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Amayopevetal 1 avTlypoer], amodnKeuon Kot S1avoun TG Tapovcag pyaciag, €€ 0AOKA POV
N TUWLOTOG QLTNG, Y10 EUTOPIKO Gkomo. Emttpéneton n avatummon, amodnkevon Kot dtovoun
Yl0L GKOTO [N KEPOOGKOTIKO, EKTOOEVTIKNG 1| EPEVVNTIKNG GVOTG, VIO TNV TpovTdOesT VoL
AVOQEPETOL 1 TTNYN TPOEAEVONG Kol vo dwtnpeitar to mapdv unvopo. Epotmuata mwov
aQOpPOvV TN XPNON NG EPYACIOG Y10t KEPOOGKOTIKO GKOTO TPEMEL VO OMEVHVVOVTOL TPOG TOV
ovyypoapéa. Otr amOyelS Kol TO CGLUTEPAGLOTO OV TEPLEYOVTIOL GE OVTO TO EYYPOPO
ek@palovv TOV cLYYpaPE Kot OV TPEMEL VoL EPUNVEVDEL OTL AVTITPOCHOTEVOVV TIG EMIOTLLES
0éceic tov EBvicod MetadBiov ITorvteyveiov.



Yovropn Hepiinyn

Ta tedevtaia xpovia, n oAoéva avsavouevn @Onon yo TV KaADTEPT SLVOTH VTOAOYLIGTIKN €nid00N
&xel 0ONYNGEL GTNY VAOTOINGT TOV ETEPOYEVOVS VITOAOYIGLOV KO TV ETEPOYEVAOV TAATOOpUmV. Ta
GLOTNLOTO OVTE KEPSILOVY VTOAOYIGTIKN 1YY KOl EVEPYELNKT] OTO0GT TPOGHETOVTUG SL0POPETIKOVG
EMTAYVVTEG OG OLV-EMEEEPYUOTES LE EEEIOIKEVUEVEG dVVATOTNTEG EMECEPYNTING, YO VO SLOXEPIGTOVY
ovykekpluéveg evtatikéc epyacies. Ta FPGAs €youv kepdicel to evolaépov g apyITEKTOVIKNG
CLOTNUATOV AOY® TOV SVVOTOTHTOV TOVS Y10, YPNYOPT| TPOTVTOTOINGN EMLTAXVVTMOV VAIKOV. Ommg
vTodNA®VEL T0 6voud Tovg, T FPGASs givan mpoypappatilopeva «oto medion, Pe v Evvola 0Tt TO
€0MTEPIKO KOKAMU pmopel vo StapopemBel petd v KaTooKeL TOVS, KaBMS Kot va TpomomomBel
yoplg va ypewdletor m ovokaTOoKeELY] TOvG, On®g oto moapadoctokd ASICs. H Mepum
Avadwopopemon (Partial Reconfiguration) odnysi avtv tovg v eveléila éva Prijua mapamépa,
dtvovtag ™ dvvatomta oe éva FPGA mov elvar evepyd va Tpomomomcel éva KOpPATL Tov 0G0 1O
voAoITo GVoTNLA cLVEYILEL Vo Aettovpyel Kavovikd, xmpic va Baletl og Kivovvo TNV akepaldTnTo TMV
VTOAOYIGU®MY 7OV EKTEAOVVIOL GTO TUNUOATO, TG GLVOKELNG OV OV OVASIOUOPPAOVOVTAL. AVTH N
TEYVIKN 00NYel oTNV peimoN TV TOP®V 7oL ypeldlovtal yio vo, VAoTon0el po dedouévn Aettovpyia,
pe emaxkdlovdrn peiwon 610 KOGTOG KOl TNV EVEPYEWKY KATOVAA®MOY, Tapéyel gveMéion oTovg
0AYOPIOLOV/TPOTOKOALD TTOV €ival dla0écIe GE pio, EQUPLOYN KOl EMLTAYVVEL TNV VTOAOYIGTIKN
dldtkacio EMITPENOVTOG 0 €va GUGTNUO VO €IvOl £TOLMO VO, OVTOTOKPIOEL 68 VEEG OmMOLTOELS
ypnyopdtepa. Avti m epyacio. mpoomdbnce vo eEepevvnoel v TeYvohoyia Mg Mepikng
Avaduopopemong oe FPGAs Kot vo epoplOcEL T YVMOOT oV omoKTHONKE Y10 Vo KOTOOKEVAGEL val
oLOTNO KPLTTTOYPaPN oG 61N cvokevn Xilinx Zyng-7000 SoC. To Zyng cuvdvdalel tn cuvomapén
TPOYPOUUATILOUEVIG AOYIKNG LE £VOL EVOOUATOUEVO EneEepyaoTh) apyrtekTovikng ARM oto id1o0 to,
oynuatifovtag €tot éva cOoTnUa-ce-Ton (system-on-a-chip, SoC), kabdg kot enttpémnel T ypryopn
SloVVOEST] UE YOUNAN EVEPYELOKT KOTOVAA®GN. e Tovg 6KomOvg AVTAG TG epyaciog SLoAEEQLE
téooepa kpumtoypoeikd modules (AES128, AES192, AES256 kot SHA3-512). Apyikd, kKavope OAES
TIG AmAPOITNTES TPOTOTOLGELS TTOL ¥petdlovtay Yo va ypnoipomombodv ta modules oto cuoTpa
Kot oyedldoope TG KatdAAniec, ocvpuPatéc pe to mpmtokolro AXI4-Stream, demapés doTE VO
enrtpomel 1 emkowvmvia Peta&d TOV TEPLPEPEINKDY Kot ToV enelepyaotn, AauPavovtog v’ oy v
apyrtektovikn kabe module Kol TOLG TEPLOPICUOVG TOL ENEEEPYACTIKOD GUOTHILOTOG KOl TNG LEPTKNG
avadlopopemonsg. Metd, cuvdEcalle Ta TEPLUPEPELNKA LE TO enelepyaoTikd cvoTa HEcm evog AXI
DMA IP oe Aewtovpyeion Scatter/Gather. H Aeitovpyion Scatter/Gather odnynoe otn ypnyopnm
EMKOWVOVIO, KoL EQAPUOGE GTPUTNYIKN GLVEVMGT|G dlokot®V (interrupt coalescing) yio vo LEIDGEL TOV
aplBpd tev dukomdv otov ARM kot €161, va ¥epioTel Ta TEPIPEPEIKA MO OmodoTIKA. Emiong
epappocape HEBodo amocvlevéng (decoupling) yia va amopovdcove ta avadioapopeactpa modules
KoTd T S1APKELD TNG UEPTKNG avadIATOENG KO VA, amoTpEYOVUE averiBounTa eEEpYOUEVI GILOTA VO
EMNPEACOVY TO LITOAOITO cVoTNUA. TEAOC, KAVOE (o EKTIUNON TG OOVAELLS Kol OTIAEApE Eva TECT
a&lohdynong vy va detovpe To TAEOVEKTILLOTO EMLTAYVVOTG TNG LEPTKNG AVOIIAUOPPOOTC. XE AVTO
TO TEGT, TO GUOTNUA ElYE TN SLVATOTNTO VO, TPOGOPUOLETOL GTIG VITOAOYIGTIKEG OOLTNGELS KOl VO
OVAOLOLOPPAOVEL AEPYO TEPUPEPELOKA LLE AAAL TTOV XPELALOVTOV, DOTE VO KOTAVEILLEL TOV DVTOAOYIGTIKO
@OpTO PETAED TOVG KOt £TOL, VO LEIMGEL TOV TEMKO ¥POVO VITOAOYIGHOV. G OMOTEAECLO, TETOYOLE
oyeoddv full hardware utilization ko Tpoceyyicape to BéAtioto speedup.

AéEearg Khedna: FPGA, Xilinx Zyng-7000, Mepikr] Avadopdppwon, Kpvrtoypagie, AES, SHA3,
Scatter/Gather DMA, HW/SW co-design, Avadiapopemcipeg Apyitektovikég, Etepoyevi Zvotuoto
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Abstract

In recent years, the continued push to gain the best computing performance possible has led to the
realization of Heterogeneous computing and Heterogeneous platforms. These systems gain
performance and energy efficiency by adding dissimilar accelerators as co-processors with specialized
processing capabilities, to handle specific intensive tasks. Field Programmable Gate Arrays (FPGAs)
have gained the interest of system architects due to their rapid prototyping and fast accelerator
developing capabilities. As their name denotes, FPGAs are programmable “in the field”, meaning that
their internal logic can be configured after the fabrication process and modified, if needed, without
going to re-fabrication process, as common ASICs. Partial Reconfiguration (PR) takes this flexibility
one step further, by allowing an operating FPGA design to modify a part of itself, while the rest of the
system continues to function normally, without compromising the integrity of the computation running
on those parts of the device that are not being reconfigured. This technique leads to reduction of the
amount of resources required to implement a given function, with consequent reductions in cost and
power consumption, provides flexibility in the algorithms/protocols available to an application and
accelerates computing by enabling a design to be ready to correspond to new computation
requirements much faster. This thesis tried to explore the PR technology on FPGAs and apply the
knowledge acquired to implement a cryptographic system on a Xilinx Zynq-7000 SoC device. Zynq
combines the coexistence of programmable logic and an embedded ARM processor on a single chip,
thus forming a system-on-a-chip (SoC), while enabling fast interconnection between them and power
efficiency. For the purposes of this thesis we chose four cryptographic modules (AES128, AES192,
AES256 and SHA3-512). Firstly, we made all the appropriate modifications needed to utilize the
cryptographic modules in the SoC and designed the appropriate AXI4-Stream compliant interfaces to
enable communication between the peripherals and the processor, with respective compromises to the
different modules’ architecture, the processing system’s limitations and PR’s restrictions. Then, we
established connection between the peripherals and the processing system through an AXI DMA IP in
Scatter/Gather mode. Scatter/Gather resulted in a high-speed communication and applied interrupt
coalescing strategy to reduce the number of interrupts occupying the ARM, thus it allowed the
processor to handle the peripherals more efficiently. We also applied decoupling strategy to isolate the
reconfigurable modules during PR to avoid undesirable outcoming signals to affect the rest of the
design. Finally, we made an evaluation of our work and constructed a benchmark to show the
acceleration advantages of PR. In this benchmark, the system could adapt to computation requirements
and reconfigured idle peripherals with others that were needed, to distribute the computational load
between them and so, to reduce the total computation time. As a result, we achieved almost full
hardware utilization and approximated the optimal speedup.

Keywords: FPGA, Xilinx Zyng-7000, Partial Reconfiguration, Cryptography, AES, SHA3,
Scatter/Gather DMA, HW/SW co-design, AMBA, AXI4-Stream, Reconfigurable Computing,

Heterogeneous Computing
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OcopnTiko Yropabdpo

Field Programmable Gate Arrays (FPGAs)

To povtépva cvotiuota cuyvd Pacilovtol o HKPO-eneEePYOOTEG Yo ot LEYOAT TOUKIATL
EQOUPUOYDV, OO UKPA KOWVE GUGTAUATO, LEYPL UeYEAN TOADTAOKO GUGTILOTO [LE OTTOLTIGEL
VYNNG amdO0oNG. L AVTE TA GUGTNUATO, OLAPOP®Y EWODV EMEEEPYAGTES AVOAALPEAVOLYV TOVG
VIOAOYIGHOVG, OO eme€epyaoTég YeVIKOD oKOmoV UEYPL HOVADES €101KOD GKOTOV, OT®S Ot
povadeg eneepyaciog Ypaeikdv Kot GALeG EEIOIKEVUEVEG LLOVADES OLPOCUOUEVES Y10l ELOTKEG
epappoyés. Ta televtaia ypdvia, ol ATUITNGELS TOAADY EPAPLOYDOV ATALTOVV LOVADdES LEYAANG
VIOAOYIOTIKNG 10Y0G, YOUUNANG KOTOVAAMONG EVEPYELNG KOl HIKPOL @uotkol peyébovg. Mo
tétola cuokevn eivar to FPGA, pe v emmpochetn 1010t tal TG VoS LOpOOGIOTNTOC, E
v évvoln 0Tt éva FPGA pmopel vo emavampoypopatiotel ToAAEG POPEG LETA TNV KATAGKELN

TOV 1 TNV TOTOOETNGT TOV GE KOTO0, GVOKELN.

H avadwpopowoipotmto tov FPGA ta kobotd o gvéhiktn -pe mAnboc epoappoymv-
TAOTEOpUO Kol po Pudoiun Ao Yoo ypryopn VLAOTOINGT Kol TPOTLRONOINCT] VE®MV
ocvotnpdtov. Axopa, to tehevtaio ypovia o FPGA €youv kepdicel onpavtikdé poio cTov
aVOSIIPLOPPAOCILO VIOAOYIGHO. O avadlapopPOGLILOS VTOAOYIGHOS Elvat Opog Tov meptyplpet
L0 OPYITEKTOVIKT] VITOAOYIGTAOV OV GLVOLALEL TNV gveMEio TOL AOYIGUIKOD OV TPEXEL OF
EMEEEPYAOTEG YEVIKOV GKOTOD, LLE TNV ATOSOTIKOTNTA LOVAI®V VYNANG EXEEEPYACTIKNG 1GYVOG,
onwc 1o FPGA. H wipua Sopopd pe TIg «mapadociakésy OpyLTEKTOVIKEG £YKELTOL GTNV
TKOVOTNTO TOL VALKOD va Tpocapproletar katd ) dtodikacio ekTéeong kat va LeTafAAAel TOV
E0VTO TOV «POPTMVOVTAG VO KOVOUPYLO KOKA®ULO» KAOE pOpE TOV 10 GUYKEKPLUEVT EPYOGTOL
to oamoutel. ‘Etol, ovt 1 teVIKN KaTOGKELALEL ETEPOYEVEIG TAATPOPUES IKAVEC VO PTACOVV
VYNAOTEPT amOO00T e AYOTEPT] KATAVAAWDGT) EVEPYELOG KO YDPOU.

Eniong, ta FPGA og cuvdvaoud pe enelepyaotéc YeViKod 6KOTOD UTopodV VoL VAOTOUGOVV
éva ovotnua og ynoida (System on a Chip - SoC) kot vo peAetnfovv g o, EVOTotnpeévn
VAKOLOYIG KT TPOGEYYION Y10 TO GYESIAGHO GLGTNUATOV. [0 Toug AdYOLS TOL AvaPEPON KOV
TOPOTAV® Kot €N oTig uépeg pog o FPGA €yovv avénoet ) Aoyikn Toug YopnTikdtnTa,
YPTOULOTOLOVVTOL GE £€va VPV TANBOC ePAPUOYDV OTTMOG OTIC YNOOKEG ETIKOIVMVIES, OTNV
YNoewK” enegepyascio GNUATOG, GTNV QVTOKIVNTOFLOUNX0Via, GTNV WOTPIKY], 6TO O1ACTNUA, GE

OLLUVTIKG GUOTALOTO Kol GALQL.




Mepucn) Avaswopopemon (Partial Reconfiguration)

‘Eva peydio mieovékmua tov FPGAs, 6nwg vmodnimver to 6voud tovg, eivor 0Tt givon
TPOYPULUATILOPEVO «GTO TTESTION LLE TNV £VVOL OTL TO EGMTEPIKO KOKAMLO SIOLOPPDVETAL PLETA
TNV KOTOOKELY, Kot pmopel va tpomomonbel yopig va ypewaotel 1 avakatackevn tovs. H
Mepikn] Avadiopop@mor TPoyYwpagL dVTO TO CKETTIKO £Vo. PriLo TOPATEPD EMTPETOVTAG TN
HePKN Tpomomoinon evog evepyod FPGA, 660 10 vtoAouto kokimuo cuveyilel va Aettovpyel
KOVOVIKA, Yopig va, emnpedlel v Asrtovpyic TOV HEPOV TOL OV OVOSIOUOPPDOVOVTOL.
Yrdpyovv moAlol Adyor mov n Mepikny Avadtopdpemon uropei va givar etmeelng. Mepikol

amd avtovg gival:

e Mzeimon tov peyébovg tov FPGA mov amatteiton yio vo. vAomomOei o Asttovpyia, pe

avTioToyn LEI®OoT 6TO KOGTOG KOl TV KOTOVIAMGT EVEPYELNS.

e FEvel&ia oty emioyn aAdyopifuwmv Kot Tp@ToKOAA®Y oL eivan daubéciua og pio
EPAPUOYT.

e Bektioon oty avoyn cpoiudtov tov FPGA.

e Emutdyvvon Tov avadiplop@ovEVOD VITOAOYIGHOD

o Emupénern dnuovpyio véov epappoymv oe FPGA, mov drapopetikd Oa tav addvarto

va vAomomBovv.

H odwodwocioc ™™g Mepikng Avadopopemong omoitel Tty VAOTOINoN  TOAAUTAGDV
Swpopemcewv (configurations) ot omoieg TeAIKH KOTOANYOUV GE OAKG bitstream yuo kKOe
configuration, kot pepwkd bitstream yo kéfe avadwapopeodpevo epyareio. O apBpog twv
amotovpevav configuration mwowkidel aviroya pe Tov aplfud tov epyalreinv mov ypeldletat va
viomomBovv. Opwc, 6Aa ta configuration potpdlovrar tnv id1a otatikn Aoykn (Aoywn n omoia
dev avadopopemvetar). H otoatikn Aoy e&dyeton amd to apyikd configuration kot glcdyston
og Oha to. emokOAovOo configuration kol €tol, oe kdbe configuration SwoEépsr poVO 1M

AVOOLOLOPPOVLEVT] AOYIKT], EVD 1] OTOTIKY AOYIKT] LEVEL TOVOUOLOTLTY.




