
ηνπ

Σωμαπάκη Αντώνιος

Low-Overhead Compression of ECG Recordings for Implantable

Medical Devices

ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ

ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΧΝ ΜΗΥΑΝΙΚΧΝ

ΚΑΙ ΜΗΥΑΝΙΚΧΝ ΤΠΟΛΟΓΙΣΧΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΙΑ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ

ΤΠΟΛΟΓΙΣΧΝ ΔΡΓΑΣΗΡΙΟ ΜΙΚΡΟΤΠΟΛΟΓΙΣΧΝ

ΚΑΙ ΦΗΦΙΑΚΧΝ ΤΣΗΜΑΣΧΝ

ΓΙΠΛΧΜΑΣΙΚΗ ΔΡΓΑΙΑ

Επιβλέπων : Γεκήηξηνο Ι. νύληξεο

Αλαπιεξσηήο Καζεγεηήο ,Δ.Μ.Π

Αζήλα, Μάξηηνο 2016

ηνπ

Σωμαπάκη Αντώνιος

Low-Overhead Compression of ECG Recordings for Implantable
Medical Devices

ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ

ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΧΝ ΜΗΥΑΝΙΚΧΝ

ΚΑΙ ΜΗΥΑΝΙΚΧΝ ΤΠΟΛΟΓΙΣΧΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΙΑ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ

ΤΠΟΛΟΓΙΣΧΝ ΔΡΓΑΣΗΡΙΟ ΜΙΚΡΟΤΠΟΛΟΓΙΣΧΝ

ΚΑΙ ΦΗΦΙΑΚΧΝ ΣΗΜΑΣΧΝ

ΓΙΠΛΧΜΑΣΙΚΗ ΔΡΓΑΙΑ

Επιβλέπων :Γεκήηξηνο Ι. νύληξεο

 Αλαπιεξσηήο Καζεγεηήο ,Δ.Μ.Π

Δγθξίζεθε από ηελ ηξηκειή επηηξνπή ηελ εκεξνκελία εμέηαζεο.

Αζήλα ,Μάξηηνο 2016

............................

Γεκήηξηνο Ι. νύληξεο

Αλαπιεξσηήο

Καζεγεηήο,Δ.Μ.Π.

Γεκήηξηνο Ι. νύληξεο

Αλαπιεξ

σηήο

............................

Κηακάι Πεθκεζηδή

Καζεγεηήο,Δ.Μ.Π.

Γεκήηξηνο Ι. νύληξεο

Αλαπιεξ

σηήο

Καζεγεηήο

............................

Γεώξγηνο Μάηζόπνπινο

Αλαπιεξσηήο

Καζεγεηήο,Δ.Μ.Π.

Γεκήηξηνο Ι. νύληξεο

Αλαπιεξσηή

ο Καζεγεηήο

iv

...................................

σκαξάθεο Αληώληνο

Γηπισκαηνύρνο Ηιεθηξνιόγνο Μεραληθόο θαη Μεραληθόο Τπνινγηζηώλ

Δ.Μ.Π.

Copyright © σκαξάθεο Αληώληνο,2016

Με επηθύιαμε παληόο δηθαηώκαηνο. All rights reserved.

Απαγνξεύεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνύζαο

εξγαζίαο, εμ νινθιήξνπ ή ηκήκαηνο απηήο, γηα εκπνξηθό ζθνπό. Δπηηξέπεηαη

ε αλαηύπσζε, απνζήθεπζε θαη δηαλνκή γηα ζθνπό κε θεξδνζθνπηθό,

εθπαηδεπηηθήο ή εξεπλεηηθήο θύζεο, ππό ηελ πξνϋπόζεζε λα αλαθέξεηαη ε

πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην παξόλ κήλπκα. Δξσηήκαηα πνπ

αθνξνύλ ηε ρξήζε ηεο εξγαζίαο γηα θεξδνζθνπηθό ζθνπό πξέπεη λα

απεπζύλνληαη πξνο ηνλ ζπγγξαθέα.

Οη απόςεηο θαη ηα ζπκπεξάζκαηα πνπ πεξηέρνληαη ζε απηό ην έγγξαθν

εθθξάδνπλ ηνλ ζπγγξαθέα θαη δελ πξέπεη λα εξκελεπζεί όηη

αληηπξνζσπεύνπλ ηηο επίζεκεο ζέζεηο ηνπ Δζληθνύ Μεηζόβηνπ Πνιπηερλείνπ.

v

Πεπίληψη

ηελ επνρή καο νη εκθπηεύζηκεο ηαηξηθέο ζπζθεπέο, γλσζηέο παγθνζκίσο θαη

σο IMDs ρξεζηκνπνηνύληαη νινέλα θαη πεξηζζόηεξν ζηελ Ιαηξηθή. Σα IMDs

ζπλαληώληαη ζε κηα κεγάιε πνηθηιία ηαηξηθώλ εθαξκνγώλ, βαζίδνληαη ζηελ

απόθηεζε ,επεμεξγαζία θαη κεηαθνξά δεδνκέλσλ νύησο ώζηε λα

αλαβαζκίζνπλ ηελ θαζεκεξηλόηεηα ησλ αζζελώλ αιιά θαη πνιιέο θνξέο λα

ηνπο δηαηεξήζνπλ ζηε δσή. Σν πξόβιεκα πνπ παξνπζηάδεηαη κε ηα IMDs είλαη

όηη έρνπλ πεξηνξηζκέλε κλήκε, ππνινγηζηηθέο δπλαηόηεηεο θαη ελεξγεηαθή

επάξθεηα ελώ πξέπεη λα ζπιιέγνπλ, επεμεξγάδνληαη θαη λα κεηαδίδνπλ

δεδνκέλα από δηάθνξνπο πηζαλνύο αηζζεηήξεο. Όινη απηνί νη πεξηνξηζκνί

θαηαδεηθλύνπλ ηελ αλάγθε νη πιεξνθνξίεο πνπ ζπιιέγνληαη θαη κεηαδίδνληαη

από ηα IMDs λα ζπκπηέδνληαη όζν πην απνδνηηθά γίλεηαη. ηελ πξνθεηκέλε

πεξίπησζε ε ζπκπίεζε δεδνκέλσλ απνηειεί κηα πξόθιεζε, θαζώο ην

αλαθηώκελν ζήκα ζα πξέπεη λα έρεη πςειή πηζηόηεηα ζε ζρέζε κε ην αξρηθό.

Δπίζεο, γηα λα κπνξεί λα επηηεπρζεί πην απνδνηηθή ζπκπίεζε ε κέζνδνο πνπ ζα

ρξεζηκνπνηεζεί ζα πξέπεη λα είλαη πξνζαλαηνιηζκέλε ζηνλ ηύπν ησλ

δεδνκέλσλ πνπ ζα ζπκπηέζεη. ηελ παξνύζα δηπισκαηηθή ζα πξνζπαζήζνπκε

λα βειηηώζνπκε ηηο ππάξρνληεο κεζόδνπο ζπκπίεζεο δεδνκέλσλ. Γηα λα ην

θαηαθέξνπκε απηό εμεηάδνπκε δηάθνξνπο αιγνξίζκνπο θαη ζπλδπαζκνύο

απηώλ γηα λα βξνύκε ην πην απνδνηηθό ζρήκα. Οη δύν θύξηνη αιγόξηζκνη πνπ

εμεηάδνπκε είλαη ν LZO θαη ν SPIHT. ηελ πξνζπάζεηα καο ώζηε λα

βειηηζηνπνηήζνπκε ηελ απόδνζε ηνπο ,ηνπο ζπλδπάδνπκε κε δηάθνξεο

ηερληθέο επεμεξγαζίαο δεδνκέλσλ. Βαζηθή καο επηδίσμε είλαη λα

αμηνινγήζνπκε ηνπο παξαπάλσ αιγνξίζκνπο. Η αμηνιόγεζε απηή γίλεηαη

πάλσ ζηελ ζπκπίεζε Ηιεθηξνθαξδηνγξαθήκαηνο, έλα από ηα πην δηαδεδνκέλα

βηνινγηθά ζήκαηα ην νπνίν θαηαγξάθεηαη από πνιιά IMDs ηα νπνία είηε ην

κεηαδίδνπλ απεπζείαο είηε ην απνζεθεύνπλ γηα κειινληηθή ρξήζε. Η θύξηεο

παξάκεηξνη ζηηο νπνίεο βαζίδεηαη ε αμηνιόγεζε καο είλαη ε αλαινγία

ζπκπίεζεο ελόο αξρείνπ(CR) ,ε πνζνζηηαία ξηδηθή κέζε ηεηξαγσληθή δηαθνξά

(PRD) θαη ην ελεξγεηαθό απνηύπσκα ηνπ θάζε αιγνξίζκνπ. Δλ ηέιεη,

βαζηδόκελνη ζηελ δηαδηθαζία αμηνιόγεζεο ζπκπεξαίλνπκε όηη ν SPIHT

αιγόξηζκνο κε ηελ κέζνδν αλαθαηάηαμεο κε fuzzy C means Clustering

πξνζθέξεη ηε κεγαιύηεξε αλαινγία ζπκπίεζεο. Από ηελ άιιε, ηελ θαιύηεξε

ζρέζε κεηαμύ CR θαη PRD πξνζεγγίδεη ν LZO αιγόξηζκνο κε

ζηξνγγπινπνίεζε.

