L

N

(¢]
S
A4
520

.
',

|

‘(E’f_"’E/Q

<

5

3

G0

eTs0p
@“:\QAE %
A X

i
t,

POMHOEVS
nVPPoOPo

N

E®GNIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOI'ON MHXANIKQON
KAI MHXANIKON YTIOAOTIETON

TOMEAZ TEXNOAOTIAZ [TAHPO®OPIKHE KAl YIOAOTIZTON

EPrAzTHPIO MIKPOYNOAOTIZTQN KAI WHOIAKQN ZYITHMATQN

Optimization methodology for dynamic applications

utilizing tree data structures in embedded systems

EmuBAEnWY :

AIMAQMATIKH EPTAZIA

Tou

Owpa N. Manaotepyiov

Anuntplog I. Zouvtpng

AvarmAnpwtng Kadnyntnig

ABnva, Maptiog 2016






E®GNIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOI'ON MHXANIKQON

£
&

., “>:=2
WY A5R 512 ) KAI MHXANIKON YTIOAOIISTON
At =
= TOMEAZ TEXNOAOTIAZ [TAHPO®OPIKHE KAl YIOAOTIZTON

EPrAzTHPIO MIKPOYNOAOTIZTQN KAI WHOIAKQN ZYITHMATQN

Optimization methodology for dynamic applications
utilizing tree data structures in embedded systems

AIMAQMATIKH EPTAZIA

Tou

Owpa N. MNanaoctepyiov

EmBAénwv:  Anuntplog l. Zouvtpng

AvarAnpwtng Kabnyntnig

AnuAtplog Tolvtpng KlopdA Mekpeotln Fewpylog Mkovpag
AvarmAnpwtng Kabnyntng KaBnyntng NéxTopOg

ABnva, Maptiog 2016



Owpag N. Nanaotepyiov

AutAwpoatovyog HAektpoAdyog Mnxavikog kat Mnxavikdg Yrioloylotwy E.M.I.

Copyright © Owpag N. Manaotepyiou, 2016

Me erudUAagn navrog Sikawwpatoc. All rights reserved.

Amayopevetal 1 ovIypar], amodnKevon Kot dlavoun TN Topovcas epyaciog, €€ oAOKANpov N
TUALOTOC OVTNG, Yo EUmopikd okomo. Emtpémeton n avotdzmon, amodfikevorn Kot dtavoun yio,
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Xovroun Ilepiinyn

Me v mapodo TV YPOV®V, OAOEVO, KOl TEPICCOTEPEG EPUPUOYES TOL EKTEAOVVTAV
OMOKAEIGTIKA G€ VTTOAOYIOTIKA cuoTHHOTA VYNA®V Tpodtaypapmy (HPC) viomotovvtot yia
EVOOUATOUEVO cLoTHHOTO. To EVoOOUATOUEVH CLGTANOTA, XGpN oIV paydaio TPHOdO TG
teyvohoyiag, eivor mAéov oe Béom vo ekTeEAOVV TOAVGUVOETEC KOl QOLTNTIKEG EPOPUOYES
oV TG meplocoTEPEG Popég Pacilovtor oe peydieg duvapukég dopég dedopévav yuo va
EMTEAEGOLV TNV AelTovpYia Yo TV omoia £xovv oyedlactel. O oYedOCUOG TOV CULAVTIKOV
JoUDV OedoUEVOV TOV €QaPUOY®DVY, GE éva peyddo Pabud, kabopilelt ko v oamnddoon,
KoODGC Kot TIG amotoelg oAOKANpNG TG epapuoyns. H dwadwkacio emAoyng e ocwotig
dopng dedopévmv dev givar o0te €0KOAT, ovTe TTpoPavis. O oxedOGTNG TG EPAPLOYNS
KaAgital va Adfet vroyn ToAAEG TapapETPOVg OV €EOPTMVTOL O’ TNV GLOKELY] oL Ba
K\nOel va extedécel v epoppoyn. Qotodco, kdbe cuokevn cvvnBmg €xetl TG dkég ™G
amortioels. M peBodoroyia ovouatt Dynamic Data Type Refinement (DDTR)
avantOyOnke mote va fondnoetl Tov 6Yed0oT] Vo 0EI0AO0YNGEL SIAPOPETIKOVS GUVIVAGLOVG
JdopdV dedopEVOVY e Evay TPOTO OMOTEAEGLOTIKO KOl OGO 7O OVTOUATOTOUUEVO YIVETOL.
[Tpocpépel PerTioTOMOMGES, KLPIOS GTOV TOUED TOV AGTOV KOL TOV TIVOK®V, TOV
Bacilovtal oTo YOPOKTNPIOTIKA TNG EPOPHOYAG KOL TOV TPOTO E TOV OMOI0 OLTN
npooneldlel ta dedopéva. Le avtv TV epyacio, OAQopeg TTLYES NG TOPATAVED
pebodoroyiag emekteivovtal: KAt apyds EVOOUATMOVOVUE OEVOPIKEG OOUEG OESOUEVOV DOTE
Vo gUTAOLTICOVHE TNV AN VIAPYXOLGH GLAAOYN Kol v Kotaoticovpe v pebodoroyio
KOTOAANAN Y éva peYOADTEPO €VPOG GUOYYpoveV gpapuoymv. Emeita, moapabétovpe
KAmoleg LAOTOMGCELS OOUDV JeJOUEVOV OV AQUPAVOLY VIOYN YOPOKTNPIGTIKA NG
OLOKEVNG MOOTE Vo EmMTLYYAVOLV KoAVTEPN omddoon. H  emextapévn pebodoroyia
a&loloyeitol HEGH OPOPMOV KOTACKEVACUEVAOV KOl TPUYHOTIKOV opyeimv 10000V TOL
ektelovvVTOL oty mhateoppo Myriad ko Freescale, 6mov emitvuyydvovpe BEATIOGES TG
td&Nng Tov 30%. EmmpocsOétwg, Pareto Bértioteg vAomomaoelg Sop®dV dEG0UEVOV TTOV OEV
Nrav dtubécieg pe v mponyovevn pebodoroyia, eivar TAEOV EPIKTO va aviyvevBoiv.

Aégeic Khewnd: pebodoroyio DDTR, 06évopa, PeAtiotomoinon Ovuvopuk®v  dopmv
OedoUEVDV, VAOTOMOELS TOV  AdpPdvouy vdyn TNV KPuen UVIUY, EVOOUATOUEVA
GLGTNLOTA
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Abstract

Applications that were previously executed in High Performance Computers (HPC) systems
are increasingly implemented in embedded devices. Modern embedded systems are now
capable of executing complex and demanding applications that are usually based on large
dynamic data structures. The design of the critical data structures of the applications, in a
large extent, determines the performance and the memory requirements of the whole
system. The work of selecting the correct data structure for an application is not an easy or
obvious one. Depending on the platform of interest, different requirements may need to be
satisfied. The Dynamic Data Structure Refinement methodology was originally developped
to help the designer evaluate different data structure selections in an effective and automatic
manner. It provides optimizations, mainly in list and array data structures, which are based
on the application’s features and access patterns. In this work, various aspects of the
methodology are extended: first, we integrate radix tree optimizations to enrich the existing
collection and make the methodology compatible with a larger group of modern
applications. Then, we provide a set of platform-aware data structure implementations, for
performing optimizations based on the hardware features. The extended methodology is
evaluated using a wide set of synthetic and real-world benchmarks on the Myriad and
Freescale platforms, in which we achieved a performance and memory trade-offs up to 30%.
Additionally, Pareto optimal data structure implementations that were not available by the
previous methodology, are now identified with the extended one.

Keywords: Dynamic Data Type Refinement (DDTR) methodology, radix tree, dynamic data
structure optimization, cache-friendly implementations, embedded systems
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Ewcaymyn otnv DDTR Meg@odoroyia

Kabog mepvive 1o ypdvia, o1 oOyYpoves €PUPUOYEG OIKTO®MV Kol TOAVUECHV
YivovTtal OAOEVOL TTO TOAVTAOKESC KOl OTOUTNTIKEG Kol P oVTol TEPIGGOTEPT ATOS00,
QOVOLEVO TTOV 0ONYEl GE PEYAAVTEPT] KATAVAAMOT UVAUNG Kol K0T’ EMEKTOGCT, EVEPYELOG.
Emiong, ot epappoyég avtég ovvnbwg yapaktnpilovral and peydro Pabud odinAenidpaong
ue tov ypnot. Emouévmg, n ovumepipopd touvg kabictator dvvopikn kot kabopiletar and
eEmyeveic mapdyovteg (6mwg T0 OGO «POPT®UEVO» gival éva dIKTLO M TIG KIVIGELS TOV
TOAKTN G€ €VOL ToyVioL).

Q¢ amotéheospa, N xpnon SvvoulKOv dopmv dedopévev (AA) sivor emiPefinuévn,
®ote vo. pmopel to TPOYpoupa vo avteneEéADel o éva PEYAAO €0POC SLOPOPETIKMV
ocuvOnkav extéleong, KAt mov Oev Ba NTav oe O€on Vo TPAYUOTOTOU|CEL OV
xpnoonoovce otafepd aplfud mopwv. Pucikd, £va dSvvoptkd mpdypappo givar ToAH mo
dvokolo va oyedwotel kot va PektiotomomBel and éva otaTikd, 0QOL oTNV deLTEP
nepinT®on OA0L 01 TAPAUETPOL AetTovpYyiag gival KaBopioévol Kot ot TOPOL TNG EPOPLOYNG
elvar  okpipag oOcor  ypewdlovial. AviiBétwg, otV TEPITTOON  TOV  OLVOUIKOV
TPOYPOUUAT®V, KATOL0 AGTOYN EKTIUNGT] TOL TPOYPOUUATIOTY] OTIV ETAOYN TOV SUVOUIKOV
AA eivoan €0koho va 0ONYNGEL O OMATOAN TOP®V M YEWPOTEPN OamOI00N amd TNV
aVOUEVOLEV KOl VT pimopel va Exel onUavTIKEG TapevEPYELES (LKpT dlapKewn pratapiog,
UM KOVOTOiNo™M TOL YPHOTH Kot GAND).

H emdoyn ¢ xatdAining AA dev elvar €0koAn vmdbeom, akpiPdg emeldn
OLPOPETIKEG GVOKEVEG UOPElL VoL EXOVV SLOPOPETIKEG OVAYKES, OKOUO. Kot Yol TO 1010
npdypappa. o Tapdderypo, Evag vwoAoyloTg cvyva £xel apBovn uvnun, oe avtiBeon pe
éva Kvntd mAépmvo. 'Evag mpoypalotiotng eropéveg Oa mpénet yelpokivinto vo aAlalet
T0 TPOYPOLLLO TOV Y10 VO TO TPOGOUPUOGEL GE OLOPOPETIKES TAATPOPLES, Mo OlodKaGio
emimovn kot evaicOn oe cpdipata. ['a Tov Adyo avtd avarntoydnke po pebodoroyio mov
ovopdleton Dynamic Data Type Refinement Methodology, | ev cvvtopio, DDTR. H
pebodoroyia avtn amoteleiton amo Tpio kPt Priporto Kot apykd eixe oxedlaoTel Yo Tic
avayKeg OIKTLAK®OV ePoproyav. Ta Prpota avtd givol:

e X710 MPOTO GTAOO0, TO TPOYPOUUO EKTEAEITAL Y10, KATOW GLYKEKPIUEVOL OEOOUEVQL
elo6dov (benchmarks). Koatd tnv ektéleorn, HeAETATOL 1) GLUTEPIPOPH T®V
duvapkdv AA, mov éxovv onuaviel kot oviikataotadel e TIG avTioTorreg OOUES
mov vrdpyovv ce pia Pipaodnkn. o kdBe AA pmopel vo vrdpyovv TOAAES
vAomomaelg oty PipAodnkm, emopévag doxkpualovror OA0L o1 dLVOTOl GLVOLAGHOT
Kol Yoo ka0 cuvovacud To amoTEAECUATO (OO KATOVAANDGT EVEPYELNS, LUVIUNG,
o OTNTO EKTEAEGNC) amodnkevovTaL.

e 210 0e0TEPO GTAS10, EMELON aKkPP®G 1 neBodoroyia ot giye apyikd ovamtuydet Yo
OIKTLOKEG EQPAPUOYEC, €10AYOVTOL Ol TOPAUETPOL TOVL OIKTVOVL. ALTEG €xouv Vva



KGvouv pe tov aplipd tov

DDT Exploration Tool T3 M
8| |, |Insert profiing framework 2522 KOpPov tov dikTHoL KoL TO
., § 5 \|Recognize dominant DDTs _ 223 . .
532 % Insert DDT library interface 58 MSYSGOQ TOV TOKETOV KOl
€ 28 DDT exploration for dynamic data access behavior 2 ) 4
= “ s , UTOpOLV VO ENNPEAGOVV
Network configuration exploration extension T30N on H(XVTle a (17130’[8}\.%’20“(1’[(1
i i hel
2 oDT explorat{on fora spec:ﬁc # of Nodes e g g @ ™me av acn,m onG.
S \DDT exploration for a specific Throughput ) 8 8
o & 51| DT exploration for typical packet sizes (e.g. MTU) |  § S e X0 tpito KoL TEAEVTOHO
RS DDT exploration for application-specific network &= 4 ’,
[-% IS v
|E 2 8"‘parame!ers (e.g. Patricia tree size, # Firewall rules) GTU,&O, a (XROTSKSG},LOL‘COL me
| avalntnong mapovotdlovral
Pareto optimal implementation exploration tool § 3 gl @ / I ’
.g Exec. Time - Energy pareto DDT exploration (X g g % Hecw EVOG YPOPIKOL
.. 5 & \|Energy — mem. Foolprint pareto DDT exploration g2% nepifdrriovrog  (Graphical
133 8 Mem. Accesses — Energy pareto DDT exploration 3
28 gp‘ EE User Interface - GUI) otov
—_— e . oxedwaoty, pali pe tig Pareto
Optimal Dynamic Data Type Implementations [ _ Bé)\,’ElGTSQ SRIXOYéQ. Amd

ekel pumopel vo emAéEel Tov
GLUVOLAGUO pE TNV AryoTEP
EVEPYELN Y10, TTOPADELYLLOL.

Ewkova 1: Bpata tng DDTR pebodoloyiag

Tig mo moAAéC opég dev vapyel Abon mov va eivar Bértiom o kabe topéa. [Na
TOPASELY O, 1 AVON e TNV MyOdTEPT EVEPYELD OEV Elval avayKaio val £yl Kot TNV KaADTEPN
ToyvTNTO ekTédeons. Me 10 mapamdve epyolieio pewdvetar o xpovog mov ypetdletor vo
OPIEPMCEL O CYEOINOTNG, OPOV HEYOAO KOUPRATL TNG OovAeiog avorapupdvetor omd To
gpyorelo Kot emiong METLYOAVETOL KOU ONUOVTIKO KEPOOG (O€ OPIGUEVEG OIKTLOKES
epapuoyég mepimov 80% Aryotepm evépyeta ko 20% kaAdtepn ToyvTNTA) AKPPOG ETEWN O
TPOYPAUUATIOTNG Hmopel va unv  €xel AaPet vmoyn OAeg TIG TAPAUETPOLS TOV
TPOYPELLUATOC.

Q61060 LVILAPYOVY KO GLYKEKPIUEVOL TEPLOPIGHOT GTO TTapamdve epyareio. Avtol Exovv
aQEVOS VO KAVOLV HE TO YeYOVOS OTL vrmootnpileton OYeTikd mEPOPIGUEVOS aplBdg
dvvopikadv AA mov caeng meplopilel kot to TANOOC TOV EQOPUOYDOV TOVL UTOPEL Vo
vrootnpigel (my e TIVOKES KATOKEPUATIOHOV Kol 0&vopa). Apetépov, N PipAodnkn mov
yponowomnoteitan (Matisse profiling tool) dev ypnowomolel ta mAgovekTuaTa TOV
OVTIKEYLEVOSTPOPADV YAOGGOV TPOYPULUATICUOD TPAYUO TOV KAVEL 1d10itepa SOOKOAN TV
eméktacn mG. TEAog, Yio peydreg epaproyEc N OAN dwodikacio eivol amd oA apyn £mg un
EPAPUOCIUT, 0POV O YPNOTNG OeV UTOopel va eMAEEEL LOVO GLYKEKPLUEVOVG GUVIVOGHOVG
AA ®oTE Vo LELDGEL TO YDPO avalnTnong.

Mo vo avtipetomiotobv opiopéva an’ ta mpoPAnuata, avorntoydnke po PeAtiopévn
DDTR pebodoroyia, mov ypnoylonotovoe éva véo epyaieio PipAodnkng mov siodyst v
évvola g apnpnuévng AA. H apnpnuévn AA eivan éva eminedo agaipeong avdpeca otnv
EQOPUOYT KOl TO OgOOpEVOL Kol TEPLEYXEL TIG HEBOOOVE 7OV YPMNOIUOTOOVVTAL Yo VO
TPOGTELAGTOVV TaL 0E00EVA. AVTO KAVEL TNV S1001KAGT0 T E0KOAT, 0po TAEOV Umopel va,
EQUPUOCTEL Y10 OTO10ONTOTE EQPAPLOYN (KO OYL LOVO Y10, OIKTVOKES) TTOL GUULOPPDVETOL LE
™ dtemapn ¢ Ppriodnknc. INa kdbe AA vapyovv ot Pacikég Aettovpyieg OTMG E1GAYMYN,
drypan], TPOSTEALACT) Kol TPOTOTOiNoT. AVt 1 agaipeon kafioTd e0KOAN TNV EVOALAYT|
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HeTAED SaPopeTIKAOY AA ywpig TNV avayKn vo dALIEEL O KAOJIKAG TNG EPAPUOYNG Kot
emiong guvoel v vmapén moAAdV vAomomoewv yuo por AA. Ot dopég mov vrootnpiletl M

véa Ppiodnkn eivau:

2roifa: €voc omPOC OVTIKEWWEVOV TOV TPOGHETOVUE KOl OPAIPOVUE O’ TNV
KOpLO).

Ovpd: GLANOYN OVTIKEWWEVOV 7oL Tpootifevion am’ to €vol GKPO Kot
apoapoHvTal o’ To GAAO.

Ovpa ue 0vo axpo (deque): oLAAOYN OVTIKEWWEVOV 7OV TPOoTiBevTol Kot
apopoHVTOL Ao OTOIONTOTE GKPO.

Mpn tolrvounuévn Aiota.

Talivounuévy Alota: Mota pe to otoyeio tagwvounuévo pe Pdon kdmotlo
KpLTip1o.