Avantoiroxn HAokéra ZC702

H ZC702 eivan po yopmiod k66toug avamtuélaxn maakéto, mov Paciletor oto XC7Z020,
uélog g owoyévetlog Xilinx Zynq®-7000 All Programmable SoC. To XC7Z2020 cvvévdalet
éva 600 mupnvav ARM® Cortex-A9 enefepyactikd cvotuo pe éva 7-Series FPGA kot
oTOYEVEL O€ £va gVPD TTEDIO EPAPUOYDY. AKOUA 1) avorTLELoKT TAOKETA TEPIAOUPAvVEL TAN00C
VTOS0YMV EMEKTAOTG Y10, EDKOAT TPOGPOOT] TOL ¥PNOTN KOl GOVIEST] e AANO TEPLPEPELOKEL.

SVYKEKPLUEVO TOL IO GTLLOVTIKA YOPAKTNPLOTIKG TG mAakéTo ZC702 givan:

Zynq XC7Z020-1CLG484C device
e 1 GB DDR3 pvfjun (4 x 256 Mb)
e 128 Mb Quad SPI flash memory
e USB 2.0 ULPI (UTMI+ low pin interface) transceiver
e Secure Digital (SD) connector
e USB JTAG interface
e Clock sources
e USB-to-UART bridge
e ]2C bus multiplexed to:
o Si570 user clock
o ADV7511 HDMI codec
o M24C08 EEPROM (1 kB)
o 1-To-16 TCA6416APWR port expander
o RTC-8564JE real time clock
o FMCI1 LPC connector
o FMC2 LPC connector
o PMBUS data/clock
e Configuration options:
o Quad SPI flash memory
o USB JTAG configuration port (Digilent module)
o Platform cable header JTAG configuration port
o 20-pin PL PJITAG header
o 20-pin PS JTAG header




To oymuatikd Tov Zyng-7000 AP SoC ¢aivetor oto Zynuo 1.

Zyng-7000 AP SoC
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Motes: Resources
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AX| 32-Bivs4-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APE 32-Bit, Custom

Zyqpa 1 Zynpatiké XC72020

UGESD_e1 4 101712

H avorto&loxn mhaxéta ZC702 pnopei va ypnoiponombei oe mAndopa epapuoydv. Xe avt

v gpyacia ypnolwomominke yoo v ovamtuén €vOg GLUGTAUOTOC KPLTTOYPAPING |E

duvatotg Mepikng Avadtopdpemong, 6mov KaTd T0 ¥povo ektédeong éva puépog tov FPGA

OVOOLOLOPPAOVETAL KOl

SLopopeTIKOL

KPLTTOYPOPLKOl

EMTOYVLVTEG

evaALdGoOoVTaL

AopBavovTag VT OYIV T EIGEPYOUEVO. PEDLOTA OECOUEVAOV KOl AALEG ATALTNOELS, LE GKOTTO VO,

peyiotonomBei n diérevon TANpoeopiag Kot 1 amdI0oT) TG EQAPUOYNG HOG.




Awdkocio YA0moinong Tov XuoTnatog

Evoopdarmon tov IPs 610 viko

I Tovg oKomOVG TG TOPovGAS SmAmpaTIKNG emAEYONKav 4 drapopetikd IPs mov viomotovv
toug aiyopiBuovg AES128, AES192, AES256 wat SHA3-512. ' va eveopatdcovpe ta [Ps
OGTNV LAOTOINGT HOG KOL VO ETITPATEL 1) EMKOV®VIO HETAED TOVG KOl TOV EMEEEPYOOTIKOD
GLGTHIOTOC, GYEdLICALE TIG KATAAANAES dlemapéc (interfaces) Yo kGO Eva amd avtd. o kdbe
IP, oyedidotnkay 600 demapEg, Lo yio TNV avayvmoT) Kot [io yio v eyypaen éedopévav. Ot
demapég ypdomkav oe Verilog, oyedidotnkoy va givar couPotéc pe to tpmtokoiro AXI4-
Stream tg ARM kot viomomOnkav pe ) Pondeia tov Vivado IP Packager. Emiong, yio v
Mepikny Avadtopopemaon vioromdnke évoag Anolevkng (Decoupler), mov 1 xpiomn Tov RTOV
Vo OTOUOVAVEL Kot Vo epmodilel ke e&epyduevo onua and ta IPs katd ) dredikacio g
Meptkng Avadiapopemong, kabang kot évo fondntikd IP («kDummy” IP) wov ypnoytorodnke
v T ZovBeon g otatikng Aoywkng. Ta oyediaypdppoata tmv vioromuévev IP eaivovtal ota

Zyuato 2, 3 ko 4.

TDATA[63:0] =]
TLAST —— Xl P TDATA[63:0]
oapun vl I 7 I v I
TREADY <—— Module
TKEEP[7:0] —® < TREADY

ck |
aresetn ——
ext_rst |

Xyfqpa 2 Crypto IPs




reconf_peripheral _0

reconf_peripheral_v1.0 {Pre-Production)

Xyqpa 3 “Dummy” IP

decoupler_0
-
-2 4L S00_AXI
E JL500_AXIS MOO_AXISs =
=s00_axi_adk ext rst
=500 axi aresetn

decoupler_v2.0 (Pre-Production)

Xyqna 4 Decoupler IP

Anuovpyio Tov ZveTHHaTOS

e anto 10 Ppa, kol TP T dladikacio e Mepikng Avadiapdpemong, yio T Xbvoeon g
otatikng Aoyikng Ba ypnowomomBet 1o “Dummy” IP avti yu to kpunroypapikd IPs. To

VAOTOMNWEVO GUGTILUA Y10, VO KPUTTTOYPAPIKO TEPLPEPELNKO PAIVETOL GTO ZyNUa 5.
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Zynpa 5 ootpo yio £va KpumToypapikd TEPLPEPELOKD

Awdikacio Mepikig Avadiopdpemong

To mopokdto PRUate GUUTLKVOVOLY TN Oladikacio oxedlacpuol evog mpotlext Mepikng

Avadlopopemong oty epoppoyn Vivado:

1)
2)

3)

4)

5)
6)

7)
8)

9)

2HvBeomn TG OTOTIKNAG AOYIKNG KOL TV OVAOIULUOPPDCIUOV EPYUAEi®V EeYOPLOTA.
Anpovpyion  euow@v  meplopiopdv  (Pblocks)  yw  tov  kaBopioud  tov
AVASIUULOPPDC LDV TEPLOYDV.

KaBopiopdc e 1010mrag HD.RECONFIGURABLE og kdbe avoadiopoppdoiun
mEPLOYN.

Yhomnoinon &vog oloxinpov design (oTOTIKN AOYIKY] KOl €va OVOSLOUOPOMGLLO
gpyoleio og kdOe avadIAHOPPAOCILT TEPLOYN)

Amobnfkevon evog checkpoint yio to TAnpeg design.

Apaipeon TV avadlopope®dciumy epyoleinv and to design kot amofnkevon evog
checkpoint povo pe ototikn) Aoyik.

K\eidmpo e oTatikng meployne.

IIp6c0eon kawvobpylmv avadlopopeadciuoy epyoleiov oto otatikd design Kot

vAomoinom tov véov configuration, amobnkevovtag &va checkpoint yio to mANPEC

deisgn.

Emavédnymn tov frpatog 8 yio OAd Ta avodtoLopeOCLe EpYOAEia

10) Enoin0evon cvouPforotntag tov configuration

11) Mopoywyn bitstream yio kdBe configuration

H dwdkacio og didypappa pong paivetal oto Zynua 6.




HDL HDL

' :

Synth Synth Reconfig
Static Modules

| |
;

Floorplanning,

—» Create First
Config

Create rest
Configs

y

Verify
Configurations

e

Yes
A 4

Create
Bitstreams

v

Configl.bit ... ConfigN.bit
RM1.bit ... RMN.bit

Zyfqna 6 Awdwacio Partial Reconfiguration

Avantoén E@appoyng Baremetal

INo mv a&loddynon tov cuetuatog viomomnke o epoapuroyn Baremetal. H epappoyn
emiéyel to embountod interface tov Zynq yio ™ Mepikn Avadwudpemon (PCAP 11 ICAP),
apywonotel To Scatter/Gather AXI DMA kot yepileton 0l to. dedopévo omd Kol TPog To
TEPLPEPELOKAL.

Y10 Scatter/Gather DMA m petagopd tov dedopévav yivetar amd tovg Buffer Descriptors
(BDs). Ot BDs deopevovtar amd Tnv €Qopproyn, 6mov 1 epappoyn emaéyetl m dievduven tov
buffer, to péyebog tng petapopdc kot dAleg minpoeopieg eréyyov. Ta BD rings poipaloviot

10




amd TNV €QAPLOYN ¥PNoTN Kot T0 VAKS. To vAwkd avopével tovg BDs o¢ cuvdeuéveg Motec,

omov o tehevtaiog BD tov ring eivat cuvogpévog e ToV TPMTO.

Méoca oto ring, vrdpyovv 4 opddeg omd BDs, 6mov kdfe opdda omoteheiton omd 0 M

TEPLEGOTEPOVG YEITOVIKOVG BDs:
e Free: Ot BDs wov pmopodv va deoUenTohY Ao TV EQOPLOTYT.

e Pre-process: Ot BDs mov €yovv decpevtei ko ivar vod tov Edeyyo g epappoyne. H
gpuppoy”n Tpoetodlel avtovg toug BDs yio tnv endpevn cuvariayn pe to DMA.
e Hardware: Ot BDs mov &yovv etoayBel oto vAkd. Avtoi ot BDs givar vito tov éleyyo

TOV DAIKOV Kol OEV TTPETEL VO, TPOTOTOLOVVTOL ATTO TNV EQUPOYT.

e Post-process: O1 BDs mov éyovv enelepyaotel amd T0 VAKO Kol £(0VV EMGTPEYEL GTOV
éleyyo g epapuoyns. H epappoyn pumopel va er&yEel v Katdotaon g LETOPOPAg

M va Tovg Paiel otny oudda Free.

To Zynua 7 anewovilel Tig petaPdoeig evog BD katd tn dadikacio piog cuvexouevns

HETOPOPAG.

XAxiDma BdRingAlloc( ) XAxiDma BdRingToHw( )

Free % Fre.prncegg % Hardware

% Post-process <

XAxiDma BdRingFree( ) XAxiDma BdRingFromHw( )

Yynpa 7 Metofdoeig evog BD katd tn dtodikacio pio cuveyOUEVNG LETAPOPES
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A&woroynon Hepopotikig Alodtkaciog

e auTi TNV EVOTNTA YiveTal a&loAdyNnon TG TEPOUATIKNG d1adIKaGIog Kol TV SloTAEEDY TOV
viomomOnkav. Apywd wopoLCIAlovVTal Ol TPOKANGCELS 7OV  OVTIUETOTIGTNKOV KOl Ol
ocvpPiacpol mov &ywvav dote va yivel duvatn n Mepwkn Avadiopopemon pe to ddpopa
TEPLPEPELOKA TTOV ElYOLLE GTNY KaTtoyn pag kot oxoldlovpe o floorplanning mov €yve T0 omoio
glvan éva kpioo onpeio g Mepikig Avadiapldpemong Kot KAVOLLLE o GUYKPIGT) TV XpOVOV
Stopopemong v éva peptko bitstream oe oyéom pe éva full configuration. ‘Emetta yiveton
a&lodldynon twv IPs mov viomoOnkay Kot mapovsialeTal ) emtdyvvon tov emtevydet. Téhog,
TapovctdleTor va TANPES AETovpyIKO design e dVO aVASIOUOPPMOCIUN TEPLPEPELOKA. To
GUOTNHA CVTO EYEL OLO EIGEPYOUEVA PEVLATO OEOOUEVMVY OV YPELELOVTaL KPUTTTOYPAPTOT| Kot
€xet T SuvatodTNTA VO, OVASILHOPPAVETOL e dVO dtapopetikd 1 dvo dw IPs, avdroya pe ta

€10EPYOUEVA OEDOUEV, LLE OKOTO VO EMTAXVVEL TO GUVOALKO YPOVO VITOAOYIGLOV.

I'evikn Heprypagn tov Hardware YAomomoeov

Ta apyucd cores tov aiyopiBpov AES dev frav xatdAinio yio va emitevyfel n Mepwn
Avodiapopemon 6t cuokevn poc. O apywoc AES128 ypnoyomotovoe 86, 0 AES192 100 ko
0 AES256 121 Block RAM tiles. To FPGA 1tov Zynq (xc72020clg484-1) nepiéyet cuvolkd
140 Block RAM tiles dieomapuéva o OAN TV £KTOON TG GLOKELNG. AVTO onpaivel OTL dev
YOPOVGAV TEPLGCOTEPO. OO EVO TEPUPEPELNKA GTN GVLCKELN oG Kol 1) Mepiki Avadiapoppwon
dev elye vonua, agod €&’ artiog g peyaing ypnoomroinong Block RAM cg 6An v éktaon
NG GLOKELNG, éva LOVO TTEPLPEPELKO Bal KATOAAUPOVE TO HEYOAVTEPO PEPOG TOV GLVOALKOD
dabéoipon ydpov. To oyedidypaupo tov Zyng eoaiveral oto Xynuo 8. Ta Block RAM tiles

glvonl onuelopéva e TO KoPE YpaLLaL.
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Yympa 8 Zyedudypappo tov Zyng

Mo ta design pag, 860nke evtoln otov Vivado Synthsizer va ypnowomomoet Distributed RAM
avti yio Block RAM, gi6dyovtag to 181k oydio (* ram_style = "distributed” *) otov anyaio
KOO0 AVTO €lYe GOV AMOTEAEG O OPKETA PEYaADTEPT Yp1oIonoinon and LUTS (edikd otov
AES256), 6pwg €kave T Mepikn Avadtoptopemaon duvot agov TAE0V Ta COreS umropohcay va
YDPEGOLVV GE EVOL OPKETA LKPOTEPO YDPO.

Ytov Ilivaxe 1 mwopovstdlovpe TOVG GUVOMKOVG TOPOLE TNG GLOKEVNG Mall He TNV TEAMKN
ypnowonoinon twv synthesized IPs. To «Dummy» IP dev mapovoidletor kabhg dev givar
kavovikd IP, apov dev mepiéyer Aoywn. Emiong, omwg ¢aivetar, o AES256 ypnoylomoiet
nepimov 1o 32,81% Tmv TOpwV TG CLOKELNG aTd LOVOS TOV. AVTO TO YEYOVOG Bal et emppon
oto tehko floorplanning, agov Ba éwvar dvokolo va Ppebei o 1660 peydAn cuveyouevn

TEPLOYN OPIg oTorKEln TOV deV UTOPOHV VA, avVOSIOUOPP®OOVV.
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Zynq Slice LUTs Slige Registers F7 Muxes F8 Muxes
(xc7z020clg484-1) (53200) (106400) (26600) (13300)
AES128 10775 6337 4064 2032
AES192 12602 8130 4448 2224
AES256 20330 10642 7744 3872
SHA3-512 6258 2361 0 0
Decoupler 220 169 00 0

ivaxag 1 H ypnoponoinon tov IP cores

Emiong, o apykdg AES eiye m duvatdtrta vo d€xetar olokAnpn v €icodo (128 bit
plaintext ko 128/192/256 bit cipherkey) o€ éva povo kKdxro poroylov, eved ot B0pec vynAng
enidoomng tov Zyng éxovv mAdtog 64-bit. O SHA3-512 fTav wo foAids, apov ypnoiponotel
64-bit 16000 Ko £yl LIKPOTEPO ATOTOTIOLO TN AOYIKY. ¢ amoTédeoua Ta interfaces Tmv
64-bit Tov vVAomomMbnKav peimcay apkety amd ™V apyikn enidoorn tov AES cores, evd

oV mepintoon tov SHA3-512 1 enidoon Eueve oxedov aveEmaQ.

