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Πεπίληψη 
 

ηελ επνρή καο νη εκθπηεύζηκεο ηαηξηθέο ζπζθεπέο, γλσζηέο παγθνζκίσο θαη 

σο IMDs ρξεζηκνπνηνύληαη νινέλα θαη πεξηζζόηεξν ζηελ Ιαηξηθή. Σα IMDs 

ζπλαληώληαη ζε κηα κεγάιε πνηθηιία ηαηξηθώλ εθαξκνγώλ, βαζίδνληαη ζηελ 

απόθηεζε ,επεμεξγαζία θαη κεηαθνξά δεδνκέλσλ νύησο ώζηε  λα 

αλαβαζκίζνπλ ηελ θαζεκεξηλόηεηα ησλ αζζελώλ αιιά θαη πνιιέο θνξέο λα 

ηνπο δηαηεξήζνπλ ζηε δσή. Σν πξόβιεκα πνπ παξνπζηάδεηαη κε ηα IMDs είλαη 

όηη έρνπλ πεξηνξηζκέλε κλήκε, ππνινγηζηηθέο δπλαηόηεηεο θαη ελεξγεηαθή 

επάξθεηα ελώ πξέπεη λα ζπιιέγνπλ, επεμεξγάδνληαη θαη λα κεηαδίδνπλ 

δεδνκέλα από δηάθνξνπο πηζαλνύο αηζζεηήξεο. Όινη απηνί νη πεξηνξηζκνί 

θαηαδεηθλύνπλ ηελ αλάγθε νη πιεξνθνξίεο πνπ ζπιιέγνληαη θαη κεηαδίδνληαη 

από ηα IMDs λα ζπκπηέδνληαη όζν πην απνδνηηθά γίλεηαη. ηελ πξνθεηκέλε 

πεξίπησζε  ε ζπκπίεζε δεδνκέλσλ απνηειεί κηα πξόθιεζε, θαζώο ην 

αλαθηώκελν ζήκα ζα πξέπεη λα έρεη πςειή πηζηόηεηα ζε ζρέζε κε ην αξρηθό. 

Δπίζεο, γηα λα κπνξεί λα επηηεπρζεί πην απνδνηηθή ζπκπίεζε ε κέζνδνο πνπ ζα 

ρξεζηκνπνηεζεί ζα πξέπεη λα είλαη πξνζαλαηνιηζκέλε ζηνλ ηύπν ησλ 

δεδνκέλσλ πνπ ζα ζπκπηέζεη. ηελ παξνύζα δηπισκαηηθή ζα πξνζπαζήζνπκε 

λα βειηηώζνπκε ηηο ππάξρνληεο κεζόδνπο ζπκπίεζεο δεδνκέλσλ. Γηα λα ην 

θαηαθέξνπκε απηό εμεηάδνπκε δηάθνξνπο αιγνξίζκνπο θαη ζπλδπαζκνύο 

απηώλ γηα λα βξνύκε ην πην απνδνηηθό ζρήκα. Οη δύν θύξηνη αιγόξηζκνη πνπ 

εμεηάδνπκε είλαη ν LZO θαη ν SPIHT. ηελ πξνζπάζεηα καο ώζηε λα 

βειηηζηνπνηήζνπκε ηελ απόδνζε ηνπο ,ηνπο ζπλδπάδνπκε κε δηάθνξεο 

ηερληθέο επεμεξγαζίαο δεδνκέλσλ. Βαζηθή καο επηδίσμε είλαη λα 

αμηνινγήζνπκε ηνπο παξαπάλσ αιγνξίζκνπο. Η αμηνιόγεζε απηή γίλεηαη 

πάλσ ζηελ ζπκπίεζε Ηιεθηξνθαξδηνγξαθήκαηνο, έλα από ηα πην δηαδεδνκέλα 

βηνινγηθά ζήκαηα ην νπνίν θαηαγξάθεηαη από πνιιά IMDs ηα νπνία είηε ην 

κεηαδίδνπλ απεπζείαο είηε ην απνζεθεύνπλ γηα κειινληηθή ρξήζε. Η θύξηεο 

παξάκεηξνη  ζηηο νπνίεο βαζίδεηαη ε αμηνιόγεζε καο είλαη ε αλαινγία 

ζπκπίεζεο ελόο αξρείνπ(CR) ,ε πνζνζηηαία  ξηδηθή κέζε ηεηξαγσληθή δηαθνξά 

(PRD) θαη ην ελεξγεηαθό απνηύπσκα ηνπ θάζε αιγνξίζκνπ. Δλ ηέιεη, 

βαζηδόκελνη ζηελ δηαδηθαζία αμηνιόγεζεο ζπκπεξαίλνπκε όηη ν SPIHT 

αιγόξηζκνο κε ηελ κέζνδν αλαθαηάηαμεο κε  fuzzy C means Clustering 

πξνζθέξεη ηε κεγαιύηεξε αλαινγία ζπκπίεζεο. Από ηελ άιιε, ηελ θαιύηεξε 

ζρέζε κεηαμύ CR θαη PRD πξνζεγγίδεη ν LZO αιγόξηζκνο κε 

ζηξνγγπινπνίεζε.  

 

Λέξειρ κλειδιά:  
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βηνδεδνκέλσλ, ζπκπίεζε δεδνκέλσλ κε ρακειή ελεξγεηαθό απνηύπσκα, 

αλαινγία ζπκπίεζεο , πνζνζηηαία  ξηδηθή κέζε ηεηξαγσληθή δηαθνξά ,SPIHT , 
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Abstract 
 

It is an indisputable fact that Implantable Medical Devices (IMDs) are 

becoming an integral part of Medical science. IMDs are encountered in a great 

variety of medical applications. IMDs rely on data acquisition, processing and 

communication agents in order to sustain and ameliorate the life of the 

patients. IMDs have limited memory, computational and battery power 

resources, while collecting, processing and transmitting out information from 

potentially many sensors. These limitations require that information within the 

devices be efficiently compressed. Such data compression presents a 

challenging task, as it must provide high fidelity of the waveform reproduction 

and high compression ratios on limited size data frames. Also, it must be based 

on the type of data to be compressed, in order to provide bigger efficiency. In 

this thesis we try to better up the existing lossy and lossless compression 

methods. In order to manage that, we use various algorithms and combinations 

of those in order to find the most efficient scheme. The two main algorithms 

that we use are LZO encoding algorithm and SPIHT encoding algorithm. We 

combine these encoding algorithms with various data procession algorithms. 

Our main attempt is to evaluate the aforementioned algorithms and so we use 

Electrocardiography (ECG), an extremely widely used biodata which is 

recorded from IMDs and sent or saved from them. The main evaluation 

parameters of our thesis are the compression ratio, the Percent Root mean 

square Difference (PRD) and computational overhead of each algorithm. 

Finally, based on the evaluation process we conclude that SPIHT with 

Reordering with fuzzy C means Clustering offer the best compression ratio 

25.95 with RPD 4.86 and the best tradeoff between compression ratio and PRD 

the LZO with Reordering technique with 10.67 compression ratio and 3.13 .As 

for the lossless algorithms LZO with Reordering with fuzzy C means 

clustering offers 2.42 compression ratio. 
 