Λέξειρ κλειδιά:

εκθπηεύζηκεο ηαηξηθέο ζπζθεπέο, Ηιεθηξνθαξδηνγξάθεκα, ζπκπίεζε

βηνδεδνκέλσλ, ζπκπίεζε δεδνκέλσλ κε ρακειή ελεξγεηαθό απνηύπσκα,

αλαινγία ζπκπίεζεο , πνζνζηηαία ξηδηθή κέζε ηεηξαγσληθή δηαθνξά ,SPIHT ,

LZO

vi

Abstract

It is an indisputable fact that Implantable Medical Devices (IMDs) are

becoming an integral part of Medical science. IMDs are encountered in a great

variety of medical applications. IMDs rely on data acquisition, processing and

communication agents in order to sustain and ameliorate the life of the

patients. IMDs have limited memory, computational and battery power

resources, while collecting, processing and transmitting out information from

potentially many sensors. These limitations require that information within the

devices be efficiently compressed. Such data compression presents a

challenging task, as it must provide high fidelity of the waveform reproduction

and high compression ratios on limited size data frames. Also, it must be based

on the type of data to be compressed, in order to provide bigger efficiency. In

this thesis we try to better up the existing lossy and lossless compression

methods. In order to manage that, we use various algorithms and combinations

of those in order to find the most efficient scheme. The two main algorithms

that we use are LZO encoding algorithm and SPIHT encoding algorithm. We

combine these encoding algorithms with various data procession algorithms.

Our main attempt is to evaluate the aforementioned algorithms and so we use

Electrocardiography (ECG), an extremely widely used biodata which is

recorded from IMDs and sent or saved from them. The main evaluation

parameters of our thesis are the compression ratio, the Percent Root mean

square Difference (PRD) and computational overhead of each algorithm.

Finally, based on the evaluation process we conclude that SPIHT with

Reordering with fuzzy C means Clustering offer the best compression ratio

25.95 with RPD 4.86 and the best tradeoff between compression ratio and PRD

the LZO with Reordering technique with 10.67 compression ratio and 3.13 .As

for the lossless algorithms LZO with Reordering with fuzzy C means

clustering offers 2.42 compression ratio.

Tags: Implantable Medical Devices (IMDs), Electrocardiography (ECG),

data compression, ECG compression ratio, low overhead, Percent Root

Difference (PRD), compression ratio, SPIHT , LZO

vii

Acknowledgments

First off all, I would like to thank Professor Dimitrios Soudris for giving me

the opportunity to carry out my diploma thesis under his supervision. This

diploma thesis has been a unique opportunity for me so as to be introduced in

the process of scientific research.

Moreover, I would also like to thank Dr. Robert Seepers for the continuous

guidance he has provided me with throughout the development of this thesis

and for all the knowledge he has shared with me, the help he has offered and

his constant engagement. I would also like to thank Dr.Christos Stydis for the

valuable assistance he offered me.

Finally, I want to thank all the people that stood beside me throughout the

years of my studies in NTUA. I want to thank my friends for all the

experiences we have had during these years and especially my family who

encouraged me to achieve my goals and ambitions.

viii

Contents
1. Introduction ... 12

1.1. Problem Statement .. 13

1.2. Thesis goal .. 13

1.3. Outline ... 14

2. Background and related work ... 15

2.1. General description of Data compression ... 15

2.2. LZO encoding algorithm ... 16

2.3. DWT transformation algorithm –SPIHT encoding scheme 18

2.4. Related work ... 20

2.4.1. Lossless algorithms ... 20

2.4.2. Lossy algorithms ... 21

3. Implementation ... 22

3.1. DWT-SPIHT data processing techniques ... 24

3.1.1. Rounding with Reordering with fuzzy C-means clustering

technique ... 27

3.2. LZO Data processing techniques .. 27

3.2.1. Reordering .. 28

3.2.2. Rounding ... 28

3.3. Tool Flow .. 29

4. Evaluation ... 30

4.1. Experimental Setup ... 30

4.1.1. Metrics .. 30

4.1.1.1. Compression ratio .. 30

4.1.1.2. File size .. 31

4.1.1.3. PRD .. 31

4.1.1.4. Computational Metrics .. 31

4.2. Experimental Results .. 32

4.2.1. Results of SPIHT algorithms .. 32

4.2.1.1. Results on Reordering with fuzzy C means clustering 33

4.2.1.2. Results on Reordering with fuzzy C means clustering after

Rounding. .. 37

4.2.2. Results of LZO algorithms ... 40

4.2.2.1. Rounding.. 40

4.2.2.2. Reordering ... 42

4.2.3. Comparison Overview between the aforementioned methods. .. 46

5. Conclusions ... 49

ix

5.1. Future work ... 50

6. Bibliography ... 51

x

List of figures
Figure 2.1. Best-performing compression algorithms in descending order for

10-KB ECG Data .. 17

Figure 2.2 Average consumption for 1-KB and 10-KB ECG Dataset 17

Figure 3.1 Implementation process ... 22

Figure 3.2 The ECG signal before and after the preprocession 23

Figure 3.3. Evaluation flowchart .. 24

Figure 3.4.Example of Normalized R-R heart beat with 256 number of samples

 ... 26

Figure 3.5. 2D ECG array of ECG before(right) and after(left) beat

reordering(x-axis depicts number of samples per heart beat, z-axis depicts the

number of the heart beats and y-axis the amplitude of the each ECG sample)

[10] .. 27

Figure 3.6 Tool flow figure ... 29

Figure 4.1 PRD over compression ratio for SPIHT Reordering with fuzzy C-

means clustering .. 33

Figure 4.2 PRD over compression ratio for SPIHT without Reordering with

fuzzy C-means clustering .. 33

Figure 4.3 Execution time over Compression ratio for SPIHT Reordering with

fuzzy C-means clustering. ... 35

Figure 4.4 Execution time over Compression ratio for SPIHT without

Reordering with fuzzy C-means clustering. ... 35

Figure 4.5 Total Memory Used over compression ratio for SPIHT Reordering

with fuzzy C-means clustering ... 36

Figure 4.6 Total Memory Used over compression ratio for SPIHT Reordering

without fuzzy C-means clustering .. 36

Figure 4.7 Peak Memory used over compression ratio for SPIHT Reordering

with fuzzy C-means clustering ... 37

Figure 4.8 Peak Memory used over compression ratio for SPIHT Reordering

without fuzzy C-means clustering .. 37

Figure 4.9 PRD over compression ratio for SPIHT Reordering with fuzzy C-

means clustering after Rounding. ... 38

Figure 4.10 Execution time over compression ratio for SPIHT Reordering with

fuzzy C-means clustering after Rounding .. 38

Figure 4.11 Total Memory Used over compression ratio for SPIHT

Reordering with fuzzy C-means clustering after Rounding 39

Figure 4.12 Peak Memory used over compression ratio for SPIHT Reordering

with fuzzy C-means clustering after Rounding .. 39

Figure 4.13 PRD over compression ratio for LZO Rounding 41

Figure 4.14 Memory consumption over bits given after decimal point for LZO

Rounding. .. 41

Figure 4.15 Execution time over bits given after decimal point for LZO

Rounding. .. 42

xi

Figure 4.16 Compression ratio for different data of Sorting method 42

Figure 4.17 Execution time for different data of Sorting method 43

Figure 4.18 Total Memory used for different data of Sorting method 43

Figure 4.19 Peak Memory used for different data of Sorting method.............. 43

Figure 4.20 Compression ratio for different values of sample and cluster

number .. 44

Figure 4.21 Execution time for different values of sample and cluster number

 ... 44

Figure 4.22 Total Memory Used for different values of sample and cluster

number .. 45

Figure 4.23 Peak Memory used for different values of sample and cluster

number .. 45

Figure 4.24 Compression ration over PRD results from the top-achieving

algorithms. .. 46

Figure 4.25 Execution time for the top-achieving algorithms 47

Figure 4.26 Total memory used for the top-achieving algorithms 47

Figure 4.27 Peak Memory used time for the top-achieving algorithms 47

12

1. Introduction

The technological breakthroughs in the field of biomedical engineering have

revolutionized the way that medicine is performed by scientists.

Implementable medical devices (IMDs) are such a prominent example. If we

would like to give a definition to implantable medical devices we could say

that “Implantable medical devices are the medical devices that either partly or

totally introduced, surgically or medically, into the human body and is

intended to remain there after the procedure” [1]. Over the years, implantable

medical devices have saved and also improved the quality of life to a big

amount of patients. Nowadays, IMDs are used in many different parts of the

body of a patient such as orthopaedics, pacemakers, cardiovascular stents,

defibrillators, neural prosthetics or drug delivery system. Particular interest

present IMDs that can record transmit or store data such as ECG monitoring

systems, Holter , ElectroGraM (EGM) or Implantable hemodynamic monitors

and Insertable loop recorders. The last would be and the main devices of

interest in our thesis. Moreover, as the life expectancy has grown significantly

the need for new and improvement of the existing technologies that are related

to implantable medical devices such as treatments, implants, prostheses and

long-term pharmaceutical usage has increased. One significant example is

Implantable cardioverter defibrillators (ICDs). ICDs are devices that monitor

and treat cardiac arrhythmia, when it is detected by sending a large jolt of

electricity to the heart, and basically pressing the reset button. In 2009,

according to the World Society of Arrhythmias, 133,262 ICDs were implanted

in the U.S. with a total annual expenditure of $5.5 billion and average cost per

procedure $40,000 and an increase of 12% from 2005.

Furthermore, we should mention that medical devices are categorized in

classes upon the level of control required to assure safety and effectiveness for

the device. Implantable medical devices are in Class III. [2].

One more worth-mention factor that characterizes the IMDs is the energy

consumption. Energy consumption can be divided into three domains: sensing,

communication and data processing. Wireless communication is usually the

most power consuming among those three [3]. Another worth mention factor is

that the size of the battery used to store the needed energy is in most cases the

largest contributor to the size and weight of IMDs. As a result batteries should

be kept small. Therefore energy consumption of the devices needs to be

reduced .In order to minimize cost, patient trauma and risk associated with

repeated surgeries for battery replacement, it is necessary to increase the

lifetime of implanted batteries by conserving energy at the most power

consuming part of an IMD, as these are designed to work for many years,

powered by their original battery the energy consumption is a very crucial

issue. Hence, compression of Biodata that are produced from IMDs is

13

necessary and should be done in an energy efficient way so as to tackle with

both problems the big data rate and also the restrictions on the power

consumption introduce.

