correspond to the current size of the cluster.

S: {Sminasmin+17---73k;--~75maz} (31)

54

d TIRAMOLA

(Decision Making) t:._—._l
|

Get fresh Mo50
metric Clustef resize

User IJ-|IIIIE5
Hardware P

|
resize :
I
|
|
Cluster Cloud I
!,_(MD nrtun@ (Cu-nrdinatuD (Ma nage memnt

Adjust
:‘RA ana ged e sources
nodes
ormance Metrics
~ Add/delete

aafa))

Prowider
'—“E' Virtual NeSOL Cluster

)
|
|
|
|
|
|
|

Ellents

Figure 3.7: Tiramola’s architecture

where k is the number of VMs currently in the cluster and min and maz are the minimum
and maximum cluster sizes. The available actions of the MDP are the resizing actions and
include adding or removing pre-specified numbers of VMs, or simply leaving the cluster
unmodified. If a certain resizing action would exceed the minimum or maximum cluster size
if executed from a certain state, then that action is made unavailable at that state (for example
if the minimum cluster size is four, an action that removes two VMs would not be available
at state s;).

In an MDP, the rewards are the feedback of the world towards the agent, that informs
it how good or bad the outcome of an action was. In the case of Tiramola, the result of an
action is the state of the cluster after executing that action. Therefore, the reward function
was calculated using the resulting state after each transition. In order to achieve a balance
between giving enough resources to satisfy the user’s needs, but at the same time keeping the
cost of the cluster as low as possible, the reward function generally included both positive
and negative terms. For example, a reward function that aims to direct Tiramola towards
performing actions that maximize the throughput and minimize the latency, while at the same
time keeping the size of the cluster as low as possible, can be in the form:

r(s") = B - throughput — C - |V Ms| — A - latency (3.2)

where A, B and C are appropriately chosen constants.

Since the actions that Tiramola performs add or remove VMs from the cluster, the transi-
tion function for each action is equal to 1 for a transition towards the state with the resulting
number of VMs, and zero towards all other states. Whenever Tiramola needs to perform an
action, it calculates 7(s") for all the states towards which a transition is possible. However,
since the reward function generally depends on more parameters than the size of the clus-
ter, those other parameters are identified beforehand using past experiences. Assuming that
the system acts in a predictable manner, behaving similarly under similar conditions, only
a subset of the past experiences is used. These experiences are selected by performing a k-
clustering on all the past experiences for that specific number of VMs, and from those the
centroid of the largest cluster is used as a representative point to calculate r(s’) (figure 3.8).

55

#VM=c #VM=v2

#VM=v1 <
> A x ., X >-‘“ >\A
o X' x 0 o
c x X*x c c
@ = e % D @
© X e © ©
— g i x: - % xX X - X
. - X x¢ *%
% XX X X
g o xx);e‘;u x)éxx
x X'} XX ol x’; 3 N X >><<x NN
> : 2N i >3
X% | - WX XX
!)\ - -
A c A A

Figure 3.8: Example of Tiramola choosing the centroid of a clustering based on the value of

the throughput A\ [Tsoul3]

Once a decision has been made and r(s’) has been calculated using the method described
above, the Q-values of Tiramola’s reinforcement learning model are updated using the stan-

dard Q-learning rule (explained in section 4.3.5):

Q(s,a) < Q(s,a) + alr(s) + ymax Q(s', ') — Q(s, a)] (3.3)

where « is the learning rate, which controls how quickly the algorithm updates its knowledge
according to new experiences, and 7 is the discount factor, which controls how quickly future

rewards are discounted.

56

Chapter 4

Reinforcement Learning

4.1 Introduction

4.1.1 The goal of Artificial Intelligence

The idea of a machine that can think far precedes the development of modern computers.
However, thanks to the exponential growth of the capabilities of computers during the last
few decades, this idea has turned from science fiction to an actual engineering goal, creating
the field known as Artificial Intelligence.

Initially, it was believed that the way this goal would be reached was to create machines
that mimic the function of the human brain. However, this proved to be much harder in prac-
tice than initially anticipated. Despite the significant progress in the field, the final goal of
a machine that can think like a human kept moving further away, to the point that scientists
today are less optimistic that the goal will be reached in the near future than they were a few
decades ago.

Soon however, it was understood that an alternative path can exist. Instead of creating
machines that think the same way humans do, it might be more realistic to create machines
that can behave intelligently in a number of scenarios, despite “thinking” in a vastly differ-
ent manner than humans. This approach allowed the development of algorithms that were
much better suited for the capabilities of computers, and greatly expanded the applications
of artificial intelligence to a number of practical problems.

4.1.2 Machine Learning

In that direction, Machine Learning emerged as the subfield of Computer Science and
Artificial Intelligence that studies algorithms that can learn from data. The most widely used
definition of learning was given by Tom M. Mitchell: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E” [Mitc97] . It is
clear from that definition that Machine Learning focuses on the behavior of the system rather
than the means through which that behavior is achieved.

There are three broad categories in Machine Learning, based on the way the algorithms
learn. These are:

o Supervised Learning: In this category, the algorithm is provided with a set of labeled
data, and attempts to infer the function that maps the data to the labels. The goal of the

57

algorithm is to generalize from the given data, and be able to correctly determine the
labels of unseen instances.

o Unsupervised Learning: Here no labels are provided for the given data (nor any other
type of reward signal), but instead the algorithm tries to find hidden structure in its input.

e Reinforcement learning: These are algorithms whose purpose is to take actions in an
environment. After each action, the algorithm is provided with a reinforcement signal,
as well as some indication of the new state of the environment. The goal here is to
maximize the long term sum of values of the reinforcements.

4.2 Reinforcement Learning

4.2.1 Definition

In a standard reinforcement learning model, an agent is allowed to take actions within
an environment. On each step, the agent is informed of the state of the environment and is
requested to choose an action. As a result of that action, a scalar reinforcement signal is pro-
vided to the agent, and the state of the environment potentially changes. The agent attempts
to choose actions that will maximize the reinforcements collected from the environment in
the long run.

Formally, a reinforcement learning model consists of:

e A discrete set of states, S
e A discrete set of actions, A
e A set of scalar reinforcement signals

The agent is expected to find a policy 7 : S — A that maximizes some long-run measure
of reinforcement. In general, the environment can be non-deterministic, but is expected to be
stationary.

4.2.2 The goal of Reinforcement Learning

In order to be able to develop algorithms that exhibit optimal behavior, we must first
define what exactly optimality means. As mentioned above, the goal is to maximize the long
term accumulation of rewards. The simplest interpretation of this concept is to attempt to
maximize the sum of rewards the agent will receive throughout its life. The problem with
this approach of course is that this sum is often infinite.

There are a number of ways in which we can avoid this problem. The simplest one is to
attempt to maximize the rewards gained for only a finite number of steps.

E

i rt] 4.1)
t=0

58

Adopting this approach, we can choose to either consider a fixed or a receding horizon.
A fixed horizon means that for each step the algorithms takes, the number of steps ahead that
will be considered will be reduced by one. When this number reaches zero we assume that the
algorithm will stop. This means that the policy that needs to be implemented is not a constant
one, but it may vary depending on the number of steps left within the horizon. A receding
horizon on the other hand means that at each step of the process the algorithm will consider
the same constant amount of steps into the future, resulting into a constant policy throughout
the agent’s life. Unfortunately often times both these approaches are problematic. Not only
is it not always possible to know the exact amount of steps for which the agent will be active,
but in the case of the receding horizon it may even result in agents that never collect their
rewards, thinking they will always be able to collect them at some point into the future.

Another way to define optimality is to attempt to maximize the average rewards gained
per step.

lim £

n—oo

1 n
> rt] (4.2)
n
t=0

Again though, this approach suffers from not being able to distinguish between immediate
rewards and rewards that can be obtained far into the future. In order for these problems to

be avoided, the infinite sum of discounted rewards is often used as the quantity to maximize.

E

thn] 4.3)
t=0

By reducing the value of future rewards by a factor of v* (where v € (0, 1) is known
as the discount factor), we manage to bound the infinite sum to a finite value, while still
considering rewards that lie far into the future. At the same time, we force the agent to collect
any available rewards as soon as possible, which often leads to more reasonable behavior.
Finally, following this approach gives us a simple and guaranteed to terminate algorithm to
calculate the optimal policy.

4.2.3 Exploration vs Exploitation

An additional criterion by which an algorithm can be evaluated is the speed by which it
converges to optimal. It is common in practical applications that there is a limit to the amount
of time the algorithm can be given to learn. This makes the speed by which it learns critical
to its performance.

Since the way through which the agent learns how to behave is by performing actions
in the real world, there is often a choice to be made between exploring new options and
exploiting known strategies. Exploiting the obtained knowledge will usually lead to higher
immediate rewards, but exploring the world has a chance to reveal better options to exploit
in the long run.

In order to find a balance between these two concepts, the idea of regret is often used.
Regret is the expected decrease in reward gained due to executing the learning algorithm in-
stead of behaving optimally from the very beginning [Kael96]. Minimizing the regret results

59

in both attempting to adopt a near-optimal behavior from the beginning of the agent’s life, as
well as trying to converge to an optimal policy as soon as possible.

4.3 Markov Decision Processes

4.3.1 Markov Models

Markov Models are stochastic models used to describe non-deterministic processes. At
any point in time, a Markov Model can be in one of a finite number of states, and with each
time step the model has the ability to transition to a different state. The most characteristic
property of a Markov Model is the fact that it is memoryless (also known as the Markov
property). This means that the behavior of the system, as well as future transitions can depend
only on the current state and not on the history of transitions.

Depending on the type of the system that is being modeled, Markov Models are divided
into the following categories:

e Markov Chains are models used to describe autonomous observable systems. The pur-
pose of the model is to extract information about the behavior of the system. They are
used in a variety of scientific fields including but not limited to biology, chemistry,
economics, information science and information technology.

e Markov Decision Processes are used to model observable systems where the behavior is
partly random and partly affected by an action performed by an agent. They find uses in
anumber of fields including robotics, automated control, manufacturing and economics.

e Hidden Markov Models are statistical models used when the underlying process is as-
sumed to be a Markov process whose states cannot be directly observed. They are used
in speech, handwriting and gesture recognition, part-of-speech tagging and bioinformat-
ics.

e Partially observable Markov Decision Processes are a generalization of Markov Deci-
sion Processes where the agent cannot directly observe the state of the system. Their
uses include robot navigation, machine maintenance as well as a variety of other appli-
cations.

The most simple Markov Model is a Markov Chain. Mathematically, Markov Chains are
defined as sequences of random variables that satisfy the Markov Property, which in this case
is defined as:

Pr(Xppm=2| Xy =21, Xo=29,.... Xy =2,) = Pr (X1 =2 | X, = z,) 44)
where Pr(X; =z1,..,.X, = X,) >0 .

Each such random variable can take values from a countable set, called the state space

of the variable. Typically Markov Chains are represented using directed graphs, where the

vertices are the possible values of a variable (its states), and the weighted edges hold the
transition probabilities between those states (figure 4.1). Markov Decision Processes extend

60

P12

P33

Figure 4.1: A simple Markov Chain with three states and nine transition probabilities be-
tween the states

Markov Chains by adding available actions to each state and rewards for executing those ac-
tions (figure 4.2). This allows Markov Decision Processes to be used to model environments
where an actor is allowed to make decisions (actions), and the state of the world can be af-
fected by those decisions. With these models it is then possible to calculate optimal policies,
and thus build intelligent agents that can make strategic decisions within that context.

4.3.2 Optimal Policy Calculation

A Markov Decision Process (MDP) consists of the following:
e A set of states S

e A set of actions A

e A reward function R : § x A — R

e A transition function 7 : S x A x § — [0, 1]

In order to be able to calculate an optimal policy for a given MDP, we assign optimal
values to its states and actions. The optimal value of a state s, denoted by V*(s), is the ex-
pected sum of discounted rewards that an agent starting at state s would obtain under the
optimal policy. The optimal value of an action a taken from state s, denoted by Q*(s, a), is
the expected sum of discounted rewards that an agent would obtain after starting from state
s, performing action a, and following the optimal policy thereafter.

61

T(sp.a2,51)

T(sp.a0,80)
T(s1,82,84) R(s2,a5)

R(s1,ap) T(s1,82,52)

Alsray) T(s1.a1:8)

T(s1,a1,81)

T(sp.a1,82)

T(sp.a1,51)

Figure 4.2: Graph representation of a simple Markov Decision Process with two states and
two actions available in each state

Vi(s) = E | Y _'R(s;, 7" (s,)) (4.5)
Q*(s,a) = R(s,a) + FE Z'th(st, W*(St))] (4.6)

The expected sum of discounted rewards after executing action a from state s is equal to
the immediate reward R(s, a) gained by executing the action, plus the sum for every state s’
of the probability of arriving at that state times the expected sum of discounted rewards we
would obtain starting from that state, which is the optimal value V*(s’) of the state, discounted
by ~ since the rewards would be obtained one step ahead in the future.

Q*(s,a) = R(s,a) +7 Y T(s,a,8)V*(s) (4.7)

s'eS
The maximum expected sum of discounted rewards starting from state s are obviously
obtained by executing the action with the highest optimal value.

Vi(s) = max (Q"(s,a)) (4.8)

a€A(s)

The optimal value therefore is the solution to the equation:

V*(s) = max (R(s, a) +v Z T(s,a, 3’)V*(s’)> (4.9)

a€A(s) e

62

The optimal policy, given the optimal values of the states, is:

(s) = arg max (R(s, a)+y Z T(s,a, 3')V(s’)> (4.10)

s'eS

We can calculate the optimal values of the states by a simple iterative algorithm based on
equation (4.9), known as value iteration:

Vig1(s) = max) (R(s, a)+y Z T(s,a, s’)Vk(s’)) (4.11)

s'eS

In each step, a new estimate of the optimal value for the states is calculated based the the
estimates of the previous step. The initial values can be chosen arbitrarily. This algorithm can
be shown to converge to the correct optimal values [Bell57]. The algorithm stops when the
value difference between two successive value functions in less than a value €. The value of
the greedy policy calculated at that point (the policy obtained by choosing, in every state, the
action that maximizes the estimated discounted reward, using the current estimate of the value
function) differs from the value function of the optimal policy by no more than 2¢vy/(1 —)
[Will93a]. This means that we can use value iteration to calculate a policy that is arbitrarily
close to the optimal, by choosing the appropriate value of e.

Policy Iteration is an alternative strategy to value iteration that attempts to accelerate
the computation of the optimal policy. Instead of calculating increasingly more accurate esti-
mates of the optimal values of the states and Q-states, policy iteration breaks the computation
into two phases. First, it calculates the state values under an arbitrary policy 7. Since the pol-
icy is known this calculation does not require calculating a maximum over all actions, but
instead uses the known action 7(s) in each state:

Va(s) = R(s,7m(s) +7 > T(s,7(s), 8") Va(s) (4.12)

s'esS

The removal of the maximum operator simplifies the equations that connect the values of
the states into linear equations that are solvable without an iterative process. After the values
of the states under a given policy have been calculated, policy iteration attempts to improve
that policy by choosing the optimal action in each state using those values:

7'(s) := argmaz, <R(s, a) + ’)/ZT(S, a, 5’)Vﬂ(s')> (4.13)

s'eS

This step is guaranteed to improve the policy, and when there are no possible improve-
ments the policy is guaranteed to have converged to the optimal. However, there is no known
tight worst-case bound in the number of iterations required for that convergence.

63

Algorithm 1 Value Iteration

1: initialize V (s) arbitrarily
2: while error > max_error do
3: for s € S do

4: for a € Ado
5: Q(S,CL) = R(S,CL) +725/es T(S7a7 S,)V(S/>
6: V(s) := max, Q(s,a)

Algorithm 2 Policy Iteration

choose an arbitrary policy 7'
repeat
mi=a
compute the value function of policy r:

Va(s) = R(s,m(s)) + 7 X yes T(s,m(s),s')Va(s')
improve the policy at each state:
m'(s) == argmaz,(R(s,a) + v ycsT(s,a,5)Vi(s'))

1:

2:

3

4

5: solve the linear equations
6

7

8

9: until 7 = 7’

4.3.3 Exploration Strategies

In a reinforcement learning context, since the only way the agent learns the environment
is by performing actions, it is necessary that a strategy is implemented that forces the agent
to perform all actions available. If that is not the case, the agent can get locked in attempting
the first action that yielded a positive result again and again, missing out on opportunities to
obtain better rewards. It is no surprise therefore that the greedy strategy of always choosing
the most optimistic option is not very effective in practice.

To overcome this difficulty, a number of techniques have been proposed. One such use-
ful heuristic is known as optimism in the face of uncertainty, in which actions are selected
greedily, but strongly optimistic prior beliefs are put on their payoffs so that strong negative
evidence is needed to eliminate an action from consideration. Of course, using this technique
it is still possible to eliminate an optimal but unlucky action, but the risk can be made arbi-
trarily small.

Another simple approach to exploration strategies is to not always perform the best avail-
able action, but instead with a probability e perform an action at random. This probability can
easily be adjusted throughout the life of the agent, so that at the start of the training where
little is known about the system and a lot of exploration opportunities are available the proba-
bility of random actions is high, while as the agent learns the world and becomes more certain
about its behavior the probability to perform random actions diminishes.

One alternative to the previous strategy is known as Boltzmann exploration, and it at-
tempts to direct the choices of the agent towards more promising options instead of choosing
actions at random. Under that strategy, the expected reward for taking action a, ER(a) is used
to choose an action probabilistically, according to the distribution:

64

oER()/T
S wen cER(a")/T

The parameter 7' is called the temperature, and it can be decreased over time to decrease
exploration. This method however can perform poorly if the expected values of the actions

P(a) = (4.14)

are close, and the value of the temperature 7" needs to be carefully chosen in order to avoid
converging unnecessarily slowly.

