
ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ  

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ 

ΥΠΟΛΟΓΙΣΤΩΝ 
 

 

 

A Framework for Modelling Computational Sprinting 

with Phase Change Materials 
 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 

Σχίζας Β. Νικόλας 

 

 

 

Επιβλέπων: Δημήτριος Σούντρης 

  Αναπ. Καθηγητής Ε.Μ.Π. 

 

 

Αθήνα, Φεβρουάριος 2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ  

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ 

ΥΠΟΛΟΓΙΣΤΩΝ 
 

 

A Framework for Modelling Computational Sprinting 

with Phase Change Materials 

 
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

Σχίζας Β. Νικόλας 

 

Επιβλέπων: Δημήτριος Σούντρης 

  Αναπ. Καθηγητής Ε.Μ.Π. 

 

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 1η Φεβρουαρίου 2017 

 

 

..............................  ..............................  .............................. 

Δημήτριος Σούντρης  Κιαμάλ Ζ. Πεκμεστζή  Νεκτάριος Κοζύρης 

Αναπ. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π.  Καθηγητής Ε.Μ.Π. 

 

Αθήνα, Φεβρουάριος 2017 

 



 

 

 

 

 

 

 

 

 

 

.............................. 

Σχίζας Β. Νικόλας 

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικών Υπολογιστών Ε.Μ.Π. 

 

 

 

 

 

 

 

 

 

Copyright © Σχίζας Β. Νικόλας, 2017. 

Με επιφύλαξη παντός δικαιώματος. All rights reserved. 

 

 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ 

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και 

διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση 

να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν 

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι 

απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα 

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου 

Πολυτεχνείου. 

 



 

Contents 
Σύντομη Περίληψη ....................................................................................................................................... 7 

Abstract ......................................................................................................................................................... 8 

Εκτεταμένη Περίληψη .................................................................................................................................. 9 

Acknowledgements ..................................................................................................................................... 26 

List of Figures .............................................................................................................................................. 27 

List of Tables ............................................................................................................................................... 29 

CHAPTER 1 .................................................................................................................................................. 30 

1. Introduction .................................................................................................................................... 31 

CHAPTER 2 .................................................................................................................................................. 35 

2.1 Theoretical Background .................................................................................................................... 36 

2.1.1 Computational Sprinting ............................................................................................................ 36 

2.1.2 Phase Change Materials (PCMs) ................................................................................................ 38 

2.2 Related Work .................................................................................................................................... 40 

2.2.1 Computational Sprinting on a Hardware/Software Testbed [10] .............................................. 40 

2.2.2 Safe Computational Re-Sprinting via Model Predictive Control [15] ........................................ 41 

2.2.3 Thermal Management Using PCM – Based Heatsinks [16] ........................................................ 42 

2.2.4 Modeling and Analysis of Phase Change Materials for Efficient Thermal Management [9] ..... 43 

2.3 This Work .......................................................................................................................................... 44 

2.3.1 Objective .................................................................................................................................... 44 

2.3.2 Key Differences .......................................................................................................................... 44 

2.3.3 Contribution ............................................................................................................................... 45 

CHAPTER 3 .................................................................................................................................................. 46 

3.1 Overview ........................................................................................................................................... 47 

3.2 Python Interface Detailed Analysis – Basic Scripts ........................................................................... 54 

3.2.1 Simulation_Queue.py ................................................................................................................ 54 

3.2.2 Sniper_Simulation_Init.py .......................................................................................................... 54 

3.2.3 Sniper_Simulation_Control.py ................................................................................................... 56 

3.2.4 Thermal_Simulation_Client.py ................................................................................................... 57 



3.2.5 Resource_Control.py .................................................................................................................. 58 

3.2.6 Python_Server.py ....................................................................................................................... 59 

3.2.7 Low Level Scripts ........................................................................................................................ 59 

3.3 Thermal Model .................................................................................................................................. 62 

3.3.1 3D-ICE Heat Conduction Modelling ........................................................................................... 62 

3.3.2 PCM Modelling in 3D-ICE ........................................................................................................... 64 

3.3.3 Non-Uniform PCM Modelling .................................................................................................... 70 

3.4 Independent Tools - Scripts .............................................................................................................. 71 

3.4.1 MATLAB Scripts .......................................................................................................................... 71 

3.4.2 ArchFP ........................................................................................................................................ 71 

3.4.3 Independent Python Scripts....................................................................................................... 71 

3.5 Framework Usage ............................................................................................................................. 72 

CHAPTER 4 .................................................................................................................................................. 76 

4.1 Theoretical Background .................................................................................................................... 77 

4.2 Simulation Methodology .................................................................................................................. 79 

4.3 Results and Discussion ...................................................................................................................... 83 

4.3.1 Blackscholes Simulations ........................................................................................................... 83 

4.3.2 Bodytrack Simulations ............................................................................................................... 90 

4.3.3 Streamcluster Simulations ......................................................................................................... 97 

4.3.4 Overestimation Method .......................................................................................................... 102 

4.4 Summary – Conclusion .................................................................................................................... 104 

CHAPTER 5 ................................................................................................................................................ 106 

5.1 Phase Change Material Exploration Objective................................................................................ 107 

5.2 Simulation Methodology ................................................................................................................ 107 

5.3 Results and Discussion .................................................................................................................... 109 

5.3.1 Thermal Interface Materials and Heat Distribution Impact..................................................... 109 

5.3.2 Melting Point and Placement Exploration ............................................................................... 110 

5.3.3 Thickness Exploration .............................................................................................................. 115 

5.4 Summary – Conclusion .................................................................................................................... 117 

 

 



Σύντομη Περίληψη 
Ο όρος  Dark Silicon προέρχεται από το γεγονός ότι, καθώς προχωράμε σε μικρότερες κλίμακες 

κατασκευής ημιαγωγών, όλο και μεγαλύτερο ποσοστό από την επιφάνεια των ολοκληρωμένων 

κυκλωμάτων θα παραμένει ανενεργό (dark). Το φαινόμενο αυτό προκύπτει από την αδυναμία 

προσαρμογής της ισχύος που απαιτείται για κάθε τρανζίστορ, αναλογικά με τη μείωση των 

διαστάσεων της συσκευής. Έτσι, σε τεχνολογικούς κόμβους της τάξης των micro-μέτρων, 

μπορούμε να κατασκευάσουμε περισσότερα ημιαγωγικά στοιχεία στον ίδιο χώρο χωρίς να 

υπάρχει αντίστοιχη μείωση της ισχύος που απαιτείται για τη λειτουργία καθενός από αυτά, με 

αποτέλεσμα, την αύξηση την πυκνότητας ισχύος στο κύκλωμα. Η αύξηση αυτή, μαζί με άλλους 

περιορισμούς που επιβάλλουν οι τεχνολογίες συσκευασίας και ψύξης των ολοκληρωμένων, 

εξαναγκάζει μέρος των κυκλωμάτων να μένει ανενεργό για να εξασφαλιστεί η λειτουργία εντός 

ορίων μέγιστης κατανάλωσης ισχύος (TDP).  Η στροφή προς τις πολυπύρηνες πλατφόρμες ήταν 

το πρώτο βήμα σε μια προσπάθεια αύξησης της επίδοσης υπολογιστικών συστημάτων, κάνοντας 

χρήση του μεγαλύτερου αριθμού ημιαγωγών στο ολοκληρωμένο, η οποία οδηγεί σε μικρότερη 

αύξηση ισχύος από την κατασκευή ενός πιο ισχυρού πυρήνα. Ωστόσο, συστήματα με πολλούς 

πυρήνες χρειάζονται εργασίες που μπορούν να μοιραστούν ισόποσα στις διαθέσιμες 

επεξεργαστικές μονάδες για να επιτύχουν μέγιστη απόδοση. Επίσης, η αύξηση του αριθμού των 

πυρήνων εξακολουθεί να αυξάνει την κατανάλωση ισχύος και επομένως, δεν μπορεί να συνεχιστεί 

απεριόριστα. Συνεπώς, η έρευνα προσανατολίστηκε προς την ανακάλυψη νέων τρόπων για να 

χρησιμοποιηθούν τα ανενεργά κομμάτια υλικού ( dark silicon ) με στόχο την αύξηση των 

επιδόσεων. Μία από τις πιο υποσχόμενες ιδέες σε αυτή την κατεύθυνση είναι το computational 

sprinting. Η μέθοδος αυτή ενεργοποιεί πολλούς παραπάνω πυρήνες η/και επιταχύνει σε συχνότητα 

τους ήδη ενεργούς, για να επιτελέσει έντονες υπολογιστικά εργασίες σε χρόνο της τάξης υπό του 

δευτερολέπτου. Η διαδικασία αυτή ξεπερνάει για σύντομο χρονικό διάστημα τα προβλεπόμενα 

μέγιστα επίπεδα κατανάλωσης ισχύος και τερματίζεται όταν οι θερμοκρασίες στο ολοκληρωμένο 

φτάσουν σε κρίσιμες τιμές. Για να αυξηθεί ο διαθέσιμος χρόνος της μεθόδου, χρησιμοποιούνται 

υλικά αλλαγής φάσης (PCMs), σαν παθητική μέθοδος ψύξης. Η διπλωματική αυτή στοχεύει στον 

προσδιορισμό των βέλτιστων χαρακτηριστικών και της τοποθέτησης αυτών των υλικών. Για να 

επιτευχθεί αυτό, κατασκευάστηκε ένα μοντέλο προσομοίωσης υπολογιστικού συστήματος το 

οποίο αποτελείται από γνωστά εργαλεία, τροποποιημένα έτσι ώστε να μπορούν να προσεγγίσουν 

τα φαινόμενα που περιλαμβάνονται στη διερεύνηση με ακρίβεια. Τέλος, παρουσιάζεται μία νέα 

προσέγγιση όπου χρησιμοποιείται ένα στρώμα από υλικά αλλαγής φάσης με διαφορετικές 

θερμοκρασίες τήξης, με ενδιαφέροντα αποτελέσματα. 

  

Λέξεις Κλειδιά :  Dark Silicon, Computational Sprinting, Υλικά Αλλαγής Φάσης, Προσομοίωση 

Υπολογιστικού Συστήματος, Υλικά Διεπαφής, Ετερογενή Υλικά Αλλαγής Φάσης, Θερμική 

Προσομοίωση 

 



Abstract 
The term “Dark Silicon” derives from the fact that, as we advance to smaller technology nodes in 

the semiconductor industry, more and more chip area will remain unpowered (dark).  This is a 

direct result of the failure to scale the switching power per transistor in accordance with device 

dimension shrinking. Thus, in deep, sub-micron technology nodes, we are able to pack more 

transistors at the same area without reducing the required power per transistor, resulting in growing 

power densities. This growth, coupled with the physical limits imposed by device packaging and 

cooling technologies, forces part of the chip to remain unpowered in order to operate within TDP 

limits. The shift to multicores was the first step taken towards gaining performance benefits from 

the bigger number of transistors on chip, that leads to smaller power consumption increases than 

creating a single, faster core. However, multicore scaling needs tasks that can be divided equally 

among cores to deliver maximum performance. Also, multicore scaling still results in growing 

power consumption and is therefore expected to come to an end. That being said, research is 

oriented towards discovering ways to leverage dark silicon area into performance gains. To this 

end, computational sprinting is one of the most promising ideas. Sprinting involves briefly 

powering on many extra cores and/or frequency boosting others, to facilitate sub-second bursts of 

intense computation. These bursts exceed power limits briefly and are terminated when 

temperatures on chip reach critical levels. In order to increase the available sprinting time, phase 

change materials (PCMs) are used as a passive cooling technique. This diploma thesis aims to 

determine optimal PCM characteristics and placement. To this end, a full system simulation model 

is constructed using well known simulation tools, augmented to be able to properly simulate the 

phenomena involved. Lastly, a new approach involving the use of a layer consisting of PCMs with 

different melting temperatures is presented with quite interesting results. 

 

Keywords: Dark Silicon, Computational Sprinting, Phase Change Materials, Thermal Modelling, 

Full System Simulation, Thermal Interface Materials, Heterogeneous PCMs 

 

 

 

. 

 

 

 



Εκτεταμένη Περίληψη 
Η διπλωματική αυτή εργασία έχει εμπνευστεί από ένα φαινόμενο που χαρακτηρίζει την 

τεχνολογία κατασκευής ολοκληρωμένων κυκλωμάτων το οποίο περιγράφεται με τον όρο «dark 

silicon». Το φαινόμενο αυτό προκύπτει ως αποτέλεσμα των διαδοχικών σμικρύνσεων των 

διαστάσεων των ημιαγωγικών στοιχείων (τρανζίστορ), τη στιγμή που, στις διαστάσεις πλέον των 

μικρομέτρων, δεν υπάρχει αντίστοιχη μείωση της ισχύος που καταναλώνει κάθε ένα από αυτά. Το 

φαινόμενο αυτό δεν είναι καινούριο και αποτέλεσε καθοριστικό παράγοντα στη στροφή της 

βιομηχανίας προς τις πολυπύρηνες πλατφόρμες. Οι πολυπύρηνες πλατφόρμες μας επιτρέπουν να 

συνεχίζουμε να αντλούμε κέρδη σε επιδόσεις χρησιμοποιώντας το περισσότερο υλικό που 

μπορούμε να χωρέσουμε στα νέα κυκλώματα, καταλήγοντας σε μικρότερη συνολική αύξηση 

ισχύος. Ωστόσο, οι πλατφόρμες με πολλούς πυρήνες χρειάζονται εργασίες που μπορούν να 

ισομοιράζονται μεταξύ των διαθέσιμων επεξεργαστικών μονάδων για να επιτύχουν τη μέγιστη 

απόδοση. Επιπλέον, ακόμα και η αύξηση του αριθμού των διαθέσιμων πυρήνων σε ένα σύστημα 

δε μπορεί να συνεχιστεί απεριόριστα. Έτσι,  στους νέους, ακόμα μικρότερους κόμβους 

διαστάσεων, οι πυκνότητες ισχύων θα είναι πλέον τόσο μεγάλες που, για να διασφαλιστεί η 

λειτουργία του συστήματος σε επιτρεπτά θερμικά όρια, κάποια κυκλώματα θα αναγκάζονται να 

παραμένουν ανενεργά (dark). Συνεπώς, η έρευνα πλέον στρέφεται προς την προσπάθεια εύρεσης 

τρόπων να χρησιμοποιηθεί αποδοτικά αυτό το πλεόνασμα υλικού.  

Από τις πιο διαδεδομένες τεχνικές προς αυτή την κατεύθυνση, είναι αυτή που αποκαλείται 

«computational sprinting».  Η τεχνική αυτή, βασίζεται στην ιδέα ότι μπορούμε να ξεπεράσουμε 

για σύντομο χρονικό διάστημα, τα όρια μέγιστης κατανάλωσης ισχύος ενός συστήματος, χωρίς να 

προκαλέσουμε βλάβη. Αυτό, είναι άμεση συνέπεια της ενδογενούς θερμικής χωρητικότητας των 

υλικών ενός ολοκληρωμένου, δηλαδή, της ικανότητας των υλικών να αποθηκεύουν θερμότητα 

καθώς η θερμοκρασία τους αυξάνεται. Έτσι, όταν ένα σύστημα χρησιμοποιεί αυτή τη μέθοδο, είτε 

ενεργοποιούνται ανενεργοί επεξεργαστικοί πυρήνες είτε ενισχύονται σε συχνότητα οι ήδη ενεργοί 

ή και τα δύο. Όπως είναι αναμενόμενο, κατά την ενεργοποίηση των παραπάνω πόρων, ο ρυθμός 

παραγωγής θερμότητας από την πλατφόρμα ξεπερνάει κατά πολύ των ρυθμό με τον οποίο αυτή 

απάγεται προς το περιβάλλον. Το αποτέλεσμα είναι ότι υπάρχει ταυτόχρονη αύξηση 

υπολογιστικών επιδόσεων και παραγωγής θερμότητας. Ωστόσο, η θερμότητα αυτή αποθηκεύεται 

σταδιακά στα υλικά και η θερμοκρασία δεν αυξάνεται ακαριαία. Έτσι, υπάρχει ενα χρονικό 

παράθυρο στο οποίο μπορούμε να αυξήσουμε δραματικά τις επιδόσεις του συστήματος και μετά 

να επιστρέψουμε στην κανονική λειτουργία. Προφανώς, το τέλος του χρονικού αυτού παραθύρου 

σηματοδοτείται από την αύξηση της θερμοκρασίας σε κρίσιμες τιμές. Μετά από αυτό το γεγονός, 

οι παραπάνω επεξεργαστικοί πυρήνες απενεργοποιούνται και το σύστημα αφήνεται να αποβάλλει 

σταδιακά στο περιβάλλον την πλεονάζουσα θερμική ενέργεια και να επιστρέψει σε ονομαστικές 

θερμοκρασίες λειτουργίας. 

Σε συνεργασία με το «computational sprinting», χρησιμοποιούνται και τα λεγόμενα υλικά 

αλλαγής φάσης. Στη γενική περίπτωση, τα υλικά αυτά είναι ενώσεις που έχουν την ικανότητα να 

αποθηκεύουν μεγάλες ποσότητες θερμικής ενέργειας κατά τη διαδικασία αλλαγής φάσης. Στη 



σύνηθη περίπτωση, εκμεταλλευόμαστε την αλλαγή φάσης από στερεό σε υγρό και αντίστροφα. 

Από αυτή τη σκοπιά, τα υλικά αυτά είναι ουσίες με υψηλή θερμότητα τήξης. Η θερμότητα τήξης 

ή λανθάνουσα θερμότητα τήξης, είναι η θερμική ενέργεια που απαιτείται για να μετατραπεί μια 

συγκεκριμένη μάζα ενός υλικού από στερεό σε υγρό. Ο όρος λανθάνουσα, υποδηλώνει το γεγονός 

ότι η αλλαγή φάσης πραγματώνεται σε προσεγγιστικά σταθερή θερμοκρασία, το μέτρο της 

εσωτερικής θερμικής ενέργειας μίας ουσίας, επομένως, το υλικό απορροφά ενέργεια η οποία 

λανθάνει εξωτερικής παρατήρησης. Θερμότητα η οποία απορροφάται από ένα υλικό και προκαλεί 

παρατηρήσιμη θερμοκρασιακή διαφορά, ονομάζεται αισθητή θερμότητα. 

Σε συστήματα που προορίζονται για computational sprinting, αυτά τα υλικά 

χρησιμοποιούνται λόγω της ιδιότητας τους να αποθηκεύουν θερμότητα υπό σταθερή περίπου 

θερμοκρασία. Αυτό έχει ως αποτέλεσμα, μία σταθερή και αξιόλογη ροή θερμότητας προς το υλικό 

αλλαγής φάσης, επειδή η ροή θερμότητας είναι γραμμικά εξαρτημένη από τη θερμοκρασιακή 

διαφορά μεταξύ δύο επιφανειών. Το τελικό αποτέλεσμα αυτού του γεγονότος, είναι ότι η χρήση 

τέτοιων υλικών σε ένα σύστημα, οδηγεί σε πιο αργές αυξήσεις θερμοκρασίας, δηλαδή σε 

μεγαλύτερα διαθέσιμα χρονικά παράθυρα υπολογισμού.  

Όπως είναι αναμενόμενο, η λανθάνουσα θερμότητα τήξης ενός υλικού, ή, πιο σωστά, η 

ειδική θερμότητα τήξης, είναι παράγοντας που καθορίζει αν ένα υλικό είναι κατάλληλο για 

εφαρμογές sprinting, και τι επιπτώσεις θα έχει. Η ειδική θερμότητα τήξης είναι η ενέργεια που 

απαιτείται για την αλλαγή φάσης του υλικού από στερεό σε υγρό ανά μονάδα μάζας. Φυσικά, η 

ειδική θερμότητα τήξης είναι ιδιότητα του υλικού και είναι ανεξάρτητη του μεγέθους και των 

διαστάσεων ενός δείγματος.  

 

 
Σχήμα 1: Συμπεριφορά υλικών αλλαγής φάσης και λανθάνουσα θερμότητα 

 



Ένα άλλο σημαντικό χαρακτηριστικό για τα υλικά αλλαγής φάσης, είναι η θερμική 

αγωγιμότητα. Η θερμική αγωγιμότητα εκφράζει την ικανότητα ενός υλικού να μεταφέρει (άγει) 

θερμική ενέργεια. Εκφράζει το ρυθμό μεταφοράς θερμότητας. Η μεταφορά θερμότητας 

πραγματοποιείται με μικρότερο ρυθμό σε υλικά με μικρή θερμική αγωγιμότητα από ότι σε υλικά 

με μεγάλη. Αντίστοιχα, υλικά με μεγάλη θερμική αγωγιμότητα όπως ο χαλκός, χρησιμοποιούνται 

σε ψήκτρες επεξεργαστών ενώ υλικά με μικρή θερμική αγωγιμότητα χρησιμοποιούνται για 

θερμική μόνωση. Στην περίπτωση μας, η μεγάλη θερμική αγωγιμότητα είναι πολύ σημαντική, 

πράγμα που ισχύει για όλα τα υλικά που περιλαμβάνονται στη συσκευασία ενός ολοκληρωμένου. 

Επιπλέον, η ομοιογενής κατανομή θερμότητας, η οποία είναι άμεσο αποτέλεσμα υψηλής θερμικής 

αγωγιμότητας μετά από κάποιο χρονικό διάστημα, είναι ζωτικής σημασίας για να 

εκμεταλλευτούμε το μέγιστο από τη θερμική χωρητικότητα που προσφέρει ένα υλικό αλλαγής 

φάσης. Τυπικές τιμές θερμικής αγωγιμότητας για υλικά αλλαγής φάσης υποδεικνύουν 

τουλάχιστον τάξη μεγέθους διαφορά από τις αντίστοιχες τιμές για το χαλκό. Συνεπώς,  η 

τοποθέτηση των υλικών αυτών στη στοίβα του ολοκληρωμένου και το πάχος των στρωμάτων που 

θα χρησιμοποιηθούν, χρήζουν προσεκτικής μελέτης.  

Επιπροσθέτως, προσεκτική μελέτη πρέπει να δοθεί και στο σημείο τήξης του υλικού 

αλλαγής φάσης. Η ιδανική τιμή για ένα σύστημα που σκοπεύουμε να εφαρμόσουμε sprinting δεν 

είναι προφανής. Συνήθως, χρησιμοποιείται κάποια τιμή κοντά στις κρίσιμες θερμοκρασίες για το 

ολοκληρωμένο. Για να είμαστε πιο ακριβείς, η τιμή του σημείου τήξης επιλέγεται λίγο 

χαμηλότερη από την κρίσιμη θερμοκρασία για το σύστημα, έτσι ώστε να συνυπολογιστεί ένας 

βαθμός καθυστέρησης στην θέρμανση του στρώματος του υλικού αλλαγής φάσης. Γενικά, 

αποφεύγονται πολύ υψηλές θερμοκρασίες τήξης καθώς θέλουμε το υλικό να αλλάξει φάση πριν 

τα στοιχεία του ολοκληρωμένου φτάσουν σε κρίσιμες θερμοκρασίες. Αντίστοιχα, το ίδιο γίνεται 

και με  πολύ χαμηλές θερμοκρασίες τήξης, διότι θα σπαταληθεί η ικανότητα των υλικών, να 

αποθηκεύουν μεγάλες ποσότητες ενέργειας κατά την αλλαγή φάσης, σε μη κρίσιμες 

θερμοκρασίες.  

Τέλος, η ποσότητα υλικού που θα χρησιμοποιήσουμε αποτελεί ένα συμβιβασμό. Αυτό 

συμβαίνει καθώς, αυξάνοντας την ποσότητα του υλικού δεν αυξάνεται μόνο η διαθέσιμη θερμική 

χωρητικότητα, άλλα και η θερμική αντίσταση των ενεργών στοιχείων του ολοκληρωμένου 

(παράγουν θερμότητα ) προς το περιβάλλον. Πρακτικά αυτό σημαίνει ότι το υλικό αλλαγής φάσης, 

παρόλο που αυξάνει την συνολική θερμική χωρητικότητα του συστήματος, δυσχεραίνει την 

αποβολή θερμότητας από αυτό. Με άλλα λόγια, εμποδίζει την απρόσκοπτη ψύξη του συστήματος 

με φυσικά μέσα.  

Συνολικά, παρόλο που η χρήση υλικών αλλαγής φάσης σε υπολογιστικά συστήματα, 

συνδυαστικά με computational sprinting υπάρχει ήδη στην βιβλιογραφία, σύμφωνα με την 

ανάλυση που παρουσιάσαμε, υπάρχει ακόμα χώρος για διερεύνηση. Πιο συγκεκριμένα, 

εφαρμογές είτε σε πρακτικό είτε σε θεωρητικό επίπεδο, κυρίως αποδεικνύουν την ικανότητα 

συγκεκριμένων υλικών να υποβοηθήσουν διάφορες μεθοδολογίες sprinting. Στη δικιά μας 

περίπτωση, στρεφόμαστε πιο πολύ στην αναζήτηση των επιθυμητών χαρακτηριστικών των 



υλικών αλλαγής φάσης και στην αναζήτηση τρόπων για την περαιτέρω αύξηση της 

αποδοτικότητας τους.  

Το πρώτο βήμα προς αυτή την κατεύθυνση, ήταν η κατασκευή ενός μοντέλου 

προσομοίωσης. Το μοντέλο προσομοίωσης που κατασκευάσαμε, αποτελείται από ένα  πρόγραμμα 

προσομοίωσης υλικού (Sniper Simulator), ένα πρόγραμμα προσομοίωσης κατανάλωσης ισχύος 

(McPAT), ένα πρόγραμμα θερμικής προσομοίωσης (3D-ICE) και ένα σύνολο από 

υποπρογράμματα γραμμένα σε Python τα οποία πραγματοποιούν ένα σύνολο δραστηριοτήτων 

σχετικές με τη λειτουργία του πλαισίου προσομοίωσης που κατασκευάσαμε. Τα υποπρογράμματα 

αυτά ονομάζουμε για χάρη σαφήνειας πλαίσιο διασύνδεσης. Οι δραστηριότητες που επιτελεί το 

πλαίσιο διασύνδεσης, περιλαμβάνουν την συγκέντρωση των χαρακτηριστικών της εκάστοτε 

προσομοίωσης, σαν είσοδο από τον χρήστη, και τη σωστή εισαγωγή τους στα επιμέρους 

προγράμματα, την αρχικοποίηση, την έναρξη και τον τερματισμό κάθε προσομοιωτή, τη 

διασύνδεση μεταξύ τους, την εξαγωγή στατιστικών και άλλων αρχείων και την αποθήκευση τους 

για περαιτέρω επεξεργασία.  

Το πλαίσιο που περιγράφηκε, προσομοιώνει τη λειτουργία επεξεργαστικών μονάδων από 

πλευράς επιδόσεων, κατανάλωσης ισχύος και θερμικής συμπεριφοράς. Με βάση τα προγράμματα 

που χρησιμοποιήσαμε για την κατασκευή του πλαισίου, το υλικό που μπορεί να προσομοιωθεί 

έχει μεγάλη ποικιλία και περιλαμβάνει πολυπύρηνες πλατφόρμες με εκατοντάδες πυρήνες και 

διαφοροποιήσιμα αρχιτεκτονικά χαρακτηριστικά.  

Σημαντικό χαρακτηριστικό του πλαισίου προσομοίωσης που κατασκευάσαμε, είναι το 

γεγονός ότι η λειτουργία του πραγματοποιείται σε κύκλους-βήματα, συγκεκριμένου χρονικού 

διαστήματος, το οποίο καθορίζεται από το χρήστη. Το χαρακτηριστικό αυτό μας επιτρέπει να 

παρατηρούμε τη συμπεριφορά του συστήματος στο τέλος κάθε κύκλου, να συγκεντρώνουμε 

στατιστικά στοιχεία ανά τακτά χρονικά διαστήματα και να επιτελούμε ενέργειες ελέγχου αν κριθεί 

απαραίτητο. 

Η βασική ροή που ακολουθείται κατά τη διάρκεια μιας προσομοίωσης παρουσιάζεται 

σύντομα στο Σχήμα 2. Όπως φαίνεται στο σχήμα, πριν από την κλήση καθενός από τα 

προγράμματα προσομοίωσης, προηγείται μια κλήση στο πλαίσιο διασύνδεσης ( το σύνολο 

προγραμμάτων στη γλώσσα Python). Γενικά, οι κλήσεις αυτές στο πλαίσιο διασύνδεσης αφορούν 

κυρίως την εξαγωγή στατιστικών σχετικών με την έξοδο του προηγούμενου επιπέδου 

προσομοίωσης, την συγκέντρωση των εισόδων για το επόμενο επίπεδο, την διαμόρφωση τους σε 

κατάλληλη μορφή και την κλήση του επόμενου επιπέδου.  

 



 
Σχήμα 2: Βασική ροή πλαισίου προσομοίωσης 

 

Για να μπορεί το πλαίσιο που φτιάξαμε να εξυπηρετεί μια ουρά προσομοιώσεων, και να 

μην είναι απαραίτητη η εισαγωγή καινούριων στοιχείων από το χρήστη κάθε φορά που τελειώνει 

ενα σενάριο προσομοίωσης, δημιουργήσαμε ένα μοντέλο πελάτη – εξυπηρετητή για το πλαίσιο 

διασύνδεσης. Παράλληλα, δημιουργήσαμε και μία υποενότητα του πλαισίου διασύνδεσης στο 

οποίο μπορεί ο χρήστης να προσδιορίζει τα χαρακτηριστικά των προσομοιώσεων που θέλει να 

εκτελεστούν. Τα χαρακτηριστικά αυτά, προσδιορίζονται στο αρχείο Simulation_Queue.py που 

είναι και το μόνο αρχείο το οποίο χρειάζεται να εισάγει στοιχεία ο χρήστης και να το καλέσει. 

