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Amayopevetar 1 avTlypoen, OmoONKELON Kot Olavoun TG mapovoos epyaciag, €&
OAOKAN POV 1 TUNLOTOG LTS, Y10 EUTOopkd okond. Emrpénetarl | avatdmmon, amodnkevuon kot
dtovoun Yo 6Komo U KEPOOGKOMIKO, EKTAOEVTIKNG 1] EPEVVNTIKNG PVONGC, VIO TNV TPoHTAhEST
VO AVOPEPETOL 1] TTNYT TPOEAELGNG KOt vaL dtaTnpeital To mopdv pvopa. Epotipate mov apopovv
TN (PNOM NS EPYACING Yo KEPOOGKOTIKO GKOTO TPEMEL VoL aevBhHvovtan Tpog tov cuyypapéa. Ot
ATOYELS KOl TOL COUTEPAGUATO TOV TEPLEYOVTAL GE OVTO TO £YYPAPO EKPPALOVV TOV GLYYPUPEQ
Kol Ogv mpémel va epunvevdel 0TL avturposmrevovy Tig enionues B€celg Tov EOvikov Metodprov
[ToAvteyveiov.
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Xovroun Iepiinyn

O 6poc Dark Silicon mpoépyetar amd 10 yeyovog 0T, KoM TPOY®PALE & KPOTEPES KAMUOKES
KOTOGKELNG NUOY®Y®V, OAO Kol HLEYOAVTEPO TOCOGTO OO TNV EMPAVELL TOV OAOKANPOUEVDV
KuKAoudtov 0o mapapével avevepyd (dark). To @owvopevo owtd mpokvITeEL 0md TV advvopio
TPOCUPUOYAG NG 1oYXV0G Tov amorteiton yio kdbe tpaviiotop, avaroywkd pe ) pelwon TV
dwotdoewv ¢ ovokevng. Etol, og teyvoAroyikods kOuPovg e TaENG TV MICro-péTpov,
UTOPOVLE VO, KOTACKEVACOVE TEPICGOTEPO. MAYOYIKE GTOlXEld G6TOV 1010 YDpOo YWPig vo
vrdpyel avtiotoryn peiwon TG 1oYVOG OV omonteiTan yio T Asttovpyia Kabevdg amd avtd, pe
amotélecua, TNV avénomn v TukvoTTag 16Y00¢ 6To KOKAmua. H avénon avtr, pali pe dAlovg
TEPLOPIGUOVES OV EMPAAAOVY Ol TEXYVOAOYIEG GLOKELAGING KoL YOENG TV OAOKANPOUEV®V,
eEavaykalel HEPOG TV KUKA®MUAT®V vo Lével avevepyo Yo va eEac@aioTtel 1 Asttovpyia eviog
opiov péyotg katavaiwong oyvog (TDP). H otpoen mpog t1g moAvmupnveg TAATPOPLES NTOV
T0 TPOTO Ppa 6€ pio TPoSTAdELD aDENOTG TNE EMIO0GNS VTOAOYIGTIKMY GUGTIUATOV, KAVOVTOG
YPNON TOL UEYUADTEPOL OPLOUOD NUOY®YDY GTO OAOKANPOUEVO, 1| 0Ttoio 0dNyel e HKPOTEPN
avENon 16x00G amd TNV KOTAGKELY EVOG O 1GYXVPOL TLUPNVA. 26TOGO, CLUGTILATA [LE TOAAOVG
mopnveg xpetlovial €pyaciec mOL PTOPOLV VO HOPAGTOOV 1GOTOGO OTIG Ol00EGLES
eMeEePYAOTIKEG LOVADES Y10 VO, EMTOHYOLV HEYIOTN anddoon. Emiong, n avénon tov apiBpod tov
TpNVoV eEakoAovOel va avEAveL TV KATAVAA®GT) 1GYVOG Kot ETOUEVAGS, OEV UTOPEL VO GUVEYLOTEL
AmEPIOPLOTA. LVVETADC, 1 EPELVO TPOCAVATOMGTNKE TPOG TNV AVOKAALYT VEOV TPOT®V Y10 Vi
ypnoonomBodv ta avevepyd koppdtior vAkov ( dark silicon ) pe otoyo v avénon tov
emdooe®v. Mia ammd TIg o VITOoYOUEVES 106EC o€ avTN TV Kotevbuvon eivar To computational
sprinting. H uébodog avt evepyonotel moALoVE Tapamdved TUPNVEG 1)/KOL ETLTAYVVEL GE GLYVOTNTA,
TOVG NOT EVEPYOVC, Y10 VO EMMTEAECEL EVTOVEG VITOAOYIOTIKG £pYasies g ypOVO TG TAENG VIO TOV
devteporéntov. H dwadikacio avtn Eemepvdet Yoo cHVIOHO ¥povikd SdoTnua To TPpoPAETOUEVOL
LEYIOTO EMMEN KOTAVAAMOTG 10Y00G Kot TeppatifeTot Otav ot Beppokpacieg 6To OAOKANP®UEVO
etdoovv og Kpiloeg Tipéc. T va avéndel o dtabéotpog ypdvog g pnebddov, ypnoiomolovVTaL
VA oddayng edong (PCMS), cav mabnrtikn pébodog yoéng. H dumhmpatikny avt) 6toyedel otov
TPOGOOPIGUO TOV BEATIOTOV YOPAKTNPIOTIKOV Kol TNG TOTOOETNONG avTOV TV LAIKOV. o va
emrevyfel avtd, KOTAOKELAGTNKE £VOL LOVTEAO TPOGOUOIMONG VTOAOYIGTIKOD GUGTHLOTOS TO
omoio amoteleital amd YvmOTA EPYUAELQ, TPOTOTONUEVA £TCL DGTE VO LWITOPOVV VO, TPOGEYYIGOVV
To eovopeva Tov epthapfdvovtal otn oepevvnon pe akpifeta. Téhog, mapovoidleton pio véa
TPOCEYYION OOV YPNGILOTOIEITOL €va OTPOUA amd VAKE OAAOYNG QAONS UE SLOPOPETIKES
Bepurokpacieg ™MENG, LE EVOLAPEPOVTA ATOTEAEGLOTA.

AéEeic Khewda : Dark Silicon, Computational Sprinting, YA Alayng ®@dong, ITpocopoiowon
Ymoloyiotikod Zvotiuoatog, YAKG Atemoapng, Etepoyevry YAwkd Allayng ®dong, Oepuikn
[Ipocopoimon



Abstract

The term “Dark Silicon” derives from the fact that, as we advance to smaller technology nodes in
the semiconductor industry, more and more chip area will remain unpowered (dark). This is a
direct result of the failure to scale the switching power per transistor in accordance with device
dimension shrinking. Thus, in deep, sub-micron technology nodes, we are able to pack more
transistors at the same area without reducing the required power per transistor, resulting in growing
power densities. This growth, coupled with the physical limits imposed by device packaging and
cooling technologies, forces part of the chip to remain unpowered in order to operate within TDP
limits. The shift to multicores was the first step taken towards gaining performance benefits from
the bigger number of transistors on chip, that leads to smaller power consumption increases than
creating a single, faster core. However, multicore scaling needs tasks that can be divided equally
among cores to deliver maximum performance. Also, multicore scaling still results in growing
power consumption and is therefore expected to come to an end. That being said, research is
oriented towards discovering ways to leverage dark silicon area into performance gains. To this
end, computational sprinting is one of the most promising ideas. Sprinting involves briefly
powering on many extra cores and/or frequency boosting others, to facilitate sub-second bursts of
intense computation. These bursts exceed power limits briefly and are terminated when
temperatures on chip reach critical levels. In order to increase the available sprinting time, phase
change materials (PCMs) are used as a passive cooling technique. This diploma thesis aims to
determine optimal PCM characteristics and placement. To this end, a full system simulation model
is constructed using well known simulation tools, augmented to be able to properly simulate the
phenomena involved. Lastly, a new approach involving the use of a layer consisting of PCMs with
different melting temperatures is presented with quite interesting results.

Keywords: Dark Silicon, Computational Sprinting, Phase Change Materials, Thermal Modelling,
Full System Simulation, Thermal Interface Materials, Heterogeneous PCMs



Extetapévn Iepiinyn

H duthopotikn avt) epyoacio £xel EUTVELSTEL 0O Eva GOVOUEVO TTOL YopaKTnpilel TV
TEYVOLOYIOL KOTAGKEVTG OAOKANPOUEVOV KUKA®UAT®V TO 07010 TEPYPAPETOL LE TOV Opo «dark
silicon». To @owvopevo ovtd TPOKOHTTEL MG AMOTEAECUN TOV SAUOOYIKDY GUIKPUVGEDV TMV
JOTAGEWMV TOV NUAYOYIKOV oTotyeiov (tpaviicTtop), T OTIYUN TOV, OTIG SOGTAGELS TAEOV TOV
HIKPOUETP®V, OEV VITAPYEL AVTIGTOLYN LEIMOT TNG 1GYVOG TOV KATAVAADVEL KAOE Eva omd avtd. To
QOIVOLEVO aVTO OV Elval KOIVOUPLO Kol OMOTEAEGE KOOOPIOTIKO TOPAYOVIO GTI GTPOPN TNG
Bropmyoviog mpog Tig moAvmHpnveg TAATQOpLES. O1 TOAVTOPNVEG TAUTPOPLES LOG ETITPETOVY VO,
ocvveyiCoope vo avtAovpe KEPON O€ EMOOGEIS YPNOULOTOLDVING TO TEPLGGOTEPO VAIKO 7OV
UTOPOVLE VO YOPEGOVUE OTA VEN KUKAMUATO, KOUTUANYOVIOG GE HKPOTEPT GUVOAIKY| awEnom
16Y00G. 201060, 01 TAUTQOPUES e TOAAOVS TLPNVEG YpeWlovTal £pyacieg mov UmopovV va
oopopdlovror petalh tov Stbéoiumv eneEepyacTIK@OV HOVAS®OV Y10 VO ETITOYXOLY TN UEYLOTN
anddoon. EmmAéov, axdpa kot avénon tov aptpov tv StebEGImv Tupnvey e Vo GOGTNI
d¢ umopel va ovveyotel amepiopiota. ‘Etol,  otovg véovg, akOpa piKpOTEPOLS KOUPOLGS
JoTACEWMYV, Ol TVKVOTNTEG 1oYVmV Ba etvar TAéov 1000 peYdAEG oL, Yo VO S1GPAUMOTEL N
Aertovpyio TOV GLGTNUATOG GE EMTPENTA BepUIKA Opia, KAmol KukA®pato Ba avaykdloviol va
nopopévouy avevepyd (dark). Tuvendg, n épevva TALOV GTPEPETAL TPOG TNV TPOcTadELa €OpESTG
TPOT®V VA YpNoLonotnfel amodoTiKd avtd T0 TAEGVAGLLY VAIKOD.

ATd TIC TT10 J1OESOUEVEG TEXVIKES TTPOG QTN TNV KATELOLVGT, Elvar OVTH TOV omOKaAEiTOL
«computational sprinting». H teyvikn avtn, Pacileton otny 1860 0Tl LTopovUE Vo, EETEPAGOVE
Y10 GOVTOLO YPOVIKO OAGTN LA, TO APl LEYIGTNG KATAVAAMONG 10Y(VOG EVOG GLGTNUATOC, YMPIS Vo
npokarécovpe PAAPN. Avtd, ivar Aueon GUVETELN TNG EVOOYEVODS BEPUIKNG YOPNTIKOTNTOS TMV
VMK®V €VOG OAOKANP®UEVOD, dNAOY], TNG KAVOTNTOS TOV VAIKAV Vo amofdnkevovyv Beppotnra
KkaBdg 1 Beppokpacio toug avdvetar. 'Etot, 6tav Eva cbotnpa xpnoipomotet avtr) m nébodo, eite
EVEPYOTOLOVVTOL OVEVEPYOL EMECEPYAGTIKOL TLPTVEG EITE EVIGYVOVTOL GE GLYVOTNTO OL 1|01 EVEPYOL
N kot To. dvo. Onwg givar avapevopevo, Katé v evePyomoinon TV Tapondve topwv, o puoude
Tapay®yng 0eppomTos amd v TAATEOpua Eemepviel Katd ToAD Twv puBud e Tov omoio auty|
andyetar mwpog To mePPaArov. To amotélecpo eivor OTL VEAPYEL TOLTOYXPOVN avENON
VTOAOYIOTIKOV EMOOCEMV Kol Topaywyns Oeppotmrag. Qotodco, | Beppdtnta ot amodnkeveTal
oTadKA oTo. VAIKE ko 1 Bepuoxpacio dev avédvetar axaplaio. ‘Etol, vrdpyet eva ypovikd
TapaBvpo 610 0mOi0 UTOPOVLE VO AVENCOVE OPOUOTIKA TIG ETOOCELS TOL GUGTILATOS KOl LETA
Vo EMGTPEYOVLE TNV Kavovikn Asttovpyia. [Ipopavdg, To T€hog Tov ¥povikov avtod TapadHpov
onpartodoteitan amd v avénomn g Beppokpaciog oe kpioyleg TyéS. Metd and avtd To yeyovic,
Ol TOPATAVE® ENEEEPYACTIKOL TVPTVES OMEVEPYOTOLOVVTOL KO TO GUGTNLO PVETOL VO, OTOPAAAEL
oTadloKd 6To TEPIPAAAOV TNV TAEOVALOVGA BEPIKT EVEPYELD KOL VO EMGTPEYEL GE OVOLLUGTIKEG
Oepuoxpaocieg Asttovpyiag.

Y& ovvepyaocio pe to «computational sprintingy, ypnopomotodvot kot to AeYOUEV VALKE,
OAAOYTG PAOMG. TN YEVIKN TEPIMTOGT, TO VAIKA OVTA EIVOL EVDOGELS TOL £YOLV TNV IKAVOTNTO VO
amofnkevovy peydreg mocdtteg Beprikng evépyelog Katd tn Sadkacio aAlayng edong.



obvnOn mepinton, EKUETAAAELOUACTE TNV AAAXYT PAoTG and 6TEPED GE VYPO KOl OVIIGTPOPA.
Amd ovt) ™ oKomd, To VAKE ovtd givar ovsieg pe vynAn Beppdmra ENS. H Beppomta méng
N AavBdvovoa Beppdtra ™ENG, ivor 1 Beprikn evépyeia TOV OOLTEITOL Y10 VO LETATPOTEL L0l
oLYKEKPIUEVN LAla VOGS VAIKOV amtd 6Teped o€ vYpd. O 6poc LavOAvousa, VTTOINAMVEL TO YEYOVOG
OTL M oAAaYT] QACNG TPAYLOTOVETOL GE TPOCEYYIOTIKA otabepn Beppokpacio, to UETPO TNg
€0MTEPIKNG BepKnG evépyelog piog ovoiag, ETOUEVAOC, TO VAIKO OTOPPOQpa EVEPYELD 1 OTTOlN
AavBavel eEmteptkng TapaTipnons. OeppodtnTa N omoic amoppoPaTal amd £vo VAIKS Kot TPOKOAEL
mapotnpnoun Oeppokpactoky| dtaupopd, ovopdaletar asOnty Oepudnro.

Y& ovomquoato mwov mpoopilovror yio computational sprinting, ovtd To VAKG
YPNOLOTO0VVTOL AOY® TNG WOTNTOS TOVG va amodnkevovy Bepuotnta vd octabepr| mepimov
Oepurokpacio. Avtd &gl og amotédespia, o otabepn kot a&droyn pon Bepudtntag Tpog 10 VAKO
aAlayng @dong, enswdn n pon Bepuodtntog sivor ypappikd eEaptnuévn omd tn BEPUOKPUGLOKY|
dtpopd peta&d dvo empaveldv. To TeMKO amoTéAes 0VTOD TOV YEYOVOTOG, £lvar OTL 1) ¥pnon
TETOIOV VMKGOV 6 €évo cvotnpa, odnyel oe mo oapyéc avénoelg Oeppokpaciog, oniadn oe
peyoAvtepa dtabécia xpovikd tapdbvpa VITOAOYIGHOD.

Onwg ivor avapevopevo, 1 AavBdavovsa Beppuotnta tENG EVOS LAIKOD, 1), TO COGCTA, 1|
e1kn Beppdmmra ™MéNg, elvar mapdyovrog mov kabopiler av éva vAKO givor KatdAAnAo yuo
gpappoyég sprinting, kot Tt emmrtdoelg Oa Exel. H e1dikn Oeppotnta éng eivar n evépyeia mov
amorteiton yio TV oAAay] @AoNG TOV VAIKOV amtd 6teped o€ VYPO avd povada pdalog. Ovoikd, n
e1o1kn OBeppdtnra ™ENG elvar 1016TTOL TOL VAKOD Kot givol aveEapTnTn Tov UEYEBOLG Kot TV
JoTACEWMV EVOC OelyHaTOC.

energy storage
latent

melting point

temperature
Yympo 1: Zopmepipopd vAK®OV aAloyng edong kot Aavidvovcsa Bepuotnta



‘Eva GAA0 onuavTiKO yopaKTNPIOTIKO Yol TO VAIKG OAAOYNG GAons, €ivol M Bepuikn
ayoyyotmra. H Bepuikt ayoyipdmmro ekepdlet v ikavotnta evog VMK vo petapépet (dyet)
Oepuikn] evépyewn. Exepdler 10 pvOud petapopdsc Oepuotntag. H petagopd Oepuotnrog
TPOYUATOTOLEITOL Pl PKPOTEPO PLOUO GE VAIKE pe pikpn BEpUKT ay@yLdTTa ad OTL GE LAIKA
He peYaAn. Avtiotoyo, VAKE pe peydin Bepikn oy@ydtnTo 6Tms 0 YoAKOG, XPTOOTOLOVVTOL
o€ YNKTPeS eMeCePyaoT®V VA VAMKG pE pkpn Oepluikn] ay@yludTnTo YPNCLLOTOI00VTOL Yo
Oepukn pévoon. Xy mepintoon pag, 1 Heyoin Beppikn ayoyudtnto glvarl moAd oNnUoavTIKY,
TPAYLLOL TTOV 1oYVEL Y10L OAQ TOL VAIKA TOV TEPIAAUPAVOVTOL GTI) GUGKELAGIN EVOG OAOKANP®UEVOL.
EmnAéov, n opotoyeving katavoun Beppdtntog, n oroia eivat Gpeso amotéAeso VYNANG Bepprikng
AyOYOTNTOG HETd amd KAmowo ypovikd Otdotnua, eivor (oTikng onuaciog yw vo
EKUETAAAEVTOVUE TO UEYIOTO OO TN OEPLIKN YOPNTIKOTNTO TOV TPOCPEPEL EVA DMKO GAAAY™G
eaong. Tomkég Tpég Oeppukng ayoyidmrag yoo VAKE oAloyng @AoNG LTOSEKVOOLV
TOVAGYIOTOV TAEN MEYEDOVG doPOPA amd TIC OVTIOTOLES TIMES YO TO YOAKO. XVVETMG, 1
TOTO0ETNON TOV VAIKOV 00T®V 6T 6TOIB0 TOL OAOKANP®UEVOL KOt TO TAXOG TOV GTPOUATMV TOL
Ba ypnopomomBovv, ypnlovv TPOCEKTIKNG LEAETG.

Emmpocbétmg, mpooektikn pedétn mpémel va 600el Kot 610 onpeio ™MENG TOL LAKOD
aAlayng eaong. H davikh Tiun yuo éva 6OGTNIO TTOV GKOTEDOVUE VO EPAPUOGOLLLE SPrinting dgv
etvar Tpopavng. Zvvnbwg, ypnoomoteitat kémota Tiun Kovd oTig Kpioipeg Oeppokpacieg yio to
oroxAnpopévo. T'o va elpacte mo oakpPeig, n T tov onueiov ™Eng emdéyetar Alyo
YounAdTEPN amd v kpicyn Bepuoxpacio Yo To cOGTNUO, ETCL MGTE VO, GUVLTTOAOYIGTEL £VOG
Babuog kabvotépnong ommv 0EpUoven TOV GTPOUATOG TOV LMKOL oAlayng ¢dong. [evikd,
amopevyovTon ToAD vynAég Beppokpaciec ™MENS kKabmg BEAove To LAIKSO va aAldEel paon Ttpv
T OTOLYEID TOV OAOKANPOUEVOL PTAGOVY GE Kpioieg Oeppokpaciec. Avtiotorya, To 1010 yiveTon
Kol pe mOAD yapnAéc Bepuoxpacieg ™ENG, 10Tt Ba omataAnfel n KavOTNTA TOV LAKOV, VO
amofnkevovy peyOAeG TOCOTNTEC EVEPYELNS KOTA TNV oAAOYn O@domg, o€ N KPIoULEg
Oeppoxpooies.

Téhog, n mTocodTTO VAKOD oV Bar ypnoiponomcovpe amotehel £va copPipacud. Avto
ocvppaivel kabdg, av&avovtag TV TOGOTNTA TOL VAIKOV dev avEdvetal Lovo 1 dféoiun Beppukn
YOPNTIKOTNTO, GAAO Kol 1 Ogplikn avTioTAoN TV EVEPYDV GTOWEI®V TOL OAOKANPOUEVOL
(mapdryovv Beppotnra ) Tpog to mepParrov. [paxtikd avtd onpaivel 6t 1o LVAIKO ahloyng eaonc,
TOAPOAO OV ALEAVEL TNV GLVOMKN OepUikn YOPNTIKOTNTO TOV GULGTNUOTOG, OLGYEPAIVEL TNV
amofoAn Beppdtmroc amd avtd. Me dAra Adyla, epmodilel Ty anpdokomtn YHEN TOV GLGTIUATOG
HE QUGIKE PEGOL.

YUVOMKAE, TAPOAO OV 1 XPNON LAIK®OV 0AAOYNG (PACNS GE LIOAOYIGTIKG GULOTNUATO,
ovvdvaoTikd pe computational sprinting vrapyer Mo oty Pifloypoeio, cOUEOVE HE TNV
avdAvon Tov Topovsldcape, LIAPYEL OKOpO Y®Pog Yo depevvnon. Ilo cvykekpluéva,
EQUPLOYES eite o€ TPOKTIKO €ite 0€ BepnTikd eminedo, KLPIWG ATOSIEKVOOVY TNV KOVOTNTO
OLYKEKPIUEVOY VAMKOV va vrofondncovv didpopec pebodoroyieg sprinting. i owid pog
TEPIMTMOOT, OTPEPOUOCTE TO TOAD OTNV avalNTNnoTn TeV ETBLVUNTOV YOPIKTNPIOTIKOV TOV



VMK®V oAloyNG ¢@dong Kot oty avalnmmon Tpommv Yo TNV MEPUTEP® avénon 1ng
A0S0 TIKOTNTAG TOVG.

To mpodTo Prpo mpog avt v KoatedBvven, NTaV 1 KATOOKELT €VOG LOVTEAOL
npocopoinonc. To povtéAo TpoGopoimong TOV KATAUCKEVAGALE, ATOTELEITOL OO EVOL TPOYPOLLLLOL
npocopoimong vakov (Sniper Simulator), éva Tpdypoppo TPOGOHOIMONG KUTUVAA®GONG 16YVOGC
(McPAT), éva mpoypappo Bepuikng mpocopoimong (3D-ICE) kar éva obvoro omd
vrompoypaupata ypappuéva o Python ta omoia mpayuatomolodyv Eva 6OVOLO SpaGTNPLOTHTOV
OYETIKEG LE TN AELTOVPYiO TOV TANGIOV TPOGOUOIWONG TOV Kotackevdoape. Ta vronpoypdupata
avtd ovoudlovpEe Yo xapn CaPNVELNS TANICLO dtachvoeons. Ot dpacTnPlOTNTEG TOV EMTEAEL TO
TAOIG10 JLICVVOEONC, TEPIAAUPAVOLY TNV GLYKEVIPMGT] TOV YOPUKTNPIOTIKOV NG EKACTOTE
TPOGOUOIONG, ooV €0000 amd TOV YPNOTN, KOl TN OMOCTH EC0YMYN TOLG OTO EMUEPOVCS
TpoypaupaTa, TNV OpyLKomoinom, v €vapEn Kot Tov TEPUOTIOUO KOBE TPOCOHOIMTY|, TN
dtaovvdeon peta&h Tovg, TNV e£0 YWY GTOTIGTIKAOV Kol GAL®V apyelmv Kot TNV amrodnKeuon Toug
Yo Tepotép® eneepyocia.

To mhaiclo mov TEPLYPAPNKE, TPOCOUOIMVEL T AELTOVPYIN EMEEEPYACTIKAOV HOVAS®V OO
TAELPAG EMOOGEMV, KATAVAAW®GONG 10Y00G Kot Oep kg cvumepipopdc. Me Bdaon ta mpoypappota
TOV YPNOLUOTOMGOLE YO TNV KATAGKELT] TOV TAOIGIOV, TO VAKO oV pmopel va mpocopotmOet
éxel peydAn mowido kot meprAapPavel TOALTOPNVEG TAATPOPLES LE EKOTOVTAOES TUPNVEG KOl
SLPOPOTOU GO APYLTEKTOVIKL YOPAKTIPIGTUKA.

INUAVTIKO YOPAKTNPIOTIKO TOL TANIGIOV TPOGOUOIMONG OV KOTOGKELAGANE, Elval TO
yeyovog Ot 1 Agttovpyio. TOL TPAYHOTOTOEITOL GE KUKAOLG-PHOTA, GUYKEKPIULEVOD YPOVIKOD
dwotpatog, o oroio kabopiletar amd 10 ypnotn. To YapaKINPIGTIKO OVTO HOG EMTPETEL VO
TOPUTNPOVUE TN CUUTEPIPOPE TOL GLGTNUATOS GTO TEAOG KAOE KUKAOV, VO GUYKEVIPDOVOLLE
OTOTIGTIKA GTOYELD OVAL TOKTO YPOVIKA SIOCTILLOTO KO VOL EMITEAOVLE EVEPYELEG EAEYYOL v KPOel
amopaitnTo.

H Baocwr pon mov axolovbeiton Kotd T SdpKeln HoG TPOGOUOImoNG Tapovstaletal
ocvvtopa oto Zynua 2. Omwg ¢aivetor oto oynuo, mpwv amnd v kKAnon Kabevog amd to
TPOYPALLOTO TPOGOUOIoNG, Tponyeitol pi KANon oto mhaicto dcHvoeons ( To GHVOAO
TpoypapLdTeV ot YAdooo Python). I'evikd, ot KANGELS 0WTEG 6TO TAAIG10 J1GVVIEGTC APOPOVV
Koplog Vv €Eaymyn OTATIOTIKOV OYETIKOV HE TNV €£000 TOL TPONYOVLUEVOL EMUTEIOV
TPOGOUOIWGNG, TNV CLYKEVTPMOGT] TOV 1600V Y10l TO ETOUEVO EMIMEDO, TNV OLAUOPPMCT TOVG GE
KOTAAANAN LOPON KoL TNV KAOT TOV ETOUEVOV EMUTEIOV.
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Yympoa 2: Baowum pon mAaisiov mpocopoimong

[Ma va pmopet 1o mhaiclo mov eTidEope va eEumnpeTel Ui, OLPA TPOCOUOUDCEWMY, KOL VO
unv givat amapoitnTn 1 100YMYN KAvoUPL®Y GTOEIDV 0o TO XpNoTn KAOE popd Tov TEAEIDVEL
EVOL GEVAPLO TPOGOUOIMGNC, ONUIOVPYNGALE v LOVTELD TTEAATN — eELTNPETNTY Y10 TO TAAIGLO
draovvoeonc. TlapdAinia, onpovpynoape Kot pio vTOEVOHTNTE TOV TAMGIOV SGVVOESNG GTO
omoio pumopet o YpNOTNG VO TPOGOOPILEL TAL YUPAKTNPIOTIKG TWV TPOCOUOIDGEDV TOL BEAEL VoL
ektedeoToOv. Ta yopoktnplotikd avtd, tpocdiopilovior oto apyeio Simulation_Queue.py mov
elvat ko To povo apyeio o omoio yperdleTon vo €16ayeL oToryeiot 0 YPNGTNG Ko VO TO KOAECEL.
Metd v KAon autn, To TAAG10 d10cVVOESTG aVaAAUBAVEL OAEC TIG AmOPUITNTEG EVEPYELES LEXPL
70 TEPOG OAWV TV {NTOVUEVAOV GEVOPIWV TPOGOUOIWONG.

"Evog amd toug Adyovg mov 0dnyncov ot SLopdpemot Tov TANIGIOL S VVOESNS LE AVTO
TOV TPOTO, EVaL 1] EYYEVIG AElTOVPYiO TOV TPOYPAUUATOG BEPUIKNG TPOGOLOIMONG e AVTIGTOLYO
povtélo medldtn — e&ummpetntn. XV mepintmon tov 3D-ICE, | miegvpd tov eEumnpetnth Tepiéyet
OAEG T1G dopEG Ko emtelel OAEG TIG amapaitnTeg EVEPYELES Yo TV TTpocopoiwot. H migvupd tov
neAdTn amotelel amAd £va evoldpeco TAaictlo emtkowvoviag. ['evikd, (o eKTEAECT) TOV TEAUTN TOL
3D-ICE avrtiotorgel oe eva gpovikd KOKAO TPOGOUOIMONG, EVM, L0 EKTEAEST] TOL EELANPETNTY|
tov 3D-ICE, avtictolyei o€ £évo OAOKANPO GEVAPLO TPOGOUOIMONG.

