&

Bl
nVPPOPOS

*

3
POMHOEVS -
Jal

S

E®GNIKO METZOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTI'QN MHXANIKQN KAI MHXANIKOQN YIIOAOT'TETQN
TOMEAX TEXNOAOTITAX ITAHPO®OPIKHX KAI YITOAOI'TETQN

EPTAXTHPIO MIKPOYIIOAOTIZTOQN KAI YHOIAKOQN TYITHMATON

Avantoén MebBoooroyiag Avvapikic Awayeipiong
Yvoyvotntog 6 FPGAs péoow EAéyyov tov Movoratidv
Agoopévav og llpaypatiko Xpovo

AITIAQMATIKH EPT'AXIA

[TI€Tpog A. Zovcovpng

Emprénov: Anuntprog 1. Xovvtpng
Avarinpotc Kadnynmg E.M.IL.

Anva, Oefpovaplog 2016






N
)
NPOMHOEVS -
&

N

nVPPOPOS

E®GNIKO METZOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTI'QN MHXANIKQN KAI MHXANIKON YIIOAOT'TETQN
TOMEAX TEXNOAOTITAX ITAHPO®OPIKHX KAI YITOAOI'TETQN

EPTAXTHPIO MIKPOYIIOAOTIZTOQN KAI YHOIAKOQN TYITHMATON

Avantuoén MeBoooroyiag Avvapikic Awayeipiong
Yvoyvotntog 6 FPGAs péoow EAéyyov tov Movoratidv
Agoopévov oc llpaypatiko Xpovo

AITIAQMATIKH EPT'AXIA

[T€Tpog A. Zovcovpng

Emprénov: Anuntpiog I. Todvtpng
Avaminpomc Kadnynme E.M.IL.

EykpiOnke omd v tpiuelf eéetaotikny emrponn v 29" ®ePpovapiov 2016

Anuntprog 1. Zovvrpng Kuopah Texpeotin I'edpylog Okovopdrkog
Av. KaOnynmc E.M.IL Kabnynmc E.M.IL En. KaOnynmgc E.M.II.

Anva, Oefpovaplog 2016



[TéTpog A. Zovsovpng
Authopatovyog Hiektpoldyog Mnyavikdg kow Mnyovikodg Yroroyiotov E.MLIT.

Copyright © TTétpoc A. Zovsovpng, 2016

Me empoiaén mavtog dwkaidpatoc. All rights reserved.

AmoryopeveTal m aviypoer], omodnKevon Kot S1vour| TG mopovcos EPYAciog,
€€ OAOKANPOL M TUNUATOC OVTNG, Yo gumopkd okomd. Emirpémnetor n avarvmoon,
amofMKeLOoT Kot SLOVOUN Y10l OKOTO U KEPOOGKOTIKO, EKTOOEVTIKNG N EPEVVINTIKNG
@OoNG, LLO TNV TPOHTOOEST VL AVOPEPETOL 1] TNYT TPOEAEVONG KOl VO dlaTnpeiTat To
wopdv puvopa. Epotiuata mov agopovv tn xpnion e epyuciog Yo KEPOOGKOTIKO
OKOTO TPEMEL VO AmEVOVVOVTOL TPOG TOV GLYYPOPEQL.

Ot amdyelg Kol o CUUTEPACUATO 7OV TEPLEXOVTAL GE OVTO TO E£YYPAPO
eKQPPAlovV TOV GLYYPAPEN Kol OV TTPEMEL VL EPUNVEVOEL OTL OVTITPOCOTELOVY TIG
emionueg B€oeig Tov EBvikod Metadfiov [Morvteyveiov.



ITegexopeva

EUPETIPLO EUCOVMV ..ttt et e e et e e e e e eaaas 7
EUPETIPIO TTIVOIKMV ..eeeiiie ittt e e e e tae e e e e e eeaaas 9
SOVTOUT TEEPTATIWN weuneeeinieeiiiieeetiieeettieeeetiieeetti e ettt s eettaseeeenneeannnseessnneesnnneeeees 10
PN 1] 1 = Y1 AU PPU U PPPPPPRN 11
1. EVOOUOTOUEVO ZUOTIHOTO «evvvunrerrenneerrnnneertiineerunneeeetneeersnneeersnnseessnnseessnnnees 12
1.1  Evoopot@UEV DTOAOYIGTIKT — TPOKATOELG . eeerrenerrrnneeerinrerrenneernnneennnnns 13
1.2 FPGA - 10TOPIKA EEEMEN coiiiiiiieeeeeeeeeee e 14
1.3 IMeovektApoto yxpong TV FPGA ..., 16
14 Aop TO0 FPGA ..o 18
1.5 "ETOUEG PUBAIOONKEG ceevveneeiiieeiiie ettt ettt e et e e e eaa e e aaaaes 20
1.8 Epyoldeiot TOU YPNOULOTTOMONKOY ..ueirrinreeiiieeeiiieeeeiieeeerieeeenieeeenieeeannnns 21

2. INtrodUCION ..cooiiiiii e 24
2.1 Embedded SyStemsS.......cccuuuiieeiiiiiiiiieeee e 24
2.2 Embedded computing — challenges..........cccccoovviviieeiiiiiiiiiieeeeeeiiiennn. 24
2.3 FPGA - €VOIULION .....cuiiiiiiiiiiiiiiieee ettt 26
2.4 Benefits of FPGA technology.....cccccoooiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeees 27
2.5 FPGA StrUCTUTE ...ttt 29
2.6 Software LIDTaries........cccceeeeciiiieeeeeeiiiieee et e e e e 31
2.7 ToOOLS USEA cceiiiiiiiiiiiiieeee e 31

3. Data path control path, .......ccccooeeiiiiiiiiiii e 35
3.1 GeNETAl ... e 35
3.2 Data path......ooiiii e 36
3.3 Control path (Control UNit)......ccceeeeeeeeeeiiiiiiiiiiiiiiicicieeeeeeee e, 37
3.4 Combinational deSISN .........vviiiiiiiieeeeeiiiiieiiieeeicieeeeeeeeeeeeeeeeeeeens 40
3.5 Sequential deSIZN...........oovviiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 41
3.6 Paths oo 43
3.7 FPGA BIMING ..oooiiiiiiiiiieeeeeceeeeee et e e e e e e e e e eeeeeees 45
3.8 Timing In XiliNX deSIZNS.....uuuieeiiiiiiiiiieeeeeeiiiiieeeeeeeerieeeeeeeerreeeeeeeeenees 48
3.9 MethodolO@Y ....coeeiiiiiiiiiee e e 50
3.10.1 Manual retouch of file ........ccoevvviiiiiiiiiiii e, 50
3.10.2 Generating VHDL Code ....cccceeeeeiiiiiiiiiiiiiiiiiiiccieeeeeeeeeeeeeeeeeee, 52
3.10.3 Creating digital clock manager (DCM) .......ccooeeeeeeeeeeieinnnnnnnnn. 52

5



3.10.4 Schematic of the enhanced CIrCUIt....c.oevemeeeeeeieeeeieeeeeeeeeen, 53

Appendix A — Detailed Tutorial...............uuvviiiiiiiieeeeiiiiiiiieecceee e 55
A.1 From VHDL to implementation .........ccccccoevviiieeeeiiiiiiiieeeeeeeviieeeeees 55
A.2 Analyzing the circuit using Planahead Expander......................... 63
A.3 Inserting Selector into the Project.....cccccceeiiiiiiiiiiiieiiiiiiiiceeeeeeeenn. 67
A.4 Building the digital clock manager ............ccccooeeiiiiiiiiiieeiiiiiiiiieee, 67
A.5 Inserting the digital clock manager ...........ccccoeeeiiiiiiiiineeiiiiiiiinneeen, 72
A.6 Connecting internal signals using FPGA Editor............................ 74
A.7 Simulating the new design ...........ccceveviiieeeeeeeiiiiiiiiiieeceee e 75

APPENAIX B oo ————————— 77
B.1 Edf file explanation .........ccccoeeeeeieeeeeiiiiiiiiiiiiiieiiicieeeeeeeeeeeeeeeeeeeeeens 77
B.2 Twr file eXplanation ........cccccceeeeeieeeeeeeiiiiiiieieeeeecceieeee e e e eeeeeeeeens 82

BB AOYPOUDTO ¢ttt ettt e et e e et e ea e eaaas 85



Evpemipro Exkovov

1: ZUyxoova EVOWHATWHEVA ZUOTIUOTA. «eervevveeeriiieeeniiieeeeiieeeeieeee e 12
2: FPGA navw 0€ TUIWHEVO KUKAWUOTR «.veeneveeeniieeeiieenieeenneeenneesineesneees 15
3: EEEMEN NG 0YOPAG GE EKOTOLLDPIOL cevvunerrrnnerrrnneerrrneerrnneerennneersnnneesssnneessnnns 16

4: ApgxltekToVIKT) TUIIOL VNodwv pe dixovvdéoelg block kat switch boxes19

5: Alxdwcaoia kataokeuns kKukAwpatog mavw oe FPGA (..., 23
6: Control and Data Path........ccccoviiiiiiiiiiii e 35
7: Basic components of Control and Data Path...............c..iiiiieeennn 36
8: MIPS Data Path .....ccccuvviiiiiiiiee e 37
LY 1 1 =2 T UPT PP 40
10: Combinational CIrCUIt........ceiieiiiiiiiiiiiee e e 41
11: Block Diagram and Timing Diagram of Clock Pulses........................ 43
12: Critical Path .......ooiiiiiiiiiee e 44
13: Combinational CirCUit........cccceeeeuviiiieeiiriiiiiieee e e erireee e e e 45
14: Setup and Hold Time .......ccoeeeeeeeeiiiiiiiiiiiieecceeeeeee e 46
15: Propagation Time ....ccocoooiiiiiiiieiiieeieee e 46
16: TIMING ISSUES ..nceeeiiiiiee e e e e e e e e erbeeeeees 48
17: Combinational LiOGIC ........uuiieeieeeeeiiiiiiiiiiiiiicceeeee e 48
18: Xilinx Timing DeSIGN .....ccovvuiiiiiiiiiiiiieeeeeeeee e e eeeaae e 49
19: INterconNECtIONS . cciiiiiiiiiiiiiieieeec e e e e e e 49
20: Interconnection Detail ...........cueeiiiiiiiiiiiiiiiiiiiiiiieeeen 49
21: Opening Screen of Planahead........cccccooooooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee, 55
22: NeW Project SCreen .........ooovvvviiiiiiiiiieiieeeee et e e eeeeeens 55
23: Main screen of Planahead..........cccccooviiiiiiiiiniiiiiiieeee e 56
24: RTL SChematiC .....ccccuvviiiieeeeiiiiee ettt arreeee e 56
25: Synthesis SettingS.......cooiiiiiiiiiiiiiiiiiieeeeeee e e e e e e eeeeeeeens 57
26: Add SOUTCES SCTEEM .....eeiiieeeiiiiiiieeeeeeciiieee e e eeritteee e e e e errreeeeeeennnrreeeeeeas 58
2T INEW FLLO i 58
28: Hierarchical Code Structure........cccoeeevviiiieeeiiiiiiiieeeeeeiiieee e 59
29: Partitions OVETVIEW ......ccceeeriiuiiiieeeeeiiiiiieeeeeeesiirireeeesesnsrreeeessssssssneeeessas 59
30: Setting a Partitlon.......ccoooeiiiiiiiiiiiiiiiiiiiceeeeeee e 60
31: USING Partitions .....cooeviiiieeiiiiiiiiieei e e s 60



s Synthesis SChemMatiC...covvieeeiiiiiiiiecceeeeee e 61
s Implementation SEttINgGS .........ooovvviiiiiiiiiiiiiiieee e 61
s Promoting Partitions........cocooeeiiiiiiiiiiie e 62
: Xampp MaIN WINAOW......covuuueeeeeriiiiiieeeeeritiieeeeererrtneeeeessrrtaeeeesssssiaaeeeses 63
: localhost MAIN SCTEEN ......eeiiiiiiiiiiiiiiiiiiieeee e 63
1 Database OVETVIEW ........cuiiiiiiiiiiiiiiiieiiieeeeeeecee e e 64
: Importing Expander in Eclipse (1) ...c.coovvviiiieiiiiiiiiiieeeeeeeceee e 64
: Importing Expander in Eclipse (2) .....coovvviieeiiiiiiiiieeeeeeeieeeeeeeeeeee e 65
: Expander main WINAOW .......coeeiiviiiiieeeeiiiiiiiiee e e 66
: Setting Input Arguments..........ooovvvvviiiiiiiiicceeeeeeeeeeeeeeeeeee e 67
: Opening Screen of Core Generator........ccveeeeeeeeeeeeeeeeeeeeeeeeiiiceceeeeeeeennn 68
: Locating Clocking Wizard..........cccooovvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 68
: Defining INput frequUency .........oooovvvvviiiiiiiiiiieee e 69
: Defining output frequencCies ............ovvvviviiiiiiieeeeeeeeeeeeeeeeeeee e 69
S OPLIONAL PIIIS coeiiiiiiiiiiieeeeee e e e e ———————— 70
S OtRET OPTIONIS coevviviiiiceeeee e e e e e e e e e e e e e eeeas 70
t Renaming OPtIonS.....cceeiiiiiiiiiee e 71
5 Settings CHECK . ...vviiiiiiieeeee e ——————— 71
: Importing and implementing partitions ..........cccceeeeeeeeiiiiiiieeeereeiiiieeeees 73
: Promoting partitionS.........ccoeeeeeiiiiiiiiiee e 73
: FPGA Editor main SCTeeM .........ceivieiiiiiiiiiieeeeeiiiiieeeeeeeiireeeeeeesneianeeeeeeas 74
: Add SIMUIAtION SOUTCES ..eeeeiiiiiiiiieeeeiiiiiiee e e e e e e e e e eaeaeee e 75
S SIMULALOT SEEEINEZS uvviiiieeeeeeiieiieeeeeeeeeecree e 76

D SIMULATOT WINLAOW ..o e 76



Evpemipro IIvaxkov

1: EEEALEN Tou aplBpol MuA®Y oTa FPGA.......ovviiiiiiiieeeeeee, 16
2: TIMING COMPATISOIL......cceeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeererararraeeeeeeeeeeeeeeeeeeees 50
3: Example of Expander Output............veiiiiiiieeiiiiiiiiiieeeeeeceeeee e 51
4: Sorted Generator INPUL............uvviiiiiiiiiieeeeeeeeeeeeeeeeeeee e, 51
5: Switching between ClOCKS ............ovvviiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 53



20vToun mepianyn

Ta dedopéva mov Topdyovion HEGH 0 £VoL KUKAMO Omotteiton oxeddv Tavtote
vo petaktvnBovv amd 10 onueio onuovpyiog toug o €va GAAo onueio, ®GTE Vo
ocvveylotel m emeepyoasio tovg N va amodnkevtodv yio peAdovtiky ypron. H
petakivnomn autn gV Tpaypatomoleitol akaploic, oAAG amontel Eva xpovikd 1ot
T0 Omol0 E€10AYEL MEPLOPICUOVS GYETIKA HE TOV YPOVICUO Kol TNV omwdO0CT TOL
KUKADOUOTOG. ZVYKEKPIUEVO, 1| UEYIOTN EMTPEMOUEVT] CLYVOTNTO AEtTOoVPYiaG €VOG
KukAopotog e€aptdton Gueca amd v péylotn Kabuvotépnomn Katd UNKog Tov
drdpopmv, mov ovopdalovtatl povordtio dedopévav (data paths) kot akoAovBodvton
Y10 TV HETOKIVNOT TV OESOUEVOV.

21N CLYKEKPIUEV SMAMUATIKY gpyacio avantvcoetal o pebodoroyio Kot Ta
avtiototyo epyaieio. AOYIGHIKOD TTOV €ivol OTapoiTnTO Yo TV avOADOT Kol HEAETN
TV povomotiov dedopévav (data paths) evoc kukiopotoc. Tehkodg otoY0C €lvan M
BeAitimon g anddoong (performance) tov VO €£ETACT KUKAMDUATOS KAVOVTOG XP1|0M
™G oLYKeEKPIEVNS Lebodoroyiag.

Koaté cvvéneio, N mapovca SmAmpatikn Kiveiton Tave og dvo doveg. [lpatov,
TN GLOTNUOTIKY dlaTuTton TG pebodoroyiag mov Ba odnynoel oty Pertioon g
amdO0oNG VOGS KUKADUOTOS KoL TNV OTOPUYN SAPOP®V TEYVIKMOV KOl GYEOUCTIKMV
TPOPANUATOV TOL EVOEYOUEVMG VO TPOKLYOLV KATA TN OLUPKEWD UG avTioTOLMG
dwdkaciag. Agvtepov, TNV avATTVEN EPYOAEIOV AOYIGUIKOD, TOV GE GLVOVACUO LE
eumopikd epyareia cvuPdAiovv oy emitevén KaAVTEPNG OmOI0oNG Kol TaXOTEPNS
avdmtuéng kot emaAnfevong (verification) tov kvkAopatog. Téhog, 1 Pertimon g
amdO0GNG OV EMTVYYAVETOL GUYKPIVETAL LLE TNV ATOO0CT) TOV OPYIKOD KUKAMUOTOC.

A&Eerg KAewod: Kpioyo povomdtt, povomdtio dedopévav, HEYIoT kabvotépnon,

HEYIOTN GUYVOTNTA AEITOVPYING, OLVOLIKT OlOXEIPIGT POAOYLDV, CNUOTO EAEYYOL,
Planahead

10



Abstract

Data created in a circuit is often needed to be transmitted to a part of
the design other than their creation place in order to be further processed
or stored for future utilization. These transmissions cannot take place in
zero time, but a short amount of time is required, which results in many
timing constrains regarding the timing and the performance of the circuit.
In particular, the maximum allowed frequency for operating a circuit
highly depends on the maximum delay met during data transmissions.

In this diploma thesis a methodology is developed and described
along with the software tools required for studying and analyzing the data
paths of a circuit. This methodology aims to improve the performance of
the circuit under examination.

To conclude, this diploma thesis has two main goals. First, explicitly
define and describe the methodology which will guide a system designer to
improve the performance of his/her circuit. The detailed description of the
methodology will help the designer to avoid some of the technical problems
which occur during the design process. Second, the development of some
software tools, in collaboration with some commercial software
applications provided by Xilinx, will help the designed accomplish even
better performance in the system and accelerate the process of developing
and verifying the circuit. The performance improvement is compared to
the original circuit.

Key words: data paths, critical path, maximum delay, maximum
frequency, control signals

11



1. Evoopotopéve Xvotinoto

‘Evoc amlOg opiopog TOL EVOOUATOUEVOL GULGTNUATOS Elval OTOONTOTE
ovokevn 1M omoia mepAauPdvel évav LTOAOYICT] oL E€ivol OPOGLOUEVOG OE pia
OLYKEKPLULEVN AetTovpyia Kot dgv givor YEVIKOD 6KOmoV. XvyVvd, TO GUGTNUO TPETEL VAL
OVTOTTOKPIVETOL GE VTOAOYIGTIKOVG TEPLOPICUOVS TPAYLOTIKOL Ypovov (real time
computing constrains) kot €lval evowuatwuévo ®g UEPOG WOG OAOKANP®UEVNG
OLGKELNG TOV TOAAEG Popég Tteptlapfavel VAo (hardware) Kot punyavikd pépn.

To eVoOUATOUEVO GLGTNUATO TOTKIAOLY ATTO POPNTEG GLOKEVEG OTTMG YNPLOKAL
POAOYLOL KOl GUOKEVEG HOVGIKNG, £0G EQPAPUOYES PEYOANG KAMpaKag, 0TS Qavipla
KOl EAEYKTEG £pYOOTAGI®V, KOl GVoTHHOTA Wwitepo PEYAANS ToAvTAOKOTNTOG OT™G
elvar ta avtokivnta. H molvmlokdtnta TV EVEOUOTOUEVOV GUCTNUATOV UTopEl va
elvar pikpn, Ommg oe évav amid pikposheykty (micro controller), éog vynAn oe
CUCTNUOTO UE TOAAEC LOVAOEG, TEPLPEPEINKES CLOKEVEG 1) GUOKEVEG OlaXEIpLoNg
OV, v eikdva 1 givar opatd 014popa GUYYPOVI EVOOUATOUEVO GUGTILOTOL
OLLPOPETIKNG  TOAVTAOKOTNTAG O)ediOoNG Oomd TOAAL Kol  OOPOPETIKA  Tedia

EQUPLOYDV.

: Q Embedded Systems _

Group

e
-

-

mb

1: Zoyypova Evewuotwuévo, Zootiuota.
IInyn: es.informatik.uni-kl.de

Ta oOyypova ocvomiuota ovyvd Pocilovior o©€  KPOEAEYKTEG, OMNAadN
ENEEEPYOOTEC UE EVOOUATOUEVT] UVAUN M OAAEC TEPLPEPELNKEG GUOKEVEG, OAAGL
KOVOVIKOT JUKPOETEEEPYAOTEG CLVAVIMOVTOL KO E0IKE GE TOADTAOKO GUGTNLATA.
Ot enelepyaotég pmopovv va elval yeVIKOD KOOV £iTe €101KA GYedOGUEVOL (custom
designed) ywo pio woAd cvykekpuévn epappoyn. ‘Eva yapoktmpiotikd mapddetypo
eedkevpévon emelepyaotn eival o eneEepyactng ynelokov onpotog (digital signal
processor - DSP).

Mo mowov dpmg AOYO YPNOUYOTOOVVTOL HUKPOETEEEPYUOTES; TNV EPMTNON
oTH), LITAPYOVY FVO OTAVINGELS:

e Ov pkpoemeiepyaotés ivar €vag MOAD  amodoTkOG TPOMOG VLAOTOINGMG
YNOKOV CLCTNUATAOV, KaO®OG TPOGPEPOLY mv duvatodmto
EMOVOYPNOYOTOINONG NG OYediOONS TOL VAMKOL OomAd pe pio oAloyn
Aoylopikov.  Avtd  eivar  wiadtepa  onuovtikd, Kabog 1M oyedioon
OAOKANPOUEVOY  KUKA®OUATOV  mopapével  pio  akpifny kot ypovoBopa
dwdkacio.

12



e Ov pkpoenelepynotés kaboTOOV ELKOAOTEPN TNV OYESIOGT OIKOYEVELDV
TPOIOVIWV T, OTTOT0. LITOPOVV VO KATOGKELOGTOVV Y10l VO TTOPEXOVV OLOPOPETIKA
GUVOAQL YOPOKTNPIOTIKAOV GE SOUPOPETIKEG TIUEG KAl UTOPOVV Vo, ETEKTAOOVV Yo
Vo TopEYOLV VEQ YOPOKTNPLOTIKE, dote vo ocvppoadilovv pe TG poydoia
HeTOBAAAOUEVES QlYOPEGS.

1.1 Evoopotopévn vTorloYIoTIKI] — TPOKANGELS

H evoopatopévn vmoloyiotikry (embedded computing) elvar amd mwOALEC
anOYES MEPIGOOTEPO  OMOUTNTIKN] ONO TO TPOYPAUUOTO TOV  YPAPOVTOL Yol
TPOCOTIKOVG  voAoylotés. H  Asrtovpywkdtnta  elvol  onpaviikny 1000  GTNV
VTOAOYIOTIKT] YEVIKOD GKOTOU OGO KOl TNV EVOOUATOUEVT] VITOAOYIOTIKY, OAAL Ol
EVOOUOTOUEVES EPAPLOYEG TPETEL VAL IKOVOTOLOVV TOAAOVG EMTAEOV TEPLOPIGLOVG.

o [lolbomiokor  alyopiBuoi: Ot  Aewtovpyiec TOL  EKTEAOVVIOL OO  TOV
pikpoeneEepyaotn umopel va givon dwaitepo o0vOeTeS (Y100 TOPAOELY O, EAEYYOG
™G PONG KOGLUOL GTO OVTOKIVITO)

o Mwaovvoeon ue tov ypnoty: OL LIKPOENEEEPYUOTEG YPTOLLOTOLOVVTAL GUYVE Yl
TOV €AEYYO TOAVTAOK®V OOCVVOECEWMV LE TOV YPNOTN Ol 0mMOoieg Umopovv va
nepapfBdvouy ToAAG pevoy Kot €TAOYEG (Yoo TOPAOELYHO, GE £VO. GUCTNHO
evtomopob Béomng (global positioning system - GPS)

Mo va yivouv to mpdypoto okOpo OLVGKOAOTEPM, TOAAEG AElTOLPYIES TV
EVOOUATOUEVOV CUCTNUATOV TPETEL VO TPOLYLLOTOTOIOVUVTOL LEGO GE GUYKEKPIUEVES
npobeopieg (deadlines).

o [lpayuatikog ypovog (real time): TIoAAG eVOGOUOTOUEVE, VTOAOYIOTIKA
GUOTNOTO TPETEL VO AELTOVPYOVV GE TPAYLATIKO XpOvo. Av Ta dedopéva dgv
glval €tolpa péypt por ovykekpluévn mpobecpio, T0 cOGTNUO KIVOLVEVEL UE
Kkatappevon. H un mpnon tov neplopiopmv ¥pdvov pmopel va dnpovpyncet
SVoOPESTNUEVOVS TEAATEG 1] VAL KOOTIGEL akOpa Kol avOpmmveg (még.

o Aeitovpyiec  morlamidv  pvOuwv  (multirate):  Ov  Aewtovpyleg TV
EVOOUOTOUEVOV  GLOTNUATOV Oyt UOVO TPEMEL VO avVTOTOKPivoviol o€
ovykekpiuéveg mpobeopiec, aAld mOavOv TOAAEG Acttovpyleg TPOYLOTIKOD
xpovou pmopet va e&ediocovion mapdAinia. Eivor mBavd kamoleg Aettovpyieg
va ekteAovvToL pe apyd puluo Ko GALeS pe ypnyopo. Ot epapuroyEc moAvuEcwv
(multimedia) givor to KOplO TOPASEYHO GUUTEPIPOPAS TOAAATAGDY PLOUDV,
KaO®OG To TUUATO MOV Ko EKOVOG EKTEAOVVTOL HE TOAD OPOPETIKOVG
PLOLOVG OAAG TTPETEL VO TAPAUEVOLY GUYYPOVIGUEVAL.

e Kootos korookevns: To cuVOAIKO KOGTOG KOTAOKEVNG EVOG GLGTNUATOS £ivort
TOAD ONUAVTIKO 0 TOAEC €Qappoyés kol mpocdlopiletarl amd wOAAOVG
TopAyovteg, Om®MG 0 TUTOG TOL €MECEPYACTY], 1 TOGHTNTO TNG UVIUNG KOL TO
AN 00G TV EEMTEPIKAOV GUOKEVOV.

e Joyis (power): H xotavdimorn ioyvog emnpealet v odpkela {ong g
UTOTOPi0G TOV POPNTOV GUGTNUAT®V, TOV G TOAAEG EPOPLOYES Elvarl Kpiowun,
OAAG Kon TNV apaywyn BepuodtnTog mov pmopel voo 0dNYNoEL GE TPOCOPIVNH
advvapio xpoNg TOL GLGTIUATOC.