There are 3 main types of data types that an IMD holds [4].

 Static Data

o Device identification data(name, version of the device)

 Semi-static Data

o Patient identification data(name, age of the patient)

o Health condition data

o Therapy configuration and Health Center Identification

 Dynamic Data

o Patient readings(ECG, heart rate etc)

o Audit log data(device’s operational history)

From all the above data the Dynamic data consist the 70% percent of the entire

data that an implantable medical device holds. Example of Dynamic Data

could be an ECG .A typical cardiac IMD, can produce ECGs of data size up to

112 megabytes per day. Furthermore, the growth of IMDs in conventional

medicine and their restricted capacity and energy consumption ability makes

Data compression especially for IMDs necessary.

1.1. Problem Statement

After a thorough investigation on academic literature we found out that all the

compression algorithms tailored to the ECGs are mostly orientated to manage

big compression ratio and quite a few algorithms have point out the energy

efficiency aspect of their algorithms used by Implantable Medical Devices.

What is more, the aforementioned energy consumption problem for IMDs and

their popularity makes the solution of the problem crucial.

1.2. Thesis goal

As we mentioned the problem which was the initiative of this thesis, we should

now state and the goal and main endeavor of the thesis. So, our goal is to

compare and create algorithms that can compress Biodata and more

specifically ECGs in an energy efficient way with minimal loss of signal

quality achieving decent compression ratio. Therefore we use a lightweight

version of LZO encoding algorithm, which is designed for Implantable

Medical Devices and from the existing academic literature it presents quite

good compression results. Moreover, we make use of the SPIHT encoding

14

algorithm which manages to offer pretty good results especially with the

“Reordering” technique.

1.3. Outline

This dissertation is composed from 5 chapters. The first chapter is the

Introduction chapter, which tries to give the reader a first but thorough look on

the subject and shed some light on the problem that tries to solve and the goal

of this dissertation. In chapter 2, the Background chapter is cited all the

important information in order somebody to understand the main topic of the

dissertation and the algorithms that we use. Also, it contains all the findings of

the academic literature on the ECG compression field of research. Chapter 2 is

followed by the Implementation chapter, chapter 3. In chapter 3 we describe

analytically all the algorithms that can compress Biodata in an energy efficient

way with minimal loss of signal quality. Also, we mention the tools that we

have used in order to implement the aforementioned algorithms. Evaluation

chapter comes after the Implementation chapter. The evaluation chapter

contains all the results that come through the Implementation of the algorithms

that we used. Moreover, the evaluation of the algorithms is done at this point.

Finally, we have the Conclusion chapter. This chapter summarizes all the

research that we have done. Furthermore, we state and the future work that can

be done, regarding this research.

15

2. Background and related work

In this chapter we provide all the background information needed in order to

understand the following research. We provide definitions for the main

research terms and also we state all the background information for the main

encoding algorithms that we would use excessively in the process. So it is a

very important chapter for the further understanding of the Thesis. Moreover,

in this chapter we try to provide our research findings related to our work.

2.1. General description of Data compression

Firstly we would state the definition of Data compression. “Data compression

is the process of modifying, encoding or converting the bits structure needed to

store or transmit data”. Data compression techniques are categorized according

to the requirements of reconstruction as those in which the compressed data is

reconstructed to form the original signal(lossless techniques) and techniques in

which higher compression ratios can be achieved by producing reconstructed

signal different to the original one(lossy techniques).In Lossless compression

we do not have any loss of information and is often used for applications that

cannot tolerate any difference between the original and the reconstructed

signal, text compression is such an example. On the other hand, Lossy

compression involves an escalated percentage of information loss. Depending

on the quality required of the reconstructed signal, varying amounts of loss of

information about the value of each sample can be tolerated and is used for

applications where exact reconstruction is not so important, like image

compression [5].

A compression algorithm could be evaluated in a number of different ways.

We could measure the memory required to implement and run the algorithm,

how fast the algorithm performs on a specific machine-both these metrics

consist the computational overhead of an algorithm - ,the amount of

compression, which is described in terms of compression ratio(CR) and how

closely the reconstruction resembles the original, often measured as the percent

mean-square difference (PRD). In the following chapters and especially in the

Evaluation Chapter we would analyze in detail the aforementioned metrics.

16

2.2. LZO encoding algorithm

The LZO algorithm is a lossless widely used algorithm that manages the files

to be compressed in blocks. This algorithm could theoretically manage big

compression and decompression speed as it enables paralleling when the

parallel procedures are running in different file-blocks at the same time.

The LZO algorithm is introduced in [6]. From the given source code of LZO

library we can make out that the original file, which we would like to compress

is divided into file-blocks which have the same size as the L2 cache memory of

the processor. The compression process can be described by the following

steps. Firstly, in every file-block it is given to each group of 4 bytes a hash

value. The value of the hash function is affiliated with the value of the 4 bytes

group. All these hash values form a compression a hash table is kept which is

able to store one memory address for each hash value. In order the algorithm to

secure its quick run the size of the hash table the hash table (memory address

size * hash variations) is equal to the size of L1 cache.

We quote here an example as it is stated in [7].

“Given a text file with the following data is compressed:

SOMETHING IS A THING, THAT IS IMPORTANT

Let the pointer assigned to the beginning of the text be PTR0. Into the hash

place (’S’,’O’,’M’,’E’) of the hash table PTR0+3 is written, into the place of

hash (O, M, E, T) PTR0+4 is written, etc. In order to detect the recurrences the

algorithm checks the already existing values when writing into the hash table.

If the new memory address and the initial address (a random number at the

beginning) are close values, the algorithm will check whether there is a real

recurrence, so the byte groups of four are compared (this comparison is

necessary because of the initial random hash values and the hash collision). In

the case of the example above the hash (T, H, I, N) is calculated in the 16th

step, so the value PTR0+15 should be written into the table. However there

already exists a memory address which is the value PTR0+7 (it has been

written into the table at the 5th step, at the word “something”). In order to

decide whether there is a hash collision or not, the algorithm compares the

values: ^PTR0+7 == ^PTR0+15 and ^PTR0+6 == ^PTR0+14 and ^PTR0+5

== ^PTR0+13 and ^PTR0+4 == ^PTR0+12 If the condition above is fulfilled,

it means that the same byte group of four is at both places (in this case the

„thin” part of the word). At this place the file can be compressed in that way

that instead of the recurrence the initial position and length of the original

word-part is written into the given position.

SOMETHING IS A (RECURRENCE from the place back 11 bytes, length: 5

bytes), THAT IS IMPORTANT

17

For the determination of the length of the recurrence the check of the

coincidence goes in the memory from bytes to bytes. In the case above

^PTR0+8 equals to ^PTR0+16 but in the next step this is not fulfilled anymore

(space and comma characters are not coincide). It means that in the

compressed file only the length and the object of the coincidence are stored.”

The LZO source code can be found at [6].The children of the LZO the

miniLZO(mLZO) is an Lempel–Ziv family derivative designed with the

processing, memory, and code size requirements of embedded systems in

mind. According to the research from the scholarly article of Mr. Strydis [8]

that has conducted a research on which he presents very promising results for

the Lempel–Ziv–Oberhumer (LZO) and more specifically for the mLZO,

which is a portable, lightweight subset of LZO library, suitable for implantable

devices such as IMDs. More specifically after the comparison of general

purpose compression algorithms, compressing ECG workloads it can seen

from Figure 2.1 that mLZO has performed extremely well in the fields of total

energy consumption, peak energy consumed and fair enough at compression

ratio and rate.

compression ratio compression rate power power2 size total energy

lzari_oku bclrle mlzo lzss fin mlzo

lzhuf_oku slzw arith lzw15v splay bclrle

mlzo mlzo arith1e fin urban bcllz

lzss fin arith1 mlzo lzw12 slzw

fin lzw12 urban slzw slzw fin

Figure 2.1. Best-performing compression algorithms in descending order

for 10-KB ECG Data

Especially in the field of total energy as for the ECG workload it is illustrated

from Figure 2.2 [8] that mLZO outperforms all the other compression

algorithms as regards the average energy consumption.

Figure 2.2 Average consumption for 1-KB and 10-KB ECG Dataset

0

20

40

60

80

100

120

m
lz

o

a
ri

th

a
ri

th
1

e

a
ri

th
1

u
rb

a
n

m
lz

o

a
ri

th

a
ri

th
1

e

a
ri

th
1

u
rb

a
n

MM

CLK

OTHER

1 KB
10 KB

(mW)

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer

18

From all the aforementioned it can be seen that LZO is the most appropriate

solution for our low overhead and energy dependable devices, as IMDs.

2.3. DWT transformation algorithm –SPIHT encoding

scheme

Discrete Wavelet Transform(DWT) is a linear fast(computationally) algorithm

of any wavelet transform, in which the wavelets are discretely sampled.

Wavelet, is a wave-like oscillation signal that has a short duration and has as a

beginning and end the zero value.

DWT is a tool that separates data into different frequency components, with

the use of low and high frequency filters. For each created component, a new

high and low filtering is imposed followed by a factor 2 sub-sampling on the

original signal and each component is studied with resolution matched to its

scale.2-D DWT is computed the same way with the difference that firstly the

algorithm is imposed for all rows and then for all columns. [9]

As for Set partitioning in hierarchical trees (SPIHT),SPIHT is one of the “state

of the art” wavelet-based coding techniques, which exploits the inherent

similarities across the subbands in a wavelet decomposition signal. SPIHT is

basically transforms the real represented number of wavelet coefficients to a

bit-rate. Some of the main characteristics of SPIHT is the following:

 It is progressively sending the wavelet coefficients starting from the low

frequency ones, which contain and the most information.

