SN
A
éﬁé’

VA w0

W = I’ ® o

< ! T g’_'

c s=>

A\
=

EONIKO METXOBIO [TOATTEXNEIO
YXOAH HAEKTPOAOTQN MHXANIKOQN KAI MHXANIKON TTIOAOTISTON
TOMEAY. TEXNOAOTTAY. ITAHPO®OPIKHY. KAI TIIOAOTISTON
EPTAXTHPIO TIIOAOTISTIKON SYSTHMATON

Yyediaowog xouw YAornoinon Mrnyaviopol
Ewovixonoinong Movddwy Enelepyaciog I'pagpixady xou
Arapolpaciol Toug oe Ewcovixeg Mnyaveg

Avmhwpatiny| Epyooia

TOL

Anurterouv Bdolla

EnBAenwyv: Nextdpioc Kolopng
Kodnynthc E.M.IL

Adrva, Mdptioc 2016

IR EIgy
g?;g % “‘Eﬁﬁ& National Technical University of Athens
“,_:9":';“ §m§ School of Electrical and Computer Engineering
§=>/ Computer Science Division

Jull
L

T508
QY"::: NE
n
N

(

Computing Systems Laboratory

v,

Design and Implementation of a GPU Virtualization
Framework

Diploma Thesis

of

Dimitrios Vasilas

Supervisor: Nectarios Koziris
Professor N.T.U.A.

Evyxpidnxe and tnv teiuelt| eetac x| emitpont| v 30 Moptiou 2016.

Tedpyioc I'voluag
Aéxtopac E.M.II.

Anuhteloc Sodvteng
Avaninewtic Kadnynthc E.M.IL

Nextdproc Kolbeng
Kodnyntic E.M.IL.

Athens, March 2016

Anunteroc Bdolhog
Awmhopatodyoc Hiextpohdyog Mnyavixoc xon Mnyavixéc Troroyotov E.M.IL
© (2016) National Technical University of Athens. All rights reserved.

Anoyopedeton 1 avTiypopt], anoUhxeuoT) xou Slavour| Tne Tapoloas epyaciog, €€ oloxAnpou
1) TWARATOS AUTAS, Yio EUTopLxd oxond. Emtpéneton 1 avatinmon, anodixeuct) xou SLovour)
Yl OXOTO U1 XEEBOCKOTIXOG, EXTOUOEUTIXAC 1) EPELVITIIXAG QUONS, LTd TNV Teolndleon
VO AVAUPEQETOL 1) TUNYT) TEOEAEUOTC Xai VoL Blatneeiton To mapdy prvuue. Epwthuata mou
apopoLY TN YpNon TNg epyasiag yia xepdooxomixd 6XOTO MEETEL Vo ameudlvovTon TEOg TOV
ouYYpApEQ.

Ou amddeic xou Tor oLUUTEPAOUATA TOU TEQIEYOVTOL OE AUTO TO £YYEAUPO EXPEALOUV TOV
cuyypapéa xaL O0ev umopel va epunveutel OTL avtimpoownebouy TiC emlonuec Yéoelc Tou
Edvixold Metodfou Ilohuteyveiou.

Abstract

Graphics Processing Units (GPUs) have become a powerful platform, that can
provide significant performance benefits to data parallel applications. Graphic
processors are being increasingly introduced as accelerators in high performance
computing (HPC) systems due to the development of GPGPU (General-Purpose
Computation on GPUs). Furthermore, virtualization technologies are gaining in-
terest in these domains, due to their benefits on server consolidation as well as the
isolation and ease of management they offer. There is thus a growing need to com-
bine the benefits of both fields by providing heterogeneous resources, particularly
GPUs, in virtual environments.

In this thesis we address the challenge of integrating GPGPU into virtualized
environments. We propose a mechanism that enables the execution of GPU ac-
celerated applications within Virtual Machines (VMs). Our framework consists of
two components: a user level library and a paravirtualized driver, which enables
communication with the host’s GPU driver. To validate our approach, we con-
duct experiments on a variety of GPU applications, focusing on the virtualization
overhead and the scalability of our framework.

Keywords— Graphic Processing Unit (GPU), General-Purpose Computation
on GPUs (GPGPU), Virtualization, Cloud, High Performance Computing (HPC),
CUDA, Virtio

ITepiAndm

Ou povddeg enclepyaciog ypapixdv (Graphics Processing Units - GPUs) éyouv
elelydel oe 1oyupole enelepyacTég, oL OToloL UTOEOUY Vol TUEEYOLUY ONUAVTIXG
OQENN OE EQPUPUOYEC XATAAANAES Yyior apdhhnhn enelepyacion. Ot enelepyaotéc
YEUPIXWY YENOYLOTOLOUVTAL OAO X0 TEPLOGOTERO OE GUC THUATO UTOAOYIOUMY UPNAGY
emdboewy (High Performance Computing - HPC) eZoutiog tng avdmntuéng twy ut-
ohoytopwy yevixol oxonol oe GPUs (General-Purpose Computation on GPUs -
GPGPU). Emniéov, oL teyvohoyieg emovixonoinong xepdilouy €dagoc oe autolg
TOUG TOUEIC, AOYW TWY OPEAMY TOUC GTNY OUAdOTOINCY) EEUTNEETNTAY XodMS XaL TNV
amoUOVWGT) xot TNV euxolla dlayelplong mou mpocgépouy. IlpoximTel enopévee T
VYT VO GUVOLAGTOOY To OPEAT XL TOV OLO TEDIWY UE TNV TUPOYT| ETEQOYEVHV
TOPWY, WOLETERA LOVADWY ETECepYaolag YRUPX®DY, GE EXOVIXE TEp3dAhovTaAL.

H mopoloa epyacio e€etdlel to (ATNUA TN EVOWUATWONG TEAYUATOTOINoNG UT-
ohoytopwy yevixol oxonol oe GPUs (GPGPU) oe exovixd mepiBddhovta. Ilo-
EOUGLALEL €V UMYAVIONO O OTOl0C ETUTEETEL TNV EXTEAEDT] EQUPUOYWY TOU YETNOL-
womotoVy emtdyuvon oand GPUs, oe Ewovixéc Mnyavée (Virtual Machines - VMs).
O unyaviopods amoteheiton and dVo péen: ula iAoty emmédou yeRoTn xou Evay
00N Y6 CUOXEUTS (driver) o onolog ULOTIOLEL TIOEA-ELXOVIXOTIOINOY), ETULTEETOVTOC ™y
emxownvia ue tov driver tng GPU tou host umohoyiot. T'o tnv allohéynon tng
enidoong tou unyoaviopol dieddyovtar tetpduata o TAndwea egapuoywny GPU, xa
allohoyeltan 1 emPdpuvon oty enidoor Toug AdYw eixovixonolnong, xadoe xou 1
HAUAXWOIOTNTA TOU GUC THUATOG.

AéEerg KAer61d— Movddeg Encéepyoaoioc I'oagpucyv, Troroyiopol I'evixol
Yxomol oe GPUs (GPGPU), Exovixonoinon, Cloud, High Performance Comput-
ing (HPC), CUDA, Virtio

FEuyaplotieg

Me tnv exndvnon tng nopolcog SITAWUATIXG EQYACING OAOXATEMVETAL EVOL OTULV-
TS XEQPIAALO TNG oxadNuaixnS Hou Topetag. Oo Hlela va ELy AP THOW TOUS avip-
Toug Tou pe Bordnooay oTr Sladpour| AuTH.

Apywnd Yo fieha va evyaplothow tov Kodnyntsh E.MIL x. Nextdpio Kollen
TIOU 0L EDWOE TNV euXAElol VoL YVWEIow TOV TOPEN TWV UTOAOYLO TIXWY CUC TNUATOVY
X0 TN OUVTOTNTAL VoL Aoy OANI® UE Eva TOG0 evdtagépoy Yéua o auth TNV epyaoia.
Oa Hleha oxoun va euyaplothon tov Aéxtopa x. Iewpylo I'vodua xan Ghar tor U€AN
Tou Epyaotnpiou Troloyio tixev YuoTnudTteny yia TI¢ ETOX000UNnTixé cLlNTAoELS
TIOL OO YNOAV G T OlOEPWoT) TNE epyaciog. 'Eva ddtepo euyopto T o@ethe oTov
Trorgo Awdxtopa Ltégavo I'epdyyeho yio Ty dotia cuvepyasion dag xon T Ot-
aexh) xoodH YO TOU Yo TNV EXTOVNON TNG TUEOLCAS OITAWUNTIXAS EpYaciag.

Téhog Vo fdehar Vo EUYAPLE TAHOW TNV OLXOYEVELN HOU YLal TNV Ay dmn o T o TR
TOUg xaL Toug @ihoug pou, ol omofol oTdlnxay dimha You o xde Briua auThAc NG
TpoondvelaC.

Contents

1 Introduction

1.1
1.2

Motivation
Thesis Contribution

2 Background

2.1 From Single Core to Heterogeneous Systems
2.1.1 Moore’s Law
2.1.2 Single Core Systems
2.1.3 Multicore Systems
2.1.4 Heterogeneous Systems
2.2 General Purpose Computing on GPUs
2.2.1 Graphics Processing Units
2.2.2 GPGPU Programming Interfaces
2.3 Virtualization
2.3.1 Virtual Machine
2.3.2 Hypervisor
233 Benefits
2.3.4 Virtualization Techniques
235 QEMU-KVM
2.3.6 I/O Virtualization
3 Design and Implementation
3.1 Library
3.2 Frontend Drivero
3.3 Virtual CUDA Device
3.4 Data and Control Path
3.5 Runtime API Implementation Details
3.6 Isolation and Security
3.7 Current Limitations

10
10
10
10
11
13
14
14
15
20
20
21
22
23
26
27

4 Experimental Evaluation
4.1 Sleep and Busy Wait Implementations
4.2 Microbenchmark Performance
4.3 Breakdown Analysis o oo
4.4 TImpact of Input Data Size
4.5 Application Performance
4.6 Performance at Scale
4.6.1 Scaling Measurements
Related Work
5.1 vCuda
52 rCuda
5.3 gVirtuso
54 GVIM
5.5 LoGV
5.6 Distributed-Shared CUDA
D.7 gVirt . ..o
5.8 GPUvm
5.9 Gdev
5.10 Pass Through
Discussion
6.1 FEffect of GPU Resource Sharing on
Application Performance L.
6.2 Conclusion.
Ewcaywyi
11 Kitpoo
1.2 Hpotewouevn Abono
OcwpenTixd YTrofadpo
2.1 TIlpoypappatiotixd HepBddrovta GPGPU
2.2 Ewovixornolnon Yuoxeumy Ewédou/EE60ouo
Y xediaowodg xoL VAoToinoy
3.1 Bhofpen ..o
3.2 Frontend Driver
3.3 Ewovu Yuoxevy CUDAo oo
3.4 Aemtopépec Thonolnone Runtime API
3.5 Amoudvworn xon AGQEAE
3.6 Aetovpywol Ileproplopol oo

38
39
40
41
44
45
46
47

48
48
49
49
20
20
20
o1
o1
o1
o1

54

4 Tlepapatixry AZloAo6yTOoT
4.1 Tlomofoeg Sleep xou Busy Waito
4.2 Endoon Microbenchmark00
4.3 Avéhuon Breakdown
4.4 Enldoon Egaguoyhco
4.5 Metprioeigc Khwdxwong o oo

5 Xyetuxéc YAomowioeig

6 X0vodm
6.1 Avdhiuon Enidpacng tou Awuorpoouot
[Tépwv otnv Enidoon Egoguoyody 00000
6.2 Yuunepdouata xou Melhovtineg
KoteudOvoeic o

Bibliography

73
74
75
75
78
79

80

82

82

84

84

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1

4.1
4.2
4.3
4.4
4.5
4.6

The framework’s architecture 8
CUDA Software Stack 16
Grid of Thread Blocks 17
Compilation Output, 19
Trap-and-Emulate Implementation 24
Data Transport Mechanism 28
Data and Control Path 31
Microbenchmark Performance 40
Breakdown Analysis: cudaMemcpyHostToDevice 41
Breakdown Analysis: cudaMemcpyDeviceToHost 42
Input Size Impact 44
Application Performance 45

Scaling Measurements 46

List of Tables

4.1 Comparison of Sleep and Busy Wait Implementations 39
4.2 cudaMalloc Overhead 42
4.3 cudaFree Overhead 43

4.4 Kernel Launch Overhead 43

Chapter 1

Introduction

1.1 Motivation

Nowadays, Graphics Processing Units (GPUs), driven by the insatiable mar-
ket demand for real-time, high-definition 3D graphics, have evolved into general-
purpose, high performance, multicore processors capable of high computation
throughput and memory bandwidth. In addition to being efficient at manipulat-
ing computer graphics and image processing, their highly parallel structure makes
them well-suited to address problems that can be expressed as data-parallel com-
putations with high arithmetic intensity. As a result, GPUs are being introduced
as accelerators in order to achieve speed-ups in applications traditionally handled
by the central processing unit (CPU). This approach, known as general purpose
computation on GPUs (GPGPU), is being increasingly adopted in HPC (High
Performance Computing) applications. Research has demonstrated that computa-
tionally intensive applications from a wide range of scientific fields, such as finance
[1], chemical physics [2], weather broadcast [3], fluid dynamics [4] etc. can leverage
GPUs to obtain major gains in performance. In addition to the scientific domain,
GPUs are used in software routers [5], encrypted networks [6] and database man-
agement systems [7] as well. One of the reasons general purpose computing on
GPUs has been well established is the introduction of dedicated programming en-
vironments, compilers, and libraries such as CUDA from Nvidia.

On the other hand, virtualization technology has an increasing influence on
how computational resources are used and managed. The growth in hardware
performance and the increased demand for service consolidation from business
markets, leads virtualized cloud environments to host an ever growing amount of
computations. Virtual Machines (VMs) can improve resource utilization, as sev-
eral different customers may share a single computing node with the illusion that

they own the entire machine in an exclusive way, while providing process isolation
and ease of management. Consequently, virtualization techniques are a promising
effort to run high performance software on a grid, as obtaining virtualized cloud
computational resources is an elastic, time and cost efficient alternative to the tra-
ditional way of obtaining resources. With the recent advances in both virtualiza-
tion and GPU technology, there is an ever-growing need to provide heterogeneous
resources, particularly GPUs, within the cloud environment in the same scalable
and on-demand way as traditional virtualized hardware. Cloud providers are thus
facing the challenge of integrating GPGPUs into their platforms. For example,
Amazon Elastic Compute Cloud (EC2) [8] provides GPU instances as comput-
ing resources, but each client is assigned with an individual physical instance of
GPUs. Unfortunately, in the cloud context 1/O virtualization suffers from poor
performance, due to the overhead incurred by indirect access to physical resources
and the need to multiplex the application’s access to /O resources. Virtualization
and sharing of GPU hardware face additional challenges due to the character-
istics of graphic processing units that do not enable preemptive scheduling and
time-sharing capabilities.

1.2 Thesis Contribution

In this thesis we propose an efficient approach to expose GPGPU capabilities
in virtual machines. We present the design and implementation of a framework
that enables applications executing in virtual environments, to accelerate their
performance exploiting GPU resources. By using our framework, multiple VMs
co-located in the same host computer can share physical GPU resources. As a
proof of concept we target the virtualization of CUDA-enabled GPUs by enabling
applications developed using the CUDA platform to execute within VMs. Our
approach employs paravirtualization techniques and uses a split driver model. It
consists of a user-level library, a frontend driver located at the guest OS and a
backend driver implemented at the hypervisor. The framework’s architecture is
shown in Figure 1.1.

In summary, the main contributions of our work are:

o We propose an efficient GPU virtualization framework that enables GPGPU
applications to execute within VMs, and implements GPU resource sharing
among co-located VMs.

o We maintain CUDA Runtime binary compatibility, so that existing applica-
tions can use our framework without any source code modification.

Virtual CUDA Device

Hypervisor

Figure 1.1: The framework’s architecture

o We categorize GPU accelerated applications based on their computation and
memory access profile and discuss which types applications could benefit by
using our framework.

Our performance evaluation shows that our framework achieves low virtualization
overhead, making GPU accelerated applications executing within VMs competitive
to those executing in native environments with direct access to GPU resources.

Chapter 2

Background

2.1 From Single Core to Heterogeneous Systems

2.1.1 Moore’s Law

The evolution of computer systems has been tightly associated with the pursuit
of processing power. Today’s personal computers have many times more pro-
cessing power than the first supercomputers, introduced in the 1970s. Moreover,
modern supercomputers perform millions of times more floating-point operations
per second than their first predecessors. Considering that this milestone has been
reached in a little over three decades, it is evident that the evolution of comput-
ers in terms of processing power has been exponential. Intel co-founder Gordon
Moore first made this famous observation in 1965. He stated that the number of
components in integrated circuits was doubling every 12 months and projected this
rate of growth would continue for at least another decade. The doubling of the
number of components is generally interpreted as the doubling of processing power.

This prediction has been proven accurate for several decades as Moore’s law
has been used in the semiconductor industry to guide long-term planning and to
set targets for research and development. The exponential improvement that the
law describes has transformed the first personal computers of the 1970s, with pro-
cessing speed of a few kHz, to todays supercomputer, many-core smartphones and
Internet of Things devices.

2.1.2 Single Core Systems

The first computing systems implemented the von Neumann architecture and
processed information serially using a single processing core. For about three

decades, advancements in hardware technology followed Moore’s law allowing com-
puting systems to increase their performance. The ever growing number of tran-
sistors was used to achieve instruction level parallelism (ILP) through technologies
such as branch prediction, out of order execution and superscalar architectures as
well as building larger caches and more cache levels. Programmers could bene-
fit from architecture improvements and application’s performance increased at no
programming cost.

2.1.3 Multicore Systems

Another important effect that contributed to the evolution of single core pro-
cessors was Dennard Scaling. This scaling law stated that as transistors become
smaller their power density remains constant, so that smaller transistors requires
less voltage and lower current. As a result, as the size of the transistors shrunk
and the voltage was reduced, manufacturers were able to raise clock frequencies
without significantly increasing overall circuit power consumption. However, since
around 2005 Dennard Scaling appears to have broken down. While transistor
count in integrated circuits is still growing, improvements in performance through
frequency increases have become challenging due to increased heat and energy
costs.

The failure of Dennard scaling led CPU manufacturers to focus on increas-
ing the number of cores on chips as an alternative way to improve performance.
Multicore systems enabled performance improvements through parallel processing,
solving a problem by dividing it in multiple tasks which can execute simultane-
ously on multiple processors. The increase in processing power through multicore
systems is more challenging to benefit from, since programmers need to develop
parallel software that exploits the multicore architecture.

Based on the number of instructions and data streams that can be processed
simultaneously, parallel systems can be classified into four categories:

 Single Instruction Single Data (SISD): A SISD computing system is
a traditional uniprocessor machine. Such a sequential computer exploits no
parallelism in either the instruction or data streams.

« Single Instruction Multiple Data (SIMD): A SIMD computing sys-
tem is a multiprocessor machine capable of executing the same instruction
on multiple cores, operating on different data streams. Example of SIMD
systems are array processors and graphics processing units.

11

o Multiple Instruction Single Data (MISD): A MISD computing system
is a multiprocessor machine capable of executing different instructions on
multiple cores, all operating on the same data set. This architecture is
uncommon and is generally used for fault tolerance.

o Multiple Instruction Multiple Data (MIMD): A MIMD computing
system consists of multiple autonomous processors simultaneously executing
different instructions on different data. MIMD architectures include multi-
core processors and distributed systems.

Multicore architectures are categorized into shared memory and distributed
memory systems based on how processing cores are coupled to the main memory.

Shared Memory

In the shared memory model all processing cores are connected to a single
global memory which they can access. Communication between cores takes place
through the shared memory, since modification of the data by one core is visible
to all other cores. This model enables fast and uniform data sharing between tasks
due to the proximity of memory to CPUs. Global address space also offers ease
of programming. However this approach suffers form lack of scalability. Adding
more CPUs can geometrically increase traffic on the shared memory-CPU path as
well as traffic associated with cache coherence.

Based on memory access times, shared memory architectures can be classified
into two categories:

e Uniform Memory Access (UMA): All processors share the physical
memory uniformly and access time to a memory location is independent
of which processor makes the request or which memory chip contains the
transferred data.

« Non-Uniform Memory Access (NUMA): Each processor has its own
local memory and can also access memory owned by other processors. Mem-
ory access time in this model depends on the memory location relative to
the processor, since processors can access their local memory faster than
non-local memory. The NUMA architecture was designed to surpass the
scalability limits of the UMA architectures. It alleviates the bottleneck of
multiple processors competing for access to the shared memory bus.

12

Distributed Memory

In the distributed memory model all processing cores have their own local
memory and computational tasks operate only on local data. If remote data are
required, the computational task needs to communicate with one or more remote
processors. Communication between cores takes place through the interconnection
network. The distributed memory model achieves high scalability, since memory
can increase proportionally to the the number of processor, as well as cost effec-
tiveness, since commodity processors and networking infrastructure can be used to
build such systems. Moreover, each processor can rapidly access its local memory
without the overhead incurred by global cache coherence operations. On the other
hand, programming is more challenging as developers are responsible for details
associated with communication between processors.

