gl
VPO PG

FPOMHBEYS

N

EONIKO METZOBIO ITOAYTEXNEIO
£XOAH HAEKTPOAOI'QN MHXANIKON KAI MHXANIKON YIIOAOTIETON

TOMEAX TEXNOAOTITAX [TAHOOPOOPIKHYE KAI YIIOAOTTETQN
EPI'AXTHPIO MIKPOYIIOAOTI'IETOQN KAI YHOIAKOQN XYXTHMATQN

Parallel Architecture Design and Trade-off Analysis for
Hyperspectral Image Processing on FPGA

AIITAQMATIKH EPT'AXIA
TO0L

Yipowv M. Bérha

EmpAiénov: Anunrpilog 1. Zovvrpng
AvoamAnpotg Kabnyntg

Abva, Tovhtog 2016

EOGNIKO METZOBIO ITOAYTEXNEIO
2XOAH HAEKTPOAOI'QON MHXANIKQN
KAI MHXANIKQN YITOAOI'TETOQN

TOMEAX TEXNOAOI'TAX [TAHPOOOPIKHZ
KAI YIIOAOI'TETQN

EPI'AXTHPIO MIKPOYTIOAOT'IETOQN

KAI YHOIAKQN XYXTHMATQN

Parallel Architecture Design and Trade-off Analysis for
Hyperspectral Image Processing on FPGA

AIIIAQMATIKH EPT'AXIA
TOV

Xipov M. Béhra

Empiénov: Anuntprog L. Zodvrpng
Avaminpotc Kadnynmcg

EykpiOnke and v tpuein emrponn v 211 IovAiov 2016.

Anpntpiog 1. Zovvtpng Kuapdd Z. IMeokpeotln Kavotovtivog Kapavtloiog
AvomAnpote Kadnynmg Kafnynmg Aéxtopag

ABMva, TovAog 2016

-3-

YIMQN M. BEAAAZ
Aumhopoatovyoc Hiektpordyog Mnyovikdg kot Mnyavikog Yroroyiotov EMIT

Copyright © Ziuwv M. BélAag, 2016.

Me gmeOlaén mavtog dwcardpatoc. All rights reserved.

Amayopevetol 1 avIypoagt], omodnkevon Kot dlavopn Tng Topovcsas epyaciog, €& oAokAnpov 1
TUAIOTOG OVTNG, Yo epmoptkd okomd. Emrpémetan n avatdmwon, amodnkevon Kot dovoun yio
OKOTO U1 KEPOOGKOTIKO, EKTMULOEVTIKNG 1 EPEVVNTIKNAG QOONE, VIO TNV TPovmodeon va
OVOQEPETAL 1 TNYN TPOEAELONG Kot va, dlatnpeital To mapdy pnvopa. Epotiuate mov apopoldv
TN XPNOM TS EPYCING Y10 KEPOOOKOMIKO GKOTO TPEMEL VA ameLOHVOVTOL TPOC TOV GLYYPUPEQ.

Ot andyelg Kou To GUUTEPAGUOTO TOV TEPEXOVTOL GE aVTO TO £YYpoeo ekepdlovv TOV
ovyypapéa Kot dev mpEnel va epunvevdel 6TL avTimpocwnevovy Tig nionueg Béogig Tov EOvucon
Meta6fiov ITorvteyveiov.

Hepiinyn

Ta televtaion ypoOVIK, 1 VIAEPPACUATIKY] OTEIKOVION OCLVAVIOTOL GE £V GUVOAO
SLPOPETIKOV EPAPUOYDV, OO GUOTNUATO KATOYPUPNG YEOAOYIKAOV OEOUEVODV UEYPL
CLCTNHOTA VYNANG TOOTNTOG TPAYUATIKOD ¥POVOL OTMG O TOLOTIKOG EAEYYOS TPOPIU®V
omVv mapayoyr. Ot avénuéves duVOTOTNTEG TOL UOG TPOCPEPEL QTN M TEXVOLOYia,
ouvoLdlovTal Pe avTioTO O AVENUEVES AOLTIGELS Y10l VTTOAOYLIOTIKY] 10%D Ol OTOIEC OEV
UITOPOLV Vo 1KovoroinBovy e0KOAN amd KOWEG EMEEEPYACTIKEG HOVAdES. Q¢ €K TOVTOV,
EMTAYVVTEC LAKOD Omwg to FPGA Aappdvouvv pia 6A0 kot mo kevipikny 0éom og
ocvotpata eneEepyaciog VIEPPAGUATIKOV dedopévev. To evdtapépov yOp® amd avtég
TIC GLOKEVES LITAPYEL AOY® TOV aLENUEVEOV dVVOTOTTOV TOPAAANANG emeiepyaciog
dedopévov kabdc kol Mg wavoTnTog emoavadapdpeoong twv povadwv. O
TPOYPOUHOTIGHOC Tov FPGA yivetal amodotikd pe tn ¥pnon YAOGo®V TEPLYPOUPNC
VAoV, 6mwg 1 VHDL «ai n Verilog.

Ymv mopovoa epyacio ovomtoSope o€ mapapetpikny VHDL tov moprva evég

GULGTNLOTOG VIEPPOUCUACTIKNG AMEKOVIONG KOl VAOTOMGAUE TOALUTAEG SLOTAEELS GTO
Xilinx Zyng-7000 FPGA. Am6 Aertovpykny Gmoyrn, T0 GOUOTNUO 7OV OVOTTOECLE,
avtiotoyiler eioepyouevo Pixel amd po vrepeoouatikny Kapepa pe évo oHvoro, Mo
YVOGTOV, QOCUOTIKOV VTOYPUE®OV. Algpeuvioape TopIAANAES apPYITEKTOVIKEG GE Tpia
emineda aQoaipeong evd GYEOACAUE TO GUGTNUO Yol EVKOAT EVOAAMYN TOV KEVIPIKAOV
VTOAOYIOTIKGOV HOVAS®MV KOl TN TPOCOPUOY TOV OTNV €KAGTOTE UETPIKN/aAyOpIOpo.
A&lohoynoape TV EMTAYLVON TOL GUOTHUOTOS WOG OE GUYKPION UE TS OVTIGTOLXES
software viomowmoelg oe emeepyootéc, my. Intel i3 1 évav evoopatouévo ARM.
Emniéov, ce MATLAB, npaypotomomcape aloAdynon tov ETOOGEOV TOV GLGTHHOTOG
TOUPLECUATOS (POGUATIKMY LIOYPAP®V ¢ TPog TNV akpifeid tov. AovAéyape pe
VIEPPACUATIKEG €KOVeES He €og 285 xoavola (amd Odpopeg KAUEPES), TPELS
alyopiBpovg/petpikéc cvykplong kol €EETACAUE TNV OTOS00T TOV GLOCTHUOTOS UECH
TPLOV PETPIKOV TTodTNTag. Me Baon) pedétn pog, tpoPnkope og o tradeoff avéivon
peta&d g viomoinong oe FPGA, g taydrtag kot g akpifelag. Ev télel, emroyope
EVIVTTOGLOKG OTTOTEAEGLLOTO, KOO KOL Y10l TNV TTO PEAAOTIKY amd Tig datdéelg pog: H
eMTAYLVON VAMKOD Kvpaiveror amd 70X-321X (évavtt tov i13-3110M) kar 626X-9694x
(évavtt too ARM Cortex A9) evd 1 TAnpotnTa/opOBdTTO/TOOTNTA TOV GLGTHUATOC
aviyvevong kopaiveratl and 70% émg 98% yia diapopa avtikeipeva.

A&Eac-Khewona: Ymepoaouatikny Avdivon, XOykpion Doacpatikov YToypapov,
Emtayovtég Yoo, FPGA, Xilinx Zyng SoC, VHDL, TTapdiinieg ApyiteKTovikeg,

This page is intentionally left blank.

Abstract

In recent years, hyperspectral imaging has found its way in a series of applications
ranging from environmental monitoring to high speed sensing and food processing with
real time performance. Enhancing the detection abilities of this technology relies on
increasing the processing capabilities of the computational units supporting the
hyperspectral imaging sensors. In this direction, FPGA-based hardware accelerators have
gained the interest of the scientific community due to the very fast processing capabilities
as well as the reconfiguration ability offered by this platform. Until today, the efficient
programming of these devices is usually done with hardware description languages like
VHDL or Verilog.

In the current thesis, we developed in parametric VHDL the kernel of a hyperspectral
imaging system and we implemented multiple configurations on Zyng-7000 SoC FPGA.
From a functional point of view, the developed system matches incoming pixels from a
hyperspectral camera with a set of spectral signatures known a priori. We combined
various parallel architectures on three abstraction levels and we followed a modular
design approach allowing for easy adaptation to algorithm/matching. We evaluated the
acceleration of our system and compared it against software implementations on CPUs,
e.g. Intel i3 and embedded ARM. Additionally, on MATLAB, we conducted a
performance evaluation of the signature matching system with respect to its accuracy; we
considered hyperspectral images of up to 285 spectral channels (from various cameras),
three matching algorithms/metrics, and we examined the performance by using three
quality measures. Based on our study, we provided a trade-off analysis among hardware
implementation, system speed and accuracy. In the end, impressive results were achieved
even for the most realistic of the considered scenarios: the hardware acceleration ranges
from 70x—321x (vs. i3-3110M) to 626x-9694x (vs. ARM Cortex A9), whereas the
completeness/correctness/quality of the detection system ranges from 70% to 98% for
various objects.

Keywords: Hyperspectral Imaging, Spectral matching, FPGA, Hardware Accelerators,
Xilinx Zyng SoC, VHDL, Parallel Architectures,

This page is intentionally left blank.

Evyoaprotieg

H mopovoa duthopatiky ekmovinke oto epyactiplo Mikpoimoroylot®mv Kot Pnelokmv
Yvomudtov g oxoang HMMY tov EMIL ®a ko va gvyaplot)om Kpvé tov
KaBnynt pov KHpro Anuntplo Lovvipn Yo TNV EUTIGTOCVVT] TOV GTIC OVVALELS LOV KOt
™ cuveyn oPEN Katd T SIPKELD TG TOPOVGIOG OV GTO EPYUGTIPLO.

Eniong, evyapiotd tov kadnynt) Kovotavtivo Kapdvilodo g oxolng tomoypdownv
unyavikaov tov EMIT yia 10 peydho evolapépov mov £0e1Ee e€apyng Yo T CUYKEKPIULEVN
ocvvepyacio poag. Ot €MOKOOOUNTIKEG KOl Glyovpo ONHOVPYIKEG GULVOVINGELS HOG
evBappuvav onuovtikd tnv tpootdOeld pov.

H oloxAnpwon ¢ epyaciag avthg o€ Ba tav dvvatn ypig T TOAD GTEV Kol GUVEXT|
ovvepyacia pe tov I'dpyo Aevtdpn, petadidaxtoptkd gpevvny kot tov Kevortavtivo
Mopaykd, 0100KTOPIKO POLTNTI] GTO EPYUCTNPLO UIKPOUTOLOYIoTAOV. Ag B umopovoa va
TOVG EVYOPLOTNCM OPKETE HEGO amd aVTO TO onueiopo OUMG yoipopat MKPLVE Tov
dovAéyape pali 6Ao0 avtd to ypdvo oto gpyastnplo. ['a 10 peydro evolopépov mov
£oe1&av eEopyNg Kot TV auéPLotn GLUPOAT TOVG GtV TaPoVGO EPYUGio. € TOALATAN
eMimedn TOVG AL EMKPIVE EVYVOU®V.

[dwitepa emowkodountikn Moy M cvvepyoasio pov kot pe tov Zoyopioc Kavovddkn,
OWOKTOPIKO QOITNTI] OTO EPYUCSTNHPO TNAEMCKONNONG 1TNG GOYOANS TOTOYPAPMOV
unyavikov tov EMIL. AovAéyope moArég @opég poali kot pov mapeiye dwaitepa
onpavtiky Pondeia oe dbpopa Bépata ota omoia eiya mepropopévn yvaoon. o m
OLUUPOAY] TOL OVTN Kol TN HOVIHO ELYAPIOTN KOl LIOCTNPIKTIKY TOL Owdbeomn Tov
gvyapLoTd Bepud.

Mo 1o gvydproto kot dMNUoVPYIKO KAILO GTO £PYUCTPLO UIKPOVTOAOYIGTAOV TTPEMEL VAL
ELVYOPIOTHC® OAN TO TOWWL TOL EPYACTNPIOV, TPOTTLYINKOVS KOl SOUKTOPIKOVS
QOLTNTES KO EPEVVNTEG LE TOVG OTTOT0VE KOTA KAPOVG GUVEPYOGTHKAE, CLLNTICALE KOt
TEPAGOAUE TOAAEG OTUYUES pall, Wtaitepo CUOVTIKES Y10l EQEVOL.

Téhog, kpatam &va Eex®PoTd Ko TO HEYOADTEPO ELYOPIGTA Y10 TNV OWKOYEVELL LoV, YO
TNV EVIVIOGLOKE LEYAAT VTOUOVH] TOVG OA AVTA TO XPOVIOL KOL TH CLVEYT GTNHPIEN TOVG
OTIG AMOPAGELS LoV KAHMG Kot Y10, TOLG KOVTIVOTEPOLS avOpdTOVS 6T LN Hov Yo 6Ga
LLOV £Y0VV dMGEL KOl 0G0 £(OVVE KAVEL Y10l EUEVOL.

This page is intentionally left blank.

10

Acknowledgements

For the current diploma thesis, completed in the Microprocessors and Digital Systems lab
of the Electrical and Computer Engineering Department of the NTUA, | would like to
sincerely thank my professor, Mr Dimitrios Soudris for his confidence in me and my
work, and his constant support throughout my presence in the lab.

I also thank Professor Constantinos Karavtzalos from the School of Rural and Surveying
Engineering of the NTUA, for the great interest shown in our common project from the
beginning of our work together. Our constructive and definitely creative meetings greatly
encouraged me during my work.

The completion of this thesis however would be impossible without the enormous
support and cooperation with George Lentaris, postdoctoral researcher and Konstantinos
Maragkos, PhD student in the MicroLab. | could not thank them enough in this note but
for their interest and their great contribution throughout my work I am sincerely grateful.

A special thanks also goes to Zacharias Kandylakis, PhD student in the Remote Sensing
Laboratory of the School of Rural and Srurveying Engineering at the NTUA. For his
great help and his much appreciated constantly supportive and good mood, I thank him
warmly.

For the pleasant and creative atmosphere in the laboratory where | spend almost every
day during this past year, | would like to thank all the people working in the lab, post
graduate and PhD students and researchers. We supported each other when needed, had
great discussions and spent many hours together. These moments will surely be missed.

Finally and last but not least, a huge thank you to my family for their constant support
and for being incredibly patient throughout my study years as well as to the closest
people in my life for everything they have done for me and for everything we’ve been
through together.

11

This page is intentionally left blank.

12

Contents

CHAPTER L.ttt ettt h e bt h e sttt ettt e e bt e bt e ebeesbeeebeesaeeeateenbeebeebeenbeenbeesneens 30
INTRODUGCTION ...ttt ettt ettt sttt ettt e b e b e bt e s bt e sbe e sheesabesabeeabe e beebeenbeesbeesaeesanenas 31
1.1 ODbjJECtiVe SUMMAIYooiiiiiiiii et e e sbe e e s saee e s e s bee e e enreas 31
1.2 TheSis SETUCTUE.........cooiiiiiieee ettt sttt sate e sbeeesaee e e 32
CHAPTER 2 ..ttt ettt ettt et et e h e s b e s bt e st s et e s st e eate s abe e b e e be e s eesbeesaeesatesntesnbeenbeenseensaessaens 33
HYPERSPECTRAL IMAGINGcooiiiiiiiiiiiieieeeee ettt sttt sme e s e sneesaneeas 33
2.1 Introduction to Hyperspectral Imaging...........cccccoovviiiieii e 33
2.2 SPECLral SINALUIES et e e e e ranees 35
2.3 Factors that affect quality resultsccooveriiri oo 36
2.4 Difference-based Spectrum Matching and Metrics.............cccccvviiviieiiiiciee e, 37
24.1 Sum of AbSolute DIffEreNCES.......c.cccecvrieirieiricictce e 37
2.4.2 Euclidean DiStanCe..........cccuoriiiiiiiieiceeeee e 38
243 Chi-SqUared DIStanCe.oooieiiiiiiciiee ettt rte e e e e e e e e ebaeeeeenes 38

2.5 Computation Requirements and Applicationscccccee e, 39
CHAPTER 3 ettt ettt ettt et ettt e bt e s bt e sh e e s he e s at e sabeeabeeabe et e e beenbeesheesaeesatesabeenteenbeebeens 43
ACCELERATION WITH FIELD PROGRAMMABLE GATE ARRAYS (FPGA)ccoceivieenieeieiieniene 43
3.1 INEPOAUCTION ...t 43
3.2 Field Programmable Gate Arrayscccocueieeiiiiieeciiee et e etee e e e aae e e 43
33 FPGA ArchiteCtUre..........oiiiiiiiiiiie ettt s s s 44
3.4 FPGA Programming and CAD TOOIS..............ueeiiiiiiiiiieee et 45
3.4.1 VHDL Hardware Description LangUAEEcccevvcuiieiiiiiieeiiiiieesciieeesieeessineee s 46
3.4.2 Design FIOW and TOOISccoociiiiiiiiiiiiiiiee et e 46

3.5 The Xilinx Zyng-7000 SoC and Xilinx Design ToOISs..............cccccvvveeeeeeeiiiiiireee e, 48
3.6 Software Optimization and Measurement Theoretical Conceptscccccceeuveeenne 49
3.6.1 PIPEIINING..... ..o s e e e e e et eaeaeeean 49
3.6.2 Parallel COMPULING..........ooccuiiiiiiiie e e s 50
3.6.3 Latency and Throughput...............oooiiiii i 50
3.6.4 Compiler Optimizations............ccceeiiiiiiii e 51
CHAPTER 4 ..ottt ettt st st st st s b e e bt e bt e b e e s bt e s beesaeesanesabeeabe e beenneenneens 52
FPGA IMPLEMENTATION & EVALUATION.......cccoeiiiiiiiiiiiiiieieeieeie ettt ettt sttt neee 53
4.1 INErOAUCTHION ... s s sre e s ne e 53

4.2 System Description and Implementationcccoei i 53

4.2.1 Parametric VHDL D@SIZN.......cccooccuiiiiiiei ittt eccttreee e e svttre e e e s e e snnanene e e 53
4.2.2 System Design DeSCHPtioNooooiiiiiiiii i 54

4.3 Execution and ULIlization.............c.ccooiiiiiiiiii e 62
4.3.1 Implementation RESUIESc..oeiiiiiiiiiiiecee e 63
4.3.2 ReSUIts COMMENTAIY........cc.uiiiiiiiiiecee s e e nbae e s aeeas 66

4.4 Speedup and Throughput ..o 68
4.4.1 Results Tables and DIagrams.............cooooviiiiiiiie i 68
4.4.2 RESUILS DISCUSSIONcooiiiiiiieiiiieiie ettt e e sare e snee e 77
CHAPTER S 79
QUALITY EVALUATION........ooeiiiiiiiiiiiiieitieitieiete ettt ettt ee e et e e e e e e e e e eaaaaeaeaeaeeeaeaeaeeeaesesesesesasesesasasasasanns 79
6.1 INEFOAUCTION ...t 79
6.2 Dataset Manipulation and Quality Evaluationcccccoeeiiiiiiiiiie e, 79
5.2.1 Ground Truth generation and spectral signatures acquisition 79
5.2.2 [T 1 VA 1Y, =] 1 4 of R 83

5.3 Implementation ON IMATLAB...........oooi i e e e e e e e e e rnnreeee s 84
5.3.1 INErOdUCEION ...t s e 84
5.3.2 Matching System and Results AcqQuisitioncccccoeveieiieiciie e, 84

5.4 QUANTILY RESUIES ..ot e e et e e e bre e e e eba e e e e atae e e anes 86
5.4.1 Analytical Results for main Data Set.............ccccoeiiiiiiiiei e 86
5.4.2 In-house Camera RESUILScooiiiiiiiiiii e 90

5.5 Results Analysis and COMMENTS...........coccciiiiiiiiiiiiieeeee e e 92
(6] VN L T U 95
TRADEOFF ANALYSIS ...ttt ereee e eeeeeee et teteeeteteretetereretetesetaeaeeeaeeeeeeeaeaeaeeeees 95
6.1 INEFPOAUCTION ...t s s e 95
6.2 HW/SW Implementation Trad@offscccoviiiiieiieieiecie ettt e 95
CHAPTER 7 ettt ettt et e ettt e e e e e e b et e e e e e e s bbbttt e e e e e e nbe e e e e e e e e s annreeeeeeeeaannrnenaeas 99
CONCLUSION ...ttt ettt e e e e ettt e e e e e sttt e e e e e s bbbttt eeeeeaaanbebeeeeeesansnraeeeeeesasannreeaeeas 99
7.1 CONCIUSIONS ...ttt ettt et st e st e s bt e e sabeesabeesbeeesnteesareesanes 99
7.2 Future Work and Final Thoughts..............ccccoooiiii i 100
REFEREINCES ittt ettt ettt e e e e e e ettt e e e s e s a bbbt e e e e e e e mnbbeeeeeeeesannnrneneaenss 102

14

Extetapévn llepidnyn

Ykomog TG Authopatikis Epyaciog

YKomoO¢ TG TapoHoos OWMAMUATIKNG epyoaciog eivar m pedétn kot a&loAdynon g
vAomoinong €vOg GCLOTNUOTOS VLIEPPOUCUOTIKNG OamewoOviong oe kukhoupo FPGA.
YUYKEKPIUEVO, VAOTOMCAUE VO GUGTNUO Y10 TO TOIPLOGHO TOV GTOWEI®V L0 EIKOVAG
VREPPOAGUATIKNG OVAALONG HE €VOV GLYKEKPIUEVO OPOUd QOCUATIKOV VTOYPUPOV,
amoONKeLUEVEC GTI UVAUY TOL GLOTHUATOS Hoc. Me avth) dwdkacio, HTopodUE va
Bpobue HECHD GLYKEKPIUEVOV HETPIKMOV TOUIPLAGLOTOS, TN (OGUOTIKH VTOYPUPT 7TOL
avTIoTolKEl o€ KABE GTOLYElD, EMTPEMOVTIAS LLOG TV OVOYVAPLOT) SEG0UEVOV GTNV EIKOVAL.
H emloyn mg mhateopurog oo FPGA yio tv vAomoinon tov cuotiuotdg pog £yve
kaBdg 10 FPGA £xel opiopéva TAEOVEKTLOTA T OO0 OITOSEIKVVOVTOL WOOVIKE Yo TNV
OVTILETOMION TV 100{TEPA QVENUEVOV OTOUTNCE®V O€ EMEEEPYOUOTIKY] 1OY0 TNG
EPAPLOYT OV BELOVILE VO VAOTTOIGOVLLE.