 

 

 

 

 

Tags: Implantable Medical Devices (IMDs), Electrocardiography (ECG), 

data compression, ECG compression ratio, low overhead, Percent Root 

Difference (PRD), compression ratio, SPIHT , LZO  
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1. Introduction 
 

The technological breakthroughs in the field of biomedical engineering have 

revolutionized the way that medicine is performed by scientists. 

Implementable medical devices (IMDs) are such a prominent example. If we 

would like to give a definition to implantable medical devices we could say 

that “Implantable medical devices are the medical devices that either partly or 

totally introduced, surgically or medically, into the human body and is 

intended to remain there after the procedure” [1]. Over the years, implantable 

medical devices have saved and also improved the quality of life to a big 

amount of patients. Nowadays, IMDs are used in many different parts of the 

body of a patient such as orthopaedics, pacemakers, cardiovascular stents, 

defibrillators, neural prosthetics or drug delivery system. Particular interest 

present IMDs that can record transmit or store data such as ECG monitoring 

systems, Holter  , ElectroGraM (EGM) or  Implantable hemodynamic monitors 

and Insertable loop recorders. The last would be and the main devices of 

interest in our thesis. Moreover, as the life expectancy has grown significantly 

the need for new and improvement of the existing technologies that are related 

to implantable medical devices such as treatments, implants, prostheses and 

long-term pharmaceutical usage has increased. One significant example is 

Implantable cardioverter defibrillators (ICDs). ICDs are devices that monitor 

and treat cardiac arrhythmia, when it is detected by sending a large jolt of 

electricity to the heart, and basically pressing the reset button. In 2009, 

according to the World Society of Arrhythmias, 133,262 ICDs were implanted 

in the U.S. with a total annual expenditure of $5.5 billion and average cost per 

procedure $40,000 and an increase of 12% from 2005. 

Furthermore, we should mention that medical devices are categorized in 

classes upon the level of control required to assure safety and effectiveness for 

the device. Implantable medical devices are in Class III.  [2].  

One more worth-mention factor that characterizes the IMDs is the energy 

consumption. Energy consumption can be divided into three domains: sensing, 

communication and data processing. Wireless communication is usually the 

most power consuming among those three [3]. Another worth mention factor is 

that the size of the battery used to store the needed energy is in most cases the 

largest contributor to the size and weight of IMDs. As a result batteries should 

be kept small. Therefore energy consumption of the devices needs to be 

reduced .In order to minimize cost, patient trauma and risk associated with 

repeated surgeries for battery replacement, it is necessary to increase the 

lifetime of implanted batteries by conserving energy at the most power 

consuming part of an IMD, as these are designed to work for many years, 

powered by their original battery the energy consumption is a very crucial 

issue. Hence, compression of Biodata that are produced from IMDs is 
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necessary and should be done in an energy efficient way so as to tackle with 

both problems the big data rate and also the restrictions on the power 

consumption introduce. 

 

There are 3 main types of data types that an IMD holds [4]. 

 Static Data   

o Device identification data(name, version of the device) 

 Semi-static Data  

o Patient identification data(name, age  of the patient) 

o Health condition data 

o Therapy configuration and Health Center Identification 

 Dynamic Data  

o Patient readings(ECG, heart rate etc) 

o Audit log data(device’s operational history) 

 

From all the above data the Dynamic data consist the 70% percent of the entire 

data that an implantable medical device holds. Example of Dynamic Data 

could be an ECG .A typical cardiac IMD, can produce ECGs of data size up to 

112 megabytes per day. Furthermore, the growth of IMDs in conventional 

medicine and their restricted capacity and energy consumption ability makes 

Data compression especially for IMDs necessary. 

1.1. Problem Statement  
 

After a thorough investigation on academic literature we found out that all the 

compression algorithms tailored to the ECGs are mostly orientated to manage 

big compression ratio and quite a few algorithms have point out the energy 

efficiency aspect of their algorithms used by Implantable Medical Devices. 

What is more, the aforementioned energy consumption problem for IMDs and 

their popularity makes the solution of the problem crucial.  

1.2. Thesis goal 
 

As we mentioned the problem which was the initiative of this thesis, we should 

now state and the goal and main endeavor of the thesis. So, our goal is to 

compare and create algorithms that can compress Biodata and more 

specifically ECGs in an energy efficient way with minimal loss of signal 

quality achieving decent compression ratio. Therefore we use a lightweight 

version of LZO encoding algorithm, which is designed for Implantable 

Medical Devices and from the existing academic literature it presents quite 

good compression results. Moreover, we make use of the SPIHT encoding 
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algorithm which manages to offer pretty good results especially with the 

“Reordering” technique. 

 

1.3. Outline 
 

This dissertation is composed from 5 chapters. The first chapter is the 

Introduction chapter, which tries to give the reader a first but thorough look on 

the subject and shed some light on the problem that tries to solve and the goal 

of this dissertation. In chapter 2, the Background chapter is cited all the 

important information in order somebody to understand the main topic of the 

dissertation and the algorithms that we use. Also, it contains all the findings of 

the academic literature on the ECG compression field of research. Chapter 2 is 

followed by the Implementation chapter, chapter 3. In chapter 3 we describe 

analytically all the algorithms that can compress Biodata in an energy efficient 

way with minimal loss of signal quality. Also, we mention the tools that we 

have used in order to implement the aforementioned algorithms. Evaluation 

chapter comes after the Implementation chapter. The evaluation chapter 

contains all the results that come through the Implementation of the algorithms 

that we used. Moreover, the evaluation of the algorithms is done at this point. 

Finally, we have the Conclusion chapter. This chapter summarizes all the 

research that we have done. Furthermore, we state and the future work that can 

be done, regarding this research. 
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2. Background and related work 
 

In this chapter we provide all the background information needed in order to 

understand the following research. We provide definitions for the main 

research terms and also we state all the background information for the main 

encoding algorithms that we would use excessively in the process. So it is a 

very important chapter for the further understanding of the Thesis. Moreover, 

in this chapter we try to provide our research findings related to our work.  

 

2.1. General description of Data compression 
 

Firstly we would state the definition of  Data compression. “Data compression 

is the process of modifying, encoding or converting the bits structure needed to 

store or transmit data”. Data compression techniques are categorized according 

to the requirements of reconstruction as those in which the compressed data is 

reconstructed to form the original signal(lossless techniques) and techniques in 

which higher compression ratios can be achieved by producing reconstructed 

signal different to the original one(lossy techniques).In Lossless compression 

we do not have any loss of information and is often used for applications that 

cannot tolerate any difference between the original and the reconstructed 

signal, text compression is such an example. On the other hand, Lossy 

compression involves an escalated percentage of information loss. Depending 

on the quality required of the reconstructed signal, varying amounts of loss of 

information about the value of each sample can be tolerated and is used for 

applications where exact reconstruction is not so important, like image 

compression [5].  