Μετά την κλήση αυτή, το πλαίσιο διασύνδεσης αναλαμβάνει όλες τις απαραίτητες ενέργειες μέχρι 

το πέρας όλων των ζητούμενων σεναρίων προσομοίωσης. 

Ένας από τους λόγους που οδήγησαν στη διαμόρφωση του πλαισίου διασύνδεσης με αυτό 

τον τρόπο, είναι η εγγενής λειτουργία του προγράμματος θερμικής προσομοίωσης με αντίστοιχο 

μοντέλο πελάτη – εξυπηρετητή. Στην περίπτωση του 3D-ICE, η πλευρά του εξυπηρετητή περιέχει 

όλες τις δομές και επιτελεί όλες τις απαραίτητες ενέργειες για την προσομοίωση. Η πλευρά του 

πελάτη αποτελεί απλά ένα ενδιάμεσο πλαίσιο επικοινωνίας. Γενικά, μια εκτέλεση του πελάτη του 

3D-ICE αντιστοιχεί σε ενα χρονικό κύκλο προσομοίωσης, ενώ, μια εκτέλεση του εξυπηρετητή 

του 3D-ICE, αντιστοιχεί σε ένα ολόκληρο σενάριο προσομοίωσης.  

Στο πλαίσιο που δημιουργήσαμε, η πλευρά του εξυπηρετητή περιμένει να δοθεί σήμα ότι 

ζητήθηκε κάποιο σύνολο σεναρίων προσομοίωσης και εκκινεί τον εξυπηρετητή του 3D-ICE με 

τις κατάλληλες παραμέτρους. Όταν τελειώσει ένα σενάριο προσομοίωσης, τερματίζει τον 

εξυπηρετητή του 3D-ICE και περιμένει για νέες συνδέσεις. Στην περίπτωση που έχουμε ζητήσει 

πολλά σενάρια, η επόμενη σύνδεση θα γίνει αυτόματα μόλις το προηγούμενο σενάριο 



ολοκληρώσει όλες τις διαδικασίες που του αναλογούν. Ο αντίστοιχος πελάτης του πλαισίου 

διασύνδεσης, επιτρέπει στο χρήστη να προσδιορίσει μια ουρά από ζητούμενα σενάρια 

προσομοίωσης και διευκολύνει την εισαγωγή παραμέτρων για όλα τα εργαλεία προσομοίωσης σε 

ένα ενοποιημένο πλαίσιο. Το υψηλότερο επίπεδο του πλαισίου αυτού, είναι το αρχείο 

Simulation_Queue.py που αναφέραμε προηγουμένως. 

Έτσι, ο εξυπηρετητής σε Python χρειάζεται να εκκινηθεί μία και μόνο φορά, και έπειτα 

εξυπηρετεί αιτήματα προσομοίωσης επ’ αόριστο. Σε διαφορετική περίπτωση, θα χρειαζόταν αφού 

τελειώσει κάθε σενάριο προσομοίωσης, να εκκινούμε εκ νέου τον εξυπηρετητή του 3D-ICE με τις 

κατάλληλες εισόδους και μετά να εκκινούμε το Sniper Simulator με τις δικές του παραμέτρους. 

Ενα απλουστευμένο μοντέλο του πελάτη – εξυπηρετητή σε Python, φαίνεται στο Σχήμα 3.  

 

 
Σχήμα 3: Μοντέλο πελάτη-εξυπηρετητή σε Python 

 

Για να είναι πιο σαφές, το πως λειτουργεί παράλληλα, το μοντέλο σε κύκλους μίας 

προσομοίωσης, με το μοντέλο πελάτη – εξυπηρετητή του πλαισίου διασύνδεσης, διαμορφώσαμε 

το Σχήμα 4.  Στο σχήμα αυτό βλέπουμε σαν πρώτο βήμα το αρχείο Simulation_Queue.py. Το 

αρχείο αυτό, όταν κληθεί, δίνει σήμα στον εξυπηρετητή του πλαισίου διασύνδεσης 

(Python_Server.py) να εκκινήσει τον εξυπηρετητή του 3D-ICE, γεγονός που μεταφράζεται ως η 

έναρξη μιας νέας προσομοίωσης. 

 



 
Σχήμα 4: Σύνοψη του συνολικού πλαισίου προσομοιώσεων 

 

Στη συνέχεια, ξεκινάει η διαδικασία προσομοίωσης σε βήματα, όπου πρώτα ολοκληρώνει 

ενα κύκλο το Sniper Simulator παράγοντας δεδομένα σχετικά με την επίδοση και τη λειτουργία 

του υλικού που προσομοιώνουμε. Από την έξοδο του τροφοδοτείται το McPAT και παράγει 

δεδομένα κατανάλωσης ισχύος, τα οποία εισάγονται στον πελάτη του 3D-ICE. Ο πελάτης του 3D-

ICE μεταφέρει τα δεδομένα αυτά μαζί με τις απαιτούμενες ενέργειες στον εξυπηρετητή του 3D-

ICE και περιμένει το αποτέλεσμα της προσομοίωσης το οποίο καταγράφει. Στη συνέχεια ένας 

καινούριος κύκλος ξεκινάει και η διαδικασία αυτή συνεχίζεται μέχρι το τέλος του σεναρίου 

προσομοίωσης. Έπειτα, η ίδια διαδικασία ξεκινάει εκ νέου για ένα νέο σενάριο προσομοίωσης 

μέχρις ότου ολοκληρωθούν όλα τα σενάρια που έχουμε προσδιορίσει.  

Όσον αφορά τα εργαλεία που χρησιμοποιήσαμε για να δομήσουμε όλο αυτό το σύνολο 

που μόλις περιγράψαμε, στην περίπτωση του McPAT και του Sniper Simulator, χρειάστηκε να τα 

τροποποιήσουμε ελάχιστα για να επιτελούν τις λειτουργίες που θέλαμε και με τον επιθυμητό 

τρόπο. Επειδή είναι προγράμματα που επιδέχονται μεγάλη προσαρμογή μέσα από το πέρασμα 

παραμέτρων, ο βασικός όγκος εξατομίκευσης τους πραγματοποιήθηκε χρησιμοποιώντας 

κατάλληλες εισόδους μέσω του πλαισίου διασύνδεσης.  

Στην περίπτωση του 3D-ICE όμως, χρειάστηκε να τροποποιήσουμε εκτενώς τον πηγαίο 

κώδικα του προγράμματος, για να μπορέσουμε να προσομοιώσουμε τα ζητούμενα υλικά αλλαγής 

φάσης. Συγκεκριμένα, για να το επιτύχουμε αυτό, χρησιμοποιήσαμε μια τεχνική που περιγράφεται 

στο [9] και περιγράφεται με τον όρο apparent heat capacity method. Η τεχνική αυτή, αποδίδει μια 

μη-γραμμική τιμή στη θερμική χωρητικότητα του υλικού, η οποία είναι συνάρτηση της 



θερμοκρασίας και έχει τη μορφή που φαίνεται στο Σχήμα 5. Με τη μέθοδο αυτή, η μετάβαση του 

υλικού αλλαγής φάσης από στερεό σε υγρό, πραγματοποιείται σε ένα διάστημα θερμοκρασιών 

όπου η θερμική χωρητικότητα του υλικού είναι πολύ μεγάλη σε σύγκριση με αυτή της στερεάς 

και υγρής φάσης. Εξαιτίας της μεγάλης αυτής αύξησης της θερμικής χωρητικότητας, ο ρυθμός 

μεταβολής της θερμοκρασίας μειώνεται κατά πολύ κατά τη διάρκεια αλλαγής φάσης. 

 

 
Σχήμα 5: Συνάρτηση θερμικής χωρητικότητας για υλικά αλλαγής φάσης 

 

Σε πραγματικές συνθήκες, κατά την αλλαγή φάσης, το υλικό απορροφά μεγάλα ποσά 

ενέργειας σε περίπου σταθερή θερμοκρασία. Η συμπεριφορά που προκύπτει αλλάζοντας τη 

θερμική χωρητικότητα του υλικού δυναμικά κατά τη διάρκεια της προσομοίωσης, προσεγγίζει 

πραγματικές αλλαγές φάσης πάρα πολύ καλά.  

Για να εφαρμόσουμε τη μέθοδο αυτή στο 3D-ICE, εισάγαμε σαν είσοδο άλλο ένα αρχείο 

που περιγράφει τα χαρακτηριστικά του υλικού αλλαγή φάσης. Στη συνέχεια, προσθέσαμε μια 

συνάρτηση που επεξεργάζεται το περιεχόμενο αυτού του αρχείου και το αποθηκεύει σε 

κατάλληλες δομές. Τέλος, τροποποιήσαμε το πρόγραμμα, ώστε να ελέγχει  όταν κάνει ανάθεση 

θερμικών χωρητικοτήτων, αν το υλικό έχει προσδιοριστεί ως υλικό αλλαγής φάσης και αν 

βρίσκεται στο θερμοκρασιακό διάστημα που μας ενδιαφέρει. Τότε και μόνο τότε, το πρόγραμμα 

θα αναθέσει την διαφορετική θερμική χωρητικότητα και θα συνεχίσει την κανονική λειτουργία 

του.  

Είναι εμφανές, ότι η παρουσίαση των αλλαγών που χρειάστηκε να κάνουμε στο 

πρόγραμμα είναι συνοπτική και γενικά μη-αναλυτική. Ο σκοπός της προσέγγισης αυτής είναι να 

τονιστεί η λογική που ακολουθήσαμε και όχι ο συγκεκριμένος κώδικας και άλλα τεχνικά 

ζητήματα. Επιπροσθέτως, άλλες πιο μικρές αλλαγές που χρειάστηκε να γίνουν όπως π.χ. 

προσθήκη βοηθητικών μεταβλητών, συναρτήσεων και δομών δεν περιγράφονται για χάρη 

απλότητας.  

Η πρώτη εφαρμογή του πλαισίου προσομοίωσης μας, στρέφεται στο να τονίσει τη σημασία 

των υλικών διεπαφής και της κατανομής ισχύος και κατ’ επέκταση, θερμότητας, στην επιφάνεια 

ενός ολοκληρωμένου. Οι δύο παράγοντες αυτοί, εξετάστηκαν καθώς σε πολλές περιπτώσεις στη 

βιβλιογραφία, παραλείπονται, τη στιγμή που, για το είδος το συστημάτων που θέλουμε να 

εξετάσουμε, θεωρούμε ότι έχουν αυξημένη επίδραση στην ακρίβεια των αποτελεσμάτων. Για το 



λόγο αυτό, επιλέξαμε να δοκιμάσουμε αυτή τη θεωρία, να διαμορφώσουμε κατάλληλα το θερμικό 

μας μοντέλο, και έπειτα να προχωρήσουμε σε προσομοιώσεις με υλικά αλλαγής φάσης.  

Τα υλικά διεπαφής, χρησιμοποιούνται για να ενώσουμε τις επιφάνειες μεταξύ της 

συσκευασίας ενός ολοκληρωμένου και του χάλκινου καλύμματος που χρησιμοποιείται για την 

απαγωγή θερμότητας. Οι επιφάνειες μεταξύ των δύο υλικών, χαρακτηρίζονται, σε μικροσκοπικό 

επίπεδο, από ανωμαλίες οι οποίες δημιουργούν κενά αέρος. Τα υλικά διεπαφής χρησιμοποιούνται 

και για τη συγκόλληση των επιφανειών αλλά και για την εξάλειψη αυτών των κενών αέρος. Τα 

υλικά αυτά, επειδή έχουν μεγαλύτερη θερμική αγωγιμότητα από τον αέρα που αντικαθιστούν, 

έχουν ως αποτέλεσμα τη μείωση της θερμικής αντίστασης της διεπαφής. Όπως είναι αναμενόμενο, 

μείωση της θερμικής αντίστασης είναι επιθυμητή για την καλύτερη απαγωγή θερμότητας. 

Διαφορετικά υλικά διεπαφής χρησιμοποιούνται με ανάλογο τρόπο και για την τοποθέτηση της 

ψήκτρας, αν υπάρχει, στο χάλκινο κάλυμμα. Η εφαρμογή υλικών διεπαφής καθώς και ένα από τα 

πιο διαδεδομένα μοντέλα συσκευασίας ενός ολοκληρωμένου παρουσιάζονται στο Σχήμα 6. 

 

 
Σχήμα 6 : (α) Δομικά στοιχεία ενός ολοκληρωμένου 

(β) Γραφική αναπαράσταση εφαρμογής υλικού διεπαφής 

 

Σχετικά με τις κατανομές θερμότητας και ισχύος κατά μήκος των ενεργών στοιχείων ενός 

ολοκληρωμένου, έχει αποδειχθεί στη βιβλιογραφία ότι η κατανομή αυτή εξαρτάται από την 

αρχιτεκτονική ή/και το είδος των εργασιών που επιτελούνται.  Αυτό το γεγονός τονίζεται διότι η 

θερμική συμπεριφορά των ολοκληρωμένων είναι αρκετά διαφορετική όταν έχουμε ομοιόμορφη 

κατανομή θερμότητας και όταν έχουμε συγκεντρώσεις θερμών σημείων. Παράλληλα, για χάρη 

απλότητας, σε αρκετές έρευνες χρησιμοποιείται ομοιόμορφη κατανομή παρά το γεγονός ότι μια 

τέτοια κατανομή απέχει από πραγματικά δεδομένα. 

Σε συστήματα που εφαρμόζουν sprinting, πιστεύουμε ότι η ανισοκατανομή αυτή θα είναι 

ακόμα πιο έντονη, ως αποτέλεσμα, όχι μόνο υψηλότερων συχνοτήτων στις επεξεργαστικές 

μονάδες, αλλά και διαφορετικής χρησιμοποίησης των διαθέσιμων πυρήνων. Επιπροσθέτως, η 

παρουσία υλικών αλλαγής φάσης στο σύστημα προσθέτει άλλο ένα παράγοντα ανακρίβειας, 

καθώς, με ομοιόμορφες κατανομές θερμότητας, αδυνατούμε να προσομοιώσουμε το τοπικό 

λιώσιμο του υλικού στις πιο θερμές περιοχές που δημιουργούνται σε πραγματικές συνθήκες.  

Τα υλικά διεπαφής που αναφέραμε προηγουμένως, στη γενική περίπτωση παραλείπονται 

και αυτά από τα θερμικά μοντέλα, γεγονός που παραμορφώνει ακόμα περισσότερο το θερμικό 



προφίλ της επεξεργαστικής μονάδας μας. Η παραμόρφωση αυτή επηρεάζεται και λειτουργεί 

αθροιστικά με τους παράγοντες που αναφέραμε προηγουμένως.  

Για να αξιολογήσουμε την επίδραση των υλικών διεπαφής και της κατανομής θερμότητας 

σε συστήματα που χρησιμοποιούν συχνότητες λειτουργίας μεγαλύτερες από τις προδιαγραφές 

ασφαλούς λειτουργίας του ολοκληρωμένου, διαμορφώσαμε ένα σύνολο προσομοιώσεων. Στις 

προσομοιώσεις αυτές, συγκρίναμε για τρία διαφορετικά προγράμματα, την συμπεριφορά της 

επεξεργαστικής μονάδας, σε τέσσερις διαφορετικές περιπτώσεις. Όταν συμπεριλαμβάνουμε τα 

υλικά διεπαφής και την άνιση κατανομή θερμότητας, όταν παραλείπουμε τα υλικά διεπαφής μόνο, 

όταν υποθέτουμε ομοιόμορφη κατανομή θερμότητας μόνο, και όταν συνδυάζουμε και τους δύο 

παράγοντες ανακρίβειας ταυτόχρονα. 

Η επεξεργαστική μονάδα που επιλέξαμε να προσομοιώσουμε, ήταν ένας τετραπύρηνος 

επεξεργαστής βασισμένος στο μοντέλο Nehalem Gainestown. Για να προσομοιώσουμε καλύτερα 

μεγάλες πυκνότητες ισχύος, συμβατές με τις σύγχρονες επεξεργαστικές μονάδες, επιλέξαμε να 

προσαρμόσουμε το μοντέλο μας στην κλίμακα των 22nm, βρίσκοντας τα μεγέθη και το εμβαδό 

των στοιχείων από το McPAT. Η τιμή που λάβαμε για το εμβαδό του ολοκληρωμένου ήταν 48,36 

mm^2 το οποίο προσομοιώσαμε ως ένα 8 mm x 8 mm τετραγωνικό τσιπ, υποθέτοντας 20% 

σφάλμα που ήταν η μέση υποεκτίμηση που παρουσιάστηκε στο [18] για το McPAT.  

Για την προσομοίωση αυτή, χρησιμοποιήθηκαν χρονικά βήματα των 1ms. Οι σουίτες 

προγραμμάτων που χρησιμοποιήθηκαν ήταν Blackscholes, Bodytrack και Streamcluster, όλες για 

συνολικά 4 νήματα και για 1000ms συνολική διάρκεια προσομοίωσης. Επειδή στην περίπτωση 

που εξετάζουμε, δεν σκοπεύουμε να εφαρμόσουμε δυναμικό έλεγχο πάνω σε χαρακτηριστικά του 

Sniper Simulator, για να επιταχύνουμε το χρόνο εκτέλεσης κάθε προσομοίωσης, καταγράψαμε τις 

τιμές ισχύων των ενεργών στοιχείων χρησιμοποιώντας το πλαίσιο που κατασκευάσαμε και τις 

τροφοδοτήσαμε κατευθείαν στο 3D-ICE παρακάμπτοντας τα άλλα δύο εργαλεία. Η λογική πίσω 

από αυτή την ενέργεια, έχει να κάνει με το γεγονός ότι χρησιμοποιούσαμε τα ίδια σενάρια με 

αλλαγές μόνο στο θερμικό μοντέλο. Κάθε πρόγραμμα, προσομοιώθηκε με όλους τους πυρήνες να 

λειτουργούν στα 2190, 2390, 2660 και 2926MHz. 

Όσον αφορά το θερμικό μοντέλο, επιλέξαμε να χρησιμοποιήσουμε τη διάταξη που είδαμε 

στο Σχήμα 6 χωρίς όμως την ψήκτρα. Αυτή η απόφαση επηρεάστηκε από το [10] που 

χρησιμοποιείται ένα αντίστοιχο μοντέλο. Μια συνοπτική παρουσίαση της στοίβας που αποτελεί 

το ολοκληρωμένο που χρησιμοποιήσαμε, φαίνεται στο Σχήμα 7 μαζί με τα υλικό και το πάχος 

κάθε στρώματος.  

Στο 3D-ICE, χρησιμοποιήσαμε δομικές μονάδες μήκους και πλάτους 100μm. Το ύψος 

κάθε στρώματος ήταν κατά μέγιστο 250μm. Στα σενάρια προσομοιώσεων που διεξάγαμε όλα τα 

υλικά αρχικοποιούνται σε θερμοκρασία λίγο μεγαλύτερη από θερμοκρασία δωματίου, δηλαδή 

300Κ. Η τιμή αυτή είναι συνεπής για επεξεργαστικές μονάδες που βρίσκονται σε λειτουργία αλλά 

δεν επιτελούν κάποια εργασία. 



 
Σχήμα 7 : Διατάξεις που χρησιμοποιήθηκαν στις προσομοιώσεις 

 

Για να δοκιμάσουμε τη θεωρία που αναφέραμε προηγουμένως, δημιουργήσαμε τέσσερις 

διατάξεις όπως φαίνεται στο Σχήμα 7. Η πρώτη παρουσιάζει το μοντέλο που θεωρούμε ότι είναι 

το πλέον ακριβές. Η δεύτερη παραλείπει τα υλικά διεπαφής. Η τρίτη διάταξη περιέχει τα υλικά 

διεπαφής αλλά υποθέτει ομοιογενή κατανομή θερμότητας, και η τελευταία παραλείπει τα υλικά 

διεπαφής θεωρώντας παράλληλα ομοιογενή κατανομή θερμότητας. Οι διατάξεις αυτές 

προσομοιώθηκαν για όλα τα επίπεδα συχνότητας λειτουργίας που αναφέρθηκαν προηγουμένως. 

Αξίζει να σημειωθεί ότι για τα προγράμματα που χρησιμοποιήσαμε, το γεγονός ότι αναθέσαμε 4 

νήματα σε κάθε ένα, δεν σημαίνει ότι 4 νήματα είναι ενεργά καθόλη τη διάρκεια της 

προσομοίωσης. Αντιθέτως, σπάνια θα λειτουργούν και τα 4 νήματα στον ίδιο βαθμό. Αυτό είναι 

ιδανικό στην περίπτωση μας γιατί δημιουργεί ποικιλομορφία όχι μόνο στο βαθμό χρησιμοποίησης 

των στοιχείων ενός πυρήνα, άλλα και στο βαθμό χρησιμοποίησης των πυρήνων μεταξύ τους.   

Όπως φαίνεται στο Σχήμα 7, κάθε μία από τις διατάξεις που χρησιμοποιήσαμε έχει 

ονομαστεί Α1-Α4. Η διάταξη Α1 είναι αυτή που θεωρούμε ως την πιο ολοκληρωμένη. Οι άλλες 

διατάξεις, θεωρούμε ότι περιέχουν ανακρίβειες οι οποίες εντείνονται με την αύξηση της 

συχνότητας λειτουργίας των πυρήνων. Στο πλαίσιο αυτό, συγκρίναμε κάθε μία από τις διατάξεις 

Α2-Α4 με τη δικιά μας (Α1), και συνοψίσαμε τα αποτελέσματα στον Πίνακα 1. Σημειώνεται, ότι 

οι τιμές μέγιστου σφάλματος και μέσου όρου σφάλματος που παρουσιάζονται στον Πίνακα 1, 

αφορούν τη μέγιστη παρατηρούμενη θερμοκρασία στο ολοκληρωμένο. 

Τα στοιχεία του Πίνακα 1 επιβεβαιώνουν την σχέση μεταξύ συχνότητας λειτουργίας και 

θερμοκρασιακής διαφοράς μεταξύ των προσομοιώσεων. Η σχέση αυτή, είναι εμφανής τόσο για 

τη μέγιστη τιμή του θερμοκρασιακού σφάλματος όσο και για το μέσο όρο. Επίσης, το συμπέρασμα 

αυτό είναι εμφανές για όλα τα διαφορετικά προγράμματα που δοκιμάσαμε. Αξιοσημείωτο είναι 

το γεγονός ότι για το Bodytrack, όλες οι μετρικές σφάλματος ήταν αισθητά μεγαλύτερες, γεγονός 

που αναμέναμε λόγω της μεγαλύτερης ανομοιογένειας στη χρησιμοποίηση των διαθέσιμων 

πυρήνων.  

Επιπροσθέτως, από την παρατήρηση των δεδομένων του πίνακα, φαίνεται ότι η 

ανομοιογένεια στην κατανομή θερμότητας, οδηγεί σε μεγαλύτερα σφάλματα σε σχέση με τα υλικά 



διεπαφής. Ακόμη, επιβεβαιώνεται και άλλη μια προσδοκία μας, πως οι δύο ανακρίβειες 

λειτουργούν αθροιστικά (A1 – A4) και οδηγούν σε ακόμα μεγαλύτερα σφάλματα.  

 

 
Πίνακας 1: Μέσος όρος και μέγιστη τιμή θερμοκρασιακού σφάλματος μεταξύ των 

διαφορετικών διατάξεων  

 

Τα σφάλματα αυτά, όπως προαναφέρθηκε, αφορούν τη μέγιστη θερμοκρασία στο 

ολοκληρωμένο και όπως είδαμε μπορούν να πάρουν μεγάλες τιμές. Το γεγονός αυτό χρήζει 

ιδιαίτερης σημασίας καθώς η μέγιστη θερμοκρασία του ολοκληρωμένου αποτελεί μεταβλητή 

ελέγχου για συστήματα που εφαρμόζουν sprinting και επηρεάζει άμεσα την επίδραση των υλικών 

αλλαγής φάσης. 

Για να δείξουμε πιο παραστατικά ένα παράδειγμα της επίδρασης των παραπάνω 

παραγόντων, πραγματοποιήσαμε άλλη μία ομάδα προσομοιώσεων όπου προσθέσαμε επιπλέον και 

ένα λεπτό στρώμα υλικού αλλαγής φάσης πάνω από το χάλκινο κάλυμμα του ολοκληρωμένου. Το 

σημείο τήξης του υλικού τέθηκε στους 60 βαθμούς Κελσίου και οι προσομοιώσεις έγιναν για το 

πρόγραμμα Blackscholes σε συχνότητα λειτουργίας 2920 MHz.  

Στις προσομοιώσεις αυτές, χρησιμοποιήθηκαν οι διατάξεις που περιγράφηκαν 

προηγουμένως, δηλαδή, με και χωρίς υλικά διεπαφής, με ομοιογενή και ανομοιογενή κατανομή 

θερμότητας.     

Τα αποτελέσματα των προσομοιώσεων, έδειξαν για το θερμικό μοντέλο που θεωρούμε πιο 

ακριβές, δηλαδή με υλικά διεπαφής και ανομοιογενή κατανομή θερμότητας, 718 ms μέχρι την 

πρώτη παραβίαση των θερμικών ορίων. Για την περίπτωση που αγνοούνται μόνο τα υλικά 

διεπαφής, ο αντίστοιχος χρόνος ήταν 781 ms. Θεωρώντας μόνο ομοιογενή κατανομή θερμότητας 

αλλά χρησιμοποιώντας υλικά διεπαφής, λάβαμε χρόνο προσομοίωσης 908  ms, ενώ, θεωρώντας 

ομοιόμορφη κατανομή θερμότητας και αγνοώντας τα υλικά διεπαφής, ο αντίστοιχος χρόνος ήταν 

847 ms.  



Παρόλο που οι αποκλίσεις που αναφέραμε είναι σημαντικές, για να γίνει περισσότερο 

κατανοητό το πόσο διαφορετικά συμπεριφέρεται το σύστημα σε κάθε περίπτωση, δημιουργήσαμε 

το Σχήμα 8. Στο σχήμα φαίνονται στην πρώτη γραμμή οι θερμικές εικόνες για το στρώμα του 

υλικού αλλαγής φάσης και στη δεύτερη για το στρώμα του πυρήνα. Αρκεί να συγκρίνει κανείς 

την τελευταία εικόνα κάθε γραμμής, σε σχέση με τις προηγούμενες για να καταλάβει πόσο 

διαφέρουν τα θερμικά μοντέλα μεταξύ τους. 

 

 
Σχήμα 8: Θερμικές εικόνες για κάθε διάταξη τη στιγμή της πρώτης  

παραβίασης των θερμοκρασιακών ορίων 

 

Έτσι, βλέπουμε ότι οι δύο παράγοντες που εξετάσαμε, είναι ιδιαίτερα σημαντικοί στη 

διερεύνηση της χρήσης των υλικών αλλαγής φάσης, ειδικά σε μεγάλες συχνότητες λειτουργίας 

και παρά το γεγονός ότι έχουν αρνητική επίδραση στους χρόνους προσομοίωσης (χρειάζεται να 

προσομοιώσουμε περισσότερα δεδομένα).  

Στη συνέχεια, αφού διαμορφώσαμε πλέον πλήρως το θερμικό μοντέλο που σκοπεύουμε 

να χρησιμοποιήσουμε, με γνώμονα την ακρίβεια αλλά και ανεκτούς χρόνους προσομοίωσης, 

διεξάγαμε μία σειρά από προσομοιώσεις, με σκοπό τη διερεύνηση διαφορετικών διατάξεων 

επεξεργαστικών μονάδων που κάνουν χρήση υλικών αλλαγής φάσης.  

Οι διατάξεις αυτές, διαφέρουν ως προς τη θέση του στρώματος του υλικού αλλαγής φάσης, 

και το σημείο τήξης του. Κάθε ξεχωριστή διάταξη, προσομοιώθηκε για κάθε ένα από τα 

προηγούμενα προγράμματα και για στρώματα πάχους 100 και 200μm. Ο σκοπός αυτών των 

προσομοιώσεων είναι μια προσπάθεια να καθορίσουμε ποιες διατάξεις έχουν καλύτερη απόδοση 

και για ποιο σημείο τήξης.  

Κάθε πρόγραμμα έτρεξε όπως προηγουμένως με 4 νήματα και στη συχνότητα των 2926 

MHz. Αξίζει να σημειώσουμε ότι η αυτή η συχνότητα λειτουργίας καταλήγει σε αρκετά 

μεγαλύτερες καταναλώσεις ισχύος από αυτές που μπορεί να συντηρήσει το ολοκληρωμένο 



απεριόριστα. Το αποτέλεσμα είναι ότι ο ρυθμός παραγωγής θερμότητας είναι ιδιαίτερα 

αυξημένος.  

Υπό αυτές τις συνθήκες λοιπόν, προσομοιώσαμε κάθε διάταξη μέχρι να σημειωθεί η 

πρώτη παραβίαση των θερμικών ορίων λειτουργίας του ολοκληρωμένου. Το όριο αυτό τέθηκε 

στους 370 K, δηλαδή, περίπου 97 βαθμούς Κελσίου. Το ίδιο κάναμε και για μία διάταξη που δεν 

έχει καθόλου υλικό αλλαγής φάσης, την οποία χρησιμοποιήσαμε ως αναφορά. Ως απόδοση κάθε 

διάταξης, θεωρούμε τον χρόνο υπολογισμού που κερδίζουμε ως αποτέλεσμα του υλικού αλλαγής 

φάση, σε σύγκριση με την διάταξη αναφοράς.  