13



o [lepiopiouévor mopor ovotiuatog. Xe  ovtiBeon HE TOLG  TPOCHOTIKOVG
VTOAOYIOTEC, TO  TEPIOCOTEPO.  EVOOUATOUEVO  cLOTHHOTO  dafétovv
TEPLOPIOUEVOVS TTOPOVG TPpog aSlomoinon (Y moapddetypo, Tpopodocio amd
pumotopio, TEPIOPIGUEVN TOGOTNTO KVUPLOG UVAUNG, AMyeg 11 KaBOAOL GLGKELEG
€16660v/e£000V). Emopévag, sivar  amapaitntn 1 mpocektikny aglomoinon tovg,
wote N epapuoyr mov Bo TpéEEl 6TO GUYKEKPIUEVO CUGTNUO VO, UITOPEL vol
Aertovpyel cwGTA.

Ot e€mtepikol meplopiopol eivar pior oNUavTIKY Ty dvokoAiog otnv oyedioon
EVoOOROTOUEVOVY cvotnudtov. Kotd v oyediaon, Toug mpénet va AneHodv vndym ta
TOPOKATO CTUOVTIKA TPOPA LT,

Ilooo viiko yperalerar; YmOpyeL TPOTOSC Y10, SNUAVTIKO EAEYXO TNG TOGHTNTOG
NG VIOAOYIGTIKNG 10YVOG TOV £PApUOleTOl 6T0 TPOPANUA HEC® TNG ETAOYNG TOV
TOTOL TOV WKPOENEEEPYACTY], TNV TOGOTNTA TNG UVIUNG, TIG GVOKEVEG €16000V Ko
€E600V ka1 TOALA AALa. E@dcov mpémel cuyvd vo tkavorotohvtal TETO101 TEPLOPICHOT
amdO0oNG Kot KOGTOVS KOTOGKELNG, 1 EMIAOYN TOL VAKOV &lval onpovtikn. Av to
VAMKO givon AMyo, To cvotua oev Ba pmopel va avtarokpifel otic Tpobecuieg. Av 10
VAMKO glvor vepPoAIKd, TO KOGTOG TOV GLOTHHOTOS OVEAVETOL YWPIG OvOAOYN
BeAtimon ¢ amdd0omMG.

Hlowg xavoroiovvrar o1 mpobeouies; O oudg TPOTOG KOvomoinong uiog
npofeopiag elvar m emrtdyvvon TOL VAKOD, OCTE TO TPOYPOUUO VO, EKTEAEITON
ypnyopotepa. H emdoyn oavty OSpmg avédvel 10 KOGTOG TOL GLGTNUOTOS, OTMG
avaeépOnke. Eivor emiong mboavo n avénon tov ypovicpod tov emeEepyactn va unv
BeAtudoel Tov xpOvo eKTEAEONC, EPOGOV 1 TOYVTNTA TOL TPOYPAUUOTOS UTOPEL VO
nepropiletar amd 0 GHOTNUO LVAUNG.

Hlwg eloyiotomoicitor 1 KoTovoAWon 1oydog, Xe OAOL TOL CLGTNUOTO, T
KaTavaAmon oyvog sivan kpiocyo {ftnuo. Amotteitol TpoceKTIKN oyedioon yo TV
emPpddvvon un Kpic®V TUNUATOV TOL GULGTNUOTOS YO TOV TEPLOPICUO TNG
KOTOVAA®ONG EVA TKOVOTOL0VVTOL OKOUT Ol OTapaitnTol 6TOYO1 AmTdd0oNC.

2yediaon ue ovvarotnro, avofaluions. H mhateodppo viukod pmopel vo
ypnooromBel yio apketéc yevieg mpoiovimv pe eldyloteg N kolBOAov oAlayéc.
Qotoco, givor embount) n mpooHnkn dvvatoTHTeOV PEGH TOL AoYyiouikov. Eivai
EMOUEVMG CMUAVTIKT 1| GOGTH 6Ye0i0oT TOL VAIKOD dote va mpoPrepdel n amddoon
AOYIGLUKOV IOV OKOWO OEV £YEL OYEOIOCTEL.

A&omotio. H a&lomotio eivatl onpoavtikn Kotd tnv onpovpyio Tpoioviov oAld
KOl GE OPICUEVES EQPUPUOYES, OTTMG TA KPIoIUA 0O TAEVPAS OAGPAAELNS GUGTILLOTOL
(safety critical systems).

1.2 FPGA - wotopikn e£EMén

To FPGA (Field Programmable Gate Array - ovotoylo emitomo
TPOYPOUUATICOUEVOV TOADOV) glvol TOTOG TPOYPUUUATILOUEVOL OAOKANP®UEVOD
KUKADUOTOG YEVIKNG XpNong to omoio dtabétel peydrho aplBud Tomomompuévoyv TuAOY
KOl GAA®V  YNOK®OV  AEITOLPYIOV OT®MG  omoplOuntés, KaToympntég HVNAUNG,
vevwntpieg PLL kot moAAd dAha. Mepukd FPGA evoopat®vouv emiong ovaroyikég
Aertovpyieg. Katd tov mpoypappotiopd tov FPGA, o omoiog yiveton mhvtote evod
avtd eivor tomofetnuévo mAV® o€ Eva TUTOWUEVO KOKAMUW, EVEPYOTOLOVVIOL Ol

14



emBuunTéc Aettovpyieg Kot S1aGLVOILOVTOL HETOED TOVG DGTE VO GUUTEPIPEPETOL MO
OAOKANPOUEVO KOKA®UOL LE GUYKEKPIUEVT] AELTOVPYIAL.

O kddwag pe tov omoio mpoypaupoatiletor 1o FPGA ypdoeton 6e kdamola
YAOOGoO, TEPLYpaPNG VAIKOV 6mw¢ 1 VHDL kot m Verilog. 'Exet mopdpolo medio
EPUPLOYADV HE AALO TPOYPOUUOTICOUEVO OAOKANP®UEVO YNPLOKG GUCTHUOTO OTTMC
ta PLD ka1 ta0 ASIC. Opwg 10 FPGA dwnbétet kdmoto dlaitepa yopakInpioTikd mov
TEPLYPAPOVTOL TOPOUKAT®:

e To FPGA ydver tov mpoypoppatiopd tov Kabe @opd mov yAaver v Taom
TPOP0d0Ging Tov. Emopévemg, amottel eE@tepikd HKpoemeEepyastn 1| LV LE
pévyun  ovykpdtnon dedopévev (non volatile memory) amd to omoia Oo
TpoypoppotileTal, KaOe Popa TOL ETAVEPYETAL 1] TAGT TPOPOSOGIOG.

e O mpoypappatiopnds tov FPGA pmopel va oaAldler kdBe @opd mov
TPOTOTOIEITOL TO AOYIGUIKO TOV WIKPOETMEEEPYAGTN 1 T O€S0UEVA TNG UVAUNG
OV TO EAEYYEL

e Agv vmdpyet kdmowo Oplo oTov aplpud TOV QOp®V MOV UTOPEL Vo
TPOYPOUUOTICTEL.

¢ H xotavaioon oyvog eivor onpavtikd ovénuévn oe oxéon pe ta ASIC.

To FPGA &ivon 1dwaitepa Kot@AANLO €kel TOL Ol TOPAPETPOL AEITOLPYING TPETEL
va 0AAGCovV cuyva N 6e PIKPEG TOoOTNTEG TTapay®YNG, evd To ASIC, Aoy palikng
TApOy®yNS, €tvar eONVOTEPO €Kel 7OV AMOITOVVTOL HEYOAES TOGOTNTEG KO 1)
emBount Aertovpyia eivar avotnpd Tpokabopiopévn, yopic cedipato (to ASIC dev
UTTOPOVV VO TPOYPALUUATICTOOV EOVEL).

Baown dopkn povada tov FPGA elvar 1o Aoywkd umlok, pe tnv ypnorn Tov
07010V VAOTOIOVVTOL Ol AOYIKEC GUVOPTNOELS OV EKPPALOVV TIG AELTOVPYIES €VOC
YNEIKOD KUKADOUOTOS. Aviloyo pe 10 HéyeBog TOL KUKADUATOG, TOAAL AOyukd
UTAOK GLVOEOVTOL YlO. VO DAOTOGOVYV TO TANDOG T®V 0mapaitnTteov AOYIK®V
oLVOPTNCEMV. XTIG £IKOVEG 2 ko 3 gaivovtor pepikd FPGAs.

2: FPGA move o€ ToTUEVO, KOKADUATO
IInyy: en.wikipedia.com, codehackcreate.com

H Bopnyavia twv FPGA mpoékvye and Tig Tpoypoappati{OUEVEG UVAES LOVO
avdyvoong (programmable read only memory - PROM) kot T1g mpoypoppotiCONeVeS
Aoyikég ovokevég (programmable logic device - PLD). Kot ot dvo mponyodueveg

15



OLGKEVEG £YOVV TNV SVVATOTNTO TPOYPUUUOTIGHOL o€ opddeg (banches). Qotdc0, 0
TPOYPAUUATIGUOG TOVG oTnpilovTay o€ KOAWIIOUEVT AOYIKT] OVAUEGO OTIG TOAES.

H odexoetia tov 1990 nMrav expnktikn vy to FPGA 1600 amd dmoym
TOAVTTAOKOTNTAG TNG OYedl0oNG TOVG 0G0 Kol OYKov Tapaywyns. Tnv idia mepiodo ta
FPGA ypnoipomotobvtay cg THAETIKOWOVIOKESG eQapuoyES Ko ot diktva. TIpog To
téA0G NG oekoaetiag, To FPGA Bprjkav Tov dpOHO TOVG GE MO EUTOPIKES EPAPUOYES,
Vv avtokwvntofropunyavio Kot Blopnyavikég EQapuroyEc.

Mia tpdoeatn téomn eivor n vPPLOKT APYITEKTOVIKT], SNAOT O GLVOVAGUOS TWV
Aoykov pumiok tov mapadoctak®v FPGA pe evoopatopévoug emefepyactés Kot to
CYETIKO TEPLPEPELOKA Y10l VO GYNUOTICOVV VO OAOKANPOUEVO GVATHUO. TAVD OE EVaL
zpoypopuoTiiouevo chip (system on a programmable chip). H ovykekpyévn
OPYLTEKTOVIKY] TEPLOPIfEL TNV KOTOVAA®GT 10YV0OG, ONovpyel &va HIKPOTEPO GE
péyebog cuoTNUO Kot 6 LEYOAVTEPT ASI0MIGTIO TOV GLVOIEGEMV TV 0V0 EEYMPIOTAOV
ocvotnudtov. (Wolf, 2008)

Ytov mivoka Kot TO YPAONUO 7OV OKOAOLOOVV VTAPYOLV GLYKEVIPOUEVQ
dlapopo otoryeia mov @avepavovy Vv otopikn e&EMEN tov FPGA  (mmyn:
en.wikipedia.com).

Year 1982 1987 1992 2000

8.192 9.000 600.000 millions
1: E&édién tov apiBuod molov oro FPGA

10000 O market size
7500
5000

2500

7 1993 2005 2010 2013

3: E&édién g ayopdg o€ exatopuipio

1.3 IMieovektiuata ypions tov FPGA

H woavémrta tov FPGAs va cuvdvdlovv ta kaAvtepa otoryeion amd Toug dvo
koopovg (ASICs ko cvotiuata Paciopéva oe enelepyaotn) odNynoe oty gvpeio
vwoBémon touvg amd Oheg Tic Propnyavies. Ta FPGA mapéyovv toaydtmto kot
a&lomiotio, EVM OEV OTAITOVY TO PEYAAO TPOKATAPOAIKO KOGTOG TOV TAPOVCIALEL Lot
oyxediaon Pacwopévn ota ASIC. To emavampoypoappatilopevo mopitio €xel o 010
mAgoveKTNUOTO Kot EveEMEla pe va AOYIGUKO TTOV TPEYEL GE EVa GLGTNUO BOGIGUEVO
oe emnefepyaotn, OoAAG Oev  meplopiletonr omd Tov aplud tov  dwbiciumv
VTOAOYIOTIK®OV TupNvev. Xe ovtifeon pe tovg emefepyaotés, 1o FPGA eivan
TOPAAANAQ A0 TV KOTAGKELT] TOVG Kl TG OLPOPETIKES dlEpynsie dev ypelaleTon
va avtaymviovtal Yo Toug idtovg Topovs. Kdbe aveEdptntn vmoroyiotikn depyacia

16



avatifetor og éva da@opeTikd tunpo tov chip ko pmopetl va Agttovpyel avtdOvoua
Yopig emppon omd dAheg Olepyociec. ZUVETMG, M AmOOOCN €VOC TUNUOTOS HLOG
eQapUOYNG 0ev emnpedleton Otav mEPIocOTEPES depyacieg mpoateBovv 61O GHGTNLA.
(The Linley Group, 2009)

Ta kOp1a mheovektnpota g xpnong towv FPGA cuvoyilovion mapakdto:

e Amdédoon. Expetairevdpevo v mopoiiniio oto viko, to. FPGA vrepéyovv
G TPOG TNV VITOAOYIOTIKN 1GY0 TOV YNOLKOV encéepyoctmv onuotog (digital
signal processors - DSP) gykataAeimoviog v Aoyikn TG akKoAovOoKNg
EKTELEONC KOl EMTLYYAVOVTAG TEPICCOTEPA OV KUKAO poAoylov. H BDTI, wa
etopeion benchmarking, oe pedémn g é6eiée 6t T FPGA pmopovv va
TOPOODGOVY TOAAEG POPEC TOPATAVE® OTOS00T OvA OOAAPLO GE UEPIKECG
epappoyég oe oyéon pe évo DSP (BDTI Industry Report, 2006). O éleyyoc
€000V Kot €£00®V 6TO EMMESO TOL VAIKOV TAPEYEL KAADTEPOLS YPOVOLG
amdKPIoNG Kot EEEIOIKEVUEVT] AELTOVPYIKOTNTO Y10 VO IKAVOTIOU|OEL TIG OVOYKES

HLOG EQOPHOYIG.

e Xpévog otnv ayopd (time to market). H teyvoroyio tov FPGA mpoopipet
eveM&la Kot KavotnTeg Toyeiag mpotvumonoinons. Mia 1déa kot pio oyedioon
Umopohv vo SOKIHAGTOUV GTO VAIKO Yopic va pecsorafnoet n ypovoPopa
dwdkacio g kataokevng evog ASIC (Thompson, 2004). Ot cuvéyelg aAhoyég
Kol Pedtudoelg g oxediaong pmopovv va emtevyfodv oe dpeg avii y
gPoopdoes. Lto eUmOPLO LILAPYOVY TOAAEG EMIAOYEG DAIKOV UE OLOPOPETIKOVG
tomovg I/O Mdn ovvdedepéveg mave oe €va emavoampoypoppatiiopevo chip.
Emniong, n ovveydg avéavopevn dwbeciudtta epyoreimv AOYIGHIKOD LYNA0D
EMIMESOL  UEIDVOLY TOV YPOVO €KHAONOMG €16AyovVTOG TOAAATAGL emimeda
QQOIPECNC KOl TPOCPEPOVTOS ETOYLES VAOTOWGELS Y10l TPONYUEVO EAEYYO KO
enefepyacia oNUaATOG.

e Koéotoc. To npokataforikd k0otog oyedioons evog ASIC Eemepvd katd moAd
T1¢ avtiotolyeg Avoelg Paciopéveg oe FPGA. H peydin apywm enévdvon twv
ASIC pmopetl va dtkonohoynfel amd Yoo KOTOOKELOGTEG TOL TOPAYOLV KO
movlobv palwd chip. H ¢@don tov emavampoypappatilOpevoy mopitiov
EMTTOVEL TO KOGTOG avAmTLéng Kol TV XpovoPopa dadIKacio KOTAGKELTG.
Emne1on ovyvd oty mpdén ot mpodiaypagés evog cuoTHHOTOg AAAGLOVY e TOV
xPOVO, T0 KOGTOG TV GLUVEXDV aAlaydv o€ oyedidcels FPGA eivon apeintaio
otav cuyKplel pe 1o peydro k6ctog emavacyediaong evog ASIC.

e Alwmotioa. Evd 1o gpyaieio Loyiopkod mapEYouy 10 TPOYPOUUATIGTIKO
nepBairov, ta kukAopato tov FPGA eivor pio vAomoinomn g ektédeong Tov
Tpoyphppatog oto VAKO. Ta cvotuata Paciouéva ce eneEepynctr) cuyva
TapEYOLVY TOAAG eimeda apaipeonc yio fondeia otV OpoOAdYN O SEPYACIDOV
KOl TOV OlOUOlpacpHd mopwv ovapeco o€ oepyacies. To emimedo “odnyog”
eAEYYEL TOVG TOPOLS TOL VAIKOD Kol TO AEITOVPYIKO cvoTNUe dtoyelpileTan TV
pvnun kot tov enegepyaoctn. Xe kébe 0100£o1o vToAOYIGTIKO VPV LOVO pia
EVTOAY| umopel va ekteheotel KAOE YpOVIKT OTLYUN KOl TO GLGTAUATA PACIGUEVOL
oe emelepyootr] KOLVELOLV YPOVIKA Kpiowueg Olepyociec ouveymg vo
dwakomrovv N pia v dAAN. Ta FPGA, ta omoia dogv daBétouv Aettovpyod
GUOTNUO, EAOYIOTOTOOVY  TOVG  KWwOUVOUG  0&lomMIoTiOG HE  TPOYUOTIKA
TOPAAANAN EKTELECT] EVIOADV KO VIETEPUIVIOTIKO DMKO aplepmpévo oe kabe
dlepyacio Tov VILAPYEL GTO GVGTNLOL.

17



e Moakpoypovia ocvvtipnon. Onwg avapépOnke mponyovuévag, to FPGA eivan
avoPaduicipo Kot dgv amartodv 10 KOGTOS Kol TOV XPOVO ETAVAIIOUOPPDCTG
onmg éva ASIC. Ta ynoeokd mpotOKoALN ETKOIVOVIOV, Y10 TOPAJELYLO, EXOVV
TPOOLALYPOPESG OV UTOPEl va 0AAAEOLY pHE TOV KOpO KOl Ol OETMAPES TOL
BaciCoviar oe ASIC evoegyopévmg vo TPOKAAEGOLV TPOPANUATO GLVTIPNONG
kol cvpPatoétrag. Me Tig dvvatdtteg emavadtopopemwong to FPGA pmopotdv
va avtaneEEABovv oe peAAovtikég Tpomomotf|oelg mov Ba ypelactodv. Kabmg
éva. POV M €va cOOTNUO OPALEL, AELTOVPYIKES EVIOYVGELS UTOPOLV Vol
Yivouv 6€ avTd Ympig ToV ¥POVO TOL AmOLTEITAL Y10 GYEOIAOT VAIKOV omd TNV
apyn. (National Instruments, 2012)

1.4 Aopn tov FPGA

Ta FPGA amotelodvton amd tpia Pacucd otoryeia: logic boards, 60pec 166d0v
Kot €£600v kot mpoypappatiiopevn dpopoidynon. O tomog g logic board mov
ypnoponoleitoan exnpedlel v tayvnTa kot v emedvelan tov FPGA. "Evag xotvog
tonog logic board mov ypnowomnoteitar ota cvyypove FPGA Boaciletar ota lookup
tables (LUT), ta omoia amotelobvtar amd Evav N:1 molvmAéktn kot po pviun N bit.
Ocov agopd v ymeakn Aoyikn, évo LUT andd amopiBuel Evav mivaka ainbeiog,
dtvovtag v dvvatdtta oto FPGA va vAomotel mepimlokm ynoewakn Aoywkn. (Brown
& Rose)

LUT

‘Eva LUT eivanr évag mivokag mov ovtikafiotd vToAoyIGHOUS TV Opo TNG
extéleonc pe pio mo amAn kot ypryopn Asttovpyio indexing. Av xou tao LUT éyovv
emAeYel ®C M KUPLOL VITOAOYIOTIKY] povada ota eunopikd FPGA, to péyebog tovg oe
kd@0e logic board mpénel va mpocdiopiotel mpocektikd. To peydrio LUT pmopodv va
YEPIOTOVV O TOAVTAOKOVG VTOAOYIGHOVUG KOL OCUVETMG VO UELDGOLV  TIG
kabvotepnoelg Thve oty KoOA®dimon avdpecsa ot 0dpopeg povades. Qotdco,
avtd odnyel oe mo apyéc viomomoels tov LUT e€attiag g xpnong peyordtepmv
TOAVTAEKTOV. ATO TV AAAN mAevpd, pkpodtepa LUT éyxovv ¢ amotéleoua tnv
xpnowwonoinon peyaivtepov apBpov logic blocks, k41t mov av&dver TIg
kaBvotepnoelg kodlwdimong oty oyedioon. EmmAéov, vmdpyer poe  povédo
amoOnkevong evog bit mov givar €va D flip flop. O moilvmAéiktng e£600v emdéyet Eva
anotéleopa gite amd TV cuvdptnon mov ival vAomompévn péoa oto LUT gite amd
70 bit mov eivan amobnkevpévo oto flip flop.

AwaoOvogon

Ta ocOyygpova FPGA egivar oyedlocpéva ypnoioroidvTog TNV opYLTEKTOVIKN
“oidov”. XOpeova pe avtiv, Ot OOHIKEG Hovadeg Ttomobetodvian oe éva
O160140TOTO TAEYO KOl O10GVVOEOVTOL LE EVO GUYKEKPIUEVO HOTIPO. AVTEG 01 dOIKES
povadeg oynuatiCovv Tic vnoidec ot omoleg emmMALOLV  GTOV  MKEOVO TV
dlovvoEce®my.  ALT M OPYITEKTOVIKY]  EMITPEMEL  GTOVG  VTOAOYIGUOVUS V.
mpaypatoromBovv tomkd oto FPGA, evod peyalvtepor vmoloyiopol omdve o€
KOMPATIO Ko ovTiototyifovtotl o euoikd logic blocks péca oto mAypa.

18



4: Apyitextovikn TOTov vRolowy ue draovvoéaels block kou switch boxes

To kdBe block £xel TpdoPacn otovg yeitoveg Tov pécw tov block dracHvoeonc,
10 omoio ocuvvdéel TG €10600vg kol €£6d0vg Tov Aoywov block otovg mOHPoLG
dpoporoynong pHéocw mpoypappatilopeveoy dwakontdv 1 molvmiekt®v. To block
dtoovvdeong emTpénel otV €i60d0 Kot TV €£0d0 Tov Aoyikov block va amodobodv
oe opwovtieg Ko kaOeteg OOpOUES, Peitudvovtog Katd moAD v gveAeia

dpopordynong.

Kdabe dapopedpevo ototyeio tov FPGA amattel €va bit mAnpoopiag yuo va
dwtnpnost pio dopdpewon kabopiopévn ond tov ypnotn. T éva FPGA
Bacwlopevo oe LUT, avtég ov mpoypappatilopeves tomobecieg meptlappdvovv ta
nepleyopeva Tov Aoykov block kat v cuvdeoipuota. H dtapdpewon emttuyydvetal
HEC® TPOYPOUUATICHOD T®V bits TOV GUVOEOVTAL UE QVTEG TIG TPOYPUUUOTICOUEVES
tomofeciec, cOHPOvVa pe TV €i60d0 TOL ¥PNoTH. YTApYovV TOAAOL TPOTTOL Y10 TNV
amodnkevon evog bit SvadIKNG TANPOPOPING LE TNV TO dINUOPIAN va. eivar ) SRAM, 1
antifuse ko m flash pvAun. (Kuon, Tessier, & Rose, 2008)

H mo evpela ypnopomorodpevn puébodog yia tv amodnkevon mAnpoeopiog
dwpopewong oto gumopikd FPGA eivor 1 wmrikn otatik RAM, mepiosodtepo
Yoot o SRAM. Avty 1 teqvikn €ywve ONUOPIANG EMEWN TOPEXEL dVVATOTITEG
YPNYOPNS KOl AmEPIOPIOTNG EMAVAOIAUOPOMOONG GE Hiot MON YVOOTN TEYXVOAOYiaL.
Mewekmuota g SRAM givar 1 vymAr KatavaAoon evEPYELNG Kot 1| TTNTIKOTNTO
TV 0E00UEVOV. ZVYKPIVOUEVT LE AAAEG TEXVOAOYieg Lvnung, £va otoyeio Tng SRAM
etvar peyohvtepo (amattel 6 €wg 12 transistor) kot TopovoIAlEl GNUOVTIKY GTOTIKY|
Katavaiwon egottiag pevpdtov dwoppons. ‘Eva axodpa onuaviikd petovéktnua givor
o0t SRAM dev dwatnpel ta dedopéva g xwpic evEpyela, TOL onpoivel 6Tt Katd v
exkivnion 10 FPGA 0gv €yet Oapudpemon Kol TPEMEL VO TPOYPUUUATIOTEL
YPNOLOTOIOVTAG AOYIKN Kot amofnkevon exktdg chip. Avtd emtvyydveral
YPNOUOTOIDVTOS UM TINTIKY] UVAUN Yoo Slth)pnomn NG SpOpe®ong Kot Evav
HUIKPOEAEYKTN Y10 VO TPOYLLOTOTOWCEL TNV OAOIKAGIO TOV TPOYPOUUHATICHOD KATA
v ekkivnon tov FPGA.