Floorplanning

2 Mepikiy Avadtopopemon, Kabe avadiopopeOcI TEPLOYY] amotteital va €yl €val
Pblock to omoio xaBopiler Tovg @uoKOLG TOpovg mov eivor SbEoyun Yo TO
avadlapopedoiue  modules. ‘Eva Pblock mpémer va  mepiéyer  pdvo  Eyxvpa
avadtapopeaciua ototyeia. [TloAlamid opBoymvia Pblock pumopet va ypnoytoromBovv yio
TN dnuovpyio PoG ovaSIOUOPPOCIUNG TEPLOYNS, ALY Yo TO KoAvTepo routability, Ba
mpénel va givar ocvveyoueva. Kevd dote va amopguyfovv pn ovadiapop@dciuot Topot
EMTPEMOVTOL, OAAG GE YEVIKEC YPOUUEG, OGO To OmAd €lval TO YeEVIKO oynua, TOGO
gukoLOTEPO Oa eivar o place and route Tov design. 1o d1ko6 pog design, To KPLTTOYPAPIK
cores KotaAduBavay apKeTONE OO TOVG TOPOLS TNG GLOKELNG, £TCL NTAV SVGKOAO V.
Bpebel pia cuveyduevn meployn xopic un avodtapopemciuo otorygio. ‘Eva floorplanning

ue back-to-back violations @aivetatr 6to Zynua 9.
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Xympa 9 Floorplanning pe back-to-back violations

Xe avt6 10 floorplanning, To Pblock ekteiveton dropécov evog interconnect (KOKKIVO YpmLLaL
070 Zynua 9) 600 SPOPETIKAOV TEPLOYDV POAOYLOD KOl Ol GTNHAEG interconnect dgv givol
avadwapopeooiueg oto 7-Series FPGAs. T to ovykekpylévo design, to warnings
puropovv vo. ayvonBovv apov dev VIAPYEL CTOUTIKY AOYIKT HEGO GTO UN-0VOOIOUOPPDCIHLO
interconnect wov vo. ennpedlel To cvotnua. Enedn ta IP ypnoyorolovv moAlodg mopouvg
Kot RTov O0GKOAO va Bpebel Lo cuveyouev TEPLOYN YOPIG UN-0VASIOUOPPDCIUN GTOTXELD
v to floorplanning, to Pblock pnopei va «ondcey @ote vo amo@vyel to interconnect. ' Eva

£yxvpo floorplanning ywpig violation @aiveton oto Zyfuoe 10.
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Yympa 10 Floorplanning ywpig violations

Onwc goaiveton, petd to implementation to Vivado ecdyet ta Agydpevo partition pins
(dompo ypdpo oto Xynua 10) péoa ota Opwe tov Pblock mov xabopilovv v
avadtapopeOcin teptoyn. Avtd ta gikovikd /O tomofetovvtar mg onpeia emkovoviog
ektog Tov Pblock ko mpémetl va mapapévouy idwa o OAa ta avadiapopedciie module. Ta
partition pins dg ypedlovtan emmpdcshetovg mopovg dnwg LUTs 7 flip-flops yion va

vAomoinBovv kat dev el6AyoVV eMmPOsHeTn KaBVOTEPN O GTA GNUEID TOV EVOVOLV.

Xpovor Configuration

O ypdvog yia to configuration KAUOKOVETOL Ypopkd 6co to péyeboc tov bitstream
aAralel pe tov oplBudc tov avadiopopemcipmy frames. Emiong e€optdton amd v
EQUPLLOYTN 1 TO AELTOVPYIKO GOGTILLN TTOV ¥PTCLOTOE TON KaDMG Kol 7o interface kaAeitol
va ekteléoetl v avadopudpewot. O Iivakag 2 deiyvel oyetikovg ypdvovg configuration

vl (o baremetal epappoyn.
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Full Bitstream

Partial Bitstream

Bitstream Size

4,045,678 bytes

1,660,388 bytes

JTAG ~4 s ~28
PCAP 31.08 ms 12.76 ms
ICAP - 162.72 ms

Mivakag 2 Xoykpion peta&d tov dpopetikav configuration interfaces

A&rohoynon Tev KpurtoypoPikov IPs mov viomomOnkav

Xe oot TV evoTnTO, Yivetal cOykplon UETOED TOV KPUTTOYPOPIKGV olyopibumv va

«TPEYOVYY ATOKAEIOTIKG oTov emeéepyacty ARM tov Zyng kot T@V VAOTOMGE®DY TOV

oTidyTnKov. 10 Zynua 11 @aivovtol ot GYeTIKOL ¥POVOL EKTEAEONC TOV EMITAYVVIDOV GE

oxéomn Ue Toug aAyopIOuovg va, «Tpéxovv» otov ARM.

Relative Time

0,3

0,25

0,2

0,15

0,1

0,05

aesl28 aesl92

aes256 sha3-512

Zyfqpa 11 Zyeticol ypovol EKTEAECT|G GE GUYKPLOT LE TIG OVTIGTOLYES VAOTOINGELS GE

software
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Ot tpég mépOnicay amd 100000 vrodoyiopovg yia kabe aiyopiBuo AES kot yio tov SHA3-
512 yw éva vmoroywopd peyébovg 10000 x 64 bits. Xto didypappa, pKpOTEPES TILES
onuaivouv peyoivtepn anddoon oe oxéon pe TS vAoromoelg otov ARM. ['o mapadetypa,
0 oYeTIKOG YpOVog ektéreong Tovg AES128 givan Alyo méve amd 1o 0,25 mov onpaiver 6t

€xel cuVOMKN emttdyvvon katw amd 4 (Yo v axpifewa 3,78).

Experimental Evaluation

Xe auTi TNV vOTNTa, KAvoupe o cUYKPLon Hetalld evog GUGTHHOTOS YWPIg dSuvaTOTNTEG
Mepikng Avadiopdp@ong e £va GUGTILO EKUETOAAEVETOL TV TEXVIKT Kot TV EPAPUOLEL
Y0l VO TPOGAPUOGTEL OTIG OTOLTIGELS 0L EPAPLOYNG KOl VO, ETLTAYOVEL TO GUVOMKO YPOVO
ektéheonc. Kamotleg popéc, 6 GUOTAUATA e TAPATAV® OO £VOL TEPLPEPELAKAL T EPOPLLOYT
d0e¢ 1o ypnowwomotel OA0 KOl KATMOW TEPLPEPElOKE HEVOLV  depyd, VM  GAAQ
ypNoonoovvtol Kab’ o6An 1t ddpkewn g epapuoyns. ‘Eva chotmuo pe tkovotnteg
Meptknig Avodtopudpemong Wmopel Vo EKUETOAAEDTEL OLTH TNV KOTAOTOOT KOL VO
AVAOLUUOPPADCEL VO, AEPYO TEPIPEPEINKO LE EVO TTOL YPEWGLETOL Yio Vo emiTayLVOEL 1
GUVOMIKT] OEAEVOT] TOL GLOTHUOTOG. X€ OVTO TO TECT, GYESIGCAUE €va cOOTNUN dVO
cuoThpaTa, Eva pe duvatTotnTee Meptkng Avadiapdppmong Kot éve ympic. (Zto e€ng Oa
avagepopacte ¢ PR system 610 chotuo pe Mepikn Avadiopdpemon kot no-PR system
670 cuotnua Ypic). To cueThUaTa EXOVV dVO TEPLPEPELOKA TO KOOEVH KOl DAOTOLOVY TOVG
alyopiOuovg AES128 kot AES192. 10 no-PR system ot aAyopiOuor eivon fixed xon dev
umopov vo, oALGEoVV, evd o PR system umopei vo, d1opop@doet tn cuokevn €ite ue 6vo
SLOQOPETIKOVG, €iTe He OLO 1010Vg aiyopiBuovg otav ypeldletal. o mopdaderypa, og
vroBéoovpe OTL €yovpe €vo GOOTNUO LE OLO EIGEPYOUEVA PEVUATA OEOOUEVOV OOV
yivovton kpumtoypagnoei e tov AES128 kot tov AES192 mapdiinia. Xto no-PR system
oV KAmowo, GTLyU1] oTapaTHoouy ot vtoloyispol tov AES192, to avtictoyo mepipepelokod
TapopéVeL depyo Kb’ OAN TNV vmoloutn S1GpKeE TOV TPOYPAppHOTOC, evd o AES128
ovveyilel v ektéleon kavovikd. 1o PR system, o cuotnpa propet vo avodiopoppdcel
tov AES192, pe oxomod va ypnoiponolel dvo mepipepetakd AES128 kot va potpdoet tov
VTOAOYLIOTIKO (pOpTO PeTald Tovg. To choTnUa He Ta SVOo TEPIPEPELOKE PAIVETOL GTO Zy1|LL0l

12.
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¢ G System
RM - ¢ AXI » o ARM Cortex
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o
Decoupler
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Decoupler
2 AMBA
Interconnects
T
High General
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Yympe 12 Toetua pe dvo kpumtoypapukd IPs

Yta mepdpotd pog viomomooape éva omhd software controller, o omoiog daPaletl ta
dedopéva amd Ta dvo e1GEPYOUEVA PEHLLOTA, TA GTEAVEL GTA TEPLPEPELOKA Kot StaPfalel Tiom
ta anoteAéopota. Emiong, oto PR system extehel v Mepikn Avadwopdpowon. To
glogpyopeva pevpata £yovv mopaydel Tuyaio, aAld Exovv peretndel K TV TPOTEPOV KO
0 0plOUOG TOV GUVOAIK®V OVASIALUOPPDCEMY vl amd TPV YVOOTOG.

Emum\éov, Exovpe Bempnoet 6Tt Ta 600 pedUOTO dESOUEVAOV EYOVY GUVOAKGE 5 emimeda amod
Conflict (Zvykpovon). 100% Conflict onpaivel 0tL KaOg otiyun to cuotnua ¥petdleTol va,
KPUTTOYPAPNGEL dedopéva e HOVo éva amd Tovg dvo oiyopiBuovg, evd 0% Conflict
ONUALVEL OTL Y10 KAOE GTIY U VITAPYOLV TAVTO HEGOUEVE KOt Yo ToVg dvo. To amoteléopata
v 400k, 800k kot 2000k 6mov GUVOAIKA Yivoviow 5 ovadlopopEOCELS PAivovTal oTo

oynuota 13, 14, 15.
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400k transactions
0,250

0,200

0,150
0,100
0,050

0,000

Relative Execution Time

0% 25% 50% 75% 100%
Conflict (%)

=@=Part. Reconf ==@=Fixed Accelerators

Yypa 13 Anotehéoparto yio 400k vVTOAOYIGUOVG KOL S UEPIKEC OVASIOUOPPDCELS

800k transactions
0,25

0,2

015 —o- 0
0,1

0,05

Relative Execution Time

0% 25% 50% 75% 100%
Conflict (%)

=@=Part. Reconf =@=Fixed Accelerators

Yypoe 14 Anotedéopata yio. 800k vToAoyiopovg Kol 5 pepikéc avadlopopPOoELS




2000k transactions

0,25

o
N

0,15  —

o
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0,05

Relative Execution Time

o

0% 25% 50% 75% 100%
Conflict (%)

=@=Part. Reconf Fixed Accelerators

Yypo 15 Anotehéopato yio 2000k vToloyiopohe Kot 5 HEPKES aVUSLOUUOPPDGELS

Ye Kabe évo amd TO TOPATAVEO CYNUOTA, O KABETOG GAEOVOC AVATOPLOTA TO GYETIKO XPOVO
eKTéAEONC KAOE GLOTNUOTOG GE GYECN HE TOLG VTOAOYIGUOVG Omw¢ O £tpeyov oTov
ene&epyaotn Tov Zyng, eved 0 oplovTiog aéovag avoraplotd ta S enineda Conflict. INa kdbe
testcase, to PR system €xel péom emtdyvvon 86% oe oyéon pe 1o software kon 20% oe oyéon
ue 1o no-PR system. [evikd, kot oto 3 oyuate 1o PR system kApoK®veL 670 1010 KOTOOAL
gmtdyvvong €&’ artiog Tov OTL YPTCLOTOLEL Kot To SVO TEPLPEPELNKA KAOE GTIyUR. ZTO Gy
13 v Conflict 25%, to PR system anodidet xeipotepa and 1o no-PR system enedn o cuvoiikog
1POVOG EKTEAEOTG EIVOIL PIKPOG KOl GIEGO GUYKPIGLUOG LE TO YPOVO TTOL YPELALETAL Yo VoL YIVEL
po Mepkr| Avadiopopemon. Emiong, n pikpn dtakduavorn oty enttdyvvon oe kabe oynpa
glvar avapevouevn, Aoy tng tuyaiog ¢vong kdbe pedpatog dedopévav O6mov pmopetl va
VILAPYOLV TEPIGGOTEPES 1| AYOTEPEG KPLTTOYPOAPNGELS LE £vaL ahydp1Opo.

To amoteréopota yia otabepd 75% Conflict paivovror oto Zynua 16.
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glvol oyeTikd pkpdc Ko emnpedaletol dueca amd to ypdvo mov ypeldleTon yio va yivel o
Mepikn Avadiopopemon. Xe avtn v nepintoon, To PR system amodidet yeipdtepa amd 10 no-
PR system. Opwmg, kobmdg 10 péyeboc €16660v peyoA®dVEL Kol 0 GUVOMKOG XpOVoG Ogv givan
dpeco ocvykpicyog Kot dgv emnpedleTar omd 0 YpOVO TG OvVASIAUOPP®GNG TO GUOTNLO
KMUOK®OVEL 6TO 1010 KATOPAL, OTMG TA VITOAOUTO, GLGTNHATO, OTTOL KOl TO SVO TEPLPEPELOKA

YPTCULOTOLOVVTOL TANPOG Yo KAOE SEdOUEVT XPOVIKT GTIYUN.
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Introduction

1.1 Objective Summary

Systems often rely on micro-processors for a wide variety of applications, from small common
systems to large complicated systems with high performance requirements. In recent years, the
continued push to gain the best computing performance possible has led to the realization of
heterogeneous computing. In such systems processors co-exist with other specialized
components dedicated to particular purposes. These systems’ requirements demand units of
high performance processing, low power consumption and small physical size. For these
reasons, Field-Programmable Gate Array (FPGAs) have gained much interest, as they satisfy
the above requirements and provide additional characteristics such as rapid prototyping and
reconfigurability, meaning that FPGAs can be reprogrammed several times even after their

manufacturing or installation on a device.
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Figure 1 Processing efficiency vs flexibility

Furthermore, in recent years FPGAs have gained a significant role in reconfigurable computing.
Reconfigurable computing is a term used to describe a computer architecture that
combines the flexibility of software running on general purpose processors with the efficiency
of high performance computing fabrics, like FPGAs. The main difference with “traditional”
architectures is the ability of the hardware to adapt during runtime by altering itself and “loading

a new circuit” in the computation fabric each time a new task demands it. Partial
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Reconfiguration takes this advantage one step further, by allowing an FPGA to alter only a part
of itself during runtime, while the rest of the logic continuous to operate normally without
compromising the integrity of the computation running on those parts of the device that are not
being reconfigured. This technique leads to reduction of the amount of resources required to
implement a given function, with consequent reductions in cost and power consumption,
provides flexibility in the algorithms/protocols available to an application and accelerates
configurable computing by enabling a design to be ready to correspond to new computation

requirements much faster.

The objective of this diploma thesis is the exploration of the Partial Reconfiguration (RP)
technique on FPGAs and to apply the knowledge acquired to implement a cryptographic system,
by hot-swapping accelerators, with respect to the incoming input streams, targeting to accelerate
and increase the throughput of our system. During this thesis, we make a comparison of the
different ways to apply PR on the Xilinx Zynq-7000 SoC device and we present the
compromises needed to be done in order to integrate different peripherals with different
architecture on a PR design. We also discuss the floorplanning and decoupling strategies that
have to be applied to ensure a design’s expected operation. Finally, we make a comparison
between a system that has no PR capabilities with a system that can take advantage of the
technique and apply it to adapt to an application’s requirements and accelerate the total

computation time needed.

1.2 Chapter Organization

In this section, we will describe the structure of this work and what each chapter is about. This

thesis consists of 7 chapters which are organized as follows:

e Chapter 2 deals with cryptography. Firstly, the concepts of cryptography in general and
modern cryptography are discussed. Then, AES and SHA3 algorithm specifications are

presented.

e Chapter 3 gets into the theory of hardware design and FPGAs are introduced, with a
brief historic retrospection of how they emerged and an architecture explanation. Then,
the available CAD tools are presented along with the Hardware Description Languages
(HDL) used to program FPGAs. Finally, Zynq and ZC702 Evaluation board are

presented.

e Chapter 4 deals with the technical background of this thesis. In this chapter, Partial
Reconfiguration is discussed along with the Zynq available interfaces to perform PR

and limitations to the reconfigurable fabric. AMBA and AXI4-Stream are introduced
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along with the methodology to implement an AXI4-Stream compliant interface. Finally,

AXI DMA and AXI DMA in Scatter/Gather mode are presented.

Chapter 5 is about the employed workflow for implementing a reconfigurable design
on the ZC702 evaluation board. We discuss the modifications needed in order to
integrate the cryptographic peripherals to the device, the static design generation, the

PR workflow and the application developed to test the system.

Chapter 6 does an evaluation of the employed work. We present details about the
implemented peripherals’ resource utilization, the acceleration times, the resulted
floorplanning and reconfiguration times. Finally, a benchmark is conducted that tries
to show the benefits of Partial Reconfiguration by taking advantage of the technique

and applying it to accelerate computation times.

Finally, in Chapter 7 we summarize our works and make proposals for future work to

be made.
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Cryptography

2.1 Introduction

The term cryptography originates from the Greek words kpuvmtog (kryptds) = "hidden, secret";
and ypaeewv (graphein) = "writing"; and is about the practice and analysis of techniques for
secure communication in the presence of third parties called adversaries. More generally,
cryptography deals with methods and protocols that prevent third parties from reading private
messages and is related to various aspects of information security such as data integrity, data

confidentiality, authentication and non-repudiation.