2.1.4 Heterogeneous Systems

By the end of 2010, multicore processors had entered the mainstream of af-
fordable computing. Nearly all new desktop computers used dual-core and even
quad-core processors. Meanwhile, advances in semiconductor technology led GPUs
to grow in sophistication and complexity. Those developments gave rise to hetero-
geneous computing systems. Heterogeneous architectures use more than one kind
of processor (CPUs, GPUs, FPGAs etc.) and gain performance not just by adding
cores, but also by incorporating specialized processing capabilities of each kind of
processor to handle particular tasks.

GPUs are widely used in heterogeneous systems. They have vector processing
capabilities that enable them to perform parallel operations on very large sets of
data at lower power consumption, relative to the serial processing of similar data
sets on CPUs. While their value was initially derived from their ability to improve
3D graphics performance by offloading graphics from the CPU, they are becom-
ing increasingly attractive for general purpose computations, such as addressing
data parallel programming tasks. CPU-GPU systems can cooperate so that math-
ematically intensive computations are offloaded to GPUs while CPUs can run the
operating system and perform traditional serial tasks.

Another kind of processors used in heterogeneous computing systems are co-
processors. An example of such systems is the Intel Many Integrated Core (MIC)
architecture which contains the Intel Xeon Phi coprocessor. The Intel Xeon Phi
coprocessor is primarily composed of processing cores, caches, memory controllers
and a high bandwidth ring interconnect. The coprocessor is connected to an Intel
Xeon ’host’ processor, through a bus and runs a Linux operating system. Thus,

13

users can connect to the access as a network node and directly run individual
jobs as well as execute heterogeneous applications where a part of the application
executes on the host while a part executes on the coprocessor.

Modern smartphone and tablet market has created the need for high perfor-
mance combined with low power consumption. ARM big.LITTLE heterogeneous
architecture has been designed to address theses requirements. This architecture
uses two types of processors. 'LITTLE’ processors are designed for maximum
power efficiency while ’'big’ processors are designed to provide maximum compute
performance. Using this technology, each task can be dynamically allocated to a
'big’ or 'LITTLE’ core depending on the instantaneous performance requirement
of that task. Typically, only one side is active at once, but since all cores have ac-
cess to the same memory areas, workload can be swapped from ’big’ to 'LITTLE’
and back on the fly.

2.2 General Purpose Computing on GPUs

2.2.1 Graphics Processing Units

A Graphics Processing Unit (GPU) is a single-chip processor that performs
rapid mathematical calculations, primarily for the purpose of rendering images.
In the early days of computing, the central processing unit (CPU) used to perform
these calculations. As more graphics-intensive applications were developed, their
demands degraded performance of CPU. GPU was introduced as a way to offload
those tasks from the CPU, freeing up its processing power. Nvidia introduced
the first GPU, GeForce 256, in 1999. This GPU model could process 10 million
polygons per second and had more than 22 million transistors. ATI Technologies
released the Radeon 9700 in 2002 using the term visual processing unit (VPU).
Over the past few years there has been a significant increase in performance and
capabilities of GPUs due to market demand for more sophisticated graphics.

Nowadays, GPUs are widely used in embedded systems, mobile phones, per-
sonal computers, and game consoles. Modern GPUs are very efficient at manipu-
lating graphics as well as in image processing. Furthermore, their highly parallel
structure makes them more effective than general-purpose CPUs for algorithms
where processing of large blocks of data is done in parallel. As a result, a large dis-
crepancy in floating-point capability between the CPU and the GPU was emerged.
The main reason is that GPUs are specialized for compute-intensive, highly par-
allel computation and therefore designed such as more transistors are devoted to
data processing rather than data caching and flow control, as is the case for the

14

CPU. More specifically, GPU is especially well-suited to address problems that
can be expressed as data-parallel computations with high arithmetic intensity.
Because the same program is executed in each data element, there is a lower re-
quirement for sophisticated flow control. Memory access latency can be hidden
with calculations instead of big data caches. GPUs can therefore be considered
as general-purpose, high-performance, many-core processors capable of very high
computation and memory throughput.

2.2.2 GPGPU Programming Interfaces

General purpose computing on GPUs is the term referring to the use of graphics
processing units, which typically handle computation only for computer graphics,
to perform computation in applications traditionally handled by central process-
ing units (CPUs). GPGPU is used in a variety of applications such as physics
calculations, encryption/decryption, scientific computations and the generation of
crypto currencies such as Bitcoin. CUDA (Compute Unified Device Architecture)
[9] and OpenCL (Open Computing Language) [10] are two widely used interfaces
offering general-purpose computing capabilities on GPUs. Both present similar
features but through different programming interfaces.

OpenCL, developed by the Khronos Group, is an open standard for cross-
platform, parallel programming on heterogeneous platforms consisting of central
processing units (CPUs), GPUs, digital signal processors (DSPs), field-programmable
gate arrays (FPGAs) and other processors or hardware accelerators. OpenCL spec-
ifies a C-like language that enables development of applications that execute on
these platforms, and defines an API that allows programs running on the host to
launch functions (kernels) on the compute devices and manage device memory.

CUDA is a parallel computing platform and application programming interface
(API) introduced by Nvidia. It allows software developers to use CUDA-enabled
GPUs for general purpose processing. The CUDA platform is accessible to de-
velopers through libraries, compiler directives such as OpenACC and extensions
to programming languages including C, C++ and Fortran. It also supports other
computational interfaces, such as OpenCL.

CUDA offers two programming interfaces: (1) the Runtime API and (2) the Driver
API

o The Runtime API is a high-level interface that provides a set of routines and
language extensions and offers implicit initialization, context and module

15

management.

o The Driver API is a low-level interface that offers an additional level of con-
trol by exposing lower level concepts such as CUDA contexts, the analogue
of host processes for the device, and CUDA modules, the analogue of dynam-
ically loaded libraries for the device. However, using the Driver API requires
more code and effort to program and debug.

Figure 2.1 shows CUDA software stack. Most applications do not use the
Driver API, as they do not need the additional level of control, and use the Run-
time API instead in order to produce more concise code.

Application

'

CUDA Runtime API

! '

CUDA Driver API

!

CUDA Kernel Driver

Figure 2.1: CUDA Software Stack

At the core of the CUDA programming model there are three key abstractions,
a hierarchy of thread groups, shared memories, and barrier synchronization. From
the view of software developers the execution model is a collection of threads run-
ning in parallel. A block is a group of threads executing on a single multiprocessor
and dividing its resources equally amongst themselves. Blocks are organized into
a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks as
illustrated in Figure 2.2.

A problem is partitioned into coarse sub-problems that can be solved inde-
pendently in parallel by the blocks of threads, and each sub-problem into finer
pieces that can be solved cooperatively in parallel by all threads within the block.
CUDA extends the C/C++ programming languages by allowing programmers to
define functions (kernels) that, when called, are executed on each thread in paral-
lel. Each thread and block is given a unique ID that can be accessed within the

16

Block (0. 0) || Blode(1, 0) | Block (2, 0)

Block (0. 1} Blode (1, 1) %HZI)

Block (1, 1)

Figure 2.2: Grid of Thread Blocks

thread during its execution, allowing it to perform the kernel task on different set
of data.

CUDA exposes its features through a runtime library as well as a set of lan-
guage extensions. These language extensions allow programmers to define device
functions (kernels), configure and execute them on CUDA-enables GPUs. Exten-
sions include function type qualifiers that specify whether a function executes on
the host or the device and whether it can be called from the host or the device,
variable type qualifiers, that specify the memory location of a variable on the
device and build-in variables, that specify dimensions and indices for the GPU’s
multiple cores. Kernels are configured and launched using the execution configu-
ration extension, denoted with the <<<...>>> syntax. A function declared as:

__global __ void Func(float* parameter);
is called using:

Func<<< Dg, Db, Ns >>>(parameter);

where Dg specifies the dimension and size of the grid, Db the dimension and size of
each thread block and Ns the number of bytes in shared memory that is allocated
for this call.

Each thread that executes the kernel is given a unique thread ID that is ac-

cessible within the kernel through the built-in threadIdx variable. ThreadIdx is
a 3-component vector, so that threads can be identified using a one-dimensional,

17

two-dimensional, or three-dimensional thread index, forming a one-dimensional,
two-dimensional, or three-dimensional block of threads, called a thread block. This
provides a natural way to invoke computation across the elements in a domain such
as a vector, matrix, or volume.

When executing CUDA programs the GPU operates as co-processor to the
main CPU. GPU handles the core processing on large quantities of parallel in-
formation while CPU organizes, interprets, and communicates information. CPU
manages data transfers between host and device memory and initiates work on
GPU. A typical CUDA application’s flow is: First allocate required buffers in
device memory and copy input data from host to device. Then setup execution
configuration and trigger execution on the GPU and, finally, copy back the results
to the host memory.

The following sample code adds two vectors A and B of size N and stores the
result into vector C:

__global void VecAdd(float™ A, float™ B, float™ C)
{

int i = blockDim.x * blockldx.x + threadldx.x;
if (i <N) C[i] =A[i] + B[i];
}

int main ()

{

int 1i;
float a[N], b[N], ¢[N], *dev_a, *dev_b, *dev_c;
size_t size = N*gizeof (int);

cudaMalloc ((void **)&dev_a, size);
cudaMalloc ((void **)&dev_b, size);
cudaMalloc ((void **)&dev_c, size);

for (i=0; i<N; i++) {
ali] = i;
bli] = 2%i;
}

cudaMemcpy (dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy (dev_b, b, size, cudaMemcpyHostToDevice);

18

VecAdd<<<1, N>>>(A, B, C);

cudaMemcpy (¢, dev_c, size, cudaMemcpyDeviceToHost)
cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

Source files of CUDA applications contain both host and device code. More
specifically, they contain language extensions and device functions that need to
be compiled with the NVCC compiler. NVCC separates device code from host code
and compiles the device code into an assembly form of CUDA instruction set
architecture (PTX code) or binary form (cubin objects). Host code is modified by
replacing the execution configuration extension (<<<...>>>) with the necessary
runtime function calls to load and launch each compiled kernel from the PTX code
or cubin object. This procedure is illustrated in Figure 2.3. Device code is loaded
from cubin or PTX files either during initialization from the runtime or explicitly
using the Driver APL.

example_app.cu

__global__ void Func(float *parameter) nvee > example_app.cubinJ
{
cudaConfigureCall()
Func<<<Dg, Db, Ns>>>(parameter); nvec | cudaSetupArgumenty()
7 cudalLaunch()

Figure 2.3: Compilation Output

19

2.3 Virtualization

Software and hardware are traditionally intertwined and inseparable from one
another. Traditionally, an application executes on a particular processor, utilizes
a specific range of physical memory on the host computer, resides on a specific disk
drive and communicates using specific I/O ports. This results in resource conflicts
and performance issues when multiple workloads compete for the same physical
resources. Virtualization, breaks this relationship between the physical hardware
and the logical resources needed for an application’s execution by creating a layer
of abstraction between a workload and its underlying hardware.

Virtualization roots are traced back to the 1960s when IBM Watson Research
Center worked on the M44 /44X Project, which had the goal to evaluate the emerg-
ing concept of time sharing systems. A number of ground breaking virtualization
concepts were implemented in the M44/44X project including partial hardware
sharing, memory paging and time sharing. The M44/44X project is generally
accredited with the first use of the term virtual machine. The existence of virtu-
alization as a concept went largely unremarked for the nearly two decades of the
rise of client/server on x86 platforms.

The term virtualization refers to the act of creating a virtual version of a de-
vice or resource, such as a server, operating system, storage device or network
resources. Devices, applications and users are able to interact with the virtual
resource as if it was a real single logical resource. Virtualization is applied to a
wide range of system layers, including system-level virtualization, hardware-level
virtualization and application virtualization.

Hardware virtualization refers to the abstraction of computing resources from
the software that uses those resources. Hardware virtualization installs a hypervi-
sor or virtual machine manager (VMM), which creates this abstraction layer and
manages the underlying hardware. Once a hypervisor is in place, software relies
upon virtual representations of the computing components. Virtualized resources
can be utilized be isolated instances called virtual machines (VMs) where operat-
ing systems and applications can be installed.

2.3.1 Virtual Machine

A virtual machine (VM) can be defined an operating system or application
environment that is installed on software which imitates dedicated hardware. The

20

end user has the same experience on a virtual machine as they would have on
dedicated hardware. The hypervisor emulates the host’s CPU, memory, hard
disk, network and other hardware resources, enabling virtual machines to share
resources. Virtual machines are separated into two classes: (1) system virtual
machines and (2) process virtual machines.

e System virtual machines provide a complete system platform simulating the
complete system hardware stack and supporting the execution of complete
operating systems. They usually emulate an existing architecture, and are
built with the purpose of either providing a platform to run programs where
the real hardware is not available for use, or having multiple instances of
virtual machines leading to more efficient use of computing resources.

o A process virtual machine adds a layer over an operating system simulating
the programming environment for the execution of an individual process. It is
created when the process is started, runs as a normal application on the host
OS and is destroyed when it exits. Virtual machines of this class are usually
closely suited a programming language and their purpose is to provide a
platform-independent programming environment that abstracts away details
of the underlying hardware or operating system, therefore allowing a program
to execute in the same way on any platform. A popular example of this type
of VM is the Java Virtual Machine.

2.3.2 Hypervisor

A hypervisor or virtual machine monitor (VMM) is a piece of software that
allows a single computer to support multiple, identical execution environments. It
enables the creation and management of virtual machines. Multiple instances of
different operating systems executing on virtual machines may share the virtualized
hardware resources. Hypervisors can be classified into three types:

o Type-0 hypervisors which are a hardware feature and can run multiple guest
operating systems, each in a separate hardware partition. This type of VMM
is encoded in the firmware and loaded at boot time. It splits a system sepa-
rate virtual systems, each with dedicated CPUs, memory, and I/O devices.
Guest operating systems in a type-0 hypervisor are native operating systems
with a subset of hardware made available to them.

o Type-1 or bare-metal hypervisors which run directly on top of hardware.
They are special-purpose operating systems that run natively on the hard-
ware, but rather than providing system calls and other interfaces for running

21

programs, they create, run and manage guest operating systems. Type-1 hy-
pervisors provide better performance and greater flexibility because they op-
erate as a thin layer designed to expose hardware resources to VMs, reducing
the overhead required to run the hypervisor itself.

o Type-2 or hosted hypervisors which are installed as a software application on
an existing operating system. They support guest virtual machines by coor-
dinating calls for CPU, memory, disk, network and other resources through
the physical host’s operating system.

2.3.3 Benefits

Virtualization technology offers multiple benefits and has become widely adopted
in the information technology industry. Most of these advantages are fundamen-
tally related to the ability to run several different execution environments while
sharing the same hardware.

A major advantage of virtual machines in data center use is system consolida-
tion. A typical non-virtualized server usually achieves low utilization but, due to
virtualization, multiple lightly used systems can be run in virtual machines on the
same host system creating a more heavily used system. As a result, virtual ma-
chines can be hosted on fewer physical servers, leading to lower costs for hardware
acquisition, maintenance, energy and cooling system usage.

Apart from resource utilization, virtualization can improve resource manage-
ment as well. Most hypervisors implement live migration allowing a running vir-
tual machine to move from one physical server to another without interrupting
its operation or active network connections. This feature creates flexibility by de-
coupling workloads from the hardware and allowing load balancing. If a server is
overloaded, live migration can free resources on the host while not disrupting the
guest. Similarly, when host hardware must be repaired or upgraded, guests can
be migrated to other servers, and then migrated back, after the host maintenance
is complete.

Virtualized environments also facilitate creation and management of virtual
machines. Unlike conventional systems that need an operating system, device
drivers and application files in order to operate, a VM exists as a single file that
can be created and duplicated as needed. This enables creating snapshots of vir-
tual machines’ state periodically and storing them. Using those snapshots recovery
time after a system failures is accelerated as crashed VMs can be quickly reloaded.

22

Another advantage of virtual machines is that it facilitates operating system
testing and development. Operating systems are complex programs, and as a re-
sult a change in one part may cause bugs in other parts. Because the operating
system executes in kernel mode, a bug could cause the entire system to crash. Fur-
thermore, because the operating system controls the entire machine, the system
is unavailable to users while changes are made and tested. When system develop-
ment is performed on virtual machines those problem are overcome as the system
can be reverted to a previous state after a severe crash simply copying a virtual
image. System operation is disrupted only when a completed and tested change is
ready to be put into production.

Virtualization has laid the foundation for important advances in computer fa-
cility implementation, management, and monitoring. Cloud computing, in which
resources such as CPU, memory, and I/O are provided as services to customers
using Internet technologies, is made possible by virtualization. By using APIs,
programs can create thousands of VMs, using a cloud computing facility, all run-
ning a specific guest operating system and application, which others can access via
the Internet. This functionality is used by many multiuser games, photo-sharing
sites and other web services.

2.3.4 Virtualization Techniques

Trap-and-Emulate

Operating systems provide different levels of access to resources. They of-
fer hierarchical protection mechanisms (protection rings) in order to protect data
and functionality from faults and malicious behavior. This is generally hardware-
enforced by some processor architectures that provide different CPU modes at the
hardware level. Typical systems offer two modes: (1) user mode and (2) kernel
mode. In user mode the executing code has no ability to directly access hardware
or reference memory, while in kernel mode the executing code has complete and
unrestricted access to the underlying hardware.

A virtual machine which runs on a dual-mode system can execute code only
in user mode. However, just as a physical machine, the virtual machine has two
modes, a virtual user mode and a virtual kernel mode, both of which execute in
physical user mode. Operations such as system calls, interrupts and privileged
instructions that cause transfer from user to kernel mode on a physical machine
must also cause this transfer in a virtual machine.

In the trap-and-emulate method, when the guest kernel attempts to execute

23

a privileged instruction, an error occurs because the system is in user mode and
causes a trap in the physical machine. The VMM gains control, emulates the
action that was attempted by the guest kernel on behalf of the guest and returns
control to the virtual machine. Using this approach, non-privileged instructions
run natively on the hardware providing the same performance, while privileged
instructions can decrease performance of the guest system.

User Processes

Privileged Instruction

Guest Operating User Mode

System

uwnpy —

«—tdey ——

VMM

Kernel Mode
Emulate Action — Update VCPU

VMM

Figure 2.4: Trap-and-Emulate Implementation

Binary Translation

Some CPUs do not have a clean separation of privileged and non-privileged
instructions, making the implementation of the trap-and-emulation method chal-
lenging. Apart from privileged and non-privileged instruction there is a set of
instructions, referred to as special instructions, that can execute both in user and
in kernel mode with different behavior. No trap is generated when those instruc-
tions are executed in user mode rendering the trap-and-emulate procedure useless.

This problem can be overcome using the binary translation technique. In binary
translation, when guest virtual CPU (VCPU) is in user mode, the guest can run
its instructions natively on a physical CPU. When guest VCPU is in kernel mode,
the VMM examines every instruction the guest executes in virtual kernel mode
by reading the next few instructions that the guest is going to execute, based
on guest’s program counter. Special instructions are translated into a new set
of instructions that perform the equivalent task while other instructions are run
natively. Binary translation is implemented by reading guest binary instructions

24

dynamically from the guest and generating native binary code that executes in
place of the original code. Performance is improved using a translator cache where
the replacement code for each instruction that needs to be translated is cached.
All later executions of that instruction are fetched from the translation cache and
do not need to be translated again.

Hardware Assistance

Efficiently implementing virtualization is not possible without some level of
hardware support. Hardware-assisted virtualization is a platform virtualization
approach that enables efficient full virtualization using help from hardware capa-
bilities implemented in modern processors. Those CPUs define two new modes
of operation, host and guest. The VMM can enable host mode, define the char-
acteristics of each guest virtual machine, and then switch to guest mode, passing
control of the system to a guest operating system. When the guest tries to ac-
cess a virtualized resource, then control is passed to the VMM to manage that
interaction. In addition, CPUs include memory management enhancements and
hardware-assisted DMA technologies.

Paravirtualization

Paravirtualization differs from other virtualization approaches because it does
not aim to give the system the impression that it is running on physical hardware.
It instead presents the guest with a system that is similar but not identical to
the native. Paravirtualization does not require virtualization extensions from the
host CPU and thus enables virtualization on hardware architectures that do not
support hardware-assisted virtualization. However, guests require kernel support
and modified device drivers in oder to support this technique. This approach ac-
complishes more efficient use of resources and a thinner virtualization layer.

The Xen hypervisor, has implemented several paravirtualization techniques in
order to optimize performance of both host and guest systems. Xen implements
a different approach from other VMMs which present to guests virtual devices
that appear to be real devices. Instead it presents device abstractions that allow
efficient I/O, implementing communication between the guest and the hypervisor.
For each device used by each guest, there is a circular buffer shared by the guest
and the hypervisor via shared memory.