210 TA0{G10 TOV dNUOVPYNGOLE, 1| TAELPA TOV eELTNPETNTH TEPUEVEL Vo 000l oTjua Ot
nke kdmolo cuVoAo cevapimv Tpocsouoimong kot ekkvel tov e&uanpetnt tov 3D-ICE pe
TIC KaTaAANAeg mopapétpovc. Otav telewwosel €vo oevdplo mpocopoimong, Tepuatilel Tov
e&ummpem tov 3D-ICE kot meprével yia véeg cuvoEsELS. Ty TepinTmon mov £yovpe {nThoet
TOAAG oevdplo, 1 emduevn ovvdeon Oa yiver avtdépoto HOAMG TO TPONYOVUEVO GEVAPLO



0AOKANPOGEL OAEG TIS dladKacieg TOv Tov avaioyovv. O avtictolyog meldng Tov TAaiciov
o VLVOEDN G, EMUTIPENEL GTO YPNOTN Vo TPocowopicel pe ovpd amd {nrodueva cevépuo
TPOGOUOIMONG Kot SIEVKOAVVEL TNV EIGAY®YN TOPAUETPOV Yo OAOL TO EpYOAEiR TPOGOHOIONG GE
éva evomomuévo mAaicto. To vynAdtepo emimedo TOoL TAOLGIOL GLTOV, €lval TO apyelo
Simulation_Queue.py Tov avaQépaiLe TPONYOLUEVOCG.

‘Etot, o e&ummpemtig oe Python ypeldletan va exkivnOel pio kot pévo @opd, kot Emetta.
eEuINPETEL ATNUOTO TPOGOUOIMONG €T’ 0OPLGTO. LE SLUPOPETIKN TTEPIMTMOT), B yperaldTav apod
TEAEIMOEL KAOE GEVAPLO TPOGOUOIMOTG, VO EKKIVOVLLE K VEOV TOV g&ummpetnth Tov 3D-ICE pe tig
KOTOANAEG €16000VG Kol LETA Vo, ekKvovpe To Sniper Simulator pe tig S1kég Tov mapapéTpoue.
Evo anlovotevpévo povtédo tov mehdtn — e&umnpetntn o€ Python, eaivetat oto ynua 3.

Python_Client.py Python_Server.py

———
- -~

-

Yympe 3: Movtélo neldtn-sEumnpetnth o€ Python

[No va givor mo coeéc, to mwg Asrtovpyel mapdAinia, T0 HOVIEAO € KOKAOLS piog
TPOCOUOIMONG, e TO LOVTELD TTELATN — EELANPETNTY TOV TAALGIOV S1CHVIEGNC, OOUUOPPDCOLE
10 Zynua 4. Eto oynua avtd PAEmovue cov Tpdto Prue o apyeio Simulation_Queue.py. To
apyelo oavtd, oOtav KkAnbei, diver onuo otov gfumnpeNT TOL TANGIOL O1OGVVIESTG
(Python_Server.py) va ekkwvfoet tov e&ummpett tov 3D-ICE, yeyovog mov petappdletol og n
EvapEn Log VES TPOCOUOTIMONC.
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Yypa 4: 2Hvoyn Tov GLVOAKOD TAUGIOL TPOGOUOIDGEDY

>t ovvéyeln, Eekvdel ) dadikocio Tpocopoimong e oo, 6oV TPAOTO OAOKANPOVEL
eva, KOkAo to Shiper Simulator mapdyovtag dedopéva oyeTIKA pe TV ETIB00N Kot Tn AELTovpyia
TOV DAKOV 7oL Tpocopoldvovpe. Amd v €£0d0 tov tpogodoteitar o MCPAT kot mapdyet
dedopEVA KATOVAAMONG 1GYVOG, T0. oTtoia e16dyoviat atov teAdtr tov 3D-1CE. O meddng tov 3D-
ICE petagépet to dedopéva avtd poll pe TG amaitobUeveg evépyeleg otov eEumnpetnt tov 3D-
ICE kot mepyével o amotéAecpa TG TPOGOUOIMGNC TO OTOI0 KOTUYPAPEL. XTI CUVEXELN EVOGC
Kavouplog KOkKAog Eekvderl kat 1 dadikoocio avt cvveyiletar péypt 1o T€A0G TOL GEVAPIOL
npocopoinonc. 'Enetta, n id1a dtadwkacio Eekivdel ek vEOU yia €va VEO GEVAPLO TPOGOUOImANG
HEYPLG 6TOV 0AOKANP®OOHV OA TO GEVAPLL TTOV EYOVLLE TPOGOI0pioEL.

Oocov agpopd to epyareio TOV YPNCUOTOMGAUE Yo VO SOUNGOVHE OAO avTO TO GHVOLO
OV HOMG epLypayape, otny Tepintwon tov MCPAT kot tov Sniper Simulator, ypeidotnke va to
TPOTOTOCOVLE EAGYLOTO YO VO EMTEAOVV TIG AgLtovpyiec mov BéAape kot pe Tov embountd
Tpomo. Emeldn sivar mpoypdppoto mov emd€yovtal HeyOAn TPOCSUPLOYY| LEGO OO TO TEPAGLLA
TapapéTpoOV, 0 Poaoikdg Oykog €EATOPIKELONG TOLG TPOYUATOTOMONKE YPNGULOTOUDVTOG
KATAAANAESG €1G000VE HECH TOVL TAOIGTIOL O1GVVOEST|G.

Ymv nepintoon tov 3D-ICE d6pmg, xpeldotnke va TpOTOTOGOVUE EKTEVAOG TOV TTYOI0
KOOKO TOV TPOYPAULOTOS, Y10l VO, WTOPEGOVLE VO TPOGOUOLDGOVLE TO {NTOVUEVA VAIKE 0ALOYNG
PAONG. ZVYKEKPIUEVO, Y10 VOL TO ETLTVYOVUE OVTO, YPNGLLOTO|CULE LI, TEYVIKT TTOL TEPTYPAPETOL
oto [9] xar Teprypdpeton pe Tov Opo apparent heat capacity method. H texvikn awtr], omodidet pio:
UN-YPOUUIKT TR ot Oepliky] yopnTikdTTO TOL VAIKOV, 1 omoia &gival cvvaptnom g



Oepuoxpaciog kat Exel T LOPPN TOV PoaiveTon 6to Zynua 5. Me ™ uébodo avtn, N petdfaocmn tov
VAMKOV aALOYNC @dong omd otePed GE VYPO, TPAYLATOTOLEITOL O Eva OldoTnU BepLOKPOUCIDY
OOV M BEPLIKN YOPNTIKOTNTA TOV VAIKOV £ival TOAD PEYOAN € GUYKPION UE QTN TNG OTEPENC
Kot vYpNg eaonc. E&autiog e peyding avtig avénong g Bepukng xopntikomrag, o puiuog
petafoing g Oeppoxpaciog Heumvetal KaTd TOAD KoTd T S1ApKELD 0ALAYNG PACTC.

Solid+liquid
mixture

gt
T

PCM Specific
Heat Capacity, C, .,

Solid / \ Liquid
Cps 1/ \i €y
Ty T,

Temperature, T

Yympa S: Xovaptnon Oepukng yopnTikOTTos Yo VAKO aAAAyS GAoNS

Yg mPayHOTIKES GLVONKES, Katd TV aAlayn @AoNG, TO VAIKO amoppoed UeYdAd TOocd
evépyelng oe mepimov otabepny Ogppoxpacia. H cvumeprpopd mov mpokvmrer aiddloviag
OepLuKn YOPNTIKOTNTA TOV VAIKOV SLVOUIKE KOTA TN OdpKELD TG TPOGOUOImoNS, Tpooeyyilet
TPOLYUATIKES QALAYEG PAGTC TTAPA TOAD KOAJ.

Mo va epappdcovpe ™ péBodo avtn oto 3D-ICE, eicdyape cav gicodo dAro Eva apyeio
OV TEPLYPAPEL TOL YOPOKTNPIOTIKA TOL VAIKOU OAAAYN OACMG. XTN GLVEXEW, TPOCOEGAUE Lo
ocvvéptnon mov emneepydleTor TO TEPIEYOUEVO OLTOV TOL OPYEIOL Kot TO omofdnKevel og
KATAAANAEG OOUES. TENOG, TPOTOTOMGOLE TO TPAYPULLL, MOOTE VO EAEYXEL OTAV KAVEL avabeon
OepUIKDV YOPNTIKOTNTOV, OV TO VDAIKO €xel TPOcdOPIoTEL OC VAIKO OAAAYNG GAONS Kol OV
Bpioketor oto Beppokpaciokd dtdoTnia Tov pag evotapépet. Tote kot povo TOTE, TO TPOYPALLLOL
Ba avabécel v O10QopeTIKY Beppikn YopNTIKOTNTA Kot B cuVEXIGEL TNV KAVOVIKT Agttovpyia
TOV.

Eivor epoavéc, O6tL 1 mopovcioacn T@v oAAAydV TOL YPEWUGTNKE VO KOAVOLUE GTO
TPOYPOLLLO. EIVAL GCLVOTTIKNY KO YEVIKE Un-avaAvTiky. O 6KomoOg TG TPOGEYYIoNG OVTNG Elvol va
Toviotel M AOYIKY] oL akoAovONcapE Kot Ol O CLYKEKPUYEVOS KMOKOG Kol GAAN TEXVIKA
nmpota. EmmpocOétmg, GAAeC Mo UIKPEC OAAAYEG TTOL YPEWACTNKE Vo, Yivouv Om®C m.Y.
mpocOnkn Pondntikdv petafAnTdv, GLVOPTNCE®V Kol SOUMV OeV TEPTYPAPOVTIOL Yio YOPT
amAOTNTOG.

H npd ™ epoppoyn Tov TAoGiov TPoGoLoimoTg oG, OTPEPETOL GTO VO TOVIGEL T1 CULOGTN
TOV VAIKOV SIETOPTG KOt TG KATOVOUNG 1o(00G Kol KOT™ €TEKTACT, OeprdTnTog, 6TV EMPAVELL
evog ohokAnpopévov. Ot 600 mapdyovies avtoi, e€eTdotniay KaODS 6 TOALEG TEPIMTMOGELS O
BipAoypaeia, mopoieimovior, T OTLYHUn 7OV, Y TO €100¢ TO cvoTUdteV Tov Bélovue va
eEetdoovpe, Bempovpe OtL £xovv avENUévn emidopacn oty akpifelo twv amotelespdtov. o to



AOYo a1, emAEEaE VO dOKIAGOVE ovTn T Bewpial, Vo S1OPPDOGOLLE KATAAANAO TO BepUiKkd
HOG LOVTEAO, KO £TTELTOL VO TPOYWPT)COVLE GE TPOCOLOUDCELS LE VAMKA OAAAYNG PACNG.

Ta vAkd Olemoapng, YPNOYLOTOOVVTIOL Y0 VO EVAOCOVUE TI EMPAVEIEG UETOED TNG
OLGKELOGIOG EVOG OAOKANPOUEVOD KOL TOV YAAKIVOL KOUADLLOTOG TTOV YPTGLULOTOLEITOL Y10, TV
aroywyn Oeppomrag. Ot emedaveleg HeTaEL TV 00 VAKGV, YapokTnpiloviol, 68 KPOCKOTIKO
eninedo, and avopories ot omoieg dnpovpyodv kevd aépog. To VALK Slemapng ¥PNOYLOTOLOVVTOL
KOL Y10 T1] GUYKOAANON TV EMUPOVEIDV AL KO Yo TNV EEAAEYN AVTOV TOV KEVOV 0€p0og. Ta
VMKGA 00TA, ENEWN EXOVV UEYAAVTEPT] BEPUIKT AYOYIUOTNTO OTO TOV OEPO TOV OVTIKOOIGTOVV,
Exovv ¢ amotéhespa T pelmon g Oepuikng avtiotaong g oemaens. Onwmg eivot avapevouevo,
peiowon g Oepuikng avtiotaong eivor embBounty yo v KoAvTEPN Oomaywyn Oepuotnrag.
ALQOpPETIKA VAIKE O1ETOPNC YPTCLOTOIOVVTOL LE aVAAOYO TPOTO Ko yio TV TomofEtnon g
YNKTPOG, OV LITAPYEL, 6TO YOAKIvO KdAvppa. H epapuoyn vAkov diemagng kabdg Kot £va, amd to
7o Sradedopéva LOVTELD CLOKEVOGTNG EVOS OAOKANPOUEVOL TapovotdlovTal 6To Zynua 6.

IHS

Heat Sink

TIM-2
[HS —> TIM-1

Yympa 6 : (o) Aopukd otoryeion evOg 0OAOKANP®UEVOD
(B) T'pagin| avarapdotacn epoployns VAKOD SETaeNS

ZyETIKA LE TIG KOTOVOUEG BEpUOTNTOG KO 16006 KATE KOG TOV EVEPYDV GTOLXEI®MV £VOG
oAoxkANpopévov, €xel amodeyfel ot PipAoypapio 6t 1 koTavour avty eEaptdrol amd v
OPYLITEKTOVIKT] /KOt TO €100G TOV EPYACIOV TOL EMTEAOVVTOL. AVTO TO YEYOVOS TOViLeTal d1OTL 1
OepUiKy] cLUTEPIPOPE TV OAOKANPOUEVAOV EIVAL OPKETH OLUPOPETIKY] OTAV EXOVUE OUOLOLOPPN
Katavoun OBeppotntog Ko 0tav £Y0VHE CLYKEVTPAOGELS Oepumv onueiov. Tlapdiinia, yuo yépn
ATAOTNTAG, OE OPKETEG EPEVVEG YPTCULOTOLEITOL OLLOLOLOPPT) KATAVOUT TOPE TO YEYOVOS OTL pia
TETO10, KOTAVOLT] OTTEYEL OTO TPOYLATIKO OEGOUEVOL.

Y& cvotiuata mov papudlovy sprinting, motedbovpe 6TL 1| avicokaTovoun avth Oa ival
KOO O EVTOVY], OC OMOTEAEGHO, OYl LOVO LYNAOTEP®V GLYVOTNTOV OTIS EMEEEPYOUOTIKEG
LOVAJES, OALA KOl OLPOPETIKNG XpNoHomoinong tov dabéciuov mupnvev. Emmpoctitng, N
TOPOVGIO. VAIK®OV 0AAAYNG (ACNS GTO GUGTNUA TPOochEtel GAA0 €va mopdyovia avakpifelog,
KaOMG, LE OHOWOHOPPES KOTAVOUES OepUOTNTOC, GOVVATOVUE VO, TPOGOUOUDGOVUE TO TOMIKO
MOGULO TOV DAMKOV GTIC o OEPUEG TEPLOYES TTOL OMNULOVPYOVVTOL GE TPOLYLOTIKEG CLVONKEG.

To VAIKE S1EMOPNC TTOL AVAPEPOLE TTPONYOVUEVMC, GTN YEVIKY] TEPITTMOT| TOPAAEiTOVTOL
Kol auTé amd T OepUikd HOVTELD, YEYOVOS OV TTAPALOPPDVEL KO TEPICCOTEPO TO OepUIKd



Tpopil g emelepyacTikng povadag pog. H mapopopewon avtr ennpedletor kol Aertovpyet
aBpo1oTIKA e TOVG TOPEYOVTEG TTOV AVAPEPULLE TTPONYOVUEVOC.

IMa va a&roloynoovpe TNV ELOPOOT TOV VAIKOV SETOPNS Kot TNG Katavoung Beppotntog
0€ GLGTNUOTO TOV YPNCUYOTOOVV GLYVOTNTEG AELTOVPYIOG LEYOADTEPEG OO TIG TPOSLUYPAPEG
acPOAOVS AErTOVPYiOG TOL OAOKANP®UEVOL, SLUOPPDOGCAUE £VO, GUVOAO TPOGOUOUDCEMY. XTIG
TPOCOUOIDGELS OVTEG, CLYKPIVOUE Yo TPl SLOPOPETIKA TPOYPAUUATO, TNV GUUTEPLPOPE TNG
eMeEePYACTIKNG HOVADNG, O TEGGEPLG OLOPOPETIKES TEPUTOCELS. OTav cuUTEPIAAUPAVOLLLE TO
VMK SETOPTG KO TNV AVIOT] KaTovoun 0epuotrag, 0tav TopaAeimovie o VAKA SEmaQg Lovo,
otav vroBéTovpe opoldpopen Kotavoun Bepuodtntog novo, kot 6tav GLVOLALOVIE KOt TOVG dVO
TaPAYOVTEG avaKpifelag Tavtdypova.

H enelepyoaotikny povada mov emAECOUE VO TPOCOUOLUDCOVLE, NTOV EVOG TETPOTVPNVOC
enelepyonotng Paciouévog oto povtého Nehalem Gainestown. I'a va Tpocopoidcovpe kaAdtepa
HEYAAEG TUKVOTNTEG 1GYVOG, CUUPATEG LE TIG CUYYPOVEG EMEEEPYACTIKEG LOVAOES, EMAEEAE VOl
TPOCUPUOCOVLE TO LOVTELD HaG TNV KApoKa Tov 22nm, Bpiokovtog Ta pueyédn kat 1o epPadd
TV otoryeiowv ard to MCPAT. H tyun mov AdPape yia 1o epPadd tov olokAnpopévov ftav 48,36
mm”2 1o omoio mpocopowwcape ¢ Eva 8 mm X 8 mm tetpayovikd tour, vrobétoviag 20%
COAALO TTOV NTAV 1] LEGT VTLOEKTIUNGN TTOL Tapovslactnke oto [18] yio to MCPAT.

[No v mpocopoiowon avty, ypnoyomomdnkoy ypovikd Prjuata tov 1ms. Ot coviteg
TPOYPOUUATOV IOV YpnotporomOnkay Ntav Blackscholes, Bodytrack kou Streamcluster, 6ieg yio
ouvolkd 4 vijpota kot Yoo 1000ms cuvoAikn didpkela Tpocopoinons. Emedn oty nepintwon
7oV £€TALOVLLE, OEV CKOTEVOVLE VO EPAPUOGOVLE SVVOUIKO EAEYYO TAV® GE YAUPOKTNPLOTIKA TOV
Sniper Simulator, yia va exttoydvovpe to povo eKTéLeong KGOE TPOGOUOIMONG, KOTOYPAWOLE TIC
TIUEG IOYD®V TOV EVEPYDV CTOLYEI®V YPNOUYLOTOLDOVTOS TO TAOIGIO TOV KOTAGKEVACULE KO TIC
tpogodotnoape katevbeiov 6to 3D-ICE mopakdumtovtag ta aAla dvo epyaieio. H Aoyikn miocw
OO CUTH TNV EVEPYELD, EYEL VO KOVEL LUE TO YEYOVOG OTL YPNGLLOTOOVGOLE TO. 1010 GEVAPLOL LUE
aArayég povo oto Beppucd poviéro. Kabe mpdypappa, mposopotddnke pe GAOVG TOVg TUPNVES VoL
Aertovpyotv ota 2190, 2390, 2660 wor 2926 MHz.

Oocov apopd 10 Oeppikd povtéro, emAEEQLLE VO YPNOLOTOCOVLE T dtdtadn Tov eidape
010 Zynuo 6 yopig Opmg v ynktpa. Avt n andpoacn emnpedomnke oand to [10] mov
YPNOLOTOIEITOL VA AVTIOTOLYO HOVTEAD. Mo GUVOTTIKY| TaPoLGiaoT TG oToifag oL amoTeAel
TO OAOKANPOUEVO TTOL YPCLOTOMGAE, PaiveTtal oto Zynuo 7 pall pe o VAIKO Kol T0 Tayog
Kké0e oTpOUATOC.

10 3D-ICE, ypnowonomoape dokég povddeg unkovg kot mAdtovg 100um. To dyog
Ka0e oTpOUATOG NTOV KATA HEYIGTo 250Um. Xt GEVAPLO TPOGOUOUDGEMY OV dteEdyape OAa To
VA apyikomolovvtal o€ Beppokpacio Alyo peyaddtepn omd Beppokpacio dopatiov, dnAnon
300K. H tiun avtn eivar cuvenn|g yuo enelepyaotikés povades mov Bpickovtal o€ Asttovpyio aAld
dgv emTeEAOVV KATOLN EPYOCTIOL.



Copper Spre ader 1000 um

Indium TIM1 500 um Spreader  1000um
cemmic  Underfill soum  ceamic  Underfill s0um
Al - Fine Grained Heat Distr. A2 - Fine Grained Heat Distr.
Copper Spre ader 1000 pm

Indium TIM1 500 um Coiier Spreade" 1000 im
ceramic  Underfill soum  ceramic  Underfill soum

A3 — Homogeneous Heat Distr. A4 — Homogeneous Heat Distr.

Typa 7 @ Altdéelg Tov YpNCIULOTOMONKAY GTIC TPOCOUOIDGELS

[Ma va doxpdoovpe ™ Bempio TOV AVOPEPALLE TPONYOVUEVMG, dNULOVPYCAULE TEGGEPLS
dtaéelg 0mmg paivetor oto Zynua 7. H mpd mapovsidlet to poviédo mov Bewpovpe 0Tt givor
10 Aéov akpPéc. H devtepn mapoadeinet Ta vikd demapnc. H tpitn didtaén mepiéyetl ta vikd
dlemapng oAAd voBEtel opoloyevn KaTavoun Beppdtrag, Kot 1 teAevtaio mopaieinel To VALK
dlemapng OBewpodviog mapdAinia opoloyevy katavoun Oeppomrag. Ov dwtdéelc oavtég
TPOCOLOIMOMKAY Yo OAQ TO EMMESA GLYVOTNTOG AELTOVPYIOG TTOV AVUPEPONKOV TPONYOL LEVEMG.
A&iler va onuelmbel 6TL Yo T0 TPOYPALLLATO TTOL YPTCLLOTOMGOLE, TO YEYOVOS OTL avabécape 4
viuoto oe kGbe éva, dgv onuaiver 6tt 4 vAuato sivor evepyd kaBOAn TN Odpkeln NG
npocopoimnonc. Avtifétmg, ondavio Bo Asttovpyodv kot Ta 4 vipata otov idto Babud. Avtd eivar
Wavikd otV mepintmon pog yroti onpovpyel mowikopopeio oyt Lovo oto Padud xpnoomroinong
TV oTolelmVv gvOg Tupnva, dAlo Kot 6To Babud xpnoyoroinong tov mupnveov Hetald Toug.

Onwg gaivetar oto Zynqua 7, kéOe pio amd T1g O10TAEES TOV YPTCILOTOWCAUE EYEL
ovopaotel A1-A4. H dudtaén Al elvar avt mov Bempodpe og v mo oAokAnpopévn. Ot diieg
dwtdéelg, Bewpodue Ot mEPLEYoLV avakpifeleg o1t omoieg evieivovrol pe v avEnomn g
oLYVOTNTOG AELTOVPYING TOV TUPNVOV. XTO TAAICIO aVTO, GLYKPiIvape KAOE pia amd TIg SaTAEELS
A2-A4 pe ) owid pog (Al), kon cvvoyicape ta aroteAéopata otov [ivaka 1. Enueudveror, 6Tt
Ol TIHES UEYIOTOL GOAAULOTOG Kol LEGOV OPOL COAALATOS OV Tapovstalovtol otov Tlivaka 1,
aQOpovV TN HEYIOT TOPOATNPOVUEVT OEPLOKPAGIN GTO OAOKANPOLEVO.

Ta otoyeia tov [ivaka 1 emPePfaidvovv v oyéomn peta&h cuyvotnTog Aettovpyiog Kot
BepLoKPACIOKNG SLOPOPAg LETAED TV Tpocopotwsemv. H oyéon avty, eivar epeavig 1o yuo
TN LEYIGTN TIUT TOL OEPULOKPAGIOKOD GOAAATOG OGO Kol Yl TO LEGO 0po. Emiong, To cupnépacua
avTO €lvol EREAVES Yo OA TO SLOPOPETIKE TPOYPAUOTE TOV doKlpacape. ASloonueimto sivar
10 Yeyovog 0Tt yia to Bodytrack, oleg ot petpikéc opalpotog rav aicOntd peyolvtepes, yeyovog
oL avapévape AOY® NG HEYOADTEPNG OVOUOLOYEVEWNS GTN YpNolpomoinon tov olabéciumy
TLUPNVOV.

Emmpocbétog, amd v mapotipnon tov JedopéVeV TOL Tivoka, @aivetal OTL M
OVOLLOL0YEVELD GTNV KaTavoun Oepudtntag, 0dnyel oe LeyoAdTEPO GOAALATO GE GYECT LLE TOL VALK



dlemapnc. Axoun, emPefordveror Kot GAAN Mol TPOCOOKio, WG, TOC Ol dVO OVOKPIPEIES
Aertovpyodv abpototikd (Al — Ad) kat 081 y0DV GE OKOUO UEYOADTEPT. GOAALLOTAL.

MHz\ C° | Maximum temperature error Average temperature error

ﬁ Frequency | Al-A2 Al-A3 Al-A4 Al-A2 Al-A3 Al-A4
% 2120 2.80 3.61 3.87 0.82 3.34 2.15
% 2390 3.72 4.64 5.00 1.16 4.28 2.85
% 2660 5.21 8.10 8.15 2.83 7.28 5.46
2926 7.61 11.28 11.60 4.30 10.22 7.91

MHz\ C° | Maximum temperature error Average temperature error

= Frequency | Al-A2 Al-A3 Al-A4 Al-A2 Al-A3 Al-A4
E 2120 5.13 5.57 7.21 1.26 3.63 2.65
'§ 2390 7.22 8.35 10.19 1.89 4.67 3.60
“ 2660 11.48 14.87 18.15 3.83 8.05 6.81
2926 16.33 20.32 24.93 5.73 11.37 9.94

o MHz\ C° | Maximum temperature error Average temperature error

JE Frequency | Al1-A2 Al-A3 Al-A4 A1-A2 Al-A3 Al-A4
% 2120 3.03 3.12 4.30 0.88 2.89 1.27
E 2390 4.01 4.06 5.57 1.14 3.58 1.55
E 2660 6.89 8.52 10.10 2.13 7.52 4.78
2926 10.07 12.45 14.80 3.45 10.90 7.27

IMivaxag 1: Mécog 6pog kot HEYIGTN TN BEPLOKPAGIOKOD GOAALATOG LETAED TV
SLPOPETIKOV daTdEemv

Ta ocpdipato avtd, 6mwg mpoavaeeépdnke, apopovv ™ péyotn Oepurokpocio 6to
OAOKANPOUEVO KO OTT®C €idape pmopovv va Tapovv peydieg Tés. To yeyovog avtd ypnlet
waitepng onuaociog kabmg n péylotn Beppokpacio Tov OAOKANP®UEVOL amoTeAel peTafANTY
EAEYYOV Y10, GLOTHLLOTA TTOV EPaPIOLovV SPrinting kot exnpedlet dpeoa TV EXiOPOOT) TOV VAIKOV
oAAoyNG PAoNC.

Mo va deiovpe mo mopactaTKd €va TOPASELYHO. TNG EMIOPACNG TOV TOPATAVED
TAPAYOVTOV, TPOYLAUTOTOWCAUE AAAT Lidt OLASO TPOGOUOIDGEMY OOV TPOGHEGALLE EMTAEOV KO
€va AenTd OTPAOO VAIKOD OAAAYNG PAGTC TAV® atd TO YAAKIVO KOAL LA TOV 0AoKANpopévov. To
onpeio ™MENG Tov VAIKOV Té0nKe oTovg 60 Baburovg Kedsiov kot o1 TpoGopoidaeelg £ytvay Yo 1o
npoypappo Blackscholes og cuyvotnta Asttovpyiag 2920 MHz.

YT TPOGOUOIDCES OVTEG, ypnowomombnkav ot dwtdéelg mov  mepryplonKay
TPONYOLUEVMG, ONAOOT, LE KOl YMPIG DAMKA OIETAPNG, LE OLOLOYEVT] KOl OVOLOLOYEVT] KOTAVOLY|
Bepuomrag.

To amoteAéoUATO TOV TPOGOUOIDCEMV, 015V Y10 TO BEp KO LOVTELD TTOV BE®pPOVLLE TTLO
aKpiPéc, OnAadY| e LAIKA SIETOPTG KOl OVOLOlOYEVY Katavoun Bepudtmrag, 718 ms péypt v
npmtn mapoPioaon tov Oepuikdv opiov. o v mepintwon mov ayvoovvtal HOVO To. VAIKA
dlemapnc, o avtiotoryog xpovos ntav 781 ms. Osmpmdvtoag LOVo OPO10YEVH Katavour Oeppotrog
OAAG YPNOIUOTOIDVTOG VAIKA SlETOPNGS, AdPape xpovo tpocopoioong 908 ms, evo, Bewpdvtog
OULLOLOLLOPOPT KOTAVOLY] OEpLOTNTAG KOl 0lyVOMVTOG TOL VAIKE OETOPTG, O AVTIGTOLY0G YPOVOS MTOV
847 ms.



[Tapoéro OV 01 AMOKAICELS TOL AVAPEPOLE EIVOL CNUAVTIKES, Y10 VO, YIVEL TEPICCOTEPO
KOTOVONTO TO TOGO SLOUPOPETIKA CLUTEPLPEPETOAL TO VTN O KAOE TEPITTWON, ONUIOVPYCOUE
T0 Zynuo 8. £To GYNUo eOivoVTOl GTNV TPOTN VPO Ol BEpUIKES EIKOVEG Y10l TO GTPOLO TOV
VAKOU oAAayNG @AoMG KOl 6T OEVTEPN Y10 TO GTPAOO TOV TVPNVA. APKEL VO CLYKPIVEL KOVEIG
™V teAevTOio EIKOVA KAOE YPOUUNG, OE OYEoN UE TIG TPONYOVUEVEG Yo Vo KATOAAPEL TOGO
dpépovv ta Oeppikd povtéda petalh Toug.