Traditionally, cryptography was synonymous with encryption, the transformation of a readable
text to apparent nonsense. The originator of the encrypted text (Alice) shared the decoding
technique with the recipient (Bob) preventing any unwanted units (Eve) from recovering the
original information. Since World War I and the creation of the first computers, the techniques
used to accomplish this task have become more and more complex and cryptography in general
has started to find a wider spectrum of applications including methods for data integrity

checking, digital signatures and authentication amongst others.

Modern cryptography is based on mathematical theory and computer science to accomplish its
goals. Cryptographic algorithms are designed around problems that are hard to be solved with
the existing knowledge and, although such systems can be broken in theory, it is impractical for
any adversary to do so. However, theoretical advances in computer science and mathematics
and the swiftly evolution of computing technology makes imperative for these methods to be

continually updated and adapted.

Modern cryptography can be divided to many fields of study. The most important ones are the
symmetric-key cryptography and asymmetric (public) - key cryptography. In symmetric-key
cryptography it is computationally “easy” to determine the decryption key knowing only the
encryption key (where practically in most cases the keys are the same) and vice versa. In public-
key cryptography the encryption key is made public while the decryption key is kept private.
The sender selects an encryption/decryption key pair and others can send him messages

encrypted with the public key, but only he can decrypt them using his private key. [1]
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2.2 Advanced Encryption Standard (AES)

2.2.1 Introduction

The Advanced Encryption Standard (AES) is a specification for the symmetric encryption of
data established by the U.S National Institute of Standards and Technology (NIST) in 2002.
Originally called Rijndael (Rijndael is a play on the names of the two inventors), it was
developed by Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted their
proposal at NIST during the AES selection process. The standard specifies a symmetric block
cipher algorithm that can process data blocks of 128 bits, using cipher keys with length of 128,
192 and 256 bits. Rijndael was designed to handle additional block sizes and key lengths but

they were not adopted in the standard.

On 2 of January 1997, NIST announced the initiation of the AES development effort and made
a formal call for algorithms on 12 of September 1997. The announcement was followed by a
standardization process in which fifteen competing designs were presented and evaluated
before the Rijndael algorithm was selected. Finally, the AES standard was announced in the

United States by the NIST as U.S FIPS PUB 197 (FIPS 197) on 26 of November, 2001.

AES became effective as a federal government standard on 26 of May 2002, is included in the
ISO/IEC 18033-3 standard and is the first and only publicly accessible cipher approved by the
National Security Agency (NSA) for top secret information when used in an NSA-approved

cryptographic module. [2]

2.2.2 Algorithm Specification

Overview

[3] Internally, the AES algorithm’s operations are performed on a two-dimensional array of
bytes called the State. The State consists of four rows of bytes, each containing Nb bytes, where
Nb is the block length divided by 32. For this standard, the length of the input block, the output
block and the State is 128 bits, so Nb = 4. At the start of the encryption or decryption algorithm
the input is copied into the State array and operations are conducted on it. At the end, the final

State value is copied to the output.
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input bytes State array output bytes

ing | ing | ing |ing Soo | Soa | Soa | Soa oty | olty | outy |out,y
ing | ins | ing | ing BN S0 | S| Sz ]| Sia N out) | outs | outy |outy
in, | ing |inyg | ing Sap0 | 821 | S22 | S2a out, | outs |outyg| outy
iny | ing | inyy | ings S30 | 83y | 832 | S3s outs | outy |outy,|out s

Figure 2 State array input and output

The length of the Cipher Key, K, is 128, 192, or 256 bits. Just like Nb, the key length is
represented by Nk = 4, 6, or 8. The number of rounds to be performed during the execution of
the algorithm is dependent on the key size. The number of rounds is represented by Nr and the

values of Nr are portrayed in Figure 3.

Key Length | Block Size | Number of
(Nk words) | (Nb words) Rounds
(Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Figure 3 Key-Block-Round Combinations

In the next subsections, we discuss the Rijndael substitution array S-Box, the Key Expansion

routine and then we present the encryption - decryption algorithms.

S-Box

S-Box provides the non-linearity of the algorithm and serves as a look-up table.

The S-Box used by SubBytes () transformation in encryption algorithm is presented in

hexadecimal form in Figure 4.
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0 1 2 3 4 5 6 7 8 9 a b c d e £
63| 7¢| 77| 7Tb | f2 | 6b | 6f£ | ¢5| 30 | 01 | 67 | 2b | fe | A7 | ab | 76
ca| 82| c9| 7d| fa| 59| 47| £f0| ad | d4 | a2 | af | 9c | ad | 72 | <O
b7 | £d| 93| 26 | 36| 3f | £f7 | cc| 34 | a5 | e5| £1| 71 | d8 | 31 | 15
04| c¢7| 23| 3| 18| 96| 05| 92| 07| 12| 80| e2 | eb | 27| b2 | 75
09| 83| 2c|{l1la|1b| 6e | 5a| a0 | 52 | 3b| d6 | b3 | 29 | e3 | 2f | 84
53| dl1| 00| ed| 20| fc | bl | 5b| 6a | cb | be | 39| 4a | 4c | 58 | ecf
dO | ef | aa| fb | 43| 4d | 33 | B5| 45 | £9 | 02 | 7£| 50 | 3¢c | 9f£ | a8
51| a3 | 40 | 8f | 92| 94| 38| f5| bc | b6 | da | 21| 10 | ££| £3 | d2
ed| Oc| 13| ec | 5€| 97| 44 | 17| c4 | a7 | 7e| 3d| 64 | 54| 19| 73
60 | Bl | 4f ([ dec | 22| 2a | 90 | 88| 46 | ee | b8 | 14 | de | 5e | Ob | db
e0 | 32| 3a| 0a| 49| 06| 24 | 5c| c2 | d3 | ac| 62| 91 | 95| ed | 79
el | cB| 37| 6d| 8d| d5 | de | a9 | 6c | 56 | f4 | ea | 65| 7a | ae | 08
ba| 78| 25| 2¢ | 1c| a6 | bd | c6| e8 | dd | 74 | 1£f| 4b | bd | 8b | 8a
70| 32 | b5 | 66 | 48| 03 | f6 | Oe| 61 | 35| 57 | b9 | B6 | ¢1 | 1d | %e
el | £8| 98| 11| 69| d9 | Be | 94| 9b | le | 87 | e9 | ce | 55| 28 | df
8c | al | 89| 0d | bf| e6 | 42 | 68| 41 | 99| 24| Of | bO | 54 | bb | 16

M| Ao lge|loodanewhE=o

Figure 4 Substitution values for the byte xy (in hexadecimal format)

For example, {53} is substituted by value {ed} (row: 5, column: 3).

Similarly, the S-Box used by InvSubBytes () transformation in decryption algorithm is

presented in Figure 5.
¥
0o J1J2]3Jaf[s5[6[7][8]9]alblcld]el]cE€t
0[52 |09 | 6a | d5 | 30 [ 36 [ a5 | 38 | bf | 40 | a3 | 9e | 81 | £3 | d7 | £b
1[7c |e3 |39 |82 | 9b [2f | ££ [ 87 | 34 | 8e | 43 [ 44 |c4 |[de [e9 | cb
2|54 | 7Tb |94 |32 | a6 |c2 |23 | 3d | ee | 4c | 95 | Ob | 42 | fa | c3 | 4de
3/ 08 [2e |al | 66 | 28 |[d9 | 24 | b2 | 76 | 5b | a2 | 49 | 6d | 8b | d1 | 25
4|72 | £8 | £6 | 64 | 86 |68 |98 | 16 | d4 | ad | 5c | cc | 5d | 65 | b6 | 92
5/ 6c |70 |48 |50 | fd [ed | b9 | da | 5e | 15 | 46 | 57 | a7 | 8d | 9d | 84
6/ 90 [d8 [ab |00 | 8c [bc [d3 [0a | £7 | e4 | 58 | 05 | b8 | b3 | 45 | 06
|7/ d0 [2c[1e [ 8F [ ca [3F [0F [ 02 [ cl [af [bd [ 03 |01 [13[8a|6b
8] 3a |91 |11 |41 |4f [67 |dc|ea| 97 [ £2 | cf |ce | £0 | b4 | e6 | 73
9[ 96 |ac | 74 |22 | e7 [ad [ 35 |85 | e2 | £9 | 37 | eB | 1c | 15 | df | 6e
al| 47 [ f1 [1a | 71 [1d |29 | c5 | 89 | 6 [ b7 | 62 | 0e | aa | 18 | be | 1b
b| fc [ 56 [3e [ 4b [ c6 |d2 | 79 [ 20 [ 9a [db | cO | fe | 78 | cd | 5a | £4
c|1f |ad [a8 |33 |88 |07 [c7 |31 | bl |12 | 10 | 59 | 27 | 80 | ec | 5¢
d| 60 |51 [ 7£ [ a9 [ 19 | b5 [4a | 0d [ 2d [e5 | 7a | 9f | 93 | c9 | 9¢c | ef
e[ a0 [e0 [3b | 4d [ae |2a | £5 | b0 | c8 | eb | bb | 3c | 83 | 53 | 99 | 61
£/17 [2b |04 | 7e |[ba | 77 |d6 | 26 | el | 69 | 14 | 63 | 55 | 21 | Oc | 7d
Figure 5 Inverse S-box
Key Expansion

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate
a key schedule. The Key Expansion generates a total of Nb (Nr + 1) words: the algorithm
requires an initial set of Nb words, and each of the Nr rounds requires Nb words of key data.
The resulting key schedule consists of a linear array of 4-byte words, denoted [w;], with i in the
range 0 <=1 < Nb(Nr + 1).

The Key Expansion transformation is presented as pseudo-code below:
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KeyExpansion (byte key[4*Nk], word w[Nb* (Nr+l)], Nk)
begin
word temp

i=20

while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i= i+l

end while

i = Nk

while (i < Nb * (Nr+l)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord (RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord (temp)
end if
w[i] = w[i-Nk] xor temp
i=1i+1
end while
end

SubWord() takes a four-byte input word and applies the S-box to each of the four bytes to
produce an output word.

RotWord() takes a word [a0,al,a2,a3] as input, performs a cyclic permutation, and returns the
word [al,a2,a3,a0].

Rcon[i] (round constant word array) contains the values given by [x*!,{00},{00},{00}], with
x"! being powers of x (x is denoted as {02}) in the field GF(2%) (note that i starts at 1, not 0).

Cipher (Encryption Algorithm)

The cipher is presented in pseudo-code below. The transformations SubBytes(), ShiftRows(),
MixColumns(), and AddRoundKey() are described in the following pages. The array w[]

contains the key schedule derived by the Key Expansion routine.
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Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb* (Nr+l)])
begin
byte state[4,Nb]

state = in
AddRoundKey (state, w[0, Nb-1])

for round = 1 step 1 to Nr-1

SubBytes (state)

ShiftRows (state)

MixColumns (state)

AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
end for

SubBytes (state)
ShiftRows (state)
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1])

out = state
end

SubBytes () Transformation

SubBytes () Transformation substitutes each byte of the State with the corresponding value of

S-Box.

S-Box
So.0 | So.1 | So.2 ﬁ;..-—-—" ~—— So.0 | S0 | So.2 | So.s
/“
51,0 S 11 2 |13 S1.0 voFo | S
Srel S.ﬂ'.c
S0 S21 | S22 |52 Sa0 | o | S22 | 23
S30 | 531 | 532 | 533 S350 | S50 | 532 | 33

Figure 6 SubBytes()

ShiftRows () Transformation

In the ShiftRows() transformation, the bytes in the last 3 rows of the State are shifted through

different offsets, while the first row is not shifted.

Specifically, the ShiftRows() transformation proceeds as shown in Figure 7.
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ShiftRows ()

Ls‘r‘o S

ML | Su | Sz | S | S
@l $22 | $23 | S20 | S2a
(T 1=y | S35 | S50 | Sa | 52

Figure 7 ShiftRows()

This has the effect of moving bytes to “lower” positions in the row, while the “lowest” bytes

wrap around into the “top” of the row.

MixColumns () Transformation

The MixColumns() transformation operates on the State column-by-column, where the

columns are considered as polynomials over GF(2*%) and multiplied modulo x* + 1 with a fixed

polynomial a(x), given by a(x) = {03}x> + {01}x*> + {01}x + {02} .

Thus, $'(X) = a(x) ® s(X) :

So.c 02 03
Sy, 01 02
s,.| |o1 o1
s,. | |03 01

01
03
02
01

01
01
03
02

for 0 < ¢ < Nb.

Figure 8 illustrates the MixColumns() transformation.
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MixColumns ()

Soe il S
Y0,0 0.2 | Sos So,0 — P2 | Sos
5 g ; ‘
Lc N
o $1.2 | fia 510 * Bz | Sia
Fag 26 s 11| 923 Fag S2c Fa2 | S22
LI 530 32 [ F33 ¥i0 V3c S32 | Faa
Figure 8 MixColumns()

AddRoundKey () Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by a simple bitwise

XOR operation. Each Round Key consists of Nb words from the key schedule Those Nb words

are each added into the columns of the State, such that.
[ S'O,Ca S'I,c, S'Z,Ca S'3,C ] = [ SO.C; SLC; SZ,C) S3,C]® [Wround*Nb+c ]

where [wi] are the key schedule words and round is a value in the range 0 < round < Nr.

[ = round * Nb
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Figure 9 AddRoundKey()
Inverse Cipher (Decryption Algorithm)

The Cipher transformations can be inverted and implemented in reverse order to produce the
Inverse Cipher. The Inverse Cipher is presented in pseudo-code below. The transformations
used in the Inverse Cipher, InvShiftRows(), InvSubBytes(), InvMixColumns() are described in
the following subsections while AddRoundKey() is its own reverse since it only involves an

application of bitwise XOR and remains the same as in Cipher.
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InvCipher (byte in[4*Nb], byte out[4*Nb], word w[Nb* (Nr+l)])
begin
byte state[4,Nb]

state = in
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1])

for round = Nr-1 step -1 downto 1
InvShiftRows (state)
InvSubBytes (state)
AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
InvMixColumns (state)
end for

InvShiftRows (state)
InvSubBytes (state)
AddRoundKey (state, w[0, Nb-1])

out = state
end

InvShiftRows() Transformation

InvShiftRows is the inverse of ShiftRows transformation and acts over the State array as

portrayed in Figure 10.

InvShiftRows ()

Figure 10 InvShiftRows()

InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which the inverse S-Box

is applied to each byte of the State.
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InvMixColumns() Transformation

InvMixColumns() is the inverse of the MixColumns() transformation. Here the columns are
considered as polynomials over GF(2%) and multiplied modulo x* + 1 with a fixed polynomial
a’l(x), given by a’!(x) = {Ob}x* + {0d}x> + {09}x + {Oe}

Furthermore, s' (x) = a"!(x) ® s(x). Thus:

s'oe = ({0e} @ s0c) © ({0b} @ 510) D ({0d} @ 520) D ({09} @ 53)

8'1c = ({09} @ 50c) @ ({0c} @ 51c) D ({0b} @ 55) ® ({0d} ®530)

s2¢ = ({0d} @ s00) @ ({09} @ 510) D ({0e} @ 520) D ({0b} @ 53)

'3 = ({0b} @ 50.) @ ({0d} ®51,c) D ({09} @ 52) D ({Oc} ®s3,)

2.3 SHA3

2.3.1 Introduction

SHA-3 is the newest member of the Secure Hash Algorithm family. The SHA-3 standard was
released by NIST on 5™ of August 2015 and is a subset of the cryptographic primitive family
Keccak. Keccak was designed by Guido Bertoni, Joan Daemen (who also co-designed the
Rijndael cipher with Vincent Rijmen), Micha€l Peeters, and Gilles Van Assche and was the

winner amongst 51 candidates of the NIST hash function competition.

In 2006, NIST started to organize the NIST hash function competition to create a new hash
standard because of the successful attacks on MD5 and SHA-0 and theoretical attacks on SHA-
1. NIST perceived the need for an alternative, dissimilar cryptographic hash, to emphasize on
diversity and provide some complementary implementation and performance characteristics to
those of the older members of SHA family. Thus, SHA-3 is not meant to replace SHA-2, as
there not any significant attack on SHA-2 has been demonstrated, but it is there to provide an

alternative with some extra characteristics than its predecessors.

By the end of 2008, Keccak was accepted as one of the 51 candidates and in July 2009, it was
amongst the 14 algorithms that were selected for the second round. Keccak advanced to the last
round in December 2010 and on 2™ of October 2012, it was selected as the winner of the
competition. In 2014, the NIST published a draft FIPS 202 "SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions" which was finally approved on 5® of August
2015 and SHA-3 became a hashing standard.

42




The SHA-3 family consists of the four cryptographic hash functions SHA3-224, SHA3-256,
SHA3-384 and SHA3-512 and the two extendable-output functions (XOFs), SHAKE128 and
SHAKE256. A XOF is a function on bit strings in which the output can be extended to any
desired length. The suffixes “128” and “256 indicate the security strengths that these two
functions can generally support, in contrast to the suffixes for the hash functions, which indicate

the hash lengths. SHAKE128 and SHAKE?256 are the first XOFs that NIST has standardized.
(4], [5]

2.3.2 Algorithm Specification

In this subsection, the KECCAK-p permutations are specified, with two parameters:
1) b: the fixed length of the strings that are permuted, called the width of the permutation.
2) 1. the number of iterations of an internal transformation, called round.