 It does not need any training.

 The reconstruction is easily made, due to the fact that the most important

(low frequency) coefficients are firstly sent.

 It can become from lossy to lossless, depending the threshold that we

impose. As the more bits we are adding at the end of the bit-rate the

better representation we get of the real number we want to compress.

 The “compressed” bit-rate can be terminated at any point, allowing any

specific requirements of distortion or quantity parameters to be met.

It is worth-mentioning that, the energy of a wavelet-transformed signal is

centered on the low frequency coefficients and coefficients are hierarchical

ordered and has a parent-child relationship. This attribute of the wavelet-

transformed signal uses SPIHT in order to save many bits from representing

insignificant coefficients, as examining a parent coefficient we can determine

whether or not the sub-band that this coefficient is related to worth any further

representation in our “compressed” bit-rate.

We are presenting a brief SPIHT algorithm as it is described from S.Isa at [10]:

19

1) Initialization: Set the list of significant points (LSP) as empty. Set the roots

of similarity trees in the list of insignificant points (LIP) and the list of the in-

significant sets (LIS). Set the threshold𝛵𝜊 = 2𝑛 , with 𝑛 = 𝑙𝑜𝑔2(max 𝑐 𝑖, 𝑗)

where c (i,j) denotes the coefficient at position (i,j).

2) Sorting pass in LIP: Each coefficient in the LIP is checked and the

significant coefficients are moved to the LSP. The sign bits of the significant

coefficients are encoded.

3) Sorting pass in LIS: If an entry in the LIS is significant one is sent and then

its two offspring are checked like an entry in the LIP. If an entry in the LIS is

insignificant, a zero is sent.

4) Refinement pass: Each old entry of LSP is checked. If it is significant under

current threshold, a one is sent and its magnitude reduced by the current

threshold. If it is insignificant, a zero is sent.

20

2.4. Related work

In this subchapter we present numerous previously proposed data compression

algorithms all the methods and algorithms. In order this presentation to be fair

and useful we would present these algorithms in 2 sections. The lossless

algorithms and the lossy ones, according to the definitions that we have

provided earlier in the previous subchapter.

2.4.1. Lossless algorithms

In this section we will mention the most renown and up-to-date Lossless

algorithms that are used from the academic community for data compression.

At [11] Arnavut proposes a new technique that makes use of Based on

Burrows-Wheeler Transformation, a block-sorting ,lossless data compression

algorithm and also he uses Inversion Ranks of Linear Prediction. This

technique manages to achieve better than the renowned bzip2 or gzip and also

BWT with MTF instead of Inversion Ranks. It manages to achieve a

percentage of 4.1 regarding the compression ratio percentage. We should

mention that in Arnavut’s algorithm there is no claim on the computational

overhead of the algorithm. Duda at [12] proposes a lossless algorithm with

Lifting Wavelet Transform. The new algorithm for lossless ECG compression

is based on integers to integers lifting wavelet transform, thus quantization of

wavelet coefficients (which normally cause the information lost) is avoided.

Wavelet coefficients are entropy coded. In order to reduce the number of the

symbols to be coded integer numbers is represented using the MS-VLI

algorithm. This algorithms achieves about 2.77 of compression ratio. Also in

this algorithm there is no mention on computational overhead. Koski at [13]

proposes a new approach based on structural recognition and extraction of

ECG complexes. She examines LZ77-Huffman encoding algorithm gamma

encoding algorithm and complex-Huffman encoding algorithm. Among the

aforementioned the LZ77-Huffman scores better with approximately 3.3

compression ratio.

21

2.4.2. Lossy algorithms

In this section we will mention the most renown and up-to-date Lossy

algorithms that are used from the academic community. Among them will also

introduce cutting edge technologies and also algorithms that will help us to

understand better the current research. Firstly we state the Batista’s algorithm

[14].He proposes an ECG compressor based on optimized quantization of

Discrete Cosine Transform (DCT) coefficients. The ECG to be compressed is

partitioned in blocks of fixed size, and each DCT block is quantized using a

quantization vector and a threshold vector that are specifically defined for each

signal. The evaluation of this algorithm is based on compression ratio and

PRD.As it is stated it manages to achieve an average CR of 9.3 for PRD equal

to 2.5%. The energy efficiency neither of this algorithm is presented.

Previously Hilton has presented his algorithm at [15].This algorithm is based

on embedded zero-tree wavelet (EZW) coding. The proposed algorithm is used

for compression of Holter ECG data He uses different wavelet packets in order

to examine the efficiency of each one and he presents their results. He manages

to achieve CR from 8 until 16, but with minimal clinical use, at the

reconstruction of the ECG signal. Finally, we present a very similar research

study to ours. Mr. Koyrakh at [16] proposes an algorithm which is orientated

to Implantable Medical Devices and tries to compress in a lossy way ECG

data. It is a very lightweight algorithm which can easily be implemented in any

IMD. The proposed algorithm processes the data in the following way. Firstly,

it transforms the coefficients with wavelet transformation, afterwards it

changes the representation of the transformed coefficients and then the

Quantization of the signal is imposed, which comes along with a threshold

application. The quantization is followed by a Run-length encoding scheme in

order to encode the quantized coefficients and finally there is an adaptive bit

encoding algorithm. With PRD kept under 8%, the compression ratios, defined

as ratios of total numbers of bits in the original and compressed waveforms,

were 9.3 ± 2.5, consistently exceeding 85% of the theoretical limit determined

by the bit entropy of the original data frames. Nevertheless, Koyrakh’s

algorithm does not present the computational overhead of the previous

presented results. Therefore , it would be naïve to compare it with our research.

22

3. Implementation

This chapter will describe the Implementation process. Our implementation

process starts from the ECG recordings. The preprocession stage follows in

order to form a signal that its main attributes could easily be recognizable and

detectable. Also preprocession aims to remove any noise that has distort the

original and useful signal. After the preprocession stage, when the signal in as

real as it could be it comes the compression stage where using different

methods and algorithms like the LZO and SPIHT that we would use in our

thesis. After the compression as it can be seen from Figure 3.1 the outcome

would be a binary file which would contain the information of ECG signal in a

smaller more “digitalized” size.

Figure 3.1 Implementation process

 Our main goal is to manage low overhead compression on ECG recordings. In

order to do so, we study existing and create new methods that can help us to

that direction. Our main endeavor is to compare 2 compression algorithms.

Beat reordering with SPIHT [10] and a low overhead encoding algorithm

suitable for IMDs, LZO compression algorithm [8].In order to deal with that

we have implemented different algorithms and we examine different settings

of each algorithm, so as to find those settings and algorithms that are more

suitable to our goal and purpose. In this Chapter we analyze the process of our

work the purpose of each step and all the parts that it contains.

23

We start from our ECG recordings. For the purposes of our work we have

made use of the MIT-BIH arrhythmia database. From the aforementioned

database we used a default Lead (Lead I), due to the fact that we are interested

in IMDs more than one lead would be useless for our research. As an IMD

could not normally record the heart function of more than one place, so in

order to produce a fair simulation to that environment we are using just one

lead.

Secondly, from Figure 3.2 we can make out that in the raw ECG there is a

great quantity of noise. This type of noise in the ECGs is called baseline

wander. Prominent causes of that noise are patient breathing, body movement

and also noise produced from the electrodes. The removal of the baseline

wander is of great importance so as to make out better the characteristics of

ECG [17]. Hence, we are using a method that uses a wavelet-base method in

order to eliminate the baseline wander. According to [10] the spectrum of the

baseline is below the spectrum of ECG signal, therefore through inverse

wavelet transform of approximation coefficients we can estimate and remove

the baseline wander.

Figure 3.2 The ECG signal before and after the preprocession

After preprocession of the ECG signal, it follows the compression stage of the

ECG. This section is basically the main subject of our research and also the

topic of the whole Implementation chapter. In the process we examine

separately different kinds of encoding and data procession algorithms. In this

thesis we are mainly evaluate two encoding algorithms LZO encoding

algorithm and also SPIHT encoding algorithm which follows DWT

transformation. We have chosen these algorithms among the numerous

compression algorithms that are released, because LZO algorithm and more

24

specifically the miniLZO algorithm as it stated in [8] it is ideal for embedded

applications as the IMDs. As it is stated above IMDs are our main field of

interest .On the other side the DWT-SPIHT compression algorithm can

achieve very big compression ratios, which is and the main goal of every

compression algorithm.

Furthermore, we present at this chapter and various data procession algorithms

in order to examine the behavior of each algorithm.

Figure 3.3. Evaluation flowchart

3.1. DWT-SPIHT data processing techniques

To begin with, we should define the wavelet basis that we have chosen. As it is

stated [10] the basis with the most efficient PRD is bior6.8 so it was chosen for

the entire experiment.

Moreover, the experiments was made with 256 number of samples at is also

stated in [10] that produces the best PRD results with the same compression

25

ratio. In order to verify this statement we have also run the experiments with

128 sample number.

Each tree node is calculated by the following equation

 O(i, j) = {C(2i, 2j), C(2i, 2j+1), C(2i+1, 2j), C(2i+1, 2j+1)}

So it is more efficient when each parent 4 children and not less. Hence, the

sample number in an SPIHT algorithm in order to work efficiently should be

derivative of power of 2, as the SPIHT algorithm is developed in dyadic tree

pyramid.

The dimensions of the matrix are defined from the sample number. That’s why

we have not chosen for example 255 or 257 number of samples.

Before the implementation of the DWT transformation and the SPIHT

encoding algorithm we should process the input data in a specific way in order

to achieve efficiency. For this reason in this section we present the reordering

technique and the rounding before reordering technique. The first pre-process

method reorders each beat so as to create a signal with less high frequency. We

want a signal with less high frequency in order to be better encoded from

SPIHT algorithm. The second algorithm rounds the coefficients before the

reordering with the purpose of creating more correlation between the

coefficients and with the aim to make the reordering easier, as after rounding

there would be bigger similarities among coefficients.