Av kot AMyotepo OMUOPIANG, TOAAEG OIKOYEVEIEG GLGKELAV YPNCLUOTOIOVV
pvnun flash yuo va amodnkevcovy v minpoopia dapdpewonc. H pviun flash sivon
dwpopetikn and v SRAM emedn sivor pn Ntk kol pmopel va gyypogel
nepopopévo apud eopdv. H pun ammrikémra g pvaung flash onuaiver 6t ta
dedopéva umopovv va eyypapolv Kol va mopapeivouy amodnikevpéva akopa Kot yopic
mv apoyn pevpatog. e avtifeon pe ta FPGA mov Bacifovror e SRAM, avtd mov
Bacilovtar oe pviun flash mopapévovv dwopopeouéva and tov ypnotn Kot dev

19



ypedlovior emmALOV LMKO Yoo Vo TPOYPOUUOTIOTOVV KOTé TNV €KKivnom, mov
onpaiver 6Tl givan €rotpa v Asrtovpynoovy apécms. EmmAéov, éva kdtrapo flash
PVAUNG Kataokevaletor omd Alydtepa transistors Kol GUVETMG €YEl UIKPOTEPEC
OTOAEES AOY®D peLUATOV Oloppons. QoTdG0, Ol GLYKEKPIUEVEG UVIUES EYOLV
TEPLOPICUEVO  KUKAO  OVOYVADCEDV/EYYPOQOV Kol GUYVE YopmAOTEPEG TAYXVTNTES
eyypaeng ovykpttikd pe t1ig SRAM. O ap1Buog tov kOkAwv gyypaeng eEaptdtatl amod
™V TEYVOAOYio 0AAG TUTIKA KVpaiveTOl 68 PHePK eKatoppvplo eopéc. Emmpdobera,
01 TIEPLGGOTEPES TEYVIKEG eyYpapng o€ flash amattovv vynAdtepn TaoN GLYKPITIKA pE
o Ao KukAdpota. Emopéveog, yperaloviar Bondntkd xvkdiopato €ktodg chip 1
doUEG OGS OVTAIES TAOTC Y10l VOL TPOLYLOLTOTTO|GOVY EYYPOAPES.

Mua tpitn mpocEyyion yio TpoypoploTicpd givon 1 teyvoloyio pvnung antifuse.
Onwg vmodnAmvel kot 10 OVOHA, TPOKELTOL Y10, EVOV UETOAAIKO GUVOEGUO TOL
ouumepLpépetal To avtifero amd pio acediela. O cvvdeopog antifuse givatl Koavovika
avolyToc (Un ovvOEdEUEVOC). Mol TPOYPOUUOTIOTIKY SlodKaGion Tov mepAapPavel
glte évav mpoypappatioTy vynAol peduatog eite pio oktivo laser Aidvovv tov
GUVOECUO Y10l VO oYNUaTIoTel pio MAEKTPIKN GOVOEST GOV VO LINPYE KAAMO0
avdpeoso otig dkpeg tov antifuse. [apovsialel apketd mheovekTHOTO AALG dEV Elvar
enmavampoypoppotioo. MOAG €vog obvOoeopog MMoel, €yl vmootel &vav  un
avtiotpentd petacynuoaticpd. Ta FPGA mov Paciloviar ce avt) tv teyvoroyia
Bempovvtor mpoypappatilopeva povo pio eopd. To yeyovog avtd mepropilel v
eveMila kKot Kabotd aKatdAAnAn v texvoAoyia Yoo mpotvmonoinon. 201060, N
xpNomn g texvoroyiog cuvodedeton omd pepkd mAcovektnuata. O cOVOECUOG EXEL
TOAD pKkpd péyeBog ouYKPITIKA HE TO KOTTOPA TOV GAA®V TEXVOAOYIDV TOV
amoteAobVTOL oo apKeTd transistor. Avtd odnyel o€ pKpEG KOBLGTEPNGELS d1AOOGNG
KOl UNOEVIKY] OTOTIKN KATOVAAW®GT EVEPYEWNS EMELDN OEV LIAPYOVYV TAEOV PELLLOTOL
dwpuyng. Emiong ot odvoeopot etvar 1dwitepa avBektikol oty aktivoBoiria, yeyovog
oL KaoTd TNV TEYVOAOYIN KATAAANAN Y10 GTPATIOTIKEG KO OLAGTNIMKES EQUPUOYES.

1.5 "Etowyeg frpriodnkeg

[ToAAd epmopwkd epyoreion mapéyovv éva yevikd oet and tuquoata FPGA,
onAadn ovpPolikég avamapactdoel £tolmv blocks Asttovpyidv mov o ¥PNOTNG
embopet va evoopatooet oto Okd t0v FPGA design. Avtd 1o tunuota
TopoVC1ALoVTal GTOV YPNOTN TOV £pYULEi®V ¢ cOUPOAN £TOLLO TPOS YPNON TAV® GE
L0 TAQKETAL.

Ta tuquato Tpwv v odvheon (pre synthesized components) map€yovtal G
evotteg KmoKo avtikewévav (object code) ywpig va elvar omopaitnto vo
amoKaAvyouv Tov nyaio kmdika emmédov RTL 1 netlist. To cvotnua mepthappdvet
moALamAES PPA0ONKeG TapExovTag Eva OAOKANP®UEVO GET TUNUAT®OV TPO chVOEDTG,
HE €0POC amd amAES AOYIKES TOAEG UEXPL AelTovPYiEG VAIKOD vYMA0D emmédov, OTMG
TOAMOTAQGCIOOTEG KOl OLOUOPOOTES TOAU®V 1M okOpo Kol  emeEepyaoTtésg Kot
TEPLPEPELNKE ETKOVAOVIOG.

Avtd T éTotua TUNpaTO UTopovV va 160000V 6E o0 ad TOV (PN OTH TOL
epyoreiov kot émerta oAOKANPO TO design va petapepBel oe pio KOTAAANAN QLGIKY
ovokevn. Ta mieovektuato ypnong £Tolumv TUNUATOV elval moAAd. Mepikd
AVOPEPOVTOL EVOEIKTIKA TOPOKAT®:

e Meimon tov ¥pOéVOL TOL amALTEITOL Yoo TV OAOKANpwor Tov design KaOmg
TOALAG GLYVA YPNCLLOTOIOVUEVO, TUNLOLTO, TTOPEXOVTOL ETOLLOL.

20



e EvukoAdtepog éheyyog TG cmoTNg Acttovpyiog Tov oxediov, apov Ta £TOLLO
TUNUOTO TOAPEYOLV EYYUNUEVA GOGTY| AgtTovpyia.

®  AvvotdTnTo ETOVOYPNCUYLOTOINGNG TUNHATOV TOAAES POPEC.

® ATOJ00TIKOTEPO. KUKAGUOTO, KOODG TO TPOooEEpOUEVO TUNUOTO  €ivor
BeAtiotomompéva yio tnv Asttovpyia mov tpoopilovral.

1.8 Epyoieia mov ypnoipomonidnkayv

2V mapodoo SIMAOUATIKY epyacia ypnoyoromdnke to epyaieio Planahead
g etoupeiog Xilinx. Emitpémer otov ypnomn va cvvbécel 10 oxédo tov, va
TPOYLLOTOTOWGEL AVAALGT] TOV YPOVIGHOD, VO EAEYEEL TV AMOKPIOT] TOV KUKAMUOTOG
o€ OAPOPES E10000VG Kol KOTAGTACELS KO VO TPOYPOUUUOTIGEL TO design Tov Tavm o€
pio mAokéto yio Tpaypatikn Asttovpyia. Me 1o gpyareio avtd, ivor duvatn n peAET
TOV OmoTEAECUATOV VAoToinong mivew oto FPGA (implementation) kot tov
xpoviopov (timing) pe otdyo Vv avdivon g kpioung Aoyikng. EmmAéov, fonda
omv Peitioon g amddoong tov design tov ypnotn upécw floor planning,
TPOTOMOINONG TOV TEPLOPICUMV KOl TOAA®Y OOPOPETIKOV puOuicemv ce emimedo
ovuvBheonc kot vAoToinong.

Kdabe design mov vAiomoteitan pe v Pondea tov Planahead mepvdel and ta
otadr tov placement, Tov mapping kot Tov routing. AkolovOel pio cvvoun
avaivon yo KaOe Eva amd avTd To GTAdWL:

» Placement: civar éva amopaitnto PApo otV nAextpovikny oxediaom Kot
avaeépeTor otnv avadeon tomobeciadv pe akpifela O1POpOV TUNUATOV TOV
KUKA®pOTog péca otnv meptoy] Tov chip. ‘Eva katmtepng motdtntog placement
Oyt novo emmpedler v amddoon tov chip, ahdd mBavdv vo odnynoel oty
advvapio. KATOOKELNG TOL TOPAYOVTIOG KOAMOIMGES HEYAAOL HNKOLG TOV
Eemepvovv Tovg dlabéaovg mopovg yia routing. Kotd cuvénela, n dtadikacio
ovtn TPEmeEL va KAvel Tig avabicels evomapdAinia Beitiotonotel Eva mAn0og
otoy®v, Oote va emtevyfodv ot mpodiaypapés anddoons. XapoKInplioTiKol
o10yo1 Tov placement Teptlapfavouv:

o JVVOMIKO KOS KOAWOIWGEWV: 1 EAAYIGTOMOINGY TOV HNKOVS TMOV
KOAOIUDCEMY OTOTEAEL TOV TPOTOPYIKO GTOYO TOV AOYIGUIKOV TOL LAOTOLEL
t0 placement. Avtd Oyt pdévo cvviekel oy peiwon tov peyébovg tov chip,
OAAG TOLTOYPOVO HELDOVEL TNV KOTOVOA®OT 10YX00O¢ Kol TV Kobvotépnon
O14000MG TOV SNUAT®V TOL £ivat OVAAOYN TOV UKOVG KOA®MOTWONG.

® Xpoviouog: o KOKA0g poAoylov evog chip kabopiletor and v kabvotépnon
TOL HOKPOTEPOL HOVOTATIOL TOVL, 7OV GLYVA OVOPEPETOL ®OC KPIGULO
povomdtt. ‘Exovtog kabopiopéves mpodiaypaés omdooons, To AOYIGUKO
npémel vo, elval oiyovpo OTL deV LTAPYEL HLOVOTATL TOL Vo Eemepva TV
péyiom kabopiopévn kabovotépnon.

o Jovupdpnon: Evo eivon amopaitnto vo peiwbel to piKoc tmv KoAmoihoemv
(MOTE VO, EMOPKOVV 01 TOPOL TOL routing, eival emiong avaykaio ot wOpol avtol
VO IKOVOTTOLOVV TPOSLOYPAPEG TOTIKOTNTOG TAve oto chip. Mo meployn pe
GLUEOPTNOT 10MG OOMYNOEL GE TOPAKAUYELS OLOPOUDYV OVEAVOVTOS TIG
KOAMIUDOELS.

21



e Joyig: m peiwon g 1oyvog cuvnlwe TepLaUPAVEL TNV COGTY] KATAVOUY| T®V
TunudTov yuoo v peioon ™ Katavaimong kot v eEopdAvvon g
Oeppokpaciog Tov chip.

e 'Evog devtepevv 61dY0¢ TOL AOYIGHIKOV givon 1 peimo™ Tov ypodVoL Tov
amottel yio TNV OAOKANp®o™ Tov To placement.

Mapping: eivar pio pébodog pe tnv omoia to design UmOpel Vo OVTIGTOL(LOTEL
ota euowkad pins tov FPGA ot0 omoio Oa mpoypoppoatiotei, dSniadn morec M
oapopa otoyeio emAéyovtal and T PipAodnkeg yu vo vAomoucovv To
KukAopoata tov design. Atagopetikd, €ivar To péco pe to omoio to design
umopel va aAAniemdpdost pe tov “€Em KOGHO”. XapTtoypopadvtasg EGOTEPIKA
YneKa onuote 6 pins KAmowog GuoKeLNS, N AoYkn Tov design pmopel va
EMKOWVMVNGEL PE GAL Tt Tov chip. Q¢ puépog Tov mapping, kKabopilovrot
KOl AVOAOYIKE YOpOKTINPIoTIKA 6Ta pins, Onw¢ 1O standards, duvépelg 0dnynong
(drive strengths) ot slew rates. Xe emimedo AoylopKOO, TO mapping
emruYYAveTOL LE YpNOT SHOpPOSE®V Kot apyeimv mepropicpuav. ‘Eva FPGA
design umopei var éxel ToAATAES KAOOPIGUEVES SAUOPPDGELS, e KAOe pia va
mePLEYEL TO apyeio meplopiou®v (Yoptoypaenon pins, TEPLOPIGHOL TOTOOETNONG
KoL OpOUOAOYNOMNG, TEPLOPICHOL POAOYLOV KOl YPOVIGHOV) TOV OTTOLTEITAL Y10 VO
GTOYEVCEL GE VAOTOINGT TAV® GE SLOPOPETIKEG PLGIKEG GUOKEVEG.

Routing: eivar pio dradikacio mov otnpiletal oto placement, Tov kabopilet v
tomofecio kdbe evepyov ctoryeiov mov ypnoiponoteitol amd 1o Kokhopo. Metd
10 placement, to routing Tomo0etel KAAMOIO TOV ATAITOLVTOL VIO TV GUVOEST)
TV Tonofetnuévev e£optnUdtoVv eved datnpel 6AOVS TOVG Kavoveg Tov design.
210 AOYIGIKO divovTtal KAmold TpobmipyovTo TOADY®VE TOV AmoTEAOVVTOL OTd
pins Kot TPOUPETIKA KATO1Eg TPOoUTAPYOVoES KaAmImoels. Kabe éva amd avtd
To TOAVY®VO, cuoyetileton pe €va net, fdoel ovopatog 1 evog apBuov. H kopla
gpyacia Tov router givol vo, ONUIOVPYNOEL YEMUETPIEG MOTE OAO TOL Pins TOL
{010V net va glvar cvvoedepéva, KOvEVO pin GUGYETICUEVO HE GALO net va unv
ocuvdéetar kot OAot ot Kavoves Tov design vo woyvovv. ‘Evag router umopel va
amoTOYEL UNV ovvdéovtog OVO pins mov £mpeme vo cvvoeBovv  (open),
ouvdéovtag 6vo pins mov dev émpene (short) | mapaPiédloviog Kamolov Kavova.
Emniéov, yuo va. cuvoeBodv cwaotd o nets, ol routers TPENEL VoL TNPTICOLV TOV
YPOVICUO, Vo unv onuovpynocovv mpoPfAnuata crosstalk, va tnpncoovv Tig
OTTOUTNGELS TUKVOTNTOG Kot TOAAG A0 ATO T TOPATAV® Elval ELPOVES OTL TO
routing eivar pio waitepa 6VGKOAN dradiKacioL.

Yxedov kdbe tpoPAnua mov oyetiCetan pe to routing givor dSvoemiivto. To
amAoVGTEPO TPOPAN O OPOLOADYNONG, YVOGTO G OEVTPO TOL Steiner, VPTG
TOV GUVTOUATEPOV dPOHOL Yo éva net yopic epmddia Kot kavdves Tov design
elvar NP-d0okoho av OAeg ov yovieg emurpémovror kot NP-mAnpeg av poévo
oplovtia kot kafeta KaAmola emrpénovtal. Katd cuvéneia, ot routers omdvio
npoomafovv va PBpovv pio PEAtTiotn Avorm. Avtifeta, oxeddv oAOKANpM M
dpopordynon PBaciletor oe euploTiKEéS AVGELG Tov Tpootadohv va Bpovv amid
pio IKovomomTiky) AVon.

22



5: Madkooio kotookevis kokAouatog navw o FPGA

To Planahead 6o ypnowomnomBel eniong ywo v oHvOEST TOV TPLOV UEPDOV
(xopro KOKAwpo, KOKA®po Selector wov mapakoiovbel ta ofjpata eAEYYOL Kol TO
digital clock manager mov emiAéysl TNV KATGAANAN CLYVOTNTO AEITOLPYING) TOL
oLVOETOVY TO TEMKO KOKAMLOL.

To devtepo epyoreio mov Oa ypnowywomomBel eivar pio epoppoynq mov
avartoyOnke oto mAaiclo g dmAmpatikng kKo ovopdaleton Planahead Expander.
AVOoADEL TO OMOTEAECUOTO. TNG YXPOVIKNG OVOALGNG TOVL KUPLOV KLKAMUOTOS (T
arotedéopato avtd mapéyovral and to Planahead) kot Bydler cav é£odo ta onpota
eléyyov koBmOG ko Tic avtiotoyeg ovyvotnteg Asrtovpyiag. H epappoyn elvai
ypoupévn o€ Java ylo va umopel vo EKTEAEGTEL 0€ OTOL0ONTOTE AEITOVPYIKO GUGTN LA,
Moli pe tov Expander épyeton pio axopo €@appoyr ypouuévn oe Java mov
ovopdaletan Generator. H epappoyn avtr| o1efalet to apyeio mov ompovpyndnke amnd
tov Expander ka1 onpiovpyet éva apyeio pe kd@duo VHDL mov vAomotel to koKAmpo
oL ToPaKoAoVOEl Ta oNHOTO EAEYXOV OTMOC TPOCIOPIGTNKAY OO TO TPONYOVUEVO
gpyaieio.

To ISE g Xllinx ypnoiponoteitoan yioo v Kataokevr e povadog digital
clock manager. H povéda avt petatpéner pio ocvoyxvotta €10600v oe péxpt €61
(e€aptdron amd tov tOmo tov FPGA mov ypnowomoleitoan) cvyvotreg €£6d0v
kaBopiopéveg amd tov ypnotn. v nopovcoa gpyoacia, povo to IP Core Generator
tov ISE ypnowomnoteitar. OAleg ov dAdeg Asttovpyieg emtvyydvovion péca ond To
Planahead. H «otackevry tov digital clock manager eivar gokoAn kot
TPOyHOTOTOlEITOL HEGA O YPAPIKO TEPPAALOV.

To FPGA Editor an6 v Xilinx ypnowonoteitan (epdcov yperdletol) yio va
OUVOEOEL TOL E0MTEPIKA ONUATO TOL KOPOL KLVKAMUATOS HE TIG €16000VG TOL
KukAmpatog Selector. Av dgv LVIOPYOVV ECMOTEPIKA GNUOTO, COUVOESN WUTOPEl va
npaypatoromel pécw kadika VHDL kot to FPGA Editor dev ypetdletar. EmmAéov,
ovtn 1M eeappoyn umopel va ypnowomomBel yuoo mAnpo@opiec OYETIKEG pe TNV
kaBvotépnon o€ ovykekpiuéva dpoporoynuéva koiodw mov Bo Pondncovv tov
YPNOTN VO EMTOYVVEL OKOUA TEPIGCOTEPO TO KUPLO KOKAMLLOL.

To Isim am6 v Xilinx givor £€vag TPOCOUOI®THG TOV XPNCIUOTOLEITAL Yo VOl
eleyyel n Aertovpyia Tov vEoL Kol PeATIOUEVOD KUKADOUOTOS. O TPOGOHOI®TNG divel
™V OLVVATOTNTA EAEYYOV TMV KVUATOUOPP®DV E1GO0V Kol €000V TOL KUKAMDLOTOG.

23



2. Introduction

2.1 Embedded systems

A simple definition of an embedded system is whatever device which
contains a task specific central possessing unit (CPU) and not a general
purpose one. Usually, the system must meet real time computing
constrains and it is embedded as a part of a whole device that often
includes hardware and mechanical parts.

Embedded systems range from mobile devices, such as digital
watches and portable music players, to large scale application devices,
such as traffic lights and factories controllers, to highly complicated
systems like cars. The complexity of the embedded systems may vary from
small like a simple micro-controller, to large multi-unit systems,
peripheral devices and network controllers.

Modern systems often rely on micro-controllers, which are processors
with embedded memory or other peripheral devices. Micro-processors are
quite common too, especially on highly complicated systems. Processors
vary from general purpose to custom designed for a highly specialised
application. A typical example of a specialised processor is a digital signal
processor or DSP for short.

Why are micro-processors currently in use? There a two major
answers to that question:

e Micro-processor is a very efficient way of implementing digital
systems because they offer the ability of reusing many hardware
designs with a simple software update. This is very important and
the main reason is that designing integrated circuits remains an
expensive and time consuming process.

e Micro-processors facilitate designing of families of products which
can be made in order to provide different specifications in various
price levels. They may also be expandable so that they keep up with
the rapidly changing market needs.

2.2 Embedded computing — challenges

Embedded computing is, according to many opinions, a more
demanding process than writing software for personal computers. Proper
functionality remains important for both personal and embedded
computing, but embedded applications must meet many more constrains.

e Complicated algorithms: Functions executed by a micro-processor
may be highly complicated. For instance, controlling the fuel flow in a
car.

e User interface: micro computers are usually used for controlling
complicated user interfaces which contain a lot of lists and buttons.

24



For example, a global positioning system (GPS) uses a very
expressive user interface.

Furthermore, many tasks of embedded systems must be completed
within strict deadlines, which adds more constrains and complexity into
designing embedded software. Some of these extra demands are
mentioned below.

e Real time: many embedded systems must operate in real time. If data
1s not ready until a specific deadline, the whole system may collapse.
Not meeting all timing constrains in a system, may result in
dissatisfied customers or even deaths (please consider a system used
in surgeries or an airplane controller).

e Multirate functions: Many functions in embedded systems must meet
all timing constrains but also many real time processes may take
place in parallel. It is highly likely that some of these processes have
a slow pace and others have a faster one. Multimedia applications are
a good example of multirate functions, because audio and video
segments are executed in the system with different rates but they
must always be synchronised in order to be presented to the user.

e Manufacturing costs: The total manufacturing cost is a critical part
in many applications and it is defined by many factors such as the
type of processor used, the amount of on board memory and the
number of peripherals.

e Power: Power consumption affects the battery life of all mobile
devices, which is crucial in many applications. It also affects the heat
production of the device which may lead to temporal malfunction.

o Limited hardware resources: Unlike personal computers, most
embedded systems possess limited hardware resources to take
advantage of (for example, power coming from a battery, limited ram
onboard, few or even none peripheral 1/0O devices). Therefore, it is
necessary that all resources are used efficiently and the user
application will function correctly.

External limitations are an important source of difficulties in
designing embedded systems. During designing process, all important
problems mentioned below must be taken into serious consideration.

How much hardware is needed? There is a way of controlling the
quantity of processing power given to a problem by carefully choosing the
type of micro processor, the amount of RAM, the I/O devices and so on.
The choice of the hardware components is very important if we recall that
many timing, cost and performance constrains must be met. If the system
lacks hardware, it will miss its deadlines and it will not meet its user’ s
expectations. If the system possesses too much hardware, the total cost of
the system will rise without any noticeable performance improvements.

How are deadlines satisfied? The absolutely raw way of satisfying a
deadline is by accelerating the hardware, so that commands execute
faster. However, this may lead to a more expensive system. Moreover, it is

25



likely that the overclock of the processor won’ t benefit the execution time
due to memory limitations.

How is power consumption minimised? Power consumption is a major
problem almost on every embedded system. By slowing down non crucial
datapaths, the system achieves better power consumption and at the same
time it meets all deadlines. However, the designing process requires a lot
of attention and it is time consuming because of its complexity.

Upgradable design. The hardware platform of a system can be used
for many generations of products with zero or few modifications. However,
adding new capabilities i1s still desirable and it can be achieved through
software updates. Therefore, the correct and future proof design of the
hardware is very important, so that software which is not yet designed
will be executed without any problems on the platform.

Reliability. Reliability is an important feature of both hardware and
software. It is also desirable in some applications such as safety critical
systems. Careful planning and design are needed in order reliable
products to be built.

2.3 FPGA - evolution

FPGA (stands for Field Programmable Gate Array) is a type of
general purpose programmable integrated circuit which possesses a large
number of standardized gates and other digital components, such as
counters, registers, PLL generators and so on. Some FPGAs embody
analog functions as well. During the programming process of a FPGA, that
always takes place when the FPGA is on the printed circuit, all desired
functions are activated and interconnected. The final result is that the
FPGA behaves as an integrated circuit with a specific function.

The source code, which the FPGA is programmed with, is usually
written in a hardware description language like VHDL or Verilog. Its
application field is quite similar to other programmable integrated
circuits, such as PLDs and ASIC. However, FPGAs have some unique
features:

e FPGA forgets its programming every time it is unplugged. Therefore,
it requires an external micro processor or a non volatile memory unit,
which will program the main FPGA unit when needed.

e FPGA programming may change every time that the software located
in the micro processor or the memory unit is modified.

e There is no upper limit on how many times a FPGA unit can be
programmed.

e Power consumption is significantly increased compared to ASIC.

FPGAs are very suitable in applications where their parameters
change often or in small production rates, while ASICs, due to mass
production, is cheaper in large quantities and the desired function is

26



strictly predefined with no errors (ASICs cannot be reprogrammed. The
can be programmed once).

The basic structural unit of the FPGA is a logical block, the
combinations of which implement boolean functions that express functions
of a digital circuit. Depending on the size of the circuit, many logical
blocks can be combined to implement all necessary boolean functions.

FPGA industry resulted from programmable read only memories
(PROM) and programmable logic devices (PLD). Both of them are capable
of banch programming. However, their programming was depending on
wired logic between gates.

FPGAs were skyrocketed during the 90s as long as design complexity
and production rates are concerned. During the same era, FPGAs were
only used in telecommunications and networks. However, during the late
90s, they were used in more consumer applications, such as car industry
and various industrial applications.

A resent trend is a hybrid architecture, which means combining the
logical blocks of the traditional FPGAs with embedded processors and the
required peripheral units to form a complete system on a programmable
chip. This hybrid architecture limits the power consumption, creates a
system with smaller size but more reliable. (Wolf, 2008)

2.4 Benefits of FPGA technology

FPGA chip adoption across all industries is driven by the fact that
they combine the best parts of ASICs and processor based systems. FPGAs
provide hardware timed speed and reliability, but they do not require high
volumes to justify the large upfront expense of custom ASIC design.
Reprogrammable silicon also has the same flexibility of software running
on a processor based system, but it is not limited by the number of
processing cores available. Unlike processors, FPGAs are truly parallel in
nature, so different processing operations do not have to compete for the
same resources. Each independent processing task is assigned to a
dedicated section of the chip and can function autonomously without any
influence from other logic blocks. As a result, the performance of one part
of the application is not affected when more processing is added. (The
Linley Group, 2009)

The main benefits of using FPGAs can be listed as follows:

e Performance. Taking advantage of hardware parallelism, FPGAs
exceed the computing power of digital signal processors (DSPs) by
breaking the paradigm of sequential execution and accomplishing
more per clock cycle. BDTI, a noted analyst and benchmarking firm,
released benchmarks showing how FPGAs can deliver many times
the processing power per dollar of a DSP (BDTI Industry Report,
2006) solution in some applications. Controlling inputs and outputs

27



at the hardware level provides faster response times and specialized
functionality to closely match application requirements.