The KECCAK-p permutation with n; rounds and width b is denoted by KECCAK-p([b, n], for
any b in {25, 50, 100, 200, 400, 800, 1600} and any positive integer n,.

A round of a KECCAK-p permutation (Rnd) consists of a sequence of 5 transformations, which
are called the step mappings. The permutation is performed on an array of values for b bits that

is repeatedly updated, called the state, which is initially set to the input values of the permutation.

The state for the KECCAK-p[b, n;] permutation contains b bits. There are also two other
quantities related to b: b/25 and logx(b/25), denoted by w and 1, respectively. The seven possible
values for these variables that are defined for the KECCAK-p permutations are given in Figure

11.

b 25 50 100 | 200 [ 400 | 800 | 1600
w 1 2 4 8 16 32 64
¢ 0 | 2 3 o 5 6

Figure 11 Keccak-p permutations widths and related quantities

It is convenient to represent the input and output states of the permutation as b-bit strings, and
to represent the input and output states of the step mappings as 5-by-5-by-w arrays of bits. Thus,
the state of permutation is represented as S = S[0] || S[1] || ... || S[b-2] || S[b-1] (where || is the

concatenation string) while the state is represented as A, where A[X,y,z] = S[w(5y+x)+z].

Step Mappings

43




The 5 step mappings that comprise a round of KECCAK-p(b,nr) are denoted by 0, p, w, y and 1.

In the specifications below, the input state array is denoted as A, while the output state array as

A'.

Specification of 0
1. For all pairs (X, z) such that 0<x<S5 and 0<z<w, let
C[x, z]FA[x,0,z] B A[x, 1, z] @ A[x, 2, z] D A[x, 3, z] D A[X, 4, z].
2. For all pairs (x, z) such that 0<x<5 and 0<z<w let
D[x, z]=C[(x-1) mod 5, z] &© C[(x+1) mod 5, (z—1) mod w].
3. For all triples (X, y, z) such that 0<x<5, 0<y<5, and 0<z<w, let

A'lx,y, z] = A[X, Y, z] @ D[x, z].

Specification of p

1. For all z such that 0<z<w, let A’ [0, 0, z] = A[0, 0, z].

2. Let (x,y)=(1,0).

3. For t from 0 to 23:
a. for all z such that 0<z<w, let A'[X, y, z] = A[X, ¥, (z—(t+1)(t+2)/2) mod w];
b. let (%, y) = (y, (2x+3y) mod 5).

4. Return A".

Specification of 7t

1. For all triples (x, y, z) such that 0<x<5, 0<y<5, and 0<z<w, let
A'lx, y, z[=A[(x + 3y) mod 5, x, z].
2. Return A’.

Specification of y

1. For all triples (x, y, z) such that 0<x<5, 0<y<5, and 0<z<w, let

A'lx,y,z] =Alx, y,z] @ (A[(x+1)mod 5, y,z] @ 1) - A[(x+2) mod 5, y, z]).

2. Return A'.

44




Specification of 1

1. For all triples (x, y, z) such that 0<x<5, 0<y<5, and 0<z<w, let A'[x, y, z] = A[x, y, z].
2. Let RC=0".

3. Forj from 0 to /, let RC[2j—1]=rc(j+7ir).

4. For all z such that 0<z<w, let A'[0, 0, z]=A"[0, 0, z] & RC[z].

5. Return A'.

where function rc is denoted below:

1. If t mod 255 =0, return 1.

2. Let R =10000000.

3. For i from 1 to t mod 255, let:
a.R=0|R;
b. R[0] = R[0] © RI[8];
c. R[4] = R[4] @ R[8];
d. R[5]=R[5] ® R[8];
e. R[6] = R[6] @ R[8];
f. R =Truncg[R].

4. Return R[0].

KECCAK-p[b, nr|

Given a state array A and a round index i, the round function Rnd is the transformation that

results from applying the step mappings 6, p, , , and 1, in that order, i.e.:

Rnd(A, ir) = 1(x(n(p(6(A)))), ir)

Specification of KECCAK-p[b, n.](S) algorithm:

1. Convert S into a state array, A

2. For i, from 1242/ —n, to 1242/ -1, let A=Rnd(A, i,).
3. Convert A into a string S’ of length b.

4. Return S".

Sponge Construction
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The sponge construction is a framework for specifying functions on binary data with arbitrary

output length. The construction employs the following three components:

e An underlying function on fixed-length strings, denoted by f,
e A parameter called the rate, denoted by r, and

e A padding rule, denoted by pad.

The sponge construction is presented in Figure 12.
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Figure 12 The sponge construction

Specification of SPONGE[T, pad, r](N, d)

1. Let P=N || pad(r, len(X)).

2. Let n=len(P)/r.

3. Let c=b—r.

4. Let Py, ..., P, be the unique sequence of strings of length » such that P = Py ||
5.
6
7
8
9

Let S=0°.

. For i from 0 to n—1, let S=f (S @ (Pi || 0°)).
. Let Z be the empty string.
. Let Z=Z || Trunc(S).

. If d<|Z|, then return Trunc.(Z); else continue.

10. Let S=A(S), and continue with Step 8.

KECCAK

Specification of pad10*1(x,m)

1.
2.

Letj=(—m—2) mod x.
Return P=1 0/ || 1.

Specification of KECCAK]c]

o || Pac.
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KECCAK][c] = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600—].
Thus, given an input bit string N and an output length d,

KECCAK]c] (N, d) = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600—c] (N, d)

SHA-3 FUNCTION SPECIFICATIONS

Given a message M, the four SHA-3 hash functions are defined from the KECCAK]c] function
by appending a two-bit suffix to M and by specifying the length of the output, as follows:

SHA3-224(M) = KECCAK[448] (M || 01, 224);
SHA3-256(M) = KECCAK[512](M || 01, 256);

SHA3-384(M) = KECCAK[768] (M || 01, 384);
SHA3-512(M) = KECCAK[1024](M || 01, 512).

Given a message M, the two SHA-3 XOFs, SHAKE128 and SHAKE?256, are defined from the
KECCAK]c] function specified by appending a four-bit suffix to M, for any output length d:
SHAKE128(M, d) = KECCAK[256] (M || 1111, d),

SHAKE256(M, d) = KECCAK[512] (M || 1111, d).
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Acceleration with Field-

Programmable Gate

Arrays (FPGAs)

3.1 Introduction

Modern systems often rely on micro-processors for a wide variety of applications, from small
common systems to large complicated systems with high performance requirements. In these
systems, processors take up the task of computing and range from general purpose processors
to application specific units, like graphics processing units (GPUs) and other specialized
components dedicated to particular purposes. In recent years, the requirements of several
application demand units of high performance processing, low power consumption and small
physical size. Such a device is a Field-Programmable Gate Array (FPGA), with the additional
characteristic of reconfigurability, meaning that FPGAs can be reprogrammed several times

even after their manufacturing or installation on a device.

3.2 Field-Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a digital integrated circuit (IC) constituted of a
matrix of reconfigurable logic blocks which are connected through programmable interconnects.
In contrast to common processors an FPGA rewires itself to implement the desired functionality
rather than running a software application and can be modified “in the field” more than once,

in contrast to Application Specific Integrated Circuits (ASICs).

The reconfigurability of FPGAs makes them a flexible -with a wide range of applications-
platform and a viable solution for quick implementation or prototyping of new systems. Despite

a little trade-off in performance, with FPGAs engineers can implement, test or alter their designs
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with ease in comparison with ASICs that take up a large amount of time for prototyping and

bear a higher cost. [6]

Furthermore, in recents years FPGAs have gained a significant role in reconfigurable
computing. Reconfigurable computing is a term used to describe a computer architecture that
combines the flexibility of software running on general purpose processors with the efficiency
of high performance computing fabrics, like FPGAs. The main difference with “traditional”
architectures is the ability of the hardware to adapt during runtime by altering itself and “loading
a new circuit” in the computation fabric each time a new task demands it. Thus, this technique
constructs heterogeneous platforms that are capable of reaching higher performance with less

power and area consumption. [7]

Additionally, FPGAs in conjunction with general purpose processors can implement a System
on a Chip (SoC) and be studied as a unified software-hardware platform approach for designing
systems. For all the reasons described above and because nowadays FPGAs have shrunk into
the deep-submicron region -a fact that has greatly increased their logic capacity- they are used
in a wide range of applications including Digital Communications, Digital Signal Processing

(DSP), Image Processing, Automotive, Medical, Security, Aerospace and Defense and others.

3.3 Architecture

FPGAs consist of three fundamental components Configurable Logic Blocks (CLBs), I/O
blocks and programmable routing. Most FPGAs also include a number of embedded hard
blocks that perform certain tasks, such as hardwired memories, multipliers and DSP (Digital
Signal Processing) Blocks that are interconnected with the CLBs. An abstract design of a
generic FPGA can be seen in Figure 13.
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Figure 13 Typical FPGA architecture
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Each FPGA contains a large number of CLBs, which are organized in a two-dimensional array
and are interconnected via horizontal and vertical routing channels. A CLB contains four slices

and each slice is composed by two logic cells.

Configurable logic block (CLB)

A &/ Slice Slice
l_ﬂ o M oB [ Logic cell | | Logic cell |
: [ Logic cell I | Logic cell I

Slice Slice
o cs CLB [ Logic cell I | Logic cell |
u R g [ Logic cell | | Logic cell ]

Figure 14 An array of CLBs composed by four slices and two logic cells per slice

A logic cell consists of a Look Up Table (LUT) with -usually- four inputs, a multiplexer and a
flip-flop.

Ot

L

| LUT

Figure 15 simplified schematic of a logic cell

Finally, the programmable high speed I/O blocks enable the FPGA to communicate with a
variety of devices in the outside world, such as sensors or other peripherals. The I/O blocks are
usually organized in banks and every bank can use a specific IO mechanism and protocol (e.g.
Time-to-Live/TTL). By programming the I/O blocks we usually define the direction of data
(input, output or input & output), or whether tri-state logic will be used. [8]

In the next subsections, there is a more thorough presentation of some of the above essential

components.
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Configurable Logic Blocks (CLBs) and Look up Tables (LUTs)

Inside an FPGA, CLBs are organized in a two-dimensional array connected through the
programmable routing channels. In general, a typical CLB consists of a number of logical cells,
organized in slices. A logic cell has the aforementioned architecture with a LUT, a multiplexer

and a flip-flop.

An N-input LUT is a functional unit that is able to compute any function of N-inputs. Its
operation resembles that of truth table of a logic function. Given the truth table of a logic
function, a LUT is responsible for generating the corresponding output by matching the input
with the correct output of one of the 2N possible outcomes of the table. Besides of basic
functions, LUTs can implement an N-bit shift register or can be used as a distributed memory
module of N-bits. Also, several LUTs can be combined to implement more complex logic

functions.

Since the very first FPGAs, the size of a look-up table is a subject of debate. On one hand,
larger LUTs would reduce the number of logic blocks and wiring delay between them by
allowing more complex operations to be performed on a single logic block. Yet, larger LUTs
would introduce additional delays due to requirement of larger multiplexers and would result
in increasing wasted resources if the implemented functionality was of lower demands.
Empirical studies have shown that the 4-LUT structure the best trade-off between area and delay

for a wide range of applications.

Hard Blocks

Modern FPGAs, apart from LUTs, include additional blocks fixed into the silicon providing
additional functionality, to reduce the required area and provide increased speed compared to
building those functionalities from primitives. Examples of hardwired blocks include
multipliers, DSP blocks, embedded processors, high-speed 1/0 logic and embedded memories.
It should also be mentioned that, nowadays, it is more and more common for an FPGA to
dispose high-speed transceivers, Ethernet MACs, PCI controllers and external memory

controllers.

Interconnection

As we already mentioned, logic blocks in a typical FPGA are identical and are organized in a
two-dimensional, island-like architecture. This metaphor is used to describe the logic blocks as
islands floating in a sea of interconnection, where the connection of the blocks through the
routing resources is performed with the use of connection blocks and switch boxes as show in

the figure below.
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Figure 16 An island-style architecture with connect blocks and switch boxes [9]

A connection block allows -through programmable switches- logic block I/Os to be assigned to
arbitrary horizontal and vertical tracks, while a switch box is an array of programmable switches
that allow a signal on one track to connect to another track. Depending on the design of the
switch box, a signal might turn right or left when it meets a corner or continue straight until it
reaches another switch box or connection block. A key fact of this architecture is that it separates
interconnection from logic allowing long-distance routing to be accomplished without

consuming logic block resources.

3.4 Programming and CAD Tools

Implementing a circuit on a modern FPGA requires a high number of logic to be correctly
configured. It is evident that this task is impossible to be performed by a human designer who
would have to manually reprogram each element individually. That is why Specific Computer-

Aided Design Tools (CADs) are crucial for the efficient programming of FPGAs.

Programming of FPGAs is usually done with the description of the circuit at a higher level of
abstraction, typically using a Register-Transfer Level (RTL) Hardware Description Language
(HDL), such as Verilog and VHDL (a more detailed description of Verilog follows in section
3.4.1, since it is the language that the crypto-IPs and their interfaces are implemented). HDLs
should not be considered as software programming languages, as software programming
languages are sequential in nature, while HDLs are not. They can allow both sequential and
concurrent execution and include ways of describing the propagation time and signal strengths.

[10]
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Furthermore, in recent years, another method has gained much publicity that is named High-
Level Synthesis (HLS). HLS tools provide an even greater abstraction level by describing
circuits in higher level languages, such as C, and transforming the code into RTL
implementations. This method resembles more to a software-development-like procedure rather

than a hardware one, and provides a quick way to implement software algorithms to hardware.

After describing a circuit in RTL specification, the CAD tools are used to implement the design
and produce the final bitstream, which is the binary file that comprises the necessary
information to specify the state of each individual element inside the FPGA. The process of

converting an RTL specification to bitstream is presented in section 3.4.2.

3.4.1 Verilog

Verilog (portmanteau of the words "verification" and "logic") is a hardware description
language used to model electronic circuits. It is most commonly used in the design and
verification of digital circuits at the register-transfer level of abstraction. Verilog was created
by Prabhu Goel, Phil Moorby and Chi-Lai Huang, who were working for Gateway Design
Automation Inc., between late 1983 and early 1984. At 1990, Cadence Design Systems acquired
Gateway Design Automation and became the owner of Verilog and Verilog-XL, an HDL
simulator that would become the de facto standard for the next decade. At 1995, Cadence
decided to make the language available for open standardization and transferred Verilog into
the public domain under the Open Verilog International (OVI) organization. The language was
submitted to IEEE and became IEEE Standard 1364-1995. There were also two other standard
revisions performed, in 2001 and in 2005, while in 2009 Verilog and SystemVerilog (a superset
of Verilog with object-oriented programming capabilities) were merged into IEEE Standard

1800-2009.

Verilog was built with C programming language in mind, so both share some common syntax
characteristics. Like C, Verilog is case-sensitive and has a basic preprocessor (though less
sophisticated than that of ANSI C/C++). Also, its control flow keywords (if/else, for, while,
case, etc.) are equivalent, and its operator precedence is compatible with C. However, there are
some differences including using begin/end instead of curly braces {}, requiring that variables
be given a definite bit-width size, instead of assuming it from the type of the variable, and some

other minor ones.
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A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, and
communicate with other modules through a set of declared input, output, and bidirectional ports.
Internally, a module can contain any combination of the following: net/variable declarations
(wire, reg, integer, etc.), concurrent and sequential statement blocks, and instances of other
modules. Sequential statements are placed inside a begin/end block and executed in sequential
order within the block. However, the blocks themselves are executed concurrently, making

Verilog a dataflow language.

Verilog's concept of 'wire' includes signal values (1, 0, floating, undefined) and signal strengths
(strong, weak, etc.). This style allows abstract modeling of shared signal lines, where multiple
sources drive a common net. When a wire has multiple drivers, the wire's value is resolved by

a function of the source drivers and their strengths.

Not all statements in Verilog are synthesizable. To make the simulation task easier and more
efficient, the language defines “system tasks”, which can handle simple I/O and other aspects
of simulation. These tasks include, simple file operations, printing debugging messages,

defining simulation time etc. [10]

3.4.2 Design Flow and Tools

After describing a design with a hardware description language, like Verilog, a process, which
maps the design to a specific FPGA architecture, takes place. This process is broken down to
five steps, Logic Synthesis, Technology mapping, Placement, Routing and finally, Bitstream

Generation.

Figure 17 A typical FPGA design flow
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Logic Synthesis
The first stage of synthesis converts the circuit description from an HDL file (or a schematic)

into a netlist of basic gates. The next step is converting the above netlist in a netlist of FPGA

logic blocks according to the desired synthesis properties (speed, area or power specifications).

During this stage, several optimizations take place removing redundant logic and simplifying

the design.

Technology Mapping

In this stage, several LUTs and registers are packed into one logic block respecting limitations
imposed by the FPGA architecture. Also, a number of optimizations are available depending on
the goals the designer has chosen. The optimization goal in this phase is to pack LUTs so that

the number of logic blocks and routed signals is minimized.