The reordering technique consists of some steps. First step is the normalization

of the ECG recording, the second step is the segmentation of the 2D ECG that

has been created from the normalization to frames and after that the reordering

of each frame separately. We would analyze each step explicitly in the process.

In an ECG signal we can find out 2 types of correlation.

1. Correlation in a single ECG cycle (intrabeat correlation).

2. Correlation among ECG cycles (interbeat correlation).

Creating a 2D ECG array where each row would depict a heartbeat and each

column a specific part of the ECG (for example column 1 for every row

depicts the highest point of R wave) should help to the decorrelation of ECG

signal.

Normalization

As all the coefficients would be aligned and would share similar attributes.

Therefore, since each heartbeat can have a different duration, it should be

normalized into constant number in order to construct 2D ECG array. For our

normalization process we used the PAN method [18]to normalize each

heartbeat duration without amplitude normalization step. As it is shown from

the Figure 3.4 there is no significant difference neither in morphology nor in

amplitude of the unnormalized and normalized ECG signal. During the

upscaling of the signal.

26

Figure 3.4.Example of Normalized R-R heart beat with 256 number of

samples

Segmentation

We are segmenting the 2D ECG array in frames.Each frame is a square matrix

with columns and rows equals to the sample number that we have chosen for

our normalization.Hence,the 2D square matrix that is produced has in its rows

the intrabeat coefficients and each column the coefficients of each normalized

ECG heart beat.

Reordering

In our research we are using a beat reordering technique to optimize SPIHT

coding for ECG signal compression. Beat reordering rearranges beat order in

2D ECG array based on similarity among adjacent beats. The rearrangement

reduces variances among adjacent beats so that the 2D ECG array contains less

high frequency. SPIHT coding work more efficiently on the signal with less

high frequency component.Working in that way, we are using fuzzy c-means

clustering as beat reordering technique to optimize SPIHT coding by

rearranging beat or ECG cycle order in 2D ECG array, according to their

similarities.We have chosen fuzzy c-means clustering algorithm for the

proposed reordering ,because fuzzy c-means clustering not only cluster the

beats but also provides the each beat with a degree of their belonging to each

cluster [19]. According to that degree, we rearrange the beats inside each

cluster,since the frequency distribution is only affected by the order of beats

inside each cluster.

We can see the difference between an ECG signal before and after beat

reordering in Figure 3.5 [10] .

27

Figure 3.5. 2D ECG array of ECG before(right) and after(left) beat

reordering(x-axis depicts number of samples per heart beat, z-axis depicts

the number of the heart beats and y-axis the amplitude of the each ECG

sample) [10]

3.1.1. Rounding with Reordering with fuzzy C-means

clustering technique

This technique is exactly the same as Reordering technique with the difference

that before the normalization step the coefficients of the ECG are rounded.

Figure 3.3 explains explicitly the steps that we followed for that technique

3.2. LZO Data processing techniques

As we have already mentioned some general attributes of LZO in the

Background chapter, LZO is a lossless data compression algorithm originally

written in ANSI C. It is a block compression algorithm. It compresses and

decompresses blocks of data. Block size must be the same for compression and

decompression. LZO compresses a block of data into matches (a sliding

dictionary) and runs of non-matching literals to produce good results on highly

redundant data. In this section we will state the methods that we use before the

encoding process. Some of the methods mentioned here have already been

explained in the previous chapter.

Moreover, LZO is a lossless compressor opposed to SPIHT which in our

experiments is lossy. So some of the methods proposed below use some

28

preprocessing algorithms like the rounding in order to create lossy algorithms

with the use of LZO compressor.

3.2.1. Reordering

In our research we are using 2 types of Reordering. We reorder the coefficients

sorting them ascending and reordering them with fuzzy C-means clustering.

Sorting

We are sorting in ascending order the coefficients of the ECG recording in

order to create correlations as the LZO is a block compressor that uses sliding

dictionary. So, sorting them the adjacent coefficients would appear similarities.

The LZO compressor could take advantage of these similarities and produce

better compression ratio.

Reordering with fuzzy C-means clustering

This technique is exactly the same as the technique that we have described in

the previous section ,when we described the Fuzzy C means cluster algorithm

with the difference that now at the end we are not encoding the coefficients

with DWT-SPIHT encoding scheme but with the LZO.

3.2.2. Rounding

As in reordering we are proposing 2 implementation schemes. We can

combine rounding with reordering or just use reordering as it is depicted in

Figure 3.3.

Rounding

In order to round the data we are using fixed-point values.

The aforementioned technique has the following steps:

 We take the initial values

 We are creating diffirent fixed point values according to the number of

the digits that we want to give to the fraction number of the values.

So,we round the values using 2-5 bits for the fraction part.

e.g:For 2 bits we are rounding the values to

1)XXX.750

2)XXX.500

3)XXX.250

4)XXX.000

For the other bits is done by similar way.

 We continue with the encoding algorithm.

29

3.3. Tool Flow

This section provides a step-by-step guide to what tools, scripts and files are

required and used for the implementation and evlauation of our work. The tool

flow used throughout the project is illustrated in Figure 3.6 .

Starting from the top, we are loading in Matlab environment the MIT-BIH

arrhythmia database, which was saved locally to our PC in Matlab data files

(.mat).Then, we are executing in Matlab all the needed preprocession

functions, such as selection of the lead that we want to use or the removal of

baseline wander with. After the preprocession is over we saved the ECG

recordings in binary.

Following that we are going under the compression stage. All the procession

that is following that stage(see Figure 3.3) is done in Matlab until we decide

which encoding algorithm we use. Whether we are using DWT-SPIHT

encoding or LZO encoding would bring us in different paths.

If we continue with LZO after any data procession algorithm is imposed we

call through Matlab a python script. This python script executes the LZO

library, which is written in C and produce the compressed files.

Otherwise, if we choose to continue our compression algorithm using DWT-

SPIHT, we continue in Matlab as the DWT and SPIHT are Matlab functions

and after the encoding is over we are saving the compressed ECG signal, like

we have done with LZO so as later to evaluate the methods from quantitive

scope.

Figure 3.6 Tool flow figure

30

4. Evaluation

At this chapter of this thesis we would evaluate the proposed methods that we

mentioned in the aforementioned chapter, so as to compare our proposed

compression techniques, which is and the main goal of our research. Hence,

we have to declare firstly explicitly the evaluation criteria and the tools that we

used in order to compare the compression techniques and afterwards to present

the evaluation results for each of the proposed algorithms.

4.1. Experimental Setup

It is very important from the beginning to point out clearly the criteria and the

tools that we used in our evaluation process. First of all, we would explain the

metrics that we would use in order to evaluate the algorithms and then we

would explain the tools that we used to acquire these metrics and all the

needed assumption that we did.

4.1.1. Metrics

At this section we describe the metrics which we use to decide which

algorithm or combination of algorithms is the most suitable for IMDs.

4.1.1.1. Compression ratio

When we are referred to compression algorithms the compression ratio is the

most renowned metric that we use to evaluate them.

CR depicts how much space we save when we impose a data compression

algorithm. The compression ratio (CR) is defined by the following equation

[20]:

𝐶𝑅 =
𝑆𝐼𝑧𝑒 𝑜𝑓 𝑡𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒

In case that we use a reordering technique has as a consequence the production

of indexes files. So CR equation is transformed to:

CR =

Size of the original file

(Size of compressed file + Size of the indexes)

31

4.1.1.2. File size

Compression ratio is not enough in order to evaluate the results from a

quantitive prospect, so we are saving also the size of each file. The process

followed to acquire these information is cited above.

For compression ratio and the file size we just calculated the size of each file,

we didn’t use any complex tools for acquiring these information

4.1.1.3. PRD

The Percent Root mean square Difference [10] is used frequently in academic

literature in order to examine the quality of a compression technique,

especially for compression of biological signals.

The PRD is defined by the following equation:

𝑃𝑅𝐷 =
 [𝑥1

𝑛
𝑖=1 𝑖 − 𝑥2(𝑖)]

 𝑥1
2𝑛

𝑖=1 (𝑖)
× 100

,where x1 is the coefficient of the original signal and x2 is the coefficient of the

reconstructed signal.

In order to calculate the PRD we use a Matlab function which calculate the

PRD based on the equation we provide above. In order to calculate the PRD of

each algorithm we called the PRD function of Matlab after the decompression

of each compressed file. The input values are the original file and the

reconstructed file.

4.1.1.4. Computational Metrics

It is very important for our research the energy footprint of each algorithm.

These metrics would help us come to a conclusion whether algorithms copy

with the requirements of the Implantable Medical Devices in order to compress

ECG recordings in an energy efficient way. More specifically we present the

total time that each algorithm needs, the peak memory and also the total

amount of memory it uses. As for the calculation of computational metrics as it

was more complex to acquire them we used different techniques.

For the algorithms that are affiliated to LZO we used a combination of Profile

tool of Matalab and Massif Heap profiler from Valgrind framework.

More specifically, the preprocession of LZO algorithms as we have mentioned

in the implementation chapter is done in Matlab but the compressor itself is in

C, so we should find a way to aggregate the energy footprint of compressor

32

itself to the energy footprint of preprocession algorithm. So, we followed the

steps below:

1. Firstly, we measured with the help of Massif Heap profiler the execution

time and the memory footprint of SPIHT compressor in C and LZO

compressor in C.

2. Afterwards, we measure the total execution time and memory footprint

of SPIHT in Matlab.

3. From the execution time and memory footprint of SPIHT in C and in

Matlab we extracted a scaling factor of the algorithm between Matlab

and C.