25

2.3.5 QEMU - KVM

Kernel-based Virtual Machine (KVM) [?] is a full virtualization solution for
Linux on x86 hardware containing virtualization extensions. It is a Linux subsys-
tem which leverages these virtualization extensions to add hypervisor capability
to Linux. Using KVM, one can create and run multiple virtual machine.

KVM is structured as a Linux character device, exposing a /dev/kvm device
node which can be used by userspace programs to create and run virtual machines
through a set of system calls. Operations provided by /dev/kvm include creation
and memory allocation to a new virtual machine, reading and writing virtual CPU
registers as well as injecting an interrupt into a virtual CPU.

QEMU [11] is an open source machine emulator. It can run an unmodified
target operating system and all its applications in a virtual machine. It has two
operating modes: user mode emulation and computer emulation. In user mode
emulation, QEMU can run OSes and programs made for one machine (e.g. an
ARM board) on a different machine by using dynamic translation. When used as
a machine emulator, QEMU emulates a full computer system and can be used to
provide virtual hosting of several virtual computers on a single computer. QEMU
can make use of KVM when running a target architecture that is the same as the
host architecture.

The primary usage of QEMU is to run one operating system on another. QEMU
is used for debugging as well, since virtual machines can be easily stopped, and
their state can be inspected, saved and restored. Moreover, specific embedded
devices can be simulated by adding new machine descriptions and new emulated
devices.

Each virtual machine that runs using QEMU is an individual QEMU process
on the host system. The guest’s RAM is mapped in the QEMU process’ address
space and acts as the physical memory for the guest. KVM allows QEMU to
execute guest code directly on the host CPU. In order to execute guest code, a
QEMU process opens /dev/kvm and issues the KVM_RUN ioctl(). When the guest
accesses a hardware device register, halts the guest CPU, or performs other special
operations, the ioctl() returns to QEMU. Then QEMU can emulate the desired
outcome or wait for a guest interrupt in the case of a halted guest CPU. The basic
flow of a guest CPU is as follows:

26

open (”/dev/kvm”)
ioct] (KVM CREATE VM)
ioctl (KVM_CREATE VCPU)
for (55) |
ioctl (KVM_RUN)
switch (exit_reason) {
case KVM_EXIT 10: /* ... */
case KVM_EXIT HLT: /* ... */

}

2.3.6 I/0 Virtualization

Paravirtualization is a common technology used to virtualize I/O devices. It
enables low overhead I/0O device virtualization providing efficient communication
between host and guest. In this approach virtual hardware is optimized for the
virtualization layer and exposes a software interface to the guest, which is sim-
ilar but not identical to that of the underlying hardware. It is implemented by
creating communication channels between hypervisor and guest operating system.
Paravirtualized frontend drivers post 1/O requests to backend drivers directly,
with minimal overhead. To address the issue of having a unified model for those
paravirtualized drivers across different virtualization systems, virtio [12] has been
proposed. Virtio provides a standardized interface for the development of virtual-
ized devices, as well as a mechanism to support guest-to-hypervisor communica-
tion.

Using the interface defined in virtio, guest drivers communicate with the hy-
pervisor by pushing data buffers to a shared queue. The guest posts request
buffers, which are processed by the backend to produce corresponding responses.
Virtio defines a virtual queue interface that can be used for guest-to-hypervisor
communication. Specifically, it implements a shared ring buffer mechanism that
enables guests to post buffers which host can consume. Each shared ring has a
callback function associated with it, which is called when the hypervisor consumes
the buffers. The communication scheme is shown in Figure 2.5. Using the virtio
data transport interface, frontend drivers can enqueue buffers to the shared ring
and notify the hypervisor. They can then either poll or wait to be notified when
results become available through a virtual interrupt. Frontend virtio drivers, in-
cluding drivers for network and block devices, have been added to the mainline

27

a VM

»i Frontend ~

~
-

virtual
interrupt

- - o
Il

-

-
-
S
~

e
/7
[
~

Backend

Hypervisor

Figure 2.5: Data Transport Mechanism

Linux kernel. Additionally, backend virtio drivers have been implemented for the
QEMU software. Those implementations use a data transport channel and a con-
trol mechanism which we also use in our approach.

The interface through which frontend and backend drivers communicate is
implemented using the virtqueue struct. A virtqueue is a shared ring into
which buffers are posted by the guest for consumption by the host. Each buffer
is a scatter-gather array consisting of readable and writable parts. The frontend
driver can enqueue requests destined for the backend, in the form of a scatter-
gather list. The buffer abstraction is implemented using a struct scatterlist
array. The array contains out entries describing data destined for the backend
driver, as well as in entries for that driver to store data to return to the frontend
driver. Virtio provides a set of functions that enable the guest driver to use the
virtqueue struct in order to communicate with the hypervisor:

struct virtqueue_ ops {
int (*add_buf)(struct virtqueue *vq,
struct scatterlist sg|],
unsigned int out_num,
unsigned int in_num,
void *data);
void (*kick)(struct virtqueue *vq);

28

void
void
bool
void

*(*get__buf)(struct virtqueue *vq, unsigned int *len);
(*disable_cb)(struct virtqueue *vq);

(*enable_cb)(struct virtqueue *vq);
*(

*detach__unused_buf)(struct virtqueue *

vq) ;

The basic operation is add_buf () which exposes buffers to the hypervisor.
The backend driver is notified via the kick() call to start processing the buffers.
When processing is completed, the guest calls the get_buf () function to retrieve
the buffers containing results. Polling is supported as get_buf () can be called at
any time, returning NULL no results are available. Guest driver can disable further
callbacks using disable_cb. Finally, the detach_buf () to detach the first unused
buffer from the virtqueue.

29

Chapter 3

Design and Implementation

In this chapter we describe our approach’s architecture and analyze how virtual-
ization and sharing of the GPU device is accomplished. We design our framework
using a paravirtualization approach and employ API redirection in order to enable
CUDA application to execute within VMs. The system consists of three software
modules: a user level library, a frontend driver located at the guest OS and a
backend that represents a virtual CUDA device. We accomplish virtualization by
intercepting library calls and redirecting their arguments to the frontend driver.
They are afterwards transfered to the backend through a communication channel
and executed on the host. Results are eventually returned to the guest. GPU
resource sharing is implemented by multiplexing execution requests at the back-
end side. Future work includes implementing a GPU resource management system
that enables scheduling of execution requests posted by multiple guests. Data and
control paths are depicted in Figure 3.1. Solid lines represent control path, while
dashed lines represent data path.

3.1 Library

CUDA applications access GPU resources through routine calls as well as exten-
sions to the C programming language. Routine calls are implemented in libraries
provided by the CUDA SDK. Moreover, language extensions are replaced at com-
pile time by internal function calls, not exposed to the programmer. Using our
framework, CUDA applications developed with the Runtime API remain binary
compatible since we expose the same interface in our library. In order to imple-
ment Runtime API routines in our library, we transfer routine arguments to the
backend, where the execution occurs, and receive the execution results.

/ m
p Application [| N | T T T~ > data copy

: ass b
[' _ """"""" > rgferenge
| 5a | library call | 5i
,' \ 4 ‘
i Library I
I [__user
'. | kernel
‘-\ 5b | ioctl() |
\ Y 1
| /
\ Frontend Driver \:| '~..
N %
virtual interrupt | 5e 5c | notify 5ii
\ R
e Virtual CUDA Device | | #_ _ _ ___________user
kernel

hardware
o

Figure 3.1: Data and Control Path

When a CUDA library call is made by an application (5a), we intercept the
arguments, pack them to an execution request among with other required data,
such as CUDA contexts, stored by the library, and forward the request to the fron-
tend driver through an ioct1() system call (5b). When the system call returns,
we unpack the results and return them to the calling process. Furthermore, we
accomplish virtualization of the kernel launch syntax (<<<...>>>) by implement-
ing the internal routines which replace the extension in our library. We intercept
CUDA SDK routine calls and override them with our library’s routines using the
LD PRELOAD environment variable.

31

3.2 Frontend Driver

We design the frontend driver as the intermediate component which forwards
execution requests from guest to backend. We implement the frontend driver as a
kernel module loaded to the guest Linux kernel. When a library routine makes an
ioctl () call (5b), the frontend driver handles it by performing appropriate mem-
ory allocations and copying the intercepted arguments from user space to kernel
space (5i). It then uses the data transport mechanism described in Chapter 2 to
make a request to the virtual CUDA device (5¢). When processing is complete,
the frontend driver copies results back to user space.

We implement two approaches for the mechanism which awaits results from the
virtual device, a polling based and an interrupt based. In the former approach the
driver repeatedly checks if a buffer has been pushed to the shared ring buffer by
the backend, while in the latter one the process’ state is changed to interruptible
sleep, until a virtual interrupt is received, indicating that a buffer has been pushed
to the shared ring. The interrupt handler then pops the buffer from the ring and
wakes up the process. We perform evaluation of the aforementioned implementa-
tions regarding their performance and CPU utilization.

We enable communication between frontend and backend utilizing the previ-
ously described data transport mechanism. More specifically, we issue execution
requests to the virtual CUDA device by pushing buffers to the shared ring buffer
and notifying the backend. This communication mechanism introduces a limita-
tion. Each data buffer has to be allocated in a physically contiguous way, which
is not always feasible, especially in large data transfers. This is a limiting issue in
the case of data copies between host and device memory. We therefore develop a
mechanism which falls back to a scatter-gather technique with smaller physically
contiguous buffers, in case the required memory cannot be allocated contiguously.
The backend can then access each piece of memory and reconstruct the original

buffer.

Moreover, we implement GPU resource sharing among processes executing con-
currently in the same virtual machine. We accomplish it by enabling co-executing
processes to access the shared ring buffer concurrently using a synchronization
scheme. Each process can independently push requests to the ring buffer and wait
for them to be processed.

32

3.3 Virtual CUDA Device

We design the backend part of the framework as a dispatcher which handles ex-
ecution requests from multiple co-located VMs. We implement the virtual CUDA
device as a QEMU PCI device. The backend component operates as a request han-
dler, receiving requests for routine execution as well as the required arguments and
executing them in the host environment. The backend can directly access buffers
provided through the data transport mechanism, without copying them. This is
possible since the guest’s physical address space is accessible from the QEMU pro-
cess’ virtual address space through a translation mechanism. When an execution

request is received, we decode it, retrieve required arguments and trigger execution
on the GPU (5d).

We eventually handle execution requests at the backend by executing appro-
priate CUDA Driver API routines. We choose the approach of implementing the
Runtime API using Driver API routines, since the Driver API allows explicit con-
text and module management. Explicitly managing module loading and CUDA
context switching is required in order to implement GPU resource sharing. We
ensure isolation and protection among CUDA applications by switching the CUDA
context associated with the calling process to the current one before issuing routine
execution, since each CUDA context has its own unique address space. When ex-
ecution is completed, we push buffers representing execution results to the shared
ring buffer and notify the guest by triggering a virtual interrupt (5e).

In order to accomplish sharing of the physical device among processes execut-
ing concurrently in co-located VMs, we implement a separate shared ring buffer
between the virtual CUDA device and each VM. We treat each request interde-
pendently and multiplex execution requests from co-located virtual machines. By
multiplexing execution requests from CUDA application executing concurrently
on multiple VMs we enable them to share their access to GPU resources.

3.4 Data and Control Path

The data and control paths are presented in Figure 3.1. CUDA applications al-
locate memory at guest user space in order to copy data to the device or pass
arguments to routine calls. When a routine call is performed by the applica-
tion, control passes to our library. Library routines and the frontend driver use
a common data structure in order to exchange data. Library routines intercept
arguments pack them to this structure and transfer control to the frontend driver
by performing an ioct1() system call. The driver copies required data from user

33

to kernel space. Subsequently, the frontend driver’s implementation packs the
appropriate arguments to a buffer, pushes it to the virtual queue, and notifies the
backend. Control is thus passed to the backend, while the frontend driver either
polls or sleeps waiting for results. The backend can access the exposed buffers
without copying them. It executes the appropriate routine and returns control to
the frontend driver through a virtual interrupt. The driver then copies results back
to the user space and returns to the library, which finally returns to the calling
process.

3.5 Runtime API Implementation Details

We implement virtualization of Runtime API routines by intercepting library
call arguments and forwarding them to the backend for execution. Standard li-
brary routines’ implementation is fairly straightforward since there are respective
Driver API routines offering the same functionality. However, implementing rou-
tine calls that replace the kernel launch extension (<<<...>>>) requires more effort,
since those routines are not exposed to the programmer and CUDA is proprietary
software not providing source code. We therefore employ reverse engineering tech-
niques in order to accomplish virtualization of the kernel launch extension. We
perform library call tracing in order to discover declaration of internal routines
that implement kernel launching. More specifically, we executed CUDA appli-
cations using the ltrace tool in order to discover the names of routines which
replace the kernel launch extension, as well as routines which perform runtime ini-
tialization. We then determined the declarations of those routines through header
files provided by CUDA SDK. We implemented the internal routines in our library
exposing the same interface in order to intercept their arguments and used debug-
ging techniques to discover how arguments are used. We implement the required
functionality by forwarding intercepted arguments to the backend and executing
appropriate Driver API routines. Multiple internal routines are used to configure
and launch the kernel. In our implementation we gather the appropriate argu-
ments, store them in data structures, and forward them lazily on the last call.

Moreover, before launching a kernel execution, we need to load device code
to the GPU from the appropriate CUDA object file. However, the Driver API
routine that implements module loading requires the programmer to provide the
object file name. Additionally, Runtime API implicitly manages module loading,
not exposing the respective file names. We therefore develop a mechanism which,
at the beginning of CUDA application execution, searches for . cubin files and uses
symbol extraction to determine which kernels are defined in each object file. More
specifically, during runtime initialization, we list all files in the current directory

34

using the 1s command, search for all files with the .cubin extension and store
them in a linked list structure. CUDA object files contain object code of device
functions (kernels) declared in the respective source files. Kernel names are en-
coded so that they also contain the number of arguments they use as well as each
argument’s type. We therefore use the nm command to list symbols contained in
.cubin files and employ pattern matching to decode the kernels’ names from the
given symbols. Subsequently, we store the mapping between object files and kernel
declarations in a data structure in our library. Furthermore, kernels are internally
referenced in functions using different names than the ones they are declared with.
We discover and store the mapping between kernel names and internal names using
arguments from the routine which registers the kernels. When a kernel is launched,
referenced with its internal name, we search for the its declared name and then
for the object file it is contained and use them to load the corresponding file and
register the kernel.

The internal CUDA routines are:

void** _ cudaRegisterFatBinary (void *fatCubin)
void __ cudaUnregisterFatBinary ()
void __ cudaRegisterFunction (void **fatCubinHandle, const char *hostFun,

char *deviceFun, const char *deviceName,
int thread_ limit, uint3 *tid, uint3 *bid,
dim3 *bDim, dim3 *gDim, int *wSize)

cudaError_t cudaConfigureCall (dim3 gridDim, dim3 blockDim, size_t sharedMem,
cudaStream_t stream)

cudaError_t cudaSetupArgument (const void *arg, size_t size, size_t offset)

cudaError_t cudaLaunch(const void *func)

__cudaRegisterFatBinary loads the GPU code representing the kernels used
by the application. We can’t use the void *fatCubin argument since the cor-
responding Driver API does not offer the same interface. We use this routine to
search the current directory and create the mapping between object files and ker-
nel declarations. We use __cudaUnregisterFatBinary to free allocated memory
before the application terminates. __cudaRegisterFunction registers the kernels
used by the application. We intercept the kernel names, search our mapping and
load the the appropriate . cubin files. The cudaConfigureCall, cudaSetupArgument

35

and cudaLaunch routines implement the kernel launch extension. We intercept the
required arguments from those calls and forward them to the frontend driver at
the cudaLaunch routine execution.

3.6 Isolation and Security

Our implementation ensures protection between applications executing within
a VM as well as between separate VMs. We achieve isolation using the mechanism
of CUDA contexts. CUDA contexts are the equivalent of CPU processes. Each
context has each own unique address space and, as a result, GPU pointer values
from different contexts reference different physical memory locations. We associate
a context with each application in order to ensure isolation and protection from
other applications executing in the same as well as different VMs. Then, we set
the current context each time at the backend side based on the calling process.

Our framework has been designed in such a way, that it can be enhanced with
more advanced features as future extensions. For instance, a scheduling mechanism
could be added in order to ensure fairness among separate VMs. Currently, in
our prototype implementation requests are multiplexed on the host in a FIFO
order. This can be extended in a future work by introducing different scheduling
algorithms which can apply fairness and protect VMs from other poorly configured
or malicious VMs that try to hog GPU resources.

3.7 Current Limitations

Although our framework provides transparent access to CUDA devices, it intro-
duces two functionality restrictions. Due to undocumented internal library calls,
currently only CUDA Toolkit 5.0 is supported in the guest. CUDA toolkit 7.5 can
be used at the backend, where the actual execution occurs. Additionally, CUDA
object files, which are used to load device code, need to be available to the host
at runtime. They can be either copied before the execution or accessed through a
shared file system.

36

37

Chapter 4

Experimental Evaluation

All performance evaluations are conducted on a test system consisting of two
Intel Xeon X5650 CPUs (@2.66 GHz) with 48 GB of main memory. It is equipped
with one Nvidia Tesla M2050 GPU. The host system is running Ubuntu Linux
14.04 distribution with kernel 3.19.0 and Nvidia driver version 352.39. The virtu-
alization software used is QEMU-KVM 2.3. All virtual machines are configured to
use one VCPU and 1 GB RAM. The guest OS is Debian 3.16.7 with kernel version
3.16.0.

In order to evaluate the performance of our prototype, we use benchmarks
from the official CUDA SDK 7.5 [13] as well as the Rodinia benchmark suite [14].
We select benchmarks to represent a wide range of GPGPU applications, and use
varying computational loads, data sizes, and different CUDA features.

We first use synthetic microbenchmarks to compare the two implementations
that the frontend uses to wait for results by the backend. Furthermore, we per-
form breakdown analysis and examine the overhead introduced by the framework’s
software stack. Subsequently, we use an application to evaluate the correspond-
ing performance using our framework compared to native execution. Finally, we
evaluate the scalability of the system as the number of concurrently executing
applications in co-located VMs increases.

4.1 Sleep and Busy Wait Implementations

We first perform an evaluation of the two aforementioned mechanism used by
the frontend driver to wait for execution results. We use a microbenchmark from
CUDA samples, that performs matrix multiplication which allows us to adjust
the size of input data. Matrix multiplication is an important operation used in a
variety of applications, such as financial and signal processing applications. We
compare total execution time as well as CPU utilization for each method. We eval-
uate the two metrics for a range of input data sizes. Results of this experiment
are depicted in Table 4.1.

Results show that for small input sizes the busy wait method performs much
better than the sleep method regarding to total execution time. This is expected,
since the overhead of triggering a virtual interrupt and executing the interrupt
handler is higher compared to polling in a busy wait loop. However, as input size
increases the difference in performance becomes negligible. Additionally, when the
busy wait method is used, applications fully utilize the CPU throughout their ex-
ecution, creating unnecessary load to the system. In the case of the sleep method,
applications have lower CPU utilization, since they release the CPU during wait-
ing time.

In order to benefit from advantages of both methods, we implement a hybrid
approach. For small input sizes we use the busy wait method in order to achieve
better performance. In this case, CPU is fully utilized for a short period of time,
since backend execution does not usually last long for small input sizes. Con-
versely, for larger input sizes we use the sleep method in order to achieve low CPU
utilization as well as high performance.

Input Size (KB) 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048

Busy Wait | Xecution Time (ms) [5.0 |85 | 87 | 9.0 | 141319 [641 240.5 4630

CPU Usage (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Sleep | Exccution Timne (ms) | 138 [149 [148150 | 153 | 352 | 641 2411|4627
CPU Usage (%) 1012101099 10] 6 7

Table 4.1: Comparison of Sleep and Busy Wait Implementations

39

4.2 Microbenchmark Performance

We conduct experiments with several benchmarks running in a native environ-
ment compared to executing in virtual machines with our framework. We measure
the execution time of all CUDA operations and do not include any computation
performed on the CPU as our framework introduces overhead only on CUDA oper-
ations. The normalized execution times on the native and virtualized environment
are presented in Figure 4.1. Experiment results show that performance degrada-
tion of BlackScholes (BS), LU Decomposition (LUD) and Back Propagation (BB)
(where we executed the GPU kernel 1000 times) benchmarks executing in a VM
is negligible compared to the native execution. Their execution time in a VM is
1.74%, 3.32% and 1.56% higher than native respectively. The largest overhead
in execution time is 9.23% for the fastWalshTransform (FWT) benchmark. This
benchmark has a short kernel launch time (only a third of the total GPU execu-
tion time) and thus overhead from memory copy between host and device has a
higher impact on its performance, due to the aforementioned copy between user
and kernel space. This overhead can be alleviated by applying zero copy techniques
such as memory pinning, which can be implemented as future work. Moreover, we
observe a 4.40% improvement in CUDA execution time of the matrix multiplica-
tion (MM) benchmark. This improvement can be attributed to the conversion of
Runtime API to Driver API at the backend.