E&etdoape cuykekpiéva opiopréveG VAOTOMGELS TOV TPOOVAPEPHEVTOG GCLGTILLATOG Yo
TPELG OLPOPETIKEG UETPIKES CLYKPIONG. To amoTEAEGHOTA KOTAYPAPNKAY EKTEVADS G
TPOG TIG OMOLTOELS GE VAIKO OGO KOl TO OMOTEAEGUOTO GE EMTAYLVON GE OGYEON UE
avtiotoryeg vhomomoelg oe C kmdiko T omoieg Tpé€ape oe évav TUmIKO emeepyaoTt
EVOC TPOCHOMIKOD VLTOAOYIGTH] KOODS Kot oe évav emeepyaotr] EVOOUOTOUEVOV
CLUGTNUATOV.

Mo mv &aynyn 0cQUA®V CUUTEPACUATOV, TPOPNKOUE OTNV EKTEVH] OVAALGY T®V
TOWTIKAOV YOPOKTNPIOTIKOV TOV TPUDV OPOPETIKAOV UETPIKAV CUYKPIONG OV
viomomoape. H mopamdveo perém éywve oe MATLAB kot yuo ™ devépysin tov
TEWPAUATOV XPNCHOTOMONKAY EIKOVES VIEPPAGUATIKNG OVAALONG LLE EKATOVTAOEG
(QOGLOTIKG KOVAALOL.

KAetvovtag 1 dumAopatiky], tpofrKapne ot HEAET TV CUUPPACUOV TOL TTPEMEL VO
yvivoov peta&h g péylotng emreddung emOOONS TOL KUKAMUOTOS HOG KoL TOV
TOLOTIKAOV OMOTEAECGUATOV Yoo TNV ekdotote €poppoyn. H mapamdve avdivon pog
00N ynce otV &oy@yn WHTEPE CTUOVTIKOV GUUTEPUGUATMV Y10 TIG SVVATOTNTEG TOV
oLOTNHOTOG HOG KOODG KOl TNV OVAYKY] TPOGOPUOYNG OTIS OMOLTNOELS TNG EKACTOTE
EQAPHOYNS.

Yreppoopatiki) Ametkovion

H vrepeacpatikn aneikdvion elvar pia TeVIK aneikdviong KT TV omoio. GLAAEYOVTOL
dedopévo amd €va evplh PACHO TOL NAEKTPOUAYVNTIKOV (AGHOTOC. X avtifeon pe Tig
KOWEG KAUEPES TPUOV KOVOMOV 01 omoieg meplopiloviarl 6T GLAAOYN KOl OTOTOTIMOT)
JEQOUEVMV EVTOG TOV OPOTOL PACLOTOS, 1 VIEPPAUCLATIKY] KAUEPO £YEL TN OLVOTOTNTO

15

OLALOYNG OedoUéVOV GE GLYKEKPLUEVO PNKN KOUOTOS KO TNV OTOTOTMOOTN TOLG GE
EKOTOVTAOES QUOHOTIKE KOVAALL TOpEYOVTOS TN OvvaTOTNTO KOTOYpoeng Kot
avayvoplong €vog moAD peyaAvtepov Oykov dedopévov om’ Ot glval duvatd pe
ovpPatikég KapepEG.

H popen g KapmdAng 6to nAeKTpOopayvnTIKO GAcHa Yo KiOE gikovooTotyeio pmopel va
YPNOUOTOMOEL GTN GLVEYELD YL TNV AVAYVOPIoT Kol TOEVOUNGT] TOL.

Kdabe otoyeio mov pog evolapépel o€ ol DIEPPACUOTIKT EIKOVO, £YEL 0L LOVOOIKY|
AmEKOVION OTO MNAEKTPOUOYVNTIKO (ACUN 1 OTolo KOAEITOL (OGUOTIKY LTOYPAPY.
I'vopilovtag avtiv v vroypo@r] €vOg OVTIKEIWEVOL, €VOG LDAMKOV 1) OTO0VINTOTE
OTOYEIOV OV HOG EVOLOPEPEL, UTOPOVUE VO AVAYVOPIGOLUE Kol VO TAEIVOUNGOVUE
OVTIKEILEVO, DAMKA 1] OAOKANPEG TTEPLOYES LLE KOWVA YOPOUKTNPIOTIKA OE [0 EIKOVAL.

MeTpikéG TOPLACHATOS PUOUATIKOV VTOYPUPDV

[Tpokelpévonv vo. avayveopiGovUE YOPOKTNPIGTIKA TOV LAG EVOLLPEPOLY GE UKL EKOVA
VIEPPACUATIKNG avdAvong, mpoortabovpe va taptdovpe kdbe pdopa o po eiova e
éva 101N YVOOTO QUGUOTIKO «OmoTOT®Uy ard po BAodnkn vroypaemv. ‘Evag tpdmog
Yo T0 TOiplocpo ovTO €ivol O VTOAOYIGHOC TNG OLOVUCUOTIKNG OTOGTACNG TOV
QOCUOTIKOD dlovOoHOTOG €VOG €KOVOGTOLKElOL HE TO avtioTolo Jdtdvucpa kae
VIOYPAPNG. TN GLVEYELD, LE KOO0 KPLTNP1o PEATIOTOV amOTEAEGUATOG, TASIVOLOVLE TO
OTOTEAEGUATO JOAEYOVTAG amd aVTA TNV KOAVTEPN vIoypoen. 'Etol, katackevdlovpe
gvay yaptn amd TV apyIKN €KOVO O 0TOI0G GTNV GLVEYEWD UTOPEL vo ypnoipomomOet
poali pe GAAo KpLTNpLoL Yol TNV OVOYVOPLOT] DAMK®OV, OVIIKEIWEVOV 1| XOUPOKTNPLOTIKOV
TNV €KOVO.

Ymv moapovoa epyocio ££eTAlOVUE TPELG KOWEG UETPIKES Yoo TNV Oe&oymyr Tov
TOPOTAVE TOPLAGHOTOS HE PAon TV HETPNON SLOVUCUATIKOV OTOCTACE®DV. AVTEG Ol
TPELG METPIKEG HeEAeTONKOYV €KTEVOS G©€ £€vo. GUVOAO EIKOVOV OLOPOPETIKMV
YOPOKTINPIOTIKAOV TPOKEWEVOL Vva PBydAovpe o&lOmota cvumepdopota yuol
CLUTEPLPOPE TOVG GE O18POPES GLVOT|KEC.

On tpetg petpucég antég givar 1o ABpotoHa AmOAVTOV S0POPAOV, T EVKAEIDELD OTOGTOOT
KOl 1] KOVOVIKOTIONHEVT] TETPAYOVIKT ATOGTACT).

Input A Input A AputA —F
InputB —— g |
InputB 7*\‘ l putE ﬁ
‘ Subtractor ‘

Subtractor l

l Multiplier
Divider

Outputg Cutputg Outputq

|)
Yympa 1: Ot tpelg PeTpIKE TOPLACUATOC TOL VAOTOMONKAV GTN SIMAMUATIKY EPYOGiOL.

Subtractor

16

> ouvvéyxew aKoAovBovuv kol ot pofnupoatikoli TOHMOL TGV TPLOV UETPIKAOV TOV
VAOTOUCOLLE.

ABpoopa amorVTOV SL0POPOV:

N
SAD =) |x - Y|
i=1

Evkieidero andéotaoon onueimv:

N 2

2. (x=y)

i=1

Kavovikomompévn tetpayovikn andéotacn cnueiov:

ZN:(Xi_Yi)

Emrayovon pe FPGA

H teyvoloywm mpdodog tov tedevtoinv €T®V € MOAALODS TopEels €xel emeépel o
avayKn yuoo ovénuévn eneEepyaoTikn 1oY0 WOUTEPO CE EVOOUATOUEVE GUGTIUATO KOt
ouoTHOTE YOUNANG evépyelag. EmmAéov, ot emMavOSIOUOPOOVUEVES OPYLTEKTOVIKES
KOADTTTOUV £vol OAO KO LEYAADTEPO KOUUATL OTO QVTES TIG EPAPHOYEG.

Ymv mapovoa epyacio emkevipovopoote ot ypnon tov FPGA ot omoieg eivan
enefepyaoTikég povadeg mov Paciloviol o€ TOPAUETPOTOMCIUN AOYIKA UTAOK Yl TNV
EKTEAEOT] OYEOOV OMOLOGONTOTE EPAPUOYNG HE XPNON EWOIKAOV YAMGCAOV TEPTYPOUPNS
vakov onwg m VHDL. To mieovéktmuo ovt®v tev povadmv givor m dvvatotnrta
VAOTOINOMG GLGTNUAT®V TOAD VYNANG TAPOAANAING ETITVYYXAVOVTOS LE AVTOV TOV TPOTTO
eMOOGELG TOAD VYNAOTEPESG OO KOWES EMEEEPYUSTIKEG LOVADEGS.

Eupeig ypnowonomoope v avartvélokn miakéta Zyng-7000 tng Xilinx n omoia givon
£va GOOTNLO VAOTOMUEVO GE OAOKANP®UEVO KOKA®UA Kol GLVOLALEL Evay emeepyaotn|
evoouatopévov cvomuatov pe FPGA. Tw tov mpoypoppoticpnd g mAKETOG
ypnowonomOnke VHDL yia v meptypaen tov KukAduatog kot 1 covita g Xilinx yuo
TNV OTEOVION TOL GuoTHHaTog 610 FPGA.

17

Ylomoinon Xvotiportog Yagpeaopotikng avaivong o FPGA

To ovomua mov onuovpynoope pe VHDL amoteAeiton £xel opiopéva yapoktnploTikd
TOL OO0, LLOG EMITPETOVY L0 LEYAAT] TOPOAUETPOTOINON Kol EMeePYaciot TOV KUKADUATOG
LLOG.

YUYKEKPIUEVO, ONUIOVPYNCOUE EVO GOOTNHO TEGCAPOV EMITEI®V TOPUAANAING OOV
UTOPOVUE EVKOAD VO ETAEEOVUE TOV KATAAANAO 0plBUO TOpIAANA®V eTEEEPYOOTIKAOV
pHovad®mv OG0 avoeopd TNV TapoAANAio KavaAldv, TV TopdAAnAn emeCepyacio
QOCLOTIKOV VTOYPOPOV KOOMSG Kot TV mopdAANAN emefepyacion €KOVOOTOLEI®V.
Emiong, ot emeepyaotikég HOVAOES YloL TOV VITOAOYIGUO TNG OLVUGHOTIKNG OTOGTOONG
elval evoOAAEIES Kol MO EMTPEMOLY TNV €VUKOAN TPOTMOTOINGT TOL KLUKAMUATOC
avdAoyo TNV EQAPUOYY. XTO EXOUEVO GYNUA OIVETAL oL YEVIKT €IKOVO TOL KUKAMUOTOG
amd TO OVMOTOTO EMIMESO APAIPESTG.

Pixel - Signature Matching

Walid
Control

Module
Signature ROM Signature ROM Signature ROM Signature ROM
Clock———» 1) 2 3) P ™)
Pixel in
walid in —ﬁ
- Pixel Pixel Pixel Pixel
o Channel Channel Channel B Channel
Address; r r p v
o [(1) (2) (3) (N)
o]
Z H
& Nae i
o]
2
[
m
)

Reset.

Reset
Control

COMPARATOR TREE

Signature
Index Ctrl J

! ,

Valid Qut Signature Signature
Result Index

Yympo 2: Aldypappo CUGTHHOTOS TOUPIICUOTOS (QUCHATIKOV VTOYPAPOV EIKOVOG
VIEPPACLATIKNG AVAALONG.

H Aertovpyia tov mapomdve kokAodpatog stvar 1 €€ng: Eloepyopeva eucovootoryeion pog
ewovag mpog enegepyacio mpombovvial oe kiBe TapdAANAN eneEepyaoTikn povada pali
HE U0 YVOOTN QUCUOTIKY] LROYPOeN Tov PpiokeTon amodnkevpévn otn Hvhiun tov
ovotpratog. O péEYIGTOC aplBodg VITOYPUP®OV TPOPAVAS 0pilel Kot Tn Bewpntikn péyiot)
dvvatn moapariniio vroypaeav. Kabe povada ot cvvéyelo tpombel opiopéva amd to
QOCUOTIKG Kovalo oe oveEdptnTeg Kot mopAAANAES enelepyaoTIKES LOVASEG Ol OmOleg
pe 1 o€pd tovg vmoloyilovv TV amdotacn TV onueiov tov dSavocpotog. To
amotéAecpo. TG Opopds kdbe kavaioh abpoiletor pe ™ ypnomn &vog dEvipov
aBpo1oT®V KOl 6T GLVEYELD TPOMBEITOL EK VEOV GTNV TPOTYOVUEVT] LOVASQ 1) OTTOT0L Yol
OAEG TIC LTOYPAPEG TPOPOOOTEL €val OEVIPO GLYKPITMV HE TO OMOTEAEGUOTO KOOE

18

ovykplong Cedyovg eikovootoyeiov / vmoypaensg péoa amd Tov omoio eMAEYETOL TO
«KOAOTEPO» OMOTEAEG O Kol TpowOeital oty ££000 pall pe v avtioToryn vwoypaon.

Ylomomoeig kon AToteELEopOTO

To cbotmua mov katackevdotnke oe VHDL viomomOnie kot petpndnke oto FPGA pe
dwpopetikég TéG mapariniiog. Kdébe viomoinon a&oloynbnke og mpog 10 YpdVO
EKTEAEONG KO TNV KotavdAwon moépwv TG cvokevns. Ta amoteléopato omd wdbe
vAomoinon ovykpibnkov oTn cLVEXEW HE TA OMOTEAECUOTO TMOV OVTICTOL®V
viomomoewv o C otov eneepyaotn g Intel kol tov evoopotopévo eneepyacth g
ARM. Zt ovvéyela vmoAoyiotnke m emtdyvvon yuoo KaBe mepimtwon Kabdg kot T
throughput dedopévov €166d0v. 1o Zynua 3 divovtor Ta StoypAUUATO ETTAYVVONG KOl
throughput ywa €1 vAoTo el dlopopeTIKNG TapaArniiag. H enttdyvvon mov emttvyope
etvar EekdBapn koB®OG emiong Kol 0 TEPLOPIGUOC OV EIGAYETOL OO TN duvaTdTNTO
TPOPOOOGI0G TOV GLUGTNUATOS LLE VEX OEOOUEVQL.

Ytovg ITivakeg 1 kou 2, mopovctdloviol GUVOTTIKG OVTITPOCOTEVTIKE OMOTEAEGULOTO
EMTAYLVONG Kol KOTAVAA®ONG TOP®V Y10 OPIGUEVEG VAOTOUCELG.

16 CHANNELS UTILIZATION (ZYNQ 7045)
16 SIG. PARALLELISM SAD EUC CHI-SQUARED
REGISTERS 23.8K (5%) 24.7K (5%) 281K (64%)
LUTs 16.4K (7%) 17.6K (8%) 81.7K (37%)
DSPs 0 256 (28%) 256 (28%)

MMivaxaeg 1: Katavaiwon TOpmv Tpidv HETPIKOV Yo TNV 1010 VAoToinom

19

FPGA Configuration Data SAD Execution time Speedup
Signature Channel Software (C) VHDL VHDL vs.
. R Channels
Parallelism Parallelism i3 ARM FPGA i3 ARM
16 16 0.37 sec 3.5 sec 9.35ms 40 374
8 64 64 0.52 sec 26.72 sec 12.38 ms 46 2377
256 3.23 sec 106.88 sec | 49.52 ms 72 2377
16 16 0.75 sec 6.73 sec 10.75 ms 70 626
16 64 64 1.03 sec 40.36 sec 13.94 ms 74 2895
256 6.99sec | 161.44sec | 55.76 ms 125 2895
16 16 1.45 sec 12.87 sec 11.33 ms 128 1136
32 64 64 2.02 sec 83.07 sec 24.85 ms 81 3343
256 13.17 sec | 332.28 sec | 99.4 ms 133 3612

IMivaxog 2: Emtdyvvon VHDL vs. 13 & ARM yio emAeyuévec ovVIITPOCOTEVTIKEG
VAOTOMOELG

EUC Speedup / Throughput
1800 2.5
—4&— Speedup vs. i3
1600
Speedup vs. ARM 5 <
1400 b
O—FPGA throughput (128 signatures / pixels total) / _}
1200 —> g
- 152
S 1000 Z_0o _— S
g 800 S’_,
& -1 3
< Y ¢
g 600 A 2
& 3
400
- 05 £
200 @/ '|E
0 T T T T 0 &
128 256 512 512 1024
(16 x 8) (16 x 16)) (16 x 32) (64 x8) (64 x 16)
FPGA parallelism (PUs = CHANNEL PARALLISMS * SIGNATURE PARALLEILSM)

Yympa 6: Iepopatikd arotedéopata exttdyvvong / throughput ya £€L viomomoerc

Eivor epoavég and 1o mopomdve omoTEAEGUATE TMG Ol UETPIKEG TALPLICUATOS £YOVV
ONUOVTIKES O1POPEG LETAED TOVG MG TTPOS TNV KATOVAA®GT TOP®V ToL cvotnuatoc. H
viomoinom g dwaipeong eival, g YvoOTOHV, TOAD «OKPP» HEUDVOVTOG CNUAVTIKE TN

20

péytotn emredéun mopoaiiniio. H mapoatipnon avty sivol dtaitepo oUOVTIKY Yo TV
gm0y ™G PEATIOTNG oYediaomng. EmumAéov, eival capés Twg o kKupldtepog mEPLOPIOTIKOC
TOPAYOVTAG Yo TNV eMITELEN TOAD VYNAGV €MBOcEMV gival 1 TpPoPodoGior dedopévav
g10000v oto FPGA. To throughput mov amatteiton amd 10 cOHOTNUG HOG ATOTEAED pia
LEYOAN TPOKANON Y10, TO GYESOCTN Kol TPOQav®G BETEL Ta Oplal TOV GLGTHUATOS LLOGC.

ootk Aoloynon

Metd ™ peAétn kor a&loddynomn Tov GUGTNUATOS UG KOl TOV TPLOV OOPOPETIKAOV
LETPIKOV G€ EMIMEOO VMKOV, TPOYWPOVUE GTNV TOWOTIKN HUEAETN] TOV GULOTHLOTOG
TOLPLAGLLOTOG POGLOTIKDV VITOYPAUPOV.

H pelém avt, kpiveton amapaitntn yio v €£0ymy] COUTEPACUATOV TOLOTIKNG GVONG
YL TIG TPELS LETPIKES TOpLdcpotoc. Ta amoteléopata avtd Bo pog EmMTPEYOLV GTO TEAOG
va g€dyovpe oo GLUTEPAGHOTO Yo, TV €MAOYN TS KOAOTEPNS dtdtadng yuo kdbe
EQOPHOY.

Yrepoaopatikéc Eikdveg mov XpnoomonjOnkay

[Na mv oaymyn tov TEPIUATOV YPNCILOTOMGOUE dVO VIEPPOUCUOTIKES EKOVEG
SPOPETIKOV YOPAKTNPIOTIKGOV. H khpla eikdéva mov ypnoUYLOTOmCaLE TPOEPYETAL OO
0 mpdypappo APEX e ESA kot amotedeitor amd 285 vrep@acpatikd kovailo to
omoio KaAOTTOUV TO NAEKTPOpAYVNTIKO Pdoua ard to 400nm - 2500nm mepinov. o
OLYKEKPIUEVN €KOvVa e€etdoape TEVIE OOPOPETIKEG TEPIMTMOELS OLOPOPETIKDOV
yopokplotikav. Emmiéov, emovardafape to 010 Telplpoto yio SopopeTiKES OLTAEELS
VROOETIKOV KAUEPDY KOl GLVONK®V.