PCM Layer

| ;""—m
--- T

(a)- NoTIM (b) - Homogeneous (c) - (a) and (b) combined (d) TIM and Fine-Grained

Chip —Silicon Layer

L
-

(a)- NoTIM (b) - Homogeneous (c) - (a) and (b) combined (d) TIM and Fine-Grained

Yyqpo 8: Oepukég eicoveg yio Kabe dtdtaén m oTiypn e TpmdTng
napopioons tov Oeppokpaciokmdy opiwv

‘Etol, PAémovpe 6t o1 600 mapdyovieg mov eEgtdoape, ivorl dtaitepo oNUOVTIKOL GTN
OlEPELYNON NG YPNONG TOV VAIK®OV OAAAYNG PACTG, EWIKA GE LEYAAES GUYVOTNTEG AEtTOLPYiag
Kot Topd TO YEYOVOS OTL £X0VV apVNTIKY EMLOPAGCT GTOVG XPOVOLG Tpocopoimong (ypetdleTon va
TPOCOUOIDGOVLE TEPIGGATEPA OEGOUEVDL).

21 cuvéyewn, ool SOUOPPAOCAUE TAEOV TANPMOS TO BepUIKd HOVTEAO TOV GKOTEVOVLE
Vo XPNOCUYLOTOMGOVUE, HE YVOUOVO TNV akpifetor oAAd Kot oveKTOOG XPOVOLS TPOGOUOIMoNG,
de&ayope pio oelpd omd TPOCOUOLDCELS, LE OKOTO TN OEPEVVIOT] OLPOPETIKMOV OOTAEEDV
EMEEEPYACTIKAOV LOVAIMV TOV KAVOLV YPNGN VAIKOV 0AAOYNG PAoTG.

Ot duatd&elc antéc, S1pEPOVV MG TPOG TN BEGT TOL GTPAOUATOS TOV VAIKOV GAANYNS PAOTG,
kot to onueio ™&ng tov. Kdbe Eeywpiom dwdtaén, mpocopowmdnke yo kdbe éva and ta
Tponyovueva Tpoypdupato Kot yio otpopate wdyovg 100 kot 200pm. O 6komdS aVTOV TV
TPOCOUOIDGEMV Elval (o TPpooTadsia va KaBopicovpe moteg SaTAEeLg EXovV KAAVTEPT AmTOd00T)
Kol ylo oo onpeio Méne.

Kd&0e mpdypappo £tpee 6mmG TPONYOLUEVMG e 4 VAT Kot 6T vy voTnTo TV 2926
MHz. A&iler vo onueudoovpe OTL 1 LT 1 GLYVOTNTO AETOVPYIOG KOTAANYEL GE OPKETH
HEYOADTEPES KOTOAVOAMGELS 10YXVOC OO OVTEC TOV UTOPEL VO CUVINPNOCEL TO OAOKANPOUEVO



anepoplota. To omotéleopo eivar 6t 0 pvOUOC mapoywyng Oeppdmmrog elvar daitepa
avénuévoc.

Yno avtég 11g ouvOnkeg Aowmdv, mpocopoiwcape kdbe dtdtaln péyxpt vo onuelmbel n
npmtn Topafiocn v Bepuikdv opiov Asttovpyiag Tov olokAnpopévov. To 6pro avtd t€dnke
otovg 370 K, dnradn, mepinov 97 Babuodg Keioiov. To 1010 kévape kot yuo pio ddta&n mov dgv
€xel KaBOAOV LAIKO aALoyNG PAoNG, TNV OTTOi0 YPNCLOTOCAUE MG avapopd. Q¢ anddoon Kabe
ddTaéng, Bewpove Tov ¥pOVO VTTOAOYIGHOV TTOL KEPSILOVUE MG ATOTELEGILO TOV VAIKOD AAAAYNG
(AcM, 6€ CLYKPLOT HE TNV SLUTAEN AVOPOPAC.

Ot dwotdéelg mov O1EPELVICAE YPNOLUOTOINCOV VAIKE aALayNG @dong Le onpeia TENG
amd 40 péypt 90 Babpovg Keroiov kot fpa 5 Babpodg petadd kdbe mepintmong. Ocov agopd 10
onueio TomofETNONEC TOV GTPOUOTOS TOV VAMKOV, dNUOVPYNCOUE 4 O1UPOPETIKOVS GLVOIVACHOVE
mov ovopdcape P1-P4 o onoiot paivovtar oto Zynua 8.

~ Ambient N
PCM PCM

Copper  Spreader 1000um Copper  Spreader  sooum

Indium TIM1 500 um Indium TIM1 500 um

ceramic - Underfill  soum ceramic  Underfill  soum

P1- Top of Spreader P2 - Inside Spreader

. oo ~ Ambient
opper  Spreader um Copper  Spreader  1000um
PCM Indium TIM1 500 um
Indium TIM1 500 um PCM
ceramic  Underfill soum Ceramic  Underfill 50 um

P3 — Under Spreader P4 — Top of Die

Yympa 8: Awtdéelg mov ypnooromnkay yia va tpocsdlopiotel | PEATIOTN ToToBETNON
TOV VAIKOU aAAOYNG PAGTG

Ta oToLyElo TOL GLYKEVIPOGAUE ATO TIG TPOGOUOIDGELS TOV TEPLYPAYOLLE, PAIVOVTAL GTOV
[Tivaxa 2. Ot xpdvotl Tov avagEpovtal Eivat 6e MS Kot amroTeAOVV TO TOPATAVE YPOVIKO 1AGTNLLL
VTOAOYIGHOV OV KEPOHILOLHE AOY® TOV VAIKOD OAAXYNG GACNG. APYNTIKES TYES GE QVTOV TOV
nivaka ONA®VoLV 0Tl 1 dtdtaln £xetl xepoTepn BepUIKT] CLUTEPLPOPA aO TN OATUEN AVOPOPAC.
IMa Adyovg capnvelog, to onueio ™ENG mov mopovsioce To peyahdtepo O@eL0g TovileTon pe
TPAGIVO YPpOUO, VD, M Odtaln Tov TOPOVGINGE TO UEYOAVTEPO OQEAOG GE OYECT HE TNV
TomoH£TN oM TOL VAIKOD, TOVILETON PE KOKKIVO YPODLLAL.



| g | 40 | as 65 | 70 [ 75 [s0] 85 [ 90

135 | 131 131 [ 102 [ 79 [17] 17 | 17

100 | p2 | 137 | 13 125 | 97 | 81 |[12] 12 | 12

o P3_ | m1 | 114 105 | 78 | 61 | 2 | -1 | -1

S P4_| 105 | 108 98 | 74 | 63 [aa| 27 | 31
@ [Thickness

E: g | 40 | as 65 | 70 | 75 |80 | 85 | 90

= h 243 | 251 51 | 201 | 122 | 34| 34 | 34

00 [ P2 | 238 | 246 241 | 187 | 142 | 24 | 24 | 24

P3_[ 208 | 214 185 | 16 | 102 [ 3 [ -2 | -2

Pa_| 203 | 21 171 | 139 | 109 [ 81| 53 | 31

g | 40 | as 65 | 70 | 75 | 80| 85 | 90

2 | 9 92 | 90 [ 52 [19] 19 [ 19

100 | p2 97 2 | 90 [ e [13] 13 [ 13

P2 | 9 [ 9 2 | 9 [ e [ 1] 1 [ 1

| PA_| 9 | 9 92 | 9 | 97 [59] 28 | 35
3 [Thickness

8 cfg a5 65 | 70 | 75 [ 80| 85 | 90

h 307 106 | 92 | 66 | 49| 49 | 49

200 [ p2 309 106 | 92 | 88 [ 43| 43 | 43

P3 110 102 [ 92 [ 8 [2] 2 | 2

103 | 100 | 97 [ 75| 64 | 56

cfg 45 65 | 70 | 75 [s0| 85 [ 90

91
91
83
83

100 P2
P3
P4

83 81 11 5 5 5
81 79 21 1 1 1
81 81 35 32 21 32

40
286
309
108
P4 108 110
40
88
90
83
83

Thickness
cf 40 45

163 170

200 P2 162 162

P3 145 147
P4 145 146

Streamcluster

163 155 144 16 15 15 15
157 148 141 16 10 10 10
141 119 101 22 1 1 1

137 115 104 87 81 62 35

IMivaxog 2: Xpdvog (MS) mov kepdiletatl puéypt v TpdTN TopoPioon
Beppoxpaciakdv opimv

2opeova pe ta ototyeia Tov [ivaka 2, n dtdtaén P1 éyet Tic kaAbtepeg eMOOGELG G OAES
11§ TeptdcElS. Emmpocshétmg, ta onpeia téng mov Bpickovtal oto g0pog 50 pe 60 Babuovg
Keloiov, mopovcidlovv to peyodvtepa o@éAn oveEdpmmta omd tnv tomobétnon kot To
npoypoppa. Qotdco, Bempodpe 01t 10 onueio ™MENG Twv 60 PBabudv eivarl to emKpaTESTEPO,
apeVOS 010TL TaPOoLGLALEL TIG KAADTEPES TILEG OTNV TAELOVOTNTO TOV TEPIMTOCEWYV, KUl APETEPOV
S10TL OTIC TEPUTTMOGELS TOV KATO10 SNUED TNENS £xEL LEYOADTEPT ATTOSOCT), 1 dLOPOPA EIVOIL TOAD
pikpn. HopdAinia, ot yevikn mepintwon 0EAov e Vo YpNOLUOTOI0VUE OGO OLVATOV HUEYOADTEPO
onpeio T™ENGS Yo Vo amo@OYOVE TO AIMGIIO TOV VAIKOV GE GAAEG EPYOGiEg TOV dEV £XOVV GYEGN
L sprinting, Kot vo. 6TOTAAGOVLLE £TGL TNV IKOVOTNTO TOV.

Emmpocbétmg, oyetikd pe v tomobétnom tov vAkov, to yeyovog 01t M owdtaln Pl
TOPOVGINCE TIG KOAVTEPES AmOdOoELS ivor evBappuvTikd Yo 600 Adyove. O mpdTOG, £ivorl To
YEYOVOS OTL amd OAEG TIG OLUTAEEIS TTOL YPTCLLOTOMGOULE, 1| CLUYKEKPIUEVT €lvar 1 TO €OKOAM
VAOTOM G Kol €L 101 doKHaoTEL 6€ Epevveg. O devTeEPOC, £lvar To YeYovdg OTL 1 drdtaln avtn
Tomofetel TO LAIKO aAlayng @dong 660 mo pakpld eivor duvatd amd to evepyd oToryeiot TOv



OAOKANPOUEVOD. ALTO £xel cav omoTéAecuo YopNAOTEPES Oeplokpacie kol peyaAdTEPN
Oepuoxpaciokn amdotaon péypt to onueio ™Ménc. H amdotaon avtr, mapéyer éva Pabud
ac@arelag 6Tt dev Ba omataAnBel n aAlayn edong o€ un KpicUES EPYACIES.

Yuvdvdlovtog OAa TO TPONYOVUEVO, GUUTEPAIVOVUE OO TO TEPOUUATIKE dEGOUEVO Kol
LEPIKOVG OKOUOL TOPAYOVTEG TTOV YapOKTNPILOVV TOL CLGTHKOTA TOV PEAETANE, OTL 1 ddToén Pl,
HE TO VAKO aAAAYNG @AoNS Vo TomoBeTEITOL TAV® At TO YOAKIVO KAAVLLLO TOV OAOKANPOUEVOL
Kol 6€ Queon emagn pe 1o mepdiiov, oe cuvdvacud pe onueio ™Méng 60 Pabudv keloiov
amotelel ™ PEATIOTN EMAOYY.

> ocvvéyewn, BEAovTag vo doOE TNV EMOpaoT TG AOENONG TG TOCOTNTAS TOV VAIKOV
ot odtaln MO, TPOYLOTOTOUWCOUE Mo VEX GEPE TPOGOUOIDGE®Y, YPNCLLOTOIDOVTAS TN
BEATIOTN ETAOYT TTOL AVOPEPULE TPOT)YOLUEVMG KOt LETOPAAAOVTOC TO TAYOC TOV GTPOLATOS TOV
VAoV amd 100pum péyxpt 700pum, avéavovtag kdbe eopd katd 100pum. Ot TPOCOUOIDGELS AVTEG
deEnynocav TaAL péxpt va onuelwdel n TpdTn Tapafiacn TOV EMTPENTOV BEPLKOVY opimv Kot
v kéOe Eva amd o Tpio TPOYPAULATO TOV EXOVUE YPTCUYLOTOMGEL LEXPL TOPO.

Ta amoteAéopata eaivovion otov [ivaka 3. ITo cuykekpipuéva, ovaypaeeTal 0 GLVOMKOG
xpOvog Tpocopoimong yia Kabe mepintwon oe MS. EmnpocOétwg, otov mivaka mapovsialovton
Ao 600 peyédn. To éva eivar n mocootwaior avénon g Beprukng avtictaong ond ta evepyd
oTOl(ElDl TOV OAOKANPOUEVOL TTPOS TO TEPPAALOV, ®G AMOTEAEGHA TNG TPOGONKNG TEPAUTEP®
VAoV aAdayng @dong. To devtepo elvar  mocootiaio avEnomn tov ¥pOHvVov TPOGOUOIMONG G
oxéon pe Vv mepintmon mov dev €yovue kabBoAov LVAKO. Epeavmg, to devtepo péyebog dev
TPOGPEPEL KATOL TEPALTEP® TANPOPOPTIN OO TOVS GLVOAKOVS YPOVOLG TPOoGOopoimong. 2o1dG0,
T0 GLUTEPAAPOLE GOV ava@OpPA Yoo CUYKPIoN HE TNV mocootwio ovénomn g Oeppukng
aVTIoTOONC.

A&ilel va Toviotel o avtd To onpeio, 6TL 01 ¥pdvol Tpocsopoiwong, oxetilovtal dueca e
10 €100¢g TG epyaciog mov ektedeital, TOV aplOpd VbtV Tov gival gvepyd KoL T cLyvVOTNTA
Aertovpyiog TV TUPNVOV, v, N petafoin g Oepuikng avtictaong eivar kabopiopévn yuo
GLYKEKPUEVO DAIKO aAlayNS pdonc.

PCM Thickness 0 100 200 300 400 500 600 700 pm
Blackscholes 580 718 852 984 1115 1242 1368 1491 s
Bodytrack 626 725 967 1000 1201 1208 1519 1529 s
Streamcluster 380 471 543 629 713 796 901 985 s

Thermal Resistance increase relative to baseline

| o | 1565 3130 [ 46.95 | 6261 | 7826 | 9391 | 10956 | %

Simulation Time increase relative to baseline

Blackscholes 0 2379 | 46.90 | 69.66 | 92.24 | 114.14 | 135.86 | 157.07 %

Bodytrack 0 15.81 | 54.47 | 59.74 | 91.85 92.97 | 142.65 | 144.25

X

Streamcluster 0 2395 | 42.89 | 65.53 | 87.63 | 109.47 | 137.11 | 159.21 %

Mivakag 3 : Xuvolkdg ypdvog TPOcOoHoimoN S HEXPL TNV TPOTN
napoPioon entpentodv OepUikdV opiwv



Me avtd cav 0£00EVO, TOPOAO TTOV Y10 OAOL TOL TPOYPAULOTO, TTOV (PN GLLOTOCULE, TO
omoio, O1PEPOVY CNUAVTIKG OTN AELITOLPYIO TOVG, O XPOVOG TOL KEPOIGAUE Elvarl PEYOADTEPOG
TOoGOoTIOH ad TNV avENon TG Beprikng avtiotaonc, TpEmel va AAPOVILE LITOWYT LG Kol GAAOLG
TOPAYOVTEG,.

O mo onuavtikdg amd avtovg, gival 1 exidpaon g Tpochetng Bepuikng avticTaong 6To
oLGTNHO HOC. XtV TEpinTmon pog, vrobécape 6t T0 GVoTNUO PPloKOTaV o adpaveln TPV
Eexvnoel v epyacio wov tov avabécape. [a o Adyo avtd 1 apykn Beprokpacio twv ctoryeinv
tov oAokANpwuévov ténke otovg 300K. Otav aviavetor dpmc m Oeppuxn ovtiotaon tov
OLOTNUOTOG, aVEAVETAL TPOTIOTO Kot 1 Jpopd  Bepuokpaciog petald mopriva Kot
nepPdrirovtoc. H abénom avtn, emedn vdpyel YPOUMKN 6YE0N LETAED TNG KATAVAAW®GONG 1GYVOG,
¢ Bepkng avtiotaong Kot g dtaupopds Beproxpaciog, yivetol akOpa To EViovn o€ EVIOVEG,
VTOAOYLOTIKE, GUVOT|KEC.

Mo mopaderypa, agvrodécovpe pia avbaipetr, otabepn Katavaiwon 1oyvog Tov avePdlet
™ Bgpuokpacio Tov mupnva otovg 40 °C. Avtd onuaivetl 6Tt £xovue dtapopd 15 Babudv peta&hd
TePPAAALOVTOC Kol TUPTVOL. XPNOUOTOIMVTOS VAMKO aAAayNg @Aacons miyovg 700um, n Oepuikn
avtioTaon TOov GLoTHUATOG mepimov dwmAacialetar. Avtd onupaiver O6tt N véa dPopd
Bepurokpaciog Oa ivar 30 Baburovg kot 1 véa Beppoxpacia tov mopnva, 55 °C. AapPdavovrog
VoYM OTL TO LAIKO pog Awvel otoug 60 °C, kot mapd to yeyovos 6Tt Bpicketol pokpld and Tov
Topnva, Omov ot Beppoxpacies tvor yaumAdtepes, PAémovpe Tt avaroya pe TV TPONYOOUEVT|
KOTAGTOOT TOV GUGTHUOTOC, TO OPEAT 0 0mdO0GT UITOPEL VoL Eivat TOAD HKPATEPO KO VO, NV
OKALOAOYOVV TO TTOPOTAVIGIO DAIKO

Y& avTIdloTOAN, 6€ GVVONKeS Npepiag, o Tupnvag givat povo 2 -3 Babpovc mo Bepuodg omd
10 mePIParrov. Aumhacialovtog T Oepuikn avtictoon Tov cuoTHHaTog Ba £xEl WG OMOTEAEGUO O
mopnvog vo etvan 4 — 6 BaBuovg Bepuotepoc. H dopopd oe avt v epintwon ivon mToAd mo
avenoicOn.

A6 o S10popETIKT OTTIKN YoVvia, 1 adEnom g Beppikng avtictaons avédvel Katd ToAn
™ 61afepd YPOVOL TOL GLGTNHATOS. AVTO cLpPaivel 01T 1) oTaBepd YPOHVOL Elvat GLVAPTNOT TNG
BepLuKng avTioTaong aALL Kot TG BEpUIKNG YOPNTIKOTNTOS TOL EMIoNG avEAvETAL TPOGOETOVTAG
vAko. H avénon g otabepdc xpdvov, cuvendyetal 6Tt T0 GLGTNUO KAVEL TEPLGGATEPO YPOVO VL
avePaocet Oeppokpacio aAld TavTOYPOVa YPEIELETOL KO TEPIGGOTEPO YPOVO Y10 VAL TNV ATOPAAAEL.

SOUQova 1E To TPONYOOUEVE, YIVETOL POVEPO OTL TPOGOHETOVTOC VAKO aAAAYNG PAGNG,
petofdidetor 1o Oeppkd mPoeih tov oAokAnpwpévov. Ilapdrio mov 1 MAworn avt) eival
TPOPOVNG, AVTO oV BEAOVLE Vo TOVIGOLUE fvorl OTL 1) ETAOYT TOV TAYOVS TOL VAIKOD CALAYNG
QAaoNG, TPEMEL VAL YiVEL G€ GLVAPTNON LE TO €100G TOV £PYACLOV TOL BEAOLLE VO eKTEAEL GLVNOMG
10 ovotnuo. o Tapddetypa, cuoTIHOTA TOV GLVNOWOG EKTEAOVV GUVTOUEG EPYOCIEC Ol OTOlEg
eupaviovrar cuyvd, Bo Ntav BEATIOTO va XpNoLoTolovV Alyo LAKO. Avtifeta, cuoTiuaTo TO
omoio, EKTEAOVV O UEYAAEC epyaciec ol omoieg eppavifovror mo apatd, Ba iyav peyaAvtepPO
OPELOC OO PEYAAEG TOGOTNTEG LVAIKOV TTapd TNV avénom ot Oepuikn avtictaon.
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CHAPTER 1



1. Introduction

A great many years have passed since the publication of the article [1] of Gordon E. Moore
that led to what we now call Moore’s law, that is, the doubling of transistor count on chip every
18 months. Moore’s law, in essence, predicted a shrinking trend in transistor size leading to a
corresponding growth in transistor count per unit area. While not as commonly discussed, a major
factor that allowed this scaling to hold true, up to a certain point, is what we refer to as the Dennard
Scaling model.

Robert H. Dennard, after whom it is named, observed that voltage and current should be
proportional to the linear dimensions of a transistor. Thus, as transistors shrank, so did the
necessary voltage and current, meaning that power is proportional to the area of the transistor.
Dennard’s scaling theory showed how to reduce the dimensions and electrical characteristics of a
transistor proportionally to enable successive shrinks that simultaneously improved density, speed
and energy efficiency.

According to Dennard’s theory [2], with a scaling ratio of 1/4/2 , the transistor count
doubles (Moore’s Law), frequency increases by 40%, and the total chip power stays the same from
one generation of process technology to the next, on a fixed chip area.

While approximately accurate, this model does not account for the increased leakage
currents dominant in small sizes. In leakage dominated, deep sub-micron technology nodes, further
reducing threshold voltage results in an exponential increase in leakage power. Hence, threshold
voltage is no longer scaling, and, as a consequence, supply voltage cannot be scaled further without
impacting performance. Thus, although we can still pack more transistors per area with technology
scaling, the switching power per transistor is not scaling commensurately, and hence power density
has been trending upwards. Coupled with the physical limits imposed by device packaging and
cooling technology on the peak power and peak power density, this results in the so-called Dark
Silicon era. The term "dark silicon" derives from the fact that as chip power density increases,
more and more chip area must remain unpowered (dark).

This new constraint imposed by dark silicon means that not all the transistors on the chip

can be simultaneously powered on at full performance for a given thermal design power (TDP).
The TDP is the maximum amount of power that can be supplied to the chip to ensure that the chip
will operate within the safe range, meaning, below thermally safe temperatures. If the TDP is
violated, the chip will generate heat at a faster pace than can be dissipated by the cooling system,
which will eventually lead to overheating of the chip components [3].

With the end of Dennard scaling, as previously explained, process technology scaling can
sustain doubling the transistor count in every generation, but with significantly less improvement
in switching speed and energy efficiency [4]. In other words, the transistor count could continue
to increase under a specific frequency limit, at the cost of increasing power density. As a result,
the microprocessor industry has shifted to multicore scaling, in order to exploit the still increasing
transistor numbers. Multicore scaling, translates to increasing the number of cores per die at each
generation instead of focusing on creating a single, faster core. To further elaborate, the aim is to
utilize more, energy-efficient, cooler-running processing cores instead of one, increasingly



powerful and increasingly consuming. Multicore chips are not intended to run as fast as single core
models, but improve overall performance by handling more work in parallel [5].

The main advantage of multicore systems is that raw performance increase can come from
increasing the number of cores rather than frequency, which translates into a slower growth in
power consumption. However, this approach is not ideal because it requires tasks that can be
divided equally among cores, in order to reap the most out of the potential performance gain,
which, quite frequently, is not the case [6]. In addition, with the failure of Dennard Scaling and
thus, voltage-scaling, even core count increases are not without limits. As previously stated, core
scaling results into a slower growth of power, but still an upward trend. Consequently, it stands to
reason that even this scaling will eventually come to an end. Hence, the leap to multicore is not
based on a breakthrough in programming or architecture and is actually a retreat from the more
difficult task of building power-efficient, high-clock-rate, single-core chips [7].

Given the abundance of transistors in dark silicon chips, the question ultimately becomes
if and how they can be harnessed to improve performance within a power or peak temperature
constraint. Much of the existing work in literature addresses this question, based on different
design philosophies that include the use of architectural heterogeneity, specialized cores,
approximate computing and devices that employ near-threshold voltages to enable a larger fraction
of the chip to be powered on, albeit at lower voltage level, coupled with other power management
schemes for dark silicon.

Regarding architectural heterogeneity and specialized cores, research work has focused on
exploiting the dark silicon area for designing specialized cores, incorporating heterogeneity, and/or
application-specific, hardware accelerators. In essence, this approach focuses on using the surplus
in silicon area to provide better suited hardware in terms of energy and performance that can be
used in an on demand basis, depending on the task at hand.

Approximate computing relies on trading energy efficiency with accuracy, especially for
error-tolerant applications like vision, machine learning etc. Approximate computing techniques
at various levels of design abstraction have been discussed, ranging from circuit level techniques,
to approximate data paths and programming language support.

Near threshold computing, presents an approach to utilize dark cores by turning on a larger
fraction of the chip but at voltages close to the threshold voltage. This approach works well for
applications with high thread-level parallelism, but also exhibits high sensitivity to process
variation and power supply fluctuations.

In terms of power management, recent research aims at run-time mechanisms to efficiently
utilize the thermal design power (TDP) budget in order to maximize performance of cores that can
be homogeneous, micro-architecturally heterogeneous or homogeneous but synthesized with
different power/performance targets.

A technique called computational sprinting leverages dark silicon to power-on many extra
cores for a very short time period to facilitate sub-second bursts of parallel computation. During
this time window, the active cores consume power that significantly exceeds the sustainable TDP
budget, but the cores are immediately power-gated after the sprint allowing the chip to cool down.



Alternate methods are Intel’s Turbo Boost and AMD’s Turbo CORE technologies that leverage
the temperature headroom to favor high-1LP applications by increasing the voltage/frequency of a
core while power-gating others [3].

In an effort to assist computational sprinting, the use of phase changing materials (PCMs)
has been investigated as a passive cooling technique. PCMs are compounds that store large
amounts of latent heat during phase change from solid to liquid. PCMs absorb this heat at a near-
constant temperature and hence act like large thermal capacitors. These properties have led to the
use of PCMs in cooperation with computational sprinting aiming to extend the sustainable
sprinting duration [8].

In this diploma thesis, the aim is to address the performance bottleneck imposed by the
multicore era and the ever increasing percentage of dark silicon. With regard to this goal, we
consider computational sprinting combined with the use of phase change materials to be quite
promising. Therefore, we sought to showcase the impact of different PCM configurations and
attempt to find the best suited properties regarding placement, material thickness and melting
temperature.

The goal of this analysis is to identify setups augmented with phase change materials that
allow even better results to be achieved through the use of sprinting techniques. To this end, a
simulation framework has been formed, consisting of four basic components: a hardware
simulator, a power modeling tool, a thermal simulation tool and a collection of python scripts
unifying each separate component into a single entity. Although this simulation framework was
used to simulate a specific chip enhanced with PCM under a specific set of workloads, its
capabilities far exceed the implementation we used. This will be highlighted when the framework
is presented in detail.

In order to properly simulate the behavior of PCMs, the thermal modelling tool has been
modified. It has been altered to be able to implement a model proposed in [9], named apparent
heat capacity method. This method simulates the behavior of phase change materials by assigning
a nonlinear, temperature dependent, specific heat capacity to the PCM layer. The benefit of this
approach is the ability to simulate non-uniform PCM melting and, by way of the specific
implementation, materials of different physical properties. In addition, via the native flexibility
over the placement of layers offered by the thermal simulator, comes the potential to experiment
with the placement of PCMs in the chip stack.

Subsequently, using the derived framework, this thesis goes on to show that traditional
models used for the components of the chip package are not suitable for simulations involving
PCM-enabled sprinting chips. This results from the fact that said models contain inaccuracies
whose magnitude is an increasing function of core frequency. Furthermore, these models fail to
properly simulate the uneven heat distribution that results from heterogeneous power consumption
of various components (be it across components of the same core or across different cores). This
fact is propagated across all layers of the chip and results in completely different heat distribution
profiles. Accurate heat distribution modelling is considered of the utmost importance since we aim



to simulate uneven PCM melting. Thus, a more accurate model is introduced, taking into account
the increasingly weighing factor of thermal interface materials.

Using the constructed framework that includes the enhanced thermal model and the
accurate model of the chip package stack, we attempt to determine the best phase change material
configuration for a given chip, under a number of different workloads. The variables addressed are
the PCM melting point and thickness, as well as the placement of the PCM layer in the chip stack.

Lastly, on account of the observation that components that consume more power result in
concentrated regions of PCM that melt (that is, exhaust their heat capacity) faster, we experiment
with heterogeneous PCM layers. These layers consist of regions with different melting points, such
that the effect of more active regions in the silicon is reduced by enhancing lateral heat spreading
across other, cooler areas of the PCM layer.

In retrospect, although this thesis aims at more efficient ways to utilize the resources
available in recent multicore platforms, it also contributes a very adaptable and complete
simulation framework for PCM-enabled multicore chips, as well as insight into phase change
material configurations and their corresponding impact.



CHAPTER 2



2.1 Theoretical Background

2.1.1 Computational Sprinting

With the apparent end of Dennard Scaling and the shift of the microprocessor industry to
multicore designs, more and more research is oriented towards finding ways to better utilize the
resources available in many core chips. One of the most promising, and popular approaches to this
end, is that of computational sprinting. While this technique has already been presented briefly, a
more detailed description is in order.

Computational sprinting, or sprinting, as the term will be used subsequently for the sake of
brevity, activates reserve cores (parallel sprinting) and/or boosts frequency and voltage (frequency
sprinting) for bursts of intense computation, to power levels that exceed the system’s sustained
cooling capabilities by an order of magnitude or more. During sprinting, chip temperature does
not spike instantaneously, although the chip generates heat faster than the system dissipates it.
Instead, the system absorbs heat by virtue of its inherent thermal capacitance, that is, the property
that materials can buffer significant heat as they rise in temperature. This property causes
temperature to rise over an extended, albeit still short, time interval. When it reaches a threshold
value, sprinting terminates, and restraining actions are being enforced in order to complete the
remainder of the computation in progress, at lower power levels, while heat buffered to the chip
materials is dissipated to the ambient [10], [11].

