
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Failure Detection and Recovery using Consensus

algorithms in a Distributed Resource

Management Framework

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΔΗΜΟΣΘΕΝΗ Γ. ΜΑΣΟΥΡΟΥ

Επιβλέπων : Δημήτριος Σούντρης

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εργαστηρίο Μικροϋπολογιστών & Ψηφιακών Συστημάτων

Αθήνα, Ιούλιος 2016

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστηρίο Μικροϋπολογιστών & Ψηφιακών Συστημάτων

Failure Detection and Recovery using Consensus

algorithms in a Distributed Resource

Management Framework

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΔΗΜΟΣΘΕΝΗ Γ. ΜΑΣΟΥΡΟΥ

Επιβλέπων : Δημήτριος Σούντρης

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 21η Ιουλίου 2016.

(Υπογραφή) (Υπογραφή) (Υπογραφή)

..............................

Δημήτριος Σούντρης Κιαμάλ Πεκμεστζή Γιώργος Οικονομάκος

Αν. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Επ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2016

Copyright c©–All rights reserved Μασούρος Δημοσθένης, 2016.

Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ΄ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

(Υπογραφή)

...

ΔΗΜΟΣΘΕΝΗΣ ΜΑΣΟΥΡΟΣ
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

c© 2016 – All rights reserved

Ευχαριστίες

Θα ήθελα καταρχήν να ευχαριστήσω τον κ. Δημήτριο Σούντρη για την υπομονή του

και την εμπιστοσύνη που μου έδειξε καθ΄ όλη τη διάρκεια εκπόνησης της διπλωματικής μου

εργασίας, καθώς επίσης και τον επιβλέποντα και φίλο Βασίλη Τσούτσουρα για την επίβλεψη

της διπλωματικής μου εργασίας, την παραχώρηση του κώδικα του για την υλοποίηση πάνω σε

αυτόν της εργασίας μου και για την αμέριστη βοήθεια του. Επιπλέον, θα ήθελα να ευχαριστήσω

τους φίλους μου Γιώργο και Αθηνά για τη στήριξη αλλά και τη βοήθεια τους σε κρίσιμα σημεία.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για την στήριξη που μου προσέφερε όλα

αυτά τα χρόνια.

1

Περίληψη

Η παρούσα διπλωματική εργασία επικεντρώνεται στην ανίχνευση αδιεξόδων και σφαλμάτων

καθώς και στην ανάνηψη σε περίπτωση που αυτά συμβούν σε κάποιο Πολυ-Πύρηνο Συστήμα

σε Ψηφίδα. Συγκεκριμένα, εξετάζουμε συστήματα τα χρησιμοποιούν αρχιτεκτονική Δικτύου-

σε-Ψηφίδα. Η τεχνολογία αυτή παρουσιάζει πολλές ομοιότητες με την ιδέα των κατανεμη-

μένων συστημάτων κυρίως στον τρόπο επικοινωνίας και της ιδέας κατανομής πόρων. Για το

λόγο αυτό, στόχος της παρούσας διπλωματικής είναι η υλοποίηση γνωστών αλγορίθμων στον

τομέα των κατανεμημένων συστημάτων σε ένα πλαίσιο κατανομής πόρων το οποίο διαχειρίζεται

εφαρμογές σε ένα σύστημα σε ψηφίδα.

Στο κεφάλαιο 1, κάνουμε μία εισαγωγή πάνω στα κατανεμημένα συστήματα, στα συστή-

ματα με αρχιτεκτονική δικτύου ψηφίδας καθώς και τις έννοιες της αξιοπιστίας, ανοχής σε

σφάλματα και ομοφωνίας.

Στο κεφάλαιο 2, παρουσιάζουμε εργασίες και υλοποιήσεις τεχνολογιών οι οποίες επικεν-

τρώνονται στην ανάνηψη συστημάτων από σφάλματα.

Στο κεφάλαιο 3, 4, 5 και 6 αναλύουμε τους τρόπους επικοινωνίας και τα είδη σφαλμάτων

σε κατανεμημένα συστήματα καθώς τους τρόπους με τους οποίους μπορούμε να εντοπίσουμε

αδιέξοδα και σφάλματα. Επίσης, παρουσιάζουμε ένα πλαίσιο κατανομής πόρων, γνωστό ως

DRTRM, πάνω στο οποίο θα ενσωματώσουμε τους αλγορίθμους για εντοπισμό σφαλμάτων

και αδιεξόδων καθώς και το πρωτόκολλο ανάνηψης σε περίπτωση σφάλματος PAXOS.

Στο κεφάλαιο 7, αναλύουμε τη διαδικασία την οποία ακολουθήσαμε προκειμένου να ενσωματώ-

σουμε τον PAXO καθώς και τους ανιχνευτές σφαλμάτων στο πλαίσιο κατανομής πόρων.

Στο κεφάλαιο 8, εξετάζουμε διαφορετικά σενάρια σφαλμάτων και παρουσιάζουμε τα πειρα-

ματικά αποτελέσματα.

το κεφάλαιο 9 συνοψίζουμε τα συμπεράσματά μας και προτείνουμε ιδέες για μελλοντική

έρευνα.

Λέξεις Κλειδιά

Σύστημα-σε-Ψηφίδα, Πολυ-Πύρηνο Δίκτυο σε Ψηφίδα, Εντοπισμός Σφαλμάτων, Εντοπισ-

μός Αδιεξόδων, Ομοφωνία, PAXOS, DRTRM

3

Abstract

This diploma thesis focuses on deadlock and failure detection as well as recovery in case

of failure on a Multi-Processor System-on-Chip (MPSoC). More precisely, we examine sys-

tems which utilize the Network-on-Chip (NoC) architecture. These types of systems share

many similarities with a distributed system, specifically in the communication scheme and

the allocation of resources. Thus, we implemented some popular algorithms which ap-

pear in distributed systems, on top of a resource management framework that manages

applications on a MPSoC.

In chapter 1, we introduce the class of distributed systems and systems with a NoC

architecture and proceed with the basic concepts of reliability and consensus.

In chapter 2, we present published works and real-life implementations which focus on

recovery after failure.

In chapters 3, 4, 5 and 6 we analyze the different communication methods and the

types of failures that occur in distributed systems, as well as the ways in which we can

detect failures and deadlocks. In addition, we present the DRTRM resource management

framework, which was used to implement the deadlock and failure detection algorithms

and the PAXOS protocol, which is used to recover in case of failure.

In chapter 7, we give detailed information on how we merged PAXOS and detectors

with the DRTRM framework.

In chapter 8, we examine different failure scenarios and we present our theoretical and

experimental results.

Lastly, in chapter 9 we summarize our conclusions and propose ways and ideas for

future research.

Keywords

System-on-Chip, Multi-Processor System-on-Chip, Failure Detection, Deadlock Detec-

tion, Consensus, PAXOS, DRTRM

5

Εκτεταμένη Περίληψη

Εισαγωγή

Σύμφωνα με το νόμο του Moore στην πιο απλοϊκή του μορφή γνωρίζουμε πως η υπολο-

γιστική ισχύς ενός επεξεργαστή διπλασιάζεται κάθε περίπου δύο χρόνια. Κανείς θα περίμενε

πως ένας τέτοιος ρυθμός σχεδιαστικής ανάπτυξης θα αρκούσε για τις υπολογιστικές ανάγκες

που έχουμε σήμερα. Παρόλα αυτά, δε συμβαίνει κάτι τέτοιο τόσο διότι ο νόμος του Μοορε

έχει φτάσει σε ένα τέλμα καθώς και επειδή οι απαιτήσεις των χρηστών για υπολογιστική

ισχύ αλλά και αποθήκευση δεδομένων αυξάνεται ολοένα και περισσότερο. Μία πρώτη λύση

στο παραπάνω πρόβλημα ήταν η εμφάνιση πολυπύρηνων συστημάτων (Multicore Systems).

΄Ενα πρόβλημα που παρουσιάζουν τα εν λόγω συστήματα είναι πως ο ρυθμός ανάπτυξης των

δεδομένων προς επεξεργασία καθώς και ο αριθμός των χρηστών που ζητούν δεδομένα είναι

κατά πολύ μεγαλύτερος από αυτά που μπορεί να επεξεργαστεί ένα πολυπύρηνο σύστημα. Η

λύση στο πρόβλημα αυτό ήταν η εμφάνιση της έννοιας του κατανεμημένου συστήματος (Dis-

tributed System). Η κύρια ιδέα πίσω από τα συστήματα αυτά είναι πως αφού η υπολογιστική

δύναμη ενός μονάχα μηχανήματος δεν αρκεί για τον υπολογισμό του τεράστιου αριθμού δε-

δομένων που χρειαζόμαστε σήμερα, μπορούμε να διαμοιράσουμε την επεξεργασία τους σε

διαφορετικές επεξεργαστικές μονάδες, κάθε μία από τις οποίες θα εκτελεί το δικό της κομμάτι

και στη συνέχεια να επιστρέφουμε το αποτέλεσμα ολοκληρωμένο στο χρήστη. ΄Ενα επιπλέον

πρόβλημα των πολυπύρηνων συστημάτων είναι πως λόγω του τεράστιου όγκου δεδομένων οι

ανάγκες επικοινωνίας μεταξύ των πυρήνων δεν μπορούν να διενεργηθούν από τις κλασσικές

τεχνικές επικοινωνίας με διαύλους δεδομένων (buses) και έτσι οδηγούμαστε σε ένα βοττλε-

νεςκ. Για το λόγο αυτό, οι σχεδιαστές ψηφίδων οδηγήθηκαν στη δημιουργία συστημάτων

σε ψηφίδα (Network on Chip - NoC), τα οποία αποτελούν πολυπύρηνα συστήματα με αρχές

επικοινωνίας που βασίζονται σε δίκτυα υπολογιστών. Τέλος, αρκετές φορές οι διαφορετικές

διεργασίες πρέπει να συμφωνήσουν σε κάποιες τιμές δεδομένων τα οποία χρειάζονται κατά τη

διάρκεια της εκτέλεσης, όπως για παράδειγμα εκλογή αρχηγού (leader election) ή αντιγραφή

κάποιου μηχανήματος καταστάσεων (state machine replication). Επιτακτική λοιπόν ανάγκη

για τη σωστή λειτουργία και την αξιοπιστία (reliability) των κατανεμημένων συστημάτων είναι

7

Αβστραςτ

αυτά να βρίσκονται σε ομοφωνία (consensus).

Κατανεμημένα Συστήματα

΄Ενα κατανεμημένο σύστημα ουσιαστικά είναι ένα σύνολο υπολογιστών οι οποίοι συνδέον-

ται μεταξύ τους σε δίκτυο, οι οποίοι όμως εμφανίζονται στον τελικό χρήστη σαν ένα σύστημα.

΄Οπως εύκολα καταλαβαίνουμε ένα κατανεμημένο σύστημα μπορεί να προσφέρει πολύ μεγάλη

υπολογιστική δύναμη καθώς μία εφαρμογή μπορεί να διαχωριστεί σε πολλές επιμέρους, να

διαμοιραστεί σε διαφορετικούς κόμβους, οι οποίοι να παράξουν παράλληλα πολύ γρήγορα το

αποτέλεσμα.

Στα συστήματα αυτά οι επιμέρους κόμβοι επικοινωνούν μεταξύ τους ανταλλάσοντας μη-

νύματα μέσω του δικτύου. Τα βασικά χαρακτηριστικά των κατανεμημένων συστημάτων είναι

τα εξής:

• Συγχρονισμός κόμβων: ΄Ολοι οι επιμέρους υπολογιστές του κατανεμημένου συστή-
ματος πρέπει να είναι θεωρητικά συγχρονισμένοι μεταξύ τους, εννοώντας ότι κάθε στιγμή

θα πρέπει να συντονίζονται οι ενέργειες των επιμέρους κόμβων προκειμένου να παραχθεί

κάποιο αποτέλεσμα.

• Το παραπάνω θα πρέπει να επιτευχθεί χωρίς την παρουσία κάποιου καθολικού
ρολογιού. Δηλαδή, ο συγχρονισμός των κόμβων επιτυγχάνεται πλήρως μέσω της

ανταλλαγής μηνυμάτων μεταξύ τους.

• Τέλος, κάθε επιμέρους κόμβος του συστήματος μπορεί να αποτύχει ανεξάρτητα
από τι συμβαίνει με τους υπόλοιπους.

΄Οπως καταλαβαίνουμε, όταν συμβεί κάποια αποτυχία (είτε υλικού, είτε αποτυχία επικοινωνίας)

σε κάποιον επιμέρους κόμβο, θα πρέπει το συνολικό κατανεμημένο σύστημα να συνεχίζει να

λειτουργεί ομαλά και ο τελικός χρήστης να μην αντιλαμβάνεται την αποτυχία αυτή. Είναι

λοιπόν επιτακτική ανάγκη να εφαρμόσουμε τεχνικές προκειμένου να επιτύχουμε ανοχή σε

σφάλματα.

Ανοχή σε Σφάλματα

΄Οπως είπαμε και προηγουμένως, ένα σύστημα (τόσο κατανεμημένο αλλά και γενικότερα)

θα πρέπει να συνεχίσει να λειτουργεί σε περίπτωση που συμβεί κάποια αποτυχία. Για να

καταφέρουμε όμως να επιτύχουμε ανοχή σε κάποιο σφάλμα, θα πρέπει να είμαστε αρχικά σε

θέση να εντοπίσουμε πως κάποιο επιμέρους στοιχείο απέτυχε. Το ερώτημα είναι πως μπορούμε

να εντοπίσουμε κάποιο τέτοιο σφάλμα· Την απάντηση στο ερώτημα αυτό δίνουν οι Chandra

και Toueg το 1996, με τους ανιχνευτές σφαλμάτων. Η πρόβλεψη τέτοιων ανιχνευτών δεν είναι

8

Abstract

απαραίτητο να είναι πάντα σωστή, αλλά και σε περίπτωση λανθασμένης πρόβλεψης η ανίχνευση

πιθανού σφάλματος είναι πολύ σημαντική. Γενικά, οι ανιχνευτές σφάλματος χωρίζονται σε 8

κατηγορίες οι οποίες προκύπτουν με βάση τα παρακάτω:

• Πληρότητα: Υποψία των αποτυχημένων κόμβων.

• Ακρίβεια: Υποψία των μη αποτυχημένων κόμβων.

Τα δύο παραπάνω χαρακτηριστικά, χωρίζονται σε δύο επιπλέον κατηγορίες ανάλογα με τη

διάδοση της πληροφορίας στους κόμβους του συστήματος. ΄Οσον αφορά λοιπόν την πληρότητα,

έχουμε τον επιπλέον διαχωρισμό της σε:

� Ισχυρή Πληρότητα: Κάθε αποτυχημένος κόμβος ανιχνεύεται από κάθε μη αποτυχη-
μένο.

� Ασθενής Πληρότητα: Κάθε αποτυχημένος κόμβος ανιχνεύεται από μερικόύς μη
αποτυχημένους.

Αντίστοιχα, όσον αφορά την Ακρίβεια, έχουμε:

� Ισχυρή Ακρίβεια: Κανένας κόμβος δεν ανιχνέυεται σαν αποτυχημένος, πριν όντως
να έχει αποτύχει.

� Ασθενής Ακρίβεια: Μερικοί μη αποτυχημένοι κόμβοι δεν ανιχνεύονται ποτέ.

� Ενδεχομένως Ισχυρή Ακρίβεια: ΄Επειτα από κάποια αρχική περίοδο σύγχησης,
κανένας κόμβος δεν ανιχνέυεται σαν αποτυχημένος, πριν όντως να έχει αποτύχει.

� Ενδεχομένως Ισχυρή Ακρίβεια: ΄Επειτα από κάποια αρχική περίοδο σύγχησης,
μερικοί μη αποτυχημένοι κόμβοι δεν ανιχνεύονται ποτέ.

Με βάση τα παραπάνω λοιπόν, οι ανιχνευτές σφαλμάτων χωρίζονται σε 8 κατηγορίες όπως

αναφέραμε και παραπάνω και οι οποίες φαίνονται στον παρακάτω πίνακα:

Κατηγορίες ανιχνευτών σφαλμάτων

Πληρότητα
Ακρίβεια

Ισχυρή Ασθενής Ενδεχόμενη Ισχυρή Ενδεχόμενη Ασθενής

Ισχυρή
Τέλειος

P
Ισχυρός

S
Ενδεχομένως Τέλειος

♦P
Ενδεχομένως Ισχυρός

♦S

Ασθενής

Q
Ασθενής

W ♦Q
Ενδεχομένως Ασθενής

♦W

9

Abstract

Πολυεπεξεργαστικά Συστήματα σε Ψηφίδα

Τα πολυεπεξεργαστικά συστήματα σε ψηφίδα προέκυψαν από την ανάγκη για όλο και

περισσότερους πυρήνες στο ίδιο ολοκληρωμένο σύστημα. Στα συστήματα αυτά, ένας μεγάλος

αριθμός πυρήνων τοποθετούνται στον ίδιο σύστημα προκειμένου να προσφέρουν υψηλότερη

επίδοση. Κατά τη διάρκεια του σχεδιασμού αυτών των συστημάτων όμως, προέκυψε το

ακόλουθο πρόβλημα: η κλασσική αρχιτεκτονική διαύλου δεν κάλυπτε τις ανάγκες για τον

τεράστιο αριθμό πληροφορίας που χρειαζόταν να ανταλλαχθεί μεταξύ των πυρήνων. Το

πρόβλημα αυτό ξεπεράστηκε με την επινόηση του Δικτύου σε Ψηφίδα. Στην αρχιτεκτονική

Δικτύου σε Ψηφίδα ουσιαστικά οι πυρήνες επικοινωνούν μεταξύ ανταλλάσοντας μηνύματα,

χρησιμοποιώντας τεχνικές και πρωτόκολλα εμπνευσμένα από τα Δίκτυα Υπολογιστών. Πιο

συγκεκριμένα:

• Οι πυρήνες είναι Intellectual Property (IP) οντότητες οποιουδήποτε τύπου με κάποια

τοπική μνήμη σε κάθε έναν από αυτούς.

• Προσαρμογείς Δικτύου χρησιμοποιούνται προκειμένου να συνδέσουν τους πυρήνες στο
Δίκτυο σε Ψηφίδα.

• Οι κόμβοι δρομολόγησης είναι παρόμοιοι με τους δρομολογητές στα δίκτυα υπολο-
γιστών. Είναι υπεύθυνοι για την εφαρμογή των σωστών πρωτοκόλλων δρομολόγησης

στην πλατφόρμα.

Παράδειγμα ενός 4 επί 4 συστήματος αρχιτεκτονικής Δικτύου σε

Ψηφίδα[3].

10

Abstract

• Τέλος, σύνδεσμοι χρησιμοποιούνται για τη σύνδεση των πυρήνων μεταξύ τους, οι οποίοι
παρεχουν ένα μέσο επικοινωνίας μεταξύ τους.

Συνεπώς, όπως είναι αναμενόμενο τα συστήματα αυτά παρουσιάζουν πολλές ομοιότητες με τα

κατανεμημένα συστήματα, κυρίως στον τρόπο με τον οποίο οι διάφοροι πυρήνες επικοινωνούν

μεταξύ τους.

Για τον διαμοιρασμό εργασιών σε τέτοια συστήματα, έχουν προταθεί κατά καιρούς διάφορα

πλαίσια κατανομής πόρων, στα οποία οι πυρήνες λαμβάνουν διαφορετικόυς ρόλους για την

επίτευξη της σωστής διαχείρησης των διεργασιών. ΄Αρα, θα πρέπει σε αντιστοιχία με τα

κατανεμημένα συστήματα, έτσι και εδώ, να είμαστε σε θέση σε τέτοια πλαίσια να έχουμε

ανοχή σε περίπτωση που κάποιος από τους πυρήνες αυτούς αποτύχει.