Téhog, tO OelTEPO ©ET €WOVOV TOL ypnolponmombnke eAnedn pe Kdluepeg
VREPPAGUATIKNG OvOALONG 16 KOVOAIDV TOv €pyaotnpiov THAETICKOTIONG TG GYOANG
TV Tonoypdowv punyavikedv tov EMIL Ta cvykekpipéva dedopéva ypnoyrorondnkoy
v v €€aymyn] CNUOVTIKOV TOOTIKAOV GUUTEPUCUATOV Kol TNV avaAvomn dogopmv
AP yOVTOV Kot O)L Yl TN LEAETT] CUYKEKPIUEVMV TOGOTIKMOV TEPAUATOV.

Anmovpyia Aedopévav EAéyyov kol Poopatik@v Yaoypoagav

[Na ™ Jdkloyoyn TV TEPAUATOV, YPNOWOTOMGCOUE ©F KOPOL EKOVO, Ui
VIEPPACLATIKY] €KOVO 285 Kavoldv peyéBovg 1000x1000 ewovootoryeio. Amd
OLYKEKPIUEVN €1KOVO, OMMOVPYNCaUE €51 OPOPETIKE dedopéva, EAEYYOL TO OToia
YPNOUOTOMONKOY GTN GLVEYELD Yol TV TO0TIKN avdAivor. Kataokevdoope meployég
eAEYYOL Yo vePO, YATEDD TEVIC, OKEMES, OPOUOVS, YNTEdO pe ypaoiol kot PAdoTnon
(0évtpar).

‘Eva. mapddetypo dedopévov eréyyov eaivetar oto Xynuo 7. Me ypriion tov MATLAB
ONUOVPYNCOLE TEPLOYES TTOL OGS EVOLEPEPUV OO TNV OPYIKN EIKOVA GE LOPPT dVOOIKOD
xXopTN.

21

Yympa 7: Tleproyn eAEyyov ylo GKeEMES

ATo TIC TEPOYEG EAEYYOV, OVTANCOUE GTY) GUVEXELD OPICUEVO EIKOVOGTOLXEIN T ool
YPNOLOTOWCOUE MG PACUOTIKES VITOYPOPES Y10 TN GLUYKEKPLUEVT] TEPLOYN. 2T YEVIK
TEPIMTOON YPNOYWOTOMGAUE TEPITOV 5-6 vIOypaeés Yoo kdbe mepLoyn KabDG HOGC
EVOLEPEPE VO €EETACOVUE TN OPOPA GTO. TOLOTIKGL OTMOTEAEGLOTO Y10l OLOPOPETIKO
ap1Ouod vroypaeav. ‘Eva mopdderypo TETo10V QOGHATIKOV DTOYPUPOV SIVETAL GTO YN Ua
8.

7000

E000

&000

4000

3000

2000

1000

1] &0 100 150 200 250 300

Xynpa 8: Téooepig AGUATIKES VTTOYPAPES OO TNV TEPLOYT| TOV YNTEIWV TEVIC.

Agikteg ITowotntog ko Hepapatikad Anoteréopato

Mo v mocotwomoinon g évvolag G modTNTaG, XPNCOTOMGAUE TPELS POCIKOVG
OelKTEC TO1OTNTOG TTOV YPNCUYLOTOLOVVTOL GUY VL GE TOIOTIKEG LEAETEG EIKOVMV.
O1 deikteg avtol siva:

Agiktng IMMinpotnreg (Completeness) = TPFN

Agixtng Op0otnTag (Correctness) = TP+FP

22

TP

Azikng Howtrag (Quality) = ———

O1 mopamdve tpelg deikteg pag divovv amotelécpoto o€ emi TOC €kotd Tt omoia
UTOPOVE EUELS VAL EpUNVEDGOVUE Y1 TNV EEQYMYT OOPAITNTOV GUUTEPOUCUATOV.

Amoteréopato Avarvong

Mo mv kéAoyn 6Awv TV TBavOV TepmTdcewv PeAéTng, vaomomcaue o MATLAB
éva LOVTEAO e TO Omoio HETPNOOUE Yia kGOe pio amd TIC TEPLOYES EAEYYOV HOG TOVG
nopomave ocikteg. Ot HeTpNoelg &yvav apyKd Yoo Ui QOCUOTIKY] LVITOYPAOn KAOe
TEPLOYNG Y10 OAEC TIG OLAPOPETIKES VITOOETIKEG droTacelg e kapepag pog. H mopamdve
Jradkacio eTavOANEONKE Yo TEPICCOTEPEG TMOV L0 VITOYPAPDV KO Y10 OOPOPETIKES
ovvOnkeg owtiopod (vmobetikn peimorn eotewvotnrag). Xtov Ilivaka 3 divovior to
OTTOTEAEGLOTO Y10 LULOL OVTUTPOCMOTEVTIKN TEPinTon peAétng. Avtiototya, otov [ivaka 4
dtvovtal amoteAéoUATO Y10 DVAOTOMCELS TEPLOGOTEP®Y LIOYPUPDOV KOt / 1 UELOWUEVIG
POTEWVOTNTOC.

CAMERAS

Quality
DATASET WATER ROOF COURT
METRIC SAD EUC X-2 SAD EUC X-2 SAD EUC X-2

Full Range | 97.30% | 96.87% | 97.43% | 78.37% | 77.88% | 78.03% | 55.88% | 54.44% | 67.48%
256 Ch.

Near
Infrared
~40 Ch.

95.92% | 96.02% | 96.00% | 75.95% | 75.84% | 76.67% | 73.06% | 75.83% | 78.05%

Short-

Infrared
~ 50 Ch.

wave 97.61% | 97.37% | 97.08% | 78.36% | 77.87% | 77.98% | 32.43% | 34.63% | 36.75%

Compact | 97.27% | 96.92% | 97.45% | 78.29% | 77.88% | 78.06% | 55.64% | 54.24% | 67.28%
~80 Ch.

Multi
Spectral 97.34% | 96.94% | 97.40% | 78.30% 77.88% 78.06% | 55.05% | 53.75% | 66.13%
~25 Ch.
10 Ch. Av.

IMivaxag 3: Amoteléopata deiktn TodTNTag Yo 5 vVToBeTKéS KAuepeS Kol 3 TEPLOYES
eLEYYOVL.

23

COURT

1 Signature 100% Luminosity 3 Signatures 100% Luminosity 3 Signatures 60% Luminosity

SAD EUC X-2 SAD EUC X-2 SAD EUC X-2

55.88% | 54.44% | 67.48% | 66.35% | 67.82% | 75.92% | 51.16% | 52.30% | 62.40%

IMivaxag 4: Evoeiktikd amoteAEGHATO Y10 TEPICCOTEPES VITOYPUPES KO LELOUEVT
QPOTEWVOTNTO.

[dwitepa onpoavtiky givor Tapoat)pnon 0Tt 6YedOV 6€ OAEG TIG TAPATAVE® TEPITTMOGELS 1|
petpikn Evkdeldelog amodotoong mapéyet xepdtepa amoTeAEoUATO OO TNV OTOALTY
dwpopd. H onuoacio g ocvykekpyuévng mopatnpnong £yKertar oto yeyovog Ot 1
viomoinom tov EvkAeidn oto FPGA givat mo axpiff amd mAevpdsg VAIKOV. Zuvendgc, dev
gxel vonua. m vAomoinon g evkAeidelng amdoTaong kabmg de dkomohoyeitor omd
TAELPAG TOLOTNTOS OMOTEAEGLATOV.

[Ma v Kavovikomompévn andctact UTopoOUE Vo eEAYOVUE TO CUUTEPAGLA OTL GYEOOV
v kdBe vAoToinoM, N UETPIKY| Hag divel KAAVTEPU ATOTEAEGLOTA GE OYEON LE TIC AALES
dvo evorroktikés. H Pedtioon @wotdG0 6TIC TEPIGGATEPES TEPUTTOCELS VIO KOAVOVIKEG
ouvOnkeg O OwaloAoyel TIG iTEPO OVENUEVES AMOUTNOES OE VAIKO AOY® NG
dwipeong. Qg ek TOVTOL, €ivol CNUOVTIKO Vo, YIVEL KOAN 0vEALGT] TOL TPOPANLATOSG Ko
va €EETACTOVV EVOALUKTIKEG VAOTOMGELS TPV EQAPLOCTEL 1 draipeon wg Avon.

To moapoamdve yivetar €dkoAo OVTIANTTO OV TOPATNPNOOVUE TG OTIS TEPLGGOTEPES
MEPUTTAOCELS KAl Ol TPELS UETPIKEG avayvopilovv TO OVTIKEIPHEVO N TNV TEPLOYN OTNV
ewova pag. ‘Exovtag avtn v ainpoeopic, pmwopodpe pe m Pondeia GAA®V TEXVIK®OV va.
e€dyovpe ta emBountd yopoktnplotikd omd v eikova pag. H emdpxeia 1 6t g xabe
neBOS0V-PETPIKNG OpILETOL TPOPAVAOS OO TIG OMALTNGELS TNG EQPOUPLOYNG HOG.

Inuovtikd givar emiong to yeyovog 0T Ta. OmoTEAEGHOTO PEATIOONKAY oYedOV GE KAOE
vAomoinon otV omoio €EETAGAUE TOVTOYPOVO TEPICCOTEPES VIOYPAPES amd TV 1010
nepoyn. To copmépacpa avtd pog apécel Kabmg n apyrtektovikny Tov FPGA givar tétota
oL en@eAEiTOL amd avENpéEva dedopéva TPog emeepyacial.

Téhog, PAémovpe amd TOLE TMOPATAVE® TIVOKEG OMOTEAECUATOV TMOC Ol KAUEPES WE
TEPLOCOTEPO. KAVAALN dEV IVOLV OmOPAiTNTO Kol KAAVTEPO TOLOTIKE OTOTEAEGHLOTAL. XTIV
MEPIMTOON CLYKPIONG QOGUATIKOV VITOYPOPDOV TOPUTNPOVUE TG OVAAOYO TO
OVTIKEILEVO 1] TO LMKO TOL WYAYVOLUE, VLIAPYOVV TEPLOYES OTO QPAGHO Ol OTOlEg
mopovctalovv TN peyodvtepn Opopd. ' moapdderypo m PAdotnon €xel peydan
TOPOVGIO GTO 0PATO PAGHA. AVTO TO YUPOUKINPIGTIKO TOV QUGHATIKOV VITOYPOPDV HLOG
delyvel Tog 0g YpelalONOoTE TO LVTOAOITO KOVOALOL.

H onpaocio avtig g mapatmpnong ivat peyaan yio tv vAOTOiNGcT TOL GLGTHUATOG GTO
FPGA 6mov petopévog aptBpnoc kavalmv petagpdletal 6 peyoAdtepn Tapaiiniio Kot
VYNAOTEPT EMTAYLVOT).

24

YOUTEPAGNATO

Eidape oty mopovca epyacio ta mieovektnuato g texvoroyiog tov FPGA omv
emitevén vynlov emoddcemv. Emroyope po emtdyvvon tovAdyotov piog TéENG
neyéBovg o€ GYEOM e Lo VAOTTOINGT G€ évav KOO eneEepyactn Kot £0G TPLOV TAEEmV
peyelovug oe oyéomn e Evav enelepyaotn evoopatmpévov cvotnuatoc. H enitevén avtav
TOV amotelecUdToV dev givar €0KoAN dadwkacio kot amottel o ovénuévn tpoonddeia
and pepLd Tov oYEdOTY.

Eidope mog kdBe viomoinom em@épel OPIGUEVOLS TEPLOPICUOVS TOL TPEMEL VO
OVTILETOMTIGTOVV Kot Vo avaAvBodv evd 1 €£€TAOT TV TOLOTIKMOV YOPOKTNPICTIKAOV TOV
GULGTNLOTOG TALPLICUATOS LOG £0MGE CMUOVTIKA OTOTEAECUATO, O0ATEPO YPTOLLOL V10!
mv enitevén evog ocupPiPoacpod petad LAIKOU Kot Aoyliopikol kol TNV PEATIoT
vAomoinom g EKACTOTE EQAPLOYNG.

25

This page is intentionally left blank.

26

List of Figures

2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Illustration of the hyperspectral imaging concept

Electromagnetic spectrum and applications of hyperspectral imaging
Spectral reflectance curves for different materials

Open Science Data Set — True colour

NTUA Remote sensing lab Data Set

Typical FPGA architecture

A typical FPGA design flow

Xilinx Zyng-700 SoC

Zyng-7000 devices specifications

Top module for HSI pixel matching system

Pixel-Signature matching module

Distance metrics: a. Sum of Absolute Differences, b. Euclidean, c. Chi-
squared

Balanced adder tree and accumulator

Adder module

Comparator tree structure with result index output

Signature file layout and memory storage order

Comparator module

SAD speedup, FPGA vs. Intel i3

SAD Speedup, FPGA vs. ARM

EUC speedup, FPGA vs. Intel i3

EUC speedup, FPGA vs. ARM

Chi-squared speedup, FPGA vs. Intel i3

Chi-squared speedup, FPGA cs. ARM

SAD Speedup and throughput for 128 signature and total pixel configuration
EUC Speedup and throughput for 128 signature and total pixel configuration
Chi-squared Speedup and throughput for 128 signature and total pixel
configuration

Channel 130 of the APEX open science data set

Regions of interest and ground truth map for a. Water, b. Tennis courts
Regions of interest and ground truth map for a. Roof Tiles, b. Soccer field
Regions of interest and ground truth map for a. Paved Road, b. Vegetation
Quality results plot

Channel 11 of Hyperspectral Image Data Set.

Matching yellow leaves for a. SAD, b. Chi-squared metrics

27

34
35
36
40
41
44
47
48
49
55
56
57

59
59
60
61
62
70
70
71
71
72
72
75
76
76

80
81
82
82
85
91
92

This page is intentionally left blank.

28

List of Tables

2.1
2.2
2.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2
6.3

APEX Open Science Data Set key facts

NTUA Remote sensing lab Data Set key facts

Camera Configurations

Implemented Configurations

Sum of absolute differences device utilization

Euclidean device utilization

Chi-squared device utilization

Sum of absolute differences timing results

Euclidean distance timing results

Chi-squared distance timing results

Sum of absolute differences speedup results

Euclidean speedup results

Chi-squared speedup results

Sum of absolute differences throughput results

Euclidean throughput results

Chi-squared throughput results

Completeness

Correctness

Quality

Weighted measure for four signatures

Weighted measure for one signature

Completeness results for multiple signatures and reduced luminosity
Correctness results for multiple signatures and reduced luminosity
Quality results for multiple signatures and reduced luminosity
Weighted measure for reduced illumination

Hardware requirements for same configuration and three matching metrics
Throughput requirements for different total signatures

Quality results for one and three signatures

29

40
41
42
63
63
64
64
65
66
66
68
69
69
73
74
74
86
87
88
88
89
89
89
90
90
96
97
97

This page is intentionally left blank.

30

CHAPTER 1
INTRODUCTION

1.1 Objective summary

The objective of this diploma thesis is the evaluation of the performance and tradeoffs of
the implementation of a hyperspectral imaging system on reconfigurable hardware,
specifically a field programmable gate array circuit (FPGA). Hyperspectral imaging has
been an area in recent years of great research and development with the technology
entering more and more the mainstream of remote sensing. The main gain of this
technology, as will be extensively analyzed in the following chapters, is the increased
detail and accuracy in image analysis it delivers. This advantage is of great importance
for a wide range of applications in areas like geology and agriculture, surveillance,
physics and astronomy. In order to use this technology at its full potential, the
understanding of the limitations and challenges it carries with it is required. Great detail
in image analysis includes the necessity of greater processing power and data
manipulation abilities. This limitation can be efficiently handled with parallel
programming techniques and hardware acceleration technologies. The aforementioned
reconfigurable hardware is an ideal way to tackle these problems.

In this sense, our goal in this thesis is to show how the effective use of an FPGA platform
and its processing capabilities greatly increase the ability to process large amounts of data
simultaneously and with increased speed. In order to show the capabilities of the
examined platform, we implemented several data processing configurations covering a
wide range of available cases. We did pay particular attention in taking advantage of the
parallel processing capabilities of our platform implementing several levels of parallelism
as well as numerous configurations for a large amount of data. Furthermore, we
examined different algorithms for our system showing the impact of different
implementations on hardware resources and performance.

In order to cover the impact of the different algorithms on the final results, we conducted
a quality analysis using MATLAB for the different matching techniques implemented on
our device. We examined the impact of three different matching algorithms in terms of
qualitative results for various image data and camera configurations performed on two
hyperspectral image data cubes. The first one was obtained in collaboration with the
Remote Sensing Laboratory of the National Technical University of Athens (NTUA)
using two hyperspectral cameras and a number of different objects. The second data cube
we examined was an open science dataset available online from APEX (Airborne Prism
Experiment), an imaging spectrometer developed on behalf of ESA [1]. We concluded
our work combining the results for the above analysis with the hardware implementation
results to perform a tradeoff analysis taking into account the benefits and limitations of
each case.

31

1.2 Thesis structure

We will describe at this point with a few words the structure of the thesis and the chapters
we are going to follow. This work consists of 7 Chapters which are organized as follows:

e Chapter 2 talks about Hyperspectral imaging starting with a short introduction to
the fundamentals of this technology, moving on to a more in depth description of
data and signature acquisition as well as spectral characteristics. We will describe
methods used for spectral matching and will conclude the chapter presenting the
datasets used in the thesis.

e In chapter 3 we get into the theory of hardware design focusing on reconfigurable
architectures and hardware accelerators mentioning their advantages and
disadvantages as well as their importance in modern applications. We introduce
the FPGA circuit and the hardware description languages (HDL) mainly used to
program such devices. We will also talk about the different programming tools
used for programming an FPGA and will close the chapter with a brief description
of the specific board used in the thesis, its main features and advantages as well as
the challenges faced.

e Chapter 4 is the chapter where we analyze the hardware implementation of our
system. We describe the architecture of our design and examine in depth its
structure and the chosen strategies. A detailed recording of all the results follows,
covering performance improvements over conventional implementations,
resource utilization and examination of the limitations imposed by the system.

e In this chapter, having already concluded the hardware implementation of our
system and having documented the results in the previous chapter, we move on to
developing a system on MATLAB in order to measure the qualitative behavior of
different matching metrics and camera configurations. Furthermore, we will
describe the method used to create ground truth data, acquire signatures for each
ground truth and how we conducted the experiments. An extended documentation
of the results will follow including numerous measures for different quality
metrics, camera configuration impact on the results. We close this chapter
explaining the obtained results and the effects of each factor on the final data.

e Chapter 6 is devoted to the correlation of the results of the two analyses and the
effect they have on each other. A tradeoff analysis is conducted explaining in
detail the gains and losses of each design decisions on both hardware and
software and the compromises a designer has to made in order to satisfy design
specifications.

e Finally, we conclude our work summarizing the results of our work and making
proposals for future research to be made.

32

CHAPTER 2
HYPERSPECTRAL IMAGING

2.1 Introduction to Hyperspectral Imaging

Hyperspectral imaging, or imaging spectroscopy, is a spectral imaging technique that,
like all spectral imaging techniques, collects image information from across the
electromagnetic spectrum and subsequently processes it. The main characteristic of
hyperspectral imaging is that for each pixel in an image, the camera acquires a large
number of spectral bands from a much wider area of the light spectrum than a normal 3-
band camera. Each spectral band consists of a specific range of wavelengths and the
bands extending usually beyond the visible spectrum. Whereas a normal camera and the
human eye collect and process light in mostly three bands (red, green, blue) in the visible
spectrum, a hyperspectral imaging system can obtain imagery over hundreds of narrow,
continuous spectral bands with typical bandwidths of 10 nanometers or less over a
spectral range from 400 to 2500 nanometers (visible through middle infrared wavelength
ranges). [2][3]

Each pixel in a hyperspectral image contains both spatial and spectral information from
materials within a scene. In order to understand this, think of each image captured by the
camera as a representation of a narrow spectral band. These images are combined to form
a three-dimensional (x,y,\) hyperspectral data cube where X and Yy represent the two

spatial dimensions of the scene and A represents the spectral dimension. The third
dimension can be considered as a collection of images, each one acquired at a different
wavelength as can be seen in Figure 2.1. [4] Besides spectral resolution, it is important to
also take into account spatial resolution. In order to identify features in the scene, for
example a distinct material, it has to be large enough to cover a whole pixel or,
respectively, the pixel would have to be small enough to capture only one material. If the
camera resolution is too low, then each pixel would cover multiple objects making the
image features difficult to identify.

33

¥

Earth
surface

Spaceborne
hyperspectral sensor

s Soil
c
©
S
@
E m
Wavelength
2 Water
c
©
S
2
T
o
=
=] Wavelength
-U w
2 E Each pixel contains
(2= a sampled spectrum 8 Vegetation
that is used to identify s
the materials presentin g
! the pixel by their =
reflectance o=
Wavelength

Spectral images
taken simultaneously

Figure 2.1 lllustration of the hyperspectral imaging concept

Hyperspectral images provide much more information about the captured scene than a
normal camera leading to an enormous improvement in the ability to classify objects
based on their spectral properties [5]. In Figure 2.2, you can see the electromagnetic
spectrum ranging from 400nm to 14000nm with a brief reference of the main properties
of each region as well as applications where these properties are of benefit.