Time to market. FPGA technology offers flexibility and rapid
prototyping capabilities in the face of increased time to market
concerns. An idea or a concept can be tested and verified in hardware
without going through the long fabrication process of custom ASIC
(Thompson, 2004) design. Incremental changes and iterations on an
FPGA design can be implemented within hours instead of weeks.
Commercial off the shelf hardware is also available with different
types of I/O already connected to a user programmable chip. The
growing availability of high level software tools decreases the
learning curve with layers of abstraction and often offers valuable IP
cores (prebuilt functions) for advanced control and signal processing.
Cost. The nonrecurring engineering expense of custom ASIC design
far exceeds that of FPGA based hardware solutions. The large initial
investment in ASIC is easy to justify for OEMs shipping thousands of
chips per year, but many end users need custom hardware
functionality for the tens to hundreds of systems in development. The
very nature of programmable silicon means that fabrication costs or
long lead time for assembly are absent. Because system requirements
often change over time, the cost of making incremental changes to
FPGA designs is negligible when compared to the large expenses of
respinning an ASIC.

Reliability. While software tools provide the programming
environment, FPGA circuitry is truly a “hard” implementation of
program execution. Processor based systems often involve several
layers of abstraction to help schedule tasks and share resources
among multiple processes. The driver layer controls hardware
resources and the operating system manages memory and processor
bandwidth. For any given processor core, only one instruction can be
executed at a time and processor based systems are continually at
risk of time critical tasks preempting one another. FPGAs, which do
not use an operating system, minimize reliability concerns with true
parallel execution and deterministic hardware dedicated to every
task.

Long term maintenance. As mentioned earlier, FPGA chips are
field upgradable and do not require the time and expense involved
with ASIC redesign. Digital communication protocols, for example,
have specifications that can change over time and ASIC based
interfaces may cause maintenance and forward compatibility
challenges. Being reconfigurable, FPGA chips can keep up with
future modifications that might be necessary. As a product or system
matures, functional enhancements can be made without spending
time redesigning hardware or modifying the board layout. (National
Instruments, 2012)

28



2.5 FPGA structure

FPGAs consist of three fundamental components: logic boards, input
and output ports and programmable routing. The type of logic board used
affects the speed and area efficiency of the FPGA. A common type of logic
board found in modern FPGAs is based on look up tables (LUT), which
consists of an N:1 multiplexer and an N-bit memory. As far as digital logic
1s concerned, a LUT simply enumerates a truth table, giving the ability to
the FPGA to implement arbitrary digital logic. (Brown & Rose)

LUT

A LUT is an array that replaces runtime computations with a
simpler and faster array indexing operation. Although the LUT has been
selected as the core computational unit in commercial FPGAs, its size in
each logic board has been carefully considered. Larger lookup tables can
handle more complex logic functions, thus reducing the wiring delay
between blocks. However, this results in slower LUTs due to the usage of
larger multiplexers. On the other hand, smaller lookup tables result in
larger number of logic blocks used which increases wiring delays in the
design. In addition, there is a single-bit storage element in the base logic
block which is a D flip flop. The output multiplexer selects a result either
from the function implemented in the LUT or from the stored bit in the
flip flop.

Interconnection

Modern FPGAs are designed using the island styled architecture.
According to this, logic blocks are tiled in a two dimensional array and
interconnected with a pattern. The logic blocks form the “islands” which
float in the ocean of interconnections. This architecture allow
computations to be performed spatially in the fabric of FPGA and large
computations are broken into pieces and mapped into physical logic blocks
in the array.

The logic block accesses its neighbors through the connection block,
which connects logic block input and output terminals to routing resources
through programmable switches or multiplexers. The connection block
allows logic block inputs and outputs to be assigned to arbitrary horizontal
and vertical tracks, increasing routing flexibility.

Each configurable element of the FPGA requires 1 bit of storage to
maintain a user defined configuration. For a LUT based FPGA, these
programmable locations generally include the contents of the logic block
and the connectivity of the routing fabric. Configuration is accomplished
through programming of storage bits connected to these programmable
locations according to user’ s input. There are many methods for storing a
single bit of binary information, the most popular being SRAM, antifuse
and flash memory. (Kuon, Tessier, & Rose, 2008)

The most widely used method for storing configuration information in
commercially available FPGAs is volatile static RAM, better known as
SRAM. This method was made popular because it provides fast and

29



unlimited reconfiguration in a well known technology. Drawbacks of
SRAM are the high power consumption and data volatility. Compared to
other memory technologies, the SRAM cell is larger (requires 6 to 12
transistors) and dissipates significant static power because of current
leakage. Another major disadvantage is that SRAM does not maintain its
contents without power, which means that during power up the FPGA is
not configured and must be programmed using off chip logic and storage.
This can be achieved by using a non volatile memory to hold the
configuration and a micro controller to perform the programming
procedure.

Although less popular than SRAM, many families of devices use
flash memory to store configuration information. Flash memory is
different from SRAM because it is non volatile and can be written a
limited number of times. The non volatility of flash memory means that
data can be written to it and remains stored when power is removed. In
contrast with SRAM based FPGA, a flash based one remains configured by
user defined logic and does not require extra hardware to be programmed
during boot up, which means that a flash based FPGA can be ready
immediately. Moreover, a flash cell is made by less transistors compared
to SRAM cells, thus there are fewer transistors to contribute to current
leakage. However, flash memory has a limited read/write cycle lifetime
and often offers less write speeds compared to SRAM. The number of write
cycles varies depending on technology, but is typically some million times.
Additionally, most flash write techniques require higher voltage compared
to normal circuits; they require additional off chip circuitry or structures
like charge pumps on chip to be able to perform writes.

A third approach to achieving programmability i1s antifuse
technology. Antifuse, as its name suggests, is a metal based link that
behaves oppositely of a fuse. The antifuse link is normally open
(unconnected). A programming procedure that involves either a high
current programmer or a laser melts the link to form an electrical
connection across it, like creating a wire between the antifuse endpoints.
Antifuse has several advantages but it is not reprogrammable. Once a link
1s fused, it has undergone a physical transformation that cannot be
reversed. FPGAs based on this technology are generally considered one
time programmable. This severely limits their flexibility in terms of
reconfigurable computing and nearly eliminates this technology for use in
prototyping environments. However, there are some distinct advantages of
using antifuse in an FPGA platform. First of all, the antifuse link can be
made very small compared to the large multi transistor SRAM cell and
does not require any transistors in order to be formed. This results in very
low propagation delays across links and zero static power consumption,
because there is no longer current leakage due to transistors. Antifuse
links are also not susceptible to high energy radiation particles that
induce errors known as single event upsets making them more likely
candidates for space and military applications.

30



2.6 Software libraries

Many commercial tools provide a generic set of FPGA macro
components — symbolic representations of blocks of functionality that a
user desires to add to an FPGA design. These components are presented to
the user as FPGA-ready schematic symbols (or graphical representations)
that can be instantiated into a design. FPGA-ready schematic components
are like traditional PCB-ready components, except instead of the symbol
being linked to a PCB footprint, each is linked to a pre-synthesized EDIF
model.

The pre-synthesized components are supplied as object code entities
without having to expose underlying RTL- or netlist-level source code. The
system includes multiple libraries providing a comprehensive set of pre-
synthesized components, ranging from simple gate-level functional blocks,
up through high-level hardware functions, such as multipliers and pulse-
width modulators, to high-level functions, such as processors and
communications peripherals. These components can be instantiated into
designs by the system user and then the whole design can be targeted to a
suitable physical device. There are many advantages of using pre built
components. Some of them are refered below:

¢ The time needed to complete a design is reduces because many of the
most commonly used components are already built by the tool.

e Debugging the hardware design is easier because the components
provided are functioning correctly and are error free.

e A segment can be used many times.

e More efficient circuits are created because the provided segments are
already optimized for a specific function.

e The result is a design environment that offers true device vendor
independence, with the ability to quickly retarget the FPGA design to
a different device with relative ease.

2.7 Tools used

In the present diploma thesis the main software tool used was the
Xilinx Planahead. It allows the user to synthesize his design, to perform
a timing analysis, to check the performance of the circuit in many
different inputs and to program that design onto a physical device. With
that tool 1t is possible to study the implementation and the timing results
in order to analyse the critical logic. Moreover, it helps improving the
performance of the user’ s design through floor planning, constrains
modification and many more synthesis and implementation settings.

Every single design which is implemented with Planahead goes
through placement, mapping and routing. All three stages are explained
in detail just below:

Placement is an essential step in electronic design automation - the
portion of the physical design flow that assigns exact locations for various

31



circuit components within the chip’ s core area. An inferior placement
assignment will not only affect the chip's performance but might also
make it non manufacturable by producing excessive wire length, which is
beyond available routing resources. Consequently, a placer must perform
the assignment while optimizing a number of objectives to ensure that a
circuit meets its performance demands. Typical placement objectives
include:

e Total wire length: Minimizing the total wire length, or the sum of the
length of all the wires in the design, is the primary objective of most
existing placers. This not only helps minimize chip size, and hence
cost, but also minimizes power and delay, which are proportional to
the wire length (This assumes long wires have additional buffering
inserted; all modern design flows do this.)

e Timing: The clock cycle of a chip is determined by the delay of its
longest path, usually referred to as the critical path. Given a
performance specification, a placer must ensure that no path exists
with delay exceeding the maximum specified delay.

e (Congestion: While it is necessary to minimize the total wire length to
meet the total routing resources, it is also necessary to meet the
routing resources within various local regions of the chip’ s core area.
A congested region might lead to excessive routing detours, or make
it impossible to complete all routes.

e Power: Power minimization typically involves distributing the
locations of cell components so as to reduce the overall power
consumption, alleviate hot spots, and smooth temperature gradients.

e A secondary objective is placement runtime minimization.

Mapping: is a method by which the design can be interfaced to the
physical pins of the FPGA device in which it is programmed. Put another
way, 1t 1s the means by which the design can interact with the 'outside
world'. By mapping internal digital signals to the device pins, the logic is
able to communicate to other areas of your product. As part of this
mapping, you would also define analog characteristics of the pins, such as
10 standards, drive strengths and slew rates.

This mapping i1s achieved using ports (or port components),
configurations and constraint files. An FPGA design can have multiple
defined configurations, with each configuration containing the constraint
files (pin mappings, clock constraints, place and route constraints)
required to target a different physical device.

Routing: In electronic design, wire routing, commonly called simply
routing, is a step in the design of printed circuit boards (PCBs) and
integrated circuits (ICs). It builds on a preceding step, called placement,
which determines the location of each active element of an IC or
component on a PCB. After placement, the routing step adds wires needed
to properly connect the placed components while obeying all design rules
for the IC.

32



The task of all routers is the same. They are given some pre-existing
polygons consisting of pins (also called terminals) on cells, and optionally
some pre-existing wiring called pre routes. Each of these polygons are
associated with a net, usually by name or number. The primary task of the
router is to create geometries such that all terminals assigned to the same
net are connected, no terminals assigned to different nets are connected,
and all design rules are obeyed. A router can fail by not connecting
terminals that should be connected (an open), by mistakenly connecting
two terminals that should not be connected (a short), or by creating a
design rule violation. In addition, to correctly connect the nets, routers
may also be expected to make sure the design meets timing, has no
crosstalk problems, meets any metal density requirements, does not suffer
from antenna effects, and so on. This long list of often conflicting
objectives is what makes routing extremely difficult.

Almost every problem associated with routing is known to be
intractable. The simplest routing problem, called the Steiner tree problem,
of finding the shortest route for one net in one layer with no obstacles and
no design rules is NP-hard if all angles are allowed and NP-complete if
only horizontal and vertical wires are allowed. Variants of channel routing
have also been shown to be NP-complete, as well as routing which reduces
crosstalk, number of vias, and so on. Routers therefore seldom attempt to
find an optimum result. Instead, almost all routing is based on heuristics
which try to find a solution that is good enough.

Design rules sometimes vary considerably from layer to layer. For
example, the allowed width and spacing on the lower layers may be four or
more times smaller than the allowed widths and spacings on the upper
layers. This introduces many additional complications not faced by routers
for other applications such as printed circuit board or Multi-Chip Module
design. Particular difficulties ensue if the rules are not simple multiples of
each other, and when vias must traverse between layers with different
rules.

Planahead will also be used to connect the three components
(master circuit, Selector which monitors controls signals, and the decm
which chooses the appropriate clock frequency) that compose the final
circuit.

The second tool used is a custom made application called Planahead
Expander which analyzes the timing results of the master circuit
(provided by Planahead) and outputs the control signals as well as the
operational frequency of each one. This application is written in Java in
order to be executed under every operating system. Along with Expander,
there i1s another Java application called Generator, which parses the file
generated by Expander and creates a file with VHDL code that
implements the circuit that monitors the control signals determined by
Expander.

ISE by Xilinx is also used to create the dem unit. The dem unit
converts an input frequency into up to six (depending on the type of FPGA

33



used) output clocks with user controlled frequencies. In this thesis, only
the IP Core Generator of the ISE tool will be used. All the other operations
will be performed by Planahead instead. The building of the decm is easy
and it is performed by a graphical user interface.

FPGA editor by Xilinx is used (if necessary) in order to connect the
internal signals of the master circuit with the input pins of the selector
circuit. If no internal signals exist, the connection can be done by VHDL
code and FPGA editor will not be needed. Furthermore, this application
can be used in order to extract delays on specific routed wires which will
help user accelerate even more the master circuit.

ISim by Xilinx is the simulator that will be used in order to verify
that the new and enhanced circuit performs better than the original. The
simulator can be used to check the input and output waveforms of the
circuits.

34



3. Data path control path,

3.1 General

Most processors and other complicated hardware circuits are
typically divided into two major components: data path and a control unit
or control path. The data path contains all the hardware necessary to
perform all operations supported by the system and holds data in memory.
In many cases, these hardware modules are parallel to one another and
the final result is determined by multiplexing all the partial results. The
control unit determines the operation of the data path, by activating
switches and passing control signals to the various multiplexers according
to the instructions of the memory. In this way, the control unit can specify
how the data flows through the data path. (Digital System Design Using
Data Path and Control Unit, 2013)

The general structure of a modern digital system that performs a

specific task 1s as follows:
-|||||||------||||- [lPS‘Tﬂ'ui -||||||-|-'---|--||||||-|-----|-||||||'E
Signals

e
1 :]-
——

Signals

BE(]

[FEIIET

syndyngy

seuidy

SMYENS

[EuIaNy
——

Control Unit Data Path

(cu) (DF)

symdu
HIE(]

speuig

LT

(LUFEILE|
—*—

L BETR e |

6: Control and Data Path

e External control signals: they specify the task required by the
circuit (for example calculation of the average of some integers)

e External status signals: indicate the status of the circuit (such as
finished processing, error or overflow detected)

e External data inputs/outputs: data going into the circuit or out of
it (the integers to be averaged and their average)

e Data path control signals: signals generated by the control unit to
control different blocks in the data path (like shift registers, counters,
multiplexers)

e Data path status signals: signals that indicate the status of some
blocks in the data path (for instance when an adder produces a carry
or an overflow, when the sign bit of the result is negative)

35



3.2 Data path

The data path contains blocks that only deal with data; they do not
provide control to any other blocks and themselves need to be controlled
(possibly by the control unit). Data path blocks can be viewed as the
workers that perform certain tasks on the data who need to be managed
by someone else (in this case the control unit is the manager that tells
every “worker” in the data path what to do). Some examples of data path
blocks are:

e Registers: parallel load registers to read data in parallel, shift
registers to read data serially one bit at a time, digit serial registers
that read data serially one digit at a time, where the digit size could
be 4 bits, 8 bits and so on.

¢ Arithmetic circuits: adders, subtractors, multipliers

e Multiplexers: to route one out of many data signals to one or more
destinations

e Counters: As timers and counters (for example to count how many
times a certain event occurred, or how much data was read)

e Comparators and logic circuits: logic operations like AND, OR,
XOR and so on

As an example, we will build a simple MIPS data path incrementally
considering only a subset of the supported instructions. In order to build
the instruction fetch block, we need the following three components:

P~
.

Instruction ; . |
address it B S

Instruction PC Add 5um] -

-

Instruction naliiey -

memaory b = /

a. Instruction memory b. Program counter c. Adder

7: Basic components of Control and Data Path

An adder is required to increment the PC (program counter) to the
address of the next instruction. It can be implemented as an ALU
permanently wired to perform only addition. As a result, no extra control
signal is required. A memory unit is needed to store instructions of a
program and supply instructions given an address. It needs to provide
only read access once the program is loaded so no control signal is
required. Finally, program counter or instruction address register is a
register that holds the address of the current instruction. A new value is
written to it every clock cycle. No control signal is required to enable
write. By combining those three components, we create a data path
portion for instruction fetch:

36



Read

he address b
- Instruction —e

Instruction
memory

8: MIPS Data Path

Another example of a datapath is the following. Let us consider
addition as an arithmetic operation. Data will be retrieved from memory
in detail and contents from registers regl and reg2 are added and the
result is stored in reg3. The sequence of operations is:

[ ] reglout, Xin
e reg2.ut. choose X, addition, Yin
o Yout, reg3in

The control signals written in one line are executed in the same clock
cycle. All other signals remain untouched. So, in the first step the contents
of regl are written into the register X through the bus. Then, the content
of reg2 is placed onto the bus and the multiplexer is made to choose input
X as the contents of regl are stored in register X. The ALU then adds the
contents in the register X and reg2 and stores the result of the addition in
the special temporary register Y. In the final step the result stored in Y is
sent over to reg3 over the internal processor bus. Only one register can
output its data onto bus in a single step, hence steps 2 and 3 cannot be
combined. (Processor: Datapath and Control, 2014)

3.3 Control path (control unit)

The control unit (CU) handles all processor control signals. It directs
all input and output flow, fetches code for instructions from
microprograms and directs other units and models by providing control
and timing signals. A control unit component is considered as the brain
because it issues orders to just about everything and ensures correct
Iinstruction execution. John von Neumann included the control unit as
part of his architecture. In modern computer designs, the control unit is
typically an internal part of the CPU with its overall role and operation
unchanged since its introduction. (Englander, 2009)

More precisely, the control unit is generally a sizable collection of
complex digital circuitry interconnecting and controlling many execution
units (for example, ALU, data buffers, registers) contained within a CPU.
The CU is normally the first CPU unit to accept from an externally stored
computer program, a single instruction (based on the CPU’s instruction
set). The CU then decodes this individual instruction into several

37



sequential steps (fetching addresses/data from registers/memory,
managing execution [for instance, data sent to the ALU or I/O], and
storing the resulting data back into registers/memory) that controls and
coordinates the CPU’s inner works to properly manipulate the data. The
design of these sequential steps are based on the needs of each instruction
and can range in number of steps, the order of execution, and which units
are enabled. Thus by only using a program of set instructions in memory,
the CU will configure all the CPU's data flows as needed to manipulate
the data correctly between instructions. This results in a computer that
could run a complete program and requiring no human intervention to
make hardware changes between instructions (as had to be done when
using only punch cards for computations before stored programmed
computers with CUs where invented). These detailed steps from the CU
dictate which of the CPU’s interconnecting hardware control signals to
enable/disable or which CPU units are selected/de-selected and the unit’s
proper order of execution as required by the instruction’s operation to
produce the desired manipulated data. Additionally, the CU’s orderly
hardware coordination properly sequences these control signals then
configures the many hardware units comprising the CPU, directing how
data should also be moved, changed, and stored outside the CPU (i.e.
memory) according to the instruction’s objective. Depending on the type of
instruction entering the CU, the order and number of sequential steps
produced by the CU could vary the selection and configuration of which
parts of the CPU’s hardware are utilized to achieve the instruction's
objective (mainly moving, storing, and modifying data within the CPU).
This one feature, that efficiently uses just software instructions to
control/select/configure a computer’s CPU hardware (via the CU) and
eventually manipulates a program’s data, is a significant reason most
modern computers are flexible and universal when running various
programs. As compared to some 1930s or 1940s computers without a
proper CU, they often required rewiring their hardware when changing
programs. This CU instruction decode process is then repeated when the
program counter is incremented to the next stored program address and
the new instruction enters the CU from that address, and so on till the
programs end.

Other more advanced forms of control units manage the translation
of instructions (but not the data containing portion) into several micro-
instructions and the CU manages the scheduling of the micro-instructions
between the selected execution units to which the data is then channeled
and changed according to the execution unit’s function (i.e., ALU contains
several functions). On some processors, the control unit may be further
broken down into additional units, such as an instruction unit or
scheduling unit to handle scheduling, or a retirement unit to deal with
results coming from the instruction pipeline. Again, the control unit
orchestrates the main functions of the CPU: carrying out stored
instructions in the software program then directing the flow of data
throughout the computer based upon these instructions (roughly likened

38



to how traffic lights will systematically control the flow of cars [containing
data] to different locations within the traffic grid [CPU] until it parks at
the desired parking spot [memory address/register]. The car occupants
[data] then go into the building [execution unit] and comes back changed
in some way then get back into the car and returns to another location via
the controlled traffic grid).

Control units are designed in two different ways: hardwired control
and microprogram control. Hardwired control units are implemented
through use of sequential logic units, featuring a finite number of gates
that can generate specific results based on the instructions that were used
to invoke those responses. Hardwired control units are generally faster
than microprogrammed designs. Their design uses a fixed architecture
and it requires changes in the wiring if the instruction set is modified.
This architecture is preferred in reduced instruction set computers (RISC)
as they use a simpler instruction set. A controller that uses this approach
can operate at high speed; however, it has little flexibility and the
complexity of the instruction set it can implement is limited. The
hardwired approach has become less popular as computers have evolved.
Previously, control units for CPUs used ad-hoc logic and they were
difficult to design. The idea of microprogramming was introduced in
1951 as an intermediate level to execute computer program instructions.
Microprograms were organized as a sequence of micro-instructions and
stored in special control memory. The algorithm for the microprogram
control unit is usually specified by flowchart description. The main
advantage of the microprogram control unit is the simplicity of its
structure. Outputs of the controller are organized in micro-instructions
and they can be easily replaced. (Mukhopadhyay, 2012)

A combination of a data path along with its control unit is shown below
(blue lines indicate control signals):

39



,.f"_'*.‘J FlagDa! -
i | Bemnch
| THerlaad

ngtrucson [31-26] | [Mevhng

Contral ol
| e

| ALLEG

Yo l-ll_? Wrin
-
|: (Fas | Jrmtruction [25-21) —
| P

“_.Iﬂ!ﬂ'.il 1 ErgR S 1 Biead M
efruction [20-18] Phead data 1 -

Irestruction || fegpiae M,.-”_', - |
[ -] M| |we  Fioad . [T P
beatruction || [ngmeson [15-11] | § [ | ropiser 422 | "1“""" deta m
| mamory | i 2 X
XL

T dam Flagisiars

-

*

Y [
insiruction [15-0] 16 |“:\"'| a2 / \

3.4 Combinational design

A combinational circuit consists of an interconnection of logic gates.
Combinational logic gates react to the values of the signals at their inputs
and produce the value of the output signal, transforming binary
information from the given input data to a required output data. A block
diagram of a combinational circuit is shown in the next figure. The n input
binary variables come from an external source; the m output variables are
produced by the internal combinational logic circuit and go to an external
destination. Each input and output variable exists physically as an analog
signal whose values are interpreted to be a binary signal that represents
logic 1 and logic 0. (Note: Logic simulators show only 0’s and 1’s, not the
actual analog signals.) In many applications, the source and destination
are storage registers. If the registers are included with the combinational
gates, then the total circuit must be considered to be a sequential circuit.
For n input variables, there are 2n possible combinations of the binary
inputs. For each possible input combination, there is one possible value for
each output variable. Thus, a combinational circuit can be specified with a
truth table that lists the output values for each combination of input
variables. A combinational circuit also can be described by m Boolean
functions, one for each output variable. Each output function is expressed
in terms of the n input variables.

The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital
logic gates to perform required functions. There are several combinational

40



circuits that are employed extensively in the design of digital systems.
These circuits are available in integrated circuits and are classified as
standard components. They perform specific digital functions commonly
needed in the design of digital systems. In this chapter, we introduce the
most 1mportant standard combinational circuits, such as adders,
subtractors, comparators, decoders, encoders, and multiplexers. These
components are available in integrated circuits as medium-scale
integration (MSI) circuits. They are also used as standard cells in complex
very large-scale integrated (VLSI) circuits such as application-specific
integrated circuits (ASICs). The standard cell functions are interconnected
within the VLSI circuit in the same way that they are used in multiple-IC
MSI design. (Mano & Ciletti, 2007)

L =

— - - . —
. - Combinational - X
nnputs — ] m outputs

circuit

e e

10: Combinational circuit

3.5 Sequential design

A block diagram of a sequential circuit is shown in Fig. 10. It consists
of a combinational circuit to which storage elements are connected to form
a feedback path. The storage elements are devices capable of storing
binary information. The binary information stored in these elements at
any given time defines the state of the sequential circuit at that time. The
sequential circuit receives binary information from external inputs that,
together with the present state of the storage elements, determine the
binary value of the outputs. These external inputs also determine the
condition for changing the state in the storage elements. The block
diagram demonstrates that the outputs in a sequential circuit are a
function not only of the inputs, but also of the present state of the storage
elements. The next state of the storage elements is also a function of
external inputs and the present state. Thus, a sequential circuit is
specified by a time sequence of inputs, outputs, and internal states. In
contrast, the outputs of combinational logic depend only on the present
values of the inputs.