4.3.4 Learning from Experience

In section 4.3.2, we described how we can calculate the optimal strategy for a given MDP.
For that purpose, we assumed that we know beforehand the behavior of the system, in the
form of the given transition and reward functions. In many situations though, the behavior of
the system is not known. In other words, we want to be able to build agents that figure out
how the world works on their own, and not rely on the description of the world that was given
to them. For that, we will see how an agent can still learn how to make optimal decisions even
if the transition and reward functions are not known.

The only way for the agent to figure out an unknown environment is to perform actions
in this environment and observe their rewards. We will assume that at any point in time, the
agent is aware of the state of the world, and for every action he performs he is presented with
a scalar reward as a feedback from the environment representing how good the outcome of
the action was. As usual, the agent’s goal will be to calculate a strategy that maximizes the
infinite sum of discounted rewards.

There are two different approaches through which that strategy can be calculated.

e Model-free: In this approach the agent attempts to directly evaluate the effectiveness of
the actions without learning the exact behavior of the world.

e Model-based: Here the agent tries to figure out the exact behavior of the world, in the
form of the transition and reward functions, and then calculate the optimal strategy by
using the methods we described previously.

4.3.5 Q-Learning

Perhaps the most common model free approach is an algorithm known as Q-learning. Q-
learning maintains estimates of the Q-values (the values of the state-action pairs) and updates
them with every new experience. As described earlier, the value of a state-action pair (s, a)
is equal to the value of the immediate reward R(s, a) obtained after performing action a from
state s, plus the expected value of the resulting state discounted by a factor ~.

Q*(s.a) = R(s,a) +v Y _T(s,a,s)V*(s') = E[R(s,a) + 7V*()] (4.15)

s'esS
After performing an action in the real world, the agent is presented with an immediate
reward r, and observes the new state of the world s’. Based on that experience alone, he can
calculate an estimate of the value of that action to be equal to:

65

q(s,a) =r+7V(s) =r+v max Q(s,d) (4.16)
a’€A(s")
Using that estimate, we can update the value of the Q-state using both the previous esti-
mate of the Q-value and the one deriving from the new experience.

Q(s,a) + (1 —a)Q(s,a) + aq(s,a) (4.17)

The parameter « is known as the learning rate and controls how fast the agent learns from
new experiences. Thus, the update rule for Q-learning is:

a'€A(s

Q(s,a) + (1 —a)Q(s,a) +« (r +~ max | Qs a’)) (4.18)

Having calculated the estimates of the Q-values, a policy can be calculated by simply
choosing the action with the highest Q-value. If each action is executed in each state an
infinite number of times on an infinite run and « is decayed appropriately, the Q-values will
converge with probability 1 to Q* [Watk89a] and so the policy calculated will be optimal.
In practice, Q-learning manages to calculate an accurate estimate of the optimal strategy in a
more reasonable amount of time.

Perhaps the strongest advantage of Q-learning is its computational efficiency. Since it
does not construct a full model of the world, it only needs to store the values of the Q-states.
Also, each update only involves calculating the maximum Q-value in the resulting state and
performing a simple update on the value of the initial state. This not only allows Q-learning
to run on systems with very limited computational power, but also allows it to train very fast
from a large set of experiences if these are available.

On the other hand, Q-learning is limited to perform only local updates to the values. In
each step, only the value of the performed action can be updated, and as a result the policy
in only the initial state. The values and policies for all the other states will be unaffected,
since no information concerning the probabilities of transitions is maintained, and they will
only take into account the new experience once the agent finds itself again in one of those
states and performs an action that causes a transition to the state whose value changed. As
a result, Q-learning will require a large amount of experiences in order to converge to an
optimal policy, especially in situations where the agent needs to perform a long sequence of
actions in order to obtain a reward.

4.3.6 The Model-Based Approach

A different approach to the same problem is to attempt to construct a complete model
of the real world and then calculate a policy using it. Again, the agent performs an action a
from state s, receives a reward r and observes the new state s'. It then updates its estimates
for R(s,a) and T'(s, a, s;). Typically R(s,a) is set to the average reward obtained by taking
action a from state s, and T'(s, a, s;) is set to the number of times the system transitioned to

66

state s; after taking action a from state s, divided by the total amount of times action a has
been taken from state s.

After updating the estimates for R and 7', the agent can use them to update his estimate of
the optimal policy. Here there are a number of options depending on the amount of compu-
tation that is allowed in each step. The most straight forward approach is to simply run value
iteration on the new model. This way the agent always has a fully updated estimate of the
optimal policy and as a result converges to it after a significantly smaller amount of experi-
ences. The problem of course is that in many situations this process is too computationally
demanding. On the other hand, if the agent is required to act fast it can opt to update only
Q(s,a), V(s) and m(s). This strategy will result in very fast updates, but just as in the case
of Q-learning, the updates will be local and will not affect the policy in any other state. As a
compromise between the two above strategies, a number of algorithms have been proposed
that partially update the model in a time much shorter than value iteration. Some of the most
notable are Dyna and Prioritized Sweeping / Queue-Dyna.

In each step, Dyna [Sutt91] updates the Q-value for the state action pair that was per-
formed using the rule:

Q(s,a) + R(s,a)+ (Z T(s,a,s") agj();/)(@(s’, a’))) (4.19)
s'eS

It then chooses £ additional state action pairs at random and performs the same update on
them as well. As a result, the information about the results of recent actions is spread much
faster to other states of the model, and the estimate of the optimal policy becomes more
accurate. This translates into fewer required experiences for the agent to learn to behave
optimally, at the cost of k& times more operations per time step.

Prioritized Sweeping [Moor93] and Queue-Dyna [Peng93] were proposed as an improve-
ment over Dyna. In these algorithms, instead of updating random state-action pairs in each
step, the expected change in values is taken into account to direct the updates. Each state
in the model remembers its predecessors, which are the states that have non-zero transition
probability to that state under any action. Also, each state has a priority, which represents the
importance of updating the value of that state, initially set to zero. When a new experience
tuple (s, a, s, r) is received, the value of state s is stored as V,,;4 and updated using the rule:

V(s) + max (R(s, a)+ ZT(S, a, 3')V(s')) (4.20)
a€A(s) =

The priority of state s is then set to zero and a value change A = |V,;; — V(s)] is calcu-
lated. After that, the priorities of all the predecessors of s are set to A - T'(spyeq, @, 5), unless
their priority already exceeded that value. It then chooses to update the state with the highest
priority, using a priority queue to efficiently select it. The process is repeated until £ updates
have been made, or the highest priority is below a threshold. As expected, this algorithms
manages to maintain a better updated policy by directing the value updates where they are
expected to have the most impact, thus converging faster to the optimal policy, at the cost of
some extra computation and complexity.

67

Chapter 5

Decision Tree based Reinforcement Learning

5.1 Decision Trees

Decision Trees are a machine learning method used for the classification of previously
unseen objects to one of a specified number of disjoint classes [Quin86]. Each object is as-
sumed to possess a number of observable attributes, whose value belongs to a (usually small)
set of mutually exclusive values. Each of these objects is also assumed to belong to one of
a set of mutually exclusive classes. The algorithm is provided with a training set of objects
whose classes are known. The goal is to develop a classification rule that is able to determine
the class of any object from the values of its attributes.

The classification rule is typically expressed as a decision tree. Each node of a decision
tree represents a decision made based on the value of a unique attribute. Each edge of the tree
represents a unique value for the attribute of the parent node. The leaves represent classes that
the object belongs to. In order for a new object to be classified, the algorithm starts from the
root of the tree, and follows the edge that corresponds to the value of that specific attribute.
The procedure is repeated until a leaf node is reached, at which point the class of the object
is predicted to be the class of that node.

é

Green
Yellow

Big % Small H Th'” H Small
/ Medium \ Round Banana Medium
Watermelon J, Grapes l
Green Sour

Apple

Apple
Sweet \
l Grape
Medlu m Small

Cherry

Grape -fruit Lemon

Figure 5.1: A simple decision tree

69

The purpose of an algorithm attempting to induce a decision tree, ideally, is to produce the
simplest possible decision tree that accurately classifies the training set. That approach though
is impractical, since the number of all possible correct decision trees is extremely large, and
there is no known efficient algorithm that can identify the smallest one. To compensate for
that, several algorithms have been proposed that can efficiently induce a reasonably simple
(but not optimal) decision tree. One of the most widely known such algorithms is Quinlan’s
ID3 [Quin86]. ID3 iteratively builds a decision tree using the information gained from each
split as the criterion to add additional decision nodes.

The expected average bits of information required to classify p objects belonging to class
P and n objects belonging to class N is calculated as:

logs—L " logy—2
(0] — 0]
p+n gzp+n p+n 92p+n

I(p,n) = — (5.1

This definition is in line with Shannon’s definition of entropy for a process with two out-
comes with probability Iﬁ and #. Thus, the expected information for a tree A partitioning
the state space into v categories can be calculated by:

— pi+ 1
=3B) 52)

The information gain obtained by branching tree A into those subcategories is then given
by:

gain(A) = I(p,n) — E(A) (5.3)

ID3 examines all candidate attributes and chooses the attribute A that maximizes gain(A).
It then forms the tree, and repeats the process recursively to further grow the resulting sub-
trees. Quinlan later proposed an extension of ID3 known as C4.5, that can handle continuous
features and incomplete data, and also provides a ’pruning” technique to solve the problem of
overfitting. In other works, Breiman proposed a criterion called the Gini Criterion [LBre84],
later modified by Murthy [Murt94], that measures the probability of misclassifying a set of
instances. Another criterion known as Twoing Rule, also proposed by Breiman, compares the
number of examples per category on each side of the split.

5.2 Decision Tree based Q-learning

We described earlier how Markov Decision Processes can be used to perform decision
making in classical reinforcement learning problems. One of the main characteristics of these
models is that the system is always assumed to be in one of a finite number of states. There are
a number of applications though, where the number of possible states the agent can find itself
in 1s either extremely large, or even infinite. One such example is the problem of performing
elasticity decisions on a database running in virtual machines in an IAAS cloud, where there

70

are numerous parameters affecting the behavior of the system (size and characteristics of the
machines, type and magnitude of the incoming load, CPU utilization, RAM utilization etc).

In these types of problems, classical approaches that attempt to model the system as a
Markov Decision Process cannot work since the number of required states grows exponen-
tially with the number of parameters that define it. This does not only make the resulting
models difficult to solve, but also greatly increases the amount of experiences needed in order
to approximate an optimal behavior. This problem is also referred to as input generalization.

In order to tackle this problem, Chapman and Kaelbling proposed a modification of the
classical Q-learning approach that uses a decision tree to partition the state space into mean-
ingful regions, called the G algorithm [Chap91]. The problem they faced was writing an agent
that could control a character in a video game called Amazon. The game involved moving
the character in a two dimensional map and shooting projectiles at ghosts to kill them. The
difficulty was that the input to the algorithm was the on screen representation of the game,
in the form of an array of a few hundreds of black or white pixels. This meant that there
were more than 2'%° different states the system could be in. It was obvious that attempting to
represent this problem as a classical Markov Decision Process was not realistic.

Q(B69 =1, a)

Q(B69=0AB23=0,2) (QB69=0AB23=1,a)

Figure 5.2: An example of the G algorithm partitioning the state space based on two bits of
the input [Chap91]

The G algorithm partitions the state space by creating a decision tree based on the bits
of the input. For each bit, the algorithm keeps separate track of the value of the state for the
occurrences where the bit is 0 or 1. It then uses the Student’s ¢ test to determine when a bit is
relevant. The ¢ test determines the probability that two sets of data are samples of the same
distribution. If that is the case, then the bit is irrelevant to the behavior of the system and
there is no point splitting the state based on that bit. If the bit is found to be relevant, the
algorithm splits the state into two different states, corresponding to the bit being 0 and 1. The
information stored in the bits of the initial state is not transfered to the new states, since at
that point it is not known on which of the two new states this information should go. This
means that the algorithm throws away a lot of useful information as the tree grows. At the
same time, the requirement for the input to be a string of bits can be restrictive in the types
of problems this algorithm can be applied.

One more widely applicable approach was proposed by Larry D. Pyeatt and Adele E.

71

Howe in [PyeaO1]. Their work was focused on developing agents for two simulated robotics
environments: a Robot Automobile Racing Simulator and a desktop robot called Khepera.
The state space for both these problems was too large for a classical table lookup method to
be applied, and so a method to generalize over the input was necessary. For that purpose they
proposed a decision tree based reinforcement learning algorithm that can work on continuous
state spaces.

The core of the algorithm is based on Q-learning. For each state-action pair, a Q-value is
maintained. When an action is performed and a new experience is acquired, the difference in
Q-value is calculated as:

A« [T’t+1 + ymax Q(St41,a) — Q(st, at)] (5.4)

where « is the learning rate and ~ is the discount factor. The states of the algorithm are
organized in a binary decision tree in a way similar to the G algorithm. The states of the
Q-learning model lie in the leaves of the tree, and the internal nodes of the tree are decision
nodes. Each decision node represents a single decision about the value of one input variable.
When presented with an input vector v, the state that v belongs to is found by starting from the
root of the tree and descending towards the leaves, following each decision branch according
to the values in v.

Decision Nodes /Q\ 7

State Nodes

g
/N /

Figure 5.3: State space partition using a decision tree [Pyea01]

The algorithm starts with a single state representing the entire state space. Whenever an
action is performed from a state, the difference in Q-values A is calculated and the Q-value
is updated by Q(s;,a;) < Q(si,a;) + A, according to the Q-learning rule. That Q-value
difference A is then stored in a history list for that specific state-action pair, along with the
exact values of the input vector v.

Following that, the algorithm decides if it should split the state. In order for a state to
qualify for splitting, two tests are made. First, the length of the history list for that state needs
to be at least equal to a history list min_size variable. Second, the standard deviation o and

72

average p are calculated for the Q-value differences A in the history list. The split can then
proceed only if |u| < 20.

The split itself can happen based on a number of criteria. These include the Information
Gain criterion proposed by Quinlan’s ID3 [Quin86], the Gini Index metric [LBre84], the
Twoing Rule [Murt94] and the ¢ statistic. In the case of the ¢ statistic, the history list [for that
specific state-action pair is divided into two lists [_ and [, corresponding to the experiences
where the Q-value difference A was negative or positive. For each input variable v;, a ¢
statistic is calculated on the values of the variable in [_ and [, . The variable with the highest
t-statistic is chosen for the split as long as the value of the statistic is higher that 0.1. The
splitting point will be the midpoint between the average values of the variable in [_ and /..

The algorithm was tested on two classical reinforcement learning problems, a car trying
to climb onto a mountain having to drive back and forth to gain the needed speed, and a
pole balancing on a cart that moves in one direction, as well as a simulated race driver car
that races against other cars. The tests supported the superiority of the t-test over the other
splitting criteria. Also, they showed the algorithm to be superior to other approaches such as
table-lookup and neural networks for these types of settings.

One downside of their approach however, is that when a node is split, the information
stored in that node is thrown away. Considering that in each split the number of decision
and state nodes increases by exactly one, at any point in time the number of decision nodes
will be one less than the state nodes (since the tree starts from a single state node). All those
decision nodes replaced state nodes that got split, discarding their training data. If we assume
that each active state node contains on average half of the information that was discarded
in each split, since a split has not been decided for it yet, we can conclude that during the
training of the model it is possible to waste up to 2/3 of the training data on removed states.
This is the reason that in our approach, explained in detail in section 5.4, we put great effort
into reusing past experiences to retrain the new states that are produced when a state is split.

5.3 Continuous U Tree

The full-model based approach has certain advantages to offer over the model-free ap-
proach in the case of the decision tree based algorithms as well. Since more precise infor-
mation is maintained about the exact properties of the model (its reward and transition func-
tions), this information can also be used to improve the quality of the splits that the algorithm
performs.

One such full-model, decision tree based algorithm was proposed by W. Uther and M.
Veloso in [Uthe98], named Continuous U Tree. In a similar manner to the algorithms studied
in section 5.2, a decision tree is used to partition the state space. The tree consists of decision
nodes, that partition the state space based on the value of a parameter, and leaf nodes, that
are the states of the Markov Decision Process.

Continuous U Tree goes through two distinct phases. The first phase is called Data Gath-
ering Phase. In this phase the algorithm works like a traditional Markov Decision Process
with a fixed number of states, with the only difference being that the mapping of input vectors
to the state they belongs within the model is done using the decision tree. Additionally, all

73

experience tuples (I, a, I’, r) acquired during this phase are recorded. Since during this phase
the algorithm functions like a traditional MDP, updates to the state and Q-state values can be
done using any update algorithm applicable to traditional MDPs.

The second phase is called a Processing Phase. During this phase the algorithm goes
through the leaves of the decision tree one by one, and calculates the values for each of the
datapoints in that leaf by the rule:

q(l,a) =r+~V(s) (5.5)

It then sorts the datapoints based on the value of each attribute and checks each point between
two such consecutive values as a possible splitting point. Two splitting criteria were proposed:

e Using Kolmogorov-Smirnov test on the values of the datapoints on either side of the
splits. The test will calculate the probability that the two sets of values follow the same
distribution.

e Using the values of the states () (s, a) to approximate the values of the transitions ¢(/, a),
and calculating the resulting mean-squared error. The splitting criterion is then the
weighted sum of the variances of the Q-values of the transitions on either side of the
split.