While the idea seems to be quite simple, many factors contribute to the existence of a
variety of different sprinting implementations. First and foremost, any sprinting methodology is
designed with regard to a specific platform type. The most usual case are chips intended for mobile
devices without, however, precluding the existence of implementations for chips that are used in
servers or even personal computers. As previously mentioned, Intel and AMD turbo technologies
are examples of limited forms of frequency sprinting, widely used in multicore chips, mobile or
desktop oriented. With that example in mind, it is worth restating at this point, that sprinting
approaches may involve frequency sprinting, parallel sprinting, or both, depending on the case.

As expected, depending on the platform, a number of consequent elements must be taken
into account, thus differentiating each sprinting implementation. Despite the fact that many of
these elements are interdependent, and not necessarily in a direct manner, we will attempt to
showcase some of the most important, disregarding the correlations between them. The objective
is to give a general sense of the huge number of disparate approaches, the complexity of designing
a sprinting scheme, and a brief theoretical background that we will subsequently use to analyze
related research.

One way to differentiate between sprinting policies is with regard to the applications they
are aimed towards. In some cases, only a specific set of workloads is intended to employ sprinting
as a consequence of favorable intrinsic characteristics. For example, as described in [12],
applications that demonstrate short bursts of intense computation, punctuated by long idle periods,
are suitable candidates for sprinting. Some applications that fit this pattern are image processing
and computational photography tasks (such as panoramic stitching and image noise reduction),



navigation route planning, and natural language processing (speech recognition and translation).
In other cases, no special consideration regarding the applications suitable for sprinting is
performed, and the system sprints if available tasks and resources are both present. These systems
usually perform a duty cycle type of operation, defining a time cycle, sprinting for a fraction of
that cycle and switching to sustained operation for the remainder. Lastly, special cases perform a
dynamic evaluation and decide whether it is efficient for an application to sprint, based on
performance characteristics.

In any case of sprinting, a control mechanism is enforced, to ensure that chip temperature
levels remain within certain bounds. We distinguish between two basic control types, reactive and
predictive. Reactive control models take necessary restraining action when a violation occurs. In
contrast, predictive models, use metrics to evaluate whether a thermal violation is about to occur
in the immediate future and react accordingly. Predictive control depends greatly on the accuracy
of the employed model. In the general case, predictive control types ensure less thermal strain on
the chip and are often coupled with reactive policies in case of a failure to predict a temperature
violation. On the other hand, they carry a certain computational overhead. This is a direct
consequence of the fact that predictive models perform a series of computations in order to
simulate, albeit in a simplified manner, the behavior of the system in the future. Depending on the
implementation, the detail, and the range of variables associated with each predictive model, such
computational overhead may be substantial. Reactive policies almost always are enabled by a
temperature limit violation.

Despite the fact that control mechanisms, when and if enabled, override any resource
allocation scheme, they are a separate entity. Resource allocation schemes or allocation policies,
as denoted by their name, decide the optimal allocation of chip resources in an attempt to maximize
performance and/or energy efficiency. This optimization, might be referring to an application, a
thread, a system average or some other module. While a resource allocation scheme might also be
limiting the distribution of resources, it does so in an effort to achieve the best response out of the
system. In contrast, control mechanisms throttle the function of components, to prevent damages
due to non-nominal operation.

Another important aspect of a sprinting policy, closely related to the control mechanism,
is the overheat policy. By overheat policy we mean the series of actions that take place when a
violation, overheating of a component, occurs. According to the information presented above, the
system would revert to a sustained operation mode, in order to cool down, however, a certain
variability in such modes can be observed. The most common case of overheat policy, is to shut
down all active cores except one, pack all remaining active threads and continue computation at
the nominal frequency until significant thermal headroom is recovered. Other, more sophisticated
strategies, choose to power down only those cores that report a violation, and migrate or pack their
threads depending on the existence of free cores to accommodate them. A different approach is to
define a number of sustainable combinations of active cores and frequency/voltage levels and
choose the most appropriate, depending on the workload.



Lastly, a distinguishing factor between sprinting approaches is the homogeneity, or not, of
the multicore chip. Most approaches in the literature address homogeneous platforms in spite of
the fact that combining heterogeneity with computational sprinting is generally regarded to be a
promising research area.

The key points from this section are summarized in Figure 2.1. Although it was mentioned
in the beginning of this section, let us repeat that what we presented is only a simplistic outline of
a countless number of considerations related to a sprinting methodology. For example, an
allocation policy is not wholly characterized by the applications it is intended for. A lot of other
factors may be taken into account in order for the allocator to decide when, where, for how long,
at what intensity and so on. From a higher level of perspective, the factors presented in Figure 2.1
are not the only ones distinguishing one methodology from another.

Figure 2.1: Basic characterizing factors of sprinting methodologies
2.1.2 Phase Change Materials (PCMs)

Phase change materials, in general, are compounds that are able to store large amounts of
thermal energy during phase change. In the most common case, the phase change from solid to
liquid, and vice versa, is exploited. From this point of view, PCMs are substances with high heat
of fusion. Heat of fusion or latent heat of fusion, is the energy required to transform a certain mass
of a material from solid to liquid. The term latent, accounts for the fact that phase change occurs
at near steady temperature, a metric for the internal energy of a substance, hence, the material
absorbs heat that is latent, meaning hidden. Heat absorbed by a material that results in an
observable temperature difference is termed sensible heat.

In computational sprinting, the topic of our focus, such materials are exploited by virtue of
their ability to store large amounts of heat at near constant temperature. This results in a sustained
considerable heat flow towards the PCM, due to the fact that heat flow is linearly dependent on
the temperature difference between surfaces. The ultimate result of this fact, is that the use of
PCMs in sprinting systems leads to smoother temperature profiles, that is, longer sprinting
durations.



As expected, the latent heat of fusion of a material, or more accurately, the specific heat of
fusion, is a weighting factor of both its suitability for and impact to, sprinting approaches. The
specific heat of fusion is the energy required for phase change, from solid to liquid, per unit mass.
Obviously, the specific heat of fusion is a material property and independent of size or extent of a
sample [13].

energy storage
latent

melting point

temperature
Figure 2.2: PCM behavior and latent heat storage

Another important characteristic for a PCM, is thermal conductivity. Thermal conductivity
is the property of a material to conduct heat. It represents the rate of heat transfer. Heat transfer
occurs at a lower rate across materials of low thermal conductivity than across materials of high
thermal conductivity. Correspondingly, materials with high thermal conductivity like copper, are
used in heat sinks, while materials of low thermal conductivity are used as thermal insulation [14].
For PCMs of our interest, high thermal conductivity is paramount, as is the case with all materials
involved in chip packaging. More to the point, uniform heat distribution, an immediate result of
high thermal conductivity, given enough time, is essential in order to exploit the maximum out of
the heat storage that a PCM offers. Typical thermal conductivity values of PCMs indicate at least
an order of magnitude difference to that of heat spreader and heat sink materials. Consequently,
the placement in the chip stack and size of PCM layers warrant a careful investigation for their use
to be productive.

Furthermore, careful consideration must also be given to the PCM melting temperature.
While this term is self-explanatory, the ideal value for a sprinting system is open for debate.
Usually, a melting point close to the critical temperature for chip operation is considered. To
elaborate, a slightly lower melting point than the critical temperature is regarded as optimal, to



account for a degree of latency in the heating of the PCM layer. Generally, PCMs with higher
melting points are considered useless at best, for obvious reasons. In addition, PCMs with quite
low melting points are also considered non-ideal since their advantage of storing large amounts of
heat is wasted in non-critical temperatures and their existence in the chip stack hampers heat
conduction. However, since these remarks are quite vague in nature and, to our knowledge, no
extensive research regarding this factor has been conducted, a series of tests will be later presented,
aiming to find the best PCM melting point for our test system.

In summary, PCMs are used in systems with computational sprinting in mind because they
have been proved to be able to extend the maximum sprinting duration. The key elements of a
phase change material are its specific heat of fusion, thermal conductivity and melting point. It is
beneficiary for thermal conductivity and specific heat of fusion to be as high as possible. In
contrast, regarding the melting point only vague outlines and isolated examples are available. For
this reason, an exploration has been conducted and will be presented in detail.

2.2 Related Work

2.2.1 Computational Sprinting on a Hardware/Software Testbed [10]

In this paper parallel and frequency sprinting is demonstrated for a configuration imitating
a mobile chip. To this end, a desktop four core system is modified, by removing the heat sink and
adding a variable speed fan, so as to be able to sustain the indefinite operation of only one core at
the lowest user-selectable frequency. All other modes of operation normally available to the chip,
are considered sprinting modes for this configuration. In order to show various aspects of
sprinting, a set of parallel workloads is used.

At first, the aim is to show the benefits of sprinting when a computation can be completed
at the maximum parallel and frequency levels without exhausting the system’s thermal
capacitance. The resource allocation scheme and application work size are configured accordingly.
An average speedup of 6.3 is reported. Consequently, the energy impacts of sprinting are
examined. To do so, the same set of applications is considered, at all possible sprinting
combinations. Counterintuitively, the authors demonstrate that when sprint intensity is selected
appropriately, sprinting can improve energy efficiency as well as responsiveness.

Bigger work sizes are also examined, at maximum sprinting intensity, and a reactive
control with regard to temperature, measured at a fixed time interval with on-die sensors, is
enforced. The overheat policy of this configuration is to revert to sustained one-core execution at
the lowest frequency, pinning all threads to this single core and disabling all others. This type of
operation results to performance and energy penalties, more prominent depending on the
application, that increase as the workload increases. In order to mitigate the oversubscription
penalty resulting from pinning active threads to a single core, a methodology is presented that
essentially allows to dynamically alter the thread count of an application to match that of active



cores. With the implementation of the proposed methodology, even the most penalized application
adopts an almost neutral performance and energy profile for big workloads.

An allocation scheme, termed adaptive sprint pacing, is presented, intended to capture the
benefit of sprinting for short computations, but at the same time extend the length of computations
for which sprinting improves responsiveness. The idea outlined is to sprint at full intensity until
half of the thermal capacity is consumed, and then switch to less intense and more power-efficient
sprints by keeping all cores active but lowering their frequency levels. Indeed, this allocation
scheme is seen to capture beneficial effects for a greater range of worksizes.

The use of PCM, specifically paraffin wax, is examined in order to increase sprinting
duration. The response of the system at the max parallel but lowest frequency sprint mode is
measured and compared against the configuration with no PCM at all and other cases, involving
materials not equally suitable for augmenting the system’s thermal capacitance. The best scenario,
that of paraffin wax, resulted in a 6x increase in sprinting duration. In all scenarios, the extra layer
was placed on top of the heat spreader, meaning, since no heat sink was present, between the
spreader and ambient.

Lastly, a duty cycle type of execution is researched. This means defining a time period,
sprinting for a fixed time length and switching back to sustained execution for the remainder and
repeat indefinitely. Again, the sprinting mode selected is the maximum parallel and minimum
frequency sprint. This sprint and rest execution was reported to provide both better performance
and energy efficiency.

2.2.2 Safe Computational Re-Sprinting via Model Predictive Control [15]

In this work, a sprinting architecture for an embedded device is presented consisting of a
16 core chip. Both frequency and parallel sprinting is enforced, although, in an indirect manner.
The authors assume fixed power consumption at maximum and minimum frequencies, in a worst
case scenario basis. The same is true for the power consumed when idling. A full sprint
corresponds to using all cores at maximum frequency and utilization, and rest mode to only one
core operating at full capacity. The assumed chip is supposed to be augmented with a PCM-copper
composite, interposed between the die and package.

It is worth noting that the thermal model adopted, assumes a uniform heat distribution
across core area and across the PCM layer. With this configuration, the effectiveness of the PCM
composite is highlighted by comparing the thermal performance of the chip when a copper heat
spreader or a PCM without the copper enhancement are used instead the composite. As expected,
the copper enhanced phase change material provided the larger sprinting duration.

Before introducing their proposed model, the authors define a special case of critical tasks
that have a finite pre-specified duration and are issued at regular time intervals. These tasks are
required to sprint at full power until completion. With that definition in mind, a two layer predictive
controller is described.



The lower layer satisfies power levels requested by the higher layer when no violation of
thermal bounds is predicted. In any other case, the maximum power that does not result in a thermal
violation is assumed, if such a value is greater than the power corresponding to the lower operating
frequency. To the event that this condition is not satisfied, idle power is enforced, essentially
meaning that a core has been put to idle status.

The higher layer assigns maximum power levels to each core when the PCM internal
energy is not predicted to exceed a certain value. This value is computed in order to ensure that
enough thermal headroom will be available for a critical task to sprint at full capacity. If a violation
is predicted, then the controller will assign the maximum power level acceptable in a similar
manner as described previously, with the sole difference that the control variable in this case, is
the PCM internal energy. Furthermore, it is worth noting that this higher layer controller can be
disabled, when no critical tasks are considered.

The proposed model is validated against a threshold based approach, where each sprinting
request is executed at maximum capacity until each core but the first is forced to shutdown. This
comparison is performed with mixed workload scenarios for cases where critical tasks are assumed
along with other generic ones, and cases where only generic tasks are issued. In the latter case, the
approach presented by the authors clearly outperforms the threshold based. When critical tasks are
considered, the proposed model ensures the required full sprint duration for critical tasks, but
suffers from a small overall performance loss to do so.

To conclude the outlined approach, non-nominal conditions are assumed, that is, high
ambient temperature and power consumption for each core, for a mixed criticality workload.
Suffice it to say that the performance of the controller satisfies the expectations even at the
specified challenging circumstances.

2.2.3 Thermal Management Using PCM — Based Heatsinks [16]

This paper investigates the interaction between PCM enhanced heatsinks and systems
running specific benchmarks. An Intel Nehalem four core platform is simulated using the Sniper
Simulator [17] coupled with McPAT [18], to produce power values. These power values are then
fed to Hotspot to evaluate the thermal interaction between the chip and other components of the
package, for different benchmark workloads.

While this work accounts for uneven distribution of heat across core areas, as a result of
different utilization characteristics for each component, due to variability of the workload, the
PCM layer is modeled as a singular block. This type of modelling, indirectly assumes uniform heat
distribution and uniform melting of the PCM layer. As we will show later, this condition is almost
never satisfied. Moreover, this single block modelling of the PCM layer, mitigates the benefits of
simulating uneven heat distribution in the underlying chip area.

A small number of workloads is enough to demonstrate the theoretically expected behavior
of the PCM heatsink, thus highlighting the benefit offered by the phase change material. For



reference purposes, the behavior of the PCM selected, Lauric Acid, is compared against that of
water for the corresponding temperature ranges that ice melts.

While this paper does not enforce any sprinting methodologies, it is included because it
contributed to the formulation of the overall framework that will be presented later. In addition, it
is the only one that associates the use of phase change materials with uneven heat distribution in
the core area despite the mitigating factor involved in modelling a PCM layer as a single block.

2.2.4 Modeling and Analysis of Phase Change Materials for Efficient Thermal
Management [9]

This work proposes a thermal model to simulate the behavior of phase change materials
that is able to account for non-uniform melting and heat distribution at the PCM layer. In order to
achieve that, the apparent heat capacity method [19] is used. This method was also used in our
thermal model and will be presented in detail in chapter 3. The PCM layer in this research is
interposed between the die and the copper heat spreader.

This model is then validated against COMSOL and another, single block approach. The
proposed approach is proven to be quite accurate and also more efficient than COMSOL. At the
same time, the single block model is proven to be quite inconsistent, leading to big temperature
errors and, of course, unable to capture spatial effects like non-uniform melting of the PCM.

Consequently, a 12 core system is simulated by a framework using the Gem5 simulator,
MCcPAT and HotSpot thermal simulator. The objective is a design space exploration of PCM
properties and their impact on the thermal performance of a chip. Results from experimenting with
the PCM thermal conductance and thickness are presented. Overall, having the highest
conductivity available is preferred in all cases while the thickness of the selected material is not
an easy choice. In the general case, thick layers result in hotter thermal profiles but PCM-aware
control mechanisms might leverage the extra thermal capacity to increase performance benefits.

Lastly, the authors demonstrate that using single block models for phase change materials
results in inconsistencies that are exacerbated when workload distribution among cores is highly
heterogeneous. Specifically, single block models, result in longer time before the layer starts
melting when few cores are active, and, during melting, they exhibit a constant temperature until
100% of the PCM is melted. These erroneous results, lead to a number of over and under-
estimations of core temperatures and consequently, throttling instances if a per-core thermal
controller in enforced.



2.3 This Work

2.3.1 Objective

The aim of this thesis is to research the efficient use of phase change materials in systems
that intend to employ computational sprinting. This goal was motivated by the fact that even
though phase change materials have been presented, in recent research, to be able to increase
sprinting duration for such systems, there has been no extensive study regarding their optimal
characteristics and placement.

2.3.2 Key Differences

One of the major and most prominent differences in this work, lies within the thermal
model adopted. First of all, in most research, the power consumption of a core is either assigned a
steady value, reflecting a worst case workload scenario, or is simulated with suitable software and
then aggregated to a single value. In either case, the resulting power is usually evenly distributed
across the core area. Other more conservative approaches, might split the core simulated into a
small number of logic blocks, containing multiple elements, aggregate the values of those
elements, and then assign the computed power estimate to the logic block. While the latter case is
more accurate, we considered it a coarse grained representation of the heterogeneous heat
distribution across the core die. In our work, a fine grained floorplan, and corresponding power, is
used with interesting results.

In addition, regarding the modeling of phase change materials, most research adopts
computational methods to account for the phase change, and models the PCM as a single block.
In our work, a more accurate method is used, the apparent heat capacity method, which is validated
with good results against state of the art thermal simulators, coupled with a multi-node grid
representation. While the model was adopted from [9] and used there, it was not implemented in
that work in collaboration with a framework that accounts for the variable heat distribution along
the area of a core, the first major difference mentioned earlier.

Regarding these two facts, our work accounts for non-uniform heat distribution at all
possible levels. Across the die of one core, due to different component utilization, across the chip
die, due to different usage of each core and across PCM and every other layer in the chip stack.
This approach, as will be demonstrated consequently, will yield some results that deviate from
what was anticipated.

To make matters worse, the effect of thermal interface materials (TIMSs) is neglected in
almost all the related work we examined. One might argue that since these materials are by design
slim in the chip stack, a simplified model omitting these interconnecting layers will benefit in
performance at the cost of a small accuracy loss. However, we will show that this is not the case,
and in the platforms of our interest, characterized by big temperature gradients and time windows



of mere milliseconds, the impact of thermal interface materials is palpable. This impact is further
magnified in modern high power chips because TIMs are the essential bottleneck in heat transfer
between the die and any passive cooling solution, a bottleneck that becomes of increasing
importance as heat density increases.

Naturally, research conducted in real hardware testbeds, does not suffer from any of the
above limitations. Be that as it may, such research is limited in a particular setup and is unable to
explore other hardware configurations. In addition, real hardware frameworks are unable to
explore many diverse configurations with phase change materials or analyze them in a detailed
manner. In addition, in this thesis, some PCM configurations are purely theoretical and are
examined even though an actual chip with the specific characteristics might not be possible to be
constructed. The aim was to showcase the most promising setups and perhaps steer research
towards finding ways to implement them.

2.3.3 Contribution

The main contribution of this thesis is a robust and quite flexible framework that performs
full system simulation, from hardware performance to thermal results. This framework functions
in a cycle wise basis allowing for resource management decisions to be effected during run-time.
Also, as was mentioned before, the thermal simulator integrated in the framework, is able to
simulate the use of phase change materials anywhere in the chip stack. While the framework will
be analyzed in great detail in chapter 3, it is worth noting that even non uniform PCM layers can
be simulated. In addition, the effect of neglecting thermal interface materials in systems intending
to employ sprinting is presented along with a proposed, more accurate, thermal model for the chip
stack. This model achieves better accuracy regardless of the presence of phase change materials in
the chip stack. Furthermore, an exploration regarding PCM thickness, melting point and
placement has been conducted. The results are being presented in chapter 5 in an effort to provide
insight on how to use such materials effectively. At the same time, a number of common simulation
artifacts that compromise the results of already conducted research will be demonstrated. Lastly,
the benefits of using heterogeneous PCM layers, a completely novel idea is analyzed in chapter 6.



CHAPTER 3



3.1 Overview

The framework constructed for the purpose of this thesis is oriented towards simulating the
operation of a multicore chip to the greatest detail possible, while keeping simulation times to a
reasonable value. It was developed, not only to aid the exploration we conducted, but also to serve
as a multipurpose simulation tool that can be used in similar research areas. The simulation
addresses the aspects of performance, power consumption and thermal modelling. To this end, a
set of simulation tools has been used, namely, Sniper Simulator [18], McPAT [19] and 3D-ICE
[20], [21].

As expected, the framework is able to simulate a multitude of hardware configurations.
From a performance perspective, the range of available configurations is that offered by the Sniper
Simulator (SniperSim). This range includes but is not limited to, multicore chips that number up
to hundreds of cores, with configurable architectural characteristics. It is worth noting that
heterogeneous configurations are also supported. In the general case, the other simulation tools
used, can easily accommodate such different setups with little or no change, by virtue of the
manner in which they are interconnected in the framework. From a thermal point of view, the
available options are those supported by 3D-ICE, many package specifications commonly used in
current chips. Additionally, a number of configurations were added in the scope of this thesis, by
modifying the source code of the tool. However, any further information will not be presented here
because the thermal model will be analyzed in detail in section 3.3.

The general flow that is followed during the course of a simulation, is briefly presented in
Figure 3.1. It can be readily observed that simulations are performed in intervals, until completion
of the requested scenario. This feature, allows us to observe the behavior of the system at fixed
time intervals, gather statistics through time, and perform control actions when deemed necessary.
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Figure 3.1: Basic framework flow



In the figure presented, the arrows indicating the flow of execution are in fact separate
entities, performing a number of operations. The details are not yet outlined for the sake of clarity.
All added functionality is implemented in Python [21] as a result of the ability offered by
SniperSim to directly control the simulator through the use of Python scripts. This option is
enabled by including the —s flag in the command line invoking sniper, followed by the script to be
used. Any input variables addressed to the Python script mentioned, are listed after the name of
the script, preceded by a colon. Scripts that are intended to be invoked in that manner, need to be
placed in the scripts folder inside the SniperSim installation directory or be specified with a full
path.

If we were to include, briefly, some of the intermediate functions implemented in Python
scripts, along with their general purpose, the flow presented in Figure 3.2 would ensue. Let it be
known that the listing named Python Interface essentially denotes the script invoked with the —s
flag mentioned earlier. Let us name this script SniperControl.py. In our case, this script performs
a variety of actions, a portion of which, is not directly related with SniperSim. For example,
somewhere along the flow of an interval, it is necessary to parse the output values of McPAT and
feed them to 3D-ICE. This necessity is only indirectly related with the function of SniperSim.
Nevertheless, any action executed outside the normal operation of the simulated tools is invoked
and implemented through the use of SniperControl.
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Figure 3.2: More detailed framework flow



To elaborate, a simulation might be summarized as follows:

e SniperSim is called, SniperControl is invoked with the —s flag

e SniperSim completes the initialization phase for the simulation requested and
pauses

e Control passes to SniperControl - SniperControl performs any initializing action
specified and passes control back to SniperSim

e Performance simulation for the specified time window is conducted, SniperSim is
paused

e Control passes to SniperControl - SniperControl calls McPAT for a partial run

e After power consumption simulation for the specified time window is completed,
MCcPAT terminates

e Control passes to SniperControl - SniperControl calls 3D-ICE client in the
appropriate fashion

e After thermal simulation for the specified time window is completed, 3D-ICE client
terminates

e Control passes to SniperControl - SniperControl calls a Python script implementing
the policies we would want to enforce in the system. Upon completion, this script
terminates

e Control passes to SniperControl - SniperControl completes any remaining actions,
for example, actions regarding logging, and passes control back to SniperSim

e A new time window starts

As we can see from Figure 3.2, there is a small inconsistency regarding the initialization
process. In truth, SniperSim is invoked and initialized before it passes control to SniperControl.
However, for practical purposes, we can safely adopt the simplified model presented in Figure 3.2.
In addition, from a stricter point of view, SniperControl is not called, as a Python script, in multiple
instances. It is in fact called only once, at simulation startup. The control switching that was
described earlier, is implemented by registering callback functions. Callback functions, as denoted
by their name, are executed by interrupting the simulation each time a certain event occurs (they
are called back). Such an event could be the starting of a thread, or the passage of a certain amount
of simulated time. While various callback functions are used in our Python Interface, we perform
the majority of our control actions every time a fixed value of simulated time has elapsed. The
flow that was presented is addressed to this particular kind of control switching and generally
abstracts away other callback functions, since they are not directly relevant to the overall operation
of the system and are mainly used for exporting statistics and logging. More information regarding
callback functions and how they are used in SniperSim, can be found in the documentation of the
Sniper Simulator [17].

Returning to the analysis of the more detailed model, we can see that a call to the Python
implemented interface, precedes the operation of each simulation tool. In a general sense, the main
use of each such call, is to export statistics regarding the simulation output of the previous level,



gather the necessary input variables for the next tool to be used, format them in a suitable form,
and pass them along with the call to the appropriate program. A special case in this pattern, is the
first call to the Python Interface where no statistics are exported. In this case, only a set of
initialization actions is performed. Furthermore, the input variables gathered in this instance are
only those addressed to SniperControl. The input variables that are meant for the Sniper Simulator
are fed to it directly, through another entity.

When a single and isolated instance of SniperSim is considered, the tool can be called along
with its configuration variables through the terminal, using a command line. However, when
multiple simulations, with different configurations, are intended to be explored, passing input
variables in this manner can be quite tedious. Moreover, it necessitates waiting for each simulation
to end before being able to request another. These problems arise when SniperSim is used
exclusively. For our framework, which also includes other simulations tools, this approach
presents yet other problems.

In order to use 3D-ICE for interval simulation, we implemented a Client —Server model,
as described in the documentation of the thermal simulator. All configuration parameters and
structures pertaining to the thermal model, along with the thermal status of the system, are
maintained in the server side. All computation relevant to the thermal simulation is also performed
by the server. In truth, the client only serves as an intermediate communication interface between
the Python Interface and the 3D-ICE Server. Communications exchanged, mainly involve input
values for each interval and thermal maps describing the resulting thermal status of the chip stack.

While the client is called whenever power inputs for the server are available, in an on
demand basis, and then terminates, it is quite obvious that the server must remain online for the
entire duration of the simulation. Furthermore, between simulations, the server must exit and
restart with a new configuration set. Essentially, a server complete run corresponds to a full
simulation while a client run corresponds to a time interval. This model we adopted, requires the
manual initiation of the server prior to the beginning of each simulation. Moreover, the server
initialization is associated with a number of files that describe the configuration of the chip.

It is essential for the function of the thermal simulator that a stack description and a
floorplan file are created and placed properly. These files also contain all configuration parameters
of the thermal model. Manually creating and modifying these input files, based on each scenario,
is not an effective solution. An obvious choice for accomplishing such a task, and the activation
of the server, would be SniperControl. However, this choice was avoided.

Instead, a higher level entity was created. The factors that paved the way for this approach
will slowly unfold as we describe the function of this higher level module. This structure,
implements a Client-Server model, developed in Python. It serves as an intermediate between the
simulation framework and the user. The input to this module, is a series of simulations to be
performed. The server side basically handles starting and exiting the 3D-1CE server prior and after
each simulation, respectively. The client side handles all pre-simulation necessary actions
including the creation and placement of stack description and floorplan files according to the
requested specifications.



In this way, the Python server needs to be started only once, and then serves simulation
requests indefinitely. The Python client enables the user to specify a queue of simulations to be
run and facilitates the input of configuration variables for all simulation tools in one unified
interface. A graphical representation of this model can been seen in Figure 3.3. This is in fact a
macroscopic view of the simulation framework, meaning, that the parts analyzed previously, and
graphically illustrated in Figures 3.1,3.2, are integral, lower level parts of the Python client side.

Python_Client.py Python_Server.py

-
- -
-~ -
-

Figure 3.3: Python client-server model

We intentionally built our way towards this less detailed representation, in order to provide
a better understanding of the process that took place in combining the simulation tools into a
unified whole, and the benefits of our approach. Figure 3.4 is a graphical summary of what was
described so far. After inputting a set of simulation requests and running the appropriate script, the
flow in the mentioned figure is followed. Simulation_Queue.py will initialize all configuration
files as per ordered. When initialization is complete, it will communicate to the server to start a
3D-ICE server session. The server will report back after the 3D-ICE server is up and running,
granted that no error occurs, and Simulation_Queue will continue by calling SniperSim with the
appropriate variables. Afterwards, until completion of the simulation, the interval flow that was
described earlier follows. This flow is now represented as an implied, separate module, framed by
a yellow dashed box. Regarding the function of the thermal model, the server — client function that
was analyzed, is now schematically outlined in "magnification” and placed aside in order to
maintain the conceptual integrity presented previously. When power values are available, the 3D-
ICE client is started, communicates them to the 3D-ICE server, receives the results and terminates.
At the end of the simulation, ownership is transferred again to Simulation_Queue, which in turn
communicates to the Python server to end the current 3D-ICE server session. The next simulation
characteristics are picked from the list and a new identical loop begins.

From a user level-perspective, only the uppermost input interface is visible and needs to be
edited in order to issue a list of simulations, diverse in performance and/or thermal characteristics.
In order to facilitate our work, only those variables that we most commonly altered were
propagated to the highest level allowing to be readily edited. Nevertheless, the bulk of the
configuration variables of any simulation tool used, can be easily exported to this first level



interface. Additionally, before any simulation is requested, the Python server must be started. In
our case, this server was launched manually and was tied to a terminal window in order to assist
the development of the framework. For a system intending to be used for simulations, the server
can be easily started as a background process, at system startup or on demand, and probed only
when deemed necessary.

