EBvikdé Metoofro IToAvteyveio

Xyxo Hiektpoddywv Mrnyavikav
Kot Mnyovik®v YToroylotov

Topéag Teyvoloyiog ITAnpo@opiknic kot Y oAoyiotdv

\
. ﬁ:xv
Bl

E
3
- *
s
Ny
&>
¥ NPOMHOEVS .
Sl
nVvpPopo

"

Low-power interconnect for implant SoC

AIIIAQMATIKH EPTAXIA

Avpakng Aré€rog

Empiénov: Anuntprog Xovvtpng
Avaminpotc Kabnyntmg E.ML.IL.

ABMva, ZentéuPprog 2016

EBvikdé Metoofro IToAvteyveio

N
}?‘
‘ge

9‘5‘ w S éﬁé Yol Hiektpoddywv Mnyovikmv
“Jéé& € $g>/ xou Mnyoavikdv Ymoroyiotdv
' :;7;‘7 Topéag Teyvoloyiog ITAnpo@opiknic kot Y oAoyiotdv

Low-power interconnect for implant SoC

AITIAQMATIKH EPTAXIA

Avpaxng AréCog

Empiénov: Anuntplog Zodvtpng
Avaminpotc Kadnyntmg E.M.IL.

EyxpiOnke and v tppuein eetaoctikn enttponn v 26m Zentepppiov 2016.

Kuopah IMexpeotin Anprtprog Zovvtpng INdpyog Owovopdkog
Katnyntg E.MLIL. Avaminpotg Kabnyntg E.M.II. Eniovpoc Kabnyntrg

ABMva, ZentéuPprog 2016

Avpaxng Aré€rog
Aumlopatovyoc Hiektpodldyog Mnyavikog kot Mnyovikdg Yroroyiotodv E.M.IT.

Copyright © Avpdxng AréEog, 2016.
Me gmpoAaén mavtog dwkomdpotoc. All rights reserved.

Amayopegbetor 1 ovirypan, omodnkevon kot dlavoun Tng mapovodag gpyaciog, €& olokAnpov 1
TUAOTOG AVTAG, Y10 EUTOPIKS oKomd. Emttpéneton 1 avatummaon, arodnkevon Ko Slavopn Yo 6Komo
un KePOOOKOMKO, EKTAUOEVTIKNG 1 EPEVVITIKNG QUONG, VIO TNV TPOoUTODES Vo AvapEPETAL 1| TNYN
mpoéAevong kot va, dratnpeitor o Tapdv ppvopa. Epotipota mov agopobyv) xpromn g epyaciog yio
KEPOOOKOTIKO OKOTO TTPEMEL VO, AmeLOVVOVTOL TPOG TOV GLYYPUPEQ.

Ot amdyeg Kol T0, GUUTEPACLATO TOV TEPLEYOVTIOL GE ALTO TO £YYPUPO EKPPALOVLV TOV GLYYPAPEN
Kot Ogv mpEmel vo. epunvevdel 6Tl avtimpocwnevovy TIg emionpeg Béoelg tov EOvikod MetooPiov
[MoAvteyveiov.

Abstract

Implanted medical devices (IMDs) are safety-critical devices that are currently used for the long-
treatment of various medical conditions such as cardiac arrhythmias, Parkinson’s disease and epilepsy.
Modern IMDs employ a wide range of components (sensors, actuators, processors and memory blocks)
which communicate with each other in a System-On-Chip (SoC) architecture. The design of IMDs is
a challenging task because of the low-power and size constraints; however, little attention has been
given so far to the design of the interconnect between the various components. Given the increasing
complexity of IMD SoCs, the choice of the communication architecture can play a significant role in
the total device’s power consumption and size. The purpose of this thesis is to examine different com-
munication architectures regarding their use for IMDs. After considering a range of interconnects and
their use for IMDs, we designed and implemented a crossbar and point-to-point interconnect in VHDL
and synthesized the designs in UMC 90nm technology. These designs were subsequently evaluated
and compared in terms of throughput, latency, size and power consumption. Our results proved that the
point-to-point may outperform the crossbar, but the crossbar has a significant lower power consump-
tion than the point-to-point. Consequently, based on IMDs needs for ultra-low power consumption,
crossbar should be preferred for implantable medical applications.

Key words

VHDL, IMD, Interconnect, Bus, Crossbar, Point-To-Point

Iepiinyn

O Epgutevoyeg latpikég ookevég (EIX) eivor cuokevég mov ypnoponotovvrol yio Bepameia
pokpdg dapkeiag ddpopwv acbeveldv 6mwg 1 Kapdlokr appvduic, n Nococ tov ITapkiveov kot n
emnyia. Ot povtépveg EIZ ypnoipomotovy éva gupd pacpo omd e€aptipato (aednTipeg, evepyonot-
ntég, emelepyaoTég Kot LTAOK HVIUNG) Ta otoia emkotvavouve PeTa&d Toug o€ éva SoC. H oyedioon
L0 EQOUTEDGIUNG LOLTPIKTG CLCKELNG EIVOLL LLOL OTALTNTIKT SLaO1KAGTI0 AOY® TOV YOUNADY EVEPYEAKDV
TMEPLOPIGLLAV KOl TOVG TEPLOPICHOVG HEYEBOVG. KOOGS TNG TAPOoVSOS SUTAMUATIKNG elvat va e€etdoelg
&va euph PACLO. ETIKOVOVIOK®DY OPYLTEKTOVIKMV CGYETIKA Le TN ypnon tovg otig EIZ. Aapupdvovtog
VIOV L GEPE amd O1APOPES UPYLTEKTOVIKEG SLOGUVIEDTG, EMALEENLLE VO OXEOIAGOVLLE Kot VO VAO-
TOMGOVLLE oL crossbar Kot pio point-to-point dtactvoeon oe VHDL kot vo Ti¢ VAOTOMGOLLE LE TN
BonBeto UMC 90nm teyvoroyiog. Encita eEetdocape TIc VAOTOMGELG oG KoL TIC CLYKPIVAUE P Baom
NV amddoo, To PEyeBOg Ko TV Katovalmon evépyetog. Ta amotedéopatd pog anédei&oy 6T 1 point-
to-point d1acvvdeon Eemepvael o€ anddoor TV crossbar, 0AAG 1) TEAEVTOIO £XEL OTUOVTIKG PIKPOTEPT
kataviilmon evépyeloc. Katd ocvvéneia, pe Bdon tig avaykeg tov EIZ yia yapnAin evépyela, 1 crossbar
dtacvvdeon Bo TPETEL VAL TPOTIUATOL OTIG EPPVTEVGIUES LOLTPIKES EPAPUOYES.

AgEaic KA 101

VHDL, Epgutevoiueg latpikéc Xvokevég, Atacuvdeon, Bus, Crossbar, Point-To-Point

Extetopévn mepiinyn

Epgutevowpun latpikn Xvokev

Orgpoputedoipeg loatpikéc cuokevég (IMDs) amotelovviol 0VGLOGTIKA 0o Evav aplipd SLOPOPETIKMY
KUKA®UATOV TOV EMTEAOVV EEY®PLOTEC Aettovpyiec (AoONTNPES, EVEPYOTTONTES, EXEEEPYOUOTES, LLVILN)
Ko T omoia givort cuvdedepéva LeTa&d TOVG £T61 MOTE Vo dnUovpynRcovy éva cvotna (SoC). Avtd ta
KUKA®POTO XPEECETOL VO ETKOV®OVOUY HETAED TOVG £TGL VO, LTOPEGOLV VO ETTEAEGOVV TIG OLAPOPES
Aerrovpyeieg Tovg. Aviloya e TOV pOLO TOVG GTOV TOUEN TG ETKOVMVIOG LITopovv vo. dlakptBodv og
2 xoTnyopiec:

e Evepyd emkowvoviakd pépn (apEévteg). AvTd o PLEPT] TOL GUGTHUATOS UTOPOVV VO, EEKIVIIGOVV
L0 EMKOVOVID Pe GAAD LEPT) TOV GLOTILOTOG.

o [TaOntucd emuovaviakd pépn (okhapot). AvTd To LEPT TOL GLGTHUATOG OEV UTOPOVV VA EEKIVIIGOVY
Hio emKov@vio Pe GALD PEPN TOV CLGTNALATOG CAAG EIVOL VIOYPEOUEVA VO OTAVTOUV GTOVG
apévteg 6mote avtol Bedncovy va emtkovovicovy pnall Toug.

Transceiver
Sensor =

.
 Actuato
SiMS: Main\ 4 » e e
implant

functionality

Security
ore (SISC)

Ewova 1: [opdderypo 1atptkng epputedoiuns cuokevng SoC

H mteprypogn OAmv Tev Hep®Y TOL GLGTHUATOG B Lag Bondncel va KATAAGBOVLE TIC EXIKOIVOVIOKES
TOVG OVALYKEG.

O oo mpag eivatl 10 KOKA®UO TOV aviyvevel AAAOYEC KOl YEYOVOTO OTO avOpOTIVO CAOLO KOl
etvar vrévBuvo yia TV GLAAOYN dedopévav amd ovTd. XPTGLOTOLEITAL Vi VO LETPNGEL TAPAUETPOVG
Ommg T enineda YALKONG oTo aipa, Ty Beppokpacio kot Tov Kapdiako puBpd. Avtéc ol petprosig fa
Bonbfcovy TV ELELTELGIUN WTPIKT GLOKEDT] VAL TAPEYEL 0TOV achevn Lo amoTelecpatiky Oepaneio.
AvéAioya pe TNV 10TPIKT EPAPLOYT, OL OVAYKES TOV aucOnTpa TOKIAOLY O YOUNAEG G VYNAELS.

O gvepyomontig eivar vTEVBVVOC Vo EMOPA GTOV AVOPOTLVO 0pyavIopd. OVGLOGTIKA O EVEPYOTONTNG
mapéyel otov oobevi v Oepoameio mov yperdletar. ' avtd Tov AOY0 vITdp oLV TOAAG EI0T) EVEPYOTOUNTOV
avéioya pe TV aoBévela Tov avTIETOTILEL 0 acBevig av Kol KUPI®mV YP1GILOTOLEITOL 1] NAEKTPIKN
diéyepon. Onwmc Kot 6NV TEPITTMGT TOV AGONTNPA OL EMKOIVAOVIOKEG OVAYKEG TOLKIAOLV.

O kbOp1og emelepyaotng avarlapuPavel OAEG TIG AEITOVPYIES, TOVC VTOAOYICHOVS Kol TIC S1adIKacieg
OV EYELVOL EKTELEGELT) GUOKELT] KOl EIVOAL YEVIKAS VTTEHOVVOGS Y10 T GOGTI AELTOVPYIO TOL EUPLTEVCLUOV.

Req

lReq l

Security
Core(SISC) Bus Arbiter

SiMS: Main
implant
functionality

Grant I

Control

Sensor Actuator |Rsp Memory

Ewova 2: [opaderypo pog bus tonoroyiog.

H emikotvoviakn tov dpactnpiotnta eival ToAd GNUAvTIKY Kot TEPIAAUPAvEL Ay dedopéEVmVY amd ToV
oo T Pa, TOGTOAY EVIOA®MY GTOV EVEPYOTOINTH Kot amofnKevon dedopévav otn pviun. Ot IMDs
umopet va £xouv ToAAoVG emelepyaoTtés, ol omoiot gival vIeHBLVOL Y10 SAPOPETIKEG VITOAOYIOTIKES
Aettovpyiec. o va mapéyel otovg emeepyactés éva PEPOG Yo TNV amobnkevon dedopévmv, 1o SoC
TEPLOUPAVEL KoL V).

AANO ONUAVTIKO YOPOKTNPIOTIKO TOV ELPVTEVGILOL ivarl 1 emikovavia avBpdmTov-cuokevng. [
aVTO TO AOYO0 £va OTEIPMLLO XPTCYLOTOLEITAL OO TO YPNGTN Y10l VO ETIKOIVMVIGEL LE TN cuokeLh. Ola
TO, AVOPEPHEVTA KUKAMULOTA NAEKTPOSOTOVVTOL OO LLic KOPLOL UToTapiol.