After the discretization has been decided, the transition and reward functions for all the
states of the model have to be recalculated from the stored experience tuples. The new MDP
is then solved using value iteration to calculate the state and Q-state values. The algorithm
keeps alternating between the Gathering and the Processing phase, growing the decision tree
and the number of states during the Processing phase, and acting as a standard MDP during
the Gathering phase.

5.4 Description of our Implementation

5.4.1 Overview

In this section we will explain in detail the way our implementation works. The algorithm
starts with a single leaf node, which is a state representing the entire state space. That node is
initialized as the root of the decision tree. At the same time, a vector of all states is maintained.
As required for a Markov Decision Process, a list of Q-states is stored in each state, with each
Q-state holding the number of transitions and sum of rewards towards each state in the model,
along with the total number of times the action has been taken. From this information we can
easily calculate the transition and reward functions.

The state of the world is provided in the form of a set of measurements, containing the
names and current values for all the parameters of the system. The last set of measurements
m collected, is stored in the model along with the state s they correspond to. When an action
1s performed, the algorithm is presented with the name of the action a, the reward obtained 7,
and a new set of measurements m’ representing the new state of the world. From m’ we obtain
the new state of the system s’ using the decision tree. After updating the transition and reward

74

(a) The decision tree before splitting a state (b) Training data for the state is preserved,

transition and reward information is re-
moved

oleld oo ol d|]

(c) The state is replaced by a decision node (d) Training data is restored, transition and

and two new state nodes reward information is recreated from the
data

Figure 5.4: Splitting a state in the decision tree into two new states. The first state replaces
the old state in the states vector and the second one is appended at the end.

information for the (s, a) Q-state, we store the (m, a, m’, r) experience tuple within s. Each
state holds a separate history list for each of the states in the model, and so the (m, a, m’,)
experience tuple is stored within s in the list that corresponds to s'.

Next, we update the state and Q-state values for our model. Since we maintain all the
current states in the model in a single vector, all states are referenced to by their position
in the vector. This means we can easily run any update algorithm used in classical Markov
Decision Processes to update the values, including value iteration, policy iteration and prior-
itized sweeping. After updating the values we consider splitting state s into two new states,
and finally update the current state s and current measurements m to s’ and m/’.

75

5.4.2 Splitting Criteria

1.

1l

76

We tested the following criteria for splitting a state:

Parameter test: From the experiences (m,a, m’,r) stored in all the history lists of s,
we isolate the experiences where the action a was the optimal action for that state (the
one with the highest Q-value). For each of these experiences, we find the state s’ in the
current model that corresponds to m’ using the decision tree, and calculate the value
q(m,a) = r + vV (s'). We then create two lists [_ and [, and if ¢(m,a) < V(s) we
append m to [_, else we append it to [. If the length of either [_ or [, is less that a
parameter min_num_experiences we abort the split.

For each parameter of the system, we collect the values of that parameter for the mea-
surements in [_ and [, in two new lists p_ and p., and run a statistical test on p_ and p,
to determine the probability that the two samples have arisen from the same population.
We choose the parameter with the lowest such probability to perform the split, as long
as it is lower that a max_type I error parameter, else we abort. If the split proceeds,
the splitting point will be the average of the means of p_ and p, .

This splitting criterion is analogous to the one proposed in [Pyea01]. The two main dif-
ferences are that the g-value derived from each experience is calculated using the current
states of the system instead of the value of the resulting state at the time the action was
performed, and the partitioning of the experiences is done by comparing them to the
current value of the state s instead of partitioning them to experiences that increased or
decreased the Q-value (which is again equal to comparing them to the Q-value at the
time the experience was acquired).

QO-value test: Again, from the experience tuples (m, a, m’, r) stored in all the history lists
of s, we isolate the experiences where the action a was the current optimal action for s.
For each experience, we find the state s’ that corresponds to m’ using the current decision
tree and calculate ¢(m, a) = r + vV (s).

For each parameter p of the system, we calculate all the tuples (m|p|, ¢(m, a)) and sort
them based on the value of the parameter m[p|. For each two consecutive unequal values
of the parameter m;[p] and m; 1 [p| in that list, we consider splitting the state at the mid-
point 1 (m;[p] + my1[p]). For that purpose, we run a statistical test on the sets of instan-
taneous Q-values ¢_ = {q(ms,a) | k < i} and ¢ = {g(ms, a) | k > i}. In other words,
we consider every midpoint between two consecutive measured values of a parameter,
and run a statistical test on the instantaneous q-values below and above that threshold.
If the split would leave less experiences on either side that min_num_experiences,
we ignore it. We choose the splitting point that gives the lowest probability that the
two sets of values are statistically indifferent, as long as that probability is less than
max_type I error.

This criterion was used in [Uthe98], and resembles splitting criteria that are being used in
traditional decision tree algorithms such as C4.5. It is also probably the most conceptually
straight-forward criterion, comparing how good the action was on either side of the split.

Alternatively, instead of attempting to split the state between each two consecutive un-
equal measurements, we experimented with only attempting to split in the midpoint be-
tween the two unequal consecutive measurements that are closest to the median. This
way we only consider a single splitting point per parameter, that splits the recorded ex-
periences approximately equally in the two resulting states.

iii. Information Gain: This criterion is based on ID3’s splitting criterion and was also tested
in [PyeaOl]. In our implementation of the criterion, we collect the experience tuples
stored in the history lists of s where the action a was the optimal action, and calculate
the values ¢(m, a) = r + vV (s') for each one.

Then, similarly to the O-value test criterion, for each parameter of the system we sort
the experiences based on the value of that parameter and consider as splitting points
each midpoint between two unequal consecutive values of the parameter. We count the
experiences where g(m,a) < V(s) and g(m,a) > V(s) on either side of the split, and
calculate the expected classification information in the resulting subtrees using equations
5.1 and 5.2. We choose to split at the point that minimizes this expected information, as
long as it is lower than the expected information for the initial state (again calculated
using equation 5.1) minus a min_in fo_gain parameter.

Alternatively, similarly to the Q-value test criterion, we experimented with attempting to
split the state only at the midpoint between the two unequal consecutive measurements
that are closest to the median.

5.4.3 Performing the split

Once a split has been decided for a state s;, all transition and reward information needs
to be removed from the rest of the states in the model. Since we know the id number of s;,
this is done by just zeroing the i-th element on all the reward and transition vectors in all the
Q-states in the model.

Before the node is to be discarded, the stored experiences need to be preserved. The
history lists stored in s; hold all recorded experiences where s; is the starting state. These
history lists are merged into a single one and stored temporarily in the model. All recorded
experiences where s; is the resulting state are stored in the i-th history list in some other
state of the model (the starting state for that experience). All those lists are emptied and their
contents are also stored in the temporary history list.

The next step is to replace s; in the decision tree with a new decision node, holding refer-
ences to two new children states. The first of these states will take the place of s; in the states
vector, and the second will be appended at the end. The reward and transition vectors in all
the states of the model are extended with one zeroed element, and a new empty history list is
appended in all states.

Finally the experiences temporarily stored are used to retrain the new states. For each
(m,a,m’,r) experience tuple, the corresponding states s and s’ are found using the decision
tree, the reward and transition vectors within s are updated, and the experience is stored again
in the history list of s that corresponds to &', in a process similar to the one that happens when
a new experience tuple is acquired.

77

One simple extension to the splitting mechanism, is allowing multiple splitting points.
Even though all the criteria we tested split a state into exactly two new states, being able
to perform splits at multiple splitting points allows for the easy and efficient construction
of pre-defined decision trees. This is very useful in applications where some knowledge is
available about the state space, and thus starting the model with a single node is unneces-
sarily pessimistic. When splitting a node in multiple points, the additional states are simply
appended at the end of the states vector, and all other changes are performed accordingly.

5.4.4 Statistical Tests

Three out of four splitting criteria discussed in section 5.4.2 included a statistical test to
determine whether the two groups of compared values are statistically different from each
other. For that purpose, four different statistical tests were used.

e Student’s t-test: The equal variance ¢-test, widely known as Student’s t-test, estimates
the probability that the two compared samples have a different mean, under the assump-
tion that they share the same variance. The statistic for this test is calculated using the
formula:

X — X,

t= (5.6)
sxix "\ s

where sy, x, 1s an estimator of the common standard deviation of the two samples given
by:

%&:¢w—mx+m—m& (5.7)

7”L1+7”Lg—2

The quantity n; + ny — 2 is the total number of degrees of freedom. This test was also
used by [Pyea0l], and is a very common way to test the similarity of two samples.

e Welch’s test: The unequal variance ¢-test, also known as Welch’s test, is an alternative
to the Student’s #-test that also tests whether the population means are different, but
without assuming that they share the same variance. The statistic in this case is given

by:
X, - X,
t= e (5.8)
n T ons

where s; and sy are the unbiased estimators of the variance of the two samples. The
degrees of freedom for this test are given by the Welch-Satterthwaite equation:

b= 54 (5.9)
1 + 2
N12v1 N22v2

This test has been proposed [Ruxt06] [Coom96] as the default way to test the statistical
similarity of two samples when the equality of the variances is not known beforehand,
over the Student’s t-test.

78

e Mann Whitney U test: This test is also an alternative to the 7-test that does not require the
assumption that the two populations follow a normal distribution, and can be used on
both ordinal and continuous data. It involves calculating a U statistic, whose distribution
under the null hypothesis in known (for sample sizes above 20 a normal distribution can
be assumed).

If the compared samples are small, it can easily be calculated by making every possible
comparison between the elements of the two groups, and counting the amount of times
the elements of each group win (giving 0.5 to each group for ties). For larger samples
the statistic can be calculated by ranking all the elements of the two groups in increasing
order based on their value, adjusting the ranks in case of ties to the midpoint of unad-
justed rankings, and summing up the ranks in the two groups (for example the ranks of
(3,5,5,9) are (1,2.5,2.5,4) [Wikil15b]). The U statistic is then given by:

nq (n1 + 1)
2

ng(TLQ + 1)

. (5.10)

U, =R - Up=Ry—
where R, and R, are the sums of ranks for the samples 1 and 2. The minimum value

among U; and U is then used to consult the significance table.

e Kolmogorov-Smirnov test: The two sample Kolmogorov-Smirnov test can be used to
test whether two underlying one-dimensional probability distributions differ, without
assuming normality for the two distributions. It involves the calculation of the Kol-
mogorov Smirnov statistic:

Dy, = supy|Fi 0 (x) — Fo ()| (5.11)

where F ,, and F;, are the empirical distribution functions of the two samples, and
sup 1s the supremum function [Wikil5a]. The null hypothesis is rejected at level « if:

/
D, > c(a@) ntn (5.12)

nn'

where c(«) is the inverse Kolmogorov distribution at «. This statistic was used for per-
forming splits in [Uthe98].

79

Chapter 6

Simulation Results

In this section we present results from a number of simulations. The goal of the simu-
lations is to better understand the behavior of the reinforcement learning models described
in Chapters 4 and 5, in the context of resource allocation problems in a cloud computing
environment. Choosing the exact setup for each simulation was a challenging task, not only
because the algorithms discussed allow for a great deal of parameterization, but also because
a fine line has to be maintained between capturing the behavior of the algorithm in a realistic
setting and maintaining some level of simplicity such that the results of the experiments can
be interpreted.

In section 6.1 we run a number of simulations whose purpose is to understand the behavior
of the algorithms under different possible settings. Since the amount and diversity of the
available options was overwhelming, in most experiments we attempt to isolate one of those
options and study its effect on the algorithm while using reasonable but constant values for
everything else. In section 6.2, we attempt to compare the performance of the algorithms
discussed in this work in two cloud management scenarios, and draw conclusions for the
effectiveness of each solution in this type of application.

The following abbreviations will be used throughout this chapter:

e MDP: The full-model based Markov Decision Process approach, having a fixed number
of states and maintaining transition and reward information in its Q-states, covered in
section 4.3.6

e (-Learning: The model-free reinforcement learning approach, also having a fixed num-
ber of states but not maintaining transition and reward information, covered in section
4.3.5

e MDPDT: Our full-model based decision tree implementation covered in section 5.4

e ODT: The Q-learning decision tree algorithm proposed in [Pyea01] and covered in sec-
tion 5.2

All simulations were implemented in Python, and the SciPy library was used for the sta-
tistical tests.
6.1 Parameterization

Before attempting to evaluate the performance of our proposal, we experimented with a
number of different options that affect that performance. For that purpose, we used a simu-

81

Sample Run

250

Incoming Load

—— Cluster Capacity
200

150
100 |

. ‘)" il

0 1000 2000 3000 4000 5000 6000 7000

K Requests / Second

Time Step

Figure 6.1: Incoming load and cluster capacity in a sample run with 5000 training steps, 2000
evaluation steps and e = 1.0

lation scenario from the field of cloud computing. In this scenario, the the agent is asked to
make elasticity decisions that resize a cluster running a database under a varying incoming
load. The load consists of read and write requests, and the capacity of the cluster depends on
its size as well as the percentage of the incoming requests that are reads. Specifically:

e The cluster size can vary between 1 and 20 virtual machines.

e The available actions to the agent in each step are to increase the size of the cluster by
one, decrease the size of the cluster by one, or do nothing.

e The incoming load is a sinusoidal function of time: load(t) = 50 + 50sin (2%)

e The percentage of incoming requests that are reads is a sinusoidal function of time with

a different period: r(t) = 0.75 + 0.25sin (25%).

e If ums(t) is the number of virtual machines currently in the cluster, the capacity of the
cluster is given by: capacity(t) = 10 - vms(t) - r(t).

e The reward for each action depends on the state of the cluster after executing the action
and is given by R, = min(capacity(t + 1),load(t + 1)) — 3 - vms(t + 1).

The reward function encourages the agent to increase the size of the cluster to the point
where it can fully serve the incoming load, but punishes it for going further than that. In
order for the agent to behave optimally, it needs to not only identify the way its actions affect
the cluster’s capacity and the dependence on the level of the incoming load, but also the
dependence on the types of the incoming requests.

82

In order to test the algorithm’s ability to partition the state space in a meaningful manner,
apart from the three relevant parameters (size of the cluster, incoming load and percentage
of reads) the input vector included 7 additional parameters, whose values varied randomly.
Four of them followed a uniform distribution within [0, 1], while the rest took integer values
within [0, 9] with equal probability. In order to be successful, the algorithm needs to partition
the state space using the three relevant parameters and ignore the rest.

All tests included a training phase and an evaluation phase. During the training phase,
the selected action in each step was a random action with probability e, or the optimal action
with probability 1 — e (e-greedy strategy). During the evaluation phase only optimal actions
were selected, as proposed by the algorithm. The metric through which different options are
compared is the sum of rewards the agent managed to accumulate during the evaluation phase.

6.1.1 Statistical Significance
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5
e Algorithm: MDPDT

e Splitting Criterion: Q-value test (Midpoint), Q-value test (Multiple Points), Parameter
test

e Initial Decision Tree: Single State
e Update strategy: Prioritized Sweeping
e Discount Factor: v = 0.5

e Statistical test: Student’s z-test, Welch’s ¢-test, Mann-Whitney U test, Kolmogorov-
Smirnov test

e Statistical test max error € {0.05,0.02,0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001,
0.00005, 0.00002, 0.00001 }

e Minimum number of experiences to split: 4 per resulting state

All the statistical tests used attempt to estimate the probability that the two compared
samples are statistically indifferent. If that is the case, performing a split at that point would be
meaningless. Therefore, we only perform splits in points where the statistical test suggests a
probability of error lower than max_type I error. Higher values of that parameter translate
to less strict testing, while lower values translate to stricter testing.

In this scenario, only 3 out of 10 parameters provided to the algorithm affected the system,
and the rest varied randomly. The algorithm is expected to correctly distinguish the param-
eters that are relevant and only perform splits using them. Figures 6.2, 6.3 and 6.4 show the

83

06 Correct Splits vs Max Type | Error (Parameter test, 400 runs)
100.00%

95.00%
90.00%
85.00%

80.00%

% Correct Splits

75.00%4

== Student's t-test

=g \Nelch's t-test
70.00%

Mann-Whitney U test
65.00%4 =¥ Kolmogorov-Smirmov test

60.00%
0.05 0.02 0.01 0005 0002 0001 0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.2: Accuracy of the four statistical criteria using the Parameter test, for different
values of the maximum type I error

% Correct Splits vs Max Type | Error (Q-value test, Median point, 400 runs)
100.00%

95.00%
90.00%
85.00%

80.00%

75.00% —

% Correct Splits

== Student's t-test

- == V\elch's t-test
70.00%
Mann-Whitney U test

65.00%4 ==K olmogorov-Smirmov test

60.00%
0.05 0.02 001 0005 0002 0001 0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.3: Accuracy of the four statistical criteria using the Q-value test at the median point,
for different values of the maximum type I error

84

% Correct Splits vs Max Type | Error (Q-value test, Multiple points, 400 runs)

100.00%
95.00%
90.00%
85.00%

80.00%

75.00%% == Student's t-test

% Correct Splits

== \N\elch's t-test
70.00%
Mann-Whitney U test

=¥ Kolmogorov-Smirmov test

0.05 0.02 001 0005 0002 0001 0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.4: Accuracy of the four statistical criteria using the Q-value test at multiple points,
for different values of the maximum type I error

percentage of splits performed on those relevant parameters as a function of the maximum
statistical error. For all statistical tests and splitting criteria, the typically used margin of 0.05
(corresponding to 95% confidence) resulted in a very large number of incorrect decisions. In
order to effectively restrict those incorrect decisions, the margin needs to be set significantly
lower, in the area of 0.002 (or even lower for the Q-value test on multiple points). If set low
enough though, in most cases the mistakes were completely avoided, especially when using
splitting criteria that only consider a single splitting point per parameter (Parameter test and
Q-value test at the median point). Perhaps the only exception to this is Welch’s test in the
case of the Q-value test with multiple splitting points, where even with a very strict margin
0f 0.00001 it only managed to achieve an approximately 95% accuracy.