A compression algorithm could be evaluated in a number of different ways. 

We could measure the memory required to implement and run the algorithm, 

how fast the algorithm performs on a specific machine-both these metrics 

consist the computational overhead of an algorithm - ,the amount of 

compression, which is described in terms of compression ratio(CR) and how 

closely the reconstruction resembles the original, often measured as the percent 

mean-square difference (PRD). In the following chapters and especially in the 

Evaluation Chapter we would analyze in detail the aforementioned metrics. 
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2.2. LZO encoding algorithm  
 

The LZO algorithm is a lossless widely used algorithm that manages the files 

to be compressed in blocks. This algorithm could theoretically manage big 

compression and decompression speed as it enables paralleling when the 

parallel procedures are running in different file-blocks at the same time. 

The LZO algorithm is introduced in [6]. From the given source code of LZO 

library we can make out that the original file, which we would like to compress 

is divided into file-blocks which have the same size as the L2 cache memory of 

the processor. The compression process can be described by the following 

steps. Firstly, in every file-block it is given to each group of 4 bytes a hash 

value. The value of the hash function is affiliated with the value of the 4 bytes 

group. All these hash values form a compression a hash table is kept which is 

able to store one memory address for each hash value. In order the algorithm to 

secure its quick run the size of the hash table the hash table (memory address 

size * hash variations) is equal to the size of L1 cache.  

We quote here an example as it is stated in [7]. 

 

“Given a text file with the following data is compressed:  

SOMETHING IS A THING, THAT IS IMPORTANT 

Let the pointer assigned to the beginning of the text be PTR0. Into the hash 

place (’S’,’O’,’M’,’E’) of the hash table PTR0+3 is written, into the place of 

hash (O, M, E, T) PTR0+4 is written, etc. In order to detect the recurrences the 

algorithm checks the already existing values when writing into the hash table. 

If the new memory address and the initial address (a random number at the 

beginning) are close values, the algorithm will check whether there is a real 

recurrence, so the byte groups of four are compared (this comparison is 

necessary because of the initial random hash values and the hash collision). In 

the case of the example above the hash (T, H, I, N) is calculated in the 16th 

step, so the value PTR0+15 should be written into the table. However there 

already exists a memory address which is the value PTR0+7 (it has been 

written into the table at the 5th step, at the word “something”). In order to 

decide whether there is a hash collision or not, the algorithm compares the 

values: ^PTR0+7 == ^PTR0+15 and ^PTR0+6 == ^PTR0+14 and ^PTR0+5 

== ^PTR0+13 and ^PTR0+4 == ^PTR0+12 If the condition above is fulfilled, 

it means that the same byte group of four is at both places (in this case the 

„thin” part of the word). At this place the file can be compressed in that way 

that instead of the recurrence the initial position and length of the original 

word-part is written into the given position.  

 

SOMETHING IS A (RECURRENCE from the place back 11 bytes, length: 5 

bytes), THAT IS IMPORTANT  
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For the determination of the length of the recurrence the check of the 

coincidence goes in the memory from bytes to bytes. In the case above 

^PTR0+8 equals to ^PTR0+16 but in the next step this is not fulfilled anymore 

(space and comma characters are not coincide). It means that in the 

compressed file only the length and the object of the coincidence are stored.” 

 

The LZO source code can be found at [6].The children of the LZO the 

miniLZO(mLZO) is an Lempel–Ziv family derivative designed with the 

processing, memory, and code size requirements of embedded systems in 

mind. According to the research from the scholarly article of Mr. Strydis [8] 

that has conducted a research on which he presents very promising results for 

the Lempel–Ziv–Oberhumer (LZO) and more specifically for the mLZO, 

which is a portable, lightweight subset of LZO library, suitable for implantable 

devices such as IMDs. More specifically after the comparison of general 

purpose compression algorithms, compressing ECG workloads it can seen 

from Figure 2.1 that mLZO has performed extremely well in the fields of  total 

energy consumption, peak energy consumed and fair enough at compression 

ratio and rate. 

 
compression ratio compression rate power power2 size total energy 

lzari_oku bclrle mlzo lzss fin mlzo 

lzhuf_oku slzw arith lzw15v splay bclrle 

mlzo mlzo arith1e fin urban bcllz 

lzss fin arith1 mlzo lzw12 slzw 

fin lzw12 urban slzw slzw fin 

 

Figure 2.1. Best-performing compression algorithms in descending order 

for 10-KB ECG Data 

Especially in the field of total energy as for the ECG workload it is illustrated 

from Figure 2.2 [8] that mLZO outperforms all the other compression 

algorithms as regards the average energy consumption. 

 
Figure 2.2 Average consumption for 1-KB and 10-KB ECG Dataset 
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From all the aforementioned it can be seen that LZO is the most appropriate 

solution for our low overhead and energy dependable devices, as IMDs. 

 

2.3. DWT transformation algorithm –SPIHT encoding 

scheme 
 

Discrete Wavelet Transform(DWT) is a linear fast(computationally) algorithm 

of any wavelet transform, in which the wavelets are discretely sampled. 

Wavelet, is a wave-like oscillation signal that has a short duration and has as a 

beginning and end the zero value. 

DWT is a tool that separates data into different frequency components, with 

the use of low and high frequency filters. For each created component, a new 

high and low filtering is imposed followed by a factor 2 sub-sampling on the 

original signal and each component is studied with resolution matched to its 

scale.2-D DWT is computed the same way with the difference that firstly the 

algorithm is imposed for all rows and then for all columns. [9] 

 

As for Set partitioning in hierarchical trees (SPIHT),SPIHT is one of the “state 

of the art” wavelet-based coding techniques, which exploits the inherent 

similarities across the subbands in a wavelet decomposition signal. SPIHT is 

basically transforms the real represented number of wavelet coefficients to a 

bit-rate. Some of the main characteristics of SPIHT is the following: 

 It is progressively sending the wavelet coefficients starting from the low 

frequency ones, which contain and the most information. 

 It does not need any training. 

 The reconstruction is easily made, due to the fact that the most important 

(low frequency) coefficients are firstly sent. 

 It can become from lossy to lossless, depending the threshold that we 

impose. As the more bits we are adding at the end of the bit-rate the 

better representation we get of the real number we want to compress.  

 The “compressed” bit-rate can be terminated at any point, allowing any 

specific requirements of distortion or quantity parameters to be met. 

It is worth-mentioning that, the energy of a wavelet-transformed signal is 

centered on the low frequency coefficients and coefficients are hierarchical 

ordered and has a parent-child relationship. This attribute of the wavelet-

transformed signal uses SPIHT in order to save many bits from representing 

insignificant coefficients, as examining a parent coefficient we can determine 

whether or not the sub-band that this coefficient is related to worth any further 

representation in our “compressed” bit-rate. 