Tomoloyia AracOvoeong

H tomoloyia piag SoC diacvvoeong opiletat o’ TOV TPOTO LE TOV OTOI0 OPYOVAOVOVTOL T LLEPT] TOV
EMKOWV®VOUV. Mg BAoN TIG EMKOIVOVIOKES OVAYKES, TOVC EVEPYELOKOVE TEPLOPIGHOVS , TOVG TEPLOPLOOVG
peyéBovug ko Ty embuptio yio vYNAR 0TOS00T| TEPLYPAPOVUE TAPAUKATE TPELG TOMOAOYIEG TTOV TIGTEVOVLLE
o011 mBavdtata ucavomrolovy Tic IMDs.

Bus

H bus tomoAoyia eivat £va 3ikTvo ToV 0010V T PLEPT TOV EIVOL GUVIESEUEVE |1 AVTO EMIKOIVAOVOVY
pe éva kowvd péco. Kabéva am avtd to pépn eivor ikavd vo torobetoet to dedopéva Tov oto bus
N va aweBaviel ta dedopéva mov vapyovv ¢’ avtd. Kabe popd povo éva am avtd to uépn pmopel
va tomofetnoetl To dedopéva Tov oTo bus, evd T VIOAOWTO PEPN UTOPOVV Vo EMAEEOLV ElTE VA, TO
amodeyfovv gite va ta amoppiyovy. AOY® TOV OVTOY®VIGHOD TOV VIAPYEL LETAED OLTAV TOV HEPDV,
ypnoonoteiton Eva mpwtdkorio dtatnoiag pe faon 1o onmoio amoeaciletal Towo and avTd Pmopel
va. TortofeToel To o Tov. To TAEOVEKTAMATA TOV €ivar OTL ivor amAo, £yl Yaunid KOGTOC Kot
enektaoipdTTo. To petovéktnud tov givon n younin amoédoon [1] [2].

Crossbar

‘Eva NxM (N agéviec, M oxAdfot) crossbar Tpocpépet éva povomdtt and kabe apévin og ke
oKkAGPo. Ze kdbe S106TADPOCT AVTMOV TWV LOVOTATIAV VITAPYEL EVOG O10KOTTNG 0 0TTOI0G EPOGOV ivat
EVEPYOTOINLEVOG GUVOEEL TOV aPEVIN UE TO okAGPo. o T cwot) Asttovpyia mPEMEL TO TOAD £vag
a@évng va gival cuvdedepévog ae kabe okAGPo ke atiypn. Avtdg 0 TEPLOPIGUOG EMTVYYAVETAL LUE
TN XPNOLOTOINoN €vOg KEVIPIKOD Sttt 0 omoiog amopacilel molog apéving Ba AdPel ddsia va
EMKOVOVIGEL KOl 0 0T010¢ EAEYYEL TOVG Ol0kOTTTEG. TO GLVOLO TV SLUKOTTOV QTG TNG TOTOAOYING
avagépetat kot g fabric. To kOp1o TAEOVEKTN LA AVTNG TNG TOTOAOYIOG Elval OTL TOALOT APEVTEC PLITOPOVY
va g&umnpeBolv o€ o oTiyUn 060 KaOe okAAPOC TapapEVEL GUVIESEUEVOGS UE TO TOAD EVOV OQEVTT).

10

Rsp

Sensor Actuator Memory Rsp

SiMS: Main
- implant {1 |
functionality
Req
Switch point
Security
Core(SISC) 3 3 1]

Req I Control \

Crossbar
Arbiter

Fabric

I]Grant

Ewova 3: Mapaderypo pog crossbar tonoloyiog.

Sensor

SiMS: Main
implant
functionality

Actuator

Security
Core(SISC)

Memory

Ewdva 4: [Tapdderypo pioag full point-to-point TomoAoyiog.

YUVENMC, aVTN 1 ToToAoyia apéyetl peyardtepn amddoon, amd) bus tomoroyia. OmdTe 660 1 Kivnon
Heta&d 2 Hepdv T0L GLGTHUATOG ALEAVETAL, OV Ennpedletorn kivnon petald dAhov pepdv. To peyaivtepo
petovéktnpa gival To k66Tog VAOTOINoNG, TO 01010 AVEAVETOL OVOAOY®G TOV * [2].

Point to point

H point-to-point tomoloyia gival po o Tig To amAég, emeldn 6vo pépn ta omoia ypetdleTon vo
EMKOVOVIIGOVV LETAED TOVG, GUVOEOVTAL ATAd LETAED TOVG [E VoL oUVOESHO. YTTapyovVv 2 THTOL point-
to-point: full kot custom Sacvvdeon. O full TOmOG GuVIEel KABe apévin e kdbe okAdfo, evd o cus-
tom GULVOEEL TOVG APEVTESG LLE TOVG OKAAPOLS, avaloya pe TG avdykeg emkovaviag. To peyaivtepo
TAEOVEKTN O Elvar OTL N amddooT Tapapével otabepn aveldptnta amd Tov aplipd TV GUVOEdEUEV®Y
LLEPDV, EVA TO LELOVEKTN LA TOV EIVOIL OTL O1 AVAYKEG CLVOEGLMV, 0 0PLOUOC TOV SIETAPDOV Kol 1) TOATAOKOTITA
oV avédvovton paydaio Kabdg o aplBIdc TV LEPOY PEYOADVEL.

Yxe010610G TOV crossbar

O oyedlaopog pag evog NxM crossbar gaivetar otnyv ikdva 5. To onjpota €16660v Tov crossbar
eivar: N Master message, N Master request xox M Slave data. Ta ofjpoto €€6oov givar: M Mas-
ter_message, N Busy, N Response, N Slave_message kou M Request. O oyedacplog pLag eivot EEMKTOG
KoL TO crossbar umopei va enektadei Tavo 1 KaTo omAd adddlovtog Tig akdlovbec mapapétpovg: Tov

11

Master_Message
Master_reques; Master_Message Master_Message
Slave_Mdssage| Master | Slave_Message Master_Message >
ST Interface 1 [lave_M |
Bﬁgeo e Master_request <Sa e_Message Slave Request
— Interface 1 | | Slave_Data
Grant Slaves_response
oH
o ® |Slaje_response
° L]
° Fabric °
° L]
° Granted_Master| o
° °
Master_Messag M M
_ g aster_| esspge | Master_Message Slave M ster_Messagei
Master_rel uesy Sle; e Messla e' > v
Slave_Medsage | Master |e—m= g Slave_Message | Interface Request
€ = . M
Response| Interface N Slave_Data
Busy Master_requlest
g Cntrl2 TCntrIl Slave | response
Grant Granted_Master
SIavesiresAp;onse

4

Arbiter

’ Grant |

Ewova 5: Zxedraopog g NxM crossbar dtacvvoeonc.

apOUd TOV APEVTAOV, TOV 0PLOUO TV GKAGR®V, TO E0POG TOV HESOUEVOV Kal TO DPOC TNG dlevBuveng.
Ta onpota clock kot reset ivat kaBoAucd. Mia amAn avtodldayn peta&d evog agévn kot evog okAGBov
ocupPaivel mg e&ng:

®aon In: Awwtnoio O apéving Eekvdet pia aitnomn yuo petapopd unvopotoc. H diemaen tov agpévin
amofnkeveL To Pivopa Tov aPévn Kot {NTaeL AOEL0L O TOV SLOLTITH Y10 VO LETOOMGEL TO LAV
otov emBuunTtd okAdPo.

®daon 2n: Metagopa Avn diemapn Tov a@évtn AAPel GO0 AT TOV S10TNTT, TOTE TO UNVULLO LETOPEPETAL
otov oKAGPo. Av oyt 10Te Eavalntdel dogta o Tov dotnTi.

®aon 3n: Anavinen Av to uivope to omoio mopaddinke otov okAdpo NTov tomov read, T0TE O
oKAAPog mpémel vo amavtioel Pe dedopéva. Pempovpe 0Tl avth N amdvrnon Aappdver pépoc,
apécmg et t Aqyn tov read TOTOL PNVOLOTOC.

Ye010,010G TOV point-to-point

O oyedlaopog pag evog NxM point-to-point gaivetatl oty ewova 6. Ta onpato el0630V TOV Cross-
bar givar: N Master Message, N Slave request xon M*N data. Ta ofpata g£6dov givar: N*M Mas-
ter Message, N*M Slave Message, N*M Request Kol N*M Response. O oyedlac1O¢ Log eivot eDEMKTOG
KoL T0 point-to-point propei vo enektafel TAvo 1 KATo amAd aAldlovtag Tig 0KOAoVOEG TaPUUETPOVG:
Tov ap1Bpd TV apevtdv, Tov aptBpd Tmv okAEPwv, To 0pog TV dedouEVaY Kot To 0pog g dtevbuvonc.
Ta onpata clock kan reset eivor kaBolkd. Mo amin avtodhoyn petald evoc apévin kot evog okAdBov
ocvpPaivel og e&ng:

®aon 1n: Meta@opad MOAG 0 apEVING OTOQAGioEL VO oTEIAEL Eva ivupa G €vav okAGPo, 1 dtemapn
TOV OPEVTN OTOOEYETAL TO UITVOLLOL KOL TO TAPASIOEL GTOV EMBLUNTO TPOOPIGHO.

12

Master_Message/Master_Request

> Master_Message/Request
8 Nlines
Slave_Message/Response Master Slave H
- Master_Message/Request
8 M lines Interface Interface
1 1 o Slave_Data
Slave_Message/Response S Mlines
Slave_Data

Master_Message/Request
.—)

Master_Message/Master_Request

8 Nlines

' Master) Slave .
Slave_Message/Response Master_Message/Request
Interface Interface
&M lines N et | M 8 Mlines Slave_Data
Slave_Data

Slave_Message/Response

Eucova 6: Xyedraocpog g full Point-To-Point dtacHvdeong.

®aon 21: Awavinen Av to uivope to omoio mopaddinke otov okhdpo NTov tomov read, T0TE O
oKAAPog Tpémel vo amavTioel Pe dedopuéva. Pempovpe Tt avth N amdvrnon Aappaver pépog,
apécmg petd T Aqyn tov read THTOL PNVOLOTOC.

Hewpopotikn dwataln

Métpa a&roréynong
Throughput

Opileton og 0 HECOG aPBOS TV EELVTNPETOVUEVOV OTNUATOV avE KOKAO. Metpdtat vToroyilovtog
TO GLVOAIKO aPLOUO TOV CLTNUATOV TTOL 1] S10cVVOEST) EEVTNPETEL G £V GLYKEKPLUEVO TAAIG1O XPOVOL
Kot givan 160 pe T d1aipecT T@V CLVOMKAOV OITNHATOV Tov ELTNPETNONKAY TPOG TO LETPOVUEVO
xPOvVo. MeTpricape Tov GUVOAMKS apOpd TV EVTNPETOVUEVOV OITNUATOV LECO TNG ¥PNIoNS Tov Mod-
elsim. H petpodpevn throughput e€optdral oo v kivinon mov e&umnpetel, eved N péyiotn throughput
oo 10 YOG O,

Latency

Opiletor mg 0 péEGOC YpOVOC mov ypelaletal 1 dlacHVOEST Y10 VO, OAOKANPOGCEL IO OVTAAAOYN
unvopdtov. H latency petpdtor vroloyilovtog mOGovg KOKAOVG ypetdleTor yio vo. oAokAnpmbel éva
altnuo avToAAayng apod Tpadta giye artndel amd Tov aeéven. I'a pua crossbar d1acivdeon 1 LKpOTEPN
latency eivot 3 kOKAol. MTopei vo ¥pelacTovY TEPIGGOTEPOL A0 3 KOKAOL GE TEPITTMGT GVYKPOVGEWDY
TOV atnuatov. Amtd v AN pepld o point-to-point dtacvvoeon €xel otabepn latency iom pe 2
KOKAOVG.

Area

O y®pog OV KATAVOADVEL 1) OlocVVOEST] €E0pTATAL 0mtd TOV 0PBUd TOV KEMMV KOl TOV TOTOV
Tov keMav. o va To petpricovpe ypnoiponomoope 1o gpyoreio “Design Compiler (DC)” kot
Bprobnkn UMC 90nm.

13

Power

Opileton mg M evépyeLn TOL SATOVATOL OTT T GLOKELT avd povada xpovov. H cuvolikn damavopevn
oybs ota CMOS VLSI pmopet va katnyoproronfei o d0o Pacikéc Katnyopies:

e YTaTIKN 100G, 1 070l damovATal OTAV 1] GLOKELY Elval 6 oTAOEPT] KATAGTOON.

o Avvapukn 1oy0c, 1 omoio dOTAVATAL OTAV 1) GLOKELT VOl EVEPYT.