Iivaxag kotoxepuotionod: xpNGLOTOLEL GUVOPTNGELS KATAKEPLATIGLOD Y10 VO,
gvtomicel éva ototyeio og otabepod ypovo.

o  JYvolo (oet): un TOEWVOUNUEVT] GLAAOYN AVTIKEIUEVOV YOPIC ETAVOAYELC.

e [loJvabvoio (multiset): chvoro OOV EMTPETOVTIOL Ol ELAVOANYELG

o Aévopo: UM YPOUUIKES OOUES TTOVL YPNCUYLOTOLOVVTOL Y10 VO OSNADGOLV tEpapyicL.
Kd&0e kopPoc 6to 8€vopo €xet mandid kat Evov Tatépa (EKTOG O’ TOV TPMTO).

Amo tic mapamdved AA TO TPONYOLUEVO
gpyoreio vmoompile pOVO Un  TOEVOUNUEVES
Motec. Kabe doun €xet tic avaroyeg apnpnuéveg

Memory Accesses vs, Memory Footprint

7000

Pareto Points for Racing Game

)
. 0z : £ 6000 0 Sy
Aerrovpyieg (my n otoifa £xel push/pop) kot owTég E.
VAOTOLOVVTOL e SLAPOPETIKO TPOTO OVAAOYD TNV g
i HE O10pop PS YTV 2 o] (s )® ¢
nepintoon. Mw otoifo pumopel va viomoweiton @ 00
. . , , . >
péocm pog ovvoedepnévng AMotag eite pe mivoka S 200 m@
ywo mopdderypa, oArd M Aewtovpyion G oe 2 —_—
apnpnuévo emimedo dev aAralel. I[Iépa amd ™ 0 : : : :
’ , A 0 500000 1000000 1500000 2000000 2500000 3000000
1100 avamtuyOnKe Kol po OlETOPY] TOL
B B KN e H " Memory Accesses

EMTPEMEL  OTOV  YPNOTN vo  emMAEEEL  TOVG
ouVOLACUOVE T®V  VAOTOMGE®Y TOL  TOV
EVOLPEPOLY  (OOTE VO EMTUYEL  TOYVTEPN

eepedvnon.

Ixnuoa 2: Pare

to-BEATLoTOL CUVSUAGHOL YL Eva
Tayvist

Ta Ppata wopapévouy mapopota. Apykd ot AA aviyvevovton gite yelpokivnta gite
avtopata (ebv to mpdypoupa tnpet ™ demaepn e PPAodning). ‘Encita amopovovovton
aUTEG OV TOU{OLV OMUOVTIKO POAO Yl TNV EKTEAECN TOL TMPOYPEUUOTOS Kot YiveTal 1
eepedvnon e Toug dpOPOLS GLVIVOGHOVS Kol amonkedovror Ta anoteAéopata. Télog,
ot Pareto — BéAtioTol GuVOLAGHOT ETAEYOVTAL KOl TTOPOLGIALovVTaL 6TOV GYedtaoT (Zynua
2). H peyolvtepn moikihio. Sopdv Umopel va 0dNyHoEL 6€ VEOLS GLVILOCUOVG TTOV OEV
QovovTovsav pe To TaAoOTEPO epyareio. To ot1ddl0 pE TIC TAPAUETPOVS TOL SIKTHOL
Aeimel, a@o TAEOV AVOPEPOLACTE GE YEVIKOV OKOTOV EQPUPUOYES. AVOLOYMS TV EPAPLOYT,

UTOPOVLLE VO, TETOYOVUE LEYALES PEATIOCELS.
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Kpvpn pvijun kot tpomor aromoinong e

[Tépa amd Tic 101G TIC €QPAPUOYEG, TO DAIKO TMV EVEOUOTOUEVOV GUGTNUATOV GTO
omoio. owTéC exteAobVTOL Yivovtar OAo kol o mwoAvmAoka. [TAéov éva peydio mocootd
dafétel cuoTNHO LVAUNG 1E TOALG emtimedo Kot Kpue1| (] AavBdvovsa) pviun (KM - cache
memory), 6mw¢ £vag TPocOTIKOS VITOAOYIOTNG (Zynfua 3). AvTd €1GAYEL VEEC TAPAUETPOVG
nov 1 DDTR peBodoroyia dev Adpfove vedym.

H KM omotedel éva (1

TEPLOCOTEPO.  EMMEdN  WIKPNG KoL /\ DiI_SIk
ypiyopng pvnpng) kot mapepfiiieton Memory
HETOED TOV EMEEEPYOOTN KoL TNG KOplog 2 I

, . L o L3 cache
pviung. Xdépn oto pkpod péyebog ko  § T
mv andotacn ond ToV EnEEEPYAOTY, 3 L2 cache

TPOCPEPEL TAYVTEPT AVAYVOCT/EYYPUON
atd v  kOpa pvaun  (fog Ko
EKOTOVTAOES KOKAOVLG) Kot duvatatl vo -

EMTOYVOVEL ONUOVTIKG OGEG EPUPLOYES
K&vovv ocwotn allomoinon g To IxAua 3: lepapyia pvApNG os éva cUYXPOVO ENESEPYAOTH
TPOPANUA Elval TOG O TPOYPOUUOTIOTNS

dev €xel ovvnbog dueon mpdcPacn oty KM kot dev umopel va kabopicer pntd mio
ototyeia Ba pmovv oty KM. Otav éva koppdtt pviung tpocmeldletal, auTopdtmg EpyeTol
omv KM. Enopévac yia va ekpetadhentode ovtd to yeyovos, ot EpapUoyES KOAO glvar va
TaPoLGLALOVY o EVKOAD TPOPAEYIUN GLUTEPLPOPE OGOV 0POPA TIG TPOCTEAAGEIS OTN
LVAUN M VO ETOvoypnGLLonToovve ta 1ot dedopéva. Me piar tétoto. cupmeplpopd eivarn
€0KoA0 TO pnyavnuo va TpoPAréyel ti Ba ypnoipomombel otn GuVEXEID OGTE VO TO PEPEL
gyxkapa ot KM.

Ot dopég dedOUEVMDV TIOV YPNCLUOTOLOVV JEIKTEG TEIVOUV VO £YOLV YEVIKGL KOKN
ovunepipopd otnv KM. Avtd ocvpfaiver yoti to empuépovg KOUPATION HVAUNG OV
ocvvdéovton pe Ogikteg Ppiokoviarl ScTapTa 6TO YDOPO d1ELOVHVGEDY. Apa PEPVOVTOS EVa
an’ to koppdtio oty KM givar dvokoro va @rlo&evel moArlovg koppovg g doung. Ot
TPOTEC YADOoGoES (OTmG 01 apyIkég ekdOoEL TG Fortran) dev vrootplay deiKTEG ETOUEVMC
avtd 10 TPOPANUa NTav Aydtepo aoOntd. Kabmg dpmg ot duvopikés dopésg dedopévov
KupLopyovv, 0o Kol TEPLEaOTEPES YADGGES TOVg evompdtocay (my C, Pascal). Yrdpyovv
SLAPOPES TEXVIKEG YO VO XpNoomoncovpe anotedecpatikd v KM cg gpapuoyéc pe
OelKTEG KO AVOADOVTOL TOPOUKATO:

» Opodomoinen: To Pacikd GKENTIKO £0® €ival Vo, OLASOTOGOVE TOAAG GTOLKELD
pog doung 0ed0UEVOV TOV OVOUEVETOL VO TPOCTEANGTOVV GEPLUKE 1] GE KOVTIIVEG
YPoVikéG oTypéc. o moapdoetypo, o€ por cuvoedepuévn Aota av évag kOpuPog
TPOCTEANGTEL VTLAPYEL HEYAAN TOHOVOTNTO VO TPOCTEANCTEL KOl O YELTOVIKOS TOV.
Otav éva koppdtt pvnung épyetor oty KM €pyetar cuvnbwg oe kxopupdtio tov 64
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bytes 1 mapandve, eved évag kOuPog pmopei va givar moAd pikpodtepos. Enopévmg o
éva TETO10 KOUUATL UTOPOVV VO YOPAVE TOAAOL KOUPOL Kot Vo YAITOGOVUE TOAAES
dotoyeg mpoomeddoelg ot KM (ko xot’ eméktaon ypovo kai evépyewn). [a va
ovpuPel avTO TPETEL VO SECUEVOVIE VI Y10 TOAAQ GTOLKElD T Popa (Eva Tivaka
oToyEioV Yoo TapAdeypa) agod mn UVAuUn mov deopevetal pe tn malloc eivon
OLVEXOUEVT. AV YPNOILOTOIOVUE OPOPETIKY KANoT malloc yia kGBe ctotyeio dev
vdpyel eyyomon Ot yertovikd otoryeio o Ppebovv o yertovikég BEoelg pvnung.
Axopo kot av évag kopPog elvar peyoddtepog omd €vo PUAAOK UVAUNG TTOL
petapépetor oty KM kot mdAtl a&ilet yertovikd va ototyeio va elval 6€ GUVEYOUEVECS
0éoelg pvnung, enedn dtevkoAvvetat 1 TPOPAEYN TOL KAVEL CLTOUOTO TO GUGTILLOL.

Xpopotiopnés: Me avtmyv v teqvikn tpoomafodpe va dtowpicovpe To dES0UEVOL
mov EEpovpe OTL givar cuyvad YPNOUYOTOOVUEVO — KOl ETOUEVOG Oéhovpe va
vdpyovv cvvéyew oty KM — and autd mov ypnoilonolovvTol TEPIGTACIOKE Kot
Toyybvel va ektomifovv ekeiva mov BéAovue va kpatnoovpe. Tpoaktikd ywpilovpe
mv KM ocg dvo meployés kol avardymg oe mown meproyr] Béovpe vo pmer kébe
otoyelo, @povtilovpe katd tnv Oéopevon ToL va Tomobeteital GTI GMOOTEC
dtevBivoelg pvnung (mov ev téhet Ba KataAnEovy oy avtictoym meployn g KM)
AP VOVTOG EVOEXOUEVMS KEVE TN LV OTte¢ @aivetar oto Zynua 4. [pdkerron yio
évav «ekoviko» oaywpiopd e KM péca amd tov KddKa, yopig va emnpealovpe

N el e 2 ©a
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~ Cache
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IxAua 4: TEXVIKA XPWHOATIOHOU yLa SLoXWPLOUO TWV SES0HEVWIV

KAT®wG 10 ovotnua. Me ovTtOV TOV TPOTO EANYIOTOTMOLOVUE TOV OVIOY®VICUO
OVAUESH GTOL GLYVE KO GTA GTOVIMG YPNOUOTOIOVUEVO TULLOTO TNG VTN,

Xoumieon: H ocvunieon etvon o apketd e0kodn texvikn mov mop’ 6Aa avtd pmopel
va amofel moAd amodotikn. [ToAAég popéc éva otoryeio pag AA mepiéyel TOALA
medio Ko amd avtd povo éva vroovuvoro eetdletal, Katd TV avalntnorn evog
otoyeiov 1 otn ddpkela KATolag AAANG cvyvng Asttovpyiag. [a mapdderypa, Eva

Xiv



oToyElo Umopel va avTrpoo®mEVEL Evav TEAATN KOl Vo €€l ®¢ emMmPOobeTeg
TANPOQOPies TO dvopa, TNV NAKia, TV d1evbuvor kot T0 TNAEPOVO, 0ALY 0 TELATNG
va avalnrteitor whvto pe Pdon to dvoupa. e oLTH TNV TEPITTOON WITOPOVUE VO
OTOLLOVGOVUE T GTOLXEIDL T Oomoia OeV oG EVOLPEPOLY Auesa (TTy TNV NALKia)
KAt TV avalntnon Kot vo to BAAOVUE G o SEVLTEPEVOVGO OOUT TOV GLVOEETOL
pe évav ogiktn 0nwg oto Zynua 5. 'Etol «kpvfoovpe» tov ydpo mov xpetdloviol Tiow
amd TO YHOPO TOL AmoLTEITOL Yoo TNV TPOSONKN evog emmAéov deiktn. Kabwg kdbe
KOpUPog Topa givarl pKpATEPOS, UTOPOVLE VO TOKETAPOVE TEPIGGOTEPOVS KOUPOVS
oTOV 1010 YDPO KoL VoL TETVHYOVUE OKOUO KAAVTEPT OIAS00T LE TIG TpoavapepDeioeg
TEYVIKES, APOV LE TNV TEXVIKN TNG opadomoinong oto idto umiok g KM Ba éyovpe
TEPLOCOTEPOVS KOUPOLG Kot dpa dtav €va umAok Epyetonr otnv KM Ba épyovtan
TOoALG oToryeia pali Tov.

ORIGINAL NODE COMPRESSED NODE AUXILIARY NODE
char * name; char * name; int age;

int age; data * rest;———— char * address;
char * address; char * telephone;
char * telephone; char * email;
char * email;

IxAua 5: MNapadsiypa cupunieong yta €vav KOUPO mou TEPLEXEL Ta
otoeia evog teAdrn
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IIpooOnkec oty DD TR MeBoodoroyia

H DDTR pebBodoroyia dev AauPdvet, péypt tdpa, vaoéyn 10 GUGTNUO GTO OTOL0
EKTEAEITOUL 1 EQOPLOYT KOL TO YOPOUKTNPIOTIKA TOV, TPAYUO TOV UTopel va aALAEel pilikd
CLUTEPIPOPE NG EPAPLOYNG OVAAOY HE TNV EMAOYY TV doudv. Edg tdpa cav Pdon
Bempovvtov £vo GUGTNHO PE KOplo UViuUn HOVOo, TTPayua Tov oYed0V Toté dev cuupaivet.
AVt pmopel va. 0ALOIMGEL TN ONUAGTIO KATOIWV GTATIOTIKOV dedopuévov. o Tapddetypa,
éva pdypappa pe 1000 tpoonerdoelg dedopévov otny Kopla pvnun Bewpeiton Arydtepo
amodoTikd am’ 0tL éva mpdypappa pe 10000 tpoorerdoelc oty kKpven uniun (KM) agpov
aVTEG KOOTILOVY TOAD AyOTEPO GE KUKAOVG Attovpyioc. Avti Yio TPOoTEALGELS OEOOUEVWV,
elval KOAOTEPO VOL LETPALLE TIC «TTPOLYUOTIKES) TPOCTELAGELS GTI LLVILN).

To mpwrto Prjua eitvar va gpmrovticovpe v DDTR peBodoroyio kot pe ddheg AA,
omwg ta dévopa. Ta Oévdpa mpoTwovvtol o€ TANOOC €QAPUOYDV, OT®MG Yol TNV
avamopdotact AeSikav, Vv enegepyacio KEWWEVOL, T cvumieon Kot aAAov, Kupiwg yapm
OTNV KAAT amdd0G1 OGOV apopd T HECT TEPITTMOOT). YhpYovV S1dpopot THTOL OEVOPWV e
SPOPETIKA YOPOKTNPIOTIKE. ZTNV TOPOVCH EPYACIN AGYOAOVUACTE e Tpia €101 Kot 7o
GUYKEKPLULEVQL:

HAT-trie. Avt] 1 doun dedopévaov mposkvye ®C o, mTpoonddeia vo ehattwbovy ot
ONUOVTIKES OOLTHGES GE UVAUN TOV £€XOVV Ol TEPLOCOHTEPOL TOTOL OEVOPM®V, HECH NG
peimong tov peyéBoug toug. Baoiletar oty 10€a Tov burst-trie Tov PTOPEL VO LEUDGEL TOV
aplOpd tev kOpPov evog dévopov £mg kot 80% pe TOAD HKPO 0pVNTIKO OVIIKTUTO GTHV
tayvtta tov. H Pacikn eilocopio sivor mog ota gUAAL TOv 0EVOPOL VILEPYOLY KATO101
kovBadeg (buckets) mov mepiExovv cupPforocelpés e Kowvd mpodepa. Av Evag KovPdg yivet

a b c I x Yy z
a/ \
b
a b c - x Yy z
ademic tist gust ike
tor stralia

AT || T il ¥

IxAuoa 6: Aoun HAT-trie pe toug KOUBoUG Kot Ta buckets Tou givat MIVAKEG KATAKEPLATLOUOU

TOAD HEYAAOG TOTE «omaey Kol Ywpiletol oe KpOTEPOVG KOVPAOEG TOV EXOVV GOV YOVEIC
véoug KOpPovg tov dévopov. Kdabe kovPdg ecwtepikd viomoleiton g pio. cuvoedenévn
Mota pe ototyeia 116 cLUPOAOGELPEC.

Avtd kabiotd to burst-trie un anodotikd 0@od 1 cvvdedeuivn Aloto dgv £)EL KOAN
ovunepipopd otnv KM. To HAT-trie eivar o wo KM-@ilikny €k60yn TOL UEIDVEL TO
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Kk66T0¢ avalntnong o€ £vo KOuPd LE TO VoL OPYAVAVEL TIG ETLUEPOVS GUUPOAOGELPEG MG EVOV
nivako katakeppatiopov. H avalnmon eivor mohd mo ypiyopn, agol oe kdbe BEom Tov
mivako ot cupPorocelpég amodnkevovTo cuveyoeva Kat apa propel va avénbei to péyebog
TOV KOVPA Kot va, Letwbovv axopa Tapamdved ot KopPBot Tov dEvOopov.

Tpradikd 8évopo. To tpradikd dévdpo eivar pia AA moapdpola pe to dvadikd 6évopo. H
KOpla dtopopd eivar Tmg kaBe kKOUPOG £xel To TOAD Tpio odd avti Yo 6vo. Kdébe kdpupog

emopuéveg eraolevel €vav yopoktnpa, TPES OelkTeG Tov akoAovBobvtol av o TPEY®V
YOPOKTAPOG EVAL LUKPOTEPOS, LEYOADTEPOC N 100G LLE TOV YOPAKTHPO GTOV KOUPO, Kol pid,
onueimon vy 10 €av 0 KOUPoc avtdG amotehel TO TEAOG MG  amoOMKELUEVNC
ovpPorocelpdg.

Ta  wOp  mAgovekTAUOTA  TOL
TPLOOIKOL OEVOpPOL glval M amAOTNTA

i
TOV Kol 1 KOAN péon mepintmon /’j:\
o :

Aertovpyiag — k6otog O(logn). Enic b 0
Xpncm?nofsi YEVIKAL iwé(rsgo)xo’)po y:l; / :\ / \\ AN
v onofnkevon T@v cvuPoroceEpav, ° e\ r.j " t fl |t
apoV 6cec ocvpporocelpég €xovv O IS V é 1‘/ \r Clj
npoBépata umwopohv va yPNCLLOTOOVV T

Kowovg KOUPoLS. Xto dvadKd 6EVOpo, as at be by he in is it of on or to

K6Oe wkopPoc éxer  amoBnkevpévn

O?\,(')KM’]pT] mv GUHBOXOGSIQ(X, TEpd’YMOL IxAua 7: Napadsiypa tpladitkol §£v6pou yLa GUYKEKPLUEVEG AEEELG
OV ALEAVEL TIG OMOLTNOELS GE UVUT.