Οι διατάξεις που διερευνήσαμε χρησιμοποίησαν υλικά αλλαγής φάσης με σημεία τήξης 

από 40 μέχρι 90 βαθμούς Κελσίου και βήμα 5 βαθμούς μεταξύ κάθε περίπτωσης. Όσον αφορά το 

σημείο τοποθέτησης του στρώματος του υλικού, δημιουργήσαμε 4 διαφορετικούς συνδυασμούς 

που ονομάσαμε P1-P4 οι οποίοι φαίνονται στο Σχήμα 8. 

 

 
Σχήμα 8: Διατάξεις που χρησιμοποιήθηκαν για να προσδιοριστεί η βέλτιστη τοποθέτηση 

του υλικού αλλαγής φάσης 

 

Τα στοιχεία που συγκεντρώσαμε από τις προσομοιώσεις που περιγράψαμε, φαίνονται στον 

Πίνακα 2. Οι χρόνοι που αναφέρονται είναι σε ms και αποτελούν το παραπάνω χρονικό διάστημα 

υπολογισμού που κερδίζουμε λόγω του υλικού αλλαγής φάσης. Αρνητικές τιμές σε αυτόν τον 

πίνακα δηλώνουν ότι η διάταξη έχει χειρότερη θερμική συμπεριφορά από τη διάταξη αναφοράς. 

Για λόγους σαφήνειας, το σημείο τήξης που παρουσίασε το μεγαλύτερο όφελος τονίζεται με 

πράσινο χρώμα, ενώ, η διάταξη που παρουσίασε το μεγαλύτερο όφελος σε σχέση με την 

τοποθέτηση του υλικού, τονίζεται με κόκκινο χρώμα. 

 



 
Πίνακας 2: Χρόνος (ms) που κερδίζεται μέχρι την πρώτη παραβίαση  

θερμοκρασιακών ορίων 

 

Σύμφωνα με τα στοιχεία του Πίνακα 2, η διάταξη P1 έχει τις καλύτερες επιδόσεις σε όλες 

τις περιπτώσεις. Επιπροσθέτως, τα σημεία τήξης που βρίσκονται στο εύρος 50 με 60 βαθμούς 

Κελσίου, παρουσιάζουν τα μεγαλύτερα οφέλη ανεξάρτητα από την τοποθέτηση και το 

πρόγραμμα. Ωστόσο, θεωρούμε ότι το σημείο τήξης των 60 βαθμών είναι το επικρατέστερο, 

αφενός διότι παρουσιάζει τις καλύτερες τιμές στην πλειονότητα των περιπτώσεων, και αφετέρου 

διότι στις περιπτώσεις που κάποιο σημείο τήξης έχει μεγαλύτερη απόδοση, η διαφορά είναι πολύ 

μικρή. Παράλληλα, στη γενική περίπτωση θέλουμε να χρησιμοποιούμε όσο δυνατόν μεγαλύτερο 

σημείο τήξης για να αποφύγουμε το λιώσιμο του υλικού σε άλλες εργασίες που δεν έχουν σχέση 

με sprinting, και να σπαταλήσουμε έτσι την ικανότητα του. 

Επιπροσθέτως, σχετικά με την τοποθέτηση του υλικού, το γεγονός ότι η διάταξη P1 

παρουσίασε τις καλύτερες αποδόσεις είναι ενθαρρυντικό για δύο λόγους. Ο πρώτος, είναι το 

γεγονός ότι από όλες τις διατάξεις που χρησιμοποιήσαμε, η συγκεκριμένη είναι η πιο εύκολα 

υλοποιήσιμη και έχει ήδη δοκιμαστεί σε έρευνες. Ο δεύτερος, είναι το γεγονός ότι η διάταξη αυτή 

τοποθετεί το υλικό αλλαγής φάσης όσο πιο μακριά είναι δυνατό από τα ενεργά στοιχεία του 



ολοκληρωμένου. Αυτό έχει σαν αποτέλεσμα χαμηλότερες θερμοκρασίες και μεγαλύτερη 

θερμοκρασιακή απόσταση μέχρι το σημείο τήξης. Η απόσταση αυτή, παρέχει ένα βαθμό 

ασφάλειας ότι δεν θα σπαταληθεί η αλλαγή φάσης σε μη κρίσιμες εργασίες.  

Συνδυάζοντας όλα τα προηγούμενα, συμπεραίνουμε από τα πειραματικά δεδομένα και 

μερικούς ακόμα παράγοντες που χαρακτηρίζουν τα συστήματα που μελετάμε, ότι η διάταξη P1, 

με το υλικό αλλαγής φάσης να τοποθετείται πάνω από το χάλκινο κάλυμμα του ολοκληρωμένου 

και σε άμεση επαφή με το περιβάλλον, σε συνδυασμό με σημείο τήξης 60 βαθμών κελσίου 

αποτελεί τη βέλτιστη επιλογή.  

Στη συνέχεια, θέλοντας να δούμε την επίδραση της αύξησης της ποσότητας του υλικού 

στη διάταξη μας, πραγματοποιήσαμε μια νέα σειρά προσομοιώσεων, χρησιμοποιώντας τη 

βέλτιστη επιλογή που αναφέραμε προηγουμένως και μεταβάλλοντας το πάχος του στρώματος του 

υλικού από 100μm μέχρι 700μm, αυξάνοντας κάθε φορά κατά 100μm. Οι προσομοιώσεις αυτές 

διεξήχθησαν πάλι μέχρι να σημειωθεί η πρώτη παραβίαση των επιτρεπτών θερμικών ορίων και 

για κάθε ένα από τα τρία προγράμματα που έχουμε χρησιμοποιήσει μέχρι τώρα.  

Τα αποτελέσματα φαίνονται στον Πίνακα 3. Πιο συγκεκριμένα, αναγράφεται ο συνολικός 

χρόνος προσομοίωσης για κάθε περίπτωση σε ms. Επιπροσθέτως, στον πίνακα παρουσιάζονται 

άλλα δύο μεγέθη. Το ένα είναι η ποσοστιαία αύξηση της θερμικής αντίστασης από τα ενεργά 

στοιχεία του ολοκληρωμένου προς το περιβάλλον, ως αποτέλεσμα της προσθήκης περαιτέρω 

υλικού αλλαγής φάσης. Το δεύτερο είναι η ποσοστιαία αύξηση του χρόνου προσομοίωσης σε 

σχέση με την περίπτωση που δεν έχουμε καθόλου υλικό. Εμφανώς, το δεύτερο μέγεθος δεν 

προσφέρει κάποια περαιτέρω πληροφορία από τους συνολικούς χρόνους προσομοίωσης. Ωστόσο, 

το συμπεριλάβαμε σαν αναφορά για σύγκριση με την ποσοστιαία αύξηση της θερμικής 

αντίστασης.  

Αξίζει να τονιστεί σε αυτό το σημείο, ότι οι χρόνοι προσομοίωσης, σχετίζονται άμεσα με 

το είδος της εργασίας που εκτελείται, τον αριθμό νημάτων που είναι ενεργά και τη συχνότητα 

λειτουργίας των πυρήνων, ενώ, η μεταβολή της θερμικής αντίστασης είναι καθορισμένη για 

συγκεκριμένο υλικό αλλαγής φάσης.   

 

 
Πίνακας 3 : Συνολικός χρόνος προσομοίωσης μέχρι την πρώτη  

παραβίαση επιτρεπτών θερμικών ορίων 

 



Με αυτό σαν δεδομένο, παρόλο που για όλα τα προγράμματα που χρησιμοποιήσαμε, τα 

οποία διαφέρουν σημαντικά στη λειτουργία τους, ο χρόνος που κερδίσαμε είναι μεγαλύτερος 

ποσοστιαία από την αύξηση της θερμικής αντίστασης, πρέπει να λάβουμε υπόψη μας και άλλους 

παράγοντες. 

Ο πιο σημαντικός από αυτούς, είναι η επίδραση της πρόσθετης θερμικής αντίστασης στο 

σύστημα μας. Στην περίπτωση μας, υποθέσαμε ότι το σύστημα βρισκόταν σε αδράνεια πριν 

ξεκινήσει την εργασία που του αναθέσαμε. Για το λόγο αυτό η αρχική θερμοκρασία των στοιχείων 

του ολοκληρωμένου τέθηκε στους 300Κ. Όταν αυξάνεται όμως η θερμική αντίσταση του 

συστήματος, αυξάνεται πρώτιστα και η διαφορά θερμοκρασίας μεταξύ πυρήνα και 

περιβάλλοντος. Η αύξηση αυτή, επειδή υπάρχει γραμμική σχέση μεταξύ της κατανάλωσης ισχύος, 

της θερμικής αντίστασης και της διαφοράς θερμοκρασίας, γίνεται ακόμα πιο έντονη σε έντονες, 

υπολογιστικά, συνθήκες. 

Για παράδειγμα, ας υποθέσουμε μια αυθαίρετη, σταθερή κατανάλωση ισχύος που ανεβάζει 

τη θερμοκρασία του πυρήνα στους 40 °C. Αυτό σημαίνει ότι έχουμε διαφορά 15 βαθμών μεταξύ 

περιβάλλοντος και πυρήνα. Χρησιμοποιώντας υλικό αλλαγής φάσης πάχους 700μm, η θερμική 

αντίσταση του συστήματος περίπου διπλασιάζεται. Αυτό σημαίνει ότι η νέα διαφορά 

θερμοκρασίας θα είναι 30 βαθμούς και η νέα θερμοκρασία του πυρήνα, 55 °C. Λαμβάνοντας 

υπόψη ότι το υλικό μας λιώνει στους 60 °C, και παρά το γεγονός ότι βρίσκεται μακριά από τον 

πυρήνα, όπου οι θερμοκρασίες είναι χαμηλότερες, βλέπουμε ότι ανάλογα με την προηγούμενη 

κατάσταση του συστήματος, τα οφέλη σε απόδοση μπορεί να είναι πολύ μικρότερα και να μην 

δικαιολογούν το παραπανίσιο υλικό 

Σε αντιδιαστολή, σε συνθήκες ηρεμίας, ο πυρήνας είναι μόνο 2 -3 βαθμούς πιο θερμός από 

το περιβάλλον. Διπλασιάζοντας τη θερμική αντίσταση του συστήματος θα έχει ως αποτέλεσμα ο 

πυρήνας να είναι 4 – 6 βαθμούς θερμότερος. Η διαφορά σε αυτή την περίπτωση είναι πολύ πιο 

ανεπαίσθητη.  

Από μια διαφορετική οπτική γωνία, η αύξηση της θερμικής αντίστασης αυξάνει κατά πολύ 

τη σταθερά χρόνου του συστήματος. Αυτό συμβαίνει διότι η σταθερά χρόνου είναι συνάρτηση της 

θερμικής αντίστασης αλλά και της θερμικής χωρητικότητας που επίσης αυξάνεται προσθέτοντας 

υλικό. Η αύξηση της σταθεράς χρόνου, συνεπάγεται ότι το σύστημα κάνει περισσότερο χρόνο να 

ανεβάσει θερμοκρασία αλλά ταυτόχρονα χρειάζεται και περισσότερο χρόνο για να την αποβάλλει.  

Σύμφωνα με τα προηγούμενα,  γίνεται φανερό ότι προσθέτοντας υλικό αλλαγής φάσης, 

μεταβάλλεται το θερμικό προφίλ του ολοκληρωμένου. Παρόλο που η δήλωση αυτή είναι 

προφανής, αυτό που θέλουμε να τονίσουμε είναι ότι η επιλογή του πάχους του υλικού αλλαγής 

φάσης, πρέπει να γίνει σε συνάρτηση με το είδος των εργασιών που θέλουμε να εκτελεί συνήθως 

το σύστημα. Για παράδειγμα, συστήματα που συνήθως εκτελούν σύντομες εργασίες οι οποίες 

εμφανίζονται συχνά, θα ήταν βέλτιστο να χρησιμοποιούν λίγο υλικό. Αντίθετα, συστήματα τα 

οποία εκτελούν πιο μεγάλες εργασίες οι οποίες εμφανίζονται πιο αραιά, θα είχαν μεγαλύτερο 

όφελος από μεγάλες ποσότητες υλικού παρά την αύξηση στη θερμική αντίσταση.  

 



Acknowledgements 
 

The current thesis is the result of my work in collaboration with the Microprocessors and Digital 

Systems Laboratory (MicroLab) of NTUA. I would like to thank my supervisor, Prof. Dimitrios 

Soudris for the trust he showed in me in conducting this thesis. His direct and thorough 

explanations, early on, of the challenges involved, gave me a unique perspective and were most 

appreciated. In addition, his constant presence and overall conduct was both encouraging and 

helpful at all times. I would also like to thank Postdoctoral Researcher Sotiris Xydis for his support 

and patience. This work would not have been completed without his contribution and guidance. In 

addition, throughout all the obstacles that occurred, his suggestions were always most insightful 

and thorough. Lastly, I would like to thank all the members of the laboratory with whom I have 

interacted during the course of this thesis. Their professionalism coupled with their friendly 

manner, enabled me to study in an environment both inspiring and pleasant.  

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 
Figure 2.1: Basic characterizing factors of sprinting methodologies .......................................................... 38 

Figure 2.2: PCM behavior and latent heat storage ..................................................................................... 39 

Figure 3.1: Basic framework flow ............................................................................................................... 47 

Figure 3.2: More detailed framework flow ................................................................................................ 48 

Figure 3.3: Python client-server model ...................................................................................................... 51 

Figure 3.4: Framework Summary ............................................................................................................... 52 

Figure 3.5: Example of a basic and utility script ......................................................................................... 55 

Figure 3.6: Simulation_Flow Summary ....................................................................................................... 57 

Figure 3.7: Python Interface summary ....................................................................................................... 61 

Figure 3.8: A typical solid thermal cell ........................................................................................................ 62 

Figure 3.9: Piecewise linear function for PCM specific heat capacity. ....................................................... 65 

Figure 3.10: Ramp-function used to assign capacity values to PCM cells .................................................. 67 

Figure 3.11: Execution flow for PCM-Enabled Thermal Simulation ........................................................... 69 

Figure 3.12: Core Discretization used in floorplan creation and power simulation ................................... 73 

Figure 3.13: Input-wise overview of Simulation Framework ..................................................................... 75 

Figure 4.1: (a) Chip components arrangement in a Flip Chip LGA Package................................................ 77 

(b) Graphical illustration of TIM usage between die and IHS ..................................................................... 77 

Figure 4.2: Single core floorplan ................................................................................................................. 80 

Figure 4.3: Four core chip floorplan with L3 ............................................................................................... 81 

Figure 4.4: Thermal configurations used in the simulations ...................................................................... 82 

Figure 4.5: Thermal traces for Blackscholes at increasing frequency, for each configuration ................... 83 

Figure 4.6: Per-core and total power traces for Blackscholes at 2926 MHz .............................................. 84 

Figure 4.7: Thermal profiles for each configuration at t=100ms ................................................................ 85 

Figure 4.8: Temperature trace for Blackscholes iterated over the parallel region at 2660 MHz ............... 86 

Figure 4.9: Thermal profiles for each configuration A1 through A4 at t=700ms ....................................... 88 

Figure 4.10: Maximum and average error values for Blackscholes temperature traces ........................... 88 

Figure 4.11: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz ................................. 90 

Figure 4.12: Thermal traces for Bodytrack at increasing frequency, for each configuration ..................... 91 

Figure 4.13: Per-core and total Power traces for Bodytrack 2926 MHz ..................................................... 92 

Figure 4.14: Example RC responses ............................................................................................................ 92 

Figure 4.15: Temperature trace for Bodytrack iterated over the parallel region at 2660 MHz ................. 93 

Figure 4.16: Thermal snapshots every 100ms for Bodytrack at 2926 MHz ................................................ 94 

Figure 4.17: Maximum and average error values for Bodytrack temperature traces ................................ 95 

Figure 4.16: Thermal trace for Tjunction and Tcase for each configuration ta 2926 MHz ................................. 96 

Figure 4.17: Per-core and total power traces for Streamcluster at 2926 MHz .......................................... 97 

Figure 4.18: Thermal traces for Streamcluster at increasing frequency, for each configuration .............. 98 

Figure 4.19: Temperature trace for Streamcluster iterated over the parallel region at 2660 MHz .......... 99 

Figure 4.20: Thermal snapshots every 100ms for Streamcluster at 2926 MHz ....................................... 100 

Figure 4.21: Maximum and average error values for Streamcluster temperature traces ....................... 101 

Figure 4.22: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz ............................... 102 



Figure 4.23: Temperature traces between A1 and calibrated A4 configurations for all benchmarks ..... 104 

Figure 5.1: Configurations used to determine optimal placement of the PCM layer .............................. 108 

Figure 5.2: Thermal Snapshots for each configuration at the time of first temperature violation .......... 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables 
Table 4.1: Material properties used in thermal simulations ...................................................................... 82 

Table 4.2: Comparison of A1 against all other configurations – error values ............................................ 89 

Table 4.3: Comparison of A1 against all other configurations – error values ............................................ 95 

Table 4.4: Comparison of A1 against all other configurations – error values .......................................... 101 

Table 5.1:  Time (ms) gained until first temperature violation for all simulations conducted ................. 111 

Table 5.2: Percentage of melted PCM at the time of temperature violation .......................................... 112 

Table 5.3: Thermal energy (J) stored in the PCM at the time of temperature violation .......................... 113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 1 

 

 

 

 

 

 

 

 



1. Introduction 
A great many years have passed since the publication of the article [1] of Gordon E. Moore 

that led to what we now call Moore’s law, that is, the doubling of transistor count on chip every 

18 months. Moore’s law, in essence, predicted a shrinking trend in transistor size leading to a 

corresponding growth in transistor count per unit area. While not as commonly discussed, a major 

factor that allowed this scaling to hold true, up to a certain point, is what we refer to as the Dennard 

Scaling model.  

Robert H. Dennard, after whom it is named, observed that voltage and current should be 

proportional to the linear dimensions of a transistor. Thus, as transistors shrank, so did the 

necessary voltage and current, meaning that power is proportional to the area of the transistor. 

Dennard’s scaling theory showed how to reduce the dimensions and electrical characteristics of a 

transistor proportionally to enable successive shrinks that simultaneously improved density, speed 

and energy efficiency.  

 According to Dennard’s theory [2], with a scaling ratio of  1/√2  , the transistor count 

doubles (Moore’s Law), frequency increases by 40%, and the total chip power stays the same from 

one generation of process technology to the next, on a fixed chip area.  

While approximately accurate, this model does not account for the increased leakage 

currents dominant in small sizes. In leakage dominated, deep sub-micron technology nodes, further 

reducing threshold voltage results in an exponential increase in leakage power. Hence, threshold 

voltage is no longer scaling, and, as a consequence, supply voltage cannot be scaled further without 

impacting performance. Thus, although we can still pack more transistors per area with technology 

scaling, the switching power per transistor is not scaling commensurately, and hence power density 

has been trending upwards. Coupled with the physical limits imposed by device packaging and 

cooling technology on the peak power and peak power density, this results in the so-called Dark 

Silicon era. The term "dark silicon" derives from the fact that as chip power density increases, 

more and more chip area must remain unpowered (dark). 

This new constraint imposed by dark silicon means that not all the transistors on the chip 

can be simultaneously powered on at full performance for a given thermal design power (TDP). 

The TDP is the maximum amount of power that can be supplied to the chip to ensure that the chip 

will operate within the safe range, meaning, below thermally safe temperatures. If the TDP is 

violated, the chip will generate heat at a faster pace than can be dissipated by the cooling system, 

which will eventually lead to overheating of the chip components [3].   

With the end of Dennard scaling, as previously explained, process technology scaling can 

sustain doubling the transistor count in every generation, but with significantly less improvement 

in switching speed and energy efficiency [4]. In other words, the transistor count could continue 

to increase under a specific frequency limit, at the cost of increasing power density. As a result, 

the microprocessor industry has shifted to multicore scaling, in order to exploit the still increasing 

transistor numbers. Multicore scaling, translates to increasing the number of cores per die at each 

generation instead of focusing on creating a single, faster core. To further elaborate, the aim is to 

utilize more, energy-efficient, cooler-running processing cores instead of one, increasingly 



powerful and increasingly consuming. Multicore chips are not intended to run as fast as single core 

models, but improve overall performance by handling more work in parallel [5].  

The main advantage of multicore systems is that raw performance increase can come from 

increasing the number of cores rather than frequency, which translates into a slower growth in 

power consumption. However, this approach is not ideal because it requires tasks that can be 

divided equally among cores, in order to reap the most out of the potential performance gain, 

which, quite frequently, is not the case [6]. In addition, with the failure of Dennard Scaling and 

thus, voltage-scaling, even core count increases are not without limits. As previously stated, core 

scaling results into a slower growth of power, but still an upward trend. Consequently, it stands to 

reason that even this scaling will eventually come to an end. Hence, the leap to multicore is not 

based on a breakthrough in programming or architecture and is actually a retreat from the more 

difficult task of building power-efficient, high-clock-rate, single-core chips [7].  

Given the abundance of transistors in dark silicon chips, the question ultimately becomes 

if and how they can be harnessed to improve performance within a power or peak temperature 

constraint.  Much of the existing work in literature addresses this question, based on different 

design philosophies that include the use of architectural heterogeneity, specialized cores, 

approximate computing and devices that employ near-threshold voltages to enable a larger fraction 

of the chip to be powered on, albeit at lower voltage level, coupled with other power management 

schemes for dark silicon. 

Regarding architectural heterogeneity and specialized cores, research work has focused on 

exploiting the dark silicon area for designing specialized cores, incorporating heterogeneity, and/or 

application-specific, hardware accelerators. In essence, this approach focuses on using the surplus 

in silicon area to provide better suited hardware in terms of energy and performance that can be 

used in an on demand basis, depending on the task at hand.   

Approximate computing relies on trading energy efficiency with accuracy, especially for 

error-tolerant applications like vision, machine learning etc. Approximate computing techniques 

at various levels of design abstraction have been discussed, ranging from circuit level techniques, 

to approximate data paths and programming language support. 

Near threshold computing, presents an approach to utilize dark cores by turning on a larger 

fraction of the chip but at voltages close to the threshold voltage. This approach works well for 

applications with high thread-level parallelism, but also exhibits high sensitivity to process 

variation and power supply fluctuations.  

In terms of power management, recent research aims at run-time mechanisms to efficiently 

utilize the thermal design power (TDP) budget in order to maximize performance of cores that can 

be homogeneous, micro-architecturally heterogeneous or homogeneous but synthesized with 

different power/performance targets.  

A technique called computational sprinting leverages dark silicon to power-on many extra 

cores for a very short time period to facilitate sub-second bursts of parallel computation. During 

this time window, the active cores consume power that significantly exceeds the sustainable TDP 

budget, but the cores are immediately power-gated after the sprint allowing the chip to cool down.  



Alternate methods are Intel’s Turbo Boost and AMD’s Turbo CORE technologies that leverage 

the temperature headroom to favor high-ILP applications by increasing the voltage/frequency of a 

core while power-gating others [3].   

In an effort to assist computational sprinting, the use of phase changing materials (PCMs) 

has been investigated as a passive cooling technique. PCMs are compounds that store large 

amounts of latent heat during phase change from solid to liquid. PCMs absorb this heat at a near-

constant temperature and hence act like large thermal capacitors. These properties have led to the 

use of PCMs in cooperation with computational sprinting aiming to extend the sustainable 

sprinting duration [8]. 

In this diploma thesis, the aim is to address the performance bottleneck imposed by the 

multicore era and the ever increasing percentage of dark silicon. With regard to this goal, we 

consider computational sprinting combined with the use of phase change materials to be quite 

promising. Therefore, we sought to showcase the impact of different PCM configurations and 

attempt to find the best suited properties regarding placement, material thickness and melting 

temperature. 

The goal of this analysis is to identify setups augmented with phase change materials that 

allow even better results to be achieved through the use of sprinting techniques. To this end, a 

simulation framework has been formed, consisting of four basic components: a hardware 

simulator, a power modeling tool, a thermal simulation tool and a collection of python scripts 

unifying each separate component into a single entity. Although this simulation framework was 

used to simulate a specific chip enhanced with PCM under a specific set of workloads, its 

capabilities far exceed the implementation we used. This will be highlighted when the framework 

is presented in detail. 

In order to properly simulate the behavior of PCMs, the thermal modelling tool has been 

modified. It has been altered to be able to implement a model proposed in [9], named apparent 

heat capacity method. This method simulates the behavior of phase change materials by assigning 

a nonlinear, temperature dependent, specific heat capacity to the PCM layer. The benefit of this 

approach is the ability to simulate non-uniform PCM melting and, by way of the specific 

implementation, materials of different physical properties. In addition, via the native flexibility 

over the placement of layers offered by the thermal simulator, comes the potential to experiment 

with the placement of PCMs in the chip stack. 

Subsequently, using the derived framework, this thesis goes on to show that traditional 

models used for the components of the chip package are not suitable for simulations involving 

PCM-enabled sprinting chips. This results from the fact that said models contain inaccuracies 

whose magnitude is an increasing function of core frequency. Furthermore, these models fail to 

properly simulate the uneven heat distribution that results from heterogeneous power consumption 

of various components (be it across components of the same core or across different cores). This 

fact is propagated across all layers of the chip and results in completely different heat distribution 

profiles. Accurate heat distribution modelling is considered of the utmost importance since we aim 



to simulate uneven PCM melting. Thus, a more accurate model is introduced, taking into account 

the increasingly weighing factor of thermal interface materials. 

Using the constructed framework that includes the enhanced thermal model and the 

accurate model of the chip package stack, we attempt to determine the best phase change material 

configuration for a given chip, under a number of different workloads. The variables addressed are 

the PCM melting point and thickness, as well as the placement of the PCM layer in the chip stack.  

Lastly, on account of the observation that components that consume more power result in 

concentrated regions of PCM that melt (that is, exhaust their heat capacity) faster, we experiment 

with heterogeneous PCM layers. These layers consist of regions with different melting points, such 

that the effect of more active regions in the silicon is reduced by enhancing lateral heat spreading 

across other, cooler areas of the PCM layer. 

In retrospect, although this thesis aims at more efficient ways to utilize the resources 

available in recent multicore platforms, it also contributes a very adaptable and complete 

simulation framework for PCM-enabled multicore chips, as well as insight into phase change 

material configurations and their corresponding impact. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 2 

 

 

 

 

 

 

 



2.1 Theoretical Background 
 

2.1.1 Computational Sprinting 

With the apparent end of Dennard Scaling and the shift of the microprocessor industry to 

multicore designs, more and more research is oriented towards finding ways to better utilize the 

resources available in many core chips. One of the most promising, and popular approaches to this 

end, is that of computational sprinting. While this technique has already been presented briefly, a 

more detailed description is in order. 

Computational sprinting, or sprinting, as the term will be used subsequently for the sake of 

brevity, activates reserve cores (parallel sprinting) and/or boosts frequency and voltage (frequency 

sprinting) for bursts of intense computation, to power levels that exceed the system’s sustained 

cooling capabilities by an order of magnitude or more. During sprinting, chip temperature does 

not spike instantaneously, although the chip generates heat faster than the system dissipates it. 

Instead, the system absorbs heat by virtue of its inherent thermal capacitance, that is, the property 

that materials can buffer significant heat as they rise in temperature. This property causes 

temperature to rise over an extended, albeit still short, time interval. When it reaches a threshold 

value, sprinting terminates, and restraining actions are being enforced in order to complete the 

remainder of the computation in progress, at lower power levels, while heat buffered to the chip 

materials is dissipated to the ambient  [10], [11]. 

While the idea seems to be quite simple, many factors contribute to the existence of a 

variety of different sprinting implementations. First and foremost, any sprinting methodology is 

designed with regard to a specific platform type. The most usual case are chips intended for mobile 

devices without, however, precluding the existence of implementations for chips that are used in 

servers or even personal computers. As previously mentioned, Intel and AMD turbo technologies 

are examples of limited forms of frequency sprinting, widely used in multicore chips, mobile or 

desktop oriented. With that example in mind, it is worth restating at this point, that sprinting 

approaches may involve frequency sprinting, parallel sprinting, or both, depending on the case.  

As expected, depending on the platform, a number of consequent elements must be taken 

into account, thus differentiating each sprinting implementation. Despite the fact that many of 

these elements are interdependent, and not necessarily in a direct manner, we will attempt to 

showcase some of the most important, disregarding the correlations between them. The objective 

is to give a general sense of the huge number of disparate approaches, the complexity of designing 

a sprinting scheme, and a brief theoretical background that we will subsequently use to analyze 

related research.  

One way to differentiate between sprinting policies is with regard to the applications they 

are aimed towards. In some cases, only a specific set of workloads is intended to employ sprinting 

as a consequence of favorable intrinsic characteristics. For example, as described in [12], 

applications that demonstrate short bursts of intense computation, punctuated by long idle periods, 

are suitable candidates for sprinting. Some applications that fit this pattern are image processing 

and computational photography tasks (such as panoramic stitching and image noise reduction), 



navigation route planning, and natural language processing (speech recognition and translation).  

In other cases, no special consideration regarding the applications suitable for sprinting is 

performed, and the system sprints if available tasks and resources are both present. These systems 

usually perform a duty cycle type of operation, defining a time cycle, sprinting for a fraction of 

that cycle and switching to sustained operation for the remainder. Lastly, special cases perform a 

dynamic evaluation and decide whether it is efficient for an application to sprint, based on 

performance characteristics.   