4. Finally we multiplied with this scaling factor the computational metrics

of LZO in C in order to find in a theoretical way the computational

metrics of LZO in Matlab and aggregated them with the computational

metrics of preprocession in order to find the final values of

computational metrics.

4.2. Experimental Results

We would progressively quote the results of all the proposed algorithms. It is

important at this point to clarify our baseline, namely the input we are using

for our experiments. The input file size is 370080 bytes.

4.2.1. Results of SPIHT algorithms

We should mention that on SPIHT algorithms the compression ratio and the

file size do not change over the methods as we define the size of the

compressed file in the beginning of the algorithm. Before the beginning of the

algorithm we define the maximum amount of bits we want to grant to our

compressed file. As we have already in Background chapter SPIHT algorithm

does progressive compression, so we have the ability to define the size of our

compressed files.

We have chosen 10 different compression ratios(2.67, 5.33, 8, 10.67, 13.33,

16, 18.67, 21.33, 24, 26.67) in order to examine the differences in PRD and

computational overheads for these specific compression ratios for various

values of samples and clusters. Those compression ratios have been chosen

and calculated randomly according to the range of compression ratios that we

have encountered in our related work.

33

4.2.1.1. Results on Reordering with fuzzy C means clustering

Firstly we can see the differences in PRD when we impose the reordering with

fuzzy C means clustering.

Figure 4.1 PRD over compression ratio for SPIHT Reordering with fuzzy

C-means clustering

Figure 4.2 PRD over compression ratio for SPIHT without Reordering

with fuzzy C-means clustering

Before start explaining each figure separately we should clarify the fact that

compression ratio is different for the Figures with Reordering with fuzzy C-

means clustering and without. The difference is outcome of the indexes that

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

PRD

Compression Ratio

SPIHT_128_
3

SPIHT_128_
10

SPIHT_128_
128

SPIHT_256_
3(I)

SPIHT_256_
10

SPIHT_256_
128

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2.67 5.33 8 10.67 13.33 16 18.67 21.33 24 26.67

PRD

Compression ratio

SPIHT_128

SPIHT_256

34

are produced with Reordering with fuzzy C-means clustering, which worsen

the compression ratio a little when the Reordering is used.

As it can be seen from the Figure 4.1 and Figure 4.2 we illustrate all the

different values of PRD for different values of Compression Ratio. As it can be

seen from the legend SPIHT is the method we used, first number the sample

number, second number the number of clusters we used (if there is not second

number we haven’t imposed reordering).

The pattern of the PRD values is clear, the more clusters we use the bigger

PRD values we get no matter the sample number. Moreover, when we use

reordering the PRD values are smaller comparing to those that we have

without reordering with fuzzy C-means ordering. Also, it can be seen that we

agree experimentally with [10] as the best PRD values are encountered when

we use 256 samples. Finally, it is more than obvious that the bigger

compression ratio we get the bigger the PRD becomes. It is recognizable that

in 15.76 compression ratios is bigger than 13.15 and nevertheless we get

smaller PRD values. That is happening due to the fact that in the reordering

with fuzzy C means clustering the initialization on the cluster centers in done

randomly and this parameter influences the reordering and therefore the PRD

values.

As much as computational overheads it concerns, from Figure 4.3 and Figure

4.4 we can see that the bigger the sample number is the most time it gets to

compress the data and also the number of cluster influences the Execution time

of an algorithm. As it needs more time for the clustering as the calculations are

more in order to see each coefficient in which cluster it belongs. Surprisingly

enough we can see that, the better compression ratio we acquire less time we

need. This happens due to the fact that as we have mentioned SPIHT sends

progressively the coefficients and the sooner we stop the compression process

the better compression ratio we get ,but with the worst PRD. Moreover, we can

see that the trend of Execution time is followed by Total Memory used and

Peak Memory needed calculations too.

35

Figure 4.3 Execution time over Compression ratio for SPIHT Reordering

with fuzzy C-means clustering.

Figure 4.4 Execution time over Compression ratio for SPIHT without

Reordering with fuzzy C-means clustering.

0

5

10

15

20

25

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Compression Ratio

SPIHT_128_
3

SPIHT_128_
10

SPIHT_128_
128

SPIHT_256_
3(I)

SPIHT_256_
10

SPIHT_256_
128

0

2

4

6

8

10

12

14

16

18

20

2.67 5.33 8 10.67 13.33 16 18.67 21.33 24 26.67

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Compression ratio

SPIHT_128

SPIHT_256

36

Figure 4.5 Total Memory Used over compression ratio for SPIHT

Reordering with fuzzy C-means clustering

Figure 4.6 Total Memory Used over compression ratio for SPIHT

Reordering without fuzzy C-means clustering

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

To
ta

l M
e

m
o

ry
 U

se
d

(M
B

)

Compression Ratio

SPIHT_128_3

SPIHT_128_1
0
SPIHT_128_1
28
SPIHT_256_3
(I)
SPIHT_256_1
0
SPIHT_256_1
28

0

10000000

20000000

30000000

2.67 5.33 8 10.67 13.33 16 18.67 21.33 24 26.67

To
ta

l M
e

m
o

ry

U
se

d
(M

B
)

Compression ratio

SPIHT_128

SPIHT_256

37

Figure 4.7 Peak Memory used over compression ratio for SPIHT

Reordering with fuzzy C-means clustering

Figure 4.8 Peak Memory used over compression ratio for SPIHT

Reordering without fuzzy C-means clustering

4.2.1.2. Results on Reordering with fuzzy C means clustering after

Rounding.

Firstly in Figure 4.9 we can see that the rounding in the coefficients worsen

the PRD is getting worst 7-10% worst, compared to the PRD results with

reordering(Figure 4.1) with reordering with fuzzy C-means clustering, without

prior rounding. Moreover, we observe an approximately 5% increase in the

execution time(approximately 1 second more) in Figure 4.10(compared to

Figure 4.3) , a 8% increase in total memory used from the algorithm in Figure

4.11(compared to Figure 4.5), peak memory used from the algorithm seems to

be the same in Figure 4.12(compared to Figure 4.7) compared to the similar

figures of SPIHT reordering algorithm with fuzzy C-means clustering. Finally,

it is shown in the graphs that the rounding in the coefficients does not help our

goal. With the method specified in this section the computational overheads

stay more or less the same, compared with the results on results with

reordering with fuzzy C-means clustering. Although, there is an increase on

0

500000

1000000

1500000

2000000

2500000

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

P
e

ak
 M

e
m

o
ry

(M
B

)

Compression Ratio

SPIHT_128_3

SPIHT_128_10

SPIHT_128_12
8
SPIHT_256_3(I
)
SPIHT_256_10

SPIHT_256_12
8

0

5000000

10000000

15000000

20000000

25000000

2.67 5.33 8 10.67 13.33 16 18.67 21.33 24 26.67

P
e

ak
 M

e
m

o
ry

(M
B

)

Compression ratio

SPIHT_128

SPIHT_256

38

the computational overheads as the rounding demands more calculations which

means more time and memory, the rounding makes the reordering easier. So it

saves some time in that stage of the algorithm, but it does not over-exceed the

total execution time. To sum it up, we gain no improvement but we consume

more energy.

Figure 4.9 PRD over compression ratio for SPIHT Reordering with fuzzy

C-means clustering after Rounding.

Figure 4.10 Execution time over compression ratio for SPIHT Reordering

with fuzzy C-means clustering after Rounding

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

PRD

Compression Ratio

SPIHT_128_3

SPIHT_128_10

SPIHT_128_128

SPIHT_256_3(I)

SPIHT_256_10

SPIHT_256_128

0

5

10

15

20

25

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Compression Ratio

SPIHT_128_3_RR

SPIHT_128_10_RR

SPIHT_128_128_RR

SPIHT_256_3_RR

SPIHT_256_10 _RR

SPIHT_256_128_RR

39

Figure 4.11 Total Memory Used over compression ratio for SPIHT

Reordering with fuzzy C-means clustering after Rounding

Figure 4.12 Peak Memory used over compression ratio for SPIHT

Reordering with fuzzy C-means clustering after Rounding

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

To
ta

l M
e

m
o

ry
 U

se
d

(M
B

)

Compression Ratio

SPIHT_128_3_RR

SPIHT_128_10_RR

SPIHT_128_128_RR

SPIHT_256_3_RR

SPIHT_256_10 _RR

SPIHT_256_128_RR

0

500000

1000000

1500000

2000000

2500000

2.66 5.3 7.93 10.55 13.15 15.74 18.31 20.87 23.42 25.95

P
e

ak
 M

e
m

o
ry

(M
B

)

Compression Ratio

SPIHT_128_3

SPIHT_128_10

SPIHT_128_128

SPIHT_256_3(I)

SPIHT_256_10

SPIHT_256_128

40

4.2.2. Results of LZO algorithms

In this section we present the results from all the proposed algorithms that they

use the LZO compressor. Moreover as our main concern is to examine which

compressor and which preprocessing algorithm is more suitable for our goal,

we have tried to compare them as equally as we could. Hence, we have tried to

create a “lossy” LZO compressor.

LZO is a lossless compressor opposed to SPIHT which in our experiments is

lossy. So we have used some preprocessing algorithms like the rounding in

order to create lossy algorithms with the use of LZO compressor.

Moreover, as we have already mentioned in Implementation chapter, in order

to use the LZO compressor we should firstly save the data and then call it in

order to compress them.

4.2.2.1. Rounding

As we have mention on Reordering on Implementation chapter with the

reordering we basically create a lossy algorithm, as we try to find an effective

way where we could have adequate compression ratio and a decent PRD value.

