EGNIKO METZOBIO [IOAYTEXNEIO

2XOAH HAEKTPOAOT'ON MHXANIKOQON

KAI MHXANIKON YTIOAOI'IETON

TOMEAY TEXNOAOI'TAX KAI ITAHPO®OPIKHY KAI
YIIOAOI'TXTQN EPI'AXTHPIO MIKPOYIIOAOI'TETQN
KAI YHOIAKON XYXTHMATON

g%

3
Bl

J e
L “ o =)
P
OMHBEY
A=
nvpP$opos

I =
‘h npg

Low-Overhead Compression of ECG Recordings for Implantable
Medical Devices

AITIAQMATIKH EPT'AXIA

TOV
YOPopakn Avi@viov

Emprénov : Anuntprog L. Zovvtpng
Avarminpotc Kadnynmg ,E.M.I1

ABMva, Maptioc 2016

EOGNIKO METZOBIO [IOAYTEXNEIO

2 XOAH HAEKTPOAOT'ON MHXANIKQON
KAI MHXANIKON YTIOAOTIETON

TOMEAX TEXNOAOITAX KAI ITAHPO®OPIKHX KAI
YITOAOI'TETQN EPTTAXTHPIO MIKPOYIIOAOI'TETQN
KAI YHOIAKQN XTHMATQN

rés

HeEVS £,
7
Ellg
Popos

o

il
nvp

:‘Ijnion

Low-Overhead Compression of ECG Recordings for Implantable
Medical Devices

AITIAQMATIKH EPT'AXIA

TOL
YOpopaKn AvVTOvViov

Emprénov :Anuntprlog 1. Zodvrpng
Avaminpotg Kabnynmce ,E.M.II

EykpiOnke and v tpyuein emtponn v nuepounvia e&étaonc.

Anunrpiog L. Zovvrpng KuopdA IMekpeotin I'edpyrog MatcoOmOvAOG
AvamAnpotg Katnynmge,E.M.II. AvamAnpotig
Koabnyntmg,E.M.II. Koabnyntmg,E.M.II.

Anva ,Mdptiog 2016

YOUopAKNS AVIOvViog
Authopatovyog HiektpoAdyog Mnyovikog kot Mnyoavikog Y toAoyiotav
E.M.II.

Copyright © Zopapdkne Avtdviog,2016
Me empoiaén mavtog dikawdpatog. All rights reserved.

Amayopebetalr 1 aviypogn, omobnKevon kot Svoun TG mopovGOg
gpyaciag, €6 OAOKANPOL 1) TULOATOS QVTNG, Yo EUToPIKO okomd. Emitpémeton
N ovaTOTOGON, OmoOKELSOT KOl SVOUN Y GKOTO U KEPOOOGKOMIKO,
EKTIOOEVTIKNG N EPEVVNTIKNG PVOTG, VIO TNV TPoHTOHEST VO aVaPEPETOL T
YN TPoEAELoNG Kot va dlatnpeital to mapov pnvopa. Epotmpato mov
aQOPOVY TN YPNON TNG €PYACIOG YL KEPOOOKOMIKO OKOMO TPEMEL V.
amevBHvVovTaL TPOS TOV GLYYPAPE.

Ol amoyels Kol 10 GUUTEPAGHOATO TOV TEPLEYOVTOL GE ALTO TO EYYPOPO
exkppdlovv tOvV ovyypaeéo Kou Ogv mpEmel vo, gpunvevbel OTL
AVTITPOCMTEVOLV TIG emionueg B€aelg Tov EBvikov Metsofiov [ToAvteyveiov.

Ilepiinun

2NV €MOYN LOG Ol ELPVTEVCIUES WOTPIKES GUGKEVEG, YVMOTEG TOYKOGUIMS Kol
og IMDs ypnoyomolovvtar oloéva kot mepiocotepo otny latpikn. Ta IMDs
CLVOVIMVTIOL G [0 PEYAAN TOKIMO 1TPIKAOV QapUoydV, Pacilovior oty
amoktnon ,emeepyooion Kol HETAPOPA OESOUEVAOV OVTMG (DOTE va
avafaduicovv v kabnuepvotnta TV aclevdv aAld Kot TOAAEC POpES Va
Tov¢ dratnprieovy ot Lon. To TpoPAnua mov tapovsialeton pe to IMDS givat
OTL €(0VV TEPLOPICUEVT] UVIUT, VTOAOYICTIKES OUVOATOTNTEG KOl EVEPYELONKN
eMApkeln. v TPEMEL vo. cLAAEYOLV, emeSepydlovior Kol vo HETAOIdOLV
dedopéva amd dtapopovg mhavovue acOntipec. Olot avtoi ol meplopicuol
KOTOOEIKVDOVV TNV OVAYKT] Ol TANPOPOPIES TOV GLAAEYOVTAL KO LETAOIdOVTOL
and ta IMDs va coumiéloviar 060 Mo amodoTIKA YIVETOL. XTNV TPOKEWEVN
mepinT®on M ovumieon oedouévev amoterel pon TpdkAnom, kabdg To
AVOKTOUEVO GNa Ba TpEmel va £xel VYNAN TIGTOTNTA GE GYECT UE TO OPYLKO.
Eriong, yio va uropel va emtevyBel mo amodotikn copnicon n pebodog mwov Oa
ypnowonoinBel Oo mpémer va €ival TPOGAVATOAIGUEVN] GTOV TOUMO TMV
dedopévav mov Ba cuumiEcel. 1y mopovcsa duwhopatikn Oo Tpocradncovpe
va PBedtiwcovpe T1g vdpyovreg pneboddovg cvumicone dedouévov. I'a va 1o
KatapEpovpe avtd e€etdlovpe d1dpopovg aAyopifuovg kol GLVOLAGHOVS
aLTOV Y1a va Bpodue 10 o amodotikd oyfua. Ot 600 KOprot arlydppot wov
eEetaloope eivar o LZO wor o SPIHT. Xmv mpoomdbeio pog mote va
BeAtioTOomOmcOLIE TNV OmOO0GN TOVC ,TOUC GLVOLALOVLUE UE OLBPOPEC
texvikés emeepyaociag oedouévov. Baown pog emdioEn eivor va
aloloynoovpe tovg moapomdve oaAiyopibuovs. H afloddynon avty yiveton
névo oty ocvumieon HAektpokapdioypapnuotog, £vo amd To o S10dE00UEVA
BloAoyikd onpota to omoio kataypdpetal amd moAld IMDs ta omoia gite to
petadidovy amevbeiog eite 10 amonkevovv yu peddoviikn yprion. H kdpleg
nopdpetpol otig omoieg Pacileron M agloAdynon pog eivar m ovoroyia
ovumieong evoc apyeiov(CR) ,n mocootiaia plikn péon TETPUY®VIKY Sapopd
(PRD) ka1 to evepyelokd omotdmmpo tov Kabe olyopibuov. Ev télel,
Baocilopevor otnv dwdikacio a&loldynong ocvumepaivoope o6ttt o SPIHT
aAyopOpog pe v pébodo avokatdtaéng pe fuzzy C means Clustering
TPOGPEPEL TN UEYOADTEPT avaloyio cuumieonc. Ao v GAAN, TV KOAVTEPT
oxéon petalhl CR wor PRD mpooeyyier o LZO olyépiOupoc pe
OTPOYYLAOTOINOT).

AéEerc KAE1010:

EUQLTEVCIUEG 1TPIKEG ovokevés, HAektpoxapdoypdenua, cvumieon
Blodedopévov, ocvumicon OedOUEVOV HE YOUNAN EVEPYEWNKO OTOTLTTMLL,
avaAoyia copmieong , tocootioio Plikn péon teTpaywvikn owpopd ,SPIHT |
LZO

Abstract

It is an indisputable fact that Implantable Medical Devices (IMDs) are
becoming an integral part of Medical science. IMDs are encountered in a great
variety of medical applications. IMDs rely on data acquisition, processing and
communication agents in order to sustain and ameliorate the life of the
patients. IMDs have limited memory, computational and battery power
resources, while collecting, processing and transmitting out information from
potentially many sensors. These limitations require that information within the
devices be efficiently compressed. Such data compression presents a
challenging task, as it must provide high fidelity of the waveform reproduction
and high compression ratios on limited size data frames. Also, it must be based
on the type of data to be compressed, in order to provide bigger efficiency. In
this thesis we try to better up the existing lossy and lossless compression
methods. In order to manage that, we use various algorithms and combinations
of those in order to find the most efficient scheme. The two main algorithms
that we use are LZO encoding algorithm and SPIHT encoding algorithm. We
combine these encoding algorithms with various data procession algorithms.
Our main attempt is to evaluate the aforementioned algorithms and so we use
Electrocardiography (ECG), an extremely widely used biodata which is
recorded from IMDs and sent or saved from them. The main evaluation
parameters of our thesis are the compression ratio, the Percent Root mean
square Difference (PRD) and computational overhead of each algorithm.
Finally, based on the evaluation process we conclude that SPIHT with
Reordering with fuzzy C means Clustering offer the best compression ratio
25.95 with RPD 4.86 and the best tradeoff between compression ratio and PRD
the LZO with Reordering technique with 10.67 compression ratio and 3.13 .As
for the lossless algorithms LZO with Reordering with fuzzy C means
clustering offers 2.42 compression ratio.

Tags: Implantable Medical Devices (IMDs), Electrocardiography (ECG),
data compression, ECG compression ratio, low overhead, Percent Root
Difference (PRD), compression ratio, SPIHT , LZO

Vi

Acknowledgments

First off all, 1 would like to thank Professor Dimitrios Soudris for giving me
the opportunity to carry out my diploma thesis under his supervision. This
diploma thesis has been a unique opportunity for me so as to be introduced in
the process of scientific research.

Moreover, | would also like to thank Dr. Robert Seepers for the continuous
guidance he has provided me with throughout the development of this thesis
and for all the knowledge he has shared with me, the help he has offered and
his constant engagement. | would also like to thank Dr.Christos Stydis for the
valuable assistance he offered me.

Finally, I want to thank all the people that stood beside me throughout the
years of my studies in NTUA. | want to thank my friends for all the
experiences we have had during these years and especially my family who
encouraged me to achieve my goals and ambitions.