As far as the export of the client side is concerned, each running simulation keeps all files
in a temporary folder, named Current_Simulation. Files included in this folder are outputs of the
simulation tools along with the standard output and standard error for each, utility files used for
various purposes and will be analyzed is subsequent sections, configuration files used, and other
logging material. This temporary file is wiped at the end of each simulation, after all the files are
properly archived, in order to be used by the next request in queue. If any kind of error arises
during the archiving process, the simulation framework is halted, so that the user can manually
extract the simulation files and prevent data loss. A number of options on how to archive each
simulation is available. Moreover, adding new ways to store requested simulations is feasible by
adding a function to the corresponding Python script.
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Figure 3.4: Framework Summary

Regarding output files and statistics, a number of metrics are by default exported during a
simulation. Even though not all of them were ultimately used in our work, we made a selection
based on the metrics most commonly used. Even so, we refrained from outputting a very big



number of variables in order to keep simulation output files relatively small in memory size.
Statistic variables regarding performance and thermal values are a special case in our framework.
In contrast with our general approach, exporting a new statistic is probably not a straightforward,
nor simple task. It would require a direct modification to the corresponding interface of each tool.
In the case of SniperSim a number of variables might be rather easily accessible by adding their
entry to SniperControl. However, in some cases, it might be necessary to modify the source files
of the simulator. For 3D-ICE, adding new outputs of any form, would require adding requests
and/or other complementary code in the 3D-ICE client and/or 3D-ICE server.

As is usually the case, the development of this framework was not smooth and error-free.
Before this presented form, the module has underwent a deal of restructuring and a number of
revisions. Even in this fully functional version, a number of improvements and additions that can
be implemented are specified and will be presented in the proposed future work. Note also, that
the approach we followed in designing this framework is not exclusive. In various places, many
alternative ways to achieve the same result were available. Arguably, some of them might have
been more effective in terms of performance and/or other characteristics. For example, instead of
developing the Python server to handle the 3D-ICE server, we could have modified the source
code of the latter to accommodate multiple simulations, that is, to dispose all structures at the end
of a simulation and parse new floorplan and stack description files. However, a performance and
optimization exploration, is outside the scope of this thesis. While in future versions, or if,
hypothetically, we developed the framework anew, we would certainly redesign some modules,
the approach that was chosen in each case, reflects an effort to balance efficiency and development
time, with respect to the fields that we were more accustomed to.

In summary, the simple use of the framework involves only starting the Python server once,
filling out characteristics for the requested simulations to be performed in the appropriate script,
and running it. Even though the framework in not ideal, in order for it to be adaptable to the custom
needs of each research approach, and to any kind of modification of addition, after this rather
abstract overview, comes a detailed description of most of the interconnecting parts. Obviously,
the preceding macroscopic presentation is essential to the understanding of the subsequent section.
Rather than keeping the big picture into perspective, section 3.2 will analyze each tool and relevant
scripts in isolation and then conclude into a unified, fully-detailed figure. Lastly, a number of small
inconsistencies might be observed regarding functions that are assigned ultimately to lower-level
modules. This is a direct result of the effort to present a more compact figure in the overview
section, easier to understand, and not an oversight.



3.2 Python Interface Detailed Analysis — Basic Scripts

3.2.1 Simulation_Queue.py

The top-most script of the simulation framework. A number of lists are declared in the first
lines of this file, where the user can fill out the characteristics of the simulations that are meant to
be run. The values specified are unpacked in the order they are written in the script. That is, the
first simulation will be performed with a set containing the first value from each list, the second
with the second value from each list and so on. Simulation_Queue, when run, immediately groups
the corresponding values and calls Sniper_Simulation_Init.py with those values as input. The input
values mentioned, are not necessarily a single item. Some per-simulation variables are defined by
a list (like the elements in the chip stack) so the resulting module in the script is a list of lists. Each
top-most list completed must have the same length, one value per simulation to be run. For
variables that do not change from simulation to simulation, it is possible to just multiply them with
the number of simulations to be run, rather than having to type them one by one. All values defined
in any list, have to be represented as a string. A more detailed analysis of this script and the
variables included will be demonstrated in section 3.5.

3.2.2 Sniper_Simulation_Init.py

This script performs all necessary actions, at the beginning and end of each simulation
execution. It does so, utilizing a script named Simulation_Utilities.py. In general, the Python
Interface is arranged in a high to low level approach, distinguishing basic and utilities scripts, in
an effort to make the layout more structured. The functions included in Simulation_Utilities are:

» Configure_Variables: Defines a number of variables that will be used throughout the
execution of the script. The variables are added into a dictionary that is returned to the basic
script.

> Initialize_Sim_Folder: Completely wipes the Current_Simulation directory from all files
and folders to prevent a misplaced file or a failed execution to create unforeseen results.
Subsequently, it creates the necessary sub-directories for the simulation.

» Write_Config_File: Creates a configuration text file describing all the parameters of the
requested simulation.

» Initialize_Simulation_Files: From a directory of already created floorplans, locates and
fetches the appropriate floorplan file for the requested configuration. In addition, a
corresponding visual representation, meaning an image showing how the components are
arranged is also fetched. This image will be used by another, optional, post-simulation
script that is able to visualize thermal maps. Implementing another script named
STK_Utils.py, it creates the stack description file with respect to the corresponding
parameters requested. If a phase change material is requested, by use of PCM_Classes.py
it also adds a corresponding entry to the stk file, and creates a PCM description file with



the appropriate variables. The PCM description files are parsed from the 3D-ICE server as
a result of the added capabilities we have implemented to the thermal simulator. All files
are placed in the Simulation_Files folder.

Initialize_Server: Communicates with the Python server, requests the initialization of the
thermal simulation server, and waits for reply. When the latter is started without error, the
Python server communicates the fact, along with the socket it listens to.
Start_SniperSim: Runs the sniper simulator along with all the corresponding command
line arguments.

Post_Simulation_Actions: It is executed after the simulation is completed and signals to
the thermal simulation server to terminate. Next, it archives the simulation that was
performed using a function included in a script named Archive_Utils.py. This script
contains a number of functions defining ways to create the directory where the simulation
files will be stored to provide greater flexibility (e.g. by date or by architecture or any other
combination of inputted variables and constants). If the function is successful,
Current_Simulation is wiped.

Reset_Current_Sim_Folder: When called, completely erases Current_Simulation folder
and all its subdirectories. Before exiting, recreates a new empty folder with the same name.

import sys import os,shutil,fileinput,zmq,subprocess,glob,time,math

from Archive Utils import *
from Stk _Utils import *

sys.path.insert (0, '/home/Simulat : from Pcm _Classes import *

from Simulation Utilities import *

def Configure Variables(args):

)

def Initialize Sim Folder():
simulation_folder= .
directories=['sr

args=dict (enumerate (sys.argv))

Variables=Write_Config File(Variables)

]

Variables=Configure Variables(args) Reset_Current_Sim Folder()
directory file names=o0s.listdir(simulation_folder)
Inlt:.al:.ze_Slm_Folde:() for file name in directories:

if file name not in directory file names:
os.mkdir (simulation folder+file name)

def Write Config File(A):
Initialize Simulation Files(Variables) . r—
-— - def Initialize Simulation Files(A):
Variables=Initialize Server(Variables) def Initiali z(A):

Start_Sniper (Variables) os.system(’ /n
Post_Sim Actions(Variables) L =i i iz 10g:tx ‘]’
A['benchmark'])
)
(a)
def P ()

Figure 3.5: Example of a basic and utility script:
(@) Sniper_Simulation_Init (b) Sniper_Simulation_UTtilities.
In (b) an example of functions is shown and the others are folded.



3.2.3 Sniper_Simulation_Control.py

This script is the cornerstone of the Python Interface. It is the same script we temporarily
named SniperControl in the previous overview. In contrast with almost all the other scripts,
Sniper_Simulation_Control employs mainly the use of classes to register objects to the simulator.
Within these classes callback functions are defined. These functions are executed by interrupting
the Sniper Simulator whenever a certain event occurs. We will focus our attention to the periodic
function included in the class Simulation_Flow. This function is called every time the user-
specified interval has elapsed. The first step of this function is to call McPAT with the current time
interval as input, for a partial run. To implement this call, another function named McPAT _Partial
is employed. In order to accommodate DVFS controls during simulation runtime, at each interval
a configuration file containing the frequency and voltage level of each core is produced, and passed
with the —c flag to McPAT. More about the input variables that can be defined when calling
MCcPAT, and other options, can be found in the tool documentation.

After this call returns, the script employs the use of the function
Thermal_Simulation_Client.main that is included in Thermal_Simulation_Client.py. The variables
passed to this function are the two time values designating the beginning and end of the current
time interval. Although it is employed here as a function, Thermal_Simulation_Client is a basic
script and will be further analyzed in the following section.

In brief, in accordance to our earlier analysis, Thermal_Simulation_Client parses the output
of McPAT and calls the thermal simulation client with the power values obtained. Once the
simulation is complete, the client, as well as the script, terminate, and control is again returned to
Sniper_Simulation_Control.

Afterwards, another basic script is called in the form of a function, namely,
Resource_Control.py as Resource_Control.main. This function-script, takes as input the time
interval, the number of cores in the sim, and the frequency levels of each core in the form of a list.
In our work, Resource_Control does not have a stable role. It has access to all metrics of the
simulation and can accordingly make resource allocation decisions. For example, change the
frequency-voltage levels of a core. In general, any allocation scheme can be employed here. This
script will be detailed more thoroughly afterwards.

Lastly, following the decisions described by Resource_Control, a function named
Resource_Control _Sim is called in order to implement everything specified by communicating
with the simulator. In our case, a simple voltage-frequency level allocation is enforced,
accompanied by the production of a configuration file that will be used as input to McPAT in the
next interval.

Note, that the Simulation_Flow class we just described is the only one defined in
Sniper_Simulation_Control due to its pivotal role. Other classes that are registered through this
script to the simulator, are included in a file named Sniper_Simulation_Classes.py. The classes
defined there are the following:



= Performance_Statistics: Logs the value of a number of metrics through time. In
our work the metrics logged were: ipc, cycles, instructions, L1-D misses, LI-I
misses, L2 misses and L3 misses.

= Thread: A wrapper class for manipulation of threads. Only sets a number of thread-
specific variables.

= Thread_Events: Logs all thread events using the Thread class. The events logged
are: create, start, stall, migrate, resume and exit, along with the timestamp of the
event.

Furthermore, classes defined in both scripts, utilize functions included in
Sniper_Simulation_Utils.py. The functions listed there are:

» Resource_Control_Sim: Takes a frequency table as input and communicates only
the values that changed from the previous interval to the simulator. Obviously, the
simulator sets the requested levels at the beginning of the next interval. This
function also produces corresponding voltage levels using Build_DVFS_Table, and
logs them with the frequencies in a config file that will be used by McPAT in the
next iteration. The configuration file is produced by the function Generate_Config.

» Build_DVFS Table: Builds a voltage-frequency table based on pre-defined
voltage-frequency pairs.

» Generate_Configuration: Produces a configuration file with the appropriate name
(the time interval it addresses), listing in the correct format for McPAT the voltage-
frequency pairs of each core.

Simulation_Flow_Periodic

MCcPAT_Partial Thermal_Simulation_Client Resource_Control Resource_Control_Sim

Figure 3.6: Simulation_Flow Summary
3.2.4 Thermal_Simulation_Client.py

This script handles all necessary actions related to the communication of the Python Interface
with the thermal simulator server through the use of the corresponding client.
Thermal_Simulation_Client uses a set of functions included in the script
Thermal_Simulation_Utils.py. In detail:



» Configure_Variables: Gathers a set of necessary variables for the function of the basic
and utility script and structures them in a dictionary that is returned back.

» Pre_Computation_Actions: Initializes a set of text files that will be used to record
statistics.

» Power_Values Computation: Parses the McPAT output text file for the current time
interval and computes the power value of each component. The computation involves
locating in the text file, each element used in the floorplan, adding the separate power
values listed, recording the sum along with other metrics to the appropriate text files, and
storing it to a list. The power values that were added are: Subthreshold Leakage, Gate
Leakage and Runtime Dynamic. To handle these steps that result in a list containing the
power values of each component, another script named McPAT_Parse.py was used.

» Post_Computation_Actions: Records the list of power consumptions that were computed
along with metrics that utilize aggregate values, e.g. total power consumption or max
power density, and records them.

» Thermal_Simulation_Client_Call: Calls the 3D-ICE client with the appropriate
command line, passing along the computed power values and the thermal simulator server
socket. The standard output and standard error of the program are captured in likely named
text files.

3.2.5 Resource_Control.py

This script is the proper place in the interface to accommodate any resource management
scheme. A simple sprint until exhaustion policy would just have to produce a frequency table with
the values for each core and return it upon completion. Sniper_Simulation_Control will enforce
the values requested to the simulation. In order to implement reactive control when temperature
exceeds a certain limit, a function monitoring the max chip temperature is sufficient. It stands to
reason that when a violation occurs, the function would override the sprinting policy and issue a
frequency table with sustained execution values. This table is the one that should be now returned
to Sniper_Simulation_Control. In the case that a completely different policy in intended to be used,
another high-level script could be produced. Let us name this script Resource_Control2.py. The
only modification needed, would be to invoke Resource_Control2.main instead of
Resource_Control_main, in Sniper_Simulation_Control. Every script that might be produced in
this fashion, can opt to use functions included in Resource_Control_Utils.py. In our work, this
script includes the following:

» Configure Variables: As always, gathers a number of necessary variables and structures

them in a dictionary returned to the basic script.

» Parse_Core_Temps: Parses the corresponding file outputted from 3D-ICE which
contains the max temperature values for each core. These values are available through the
extra capabilities we integrated in the thermal simulator in the form of small additional
code segments. No special examination of these parts is deemed necessary. Obviously, the
values that are parsed are added to the variable dictionary.



>

Form_Violation_Matrix: Creates a matrix listing whether a core has reported a
temperature violation. This matrix was used in order to test sprinting policies that use per-
core activation and deactivation.

Frequency_Allocation: Decides on the target frequency allocated to each core based on
whatever criteria we impose. In our work we mainly steered this function into choosing a
single, stable, above sustained levels frequency.

Violation_Policy: Implements a reactive control policy when a violation is observed. In
our work this policy would either revert all cores to sustained execution or revert each core
reporting a violation.

Decision_Log: Writes to a suitable text file all decisions taken at each interval.

In addition to the functions described, Resource_Control_Utils contains others, not used in
the presented example. The idea was to have a single utility file facilitating the creation of a number
of basic scripts implementing different allocation policies.

3.2.6 Python_Server.py

The Python Server is implemented by using ZeroMQ [22] in addition to the rest of the

code. In short, ZeroMQ is a high-performance asynchronous messaging library supporting many
programming languages, including Python. The basic script Python_Server.py includes functions
from Python_Server_Utils.py. Listing them along with a small description will also explain the
use of the server script:

>

>

>

>

Configure Variables: A function we have seen in almost all basic scripts with basically
the same role.

Initialize_Python_Server: As denoted by the name, initiates the ZeroMQ module and
binds a socket whose value is stored in the variable dictionary.

Wait_For_Simulation: The server listens to the previously bind socket for messages. If a
proper header is detected, the rest of the message is parsed as the requested configuration
and execution resumes.

Initialize_3DICE_Server: Follows the detection of a proper simulation request. Starts the
3D-ICE server with the proper stack description, floorplan and other files, and sends an
appropriate message to the Python client when the 3D-ICE server finishes the initialization
process (barring any error).

Accept_Connections_and_Close: Logs all 3D-ICE server output for the duration of the
simulation. When the simulation is completed, this function terminates and the basic script
goes back to Wait_for_Simulation.

3.2.7 Low Level Scripts

This section contains scripts that are part of the Python interface but are not readily

observed. They implement specific functions for utility files included in basic scripts. In essence,



they could be named sub-utility files or even-lower-level scripts. A brief presentation of the
operation of each of these scripts will follow:
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Archive_Utils.py: This script is imported in Simulation_Utilities. It contains functions,
each of which, defines a way to archive completed simulations. An example would be
storing them based on benchmark, worksize, and number of threads, that is
outputs/benchmark_name/worksize/thread_number/files. The idea is to specify in
Simulation_Utilities, the name of the function that we intend to use to store the files,
depending on the series of simulations we want to run. In our work, this file included
basically a function to store based on benchmark, as above, a function to store based on
date, and a function to store based on thermal characteristics.

MCcPAT_Parse.py: Facilitates the parsing of the McPAT output text files. It is used by
Thermal_Simulation_Utils. It contains a function addressing the differences in component
naming in the floorplan file, from where each component is selected, in the order they are
written, and a function that implements the parsing per se, also logging the values along
with some derivatives.

PCM_Class.py: A small file included in Simulation_Ultilities, containing a module for
saving the characteristics of a phase change material. The PCM class is used to create a file
that will be parsed by the thermal simulation server in order to obtain the extra properties
of the phase change material.

STK_Classes.py: Contains a number of classes defining objects used in the creation of a
stack description file. The classes defined are: Material, Materials_Used, Layer,
Layers_Used, Die, HeatSink, Dimensions, Stack, Solver and Output. All these objects are
used in STK_Utils.py.

STK_Utils.py: Imported by Simulation Utilities in order to create the stack description file
that will be used by the thermal simulation server. With the use of classes included in
STK_Classes, it registers materials, layers and all other necessary entities involved in
thermal simulation. Of course, the stack description file is created and properly placed
before the script terminates.

All of the scripts mentioned in section 3.2 are summarized in Figure 3.7. The flow is presented
in full detail. In addition, any control switchback involved is represented and any multiple
instance of a script designates that the repeated script has regained control of the flow. Python
scripts names are colored in shades of green while the simulation tools use black. Scripts listed
at the right side are lower levels of utility files arranged in descending order. From the structure
of the figure, it is visible which script uses which utility script.
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Figure 3.7: Python Interface summary



3.3 Thermal Model

3.3.1 3D-ICE Heat Conduction Modelling

The modelling of heat conduction in solids in 3D-ICE is done by applying finite-difference
approximation to the governing equations of heat transfer. The exact process is described in [19].
In the last step of this process, the well-known analogy between heat and electrical conduction is
invoked. That is, temperature is represented as voltage, heat flow is represented as electric current.
Thermal conductance and resistance are replaced by electrical conductance and resistance
respectively. Lastly, heat capacity is substituted by electrical capacitance.
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Figure 3.8: A typical solid thermal cell

Afterwards, the thermal model is generated considering each layer to be discretized into cuboid
thermal cells based on user-defined discretization parameters. Each thermal cell has a length I,
width w, and height h, as shown in Figure 3.8, modeled as a node containing six resistances
representing the conduction of heat in all the six directions (top, bottom, north, south, east and
west), and a capacitance representing the heat storage inside the cell. The conductance of each
resistor and the capacitance of the thermal cell are calculated as follows:

I -w L-h
Grop/pottom = Ks G5 Gnortiysoutn = Ky oy
(1)
w-h

Yeast/west = kSi ' % v Ceetl = Cvsi “(l*w-h).

The subscripts top, east, south etc. indicate the direction of conduction (i.e. north represents
conduction in the +y direction, west represents conduction in the —x direction and so on). Current
sources representing sources of heat are connected to the cells wherever there is heat dissipation.
Next, the nodes of these thermal cells are connected to the nodes of their neighboring cells through



the interfaces by computing the equivalent conductances between them. Hence, the following
system of ordinary differential equations is created:

GT(t) + CT(t) = U (¢t), 2)

Where T(t) is the vector of all node temperatures (as a function of time), C is a diagonal matrix of
all cell capacitances calculated using Equation (1), U(t) is a vector of inputs (heat sources as a
function of time) wherever they exist. G is a symmetric block tri-diagonal conductance matrix
where non-zero, non-diagonal elements represent the connections between neighboring nodes and
the diagonal term corresponding to a given node is equal to the sum of all conductances between
that node and its neighbors.

The formulation of heat flow equations, as described above, can be extended to structures
containing multiple layers of thermal cells. This method can be used to generate a compact thermal
model for any general heterogeneous structure like an IC die, and the three-dimensional temporal
evolution of heat inside the 3D-IC, can be accurately modeled. In order to formulate the equations
for the simulation of the thermal grid, Equation (2) is integrated numerically using the backward
Euler method as follows:

<G+ 1c)xo: ) = Ult,) + ~CX(t,)
h n+1) — n+1 h n

3)
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Where h is the time-step of the numerical integration, A= G + % C, and Bn+1= U(th+1) + % CX(tn).

Here, tn denotes the n™ time point during the transient simulation. In order to acquire the necessary
variables to formulate the thermal model, 3D-ICE needs the following inputs:
a) The physical description of the IC layers comprising the chip stack and their material
properties.
b) The discretization parameters (thermal cell size, time-step etc.) along with the chip size
and initial temperature of thermal cells.
c) Floorplan information of each individual die, reflecting location and area of various circuit
blocks. These blocks will later have power dissipation values assigned to them.

3D-ICE is a software thermal library built in C and based on the thermal modelling we just
analyzed. All of the values listed previously are given to the simulator via netlist files. The netlists
are parsed and the matrices A and B are generated. As we can easily conclude according to the
preceding analysis, matrix A is constant during a simulation and therefore is calculated only once.
On the contrary, matrix B is dependent both on the previous temperature values and the current
heat sources. As a consequence, it is recalculated at every time step before solving the sparse linear
system.



In addition, as mentioned in [23], the governing equations presented in the analysis in [19] can
not only be used for solids, but also for liquids and gases that are considered to be stationary. In
our work this is of particular interest because we intend to model phase change materials.
Specifically, this fact allows us to retain the same model even after the PCM thermal cells are
melted, meaning, they are in the liquid phase, because we consider them to be unassociated with
any type of movement.

3.3.2 PCM Modelling in 3D-ICE

In order to model phase change materials in 3D-ICE, we used the apparent heat capacity
method from [9]. In this method, a nonlinear temperature dependent specific heat capacity is
assigned to the PCM layer as shown in Figure 3.9. The transition of the phase change material
from solid to liquid occurs over a temperature interval, where the specific heat capacity is very
high compared to the material’s heat capacity in the solid and liquid phases. However, as can be
seen in the function described in the figure, the transition of the heat capacity is not instantaneous.
It rises from a value characterizing the solid phase at a steady rate (linear region), then assumes a
maximum value for a certain duration and lastly decreases at a steady (equal to the previous) rate
up to the value characterizing the liquid phase. Due to the increase in specific heat capacity, the
rate of change of temperature decreases during phase transition.

In real situations, during change of phase, a material absorbs large amounts of energy at
approximately stable temperature. The behavior that results from altering the specific heat capacity
dynamically during runtime, in the way specified, simulates real phase transitions very accurately.
The integral of the heat capacity over the transition temperature range equals the latent heat of
fusion for the PCM. This fact leads to Equation (4) used in calculating the max heat capacity for
the method relative to the latent heat of fusion which is an intrinsic material property. Recall that
this property was specified in chapter 2.

f;;z f(T,Cpax)dT = Latent Heat of Fusion (4)

In order to explain how we implemented the apparent heat capacity method in 3D-ICE, we
need to first go through a quick overview of how the simulator normally operates. Disregarding
all other features except those important to our purpose, we can summarize the execution flow of
the simulator as follows:

1. Parsing of all input files, storing of variables in appropriate structures
Initialization of the structures to be used next (memory allocation etc.)
Formulation of matrix A , with respect to the input values (thermal configuration)
Wait for connections
Connection made, power values for the next interval are obtained
Computation of matrix B
Solve sparse linear system

No ok owd



8. Repeat numbers 6-7 for the number of specified time steps (iterations, each with
the temperature values resulting from the previous step)

9. Write results to thermal maps

10. Go back to 4
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Figure 3.9: Piecewise linear function for PCM specific heat capacity.
Setting cu > cps for the (T1, T2) interval models the phase change

As we can see, the computation of matrix A, happens only once for the entire duration of
a simulation. This happens because, as we explained earlier, the values relative to its computation
are stable, defined by the thermal configuration and known after parsing the netlist files. Matrix B
by comparison, is seen in Equation (3) to be dependent on the temperature and power values of
each interval and is therefore recomputed. Needless to say, since the method used to derive
Equation (3) is a numerical one, a number of steps is required in order for the computed values to
converge to the "exact" solution. From the documentation of 3D-ICE, a number of 5 steps is
reported to be sufficient. If we were to integrate the apparent heat capacity method to the flow

described, the conditional in listing 3.1 would ensue.
Listing 3.1: Conditional describing the apparent heat capacity method in pseudo-code

IF (CURRENT_CELL > PCM_LAYER) AND
(CURRENT_CELL_TEMP>T:)  AND
(CURRENT_CELL_TEMP < T,)

ASSIGN_SPECIAL_C_VALUE
CONTINUE_NORMAL_EXECUTION

ELSE:

NORMAL_EXECUTION

Obviously, this conditional has only conceptual value. It illustrates the idea behind the
specific implementation. In simple terms, the notion is that every time the simulator is looking to
fill matrixes with capacitances, cells that belong to the PCM layer and have temperatures within
the region of phase change, will be assigned a capacity value simulating the behavior we see in
Figure 3.9. In any other case, cells will be assigned values with respect to the layer they belong



and the material the layer is made of. To be more thorough, let us examine an excerpt of code,
describing the computation of matrix B.

In listing 3.2, we can see that the computation performed is the same described in Equation
(3) for matrix B. The matrix sources contains the power value allocation at the cell grid (matrix
U), and the matrix temperatures contains the temperature values corresponding to the previous
interval (matrix X(tn)). The function get_capacity calculates the capacitance of the current cell
according to Equation (1) using the dimensions of the cell and the volumetric heat capacity of the
material. The role of the matrix vector is obvious. In order to implement the method we described
earlier, we replaced the code inside the for-loops shown in 3.2 with the code in listing 3.3.

Listing 3.2: Part of the code computing matrix B

FOR_EVERY_LAYER (layer, dimensions)

{
FOR_EVERY ROW (row, dimensions)
{
FOR_EVERY COLUMN (column, dimensions)
{
*vector++ = *sources++
+
(
get capacity (thermal grid, dimensions, layer, row, column)
/
step_time
)
*t ratures++ ;
} C
}7 Ef E
} // FOR_E E

Listing 3.3: Modified Code to compute matrix B
FOR_EVERY_LAYER (layer, dimensions)
FOR_EVERY ROW (row, dimensions)

FOR_EVERY_COLUMN (column, dimensions)
{

if (
(str ermal_grid->material_id[layer],"PCM")==0
& (*te res>=(thermal_grid->PCM Melting Point-(thermal grid->PCM Melting Duration/2)))
& (*te es<=(thermal_grid->PCM Melting Point+(thermal grid->PCM Melting Duration/2)))
)
PCM_Region=1;
*vector++ = *sources++
-
(
get_capacity_pcm (thermal_grid, dimensions, layer, row, column,temperatures)
/
step time)
*temperatures++ ;
}
else
{
*yector++ = *sources++
+
(
get_capacity (thermal grid, dimensions, layer, row, column)
/
step time
)
res++



The function get_capacity _pcm is based on the preexisting get _capacity and assigns a
volumetric heat capacity relevant to the temperature of the cell. For this reason, one might observe,
that this new function is also passed the temperature value of the cell as a parameter. Regarding
the conditional used, we assume that the melting point (the value that is immediately available for
a material) of the PCM is located directly in the middle of (T1,T2), according to the chart presented
in 3.9. To clarify further, Figure 3.10 was created.

As illustrated in the figure, in the phase change region, a ramp-like function is employed.
If the melting temperature of the material, the melting duration and the maximum volumetric heat
capacity are known (Cy), then the function is fully defined. We consider that the heat capacities
for the solid and liquid phases have the same value and are already known (the PCM material has
already been declared in the stack description file). With these in mind, we can see that when a
cell enters the phase change region, it is assigned a heat capacity value that increases linearly. This
is continued for exactly one third of the melting duration. Afterwards, for the second third of the
melting duration, the cell is assigned a steady maximum capacity value that is calculated by use of
Equation (4). We can easily see that for the last third the capacity decreases linearly to reach the
liquid heat capacity at temperature T2 where we consider the material to be entirely liquid. Because
the increase in heat capacity results in a decrease in temperature rate of change, for each cell
undergoing phase change, the heat capacity follows the ramp-like function in Figure 3.10 quite
thoroughly. At this point, we must examine the way in which the simulator will be made aware
of all the extra variables.
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Figure 3.10: Ramp-function used to assign capacity values to PCM cells

If we intended to simulate a single material, with the values that define the ramp-
function stable, hardcoding them directly to the program would be the way to go. However, in our



case, where a multitude of materials will be examined, changing values in the source code for
every simulation hardly seems ideal. For this reason, we implemented the use of a PCM file
(probably inspired by the stack description file) and created an appropriate function to parse it
during the initialization phase. Sure enough, the values included in this file are the melting point,
the maximum volumetric heat capacity and the melting duration (T2 - T1). Arguably, a similar entry
could be included in the already existing stack description file coupled with the appropriate
modification to the parser. However, this approach presented a number of difficulties that made
our approach quite easier to develop and more time-effective.

Listing 3.4: Original for-loop filling the values of matrix A

FOR EVERY LAYER(layer,dimensions)

{
FOR EVERY ROW (row index, dimensions)
{
FOR_EVERY COLUMN (column_index, dimensions)
{
tmp matrix = add solid column
(tmp matrix, thermal grid, analysis, dimensions,
lindex, row index, column index) ;
}7 i
} // FOF
b [

Seemingly, having also dealt with the problem of inputting the phase change material
characteristics to the simulator, one would think that the additions required to properly model
various configurations of PCMs are concluded. On the contrary, this is not the case. A simple test
simulation would show the temperatures of the PCM cells to skyrocket when entering the phase
change region in contrast with the expected behavior. If we take a look at Equation (3) again, we
can see that the fact that was neglected is that matrix A is also dependent on the volumetric heat
capacity of each cell. Consequently, recalculation of matrix A is also required.