Το DRTRM πλαίσιο κατανομής πόρων

Το πλαίσιο DRTRM προτάθηκε το 2013 [16] και χρησιμοποιείται για τη διαχείρηση εύ-

πλαστων εφαρμογών σε πολυ-επεξεργαστικά συστήματα σε ψηφίδα. Το πλαίσιο είναι υπεύθυνο

για την ανάθεση αρχικών ρόλων σε διαφορετικούς πυρήνες αλλά και την αρχική κατανομή των

διεργασιών στους πυρήνες καθώς και για την διαχείριση των εφαρμογών σε ολόκληρο τον

κύκλο ζωής τους. Στόχος του πλαισίου αυτού είναι η ελαχιστοποίηση των μηνυμάτων που

ανταλλάσονται μεταξύ των πυρήνων. Για να επιτευχθεί αυτό οι πυρήνες λαμβάνουν έναν ή

περισσότερους από τους παρακάτω ρόλους:

• Initial : Ο συγκεκριμένος ρόλος πυρήνα είναι υπεύθυνος για την εύρεση κάποιων πυρήνων

στους οποίους θα τρέξει αρχικά η εφαρμογή.

• Controller : Αυτός ο τύπος πυρήνα ουσιαστικά διαχειρίζεται όλους τους idle πυρήνες

μέσα σε μία προκαθορισμένη περιοχή η οποία ονομάζεται σύμπλεγμα.

• Manager : Διαχειρίζεται μία εφαρμογή σε όλο τον κύκλο ζωής της. Η σχέση μεταξύ

ενός manager και μιας εφαρμογής είναι 1 προς 1, δηλαδή ένας manager διαχειρίζεται

μόνο μία εφαρμογή κάθε χρονική στιγμή, καθώς και μία εφαρμογή μπορεί να ανήκει σε

έναν και μόνο manager.

• Worker : Ο τύπος αυτός πυρήνα εκτελεί οποιοδήποτε φόρτο εργασίας του σταλθεί από

τον manager του.

• Idle: Τέλος, ο idle παραμένει άεργος έως ότου του ανατεθεί κάποιος ρόλος από τους

παραπάνω.

΄Οπως αναφέραμε και παραπάνω το σύμπλεγμα είναι μία προκαθορισμένη περιοχή η οποία

δε μπορεί να αλλάξει κατά τη διάρκεια εκτέλεσης. Επίσης, κάθε manager πυρήνας λέμε πως

διαχειρίζεται μία περιοχή της πλατφόρμας, η οποία ουσιαστικά συνίσταται από τον εαυτό του

11

Abstract

και τους workers του. Στο παρακάτω σχήμα βλέπουμε ένα παράδειγμα με δύο controllers και

δύο managers μαζί με τις περιοχές που διαχειρίζονται

C2

C1

M2

M1

Controller Core

Manager Core

Area controlled by 2nd Manager

Area controlled by 1st Manager

Worker Core

Cluster Area of 1st Controller

Cluster Area of 2nd Controller

Idle Core

Παράδειγμα συμπλέγματος και περιοχής διαχειριζόμενης απόman-

ager

Μεγίστης σημασίας επίσης, για τη σωστή λειτουργία του DRTRM είναι οι λίστες που

κρατάει κάθε είδος πυρήνα. Πιο συγκεκριμένα, κάθε controller πυρήνας κρατάει τις δύο

παρακάτω λίστες:

• DDS List : Λίστα με όλους τουςmanagers οι οποίοι έχουν workers μέσα στο σύμπλεγμα

του controller.

• Core List : Λίστα με όλους τους πυρήνες μέσα στο σύμπλεγμα μου

Αντίστοιχα ο manager κρατάει:

• Core List : Λίστα με όλους τους workers μου.

9

8

1

0

11 13 15

10 12 14

3 5 7

2 4 6

Core list

8 9 10 11 12 13 14 15

Core list

0 1 2 3 4 5 6 7

DDS list

14

DDS list

2 14

Core list

14 12 15

Core list

2 3 4

7

Παράδειγμα core list και DDS List για manager και controller.

12

Abstract

Το πρωτόκολλο PAXOS

Το πρωτόκολλο ΠΑΞΟΣ προτάθηκε τη δεκαετία του 80 από τον Leslie Lamport [19][6]

και χρησιμοποιείται για επίτευξη ομοφωνίας μεταξύ διαφορετικών κόμβων. Πιο συγκεκριμένα,

στόχος του πρωτοκόλλου αυτού είναι σε περίπτωση που διαφορετικοί κόμβοι προτείνουν δι-

αφορετικές τιμές, εν τέλει όλοι μαζί να καταλήξουν και να συμφωνήσουν σε μία από αυτές

τις τιμές. ΄Οπως είναι λογικό, όταν κάποιος πυρήνας αποτύχει σε ένα πολυεπεξεργαστικό

σύστημα σε ψηφίδα, ο οποίος κατείχε κάποιον σημαντικό ρόλο του πλαισίου DRTRM (con-

troller, manager, worker) τότε θα πρέπει να επιλέξουμε κάποιον καινούριο πυρήνα προκειμένου

να εξυπηρετήσει το ρόλο αυτό. Στη διαδικασία αυτή μας βοηθάει το πρωτόκολλο PAXOS,

δηλαδή στο πως θα συμφωνήσουν όλοι οι πυρήνες ποιος θα είναι ο καινούριος controller ή

manager.

P

P

A

A

A

L

Proposer

Acceptor

Learner

Legend

Αφηρημένη λειτουργία του πρωτοκόλλου PAXOS

Επομένως, στο συγκεκριμένο πρωτόκολλο υπάρχουν τριών ειδών ρόλοι (ανεξάρτητοι των

controller, manager κτλ):

• Proposer : Ο συγκεκριμένος ρόλος προτείνει τιμές τις οποίες καλούντε να επιλέξουν οι

acceptors.

• Acceptor : Αυτός ο τύπος πυρήνα ουσιαστικά αποδέχεται ή απορρίπτει τις τιμές που του

προτείνει ο proposer.

• Learner : Μαθαίνει την επιλεχθείσα τιμή όταν αυτή επιλεγεί μέσω του PAXOS.

Επίσης, προκειμένου όλοι οι πυρήνες να συμφωνήσουν στην καινούρια τιμή χρειαζόμαστε

3 φάσεις:

• Prepare

• Accept

• Learn

13

Abstract

Στην πρώτη φάση του πρωτοκόλλου, κάθε proposer επιλέγει έναν μοναδικό αριθμό n και

στέλνει ένα σήμα Prepare Request(n) σε όλους τους acceptors.

Φάση Prepare - Proposer

1: Pick unique proposal number pn

2: for i← 1, k in A(j, k) do

3: Send: prepare request(i,pn)

4: end for

΄Ενας acceptor από την άλλη, όταν λάβει κάποιο μήνυμα Prepare Request εξετάζει αν έχει

λάβει παλιότερα κάποιο μήνυμα με μεγαλύτερο αριθμό n. Εάν ναι, τότε απορρίπτει το σήμα

που του ήρθε. Αλλιώς, απαντάει στον proposer με την τιμή την οποία έχει δεχτεί καθώς και

τον αντίστοιχο αριθμό n αυτής, εάν υπάρχει κάποια, στέλνοντας ένα σήμα Prepare Accept.

Φάση Prepare - Acceptor

1: procedure prepare request handler(n)

2: max pn← highest proposed proposal number seen

3: max n← highest accepted proposal number

4: max v ← Corresponding value of max n

5: if n > max pn then

6: max pn← n

7: Reply: prepare accept(max n,max v)

8: else

9: Reply: prepare reject()

10: end if

11: end procedure

Στη δεύτερη φάση του πρωτοκόλλου ο proposer εξετάζει εάν έλαβε απάντηση Prepare Accept

από την πλειοψηφία των acceptors καθώς και αποθηκεύει την τιμή με το μεγαλύτερο n που

του έστειλε κάποιος acceptor (εάν υπήρχε κάποια τέτοια). Εάν έλαβε απάντηση από την

πλειοψηφία, τότε στέλνει ένα σήμα Accept Request(n,v) όπου n ο αριθμός που επέλεξε στην

πρώτη φάση του πρωτοκόλλου και v η τιμή που του επιστράφηκε από κάποιον acceptor (εάν

υπήρχε), αλλιώς κάποια τιμή που αυτός προτείνει.

Αντίστοιχα ο acceptor εξετάζει και πάλι αν έχει λάβει κάποιο σήμα με μεγαλύτερο n από

αυτό του σήματος Accept Request που έλαβε, και αν ναι απορρίπτει το αίτημα. Σε αντίθετη

περίπτωση, αποδέχεται την τιμή που του προτείνει ο proposer, την αποθηκεύει και απαντάει

με ένα σήμα Accepted.

14

Abstract

Φάση Accept - Proposer

1: max n← 0

2: max v ← 0

3: cnt← 0

4: pn← proposal number from prepare phase

5: procedure prepare accept handler(n,v)

6: cnt← cnt + 1

7: if n > max n then

8: max n← n

9: max v ← v

10: end if

11: if cnt ≥ k then

12: if max v = 0 then

13: max v ← proposer’s proposing value

14: end if

15: for i← 1, k in A(j, k) do

16: Send: accept request(i,pn,max v)

17: end for

18: end if

19: end procedure

Φάση Accept - Acceptor Side

1: max pn← highest proposed proposal number seen

2: max n← highest accepted proposal number

3: max v ← Corresponding value of max n

4: procedure accept request handler(n,v)

5: if n > max pn then

6: max pn← n

7: max n← n

8: max v ← v

9: Reply: accepted()

10: else

11: Reply: rejected()

12: end if

13: end procedure

Στην τελευταία φάση του πρωτοκόλλου, ο proposer πάλι εξετάζει αν έλαβε απάντηση

Accepted από την πλειοψηφία των acceptors. Εάν ναι, τότε αντιλαμβάνεται πως η τιμή που

15

Abstract

πρότεινε έχει επιλεχθεί και την ανακοινώνει σε όλους τους Learners.

Φάση Learn - Proposer Side

1: v ← Value proposed in accept request (3).

2: cnt← 0

3: procedure accepted handler

4: cnt← cnt + 1

5: if cnt ≥ k then

6: for each learner i in learners do

7: Send: learn(i,v)

8: end for

9: end if

10: end procedure

16

Abstract

Επέκταση DRTRM για ανίχνευση σφαλμάτων

΄Οπως είπαμε και προηγουμένως, θα πρέπει κάθε στιγμή να είμαστε σε θέση να εντοπίζουμε

εάν κάποιος πυρήνας έχει αποτύχει στην πλατφόρμα και να επιλέγουμε νέους πυρήνες για

να αντικαταστήσουν τον ρόλο του, εάν είναι απαραίτητο. ΄Ισως ο πιο απλός τρόπος για να

εντοπίσουμε εάν κάποιος πυρήνας έχει αποτύχει είναι ο παρακάτω:

1. Θέτουμε ένα άνω όριο καθυστέρησης στην επικοινωνία μεταξύ δύο πυρήνων ∆.

2. Κάθε ∆ δευτερόλεπτα στέλνουμε ένα σήμα Heartbeat Request

3. Εάν δεν λάβουμε κάποια απάντηση Heartbeat Reply στα επόμενα ∆ δευτερόλεπτα,

υποθέτουμε πως ο πυρήνας έχει αποτύχει

Perfect Failure Detector P
1: procedure pfd init

2: alive := Π

3: detected := ∅
4: starttimer(∆)

5: end procedure

6: procedure timeout handler

7: for each p in Π do

8: if (p /∈ alive) ∧ (p /∈ detected) then

9: detected := detected ∪ {p}
10: end if

11: Send: heartbeat request(q,p)

12: end for

13: alive := ∅
14: starttimer(∆)

15: end procedure

16: procedure heartbeat request handler(q,p)

17: Send: heartbeat reply(p,q)

18: end procedure

19: procedure heartbeat reply handler(p,q)

20: alive := alive ∪ {p}
21: end procedure

17

Abstract

Με αυτόν τον τρόπο χρειαζόμαστε ∆ δευτερόλεπτα για εντοπίσουμε εάν κάποιος πυρήνας έχει

αποτύχει. Ονομάζουμε αυτόν τον τύπο ανιχνευτή Perfect Failure Detector (PFD).

΄Οπως παρατηρούμε ο παραπάνω ανιχνευτής απαιτεί μεγάλο κόστος ανίχνευσης, καθώς

κάθε ∆ δευτερόλεπτα χρειάζεται να σταλούν N2
μηνύματα όπου N ο αριθμός των πυρήνων.

Μία βελτιστοποίηση του παραπάνω είναι η εξής. Αφού, το πλαίσιο κατανομής πόρων ούτως

tweaked Perfect Failure Detector Pt
1: procedure tpfd init

2: alive := Π

3: detected := ∅
4: suspected := ∅
5: starttimer(∆)

6: end procedure

7: procedure timeout handler

8: for each p in Π do

9: if (p ∈ suspected then

10: detected := detected ∪ {p}
11: end if

12: if (p /∈ alive) ∧ (p /∈ detected) ∧ (p /∈ suspected) then

13: suspected := suspected ∪ {p}
14: Send: heartbeat request(q,p)

15: end if

16: end for

17: alive := ∅
18: starttimer(∆)

19: end procedure

20: procedure heartbeat request handler(q,p)

21: Send: heartbeat reply(p,q)

22: end procedure

23: procedure any signal received handler(p,q)

24: alive := alive ∪ {p}
25: if (p ∈ suspected) then

26: suspected := suspected \ {p}
27: end if

28: end procedure

18

Abstract

ή άλλως ανταλλάσει μηνύματα για τη σωστή λειτουργία του, τότε δεν είναι απαραίτητο να

στέλνουμε σήματα Heartbeat Request, παρά μόνο εάν δε λάβαμε κάποιο σήμα του πλαισίου

τα τελευταία ∆ δευτερόλεπτα. Ενώ το κόστος ανίχνευσης με αυτήν την προσέγγιση μειώνεται

κατα πολύ, ο χρόνος ο οποίος απαιτείται για την ανίχνευση ενός σφάλματος είναι 2 ∗ ∆.

Ονομάζουμε αυτόν τον τύπο ανιχνευτή tweaked Perfect Failure Detector (tPFD). Συνεπώς,

πρέπει να αποφασίσουμε κατά τη διάρκεια υλοποίησης κάθε φορά και ανάλογα με το σκοπό της

εφαρμογής που θα διαχειριστεί το πλαίσιο αν χρειαζόμαστε γρηγορότερη ανίχνευση σφαλμάτων

ή μικρότερο αριθμό ανταλλαγής μηνυμάτων.

Ανάνηψη σε περίπτωση σφάλματος στο πλαίσιο DRTRM

Για την διαδικασία ανάνηψης έπειτα από κάποιο σφάλμα διακρίνουμε τρεις περιπτώσεις.

Στην πρώτη περίπτωση ο πυρήνας που απέτυχε είχε τον ρόλο του controller. Σε αυτήν

την περίπτωση, εάν κάποιος πυρήνας εκτός του συμπλέγματος του controller ανιχνεύσει την

αποτυχία στέλνει ένα σήμα SIG CONTR TO σε όλους τους πυρήνες μέσα στο σύμπλεγμα,

και στη συνέχεια εκκινείται μία διαδικασία του PAXOS όπως περιγράφθηκε προηγουμένως.

C2

C1

PAXOS

C2

C1

!

C2

C1

!

C2

C1

Πυρήνας εκτός συμπλέγματος ανιχνεύει την αποτυχία ενός con-

troller

Αντίστοιχα, όταν κάποιος πυρήνας εντός του συμπλέγματος καταλάβει πως ο controller

του έχει αποτύχει τότε ξεκινάει αυτός ο ίδιος μία διαδικασία PAXOS.

C2

C1

PAXOS

C2

C1

!

C2

C1

Πυρήνας εντός συμπλέγματος ανιχνεύει την αποτυχία ενός con-

troller

Στη συνέχεια αφού έχει εκλεγεί ο καινούριος controller πρέπει να πραγματοποιηθούν

19

Abstract

κάποιες περαιτέρω ενέγργεις προκειμένου να επιστρέψουμε σε σταθερότητα. Πιο συγκεκριμένα,

ο καινούριος controller πρέπει να δημιουργήσει τις DDS-List και Core-List. Επίσης, όλοι οι

υπόλοιποι controllers πρέπει να ειδοποιήσουν τον καινούριο προκειμένου να τους αποθηκεύσει

και να είναι σε θέση να επικοινωνήσει μαζί τους μετέπειτα.

Controller Core

Legend

C2

C1

New Controller

SIG-LEARN

C2

C1

Manager Core

C2

C1

DDS LIST

CONTROLLERS LIST

id : 8

id : 15

id : 7

Worker Core

1. Core 7, 2 Cores

1. Core 8

2. Core 4

id : 4

SIG-ADD-TO-DDS

Ανάνηψη μετά τη διαδικασία PAXOS - Δημιουργία Λιστών

Εκτός από τη δημιουργία των λιστών, πρέπει επίσης να εξετάσουμε τι έργο επιτελούσε ο

καινούριος controller προτού εκλεγεί. Ουσιαστικά, η μόνη περίπτωση που χρειάζεται να κά-

νουμε κάτι παραπάνω είναι όταν ο καινούριος controller ήταν worker. Σε αυτήν την περίπτωση

ειδοποιούμε τον manager προκειμένου να στείλει το φόρτο εργασίας που εκτελούσαμε σε

κάποιον άλλο πυρήνα. Στην περίπτωση που ο κάποιος manager καταλάβει ότι ο controller

C2

C1

C2

C1

!

C2

C1

PAXOS

SIG_ADD_TO_DDS

SIG_ACCEPT_REQUEST(6)

id:6

SIG_LEARN_ACK_CONTR

PAXOS

SIG_REINIT_APP

Ανάνηψη μετά τη διαδικασία PAXOS - Επαναδιορισμός φόρτου

εργασίας

20

Abstract

του έχει αποτύχει τότε στη δεύτερη φάση του πρωτοκόλλου PAXOS προτείνει κάποιον worker

του για νέο controller.

Για την ανάνηψη έπειτα από αποτυχία κάποιου manager αντιμετώπιζαμε ένα πρόβλημα. Οι

workers δεν γνωρίζαμε με ποιους πυρήνες δουλεύανε μαζί αφού είχε πέσει ο manager τους.

Για το λόγο αυτό προσθέσαμε ένα νέο είδος λίστας την οποία ονομάζουμε coworkers-list. Στη

λίστα αυτή ο κάθε worker αποθηκέυει τους συνεργάτες του, τους οποίους τους του στέλνει

ο manager του κάθε φορά που του στέλνει κάποιο σήμα για να του αναθέσει κάποιο φόρτο

εργασίας.

C2

C1

id: 4

id: 6

id: 7

id: 5

id: 12

id: 14

SIG_APPOINT_WORK

sender

id

sig

id

of

coworkers

coworker

#1 id

coworker

#2 id

coworker

#3 id

coworker

#4 id

coworker

#5 id

7 55 5 4 5 6 12 14

Αποστολή συνεργατών από manager σε worker μαζί με το φόρτο

εργασίας

΄Ομοια με παραπάνω, η διαδικασία PAXOS εκτελείται μεταξύ των πυρήνων οι οποίοι ήταν

workers του manager που απέτυχε. Επίσης, θα πρέπει και πάλι να δημιουργηθούν οι λίστες

DDS και cores όπως και προηγουμένως.

!

!

!

! PAXOS

Update DDS

Update DDS

and cores list

Update DDS

Update DDS

Ανάνηψη μετά τη διαδικασία PAXOS - Δημιουργία Λιστών

Τέλος, έαν αποτύχει κάποιος worker τότε ο αντίστοιχος manager κάποια στιγμή θα το

ανιχνεύσει και το μόνο το οποίο πρέπει να γίνει είναι η ανακατανομή του φόρτου εργασίας σε

κάποιον άλλο worker.

