E®GNIKO METXOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQON
KAI MHXANIKON YTIOAOTIZTON

TOMEAZ TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTIZTQN

IMatgoppa Bactopévn oe Ovroloyieg yia T
Awayeipion Yrodopung Kévipov Aedopévwv,
ne [Ipoypappatiotiko EAeyyo

AITIAQOMATIKH EPTAXIA

Iwavvng A. Avdpovhidaxng

ABnva, Iovviog 2017

E®GNIKO METZOBIO ITOAYTEXNEIO
>XOAH HAEKTPOAOTI'ON MHXANIKQN KAI MHXANIKQN YIIOAOTIZETON
TOMEAZX TEXNOAOTITAY ITAHPO®OPIKHE KAI YIIOAOTIETQON

An Ontology-Based Platform for
Data Center Infrastructure Management,
with Programmatic Control

AIITAQOMATIKH EPTAXIA

Iwavvng A. Avépovhiddaxng

EmpAénwv KaOnyntig: Nextdptog Kolvpng
KaOnyntrg EMIT

EyxpiOnxe anod v tpipeln eetaotikr emtponn tnv 23n Iovviov 2017.

Nextdptog Kolvpng NikoAaog Ianaomopov Tewpytlog Icovpag
Kabnyntrg EMII Av. KaOnyntrig EMIT En. Kabnyntng EMII

ABnva, Iovviog 2017

Iwavvng A. Avépovhidakng
HAektpoAdyog Mnxavikog kat Mnxavikog Ynoloyotwv EMIT

Copyright © Iwavvng A. AvépovAiddkng

Me emgpOAagn mavtog Sikawwpatog. All rights reserved.

Anayopedetatn avtypaer, anobrkevon kat Stavour| Tng Tapovoag epyaciag, e§ ohokAnpov)
TUAHATOG AVTNG, Yia EUTOPLKO oKkoTo. Emttpénetal n avatbnwon, anodrikevon kat Stavour yia
OKOTIO N kepOOOKOTIKO, EKTIAUOEVTIKNG 1} EPEVVITIKNG VOTG, VTIO TNV TTpoitobeom va avagé-
petatl 1 TNy Tpoéhevong kat va dtatnpeitat To mapdv pnvopa. Epotipata mov agopodv T
XpNomn g epyaciog ylo kepSoOoKOTIKO OKOTO Tipémel va anevfhvovTtal Tpog Tov cvyypagéa.
Ot amOYEL§ KAl To CUUTEPACHATA TIOV TIEPIEXOVTAL OE AVTO TO £YYPAPO eKPPALovV TOV GLY-
ypagéa kat ev mpémel va eppnvevdel 0Tt avtimpoownebovv Tig emionpeg Béoelg Tov EOvikod
MetooPiov ITohvteyveiov.

ITepiAnyn

v mapovoa SIMAwNATIKN epyacia Tapovotdlovpe To oxedlaopd Kat TV VAoToinon
Tov OntoMon, piag SLAAEITOVPYIKNG TAATPOPHAG Yia TNV TapakolovOnon kat omntt-
KOTIOINOT €£TEPOYEVWV VTIOAOYLOTIKWV cvoTnuatwy. To OntoMon eivat éva mAaioto
AOYLOpIKOD agpnpnpévoL Teptexopévov, xtiletat mdvw oe Ovtoloyieg kot Sev e€aptd-
Tal amo TN ONUACLOAOYia TOV EKACTOTE CLOTHHATOG-0TOXOV. OepeAtwvel Tn ik TOV
otoifa AoyloutKo, EAEYXEL TIPOYPAUHATIOTIKA TIG SOUIKEG TOV HOVASEG Kal eloayeL
EVa aQnPNUEVO HOVTENO AVTIKEILEVOVY YLa TV AVATIAPAoTAOT) OAWY TWV OVTOTATWV.
Baowkn pag emdiwén eivat) evepyn emiPreyn kat Stayxeipnon vmodoung Kévipwv Ae-
dopévwv peydAng kAipakag o mpaypatikd xpdvo, pe okomo Tn Slatrpnon g Aet-

TOVPYLKOTNTAG.