Vil

Contents

R 101 (oo [0 Tox {To o FO U R T UPTTRURTRO 12
1.1. Problem Statement ... 13
1.2, THESIS GOl ...coiiiiiiiiie e 13
1.3, OULHINE e 14

2. Background and related WOrKccoovevieiiniiniiiie e 15
2.1. General description of Data COMPresSioNnccceeevververeesiensinnsnens 15
2.2. LZO encoding algorithm..........cccovveiiieniiecee e 16
2.3. DWT transformation algorithm —SPIHT encoding scheme 18
2.4, Related WOTKcooiiiiiiiie e e 20

2.4.1. L0SSIESS algorithms........cccveiiiiiieiiesee s 20
2.4.2. LOSSY @lgOrithmS........cccvveiiiiiiii e 21

3. IMPIEMENTALION ... e 22

3.1. DWT-SPIHT data processing teChNiqUEScccccvevvereeveesineannen, 24
3.1.1. Rounding with Reordering with fuzzy C-means clustering
1=To] 01 0 0 =SSR 27

3.2. LZO Data processing teCNNIQUEScccvevreeiieiiiesie e esee e e 27
T S L= To] 0 T oo OSSR 28
T8 01U] 1o [o TSR 28

3.3, TOOI FIOW ... 29

A, EVAIUALION ..o 30

4.1, EXperimental SEUDcccveieeiiiiie e 30

Ot I O |V 1= ¢ oSSR 30
4.1.1.1. COMPresSiON Fati0......cccveveereeiieeiieiiesieeseesiee e sree e eeeenes 30
4.0.1.2. FIlE SIZE ..ot 31
g I T o = 4 I SR 31
4.1.1.4. Computational MetriCScccervrirrvnieiiere e 31

4.2. Experimental RESUILScccooveiiiiiiiii e 32

4.2.1. Results of SPIHT algorithms..........cccccovviiiiiiiiciiiice e, 32
4.2.1.1. Results on Reordering with fuzzy C means clustering 33
4.2.1.2. Results on Reordering with fuzzy C means clustering after
ROUNGING. .ottt e nres 37

4.2.2. Results of LZO algorithmscccccovveviiiniinic e, 40
4.2.2.1. ROUNGING.....ccciiiiiiiitieie et se et 40
4.2.2.2. REOIAEIING ...veeiieiiieiiiieie ettt 42

4.2.3. Comparison Overview between the aforementioned methods... 46

TR ©o 4 Tod 111 [0 PSSP 49

viii

6.

5.1. FUTUIE WWOTK .

Bibliography

List of figures
Figure 2.1. Best-performing compression algorithms in descending order for

10-KB ECG DAlcviiuieiieiieiieiiiiesie ettt sttt 17
Figure 2.2 Average consumption for 1-KB and 10-KB ECG Dataset 17
Figure 3.1 Implementation PrOCESS........cccciveiieeiieeiee e et 22
Figure 3.2 The ECG signal before and after the preprocession 23
Figure 3.3. Evaluation flowchartcccccoeiiiiiiii e 24
Figure 3.4.Example of Normalized R-R heart beat with 256 number of samples
... 26

Figure 3.5. 2D ECG array of ECG before(right) and after(left) beat
reordering(x-axis depicts number of samples per heart beat, z-axis depicts the
number of the heart beats and y-axis the amplitude of the each ECG sample)

0 PSSR 27
Figure 3.6 TOOI fIOW fIQUIE.......ccooiie e 29
Figure 4.1 PRD over compression ratio for SPIHT Reordering with fuzzy C-
MEANS CIUSTEIING.....eiivie et 33
Figure 4.2 PRD over compression ratio for SPIHT without Reordering with
fuzzy C-means CIUSTEIING.......ccviiie i 33
Figure 4.3 Execution time over Compression ratio for SPIHT Reordering with
fuzzy C-means CIUSTEIING.......ccviiieiie e 35
Figure 4.4 Execution time over Compression ratio for SPIHT without
Reordering with fuzzy C-means CIUSEring.ccccevvveviriie i 35
Figure 4.5 Total Memory Used over compression ratio for SPIHT Reordering
With fuzzy C-means CIUSTEIINGocvveiieie e 36
Figure 4.6 Total Memory Used over compression ratio for SPIHT Reordering
without fuzzy C-means CIUSTEIINGcocvevieiie e 36
Figure 4.7 Peak Memory used over compression ratio for SPIHT Reordering
With fuzzy C-means CIUSIEIINGccovveiieiie e 37
Figure 4.8 Peak Memory used over compression ratio for SPIHT Reordering
without fuzzy C-means CIUSTEIINGoovveiverieiieie e 37
Figure 4.9 PRD over compression ratio for SPIHT Reordering with fuzzy C-
means clustering after ROUNAING.oovoiviiieiiiieee e 38
Figure 4.10 Execution time over compression ratio for SPIHT Reordering with
fuzzy C-means clustering after Roundingccccooevvivniieienieere e 38
Figure 4.11 Total Memory Used over compression ratio for SPIHT
Reordering with fuzzy C-means clustering after Roundingc.ccoeevvvenee. 39
Figure 4.12 Peak Memory used over compression ratio for SPIHT Reordering
with fuzzy C-means clustering after Roundingcccooeviiiiinniiinniiiee, 39
Figure 4.13 PRD over compression ratio for LZO Rounding...........cccccceuennen. 41
Figure 4.14 Memory consumption over bits given after decimal point for LZO
ROUNTING .« ettt sne e e 41
Figure 4.15 Execution time over bits given after decimal point for LZO
ROUNTING .« ettt sne e e 42

Figure 4.16 Compression ratio for different data of Sorting method............... 42

Figure 4.17 Execution time for different data of Sorting method 43
Figure 4.18 Total Memory used for different data of Sorting method............. 43
Figure 4.19 Peak Memory used for different data of Sorting method.............. 43
Figure 4.20 Compression ratio for different values of sample and cluster
000] SR OPS 44
Figure 4.21 Execution time for different values of sample and cluster number
... 44
Figure 4.22 Total Memory Used for different values of sample and cluster
000] SR OPS 45
Figure 4.23 Peak Memory used for different values of sample and cluster
NUMDET .. ettt e b e s sreeneenrees 45
Figure 4.24 Compression ration over PRD results from the top-achieving
AlGOITNMS. ..o e 46
Figure 4.25 Execution time for the top-achieving algorithms........................ 47
Figure 4.26 Total memory used for the top-achieving algorithms................... 47
Figure 4.27 Peak Memory used time for the top-achieving algorithms............ 47

Xi

1. Introduction

The technological breakthroughs in the field of biomedical engineering have
revolutionized the way that medicine is performed by scientists.
Implementable medical devices (IMDs) are such a prominent example. If we
would like to give a definition to implantable medical devices we could say
that “Implantable medical devices are the medical devices that either partly or
totally introduced, surgically or medically, into the human body and is
intended to remain there after the procedure” [1]. Over the years, implantable
medical devices have saved and also improved the quality of life to a big
amount of patients. Nowadays, IMDs are used in many different parts of the
body of a patient such as orthopaedics, pacemakers, cardiovascular stents,
defibrillators, neural prosthetics or drug delivery system. Particular interest
present IMDs that can record transmit or store data such as ECG monitoring
systems, Holter , ElectroGraM (EGM) or Implantable hemodynamic monitors
and Insertable loop recorders. The last would be and the main devices of
interest in our thesis. Moreover, as the life expectancy has grown significantly
the need for new and improvement of the existing technologies that are related
to implantable medical devices such as treatments, implants, prostheses and
long-term pharmaceutical usage has increased. One significant example is
Implantable cardioverter defibrillators (ICDs). ICDs are devices that monitor
and treat cardiac arrhythmia, when it is detected by sending a large jolt of
electricity to the heart, and basically pressing the reset button. In 2009,
according to the World Society of Arrhythmias, 133,262 ICDs were implanted
in the U.S. with a total annual expenditure of $5.5 billion and average cost per
procedure $40,000 and an increase of 12% from 2005.

Furthermore, we should mention that medical devices are categorized in
classes upon the level of control required to assure safety and effectiveness for
the device. Implantable medical devices are in Class I1l. [2].

One more worth-mention factor that characterizes the IMDs is the energy
consumption. Energy consumption can be divided into three domains: sensing,
communication and data processing. Wireless communication is usually the
most power consuming among those three [3]. Another worth mention factor is
that the size of the battery used to store the needed energy is in most cases the
largest contributor to the size and weight of IMDs. As a result batteries should
be kept small. Therefore energy consumption of the devices needs to be
reduced .In order to minimize cost, patient trauma and risk associated with
repeated surgeries for battery replacement, it is necessary to increase the
lifetime of implanted batteries by conserving energy at the most power
consuming part of an IMD, as these are designed to work for many years,
powered by their original battery the energy consumption is a very crucial
iIssue. Hence, compression of Biodata that are produced from IMDs is

12

necessary and should be done in an energy efficient way so as to tackle with
both problems the big data rate and also the restrictions on the power
consumption introduce.

There are 3 main types of data types that an IMD holds [4].

e Static Data

o Device identification data(name, version of the device)
e Semi-static Data

o Patient identification data(name, age of the patient)

o Health condition data

o Therapy configuration and Health Center Identification
e Dynamic Data

o Patient readings(ECG, heart rate etc)

o Audit log data(device’s operational history)

From all the above data the Dynamic data consist the 70% percent of the entire
data that an implantable medical device holds. Example of Dynamic Data
could be an ECG .A typical cardiac IMD, can produce ECGs of data size up to
112 megabytes per day. Furthermore, the growth of IMDs in conventional
medicine and their restricted capacity and energy consumption ability makes
Data compression especially for IMDs necessary.

1.1. Problem Statement

After a thorough investigation on academic literature we found out that all the
compression algorithms tailored to the ECGs are mostly orientated to manage
big compression ratio and quite a few algorithms have point out the energy
efficiency aspect of their algorithms used by Implantable Medical Devices.
What is more, the aforementioned energy consumption problem for IMDs and
their popularity makes the solution of the problem crucial.