H ocvvoium katavdAiwmon woydg prnopei va vroroyiotel og: P = P+ P.

Hapaperpor a&roroynong

Onwg avapépaple, 0 GYESACUOS TV 2 SLOPOPETIKMY TOTOAOYLOV TOL VAOTOUCALLE EIVAL EVEAKTOG,.
Mmnopei va tpocapprootel o€ 0motodmote oplipd GKAAPMV Kol AOEVIMV Kol OTOL0ONTOTE EVPOG LETAPOPIS
amAd aAhalovtag pepucés mopapétpovc oty VHDL. Ze oeipd pe ta avapevopeva Leyen toptvav Kot
UEAAOVTIKAV ELPVTELCILMV WOTPIKMOV GLOKEVAV EMALENLLE VOL VAOTO GOV E Ta EENG peyédn: 2x2, 2x4,
2x8, 2x16, 2x32, 4x4, 4x8, 4x16 and 4x32. H emihoyn tov peyéboug 2xM eivar Aoy yoti 2x2-2x8
pey€on eivar mbava cevapio onpepa (PA. ITapdptnua B). Evd 32 skddpot eivarl mbavotata mtorrioi yio
TO KOVTIVO PEALOV, AELOAOYOVUE YEVIKMG TNV PLOGIUOTINTA TOVG Y10 TO, ELPLTEVGIHO. Eiong vadpyovv
KOTOLEC LOVTEPVES EUPVTEVGIUES LATPIKEG GLGKEVES, Ol OTOIEG YPMNOLOTOIOVV TEPIGGOTEPOVG Omd 2
ene&epyaoTés (.. €vo ELPLTEVGIUO GVGTNL Y10, TN Bgpameia vevporoyikdv dratapaydv [3]) YU avtd
TIOTELOLVLLE OTL 1] EMAOYN TOL 4XM peyEBoug eivar pealotikn emiong. H mpokabopiopévn dtoacuvoeon
vrofétet 8-bit dedopéva kot 32-bit d1évBuvon. o va kabopicovpe GG TMS TO COOTNUA LOG AVTATOKPIVETOL
0€ GLVAPTNO LLE AVTEG TIC TOUPAUETPOVC, EMAEEALLE VOL VAOTOGOVLLE Kot interconnects e 4-bit dedopéval
kot 16-bit d1evBvvon. T avtég T1g TedevTaieg S100VVIEGELG EVOG EETPO SO MPIOTIKOG KO OLVOKOTOGKEVOOTIKOG
UNYOVIGHOG amouteital va evempatwdet 6T demapn Tov agévn Kot Tov oKAABov. AVTOG 0 UNYOVIeHOg
Staympilel To pNVLLO MOTE VO UTOPEL VAL TO PLETAPEPEL KOLL TO OLVOKOTOGKEVALEL TTPLV TO TAPASDCEL GTO
okAdPo. To idto cupPaivetl ko 6TV TEPIMTO®ON TNG LETAPOPAS TNG ATAVINGNS TOV GKAGPOV.

HoapapeTpor potifov kivnong

To potifa kivnong kabopilovv Tov TPooPIGHO Kot TOV pLOLO YEVYNONG OUTILATOV OO TOVG APEVTEG.
Baociopévol otnv mpocmdfeid pog vo &0 A0y GOVLE TIG SIUGVVIEGELS Y10 £VA LEYAAO EVPOG EMKOIVOVIOK®DY
oevapiov dNUoVpYNcoE dLapopa Tuyaio LoTifa kiviong. Ot emleyUEVES TILEC TOV TAPUUETPOV TOVG
paivovtor otov mivaxa 1.

Hewpopotikd amoteréopota,

Throughput

INo kaOe potifo kivnong kou péyebog mapatnpovpe 6TL peTpdpe To id1o throughput kot yio tovg 2
TOTOVG dlacvvoeonS (BA. ewkova 7). Tap’ dAa avtd avapévoope 6Tt 1) point-to-point dStacvvoeon £xet
peyolutepo duvatod throughput.

Latency

H point-to-point dtacHvdeon €xel pkpdtepn péon latency and 1o crossbar. Avtd opeidetar 6TIg
avdykeg tov crossbar yio dtotnoio. H dtotnoio kaBuotepel v pLetagopd evd 6€ TEPITTMOOT GUYKPOVSTG
QLITNUATOV S0POPETIKOV apevI®dV 1 latency Tov crossbar peyodmvet (BA. eikova 8).

14

[Mivakag 1: Toyaio potifo kivnong

Pattern names | Generation rate Potential Collisions
LO 0%
L25 2 requests 25%
L75 cyces 75%
L100 100%
MO 0%
M25 2 requests 25%
M50 Medium(ﬁ 50%
M75 Cyees s,
M100 100%
HO 0%
H25 2 requests 25%
H75 cyces 75%
H100 100%
__0,25
2
S
% 0,2
(7]
$ 0,15
g M Crossbar
g 01 p2p
Q.
=
°§° 0,05
R []

Low Medium High

Ewova 7: Mopadetypo evog 2x16 crossbar and evog 2x16 point-to-point o, onoia eumnpetovve Ta

potifa kivnong LO,MO0 kot HO.
—] —-——-— W Crossbar
— -~ B PP

0% 25% 50% 75% 100%
Collisions percentage

w

H

]

o =~
?

Latency(cycles/request)
N
?

Ewova 8: TTapddetypa evog 2x16 crossbar ki evog 2x16 point-to-point d1acdvdeong wov eEuanpeTodv
ta potifa kivnong LO-L100.

Area

Bpiokovpe 6T11 point-to-point vVA0TOING™ aTALTEL AYOTEPO YDPO Y10 VAOTOUCELS LIKPDV SLOGUVIECEDV.
Avt6 cuppaiver yoti) point-to-point viomoinom dev amartel S10uTnT Kot 0 6XEOOGUOG TNG SIETAPNS

15

150

[MW Crossbar

N D D D
@q;\"\/o)g\' p

[EY
o
o

Ul
o

Area(mm?)

Ewdva 9: XOykpion g katavdlmong ympov crossbar kot P2P vionomocewy.

1,2E-03
1,0E-03

8,0E-04
Crossbar dynamic

6,0E-04 M Crossbar static

W P2P dynamic
4,0E-04 P2P static
2,0E-04

0,0E+00 —™= =
2x2 2x2(H) 2x8 2x32 4x8 4x16 4x32

Total Power(Watt)

ewodvo 10: H péon kotoviiwon 1oxdc t@v crossbar tov point-to-point d1acvVIECE®V KATA TNV
ge&ummpétnon tov M25 potifov kivnong.

a@évrn glvar amhoboTePOC. AvTioTpoa, TO crossbar eKUETAAEDTOL TV TPOGAPUOGTIKOTNTA TOV fabric
(My6tepot ohvOeSLOL) KOl TOV OTAOVGTEPO GYESAGHO TNG JlEmaPNS oKAGPoL (€xel va xeplotel povo
éva aitnuo kot amdvrnon kébe otryun) yuo peyoiutepa Hey€dn ki avtd oomnyel oe LIKPOTEPO KOGTOG
y®dpov. To Crossbar, £€161, Tpocapuoletor kaadtepa otnv avénon tov peyébovg g dtacvvoeong (BA.
gKova 9).

Power

e O)heg T1g mepimtdoelg 1 Point-to-Point dtochvoeon KaTavaAdVEL TEPIGCOTEPT] EVEPYELD OO TN
crossbar. Avtd 0QeileTol GTO OTL KOTOVOADVEL TEPIGGOTEPT SVVOULKT] EVEPYELD A0 TO Crossbar.

YOUTEPAONATO KOL TPOTAGELS Y10 EPEVV.

Me Béon ta Topamive oamoTEAEGILOTA, TIGTEVOVUE OTLT) crossbar d10cVVIEc TPEMEL VO TPOTLUATOL
OTIG TOPOVTEG KO LEALOVTIKEG ELPVTEVDGULEG LOTPIKES GLOKEVEG EVAVTL LLOG point-to-point d10.c0vdECNG,
pe Baon ta avapevopeva LoTio Kivnong Kot Tov yaunAods EVEPYELOKOVS TEPLOPIOHOVS. Meptkéc 10€eg
7ov Ba propodoav va viomonbovv 6g HEAAOVTIKT £pgvva, ivat:

e YAomoinom S10popeTIKOY TOTOAOYIDV TTEPQ amd crossbar kot point-to-point. H bus apyrtektovikn

glvain ETOUEVT VTTOGYOUEVT] EVOAAUKTIKT AOY® TNG TOAVIG YOUUNAITEPTG KATAVAAWDGCNC EVEPYELOG
oL UTopEl vo TPOGPEPEL.

16

2,0E-01
1,8E-01
1,6E-01
1,4E-01
1,2E-01
1,0E-01 M crossbar
8,0E-02

P2pP
6,0E-02

4,0E-02 I

2,0E-02 I

0,0e+00 M n I

2x2 2x2(H) 2x8 2x32 4x8 4x16 4x32

Peak Power(Watt)

ewova 11: H péylotn xatavdiwmon 1oy0¢ t@v crossbar Tov point-to-point dlcvvoéce®v Katd TNV
egummpétnon tov M25 potifov kivnong.

o MéBodot peimong tng KoTavalmong 1oy b Lropovv va vAomomBovv. Avo and avtég Tig pebddovg
neprypdopovtal oto mapdptnua A. Ilap’oAa avtd dev eival ciyovpn 1 amoTEAECUATIKOTNTO TNG
VAOTOINGNG TOVS KABMG avTh e0PTATOL OO TA YOPOKTNPNOTIKA TOV GLOTLOTOG.

e Fault-tolerant teyvikéc UmopovVv va VAOTOMBoVV emionc £T01 MGTE va. dS1opODHVOLY EAAATMOLOTIKN
GUUTEPIPOPE TOV HEPDV TOV CLGTNUATOG KOl Yo va emttevyfel vynAn aglomiotio. AvTtéc ot
TEXVIKEG €lval TOAD oNUAVTIKEG Yiati omoladnmote mepintmon PAAPNG pmopel va 0dnynoel o
TPOVHOTIGUO TOL acfevi i akopa kKot otov Bavato. Ducucd 1 vioroinon piag tétolg pebddov
Ba avefacet Kol To KOGTOG YDPOL Kol TNV KATAVIAMOT| 1YVGE.

17

Acknowledgements

I would like to thank Professor Dimitrios Soudris for giving me the opportunity to carry out my
diploma thesis under his supervision. His teaching approach and his insightful and extensive research
have strongly increased my motivation and commitment to work on this project.

I also would like to thank Professor Christos Strydis, from Neuroscience department of the Erasmus
Medical Center, for the great interest shown in our common project from the beginning of our work
together. Our constructive and definitely creative meetings greatly encouraged me during my work.

The completion of this thesis however would be impossible without the enormous support and
cooperation with Robert Seepers, PhD student at Erasmus Medical Center. His experience and constant
assistance made it possible for me to accomplish this work.

Finally and last but not least, I would like to thank my family for their support and help to accom-
plish my goals, as well as my friends for listening and supporting me.

Lyrakis Alexios,
Athens, September 26, 2016

19

Contents

Listof Figures e 23
Listof Tables e 25
1. Introduction 27
2. Background and related worko oL 29
2.1 Implantable Medical Device componentsrole 29
2.2 System On Chip Interconnect Topology 30

23 Relatedwork 33
2.3.1 Busversus Point-to-point 33

232 CrossbarversusBus 34

3. Implementation 35
3.1 Crossbardesign e e 35
3.1.1 Masterinterface 36

3.1.2 Crossbararbiter 37

3.1.3 Fabric e 38

3.1.4 Theslaveinterface 38

3.2 Point-to-point Design e 40
3.2.1 Master/slaveinterface 40

4. Evaluation 42
4.1 Experimental Setup e e e 42
4.1.1 Figuresofmerit. 42

4.1.2 Evaluation parameterso e e e 43

4.1.3 Trafficpatterns e e 44

4.2 Experimentalresults 44
421 Crossbar e e e e e e 44

422 Pointto-Point. 48

423 CompariSON v v v e e e e e e e e e e e e e e e e e 50

5. Conclusion L 53
5.1 Summary e e 53

52 Future Work 53
Bibliography 55

21

Appendix A’. Low power encoding techniques for interconnects
Al Invert Coding e e
A2 Shifting Coding e e

Appendix B’. Implantable medical devices

22

List of Figures

1.1

2.1
2.2
23
2.4
2.5

3.1
32
33

34

3.5
3.6
3.7

4.1
4.2
43
4.4
4.5
4.6

4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14

4.15

Examples of wireless implantable medical devices.