Hopefully, 3D-ICE already provides functions to properly destroy the matrix and recreate
it. Undoubtedly, this approach in not very performance-effective. Especially if we notice that only
the diagonal elements of the matrix change. Nevertheless, in an effort to make our approach as
non-invasive as possible, we opted to just destroy the matrix with the use of built-in functions, and
repeat the creation process as was presented by the authors. The only change is that now, instead
of calling the function fill_system_matrix, we call a modified version named
fill_system matrix_pcm.

The sole change in the new function, is that the latter contains a conditional that results in
calling the add_solid_column_pcm function instead of add_solid_column. Those in turn, use the
functions get_capacity_pcm and get_capacity which were described earlier. The result of this



chain of calls is that cells satisfying the conditional, get their capacitance from our appropriate
function while all the others, get the value they would have under normal operation. The segment
of code that was in effect and the one that took its place are presented in listings 3.4 and 3.5,
respectively.

Listing 3.5: Modified code to accommodate dynamic
volumetric heat capacity allocation

FOR_EVERY_LAYER(layer,dimensions)
{

FOR_EVERY_ROW (row_index, dimensions)
FOR_EVERY_COLUMN (column_index, dimensions)

if (
(stremp(thermal grid->material_id[lindex],"PCM")==0)
&& (*temperatures>=(thermal grid->PCM Melting Point-(thermal grid->PCM Melting Duration/2))
& (*temperatures<=(thermal _grid->PCM Melting Point+(thermal _grid->PCM Melting Duration/2))
)

)
)
tmp matrix=add_solid_column_pcm
(tmp_matrix, thermal grid, analysis, dimensions,
lindex, row_index, column_index,temperatures);
temperatures++ ;
else
tmp matrix = add_solid column
(tmp_matrix, thermal grid, analysis, dimensions,

lindex, row_index, column_index) ;
temperatures++ ;
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Figure 3.11: Execution flow for PCM-Enabled Thermal Simulation
(a) Schematic Diagram, (b) Thermal Grid Representation



Furthermore, in order to avoid recomputing matrix A even when no PCM function is present,
we implemented the use of the variable PCM_Region. This variable is checked before matrix A is
destroyed and recalculated. PCM_Region is set to 1 when any cell satisfies the conditional we
formed, that is, enters the designated phase change temperature region and belongs to the PCM
layer. Obviously, even a single cell entering the phase change area requires the recalculation of A.
In every other case, the value of PCM_Region is 0.

The fact that a generally big matrix is reinitialized and filled from scratch, even when only
a handful of values need to be actually changed is not lost to us. However, as mentioned earlier,
optimization considerations are outside the scope of this thesis. The prevailing fact in this case was
that our approach was efficient with respect to development time and resulted to tolerable
simulation time overhead.

As a side note, let us clarify that the segments of code presented were the most crucial
parts, the most tightly related with the concept of the apparent heat capacity method. Other various
and more mainstream sections enabling the specific implementation (e.g. variable declarations,
new structures, value computations etc.) are not detailed in this text. The overall process described
in this section is illustrated schematically in Figure 3.11.

3.3.3 Non-Uniform PCM Modelling

Through the use of our simulation framework, and after testing various phase change
material configurations, the concept of using heterogeneous PCMs was found attractive.
Specifically, the use of materials that differ only in the melting temperature but are part of the
same layer was considered. In order to simulate such a configuration we should examine the role
of the melting temperature in the program code. The first and foremost application of this variable,
is in the conditional we use to determine whether we are in the phase change region. The second,
is to determine the center of the ramp-function we use to assign capacity values. If we assume that
all other variables characterizing the PCMs (phase change duration, max heat capacity) are
common for all materials (for the sake of simplicity), and we substitute the PCM_Melting_Point
with a likely named matrix, accessed by the rows and columns of each cell (variables already
available at that point), we will have achieved the desired result without any further modification.

For that matter, if we expand the concept to the PCM_Melting_Duration and
PCM_Max_Heat_Capacity, that is, we substitute the use of these variables with matrixes storing
the value of each cell in the corresponding place (e.g. PCM_Melting_Duration[row] [column]),
we can easily simulate materials with different properties in general. The only matter left to be
addressed, is to decide on a way to input the corresponding matrices. Of course it would be possible
to hardcode the matrices directly and modify them when deemed necessary. Again, this approach
does not seem very attractive if one intends to experiment with different distributions in the layer.
The alternative approach is to formulate the matrixes in text files and create a function to parse
them. Conceptually, it would be also possible to create files similar to the floorplan files, where
instead of components, materials will be named, with their dimensions, positions and



characteristics. This option is the most complete but should be accompanied by a utility program
to facilitate the creation of the floorplan files and a more sophisticated parser. In our case, the
second option was applied.

3.4 Independent Tools - Scripts

3.4.1 MATLAB Scripts

Using MATLAB [24], we produced two basic scripts in order to visualize thermal and power
maps. In truth, one script was used to visualize thermal maps produced by 3D-ICE which was later
modified in order to be able to implement the same function for power maps. By visualization, we
mean a color allocation to the different values included in the maps, upon which we superimposed
a graphical representation of the appropriate floorplan. Each of the two scripts also uses a utility
file. All of the above operations are handled completely by the scripts along with the archiving of
the produced images to appropriate directories. The use of these scripts is facilitated by
Post_Simulation_Tools.py, a small Python script copied in each archive folder which can be
executed at any time after a simulation is stored. The use of these scripts could be integrated in the
framework flow without great modifications. However, this integration was avoided due to the
overheads in simulation time and memory they incurred, coupled with the fact that visual
representation of all thermal and power maps was not always necessary.

3.4.2 ArchFP

ArchFP [25] was modified and used in order to produce the floorplans that were required
in our simulations. The area values that were needed as input in ArchFP were gathered from
MCcPAT. This tool was also used in order to produce the graphical representation of each floorplan.
The output of ArchFP is not in suitable format for 3D-ICE. To create floorplan files in the
appropriate format for the thermal simulator, a Python script was used that converted the files from
ArchFP. This process, in cases where much variability in architectures and chip floorplans is
present, could be integrated in the framework flow. In our case though, such integration was not
deemed necessary.

3.4.3 Independent Python Scripts

In this section, the bulk of the scripts that were used outside the flow of the simulation
framework are listed:
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ArchFP_to 3DICE.py: A small script that produces floorplan files suitable for 3D-ICE
by processing the floorplans generated from ArchFP.
Create_Core_Aware_Floorplans.py: Produces a text file with the rows and columns
corresponding to the boundaries of each core in the floorplan. This text file is parsed by
3D-ICE in order to keep track of per-core temperature metrics.
Post_Simulation_Tools.py: Offers four basic function-tools that can be used on demand
after a simulation. The first two functions, Visualize_Thermal_Maps and
Visualize_Power_Maps, run the corresponding MATLAB scripts as were described earlier.
The function Temperature_Metrics_Over_Time, gathers and lists the maximum, average
and minimum temperature of each layer as a function of time. The last function in this
script, Power_Trace_Per_Component, creates a text file that contains the power values
over time for each simulation component. All the functions employed in
Post_Simulation_Tools are defined in Post_Simulation_Utils.py.

3.5 Framework Usage

In order to use the framework described in this chapter, the sole requirement is to edit

Simulation_Queue, fill the lists with the variables of the simulations to be run, and execute the
script. Prior to issuing any simulations, Python_Server must be started once. If no developing is to
be conducted, Python_Server can be started with the nohup flag, thus disassociating the process
from a terminal window, and later sent to run in the background. Obviously, a machine containing
all the necessary files, tools and scripts that compose the framework is a prerequisite. The variables
available in Simulation_Queue are grouped in three categories: Common Variables, Simulation
Variables and Thermal Variables. In detail:

Common Variables:

Interval_NS: The time interval used both in SniperSim and 3D-ICE in nanoseconds.

Heat_Distribution: A choice regarding the interpretation of the power values outputted
by McPAT. As mentioned earlier in this chapter, the interconnection between the power
and thermal simulation is materialized by a Python script that parses the output values from
MCcPAT and passes them on to 3D-ICE in an appropriate format. The discrete components
that are listed in all the floorplans we used for the Gainestown Nehalem architecture and
for which we obtained power values, are demonstrated in Figure 3.12. In addition to the
components shown in the figure, we also obtained power values for the NoC of each core
and the L3 shared across cores. In the scope of this thesis, four heat distribution schemes
were used and are available for all chips using the same components as those described in
our floorplans : Homogeneous, Discrete, Coarse and Fine-Grained. The Homogeneous
scheme sums all power values and evenly allocates the result to all components. The
Discrete scheme assigns to each component the power value calculated from the output of
MCcPAT. The Fine-Grained scheme teams the power values to blocks containing more than
one components. The blocks defined are: L2, Floating Point ALUS, Integer ALUS,



Complex ALUS, Register Files, Instruction Scheduler, Renaming Unit, Memory
Management, Instruction Fetch Unit, Load Store and L3. The components corresponding
to each block are seen in Figure 3.12. The NoC is integrated to the L2 block. The Coarse —
Grained scheme teams up all ALUS with the Register Files and the Instruction Scheduler.
In the Instruction Fetch Unit the Renaming and Memory Management Units are also added.
All other components are the same as before. The blocks that result are Execution Unit,
Instruction Fetch Unit, Load Store, L2, and L3.

e Input_From_File: A list with two values. Setting the first to NO will issue a normal
execution as described in this chapter and ignore the second value. Setting the first value
to YES, signals to the framework to conduct only thermal simulation, ignoring the
performance and power simulation tools and using a text file with a power trace as input.
In this case, the second value of the list must contain the path to the power trace text file.

e Number_of _Simulations: The number of requested simulations. This number is used to
repeat simulation variables that are common for simulations rather than having to type
them as many times.

e Run_Mask: A list with a numeric value for each simulation requested. Allowed values are
0 and 1. Simulations marked with 0 in the Run_Mask are ignored and not run. This variable
facilitates the creation of more general patterns in the simulation queues allowing any
unnecessary simulation to be skipped.
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Figure 3.12: Core Discretization used in floorplan creation and power simulatio



Simulation Variables:

Benchmarks: A list with the benchmarks for each simulation. Multiple benchmarks for
the same simulation are a single string in the list with the requested benchmarks separated
by commas. Benchmarks are listed in the format supported by SniperSim, meaning, suite-
app-worksize-threads.

Platform_Cores: A list containing the number of cores in the chip for each simulation.
Architectures: A list containing the architecture of each platform. In our work, only
Gainestown was used but the variable has been exported to this level to facilitate the
framework expansion if necessary.

Scripts: List containing the scripts to be invoked by SniperSim. The scripts are followed
by any input variables separated by semicolons. In our case, inputs to
Sniper_Simulation_Control were Interval_NS, Input_From_File[0] and Heat_Distribution.

Thermal Variables:

Chip_Size: A list of lists with the inner lists containing two values describing the size of
the chip for each simulation (length, width) in um.

Cell_Size: The cell discretization to be used by 3D-ICE (length, width) in pm in a similar
format with the previous variable.

Sink_Area: The area of the heatsink in um”2. If no heatsink is specified later, this value
is ignored.

Simulation_Step: The duration of each simulation step within a time slot for 3D-ICE. The
time slot corresponds to the simulation interval while the number of steps that can fit in a
slot represent the number of iterations of the numerical method.

Initial_Temperature: The initial temperature of the cells in the chip.

Heatsink: Available options for this list of variables are YES and NO indicating whether
the chip in equipped with a heatsink or is connected directly to the ambient.

Layers_List: A list of lists declaring the elements in the chip stack from top to bottom. An
example: [‘SINK’,”SPREADER’,"PCM’,’DIE’,’PCB"].

Heights_L.ist: A list of lists, declaring the height of each element specified in the stack,
respectively. Example: [¢2000°,°1000°,°200°,°100°,”10°]

Materials_List: Same as before, declaring the material of each element from top to
bottom. Example : [ COPPER’,”COPPER’,"LAURIC ACID’,’SILICON’,”BEOL’]. A set
of materials and their properties are hardcoded in STK_Utils.py. If new materials are
intended to be used, then an entry to this script must be added. Adding materials to this
script does not necessitate using them always. One might declare a great range of materials
and use them on demand. That is the reason why we did not export this variable for
immediate editing.

Melting_Points: Contains the melting point for each PCM used in the simulations. If no
PCM is specified in the chip stack, the corresponding value in this list is ignored.

Apart from all the variables specified in the list, a full system simulation also involves some
files still. As was described earlier, a floorplan file is necessary as input to 3D-ICE. To create the



floorplans for Nehalem-like configurations we used ArchFP and transformed the output to a
suitable format. However, the fact that the operation of ArchFP is an interactive trial and error
process, until the specified layout is achieved, precluded us from automating the floorplan creation
and integrating it to the framework. For this reason, pre-created floorplans for Nehalem-like
architectures with cores ranging from 4 to 128 cores are fed directly to 3D-ICE. If another
architecture is to be used, the user must see to providing suitable floorplans. Along with these, if
a visual representation (image) is included in the same directory, the framework will be able to
visualize thermal and power maps with respect to this image, if so requested. A core file is
associated with each floorplan we created designating the rows and columns occupied by each
core in the layout. This file is used by 3D-ICE to provide per core temperature statistics and is
unique to the architecture and discretization parameters. In order to utilize this function for another
architecture, a suitable core file must be included. If no such file is present, the function and the
corresponding statistics are not employed.

In summary, in order to use the simulation framework, the necessary actions can be divided
conceptually into two groups. The first group, dealing with prerequisites, is the one linked with
files generally regarded as stable, involving framework, floorplan and floorplan associated files
(visual representation, core boundaries). The initiation of the Python server is also categorized in
this first group. In the second group, we regard the definition of all variables relative to the
simulations we want to run. The distinguishing factor between the two, lies in the fact that the first
group is characterized by little or no repetition, whereas the second group is replicated for each
batch of simulations.

A cumulative view of the inputs at each stage of the framework is shown in Figure 3.13. Inputs
that are stable during the execution of a simulation are marked in black, in contrast with inputs that
are different for each interval marked in red. All blocks designated with green color are
materialized with Python scripts whereas the blocks in blue are independent tools.
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CHAPTER 4



4.1 Theoretical Background

This chapter is devoted to showcasing the importance in thermal modelling, of interface
materials between chip components and of heat distribution along the core die. Notably, this
analysis is only an example of the usage that the full system simulation framework we described
in Chapter 3 can be put to. In order to better understand the variables involved and the reasons
that led to this analysis, a brief theoretical background will be provided in this section.

Thermal Interface Materials, commonly known as TIMs, are increasing in importance in
nowadays ever more power hungry and small chips. Heat generated by semiconductor devices
must be removed to the ambient to maintain the junction temperature in the silicon die within safe
operating limits. This heat removal process, often involves conduction from a package surface to
a heat spreader that can more efficiently transfer the heat to the environment. The spreader in turn,
might be connected to a passive or active heat sink to further boost the cooling capabilities of the
system. Regardless of the case, the spreader has to be carefully joined to the package and/or sink
surface to minimize the thermal resistance of this newly formed joint.

Attaching a heat spreader to a semiconductor package surface requires that two commercial
grade surfaces be brought into intimate contact. These surfaces are usually characterized by a
microscopic roughness superimposed on a macroscopic non-planarity that can give surfaces a
concave, convex or twisted shape. When two such surfaces are joined, contact occurs only at the
high points. The low points form air-filled voids. Typical contact area can consist of more than 90
percent air voids, which represents a significant resistance to heat flow.

Thermally conductive materials are used to eliminate these interstitial air gaps from the
interface by conforming to the rough and uneven mating surfaces. This is illustrated graphically in
Figure 4.1. Because TIMs have greater thermal conductivity than the air they replace, the
resistance across the joint actually decreases, counterintuitively to the fact that we are adding an
excess layer (and in theory, excess thermal resistance) between the conducting surfaces. In truth,
what happens is that we replace a poor conducting material, air, with a better one, the selected
TIM. Thus, the resulting thermal resistance across the two surfaces diminishes. It stands to reason
that the same effect is also transferred to the joint temperature. Reducing the resistance from the
die to the ambient generally results in cooler thermal profiles.

IHS

Heat Sink

Figure 4.1: (a) Chip components arrangement in a Flip Chip LGA Package
(b) Graphical illustration of TIM usage between die and IHS



Regarding heat distribution across the core die, it has been shown in the literature that the
temperature distribution in a microprocessor is architecture and/or workload dependent. In [26], it
has been demonstrated that placing sensors at the hottest locations determined by one application
can cause large temperature errors in temperature readings for other applications. The authors go
on to explain that certain different applications incur different power and thus, temperature profiles
across core components. As a result, localized heating is application dependent. Since the research
in [26] was conducted on a certain microprocessor, in order to generalize the previous conclusions,
the authors outline cases in the literature where diverse results were reached in attempts to identify
the hottest regions of other microprocessors. Regardless of this diversity in results, one might
notice that the object of all related research lies in identifying patterns that link different
applications and process variations to specific components demonstrating higher temperature
profiles. In any case, the fact that the temperature across the die components is not uniform, with
large differences reported, is undisputable.

This heterogeneity of temperature profiles has a noteworthy impact on the overall thermal
behavior of chips, due to the fact that thermal conduction is greatly dependent on power density.
To clarify further, a component of certain area, consuming stable power will result in quite a
different temperature profile than the total of the processor die consuming the same power. While
seemingly obvious, this fact is often neglected in thermal modelling schemes, where power is
allocated evenly across the core components, coupled with an overestimation in power
consumption to reflect worst case, full-utilization scenarios. This approach, while seemingly
analogous or at least, safely producing a worst case scenario, will be seen to fail to capture
accurately both transient effects across stack layers and power densities that create localized
hotspots.

It is our belief that this uneven power and consequently, temperature allocation across the
core die will be further exacerbated in chips intending to use frequency sprinting, due to even
higher component consumption. In addition, the use of phase change materials, which is very
popular among such configurations, is often characterized by non-uniform melting of the PCM
layer. As reported in [9], failure to capture the phenomenon where parts of the phase change
material are melting while other parts are still solid, can result in significant under or over-
estimation of temperature.

While this fact is stated with different power consumption and heat production among
different cores in mind, the non-uniform temperature allocation in the die of a single core can be
seen from two different perspectives, closely linked to the particular concept. From a per-core
perspective, the single die can been thought of, as a microscopic variation of a multicore chip
demonstrating localized hotspots, thus effecting the conclusions presented in [9] in a smaller area.
To elaborate, not accounting for non-uniform melting in the PCM across a multicore chip is
analogous to not accounting for non-uniform melting in the PCM across a single core die, albeit
in smaller proportions. Certainly, the penalty in simulation accuracy will be smaller in a per-core
basis.



However, more careful consideration of the problem will soon reveal that this two
phenomena are tightly coupled. In fact, a simple analysis will show that they work additively.
Bearing in mind both that components in a single core and cores in a single multicore might exhibit
higher utilization and power consumption than others, one can easily deduce that the combined
effect of this two factors, leads to even more focused hotspots. Hence, the inaccuracies described
in [9], are further exacerbated when assuming per-core uniform heat distribution.

To make matters worse, thermal interface materials, as briefly described previously, are
almost always neglected in thermal modelling. On its own, this omission is an indirect assumption
of ideal surface conformation between layers in the stack. Obviously, the resulting thermal model
will be, in general, better able to conduct heat. More specifically, depending on the placement and
characteristics of the TIMs neglected, the thermal model will be unable to model transient heat
spikes correctly and simultaneously lead to underestimation of steady state temperatures.

In conjunction with all the preceding analysis, not modelling thermal interface materials is
expected to lead to even greater irregularities in the thermal model. Truth be told, each and every
one of the factors mentioned, has an impact in modelling accuracy on its own, but is also influenced
by all the others. To summarize, we believe that uneven heat distribution across the die of a core
leads to different temperature profiles than uniform distribution. This difference, will be more
prominent in sprinting frequencies. In addition, coupled with the absence of TIMs in the thermal
model, the resulting temperature map of the chip will be smoothed out. The same line of reasoning
can also be followed backwards. Not modelling thermal interface materials leads to smoother
profiles, which are smoothed out even further due to erroneously assuming homogeneous heat
distribution across core components which is further apart from true conditions in sprinting cores.
Both factors, heat distribution and thermal interface materials, seriously affect chips that intend to
employ phase change materials and sprinting methodologies.

In order to validate this theory we just presented and demonstrate the impact of the factors
involved, we formulated a series of simulations. In this chapter, we will demonstrate the different
results in each scheme at increasing frequency levels, for some different workloads. The initial
goal is to demonstrate the increasing effect of heat distribution and TIMs with increasing frequency
levels and thus prove their importance in sprinting oriented research. The modelling approach and
all related variables, will be presented in section 4.2.

4.2 Simulation Methodology

In order to test the theory we presented in section 4.1, we decided to conduct our
experiments on a four core Nehalem Gainestown based chip. To better simulate larger power
densities, consistent with current technology trends, we opted to use a 22nm process, extracting
component sizes and chip areas from McPAT. McPAT reports a die size of 48,358 mm”2 which
was modeled as a 8 mm x 8 mm square chip, assuming a 20% error, which was the average under
evaluation reported in [18].



To simulate the above chip, SniperSim was used with an interval of 1ms. The benchmarks
used to conduct the experiments are Blackscholes, Bodytrack and Streamcluster, all for a total of
4 threads and for the duration of 2000ms. All benchmarks used the large work size. Due to the fact
that no dynamic control over performance simulation characteristics was conducted, to accelerate
simulation times, we recorded the power trace of each benchmark using our framework, and then
fed it directly to our thermal model through the options available from the Python interface. In
cases where the input did not reach the desired levels, we iterated over the values of the parallel
region. The reason we focused our analysis on the first 1000ms of each case, derives from the fact
that the average power levels in the ROI of the above benchmarks is pretty much stable. As a
result, since we wanted to focus on transient effects and temperature spikes, we felt that iterating
over the same values would only serve to demonstrate the resulting steady state levels which we
deemed not equally important. Nevertheless, a brief discussion of the results from a 10.000ms
simulation are addressed in every section. Each benchmark was simulated for all cores working in
2190, 2390, 2660 and 2926 MHz.

Figure 4.2: Single core floorplan

Regarding the floorplan and the components placement, we used ArchFP to produce the
necessary files, as mentioned in previous sections, and we based the layout on information from
[27]. The component areas were retrieved from McPAT as mentioned earlier. The resulting
floorplan, in visual representation, can be seen in Figures 4.2 and 4.3.



Figure 4.3: Four core chip floorplan with L3

For our thermal model, we decided to use a variation of the chip with a heat spreader but
no heat sink. This decision was influenced by the work presented in [10] where a similar
configuration was used. We further selected to use a heat spreader that is the same size as the die.
This creates an even more challenging power profile for the chip and accounts for the limited space
characterizing mobile chips. It is of course noted, that heat spreaders need to be mounted on the
PCB and need to have a bigger surface than the die to achieve their maximum potential and
placement requirements. However, we selected to sacrifice a portion of lateral heat spreading to
create an even more thermally challenged multicore and provide more options, later on, for
possible PCM configurations.

As far as the chip stack was concerned, we used the model that can be seen in Figure 4.1,
representing a flip chip land grid array, without the heat sink. A more practical representation,
showing the actual stacks used in the thermal model, is shown in Figure 4.4. The materials of the
heat spreader and of the die are, of course, copper and silicon respectively. The thermal interface
material assumed was indium, which is reported by [28] to be one of the best choices available.
Lastly, a small layer representing the underfill with parameters derived from [29] was also present.
The parameters used for each of these materials are summarized in table 4.1.

In 3D-ICE, we used 100 um as cell length and width and used 250 um thick layers in the
stack. In [19] it is reported that dimensions of a few hundred microns are sufficient for accuracy,
hence, the selected values are both acceptable in terms of precision, and result in small simulation
times. The layers that had smaller thicknesses were of course modelled accordingly. Transient
analysis was conducted with a time slot of 1ms, the same used in SniperSim. The step was set to
0.2ms resulting in 5 steps, that is, 5 iterations of the numeric method, in each interval. The initial
temperature of cells was set to 300 K. The top layer of the heat spreader was connected directly to
the ambient and a value slightly worse than the one reported in [9] was used for the convection



resistance, to account for worse heat transfer conditions due to the fact that no heat sink is present.
Sure enough, this value was adjusted to the heat transfer coefficient required as input for 3D-ICE.
Furthermore, in each simulation, we outputted thermal maps for each layer along with the power
map for the die. The maximum, average and minimum temperature of each layer through time was
also recorded along with the maximum temperature corresponding to each core die.

Material [ Thermal Conductivity | Volumetric Heat Capacity
W/m*k J/ mA3*K
Copper 400 1.57*10"6
Indium 80 1.70*10%6
Silicon 130 1.62*10"6
Ceramic 1 2.10*10%6

Table 4.1: Material properties used in thermal simulations

In order to demonstrate the validity of the theory we formulated in 4.1, we used four
different configurations for each benchmark at each frequency level. The first, denoted as Al, is
the default chip stack we just described, modeled with fine-grained heat distribution. The second,
is the same configuration without the TIM layers. The other two are identical but employ
homogeneous power distribution among all core components. This is achieved with the same
power trace by accordingly modifying the values for each interval, such that the power density is
uniform across the core die and the same total power is dissipated in the chip. Let us note also, that
4 total threads for each benchmark does not mean that 4 threads are always active in the simulation.
It only means that 4 threads will be spawned in total and are not necessarily active all the time.
This is ideal in our case, since it provides variability both across the die of a single core, and across
the cores of the chip. The configurations are numbered Al through A4, in the order they were
presented. The same information is also presented in Figure 4.4,
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Figure 4.4: Thermal configurations used in the simulations



4.3 Results and Discussion

4.3.1 Blackscholes Simulations

We decided to first present some results for each benchmark separately, analyze them in
some detail and then summarize our findings. This approach was chosen in order for the reader to
be better aware of the individual characteristics of each configuration before being presented with
overall statistics. As was already explained, Blackscholes was run with 4 total threads for 4
configurations (A1-A4) at 4 different stable frequencies. To begin with, let us examine the
temperature traces, with respect to the maximum temperature observed in the silicon die, presented
in Figure 4.5.
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Figure 4.5: Thermal traces for Blackscholes at increasing frequency, for each
configuration

What is readily observed from the charts, is that the slope of the curves increases with
frequency. Put more simply, that the maximum temperature in the silicon increases as frequency



increases, which is quite expected. A more careful examination, will also reveal that as frequency
increases, so does the gap between the temperature traces of each configuration.

This gap, one might notice, is more prominent at the beginning of each simulation. This
happens because that time region corresponds to the serial phase of the benchmark where only one
core is active. The operation of this single core, for this particular benchmark, is characterized by
an increased power density in the center region of the core. The result is a tightly focused hot spot.
For reference, Figure 4.6 shows the power traces for each core and the corresponding sum for the
chip. The first core in the chip, or alternatively, Core 0, is moderately active in the beginning of
the simulation and then reverts to idling. The utilization of all the other cores is pretty much even

in the parallel region.
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Figure 4.6: Per-core and total power traces for Blackscholes at 2926 MHz
In the serial phase, we can see from the diagrams that for configuration A2, even though

fine grained heat distribution is used, the hot spot from the operation of one core, with some more
power consuming components standing out, is very quickly smoothed out. The reason for this, is



that the die is modeled in direct contact with the copper heat spreader. The spreader, true to its
name, by virtue of the very high thermal conductivity of copper, quickly conducts the heat
concentration to the surrounding cells, resulting to a quite lower maximum temperature.
Configuration A3, is seemingly closer to the temperature levels of Al. The reason being that even
though homogeneous heat distribution is considered, the modelling of TIMs, captures the hot spot
generated by the operation of a single core, while all the others remain dark. The result is that it
leads to higher maximum temperatures than the other configurations at this point. Configuration
A4, using homogeneous heat distribution without thermal interface materials, simulates the
operation of a single core, equally active at all components that is easily spread out with respect to
the generated heat.
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Figure 4.7: Thermal profiles for each configuration at t=100ms
(a) Al - Accurate modelling of hot spot
(b) A2 — Accurate power model for hot spot, inaccurate thermal model
(c) A3 - Inaccurate power model for hot spot, accurate thermal model
(d) A4 - Inaccurate power and thermal model for hot spot.

It is worth noting that configurations 2, 3 and 4 do not demonstrate big variations in the
resulting maximum temperature value. Apart from the fact that they all fail to simulate the
localized hotspot correctly, they have certain characteristics that tend to mitigate their differences.



A3 models a single homogeneous core with slow spreading of heat to neighboring cells. Since the
core selected was the first of the four presented in the floorplan, that means that A3 dissipates heat
slowly towards the second core and the common interface with the L3. A2, by spreading the heat
generated in the hot spot seen in 4.7- (a) very efficiently, has a tendency to converge to the profile
created by A3. By virtue of the centered position of the hotspot, heat is dissipated at a rapid pace,
towards the rest of the first core (thus converging to the A3 initial modelling profile), and towards
the second core that is close to the hotspot (part of the evolution of the A3 modelling profile).
Configuration A4, is a combination of the two and stands farther apart, but is kept a bit reigned
from the fact that the faster pace at which it is dissipating heat is only utilized towards two
directions (Core 1 and L3), since the other faces of Core 0 are at the edge of the chip boundaries.