Placement

In this stage, heuristic placement algorithms determine which logic block within the FPGA
should implement each of the logic blocks required by the circuit. The optimization goals are
to place connected logic blocks close together to minimize the required wiring (wirelength-
driven placement), and sometimes to place blocks to balance the wiring density across the
FPGA (routability-driven placement) or to maximize circuit speed (timing-driven placement).
Routing

After placement, a router determines which programmable switches should be turn on to
connect all the logic block inputs and outputs throughout the circuit. Usually, the routing
architecture of the device is represented as a directed graph. Thus, routing a connection
corresponds to finding a path in this routing-resource graph. Since most of the delay in FPGA

designs is routing delay, a timing-driven optimization in the routing stage is crucial to minimize
overall circuit delay.
Bitstream Generation

In this final step, after the design has been successfully placed and routed, the CAD tool creates
a bitstream which can be downloaded to the FPGA and configure it accordingly. [9]
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3.5 ZC702 Evaluation Board

The ZC702 Evaluation Board is a low-cost evaluation and development board based on the
XC772020, member of the Xilinx Zynq®-7000 All Programmable SoC family. XC7Z020
combines a Dual-Core ARM® Cortex-A9 Processing System (PS) with a 7 Series Artix-7
FPGA of 85K Programmable Logic Cells (PL) that can target a wide range of applications.
Furthermore, the board includes several expansion connectors for easy user access and
connection with other peripherals. Specifically, some of the most important (and the ones of

interest in this thesis) features of ZC7020 Board are described above: [11]

e Zynq XC7Z020-1CLG484C device

1 GB DDR3 component memory (four 256 Mb x 8 devices)
e 128 Mb Quad SPI flash memory
e USB 2.0 ULPI (UTMI+ low pin interface) transceiver
e Secure Digital (SD) connector
e USB JTAG interface using a Digilent module
e Clock sources
e USB-to-UART bridge
e ]2C bus multiplexed to:
o Si570 user clock
o ADV7511 HDMI codec
o M24C08 EEPROM (1 kB)
o 1-To-16 TCA6416APWR port expander
o RTC-8564JE real time clock
o FMCI1 LPC connector
o FMC2 LPC connector
o PMBUS data/clock
e Configuration options:
o Quad SPI flash memory
o USB JTAG configuration port (Digilent module)
o Platform cable header JTAG configuration port
o 20-pin PL PJITAG header
o 20-pin PS JTAG header
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Also, the board includes a plethora of LEDs -for status indication or user defined activities-,

DIP switches and pushbuttons.

A system level block diagram of Zyng-7000 AP SoC is shown in Figure 18:

Zyng-7000 AP SoC
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Figure 18 Zynq-7000 AP SoC
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The ZC7020 evaluation board can be used for several applications. In this thesis, the board is

used for designing a cryptosystem with reconfiguration capabilities, where in runtime a part of

the FPGA is reconfigured and different cryptographic accelerators are hot-swapped with respect

of the incoming input streams and requirements, in order to maximize the throughput and

efficiency of our application. In the next chapter, before presenting our implemented system,

we try to make a thorough explanation of the technical background needed and all the

IPs/technologies used in this thesis.
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Technical Background

4.1 Partial Reconfiguration

411 Overview

One major advantage of FPGAs is that they provide the flexibility of ““in the field” programming
and re-programming without going through re-fabrication process. Partial Reconfiguration (PR)
takes this flexibility one step further, by allowing partial modification of an operating FPGA
design, while the rest of the design continues to function normally. This is done by loading a
partial configuration file, usually a partial BIT file. After a full BIT file configures the FPGA,
partial BIT files can be downloaded to modify reconfigurable regions in the FPGA without
compromising the integrity of the applications running on those parts of the device that are not

being reconfigured. Figure 19 illustrates the basic premise of Partial Reconfiguration. [12]

FPGA

Reconfig
Block “A”

Figure 19 Basic Premise of Partial Reconfiguration

As shown above, the function implemented in Reconfig Block “A” is modified by downloading
one of several partial BIT files, Al.bit, A2.bit, A3.bit, or A4.bit. The logic in the FPGA design
is divided into two different types, reconfigurable logic and static logic. The gray area of the
FPGA block represents static logic and the block portion labeled Reconfig Block “A” represents
reconfigurable logic. The static logic remains functioning and is unaffected by the loading of a

partial BIT file. The reconfigurable logic is replaced by the contents of the partial BIT file. In
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official terminology, we usually refer to Reconfig Block “A” as Reconfigurable Partition (RP),
while A1.bit, A2.bit, A3.bit, or A4.bit constitute the Reconfigurable Modules (RMs) of this RP.

There are many reasons why Partial Reconfiguration can be advantageous. These include:

e Reducing the size of the FPGA required to implement a given function, with

consequent reductions in cost and power consumption

e Providing flexibility in the choices of algorithms or protocols available to an

application
e FEnabling new techniques in design security
e Improving FPGA fault tolerance
e Accelerating configurable computing

e Enables new types of FPGA designs that would be otherwise impossible to implement

PR flow requires the implementation of multiple configurations which ultimately results in full
bitstreams for each configuration, and partial bitstreams for each Reconfigurable Module. The
number of configurations required varies by the number of modules that need to be
implemented. However, all configurations share the same top-level, or static, placement and
routing results. These static results are exported from the initial configuration, and imported by
all subsequent configurations using checkpoints. Thus, the static logic is identical in every

configuration and only the reconfigurable logic differs.

Not all logic is permitted to be actively reconfigured. Global logic and clocking resources must
be placed in the static region to not only remain operational during reconfiguration, but to

benefit from the initialization sequence that occurs at the end of a full device configuration.
Logic that can be placed in a Reconfigurable Module in Zynq-7000 AP SoC devices includes:

e Alllogic components that are mapped to a CLB slice in the device. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

e Block RAM and FIFO
e DSP blocks: DSP48E1

e PCle® (PCI Express): Entered using PCle IP

All other logic must remain in static logic and must not be placed in an RM, including:
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e Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, and

similar components
e ]/O and /O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)
e Serial transceivers (MGTs) and related components

e Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)

4.1.2 Configuration Modes in Zynq-7000 AP SoC

Zyng-7000 AP SoC supports three modes to configure the device with a partial bitstream, JTAG,
PCAP, and ICAP. JTAG is a well-known standard, used by the industry for prototyping and
debugging, and is the default interface used to configure the device through Vivado Logic
Analyzer. Its main purpose it to provide a way for quick testing and debugging while
implementing the final design, so it not meant to be used afterwards. PCAP is the primary
configuration mechanism for Zynq-7000 AP SoC residing in the Device Configuration Interface
(DevC) inside the PS, while ICAP is used to manage partial reconfiguration completely within
the PL (either through the PR Controller IP or through HWICAP module). The three interfaces
are mutually exclusive and cannot be used simultaneously. Switching between ICAP and PCAP
is possible through devc. CTRL [PCAP_PR] bit. PL configuration paths are shown in Figure 20 .
Note that JTAG can be used only in non-secure mode, while PCAP and ICAP can be used both

in secure and non-secure mode.
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Figure 20 PL configuration paths [13]

4.2 Advanced Microcontroller Bus Architecture (AMBA)

The ARM® Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, onchip
interconnect specification for the connection and management of functional blocks in SoC
designs and is used to facilitate the development of multi-processor designs with large numbers
of controllers and peripherals. AMBA was introduced by ARM in 1996 and since then the
protocols of AMBA family have become the de facto standard for 32-bit embedded processors,

because they are well documented and can be used without royalties.

Through years, the scope of AMBA has gone far beyond microcontroller buses. Today, it is
widely used on a wide range of ASIC and SoC parts. In recent years, Xilinx has adopted parts
of the specification, specifically Advanced Extensible Interface 4 (AXI4) (that is discussed later
in this chapter). AXI4 is the default interface used in a plethora of IPs created by Xilinx, and

the protocol that users are encouraged to work with in their designs.

The design principles of AMBA originate from the fact that an important aspect of a SoC is not
only which components it utilizes, but also the interconnection of them. Its objectives are the
facilitation of development of embedded microcontroller products -by allowing the reuse of IP
cores and peripherals across diverse IC processes- and the encouragement of modular system
design -by improving processor independence and allowing development of reusable

peripherals and IP libraries- while minimizing the silicon infrastructure and providing high
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performance and low power on-chip communication. The AMBA 4 specification defines the

following buses/interfaces: [14]

o AXI Coherency Extensions (ACE & ACE-Lite)

e Advanced eXtensible Interface (AXI4, AXI4-Lite & AXI4-Stream v1.0)

e Advanced Trace Bus (ATB v1.1)

e Advanced Peripheral Bus (APB4)

In this thesis, we focus on AXI4 protocol and specifically on AXI4-Stream.

421 AMBA 4 AXI4-Stream

The AXI4-Stream protocol is used as a standard interface to connect components that wish to

exchange data. The interface can be used to connect a single master, that generates data, to a

single slave, that receives data, but also to connect larger numbers of master and slave

components. The protocol supports multiple data streams using the same set of shared wires,

allowing a generic interconnect to be constructed that can perform upsizing, downsizing and

routing operations. The AXI4-Stream interface also supports a wide variety of different stream

types.

The following byte definitions are used in this specification: [15]

Data byte

Position byte

Null byte

A byte of data that contains valid information that is transmitted between the

source and destination.
A byte that indicates the relative positions of data bytes within the stream. This

is a placeholder that does not contain any relevant data values that are

transmitted between the source and destination.
A byte that does not contain any data information or any information about the

relative position of data bytes within the stream.

The following stream terms are used in this specification:

Transfer

Packet

A single transfer of data across an AXI4-Stream interface. A single transfer is

defined by a single TVALID, TREADY handshake.
A group of bytes that are transported together across an AXI4-Stream interface.

A packet is similar to an AXI4 burst. A packet may consist of a single transfer
or multiple transfers. Infrastructure components can use packets to deal more

efficiently with a stream in packet-sized groups.
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Frame The highest level of byte grouping in an AXI4-Stream. A frame contains an
integer number of packets. A frame can be a very large number of bytes, for

example an entire video frame buffer.
Data Stream  The transport of data from one source to one destination.
A data stream can be:
e aseries of individual byte transfers

e aseries of byte transfers grouped together in packets.

Types of streams include byte streams, continuous aligned streams, continuous unaligned
streams and sparse streams. A byte stream is the transmission of a number of data and null bytes.
On each TVALID, TREADY handshake, any number of data bytes can be transferred. Null
bytes have no meaning and can be inserted or removed from the stream. A continuous aligned
stream is the transmission of a number of data bytes where every packet has no position or null
bytes. A continuous unaligned stream is the transmission of a number of data bytes where there
are no position bytes between the first data byte and the last data byte of each packet (but can
have any number of contiguous position bytes at the start, at the end, or both at the start and
end of a packet). A sparse stream is the transmission of a number of data bytes and position

bytes. All data and position bytes must be maintained and transmitted from source to destination.

n: Data bus width in bytes.

i : TID width. Recommended maximum is 8-bits.

d: TDEST width. Recommended maximum is 4-bits.

u: TUSER width. Recommended number of bits is an integer multiple of the width

of the interface in bytes
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Signal Source Description

ACLK Clock source  The global clock signal. All signals are sampled on the nsing
edge of ACLK.

ARESETn Reset source  The global reset signal. ARESETn is active-LOW.

TVALID Master TVALID indicates that the master is driving a valid transfer.
A transfer takes place when both TVALID and TREADY are
asserted.

TREADY Slave TREADY indicates that the slave can accept a transfer in the

current cvcle.

TDATA[(Bn-1):0] Master TDATA is the primary payvload that 15 used to provide the data
that is passing across the interface. The width of the data
pavload is an integer number of bytes.

TSTRE[(n-1):0] Master TSTRBE is the byte gqualifier that indicates whether the content
of the associated byte of TDATA is processed as a data byte or
a position byte.

TKEEP[(n=1):0] Master TKEEFP is the byte qualifier that indicates whether the content
of the associated byte of TDDATA is processed as part of the data
stream.

Associated bytes that have the TKEEP byte qualifier deasserted
are null bytes and can be removed from the data stream.

TLAST Master TLAST indicates the boundary of a packet.

TID(i-1):0] Master TII is the data stream identifier that indicates different streams
of data.

TDEST[(d-1):0] Master TDEST provides routing information for the data stream.

TUSER]{u-1):0] Master TUSER is user defined sideband information that can be

transmitted alongside the data stream.

Table 1 AXI4-Stream signals

The TVALID and TREADY are the handshake signals which determine when information is
passed across the interface. For a transfer to occur both the TVALID and TREADY signals must
be asserted. Either TVALID or TREADY can be asserted first or both can be asserted in the
same ACLK cycle. To avoid a deadlock, a master is not permitted to wait until TREADY is
asserted. Once TVALID is asserted it must remain asserted until the handshake occurs. On the
other hand, a slave is permitted to wait for TVALID to be asserted before asserting the
corresponding TREADY and if a slave asserts TREADY, it is permitted to deassert TREADY
before TVALID is asserted.

The following figures demonstrate examples of the handshake sequence. The arrow shows

when the transfer occurs.

65




TVALID before TREADY handshake

In Figure 21 the master presents the data and control information and asserts the TVALID signal
HIGH. Once the master has asserted TVALID, the data or control information from the master
must remain unchanged until the slave drives the TREADY signal HIGH, indicating that it can
accept the data and control information. In this case, transfer takes place once the slave asserts

TREADY HIGH. The arrow shows when the transfer occurs.

LR S D s S R
INFORMATION | I
TVALID I \

TREADY r b

Figure 21 TVALID before TREADY handshake

TREADY before TVALID handshake

In Figure 22 the slave drives TREADY HIGH before the data and control information is valid.
This indicates that the destination can accept the data and control information in a single cycle
of ACLK. In this case, transfer takes place once the master asserts TVALID HIGH. The arrow

shows when the transfer occurs.

ackt || L L1 L

INFORMATION | i \

TVALID /R
TREADY _ff |\

Figure 22 TREADY before TVALID handshake

TVALID with TREADY handshake

In Figure 23 the master asserts TVALID HIGH and the slave asserts TREADY HIGH in the

same cycle of ACLK. In this case, transfer takes place in the same cycle as shown by the arrow.
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Figure 23 TVALID with TREADY handshake

For the simplest transfer to occur, TVALID, TREADY and TDATA are sufficient (However the
protocol allows to omit TREADY and TDATA but it is not recommended). In this thesis, for
the implementation of the interfaces of the crypto-IPs, we have used TVALID, TREADY,
TDATA, TLAST and TKEEP. Because SHA3-512 operates with inputs of arbitrary length,
TKEEP is used as a byte qualifier to inform the IP which bytes of the last packet of the input
are valid and which are not. The remaining signals have not been used and are not discussed

further. [15]

4.3 AXI Direct Memory Access (DMA)

The Xilinx® LogiCORE™ [P AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP
core that provides high-bandwidth direct memory access between memory and AXI4-Stream
peripherals. AXI DMA can operate in two different modes, Direct Register mode (or Simple
DMA mode) and Scatter/Gather mode (SGDMA), where, in both modes, user can check for the
completion of transaction either by polling the hardware or through interrupts. Simple DMA
allows an application to define a single transaction between AXI DMA and the device (that
means that after every transaction the processor has to define a new one), while SGDMA allows
an application to define a list of transactions in memory which the hardware will process
without further application intervention (thus, the processor is kept less busy and is allowed to
do other tasks to keep itself and the hardware busy). It also utilizes interrupt coalescing
techniques to minimize the interrupts from the hardware to the processor. Simple DMA
provides a lower performance but less FPGA-resource intensive mode which may be sufficient
for several applications, while SGDMA provides a faster, but more difficult to set up in user

application, mode. In this thesis, Scatter/Gather mode was the choice of preference.

In AXI DMA, initialization, status, and management registers are accessed through an AXI4-

Lite slave interface, while primary high-speed DMA data movement, between system memory
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and stream target, is done through the AXI4 Read Master to AXI4 memory-mapped to stream
(MM2S) Master, and AXI stream to memory-mapped (S2MM) Slave to AXI4 Write Master.
The MM2S channel and S2MM channel operate independently. The AXI DMA provides 4 KB
address boundary protection (when configured in non-Micro DMA), automatic burst mapping,
as well as the ability to queue multiple transfer requests using nearly the full bandwidth
capabilities of the AXI4-Stream buses. Furthermore, the core provides byte-level data

realignment allowing memory reads and writes starting at any byte offset location.

The MM2S channel supports an AXI Control stream for sending user application data to the
target IP. For the S2MM channel, an AXI Status stream is provided for receiving user
application data from the target IP. The optional Scatter/Gather Engine fetches and updates
buffer descriptors from system memory through the AXI4 Scatter Gather Read/Write Master

interface.

Figure 24 illustrates the functional composition of the core.

AXI4 Memory Map Read AXI4 Stream Master (MM2S)

DataMover

MM2S Cnti/Sts Logic AXI4 Control Stream (MM2S)

AXI4-Lite AXI4 Memory Map Write/Read

Registers  |«—| Scatter/Gather

S2MM Cntl/Sts Logic AX14 Stream (S2MM)

AX14 Memory Map Write AXI4-Stream Slave (S2MM)

DataMover

Figure 24 AXI DMA block diagram [16]
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Employed Workflow on

ZC702 Evaluation Board

5.1 Setting up the IPs for HW integration

5.1.1 Overview

For the purposes of this thesis 4 different IPs where selected. These cores implement the
algorithms AES-128, AES-192, AES-256 and SHA3-512, are designed by Homer Hsing, can
be found at [17], [18] and are distributed under Apache License, Version 2.0.