1.2

Q
E
F
'u:> B Native
;Té M Virtual
s}
4

MM BS FWT LUD BP

Benchmark

Figure 4.1: Microbenchmark Performance

40

4.3 Breakdown Analysis

We analyze the overhead introduced by our virtualization framework and per-
form breakdown analysis of individual CUDA Runtime API routines, using the
bandwidthTest benchmark provided by the CUDA samples. Results are shown in
Figures 4.2 and 4.3. We choose to perform measurements of the cudaMemcpyHost-
ToDevice and cudaMemcpyDeviceToHost routines, as they introduce the largest
virtualization overhead because of memory copy operations. We divide the exe-
cution of a routine into five phases (1ib, copy, fend, exec, bend) representing
the different components of the system’s software stack as well as operations caus-
ing significant overhead. The first phase (1ib) includes operations performed by
the library except the ioctl() system call that transfers control to the frontend
driver. Copy represents the overhead introduced by copying memory from user
space to kernel space, while fend is the time consumed at the rest of frontend
driver’s operations. Finally, exec is the time of Driver API routine execution at
the backend and bend is the time spent at the rest of the operations performed by
the backend, such as memory allocations, argument unpacking etc.

Regarding the cudaMemcpyHostToDevice function, the figure indicates that the
dominant factor of execution time is Driver API routine execution at the back-
end. This phase takes up to 69% of the total execution time for large memory
copies. Since this phase represents the actual execution on the GPU, the rest of
execution phases can be characterized as the virtualization overhead caused by
our framework. Results show that this overhead remains constant at 27% of the

100% -

80% -

Lib

Fend
Copy
Bend
Exec

60% [~

EEEE

40% -

20% -~

Percentage of Routine Execution Time (%)

0%

1KB 512KB 1IMB 2MB 4MB 8MB 16MB

Input Data Size

Figure 4.2: Breakdown Analysis: cudaMemcpyHostToDevice

41

100% - -

80% -

Lib

Fend
Copy
Bend
Exec

60% [~

EECEE

40% -

20% [-

Percentage of Routine Execution Time (%)

0%

1KB 512KB IMB 2MB 4MB 8MB 16MB

Input Data Size

Figure 4.3: Breakdown Analysis: cudaMemcpyDeviceToHost

total execution time on average for memory copies larger than 1 MB. This favors
applications in which execution time is dominated by computation on the GPU
rather than memory copies. The phase of memory copy from user to kernel space
consumes 30% of the total execution time on average and constitutes the major
factor causing the overhead. Applying zero copy mechanisms, as mentioned ear-
lier, could lower this overhead. Such techniques can be implemented as future work.

On the other hand, measurements on the cudaMemcpyDeviceToHost routine
depict that it introduces a larger overhead on execution time. The exec phase
constitutes a smaller part of the total routine execution time, as it takes up to
55%. This is because the overhead introduced by the system and more specifically
the phase of memory copy from kernel to user spaces consumes 50% of the total
execution time on average.

Further measurements depict that the rest of library routines introduce a con-
stant overhead. We measure the Driver API routine execution time as well as the
overhead of cudaMalloc (Table 4.2), cudaFree (Table 4.3) and kernel launch (Ta-
ble 4.4) operations. Results show that the overhead introduced by our framework

Input Size S8KB|512KB |1 MB|2MB |4MB |8MB | 16 MB
cuMemAlloc (ys) 9 125 124 125 126 127 130
overhead (us) 23 29 23 24 23 23 24

Table 4.2: cudaMalloc Overhead

42

remains constant as input data size increases. More specifically the overhead is
24 us on the cudaMalloc routine on average, 26 us on cudaFree and 45 us on
the kernel launch operation. Moreover, this overhead becomes a smaller fraction
of the routine execution time as input data size increases, since execution on the
GPU lasts longer.

Input Size SKB|512KB |1 MB |2MB | 4MB |8 MB | 16 MB
cuMemFree (us) 13 132 129 125 141 183 191
overhead (yus) 20 22 23 24 23 25 23

Table 4.3: cudaFree Overhead

Input Size SKB|512KB |1MB |2MB |4MB |8 MB | 16 MB
cuLaunchKernel (us) | 14 15 14 14 17 19 22
overhead (us) 63 57 55 57 75 66 73

Table 4.4: Kernel Launch Overhead

43

4.4 Impact of Input Data Size

We measure the total execution time of the matrix multiplication benchmark
on native as well as virtualized environment for increasing input data sizes in
order to study the impact of dataset size on the virtualization overhead by our
framework. Figure 4.4 presents the results normalized over the total execution
time on the native environment. As seen from the graph there is significant over-
head for small input data sizes. Execution time on virtualized environment is
approximately double than on native for 8 KB of input and about 40% for 16 KB
and 32 KB. This is because the overhead introduced from operations performed
by the virtualization framework is significant compared to the actual execution
time on the GPU. However, since the execution time on the native environment
is short, this overhead does not significantly affect the application’s performance.
As dataset size increases, execution on the GPU takes longer and the overhead in-
troduced by virtualization consists a smaller part of the total execution time. As a
result application’s performance when executing on the virtualized environment is
very close to the native performance. The lower overhead 2.82% input size of 4 MB.

3.5x

3 ettt -

DX [Tl .

2x
B Native
B virtual

1.5x

1x -

Normalized CUDA Execution Time

0.5x -

0x

1K 4K 16K 64K 256K M M 16M 64M 256M

Input Data Size

Figure 4.4: Input Size Impact

44

4.5 Application Performance

We evaluate the robustness and efficiency of the system when used by a higher
level application. We use StoreGPU [15], a framework which enables distributed
storage system designers to offload hashing-based operations to GPUs. StoreGPU
application accelerates compute and data intensive primitives popular in dis-
tributed storage system implementations. We execute the application’s GPU ker-
nel 10 times and measure the total time of execution as well as execution time of
CUDA operations. Figure 4.5 depicts experiment results for execution on native
and virtual environment using our framework. As in previous experiments, Cuda
represents only the CUDA related functions calls, while Total represents the total
time of execution including both CPU and GPU processing. Results show that
the total execution time of StoreGPU in a VM is 7.67% higher than native while
CUDA execution time is 4.67% higher.

500

200

400 - I -
g

2 300 I -

= B Native
.5 O Virtual
=

3

=

s8]

100

Total Cuda

Figure 4.5: Application Performance

45

4.6 Performance at Scale

We evaluate the overhead the system introduces at multiple concurrently ex-
ecuting GPU contexts by conducting experiments in two setups: (1) we issue
multiple processes on the native system executing the same application (native)
and (2) we launch multiple VMs and execute one application per VM (virtual).
We measure application’s CUDA execution time for these settings and evaluate
the overhead introduced by the system, as the number of GPU contexts and VMs
increases respectively. We use the BlackScholes benchmark provided by the CUDA
samples. Results are depicted in Figure 4.6.

We make two observations based on the results. One is that native execution
time increases linearly as the number of GPU contexts increases. This is expected,
since legacy GPUs enforce serialization of GPU tasks from different contexts. We
later discuss the effect of this GPU characteristic on different types of applications.
However, recent Nvidia GPUs (e.g. Kepler [16]) implement actual sharingof GPU
resources between concurrently executing CUDA jobs. Another observation is that
performance degradation of concurrently executing GPU applications in multiple
VMs is negligible compared to native. Operations performed by our framework’s
software modules, such as copies between user and kernel space, are executed in
multiple VMs in parallel and do not introduce additional overhead as the number
of VMs increases.

4,000

9,000
8,000
- 7,000
E
oé) 6,000
= 5,000 B Native
8 M Virtual
=
3
>
m

3,000
2,000
1,000

0

1 2 4 8 16

Number of GPU Contexts/VMs

Figure 4.6: Scaling Measurements

46

4.6.1 Scaling Measurements

GPU applications consist of execution time both on the CPU and the GPU.
However, scalability measurements require execution on the GPU to occur con-
currently on all processes. We therefore implement and use a synchronization
mechanism which places a barrier before execution on the GPU starts, so that
after all processes have reach that point, they begin execution on the GPU at the
same time.

When performing measurements on the host system this is achieved using sig-
nals. A process uses the fork() system call in order to create the required number
of child processes, which execute the application. Each child process pauses its ex-
ecution when it reaches the barrier by sending the SIGSTOP signal to itself. The
parent process detects that all child processes have stopped through the wait ()
system call, and resumes their execution by sending them SIGCONT signals.

On the other hand, synchronization between processes executing on separate
VMs is achieved using a server-client model and file-based synchronization. All
virtual machines share a part of their file system through NFS. A server process,
executing on one of the VMs, launches a process on each VM. The server process
creates an empty file on a shared folder, and all processes block trying to read
from the file, which acts as a barrier. Each process also writes on a separate file
informing the server that it has reached the barrier. When all processes have
reached the barrier the server writes on the shared file, so that the other processes
can read from the file and resume their execution at the same time.

47

Chapter 5

Related Work

Various approaches to implement virtualization of graphic processing hardware
and address GPU resource sharing among co-located virtual machines have been
proposed by the research community. The virtualization schemes used by these
systems can be classified into I/O pass-through, API forwarding, paravirtualization
and full virtualization. API forwarding refers to the technique in which calls to
API routines are intercepted and forwarded to a remote host where the actual
computation occurs. In the paravirtualization scheme the guest operating system
is aware that it is running on a hypervisor and includes drivers that act as frontend,
while the hypervisor layer implements backend drivers that represent virtualized
devices. On the other hand, in full virtualization the guest OS is unaware that it
is being virtualized and requires no changes to work in this configuration. Finally,
I/0O pass-through provides a VM with direct access to the GPU itself.

5.1 vCuda

Shi et al. [17] propose a GPGPU computing solution that allows applications
executing in virtual machines (VMs) to leverage hardware acceleration. vCuda
uses a client-server architecture consisted of three user-space components: a user-
level library, a data structure used by the library, that represents a virtual GPU,
and a server component. The library is responsible for intercepting and redirecting
API calls from client to host, where the server executes them and returns the
results. Communication between client and server is implemented using the XML-
RPC protocol. In addition to virtualization, vCUDA allows device multiplexing
among multiple concurrently executing guest OSes by spawning one thread for each
client. The framework provides support for suspend and resume as well, enabling
client sessions to be interrupted or moved between computers. The system is
implemented in Xen but is portable across different virtualization platforms due to

its network transmission mechanism. Experiments in [17] show that time spent in
the encoding-decoding steps of the communication protocol causes a considerable
negative impact on the overall performance of the solution.

5.2 rCuda

rCUDA [18] is introduced with the goal to provide remote and transparent
access to GPU accelerators installed in remote nodes in HPC clusters. rCUDA
can thus enhance flexibility in cluster configurations as well as permit a single
node to exploit all the GPUs installed in the cluster. The idea to use rCuda as
a GPGPU virtualization framework that permits execution of GPU-accelerated
applications within virtual machines is explored in [19]. The systems consists of a
client middleware which intercepts and forwards API calls to a server middleware.
The server, which runs as a service on a computer owning a GPU, receives and
executes the API calls from the clients. Communication is accomplished using a
protocol based on TCP sockets. The authors also present an optimized implemen-
tation of the communication mechanism for InfiniBand interconnects, in order to
take advantage of the high speed fabric.

Nanos et al. propose V4VSockets [20], a framework for efficient, low-overhead
intra-node communication in the Xen hypervisor. The authors show that rCUDA
can be deployed over V4Vsockets to efficiently enable GPU resource sharing among
co-located VMs.

5.3 gVirtus

Giunta et al. [21] present a GPU virtualization service focusing on providing
transparent access to Nvidia accelerator boards in order to accelerate applica-
tions running within VMs. gVirtuS uses a frontend /backend scheme and relies
on a pluggable communication component independent of the hypervisor and the
communication channel. The system is implemented on VMware and KVM hy-
pervisors. The authors implement three different communication mechanisms. A
TCP/IP based communicator was developed in order to check front end - back end
interaction. VMCI (VMware Communicator Interface) and vmSocket were used
as high performance communicators for VMware and KVM respectively.

49

5.4 GViM

In their work, GViM, Gupta et al [22] present a system designed to virtualize
graphics processors implemented for the Xen hypervisor. The system is organized
using a split driver model and employs Xen-specific mechanisms, including shared
memory buffers, to implement the communication mechanism. The authors de-
scribe a resource management extension for managing applications’ joint use of
GPU resources. More specifically, GViM implements scheduling of requests des-
tined for the GPU using a round robin as well as a XenoCredit-based scheduling
scheme.

5.5 LoGV

Gottschlag et al. propose LoGV [23], an approach to virtualize GPGPUs by
leveraging protection mechanisms present in modern hardware. LoGV implements
virtualization at a lower level by intercepting and forwarding the API of the pscnv
GPU driver. This framework uses Gdev CUDA runtime [24] to support the CUDA
API. The framework allocates resources securely in the hypervisor and then grants
applications direct access to these resources, relying on GPGPU hardware features
to guarantee mutual protection between applications. Virtual machine migration
is supported, in which the system the suspends access to the GPGPU to extract
a consistent snapshot of GPGPU state.

5.6 Distributed-Shared CUDA

In DS-CUDA [25] the authors present a middleware with the goal to address
difficulties in programming multi-node heterogeneous computers. The system im-
plements virtualization of a cluster of computers equipped with GPUs so that
they appear as if they were attached to a single node, in order to simplify the
programming of multi-GPU applications. The system’s architecture consists of a
single client node and multiple server nodes, in which one or more CUDA devices
are installed. Client-server communication uses InfiniBand Verbs, and can also
use TCP sockets in case the network infrastructure does not support InfiniBand.
DS-CUDA increases the reliability of GPUs by implementing a redundancy mech-
anism. Identical calculations are performed on multiple CUDA devices, and the
results are compared between the redundant calculations. If any of the results do
not match an error handler is invoked.

20

5.7 gVirt

gVirt [26] is a full GPU virtualization solution, implemented in Xen, which
allows the native graphics driver to run in the guest system. The system imple-
ments mediated pass-through which achieves good performance, scalability and
isolation by using the pass-through technique for performance critical resources
and the the traps-and-emulate technique for privileged operations. This approach
is implemented on Intel Processor Graphics GPU and is oriented and tested on
2D and 3D graphic applications.

5.8 GPUvm

Suzuki et al. [27] propose an architecture based on the Xen hypervisor, that
implements both full virtualization and paravirtualization. The authors introduce
technologies such as virtual memory-mapped I/O (MMIO), GPU shadow channels,
GPU shadow page tables, and virtual GPU schedulers and employ them in the
framework’s implementation. Experiments in [27] show that performance of GPU
paravirtualization is two or three times slower compared to the native system, and
the full virtualization exhibits even higher overhead. This approach virtualizes the
GPU at a lower level and uses Gdev [24] as the CUDA Runtime.

5.9 Gdev

Gdev [28] is a GPU resource management framework that allows user space as
well as the OS to use GPUs as first-class computing resources. The framework
implements a virtual memory manager that enables GPU contexts to allocate
memory exceeding the physical size of device memory. It also provides a shared
device memory functionality that allows GPU contexts to communicate with other
contexts. Moreover, Gdev provides a GPU scheduling scheme to virtualize a phys-
ical GPU into multiple logical GPUs, enhancing isolation among working sets of
multitasking systems.

5.10 Pass Through

A class of solutions makes use of pass-through technology to grant VMs direct
access to host devices. Devices on a host PCl-express bus are virtualized using
directed I/0 virtualization technologies and then direct access to a VM is granted

51

upon request. A memory management unit is used to handle direct memory ac-
cess (DMA) coordination and interrupt remapping directly to the guest VM, thus
bypassing the host entirely. This approach can minimize the overhead of virtu-
alization, as performance measurements in the Xen platform have indicated [29],
but since a pass-throughed GPU is exclusively managed by the guest OS, it does
not allow multiple VMs to share the same device. Nvidia GRID [30] technology
enables assignment of the physical GPU to multiple VMs at the same time. Gdev
[28] is able to virtualize a physical GPU into multiple logical GPUs, which can
then be pass-throughed to VMs, thus enabling GPU resource sharing.

52

23

Chapter 6

Discussion

6.1 Effect of GPU Resource Sharing on
Application Performance

Sharing physical hardware among multiple concurrently executing OSes is a
fundamental aspect of hardware virtualization. Our framework enables sharing of
GPU resources by multiplexing requests for routine execution at the hypervisor.
However, multiplexing applications’ accesses on the GPU introduces additional
overhead and negatively impacts its performance. Moreover, applications with
different execution patterns can be affected differently by sharing their access to
the GPU.

GPU accelerated applications can be divided according to their characteris-
tics into different classes. One such class contains applications that can be be
characterized as batch jobs. These applications copy large amounts of data from
host to device memory and then issue intensive computations without further user
interaction. Results are calculated and copied back to host memory before execu-
tion is completed. Examples include HPC scientific applications from fields such
as bioinformatics [31] and material science [32]. Multiplexing GPU accesses of
concurrently executing applications of this class cause performance degradation,
due to the inability of legacy GPUs to offer actual resource sharing. The criti-
cal performance metric is total execution time. However, the main characteristic
of such applications is that their execution time is dominated by GPU resources
utilization. Therefore multiplexing GPU accesses of multiple concurrently execut-
ing applications decreases performance of all applications, since execution requests
from different CUDA contexts are serialized on the GPU. This is an inherent char-
acteristic of legacy GPUs’ architecture. Thus, performance degradation of each
individual application is negligible in case applications are submitted to run se-

quentially, for instance on a resource scheduling system (e.g. Torque). However,
even this class of applications is expected to behave better on modern GPUs.

On the other hand, a different class involves long-running interactive applica-
tions which typically begin by copying required data to the device, outside of the
critical execution path, and then repeatedly receive smaller amounts of data as
input which trigger computations. Examples of applications following this execu-
tion pattern include Big Data applications that perform queries on large data sets
[33]. Applications of this class sometimes have low latency characteristics and even
real-time requirements. The critical performance factor of this class is the response
time when input is received. Their execution includes alternations between idle
periods user input is awaited, and computation periods when requested results are
being calculated. This execution pattern is well fitted for device sharing among
concurrently executing applications. Multiplexing their accesses to the GPU is
feasible as idle periods of some applications can overlap with computation periods
of others.

It is thus evident that the effect of sharing GPU resources can be different
according to the application’s execution pattern. A GPU resource management
system could distinguish between the previously described application classes and
schedule their accesses to GPU resources accordingly. Future work involves ap-
plying profiling techniques in order to categorize applications and using different
scheduling algorithms to multiplex accesses to the GPU. These techniques will
also be evaluated on modern GPUs, which provide more advanced sharing fea-
tures among concurrent tasks.

6.2 Conclusion

In this work we propose a framework for low overhead GPU resource virtu-
alization and sharing among co-located VMs. Our implementation employs API
redirection through a split driver approach, in order to allow GPGPU applica-
tions to access the physical hardware. Evaluation of our prototype shows that
The system achieves near native performance for medium and large data sizes.
Moreover, multiple applications executing concurrently in co-located VMs can ef-
ficiently share the host GPU.

We design our framework in a way that enables scheduling mechanisms to
be easily added to the current version. We plan to implement execution request
scheduling in order to achieve quality of service between VMs as well individual
applications, in a future work. An extension the backend can implement GPU

95

resource management and ensure fairness by identifying applications’ GPU exe-
cution profile and appropriately schedule their access to the GPU. To this end,
the mechanism could detect and slow down VMs with high demands on GPU re-
sources. Finally, future endeavors also include evaluating our framework on recent
Nvidia GPU with enhanced features regarding resource sharing.