There are two main types of sequential circuits, and their
classification is a function of the timing of their signals. A synchronous
sequential circuit is a system whose behavior can be defined from the
knowledge of its signals at discrete instants of time. The behavior of an
asynchronous sequential circuit depends upon the input signals at any
instant of time and the order in which the inputs change. The storage
elements commonly used in asynchronous sequential circuits are
timedelay devices. The storage capability of a time-delay device varies
with the time it takes for the signal to propagate through the device. In

41



practice, the internal propagation delay of logic gates is of sufficient
duration to produce the needed delay, so that actual delay units may not
be necessary. In gate-type asynchronous systems, the storage elements
consist of logic gates whose propagation delay provides the required
storage. Thus, an asynchronous sequential circuit may be regarded as a
combinational circuit with feedback. Because of the feedback among logic
gates, an asynchronous sequential circuit may become unstable at times.
The instability problem imposes many difficulties on the designer. These
circuits will not be covered in this text.

A synchronous sequential circuit employs signals that affect the
storage elements at only discrete instants of time. Synchronization is
achieved by a timing device called a clock generator, which provides a
clock signal having the form of a periodic train of clock pulses. The clock
signal is commonly denoted by the identifiers clock and clk. The clock
pulses are distributed throughout the system in such a way that storage
elements are affected only with the arrival of each pulse. In practice, the
clock pulses determine when computational activity will occur within the
circuit, and other signals (external inputs and otherwise) determine what
changes will take place affecting the storage elements and the outputs.
For example, a circuit that is to add and store two binary numbers would
compute their sum from the values of the numbers and store the sum at
the occurrence of a clock pulse. Synchronous sequential circuits that use
clock pulses to control storage elements are called clocked sequential
circuits and are the type most frequently encountered in practice. They
are called synchronous circuits because the activity within the circuit and
the resulting updating of stored values is synchronized to the occurrence
of clock pulses. The design of synchronous circuits is feasible because they
seldom manifest instability problems and their timing is easily broken
down into independent discrete steps, each of which can be considered
separately.

The storage elements (memory) used in clocked sequential circuits
are called flip flops. A flip-flop is a binary storage device capable of storing
one bit of information. In a stable state, the output of a flip-flop is either 0O
or 1. A sequential circuit may use many flip-flops to store as many bits as
necessary. The block diagram of a synchronous clocked sequential circuit
1s shown in Fig. 10. The outputs are formed by a combinational logic
function of the inputs to the circuit or the values stored in the flip-flops (or
both). The value that is stored in a flip-flop when the clock pulse occurs is
also determined by the inputs to the circuit or the values presently stored
in the flip-flop (or both). The new value is stored (i.e., the flip-flop is
updated) when a pulse of the clock signal occurs. Prior to the occurrence of
the clock pulse, the combinational logic forming the next value of the flip-
flop must have reached a stable value. Consequently, the speed at which
the combinational logic circuits operate 1is critical. If the clock
(synchronizing) pulses arrive at a regular interval, as shown in the timing
diagram in the next figure, the combinational logic must respond to a
change in the state of the flip-flop in time to be updated before the next

42



pulse arrives. Propagation delays play an important role in determining
the minimum interval between clock pulses that will allow the circuit to
operate correctly. A change in state of the flip-flops is initiated only by a
clock pulse transition—for example, when the value of the clock signals
changes from 0 to 1. When a clock pulse is not active, the feedback loop
between the value stored in the flip-flop and the value formed at the input
to the flip-flop is effectively broken because the flipflop outputs cannot
change even if the outputs of the combinational circuit driving their inputs
change in value. Thus, the transition from one state to the next occurs
only at predetermined intervals dictated by the clock pulses. (Mano &
Ciletti, 2007)

Imputs - & Clutputs
Con benational

ciroain r
Flip-Daps

Clock pulses

| &) Block dusgram

(1) Timing diagram af clock pulses

11: Block Diagram and Timing Diagram of Clock Pulses

3.6 Paths

In digital design, it is common that data produced in one segment of
the circuit need to be transferred to another segment in order to be stored
or further processed. The route that connects the source and the
destination points of the signal is called path. Although signals travel at
high speed in the circuit and the wiring distances are limited, there is
some time required for the signal to reach its destination. That amount of
time (usually some nanoseconds in modern digital design) is called delay
and can affect greatly the performance of a system. As there is a number
of paths in any digital design, the longest path - the path that takes the
maximum time for the signal to settle to the output - is called the critical
path, as noted in the following figure. This could be from state element to
state element, or from input to state element, or state element to output or
from input to output (unregistered paths). The critical path of the design
should be smaller than the permissible delay determined by the clock
cycle.

43



clk i |

critical path
12: Critical Path

The delay of a path is the result of many different factors and
constrains during design and operation cycle. The following table
summarizes some of the key reasons that control the delay of a path.

44



Cell library CAD tools (logic

Silicon foundary designer, FPGA synthesis, place Designer

engineer chip designer and route)
Number of levels synthesis RTL
Physical cell topology,
Internal cell delay arameters transistors cell selection
P sizing
Wire delay Physical place and route layout
parameters generator
Cell input Physical el topology, .
capacitance arameters transistors cell selection
P P sizing
Cell fanout synthesis RTL
. Physical . . .
Cell drive strength parameters transistor sizing cell selection

A designer must consider all connected registered pairs, paths from
input to register, and register to output. Design tools can help in the
search because synthesis tools report delays on paths, special static timing
analyzers accept a design netlist and report path delays and simulators
can be used to determine timing performance. Tools such as synthesizers
also include provisions for specifying input arrival times (relative to the
clock) and output requirements (set up times of next stage). (Wawrzynek,
2013)

3.7 FPGA timing

Timing is a term used in digital circuits to refer to the time it takes a
signal to propagate from one flip flop, through some combinational logic, to
the next flip flop. This is shown in the next diagram.

D Q> Combinational—D Q

S Logic

13: Combinational Circuit

It is very important to mention that combinational logic is not
Instantaneous. It takes time for the signal to propagate. The reason for
this is that digital circuits actually look like a bunch of RC circuits.
Mosfets are the transistors of choise for digital circuits. The gate (switch
part) of a mosfet acts much like a capacitor and requires a small amount

45



of time to charge and discharge. The more transistors used in the circuit,
the longer it takes to turn them on and off.

Since each flip flop will copy the value of input D to output Q at the
rising edge of each clock, that means that a single clock cycle is required
for the output of the first flip flop to propagate through the combinational
logic and reach the input of the second flip flop. Flip flops require their
inputs to be stable for a certain amount of time before and after the rising
edge of the clock. These times are known as setup and hold times
respectively. These parameters constrain the circuit even more because it
has to be ensured that the delay of the combinational logic is short enough
and that the signal will get there in a clock period minus the setup time.
However, it cannot be too fast as it will violate the hold time.

Clock

by

Clock /N /N /N

/-______..

15: Propagation Time

The clock to Q propagation delay specifies the amount of time after

the rising edge of the clock that Q outputs the new value. This delay cuts
into the time for the combinational logic since the input to the
combinational logic is delayed. To summarize, the time it takes the signal
to propagate through the combinational logic must be shorter than the
clock period minus the clock to Q propagation delay minus the setup time.
The combinational logic delay must also be greater than the hold time

minus the clock to Q propagation delay. In other words, the following
formula must be valid:

HT —CQ < CLD < CLK — CQ — ST

(CLD = combinational logic delay, CLK = clock period, ST = setup time,
HT = hold time, CQ = clock to Q propagation delay)

46



While the correct value i1s propagating, the output of the
combinational logic can change multiple times before settling on the
correct value. There are two important parameters that capture this
behavior. Firstly, contamination delay is the amount of time the output
of the combinational logic will stay constant after its inputs are changed.
After that delay, the outputs are contaminated. Secondly, combinational
logic propagation delay is the time required for the output to be valid
after the input changes. That means for the time between the
contamination delay and propagation delay of the combinational logic, its
output is unpredictable and possibly invalid. The designer of the circuit
must make sure that the contamination delay does not violate the hold
time and that the combinational logic propagation delay does not violate
the setup time. The above can be better expressed by the formulas:

CD > HT — CQ
CLPD < CLK — CQ — ST

(CLPD = combinational logic propagation delay, CD = contamination
delay)

Since the clock signal needs to travel through the chip, it does not
reach all components at the exact same time. The difference in time it
takes to reach the inputs of two flip flops is known as clock skew. In
some cases clock skew can actually be helpful, but in the majority of cases
it takes away time from the circuit. Considering the effects of clock skew
(CS for abbreviation), the previous formulas are updated as shown:

€D > HT — CQ + CS
CLPD < CLK — CQ — ST + CS

It is worth mentioning that clock skew can have either signs. This is
since the clock could arrive earlier to the first flip flop or later. It really
just depends on how the circuit is laid out on the chip. If the first flip flop
gets the clock earlier (positive clock skew), then the constrain on the
contamination delay becomes stricter and the constrain on the
combinational logic propagation delay becomes looser. If the clock arrives
at the second flip flop first, the opposite is true and valid. In general, clock
skew 1s a problem for the design. This is the reason why FPGAs have
special resources dedicated to routing clock signals. These are designed to
deliver the clock to the entire FPGA fabric (or subsections for local clocks)
with minimal clock skew.

47



Clock 1 N /N N
v\ Clockto-Q ' \
B " P tion Del
C\O(k Skew M l‘ ropagation Delay \‘ “
v
'
Q1 e
'
—— r
v .
M . ¥, Combinational Logic
: : . + Propagation Delay
LI} ‘\ ‘\
'
D2 '
'
'
'
'
i==rr-=-=-=Setup==-=====--,
o '
[ A ' - ]
'
Clock2+ AN VAN PN
' ' ' ' '
s .
'
--------- HOld= === === ==
Q2

16: Timing Issues

CouT cout

:CLB

|
|
|
|
|
|
|
|
|
|

:{> Slice(1)

Switch
Matrix

r__-H—-——_-ﬁ—
|
|
w
| 8
| L
I
|
|
|
I
T =t

17: Combinational Logic

For the above diagram, the combinational logic simply inverts the
input signal. The signals with a suffix of 1 are the left flip flop in the first
diagram of 3.2, while the ones with a suffix of 2 are the right flip flop. The
grey shaded part of the signal is to show how that pulse propagates
through the circuit. Q2 is an inverted version of Q1 delayed by a clock
cycle, since it goes through a flip flop. In the above example, timing is met
because the setup and hold times are never violated. (FPGA Timing, 2015)

3.8 Timing in Xilinx designs

The major delay source in Xilinx’s FPGA are interconnections. Slices
define regular connections to the switching fabric and to slices in CLBs
above and below it on the die. These two types of connections are show in

the two following schematics.

48



:_Ia_d _____ 'l"“. :_cEe_ ______ 'I_"?
| Slice b Slice :
I Xyl | 1 xavi |
I 1 |
! 1! I
|| slice 11| sice I
| xoya V| xevt :
I I

i CIN CN |1 CIN oN |
———jCouT___JCOouT_ _ ___|COUT__ _|COUT_
icLs | icLs !
| Slice | | | sice | |
| Xtyo | 1 Xavo | |
I 11 |
I L | |
[ ¥ |
} L | |
} (I} |

18: Xilinx Timing Design

A simplified model of interconnection is presented in the next graph.
Wires are slow because each dot represents a transistor switch, path may
not have the shortest length possible and the wires are too long. Delay in
FPGA designs are particularly layout sensitive. Placement and routing
tools spend most of their execution time in timing optimizations. When
Xilinx designs FPGA chips, wiring channels are optimized for shorter
wires and path lengths.

To
this

Conneet
this

19: Interconnections

But what are the dots representing? One flip flop and a pass gate for
each switch point (shown below). In order to have enough wires in the
channels to wire up CLBs for most circuits, many switch points are
needed. Thus, 80% of an FPGA area is for wiring. (Spartan-6 FPGA
Clocking Resources, 2015)

- s ¥
cLB cLB CcLB .
configuration _l_—latd'] \ Sef dUril‘lq
i f ) 7 configuration.
—= STase. ! \_l
Cross-pomnt
— = - = connection **® @ ces
A t

-
-
-
20: Interconnection Detail

49



The following table provides data about the delays in some Xilinx
designs in common functions. As expected, delays are less for the next
generation of Virtex.

Virtex 4 FPGA Virtex 5 FPGA
6 input function 1.1 ns 0.9ns
Adder 64 bit 3.5ns 2.5ns
Ternary adder 64 bit 4.3 ns 3.0 ns
Barrel shifter 32 bit 3.9ns 2.8 ns
Magnitude comparator 48 bit 2.4 ns 1.8 ns
LUT RAM 128 x 32 bit 1.4 ns 1.1 ns

2: Timing Comparison

Key points taken into consideration when designing the solution:

1. Performance is directly related to clock frequency. Usually higher
clock frequency results in higher performance (more operations
completed per second).

2. Maximum clock frequency is determined by the worst case path
(critical path).

3. To first order the delay of a path is the sum of the delays of the
parts in series (FF output: clk to Q, total combinational logic delay,
FF input: setup time), plus some extra for worst case clock skew
(“uncertainty”).

3.9 Methodology

In the following sections it will be described the whole process of
analyzing the circuit and building the feedback circuit as well as
“assembling” the units and implementing them on the FPGA chip. In the
appendix A, there are some detailed tutorials about Planahead, the
custom tool named Planahead Expander as well as step by step guide to
implement the new and enhanced circuit on the FPGA and run
simulations using Xilinx tools

3.10.1 Manual retouch of file

Before generating the VHDL code, some manual changes to the
output file of Expander are required in order Generator to run without
problems. In particular, the frequencies must be grouped and then sorted
in ascending order (Generator uses a binary search algorithm). The user
can define up to six groups with different frequencies (these numbers are
assuming that the user implemented the circuit on a Kintex 7 platform.
Numbers may vary when using other platforms). These two operations
that are taking place manually can be better explained through a
simplified example.

50



In the following table, Expander found ten parental signals each with
a different frequency. Please take into consideration that some of these
frequencies are quite close. This is a strong indication that those
frequencies can target the same group which is going to be characterized
by the slowest signal (largest delay). Of course user is able to group the
frequencies as desired but groups must always follow the limitations
about:

1. Up to how many different groups the digital clock manager can
support (up to six in Kintex 7)

2. Respect the upper limits of each signal. Signals cannot be accelerated
because this will lead to timing violations of the critical path.

Signal name Signal frequency (MHz)
A 111
247
250
115
118
222
320
322
360
121
3: Example of Expander Output

C—TITOTMMUOUO W

From the above table it can be claimed that three groups can be
created. The first group is going to consist of signals A, D, E and J because
their frequencies are close to each other. This group will get a frequency
equal to its slowest; in that case 111 mhz. With same thoughts, the second
group consists of signals B, C and F with a frequency of 222 mhz. Lastly,
the remaining signals will compose the third group with a frequency of
320 mhz.

The file must be manually rearranged by user in order Generator to
create the VHDL code for the monitoring and selecting circuit. The above
table should be transformed as shown below, in order Generator to
function properly.

Signal name Signal frequency (MHz)
A 111
D 111
E 111
J 111
B 222
Cc 222
F 222
G 320
H 320
I 320

4: Sorted Generator Input

51



3.10.2 Generating VHDL Code

Generator is a fully automatic tool. It parses the files containing the
signal names along with their frequencies as they were edited manually
by the user which contains a list of signal names and their corresponding
frequency. During parsing, Generator creates a list with the different
frequencies found in the file. This list is already sorted in ascending order
because the input file was created that way. This list helps Generator
define the index that Selector should output when a signal it monitors
changes.

Generator uses some helping functions (such as convert a string to

binary number) as well as a vhdl code generator which creates a VHDL
file.

After Generator terminates successfully, an output file entitled
“Selector.vhd” is created, which contains synthesizable VHDL code. This
code monitors the parental signals specified by Expander and outputs a
vector which is the index needed for frequency selection. This file will be
later added in to Planahead. (Detailed instructions can be found in the
appendix A).

3.10.3 Creating digital clock manager (DCM)

The third and last segment of the new and enhanced circuit is the
digital clock manager. This component can be easily created via a
graphical user interface in a Xilinx tool called Core IP Generator.
However, the automatically created code needs some modifications by user
in order to be properly implemented into the design.

Digital clock manager is a special structure which deals with
multiple clocks in the same circuit. More specificly, a digital clock
manager accepts as an input a clock pulse of a user defined frequency (on
Kintex 7 the range of accepted frequencies are 100 up to 900 mhz) and
produces up to six different clock pulses of user desired frequencies (once
again a digital clock manager targeting Kintex 7 supports up to six
outputs. Other platforms may support fewer or more output clock pulses).
By default, all output clocks are connected to global clock buffers in order
to be accessible by the rest of the circuit.

It 1s worth mentioning that Xilinx does not provide the exact way
that the digital clock manager functions. However, it is mentioned that
the manager performs suitable multiplications and divisions on the input
clock signal in order to generate the desired output pulses. That is the
main reason that a digital clock manager may fail to produce exactly the
desired outputs; if frequencies are too close (almost equal), the manager
will be unable to perform proper operations and the resulted clocks will
not be the desired. DCMs also eliminate clock skew, thereby improving
system performance. Similarly, a DCM optionally phase shifts the clock
output to delay the incoming clock by a fraction of the clock period.

52



Another structure needed to build the digital clock manager is called
bufgmux and it is provided by Xilinx as well. This is a special multiplexer
2 to 1 (cannot be modified by user) which operates the same way as a
normal multiplexer but has some key differences. First of all, bufgmux
accepts 1n 1its input pins two clock pulses and not signals of
std_logic(_vector) as well as a select signal (std_logic only) which selects
the clock that will be forwarded to the output. However, the most
important difference compared to a simple multiplexer is the way that the
clock switching is happening. Because bufgmux drives many other
synchronous components with its clock, it must be ensured that the
switching will take place fast and no glitches or spikes will appear. The
clock signal must always be stable in order not to trigger flip flops
accidentally. A normal multiplexer is not able to guarantee such smooth
switching so it is unappropriate for such a sensitive task on the fabric.

When the S input changes, the bufgmux does not drive the new input
to the output until the previous clock input is Low and the new clock input
has a High-to-Low transition (please refer to the next table). By not
toggling on the first Low-to-High transition of the input, the output clock
pulse is never shorter than the shortest input clock pulse.

Inputs Outputs
10 " S (0]
(0] X 0 [o]
X I 1 I
X X A 0
X X v 0

5: Switching between Clocks

If the user needs to connect more than two clock frequencies, user
can utilize more bufgmux units into cascode mode (the output of the first
multiplexor will become the input of the second and so on). Each bit of the
indexing signal will drive a single layer of multiplexor. The output of the
last multiplexor will be the desired output of the digital clock manager. It
1s highly important to mention that each FPGA offers a limited number of
units “bufgmux” and user must pay attention to that when grouping the
parental signals. The exact number of such units are mentioned in the
data sheet of the FPGA used.

Detailed instructions on how a digital clock manager is built and
which modifications are required to the output file in order to be properly
implemented with the rest of the code can be found in appendix A.

3.10.4 Schematic of the enhanced circuit

The new circuit is composed by three parts: the original circuit, the
selector and the digital clock manager. The connections of these three
segments can be made either in VHDL level or using a tool provided by
Xilinx called FPGA editor. The former can be used for input signals and
the latter for internal signals which are not known or visible in VHDL

53



level. Detailed instructions on how to use FPGA editor can be found in
appendix A.

Please note that this is not the final block diagram of the circuit
created. Depending on the structure and functions that the original circuit
performs, these three modules need to be synchronized. The feedback loop,
which consists of the Selector circuit and the digital clock manager, inserts
a delay until the right clock is selected. As a result, data driven into the
original circuit must be delayed by the same number of clock cycles in
order to arrive in synchronization with the clock signal.

The Selector circuit, based on its structure, insert a two-clock-cycle
delay. That is because it uses two levels of D flip flops in order to
synchronized the data arrived with its clock (first level of flip flops) and to
compare the current input with the previous one in order to detect all
changes. This i1s achieved by delaying the input by one clock cycle (second
level of D flip flops) and the performing asynchronous exclusive or (better
known in digital design as XOR) functions. The digital clock manager
functions in asynchronous mode as well.

Data delay can be easily achieved by putting the proper number of D
flip flops before the input of the original circuit. This will delay the input
until its clock pulse is ready. It is worth mentioning that those flip flops
will also be triggered by the clock that is selected by the digital clock
manager.

54



Appendix A — Detailed Tutorial

A.1 From VHDL to implementation

1. Launch Planahead and from the opening screen choose “Create new
project”

2. Follow the instructions of the pop up window.

3. In screen “Project type” choose RTL project.

X/ X2GO-nzompaki-50-1456555166_StDMATE_dp32
@ Applications Places System = B @) Sun Feb 28, 11:43 oo )=

PlanAhead 1

File Tools Window Help

plAfAhead

New Project. X ‘V XILINX
Project Type = -

Specify the type of project to create, ‘:@

@ RTLProject
You will be able to add sources, generate IP, run RTL analysis, synthesis, implementtation, design planning
and analysis.

/‘ @ [] Do not specify sources at this time IDS features

O Post-synthesis Project
You will be able to add sources, view device resources, run design analysis, planning and implementation.
[ not specify sources at thi

i

© Vo Planning Project

A5 Do not specify design sources. You will be able to view part/package resources. jands. dialogs.

B | G impor 5 Place & Route resuts
You will be able to do post-implementation analysis of your design.

© Imported Project
@ Create a Planahead project from a Synplify, XST or ISE Project File.

Y.
\ flows.
hew features.
<Back || Net> | _ Einish Ccancel
B Tcl console
) Mate Terminal €] Plananead 147 m| | |

21: Opening Screen of Planahead

4. Specify the source code (in Verilog or VHDL) you want to insert.
5. In screen “Default part” choose the target device you wish
6. Check the settings specified and click “Finish”

X X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) Aopictions pices System = @ @) sunFeb 25, 1148 o=

File Tools Window Help

Pi!anAhegd :

New Project X £ XILINX.

New Project Summary

Getting @ A new RTL project named ‘project_1' will be created.
/\ No source files or directories will be added. Use Add Sources to add them later.
/‘ g IDS features
i &\ No Configurable IP files will be added. Use Add Sources to add them later.
A\ No constraints files will be added. Use Add Sources to add them later.

= %) The default part and product family for the new project: ., di 3

de The defaul d product family for th /ands, dialogs
Default Part: xc7wAg5tffg1157-1
/ Product: Virtex-7

Farnily: Virtex-7
Package: ffigl157
Speed Grade: -1

\ E‘ ' | flows.
g PlanAhead To create the project, click Finish | ——

<Back || wed- |[_finish ] [ cancel

& Tcl Console

& Mate Terminal [@] Planahead 147 EI

22: New Project Screen

55



The main screen of Planahead is now open. On th

as well as settings panel and many other useful tools.

X| X2GO-nzompaki-50-1456555166_StDMATE_dp32

e left side there is
“Flow Navigator”, which contains all steps needed to implement the design

1) Appiications Places system =) (B @) Sun Feb 28, 11:53 )=
original alu Iu/Original alu.ppr] - PanAhead 14.7 B
Eile Edit Flow Tools Window Layout View Help [

Implementation Complete

Flow Navigator <« | Project Manager - Original alu X
¥ =] Sources — O X | XProject Summary X [SRERY
QTS| wa = o
4 Project Manager oo < < @ Project Settings Edit 4 Messages 2
-6 Design Sources =
45 Project Settings L@ alu6a - Behavioral (2 Project name: original alu Summary: 0 errors
&% Add Sources o Constraints (1 Product farmnily: Kintex-7 0 critical warnings
£k P catalog - simulation Sources Project part: C7k70tfbg484-2 nings
(@) Run Behavioral Sim.. Top module name: GoTo:
4+ RTL Analysis Renais
@* Open Elaborated De - =
Hierarchy Libraries Compile Order R A T =
4+ Synthesis 4 Sources 7 Templates
;¥ I Y
@ Synthesis Settings | | Properties —_ox SIEilel ¥ compictel Status: @ Complete
> Part: *e7k70tfbgas4-2 Part: c7k70tfbgasa-2
- = Strategy: Plan ults Strategy: ISE Defaults
" Open Synthesized D . -
Flow:  XST Flow  ISE
4 Implementation = p—
@ Implementation Sett @l Resources Show Table #
RTL Estimation | Synthesis Estimation  Netlist Estimation | Implemented Utilization
> Run Implementation h f i CUHIIELE]
5 Open Implemented { Part: xc7k70tfbad84-2 =
Design Runs _oox
gREcgiem andibekiug o, [Name [Part [Constraints | Strateg [Host |Status Progress [start [Elapsed |t (%) | FMax
@ Bitstream Settings | | o [ synth L XC7k70fbgaB4-2 constrs_1 PlanAhead Defaults (XT 14) leoforos XST Complete! NEEENENNN100%  2/25/16 252 PM  00:00:13 1.000
¥ L1 Lgimpl1 Xc7k70tfbga84-2 constrs_1 ISE Defaults (ISE 14 eoforos PAR Complete! EENNNNNNNN100%  2/25/16 3:07 PM  00:01:52 1.000
Generate Bitstream | . | - I k70tfbg z faults ( ) leof I
=73
<0 ] D[]
R i ) B7Tcl Console  © Messages M log 3 Reports % Design Runs
& Mate Termirl €] orignal alu- [homeL. Gl

23: Main screen of Planahead

7. (Optional) In case you want to add more source files, click on the

“Add sources” option of Flow navigator and follow the instructions of
the pop up window.

(Optional) Launch Simulator by clicking on “Run behavioral
simulation” to verify the circuit operation, make sure that the source
files do not contain syntax errors and the code does not have any

critical bug.

9. (Optional) Click on “Open Elaborated design” to see a schematic
the circuit and ensure that all connections have been done properly.

X X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) sovtcations piaces system | @) Sinfenas, 1200

Original alu Iu/Original alu.ppr] - PlanAhead 14.7
Eile Edit Flow Tools Window Layout View Help

ClEd | & P> D> B[O S K| T G [ pefault Layout -] ]

Flow Navigator «| | Elaborated Design -xc7k70tfbg484 2 (active)
QAzTs » | EProject Summary X i RTL Schematic X

. 2 | 3] 22instances 1970Ports 1357 Nets
4 Project Manager |3

@ Project Settings 2

&* Add sources 3

1F IP catalog
(@ Run Behavioral SimL

4 RTL Analysis
4 [#] Elaborated Design
Q@ Report DRC
¥ schematic

@ RTLNetlist &

TTI=

4 Synthesis
1 synthesis Settings
# Run Synthesis
{5” Open Synthesized D,

4 Implementation

2 8[>

@ Implementation Sett
> Run Implementation

@* Open Implemented [

4 Program and Debug
@ Bitstream Settings
¥ Generate Bitstream

e | (BT nsde [O[R[B]

B @ et & Oriina tu- omet.