From the

Figure 4.13 we can see that Rounding provides very good compression ratio

and with an efficient PRD. More specifically, given 5 bits after the decimal

point we manage to acquire compression ratio 8.95 and PRD 1.67 , a very

promising trade off and also with 4 bits after the decimal point we get 10.57

compression ratio and 3.11 PRD The transposed data does not offer better

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 5 10 15 20

P
R

D

Compression Ratio

ORIGINAL DATA

TRANSPOSED_O
RIGINAL_DATA

41

ratios from the original one. In the next Chapter we will compare more

thoroughly the results of Rounding with the other methods.

From the computational overheads we can figure out that the more we round

the coefficients the more time we consume, approximately 4 seconds per bit

we grant for the decimal part. Moreover, we can see that the peak memory

does not change over the bits significantly, whereas the total memory used

from the 5 bits is two and a half times bigger from the one used from the 2 bits.

Also, it can be seen from Figure 4.14 that the computational overheads have

not any difference either for transposed or original data.

Figure 4.13 PRD over compression ratio for LZO Rounding

Figure 4.14 Memory consumption over bits given after decimal point for

LZO Rounding.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 5 10 15 20

P
R

D

Compression Ratio

ORIGINAL DATA

TRANSPOSED_O
RIGINAL_DATA

0

5000000

10000000

15000000

20000000

25000000

30000000

2 3 4 5

M
e

m
o

ry
 u

se
d

(B
yt

e
s)

Bits after decimal point

PEAK MEMORY

TOTAL MEMORY

42

Figure 4.15 Execution time over bits given after decimal point for LZO

Rounding.

4.2.2.2. Reordering

Sorting

We have tried to find out the best way of Reordering in order to make use of

the attributes of LZO compressor in order to achieve high compression ratios

and of course lossless, PRD value is 0. As we have pointed out in the

beginning of the Implementation chapter LZO compressor produces big

compression ratios when the coefficients of a block of data are the same in

order the sliding dictionary to recognize similarities. The Figure 4.16 shows us

that Sorting method produces a compression ratio which is including the

indexes that are produced from the Sorting method less than 1 ,which means

that the original file was smaller than the compressed one .This makes the

Reordering with Sorting useless for data compression.

Figure 4.16 Compression ratio for different data of Sorting method

0

5

10

15

20

25

30

35

2 3 4 5

Ti
m

e
(s

)

Bits after decimal point

ORIGINAL DATA

TRANSPOSED_ORIGINAL_DATA

0

0.2

0.4

0.6

0.8

1

1.2

C
o

m
p

re
ss

io
n

 r
at

io

ORIGINAL DATA

ORIGINAL DATA with indexes

TRANSPOSED_ORIGINAL_DATA

TRANSPOSED_ORIGINAL_DATA with
indexes

43

Although we have proved that the Sorting method is useless in terms of

compression ratio , we state also the results from the computational overhead

in order to observe differences between the Original and Transposed data.

Finally, we can make out no differences between the 2 different types of saved

types.

Figure 4.17 Execution time for different data of Sorting method

Figure 4.18 Total Memory used for different data of Sorting method

Figure 4.19 Peak Memory used for different data of Sorting method

Fuzzy C means clustering

We continue with the presentation of the results of the Reordering technique.

A technique which has as main goal to reorder the data in a way to create more

correlation to the coefficients so as the compressors to make use of this

0

50

100

150

200

Ex
e

cu
ti

o
n

 t
im

e
(s

) ORIGINAL
DATA

TRANSPOSE
D_ORIGINAL
_DATA

0

200000

400000

600000

800000

1000000

To
ta

l M
e

m
o

ry

U
Se

d
(b

yt
e

s) ORIGINAL
DATA

TRANSPOSED
ORIGINAL
DATA

0

100000

200000

300000

400000

500000

P
e

ak
 M

e
m

o
ry

U

se
d

(b
yt

e
s)

ORIGINAL
DATA

TRANSPOSE
D_ORIGINAL
_DATA

44

correlation to produce better compression ratio. In this section we will present

the results for Reordering with Fuzzy C means clustering, as in the results

presented in the SPIHT section for this method we will present the results for

different values of sample and cluster number in order to understand the

reaction of LZO compressor to the change of these variables.

Reordering with fuzzy C means clustering using the LZO compressor is a

lossless method that obviously produces zero value PRD.

Figure 4.20 Compression ratio for different values of sample and cluster

number

Figure 4.21 Execution time for different values of sample and cluster

number

0

0.5

1

1.5

2

2.5

3

C
o

m
p

re
ss

io
n

 r
at

io

Sample number=32_cluster number=128

Sample number=32_cluster number=10

Sample number=32_cluster_number=3

Sample number=64_cluster_number=3

Sample number=64_cluster number=10

Sample number=64_cluster number=128

Sample number=128_cluster_number=3

Sample number=128_cluster number=10

Sample number=128_cluster number=128

Sample number=256_cluster_number=3

0

100

200

300

400

500

600

700

Ex
e

cu
ti

o
n

 t
im

e
(s

)

Sample number=32_cluster_number=3

Sample number=32_cluster number=10

Sample number=32_cluster number=128

Sample number=64_cluster_number=3

Sample number=64_cluster number=10

Sample number=64_cluster number=128

Sample number=128_cluster_number=3

Sample number=128_cluster number=10

Sample number=128_cluster number=128

Sample number=256_cluster_number=3

45

Figure 4.22 Total Memory Used for different values of sample and cluster

number

Figure 4.23 Peak Memory used for different values of sample and cluster

number

The above figures illustrate that the best compression ratio is achieved for 64

sample number and 3 clusters. It is remarkable that these results do not agree

with the SPIHT results on the same method, because now the compression

procedure is different and the encoding with LZO algorithm is done per

fragment, comparing to the SPIHT where the encoding part came at the end of

the pre-procession method. We see that the computational overhead of the

algorithm increase proportional as the sample number and the cluster number

increase. More specifically the biggest growth is observed when the sample

number increases. From 32 to 64 sample number there is a 30 % increase to the

execution time and total memory used and an about 20 % increase as for the

Peak memory. From 64 to 128 sample number there is a 18 % increase on the

Peak Memory metric ,an 85 % increase on the execution time and more or less

15 % on the Total Memory that is used. More significant growth is illustrated

0

5000000

10000000

15000000

20000000

25000000
To

ta
l M

e
m

o
ry

 U
se

d
(B

yt
e

s)
Sample number=32_cluster_number=3

Sample number=32_cluster number=10

Sample number=32_cluster number=128

Sample number=64_cluster_number=3

Sample number=64_cluster number=10

Sample number=64_cluster number=128

Sample number=128_cluster_number=3

Sample number=128_cluster number=10

Sample number=128_cluster number=128

Sample number=256_cluster_number=3

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

P
e

ak
 M

e
m

o
ry

 U
se

d
(B

yt
e

s)

Sample number=32_cluster_number=3

Sample number=32_cluster number=10

Sample number=32_cluster number=128

Sample number=64_cluster_number=3

Sample number=64_cluster number=10

Sample number=64_cluster number=128

Sample number=128_cluster_number=3

Sample number=128_cluster number=10

Sample number=128_cluster number=128

Sample number=256_cluster_number=3

Sample number=256_cluster number=10

Sample number=256_cluster number=128

46

between 128 and 256 sample number. The execution time and total memory

over double their previous values and the Peak memory is increased by 20 %.

4.2.3. Comparison Overview between the aforementioned methods.

In this section we could try to clarify which of the aforementioned methods

can be of some importance to our goal and also to clear up the differences of

each algorithm and its individual characteristics.

We would present the top-achieving algorithms as the Compression ratio and

the PRD is concerned.

Figure 4.24 Compression ration over PRD results from the top-achieving

algorithms.

 Firstly, we have to define the reason that we illustrate the 2 different SPIHT

methods with the same sample and cluster number. As we have already

mentioned, in the SPIHT algorithm we can define the size of the compressed

file by changing the PRD value of the compressed file. So, we present 2

different versions of SPIHT algorithm with 256 samples and 3 clusters. Also

we should state here that as it is described in the 4.2.1.1 the 256 sample

number and the 3 clusters is the top achieving algorithm as the compression

ratio and PRD is concerned. From Figure 4.24 we can make out that the best

compression ratio is achieved with SPIHT algorithm with 256 samples and 3

clusters. The best lossless algorithm (PRD is equal to zero) is the LZO

algorithm when we use the Reordering with Fuzzy means clustering with 64

samples and 3 clusters. On the other hand, the best trade-off between

compression ratio and PRD is done from LZO Rounding algorithm. As we can

see from Figure 4.24 the LZO Rounding with 4 bits given to the fractional part

0

5

10

15

20

25

30

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

C
o

m
p

re
ss

io
n

 r
at

io

PRD

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_RR

LZO_REORDERIN
G_FUZZY_64_3
LZO_ROUNDING_
2bits
LZO_ROUNDING_
3bits
LZO_ROUNDING_
4bits

47

has 0.22 smaller PRD value and 0.2 compression ratio bigger than the SPIHT

with 256 sample number and 3 clusters(version II).

Figure 4.25 Execution time for the top-achieving algorithms

Figure 4.26 Total memory used for the top-achieving algorithms

Figure 4.27 Peak Memory used time for the top-achieving algorithms

0

20

40

60

80

100

120

140

160

Ex
e

cu
ti

o
n

 t
im

e
(s

)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts

0

5000000

10000000

15000000

20000000

25000000

30000000

To
ta

l M
e

m
o

ry
 U

se
d

(B
yt

e
s)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts

0

1000000

2000000

3000000

4000000

5000000

6000000

P
e

ak
 M

e
m

o
ry

 U
se

d
(b

yt
e

s)

SPIHT_256_3(I)

SPIHT_256_3(II)

SPIHT_256_3_REOR
DERING
LZO_REORDERING_F
UZZY_64_3
LZO_ROUNDING_2bi
ts
LZO_ROUNDING_3bi
ts
LZO_ROUNDING_4bi
ts

48

From the above figures that illustrate the computational overhead of the top-

achieving algorithms we can see that the lossless method needs more time to

efficient finish the compression. Most of the time is spent in the transforming

the coefficients which are double precision values, in order to be properly

saved in binary files. Moreover we can see that now the SPIHT with 256

sample number and 3 clusters (version II) performs better, as far as the

performance metrics it concerns, than the LZO Reordering with 4 bits for the

fractional part. More specifically, it consumes 15 seconds and uses 500000

bytes less.