In order to integrate the above IPs in our project and enable communication between the cores
and the Zynq PS, we designed appropriate interfaces for each one of them. For each core, 2
interfaces were implemented, one slave (whose purpose is to accept data) and one master
(whose purpose is to send data). The interfaces were written in Verilog, designed to be
compliant with the AXI4-Stream protocol and were implemented with the help of Vivado IP
Packager. Also, for the Partial Reconfiguration requirements a simple Decoupler was
implemented, that will be used to cut-off all outgoing signals from the crypto-IPs during
reconfiguration, and a “dummy” IP, that will be used to synthesize the static logic and before

employing the Partial Reconfiguration workflow.

The complete procedure for implementing and packaging a custom IP in Vivado is presented in

the following subsection.
5.1.2 Creating and Packaging custom IPs in Vivado IP Packager

Crypto Cores

In order to implement our custom IPs, we created a new Vivado project to serve as a parent
project and repository for all the custom cores. Custom IP creation can be done inside any
Vivado project, but we decided that it was a good idea to have a separate project for maintaining

and testing all the cores and include that repository to all our different projects.

After selecting “Create a new AXI4 peripheral” in Vivado IP Packager, the wizard prompts to

specify our core’s information and define its interfaces. For our design, each peripheral has a
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master and a slave AXI4-Stream interface of 64-bit data width. Partial Reconfiguration
demands that every Reconfigurable Module (RM) has identical signals as seen outside of the
peripheral (or ground to zero any additional signals that are not been used). AES cores can
absorb all the input (plaintext and key) in a single clock cycle, while SHA3-512 core accepts
data by a 64-bit-wide input port, so 64 bit data width was chosen for all the interfaces. That
seemed convenient as later the IPs will communicate with the Zynq PS through its High
Performance ports, which are also 64-bits-wide. The IP Packager wizard has a default value of

32 for data width that cannot be changed, but this can be done later by modifying the source

code.
Add Interfaces
Add AXI4 interfaces supported by your peripheral ‘
["] Enable Interrupt Support g - Name MOO_AXIS
[= Interfaces Interface Type Stream -
LAl S00_AXIS
LAl MO0_axis Interface Mode Master -
Data Width (Bits 32 -

Memory Size (Bytes) | 64

Mumnber of Reqisters |4 [4..517]

EE[ASDD_A}{IS MO0_AXIS _-]:E

ryip_w1.0

< Back Einish Cancel

Figure 25 View of Vivado IP Packager wizard

After specifying the interfaces, Vivado automatically generates three template files, one for the
top file and one for each interface. The top file contains the definitions of all signals visible
outside of the peripheral and instantiates the interfaces, while the interface files contain
definitions of their own parameters and some indicative logic that users can modify and extend

to their needs.

For our custom IPs we modified these files to only contain TDATA, TVALID, TREADY,
TLAST and TKEEP signals of AXI4-Stream, as described in 4.2.1. TDATA carries the data that
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the modules process, TVALID and TREADY are used for implementing the AXI4-Stream
handshake, while TLAST notifies when the last data of a packet is being sent. Also, because
SHA3-512 accepts an input of arbitrary length, TKEEP is used to notify the module’s slave of
how many bytes of its last 64-bit input are actually valid.

Furthermore, we modified the top files to instantiate the cryptographic modules and added some
additional logic to synchronize the cryptographic modules with their interfaces. In each
interface file, a Finite State Machine -that decides the interface’s behavior- was implemented,

and additional logic -that ensures the correct data transfer from and to the interface- was added.

Finally, an external reset port was added, which is used to reset the IP after the Partial
Reconfiguration. In Figure 26, the layout of the crypto IPs is presented. The IP contains the

instantiated crypto module along with its interfaces, its clock and the reset signals.

TDATA[63:0] =——ipp>

TLAST — 4 AX1d P TDATA[63:0]
- ;
TVALID —®] Stream Crypto Stream TLAST
SLAVE MASTER |— TVALID
TREADY <€— Module

l«—— TREADY

TKEEP[7:0] —]

clk _
aresetn —
ext_rst

Figure 26 Crypto cores' layout

“Dummy” IP

After implementing our custom IPs, we created an additional “dummy” peripheral named
“reconf peripheral” that will be used to synthesize the static logic before the Partial
Reconfiguration workflow. After synthesizing the static logic, reconf peripheral will be used
as a black box in which all the IPs will be added to implement all the different configurations.
This “dummy” IP only contains a top file with definitions of the signals seen outside the
peripheral and no additional logic. In Figure 27 the reconf peripheral IP is shown, as presented

inside Vivado IP Integrator.
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reconf_peripheral _0

MO0_AXISF =

reconf_peripheral_v 1.0 {Pre-Production)

Figure 27 "Dummy" 1P

Decoupler IP

Because the logic inside a Reconfigurable Partition is modified while the device is operating,
the static logic connected to outputs of Reconfigurable Modules (RMs) must ignore all
incoming data during the PR procedure. The reconfigurable logic is in an unknown state during
reconfiguration and RMs do not output valid data until PR is complete and the RMs are reset.
[12] A system designer should apply a decoupling strategy to his design by finding a way to
isolate the logic until reconfiguration is complete or by simply ignoring all incoming signals
from an RM if this does not affect the system’s operation. In this project, we implemented a
Decoupler IP. This IP under normal operation allows all signals to pass through it unaffected,
while during Partial Reconfiguration it grounds all outcoming signals from the crypto IPs’
master interfaces and sends a reset signal to them. The Decoupler is controlled by the Zynq PS

through an AXI4-Lite interface and is shown in Figure 28.

decoupler_0
a=S500_AXI
==500_AXIS MO0_AXISE
s00_axi_adk et rst

decoupler_v2.0 (Pre-Production)

Figure 28 Decoupler IP

After the above process, Vivado packages each IP and our peripherals are ready to be used

inside the Vivado IP Integrator.

Usually, to verify the correct operation of logic, the Zynq Bus Functional Model (BFM) [19] is

used, which enables the functional verification of PL by mimicking the PS-PL interfaces. In
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this project, because Zynq BFM requires an additional license, the verification was done by
developing a testbench which tried to simulate all the different scenarios the IPs could encounter.
After the simulation, the cores where downloaded to Zynq along with the Integrated Logic

Analyzer (ILA) core to monitor the internal signals and verify their correct operation.

5.2 System Generation

At this point, our custom IPs are generated and we are ready to create our system. This step is
done prior to the Partial Reconfiguration workflow, so the “dummy” IP will be used for all
instances instead of the cryptographic modules. In this section, we present a system generation
process with one cryptographic peripheral, but this process can be generalized to include as

many peripherals the FPGA’s resources can handle.

The first step is to include our IP repository into this new project. After including the repository,
a new block design is created and the Zynq Processing System (PS) IP is added. The IP should
be re-customized to comprise all necessary ports and interfaces needed. The IRQ_2FP port is
enabled and will later be used by the AXI DMA to notify the PS about reading/writing
operations. Also, a single PL fabric clock is used for all our PL peripherals, except HWICAP.
Any PL clock can theoretically range from 0 to 250 MHz. For our design, the first clock is set
to 150 MHz, as it is the maximum value the AXI DMA can operate, while the second is set to
100 MHz which is the HWICAP’s maximum one. Finally, we enable as many High
Performance (HP) ports as the number of cryptographic peripherals we want to use. After all

necessary changes the PS IP should look like Figure 29

processing_system7_0

DDR 4 ||f=——["3 DDR
FIXED_104p ||j===f"> FIXED_IO

||| <k s_axa_tpo_FIFO_CTRL -0 "
M_AXI_GPO<p [

fi;;xé;llmncm W TTCO_WAVED_QUT|
o ZYNQ TTCO_WAVEL_OUT

S AXI_HPD_ACLK
TTCO_WAVE2Z_OUT
IRQ_F2P[0:0]
FCLK_CLKOD

FCLIC_CLKL
FCLK_RESETO_N

ZYNQ7 Processing System

Figure 29 Zynq7 Processing System
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After customizing the Zynq PS IP, an AXI DMA IP is added. This IP should also be re-
customized to fit the design’s needs. More analytically, we enable the Scatter Gather Engine
and disable Micro DMA, Multi Channel Support and Control/Status Stream. We also set Width
of Buffer Length Register to 23 bits and Stream Data Width to 64 as in out IPs, TDATA field is
set to 64 bits wide. After all modifications AXI DMA IP should look like in Figure 30

[] Show disabled parts Component Name |design_1_axi_dma_0_0
Enable Asynchronous Clocks (Auto)

Enable Scatter Gather Engine

[] Enable Micro DMA

[[] Enable Multi Channel Support

[[] Enable Control / Status Stream

M_AYI_SGHs Width of Buffer Length Register (8-23) |23 bits
RS ARLLITE M_ARL MM2S < 2 Address Width (32-64) |32 bits
Hldb5_AdIS_S2MM M_AKI_S2MM b f1
_s-axiflite—adk LATESTES | Enable Read Channel Enable Write Channel
—rn_axi_sg_aclk MNZs_pHiFy_peset_out_nf=
g =Bl ST G T o Number of Channels 1 Number of Channels 1
=rn_axi_s2rrn_aclk 25 _introut == P—
—faxi_resetn S2minn_introut f= Memory Map Data Width | 64 - (W) Auto ) Memory Map Data Width |32
arl_dma_tstvec[31.0]jm Stream Data Width 64 v Stream Data Width (Auto) 32
Max Burst Size 64 " Max Burst Size 16 -
[] Allow Unaligned Transfers [] Allow Unaligned Transfers

Use Rxlength In Status Stream

Figure 30 View of AXI DMA IP customization wizard

After the above procedure, Vivado runs Connection Automation and automatically makes all
the necessary changes to connect the AXI DMA to Zynq PS. To make the connection correctly,

Vivado also adds two new peripherals, AXI Interconnect IP and Processor System Reset.

AXI Interconnect IP

AXI Interconnect IP connect one or more AXI memory-mapped Master devices to one or more
AXI memory-mapped Slave devices. It has the capability of connecting 1-16 Master devices
and 1-16 Slave devices. This means that an AXI Interconnect IP can be utilized to connect up
to 16 interfaces. Also, in our design, this module translates the AXI3 compliant data of PS to

AXI4 compliant, in which AXI DMA operates.

Processor System Reset

Processor System Reset is intended to implement a Power on Reset. This means that, this IP
detects when power is applied to the device and generates a reset impulse that travels through

the entire circuit, placing all peripherals to a known state.
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At this point, only our custom peripheral with the Decoupler IP needs to be added to the project,
as well as the Concat IP which concatenates the AXI DMA interrupt signals and drives them to
the PS. Also, the HWICAP IP is added to allow the device’s reconfiguration through the ICAP

interface. The full implemented design is shown in Figure 31

|
I arar it}

Figure 31 Desing with one reconfigurable peripheral

5.3 Partial Reconfiguration Workflow

The following steps summarize processing a PR design in Vivado:
1) Synthesize the static and Reconfigurable Modules separately.
2) Create physical constraints (Pblocks) to define the reconfigurable regions.
3) Set the HD.RECONFIGURABLE property on each Reconfigurable Partition.

4) Implement a complete design (static and one Reconfigurable Module per

Reconfigurable Partition) in context.
5) Save a design checkpoint for the full routed design.

6) Remove Reconfigurable Modules from this design and save a static-only design

checkpoint.
7) Lock the static placement and routing.

8) Add new Reconfigurable Modules to the static design and implement this new

configuration, saving a checkpoint for the full routed design.
9) Repeat Step 8 until all Reconfigurable Modules are implemented.
10) Run a verification utility (pr_verify) on all configurations.

11) Create bitstreams for each configuration. [12]
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The process is presented as flowchart in Figure 32.

HDL HDL
Synth Synth Reconfig
Static Modules
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Figure 32 Partial Reconfiguration Workflow

Partial Reconfiguration can be performed to replace part of an IP’s logic or even multiple
peripherals. For example, consider that there is an IP that is connected to the PS via an AXI
interface and implements a very basic function, like an adder. With Partial Reconfiguration, it
is possible to reconfigure only the part of the IP that is responsible to implement the adder’s
operation while the interface of the IP can remain in static logic. This has the advantage of faster
reconfiguration times, but requires that the functions implemented have similar architecture and
similar interaction with the interfaces. In this thesis, we study the Partial Reconfiguration of an

entire peripheral as seen in Figure 33.
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Figure 33 Partial Reconfiguration of entire peripherals

In Figure 33 a system with two Reconfigurable Modules is presented and in this system, there
are N algorithms available. Whenever the application needs to perform a different operation
with a different algorithm, the whole peripheral RM1 or RM2 is hot-plugged and the new

algorithm is inserted.

Prior to Vivado 2016.3, PR flow was not supported by the graphic interface of the suite, so
everything had to be done in no-project mode by running commands or Tcl scripts. In Vivado
2016.3, PR flow in project mode was introduced, where users have the ability to create PR
projects using Vivado’s interface guidance. This thesis was implemented in Vivado 2015.4, so
PR flow in project mode was not feasible. For our needs, we implemented 8 individual Tcl
scripts that automate the whole procedure and can be easily modified to create any future
projects. These scripts can be run inside Vivado, where the user -at the end of each script’s
execution- can set parameters not known in advance, like setting the debug for ILA core or
floorplanning the design. For the scripts to operate normally, the user must follow a specific
hierarchy for his sources, synthesis/implementation checkpoints and bitstreams, as the Vivado
does not create them automatically and they have to be set in advance. They can also be used

as generic scripts to guide and implement any design.

In this section, we discuss the operation of the scripts implemented and how they were applied

in our design.

1-static_design_creation_with_dummy _ip.tcl

This script generates and synthesizes the system described in Section 5.2. The Design

CheckPoint (DCP) produced will be used in scripts 3 and 4 to implement all the configurations.
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“Dummy” IP will be used as a black box where all crypto IPs will be loaded prior to

implementation.

2-synthesize reconfig modules.tcl

This script synthesizes all crypto IPs.

3-create_first configuration_and place static logic.tcl

This script loads the DCP from script 1 and a DCP from script 2, creates the floorplanning and
implements the design. For the floorplanning, the most resource intensive RM is used. If the
configuration fails, the user must create a different floorplanning and run the script again. If the
configuration is successful, the RM is extracted and static logic is locked and used in script 4

to implement all the other configurations.

4-create rest configurations.tcl

This script creates the rest configurations.

S-verify configurations

This script verifies that all the configurations are compatible with the first one.

6-bitstreams_generation.tcl

This script generates the bitstreams. For every configuration, a full bitstream and a partial one,

for each RM, is generated.

7-compressed bit generation.tcl

This scripts functions as script 6 but generates compressed bitstreams. Compressed bitstreams

can be used to configure the device more quickly.

5.4 Baremetal Application Development

To test the design, a baremetal application was developed. The application selects the desirable
interface for Partial Reconfiguration (PCAP or ICAP), initiates the AXI DMA Scatter/Gather

engine and handles all the data transferred to/from the peripherals.
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The essential function calls to initialize the interfaces and perform Partial Reconfiguration are

presented in Table 2 and Table 3.

PCAP

Function

Operation

XDcfg_ Cfglnitialize()

Initializes the Device Configuration (DevC) driver

XDcfg EnablePCAP()

Enables PCAP

XDcfg_SetControlRegister()

Sets the contents of the Control Register of the
DevC. To enable Partial Reconfiguration with
PCAP we set the
XDCFG_CTRL PCAP PR MASK

XDcfg Transfer()

Starts the bitstream transfer.

Table 2 Functions to utilize PCAP

ICAP

Function

Operation

XDcfg Cfglnitialize()

Initializes the Device Configuration (DevC)

driver.

XDcfg ClearControlRegister()

Clears the specified bit positions of the
Control Register. It is used to clear
XDCFG_CTRL PCAP PR MASK and
disable PCAP.

XHwlcap_Cfglnitialize()

Initializes the HWICAP instance.

XHwlcap DeviceWrite

Starts the bitstream transfer.

Table 3 Functions to utilize ICAP

In Scatter/Gather DMA the object used to describe a transfer is referred to as a Buffer Descriptor

(BD). BDs are allocated in the user application, where the application sets the buffer address,

transfer length and control information for the transfer. BD rings are shared by the user

application and the hardware. The hardware expects BDs to be setup as a linked list where the

last BD in the ring is linked to the first one. The DMA walks through the list by following the
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next pointer field of a completed BD and stops when the just completed BD is the same as the

BD specified in the Tail Ptr register in the hardware.

Within a ring, there are four groups of BDs, where each group consists of 0 or more adjacent

BDs:
e Free: The BDs that can be allocated by the application

e Pre-process: The BDs that have been allocated and are under application control. The
application modifies these BDs through the driver API to prepare them for DMA

transactions

e Hardware: The BDs that have been enqueued to hardware. These BDs are under
hardware control (in a state of awaiting processing, in process, or already processed)

and should not be modified by the user application.

e Post-process: The BDs that have been processed by the hardware and have returned to
the application control. The application can check the transfer status or put them into

the Free group.