To better understand the results described in each case, a thermal snapshot of the chip for
each configuration is presented in Figure 4.7. The thermal snapshot is taken at 100ms elapsed time
for the 2926 MHz case. In this figure, we can see the hot spot we previously described in (a), the
same hot spot, but greatly smoothed out in (b), the uniform operation of one core with small heat
spreading in (c), and the uniform operation of one core with rapid heat spreading in (d). From this
figure, another important fact is unveiled. Apart from the absolute difference in maximum
temperature reported in each configuration, we can easily see that different thermal profiles are
created in each case. This fact will be shown to have a serious impact in PCM enabled
configurations.
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Figure 4.8: Temperature trace for Blackscholes iterated over the parallel region at 2660
MHz

(a) Temperature trace overview
(b) Last 50ms of simulation demonstrating steady state values



Returning to Figure 4.5, we can see that after entering the parallel region at about 150ms,
in each configuration the max temperature starts converging to a steady state value. In that case,
where three cores are active, the temperature differences are smaller as heat is less focused and
less variable. An interesting fact is that configuration A2 tends to close the gap towards Al on
account of the faster heating of components due to the high conductivity of copper coupled with
the smaller heat capacity in the system. In other words, reverting to the electrical analogy, A2 has
a smaller RC factor meaning that with steady, constant value input, the voltage (temperature) will
rise at a greater pace. Simultaneously, the final steady state temperature of A2 will actually be
lower since the thermal resistance from the die to the ambient is smaller. To recap, A2 will
converge faster to a smaller steady state temperature than Al. This will be showcased later on.

A similar behavior is also observed between A3 and A4. In this case, because these
configurations were closer in temperature, A4 has time to elevate to greater values than A3, but
later on, will start converging to smaller temperatures for the reasons explained previously. For all
cases, the same simulation carried on for 10s is shown in Figure 4.8. We can easily see in 4.8 (b)
that as expected, A2 converges to a smaller value than Al, and A4 to a smaller value than A3,
even though, we can see in 4.5 that A4 is rising at a faster pace initially.

In addition, for comparison purposes, the thermal profile for each configuration is shown
after 700ms in Figure 4.9. Note that in this case the color reference has changed, with the cooler
colors corresponding to 350 kelvin degrees. Naturally, the temperatures reported in 4.8 are
prohibiting for the function of the chip. This fact is neglected in this phase since the object of our
interest are the differences in the thermal models. The maximum temperature for the silicon die is
commonly regarded as 100 Celsius degrees, the equivalent of 373.15 in kelvin. In our work, we
used a more conservative limit of 370 kelvin as the value at which we report overheat of die
components.

In order to quantify the differences in thermal simulations outlined so far, as well as present
an alternative point of view, we created a set of statistics from the thermal traces we logged. These
statistics are demonstrated in Figure 4.10. The error values listed are derived by comparing the
thermal trace for the maximum temperature of A1 with every one of the other configurations. As
expected, A4 is the worst case with respect to the maximum error observed. A3, follows pretty
close in all frequencies while A2 generally exhibits the smaller error. This outcome was expected
due to the previous analysis where A2 was seen to be better able to follow, even from a certain
distance, the thermal trace of Al. This tends to point that heat distribution is a more important
factor in the case we are examining and that disregarding thermal interface materials in cases where
homogeneous heat distribution is assumed, results in small irregularities in comparison. Regarding
the average error values, A2 exhibits accordingly the lowest values while A3 results in a bigger
average error due to the phenomenon we described earlier in this section. Of course, as we have
seen, configurations 3 and 4 do not result in much different thermal profiles, with the difference
being that in small time windows, 4 exhibits higher temperatures. As a result, the better average
performance is largely artificial.
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Regarding the effect of frequency on the inaccuracies that surface, each of the
configurations exhibited an increase in maximum error of 200% on average, and an increase in
average error of 300% on average, all in the span of less than 1GHz increment in frequency.
Regardless of the individual numbers, the upward trend in maximum and mean error values is
indisputable and quite intense. The specific values represented in Figure 4.10 are summarized in
table 4.2.

While all the facts presented so far seem quite interesting, another point of view might be
taken into account, a point very often neglected. Earlier in this text, we mentioned the usual limit
for the temperature in the die. Temperature measured in the center of the die is denoted Tjunction.
The corresponding limit for temperature at the center of the top level of the heat spreader,
commonly known as Tecase, is usually about 20 degrees lower. That means that chips with maximum
Tjunction at 100 degrees Celsius, use 80 degrees Celsius as the limit for Tcase. Essentially, this means
that there is an expected 15 degrees temperature difference between core and case temperatures,
at loads that exceed cooling capabilities (that means more than the expected full load). In our work,
in tune with the described trends and the choice for Tjunction_max, the maximum value for Tcase Was
set at 350 Kelvin which is a little bit lower than the 353.15 kelvin degrees equivalent of 80 C°.

MHz\ C* | Maximum temperature error| Average temperature error

Freguency | Al-A2 Al-A3 Al-A4 Al1-A2 A1-A3 Al-A4
2120 2.80 3.61 3.87 0.82 3.34 2.15
2390 3.72 4.64 5.00 1.16 4.28 2.85
2660 5.21 8.10 8.15 2.83 7.28 5.46
2026 7.61 11.28 11.60 4.30 10.22 7.91

MHz\ C* | Maximum temperature error % | Average temperature error %

Frequency | AL-A2 AL-A3 Al1-A4 Al-A2 Al-A3 Al-A4
2120 0.92 1.14 1.27 0.26 1.03 0.67
2390 1.21 1.44 1.63 0.37 1.29 0.87
2660 1.65 2.46 251 0.84 2.10 1.60
2926 2.31 3.34 3.49 1.23 2.82 2.23

Table 4.2: Comparison of Al against all other configurations — error values

Another interesting weakness of said thermal models occurs in this case. In Figure 4.11, it
can be seen that in any case examined, excluding Al, the temperature of the top spreader layer is
very close to that of the die. Especially, in the 2926 MHz case, the only one that violates
temperature limits clearly, at the moment of the first violation of Tjunction, in A1, the temperature
of Tease IS 353 Kelvin. This number approximates quite well the anticipated behavior, in contrast
with the corresponding 365, 363, and 368 Kelvin for Tcase in the other configurations, respectively.
Even if we assume that the 20 degr2ees gap usually assumed between Tcase and Tjunction 1S an
approximate towards ensuring that the die never reaches critical temperatures, meaning that the



actual difference might actually be smaller, the deviations presented in the other configurations
are too large and imply further inaccuracies.

Blackscholes - 2926 MHz - Al Blackscholes - 2926 MHz - A2

Blackscholes - 2926 MHz - A3 Blackschales - 2926 MHz - A4

Figure 4.11: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz

Although we used the temperature of the die as the trigger for our later exploration, as will
be presented later, the distribution of heat in the vertical direction of the chip stack, is paramount
when the use of PCMs is considered. As an example, assume that the optimal melting temperature
for a PCM to be placed on top of the heat spreader is intended to be determined. We can see that
methods 2, 3 and 4 would probably result in erroneously different results on account of modelling
hotter top-most layers. The same will hold true for an exploration regarding the optimal position
of a phase change material in the chip stack.

Lastly, let us underline that in the most intense frequency scenario, the time of the first
temperature violation is reported at approximately 600ms, while, in configuration 4, the same first
violation, is reported more than 150ms later. This underestimation, might be the most critical for
systems intending to employ sprinting and phase change materials, since temperature violations
trigger control actions and are used to determine the performance of methodologies and materials.

4.3.2 Bodytrack Simulations

In accordance with expected results and what was presented in the previous section, from
the thermal traces for Bodytrack, shown in Figure 4.12, we can easily identify the upward trend in
maximum die temperature, rising in gradient as frequency rises. Similarly, with every frequency
step up, the gap, or more accurately, gaps between the thermal trace for each configuration, widen
perceptibly. In contrast with Blackscholes, Bodytrack is characterized by fluctuations in the
thermal trace.
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Figure 4.12: Thermal traces for Bodytrack at increasing frequency, for each
configuration

To better understand this behavior, Figure 4.13 was created, presenting the power traces
for each core, along with the power trace for the sum of the chip, for Bodytrack, with the cores
operating at 2926MHz. It is readily seen that Core 3 is for the most part idling, while Core 0 is
punctuated by short bursts of activity. Cores 1 and 2, have similar power traces in form, both with
each other, and with the sum. An interesting fact to observe, is that the thermal trace of the
maximum temperature of the chip, follows the output expected from an RC circuit, inputted with
a voltage similar in form to the total power trace, superimposed on a curve representing the RC
response to the average value of the power consumption of the whole chip.
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Figure 4.13: Per-core and total Power traces for Bodytrack 2926 MHz

By way of a better explanation, les us divide the power trace for the total chip in two
different functions of time, a steady value equal to the average power, and a transient value equal
to the power trace shown in 4.13 (b) minus the steady value. The response of an RC circuit to the
steady value, would be something similar to 4.14 (a). The shape of the transient value and the
shape of the corresponding RC response, would roughly be what we can see in 4.14 (b). The sum
of the steady and transient functions would be our power trace. The sum of the respective
responses, would be approximately the sum of 4.14(a) with the response in 4.14 (b), which, would
have a similar shape with our actual thermal trace.
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Figure 4.14: Example RC responses
(a) RC response to steady voltage input
(b) RC response to step input

Of course, the known analogy of electrical and thermal phenomena is taken into account.
However, the fact that the overall maximum temperature of the chip follows closely the response
of the total power through time, even though this power is the result of highly uneven distribution



among the cores, resulting in uneven thermal profiles, is intriguing. Nevertheless, it should also be
noted that this behavior is very faint, in configurations 2 to 4.

The analysis regarding the steady state values and rate of change of temperature that was
presented in the previous section, is also in effect here. Specifically, we can see that the curve
corresponding to the average power consumption conforms to the previously specified behavior.
This is not surprising since the characteristics involved are specific to each configuration. Exactly
like in Blackscholes, A2 converges faster than Al to a lower steady state value and A4 converges
faster than A3 to a lower steady state value. These findings and the corresponding steady state
values can be seen in Figure 4.15.
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Figure 4.15: Temperature trace for Bodytrack iterated over the parallel region at 2660
MHz
(a) Temperature trace overview
(b) Last 50ms of simulation demonstrating steady state values

In order to observe the difference between the thermal profiles that each configuration
generates, we created Figure 4.16. The images in the figure are thermal snapshots for each setup,
taken every 100ms of time, up to 700ms. The more power consuming cores 2 and 3 are seen to be
translated to hotter cores in configuration Al, as expected. In A2, the same result can also be
noticed, even though, heat is much more spread out, and the hyperactive cores (with respect to the



others) are only slightly hotter. The outline of the active cores in A3 is distinct, and the same
behavior that was demonstrated in Al, is demonstrated here, at core instead of component level.
This of course, leads to smoother profiles because power is spread out and less focused. A4
demonstrates a scenario which only vaguely corresponds to the mismatched operation of only two
cores.
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Figure 4.16: Thermallshépshots every 100ms for Bodytrack at 2926 MHz
(@) — (d) Configurations Al to A4 respectively

In the overall results from Bodytrack, even before we examine the specific numbers, we
can conclude that heat distribution is again more influencing. The scenario presented for
configuration A2 is seen to be closer to Al than any of the others.

The statistics that are derived from our simulations and are presented in Figure 4.17, and
the corresponding specific values in Table 4.3, corroborate the remarks we made from observing
the thermal profiles. Specifically, configuration A2 exhibits the smallest error both in maximum
and average temperature, at all frequencies. A3 is next in magnitude of maximum temperature
error, but shows the largest values for average metrics. This behavior is an artifact produced
transiently from the higher upward slope of A4, in the time window we examine. As we can see
in Figure 4.15, A4 diverges more than A3 later on in the simulation for a long period of time,
leading to an overall larger average temperature error.

Let it be noted, that if we derive the same statistics for 10s of simulation instead of 1, the
values that result are without exception the same or larger. However, we felt that that for smaller
time windows, where the responses are still far from steady state values and the majority of
temperatures reported are within silicon operating limits, the metrics better reflect transient
operations that characterize abrupt core activation and/or frequency boosting in sprinting
scenarios.
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Figure 4.17: Maximum and average error values for Bodytrack temperature traces

In this benchmark, the average increase in maximum temperature error, from 2120 to 2926
MHz, is slightly larger at approximately 240%, whereas, the same metric for the average
temperature error is slightly smaller at roughly 280%. At the same time, while it is not easily
observed at this point, let us note that all error values are larger for Bodytrack, at corresponding
frequencies and configurations. This is to be expected, since the overall nature of this benchmark
is much more variable. This variability is the behavior that thermal models, neglecting thermal
interface materials and/or uneven heat distribution across core dies, have difficulty simulating
accurately.

MHz\ C* Maximum temperature error Average temperature error
Frequency | Al1-A2 Al1-A3 Al-Ad4 Al-A2 A1-A3 Al-A4
2120 5.13 5.57 7.21 1.26 3.63 2.65
2390 7.22 8.35 10.19 1.89 4.67 3.60
2660 11.48 14.87 18.15 3.83 8.05 6.81
2926 16.33 20.32 24.93 5.73 11.37 9.94
MHz\ C° Maximum temperature error % Average temperature error %
Frequency Al-A2 Al-A3 Al-A4 AL-A2 A1-A3 Al-A4
2120 1.65 1.80 2.33 0.40 1.12 0.83
2390 2.30 2.53 3.24 0.58 1.41 1.10
2660 3.55 4.60 5.62 1.13 2.34 2.00
2926 4.95 6.16 7.55 1.62 3.17 2.80

Table 4.3: Comparison of Al against all other configurations — error values



In brief summary, this weakness in modelling incurs maximum temperature errors that
might trigger control actions at the wrong time, thus distorting all simulation results from that point
forward. In addition, the different thermal profiles affect phase change materials reported
performance. This is not yet quantified, but will be analyzed later on. Lastly, inaccuracies in
vertical heat spreading, across stack layers, also affect simulated PCM performance, depending on
the placement. An examination of Figure 4.16 shows the differences in temperature traces of
Tjunction @nd Tcase fOr each configuration. At the time instant that the die registers 370 K, the case
temperature is 351 K for Al. The other configurations report 363, 363 and 368 K respectively at
the same time instant.
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Figure 4.16: Thermal trace for Tjunction @and Tease fOr each configuration ta 2926 MHz

In the most intense frequency scenario, the time of the first temperature violation is
reported at 626ms in Al. For the other configurations, the corresponding numbers are 716, 878
and 814ms respectively.



4.3.3 Streamcluster Simulations

For the case of Streamcluster, we used 4 active threads in the parallel region, corresponding
to 5 total threads spawned. This choice, along with the specific benchmark, were combined in an
effort to favor the models using homogeneous heat distribution and no thermal interface materials.
Streamcluster is characterized by a very small serial region and approximately even power
allocation among cores. This allocation along with the total power consumption can be seen in
Figure 4.17.
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Figure 4.17: Per-core and total power traces for Streamcluster at 2926 MHz

Using 4 active threads in the parallel region creates a quite uniform profile, which we
expect will mitigate the spreading inaccuracies of the models, and result in smaller errors. In
addition, the total power consumed by the benchmark fluctuates only slightly, removing abrupt
heat spikes that are seen to be more difficult to model. With all these parameters in mind, we expect
to see smaller errors on all accounts between the thermal models and more similar thermal profiles.
This choice of parameters, intends to explore a case where a degree of uniformity is actually
present in the multicore.



From Figure 4.18, we can see that the thermal traces for each configuration seem to be
more uniform. Of course, with increasing frequency their differences start becoming more
prominent and a small fluctuation of temperature, resulting from a corresponding small fluctuation
in power consumption, starts becoming more intense. However, it should be observed that the
reference scale for these charts is by necessity different. Because more threads were used in this
case, the benchmark is consuming more power and, as a result, leads to higher temperatures in the
same frequencies. The difference in scale means that errors in maximum temperature, tend to seem
smaller in the charts presented.
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Figure 4.18: Thermal traces for Streamcluster at increasing frequency, for each
configuration

The parameters that are specific to each configuration, meaning rate of convergence to
steady state values (alternatively, rate of increase in temperature or RC factor) and the steady state
values themselves, influence the thermal traces for this case according to previously detailed
tendencies. The analysis we presented in 4.3.1 regarding transient behavior and expected steady
state values is also in effect here. Nevertheless, said behavior is not equally visible in these thermal
traces, on account of the different scale and smaller divergence between the configurations.

In order to get a better perspective, Figure 4.19 presents the simulations at 2660 MHz
conducted for 10s. Regarding what we have seen so far, the curves in the figure are in accordance



with the expected results. Even though it is not clearly obvious, A4 and A2 advance in temperature
at a faster pace, but later on settle to lower values than A3 and Al respectively.
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Figure 4.19: Temperature trace for Streamcluster iterated over the parallel region at 2660
MHz
(a) Temperature trace overview
(b) Last 50ms of simulation demonstrating steady state values

However, as was emphasized earlier, while statistics with regard to specific metrics are
important in unveiling useful and maybe critical information, they are not adequate to provide
the full image. For this reason, Figure 4.20 was created, with thermal snapshots from each
configuration, taken at 50ms intervals up to 300ms. As was previously stated, thermal profiles,
in a two dimensional, and a vertical sense, are important factors in configurations intending to
use phase change materials. The intervals were chosen to demonstrate chip behavior closer to
actual operating temperatures.

Even though configuration A1l still has a tendency to stand out, on account of the hotspots
properly modelled in the center regions of each core, in this case, the differences between the
thermal profiles are less intense. It can be seen that A2 is quite closer to Al in this instance.



This results from the fact that all components are equally active, and dissipating heat, rendering
the absence of TIMs (a factor that greatly influences heat spreading) less consequential.
Regardless, even with this better conformation between thermal profiles, configurations A4
and A2, which do not model interface materials, are seen to lead to a substantial inaccuracy in
the temperature of the L3. In a scenario where a phase change material is interposed between
the die and the rest of the chip stack, this cooler part of the L3 might quite easily correspond
to a portion with latency in melting. Naturally, failure to capture this behavior could quite
easily lead to significant errors in determining the overall performance of the system.
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Figure 4.20: Thermal snapshots every 100ms for Streamcluster at 2926 MHz
(b) — (d) Configurations Al to A4 respectively
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With regard to Figure 4.21, we can see the same overall trend presented in the previous
sections. Even though Streamcluster incurs smaller errors than other benchmarks, a greater
sensitivity to frequency is observed. The average increase of maximum error ascends to
approximately 260% while the same metric for the average error registers an unexpected 350%,
approximately. This result is counterintuitive to both our expectations and the thermal profiles we
have already examined. This fact only serves to corroborate our claim that no metric on its own,
is fully determinative of the thermal simulation differences. The specific values for the error
metrics computed are listed in Table 4.4.



MHz\ C° Maximum temperature error Average temperature error
Frequency | Al1-A2 Al1-A3 Al1-Ad Al1-A2 A1-A3 Al-A4
2120 3.03 3.12 430 0.88 2.89 1.27
2390 401 4.06 5.57 1.14 3.58 1.55
2660 6.89 8.52 10.10 2.13 7.52 4.78
2926 10.07 12.45 14.80 3.45 10.90 7.27
MHz\ C° Maximum temperature error % Average temperature error %
Frequency Al-A2 Al-A3 Al-Ad A1-A2 A1-A3 Al-A4
2120 0.99 1.02 1.40 0.27 0.88 0.40
2390 1.30 1.33 1.81 0.35 1.06 0.48
2660 2.19 2.63 3.18 0.63 2.12 1.38
2926 3.08 3.75 4.51 0.97 2.90 1.99

Table 4.4: Comparison of Al against all other configurations — error values
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Figure 4.21: Maximum and average error values for Streamcluster temperature traces

Finally, our last but not least approach is demonstrated in Figure 4.22. Our simulation
model consistently retains the expected temperature difference between case and die, despite the
full and uniform utilization of the chip. Specifically, at 380ms, when the temperature of the die
reaches 370 K, the reported temperature for the case is 351.5 K. In contrast, the reported
temperatures for the other models are 364, 362 and 368 K respectively. Obviously, these
temperatures correspond to the time instants when each model reports die temperature to have

reached 370 kelvin degrees.
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Figure 4.22: Thermal trace for Tjunction and Tcase for each configuration at 2926 MHz

Temperature violations are reported at 380, 403, 486 and 444ms respectively. We can see
that from this point of view, this simulation set results in smaller errors, despite the rapid ascension
of temperature in the chip. This fact steers us toward the theory that abrupt temperature spikes are
not that influencing in the models if they are not coupled with high power densities.

4.3.4 Overestimation Method

A common practice in thermal modelling, is to assume worst case, per-core, power
consumption, evenly distributed in the core die without involving any power modelling tools. This
method is based on the idea that conclusions made with a worst case scenario basis, can only
deviate to the better in practical circumstances. In order to test that theory, we used the previous
A4 configuration for each benchmark, only in this case we calibrated the power values from
MCcPAT so that the curve from A4 would approximate the thermal trace of Al. In order to quantify
how the calibrated curve is adjusted, we aimed to minimize the average error value between the
two thermal traces for the window of 1000ms. This was achieved through a simple trial and error
process, assigning a scaling factor to the power values, computing the corresponding temperature
trace and consequently the average error between this new trace and that of Al. After a small
number of attempts the optimal scaling factor was determined.

It is not readily seen, but this approach yields better overall results than attempting to adjust
the A4 curve to be steadily over that of Al (thus resulting to a worst case scenario). First of all, no
amount of reasonable calibration can ensure that the thermal trace from A4 is above the trace of
Al completely. In addition, attempting to ensure that the calibrated trace will supersede the other
even for three quarters of the transient time window we examine, leads to very large temperatures
both in the end of the transient and in the resulting steady state region. These facts, only seem to



reinforce our belief, that the thermal model represented by A4 is unable to model transient effects
accurately. To be more thorough, let us examine the thermal traces for the best fitting curves for
each benchmark presented in Figure 4.23.

It is readily observed that any kind of abrupt spike in temperature is still elusive for the
model we examine. High power densities that are present strongly in the serial phases of
simulations are only “shadowed” at a distance. Less fluctuating temperature rises seem to be
simulated adequately with the adjustment we made. However, benchmarks like Bodytrack,
characterized by oscillating power values create thermal traces with analogous temperature swings
that are simulated only in an average value approach.

It is also worth noting, that due to big differences in thermal resistance and capacities of
the overall models (RC factors), curve fitting is imprecise even for values resulting from stable
power consumption, due to the variability of rise time and resulting steady state temperature.
Nevertheless, for such cases, adjustments that ensure that the worst case scenario model will err
only on the safe side, can be effected. This is only emphasized because it does not hold true for
fluctuating power values.

Of course, all the previous inaccuracies (thermal profiles, vertical heat spreading etc.) of
the A4 model are also in effect here regardless. This derives from the fact that these are indigenous
to the thermal configuration when contrasted with Al.

A reasonable argument could be made as to why we opted to compare models 1 and 4
neglecting all the others. The selection of Al is pretty much self-evident, it is the model we
consider to accurately model the real phenomena involved. The reason A4 was selected on its own,
is because it is the most used thermal model in the literature. To the best of our knowledge, thermal
interface materials are generally ignored and a chip design employing the use of a heat spreader
without interface materials is not existent in the literature. Hence, we chose to compare a frequently
used model for configurations like the one we presented, to our own.

From another perspective, even if we assume a very efficient design that results in
completely homogeneous power distribution across the core die, inaccuracies will still be incurred
as a consequence of improper heat spread modelling. This case is actually the comparison between
A3 and A4 which we know that is still burdened with certain weaknesses even in the ideal case of
total uniform power allocation on core. These weaknesses have been highlighted in a small, four
core chip with small capacity at core utilization diversity. In a chip with many cores and many
diverse operation schemes available, the inaccuracies between the two models will only multiply.
This derives from the fact that any concentrated heat source results in erroneous results should the
interface materials be neglected, regardless of the origin or area of the hot spot. Thus, even if
different elements of the core are more active, depending on application and workload conditions,
or different cores in the same chip are more active, the conclusions we have reached throughout
this chapter still hold true.
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Figure 4.23: Temperature traces between Al and calibrated A4 configurations for all
benchmarks

4.4 Summary — Conclusion

In this chapter, a frequently used thermal model in the literature has been tested against our
own. The factors differentiating the results deriving from the compared models are the modelling,
or not, of interface materials, and the modelling, or not, of uneven power allocation in the core die.
To showcase the importance of each of these factors, additional configurations employing one but
not the other were examined. In order to explore a variety of scenarios, different benchmarks with
different core and component utilization, at different frequencies, were used. Furthermore, a more
accurate, calibrated version of the thermal model we theorized would be imprecise, was also tested.

In order to provide a complete analysis of all the factors weighing on the results, each test
case was approached from many different perspectives. As expected, we found that thermal models
neglecting heat distribution among cores and thermal interface materials have difficulty modelling
transient phenomena tied to high power densities. In addition, the resulting steady state values
generally lead to underestimations.



One of the most important facts in the whole analysis presented in this section, was the
impact of operating frequency on the error values reported. We observed that with increasing
frequency values, the errors in thermal modelling grew rapidly. This seems to indicate that in older,
lower frequency chips characterized by inferior power densities, the inaccuracies between the
thermal models would be almost imperceptible. Another mitigating factor would be the single core
nature of older chips or uniform operating scenarios frequently employed. This derives from our
conclusion that uneven power allocation resulting from any factor creates transient phenomena not
captured in the tested thermal model.

Moreover, we argued the validity of the weighting factors that distinguish our model as
more accurate. Regarding TIMs, to the best of our knowledge, no chip employing the use of heat
spreader can form a spreader — die joint without interface materials. Regarding heat spreading,
assuming that other areas, meaning other components of the chip are more active, is irrelevant to
our conclusions. The same phenomena would be present. Assuming a greatly efficient design,
resulting to homogeneous power allocation in each core die, certainly results to smaller errors, but
still effects inaccuracies due to uneven core utilization on a chip-level basis. Even if that variable
becomes uniform, still the tested model would not be perfect as it would lead to higher temperature
gradients and smaller steady state values. Furthermore, in any case, vertical heat spreading is
highly erroneous when neglecting TIMs.

To make matters worse, we argue that all these inaccuracies will be further exacerbated in
sprinting platforms. Sprinting results in higher frequencies and/or irregular core utilization,
depending on workload conditions, the very factors intensifying power densities and hot spot
creation. In such cases, the effect of TIMs interacting with uneven heat distribution is multiplied.

On a final note, PCMs usually employed in sprinting systems are influenced by all of the
factors we mentioned. Because the variables involved are closely related and interacting, it is
difficult to clearly distinguish cause and effect. Even through the analysis and examples presented,
a degree of uncertainty regarding the results of ignoring a factor might still be justified.
Nevertheless, it is proven beyond doubt that ignoring TIMs and heat distribution among cores can
lead to very big inaccuracies in chips intending to use frequency and/or parallel sprinting and
PCMs, which actually are the object of this thesis. Consequently, our thermal model not only
models the use of PCMs in the layer stack, it also does so with accuracy not captured by other
thermal models, for the chip configuration we examine.



CHAPTER 5



5.1 Phase Change Material Exploration Objective

The use of phase change materials in systems utilizing computational sprinting has already
been analyzed in previous chapters. It is a relatively recent innovation and although there is already
research with interesting results publicized, a number of factors have yet to be determined. One
could say that most of the research already conducted, basically exhibits that the use of said
materials can be beneficiary under specific circumstances. For example, in [9], the results of using
a PCM that melts at 80 °C interposed between the silicon and heat spreader is shown. A small
exploration follows, exhibiting the effects of thermal conductance and thickness of the phase
change material. To the best of our knowledge this work is probably the most thorough regarding
the specific use of PCMs in computational sprinting. In most of the other cases, a specific material
with fixed properties is used and the corresponding benefits are presented.

In this thesis, instead of using a specific material to boost our system, we opted to explore
a variety of configurations using PCMs. The idea is to attempt to determine the optimal
characteristics for such a material. The physical properties we chose to explore was the melting
point, thickness and placement. The latter is generally chosen arbitrarily in the literature but we
believe that determining the best position for the PCM layer in the chip stack, is a goal worth
pursuing. We chose to assume that we can place a layer of phase change material, however thick,
anywhere in the chip stack. Of course, although we can simulate such theoretical configurations
using our framework, they might not be achievable in real devices. Still, we deemed that the results
of such an exploration might provide valuable insight or even a goal worth pursuing by the industry
of packaging.

5.2 Simulation Methodology

In order to test various PCM configurations we generally retained all the configuration
parameters described in Chapter 4 including, of course, the thermal interface materials. The
difference in this chapter was that we created four different chip stacks involving the use of phase
change material at different locations in the vertical direction. These layouts named P1 to P4 are
presented in Figure 5.1. Note that no height (or thickness) is listed for the PCM layer since height
is one of our control variables. We also used the same recorded benchmarks as presented in
Chapter 4, that is, Blackscholes, Bodytrack and Streamcluster at 2926 MHz

In the first part of simulations conducted, the configuration listed as P1 with a material that
melts at 60 °C and is 100um thick, was simulated for the Blackscholes benchmark, without thermal
interface materials at first, with uniform heat distribution afterwards and then both without TIMs
and with uniform heat distribution. These simulations are presented to showcase the impact of the
conclusions from Chapter 4 in PCM enabled systems.

Afterwards, we simulated each benchmark for each configuration P1 through P4 until the
first temperature violation occurs. Since operating temperatures for a chip generally range from
40°C to 100°C, and research shows that materials with corresponding melting temperatures and



adequate thermal conductivity exist, we tested all the range from 40 to 90 degrees with 5 degree
increments. Testing higher than 90 degrees Celsius was considered trivial since we know that
PCMs display a latency effect in their use and we further expect that even the range of 80 to 90
degrees will not show any particular gain.