H odoun tov 1prodikod o0évopov to KOOIOTA KATAAANAO Yoo EQAPUOYEG OVTOUOTNG
dwpbwong/oouninpoong kot eAEyyov  opboypagpiag mov dev  glvor  gdkoAo  va
TpoypatoromBovv pe AAAeG SOUEC.

Patricia_trie. To Patricia trie oe xdfe woppo éxel amobnkevpévn OAOKANPN TNV
ovpPorocelpd poall pe évav  oképoto OV ONUOOEVEL £vol GLYKEKPIUEVO bit g
ovpPorocepds. Otav Béhovpe va ehéyEoope av pior cvpforocelpd eival amoBnikevpévn
otov KOUPo mpdTo EAEYYoLUE HOVO TO GLYKEKPIUEVO bit. Av glvar To 1010 TOTE EAEYYOLLLE
v voéAown cvpforocelpd. Eqv dev tavtiletan 10t akolovBolpe to 0e&i povomdtt av o
bit eivor 1 kot to apiotepd av givar 0 kot exovarapfdvovpe Ty S1001KAGI0 GTOV ETOUEVO
koppo. Xav doun givor mo moOAVTAOKN a@ov amortel TV VmapEn evog otabepov KoOpPov —
avaQOpPAG OTNV KOPLEN TOL JEVOPOL Kol Ol OgikTe UmMOpovV va delyvouv 6e KOUPoLG
vynAdtepov emmédov.To Patricia trie eivar katdAAnAo yia epappoyéc pe IP drevbovoeig 1
TOAD pEYaAEG GLUPBOAOGEIPEG, POV Umopel Vo YMTMOGEL TOAAOVG €AEYYOUG HMOG Ko
ocuvnBmg pog evolapépovy povo cuykekpipéva bits. H etcaywyn kou n dtaypagr Tov kOpov
elvan mo mepimlokn ®oT1dG0.

Ievikdg, Ta d€vdpa dev €xovv TOAD KaAN cuumepPlpopd 6cov agopd v KM, dmwg
Kol 01 TT0 TOAAEG OOpEG e OgikTeg ev Yével. Kdmoleg tpomomot)oels, Onwg 1 elcaymyr| evog
TiVOKO  KOTOKEPUATIOHOV otnv  wepintwon tov HAT-trie, umopodv va Peitidoovv
ONUOVTIKA TNV amO000n. ANUIovpyNoope EKI0YES TOL TPLOSIKOD dEVEPOL Kot Tov Patricia
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trie pe kaAvtepn cvpmepipopd epappolovrag o kown pebodoroyio Peltictonoinong ko
oTN GLVEKELD OEIOAOYNOOLE TNV 0TOO0GT) TOLG GUYKPLTIKG LE TIG TOAOTEPES OOUEC.

H Poaowm Wéa eivar vo €ovpe cLOYETIGHEVOVS KOUPOLG o€ Yeltovikég Béoelg
LVIAUNG, 10aviKd 6TO 1010 pmhok pviung mov petaeépetol oty KM. 'Etot dev Ba ypetdleton
vo épyetor Kovovpylo umiok yio kdOe xkoéppo, apov mAéov moAlol wopPor Oa elvar
«TOKETAPIOUEVOLY 6TO 1010 pmAok. Ot Aydtepec mpooPAcels oty KupLo. LV £XOVV GOV
OMOTEAECUO, TNV TOYVTEPT EKTEAECT] TOV TPOYPAUUATOC KOU ALYOTEPES OMOUTIOELS OE
gvépyela.

To kVpro TPOPANUA TOV TPETEL VO AVTILETOTICTEL VAL TO YEYOVOS TG 1) OECUEVOT
Ka0e kKOPPoL TOL BEVOPOUL YiveTan Eex®PloTA (e EVTOAN GTO AELTOVPYIKO GUGTNUA) KOl GTN)
GLVEXEWD AVTA T SACTAPTO KOUHATIOL LVvAUNG cuvdfovton pe delktec. Ot acvveyeles g
LVAUNG TG doung ompovpyobv TpdfAnUe 6ta cuoTHHaTo TPOPAEYNS OV EYovV OA TO
oLYYPOVO GUGTHLATO Y10 VO TPOPAETOVV TO HOTIRO TOV TPOGTELACEDY GTN UV DOTE VAL
QEPVOLV Ta Kpioo Koppdatia pvnung oty KM eykaipoc.

[Na va emAdcoovpe 10 TPOPANUA TPEMEL VAL £YOVLE po GVAAOYN atd KOUPovg o€ Eva
nivako (mov €yovv decuevtel 6e cvvexdueveg Bl LvuUNG) Kot v Tovg dtaporpdlovpe
avoAOYmG TIC avayKeg TG epopproync. 'Etot, pe po kAnon ovotiuatog (malloc) Oa éxovpe
moAAOVOC KOuPovg dwbécipuovg. IThéov m déopevon evog kopPov Tov dévopov Ba
KOVOTTOlEITOL O pia O1KN pog cuvaptnon mov Ba Kottdel av vrapyel d1abEcipog KOUPog
Pog d1dfeon amd o TOHG TOV EXOVLE NOT OEGUEVGEL Kot av 0L, Ba avalapfavel vo KaAEoEL
v malloc kot va dnpovpyfoet pia Katvovpytlo opadn KOpPwv.

; array_part: array_part: array_part:
mylist . next next next: @
current_slot =1

node 7 node 4 node 1
empty 1 node 5 node 2
empty 2 node 6 node 3

Ixnua 8: Koppol 8£vSpou Kot 0 TPOMOG LLE TOV onoiov £xouv dsopeuBei

O1 31evBVVOELG LVAUNG TOV EMUEPOVG TIVAK®OV TOV KOUP®V amofdnkeboviol o€ o
devtePeHlovsa dopUn OESOUEVAOV OV EYEL TNV HOPPY TNG CLVOEdEUEVNG AlOTOC (OTE VL
£Yovue TPOGRACT OTO KOUUATLO TNG LWVIAUNG TOV £XOVUE OECUEVCEL YloL OTAV XPENGTEL VOl TOL
anodeopevocovpe (Zymua 8). To péyeBog g Alotag pukpaivel KaBdg 10 péyeboc tmv
TwvaKov avéavetar kol cvvnwg givol apeAntéo oe ocvykplon pe 10 péyebog O6A0L TOL
0évopov. To péyeboc Tov mivaxka eivar oy gvyépela Tov oyedtaot va to Kabopicel. Epeic
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emiéEape va €yovpe mepimov 50 kopPovg avd mivaxa. Ocot meptocdTEPOL o1 KOpUPotL OG0
MyOTEPEG 01 KANGELG GLOTNUATOG OV ¥peLdlovTal, aAAd avédvetal 1 TOavOTTA v EXOVUE
OTOTAAT VUG,

Av16 oV OOV E G cLVEKELD Etval Vo £YOVE TOVG KOUPOVC-TTAOLGL GE YEITOVIKEG
0éoelg pvung pe tov yovio. Kotd tnv tpocmélact evog Suadikov dEVEPoU Yo TapadELy L,
vapyet 50% mBovotnTa vo emdeyel £va am’ ta VO TodLd evOg KOUPoLG Kabmg dtaoyileTon
éva. povomatl. Av kot to 0vo wodld ivon o dumhavég Béoelg pvnung (1 oto 1010 UTAoK)
UTOPOVE EMOUEVAS VO OTTOPVYOVE TOVAUYIOTOV TIC HGEG aoTo)ieG oTo emimedo g KM.
2NV KAAVTEPY] TEPIMTOOT TOV EYOVUE YOVEX KO TOUdLd GTO 1010 HITAOK UVAUNG TO KEPOOG
umopel va givor ToAd peyoaivtepo.

[No va vAomomBel to mapandve wotdco dev apkel vo £xovpe pio opuado KOPPmv
mov €&yovpe Oecpevoet opadkd. Ilpémer ko otv yerrovikoi koéupor oto mivaka vo
AVTIGTOLYOVV GE YEITOVIKOVG KOUPOVG 6TO 06vTpo. ATl €16ayel mOAAES mpokAnoels. [a
TOPAOELY LA, OEV VITAPYEL OTAOG Kol Orod0TIKOG TPOTOS Vo eE0GPAAMGOVE OTL TATEPAG KO
ondl Ba etvar og yerrovikovg kopPovs. Kabmg draporpalovpe toug KOUPOLG OV EYOVE
otV 6160eon pog, dev EEpovpe av Bo TPETEL VoL KPATHGOVIE KATOWOV YiaTi KAmTol0g KOUPog
umopetl va €xel oto pEAAOV moudld (1 moca Bo eivar avtd). Av Béhape avtd va 1o Aafovpe
VoYM, ciyovpa Ba elcdyope pLeydAn TOATAOKOTNTA TOV ol EAAYIGTOTOLOVGE TOL OPEAT TNG
pebddov. Xperaleton pa ypriyopn amdQoot).

EmnpocHétmc, to 6évopo eivar pior Suvoptkr) Sopr| 000UEVOV Kot 1| LOPPOAOYiO TOV
oALGCEL O10PKMOG KATO TNV EKTEAEST €VOC TPOYPAUUATOS. AKOUO Kol OV ElYOE KATOOV
TpOTo va e€ac@aiicovpe 0Tt Katd T0 SHOpacHd TV KOpPov, madi Kot yovéag Ba eivor
o€ YETOVIKEG Béoelg pvnung, dev €yovpe kapio e€ac@diion ott ot Vo avtol koOpPot Oa
ouveyiocovv va £(ovv TNV GYE0TN YOVEQ-TOLO00 UEYPL TO TEAOG TOV TTPOYPApLATOS. Mmopel
véol kKOUPot va e16oBovv 6TV cuVEXELN, 1| KATOL01 VO S10rypopoV Kot VEES OYE0ELG HETAED
TV KOUP®V va dnpiovpyndodv.

Téhog, m dSwypapr tov kOuPov ewodyst éva  okdpo muo:  wdg  Oa
anedevBepodcovpe ) pviun avt. Kabog ot kopPor &xovv deopevtel opadikd mpémet vo
OTOOEGUEVTOVV Kol OPAOIKE TPAYUHOL TOL OV €lvol €QIKTO OGO £0T® Kol KATOlol Elval o€
xpnon. To va «kpatdue emmAéov oToElo Yoo KEVOUG KOUPOLG KoL VoL TOLG
ETOVOYPTCILOTOIOVLE OV Elval PIKTO (emmAéov EAeyyol kKo 0E0E1G LvNUNG) 0VTE GLVOPES
pe ™ erhoco@ia pag aeov dev Bélovpe amAd vo EavoypnoYLOTolovE TOVG KOUPOVS, oAAL
va Toug Palovpe kot oTIC 6MOTEG BECELG VNG,

Mo va AMoovpe avtd ta mpoPAnuoato mpémel apyikd va cvpuPipoctodpe pe T0
yeYOvOg ¢ 1 aAniovyio TV KOUPoV Kot ot oyéoelg petalhd Tovg Oa aAldlovv Guveymg
KOTO TNV EKTEAECN TOL TPOYPAUUATOS. Me avtd Loy, Ho oAy Abon eivar va yiveton
avadlopydvmootn Tov 0EVOPOL OvaL TOKTO SLIGTALOTO MOCTE ALTO VO OMOKTA TV embounty|
dopn. H avadiopydvoon doviedel og e€ng. Otav Anebel 1 andpaon yio avadiopydvoon
OEOUEVETAL €Vl GUVEXOUEVO KOUUATL UVAUNG Yoo OAOVLG TOLG KOUPOLG. TN GLVEXEL TO
0€vOpo draoyileton am’ TV KopvEY| Kot ot KOPPot tov d€vopov avtiotoryilovtan oe KOUPovg
TOV UEYAAOL GLVEYOUEVOL TiVOKO COUP®VO, e TNV eMBLUNTN 1WB10TNTA (7.} YOVEQG-TTONdd
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o€ ovveyopeveg Béoetg pvniunc). H dwadikacio eravolappdvetal avadpopikd yio GAOVG TOVG
KOpupovg péxpt va kolveOet 6o to d€vdpo. Lt cvvéyeta avaPaduilovpe kot Tovg deikteg
®ote va dgiyvouv otovg KOUPove TG VEAG doung kot Oyt TG maAldg. Téhog péver va
aneAevbepmdcoovpe TIG B€oelg pvnung TV oMoV KOuPov — €vag am’ Toug AOYOVuS Tov
YPNOUOTOOVUE Ul AMOTO Y10, VO, TOLG KPOTARE — apov dgv xpetdleTor vo Kpatdue dvo
aviiypo@o Tov O&vOpov. X100  TEAOC NG ovodopydveoong oty AMoto  pE TS
ypnopomoovueves Béceic pvnung amdd Palovue 10 véo (HeYAAO) KOUUATL UVAUNG TTOV
YPNOLOTOLOVLE.

H avadiopydvwon e16dyel KAmolo PeloveKTRHOTA OTMS Y10, TopAdEy o OTL Ty oo
OTOUOTOEL 1) PON TOV TPOYPAUUOTOS Yoo va. avtiypoagel to dévopo. Emiong, m idw m
avTLYPOOY| £YEL KATO10 KOGTOG POV YPpeIdlovTal EMTAE0V KOKAOL KOl VTOAOYICTIKY 16V Y10
va wpaypatoromBel. AKOpo, TO OTOTOTOUO OTN UVAUN TOL VTOAOYIOTH, £0TM KOl
TPocwPIVE — 000 dwopkel M avadiopydvoon — av&dvetal, a@od TPAKTIKA ypetdleTon
IMAAC10¢ YMDPOG YO TIG OLO EKOOGELS TOV 0EVOPOVL. ol Kamoleg epapproyEG aVTO PTOpEl va
unv elvan TpoPAnpa, eved v dAieg va etvat. o va pewwbel n enintoon ot pviun Oa
pumopovse va avalnmBel o otadioKkn aviypaen Tov OEvOpov, €va KOUUATL TN @opd,
EVOEYOUEVMS e KATOw emMmALOV €MPAPLVON GTNV TOAVTAOKOTNTO, OGTOGO OEV E£YOVLE
EOTIO0EL GE TETOlEG TEYVIKEG. AvTd Tov €xel onuocio €ival To TEMKO OTOTEAECUO VO
avtiotafpiler ta peovekmuato. To 0évopo peTd TV avadiopydvmon Bo emidetkviel
KOAVTEPT] GUUTEPLUPOPA KO TOYVTEPT] EKTEAEGT] TMOV AEITOLPYUDY TOV YAPN OTN KOAVTEPT
ypnoponoinon g KM. Enagicton otov mpoypappotiot va aSloAoynceL av 1 epapuroyn
emdéyetal pa emPdpovon (otrypoio) otn pvnun yo va £xet KOAHTEPN amdO0oN.

Address List Address List
—_—— >
! ~ . R /! | \\\ 1
Ll iaida - | reorganization) 122 N3 N4 N5 \6
memory chunk #1 .- y memory chunk #2
1 1
! . 1 2 3
1 4 3 4 )(s 6

IxAua 9: MpLv Kot HETA TRV avadlopydvwon tou §£vépou

Me avtd T LELOVEKTILLOTO LITOYT], TO EMOUEVO GTAAIO EIVOL VO ATOPOGIOTEL GE TO1EG
oTtypég Oa yiveton n avadiopydvaoon. I'evikd, oev etvan emBopntd va copPaivel modd cuyvd
yloti T0 KOGTOG TOV VO 0VOdLOPYOAVAVETOL TO 0EVOPO Ba vTEPKAAVYEL TO KEPOOG 0T’ TNV MO
amodotiky| doun. H avadiopydvmon Ba mpémnet va cupPaivel epdcov To dEvEpo €xel LITooTel
EMOPKEIG TPOTOTOMCELS GO TNV TEAELTOIO POPA TTOV TPAYLATOTOMONKE, DOTE VO EYOVUE

XX



HeyaAn mBavotTa vo Xl OMOAEGEL VoL LEYAAO KOUUATL TNV KOAY TOV cuumeptpopd. Ot
TPOTOTOMCELS Umopel va eivon eite eloaymyés, eite daypapéc kouPov. Evag pikpog
apOpdc tporomomocwv (Yo mapddetypa povo 1000 o €va dEvOpo ekatoppvpiov KOUP®V)
dev mpOKELTAL Vo EMNPEACEL 1010{TEPA TN HEOT TEPITTMOT). LT TEPAUATO LG, TO OEVOPO
avadLOPYOVAOVETOL OTAY 01 OAAAYEG IOV €xEl VITOGTEL €lval ioec pe To péyebog mov eiye Kotd
™V TEAevTOin avadlopYavmon.
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Iewpopatika anotedéiopota

Metd Vv €Qoapuroyn TV PEATICTOMOMGEMY TOV TEPLYPAPNKOV TPOTNYOLUEVEMG,
YPEBLETOL KATO10G TEPAUATIOUOS DOTE VO OEIOAOYICOVUE TO OTOTEAEGUATO TOLG GTNV
mpaén ko va emaAndevcovpe to Bewpntikd oamoteAéopata. Ot SouéEC dedOUEVOV OV
YPNOUOTOGOLE OTO TEWPALOTO Elval TO TPLdIKO d€vEpo, To Patricia trie ko to HAT-trie.
O ot6Y0G eival vo LEAETICOVIE GLGTNLLOTA TTOV £XOVV SLPOPETIKN 1EPAPYIO VUG, OLPOV
Kdmola cvotiuata dabétovy KM evd dAra oyt Tlepvape emopévmg omd o Tpocsyyion
aveEdptn Tov cvotiuatog (taAd DDTR) og po mov Aapfdvetl to chothua vIoym.

To vAkd mov ypnoporomdnke givar 10 evoouatopévo cvotua Freescale i.MX6,
ue 4 mopnveg mov dwabétel dvo eminedo KM kot 1GB RAM, ko 1 Myriad mhakéta mov
vrootpilel 8 mupnveg kar IMB ko kOpla pviun. H Myriad mhokéta dev €xel chotnua
KM «xot emiong €xet moAd pikpOTepN Y@PNTIKOTNTO LWVUNG.

lNa v oafohdynon TOV  ATOTEAECUAT®V  YPNCIULOTOMONKAY  OpIGUEVAL
KOTOOKEVAGUEVE apyeior eAEyyov OAAG Kor kdmowe omd mpaypotikés eeoappoyéc. Ta
Kotookevaopévo  (synthetic) apysio amotelovvtar omd 10 ekotoppvpla mpdéelg oe
ocvuporocepéc-apBuods (swcaymyn otoxeiov, dwypaen N eviomopds). Ta  apyeio
TPOYUATIKOV EQPOPUOYDV amoteAovVTOL 0mtd £va cUvoro [P devBivoewv (Kodikomompuévav

cav apdpol yio v mpoctacio
Synthetic — 10% updates - Freescale

* New solutions in the my avevopiag) Tov

% Sxiendad methodology | s ocLVOEOMKOV GTOVG servers yio
PN Hat-trie 10 Moykoopo Komerho 1998.