 In any case of sprinting, a control mechanism is enforced, to ensure that chip temperature 

levels remain within certain bounds. We distinguish between two basic control types, reactive and 

predictive. Reactive control models take necessary restraining action when a violation occurs. In 

contrast, predictive models, use metrics to evaluate whether a thermal violation is about to occur 

in the immediate future and react accordingly.  Predictive control depends greatly on the accuracy 

of the employed model. In the general case, predictive control types ensure less thermal strain on 

the chip and are often coupled with reactive policies in case of a failure to predict a temperature 

violation. On the other hand, they carry a certain computational overhead. This is a direct 

consequence of the fact that predictive models perform a series of computations in order to 

simulate, albeit in a simplified manner, the behavior of the system in the future. Depending on the 

implementation, the detail, and the range of variables associated with each predictive model, such 

computational overhead may be substantial. Reactive policies almost always are enabled by a 

temperature limit violation. 

Despite the fact that control mechanisms, when and if enabled, override any resource 

allocation scheme, they are a separate entity. Resource allocation schemes or allocation policies, 

as denoted by their name, decide the optimal allocation of chip resources in an attempt to maximize 

performance and/or energy efficiency. This optimization, might be referring to an application, a 

thread, a system average or some other module. While a resource allocation scheme might also be 

limiting the distribution of resources, it does so in an effort to achieve the best response out of the 

system. In contrast, control mechanisms throttle the function of components, to prevent damages 

due to non-nominal operation. 

Another important aspect of a sprinting policy, closely related to the control mechanism, 

is the overheat policy. By overheat policy we mean the series of actions that take place when a 

violation, overheating of a component, occurs. According to the information presented above, the 

system would revert to a sustained operation mode, in order to cool down, however, a certain 

variability in such modes can be observed. The most common case of overheat policy, is to shut 

down all active cores except one, pack all remaining active threads and continue computation at 

the nominal frequency until significant thermal headroom is recovered. Other, more sophisticated 

strategies, choose to power down only those cores that report a violation, and migrate or pack their 

threads depending on the existence of free cores to accommodate them. A different approach is to 

define a number of sustainable combinations of active cores and frequency/voltage levels and 

choose the most appropriate, depending on the workload.  



Lastly, a distinguishing factor between sprinting approaches is the homogeneity, or not, of 

the multicore chip. Most approaches in the literature address homogeneous platforms in spite of 

the fact that combining heterogeneity with computational sprinting is generally regarded to be a 

promising research area. 

The key points from this section are summarized in Figure 2.1. Although it was mentioned 

in the beginning of this section, let us repeat that what we presented is only a simplistic outline of 

a countless number of considerations related to a sprinting methodology. For example, an 

allocation policy is not wholly characterized by the applications it is intended for. A lot of other 

factors may be taken into account in order for the allocator to decide when, where, for how long, 

at what intensity and so on. From a higher level of perspective, the factors presented in Figure 2.1 

are not the only ones distinguishing one methodology from another. 

 

 
Figure 2.1: Basic characterizing factors of sprinting methodologies 

 

2.1.2 Phase Change Materials (PCMs) 

 

 Phase change materials, in general, are compounds that are able to store large amounts of 

thermal energy during phase change. In the most common case, the phase change from solid to 

liquid, and vice versa, is exploited. From this point of view, PCMs are substances with high heat 

of fusion. Heat of fusion or latent heat of fusion, is the energy required to transform a certain mass 

of a material from solid to liquid. The term latent, accounts for the fact that phase change occurs 

at near steady temperature, a metric for the internal energy of a substance, hence, the material 

absorbs heat that is latent, meaning hidden. Heat absorbed by a material that results in an 

observable temperature difference is termed sensible heat. 

 In computational sprinting, the topic of our focus, such materials are exploited by virtue of 

their ability to store large amounts of heat at near constant temperature. This results in a sustained 

considerable heat flow towards the PCM, due to the fact that heat flow is linearly dependent on 

the temperature difference between surfaces. The ultimate result of this fact, is that the use of 

PCMs in sprinting systems leads to smoother temperature profiles, that is, longer sprinting 

durations.  



 As expected, the latent heat of fusion of a material, or more accurately, the specific heat of 

fusion, is a weighting factor of both its suitability for and impact to, sprinting approaches. The 

specific heat of fusion is the energy required for phase change, from solid to liquid, per unit mass. 

Obviously, the specific heat of fusion is a material property and independent of size or extent of a 

sample [13]. 

 

   
Figure 2.2: PCM behavior and latent heat storage 

 

Another important characteristic for a PCM, is thermal conductivity. Thermal conductivity 

is the property of a material to conduct heat. It represents the rate of heat transfer. Heat transfer 

occurs at a lower rate across materials of low thermal conductivity than across materials of high 

thermal conductivity. Correspondingly, materials with high thermal conductivity like copper, are 

used in heat sinks, while materials of low thermal conductivity are used as thermal insulation [14]. 

For PCMs of our interest, high thermal conductivity is paramount, as is the case with all materials 

involved in chip packaging. More to the point, uniform heat distribution, an immediate result of 

high thermal conductivity, given enough time, is essential in order to exploit the maximum out of 

the heat storage that a PCM offers. Typical thermal conductivity values of PCMs indicate at least 

an order of magnitude difference to that of heat spreader and heat sink materials. Consequently, 

the placement in the chip stack and size of PCM layers warrant a careful investigation for their use 

to be productive.  

 Furthermore, careful consideration must also be given to the PCM melting temperature. 

While this term is self-explanatory, the ideal value for a sprinting system is open for debate. 

Usually, a melting point close to the critical temperature for chip operation is considered. To 

elaborate, a slightly lower melting point than the critical temperature is regarded as optimal, to 



account for a degree of latency in the heating of the PCM layer. Generally, PCMs with higher 

melting points are considered useless at best, for obvious reasons. In addition, PCMs with quite 

low melting points are also considered non-ideal since their advantage of storing large amounts of 

heat is wasted in non-critical temperatures and their existence in the chip stack hampers heat 

conduction. However, since these remarks are quite vague in nature and, to our knowledge, no 

extensive research regarding this factor has been conducted, a series of tests will be later presented, 

aiming to find the best PCM melting point for our test system. 

 In summary, PCMs are used in systems with computational sprinting in mind because they 

have been proved to be able to extend the maximum sprinting duration. The key elements of a 

phase change material are its specific heat of fusion, thermal conductivity and melting point. It is 

beneficiary for thermal conductivity and specific heat of fusion to be as high as possible. In 

contrast, regarding the melting point only vague outlines and isolated examples are available. For 

this reason, an exploration has been conducted and will be presented in detail.  

 

2.2 Related Work 

 

2.2.1 Computational Sprinting on a Hardware/Software Testbed [10] 

 

 In this paper parallel and frequency sprinting is demonstrated for a configuration imitating 

a mobile chip. To this end, a desktop four core system is modified, by removing the heat sink and 

adding a variable speed fan, so as to be able to sustain the indefinite operation of only one core at 

the lowest user-selectable frequency. All other modes of operation normally available to the chip, 

are considered sprinting modes for this configuration.  In order to show various aspects of 

sprinting, a set of parallel workloads is used. 

At first, the aim is to show the benefits of sprinting when a computation can be completed 

at the maximum parallel and frequency levels without exhausting the system’s thermal 

capacitance. The resource allocation scheme and application work size are configured accordingly. 

An average speedup of 6.3 is reported.  Consequently, the energy impacts of sprinting are 

examined. To do so, the same set of applications is considered, at all possible sprinting 

combinations. Counterintuitively, the authors demonstrate that when sprint intensity is selected 

appropriately, sprinting can improve energy efficiency as well as responsiveness. 

Bigger work sizes are also examined, at maximum sprinting intensity, and a reactive 

control with regard to temperature, measured at a fixed time interval with on-die sensors, is 

enforced. The overheat policy of this configuration is to revert to sustained one-core execution at 

the lowest frequency, pinning all threads to this single core and disabling all others. This type of 

operation results to performance and energy penalties, more prominent depending on the 

application, that increase as the workload increases. In order to mitigate the oversubscription 

penalty resulting from pinning active threads to a single core, a methodology is presented that 

essentially allows to dynamically alter the thread count of an application to match that of active 



cores. With the implementation of the proposed methodology, even the most penalized application 

adopts an almost neutral performance and energy profile for big workloads.  

An allocation scheme, termed adaptive sprint pacing, is presented, intended to capture the 

benefit of sprinting for short computations, but at the same time extend the length of computations 

for which sprinting improves responsiveness. The idea outlined is to sprint at full intensity until 

half of the thermal capacity is consumed, and then switch to less intense and more power-efficient 

sprints by keeping all cores active but lowering their frequency levels. Indeed, this allocation 

scheme is seen to capture beneficial effects for a greater range of worksizes.  

The use of PCM, specifically paraffin wax, is examined in order to increase sprinting 

duration. The response of the system at the max parallel but lowest frequency sprint mode is 

measured and compared against the configuration with no PCM at all and other cases, involving 

materials not equally suitable for augmenting the system’s thermal capacitance. The best scenario, 

that of paraffin wax,  resulted in a 6x increase in sprinting duration. In all scenarios, the extra layer 

was placed on top of the heat spreader, meaning, since no heat sink was present, between the 

spreader and ambient.  

Lastly, a duty cycle type of execution is researched. This means defining a time period, 

sprinting for a fixed time length and switching back to sustained execution for the remainder and 

repeat indefinitely. Again, the sprinting mode selected is the maximum parallel and minimum 

frequency sprint. This sprint and rest execution was reported to provide both better performance 

and energy efficiency. 

 

2.2.2 Safe Computational Re-Sprinting via Model Predictive Control [15] 

 

 In this work, a sprinting architecture for an embedded device is presented consisting of a 

16 core chip. Both frequency and parallel sprinting is enforced, although, in an indirect manner. 

The authors assume fixed power consumption at maximum and minimum frequencies, in a worst 

case scenario basis. The same is true for the power consumed when idling. A full sprint 

corresponds to using all cores at maximum frequency and utilization, and rest mode to only one 

core operating at full capacity. The assumed chip is supposed to be augmented with a PCM-copper 

composite, interposed between the die and package.  

 It is worth noting that the thermal model adopted, assumes a uniform heat distribution 

across core area and across the PCM layer. With this configuration, the effectiveness of the PCM 

composite is highlighted by comparing the thermal performance of the chip when a copper heat 

spreader or a PCM without the copper enhancement are used instead the composite. As expected, 

the copper enhanced phase change material provided the larger sprinting duration. 

 Before introducing their proposed model, the authors define a special case of critical tasks 

that have a finite pre-specified duration and are issued at regular time intervals. These tasks are 

required to sprint at full power until completion. With that definition in mind, a two layer predictive 

controller is described. 



 The lower layer satisfies power levels requested by the higher layer when no violation of 

thermal bounds is predicted. In any other case, the maximum power that does not result in a thermal 

violation is assumed, if such a value is greater than the power corresponding to the lower operating 

frequency. To the event that this condition is not satisfied, idle power is enforced, essentially 

meaning that a core has been put to idle status.  

 The higher layer assigns maximum power levels to each core when the PCM internal 

energy is not predicted to exceed a certain value. This value is computed in order to ensure that 

enough thermal headroom will be available for a critical task to sprint at full capacity. If a violation 

is predicted, then the controller will assign the maximum power level acceptable in a similar 

manner as described previously, with the sole difference that the control variable in this case, is 

the PCM internal energy. Furthermore, it is worth noting that this higher layer controller can be 

disabled, when no critical tasks are considered.  

The proposed model is validated against a threshold based approach, where each sprinting 

request is executed at maximum capacity until each core but the first is forced to shutdown. This 

comparison is performed with mixed workload scenarios for cases where critical tasks are assumed 

along with other generic ones, and cases where only generic tasks are issued. In the latter case, the 

approach presented by the authors clearly outperforms the threshold based. When critical tasks are 

considered, the proposed model ensures the required full sprint duration for critical tasks, but 

suffers from a small overall performance loss to do so.  

To conclude the outlined approach, non-nominal conditions are assumed, that is, high 

ambient temperature and power consumption for each core, for a mixed criticality workload. 

Suffice it to say that the performance of the controller satisfies the expectations even at the 

specified challenging circumstances. 

 

2.2.3 Thermal Management Using PCM – Based Heatsinks [16] 

 

 This paper investigates the interaction between PCM enhanced heatsinks and systems 

running specific benchmarks. An Intel Nehalem four core platform is simulated using the Sniper 

Simulator [17] coupled with McPAT [18], to produce power values. These power values are then 

fed to Hotspot to evaluate the thermal interaction between the chip and other components of the 

package, for different benchmark workloads. 

 While this work accounts for uneven distribution of heat across core areas, as a result of 

different utilization characteristics for each component, due to variability of the workload, the 

PCM layer is modeled as a singular block. This type of modelling, indirectly assumes uniform heat 

distribution and uniform melting of the PCM layer. As we will show later, this condition is almost 

never satisfied. Moreover, this single block modelling of the PCM layer, mitigates the benefits of 

simulating uneven heat distribution in the underlying chip area.  

 A small number of workloads is enough to demonstrate the theoretically expected behavior 

of the PCM heatsink, thus highlighting the benefit offered by the phase change material. For 



reference purposes, the behavior of the PCM selected, Lauric Acid, is compared against that of 

water for the corresponding temperature ranges that ice melts.   

 While this paper does not enforce any sprinting methodologies, it is included because it 

contributed to the formulation of the overall framework that will be presented later. In addition, it 

is the only one that associates the use of phase change materials with uneven heat distribution in 

the core area despite the mitigating factor involved in modelling a PCM layer as a single block.  

 

2.2.4 Modeling and Analysis of Phase Change Materials for Efficient Thermal 

Management [9] 

 

This work proposes a thermal model to simulate the behavior of phase change materials 

that is able to account for non-uniform melting and heat distribution at the PCM layer. In order to 

achieve that, the apparent heat capacity method [19] is used. This method was also used in our 

thermal model and will be presented in detail in chapter 3. The PCM layer in this research is 

interposed between the die and the copper heat spreader.  

This model is then validated against COMSOL and another, single block approach. The 

proposed approach is proven to be quite accurate and also more efficient than COMSOL. At the 

same time, the single block model is proven to be quite inconsistent, leading to big temperature 

errors and, of course, unable to capture spatial effects like non-uniform melting of the PCM.  

Consequently, a 12 core system is simulated by a framework using the Gem5 simulator, 

McPAT and HotSpot thermal simulator. The objective is a design space exploration of PCM 

properties and their impact on the thermal performance of a chip. Results from experimenting with 

the PCM thermal conductance and thickness are presented. Overall, having the highest 

conductivity available is preferred in all cases while the thickness of the selected material is not 

an easy choice. In the general case, thick layers result in hotter thermal profiles but PCM-aware 

control mechanisms might leverage the extra thermal capacity to increase performance benefits. 

Lastly, the authors demonstrate that using single block models for phase change materials 

results in inconsistencies that are exacerbated when workload distribution among cores is highly 

heterogeneous.  Specifically, single block models, result in longer time before the layer starts 

melting when few cores are active, and, during melting, they exhibit a constant temperature until 

100% of the PCM is melted. These erroneous results, lead to a number of over and under-

estimations of core temperatures and consequently, throttling instances if a per-core thermal 

controller in enforced. 

 

 

 

 

 



2.3 This Work  

 

2.3.1 Objective 

  

 The aim of this thesis is to research the efficient use of phase change materials in systems 

that intend to employ computational sprinting. This goal was motivated by the fact that even 

though phase change materials have been presented, in recent research, to be able to increase 

sprinting duration for such systems, there has been no extensive study regarding their optimal 

characteristics and placement.  

 

2.3.2 Key Differences 

 

 One of the major and most prominent differences in this work, lies within the thermal 

model adopted. First of all, in most research, the power consumption of a core is either assigned a 

steady value, reflecting a worst case workload scenario, or is simulated with suitable software and 

then aggregated to a single value. In either case, the resulting power is usually evenly distributed 

across the core area. Other more conservative approaches, might split the core simulated into a 

small number of logic blocks, containing multiple elements, aggregate the values of those 

elements, and then assign the computed power estimate to the logic block. While the latter case is 

more accurate, we considered it a coarse grained representation of the heterogeneous heat 

distribution across the core die. In our work, a fine grained floorplan, and corresponding power, is 

used with interesting results. 

 In addition, regarding the modeling of phase change materials, most research adopts 

computational methods to account for the phase change, and models the PCM as a single block. 

In our work, a more accurate method is used, the apparent heat capacity method, which is validated 

with good results against state of the art thermal simulators, coupled with a multi-node grid 

representation. While the model was adopted from [9] and used there, it was not implemented in 

that work in collaboration with a framework that accounts for the variable heat distribution along 

the area of a core, the first major difference mentioned earlier.  

 Regarding these two facts, our work accounts for non-uniform heat distribution at all 

possible levels. Across the die of one core, due to different component utilization, across the chip 

die, due to different usage of each core and across PCM and every other layer in the chip stack. 

This approach, as will be demonstrated consequently, will yield some results that deviate from 

what was anticipated. 

 To make matters worse, the effect of thermal interface materials (TIMs) is neglected in 

almost all the related work we examined. One might argue that since these materials are by design 

slim in the chip stack, a simplified model omitting these interconnecting layers will benefit in 

performance at the cost of a small accuracy loss. However, we will show that this is not the case, 

and in the platforms of our interest, characterized by big temperature gradients and time windows 



of mere milliseconds, the impact of thermal interface materials is palpable.  This impact is further 

magnified in modern high power chips because TIMs are the essential bottleneck in heat transfer 

between the die and any passive cooling solution, a bottleneck that becomes of increasing 

importance as heat density increases. 

 Naturally, research conducted in real hardware testbeds, does not suffer from any of the 

above limitations. Be that as it may, such research is limited in a particular setup and is unable to 

explore other hardware configurations. In addition, real hardware frameworks are unable to 

explore many diverse configurations with phase change materials or analyze them in a detailed 

manner. In addition, in this thesis, some PCM configurations are purely theoretical and are 

examined even though an actual chip with the specific characteristics might not be possible to be 

constructed. The aim was to showcase the most promising setups and perhaps steer research 

towards finding ways to implement them.  

 

2.3.3 Contribution 

 

 The main contribution of this thesis is a robust and quite flexible framework that performs 

full system simulation, from hardware performance to thermal results. This framework functions 

in a cycle wise basis allowing for resource management decisions to be effected during run-time. 

Also, as was mentioned before, the thermal simulator integrated in the framework, is able to 

simulate the use of phase change materials anywhere in the chip stack. While the framework will 

be analyzed in great detail in chapter 3, it is worth noting that even non uniform PCM layers can 

be simulated. In addition, the effect of neglecting thermal interface materials in systems intending 

to employ sprinting is presented along with a proposed, more accurate, thermal model for the chip 

stack. This model achieves better accuracy regardless of the presence of phase change materials in 

the chip stack.  Furthermore, an exploration regarding PCM thickness, melting point and 

placement has been conducted. The results are being presented in chapter 5 in an effort to provide 

insight on how to use such materials effectively. At the same time, a number of common simulation 

artifacts that compromise the results of already conducted research will be demonstrated. Lastly, 

the benefits of using heterogeneous PCM layers, a completely novel idea is analyzed in chapter 6.  

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 3 

 

 

 

 

 

 

 

 

 



3.1 Overview 

 

 The framework constructed for the purpose of this thesis is oriented towards simulating the 

operation of a multicore chip to the greatest detail possible, while keeping simulation times to a 

reasonable value. It was developed, not only to aid the exploration we conducted, but also to serve 

as a multipurpose simulation tool that can be used in similar research areas.  The simulation 

addresses the aspects of performance, power consumption and thermal modelling. To this end, a 

set of simulation tools has been used, namely, Sniper Simulator [18], McPAT [19] and 3D-ICE 

[20], [21].  

As expected, the framework is able to simulate a multitude of hardware configurations. 

From a performance perspective, the range of available configurations is that offered by the Sniper 

Simulator (SniperSim). This range includes but is not limited to, multicore chips that number up 

to hundreds of cores, with configurable architectural characteristics. It is worth noting that 

heterogeneous configurations are also supported.  In the general case, the other simulation tools 

used, can easily accommodate such different setups with little or no change, by virtue of the 

manner in which they are interconnected in the framework. From a thermal point of view, the 

available options are those supported by 3D-ICE, many package specifications commonly used in 

current chips. Additionally, a number of configurations were added in the scope of this thesis, by 

modifying the source code of the tool. However, any further information will not be presented here 

because the thermal model will be analyzed in detail in section 3.3.  

 The general flow that is followed during the course of a simulation, is briefly presented in 

Figure 3.1. It can be readily observed that simulations are performed in intervals, until completion 

of the requested scenario. This feature, allows us to observe the behavior of the system at fixed 

time intervals, gather statistics through time, and perform control actions when deemed necessary.  

 

 

Figure 3.1: Basic framework flow 



 

 

In the figure presented, the arrows indicating the flow of execution are in fact separate 

entities, performing a number of operations. The details are not yet outlined for the sake of clarity. 

All added functionality is implemented in Python [21] as a result of the ability offered by 

SniperSim to directly control the simulator through the use of Python scripts. This option is 

enabled by including the –s flag in the command line invoking sniper, followed by the script to be 

used. Any input variables addressed to the Python script mentioned, are listed after the name of 

the script, preceded by a colon. Scripts that are intended to be invoked in that manner, need to be 

placed in the scripts folder inside the SniperSim installation directory or be specified with a full 

path. 

If we were to include, briefly, some of the intermediate functions implemented in Python 

scripts, along with their general purpose, the flow presented in Figure 3.2 would ensue. Let it be 

known that the listing named Python Interface essentially denotes the script invoked with the –s 

flag mentioned earlier. Let us name this script SniperControl.py. In our case, this script performs 

a variety of actions, a portion of which, is not directly related with SniperSim. For example, 

somewhere along the flow of an interval, it is necessary to parse the output values of McPAT and 

feed them to 3D-ICE. This necessity is only indirectly related with the function of SniperSim. 

Nevertheless, any action executed outside the normal operation of the simulated tools is invoked 

and implemented through the use of SniperControl. 

 

 
Figure 3.2: More detailed framework flow 

 



 

To elaborate, a simulation might be summarized as follows: 

 SniperSim is called, SniperControl is invoked with the –s flag 

 SniperSim completes the initialization phase for the simulation requested and 

pauses 

 Control passes to SniperControl - SniperControl performs any initializing action 

specified and passes control back to SniperSim 

 Performance simulation for the specified time window is conducted, SniperSim is 

paused 

 Control passes to SniperControl - SniperControl calls McPAT for a partial run  

 After power consumption simulation for the specified time window is completed, 

McPAT terminates 

 Control passes to SniperControl - SniperControl calls 3D-ICE client in the 

appropriate fashion 

 After thermal simulation for the specified time window is completed, 3D-ICE client 

terminates 

 Control passes to SniperControl - SniperControl calls a Python script implementing 

the policies we would want to enforce in the system. Upon completion, this script 

terminates 

 Control passes to SniperControl - SniperControl completes any remaining actions, 

for example, actions regarding logging, and passes control back to SniperSim 

 A new time window starts 

 

As we can see from Figure 3.2, there is a small inconsistency regarding the initialization 

process. In truth, SniperSim is invoked and initialized before it passes control to SniperControl. 

However, for practical purposes, we can safely adopt the simplified model presented in Figure 3.2. 

In addition, from a stricter point of view, SniperControl is not called, as a Python script, in multiple 

instances. It is in fact called only once, at simulation startup. The control switching that was 

described earlier, is implemented by registering callback functions. Callback functions, as denoted 

by their name, are executed by interrupting the simulation each time a certain event occurs (they 

are called back). Such an event could be the starting of a thread, or the passage of a certain amount 

of simulated time. While various callback functions are used in our Python Interface, we perform 

the majority of our control actions every time a fixed value of simulated time has elapsed. The 

flow that was presented is addressed to this particular kind of control switching and generally 

abstracts away other callback functions, since they are not directly relevant to the overall operation 

of the system and are mainly used for exporting statistics and logging. More information regarding 

callback functions and how they are used in SniperSim, can be found in the documentation of the 

Sniper Simulator [17].  

Returning to the analysis of the more detailed model, we can see that a call to the Python 

implemented interface, precedes the operation of each simulation tool. In a general sense, the main 

use of each such call, is to export statistics regarding the simulation output of the previous level, 



gather the necessary input variables for the next tool to be used, format them in a suitable form, 

and pass them along with the call to the appropriate program. A special case in this pattern, is the 

first call to the Python Interface where no statistics are exported. In this case, only a set of 

initialization actions is performed. Furthermore, the input variables gathered in this instance are 

only those addressed to SniperControl. The input variables that are meant for the Sniper Simulator 

are fed to it directly, through another entity. 

When a single and isolated instance of SniperSim is considered, the tool can be called along 

with its configuration variables through the terminal, using a command line. However, when 

multiple simulations, with different configurations, are intended to be explored, passing input 

variables in this manner can be quite tedious. Moreover, it necessitates waiting for each simulation 

to end before being able to request another. These problems arise when SniperSim is used 

exclusively. For our framework, which also includes other simulations tools, this approach 

presents yet other problems.  

In order to use 3D-ICE for interval simulation, we implemented a Client –Server model, 

as described in the documentation of the thermal simulator. All configuration parameters and 

structures pertaining to the thermal model, along with the thermal status of the system, are 

maintained in the server side. All computation relevant to the thermal simulation is also performed 

by the server. In truth, the client only serves as an intermediate communication interface between 

the Python Interface and the 3D-ICE Server. Communications exchanged, mainly involve input 

values for each interval and thermal maps describing the resulting thermal status of the chip stack.  

While the client is called whenever power inputs for the server are available, in an on 

demand basis, and then terminates, it is quite obvious that the server must remain online for the 

entire duration of the simulation. Furthermore, between simulations, the server must exit and 

restart with a new configuration set.  Essentially, a server complete run corresponds to a full 

simulation while a client run corresponds to a time interval. This model we adopted, requires the 

manual initiation of the server prior to the beginning of each simulation. Moreover, the server 

initialization is associated with a number of files that describe the configuration of the chip. 

It is essential for the function of the thermal simulator that a stack description and a 

floorplan file are created and placed properly. These files also contain all configuration parameters 

of the thermal model. Manually creating and modifying these input files, based on each scenario, 

is not an effective solution. An obvious choice for accomplishing such a task, and the activation 

of the server, would be SniperControl. However, this choice was avoided.  

Instead, a higher level entity was created. The factors that paved the way for this approach 

will slowly unfold as we describe the function of this higher level module. This structure, 

implements a Client-Server model, developed in Python. It serves as an intermediate between the 

simulation framework and the user. The input to this module, is a series of simulations to be 

performed. The server side basically handles starting and exiting the 3D-ICE server prior and after 

each simulation, respectively. The client side handles all pre-simulation necessary actions 

including the creation and placement of stack description and floorplan files according to the 

requested specifications.  



In this way, the Python server needs to be started only once, and then serves simulation 

requests indefinitely. The Python client enables the user to specify a queue of simulations to be 

run and facilitates the input of configuration variables for all simulation tools in one unified 

interface. A graphical representation of this model can been seen in Figure 3.3. This is in fact a 

macroscopic view of the simulation framework, meaning, that the parts analyzed previously, and 

graphically illustrated in Figures 3.1,3.2, are integral, lower level parts of the Python client side.  

 

                
 

Figure 3.3: Python client-server model 

 

We intentionally built our way towards this less detailed representation, in order to provide 

a better understanding of the process that took place in combining the simulation tools into a 

unified whole, and the benefits of our approach. Figure 3.4 is a graphical summary of what was 

described so far. After inputting a set of simulation requests and running the appropriate script, the 

flow in the mentioned figure is followed. Simulation_Queue.py will initialize all configuration 

files as per ordered. When initialization is complete, it will communicate to the server to start a 

3D-ICE server session. The server will report back after the 3D-ICE server is up and running, 

granted that no error occurs, and Simulation_Queue will continue by calling SniperSim with the 

appropriate variables. Afterwards, until completion of the simulation, the interval flow that was 

described earlier follows. This flow is now represented as an implied, separate module, framed by 

a yellow dashed box. Regarding the function of the thermal model, the server – client function that 

was analyzed, is now schematically outlined in "magnification" and placed aside in order to 

maintain the conceptual integrity presented previously. When power values are available, the 3D-

ICE client is started, communicates them to the 3D-ICE server, receives the results and terminates. 

At the end of the simulation, ownership is transferred again to Simulation_Queue, which in turn 

communicates to the Python server to end the current 3D-ICE server session. The next simulation 

characteristics are picked from the list and a new identical loop begins. 

From a user level-perspective, only the uppermost input interface is visible and needs to be 

edited in order to issue a list of simulations, diverse in performance and/or thermal characteristics. 

In order to facilitate our work, only those variables that we most commonly altered were 

propagated to the highest level allowing to be readily edited. Nevertheless, the bulk of the 

configuration variables of any simulation tool used, can be easily exported to this first level 



interface. Additionally, before any simulation is requested, the Python server must be started. In 

our case, this server was launched manually and was tied to a terminal window in order to assist 

the development of the framework. For a system intending to be used for simulations, the server 

can be easily started as a background process, at system startup or on demand, and probed only 

when deemed necessary.  