SiMS System-on-Chip for implants.
An example of the bus topology.
An example of the crossbartopology.,
An example of a fully connected point-to-point topology.
Implementation of MPEG-2 encoder with 2 MEs using: (a) P2P and (b) bus communi-

cation architectures L e

Crossbar switch NxM.
The Master interfacemodule. oL
The basic arbiter module architecture of our Crossbar arbiter.It is using a round-robin

protocol. e e e
An example of a 4x4 fabric module. Each bit of cntr/ input corresponds to a certain

switch. Each of the crossbar’s fabric output is the logical sum (OR) of inputs 0 to 3

AND’d with the cntrl lines of that output’scolumn.
The Slave interface module. L
Point to point interconnect design.o
The master interfacemodule. o o Lo

An example of a 2x16 crossbar with all the random traffic patterns.
Different kind of density traffic patterns (L0, M0, HO) served by every crossbar size.
An example of a 2x16 crossbar with all the random traffic patterns.
Crossbar utilization area of the different implemented sizes.
The average power consumption of different kind of density traffic patterns with 25%
collisions. e
The peak power consumption for different crossbar sizes that serve the M25 traffic
pattern. L e e e e e e e
An example of a 2x16 point-to-point with all the random traffic patterns.
Different kind of density traffic patterns (L0, M0, HO) served by every point-to-point
SIZE. . . . e e
An example of a 2x16 point-to-point with all the random traffic patterns.
Point-to-point utilization area of the different implemented sizes.
The average power consumption of different kind of density traffic patterns with 25%
collisions. e
The peak power consumption for different point-to-point sizes that serve the M25 traffic
pattern. . .. o. oL Lo
An example of a 2x16 crossbar and a 2x16 point-to-point serving the L0O,M0 and HO
traffic patterns. e
An example of a 2x16 crossbar and a 2x16 point-to-point serving the LO-L100 traffic
patterns. e e e e e
Comparison of crossbar and point-to-point area scalability.

30
31
32
32

39
39
40

23

4.16 The average power consumption of crossbar and point-to-point interconnects during
the simulation of the M25 traffic pattern.

4.17 The peak power consumption for crossbar and point-to-point sizes that serve the M25
traffic pattern. L. e

List of Tables

4.1 Random trafficpatterns e 44
B’.1 Artificial pancreas traffic patterns 58
B’".2 Combined Artificial pacemaker & ICD without vital signs 59
B’.3 Epileptic-seizure detection without vital signs traffic pattern 60
B’".4 Tinnitus treatment without vital signs traffic pattern 60

25

CHAPTER 1

Introduction

IMDs made their first appearance in 1958 when the first Implantable Pacemaker was created. De-
spite the significance of the moment, the first implantable device functioned for only 3 hours and had
to be replaced by a second the same day [4]. Thanks to technological advances, IMDs have increased
in complexity since then and they have expanded to an ever wider range of medical applications. For
example, in electrical neuromodulation, they can be used to treat Parkinson’s disease, epilepsy, bladder
control, gastrointestinal disorders and numerous psychological disorders such as obsessive-compulsive
disorder [5]. Nowadays they have become a crucial part in many different medical applications and with

this increasing need for implantable devices comes a set of technical challenges.

The design of an IMD is a challenging task and demands many general requirements such as low
power and minimal size. The low power consumption is important as IMDs are battery-powered devices
that are intended for long-term treatment, yet, can often not be recharged while in operation. Also, the
power source and encapsulation components remain the major contributors to the overall weight and
size of the device [6]. The size is important because smaller and lighter devices will be less invasive to
the patient’s body and will cause less pain and discomfort, while also improving the healing process.

In this thesis, we focus on the way the IMD components are communicating with each other. Differ-
ent ways of communication lead to different levels of performance, area cost and power consumption.
There is a wide range of various interconnect types that someone can choose from; bus, point-to-point,
crossbar, network-on-chip etc. The question that we try to address in this work is: Which intercon-
nect type suits IMDs better, given their needs and constraints? A theoretical analysis may give us an
approximate answer but is not adequate due to the various factors that have to be taken under consider-
ation(number of components, communication activity, interconnect interface differs for each type etc.).
For our thesis purpose, we chose to design and implement a crossbar and a point-to-point interconnect,
based on their effectiveness for small-medium size systems. We measured their performance, area cost

and power consumption through the execution of different traffic patterns for different IMD-SoC sizes.

27

(WIRELESS IMPLANTABLE MEDICAL DEVICES)

Deep Brain i P c
€ e ochlear Implants
Neurostimulators J >

SR

Gastric Y
Stimulators Q

=4 cardiac Defibrillators/
Pacemakers

y
S Insulin Pumps

¥
<«

Foot Drop \Bé

Implants

- J

Figure 1.1: Examples of wireless implantable medical devices.

The remainder of this thesis is structured as follows: In Chapter 2, a brief overview of an Im-
plantable Medical Device and of the basic interconnect topologies is presented. Some basic intercon-
nect topologies are presented in order to help the reader understand their basic characteristics. Related
work progress on the field is also included, to highlight the contribution of our work and to draw some
meaningful results from other experiments. In Chapter 3, we present our implementation of a crossbar
and a point-to-point interconnect. In Chapter 4, we evaluate our interconnects implementations in terms
of performance, area cost and power consumption and compare the results of our two interconnects. At
the end a comparison between these two types is attempted. We conclude this thesis in Chapter 5 by

summarizing our main findings and highlighting interesting research directions for future work.

28

CHAPTER 2

Background and related work

This chapter contains the essential information that the reader should be familiar with in order to
better understand our thesis results. We begin with a brief analysis of the structure of the IMD and
review some basic interconnect topologies (bus, crossbar, point-to-point). Afterwards, previous work

concerning the above SoC interconnect topologies is presented.

2.1 Implantable Medical Device components role

From this thesis abstract point of view, an IMD is an assemblage of a number of different types of
functional components (sensor, actuator, processors, memory) which are connected to form a system.
The systems whose therapy is delivered based on the measurements of the sensor are defined as closed-
loop” while those whose therapy is delivered based on the patient’s doctor programming (with no real-
time closed loop feedback) are defined as “open-loop”. An IMD’s components, in order to perform
their computations, need to communicate with each other. Depending on their role in communication

activity, these peripherals can be classified in two categories:

e Active communication components (processors). These components can initialize a transfer be-

tween them and other components. From now on, we refer to these modules as ”masters”.

e Passive communication components. These components cannot initialize any transfer (sensor,
actuator, memory). They are able only to receive messages and to respond with data. From now

on, we refer to these modules as ”slaves”.

Below we describe the function of each of these peripherals. This will help the reader conceive the
communication needs of an IMD.

The sensor is the module that detects events and changes in human body and is responsible for
the acquisition of data from it. Sensors are used to measure parameters such as blood-glucose levels,
temperature or cardiac rhythm. These measurements are necessary to help the IMD deliver an efficient
therapy and to make decisions based on them. Depending on the medical application, the sensor’s
communication needs range from low to high. For example, a glucose sensor (i.e. used by an artificial
pancreas”) that is detecting the glucose in the bloodstream may provide 8-12 data bits per minute, while
an ECG sensor (i.e. used by a combined artificial pacemaker)that is monitoring the heart rate of the

patient may provide 2.400-3.600 data bits per second.

29

Sensor
|
Actuato

N
SiMS: Mai
implant
functionality

Figure 2.1: SiMS System-on-Chip for implants.

The actuator is responsible for the intervention to the human body. It is in charge of delivering the
therapy based on the control system. The kind of therapy delivered by an IMD depends on the specific
functional requirements while the most common is the electrical stimulation. As in the case of the
sensor, the communication needs of the actuator differ from application to application. For example, an
insulin pump (actuator that release glucose to the blood when the glucose-levels are low) may consume
8-12 data bits per minute, while the actuator of an implantable pacemaker (if the heart rate is too low,
the pacemaker will send electric stimulation to the heart to keep it beating) may consume 8-12 data
bits per second. Considering future technology, an actuator of a future IMD that can suppress epileptic
seizures may consume up to 12.800-19.200 data bits per second.

The main processor takes care of all the processes/calculations/functions the device has to execute
and in general is responsible for the correct main implant functionality. Its communication activity is
paramount and includes requesting data from the sensor, sending commands to the actuator and storing
sensor data and actuator commands to memory. IMDs may employ multiple processor for different
computing jobs (e.g., combination of DSPs and normal processing units). In order to provide the
processors with a storage place, the implant SoC contains a memory module.

Another necessary IMD feature is the device-human communication. An external user should be
able to monitor and control the IMD, so he should be able to send commands to the IMD and the IMD
transmit physiological data back to the external user. A coil is used by an external reader to communicate
with the IMD.

All the above components are powered by the main IMD battery. Sometimes, the same coil used
for information broadcasting is also used for power transfer through living tissue [7].

2.2 System On Chip Interconnect Topology

The topology of the SoC interconnect is defined by the arrangement of the communication ele-
ments and links (bundle of wires that carries a signal). Based on the communication needs of IMDs
for low power consumption, low area cost and high performance we next describe 3 basic interconnect
topologies that we believe to most likely serve the communication needs of an IMD: A Bus, crossbar
and point-to-point architecture. Unfortunately, time limitations have prevented us from evaluating all
3 interconnect types in this thesis and we have excluded the bus architecture from our analysis. The
evaluation of the bus architecture is, therefore, reserved for future work.

30

Req

lReq l

SiMS: Main 5
implant Security
functionality Core(SISC) Bus Arbiter
Grant I
Control
Sensor Rsp Actuator |Rsp Memory

Figure 2.2: An example of the bus topology.

Bus

The bus topology is a network setup in which each component is connected to a shared medium
called bus (see Figure 2.2). Each of these components are able either to place signals on the bus or
sense the signals already present on it. Each time only one of these entities can place signals on the bus,
while every other entity senses these signals and, depending on the content of the signals, may choose
to accept or discard them. Since a bus is a shared medium that allows only a single entity to use it at
a time, an arbitration protocol is required to decide which of these entities will be granted. The most
common arbitration protocol employs a central arbiter. The entities must send their bus requests to the
arbiter and the arbiter is defining which of these will been granted based on the arbitration protocol.

The advantages of a shared bus architecture include simple topology, low area cost and extensibility
[1]. However, as the number of entities attached to the bus increases, the bus speed decreases because of
the higher capacitive load that it has to drive to a longer distance [2]. Furthermore, the more components
are connected with it, the more will grow the wait-time for each of them because of their competition
and that limits their maximum throughput. Despite the above timing limitations, we believe that a bus
would be a good alternative for IMDs with limited number of components because of its low power

consumption.

Crossbar

An NxM crossbar (N masters x M slaves) provides a direct path from every master to every slave.
At every intersection of these paths a switch serves as a crosspoint connector, if enabled, connecting the
master to the slave. Any slave can be connected to any master by simply closing the switch connecting
the master and the slave (see Figure 2.3). However, for correct operation, each slave must be connected
to at most one master. This restriction is accomplished by a central arbiter which decides which master
will be granted with permission and configures the switches respectively. We refer to the collection of
these switches at cross points as the ”fabric” of the crossbar.

The main advantage of the crossbar is that it can potentially serve multiple masters at a time (using
switches) as soon as each slave remains connected with maximum one master. Consequently, it pro-
vides a higher throughput than the bus environment. Moreover, as the traffic between any two devices

increases, it does not affect traffic between other devices. The biggest disadvantage of a crossbar is its

31

Rsp R
Sensor Actuator Memory Rsp

SiMS: Main
| implant {1 |
functionality
Req
Switch point
Security
Core(SISC) 3 3 1]

Req I Control \

Crossbar
Arbiter

Fabric

r]Grant

Figure 2.3: An example of the crossbar topology.

Sensor

SiMS: Main
implant
functionality

Actuator

Security
Core(SISC)

Figure 2.4: An example of a fully connected point-to-point topology.

cost, which grows proportional to N x M, where N+M is the number of components [2]. However, cost

may be acceptable for a few number of components.