Ztn onpepvn emoxn, o puOUog mapaywyng dedopévwy avEaveta ekBetikd, kabwg ot
Yn@Lakég vmnpeoieg kat ovvaAlayég mapdyovy, mepimov, 2.5 exabytes kaOnueptvd.
ZvvunodoyilovTtag Tig agvaeg avaykeg yla ovvémeta kat Stabeoipotnta twv dedopé-
VOV auTwy, givat Tpo@avég 0Tt TOoo 1 akadnuaikn KovoTnta, 600 kat avtn tng Te-
xvohoyiag ITAnpo@opldv eivat avTigETwmeG He TNV TPOKANOT TNG amoSoTIKnG anobi-
Kevong kat Staxeiptong Yynerakwv Sedopévwv peydng kAigakag. H padikn avaxtnon
Kat emefepyacia Tovg amattei Tn ovveyr) SlaBeoIHOTNTA TOOO TWV PUOIKWY TTOPWY, OGO
KAl TWV VTINPECLOV AOYLOUIKOD eVTOG Twv KévTpwv Aedopévwy, TPOKELHEVOL Va amo-
gevyovtal kabe eidovg anotvyieg n anwAetes. To yeyovog avtd, katadetkvoet Tnyv Te-
paoTia onpaocia Twv epyaleiwv mapakolovOnong g vrodoung Twv Kévrpwv Aedo-
HEVWY, TIPOKELHEVOL OL SLAXELPLOTEG VA UTTOPOVY va arto@avBoldv dpeoa yla Tny Tpé-
XOVOA KATAGTAOT AELTOVPYIOG TV EMUEPOVG TUNUATWY VALKOD Kol AOYLOULKOV, TTpay-
HATOTIOLWVTAG OXETIKOVG EAEYXOVG Kat eKTIUNOELG anmodoong. AkolovBa, n fabiTepn
KATAVONOT] TNG OLUTEPLPOPAG TOVG, AANA KAl TWV E0WTEPIKWV TOVG aAAnAemidpd-
oewv, odnyel oe anodotikdTePN OLVOAIKT Slaxelplon, TEPLOPIOHO TOL KOGTOVG Ael-
TOVPYLAG, AT EUTEPLOTATWHEVWY ATOPACEWY Kal, Lakporpobeoua, Pektiwon Twv

TIAPEXOUEVWY VTINPECLWDYV.

To OntoMon akohovOei ua moAvemninedn apxITEKTOVIKT, 1| OO EVOWUATWVEL TTO-
AvdpiBua vtoovoTpATA, AELOTOLOVTAG KAHAKWOLUEG TEXVOAOYIEG AVOIKTOU KWOIKA.
‘Etot, katapepilet Tig epyacieg kat mpoabétet Aettovpykotnta. Ilpokelpévon va Siev-

KOAVVeL TN SLaxeiplon SLaQopeTIKWY VITOAOYLOTIKOV CLOTHHATWY, To OntoMon oVA-

vi

Aéyel kat eme€epyaletal HeTpikég amdSoong amd Tufpata VAIKOD Kat AOyLOWKOD o€
TPAYHATIKO XpOVO, KAl TIPAYHATOTOLEL CUYKPIOELS [e TIHEG-KkaTtw@Ata. [TapdAinAa,
vnootnpiCel pa Suvapikr), eVEAKTN kat TANPWS Tpoocappdoun Aertagr Xprot, n
omoia TapovaLadeL TNV TPEXOLOA KATAOTAOT TNG TTapakolovBovuevng vodopns. fa
VA ETUKVPWOOVE TI AELTOVPYLKOTITA TG TAATQOPUAG HAG, TIpaypaTomotroape 2 da-
QOPETIKEG SOKIUEG: OTNV TIPWTN TEPInMTWOT TapakolovBnoape Tn euoikn vodoun
evog vontob Kévtpov Dedopévwy, evw otn devtepn mepintwon eotidoape o€ éva Ao-
YIOUIKO KaTavepunpévng amodnkevong 6edopévwy, eyKaTeoTNUEVO O CLOTOLYIA LTTO-

AOYLOTIKDV KOUPWYV.

Ag€eic-KAeidua

Ovtoloyieg, Staxeipton vtodopng kEVTpov Sedopévwy, apnpnuévo HOVTENO aVTIKEL-
HEVWY, KATAVEUNUEVT TTAPAKOAOVONOT), XpOVooelpEg, StadikTvakn Stemapn xproTn,
OTITIKOTIOINOT) TIPAYHATIKOV XPOVOV, TPOYPAUUATIOTIKOG ENeYX0G, SVG, Icinga, Influx,

Grafana, Angular

vii
Abstract

In this thesis, we present the design and implementation of OntoMon, an interopera-
ble monitoring and visualization platform that is capable of managing heterogeneous
computing systems. OntoMon is a content-agnostic framework that is founded upon
Ontologies and does not rely on the semantics of each target system. We introduce
a custom software stack that handles all core components programmatically and re-
lies on an abstract object model that represents all entities. Our main objective is the
proactive, real-time supervision and management of IT infrastructure housed in large-

scale Data Centers, aiming at preserving operational efficiency.