All the criteria achieved their lowest accuracy when using the Q-value test with multi-
ple splitting points. This is not a surprise, since the other two criteria only consider a single
splitting point per parameter, which approximately equally divides the available experiences,
ending up comparing sets of approximately equal sizes. On the other hand this criterion con-
siders splitting points that leave only a handful of experiences in each set, making the decision
significantly more difficult. The test that was affected the most by this fact was Welch’s test,
since it assumes that the two populations have different standard deviations, and as a result
is very easily mislead when one of the two groups has very few elements.

Comparing the accuracy of the tests between the two criteria that consider a single split-
ting point per parameter (figures 6.2 and 6.3), the two tests that do not assume a normal distri-
bution of the values (Mann-Whitney U test and Kolmogorov-Smirnov test) both achieved a
better accuracy when run on the values of the parameters, which were generally less "noisy”

85

Total Splits

Total Splits vs Max Type | Error (Parameter test, 400 runs)

700 = Student’s t-test

== \elch's t-test
Mann-Whitney U test
== K.OlMogorov-Smimov test

100

0.05 0.02 0.01 0.005 0002 0001 00005 00002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.5: Number of splits for the four statistical criteria using the Parameter test, for dif-

Total Splits

ferent values of the maximum type I error

Total Splits vs Max Type | Error (Q-value test, Median point, 400 runs)

700 =— Student's t-test
—4—Welch's t-test
600 Mann-Whitney U test

=de=— K DIMogorov-Smirmnov test

100

0.05 0.02 0.01 0.005 0002 0001 00005 00002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.6: Number of splits for the four statistical criteria using the Q-value test at the me-

86

dian point, for different values of the maximum type I error

Total Splits vs Max Type | Error (Q-value test, Multiple points, 400 runs)

== Student's t-test
=== Welch's t-test
Mann-Whitney U test

== K.OlMogorov-Smimov test

Total Splits

200

100

0.05 0.02 0.01 0.005 0002 0001 00005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.7: Number of splits for the four statistical criteria using the Q-value test at multiple
points, for different values of the maximum type I error

that the values of the actions. However, the two tests that do assume a normal distribution
(Student’s t-test and Welch’s test) had their accuracy very noticeably reduced when run on
the values of the parameters. This can of course be explained by the fact that the values of
some of the parameters were discrete. In this case, these tests can come up with a very mis-
leading estimation of the standard deviation of the populations. For example, if the size of the
cluster in a set takes the values {4, 4, 4}, these tests will estimate the standard deviation to be
zero, which can be far from true, resulting in completely misleading type I error probabilities.

Overall, the Mann-Whitney U test achieved the highest accuracy with all the criteria.
The Kolmogorov-Smirnov test was second in all the criteria, as long as the error margin was
strict enough, while on the contrary, it performed very poorly when the margin was lenient
(maximum type I error values of 0.002 or higher). Finally, the two tests assuming normal
distributions, Student’s t-test and Welch’s test, only performed well when running on the
Q-values (which were not discrete), and considering a single splitting point.

In figures 6.5, 6.6 and 6.7 we can see how the total number of splits performed is affected
by the maximum statistical error. Even though selecting a low value is effective in preventing
incorrect splits, it also greatly lowers the total amount of splits performed by all the tests.
Among the tests, the Mann-Whitney U test performed the least amount of splits using all
splitting criteria, which was the downside of being the most accurate. When using the Q-
value test on the median point (figure 6.6), the amount of splits for all the tests was very
close. However, when using the Parameter test, the two tests that assume normal distributions
(which were also the least accurate on this criterion) performed significantly more splits, thus
ending up with significantly bigger decision trees. When using the Q-value test with multiple

87

Total Rewards

Total Rewards vs Max Type | Error (Parameter Test, 400 runs)

52000

51000

43000

== Student's t-test

47000 —e— Welch's t-test

Mann-Whitney U test

46000
== K0Imogorov-Smirmnov test

45000
005 002 001l 0005 0.002 0001 0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.8: Performance of the four statistical criteria using the Parameter test, for different

Total Rewards

values of the maximum type I error

Total Rewards vs Max Type | Error (Q-value test, Median point, 400 runs)

52000

51000

50000

49000

48000

== Student’s t-test
47000 == \elch's t-test
Mann-Whitney U test

46000 == Kolmogorov-Smimov test
45000

0.05 0.02 001 0005 0.002 0001 0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.9: Performance of the four statistical criteria using the Q-value test at the median

88

point, for different values of the maximum type I error

Total Rewards vs Max Type | Error (Q-value test, Multiple points, 400 runs)

52000
51000
50000
% 49000 :
g \
1]
o
g 48000
= =@ Student's ttest

47000 - VVelch's t-test

Mann-Whitney U test

46000 === K Dlmogorov-Smimov test

45000
005 002 001 0005 0.002 0001 O0.0005 0.0002 0.0001 0.00005 0.00002 0.00001

Max Type | Errar

Figure 6.10: Performance of the four statistical criteria using the Q-value test at multiple
points, for different values of the maximum type I error

splitting points, as expected, all the tests increased the number of splits performed. However,
the Mann-Whitney U test was least affected.

How all this translates to the final performance of the algorithm can be seen in figures 6.8,
6.9 and 6.10. The typical value of 0.05 for the maximum type I error achieved significantly
suboptimal performance with all criteria and statistical tests. The Mann-Whitney U test, being
the most accurate one, managed to perform very well with all the criteria. However, perform-
ing the least amount of splits, in achieved that performance for higher (less strict) values of
the error margin, in the area of 0.005. The Kolmogorov-Smirnov test also did well with all
the criteria, achieving its best performance for a slightly more strict value of 0.002.

As mentioned before, the difference between the equal variance t-test (Student’s t-test)
and its unequal variance counterpart (Welch’s t-test) is that the Student’s t-test makes the
assumption that the variances of the two populations are equal, while Welch’s t-test is ex-
pected to be more accurate when this does not necessarily hold [Ruxt06] [Coom96]. On a
first approach, we can imagine situations where the two compared variances are unequal. For
example, if certain values of a parameter cause instability of the system, then the variance
of the g-values in that part of the state space would be expected to have a higher variance.
This fact points towards Welch’s t-test being more widely applicable. However, the assump-
tion of equal variances increases the strength of the Student’s t-test, and in our experiments
we expect the variances of the population to be approximately equal more often than not.
This fact resulted in the Student’s t-test clearly outperforming Welch’s t-test, often with by
a significant margin.

89

Compared to the other tests, the Student’s t-test did very well with the Q-value criterion,
where the values tested were continuous. When using the parameter test, where the distri-
bution of the values is greatly different from a normal distribution, its performance dropped
significantly below that of the Mann-Whitney and Kolmogorov-Smirnov test.

6.1.2 Minimum Information Gain

Setup:

e Training steps: 5000

e Evaluation steps: 2000

e Exploration strategy: e-greedy with e = 0.5

e Algorithm: MDPDT with Information Gain criterion

e Initial Decision Tree: Single State

e Update strategy: Prioritized Sweeping

e Discount Factor: v = 0.5

e Minimum Information Gain € {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7} bits

e Minimum number of experiences to split: 8 per resulting state

% Correct Splits

% Correct Splits vs Minimum Information Gain (200 runs)

100.00%
95.00%
90.00%
85.00%
80.00%
75.00%
70.00%

65.00%

—— Multiple Splitting Points

60.00% === Single Splitting Point
55.00%

50.00%
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Minimum Information Gain (bits)

Figure 6.11: Percentage of splits performed on parameters that affected the behavior of the

90

system for different values of the minimum information gain

Total Splits

Total Splits vs Minimum Information Gain (200 runs)

450.00

400.00

== Multiple Splitting Points
350.00
-4 Single Splitting Point
300.00
250,00
200.00
150.00
100.00

50.00

0.00
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Minimum Information Gain (bits)

Figure 6.12: The total number of splits for different values of the minimum information gain

Corect Splits

Correct Splits vs Minimum Information Gain (200 runs)

250

200

150

100

—@— Multiple Splitting Points

50 —a— Single Splitting Point

0 01 0.2 0.3 0.4 0.5 0.6 0.7

Minimum Information Gain (bits)

Figure 6.13: The total number of splits performed on parameters that affected the behavior

of the system for different values of the minimum information gain

In order to strengthen the Information Gain criterion, to perform a split we require that
the classification information in the two resulting states is at least min_in fo_gain lower that
that of the initial state. In this experiment we observe how different values of this parameter
affect the performance of the algorithm in the two cases studied, namely when considering

91

Total Rewards vs Minimum Information Gain (200 runs)

52000

48000

46000

44000

Total Rewards

42000

40000 == Multiple Splitting Points
=4 5Single Splitting Point
38000

36000
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Minimum Information Gain (bits)

Figure 6.14: The sum of rewards obtained for different values of the minimum information
gain

multiple splitting points per parameter, or only considering splitting on the point nearest to
the median.

In figure 6.11 we can see that for high values of this parameter, this criterion can dis-
tinguish the correct correlations from the noise, and achieve accuracy that is competitive to
the statistical criteria. However, especially when considering only a single splitting point per
parameter, requiring such a high information gain in order to split greatly reduces the total
splits performed, dropping them to below 50 on average for a value of 0.7 (in this case in
some of the executions the algorithm failed to perform any splits during the whole run). This
fact causes a great drop in performance for values greater than 0.5 (figure 6.14) in both cases.
On the contrary, values below 0.3 have a very negative effect on the accuracy of the splits
and also noticeably reduce performance.

When considering multiple splitting points per parameter, the accuracy of the splits was
significantly lower, but that was balanced by the much larger amount of splits achieved. The
result was that both strategies achieved very similar performances, with the difference that
the single splitting point strategy reached its peak at a lower margin of 0.2 to 0.3 bits instead
of the 0.4 bits for the multiple splitting points case.

6.1.3 Minimum Number of Experiences to Perform a Split

Setup:
e Training steps: 5000

92

e Evaluation steps: 2000

e Exploration strategy: e-greedy with e = 0.5
e Algorithm: MDPDT

e Splitting Criterion: Q-value test

e Statistical test: Student’s #-test, Welch’s t-test, Mann-Whitney U test, Kolmogorov-
Smirnov test

e Initial Decision Tree: Single State
e Update strategy: Prioritized Sweeping
e Discount Factor: v = 0.5

e Minimum number of experiences € {2,3,4,5,6,7,8,9,10}

Total Rewards vs Minimum Number of Experiences (Multiple Splitting Points, 400 runs)

55000

50000 il

—

45000

40000
== Student's t-test

== WVelCh's t-test

Mann Whitney U
== K.OlMOogorov Smirnov
=p=— |nformation Gain

Total Rewards

35000

2 3 4 5 6 7 8 9 10

Minimum Number of Experiences

Figure 6.15: The performance of the algorithm as a function of the minimum number of
experiences required in either side of a split when allowing multiple splitting
points

One more parameter that controls the accuracy of the splits is the minimum number of
experiences required on either side of a split. If splits are allowed to happen with fewer avail-
able data, we generally expect a drop in their accuracy. On the other hand, a very conservative
requirement would reduce the options of the algorithm and thus also hurt performance. To
observe this behavior, we tested the performance of the four different statistical tests, along

93

Total Rewards vs Minimum Number of Experiences (Multiple Splitting Points, 400 runs)

51000

50500

Emou-/——

49500
%]
=
1]
g 49000
vd
=
=2 43500
== Student's t-test
48000 —4=— Welch's t-test
Mann Whitney U
47500 === K 0lmogorov Smirnov
=== [niformation Gain
47000
2 3 4 5 & 7 8 9 10
Minimum MNumber of Experiences
Figure 6.16: Zoom in on figure 6.15
Total Splits vs Minimum Number of Experiences (Multiple Splitting Points, 400 runs)
1800
1600 —8— Student's t-test
== Welch's test
1400 Mann Whitney U test
1200 === K 0lmogorov-Smimov test
== [nformation Gain
2
=
0
I
lg

Minimum Mumber of Experiences

Figure 6.17: The total number of splits performed by all tests as a function of the minimum
number of experiences required in either side of the split when allowing multi-
ple splitting points

with information gain, for different values of this parameter. The most suitable splitting crite-
rion for this test is the Q-value test with multiple splitting points. Since this criterion considers
splitting a state between any two consecutive points, it will always test cases where at least

94

Total Splits vs Minimum Number of Experiences (Multiple Splitting Points, 400 runs)

650
== Student's t-test
500 —4—Welch's test
Mann Whitney U test
== Kolmogorov-Smirmnov test
500 == [nformation Gain

550

450

400 & =

Total Splits

350 b=

Minimum Number of Experiences

Figure 6.18: Zoom in on figure 6.17

% Correct Splits vs Minimum Number of Experiences (Multiple Splitting Points, 400 runs)

100.00%

90.00% =

80.00%
70.00%
60.00%
50.00%

40.00%

% Correct Splits

== Student's t-test

30.00% =—4—WWelch's test
Mann Whitney U test
20.00% i
=== Kolmogorov-Smirmov test
10.00% =—dr— |nformation Gain
0.00%
2 3 4 5 6 7 8 9 10

Mininum Number of Experiences

Figure 6.19: The percentage of splits performed on parameters that affect the behavior of the
cluster as a function of the minimum number of experiences in either side of
the split when allowing multiple splitting points

one of the two tested sets contains a very small amount of elements.

With the exception of Welch’s test, the other three statistical tests did not need a restriction
in the number of available points in order to be effective (figures 6.15 and 6.16). Student’s
t-test reached its maximum when the limit was set to 3, while the Kolmogorov-Smirnov and
the Mann Whitney tests achieved their best performance for the minimum value of 2 points
per resulting state.

95

Total Rewards vs Minimum Number of Experiences (Single Splitting Point, 400 runs)

52000

:'é’ 46000

[

=

@

o

® 44000

= == Student's t-test
42000 === Welch's t-test

Mann Whitney U
== K.OlMogorov Smirmaov
40000 =p—[nformation Gain
38000
2 3 4 5 6 7 8 9 10

Minimum MNumber of Experiences

Figure 6.20: The performance of the algorithm as a function of the minimum number of
experiences required in either side of a split when allowing a single splitting
point

Total Splits vs Minimum Number of Experiences (Single Splitting Point, 400 runs)

1200

=@ Student's t-test
1000 === \Nelch's test
Mann Whitney U
== Kolmogorav-Smirmnov

800 =p== |nformation Gain
&
2 600
=
lg
400
™
200
0
2 3 4 5 B 7 8 9 10

Minimum Number of Experiences

Figure 6.21: The total number of splits performed by all tests as a function of the minimum
number of experiences required in either side of the split when allowing a single
splitting point

Welch’s test on the other hand had its performance drop very significantly when allowed
to consider splitting points with very few points on either side. This can be understood by

96

Total Splits vs Minimum Number of Experiences (Single Splitting Point, 400 runs)

600
== Student's t-test
550 —g=—\Nelch's test

Mann Whitney U
500 ==r= Kolmogorov-Smimov
=== |nformation Gain

450

400

350--—-____!__‘

Total Splits

250

200

150

Minimum Number of Experiences

Figure 6.22: Zoom in on figure 6.21

% Correct Splits vs Minimum Number of Experiences (Single Splitting Point, 400 runs)

100.00%

"
90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

% Caorrect Splits

== Student's t-test
30.00% == \Nelch's test
Mann Whitney U

20.00%)
== Kolmogorov-Smirmowv
10.00% =—p— [nformation Gain
0.00%
2 3 4 5 6 7 8 9 10

Mininum Number of Experiences

Figure 6.23: The percentage of splits performed on parameters that affect the behavior of the
cluster as a function of the minimum number of experiences in either side of
the split when allowing a single splitting point

the fact that this test assumes the two populations to have unequal variances. This means
that it calculates its estimation of the variance of each sample by using only the elements
of that sample. This way, if the elements within each sample are almost equal but the two
samples have different means, it will assume that both variances are almost zero and because
of the non-zero difference in the means it will produce an unrealistically low error probability.
This weakness is to a large extent avoided by the Student’s t-test, since it assumes that the

97

two populations have equal variances, and calculates a total variance for both samples. As
a result, if there is a non-trivial difference between the means of the two samples it will
inevitably calculate a non-trivial variance for the total population, and thus avoid producing
a much lower than expected error rate. This fact is also evident in the total number of splits
performed, where Welch’s test ends up a significantly larger amount for lower values of the
parameter, Student’s t-test increases its splits by a significantly smaller amount, and the other
two tests remain unaffected (figures 6.17 and 6.18).

Information gain exhibited a very significant dependence on the minimum number of
points available. When allowed to split with a minimum of 2 points, it performed more than
1600 splits (with obviously very low accuracy), despite the existing requirement for 0.4 bits
of gained information. Therefore, for this criterion limiting the amount of points per side of
the split is crucial, and only achieved its best performance for a very high value of 8 points.

When splits are only allowed at the median point of the values of the parameters (figure
6.20), the requirement for a limit in the number of points goes away for both the Student’s
t-test and Welch’s test. Even though the number of splits still slightly goes up even when the
requirement is lifted (figures 6.21 and 6.22), the accuracy is not affected (figure 6.23), and
the performance for both the tests ends up improving. As expected, the two statistical tests
that did not require a limit in the multiple splitting points case do not require a limit in this
case either. However, information gain is still very vulnerable (even though slightly less so),
and requires a minimum of 6 to 7 points per side to reach its potential.