Point to point

The point-to-point architecture is one of the simplest interconnects, in which two components that
need to communicate with each other have a dedicated link (Figure 2.4). There are two types of point-to-
point: fully connected interconnect and custom interconnect. The fully connected type connects every
master with every slave while the custom one is designed according to the needs of the masters. The
main advantage of the point-to-point is that its throughput remains stable no matter how many compo-
nents it connects because the different modules do not compete each other. However, the interconnect
needs a set of wires to connect different entities together and as many interfaces as the number of en-
tities that need to communicate. As a result, the use of wires, the number of interfaces and complexity

thereof increase rapidly as the number of components increases.

32

| [][oa] o] [555]
A A \ A

A |) i
[A [[-

Y v v Vv ¥
‘MEI‘EMEZE ‘ FB HMCH VB‘

(b)

-

Figure 2.5: Implementation of MPEG-2 encoder with 2 MEs using: (a) P2P and (b) bus communication
architectures

2.3 Related work

To the best of our knowledge, there is not any related work concerning the use of different inter-
connect topologies that specifically target Implantable Medical Devices or implant SoCs. Nevertheless,
we next discuss research concerning the comparison of crossbar with bus and point-to-point with bus
implemented in different low-power SoC applications. We believe that the main topologies’ tenden-
cies, extracted from these projects, apply to implant SoCs too. Despite the fact that our thesis does not
involve a bus interconnect implementation, the information below can offer us a first-order view of the

consequences of replacing the point-to-point or crossbar with a bus interconnect.

2.3.1 Bus versus Point-to-point

For the bus and point-to-point comparison, we follow a study that is implementing bus-based and
P2P-based architectures of a real multimedia application (i.e. MPEG-2 encoder) using an FPGA pro-
totype (Xilinx Virtex2 3000) and actual video clips [8].

The implemenation of a basic MPEG-2 encoder consists of 7 modules/cores: (1) input buffer (IB);
(2) DCT and quantization(DQ); (3) variable length encoder and output buffer (VE); (4) motion com-
pensation (MC); (5) inverse quantization and inverse DCT (I1Q); (6) motion estimation (ME); and (7)
reconstructed frame buffer (FB) (see Figure 2.5). In a P2P-based implementation these modules are
communicating with each other through dedicated channels while in a bus-based through a shared link.
The bus-based implementation requires one extra more module, the BCU (arbiter that determines which
module has the right to access the shared bus).

The study concludes that the point-to-point throughput is bigger than the bus one because in point-
to-point architecture each component use its own dedicated channel so there is no contention. If we
add one extra ME module this difference gets even bigger. On the other hand, the point-to-point scales
worse than the bus in terms of area because of the extra interfaces and links it requires when the number
of components increases. In contrast, the bus is only local affected since only one more link and one
more port from the newly inserted module to the bus/router is added. Lastly, the point-to-point has a
larger energy consumption than the bus implementation concerning an MPEG-2 encoder with only one
ME module. However, as we add more ME modules and thus the degree of parallelism is increased,
this fact reverses because point-to-point may have more links and interfaces however the bus needs
longer time to encode real data. On the other hand, the power consumption of the P2P implementation

is larger than the power consumed by the bus. The power consumption of the P2P architecture scales

33

poorly as the degree of parallelism increases, since the P2P implementation requires a significantly
larger number of additional links and network interfaces to accommodate the addition of extra ME
modules than the crossbar.

Based on the above research we believe that a bus-based implementation suits better for IMDs than
a P2P-based because of its smaller size and lower power and energy consumption. However, a P2P

implementation may be justified if the medical application demands higher throughput.

2.3.2 Crossbar versus Bus

We could find two projects that compare the bus with the crossbar architecture [9][10].

The first project [9] synthesized different bus and crossbar architectures with 64-bit width to STMi-
croelectronics 0.18 pm. They are implemented utilizing a few number of components. The interface be-
tween the agent (master) and the interconnect is a common input/output block that contains two FIFO
buffers (one from agent to interconnection and one from interconnection to agent) and a state machine
controlling the data transmissions. The transmissions are done with data packets containing one data
valid bit, an address field and a data field.

For the performance measurement, uniform traffic patterns have been used, meaning that all com-
ponents transmit the same amount of data to all other components in a round robin way. As expected,
it has been proven that the crossbar area is bigger than the bus and as the number of components in-
creases this difference is getting bigger. As it matters the throughput, it seems that the bus is efficient
only for small length transmissions (8 transfers) and a few number of agents (< 5 agents). Thus, when
the number of agents increases (approximately above 4 agents) the crossbar outperforms the bus.

The second project [10] synthesized crossbar and bus designs in 0.35 micron CMOS technology.
The bus and the crossbar designs are build both based on MUXes in order to make them more compa-
rable. This paper does not include a scheduler in either design, the data transfer preprocessing is done
manually.

The experiments are based on two different sets of data. The first set is artificially generated. With
this dataset, the crossbar can operate in full parallelism and is called “perfect data” set. The second data
set is pseudo randomly generated, which we call “random data”. The simulation of the perfect data
set proved that the crossbar consumes more energy per cycle than the bus with the same number of
components (simulations have taken place with 4, 8 and 16 components). However, crossbar consumes
less energy per data because of its high throughput and because it can operate in full parallelism. With
the second data set, the “random” one, in contrast with the previous results, the crossbar consumes
more energy both per data and per cycle than the bus.

We believe that for IMDs that can operate in full parallelism and demand medium-high throughput

the hardware complexity of the crossbar is justified.

34

CHAPTER 3

Implementation

We previously identified three types of interconnect that are well suited for the needs and constraints
of IMDS: A bus, P2P and crossbar architecture. Due to time limitations, we have only implemented the
latter two (the implementation and comparison to a bus is reserved for related work). We next describe
the design of both interconnects. We must highlight that their design is generic and can be adjusted to
any number of slaves, number of masters, data-width and address-width with minor effort.

3.1 Crossbar design

In this section we describe the design of the crossbar. The overall view of our N x M bidirec-
tional crossbar design is given in Figure 3.1. The input signals to the crossbar interconnect are N Mas-
ter _message, N Master request and M Slave_data signals. The output signals are: M Master message,
N Busy, N Response, N Slave _message and M Request signals. Our crossbar interconnect is adjustable
and flexible and can be scaled up or down by simply changing the following parameters: number of
Masters,number of Slaves, data width and address width.

The clock and reset inputs are global. The reset input reset all the flip flops used in the design and it
is asynchronous low because it requires less gates to implement. The Master message, Slave_message
and Slave_data signals are used for message transmission while the rest of them are control signals.
We next discuss the typical procedure followed to exchange a message between a master and slave,
after which we describe the involved components in more detail. A single message exchange between

a master and slave occurs as follows:

Phase 1 - Arbitration The master initiates a new message/request transfer. The master interface stores
the master message and is requesting permission from the arbiter to transmit the message to the

desired slave/slaves (signal slave request).

Phase 2 - Transfer If the master interface is granted access to exchange a message by the arbiter
(based on the arbitration protocol) then the message is transmitted through the fabric and the
slave interface/interfaces to the desired slave/slaves. If the master interface is not granted access,

then the master interface requests again permission from the arbiter.

Phase 3 - Response Ifthe message received by the slave was “’read” type, then the slave responds with

data and the slave message/response is transmitted through the fabric and the master interface to

35

Master_Message
Master_reques; Master_Message Master_Message
Slave_Mdssage| Master | Slave_Message Master_Message >
< R Interface 1 | | M “
Bﬁgeon e Master_request <S ave_Message Slave Request
— Interface 1 | | Slave_Data
Grant Slaves_response
oH
o ® |Slaje_response
° L]
° Fabric °
° L]
° Granted_Master| o
° °
Master_Messag M M
_ g aster_| esspge | Master_Message Slave M ster_Messagei
Master_rel uesy Sle; e Messla e' > v
Slave_Medsage | Master |e—m= g Slave_Message | Interface Request
€ = - M
Response| Interface N Slave_Data
Busy Master_requlest
g Cntrl2 TCntrIl Slave | response
Grant Granted_Master
Slaves_response

4

Arbiter

’ Grant |

Figure 3.1: Crossbar switch NxM.

the master. The slave message contains the data received by the slave and the address of the initial

request. This response takes place immediately after the reception of the “read” type message.

3.1.1 Master interface

Between each master and the main crossbar (fabric and arbiter) we have the “Master Interface”
component. The master interface is responsible to inform the master about the availability of the in-
terconnect, store the message of the master, deliver slaves messages (response from any slave) to the
master and in general manage all the communication between the master and the interconnect. The

overview of master interface is shown at Figure 3.2.

The masters—slaves communication is based on the following logical operations. If the master
interface is available (Busy=0) then he accepts and stores the next master’s message (Data, Address,
RW) and requests the arbiter for permission (Master request) to transmit the message to the desired
slave/slaves. The Busy signal comes from a comparison between the requested slave/slaves (mas-
ter _request stored) and the slave/slaves that he receives permission to transmit the message (granted master).
If they are equal that means the master interface is granted for all the slaves he requested. Otherwise,

the master holds his request until master interface is available.

Regarding the slaves—masters communication, the master interface is notified about any responses
(Slaves responses) by the crossbar arbiter. If any slave has to deliver a response to the master then the
master is notified (Response=1).

36

'T Master |request_out
X

|—>

Master_request_in u Register

Slave_request|stored

Master_Message Master| Message

> Register
Busy °<

A=B
Comparator
Grant Slave_request|stored Grant
_Response ((Slaves| response
Slave_Meéssage RN Slaye_Message

Figure 3.2: The Master interface module.

3.1.2 Crossbar arbiter

In the crossbar interconnect, there is a case that multiple masters would request the same slave.
However, this collision cannot be permitted because every slave should be connected with only one
master at a time. The component that prevents these collisions from taking place is called crossbar
“arbiter” or “scheduler”. This component considers the requests from all masters and grants access
to them. In order to perform the arbitration, the crossbar arbiter emploies a scheduling algorithm that
decides which Masters will be granted with permission. We chose a round robin algorithm for our
implementation, i.e., the arbiter gives permission to the masters which are requesting the same slave in

a circular order.

In effect, the crossbar arbiter consists of M basic arbiter modules, one for each slave. As a result
each slave has each own ”personal” arbiter and if a master requests more that one slaves then he may be
granted access only to some of them, because each basic arbiter module is independent. The architecture
of the basic arbiter module is shown in Figure 3.3. The “logic” box of this module’s architecture is
implementing the round robin arbitration following the logical operations bellow. It has only two inputs:
the master that desire to communicate with this slave (Request) and the (Last _grant) last master granted

with permission.

Gnt <= reqand (not(req)) + 1; (1)

reqs <= reqandnot((Last_grant-1) or Last_grant);)

37

Req

Logic
_| win
A=B >
“000...00” Comparator
e

Enable
Register f—
Last_grant
Granted_|master
Register >
"OOO.I..OO” Cntrll
Cntrl2 | m
= u Register
Response_toMaster X

Slave_resppnse

Figure 3.3: The basic arbiter module architecture of our Crossbar arbiter.It is using a round-robin pro-
tocol.

gnts <= reqs and(not(reqs)) + 1; (3)

Grant <= gntswhenreqs/ = 0else gnt; 4)

3.1.3 Fabric

The crossbar fabric component in the design (shown in figure 6.1) is responsible for physically
connecting a master to its destined slave and vice versa, based on the grants issued by the scheduler.
Our bidirectional crossbar fabric consists of two fabric modules, one for each way of communication
(masters—slaves, slaves—masters). The fabric structure is an assembly of individual switches between
N inputs and M outputs. The switches are arranged in a matrix, i.e., an NxM bidirectional crossbar fabric
is implemented by NxM switches for the masters—slaves communication and by MxN switches for the
slaves—masters communication. The crossbar fabric’s function is pretty simple: if a master is granted
or a slave has to respond, then it uses set of logical gates to set corresponding connection between
master and slave, as controlled by the arbiter (Cntrl signals).