1.2. Thesis goal

As we mentioned the problem which was the initiative of this thesis, we should
now state and the goal and main endeavor of the thesis. So, our goal is to
compare and create algorithms that can compress Biodata and more
specifically ECGs in an energy efficient way with minimal loss of signal
quality achieving decent compression ratio. Therefore we use a lightweight
version of LZO encoding algorithm, which is designed for Implantable
Medical Devices and from the existing academic literature it presents quite
good compression results. Moreover, we make use of the SPIHT encoding

13

algorithm which manages to offer pretty good results especially with the
“Reordering” technique.

1.3. Outline

This dissertation is composed from 5 chapters. The first chapter is the
Introduction chapter, which tries to give the reader a first but thorough look on
the subject and shed some light on the problem that tries to solve and the goal
of this dissertation. In chapter 2, the Background chapter is cited all the
important information in order somebody to understand the main topic of the
dissertation and the algorithms that we use. Also, it contains all the findings of
the academic literature on the ECG compression field of research. Chapter 2 is
followed by the Implementation chapter, chapter 3. In chapter 3 we describe
analytically all the algorithms that can compress Biodata in an energy efficient
way with minimal loss of signal quality. Also, we mention the tools that we
have used in order to implement the aforementioned algorithms. Evaluation
chapter comes after the Implementation chapter. The evaluation chapter
contains all the results that come through the Implementation of the algorithms
that we used. Moreover, the evaluation of the algorithms is done at this point.
Finally, we have the Conclusion chapter. This chapter summarizes all the
research that we have done. Furthermore, we state and the future work that can
be done, regarding this research.

14

2. Background and related work

In this chapter we provide all the background information needed in order to
understand the following research. We provide definitions for the main
research terms and also we state all the background information for the main
encoding algorithms that we would use excessively in the process. So it is a
very important chapter for the further understanding of the Thesis. Moreover,
In this chapter we try to provide our research findings related to our work.

2.1. General description of Data compression

Firstly we would state the definition of Data compression. “Data compression
is the process of modifying, encoding or converting the bits structure needed to
store or transmit data”. Data compression techniques are categorized according
to the requirements of reconstruction as those in which the compressed data is
reconstructed to form the original signal(lossless techniques) and techniques in
which higher compression ratios can be achieved by producing reconstructed
signal different to the original one(lossy techniques).In Lossless compression
we do not have any loss of information and is often used for applications that
cannot tolerate any difference between the original and the reconstructed
signal, text compression is such an example. On the other hand, Lossy
compression involves an escalated percentage of information loss. Depending
on the quality required of the reconstructed signal, varying amounts of loss of
information about the value of each sample can be tolerated and is used for
applications where exact reconstruction is not so important, like image
compression [5].

A compression algorithm could be evaluated in a number of different ways.
We could measure the memory required to implement and run the algorithm,
how fast the algorithm performs on a specific machine-both these metrics
consist the computational overhead of an algorithm - the amount of
compression, which is described in terms of compression ratio(CR) and how
closely the reconstruction resembles the original, often measured as the percent
mean-square difference (PRD). In the following chapters and especially in the
Evaluation Chapter we would analyze in detail the aforementioned metrics.

15

2.2. LZO encoding algorithm

The LZO algorithm is a lossless widely used algorithm that manages the files
to be compressed in blocks. This algorithm could theoretically manage big
compression and decompression speed as it enables paralleling when the
parallel procedures are running in different file-blocks at the same time.

The LZO algorithm is introduced in [6]. From the given source code of LZO
library we can make out that the original file, which we would like to compress
Is divided into file-blocks which have the same size as the L2 cache memory of
the processor. The compression process can be described by the following
steps. Firstly, in every file-block it is given to each group of 4 bytes a hash
value. The value of the hash function is affiliated with the value of the 4 bytes
group. All these hash values form a compression a hash table is kept which is
able to store one memory address for each hash value. In order the algorithm to
secure its quick run the size of the hash table the hash table (memory address
size * hash variations) is equal to the size of L1 cache.

We quote here an example as it is stated in [7].

“Given a text file with the following data is compressed:
SOMETHING IS A THING, THAT IS IMPORTANT

Let the pointer assigned to the beginning of the text be PTRO. Into the hash
place (’S’,’O’,’M’,’E’) of the hash table PTR0+3 is written, into the place of
hash (O, M, E, T) PTRO+4 is written, etc. In order to detect the recurrences the
algorithm checks the already existing values when writing into the hash table.
If the new memory address and the initial address (a random number at the
beginning) are close values, the algorithm will check whether there is a real
recurrence, so the byte groups of four are compared (this comparison is
necessary because of the initial random hash values and the hash collision). In
the case of the example above the hash (T, H, I, N) is calculated in the 16th
step, so the value PTRO+15 should be written into the table. However there
already exists a memory address which is the value PTRO+7 (it has been
written into the table at the 5th step, at the word “something”). In order to
decide whether there is a hash collision or not, the algorithm compares the
values: "PTR0+7 == "PTRO+15 and "PTR0O+6 == "PTR0+14 and "PTRO+5
== "PTRO+13 and "PTRO+4 == "PTRO+12 If the condition above is fulfilled,
it means that the same byte group of four is at both places (in this case the
,thin” part of the word). At this place the file can be compressed in that way
that instead of the recurrence the initial position and length of the original
word-part is written into the given position.

SOMETHING IS A (RECURRENCE from the place back 11 bytes, length: 5
bytes), THAT IS IMPORTANT

16

For the determination of the length of the recurrence the check of the
coincidence goes in the memory from bytes to bytes. In the case above
APTRO+8 equals to "PTRO+16 but in the next step this is not fulfilled anymore
(space and comma characters are not coincide). It means that in the
compressed file only the length and the object of the coincidence are stored.”

The LZO source code can be found at [6].The children of the LZO the
miniLZO(mLZO) is an Lempel-Ziv family derivative designed with the
processing, memory, and code size requirements of embedded systems in
mind. According to the research from the scholarly article of Mr. Strydis [8]
that has conducted a research on which he presents very promising results for
the Lempel-Ziv—Oberhumer (LZO) and more specifically for the mLZO,
which is a portable, lightweight subset of LZO library, suitable for implantable
devices such as IMDs. More specifically after the comparison of general
purpose compression algorithms, compressing ECG workloads it can seen
from Figure 2.1 that mLZO has performed extremely well in the fields of total
energy consumption, peak energy consumed and fair enough at compression
ratio and rate.

Izari_oku bclrle mlzo Izss mlzo

Izhuf_oku slzw arith lzw15v splay bclrle
mlzo mlzo arithle fin urban bcllz

Izss fin arithl mlzo lzw12 slzw

fin lzw12 urban slzw slzw fin

Figure 2.1. Best-performing compression algorithms in descending order
for 10-KB ECG Data

Especially in the field of total energy as for the ECG workload it is illustrated
from Figure 2.2 [8] that mLZO outperforms all the other compression
algorithms as regards the average energy consumption.

(mw) oMM
1KB
10 KB
120 BCLK
100 OOTHER
80
60
40
20 -1 -1
o L —
o =) - c o = q.: — c
&g ¢ ¢ = § & £ £ & i
£] = 5 E S © £ 3 5
IS ©

Figure 2.2 Average consumption for 1-KB and 10-KB ECG Dataset

17

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer

From all the aforementioned it can be seen that LZO is the most appropriate
solution for our low overhead and energy dependable devices, as IMDs.

2.3. DWT transformation algorithm -SPIHT encoding
scheme

Discrete Wavelet Transform(DWT) is a linear fast(computationally) algorithm
of any wavelet transform, in which the wavelets are discretely sampled.
Wavelet, is a wave-like oscillation signal that has a short duration and has as a
beginning and end the zero value.

DWT is a tool that separates data into different frequency components, with
the use of low and high frequency filters. For each created component, a new
high and low filtering is imposed followed by a factor 2 sub-sampling on the
original signal and each component is studied with resolution matched to its
scale.2-D DWT is computed the same way with the difference that firstly the
algorithm is imposed for all rows and then for all columns. [9]

As for Set partitioning in hierarchical trees (SPIHT),SPIHT is one of the “state
of the art” wavelet-based coding techniques, which exploits the inherent
similarities across the subbands in a wavelet decomposition signal. SPIHT is
basically transforms the real represented number of wavelet coefficients to a
bit-rate. Some of the main characteristics of SPIHT is the following:

o It is progressively sending the wavelet coefficients starting from the low
frequency ones, which contain and the most information.

e [t does not need any training.

e The reconstruction is easily made, due to the fact that the most important
(low frequency) coefficients are firstly sent.

e It can become from lossy to lossless, depending the threshold that we
impose. As the more bits we are adding at the end of the bit-rate the
better representation we get of the real number we want to compress.

e The “compressed” bit-rate can be terminated at any point, allowing any
specific requirements of distortion or quantity parameters to be met.

It is worth-mentioning that, the energy of a wavelet-transformed signal is
centered on the low frequency coefficients and coefficients are hierarchical
ordered and has a parent-child relationship. This attribute of the wavelet-
transformed signal uses SPIHT in order to save many bits from representing
insignificant coefficients, as examining a parent coefficient we can determine
whether or not the sub-band that this coefficient is related to worth any further
representation in our “compressed” bit-rate.

We are presenting a brief SPIHT algorithm as it is described from S.Isa at [10]:

18

1) Initialization: Set the list of significant points (LSP) as empty. Set the roots
of similarity trees in the list of insignificant points (LIP) and the list of the in-
significant sets (LIS). Set the thresholdT, = 2", with n = log, (max|c(i,j)|)
where c (i,j) denotes the coefficient at position (i,j).

2) Sorting pass in LIP: Each coefficient in the LIP is checked and the
significant coefficients are moved to the LSP. The sign bits of the significant
coefficients are encoded.

3) Sorting pass in LIS: If an entry in the LIS is significant one is sent and then
its two offspring are checked like an entry in the LIP. If an entry in the LIS is
insignificant, a zero is sent.

4) Refinement pass: Each old entry of LSP is checked. If it is significant under
current threshold, a one is sent and its magnitude reduced by the current
threshold. If it is insignificant, a zero is sent.

19

2.4. Related work

In this subchapter we present numerous previously proposed data compression
algorithms all the methods and algorithms. In order this presentation to be fair
and useful we would present these algorithms in 2 sections. The lossless
algorithms and the lossy ones, according to the definitions that we have
provided earlier in the previous subchapter.