= 1 . \] . Y‘x Amotehodvtan  omo 3 exa-
S 2 \\IemarV/ . lemary-cache-opt Topuvplo. S1evbviveelg omd TIg
ST S omoiss povo 4% sivat pove-
E W dwéc. Emmpocfétmc, ypnotpo-
g 10 + Ternary-cache-opt TOL0VVTAL KOl ToL SESOpEVEL Omd
é 5 x:::r:: éva Ae€ucd. Xy Tepintmon g
Patricia_cache-opt Myriad, Adéy® 10V TEPIO-

’ [} 20000 40(;00 60000 80000 100000 120000 140‘000 160000 18(;000 plGuéVOU XO,)pOU I’I‘Vf“’lng Tcpéngl
Throughput (operations/sec) va ndpovua £vo, VTOGVLVOAO

aUTAOV TOV Oed0-UEVOV  apOD
ypedleTon va £QovpEe LKPOTEPOL
0évdpa. Ot petpwég  mov
KOTOypAQoOLUE givar 0 aplBlodg TV EVIOADV oVl OEVTEPOAENTO KOl TO OTOTOWILO TOV
wpoypdupatoc otn pvnun. [Hopoakdrto ovaeépovior EVOESIKTIKO KATO0 OTOTEAEGLLOTO. Y10l
KkéBe cvoTUO.

Ewkova 10: AltoteAEoATA YL EVOL KATALOKEUOOUEVO OPXELO EL0OS0U
TIOU TEPLEXEL KPO aplBLLd Ttpomtonotnoswv otov Freescale

210, KOTOOKEVAGUEVO apyeia pe KpO aplud TPOTOTOGEMY, TOPATPOVUE OTL TO.
aroteAéopata TG Pertiotomoinong eivor aentd (Ewcoéva 10). Avtd eivan avapevopuevo,
aeov TO 0&vopo ypeldleTon va avadopyovmbel Ayotepeg @opéc kot UETOED TMV
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avadl0pYOUVAOCEDY EXOVUE TEPICCOTEPEG TPOOTELAGELS TPAYO TOV LEYICTOTOIEL TOL OPEAN
¢ Peltiotomoinong. Ot evtodég/ devteporento av&avoviot £og kot 30-35%. H doury HAT-
trie &gl TOAD KOADTEPT OTOS0GT TAVTMG, TPAYLO OVAUEVOUEVO apOV PacileTol 6€ TIVOKES
KOTOKEPUATIOHOD Yo TNV ypnyopn oavaltnon oJOedouévav Kol OTNV  GUYKEKPLUET
ePInTOOTN o1 avalnNToELS KUPLOPYOLV.

Ocov apopd tn LvHuT TOL TPOYPAUUOTOC, Oa Tepipeve Kavelg ot BeATioTomompuéveg
eKOOGELS VO £X0VV NTAAGIO VUM (€0TM® Kot TPOCSOPIVA) amd TIC amAég Yol ypetaleTon va
AVTLYPOQEL TO 0EVOPO KATA TNV avadlopydvmon. o6td6co avtd dev cupPaivel kot £xel va
Kavel pe 1o mTOTE GLVEPN M TEAELTAIO OVAdIOPYAVMOT. AV €YEl TEPAGEL UEYAAO SLAGTNLLOL
YOPIG AvadIoPYAVMOT), TOTE TO 0EVOPO LEYAADVEL Kol TO KOGTOG TNG «kpvPetoy. '’ avtd ot
Bedtiotomompéves ekdooelg (1witepa oTNV TEPITTOON TOV TPLOSIKOD OEVOPOV) ExouV
avVTIOTOLEG OMOTNOELS UVNUNG. e amolvteg Tég to Patricia trie ypeidletor mopomdvem
VAU Y10t TO TPLadiKo dEVOPO EKUETAALEVETAL KOWVE TTPoOEpaTA OTIC GVUPOAOCEIPEG MOTE
va gmavoypnoiponotel koppovg, o avtibeon pe to Patricia trie mov mpénetl av amobnkevoet
6\ ) ovpPorocelpd. Katt avri-otoryo cuppaivel ko oty mepintwon tov HAT-trie.

Av avénoovpe Ttov
apBud tov updates oto 80%
(Ewova 11), t61e Ba éyovpue

- Synthetic — 80% updates - Freescale

Hat-trie
éva LEYOADTEPO OEVOPO KO 200
, o @ Ternary-
TEPIOOOTEPEG  EI0OYWYEG N = cache-opt __
daypagéc dedouévov emo- S 10
. . . ®
pévog 1060 meplocdtepe N X
; , b = Patricia
@opég Ba ypetdletan va yivel ;’ 100 o
n avadopydvoon tov ot g u Ternary
(7]
Pertictomomuéveg ekdooels. = ¢ Ternary-cache-opt
’ . Hat-trie
H vAomoinom pe to HAT-trie
X Patricia
GUVSXlCSl va SXSI TnV 0 Patricia_cache-opt
KOAUTEPN  0mOd00M,  GAAG 0 10000 20000 30000 40000 50000 60000 70000 80000
(mﬂ’] ™ (popd n Swupopd pe Throughput (operations/sec)

TG GAAEG  €KOOOES  €xEl
ehayrotomromBel. H xdpua
oltio etvon TG ot ypryopeg
avalnTNoel mTov TPOGEEPEL ot 1N doun €xovv OA0 kot Aydtepn Papdtmra kabmg o
apOuog tov petatpondv petafaiietor. Emiong n ovykekpiuévn texViKn €YEl GNUOVTIKN
emPdpuvon tav vapyovy TOAAEG adlhayEc, emedn ypelaletal va TpomomomBovv ot koot
Kot vo Eavapotpactovy ta otoryeio petald tovg. H BEATiomn vAomoinon pe 10 Tpladikod
dévdpo pmopei va mAncldoel o toyvtnta o HAT-trie amoitdvtog tovtdypove Atydtepn
pviun. Ocov agopd T UV, TOPATPOVUE U0 AVTIIGTOLYN GYECT KE TNV TPONYOOUEVN
TePimTOON.

Ewkova 11: AntoteAéopata yLo £Vol KATOLOKEUOOUEVO OPXELO ELGOS0U TToU
TePLEXEL HEYAAO aplOO Tpomonolcewyv otov Freescale

Ta avtictoryo oamoteAécpata yoo v Myriad mAotEOpUa QOivOVTOL TOPOKATM
(Ewoveg 12 kou 13). Xmnv Myriad 1 onpavtikn dtapoponoinon sivar mmg dev vrapyst KM
EMOUEVMG 1] AVASIOPYAVAOGT TOV OEVOPOL eV £xel kavéva vomuo. H Myriad €yt modd pukpn
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pvipn (g taéng tov 1MB)

Synthetic — 10% updates - Myriad

TPAyHo TOov onUaivel TS TO 25000
0évdpo Ba elvarl avoyKaoTIKA
TOAD WKPOTEPO. XTO TPMTO 20000
nelipopo mTov ot avalnTNOoELS

KLPLOPYOVV T0 TPLUOKO

, Ternary

15000
0€vopo mapovotdlel KahbTEPN

toayvmta and 1o HAT-trie,
®wotd6c0 votepel oe  Bépata
pvnung  (mioo kot omd 1O

10000

Memory Utilization (B)

Hat-trie

Legend:

Patricia ® ¢ Ternary

5000

Patricia trie). O k0Oplog Adyog
Yl TO0 TEAEVTOHO Elvol TG OE
pkpd  aplBud  dsdopévav, m
mOavOTNTO VO VITAPYOVY KOVEL
npoBéuata  etvan
erdoT,

0 200000

emiong
EMOUEVOG  UEYOLO

TOGOoTO TV  KOUPwvV TOL

® Patricia

Hat-trie

600000 800000 1000000 1200000

Throughput (operations/sec)

Ewkova 12: AOTEAEOLOTA YLOL EVOL KATALOKEUOLOUEVO OPXELO EL0OS0U IOV
TLEPLEXEL UIKPO apLlOO Tpomonotjoswyv otnv Myriad

TPLad1KoD d3EVOPoV dev emavoypnotponoteitat. To TAypo oty anddoon tov HAT-trie givar
appnrta cvvdedepévo pe v EAletyn KM pog kot givor pio dopn| oxedlacpuévn yuo tnv

KaAn a&lomoinon g.

Ytov mopokdto mivako ([livaxoag 14) eoivovior o ypovoc ekTéAEong katl 1)
emPapovvon tov Pertictomompéveoy doumv yio Ol ta apyeia eAéyyov. To kdoTOg OLTO
oxetiletor pe TV avadlopydvedon TOv 0EVOPOL ToL avoAvOnke mponyovpévms. Il
ovykekpéve To execution time overhead eivol t0 mTO606TO TOL YPOVOL EKTEAEGNG TOL
Kotoloppavetor and v avadopyavoor, evd to memory footprint eivor 1 emmAéov
KOTOVAA®GT UVUNG OTOV O VEOS TIVOKAG OEGUEVETOL MGTE VO, OVTLYPAPEL TO TOALD dEVOPO

Synthetic - 80% updates - Myriad

80000

Ternary
70000 .
o 60000
-
c
.3 50000
@
N
= 40000
=2
2
© 30000
£ Legend:
%} - # Ternary
20000
- M Patricia
10000 Hat-trie
Hat-trie

0 100000 200000 300000 400000 500000 600000 700000 800000
Throughput (operations/sec)

Ewkova 13: AfoTeEAEOHATA YLOL EVOL KATALOKEUOOUEVO OPXELO EL0OS0U
TIOU TEPLEXEL MEYAAO aplOud Tpontonotjoswv otnv Myriad

XXiv

He €vov TO OmOTEAEGUATIKO
TpOTO.

Ocov agopd 10 emt-
TAEOV KOGTOG EKTEAEONG, OVTO
oyetileTon otévo PE TN OTUYUN
oL Ba yivel 1 avadlopyavmon).
[Na  mopda-detypo  av 1
televtaio avVa-0l10pYAvVmOT)
ouvéPn mpog otn ANEn TOL
TPOYPAULOTOS AVTOG O YPOVOC
Bo etvoar onuavtikdg, emedn
t6te TO 0EVOPO EVOE-YOUEVMG
o etvon  peyaivtepo (Gpa
TEPLoGOTEPO  OEOOUEVOL YPELd-
Ceton  va  ovtiypagodv) Kot
emmAéov  Bo  vmdpyer Alyog



Execution time Memory size
overhead overhead (MB)
Ternary Patricia Ternary Patricia
cache-opt cache-opt | cache-opt cache-opt
Synthetic
10% upd. 5.7% 5.38% 22 28
Synthetic
80% upd. 20% 18.4% 138 168
IP dataset 4.6% 3.6% 3.7 2.6
Dict. 100% upd.
alph. order 35% 15.3% 14.3 18.5
Dict. 100% upd.
random order 36% 20.3% 14.3 18.5
Dict. 35% upd.
random order 20% 12.1% 16.2 32

Nivakag 14: EmuBapuvon oto XpOvo eKTEAECNG KoL TN UVAKN Yo Stadopa apyeia etoddou

dbéoipog ypdvog MoTE Vo TpAyHaTononBobv apkeTég Aettovpyieg yio va opeAnbovue ar’
v véa doun). I'evikd ota apyeio mov Exovv moArég avalntioelg (synthetic 10% kot IP mov
&xel 3%) 10 KO0TOG AVTO ivar TOAD pikpd, ™G TAENg Tov 5% evd 660 avédvovtal ot
TPOTMOTOMGELS 6TO dEVOpo avePaiver péxpt ko 20%. To emmAéov KOGTOG GE ViU GLYVA
dev gtvor TpOPANUa piag Ko lvan otiypuaio.

Yvvoyilovtoc, ot mpoohnkeg otmv DDTR pebodoroyio pe v evoopdtoon tov
OUMK®OV ©g Tpog TV KM dopdv dedopévmv mov teptypaenkay, enckteivel tnv pebodoroyio
KaO1oTOVTOG TNV WKOVY Vo avTomeEEAOel Kot 6 TEPLOPICHOVS MG TPOS TO 1010 TO VAKO. Ze
TOAEG mepimtoels kamoleg Pareto — Béltioteg Adoelg dev B NTov aviyveLGIUES UE TO
nponyovpevo epyoreio. H ocviioyn tov AA gumlovtiletar, divovtog GTOV OYEOINOTN
TEPLEGATEPES OLVAUTOTNTES KOl EvEMETL.

Téhog, ov Pertiotomompuéveg AA pécm g avadopydvoons pmopel va eivor pua
KOAT EVOAOKTIKN oTIG KAaOIKEG AA. Av 10 emmAéov KOGTOG 6T Uvnun Kot 1 kaBvuotépnon
KOTA TNV avadlopydvmon Ogv eival onuaviikog mePOPICUOC, TOTE pmopel va emttevydet
peydan amodoon péca an’ v kaAvtepn aglomoinon g KM tov cvotiuotog.
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CHAPTER 1

The Dynamic Data Type Refinement (DDTR)
methodology

1.1 Introduction

Modern applications in various fields, such as multimedia and networking, are
becoming more and more complex and demanding. These applications often require high
performance which yields high memory consumption. Additionally, there is an increase in
the dynamism of the access pattern due to the high degree of interaction with the
environment (such as in the case of the wireless networks) [1].

There are many factors that contribute to the application’s dynamic behavior. In the
case of the wireless networks for example, depending on the network traffic, there may be
more packets to process with different sizes and arrival times. The packages must be stored
and then processed. In gaming applications, the actions of the user, that are considered
unpredictable, constantly change the game’s state and as a result, the resources needed by
the system as far as memory and computational power are concerned.

As a corollary, these types of applications do not allow for static memory allocation
during the compile time, before the program is going to be executed. This would be very
convenient because it is simpler, as the variables are bound to specific memory addresses
throughout the execution of the program, and is efficient without additional overhead for
dynamic allocation. On the other hand, it is very limiting and almost never suitable for
modern applications, because it is inflexible and cannot react to changes. Furthermore, it
usually requires allocating in advance enough memory to cover the worst condition that the
algorithm may face and this fact, apart from being difficult to predict for complex
applications, can also lead to wasted memory space and suboptimal usage.

Energy consumption and performance are the two most important metrics of the
efficiency of any embedded system. Especially in a large category of popular embedded
systems, such as handheld devices, energy consumption becomes more and more crucial as
the amount of processing power is usually satisfactory, but the duration of the battery (most
of the times) is not. Lower energy consumption from the memory system also leaves much
room for other improvements, such as bigger screens and more powerful processors, signal
receivers and more functionality. The memory subsystem is closely related to the energy
consumption because the memory must be constantly powered in order to keep the data
(leakage energy). More memory will require more power, all other things being equal. Also,
the faster the memory (SRAM), the higher the cost. Even the distance from the processor
affects memory consumption. Finally, depending on the memory, the existence of a cache
can radically change the performance and energy footprint of the program. A cache hit will
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generally reduce the cost of the access a lot while a cache miss will greatly increase it
(further if subsequent misses occur in the next levels).

To avoid the issues of wasted memory and inflexibility of a static allocation strategy,
the vast majority of modern applications use Dynamic Data Types (DDT) and dynamic
allocation and management [2]. These structures can be allocated and deallocated at
runtime, making it easier to follow the fluctuations of the storage requirements throughout
the life of the program and at the same time, using only as much memory as needed. The
most characteristic example of a DDT is the linked list.

Although the dynamism is a common ground of all DDT, there is still a great variety
of dynamic structures, each one designed to cover different needs. In addition to linked lists,
singly and doubly linked, there are also trees, arrays, hash tables, queues, stacks and more.
Many data structures can be utilized for the same purpose, but each one of them has distinct
advantages and disadvantages, like more efficient storage or lower search and update times.
A dynamic array (similar to C++ Standard Template Library) is better for fast random
accesses, but generally requires more space than a list or a tree, as it needs to be large
enough (because frequently changing the size can be expensive or impossible), whereas the
other two can easily change their size according to memory size requirements. The
existence of the aforementioned trade-offs makes the correct selection of the appropriate
DDT crucial for the application’s runtime characteristics and it is usually determined by the
requirements of the program and utilized algorithms. There is no general solution that is
optimal for every possible case, so each application must be examined separately.

Selecting the correct dynamic data structure for a specific application is not always
intuitive. The application may have different requirements according to the platform that
runs. A desktop computer has more memory to spare than a cellphone device. The
requirements may even vary among different cellphones. Also, most algorithms use by
default specific data structures (such as priority queues) for performance and the
programmer will need to run his own benchmarks and study each algorithm separately to
change some of the code to make it suitable for the specific application. It is obvious that
this is an error-prone and tedious procedure that requires a lot of time.

In this diploma thesis, we begin by presenting the DDTR methodology in the first
chapter. Its original implementation and its basic are explained as well as some additional
work that aimed at improving it. In the second chapter, we analyze some features of the
hardware of the embedded systems (cache memory) that play a major role in the selection of
the data structure and the application’s overall behavior, but nevertheless are ignored by the
DDTR methodology. We present some techniques for improving the cache behavior of the
data structures. In the third chapter, a methodology is presented for giving some tree data
structures improved cache characteristics and the challenges that occur in the process.
Finally, the modified data structures are evaluated through a wide set of benchmarks and the
results are analyzed. In the last chapter, some conclusions are drawn as well as ideas for
further work in this direction.
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1.2 The DDTR Methodology
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1.1).

Figure 1.1:3-step DDTR Methodology flow

The first step is the exploration at the application level based on the application
dynamic data access behavior. Each DDT of interest in the application is marked for
profiling and then the application is run for a typical representative input. The most active
data structures are revealed by this process and the source code is modified to link each
dominant data structure with a custom C++ DDT Library. At this first implementation, the
DDT library was comprised of 10 different DDTs and is described in [4]. This procedure
does not alter the functionality of the application. The typical functions such as insert,
delete, modify are supported. Then the dominant DDTs are automatically changed and all
combinations are used while the application runs with the trace input. Then, the
combinations that yielded the lowest energy consumption, shortest execution time, fewest
memory accesses and lowest memory footprint are kept.

For the second step the difference of various network configurations are taken into
account. The network parameters are extracted from the data in the traces. The most
important parameters for networks applications are usually the number of nodes, the
throughput and the typical packet sizes used (e.g. MTU packet size). Other parameters are
more related to the application like the Radix Tree size which is important for the I1Pv4
routing application [5] and greatly affects the exploration. This stage requires input traces
that are relevant to the network configuration. The combinations from the previous step are
taken and each one of them is simulated for all different configurations. Then again the best
results are selected.