6.1.4 Splitting Criteria Overview
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5

e Algorithm: MDPDT

Splitting Criteria: Q-value test, Parameter test, Information Gain

Statistical test: Student’s #-test, Welch’s #-test, Mann-Whitney U test, Kolmogorov-
Smirnov test

Initial Decision Tree: Single State
e Update strategy: Prioritized Sweeping
e Discount Factor: v = 0.5

In this experiment we compare the performance of all the implemented splitting criteria
under the optimal settings derived from the previous experiments (figure 6.24). The two tests
that did not assume a normal distribution of the values, the Kolmogorov-Smirnov test and the
Mann Whitney U test, performed better using the Parameter test criterion, while the two tests

98

Performance Comparison of all the Splitting Critera (400 runs)
52000
W Student's t-test
51500 ® \Welch's t-test
Mann Whitney U

51000 B Kolmogorov Smirnov
W Information Gain
50500
., 20000
=
o
% 49500
v
49000
48500
48000
47500

Parameter test Q-value test, single point Q-value test, multiple points

Figure 6.24: Performance comparison of all the splitting criteria using their optimal settings

that did assume normal distributions performed better when using the Q-value test. This is
not surprising, considering the fact that some of the parameters in this scenario were discrete.
This means that their distribution differs very significantly from a normal distribution, making
then inaccurate when the values of these parameters were provided for comparison. On the
other hand, since the Q-values were generally not discrete, when performing a test on them
the performance improved.

Among all the options, the Mann Whitney U test achieved the best results under the Pa-
rameter test criterion, capitalizing on the fact that it was the most accurate in terms of the
number of incorrect splits, as exhibited in the experiment in section 6.1.1. The Information
Gain criterion on the other hand seemed to be the least effective among all the criteria, requir-
ing the most restrictions in order to perform, and achieving the overall lowest performance.
Finally, between the two available options for the Q-value test, namely considering a sin-
gle or multiple splitting points, for most criteria the consideration of a single splitting point
achieved better results, while at the same time producing smaller decision trees.

6.1.5 Splitting Strategy
Setup:
e Training steps: 5000
e Evaluation steps: 5000
e Exploration strategy: e-greedy with e = 0.5

e Algorithm: MDPDT

99

e Splitting Criterion: Parameter test

e Statistical test: Mann-Whitney U test

e Update algorithm: Prioritized Sweeping
e Initial Decision Tree: Single State

e Discount Factor: v = 0.5

e t-test max error: 0.005

e Minimum number of experiences to split: 2 per resulting state

Total Rewards vs Splitting Strategy (100 runs)

135000
B Default
130000 B Chain Split
Start at 1/2
B Start at the end
125000 B Reset every 500 steps
Reset every 500 steps,
120000 multiple points
Start at the end and reset
11 every 500 steps
B Processing Phase every
10 steps
110000 Processing Phase every
100 steps
105000 B Processing Phase every
500 steps
100000

Figure 6.25: Performance comparison for ten different splitting strategies

By default, MDPDT attempts to perform a split on the starting state of an experience after
the experience has been acquired. In this experiment we test the performance of different
approaches on this decision.

One such approach, whose aim is to accelerate the growth of the tree, is to attempt to split
every node in the model, regardless of whether it was involved in an experience. This makes
sense because the splitting criteria take into account the values of other states, and so it is
possible that a change in the value of one state triggers a split in another. If a split is indeed
performed on any state, we repeat the process. We call this procedure a Chain Split.

One other strategy is to delay the splitting until a significant amount of data have been
acquired. The reasoning behind this is that once more data are available the splitting criteria
may be able to make better decisions and build a better decision tree compared to the one
built with less data. Additionally, we experimented with periodically resetting the decision
tree and performing a Chain Split to rebuild it.

Finally, we tested the splitting strategy used in [Uthe98]. This included splitting the al-
gorithm in two phases, a Data Gathering phase where data are collected but no splits are

100

Size of Resulting Decision Tree vs Splitting Strategy (100 runs)

B Default
B Chain Split

500 Start at 1/2
B Start at the end
B Reset every 500 steps
400 Reset every 500 steps,
multiple points
200 Start at the end and reset
every 500 steps
B Processing Phase every
200 10 steps_
Processing Phase every
100 steps
100 B Processing Phase every
500 steps
0

Figure 6.26: The size of the decision tree at the end of the evaluation phase for all splitting
strategies

U Correct Splits vs Splitting Strategy (100 runs)
98.00%

B Default
W Chain Split
97.00%

Start at 1/2
W Start at the end
96.00% B Reset every 500 steps
Reset every 500 steps,
multiple points
. Start at the end and reset
every 500 steps
94.00% B Processing Phase every
10 steps
Processing Phase every
93.00% 100 steps
B Processing Phase every
92.00% 500 steps
91.00%

Figure 6.27: The percentage of decision nodes of the final decision tree that partition the
state space using parameters that affect the performance of the system

performed, and a Processing Phase, where all the nodes of the model are tested one by one to
check if a split is needed, and if so, perform the splits. We tested performing this Processing
Phase every 10, 100 and 500 steps.

To evaluate these approaches, we tested the following strategies:

1. Default: Only attempt to split the starting state for each new experience.

ii. Chain Split: Perform a Chain Split with every new experience.

101

iil. Start at 1/2: Allow splitting to begin 1/2 into the training.

iv. Start at the end: Allow splitting to begin at the end of the training, and also perform one
chain split at that time.

v. Reset every 500 steps: Reset the decision tree and perform a Chain Split every 500 steps.

vi. Reset every 500 steps, multiple points: Same as above, but using the multiple points Q-
value test criterion, attempting to split each state at multiple points per parameter.

vii. Start at the end and reset every 500 steps: Allow splitting to begin at the end of the
training, and after that reset the decision tree and perform a Chain Split every 500 steps.

viil. Processing Phase every 10 steps: Do not allow splits, but run a Processing Phase (see
above) every 10 steps.

iX. Processing Phase every 100 steps: Do not allow splits, but run a Processing Phase every
100 steps.

X. Processing Phase every 500 steps: Do not allow splits, but run a Processing Phase every
500 steps.

Even though Chain Split adopted a much more aggressive (and computationally inten-
sive) strategy in attempting to grow the decision tree, the results were somewhat underwhelm-
ing. Comparing strategy (i) with strategy (ii) shows that even though Chain Split managed
to perform 30 additional splits on average, the quality of the splits went down and as a result
the total performance slightly deteriorated. This can be explained by the fact that the more
aggressive strategy also creates more opportunities for errors. Also, the relatively low amount
of additional splits reveals that the default strategy already depletes most of the opportunities
to create new states.

Waiting for more data to be available in order to start splitting performed even worse.
Despite offering a slight increase in the accuracy of the splits, (in the order of 1-2%), it
caused a 10% reduction in their number and in the case of strategy (iv) a very significant
drop in performance. We believe that the magnitude of this impact also reveals the importance
of maintaining the decision tree throughout the training phase. As discussed in section 6.1.8,
MDPDT favors lower values of the exploration constant because repeating the optimal action
multiple times makes more data available to perform splits. This is only true though if the
decision tree is already in place. If the decision tree is still a single state, that opportunity is
missed and only the optimal action of the single global state is repeated.

Periodically resetting the decision tree in order to rebuild it provided the most accurate
splits on the final tree, which was expected since the splits were performed with the maximum
amount of data. However, the resulting size of the tree was significantly smaller in this case,
limiting the performance of this strategy. Additionally, in order to test our hypothesis on the
impact of not having the decision tree in place during the training, we also experimented
with preventing any splits during the training phase and then resetting the decision tree every
500 steps and chain splitting during the evaluation phase. Note that since the decision tree
is reset right at the start of the evaluation phase, any previous splits performed should not

102

directly affect the state of the tree during the evaluation. However, the fact that the tree was
not active during the training resulted in a smaller tree, and very clear consequences on the
performance.

Finally, using a Processing Phase periodically instead of regularly splitting performed
better the smaller that period was. If performed every 10 steps it nearly reached the perfor-
mance of the default strategy (though having a significantly larger running time), but for
periods larger than that it quickly fell behind, making it a less favorable option.

Overall, the results of this experiment make us believe that the default method of attempt-
ing to split the initial state of each experience is both efficient and effective.

6.1.6 Initial Size of the Decision Tree
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5
e Algorithm: MDPDT with Parameter test
e Statistical test: Mann Whitney U test
e Update algorithm: Prioritized Sweeping

e Initial Decision Tree: {single state, 1-dimensional grid (10 states), 2-dimensional grid
(50 states), 3-dimensional grid (150 states)}

e Discount Factor: v = 0.5
e t-test max error: 0.005
e Minimum number of experiences to split: 2 per resulting state

Even though the decision tree algorithms are designed to work on large and unknown state
spaces, it is easy to imagine applications where some partial knowledge about the state space
is known beforehand. For example, in a cloud computing environment where a reinforcement
learning agent performs elasticity decisions on a cluster, it can be expected that the size of
the cluster will always be an important parameter in the decisions.

With that in mind, we experimented with the state of the decision tree at the start of the
training process. Instead of starting with a single state, we created decision trees that are
equivalent to 1-dimensional, 2-dimensional and 3-dimensional grids. One such decision tree
can be seen in figure 6.28. We then followed the training and evaluation process as normal,
allowing the algorithm to perform additional splits on their own.

As expected, this pre-partitioning of the state space helped MDPDT improve its perfor-
mance (figure 6.29). Moreover, in the case of the 1-dimensional grid, it even allowed more
splits to be performed during the run (figure 6.30). This is not unexpected, since the initial

103

Decision Nodes on

Parameter 1

Decision Nodes on D
Parameter 2

/1N

¥
States @
L L L

Figure 6.28: A decision tree implementing a 2-dimensional grid on the values of two param-
eters

\
]

Total Rewards vs Initial Size of the Decision Tree (200 runs)

53000.00
52500.00
W Single State
10 States
52000.00 | 50 States
W 150 States
51500.00
51000.00
50500.00
50000.00

Figure 6.29: The effect of starting with an existing decision tree on the performance

tree only contained 10 states (leaving still a lot of room for additional splits), and the resulting
subspaces were easier to handle. On the contrary, adding a third dimension hurt the perfor-
mance of the algorithm, even though there still was room to perform a large number of splits

104

Splits and Final Tree Size vs Initial Size of the Decision Tree (200 runs)

450.00
400.00
350.00
o
B 50 States
250.00 W 150 States
200.00
150.00
100.00
50.00
0.00

Splits Performed Total Number of States

Figure 6.30: The number of splits performed and the final number of states as a function of
the initial size of the decision tree

during the run. This is an indication that the state space in this problem can be partitioned
more efficiently that an orthogonal grid.

On a more general note, we believe that the ability to begin with a predefined partitioning
of the state space and still having the ability to dynamically increase the resolution during the
run can be very useful, and can allow decision tree-based models to be used in a much wider
range of applications.

6.1.7 Discount Factor
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5
e Algorithm: MDPDT with Q-value test, QDT, MDP, Q-learning
o Statistical test for MDPDT: Mann Whitney U test
e Statistical test for QDT: Student’s z-test

e Initial Decision Tree: Single State

105

e MDP states: 3-dimensional grid (500 states)

e Q-learning states: 3-dimensional grid (500 states)

e Update strategy for MDPDT and MDP: Prioritized Sweeping

e Discount Factor: v € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
e Statistical test max error for MDPDT: 0.005

e Statistical test max error for QDT: 0.002

e Minimum number of experiences to split: 2 per resulting state for MDPDT, 10 total for
QDT

Total Rewards vs Discount Factor (200 runs)

55000
50000 - ﬂ\‘\
45000
.‘é’ 40000
@
=
1]
v
® 35000
lg
30000 i NMDPDT
—i— QDT
25000 MDP
=== (J-learning
20000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Discount Factor

Figure 6.31: Performance for four different models as a function of the discount factor

The discount factor «y is the parameter that controls how much the algorithms consider
future rewards in their decisions. On a first approach, one would expect that increasing the
discount factor would improve performance, since it would allow the agent to make more
strategic decisions that are better in the long run. However, there are two important charac-
teristics of the scenario we are using that cause a high discount factor to negatively influence
performance.

First, the transitions in this scenario are noisy. Out of the three parameters that influence
the performance of the cluster, two vary independently of the actions of the agent (the incom-
ing load and the types of the requests). This means that judging the effect of the actions by

106

Total Rewards

Total Rewards vs Discount Factor for MDPDT (200 runs)

53000

52000

51000

47000 —&— MDPDT
46000 == MDPDT (no transitions)

45000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Discount Factor

Figure 6.32: The effect of ignoring transitions on MDPDT splits for different values of the

Total Splits

discount factor

Total Splits vs Discount Factor (200 runs)

400
350 3 ¥ ——— . > '———'————"'_-‘——-'
o o —— ¢ o
— o
300
250 —e— MDPDT
—%— MDPDT (no transitions)
200
—i— QDT
150) e ——— 2 —= e —A—‘__‘___‘
100
50
0
0.0 01 0.2 0.3 0.4 0.5 0.6 07 08 0.9

Discount Factor

Figure 6.33: The effect of ignoring transitions on the total amount of splits performed by

MDPDT as a function of the discount factor

107

% Correct Splits vs Discount Factor (200 runs)

97.00%
96.00%
—— %
i
95.00%
©
=
w
T 94.00%
2
5
(8]
£ g3.00% == MDPDT
== MDPDT (no transitions)
92.00% =i QDT
91.00%
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Discount Factor

Figure 6.34: The effect of ignoring transitions on the accuracy of the splits for both models
as a function of the discount factor

the value of the resulting state can lead to false judgments and suboptimal actions. Second, in
this type of scenario, good actions generally offer greater immediate rewards, and so greedy
choices are not punished.

In the case of the MDP model, this noise is overcome by the fact that the values of the
actions are calculated as the averages of the instantaneous values deriving from each expe-
rience. Thus, in MDP’s case, the performance increases with higher values of the discount
factor. In the case of Q-learning however, since the algorithm does not calculate averages
but instead values recent experiences more that past ones, this noisiness significantly hurts
its performance.

When it comes to the decision tree models, the transitions affect not only the evaluation of
the actions, but also the splitting of the states. In order to identify this influence, we tested the
following modification to the Q-value test criterion in MDPDT: instead of calculating the
instantaneous g-values for each experience (which are equal to the immediate reward plus
the value of the resulting state multiplied by the discount factor) we ignored the value of the
resulting state and instead only used the value of the immediate reward. This is equivalent to
making splitting decisions with a zero discount factor. This modification allowed MDPDT
to maintain the same number of splits for higher values of the discount factor as it did with a
value of zero (figure 6.33). On the contrary, the default version of Q-value test which takes
transitions into account had its total number of splits suffer for high values of the discount
factor.

108

6.1.8 Exploration Strategy
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy withe € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
e Algorithm: MDPDT, QDT, MDP, Q-learning
e Splitting Criterion for MDPDT: Parameter test
e Statistical test for MDPDT: Mann Whitney U test
e Statistical test max error: 0.005
e Initial Decision Tree for MDPDT: Single State
e MDP states: 3-dimensional grid (500 states)
e Q-learning states: 3-dimensional grid (500 states)
e Discount Factor: v = 0.5
e Learning Rate for Q-learning and QDT: o = 0.5

e Minimum number of experiences to split: 2 per resulting state for MDPDT, 10 total for
QDT

In a reinforcement learning context, where the agent is expected to learn the behavior of
the world from the outcomes of its actions, it is important that there is some mechanism that
will allow the exploration of all options before converging to a single policy. One simple way
to accomplish that is through the use of an e-greedy exploration strategy. In this strategy e
is simply the probability that a random action will be selected during the training phase. If
set to zero, the agent may never explore different alternatives and can get stuck in repeating
a suboptimal action forever. If set to one, the agent behaves completely randomly during the
training.

At first glance we would expect that opting for a high value will yield better results since
the agent will have a better chance of exploring all available options. The only downside
to this is that setting it to a slightly lower value will direct the agent to spend more time
in more fruitful regions of the state space, thus understanding these regions better. This is
exactly the behavior we see in figures 6.35 and 6.36 for MDP and Q-learning. A value of
zero completely prevents the agent from exploring any options while higher values achieve
better results (figures 6.39 - 6.41).

In the case of the decision tree algorithms though the behavior is different. Increasing the
exploration constant too much seems to hurt performance. The reason behind that is simple.
Splits only take into account the optimal action. This means that the more the agent performs
the best available option, the more data are available to grow the decision tree. This is clear

109

Total Rewards vs Epsilon (200 runs)

Total Rewards

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Epsilon

Figure 6.35: The performance of four algorithms for different levels of the exploration con-

stant €

Total Rewards vs Epsilon (200 runs)

55000

45000

Total Rewards

35000

25000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Epsilon

Figure 6.36: Zoom in on figure 6.35

in figures 6.37 and 6.38. Even though the accuracy of the splits does not drop (and even to
a certain extent improves) at high values of ¢, reflecting a better understanding of the world,

110

Total Splits vs Epsilon (200 runs)

700
500 —#— MDPDT
—¢ QDT
500
400
&
=3
@ > £ > .
= = {z — .
g 300 > -
200
il & d
— v » e y »
L La ¢ g —
100
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Epsilon
Figure 6.37: Total number of splits as a function of the exploration constant
% Correct Splits vs Epsilon (200 runs)
100.00%
99.00% —»— MDPDT
98.00% == QDT
97.00%
s 96.00%
=3
3]
g BN e——— -\”/—N
@ o a4 . —i]
E L Lk L]
O 94.00%
2
93.00%
92.00%
91.00%
90.00%
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 10

Epsilon

Figure 6.38: Percentage of splits on parameters that affect the behavior of the system as a
function of the exploration constant

their total number drops, overall hurting the performance. Most characteristically, by far the
largest number of splits is achieved by MDPDT when € = 0, since the agent is stuck in

111

MDP behavior when e=0.0

250
Incoming Load
—— Cluster Capacity

200
2 150
3
@
7
s
g 100
n: {\
4

0) | ! il i \] i ' | U I i \/ \ i | I U | | ! I i/ \
0 1000 2000 3000 4000 5000 6000 7000

Time Step

Figure 6.39: MDP behavior when € = (.0. The fluctuations in the capacity of the cluster are
caused by the types of the requests. The size of the cluster remains constant.