As far as the export of the client side is concerned, each running simulation keeps all files 

in a temporary folder, named Current_Simulation. Files included in this folder are outputs of the 

simulation tools along with the standard output and standard error for each, utility files used for 

various purposes and will be analyzed is subsequent sections, configuration files used, and other 

logging material. This temporary file is wiped at the end of each simulation, after all the files are 

properly archived, in order to be used by the next request in queue. If any kind of error arises 

during the archiving process, the simulation framework is halted, so that the user can manually 

extract the simulation files and prevent data loss. A number of options on how to archive each 

simulation is available. Moreover, adding new ways to store requested simulations is feasible by 

adding a function to the corresponding Python script.  

 

 
Figure 3.4: Framework Summary 

 

Regarding output files and statistics, a number of metrics are by default exported during a 

simulation. Even though not all of them were ultimately used in our work, we made a selection 

based on the metrics most commonly used. Even so, we refrained from outputting a very big 



number of variables in order to keep simulation output files relatively small in memory size. 

Statistic variables regarding performance and thermal values are a special case in our framework. 

In contrast with our general approach, exporting a new statistic is probably not a straightforward, 

nor simple task. It would require a direct modification to the corresponding interface of each tool. 

In the case of SniperSim a number of variables might be rather easily accessible by adding their 

entry to SniperControl. However, in some cases, it might be necessary to modify the source files 

of the simulator. For 3D-ICE, adding new outputs of any form, would require adding requests 

and/or other complementary code in the 3D-ICE client and/or 3D-ICE server.  

As is usually the case, the development of this framework was not smooth and error-free. 

Before this presented form, the module has underwent a deal of restructuring and a number of 

revisions. Even in this fully functional version, a number of improvements and additions that can 

be implemented are specified and will be presented in the proposed future work. Note also, that 

the approach we followed in designing this framework is not exclusive. In various places, many 

alternative ways to achieve the same result were available. Arguably, some of them might have 

been more effective in terms of performance and/or other characteristics. For example, instead of 

developing the Python server to handle the 3D-ICE server, we could have modified the source 

code of the latter to accommodate multiple simulations, that is, to dispose all structures at the end 

of a simulation and parse new floorplan and stack description files. However, a performance and 

optimization exploration, is outside the scope of this thesis. While in future versions, or if, 

hypothetically, we developed the framework anew, we would certainly redesign some modules, 

the approach that was chosen in each case, reflects an effort to balance efficiency and development 

time, with respect to the fields that we were more accustomed to.  

In summary, the simple use of the framework involves only starting the Python server once, 

filling out characteristics for the requested simulations to be performed in the appropriate script, 

and running it. Even though the framework in not ideal, in order for it to be adaptable to the custom 

needs of each research approach, and to any kind of modification of addition, after this rather 

abstract overview, comes a detailed description of most of the interconnecting parts. Obviously, 

the preceding macroscopic presentation is essential to the understanding of the subsequent section. 

Rather than keeping the big picture into perspective, section 3.2 will analyze each tool and relevant 

scripts in isolation and then conclude into a unified, fully-detailed figure. Lastly, a number of small 

inconsistencies might be observed regarding functions that are assigned ultimately to lower-level 

modules. This is a direct result of the effort to present a more compact figure in the overview 

section, easier to understand, and not an oversight. 

 

 

 

 

 

 



3.2 Python Interface Detailed Analysis – Basic Scripts 

 

3.2.1 Simulation_Queue.py 

 

 The top-most script of the simulation framework. A number of lists are declared in the first 

lines of this file, where the user can fill out the characteristics of the simulations that are meant to 

be run. The values specified are unpacked in the order they are written in the script. That is, the 

first simulation will be performed with a set containing the first value from each list, the second 

with the second value from each list and so on. Simulation_Queue, when run, immediately groups 

the corresponding values and calls Sniper_Simulation_Init.py with those values as input. The input 

values mentioned, are not necessarily a single item. Some per-simulation variables are defined by 

a list (like the elements in the chip stack) so the resulting module in the script is a list of lists. Each 

top-most list completed must have the same length, one value per simulation to be run. For 

variables that do not change from simulation to simulation, it is possible to just multiply them with 

the number of simulations to be run, rather than having to type them one by one. All values defined 

in any list, have to be represented as a string. A more detailed analysis of this script and the 

variables included will be demonstrated in section 3.5. 

 

3.2.2 Sniper_Simulation_Init.py 

 

 This script performs all necessary actions, at the beginning and end of each simulation 

execution. It does so, utilizing a script named Simulation_Utilities.py. In general, the Python 

Interface is arranged in a high to low level approach, distinguishing basic and utilities scripts, in 

an effort to make the layout more structured. The functions included in Simulation_Utilities are: 

 Configure_Variables: Defines a number of variables that will be used throughout the 

execution of the script. The variables are added into a dictionary that is returned to the basic 

script. 

 Initialize_Sim_Folder: Completely wipes the Current_Simulation directory from all files 

and folders to prevent a misplaced file or a failed execution to create unforeseen results. 

Subsequently, it creates the necessary sub-directories for the simulation. 

 Write_Config_File: Creates a configuration text file describing all the parameters of the 

requested simulation. 

 Initialize_Simulation_Files: From a directory of already created floorplans, locates and 

fetches the appropriate floorplan file for the requested configuration. In addition, a 

corresponding visual representation, meaning an image showing how the components are 

arranged is also fetched. This image will be used by another, optional, post-simulation 

script that is able to visualize thermal maps. Implementing another script named 

STK_Utils.py, it creates the stack description file with respect to the corresponding 

parameters requested. If a phase change material is requested, by use of PCM_Classes.py 

it also adds a corresponding entry to the stk file, and creates a PCM description file with 



the appropriate variables. The PCM description files are parsed from the 3D-ICE server as 

a result of the added capabilities we have implemented to the thermal simulator. All files 

are placed in the Simulation_Files folder. 

 Initialize_Server: Communicates with the Python server, requests the initialization of the 

thermal simulation server, and waits for reply. When the latter is started without error, the 

Python server communicates the fact, along with the socket it listens to. 

 Start_SniperSim: Runs the sniper simulator along with all the corresponding command 

line arguments. 

  Post_Simulation_Actions: It is executed after the simulation is completed and signals to 

the thermal simulation server to terminate. Next, it archives the simulation that was 

performed using a function included in a script named Archive_Utils.py. This script 

contains a number of functions defining ways to create the directory where the simulation 

files will be stored to provide greater flexibility (e.g. by date or by architecture or any other 

combination of inputted variables and constants). If the function is successful, 

Current_Simulation is wiped.  

 Reset_Current_Sim_Folder: When called, completely erases Current_Simulation folder 

and all its subdirectories. Before exiting, recreates a new empty folder with the same name. 

 

 
 

Figure 3.5: Example of a basic and utility script: 

(a) Sniper_Simulation_Init (b) Sniper_Simulation_Utilities. 

In (b) an example of functions is shown and the others are folded. 



3.2.3 Sniper_Simulation_Control.py  

 

 This script is the cornerstone of the Python Interface. It is the same script we temporarily 

named SniperControl in the previous overview. In contrast with almost all the other scripts, 

Sniper_Simulation_Control employs mainly the use of classes to register objects to the simulator. 

Within these classes callback functions are defined. These functions are executed by interrupting 

the Sniper Simulator whenever a certain event occurs. We will focus our attention to the periodic 

function included in the class Simulation_Flow. This function is called every time the user-

specified interval has elapsed. The first step of this function is to call McPAT with the current time 

interval as input, for a partial run. To implement this call, another function named McPAT_Partial 

is employed. In order to accommodate DVFS controls during simulation runtime, at each interval 

a configuration file containing the frequency and voltage level of each core is produced, and passed 

with the –c flag to McPAT. More about the input variables that can be defined when calling 

McPAT, and other options, can be found in the tool documentation. 

 After this call returns, the script employs the use of the function 

Thermal_Simulation_Client.main that is included in Thermal_Simulation_Client.py. The variables 

passed to this function are the two time values designating the beginning and end of the current 

time interval. Although it is employed here as a function, Thermal_Simulation_Client is a basic 

script and will be further analyzed in the following section. 

 In brief, in accordance to our earlier analysis, Thermal_Simulation_Client parses the output 

of McPAT and calls the thermal simulation client with the power values obtained. Once the 

simulation is complete, the client, as well as the script, terminate, and control is again returned to 

Sniper_Simulation_Control. 

 Afterwards, another basic script is called in the form of a function, namely, 

Resource_Control.py as Resource_Control.main. This function-script, takes as input the time 

interval, the number of cores in the sim, and the frequency levels of each core in the form of a list. 

In our work, Resource_Control does not have a stable role. It has access to all metrics of the 

simulation and can accordingly make resource allocation decisions. For example, change the 

frequency-voltage levels of a core. In general, any allocation scheme can be employed here. This 

script will be detailed more thoroughly afterwards. 

 Lastly, following the decisions described by Resource_Control, a function named 

Resource_Control _Sim is called in order to implement everything specified by communicating 

with the simulator. In our case, a simple voltage-frequency level allocation is enforced, 

accompanied by the production of a configuration file that will be used as input to McPAT in the 

next interval.  

 Note, that the Simulation_Flow class we just described is the only one defined in 

Sniper_Simulation_Control due to its pivotal role. Other classes that are registered through this 

script to the simulator, are included in a file named Sniper_Simulation_Classes.py. The classes 

defined there are the following: 



 Performance_Statistics: Logs the value of a number of metrics through time. In 

our work the metrics logged were: ipc, cycles, instructions, L1-D misses, LI-I 

misses, L2 misses and L3 misses. 

 Thread: A wrapper class for manipulation of threads. Only sets a number of thread-

specific variables.  

 Thread_Events: Logs all thread events using the Thread class. The events logged 

are: create, start, stall, migrate, resume and exit, along with the timestamp of the 

event.  

 

Furthermore, classes defined in both scripts, utilize functions included in 

Sniper_Simulation_Utils.py. The functions listed there are: 

 Resource_Control_Sim: Takes a frequency table as input and communicates only 

the values that changed from the previous interval to the simulator. Obviously, the 

simulator sets the requested levels at the beginning of the next interval. This 

function also produces corresponding voltage levels using Build_DVFS_Table, and 

logs them with the frequencies in a config file that will be used by McPAT in the 

next iteration. The configuration file is produced by the function Generate_Config.  

 Build_DVFS_Table: Builds a voltage-frequency table based on pre-defined 

voltage-frequency pairs. 

 Generate_Configuration: Produces a configuration file with the appropriate name 

(the time interval it addresses), listing in the correct format for McPAT the voltage-

frequency pairs of each core.  

 

 
 

Figure 3.6: Simulation_Flow Summary 

 

3.2.4 Thermal_Simulation_Client.py 

  

This script handles all necessary actions related to the communication of the Python Interface 

with the thermal simulator server through the use of the corresponding client. 

Thermal_Simulation_Client uses a set of functions included in the script 

Thermal_Simulation_Utils.py. In detail: 



 Configure_Variables: Gathers a set of necessary variables for the function of the basic 

and utility script and structures them in a dictionary that is returned back. 

 Pre_Computation_Actions: Initializes a set of text files that will be used to record 

statistics. 

 Power_Values_Computation: Parses the McPAT output text file for the current time 

interval and computes the power value of each component. The computation involves 

locating in the text file, each element used in the floorplan, adding the separate power 

values listed, recording the sum along with other metrics to the appropriate text files, and 

storing it to a list. The power values that were added are: Subthreshold Leakage, Gate 

Leakage and Runtime Dynamic. To handle these steps that result in a list containing the 

power values of each component, another script named McPAT_Parse.py was used.  

 Post_Computation_Actions: Records the list of power consumptions that were computed 

along with metrics that utilize aggregate values, e.g. total power consumption or max 

power density, and records them.  

 Thermal_Simulation_Client_Call: Calls the 3D-ICE client with the appropriate 

command line, passing along the computed power values and the thermal simulator server 

socket. The standard output and standard error of the program are captured in likely named 

text files. 

 

3.2.5 Resource_Control.py 

  

This script is the proper place in the interface to accommodate any resource management 

scheme. A simple sprint until exhaustion policy would just have to produce a frequency table with 

the values for each core and return it upon completion. Sniper_Simulation_Control will enforce 

the values requested to the simulation. In order to implement reactive control when temperature 

exceeds a certain limit, a function monitoring the max chip temperature is sufficient. It stands to 

reason that when a violation occurs, the function would override the sprinting policy and issue a 

frequency table with sustained execution values. This table is the one that should be now returned 

to Sniper_Simulation_Control. In the case that a completely different policy in intended to be used, 

another high-level script could be produced. Let us name this script Resource_Control2.py. The 

only modification needed, would be to invoke Resource_Control2.main instead of 

Resource_Control_main, in Sniper_Simulation_Control. Every script that might be produced in 

this fashion, can opt to use functions included in Resource_Control_Utils.py. In our work, this 

script includes the following: 

 Configure Variables: As always, gathers a number of necessary variables and structures 

them in a dictionary returned to the basic script. 

 Parse_Core_Temps: Parses the corresponding file outputted from 3D-ICE which 

contains the max temperature values for each core. These values are available through the 

extra capabilities we integrated in the thermal simulator in the form of small additional 

code segments. No special examination of these parts is deemed necessary. Obviously, the 

values that are parsed are added to the variable dictionary. 



 Form_Violation_Matrix: Creates a matrix listing whether a core has reported a 

temperature violation. This matrix was used in order to test sprinting policies that use per-

core activation and deactivation.  

 Frequency_Allocation: Decides on the target frequency allocated to each core based on 

whatever criteria we impose. In our work we mainly steered this function into choosing a 

single, stable, above sustained levels frequency.  

 Violation_Policy: Implements a reactive control policy when a violation is observed. In 

our work this policy would either revert all cores to sustained execution or revert each core 

reporting a violation. 

 Decision_Log: Writes to a suitable text file all decisions taken at each interval. 

 

In addition to the functions described, Resource_Control_Utils contains others, not used in 

the presented example. The idea was to have a single utility file facilitating the creation of a number 

of basic scripts implementing different allocation policies. 

 

3.2.6 Python_Server.py 

 

 The Python Server is implemented by using ZeroMQ [22] in addition to the rest of the 

code. In short, ZeroMQ is a high-performance asynchronous messaging library supporting many 

programming languages, including Python. The basic script Python_Server.py includes functions 

from Python_Server_Utils.py. Listing them along with a small description will also explain the 

use of the server script: 

 Configure Variables: A function we have seen in almost all basic scripts with basically 

the same role.  

 Initialize_Python_Server: As denoted by the name, initiates the ZeroMQ module and 

binds a socket whose value is stored in the variable dictionary. 

 Wait_For_Simulation: The server listens to the previously bind socket for messages. If a 

proper header is detected, the rest of the message is parsed as the requested configuration 

and execution resumes. 

 Initialize_3DICE_Server: Follows the detection of a proper simulation request. Starts the 

3D-ICE server with the proper stack description, floorplan and other files, and sends an 

appropriate message to the Python client when the 3D-ICE server finishes the initialization 

process (barring any error). 

 Accept_Connections_and_Close: Logs all 3D-ICE server output for the duration of the 

simulation. When the simulation is completed, this function terminates and the basic script 

goes back to Wait_for_Simulation. 

 

3.2.7 Low Level Scripts 

  

 This section contains scripts that are part of the Python interface but are not readily 

observed. They implement specific functions for utility files included in basic scripts. In essence, 



they could be named sub-utility files or even-lower-level scripts. A brief presentation of the 

operation of each of these scripts will follow: 

 Archive_Utils.py: This script is imported in Simulation_Utilities. It contains functions, 

each of which, defines a way to archive completed simulations. An example would be 

storing them based on benchmark, worksize, and number of threads, that is 

outputs/benchmark_name/worksize/thread_number/files. The idea is to specify in 

Simulation_Utilities, the name of the function that we intend to use to store the files, 

depending on the series of simulations we want to run. In our work, this file included 

basically a function to store based on benchmark, as above, a function to store based on 

date, and a function to store based on thermal characteristics. 

 McPAT_Parse.py: Facilitates the parsing of the McPAT output text files. It is used by 

Thermal_Simulation_Utils. It contains a function addressing the differences in component 

naming in the floorplan file, from where each component is selected, in the order they are 

written, and a function that implements the parsing per se, also logging the values along 

with some derivatives. 

 PCM_Class.py: A small file included in Simulation_Utilities, containing a module for 

saving the characteristics of a phase change material. The PCM class is used to create a file 

that will be parsed by the thermal simulation server in order to obtain the extra properties 

of the phase change material. 

 STK_Classes.py: Contains a number of classes defining objects used in the creation of a 

stack description file. The classes defined are: Material, Materials_Used, Layer, 

Layers_Used, Die, HeatSink, Dimensions, Stack, Solver and Output. All these objects are 

used in STK_Utils.py. 

 STK_Utils.py: Imported by Simulation Utilities in order to create the stack description file 

that will be used by the thermal simulation server. With the use of classes included in 

STK_Classes, it registers materials, layers and all other necessary entities involved in 

thermal simulation. Of course, the stack description file is created and properly placed 

before the script terminates. 

 

All of the scripts mentioned in section 3.2 are summarized in Figure 3.7. The flow is presented 

in full detail. In addition, any control switchback involved is represented and any multiple 

instance of a script designates that the repeated script has regained control of the flow. Python 

scripts names are colored in shades of green while the simulation tools use black. Scripts listed 

at the right side are lower levels of utility files arranged in descending order. From the structure 

of the figure, it is visible which script uses which utility script. 

 



 
Figure 3.7: Python Interface summary 



3.3 Thermal Model 

 

3.3.1 3D-ICE Heat Conduction Modelling 

 

The modelling of heat conduction in solids in 3D-ICE is done by applying finite-difference 

approximation to the governing equations of heat transfer.  The exact process is described in [19].  

In the last step of this process, the well-known analogy between heat and electrical conduction is 

invoked. That is, temperature is represented as voltage, heat flow is represented as electric current. 

Thermal conductance and resistance are replaced by electrical conductance and resistance 

respectively. Lastly, heat capacity is substituted by electrical capacitance.  

 

 
Figure 3.8: A typical solid thermal cell 

 

Afterwards, the thermal model is generated considering each layer to be discretized into cuboid 

thermal cells based on user-defined discretization parameters. Each thermal cell has a length l, 

width w, and height h, as shown in Figure 3.8, modeled as a node containing six resistances 

representing the conduction of heat in all the six directions (top, bottom, north, south, east and 

west), and a capacitance representing the heat storage inside the cell. The conductance of each 

resistor and the capacitance of the thermal cell are calculated as follows: 

 

𝑔𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚  =  𝑘𝑆𝑖
∙  

𝑙 ∙ 𝑤

(ℎ/2)
     ,    𝑔𝑛𝑜𝑟𝑡ℎ/𝑠𝑜𝑢𝑡ℎ  =  𝑘𝑆𝑖

∙  
𝑙 ∙ℎ

(𝑤/2)
  ,   

(1) 

𝑔𝑒𝑎𝑠𝑡/𝑤𝑒𝑠𝑡  =  𝑘𝑆𝑖
∙  

𝑤 ∙ℎ

(𝑙/2)
     ,   𝑐𝑐𝑒𝑙𝑙  =  𝐶𝑣𝑆𝑖

∙ (𝑙 ∙ 𝑤 ∙ ℎ) . 

 

The subscripts top, east, south etc. indicate the direction of conduction (i.e. north represents 

conduction in the +y direction, west represents conduction in the –x direction and so on). Current 

sources representing sources of heat are connected to the cells wherever there is heat dissipation. 

Next, the nodes of these thermal cells are connected to the nodes of their neighboring cells through 



the interfaces by computing the equivalent conductances between them. Hence, the following 

system of ordinary differential equations is created: 

 

𝑮𝑻(𝑡) + 𝑪�̇�(𝑡) = 𝑼 (𝑡),                                                  (2) 

 

Where T(t) is the vector of all node temperatures (as a function of time), C is a diagonal matrix of 

all cell capacitances calculated using Equation (1), U(t) is a vector of inputs (heat sources as a 

function of time) wherever they exist. G is a symmetric block tri-diagonal conductance matrix 

where non-zero, non-diagonal elements represent the connections between neighboring nodes and 

the diagonal term corresponding to a given node is equal to the sum of all conductances between 

that node and its neighbors.  

The formulation of heat flow equations, as described above, can be extended to structures 

containing multiple layers of thermal cells. This method can be used to generate a compact thermal 

model for any general heterogeneous structure like an IC die, and the three-dimensional temporal 

evolution of heat inside the 3D-IC, can be accurately modeled. In order to formulate the equations 

for the simulation of the thermal grid, Equation (2) is integrated numerically using the backward 

Euler method as follows: 

 

(𝐆 + 
1

ℎ
𝐂) 𝐗(𝑡𝑛+1) = 𝐔(𝑡𝑛+1) +  

1

ℎ
𝐂𝐗(𝑡𝑛)  

(𝟑) 

 
⇒  𝐀𝐗(𝑡𝑛+1) = 𝐁𝑛+1 

 

Where h is the time-step of the numerical integration, A = G + 
1

ℎ
 C, and Bn+1 = U(tn+1) + 

1

ℎ
 CX(tn). 

Here, tn denotes the nth time point during the transient simulation. In order to acquire the necessary 

variables to formulate the thermal model, 3D-ICE needs the following inputs: 

a) The physical description of the IC layers comprising the chip stack and their material 

properties. 

b) The discretization parameters (thermal cell size, time-step etc.) along with the chip size 

and initial temperature of thermal cells. 

c) Floorplan information of each individual die, reflecting location and area of various circuit 

blocks. These blocks will later have power dissipation values assigned to them. 

 

3D-ICE is a software thermal library built in C and based on the thermal modelling we just 

analyzed. All of the values listed previously are given to the simulator via netlist files.  The netlists 

are parsed and the matrices A and B are generated. As we can easily conclude according to the 

preceding analysis, matrix A is constant during a simulation and therefore is calculated only once. 

On the contrary, matrix B is dependent both on the previous temperature values and the current 

heat sources. As a consequence, it is recalculated at every time step before solving the sparse linear 

system.   



In addition, as mentioned in [23], the governing equations presented in the analysis in [19] can 

not only be used for solids, but also for liquids and gases that are considered to be stationary. In 

our work this is of particular interest because we intend to model phase change materials. 

Specifically, this fact allows us to retain the same model even after the PCM thermal cells are 

melted, meaning, they are in the liquid phase, because we consider them to be unassociated with 

any type of movement.  

 

3.3.2 PCM Modelling in 3D-ICE 

 

 In order to model phase change materials in 3D-ICE, we used the apparent heat capacity 

method from [9]. In this method, a nonlinear temperature dependent specific heat capacity is 

assigned to the PCM layer as shown in Figure 3.9. The transition of the phase change material 

from solid to liquid occurs over a temperature interval, where the specific heat capacity is very 

high compared to the material’s heat capacity in the solid and liquid phases. However, as can be 

seen in the function described in the figure, the transition of the heat capacity is not instantaneous. 

It rises from a value characterizing the solid phase at a steady rate (linear region), then assumes a 

maximum value for a certain duration and lastly decreases at a steady (equal to the previous) rate 

up to the value characterizing the liquid phase. Due to the increase in specific heat capacity, the 

rate of change of temperature decreases during phase transition.  

In real situations, during change of phase, a material absorbs large amounts of energy at 

approximately stable temperature. The behavior that results from altering the specific heat capacity 

dynamically during runtime, in the way specified, simulates real phase transitions very accurately. 

The integral of the heat capacity over the transition temperature range equals the latent heat of 

fusion for the PCM. This fact leads to Equation (4) used in calculating the max heat capacity for 

the method relative to the latent heat of fusion which is an intrinsic material property.  Recall that 

this property was specified in chapter 2.  

 

∫ 𝑓(𝑇, 𝐶𝑚𝑎𝑥)𝑑𝑇 = 𝐿𝑎𝑡𝑒𝑛𝑡 𝐻𝑒𝑎𝑡 𝑜𝑓 𝐹𝑢𝑠𝑖𝑜𝑛 
𝑇2

𝑇1
                           (4) 

 

 In order to explain how we implemented the apparent heat capacity method in 3D-ICE, we 

need to first go through a quick overview of how the simulator normally operates. Disregarding 

all other features except those important to our purpose, we can summarize the execution flow of 

the simulator as follows: 

1. Parsing of all input files, storing of variables in appropriate structures 

2. Initialization of the structures to be used next (memory allocation etc.) 

3. Formulation of matrix A , with respect to the input values (thermal configuration) 

4. Wait for connections 

5. Connection made, power values for the next interval are obtained 

6. Computation of matrix B 

7. Solve sparse linear system 



8. Repeat numbers 6-7  for the number of specified time steps (iterations, each with 

the temperature values resulting from the previous step) 

9. Write results to thermal maps 

10. Go back to 4 

 

 
Figure 3.9: Piecewise linear function for PCM specific heat capacity.  

Setting ctr ≫ cps for the (T1, T2) interval models the phase change 

 

As we can see, the computation of matrix A, happens only once for the entire duration of 

a simulation. This happens because, as we explained earlier, the values relative to its computation 

are stable, defined by the thermal configuration and known after parsing the netlist files. Matrix B 

by comparison, is seen in Equation (3) to be dependent on the temperature and power values of 

each interval and is therefore recomputed. Needless to say, since the method used to derive 

Equation (3) is a numerical one, a number of steps is required in order for the computed values to 

converge to the "exact" solution. From the documentation of 3D-ICE, a number of 5 steps is 

reported to be sufficient. If we were to integrate the apparent heat capacity method to the flow 

described, the conditional in listing 3.1 would ensue. 

 

Listing 3.1: Conditional describing the apparent heat capacity method in pseudo-code 

 

  IF ( CURRENT_CELL  PCM_LAYER)  AND 

       (CURRENT_CELL_TEMP > T1)         AND 

       (CURRENT_CELL_TEMP < T2)                : 

   ASSIGN_SPECIAL_C_VALUE 

   CONTINUE_NORMAL_EXECUTION 

  ELSE: 

   NORMAL_EXECUTION 

 

 Obviously, this conditional has only conceptual value. It illustrates the idea behind the 

specific implementation. In simple terms, the notion is that every time the simulator is looking to 

fill matrixes with capacitances, cells that belong to the PCM layer and have temperatures within 

the region of phase change, will be assigned a capacity value simulating the behavior we see in 

Figure 3.9. In any other case, cells will be assigned values with respect to the layer they belong 



and the material the layer is made of. To be more thorough, let us examine an excerpt of code, 

describing the computation of matrix B. 

 In listing 3.2, we can see that the computation performed is the same described in Equation 

(3) for matrix B. The matrix sources contains the power value allocation at the cell grid (matrix 

U), and the matrix temperatures contains the temperature values corresponding to the previous 

interval (matrix X(tn)). The function get_capacity calculates the capacitance of the current cell 

according to Equation (1) using the dimensions of the cell and the volumetric heat capacity of the 

material. The role of the matrix vector is obvious. In order to implement the method we described 

earlier, we replaced the code inside the for-loops shown in 3.2 with the code in listing 3.3. 

 

Listing 3.2: Part of the code computing matrix B 

 
 

  

Listing 3.3: Modified Code to compute matrix B 

 



 

 The function get_capacity_pcm is based on the preexisting get_capacity and assigns a 

volumetric heat capacity relevant to the temperature of the cell. For this reason, one might observe, 

that this new function is also passed the temperature value of the cell as a parameter. Regarding 

the conditional used, we assume that the melting point (the value that is immediately available for 

a material) of the PCM is located directly in the middle of (T1,T2), according to the chart presented 

in 3.9. To clarify further, Figure 3.10 was created.   

As illustrated in the figure, in the phase change region, a ramp-like function is employed. 

If the melting temperature of the material, the melting duration and the maximum volumetric heat 

capacity are known (Ctr), then the function is fully defined. We consider that the heat capacities 

for the solid and liquid phases have the same value and are already known (the PCM material has 

already been declared in the stack description file). With these in mind, we can see that when a 

cell enters the phase change region, it is assigned a heat capacity value that increases linearly. This 

is continued for exactly one third of the melting duration. Afterwards, for the second third of the 

melting duration, the cell is assigned a steady maximum capacity value that is calculated by use of 

Equation (4). We can easily see that for the last third the capacity decreases linearly to reach the 

liquid heat capacity at temperature T2 where we consider the material to be entirely liquid. Because 

the increase in heat capacity results in a decrease in temperature rate of change, for each cell 

undergoing phase change, the heat capacity follows the ramp-like function in Figure 3.10 quite 

thoroughly.  At this point, we must examine the way in which the simulator will be made aware 

of all the extra variables. 

 
Figure 3.10: Ramp-function used to assign capacity values to PCM cells 

  

  If we intended to simulate a single material, with the values that define the ramp-

function stable, hardcoding them directly to the program would be the way to go. However, in our 



case, where a multitude of materials will be examined, changing values in the source code for 

every simulation hardly seems ideal. For this reason, we implemented the use of a PCM file 

(probably inspired by the stack description file) and created an appropriate function to parse it 

during the initialization phase. Sure enough, the values included in this file are the melting point, 

the maximum volumetric heat capacity and the melting duration (T2 - T1). Arguably, a similar entry 

could be included in the already existing stack description file coupled with the appropriate 

modification to the parser. However, this approach presented a number of difficulties that made 

our approach quite easier to develop and more time-effective. 