21

Abstract

Πειραματικά Αποτελέσματα

Παρακάτω σε αυτή την ενότητα, παραθέτουμε μερικά πειραματικά αποτελέσματα τα οποία

ουσιαστικά αποδεικύουν τις υποθέσεις μας. Πιο συγκεκριμένα, όπως είπαμε ο tPFD μειώνει

κατά πολύ τον αριθμό μηνυμάτων, ο οποίος χρειάζεται προκειμένου να εντοπίσει κάποιο

σφάλμα, αλλά χρειάζεται τον διπλάσιο χρόνο για την ανίχνευση.

310

138

86

277

132

85

979

500

316

956

498

311

0

200

400

600

800

1000

1200

4 8 12

M
es

sa
g
e

co
u
n
t

p
er

 s
ec

o
n
d

Different Δ for the Failure Detectors (sec)

PFD and tPFD Message count vs. delay Δ for 16 and 32
applications

PFD Messages - 16 applications

tPFD Messages - 16 applications

PFD Messages - 32 applications

tPFD Messages - 32 applications

Σύγκριση μεταξύ P και Pt - Αριθμός μηνυμάτων

0

2

4

6

8

10

12

14

16

18

4 8 12

D
et

ec
ti
o
n
 a

n
d
 S

ta
b
il
it
y
 t

im
e

(s
ec

)

Different Δ for the Perfect Failure Detector (sec)

Detection and Stability Time vs. delay Δ of PFD
for controller and manager failure

ControllerDetection

Controller Stable

Manager Detection

Manager Stable

Σύγκριση μεταξύ P και Pt - Καθυστέρηση Ανίχνευσης

Επιπλέον, στο παρακάτω διάγραμμα παρατηρούμε πως σε περίπτωση που αποτύχει κάποιος

22

Abstract

ςοντρολλερ το μέγεθος του συμπλέγματος είναι αντιστρόφως ανάλογο του αριθμού των μη-

νυμάτων που ανταλλάσονται κατά τη διαδικασία PAXOS ενώ στην περίπτωση που αποτύχει ο

μαναγερ ο αριθμός των μηνυμάτων παραμένει σχεδόν σταθερός.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

96 48 32 24 16 12

M
es

sa
g
e

C
o
u
n
t

Cluster Size

Paxos Message count vs. cluster size in case of

controller and manager failure

Controller Failure

Manager Failure

Grid size : 12x16

Σύγκριση μεταξύ αποτυχίας controller και manager - Αριθμός

μηνυμάτων

23

Contents

Ευχαριστίες 1

Περίληψη 3

Abstract 5

Εκτεταμένη Περίληψη 7

Contents 27

List of Figures 30

1 Introduction 31

1.1 Distributed Systems . 32

1.2 Networks On Chip . 34

1.2.1 Overview . 34

1.2.2 Communication . 35

1.2.3 Homogeneity and Granularity . 35

1.2.4 The Intel SCC platform . 36

1.3 Reliability, Fault Tolerance and Consensus 39

1.4 Objectives and Contributions . 40

2 Related Work 41

2.1 Google’s Chubby . 41

2.2 Apache’s Cassandra 2.0 . 42

2.3 Stochastic Communication: A New Paradigm for Fault-Tolerant Networks-

on-Chip . 44

3 Basic Abstractions 47

3.1 Abstractions in Distributed Systems . 47

3.1.1 Processes and Messages . 47

25

CONTENTS

3.1.2 Safety and Liveness . 47

3.2 Crashes and Failures . 48

3.2.1 Crashes . 49

3.2.2 Omissions . 50

3.2.3 Crashes with Recoveries . 50

3.2.4 Eavesdropping Faults . 50

3.2.5 Arbitrary Faults . 50

3.3 Timing Assumptions . 51

3.3.1 Sychronous System . 51

3.3.2 Asynchronous System . 51

3.3.3 Partially Synchronous System . 52

3.4 Models in Distributed Systems . 53

3.4.1 Combining Abstractions . 53

3.4.2 Quorums . 53

3.4.3 Performance . 54

4 Deadlock and Failure Detection 55

4.1 Deadlock Detection . 56

4.1.1 Wait-For-Graphs . 56

4.1.2 Models of Deadlocks . 57

4.1.3 Classes of Deadlock Detection Algorithms 58

4.2 Failure Detection . 59

4.2.1 Classification of failure detectors . 59

4.2.2 Classes of failure detectors . 61

5 The DRTRM framework 63

5.1 Cores Types . 63

5.1.1 Controller Core . 63

5.1.2 Manager Core . 64

5.1.3 Initial Core . 66

5.1.4 Worker Core . 67

5.1.5 Idle Core . 67

5.2 Core Lists . 67

5.3 Primitives of Deadlock Prevention in DRTRM 68

5.4 Overview . 69

6 The Paxos Algorithm 71

6.1 Byzantine Fault Tolerance . 71

6.2 Basic Paxos . 72

26

CONTENTS

6.2.1 Agent Types . 73

6.2.2 Distinct Proposal Numbers . 75

6.2.3 Phases . 75

6.2.4 Overview . 79

6.2.5 Paxos By Example . 79

7 Applying Detectors and Paxos to DRTRM 85

7.1 Deadlock Detection . 85

7.1.1 Chandy-Misra-Hass Detection Algorithm 86

7.2 Failure Detection . 88

7.2.1 Perfect Failure Detector P . 88

7.2.2 tweaked Perfect Failure Detector Pt 89

7.2.3 Eventually Perfect Failure Detector ♦P 91

7.3 Paxos . 93

7.3.1 Controller Failure . 93

7.3.2 Manager Failure . 96

7.3.3 Worker Failure . 97

7.4 Signals Summary . 97

8 Theoretical and Experimental Results 101

8.1 Detectors Overhead . 101

8.2 Scenarios . 102

8.2.1 Controller Timeout . 102

8.2.2 Manager Timeout . 103

8.2.3 Worker Timeout . 104

8.3 Experimental Setup . 105

8.4 Results . 108

8.4.1 Different failure detectors . 108

8.4.2 Different failure scenarios . 111

8.4.3 Larger grid size . 113

9 Conclusion and future work 115

9.1 Summary . 115

9.2 Future Work . 115

9.2.1 Additional Failure Scenarios . 115

9.2.2 Paxos Optimizations . 116

9.2.3 More Paxos . 119

27

List of Figures

1.1 Distributed Systems: Facebook’s system architecture 32

1.2 NoC: Example of a 4x4 topology . 34

1.3 NoC: Communication between two cores . 35

1.4 NoC: Homogeneity . 36

1.5 NoC: Granularity . 36

1.6 NoC: Intel SCC platform overview . 37

1.7 NoC: Memory architecture of SCC and the MPB 38

1.8 NoC: Symmetric name space model for the MPB 39

2.1 A single Chubby instance . 42

2.2 Cassandra’s 2.0 tweaked Paxos algorithm 43

2.3 Stochastic Communication . 44

3.1 Types of Process Failures . 49

3.2 Example of synchronous and asynchronous communication 52

3.3 Quorums’ Properties . 54

4.1 Example of a Weight-For-Graph . 56

5.1 DRTRM: Cluster definition . 64

5.2 DRTRM: Manager core and working cores 65

5.3 DRTRM: Initial core requesting cores . 66

5.4 DRTRM: Core and DDS lists of managers and controllers 67

5.5 DRTRM: Deadlock Prevention . 68

5.6 DRTRM: Overview . 69

6.1 Basic Paxos Architecture . 72

6.2 Paxos’ Overview . 79

6.3 Paxos: Prepare Request . 80

6.4 Paxos: Prepare Accept . 80

6.5 Paxos: Prepare Reject . 81

29

LIST OF FIGURES

6.6 Paxos: Accept Request . 81

6.7 Paxos: Accepted . 82

6.8 Paxos: Learn . 82

7.1 Implementation: Chandy-Misra-Hass deadlock detection algorithm 87

7.2 Implementation: Paxos and SIG LEARN 93

7.3 Implementation: Different scenarios of failure detection 94

7.4 Implementation: Update of DDS and controllers list in case of a controller

failure . 95

7.5 Implementation: Case where new controller was manager 96

7.6 Implementation: Coworkers list for handling manager failures 96

7.7 Implementation: Workaround when a manager fails 97

8.1 Results: Fork nodes in NoC simulator . 105

8.2 Results: Memory in Noc Simulator . 105

8.3 Results: Different grid formations . 107

8.4 Results: DRTRM, Paxos and PFD message count vs. cluster size 108

8.5 Results: Comparison between P and Pt . 109

8.6 Results: Failure detection and stability delay of P for different ∆ 110

8.7 Results: Failure detection and stability delay of Pt for different ∆ 110

8.8 Results: Paxos message count vs. cluster in case of controller failure 111

8.9 Results: Message count vs. cluster size for controller and manager failure . 112

8.10 Results: Detection and Stability time vs. cluster size for controller and

manager failure . 112

8.11 Results: Message count vs. cluster size in 16× 12 grid 113

9.1 Future Work: Multiple Failures . 116

9.2 Multi-Paxos: Two rounds of Paxos . 117

9.3 Future Work: Cheap Paxos . 118

9.4 Future Work: Fast Paxos . 118

9.5 Future Work: More Paxos . 119

9.6 Future Work: More Paxos . 120

9.7 Future Work: More Paxos . 120

30

Chapter 1

Distributed Systems, Network on Chip

and Consensus

According to Moore’s Law in its simplest form we know that the processing power of

CPU gains double for approximately every two years. One might expect that a design de-

velopment rate such as this, would be more than enough to serve the computational needs

we have nowadays. Nonetheless, that is not happening not only because Moore’s law is

approaching its close, but also because the demand of users in both processing power and

data storage is getting extremely higher. A simple solution to the problem above could be

to increase the CPU’s frequency. However, the progressive increment of frequency would

eventually cause overheating issues. A more general solution was the implementation of

multi-core systems. Even though they served users’ needs for data processing and data

analysis at first sight, in the end the computational power was still not enough. A further

solution to serve this huge amount of data, which is currently being used widely in the in-

dustry, was the development of distributed systems. The main idea behind these systems

is that we have to distribute the data for computation to several computational units,

since the power of a single one isn’t enough to accomplish the task, collect the processed

data and return them to the user. An additional issue of multi-core systems is that the

communication between processors cannot be efficiently carried out by traditional buses

without serious bottleneck issues, or point-to-point communication without serious space

and energy waste. Thus, in order to overcome this obstacle, chip manufacturers led to the

design of Network-On-Chip (NoC) architectures. Network on chip or network on a chip

(NoC) is a communication subsystem on an integrated circuit, typically between intellec-

tual property (IP) cores in a system on a chip (SoC). NoC technology applies networking

theory and methods to on-chip communication and brings notable improvements over

conventional bus and crossbar interconnections. NoC improves the scalability of SoCs,

and the power efficiency of complex SoCs compared to other designs. In conclusion, a

31

CHAPTER 1. INTRODUCTION

fundamental problem in distributed computing is to achieve overall system reliability in

the presence of faulty processes. This often requires processes to agree on some data value

that is needed during computation. Such examples are leader election or state machine

replication. So, an imperative need for the proper function and reliability of distributed

systems is to achieve consensus between individual units.

1.1 Distributed Systems

A distributed system is a software system in which components located on networked

computers communicate and coordinate their actions by passing messages [1]. To a sin-

gle user, these components appear as a single coherent system. Maybe the most known

distributed system is the Internet itself. Except for that, many other contemporary appli-

cations make use of distributed systems varying from SOA-based-systems to MMO games

and peer-to-peer applications. The components of a distributed system interact with each

other in order to achieve a common goal.

Figure 1.1: Facebook’s system architecture [2]

Thus, when talking about distributed systems, we must keep in mind the following

consequences:

• Concurrency : In distributed systems, components execute programs simultaneously.

Therefore, we have to ensure that the coordination of concurrently executing pro-

grams is correct at any point.

32

CHAPTER 1. INTRODUCTION

• No global clock : As mentioned before, components communicate with each other

only by exchanging messages. As a result, there is no single global notion of the

correct time.

• Independent failures: Individual components might fail at any time or become ex-

tremely slow and be suspected as failed. System designers should look ahead for

scenarios like these.

One might wonder, ”Why do we need distributed systems?”. The main answer is

to cope with the extremely higher demand of users in both processing power and data

storage. For example, according to Data Center Knowledge, Facebook has more than 500

millions users, 1 million photos are viewed every second and each month more than 3

billions photos are uploaded. With these extremely high demands, noone can believe that

a single system could serve those. That’s one reason why distributed systems comes in

place. In figure 1.1 we see an example of Facebook’s distributed system.

Distributed systems might appear as the perfect solution to many problems, however

they also have some disadvantages. We mention some of both in the list below:

+ Speed: Obviously a system composed by several computers will be much faster than

a single one in mean of execution time.

+ Inherent Distribution: Parallelization is the trend in new computing systems.

Sharing workloads to several processes provides faster execution. Distributed sys-

tems provide this feature without any special need of hardware.

+ Reliability: A system composed by many components is more likely not only to

output a correct result but also to actually output a result.

+ Incremental growth: Components can be added or removed from a distributed

system. As a result, we can add more computing power any time we have to.

− Software: Most of the times, it is extremely difficult to design a software that

not only ensures that all the components of the system work well together but also

tolerates faults in the system.

− Network: Except for correctness of the software, we also have to ensure correct

communication between components and overcome network issues.

− More components to fail: As the size of the system can infinitely grow, the

probability that a component will fail rises.

− Security: Security is one of the most important parts to keep in mind while de-

signing a distributed system. With the addition of more components in the system

it more likely that a potential intruder might find a vulnerability in the system.

33

CHAPTER 1. INTRODUCTION

1.2 Networks On Chip

1.2.1 Overview

The idea of Networks on Chip arrived from the inability of traditional communication

buses to carry out communication between modern processing elements. The first solution

to this problem were distributed systems as explained in the previous section. As a

consequence, designers decided to employ the same principles of distributed systems for

on-chip communication. A NoC is generally a new approach to the System-On-Chip (SoC)

model, in which computer networks’ elements are used for on-chip communication and has

the following characteristics:

• Cores are Intellectual Property (IP) blocks of any type (in practice they are usually

different kinds of processors) with some local memory attached to them. They are

also known as tiles of the NoC.

• Network Adapters are used to connect the cores to the NoC.

• Routing Nodes are similar to the routers in computer networks. They are responsible

to apply the correct routing protocols in the platform.

• Links are used to connect the routing nodes and provide a communication mean

between them.

Figure 1.2: Example of a 4x4 Network on Chip topology[3].

34

CHAPTER 1. INTRODUCTION

Figure 1.3: Communication between two cores in NoC[3].

1.2.2 Communication

The communication of between cores is based on passing messages. Whenever a core

wants to communicate with another, he sends the message to his network adapter. The

latter decides the destination of the message because the core itself is not aware pf the

platform. Subsequently, the network adapter forwards the message to the routing node,

which is responsible to pass the message to the destination core, or an intermediate core

if he has no available connection to the destination. Once the message is delivered to the

destination core the routing node forwards it to the network adapter and the latter passes

it to the destination core. As we can see, NoC design is inspired by the OSI model of

computer networking with some modifications.

1.2.3 Homogeneity and Granularity

A NoC can be characterized by its homogeneity and granularity.

When talking about homogeneity we refer to the types of processing elements that

exist on the platform. As mentioned before a tile can be of various types. Thus, in a

homogeneous NoC, all the tiles are of the same type, whereas on a heterogeneous NoC the

tiles can be of different types such as processor-memory tiles, DSP tiles or even FPGAs.

Granularity refers to the number of cores per surface. Coarse-grained materials or

systems have fewer, larger discrete components than fine-grained materials or systems. A

coarse-grained description of a system regards large subcomponents while a fine-grained

description regards smaller components of which the larger ones are composed.

35

CHAPTER 1. INTRODUCTION

(a) Homogeneous (b) Heterogeneous

Figure 1.4: A homogeneous and a heterogeneous NoC design

(a) Coarse-grained (b) Fine-grained

Figure 1.5: A coarse-grained and a fine-grained NoC design.

1.2.4 The Intel SCC platform

Intel SCC is a NoC platform provided by Intel Corporation with 48 cores. Each

tile consists of two x86 processors. This is extremely significant feature since the Linux

operating system as well as C and C++ compilers can run on the platform. [4] and [5]

describe the key elements of the platform. In short:

• Each tile consists of two blocks, each with a P54C core (second generation Intel

Pentium processor), 16 KB instruction and data L1 caches plus a unified 256KB L2

cache.

• A Mesh Interface Unit (MIU) with circuitry to allow the mesh and the interface to

run at different frequencies.

36

CHAPTER 1. INTRODUCTION

• 16 KB Message Passing Buffer.

• Two test-and-set registers.

Figure 1.6: Overview of the Intel SCC platform[5].

Each tile has its own router. This router works with the Mesh Interface Unit (MIU) to

integrate the tiles into a mesh. The job of the MIU is to packetize and depacketize data

onto the mesh. In addition, the router is connected to an off-package FPGA to translate

the mesh protocol to the PCI express protocol, thus allowing the chip to interact with

a computer. As far as the memory is concerned each core has its own private DRAM,

which can be accessed only by itself. Except for that, SCC provides a DDR3 off-chip RAM

ranging from 16GB to 64GB and is controlled by the 4 memory controllers as shown in

figure 1.6. In order for cores to communicate much faster, SCC includes a message passing

buffer (MPB) in each tile. It provides a fast, on-die shared SRAM, as opposed to the bulk

memory accessed through four DDR3 channels. While the processor does not offer any

hardware-managed memory coherence, it features a new memory type to enable efficient

communication between the cores called the Message Passing Buffer Type (MPBT). The

memory architecture along with the MPB is shown in figure 1.7.

The MPB is 16KB in each tile. This memory is shared to all cores of the platform.

Thus, when a core sends a message to another core, basically he writes the data to the

shared memory of the latter. In order to achieve synchronization and data coherence a

test&set register exists in each core. The operation on this register is atomic, providing a

solution to the synchronization problem.

To help programmers to write programs for the SCC platform Intel provides RCCE.

RCCE is a communication enviroment, which distributes evenly the MP address space to

the 48 cores, thus assigning 8KB to each core. Additionally, RCCE provides two interfaces

37

CHAPTER 1. INTRODUCTION

for inter-node communication, gory and basic. For our implementation, we used the gory

interface which offers the programmer greater control over the SCC but does not provide

synchronization methods.

Figure 1.7: Memory architecture of SCC and the MPB.[4].

Every memory operation requires that we allocate memory in the MPB of MPBT data

type. For that purpose, we use the RCCE malloc function. After the allocation, we can

exchange messages between cores by writing and reading from the allocated space. We

use RCCE put and RCCE get to achieve these operations, where RCCE put transfers the

data from buffer to MPB and RCCE get does the opposite.

RCCE library also provides Boolean flags in order to help programmers with synchro-

nization issues. The RCCE flag alloc function allocates a flag in the MPB, which can be

managed through the RCCE flag write function and its value can be either RCCE FLAG SET

- which denotes the boolean TRUE - or RCCE FLAG UNSET - which denotes the boolean

FALSE -. The modification of a flag of a node can be performed by any other node but

this access is atomic using the test&set register. Lastly, in respect to Unix’s sem wait

RCCE provides the RCCE wait until function which forces a core to stall waiting for a

specific value of a flag.