24: RTL Schematic

56

[C- Search commands

Implementation Complete

&2 x

0]

[T



10. Click on “Synthesis settings”. A new window opens which contains all
settings which can be configured by user. Default settings are okay,
but user can make changes.

X| X260-nzompaki-50-1456555166_StDMATE_dp32

15) Apvications Piaces system (= (B @) sunFeb 28,1203 o)

< il

Eile Edit Flow Tools Window Layout View Help [

) YN IET) Uit Layout - © Implementation Complete
Flow Navigator «| | Elaborated Desi x

Project Settings x EREIS

4 Project Manager g = N Synthesis
5 I3

@ project setngs | & 'l T

3% Add Sources. y General

4F IP catalog < - Default constraint set: | constrs_1

(@ Run Behavioral simy |

8 Opti
4+ RTL Analysis 2 prons
4 [H Elaborated Design | | = Strategy: [4 Planahead Defaults (XST 14) 5

Q Report DRC Description:  Planahead Defaults (ST defaults with hierarchy)
"7l Schematic
@ Synthesis (xst) =
4 Synthesis = Implementation opt_mode speed
@ synthesis Settings b 3 -opt_level 1

& Run Synthesis i -register_balancing no
Bitstream

5% Open Synthesized D -register_duplication ves
iF fsm_encoding auto
4 Implementation ® I off
= 3

@ Implementation Sett # - -auto_bram_packing no

[> Run Implementation -use_dspd8 auto L

¥ open Implemented? ||| | _resoures harinn ves — " ~

Select an option above to see a description of it

4 Program and Debug

@ Bitstream Settings

%) Generate Bitstream

oK || cancel

o D & Tel Console
B B vetemina & Oriinal alu- momel. =

25: Synthesis Settings

11. Click “Apply” and then “OK” to save any changes.

Now a wrapper file must be created in order to create partitions (this
will be done later). VHDL top file must contain only one entity in order to
be compiled successfully. So, a wrapper file is needed in order to wrap the
main circuit inserted before and the two new components that will be
inserted later. Wrapper file is like a main function of a common
programming language which calls and controls the rest of the source
code. Wrapper will be the top module of the entire circuit and will control
all the separate source code files.

12. Click on “Add sources” from flow navigator and choose “Add or create
design sources”.

57



X| X2GO-nzompaki-50-1456555166_StDMATE_dp32

1) Aomcations pices sysem (=) BH@) Sunfeb s 1235

Fle Edt Flow Tools Window Layout View Help

#omo @%b %506 KL s Fommimar__]8 & % [®

Flow Navigator « | | Elaborated Design xc7k70tfbg484 2 (ctive) x
AT ® || EProject Summary x i RTL ic x @2 x
£ 50| 22 Ada Sources 2
4 Project Manager Bl =
@ Project Settings E Add Sources "

&% Add Sources
4F IP catalog N
(@ Run Behavioral Simu .

This guides you through the process of adding and creating sources for your project

&

O Add or Create Constraints

4 RTL Analysis
4 [ Elaborated Design
@ Report DRC
771 schematic

© add or Create Design Sources

O Add or Create Simulation Sources

2 RTL Netlist

. Specify simulation specific HDL files, or directories contains HDL
© Add or Create DSP Sources files, to add to your project. Create a new source file on disk and

O Add or Create Embedded Sources addtitolyourproject;

4+ synthesis =
@ synthesis Settings
$ Run Synthesis

O add Existing IP

5% Open Synthesized D

4 Implementation @
4 Implementation Sett #
P Run Implementation
[* Open Implemented [
4 Program and Debug
@ Bitstream Settings Ahead o continue, click Next
¥ Generate Bitstream
[mec= ] [Ccancel |
3 )
[N (0] | (8 TciConsole ©RB3
Specify and/or create source files to add to the project.
B @ MateTerminal €] Origina alu- (homer.. =
26: Add Sources Screen
13. Click “Create new file”
X X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) Appiications Places System = (B @) Sun Feb 28, 1217 o=
File Edit Flow Tools Window Layout View Help [O- Search commands ]
Cied 0 X X @D D |5 Q B K| T (@[3 0efault Layout By & £9} Implementation Complete
Flow Navigator «| | Elaborated Design - xc7k70tfbg484 2 (active) X
A= | EProject Summary x i RTL ic x ERERY
2| 37/ 22nst Add Sources x
4+ Project Manager 5 . =
3 Add or Create Design Sources (e
@ Project Settings £ .
® ] (P8 Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new
@Y Add Sources -] source file on disk and add it to your project.
£} IP catalog N
= <] o
G e ac
@ Run Behavioral simy : [id_ [Name [Ubrary [Location ]
3| X
4+ RIL Analysis sl=
+ [H Elaborated Design | | =
@ Report DRC & =
5]l schematic
£l s
4+ synthesis =
@ Synthesis Settings M
2 Run Synthesis
=% Open Synthesized D =
4 Implementation @
@ Implementation Sett ] [ addFies.. | [ AddDirectories.. | [ create File...
P Run Implementation
5% Open Implemented (
4 Program and Debug
@ Bitstream Settings
¥ Generate Bitstream
8 [ <Back |
» ———— 71
I Ty = D & Tcl Console |22
& Mate Terminal €] Original alu- [ome. =

27: New File

14. Follow instructions until the new file is created. The file will be blank
and as a result it will produce syntax errors. Write the Verilog or
VHDL code for the wrapper (example of source code will be included
in Appendix C).

15. After saving the file, make sure that Planahead recognized the
hierarchical structure of the project. Wrapper file should be on top
and below it should be the circuit.

58



X| X2GO-nzompaki-50-1456555166_StDMATE dp32
@ Sun Feb 28, 1255 o=

caseStudy 1 - PlanAhead 14.7 DD

1) Appiications Places System =

Eile Edit Flow Tools Window Layout View Help

Caadl I ] X | ® D> 3 ¥ S X I G)SD0efault Layout >N & Implementation Complete
Flow Navigator « | Project Manager - caseStudy - x
azs Sources, — O X | IProject Summary X ov
QT =
4+ Project Manager az=2al = @ Project Settings Edit & Messages
@ Project Settings Messages: ® 2 warnings = Project name: caseStudy Summary: 0 errors
[ specify Partitions. N TapReE o Toran Product family: Km-lei(-7 0 critical warnings
¥ Add Sources @ U_dcm - demCaseStudy - xilink (d - Project part: xc7k70tfbgdsd-2 9 55 warnings
£F 1P catalog || Top module name:  wrapper GoTo:  Messages
(i, Run Behavioral Sim. Log
m DE Reports
4 RTL Analysis "
s e Hierarchy Libraries Compile Order ® synthesis & IS A
@ Op A Sources 7 Templates
Status: Complete Status: Complete
4 Synthesis Source Node Properties —oex ¥, coml ¥*comp
@ Synthesis Settings Part: »c7k70tfogaga-2 Part: #c7k70tfbgd84d-2
s Strategy: PlanAhead Defaults Strategy: SE Default
& Run Synthesis @ U_alu - alu64 - Behavioral (alu.vhd) — S —_— o
Open Synthesized D } = . =
Instance: U_al r
. :s:"“ Ijﬂ: [%] Resources Show Table #
et K1 ] 1 RTL Estimation  Synthesis Estimation  Netlist Estimation Implemented Uti
[» Run Implementatior General Jtirbhtes Part: »c7k70tfbad84-2 &=
&* Open Design Runs _oe x
(3 Promote Partitions | A, [Name [Part [ Constraint: [Strategy [Host _ |Status [Progress [Start [Elapsed | Ut (%) | FMax
wn @ synth_1 xc7k70tfbg484-2 constrs_1 PlanAhead Defaults (XST 14) leoforos XST Complete! IS 100% 2/26/16 8:10 PM 00:00:12 0
4+ Program and Debug 2| beimply xc7k70tfbg484-2 constrs_L ISE Defaults (ISE 14) leoforos PAR Complete! IS 100%  2/26/16 &10PM  00:02:07 1.000
& Bitstream Settings 5 j
¥ Generate Bitstream I;l
\3\; »
«“
£4
Lad B I 1 O
ETcl Console  © Messages [ log [ Reports % Design Runs
£ @ Mate Terminel @] casestudy - homeinz...

28: Hierarchical Code Structure

16. Click on “Open Elaborated design” from project navigator.
17. From the sources panel make sure that “RTL netlist” tab is selected.

X X2GO-nzompaki-50-1456555166_stDMATE_dp32
Be SunFe 28,1307 oo )=
x

caseStudy 1- PlanAhead 14.7 v

1) Avvications Paces System

Eile Edit Flow Tools Window Layout View Help

el ICICR X& D3 X HNOB K I (G[SDoefault Layout e |® Implementation Complete
Flow ML « | Elaborated Design -xc7k70tfbg484 2 (active) X
RTL Netlist — O X | EProject Summary x i RTL Schematic x o x
[ 3]/ 30instances 199UOPorts 61
4+ Project Manager 5
%2 wrapper %
5 Project Settings & & Nets (617! 5
(] specify Partitions| -0 Primitives (26)
A - U_alu (alusa.
gt ources L@ uem i
LF IP catalog [0 U_selector (Se
(@, Run Behavioral Si
4 RTL Analysis
4 [ Elaborated Desig|
@ Report DRC & Sources G RTL Netlist 3
Schematic e -
Properties — o X -
4 Synthesis o
5 synthesis Setting e ]
@ Run Synthesis X P
4+ [ synthesized Desi @ - oL
4, Edit Timing Co|
& Report Timing| | | Tcl Console e
31 Report Clock | [ Parsing UCF File [/hﬂme/nzompak)/Dssk(np/pelras/(asestudyl(asesludy srcs/const 1/nev/vrappsr u(f
was| | CRITICAL WARNING: [Constraint 1] d net o aki/De
@ Report DRC | Finished Parsing UCF File [/home/nzompakl/Désktup/petros/casestudy/casestudy srcs/canstrs L new/vrapper uct]
P Report Noise | | | &8I| | INFO: [Designutils 20-20] Invalid constraints found, use command 'write_ucf -constraints invalid <file>' to save all the invalid constraints to a file
o . INFO: [Project 1-111] Unisim Transformation Summary:
%] Report Utilzat| | A total of 1 instances were transforned.
¥ schematic Il | X BUFGMUX => BUFGMUX (BUFGCTRL, VCC, GND): 1 instances
y Phass 0 | Netlist Checksun: Sbeca2ls
Implementstion) open_rtl_design: Time (s): cpu = 00:00:68 ; elapsed = 00:00:05 . Memory (MB): peak = 3138.988 ; gain = 0.375
@ Implementation S |
P Run i ) o}
5% Open Implemente @ T e
&“*” B Tcl Console © Messages Gl Llog L[ Reports % Design Runs
Mate Terminal [€] casestudy - (imomernz...

29: Partitions Overview

18. Right click on the name of the original circuit and select “Set
Partition”. After that, new options will appear in Flow navigator.

59



X X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) Appiications Places System =) (B @) Sun Feb 28, 13:13

bt - 1- PlanAhead 14.7 V) (Al ix

Eile Edit Flow Tools Window Layout View Help

FrERweR K @ |$ >3 ¥ % QS K| X (3 [30efault Layout e X |®
Flow Navigator «| | Elaborated Design * - constrs_2 | xc7k70tfbgd84 2 (active)
AT RTL Netlist — O 2 x || EProject Summary X %iRTL Schematic x owe x
> 3]| 3linstances 1760 Ports 176 Nets
4+ Project Manager ; ] a
52 wrapper * Selector
@ Project Settings & @& Nets (17 =2 LockeD | Dlockes
[ specify Partitions ¢~ (@ U_bft (b e T
S [ Udcn (@ Instance Properties...  Cti+e & promot
| TS &0 Ulsels (¥ Export Statistics.. U bft
1F IP catalog
(@) Run Behavioral Simi bitcly
- & Draw Pblock resef jorrer [ error
4 RIL Analysis New Pblock... whly bDataForoutput S whData
4+ [E Elaborated Design T whDataForinpu bOutputData[31:0] D whoutp
@ Report DRC & Sour r whinputData[31:Q]
I schematic Instance Pry Select Primitives Ctri+shift+s L = bWriteOut
4+ Synthesis “ & 23
@ Synthess Settings | | U_bft  Highlight Primitives >
Run Synthesis oS - x
> i [ ame:  Highlight » Ol s
» 5
{5* Open Synthesized C @
General are M ] D]
. © Mark ctritm
iplemektstion Tel Console —oex
@ Implementation Set | = i ros/bft/bft/bft.srcs/constrs_2/inports/Sources/bft_full.ucf] B
[> Run Implementatior | ., Hachematic F sktop/petros/bft/bft/bft.srcs/constrs_2/inports/Sources/bft_full.ucf]
< ‘ Il Show Connectivity ctrsT Sunnary
B2 Open Implementa ‘ﬁj i Show Hierarchy F6
3 Promote Partitions | - T T instances
4 Program and Debug % Go To Definition Shift+7
Phase 0 | Netlist Checksun: O9T450aT

i Bitstream Settings
¥ Generate Bitstrearr

open_rtl_design: Time (s): cpu = 00:00:14 ; elapsed = 00:00:07 . Memory (MB): peak = 3133.983 ; gain = 0,000
set_property is_partition false [get_cells [list U_bftl]

[ | D]
B R B7Td Console © Messages GLlog [3 Reports % Design Runs
Set Partition
& Mate Terminal @] bit- Uhomeinzompaki... ]

30: Setting a Partition

19. Click on “Specify partition” option from flow navigator and make sure
that all actions are set to “implement” for both synthesis and
implementation tabs.

X| X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) Aications Plces System =) B @ SunFen28, 1315

File Edit Flow Tools Window Layout View Help

dgrRaeR2hXd(d D3 NHOS K| E @St ayou e x| ©
Flow Navigator «| | Elaborated Design * - constrs_2 | xc7k70tfbg484 2 (active) X
AZS RTL Netlist — DO X || EProject Summary X * owe x

) = 3| 3lnstances orts 176 Net:
4 Project Manager gy e |

=
@5 Project Settings & Nets (176
[[] specify Partitions [0 U_bft Specify Partitions. ~
6@ U_dem

™ X
@ Add Sources & (@ Uselector (| e Specify whether partitions will be imported or implemented

4F IP catalog
(@), Run Behavioral Simi Synthesis Implementation
Name [ Action [import from | Preservation |
4_RIL Analysls v wrapper Implement/«] N/A
4 [# Elaborated Design @v UDbft  Implement(x] N/A

@ Report DRC & sources
7l Schematic

Prope
4 Synthesis «

3 synthesis Settings

® Run Synthesis

5% Open Synthesized [ =
4 Implementation TS o x

5 Implementation Set [T 18UFG = [«

> Run Implementatior | .,

3 open implemented| | r| | Phase € 1

5® open implemented | 1| oo2tF

3 Promote Partitions | | |  set_prope ok |[ cancel |

= startgrouj L ——
4 Program and Debug X |  set_property is_partition true [get_cells U_bft]
endgrouj

@ Bitstream Settings set_property is_partition false [get_cells [list U_dem]]

) Generate Bitstrean] Isez,pmper(y is_partition false [get_cells [list U selector]]

5 1) 1 D]

g e D )| BTl Console  © Messages [llog 3 Reports (% Design Runs
Open partition settings to change options.
@ Mate Terminal [&] bft- Uhomeinzompaii...

o

31: Using Partitions

20. Click on “Run Synthesis” from flow navigator. Depending on the
circuit, the time for synthesis may be quite long. User can check the
progress from the upper right progress bar and from the Tcl console
of Planahead.

21. (Optional) After synthesis is complete, click on “Open synthesized
design” and then “Schematic” from flow navigator to inspect how the
circuit will be implemented on the FPGA.

60



X| X260-nzompaki-50-1456555166_StDMATE dp32

p@ Applications Places System = (B @) Sun Feb 28, 13:02 o=
casestudy - 1- PlanAhead 14.7 V) A (x

Eile Edit Flow Tools Window Layout View Help [@-Search commands ]
g2a # > D> 3 ¥[%5 QS X|IT (@ [3pefault Layout v | 9] Implementation Complete
Flow Navigator « | | Synthesized Design xc7k70tibgd84 2 (active) X
Az S | EProject Summary x Device X i Schematic x EXERS

. (s] |2 || 30| S98instances 199UOPorts 798 Nets
4 Project Manager g

5 Project Settings 2

[ specify Partitions|
% Add Sources X
iF 1P catalog y
(@ Run Behavioral si

&

4 RTL Analysis
{5” Open Elaborated

3 Netlist

4+ Synthesis o
@ synthesis Setting por
& Run Synthesis

4 [ synthesized Desi
24, Edit Timing Co|
& Report Timing]
& Report Clock I
@ Report DRC
[ Report Noise
7] Report Utilizat
7 schematic

SR (X &

4 Implementation
@ Implementation S
P Run
@* Open Implemente
3 Promote Partitior

4 Program and Debug [+
g F— EH 3 Tcl Console |© H |23

& Mate Terminal @] caseStudy - Uhomeinz... G

32: Synthesis schematic

22. After synthesis is complete, click on “Implementation settings” from
flow navigator to see all available settings. User can make changes
although default settings are satisfactory.

X| X2GO-nzompaki-50-1456555166_StDMATE_dp32

1D) Ailcations Places System =i Bl @ Sun Feb 28,1323 o o)
Elle Edt Flow Tools Window Layout View Help [ |
#EH8o 2 # > > 3% 5 Q B K I (G [30efault Layout - eN|® Synthesis and Implementation Out-of-Date more info
Flow Navigator « | Elaborated Design * constrs_2 | xc7k70tfog484 2 (actve) x
| T RTL Netlist Project Settings X oe x

4+ Project Manager | Implementation n O

& wrapper
@ Project settings | o5 Nets ﬁu o
[ specify Partitions |9~ U_bft General
@ Add Sources a1 Q Default constraint set: [ constrs 2 -
iF IP Catalog &
(@, Run Behavioral Simt Simulation options
4 RTL Analysis Strategy.  [4 ISE Defaults* (ISE 14) ) .

4 [H Elaborated Design

@ Report DRC 4 Sources 2 RTL Netl|
71 Schematic

Description:  ISE Defaults, including packing registers in 10s off

? Translate (ngdbuild)
ur

]

Properties
4 Synthesis

10

a

@ synthesis Settings -aul (]
& Run Synthesis -aut 1
5 Open synthesized € - H i ol
u
P
4 Implementation Tel Console £ T
@ Implementation Set s [ TaUFG => TBUFG (IE More Options I E 3
o © Man (man) =
B mplemereationy SN e | Netlist cH Select an option above to see a description of it
¥ Open Implemented Basrenat
3 Promote Partitions
4 Program and Debug X is_part
@ Bitstream Settings 15_part
¥ Generate Bitstrear is_part OK Cancel | j
0 ) ol
) O 5 7Tcl Console © Messages Glog 2 Reports c Design Runs
B B Moteeminal €] bre- tmomenzompaki (|

33: Implementation Settings

23. Click on “Run implementation” from flow navigator. Depending on
the circuit, the time for implementation may be quite long. User can
check the progress from the upper right progress bar and from the
Tcl console of Planahead.

24. After implementation is complete, click on “promote partitions” from
flow navigator. A new window will appear.

61



Applications Places System

=]

X X2GO-nzompaki

0-14565565166_StDMATE_dp32
Sun Feb 28, 13:43

asestudy

[/home

mpaki/Desktop/petros/caseStudy/caseStudy.ppr] - PlanAhead 14.7.

File Edit Flow Tools Window Layout View Help
R neRBRBXH DD N NOB K| XL (@[S 0efault Layout | HeN ® Implementation Complete
Flow Navigator «| | Elaborated Design xc7k70tfbg4s4 2 el 3 X/
= x
Az RIENeflist Please select entire runs or specific partitions to be promoted, This 2512 X
P P
i =" copies the partitions in implemented run to the specified promote
4 Project Manager directory. After promoting runs, you can import the partitions into =
@ Project Settings RIS
Select Partitions to promote
[ specify Partitions
% Add Sources & U_dem (d pa}
4F Ip catalog [ U_selector ( Run [ Directory __ [Descript
@, Run Behavioral Sim @@ synth 1 [dy/caseStudy.promotepsynth 1 || - |
|- wrapper
|4 RTL Analysis J ® U_alu
4+ [ Elaborated Design -5 U_selector
@ Report DRC 4 Sources G2 RTL Netlist L@ u_dem
o P
Schematic
- Properties @impl1 | || ] i
4 Synthesis > |-@ wrapper
& Synthesis Settings - u_al
 Run Synthesis [ U_selector
L £
5% Open Synthesized [ 8 U_dem ‘Jl‘
D3
4 Implementation T SE =
Sel | =2 [ Parsing UCF File [/home/nzompak B
[ Run Implementatiol | .. CRITICAL I NG straints /caseStudy . srcs/constrs_1/nev/vrapper.ucf:l]
> ; o |'7|  Finished Parsing UCF File [/hon cf]
@ Open Implemented | | InFo: [Designutils 20-20] Inval to save all the invalid constraints to a file
3 Promote Partitions - INFO: [Project 1-111] Unisim Tr|
= A total of 1 instances were t
4 Program and Debug o BUFGHMUX => BUFGHUX (BUFGCTRL, ot roiemertes ] [ gearal
@ Bitstream Settings Phase 0 | Netlist Checksum: 02f . =
¥ Generate Bitstrear lopen_rtl_desmn‘ Time (s): cpu | [ Automatically manage Partition action and import location 0.000
& Launch ¢ oK cancel B
S I — —— | e ) o
2 Tel Console Messages [ Lo 2 Reports % Design Runs
9 9 9

Mate Terminal

25. Make

| [€] casestuay - (momeinz....

sure to

select

34: Promoting Partitions

everything from

implementation except wrapper. Click “OK”.

62

T] | | g

both

synthesis and



A.2 Analyzing the circuit using Planahead Expander

Expander requires some additional software to function properly.
User must have installed both Eclipse and Xampp. Expander is written in
Java and runs as an application through Eclipse and uses MySQL server
found in Xampp. After successful installation, open Xampp and click
“manage servers”. Turn on both MySQL database and Apache web server.

Welcome Manage Servers  Application log

Server Status
@ MySQL Database Stopped Start
@ ProFTPD Stopped
@ Apache Web Server Stopped
Configure
Start All Stop All Restart All

35: Xampp main window

The apache web server is optional and is used to check the
information stored into the database that Expander creates. This can be
done by visiting “localhost” with a web browser. A page similar to the next
one should appear if everything runs fine.

L Welcome to XAMPP x L%

localhost/dashboard/
> >

Apache Friends Applications ~ FAQs ~ HOW-TO Guides ~ PHPInfo  phpMyAdmin

XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for OS X 5.6.14

translation missing: en.You have successfully installed XAMPP on this system! Now you can start using Apache, MariaDB, PHP and
other components. You can find more info in the FAQs section or check the HOW-TO Guides for getting started with PHP applications.

Start the XAMPP Control Panel to check the server status.

Community

XAMPP has been around for more than 10 years - there is a huge community behind it. You can get involved by joining our Forums,
adding yourself to the Mailing List, and liking us on Facebook, following our exploits on Twitter, or adding us to your Google+ circles.

Contribute to XAMPP translation at translate.apachefriends.org.

Can you help translate XAMPP for other community members? We need your help to translate XAMPP into different languages. We
have set up a site, translate.apachefriends.org, where users can contribute translations.

Install applications on XAMPP using Bitnami
36: localhost main screen

Database is located after clicking “phpmyAdmin” on the upper right
side. On the new window that appears, on the left side there will be a
database with name “tools”. This is the database that Expander uses.

63



SIS e .

php

8O &6 ¥ Doph || KadikagSQL . Avalf xara =} Efaywyh (o} Eicaywyf a v
Npbogpara Ayarmpuévor
Be fivakag o Evépyein Eyypagés @ Témog EivBeon MéyeBog Mepiooeia
Néa components_and_paths ] Nepuiynon 14 Aoun & AvaZimon 3< Npoodiixn @ Adeiaoua @ Awypadi 290 InnoDB  latin1_swedish_ci 6 Ko -
—@
@ coeol components_names | Mepuiynon b Aoph % AvaZiion 3¢ Mpooikn i Adeiaopa @ Awaypagi 55 InnoDB  latini_swedish_ci 16 K0 -
i § E,
i nfemationtechome delays ] Nepuiynon 14 Aowfi & AvaZimon 3 NpooBiikn @ Adeiaoka @ Alaypadh 290 InnoDB latin1_swedish_ci 16 K8 -
+.) mysql =
i exploration | Mepuiynon b Aowh % AvaZion 3¢ Mpoodiikn & Adeiaopa @ Awaypagi 25 InnoDB  latini_swedish_ci 2 -
. performance_schema =
& (5 phpmyadmin implemented | Nepuiynon 4 Aopn % Avagimon 3¢ Mpoodikn &R Adeiacua @ Awypagn & InnoDB  latin1_swedish_ci 16 K0 -
i -
- TooLs initial_values | Mepuitynon J» Aoph 4 Avagimon 3¢ Mpoodikn &9 Adeiacpa @ Aaypadh 509 InnoDB  latini_swedish_ci a0 K8 -
[ Neo
- leaf_signal | Neptiynon 4 Aopn % AvaZfitnon 3¢ MpooBikn @ Adelaopa @ Aaypadn 358 InnoDB  latin1_swedish_ci 32 K8 -
_ I components_and_paths - - N
AT paths | Mepiynon b Aouh & Avagfimon 3¢ MpooBiikn iR ASeiaoua @ Aaypadh 30 InnoDB  latin1_swedish_ci 16 x5 -
~ delays pin | Nepuynon 4 Aopn % AvaZfitnon 3¢ MpooBikn R Adeiaopa @ Aaypadn 4,474 InnoDB  latin1_swedish_ci 336 X8 -
L exploration pin_path_match | Nepiiynon 1 Aoph % AvaZitnon 3 Mpoodikn i Adelaoua @ Aaypadh 78 InnoDB  Iatin1_swedish_ci 64 K8 -
- implemented _
B signals | Nepynon 4 Ao % AvaZfitnon 3¢ MpooBikn R Adeiaopa @ Aaypadn 1,093 InnoDB  latin1_swedish_ci 96 KB -
_ I initial_values -
L leaf_signal 11 nivaxeg Zovoro 7,210 InnoDB latin1_swedish_ci 768 xa o8
i paths t Emoyh Ay Me Touq emeyuévous: :
b pin
_J pin_path_match () Endavion yia extomwon [ AeExd Sedouvav
_ ) signals
4 Anwioupyia nivaka
‘Ovopa: ApiBug oTAGY: |4
Extéhean
mapdbupo

37: Database overview

Now the java source files must be imported to Eclipse so that the can
be executed. Launch Eclipse and select as workspace the directory that
user wants. Go to file and then choose import. A new window opens. Select
“Existing project into workspace” and click next.