In our times, the rate of data production is exponentially growing as digital services
and digital transactions produce approximately 2.5 exabytes of data on a daily basis.
Considering the everlasting needs for data consistency and availability, it is obvious
that both the IT community and the academia are confronted with the tremendously
challenging tasks of hyperscale storage and processing. Querying and analyzing mas-
sive amounts of data require full-time hardware and software availability, in order to
prevent data loss or any kind of system failure. This indicates the great importance of
Data Center infrastructure monitoring so that administrators can instantly verify the
functionality of both physical and software assets. In this regard, performance checks
and time-series analysis need to be conducted, in order to observe their overall behav-
ior and interactions inside the underlying system. Hence, the deeper understanding of
the IT infrastructure leads to more efficient management, cost-effective deployments,

optimized decision making and, in the long run, enhanced QoS.

OntoMon follows a multi-tier architecture that integrates dedicated subsystems to sep-
arate concerns and employs various scalable open-source technologies to add func-
tionality. In order to facilitate administration of diverse systems, OntoMon collects
and aggregates performance metrics from both hardware and software assets in real
time and performs respective threshold-based checks. Besides, it delivers a versa-
tile, fully-dynamic and highly customizable User Interface that provides a summarized
view of the monitored infrastructure and demonstrates its current state of operation.
As a proof-of-concept, we studied two different use cases: the first use case targets
the hardware assets housed in a Data Center, while the second one concentrates on a

software-defined distributed multi-node storage cluster.

Keywords

Ontologies, DCIM, abstract object model, distributed monitoring, time-series, web

user interface, real-time visualization, programmatic control, SVG, Icinga, Influx, Grafana,

Angular

Preface

2e avto To onpeio Baela va evxaplotiow tov emiPAémovta kabnyntr pov Nektdplo
KoQbpn yra ta epebiopata, Ty éumvevon, aAld kat tn SuvatdTnTa TOL LOL TTPOCEPEPE
va aoxoAnfa pe Tov Topéa Twv YTOAOYIOTIKWV Z0OTNUATWV 0TI SUTAWHATIKE HOv
gpyaoia. Xtn ovvéxela, opeilw va gvxaplothow Wtatépwg Toug BayyéAn Kovkn kat
Kwvotavtivo Bevetoavomovho yla v apeon avtanokplorn Tovg, TNV EUNOTOOVVN
7oV pov €8etfav kat TNV apTia ovvepyaocia pag katd Tn SLEpKELa TG CLUYYPAPNS TNG
Tapovoag SIMAwpatikig. AiXwg TG TEXVIKEG TOVG VTTodeiEels, TIG oXeSLA0TIKEG 1O£E,
aAld Kat TN yevikotepn othpién Tovg avTo To SaoTnpa 1 eKTOVNoN NG epyaciog
avtrg O Ba Nrav eekth. Télog, evxaplotw Oepud MPWTIOTWG TNV OLKOYEVELL [LOV
Kat akoAovBa Tovg PIAOVG HOL yla TNV aydmn Kat TNV apéploTn CLUTAPACTACT] TOVG,

VAWK Kot YyuxoAoyukr, kab’ 0Aa Ta xpovia TnG akadnpaikng pov mopeiag.

Iwavvyg Avdpovdidaxng
Iovvioc 2017

iX

Contents

IepiAnym v
AéEaigc-KAeiba vi
Abstract vii
Keywords viii
Preface ix
List of figures XV
List of tables Xix
DCIM IT\at@opua Baciouévn oe Ovroloyieg, ue Ilpoypappatiotiké Exeyxo 1
1 Ewoaywyn o e 1