34

Applications of Hyperspectral Imaging
REFLECTIVE

400 nmt 500 nm t 600 nm t 700 nm t 1100 nm
luminates materials Penetrates water for Partially penetrates water Detects camouflage/netting
in shadows bathymetry for bathymetry Maps shorelines
Penetrates water for Discriminates oil on Differentiates vegetation Identifies vegetation
bathymetry surface from water Detects watercraft on ocean
Identifies vegetation Man-made object queing
< > EMISSIVE >
14000 nm

@

Dicriminates targets at night
Differentiates ocean temperatures
Detects smoke

Identification of gases
Thermometry

Discrimates oil from water
Determines moisture content
Detects plumes

Discriminates camouflage/netting

Detection and identification of gases
Supports thermal analysis
Differentiates vegetation density and
canopy cover

Detects explosions Discriminates mineral and soil types

Identification of minerals

Figure 2.2 Electromagnetic spectrum and applications of hyperspectral imaging

Closing this brief introduction we should mention the technology’s primary
disadvantages which are the increased cost of the imaging equipment and the increased
complexity of the system as well as the necessary data processing. An increased detail in
the acquired images, which often exceed hundreds of megabytes in size, is tied together
with a corresponding increase in needed data storage capacity and processing capabilities.
Providing solutions to these challenges will allow researchers to further realize the full
potential of hyperspectral imaging in the next years.

2.2 Spectral Signatures

The spectrum of each pixel is the plot of the brightness values (radiance or reflectance)
versus the wavelength. The spectrum can then be used to identify and characterize a
particular feature within the scene based on unique spectral characteristics of each
element. Each material in an image has thus a unique spectral “fingerprint” or signature
which can be used to identify similar materials based on this signature.

The fundamental property we obtain in a spectral signature is the spectral reflectance.
Reflectance varies with wavelength for most materials because energy at certain

35

wavelengths is scattered or absorbed to different degrees. These unique characteristics of
the reflectance curve can be then used to identify and discriminate different materials.

Figure 2.3 depicts a number of different signatures for various earth surface materials
obtained from the APEX dataset. The differences in the curves for each material are
clearly visible.

21138 Near Infrared | Middle Infrared
o |0 |x|< Reflected Infrared >
60
\Vegetation
Dry soil
- (5% water)
< 40}
3 Wet soll
% (20% water)
©
2 20t
& Clear lake water
Turbid river water
U 1 1 1] 1 1 1 1 I 1

04 06 08 10 12 14 16 18 20 22 24
Wavelength (micrometers)

Figure 2.3 Spectral reflectance curves for different materials

2.3 Factors that affect quality results

The image quality of a scene captured by a hyperspectral imaging sensor is affected by a
number of factors related to sensor properties, atmospheric effects and illumination
differences.

We already mentioned in the introduction of the current chapter that pixel size is a factor
that affects the spectral results in the sense that for a large cell, more than one material
might contribute to the measured spectrum. Variations between detectors also sometimes
alter raw measurements that have to be scaled in order to compensate for these
differentiations.

From what we have talked about so far, surface reflectance of the surface materials is
only one of the factors affecting measured values. Hyperspectral remote sensing systems
use airborne or satellite mounted equipment that captures images from an altitude that
reaches up to hundreds of kilometers. Thus, spectral radiance measured by a remote
sensor depends on the spectrum of the solar energy and its interaction during its passages
through the atmosphere, illumination geometry of certain areas, shadowing and

36

atmospheric absorption. The aforementioned factors have to be taken into account in
order to correct measured values. [3]

It is clear that identification of spectral signatures for each material is not easy since we
have to take into account the factors we discussed in this section. Several methods are
available to match image spectrums as we will see in the next section.

2.4 Difference-based Spectrum Matching and Metrics

In order to identify features in a hyperspectral image scene we try to match each image
spectrum individually to one of the known spectral “fingerprints” in a signature library. A
captured spectrum typically shows different reflectance values which match in different
extents to more than one reference spectra. The matching reference spectra must then be
ranked with some kind of goodness fit in order to decide for the “best” one. We match
each pixel of an image with the above mentioned method assigning every one of them to
one of the reference signatures. The resulting map can then be used along with other
criteria to identify material, objects and other features in an image.

We will discuss two common methods used to match image spectra. These methods rely
on two main characteristics of reflectance spectra, position a general shape of a spectrum
is one and steep slopes and absorption features is the other. In our thesis we will focus on
matching the continuum characteristics of the spectra.

In order to achieve this we will examine three matching metrics: The sum of absolute
differences (SAD), the Euclidean metric and the chi-squared (x?) metric. In reality
because we are only interested in the relative distance of two vectors and not their actual
distance, we will not calculate the square root of the Euclidean distance, a decision that
has an evident impact on hardware resources as we will see in Chapter 5.

2.4.1 Sum of Absolute Differences

The sum of absolute differences is the simplest distance metric we are going to examine.
It is also one of the most commonly used metric for matching applications.
The SAD adds up the absolute differences between corresponding elements in the
candidate and reference vector.

N
SAD =Z\xi -y
i=1

where x; ; are the elements of the reference vector and y; ; the elements of the candidate
vector. Thus, the computation of the SAD is divided in three steps: Computation of
differences between corresponding elements, determination of the absolute value of each
differences and addition of these absolute values.

37

Comparing this method with both the Euclidean Distance Metric and the Euclidean
squared distance metric described before, the higher computational complexity of the
former two is quite obvious as they involve numerous multiplication operations.

2.4.2 Euclidean Distance

This metric is an immediate consequence of the Pythagorean Theorem which if applied to
distances in two-dimensional space vectors proves that the squared distance between two
vectors x = [x; x,] andy = [y; y,] is the sum of squared differences in their
coordinates. If we denote this distance as d,,, , the distance itself is the square root of this
result.

2.4.3 Chi-Squared Distance

The chi-squared distance is a metric, similar to the Euclidean squared distance with the
difference that it normalizes the data before accumulating the result. This has a major
impact in the quality of the overall result since it normalizes the differences in spectral
curves that have an offset due to external factors as mentioned above. It also introduces a
high cost in hardware resources for implementing the division operation as we will
discuss in Chapter 5. The mathematical expression for this metric is the following. An

alternative to this expression is shown in equation a.2 where we divide by %

38

2.5 Computation Requirements and Applications

The ability to capture a large amount of information from a single scene has established
hyperspectral imaging of great importance for numerous applications ranging from
satellite based/airborne remote sensing and military target detection to industrial quality
control, gquality assessment and food inspection as well as lab applications in medicine
and biophysics.

It is expected in future years that hyperspectral sensors will increase in resolution
resulting in an equally big increase of the corresponding data. Spectral channels will
increase into the thousands offering a wealth of information that opens a many more
opportunities for hyperspectral imaging in several fields such as environmental modeling
and real time atmospheric studies, hazard prevention and wildfire tracking, biological and
environmental threat detection or security and defense purposes. [6]-[8]

As we can see from the above analysis, one big drawback of HSI systems and a reason
why they haven’t been widely used for many years is the enormous data volume that
leads to the requirements of increased processing power, which often cannot be handled
by common processing units. Also speed requirements in industrial production, quality
inspection and real time monitoring are greatly limited by slow computational
performance and/or very high implementation cost.

In order to speed-up computations, in particular in real-time computation scenarios where
fast data processing is essential, hardware accelerators are required which can provide
very high performance and constitute an excellent solution for the fraction of the cost and
size of alternatives like or cluster- or network-based parallel processing units [9]. We will
discuss in more depth hardware accelerators and their advantages in the following
chapter.

2.6 Examined Hyperspectral Datasets and Hypothetical Camera
Configurations

For the purposes of the current thesis, we examined two hyperspectral datasets. One main
dataset obtained from an online source and taken with a camera with hundreds of
channels, and one small dataset obtained in the NTUA with small hyperspectral cameras.
Furthermore, in order to simulate different conditions and configurations, we examined a
number of camera configurations which allowed us to draw results for a number of
different factors that affect the final quality results and are important for optimal system
design

39

2.6.1 Hyperspectral Datasets

Our main dataset was acquired online and is available for free from APEX (Airborne
Prism Experiment), an imaging spectrometer developed on behalf of ESA [1]. The
acquired image has been taken on a clear day, from a research aircraft in the vicinity of
Baden, Switzerland. A true color version of the Data Set can be seen in Figure 2.4 and
technical key facts are listed in Table 2.1. The spectral resolution of the camera is 285
spectral channels covering a range of 413nm — 2421nm.

Date 2011-06-26

Altitude 4600 m asl

Dimensions 1500 x 1000 pixels

Spectral coverage 413nm — 2421 nm

Spectral channels 285

Pixel size 1.8m

Land covers Forest, Urban, Freshwater, Agriculture
Units Reflectance (HCRF)

File size 815 MB

Table 2.1 APEX Open Science Data Set key facts

Figure 2.4 Open Science Data Set — True Color

The second data set we used in our analysis was obtained with the collaboration of the
remote sensing laboratory of the NTUA using two hyperspectral cameras with 16 and 25
channels respectively. Key technical details about the cameras are listed on Table 2.2.
The scene we captured shows a table with diverse objects of different material shape and
color. A true color image of the scene can be seen in Figure 2.5

40

Sensors Hyperspectral Mosaic Snapshot Imager
Camera l / Camera 2

Dimensions 272 x 512 pixels / 220 x 400 pixels

Spectral coverage 470nm — 620nm / 650nm — 1000nm

Spectral channels 16 / 25

Bit depth 10 bit

Land covers Vegetation, Metal, Wool, Plastic, Ceramic,
Glass

Table 2.2 NTUA Remote sensing lab Data Set key facts

Figure 2.5 NTUA Remote sensing lab Data Set

2.6.2 Hypothetical Cameras

In order to examine the importance and the effects of different spectral channels on the
quality results of the matching process, we looked into four commonly used camera
configurations with distinctive characteristics. For all configurations we approximated the
different camera configurations utilizing only part of the 285 spectral channels available
in the APEX image. The four different camera configurations tested are:

41

HYPERSPECTRAL CAMERA CONFIGURATIONS

FULL RANGE INFN:::ED SI‘::\:E;A‘QI::E COMPACT MULTI SPECTRAL
%TJAJQIEE; 256 ~40 ~ 50 ~ 80 ~ 25
C::xg:" 1-256 1-110 110 - 256 1-256 1-256
STEP 1 3 3 3 10 ch. Average
SPE((:;::)UM 400 - 2400 | 400-1100 1100 - 2400 400 - 2400 400 - 2400

Table 2.3 Camera Configurations

For all cameras except the full range camera and the multi spectral camera, we acquired
the reduced channel number by simple sub-sampling of all channels. The step value in
the above table stands for the channel sub-sampling step. In the case of the multi spectral
camera we simulate the wide spectra of each channel by calculating 10 channel average
values for all channels resulting in approximately 25 wide-spectrum channels.

42

CHAPTER 3

ACCELERATION WITH FIELD PROGRAMMABLE GATE
ARRAYS (FPGA)

3.1 Introduction

Modern systems often rely on embedded systems and micro-processors in a wide range
of applications varying from small common systems to large highly complicated systems
with high processing requirements. The processing burden in these systems is taken by
processors that range from general purpose processors to highly specialized and
application specific processing units. In recent years, the requirements for certain
applications demand the use of units with high processing power, low power and small
size. Furthermore, the need to easily alter a device’s functionality has led to the
development of reconfigurable devices that can quickly be programmed and
reprogrammed when needed even after they have been installed in a device for the first
time.

In the current thesis, we focus on the use of a specific reprogrammable device, the “Field
Programmable Gate Array” (FPGA) circuit. This reconfigurable circuit, which will be
discussed in detail in the following sections, is a device that is becoming more and more
popular in a wide range of applications.

3.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGASs) are semiconductor devices that are based
around a matrix of configurable logic blocks which are connected via programmable
interconnects. In contrast to common processors that can be found in a PC, programming
an FPGA rewires the chip itself to implement a desired functionality rather than to run a
software application. FPGAs can be reprogrammed after manufacturing. This feature
distinguishes FPGAs from Application Specific Integrates Circuits (ASICs) which are
custom manufactured for specific design tasks [21] [22]. This programmability gives the
user access to complex integrated designs without the high engineering costs associated
with application specific integrated circuits.

In recent years, as process geometries have shrunk into the deep-submicron region, to
logic capacity of FPGAs has greatly increased making these devices a viable and
preferred in many cases alternative for large designs [23]. With unprecedented logic
density increased and a host of other features, such as embedded processors, DSP blocks,
clocking and high-speed serial at ever lower price points, modern FPGA are an ideal fit
for many different markets [21].

43

3.3 FPGA Architecture

FPGAs are pre-fabricated circuits that consist of three fundamental components. These
three components are logic blocks, 1/0 blocks and programmable routing channels. The
logic resources are used to implement the digital logic of the circuit while routing
channels are used to connect the logic blocks to form a larger circuit. Most FPGAs also
include a number of embedded hard blocks that perform certain tasks. An abstract design
of a generic FPGA can be seen in Figure 2.1

I:‘ D\ Br Cx) 0y Cx RI EI or gm
| g FRHiFFELL g
i%gﬁﬂﬂﬁﬂﬂ%

(] (] EEREEEENENEN N
PROGRAMMABLE gﬁﬁﬁﬁﬁﬁﬁﬁg

o a /0 BLOCKS

INTERCONNECT ﬁﬁﬂ#mﬂﬁﬂﬂg
SO0

e tﬁ#######ﬂ

G fa A B B Sd B

r I—E:E'E
E%j]

LOGIC BLOCKS

Figure 3.1 Typical FPGA architecture

Logic Blocks

Configurable logic blocks (CLBs) are identical and organized in the FPGA in a two
dimensional array connected through the aforementioned programmable routing
channels. In general, a typical CLB consists of a number of logical cells, organized in
slices. In each logical cell, a Look-Up Table (LUT), a full adder and a d-type flip-flop
can be found.

An N-input look-up table (LUT) is a functional unit designed to compute any function of
N-inputs. Its operational principle is similar to that of truth table of a logical function.
Thus, the truth table of a function can be used to program a look-up table accordingly.
This means that according to the pattern of the N inputs, the table chooses the correct row
and generates the output value. N-input LUTs can be used to perform a number of
functions and can be combined to implement more complex functions. For example,
besides basic functions, LUTs can implement an N-bit shift register or can be used as a
distributed memory module of N-bits.

44

Hard Blocks

Modern FPGAs, apart from the above components, include additional blocks fixed into
the silicon providing additional functionality. A number of common functions are
embedded into the silicon reducing the required area for implementation and increasing
the speed of these functions. Examples of such functions include multipliers, generic DSP
blocks as well as embedded processors and embedded memory modules. A DPS block is
a combination of basic arithmetic modules, that is, adders, subtractors and multipliers, put
together to compose an arithmetic logic unit (ALU).

Interconnection

As we already mentioned, logic blocks in a typical FPGA are identical and organized in a
two dimensional array island-like architecture. In between the logic blocks, a number of
interconnections are configured appropriately in order to route the signals among the
logic blocks. The connection of the blocks through the routing resources is performed
with the use of a connection block. A connection block is located on every channel
interconnection and allows, through programmable switches, logic block 1/Os to be
assigned to arbitrary horizontal and vertical tracks.

3.4 FPGA Programming and CAD Tools

Specific Computer-Aided Design tools are software tools necessary for the efficient
programming of a specific FPGA. Implementing a circuit on a modern FPGA requires a
very high number of logic blocks, embedded blocks and switches to be correctly
configured. It is evident that this task is impossible to be performed by a circuit designer
who would have to manually reprogram each element individually. This task can instead
be completed with the description of the circuit at a higher level of abstraction, typically
using a hardware description language (HDL) such as Verilog and VHDL. A more
detailed discussion about HDL languages follows in section 2.4.1. An alternative method
of describing a circuit at higher level is through high-level synthesis. HLS provides an
even greater abstraction level of design reducing the complexity of programming a
circuit. In the current work, all circuits have been implemented using the VHDL language
and therefore, a greater analysis of alternative programming methods is not presented
here.

Having fully described a system in an appropriate description language, the
aforementioned CAD tools can then convert these high level description files in a
programming bit file specifying the state of each programmable element on the FPGA
board. The complete procedure of converting a circuit to a bit-stream file is broken into a
series of sequential steps, which are described in Section 2.4.2.

Computer-aided design software tools also provide the necessary features in order to
investigate the quality of different architectures. Once a circuit has been implemented in a
specific architecture, it is essential to generate accurate area, delay and power models to
evaluate the quality of the circuit implementation under test [1].

45

3.4.1 VHDL Hardware Description Language

VHDL (VHSIC Hardware Description Language) is a language primarily used to
describe hardware and should not be considered as just another computer language. The
main and most important characteristic of VHDL is that unlike higher-level computer
languages that are sequential in nature, VHDL is not.

It was invented to describe hardware and in fact VHDL is a concurrent language. This
means that, normally, VHDL instructions are all executed at the same time (concurrently)
regardless of the size of the implementation. This inherent difference requires an
alternative way of programming mentality [25].

VHDL has many features appropriate for describing (to an excruciating level of detail)
the behavior of electronic components ranging from simple logic gates to complete
microprocessors and custom chips. Features of VHDL allow electrical aspects of circuit
behavior (such as rise and fall times of signals, delays through gates, and functional
operation) to be precisely described. The resulting VHDL simulation models can then be
used as building blocks in larger circuits (using schematics, block diagrams or system-
level VHDL descriptions) for the purpose of simulation [26].

One of the most important (and under-utilized) aspects of VHDL is its ability to capture
the performance specification for a circuit, in a form commonly referred to as a test
bench. Test benches are VHDL descriptions of circuit stimulus and corresponding
expected outputs that verify the behavior of a circuit over time. Test benches should be an
integral part of any VHDL project, and should be created in parallel with other
descriptions of the circuit [26].

3.4.2 Design Flow and Tools
In this section we briefly discuss the steps that are followed in order to map a design on

an FPGA. These steps are Logic Synthesis, Technology mapping, Placement & Routing
and finally, bit stream generation as shown in Figure 2.5

46

HDL
Source Code

|

Logic Synthesis

l

Netlist N '
! Technology Mapping |

| JORE

[Physical Design] i Placement :
[Bitstream Generation] S RO utlng ________ '

|

Bitstream

FPGA
Figure 3.2 A typical FPGA design flow

The first stage of synthesis converts the circuit description from an HDL file into a netlist
of basic gates. This netlist is converted then into a netlist of FPGA logic blocks according
to the desired synthesis properties (speed, area or power specifications). During this
stage, several optimizations take place removing redundant logic and simplifying the
design.

After the synthesis stage, the implementation stage follows where the netlist is translated
into a placed and routed FPGA design. During the physical design stage, in the
technology mapping stage, several LUTs and registers are packed into one logic block
respecting limitations imposed by the FPGA platform. In this stage, a number of
optimizations are available depending on the goals the designer has chosen. Important
optimizations are LUT combining in order to minimize resource utilization and minimize
number of signals to be routed between logic blocks.

Once the circuit has been mapped on a specific device, the placement stage begins where
heuristic placement algorithms determine which logic block within the FPGA should
implement each of the logic blocks required by the circuit. The optimization goals are to
place connected logic blocks close together to minimize the required wiring (wirelength-
driven placement), and sometimes to place blocks to balance the wiring density across the
FPGA (routability-driven placement) or to maximize circuit speed (timing-driven
placement).

47

Now that the location for all the logic blocks in the circuit has been chosen, it is
necessary to program the switches on the device to be used in order to connect all logic
block input and output pins required by the circuit. In this stage, the routing architecture
of the device is represented as a directed graph. Thus, routing a connection corresponds
to finding a path in this routing-resource graph. Since most of the delay in FPGA designs
is routing delay, a timing-driven optimization in the routing stage is crucial to minimize
overall circuit delay [23].

Finally, after the design has been successfully placed and routed (PAR) on the chosen
FPGA, the design tool creates a bitstream of the final design after PAR which is then
downloaded to the FPGA and configures the device accordingly.

3.5 The Xilinx Zyng-7000 SoC and Xilinx Design Tools

For the purposes of this thesis, the device that was chosen for implementing our design is
the Xilinx Zyng-7000 all programmable system on chip which integrates the software
programmability of an ARM-based processor with the hardware programmability of an
FPGA. The specific device used from the Zyng family is the Zyng Z-7045. A device
overview and the specifications are presented in Figures 2.5 and 2.6. All measurements
where performed on this device which utilizes a Kintex-7 FPGA while all measurements
of the C code software were taken on the A9 Cortex ARM processor of the same device.