 

Listing 3.4: Original for-loop filling the values of matrix A 

 
 

Seemingly, having also dealt with the problem of inputting the phase change material 

characteristics to the simulator, one would think that the additions required to properly model 

various configurations of PCMs are concluded. On the contrary, this is not the case. A simple test 

simulation would show the temperatures of the PCM cells to skyrocket when entering the phase 

change region in contrast with the expected behavior. If we take a look at Equation (3) again, we 

can see that the fact that was neglected is that matrix A is also dependent on the volumetric heat 

capacity of each cell. Consequently, recalculation of matrix A is also required. 

Hopefully, 3D-ICE already provides functions to properly destroy the matrix and recreate 

it. Undoubtedly, this approach in not very performance-effective. Especially if we notice that only 

the diagonal elements of the matrix change. Nevertheless, in an effort to make our approach as 

non-invasive as possible, we opted to just destroy the matrix with the use of built-in functions, and 

repeat the creation process as was presented by the authors. The only change is that now, instead 

of calling the function fill_system_matrix, we call a modified version named 

fill_system_matrix_pcm. 

 The sole change in the new function, is that the latter contains a conditional that results in 

calling the add_solid_column_pcm function instead of add_solid_column. Those in turn, use the 

functions get_capacity_pcm and get_capacity which were described earlier. The result of this 



chain of calls is that cells satisfying the conditional, get their capacitance from our appropriate 

function while all the others, get the value they would have under normal operation. The segment 

of code that was in effect and the one that took its place are presented in listings 3.4 and 3.5, 

respectively. 

 

Listing 3.5: Modified code to accommodate dynamic  

volumetric heat capacity allocation 

 
 

  

 
Figure 3.11: Execution flow for PCM-Enabled Thermal Simulation 

(a) Schematic Diagram, (b) Thermal Grid Representation 

 



Furthermore, in order to avoid recomputing matrix A even when no PCM function is present, 

we implemented the use of the variable PCM_Region. This variable is checked before matrix A is 

destroyed and recalculated. PCM_Region is set to 1 when any cell satisfies the conditional we 

formed, that is, enters the designated phase change temperature region and belongs to the PCM 

layer. Obviously, even a single cell entering the phase change area requires the recalculation of A. 

In every other case, the value of PCM_Region is 0. 

 The fact that a generally big matrix is reinitialized and filled from scratch, even when only 

a handful of values need to be actually changed is not lost to us. However, as mentioned earlier, 

optimization considerations are outside the scope of this thesis. The prevailing fact in this case was 

that our approach was efficient with respect to development time and resulted to tolerable 

simulation time overhead.  

 As a side note, let us clarify that the segments of code presented were the most crucial 

parts, the most tightly related with the concept of the apparent heat capacity method. Other various 

and more mainstream sections enabling the specific implementation (e.g. variable declarations, 

new structures, value computations etc.) are not detailed in this text. The overall process described 

in this section is illustrated schematically in Figure 3.11. 

 

3.3.3 Non-Uniform PCM Modelling 

 

 Through the use of our simulation framework, and after testing various phase change 

material configurations, the concept of using heterogeneous PCMs was found attractive. 

Specifically, the use of materials that differ only in the melting temperature but are part of the 

same layer was considered. In order to simulate such a configuration we should examine the role 

of the melting temperature in the program code. The first and foremost application of this variable, 

is in the conditional we use to determine whether we are in the phase change region. The second, 

is to determine the center of the ramp-function we use to assign capacity values. If we assume that 

all other variables characterizing the PCMs (phase change duration, max heat capacity) are 

common for all materials (for the sake of simplicity), and we substitute the PCM_Melting_Point 

with a likely named matrix, accessed by the rows and columns of each cell (variables already 

available at that point), we will have achieved the desired result without any further modification.  

 For that matter, if we expand the concept to the PCM_Melting_Duration and 

PCM_Max_Heat_Capacity, that is, we substitute the use of these variables with matrixes storing 

the value of each cell in the corresponding place (e.g. PCM_Melting_Duration[row][column]), 

we can easily simulate materials with different properties in general. The only matter left to be 

addressed, is to decide on a way to input the corresponding matrices. Of course it would be possible 

to hardcode the matrices directly and modify them when deemed necessary. Again, this approach 

does not seem very attractive if one intends to experiment with different distributions in the layer. 

The alternative approach is to formulate the matrixes in text files and create a function to parse 

them. Conceptually, it would be also possible to create files similar to the floorplan files, where 

instead of components, materials will be named, with their dimensions, positions and 



characteristics. This option is the most complete but should be accompanied by a utility program 

to facilitate the creation of the floorplan files and a more sophisticated parser. In our case, the 

second option was applied.  

 

3.4 Independent Tools - Scripts 

 

3.4.1 MATLAB Scripts 

 

Using MATLAB [24], we produced two basic scripts in order to visualize thermal and power 

maps. In truth, one script was used to visualize thermal maps produced by 3D-ICE which was later 

modified in order to be able to implement the same function for power maps. By visualization, we 

mean a color allocation to the different values included in the maps, upon which we superimposed 

a graphical representation of the appropriate floorplan. Each of the two scripts also uses a utility 

file. All of the above operations are handled completely by the scripts along with the archiving of 

the produced images to appropriate directories. The use of these scripts is facilitated by 

Post_Simulation_Tools.py, a small Python script copied in each archive folder which can be 

executed at any time after a simulation is stored. The use of these scripts could be integrated in the 

framework flow without great modifications. However, this integration was avoided due to the 

overheads in simulation time and memory they incurred, coupled with the fact that visual 

representation of all thermal and power maps was not always necessary. 

 

3.4.2 ArchFP 

 

ArchFP [25] was modified and used in order to produce the floorplans that were required 

in our simulations. The area values that were needed as input in ArchFP were gathered from 

McPAT. This tool was also used in order to produce the graphical representation of each floorplan. 

The output of ArchFP is not in suitable format for 3D-ICE. To create floorplan files in the 

appropriate format for the thermal simulator, a Python script was used that converted the files from 

ArchFP. This process, in cases where much variability in architectures and chip floorplans is 

present, could be integrated in the framework flow. In our case though, such integration was not 

deemed necessary.  

 

3.4.3 Independent Python Scripts 

 

In this section, the bulk of the scripts that were used outside the flow of the simulation 

framework are listed: 

  



 ArchFP_to_3DICE.py: A small script that produces floorplan files suitable for 3D-ICE 

by processing the floorplans generated from ArchFP. 

 Create_Core_Aware_Floorplans.py: Produces a text file with the rows and columns 

corresponding to the boundaries of each core in the floorplan. This text file is parsed by 

3D-ICE in order to keep track of per-core temperature metrics. 

 Post_Simulation_Tools.py: Offers four basic function-tools that can be used on demand 

after a simulation. The first two functions, Visualize_Thermal_Maps and 

Visualize_Power_Maps, run the corresponding MATLAB scripts as were described earlier. 

The function Temperature_Metrics_Over_Time, gathers and lists the maximum, average 

and minimum temperature of each layer as a function of time. The last function in this 

script, Power_Trace_Per_Component, creates a text file that contains the power values 

over time for each simulation component. All the functions employed in 

Post_Simulation_Tools are defined in Post_Simulation_Utils.py.  

 

3.5 Framework Usage 

 

 In order to use the framework described in this chapter, the sole requirement is to edit 

Simulation_Queue, fill the lists with the variables of the simulations to be run, and execute the 

script. Prior to issuing any simulations, Python_Server must be started once. If no developing is to 

be conducted, Python_Server can be started with the nohup flag, thus disassociating the process 

from a terminal window, and later sent to run in the background. Obviously, a machine containing 

all the necessary files, tools and scripts that compose the framework is a prerequisite.  The variables 

available in Simulation_Queue are grouped in three categories: Common Variables, Simulation 

Variables and Thermal Variables. In detail: 

 

Common Variables: 

 Interval_NS: The time interval used both in SniperSim and 3D-ICE in nanoseconds. 

 Heat_Distribution: A choice regarding the interpretation of the power values outputted 

by McPAT. As mentioned earlier in this chapter, the interconnection between the power 

and thermal simulation is materialized by a Python script that parses the output values from 

McPAT and passes them on to 3D-ICE in an appropriate format. The discrete components 

that are listed in all the floorplans we used for the Gainestown Nehalem architecture and 

for which we obtained power values, are demonstrated in Figure 3.12. In addition to the 

components shown in the figure, we also obtained power values for the NoC of each core 

and the L3 shared across cores.  In the scope of this thesis, four heat distribution schemes 

were used and are available for all chips using the same components as those described in 

our floorplans : Homogeneous, Discrete, Coarse and Fine-Grained. The Homogeneous 

scheme sums all power values and evenly allocates the result to all components. The 

Discrete scheme assigns to each component the power value calculated from the output of 

McPAT. The Fine-Grained scheme teams the power values to blocks containing more than 

one components. The blocks defined are: L2, Floating Point ALUS, Integer ALUS, 



Complex ALUS, Register Files, Instruction Scheduler, Renaming Unit, Memory 

Management, Instruction Fetch Unit, Load Store and L3. The components corresponding 

to each block are seen in Figure 3.12. The NoC is integrated to the L2 block. The Coarse – 

Grained scheme teams up all ALUS with the Register Files and the Instruction Scheduler. 

In the Instruction Fetch Unit the Renaming and Memory Management Units are also added. 

All other components are the same as before. The blocks that result are Execution Unit, 

Instruction Fetch Unit, Load Store, L2, and L3.  

 Input_From_File: A list with two values. Setting the first to NO will issue a normal 

execution as described in this chapter and ignore the second value. Setting the first value 

to YES, signals to the framework to conduct only thermal simulation, ignoring the 

performance and power simulation tools and using a text file with a power trace as input. 

In this case, the second value of the list must contain the path to the power trace text file. 

 Number_of_Simulations: The number of requested simulations. This number is used to 

repeat simulation variables that are common for simulations rather than having to type 

them as many times. 

 Run_Mask: A list with a numeric value for each simulation requested. Allowed values are 

0 and 1. Simulations marked with 0 in the Run_Mask are ignored and not run. This variable 

facilitates the creation of more general patterns in the simulation queues allowing any 

unnecessary simulation to be skipped. 

 

 

 
Figure 3.12: Core Discretization used in floorplan creation and power simulatio 



Simulation Variables: 

 Benchmarks: A list with the benchmarks for each simulation. Multiple benchmarks for 

the same simulation are a single string in the list with the requested benchmarks separated 

by commas. Benchmarks are listed in the format supported by SniperSim, meaning, suite-

app-worksize-threads. 

 Platform_Cores: A list containing the number of cores in the chip for each simulation. 

 Architectures: A list containing the architecture of each platform. In our work, only 

Gainestown was used but the variable has been exported to this level to facilitate the 

framework expansion if necessary. 

 Scripts: List containing the scripts to be invoked by SniperSim. The scripts are followed 

by any input variables separated by semicolons. In our case, inputs to 

Sniper_Simulation_Control were Interval_NS, Input_From_File[0] and Heat_Distribution. 

 

Thermal Variables: 

 Chip_Size: A list of lists with the inner lists containing two values describing the size of 

the chip for each simulation (length, width) in μm. 

 Cell_Size: The cell discretization to be used by 3D-ICE (length, width) in μm in a similar 

format with the previous variable. 

 Sink_Area: The area of the heatsink in μm^2. If no heatsink is specified later, this value 

is ignored. 

 Simulation_Step: The duration of each simulation step within a time slot for 3D-ICE. The 

time slot corresponds to the simulation interval while the number of steps that can fit in a 

slot represent the number of iterations of the numerical method. 

 Initial_Temperature: The initial temperature of the cells in the chip. 

 Heatsink: Available options for this list of variables are YES and NO indicating whether 

the chip in equipped with a heatsink or is connected directly to the ambient. 

 Layers_List: A list of lists declaring the elements in the chip stack from top to bottom. An 

example: [‘SINK’,’SPREADER’,’PCM’,’DIE’,’PCB’]. 

 Heights_List: A list of lists, declaring the height of each element specified in the stack, 

respectively. Example: [‘2000’,’1000’,’200’,’100’,’10’] 

 Materials_List: Same as before, declaring the material of each element from top to 

bottom. Example : [‘COPPER’,’COPPER’,’LAURIC_ACID’,’SILICON’,’BEOL’]. A set 

of materials and their properties are hardcoded in STK_Utils.py. If new materials are 

intended to be used, then an entry to this script must be added. Adding materials to this 

script does not necessitate using them always. One might declare a great range of materials 

and use them on demand. That is the reason why we did not export this variable for 

immediate editing. 

 Melting_Points: Contains the melting point for each PCM used in the simulations. If no 

PCM is specified in the chip stack, the corresponding value in this list is ignored. 

 

Apart from all the variables specified in the list, a full system simulation also involves some 

files still. As was described earlier, a floorplan file is necessary as input to 3D-ICE. To create the 



floorplans for Nehalem-like configurations we used ArchFP and transformed the output to a 

suitable format. However, the fact that the operation of ArchFP is an interactive trial and error 

process, until the specified layout is achieved, precluded us from automating the floorplan creation 

and integrating it to the framework. For this reason, pre-created floorplans for Nehalem-like 

architectures with cores ranging from 4 to 128 cores are fed directly to 3D-ICE.  If another 

architecture is to be used, the user must see to providing suitable floorplans. Along with these, if 

a visual representation (image) is included in the same directory, the framework will be able to 

visualize thermal and power maps with respect to this image, if so requested. A core file is 

associated with each floorplan we created designating the rows and columns occupied by each 

core in the layout. This file is used by 3D-ICE to provide per core temperature statistics and is 

unique to the architecture and discretization parameters. In order to utilize this function for another 

architecture, a suitable core file must be included. If no such file is present, the function and the 

corresponding statistics are not employed.  

In summary, in order to use the simulation framework, the necessary actions can be divided 

conceptually into two groups. The first group, dealing with prerequisites, is the one linked with 

files generally regarded as stable, involving framework, floorplan and floorplan associated files 

(visual representation, core boundaries). The initiation of the Python server is also categorized in 

this first group. In the second group, we regard the definition of all variables relative to the 

simulations we want to run. The distinguishing factor between the two, lies in the fact that the first 

group is characterized by little or no repetition, whereas the second group is replicated for each 

batch of simulations.  

A cumulative view of the inputs at each stage of the framework is shown in Figure 3.13. Inputs 

that are stable during the execution of a simulation are marked in black, in contrast with inputs that 

are different for each interval marked in red. All blocks designated with green color are 

materialized with Python scripts whereas the blocks in blue are independent tools.  

 

 
Figure 3.13: Input-wise overview of Simulation Framework 



 

 

 

 

 

 

 

CHAPTER 4 
 

 

 

 

 

 

 

 

 

 

 

 



4.1 Theoretical Background 

 

This chapter is devoted to showcasing the importance in thermal modelling, of interface 

materials between chip components and of heat distribution along the core die. Notably, this 

analysis is only an example of the usage that the full system simulation framework we described 

in Chapter 3 can be put to.  In order to better understand the variables involved and the reasons 

that led to this analysis, a brief theoretical background will be provided in this section. 

Thermal Interface Materials, commonly known as TIMs, are increasing in importance in 

nowadays ever more power hungry and small chips. Heat generated by semiconductor devices 

must be removed to the ambient to maintain the junction temperature in the silicon die within safe 

operating limits. This heat removal process, often involves conduction from a package surface to 

a heat spreader that can more efficiently transfer the heat to the environment. The spreader in turn, 

might be connected to a passive or active heat sink to further boost the cooling capabilities of the 

system. Regardless of the case, the spreader has to be carefully joined to the package and/or sink 

surface to minimize the thermal resistance of this newly formed joint.  

Attaching a heat spreader to a semiconductor package surface requires that two commercial 

grade surfaces be brought into intimate contact. These surfaces are usually characterized by a 

microscopic roughness superimposed on a macroscopic non-planarity that can give surfaces a 

concave, convex or twisted shape. When two such surfaces are joined, contact occurs only at the 

high points. The low points form air-filled voids. Typical contact area can consist of more than 90 

percent air voids, which represents a significant resistance to heat flow.  

Thermally conductive materials are used to eliminate these interstitial air gaps from the 

interface by conforming to the rough and uneven mating surfaces. This is illustrated graphically in 

Figure 4.1. Because TIMs have greater thermal conductivity than the air they replace, the 

resistance across the joint actually decreases, counterintuitively to the fact that we are adding an 

excess layer (and in theory, excess thermal resistance) between the conducting surfaces. In truth, 

what happens is that we replace a poor conducting material, air, with a better one, the selected 

TIM. Thus, the resulting thermal resistance across the two surfaces diminishes. It stands to reason 

that the same effect is also transferred to the joint temperature. Reducing the resistance from the 

die to the ambient generally results in cooler thermal profiles. 

 

 
Figure 4.1: (a) Chip components arrangement in a Flip Chip LGA Package 

(b) Graphical illustration of TIM usage between die and IHS 



 

Regarding heat distribution across the core die, it has been shown in the literature that the 

temperature distribution in a microprocessor is architecture and/or workload dependent. In [26], it 

has been demonstrated that placing sensors at the hottest locations determined by one application 

can cause large temperature errors in temperature readings for other applications. The authors go 

on to explain that certain different applications incur different power and thus, temperature profiles 

across core components. As a result, localized heating is application dependent. Since the research 

in [26] was conducted on a certain microprocessor, in order to generalize the previous conclusions, 

the authors outline cases in the literature where diverse results were reached in attempts to identify 

the hottest regions of other microprocessors. Regardless of this diversity in results, one might 

notice that the object of all related research lies in identifying patterns that link different 

applications and process variations to specific components demonstrating higher temperature 

profiles. In any case, the fact that the temperature across the die components is not uniform, with 

large differences reported, is undisputable.  

This heterogeneity of temperature profiles has a noteworthy impact on the overall thermal 

behavior of chips, due to the fact that thermal conduction is greatly dependent on power density. 

To clarify further, a component of certain area, consuming stable power will result in quite a 

different temperature profile than the total of the processor die consuming the same power. While 

seemingly obvious, this fact is often neglected in thermal modelling schemes, where power is 

allocated evenly across the core components, coupled with an overestimation in power 

consumption to reflect worst case, full-utilization scenarios. This approach, while seemingly 

analogous or at least, safely producing a worst case scenario, will be seen to fail to capture 

accurately both transient effects across stack layers and power densities that create localized 

hotspots.  

It is our belief that this uneven power and consequently, temperature allocation across the 

core die will be further exacerbated in chips intending to use frequency sprinting, due to even 

higher component consumption. In addition, the use of phase change materials, which is very 

popular among such configurations, is often characterized by non-uniform melting of the PCM 

layer. As reported in [9], failure to capture the phenomenon where parts of the phase change 

material are melting while other parts are still solid, can result in significant under or over-

estimation of temperature.  

While this fact is stated with different power consumption and heat production among 

different cores in mind, the non-uniform temperature allocation in the die of a single core can be 

seen from two different perspectives, closely linked to the particular concept. From a per-core 

perspective, the single die can been thought of, as a microscopic variation of a multicore chip 

demonstrating localized hotspots, thus effecting the conclusions presented in [9] in a smaller area. 

To elaborate, not accounting for non-uniform melting in the PCM across a multicore chip is 

analogous to not accounting for non-uniform melting in the PCM across a single core die, albeit 

in smaller proportions. Certainly, the penalty in simulation accuracy will be smaller in a per-core 

basis.  



However, more careful consideration of the problem will soon reveal that this two 

phenomena are tightly coupled. In fact, a simple analysis will show that they work additively. 

Bearing in mind both that components in a single core and cores in a single multicore might exhibit 

higher utilization and power consumption than others, one can easily deduce that the combined 

effect of this two factors, leads to even more focused hotspots. Hence, the inaccuracies described 

in [9], are further exacerbated when assuming per-core uniform heat distribution.  

To make matters worse, thermal interface materials, as briefly described previously, are 

almost always neglected in thermal modelling. On its own, this omission is an indirect assumption 

of ideal surface conformation between layers in the stack. Obviously, the resulting thermal model 

will be, in general, better able to conduct heat. More specifically, depending on the placement and 

characteristics of the TIMs neglected, the thermal model will be unable to model transient heat 

spikes correctly and simultaneously lead to underestimation of steady state temperatures.  

In conjunction with all the preceding analysis, not modelling thermal interface materials is 

expected to lead to even greater irregularities in the thermal model. Truth be told, each and every 

one of the factors mentioned, has an impact in modelling accuracy on its own, but is also influenced 

by all the others. To summarize, we believe that uneven heat distribution across the die of a core 

leads to different temperature profiles than uniform distribution. This difference, will be more 

prominent in sprinting frequencies. In addition, coupled with the absence of TIMs in the thermal 

model, the resulting temperature map of the chip will be smoothed out. The same line of reasoning 

can also be followed backwards. Not modelling thermal interface materials leads to smoother 

profiles, which are smoothed out even further due to erroneously assuming homogeneous heat 

distribution across core components which is further apart from true conditions in sprinting cores. 

Both factors, heat distribution and thermal interface materials, seriously affect chips that intend to 

employ phase change materials and sprinting methodologies. 

In order to validate this theory we just presented and demonstrate the impact of the factors 

involved, we formulated a series of simulations. In this chapter, we will demonstrate the different 

results in each scheme at increasing frequency levels, for some different workloads. The initial 

goal is to demonstrate the increasing effect of heat distribution and TIMs with increasing frequency 

levels and thus prove their importance in sprinting oriented research. The modelling approach and 

all related variables, will be presented in section 4.2.  

 

4.2 Simulation Methodology  

 

 In order to test the theory we presented in section 4.1, we decided to conduct our 

experiments on a four core Nehalem Gainestown based chip. To better simulate larger power 

densities, consistent with current technology trends, we opted to use a 22nm process, extracting 

component sizes and chip areas from McPAT. McPAT reports a die size of 48,358 mm^2 which 

was modeled as a 8 mm x 8 mm square chip, assuming a 20% error, which was the average under 

evaluation reported in [18]. 



 To simulate the above chip, SniperSim was used with an interval of 1ms. The benchmarks 

used to conduct the experiments are Blackscholes, Bodytrack and Streamcluster, all for a total of 

4 threads and for the duration of 1000ms. All benchmarks used the large work size. Due to the fact 

that no dynamic control over performance simulation characteristics was conducted, to accelerate 

simulation times, we recorded the power trace of each benchmark using our framework, and then 

fed it directly to our thermal model through the options available from the Python interface. In 

cases where the input did not reach the desired levels, we iterated over the values of the parallel 

region. The reason we focused our analysis on the first 1000ms of each case, derives from the fact 

that the average power levels in the ROI of the above benchmarks is pretty much stable. As a 

result, since we wanted to focus on transient effects and temperature spikes, we felt that iterating 

over the same values would only serve to demonstrate the resulting steady state levels which we 

deemed not equally important. Nevertheless, a brief discussion of the results from a 10.000ms 

simulation are addressed in every section. Each benchmark was simulated for all cores working in 

2190, 2390, 2660 and 2926MHz. 

 

 

 
Figure 4.2: Single core floorplan 

 

 

Regarding the floorplan and the components placement, we used ArchFP to produce the 

necessary files, as mentioned in previous sections, and we based the layout on information from 

[27]. The component areas were retrieved from McPAT as mentioned earlier. The resulting 

floorplan, in visual representation, can be seen in Figures 4.2 and 4.3. 

 



 
Figure 4.3: Four core chip floorplan with L3 

 

 For our thermal model, we decided to use a variation of the chip with a heat spreader but 

no heat sink. This decision was influenced by the work presented in [10] where a similar 

configuration was used. We further selected to use a heat spreader that is the same size as the die. 

This creates an even more challenging power profile for the chip and accounts for the limited space 

characterizing mobile chips. It is of course noted, that heat spreaders need to be mounted on the 

PCB and need to have a bigger surface than the die to achieve their maximum potential and 

placement requirements. However, we selected to sacrifice a portion of lateral heat spreading to 

create an even more thermally challenged multicore and provide more options, later on, for 

possible PCM configurations.  

 As far as the chip stack was concerned, we used the model that can be seen in Figure 4.1, 

representing a flip chip land grid array, without the heat sink.  A more practical representation, 

showing the actual stacks used in the thermal model, is shown in Figure 4.4. The materials of the 

heat spreader and of the die are, of course, copper and silicon respectively. The thermal interface 

material assumed was indium, which is reported by [28] to be one of the best choices available. 

Lastly, a small layer representing the underfill with parameters derived from [29] was also present. 

The parameters used for each of these materials are summarized in table 4.1.  

 In 3D-ICE, we used 100 μm as cell length and width and used 250 μm thick layers in the 

stack. In [19] it is reported that dimensions of a few hundred microns are sufficient for accuracy, 

hence, the selected values are both acceptable in terms of precision, and result in small simulation 

times. The layers that had smaller thicknesses were of course modelled accordingly. Transient 

analysis was conducted with a time slot of 1ms, the same used in SniperSim. The step was set to 

0.2ms resulting in 5 steps, that is, 5 iterations of the numeric method, in each interval. The initial 

temperature of cells was set to 300 K. The top layer of the heat spreader was connected directly to 

the ambient and a value slightly worse than the one reported in [9] was used for the convection 



resistance, to account for worse heat transfer conditions due to the fact that no heat sink is present. 

Sure enough, this value was adjusted to the heat transfer coefficient required as input for 3D-ICE. 

Furthermore, in each simulation, we outputted thermal maps for each layer along with the power 

map for the die. The maximum, average and minimum temperature of each layer through time was 

also recorded along with the maximum temperature corresponding to each core die.  

 

 
Table 4.1: Material properties used in thermal simulations 

 

 In order to demonstrate the validity of the theory we formulated in 4.1, we used four 

different configurations for each benchmark at each frequency level. The first, denoted as A1, is 

the default chip stack we just described, modeled with fine-grained heat distribution. The second, 

is the same configuration without the TIM layers. The other two are identical but employ 

homogeneous power distribution among all core components. This is achieved with the same 

power trace by accordingly modifying the values for each interval, such that the power density is 

uniform across the core die and the same total power is dissipated in the chip. Let us note also, that 

4 total threads for each benchmark does not mean that 4 threads are always active in the simulation. 

It only means that 4 threads will be spawned in total and are not necessarily active all the time. 

This is ideal in our case, since it provides variability both across the die of a single core, and across 

the cores of the chip. The configurations are numbered A1 through A4, in the order they were 

presented. The same information is also presented in Figure 4.4. 

 

 
Figure 4.4: Thermal configurations used in the simulations 

 



4.3 Results and Discussion 

 

4.3.1 Blackscholes Simulations 

 

 We decided to first present some results for each benchmark separately, analyze them in 

some detail and then summarize our findings. This approach was chosen in order for the reader to 

be better aware of the individual characteristics of each configuration before being presented with 

overall statistics. As was already explained, Blackscholes was run with 4 total threads for 4 

configurations (A1-A4) at 4 different stable frequencies. To begin with, let us examine the 

temperature traces, with respect to the maximum temperature observed in the silicon die, presented 

in Figure 4.5.  

 

 
 

Figure 4.5: Thermal traces for Blackscholes at increasing frequency, for each 

configuration 

 

 What is readily observed from the charts, is that the slope of the curves increases with 

frequency. Put more simply, that the maximum temperature in the silicon increases as frequency 



increases, which is quite expected. A more careful examination, will also reveal that as frequency 

increases, so does the gap between the temperature traces of each configuration.  

This gap, one might notice, is more prominent at the beginning of each simulation. This 

happens because that time region corresponds to the serial phase of the benchmark where only one 

core is active. The operation of this single core, for this particular benchmark, is characterized by 

an increased power density in the center region of the core. The result is a tightly focused hot spot. 

For reference, Figure 4.6 shows the power traces for each core and the corresponding sum for the 

chip. The first core in the chip, or alternatively, Core 0, is moderately active in the beginning of 

the simulation and then reverts to idling. The utilization of all the other cores is pretty much even 

in the parallel region.  

 

 
Figure 4.6: Per-core and total power traces for Blackscholes at 2926 MHz 

 

 In the serial phase, we can see from the diagrams that for configuration A2, even though 

fine grained heat distribution is used, the hot spot from the operation of one core, with some more 

power consuming components standing out, is very quickly smoothed out. The reason for this, is 



that the die is modeled in direct contact with the copper heat spreader. The spreader, true to its 

name, by virtue of the very high thermal conductivity of copper, quickly conducts the heat 

concentration to the surrounding cells, resulting to a quite lower maximum temperature.  

Configuration A3, is seemingly closer to the temperature levels of A1. The reason being that even 

though homogeneous heat distribution is considered, the modelling of TIMs, captures the hot spot 

generated by the operation of a single core, while all the others remain dark. The result is that it 

leads to higher maximum temperatures than the other configurations at this point. Configuration 

A4, using homogeneous heat distribution without thermal interface materials, simulates the 

operation of a single core, equally active at all components that is easily spread out with respect to 

the generated heat.  

 

 
Figure 4.7: Thermal profiles for each configuration at t=100ms 

(a) A1 – Accurate modelling of hot spot 

(b) A2 – Accurate power model for hot spot, inaccurate thermal model 

(c) A3 – Inaccurate power model for hot spot, accurate thermal model 

(d) A4 - Inaccurate power and thermal model for hot spot. 

 

It is worth noting that configurations 2, 3 and 4 do not demonstrate big variations in the 

resulting maximum temperature value. Apart from the fact that they all fail to simulate the 

localized hotspot correctly, they have certain characteristics that tend to mitigate their differences.  