As far as the execution of the application is concerned, the user specifies the number of

cores to use from a given subset of cores on the chip. Identical executables are launched on

all cores. Every executable is assigned a rank, which is a sequence number ranging from 0

to N-1 (N is the number of participating cores). This rank cannot be changed during the

execution of the application and it uniquely identifies both the application and the core

38

CHAPTER 1. INTRODUCTION

Figure 1.8: Symmetric name space model for the MPB as

designed for RCCE library.[4].

it runs on. Finally, all cores can access a disk space in the Management Console which

proved to be very helpful in the implementation of the proposed framework on the SCC

platform.

1.3 Reliability, Fault Tolerance and Consensus

In distributed systems, programmers have to make sure the correctness of the system

even in the case of faulty processes as well as ensure that the system provides the correct

output.

Reliability refers into making a system reliable. The failure of a distributed system

can result in anything from easily repairable errors to catastrophic meltdowns. Thus a

reliable system, or reliable distributed system is designed to be as fault tolerant as possible.

A system can be unreliable in any of the following cases: component failures, processor

failures, network failures or failure in reaching agreement.

Fault tolerance is the property that enables a system to continue operating properly

in the event of the failure of (one or more faults within) some of its components. If its

operating quality decreases at all, the decrease is proportional to the severity of the failure,

as compared to a naively designed system in which even a small failure can cause total

breakdown. Fault tolerance is really important in high-availability or life-critical systems.

The ability of maintaining functionality when portions of a system break down is referred

to as graceful degradation. Component failures, processor failures and network failures

come under the objective of the programmer to make a system fault-tolerant.

39

CHAPTER 1. INTRODUCTION

On the other hand, consensus refers to the ability of the system to agree in a single

value. This means that all nodes of a distributed systems must agree on the same value

not only when the system is faulty but also when it is operating correctly. Examples of

applications of consensus include whether to commit a transaction to a database, agreeing

on the identity of a leader, state machine replication, and atomic broadcasts. Several

consensus algorithms have been suggested in the past years, with Paxos by Leslie Lamport

[6] being the baseline for all of them.

1.4 Objectives and Contributions

As a result to the details we provided regarding distributed systems and network on

chip systems we can conclude that there is a great amount of similarities between them,

not only in the way the systems are organized but also in the way the communication

works. Much research has been done in distributed systems about how to detect failures

and reach consensus as well as in networks on chip about fault tolerance in hardware level.

Some of this work is presented in chapter 2. In this thesis, our goals and contributions are

going to be:

i. To implement some known algorithms for distributed systems regarding failure de-

tection, deadlock detection and reaching consensus and combine them with a man-

agement framework for malleable application on NoC platforms (see chapter 5).

ii. To test the implemented algorithms on a NoC,architecture simulator.

iii. To present results regarding the implemented algorithms and how they scale with

the beforementioned framework.

40

Chapter 2

Related Work

2.1 Google’s Chubby

Chubby [7] is a fault-tolerant system at Google that provides a distributed locking

mechanism and stores small files. In practice, there is one Chubby instance per data

center. Several Google systems use Chubby for distributed coordination to store a small

amount of metadata.

Chubby tolerates faults through replicas. Each Chubby instance runs on a dedicated

machine and includes five replicas, which run the same code. Every object is stored as an

entry in a database and it is Chubby’s obligation to replicate this database. At any one

time, one of the beforementioned replicas is considered as the master one. Chubby clients,

request a Chubby instance for service. The master replica serves all Chubby requests. In

addition, if a Chubby client contacts a replica that is not the master, it replies with the

address of the master one. If the master replica fails, then a new replica is elected as

the master one, which will continue to serve clients based on its local copy of replicated

database.

The initial version of Chubby, was based on a commercial, third-party, fault-tolerant

database. However, this database had several bugs regarding replication. Thus, Google’s

engineears decided to replace this third-party database with their tweaked Paxos algorithm

as described in [8]. As stated in this paper, despite the existing literature on Paxos

algorithm, building the actual system appeared to be non-trivial for the following reasons:

• In order to convert the algorithm into a practical system involved implementing

many features and optimization some of which were not published in the literature.

• Even though many fault-tolerant short algorithms are proposed in the literature,

building a real system and ensuring that it operates correctly required the usage of

41

CHAPTER 2. RELATED WORK

Chubby Client Network

Replicas

Network

RPC

Chubby Protocol

Chubby

Fault-Tolerant DB

Fault-Tolerant

LOG

File

TransferSnapshot

exchange

Paxos

Protocol

LOG

Snapshot

Figure 2.1: A single Chubby instance

different methods .

• Fault-tolerant algorithms tolerate specific faults. When building the real system

however, you have to deal not only with a variety of unexpected failures, but also

with bugs and errors in your code. Thus, additional effort has to be put.

• A real system is almost never specified in detail. As a result, a system might fail

due to misunderstanding that occured during its specification phase.

2.2 Apache’s Cassandra 2.0

Apache Cassandra is a free and open-source distributed database management sys-

tem designed to handle large amounts of data across many commodity servers, providing

high availability with no single point of failure. Cassandra offers robust support for clus-

ters spanning multiple datacenters, with asynchronous masterless replication allowing low

latency operations for all clients. It was initially developed at Facebook [9] to power their

42

CHAPTER 2. RELATED WORK

Leader

Replica

Replica

Replica

prepare

Leader

Replica

Replica

Replica

promise

Leader

Replica

Replica

Replica

read

Leader

Replica

Replica

Replica

results

Leader

Replica

Replica

Replica

propose

Leader

Replica

Replica

Replica

accept

Leader

Replica

Replica

Replica

commit

Leader

Replica

Replica

Replica

ack

Figure 2.2: Cassandra’s 2.0 tweaked Paxos algorithm

Inbox Search feature by Avinash Lakshman (one of the authors of Amazon’s Dynamo)

and Prashant Malik. It was released as an open source project on Google code in July

2008. Nowadays, many clients such as IBM, Netflix and Apple use Cassandra in their

43

CHAPTER 2. RELATED WORK

systems.

As of Cassandra 2.0, in order to improve consistency, Apache’s engineers decided to

replace their early implentation of distributed locking with their extended Paxos algorithm.

Even though Paxos will be described in section 6 their approach is summarized in the

following figure:

We can see that they implemented a typical Paxos instance with an additional step in

which they need to read the current value of the row to see if it matches the expected one.

2.3 Stochastic Communication: A New Paradigm for Fault-

Tolerant Networks-on-Chip

In [10] Bogdan et al focused on on-chip fault-tolerant communication. Traditionally,

data networks dealt with fault-tolerance by using complex algorithms, like the Internet

Protocol or the ATM Layer. However, these algorithms require many resources that are

not available on chip.

The faults that may appear in NoCs are either transient or permanent. The transient

faults are caused by fluxes of neutron and alpha particles, power supply and interconnect

noise, electromagnetic interference, or electrostatic discharge. They represent the most

common problem for future VLSI circuits. Simply stated, if noise in the interconnect

Figure 2.3: Stochastic Communication Algorithm

44

CHAPTER 2. RELATED WORK

causes a message to be scrambled, a data upset will occur.

Permanent faults reflect irreversible physical changes in the structure of the circuit.

They make recovery very hard or even impossible. However, while these errors occur

infrequently and do not pose a serious threat to the mass production of VLSI chips,

however this may change for future nanotechnologies.

Another common failure is when a message is lost because of buffer overflow. These

faults are known as send/receive omissions or buffer overflows.

In this approach, Bogdan et al proposed a fast and computationally lightweight scheme

for the on-chip communication , based on an error-detection/multiple-transmissions scheme.

The key observation behind their strategy is that, at chip level, the bandwidth is less ex-

pensive than in traditional networks; this is due to the existing high-speed buses and

interconnect fabrics which can be used to implement NoCs.

45

Chapter 3

Basic Abstractions

In this chapter, based on [11], we present the basic abstractions we use to model a

distributed system which is formed by several entities that can execute commands and by

communicate through message exchanging. We present abstractions concerning both the

entitites that compose a distributed system as well as the types of communication between

them.

3.1 Abstractions in Distributed Systems

3.1.1 Processes and Messages

For the rest of this book, we abstract the units which are able to execute commands

in either a distributed system or a many-core system with the term node. We persume

that our system is composed of N distinct processes, thus creating a set denoted by Π . In

most cases, this set is static unless stated otherwise. In addition, each node has a unique

identification number, named id, ranging in {1, ..., N}. In the description of an algorithm,

this id number is used to denote the node with which we communicate with.

Processes communicate with each other by exchanging messages, which are uniquely

identified either by using a sequence number or a local clock along with the sender’s node

id. In other words, we assume that all messages ever exchanged are unique, and messages

are not duplicated in any way.

3.1.2 Safety and Liveness

Implementing and applying a distributed algorithm to a set of processes can be a

really painful achievement. Throughout the whole process, we must seek to satisfy the

properties of the abstraction in all possible executions of the algorithm. In other words, we

have to foresee all the possible sequences of steps executed by the processes according to

47

CHAPTER 3. BASIC ABSTRACTIONS

the algorithm. The properties of the abstraction to be implemented needs to be satisfied,

if not for all, for a large of possible interleavings of these steps. Most of the times, the

properties that have to be satisfied are the following: safety and liveness. The distinction

between these two usually helps to understand the level of the abstraction and to propose

an efficient algorithm. However, the real challenge is to guarantee both liveness and

safety. Indeed, useful distributed services are supposed to provide both liveness and safety

properties. Reaching abstraction with only one kind of property is usually a sign for an

improper implementation.

3.1.2.1 Safety

By the term safety property, we assume a property of a distributed algorithm that can

be violated at some time t and never be satisfied again after that time. Informally speaking,

the safety properties of an algorithm ensure that ”something bad will never happen”. For

example, if we consider perfect links between processes (meaning that communication links

should not vaguely create messages) then a process should never receive a message unless

this message was indeed sent. If at some time t a process received a message that was

never sent, we have to be able to correct this issue.

More specifically, a safety property is a property such that, if it is violated in some

execution E of an algorithm then there is a partial execution E′ of E such that the property

will be violated in every extension of E′. This means that safety properties prevent a set

of unwanted states from occuring.

3.1.2.2 Liveness

In respect to the safety property, the liveness property ensures that ”eventually some-

thing good will happen”. Taking the links between processes again as an example, we

require that if a process sends a message to another process then the latter should even-

tually receive the message. To insinuate that a liveness property is violated, we have to

prove that there is an infinite number of steps of the algorithm, thus resulting in a message

never being delivered. More precisely, a liveness property is a property of a distributed

system execution such that, for any time t, there is some hope that the property can be

satisfied at some time t′ ≥ t.

3.2 Crashes and Failures

At any given time a process of our distributed system executes the steps of the al-

gorithm which has been assigned to it. A failure occurs whenever the process does not

behave according to the algorithm. At the time of failure all components of the process

48

CHAPTER 3. BASIC ABSTRACTIONS

become unavailable too. There are many kinds of failures. Strictly speaking, in case of

a crash failure, the process simply stops executing any command and does not send any

message to other processes, whereas more mildly speaking, in a case of an arbitrary failure

the process just deviates from the algorithm. In figure 3.1 we see the types of process

failures.

Arbitrary

Eavesdropping

Crash with

recovery

Omission

Crash

Figure 3.1: Types of process failures

3.2.1 Crashes

The simplest way that a process could fail, is by crashing. That means that at some

time t the process just stops executing commands and sending messages. Until that time,

the process executes its algorithm correctly, meaning that it executes its local workload

without any problems and sends messages to other processes as expected. Thus said, a

process is detected as faulty if it crashes at some time during the execution. If the process

completes its work without any failure then it is said to be correct. In most cases, we

create some form of agreement, in terms that only a limited number f of processes can be

faulty. Assuming a bound on the number of faulty processes in the form of a parameter f

means that any number of processes up to f may fail, but not necesseraly all of them.

In the crash-stop abstraction, a faulty process executes its algorithm correctly, but

after it has crashed, it never recovers. In practice, a process that crashes can be restarted

and recover from the faulty state, which is desirable. But with the crash-stop abstraction

49

CHAPTER 3. BASIC ABSTRACTIONS

recovered process is no longer part of the system. Nothing prevents recovered processes

from getting informed about any results broadcasted in the system, however, and from

participating again in subsequent instances of the distributed algorithm.

3.2.2 Omissions

A more general kind of fault is an ommision fault. An omission fault occurs when a

process does not send or receive a message. Most of the times, this is caused due to buffer

overflows or network congestion. With an omission, the process may not perform as it was

supposed to since it dropped some messages that should have been exchanged.

3.2.3 Crashes with Recoveries

In the crash-recovery abstraction, we assume that a process is faulty if it either crashes

and never recovers (as in 3.2.1), or the process keeps crashing and recovering during a given

time. A process that keeps crashing and recovering is considered correct in this model,

however, a process might suffer amnesia when it crashes, meaning that it loses its internal

state and might send messages that oppose to previous messages that it might have sent.

To overcome this problem, most of the times we assume that every process has its own

log file stored in a stable storage, which can be accessed after a crash event. In this

model, we assume that a process is aware that it has crashed after its recovery. Thus, the

enviroment should be responsible to inform the recovered process for its state. In addition,

the crashed process might have had some data which have been lost during the failure.

This data should be also properly reinitialized.

3.2.4 Eavesdropping Faults

When a distributed system operates in an untrusted enviroment, some of its com-

ponents may become exposed to outsiders. Therefore, the outsiders may eavesdrop on

multiple processes and correlate all leaked pieces of information with each other. This

kind of faults threaten the confidentiality of the data exchanged by the algorithm.

3.2.5 Arbitrary Faults

An arbitrary fault, is the most general kind of failure as shown in figure 3.1. In this

type of failure, we make no assumpions on the behaviour of faulty processes. They are

allowed to send any kind of message and generate any kind of output. When an arbitrary

fault presents itself, the process deviate from the algorithm it executes in any possible way.

Such failures are also called Byzantine (sec. 6.1) or malicious failures. Arbitrary faults

are the most difficult to tolerate, since one does not know exactly what caused the failure.

50

CHAPTER 3. BASIC ABSTRACTIONS

This type of failure is also used when processes may become controlled by malicious users

who try to prevent the normal operation of the system.

3.3 Timing Assumptions

One of the most important parts to categorize distributed systems is the relationship

between the exchange of messages and the time elapsed. More specifically, if we can

determine any time bound on communication delays or even execution time speeds could

be proved as of great importance not only for designing a proper execution algorithm but

also to be able to detect failures in our system. In respect to the time bounds of message

delivery, a system can be categorized into three categories; synchronous, asychronous and

partially sychronous system.

3.3.1 Sychronous System

To assume a sychronous system, one of the following properties have to be fulfilled:

� Synchronous Computation: The time that processes take to execute a single step

is always less than a known upper bound. A single step includes not only the time

that a process takes to make a computation but also the time to receive and send

the appropriate messages.

� Synchronous Communication: In this type of system there is a known upper

bound on the delivery delay of messages. That is, the time period between the

moment that a signal is sent by a sender, and the moment that the signal is received

by the receiver is always less than a known value.

� Synchronous physical clocks: Each process has its own local physical clock which

differs from a global real-time clock only by a known upper bound.

In general, synchronous systems provide a lot of useful services for managing the system

such as timed failure detection, worst-case performance etc.

3.3.2 Asynchronous System

In an asynchronous system, we make no timing assumptions regarding either processes’

computation time nor message delays, meaning that processes do not have access to any

sort of physical clock and there is no known upper bound on communication delays.

However, if each process follows the steps below, time can be measured with respect to

communication.

Step 1: Each process i keeps an integer li, initially set to 0. This is called a logical clock.

51

CHAPTER 3. BASIC ABSTRACTIONS

Step 2: Whenever an event at process i, we increase li by 1.

Step 3: Whenever a process sends a message, that message is accompanied by a times-

tamp t(e), which is the value of the logical clock li at that time.

Step 4: When a process receives a message m with timestamp tm, it updates its logical

clock based on this expression: lp := max{lp, tm}+ 1.

This way of measuring time is called logical time.

A

B

Known upperbound delay T

T1 < T T3 < TT2 < T T4 < T

(a) In a synchronous communication, message delays are not greater than an

upper bound value T .

A

B

Unknown upperbound delay

T1 T3T2 T4

(b) In an asynchronous communication, there is no known upper bound delay.

Figure 3.2: Example of synchronous and asynchronous communication.

3.3.3 Partially Synchronous System

In practice, most distributed systems appear to be synchronous, meaning that we can

always find an upper bound that is respected most of the time. However, there might be

periods when the system is not synchronous. In example, the network could be overloaded

resulting in slow communications, or even retransmissing a lost message could cause excess

of the known time bounds. Keeping these in mind, we can define systems that are partially

52

CHAPTER 3. BASIC ABSTRACTIONS

synchronous. In short, in a partially sychronous system timing assumptions only hold

eventually, without knowing when exactly.

3.4 Models in Distributed Systems

3.4.1 Combining Abstractions

Clearly,we will not consider all possible combinations of basic abstractions.On the other

hand, it is interesting to discuss more than one possible combination to get an insight into

how certain assumptions affect the design of an algorithm. We have selected two speci?c

combinations.

• Fail-stop. We consider the crash-stop process abstraction, where the processes ex-

ecute the deterministic algorithms assigned to them,unless they possibly crash, in

which case they do notr ecover.Aditionally, we assume the existence of a perfect

failure detector P.

• Fail-noisy. We consider the crash-stop process abstraction with the existence of the

eventually perfect failure detector ♦P.

3.4.2 Quorums

A significant tool of many fault-tolerant algorithms are quorums.

A quorum in a system with N processes is any set of more than N/2 processes or

equivalently any set of d (N+1)
2 e processes. It is easy to prove that every two quorums

have at least one process in common and also that even if f < N/2 processes fail by

crashing, there is always one quorum of non-crashed processes. Quorums are used in

Paxos algorithm described in chapter 6.

(a) Two quorums and their common process

53

CHAPTER 3. BASIC ABSTRACTIONS

(b) A quorum in a system with f < N/2 failed

processes.

Figure 3.3: Quorums’ Properties

3.4.3 Performance

When talking about performance, there are mainly two metrics that we are concerned

about:

1. The number of messages required to terminate an operation and

2. The number of communication steps required to terminate an operation.

In some algorithms there are two addition metrics that might help us measure the

perfomance:

3. The total size of communication message, measured in bits and

4. The number of accesses to stable storage.

When designing an algorithm, we try to achieve best performance in case of failure-free

executions, while ensuring that our algorithm will tolerate any failures that might show

up.

54

Chapter 4

Deadlock and Failure Detection

Deadlock detection as well as failure detection are two important problems in dis-

tributed systems and much attention has been devoted in the research community.

Generally speaking, a deadlock situation is the possible result of competition for re-

sources, such as several processes requesting exclusive access to particular data. Although

deadlock problems first appeared as a problematic situation in multi-threading and multi-

core systems, they are also a significant part of distributed systems, known as distributed

deadlocks. Handling of deadlock becomes highly complicated in distributed systems be-

cause no process has accurate knowledge of the current state of the system and because

every inter-process communication involves a finite and unpredictable delay. Deadlock

handling can be separated into three main categories:

• Deadlock Prevention: This type of handling is commonly achieved either by having

a process acquire all the needed resources simultaneously before it begins executing

or by preempting a process which holds the needed resource. However, this approach

is highly inefficient and impractical in distributed systems.

• Deadlock Avoidance: In deadlock avoidance approach to distributed systems, a re-

source is granted to a process if the resulting global system state is safe (note that a

global state includes all the processes and resources of the distributed system). Due

to several problems though, this approach is also impractical in distributed systems.

• Deadlock Detection: Deadlock detection seems to be the best approach to handle

deadlocks in distributed systems. In this approach, we examine the interaction status

of processes with resources and we try to find a cyclic wait.

A failure situation is the possible result of having one process experience any of the

failures described in section 3.2.1. Failure detectors were proposed in 1996 as a mechanism

for solving consensus in an asychronous message-passing system with crash failures by

55

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

distinguishing between slow processes and dead ones. The basis idea is that each process

has attached to it a failure detector module that continuously outputs an estimate of which

processes in the system have failed.