~ Ambient Comer  Spreader  soum
PCM PCM

Copper  Spreader 1000um Copper  Spreader 500um

Indium TIM1 500 um Indium TIM1 500 pm

ceramic - Underfill soum ceramic  Underfill  soum

P1— Top of Spreader P2 — Inside Spreader

. oo ~ Ambient
opper  Spreader um copper  Spreader 1000um
PCM Indium TIM1 500 um
Indium TIM1 500 pm PCM
ceramic  Underfill sopm Ceramic  (Jnderfill 50 um
P3 — Under Spreader P4 — Top of Die

Figure 5.1: Configurations used to determine optimal placement of the PCM layer

Regarding thermal conductivity, conductivity enhancement techniques are mentioned in
[9], with which, copper-PCM compounds can achieve values up to 106 W/mK. For our
simulations, we selected a more conservative value of 75.4 W/mK assuming a pretty high PCM
fraction in the composite. Regarding the heat capacity and the apparent heat capacity method, we
need to define two values: the volumetric heat capacity corresponding to the solid and liquid phase,
and the volumetric heat capacity corresponding to the transient phase, that is, the phase change
region. The first of the two, we consider to be unaffected form the enhancement technique using
copper since the volumetric heat capacity for copper, a value of 1,57 *108J / m® K, is approximately
identical to that listed in [9] for the PCM, 1,56 *10°%J / m® K. For the phase change region, we also
used a smaller value than the one proposed, 244 *10°J / m® K instead of 305 *10°J / m3 K, to
reflect an analogous reduction to the fraction of copper in the composite. Since phase change
materials generally do not have big differences in volumetric heat capacity values, the same pair
was used for all melting temperatures even though different melting temperatures correspond to
different materials.

In essence, we used a theoretical material with fixed thermal conductivity and volumetric
heat capacities but variable melting temperature. The reason for this choice is the fact that we do
not want to test specific materials rather than test the impact of different melting points in our
various configurations while keeping the other values constant. The sole reason for the previous
analysis was to establish that the values we used are reasonable and achievable for all materials
within the examined melting temperature region.

This exploration, was conducted for PCM thicknesses of 100 and 200 pum. Afterwards,
having observed a trend in the simulation results, we chose the most promising configuration



regarding placement and melting temperature and continued testing for phase change material
thicknesses up to 700 um with 100um increments. Further exploration, involving thicker layers
was avoided since 700 um of PCM material results in an approximate increase of 100% of the chip
thermal resistance to the ambient. This observation is more thoroughly analyzed in subsection
5.3.3.

5.3 Results and Discussion

5.3.1 Thermal Interface Materials and Heat Distribution Impact

As an extension to the results demonstrated in Chapter 4, a set of simulations was
conducted in this subsection to showcase the inaccuracies introduced by omitting thermal interface
materials and disregarding uneven heat distribution in the chip components. To this end, we
simulated the configuration listed as P1 for the Blackscholes benchmark with a phase change
material that melts at 60 degrees Celsius and rests on top of the heat spreader. The thickness of the
material was 100um. This configuration was simulated with three variations. In the first, the
thermal interface material was omitted. Next, the thermal interface material was included in the
chip stack, but the heat distribution in the chip was considered homogeneous. Lastly, both
inaccuracy factors were combined.

Regarding simulation times, let us note that the baseline configuration, where both the
thermal interface materials and fine-grained heat distributions were considered, the first
temperature violation occurred at 718 ms. In the case where no thermal interface materials were
considered but the heat distribution was still fine-grained, the first temperature violation occurred
at 781 ms. Maintaining TIMs and considering homogeneous heat distribution resulted in a
staggering 908 ms. Combining the absence of TIMs with homogeneous heat distribution resulted
in 847 ms.

These overestimations of simulation time are consistent with the analysis presented in
Chapter 4. Disregarding thermal interface materials and proper heat distribution leads to
completely different temperature profiles. The crucial factor not addressed is the formulation of
hotspots due to more active components. Failure to address this factor will result in temperature
underestimation and thus overestimation of simulation time.

In addition, as we have stated earlier, not modelling hotspots and heat flow in the vertical
direction correctly, leads to completely different thermal profiles that introduce a collection of
inaccuracies. To prove this point, let us look at Figure 5.6 where the thermal snapshots at the time
of the first temperature violation are presented. These snapshots depict the PCM and chip layer for
each of the four configurations.
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Figure 5.2: Thermal Snapshots for each configuration at the time of first temperature
violation

While not many differences can be observed between the inaccurate configurations, the
thermal snapshot from our proposed model is completely different. One has only to look at this
figure to understand the inaccuracies in terms of PCM internal energy and percentage melted that
will result, let alone the simulation time which we already addressed.

As expected, the inaccuracies outlined in Chapter 4 are exacerbated when PCM materials
are involved. More to the point, this fact was determined using a mere 100um of phase change
material and a mere four core platform. The implications for more complex designs involving more
PCM and numerous cores are quite dire. However, we felt that further demonstrating such
inaccuracies by using different configurations and benchmarks would be redundant.

5.3.2 Melting Point and Placement Exploration

As explained earlier, in order to explore the behavior of systems with phase change
materials of different melting temperatures and placement in the chip stack, configurations P1 to
P4 were tested with melting points ranging from 40 °C to 90 °C for Blackscholes, Bodytrack and
Streamcluster, as presented in Chapter 4. Also, the simulations were conducted for PCM
thicknesses of 100 and 200 um. The results are evaluated with respect to the time of the first
reported temperature violation. To elaborate, each benchmark was simulated as a baseline without
any PCM layer until the first temperature violation is reported. Afterwards, each PCM
configuration was similarly simulated and the difference between each configuration and the
baseline was logged. The extra time, in milliseconds, that was gained due to the presence of the
phase change material for each setup, is presented in detail in Table 5.2. Note that a negative value



designates that the PCM configuration actually performs worse than the baseline. For clarity, the
best performing melting point for each configuration is highlighted with green color and the best
performing configuration for each benchmark is highlighted with red. As best performing
configuration, we designate the one in which the maximum extra simulation time was reported.
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Table 5.1: Time (ms) gained until first temperature violation for all simulations conducted

Regarding overall trends and general performance, we can see that configuration P1 is in
all cases the best performing configuration. In addition, the melting points in the region of 50 to
60 degrees Celsius are dominant in all simulations regardless of configuration or benchmark.
However, the latter (60) has most commonly the best performance and in cases where it is not the
best performing melting point, the difference is quite small. Notably, in all cases except
Streamcluster, the melting point in which the best configuration, P1, showed the best benefit, was
that of 60 degrees Celsius. In Streamcluster, the best performance was achieved for 55 degrees but
here too the 60 degrees case, is only slightly worse.

In order to get a better grasp on what diversifies the results in all these configurations, we
created Tables 5.2 and 5.3. In Table 5.2 we demonstrate for each setup the percentage of the PCM



that has melted at the time the first temperature violation was reported. Table 5.3 shows a different
metric at the same time instant, the total energy absorbed by the PCM layers during the simulation.
For reference, in both figures, the best performing configurations, in terms of time gained, were
also highlighted.
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Table 5.2: Percentage of melted PCM at the time of temperature violation

The percentages shown in Table 5.2, seem to follow anticipated trends. High melting points
exhibit small percentages of PCM melted or even zero, which explains their low performance.
Accordingly, low melting points show very high fractions of the total of the PCM having melted.
Note, that this metric describes only if all the PCM cells have melted. For example, a case where
all the cells but one, have just melted and a case where all the cells but one, have not just melted,
but have also skyrocketed to 100 degrees Celsius, would show the same percentage.

Consequently, this metric is only an indication of how much of the available heat capacity
in the phase change region has been leveraged. In addition, as we can see from the Figure, the
configuration performance does not seem to have an absolute relationship with this metric. While
the best performing configurations are, without exception, characterized by very high percentages



of melted phase change material, these same configurations do not exhibit the highest values in
the figure.

In order to get a better sense, of how much heat has actually been absorbed by the PCM
layer, we created Table 5.3. In this case, we can see the energy stored in all the PCM cells since
the beginning of the simulation to the time of the first temperature violation. This metric accounts
for all thermal energy regardless of whether phase change occurs or not and at which percentage.
It is worth noting that this metric differs from the previous in the sense that it also accounts for the
behavior of the material before and after the phase change region. This is quite evident noticing
that configurations in which all of the phase change material has melted, result in different total
energy values.
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= P3 2.659 2.658 2.465 2.067 0.795 0.358 0.358 0.358
E P4 2.688 2.690 2411 2.032 1.352 0.834 0.534 0.439
‘_é Thickness
E 40 45 65 70 75 80 85 90
& - 5.296 5.286 4.451 3.759 0.733 0.698 0.698 0.698
200 P2 5293 5.294 4.455 3.843 0.822 0.699 0.699 0.699
P3 5.292 5.289 4.139 3.255 1.075 0.701 0.701 0.701
P4 5.356 5.355 4123 3.389 2.557 1.770 1.159 0.812

Table 5.3: Thermal energy (J) stored in the PCM at the time of temperature violation

Similarly, in this case, we can also see that even though the best performing configurations
are characterized by large sums of absorbed energy, these configurations do not exhibit the highest
values observed. On the other hand, one can also notice that melting temperatures below 60
degrees Celsius are characterized by small differences in all the metrics presented. Simulation
times are only slightly lower, percentages vary no more 0.2 % and thermal energies no more than
5%. In contrast, higher melting points have differences consisting of lower percentages of material
melted, lower thermal energies, and, as expected, quite lower simulation times.



The previous analysis seems to indicate that there is a direct relationship between the
percentage of the melted material, the total energy absorbed and the performance of the current
configuration even though this relationship is not absolute. For the most part, these results are
within our expectations with one small difference. The fact that configurations with higher
percentages of phase change material melted and total energy absorbed, might actually perform
worse than others. This fact illustrates that leveraging the extra thermal capacity that phase change
materials offer is not enough, in order to achieve maximum performance. Simulation results show
that this added thermal capacity is more useful when exploited at the right time (in essence meaning
at critical temperature and heat generation combinations).

With respect to the different configurations P1 through P4 used in the simulations, it was
earlier noted that P1 had the best performance in all benchmarks. This we expected because all
cases except P1 generally add thermal resistance between the chip active components and the
copper spreader. To elaborate, the spreader, having very high thermal conductivity, primarily
buffers abrupt temperature increases and spreads the accumulated heat at a rapid pace in the
vertical and lateral direction. The only downside, that prohibits the spreader from doing this for
longer periods of time, is the low thermal capacity of copper. This means that the spreader not only
propagates heat quickly but also increases in temperature rapidly, thus reducing heat flow from the
active components (heat flow is linearly dependent on the temperature difference between
interfaces).

On the other side of the spreader, since our system does not employ a heat sink, heat flow
to the ambient is generally slow despite the high conductivity of copper. This is a direct result of
the low thermal conductivity of air. As a result, we have the following: the copper spreader can
effectively spread and abduct heat but is hampered by its low thermal capacity, on the other side,
air can effectively absorb all heat generated, due to its constant replacement and abundance in the
ambient, but is hampered by its low thermal conductivity. A promising idea would be to interpose
an intermediate component that balances between the two extremes. In our case this intermediate
component is the PCM layer. It has higher thermal conductivity than air, but can store a respectable
amount of heat in the phase change region before its temperature starts rising again. This is
configuration P1.

In cases P3 and P4, what happens essentially, is that we add a better heat storage than
copper close to the active components. This, as we have seen, increases the system’s buffering
abilities greatly for the duration of the phase change region, but before and after, the resulting
thermal model is worse off than we started because of the increased thermal resistance to the
spreader. In addition, because the thermal conductivity of the PCM is not very high, heat is
generally focused in the active areas, and after melting the PCM material in those areas, the chip
now has one more layer that cannot efficiently absorb heat from the more active regions. In
contrast, without interposing the PCM below the spreader layer, only the thermal interface material
layer is interposed between the spreader the active components.

Case P2 is actually a hybrid between the P1 and P3, P4. It was simulated as a special
configuration, dividing the spreader to two equal layers and interposing the PCM between them,



in an effort to surround the phase change material with highly conductive material. However, the
overall performance was not better than that of P1.

All in all, configuration P1 undoubtedly exhibited the best performance in all benchmarks.
This is encouraging since this configuration is the only one that has already been shown to be
easily achievable. For this configuration, a combination of a melting point of 60 °C achieved the
best result. Although for Streamcluster that was not the case, the difference was actually quite
small. We intend to use this melting point as the best for the next group of simulations not only
because of the performance gains already discussed, but also because using low melting points
involves the risk of the material melting in non-critical conditions as a result of other computational
activities and non sprinting methodologies. An added benefit to this fact is that configuration P1
places the phase change material as far from the active components as possible, resulting in lower
idle temperatures and more sprinting headroom available. In conclusion, we feel that the
combination of configuration P1 along with a melting point of 60 °C represents the best choice not
only from the simulation data we have already seen, but also with regard to actual system
considerations.

5.3.3 Thickness Exploration

In this subsection, we conducted a set of simulations, for each of the benchmarks already
discussed, with PCM layers at the top of the copper spreader that melt at 60 °C. The variable
addressed here more thoroughly, was that of the PCM layer thickness. In order to explore the
benefits of adding more and more phase change material to the system, in each simulation, we
added another layer 100 um thick, up until 700 um. Again, the simulations were conducted until
the first temperature violation occurred. The results, in terms of the total simulation time, are
presented in Table 5.4.

PCM Thickness 0 100 200 300 400 500 600 700 pm
Blackscholes 580 718 852 984 1115 1242 1368 1491 s
Bodytrack 626 725 967 1000 1201 1208 1519 1529 s
Streamcluster 380 471 543 629 713 796 901 985 s

Thermal Resistance increase relative to baseline
| o | 1565 3130 [ 46.95 | 6261 | 7826 | 9391 | 10956 | %

Simulation Time increase relative to baseline
Blackscholes 0 23.79 | 46.90 | 69.66 | 92.24 114.14 | 135.86 | 157.07 %
Bodytrack 0 15.81 | 54.47 | 59.74 | 91.85 92.97 142.65 | 144.25 %
Streamcluster 0 2395 | 42.89 | 65.53 | 87.63 109.47 | 137.11 | 159.21 %

Table 5.4: Total simulation time before first temperature violation

Additionally, two other metrics are presented in Table 5.4. The first of the two is the
increase in thermal resistance, between core components and ambient, relative to the baseline
configuration we discussed earlier, as a result of the added phase change material. The second



metric represents the simulation time gained relative to the baseline. Naturally, this metric does
not provide any further information than the absolute simulation times. However, it was presented
in this format, in order to provide a straightforward comparison between the percentage increase
of the thermal resistance and the percentage increase of the computation time. It is of course worth
noting, that the percentage increase in time, before the first temperature violation, is dependent
upon the benchmark, the number of active threads, the type of computation, and the operating
frequency of the cores, whereas, the increase in thermal resistance is fixed for a specific material
and layer thickness.

That being said, even though we observe that for a mix of quite different benchmarks, the
time gain is bigger than the corresponding thermal resistance increase, other factors must also be
considered.

The most important is the impact of the added thermal resistance to the chip. In our
simulations, we assumed that before the benchmark was issued, the system was idling. For idling
systems, core temperatures are only slightly higher than the ambient. For this reason, each
simulation was initiated with all components at 300 K which is slightly above room temperature.
However, when the resistance between core and ambient increases, so does the corresponding
difference in temperatures. More to the point, this difference in temperature, is also dependent on
the heat flow and thus power consumption of the active components. To be exact, there is a linear
dependence of the core temperature (relative to the ambient) and both the thermal resistance and
the power load. In essence, the effect of increasing the thermal resistance is exacerbated under
heavy load conditions.

For example, assume an arbitrary, steady state power consumption that leads to the core
temperature averaging at about 40 °C. This indicates a temperature difference of 15 degrees
between core and ambient. When using a 700um thick PCM layer, the thermal resistance between
core and ambient approximately doubles, that means that the new difference would be 30 degrees,
and the new core temperature 55 °C. Keeping in mind that our phase change material starts melting
at 60 degrees Celsius, even though it rests on top of the heat spreader, where temperature levels
would be somewhat lower, these results indicate that, depending on previous conditions,
performance benefits might be a lot smaller and maybe not worth the extra material.

In comparison, in idle conditions, where the core is only 2 — 3 degrees hotter than the
ambient, doubling the thermal resistance will result in the core being 4 — 6 degrees hotter than the
ambient, which is barely noticeable.

From another point of view, adding PCM material greatly increases the time constant of
the system. This happens because the time constant is dependent on both the thermal resistance
and the thermal capacitance. Increasing the time constant means that the system takes more time
to rise in temperature but simultaneously takes more time to cool down.

Combining all the previous points, we can see that adding PCM material alters the thermal
profile of the chip. While actually stating the obvious, the implication is that the thickness of the
phase change material has to be chosen depending on the type of tasks and activity we intend to
perform in a usual basis. For example, chips that usually perform short computational tasks that



are issued frequently, would opt to use little PCM. On the other hand, chips that are tasked with
more elongated computational tasks that are issued on an infrequent basis, would be most benefited
by using large quantities of phase change material despite the increase in thermal resistance.

5.4 Summary — Conclusion

In this chapter, we further proved the conclusion we derived from the previous one, that
thermal models that do not account for thermal interface materials and heterogeneous heat
distribution, are not suitable for simulating sprinting enabled systems augmented with PCM
material.

Afterwards, we performed a series of simulations and determined that placing phase change
materials on the top of the heat spreader not only guarantees the best performance, but is also an
easily achievable configuration and less susceptible to be impacted by the previous state of the
system.

In collaboration with this configuration, we found that a melting point of 60 °C for the
phase change material is the best available choice. This choice demonstrated the best performance
at the majority of the cases examined, and lags only slightly in all other cases. Simultaneously, this
melting point is high enough to preclude the melting of the PCM in non-critical conditions,
especially when placed on the top of the heat spreader which is the cooler part of the chip stack.

Furthermore, we saw that increasing the thickness of the PCM layer resulted in analogous
benefits for all the sizes we examined. However, we argued that this variable represents a trade-
off. This trade-off depends on the type of computational tasks the system is likely to perform more
often. As a general guideline, long-lasting tasks followed by long idle periods, require big
quantities of phase change material in order to be able to sprint for the whole duration of task.
Short tasks followed by short idle periods, require small quantities in order to be able withstand
the generated heat but also be able to cool down in the short time available.



CHAPTER 6



6.1 Conclusion

In this work, we developed a simulation framework for systems that utilize computational
sprinting and are augmented by phase change materials. The framework involves performance
simulation by virtue of the Sniper Simulator, power consumption simulation via McPAT and
thermal simulation using 3D-ICE. These three distinct simulation tools have been integrated to a
unified framework written in Python.

The framework implements a Python server-client model with the server satisfying
simulation requests indefinitely. Simulation requests can be issued in the form of a queue. During
each simulation, the framework handles the logging of statistical data and simulation information
into suitable files. These files are properly archived at the end of each simulation. Further
processing of outputted data is achieved through independent Python scripts and visualization of
thermal and power maps through the use of Matlab.

Integration of the previously mentioned simulation tools into the Python framework
involved a number of additions and modifications in the source code of each tool. However, in the
case of 3D-ICE, more extensive development took place in order to add to the simulator the ability
to properly model phase change materials. This was achieved using the apparent heat capacity
method, that is, assigning a non-linear volumetric heat capacity to material cells if a set of specific
circumstances are met. This method was further extended in order for the simulator to be able to
model layer of PCM with different melting points both in the vertical direction and across the cells
of the same layer.

Afterwards, we demonstrated that commonly used thermal models are unsuitable for
applications involving computational sprinting and phase change materials due to highly irregular
heat distribution. In addition, we proposed a set of modifications, involving thermal interface
materials and modelling fine-grained power consumption, in order to provide a model better
suitable for the systems we intend to research.

Lastly, we performed an exploration regarding optimal melting point and placement in the
vertical stack of phase change materials. More specifically, we performed tests using three
benchmarks from the parsec suite, Blackscholes, Bodytrack and Streamcluster, eleven melting
points ranging from 40 to 90 degrees Celsius with 5-degree increments and four different
configurations each placing the PCM layer at a different location of the chip stack.

Results showed that placing the PCM on top of the heat spreader and using a melting point
of 60 degrees Celsius provided the best results for all benchmarks. Consequently, we used this
optimal configuration and started adding more PCM material in 100pum increments, in order to test
the effect of the added PCM to the system. As expected, simulations showed that increasing the
thickness of the PCM results in an analogous increase in computation time before the first
temperature violation. This observation held true for thicknesses up to 700um and indicates that
by varying the material thickness we can effectively alter the system’s time constant thus altering
maximum sprinting time and necessary rest period.



6.2 Future Work

In this diploma thesis, only a small fraction of the capabilities of the simulation framework
that was constructed were used. Through the use of the Sniper Simulator, a powerful tool that is
highly customizable, McPAT and 3D-ICE, a great range of configurations and architectures can
be simulated. However, despite porting a number of variables from each tool to a single control
script, routine altering of these simulation characteristics can be quite tedious. In addition, using
the framework necessitates a basic understanding of Python and a degree of familiarity with the
workings of the framework.

For these main reasons, we feel that designing a graphical user interface would be a great
enhancement. It would allow users to easily alter simulation variables, without having to type each
change, and pave the way to gradually adding more and more customization capabilities available
through an efficient manner.

From another point of view, modelling of the phase change region of phase change
materials involved the apparent heat capacity method. This method results in a series of extra
computations involving big matrices and a consequent respectable overhead in the simulation time
needed for 3D-ICE. As previously stated, the implementation we developed represents a trade-off
between development time and performance. However, we are aware that this implementation is
far from optimal and feel that optimizing this extra capability would further enhance the usefulness
of the framework. It quite undisputable that simulation times are a very important factor in
research.

In addition, a similar trade-off resulted in a number of statistical data being exported to text
files for each simulation. While this implementation facilitates parsing and further data processing,
it might not be optimal. A possible and more flexible approach would be to store such data in a
database and accordingly retrieve information as needed.

Regarding phase change materials, this work focused mainly on researching the primary
heat path in a chip (from the active components, through the copper spreader to the PCM layer and
to the ambient). However, it might be of particular interest to properly model the secondary heat
path (through the PCB to the main board), and research the effect of adding phase change materials
of suitable characteristics along this heat path.

Another interesting idea would be to research the effect of using multiple stacked PCM
layers of different melting points, or PCM layers with different melting points in specific regions,
for example, on top of the hottest regions of each core. Let it be noted, that each of these cases is
already supported by the framework.



References

[1] G. E. Moore, “Cramming more components into integrated circuit. Electronics”, 38(8), 1965

[2] R. Dennard, et al., “Design of ion-implanted MOSFETS with very small physical dimensions,”
IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, pp. 256-268, Oct. 1974

[3] Muhammad Shafique , Siddharth Garg , Jérg Henkel , Diana Marculescu, “The EDA
Challenges in the Dark Silicon Era: Temperature, Reliability, and Variability Perspectives”,
Proceedings of the 51st Annual Design Automation Conference, p.1-6, June 01-05, 2014, San
Francisco, CA, USA

[4] Hadi Esmaeilzadeh , Emily Blem , Renée St. Amant , Karthikeyan Sankaralingam , Doug
Burger, “Power challenges may end the multicore era”, Communications of the ACM, v.56 n.2,
February 2013

[5] D. Geer, "Industry t D. Geer, "Industry trends: Chip makers turn to multicore processors”,
Computer, vol. 38, no. 5, pp. 11-13, 2005

[6] G. Blake, R. Dreslinski, and T. Mudge, "A Survey of Multicore Processors,” IEEE Signal
Processing Magazine, Vol. 26, No. 6, pp. 26-37,2009

[7] Krste Asanovic , Rastislav Bodik , James Demmel , Tony Keaveny , Kurt Keutzer , John
Kubiatowicz , Nelson Morgan , David Patterson , Koushik Sen , John Wawrzynek , David Wessel
, Katherine Yelick, “A view of the parallel computing landscape”, Communications of the ACM,
v.52 n.10, October 2009

[8] Fulya Kaplan, and Ayse Kivilcim Coskun, “Adaptive sprinting: How to get the most out of
Phase Change based passive cooling”, ISLPED, page 37-42. IEEE, (2015)

[9] Fulya Kaplan, "Modeling and analysis of phase change materials for efficient thermal
management", 32" International Conference on Computer Design, 2014

[10] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou, Kevin P. Pipe, Thomas
F. Wenisch and Milo M. K. Martin, “Computational Sprinting on a Hardware/Software Testbed “,
In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), March 2013


http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484
http://dl.acm.org/citation.cfm?id=2593229&CFID=615631399&CFTOKEN=91103484

[11] A. Raghavan et al., "Utilizing dark silicon to save energy with computational sprinting”,
Micro, IEEE, vol. 33, no. 5, pp. 20-28, 2013

[12] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P. Pipe,
Thomas F. Wenisch and Milo M. K. Martin, “Computational Sprinting”, In the Proceedings of the
18th Symposium on High Performance Computer Architecture (HPCA), February 2012

[13] https://en.wikipedia.org/wiki/Latent_heat#Specific_latent_heat
[14] https://en.wikipedia.org/wiki/Thermal_conductivity

[15] Andrea Tilli , Andrea Bartolini , Matteo Cacciari , Luca Benini, “Guaranteed Computational
Resprinting via Model-Predictive Control”, ACM Transactions on Embedded Computing Systems
(TECS), v.14 n.3, May 2015

[16] Elon Bauer, Joseph Carlos, “Thermal Management Using PCM-Based Heatsinks”
[17] Sniper Power Simulator, http://snipersim.org/

[18] Sheng Li, Jung Ho Ahn , Richard D. Strong , Jay B. Brockman , Dean M. Tullsen , Norman
P. Jouppi, “McPAT: an integrated power, area, and timing modeling framework for multicore and
manycore architectures”, Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, December 12-16, 2009, New York, New York

[19] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "3D-ICE: Fast compact
transient thermal modeling for 3D-ICs with inter-tier liquid cooling”, Proceedings of the 2010
International Conference on Computer-Aided Design (ICCAD 2010), San Jose, CA, USA,
November 7-11 2010

[20] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "Compact transient thermal
model for 3D ICs with liquid cooling via enhanced heat transfer cavity geometries", Proceedings
of the 16th International Workshop on Thermal Investigations of ICs and Systems
(THERMINIC'10), Barcelona, Spain, 6-8 October, 2010

[21] Python Software Foundation. Python Language Reference, version 2.7. Available at
https://www.python.org

[22] http://zeromg.org/


https://en.wikipedia.org/wiki/Latent_heat#Specific_latent_heat
https://en.wikipedia.org/wiki/Thermal_conductivity
http://snipersim.org/
http://zeromq.org/

[23] J. Lienhard-1V and J. Lienhard-V, "A heat transfer textbook"”, Cambridge, Massachusetts:
Phlogiston Press,2006

[24] MATLAB and Statistics Toolbox Release R2014a, The MathWorks, Inc., Natick,
Massachusetts, United States

[25] G. Faust, R. Zhang, K. Skadron, M.R. Stan, and B. Meyer. "ArchFP: Rapid Prototyping of
pre-RTL Floorplans.” In Proceedings of the IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), Oct. 2012

[26] S. Memik , R. Mukherjee , M. Ni and J. Long, "Optimizing thermal sensor allocation for
microprocessors”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27, no. 3, pp. 516-
527, 2008

[27] . Florea, C. R. Buduleci, R. Chis, A. Gellert, L. Vintan, "Enhancing the Sniper Simulator with
Thermal Measurement"”, Proceedings of The 18-th International Conference on System Theory,
Control and Computing, Sinaia (Romania), October 17-19, 2014 (submitted).

[28] Advanced Materials for Thermal Management of Electronic Packaging, Xingcun Colin Tong

[29] Area Array Interconnection Handbook, Karl J. Puttlitz, Paul A. T


http://link.springer.com/search?facet-creator=%22Xingcun+Colin+Tong%22

	Σύντομη Περίληψη
	Abstract
	Εκτεταμένη Περίληψη
	Acknowledgements
	List of Figures
	List of Tables
	CHAPTER 1
	1. Introduction

	CHAPTER 2
	2.1 Theoretical Background
	2.1.1 Computational Sprinting
	2.1.2 Phase Change Materials (PCMs)

	2.2 Related Work
	2.2.1 Computational Sprinting on a Hardware/Software Testbed [10]
	2.2.2 Safe Computational Re-Sprinting via Model Predictive Control [15]
	2.2.3 Thermal Management Using PCM – Based Heatsinks [16]
	2.2.4 Modeling and Analysis of Phase Change Materials for Efficient Thermal Management [9]

	2.3 This Work
	2.3.1 Objective
	2.3.2 Key Differences
	2.3.3 Contribution


	CHAPTER 3
	3.1 Overview
	3.2 Python Interface Detailed Analysis – Basic Scripts
	3.2.1 Simulation_Queue.py
	3.2.2 Sniper_Simulation_Init.py
	3.2.3 Sniper_Simulation_Control.py
	3.2.4 Thermal_Simulation_Client.py
	3.2.5 Resource_Control.py
	3.2.6 Python_Server.py
	3.2.7 Low Level Scripts

	3.3 Thermal Model
	3.3.1 3D-ICE Heat Conduction Modelling
	3.3.2 PCM Modelling in 3D-ICE
	3.3.3 Non-Uniform PCM Modelling

	3.4 Independent Tools - Scripts
	3.4.1 MATLAB Scripts
	3.4.2 ArchFP
	3.4.3 Independent Python Scripts

	3.5 Framework Usage

	CHAPTER 4
	4.1 Theoretical Background
	4.2 Simulation Methodology
	4.3 Results and Discussion
	4.3.1 Blackscholes Simulations
	4.3.2 Bodytrack Simulations
	4.3.3 Streamcluster Simulations
	4.3.4 Overestimation Method

	4.4 Summary – Conclusion

	CHAPTER 5
	5.1 Phase Change Material Exploration Objective
	5.2 Simulation Methodology
	5.3 Results and Discussion
	5.3.1 Thermal Interface Materials and Heat Distribution Impact
	5.3.2 Melting Point and Placement Exploration
	5.3.3 Thickness Exploration

	5.4 Summary – Conclusion

	CHAPTER 6
	6.1 Conclusion
	6.2 Future Work

	References