Figure 34 illustrates the transitions of BDs during a continuous transfer.

XAxiDma BdRingAlloc( ) XAxiDma BdRingToHw( )

Free ) Pre-process ) Hardware

( Post-process (

XAxiDma BdRingFree( ) XAxiDma BdRingFromHwi( )

Figure 34 Transitions of BDs during a continuous transfer

Our application creates two BD rings, a TX ring that is used to send data to the SGDMA and
an RX ring to receive data from the SGDMA. The BDs of the TX ring are freed and can be
allocated to send data to the DMA, while the BDs of the RX ring are allocated and sent to
hardware, so that data can be received at any time. The application also sets a coalescing count
for each BD ring, which is a packet threshold counter that defines when interrupts will fire.

Once the application wants to transmit data to the hardware, it allocates the necessary BDs and
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sends them to hardware. Once the transmit is done, the TX interrupt handler gets the processed

BDs from hardware and sets them under application control, while the RX interrupt handler

gets the processed BDs and sends them back to the hardware once again.

The essential function calls to set up the SGDMA and perform transactions are presented in the

Table 4.

Function

Operation

XAxiDma BdRingCntCalc()

Determines how many BDs will fit within a

given memory space.

XAxiDma BdRingCreate()

Creates a BD ring.

XAxiDma BdRingSetCoalesce()

Sets the coalescing count.

XAxiDma BdRingAlloc()

Reserve locations in a BD ring

XAxiDma BdRingToHw()

Enqueue a set of BDs to hardware. The BDs
must have previously been allocated by

XAxiDma BdRingAlloc().

XAxiDma_ BdRingFromHw()

Returns a set of BDs that have been

processed by hardware.

Table 4 SGDMA API functions
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Evaluation of Workflow

6.1 Overview

In this chapter, we make an evaluation of our workflow and implementations. First of all, we
present the challenges our designs faced and the compromises that were made in order to make
Partial Reconfiguration feasible with the different peripherals we had. Then we discuss the
floorplanning that was made, which is a crucial part of the PR workflow, and make a
comparison for the configuration time need for a partial bitstream in contrast with a full
configuration. Then, we make an evaluation of the IPs implemented and the acceleration that
was achieved. Finally, we present a fully functional design with two reconfigurable peripherals.
This system has two input streams of data that need to be encrypted and has the ability to
reconfigure itself with two different or two identical crypto IPs, depending on the input data, in

order to accelerate the total computation time.

6.2 General Description of Hardware Implementations

The original AES cores were not suitable to implement Partial Reconfiguration in our device.
The original AES128 utilized 86, AES192 100 and AES256 121 Block RAM tiles. Zynq’s
FPGA (xc72020c1g484-1) has a total of 140 Block RAM tiles spread all over across the device.
This means that no more than one peripheral could fit in our device and Partial Reconfiguration
would be pointless, because as a result of the high Block RAM utilization spreading across the
device, a single peripheral would occupy the entirety of the device’s space. Zynq’s layout is

presented in Figure 35. Block RAM tiles are highlighted as the columns with the brown color.
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Figure 35 Zynq’s (xc7z020clg484-1) layout

For our designs, we ordered Vivado Synthesizer to use Distributed RAM instead of Block RAM,
by inserting the “special” comment (* ram_style = "distributed" *) in the source code. This
resulted in a much higher LUT utilization (especially in AES256), but it made Partial

Reconfiguration feasible because the cores could fit in a smaller space.

In Table 5 we present the device’s total resources along with the final utilization of the
synthesized IPs. The “dummy” IP (reconf peripheral) is not presented as it is not a real IP and
contains no logic. Also, as it can be seen, AES256 utilizes ~38.21% of the device’s total
resources by itself. That will have an impact on the final floorplanning, because it will be

difficult to find such a big contiguous area without elements that cannot be reconfigured.
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Zynq Slice LUTs Slige Registers F7 Muxes F8 Muxes
(xc7z020clg484-1) (53200) (106400) (26600) (13300)
AES128 10775 6337 4064 2032
AES192 12602 8130 4448 2224
AES256 20330 10642 7744 3872
SHA3-512 6258 2361 0 0
Decoupler 220 169 0 0

Table 5 IP cores’ utilization

Also, the original AES cores had the ability to be fed with their entire input (128 bit plaintext

and 128/192/256 bit cipherkey) in a single clock cycle, while Zynq’s High Performance ports

are 64-bit wide. SHA3-512 core was more convenient as it uses a 64-bit input and has a smaller

footprint in logic. As a result, the 64-bit wide interfaces implemented, limited AES cores’

original performance, while in SHA3-512 case the performance remained intact.

6.3 Floorplanning

In Partial Reconfiguration, each Reconfigurable Partition is required to have a Pblock to define

the physical resources available for the Reconfigurable Modules. A Pblock must contain only

valid reconfigurable element types, as described in 4.1.1. Multiple Pblock rectangles may be

used to create the Reconfigurable Partition region, but for the greatest routability, they should

be contiguous. Gaps to account for non-reconfigurable resources are permitted, but in general,

the simpler the overall shape, the easier the design will be to place and route. In our design, the

cryptographic cores take up much of the device’s resources, so it was difficult to find a

contiguous place without non-reconfigurable regions. A floorplanning with back-to-back

violations is presented in Figure 36.
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Figure 36 Floorplanning with back-to-back violation

In this floorplanning, the Pblock spans through an interconnect (red color in Figure 34) of two
different clock regions and interconnect columns are not reconfigurable on 7-Series devices. In
this case, a prohibit constraint has been automatically inserted by Vivado which forbids
placement in this area. For this particular project, warnings can be avoided as there is no static
logic inside the non-reconfigurable interconnect affecting the design. Because our IPs are of
big utilization and it was difficult to find a contiguous area without non-reconfigurable elements
for floorplanning, the Pblock can be split to avoid the interconnect. A valid floorplanning with

no violations is shown in Figure 37.
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Figure 37 Floorplanning with no violations

As can be seen, after implementation, Vivado inserts partition pins within the Pblock ranges
define for the Reconfigurable Partition. These virtual I/O are established within interconnect
tiles as the anchor points that remain consistent from one module to the next. No physical
resources such as LUTs or flip-flops are required to establish these anchor points, and no

additional delay is incurred at these points.

6.4 Configuration Time

The configuration time scales linearly as the bitstream size grows with the number of
reconfigurable frames, with small variances depending on the location and the contents of the
frames. It also depends on which software application or Operating System (OS) is used and
which interface is utilized to perform the reconfiguration. Table 6 shows configuration times
for a design running the baremetal application described in 5.4 with one reconfigurable
peripheral where all the cryptographic algorithms (AES128, AES192, AES256 and SHA3-512)
are utilized. In PCAP’s and ICAP’s case the bitstreams where stored in the device’s DDR as
binary files, while JTAG loaded them from an external source through Vivado’s Hardware

Manager.
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Full Bitstream Partial Bitstream
Bitstream Size 4,045,678 bytes 1,660,388 bytes
JTAG ~4's ~2s
PCAP 31.08 ms 12.76 ms
ICAP - 162.72 ms

Table 6 Comparison between configuration interfaces

Note that for uncompressed bitstreams, each RM in the design has an identical partial bitstream
size, despite of the resources it utilizes inside the Reconfigurable Partition. The difference in
reconfiguration times between the three interfaces was expected. JTAG’s primary function is
as a serial interface for prototyping and debugging which is used to load a bitstream from an
external source, so it is not expected to achieve fast reconfiguration times. PCAP achieves the
fastest time, as expected, due to the DMA engine of AXI-PCAP bridge inside the Device
Configuration Interface (DevC), while the overhead introduced when the bitstream data are
supplied from the memory to ICAP has an impact in ICAP’s performance. Note that usually
when ICAP is used, the bitstream is kept in BRAM inside the FPGA. In such cases ICAP shows

a much better performance than in Table 6.

6.5 Evaluation of the Cryptographic I1Ps implemented

In this section, an overall comparison between the cryptographic algorithms running
exclusively on Zynq’s ARM processor and our accelerated designs is made. For AES software
implementation, the source code was provided by ARM’s mbed TLS [20] open security library,
while SHA3-512 was provided by a contribution to the OpenPGP project [21]. Mbed TLS
provides AES implementations for a various number of block cipher operation modes. In this
test the original AES block encryption function was used without any operation mode. In Figure
38 there are presented relative execution times for the accelerators in comparison with the

algorithms running exclusively on ARM.
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Figure 38 Relative execution times in comparison with the respective software

implementations

These values were taken by performing 100000 transactions for each AES algorithm and for
SHA3 by performing a single transaction of 10000 x 64 bits. In this diagram, smaller values
mean greater performance in comparison with the algorithms’ software implementations
running on Zynq’s ARM. For example, the relative execution time for AES128 is a little above
0.25 meaning that it has an overall acceleration below 4 (actually, for AES128 the speedup is x
3.78).

As it can be seen, AES algorithms do not have a great overall acceleration. This, is a result of
the system’s limitations (for multiple transactions an overhead of the communication time
between the peripherals and the memory is introduced) and the non-optimized implemented
interfaces which greatly affected the original cores’ performance. The original AES cores where
pipelined, meaning that the IPs could be fed with their input (plaintext and cipherkey) in every
new cycle and provide a new result (ciphertext) in every new cycle. The interfaces implemented
feed the core with a single encryption’s input, wait for the result to be ready and as soon as the
Master opens to write the output back, the Slave starts accepting data. This was done in order
to quickly integrate the IPs in our system and continue with the rest and most important
designing. On the other hand, SHA3-512 has much faster execution times than its software
implementation because the interfaces implemented where much more suitable with the core’s
architecture and because SHA3-512 does not do multiple I/O operations, since for a very large

message it only outputs a 512-bit wide hash.
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6.6 Experimental Evaluation

In this section, we make a comparison between a system that has no Partial Reconfiguration
capabilities with a system that can take advantage of the technique and apply it to adapt to an
application’s requirements and accelerate the total computation time needed. Sometimes, in
systems with more than one peripherals, the application does not utilize all the peripherals, or
some peripherals remain idle for an amount of time while others are utilized from the beginning
until the end of an application. A system with PR capabilities can take advantage of this situation
and reconfigure an idle peripheral with one that is needed, to accelerate the overall system’s
throughput. In this benchmark, we have designed two systems, one with PR capabilities and
one with no PR capabilities. The systems have two peripherals each, for the cryptographic
algorithms AES128 and AES192. The system with PR capabilities can configure the device
with the different algorithms or with two instances of the same algorithm when needed, to
distribute the computation load between them and thus, minimize the total computation time,
while in the system with no PR capabilities the two different IPs are fixed and cannot be
reconfigured. For example, suppose that we have a system that handles two data streams, one
with AES128 and one with AES192 computations, in parallel. In the system with no PR
capabilities, if the second stream is completed, AES192 peripheral remains idle for the rest of
the application while AES128 continuous its execution normally. In the design with PR
capabilities, the system can reconfigure AES192, in order to utilize two AES128 peripherals
simultaneously and distribute the data between them. The system with the two peripherals

implemented is presented in Figure 39.
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Figure 39 System with 2 crypto peripherals

For our experiments, we have implemented a simple software controller, described in Section
5.4. This controller reads the data from the 2 inputs streams, feeds the data to the accelerators
and brings the results back by implementing the Scatter/Gather functionality. It also performs
the reconfiguration of the peripherals in the system with PR capabilities. The input streams are
randomly generated, but have been studied in advance, and the number of total reconfigurations

needed is known prior to the tests’ execution.

Furthermore, we have considered that the two data streams have 5 levels of Conflict. 100%
Conflict means that in any given time the system needs to encrypt data with only one of the
algorithms, while 0% Conflict means that there are always operations to be performed with
both of the algorithms available. The results for 3 datasets of 400k, 800k and 2000k total
computations where a total of 5 partial reconfigurations need to be performed are presented in

Figures 40, 41, 42.
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Figure 40 Experimental results of 400k total computations and 5 partial reconfigurations
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Figure 41 Experimental results of 800k total computations and 5 partial reconfigurations
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Figure 42 Experimental results of 2000k total computations and 5 partial reconfigurations

In each of the Figures above, the vertical axis represents each of the two systems’ relative
execution time in comparison with the tests running on Zynq’s processor, while the horizontal
axis represents the 5 levels of Conflict. For every testcase, the system with PR capabilities has
an average acceleration of 86% compared to the software and 20% compared to the system with
no PR capabilities. Overall, in the three Figures the PR system scales to the same acceleration
threshold due to utilizing both of the peripherals at any given time. In Figure 40 for Conflict
25%, the PR system performs worse than the no-PR system because the total computation time
is relatively small and is directly affected by the time needed for a partial reconfiguration to be
performed. Also, the little fluctuation on the acceleration on each graph is expected, due to the
random nature of the data input streams where there may be more or less total transactions for

a specific algorithm.

The results of a fixed 75% Conflict are presented in Figure 43
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Figure 43 Experimental result of 75% Conflict and various input sizes

In Figure 43 we show how the total acceleration scales for different input sizes and a fixed 75%

Conflict. Like before, the vertical axis represents the total acceleration of the two systems

compared to the ARM processor. As we can see, the relative accelerations scale to a threshold

for each system as the total input size gets bigger.

For our last experiment, we have considered a testcase where a total of 5, 10 or 20 partial

reconfigurations are done. Just as before, the input data streams are randomly generated but the

total number of the reconfigurations performed is known prior to each of the tests’ execution.

The results are shown in Figure 44.
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Figure 44 Experimental results for a different number of total reconfigurations
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As it can be seen in Figure 44, the total acceleration scales once again to the same threshold.
For 20 reconfigurations and 400k total transaction the total execution time relatively small and
directly affected by the time needed to perform a partial reconfiguration. In this, case the PR
system performs worse than the no-PR system. However, as the input size grows the total
computation time is not affected by the reconfiguration time and the system scales to the same

threshold as the other systems, where both of the peripherals are fully utilized at any given time.
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Conclusion

7.1 Summary

At this point, the work for this diploma thesis has reached the end. This work tried to explore
the Partial Reconfiguration technology on FPGAs and apply the knowledge acquired to
implement a cryptographic system on an Zynq SoC device. Firstly, we made all the modification
needed to utilize the cryptographic peripherals in the SoC, and designed the appropriate
interfaces to allow communication between them and the Zynq’s processor. To implement
Partial Reconfiguration, we constructed two IPs, a “dummy” peripheral and a Decoupler. The
“dummy” IP, that contained no logic but only definitions of the reconfigurable IPs as seen
outside, was necessary to synthesize the static design and was used as a black-box in which the
cryptographic peripherals were loaded prior to implementation of the various configurations.
The Decoupler was utilized to isolate outcoming signals from the Reconfigurable Partitions to
the rest of the system during Partial Reconfiguration and reset the Reconfigurable Modules to
a known initial state after reconfiguring was done. The -cryptographic peripherals
communicated with Zynq’s Processing System through an AXI DMA in Scatter/Gather mode.
The SGDMA resulted in a high-speed communication between the peripherals and the PS and
reduced the total number of interrupts from the DMA to the ARM and thus, it allowed the
processor to handle the peripherals more efficiently. Then, we made an evaluation of our work
and presented details about the implemented system and the acceleration we achieved. Finally,
we showed Partial Reconfiguration’s advantages by utilizing it in a system with two peripherals.
Whenever a peripheral completed its work for the rest of the application, while the other
continued to operate, the idle peripheral was reconfigured with an instance of the working one
and the computation load was distributed equally to the two IPs, thus reducing the total

computation time.
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(.2 Final Thoughts and Future Work

Heterogeneous platforms combining general purpose processing units and programmable logic
have gained an increased interest as the next generation of FPGA-based hybrid devices. In these
systems, general purpose processing units provide the flexibility and a way to control and
distribute the computational load, while FPGAs have the role of implementing custom,
application specific accelerators. During the development of this diploma thesis, we had in mind
the greater picture of the technologies used. While Zynq-7000 is a low-end device that
introduces a lot of limitations to the final project, the acquired knowledge can be applied to
several future platforms and similar architectures. Moreover, Partial Reconfiguration can be
useful to a variety of devices, from embedded low-end platforms with limited resources and
capabilities to high performance systems, that need to accelerate critical parts of an application

and must have a quick response whenever the application’s requirements differentiate.

A nice idea for future work would be to implement a more sophisticated software controller for
the system presented in 6.6, for it to be able to operate in a real-world scenario. The controller
could decide if it would be advantageous to perform a reconfiguration by observing the data
streams and knowing the amount of time needed to perform a partial reconfiguration. We also

could study how the Partial Reconfiguration procedure affects the device’s power consumption.

This thesis’s results could be applied to any platform with Partial Reconfiguration or
Cryptography requirements. One application that combines both, is Software-defined Radios
(SDRs). SDR is a communication system where components that are traditionally implemented
in hardware (e.g mixers, filters, amplifiers, modulators/demodulators, etc.) are instead
implemented by means of software. This gives the ability to a system to change transmission
protocols and a single device can be used in a wide variety of communication schemes. In recent
years, FPGAs have been integrated in SDRs to accelerate these tasks. Our thesis results could
be used in such devices to take advantage of Partial Reconfiguration to change transmission
protocols and be able to respond in different communication schemes quickly. It could also be

used to apply encryption/decryption schemes whenever desirable.
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