ARM FMC HPC FMC LPC 50 Card
ITAG Cemmecior Canmesien Intirlacs

Dual Cluad-5F1 DDORI Memary
Flash (128Mb) 1GB (4r2EEMb}

vl

Systam Clock,

25V VDS
USB-10-UART Bridge
wilini-B Cannectar

USH JTAG Intertace
wibicio-B Cannectar

DORI SODIMM
Mamary Sackat

USB 2.0 ULPi Controller
wiMigra-B Connector

Ethomet RI43 Canreotar
1010001000 Mbps

HOMI Video Cannec Io-—/ -

HOMI Cantrolir

PMOD Headirs

User BIF Swach

GTR Diffarsniial SMA | User Push-Butions,
Active High

FPGA PROG GTH Differential

Puash-Busios SMA Clack PIN

Figure 3.3 Xilinx Zyng-700 SoC [27]

48

Low-End Portfolio Mid-Range Devices
Device Name Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100
Part Number XC7Z010 XC7Z015 XC7Z020 XC7Z030 XC7Z035 XC77045 XC7Z100
Processor Core Dual ARM® Cortex™-A3 MPCore™ with CoreSight™
Processor Extensions NEON™ & Single / Double Precision Floating Point for each processor
Maximum Freguency 866MHz Up to 1GHz{
€ L1 Cache 32KB Instruction, 32KB Data per processor
2 L2 Cache 512KB
vga‘ On-Chip Memory 256KB
2 External Memory Support® DDR3, DDR3L, DDR2, LPDDR2
g External Static Memory Support® 2x Quad-5PI, NAND, NOR
§ DMA Channels 8 (4 dedicated to Programmable Logic)
s Peripherals 2x UART, 2x CAN 2.0B, 2x 12C, 2x SPI1, 4x 32b GPIO
Peripherals w/ built-in DMAR! 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO

RSA Authentication of First Stage Boot Loader,
AES and SHA 256b Decryption and Authentication for Secure Boot
2x AX1 32b Master, 2x AX| 32b Slave
4x AXI 64b/32b Memory
AXI 64b ACP
16 Interrupts

security®

Processing System to
Programmable Logic Interface Ports
(Primary Interfaces & Intarrupts Only)

7 Series Programmable Logic Equivalent Artix®-7 FPGA Artix-7 FPGA Artix-7 FPGA | Kintex®-7 FPGA Kintex-7 FPGA [Kintex-7 FPGA | Kintex-7 FEGA
= Logic Cells (Approximate ASIC Gates'™) 28K (~430K) 74K (~1.1M) 85K (~1.3M) | 125K ({~1.9M) 275K (~4.1M) | 350K (~5.2M) | 444K [~6.6M)
& Look-Up Tables (LUTs) 17,600 46,200 53,200 78,600 171,900 218,600 277,400
2 Flip-Flops 35,200 92,400 106,400 157,200 343,800 437,200 554,800
] Total Block RAM (# 36Kb Blocks) 2.1Mb (50) 3.3Mb (95) 49Mb (140) | 9.3Mb(265) 17.6Mb(500) | 19.1Mb (545) | 26.5Mb (755)
E Programmable DSP Slices (18x25 MACCs) 80 160 220 400 900 900 2,020
£ Peak DSP Performance (Symmetric FIR) 100 GMACs 200 GMACS 276 GMACs 583 GMACs 1,334 GMACs 1,334 GMACs 2,622 GMACs
Q PCI Express® (Root Complex or Endpoint) — Gen2 x4 — Gen2 x4 Gen2 X8 Gen2 x8 Gen2 x8
a Analog Mixed Signal (AMS) / XADC! 2x 12 bit, MSPS ADCs with up to 17 Differential Inputs

security® AES and SHA 256b Decryption and Authentication for Secure Programmable Logic Configuration

1. 1 GHz processor freguency is available only for -3 speed grades for devices in flip-chip packages. Please see the data sheet for more details.

2. Z-7010 in CLG225 has restrictions on PS peripherals, memory interfaces, and [/Os. Please refer to the Technical Reference Manual for more details.
3. Security block is shared by the Processing System and the Programmable Logic.

4. Eguivalent ASIC gate count is dependent of the function implemented. The assumption is 1 Logic Cell = ~15 ASIC Gates

Figure 3.4 Zyng-7000 devices specifications [11]

Design Software used for mapping our design on the FPGA and thoroughly testing and
certifying it, was the Xilinx ISE and the Xilinx Vivado design suites. These complete
software suites, provided by Xilinx for their own FPGA boards, allow the
implementation, mapping and testing of our design, according to specified requirements
and goals. We performed timing analysis and resource optimizations for all components
in order to achieve optimal speed and resource utilization.

3.6 Software Optimization and Measurement Theoretical Concepts

In this section we will discuss in depth about the designed system implemented on the
FPGA as well as architectural decisions and characteristics. Before getting into design
details, we will briefly introduce some hardware design concepts, Pipelining and Parallel
Computing as well as some software definitions and code optimizations necessary to
understand our implementation results.

3.6.1 Pipelining

Pipelining is a feature in most processors which is much like an assembly line in a
factory. The basic idea behind pipelining is executing more than one instruction each
clock cycle if these are independent allowing more instructions to be executed in a
shorter period of time. Even though there are some problems associated with data

49

dependencies and branch instructions, solutions to both of these problems are available
making pipelining a highly efficient feature in digital design [13].

A pipelined approach has been adopted for our system greatly reducing critical paths in
modules with many levels of logic and increasing system throughput. Pipelining of our
design was achieved through the addition of multiple registers between each logic level
with a long critical path. A full pipelined implementation of our design allowed us to
achieve a two or three times faster clock frequency greatly improving the overall
speedup.

The Xilinx synthesis and implementation tools, available in the Xilinx design suites, used
many of the inserted registers effectively moving them across the whole hierarchy, thus
breaking critical paths not only inside each component but also between component
interconnections [14].

3.6.2 Parallel Computing

Parallel computing is the simultaneous computation of many tasks or the parallel
computation of several smaller and often similar, subtasks of one broken down main task.
Parallel processing can be realized in different types of parallelism on software level or
hardware level [15].

As already mentioned in the previous Chapter, the FPGA is a device that can be
programmed to implement very high levels of parallelism. In our design specifically, we
implemented three levels of parallelism as we will see in the next section for various
configurations fully utilizing the device’s parallel computing potential.

3.6.3 Latency and Throughput

Latency refers to the time delay needed for an input in a system to reach its output.
Latency is measured in units of time; hours, minutes, seconds, nanoseconds or clock
periods. In a system with many components, latency is not the same for every component
and a big delay in one part of the system can often affect the total system performance. In
cases where latency is big the designer has to identify the length of the longest series of
operations in a component that dominates time delay (critical path) and try and break
down this path with the using pipelining as mentioned before [16].

Throughput on the other hand is the measure of how many units of information a system
can process in a given amount of time. Throughput is an important measure when
processing large amount of data as we will see in the results section of this Chapter since
available bandwidth (maximum available throughput) is a limiting performance factor.

It is worth mentioning that pipelining increases throughput at the cost of latency which
has to be taken into account when designing a system since increased latency could
dramatically lower the systems performance in some applications.

50

3.6.4 Compiler Optimizations

As we will see in the results tables of our system, we achieved significant performance
improvements optimizing our design using some important compiler optimizations we
will briefly mention in this section.

When compiling a program, an optimization compiler gives us the option to minimize, if
possible, some attributes of the executable program. Most commonly it is minimizing
execution time and occupied memory. Turning on the optimization flags allows the
compiler to perform optimizations based on the knowledge it has of the program. Several
levels of optimization effort are available which can be enabled [17].

The second optimization we performed on our program is loop unrolling. Loop unrolling
is an optimization that increases instruction-level parallelism by transforming a loop with
N iterations into a loop with N/M iterations where every iteration in the transformed loop
doesn’t execute one instruction but M. This optimization improves execution time in
parallel when loop instructions are independent [18].

51

This page is intentionally left blank.

52

CHAPTER 4
FPGA IMPLEMENTATION & EVALUATION

4.1 Introduction

We discuss in this chapter the designed and implemented system which matches each
pixel from a given image with one of the reference spectral signatures we have stored in
memory giving at its output the “winner”, namely the reference signature it matched each
pixel with and the result of the distance metric between the pixel-signature pair. The
metric result is useful in case we want to set a threshold for each pixel that determined
when a pixel is matched with a signature or when it should be left unsigned.

In order to measure the achieved acceleration with the FPGA design, we need reference
execution time measurements from other implementations. Thus, we first implemented
the above system in C language and measured Execution times for different
configurations on a common CPU and repeated the same measurements on an embedded
processor. Then, for the same configurations we measured total execution time and
speedup for our FPGA design.

The processors used to measure execution times for the C program are an Intel® Core™
i3-3110M CPU @ 2.40GHz [10] installed on a laptop and an embedded Dual-core
ARM® Cortex™ -A9 MPCore™ @ 666MHz, part of the Xilinx Zynq®-7020 All
Programmable SoC [11] and installed on the ZedBoard™ development kit [12].

4.2 System Description and Implementation

This Section is dedicated to the detailed description of the VHDL design implemented on
the FPGA board. Each component will be discussed in depth, explaining its functionality,
design choices and limitations. We begin the section with the presentation of an
important concept in our design which is the implementation in VHDL of a system with
adjustable parameters in order to achieve optimal performance and resource utilization of
the available FPGA.

4.2.1 Parametric VHDL Design
The nature of the FPGA, as already seen in the previous Chapter, is such, that allows the
implementation of highly parallelizable designs. This characteristic gives the designer the

ability to adjust the system to the available hardware. In order to simplify this process and

53

increase the portability and adjustability of a design, the VHDL code can be written in
such a way that each component can be instantiated multiple times according to the
designers needs. In the case of a multiple level design, a parametric design of each
component allows maximum utilization of the available FPGA board.

In the case of our matching system, each component allows the designer to adjust the
parallelism of the component depending on the needs. As we will see in the following
subsection we have a three level design which allows us to adjust parallelism on each
level individually. Furthermore, the bit length of each input in our system can be
readjusted very easily in order to allow the use of the system in different applications. All
computations and performance measurements in the following chapters have been
conducted with a fixed word length of 10bit which was decided as a reasonable bit length
for a common hyperspectral image channel.

4.2.2 System Design Description

The HSI matching system consists of several modules in a four level design with three
levels of parallelism and a customizable configuration regarding parallelisms and data
width. The systems functionality is the following:

Input to the system is a pixel we want to match and the output is the result of the
matching metric as well as the index of the signature that was best matched.

Before describing the system architecture, let us talk about the pixel and signature format.
We assume that each camera channel is a 10 bit wide positive integer. The channel width
actually depends from the camera manufacturer and therefore can be easily adjusted in
our design. The camera channel values are provided as positive integers and are
converted into fixed point 10 bit wide integers. We examined two channel configurations,
a 16 channel camera and a camera with 64 channels. All channels are converted in binary
format and concatenated forming a large binary number that is then broken again into 10
bit wide numbers for processing. We will talk about the signature format later on in this
section. Let us first start with the system description before moving on to that.

The top module, which can be seen in Figure 4.1, receives a pixel as an input and a
signature from the FPGA Memory and feeds both of them into the “Pixel Channel”
module which we will later on describe. The number of these modules is customizable
and depends on the desirable signature parallelism. In this thesis, we have measured
speed and utilization for 3 parallelism configurations, (8, 16 and 32 signatures). This
number is of course a generic that can be set according to our needs. For a balanced
comparator tree structure though, selected parallelism has to be a power of two.

54

Pixel - Signature Matching
Module

Signature ROM Signature ROM Signature ROM Signature ROM
Clock—— 4] @) 3) C N)
Pixel in
walid in —ﬁ 4 v L L v
ROM Pixel Pixel Pixel Pixel
Address Channel Channel Channel B Channel
o [—— (1) (2) (3) (N)
[o]
= H
g Walid
[Caontrol
=
m
sl
Reset v r v
Reset
Control
COMPARATOR TREE
Signature
Index Ctrl J
! ,

valid Out Signature Signature
Result Index

Figure 4.1 Top module for HSI pixel matching system

Each of the aforementioned matching modules does simultaneously compute the result of
the matching of the input pixel with each signature it receives from the ROM and feeds
its output into a comparator tree that compares all input results, giving the smallest of
them at its output along with the index that indicates which signature was matched with
each pixel.

It is important to mention at this point that for certain configurations the input pixels is
not driven in the input in one piece but broken into smaller parts and then fed into the
matching module over several clock cycles. Doing this allows us to reduce input
throughput requirements by a great amount without sacrificing execution time. This is
achieved by just exploiting the clock cycles needed for the computation of the final
results. The following example illustrates this function.

Let’s assume that we want to match a pixel with 32 signatures in a system configuration
of full channel parallelism (i.e. 64 parallel channel computations for a 64 channel
hyperspectral image sensor) and signature parallelism of 8. In order to match each pixel
with all signatures we would need 32/8 = 4 clock cycles assuming a full pipelined
architecture. As a result, the need of 4 cycles to match each pixel with all signatures
means that the system receives a new input pixel every 4 cycles allowing us to “build up
the incoming pixel over these cycles. For a 640 bit pixel we can break down the 1/0
throughput requirements by a factor of 4. The input pixel fragments are then
consecutively stored in a single register and fed at the end of the 4™ cycle to the pixel
matching module.

Having already described the functionality of the whole system, we will now describe
each individual unit starting from the “Pixel Channel” component. The block diagram of
this component is the following

55

Pixel Channel Module

Signature in
Pixel in

Valid ini—+

matching matching matching

metric metric metric s metric

module module module module
e (2) (3) (N)

matching

12181631 WUS plen

Clock ——» ADDER TREE
Reset —»}

Valid Qut Matching Out

Figure 4.2 Pixel-Signature matching module

This component takes one pixel and one signature at its input and feeds them to the
components that do the arithmetic calculation depending on the chosen channel
parallelism. The arithmetic units are interchangeable in our design and the valid-bit
register chain is adjusted accordingly. The number of arithmetic units for parallel
computation is chosen by the designer depending on his needs and available hardware.
Each unit does act on one channel each time. This means that maximum parallelism can
theoretically be limited only by the total number of spectral channels. In practice though,
we have implemented our design for up to 64 channel parallelism. A design with 256
channels is also available in which we compute 64 channels at a time and accumulate the
results over 4 cycles at the end of the adder tree. A higher channel parallelism has not
been implemented due to high device utilization. Under certain circumstances we could
implement 128 simultaneous channel calculations but device routing delay would
significantly reduce performance. Hence, it was considered redundant.

The adder tree now, takes all channel outputs and adds them giving at the end the total
sum for each pixel-signature pair. If the chosen channel parallelism is smaller than the
total number of channels, an accumulator at the exit of the adder tree accumulates the
intermediate results. We have to note that the adder tree has to be balanced, for design
simplicity, which in turn means that the chosen parallelism has to be a power of 2.

Now, we present the arithmetic units we implemented for our design. We have three
different components for our three chosen distance metrics we discussed in section 2.4.
The block diagram for each of the aforementioned components can be seen in Figure 4.3,

56

Input A Input A
InputB ——

Input B 7ﬁ

‘ Subtractor ‘

Subtractor l

& Multiplier

! !

Outputg Outputq Outputq
Figure 4.3 Distance metrics: a. Sum of Absolute Differences, b. Euclidean, c. Chi-
squared

We will shortly describe at this point how each of the above modules is implemented on
the FPGA and what resources are needed for optimal mapping. This will help us later on
in the discussion of the total resources utilization as well as in the tradeoff analysis in
Chapter 6.

e The SAD component performs two actions on the incoming data. One subtraction
and an absolute value calculation. Even though the subtractor could be
implemented in a dedicated DSP block, the simplicity of this operation is such
that the Xilinx design tool synthesizes the above component using only lookup
tables for faster performance. The very low resource requirements of the sum of
absolute difference metric is its main and very important advantage as we will see
later on in this chapter and also in Chapter 6.

e The difference in the Euclidean distance metric is the fact that after subtracting
each value, a multiplication takes place on the subtracted values, as we already
discussed in Chapter 2. The subtraction is again implemented using lookup tables
but the multiplication now is implemented in the DSP blocks. This fact makes the
Euclidean distance metric significantly pricier (in terms of resources), especially
since the DSP blocks are limited and could be needed for other operations in a
larger design. Thus, we should take into account the aforementioned resource
requirements when conducting the tradeoff analysis for results quality and
utilization.

e The last metric we implemented is the Chi-squared distance metric. As you can
see on Figure 4.3, this one is also the most expensive regarding device resources.
Again as before, this metric is implemented using lookup tables for the
subtraction and DSP blocks for the multiplication.

The challenge here is to implement the division operation. Division in hardware is
a very hard to implement and costly operation [ref needed]. In our case we created
the divider we needed using the Xilinx Core Generator for specific inputs and
outputs. The generated core was then integrated in the rest of our design to form

57

the chi-squared distance metric component. The generated divider was
synthesized and implemented using lookup tables and registers. Later in this
chapter you can see the significant increase in resource utilization from the
divider. The high resources requirements are a major limitation in the
implementation of large designs which is also discussed in detail later on in this
chapter. The advantage though of this metric can be significant in certain cases as
we will see when we conduct our qualitative analysis in Chapter 5.

Having described the matching modules of our system, we continue with the description
of the adder tree which is needed for the summation of all channels. The diagram of the
adder tree is shown in Figure 4.4. Each adder in this structure is a separate adder module
which can be seen in Figure 4.5. The adder tree in our structure is balanced (power of 2)
for design simplicity. First level adder parallelism depends on channel parallelism. In our
design we have two configurations; 16 and 64 channels, each fully parallel which means
we have two adder tree configurations, one for 16 inputs and one 64 inputs.

If channel parallelism is smaller than the total channel number, the intermediate results at
the end of the adder tree have to me accumulated. For this reason, an accumulator can be
seen at the end of the adder tree structure. This component has been implemented in a test
module but cannot be seen in the two designs that were implemented for my thesis due to
full channel parallelism configurations.

Furthermore, on each level of the tree, intermediate results are 1 bit wider that their
respective inputs due to potential overflow consideration. This means that for a 64 input
adder tree, we have a 6 level adder tree structure which in turn means that the total output
will be bigger than the inputs by 6 bits. This is the worst case scenario and is redundant in
most cases. For optimal resource utilization a quality analysis has to be performed
depending on the available data and the application specifications. For this reason, in our
design, each adder module has a variable data size that can be adapted very easily to the
designer’s requirements.

58

Input Input Input Input Input Input Input Input Input
4

2 3 5 6 7 8 2N-3 2N-2 2N-1 i l 2N
! e Adde A A A A

Walid in ﬁ

lais|bay WS

—

Accumulator

v v

Walid out Cutput

Figure 4.4 Balanced adder tree and accumulator

Input A

Input B

Figure 4.5 Adder module

At this point we have completely described the metric computation component for each

pixel/channel pair.

Now we move on to describing the comparator structure needed to compare the results
for all signatures in order to receive the final result. As we have already talked about, our
final result is the result of the best signature match as well as the index of the signature.

The needed comparator component has been designed and implemented in a balanced

tree structure. The full comparator tree structure can be seen in Figure 4.6.

59

Valid in Input 1 Input 2 . InputN-1 InputN

CONTROLLER

Counter
Control

Reset —‘—>

Signal Group|..|...|...
Counter

clkc —»

¥ ¥ ¥ r Yy vy k4

| Index Result | | Result ‘
“alid out Index Cutput

Cutput

Figure 4.6 Comparator tree structure with result index output

The comparator tree is very similar in its main structure to the adder tree. Again each
comparator is implemented as a separate component that is generated on each level. The
bit width of the input and output results are in this case the same though since no
arithmetical operation is being performed on the inputs and an overflow bit consideration
iS not needed.

It is of big importance to mention two major points here that make this component more
complicated than the previous tree structure.

The first one derives from the total number of signatures to be processed and the chosen
signature parallelism. For example, in our design we examined three different signature-
number / signature-parallelism configurations. One for 32 signatures and 8 signature
parallelism, one for 64 signatures and 16 signature parallelism and finally, a 128
signatures - 32 signature parallelism configuration. In all three cases the number of
signatures is bigger than the chosen parallelism. In our case the signature
number/parallelism ratio is constant even though in the general case the design does not
limit us in this. The reason that drove us to that design decision is the fact that the

60

signature parallelism is a limiting factor due to high resource utilization of each instance.
The total signature number could be arbitrarily large, depending on the application.

As a result, at the end of the comparator tree we have an extra comparator level which
keeps the result of each group. A counter controls the number of comparisons needed
depending on the total signature number. In the case of our three configurations, we need
four comparisons for all signatures. This architecture decision has an impact on the next
point that follows now.

The second important point of our comparator structure is the ability to save the index of
the best matching signature. This is essential in order to be able to identify and categorize
each pixel. Let’s assume we have 32 signatures and a signature parallelism equal to 8.
These 32 signatures are stored in the FPGAs memory in dedicated memory blocks or
lookup tables [14].