MDP behavior when e=0.5

250
—— Incoming Load

——— Cluster Capacity

" \ }“ \' L'1' | |

3000 4000 5000 6000 7000

200

150

100

K Requests / Second

50

Time Step
Figure 6.40: MDP behavior when ¢ = 0.5. The exploration is focused around the better
regions of the state space.

repeating the same action.

112

MDP behavior when e=1.0

250
— Incoming Load
——— Cluster Capacity
200
=} N
c
Q
3
@ '
2z |
. |
=3 i
g i
14 ! ’ |
x |
! t |
| | '
| \ u
0 1000 2000 3000 4000 5000 6000 7000

Time Step

Figure 6.41: MDP behavior when € = 1.0. The exploration is completely random.

6.1.9 Update Algorithm
Setup:
e Training steps: 5000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5
e Algorithm: MDPDT with Parameter test, MDP
e Statistical test: Mann Whitney U test
e Statistical test max error: 0.005
e Initial Decision Tree for MDPDT: Single State
e MDP states: 3-dimensional grid (500 states)
e Update strategy: {Single Update, Prioritized Sweeping, Value Iteration}
e Discount Factor: 7 = 0.5
e Minimum number of experiences to split for MDPDT: 2 per resulting state

One of the advantages of the full-model based algorithms is the ability to perform global
updates to the model when new experiences are acquired. In this experiment, we compare
three common update algorithms in terms of performance and execution time.

113

Total Rewards vs Update Strategy (200 runs)

52000
B Single Update
B Prioritized Sweeping
50000 Value Iteration (every 100 steps)
B Value Iteration (every step)
48000
[}
B
o
= 46000
i
|
2
44000
42000
40000
MDPDT MDP

Figure 6.42: Performance of MDPDT and MDP for different update algorithms

As expected, the most simple update algorithm, which is to perform a single update on
the value of the initial state with each new experience, turned out to be the fastest but also
the worst performing one (figure 6.42). This algorithm is similar in logic to the Q-learning
update rule, and thus suffers from the disadvantages of Q-learning discussed on Chapter 4.

On the other hand, Value Iteration is guaranteed to fully update the values of all states, and
is expected to achieve the maximum possible performance, which was indeed verified. This
is indicative of the importance of global updates in the model, since as discussed before, this
is a problem where good actions are generally rewarded immediately. This means that one
would only expect the effect of global updates to be much greater in scenarios where a long
series of actions is needed before acquiring a reward. However, when it comes to execution
time, Value Iteration was 3 orders of magnitude slower than performing a single update at
each step (table 6.1). This is of course expected, since the time complexity of Value Iteration
is O(S?A) per iteration, and in this experiment often more than 10 iterations were needed
before converging.

Prioritized Sweeping, discussed in paragraph 4.3.6, is an algorithm that attempts to com-
bine the advantages of both previous methods, and in this experiment manages to do exactly
that. By performing only targeted updates, it was 2 orders of magnitude faster than Value
Iteration while being only slightly less effective. Finally, we tested the performance of run-
ning single updates but also periodically updating the model through Value Iteration, in this
case every 100 steps. The results of this approach were also very competitive. However, even
though this approach has a total running time similar to Prioritized Sweeping, the worst-case
performance per update is at least as bad as Value Iteration, making it a weaker option in
comparison.

114

Algorithm Times slower than Single Update
Single Update 1

Prioritized Sweeping 11

Value Iteration 2270

Table 6.1: Execution time for MDP in comparison to performing a single update per expe-
rience

6.1.10 Learning Rate
Setup:
e Training steps: 20000
e Evaluation steps: 2000
e Exploration strategy: e-greedy with e = 0.5
e Algorithm: QDT, Q-learning
e Statistical test: Student’s #-test
e Q-learning states: 3-dimensional and 2-dimensional grid
e Discount Factor: v = 0.5
e Learning Rate: o = {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
e (-test max error: 1073
e Minimum number of experiences: 20

The learning rate is the parameter that controls how fast Q-learning learns from new ex-
periences. The higher its value, the more the algorithm values new experiences over previous
ones. If set equal to 1, the algorithm completely forgets its history and only memorizes the
value of an action the last time it was taken. On the contrary, if set equal to 0, it learns nothing
from new experiences. In order to get a better understanding of the affect the learning rate
has on the algorithm’s behavior, we tested the performance of Q-learning, as well as QDT
which is based on Q-learning, on our scenario using different values for the parameter.

The behavior of the system in this scenario depends on the values of three parameters:
the size of the cluster, the incoming load and the types of the queries. In order to fully model
this behavior we would need a 3-dimensional grid, partitioning the state space based on the
values of these three parameters. In that case, since within each cube of the state space the
behavior of the system is nearly constant, we would expect that a higher value of the learning
rate would be favorable, since the algorithm would be able to immediately learn the correct
value of an action. Since that value is not expected to change, forgetting past experiences
and only remembering the latest one has no downside. In figure 6.43 we can see that exact

115

Total Rewards vs Learning Rate (200 runs)

Total Rewards

== 3D Q-learning

== 2D Q-learning

QDT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Learning Rate

Figure 6.43: The performance of Q-learning and QDT for different values of the learning
rate

Total Rewards vs Learning Rate (200 runs)

== 3D (Q-learning
== 2D QJ-leaming
49000 QDT

49500
48500

47300

47000
500 \’\'
46000

45500

Total Rewards

45000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Learning Rate

Figure 6.44: Zoom in on the performance of the 2-dimensional Q-learning model

behavior: for the model that partitions the state space using a 3-dimensional grid increasing
the learning rate monotonically increases performance.

116

Total Number of Splits vs Learning Rate (200 runs)

400

350

250
200

150

Total Number of Splits

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 o7 0.8 0.9 1.0

Learning Rate

Figure 6.45: The total number of splits performed by QDT for different values of the learning
rate «

% Correct Splits vs Learning Rate (200 runs)

100.00%
98.00%
96.00%

94.00%

% Correct Splits

92.00%

90.00%

88.00%
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Learning Rate

Figure 6.46: The percentage of splits performed on parameters that affect the behavior of the
system as a function of the learning rate

117

In the same setting, we repeated the experiment using a Q-learning model that partitioned
the state space using only a 2-dimensional grid, disregarding the effect of the types of the
queries. In this case, the behavior of the system within each state differed significantly, as the
value of the third unmodeled parameter changed. Here, using a higher learning rate instead
hurt the performance, since the algorithm never got to learn an average behavior within each
state. This correlation can be seen more clearly in figure 6.44.

Finally, in the case of QDT, there was a strong preference in a lower learning rate. This
behavior is explained by figures 6.45 and 6.46. First of all, as expected, zero splits were made
when the learning rate was zero since the Q-values never increased or decreased. However,
for values higher than 0.1, the higher the learning rate was, the less splits the algorithm per-
formed, and the less accurate they were, due to the noise in the measured Q-values.

6.2 Performance

In this section we will attempt to compare and evaluate the overall performance of the
four algorithms discussed in this work, namely MDP-DT, QDT, MDP and Q-learning. For
that purpose we will use two simulation scenarios from the field of cloud computing. The
first one is the simple cluster used for the parameterization of the algorithms in chapter 6.1.
The second scenario is a more challenging iteration of the first one, whose behavior depends
on more parameters in a more complicated manner.

In both scenarios we attempt to evaluate the performance under relatively limited training
data, since we believe that this allows us to better understand the efficiency of each solution.
When ample training data was available, all solutions converged towards a near optimal be-
havior, and therefore we find the performance under limited training data more interesting.

6.2.1 Simple Cluster
Setup:
e Cluster size: 1-20 VMs
e Actions: Add 1 VM, Remove 1 VM, do nothing
e Incoming load: load(t) = 50 + 50sin (32%)

e Percentage of reads: r(¢) = 0.75 + 0.25sin (%)

e If ums(t) is the number of virtual machines in the cluster at time ¢, the capacity of the
cluster is given by: capacity(t) = 10 - vms(t) - r(t)

e Reward function: R; = min(capacity(t + 1),load(t + 1)) — 3 - vms(t + 1)
e Training steps € {2000, 5000, 10000, 20000}
e Evaluation steps: 2000

e Exploration strategy: e-greedy with e = 0.5

118

e Algorithms: MDPDT, QDT, MDP, Q-Learning

e Statistical test for MDPDT: Mann Whitney U test

e Statistical test max error for MDPDT: 0.005

e Initial decision tree size € {1 state, 50 states}

e MDP and Q-Learning number of states € {200, 500, 1000, 2000}
e Update strategy: Prioritized Sweeping

e Discount Factor: v = 0.5

MDP Performance (100 runs)

55000

50000

45000/,

40000

35000

30000

Total Rewards

25000 —— MDP (200 states)
20000 === MDP (500 states)
MDP (1000 states)
15000 —a— MDP (2000 states)
10000
2% 5k 10k 20k

Training Data

Figure 6.47: The performance of four different MDP models in the simple cluster scenario

Similarly to the experiments in section 6.1, in addition to the three parameters described
above (cluster size, incoming load, percentage of reads), the input vector included 7 additional
parameters, whose values varied randomly. Four of them followed a uniform distribution
within [0, 1], while the rest took integer values within [0, 9] with equal probability.

We tested the performance of the algorithms under varying amounts of training data to
observe how it evolves over time. In the case of the MDP and Q-Learning models, which
have a fixed number of states, we tested four different state configurations. In the case of
the decision tree based models we tested their performance when their initial decision tree is
a single state, or a small tree with 50 states (a small grid over the number of VMs and the
incoming load).

In both the cases of the MDP and the Q-learning model, in figures 6.47 and 6.48, the
smaller models achieved a better performance when trained with the smaller dataset, but got
outperformed by the larger models when more data was available. This was expected since

119

Q-Learning Performance (100 runs)

Total Rewards

== (J-learning (200 states)
== (J-learning (500 states)

Q-learning (1000 states)
==fr= (J-learning (2000 states)

10000

2k 5k 10K 20k

Training Data

Figure 6.48: The performance of four different Q-Learning models in the simple cluster sce-
nario

MDP vs Q-Learning Performance (100 runs)

Total Rewards

=R MDOP (200 states)
=p— MDP (1000 states)

20000
Q-learning (200 states)
15000 === ()-learning (1000 states)
10000
2k ok 10k 20k
Training Data

Figure 6.49: Performance comparison between MDP and Q-Learning in the simple cluster
scenario

the more states a model has, the more data it requires to be trained, but once trained having
more states allows the larger models to be more accurate. In the case of the 2000-state models,
even the 20k timesteps dataset was not enough to train them adequately, and so even though
they covered most of the distance towards the smaller models, they still did not manage to get
trained in time. This indicates that the performance we see is roughly what can be expected

120

MDPDT vs QDT Performance (100 runs)

55000
—— —3
‘.-/

@ 45000
g
+4]
o
= 40000
E

=—#= MDPDT (starting with 1 state)
35000 === MDPDT (starting with 50 states)
QDT (starting with 1 state)
== QDT (starting with 50 states)

2k ok 10K 20K

Training Data

Figure 6.50: Performance comparison of the decision tree based models in the simple cluster
scenario

MDPDT vs MDP Performance (100 runs)

2]
=
s
T
o
g 30000 —¢&— MDPDT (starting with 1 state)
|_
=== MDPDT (starting with 50 states)
25000
MDP (200 states)
20000 =p— MDP (1000 states)
15000
2K 5k 10k 20k

Training Data

Figure 6.51: Performance comparison of the full-model decision tree based model with its
fixed size counterpart in the simple cluster scenario

from these models with this size of a training set.

Comparing the performance of MDP and Q-Learning in figure 6.49, we see a clear win for
the full-model based approach. This is expected, since the algorithm maintains much more
information about the world, and immediately spreads any information gained from new

121

Total Rewards

QDT vs Q-Learning Performance (100 runs)

55000

P _____________.-—-—1

4

45000
40000
35000

== QDT (starting with 1 state)

== QDT (starting with 50 states)

25000
Q-learning (200 states)
20000)
== (J-learning (1000 states)
15000
2k 5k 10K 20k

Training Data

Figure 6.52: Performance comparison of the Q-Learning decision tree based model with its

Total Rewards

fixed size counterpart in the simple cluster scenario

Performance of all models (100 runs)

55000

_—
50000 4=

45000
40000

35000

== MDPDT (starting with 50 states)
QDT (starting with 50 states)

25000
= MDP (1000 states)
20000 Q-learning (1000 states)
15000
2k 5k 10k 20k

Training Data

Figure 6.53: Performance for all models in the simple cluster scenario

experiences to the whole model thanks to Prioritized Sweeping. Of course, this performance
advantage comes at the cost of a significantly increased computation time, but in the setting
of cloud computing applications the required time per update for all models is trivial.

This performance advantage of the full-model based approach is also clear in the case of
the decision tree based models (figure 6.50). This gap is of course also widened by the fact
that the Q-Learning based approach did not reuse its training data after node splits, essentially

122

wasting useful information. Additionally, we also see a noticeable boost in performance by
adding a small amount of states in the initial tree in all situations.

The comparison of the fixed-size models with the decision tree based models can be seen
in figures 6.51 and 6.52. This comparison is unfair for the decision tree based models, since
they had to figure out how to partition the state space in a noisy environment, while the
fixed size counterparts were provided with an evenly partitioned state space on exactly the
parameters that mattered. However, they still managed to perform exceptionally well, and
when provided with a little information about the state space in the form of a small set of
50 starting states, they clearly outperformed them. Additionally, one more advantage of the
decision tree based approaches is apparent. Fixed size models have to make a choice between
a small model that learns quickly but is inaccurate, and a bigger model that is more accurate
but learns slowly. Decision tree models on the other hand, by increasing their number of
states dynamically, can work well in both situations using the same settings.

6.2.2 Complex Cluster
Setup:
e Cluster size: 1-20 VMs
e Actions: Add 1 VM, Remove 1 VM, do nothing

e Incoming load: load(t) = 50 + 50sin (32%)

e Percentage of reads: 7(t) = 0.7 + 0.3sin (35¢)

e 1/O operations per second: [O(t) = 0.6 + 0.4sin (22¢)

0 if 0.7 > I0(t)
e /O penalty: 1O, (t) = ¢ 10(t) — 0.7 if 0.7 < IO(t) < 0.9
0.2 if 0.9 < 10(t)

e If ums(t) is the number of virtual machines in the cluster at time ¢, the capacity of the
cluster is given by: capacity(t) = 10(r(t) — 1Open(t))vms(t)

e Reward function: R, = min(capacity(t + 1),load(t + 1)) — 2vms(t + 1)
e Training steps € {2000, 5000, 10000, 20000, 50000}

e Evaluation steps: 2000

e Exploration strategy: e-greedy with e = 0.5

e Algorithms: MDPDT, QDT, MDP, Q-Learning

e Statistical test: Mann Whitney U test

e Statistical test max error: 0.005

e Initial decision tree size € {1 state, 50 states}

123

e MDP and Q-Learning number of states € {300, 800, 1440, 2400}
e Update strategy: Prioritized Sweeping
e Discount Factor: v = 0.5

e Minimum number of experiences to split: 2 per resulting state

1/O Penalty to the capacity of each VM

0.25
0.2

0.15

1O Penalty
o
=

0.05

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

/O operations per second

Figure 6.54: The penalty to the capacity of each VM in the complex cluster scenario

MDP Performance (50 runs)

Total Rewards

== WDP (300 states)

30000 —sde— MDP (800 states)
MDP (1440 states)
25000
== MDP (2400 states)
20000
2k 5k 10K 20k 50k

Training Data

Figure 6.55: The performance of four different MDP models in the complex cluster scenario

124

Q-Learning Performance (50 runs)

55000

Total Rewards

== (J-learning (300 states)
== (J-learning (800 states)

25000 Q-learning (1440 states)
== (J-learning (2400 states)
20000
2k Sk 10k 20k 30k

Training Data

Figure 6.56: The performance of four different Q-Learning models in the complex cluster
scenario

MDP vs Q-Learning Performance (50 runs)

60000
55000
50000

w 45000

=2

3]

2 40000

v

£ 35000

= —%— MDP (300 states)
30000 == MDP (1440 states)

Q-learning (300 states)
25000 == (}-leamning (1440 states)
20000
2k ok 10k 20k S0k
Training Data

Figure 6.57: Performance comparison between MDP and Q-Learning in the complex cluster
scenario

To increase the difficulty of this scenario compared to the previous one, we have in-
creased the effect of the types of the queries to the capacity of the cluster, and added one
more parameter that affects the behavior of the system in a non-linear manner, namely the
I/O operations per second. This parameter takes values between 0.2 and 1.0, but only affects
the performance of the cluster if its value is higher that 0.7 by adding a penalty to the per-

125

MDPDT vs QDT Performance (50 runs)

60000

55000 —P/—_

o

(1]
=
3]
% 45000
o
8
= 40000
=—¢= NMDPDT (starting with 1 state)
3 === MDPDT (starting with 50 states)
QDT (starting with 1 state)
== QDT (starting with 50 states)
30000
2k Sk 10k 20k S0k

Training Data

Figure 6.58: Performance comparison of the decision tree based models in the complex clus-
ter scenario

MDPDT vs MDP Performance (50 runs)

—e— MDPDT (starting with 1 state)

Total Rewards

35000
== MDPDT (starting with 50 states)
30000
MDP (300 states)
25000 =p— MDP (1440 states)
20000
2K 5k 10K 20k 50k

Training Data

Figure 6.59: Performance comparison of the full-model decision tree based model with its
fixed size counterpart in the complex cluster scenario

formance of each VM. The value of the penalty can be seen in figure 6.54. Similarly to the
simple scenario in section 6.2.1, in addition to the four relevant parameters, the input vector
included 6 additional random ones. Three of them followed a uniform distribution within
[0, 1], and another three took integer values within [0, 9] with equal probability.