A3 models a single homogeneous core with slow spreading of heat to neighboring cells. Since the 

core selected was the first of the four presented in the floorplan, that means that A3 dissipates heat 

slowly towards the second core and the common interface with the L3. A2, by spreading the heat 

generated in the hot spot seen in 4.7- (a) very efficiently, has a tendency to converge to the profile 

created by A3. By virtue of the centered position of the hotspot, heat is dissipated at a rapid pace, 

towards the rest of the first core (thus converging to the A3 initial modelling profile), and towards 

the second core that is close to the hotspot (part of the evolution of the A3 modelling profile). 

Configuration A4, is a combination of the two and stands farther apart, but is kept a bit reigned 

from the fact that the faster pace at which it is dissipating heat is only utilized towards two 

directions (Core 1 and L3), since the other faces of Core 0 are at the edge of the chip boundaries.  

To better understand the results described in each case, a thermal snapshot of the chip for 

each configuration is presented in Figure 4.7. The thermal snapshot is taken at 100ms elapsed time 

for the 2926 MHz case. In this figure, we can see the hot spot we previously described in (a), the 

same hot spot, but greatly smoothed out in (b), the uniform operation of one core with small heat 

spreading in (c), and the uniform operation of one core with rapid heat spreading in (d).  From this 

figure, another important fact is unveiled. Apart from the absolute difference in maximum 

temperature reported in each configuration, we can easily see that different thermal profiles are 

created in each case. This fact will be shown to have a serious impact in PCM enabled 

configurations. 

 

 
Figure 4.8: Temperature trace for Blackscholes iterated over the parallel region at 2660 

MHz 

(a) Temperature trace overview 

(b) Last 50ms of simulation demonstrating steady state values 

 



 

Returning to Figure 4.5, we can see that after entering the parallel region at about 150ms, 

in each configuration the max temperature starts converging to a steady state value. In that case, 

where three cores are active, the temperature differences are smaller as heat is less focused and 

less variable. An interesting fact is that configuration A2 tends to close the gap towards A1 on 

account of the faster heating of components due to the high conductivity of copper coupled with 

the smaller heat capacity in the system. In other words, reverting to the electrical analogy, A2 has 

a smaller RC factor meaning that with steady, constant value input, the voltage (temperature) will 

rise at a greater pace. Simultaneously, the final steady state temperature of A2 will actually be 

lower since the thermal resistance from the die to the ambient is smaller. To recap, A2 will 

converge faster to a smaller steady state temperature than A1. This will be showcased later on. 

A similar behavior is also observed between A3 and A4. In this case, because these 

configurations were closer in temperature, A4 has time to elevate to greater values than A3, but 

later on, will start converging to smaller temperatures for the reasons explained previously. For all 

cases, the same simulation carried on for 10s is shown in Figure 4.8. We can easily see in 4.8 (b) 

that as expected, A2 converges to a smaller value than A1, and A4 to a smaller value than A3, 

even though, we can see in 4.5 that A4 is rising at a faster pace initially. 

In addition, for comparison purposes, the thermal profile for each configuration is shown 

after 700ms in Figure 4.9. Note that in this case the color reference has changed, with the cooler 

colors corresponding to 350 kelvin degrees. Naturally, the temperatures reported in 4.8 are 

prohibiting for the function of the chip. This fact is neglected in this phase since the object of our 

interest are the differences in the thermal models. The maximum temperature for the silicon die is 

commonly regarded as 100 Celsius degrees, the equivalent of 373.15 in kelvin. In our work, we 

used a more conservative limit of 370 kelvin as the value at which we report overheat of die 

components. 

In order to quantify the differences in thermal simulations outlined so far, as well as present 

an alternative point of view, we created a set of statistics from the thermal traces we logged. These 

statistics are demonstrated in Figure 4.10. The error values listed are derived by comparing the 

thermal trace for the maximum temperature of A1 with every one of the other configurations. As 

expected, A4 is the worst case with respect to the maximum error observed. A3, follows pretty 

close in all frequencies while A2 generally exhibits the smaller error. This outcome was expected 

due to the previous analysis where A2 was seen to be better able to follow, even from a certain 

distance, the thermal trace of A1. This tends to point that heat distribution is a more important 

factor in the case we are examining and that disregarding thermal interface materials in cases where 

homogeneous heat distribution is assumed, results in small irregularities in comparison. Regarding 

the average error values, A2 exhibits accordingly the lowest values while A3 results in a bigger 

average error due to the phenomenon we described earlier in this section. Of course, as we have 

seen, configurations 3 and 4 do not result in much different thermal profiles, with the difference 

being that in small time windows, 4 exhibits higher temperatures. As a result, the better average 

performance is largely artificial.  



 

 
Figure 4.9: Thermal profiles for each configuration A1 through A4 at t=700ms 

 

 
Figure 4.10: Maximum and average error values for Blackscholes temperature traces 



 

Regarding the effect of frequency on the inaccuracies that surface, each of the 

configurations exhibited an increase in maximum error of 200% on average, and an increase in 

average error of 300% on average, all in the span of less than 1GHz increment in frequency. 

Regardless of the individual numbers, the upward trend in maximum and mean error values is 

indisputable and quite intense. The specific values represented in Figure 4.10 are summarized in 

table 4.2. 

While all the facts presented so far seem quite interesting, another point of view might be 

taken into account, a point very often neglected. Earlier in this text, we mentioned the usual limit 

for the temperature in the die. Temperature measured in the center of the die is denoted Tjunction. 

The corresponding limit for temperature at the center of the top level of the heat spreader, 

commonly known as Tcase, is usually about 20 degrees lower. That means that chips with maximum 

Tjunction at 100 degrees Celsius, use 80 degrees Celsius as the limit for Tcase. Essentially, this means 

that there is an expected 15 degrees temperature difference between core and case temperatures, 

at loads that exceed cooling capabilities (that means more than the expected full load). In our work, 

in tune with the described trends and the choice for Tjunction_max, the maximum value for Tcase was 

set at 350 Kelvin which is a little bit lower than the 353.15 kelvin degrees equivalent of 80 C°.  

 

 
Table 4.2: Comparison of A1 against all other configurations – error values 

 

Another interesting weakness of said thermal models occurs in this case. In Figure 4.11, it 

can be seen that in any case examined, excluding A1, the temperature of the top spreader layer is 

very close to that of the die. Especially, in the 2926 MHz case, the only one that violates 

temperature limits clearly, at the moment of the first violation of Tjunction, in A1, the temperature 

of Tcase  is 353 Kelvin. This number approximates quite well the anticipated behavior, in contrast 

with the corresponding 365, 363, and 368 Kelvin for Tcase in the other configurations, respectively. 

Even if we assume that the 20 degr2ees gap usually assumed between Tcase and Tjunction is an 

approximate towards ensuring that the die never reaches critical temperatures, meaning that the 



actual difference might actually be smaller, the deviations presented in the other configurations 

are too large and imply further inaccuracies. 

 

 
Figure 4.11: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz 

 

Although we used the temperature of the die as the trigger for our later exploration, as will 

be presented later, the distribution of heat in the vertical direction of the chip stack, is paramount 

when the use of PCMs is considered. As an example, assume that the optimal melting temperature 

for a PCM to be placed on top of the heat spreader is intended to be determined. We can see that 

methods 2, 3 and 4 would probably result in erroneously different results on account of modelling 

hotter top-most layers. The same will hold true for an exploration regarding the optimal position 

of a phase change material in the chip stack.  

Lastly, let us underline that in the most intense frequency scenario, the time of the first 

temperature violation is reported at approximately 600ms, while, in configuration 4, the same first 

violation, is reported more than 150ms later. This underestimation, might be the most critical for 

systems intending to employ sprinting and phase change materials, since temperature violations 

trigger control actions and are used to determine the performance of methodologies and materials.  

 

4.3.2 Bodytrack Simulations 

 

 In accordance with expected results and what was presented in the previous section, from 

the thermal traces for Βodytrack, shown in Figure 4.12, we can easily identify the upward trend in 

maximum die temperature, rising in gradient as frequency rises. Similarly, with every frequency 

step up, the gap, or more accurately, gaps between the thermal trace for each configuration, widen 

perceptibly. In contrast with Βlackscholes, Βodytrack is characterized by fluctuations in the 

thermal trace. 



 

 
Figure 4.12: Thermal traces for Bodytrack at increasing frequency, for each 

configuration 

  

To better understand this behavior, Figure 4.13 was created, presenting the power traces 

for each core, along with the power trace for the sum of the chip, for Bodytrack, with the cores 

operating at 2926MHz. It is readily seen that Core 3 is for the most part idling, while Core 0 is 

punctuated by short bursts of activity. Cores 1 and 2, have similar power traces in form, both with 

each other, and with the sum. An interesting fact to observe, is that the thermal trace of the 

maximum temperature of the chip, follows the output expected from an RC circuit, inputted with 

a voltage similar in form to the total power trace, superimposed on a curve representing the RC 

response to the average value of the power consumption of the whole chip. 

 



 
Figure 4.13: Per-core and total Power traces for Bodytrack 2926 MHz 

 

By way of a better explanation, les us divide the power trace for the total chip in two 

different functions of time, a steady value equal to the average power, and a transient value equal 

to the power trace shown in 4.13 (b) minus the steady value. The response of an RC circuit to the 

steady value, would be something similar to 4.14 (a). The shape of the transient value and the 

shape of the corresponding RC response, would roughly be what we can see in 4.14 (b). The sum 

of the steady and transient functions would be our power trace. The sum of the respective 

responses, would be approximately the sum of 4.14(a) with the response in 4.14 (b), which, would 

have a similar shape with our actual thermal trace. 

 

 
Figure 4.14: Example RC responses 

(a) RC response to steady voltage input 

(b) RC response to step input 

 

Of course, the known analogy of electrical and thermal phenomena is taken into account. 

However, the fact that the overall maximum temperature of the chip follows closely the response 

of the total power through time, even though this power is the result of highly uneven distribution 



among the cores, resulting in uneven thermal profiles, is intriguing. Nevertheless, it should also be 

noted that this behavior is very faint, in configurations 2 to 4.  

The analysis regarding the steady state values and rate of change of temperature that was 

presented in the previous section, is also in effect here. Specifically, we can see that the curve 

corresponding to the average power consumption conforms to the previously specified behavior. 

This is not surprising since the characteristics involved are specific to each configuration. Exactly 

like in Blackscholes, A2 converges faster than A1 to a lower steady state value and A4 converges 

faster than A3 to a lower steady state value. These findings and the corresponding steady state 

values can be seen in Figure 4.15. 

 

 
Figure 4.15: Temperature trace for Bodytrack iterated over the parallel region at 2660 

MHz 

(a) Temperature trace overview 

(b) Last 50ms of simulation demonstrating steady state values 

 

In order to observe the difference between the thermal profiles that each configuration 

generates, we created Figure 4.16. The images in the figure are thermal snapshots for each setup, 

taken every 100ms of time, up to 700ms. The more power consuming cores 2 and 3 are seen to be 

translated to hotter cores in configuration A1, as expected. In A2, the same result can also be 

noticed, even though, heat is much more spread out, and the hyperactive cores (with respect to the 



others) are only slightly hotter. The outline of the active cores in A3 is distinct, and the same 

behavior that was demonstrated in A1, is demonstrated here, at core instead of component level. 

This of course, leads to smoother profiles because power is spread out and less focused. A4 

demonstrates a scenario which only vaguely corresponds to the mismatched operation of only two 

cores.  

 

 
Figure 4.16: Thermal snapshots every 100ms for Bodytrack at 2926 MHz 

(a) – (d) Configurations A1 to A4 respectively 

 

In the overall results from Bodytrack, even before we examine the specific numbers, we 

can conclude that heat distribution is again more influencing. The scenario presented for 

configuration A2 is seen to be closer to A1 than any of the others. 

The statistics that are derived from our simulations and are presented in Figure 4.17, and 

the corresponding specific values in Table 4.3, corroborate the remarks we made from observing 

the thermal profiles. Specifically, configuration A2 exhibits the smallest error both in maximum 

and average temperature, at all frequencies. A3 is next in magnitude of maximum temperature 

error, but shows the largest values for average metrics. This behavior is an artifact produced 

transiently from the higher upward slope of A4, in the time window we examine. As we can see 

in Figure 4.15, A4 diverges more than A3 later on in the simulation for a long period of time, 

leading to an overall larger average temperature error.  

Let it be noted, that if we derive the same statistics for 10s of simulation instead of 1, the 

values that result are without exception the same or larger. However, we felt that that for smaller 

time windows, where the responses are still far from steady state values and the majority of 

temperatures reported are within silicon operating limits, the metrics better reflect transient 

operations that characterize abrupt core activation and/or frequency boosting in sprinting 

scenarios. 



 

 

 
Figure 4.17: Maximum and average error values for Bodytrack temperature traces 

 

In this benchmark, the average increase in maximum temperature error, from 2120 to 2926 

MHz, is slightly larger at approximately 240%, whereas, the same metric for the average 

temperature error is slightly smaller at roughly 280%. At the same time, while it is not easily 

observed at this point, let us note that all error values are larger for Bodytrack, at corresponding 

frequencies and configurations. This is to be expected, since the overall nature of this benchmark 

is much more variable. This variability is the behavior that thermal models, neglecting thermal 

interface materials and/or uneven heat distribution across core dies, have difficulty simulating 

accurately. 

 
Table 4.3: Comparison of A1 against all other configurations – error values 



 

In brief summary, this weakness in modelling incurs maximum temperature errors that 

might trigger control actions at the wrong time, thus distorting all simulation results from that point 

forward. In addition, the different thermal profiles affect phase change materials reported 

performance. This is not yet quantified, but will be analyzed later on. Lastly, inaccuracies in 

vertical heat spreading, across stack layers, also affect simulated PCM performance, depending on 

the placement. An examination of Figure 4.16 shows the differences in temperature traces of 

Tjunction and Tcase for each configuration. At the time instant that the die registers 370 K, the case 

temperature is 351 K for A1. The other configurations report 363, 363 and 368 K respectively at 

the same time instant.  

 

 
Figure 4.16: Thermal trace for Tjunction and Tcase for each configuration ta 2926 MHz 

 

 In the most intense frequency scenario, the time of the first temperature violation is 

reported at 626ms in A1. For the other configurations, the corresponding numbers are 716, 878 

and 814ms respectively.  

 

  

 

 

 



 

4.3.3 Streamcluster Simulations 

 

 For the case of Streamcluster, we used 4 active threads in the parallel region, corresponding 

to 5 total threads spawned. This choice, along with the specific benchmark, were combined in an 

effort to favor the models using homogeneous heat distribution and no thermal interface materials. 

Streamcluster is characterized by a very small serial region and approximately even power 

allocation among cores. This allocation along with the total power consumption can be seen in 

Figure 4.17. 

 

 
Figure 4.17: Per-core and total power traces for Streamcluster at 2926 MHz 

 

Using 4 active threads in the parallel region creates a quite uniform profile, which we 

expect will mitigate the spreading inaccuracies of the models, and result in smaller errors. In 

addition, the total power consumed by the benchmark fluctuates only slightly, removing abrupt 

heat spikes that are seen to be more difficult to model. With all these parameters in mind, we expect 

to see smaller errors on all accounts between the thermal models and more similar thermal profiles. 

This choice of parameters, intends to explore a case where a degree of uniformity is actually 

present in the multicore. 



 From Figure 4.18, we can see that the thermal traces for each configuration seem to be 

more uniform. Of course, with increasing frequency their differences start becoming more 

prominent and a small fluctuation of temperature, resulting from a corresponding small fluctuation 

in power consumption, starts becoming more intense. However, it should be observed that the 

reference scale for these charts is by necessity different. Because more threads were used in this 

case, the benchmark is consuming more power and, as a result, leads to higher temperatures in the 

same frequencies. The difference in scale means that errors in maximum temperature, tend to seem 

smaller in the charts presented. 

 

 
Figure 4.18: Thermal traces for Streamcluster at increasing frequency, for each 

configuration 

 

The parameters that are specific to each configuration, meaning rate of convergence to 

steady state values (alternatively, rate of increase in temperature or RC factor) and the steady state 

values themselves, influence the thermal traces for this case according to previously detailed 

tendencies. The analysis we presented in 4.3.1 regarding transient behavior and expected steady 

state values is also in effect here. Nevertheless, said behavior is not equally visible in these thermal 

traces, on account of the different scale and smaller divergence between the configurations.  

In order to get a better perspective, Figure 4.19 presents the simulations at 2660 MHz 

conducted for 10s.  Regarding what we have seen so far, the curves in the figure are in accordance 



with the expected results. Even though it is not clearly obvious, A4 and A2 advance in temperature 

at a faster pace, but later on settle to lower values than A3 and A1 respectively.  

 

 
Figure 4.19: Temperature trace for Streamcluster iterated over the parallel region at 2660 

MHz 

(a) Temperature trace overview 

(b) Last 50ms of simulation demonstrating steady state values 

 

However, as was emphasized earlier, while statistics with regard to specific metrics are 

important in unveiling useful and maybe critical information, they are not adequate to provide 

the full image. For this reason, Figure 4.20 was created, with thermal snapshots from each 

configuration, taken at 50ms intervals up to 300ms. As was previously stated, thermal profiles, 

in a two dimensional, and a vertical sense, are important factors in configurations intending to 

use phase change materials. The intervals were chosen to demonstrate chip behavior closer to 

actual operating temperatures. 

Even though configuration A1 still has a tendency to stand out, on account of the hotspots 

properly modelled in the center regions of each core, in this case, the differences between the 

thermal profiles are less intense. It can be seen that A2 is quite closer to A1 in this instance. 



This results from the fact that all components are equally active, and dissipating heat, rendering 

the absence of TIMs (a factor that greatly influences heat spreading) less consequential. 

Regardless, even with this better conformation between thermal profiles, configurations A4 

and A2, which do not model interface materials, are seen to lead to a substantial inaccuracy in 

the temperature of the L3. In a scenario where a phase change material is interposed between 

the die and the rest of the chip stack, this cooler part of the L3 might quite easily correspond 

to a portion with latency in melting. Naturally, failure to capture this behavior could quite 

easily lead to significant errors in determining the overall performance of the system. 

 

 
Figure 4.20: Thermal snapshots every 100ms for Streamcluster at 2926 MHz 

(b) – (d) Configurations A1 to A4 respectively 

 

With regard to Figure 4.21, we can see the same overall trend presented in the previous 

sections. Even though Streamcluster incurs smaller errors than other benchmarks, a greater 

sensitivity to frequency is observed. The average increase of maximum error ascends to 

approximately 260% while the same metric for the average error registers an unexpected 350%, 

approximately. This result is counterintuitive to both our expectations and the thermal profiles we 

have already examined. This fact only serves to corroborate our claim that no metric on its own, 

is fully determinative of the thermal simulation differences. The specific values for the error 

metrics computed are listed in Table 4.4. 

 



 
Table 4.4: Comparison of A1 against all other configurations – error values 

 

 

 

 
Figure 4.21: Maximum and average error values for Streamcluster temperature traces 

  

Finally, our last but not least approach is demonstrated in Figure 4.22. Our simulation 

model consistently retains the expected temperature difference between case and die, despite the 

full and uniform utilization of the chip.  Specifically, at 380ms, when the temperature of the die 

reaches 370 K, the reported temperature for the case is 351.5 K. In contrast, the reported 

temperatures for the other models are 364, 362 and 368 K respectively. Obviously, these 

temperatures correspond to the time instants when each model reports die temperature to have 

reached 370 kelvin degrees. 

 



 
Figure 4.22: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz 

 

Temperature violations are reported at 380, 403, 486 and 444ms respectively. We can see 

that from this point of view, this simulation set results in smaller errors, despite the rapid ascension 

of temperature in the chip. This fact steers us toward the theory that abrupt temperature spikes are 

not that influencing in the models if they are not coupled with high power densities. 

 

4.3.4 Overestimation Method 

 

 A common practice in thermal modelling, is to assume worst case, per-core, power 

consumption, evenly distributed in the core die without involving any power modelling tools. This 

method is based on the idea that conclusions made with a worst case scenario basis, can only 

deviate to the better in practical circumstances. In order to test that theory, we used the previous 

A4 configuration for each benchmark, only in this case we calibrated the power values from 

McPAT so that the curve from A4 would approximate the thermal trace of A1. In order to quantify 

how the calibrated curve is adjusted, we aimed to minimize the average error value between the 

two thermal traces for the window of 1000ms. This was achieved through a simple trial and error 

process, assigning a scaling factor to the power values, computing the corresponding temperature 

trace and consequently the average error between this new trace and that of A1. After a small 

number of attempts the optimal scaling factor was determined.  

 It is not readily seen, but this approach yields better overall results than attempting to adjust 

the A4 curve to be steadily over that of A1 (thus resulting to a worst case scenario). First of all, no 

amount of reasonable calibration can ensure that the thermal trace from A4 is above the trace of 

A1 completely. In addition, attempting to ensure that the calibrated trace will supersede the other 

even for three quarters of the transient time window we examine, leads to very large temperatures 

both in the end of the transient and in the resulting steady state region. These facts, only seem to 



reinforce our belief, that the thermal model represented by A4 is unable to model transient effects 

accurately. To be more thorough, let us examine the thermal traces for the best fitting curves for 

each benchmark presented in Figure 4.23. 

 It is readily observed that any kind of abrupt spike in temperature is still elusive for the 

model we examine. High power densities that are present strongly in the serial phases of 

simulations are only “shadowed” at a distance. Less fluctuating temperature rises seem to be 

simulated adequately with the adjustment we made. However, benchmarks like Bodytrack, 

characterized by oscillating power values create thermal traces with analogous temperature swings 

that are simulated only in an average value approach.  

 It is also worth noting, that due to big differences in thermal resistance and capacities of 

the overall models (RC factors), curve fitting is imprecise even for values resulting from stable 

power consumption, due to the variability of rise time and resulting steady state temperature. 

Nevertheless, for such cases, adjustments that ensure that the worst case scenario model will err 

only on the safe side, can be effected. This is only emphasized because it does not hold true for 

fluctuating power values. 

 Of course, all the previous inaccuracies (thermal profiles, vertical heat spreading etc.) of 

the A4 model are also in effect here regardless. This derives from the fact that these are indigenous 

to the thermal configuration when contrasted with A1.  

A reasonable argument could be made as to why we opted to compare models 1 and 4 

neglecting all the others. The selection of A1 is pretty much self-evident, it is the model we 

consider to accurately model the real phenomena involved. The reason A4 was selected on its own, 

is because it is the most used thermal model in the literature. To the best of our knowledge, thermal 

interface materials are generally ignored and a chip design employing the use of a heat spreader 

without interface materials is not existent in the literature. Hence, we chose to compare a frequently 

used model for configurations like the one we presented, to our own.  

From another perspective, even if we assume a very efficient design that results in 

completely homogeneous power distribution across the core die, inaccuracies will still be incurred 

as a consequence of improper heat spread modelling. This case is actually the comparison between 

A3 and A4 which we know that is still burdened with certain weaknesses even in the ideal case of 

total uniform power allocation on core. These weaknesses have been highlighted in a small, four 

core chip with small capacity at core utilization diversity. In a chip with many cores and many 

diverse operation schemes available, the inaccuracies between the two models will only multiply. 

This derives from the fact that any concentrated heat source results in erroneous results should the 

interface materials be neglected, regardless of the origin or area of the hot spot. Thus, even if 

different elements of the core are more active, depending on application and workload conditions, 

or different cores in the same chip are more active, the conclusions we have reached throughout 

this chapter still hold true.  

 



 
Figure 4.23: Temperature traces between A1 and calibrated A4 configurations for all 

benchmarks 

 

4.4 Summary – Conclusion 
  

In this chapter, a frequently used thermal model in the literature has been tested against our 

own. The factors differentiating the results deriving from the compared models are the modelling, 

or not, of interface materials, and the modelling, or not, of uneven power allocation in the core die. 

To showcase the importance of each of these factors, additional configurations employing one but 

not the other were examined. In order to explore a variety of scenarios, different benchmarks with 

different core and component utilization, at different frequencies, were used. Furthermore, a more 

accurate, calibrated version of the thermal model we theorized would be imprecise, was also tested.  

 In order to provide a complete analysis of all the factors weighing on the results, each test 

case was approached from many different perspectives. As expected, we found that thermal models 

neglecting heat distribution among cores and thermal interface materials have difficulty modelling 

transient phenomena tied to high power densities. In addition, the resulting steady state values 

generally lead to underestimations.  



 One of the most important facts in the whole analysis presented in this section, was the 

impact of operating frequency on the error values reported. We observed that with increasing 

frequency values, the errors in thermal modelling grew rapidly. This seems to indicate that in older, 

lower frequency chips characterized by inferior power densities, the inaccuracies between the 

thermal models would be almost imperceptible. Another mitigating factor would be the single core 

nature of older chips or uniform operating scenarios frequently employed. This derives from our 

conclusion that uneven power allocation resulting from any factor creates transient phenomena not 

captured in the tested thermal model.  

 Moreover, we argued the validity of the weighting factors that distinguish our model as 

more accurate. Regarding TIMs, to the best of our knowledge, no chip employing the use of heat 

spreader can form a spreader – die joint without interface materials. Regarding heat spreading, 

assuming that other areas, meaning other components of the chip are more active, is irrelevant to 

our conclusions. The same phenomena would be present. Assuming a greatly efficient design, 

resulting to homogeneous power allocation in each core die, certainly results to smaller errors, but 

still effects inaccuracies due to uneven core utilization on a chip-level basis. Even if that variable 

becomes uniform, still the tested model would not be perfect as it would lead to higher temperature 

gradients and smaller steady state values. Furthermore, in any case, vertical heat spreading is 

highly erroneous when neglecting TIMs. 

 To make matters worse, we argue that all these inaccuracies will be further exacerbated in 

sprinting platforms. Sprinting results in higher frequencies and/or irregular core utilization, 

depending on workload conditions, the very factors intensifying power densities and hot spot 

creation. In such cases, the effect of TIMs interacting with uneven heat distribution is multiplied. 

 On a final note, PCMs usually employed in sprinting systems are influenced by all of the 

factors we mentioned. Because the variables involved are closely related and interacting, it is 

difficult to clearly distinguish cause and effect. Even through the analysis and examples presented, 

a degree of uncertainty regarding the results of ignoring a factor might still be justified. 

Nevertheless, it is proven beyond doubt that ignoring TIMs and heat distribution among cores can 

lead to very big inaccuracies in chips intending to use frequency and/or parallel sprinting and 

PCMs, which actually are the object of this thesis. Consequently, our thermal model not only 

models the use of PCMs in the layer stack, it also does so with accuracy not captured by other 

thermal models, for the chip configuration we examine.  

  

  

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 5 
 

 

 

 

 

 

 

 

 

 



5.1 Phase Change Material Exploration Objective 
 

 The use of phase change materials in systems utilizing computational sprinting has already 

been analyzed in previous chapters. It is a relatively recent innovation and although there is already 

research with interesting results publicized, a number of factors have yet to be determined. One 

could say that most of the research already conducted, basically exhibits that the use of said 

materials can be beneficiary under specific circumstances. For example, in [9], the results of using 

a PCM that melts at 80 °C interposed between the silicon and heat spreader is shown. A small 

exploration follows, exhibiting the effects of thermal conductance and thickness of the phase 

change material. To the best of our knowledge this work is probably the most thorough regarding 

the specific use of PCMs in computational sprinting. In most of the other cases, a specific material 

with fixed properties is used and the corresponding benefits are presented.  

 In this thesis, instead of using a specific material to boost our system, we opted to explore 

a variety of configurations using PCMs. The idea is to attempt to determine the optimal 

characteristics for such a material. The physical properties we chose to explore was the melting 

point, thickness and placement. The latter is generally chosen arbitrarily in the literature but we 

believe that determining the best position for the PCM layer in the chip stack, is a goal worth 

pursuing. We chose to assume that we can place a layer of phase change material, however thick, 

anywhere in the chip stack.  Of course, although we can simulate such theoretical configurations 

using our framework, they might not be achievable in real devices. Still, we deemed that the results 

of such an exploration might provide valuable insight or even a goal worth pursuing by the industry 

of packaging.  

 

5.2 Simulation Methodology 
 

 In order to test various PCM configurations we generally retained all the configuration 

parameters described in Chapter 4 including, of course, the thermal interface materials. The 

difference in this chapter was that we created four different chip stacks involving the use of phase 

change material at different locations in the vertical direction. These layouts named P1 to P4 are 

presented in Figure 5.1. Note that no height (or thickness) is listed for the PCM layer since height 

is one of our control variables. We also used the same recorded benchmarks as presented in 

Chapter 4, that is, Blackscholes, Bodytrack and Streamcluster at 2926 MHz 

In the first part of simulations conducted, the configuration listed as P1 with a material that 

melts at 60 °C and is 100μm thick, was simulated for the Blackscholes benchmark, without thermal 

interface materials at first, with uniform heat distribution afterwards and then both without TIMs 

and with uniform heat distribution. These simulations are presented to showcase the impact of the 

conclusions from Chapter 4 in PCM enabled systems.  

Afterwards, we simulated each benchmark for each configuration P1 through P4 until the 

first temperature violation occurs. Since operating temperatures for a chip generally range from 

40°C to 100°C, and research shows that materials with corresponding melting temperatures and 



adequate thermal conductivity exist, we tested all the range from 40 to 90 degrees with 5 degree 

increments. Testing higher than 90 degrees Celsius was considered trivial since we know that 

PCMs display a latency effect in their use and we further expect that even the range of 80 to 90 

degrees will not show any particular gain.  