In the third and final step, the designer is provided with a Pareto-optimal set
represented by a Pareto curve (Figure 1.2) after the results of the log files from the previous
steps are processed. Instead of one solution the designer has many choices of combinations
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Figure 1.2: Performance vs Energy Pareto points and optimal points

that yield different trade-offs (one may have better energy performance while another faster
execution). From this graphical view it is easy to select the appropriate method that satisfies
the application’s needs.

This novel methodology and the supporting automation framework led to
acceleration of the execution time by 20% in average and reduction of energy consumption
by 80% on selected applications. Those applications consist of a routing application, a
context switching algorithm, a firewall application and the Deficit Round Robin scheduling
application. Those applications were taken from the NetBench Benchmarking suite [5].
Another advantage that does not appear in the figures is, of course, the reduction of the
design time and the fact that the methodology does not require any changes as far as the
hardware and the application’s functionality are concerned.

1.3 Limitations of the original implementation and the new
DDT library

The exploration in the aforementioned methodology is supported by a DDT library
that is called Matisse profiling tool. Its main disadvantages are the low flexibility and the
limited DDT support that do not allow the application of this methodology to complex
applications with complicated dynamic behavior. Modern multimedia and network
applications utilize many advanced data structures, such as sorted lists and hash tables,
which are not supported by the Matisse tool. Additionally, this tool does not distinguish
between DDT functionality and DDT implementation, nor exploited the advantages of the
object oriented programming. As a result, the extension of the library and the combinations
of DDTs in more complex structures is rendered extremely difficult. Also, limitations in the
design make the integration with the application difficult because each object was treated as
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an array of basic data types (like integer). For larger applications, applying the tool is
infeasible and time consuming. Finally, the user is unable to reduce the exploration space by
selecting specific combinations of DDTs and therefore the exploration time is prohibitive
for complex programs as every possible combination must be investigated.

Therefore a superior DDT exploration methodology was developed based on a new
DDT library tool [6]. This new library follows a different approach as it introduces the
concept of Abstract Data Types (ADT). The ADT is an abstraction layer between the
application and the data and contains the methods that are used to access and modify the
data. The exploration is easier and therefore the methodology can be applied to various
domains, apart from networking applications because the application can ignore the
underlying implementation and just conform to the interface to serve its requests. The
common operations for every data type are:

e Insert: addition of an element in the data structure.

e Remove: deletion of an element from the data structure.
e Get: returns the element’s value without modifying it.

e Set: modify an element to have the desired value.

The abstract operations make it easy to swap between different data types without the need
to change the source code. Additionally, we can have many implementations for each
abstract data type and the DDTs are now the concrete instances of the ADTs. Below we
present the supported ADTSs of the new library:

v’ Stack: LIFO (Last In First Out). A pile of objects that can be pushed or popped from
the top of the data structure.

v" Queue: a collection of objects that can be inserted from the one end and removed
from the other end.

v Deque: an extension of the queue where objects can be inserted and removed from
either end (double-ended queue).

v" Unsorted List: a collection of elements where each one (except the first) has a
unique predecessor and (except the last) a unique successor. In the unsorted list the
elements are not in any particular order.

v" Sorted List: like the unsorted list but the elements are sorted based on some criterion,
such as the value or the lexicographic order.

v' Hash Table: uses hashing techniques to locate elements in relatively constant time in
a structure by extracting its locations from the unique key that is assigned to every
element.

v' Set: an unordered collection of elements (without repetitions), chosen from a pool
(base set).

v' Multiset: like the set, but without the restraint of each element appearing at most
once.

v Tree: non-linear structures that are generally used to represent a hierarchy. Each
element in the tree (node) has some children and one parent (except the first).
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ADT Data structures (ADT implementation variations)

From the aforementioned list

i Stack Stack As LinkedList
the Matisse tool supported only Stack As Array
the Unsorted List DDT. Each of =~ Queue s e Lokl
. Queue As Array
the ADT can be realized by Deque Deque As LinkedList
different DDTs as shown in Deque As Array
: Unsorted List List As Array
Table 1.3. Depending on the List As Array Embedded
selected DDT each operation is SLL LinkedList
; ; } DLL LinkedList
implemented in a different way. SLL LinkedList with Roving Pointer
DLL LinkedList with Roving Pointer
For example the ADT for the SLL LinkedList with Arrays
queue supports the classic DLL LinkedList with Arrays B
. SLL LinkedList with Arrays and Roving Pointer
operations of push and pop. How DLL LinkedList with Arrays and Roving Pointer
those operations are going to be  SortedList L ey
) A List As Array Embedded
implemented is dependent on the SLL LinkedList
.- DLL LinkedList
deC|S|0n Whether an array or a SLL LinkedList with Roving Pointer
H i H DLL LinkedList with Roving Pointer
linked list YVI|| be. used fc?r the Ty ey
queue. This object oriented DLL LinkedList with Arrays
. SLL LinkedList with Arrays and Roving Pointer
approaCh makes It eaSy to eXtend DLL LinkedList with Arrays and Roving Pointer
the list and insert new
imp|ementati0n3- Table 1.3: Used ADT and their implementations in the new library

Another issue of the Matisse tool that the new library attempts to solve is the
combination of the DDTs to form some complex data structures. By taking advantage of the
object oriented programming it is possible to create new DDTSs, such as arrays of lists and
arrays of lists of arrays and so on. Therefore, there is a multilevel implementation that can
be expanded and made as complex as necessary with the only restraint being the usefulness
of these new DDTs. For simplicity and effectiveness, only a two-level implementation is
examined as shown in Table 1.3. Examples of two-level DDTs are the SLL LinkedList with
Arrays and Roving Pointer. The roving pointer provides an optimization for sequential. The
Matisse library tool has a more monolithic design. The supported DDTs cannot be
combined to form multi-layered new DDTs. Also the fact the Matisse handles application’s
object as arrays of basic data types requires decomposing every class of the application. The
overall design is summarized in Figure 1.4,

Pool of Abstract Pool of Components

Common Operations Deta Types

for any Container ) [ s ) LT

Stack
element element
N .

( \

e \ |

G ‘ Insert, ‘ free ‘ Roving )
( N Remove, | n [l % ‘ Component
Application < > Get < ) .

L ) Set L List

A 4

} Embedded
Object L Array ]
. N\
Pointer
Object

Figure 1.4: New library design
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Apart from the new library, a GUI was developed for the easier tracking of the
exploration process and the convenience of the designer. The DDTs that are present in the
application are spotted and then presented to the designer alongside alternative
implementations for them. For example, in Table 1.3 we can see that there are 10 possible
implementations for the unsorted list and 2 for the queue. So if an application used these
two ADTs the user will view the window that is depicted in Figure 1.5. Then some
combinations can be omitted if the designer desires to reduce the exploration space. The
output is a file that contains the Pareto points that represent the application’s behavior and a
file with the optimal Pareto points.
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Figure 1.5: The GUI for the new library

The tool [7] also keeps a record of the memory requirements of every DDT in the
application and logs all memory accesses whether they are reads or writes. This allows for
the computation of the energy requirements. For the experiments, an external memory is
used and the knowledge of the accesses to this memory is sufficient to extract the energy
consumption by using the appropriate energy model.

The methodology for this new tool is more general than the previous one which was
constrained to networking applications only, although the basic principles remain the same.
It consists of two stages. At first the DDT exploration takes place, where each DDT is
evaluated and different combinations of DDTSs are tried and profiled while the results are
logged. In the next stage, the optimal DDTs are selected through a Pareto optimal
exploration, while at the same time the designer’s constraints are satisfied. This flow is
shown in Figure 1.6. The automatic exploration methodology’s aim is to present the suitable
information for the designer to select the best for each case DDTs in application, much like
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the original methodology presented at the beginning of the chapter. But, there are critical
differences that will become clear in the following sections.

1.4 DDT Exploration Stage

In this first stage, the input is the source code of the application under investigation
and the result is the profiling information. The library code must be plugged into the source
code. There are two ways of achieving this. Either the programmer must manually swap the
operations that are related to dynamic data storage and retrieval with the corresponding ones
from the library, or the programmer has nothing to do because the code is already STL
compliant. As the library uses the STL interface, no manual intervention is required. This is
very important because some applications have huge and complex code that can pose many
difficulties to modify. But if the STL interface is followed, the process is fully automated in
contrast with the previous tool that did not support any automation. Also, as more DDTs are
supported, a wider range of applications are suited to be optimized.

After the DDTs are identified, either manually or automatically, they need to be
evaluated. The need arises from the fact that the application may (and usually does) contain
many data structures and types that do not play a major role as far as the program’s
performance, energy consumption or memory are concerned. Therefore, there is no reason
for the exploration to consider these DDTs because of the additional exploration cost that
they will incur without providing any benefits. The methodology will check every possible
combination of DDTs and DDTs without any impact and this will just prolong the process.
To counter the issue, only the DDTSs that are relevant are identified and considered for the
exploration process. To find the dominant DDTSs, the number of accesses for each individual
DDT and the number of objects that it hosts are used.

The last step consists of the
exploration itself. The designer is presented
by the possible options and selects what
combinations (all or specific to reduce the
exploration time) will be investigated T
through a GUI. Then the tool automatically {}

DDT Exploration
Plug DDT Library Interface
= Recognize Dominant DDTs
—V DDT Exploration for dynamic access behavior

Dynamic
Application

evaluates these combinations. In this 2\ E ":“°°P:'“°'E*P'°"ﬂ°"
. B xecution Time vs. Energy

methodology only specific DDT are §.§_ Ty Accesses ¥5, Bssiory oo
explored for each DDT existent in the 3l V

. . | |
source code, whereas in the previous one all <>
DDTs were explored by default. For T e
example, if the DDT is Queue, according to implementations

the Table 1.3, only two cases will be
considered. This further reduces the required
time.

Figure 1.6: The DDT exploration methodology
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The output of this stage is a file that contains all relevant information and has to do
with memory and energy requirements as well as performance for each combination.

1.5 Pareto Optimal Exploration Stage

After the first stage has finished and
// Dynamic Application:

produced the output file, in the second stage, ooy ! Original DDT Declarations:

this file is processed by a script and the optimal e At oo

Pareto points are produced taking into account /1 Library DDT Dedlarations
. . . . /I replace the original:

the design constraints. This stage is fully Single_Linked_List ddt1

automated as well and creates some Pareto Doublo_|kked_Llet tkiz

charts. Each Pareto point corresponds to a flmiciont)

. . . . L. {

different configuration (i.e. combination of an | liaeiAda om0

DDTs). The bigger variety of DDTs compared Seleckd; . dd1. Add_fem)

to the Matisse tool makes the procedure more e e
complete and can reveal Pareto points that ddi2. Remove_ltem()
were previously unreachable. The whole !
process is displayed in Figure 1.7. The final
output are the Pareto graphs that will help the

Ef

. . . . LEGEND: Pareto Point
designer decide what combinations are better = Analysis
. . . ibrary
suited to the application’s needs. In contrast Input
Output = Design Constraints

with the previous methodology the network
configuration layer (Figure 1.1) is absent as the
target group is no longer only network
applications.

Figure 1.7: All stages of DDT methodology

1.6 Experimental Results

The DDT exploration methodology was performed on various multimedia applications.
The memory hierarchy was an external MICRON SDRAM [8] at 266MHz with a size of
8MB. The data from the profiling (such as memory access) were fed to the MICRON
energy model to produce the energy requirements of the application, while the execution
time was calculated by operating system instructions. The platform used was an Intel
Pentium4 3.2GHz with 1GB RAM.

The benchmarks selected were a 2D racing game, the Astar algorithm [9], a tile game
(Comboling) and a 3D environment builder (Simblob) [10], as well as, the Dijkstra [11]
algorithm from Mibench suite [12] and a Weighted Fair Queuing (WFQ) algorithm [13] — a
modified version of Deficit Round Robin (DRR) — taken from Netbench [5].
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For the 2D racing game, like a normal racing game, the environment changes and move
(in different speed) according to the car movements and speed. The environmental objects
are stored in an unsorted list and are constantly upgraded. According to Table 1.3 there are
10 implementations for the unsorted list ADT. By examining different options we get the
following graphs (Figures 1.8 and 1.9):

Memory Accesses vs, Memory Footprint Performance vs. Energy
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Figure 1.8: Memory accesses vs memory footprint for Figure1.9: Performance vs Energy for 2D race game

2D race game

As far as the smallest memory footprint is concerned we can conclude that the Array with
Pointers — AR(P) DDT wins, while on the other hand the Double Linked List (DLL) has the
best performance and the lowest energy at the same time. The optimal Pareto points are the
ones marked. In Figure 1.8 there are two choices because no choice is best in both cases
(axes), while in the second graph (Figure 1.9) there is a selection that optimizes both
criteria. The usage of AR(P) lowers the memory footprint by 44% compared to the original
program and the DLL lowers the energy consumption by 6%.
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Figure 1.10: Memory accesses vs memory footprint for

Figure 1.11: Performance vs Energy for Astar algorithm
Astar algorithm

In the case of the Astar algorithm we can get similar graphs. The Astar algorithm [9]
is a pathfinding algorithm that uses a heuristic to prune the search space and is frequently
used in many multimedia applications, such as video games. The DDTSs that are prevalent in
the algorithm are 1)a sorted list (according to a specific criterion) that contains the nodes to
be expanded 2)an unsorted list for the nodes that are closed 3)a unsorted list for storing the
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neighbors of each node (the successors). The behavior of different DDTs can be shown in
the following graphs (Figures 1.10 and 1.11).

This time there is a Pareto optimal solution for the memory accesses and memory
footprint and many solutions for the performance and energy. There are triplets because
combinations of DDTs are tried as there are 3 distinct data structures in the source code of
the algorithm. So for example the (AR(P),AR(P),S(AR)) that is the most energy efficient
would mean AR(P) for the first and the second list and S(AR) for the third. If the best
performance is selected, a gain of 10% over the original code can be achieved.

Finally, the Weighted Fair Queueing algorithm is a common packet sharing
algorithm that allows a number of flows to share the same link. It is implemented with
switching devices. It is an approximation of the generalized processor sharing (GPS)
scheme, where every flow with a non-empty queue, at any time, is served simultaneously
and the bandwidth is equally distributed to each flow. The most important data structures
are 1)the class Packets which encapsulate the information of the packets to be scheduled in
queues, therefore has a corresponding ADT of Queue and 2)the class Nodes that creates
nodes where the packets are stored and scheduled, with the corresponding ADT of Unsorted
List. As a result, there are 2 possibilities for (1): Queue as Array and Queue as Linked List
and 10 possibilities for (2).The Pareto optimal points appear in Figures 1.12 & 1.13. So for
example, if for the class Packets we select Q(AR) — Queue as Array and for the class Nodes
SLL - Single Linked List we achieve 22% speedup compared to the original
implementation.

To sum up, the library can be evaluated based on the experimental results. In the
case of the 2D game it was easy to plug in because the game itself used the STL interface.
On the other hand, the user of the Matisse tool must perform some code modifications to
insert the required interface for the tool to run. Also, the Queue, Stack and Sorted List
ADTs are not supported by the Matisse tool and therefore some of the applications — such as
the WFQ — would be ineligible for full exploration as far as all the data structures are
concerned and the corresponding Pareto optimal points would be unobtainable. In the
following table (Table 1.14) the differences and similarities of the two tools are
summarized.
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Feature

Matisse profiling tool

New DDT library

Abstract data type (ADT)
DDT implementations provided
Extension of the DDT library

Combination of DDTs in more complex ones

Integration in complex applications

Interface

Selection of specific DDT combinations
to be evaluated

GUL

Benchmarks evaluated

Benchmarlks code size

Application domains

Not supported

Limited (Unsorted Lists only)

Not easy

Supported

Not easy (each object is handled as an
array of basic data types)

No STL compliant

Not Supported

Not provided

NetBench

A few KB

Network applications only

Supported

Extended (Sorted Lists, Trees, Sets, and more)

Easy (due to the object oriented design of the library and the ADT support)
Supported, but easier (due to the object oriented design of the library)
Easy (the actual object is inserted in the DDT)

STL compliant
Supported

Provides a GUI for simple use

NetBench, MiBench, ALPBench, etc.

Tens of MB

Modern network, multimedia applications, games, etc.

Table 1.14. Matisse and new library comparison
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CHAPTER 2
The impact of cache in modern embedded systems

The DDTR methodology was thoroughly described in the previous chapter, both the
original implementation and the new library that improved it. The general idea is to run an
application for a different combination of data structures and profile it. That way an
exploration is performed and the best combination is selected based on different criteria,
such as performance-memory trade-offs. However, there are some very obvious limitations
and facts that were overlooked.

At first, consumer electronic devices relied on non-programmable circuits for their
operation (either streaming or something else) and that made them simpler. However, recent
demands on flexibility moved the balance towards programmable components to increase
their versatility. This fact makes the embedded systems more and more unpredictable,
because to cope with current needs their architecture has to become more complex [14]. For
example, it is not rare, even for common embedded systems, to use parallel architectures
and sophisticated memory hierarchies.

The computational power of modern embedded systems is constantly increasing and
that is a trend that will continue in the foreseeable future. Nowadays, demanding
applications that, just a few years ago, were executed exclusively in High Performance
Computer (HPC) systems, invade the field of embedded and handheld systems creating new
requirements. Characteristic examples are embedded servers and multicore heterogeneous
architectures that integrate both embedded cores and FPGA programmable logic [15] that
execute complex applications and require high processing power. Database applications
and streaming are common ground for HPC. Their connection is the large amount of data
that they need to store and process.

The term High Performance Embedded Computing (HPEC) now refers to embedded
devices with huge computational capabilities that are used mostly in aerospace and military
applications [16]. Their advantage is their energy efficiency that makes them competitive in
the market over large power systems. The optimization of data structures is not only related
to the application’s access pattern, but also with the underlying hardware specification
where the application is executed. Some embedded systems have caches or scratchpads and
complicated memory hierarchy that are specifically designed to take advantage of particular
characteristics of a program. Others are multicore systems that aim to increase throughput.
This introduces huge challenges for various reasons that will be made clearly in the rest of
the chapter. Many modern embedded systems resemble more and more the general purpose
computers that we are all familiar with, although they may lack some of their capabilities
depending on the embedded system needs (such as connectivity, 1/O devices and more).
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2.1 Why cache is used in modern embedded systems

Caches in modern embedded system are a common practice to improve
performance and energy. There are many components of a program that are sequential or
frequently used and allow the exploitation of a fast memory, such as cache. The program’s
code is, most of the times, executed line by line and if some jumps in the code occur, they
are usually either short or infrequent compared to the total instructions that are executed.
Therefore, the code’s instructions are usually stored in a special instruction cache for faster
instruction fetch. Data re-usage is also fairly common. To get advantage of the data spatial
and temporal locality it is beneficial to use a data cache.