26

o7

Kegpdiowo 1

Fiooaywyn

1.1 Kivntpeo

Yhuepa, Aoyw g {Atnong tng ayopds yio udmiig avdiuong 3D yeogpixd moary-
wotixol yedvou, ot Movddeg Eneepyactag Ipopindy (GPUs) éyouv eZehiydel oe
VPMAGY ETBO0EWY TOAUTUENVOUS ETEEERPYATTES YEVIXOU GXOTOU, 1xavolg Ylal UTO-
hoyiopolg udmArc amddoong xar peydho ebpog Lovng uviung. Extog tou 6t etvan
OTOTEAECUATIXES GTOV YELOIOUO YRUPLXWY Xl TNV ETELepYoio EMOVAS, 1) TURSAANAT
dour| Toug TI¢ Xoho T XU TIAANAES Var ETADOLY TEOBAAUATY Tal OTolol UTOEOUY VoL EX-
PPACTOUV UE TAUPEAANAOUS UTOROYIOUOUS Xou €Y0UV UYNAT TUXVOTNTO UTOAOYICUMDY
OYETIXA UE TNY TOGOTNTA OEBOUEVWY. (2 amoTéAeoud, oL Lovadeg enelepyaciog yoaupL-
AV YENOOTOOUVTOL ¢ ETTAYUVTES PE oxomd T Bedtinon tng enidoone epop-
HOY®V Ol OTOlEC TaPABOGLONd EXTEAOUVTOL OO TNV XEVTEXY Jovdda enelepyaoiac
(CPU). H mpocéyylon auth), yvwoT o¢ EXTEAETT UTOROYIOUWY YEVIXOU GXOTOU
oc GPUs (GPGPU) uodeteiton 6ho xou meplocdtepo oe £QupUoyEéS UTONOYIOHMOY
udmiédpv emdooewy (HPC). Epeuvntinée dnuoctedoeic €youy unodeilel 6Tt eqopuoyéc
TOL TEAYUATOTIOLOLY EVIUTIXOUS LUTOAOYIOUOUE, amtd €val EVUPY QACHUO ETLO TUOVIXWY
nediwvy, omwe ta oovouxd [1], n ymuweh puowy| (2], N medBredn xoupol [3], n
Suvouxy peuoTt@v [4] . prmopolv va adlomoicouv GPUs yia va amoxthoouy
onuovTXd ogEn oty entidoon Toug. Extog and tov emotnuovind toufa, oo GPUs
YENOWOTOLOUVTOL GE GUC THUATA OTIwS BpouoloynTtég vhomomuévol ae hoylopxo [5),
xpuntoypagnuéva dixtua [6] xadde xou cuotApoTo Bayelptong Pdocwy Bedouévwy
[7]. "Evoag and touc Adyoug tne xohépmons Twy UTOAOYLOUOY YEVIXOU OXOTOU GE
GPUs etvor 1 avdmtudn mpoyeauotio TiXwy TERUBAAOVTOY, NETOUYAWOTTIOTOVY xat Bif3-
Modnuwyv omwe to tepBdirov CUDA tne Nvidia.

A6 v GAAN Thevpd, 1) eixovixomoinoT €yel aLEAVOUEVT ETIEEOT] OTOV TEOTO

Yefong xau drayelplong Twv utohoyloTixwy tépwy. H Peitiwon towv emddoswy tou
VAU xou 1 aw€avouevr {ATNoT Yiol EVOTOINGT| UTNEECLOY amd TNV oyopd, odnyel
o etcovixomonuéva cloud mepiBdihovta vor @rhoZevolv pla CUVEY®S ALEAVOUEVT
TOGOTNTA UTOAOYIOUOY. O ELXOVIXES UNYOVES (VMs) UToEOLY Vo BEATUOOOLY TNV al-
LOTO{NOT) TWV UTOAOYIOTIXGY TORMY, X0 BlapopeTiXol TEAUTEG UTOPOUY VoL HOLa:-
otolv éva x6pPo ue TNV Peudaioinon Ot xatéyouv To GOVOAO TOU UMY AVAUATOS
XAT AMOXAEICTIXO TEOTO, TUEEYOVTUG TAUTOYPOVI ATOUOVGOY) DIEQYUCLMY XUl EU-
xohio Brayeipiong. Koatd cuvénetla, ol teyvinég exovixonoinong etvar plo utooyduevn
mpoomdiela yio Ty extéreon Aoylouixol HPC ot nep3diiov cloud, xade 1 déoueu-
OT) EXOVIXOTIONUEVLY TOpwY oTo cloud elvan pla ehaoTiny, anoTeAcopaTx? WS TEOC
TOV YPOVO X0l TO XOGTOG EVAAAAXTIX OTOV TOQAd0CLIXG TEOTO DEGUEUCTIS TTOPMV.
Me tic mpdogoteg elehilelc 1600 0TV TEYVOhOYiNL TNG EXOVIXOTIONONG 60O Xal
otny teyvoroyio Twv GPUs, mpoximtel pio augoavouevn avdyxn Topoy s ETEPOYEVHOV
Topwy, Wwialtepo GPUs oe mepBdirovta cloud, pe tov Blo emextdowo xau dueco
TEOTO OTWE TO TAUPAOOCLOXG EIXOVIXOTIOMUEVO LAXG. Ou mdpoyot cloud urnnpeoudy
avTwetorilouy enopévwe Ty Tedxinor e evowudtwone GPGPU ota cuothuata
touc. T mopdderypa, n vinpeoia Amazon Elastic Compute Cloud (EC2) [§]
mpoogéper. GPUs w¢ umohoyiotixolg mépoug, ahhd xdide mehdtng exywpeelton pe
ular puoy GPU xotd amoxieiotind tpomo. Auvctuyee, oto mhaiclo tou cloud 1
EXOVIXOTIOIMGT CLUOBXELGDY Elo6d0U - €€680u (I/0) mapouotdler xoxr anddoon, Aoyw
e emPBdpuvong oTny enidoon and TNV EUPECT) TPOCBACT OE PUOLXOUS TTOPOUS Xal
NV avdyxn TOAUTAEENS TNE TEOCBAUOTS EQPUQUOYWY GE TOPOUG I/0.H exovixoroinon
xou o Bootpaouds Twv GPUs avtipetwnilouy emmiéov Tpoxhoeic AOYe TwV yooux-
TNELO TIXMY TWV LOVABWY eMEEERYATIAS YRUPIXWY OL OTO{EC BEV TPOGPEPOLY BUVATOTN-
TEC OLAXOTITAG YPOVODROUOAGYTONG XAl OLOUOLPUCUOY YEOVOL.

1.2 Ilpotewopevn Adon

Ytny epyaocio aut TEOTEVOUUE Yol ATOTEAECUATIX TROGEY YIOT| G TNV EVOOUITLON
ouvatottwy GPGPU oe ewovixéc unyavéc. Ilopoucidlouue tov oyedioacud xa
TNV VAOTIOINGY) €VOC UNYAVIOUOU 0 OTIOlog ETUTEETEL OE EQPUPUOYES TOU EXTEAOVUVTOL
o€ ewovixd TEPBIAAOVTA Vo BEATIOCOUY TNV ETB0OY TOUC a€lOTOWVTAS TOPOUS
¢ GPU. XpnoyomowdvTog ToV Unyoviopo Jag, EXOVIXEG UNYAvES oL oToleg ex-
TeholvTaL 670 (Blo host cbo TN uropoLY va potpasc tolv Toug Topoug e GPU. INa
NV eTUAAUEVCT) TV OYEBLICTIXWY APY OV UAOTOLOUUE EVOY TEWTOTUTO UNYAVICHO O
omolog GToYElEL OTNV EOVIXOTOINOY HOVAdWY emeepyactag yeapay g Nvidia,
ETUTPETOVTOG ETOL OE EQUPUOYES TIOU £Y0UY avamTLY Vel YENOLOTOLOVTUS TO TEPUSHA-
hov CUDA va exteholvton og eovixég pnyavés. H mpooéyyion pag yenotuonoret
TEYVIXES Topa-EXoVIXOTIOlNoNG xadde xou évor uovtého odnyol cuoxeuhic (driver)
ywetopévou ce Vo pépr. Amotehelton amd pio BiBhodrxn emnédou yerotn, Evay

29

frontend driver mou Pploxetan oto guest Acitoupyixd clotnua, xou €vav backend
driver vAomonuévo otov hypervisor. H apyitextoviny| Tou cuctidatog anewxovileton

o710 Uyfua 1.1,

Virtual CUDA Device

Hypervisor

Figure 1.1: H opyitextovixy| Tou UG TAUATOS

Yuvoruxd, ol x0pleg CUVELGPORES NG epyaolag efva:

o Ilpoteivouye vy AMOTEAEOUATING UMY AVIOUO EXOVIXOTOINOTG LOVABWY ETEEER-
yaotog ypagpov o onofog emitpénel o epapuoyec GPGPU va extelolvtou o
EWOVIXEC UMy avES, xou LhoTotel Blopolpaoud topwy e GPU uetald eiovindv

UMYV,

o Awtnpolue cufBatotnTo ot eNinESo EXTEAECIUOY aPYEIDOY UE EQPUPUOYES TOU
yenowomooly to CUDA Runtime API étot dyote Undpyouoee eQoapuoyes va
UTOPOUV VoL YPNOWOTOIOUY TOV UNYAVIoUS oG ywelc xaula Tponoroinon otov
TNyolo xoOLXA TOUG.

o Kotnyoplomololpe tic epapuoyég mou yenotuonooty GPUs we emtayuvtéc e
Bdon 1o potiBo unoloylouwy xon TEOGRUCTC OTN UVAUN X0t OVUAUOUUE oL
elon epapuoyY®Y Umopoly va etw@ehniody and T ¥eHoT TOU UNyovIoUo) UoC.

H retpopoatind) allohdynon poag ety vel 6Tt 0 unyaviouog etedyet younhr emBoouv-
on, xahoTOVTIS TNV ETBOOT EQPUPUOY®Y ToU YenoylotooLy emttdyuvon and GPUs
AL EXTENOUVTOL OF ELXOVIXES UNYAVES, OVTIUYWVIOTIXY PE TNV ETUOOCT EQUPUOYHY

60

TOU EXTEAODVTAL OF TEAYHATIXY CUCTAUATO UE TEOOBaoT GToug QUOIXOUE TOPOUC

¢ GPU.

61

Kegpdiowo 2

Ocswpntixd TroBadeo

2.1 Ilpoypoppatictind llegiBdiiovia GPGPU

Ta CUDA (Compute Unified Device Architecture) [9] xou OpenCL (Open
Computing Language) [10] eivon 800 eupéne yenotponoolueva epBdilovta to
omola TEOCPEPOLY BUVATOTNTEG LTIOAOYLOU®Y YEVIXOLU oxomol ot GPUs. Ko ta
00U0 TPOGPELOUY TUPOUOLAL YUQUXTNELO TIXY OAAS UECE) DLUPORETIXMY TEOYPUUHUATIO-
Ty denapy. To OpenCl, to onolo avantiydnxe and tny oudda Khronos Group,
elvon €vol avoIxTo TEOTUTO Yol TURGAANAO TEOYQUUUATIOUO OE ETEPOYEVY GUC TAUATA
mou anotehovvton ané CPUs, GPUs, {nguxoic eneepyactéc ofjuatoc (DSPs)
xou dAloug tunoug eneepyaotov 1 emtayuvtwy. To CUDA elvan éva mepi3dihov
ToEAAANAOL TEOYpoUPATIOUO oL Exel avamTuyVel and Ty Nvidia. Ilpoogépel uia
un ovoixth mpoypapuatio tixr dtenagry (API) xou éva chvolo enextdoewmy oe YAOOOES
TEOYPUUUATIONOU Tor OOl UTOPOUY VoL yenolorotndoly yio TNV TeayatoToinon u-
TohoyYIoU®Y YeVixol oxonol oe GPUs.

To CUDA mpoo@épel dUo npoypoupotiotxéc denogéc: (1) to Runtime API
xou (2) to Driver API. To Runtime API eivou plo Siemopy) udmhol emmédou mou
TOREYEL EVOL GUVONO ATO CUVIRTACELS X0 ETEXTACELS YAWCOWY TREOYEAUUUATIOUOU Xl
TPOGPEREL AUTOUATOTOLNUEVT] aEytxoTolnon xou dayelplon Twv contexts xou modules
¢ GPU. To Driver API elvon pla Siemapr) youniod emmédou mou meoo@épet éva
emnAéov eninedo ehéyyou exdétovtag Evvoleg younhotepou emmédou omwe CUDA
contexts, 10 avdroyo twv diepyactwy yio g CPU, xaw CUDA modules, to avdhoyo
TV duvauxey BBAdnxey. Qotéoo, 1 yerion tou Driver API anoutel teplocdtepo
HOOWOL XU UEYAADTERT) TROOTAIEL Y10l TOV TOOYPUUUATIONG X0k TOV EVIOTIOUO G-
udtwv. To oyfua 2.1 areixovilel Tnv otoifa Aoylopxold CUDA. O egopuoyéc otnv
mhetomeplo Toug dev yenoyonoovy to Driver API xadd¢ dev ypeidlovtan to emimiéov

eninedo ehéyyou, ahhd to Runtime API dote va mapdyouv mo cuvomtind xodouxa.

Application

}

CUDA Runtime API

' '

CUDA Driver API

'

CUDA Kernel Driver

Figure 2.1: H otoifo hoyiouxod CUDA

To CUDA exétel ta yopaxtnelo Tnd tou Yéow plag Bihodnxng yedvou extéhe-
omNG ®IOS Xl EVOS GUVOROL ETEXTACEWY YAWGOWY oY poupatiopo. Ot enextdoelg
QUTEC ETUTEETOLY GTOUS TROYPAUUUUTIO TEC VAL ONAMVOUY GUVOIPTACELS (kernels) xou vo
evduiCouv v extéleon touc oty GPU. Ou enextdoeic nepthoufBdvouy ctouyeio
e yYAwooog mou xadopilouv av pia cuvdptnorn exteieltan oty CPU % v GPU
xan oy propet v xAndel and v CPU A v cuoxeur], otolyela g YAOOGHg Tou
xadopilouv Tov TOTO NG UvAung omou anovnxeletar pia petaBints oty GPU xo
edLxég petaBAnTég mou xodopllouy Bl TAGELS ot DEXTES OYETOUE UE TNV EXTEAEDT)
otoug mtoAamholg Tuphvee e GPU. Ou kernels puduiCovton xou extehobvton e tnv
eTEXTUOT OLOPORPWONG EXTEAEDTS, 1 omtola cuPPoMletan wg <<<. .. >>>. Mia tétol
oLVEETNoTN BNAMVETUL WS eENC:

__global void Func(float* parameter);
xolL xoAelTo:

Func<<< Dg, Db, Ns >>>(parameter);

omou 1o Dg xadopilel tn dudo taom xau to uéyedog Tou Théyuatog 1wy block vnudtoy,
T0 Db 11 81do taom xan to péyedog tou xde block vrudtov xaw to Ns tov apriud 1wy
bytes otnv polpalbuevn uviun mtou SecueleEToL Yol THY ToEoVoo XAHOT, CUVIETNOTNC.

To apyceio myoiou xwdixa tov egappoywy CUDA nepiéyouv oo 1660 yia
v CPU 600 xa v tnv GPU. Lo cuyxexpuyéva, TEpLEYouY EMEXTACELS YAWOGUC
X0l GUVOPTACELS GUOXELNG OL OTIOIEC YEELWICETOL VO UETUYAWTTIOTOUY UE YEHON TOU
NVCC compiler. O NVCC Suorywpetlet Tov xmdxa Tng ouoxeuric anod exetvov tng CPU

63

xou petoryhwttiler tov GPU xmdwa o xoddwar assembly apyttextovinfic cuvolou
evioawv CUDA (xodixa PTX) ¥ oe Suadixr poper (apyeior avtixeyévwy cubin).
O xdwoag tng CPU tpomonoteitar avTixaoToVTag NG EMEXTACNE OLUUORPOOTS
eExTEAEOTC (<< >>>) UE TIC amopaitnTES XAAOES CUVAPTACERY YId TNV POPTMON
XoL TNV EXTEAEOT) EVOC Tuprvar amd PTX xwowa 1) opyeto aviixewwévwy cubin. H
otadixaota auth anewovileton oto oyfua 2.2. O xddwoag yioo) GPU goptodvetan
amo6 apyela cubin ¥ PTX xotd tnv opyxonolnorn tou nepiBdhhoviog extéleorg elte
enté yenoylomouwsvtag to Driver API

example_app.cu

__global__ void Func(float *parameter) nvee > example_app.cubinJ
{
cudaConfigureCall()
Func<<<Dg, Db, Ns>>>(parameter); nvec | cudaSetupArgument()
7 cudalaunch()

Figure 2.2: Awdixaocio MetoryAdTtiong

2.2 Ewovixornoinon Xuoxeudv Ewcddou/EE680u

H ropo-eixovixonoinon ebvan pio teyvoroyla mou yenoiwomoleiton gupewg oTny
eovixonoinom cuoxeuny ewwddou/eZbdou (I/0). Emtpéner tny exovixonoinon ou-
oxeutyv 1/0 pe YA emBdpuvon oty enldooT), TUEEYOVTOG UTOTEAEOUATIXT| ETLXOL-
vovia yetagl host xon guest. X tny mpocéyyion auth, To eixovixd LAxd Exel BehTio To-
mounVel pe oxond TNy ewovixomoinon xat exdétel oTo guest cOoTNUA uio Siemagy| 1)
omola elvon TapduoL aAAG Oyl TOUTOOTUT UE EXEVT TOu UToXE(UEVOU U0, ThoTmol-
elton ye TN Onuovpyior dtadhwy emxowvmviag uetall tou hypervisor xou Tou guest
Aertovpyixol cucthuatog. Frontend drivers mou uvAomowolv mapo-elxovixonolnon
amootéAhouy awthpota yia I/O otoug backend drivers omeudeiog, ye edytotn emPBd-
ouvon. T v avtetonion tou {ntAuatog e Umapdng evog eviaiou TeoTliToU
yioe Toug drivers mou £@apuélouyv TUPU-EXOVIXOTOINGT, OF BLUPORETIXG GUC THUTA
ewovixonoinong, €yet tpotadel to oUvolo drivers xou unyavioudv virtio [12]. To
virtio mop€yet plor TuToToNUEYT BlETaPY Yot TNV UAOTOINGCT EXOVIXWY GUGXEURY,
%xo0dS xou Evary Unyavioldd mou uroo tnellet emxowvmvia uetal guest xou hypervisor.

Xpnowonowwvtog Tn dienagt| mou opiletar 6To virtio ol drivers tou guest cucTH-
HOGTOC ETXOWVWYOUY pe Tov hypervisor tornodetwvtag buffers oe pla popalduevn

64

a VM

» Frontend S\

~
-

virtual
interrup

—

- - o
Il

-
~

-
~

e
/7
[
~

Backend

Hypervisor

Figure 2.3: Data Transport Mechanism

oupd. To guest clotnuo arootéAel buffers mou avtinpocwnedouy atAuaTa ExTENE-
ong, To onola TEPLEYOUY BEBOUEVAL T8V GTo ool TparyaToToteltan enelepyacioa 6To
backend. To virtio opilet pla diemagry ovpdc n onola umopel vo ypnowdomoinvel yia
emxovwvia Yetald guest xou hypervisor. Luyxexpwéva, vhomolel €vay unyovioud
wolpalopevou daxtuhiou Tou bivel Tn SuvatétTnTa o Tov host va Tonovetel buffers Toug
ornofoug o guest umopel vo mapardfer. O daxtOMog cuvdésTon Ue piot cuvdpTnon 1
omofa xokeiton 6tav o hypervisor napohouBdver buffers. O unyoavioude emixovwviog
amewxovileton 6To oyfua 2.3. XpenoWOoToIWVTIS TNV BIETUPT| UETAPORUS BEBOUEVWY
Tou virtio, ot frontend drivers ymopolv va eicdyouv buffers octov doxtOA0 xou va
evnuep@vouy Tov hypervisor. X1n cuveyelo umopoly elte Vo EAEYYOUY ETAVOANTTIXG
yior amoTEAEOUATO ELTE VO TEQUIEVOUV Yol EVIUEEWOT] UECE ELXOVIXTG BLAXOTAS, OTAY
umdpyouv dtoéotua anoteréopata. Frontend virtio drivers, cupmepilopfovouévmy
drivers yla cuoxeuéc ductbou xou cuoxeuég block, €youv mpoctedel oToV TUEHVA TOU
Aertovpyixol Linux. Emnpocdétwe, backend virtio drivers éyouv viomoundel yia
70 Aoylouxd QEMU. Ot vhomoloelg auTtég yenoLonototy Evay dlauAo HETUPORAC
OEDOUEVV XOU EVOLY UNYAVIOUO EAEYYOU TOUS OTIOIOUS YENOWOTOLOVUE X EUElC TNV
vlomolnom uag.