 

 
Figure 5.1: Configurations used to determine optimal placement of the PCM layer 

 

 Regarding thermal conductivity, conductivity enhancement techniques are mentioned in 

[9], with which, copper-PCM compounds can achieve values up to 106 W/mK. For our 

simulations, we selected a more conservative value of 75.4 W/mK assuming a pretty high PCM 

fraction in the composite.  Regarding the heat capacity and the apparent heat capacity method, we 

need to define two values: the volumetric heat capacity corresponding to the solid and liquid phase, 

and the volumetric heat capacity corresponding to the transient phase, that is, the phase change 

region. The first of the two, we consider to be unaffected form the enhancement technique using 

copper since the volumetric heat capacity for copper, a value of 1,57 *106 J / m3 K, is approximately 

identical to that listed in [9] for the PCM, 1,56 *106 J / m3 K. For the phase change region, we also 

used a smaller value than the one proposed, 244 *106 J / m3 K instead of 305 *106 J / m3 K, to 

reflect an analogous reduction to the fraction of copper in the composite. Since phase change 

materials generally do not have big differences in volumetric heat capacity values, the same pair 

was used for all melting temperatures even though different melting temperatures correspond to 

different materials. 

 In essence, we used a theoretical material with fixed thermal conductivity and volumetric 

heat capacities but variable melting temperature. The reason for this choice is the fact that we do 

not want to test specific materials rather than test the impact of different melting points in our 

various configurations while keeping the other values constant. The sole reason for the previous 

analysis was to establish that the values we used are reasonable and achievable for all materials 

within the examined melting temperature region.  

 This exploration, was conducted for PCM thicknesses of 100 and 200 μm. Afterwards, 

having observed a trend in the simulation results, we chose the most promising configuration 



regarding placement and melting temperature and continued testing for phase change material 

thicknesses up to 700 μm with 100μm increments. Further exploration, involving thicker layers 

was avoided since 700 μm of PCM material results in an approximate increase of 100% of the chip 

thermal resistance to the ambient. This observation is more thoroughly analyzed in subsection 

5.3.3. 

 

5.3 Results and Discussion 
 

5.3.1 Thermal Interface Materials and Heat Distribution Impact 

  

 As an extension to the results demonstrated in Chapter 4, a set of simulations was 

conducted in this subsection to showcase the inaccuracies introduced by omitting thermal interface 

materials and disregarding uneven heat distribution in the chip components. To this end, we 

simulated the configuration listed as P1 for the Blackscholes benchmark with a phase change 

material that melts at 60 degrees Celsius and rests on top of the heat spreader. The thickness of the 

material was 100μm. This configuration was simulated with three variations. In the first, the 

thermal interface material was omitted. Next, the thermal interface material was included in the 

chip stack, but the heat distribution in the chip was considered homogeneous. Lastly, both 

inaccuracy factors were combined.  

 Regarding simulation times, let us note that the baseline configuration, where both the 

thermal interface materials and fine-grained heat distributions were considered, the first 

temperature violation occurred at 718 ms. In the case where no thermal interface materials were 

considered but the heat distribution was still fine-grained, the first temperature violation occurred 

at 781 ms. Maintaining TIMs and considering homogeneous heat distribution resulted in a 

staggering 908 ms. Combining the absence of TIMs with homogeneous heat distribution resulted 

in 847 ms.  

 These overestimations of simulation time are consistent with the analysis presented in 

Chapter 4. Disregarding thermal interface materials and proper heat distribution leads to 

completely different temperature profiles. The crucial factor not addressed is the formulation of 

hotspots due to more active components. Failure to address this factor will result in temperature 

underestimation and thus overestimation of simulation time.  

 In addition, as we have stated earlier, not modelling hotspots and heat flow in the vertical 

direction correctly, leads to completely different thermal profiles that introduce a collection of 

inaccuracies. To prove this point, let us look at Figure 5.6 where the thermal snapshots at the time 

of the first temperature violation are presented. These snapshots depict the PCM and chip layer for 

each of the four configurations.  



 
Figure 5.2: Thermal Snapshots for each configuration at the time of first temperature 

violation 

 

 While not many differences can be observed between the inaccurate configurations, the 

thermal snapshot from our proposed model is completely different. One has only to look at this 

figure to understand the inaccuracies in terms of PCM internal energy and percentage melted that 

will result, let alone the simulation time which we already addressed.  

 As expected, the inaccuracies outlined in Chapter 4 are exacerbated when PCM materials 

are involved. More to the point, this fact was determined using a mere 100μm of phase change 

material and a mere four core platform. The implications for more complex designs involving more 

PCM and numerous cores are quite dire. However, we felt that further demonstrating such 

inaccuracies by using different configurations and benchmarks would be redundant. 

 

5.3.2 Melting Point and Placement Exploration  

  

As explained earlier, in order to explore the behavior of systems with phase change 

materials of different melting temperatures and placement in the chip stack, configurations P1 to 

P4 were tested with melting points ranging from 40 °C to 90 °C for Blackscholes, Bodytrack and 

Streamcluster, as presented in Chapter 4. Also, the simulations were conducted for PCM 

thicknesses of 100 and 200 μm. The results are evaluated with respect to the time of the first 

reported temperature violation. To elaborate, each benchmark was simulated as a baseline without 

any PCM layer until the first temperature violation is reported. Afterwards, each PCM 

configuration was similarly simulated and the difference between each configuration and the 

baseline was logged. The extra time, in milliseconds, that was gained due to the presence of the 

phase change material for each setup, is presented in detail in Table 5.2. Note that a negative value 



designates that the PCM configuration actually performs worse than the baseline. For clarity, the 

best performing melting point for each configuration is highlighted with green color and the best 

performing configuration for each benchmark is highlighted with red. As best performing 

configuration, we designate the one in which the maximum extra simulation time was reported. 

 

 

Table 5.1:  Time (ms) gained until first temperature violation for all simulations conducted 

Regarding overall trends and general performance, we can see that configuration P1 is in 

all cases the best performing configuration. In addition, the melting points in the region of 50 to 

60 degrees Celsius are dominant in all simulations regardless of configuration or benchmark. 

However, the latter (60) has most commonly the best performance and in cases where it is not the 

best performing melting point, the difference is quite small. Notably, in all cases except 

Streamcluster, the melting point in which the best configuration, P1, showed the best benefit, was 

that of 60 degrees Celsius. In Streamcluster, the best performance was achieved for 55 degrees but 

here too the 60 degrees case, is only slightly worse.  

 In order to get a better grasp on what diversifies the results in all these configurations, we 

created Tables 5.2 and 5.3. In Table 5.2 we demonstrate for each setup the percentage of the PCM 



that has melted at the time the first temperature violation was reported. Table 5.3 shows a different 

metric at the same time instant, the total energy absorbed by the PCM layers during the simulation. 

For reference, in both figures, the best performing configurations, in terms of time gained, were 

also highlighted. 

 

 
Table 5.2: Percentage of melted PCM at the time of temperature violation 

The percentages shown in Table 5.2, seem to follow anticipated trends. High melting points 

exhibit small percentages of PCM melted or even zero, which explains their low performance. 

Accordingly, low melting points show very high fractions of the total of the PCM having melted. 

Note, that this metric describes only if all the PCM cells have melted. For example, a case where 

all the cells but one, have just melted and a case where all the cells but one, have not just melted, 

but have also skyrocketed to 100 degrees Celsius, would show the same percentage.  

Consequently, this metric is only an indication of how much of the available heat capacity 

in the phase change region has been leveraged. In addition, as we can see from the Figure, the 

configuration performance does not seem to have an absolute relationship with this metric. While 

the best performing configurations are, without exception, characterized by very high percentages 



of melted phase change material, these same configurations do not exhibit the highest values in 

the figure.  

In order to get a better sense, of how much heat has actually been absorbed by the PCM 

layer, we created Table 5.3. In this case, we can see the energy stored in all the PCM cells since 

the beginning of the simulation to the time of the first temperature violation. This metric accounts 

for all thermal energy regardless of whether phase change occurs or not and at which percentage. 

It is worth noting that this metric differs from the previous in the sense that it also accounts for the 

behavior of the material before and after the phase change region. This is quite evident noticing 

that configurations in which all of the phase change material has melted, result in different total 

energy values.  

 

 

Table 5.3: Thermal energy (J) stored in the PCM at the time of temperature violation 

Similarly, in this case, we can also see that even though the best performing configurations 

are characterized by large sums of absorbed energy, these configurations do not exhibit the highest 

values observed. On the other hand, one can also notice that melting temperatures below 60 

degrees Celsius are characterized by small differences in all the metrics presented. Simulation 

times are only slightly lower, percentages vary no more 0.2 % and thermal energies no more than 

5%. In contrast, higher melting points have differences consisting of lower percentages of material 

melted, lower thermal energies, and, as expected, quite lower simulation times. 



The previous analysis seems to indicate that there is a direct relationship between the 

percentage of the melted material, the total energy absorbed and the performance of the current 

configuration even though this relationship is not absolute. For the most part, these results are 

within our expectations with one small difference. The fact that configurations with higher 

percentages of phase change material melted and total energy absorbed, might actually perform 

worse than others. This fact illustrates that leveraging the extra thermal capacity that phase change 

materials offer is not enough, in order to achieve maximum performance. Simulation results show 

that this added thermal capacity is more useful when exploited at the right time (in essence meaning 

at critical temperature and heat generation combinations).    

With respect to the different configurations P1 through P4 used in the simulations, it was 

earlier noted that P1 had the best performance in all benchmarks. This we expected because all 

cases except P1 generally add thermal resistance between the chip active components and the 

copper spreader. To elaborate, the spreader, having very high thermal conductivity, primarily 

buffers abrupt temperature increases and spreads the accumulated heat at a rapid pace in the 

vertical and lateral direction. The only downside, that prohibits the spreader from doing this for 

longer periods of time, is the low thermal capacity of copper. This means that the spreader not only 

propagates heat quickly but also increases in temperature rapidly, thus reducing heat flow from the 

active components (heat flow is linearly dependent on the temperature difference between 

interfaces). 

On the other side of the spreader, since our system does not employ a heat sink, heat flow 

to the ambient is generally slow despite the high conductivity of copper. This is a direct result of 

the low thermal conductivity of air. As a result, we have the following: the copper spreader can 

effectively spread and abduct heat but is hampered by its low thermal capacity, on the other side, 

air can effectively absorb all heat generated, due to its constant replacement and abundance in the 

ambient, but is hampered by its low thermal conductivity. A promising idea would be to interpose 

an intermediate component that balances between the two extremes. In our case this intermediate 

component is the PCM layer. It has higher thermal conductivity than air, but can store a respectable 

amount of heat in the phase change region before its temperature starts rising again. This is 

configuration P1. 

In cases P3 and P4, what happens essentially, is that we add a better heat storage than 

copper close to the active components. This, as we have seen, increases the system’s buffering 

abilities greatly for the duration of the phase change region, but before and after, the resulting 

thermal model is worse off than we started because of the increased thermal resistance to the 

spreader. In addition, because the thermal conductivity of the PCM is not very high, heat is 

generally focused in the active areas, and after melting the PCM material in those areas, the chip 

now has one more layer that cannot efficiently absorb heat from the more active regions. In 

contrast, without interposing the PCM below the spreader layer, only the thermal interface material 

layer is interposed between the spreader the active components.  

Case P2 is actually a hybrid between the P1 and P3, P4. It was simulated as a special 

configuration, dividing the spreader to two equal layers and interposing the PCM between them, 



in an effort to surround the phase change material with highly conductive material. However, the 

overall performance was not better than that of P1. 

All in all, configuration P1 undoubtedly exhibited the best performance in all benchmarks. 

This is encouraging since this configuration is the only one that has already been shown to be 

easily achievable. For this configuration, a combination of a melting point of 60 °C achieved the 

best result. Although for Streamcluster that was not the case, the difference was actually quite 

small. We intend to use this melting point as the best for the next group of simulations not only 

because of the performance gains already discussed, but also because using low melting points 

involves the risk of the material melting in non-critical conditions as a result of other computational 

activities and non sprinting methodologies. An added benefit to this fact is that configuration P1 

places the phase change material as far from the active components as possible, resulting in lower 

idle temperatures and more sprinting headroom available. In conclusion, we feel that the 

combination of configuration P1 along with a melting point of 60 °C represents the best choice not 

only from the simulation data we have already seen, but also with regard to actual system 

considerations.   

 

5.3.3 Thickness Exploration 

 

 In this subsection, we conducted a set of simulations, for each of the benchmarks already 

discussed, with PCM layers at the top of the copper spreader that melt at 60 °C. The variable 

addressed here more thoroughly, was that of the PCM layer thickness. In order to explore the 

benefits of adding more and more phase change material to the system, in each simulation, we 

added another layer 100 μm thick, up until 700 μm. Again, the simulations were conducted until 

the first temperature violation occurred. The results, in terms of the total simulation time, are 

presented in Table 5.4.  

 

 
Table 5.4: Total simulation time before first temperature violation 

 

 Additionally, two other metrics are presented in Table 5.4. The first of the two is the 

increase in thermal resistance, between core components and ambient, relative to the baseline 

configuration we discussed earlier, as a result of the added phase change material. The second 



metric represents the simulation time gained relative to the baseline. Naturally, this metric does 

not provide any further information than the absolute simulation times. However, it was presented 

in this format, in order to provide a straightforward comparison between the percentage increase 

of the thermal resistance and the percentage increase of the computation time.  It is of course worth 

noting, that the percentage increase in time, before the first temperature violation, is dependent 

upon the benchmark, the number of active threads, the type of computation, and the operating 

frequency of the cores, whereas, the increase in thermal resistance is fixed for a specific material 

and layer thickness.  

 That being said, even though we observe that for a mix of quite different benchmarks, the 

time gain is bigger than the corresponding thermal resistance increase, other factors must also be 

considered.  

The most important is the impact of the added thermal resistance to the chip. In our 

simulations, we assumed that before the benchmark was issued, the system was idling. For idling 

systems, core temperatures are only slightly higher than the ambient. For this reason, each 

simulation was initiated with all components at 300 K which is slightly above room temperature. 

However, when the resistance between core and ambient increases, so does the corresponding 

difference in temperatures. More to the point, this difference in temperature, is also dependent on 

the heat flow and thus power consumption of the active components. To be exact, there is a linear 

dependence of the core temperature (relative to the ambient) and both the thermal resistance and 

the power load. In essence, the effect of increasing the thermal resistance is exacerbated under 

heavy load conditions.  

For example, assume an arbitrary, steady state power consumption that leads to the core 

temperature averaging at about 40 °C. This indicates a temperature difference of 15 degrees 

between core and ambient. When using a 700μm thick PCM layer, the thermal resistance between 

core and ambient approximately doubles, that means that the new difference would be 30 degrees, 

and the new core temperature 55 °C. Keeping in mind that our phase change material starts melting 

at 60 degrees Celsius, even though it rests on top of the heat spreader, where temperature levels 

would be somewhat lower, these results indicate that, depending on previous conditions, 

performance benefits might be a lot smaller and maybe not worth the extra material.  

In comparison, in idle conditions, where the core is only 2 – 3 degrees hotter than the 

ambient, doubling the thermal resistance will result in the core being 4 – 6 degrees hotter than the 

ambient, which is barely noticeable.  

From another point of view, adding PCM material greatly increases the time constant of 

the system. This happens because the time constant is dependent on both the thermal resistance 

and the thermal capacitance. Increasing the time constant means that the system takes more time 

to rise in temperature but simultaneously takes more time to cool down. 

Combining all the previous points, we can see that adding PCM material alters the thermal 

profile of the chip. While actually stating the obvious, the implication is that the thickness of the 

phase change material has to be chosen depending on the type of tasks and activity we intend to 

perform in a usual basis. For example, chips that usually perform short computational tasks that 



are issued frequently, would opt to use little PCM. On the other hand, chips that are tasked with 

more elongated computational tasks that are issued on an infrequent basis, would be most benefited 

by using large quantities of phase change material despite the increase in thermal resistance.  

 

5.4 Summary – Conclusion 
  

 In this chapter, we further proved the conclusion we derived from the previous one, that 

thermal models that do not account for thermal interface materials and heterogeneous heat 

distribution, are not suitable for simulating sprinting enabled systems augmented with PCM 

material.   

Afterwards, we performed a series of simulations and determined that placing phase change 

materials on the top of the heat spreader not only guarantees the best performance, but is also an 

easily achievable configuration and less susceptible to be impacted by the previous state of the 

system.   

In collaboration with this configuration, we found that a melting point of 60 °C for the 

phase change material is the best available choice. This choice demonstrated the best performance 

at the majority of the cases examined, and lags only slightly in all other cases. Simultaneously, this 

melting point is high enough to preclude the melting of the PCM in non-critical conditions, 

especially when placed on the top of the heat spreader which is the cooler part of the chip stack. 

Furthermore, we saw that increasing the thickness of the PCM layer resulted in analogous 

benefits for all the sizes we examined. However, we argued that this variable represents a trade-

off. This trade-off depends on the type of computational tasks the system is likely to perform more 

often. As a general guideline, long-lasting tasks followed by long idle periods, require big 

quantities of phase change material in order to be able to sprint for the whole duration of task. 

Short tasks followed by short idle periods, require small quantities in order to be able withstand 

the generated heat but also be able to cool down in the short time available.  

 

  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
 

 

 

 

 

 

 

 

 

 

 



6.1 Conclusion 
 

In this work, we developed a simulation framework for systems that utilize computational 

sprinting and are augmented by phase change materials. The framework involves performance 

simulation by virtue of the Sniper Simulator, power consumption simulation via McPAT and 

thermal simulation using 3D-ICE. These three distinct simulation tools have been integrated to a 

unified framework written in Python. 

The framework implements a Python server-client model with the server satisfying 

simulation requests indefinitely. Simulation requests can be issued in the form of a queue. During 

each simulation, the framework handles the logging of statistical data and simulation information 

into suitable files. These files are properly archived at the end of each simulation. Further 

processing of outputted data is achieved through independent Python scripts and visualization of 

thermal and power maps through the use of Matlab. 

Integration of the previously mentioned simulation tools into the Python framework 

involved a number of additions and modifications in the source code of each tool. However, in the 

case of 3D-ICE, more extensive development took place in order to add to the simulator the ability 

to properly model phase change materials. This was achieved using the apparent heat capacity 

method, that is, assigning a non-linear volumetric heat capacity to material cells if a set of specific 

circumstances are met. This method was further extended in order for the simulator to be able to 

model layer of PCM with different melting points both in the vertical direction and across the cells 

of the same layer. 

Afterwards, we demonstrated that commonly used thermal models are unsuitable for 

applications involving computational sprinting and phase change materials due to highly irregular 

heat distribution. In addition, we proposed a set of modifications, involving thermal interface 

materials and modelling fine-grained power consumption, in order to provide a model better 

suitable for the systems we intend to research.  

Lastly, we performed an exploration regarding optimal melting point and placement in the 

vertical stack of phase change materials. More specifically, we performed tests using three 

benchmarks from the parsec suite, Blackscholes, Bodytrack and Streamcluster, eleven melting 

points ranging from 40 to 90 degrees Celsius with 5-degree increments and four different 

configurations each placing the PCM layer at a different location of the chip stack.  

Results showed that placing the PCM on top of the heat spreader and using a melting point 

of 60 degrees Celsius provided the best results for all benchmarks. Consequently, we used this 

optimal configuration and started adding more PCM material in 100μm increments, in order to test 

the effect of the added PCM to the system. As expected, simulations showed that increasing the 

thickness of the PCM results in an analogous increase in computation time before the first 

temperature violation. This observation held true for thicknesses up to 700μm and indicates that 

by varying the material thickness we can effectively alter the system’s time constant thus altering 

maximum sprinting time and necessary rest period.  

 



6.2 Future Work 
  

 In this diploma thesis, only a small fraction of the capabilities of the simulation framework 

that was constructed were used. Through the use of the Sniper Simulator, a powerful tool that is 

highly customizable, McPAT and 3D-ICE, a great range of configurations and architectures can 

be simulated. However, despite porting a number of variables from each tool to a single control 

script, routine altering of these simulation characteristics can be quite tedious. In addition, using 

the framework necessitates a basic understanding of Python and a degree of familiarity with the 

workings of the framework.  

For these main reasons, we feel that designing a graphical user interface would be a great 

enhancement. It would allow users to easily alter simulation variables, without having to type each 

change, and pave the way to gradually adding more and more customization capabilities available 

through an efficient manner.  

From another point of view, modelling of the phase change region of phase change 

materials involved the apparent heat capacity method. This method results in a series of extra 

computations involving big matrices and a consequent respectable overhead in the simulation time 

needed for 3D-ICE. As previously stated, the implementation we developed represents a trade-off 

between development time and performance. However, we are aware that this implementation is 

far from optimal and feel that optimizing this extra capability would further enhance the usefulness 

of the framework. It quite undisputable that simulation times are a very important factor in 

research. 

In addition, a similar trade-off resulted in a number of statistical data being exported to text 

files for each simulation. While this implementation facilitates parsing and further data processing, 

it might not be optimal. A possible and more flexible approach would be to store such data in a 

database and accordingly retrieve information as needed.  

Regarding phase change materials, this work focused mainly on researching the primary 

heat path in a chip (from the active components, through the copper spreader to the PCM layer and 

to the ambient). However, it might be of particular interest to properly model the secondary heat 

path (through the PCB to the main board), and research the effect of adding phase change materials 

of suitable characteristics along this heat path. 

Another interesting idea would be to research the effect of using multiple stacked PCM 

layers of different melting points, or PCM layers with different melting points in specific regions, 

for example, on top of the hottest regions of each core. Let it be noted, that each of these cases is 

already supported by the framework.  

 

 

 

 

 



References 
 

[1] G. E. Moore, “Cramming more components into integrated circuit. Electronics”, 38(8), 1965 

 

[2] R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” 

IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, pp. 256-268, Oct. 1974 

 

[3] Muhammad Shafique , Siddharth Garg , Jörg Henkel , Diana Marculescu, “The EDA 

Challenges in the Dark Silicon Era: Temperature, Reliability, and Variability Perspectives”, 

Proceedings of the 51st Annual Design Automation Conference, p.1-6, June 01-05, 2014, San 

Francisco, CA, USA  

 

[4] Hadi Esmaeilzadeh , Emily Blem , Renée St. Amant , Karthikeyan Sankaralingam , Doug 

Burger, “Power challenges may end the multicore era”, Communications of the ACM, v.56 n.2, 

February 2013 

 

[5] D. Geer, "Industry t D. Geer, "Industry trends: Chip makers turn to multicore processors", 

Computer, vol. 38, no. 5, pp. 11-13, 2005 

 

[6] G. Blake, R. Dreslinski, and T. Mudge, "A Survey of Multicore Processors," IEEE Signal 

Processing Magazine, Vol. 26, No. 6, pp. 26-37,2009 

 

[7] Krste Asanovic , Rastislav Bodik , James Demmel , Tony Keaveny , Kurt Keutzer , John 

Kubiatowicz , Nelson Morgan , David Patterson , Koushik Sen , John Wawrzynek , David Wessel 

, Katherine Yelick, “A view of the parallel computing landscape”, Communications of the ACM, 

v.52 n.10, October 2009 

 

[8] Fulya Kaplan, and Ayse Kivilcim Coskun, “Adaptive sprinting: How to get the most out of 

Phase Change based passive cooling”, ISLPED, page 37-42. IEEE, (2015) 

 

[9] Fulya Kaplan, "Modeling and analysis of phase change materials for efficient thermal 

management", 32nd International Conference on Computer Design, 2014 

 

[10] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou, Kevin P. Pipe, Thomas 

F. Wenisch and Milo M. K. Martin, “Computational Sprinting on a Hardware/Software Testbed “, 

In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for 

Programming Languages and Operating Systems (ASPLOS), March 2013 

 

http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484


[11] A. Raghavan et al., "Utilizing dark silicon to save energy with computational sprinting”, 

Micro, IEEE, vol. 33 , no. 5, pp. 20-28, 2013 

 

 [12] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P. Pipe, 

Thomas F. Wenisch and Milo M. K. Martin, “Computational Sprinting”, In the Proceedings of the 

18th Symposium on High Performance Computer Architecture (HPCA), February 2012 

 

[13] https://en.wikipedia.org/wiki/Latent_heat#Specific_latent_heat 

 

[14] https://en.wikipedia.org/wiki/Thermal_conductivity 

 

[15] Andrea Tilli , Andrea Bartolini , Matteo Cacciari , Luca Benini, “Guaranteed Computational 

Resprinting via Model-Predictive Control”, ACM Transactions on Embedded Computing Systems 

(TECS), v.14 n.3, May 2015 

 

[16] Elon Bauer, Joseph Carlos, “Thermal Management Using PCM-Based Heatsinks” 

 

[17] Sniper Power Simulator, http://snipersim.org/ 

 

[18] Sheng Li , Jung Ho Ahn , Richard D. Strong , Jay B. Brockman , Dean M. Tullsen , Norman 

P. Jouppi, “McPAT: an integrated power, area, and timing modeling framework for multicore and 

manycore architectures”, Proceedings of the 42nd Annual IEEE/ACM International Symposium 

on Microarchitecture, December 12-16, 2009, New York, New York 

 

[19] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "3D-ICE: Fast compact 

transient thermal modeling for 3D-ICs with inter-tier liquid cooling", Proceedings of the 2010 

International Conference on Computer-Aided Design (ICCAD 2010), San Jose, CA, USA, 

November 7-11 2010 

 

[20] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "Compact transient thermal 

model for 3D ICs with liquid cooling via enhanced heat transfer cavity geometries", Proceedings 

of the 16th International Workshop on Thermal Investigations of ICs and Systems 

(THERMINIC'10), Barcelona, Spain, 6-8 October, 2010 

 

[21] Python Software Foundation. Python Language Reference, version 2.7. Available at 

https://www.python.org 

 

[22] http://zeromq.org/ 

 

https://en.wikipedia.org/wiki/Latent_heat#Specific_latent_heat
https://en.wikipedia.org/wiki/Thermal_conductivity
http://snipersim.org/
http://zeromq.org/


[23] J. Lienhard-IV and J. Lienhard-V, "A heat transfer textbook", Cambridge, Massachusetts: 

Phlogiston Press,2006 

 

[24] MATLAB and Statistics Toolbox Release R2014a, The MathWorks, Inc., Natick, 

Massachusetts, United States 

 

[25] G. Faust, R. Zhang, K. Skadron, M.R. Stan, and B. Meyer. "ArchFP: Rapid Prototyping of 

pre-RTL Floorplans." In Proceedings of the IFIP/IEEE International Conference on Very Large 

Scale Integration (VLSI-SoC), Oct. 2012 

 

[26] S. Memik , R. Mukherjee , M. Ni and J. Long, "Optimizing thermal sensor allocation for 

microprocessors", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27, no. 3, pp. 516-

527, 2008 

 

[27] . Florea, C. R. Buduleci, R. Chis, A. Gellert, L. Vintan, "Enhancing the Sniper Simulator with 

Thermal Measurement", Proceedings of The 18-th International Conference on System Theory, 

Control and Computing, Sinaia (Romania), October 17-19, 2014 (submitted). 

 

[28] Advanced Materials for Thermal Management of Electronic Packaging, Xingcun Colin Tong 

 

[29] Area Array Interconnection Handbook, Karl J. Puttlitz, Paul A. T  

 

 

http://link.springer.com/search?facet-creator=%22Xingcun+Colin+Tong%22

	Σύντομη Περίληψη
	Abstract
	Εκτεταμένη Περίληψη
	Acknowledgements
	List of Figures
	List of Tables
	CHAPTER 1
	1. Introduction

	CHAPTER 2
	2.1 Theoretical Background
	2.1.1 Computational Sprinting
	2.1.2 Phase Change Materials (PCMs)

	2.2 Related Work
	2.2.1 Computational Sprinting on a Hardware/Software Testbed [10]
	2.2.2 Safe Computational Re-Sprinting via Model Predictive Control [15]
	2.2.3 Thermal Management Using PCM – Based Heatsinks [16]
	2.2.4 Modeling and Analysis of Phase Change Materials for Efficient Thermal Management [9]

	2.3 This Work
	2.3.1 Objective
	2.3.2 Key Differences
	2.3.3 Contribution


	CHAPTER 3
	3.1 Overview
	3.2 Python Interface Detailed Analysis – Basic Scripts
	3.2.1 Simulation_Queue.py
	3.2.2 Sniper_Simulation_Init.py
	3.2.3 Sniper_Simulation_Control.py
	3.2.4 Thermal_Simulation_Client.py
	3.2.5 Resource_Control.py
	3.2.6 Python_Server.py
	3.2.7 Low Level Scripts

	3.3 Thermal Model
	3.3.1 3D-ICE Heat Conduction Modelling
	3.3.2 PCM Modelling in 3D-ICE
	3.3.3 Non-Uniform PCM Modelling

	3.4 Independent Tools - Scripts
	3.4.1 MATLAB Scripts
	3.4.2 ArchFP
	3.4.3 Independent Python Scripts

	3.5 Framework Usage

	CHAPTER 4
	4.1 Theoretical Background
	4.2 Simulation Methodology
	4.3 Results and Discussion
	4.3.1 Blackscholes Simulations
	4.3.2 Bodytrack Simulations
	4.3.3 Streamcluster Simulations
	4.3.4 Overestimation Method

	4.4 Summary – Conclusion

	CHAPTER 5
	5.1 Phase Change Material Exploration Objective
	5.2 Simulation Methodology
	5.3 Results and Discussion
	5.3.1 Thermal Interface Materials and Heat Distribution Impact
	5.3.2 Melting Point and Placement Exploration
	5.3.3 Thickness Exploration

	5.4 Summary – Conclusion

	CHAPTER 6
	6.1 Conclusion
	6.2 Future Work

	References