2.4.1. Lossless algorithms

In this section we will mention the most renown and up-to-date Lossless
algorithms that are used from the academic community for data compression.
At [11] Arnavut proposes a new technique that makes use of Based on
Burrows-Wheeler Transformation, a block-sorting ,lossless data compression
algorithm and also he uses Inversion Ranks of Linear Prediction. This
technigue manages to achieve better than the renowned bzip2 or gzip and also
BWT with MTF instead of Inversion Ranks. It manages to achieve a
percentage of 4.1 regarding the compression ratio percentage. We should
mention that in Arnavut’s algorithm there is no claim on the computational
overhead of the algorithm. Duda at [12] proposes a lossless algorithm with
Lifting Wavelet Transform. The new algorithm for lossless ECG compression
Is based on integers to integers lifting wavelet transform, thus quantization of
wavelet coefficients (which normally cause the information lost) is avoided.
Wavelet coefficients are entropy coded. In order to reduce the number of the
symbols to be coded integer numbers is represented using the MS-VLI
algorithm. This algorithms achieves about 2.77 of compression ratio. Also in
this algorithm there is no mention on computational overhead. Koski at [13]
proposes a new approach based on structural recognition and extraction of
ECG complexes. She examines LZ77-Huffman encoding algorithm gamma
encoding algorithm and complex-Huffman encoding algorithm. Among the
aforementioned the LZ77-Huffman scores better with approximately 3.3
compression ratio.

20

2.4.2. Lossy algorithms

In this section we will mention the most renown and up-to-date Lossy
algorithms that are used from the academic community. Among them will also
introduce cutting edge technologies and also algorithms that will help us to
understand better the current research. Firstly we state the Batista’s algorithm
[14].He proposes an ECG compressor based on optimized quantization of
Discrete Cosine Transform (DCT) coefficients. The ECG to be compressed is
partitioned in blocks of fixed size, and each DCT block is quantized using a
guantization vector and a threshold vector that are specifically defined for each
signal. The evaluation of this algorithm is based on compression ratio and
PRD.As it is stated it manages to achieve an average CR of 9.3 for PRD equal
to 2.5%. The energy efficiency neither of this algorithm is presented.
Previously Hilton has presented his algorithm at [15].This algorithm is based
on embedded zero-tree wavelet (EZW) coding. The proposed algorithm is used
for compression of Holter ECG data He uses different wavelet packets in order
to examine the efficiency of each one and he presents their results. He manages
to achieve CR from 8 until 16, but with minimal clinical use, at the
reconstruction of the ECG signal. Finally, we present a very similar research
study to ours. Mr. Koyrakh at [16] proposes an algorithm which is orientated
to Implantable Medical Devices and tries to compress in a lossy way ECG
data. It is a very lightweight algorithm which can easily be implemented in any
IMD. The proposed algorithm processes the data in the following way. Firstly,
it transforms the coefficients with wavelet transformation, afterwards it
changes the representation of the transformed coefficients and then the
Quantization of the signal is imposed, which comes along with a threshold
application. The quantization is followed by a Run-length encoding scheme in
order to encode the quantized coefficients and finally there is an adaptive bit
encoding algorithm. With PRD kept under 8%, the compression ratios, defined
as ratios of total numbers of bits in the original and compressed waveforms,
were 9.3 + 2.5, consistently exceeding 85% of the theoretical limit determined
by the bit entropy of the original data frames. Nevertheless, Koyrakh’s
algorithm does not present the computational overhead of the previous
presented results. Therefore , it would be naive to compare it with our research.

21

3. Implementation

This chapter will describe the Implementation process. Our implementation
process starts from the ECG recordings. The preprocession stage follows in
order to form a signal that its main attributes could easily be recognizable and
detectable. Also preprocession aims to remove any noise that has distort the
original and useful signal. After the preprocession stage, when the signal in as
real as it could be it comes the compression stage where using different
methods and algorithms like the LZO and SPIHT that we would use in our
thesis. After the compression as it can be seen from Figure 3.1 the outcome
would be a binary file which would contain the information of ECG signal in a
smaller more “digitalized” size.
Baw ECG'recordin'g

‘..>,\
T T 71
| S|

Ampltude(u)

number of samples

Preprocession
Stage

!

Compression
Stage

Figure 3.1 Implementation process

Our main goal is to manage low overhead compression on ECG recordings. In
order to do so, we study existing and create new methods that can help us to
that direction. Our main endeavor is to compare 2 compression algorithms.
Beat reordering with SPIHT [10] and a low overhead encoding algorithm
suitable for IMDs, LZO compression algorithm [8].In order to deal with that
we have implemented different algorithms and we examine different settings
of each algorithm, so as to find those settings and algorithms that are more
suitable to our goal and purpose. In this Chapter we analyze the process of our
work the purpose of each step and all the parts that it contains.

22

We start from our ECG recordings. For the purposes of our work we have
made use of the MIT-BIH arrhythmia database. From the aforementioned
database we used a default Lead (Lead I), due to the fact that we are interested
in IMDs more than one lead would be useless for our research. As an IMD
could not normally record the heart function of more than one place, so in
order to produce a fair simulation to that environment we are using just one
lead.

Secondly, from Figure 3.2 we can make out that in the raw ECG there is a
great quantity of noise. This type of noise in the ECGs is called baseline
wander. Prominent causes of that noise are patient breathing, body movement
and also noise produced from the electrodes. The removal of the baseline
wander is of great importance so as to make out better the characteristics of
ECG [17]. Hence, we are using a method that uses a wavelet-base method in
order to eliminate the baseline wander. According to [10] the spectrum of the
baseline is below the spectrum of ECG signal, therefore through inverse
wavelet transform of approximation coefficients we can estimate and remove
the baseline wander.

Raw ECG recording Processed ECG recording
900 T T T T T 1 T J T | J T T
840 | ' ‘I\ |‘I
\‘ u v I | I
Cmt ; | [I— ; 1 ‘\ ||
% | | CLE | |
3’750- | | ‘ { < [| |
0 | ‘ | 0 04} 1 | |
g { | | i | | |
5 100f ‘ 1 3 \ |
"B ‘| H | c /| | | | ‘l
E ‘ ‘ | ‘ | ‘| 5 D -f\/-\. ,’r-\". rs le l\ I ,”\\ ”/ \\ |‘
< B0p ||‘ | o 1 1< '\.._/*/ VARV _\ YRVAANDNY
R [Jﬁ”*" L- s f\ . [Q2+ A\
BB NIRTLA Y. Y P VL VATV B A
1\""&-\' Mx.‘ | Iﬂ‘:v"\‘ W N ‘\q\ , Nﬂ‘v.“"‘\ " vy ‘l"\ I,f"
500 L\“lﬁ"‘u : I L L I 04 ! ! ! L L L 1
0 B0 0 150 0 %0 W w40 0 A A
number of samples number of samples

Figure 3.2 The ECG signal before and after the preprocession

After preprocession of the ECG signal, it follows the compression stage of the
ECG. This section is basically the main subject of our research and also the
topic of the whole Implementation chapter. In the process we examine
separately different kinds of encoding and data procession algorithms. In this
thesis we are mainly evaluate two encoding algorithms LZO encoding
algorithm and also SPIHT encoding algorithm which follows DWT
transformation. We have chosen these algorithms among the numerous
compression algorithms that are released, because LZO algorithm and more

23

specifically the miniLZO algorithm as it stated in [8] it is ideal for embedded
applications as the IMDs. As it is stated above IMDs are our main field of
interest .On the other side the DWT-SPIHT compression algorithm can
achieve very big compression ratios, which is and the main goal of every
compression algorithm.

Furthermore, we present at this chapter and various data procession algorithms
in order to examine the behavior of each algorithm.

Preprocession

DWT-SPIHT

hoice of Da
processing
algorithm

LZO

processing
algorithm

Algorithm?

Rounding with
Reordering with

Reordering
with Fuzzy C

- Fuzzy C means
means clustering Clustering i i
Roundin Reorderin
Jv { Rounding] ! g

[Normalization]

v

[Normalizaﬁon] | Sorting |

[Segmentation]

Reordering
with Fuzzy C means

Segmentation

Reordering
with Fuzzy C means
stering

[DWT] erin
v
(SPIHT) v

Figure 3.3. Evaluation flowchart

3.1. DWT-SPIHT data processing techniques

To begin with, we should define the wavelet basis that we have chosen. As it is
stated [10] the basis with the most efficient PRD is bior6.8 so it was chosen for
the entire experiment.

Moreover, the experiments was made with 256 number of samples at is also
stated in [10] that produces the best PRD results with the same compression

24

ratio. In order to verify this statement we have also run the experiments with
128 sample number.
Each tree node is calculated by the following equation

oG,) = {C@, 2y, C(2i, 2j+1), C(2i+1, 2j), C(2i+l, 2j+1)}

So it is more efficient when each parent 4 children and not less. Hence, the
sample number in an SPIHT algorithm in order to work efficiently should be
derivative of power of 2, as the SPIHT algorithm is developed in dyadic tree
pyramid.
The dimensions of the matrix are defined from the sample number. That’s why
we have not chosen for example 255 or 257 number of samples.
Before the implementation of the DWT transformation and the SPIHT
encoding algorithm we should process the input data in a specific way in order
to achieve efficiency. For this reason in this section we present the reordering
technique and the rounding before reordering technique. The first pre-process
method reorders each beat so as to create a signal with less high frequency. We
want a signal with less high frequency in order to be better encoded from
SPIHT algorithm. The second algorithm rounds the coefficients before the
reordering with the purpose of creating more correlation between the
coefficients and with the aim to make the reordering easier, as after rounding
there would be bigger similarities among coefficients.
The reordering technique consists of some steps. First step is the normalization
of the ECG recording, the second step is the segmentation of the 2D ECG that
has been created from the normalization to frames and after that the reordering
of each frame separately. We would analyze each step explicitly in the process.
In an ECG signal we can find out 2 types of correlation.

1. Correlation in a single ECG cycle (intrabeat correlation).

2. Correlation among ECG cycles (interbeat correlation).
Creating a 2D ECG array where each row would depict a heartbeat and each
column a specific part of the ECG (for example column 1 for every row
depicts the highest point of R wave) should help to the decorrelation of ECG
signal.