65

Kegpdiowo 3
YIYEOLACUOG xa LAoToliNnoT

210 XEQPIAAO AUTO TEQLYPUPOUUE TNV UOYLTEXTOVIXTH] TOU UN)YOVIOUOU UG XOL
OVOAVOUPE TG ETLTUY YEVETAL 1) Elxovixoroinot xou o dpotpaouos e GPU. T
oY EBLOOT TOU CUGTHUUTOS YENOULOTOLOUUE TIC TEYVIXES TG TOQO-ELXOVIXOTOIMOTNS Xall
¢ avoxatebuvone Tou APT étot hote va xatac Thcouue Buvath Ty EXTERECT EQUE-
uoywv CUDA ot eovixée unyavéc. O unyoviopog anoteelton amd tolo pépn: uio
BBAodrnn yweou yenotn, évay frontend driver nou Bploxetoun oo guest Aettoupynd
oVotnuo xou évav backend driver o omolog avtinpocwrelel pla exovixr cuoxeur
CUDA. Emtuyydvoupe v ewovixoroinor mapokouBdvovtag xAroelc Pihoufxng
xan avoxatevdivovtag T oplouata Toug otov frontend driver. Xtn cuvéyela, T
oplopata petagepovton oto backend peow evog diadiou emxovwviag xal oL xARoelg
BBaodhrng extehodvtan otov host. Ta anotehéouato EMOTEEPOVTAUL TEAXMS UECW
ToU OO ETOWVKViNG GTNY xaAolow diepyasia. O duolpacuds tépwy g GPU
vhomoteltan @apuolovTtag TOAITAEEN TV aTnudtwy extéieonc oto backend. Meh-
AOVTIXEC EMEXTACELS TNG epyaoiog TEpthau3dvouy TNV LAOTOINGT EVOC UNYAVIOUOU OL-
ayetplone mépwv e GPU o omolog Yo emitpémel Ty }eovodpouohbyYNoT auTnudtmy
exTéleong and TOMOATAES exovixeg unyoaves. Ol poEC BEBOUEVLV Xal EXTENEOTC
amewoviCovtar 6o oyfua 3.1. Ot cuveyelc YoouuES avTITpoomTEDOUY T1) POT| EAEY Y OU
EVE OL DWIXEXOUUEVES TT) POT| DEDOUEVWV.

3.1 BBAoO7xn

Ov egappoyéc CUDA €youv mpocfaot o nopoug tng GPU péow cuvaptioswy
2100 X EMEXTACEWY NG YAwooog tpoypappatiopol C. Ot cuvaptroel elvor UAo-
Totnuéveg o BiAodxec Tou Topéyovton and o tepBdihov tpoypoupaticpol CUDA.
Emni€oy, ol enexTtdoelg YAOOOUS avTXoo TOVTUL XUTE TH UETAY AW TTION antd XAHOELS

/ m
p Application [| N | T T T~ > data copy

ass b
[' _ """"""" > rgferenge
| 5a | library call | 5i
,' \ 4 ‘
i Library I
I [__user
! | kernel
‘-\ 5b | ioctl() ,
\ Y 1
| /
\ Frontend Driver \:| '~..
N %
virtual interrupt | 5e 5c | notify 5ii
\ R
e Virtual CUDA Device | | #_ _ _ ___________user
kernel

hardware
o

Figure 3.1: Poéc Acdouévwyv xow Extéleonc

OE EOWTEPIXEC OUVOPTAOELS oL oTtoleg Bev elvan dladéoiueg 6TOV TEOYEUUUATIOTH.
XpnowonotwvTog Tov unyavious yag, ot egopuoyéc CUDA mou €youv avamtuydel pe
xenon tou Runtime API mopouévouy oupBatéc yia extéheon xodoe n Bihiovxn
wog exdétel Ty B demagr pe excivn g BBhodxn CUDA. Ilpoxewévou va
vAomolooule Ti¢ cuvapTthoelg Tou Runtime API otn BiBAo0xn yag, puetogpépouue
Ta oplopata Twv cuvapThoswy cto backend émou AouPdver ywpa 1 exTtéreot), xau
TOEUAUBAVOUUE Tal OYETIXE ATOTEAEGUOTAL.

'Oty parypatonoteiton pior xhhon BiBaotixne CUDA oand pla eqapuoyy (5a),
TOEUAUBAVOUUE Tal 0PIOUATA, T CUYXEVTPOVOUUE OF €val aftnua extéheong poll ye
GAha amoutolpeva dedouéva, omwe CUDA contexts ta omolor amodnxebovian otnv
BiBhot), xou SoPiBaloupe to altnue otov frontend driver péow plag xhrong
ovothuatog 1octl () (5b). ‘Otav pio xhfon cuo THUaToC ETOTEEPEL, TapUAUUBAVOUNE
TOL AMOTEAEGUOTA XL TOL EMICTEEPOUUE GTNV xaholLoa Oiepyasio. Emnpociétnc,
ETUTLY YAVOUPE ELXOVIXOTIOINGT) TNS EMEXTOOTC EXTEAEOTC TUpTvar (<<<. . . >>>) LAoTOL-
ovtog ot BPBMoIANN Yag TIC ECWTEPXES CUVPTATELS Ol OTolEG avTiXahoToOY TNV
eméxtoon auTh. mapohoufdvoupe Tic xhfoe cuvapthoewy tou CUDA SDK o

67

TIc avTixahoToUUE e TIC cuvVopTAoe NG BBAoUXNG Uag YENOOTOLOVTS TNV
uetaBint mepBdiiovtoc LD PRELOAD.

3.2 Frontend Driver

Yyedidlouye Tov frontend driver ¢ to eVOLdUESO TUAPO TOU Unyoviopo) To omoio
Tpowiel o Tt ExTEAEOTC amd TNy guest diepyacio oto backend. Thomololue
Tov frontend driver w¢ éva module o onolo goptwveton ooV TLErva Tou Linux.
‘Otov pla ouvdptnan BiBhotixne mporypatonotel pla xhnon ioctl() (5b), o frontend
driver mporypatonolel Tic xATIANAES OEOUEVOELS UVAUNG ot oVTLYEApEL To oplouaTa
and Tov YOpo yerotn otov yopo muphva (5i). TN cuVEYElL YENOLWOTOLEL TOV
UNYOVIOUO PETUPORAS DEQOUEVMY TIOU TEPLYPAPETAUL GTO XEQPIAALO 8 YloL VoL TEoLY-
wotomooet éva adtnua oty exovixs) ouoxeur; CUDA (5¢). ‘Otav ohoxhnpwiel 1
enelepyaoia o frontend driver avtiypdgel To amoteAéouoTa TGW GTOV YWOEO YENO TN,

Thomoolpe 800 TEOCEYYICEC TOU UNYAVIOUOU TORUANSHC ATOTEAEOUATOY ontd
NV EXoViXT] GLOXELY, évay 0 orolog Bucileton o EMUVOANTTING EAEYYO XaL €Vay O
omoiog Baocileton ot dlaxonéc. NNy Te®Tn Teocéyyion o driver eAéyyel o€ Bpdyyo av
xdmotog buffer €yel mpootetel 6tov poalduevo duxtio and To backend, evedy otnv
oeuTeREN 1 Btepyaota petofalvel ot xaTdo TaoT AdEAVELNS Ewe 6Tou An@iel ula etxovix
oo, uTodexviovTag TNV TeocVxn buffer otov daxtOho. O yeipioTrc Sloxonwy
t61e e&dyel Tov buffer and Tov daxtOMO xou emavagépel T diepyaoia oe xaTdcTAOT
extéheong. Ipaypatonotolue Tepauatiny alloAdYNoT TWY TEOUVAPEPUEVTLY UAOTOL-
HOEWY OYETXE e TNV enidooT Toug xadag xou T yenoyloroinorn tne CPU.

Thomowolpe Ty emxovovior uetalld frontend xon backend yenowonowwvtag tov
UMY OVIOUS HETAPORAS DEBOUEVWY 0 OTIOl0¢ TEpLYPdpEToL Tapumdve. 1Io cuyxexpyeva,
TEOYUATOTOLOVUE outhuota o TNV exovixy| cuoxeury CUDA rpociétovtag buffers otov
uolpalOopevo BaxTOAMO xou €WoToWdVTaE oTn couvéyew to backend. O ev Adyw
unyeviolog emxovewviog ewodyet évay teptopoud. Kde buffer dedouévwv npénel va
deouelEToL OE BLadOYINES PUOLXES VETEIC UVAUNG, X4t TO oTolo BeV elfval TdvTo EQPLXTO,
€0 OF UEYAAES UETAUPORES DEBOPEVLY. AUTOC elvol £VoC TEPLOPLG TIXOC TORAYOVTAC
otV TEPIMTWON TN PETUPORdS dedouévmy petalld g CPU xou tng pvAung tng
ovoxeL . AVOmTOCCOUUE ETOUEVWE €V UNYOVIOUO O OTOl0G, OTNV TEQITTWOT TOU
1 AMOUTOVUEVT) UVHUT] OEV UTOREL Vor BECUEUTEL UE CUVEYOUEVO TEOTIO, XATAPEVYEL OE
ula scatter-gather teyvixr n omolo yenowonotet buffers decucupévoug oe dSladoyixéc
guotxég Véoeic uviune. To backend unopel 611 cuvéyela va el tpdofBacn ot xde
TUAUO UVAUNG X0 VL OVOXOTAOXEVEGEL Tov apyixd buffer.

68

Emniéov vhonotolye diopolpaoud tomv tépwy g GPU uetald Siepyaoidy tou ex-
TEAOUVTOL TOUTOY POV GTNY (Btor Ecovixr unyovy|. Autd ETITUYYAVETOL ETLTRENOVTOC
o€ ToAamAég Slepyasieg va €youy Tpdcfoot oTov (Bto uoipalduevo BaxTOMO ToUTO-
YEOVA, YPNOWOTOLOVTOS EVay Unyavioud cuyypeoviouol. Kdie diepyaoio umopel va
TEOGVETEL AUTHUOTOL GTOV BOXTUALO ave€dpTNTO X0 VoL TEQLIEVEL VoL UTOG TOUV ENEEER-
yaola.

3.3 Ewovixr Yuvoxeury CUDA

Yyeddloupe 1o backend uépog Tou unyovionol pog wg Evay SLEXTEQAULKTT 0 0Ttolog
otoryetptletan Tor auThpoTa exTéREONE amd ToAAanAd VMs ta omolo exteodvTon oTov
(oo host. Thomowolpe v eoviny| cuoxevr) CUDA w¢ pio cuoxeury QEMU PCILL
To backend pgpog Aettoupyel o dlayelplo TG AWTNUATWY, DEYOUEVO OUTAUATI YL TNV
EXTEAEDT) GUVUPTAGEWY XS YOl TO UTOUTOVUEVOL OPIGUOTO X0l EXTEAWVTAS TEC GTO
host mepi3dArov. To bacend éyer ancudelog npdcfBacn oe buffers mou nopéyovta
UEOCK TOU UNYUVIOUOU UETAPORAS DEBOUEVMY, Ywelc Vo amantelton avitypay| Toug.
Auté elvon BuvaTod, ETELST 0 YWOEOSC PUOLXGDY BlEVIVVOEWY Tou guest elvor TpocBdotuog
oo TOV YWOEO EMOVIX®Y dlevdivoewy Tng diepyacioc QEMU, uéow evoc unyovionol
uetdgppaons. ‘Otav hauBdveton évor afTnuo YLot EXTEAEST), TO ATOXMOXOTIOLOUUE, oVaX-
ToUpE Tor amopad T T oplopatar xoun ExxvoUUe TNV extéheot oty GPU (5d).

Xeprlouaote Tehnd To antrata yio extéAeon 6 1o backend extehdvtag xotdhhn-
Ae¢ CUDA Driver API cuvaptfoeic. Emiéyoupe tnv mpooéyyion tng viornoinong
tou Runtime API ypnowonowdvtoc cuvaptrioeic tou Driver API xadde €tol yag
emtpénetan eNTh Otayelplon twv douwv CUDA. H ontd duayelpion tng ¢pdpTtemong tomv
modules ot Tng evolhoyfic TV contexts efvon amatTOOUEVT TEOXEWEVOL VoL LAOTIOL-
net o Brapolpacuds Tov tépwy e GPU. Awcgaiilouye anoudvemorn xou tpootacio
uetoy depyaoidyy CUDA détovtag to context mou cucyetiCetan ye tnv Teé€youca
Olepyaoio ¢ To TEEYOV, TEWV EXUIVNCOUUE TNV eXTEAEOT plog cuvdpTNomNg, Xong
xde CUDA context Stodétel Tov 8ix6 Tou amoxhelcTnd yweo dieviivoewy. ‘Otay
1 extéheon ohoxhnpwiel, tpociEtoupe Toug buffers mou nepiEyouv ta amoutobueva
amotehéouaTo. GTOV HOLRalOUEVO BAXTOALO %ot ELBOTIOOVUE TOV guest TEOXUAMVTAUC
utor etxovixr dtaxony (5e).

Ipoxewevou vo emTOYOUUE DLPOLEAUOUS TNG PUOLXTC CUCKELTC OF DLEPYUOIEC
oL omoleg exterolvTar o€ dapopetind VMs oo (dto host chotnua, uhonololue eva
EexweioTod popalouevo daxtOo Yetalld tng exovixfic cuoxeunc CUDA o xdde
VM. Avtetwnilouye xdie aitnua extéheong Eeymplotd xou e@apuolouue TONOTAEEN
TV UTAUATWY AT DIAPOPETIXES EIXOVIXES UNYAVES, (3G TE VL ETLTEETOUYE OLOOLOUCUO

69

Twv topwv e GPU.

3.4 Acentopepelg TAornoinong Runtime API

Thomotolue TNV exovixonoinon tou Runtime API nopahauBdvovtog ta opioyata
TV ouVopTAoEWY BBAodRxNe o Tpowdwvtag ta oto backend yia extéheorn. H
uAoTolnoT TV TUTLXGY GUVIETACEWY BIBA0IAXNG elvan apxeTd amhr xodng uTdpyouv
avtioToryeg cuvaptrhoelc Tou Driver API ol onoleg mpocgépouy tny (Bla Acttoupyind-
mto. 2671600, 1) UNOTOINGT TWY GUVIPTACEWY OL OTOEC oV TG TOUY TNV ETEXTAOT)
extéleonc kernel (<<<...>>>) anoutel neploodtepn tpoondieta, xadhe oL CUVUETH
Ol aUTEG eV exTilEVToL GTOV TEOYEUUUATIOTH xou 1 LAoToiNoN Toug Oev Elvan
Vol ToU xWoxa. XENOWOTOLACUUE (G EX TOUTOU TEYVIXEG Teverse engineering
TEOXEWEVOU Vo ETITUYOVUE Eovixomoinom tne enéxtaong avthg. Hpoypatomoooue
tracing xAficewv BBA0IRXNC TEOXEWEVOL Vo xoTarydPoulE Th SAAWGCT TV ECLTERL-
AWV CUVIPTAOEWY TOU UAOTIOLOUV TNV EMEXTUOY. TAOTOLOUUE TIC GUVORTHOEIS QUTES
ex¥éTovTag Ty (Ol BlETaPY| ETOL MOOTE Vo UTOPOUKE Vo TapahdBouue T oplouata
extéheone. H plduion xou extédeorn twv kernels yivetouw u€ow moramA®Y cuVUETY-
oewv BPBMoIAXNC. TNV UAOTOINGT UG CUYXEVTEWVOULUE Tot XaTdAANAa oplouaTa, To
amo¥nxedouue o€ BoPEC BEBOUEVLY, ot To Tpowdolue oTtay elval amdpaitnTo xotd
NV TeEheuTado Ypovixd xAno.

Emniéov, mpwv v extéheorn evog kernel ypewdleton v yivel 9popTmon Tou ex-
teléoou xwdwo oty GPU, and ta xordhinio apyeio avtixeipévey CUDA. Qoté-
0o, ot cuvapthoelc Tou Driver API, ot onoleg vhomooly Ty @oeTwoT Twv mod-
ules, amoutolv amd TOV TEOYPUUUATIO T Vo THEEYEL TO Ovoua Tou apyeiou. To Run-
time API Suwryeipileton autéuota v @éptwon twv modules, ywpic vo exdétel ta
avtioTolya ovopata apyeiwy. Eyouue avantidlel emouévng éva unyovioud omolog,
xotd TNV exxivnon e extéheong diog eqgopuoync CUDA, avalnrel ta apycio tOmou
.cubin xou yenowornotel e€orywyr cuUBOAnY yia va xodopicet tolol kernels opiCovto
oe xde apyeio avixeévoy. Atodnxebouue TV aviiotolyton Yetald Twv apyelwy
OVTIXEWEVWY xo TwV kernels oe pio dopr| d6edopéveny ot PiBAiodnxm xan avalntodue
v To avtioToryo apyelo Tpog PopTwon xdie opd mou exteAslton Evag kernel.

70

3.5 Amnoupovworn xow Ac@dieia

H vlornoinon poc e€acgoriler tnv npoctacio YeTald OlEpyaoLdY oL omoleg ex-
TeAoUVTOL Pl ecovixr) pnyavr) xodog xon UETOED BLUPORETIXMY ELXOVIXMY 1) oVOV.
Emituyydvoupe amoudvenor yenoylomoinvtag tov unyavioud tov CUDA contexts.
To CUDA contexts eivar to 10060vouo tov diepyacuwy ot CPU. Kdlde context
EYEL TOV OO TOU YWEO OlevivVoE®Y X, w¢ AMOTEAEOUA, (BlEC TWEC OEXTWY OF
uviun e GPU and diapopetind contexts avagpépovton oe dlapopeTinég Yéoeic o
puotxy| uviAun. Xuoyetiloude éva context pe xdie Siepyacio €Tol OOTE Vo BLUGPIUA-
wotel 1 amopdvVwoY X TEocTacta amd dAAEG Blepyasieg mou exteloVIUL GTO (Blo
xadog xan o dlapopeTnd VMs. Xtn cuvéyeia VEtouue To TpEyov context oto back-
end cUUPLVA Ye GTNY xaholoo diepyaota.

O unyavioudc og €yet oyedlao Tel Ue TETOLO TPOTO WO TE Vo UTOREL VoL EUTAOUTIG TEL
UE TILO TEOTYHEVAL YOQUXTNPLO TIXA ¢ MEANOVTIXEG emexTdoels. ['ar mapddetyya, Evog
UNYaVIopOg Bpoohdynomng Yo urtopoloe va tpoc Tedel o Te VoL eEACPUAIC TEL 1) Bixato-
o0V UETAE) TV BIUPORETIXGY EXOVIXOY Unyavey. Tlpog to tapdy, otnyv npwtdTuny
vhomolnor uac meaypatomoleitol TOAITAEE TwV ATNUATOY TNy pepld tou host
xatd FIFO oepd. Autd umopel vo enextodel oc yehhoviiny| enéxtaon Ue Ty €lo-
oYWy ahyopliuwy yeovodpouohdynong ol omoiot Yo egapuélouy dixatoctvn xon Yo
TPOCTATEVOLY TIG EOVIXES UNYAVES oo AdDog pUUUOUEVES 1) XUXOBOUAES EXOVIXEC
UNYAVES oL OTtolEG ETLYELROLY Vo xaTaypaoToly topoug tne GPU.

3.6 Asitovpywxol Ileglopiopol

[apd T0 yeYOVOS OTL TO GOOTNUA YOG TUPEYEL OLdpavTy TEOOPBUCT) OE GUOXEUES
CUDA, ewdyet 600 Aettovpyixolc meploplopols. Eloutiag eV ecmTepidy cuVapTY-
cewv PiAodfxng, ent Tou tapdvtog unoctreiletar uévo 1o CUDA Toolkit 5.0 6to
guest mepBdAiov. Xto backend, omou mpayuatonoieiton 1 TeAxy extéleot), umopet
va. yenotonondel o CUDA toolkit 7.5. Emmiéov, ta apyela avtixewévwy CUDA
To OOl YENOWOTOOUVTAL Yol TN PORTWOY) EXTEAECLUIOU XMOLXA, TEETEL Vo efval
olrdéoyua oTov host xatd Tov yedvo extéreonc. Mmopolv elte var avTiypagolv mpLy
™V extéheon elte va yivouv mpoodoiuo UEGk %oWoU GUCTAUNTOS dpyElnY.

71

72

Kegpdiowo 4
Ietpopoatinny ASLohoynon

H a&iohdynon enidoong dieldyetan oe évor 60G TN ATOTEAOUPEVO amd BV EME-
Eepyaotéc Intel Xeon X5650 (@2.66 GHz) pe 48 GB x0ptag pviung, to onoio eivou
eComhiouévo e pio povada eneéepyacta ypapay Nvidia Tesla M2050. To host
oLotnua yenowornotel Aettoupyixd cVotnue Ubuntu Linux 14.04 ye €xdoor muprva
3.19.0 xou Nvidia driver éxdoong 352.39. To Aoyiouxd exovixonoinong mouv yenot-
porotetton eivon to QEMU-KVM 2.3. ‘Olec ot eixovixég pnyaveg €youy puduotel va
yenowornooly pla exovixfy CPU xaw 1 GB RAM. To guest Aettoupyind clotnua
elvonw Debian 3.16.7 pe éxdoorn mupriva 3.16.0.

Apyd yenowonowolue cuvietind benchmarks yia va cuyxpivouue tic 500 Lho-
Towfoelg TI¢ ontoleg yenotuornolel To frontend pEpog TOU CUCTHUATOS YLol TNV AVUUOVN
amoteheoudTov and To backend. Emmiéov mpayuatonowolue avdiuor breakdown
xou e€etdloupe Ty emPdouvor oTtny enldoon Tou elodyel 1 o Toifo AoYLoUIXOU Tou
CUCTAUOTOS. LT1 CUVEYEL, alloAoYOUUE TNV eTtidooT plog meorylotixic EQuoUoYiC
1 omolol YENOWOTOLEL TOV UNYOVIOUO oS CLUYXEIVOVTUC UE TNV EXTEAECT) GTO TRALY-
wotid ovotnuo. Téhog adlohoyolue TNV XAMUAXOOYOTNTA TOU UNYaVIoUoU Xadog o
oELIUOC TAUTOYPOVAL EXTEAOVUEVLY EQapuoy®y oe VMs ctov Bto host audveton.