It is important at this point to describe the order in which we store the signatures in the
device memory. The signatures are loaded into the FPGA memory from an external file
in which all signatures are listed in column order. A section of this file layout can be seen
in Figure 4.7

1 2 - N
ROM_1 660 212 238 321 83 212 601 2%B8 40 671 %3 365 560 459% 547 128 4
ROM 2 460 520 943 147 722 1015 235 925 534 12 989 20& 258 529% 774 346
785 B30 549 663 759 356 B77 332 155 569 83 181 402 997

Sroup 1

207 90

ROM M 412 523 673 585 117 331 574 421 54 556 362 548 355 359 289 230
N ROM_1 19 188 196 5B1 S&4 776 799 39%1 206 903 647 535 226 232 3%8 750 H
E ROM_2 £26 57 405 365 596 751 141 525 598 389 251 174 945 188 707 915 ,E
L] €81 104 170 550 825 577 518 912 145 201 487 487 533 €7 663 8923 =

ROM_N 451 10 428 399 €44 655 784 B892 914 344 514 477 548 283 e08 887 o
_ 811 372 €57 535 542 1012 351 861 165 175 1020 486 168 111 185 560
-5: 660 212 238 321 83 212 &01 258 40 €71 53 565 560 455 547 128
@ 4g0 520 943 147 722 1015 233 9253 534 12 9895 20& 258 529% 774 346

770 4B 595 93€ 153 316 417 720 172 420 110 47 55 612 145 el2

F
Y

Spectral Channsls

Figure 4.7 Signature file layout and memory storage order

The above signature grouping order into the memory is necessary for signature tracking.
As we already mentioned, since signature parallelism is smaller than the total signature
number, several iterations are needed for all signature processing. One group is processed
in each iteration. Each group consists of that many signatures, as the chosen parallelism.
The total number of groups equals to the ratio of total signatures to signature parallelism.
The final index result consists of two parts, one for the group in which the best result is
located and one for the best signature in each group.

61

The group index part is a simple counter that saves its value for every new best result.
The spatial indexing process is a more complicated and its logical architecture can be
seen in Figure 4.8

L
E
A
il
=]
&
i}
2

Index out Output

Figure 4.8 Comparator module

A comparator’s output is used to control two multiplexers. One to chose the best input
(lower or higher) and one to chose the right index. ‘1’ if input A is lower or ‘0’ if not.
The input index is the index from the previous level of the tree structure. At the end of
the tree structure, the final index register contains the path to the input where the best
signature was located.

4.3 Execution and Utilization

In this section, we will present and discuss the complete results of all aforementioned
implementations. We will show execution times, device utilization and throughput
requirements for sever configurations. We will also present the results of the software
implementations of the C program implementing the same configurations as on hardware.
For each case we calculated hardware acceleration against both the conventional
processor and the embedded processor.

Specifically, we implemented and measured the results for 6 configurations which are
listed in Table 4.1. We also obtained results for a 256 channel configuration and 64
channel parallelism through extrapolation. This case implementation was deemed
unnecessary due to the fact that it was the same as configurations 4 — 6.

62

Configurations | Signatures Signatu_re Channels_ Implem_ented
Parallelism (full parallelism) metrics
: o : o 2
= : :
2 128 32 = 2

Table 4.1 Implemented Configurations

43.1

Implementation Results

In the following tables aforementioned implementation results for the C program as well
as the VHDL design, for each of the three matching metrics. We will comment the on the
results after presenting the results.
Execution time in the following cases was always measured for matching 1 million pixels
(1000 x 1000 image size) with known signature number

DEVICE UTILIZATION (ZYNQ 7045)
SAD /
Total Signatures
Sig. parallelism 32/8 64/16 128/32
REGISTERS 9.5K (2%) 23.8K (5%) 48.4K (11%)

]

z
o | 2 = LUTs 7.6K (3%) 16.4K (7%) 33.3K (15%)
Q | T
% o
6] DSPs 0 0 0
(%]
Ll
(=
5] REGISTERS 50.9K (11%) 109.9K (25%) 195K (44%)
= (7))
g | &

2 O S . (] . (0} . (0}

z 3 LUT 39.5K (18%) 84.1K (38%) 128.5K (58%)

T

o

DSPs 0 0 0

Table 4.2 Sum of absolute differences device utilization

63

DEVICE UTILIZATION (ZYNQ 7045)

EUCLIDEAN ;
Total Signatures
Sig. parallelism 32/8 64/16 128/32
REGISTERS 12.3K (2%) 24.7K (5%) 50.3K (11%)
|
z

o | 2 2 LUTs 7.9K (3%) 17.6K (8%) 29.3K (13%)

O | T

o« o

3 DSPs 128 (14%) 256 (28%) 512 (56%)

m

[~

w REGISTERS 43.6K (9%) 149.6K (34%)

= 7))

E g exceeds
z3 LUTs 30.7K (14%) 150.6K (68%) device
% resources
(@]

DSPs 512 (56%) 496 (55%)
Table 4.3 Euclidean device utilization
CHI DEVICE UTILIZATION (ZYNQ 7045)
SQUARED ;
ToFaI Slgnatu‘res/ 32/8 64/ 16 12832
Sig. parallelism
REGISTERS 141.2K (32%) 281K (64%)
|
E exceeds
wl Z23 LUTs 40.9K (19%) 81.7K (37%) device

W < resources

o« (@)

3 DSPs 128 (14%) 256 (28%)

&0

o

3 REGISTERS 281K (64%)

- (7]

E g exceeds exceeds
Z 3 LUTs 81.7K (37%) device device
§ resources resources
O

DSPs 256 (28%)

Table 4.4 Chi-squared device utilization

64

Sum of Absolute Differences

Channels/ Execution time
parallelism Software (C) - (Intel Core i3) Software (C) - (ARM Cortex - A9) VHDL
L gcc-03 L gcc—03
gcc unoptimized L gcc unoptimized .
optimization optimization
(32 signatures and 8 signature parallelism in VHDL)
256 /64 38.74 sec 3.23 sec - - 44,96 ms
64 /64 10.24 sec 0.52 sec 92.62 sec 26.72 sec 11.24 ms (356 MHz)
16 /16 2.74 sec 0.37 sec 24.44 sec 3.5 sec 9.35 ms (428 MHz)
(64 signatures and 16 signature parallelism in VHDL)
256 / 64 78.05 sec 6.99 sec - - 55.76 ms
64 /64 20.95 sec 1.03 sec 176.11 sec 40.36 sec 13.94 ms (287 MHz)
16 /16 5.30 sec 0.75 sec 50.49 sec 6.73 sec 10.75 ms (372 MHz)
(128 signatures and 32 signature parallelism in VHDL)
256 / 64 155.15 sec 13.17 sec - - 99.4 ms
64 /64 39.89 sec 2.02 sec 349.22 sec 83.07 sec 24.85 ms (161 MHz)
16 /16 10.45 sec 1.45 sec 100.08 sec 12.87 sec 11.33 ms (353 MHz)

Table 4.5 Sum of absolute differences timing results

Euclidean
Channels/
parallelism Software (C) - (Intel Core i3) Software (C) - (ARM Cortex - A9) VHDL
imi gee-03 - gee - 03
gcc unoptimized o gcc unoptimized L
optimization optimization
no x16 loop no x16 loop no x16 loop no x16 loop
unrolling | unrolling |[unrolling | unrolling | unrolling |unrolling | unrolling | unrolling
(32 Signatures and 8 signature parallelism in VHDL)
256 / 64 43.80 35.29
4.17 sec |3.45 sec - - 43.48 ms
sec sec
64 / 64 11.47 132.85 96.48 20.59 15.32 10.87 ms
9.01 sec |0.85sec |0.92sec
sec sec sec sec sec (368MHz)
16 /16 36.08 26.16 3.89
3.27 sec |2.52sec |0.42 sec |0.43 sec 3.44 sec | 9.55 ms (419MHz)
sec sec sec
(64 signatures and 16 signature parallelism in VHDL)
256 / 64 86.48 67.96
9.32 sec |6.89 sec - - 65.32 ms
sec sec
64 /64 17.30 263.10 189.92 31.98 27.63 16.33 ms
22.82sec 1.64 sec |1.82 sec
sec sec sec sec sec (241MHz)
16 /16 71.07 51.26 7.43 10.39 ms (385
6.25sec |5.01sec [0.81sec |0.86 sec 6.62 sec
sec sec sec MHz)

65

(128 signatures and 32 signature parallelism in VHDL)
256 / 64 171.3 134.31 15.00 13.84
sec sec sec sec
64 / 64 45.03 35.11 530.97 375.84 64.23 53.68
3.23 sec |3.69 sec -
sec sec sec sec sec sec
16 /16 11.87 141.43 101.58 14.56 12.96 11.21 ms (357
9.67 sec |1.60sec |1.72 sec
sec sec sec sec sec MHz)
Table 4.6 Euclidean distance timing results
Chi-squared
Channels/
parallelism Software (C) - (Intel Core i3) Software (C) - (ARM Cortex - A9) VHDL
cc
gcc unoptimized gcc - O3 optimization g. . gcc - O3 optimization
unoptimized
No X16 loop no x16 loop . no x16 loop
. . . . no unrolling . .
unrolling | unrolling | unrolling | unrolling unrolling | unrolling
(32 signatures and 8 signature parallelism in VHDL)
256 /32 |87.04 sec |76.66 sec |34.74 sec |31.64 sec - - 89.6 ms
215.68 222.15 22.4 ms
64/32 19.51 sec |22.52sec | 8.70sec | 7.95 sec 362.73 sec
sec sec 357 MHz
10.44 ms
16 /16 5.12sec | 5.89sec | 1.79sec | 1.88 sec 92.55 sec 54.17 sec [56.42 sec .
383 MHz vivado
(64 signatures and 16 signature parallelism in VHDL)
256 /16 159.54 |157.2 sec 71 sec 62.06 sec - - 179.2 ms
64/ 16 40sec |44.64 sec |17.68 sec |15.85 sec 713.73 sec 425.6 sec 44.8 ms
11.2 ms
16 /16 10.31sec [11.64sec | 3.59sec | 3.74 sec 184.47 sec 108.57 sec .
357 MHz vivado

Table 4.7 Chi-squared distance timing results

4.3.2 Results Commentary

In this section, we discuss the above tables and add some necessary clarifications on
certain cases for better understanding of these results.

a. As already mentioned in the introduction, the cases for 256 spectral channels have
not been implemented on the FPGA since the system configuration is identical to
the 64 channel case with the addition of an accumulator at the end of the adder
tree structure. Hence, for the Sum of absolute differences and the Euclidean
distance metrics, the results for these cases were extracted through extrapolation
from the 64 channel configurations.

In the case of 8 signatures parallelism for the chi-squared metrics, due to
increased device resource utilization of the division operation, implementation of

66

the 64 and 256 channels designs was not achievable. A 32 channel parallelism is
achievable and again with the same clock as the 16 signatures parallelism
configuration. Execution times for these implementations are presented with a 32
channel parallelism and full signatures parallelism.

For the case of 16 signatures parallelism though, 64 channels and 256 channels
configurations exceeded device resources, even for a 32 channels configuration,
and could not be implemented. Thus, execution time results for these
configurations were obtained through extrapolation from the 16 channel case.

In the case of the 64 channels and 32 signatures parallelism, only the sum of
absolute differences metric configuration fitted in the device. In order to achieve
this though, we had to enable area optimization options in Xilinx ISE (LUT
combining, resource sharing) which have an impact on maximum achievable
frequency. Therefore, clock frequency is significantly lower than the other
implementations. Since data processing parallelism is very high, overall speedup
is increased as we will see in the next section.

In the case of the 64 channels and 16 signatures parallelism, the total needed DSP
blocks exceeded the available blocks. (1024 needed — 900 available). We
implemented the above configuration mapping only some of the multipliers in
DSP blocks and implementing the rest in LUTs. This was achieved using the
“AutoMAX DSP” option in the Xilinx ISE Synthesis tool. Hence, the resource
utilization does not follow a linear increase like the other implementations.

. As we can see from the device utilization tables, resource requirements increase
in a linear way to the increase of parallelism either in channel parallelism or
signature parallelism. An exception to this rule is the case for the Euclidean
distance metric where DPS requirements exceed available resources. In this case,
linearity is lost due to an increased Register and LUT utilization.

The 16 channels — 16 signatures parallelism configuration also fits in the smaller
Xilinx Zyng®-7020 SoC [11]. Almost all designs that are larger than that don’t fit
in the smaller board.

It is very interesting to discuss the difference in utilization for each metric. The
Sum of absolute differences is the implementation with the least resource
requirements. Even though Register and LUT resource requirements differences
are not very large, the main difference is the DSP utilization which is very
important in designs where DSP slices are valuable. Thus, the maximum
achievable parallelism for the sum of absolute differences system is higher than
the other metrics.

Furthermore, it is quite obvious that the chi-squared metric has very high resource
requirements due to the difficulty in implementing the division on hardware.

67

4.4 Speedup and Throughput

In this section we present the outcomes of the acceleration analysis we performed on our
VHDL design. We provide speedup results for the FPGA design versus the two C
implementations.

Furthermore, as we already discussed, we conducted a throughput analysis in order to
determine the data input requirements. This analysis has a great significance as we will
see in this section since maximum achievable input throughput is a major limiting factor
in the total maximum acceleration we can attain.

Finally, all results are illustrated in the form of diagrams for better understanding of the
results and the correlation of the different factors that affect performance.

4.4.1 Results Tables and Diagrams

In the next tables the reader can see, in the execution time column, the best performance
result for each of the aforementioned cases, taken from the tables in the previous section,
along with the FPGA execution time results. In the speedup column, the achieved
acceleration versus the two C code implementations is listed.

FPGA Configuration Data SAD Execution time Speedup
Signature Channel Software (C) VHDL VHDL vs.
. . Channels
Parallelism Parallelism i3 ARM FPGA i3 ARM
16 16 0.37 sec 3.5 sec 9.35 ms 40 374
8 64 64 0.52 sec 26.72 sec 12.38 ms 46 2377
256 3.23sec | 106.88sec | 49.52 ms 72 2377
16 16 0.75 sec 6.73 sec 10.75 ms 70 626
16 64 64 1.03 sec 40.36sec | 13.94 ms 74 2895
256 6.99sec | 161.44 sec | 55.76 ms 125 2895
16 16 1.45 sec 12.87 sec 11.33 ms 128 1136
32 64 64 2.02 sec 83.07sec | 24.85ms 81 3343
256 13.17 sec | 332.28 sec | 99.4 ms 133 3612

Table 4.8 Sum of absolute differences speedup results

68

FGPA Configuration Data EUCLIDEAN Execution time Speedup
Signature Channel Software (C) VHDL VHDL vs.
; parallelism Channels - .
parallelism i3 ARM FPGA i3 ARM
16 16 0.42 sec 3.44 sec 9.55 ms 44 360
8 64 64 0.85 sec 15.32 sec 10.87 ms 78 1409
256 3.45 sec 61.28 sec 43.48 ms 79 1410
16 16 0.81 sec 6.62 sec 10.39 ms 78 637
16 64 64 1.64 sec 27.63 sec 16.33 ms 100 1692
256 6.89 sec 110.52 sec | 65.32ms 105 1692
16 16 1.60 sec 12.96 sec 11.21 ms 143 1156
32 64 64 3.23 sec 53.68 sec - - -
256 13.84 sec - - - -
Table 4.9 Euclidean speedup results
FPGA Configuration Data CHI-SQUARED Execution time Speedup
Signature Channel Software (C) VHDL VHDL vs.
R R Channels
Parallelism Parallelism i3 ARM FPGA i3 ARM
16 16 1.79 sec 54.17 sec 10.44 ms 171 5189
8 3 64 7.95 sec 215.68sec | 22.4ms 355 9629
256 31.64 sec 862.7 sec 89.6 ms 353 9628
16 3.59 sec 108.57 sec 11.2 ms 321 9694
16 16 64 15.85 sec 425.6 sec 44.8 ms 354 9500
256 62.06 sec 1702.4sec | 179.2 ms 346 9500

Table 4.10 Chi-squared speedup results

69

Speedup vs. i3 (SAD)

140
120 \\ /
100
g 8o \A//
=} >
g p— /
& 60
—6—325IGS/ 8 SIG
PARALLELISM
40 ————
- —8—64 SIGS / 64 SIG
20 PARALLELISM
——128 SIGS / 32 SIG
0 PARALLELISM
16 64 256
Channels
Figure 4.9 SAD speedup, FPGA vs. Intel i3
Speedup vs. ARM (SAD)
4000
3000 //,/ s
2500 /// S
Q
3 2000
(7]
4 p
& 1500
/ // ——32 SIGS / 8 SIG PARALLELISM
1000
// —8—64 SIGS / 16 SIG PARALLELISM
500 rg
128 SIGS / 32 SIG PARALLELISM
0 T T 1
16 64 256
Channels

Figure 4.10 SAD Speedup, FPGA vs. ARM

70

Speedup vs. i3 (EUC)

160
140 A
120
o
=]
s 80 — 4
a
v 60
/ —+—325IGS / 8 SIG PARALLELISM
40
—®— 64 SIGS / 16 SIG PARALLELISM
20
0 —f—128 SIGS / 32 SIG PARALLELISM
16 64 256
Channels
Figure 4.11 EUC speedup, FPGA vs. Intel i3
Speedup vs. ARM (EUC)
1800
O
1600 //
1400 / / >
1200 Y / /
1000
2 800
9 / / ——325IGS / 8 SIG PARALLELISM
& 600
—@—64 SIGS / 16 SIG PARALLELISM
400
128 Sl 2 SIG PARALLELISM
200 =128 SIGS / 32 SIG S
O T T
16 64 256
Channels

Figure 4.12 EUC speedup, FPGA vs. ARM

71

Speedup vs. i3 (X-SQUARED)

400
350 / —
300
250
Q
3
g 200 . S
& *~
150
100
—6—32 SIGS / 8 SIG PARALLELISM
50
—8—64 SIGS / 16 SIG PARALLELISM
O T T
16 64 256
Channels
Figure 4.13 Chi-squared speedup, FPGA vs. Intel i3
Speedup vs. ARM (X-SQUARED)
12000
10000
o — O
8000
o 6000
= * - *
@
& 4000
—¢—32 SIGS / 8 SIG PARALLELISM
2000
—®— 64 SIGS / 16 SIG PARALLELISM
O T T
16 64 256
Channels

Figure 4.14 Chi-squared speedup, FPGA cs. ARM

72

We now present the throughput results obtained for the same configurations. Throughput
was calculated using the following formula which takes into account clock speed of the
FPGA, clock cycles needed until the final result has been calculated and data size.

Throughput _F. W,
CP

where F is clock frequency, C is the needed clock cycles to match one pixel and w, is

the pixel / signature bit-width.

p

PIXEL INPUT THROUGHPUT
SAD
16 CHANNELS 64 CHANNELS
Signature 8 16 32 8 16 32
Parallelism
FPGA Clock 428 MHz 372 MHz 353 MHz 356 MHz 287 MHz 161 MHz
Speedup i3 48 83 156 282 465 MHz 521 MHz
(Mean) | ARM 356 619 1174 1987 3173 3560
32 17.12 Gbps | 29.76 Gbps | 56.48 Gbps | 56.96 Gbps | 91.84 Gbps | 103.04 Gbps
8
3 64 14.88 Gbps | 28.24 Gbps | 28.48 Gbps | 45.92 Gbps | 51.52 Gbps
:g 128 14.12 Gbps | 14.14 Gbps | 22.96 Gbps | 25.76 Gbps
g
£ 256 | 2.14 Gbps
2
512 | 1.07 Gbps | 1.86 Gbps

Table 4.11 Sum of absolute differences throughput results

73

PIXEL INPUT THROUGHPUT

EUC
16 CHANNELS 64 CHANNELS
Signature 8 16 32 8 16 32
Parallelism
FPGA Clock 419 MHz 385 MHz 357 MHz 368 MHz 241 MHz -
. 42 78 144 75 100 -
i3
Speedup
(Mean) ARM 343 630 1168 1282 1691 -
37 16.76 Gbps | 30.8 Gbps | 57.12 Gbps | 58.89 Gbps | 77.12 Gbps -
]
5 64 15.4 Gbps | 28.56 Gbps | 29.45 Gbps | 38.56 Gbps -
5 14.28 Gbps | 14.72 Gbps | 19.28 Gbps -
s 128
]
.g 256 2.10 Gbps -
>
2
512 1.05 Gbps | 1.93 Gbps -

Table 4.12 Euclidean throughput results

PIXEL INPUT THROUGHPUT

CHI-SQUARED
16 CHANNELS
ignatur
Sig atlf e 8 16 32
Parallelism
FPGA Clock 383 MHz 357 MHz -
i3 176 291 -
Speedup
(Mean) ARM 4965 9475 -
32 15.32 Gbps | 28.56 Gbps -
(7]
g
% 64 14.28 Gbps -
c
.20
2 128)
3]
(] -
_g)56 1.92 Gbps
>
2 _
512 0.96 Gbps 1.79 Gbps

Table 4.13 Chi-squared throughput results

74

In the following diagrams, we can see speedup for the FPGA versus the Intel i3 and the
ARM processor for three signature parallelism as a function of spectral channels.

We also present a speedup / throughput diagram for 6 configurations for a fixed number
of signatures and variable channel and signal parallelism. Specifically we chose to plot
the results for 128 signatures which is a case that gives representative results for the
whole system. In these diagrams, the gradient color of the FPGA throughput results line
corresponds to the color coding of the throughput results in Tables 4.11 — 4.13. It has
been depicted in such a way that illustrates the difficulty of each implementation in terms
of input throughput.