Apart from utilizing some internal properties of the application (such as locality) a
cache is also required from a practical point of view. There is a gap between the processor’s
and the memory’s speed that is constantly increasing. Microprocessor’s performance has
improved over 60% each year for almost two decades, while memory access time has
decreased by less than 10% per year. That means that the processor can compute data faster
that they can arrive from the main memory. This leads to wasted power as there are intervals
where the processor is just idle, waiting for the data. The cache is the link between the fast
processor and the slower memory. As the cache is smaller (order of magnitudes) than the
main memory it is much faster. The cache’s speed depends on the technology used and on
its size. The smaller the cache, the simpler the subsystem, that is used to search for a block,
and therefore faster. Also, a small cache can be created by high-tech expensive materials
that further boost access speed, but would be very cost-inefficient for larger memories.
Finally, as the caches are closer to the
processor the data need to transfer only /\

Disk
1T

a fraction of the distance to the main

memory. All these factors can make a Me“f"IOW
cache access 10-200 times faster thana £ L3 cache
main memory and tens of millions time § 1T

O L2 cache

faster than a disk access. There are
many levels of cache in modern
computer processors usually 2 or 3
named L1, L2 and L3 cache
respectively. The higher the level, the

Latency

bigger the cache. but the access is Figure 2.1: Memory hierarchy and latency-capacity trade-offs in a

typical modern processor

slower (Figure 2.1).

An L1 cache can usually rival the processor’s speed. If the data is found in the
cache, a cache hit happens and if not, a cache miss. In the case of the cache miss, the next
level in the memory hierarchy is examined and so on. Cache misses can be particularly
costly especially deeper in the memory hierarchy. Apparently the cache is a very important
component of every modern processing system that deal with data intensive or general
purpose applications (such as multimedia or networking or games). Programmers however,
generally have no administrative control over these caches therefore it is important for the
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programs and the data structures to display a cache-friendly behavior. This is usually done
by making the memory accesses more predictable or regular.

2.2 Designing cache-friendly data structures

From a software perspective, programming languages has also evolved. In the
beginning, some primitive languages, such as Fortran and Algol that were used for scientific
operations, did not support pointers and stored their data in arrays instead. Subsequent
languages (C, Pascal) supported pointers and new data structures were created. Programs
that make extensive use of pointers became popular and unsurprisingly, the techniques used
for data manipulation in arrays were not as effective for pointer-manipulating programs
[17]. Traditionally, pointer-based data structures were designed as if memory accesses costs
were uniform. Reference locality can be improved either by changing a program’s data
access pattern or its data organization and layout.

Here some techniques for improving cache performance will be analyzed. Some of
those techniques [18] will be used in the subsequent chapters.

2.2.1 Clustering Technique

The clustering’s main purpose is to put together data that are likely to be accessed
contemporaneously in the same cache block (the memory unit that is transferred between
the cache and the main memory). This way, when something is fetched in the cache, it will
bring with it other elements that are going to be used soon. This technique resembles an
implicit prefetching.

For example clustering can be used for a linked list data structure that is usually
accessed sequentially. If each node is small enough so that multiple nodes can be fitted in a
cache block (usually 64 bytes) then we can allocate multiple nodes at once with the same
malloc (as an array) instead of each one separately. When allocating an array, all cells are
located in adjacent memory addresses. On the
other hand if we allocate each node separately, -_|:|_-_-
adjacent nodes could end up in distant memory
addresses. This is illustrated in Figure 2.2. Every
line of the 2D array represents a cache block, so
each cache bock has space for 4 list nodes. If we
allocate each node separately there is no
guarantee that they will end up in the same [
block. If they end up in the same cache block
however, as depicted in the second array, when
we access one of the nodes, the rest of them will
also be in the cache so we can reap huQe Figure 2.2: A linked list and how it is stored in
benefits in the case of sequential access. The cache
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clustering technique that is best depends on the access pattern. The above scheme assumed
sequential access. If the manner that the data are accessed is known in advance, it is highly
probable that a good clustering scheme can be extracted.

2.2.2 Coloring Technique

Like clustering, coloring is another technique that aims at the improvement of the
program’s cache behavior. Coloring attempts to reduce conflict misses. Most caches
typically have finite associativity and that means only a limited number of elements can be
mapped to the same cache block without competing with others. The idea is to give specific
addresses to the elements that we wish to keep together in cache.

For simplicity, we assume a 2-way associative cache, so each cache line has enough
space for two cache blocks. A cache with C cache lines is partitioned into 2 regions (if we
use 2 different colors). The one region will contain p cache lines, while the other will
contain C-p cache lines as shown in the Figure 2.3. The elements that we know (or suspect)

N el e B B B2

Frequentl Remaining
accessed efements elements

“Cache

~ |Empty|  |Empy|

Virtual Address Space

Figure 2.3: Example of coloring with 2-way cache with C cache lines

that are frequently accessed are desired in a separate area that the remaining elements that
are infrequently accessed. The reason being that, if both types of elements share the same
areas of the cache some infrequent data, when they are ultimately accessed, will force the
frequent data out. Therefore, instead of paying the cache miss cost for the infrequent data —
that are very unlikely to be in cache as between two accesses many other elements are
expected to be fetched — we have to pay additional cache misses for the frequent data that
are pushed out of the cache. These are the conflict misses that the coloring technique
attempts to counter.

To achieve that “logical” separation of the cache into two pieces, we need to allow
specific gaps in the virtual address space. Those gaps represent the regions that are mapped
to the C-p cache piece. Those memory can be utilized to accommodate the infrequent
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elements or (if not enough are allocated to fill all the gaps) can be left empty. To
summarize, the idea is to use specific address ranges for the frequent elements and the rest
for everything else.

2.2.3 Compression Technique

Compression is a relatively easy-to-use technique that nevertheless can yield
significant benefits. Compressing a data structure allows more elements to “fit” in the same
cache block. A direct effect is the reduction of capacity and conflict misses. Also, the
program’s memory footprint is shrunk. The downside is the requirement of more processing
operations in order to make sense of the compressed information, or in other words,
decompress. Some techniques may include data encoding, such as key compression, or
structure encoding techniques, such as pointer elimination and hot/cold splitting.

The pointer elimination replaces the pointers in a data structure with integer offsets.
So for example in a heap that is implemented as an array, instead of actual pointers to the
correct element of the array, it is better to have just the corresponding offset. An integer
needs less space to be stored than a pointer — in a 64bit system, as it is often the case, it
requires 8 bytes while a 4 bytes for an integer is most of the times sufficient except from
extremely huge data structures. The amount of memory that is saved can be significant
especially if the system needs many bytes for pointers and the pointers are a considerable
portion of the node’s memory footprint.

In many cases of data structures, during searches (lookup operations) only a small
portion of the actual memory that the node takes up is examined. A node can be filled with
additional information. For example, the node contains the contact information of the person
(name, address and so on). We know that the search is based on the name only, and if the
person exists in the database, then we retrieve the rest of the information for further
processing. Hot/cold splitting is basically the isolation of the node’s elements that are
accessed during a favorite operation, i.e. an operation that is fairly common and frequently
executed, from the rest of the elements in the node. The separation is done through a
pointer. The modified (or compressed node) keeps the relevant fields, while the rest of the
fields are stored in a separate data structure that is accessed through a pointer. An example
is shown in Figure 2.4. This kind of compression increases the structure’s memory footprint,
as the same fields continue to be stored but with the added overhead of an additional pointer
per node. However, this increase is not harmful, as the new structure has better cache
properties. By utilizing other
techniques, such as clustering

ORIGINAL NODE COMPRESSED NODE AUXILIARY NODE
(that iS explained char * name; char * name; int age;
prev|0us|y)’ |t |S poss|b|e to int age; data * rest; char * address;
. . char * address; char * telephone;
fit more compressed nodes in char * telephone; char * email
the same cache line. If those char * email;

nodes represent the nodes of

a Imkeq list tha‘_: 1S acces.setd Figure 2.4: Original node and the resulting structure after hot/cold area
sequentially until a specific splitting
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name is found, instead of fitting only one node

Head

| e | - per cache line we can now fit more, depending on

“"“““‘r“‘lsp“m“g the total size of the information that we wish to

[ Cold | [ Cold | hide. So after each node is fetched the next nodes

Head will be as well and that will contribute to fewer
-] - -

misses and faster search. In Figure 2.5 the cold
and the hot areas are shown in the general case.

T Key—

Figure 2.5: Hot/cold splitting

2.3 Effect of the cache memory on the DDTR Methodology

The DDTR is a platform independent methodology and none of the steps described
in Chapter 1 takes hardware specifications into consideration, as there are no relevant
parameters that refer to the underlying system that the application is executed. However
there are many hardware parameters that greatly affect the performance of the system and
are mentioned here.

The existence (or not) of cache memory can make some metrics, such as the number
of data accesses that were used in typical DDTR, misleading when the number of memory
accesses is evaluated — for example, let us consider a system with some sort of cache
memory. Not every memory access is the same. There are accesses that refer to data in the
cache and others that go deeper in the memory hierarchy. As a result, a program with 1000
accesses does not mean that it has worse memory behavior than one with 10000, especially
if we consider that all these accesses could be cache misses and therefore incur huge
overhead. If we consider that each cache miss can be hundreds of times slower than a cache
hit, the program with 10000 accesses can outperform the one with the lower number under
specific circumstances.

Apart from the cache, the DDTR Methodology also ignores other aspects of the
hardware that nevertheless impact the program’s behavior. Increasing the processor’s speed
indefinitely and shrinking its area is not viable anymore thanks to the increase in the heat it
produces, so the next trend is to fit many
processors instead of a powerful one. Many (|
applications nowadays are designed to take - o
advantage of multicore systems with concurrent L1 Caches L1 Caches
data structures that allow simultaneous operations
by many cores. The number of CPUs that the
program needs to run can greatly affect the
performance and the results. Usually each CPU
has its own L1 cache and other parts of the
memory hierarchy (like the L2 cache and the main
memory) are shared with the rest of the cores, as
shown in Figure 2.6. Maximizing the usage of the
resources provided by the multicore systems

\

Back side

Bus Interface
and
L2 Caches

Front side

S

Figure 2.6: Dual core processor with shared L2
cache
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require adjustments both to the operating system support and to existing application
software. Increasing the number of cores poses new challenges as locking techniques must
be carefully consider in order to keep the data consistent without impending the accesses
and creating bottlenecks that will negatively impact the program’s performance.

Modern processors also have sophisticated prefetching mechanisms [19]. Data
prefetching is a data access latency hiding technique, which decouples and overlaps data
transfers and computation. As CPU usually stalls on a cache miss, in an effort to reduce this
idle time, data prefetching attempts to predict future data accesses and initiates a data fetch
so that the requested data will be closer to the processor before it is requested. A data
prefetching strategy has to consider many issues in order to mask latency efficiently. Apart
from predicting future accesses accurately, it must be also poised to bring that data to the
cache in time. There are many strategies for data prediction. Some use recent history of data
accesses from which patterns are recognized and are analyzed in [20] and [21]. Others [22]
use the compiler and user-provided hints, or examine the loop’s behavior, or even running a
helper thread ahead of actual execution of an application to predict cache misses [23]. Some
data structures and operations are easy to predict and that fact can be exploited by an
efficient prefetcher to drastically reduce the number of cache misses and therefore to
improve the application’s performance and energy consumption. For example, it would be
beneficial to traverse an array sequentially while searching for an element than randomly
access distant elements, as is the case in binary search as the next element is easily predicted
and therefore can be fetched in time for the access. For relatively small number of elements
that can yield better results than binary search although the later has lower complexity. This
is another aspect of the hardware that the DDTR Methodology was not designed to take into
consideration but could skew some results.

‘aTaleh mMaMmory ovemesad
MBIy &S Shdk aball
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Figure 2.7: Example of overall performance comparison between indiscriminate and selective prefetching algorithms (N = no
prefetching, I= indiscriminate prefetching and S = selective prefetching) for some benchmarks. The prefetch memory
overhead, memory stalls and instruction cost are shown.

Based on the aforementioned observations, we conclude that the use of data accesses
to evaluate the performance of a data structure can yield misleading results. Therefore, in
this work instead of data accesses, we utilize “real” memory accesses and present data
structure implementations that exploit hardware specifications in order to improve the
performance of the application under optimization.
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To sum things up, the DDTR methodology presented in Chapter 1 supports only a
limited number of simple data structures (mainly list and array based). More complex data
structures, like trees, were never evaluated, but still these data structures are fairly common
in many modern applications. Secondly, the DDTR approach was developed under the
assumption that data structure implementation constraints are related only to the application
dynamic behavior. Therefore it contains only platform independent data structure
implementations. They are built at high levels of abstraction and consider a plane memory
hierarchy that is almost never the case. As a result, memory specifications, such as caches
are ignored. The evaluation of the results is done by benchmarks on a x86 processor and not
on different platforms to get a taste of potential differences in performance according to the
hardware. Finally, the profiling component of the DDTR methodology logs only execution
time and memory utilization. Other important metrics such as throughput and latency of
operations are not available.

47



CHAPTER 3

Methodology for creating cache-friendly tree data
structures

There are many ways to optimize the data structures used by an application and it is
a common problem that it is extensively studied in literature such as in [1], [24], [25].
However these works mainly focus on static data allocation techniques that happen during
compile-time. For example one could use a scratchpad, a piece of fast memory that
resembles a cache, with the difference that the programmer has complete control over which
elements are stored there. So if we wish for specific data structures to remain in the cache
we can keep them in the scratchpad by using special instructions during the compilation of
the program. The DDTR Methodology has some serious limitations (Table 3.1) and in this
work we try to counter some of them. We aim at dynamic applications, where the access
pattern may change at runtime along with the application’s behavior.

Existing DDTR New DDTR
Library of Data Structures list, arrays list, arrays, radix trees h
Platform-awareness Platform-independent Cache-conscious
implementations implementations
Metrics Exec. time, memory Exec. time, memory,

throughput, latency

Evaluation x86 ARM-based, Myriad

embedded systems

Table 3.1: Existing DDTR Methodology characteristics and limitations

The first step is to enrich the DDTR with new data structures. Instead of only arrays
and lists we evaluate the performance for some tree implementations that are fairly common
or have good performance. Several radix tree data structures have been proposed to
optimize the performance or the energy requirements of different applications. Tries are fast
tree-based data structures for managing strings in-memory, but are space — intensive. They
word “trie” comes from “retrieval”. Alternatively, they are named radix trees. There are
many implementations of tries and are preferred for their reasonable worst case performance
and are valuable for applications, such as data mining, dictionary and text processing,
pattern matching and even compression. Below is an overview of the tree data structures
that are added to our library. The three data structures that are described are:

1. HAT-trie. Based on the burst-trie, this is a fast and cache friendly
combination of tree and hash table.

2. Ternary tree. A classic tree for strings.

3. Patricia trie. A specialized tree used for IP addresses.
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After the aforementioned trees are explained, we attempt to give the less cache friendly
implementations of ternary and patricia trie some cache conscious characteristics in order to
evaluate how those characteristics impacted the different metrics that we use, as well as
explain some of the problems that may occur.

3.1 The HAT-trie data structure

The HAT-trie data structure is introduced in [26]. Most tries need large amounts of
memory space and a lot of effort has been put into limiting their size. The most successful
procedure for reducing the size of a trie structure and achieve satisfactory has been the
burst-trie. The burst-trie is an in-memory string data structure that can reduce the number of
nodes maintained in the trie by as much as 80% with little to no cost as far as access speed
is concerned. This is managed by selectively collapsing chains of trie nodes into small
buckets of strings that share a common prefix. When a bucket becomes big enough, it bursts
into smaller buckets parented by a new trie-node. The bucket is usually implemented as
linked lists with move-to-front on access [27].

Although fast, a burst-trie is not cache-conscious. Like many other data structures it
assumes equal cost of every memory access and is efficient in this setting, but that is not
always the case. Depending on whether a memory access is served by the cache or by the
main memory, the cost varies greatly. Although the trie is a memory intensive data
structure, each node tends to be small in size and that gives it some cache-conscious
properties, because it improves the probability that frequently accessed trie paths will reside
within the cache. The most frequently used trie nodes, such as the top levels of the tree, are
much more likely to stay in cache because they have a high probability (the closer to the
root of the tree, the higher) to be accessed. The problem with the burst-trie, however, is that
the buckets are represented as linked lists, which are inherently cache inefficient. To
understand why that happens we must examine the way a linked list is created. In most
cases, each node is allocated separately and linked with pointers, and that causes subsequent
nodes to not be in subsequent memory addresses. If they were, it would be easier to predict
the next access as a list tends to be accessed sequentially and two nodes in the same block
would both result in the same cache block. This pointer chasing problem hinders the
effectiveness of hardware prefetchers that attempt to reduce the number of cache misses by
preloading data into the cache.

The HAT-trie is basically a cache-conscious variant of the burst-trie that takes
advantage of the cache hierarchy used in modern processors. To address the bottlenecks of
the burst-trie, the HAT-trie must reduce significantly the cost of tree traversal — the number
of tree nodes that are created — and more importantly, the cost of searching a bucket. To
achieve this, it has to swap the linked lists with a new, more suitable data structure, such as
large cache-conscious arrays. Therefore the buckets are now structured as cache-conscious
hash tables. The advantage of using hashing instead of a simple array, is that the buckets can
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scale more efficiently, further reducing the number of trie nodes that are needed (and
therefore the number of memory accesses). This is the basis of the HAT-trie and their most
important difference with the burst-trie.

The HAT-trie is built and searched in a top-down manner. The query for our needs is
considered a string. The pointer that corresponds to the first character of the query is
followed to the appropriate trie node. Traversing the tree “consumes” the current character
from the query. For the following character this procedure will repeat until either a bucket is
accessed, or the whole query is consumed. In the first case, the rest of query is hashed
(based on length for example) by a fast bitwise hash function and searched in the bucket in
the correct slot. The slot contains strings and each string is examined until the first
mismatch and then the next string is checked (and so on) until either the target string is
found or not. The bucket does not contain duplicates. If the whole query is consumed and a
bucket has not been reached, then each trie node has a Boolean variable that serves as an
end-of-string flag and indicates if the search is successful or not.