Normalization

As all the coefficients would be aligned and would share similar attributes.
Therefore, since each heartbeat can have a different duration, it should be
normalized into constant number in order to construct 2D ECG array. For our
normalization process we used the PAN method [18]to normalize each
heartbeat duration without amplitude normalization step. As it is shown from
the Figure 3.4 there is no significant difference neither in morphology nor in
amplitude of the unnormalized and normalized ECG signal. During the
upscaling of the signal.

25

R-R unnormalized ECG

Amplitude of ECG
o
i

0 50 100 150 200
numMber of samples
R-R normalized ECG with 256 samples

™,
T

o L '\-._ - B /J“H‘*-.m e o I,-'I 4

e - B J— -

Amplitude of ECG
o
i

o S0 100 150 200 250 300
numMber of samples

Figure 3.4.Example of Normalized R-R heart beat with 256 number of
samples

Segmentation

We are segmenting the 2D ECG array in frames.Each frame is a square matrix
with columns and rows equals to the sample number that we have chosen for
our normalization.Hence,the 2D square matrix that is produced has in its rows
the intrabeat coefficients and each column the coefficients of each normalized
ECG heart beat.

Reordering

In our research we are using a beat reordering technique to optimize SPIHT
coding for ECG signal compression. Beat reordering rearranges beat order in
2D ECG array based on similarity among adjacent beats. The rearrangement
reduces variances among adjacent beats so that the 2D ECG array contains less
high frequency. SPIHT coding work more efficiently on the signal with less
high frequency component.Working in that way, we are using fuzzy c-means
clustering as beat reordering technique to optimize SPIHT coding by
rearranging beat or ECG cycle order in 2D ECG array, according to their
similarities.We have chosen fuzzy c-means clustering algorithm for the
proposed reordering ,because fuzzy c-means clustering not only cluster the
beats but also provides the each beat with a degree of their belonging to each
cluster [19]. According to that degree, we rearrange the beats inside each
cluster,since the frequency distribution is only affected by the order of beats
inside each cluster.

We can see the difference between an ECG signal before and after beat
reordering in Figure 3.5 [10] .

26

..

250 % 250 \. ... YRR .
200 M 200 ... NG s
150 % TR T 150:3% 55 SR I O

100 % % T - 100 N....oonemeneiet

o 150 sog 250 100 150 200 250

sgp 10 50

Figure 3.5. 2D ECG array of ECG before(right) and after(left) beat
reordering(x-axis depicts number of samples per heart beat, z-axis depicts
the number of the heart beats and y-axis the amplitude of the each ECG
sample) [10]

3.1.1. Rounding with Reordering with fuzzy C-means
clustering technique

This technique is exactly the same as Reordering technique with the difference
that before the normalization step the coefficients of the ECG are rounded.
Figure 3.3 explains explicitly the steps that we followed for that technique

3.2. LZO Data processing techniques

As we have already mentioned some general attributes of LZO in the
Background chapter, LZO is a lossless data compression algorithm originally
written in ANSI C. It is a block compression algorithm. It compresses and
decompresses blocks of data. Block size must be the same for compression and
decompression. LZO compresses a block of data into matches (a sliding
dictionary) and runs of non-matching literals to produce good results on highly
redundant data. In this section we will state the methods that we use before the
encoding process. Some of the methods mentioned here have already been
explained in the previous chapter.

Moreover, LZO is a lossless compressor opposed to SPIHT which in our
experiments is lossy. So some of the methods proposed below use some

27

preprocessing algorithms like the rounding in order to create lossy algorithms
with the use of LZO compressor.

3.2.1. Reordering

In our research we are using 2 types of Reordering. We reorder the coefficients
sorting them ascending and reordering them with fuzzy C-means clustering.

Sorting

We are sorting in ascending order the coefficients of the ECG recording in
order to create correlations as the LZO is a block compressor that uses sliding
dictionary. So, sorting them the adjacent coefficients would appear similarities.
The LZO compressor could take advantage of these similarities and produce
better compression ratio.

Reordering with fuzzy C-means clustering

This technique is exactly the same as the technique that we have described in
the previous section ,when we described the Fuzzy C means cluster algorithm
with the difference that now at the end we are not encoding the coefficients
with DWT-SPIHT encoding scheme but with the LZO.

3.2.2. Rounding

As in reordering we are proposing 2 implementation schemes. We can
combine rounding with reordering or just use reordering as it is depicted in
Figure 3.3.

Rounding

In order to round the data we are using fixed-point values.
The aforementioned technique has the following steps:
e \We take the initial values
e We are creating diffirent fixed point values according to the number of
the digits that we want to give to the fraction number of the values.
So,we round the values using 2-5 bits for the fraction part.
e.g:For 2 bits we are rounding the values to
1)XXX.750
2)XXX.500
3)XXX.250
4)XXX.000
For the other bits is done by similar way.
¢ We continue with the encoding algorithm.

28

3.3. Tool Flow

This section provides a step-by-step guide to what tools, scripts and files are
required and used for the implementation and evlauation of our work. The tool
flow used throughout the project is illustrated in Figure 3.6 .

Starting from the top, we are loading in Matlab environment the MIT-BIH
arrhythmia database, which was saved locally to our PC in Matlab data files
(.mat).Then, we are executing in Matlab all the needed preprocession
functions, such as selection of the lead that we want to use or the removal of
baseline wander with. After the preprocession is over we saved the ECG
recordings in binary.

Following that we are going under the compression stage. All the procession
that is following that stage(see Figure 3.3) is done in Matlab until we decide
which encoding algorithm we use. Whether we are using DWT-SPIHT
encoding or LZO encoding would bring us in different paths.

If we continue with LZO after any data procession algorithm is imposed we
call through Matlab a python script. This python script executes the LZO
library, which is written in C and produce the compressed files.

Otherwise, if we choose to continue our compression algorithm using DWT-
SPIHT, we continue in Matlab as the DWT and SPIHT are Matlab functions
and after the encoding is over we are saving the compressed ECG signal, like
we have done with LZO so as later to evaluate the methods from quantitive
scope.

Matlab files

___% » Load ECG
Save i
Baseline < Freprocess
LZO
Compres * Calling LZO.py > mizo.c
w
SPIHT
DWT_SPIHT
Save

Compressed
file

E

Figure 3.6 Tool flow figure

29

4. Evaluation

At this chapter of this thesis we would evaluate the proposed methods that we
mentioned in the aforementioned chapter, so as to compare our proposed
compression techniques, which is and the main goal of our research. Hence,
we have to declare firstly explicitly the evaluation criteria and the tools that we
used in order to compare the compression techniques and afterwards to present
the evaluation results for each of the proposed algorithms.

4.1. Experimental Setup

It is very important from the beginning to point out clearly the criteria and the
tools that we used in our evaluation process. First of all, we would explain the
metrics that we would use in order to evaluate the algorithms and then we
would explain the tools that we used to acquire these metrics and all the
needed assumption that we did.

4.1.1. Metrics

At this section we describe the metrics which we use to decide which
algorithm or combination of algorithms is the most suitable for IMDs.

4.1.1.1. Compression ratio

When we are referred to compression algorithms the compression ratio is the
most renowned metric that we use to evaluate them.

CR depicts how much space we save when we impose a data compression
algorithm. The compression ratio (CR) is defined by the following equation
[20]:

R Slze of the original file
~ Size of compressed file

In case that we use a reordering technique has as a consequence the production
of indexes files. So CR equation is transformed to:

Size of the original file

CR= (Size of compressed file + Size of the indexes)

30

41.1.2. File size

Compression ratio is not enough in order to evaluate the results from a
guantitive prospect, so we are saving also the size of each file. The process
followed to acquire these information is cited above.

For compression ratio and the file size we just calculated the size of each file,
we didn’t use any complex tools for acquiring these information

4.1.1.3. PRD

The Percent Root mean square Difference [10] is used frequently in academic
literature in order to examine the quality of a compression technique,
especially for compression of biological signals.

The PRD is defined by the following equation:

- jZ?_l[xl (D) = ()]

x 100

2 .
i1 xi (D

,where X is the coefficient of the original signal and X, is the coefficient of the
reconstructed signal.

In order to calculate the PRD we use a Matlab function which calculate the
PRD based on the equation we provide above. In order to calculate the PRD of
each algorithm we called the PRD function of Matlab after the decompression
of each compressed file. The input values are the original file and the
reconstructed file.

4.1.1.4. Computational Metrics

It is very important for our research the energy footprint of each algorithm.
These metrics would help us come to a conclusion whether algorithms copy
with the requirements of the Implantable Medical Devices in order to compress
ECG recordings in an energy efficient way. More specifically we present the
total time that each algorithm needs, the peak memory and also the total
amount of memory it uses. As for the calculation of computational metrics as it
was more complex to acquire them we used different techniques.

For the algorithms that are affiliated to LZO we used a combination of Profile
tool of Matalab and Massif Heap profiler from Valgrind framework.

More specifically, the preprocession of LZO algorithms as we have mentioned
in the implementation chapter is done in Matlab but the compressor itself is in
C, so we should find a way to aggregate the energy footprint of compressor

31

itself to the energy footprint of preprocession algorithm. So, we followed the
steps below:

1. Firstly, we measured with the help of Massif Heap profiler the execution
time and the memory footprint of SPIHT compressor in C and LZO
compressor in C.

2. Afterwards, we measure the total execution time and memory footprint
of SPIHT in Matlab.

3. From the execution time and memory footprint of SPIHT in C and in
Matlab we extracted a scaling factor of the algorithm between Matlab
and C.

4. Finally we multiplied with this scaling factor the computational metrics
of LZO in C in order to find in a theoretical way the computational
metrics of LZO in Matlab and aggregated them with the computational
metrics of preprocession in order to find the final values of
computational metrics.

4.2. Experimental Results

We would progressively quote the results of all the proposed algorithms. It is
Important at this point to clarify our baseline, namely the input we are using
for our experiments. The input file size is 370080 bytes.