SAD Speedup / Throughput

3800 3

3600 -
3400 —i— Speedup vs. i3

3(2)88 #— Speedup vs. ARM A _~ - 2.5
y =

2800 ©— FPGA throughput (128 signatures / pixel total) yd
2600 / 2

2400 /,
2200 /,
2000 i e
1800) o :
1600
1400

1200 X 1
1000

')
800
600 i - 05
400 < N
200 ""—Z
0 — — ; . ; 0

128 256 512 512 1024 2048
(16 x 8) (16 x 16)) (16 x 32) (64 x 8) (64 x 16) (64 x 32)

FPGA Speedup

FPGA Throughput (Gigapixels/sec)

FPGA parallelism (PUs = CHANNEL PARALLISMS * SIGNATURE PARALLEILSM)

Figure 4.15 SAD Speedup and throughput for 128 signature and total pixel configuration

75

EUC Speedup / Throughput

1800 soeed 3 2.5
——Speedup vs. i A
1600
——Speedup vs. ARM / Ty
1400 2 2
~O—FPGA throughput (128 signatures / pixels toM / %
1200 %
N Pl 15 B
3 1000 Q o0
2 / o
a8 800 =
< / -
<<
O 600 Ey
& / © o
S
400 ~ 05 E
& 2«
[G)
200 a
g S . o
° O —— —
0 T T T T O
128 256 512 512 1024
(16 x 8) (16 x 16)) (16 x 32) (64 x8) (64 x 16)

FPGA parallelism (PUs = CHANNEL PARALLISMS * SIGNATURE PARALLEILSM)

Figure 4.16 EUC Speedup and throughput for 128 signature and total pixel configuration

X-SQUARED Speedup / Throughput

10000 —o— Speedup i3 0.8
9000 N // ‘U 07
=== Speedu .
8000 peedup
2000 =& FPGA Throughput (128 = 06 _
S signatures / pixels total / 9
S 6000 05 &
2 / e
& 5000 0s 3
& 4000 e
o . &
“ 3000 o
- 02 3
2000 F
1000 o1 :
0 o= - —t o £
<
128 256 5
(16 x 8) (16 x 16)) a

FPGA parallelism (PUs= CHANNEL PARALLISMS * SIGNATURE PARALLEILSM)

Figure 4.17 Chi-squared Speedup and throughput for 128 signature and total pixel
configuration

76

442

Results Discussion

We discuss in this section about some important matters regarding the above diagrams.

a.

In the result table 4.8 — 4.10, execution time results for the 256 channel C code
implementation on the embedded ARM processor, were extracted through
extrapolation from the 64 channel results assuming a linear relationship between
execution time and workload by studying the rest of the results.

The reason behind the need of extrapolating the results is the limitation imposed
by the board’s internal memory. Our C program creates two matrices, one for 1
million pixels and one for given number of signatures before it performs the
computations between them. In the case of the 256 channels, the available device
memory was too small to fit said matrices.

As also mentioned before, the execution time numbers for the 256 channel cases
in the VHDL case were also obtained through extrapolation from the 64 channel
cases. Device configuration is almost identical due to same parallelisms in both
cases.

The above two points are the explanation behind the fact that for the 64 channels
and 256 channels, the resulting diagrams have a linear relationship between them.
In the case of the FPGA vs. ARM, we see no improvement in speedup between
the two cases while in the FPGA vs. i3 curves, the lines are still parallel to each
other but a speedup gain is present due to nonlinear execution time relationship
between the Intel processor results.

The Chi-squared distance metric implementation is a case that needs a bit more
attention. The first thing we have to mention is the fact that the 32 signatures
parallelism cases were not implementable due to device resource limitations.
Thus, they were not examined at all and not included in the results tables.

The only designs that could be mapped into the device we examined are the cases
for the 16 channel cameras. The results for the 64 channels and 256 channels were
obtained through extrapolation. This is the reason also why we only presented
these two cases in the Speedup / Throughput graphs. The results for the other
cases are identical as obviously expected and were not considered necessary to
illustrate.

Throughput results in Tables 4.11 — 4.12 have different coloring depending on the
device’s capability to reach each throughput. Any 1/O throughput up to ~4 Gbps is
easily achieved with available boards. A theoretical throughput of up to 12 Gbps
is achievable on the Zyng-7000 SoC [19].

Throughput values up to ~18 Gbps will be achievable in the next generation Zynq
Ultrascale+ MPSoC according to the device’s advertised specifications [20].
Anything higher than the aforementioned values is practically impossible to
achieve (with currently available devices) and the speedups for these cases are

77

presented in order to complete the picture of the device’s computational
capabilities.

It is evident that throughput is a factor that limits the achievable maximum
speedup on a practical level and has therefore to be taken into account when
designing a system.

Results for 256 and 512 signatures have been extracted assuming a same
configuration as in the 128 signatures case. They are presented here in order to
display the fact that increasing the total signatures number, provides us the
advantage of lower 1/O throughput and better quality results as we will see in
Chapter 5.

78

CHAPTER 5
QUALITY EVALUATION

5.1 Introduction

This chapter is dedicated to the examination of the quality results of our design for a
number of different configurations. We will discuss the methodology used to extract
features from a hyperspectral image using MATLAB, impact of various factors on the
resulting qualities and difference in the results for our three different matching metrics.

The main data set used for our experiment was the open science data set from APEX we
already introduced in Chapter 1. We extracted specific regions that were of interest to us,
as well as necessary spectral signatures, in order to obtain the desired results. We
repeated our measurements for different camera configurations, studying the effect of
different regions of the light spectrum and the number of channels on the qualities of the
obtained results. We will also present certain results from the analysis of the smaller
dataset obtained with the hyperspectral cameras provided by the remote sensing
laboratory of the NTUA. Detailed analysis on this dataset was not conducted since the
APEX dataset did cover a much broader spectrum of diverse cases.

Finally, we close the chapter with commentary on the results and with a brief
presentation of other methods used by image analysts to obtain desired features from a
hyperspectral image.

5.2 Dataset Manipulation and Quality Evaluation

After acquiring the needed datasets and all the different camera configurations mentioned
in previous Chapters, we have to manipulate the data in order to test our matching metrics
on various cases and evaluate the results obtained for each configuration. In order to do
this, we generate a number of different ground truths for different cases. We also acquire
numerous spectral signatures for each dataset that will then be used in the matching
process. Finally, we close the section with the discussion of the quality measures used to
evaluate the results in each case.

5.2.1 Ground Truth generation and spectral signatures acquisition

The APEX dataset consists of a hyperspectral image obtained from a remote sensor
mounted on a research aircraft and taken over a small city in Switzerland. Since it depicts
such a diverse area covering a wide range of different ground features and materials, we
had to concentrate our analysis on specific areas, well suited to generate the required
ground truth and the corresponding signatures. Before we discuss each region of interest

79

individually, we present the full image for the aforementioned area. In Figure 5.1, one
channel of the 285 spectral channels for the entire image can be seen in grayscale. This
image was used to obtain the desired features from the image.

Figure 5.1 Channel 130 of the APEX open science data set

From the image depicted in Figure 5.1, we extracted certain areas for further analysis.
Specifically, we concentrated on five subareas generating six ground truth regions with
specific features. The examined regions are the following:

Water

Tennis Courts
Black Roof Tiles
Paved Road
Soccer field
Vegetation (trees)

hD OO oT

For each one of the above regions of interest we generated a corresponding ground truth.
These areas were created in MATLAB using the desired region from the original image
and the ROI function from MATLAB. The resulting map is a binary image with a high
value (“1’) for every pixel inside the ground truth region and a low value (‘0’) anywhere

80

else. Figures 5.2 to 5.4 depict each of the above regions along with the generated ground
truth map.

Figure 5.2 Regions of interest and ground truth map for a. Water b. Tennis courts

A

Figure 5.4 Regions of interest and ground truth map for a. Paved Road b. Vegetation

Now that we have defined and generated the ground truth for the needed calculations, we
discuss how to extract spectral signatures from each region. The methodology we follow
for signature acquisition is quite straight forward.

For each region we find the coordinated on MATLAB for specific pixels and save each
one of them in a matrix variable of size 1x1x256 (we can subsample the needed channels
if needed). We extract around four to five pixels from each region depending on the data
diversity. We will see in the following sections why more than one signature is needed
and the difference in results depending on the number of signatures used to match each
region.

In general, for each region we can extract tens of signatures to match which is a common
and acceptable practice in many applications. In our case we did limit our examination to
four or five pixels per ground truth which were enough to prove the impact of increased
signature numbers on the resulting qualities. It is possible to match each signature

82

independently and then combine the results or find a mean value from all signatures of
the same ground truth region and then perform necessary calculations. Finally, we can
also find the mean value of all signatures and add it as an “extra signature” in the first
method. The differences in the results in each one of these cases will be evident in the
results tables.

5.2.2 Quality Metrics

Trying to quantify the concept of quality in image matching, we use certain metrics that
do that exactly. Before we describe these metrics let us first talk about some statistical
measures of the performance of our matching functions. These measures are the True
Positive rate (TP), False Positive rate (FP) and False Negative rate (FN). In our case of
pixel matching, true positive pixels are correctly identified pixels in the image. False
positive pixels are these pixels that were matched with a given signature but do actually
not belong to the generated ground truth. Finally, false negative pixels are pixels that
were not matched to a given signature but do actually belong to the generated ground
truth.

The three aforementioned statistical measures are used to form three quality measures,
commonly used in quality assessment systems. These measures are Completeness,
Correctness and Quality. We also implemented an additional quality measure, similar to
Completeness, which introduces different weights for the TP and FP pixels, giving
greater importance to the TP pixels. The quality measures presented here are defined as
follows:

Completeness = _TP (5.1)
TP +FN

1

Weighted _IP=3FP (5.2)
TP +FN
Correctness = L (5.3)
TP+ FP

. TP
vality =— 5.4
Quality TP+FP+FN 4

Completeness measures correctly identified pixels as a percentage of the ground truth
pixels, i.e how many pixels the system found from the ones it should have actually found.
As you can see from the above plot, completeness is a measure that decreases slightly
while lowering the threshold until it collapses after a point. This is expected since
lowering the threshold extremely, causes or system to reject “good” pixels.

The Weighted measure is similar to completeness but takes also into account the false
positive pixels with a reduced weight.

83

Correctness on the other hand, measures how many of the matched pixels are actually
correct. This measure increases as we lower the threshold approaching unity. A unity
value would mean that our system has made no wrong matches. An increase in
correctness is expected since lowering the threshold causes our system to reject “wrong”
matches. It does not take into account lost “good” pixels which is done with the previous
measure.

Finally, Quality describes a general measure that combines the completeness and
correctness forming a more comprehensive picture of the concept of quality. The plot of
this measure, as can be seen in the Figure 5.5 provides us with the necessary information
to select the ideal threshold level.

5.3 Implementation on MATLAB

5.3.1 Introduction

Our goal, as we have described in previous sections, is to match each signature with its
corresponding ground truth. In order to achieve this, we calculate the vector distance
between a given signature and all image pixels using one of the previously mentioned
distance metrics. For example, for a vector of 256 points (each point is one spectral
channel), we calculate the distance of 256 points, accumulating the results to receive the
final value. This value then is used to decide how good the match was.

In this chapter, we will now discuss the MATLAB system developed to extract the
aforementioned matching results as well as certain quality metrics needed to quantify the
concept of quality. We begin with a description of the system and its function and will
move on to present the quality metrics and the results for different matching metric and
camera configurations.

5.3.2 Matching System and Results Acquisition

The matching system we developed in MATLAB consists of two basic functions that
perform the necessary calculations. Before we describe those functions in more detail let
us describe the idea behind the matching process of our system.

Each aforementioned signature-pixel matching result has to be decided whether it is a
“good” or a “bad result. The smaller the above mentioned result is, the closer the
signature and the tested pixel vectors are. The decision of a “good match” is made using a
threshold value for the above result so we can discriminate the pixels that we consider as
“good matches” from the rest of the pixels in the image. The threshold value is chosen by
the researcher based on several factors. Later on in this chapter we will discuss the
method we used to choose the threshold value for each ground truth.

84

After choosing the threshold value, we create a logical map for each tested pixel. Every
result below the given threshold is considered a match and is represented with a logical
high value (“1’) in the map. The rest is represented with a logical low (*0’). This map is
then compared to the ground truth map we created in the beginning in order to calculate
the quality metrics for each case.

The two functions created in MATLAB perform the above process. For every case we
provide the functions with the image to be scanned, a high and low value for the
threshold, the signatures we want to scan and the logical map for our ground truth.

The function does the following iteration in order to determine the optimal threshold for
each ground truth and matching metric. Starting from the maximum distance value it
repeats all calculations for the quality metrics recording the results lowering each time
the threshold value by a given step until it reaches zero.

At the end of this process we receive a list of the quality results for all iterations. Every
time we lower the threshold we see that the quality results improve since more pixels are
left unmatched. However, for each signature / ground truth / matching metric
combination, there is a threshold value after which quality starts declining again due to
extremely strict limits. The value, for which the quality results are max, is chosen as the
optimal threshold. A plot of the above mentioned results can be seen in Figure 5.5. In
Section 5.3.2 we discuss these quality measures in order to better understand these
results.

Quality Measures

Quality
Correctness
Completeness
099 — —

098 — —

097 — 3 -

Percentage(%)

096 ! -

05— w -

| 1
20 40 [=in} a0 100 120 140
Measures for 125 threshold levels

0.94
o

Figure 5.5 Quality results plot

85

5.4 Quality Results

In this Chapter we present the implementation results for the previously discussed
MATLAB system and for the data described in Section 5.2. Before listing the final tables,
we will briefly discuss the different cases examined in our experiment.

We performed each test for 6 different ground truths. For the Soccer field, Road and
Vegetation ground truths, only the weighted completeness measure was recorded in the
results tables since a complete examination of all possible configurations was not
necessary. For the tested ground truths, we repeated our experiment for the three
matching metrics also implemented on the FPGA. Finally, each of the aforementioned
cases was tested on four camera configurations which will be analyzed in the following
section.

5.4.1 Analytical Results for main Data Set

We now present the results of all cases we examined in the following tables. An in depth
discussion about the results will follow.

Each table lists the results for the different ground truths, camera configurations,
matching metrics and multiple signature combinations. We also present results for a
limited number of cases for which we simulated reduced illumination conditions for our
image. We approximated this effect dividing all channel values with a lowering factor.
Tables 5.2 to 5.4 list the results for the three commonly used quality measures. Tables 5.5
and 5.6 present the result for the weighted measure and have a slightly different layout.

Completeness

DATASET WATER ROOF COURT
METRIC SAD EUC X-2 SAD EUC X-2 SAD EUC X-2
F;!;g:ge 99.35% | 99.60% | 99.40% | 90.80% | 93.10% | 94.71% | 86.67% | 87.46% | 87 %
Near
Infrared | 98.70% | 98.70% | 98.73% | 92.18% | 93.10% | 92.18% | 85.33% | 86.79% | 88.35%
~40 Ch.

£ | Short-wave

& | nfrared | 99.38% | 99.53% | 99.36% | 92.41% | 90.57% | 90.34% | 50.95% | 53.30% | 64.28%

E o

2 50 Ch.

o
cfs'gpcia 99.42% | 99.61% | 99.51% | 94.48% | 93.10% | 90.80% | 66.85% | 65.17% | 86.34%
Multi
SpeCtraI 0, 0, 0, 0, 0, 0, 0, 0, 0,
e ch | 99.38% | 99.62% | 99.59% | 95.40% | 93.10% | 90.80% | 87.35% | 64.95% | 87.23%
10 Ch. Av.

Table 5.1 Completeness

86

Correctness
DATASET WATER ROOF COURT
METRIC SAD EUC X-2 SAD EUC X-2 SAD EUC X-2
Full Range | 98% 97% 98% | 85.13% | 82.65% | 81.58% | 61.14% | 64.28% | 75.83%
256 Ch.
In';'r‘;?; 4 | 97:15% | 97.26% | 97.20% | 81.17% | 80.36% | 82.00% | 83.55% | 85.73% | 85.76%
~40 Ch.
£ | short-wave
< 98.21% | 97.82% | 97.69% | 83.75% | 84.73% | 85.06% | 47.15% | 51.80% | 46.18%
w Infrared
E &
2 50 Ch.
(®]
Compact | 97.82% | 97.28% | 97.93% | 82.04% | 82.65% | 84.76% | 76.83% | 76.38% | 75.29%
~80 Ch.
Multi
Spectral | 97.93% | 97.30% | 97.79% | 81.37% | 82.65% | 84.76% | 59.82% | 75.72% | 73.21%
~25 Ch.
10 Ch. Av.
Table 5.2 Correctness
Quality
DATASET WATER ROOF COURT
METRIC SAD EUC X-2 SAD EUC X-2 SAD EUC X-2
Threshold | 15,000 | 2,250K | 6,000 | 117,000 | 150,500K | 29,500 | 174,000 | 86,000K | 17,500
Full Range | 97.30% | 96.87% | 97.43% | 78.37% | 77.88% | 78.03% | 55.88% | 54.44% | 67.48%
w | 256Ch.
=
o 2,600 | 195,000 | 900 4,150 | 800,000 360 11,600 | 4,700K | 1,000
S | Threshold
S
In';'r:‘ar'; 4 | 95:92% | 96.02% | 96.00% | 75.95% | 75.84% | 76.67% | 73.06% | 75.83% | 78.05%
~40 Ch.
3,300 | 280,000 | 1,800 | 36,200 | 24,600K | 3,100 | 26,000 | 17,500k | 2,700
Threshold
Short-
wave 97.61% | 97.37% | 97.08% | 78.36% | 77.87% | 77.98% | 32.43% | 34.63% | 36.75%
Infrared
~ 50 Ch.

87

5,500 | 800,000 | 2,500 48,100 | 39,600K 4,000 42,500 | 30,000K | 5,800
Threshold
Compact | 97.27% | 96.92% | 97.45% | 78.29% 77.88% | 78.06% | 55.64% | 54.24% | 67.28%
~80 Ch.

1,600 | 235,000 800 15,600 12,300K 1,220 18,000 | 9,100K 1,800
Threshold
Multi
Spectral | 97.34% | 96.94% | 97.40% | 78.30% 77.88% | 78.06% | 55.05% | 53.75% | 66.13%
~25 Ch.
10 Ch. Av.

Table 5.3 Quality

WEIGHTED (4 signatures)

DATASET: SOCCERFIELD

ROAD

TREES (minus grass)

METRIC: | sap | EUC | X2

saD | Euc | x-2

SAD

EUC

X-2

Signatures: 3 signatures + mean

3 signatures + mean

3 signatures + mean

Full Range

256 Ch. 65.08%

61.74% | 70.34% | 33.14%

31.83%

34.92%

44.72%

41.87%

45.31%

Hyper on
Visible
~ 40 Ch.
0.4-0.7 um

25.76%

25.55% | 15.34% | 25.76%

27.40%

29.08%

11.22%

1.82%

11.68%

Visible and
near infrared
~ 40 Ch.
0.4-1.1pum

CAMERAS

47.48%

46.91% | 61.10% | 25.98%

24.31%

28.84%

22.61%

21.56%

30.94%

Shortwave
Infrared
~ 50 Ch.

1.1-2.4pum

60.21%

58.43% | 62.03% | 27.37%

26.53%

27.79%

42.85%

46.81%

44.85%

Table 5.4 Weighted measure for four signatures

88

WEIGHTED (1 signature)

DATASET:

SOCCERFIELD

ROAD

TREES (minus grass)

METRIC:

saD | EUC | x-2

saD | EuC | x-2

SAD | EuC

X-2

Signatures:

mean of 3 signatures

mean of 3 signatures

mean of 3 signatures

CAMERAS

Full Range
256 Ch.

62.63%

58.18%

69.28%

30.89%

27.19%

33.06%

33.90%

28.39% | 39.50%

Hyper on
Visible
~ 40 Ch.
0.4-0.7 um

0.00%

4.28%

3.31%

21.89%

23.34%

24.88%

0.00%

0.00% | 0.00%

Visible and
near infrared
~ 40 Ch.
0.4-1.1pum

37.25%

34.19%

58.64%

19.64%

18.09%

23.31%

12.98%

11.22% | 28.64%

Shortwave
Infrared
~ 50 Ch.

1.1-2.4 pm

57.50%

61.02%

59.07%

26.40%

24.49%

26.74%

36.98%

35.68% | 38.37%

Table 5.5 Weighted measure for one signature

Finally, we present a number of comparison tables in order to better illustrate the impact
of certain factors on quality results. The factors examined in these tables are the quality
improvement achieved with the use of multiple signatures as well as the quality
differentiation in the case of reduced image illumination. The values presented here will
help us better understand the comments in the next section.

COURT
1 Signature 100% Luminosity 3 Signatures 100% Luminosity 3 Signatures 80% Luminosity
SAD EUC X-2 SAD EUC X-2 SAD EUC X-2
86.67% | 87.46% 87% 85.67% | 85.44% | 94.62% | 76.71% | 84.66% | 79.64 %

Table 5.6 Completeness results for multiple signatures and reduced luminosity

COURT
1 Signature 100% Luminosity 3 Signatures 100% Luminosity 3 Signatures 80% Luminosity
SAD EUC X-2 SAD EUC X-2 SAD EUC X-2
61.14% 64.28% | 75.83% | 74.63% | 76.68% | 79.34% | 85.63% | 84.56% | 88.55%

Table 5.7 Correctness results for multiple signatures and reduced luminosity

89

COURT

1 Signature 100% Luminosity

3 Signatures 100% Luminosity

3 Signatures 60% Luminosity

SAD

EUC

X-2

SAD

EUC

X-2

SAD

EUC

X-2

55.88%

54.44%

67.48%

66.35%

67.82%

75.92%

51.16%

52.30%

62.40%

Table 5.8 Quality results for multiple signatures and reduced luminosity

WEIGHTED (4 signatures - Reduced Illumination)

DATASET SOCCERFIELD TREES (minus grass)
METRIC SAD ‘ EUC ‘ X-2 SAD EUC X-2
signatures 3sigs + mean 3sigs + mean
c
.0
X ®
= E 65.08% | 61.74% | 70.34% | 45.72% | 41.87% | 44.31%
(|
= 285
Channels
§ 0.4-2.5nm
L ®
S E 34.04% | 28.14% | 40.85% | 32.70% | 30.08% | 39.18%
=

Table 5.9 Weighted measure for reduced illumination

5.4.2

In-house Camera Results

Before closing the MATLAB results section, we will present limited results from the
examination of the smaller, secondary data set obtained by us with the hyperspectral
cameras provided by the remote sensing lab of the NTUA. We will not discuss
quantitative results at this point but will illustrate the general picture of the examination
we did on this data set. A true color image of our data cube was already presented in
Section 2.5. In figure 5.6 an image of our hyperspectral camera for one channel can be

seen.