[

Eneepyacia

[

Kup 28 OcB 14:49:50 Q

e inpuENe kSRR O BHEEISSS . i LA I (| B 8 vavaee [§Puava) 15 Dobug
[# package Explo 2 < O CodeGenjava  |J] PlanaheadExpanderjava 53 || TwrParserjova GenObject java = B E TaskList 8 =0
B % e o [ % NE
- = 2 the main class of Bl X E
> {2 Generator -
. 3 Patros Souseuris
> original M z Select .
> &plansheadxpander 5 fatts: Grophs, Inieializer, £ croto now projectsfram anarcive fe or directory. Itputhiriter, Exceliriter b ALY Activa.
& public class PlanaheadExpander ¢
5 Select an import source:
105 public static void main(stri
1
1 5 Eisting Projects nto Workspace
13 String[] input = new Str () File System
14 [l preferences
15 Graphs gui = new Graphs( | » (= C/ces
16 gui.runQ; » B
17 -
1 Initializer init = new 1 ’gzﬁf
]j init.createDatabase(); . élnstn\\ o Connect Mylyn 2
21 while (lgui.getProcced(] | » (> Java EE Comect to your task and
try » (= Maven ALM tools or create a local
23 v task.
23 Thread.sleep(30¢  » (= Plug-in Development
2 » (> Remote Systems -
2 Catch (Interruptedey ,émmebuyg 22 outiine 3¢ a
2 gui..errorToConsc e caitor c e w
27 e.printStackTra (= Scatter File Editor EERRWe W
bs » (= Target Configuration Editor -
5 > (= Tasks
;u ’ - Toum @, Pansheasxpander
31 input[@] = gui.getTwr(). © * main(Stringl]) : void
32 input[1] = gui.getEdf(),
3
34 EdfParser parseEDF = ney
35 parseEDF.parse();
36 Next > Cancel
Tuarser parserii = vy (2
3 parseTiR.parse(d;
Problems @ Java Tasks  Console ‘=8|

No consoles to display at this time.

38: Importing Expander in Eclipse (1)

64



@ Grab Apyeio Enefepyacia Kataypagry MapdBupo Bondewa 3 = o) = 100%BI Kop 28 OB 14:56:03 Q =

I R e - g P DA S A R AR AR " e B 99 Java e |§Java| 450ebug

3
[# PackageExplo 2 < O 9] PianaheadExpanderjava 83 TwrParser Object java = B B Tasklist 2 =8

e X
ris -
Import Projects -

T
ey £ Select a directory to search for existing Eclipse projects, / |eputhriter, ExcelWriter

P oAb Activa

Select All

Deselect All

Refresh ® connect Mylyn

Connect to your task and
ALM tools or create a local
task,

39: Importing Expander in Eclipse (2)

Select the option “Select root directory” and browse to the location
that the folder of Expander and Generator are stored. After that, click
Next and then finish. Now both Expander and Generator are ready to be
launched.

Expander needs two files which were created before in step Al. Files
with extensions edf and twr were created after implementation. User
should locate both of these files and copy them into the folder that Eclipse
uses as workspace.

Launch Expander by selecting run, run as, java application. The
main window of Expander launches and is ready for usage. If database
existed, Expander will delete it and will require a restart. In console
Expander will print messages to inform user about the processes and the
state of the application. More detailed error messages are displayed on the
console of Eclipse.

65



PLANAHEAD

EXPANDER

Please select a TWR file: Select file

Please select a EDF file: Select file

Go!

Console:

Databased existed. Please relaunch the application

40: Expander main window

After Expander terminates normally, some output files will have
been created. Most of these files are for user information and only one is
required for the next step. This file has name “frequrncies.txt” and
contains all the names of the control signals with their maximum
operating frequency. This file needs some manual editing before
proceeding. The frequencies must be grouped according to user’s wishes
and then sorted in ascending order.

When manual editing is done, Generator is ready to be launched.
First, save the edited text file into the directory that the source code of
Generator 1s saved. Generator also runs inside Eclipse and needs an input
argument which is the file name. Select the source file “CodeGen.java” and
go to run, run configuration. A new window will open and will look like the
next picture.

66



Create, manage, and run configurations e

Run a Java application ‘K‘/ "
1 X B3 Name: | CodeGen
© Main |69= Arguments . =i JRE Classpath | 1~ Source % Environmen t| [ Common

Program arguments:

frequencies.txt

VM arguments:

- @ epereEs

[7] PlanaheadExpander
[7] PlanaheadExpander (2) Variables...

Ju JUnit
7% JUnit Plug-in Test V| Use the -XstartOnFirstThread argument when launching with SWT

[ Launch Group
m2 Maven Build Working directory:

“ 0sGi Framework « Default:
JuyTask Context Test

3 XSL Other:

Filter matched 20 of 29 items

7 Close Run
41: Setting Input Arguments

Select the arguments tab and into the field labeled “program

arguments” type in the name of the manually edited file. Click apply and
then run. After Generator terminates successfully, into the current
workspace a file entitled “Selector.vhd” will have been created. This file
contains the source code that will be inserted into the project in Planahead
and will compose the second component of the circuit.

For the next step, Planahead i1s going to be used once again. User can

close Eclipse and shut down the MySQL and Apache web servers.

A.3

1.

A4

Inserting Selector into the project

In the previous project select “Add sources” from flow navigator and
then choose “add or create design files”. Then click “add files” and
import the file with title “Selector.vhd”.

Once the file is imported, Planahead will update the hierarchy of the
design. For now, Selector must be at the same hierarchy level with
wrapper. Update the wrapper file so that it uses an instance of
Selector and save the changes. After saving is done, the hierarchy is
updated and Selector should be below the wrapper.

Click on “open elaborated design” in flow navigator and in the
sources panel select the “RTL netlist” tab.

Right click on the selector and select “set partition”.

Building the digital clock manager

From flow navigator select the option IP catalog. Alternatively, type
the command coregen -J Xmx1024m into the tcl console of
Planahead. A new window appears.

67



X/ X260-nzompaki-50-1456555166_StDMATE _dp32

1) Applications Places System =[Gl Sun Feb 28, 17:08 =Dl
Xillnx CORE Generator - No Project DG
Fle View ManagelP Help
D2E3a 3@ BN
- 1 Catalog EEY
T8 View by function | View by Name P Xilinx CORE Generator
¢ |[Name / [version [axah | logiCSty
g | & [ Automative & ndustrl
| &[5 adnn
| 25 A erastmucture There is no project open.
8- Basic Elements You may browse the IP Catalog but you will not be able to generate any cores until you open or create a project.
2] | @[ communication & Networking
o || B [7 Debug & Verification
@ [ & (5 Digial signal Processing Copyright (<) 1955-2013 Xilinx, Inc. Al ights reserved.
3; || &7 Embedded Processing
| & #poA Features and Design
) | &[5 ath Functions
5, | B[ Memories & Storage Elements
¥ | &[5 standard Bus Interfaces
-7 Video & Image Processing
Console
Welcome to Xilinx CORE Generator.
Help system initialize
The IP Catalog has been reloaded
Kl
T ——— ——
Search P Cataloa | I | |search console [ J[ Ana | [ save |[ gear
] AP versions [] Only P compatible vi! Information | 1\ Wamings |@ Emors |
([Fart Unset Design Enty: inset]
e o o i o | | v

42: Opening Screen of Core Generator

2. Create a new project by clicking File, new project.

3. After the creation of the project, on the left list of options select
FPGA features and design, clocking, clocking wizard. Double click
that option

X| X2GO-nzompaki-50-1456555166_stDMATE_dp32
sunfen 20,1722 od=

Xilinx CORE Generator V) (A (x

1) Ascatons laces ysem

Fle Project View ManagelP Help

D2EHE3F BN ¢a%

FPGA Features and Design
&7 Clocking
upp i

e {}5upported Families

1P Catalog (G5
T4 [ Viewby Function | Viewby Name P Clocking Wizard
2 [Name 7 [version [axa [4 | logiC™
| B[ Automotive & industral
% |7 AXtinfrastructure This core is supported at status Production by your chosen part
& esep
& 7 asic Hements Information
)| e[ communication & Networking Core type: Clocking Wizard
= || &1 pebug & veritcation Version 36
&% || G177 Digital Signal Processing Identifier xilinx comip:cli_wiz:36
@ || & (7 Embedded processing Core Summary:  This is Reu3 version of Clocking Wizard v3 6. The Clocking Wizard creates an HOL fle (Verilog or VHOL) that contains a clocking circuit customized to the
user' clocking requirements

g Wizard 36

[ Sportan3 @] Cument Project Options
B[ Spartan-3€, Spartan-3A
B[ Virtex-4. Actions
B[ Virtexs
-5 10 ntertaces The following actions are available for this core:
£} Soft Error Mitigation 4 Customize and Generate.
@[5 System Monitor ) View Product Webpage
& e sanctons The following docurments are avalabe orthis core
|77 Memories & Storage Elements Drepueree
|7 Standard Bus Interfaces [g)Data sheet
{5 Video & Image Processing  Version Information
[BReadme file
: LI | Copynone 15852003 e, . A gt reservea o B

Search IP Catalog:| | cear | B

1P versions [ ] Only IP compatible with chosen part Console @x
Welcome to Xinx CORE Generator
piei=cEle Help system initalized.
nstance Name_\ | _CoreName | Version | _Las| | The IP Catalog has been reloaded
New Project Cancelied:
3 clocks Clocking Wizard 36 22-7eb| | Openmma project e
ERROR coreUti573- Unable to revert working directory to /usrieda/Xiinx.ISEIL4 71SE_DS/
G = [3]%) |search Cansole | [ fina [ save |[ cear |
Search Project P ][ clear | | mtormation [\ Wemings [ @ Eors |
[ [Part e 2mbgaes | Design Entry: VFDL |
B te i & <osestuay - (homen..._| %] Xiins CORE Generatons| <

43: Locating Clocking Wizard

Clocking wizard opens.

68



1) Appiications Places System = (B @)

X| X260-nzompaki-50-1456555166_StDMATE dp32
Sun Feb 28, 17:17

File Project | Document ts

=

L[ Viewby
i
i

P

2

z

ame

0686860060688
1mooowor>

® 8

suz=

Customize an d| < 1P Ssymbol

iew
1P Symbol
axm—s|
o]
%] Resource Estimation

Clocking Wizard

B
LogiC Pt

Clocking Features.

X Frequency synthesis

Spread Spectrum

Clocking Wizard

clk_wiz_v

36

X| Phase alignment (known phase relationship to input clock)

ration (in system output freq modification)

Input Clock Information

itter (low clock jitter filtering)

itter filtering (allow larger input jitter)

Primitive

® MMCME2_ADV

Clocking Features
Input Clock:

PLLE2 ADV.

Input Freq (MHz)
Inputciock | ‘neutrreatund ., surce
Value | VaildRange
prmary | 100000 | 1oco0-s33000 0010 single ended cock capablepin___ |+
sssss dory |

[«

dlinx.com:ip:clk_wiz:36

)

Datasheet

Pagelof6| Next>

O |

° |

e m8 e

2] Mate Terminal

GE

seStudy - [/homein.

J Xilinx CORE Generato,

] Clocking Wizard

44: Defining input frequency

4. Insert a name in the “component name” field and a frequency of input

clock in the “primary” field. Click next.

The higher input frequency the more accurately the digital clock
manager will produce the frequencies specified by user.

1D) Appiications Places System = (B @)

X| X260-nzompaki-50-1456555166_StDMATE_dp32
Sun Feb 28, 17:24

Clocking Wizard
File Project | Document s View
- = » Symbol 8
LogiC Pt Clocking Wizard
dinx comipick wiz 36 =
L [ Viewny ol
[T] JProiect
L |[am e L output Clock
it 8@ A Settings
= L‘ ; The phase is calculated relative to the active input clock.
=L
»
8-[7 8 > axan Output Freq (MHz) Phase (degrees) Duty Cycle (%) Use
B epc Output Clock Drives uzel
&1 ol Actual Actual Actual HlD
e awoun || oo | womw | oow | oow | sowo | seo [mws |-
2| & F %| CLK_OUT2 200.000 200.000 0.000 0.000 50.000 500 BUFG v
% i cixouts
oo =
=
®| geser —
=
B M
oM
B St
@7 v
al > H
Search P e [
e @
Instance = L
ok
(1 g
— ] GDJ
Search Pr
e R s [ e i Datasheet <Back | Page20r6 [ Next> | [ generate | [ can ter ) ey

fJ @ Mate Terminal

@ o

seStudy - [/home)n.

J Xilinx CORE Generato,

<] Clocking Wizard.

45: Defining output frequencies

5. In the above window, user can define the output frequencies that
wishes. Please note that the digital clock manager may not produce
the desired frequencies accurately (for example frequencies are too
close in value). Click next after you define as many outputs as
desired.

69



46: Optional pins

6. In this page, select some of the optional input and output signals but
leave the “clock feedback source” at its default value.

47: Other options

7. Make no changes at the above page.

70



1) slcatons lces Sysem () @)

X| X260-nzompaki-50-1456555166_StDMATE dp32
Sun Feb 28, 17:33

Clocking Wizard
File Project | Document ts View
=] 1P Symbol (@)
LogiC Pt Clocking Wizard —
z ling comipiclk_wiz 36 =
Viewb, ~
v [ J — clo et
am pBrolect
ax_m—f f—> curcurs Summail
Input Clock Summa n
-+ E=i i & Port Nami
| o
= Input Freq | Input Jitter,
3 ERZE] Input Cln(k‘ Port Name | ""PULE i
=] B > cucaurz
Blepec [ prmey [cxmr | wooo | oow |
B D
& DI
% || & E
=3 Fi
o e Output Clock summary
- ;
3 &) VCO Freq = 1000.000 MHz
o
E e
&) Output Freq| Phase Duty Cycle Pk-to-Pk |Phase Error|
Output Clock | PortName | “uiz) | (degrees (%) Jitter (ps) (ps)
& cikount | ck outt 100.000 0000 500 130958 %575
iigen ckour |cicourz | 20000 0000 500 ams w85
oM
B s
© 7V
al -
Search IP (I
me e
Other Pins. Port Name o
Instanc R L] ﬂ
docK ReseT ReseT &
El | clear
& < ]| G =
Searcn P - =
I AT o e ——— Datasheet <Back | Pagesors [ Next> | [ Generate can e e
=] Mate Terminal @] casestuay - [momein... <] Xilinx CORE Generato... | </ Clocking Wizard ]
X/ X2GO-nzompaki-50-1456555166_stDMATE_dp32
1) Appicatons Pices System =) [ @ SunFeb 28, 1735 oo )=
Clocking Wizard %
Fle Project | Documents View
a » Symbol B
LogiC PE Clocking Wizard
7 il comip-clk wiz 36 =
Viewby S le
¢ |[Nam €or=| | Proiect
Lo — | axan XPower Estimator input parameters Summar,
A ESER < |
=) acwzvie | w000 | Neme |
&[5 B e
B | e c
&7 b
&7 0 bvide | mar | couro | cucours | cuourz | cuouts | cuours | cuous | cuouts
o Counter coumter Dnder” | Dnder: | Divder’ | Dieder’ | Diader' | iader’ | Diader
&
Ry [ [wmw| v | 5 | o 0 | et | e | or |
5 i
s & Generated files
9 File Name
E -
o Gl Wiz 3 6. (v vha) Verilog or VKDL clockin
Verilog or VHDL instantiation template
® Core constraints fie
o README file for the core
w7 M
oo M CORE Generator il used to recreate core
& St
@7 v
(1 =
Gl N E]
Search IP = ¢
AP &)
Instance W
3 clock]
3 &=
: (8 man =
Searcn P -
Datasheet <gack | Pagesors Generat Gan el
EaEED d| 4 1P symbol | Resource Estimation 2 & 9 L e Help w7

=] Mate Terminal [€] caseStudy - Uhomein.. % Xilinx CORE Generato,

<] Clocking Wizard

49: Settings check

9. Check all the options selected to verify that everything is according to
the specifications of the design. If everything is fine, click “generate”.

Clocking wizard creates many files. For the circuit in Planahead, only
two of them are needed. Those files are the VHDL file of the digital clock

manager (.vhd) and the constrains file (.ucf). Both of them will be inserted
in the project of Planahead.

The VHDL file, however, needs some manual modifications because

by default the output clocks of the digital clock manager are connected to
buffers. It is required that those output clocks will be connected to special
multiplexers called “bufgmux”. This connections are done by modifying

71



VHDL code and some examples can be found in the code section of
Appendix C. Modify the “entity” declaration of the digital clock manager
by inserting a std_logic (or vector) input signal for the selection signal
(this must be the same type with the signal output of the selector), delete
the output clocks and replace them with one unique output port. At the
end of the file, delete the commands that drive output clocks into buffers
and replace them with a line of code:

Mux : bufgmux port map (select signal, inputs, output);

A.5 Inserting the digital clock manager

1. In the previous project select “Add sources” from flow navigator and
then choose “add or create design files”. Then click “add files” and
import the file with extension .vhd.

2. Once the file is imported, Planahead will update the hierarchy of the
design. For now, Selector must be at the same hierarchy level with
wrapper. Update the wrapper file so that it uses an instance of
digital clock manager by coping the entity declaration into wrapper
and changing “entity” keyword to “component”. Create an instance of
the dem just like the other instances and connect to its pins the
proper signals. After saving is done, the hierarchy is updated and
digital clock manager should be below the wrapper. The wrapper not
only instantiates the different units but also connects the input and
output pins of the components via VHDL code. This is achieved,
however, only for the external signals of the main circuit that selector
monitors. For the internal signals the connections will be made using
FPGA Editor.

3. Click on “open elaborated design” in flow navigator and in the
sources panel select the “RTL netlist” tab.

4. Right click on the selector and select “set partition”.

5. Click the option “specify partitions” and a new window appears.

72



X| X260-nzompaki-50-1456555166_StDMATE dp32

15) Avpicators Places ystem <) B @) sunFe 25,1617 )=
Eile Edit Flow Tools Window Layout View Help Search command:

R weRRXH P> >R OB KT @ [=0efaul Layout e N|® Implementation Complete
Flow Navigator <«| | Elaborated Design xc7k70tfbg484 2 (active) x
Qx4 RTL Netlist = @hELER E Project Summary X I RTL Schematic X aw x

3] | 30Instances

Ports

Project Manager SyncinpuALas_BUr_¢1 U seisctor o
[ wrapper e | &
45 Project Settings 7 ‘ ‘ ‘ o |

[C] Specify Partitions | | || $- = Primitives A x
S @ U_alu (alu64
el ourcee &~ U_dem (d o Specify whether partitions will be imported or implemented
1F IP catalog &[0 U_selector (;
@, Run Behavioral Sim Synthesis Implementation
ARTEAnalyei Name [Action _[import from [Preservation
L Analys’s [Clv wrapper  mplement|v) N/A
4 [H Elaborated Design B¢ U_alu Import 1 |[~] Routing [~
@ Report DRC A Sources [ B¢ U_selector Implement[<] N/A
7l schemati e U_dem iNA
¥ Schematic ratance Promart] | RS implement|~ N/
4 synthesis
5 synthesis Settings
& Run Synthesis dffe1
3 (62:0] 3
&2 Open Synthesked € || e oo ral | Attriby D]
4 Implementation e Eareeia | _oe x
4 Implementation Sel 2 [ The 1P Ca
P Run Implementatiol | ., [  New Projed
e Openin | |
% Open implemented | & Fowk iy (7 1010
(3 Promote Partitions| | |  Finished & ok || cancel |
2| cancelled — =
4 Program and Debug X | Closed project file.
ERROR: coreutil:573 - Unable to revert working directory to
@ Bitstream Settings Jusr/eda/Xilinx-1SE/14.7/ISE_DS/
¥ Generate Bitstrear Impo sin:172 - Generating IP.
o ™
b [ 1 D]
(I O 5Tl Console Messages Gllog [ Reports % Design Runs

Open partition settings to change options.

£ @ Mate Terminel @] casestudy - homeinz...

6.

7.
8.

9.

B

50: Importing and implementing partitions

All actions should be set to “implement” for both synthesis and
implementation tabs except for the original circuit which must
remain in “import” action in both tabs.

Click on the “run synthesis” from flow navigator.

Click on the “run implementation” from flow navigator after
synthesis is completed.

Click on “promote partitions” and select all options instead of
wrapper.

X| X2G0-nzompaki-50-1456555166_StDMATE_dp32

1) Applicatons Places System = [ @) Sun e 26,1628

Eile Edit Flow Tools Window Layout View Help

g8n X H P> DB X %QOSB XK T G efaul Layout & 2] Implementation Complete
Flow Navigator «| | Elaborated Design xc7k70tfbgd84 2 (. bl s =2 X
AS= RIL Netlist (D) Flease select entire runs or specic partitons to be promoted. This g x

copies the partitions in implemented run to the specified promote

4 Project Manager directory. After promoting runs, you can import the partitions into

2 wrapper

@ Project Settings Nets (617 Tuns,
[C] Specify Partitions |- & Primitives (29 Select Partitions to promote s
o[ U_alu (= T
% Add Sources P E Cdem =8
4F IP catalog & @ U_selector Run [ Directory | Description
@ Run Behavioral Sin @M synth 1 |dy/caseStudy.promotesynth 1 ||
2 [ wrapper
4 RTL Analysis @ U_alu
4 [ Elaborated Design ¥ U_selector
Q Report DRC 4 Sources B2 RTL Netlist 2 U_dem
Al Schematic Properties @@impl 1 [udyicaseStudy.promoteimpl 1 ||
4+ Synthesis Wwispper.
3 Synthesis Settings 8 U-slu;
 Run Synthesis [ U_selector
% Open Synthesized i U_dcm
4 Implementation lEn —
@ Implementation S¢ | «z: [T parsing UCF File [/hone/nzonpaky
[> Run Implementatic CRITICAL WARNING: [Constraints 1 aseStudy . s| " apper.ucf:1]
3 oo Flor Finished Parsing UCF File [/hong ucf]
a¥ Open Implementec INFO: [Designutils 20-20] Invali to save all the invalid constraints to a file
3 Promote Partitions INFO: [Project 1-111] Unisim Trg
A total of 1 instances vere tf
. BUFGMUX => BUFGMUX (BUFGCTRL, e P e || EEPSYSRPT—
AR C Select Implemented | [ Clear Al |
@ Bitstream Settings Phase © | Netlist Checksum: 4721 =
¥* | Generate Bitstrear open_rtl_design: Time (s): cpu = [ Automatically manage Partition action and import location 6.031
g R . | cancel
% | IRt ‘ ) [gones ) | D]
[ D 2 Tdl Console © Messages Gllog 3 Reports t Design Runs
P (W] v

51: Promoting partitions

10. If no internal signals exist, skip section A.6

73



A.6 Connecting internal signals using FPGA Editor

1.

1) Avpicatons piaces system = [0 @)

After implementation is completed, click on “open implemented
design” and then on “FPGA Editor”’. A new window appears.

nzompaki-50-1456555166_StDMATE_dp32

File Edit YView Tools Mindow Help |

MEEEINE o 1= = 2 e e e e e s M =T B P ] el T =

= Arrayl JJ{[= i Listl =i

ALL Conponents.

Nawe | Site | Type | #Pins | Hilited"
bFtClk  [U17 08 1 [[no col
2 bftClk_BUBUFGCTRL_BUFG 2 [ ok

Horldi o=

Script “/usr/eda/Xilinx-TSE/14.7/1SE_DS/ISE/data/fpga_editor,ini” plagyback completed. A
i sktop/petros/bft/bft/bft.runs/impl_i/urapper_routed.ncd

ation Rf Device from file '7k70t.nph' in environment /usr/eda/Xilinx-ISE/14.7/ISE_DS/ISE/.
NCD, version 3.2, device xc7k70t, package fbgd84, speed —2

Desi. te: 2016.02.18.08.41.17

Building chip graphics...
Loading speed info...

B B MateTerminal €] bt Uhomeinzompak... | (=] Xilix FRGA Editor -/ =

52: FPGA Editor main screen

In the command section of FPGA editor type “setattr main edit-mode
toggle” to enable editing the design.

From list 1 select the name of the component that will be connected.
In case that extensive renaming has been done by Planahead, you
can return to Planahead and click “open synthesized design” and
then “schematic”. This will open the design and will help user locate
the signals. The names used in synthesis are the same used by FPGA
Editor.

From list 2 select the name of the signal that is going to be driven to
a specific pin of the component specified. User can locate the names
of the signals just like in the previous step.

Click on the pin of the component and while holding down the control
key click on the name of the signal. Both the signal and the pin of the
component must be selected.

Type in the command section “route”. If an error appears saying that
“nothing found to route”, then ironically everything is fine.

Type in the command section “autoroute”. Some messages will
appear informing the user that everything went fine.

Repeat that procedure as many times as required in order to connect
all signal from the main circuit to the inputs of the selector circuit.

It is worth mentioning that changes made with FPGA Editor are not

visible in Planahead. For example, the schematic option under Synthesis
will not show the changes done. The only way to verify that connections
were done correctly is by running the simulator and checking the
waveforms.

74



Please note that there is an online video tutorial for FPGA Editor.

Just search for “FPGA Editor” on www.youtube.com.

A.7 Simulating the new design

1.

) Aopctions plces

Before simulating the circuit, it needs some delay balancing. This
will be possible after inserting two rows of D flip flops before the
entrance of the original circuit (to balance the two clock cycles delay
of selector) and one row of the same components right after the
selector output. By defining a signal in VHDL code (which will be the
output of the Ds) and by changing their values like “output <= input”
in a process which has the clock into its sensitivity list, a D flip flop is
created. (Please note that the number of rows of flip flops required
depends on the original circuit. However, selector always delays for
two clock cycles and the digital clock manager functions
asynchronously).