We are presenting a brief SPIHT algorithm as it is described from S.Isa at [10]: 
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1) Initialization: Set the list of significant points (LSP) as empty. Set the roots 

of similarity trees in the list of insignificant points (LIP) and the list of the in- 

significant sets (LIS). Set the threshold𝛵𝜊 = 2𝑛 , with 𝑛 = 𝑙𝑜𝑔2(max 𝑐 𝑖, 𝑗  ) 

where c (i,j) denotes the coefficient at position (i,j). 

2) Sorting pass in LIP: Each coefficient in the LIP is checked and the 

significant coefficients are moved to the LSP. The sign bits of the significant 

coefficients are encoded. 

3) Sorting pass in LIS: If an entry in the LIS is significant one is sent and then 

its two offspring are checked like an entry in the LIP. If an entry in the LIS is 

insignificant, a zero is sent. 

4) Refinement pass: Each old entry of LSP is checked. If it is significant under 

current threshold, a one is sent and its magnitude reduced by the current 

threshold. If it is insignificant, a zero is sent. 
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2.4. Related work 
 

In this subchapter we present numerous previously proposed data compression 

algorithms all the methods and algorithms. In order this presentation to be fair 

and useful we would present these algorithms in 2 sections. The lossless 

algorithms and the lossy ones, according to the definitions that we have 

provided earlier in the previous subchapter. 

 

2.4.1. Lossless algorithms 

In this section we will mention the most renown and up-to-date Lossless 

algorithms that are used from the academic community for data compression. 

At [11] Arnavut proposes a new technique that makes use of Based on 

Burrows-Wheeler Transformation, a block-sorting ,lossless data compression 

algorithm and also he uses Inversion Ranks of  Linear Prediction. This 

technique manages to achieve better than the renowned bzip2 or gzip and also 

BWT with MTF instead of Inversion Ranks. It manages to achieve a 

percentage of 4.1 regarding the compression ratio percentage.  We should 

mention that in Arnavut’s algorithm there is no claim on the computational 

overhead of the algorithm. Duda at [12] proposes a lossless algorithm with 

Lifting Wavelet Transform. The new algorithm for lossless ECG compression 

is based on integers to integers lifting wavelet transform, thus quantization of 

wavelet coefficients (which normally cause the information lost) is avoided. 

Wavelet coefficients are entropy coded. In order to reduce the number of the 

symbols to be coded integer numbers is represented using the MS-VLI 

algorithm. This algorithms achieves about 2.77 of compression ratio. Also in 

this algorithm there is no mention on computational overhead. Koski at [13] 

proposes a new approach based on structural recognition and extraction of 

ECG complexes. She examines LZ77-Huffman encoding algorithm gamma 

encoding algorithm and complex-Huffman encoding algorithm. Among the 

aforementioned the LZ77-Huffman scores better with approximately 3.3 

compression ratio.  
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2.4.2. Lossy algorithms 

 

In this section we will mention the most renown and up-to-date Lossy 

algorithms that are used from the academic community. Among them will also 

introduce cutting edge technologies and also algorithms that will help us to 

understand better the current research. Firstly we state the Batista’s algorithm 

[14].He proposes an ECG compressor based on optimized quantization of 

Discrete Cosine Transform (DCT) coefficients. The ECG to be compressed is 

partitioned in blocks of fixed size, and each DCT block is quantized using a 

quantization vector and a threshold vector that are specifically defined for each 

signal. The evaluation of this algorithm is based on compression ratio and 

PRD.As it is stated it manages to achieve an average CR of 9.3 for PRD equal 

to 2.5%. The energy efficiency neither of this algorithm is presented. 

Previously Hilton has presented his algorithm at [15].This algorithm is based 

on embedded zero-tree wavelet (EZW) coding. The proposed algorithm is used 

for compression of Holter ECG data He uses different wavelet packets in order 

to examine the efficiency of each one and he presents their results. He manages 

to achieve CR from 8 until 16, but with minimal clinical use, at the 

reconstruction of the ECG signal. Finally, we present a very similar research 

study to ours. Mr. Koyrakh at [16] proposes an algorithm which is orientated 

to Implantable Medical Devices and tries to compress in a lossy way ECG 

data. It is a very lightweight algorithm which can easily be implemented in any 

IMD. The proposed algorithm processes the data in the following way. Firstly, 

it transforms the coefficients with wavelet transformation, afterwards it 

changes the representation of the transformed coefficients and then the 

Quantization of the signal is imposed, which comes along with a threshold 

application. The quantization is followed by a Run-length encoding scheme in 

order to encode the quantized coefficients and finally there is an adaptive bit 

encoding algorithm. With PRD kept under 8%, the compression ratios, defined 

as ratios of total numbers of bits in the original and compressed waveforms, 

were 9.3 ± 2.5, consistently exceeding 85% of the theoretical limit determined 

by the bit entropy of the original data frames. Nevertheless, Koyrakh’s 

algorithm does not present the computational overhead of the previous 

presented results. Therefore , it would be naïve to compare it with our research. 
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3. Implementation 
 

This chapter will describe the Implementation process. Our implementation 

process starts from the ECG recordings. The preprocession stage follows in 

order to form a signal that its main attributes could easily be recognizable and 

detectable. Also preprocession aims to remove any noise that has distort the 

original and useful signal. After the preprocession stage, when the signal in as 

real as it could be it comes the compression stage where using different 

methods and algorithms like the LZO and SPIHT that we would use in our 

thesis. After the compression as it can be seen from Figure 3.1 the outcome 

would be a binary file which would contain the information of ECG signal in a 

smaller more “digitalized” size. 

 
Figure 3.1 Implementation process 

 Our main goal is to manage low overhead compression on ECG recordings. In 

order to do so, we study existing and create new methods that can help us to 

that direction. Our main endeavor is to compare 2 compression algorithms. 

Beat reordering with SPIHT [10] and a low overhead encoding algorithm 

suitable for IMDs, LZO compression algorithm [8].In order to deal with that 

we have implemented different algorithms and we examine different settings 

of each algorithm, so as to find those settings and algorithms that are more 

suitable to our goal and purpose. In this Chapter we analyze the process of our 

work the purpose of each step and all the parts that it contains. 
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We start from our ECG recordings. For the purposes of our work we have 

made use of the MIT-BIH arrhythmia database. From the aforementioned 

database we used a default Lead (Lead I), due to the fact that we are interested 

in IMDs more than one lead would be useless for our research. As an IMD 

could not normally record the heart function of more than one place, so in 

order to produce a fair simulation to that environment we are using just one 

lead. 

Secondly, from Figure 3.2 we can make out that in the raw ECG there is a 

great quantity of noise. This type of noise in the ECGs is called baseline 

wander. Prominent causes of that noise are patient breathing, body movement 

and also noise produced from the electrodes. The removal of the baseline 

wander is of great importance so as to make out better the characteristics of 

ECG [17]. Hence, we are using a method that uses a wavelet-base method in 

order to eliminate the baseline wander. According to [10] the spectrum of the 

baseline is below the spectrum of ECG signal, therefore through inverse 

wavelet transform of approximation coefficients we can estimate and remove 

the baseline wander. 