90

Figure 5.6 Channel 11 of Hyperspectral Image Data Set.

For the above image data we performed repeated experiments for the three different
matching metrics trying to identify objects in the image. For this, we developed a set of
functions in MATLAB that take a known signature (mean value of 9 signatures), our
image and the desired matching metric and produce a map of the distance results for each
pixel. The inverse distance map for each signature / metric combination can then be used
in order to perform a visual evaluation of the quality of the results. An example of this
procedure for the matching of yellow leaves can be seen in Figure 5.7. The differences
between the two metrics are more obvious in this example but are illustrative of the fact
we also observed for the large APEX data set.

91

Figure 5.7 Matching yellow leaves for a. SAD, b. Chi-squared metrics

5.5 Results Analysis and Comments

From the previously mentioned tables we can draw a number of important conclusions
about the different aspects of our image matching system.

We begin with the discussion of the best conclusion from the above analysis. As we can
tell from most experiments, using more signatures form an object, improves the results
compared to using only the mean signature. Also, including the mean value in the list of
multiple signatures improves in certain cases the overall results.

The above observation is very important in our application since the FPGA is very well
suited for increased data processing and parallelism configurations.

As a second most important observation we can say that for almost all cases, the
Euclidean distance metric provides the same or even worse results than the sum of
absolute differences. This fact is of great interest if we take into account the
corresponding hardware cost of each implementation as we will see in greater detail in
Chapter 6. In some cases though, the Euclidean distance does indeed provide better
results which, depending on the application, would justify the use of it.

When we focus on the overall Quality in the above results, we can draw the conclusion
that in almost every meaningful camera / ground truth setup, the chi-squared matching
metric improves the results by a percentage of up to 14%. Especially in cases assuming
different lightning conditions we see increased differences between the chi-squared and
the other metrics. The normalization metric results in less false positive pixels that would
influence the overall result.

92

A significant observation can also be made regarding percentage coverage of the features
in the image we want to identify. In general, the three matching metrics seam in that field
very similar. It is thus important to note that this quality measure alone does not justify
the use of the more complex and costly chi-squared implementation if object coverage is
our main goal. The chi-squared metric could still be preferred over the other ones for very
demanding applications where small details are important. Still, it has to be decided after
careful consideration in all cases.

As a general suggestion, the sum of absolute differences seems to be the preferable
choice for most applications. Additional techniques for post processing / homogeneity
analysis could be used to assist in the extraction of useful featured from a hyperspectral
image. This observation is very important in certain cases where distinguishing of objects
is almost impossible by signature alone, for example when trying to identify different
types of vegetation. Another case where quality results are not the only criterion for
choosing a matching metric is the case in which we want to identify a certain area or
formation on the ground. In this case, other characteristics like general shape or outline
geometry are of great help in extracting needed information from an image without the
need of perfect object coverage.

Moving on to the different camera configurations, we can clearly see the fact that specific
areas in the light spectrum are more important than others when trying to identify and
match light spectra. Thus, certain cameras are useless for certain objects. For example
vegetation can be identified around the 600 — 800 nm wavelengths. A camera that
consists of spectral channels in the shortwave infrared region is not suitable for this use.
In some cases, using a camera with fewer channels but in a spectral range that includes
the wavelengths that dominate a specific material provides better results than a camera
with a lot of channels and an increased spectral coverage range. This can be seen for
certain configurations in the results tables in the previous section. An application specific
analysis of the requirements is thus highly important in order to minimize cost and
optimize results.

Finally we should point out that in all results, exceptions and randomness are present.
Even though in some cases the results do not follow the general rules analyzed in this
section, we have drawn conclusions from examining the patterns and the common
characteristics of each case.

Also, the above analysis was based on the assumption of a near-perfect thresholding
technique. In practice, we search around 10* thresholds around known percentile coming
from the ground truth file, a priori. Differences in the results could possibly occur in a
more realistic scenario / training.

93

This page is intentionally left blank.

94

CHAPTER 6
TRADEOFF ANALYSIS

6.1 Introduction

In Chapters 4 we examined in depth the implementation of a hyperspectral matching
system. We recorded limitations introduced by the FPGA, hardware requirements and
performance for different implementations and discussed data parallelism achievable on
the device.

On the Quality assessment side in Chapter 5, we performed a detailed examination of
hyperspectral image matching techniques and recorded quality results for each
implementation. We discussed the factors that affect the quality results, listed limitations
and advantages of each case and examined the impact of different camera and signature
configurations on the results.

In this Chapter, we combine all conclusions drawn previously and will perform a tradeoff
analysis for each factor. As we already mentioned previously, the three different
matching metrics provide a difference in the quality results depending on the
configuration of the system. Each metric also has an impact on the hardware resources. A
careful examination of both approaches has to be conducted in order to gain a wider
picture of the problem.

6.2 HW/SW Implementation Tradeoffs

We begin our tradeoff analysis with the examination of the hardware resources
requirements of the three different matching metrics. As we saw in Chapter 3, the
matching metrics have major differences when implemented on the FPGA. The Sum of
absolute differences can easily be mapped on the device using limited resources. The
Euclidean distance requires the implementation of multipliers which are usually mapped
into dedicated DSP blocks. The Chi-squared distance metric is the most “expensive”
metric because of the increased hardware requirements for the division. The differences
in hardware requirements are listed again in Table 5.11 for one illustrative case. The
complete results Table can be found in Chapter 3.

95

16 CHANNELS UTILIZATION (ZYNQ 7045)
16 SIG. PARALLELISM SAD EUC CHI-SQUARED
REGISTERS 23.8K (5%) 24.7K (5%) 281K (64%)
LUTs 16.4K (7%) 17.6K (8%) 81.7K (37%)
DSPs 0 256 (28%) 256 (28%)

Table 6.1 Hardware requirements of the same configuration for three matching metrics.

It is immediately understandable that we have to select carefully the metric that matches
our application. The chi-squared metric limits the increased processing capabilities of the
FPGA greatly and should be used only in applications where the difference in quality is
crucial. If we consider the quality results from our experiments in Chapter 4, we can
study the cases where the implementation of the normalization metric is useful. As we
saw in Chapter 4, the chi-squared metric provides results with an up to 10% improvement
in quality. In others cases the difference is much more limited and would not justify the
use of such an expensive hardware implementation.

Another important factor is the number of signatures used in a matching system. As we
already know, the FPGA provides the resources for increased parallelism
implementations. This means that a system with many signatures can easily be
implemented on the device. Specifically, in our design, we saw in Chapter 3 that a big
limiting factor in our design is the input/output throughput for the pixels to be matched.
In a system with a low number of signatures the pixel throughput greatly increases since
less clock cycles are needed to match all signatures with the pixel. The increased
processing capabilities of the circuit are thus useless if throughput can’t be achieved. In
the case of many signatures though, the required throughput drops resulting in a design
that can in fact be implemented.

The above observation can be seen in Table 5.12 that lists throughput requirements for
the same design and different total signatures.

96

SAD 8 signature
Channels: 16 parallelism
FPGA Clock 428 MHz
Speedup i3 48
(Mean) ARM 356
32 17.12 Gbps
(7]
g
2 64
©
c
o0
2 128
o
@
K]
£ 256 2.14 Gbps
2
512 1.07 Gbps

Table 6.2 Throughput requirements for different total signatures

It is evident that an increased number in signatures can easily be implemented on the
FPGA. This fact drives us to the need of examining the increase in signatures on the
application side of our design. As we discussed in the previous chapter, an increased
number of signatures does provide improved results quality-wise. We repeat in Table
5.13 the results for the same configurations, for one and multiple signatures. This
improvement is meaningful for many applications and when we take into account the
above mentioned impact on the hardware side of the system, it is evident that the FPGA
is ideal for such implementations.

COURT

1 Signature 3 Signatures

SAD EUC X-2 SAD EUC X-2

55.88% 54.44% 67.48% 66.35% 67.82% 75.92%

TREES (minus grass)
1 Signature 3 Signatures + Mean

SAD EUC X-2 SAD EUC X-2

33.9% 28.39% 39.5% 44.72% 41.87% 45.31%

Table 6.3 Quality results for one and three signatures

97

The ability to compute efficiently matching metrics for a high number of signatures is
very useful also in a number of applications where the identification of features in an
image in high speed is crucial. We mentioned in the introductory section applications like
quality inspection or food sorting which would benefit greatly from the above resulting in
higher production speed and improved quality.

98

CHAPTER 7
CONCLUSION

Now that the discussion of this thesis has been completed, we will present the
conclusions drawn from the work done and the results obtained. Some final thoughts on
the project will also be discussed which will hopefully help the reader to understand the
general picture of the project. Finally, we will briefly discuss how the work done here
and the corresponding results can be utilized in other projects.

7.1 Conclusions

Hyperspectral imaging is a field that has seen an intense research interest in recent years.
Applications that utilize this technology range from satellite based/airborne remote
sensing and military target detection to industrial quality control, quality assessment and
food inspection as well as lab applications in medicine and biophysics. The major
drawback of this technology is the increased data processing requirements that challenge
most common processing units. In this thesis, we discuss the implementation of a
matching system for hyperspectral images with up to hundreds of spectral channels.

The realization of this system was reached accomplished with the use of a Field
Programmable Gate Array circuit. These chips offer high performance by taking
advantage of hardware parallelism and a configurable architecture that can be
programmed and re-programmed accordingly.

In this work, we created and tested two different approaches of the hyperspectral
matching system. On one side we described the system using C code and ran the code on
a common Intel CPU and an embedded ARM processor. The same system was then
developed in VHDL and ran on an FPGA. The results obtained from this implementation
do show the great parallel processing advantages of the FPGA. We achieved performance
results that are two to three orders of magnitude faster than the common CPU
implementation and three orders of magnitude faster than that of an embedded processor.
Maximum achievable speedup and parallelism on the FPGA is only limited by 1/O data
throughput. These restrictions provide a challenge for the designer to make an optimal
use of the available capabilities in order to achieve best results.

Following the hardware/performance analysis, we focused on the analysis of
hyperspectral images and the different matching techniques. The purpose of this analysis
is very important as was shown by the experimental results. In this thesis, we tested three
different matching metrics for the implementation of the pixel/signature matching. These
metrics have very different hardware requirements that do greatly influence the overall
achievable performance. Thus, it is important to perform an extensive analysis regarding
qualitative results. In order to achieve this, we developed a model in MATLAB that
quantified and measured the quality of each implementation. These results allowed us to
perform a trade-off analysis of our design. We saw that more “expensive” hardware

99

implementations cannot be justified for most applications and alternative approaches
have to be examined. The designer has to choose carefully between all available
configurations in order to obtain the best results for each application.

It is important to mention the fact that a good analysis and description of a problem is
crucial for the hardware engineer in order to take the design decisions that will allow him
to satisfy all the requirements in the best possible way.

It is obvious that the development of a VHDL system is a very intensive and time
consuming work that imposes great challenges for the designer. The advantages of this
approach though are a specific and well defined system that results in a high performance
processing unit that provides a solution to a range of applications limited by common
processing units.

7.2 Future Work and Final Thoughts

During the development of the system in this thesis, we had in mind the greater picture of
our work. As already mentioned several times in this text, the VHDL hyperspectral
matching system is the core of a number of applications based on hyperspectral image
data processing. Hence, we developed a parametric VHDL code and architecture on
multiple levels that allows for arbitrary parallelism regarding most application and
equipment specific variables. That is a variable number of signatures to be matched, an
arbitrary number of spectral channels and a variable number of parallel pixel processing
units. Finally, the modular design of our processing core allows a very easy
interchangeability of different arithmetic units depending on application specifications.
This means that the whole system developed during this thesis can very easily be
extended or become a part of a greater system for hyperspectral image matching
applications.

Furthermore, modern FPGA devices are part of a greater system on chip that includes
also traditional embedded processors and peripheral devices that can be programmed to
implement a complete system with SW/HW co-design.

Specific areas of further research and development include:

e Integration of the developed processing kernel in a real system with a camera
connection as well as communication setup.

e Interconnection of the FPGA with the embedded processor for co-processing.
Exploration of interconnection with the outside world.

e System design for data output processing. Numerous applications and projects
could be developed around the already built processing core.

e Finally, more advanced hyperspectral imaging algorithms on FPGA could be
examined, e.g. regression based spectral matching.

It is evident that many areas of further development and research exist around the work

done in this thesis. This is particularly satisfying since it is important for scientific work
to continue through new projects and studies.

100

Thus, we believe that the current thesis is important not only as a scientific study on its
own but rather as a small contribution in a larger project providing the impetus for further
research and development by young researchers and students, bringing together people,
different areas of study and knowledge with the ultimate goal of completing a project that
will be an achievement not of a single unit but the combined effort of a large number of
various members.

Science should not only serve individual people’s goals but instead contribute to the
universal progress of humanity. It is not ours to keep and it is worthless if kept locked
away. Having this idea in mind we urge anyone interested to use our work and we would
be more than happy if our little contribution to science found its way in new and
promising projects. For this contribution we are certainly proud.

101

REFERENCES

[1] M. E. Schaepman, M. Jehle, A. Hueni, K. Meuleman, The APEX Team, and K. I.
Itten, "The 4th generation imaging spectrometer APEX and its application in Earth
observation,” IEEE Transactions on Geoscience and Remote Sensing, 2012 (in
preparation)

[2] .Imaging Spectroscopy”, (2012). [Online]. Available: http://www.apex-esa.org
/content/imaging-spectroscopy

[3] Introduction to Hyperspectral Imaging with TNTmpis®, Randall B. Smith, Ph.D.,
Microimages Inc., 2012

[4] ,,Nikon MicroscopyU — Confocal Microscopy — Spectral Imaging and Linear
Unmixing” [Online]. Available:
http://www.microscopyu.com/articles/confocal/spectralimaging.html

[5] “What is hyperspectral imaging”, HySpex, [Online]. Available:
http://www.hyspex.no/hyperspectral_imaging/

[6] Carlos Gonzalez, Sergio Sanchez, Abel Paz, Javier Resano , Daniel Mozos, Antonio
Plaza, (2012) Use of FPGA or GPU-based architectures for remotely sensed
hyperspectral image processing. INTEGRATION, the VLSI journal. 46 (2013), 89-103.

[7] A. Plaza, J.A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone, G. CampsValls, J.
Chanussot, M. Fauvel, P. Gamba, J. Gualtieri, M. Marconcini, J.C. Tilton, G. Trianni,
Recent advances in techniques for hyperspectral image processing, Remote Sensing of
Environment 113 (2009) 110-122.

[8] A. Plaza, C.-I. Chang, High Performance Computing in Remote Sensing, Taylor &
Francis, Boca Raton, FL, 2007

[9] A. Plaza, D. Valencia, J. Plaza, P. Martinez, Commaodity cluster-based parallel
processing of hyperspectral Imagery, Journal of Parallel and Distributed Computing 66
(2006) 345-358

[10] “Intel® Core™ i3-3110M Processor” [Online]. Available:
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2 40-
GHz

[11] “Zyng-7000 All Programmable SoC” [Online]. Available:
http://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html#productTable

[12] “ZedBoard development board” [Online]. Available:
http://zedboard.org/sites/default/files/product briefs/PB-AES-Z7EV-7Z020 G-v12.pdf

102

http://www.microscopyu.com/articles/confocal/spectralimaging.html
http://www.hyspex.no/hyperspectral_imaging/
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2_40-GHz
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2_40-GHz
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html%23productTable
http://zedboard.org/sites/default/files/product_briefs/PB-AES-Z7EV-7Z020_G-v12.pdf

[13] Patterson, David A. and John L. Hennessy. Computer Organization & Design.5th
ed. Morgan Kaufmann Publishers, 2013.

[14] XST User guide,v11.3, Xilinx, Sept.2009

[15] “Introduction to Parallel Computing”, Blaise Barney, Lawrence Livermore National
Laboratory. [Online]. Available: https://computing.linl.gov/tutorials/parallel comp/

[16] Blelloch, Guy (1996). "Programming Parallel Algorithms" (PDF). Communications
of the ACM 39 (3): 85-97. d0i:10.1145/227234.227246

[17] “ GCC, the GNU Compiler Collection”, Free Software Foundation, Inc., 1988-2016

[18] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations
for high-performance computing. Report No. UCB/CSD 93/781, Computer Science
Division-EECS, University of California, Berkeley, Berkeley, California 94720,
November 1993

[19] “Designing High-Performance Video Systems with the Zyng-7000 All
Programmable SoC Using IP Integrator”, James Lucero, Bob Slous, XAPP1205 (v1.0),
Xilinx, March 20014

[20] “UltraScale Architecture and Product Overview”,DS890 (v2.8), Xilinx, June 2016

[21]” Field Programmable Gate Array (FPGA)”. [Online]. Available:
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm

[22] Clive Maxfield , FPGAs: Instant Access. Newnes; 1st edition (August 11, 2008)

[23] Xapdarapmog N. Zidnmpoémovirog, “Development of a Design Framework for
Power/Energy consumption estimation in heterogeneous FPGA architectures”, Diploma
Thesis, National Technical University of Athens, July 2010

[24] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs, ISBN 0-7923-8460-1

[25] Bryan Mealy, Fabrizio Tappero, Free Range VHDL. The no-frills guide to writing
powerful code for your digital implementations, Creative Commons Attribution-
ShareAlike Unported License, 2015

[26] David Pellerin , VHDL Made Easy!, Prentice Hall PTR; 61526th edition (September
3, 1996)

[27] “Xilinx Zyng-7000 All Programmable SoC ZC706 Evaluation Kit”, [Online].
Available: http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-
g.html#hardware

103

https://computing.llnl.gov/tutorials/parallel_comp/
https://www.cs.cmu.edu/afs/cs/Web/People/blelloch/papers/B85.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F227234.227246
https://en.wikipedia.org/wiki/Susan_L._Graham
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
https://www.amazon.com/Clive-Maxfield/e/B000APYHJK/ref=dp_byline_cont_book_1
https://www.amazon.com/David-Pellerin/e/B001IXU2A6/ref=dp_byline_cont_book_1
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html%23hardware
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html%23hardware

	CHAPTER 1
	INTRODUCTION
	Objective summary
	Thesis structure

	CHAPTER 2
	HYPERSPECTRAL IMAGING
	Introduction to Hyperspectral Imaging
	Spectral Signatures
	Factors that affect quality results
	Difference-based Spectrum Matching and Metrics
	Sum of Absolute Differences
	Euclidean Distance
	Chi-Squared Distance

	Computation Requirements and Applications

	CHAPTER 3
	ACCELERATION WITH FIELD PROGRAMMABLE GATE ARRAYS (FPGA)
	Introduction
	Field Programmable Gate Arrays
	FPGA Architecture
	FPGA Programming and CAD Tools
	VHDL Hardware Description Language
	Design Flow and Tools

	The Xilinx Zynq-7000 SoC and Xilinx Design Tools
	Software Optimization and Measurement Theoretical Concepts
	Pipelining
	Parallel Computing
	Latency and Throughput
	Compiler Optimizations

	This page is intentionally left blank.
	CHAPTER 4
	FPGA IMPLEMENTATION & EVALUATION
	Introduction
	System Description and Implementation
	Parametric VHDL Design
	System Design Description

	Execution and Utilization
	Implementation Results
	Results Commentary

	Speedup and Throughput
	Results Tables and Diagrams
	Results Discussion

	CHAPTER 5
	QUALITY EVALUATION
	Introduction
	Dataset Manipulation and Quality Evaluation
	Ground Truth generation and spectral signatures acquisition
	Quality Metrics

	Implementation on MATLAB
	Introduction
	Matching System and Results Acquisition

	Quality Results
	Analytical Results for main Data Set
	In-house Camera Results

	Results Analysis and Comments

	CHAPTER 6
	TRADEOFF ANALYSIS
	Introduction
	HW/SW Implementation Tradeoffs

	CHAPTER 7
	CONCLUSION
	Conclusions
	Future Work and Final Thoughts

	REFERENCES
	[10] “Intel® Core™ i3-3110M Processor” [Online]. Available: http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2_40-GHz
	[17] “ GCC, the GNU Compiler Collection”, Free Software Foundation, Inc., 1988-2016
	[18] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-performance computing. Report No. UCB/CSD 93/781, Computer Science Division-EECS, University of California, Berkeley, Berkeley, California 94720, November 1993