1.1 TKOTIOG © v v v v e e e e e e e e e e e e e e e e 1

1.2 Awatvniwon IpoPAnuatog-Kivntpo 1

1.3 Ynapyovoeg Avoeig & Evallaxtikn [Ipooéyyion 2

14 E@appoyn-EAeyxog 4

2 IXESIAOT . o o 4

2.1 SKEMTIKO ZYeSIaoNG « « o v v v v v e e e e 4

2.2 AlaxwplopoGgPONwY . . . L L L 7

2.3 APXITEKTOVIKI] + & v v v v e v e e e e e e e e e e e e e e 8

3 YAOTIOINOT &« o o v o e e e e e e e e 21

Xi

xii

3.1 [MewpapotikA AdTan 21

3.2 [Tpoodiopiopdg Zynuatog Ovtoloyiag 23

3.3 Y\onoinon tov OntoMon E€vmnpetnt) 26

3.4 >vAoyn Metpikwv Atodoongue toIcinga 27

3.5 AmoOnkevon Xpovooelpwv pe tnv InfluxDB 29

3.6 [TapakohovOntigtov OntoMon 30

3.7 Avdrmtoln g Alemagng Xpnotn e e e e 33

3.8 YvvOeon [pagnudtwv pe Grafana 38

4 Iewpapatik) AELOAOYNOT 40
4.1 Bruata Evowudtwongkat EXéyyov oL 40

4.2 [TapakohovOnon ®vowkng IT Ynodoung 41

4.3 [MapakolovOnon IMAateopuag emmeédov Aoylopkov 45

5 SUUTNON-ZOUTEPAOUATO © + v v v v e e v e e e e e e e e e e e e 49
1 Introduction 53
1.1 Problem Statement, 53
1.2 Motivation e 54
1.3 Existing Solutions, 56
14 Results 58
1.5 ThesisStructure 59
2 Background 61
2.1 Ontologies e 61
2.1.1 Definition 61

212 Types. 62

2.1.3 CoreComponents 64

214 'TheSemanticWeb 65

2.1.5 Whyusean Ontology? 67

2.1.6 Ontology-based Software Systems 69

2.1.7 Representationo 72

2.2 System Monitoring 74
221 OVerview. 74

2.2.2 Features of Monitoring Solutions 75

223 Monitoringand DCIM 77

2.2.4 Monitoring Perspectives oL 79

2.2.5 Icinga Distributed Monitoring

Distributed Data Storage

2.3.1 ‘Thecurrentpicture

2.3.2 Distributed Storage Definition
2.3.3 Ceph Distributed DataStore

2.3.4 Monitoringa Ceph Cluster

Scalable Vector Graphics

2.3
24
2.5

241 AboutSVG

242 OVEIVIEW . . . o v v v e e e e e e e e e e e e

2.43 Fundamental Features

244 VectorvsRaster
245 WhyuseSVG?

2.5.2 Web Application Architectures
253 Angular

Architecture & Design
3.1 DesignRationale
3.2 DistinctionofRoles
3.3 Architectural Overview,
331 TheBaselLayer.
3.3.2 TheMiddleLayer
333 TheUpperLayer.
Implementation
4.1 Experimental TargetSystem
4.2 Ontological Schema Definition
4.3 Development of the OntoMon Server
4.4 Metrics Collection withIcinga
4.5 Metrics Storage with InfluxDB
4.6 Development of the OntoMon Observer
4.7 Development of the OntoMon User Interface
4.8 Graph Composition with Grafana

xiii

83
92
92
93
95
107
110
110
111
113
115
116
117
117
118
121

129
129
132
133
134
137
143

Xiv

5 Experimental Evaluation

5.1 Testbed Environment & Checkpoints

5.2 Physical IT Infrastructure Monitoring

5.3 Software Defined Storage Monitoring

6 Conclusion

6.1 ConcludingRemarks

6.2 Future Work

Bibliography

185
185
186
194

203
203
204

207

List of figures

1 Zrpwuata ApylitektovikngtovOntoMon L. L. L. 8
2 Emkowvwvia uetald faokov kat peoaio oTpOUATOS 16
3 Emkowvwvia ueta&d peoaiov kat vynAov oTpOUATOS 21
4 Tomoloyia Zvotowxiag Eikovikwv Mnyaveov 23
5 Icinga Monitoring Cluster 28
6 Atemtagn Xpnotn OntoMon: ApYITEKTOVIKT) v v v . . . 34
7 Avtiotoixion §évtpov Ovtoloyiag oe ep@wAevuévougHTML DOM KO-