49

5. Conclusions

In this thesis, we wanted to find and compare algorithms that can compress

Biodata (mainly ECG) and more specifically algorithms tailored to the types of

data typically used by IMDs in an energy efficient way with minimal loss of

signal quality.

In Chapter 2, we stated the Background information about the algorithms that

we would use and the algorithms that we would compare. Moreover, we

mentioned some related work that has being done in that field of research and

more generally based on ECG data compression or data compression on data

stemmed from IMDs. Based on the 2 algorithms that have proposed significant

results during our academic research the SPIHT and the LZO algorithm, we

did a comparison between these algorithms evaluating their compression ratio,

PRD results and also the computational overhead of their performance. Before,

Evaluation chapter we stated clearly all the implementations needed in order to

undergo a fair and efficient comparison. In Chapter 3, Implementation Chapter

we mentioned all the methods and process techniques that we would use. Also,

we presented the tools that we used for this Implementation and the Evaluation

of the algorithms. Following, Chapter 4 the Evaluation Chapter we evaluated

the pre-stated methods that we described in the previous chapter. More

specifically, we concluded that as it is stated at [10] the most appropriate

sample number is 256 and cluster number is 3 to use the SPIHT encoding

algorithm. With these variables the SPIHT algorithms achieves its best values

as far as compression ratio and PRD concerns. Moreover, we have pointed out

that as we increase the sample number and cluster number in SPIHT encoding

algorithm the performance getting worst. We should also mention that the

reordering does not offer anything at all in the SPIHT algorithm with fuzzy C

means clustering, as it produces bigger PRD values and the same compression

ratio and performance metrics than the SPIHT algorithm with fuzzy C means

clustering without rounding.

As for the LZO encoding algorithm, which according to [8] is ideal for

implemented devices, we can see that combined to reordering with fuzzy C

means algorithm achieves a decent compression ratio with the disadvantage of

execution time that is too much ,but using a small proportion of the Memory

and all the aforementioned losslessy. On the other hand, the reordering with

the sorting method performs really badly, as the size of the indices that have to

store is really big and at the end it provides negative compression ratio

percentage. Moreover, the most promising data algorithm is the Rounding

method combined with LZO algorithm. We have used this method in order to

create a lossy algorithm with the use of lossless encoding algorithm as the

LZO, in order to be better comparable to the SPIHT algorithm with fuzzy C

means clustering. After the comparison between these methods we have

50

figured out that the LZO-Rounding algorithm cannot achieve the compression

ratio of the SPIHT-Reordering algorithm, but for a little bigger compression

ratio it can achieve better PRD values, with a little loss as far as its

performance metrics it concerns.

Finally, we have ended up to more partial conclusions. There is any significant

difference at the compression ability of LZO compressor either the input of the

algorithm is with the original data or the data are transposed.

At the end of the day, we could conclude that low-overhead compression of

ECG recordings for Implantable medical devices is a very crucial and

interesting subject that has a lot of parameters ,which one should highly take

into consideration before chooses the most appropriate algorithm.

5.1. Future work
Based on our current work we proposed some of the future work that can be

done in order to increase the contribution of this diploma thesis to this field of

research. Firstly, we could try the same algorithms and methods on different

types of biomedical data, such as Electromyogram, Electroencephalogram,

Blood pressure, Pulmonary function ,Respiratory Cycle etc etc.In order to

create a more generic algorithm that could include the majority of the data that

are transmitted from an IMD

Secondly, we could study different algorithms that have presented promising

results on the Biodata compression tailored for IMDs. Algorithms like these

can be found in the Related work section of our study.

Finally, we could create a new compressor tailored to ECGs, based on the

lessons of this thesis. This algorithm could be a combination of the

aforementioned algorithms or creation of a new one based on the conclusions

that extracted from the thesis.

51

6. Bibliography
[1] Yeun-Ho Joung, "Development of Implantable Medical Devices: From an

Engineering Perspective," International Neurourology Journal, no. 13,

pp. 98-106, September 2013.

[2] Brown P, Nissen Zuckerman DM, "Medical device recalls and the FDA

approval," Arch Intern Med, no. 171, pp. 1006–1018.

[3] Lav Gupta, "Security in Low Energy Body Area Networks for

Healthcare," 2014.

[4] Sarbari Gupta, "Implantable Medical Devices - Cyber Risks and

Mitigation Approaches," 2012.

[5] Khalid Sayood, Introduction to Data Compression, THIRD EDITION ed.,

2006.

[6] M. F. X. J Oberhumer. “LZO source code”. [Online].

www.oberhumer.com/opensource/lzo

[7] L. Erdődi, "File compression with LZO algorithm using NVIDIA CUDA

architecture," 4th IEEE International Symposium on Logistics and

Industrial Informatics, September 2012.

[8] Georgi N. Gaydadjiev Christos Strydis, "Profiling of Lossless-

Compression Algorithms for a Novel Biomedical-Implant Architecture,"

Proceedings of the 6th IEEE/ACM/IFIP international conference on

Hardware/Software codesign and system synthesis, pp. 109-114, 2008.

[9] A. Materka, M. Strzelecki P. Szczypińsk M. Kociołek, "Discrete wavelet

transform –derived features for digital image texture analysis,"

Proceedings of Interational Conference on Signals and Electronic

Systems, pp. 163-168, September 2001.

[10] Wisnu Jatmiko, Aniati Murni Arymurthy Sani M. Isa, "Beat Reordering

for Optimal Electrocardiogram Signal Compression using SPIHT," IEEE

International Conference on Systems, Man, and Cybernetics, October

2012.

[11] Ziya Arnavut, "ECG Signal Compression Based on Burrows-Wheeler

Transformation and Inversion Ranks of Linear Prediction," IEEE

TRANSACTIONS ON BIOMEDICAL ENGINEERING, March 2007.

[12] Pawel Turcza, Tomasz P. Zielinski’ Krzysztof Duda, "Lossless ECG

Compression with Lifting Wavelet Transform ," May 2001.

[13] Antti Koski*, "Lossless ECG encoding ," Computer Methods and

Programs in Biomedicine , pp. 23-33 , 1997.

[14] Elmar Uwe ,Kurt Melcher Leonardo Vidal Batista, "Compression of ECG

signals by optimized quantization of discrete cosine transform

coefficients," Medical Engineering & Physic, no. 23, pp. 127–134, 2001.

[15] Michael L. Hilton, "Wavelet and Wavelet Packet Compression of

www.oberhumer.com/opensource/lzo

52

Electrocardiograms," IEEE TRANSACTIONS ON BIOMEDICAL

ENGINEERING, vol. 44, no. 5, MAY 1997.

[16] LA Koyrakh, "Data Compression for Implantable Medical Devices,"

Computers in Cardiology, vol. 35, p. 417−420, 2008.

[17] I. S. Member, K. Faez, I. Member, and S. Sargolzaei A. Sargolzaei, "A

New Robust Wavelet Based Algorithm for Baseline Wandering

Cancellation in ECG Signals," Electrical Engineering, pp. 33-38, 2009.

[18] G. Ramakrishnan and S. Saha, "ECG coding by wavelet-based linear

prediction," IEEE transactions on bio-medical engineering, vol. 44, no.

12, pp. 1253-61, Dec. 1997.

[19] ROBERT EHRLICH ,WILLIAM FULL JAMES C. BEZDEK, "FCM:

THE FUZZY c-MEANS CLUSTERING ALGORITHM," Computers &

Geosciences, vol. 10, no. 2-3, pp. 191-203, 1984.

[20] N. Sriraam, "Correlation dimension based lossless compression of EEG

signals," Biomedical Signal Processing and Control , no. 7, pp. 379– 388,

2012.

[21] Eameema Muntimadugu , Michael Jaffe and Abraham J. Domb Wahid

Khan, "Implantable Medical Devices ," in Focal Controlled Drug

Delivery., ch. 2.

[22] J. T. Rubinstein, "How Cochlear Implants Encode Speech," Current

Opinion in Otolaryngology & Head and Neck Surgery Journal, no. 12, pp.

444-448, 2004.

[23] L. Wentai, "Image Processing and Interface for Retinal Visual

Prostheses," Circuits and Systems, no. 3, pp. 2937-40, 2005.

[24] M. Burrows and D.J. Wheeler, "A Block-sorting Lossless Data

compression algortihm," Systems Research Center, Palo Alto, May 10

1994.

[25] DANIEL D. SLEATOR, ROBERT E. TARJAN,and VICTOR K. WEI

JON LOUIS BENTLEY, "A locally adaptive data compression scheme,"

Communications of the ACM, vol. 4, no. 29, pp. 320-30, April 1984.

[26] C. E. Shannon, "A mathematical theory of communication," no. 27, pp.

379-423., July 1948..

[27] D. A. Huffman, "A method for the construction of minimum-redundancy

codes," Proc. IRE, no. 40, pp. 1098-1 101, September 1952.

[28] PAUL G. HOWARD and JEFFREY SCOTT VITTER, "Arithmetic

Coding for Data Compression," 1994.

[29] T. Natarajan, and K. R. Rao N. Ahmed, "Discrete cosine transform," IEEE

Trans. Comput, no. 23, pp. 90-93, 1974.

[30] Chun-Hee Lee and Chin-Wan Chung, "Compression Schemes with Data

Reordering for Ordered Data," December 2009.

53

[31] WB Pennebaker, JPEG: Still image data compression standard. USA:

Kluwer, 1993.