 

 
Figure 3.2 The ECG signal before and after the preprocession 

After preprocession of the ECG signal, it follows the compression stage of the 

ECG. This section is basically the main subject of our research and also the 

topic of the whole Implementation chapter. In the process we examine 

separately different kinds of encoding and data procession algorithms. In this 

thesis we are mainly evaluate two encoding algorithms LZO encoding 

algorithm and also SPIHT encoding algorithm which follows DWT 

transformation. We have chosen these algorithms among the numerous 

compression algorithms that are released, because LZO algorithm and more 
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specifically the miniLZO algorithm as it stated in [8] it is ideal for embedded 

applications as the IMDs. As it is stated above IMDs are our main field of 

interest .On the other side the DWT-SPIHT compression algorithm can 

achieve very big compression ratios, which is and the main goal of every 

compression algorithm. 

Furthermore, we present at this chapter and various data procession algorithms 

in order to examine the behavior of each algorithm. 

 

  

Figure 3.3. Evaluation flowchart 

 

3.1. DWT-SPIHT data processing techniques 
 

To begin with, we should define the wavelet basis that we have chosen. As it is 

stated [10] the basis with the most efficient PRD is bior6.8 so it was chosen for 

the entire experiment.  

Moreover, the experiments was made with 256 number of samples at is also 

stated in [10] that produces the best PRD results with the same compression 
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ratio. In order to verify this statement we have also run the experiments with 

128 sample number.  

Each tree node is calculated by the following equation 

 

 O(i,  j)  =  {C(2i,  2j),  C(2i,  2j+1),  C(2i+1,  2j),  C(2i+1,  2j+1)}    

 

So it is more efficient when each parent 4 children and not less. Hence, the 

sample number in an SPIHT algorithm in order to work efficiently should be 

derivative of power of 2, as the SPIHT algorithm is developed in dyadic tree 

pyramid. 

The dimensions of the matrix are defined from the sample number. That’s why 

we have not chosen for example 255 or 257 number of samples.  

Before the implementation of the DWT transformation and the SPIHT 

encoding algorithm we should process the input data in a specific way in order 

to achieve efficiency. For this reason in this section we present the reordering 

technique and the rounding before reordering technique. The first pre-process 

method reorders each beat so as to create a signal with less high frequency. We 

want a signal with less high frequency in order to be better encoded from 

SPIHT algorithm. The second algorithm rounds the coefficients before the 

reordering with the purpose of creating more correlation between the 

coefficients and with the aim to make the reordering easier, as after rounding 

there would be bigger similarities among coefficients.  

The reordering technique consists of some steps. First step is the normalization 

of the ECG recording, the second step is the segmentation of the 2D ECG that 

has been created from the normalization to frames and after that the reordering 

of each frame separately. We would analyze each step explicitly in the process. 

In an ECG signal we can find out 2 types of correlation. 

1. Correlation in a single ECG cycle (intrabeat correlation).  

2. Correlation among ECG cycles (interbeat correlation). 

Creating a 2D ECG array where each row would depict a heartbeat and each 

column a specific part of the ECG (for example column 1 for every row 

depicts the highest point of R wave) should help to the decorrelation of ECG 

signal. 

 

Normalization  

As all the coefficients would be aligned and would share similar attributes. 

Therefore, since each heartbeat can have a different duration, it should be 

normalized into constant number in order to construct 2D ECG array. For our 

normalization process we used the PAN method [18]to normalize each 

heartbeat duration without amplitude normalization step. As it is shown from 

the Figure 3.4 there is no significant difference neither in morphology nor in 

amplitude of the unnormalized and normalized ECG signal. During the 

upscaling of the signal.  
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Figure 3.4.Example of Normalized R-R heart beat with 256 number of 

samples 

Segmentation 

 

We are segmenting the 2D ECG array in frames.Each frame is a square matrix 

with columns and rows equals to the sample number that we have chosen for 

our normalization.Hence,the 2D square matrix that is produced has in its rows 

the intrabeat coefficients and each column the coefficients of each normalized 

ECG heart beat. 
 

Reordering 

In our research we are using a beat reordering technique to optimize SPIHT 

coding for ECG signal compression. Beat reordering rearranges beat order in 

2D ECG array based on similarity among adjacent beats. The rearrangement 

reduces variances among adjacent beats so that the 2D ECG array contains less 

high frequency. SPIHT coding work more efficiently on the signal with less 

high frequency component.Working in that way, we are using fuzzy c-means 

clustering as beat reordering technique to optimize SPIHT coding by 

rearranging beat or ECG cycle order in 2D ECG array, according to their 

similarities.We have chosen fuzzy c-means clustering algorithm for the 

proposed reordering ,because fuzzy c-means clustering not only cluster the 

beats but also provides the each beat with a degree  of their belonging to each 

cluster [19]. According to that degree, we rearrange the beats inside each 

cluster,since the frequency distribution is only affected by the order of beats 

inside each cluster.  

We can see the difference between an ECG signal before and after beat 

reordering in Figure 3.5 [10] . 
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Figure 3.5. 2D ECG array of ECG before(right) and  after(left) beat 

reordering(x-axis depicts number of samples per heart beat, z-axis depicts 

the number of the heart beats and y-axis the amplitude of the each ECG 

sample)  [10] 

 

3.1.1. Rounding with Reordering with fuzzy C-means 

clustering technique 

 

This technique is exactly the same as Reordering technique with the difference 

that before the normalization step the coefficients of the ECG are rounded. 

Figure 3.3 explains explicitly the steps that we followed for that technique 

 

 

3.2. LZO Data processing techniques 
 

As we have already mentioned some general attributes of LZO in the 

Background chapter, LZO is a lossless data compression algorithm originally 

written in ANSI C. It is a block compression algorithm. It compresses and 

decompresses blocks of data. Block size must be the same for compression and 

decompression. LZO compresses a block of data into matches (a sliding 

dictionary) and runs of non-matching literals to produce good results on highly 

redundant data. In this section we will state the methods that we use before the 

encoding process. Some of the methods mentioned here have already been 

explained in the previous chapter.  

Moreover, LZO is a lossless compressor opposed to SPIHT which in our 

experiments is lossy. So some of the methods proposed below use some 
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preprocessing algorithms like the rounding in order to create lossy algorithms 

with the use of LZO compressor. 
 

3.2.1. Reordering 

In our research we are using 2 types of Reordering. We reorder the coefficients 

sorting them ascending and reordering them with fuzzy C-means clustering. 

Sorting  

We are sorting in ascending order the coefficients of the ECG recording in 

order to create correlations as the LZO is a block compressor that uses sliding 

dictionary. So, sorting them the adjacent coefficients would appear similarities. 

The LZO compressor could take advantage of these similarities and produce 

better compression ratio. 
 

Reordering with fuzzy C-means clustering 

This technique is exactly the same as the technique that we have described in 

the previous section ,when we described the Fuzzy C means cluster algorithm 

with the difference that now at the end we are not encoding the coefficients 

with DWT-SPIHT encoding scheme but with the LZO.  
 