4.2.1. Results of SPIHT algorithms

We should mention that on SPIHT algorithms the compression ratio and the
file size do not change over the methods as we define the size of the
compressed file in the beginning of the algorithm. Before the beginning of the
algorithm we define the maximum amount of bits we want to grant to our
compressed file. As we have already in Background chapter SPIHT algorithm
does progressive compression, so we have the ability to define the size of our
compressed files.

We have chosen 10 different compression ratios(2.67, 5.33, 8, 10.67, 13.33,
16, 18.67, 21.33, 24, 26.67) in order to examine the differences in PRD and
computational overheads for these specific compression ratios for various
values of samples and clusters. Those compression ratios have been chosen
and calculated randomly according to the range of compression ratios that we
have encountered in our related work.

32

4.2.1.1. Results on Reordering with fuzzy C means clustering

Firstly we can see the differences in PRD when we impose the reordering with
fuzzy C means clustering.

12.00
10.00 B SPIHT_128
3
8.00 B SPIHT_128_
10
6.00 mSPIHT 128
PRD 128
4.00
B SPIHT 256
3(1)
2.00 -
m SPIHT_256_
0.00 - 10

2.66 5.3 7.93 10.55 13.15 15.74 1831 20.87 23.42 25.95 W SPIHT_256_

. . 128
Compression Ratio

Figure 4.1 PRD over compression ratio for SPIHT Reordering with fuzzy
C-means clustering

12.00

10.00

8.00

m SPIHT_128
B SPIHT_256

PRD 6.00

4.00

2.00 -

0.00 -

2.67 533 8 10.67 13.33 16 18.67 21.33 24 26.67
Compression ratio

Figure 4.2 PRD over compression ratio for SPIHT without Reordering
with fuzzy C-means clustering

Before start explaining each figure separately we should clarify the fact that
compression ratio is different for the Figures with Reordering with fuzzy C-
means clustering and without. The difference is outcome of the indexes that

33

are produced with Reordering with fuzzy C-means clustering, which worsen
the compression ratio a little when the Reordering is used.

As it can be seen from the Figure 4.1 and Figure 4.2 we illustrate all the
different values of PRD for different values of Compression Ratio. As it can be
seen from the legend SPIHT is the method we used, first number the sample
number, second number the number of clusters we used (if there is not second
number we haven’t imposed reordering).

The pattern of the PRD values is clear, the more clusters we use the bigger
PRD values we get no matter the sample number. Moreover, when we use
reordering the PRD values are smaller comparing to those that we have
without reordering with fuzzy C-means ordering. Also, it can be seen that we
agree experimentally with [10] as the best PRD values are encountered when
we use 256 samples. Finally, it is more than obvious that the bigger
compression ratio we get the bigger the PRD becomes. It is recognizable that
in 15.76 compression ratios is bigger than 13.15 and nevertheless we get
smaller PRD values. That is happening due to the fact that in the reordering
with fuzzy C means clustering the initialization on the cluster centers in done
randomly and this parameter influences the reordering and therefore the PRD
values.

As much as computational overheads it concerns, from Figure 4.3 and Figure
4.4 we can see that the bigger the sample number is the most time it gets to
compress the data and also the number of cluster influences the Execution time
of an algorithm. As it needs more time for the clustering as the calculations are
more in order to see each coefficient in which cluster it belongs. Surprisingly
enough we can see that, the better compression ratio we acquire less time we
need. This happens due to the fact that as we have mentioned SPIHT sends
progressively the coefficients and the sooner we stop the compression process
the better compression ratio we get ,but with the worst PRD. Moreover, we can
see that the trend of Execution time is followed by Total Memory used and
Peak Memory needed calculations too.

34

25

B SPIHT_128_
3

B SPIHT 128
10

m SPIHT_128_
128

B SPIHT_256_
3(1)

W SPIHT_256_
10

m SPIHT_256_
128

Execution time(s)

2.66 5.3 7.93 1055 13.15 15.74 18.31 20.87 23.42 2595
Compression Ratio

Figure 4.3 Execution time over Compression ratio for SPIHT Reordering
with fuzzy C-means clustering.

20
18 -
16
14
12
10

m SPIHT 128
m SPIHT 256

Execution time(s)

O N B O

2.67 5.33 8 10.67 13.33 16 18.67 21.33 24 26.67
Compression ratio

Figure 4.4 Execution time over Compression ratio for SPIHT without
Reordering with fuzzy C-means clustering.

35

35000000

30000000 m SPIHT_128_3
g 25000000 - B SPIHT_128_1
'8 0
g 20000000 - B SPIHT_128_1
s 28
g 15000000 - B SPIHT_256_3
= ()
= 10000000 - B SPIHT_256_1
g 0
O
= 5000000 4 m SPIHT_256_1

28
0 -

2.66 5.3 7.93 1055 13.15 15.74 18.31 20.87 23.42 25.95
Compression Ratio

Figure 4.5 Total Memory Used over compression ratio for SPIHT
Reordering with fuzzy C-means clustering

30000000

20000000

m SPIHT_128

10000000 M SPIHT_256

Total Memory
Used(MB)

0

2.67 533 8 10.6713.33 16 18.6721.33 24 26.67
Compression ratio

Figure 4.6 Total Memory Used over compression ratio for SPIHT
Reordering without fuzzy C-means clustering

36

2500000

mSPIHT_128 3
2000000

m SPIHT_128_10
— 1500000 -
= I m SPIHT 128 12
2 8
> |
£ 1000000 I B SPIHT_256_3(I
S)
(]
S 500000 - I ® SPIHT_256_10
<
©
& 0 - B SPIHT_256_12

9

8

3 10.55 13.15 15.74 18.31 20.87 23.42 25.95
Compression Ratio

Figure 4.7 Peak Memory used over compression ratio for SPIHT
Reordering with fuzzy C-means clustering

25000000
20000000 -

[24]

S 15000000 - SPIHT 128
s m SPIHT 256
S 10000000 -

()

S 5000000 -

X

5]

a 0 -

2,67 533 8 10.6713.33 16 18.6721.33 24 26.67

Compression ratio

Figure 4.8 Peak Memory used over compression ratio for SPIHT
Reordering without fuzzy C-means clustering

4.2.1.2. Results on Reordering with fuzzy C means clustering after
Rounding.

Firstly in Figure 4.9 we can see that the rounding in the coefficients worsen
the PRD is getting worst 7-10% worst, compared to the PRD results with
reordering(Figure 4.1) with reordering with fuzzy C-means clustering, without
prior rounding. Moreover, we observe an approximately 5% increase in the
execution time(approximately 1 second more) in Figure 4.10(compared to
Figure 4.3) , a 8% increase in total memory used from the algorithm in Figure
4.11(compared to Figure 4.5), peak memory used from the algorithm seems to
be the same in Figure 4.12(compared to Figure 4.7) compared to the similar
figures of SPIHT reordering algorithm with fuzzy C-means clustering. Finally,
it is shown in the graphs that the rounding in the coefficients does not help our
goal. With the method specified in this section the computational overheads
stay more or less the same, compared with the results on results with
reordering with fuzzy C-means clustering. Although, there is an increase on

37

the computational overheads as the rounding demands more calculations which
means more time and memory, the rounding makes the reordering easier. So it
saves some time in that stage of the algorithm, but it does not over-exceed the
total execution time. To sum it up, we gain no improvement but we consume
more energy.

12.00
B SPIHT 128 3
10.00
B SPIHT_128_10
8.00
PRD 6.00 ® SPIHT_128_128
4.00 B SPIHT_256_3(1)
2.00 -
B SPIHT_256_10
0.00 -

2.66 5.3 7.93 1055 13.15 1574 1831 20.87 23.42 25.95 m SPIHT_256_128

Compression Ratio

Figure 4.9 PRD over compression ratio for SPIHT Reordering with fuzzy
C-means clustering after Rounding.

25
®SPIHT_128 3_RR
20
W SPIHT 128 10_RR
15 W SPIHT 128 128 RR
=
g ® SPIHT 256_3_RR
£ 2563
c
S
3 M SPIHT 256_10 RR
£ s
&
® SPIHT_256_128 RR
0

2.66 53 7.93 1055 13.15 15.74 1831 20.87 23.42 25.95

Compression Ratio
Figure 4.10 Execution time over compression ratio for SPIHT Reordering
with fuzzy C-means clustering after Rounding

38

40000000

35000000

mSPIHT 128 3 RR
30000000

m SPIHT_128_10_RR
25000000

20000000 B SPIHT_128_128_RR

15000000
m SPIHT_256_3_RR
10000000

® SPIHT_256_10 RR

Total Memory Used(MB)

5000000

0 ® SPIHT_256_128_RR

266 53 7.93 10.55 13.15 15.74 1831 20.87 23.42 25.95

Compression Ratio
Figure 4.11 Total Memory Used over compression ratio for SPIHT
Reordering with fuzzy C-means clustering after Rounding

2500000
B SPIHT_128_3
2000000
B SPIHT_128_10
@ 1500000 - = =
S B SPIHT_128_ 128
z
]
5
s 1000000 - I I W SPIHT_256_3(1)
~
©
]
a
500000 - B SPIHT_256_10
0 I I I I I I I I I I B SPIHT_256_128
2.66 53 793 1055 13.15 1574 1831 20.87 23.42 25.95

Compression Ratio
Figure 4.12 Peak Memory used over compression ratio for SPIHT
Reordering with fuzzy C-means clustering after Rounding

39

4.2.2. Results of LZO algorithms

In this section we present the results from all the proposed algorithms that they
use the LZO compressor. Moreover as our main concern is to examine which
compressor and which preprocessing algorithm is more suitable for our goal,
we have tried to compare them as equally as we could. Hence, we have tried to
create a “lossy” LZO compressor.

LZO is a lossless compressor opposed to SPIHT which in our experiments is
lossy. So we have used some preprocessing algorithms like the rounding in
order to create lossy algorithms with the use of LZO compressor.

Moreover, as we have already mentioned in Implementation chapter, in order
to use the LZO compressor we should firstly save the data and then call it in
order to compress them.