4.1 Deadlock Detection

As mentioned before deadlock detection is probably the best way of handling deadlocks

in distributed systems. The correctness of a deadlock detection algorithm must satisfy the

following two conditions:

1. Progress: The algorithm must detect all existing deadlocks eventually, meaning that

there should be no undetected deadlocks.

2. Safety : The algorithm should not report deadlocks which do not exist, also known

as phantom deadlocks.

In the following sections we briefly analyze the models of deadlocks as well as the

classes of deadlock detection algorithms. A more detailed description can be found in [12].

4.1.1 Wait-For-Graphs

A Wait-For-Graph (WFG) is a mathematical model of resource requests. Each vertex

Vi of the graph denotes a process i ∈ {1, ..., N} of our distributed system and each directed

edge Eij represent blocking relations between processes. More precisely, an edge from node

V1 to node V2 indicates that V1 is blocked and is waiting for V2 to release some resource or

output some data. A directed cyclic path or a knot in this graph denotes that the system

is deadlocked.

P1

P2 P3 P4

P5

P6P7P8

Figure 4.1: Example of a WFG

56

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

By the term directed cycle path we mean that starting from any vertex Vi and following

any path given by the directed edges we can end up in our starting vertex Vi.

On the other hand, a vertex Vi is a knot if (∀Vj :: Vj is reachable from Vi ⇒ Vi is

reachable from Vj). More simply, no paths originating from a knot have ”dead ends”.

4.1.2 Models of Deadlocks

Depending on the application, the distributed system might allow different kinds of

resource management. For example, a process might need to acquire a combination of

resources in order to perform some operations. In this section we introduce the models of

deadlocks which are used to classify deadlock detection algorithms in section 4.1.3.

4.1.2.1 Single-resource Model

In the single resource model, a process can have one outstanding request at most for

only one unit of resource. Hence, the maximum out-degree of a vertex in a WFG for the

single-resource model can be 1. To find a deadlock in this model, we just have to find a

cycle in the WFG.

4.1.2.2 AND Model

In the AND-model a process can request for more than one resource simultaneously

and the request is satisfied only after all the requested resources are granted to the specific

process (therefore, requests of this type are called AND requests). The AND model has

been the traditional view of resource requests in distributed systems. The vertices of the

WFG in this model are called AND nodes and may have outdegree more than 1. The

presence of a cycle in the WFG indicates a deadlock in the AND model. For example, in

figure 4.1 process P1 has two outstanding requests and both must be satisfied before before

P1 continues its execution. This example depicts a deadlock situation corresponding to

the cycle P1 → P3 → P6 → P7 → P4 → P1.

4.1.2.3 OR Model

In the OR model a process can make a request for numerous resources simultaneously

and the request is satisfied if any one of the requested resources is granted. Consider

the following example in figure 4.1: If all vertices are OR nodes then process P1 is not

deadlocked because P5 has no outgoing edges. Hence, once P5 and P2 are completed so

can P1. Thus, the presence of a cycle in the WFG does not imply a deadlock in the OR

model. However, the presence of a knot does[13].

57

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

4.1.2.4 AND-OR Model

The AND-OR model is a generalization of the previous two models (AND model and

OR model). In this model, a process can request for multiple resources in any combination

of and and or types. For example, in the AND-OR model a request for multiple resources

can be of the form x∩ (y ∪ z). To detect the presence of deadlocks in such a model, there

is no familiar construct of graph theory using WFG. Since a deadlock is a stable property,

a deadlock in the AND-OR model can be detected by repeated application of the test for

OR-model deadlock.

4.1.2.5
(
n
k

)
Model

The
(
n
k

)
Model (called k out of n model) allows a process to obtain any k available

resources from a pool of n resources. This model is a generalization of the AND-OR

model, however it has the same in expressive power as the AND-OR model. That said,

every request in the
(
n
k

)
model can be expressed in the AND-OR model and vice-versa.

Note that AND requests for k resources can be stated as
(
k
k

)
whereas OR requests of k

resources can be stated as
(
k
1

)
.

4.1.2.6 Unrestricted Model

This is the most general model of deadlock detection. In the unrestricted model,

no assumptions are made regarding the underlying structure of resource requests. The

advantage of looking at the deadlock problem in this way is that it helps in the separation of

concerns: Properties of the underlying database computations (e.g., degree of concurrency)

are rigorously abstracted and separated from concerns about properties of the problem

(stability of deadlock). Therefore, all the algorithms dealing with this general model can

be used to detect other stable properties as well.

4.1.3 Classes of Deadlock Detection Algorithms

Distributed deadlock detection algorithms can be divided in four classes: path-pushing,

edge-chasing, diffusion computation and global state detection.

4.1.3.1 Path-Pushing Algorithms

In path-pushing algorithms, distributed deadlocks are detected by maintaining an ex-

plicit global WFG. The basic idea is to build a global WFG for each cluster of the dis-

tributed system. In this class of algorithms, whenever deadlock computation is performed

at any cluster,then the local WFG is sent to all the neighboring clusters. After the WFG

of each cluster is updated, this updated WFG is then passed along to other clusters, until

58

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

some cluster has a sufficiently complete picture of the global state to announce deadlock

or to announce that no deadlocks are present.

4.1.3.2 Edge-Chasing Algorithms

In an edge-chasing algorithm, the presence of a cycle in a distributed graph is found

by sending special messages called probes, along the vertices of the graph. These messages

are different that the request and reply messages that processes send. A cycle is detected

if a process receives a probe message it has previously sent. In this approach, only blocked

processes propagate probe messages along their outgoind edges. Whenever a process that

is executing receives a probe message, it discards this message and continues.

4.1.3.3 Diffusing Computation

4.1.3.4 Global State Detection

A global state based deadlock detection algorithm exploit the following two facts:

1. A consistent snapshot of the distributed system can be obtained without halting the

underlying computation

2. If a stable property holds in the system before the snapshot collection is initiated

this property will still hold in the snapshot.

Therefore, distributed deadlocks can be detected by talking a snapshot of the system

and examining it for the condition of a deadlock.

4.2 Failure Detection

As mentioned before, failure detectors were proposed in 1996 by Chandra and Toueg

[14]. The output a failure detector produces does not have to always be correct. In

contrast, both [14] and [15] are explaining how bogus the output of a failure detector can

be and still be useful.

4.2.1 Classification of failure detectors

Chandra and Toueg define eight classes of failure detectors, based on when they suspect

faulty processes and non-faulty ones. In general, there are two classes of suspicion:

1. Completeness: suspicion of faulty processes.

2. Accuracy: suspicion of non-faulty processes.

59

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

4.2.1.1 Degrees of completeness

When speaking of completeness we have two types in our mind:

� Strong Completeness: Every faulty process is eventually permanently suspected

by every non-faulty process.

� Weak Completeness: Every faulty process is eventually permanently suspected

by some non-faulty process.

There are two temporal logic operators embedded in these statements: ”eventually

permanently” means that there is some time t0 such that for all times t ≥ t0, the process

is suspected. Note that completeness says nothing about suspecting non-faulty processes.

Thus, a paranoid failure detector that permanently suspects everybody has strong com-

pleteness.

Table 4.1: Failure detectors classes

Completeness
Accuracy

Strong Weak Eventual Strong Eventual Weak

Strong
Perfect

P
Strong

S
Eventually Perfect

♦P
Eventually Strong

♦S

Weak
Q

Weak

W ♦Q
Eventually Weak

♦W

4.2.1.2 Degrees of accuracy

These describe what happends with non-faulty processes as well as with processes that

have not crashed yet. So, when speaking of accuracy we have the following four types in

our mind:

� Strong Accuracy: No process is suspected by anyone before it has indeed crashed.

� Weak Accuracy: Some non-faulty processes are never suspected.

� Eventual Strong Accuracy: After some initial period of confusion, no process is

suspected before it crashes. This can be simplified to say that no non-faulty process

is suspected after some time, since we can take end of the initial period of chaos as

the time at which the last crash occurs.

� Eventual weak accuracy: After some initial period of confusion, some non-faulty

process is never suspected.

Note that strong and weak mean different things for accuracy versus completeness; for

accuracy, we are quantifying over suspects, and for completeness, we are quantifying over

60

CHAPTER 4. DEADLOCK AND FAILURE DETECTION

suspectors. Even a weakly-accurate failure detector guarantees that all processes trust the

one visibly good process.

4.2.2 Classes of failure detectors

Combining the above degrees of accuracy and completeness results in eight classes

of failure detectors. A failure detector is said to be perfect if it satisfies both strong

completeness and strong accuracy. We call this set of failure detectors as class of Perfect

failure detectors and we denote it by P. Similar denotions are provided for the rest classes

and are shown in the table 4.1.

61

Chapter 5

The DRTRM framework

The DRTRM, whose initials came from ”Distributed Run-Time Resource Manage-

ment”, is a framework designed to run malleable applications on many-core platforms

by Iraklis Anagnostopoulos et al. [16]. The framework is responsible for both allocating

initial cores for an application to be executed on and providing a way that the applica-

tion is managed throughout execution time. The goal of the framework is to minimize

messages between nodes and also attempt to equally distribute resources between appli-

cations. In the following sections we will try to give a brief explanation of this framework

by emphasizing on its main aspects. The main idea behind DRTRM is that it classifies

cores in disjoint sets. A really detailed description of the framework can also be found

in [17]. In addition, in [18] it is shown that resource allocation is highly affected not

only by the internal decision mechanisms but also from the incoming application interval

rate on the system. Based on this observation, an effective admission control strategy is

proposed, utilizing Voltage and Frequency Scaling (VFS) of parts of the DRTRM which

eventually retains the distributed decision making thus improving system performance in

combination with significant gains in its consumed energy.

5.1 Cores Types

In this section we will give a brief explanation of the DRTRM framework. As mentioned

before the framework classifies cores in 5 sets controller, initial, manager, worker and idle.

In addition, a communication scheme is used between cores in order to exhange information

needed to execute the application.

5.1.1 Controller Core

The main job for a controller core is to handle all the unoccupied cores inside his

cluster. A cluster is a predefined region set at the initialization of the platform and

63

CHAPTER 5. THE DRTRM FRAMEWORK

cannot be modified during run-time. An example of two controller cores along with their

clusters is shown in figure 5.1. In addition to handling unoccupied cores, the controller

core is also responsible for keeping a list with all manager cores that own a core inside hus

cluster. This list is called Distributed Directory Service (DDS). When a manager requests

a DDS register, he also sends his controller core his current working cores (manager cores

are analyzed in section 5.1.2). However, some working cores might not be in the same

cluster as the controller and the manager. It is responsibility of the controller to add the

manager core to his DDS list as well as inform the controllers of the working nodes not

in his cluster in order to register the manager to their DDS lists too. Except for that,

controllers also keep an array with the ids of all the controller cores. This array is called

controller list.

C2

C1

Idle Core

Controller Core

Cluster area of 2nd Controller

Cluster area of 1st Controller

Legend

Figure 5.1: Cluster definition

5.1.2 Manager Core

A manager core is responsible for managing an application during its life cycle. More

analytically, he informs the working nodes of the application that he is their manager and

assign the same amount of workload to each worker. The relation between a manager

and an application is one on one, meaning that one manager can only handle exactly

one application, and the management of an application can not be devided to several

managers.

An example of two manager cores along with their working nodes is shown in figure

5.2. Another task of the manager core is to instruct the resizing of the application. By

the term resizing, we mean that the application has either more or less available cores to

run on. Thus, the manager has to find out the remaining workload of his working nodes.

When he collects this information, then he has to reassign the remaining workload evenly

64

CHAPTER 5. THE DRTRM FRAMEWORK

M1

M2

Controller Core

Manager Core

Area controlled by 2nd Manager

Area controlled by 1st Manager

Legend

Worker Core

Figure 5.2: Manager cores and their working nodes

to the new set of working nodes. Lastly, the manager core writes the remaining workload

as well as important information about the application in an application log file. This

is important in order to recover from a manager failure as it will be described in section

7.3.2.

Thus, in order for the manager to accomplish the abovementioned he has to follow the

next steps:

Step 1: Sends a signal to his controller core so the latter can add him to his DDS list.

In addition, he also sends to his controller his set of working cores.

Step 2: Calculates the workload of his working cores and evenly distributes the appli-

cation’s workload among cores.

Step 3: Signals every working in order to send them their workload as well as inform

them that he is their manager.

Step 4: Decides whether he will begin a self-optimization process. If he decides to do so

the following steps take place:

– Substep 1: Requests workers from controller and manager cores and waits for their

offers.

– Substep 2: Checks the replied offers. If no offers are received he continues to

Substep 6. Otherwise, he picks the offer with the most cores.

– Substep 3: Replies to the offers either positevely or negatively.

– Substep 4: Initiates the resizing process.

65

CHAPTER 5. THE DRTRM FRAMEWORK

– Substep 5: Sends his controller the new working cores in order to be registered to

the appropriate DDS lists.

– Substep 6: Sets a timer, upon whose expiration, the manager will decide whether

he will initiate a new self-optimization process.

5.1.3 Initial Core

The job of an initial core is to find the initial set of cores in which the application will

start to be executed on. So, when a new application arrives on the platform an Initial core

is chosen randomly and receives a message with the characteristics of the new application.

At that point, he temporarily stops whatever he was doing and performs the following

steps:

Step 1: Sends requests to controllers and managers and waits for their offers.

Step 2: Checks how many offers he has received. If he has received no offers he repeats

Step 1 until at least one core has been found, so he can determine the manager core of

the application.

Step 3: By examining the offers he received, he chooses a manager core so that the

distance between all of the offered cores is minimized.

Step 4: Replies to all the offers he received, either positevely, meaning that he accepts

their offer or negatively.

Step 5: Informs the new manager core that he hass to initialize an application by sending

him a signal along with the characteristics of the application and the set of the working

cores.

Step 6: Continues executing the tasks he had before the new application arrived, if any.

In the following figure we can see an example of the initial core requesting cores:

Initial Core

Controller Core

Worker Core

Manager Core

LegendNew Application

Area controlled by

manager

Figure 5.3: Initial core requesting cores

66

CHAPTER 5. THE DRTRM FRAMEWORK

5.1.4 Worker Core

A working core simply executes any workload given by his manager. He should always

keep the core ID of his manager in order to inform him if he has completed his workload.

As we said before, at any time he could stop the execution of his workload and become

an initial core of a new application.

5.1.5 Idle Core

An idle core waits still unless he receives a signal to execute one of the following tasks:

• A new application arrived on the platform and he has to become the initial core of

this application.

• He has been voted as the new manager core of an application so he has to follow the

steps mentioned in section 5.1.2.

• He was offered as a worker core to a manager by his controller so he has to execute

some workload

5.2 Core Lists

As mentioned before each controller core keeps a list called Distributed Directory Ser-

vice (DDS) with all the manager cores that own cores inside their cluster. Except for the

DDS list each controller also keeps a list with all the cores inside his cluster called core

list.

9

8

1

0

11 13 15

10 12 14

3 5 7

2 4 6

Core list

8 9 10 11 12 13 14 15

Core list

0 1 2 3 4 5 6 7

DDS list

14

DDS list

2 14

Core list

14 12 15

Core list

2 3 4

7

Figure 5.4: Core and DDS lists of managers and controllers

67

CHAPTER 5. THE DRTRM FRAMEWORK

As far as the managers are concerned, they also keep a core list with all the worker

cores they own. Inside each element of this list the id of the worker is kept along with the

id of his manager. A snapshot of the platform with both controller and manager cores

along with their lists is shown in the figure below.

5.3 Primitives of Deadlock Prevention in DRTRM

Whenever a core waits for data from another core, he sends a 〈SIG ACK〉 signal and

then stalls waiting for data. However, it is possible that at some time two cores, lets say

A and B, send a signal one to each other requesting cores for example. Then, both A and

B will send 〈SIG ACK〉 signals to each other, thus stalling waiting for data forever. The

solution of DRTRM framework to this problem is by keeping an interaction type between

nodes. More specifically, at one point core A can have only one interaction with node

B and each core keeps an interaction list in his local memory. If a new signal arrives

(meaning that a new interaction type might show up) before the previous has finished it

is queued up and the appropriate signal will be sent after the first interaction has been

completed. In figure 5.5 we can see a sample of the interaction list of a single core in a

platform with N cores.

Node 0

Node 1

Node 2

.

.

.

Node n-1

NULL

Figure 5.5: Interaction Lists of DRTRM

68

CHAPTER 5. THE DRTRM FRAMEWORK

5.4 Overview

In the following figure one can see an overall flow of the DRTRM framework:

Figure 5.6: Overview of DRTRM [17]

69

Chapter 6

The Paxos Algorithm

Paxos, as proposed by Leslie Lamport in the late 80s [19] and further analyzed and

explained in 2001 [6], is a family of protocols for solving to solve the consensus in a network

of unreliable processors. Its name was derived from the Greek island of Paxos where the

Paxos’ Parliament had to function even though legislators continually wandered in and

out of the parliamentary Chamber for trading. The algorithm was discovered by Lamport

while trying to prove that a complicated algorithm for handling byzantine failures used in

a program was impossible. To summarize, a system governed by Paxos is usually talked

about in terms of the value, or state, it tracks. The system is build to allow many processes

to store and report this value even if some fail which is handy for building highly available

and strongly consistent systems.

6.1 Byzantine Fault Tolerance

In fault-tolerant computer systems, and in particular distributed computing systems,

Byzantine Fault Tolerance is the characteristic of a system that tolerates the class of

failures known as the Byzantine Generals’ Problem [20]. The objective of Byzantine fault

tolerance is to be able to defend against Byzantine failures, in which components of a

system fail with symptoms that prevent some components of the system from reaching

agreement among themselves, where such agreement is needed for the correct operation of

the system. Correctly functioning components of a Byzantine fault tolerant system will be

able to provide the system’s service, assuming there are not too many faulty components.

The following practical, concise definitions are helpful in understanding Byzantine fault

tolerance[21][22]:

Byzantine fault: Any fault presenting different symptoms to different observers.

Byzantine failure: The loss of a system service due to a Byzantine fault in systems

71

CHAPTER 6. THE PAXOS ALGORITHM

that require consensus.

6.2 Basic Paxos

Assume a collection of processes that can propose different values or not propose

values at all. A consensus algorithm is obligated to choose a single value among the ones

proposed, or, if no value was proposed, choose no value. In case a value has been chosen,

then processes should be able to learn this value. Thus, the necessary requirements for

consensus are the following:

• A value may be chosen only if this value has been previously proposed.

• Only a single value should be chosen.

• Processes learn the chosen value if and only if the value has actually been chosen.

In order for the consensus algorithm to function properly we choose three types of

agents, each one of them representing a different role in the scenario. More specifically:

� proposer: This type of agent proposes a value that it wants agreement upon to

acceptors by sending a proposal containing this value.

� acceptor: This type of agent decide whether to accept tha value or not. Each

acceptor chooses a value independently. It may receive multiple proposals, each

from different proposer.

� learner: This type of agent typically does nothing. Once a value is chosen, all

learners should be notified of this value.

P

P

A

A

A

L

Proposer

Acceptor

Learner

Legend

Figure 6.1: Basic Paxos Architecture. A number of proposers

make proposals to acceptors. When an acceptor accepts a value

it sends the result to learner nodes.

72

CHAPTER 6. THE PAXOS ALGORITHM

Figure 6.1 shows a basic Paxos architecture. Agent types are further analyzed in

section 6.2.1. Just for reference, in an implementation, a single process may have more

than one of the above roles but the mapping from agents to processes does not affect the

general idea of the algorithm. For Paxos to function properly we choose the asychronous,

non-Byzantine model in which:

• Agents may fail at any time by either stopping or restarting and additionally they

operate at arbitrary speed. In case all agents fail after a value has been chosen it

is necessary that some information can be remembered by an agent that has failed

and restarted in order to achieve a solution.