3.2.2. Rounding 

 

As in reordering we are proposing 2 implementation schemes. We can 

combine rounding with reordering or just use reordering as it is depicted in 

Figure 3.3. 

Rounding 

In order to round the data we are using fixed-point values. 

The aforementioned technique has the following steps: 

 We take the initial values  

 We are creating diffirent fixed point values according to the number of 

the digits that we want to give to the fraction number of the values. 

So,we round the values using 2-5 bits for the fraction part. 

e.g:For 2 bits we are rounding the values to 

1)XXX.750 

2)XXX.500 

3)XXX.250 

4)XXX.000 

For the other bits is done by similar way. 

 We continue with the encoding algorithm. 
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3.3. Tool Flow 
 

This section provides a step-by-step guide to what tools, scripts and files are 

required and used for the implementation and evlauation of our work. The tool 

flow used throughout the project is illustrated in Figure 3.6 . 

Starting from the top, we are loading in Matlab environment the MIT-BIH 

arrhythmia database, which was saved locally to our PC in Matlab data files 

(.mat).Then, we are executing in Matlab all the needed preprocession 

functions, such as selection of the lead that we want to use or the removal of 

baseline wander with. After the preprocession is over we saved the ECG 

recordings in binary. 

Following that we are going under the compression stage. All the procession 

that is following that stage(see Figure 3.3) is done in Matlab until we decide 

which encoding algorithm we use. Whether we are using DWT-SPIHT 

encoding or LZO encoding would bring us in different paths. 

If we continue with LZO after any data procession algorithm is imposed we 

call through Matlab a python script. This python script executes the LZO 

library, which is written in C and produce the compressed files. 

Otherwise, if we choose to continue our compression algorithm using DWT-

SPIHT, we continue in Matlab as the DWT and SPIHT are Matlab functions 

and after the encoding is over we are saving the  compressed ECG signal, like 

we have done with LZO so as later to evaluate the  methods from quantitive 

scope.  

 
Figure 3.6 Tool flow figure 
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4. Evaluation 
 

At this chapter of this thesis we would evaluate the proposed methods that we 

mentioned in the aforementioned chapter, so as to compare our proposed 

compression techniques, which is and the main goal of our research. Hence, 

we have to declare firstly explicitly the evaluation criteria and the tools that we 

used in order to compare the compression techniques and afterwards to present 

the evaluation results for each of the proposed algorithms. 

 

4.1. Experimental Setup  
 

It is very important from the beginning to point out clearly the criteria and the 

tools that we used in our evaluation process. First of all, we would explain the 

metrics that we would use in order to evaluate the algorithms and then we 

would explain the tools that we used to acquire these metrics and all the 

needed assumption that we did. 

 

4.1.1. Metrics 

 

At this section we describe the metrics which we use to decide which 

algorithm or combination of algorithms is the most suitable for IMDs.  

4.1.1.1. Compression ratio 

  

When we are referred to compression algorithms the compression ratio is the 

most renowned metric that we use to evaluate them.  

CR depicts how much space we save when we impose a data compression 

algorithm. The compression ratio (CR) is defined by the following equation 

[20]: 

 

𝐶𝑅 =
𝑆𝐼𝑧𝑒 𝑜𝑓 𝑡𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒
 

 

 

In case that we use a reordering technique has as a consequence the production 

of indexes files. So CR equation is transformed to: 

 

CR =

  
Size of the original file

(Size of compressed file + Size of the indexes)
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4.1.1.2. File size 

 

Compression ratio is not enough in order to evaluate the results from a 

quantitive prospect, so we are saving also the size of each file. The process 

followed to acquire these information is cited above. 

For compression ratio and the file size we just calculated the size of each file, 

we didn’t use any complex tools for acquiring these information 

 

4.1.1.3. PRD 

 

The Percent Root mean square Difference [10] is used frequently in academic 

literature in order to examine the quality of a compression technique, 

especially for compression of biological signals.  

The PRD is defined by the following equation: 

𝑃𝑅𝐷 =  
 [𝑥1

𝑛
𝑖=1  𝑖 − 𝑥2(𝑖)] 

 𝑥1
2𝑛

𝑖=1 (𝑖)
× 100 

 

,where x1 is the coefficient of the original signal and x2 is the coefficient of the 

reconstructed signal. 

In order to calculate the PRD we use a Matlab function which calculate the 

PRD based on the equation we provide above. In order to calculate the PRD of 

each algorithm we called the PRD function of Matlab after the decompression 

of each compressed file. The input values are the original file and the 

reconstructed file.  

 

 

4.1.1.4. Computational Metrics 

 

It is very important for our research the energy footprint of each algorithm. 

These metrics would help us come to a conclusion whether algorithms copy 

with the requirements of the Implantable Medical Devices in order to compress 

ECG recordings in an energy efficient way. More specifically we present the 

total time that each algorithm needs, the peak memory and also the total 

amount of memory it uses. As for the calculation of computational metrics as it 

was more complex to acquire them we used different techniques. 

For the algorithms that are affiliated to LZO we used a combination of Profile 

tool of Matalab and Massif Heap profiler from Valgrind framework.  

More specifically, the preprocession of LZO algorithms as we have mentioned 

in the implementation chapter is done in Matlab but the compressor itself is in 

C, so we should find a way to aggregate the energy footprint of compressor 
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itself to the energy footprint of preprocession algorithm. So, we followed the 

steps below: 

1. Firstly, we measured with the help of Massif Heap profiler the execution 

time and the memory footprint of SPIHT compressor in C and LZO 

compressor in C.  

2. Afterwards, we measure the total execution time and memory footprint 

of SPIHT in Matlab.  

3. From the execution time and memory footprint of SPIHT in C and in 

Matlab we extracted a scaling factor of the algorithm between Matlab 

and C.  

4. Finally we multiplied with this scaling factor the computational metrics 

of LZO in C in order to find in a theoretical way the computational 

metrics of LZO in Matlab and aggregated them with the computational 

metrics of preprocession in order to find the final values of 

computational metrics.  

 

 

4.2. Experimental Results 
 

We would progressively quote the results of all the proposed algorithms. It is 

important at this point to clarify our baseline, namely the input we are using 

for our experiments. The input file size is 370080 bytes. 

  

 

4.2.1. Results of SPIHT algorithms 

 

We should mention that on SPIHT algorithms the compression ratio and the 

file size do not change over the methods as we define the size of the 

compressed file in the beginning of the algorithm. Before the beginning of the 

algorithm we define the maximum amount of bits we want to grant to our 

compressed file. As we have already in Background chapter SPIHT algorithm 

does progressive compression, so we have the ability to define the size of our 

compressed files.  

We have chosen  10 different compression ratios(2.67, 5.33, 8, 10.67, 13.33, 

16, 18.67, 21.33, 24, 26.67) in order to examine the differences in PRD and 

computational overheads for these specific compression ratios for various 

values of samples and clusters. Those compression ratios have been chosen 

and calculated randomly according to the range of compression ratios that we 

have encountered in our related work. 
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4.2.1.1. Results on Reordering with fuzzy C means clustering 

 

Firstly we can see the differences in PRD when we impose the reordering with 

fuzzy C means clustering. 