4.2.2.1. Rounding

As we have mention on Reordering on Implementation chapter with the
reordering we basically create a lossy algorithm, as we try to find an effective
way where we could have adequate compression ratio and a decent PRD value.
From the

14.00

12.00 /‘

10.00 /
8.00 //r/‘/

6.00 ——TRANSPOSED_O

4.00 RIGINAL_DATA

=&— ORIGINAL DATA

PRD

2.00

0.00 T T T)
0 5 10 15 20
Compression Ratio

Figure 4.13 we can see that Rounding provides very good compression ratio
and with an efficient PRD. More specifically, given 5 bits after the decimal
point we manage to acquire compression ratio 8.95 and PRD 1.67 , a very
promising trade off and also with 4 bits after the decimal point we get 10.57
compression ratio and 3.11 PRD The transposed data does not offer better

40

ratios from the original one. In the next Chapter we will compare more
thoroughly the results of Rounding with the other methods.

From the computational overheads we can figure out that the more we round
the coefficients the more time we consume, approximately 4 seconds per bit
we grant for the decimal part. Moreover, we can see that the peak memory
does not change over the bits significantly, whereas the total memory used
from the 5 bits is two and a half times bigger from the one used from the 2 bits.
Also, it can be seen from Figure 4.14 that the computational overheads have
not any difference either for transposed or original data.

14.00

12.00 /

ya
8.00 #/

6.00 //
=—TRANSPOSED_O

4.00 RIGINAL_DATA

=0— ORIGINAL DATA

PRD

2.00

0.00 T T T)
0 5 10 15 20
Compression Ratio
Figure 4.13 PRD over compression ratio for LZO Rounding

30000000

25000000

20000000

15000000

m PEAK MEMORY

10000000 B TOTAL MEMORY

Memory used(Bytes)

5000000

0 -

2 3 4 5
Bits after decimal point

Figure 4.14 Memory consumption over bits given after decimal point for
LZO Rounding.

41

35

30

25 -

20 -

Time(s)

15 4

B ORIGINAL DATA

10 - m TRANSPOSED_ORIGINAL_DATA

2 3 4 5

Bits after decimal point

Figure 4.15 Execution time over bits given after decimal point for LZO
Rounding.

4.2.2.2. Reordering

Sorting

We have tried to find out the best way of Reordering in order to make use of
the attributes of LZO compressor in order to achieve high compression ratios
and of course lossless, PRD value is 0. As we have pointed out in the
beginning of the Implementation chapter LZO compressor produces big
compression ratios when the coefficients of a block of data are the same in
order the sliding dictionary to recognize similarities. The Figure 4.16 shows us
that Sorting method produces a compression ratio which is including the
indexes that are produced from the Sorting method less than 1 ,which means
that the original file was smaller than the compressed one .This makes the
Reordering with Sorting useless for data compression.

1.2

1
H ORIGINAL DATA

0.8 -
M ORIGINAL DATA with indexes

0.6 -
= TRANSPOSED_ORIGINAL_DATA

0.4 -

Compression ratio

B TRANSPOSED_ORIGINAL_DATA with
indexes

0.2 -

0 .
Figure 4.16 Compression ratio for different data of Sorting method

42

Although we have proved that the Sorting method is useless in terms of
compression ratio , we state also the results from the computational overhead
in order to observe differences between the Original and Transposed data.
Finally, we can make out no differences between the 2 different types of saved

types.

200

150

Execution time(s)

o -

100 -

50 -+

M ORIGINAL
DATA

B TRANSPOSE
D_ORIGINAL
_DATA

Figure 4.17 Execution time for different data of Sorting method

1000000

Total Memory
USed(bytes) o
o o
o o
o o
o o
o o

200000 -

0 .

00000 -

H ORIGINAL
DATA

= TRANSPOSED
ORIGINAL
DATA

Figure 4.18 Total Memory used for different data of Sorting method

500000

400000

Peak Memory
Used(bytes)

300000

200000

100000

0

B ORIGINAL
DATA

m TRANSPOSE
D_ORIGINAL
_DATA

Figure 4.19 Peak Memory used for different data of Sorting method

Fuzzy C means clustering

We continue with the presentation of the results of the Reordering technique.
A technigue which has as main goal to reorder the data in a way to create more
correlation to the coefficients so as the compressors to make use of this

43

correlation to produce better compression ratio. In this section we will present
the results for Reordering with Fuzzy C means clustering, as in the results
presented in the SPIHT section for this method we will present the results for
different values of sample and cluster number in order to understand the
reaction of LZO compressor to the change of these variables.

Reordering with fuzzy C means clustering using the LZO compressor is a
lossless method that obviously produces zero value PRD.

3

2.5

Compression ratio
[EnY
(6]
1

0.5 4

0 -

1 Sample number=32_cluster number=128
m Sample number=32_cluster number=10

M Sample number=32_cluster_number=3

M Sample number=64_cluster_number=3

M Sample number=64_cluster number=10

m Sample number=64_cluster number=128
M Sample number=128_cluster_number=3
M Sample number=128_cluster number=10
M Sample number=128_cluster number=128

M Sample number=256_cluster_number=3

Figure 4.20 Compression ratio for different values of sample and cluster

number

700

600

500

400

300

Execution time(s)

200

100 -

0 -

M Sample number=32_cluster_number=3

m Sample number=32_cluster number=10

1 Sample number=32_cluster number=128
M Sample number=64_cluster_number=3

B Sample number=64_cluster number=10

M Sample number=64_cluster number=128
M Sample number=128_cluster_number=3
M Sample number=128_cluster number=10
M Sample number=128_cluster number=128

B Sample number=256_cluster_number=3

Figure 4.21 Execution time for different values of sample and cluster

number

44

25000000

m Sample number=32_cluster_number=3

m Sample number=32_cluster number=10

20000000

[Sample number=32_cluster number=128

B Sample number=64_cluster_number=3

15000000

M Sample number=64_cluster number=10

M Sample number=64_cluster number=128
10000000 -
M Sample number=128_cluster_number=3

m Sample number=128_cluster number=10

Total Memory Used(Bytes)

5000000 -

m Sample number=128_cluster number=128

M Sample number=256_cluster_number=3

0 -
Figure 4.22 Total Memory Used for different values of sample and cluster
number

4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000
0

W Sample number=32_cluster_number=3

W Sample number=32_cluster number=10

[Sample number=32_cluster number=128
W Sample number=64_cluster_number=3
B Sample number=64_cluster number=10
W Sample number=64_cluster number=128
M Sample number=128_cluster_number=3

M Sample number=128_cluster number=10

Peak Memory Used(Bytes)

m Sample number=128_cluster number=128
M Sample number=256_cluster_number=3

M Sample number=256_cluster number=10

= Sample number=256_cluster number=128

Figure 4.23 Peak Memory used for different values of sample and cluster
number

The above figures illustrate that the best compression ratio is achieved for 64
sample number and 3 clusters. It is remarkable that these results do not agree
with the SPIHT results on the same method, because now the compression
procedure is different and the encoding with LZO algorithm is done per
fragment, comparing to the SPIHT where the encoding part came at the end of
the pre-procession method. We see that the computational overhead of the
algorithm increase proportional as the sample number and the cluster number
increase. More specifically the biggest growth is observed when the sample
number increases. From 32 to 64 sample number there is a 30 % increase to the
execution time and total memory used and an about 20 % increase as for the
Peak memory. From 64 to 128 sample number there is a 18 % increase on the
Peak Memory metric ,an 85 % increase on the execution time and more or less
15 % on the Total Memory that is used. More significant growth is illustrated

45

between 128 and 256 sample number. The execution time and total memory
over double their previous values and the Peak memory is increased by 20 %.

4.2.3. Comparison Overview between the aforementioned methods.

In this section we could try to clarify which of the aforementioned methods
can be of some importance to our goal and also to clear up the differences of
each algorithm and its individual characteristics.

We would present the top-achieving algorithms as the Compression ratio and
the PRD is concerned.

30 —o—SPIHT_256_3(1)

25 on SPIHT_256_3(1l)
o
g 2 —B—SPIHT_256_3_RR
5)
a 15 LZO_REORDERIN
5 X G_FUZZY_64 3
E 10 LZO_ROUNDING_
“ 2bits

5 «—LZO_ROUNDING_

3bits
0 - : LZO_ROUNDING_
0.00 2.00 4.00 6.00 800 1000 12.00 1400 A4bits
PRD

Figure 4.24 Compression ration over PRD results from the top-achieving
algorithms.

Firstly, we have to define the reason that we illustrate the 2 different SPIHT
methods with the same sample and cluster number. As we have already
mentioned, in the SPIHT algorithm we can define the size of the compressed
file by changing the PRD value of the compressed file. So, we present 2
different versions of SPIHT algorithm with 256 samples and 3 clusters. Also
we should state here that as it is described in the 4.2.1.1 the 256 sample
number and the 3 clusters is the top achieving algorithm as the compression
ratio and PRD is concerned. From Figure 4.24 we can make out that the best
compression ratio is achieved with SPIHT algorithm with 256 samples and 3
clusters. The best lossless algorithm (PRD is equal to zero) is the LZO
algorithm when we use the Reordering with Fuzzy means clustering with 64
samples and 3 clusters. On the other hand, the best trade-off between
compression ratio and PRD is done from LZO Rounding algorithm. As we can
see from Figure 4.24 the LZO Rounding with 4 bits given to the fractional part

46

has 0.22 smaller PRD value and 0.2 compression ratio bigger than the SPIHT
with 256 sample number and 3 clusters(version I1).

160 W SPIHT_256_3(1)
140

= SPIHT_256_3(ll)

[EnY
N
o

m SPIHT_256_3_REOR

"
£ 100 DERING
T 50 ® LZO_REORDERING_F
2 uzzy_64 3
S 60 B LZO_ROUNDING_2bi
3 ts
40 ® LZO_ROUNDING_3bi
20 ts
= LZO_ROUNDING_4bi
0 - ts

Figure 4.25 Execution time for the top-achieving algorithms

30000000 B SPIHT_256_3()
® 25000000 ® SPIHT_256_3(l1)
s
o
-‘g’ 20000000 W SPIHT_256_3_REOR
2 DERING
> 15000000 - ® LZO_REORDERING_F
5 UzzyY_64_3
£ ® LZO_ROUNDING_2bi
< 10000000 - "
= ® LZO_ROUNDING_3bi
S 5000000 - s
= LZO_ROUNDING_4bi
0 - ts

Figure 4.26 Total memory used for the top-achieving algorithms

6000000 B SPIHT_256_3(1)
© 5000000 = SPIHT_256_3(ll)
3
>
% 4000000 B SPIHT_256_3_REOR
a DERING
2 3000000 m LZO_REORDERING_F
G Uzzy_e64_3
£ 5000000 B LZO_ROUNDING_2bi
b ts
x B LZO_ROUNDING_3bi
& 1000000 - ts
® LZO_ROUNDING_4bi
0 - ts

Figure 4.27 Peak Memory used time for the top-achieving algorithms

47

From the above figures that illustrate the computational overhead of the top-
achieving algorithms we can see that the lossless method needs more time to
efficient finish the compression. Most of the time is spent in the transforming
the coefficients which are double precision values, in order to be properly
saved in binary files. Moreover we can see that now the SPIHT with 256
sample number and 3 clusters (version Il) performs better, as far as the
performance metrics it concerns, than the LZO Reordering with 4 bits for the
fractional part. More specifically, it consumes 15 seconds and uses 500000

bytes less.