Hpoxewévou va a&lohoyioouue TNV ETUBOCT TOU TEMTOTUTOU TTIOL €Y OUUE UAOTIOL-
foet , yenowonoovue benchmarks and to CUDA SDK 7.5 [13] xadde xou and v
oulhoyn benchmark Rodinia [14]. Emiéyoupe benchmarks nou avtinpoowmnebouy
eva eupy gdoua egapuoywy GPGPU, xa yenowomolodue totxiho uTohoyio Txd gop-
Tiot, pey€drn dedopévev xon SlopopeTind yopaxtnetoixd Tou CUDA.

4.1 7YAlomowjoeic Sleep xou Busy Wait

Apywd exterolue pio allohdynon twv 600 TEOAVUPEPUEVTWY UNYAVICUDY OL
omolol yenowonotolvtal and tov frontend driver yio Tnv avopovr TV anoteAEoUATWY
extéheong. Xpnowonotolue €va microbenchmark mou extelel molhamhaciooud mi-
Véxwv To omnolo pog emteénct puduiCoupe to péyedoc twv dedouévev eleddov. O
TOMATAAGLOOUOC TVAX LY efvar plor onuoavTixr Aettovpyla Tou yenowonoteitar o pio
TOLUALL EQPAUPUOYY, OTWC YENUATOOWOVOUXES EQUQUOYES oL EQPUPUOYES eTECER-
yootog ofpatoc. Xuyxelvoupe Tov GUVOAXO Ypbvo exTéleonc xadde xaL T yeNot-
womoinon g CPU yia xde vhonoinon. Aliohoyolue Tig 500 UETPIXES Yiol €val VPO
uey€douc dedouévmv elo6dou. To anoteAéopota TwV TERUUdT®Y anewxovilovtal o Tov
IMivaxo 4.1.

To amoteréopota ety vouy OTL Yo uxpd UeYEDT BEBOPEVLY ELGOBOU 1 UAoTolnoT)
busy wait amod{del apxeTd XUAVTERU GTNY UETEIXT| TOU GUVORLXOU YPOVOU EXTEAECTS
oo TNV vhoroinon sleep. Auto elvon avauevouevo, Bedopévou Tou 6TL 1 emiBdpuvor
oo TNV evepyoroinom plag emovixhc dloaxonric etvar uPnioTEET o8 GUYXEIOT UE TOV
EMAVOANTTIXO €AY YO Uéoa oE Bpdyyo. 2oTé00, xadne To uéyedog Twy Bedouévmy
€10600U aUEAVEL 1) Blopopd oty enidoor yivetan oueAntéa. Emmiéov, dtav yenol-
womotelton 1 wédodog busy wait, ot egoupuoyéc yenowonowiy mhiewe v CPU ot
OAM TN OtdpxELd TNG EXTEAEONC TOUG, ONUIOVEYOVTIS TEQITTO PopTio 6T0 CUGTNUA.
Yy nepintewon g uedddou sleep, ot eQupuoyEg £xyouy YaunAdTERT Yenoyloroinon
e CPU, xadog v amehevlep®dvouy xatd T1 BIdEXEL TOU YeOVOU OVAUOVYS.

Hpoxewévou va enwgekniolye and To TASOVEXTAUUTA Xt TV 000 uedodwy,
ulomotolue e uPBEWwr tpoceyyion. T'a uxed peyedn dedoyevemy lobdou yenot-
pomotoUUe TNV uhotolnon busy wait mpoxeyévou vo emTOyoUNE XUAUTERY ETHBOGOT).
Yy nepintwon auth, n CPU yenowonoteiton mAfpwe yia évar cOVIOUo ypovixd
OLdo Trua, xowe 1 extéheon oto backend diapxel Alyo yio uixpd peyélr dedouévmy
€l0660v. Avtiteta, yioo yeyohlTtepa UEYEDT BEBOUEVLY ELGOBOU YENOLLOTOOVUE TNV
uloroinor sleep mpoxewévou va emtiyoupe TG0 yaunAy yenowonoinorn tng CPU
0G0 xou oA enidooT).

Input Size (KB) 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048

Busy Wait | Xecution Time (ms) [5.0 |85 | 87 | 9.0 | 141319 [641 240.5 4630

CPU Usage (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Sleep | Execution Timne (ms) | 138 [149 [148150 | 153 | 352 | 641 2411|4627
CPU Usage (%) 1012101099]10] 6 7

Table 4.1: X0yxpton Thonowjoewy Sleep xow Busy Wait

74

4.2 Emnidoon Microbenchmark

Ae&dryouue peTprioelc yenoylonowwvTog dwdpopa benchmarks cuyxpetvovtog Ty
EXTEAEOT) GTO TEUYUATIXO CUCTNUA UE EXELVY OF ELXOVIXEC UNYAVEC PE YEHOT| TOU
unyoviool pag. Ipoyuatomolobue UETENOT TOU YPOVOU EXTEAEOTS OAWY TV Acl-
Toupyiwy CUDA ywpelc vo oupmeptau3dvouue Toug UTOAOYLOHOUS TOU EXTEAOUVTOL
otnv CPU, xodd¢ o unyaviopodg ewodyel emPdpuvon uovo otic Aettovpyiec CUDA.
Y10 oy fua ToEouctdOVTAL Ol XUVOVIXOTIOUNUEVOL YEOVOL EXTEAECTC OE TEOYUTIXO
xou etovixd mepi3dhhov. To melpopoatind amoteAéopota detyvouv dTL 1 uToBdiduion
¢ enidoone ota benchmark BlackScholes (BS), LU Decomposition (LUD) and
Back Propagation (BB) (6mou extelolue tov kernel ce 1000 enavolfdeic) otav
exteholvTon oe VM ebvan aueAntéa oe olyxplon Ue TNV exTEAECT) GTO TEAYHATIXG
obotnua. O ypdvog extéheone toug eivan 1.74%, 3.32% xou 1.56% vmhdtepog amd
exetvov 070 host mepBdiiov avtiotorya. H yeyolltepn emfBdpuvon ctov ypedvo
extéleonc etvon 9.23% yio to benchmark fastWalshTransform (FWT). To bench-
mark autd yopaxtneileton and chvtopo yedvo extéleonc tou kernel (Uohic to éva
Tp{T0 TOU GUVOAXOU YPOVOL EXTEREGNC) UE OMOTEAECUA 1 ETBAEUVET AOYW TNG UVTI-
yeuphc dedopévwy petalh CPU xou cuoxeuic Vo €yel UEYUADTEQO aVTiXTUTO G TNV
enidoom Tou, Aoyw TNe Tpoavagepleicos avTlypaphic LETAL) YMEOU YEHO TN XL Y(EOU
muprva. H emBdpuvon auty| umopel vo uetwiet eqapudlovtag Teyvinég undevinrg avti-
Yeupng 6Twe memory pinning, ot omoleg Unopolv va VAOTOINYOUY ¢ UEANOVTIXES
enextdoelg. Emnhéoy, mapatnpolue Bertiwon xautd 4.40% otov ypbvo EXTEAEOTC TOV
Aettovpytdyv CUDA oo benchmark nolhamhootoouod mvixwy (MM). H Bedtiwon
ouTy| unopel vo amodoVel oty uetatponry tou Runtime API oe Driver API c7o
backend.

4.3 Avdivorn Breakdown

AvahOoupe Ty emBdpUVOT TOU ELOAYETAUL OO TOV UNYOVICUO ELXOVIXOTOINoNG
xaL TporypotontoloUue avdhuor breakdown empépouc cuvapthoewy Tou CUDA Run-
time API yenowonowsvtag to benchmark BandwidthTest mou mapéyetoan and ta
CUDA samples. Ta anoteréopata mapoucidlovion 6to oyfue 4.2. Emiéyouue
VO TPOYUOTOTIOLCOUPE UETPNOELS 0T ouvdptnorn cudaMemcpy, xado¢ €lodyel Ty
vdnAotepn emBdpuvon eantiog TwY AelToLEYLWY avTiypapnc dedouévny. Xwellouue
v extéheon plag ouvdptnone oe mévte otddlo (1ib, copy, fend, exec, bend) To
omolo AVTITPOCWTEVOUY BLAPORETIXS UERT, TNG OTOIBoC AOYLOULXOU TOU UMY OVIGUOU
xorddg xou hertoupyieg mou mpoxaholy onuavtxt emBdpuvon. To mpwto otddio (1ib)
Tep ouPdvel Ti¢ Asttoupyieg mou mparyuatonoolvTal and Ty BiBAodxn extog and
NV extéheon) TNC xhfiong cuoThuaTog ioctl () 1 onola YeTaPEpEL TOV EAEYYO GTOV
frontend driver. To o1ddio copy avtimpoownelel Ty emBdpuvor Tou ElodyEToL omd

75

NV avTLypapr) BEBOUEVKDY PETAC) YMEOU YPHO TN Xal YWEOU TURNVA, EVEM TO GTABI0
fend eivar 0 ypdvoc mou xatavaAOVETHL OTIC UTOhottes Aettoupyiec Tou frontend.
Téhog, 10 6Tdd0 exec elvon TO Ypovixd Bdo TN EXTEAEONC TN ouvdptnong Driver
API xou 10 674010 bend T0O YEOVIXO BIACTNUA TOU XATUVIAWVETOL GTIC UTOAOLTES
Aertovpyleg mou exteholvton amd To backend, omwe deoucloelg uviung, avdxtnon
OPLOUATGLY XAT.

Ané6 T amoteléouoto TEoXOTTEL OTL TO UEYANITEQO HEPOC TOU YEOVOU EXTEAECTIC

1.2 T T T T T

Q

£

H

-°:) [l Native
= M Virtual
2

Z

MM BS FWT LUD BP

Benchmark

Figure 4.1: En{doon Microbenchmark

100%

80%

Lib

Fend
Copy
Bend
Exec

60%

ERCEN

40%

20%

Percentage of Routine Execution Time (%)

0%

1KB 512KB IMB 2MB 4MB 8MB 16MB

Input Data Size

Figure 4.2: Avdiuon Breakdown

76

elvon 1 extéheon tng ouvdptnorng tou Driver API 6to backend. To otddio autd
Oroipxel €we xon 69% TOU GLVOMXOU YEOVOU EXTEAEONG YIoL UEYIAES OVTLYROPES OE-
OopEVWY. AEBOPEVOL OTL 1) QACT, AUTH AVTITPOCWTEVEL TNV TEAXY| EXTEAECT) OTNV
GPU, a undhoina otddlor eEXTEREOTC UTOPEL Vol yopaxTnEoTel w¢ 1 emBdouvon 1
omolo tpoxaeltan amd o oot pog. Ta anotehéopata delyvouv 6Tl 1 emiPBdpuvon
auTH Tapopéver otadepr 6To 27% ToU GUVOAIXOU YEGVOL EXTENECTIC X0Td HEGO OPO,
yior avTlypapéc dedouévey ueyahitepeg tou 1 MB. To yeyovég autd euvoel eqop-
HoYéC OTIC omoleg 0 ypdvog exTéreong xuplopyeiton amd utoloyiopole oty GPU
ToEd amd VT PapEC BEdOUEVKY. To 6Tddlo Tne avtiypaprc BEBOUEVKY UETAL) YMEOU
YEHO TN %o YDEOU TUPHVOL XOTAVAAWYVEL Xatd U€ao 6po to 30% 10 Ypdvou extéheong
xaL amoTeEAEL TO xUplo UEPOS NG emBdpuvong Adyw ewxovixonoinong. H egopuoyn
UMY OVIOUWY UNDEVIXTG AVTLYRUPHC, OTWS TROUVAPERUNXE, UTOPEL VoL UELWOEL AUTH TNV
emPdpuvon. Ou teyvinég autég umopoly vor LhoToNYoly we UEAAOVTIXEG ETEXTACELC.

Hepartépw petprioeic Belyvouv 6Tl oL umdhoime ouvapThoele TNe BiBAodrixme
ewodyouv otadepr| emPBdpuvorn. H Aertoupyid cudaMalloc ewodyel emfBdpuvon 24
ps, 1 Aertovpyla cudaFree 23 us xou 1 extéheon evog nuprva oty GPU 64 ps.
H emfBdouvon otny enldoon twv epapuoynvy dewwveton xodog 1o péyedog tomv de-
OOEVWY ELGOBOL auEdveTal, ETEWY| To 1) oToeRY| emBpuvor amotehel UxEOTECO
UEPOC TOU GUVOAXOU YpEOVou extéheonc xadwe o ypeovog extéreonc otnv GPU
avédveTal.

77

4.4 Ernidoon Egaguoync

AZioloyolue TNy adlomoTior xon TNV AmodOTIXOTNTA TOU CUG TAUATOC OTAY YENol-
vomotelton amd pio eqopuoyt vlmidtepou emimédou. XpnoWOTOWUUE TNV EQUOUOYT
StoreGPU [15] n onola emttpénet e oyeBLO0TES XATAVEUNUEVODY CUCTNUETOY omo¥h-
%evomg Vo avadéTouy Acttoupyieg BACIOUEVES GTOV XUTAXEQUATIONO OE HOVADES ETE-
Eepyaotog ypapxwy. H eqopuoyr StoreGPU emitaybvel unoloylo tind xat amodnxeu-
TG AT TNTIXES AELTOVPYIES, BNUOPLAEIC OE UAOTIOLAGELS XUTAVEUNUEVODY GUC TNUATWY
amovixeuons. Exteholue tov GPU kernel oe 10 enavarrelc xon Uetpdue 10V GUVO-
Ax6 yeovo extéleons xodme xon Tov Ypovo extéreons twv hertoupyuny CUDA. To
oyfua 4.3 amexovilel To TEWROUUTIXG ATOTEAECUATA TOGO GE TR YUATIXG TEPUSAAROV
OGO XL OE EWOVIXO UE T ¥PNoT Tou cUCTANATOC pag. ‘Omeg xou o mponyolueva
Telpduota, To Cuda AvVTITPOCWTEVEL UOVO TOV YPOVO EXTEAEOTG TWV AELTOURYUDY
CUDA, ev®) to Total Tov GUVOAIXS YeOVO exTéAeoNC GUUTEQLAAUSAVOUEVOL TOCO
Tou yeovou extéheons oty CPU 6co tnv GPU. Ta arnoteréopata delyvouy OTL 0
OLVOMXOC YEOVOC EXTENEONC OE Hlar EtxovIXT| Unyovi| etvar umMAGTEPOS XaTd 7.67%
oo exetvov oTo TpoyuaTixd ol TN EV® 0 Yeovog extéheonc CUDA unidtepoc
xotd 4.67%.

500

400

200

2

£

CEEECTI Mo [N

E

= B Native
5 [Virtual
s

Q

[}

53

[aa]

100

Total Cuda

Figure 4.3: Enidoon Egappoyrc

78

4.5 Metprosig KAwpdxwong

AZiohoyolue Ty emBdpuvoT ToU ELGAYEL TO GUC TN MAS GTNY TOUTOY POV EXTE-
Aeon egapuoyny tou yenowonowly Ty GPU dieldyvtag d0o €ldn petprioswy: (1)
OTULOVEYOUUE TOMNNATIAEG DLEQYUGIEG GTO TRUYUATIXNG GUCTNUN OL OTOLES TEAYUATOTOL-
0OV extéleon tne Bloc epappoyrc (native) xou (2) extelolue TNV €QOPUOYY| OE
nmolManhd VMs (virtual). Metpdue tov ypdvo extéleonc twv Aettovpytdy CUDA
YU QUTES TIC TEQITTWOELS Xou a€loAOYOUUE TNV emBApUVCT TOU ELOAYETHL amtd TO
Lo TNUA, XoMOC 0 dEIUOC TV BIEQYUCUDY XL TV EXOVIXMY UNYAVOY avTicTolyo
au&dvetar. Xenowonowlpe To benchmark BlackScholes to onolo magéyeton amd ta

CUDA samples. Ta anoteréoyata mopoucidlovial 6To oyrfua 4.4.

9,000
8,000
7,000
6,000
5,000
4,000

Execution Time (ms)

3,000
2,000
1,000

1 2 4 8 16

Number of GPU Contexts/VMs

Figure 4.4: Metprioeic Khudxwong

79

B Native
B Virtual

Kegpdiowo 5
YxeTixeg Y AOTOWNOELS

Audpopeg TPooEYYIOEIC Ylol TNV LAOTIOMOT] EIXOVIXOTOINOTNG CUCXELWY ETELER-
yaotog yeapxay xou dapotpaouol tépwyv GPU €youv mpotoel amd tny epeuvninn
xowétnra. Hoapdhinha, ot mdpoyot cloud uvnnpeoidhv 6mwe ot Amazon [8] xou Mi-
crosoft Azure [34] xAn. [35] npoogépouy tépouc GPU oo mhoicto twv unnpeotdv
Toug. Mo xatnyopior TEOTEWVOUEVWY AICEWY XAVEL YEHOT TNS TeYVoloylag pass-
through mpoxeiuévou va mop€yel oe EOVIXES PNy aVEC dUEDT) TPOGBAOT OTIC QUOLXES
ovoxeuéc. AuTth) 1 Tpocéyyion umopel va eAayloTonoioel TNy emPBdpuvorn Adyw
eovxonolnong, onwe éyouv deilel uetprioelc emdboewy 610 Aoylouxd Xen [29)],
oaANG péow tne teyvohoylaug pass-through n dayelpion tne GPU yiveton anoxhieio-
TIXd amd To guest Aettoupyind cUCTNUA, xat OeV elvon duvatd ToAAamhd VMs vo Ot
apotpdovton Ty Bl ouoxeur. H teyvolroyio Nvidia GRID [30] emitpénet exywenon
e guotxhic GPU oe ntolhomhd VMs tautdypova. To clotnuo Gdev [28] emtpénet
Vv exovixonoion ploag uotnic GPU oe mohhamAéc hoywég, ot onoleg umopoly o1
ouvéyeta vo avatedoly oe VMs, emitpénovtog Ue autd TOV TPOTO TOV OLoOLUCUO
TOPWY.

To gVirt [26] anotelel pio mpocéyyion mhfipouc exovixonoinong 1 onoio eTLTEéneL
otov driver tng GPU va exteheltan o7o guest hettovpywd clotnua. O unyaviouog
autog €yel uhoroiniel oe emelepyactég ypagpixwy Intel Processor Graphics xou 1
a&lohdynon Tou ebvar mpocoavatohlouévn oe epopuoyéc 2D o 3D ypagpav. To
GPUvm etvan évag unyoavioude o onoiog Bacileton 0to Aoylouxd Xen xou UAOTOLEL
TATIET) EXOVIXOTIOMNGT XIS X TORA-ELXOVIXOTIOINGT| HOVEDdWY enelepyaciog yoaupL-
xwv. H mpocéyyion autr dlapepet and tn ot g, xodog vAomolel etxovixonolnon
e GPU o€ younhdtepo eninedo xou ypnotpomotel tny nhot@oppo Gdev [24] yio tnyv
unoothpn tou CUDA Runtime.