126

QDT vs Q-Learning Performance (50 runs)

Total Rewards
%

== QDT (starting with 1 state)

== QDT (starting with 50 states)

30000
Q-learning (300 states)
25000)
== (J-learning (1440 states)
20000
2k 3k 10K 20k 50k
Training Data

Figure 6.60: Performance comparison of the Q-Learning decision tree based model with its
fixed size counterpart in the complex cluster scenario

Performance of all models (50 runs)

60000
——
55000 -
50000 /
45000

40000

Total Rewards

3 === MDPDT (starting with 50 states)

QDT (starting with 50 states)

30000
= MDP (1440 states)
25000 Q-learning (1440 states)
20000
2k 5k 10k 20k 50l

Training Data

Figure 6.61: Performance for all models in the complex cluster scenario

Again, in the case of the fixed-size models (figures 6.55 and 6.56), smaller models achie-
ved a better performance with a smaller training set, but got outperformed by the larger mod-
els when more data was available. Since the models were larger in this case (due to the larger
number of relevant parameters in the scenario), in both the MDP and the Q-learning cases
they required more data to catch up to the small model compared to the simple scenario. As
expected, the full-model based MDP model outperformed Q-Learning (figure 6.57), but of

127

course at the cost of significantly more computation.

A similar performance difference is also apparent in the case of the decision tree based
models (figure 6.58). In this case, starting the training with a small tree of 50 states offered
a very significant boost in performance. This boost allowed both decision tree based models
to clearly outperform their fixed size counterparts (figures 6.59 and 6.60).

Let us note here that the starting tree for the decision tree models implemented a small
10x5 grid on the number of VMs and the incoming load, and it was the same in both the
simple and complex scenarios. In other words, the decision tree based models run with the
exact same configuration on both scenarios and still managed to outperform the traditional
models even though the latter required changing their configuration of states to adopt to the
new scenario.

128

Chapter 7

Experimental Results

7.1 Experimental Setup

In this section we will briefly describe the way the different components used to perform
our experiments were coordinated. We used HBase as our distributed database, which runs
on top of the HDFS. The role of the client was played by YCSB, while Ganglia was used
for the collection of cluster metrics. The cluster was running on top of an OpenStack 1aaS
provider.

7.1.1 Cloud Management

The management of the laaS provider was performed by TIRAMOLA’s Cloud Manage-
ment module. This module offered a number of useful services that enabled TIRAMOLA to
dynamically control the VMs that were active in the cluster. The communication was done
using Python’s novaclient module, which offers an API towards OpenStack’s services. The
services offered by TIRAMOLA’s Cloud Management module are:

e Querying OpenStack for the details of all current active instances. Information about all
VMs in the account are acquired using novaclient, and then filtered to isolate the ones
belonging to the cluster.

e Querying OpenStack for the list of all current images or flavors. The image used for the
creation of a VM determines the contents of its disk, while the flavor determines the
virtual hardware it runs on (number of virtual CPU’s, amount of physical memory etc).

e Creating new instances. Since the VMs created were required to immediately join a
running HBase cluster, the image used was a snapshot of a VM already having Hadoop
2.5.2, HBase 1.1.2 and Ganglia already installed.

e Destroying instances. When a VM was decommissioned from the cluster, it was also
removed from OpenStack.

e Resizing instances. Resizing an instance in OpenStack includes two steps. First, a resiz-
ing command has to be issued. This can be done by directly calling the resize method on
a server item returned by novaclient, passing it the required new flavor. A new instance
is then created that replaces the previous one. However, the previous instance is not
deleted, but instead kept alive until the resizing is confirmed through the confirm_resize

129

method. Alternatively, if something goes wrong, the resizing can be canceled, restoring
the old instance.

e Waiting until a number of instances were running. When a new instance is created,
TIRAMOLA had to wait until it had properly booted before attempting to copy files or
issue commands to it. This was performed by testing that the instance responds to ping
and nc commands.

7.1.2 Cluster Management

In order for an HBase cluster to function properly, a number of configuration files need to
be properly distributed and updated in all the nodes of the cluster, so that the nodes are aware
of the correct configuration of the cluster at any point in time. Since the characteristics of the
cluster were dynamic, these configuration files needed to also be dynamically updated. For
that purpose, the up-to-date configuration files were locally created by TIRAMOLA’s Cluster
Coordinator module by using stored template files and replacing place-holder keywords.
When a new node was introduced to the cluster, new configuration files were created and
distributed to the cluster to inform the rest of the nodes of its presence.

Additionally, the Cluster Coordinator module offered additional functionality that al-
lowed controlling the NoSQL database running within in the cluster. This included:

e Formatting HDFS’s Namenode. When a new cluster was created, Hadoop’s distributed
file system needed to be formatted before HBase could use it to store its regions within
it.

e Starting or stopping the cluster. This includes starting or stopping Hadoop’s Namen-
ode on the master and Datanodes on the slaves, as well as HBase’s Master and Region
servers.

e Creating tables within HBase. In order to apply load to HBase, a table needed to be
created upon which to perform the queries. This was done automatically upon a new
cluster’s creation.

e Adding and removing nodes. When a new node was added or removed from the cluster,
the configuration files in all the nodes were updated to reflect that change.

In the case of node removal, the regions stored in that node were transfered away from
it and the Region Server was shut down with the use of HBase’s graceful stop.sh script.
Hadoop’s Datanode was then shut down by adding the IP of the node to the master’s
datanode-excludes configuration file, and refreshing HDFS’s nodes. When the process
was complete, the node was registered as decommissioned in HDFS’s dfsadmin, at
which point the node was free to be physically removed from OpenStack.

In the case of node addition, the Datanode and Region Server were started on that node,
and the HBase balancer was triggered in order to transfer regions to the new Region
Server. Since it was often the case that OpenStack gave new instances the IP’s of old
instances that had been removed from the cluster, when a new instance was created its

130

IP had to be preemptively cleared from the datanode-excludes configuration file on the
Namenode.

7.1.3 Generating the Workload

The role of the client performing the queries in our experiments was carried out by a
framework called YCSB. YCSB is a benchmarking tool written in Java that can generate
traffic for a number of database systems such as HBase, Cassandra and MongoDB. It offers
many configuration options, such as allowing the specification of certain target loads (in
requests per second), the range of the queries, the percentage of reads, writes and updates,
the distribution of the queries within the range and many more.

On top of the nodes making up our HBase cluster, an additional 15 VMs were created in
order to generate the incoming load towards the database, each with a YCSB client installed.
When the cluster was initialized, the hosts file containing the IP of the Master Server was
transfered to these machines, along with the configuration file containing the characteristics
of the workload. When a load needed to be executed, the appropriate command was sent by
TIRAMOLA to all 15 YCSB clients, in order to generate traffic towards the database. Each
of the clients executed its part of the workload, and stored the output containing the results
in a file that was later parsed by TIRAMOLA. This way, information about the throughput
and the latency of the queries was acquired and included to the rest of the metrics used for
decision making.

7.1.4 Collecting Metrics

The majority of the metrics needed by the algorithm to determine the current state were
collected using the monitoring system called Ganglia. For that purpose, two different Ganglia
networks were used, one running on the host machines along with OpenStack, and another
within the VMs of the cluster. In both cases, the data were acquired from the machine running
the gmetad daemon which in the case of the cluster was the Master node, while a gmond
daemon was running on each of the other machines.

The metrics were collected in XML format and parsed using Python’s xm/todict library.
After being parsed, the metrics were grouped based on the host they corresponded to. If data
from any of the VMs in the cluster was missing, the process was repeated. The duration over
which we collected measurements in our experiments lasted 3 minutes, during which data
were collected every 10 seconds. After that duration ended, the metrics were averaged over
all nodes of the cluster and over all measurements over time, and returned to TIRAMOLA’s
Coordinator module to be fed along with the rest of the metrics collected from YCSB to the
Decision Making module.

131

45000

Incoming Load
= Cluster Size 15

w [\ [NN ‘11 .

35000 i J

2 r l I 1 n

3 g
T 30000 i @
g , . g
=] -
= Q
2 25000 f

=

15000 3
0 200 400 600 800 1000 1200 1400 1600

Time (min)

Figure 7.1: System behavior under a sinusoidal load (minimal dataset)

45000

= |ncoming Load
m— (Cluster Size

15

13

35000
11

Incoming Load (req/sec)
w
Cluster Size

25000

15000 3
100 200 300 400 500 600

o

Time {min)

Figure 7.2: System behavior under a sinusoidal load (small dataset)

7.2 Results

7.2.1 System Behavior

The size of the cluster used in our experiments ranged between 4 and 15 VMs. Each VM
in the HBase cluster had 1GB of RAM, 10GB of storage space and 1 virtual CPU, while the

132

45000

Incoming Load
= Cluster Size

15

13

35000
11

Incoming Load (req/sec)
(=]
Cluster Size

25000

15000 3
0 100 200 300 400 500 600

Time (min)

Figure 7.3: System behavior under a sinusoidal load (large dataset)

45000

Incoming Load 15

= Cluster Size

13

35000
11

Incoming Load (req/sec)
(=]
Cluster Size

25000

0 200 400 600 800 1000 1200 1400

Time {min)

Figure 7.4: System behavior under a sinusoidal load with alternating amplitude

master node had 4GB of RAM, 10GB of storage and 4 virtual CPU’s.
For the training of the decision tree based models we used a set of 12 parameters including:

e The size of the cluster
e The amount of RAM per VM

133

Incoming Load (reqisec)

Incoming Load (reg/sec)

134

45000

== |nicoming Load
= Cluster Size

35000

25000

15000
170 270 370 470 570 670 770 870 970

Time (min)

Figure 7.5: System behavior under a slow sinusoidal load

45000

1070

= [ncoming Load

= Cluster Size

35000

25000

15000
0 100 200 300 400 500 600

Time (min)

Figure 7.6: System behavior under a square pulse load

The percentage of free RAM
The number of virtual CPU’s per VM
The CPU utilization

The storage capacity per VM

700

15

13

11

15

13

11

Cluster Size

Cluster Size

The number of I/O requests per second

The CPU time spent waiting for I/O operations

A linear prediction of the next incoming load (equal to two times the current load minus
the last recorded load)

The percentage of read requests in the queries

The average latency of the queries
e The network utilization

We initialized the MDPDT decision tree with 6 states and let it partition the state space
on its own from that point on. We tested the behavior of TIRAMOLA after training it with
datasets of different sizes. The training load was a sinusoidal load of varying amplitude. We
allowed for 5 different actions, which included adding or removing 1 or 2 VMs from the clus-
ter, or doing nothing. First, we run TIRAMOLA with a minimal dataset of 500 experiences.
When trained with this dataset, only 17 splits were performed during the training (4 using the
size of the cluster and 13 using the incoming load), increasing the total number of states to 22.
During this run 12 additional splits were performed (4 using the size of the cluster and 7 us-
ing the incoming load and 1 using the latency), allowing TIRAMOLA to continuously adapt
and follow the incoming load (figure 7.1). When provided with bigger datasets of 1500 and
20000 experiences, the performance improved and very closely converged to the incoming
load, ending up with 66 and 576 states respectively (figures 7.2 and 7.3).

7.2.2 [Effect of the initial number of states

As the simulations presented in chapter 6 suggested, MDPDT’s performance improves
when instead of starting from a single state, the model starts from a small number of states,
thus having to solve a small number of easier problems instead of a harder one. This was
also the case when controlling a real cluster, as seen in figure 7.7. Starting the model with 6
states instead of 1 made a very noticable difference in the performance of the algorithm when
trained with a small dataset, allowing TIRAMOLA to very closely follow the incoming load
with little training.

Further increasing the number of initial states to 50 though had a negative effect on the
algorithm’s performance. This is an indication that even this relatively simple state space
can be partitioned by a decision tree in a more efficient manner than the orthogonal grid
partitioning that was provided as the initial state configuration.

Of course, when a larger dataset was provided, MDPDT significantly improved its per-
formance in all three cases, even though the behavior when starting with 6 initial states still
seemed to be the most stable of the three.

7.2.3 Using Different Models

In this experiment, we had the opportunity to test the behavior of TIRAMOLA when
using the other three models participating in the simulation experiments in chapter 6. The

135

45000 45000

15000 3 15000 3

(a) 1 state, small dataset (b) 1 state, large dataset

45000 45000

(¢) 6 states, small dataset (d) 6 states, large dataset

(e) 50 states, small dataset (f) 50 states, large dataset

Figure 7.7: The effect of the initial number of states in the behavior of MDPDT

full-model based MDP model also performed reasonably well in this setting. In the case of
the small dataset it did seem to still require more training, but when trained with a larger
dataset it followed the incoming load very cleanly. Let us note that this is a problem where
this approach was expected to do very well, since the state space is relatively simple, and a
partitioning using only the size of the cluster and the incoming load was sufficient to capture
the behavior in this experiment. At the same time, since it maintains a full MDP model of the
system, it was able to very accurately make use of the collected information.

The Q-learning based models though both required a large amount of data to follow the
incoming load effectively. In this experiment the decision tree based Q-learning model (QDT)
achieved the weakest performance with the small dataset. With this few data this is not totally
unexpected, since at the start of the training that model uses the first data it acquires to perform
splits, but then discards it after the splits have been performed, leaving it with very little
available information to make decisions. When more training data was provided though, it did

136

45000

15000

(a) MDPDT, small dataset

45000

15000

(c¢) MDP, small dataset

45000

15000

(e) QDT, small dataset

45000

15000

°

100 200 300 400 500 600

(g) Q-learning, small dataset

45000

35000

25000

15000

45000

35000

25000

15000

45000

35000

25000

15000

45000

35000

25000

15000

°

°

°

°

100 200 300 400 500

(b) MDPDT, large dataset

100 200 300 400 500

(d) MDP, large dataset

100 200 300 400 500

(f) QDT, large dataset

100 200 200 400 500

(h) Q-learning, large dataset

Figure 7.8: Comparison of the behavior of all four models

manage to catch up to the traditional Q-learning model. However, they both were noticably
less stable compared to the full model approaches, to a large extent verifying the results

deriving from the simulation experiments.

137

7.2.4 Restricting the Splitting Parameters

45000 45000

(e) Network Usage (f) Incoming load prediction

Figure 7.9: System behavior when allowing splits with only the cluster size plus one addi-
tional parameter

In order to test the algorithm’s ability to partition the state space using different param-
eters, as well as to test the reliability of some of the parameters in predicting the incoming
load, we experimented with restricting the parameters with which the algorithm is allowed to
partition the state space. For that purpose, we experimented with training the algorithm from
a small dataset of 1500 experiences, but restricting the parameters with which the algorithm
is allowed to partition the state space to only the size of the cluster plus one additional pa-
rameter each time. The parameters used were the CPU utilization, the one minute averaged
reported system load, the prediction of the incoming load, the network usage and the average
latency.

For all the parameters, the system seems to be able to find a correlation between the

138

Resulting Size of the Decision Tree

All parameters Latency CPU utilization System load Network Usage Load prediction

70

40

2

[=]

1

o

Figure 7.10: Resulting size of the decision tree when allowing splits with only the cluster
size plus one additional parameter

given parameter and the rewards obtained, and starts following the incoming load. Of course,
the performance is significantly worse compared to the default case where all the available
information is provided, and thus the training of the model is noticeably slower. The resulting
size of the decision tree for each individual case reflects this fact, and in most cases the model
ended up having only 20 to 30 states compared to the 66 of the default case. However, the
fact that these correlations exist and can be detected even from a small dataset of only 1500
points, reveals the fact that it is possible, using techniques like the ones described in this work,
to exploit these correlations in order to implement policies in systems with complicated and
not very well understood behavior.