Click on the “add sources” from flow navigator an then select “add or
create simulation files”.

X| X2G0-nzompaki-50-1456555166_StDMATE_dp32

e
Sun Feb 26, 19:17 o=

sysem = @

Ele Edt Flow Tools Window Layout View Help
& =2

Flow Navigator

4 Project Manager | |

© Implementation Complete

# 9> 3% Q ® % | L 3 3 pefault Layout -
« | Implemented Design impl_1 | constrs_2 | xc7k70tfbg484 2 (active) x
o Netlist = IS E Project Summary X & Device X o X

=

@ Project Setting:
[C] Specify Partitior

Add Sources

¥ Add Sources
LF IP catalog
(@) Run Behavioral

4 RIL Analysis
¥ Open Elaborate|

99992 bd

This guides you through the process of adding and creating sources for your project

) Add or Create Constraints
D Add or Create Design Sources
9 Add or Create Simulation Sources

) Add or Create DSE Sources

& sources &
4+ synthesis y ;
! 5 Add or Create Embedded Sources
@ synthesis Setti Properties
P Run Synthesis Add Existing IP
@* Open Synthesiz
4+ Implementation
@ Implementation
\; Run Implementa e icansoi
4 [#] implemented D < FOC = Al =
2 Edit Timing = FOP => Fl |
m i FOR FO
@ Fun TRCE 5 figngs
&1 Report Cloc} igu‘j 3 Ahead To continue, click Next [
@ Report DRC x ‘
T Report Noise | Phase 0 | il
2 R ) open_run: | [t~ | [ cancel |
?| Report Utilize = \
4 Taunch_fpgaeurcor 4
83 xPower Anat } ‘f
©} FPGA Editor 1 ol
i Run Timing € [
i D“‘ml‘ 3Tcl Console © Messages GlLog [ Reports % Design Runs @ Timing

Specify and/or create source files to add to the project.

B B MateTerminal

@] bft- thomeinzompaki

53: Add simulation sources

3. Click “add files” and insert a testbench file written in Verilog or

VHDL. Example code of a testbench file written in VHDL can be
found in appendix C.

After the file is imported, click “run timing simulation”. A new
window appears with some settings. User can edit the default
settings.

75



1) Arsications Paces System =)

©

File Edit Flow Tools Window Layout View Help & ]

3 # o> 3% Q@ @ % | X (5 [ pefautt Layout -] 9] Implementation Complete

Flow Navigator « | Implemented Design impl_1 | constrs_2 | xc7k70tfbg484 2 (active X
A = Netlist s L Project Summary X @ Device X o x

4+ Project Manager B

o 1 wrapper
@ Project Settingd | & Nets
Specify Partitior] | || ¢~ = Primitives Simulation Options
= 6@ U_bft
i Add Sources &
LF IP catalog o L" Specify options for timing simulation

(@) Run Behavioral

4 RITL Analysis Target simulator: [ISim Simulator =
2% Open Elaborate|

§ = ¥ Clean up simulation files
4+ synthesis 4 Sources ] Netlist
1 synthesis Settir Properties

# Run Synthesis

Compilation = Simulation  Netlist ~Advanced

Verilog options: [ 1)

¥ Open Synthesiz¢ Generics/Parameters options: [ ][]
4+ Implementation Fereer el @ o]
& Implementation rer— —— =
S i i Select an option above to see a description of it
» Run Implementadl || console
+ [ implemented Dg | | 0 (FOCE, i =
4, Edit Timing d o FDP (FDPE, 32 ing
- FDR (FDRE, 52 ing
B RULIRCE 5 F FDS (FDSE, VCC): 1 ins e |
& Report Clock TBUFG => TBUFG (IBUF): 1 instd —reTe— ancel
- b (LDC o) =
\) Report DRC x LD => LD (LI 5 GND): 2 Instances
T Report Noise Phase 0 | Netlist Checksum: 5224bS6 =
u = 00:00:15 ; elapsed = 00:00:11 . Memory (ME): peak = 3188.527 ; gain = 0.000

% Report Utilizz
84 xPower Anal:

3 FPGA Editor 0 D

open_run
Taunch_fpc

T MO Tcl Console Messages [ Log Reports % Design Runs Timing

Launch ISim Simulator for timing simulation.

& Mate Terminal @] bit- (homeinzompaii. u

54: Simulator settings

5. Click “OK” and the simulation window will appear. User can add or
remove signals in order to verify that the new circuit functions

properly.

1) sovlcations piaces system (] (@ ¢
5] Hle Edit View Simulation dow Layout Help _18x

= %@ » WE[Toous [+

Re-launch

D2 d ) v o 4 &

Instances and Proc.@ 0@ X

Simulation Objects for t_alus4
o) G ws) ‘e B B [name  Jfvaue | 1.540ns
Object Name Value " i LA AL A A A A
» g atssa [R— -
» B e

tdcminputclock

B

) std_logic 1164 tal630) T
P ——— S
El < <] [P0 ] [ > Jle D2

Console o

WARNING: at 2102711 ps: Timing violation in tb_alu64/U_wrap/syncinputA_47/ $setuphold( CLK:2102582 ps, 12102711 ps.-47 ps.143 ps)
WARNING: at 2102713 ps: Timing violation in tb_alu64/U_wrap/syncinputA 46/ $setuphold( CLK:2102582 ps, 12102713 ps.-47 ps.143 ps)
WARNING: at 2102718 ps: Timing violation in /tb_alu64/U_wrap/syncinputA 24/ $setuphold( CLK:2102657 ps, 12102718 ps.-40 ps,136 ps)

1Sim>
@ Console | ] CompilationLog | @ Breakpoints | (a§ Findin Files Results || gy Search Results

Sim Time: 3,000,000 ps.

B @ Mate Terminal casestudy - [/homeln = ISim (P20131013) - [D. .

55: Simulator window

76



Appendix B

B.1 Edf file explanation

EDIF (Electronic Design Interchange Format, used as edf by Xilinx)
1s a vendor-neutral format in which to store Electronic netlists and
schematics. It was one of the first attempts to establish a neutral data
exchange format for the electronic design automation (EDA) industry. The
goal was to establish a common format from which the proprietary formats
of the EDA systems could be derived. When customers needed to transfer
data from one system to another, it was necessary to write translators
from one format to other. As the number of formats (N) multiplied, the
translator issue became an N-squared problem. The expectation was that
with EDIF the number of translators could be reduced to the number of
involved systems.

Representatives of the EDA companies Daisy Systems, Mentor
Graphics, Motorola, National Semiconductor, Tektronix, Texas
Instruments and the University of California, Berkeley established the
EDIF Steering Committee in November 1983. Later Hilary Kahn, a
computer science professor at the University of Manchester, joined the
team and led the development from version EDIF 2 0 0 till the final
version 4 0 0.

The general format of EDIF involves using parentheses to delimit
data definitions, and in this way it superficially resembles Lisp. The basic
tokens of EDIF 2.0.0 were keywords (like library, cell, instance, etc.),
strings (delimited with double quotes), integer numbers, symbolic
constants (e.g. GENERIC, TIE, RIPPER for cell types) and "Identifiers",
which are reference labels formed from a very restricted set of characters.
EDIF 3.0.0 and 4.0.0 dropped the symbolic constants entirely, using
keywords instead. So, the syntax of EDIF has a fairly simple foundation. A
typical EDIF file looks like this:

(edif wrapper
(edifversion 2 0 0)
(edifLevel 0)
(keywordmap (keywordlevel 0))
(status
(written
(timeStamp 2016 02 21 11 22 29)
(program "PlanAhead" (version "14.7"))
(comment "Built on 'Fri Sep 27 19:24:36 MDT 2013'")
(comment "Built by 'xbuild'")
)
)
(Library hdi primitives
(edifLevel 0)
(technology (numberDefinition ))
(cell IBUF (celltype GENERIC)
(view netlist (viewtype NETLIST)
(interface
(port O (direction OUTPUT))

77



(port I (direction INPUT))
)
)
)
(Library U alu alu64 1lib
(edifLevel 0)
(technology (numberDefinition ))

(cell (rename U_alu alu64 "U alu#alu64") (celltype GENERIC)
(view view 1 (viewtype NETLIST)
(interface
(port clk (direction INPUT))
(port (array (rename A "A[63:0]") 64) (direction INPUT))
(port (array (rename B "B[63:0]") 64) (direction INPUT))
(port (array (rename S "S[3:0]") 4) (direction INPUT))
(port (array (rename Result "Result[63:0]") 64) (direction
OUTPUT) )
)
(contents

(instance T R 0 (viewref netlist (cellref FD (libraryref
o hdi primitives)))
(property XILINX REPORT XFORM (string "FD"))
(property XSTLIB (boolean (true)))
(property INIT (string "1'b0O"))
)
(instance T R 1 (viewref netlist (cellref FD (libraryref
o hdi primitives)))
(property XILINX REPORT XFORM (string "FD"))
(property XSTLIB (boolean (true)))
(property INIT (string "1'b0"))
)
(net (rename Mmux S 3 B 63 wide mux 20 OUT15 split 63

"Mmux S[3] B[63] wide mux 20 OUT15 split[63]") (joined
(portref O (instanceref
Mmux S 3 B 63 wide mux 20 OUT15121))
(portref D (instanceref T R 63))
)
)

The 1.0.0 release of EDIF was made in 1985.

EDIF 2.0.0

The first "real" public release of EDIF was version 2 0 0, which was
approved in March 1988 as the standard ANSI/EIA-548-1988. It is
published in a single volume. This version has no formal scope statement
but what it tries to capture is covered by the defined viewTypes:

e BEHAVIOR to describe the behavior of a cell

e DOCUMENT to describe the documentation of a cell

GRAPHIC to describe a dumb graphics and text representation of
displayable or printable information

LOGICMODEL to describe the logic-simulation model of the cell
MASKLAYOUT to describe an integrated circuit layout

NETLIST to describe a netlist

PCBLAYOUT to describe a printed circuit board

SCHEMATIC to describe the schematic representation and
connectivity of a cell

78



¢ STRANGER to describe an as yet unknown representation of a cell
e SYMBOLIC to describe a symbolic layout

The industry tested this release for several years, but finally only the
NETLIST view was the one widely used and some EDA tools are still
supporting it today for EDIF 2.0.0. (EDIF Overview, 2005)

To overcome problems with the main 2.0.0 standard several further
documents got released:

e Electronic Industries Association

e EDIF Monograph Series, Volume 1, Introduction to EDIF, EIA/EDIF-
1, Sept. 1988

e EDIF Monograph Series, Volume 2, EDIF Connectivity, EIA/EDIF-2,
June 1989

e Using EDIF 2 0 0 for schematic transfer, EIA/EDIF/AG-1, July 1989

Documentation from Hilary J. Kahn, Department of Computer

Science, University of Manchester

EDIF 2 0 0, An Introductory Tutorial", September 1989

EDIF Questions and answers, volume one, November 1988

EDIF Questions and answers, volume two, February 1989

EDIF Questions and answers, volume three, July 1989

EDIF Questions and answers, volume four, November 1989

EDIF Questions and answers, volume five, June 1991

EDIF 3.0.0

Because of some fundamental weaknesses in the 2.0.0 release a new
not compatible release 3.0.0 was released in September 1993, given the
designation of EIA standard EIA-618. It later achieved ANSI and ISO
designations. It is published in 4 volumes. The main focus of this version
were the viewTypes NETLIST and SCHEMATIC from 2.0.0.
MASKLAYOUT, PCBLAYOUT and some other views were dropped from
this release and shifted for later releases because the work for these views
was not fully completed.

EDIF 3.0.0 is available from the International Electrotechnical
Commission as IEC 61690-1

EDIF 4.0.0

EDIF 4.0.0 was released in late August 1996, mainly to add "Printed
Circuit Board" extensions (the original PCBLAYOUT view) to EDIF 3.0.0.
This more than doubled the size of EDIF 3.0.0, and is published in HTML
format on CD.

EDIF 4.0.0 is available from the International Electrotechnical
Commission as IEC 61690-2.

Problems with 2.0.0
To understand the problems users and vendors encountered with
EDIF 2.0.0, one first has to picture all the elements and dynamics of the

79



electronics industry. The people who needed this standard were mainly
design engineers, who worked for companies whose size ranged from a
house garage to multi-billion dollar facilities with thousands of engineers.
These engineers worked mainly from schematics and netlists in the late
1980s, and the big push was to generate the netlists from the schematics
automatically. The first suppliers were Electronic Design Automation
vendors (e.g., Daisy, Mentor, and Valid formed the earliest predominating
set). These companies competed vigorously for their shares of this market.

One of the tactics used by these companies to "capture" their
customers was their proprietary databases. Each had special features that
the others did not. Once a decision was made to use a particular vendor's
software to enter a design, the customer was ever after constrained to use
no other software. To move from vendor A's to vendor B's systems usually
meant a very expensive re-entry of almost all design data by hand into the
new system. This expense of "migration" was the main factor that locked
design engineers into using a single vendor.

But the "customers" had a different desire. They saw immediately
that while vendor A might have a really nice analog simulation
environment, vendor B had a much better PCB or silicon layout auto-
router. And they wished that they could pick and choose amongst the
different vendors.

EDIF was mainly supported by the electronics design end-users, and
their companies. The EDA vendors were involved also, but their
motivation was more along the lines of wanting to not alienate their
customers. Most of the EDA vendors produced EDIF 2.0.0 translators, but
they were definitely more interested in generating high-quality EDIF
readers, and they had absolutely no motivation at all to write any software
that generated EDIF (an EDIF Writer), beyond threats from customers of
mass migration to another vendor's software.

The result was rather interesting. Hardly any software vendor wrote
EDIF 2.0.0 output that did not have severe violations of syntax or
semantics. The semantics were just loose enough that there might be
several ways to describe the same data. This began to be known as
"flavors" of EDIF. The vendor companies did not always feel it important
to allocate many resources to EDIF products, even if they sold a large
number of them. There were several stories of active products with
virtually no-one to maintain them for years. User complaints were merely
gathered and prioritized. The harder it became to export customer data to
EDIF, the more the vendors seemed to like it. Those who did write EDIF
translators found they spent a huge amount of time and effort on
generating sufficiently powerful, forgiving, artificially intelligent readers,
that could handle and piece together the poor-quality code produced by the
extant EDIF 2.0.0 writers of the day.

In designing EDIF 3.0.0, the committees were well aware of the
faults of the language, the calumny heaped on EDIF 2.0.0 by the vendors
and the frustration of the end users. So, to tighten the semantics of the

80



language, and provide a more formal description of the standard, the
revolutionary approach was taken to provide an information model for
EDIF, in the information modeling language EXPRESS. This helped to
better document the standard, but was done more as an afterthought, as
the syntax crafting was done independently of the model, instead of being
generated from the model. Also, even though the standard says that if the
syntax and model disagree, the model is the standard, this is not the case
in practice. The BNF description of the syntax is the foundation of the
language inasmuch as the software that does the day-to-day work of
producing design descriptions is based on a fixed syntax. The information
model also suffered from the fact that it was not (and is not) ideally suited
to describing EDIF. It does not describe such concepts as name spaces
very well at all, and the differences between a definition and a reference is
not clearly describable either. Also, the constructs in EXPRESS for
describing constraints might be formal, but constraint description is a
fairly complicated matter at times. So, most constraints ended up just
being described as comments. Most of the others became elaborate formal
descriptions which most readers will never be able to decipher, and
therefore may not stand up to automated debugging/compiling, just as a
program might look good in review, but a compiler might find some
Interesting errors, and actually running the program written might find
even more interesting errors.

Solutions to edif 2.0.0 problems

The solution to the "flavor" problem of EDIF 2.0.0 was to develop a
more specific semantic description in EDIF 3.0.0 (1993). Indeed, reported
results of people generating EDIF 3.0.0 translators was that the writers
were now much more difficult to get right, due to the great number of
semantic restrictions, and the readers are comparatively trivial to develop.

The solution to vendor "conflict of interest" was neutral third-party
companies, who could provide EDIF products based on vendor interfaces.
This separation of the EDIF products from direct vendor control was
critical to providing the end-user community with tools that worked well.
It formed naturally and without comment. Engineering DataXpress was
perhaps the first such company in this realm, with Electronic Tools
Company seeming to have captured the market in the mid to late 1990s.
Another dynamic in this industry is EDIF itself. Since they have grown to
a rather large size, generating readers and writers has become a very
expensive proposition. Usually the third-party companies have
congregated the necessary specialists and can use this expertise to more
efficiently generate the software. They are also able to leverage code
sharing and other techniques an individual vendor could not. By 2000,
almost no major vendor produced its own EDIF tools, choosing instead to
OEM third-party tools.

Since the release of EDIF 4.0.0, the entire EDIF standards
organisation has essentially dissolved. There have been no published
meetings of any of the technical subcommittees, the EDIF Experts group,

81



etc. Most of the individuals involved have moved on to other companies or
efforts. The newsletter was abandoned, and the Users' Group no longer
holds yearly meetings. EDIF 3.0.0 and 4.0.0 are now ANSI, IEC and
European (EN) standards. EDIF Version 3.0.0 is IEC/EN 61690-1, and
EDIF Version 4.0.0 is IEC/EN 61690-2. (Guide to EDIF, 2005)

B.2 Twr file explanation

This extension declares the timing report file generated by Xilinx
tools. This type of file includes detailed description about the paths
analyzed in the circuit and information about their timing behavior,
timing violations and constrains verification. Unlike edif files, the timing
report format is easily readable and understandable giving information to
user about the paths in the design. It is worth mentioning that the content
of the timing report depends heavily on the timing constrains that are set
by user before synthesis and implementation. The format and structure of
the file do not change. A typical example of a timing report (.twr file) looks
like the following text document:

INFO:Timing:3412 - To improve timing, see the Timing Closure User Guide (UG612).

INFO:Timing:2752 - To get complete path coverage, use the unconstrained paths
option. All paths that are not constrained will be reported in the
unconstrained paths section(s) of the report.

INFO:Timing:3339 - The clock-to-out numbers in this timing report are based on
a 50 Ohm transmission line loading model. For the details of this model,
and for more information on accounting for different loading conditions,
please see the device datasheet.

Timing constraint: OFFSET = IN 1.8 ns BEFORE COMP "clk" "RISING";
For more information, see Offset In Analysis in the Timing Closure User Guide (UG612).

22249 paths analyzed, 255 endpoints analyzed, 0 failing endpoints
0 timing errors detected. (0 setup errors, 0 hold errors)

Minimum allowable offset is 1.791ns.
Slack: 0.009ns (requirement - (data path - clock path - clock arrival
+ uncertainty))
Source: S[2] (PAD)
Destination: T R 45 (FF)
Destination Clock: clk BUFGP rising
Requirement: 1.800ns
Data Path Delay: 3.268ns (Levels of Logic = 15)
Clock Path Delay: 1.502ns (Levels of Logic = 2)
Clock Uncertainty: 0.025ns
Clock Uncertainty: 0.025ns  ((TSJ”2 + TIJ"2)"1/2 + DJ) / 2 + PE
Total System Jitter (TSJ): 0.050ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

Maximum Data Path at Fast Process Corner: S[2] to T R 45
Location Delay type Delay(ns) Physical Resource
Logical Resource (s)

A20.I Tiopi 0.396 S[2]
S[2]
S 2 IBUF
SLICE X36Y122.C5 net (fanout=192) 1.026 s 2 IBUF
SLICE X36Y122.C Tilo 0.035 Mmux S[3] B[63] wide mux 20 OUT7 rs AS inv
Mmux S[3] B[63] wide mux 20 OUT7 rs AS inv2
SLICE X23Y101.AX net (fanout=1) 0.583 Mmux S[3] B[63] wide mux 20 OUT7 rs AS inv
SLICE_X23Y101.COUT Taxcy 0.162 Mmux_S[3] B[63] wide mux 20 OUT7_rs_cyl[3]

Mmux S[3] B[63] wide mux 20 OUT7 rs cy<3>

82



SLICE X23Y102.CIN net (fanout=1) 0.000 Mmux S[3] B[63] wide mux 20 OUT7 rs cyl[3]
SLICE X23Y102.COUT Tbyp 0.031 Mmux S[3] B[63] wide mux 20 OUT7 rs cyl[7]

Mmux S[3] B[63] wide mux 20 OUT7 rs cy<7>
SLICE X23Y103.CIN net (fanout=1) 0.000 Mmux S[3] B[63] wide mux 20 OUT7 rs cyl[7]
SLICE X23Y103.COUT Tbyp 0.031 Mmux S[3] B[63] wide mux 20 OUT7 rs cy[1l1l]

Mmux_S[3] B[63] wide mux 20 OUT7_rs_ cy<l1>
SLICE_X23Y104.CIN net (fanout=1) 0.000 Mmux_S[3] _B[63] wide mux 20 OUT7_rs cy[1l1]
SLICE X23Y104.COUT Tbyp 0.031 Mmux S[3] B[63] wide mux 20 OUT7 rs cy[1l5]

Mmux_S[3] B[63] wide mux 20 OUT7 rs cy<15>

Total 3.268ns (1.009ns logic, 2.259ns route)
(30.9% logic, 69.1% route)
Skipping the introductive text, a detailed description and explanation
of some of the first properties of the path will be given.

e Slack: the first item listed for each path is the slack, which is how
much time the path made the constrain by, or in the case of a
negative number, how much it is violated by.

Source: the source is the output pin that drives the path.

Destination: the destination is the stopping point of the path.

Requirement: The requirement is the time constrain number.

Data path delay: this line shows the total path delay as well as the

number of levels of logic used to implement the timing path.

e Clock path skew: The Clock Path Skew is the difference between
the time a clock signal arrives at the source flip-flop in a path and the
time it arrives at the destination flip-flop. The PAR clock report
shows Net Clock Skew. The Net Clock Skew is skew on the clock net.
The Clock Path Skew takes the entire clock path into account not just
the clock net. This would include the IBUFG delay, net delay to a
DCM, delay through a DCM, net delay to global buffer, delay through
the global buffer and the clock net delay.

e Source clock: The Source Clock is the name of the source clock
signal (if any) driving a synchronous source (For Example, FF).

e Destination clock: The destination dock is the name of the
destination clock signal (if any) driving a synchronous destination
(For Example, FF).

e Clock wuncertainty: The clock uncertainty for an OFFSET
constraint might be different than the clock uncertainty on a
PERIOD constraint for the same clock. The OFFSET constraint only
looks at one clock edge in the equation but the PERIOD constraints
takes into account the uncertainty on the clock at the source registers
and the uncertainty on the clock at the destination register so that
two clock edges are in the equation.

After these items, timing report describes the route that the path has
chosen in order to connect the starting and ending point. The file contains
information about the slice that it crosses, what type of delay is caused
(for example if is delay on a net or due to process in a LUT), how many
nanoseconds is the delay and the physical and logical resources of the
components that are used inside the slice mentioned before. Finally, the
total amount of delay is further analyzed in order to give user more
detailed information. In general, the format of the timing report is simple
and easy to read. (Timing Analyzer, 2008)

83



84



Biploypaoia

BDTI Industry Report. (2006). FPGAs for DSP. Berkeley Design

Technology.
Brown, S., & Rose, J. (n.d.). Architecture of FPGAs and CPLDs: A Tutorial.
Avaxtnon amo EECG:

http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

Digital System Design Using Data Path and Control Unit. (2013).
Avaxktnon amod King Fahd University:
http://faculty. kfupm.edu.sa/COE/elrabaa/coe200/DP_CU.pdf

EDIF  Overview. (2005). Avakmon amdé Elgris Technologies:
http://www.elgris.com/content/edif_overview.html

Englander, 1. (2009). The Architecture of Computer Hardware, System
Software and Networking. New Jersey: John Wiley & Sons.

FPGA Timing. (2015). Avaxnon amo Embedded  Micro:
https://embeddedmicro.com/tutorials/mojo/timing

Guide to EDIF. (2005, July 18). Avaxtnon amé Electronic Industries
Alliance:
http://web.archive.org/web/20051218041919/http://www.edif.org/intr
oduction.html

Kuon, I., Tessier, R., & Rose, J. (2008). FPGA Architecture: Survey and
Challenges. Avaktnon a6  Imperial  College  London:
http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf

Mano, M. M., & Ciletti, M. (2007). Digital Design. Pearson Education.
Mukhopadhyay, D. (2012). Design of Control Path. Avaktnon amé Indian

Institute of Technology Kharagpur:
http://cse.1itkgp.ac.in/~debdeep/teaching/VLSI/slides/ControlPath.p
df

National Instruments. (2012, April 16). Introduction to FPGA Technology.
Avaxtnon ané NI: http:// www.ni.com/white-paper/6984/en/

Processor: Datapath and Control. (2014). Avakton amé Linkoplings
Universitet:
https://www.ida.liu.se/~TDTS10/info/lectures/Lecture3.pdf

Roosta, R. (2010). Synchronous Vs Asynchronous Design. Avaxtnon amo
California State University, Northridge:
http://www.csun.edu/edaasic/roosta/Syn_Asyn_Design.pdf

Spartan-6 FPGA Clocking Resources. (2015, June 19). Avdaxktnon amd
Xilinx.com:
http://www .xilinx.com/support/documentation/user_guides/ug382.pd

f

85



Synchronous and Asynchronous Circuits. (2006). Avaxtnon ané University
of Surrey: http://www.ee.surrey.ac.uk/Projects/CAL/seq-
switching/synchronous_and_asynchronous_cir.htm

The Linley Group. (2009). A Guide to FPGAs for Communications.

Thompson, M. (2004, July 2). FPGAs accelerate time to market for
industrial  designs.  Avakmon  am6  Design &  Reuse:
http://www.us.design-reuse.com/articles/8190/fpgas-accelerate-time-
to-market-for-industrial-designs.html

Timing Analyzer. (2008). Avdaxnon ato Xilinx:
http://[www xilinx.com/itp/xilinx10/isehelp/pta_p_ar_timing_constrai
nts.htm

Wawrzynek, J. (2013, March 19). EECSZ 50 - Digital Design. Avaxtnon amo
Berkeley http://www-
inst.eecs.berkeley. edu/~cs150/sp13/agenda/1ec/1ecl7 timing2.pdf

Wolf, W. (2008). Computers as Components. Morgan Kaufmann.

86