An insertion is much like a common search. If the element is already present nothing
happens. Otherwise, the query is consumed until a bucket is found where it is inserted in a
similar manner to the hash table insertion (hashing the rest of the string and inserting it in
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Figure 3.2: A typical HAT-trie. The array of characters is the trie node and the boxes at the last level represent the
buckets. If the box is dashed then it is a pure bucket.

the correct section of the hash table data structure). When a bucket is full, — contains a
specific number of strings or has surpassed a typical size — it splits. Then a new parent node
is created and the strings of the old bucket are distributed in the new buckets according to
their lead character that is removed. There are two types of buckets, hybrid and pure. The
hybrid buckets are buckets indexed by many characters in the trie node, whereas the pure
buckets are only indexed by one (the difference is more obvious in Figure 3.2). The buckets
are split by using B-trie splitting. On split, a pure bucket is converted into a hybrid by
creating a new parent node with all pointers assigned to it. The old node is pushed up as a
grandparent. To split a hybrid node, first a good split point is found (that achieves as equal
distribution as possible). The process is to count the number of strings. Then, based on that
information, a character is selected as a good split-point.
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The bucket consists of n+1 word-length pointers which are either empty or point to
their respective slot entries. The first pointer is reserved for some additional information
such as the character range, the bucket type and the number of strings. Each pointer points
to a “slot” that is an array of strings. Using larger buckets can save up some space (by
reducing the number of nodes) but the access time for each bucket is increased as there are
more elements to be checked per slot. However, large buckets are also more probable to
remain in cache and if a bucket is cached then the search is very cache efficient as the
strings are processed sequentially. Many small buckets (and therefore many nodes) can lead
similar strings to be located in different buckets and destroy cache performance. The
performance of HAT-trie in benchmarks [26] is up to 80% faster than a regular burst-trie,
while simultaneously can reduce the space consumption by as much as 70%.

3.2 The Ternary Tree

The ternary tree [28] is a tree data structure (trie) that is similar to the classic binary
tree. The main difference is that each node has at most three children. So each node contains
a character and three pointers (greater, equal, less). The ternary tree (or ternary search tree
or sometimes prefix tree) has the ability of incremental string search. The query (string to
search) is consumed one character at a time when the character that is stored to the node is
the same as the leading character at that time of the query under examination. If it is not
then the leading character is not consumed. In any case, a recursive procedure occurs, where
we follow the appropriate pointer according to whether the character of the query is greater,
less or equal to the character of the node. Also, each node can be either marked or
unmarked, based on the existence of an inserted string that ends at that node. If we reach a
null pointer and the query is consumed, then the query is not inserted into the ternary tree.
Likewise, if the query is consumed but we have reached a node that is unmarked, then the
string is not found.

The ternary tree has some advantages over other data structures thanks to their
simplicity and good average-case running time. All the common operation, such as lookup,
insertion and delete cost O(logn) in the average case and @(n) in the worst case (if a chain

is formed instead of a tree). Also, they tend to use less space for storage at the cost of speed.
It is slower than the prefix tree, but better suited for large sets of data thanks to their space
efficiency. Common applications for the ternary trees include spell-checking, near neighbor
checking (similarity search) and auto-completion of text, some of which are not possible
with other data structures (such as hash tables). Figure 3.3 shows the difference in the
structure of a ternary and a binary tree for the same vocabulary. The binary tree stores the
whole string inside the node therefore its size can be considerably bigger even though there
are only two children per node. So, there may be fewer nodes overall, but each node could
be considerably larger and there is no data reuse (in the case of common prefixes).
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Figure 3.3: Binary vs ternary tree for the same vocabulary

3.3 Patriciatrie

The Patricia trie is a combination of radix and crit-bit tree. Contrary to the Ternary’s
tree nodes, Patricia nodes store a complete string, alongside an integer that marks a specific
bit of the string. As a result, instead of examining the whole string, only the critical bit is
examined. Insertions are more complex than the ternary tree, since the crit-bit must be
examined before inserting the node to the correct position in the tree. The trie is more
complex as well: there is a node that serves as a default entry at the top of the tree that is not
modified. Also, no null pointers exist and every pointer must point to a node.

The basic Patricia trie implementation that we used can be found at [29]. This
Patricia trie was originally designed for IP addresses. The procedure of searching for a
specific string, like all trees, begins from the root (Figure 3.4). The red bits (crit-bits) are
checked and the red lines are followed. At each node, the crit-bit is compared. If it is the
same, then the string-to-search is compared with the string that is stored in the node. If it is
different, the action depends on the value of the crit-bit. If the bit is set, then the right
pointer is followed, otherwise the left one is followed. This procedure repeats recursively
until either we arrive at a node with a crit bit number smaller or equal to the previous node,
or a match is found.

000000
bit=1 [\ element to search: 010010

\ 010100
00111 bit=2

bit=3 j \
¥

010010

|: bit=4

Figure 3.4: searching for a specific string in the Patricia trie
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empty tree (basic node only)

inserting element D0111. The crit bit are
00000 followed and we end up at node (000000).

I:;;, The first difference is bit=3.

0ooooo
bit=1

inserting element 010100. The leaf is ’— ‘T‘
examined (only one node) and the first
difference occurs at bit=2.

inserting element 010010. The crit bit are
followed and we end up at node {010100).
The first difference is bit=4.

010010

bit=4

Figure 3.5: the Patricia trie before and after the subsequent insertion of nodes

The subsequent insertions and the trie structure that lead to the example of Figure
3.4 is shown in Figure 3.5.To insert a new element that is not present in the data structure,
we begin from the root and compare the crit-bits. Again if it is set we follow the right
pointer (else the left) until we reach a leaf. At that point we find the first bit between the
leaf’s string and the target string that differs. This number will decide how close to the top
the new node will be inserted.

For node removal we have to search for the target node while at the same time
keeping track of the parent node and the grandparent. We point the grandparent to the
correct nodes and then delete the target’s data and copy in its parent’s data but not the bit
value. The aforementioned procedures can be better understood through the illustration of

00000 The parengnode is deleted but its value 00000
bit= is copied into the target node and the bit=1
it=1 2 i
\ grandparent node's pointers are updated. \
\ 010100 (target) \ 010101
bit=2 bit=2
T A
010110 (grandparent) e 010110 (grandparent)
/ bit=5 : bit=5 I
010101(parent) H 010101 (deleted)

bit=6 ] bit=6

Figure 3.6: Deletion of a node in a Patricia trie
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Figure 3.6.

3.4 Cache-Friendly tree implementations

3.4.1 Underlying theory

The problem with the tree data structures in general, is that they not particularly
cache friendly. This is also true for most pointer-based data structures. Some modifications
however are poised to give them some good cache properties. An example is the HAT-trie
that uses hash tables and array slots in the buckets to improve the cache behavior, instead of
using linked lists. Programmers typically allocate a data structure’s elements with little
concern for memory hierarchy. Often the resulting layout interacts poorly with the
program’s data access patterns, causing unnecessary cache misses and reducing
performance. We created some cache-friendly implementations for the Ternary and Patricia
trie data structures to add in the DDTR library extension. They are based in the clustering
and compression techniques that have been previously described in Chapter 2. The
compression technique enables elements to be clustered to the same cache block by
separating the node fields (i.e. structure’s data) in those which are accessed frequently and
those which are not. Then we cluster these reduced nodes together in the same cache line.

Existing DDTR New DDTR
Library of Data Structures list, arrays list, arrays, radix trees
Platform-awareness Platform-independent Cache-conscious -
implementations implementations
Metrics Exec. time, memory Exec. time, memory,

throughput, latency
Evaluation x86 ARM-based, Myriad

embedded systems

Based on this idea, in our cache conscious implementations, we cluster adjacent tree
nodes in the same cache line. Thus when a node is fetched into the cache, more nodes are
fetched that are probable to be accessed in the near future. Even if the adjacent nodes are
generally big enough to not fit in the same cache line, we can still get great improvements
just by allocating them sequentially in memory. Modern prefetchers are smart enough to
predict such behavior and in case of a cache miss, to fetch instead of the target memory
block, the adjacent blocks as well.

The most important problem that we try to counter is the fact that separate allocation
of nodes causes the whole tree to be located in random memory addresses and that pose
problems to the operating system that tries to predict what will be accessed next. Therefore,
to maximize locality, adjacent tree nodes (nodes that are connected with a relation child-
parent) are allocated in adjacent positions in an array, in an effort to reduce cache misses.
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Therefore we need to use a custom memory allocator, similar to malloc, that will perform
local clustering and replace the operating system’s default allocator. The result of this
allocator (custom_malloc) is that the tree nodes will be not randomly distributed in memory,
but concentrated in small pools that are basically arrays of nodes. The pseudocode for the
custom allocator is presented in Figure 3.7.

struct Node * custom malloc (list *mylist) {
if (current_slot < MALLOC_SIZE) {
return &(alloc_array[current slot++]);

}
else {
current_slot = 0;
alloc_array = malloc( sizeof (struct Node)* MALLOC_ SIZE) ;
push (mylist, & (alloc_array[0]) ,MALLOC_SIZE) ;
return &(alloc_array[current slot++]);
}

Figure 3.7: Custom allocator

This is the C function that implements the custom allocator, named custom_malloc.
The return value of this function is a pointer to the desired node of the target data structure
(struct Node). The parameter named MALLOC_SIZE represents the number of nodes that
can fit in a pool. As explained before, there is an array of nodes and this parameter basically
decides how big this array is going to be. The importance of this value and its effect is
discussed in detail below. The data structure mylist is a singly linked list that is used to keep
track of the node arrays that we have allocated for reasons that will be soon explained. So,
when the programmer desires to allocate a node and invokes this function one of the
following will happen:

I.  If the previously used node array is not full yet — from the MALLOC_SIZE
nodes that fit in the array only some are used — the request will be satisfied
by this array. The parameter current_slot is a global variable that marks how
many array cells are occupied by actual data. If this number is smaller than
MALLOC_SIZE then there is still room in the array for one more node. As
the nodes are pre-allocated in the array, a pointer to the appropriate array cell
is returned and the current_slot parameter is increased in order to have the
correct value for the next invocation of the function.

Il.  The other possibility is that the aforementioned array is already filled
therefore we cannot get any more nodes. In this case, we need to allocate a
new array with MALLOC_SIZE number of nodes. The allocation is done in
the ordinary way by invoking the default system allocator (malloc). After the
new array is allocated we need to put it in the list (mylist) through a custom
push function with the other arrays that are used to accommodate the other
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nodes of the data structure that have been inserted so far. The current_slot
variable is set equal to zero as no nodes from the new array are used. Finally,
the function returns the pointer to the first element of the array while
increasing the current_slot to indicate that one node is used.

The custom singly linked list (mylist) that is used to keep a record of the arrays that
are used is a normal list. Its size depends on the size of the data structure and on
MALLOC _SIZE. As the later indicates how many nodes are contained in each array, the
bigger this value the less arrays will be needed to supply the nodes of the data structures.
Similarly, the bigger the data structure the more arrays will be needed and as a result, the
longer the linked list will be. Increasing the value of MALLOC_SIZE can lead to smaller
lists and less system calls for allocation of the arrays, therefore faster to traverse, but can
waste memory if some nodes are left unused. The bigger the nodes the most obvious is the
problem. For a relatively big data structure the wasted memory is negligible. The

; array_part array_part array_part:
mylist . next next next: @
current_slot =1

node 7 node 4 node 1
empty 1 node 5 node 2
empty 2 node 6 node 3

Figure 3.8: A tree (right) and its custom allocation pattern through custom_malloc

programmer can use the value that better suits the application’s needs. For our experiments
a typical value is 50 nodes per array.

In Figure 3.8, a tree and its allocation pattern through custom_malloc is shown. The
mylist points to a SLL (Singly Linked List) with arrays as elements. Each array contains 3
nodes, so in this case we assume MALLOC_SIZE=3. The nodes of the tree are the elements
of the array. After the first 3 nodes are allocated and the array is exhausted, a new SLL node
with an array with 3 more nodes is inserted in the list and so on. At the stage depicted here,
7 nodes are used and therefore the last array has 2 empty nodes — nodes that have yet to be
used in the tree (filled with red).

One important question to answer is how this new configuration affects the tree’s
cache behavior in theory. In the case of a simple ordinary tree, such as a binary tree, after
visiting a node there is a 50% chance that each of the two children will be visited next — the
amortized chance of checking none of the children — because the node contains the desired
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item — is negligible as in every search that will happen at most once, when the desired node
is found. At the same time, it is highly probable that these children will be nodes allocated
in a completely different time from their parent and as a result, their address in the memory
space will be completely random and different from his, assuming that the default allocator
of the system is used. If the cache is relatively small or congested with many elements, it is
highly unlikely that the children will be already in cache therefore each time a pointer is
followed a cache miss is guaranteed. In the best-case scenario the processor can execute
some other independent instructions to mask the latency induced by the cache miss. But
most of the times, while a tree is traversed in search for a specific node, only one field of the
node is examined with a simple instruction (like an integer comparison) and then the
appropriate path is selected. So if the node is not in cache the processor has to stall.

By grouping nodes in an array we can have many nodes in the same cache line or, if
that is not possible, at least to adjacent cache lines. That can help the processor predict the
access pattern. In the ideal case let us assume that the parent and both children can fit in a
cache line and are allocated through a custom allocator scheme, like the one described
above, occupying adjacent positions in the array. Figure 3.9 offers a visual representation of
this case. The nodes are separated in groups of 3 and assigned a specific color and number
(groupl are the 3 red nodes for example). The 3 nodes with the same color have a parent-
children relationship and more specifically parent — left child — right child and they are
allocated in that way. We assume that each array of the custom allocator can accommodate
6 elements so 2 groups at once. Therefore there are 3 arrays — 2 of them consist of the
groups 1&3 and 4&5 respectively. The other one has only the group 2 and 3 empty nodes
that are yet to be used. For simplicity we also assume that the cache line is sufficiently large
to contain 3 nodes so that the same colors are in the same cache line.

With the above optimistic assumptions as a given it is possible to examine this
structure’s behavior from a theoretical point of view. In the worst case there will be one
cache miss every two nodes because the parent and the two children are in the same cache
line and it is not possible to get a miss when going from a node of a particular color to
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Figure 3.9: ideal allocation for a simple binary tree
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another one of the same color. So, in place of two misses we get only one. That is a 50%
miss reduction assuming the above configuration, which is a significant improvement.

3.4.2 Challenges and solutions

The allocation strategy that is described so far has three major drawbacks that are easily
revealed once it is carefully examined and must be considered:

The most important problem is how to ensure such an ideal configuration as
the one depicted in Figure 3.9. If we serve the allocations request from nodes
pre-allocated as part of an array, we cannot guarantee that the child and the
parent will be in adjacent cells. The insertion requests are random and if we
allocate a node at a given time, the next allocated node is most often than not
a distant node without ties to the previous one. To counter this issue, one
could argue that we should leave the adjacent nodes empty once we allocate
a parent so that there will be space for its children once they are allocated.
But this approach gives rise to new problems. When the time to allocate a
child comes, how will we determine in what position of the SLL is the array
that contains the parent? This requires additional bookkeeping information,
such as one additional pointer per node to the SLL element that this node is
stored. But adding pointers to the nodes will increase their size and reduce
the spatial locality as fewer nodes will be feasible to be packed together in
the same cache line. Another option is to search, at the insertion of the node,
the SLL to find the parent instead of keeping a pointer from the parent to the
list. That way we get rid of the additional memory but we introduce a
performance overhead as the list can be considerably big and will be
searched at every insertion. The additional time can quickly add up and
destroy any benefit from the improved cache behavior.

A tree data structure is a dynamic data structure and its morphology (the
relations between the nodes) is bound to constantly change as new elements
are added and removed. Even the perfect configuration of Figure 3.9 cannot
be maintained as when new nodes are added, because after the new insertions
new parent — children relations are created that no longer correspond to
adjacent cells in the array. This problem is the memory fragmentation and is
inherent to eevery dynamic data structures.

No matter what allocation strategy is followed, the problem that persists is
how to deal with deletion operations. If a node is an element of an array what
happens when it is deleted? An array cell cannot be deleted; only have its
value erased. Having an array of pointers instead of an array of nodes
introduce additional overhead and serves little purpose as the main idea is to
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have neighboring nodes in adjacent array cells. The cell that represents a
deleted node can be reused in the next insertion request, but that brings forth
the issue of the additional bookkeeping of case I. A “free list” will be
required with pointers to the array cells that are empty. This is not desirable
because it will increase the program’s memory footprint for keeping the
additional list.

In order to solve these problems, we need to understand it is inevitable that the
sequence of the nodes in a data structure and the relations between them are going to change
as the application is executed. The memory fragmentation, that occurs when new nodes are
inserted to the tree or existing nodes are deleted, cannot be avoided. With this in mind, a
simple solution is to initiate a complete reorganization of the way the nodes of the tree are
stored in memory [30].

The reorganization procedure works as following. When the decision to reorganize
the data structure is taken, a new array of nodes is allocated that is as big as the tree itself.
That means that the tree is actually represented as an array in a big chunk of continuous
memory. The tree is then traversed and the nodes are stored in the desired way to achieve an
ideal cache behavior. The parent and their children are put in adjacent cells. Then the same
process is followed for each child of these children recursively. This way we can achieve
the allocation scheme of Figure 3.9. The pseudocode and the resulting tree are presented in
Figure 3.10. The number inside the tree nodes correspond to their array positions. As it is a
binary tree (for simplicity) each triad (different color) has the parent and the children in
adjacent nodes so that when the parent is fetched to the cache, the children are too. The
current_index variable is a global parameter that is the offset of the next usable cell in the

function reorganize ( current_node):
node_array[current_index++] = copy(current_node)
for each child of current_node do:
for each child_child of child do:

reorganize(child_child)
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Figure 3.10: The reorganization function and its result
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new array.

We also need to update the pointers. We copy the old node to the new array but we
cannot copy the pointers, as they point to arrays in mylist structure instead of the new array
that we allocated when the reorganization started. There are many ways to do the pointer
update. A convenient way is to add an integer field in the node that shows the offset in the
array of each node, but this increases the node size and can limit the advantages. We can
update the pointers recursively as we know that the parent and the children will be in
adjacent positions. The pseudocode is shown in Figure 3.11. The general idea is that we
copy the current node to the correct new array position and then we do the same for its
children, updating the pointers in the meantime. Then we call the function recursively for
each child’s child. The return value of the function is the array cell that the node resides.