 

 

 
Figure 4.1 PRD over compression ratio for SPIHT Reordering with fuzzy 

C-means clustering 

 

 
Figure 4.2 PRD over compression ratio for SPIHT without Reordering 

with fuzzy C-means clustering 

Before start explaining each figure separately we should clarify the fact that 
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are produced with Reordering with fuzzy C-means clustering, which worsen 

the compression ratio a little when the Reordering is used.  

As it can be seen from the Figure 4.1 and Figure 4.2 we illustrate all the 

different values of PRD for different values of Compression Ratio. As it can be 

seen from the legend SPIHT is the method we used, first number the sample 

number, second number the number of clusters we used (if there is not second 

number we haven’t imposed reordering). 

The pattern of the PRD values is clear, the more clusters we use the bigger 

PRD values we get no matter the sample number. Moreover, when we use 

reordering the PRD values are smaller comparing to those that we have 

without reordering with fuzzy C-means ordering. Also, it can be seen that we 

agree experimentally with [10] as the best PRD values are encountered when 

we use 256 samples. Finally, it is more than obvious that the bigger 

compression ratio we get the bigger the PRD becomes. It is recognizable that 

in 15.76 compression ratios is bigger than 13.15 and nevertheless we get 

smaller PRD values. That is happening due to the fact that in the reordering 

with fuzzy C means clustering the initialization on the cluster centers in done 

randomly and this parameter influences the reordering and therefore the PRD 

values.  

As much as computational overheads it concerns, from Figure 4.3 and Figure 

4.4 we can see that the bigger the sample number is the most time it gets to 

compress the data and also the number of cluster influences the Execution time 

of an algorithm. As it needs more time for the clustering as the calculations are 

more in order to see each coefficient in which cluster it belongs. Surprisingly 

enough we can see that, the better compression ratio we acquire less time we 

need. This happens due to the fact that as we have mentioned SPIHT sends 

progressively the coefficients and the sooner we stop the compression process 

the better compression ratio we get ,but with the worst PRD. Moreover, we can 

see that the trend of Execution time is followed by Total Memory used and 

Peak Memory needed calculations too. 
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Figure 4.3 Execution time over Compression ratio for SPIHT Reordering 

with fuzzy C-means clustering. 

  

 

 
Figure 4.4 Execution time over Compression ratio for SPIHT without 

Reordering with fuzzy C-means clustering. 
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Figure 4.5 Total Memory Used over compression ratio for SPIHT 

Reordering with fuzzy C-means clustering 

 
Figure 4.6 Total Memory Used over compression ratio for SPIHT 

Reordering without fuzzy C-means clustering 
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Figure 4.7 Peak Memory used over compression ratio for SPIHT 

Reordering with fuzzy C-means clustering  

 
Figure 4.8 Peak Memory used over compression ratio for SPIHT 

Reordering without fuzzy C-means clustering  
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the computational overheads as the rounding demands more calculations which 

means more time and memory, the rounding makes the reordering easier. So it 

saves some time in that stage of the algorithm, but it does not over-exceed the 

total execution time. To sum it up, we gain no improvement but we consume 

more energy. 

 

 

 

 
Figure 4.9 PRD over compression ratio for SPIHT Reordering with fuzzy 

C-means clustering after Rounding. 

 

 

 
Figure 4.10 Execution time over compression ratio for SPIHT Reordering 

with fuzzy C-means clustering after Rounding 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

PRD

Compression Ratio

SPIHT_128_3 

SPIHT_128_10

SPIHT_128_128

SPIHT_256_3(I)

SPIHT_256_10

SPIHT_256_128

0

5

10

15

20

25

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Compression Ratio

SPIHT_128_3_RR

SPIHT_128_10_RR

SPIHT_128_128_RR

SPIHT_256_3_RR

SPIHT_256_10 _RR

SPIHT_256_128_RR



 

 

39 

 

 

 

 

 
Figure 4.11  Total Memory Used over compression ratio for SPIHT 

Reordering with fuzzy C-means clustering after Rounding 

 

 

 

 
Figure 4.12  Peak Memory used over compression ratio for SPIHT 

Reordering with fuzzy C-means clustering after Rounding 
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4.2.2. Results of LZO algorithms 

  

In this section we present the results from all the proposed algorithms that they 

use the LZO compressor. Moreover as our main concern is to examine which 

compressor and which preprocessing algorithm is more suitable for our goal, 

we have tried to compare them as equally as we could. Hence, we have tried to 

create a “lossy” LZO compressor.  

LZO is a lossless compressor opposed to SPIHT which in our experiments is 

lossy. So we have used some preprocessing algorithms like the rounding in 

order to create lossy algorithms with the use of LZO compressor. 

Moreover, as we have already mentioned in Implementation chapter, in order 

to use the LZO compressor we should firstly save the data and then call it in 

order to compress them.  

 

 

4.2.2.1. Rounding 

 

As we have mention on Reordering on Implementation chapter with the 

reordering we basically create a lossy algorithm, as we try to find an effective 

way where we could have adequate compression ratio and a decent PRD value. 

From the 

 
Figure 4.13 we can see that Rounding provides very good compression ratio 

and with an efficient PRD. More specifically, given 5 bits after the decimal 

point we manage to acquire compression ratio 8.95 and PRD 1.67 , a very 

promising trade off and also with 4 bits after the decimal point we get 10.57 

compression ratio and 3.11 PRD   The transposed data does not offer better 
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ratios from the original one. In the next Chapter we will compare more 

thoroughly the results of Rounding with the other methods. 

From the computational overheads we can figure out that the more we round 

the coefficients the more time we consume, approximately 4 seconds per bit 

we grant for the decimal part. Moreover, we can see that the peak memory 

does not change over the bits significantly, whereas the total memory used 

from the 5 bits is two and a half times bigger from the one used from the 2 bits. 

Also, it can be seen from Figure 4.14 that the computational overheads have 

not any difference either for transposed or original data.   

     

 

 
Figure 4.13 PRD over compression ratio for LZO Rounding 

 

 
Figure 4.14 Memory consumption over bits given after decimal point for 

LZO Rounding. 
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Figure 4.15 Execution time over bits given after decimal point for LZO 

Rounding.  

4.2.2.2. Reordering  

Sorting 

We have tried to find out the best way of Reordering in order to make use of 

the attributes of LZO compressor in order to achieve high compression ratios 

and of course lossless, PRD value is 0. As we have pointed out in the 

beginning of the Implementation chapter LZO compressor produces big 

compression ratios when the coefficients of a block of data are the same in 

order the sliding dictionary to recognize similarities. The Figure 4.16 shows us 

that Sorting method produces a compression ratio which is including the 

indexes that are produced from the Sorting method less than 1 ,which means 

that the original file was smaller than the compressed one .This makes the 

Reordering with Sorting useless for data compression.  