• Messages are not corrupted, even though they can be duplicated or lost and may

take tremendously long time to be delivered.

6.2.1 Agent Types

In this section, we further analyze each type of agent in the paxos algorithm.

6.2.1.1 Proposer

As mentioned before this type of agent proposes a value that it wants agreement upon.

To achieve that it sends a proposal to the set of all acceptors containing the proposed

value. Different proposers may propose different values. Thus, we have to keep track of

the different proposals issued by different proposers. We can achieve that by assigning a

proposal number to each of these proposals such that:

⇒ Each proposer has his own unique proposal number

⇒ Every new proposal has a higher proposal number than any previous proposal

In addition, this type of agent is responsible for broadcasting a chosen value once it

has been accepted. By accepted we mean that a majority of the acceptors have agreed

on this value. Therefore, proposers should keep track of the decisions acceptors make.

Succintly, the steps a proposer follows are:

Step 1: Sends a request along with his proposal number n to each member of a set of

acceptors aksing it to respond with:

(a) A promise never again to accept a proposal numbered less than n

(b) The proposal with the highest proposal number less than n that it has accepted, if

any.

This is called a prepare request signal with number n.

73

CHAPTER 6. THE PAXOS ALGORITHM

Step 2: Waits until he receives positive reply from a majority of acceptors.

Step 3: If he does, he then sends his proposed value to the same set of acceptors. We

call this a prepare accept signal.

Step 4: Waits until he receives positive reply from a majority of acceptors.

Step 5: If he does, he then has to inform learners about the chosen value. Thus, he

sends a signal to them with the chosen value. We call this a learn signal.

The full operation of proposers is described analytically in section 6.2.3.

6.2.1.2 Acceptor

As referenced above, this type of agent decides whether to accept a value or not.

Each acceptor chooses a value independently. Additionally, he may receive proposals from

different proposers assigned with different proposal numbers. A value is chosen when a

majority of the acceptors accept the same value. The steps an acceptor typically follows

are:

Step 1: Waits until he receives a signal from a proposer. This signal can be any of these

two types: prepare request or prepare accept.

Step 2: An acceptor can ignore any of these requests without compromising safety.

Step 3: If he decides to reply, he then has to obey the following two rules:

R1. An acceptor can accept a proposal numbered n iff it has not responded to a

prepare request having a number greater than n.

R2. An acceptor ignores any prepare request with proposal number n less than

any proposal number of any proposal he has previously replied to as well as

prepare requests for a proposal it has already accepted.

Step 4: Assuming the acceptor always obeys R1 and R2, he:

– Step 4a: responds to a prepare request with a promise not to accept any more

proposals numbered less than n and with the the highest-numbered proposal, if any,

that it has accepted.

– Step 4b: accepts a prepare accept proposal unless it has already responded to a

prepare request having a number greater than n.

74

CHAPTER 6. THE PAXOS ALGORITHM

6.2.1.3 Learner

A learner, typically does nothing. He just hangs still until he receives a learn signal

with the value that has been accepted. However, as mentioned before, an agent could be

of multiple types so a learner could be at the same time proposer and acceptor as well.

The obvious algorithm to learn the value is to have each acceptor, whenever it accepts a

proposal, respond to all learners, sending them the proposal. This allows learners to find

out about a chosen value as soon as possible, but it requires each acceptor to respond

to each learner a number of responses equal to the product of the number of acceptors

and the number of learners. A faster way could be all the acceptors to send an accepted

message to the proposer, thus making the proposer responsible for broadcasting the chosen

value making the complexity equal to the sum of the number of acceptors plus the number

of learners.

6.2.2 Distinct Proposal Numbers

There are multiple ways of how we could assign distinct proposal numbers to each

proposal. Indicatively, three methods could be the following:

1. Using mutual exclusion each proposer could increase a counter and then pick the

newest value as his proposal number.

2. We can assign disjoint sets of numbers for each proposer and have them only choose

numbers from their own set. For example, we could assign each node a unique prime

number, they choose multiples of that prime number.

3. if we are assuming static membership of participants, we can assign each node a

unique number i between 0 and k, where k is the total number of participants, and

n = i + (k ∗ round number).

6.2.3 Phases

The Paxos algorithm is divided into three phases, the prepare, the accept and the learn

phase.

6.2.3.1 Prepare Phase

In the prepare phase, the proposer initially selects a unique proposal number n, which

is greater than any n previously sent and sends a prepare request to a quorum of accep-

tors. We denote A(j,k) as the jth majority set of acceptors with k acceptors in it. The

pseudocode below shows the actions of the proposer in the prepare phase:

75

CHAPTER 6. THE PAXOS ALGORITHM

Algorithm 1 Prepare Phase - Proposer Side

1: Pick unique proposal number pn

2: for i← 1, k in A(j, k) do

3: Send: prepare request(i,pn)

4: end for

On the acceptor side, if he ever receives a prepare request with number n greater

than that of any prepare request to which it has already responded, then it responds to

the request with a promise not to accept any more proposals numbered less than n and

with the highest-numbered proposal (if any) that it has accepted. Algorithm 2 shows the

actions an acceptor does in prepare phase.

Algorithm 2 Prepare Phase - Acceptor Side

1: procedure prepare request handler(n)

2: max pn← highest proposed proposal number seen

3: max n← highest accepted proposal number

4: max v ← Corresponding value of max n

5: if n > max pn then

6: max pn← n

7: Reply: prepare accept(max n,max v)

8: else

9: Reply: prepare reject()

10: end if

11: end procedure

6.2.3.2 Accept Phase

After a proposer has received a response to his prepare requests from a majority of

the acceptors, he then sends an accept request to those acceptors with a value v, where

v is the value of the highest numbered proposal among the responses, or any value if the

responses reported no other proposals. The steps followed by a proposer in the accept

phase are shown in algorithm 3.

76

CHAPTER 6. THE PAXOS ALGORITHM

Algorithm 3 Accept Phase - Proposer Side

1: max n← 0

2: max v ← 0

3: cnt← 0

4: pn← proposal number from algorithm 1

5: procedure prepare accept handler(n,v)

6: cnt← cnt + 1

7: if n > max n then

8: max n← n

9: max v ← v

10: end if

11: if cnt ≥ k then

12: if max v = 0 then

13: max v ← proposer’s proposing value

14: end if

15: for i← 1, k in A(j, k) do

16: Send: accept request(i,pn,max v)

17: end for

18: end if

19: end procedure

By contrast, when an acceptor receives an accept request, it always accepts it unless

it has already promised not to in the prepare phase.

Algorithm 4 Accept Phase - Acceptor Side

1: max pn← highest proposed proposal number seen

2: max n← highest accepted proposal number

3: max v ← Corresponding value of max n

4: procedure accept request handler(n,v)

5: if n > max pn then

6: max pn← n

7: max n← n

8: max v ← v

9: Reply: accepted()

10: else

11: Reply: rejected()

12: end if

13: end procedure

77

CHAPTER 6. THE PAXOS ALGORITHM

6.2.3.3 Learn Phase

On the last phase, if a proposer receives accepted messages from a majority of acceptors

he decides that the value he proposed is accepted, so he sends a learn message to all learner

nodes.

Algorithm 5 Learner Phase - Proposer Side

1: v ← Value proposed in accept request

2: cnt← 0

3: procedure accepted handler

4: cnt← cnt + 1

5: if cnt ≥ k then

6: for each learner i in learners do

7: Send: learn(i,v)

8: end for

9: end if

10: end procedure

78

CHAPTER 6. THE PAXOS ALGORITHM

6.2.4 Overview

A brief overview of the Paxos algorithm is shown in the following figure:

Proposers Acceptors

1. Choose new proposal number n

3. Respond to Prepare(n)

2. Broadcast Prepare(n) to all acceptors

 If n > minProposal then minProposal = n

 Return (acceptedProposal, acceptedValue)

4. If responses received from majority:

 If any acceptedValues returned then

value = acceptedValue for highest

acceptedProposal

5. Broadcast Accept(n,value) to all acceptors

6. Respond to Accept(n,value)

 If n > minProposal then

acceptedProposal = minProposal = n

acceptedValue = value

 Return Accepted or Rejected

7. If accepted received from majority:

 Value is chosen

8. Broadcast Learn(value) to all learners

Figure 6.2: Overview of the Paxos algorithm.

6.2.5 Paxos By Example

In this section we will try to give a simple example of how the paxos algorithm works.

In this example there are two proposers P1 and P2, both making prepare requests. In

addition, we have three acceptors A1, A2 and A3. The request from proposer P1 reaches

acceptors A1 and A2 before the request from proposer P2 but the request from P2 reaches

acceptor A3 first.

79

CHAPTER 6. THE PAXOS ALGORITHM

Proposer P1

Proposer P2

Acceptor A1

Acceptor A2

Acceptor A3

prepare request[n=1]

prepare request[n=2]

n=1

n=1

n=2

Figure 6.3: Prepare Phase: Proposers P1 and P2 each send

prepare requests to every acceptor. Proposer P1 ’s request

reaches acceptors A1 and A2 first, and proposer P2 ’s request

reaches acceptor A3 first.

If the acceptor receiving a prepare request has not seen another proposal, then he

responds with a prepare response and promises never to accept another proposal with a

lower proposal number. This is illustrated in 6.4, which shows the responses from each

acceptor to the first prepare request they receive.

prepare request[n=1]
P1

P2

A1

A2

A3

prepare request[n=2]

n=1

n=1

n=2

prepare accept
[no previous]

prepare accept
[no previous]

prepare accept
[no previous]

Figure 6.4: Prepare Phase: Each acceptor responds to the

first prepare request message that it receives with a prepare

accept message and a promise not to accept any requests num-

bered with less than n.

Eventually, acceptor A3 receives proposer P1 ’s request, and acceptors A1 and A2

80

CHAPTER 6. THE PAXOS ALGORITHM

prepare request[n=1]
P1

P2

A1

A2

A3

prepare request[n=2]

n=1

n=1

n=2

prepare accept
[no previous]

prepare accept
[no previous]

prepare accept
[n=1]

prepare accept
[n=1]

prepare reject

Figure 6.5: Prepare Phase: If the acceptor has not seen a

request with a higher proposal number, the prepare request is

rejected. Otherwise, he sends back the highest n he has seen.

receive proposer P2 ’s request. If the acceptor has already seen a request with a higher

proposal number, the prepare request is ignored, as is the case with proposer P1 ’s request

to acceptor A2. If the acceptor has not seen a higher numbered request, it again promises

to ignore any requests with lower proposal numbers, and sends back the highest-numbered

proposal that it has accepted along with the value of that proposal, if any. Otherwise, he

sends back the highest n he has seen.

P1

P2

A1

A2

A3

accept request[n=1,v1]

accept request[n=2,v2]

n=2

n=2

n=2

Figure 6.6: Accept Phase: Once a proposer receives accep-

tance from a majority of acceptors he then sends an accept

message. Both P1 and P2 received replies from a majority of

acceptors so they both send accept messages.

81

CHAPTER 6. THE PAXOS ALGORITHM

P1

P2

A1

A2

A3

accept request[n=1,v1]

accept request[n=2,v2]

n=2

n=2

n=2

rejectedrejectedrejected

accepted accepted accepted

Figure 6.7: Accept Phase: requests from proposer P1 are

ignored by every acceptor.

Once a proposer has received prepare responses from a majority of acceptors he can

issue an accept request. The acceptors haven’t accepted any values yet, so proposer P1

only received responses indicating that there were no previous proposals. Therefore he

sends an accept request to every acceptor with the same proposal number as his initial

proposal, thus n = 1, and a value v1 that he proposes. Suchlike, proposer P2 sends an

accept request to each acceptor containing the proposal number it previously used (n = 2)

and the value v2 he proposes.

However, requests from proposer P1 are ignored by every acceptor because they have

all promised not to accept requests with a proposal number lower than 2 (in response

P1

P2

A1

A2

A3

learn[v2]

n=2

n=2

n=2

Learner

Figure 6.8: Learn Phase: Proposer P2 received accept mes-

sages from majority of acceptors so he broadcasts the elected

value to all learners.

82

CHAPTER 6. THE PAXOS ALGORITHM

to the prepare request from proposer P2). On the other hand, all requests from P2 are

accepted by every acceptor.

Lastly, proposer P2, after receiving an accepted message from a majority of acceptors,

he then sends a learn message to all learners with the value chosen; in this case v2.

Once a value has been chosen by Paxos, further communication with other proposers

cannot change this value. If another proposer, proposer P3, sends a prepare request

with a higher proposal number than has previously been seen, and a different value, i.e.

n = 3, v3, each acceptor responds with the previous highest proposal [n = 2, v2]. This

requires proposer P3 to send an accept request containing [n = 2, v2], which only confirms

the value that has already been chosen. Furthermore, if some minority of acceptors have

not yet chosen a value, this process ensures that they eventually reach consensus on the

same value.

83

Chapter 7

Applying Detectors and Paxos to

DRTRM

Our implementation of the detectors as well as the Paxos algorithm was included into

the source code of DRTRM. Thus, we used the exact same design decisions with DRTRM

as described extensively in chapter 4 of [17] combined with some additions we made.

Summarily, the following decisions were used:

1. We assume a coarse-grained, homogeneous, partially-sychronous system, where pos-

sible failures can only be caused by crashes (see chapters 1 and 3 for more details).

2. For the internal state of nodes we used exactly the same states as DRTRM. Three

more states were added; NEW IDAG, NEW MANAGER and PAXOS ACTIVE.

Their use is described in section 7.3.

3. As far as the states of an application are concerned no modifications were made.

4. For the Inter-node communication, we further implemented the signals described in

tables 7.1, 7.2, 7.4, 7.3 .

5. Deadlock prevention was completely changed as described in section 7.1.

6. Inter-node synchronization is reached through semaphores. These semaphores are

also stored in shared memory so that processes can access semaphores of other nodes.

7.1 Deadlock Detection

As described in section 5.3 the DRTRM framework uses an interaction between nodes

in order to prevent deadlocks. Even though this approach works in deadlock prevention

between two nodes, in case of more complex deadlock scenarios, this implementation

85

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

is problematic. As mentioned in chapter 4 the best approach to handle deadlocks in

distributed systems is deadlock detection. Assuming that the SCC platform is based on

message passing communication, we can treat it as a distributed system, where each core

is a process of the system. Thus, in order to handle deadlocks we applied to DRTRM the

Chandy-Misra-Hass detection algorithm [23].

7.1.1 Chandy-Misra-Hass Detection Algorithm

7.1.1.1 Theory

The algorithm proposed by Chandy, Misra and Hass (1983) is considered an edge-

chasing, probe-based algorithm (see sec. 4.1.3) and is considered one of the best deadlock

detection algorithm for distributed systems. The algorithm consists of the following steps:

Step 1:If a process makes a request for a resource which fails or times out, the process

generates a probe message and sends it to each of the processes holding one or more of

its requested resources. Each probe message contains he following information:

• The id of the process that is blocked. That’s the process that initiated the probe

message.

• The id of the process that is sending this particular version of the probe message

and

• The id of the process that should receive this probe message.

Step 2: When a process receives a probe message, it checks to see if it is also waiting

for resources. If not, it is currently using the needed resource and will eventually finish

and release the resource. If it is waiting for resources, it passes on the probe message to

all processes it knows to be holding resources it has itself requested. The process first

modifies the probe message, changing the sender and receiver ids.

Step 3: If a process receives a probe message that it recognizes as having initiated, it

knows there is a cycle in the system and thus, deadlock.

In figure 7.1 we can see an example of how deadlock detection is achieved using this

algorithm:

In this example, P1 initiates the probe message, so that all the following messages

have P1 as the initiator. When the probe message is received by process P3, it modifies

it and sends it to two more processes and so on. Eventually, the probe message reaches

P1, thus, deadlock.

The algorithm of Chandy-Misra-Hass has many advantages which make it one of the

best deadlock detection algorithms:

86

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

P1

P3

P5

P2

P4

(P1,P1,P3)

(P1,P3,P5)

(P1,P3,P2)

(P1,P2,P1)

(P1,P2,P4)

Figure 7.1: Example of Chandy-Misra-Hass deadlock detection algorithm

⊕ It is easy easy to implement.

⊕ Each probe message is of fixed length

⊕ There is very little computation

⊕ There is very little overhead

⊕ There is no need to construct a graph, nor to pass graph information to other

processes.

⊕ It does not detect phantom deadlocks.

⊕ There is no need for special data structures.

7.1.1.2 Implementation

The deadlocks were basically happening when a core had to write data to the memory

of another core. In such a situation the former locks a semaphore in order to access the

memory exclusively. The semaphore is unlocked when the latter successfully reads the

data from his memory. However, in a situation where node P1 waits for P2 who waits for

P3 the semaphores will never be unlocked, leading to a deadlock. For that reason, before

we wait on a semaphore, we first send a signal identical to that described in the previous

section. If we do not receive any similar signal back we lock the semaphore and proceed

to write to the memory of the core needed. For this implementation, all we need is an

extra signal called 〈SIG DLOCK DETECT 〉.

87

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

7.2 Failure Detection

As described in section 4.2 there are eight different classes of failure detectors. For the

DRTRM framework we first implemented two different classes, the perfect failure detector

P and the eventually perfect failure detector ♦P as presented in [11]. However, after

consideration we also implemented a third failure detector called tweaked perfect failure

detector Pt, which is based on P but uses much less computational effort.

7.2.1 Perfect Failure Detector P

7.2.1.1 Theory

For the perfect failure detector we assume the crash-stop process abstraction (see sec.

3.2.1) and that our system is synchronous. Thus, crahses can be accurately detected using

timeouts. For example, if a process sends a message to another process, then if the former

does not receive a responce within a time period equal to the worst-case delivery time then

the latter would have eventually crashed. So, all we need to figure out is the maximum

delivery time of messages.

The perfect failure detector P never changes its mind about failures and detections

are permanent. In other words, once a process p is detected by some process q, the

process p remains detected by q forever. Hence, P satisfies both strong accuracy and

strong completeness. In algorithm 6 we present the operation of P (check sec. 3.1.1 for

notations).

7.2.1.2 Implementation

As shown in algorithm 6 in order to implement P we need two extra signals and a

timer. For the timer implementation we used POSIX timers. POSIX timers are provided

by Linux for an efficient way to have a timer per process. A timer is set and upon

its expiration, a signal is sent to the respective process. This signal is handled by the

appropriate signal handling function as any other common signal. Inside this handling

function, when a core detects another core as faulty, except for the Paxos initiation, it

also checks if the failed core was inside his cluster and removes him from his DDS list, if

the detector was a controller core. On the other hand, if the detector is a manager core

he checks if the faulty core was a worker of him. If yes, he reappoints the workload of the

failed core to another worker of his.

To present a closest to real-life implementation we do not start all timers at the same

time. Instead, we set an initial delay of rand(node id mod 10) and after that initial delay

we set the delay ∆ of the failure detector.

88

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

Algorithm 6 Perfect Failure Detector P
1: procedure pfd init

2: alive := Π

3: detected := ∅
4: starttimer(∆)

5: end procedure

6: procedure timeout handler

7: for each p in Π do

8: if (p /∈ alive) ∧ (p /∈ detected) then

9: detected := detected ∪ {p}
10: end if

11: Send: heartbeat request(q,p)

12: end for

13: alive := ∅
14: starttimer(∆)

15: end procedure

16: procedure heartbeat request handler(q,p)

17: Send: heartbeat reply(p,q)

18: end procedure

19: procedure heartbeat reply handler(p,q)

20: alive := alive ∪ {p}
21: end procedure

As far as the signals are concerned we added two signals: 〈SIG HEARTBEAT REQ〉
and 〈SIG HEARTBEAT REP 〉 the handlers of whom are shown in algorithm 6.