Through this reorganization process, the functionality of the SLL data structure that
we use to keep the arrays with the tree’s nodes is revealed. Once the whole tree is copied in
the new big array we need to deallocate its former memory to reduce the additional
memory, as there is no reason to keep the tree and an outdated copy of it. The SLL keeps the
memory chunks that are used for the tree so all there is to do is deallocate those chunks
(arrays). Then the SLL is empty and the new big array that contains the whole reorganized
tree is the sole element kept in it. As we add new nodes, new smaller arrays will be inserted
in the list as explained in Figures 3.8 and 3.7.

function fix_pointers (node)
retval = current_index
parent = copy(node, node_array[current_index++])
If (parent->right) {
copy(parent->right, node_array[current_index])
parent->right = &(node_array[current_index++])

}
If (parent->left) {

}

parent->right->right = fix_pointers(parent->right->right)
parent->right->left = fix_pointers(parent->right->left)
parent->left->right = fix_pointers(parent->left->right)
parent->left->left = fix_pointers(parent->left->left)

return retval

Figure 3.11: Pseudocode for the reorganization with pointer fixing
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The tree reorganization process is further illustrated with a simple example in Figure
3.12. Before the reorganization, in the list there is an array with 4 elements, named memory
chunk #1 (leftover from a previous reorganization) and 2 more nodes with 1 element each
(here we suppose that it is an array of one element — not so useful for cache friendly
behavior but necessary to keep the example easy to follow). When the decision that a
reorganization is needed a new array is allocated with size equal to the current number of
nodes and then it is filled in the aforementioned manner. Finally the previous address-list’s
elements are deallocated and the new memory chunk is inserted.

Address List Address List
—>» - >
1 N2 \3 \4  reorganization D N\ N2 N3 N4 N5 N6

.

memory chunk #1/," V memory chunk #2

sl ™ s
2] 2 3
- g /
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Figure 3.12: list before and after the reorganization

Although the reorganization can greatly improve the performance of an application
based on trees, there are some obvious disadvantages that must be carefully considered. The
most important is that during the reorganization the memory usage for the tree data structure
is doubled and this can be observed as spikes in the application’s memory footprint.
Depending on the size of the tree, the time this peak in memory is going to last can vary as
the whole tree needs to be copied. For some applications this may be negligible, but it can
prove problematic especially if the application has tight memory requirements and no
flexibility. Of course there are ways to counter this problem. For example the tree cache-
friendly reorganization could be done incrementally, only a piece of the tree at a time. This
will reduce the memory overhead by a large margin. But in the current work we have not
focused on such techniques. Another disadvantage is that during this process the application
basically “freezes” if it is executed on a single core machine as this core must execute the
reorganization function and cannot serve any requests. However, in a multicore environment
some of the functionality can be kept. A separate core can start copying the tree while the
others continue to serve some requests (such as search) by using the old copy as the new
tree is prepared. For most of the associated problems there are possible roundabouts to
counter them, at least partially, at a cost of extra complexity of the related data structures
and code. This performance — memory tradeoff can be evaluated by the programmer, who
will ultimately decide if it is worthy for the specific application.
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With the disadvantages in mind, the last important decision that we have to take is
how often to perform the reorganization. Generally, we do not want it to happen too often
because the cost of reorganizing the tree will surpass the performance gain from the better
cache behavior. The reorganization should happen once the tree has been modified enough
times. A modification is anything than can destroy the ideal structure of a reorganized tree
such as insertions and deletions. If the tree has the correct properties (parent and children in
adjacent memory addresses) as more and more modifications occur those properties will be
less and less common to every part of the tree. A few modifications in a large tree, like 1000
insertions when the tree has millions nodes are unlikely to affect the performance greatly.
So, the decision must be taken when the number of insertions/deletions reaches a specific
coefficient with reference to the tree size. In our experiments we put that threshold at 1.0.
That means we initiate a reorganization once the tree has doubled in size since the last time
it was reorganized.
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CHAPTER 4
Experimental setup and results

Once the optimizations described in Chapter 3 are implemented, some
experimentation is needed to evaluate the actual results in real applications and corroborate
them with the theoretical results. The evaluation of the extended DDTR is done by using
two modern embedded chips and a set of real world benchmarks in addition to some
synthetic ones. In the previous DDTR only one processor is used. The data structures that
are used in the experiments are the ternary tree, the patricia trie and the HAT-trie and have

Existing DDTR New DDTR
Library of Data Structures list, arrays list, arrays, radix trees
Platform-awareness Platform-independent Cache-conscious
implementations implementations
Metrics Exec. time, memory Exec. time, memory,
throughput, latency h
Evaluation x86 ARM-based, Myriad
embedded systems

been thoroughly described in Chapter 3.
4.1 Platforms and benchmarks

The goal is to evaluate the DDTR methodology with various systems that have
completely different memory hierarchy. Depending on the processor, each system can
display completely unique characteristics. For example some systems have cache memory
while others do not. The existence or not of a cache could affect the decision for a specific
data structure or make the optimization that were discussed earlier obsolete. This is the
reason that we need to take into account the platform and move from a platform independent
methodology to a platform dependent.

The first platform that was used is the Freescale i.MX6 [31] which is a 4-core ARM-
based embedded chip. It contains two levels of cache memory and a 1GB DDR3 RAM. The
second one is the Myriad chip designed by Movidius Ltd [32] and normally acts as a low-
power co-processor in mobile devices, smartphones and wearable gadgets [33]. It integrates
8 VLIW cores (Very Long Instruction Word), which access a 1MB shared SRAM memory.
In contrast with the Freescale, no cache exists between the cores and the memory and also
the memory capacity is much lower.

The evaluation of the extended DDTR methodology was made through a variety of
synthetic and real-world datasets. They synthetic benchmarks consist of some custom
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testcases of 10M operations each. The operations are items (number strings) that need to be
inserted, deleted or looked up in the tree data structures that are added to the DDTR library
and want to examine. On the other hand, the real-world benchmarks are two sets that refer
to IP addresses and dictionary entries. The IP dataset contains a portion of the IP addresses
that made requests to servers for the 1998 World Cup and was taken from the Internet
Traffic Archive [34]. It is composed of 3 million IP addresses, of which 4% are unique, So
there are many duplicates. The dictionary datasets are taken from real dictionaries of various
languages, utilized in the WinEdt text editor [35] and contains only unique string entries (a
dictionary does not have duplicates), but in some experiments we have duplicated some
entries. In the Myriad experiments, due to low memory — only 1MB — we need to restrain
the size of the tree and therefore only a small part of the benchmark is executed. The metrics
that are used to evaluate each case are the throughput and the memory footprint. The
throughput is defined as the number of operations per second. Finally, some results are
presented that relate to the memory overhead and the performance of the cache conscious
implementations.

4.2 Experimental results — synthetic datasets

In this section we present and analyze the experimental results of the application of
the extended DDTR methodology in various synthetic benchmarks. We performed two
experiments using synthetic benchmarks in the Freescale board, which are presented in
Figures 4.1 and 4.2. In the first one, the updates are 10% of the total operations, while in the
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Figure 4.1: Throughput vs memory utilization of the synthetic benchmark with 10% updates in
the Freescale board
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second one they are 80%. As an update we define an insertion or a deletion. When an
insertion is performed the algorithm tries to find the element and if it is not stored in the
structure, then it adds it. Similarly, when a deletion is performed the element must already
exist before it is deleted.

In the first experiment in Figure 4.1, there are three optimal implementations overall,
namely the ternary tree (labeled as Ternary), the cache conscious ternary tree (labeled as
Ternary-cache-opt) and the HAT-trie (labeled as Hat-trie). Unsurprisingly, the highest
throughput is achieved by the HAT-trie implementation — almost 35% higher than the
Patricia trie. The reason for this phenomenon is easy to explain: the HAT-trie provides a
much faster lookup in comparison to the other data structures that we implemented because
it acts as a hash table. There are only a few updates so the majority of the operations are
lookups and that gives the HAT-trie an edge. Also, the fact that this benchmark has a small
percentage of updates favors the cache-optimized implementations as the optimized ternary
tree that outperforms the traditional ones. Both the optimized version of the ternary tree and
the Patricia trie have higher throughput than their non-optimized counterparts.

As far as memory is concerned for the results of Figure 4.1, we observe that the
optimized ternary version has comparable memory footprint with the non-optimized one.
One would expect the memory to be twice as the reorganization requires twice the memory
(temporarily). However, depending on the size of the tree that the last reorganization
happened, the extra memory overhead may not exceed the memory of the program when the
execution finished. This is also dependent on the type of the tree. For the patricia trie for
example, the overhead is considerably higher because each node contains the whole string
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and as a result, the existence of common substrings cannot reduce the number of nodes
required. Additionally, the ternary implementations outperform the HAT-trie, because these
implementations are built inherently with memory efficiency in mind. The patricia has
however the best memory utilization.

In the second benchmark (Figure 4.2) most of the strings are unique and that causes
the majority of the operations to be updates. As a consequence, the tree is bigger. The HAT-
trie continues to have the best performance, although the gap with the optimized
implementations from the previous experiment has closed. Compared to the original patricia
implementation the HAT-trie’s throughput is increased by 39%. The ternary optimized
version can almost rival the HAT-trie while at the same time displaying better memory
utilization. The main reason for this is that the advantage of the HAT-trie that is the fast
lookups play a less important role here because many updates are required. The many
updates will cause the buckets to burst more often (Chapter 3) and this leads to reduced
throughput.

As far as memory is concerned, the same phenomenon is applied as in Figure 4.1
with the exception that the non-optimized Patricia implementation has the best memory
footprint. Although in theory the ternary should have less memory than the Patricia,
sometimes that is not the case, because the Ternary suffers if the strings does not have long
common prefixes and / or are big enough as each character need a separate node with three
pointers, while in the Patricia implementation the node has the whole string and two
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pointers. So for the same string the space required by the Patricia node can be superior.

The corresponding evaluation of the synthetic benchmarks in the Myriad platform is
presented in Figures 4.3 and 4.4. The cache conscious implementations are omitted in the
Myriad experiments, due to the lack of cache memory in the Myriad chip. In the first
experiment (Fig. 4.3), where the lookup operations are dominant, the ternary tree provides
the highest throughput (22% higher in comparison with the Patricia implementation).
However, the Patricia has the least memory requirements for reasons that have been
explained previously, as the number of the strings is too small and as a result, the Ternary
cannot take advantage of common prefixes (many strings are also unique). In the second
experiment where the updates dominate and the trees have more nodes, the Ternary tree and
the HAT-trie are the optimal implementations for throughput. An interesting observation is
that the lack of cache memory in Myriad has caused the HAT-trie performance to fall
behind the Ternary implementation, even though the HAT-trie basically behaves as a hash
table (the bucket size is big compared to the 1IMB memory of the platform, so there are
basically no nodes). Therefore the results are a lot different compared to the Freescale board
and the solutions that a designer would prefer can be different if the different platforms were
not taken into account. This fact indicates the drawbacks of a platform-independent
methodology, as the hardware and the specific input can make the same DDT behave
differently.
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4.3 Experimental results — real world datasets

4.3.1 IP dataset

The IP Dataset consists of 3 million IP addresses, in which 4% are unique and they
represent the addresses that made requests during the World Cup 1998. A sole address
usually does many requests to a site, hence the small percentage of unique addresses
compared to the total requests. The procedure for each address is the following: first it is
searched in the corresponding tree and, if it is not found, it is inserted. Each line has a
number that corresponds to a client (real IP addresses are concealed to preserve users’
anonymity).

The results on the Freescale chip are presented in Figure 4.5. The overwhelming
percentage of lookup applications gives the HAT-trie a considerable edge over the rest of
the implementations (30% in comparison with the patricia-cache-opt). We also observe that
the optimized Ternary and Patricia versions lead to 12% and 17% better throughput over
their non-optimized counterparts. The non-optimized and the optimized implementation
have similar memory utilization as the tree reorganization does not happen very often,
therefore the two versions’ final memory consumption align. The Patricia implementations
still has the lowest memory footprint.

With respect to the Myriad board, the corresponding results for the IP benchmark are
shown in Figure 4.5. As in the synthetic benchmarks, the Ternary tree provides the highest
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Figure 4.5: Throughput vs memory utilization of the IP benchmark in the Freescale board
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throughput but requires the most memory. Again, this is explained by the small number of
the different strings that substantially limits the possibility of having long prefixes and as a
result, saving up space by reusing these nodes. The HAT-trie has the least memory
requirements because it is basically a hash table and the elements are closely packed
together. The Patricia implementation is worse in every aspect from the HAT-trie, but still
beats the Ternary tree as far as memory requirements are concerned.
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Figure 4.6: Throughput vs memory utilization of the IP benchmark in the Myriad board

4.3.2 Dictionary datasets

In this subsection, the experiments with the dictionary datasets are presented. The
first experiment (Figure 4.7) contains only update operations (insertions) and the insertion
requests are coming in an alphabetical order, like creating a dictionary from scratch. The
optimal implementations in this case are the Ternary trie and the HAT-trie. The Ternary trie
leads to 23% higher throughput in comparison to the HAT-trie, while the HAT-trie provides
18% lower memory consumption. It is noteworthy that the non-optimized implementations
outperform the optimized ones.
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Again, in Figure 4.8 all the operations are updates, but now the ordering is random.
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The memory consumptions remain the same as the previous experiment, but the
performance is altered. Therefore, ordering matters only for the performance. When the
dataset is sorted, consecutive words tend to have the same prefixes. So, the same path is
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Figure 4.8: Throughput vs memory utilization of the dictionary benchmark with 100% updates and
strings inserted in random order in the Freescale board
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followed (up to a point) and, as this path was recently accessed, the corresponding nodes
will be in the cache. In this case, the advantage of a cache conscious implementation is
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Figure 4.7: Throughput vs memory utilization of the dictionary benchmark with 35% updates and
strings inserted in random order in the Freescale board

automatically limited, as the application already displays a good behavior. This
phenomenon leads to superior performance (throughput). With random ordering, the patricia
optimized implementation is better than the non-optimized while with alphabetical ordering
the opposite is true.

Finally, in Figure 4.9 the random ordering is kept, but some entries have been
duplicated in order to have some lookup-only operations instead of exclusively insertions.
Once that happens, the HAT-trie achieves the best throughput while continuing to require
the least memory and this is expected thanks to the fast lookup time — it is a hash table after
all. Also the optimized implementations perform better than the non-optimized ones with
very small memory overhead because the big number of the lookup operations cover the
cost of the reorganization and provide faster execution.

The corresponding results for the Myriad board are presented in Figures 4.10, 4.11
and 4.12. As in the previous experiments, the HAT-trie and the Ternary tree provide the best
throughput. However the high requirements of the ternary tree in memory continue. The
reason, as explained before, is the small number of overlapping prefixes, thanks to the small
number of different strings that can be stored to the limited Myriad memory, in combination
with the fact that each character of the string is stored separately in its own node.

4.4 Overhead of the cache-friendly implementations

The following table (Table 4.13) presents the execution time and the overhead of the
cache conscious implementation for all datasets. The overhead is closely related to the tree
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reorganization process that is described in Chapter 3. More specifically the execution time
overhead is the percentage of time that is spent for the tree reorganization during the
execution of each benchmark. The memory footprint overhead is the memory spike that is
observed when the new array is allocated for the old tree to be copied in a more efficient
manner.
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With respect to the performance overhead, it is largely dependent on the “timing” of
the last reorganization. For instance, if the last reorganization took place near the end of the
execution, the performance overhead will be high, as the tree is already as big as possible (it
will not get much bigger in the remaining time) and therefore the amount of time that need
to be invested in the reorganization is relatively big, while the advantages will be limited
because there will not be sufficient time for enough operation to take place in the optimized
data structure.

At an extent, this can be observed in the dictionary datasets. However in other
benchmarks, such as the IP dataset, the performance overhead is very small. As far as the
memory overhead is concerned, it obviously depends on the size of the tree that is copied. If
the extra amount of memory that is needed is not a constraint, then this overhead can be
ignored.
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Execution time Memory size
overhead overhead (MB)
Ternary Patricia Ternary Patricia
cache-opt | cache-opt | cache-opt | cache-opt
Synthetic
10% upd. 5.7% 5.38% 22 28
Synthetic
80% upd. 20% 18.4% 138 168
IP dataset 4.6% 3.6% 37 2.6
Dict. 100% upd.
alph. order 35% 15.3% 14.3 18.5
Dict. 100% upd.
random order 36% 20.3% 14.3 18.5
Dict. 35% upd.
random order 20% 12.1% 16.2 32

Table 4.11: Execution time and memory footprint overhead of cache conscious
implementation on Freescale board
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CHAPTERS
Conclusion and future work

5.1 Summary

In this work, the original DDTR methodology, its foundations — as well as some of
its improvements — and its limitations were presented. In an attempt to further improve the
DDTR methodology, we expanded the DDTR library with some additional data structures
(trees) that are common in many multimedia applications. A variety of trees were used for
the same purpose, each implemented in a completely different manner in order to highlight
their strong and weak points. Additionally, we presented a methodology to render these tree
data structures into more cache-friendly ones and we tested the new modified DDTs with a
collection of benchmarks.

There are apparently some general principles regarding the data structures behavior
under different application requirements. For example, we noticed in all experiments that
the HAT-trie performs well, when there is a large number of lookup operations. Also, in the
dictionary benchmarks, the word ordering affects the performance. However, we noticed the
different behavior of the same implementations between the two platforms with different
memory hierarchies. Indeed, the existence (or not) of a cache plays a major role in the
performance results of the data structure implementations.

The improvements made in the DDTR methodology by the integration of the cache-
conscious implementations extended the methodology by making it able to adhere to
hardware-related constraints such as the existence of a cache system. In many cases (such as
the IP benchmarks and the synthetic ones), some Pareto points would not be “visible” with
the previous DDTR methodology. In other words, the methodology is adapted, not only to
the application constraints, but also to the hardware constraints and specifications. Thus, the
set of data structure implementation solution increases, providing the developer with more
flexibility.

To sum up, the cache conscious implementations through the data structure
reorganization can be a valid alternative to the generic ones. If the performance and the
memory overhead that it incurs is not a constraint, then such implementations can achieve
high performance through effective cache utilization.

5.2 Future work

The basic techniques described here can be also used to improve other data
structures that use pointers, such as singly linked lists. It is not a methodology that is tied to
tree-like data structures, but some general principles that are followed. Apart from this, only
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limited information about the hardware is taken into account. To be precise we are
interested only in the existence of cache memory. But if more information is available,
better decisions can be made. For example, if we have a detailed energy model for the
system, we can juxtapose the energy cost of the reorganization with the energy saving from
an improved cache performance in order to decide whether it is worthy (if memory is our
main interest).

The next step for the DDTR methodology should be to consider more information
about the application. There is a variety of profiling tools that produce massive amount of
data about the program’s behavior, like its access pattern. If the workload is known in
advance or can be predicted, then the reorganization can be scheduled for specific moments,
such as when many reads are about to happen. It is a waste to do the reorganization at the
end of the program (as may very well be the case) because then we can never get its cost
refunded through better performance for the remaining operations.

Finally, during the reorganization the program’s execution must stop momentarily in
order to reorganize the tree. If many cores are available there are partial solutions, like
having another core reorganizing the tree while using the older copy. But if only one core is
available, stopping the flow of the program can be prohibited, especially if the application
has tight real-time constraints. It would be interesting if the reorganization could be
achieved through an incremental manner, parts of the tree at each time in order to reduce the
delay and make it suitable for more applications.
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