 
Figure 4.16 Compression ratio for different data of Sorting method 
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Although we have proved that the Sorting method is useless in terms of 

compression ratio , we state also the results from the computational overhead 

in order to observe differences between the Original and Transposed data. 

Finally, we can make out no differences between the 2 different types of saved 

types.  

 
Figure 4.17 Execution time for different data of Sorting method 

 
 

Figure 4.18 Total Memory used for different data of Sorting method 

 

 
Figure 4.19 Peak Memory used for different data of Sorting method 
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correlation to produce better compression ratio. In this section we will present 

the results for Reordering with Fuzzy C means clustering, as in the results 

presented in the SPIHT section for this method we will present the results for 

different values of sample and cluster number in order to understand the 

reaction of LZO compressor to the change of these variables. 

Reordering with fuzzy C means clustering using the LZO compressor is a 

lossless method that obviously produces zero value PRD. 

 

 
Figure 4.20 Compression ratio for different values of sample and cluster 

number 

 

 
Figure 4.21 Execution time for different values of sample and cluster 

number 
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Figure 4.22 Total Memory Used for different values of sample and cluster 

number 

 

 

 
Figure 4.23 Peak Memory used for different values of sample and cluster 

number 
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between 128 and 256 sample number. The execution time and total memory 

over double their previous values and the Peak memory is increased by 20 %. 

 

4.2.3. Comparison Overview between the aforementioned methods. 

 

In this section we could try to clarify which of the aforementioned methods 

can be of some importance to our goal and also to clear up the differences of 

each algorithm and its individual characteristics. 

We would present the top-achieving algorithms as the Compression ratio and 

the PRD is concerned. 

 

 
 

Figure 4.24  Compression ration over PRD results from the top-achieving 

algorithms.  
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has 0.22 smaller PRD value and 0.2 compression ratio bigger than the SPIHT 

with 256 sample number and 3 clusters(version II). 

 

 
Figure 4.25  Execution time for the top-achieving algorithms 

 
Figure 4.26 Total memory used for the top-achieving algorithms 

 

 

 

 
Figure 4.27 Peak Memory used time for the top-achieving algorithms 

0

20

40

60

80

100

120

140

160

Ex
e

cu
ti

o
n

 t
im

e
(s

)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts

0

5000000

10000000

15000000

20000000

25000000

30000000

To
ta

l M
e

m
o

ry
 U

se
d

(B
yt

e
s)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts

0

1000000

2000000

3000000

4000000

5000000

6000000

P
e

ak
 M

e
m

o
ry

 U
se

d
(b

yt
e

s)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts



48 

 

 

From the above figures that illustrate the computational overhead of the top-

achieving algorithms we can see that the lossless method needs more time to 

efficient finish the compression. Most of the time is spent in the transforming 

the coefficients which are double precision values, in order to be properly 

saved in binary files.  Moreover we can see that now the SPIHT with 256 

sample number and 3 clusters (version II) performs better, as far as the 

performance metrics it concerns, than the LZO Reordering with 4 bits for the 

fractional part. More specifically, it consumes 15 seconds and uses 500000 

bytes less. 
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5. Conclusions 
 

In this thesis, we wanted to find and compare algorithms that can compress 

Biodata (mainly ECG) and more specifically algorithms tailored to the types of 

data typically used by IMDs in an energy efficient way with minimal loss of 

signal quality.  

In Chapter 2, we stated the Background information about the algorithms that 

we would use and the algorithms that we would compare. Moreover, we 

mentioned some related work that has being done in that field of research and 

more generally based on ECG data compression or data compression on data 

stemmed from IMDs. Based on the 2 algorithms that have proposed significant 

results during our academic research the SPIHT and the LZO algorithm, we 

did a comparison between these algorithms evaluating their compression ratio, 

PRD results and also the computational overhead of their performance. Before, 

Evaluation chapter we stated clearly all the implementations needed in order to 

undergo a fair and efficient comparison. In Chapter 3, Implementation Chapter 

we mentioned all the methods and process techniques that we would use. Also, 

we presented the tools that we used for this Implementation and the Evaluation 

of the algorithms. Following, Chapter 4 the Evaluation Chapter we evaluated 

the pre-stated methods that we described in the previous chapter. More 

specifically, we concluded that as it is stated at [10] the most appropriate 

sample number is 256 and cluster number is 3 to use the SPIHT encoding 

algorithm. With these variables the SPIHT algorithms achieves its best values 

as far as compression ratio and PRD concerns. Moreover, we have pointed out 

that as we increase the sample number and cluster number in SPIHT encoding 

algorithm the performance getting worst. We should also mention that the 

reordering does not offer anything at all in the SPIHT algorithm with fuzzy C 

means clustering, as it produces bigger PRD values and the same compression 

ratio and performance metrics than the SPIHT algorithm with fuzzy C means 

clustering without rounding. 

As for the LZO encoding algorithm, which according to [8] is ideal for 

implemented devices, we can see that combined to reordering with fuzzy C 

means algorithm achieves a decent compression ratio with the disadvantage of 

execution time that is too much ,but using a small proportion of the Memory 

and all the aforementioned losslessy. On the other hand, the reordering with 

the sorting method performs really badly, as the size of the indices that have to 

store is really big and at the end it provides negative compression ratio 

percentage. Moreover, the most promising data algorithm is the Rounding 

method combined with LZO algorithm. We have used this method in order to 

create a lossy algorithm with the use of lossless encoding algorithm as the 

LZO, in order to be better comparable to the SPIHT algorithm with fuzzy C 

means clustering. After the comparison between these methods we have 
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figured out that the LZO-Rounding algorithm cannot achieve the compression 

ratio of the SPIHT-Reordering algorithm, but for a little bigger compression 

ratio it can achieve better PRD values, with a little loss as far as its 

performance metrics it concerns. 

Finally, we have ended up to more partial conclusions. There is any significant 

difference at the compression ability of LZO compressor either the input of the 

algorithm is with the original data or the data are transposed.  

At the end of the day, we could conclude that low-overhead compression of 

ECG recordings for Implantable medical devices is a very crucial and 

interesting subject that has a lot of parameters ,which one should highly take 

into consideration before chooses the most appropriate algorithm. 

 

5.1. Future work 
Based on our current work we proposed some of the future work that can be 

done in order to increase the contribution of this diploma thesis to this field of 

research. Firstly, we could try the same algorithms and methods on different 

types of biomedical data, such as Electromyogram, Electroencephalogram, 

Blood pressure, Pulmonary function ,Respiratory  Cycle etc etc.In order to 

create a more generic algorithm that could include the majority of the data that 

are transmitted from an IMD 

Secondly, we could study different algorithms that have presented promising 

results on the Biodata compression tailored for IMDs. Algorithms like these 

can be found in the Related work section of our study.  

Finally, we could create a new compressor tailored to ECGs, based on the 

lessons of this thesis. This algorithm could be a combination of the 

aforementioned algorithms or creation of a new one based on the conclusions 

that extracted from the thesis. 
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