139

Chapter 8

Epilogue

8.1 Conclusions

During this work, we had the opportunity to experiment with decision tree based rein-
forcement learning algorithms, and test their performance on the challenging problem of per-
forming dynamic resource allocation for non-relational databases. Here, we will summarize
the conclusions derived from this work.

e The performance of the decision tree based models was surprisingly good compared
to their traditional reinforcement learning counterparts. This fact is not only due to the
decision tree’s ability to create an efficient partitioning of the state space, but also be-
cause of the fact that these models adaptively increase their model size as more data
become available. This allowed them to train quickly at the start of the process, but still
gradually increase their size to keep up with larger models as more data were gathered.
Additionally, since they do not require a predefined state space configuration, they can
be used in different types of scenarios with the same settings.

e The splitting criteria that were based on statistical tests were very efficient in distin-
guishing real correlations from random noise. However, in order to achieve this, the
error margin needs to be set much lower than the typical value of 0.05, depending on
the statistical test and splitting criterion used. The information-based criterion, that is
common in traditional decision tree algorithms, also performed reasonably well, when
restricted appropriately to minimize mistakes. However, even in that case, it did not
manage to reach the effectiveness of the statistical criteria. Of course, since all the crite-
ria detect correlation between the efficiency of actions and the values of certain param-
eters, one still needs to be aware of situations where there are temporary correlations
between certain parameters of the system and its performance. As long as these cor-
relations hold, partitioning the state space based on those parameters may not cause a
problem, but if these correlations suddenly break, the model may stop behaving opti-
mally. For this reason, the parameters with which the model is allowed to partition the
state space is an important decision that needs to be made very carefully.

e The combination of the Mann Whitney U test with the Parameter test splitting criterion
achieved the best performance among all the tested statistical criteria. For the Q-value
test in particular, where it is possible to consider multiple splitting points per parameter,
attempting to split on only the median achieved better results than allowing multiple
options, and at the same time produced smaller decision trees.

141

e The fine grained splitting and retraining mechanism we implemented during this work

performed better than the one used in [Uthe98], while at the same time being more com-
putationally efficient. More complicated splitting strategies, like delaying the beginning
of the splits or periodically resetting the decision tree did not manage to improve perfor-
mance. However, when allowing multiple splitting points per parameter, the latter did
not fall too far behind the default strategy, and thus could potentially be used to correct
mistakes caused by misleading data at the start of the training.

In terms of computational efficiency, maintaining the training data to retrain the new
states and performing tests on them to decide splits does have a considerable effect on
the running time, when comparing models with approximately equal numbers of states.
However, often the decision tree based models managed to achieve better performance
using a significantly smaller number of states. Moreover, in the case of the full-model
based approaches, if an update algorithm such as prioritized sweeping or value iteration
is used to update the values of the states and Q-states, the running time is dominated
by the performance of the update algorithm. As a result, since the running time of these
algorithms depends on the number of states of the model, decision tree models ended
up running faster.

In the context of cloud computing, where there is generally a lot of computational power
available and a lot of time between decisions to perform calculations, the running time
of the algorithms was completely trivial, and the only concern was the time needed to
perform the initial training from a very large dataset. However, if needed, implementing
the algorithms in a statically typed, compiled programming language (like C) and using
prioritized sweeping as the update algorithm would make the training time trivial even
in those cases. Of course, in scenarios where the computational and energy efficiency
is critical (for example when controlling mobile robots), Q-Learning provides by far
the fastest running time and lowest memory requirement, at the cost of being the least
accurate of the approaches.

Even though decision tree based algorithms have the potential to model the state space
with zero knowledge of its topology by starting from a single state, providing a little
information in the form of a small number of initial states significantly improved per-
formance. This is not surprising, since mistakes in the structure of the decision tree are
much more expensive the closer they are to the root. Despite the fact that in most ex-
periments the decision trees used begun as a single state, we believe that if applied in
practical problems a small configuration of starting states should always be used, when-
ever that kind of information is available. In the case of performing elasticity decisions
for distributed databases, this kind of information is almost always available, since the
current size of the cluster and the incoming load are always expected to be a deciding
factor in the decisions. Therefore, these two parameters should be used to create a small
initial partitioning of the state space. From that point on, the decision tree algorithm can
be used to further partition the state space and capture more complicated behaviors of
the system that are not obvious beforehand.

e The fact that the decision tree algorithms expect as a state-input a vector of continu-

142

ous values of parameters suited the way metrics were collected in practice, since they
could be fed directly into the algorithm. Additionally, the fact that all the reinforcement
learning algorithms can learn from past experiences without having to have selected
the actions themselves, allows for offline training using existing data, or even sharing
training data among different databases running on a common infrastructure provider.

8.2 Future Work

In this section, we will discuss briefly a number of topics that we did not have the oppor-
tunity to tackle during this work, but we believe are worth investigating in the future.

Splitting criteria using multiple parameters

The decision tree algorithms discussed in this work attempt to partition the state space
by examining the correlation between the values of the provided parameters and the effec-
tiveness of the available actions. However, all the criteria we examined attempt to do that by
only considering the values of a single parameter. In practice, it is possible to imagine situa-
tions where the behavior of a system depends on values of parameters in such a complicated
manner that figuring out the correlation by examining a single parameter can be very chal-
lenging. For example, if a certain behavior is exhibited under a combination of two specific
values of two parameters, that behavior will not be easily detected by looking at each one
of them separately. To overcome this problem, splitting criteria could be developed that take
into account values of multiple parameters instead of a single one.

Determining which parameters are reliable for decision making

In resource allocation problems in particular, the most common metric that is used today
in practice to perform elasticity decisions by threshold-based decision makers is the CPU
utilization. However, a large number of other parameters seem to be relevant to the behavior
of the system (load characteristics, I/O operations per second, network utilization etc). Even
though the decision-tree based algorithms discussed in this work have the ability to handle
such a large number of parameters, studying which of these parameters are most reliable to
be used in decision making and filtering out the less reliable ones could only benefit their
performance, as well as the performance of more simplistic threshold based solutions like
the ones used in practice.

Mechanism to prune the decision tree

In this work we have adopted a somewhat more aggressive approach in splitting states,
opting for options that to some extent sacrifice accuracy to grow the decision tree faster.
The reason behind this is the fact that under limiting training data this approach simply pro-
vides better results. However, when more data are available, more strict splitting strategies
could become more beneficial and efficient. Additionally, in order to correct possible poor
decisions resulting from such aggressive splitting strategies, it might be worth investigating

143

mechanisms that can cancel already existing splits. Such mechanisms that can prune an exist-
ing decision tree are being used in classification algorithms such as C4.5, and could be used
to improve the long-term efficiency of decision tree based reinforcement learning algorithms
as well.

Context detection as an alternative to dynamic state space partitioning

An alternative approach to dynamically creating new states in order to capture the behav-
ior of a complex system such as a NoSQL cluster, could be to instead maintain a large number
of traditional reinforcement learning models, each with a different state configuration, and
developing a mechanism to evaluate their accuracy as the system runs. Having an estimate
of how accurately each of the different models behaves at any point in time, it could then be
possible to choose actions that take into account that fact. This could either be done through
a polling mechanism, where each model’s opinion about the optimal action is weighted by
its accuracy, or by simply executing the action of the most accurate model. Such solutions
have been proposed in the past [Doya02] [DaSi0O6a], and use each model’s ability to predict
the rewards and transitions of the system as an indication of its accuracy.

144

Bibliography

[Angel2]

[Bell57]

[Bort08]

[Chan08]

[Chap9l]

[Choi01]

[Coom96]

[DaSi06a]

[DaSi06b]

Evangelos Angelou, Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios
Tsoumakos and Nectarios Koziris, “Automatic scaling of selective SPARQL
joins using the TIRAMOLA system”, in Proceedings of the 4th International
Workshop on Semantic Web Information Management, p. 1, ACM, 2012.

R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ.,
1957.

Dhruba Borthakur, “HDFS architecture guide”, HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes and Robert E Gruber,

“Bigtable: A distributed storage system for structured data”, ACM Transactions
on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

David Chapman and Leslie Pack Kaelbling, “Input Generalization in Delayed
Reinforcement Learning: An Algorithm and Performance Comparisons.”, in 1J-
CAI, vol. 91, pp. 726-731, 1991.

Samuel PM Choi, Dit-Yan Yeung and Nevin L Zhang, “Hidden-mode markov
decision processes for nonstationary sequential decision making”, in Sequence
Learning, pp. 264-287, Springer, 2001.

William T Coombs, James Algina and Debra Olson Oltman, “Univariate and
multivariate omnibus hypothesis tests selected to control Type I error rates when
population variances are not necessarily equal”, Review of Educational Research,
vol. 66, no. 2, pp. 137-179, 1996.

Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan and Paulo M Engel, “Deal-
ing with non-stationary environments using context detection”, in Proceedings
of the 23rd international conference on Machine learning, pp. 217-224, ACM,
2006.

Bruno C Da Silva, Eduardo W Basso, Filipo S Perotto, Ana L. C Bazzan and
Paulo M Engel, “Improving reinforcement learning with context detection”, in
Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, pp. 810—-812, ACM, 2006.

145

[Doya02]

[dWin13]

[Even04]

[Gask99]

[Ghem03]

[Huanl5]

[Jaco91]

[JefrO8]

[Kael96]

[Kass14]

[Kobel3]

[Kons11]

146

Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri and Mitsuo Kawato, “Mul-
tiple model-based reinforcement learning”, Neural computation, vol. 14, no. 6,
pp. 1347-1369, 2002.

J.C.F. de Winter, “Using the Student’s t-test with extremely small sample sizes.
Practical Assessment, Research and Evaluation”, vol. 18, no. 10, 2013.

Eyal Even-Dar and Yishay Mansour, “Learning rates for Q-learning”, The Jour-
nal of Machine Learning Research, vol. 5, pp. 1-25, 2004.

Chris Gaskett, David Wettergreen and Alexander Zelinsky, “Q-learning in con-
tinuous state and action spaces”, in Australian Joint Conference on Artificial
Intelligence, pp. 417-428, Springer, 1999.

Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung, “The Google file sys-
tem”, in ACM SIGOPS operating systems review, vol. 37, pp. 29-43, ACM,
2003.

Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish
Tatikonda and Frederick R Reiss, “Resource Elasticity for Large-Scale Machine
Learning”, in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 137-152, ACM, 2015.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan and Geoffrey E Hinton,
“Adaptive mixtures of local experts”, Neural computation, vol. 3, no. 1, pp. 79—
87, 1991.

D Jefrey and S Ghemawat, “MapReduce: simplified data processing on large
clusters”, Communications of the ACM, 2008.

Leslie Pack Kaelbling, Michael L Littman and Andrew W Moore, “Reinforce-
ment learning: A survey”, Journal of artificial intelligence research, pp. 237—
285, 1996.

Evie Kassela, Christina Boumpouka, loannis Konstantinou and Nectarios
Koziris, “Automated workload-aware elasticity of NoSQL clusters in the cloud”,
in Big Data (Big Data), 2014 IEEE International Conference on, pp. 195-200,
IEEE, 2014.

Jens Kober, J Andrew Bagnell and Jan Peters, “Reinforcement learning in
robotics: A survey”, The International Journal of Robotics Research, p.
0278364913495721, 2013.

Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios
Tsoumakos and Nectarios Koziris, “On the elasticity of nosql databases over
cloud management platforms”, in Proceedings of the 20th ACM international
conference on Information and knowledge management, pp. 2385-2388, ACM,
2011.

[Kons12]

[Kots07]

[Lagul3]

[LBre84]

[Litt95]

[Maso15]

[Mass04]

[McCa96]

[Mitc97]

[Moor93]

[Murt94]

[Murt95]

[Nask]

Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, Christina
Boumpouka, Nectarios Koziris and Spyros Sioutas, “Tiramola: elastic nosql pro-
visioning through a cloud management platform”, in Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, pp. 725-728,
ACM, 2012.

Sotiris B Kotsiantis, I Zaharakis and P Pintelas, “Supervised machine learning:
A review of classification techniques”, 2007.

Ignacio Laguna, Subhasish Mitra, Fahad Arshad, Nawanol Theera-Ampornpunt,
Zongyang Zhu, Saurabh Bagchi, Samuel P Midkiff, Mike Kistler, Ahmed Gheith
etal., “Automatic Problem Localization via Multi-dimensional Metric Profiling”,
in Reliable Distributed Systems (SRDS), 2013 IEEE 32nd International Sympo-
sium on, pp. 121-132, IEEE, 2013.

R. A. Olshen L. Breiman, J. H. Friedman and C. J. Stone, Classification and
regression trees, Wadsworth International, Monterey, CA, 1984.

Michael L Littman, Thomas L Dean and Leslie Pack Kaelbling, “On the com-
plexity of solving Markov decision problems”, in Proceedings of the Eleventh
conference on Uncertainty in artificial intelligence, pp. 394-402, Morgan Kauf-
mann Publishers Inc., 1995.

Seyed Saeid Masoumzadeh and Helmut Hlavacs, “Dynamic Virtual Machine
Consolidation: A Multi Agent Learning Approach”, in Autonomic Computing
(ICAC), 2015 IEEE International Conference on, pp. 161-162, IEEE, 2015.

Matthew L Massie, Brent N Chun and David E Culler, “The ganglia distributed
monitoring system: design, implementation, and experience”, Parallel Comput-
ing, vol. 30, no. 7, pp. 817-840, 2004.

Andrew Kachites McCallum, Reinforcement learning with selective perception
and hidden state, Ph.D. thesis, University of Rochester, 1996.

Tom M. Mitchell, Machine Learning p2, McGraw-Hill, 1997.

Andrew W Moore and Christopher G Atkeson, “Prioritized sweeping: Reinforce-
ment learning with less data and less time”, Machine Learning, vol. 13, no. 1,
pp. 103-130, 1993.

Sreerama K. Murthy, Simon Kasif and Steven Salzberg, “A system for induction
of oblique decision trees”, Journal of artificial intelligence research, 1994.

Kolluru Venkata Sreerama Murthy and Steven L Salzberg, On growing better
decision trees from data, Ph.D. thesis, Citeseer, 1995.

Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagiotis
Katsaros, Dimitrios Tsoumakos, loannis Konstantinou and Spyros Sioutas, “De-
pendable Horizontal Scaling Based On Probabilistic Model Checking”.

147

[Peng93]

[Pute14]

[PyeaO1]

[Pyea03]

[Quin&6]

[Ruxt06]

[Sefr12]

[Shan01]

[Sing92]

[Stre06]

[Sutt91]

[Sutt98]

[Tsoul3]

148

Jing Peng and Ronald J Williams, “Efficient learning and planning within the
Dyna framework™, Adaptive Behavior, vol. 1, no. 4, pp. 437-454, 1993.

Martin L Puterman, Markov decision processes: discrete stochastic dynamic
programming, John Wiley & Sons, 2014.

Larry D Pyeatt, Adele E Howe et al., “Decision tree function approximation in
reinforcement learning”, in Proceedings of the third international symposium on
adaptive systems. evolutionary computation and probabilistic graphical models,
vol. 1, p. 2, 2001.

Larry D Pyeatt, “Reinforcement Learning with Decision Trees.”, in Applied
Informatics, pp. 26-31, 2003.

J. Ross Quinlan, “Induction of decision trees”, Machine learning, vol. 1, no. 1,
pp- 81-106, 1986.

Graeme D Ruxton, “The unequal variance t-test is an underused alternative to
Student’s t-test and the Mann—Whitney U test”, Behavioral Ecology, vol. 17,
no. 4, pp. 688690, 2006.

Omar Sefraoui, Mohammed Aissaoui and Mohsine Eleuldj, “OpenStack: toward
an open-source solution for cloud computing”, International Journal of Com-
puter Applications, vol. 55, no. 3, pp. 38-42, 2012.

Claude Flwood Shannon, “A mathematical theory of communication”, ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5, no. 1, pp.
3-55,2001.

Satinder Pal Singh, “Transfer of learning by composing solutions of elemental
sequential tasks”, Machine Learning, vol. 8, no. 3-4, pp. 323-339, 1992.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford and Michael L
Littman, “PAC model-free reinforcement learning”, in Proceedings of the 23rd
international conference on Machine learning, pp. 881-888, ACM, 2006.

Richard S. Sutton, “Dyna, an Integrated Architecture for Learning, Planning, and
Reacting”, Working Notes of the 1991 AAAI Spring Symposium, pp. 151155,
1991.

Richard S Sutton and Andrew G Barto, Reinforcement learning: An introduction,
vol. 1, MIT press Cambridge, 1998.

Dimitrios Tsoumakos, Ioannis Konstantinou, Christina Boumpouka, Spyros
Sioutas and Nectarios Koziris, ‘“Automated, elastic resource provisioning for
nosql clusters using tiramola”, in Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pp. 34—41, IEEE, 2013.

[Uthe98]

[Watk89a]

[Watk89b]

[Watk92]

[Whit10]

[Wier98]

[Wikil5a]

[Wikil5b]

[Will93a]

[Will93b]

William TB Uther and Manuela M Veloso, “Tree based discretization for con-
tinuous state space reinforcement learning”, in Aaai/iaai, pp. 769-774, 1998.

Christopher J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. thesis,
King’s College, Cambridge, UK, 1989.

Christopher John Cornish Hellaby Watkins, Learning from delayed rewards,
Ph.D. thesis, University of Cambridge England, 1989.

Christopher J. C. H. Watkins, “Q-Learning”, Machine Learning, vol. 8, pp.
279-292, 1992.

Martha White and Adam White, “Interval estimation for reinforcement-learning
algorithms in continuous-state domains”, in Advances in Neural Information
Processing Systems, pp. 2433-2441, 2010.

MA Wiering and Jiirgen Schmidhuber, “Learning exploration policies with mod-
els”, 1998.

Wikipedia, “Kolmogorov—Smirnov test”, https://en.wikipedia.org/wiki/
Kolmogorov-Smirnov_test, accessed 2-Dec-2015.

Wikipedia, “Mann—Whitney U test”, https://en.wikipedia.org/wiki/
Mann-whitney U_test, accessed 2-Dec-2015.

R.J. Williams and L. C. Baird, III, “Tight performance bounds on greedy policies
based on imperfect value functions”, Tech. rep. NU-CCS-93-14, 1993.

Ronald J Williams and Leemon C Baird, “Tight performance bounds on greedy
policies based on imperfect value functions”, Technical report, Citeseer, 1993.

149