48

5. Conclusions

In this thesis, we wanted to find and compare algorithms that can compress
Biodata (mainly ECG) and more specifically algorithms tailored to the types of
data typically used by IMDs in an energy efficient way with minimal loss of
signal quality.

In Chapter 2, we stated the Background information about the algorithms that
we would use and the algorithms that we would compare. Moreover, we
mentioned some related work that has being done in that field of research and
more generally based on ECG data compression or data compression on data
stemmed from IMDs. Based on the 2 algorithms that have proposed significant
results during our academic research the SPIHT and the LZO algorithm, we
did a comparison between these algorithms evaluating their compression ratio,
PRD results and also the computational overhead of their performance. Before,
Evaluation chapter we stated clearly all the implementations needed in order to
undergo a fair and efficient comparison. In Chapter 3, Implementation Chapter
we mentioned all the methods and process techniques that we would use. Also,
we presented the tools that we used for this Implementation and the Evaluation
of the algorithms. Following, Chapter 4 the Evaluation Chapter we evaluated
the pre-stated methods that we described in the previous chapter. More
specifically, we concluded that as it is stated at [10] the most appropriate
sample number is 256 and cluster number is 3 to use the SPIHT encoding
algorithm. With these variables the SPIHT algorithms achieves its best values
as far as compression ratio and PRD concerns. Moreover, we have pointed out
that as we increase the sample number and cluster number in SPIHT encoding
algorithm the performance getting worst. We should also mention that the
reordering does not offer anything at all in the SPIHT algorithm with fuzzy C
means clustering, as it produces bigger PRD values and the same compression
ratio and performance metrics than the SPIHT algorithm with fuzzy C means
clustering without rounding.

As for the LZO encoding algorithm, which according to [8] is ideal for
implemented devices, we can see that combined to reordering with fuzzy C
means algorithm achieves a decent compression ratio with the disadvantage of
execution time that is too much ,but using a small proportion of the Memory
and all the aforementioned losslessy. On the other hand, the reordering with
the sorting method performs really badly, as the size of the indices that have to
store is really big and at the end it provides negative compression ratio
percentage. Moreover, the most promising data algorithm is the Rounding
method combined with LZO algorithm. We have used this method in order to
create a lossy algorithm with the use of lossless encoding algorithm as the
LZO, in order to be better comparable to the SPIHT algorithm with fuzzy C
means clustering. After the comparison between these methods we have

49

figured out that the LZO-Rounding algorithm cannot achieve the compression
ratio of the SPIHT-Reordering algorithm, but for a little bigger compression
ratio it can achieve better PRD values, with a little loss as far as its
performance metrics it concerns.

Finally, we have ended up to more partial conclusions. There is any significant
difference at the compression ability of LZO compressor either the input of the
algorithm is with the original data or the data are transposed.

At the end of the day, we could conclude that low-overhead compression of
ECG recordings for Implantable medical devices is a very crucial and
interesting subject that has a lot of parameters ,which one should highly take
into consideration before chooses the most appropriate algorithm.

5.1. Future work

Based on our current work we proposed some of the future work that can be
done in order to increase the contribution of this diploma thesis to this field of
research. Firstly, we could try the same algorithms and methods on different
types of biomedical data, such as Electromyogram, Electroencephalogram,
Blood pressure, Pulmonary function ,Respiratory Cycle etc etc.In order to
create a more generic algorithm that could include the majority of the data that
are transmitted from an IMD

Secondly, we could study different algorithms that have presented promising
results on the Biodata compression tailored for IMDs. Algorithms like these
can be found in the Related work section of our study.

Finally, we could create a new compressor tailored to ECGs, based on the
lessons of this thesis. This algorithm could be a combination of the
aforementioned algorithms or creation of a new one based on the conclusions
that extracted from the thesis.

50

6. Bibliography

[1] Yeun-Ho Joung, "Development of Implantable Medical Devices: From an
Engineering Perspective,” International Neurourology Journal, no. 13,
pp. 98-106, September 2013.

[2] Brown P, Nissen Zuckerman DM, "Medical device recalls and the FDA
approval," Arch Intern Med, no. 171, pp. 1006-1018.

[3] Lav Gupta, "Security in Low Energy Body Area Networks for
Healthcare," 2014.

[4] Sarbari Gupta, "Implantable Medical Devices - Cyber Risks and
Mitigation Approaches," 2012.

[5] Khalid Sayood, Introduction to Data Compression, THIRD EDITION ed.,
2006.

[6]M. F. X. J Oberhumer. “LZO source code”. [Online].
www.oberhumer.com/opensource/lzo

[7] L. Erdédi, "File compression with LZO algorithm using NVIDIA CUDA
architecture," 4th IEEE International Symposium on Logistics and
Industrial Informatics, September 2012.

[8] Georgi N. Gaydadjiev Christos Strydis, "Profiling of Lossless-
Compression Algorithms for a Novel Biomedical-Implant Architecture,”
Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, pp. 109-114, 2008.

[9] A. Materka, M. Strzelecki P. Szczypinsk M. Kociotek, "Discrete wavelet
transform —derived features for digital image texture analysis,”
Proceedings of Interational Conference on Signals and Electronic
Systems, pp. 163-168, September 2001.

[10] Wisnu Jatmiko, Aniati Murni Arymurthy Sani M. Isa, "Beat Reordering
for Optimal Electrocardiogram Signal Compression using SPIHT," IEEE
International Conference on Systems, Man, and Cybernetics, October
2012.

[11] Ziya Arnavut, "ECG Signal Compression Based on Burrows-Wheeler
Transformation and Inversion Ranks of Linear Prediction,” IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING, March 2007.

[12] Pawel Turcza, Tomasz P. Zielinski’ Krzysztof Duda, "Lossless ECG
Compression with Lifting Wavelet Transform ," May 2001.

[13] Antti Koski*, "Lossless ECG encoding ," Computer Methods and
Programs in Biomedicine , pp. 23-33, 1997.

[14] Elmar Uwe ,Kurt Melcher Leonardo Vidal Batista, "Compression of ECG
signals by optimized quantization of discrete cosine transform
coefficients," Medical Engineering & Physic, no. 23, pp. 127-134, 2001.

[15] Michael L. Hilton, "Wavelet and Wavelet Packet Compression of

o1

www.oberhumer.com/opensource/lzo

Electrocardiograms,” IEEE TRANSACTIONS ON BIOMEDICAL
ENGINEERING, vol. 44, no. 5, MAY 1997.

[16] LA Koyrakh, "Data Compression for Implantable Medical Devices,"
Computers in Cardiology, vol. 35, p. 417—420, 2008.

[17]1. S. Member, K. Faez, I. Member, and S. Sargolzaei A. Sargolzaei, "A
New Robust Wavelet Based Algorithm for Baseline Wandering
Cancellation in ECG Signals," Electrical Engineering, pp. 33-38, 2009.

[18] G. Ramakrishnan and S. Saha, "ECG coding by wavelet-based linear
prediction,” IEEE transactions on bio-medical engineering, vol. 44, no.
12, pp. 1253-61, Dec. 1997.

[19] ROBERT EHRLICH ,WILLIAM FULL JAMES C. BEZDEK, "FCM:
THE FUZZY c-MEANS CLUSTERING ALGORITHM," Computers &
Geosciences, vol. 10, no. 2-3, pp. 191-203, 1984.

[20] N. Sriraam, "Correlation dimension based lossless compression of EEG
signals,” Biomedical Signal Processing and Control , no. 7, pp. 379— 388,
2012.

[21] Eameema Muntimadugu , Michael Jaffe and Abraham J. Domb Wahid
Khan, "Implantable Medical Devices ," in Focal Controlled Drug
Delivery., ch. 2.

[22]J. T. Rubinstein, "How Cochlear Implants Encode Speech,” Current
Opinion in Otolaryngology & Head and Neck Surgery Journal, no. 12, pp.
444-448, 2004,

[23] L. Wentai, "Image Processing and Interface for Retinal Visual
Prostheses,” Circuits and Systems, no. 3, pp. 2937-40, 2005.

[24] M. Burrows and D.J. Wheeler, "A Block-sorting Lossless Data
compression algortihm,” Systems Research Center, Palo Alto, May 10
1994,

[25] DANIEL D. SLEATOR, ROBERT E. TARJAN,and VICTOR K. WEI
JON LOUIS BENTLEY, "A locally adaptive data compression scheme,"
Communications of the ACM, vol. 4, no. 29, pp. 320-30, April 1984.

[26] C. E. Shannon, "A mathematical theory of communication,” no. 27, pp.
379-423., July 1948..

[27] D. A. Huffman, "A method for the construction of minimum-redundancy
codes,” Proc. IRE, no. 40, pp. 1098-1 101, September 1952.

[28] PAUL G. HOWARD and JEFFREY SCOTT VITTER, "Arithmetic
Coding for Data Compression," 1994.

[29] T. Natarajan, and K. R. Rao N. Ahmed, "Discrete cosine transform," IEEE
Trans. Comput, no. 23, pp. 90-93, 1974.

[30] Chun-Hee Lee and Chin-Wan Chung, "Compression Schemes with Data
Reordering for Ordered Data," December 20009.

52

[31] WB Pennebaker, JPEG: Still image data compression standard. USA:
Kluwer, 1993.

53