7.2.2 tweaked Perfect Failure Detector Pt

7.2.2.1 Theory

Since messages are sent between timer explotions, one improvement that could be

made is to send a HEARTBEAT request only if we have not received any message from a

node during the time ∆. This will decrease the overhead of messages of P. In algorithm

7 we see the pseudocode of the tweaked Perfect Failure Detector

89

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

Algorithm 7 tweaked Perfect Failure Detector Pt
1: procedure tpfd init

2: alive := Π

3: detected := ∅
4: suspected := ∅
5: starttimer(∆)

6: end procedure

7: procedure timeout handler

8: for each p in Π do

9: if (p ∈ suspected then

10: detected := detected ∪ {p}
11: end if

12: if (p /∈ alive) ∧ (p /∈ detected) ∧ (p /∈ suspected) then

13: suspected := suspected ∪ {p}
14: Send: heartbeat request(q,p)

15: end if

16: end for

17: alive := ∅
18: starttimer(∆)

19: end procedure

20: procedure heartbeat request handler(q,p)

21: Send: heartbeat reply(p,q)

22: end procedure

23: procedure any signal received handler(p,q)

24: alive := alive ∪ {p}
25: if (p ∈ suspected) then

26: suspected := suspected \ {p}
27: end if

28: end procedure

7.2.2.2 Implementation

For implementation, the same principles as P were used. An extra addition was needed

in the code to update the suspected list any time we received a message.

90

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

7.2.3 Eventually Perfect Failure Detector ♦P

7.2.3.1 Theory

For the eventually perfect failure detector we assume the crash-stop process abstraction

(see sec. 3.2.1) and that our system is partially synchronous. An eventually perfect failure

detector detects crashes accurately after some time, but may make mistakes before that

time. This happens due to the fact that timeout delays have to be adjusted so they can

lead to correctly detected crashes.

91

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

Algorithm 8 Eventually Perfect Failure Detector ♦P
1: procedure epfd init

2: alive := Π

3: suspected := ∅
4: delay := ∆

5: starttimer(∆)

6: end procedure

7: procedure timeout handler

8: if alive ∩ suspected 6= ∅ then

9: delay := delay + ∆

10: end if

11: for each p in Π do

12: if (p /∈ alive) ∧ (p /∈ suspected) then

13: suspected := suspected ∪ {p}
14: else if (p ∈ alive) ∧ (p ∈ suspected) then

15: suspected := suspected \ {p}
16: end if

17: Send: heartbeat request(q,p)

18: end for

19: alive := ∅
20: starttimer(∆)

21: end procedure

22: procedure heartbeat request handler(q,p)

23: Send: heartbeat reply(p,q)

24: end procedure

25: procedure heartbeat reply handler(p,q)

26: alive := alive ∪ {p}
27: end procedure

More specifically, an eventually perfect failure detector also uses timeouts, but in this

case increasing ones, and suspects processes that did not send heartbeat messages within

this time delay. The duration of the timeout is crucial if we need a quick detection.

Obviously, a suspicion may be wrong in a partially synchronous system. A process p may

suspect a process q, even if q has not crashed, simply because the timeout delay chosen

by p to suspect the crash of q was too short. In this case, p’s suspicion about q is false.

92

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

However, p can change its suspicion if he receives a message from q. Algorithm 8 shows

the pseudocode of ♦P.

7.2.3.2 Implementation

As for both P and Pt we also used here a posix timer and two signals as described in

7.2.1.2.

7.3 Paxos

For the Paxos algorithm, as a first step we created the necessary signal handlers for

the algorithm to work. That is to say, signals regarding the prepare and accept phases of

the algorithm. A Paxos instance is ran inside the cluster of the failed core in case of a

controller failure or among the workers of a manager, inside of a manager failure. Thus,

all signals regarding Paxos itself are sent between cores in the same cluster except for

〈SIG LEARN〉 which is spread throughout the platform in order for all the cores to learn

the outcome of Paxos. This is shown in figure 7.2

C2

C1

Controller Core

Cluster area of 2nd Controller

Cluster area of 1st Controller

Legend

PAXOS

C2

C1

New Controller

SIG-LEARN

Figure 7.2: A Paxos instance is ran inside a single cluster,

whereas the SIG LEARN is spread throughout the platform

However, making Paxos work at its own was not enough. We had to do further modifi-

cations on the code for DRTRM to work properly after a Paxos instance. In detail, we had

to overcome issues regarding cases of failures for all different types of core nodes, meaning

controllers, managers and workers. For that purpose, a very important modification was

the addition of a feature to the cores list of each manager in order to keep the workload

of each worker core. This will help us to recover in several failure scenarios that will be

stated below.

7.3.1 Controller Failure

In case of a controller failure, there are two possible scenarios:

93

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

(1) The crashed controller core is in the same cluster as the core that detected the

failure. In this case, the core that detects the failure sends a 〈SIG CONTR TO〉
to all cores inside the cluster of the crashed controller so they can start a Paxos

instance.

(2) The crashed controller core is in a different cluster as the core that detected the

failure. In this case, a Paxos instance is initiated as long as a core realizes that his

controller has failed.

C2

C1

Controller Core

Cluster area of 2nd Controller

Cluster area of 1st Controller

Legend

PAXOS

C2

C1

! ! Core detects failure

SIG-CONTR-TO

(a) A core inside the failed controller’s cluster detects the failure

and a Paxos instance is began

C2

C1

PAXOS

C2

C1

!

C2

C1

!

(b) A core outside the failed controller’s cluster detects the failure

so he sends a SIG CONTR TO signal to all cores inside C1’s cluster

Figure 7.3: Failure Detection Scenarios

After this point, the workaround of each scenario is the same as described in chapter

6 and a new controller will eventually be elected. When the new controller is elected we

have to ensure the correctness of DRTRM before proceeding.

First of all, the new controller has to create his controller list and DDS list (see sec.

5.1.1). Thus, when a controller on another cluster receives a 〈SIG LEARN〉 from the new

controller he replies with 〈SIG LEARN ACK CONTR〉. That way, the new controller

will eventually find out all the other controllers to create his controller list. In similar,

when a manager receives a 〈SIG LEARN〉 he checks his core list. If he owns a core

inside the cluster of the new controller he replies with 〈SIG ADD TO DDS〉, so the new

94

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

controller can add him to his DDS list. Last but not least if any manager was waiting for

offers (that is his state was IDLE AGENT WAITING OFFERS he changes his state

to IDLE AGENT. These are shown in figure 7.4

Controller Core

Legend

C2

C1

New Controller

SIG-LEARN

C2

C1

Manager Core

C2

C1

DDS LIST

CONTROLLERS LIST

id : 8

id : 15

id : 7

Worker Core

1. Core 7, 2 Cores

1. Core 8

2. Core 4

id : 4

SIG-ADD-TO-DDS

Figure 7.4: Update of DDS and controllers list in case of

a controller failure. Controllers and managers inform the

new controller by sending a SIG LEARN ACK CONTR and

SIG ADD TO DDS respectively.

Secondly, we have to check which was the previous state of the new controller. Three

possible roles are available: manager, worker and idle core, because the new controller

is elected from inside the cluster of the previous one and controllers in each cluster are

unique.

In practice, the new controller can never be a manager. In case a manager receives

a prepare-accept from a majority of acceptors, he does not propose himself as the new

controller. Instead, he proposes a worker of his as shown in figure7.6.

95

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

C2

C1

C2

C1

!

C2

C1

PAXOS

SIG_ADD_TO_DDS

SIG_ACCEPT_REQUEST(6)

id:6

SIG_LEARN_ACK_CONTR

PAXOS

SIG_REINIT_APP

Figure 7.5: Workaround when new controller was a manager.

In case the new controller was a worker core, then he has to reassign the workload he

was executing to a new core. Thus, he sends a 〈SIG REINIT APP 〉 to edw kati so that

he can find a new worker core for this workload.

Finally, in case the new controller was an idle core nothing more has to be done.

Both DDS and controller lists are already created previously. After ensuring the above

are fulfilled, the state of the new controller is changed to NEW IDAG and framework

continues to work properly.

7.3.2 Manager Failure

In order to manage the manager failure we added a new type of list to each worker called

the coworkers list. Each time a manager sends a 〈SIG APPOINT WORK〉 signal in

order to assign workload to his worker cores, he also informs them who their coworkers are.

On their side, the workers save the ids of their coworkers in the coworkers list mentioned

above. This is very important in order to recover from a manager failure.

C2

C1

id: 4

id: 6

id: 7

id: 5

id: 12

id: 14

SIG_APPOINT_WORK

sender

id

sig

id

of

coworkers

coworker

#1 id

coworker

#2 id

coworker

#3 id

coworker

#4 id

coworker

#5 id

7 55 5 4 5 6 12 14

Figure 7.6: When a manager sends a

〈SIG APPOINT WORK〉 he also sends the coworkers

of the node.

So, in case of a manager failure all cores will eventually detect the failure with P or ♦P.

Once they do, they take the appropriate actions based on their type, meaning controller,

96

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

manager or worker.

If a worker realizes that his manager has failed, he initiates a Paxos instance. The

Paxos algorithm is ran between the workers of the manager and the new manager will

be one of the current workers. As we can see, the coworkers list helps us here in or-

der to begin the Paxos algorithm as we can easily find which nodes we will send the

〈SIG PREPARE REQUEST 〉 signal to. As soon as the new manager is elected, a

〈SIG LEARN〉 is spread throughout the platform. In addition, the new manager has to

find out the remaining workload of the application, as well as other information regard-

ing the application itself. For that purpose, he scans the log file of the application (as

described in section 5.1.2) in order to find out the information he needs.

If a controller realizes that a manager core has timed out, he checks his DDS list to

see if that manager was owning cores inside his cluster. If he was, he removes him from

his DDS list. Additionally, if the manager was inside his cluster, he also has to remove

him from his cores list. Lastly, when a controller receives a 〈SIG LEARN〉 he updates

his DDS list again, by adding the new manager to it, if he has to.

If a manager finds out that another manager has failed, no action has to be taken.

The manager continues to work as before. The above are shown in figure 7.7

!

!

!

! PAXOS

Update DDS

Update DDS

and cores list

Update DDS

Update DDS

Figure 7.7: Workaround when a manager fails.

7.3.3 Worker Failure

In case of a worker failure, there is no need to run a Paxos instance. A manager will

eventually realize that a worker he owns has crashed (using either P or ♦P). As soon as

he finds out, he checks his core list to determine which worker is currently not doing any

job and reappoints the workload of the failed node to this core.

7.4 Signals Summary

In the following tables we summarize all the signals used to implement the detectors

as well as the Paxos algorithm and ensure the correct operation of the framework after

the failure:

97

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

Table 7.1: Deadlock Detection Signals

Name Description

〈SIG CONTR TO〉 If a core detects that a controller of another cluster Cj has

crashed, it sends this signal to all the cores inside Cj in order

to start a Paxos instance.

Table 7.2: Failure Detection Signals

Name Description

〈SIG HEARTBEAT REQ〉 If the timeout period ∆ and a core is suspected to have

crashed, this signal is sent in order to check the state of

the core.

〈SIG HEARTBEAT REP 〉 If a core receives a 〈SIG HEARTBEAT REQ〉 he

replies with this signal.

〈SIG CONTR TO〉 If a core detects that a controller of another cluster Cj

has crashed, it sends this signal to all the cores inside Cj

in order to start a Paxos instance.

Table 7.3: Recovery after Paxos

Name Description

〈SIG LEARN ACK CONTR〉 Once a controller from a different cluster learns that

a new controller has been elected he sends this signal

to the new controller so that he can configure his idag

array.

〈SIG ADD TO DDS〉 Once a manager receives 〈SIG LEARN〉 from a core

that is inside a cluster, in which he owns cores he sends

this signal to the new controller so that he can update

his DDS list.

〈SIG REINIT APP 〉 If the new controller was a worker core, he sends this

message to his manager core in order to reassign the

workload to another worker.

98

CHAPTER 7. APPLYING DETECTORS AND PAXOS TO DRTRM

Table 7.4: Paxos Signals

Name Description

〈SIG PREP REQ〉 Once a core realizes that his controller or manager has

crashed, he picks a proposal number n and sends this

signal to all corresponding cores along with n, thus

becoming a proposer, p.

〈SIG PREP ACC NO PREV 〉 If an acceptor has not accepted any values yet he

replies with this message to the 〈SIG PREP REQ〉
of p.

〈SIG PREP ACC〉 If an acceptor has accepted a value, he replies with

this message to the 〈SIG PREP REQ〉 sent by p,

along with the highest proposal number accepted and

the corresponding accepted value.

〈SIG ACC REQ〉 Once a proposer has received 〈SIG PREP ACC〉
and 〈SIG PREP ACC NO PREV 〉 from a quorum

of acceptors, he sends this signal along with his pro-

posal number n and his proposing value as described

in section 6.2.3.2.

〈SIG ACCEPTED〉 If the acceptor has not seen a higher proposal number

than n he accepts the proposed value and sends this

signal to p.

〈SIG LEARN〉 As long as p receives 〈SIG ACCEPTED〉 from a

quorum of acceptors, his proposed value is chosen so

he broadcasts the chosen value to all cores.

99

Chapter 8

Theoretical and Experimental Results

Before proceeding, we first denote the following symbols which will be used for the

theoritical analysis of our implementation:

Table 8.1: Definition Table

Denotement Description

∆ Delay of Failure detectors as denoted in 7.2.

T Time until all applications have finished.

N Number of nodes in the platform.

K Number of clusters which equals with the number of controllers.

ni ith node.

ci If ith node is a controller core then ci = 1 else ci = 0.

mi If ith node is a manager core then mi = 1 else mi = 0.

nik If node ni belongs to cluster k then nik = 1 else nik = 0

wji If node j is worker of node i then wji = 1 else wji = 0

8.1 Detectors Overhead

In all scenarios we use either the Perfect Failure Detector P or the Eventually Per-

fect Failure Detector ♦P which we described in 7.2. In each case, each core sends a

〈SIG HEARTBEAT REQ〉 to all other cores and waits for a 〈SIG HEARTBEAT REP 〉
every ∆ seconds.

When using either P or ♦P the overhead of our implementation in terms of messages

exchanged is: (
T
∆

)(
2×

(
N − 1

)
×
(
N − 1

))
= 2
(
T
∆

)(
N − 1

)2

101

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

For P this overhead is always the same. On the other hand, for ♦P this is the worst case

scenario where each time the timer explodes there is at least one suspected core.

8.2 Scenarios

8.2.1 Controller Timeout

For the case of a controller timeout we denote:

Nk =

N∑
i=0

nik

as the number of cores inside the kth, cluster as well as:

M =

N∑
i=0

mi

as the total number of managers in the platform. As described in chapter 8.3 in a controller

timeout there are two possible workarounds:

1. A core outside the cluster f of the failed controller detects the failure:

In this case the core that detected has to send a 〈SIG CONTR TO〉 to all cores

inside f except the failed node cf . In the worst case where every node outside the

cluster detects the failure, then

(
N −Nf

)
×
(
Nf − 1

)
messages are exchanged.

2. A core inside the cluster f of the failed controller detects the failure:

In this case no messages are sent and a PAXOS instance is initiated.

For PAXOS, each core that received a 〈SIG CONTR TO〉 or detected the failed con-

troller. sends a 〈SIG PREPARE REQ〉 to all other nodes inside the cluster except for

the controller. Similarly with above that is:(
Nf − 1

)
×
(
Nf − 1

)
=
(
Nf − 1

)2
messages. In the worst case scenario where the messages arrive in order compared

to the proposal number then each core will accept the prepare request and reply with a

〈SIG PREPARE ACC NO PREV 〉. That is an additional
(
Nf − 1

)2
messages.

In the above case, all nodes will receive a majority of responses in their prepare request.

So they are all going to broadcast a 〈SIG ACC REQ〉 to all nodes inside the cluster which

makes us another
(
Nf −1

)2
messages. However, only one of this requests will be accepted,

102

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

the one with the higher proposal number. The other will be rejected resulting in
(
Nf − 1

)
messages. When the new controller finally receives 〈SIG ACCEPTED〉 from a majority

of acceptors he spreads a 〈SIG LEARN〉 throughout the platform. Summing the above,

we find that the PAXOS overhead in terms of messages exchanged is:(
Nf − 1

)2
+
(
Nf − 1

)2
+
(
Nf − 1

)2
+
(
Nf − 1

)
+
(
N − 1

)
=

3
(
Nf − 1

)2
+ Nf + N − 2

After the new controller has been elected, each other controller sends a 〈SIG LEARN ACK CONTR〉.
Thus,

(
K − 1

)
, because each cluster has one controller.

Similarly, if a manager utilizes a core inside cluster f he sends a 〈SIG ADD TO DDS〉
to the new controller. Assuming that every manager utilizes at least one core inside f ,

that makes us an additional M messages. Finally, if the new controller was a worker core

he sends a 〈SIG REINIT APP 〉 to his manager in order to reappoint the remaining

workload.

Summarizing, in case of a controller timeout the worst case overhead in terms of

message exchanged in order to return to stability is:(
N −Nf

)
×
(
Nf − 1

)
+ 3
(
Nf − 1

)2
+ Nf + N − 2 +

(
K − 1

)
+ M + 1 =

O
((

Nf

)2)
As we see, for our implementation the size of the cluster is the value which affects the

most the performance of the protocol.

8.2.2 Manager Timeout

For the manager failure scenario we denote:

Wi =

N∑
j=0

wji

as the number of workers of node i. In a manager failure, a PAXOS instance is initiated

only when a worker finds out that his manager f has failed. We found the overhead of

PAXOS in the previous section. By replacing Nf with the number of workers of the failed

manager we result in:(
Wf

)2
+
(
Wf

)2
+
(
Wf

)2
+ Wf + N = 3

(
Wf

)2
+ Wf + N =

O
((

Wf

)2)
After the new manager has been elected, no more messages have to be sent.

103

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

8.2.3 Worker Timeout

In case of a worker timeout there is no actual overhead. Only one additional message is

sent from the manager of the failed worker to one of his other workers in order to reappoint

the workload.

104

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

8.3 Experimental Setup

In this section, we present our experimental results on the NoC simulator. As men-

tioned again in chapter the code of detectors and Paxos was included into the source code

of DRTRM. The setup of the simulator in order to imitate a real MPSoC was:

• Each core runs as a distinct process. This is achieved by the following procedure;

When we run the NoC simulator executable, there is an initial process triggered.

This process acts as node 0 and is always a controller core in every simulation. This

node forks all other controller cores. Subsequently, all controller cores fork the nodes

they are responsible for. This is shown in figure 8.1

0

c1

controller

cm cn

controller controllercontroller

... ...

ni1 nj1 nim njm nin njn...

idle idle

Figure 8.1: Fork nodes in NoC simulator

• For the implementation of P, Pt and ♦P a POSIX timer was used at each process.

To present a closest to real-life implementation we do not start all timers at the

same time. Instead, we set an initial delay of rand(node id mod 10) and then set

the original delay ∆.

• As described in section 1.2.4, the SCC platform uses a Message Passing Buffer to

0

number_of_cores * line_size * max_signal_length

1 ... N

...

index-top

index-bottom

...

...

WRITE
READ

Figure 8.2: Memory in Noc Simulator

105

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

allow cores to communicate with each other. Thus, in order to give an accurate

representation of the platform in the simulator we allocate a block of memory equal

to number of cores× line size×max signal length. Each core keeps a pointer to

the beginning and the end of the block that belongs to him. Messages are written

to this block of memory in a Round-Robin way. Each core can write to any space in

this memory, but can read only from his own. This is shown in figure 8.2. Index top

keeps track of the most recent message in the memory, whereas index bottom keeps

track of the older message in the message, which is the message to be processed next.