3.1.4 The slave interface

Between each slave and the fabric we have a “slave interface”. The slave interface is responsible for
delivering the master’s message to the slave, handle the data response (if the request was read” type)

and in general manage all the communication between the slave and the interconnect. The overview of

38

)—> Slave0
>g > Slave2

-

4) y1—> Slavel
—
4)ﬁ y+—> Slave3

T

Master0 ——> | Cntrl(0) Cntrl(1) Cntrl(2) Cntrl(3)
Masterl —> | Cntrl(4) Cntrl(5) Cntrl(6) Cntrl(7)

Slavel_input
Master2 ——> | Cntrl(8) Cntrl(9) Cntrl(10) Cntrl(11))y
Master3 —> | Cntrl(12) Cntrl(13) Cntrl(14) Cntrl(15) [n]

Master0_message :I)
| Cntrl(1
Fabric @)

Masterl_message ——>
Cntrl(5) ——

Master2_message

Cntrl(9) jj
Master3_message

Cntrl(13)

Figure 3.4: An example of a 4x4 fabric module. Each bit of cntr/ input corresponds to a certain switch.

Each of the crossbar’s fabric output is the logical sum (OR) of inputs 0 to 3 AND’d with
the cntrl lines of that output’s column.

Data_out2 Data_in2
Adress_out2 "
< Register [€
Enable
Adress_in Adress_out
Data_in Data_out_
RW_in - RW_out
Granted |master \ .
/ / Request
Flip Flop

slave_response
\

Figure 3.5: The Slave interface module.

a slave interface is shown at Figure 3.5.

The slave interface function is based on the following procedure. The slave interface has to take the
master’s message from the fabric (Data, Address and RW) and deliver it to its corresponding slave. The
slave interface may be notified about an upcoming message by the crossbar arbiter (Granted master),
if so, then it notifies the slave Request). In the next cycle, if the request was of “’read” type, the slave
responds with data and the slave interface forwards the response to the fabric.

39

Master_Message/Master_Request

> Master_Message/Request
8 Nlines

Slave_Message/Response Master Slave H

Master_Message/Request
8 M lines Interface Interface

1 1 o Slave_Data

Slave_Message/Response S Mlines
Slave_Data

Master_Message/Request
.—)

Master_Message/Master_Request

8 Nlines

' Master Slave
Slave_Message/Response Master_Message/Request
Interface Interface
§ M lines N et M $Mlines Slave_Data
Slave_Data

Slave_Message/Response

Figure 3.6: Point to point interconnect design.

3.2 Point-to-point Design

Similar to the analysis followed before, we first give an overall view of what is implemented and
then we move on to a further analysis of each component. The overall view of our NxM point-to-
point design is given in Figure 3.6 . The input signals of the point-to-point interconnect are N Mas-
ter Message, N Slave request and M*N data signals. The output signals of the point-to-point are:
N*M Master Message, N*M Slave Message, N*M Request and N*¥M Response signals. Our point-
to-point interconnect is adjustable and flexible and can be scaled up or down by simply changing the
following parameters: number of Masters,number of Slaves, data width and address width.

The clock and reset inputs are global. The reset input reset all the flip flops used in the design and it
is asynchronous low because it requires less gates to implement. The Master message, Slave_message
and Slave_data signals are used for message transmission while the rest of them are control signals. As
in the crossbar case, we describe first the typical procedure followed to exchange a message between
a master and slave before we describe the involved components in more detail. A single message ex-

change between a master and slave occurs as follows:

Phase 1 - Transfer The master initiates a new message/request transfer. The master interface accepts

the master request and delivers the message to the desired slave through the slave interface.

Phase 2 - Response Ifthe message received by the slave was ’read” type, then the slave responds with
data and the slave interface forwards the response to the master through the master interface. We

assume that this response takes place immediately after the reception of the ”read” type message.

3.2.1 Master / slave interface

The master/slave interface components are effectively implemented by wires while the slave inter-
face has also some extra flip flops to buffer the request (if the request was of “read” type). They are

responsible to transmit the master message to the desired slave and the slave response to the master

40

Master_request_in Request
S
L
Master_message A
Request v
E
i § Mlines I
A N
S T
T Master_message E
E Request R
R F
Slave_message Slave_message)
Response_out Response_in E
Slave_message Slave_message S
Response_ou Response_in
¢ M lines § M lines

Master_message

Master_message

Slave_message

Slave_message

Response_out

Response_in

Figure 3.7: The master interface module.

respectively. The overview of the master interface is shown at Figure 3.7. As in the crossbar case, we
need also some more “control” signals to notify the slave about upcoming messages (request) and to

notify the master about upcoming responses (Response_in and response_out).

41

CHAPTER 4

Evaluation

We are next evaluating our interconnects based on various quality measures and traffic patterns.

First, the experimental setup is described in 4.1, after which our evaluation ensues in 4.2.

4.1 Experimental Setup

In this section we first describe the figures of merit we considered for the designs evaluation, after

which we describe what and how parameters we vary as part of our evaluation.

4.1.1 Figures of merit

For the evaluation of our implementations, we decided to measure 4 different characteristics: through-

put, latency, area cost and power consumption, discussed next in order.

Throughput

Throughput is defined as the average number of served requests per cycle. It is measured by count-
ing the total number of requests that the interconnect serves in a specific amount of time and dividing
the total requests served by the amount of time we measured. We count the total number of served
requests using "Modelsim” simulations. The measured throughput of the interconnect depends on the

traffic it serves while the maximum throughput depends on the interconnect design.

Latency

Latency is defined as the average time the interconnect requires to complete a message exchange.
The latency of a message exchange is measured by seeing how many cycles it takes to be completed
after it was first requested by a master using "Modelsim” simulations. For a crossbar interconnect, the
minimum latency of a message exchange is 3 cycles (it has at least to complete the 3 phases). It may
need more than 3 cycles in case that the request conflicts with other requests. On the other side, for a

point-to-point interconnect the latency is always stable and equals to 2 cycles.

Area

The area factor defines the space consumed by the implemented interconnect and it depends on

the number of cells used and the type of the cells. In order to measure it we used the ”Synopsys De-

42

sign Compiler (DC)” tool to perform hardware synthesis. This synthesis tool takes an RTL hardware
description and a standard cell library as input (we chose the UMC 90nm library due to availability)
and produces a gate-level netlist as output. The resulting gate-level netlist is a completely structural
description with standard cells. The area metric is in units specific to the standard cell library (which

is um? in our case).

Power

Power is the energy dissipated in a device per unit of time. The total power dissipated in a CMOS

VLSI can be classified in two major categories:

e Static or leakage power which is dissipated when the interconnect is at steady state.

e Dynamic power which is dissipated when the device is switching.

The total power consumption can be calculated as: P;otq1 = Phstatic + Paynamic- In order to measure
the average power consumption of our interconnects we used the ”Synopsys PrimeTime” tool. For the
power analysis, the design data and the switching activity are required. The design data are provided
by the synthesis of our design and the switching activity by the vcd file, which is produced from the
simulation of the traffic pattern. For our measurements we set the clock frequency at 20MHz since this
is commonly assumed suitable for IMDs.

4.1.2 Evaluation parameters

As we mentioned in the previous chapter, the design of both of our crossbar and point-to-point
interconnect is flexible. It can be adjusted to any number of masters and slaves and any transfer width
(data and address fields) by changing a few parameters in VHDL.

Inline with the expected sizes of current and future IMDs, we choose to implement interconnects
of sizes: 2x2, 2x4, 2x8, 2x16, 2x32, 4x4, 4x8, 4x16 and 4x32. A 2xM interconnect size is a logic
hypothesis since 2x2-2x8 interconnect sizes are likely realistic scenarios nowdays (see IMDs described
in the Appendix B). While 32 slaves are likely too many for IMDs in the near future, we evaluate the
effect to assess its viability for Implants. Moreover, there are some modern IMDs which are using more
than two processors (e.g. a responsive implantable system for the treatment of neurological disorders
[3] is using 1 processor and 2 sub-processors for the event detection and the stimulation of the system),
thus we believe that a 4xM evaluation is a realistic choice too. The above sizes contribute to a consistent
view of the interconnects’ scalability in terms of performance, area cost and power consumption.

Our default interconnect assumes an 8-bit data width and a 32-bit address. To determine how our
system overheads scale as a function of these parameters, we also implemented interconnects with 4-
bit data and 16-bit address. In these latter interconnects (4-bit data,16-bit address) an extra split and
reconstruct mechanism is implemented within the master and slave interfaces. This mechanism split
the request message in order to transfer it and reconstruct it before delivering it to the slave. The same

occurs for a response.

43

Table 4.1: Random traffic patterns

Pattern names | Generation rate Potential Collisions
LO 0%
L25 2 requests 25%
L50 Low(m) 50%
L75 75%
L100 100%
MO 0%
M25 2 requests 25%
M50 Medium(m 50%
M75 75%
M100 100%
HO 0%
H25 2 requests 25%
H50 High(m) 50%
H75 4 75%
H100 100%

4.1.3 Traffic patterns

The traffic pattern indicates the destination and the generation rate (the bigger it is the more requests
our interconnect has to serve) of masters’ requests. Based on our attempt to evaluate our interconnects
for a wide range of communication scenarios, we created different “random” traffic patterns. Our traf-
fic patterns are defined by their generation rate (low, medium or high) and their ’potential collisions”
percentage, which defines the percentage of collissions expected. We are interested in the above speci-
fications because they clearly indicate the influence of many different communication scenarios to the
interconnect’s performance and power consumption. The type of masters’ messages/requests are half
“read” and half "write” type.

4.2 Experimental results

In the following sections we present and analyse the results of our experiments. We start by showing
the results of each individual interconnect type which were produced by executing the mentioned traffic

patterns. Afterwards, we compare the results for both interconnects.

4.2.1 Crossbar

Throughput

Figures 4.1 and 4.2 depict the throughout results for different traffic patterns and SoC sizes. If the
number of requests per second does not exceed the saturation point of the interconnect, the through-
put (accepted traffic) equals the demand (offered traffic). We observe that none of our 15 “random”
traffic patterns exceeds the saturation point of each implemented crossbar. As a result, the measured
throughput of our implemented crossbars depends neither on the percentage of collisions, nor the size
of them, but only on the traffic density they have to serve. For example, a 2x16 has the same measured
throughput for every of the L0-L100 random traffic patterns (the same applies to the M0-M 100 and HO-

44

0,25
)
(8]
g 02
.3 m 0%
()
2 0,15 W 25%
= o,
= 01 m50%
_g B 75%
3 0,05 100%
<
'—

0 -
Low Medium High

Figure 4.1: An example of a 2x16 crossbar with all the random traffic patterns.

0,25

E m2x2

';>’~ 0,2 m2x4

~~

..3 m 2x8

20,15

30 " 2x16

< 2x32

5 01

& B 4x4

[T]

3 0,05 B 4x8

= m 4x16
0 - m 4x32

Low Medium High

Figure 4.2: Different kind of density traffic patterns (L0, M0, HO) served by every crossbar size.

H100 traffic patterns, see Figure 4.1). Moreover, for all the implemented crossbar sizes we got the same
measured throughput when the same random traffic pattern was served (see Figure 4.2). It is expected
that for traffic patterns with very high regeneration rate, the throughput may depend on the collisions
percentage and may not equal the demand (traffic), e.g., a traffic pattern with %. Finally, we
note that by reducing the transfer capability of the crossbars to 4-bits data and 16-bi?th address width, we
get the same measurements. However, we expect that the maximum potential throughput is decreased

(as it depend on the design).

Latency

Figure 4.3 depict the latency results for different traffic patterns and SoC sizes. Our results proves
that latency is affected by conflicts, while it is irrespective of traffic density (see Figure 4.3). Moreover,
the latency is stable for a given collision rate regardless of SoC size because the procedure followed
for a request service is not affected by the number of components. Finally, by halving transfer width
we observe that the latency is increased by two cycles because only half of the initial request can be

transferred through the fabric at a time.

45

(O3}

]

34 0%
g

<3 W 25%
(]

:5'2 H50%
§1 m75%
[J]

= m 100%
o)

Low Medium High

Figure 4.3: An example of a 2x16 crossbar with all the random traffic patterns.

120
100
~§ 80 H2x2
E 60 1 2x2(Half)
< 40 2x8
20 H 2x32
0 - W 4x8
A A H 4x16
< & & &
<0 Q < \? m 4x32
@ X @ <@
> N <0
Qoé‘ ,(9&
&

Figure 4.4: Crossbar utilization area of the different implemented sizes.