To ovothuata vCUDA [17] xou rCuda [18, 19] egopuélovy tnyv teyvixr tne

avaxatevuvong xhfoewv APIL mpoxewévou vo xatacthAcouy Suvath Tr Slipavi
mpoofact oe cuoxcuég Nvidia oe egapuoyéc mou exterolvtar oe VMs. Ko ta
000 YENOWOTOLOVY BIXTUOXE TEWTOXOMAAL TEOXEWEVOU VO UNOTIOLAGOLY Y AVIOHOUS
emxowvwviag. Tlapdho mou ou dutuaxol unyoviopol emxovomviog xadiotoldv autéc
TIC UAOTIOLNOELS aVEEBOTNTES TOU GUG THHATOS ELXOVIXOTOINGNG, TROXUAOUY CTUOVTIXT
emfBdpuvon otny enidoorn. rCUDA Siodétel eniong pla BertioTomoinuévn viomoinon
TOU Unyaviopol emxotvmviag yio dtacuvdéoelg InfiniBand, npoxewévou va emwpel-
niel and Ty uPnAY TaydTnTe Tou péoov. Emmhéov €yel npotadel to gVirtus [21],
évag unyaviouoc ewxovixornoinong GPU o omolog diver éugacn otnv avelaptnoio
oo tov hypervisor xou Baciletan og €vay unyaviopd emixowvwviog aveldeTtnto and
Tov OlawAo pEcw Tou omolou LAOTOLELTAL 1) ETXOVWVIAL L0YXEIOT UE TIC UETEY|OELC
Tou mopouctdlovtar 6to [21] unodewviel Tt To ol THUA PG ELOdYEL YounAdTeEN
emPdpuvon and auth T Teocéyyion. Autd umopel vo anodolel otnv extéleor
ouvopthoewy tou Runtime API oto backend. To GVIM [22] ypnowonotel v
TEOGEYYLON TNG TUQO-EXOVIXOTIOMNOTE TROXEWEVOU VoL UAOTIOLCEL TNV EIXOVIXOTIOINGT
xan otayelplon Twv topwyv g GPU. Xenowornotel unyaviopoic tou Xen, cuunepih-
ouPovouévmy xan otpalouevey buffers, pe oxond v ulomoinom Tou unyaviouol
emxowvwviag. H vhonolnon auty ewodyel peyahitepn emBdpuvorn and Tov unyoviold
woc, Omwe Oetyver 1 olyxplon YeTodd TV UETEPHOEWY 070 [22] xou oUTAC TN €p-
yaotag. O unyoviopde LoGV [23] vhonotel eovixonoinon Aettovpyiddyv GPGPU oe
YUUNAOTERO ETUTEDO YENOWOTOLOVTUC TOUG UNYOVICUOUS TR0 TGt TV G0YYEOVKY
GPUs. Ewovixorowel v dienagn tou pscnv GPU driver xo ypnoylomnotel Ao-
YIOUIXO 0VOIXTOU XWOWa TRoXEWEVOL Vo Tpoo@épel unoothpen tou CUDA APL
Emuniéov, n mpocéyyion autr dev dlacpahiCel Ty mpooTacia YETAE) EQUQUOY OV TTOU
EXTEAOUVTOL G TNV (B ECOVIXY| Uy avr, Taed LOVO UETAED EXOVIXMY UNYOVOY. DTNV
vhornoinon DS-CUDA [25] o oLYYEAPEl ToEOUGLACOUY EVay UNYAVIOUS UE GTOYO
TNV AVTLHETOTLOT TV BUOXOAMY TOU TEOYQUUUATIONO) OE ETEQOYEVY XATUVEUNUEVY
ovothuata. O unyoavioude viomolel eovixonoinon evog cluster utoloyloTOy €&-
omhopévev pe GPUs €tol dote va epgavietar 6t oo GPUs elvon cuvdedeuéveg
o€ €vay UOVO x0UPB0, UE OXOTO TNV BIEUXOAUVGT| TOU TEOYQRUUUATIONOU EQUQUOYWY
mou exterolvTton oe mohhamiéc GPUs. Yto mhalolo tou Slopolpaciol Topmy Tne
GPU petald etxovixdv unyavaey éyet tpotadel to V4V Sockets [20], évag pnyoviopde
TOL TEOGPEREL AMOBOTIXY EMXOWVWVIA HETUE) XOUBWY, UAOTOINUEVOS GTO AOYLOUIXO
Xen. O ouyypageic detyvouv ott o TCUDA umnopel vo exteheotel pe yprion tou
V4Vsockets emtpénoviac tov amodotxd dwopolpacud népwy e GPU petald VMs.

81

Kegpdiowo 6

> Ovodn

6.1 Avdiuvon Enildpacng tou Ailopolpacuon
II6pwyv otnv Enildoon Egappoydv

O Bpolpaouoc Tou LAX0U PETOEY TOANUTADY TAUTOYEOVA EXTENOVUEVLV AEL-
TOLPYOY CLUC TN TLY amotehel uio Jeuelmdn TTuy T TNe ewovixomoinomng Lhixov. O
UMY OVIOUOC Yo eTEETEL Tov Slapolpacud topny e GPU egopudlovtoc moAdmAedn
TV UTNUdTLY extéleonc oTo eminedo tou hypervisor. 201600, 1 TOMOTAES TNC
TpooPacng egapuoywy otny GPU eodyel eminpdoietn emPdouvon xan emdpd apv-
nTxd oty enidoon toug. Emmhéov, epoapuoyéc pe dapopetind potiBa extéheong
umopel vo emneedlovTal SLPORETIXE AT TOV BLAUOLPUOUS TWV TEOCBAGEWY TOUS G TNV
GPU.

Ov egapuoyég mou yenowomowly emtdyuvor and tnv GPU urnopolv Sy wet-
GTOUV AVAAOYO UE TOL YUQUXTNELO TIXG TOUG O dLdpopeg xatrnyoplec. Mio and autég
TEQLAAUBAVEL EQUPUOYES OL OTIOLEC UTOPOVY VO YORAXTNPLG TOVY WG EQUPUOYES UalINhC
eneéepyaciac. O eQupuoyEc QUTEC aVTLYRAPOUY UEYIAEC TOGOTNTEC BEBOUEVWY AT
tov enelepyaoth oty GPU xou otn ouvéyelo mpayuatonooly eviatixols UTOA-
oytopoUg ywelc mepoutépw arAnienidopaon ue tov yerotn. Ta anoteréoyota um-
oloy(Covtan xou avtiypdpovton ot pviun e CPU xotd v ohoxhpworn tng exté-
Aeong. Iopodetypota tétoiwy epapuoynv amoteholv HPC emotnuovixée eqop-
uoyéc omd medla 6mwe 1 Promhnpogopxt| [31] xou N emothAun Twy VAo [32]. H
TohUTAEEN TV TpocBdoewy oty GPU egapuoydy autic tne xatnyopliac uropel va
mpoxakéoel utofdiuion tng entdoong, xadang ot taraotepeg GPUs dev mpoogépouv
TEOYUOTLXO Btogotpacuod Topwy. H xplown uetpu entdoong etvan 0 cuvohixdg ypdvog
extéheonc. lotdo0, TO (VPO YAPUXTNPICTIXG TWV EQUOUOYWY AUTGY Efval OTL 0
YeOVOS exTEAEOTC TOUC xuplopyeitoan amd yernowonoinon moépwyv tng GPU. (¢ ex

ToUToU, N TOAUTAEEN TwV TpocBdcewy oty GPU tautdypova exteloluevemy epop-
HOY®V eTPapUVEL TNV ETUBOCT OAWY TOV EQPUPUOYOV, XADOE UTAUNTA Yo EXTEAEOT)
am6 daopetind CUDA contexts oelplonololvtar xatd tnyv extéheon otnv GPU.
Auté ebvan éva eYYEVES YoRaxXTNELOTIXG TNG APYITEXTOVXTC TV TakoudTtepwy GPUs.
Avtdétog, otny TeplnTeon Tou oL e@apuoYEC UTOBIAAOYVTOL Yo EXTEAEDT] OELOLOXA,
6nwe yior Tapdderypa o éva oV TNUA Ypovorpoypauuatiopol tépwy (Torque) n
umofdduion tng enidoong xdie epapuoyrc etvon apeintéa. 2oTd00, axdun xaL AUTA 1)
AT YORld EQPUQUOYOV UVOUEVETOL VoL ETLTUY Y AVEL XaAUTERY ETLBOCT G TIC GUYYPOVES
GPUs.

Amé v dhhn mhgupd, uio Slapope T xatnyopla TepAaBdveL BlaBEao TIXES EQOQ-
HOYEC LaxEdG EXTEAEDTG, OL 0Toleg GUVATKC EXXVOUY TNV EXTEAEST) TOUC AV TLYEAQO-
VTOG T AoEaf TN TOL BEBOUEVYL G TT) GUGKELY), EXTOS TOU X{GLUOU LOVOTIOTIO) EXTENEDT,
xoL haBAvouy Bladoyind IXEOTEREC TOCOTNTES OEDOUEVGLY WS Elc0do, oL oToleg
exvoly unohoytopole. Tlopadelypota eopuoy®dy ol omoleg axohouvdoly autd To
wotifo extéheong anoterolv egapuoyéc Big Data ol onoleg exteholy epwthuata o€
ueydha olvola dedopévmv [33]. Egapuoyéc authc tng xatnyoplag €youy cuvieg
amouthoelg meaypatxod yeovou. O xplowog mopdyovtag tng emldoong Toug etvan
N ToyvTNTO amoxplong 6tav AauPdvetar xdmota eicodoc. H extéleon toug meplh-
opfdver evolhoyéc UETOED TEPLOBMVY aBEAVELIS, OTOU avoUEvETL ElcodoC amd Tov
YeNo TN, xou TEPLOdLY enelepyaciog, 6Tou unohoyilovton To {NTOUUEVO ATOTEAEGUITAL.
Auté To potifo extéleong emTUYYEVEL XOAT| ETUBOCT GTOV BLUULOLPUOUS TNG CUOXEVTC
HETAE) ToUTOYEOVA EXTEAOVUEVWLY EQappoy®y. H molimiedn twv mpooBdoewy Toug
oty GPU ebvar epuety) xodwg meplodol abpdvelog xAmolmy eQapuoyOy UTopel va
CUUTUTTOUV UE TEPLOBOUS UTOAOYIOU®Y GAAMY.

ITpoximtel emoyeveg 6Tl 1 entidpaot Tou diauotpacuod tépwy tng GPU umopel
v ebvon BtapopeTixr) avdhoya ue to potio extéleong tng epapuoyhc. E'va clotnua
otayelprong Tne GPU da unopoloe va xatatdooeL Tic eQapuoYES OTIC XATNYopieg Tou
TEQLY PAPNUOY TOQUTAVEG Ko VoL OROUOAOYEL TIC TEOGBACELS TOUC GTOUG TOPOUS TNG
GPU avdhoya. Melhovtud enéxtoaoct tou pnyaviopol umopet vo tepthopufBdvel tny
epappoYY) TeyVixwy profiling ye oxond tnv xutnyoplomoinoy egapuoymy xadng xa
™ Yeron Odpopwy aAyopllumy yeovodpouordynong Twy tpocBdocny oty GPU.
Ou teyvixéc autéc umopolv axdun va a&toroyniolv oe olyyeovec GPUs ot omnoieg
TOEEYOUV TILO TTEONYHEVAL YUQUXTNELC TIXE BLUUOLEAoHO) UETUE) TAUTOYPOVKY EXTENE-
OEWV.

83

6.2 Xvuncpdopata xouw MeAhovTixég
Koatevddvoeic

Ynv epyacio autr Toapouctdlouue Evay UNnyavioldd o oTolog TEOYUATOTOLEL amodo-
T} eovixoroinon mépwv GPU xadde xan Sioauolipaoud toug PeTald EIXOVIXGDY
unyavov. H vhomoinon poc epoapudlet avaxoatebuvon API uéow evoc driver yopl-
ouévou oe dU0 UEpn, mpoxeévou vo emteenel ot egapuoyéc GPGPU va €youv
TeocPuoct oty @uowr) cuoxeut). H allohdynon tng mpwtéTUTNG LAOTONONG UaC
OelyveL OTL 0 UNyYavVoUOg ETLTUYYAVEL €TiOO0T TOU XOVTH OE EXEVT TOU TEAYUATIXO0
CUC THUUTOS Lo uecadar xon HEY Ao ueYEDT Bedouévmwy elobdou. Emimhéoyv, epupuoyég
TOL EXTEAOVUVTAL TOUTOYEOVA OE BLapopeTixd VMs umopolv va polpdlovton amodotixd
v GPU.

Lye01ALOVUE TOV UNYAVIOUS UE TPOTO O OTOIOC VL ETUTOETEL ENEXTAUCELS TOU TEOY-
HOTOTIOLOUY Y POVOBEOUOAGYNOT Vo Teoo TEVoUY €0X0Aa TNV Tapolca LAOTOMGO).
Q¢ pehhovtixy) TEoéxtaot), oyeddlOUUE VO UAOTIOCOUNE YPOVOBPOUOLOYNOT TKV
UTNUATWY EXTENECTIC TROXEWEVOU VoL ETUTUYYAVETAL OXonoolvY) otny e€unneéTnor
UETOED TOCO TV EXOVIXWDV UNYAVOY 600 Xal TV e@appoyny. Mnropel oxdun va
viomoundet diayeipion Twv tépwy tng GPU oto backend 1ol dote va Sraoporileton
ouxonoclvr, avayvopllovtag to potifo extéreone twv GPU eqoupuoydv xaw mpo-
yeoppatilovtag xatdhinha v tpécBact toug oty GPU. T to oxond autd, o
unyaviopog Yo umopoloe Vo avty VEUEL xat VoL ETBRBVVEL EXOVIXES UMY avES HE UPMAES
amoutrioelg o€ topoug e GPU. Téhog, yehhovtixéc emextdoeic tepthapBdvouy eniong
Vv olloAdynor Tou pnyaviopol pog o oUyyeoveg Nvidia GPUs pe Behtiwpéva
YUEAXTNELO TIXE TTOU GPOPOUY TOV BLUHOLRUCUS TOY TORMV.

84

Bibliography

1]

Abhijeet Gaikwad and loane Muni Toke. Gpu based sparse grid technique
for solving multidimensional options pricing pdes. In Proceedings of the 2Nd
Workshop on High Performance Computational Finance, WHPCEF ’09, pages
6:1-6:9, New York, NY, USA, 2009. ACM.

D.P. Playne and K.A. Hawick. Data Parallel Three-Dimensional Cahn-
Hilliard Field Equation Simulation on GPUs with CUDA. In Proc. 2009
International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’09), pages 104-110, Las vegas, USA, 13-16 July
2009. WorldComp.

J. Michalakes and M. Vachharajani. Gpu acceleration of numerical weather
prediction. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1-7, April 2008.

Everett H. Phillips, Yao Zhang, Roger L. Davis, and John D. Owens. Rapid
aerodynamic performance prediction on a cluster of graphics processing units.
In Proceedings of the 47th AIAA Aerospace Sciences Meeting, number AIAA
2009-565, jan 2009.

Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader:
A gpu-accelerated software router. In Proceedings of the ACM SIGCOMM
2010 Conference, SIGCOMM ’10, pages 195-206, New York, NY, USA, 2010.
ACM.

Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and Kyoungsoo Park.
Sslshader: cheap ssl acceleration with commodity processors. In In Proceed-
ings of the 8th USENIX conference on Networked systems and implementation,
NSDI’11. USENIX Association, 2011.

Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings of

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 08, pages 511-524, New York, NY, USA, 2008. ACM.

Amazon GPU Instances. http://aws.amazon.com/ec2/instance-types/.

CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/.

J.E. Stone, D. Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in Science Engi-
neering, 12(3):66-73, May 2010.

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ATEC
‘05, pages 41-41, Berkeley, CA, USA, 2005. USENIX Association.

Rusty Russell. Virtio: Towards a de-facto standard for virtual i/o devices.
SIGOPS Oper. Syst. Rev., 42(5):95-103, July 2008.

NVIDIA. NVIDIA CUDA SDK code samples.
http://developer.download.nvidia.com/compute/cuda/5_0/rel-update-
1/installers/cuda_5.0.35_linux_ 64 _ubuntull.10-1.run.

Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In Workload Characterization, 2009. IISWC' 2009. IEEE International
Symposium on, pages 44-54, Oct 2009.

Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan,
and Matei Ripeanu. Storegpu: Exploiting graphics processing units to accel-
erate distributed storage systems. In Proceedings of the 17th International

Symposium on High Performance Distributed Computing, HPDC ’08, pages
165-174, New York, NY, USA, 2008. ACM.

Nvidia. Nvidia’s Next Generation CUDA Compute Architecture Ke-
pler GK110. https://www.nvidia.com/content/PDF /kepler /NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf.

Lin Shi, Hao Chen, and Jianhua Sun. vcuda: Gpu accelerated high per-
formance computing in virtual machines. In Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1-11, May 2009.

Antonio J. Pena, Carlos Reano, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Orti, and Jose Duato. A complete and efficient cuda-sharing so-
lution for {HPC} clusters. Parallel Computing, 40(10):574 — 588, 2014.

86

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

J. Duato, A.J. Pena, F. Silla, J.C. Fernandez, R. Mayo, and E.S. Quintana-
Orti. Enabling cuda acceleration within virtual machines using rcuda. In
High Performance Computing (HiPC), 2011 18th International Conference
on, pages 1-10, Dec 2011.

Anastassios Nanos, Stefanos Gerangelos, Ioanna Alifieraki, and Nectarios
Koziris. V4vsockets: Low-overhead intra-node communication in xen. In
Proceedings of the 5th International Workshop on Cloud Data and Platforms,
CloudDP ’15, pages 1:1-1:6, New York, NY, USA, 2015. ACM.

Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe Coviello. A
gpgpu transparent virtualization component for high performance computing
clouds. In Proceedings of the 16th International Furo-Par Conference on
Parallel Processing: Part I, FuroPar’10, pages 379-391, Berlin, Heidelberg,
2010. Springer-Verlag.

Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche,
Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan. Gvim: Gpu-
accelerated virtual machines. In Proceedings of the 3rd ACM Workshop on
System-level Virtualization for High Performance Computing, HPCVirt ’09,
pages 1724, New York, NY, USA, 2009. ACM.

M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa. Logv:
Low-overhead gpgpu virtualization. In High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC _FEUC), 2013 IEEE 10th International Con-
ference on, pages 1721-1726, 2013.

S. Kato. Gdev CUDA Runtime. https://github.com/shinpei0208/gdev.

A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi. Distributed-shared
cuda: Virtualization of large-scale gpu systems for programmability and re-
liability. In FUTURE COMPUTING 2012, The Fourth International Con-
ference on Future Computational Technologies and Applications, page 7—12,
2012.

Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtualization
solution with mediated pass-through. In 201/ USENIX Annual Technical
Conference (USENIX ATC 1), pages 121-132, Philadelphia, PA, June 2014.
USENIX Association.

Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. Gpuvm:
Why not virtualizing gpus at the hypervisor? In 2014 USENIX Annual

87

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Technical Conference (USENIX ATC 14), pages 109120, Philadelphia, PA,
June 2014. USENIX Association.

Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev:
First-class gpu resource management in the operating system. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 37-37, Berkeley, CA, USA, 2012. USENIX Association.

A.J. Younge, J.P. Walters, S. Crago, and G.C. Fox. Evaluating gpu
passthrough in xen for high performance cloud computing. In Parallel Dis-
tributed Processing Symposium Workshops (IPDPSW), 2014 IEEFE Interna-
tional, pages 852-859, May 2014.

Nvidia. NVIDIA GRID Virtual GPU Technology.
http://www.nvidia.com/object /grid-technology.html.

Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan, Ian
McFarlane, Giles SH Yeo, and Brian YH Lam. Barracuda - a fast short
read sequence aligner using graphics processing units. BMC' Research Notes,
5(1):1-7, 2012.

Stefan Maintz, Bernhard Eck, and Richard Dronskowski. Speeding up plane-
wave electronic-structure calculations using graphics-processing units. Com-
puter Physics Communications, 182(7):1421 — 1427, 2011.

GPUdb. GPUdb The first GPU accelerated In-Memory Distributed database.
http://www.gpudb.com/.

Microsoft Azure. https://azure.microsoft.com/en-us/.

NVIDIA. GPU Cloud Computing. http://www.nvidia.com/object/gpu-
cloud-computing-services.html.

88

	Introduction
	Motivation
	Thesis Contribution

	Background
	From Single Core to Heterogeneous Systems
	Moore's Law
	Single Core Systems
	Multicore Systems
	Heterogeneous Systems

	General Purpose Computing on GPUs
	Graphics Processing Units
	GPGPU Programming Interfaces

	Virtualization
	Virtual Machine
	Hypervisor
	Benefits
	Virtualization Techniques
	QEMU - KVM
	I/O Virtualization

	Design and Implementation
	Library
	Frontend Driver
	Virtual CUDA Device
	Data and Control Path
	Runtime API Implementation Details
	Isolation and Security
	Current Limitations

	Experimental Evaluation
	Sleep and Busy Wait Implementations
	Microbenchmark Performance
	Breakdown Analysis
	Impact of Input Data Size
	Application Performance
	Performance at Scale
	Scaling Measurements

	Related Work
	vCuda
	rCuda
	gVirtus
	GViM
	LoGV
	Distributed-Shared CUDA
	gVirt
	GPUvm
	Gdev
	Pass Through

	Discussion
	Effect of GPU Resource Sharing on Application Performance
	Conclusion

	Eisagwg'h
	K'inhtro
	Protein'omenh L'ush

	Jewrhtik'o Up'obajro
	Programmatistik'a Perib'allonta GPGPU
	Eikonikopo'ihsh Suskeu'wn Eis'odou/Ex'odou

	Sqediasm'oc kai ulopo'ihsh
	Biblioj'hkh
	Frontend Driver
	Eikonik'h Suskeu'h CUDA
	Leptom'ereic Ulopo'ihshc Runtime API
	Apom'onwsh kai Asf'aleia
	Leitourgiko'i Periorismo'i

	Peiramatik'h Axiol'oghsh
	Ulopoi'hseic Sleep kai Busy Wait
	Ep'idosh Microbenchmark
	An'alush Breakdown
	Ep'idosh Efarmog'hc
	Metr'hseic Klim'akwshc

	Sqetik'ec Ulopoi'hseic
	S'unoyh
	An'alush Ep'idrashc tou Diamoirasmo'u P'orwn sthn Ep'idosh Efarmog'wn
	Sumper'asmata kai Mellontik'ec Kateuj'unseic

	Bibliography