For almost all graphs we executed the corresponding measurements 10 times and the

results presented are the average outputs. The grid size we used was 6x8 with different

topologies, some of which are shown in the following figure:

(a) 2 controllers sample grids

(b) 4 controllers sample grids

Finally, all simulations were made in a system composed by an Intel Xeon Processor

E5-2658 v3 with 12 cores and 24 threads as well as 30MB of cache memory. This setup

presents a closer approximation to a real MPSoC due to the fact that the processes are

spread throughout more cores. In addition, the high capacity of the cache memory results

in less context switches inside the memory. Thus, the delays of the memory access are

106

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

(c) 6 controllers sample grids

(d) 8 controllers sample grids

Figure 8.3: Different grid formations

closer to those of an on-Chip system.

107

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

8.4 Results

8.4.1 Different failure detectors

In figure 8.4 we can see the average log10(messagecount) vs. the cluster size. In

this graph we can see that the message count for P is almost identical to the DRTRM

message count, or even sometimes greater. That is the main reason we implemented the

tweaked Perfect failure detector Pt. In this graph we also confirm our theoretical results

that Paxos message count is proportional to the cluster size, but we will show detailed

information in later figures. As far as ♦P is concerned, the results are identical to those

of P. This happens because the upper bound delay in communications on chip is much

less than 4 seconds, which is the lowest delay we measured. In cases where we used delays

that would make a difference between these two, we experienced memory overflow issues

because messages were written faster than they were read and processed.

24 12 8 6

lo
g
 (

M
es

sa
g
e

co
u
n
t)

Cluster size

Message count of DRTRM, Paxos and PFD vs. cluster size

DRTRM

PFD

Paxos

16 applications - delay = 4

Figure 8.4: DRTRM, Paxos and PFD message count vs. cluster size

In figure 8.5 we see a comparison between P and Pt. More specifically, we present the

average message count per second for different ∆ in the Failure Detector algorithm. As we

can see P uses 3 times more messages than Pt in both 16 and 32 application. In addition,

for more applications P exchanges more messages per second, whereas Pt exchanges less.

This happens because when more applications are executed in the platform, more cores

108

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

are utilized, thus leading in more DRTRM messages exchanged between cores. As a result,

Pt has to send less messages than P.

310

138

86

277

132

85

979

500

316

956

498

311

0

200

400

600

800

1000

1200

4 8 12

M
es

sa
g
e

co
u
n
t

p
er

 s
ec

o
n
d

Different Δ for the Failure Detectors (sec)

PFD and tPFD Message count vs. delay Δ for 16 and 32
applications

PFD Messages - 16 applications

tPFD Messages - 16 applications

PFD Messages - 32 applications

tPFD Messages - 32 applications

Figure 8.5: Comparison between P and Pt

Although Pt seems better than P, there is a drawback in the delay of failure detection

and stability. As we see in figures 8.6 and 8.7 Pt takes more time to detect the failure

and thus return to stable state. This happens because practically Pt needs 2∆ time to

detect the failure. In the first ∆ seconds it detects if a message has been exchanged with

another core, and if not it sends a 〈HEARTBEAT REQ〉 signal to the suspected core.

In the next ∆ seconds it waits for a 〈HEARTBEAT REP 〉. If it does not receive one, it

detects the core as faulty.

109

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

54.340

20.799

13.599

4

8,6

12

4,2

8,6

12,2

0

2

4

6

8

10

12

14

0

10000

20000

30000

40000

50000

60000

4 8 12

D
et

ec
ti
o
n
 a

n
d
 S

ta
b
il
it

y
 t

im
e

(s
ec

)

P
er

fe
ct

 F
a
il
u
re

 D
et

ec
to

r
M

es
sa

g
e

co
u
n
t

Different Δ for the Perfect Failure Detector (sec)

Message count of PFD and detection delays vs. delay Δ for controller
failure

PFD Message count Detection Delay Stability Time

16 applications - 4 controllers

16 applications - 4 controllers

Figure 8.6: Failure detection and stability delay of P for dif-

ferent ∆.

13.898

6.006

4.077

7,6

17,4

22

7,8

18

22

0

5

10

15

20

25

0

2000

4000

6000

8000

10000

12000

14000

16000

4 8 12

D
et

ec
ti
o
n
 a

n
d
 S

ta
b
il
it

y
 t

im
e

(s
ec

)

tw
ea

k
ed

 P
er

fe
ct

 F
a
il
u
re

 D
et

ec
to

r
M

es
sa

g
e

co
u
n
t

Different Δ for the tweaked Perfect Failure Detector (sec)

Message count of tPFD and detection delays for different Δ for
controller failure

tPFD Message count Detection Delay Stability Time

16 applications - 4 controllers

Figure 8.7: Failure detection and stability delay of Pt for

different ∆.

110

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

8.4.2 Different failure scenarios

As explained in 8.2 the message count for Paxos depends on the size of cluster in case

of a controller failure, whereas in case of a manager failure it is propotional to the number

of coworkers. Similarly with the failure detectors, we sacrifice detection and stability delay

to achieve less message transaction between cores in the case of manager failure. In figure

8.8 we see the average of messages exchanged in order to recover after a controller failure

as well as the probability that a core inside or -outside the failed core’s cluster detects the

failure. As we expect the messages exchanged when detected from inside the cluster are

much more less than when detected from outside the cluster, because in this situation we

come through some of the (N−Nf)×(Nf−1) messages needed for the 〈SIG CONTR TO〉
signal. In addition, it is pretty obvious that shortening the cluster size results in higher

probability of outside the cluster detection.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

200

400

600

800

1000

1200

1400

1600

24 12 8 6

P
ro

b
a
b
il
it
y
 o

f
d
et

ec
ti
o
n

P
a
x
o
s

M
es

sa
g
e

co
u
n
t

Cluster Size

Message count of Paxos and probability of detection from inside or
outside cluster vs cluster size for controller failure

Outside cluster detect Inside cluster detect Outside Probability Inside Probability

Figure 8.8: Paxos message count vs. cluster in case of con-

troller failure

However, this is less of a concern because in smaller cluster sizes Nf gets smaller

resulting in less messages. In figures 8.9 and 8.10 we see how the message count scales

for different cluster sizes in both manager and controller failure as well as the delay until

detection and stability.

111

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

0

100

200

300

400

500

600

700

800

24 12 8 6

Cluster Size

Paxos Message count vs. cluster size in case of
controller and manager failure

Controller Failure

Manager Failure

Grid size : 8x6

Figure 8.9: Message count vs. cluster size for controller and manager

failure

0

2

4

6

8

10

12

14

16

18

4 8 12

D
et

ec
ti
o
n
 a

n
d
 S

ta
b
il
it
y
 t

im
e

(s
ec

)

Different Δ for the Perfect Failure Detector (sec)

Detection and Stability Time vs. delay Δ of PFD
for controller and manager failure

ControllerDetection

Controller Stable

Manager Detection

Manager Stable

Figure 8.10: Detection and Stability time vs. cluster size for controller

and manager failure

112

CHAPTER 8. THEORETICAL AND EXPERIMENTAL RESULTS

8.4.3 Larger grid size

In DRTRM the maximum number of coworkers a core can have is 8. Therefore, when

simulating larger grid sizes where N >>
(
Wf

)2
the message count in case of a manager

failure depends on the number of cores in the platform than on the number of coworkers.

In figure 8.11 we present the message count for a larger grid of 16× 12. As we can see the

message count of Paxos in case of a manager failure increases compared to the message

count of 6× 8 grid. This is due to the reason we explained above.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

96 48 32 24 16 12

M
es

sa
g
e

C
o
u
n
t

Cluster Size

Paxos Message count vs. cluster size in case of

controller and manager failure

Controller Failure

Manager Failure

Grid size : 12x16

Figure 8.11: Message count vs. cluster size in 16× 12 grid

113

Chapter 9

Conclusion and future work

9.1 Summary

In the current thesis, we were involved with the problem of deadlock detection, failure

detection and reaching consensus on Network-on-Chip Multi-Processor System-on-Chip.

Firstly, we pointed out the similarities between Networks on Chip and Distributed Systems

by analyzing the main features of both of them. Subsequently, we presented some known

algorithms and protocols about handling failures and reaching consensus which are used in

distributed systems, as well as a resource management framework for NoC platforms which

is known as DRTRM. As the final stage of the thesis, we implemented the abovementioned

algorithms and combined them with the DRTRM framework.

As DRTRM targets both homogeneous and heterogeneous platforms, so does our im-

plementation, because it basically works as an extension to the framework. The modified

framework was tested on a simulator and on an actual NoC platform, that is the Intel

SCC platform. As far as our experimental results are concerned, we examined different

failure scenarios for different type of cores and counted the overhead of the algorithms in

order to return to stable state.

9.2 Future Work

The following sections present ways to further modify the DRTRM framework in order

to support additional features in the future.

9.2.1 Additional Failure Scenarios

In the current thesis we only examined cases where only one failure occurred. In

addition, the type of the failures were only crash-stop ones (as described in section 3.2.1).

However, in real life platforms more than one core may fail to communicate not only

115

CHAPTER 9. CONCLUSION AND FUTURE WORK

by crashing but also by experiencing high latency in communication network. Taking

these into consideration, in future research we could examine additional scenarios where

multiple nodes fail simultaneously or nodes experience crashes with recoveries. Managing

continuous failures can be achieved through Multi Paxos as described below.

Figure 9.1: Future Work: What happens when multiple fail-

ures occur

9.2.2 Paxos Optimizations

A number of optimizations can reduce message complexity and size as well as allow

multiple instances of Paxos. These optimizations are summarized below:

9.2.2.1 Multi-Paxos

We mentioned in the introduction that one of the main useful applications of the Paxos

application is having the group of participants decide on a sequence of numbers. Since

one round of Paxos results in a decision of one value, the naive way to go about finding a

sequence of numbers would be to run Paxos many times.

One optimization that can be made in this case, assuming a single stable leader, is to

skip the prepare phase. If we assume that the leadership will unchanged, there is no need

to continue sending out proposal numbers - the first proposal number sent out will never

be overridden since there is only one leader.

116

CHAPTER 9. CONCLUSION AND FUTURE WORK

Proposer Acceptors Learner

Prepare(n)

Promise(n,r)

Accept(n,r,v1)

Accepted(n,r,v1)

Learn(v1)

(a) In the first round Multi-Paxos acts as basic Paxos.

Proposer Acceptors Learner

Accept(n,r+1,v2)

Accepted(n,r+1,v2)

Learn(v2)

(b) In consequent rounds the new leader only has to send the accept

messages.

Figure 9.2: Example of Multi-Paxos.

Thus, we only need to do the prepare phase once. In subsequent rounds of Paxos,

we can just send the accept messages, with n as the proposal number used in the original

prepare request and an additional parameter that indicates the sequence number, meaning

the current round we are in. We do not have to worry about the worst case where

leadership is not stable, because the algorithm will degrade gracefully into the general

Paxos algorithm (both prepare and accept phases for each round).

9.2.2.2 Cheap Paxos

Cheap Paxos[24] extends Basic Paxos to tolerate F failures with F +1 main processors

and F auxiliary processors by dynamically reconfiguring after each failure.

This reduction in processor requirements comes at the expense of liveness; if too many

main processors fail in a short time, the system must halt until the auxiliary processors

can reconfigure the system. During stable periods, the auxiliary processors take no part

in the protocol.

117

CHAPTER 9. CONCLUSION AND FUTURE WORK

Proposer Aux Learner

-- Phase 2 --

Accept(N,I,V)

Accept(N,I,V)

Accept(N,I+1,W)

Accepted(N,I+1,W)

Main

Accepted(N,I,V)

Accepted(N,I,V)

-- FAIL! --

-- failure detect –

only 2 accepted

Figure 9.3: Example of Cheap Paxos

9.2.2.3 Fast Paxos

Fast Paxos [25] generalizes Basic Paxos to reduce end-to-end message delays. In Basic

Paxos, the message delay from client request to learning is 3 message delays. Fast Paxos

allows 2 message delays, but requires the Client to send its request to multiple destinations.

Intuitively, if the leader has no value to propose, then a client could send an Accept

message to the acceptors directly. The acceptors would respond as in Basic Paxos, sending

accepted messages to the leader and every Learner achieving two message delays from

Client to Learner.

Proposers Acceptors Learners

Any(N,I,Recovery)

Accept(N,I,V)

Accepted(N,I,W)

Accepted(N+1,I,W)

Response(W)

Leader

!!Detect collision

Accepted(N,I,V)

!! Acceptors disagree

on value

Accept(N,I,W)

Figure 9.4: Example of Fast Paxos

118

CHAPTER 9. CONCLUSION AND FUTURE WORK

If the leader detects a collision, it resolves the collision by sending accept messages for

a new round which are accepted as usual. This coordinated recovery technique requires

four message delays from Client to Learner.

The final optimization occurs when the leader specifies a recovery technique in advance,

allowing the Acceptors to perform the collision recovery themselves. Thus, uncoordinated

collision recovery can occur in three message delays (and only two message delays if all

Learners are also Acceptors).

9.2.3 More Paxos

Except for managing failures Paxos can also be used to agree on values proposed by

the SoC cores. For example, imagine a system with multiple sensors which detects the

temperature in different locations of a room. Also, consider that the sensors are connected

to a SoC. Different sensors will detect different values of the temperature. However, if we

want to calculate some results based on the temperature of the room, the cores have to

agree on a single temperature before proceeding.

24 oC

25 oC 23 oC

21 oCPAXOS

25 oC
...

Figure 9.5: Example of multiple sensors proposing different

values on a SoC

119

CHAPTER 9. CONCLUSION AND FUTURE WORK

C2

C1

PAXOS

C2

C1

!

C2

C1

Figure 9.6: Example of multiple sensors proposing different

values on a SoC

C2

C1

PAXOS

C2

C1

!

C2

C1

!

C2

C1

Figure 9.7: Example of multiple sensors proposing different

values on a SoC

120

References

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems Concepts

and Design. Pearson Education, fifth ed., 2005.

[2] M. Salem, “Facebook distributed system case study for distributed system inside face-

book datacenters,” International Journal of Technology Enhancements and Emerging

Engineering Research, pp. 152–160, 2014.

[3] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-

on-chip,” ACM Computing Survey Vol. 38, p. 1–51, 2006.

[4] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,

S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core scc processor: The pro-

grammer’s view,” in Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis, (Washington,

DC, USA), pp. 1–11, IEEE Computer Society, 2010.

[5] T. Mattson and R. van der Wijngaart, “Rcce: a small library for many-core commu-

nication,” Intel Corporation, May, 2010.

[6] L. Lamport, “Paxos made simple,” ACM SIGACT News 32, pp. 18–25, 2001.

[7] M. Burrows, “The chubby lock service for loosely-coupled distributed systems,” Pro-

ceedings of the 7th symposium on Operating systems design and implementation,

pp. 335–350, 2006.

[8] T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live - an engineering per-

spective,” Proceeding PODC ’07 Proceedings of the twenty-sixth annual ACM sympo-

sium on Principles of distributed computing, pp. 398–407, 2007.

[9] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,”

ACM SIGOPS Operating Systems Review Volume 44, pp. 35–40, 2010.

[10] P. Bogdan, T. Dumitraş, and R. Marculescu, “Stochastic communication: A new

paradigm for fault-tolerant networks-on-chip,” VLSI design, vol. 2007, 2007.

121

REFERENCES

[11] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure Dis-

tributed Programming. Springer Berlin, second ed., 2010.

[12] E. Knapp, “Deadlock detection in distributed databases,” ACM Computing Surveys

(CSUR) Volume 19, pp. 303–328, 1987.

[13] R. Holt, “Some deadlock properties of computer systems,” ACM Computing Surveys

(CSUR) Volume 4, pp. 179–196, 1972.

[14] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed sys-

tems,” Journal of the ACM (JACM) Volume 43, pp. 225–267, 1996.

[15] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving

consensus,” Proceedings of the eleventh annual ACM symposium on Principles of

distributed computing, pp. 147–158, 1992.

[16] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris, “Distributed run-

time resource management for malleable applications on many-core platforms,” pp. 1–

6, Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, 1905.

[17] V. Tsoutsouras, “Design and implementation of a run-time resource manager for mal-

leable applications on network-on-chip (noc) architecture,” diploma thesis, National

Technical University of Athens, 2013.

[18] V. Tsoutsouras, S. Xydis, and D. Soudris, “Job-arrival aware distributed run-time

resource management on intel scc manycore platform,” in Embedded and Ubiquitous

Computing (EUC), 2015 IEEE 13th International Conference on, pp. 17–24, IEEE,

2015.

[19] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems

16, pp. 133–169, 1998.

[20] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM

Transactions on Programming Languages and Systems 4, pp. 382–401, 1982.

[21] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The real byzantine

generals,” Digital Avionics Systems Conference, 2004. DASC 04. The 23rd (Volume:2

), pp. 6.D.4 – 61–11 Vol.2, 2004.

[22] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, Computer Safety, Reliability,

and Security: 22nd International Conference, SAFECOMP 2003, Edinburgh, UK,

September 23-26, 2003. Proceedings, ch. Byzantine Fault Tolerance, from Theory to

Reality, pp. 235–248. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

122

REFERENCES

[23] M. Chandy, J. Misra, and L. Haas, “Distributed deadlock detection,” ACM Transac-

tions on Computer Systems (TOCS) Volume 1, pp. 144–156, 1983.

[24] L. Lamport and M. Massa, “Cheap paxos,” in Dependable Systems and Networks,

2004 International Conference on, pp. 307–314, IEEE, 2004.

[25] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103, 2006.

123

	
	
	Abstract
	µ
	Contents
	List of Figures
	Introduction
	Distributed Systems
	Networks On Chip
	Overview
	Communication
	Homogeneity and Granularity
	The Intel SCC platform

	Reliability, Fault Tolerance and Consensus
	Objectives and Contributions

	Related Work
	Google's Chubby
	Apache's Cassandra 2.0
	Stochastic Communication: A New Paradigm for Fault-Tolerant Networks-on-Chip

	Basic Abstractions
	Abstractions in Distributed Systems
	Processes and Messages
	Safety and Liveness

	Crashes and Failures
	Crashes
	Omissions
	Crashes with Recoveries
	Eavesdropping Faults
	Arbitrary Faults

	Timing Assumptions
	Sychronous System
	Asynchronous System
	Partially Synchronous System

	Models in Distributed Systems
	Combining Abstractions
	Quorums
	Performance

	Deadlock and Failure Detection
	Deadlock Detection
	Wait-For-Graphs
	Models of Deadlocks
	Classes of Deadlock Detection Algorithms

	Failure Detection
	Classification of failure detectors
	Classes of failure detectors

	The DRTRM framework
	Cores Types
	Controller Core
	Manager Core
	Initial Core
	Worker Core
	Idle Core

	Core Lists
	Primitives of Deadlock Prevention in DRTRM
	Overview

	The Paxos Algorithm
	Byzantine Fault Tolerance
	Basic Paxos
	Agent Types
	Distinct Proposal Numbers
	Phases
	Overview
	Paxos By Example

	Applying Detectors and Paxos to DRTRM
	Deadlock Detection
	Chandy-Misra-Hass Detection Algorithm

	Failure Detection
	Perfect Failure Detector P
	tweaked Perfect Failure Detector Pt
	Eventually Perfect Failure Detector P

	Paxos
	Controller Failure
	Manager Failure
	Worker Failure

	Signals Summary

	Theoretical and Experimental Results
	Detectors Overhead
	Scenarios
	Controller Timeout
	Manager Timeout
	Worker Timeout

	Experimental Setup
	Results
	Different failure detectors
	Different failure scenarios
	Larger grid size

	Conclusion and future work
	Summary
	Future Work
	Additional Failure Scenarios
	Paxos Optimizations
	More Paxos