Area

Figure 4.4 depicts the area results for various SoC designs. By implementing the 2x2 - 4x32 cross-
bars we could get a clear and complete picture of the crossbar’s area scalability. We observe that the
crossbar’s needs of area tend to be increased when the number of the slaves increases. For example,
moving on from a 2x2 to 2x4 crossbar results to a 64% increase in area, while moving on from a 2x16
to a 2x32 results to a 93,4% increase (see Figure 4.4). The same applies to the 4xM sizes. Therefore
crossbar loses its scalability as size increases. Primarily combinational logic is increased because the
fabric is increased proportional to /N = M. Finally, we note that by halving the crossbar’s transfer width,
the total area is increased. This is due to the extra logic needed for the implementation of the split and
reconstruct function. For example, the 2x2 crossbar’s area is 30,4% bigger than our previous crossbar

implementation.

Power

Figures 4.5 and 4.6 depict the power-consumption results for all the crossbar sizes. We first observe
that total power is primarily affected by size. This is because both static power and dynamic power
(consumed for the service of a request) are increased. The same applies to peak power (see Figure 4.6).
Moreover, we observe that total power is hardly affected by collisions because static power remains

the same while the dynamic power may slightly increase. For every traffic pattern and crossbar size,

46

= 6,0E-04
£ 5,0E-04
,%, 4,0E-04
g 3,0E-04
S 2,004 -
= 1,0E-04 -
 0,0E+00
N — 00 N 0 O
X T X »n X
[aV] R’ AN X < X
N N <
o~
Low

4x32

2x2
2x2(H)

2x8
2x32
4x8

Medium

4x16
4x32

2x2

=0 N 0 ©
I Xmn X o
N X S X%
P54 (o] <
~N

High

4x32

B Dynamic
W Static

Figure 4.5: The average power consumption of different kind of density traffic patterns with 25% col-

lisions.

1,0E-01

8,0E-02

6,0E-02

Peak Power(Watt)

4,0E-02 -

2,0E-02 -

0,0E+00 -

W 2x2

1 2x2(Half)

m 2x8

m 2x32

W 4x8

M 4x16
4x32

Figure 4.6: The peak power consumption for different crossbar sizes that serve the M25 traffic pattern.

0,25

0,2

0,15

0,1

0,05

Throughput(requests/cycle)

Low

Medium

High

m 0%
m25%
m 50%
m75%
m 100%

Figure 4.7: An example of a 2x16 point-to-point with all the random traffic patterns.

we notice that dynamic power is always a lot higher than static, even if the communication activity is

low. Finally, we notice that by reducing by half the crossbar’s width the total power consumption is

increased due to the the split-reconstruct overheads. For example, a 2x2 crossbar that is simulating the

L25 traffic pattern is consuming 35,73% more power than our previous crossbar.

47

0,25
T H2x2
(%)
> m 2x4
3 0,2
% m2x8
0,15
30 " 2x16
< 2x32
5 0,1
2 M 4x4
)
3 0,05 W 4x8
= ® 4x16
0 - W 4x32
Low Medium High

Figure 4.8: Different kind of density traffic patterns (L0, M0, HO) served by every point-to-point size.

_25
g
3 2 m 0%
2
<15 - " 25%
[
T 1 W 50%
9 75%
£05 -
E m 100%

0 -

Low Medium High

Figure 4.9: An example of a 2x16 point-to-point with all the random traffic patterns.

4.2.2 Point-to-Point
Throughput

Figures 4.7 and 4.8 depict the throughout results for different traffic patterns and SoC sizes. We
observe that none of our 15 random” traffic patterns exceeds the saturation point of each implemented
P2P. As a result, the measured throughput of our implemented P2Ps depends neither on the percentage
of collisions, nor the size of them, but only on the traffic density they have to serve. For example, a
2x16 point-to-point has the same measured throughput for every of the LO-L100 random traffic patterns
(the same applies to the MO-M 100 and HO-H100 traffic patterns, see Figure 4.7). Moreover, for all the
implemented P2P sizes we got the same measured throughput when the same random traffic pattern
was served (see Figure 4.8). It is expected that even for traffic patterns with very high regeneration
rate, the throughput would equal the demand. Finally, we note that by reducing the transfer capability
of P2P to 4-bits data and 16-bits address width, we get the same measurements. However, we expect

that the maximum potential throughput is decreased (as it depends on the design).

Latency

Figure 4.9 depicts the latency results for different traffic patterns and SoC sizes. Our results prove
that conflicts do not affect latency nor the traffic density (see Figure 4.9). Moreover, the latency is

stable regardless of SoC size because the procedure followed for a request service is not affected by

48

120
=100
[|
E 80 2x2
E 60 M 2x2(Half)
< 40 - 2x8
20 - J 2x32
0 —= A =M W 4x8
A N
2 Q Q e W 4x16
QOQ \s)\\\o ‘i}o(\ \’bK
<&@ Q Q@ X M 4x32
‘0\ ~°\ &O
(’0@ 1006‘
&

Figure 4.10: Point-to-point utilization area of the different implemented sizes.

= 1,20E-03
% 1,00E-03
< 8,00E-04
ﬂ;’ 6,00E-04
o 4,00E-04 B Dynamic
+ 2,00E-04 = Stati
5 0,00£+00 == ate
N 00 N O O N N 00 N 0 OV N N =00 N 0 O N
X T Xmn X - m X T Xmn X = m XL Xmn X< m
NEYETEES YFY&YES YFY&YES
x x x
(oV] o~ o~
Low Medium High

Figure 4.11: The average power consumption of different kind of density traffic patterns with 25%
collisions.

the number of components. Finally, by halving transfer width we observe that the latency is increased

by two cycles because only half of the initial request can be transferred at a time.

Area

Figure 4.10 depicts the area results for various SoC designs. By implementing the 2x2 - 4x32 P2Ps
we could get a clear and complete picture of the P2P’s area scalability. We observe that the P2P’s
needs of area tend to be increased when the number of the slaves increases. For example, moving
on from a 2x2 to 2x4 P2P results to a 98,6% increase in area, while moving on from a 2x16 to a
2x32 P2P results to a 99,2% increase (see Figure 4.10). The same applies to the 4xM sizes. Therefore
P2P loses its scalability as size increases. Primarily non-combinational logic is increased because of
the many registers it requires to handle many request/responses at a time. Finally, we note that by
halving the P2P’s transfer width, the total area is increased. This is due to the extra logic needed for the
implementation of the split and reconstruct function. For example, the 2x2 P2P’s area is 110% bigger

than our previous P2P implementation.

Power

Figures 4.11 and 4.12 depict the power-consumption results for all the P2P sizes. We first observe

that total power is primarily affected by size. This is because both static power and dynamic power

49

2,0E-01

H 2x2
‘g 1 5E.01 m2x2(Half)
3 = 2x8
$ 1,0e-01 - m2x32
=]
o
= m 4x8
© 5,0E-02 L
o

4x32
0,0E+00 - X

Figure 4.12: The peak power consumption for different point-to-point sizes that serve the M25 traffic

pattern.
__0,25
2
>
S 02
2
(%]
$0,15
g M Crossbar
5 0l p2p
®
§ 0,05
-
£, m
Low Medium High

Figure 4.13: An example of a 2x16 crossbar and a 2x16 point-to-point serving the L.0,M0 and HO traffic
patterns.

(consumed for the service of a request) are increased. The same applies to peak power (see Figure 4.12).
Moreover, we observe that total power is not affected by collisions because both static and dynamic
power remain the same. For every traffic pattern and P2P size, we notice that dynamic power is always
a lot higher than static, even if the communication activity is low. Finally, we notice that by reducing by

half the P2P’s width the total power consumption is increased due to the the split-reconstruct overheads.

4.2.3 Comparison

Here we attempt a comparison of the crossbar and point-to-point interconnects based on the above

measurements.

Throughput

For every traffic pattern and size the measured throughput of both interconnects is the same (see
Figure 4.15). As we already mentioned, this occurs because none of our traffic patterns exceeds the
saturation points of these two interconnects. However, we expect that the point-to-point’s saturation

point is bigger than the crossbar’s.

50

5

4

3 -

2 B Crossbar
1 - P2P

0

0% 25% 50% 75% 100%
Collisions percentage

Latency(cycles/request)

Figure 4.14: An example of a 2x16 crossbar and a 2x16 point-to-point serving the L0O-L100 traffic

patterns.
150
E 100
E
S 5o I B Crossbar
<
AR N N et
U\ WA - TN S
XA Y N D
'Lrpo,\ VAR W W

Figure 4.15: Comparison of crossbar and point-to-point area scalability.

Latency

The point-to-point has lower average latency than the crossbar. This is due to crossbar’s need for
arbitration. Crossbar requires one more cycle for arbitration and its latency may also increase due to

collisions (See Figure 4.14).

Area

In terms of area, we find that the point-to-point implementation requires less area for small inter-
connect sizes. This is because point-to-point’s implementation does not require an arbiter and because
its master interface is simpler. Conversely, a crossbar takes advantage of the fabric (less links) and the
simpler slave interface (it has to handle only 1 request or response at a time) for larger sizes, resulting

in a reduced area. The Crossbar, thus, scales better in terms of area (See figure 4.15).

Power

In all cases, we find that the crossbar consumes considerably less power than the point to point.

This is primarily because P2P consumes more dynamic power than the crossbar.

51

1,2E-03

1,0E-03
=
® 8,0E-04
E, Crossbar dynamic
§ 6,0E-04 M Crossbar static
o
& W P2P dynamic
g 4,0E-04 P2P static
'—

2,0E-04 r

m 0 l

0,0E+00 J_L_- —.
2x2 2x2(H) 2x8 2x32 4x8 4x16 4x32

Figure 4.16: The average power consumption of crossbar and point-to-point interconnects during the
simulation of the M25 traffic pattern.

2,0E-01
1,8E-01
1,6E-01
1,4E-01
1,2E-01
1,0E-01 M crossbar
8,0E-02

p2p
6,0E-02

4,0E-02 l

2,0E-02 l

ooes00 | M= T | B

2x2 2x2(H) 2x8 2x32 4x8 4x16 4x32

Peak Power(Watt)

Figure 4.17: The peak power consumption for crossbar and point-to-point sizes that serve the M25
traffic pattern.

52

CHAPTER 5

Conclusion

5.1 Summary

In this thesis, we were involved with the problem of communication architecture on IMD System-
On-Chip. In chapter 2, we presented the structure and communication activity of an IMD, three possible
good alternative communication architectures and related work regarding these interconnect types. In
chapter 3, we subsequently implemented the two out of the three interconnect types: A crossbar and
a point-to-point interconnect. In chapter 4, we evaluated our implementations in terms of throughput,
latency, area cost and power consumption. Our experiments show that crossbar has lower performance
than the point-to-point, it is smaller for medium-large sizes, it consumes less power and scales better.
To answer our question, we conclude that the crossbar type should be used for present and future IMDs
instead of a point-to-point, given both their expected traffic patterns and low-power requirements, while

the bus seems also a good alternative and thus its implementation is reserved for future work.

5.2 Future Work

We already stated that there is not previous work that examines the impact of different communi-
cation architectures designed specifically for Implantable Medical Devices. From this point of view,
our work is innovative and also it is only a beginning. There is still much work that can be done, so we

present some of our thoughts that may contribute to future research.

e Different topologies can be implemented instead of a crossbar and a point-to-point ones. The bus
architecture is the next most promising one because of its potential less power consumption. We
expect that, compared with point-to-point and crossbar architectures, a bus architecture would
increase the latency of the requests and the maximum throughput would be reduced, but it would
decrease the area cost and the total power consumption (based on the related work). The expected
increase in latency and the reduction in throughput can likely be tolerated by current and future
IMDs.

e Low power methods can be implemented to our existing communication architectures. Two of
such methods are already described in Appendix A, their implementation can potentially reduce

the dynamic power consumption. However, the effectiveness of these methods depends highly

53

54

from the application specifics, so unless we implement them we cannot be sure if the additional

circuitry that must be added leads to a total power consumption reduction.

Fault tolerant techniques should be adopted in order to correct faulty behaviour of components
and achieve high reliability. The fault tolerance is of high importance for our IMDs because
any communication failure or malfunction may result to serious injury to people or even death.
However this feature doesn’t come without cost. The adoption of a fault tolerant mechanism
will raise both the area cost and the power consumption. This additional cost depends from the

communication architecture that is implemented.

Bibliography

[1] R. KAMAL and N. YADAYV, “Noc and bus architecture: A comparison,” International Journal of
Engineering Science and Technology (IJEST), 2012.

[2] B. Moyer, Real World Multicore Embedded Systems. Elsevier / Newnes, 2013.
[3] A.R. M. U. Robert E.Fischell, David R. Fischell, Oct. 17, 2000.

[4] N. H. M. Catherine Ward, Susannah Henderson, “A short history on pacemakers,” International
Journal of Cardiology, 2013.

[5] A.Demosthenous, “Advances in microelectronics for implantable medical devices,” Advances in
Electronics, 2014.

[6] K. Bazaka and M. V. Jacob, “Implantable devices: Issues and challenges,” Electronics, 2013.

[7] C. Strydis, Universal Processor Architecture for Biomedical Implants. PhD thesis, Delft Univer-
sity of Technology, 2011.

[8] U. Y. O. Hyung Gyu Lee, Nachyuck Chang and R. Marculescu, “On-chip communication ar-
chitecture exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip ap-
proaches,” ACMTransactions onDesign Automation of Electronic Systems,Vol. 12, No. 3,Article
23, August 2007.

[9] K. K. T. H. V. Lahtinen, E. Salminen, “Comparison of synthesized bus and crossbar interconnec-
tion architecures,” Circuits and Systems, 2003. ISCAS "03. Proceedings of the 2003 International
Symposium on, May 2003.

[10] Y. Zhang and M. J. Irwin, “Power and performance comparison of crossbars and buses as on-
chip interconnect structures,” Signals, Systems, and Computers, 1999. Conference Record of the
Thirty-Third Asilomar Conference on (Volume:1), 24 Oct 1999.

[11] L. B. G. D. M. E. M. D. Sciuto and C. Silvano, “Asymptotic zero-transition activity encoding for
address busses in low-power microprocessor-based systems,” VLSI, 1997. Proceedings. Seventh
Great Lakes Symposium on, Mar 1997.

[12] T. L. Enric Musoll and J. Cortadella, “Working-zone encoding for reducing the energy in mi-
croprocessor address buses,” IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
(VLSI) SYSTEMS, VOL. 6, NO. 4,, December 1998.

[13] S. P. Hui Guo, “Shifted gray encoding to reduce instruction memory address bus switching for
low-power embedded systems,” Journal of Systems Architecture, 2010.

[14] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power i/0,” IEEE TRANSACTIONS
ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. I, March 1995.

[15] J. Natesan and D. Radhakrishnan, “Shift invert coding (sinv) for low power vlsi,” Digital System
Design, 2004. DSD 2004. Euromicro Symposium on, September 2004.

55

Appendix A’

Low power encoding techniques for interconnects

The power dissipated in a CMOS Vlsi design can be classified in two categories: static power and
dynamic power. The static power is the power consumed when the transistors are not switching while
the dynamic power is the power consumed by the switching logic states. As it concerns the dynamic
power, the dynamic power consumed by the charging or discharging of the output load external to the
cell is referred as ’switching power” while the power dissipated within the cell is referred as ”internal
power”.

There are many encoding techniques that have been applied to a bus to reduce the total power
dissipation in a CMOS Vlsi. However, many of them apply only to address busses(Asymptotic Zero-
Transition Activity Encoding, Working Zone encoding, Grey encoding etc.) [11, 12, 13], so they are
not part of our concern. In the following lines we present two of the basic encoding methods to reduce
the power dissipation of an interconnect, regardless the kind of transmitted data(memory access, sensor
data,command to actuator etc). Despite the fact that they have been implemented only for buses, all of
them are general and apply both for crossbar and point-to-point architectures.

A’.1 Invert Coding

One of the most popular and simple methods to reduce the dynamic power of the interconnect is the
“Invert Coding” method. We must highlight that this method does not affect the internal power of the
circuit but it is designed to reduce the power dissipated cause of the I/O activity. The power dissipated
at the I/O can range between a really low percentage to a high enough so as to be the main cause of
dynamic power dissipation. It depends on the communication needs of the components of our system.

The target of this method is to reduce the number of transactions in the input/output nodes and
slightly increase the number of transactions in the internal nodes[14] . The power penalty for increasing
the switching activity in internal nodes is much less significant than what we gain by decreasing the
switching activity in external nodes. Now we move on with the description of this method.

The purpose of “invert coding” method is to reduce the number of transitions per cycle but without
reducing the amount of transferred data. Here is the procedure to implement the coding[14]: 1) We
compute the hamming distance(the number of bits in which they differ) between the present intercon-
nect value (also counting the present invert line) and the next interconnect value. 2) If the Hamming
distance is larger than n/2, set invert =1 and make the next interconnect value equal to the inverted next
data value. 3) Otherwise let invert = 0 and let the next interconnect value equal to the next data value.
4) At the receiver side the contents of the interconnect must be conditionally inverted according to the
invert line, unless the data is not stored encoded as it is (e.g., in a RAM).In any case the value of invert
must be transmitted over the bus (the method increases the number of bus lines from n to n + 1).

With the above method the maximum number of transitions per time slot are reduced by half and
we have also a smaller reduction at the average number of transitions does not reduce really much. That
means that we have a large decrease in the peak power dissipation and a less decrease in the average
power dissipation. It turns also out that as the width of the interconnect increase the decrease of the

56

average power dissipation gets even smaller while the reduction of peak power dissipation remains the
same. So if we want to apply this method to interconnects with large-width we should partition them to
a number of narrower interconnects. The only disadvantage of this coding is that it requires one extra
bus line, the invert line, in order to know at each time if the transmitted data are inverted or not.

A’.2 Shifting Coding

Another simple coding method that we can use to reduce the dynamic power dissipation is the
shifting coding method[15]. The concept of this method is, similar with the previous invert coding
method, to shift left(or right) the data bits that have to be transferred. Let’s consider an example with
left shift encoding that will help us understand the privileges of this method. We suppose that the data
transmitted at cycle k are 01001101 and the new data arrive at k+1 are 10010010. If we choose to
transmit the data as they are then the number of transitions are 6, meaning that 6 bits must toggle. Now,
if we had used a right shifting coding method the data at cycle k+1 would be modified to 01001001
and we would have only 1 transition. The methodology of this coding is like the previous one except
that instead of inverting we are shifting the data.

57

Appendix B’

Implantable medical devices

Below we describe current and future IMDs. We give details about the device function, the com-
ponents and the traffic pattern that simulates its communication activity.

system 1: Artificial pancreas

In one form of diabetes, patients no longer produce enough insulin to lower their blood glucose.
Normally, patients have to periodically (prior to eating) inject insulin to keep their blood-glucose
levels from spiking. Alternatively, they may rely on “pancreas pumps”, which periodically re-
lease insulin (even when not needed).

An improvement to treatment can be made using closed-loop control, which only injects insulin
when needed. This system models a pancreas stimulator for diabetics, specifically the “Biostator
IT”. The pancreas stimulator (or “smart pump”) actively monitors the blood glucose levels. If the
glucose level is too high, it emits insulin to lower this glucose.

Components:

e P1: Processor — main implant functionality (SiMS)
e P2: Processor — security processor (SISC).

e S1: Sensor: Glucose

Al: Actuator: Insulin pump

M1: Shared memory

Table B".1: Artificial pancreas traffic patterns

Traffic pattern name | Communication activity Period
P1 is reading
Artificial Pancreas(1) | from glucose sensor,writing to insulin 1 minute

pump and writing to memory the previous values.
case | + P2 is

Artificial Pancreas(2) . 1 week
setting treatment parameters

case 1 + P2 data
log
case 1 + P2

Artificial Pancreas(4) read-log 4 hours

Artificial Pancreas(3) 3 times per day

system 2: Artificial pancreas with vital signs

It is not unlikely that any future IMD tracks a patient’s four vital signs: Oxygen saturation, heart
rate, body temperature and blood pressure. This systems models the “Biostator 11, with an ad-
ditional 4 sensory outputs to monitor these signs.

58

It has the same traffic pattern as system 1, except that it reads and stores the vital signs too.
We refer to the traffic patterns based on the communication activity of this device as Artificial
Pancreas with vital signs(1)”, Artificial Pancreas with vital signs(2)”, ”Artificial Pancreas with
vital signs(3)” and "Artificial Pancreas with vital signs(4)”.

Components:

e P1: Processor — main implant functionality (SiMS)
e P2: Processor — security processor (SISC).

e S1: Sensor: Glucose

e S2: Average Oxygen saturation

e S3: Average heart rate

e S4: Average body temperature

e S5: Average blood pressure

e Al: Actuator: Insulin pump

e MI1: Shared memory

system 3/4: Combined Artificial pacemaker & ICD without/with vital signs

An artificial pacemaker actively monitors the heart rate of a patient. If the heart rate is too low, the
pacemaker will send electric stimulation to the heart to keep it beating. If the patient is experienc-
ing fibrillation, the ICD-part will send a high voltage electric stimulation to end the fibrillation.

These systems are similar with systems 1 / 2 (without / with vital signs), with the following
changes:

e S1is an ECG sensor, rather than a glucose sensor

e Al is an electrode (for pacing the heart), rather than an insulin pump.

Table B".2: Combined Artificial pacemaker & ICD without vital signs

Traffic pattern name Communication activity Period
P1 is reading from sensor ECG,
writing to actuator,

Combined artificial pacemaker(1) | stores average heart rate+actuator value, | 1 second
keep reading from sensor ECG
every 1/300 seconds .

case 1 +P2is

Combined artificial pacemaker(2) . 1 week

setting new treatment parameters
Combined artificial pacemaker(3) | case 1 + P2 data log 3 times per day
Combined artificial pacemaker(4) | case 1 + P2 read-log 4 hours

system 5/6: Epileptic-seizure detection without/with vital signs

Epileptic seizures cause a variety of symptoms, such as involuntary movement, loss of control
and absence of mind. Closed-loop seizure control actively monitors the brain activity. If seizure-
like activity is detected, an electric (/optogenetic) stimulation is executed, resulting in seizure
suppression. These systems are similar with systems 1 / 2 (without / with vital signs), with the
following changes:

e S1 and Al are EEG multi-electrode arrays.

59

Table B’.3: Epileptic-seizure detection without vital signs traffic pattern

Traffic pattern name Traffic pattern name Period
P1 reads from sensor EEG(5 times cause
of 5 sensor channels),writes to actuator
Epileptic-seizure detection(1) | (channels*electrodes),stores actuator value, | 1 second
keep reading from sensor EEG
every 1/100 seconds .
Epileptic-seizure detection(2) case I +P2is 1 week
setting new treatment parameters
Epileptic-seizure detection(3) | case 1 + P2 data log 3 times per day
Epileptic-seizure detection(4) | case 1 + P2 read log 4 hours

system 7/8: Tinnitus treatment without/with vital signs

Tinnitus is a condition where patients experience phantom sounds. In severe cases, this has sub-
stantial affects on the mental health of patients. We are working on a system which trains the
brain to ignore these phantom sounds. These systems are similar with systems 1 / 2 (without /

with vital signs), with the following changes:

e S1 Is an EEG multi-electrode array.

e Al is also an EEG multi-electrode array.

Compared to Systems 5/6, A1l requires a substantially higher data throughput: In system 5/6, the
output is merely “stimulate” or “don’t stimulate”. In this system, a (complex) waveform is send

to the actuator.

Table B".4: Tinnitus treatment without vital signs traffic pattern

Communication activity Period
P1 reads from sensor EEG(5 times cause
of 5 channels),writes to actuator
.. channels*electrodes),stores
Tinnitus treatment(1) () . 1 second
actuator value,keep reading
from sensor EEG and writing
to actuator every 1/100 seconds.
o 1+P2i
Tinnitus treatment(2) case S 1 week
setting treatment parameters
. 3 times
Tinnitus treatment(3) | case 1 + P2 data log
per day
Tinnitus treatment(4) | case 1 + P2 read log 4 hours

The systems 1,3,5 and 7 are using a 2x3 interconnect,the system 6 is using a 2x6 and the rest a 2x7.

60

	List of Figures
	List of Tables
	Introduction
	Background and related work
	Implantable Medical Device components role
	System On Chip Interconnect Topology
	Related work
	Bus versus Point-to-point
	Crossbar versus Bus

	Implementation
	Crossbar design
	Master interface
	Crossbar arbiter
	Fabric
	The slave interface

	Point-to-point Design
	Master / slave interface

	Evaluation
	Experimental Setup
	Figures of merit
	Evaluation parameters
	Traffic patterns

	Experimental results
	Crossbar
	Point-to-Point
	Comparison

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix Low power encoding techniques for interconnects
	Invert Coding
	Shifting Coding

	Appendix Implantable medical devices