Boug . . . 37
8 Atemta@n) XprjoTn: OTTIKOTIOINOT QUOIKAG LTTOSOUNG + « « + v v v v . . 43
9 Atemtaen Xpnotn: YpaQIkrn avanapdotaon LeTpkwy anddoong 44
10 Aenaen Xprjotn: eldomoinon katdotaong CRITICAL 44
11 Awenaen Xprotn: OTTIKOTOINon VToSOUNG AOYIOUWKOD 47
12 Aetaen Xprjotn: Ceph dashboard kat evdei&n opdluatog 48
13 Atenaen Xprotn: emtvyng enavagopd katdotaong Ceph cluster . . . 49
2.1 Icinga Architectural Components 85
2.2 Distributed Setup of Icinga Cluster 89
2.3 Icinga Zone Hierarchy 91

XV

XVi

LIST OF FIGURES
2.4 High-level Ceph Cluster Architecture 97
2.5 Technical Ceph Cluster Architecture 98
2.6 Overviewof RADOS 99
2.7 Rados Gateway for RESTful services 100
2.8 RadosBlock Deviceaccesso 101
2.9 Overview of Ceph Data Placement 103
2.10 Choosing the right number of PGs 104
2.11 Example of a cluster topology 105
2.12 CRUSH calculation overview 106
2.13 CRUSH 2-step calculation 107
214 SVGShapes oo e 113
2.15 RastervsVector 116
2.16 MVC components and interactions 118
2.17 Overview of Angular Architecture 123
2.18 Angular Component 124
2.19 Angular Dependency Injection 125
2.20 Angular Change Detection. 127
3.1 OntoMon Architecture Layers 134
3.2 Communication between Base and Middle Layers 142
3.3 Communication between Middle and Upper Layers 146
4.1 Virtual Bridge Networking 149
42 Cluster Topology 151
4.3 OntoMon Server: Status Update mechanism 158
4.4 Icinga Monitoring Cluster 162
4.5 OntoMon UI: Angular application architecture 176
4.6 Ontology Tree mapped to nested HTML DOM nodes 180

LIST OF FIGURES

5.1 OntoMon UI: Ontology Tree of physical infrastructure
5.2 OntoMon Observer: monitoring hardware assets of single host
5.3 OntoMon UI: visualization of nested hardware assets
5.4 OntoMon Ul performance metricsintable.
5.5 OntoMon Ul graphical representation of performance metrics
5.6 OntoMon Ul notification of WARNINGstate
5.7 OntoMon Ul notification of CRITICAL state
5.8 OntoMon Ul: Ontology Tree of software-defined cluster
5.9 OntoMon Observer: monitoring software assets
5.10 OntoMon UI: visualization of nested software assets
5.11 OntoMon UI: RADOS throughput and latency graphs
5.12 OntoMon UI: Ceph dashboard indicating Cluster error
5.13 OntoMon Ul notifying successful recovery of Cluster

xvii

187

189

190

191

191

Xviii

List of tables

1 Yrinpeoieg tov OntoMon E€vrmpetntsy 26
2 Yrinpeoieg mapakolovOnong yia tn @uotkn vrodouny L L L L L 42
3 Yrnpeoieg mapakolovOnong yia tn virodoun AOylopukoy 46
3.1 OntoMon Architectural Components 134
4.1 OntoMon Server API 157
5.1 Performance checks for physical serverassets 188
5.2 Performance checks for softwareassets 197

Xix

1. EIXATQI'H 1

1 Ewoaywyn

1.1 Xkomog

O okomdg TG mapovoag epyaciag eivat o oxedlaopodg kat) vAomoinon tov OntoMon,
HLag TOAOTTAEVPNG TAATPOPHAG T) OTIOIC EVOWUATWVETAL O ETEPOYEVH VTTONOYLOTIKA
OVLOTNHATA TIPOCAVATOALOUEVA EITE OTO VAIKO, €iTE OTO AOYLOUIKO, e OKOTO TNV Tal-
POX1| LTINPECLAOV TTAPAKOAOVONONG KAl OTITIKOTIOINONG YEVIKOD GKOTIOD G€ TIPAYHUATIKO
Xpovo. To TAaioto AoyLO[KOD TTOV TTEPLYPAPOVLE EIVAL APTPTHEVO WG TTPOG TO TIEPLE-
XOHEVO, kKaBwg vTooTnpilet StapopeTIKO THTOV, WG TTPOG TN ONHAGLOAOYia, VTTOAOYL-
OTIKA CUOTHHATA, Ol OVTOTNTEG TWV OTOIWV TIEPLYPAPOVTAL ATIO [0t KAAWG OPLOHEVT
Ovtoloyia. Emmpdofeta, vmootnpilet pa mAnpwg Suvapikn Kat Tpooaprootun oTig
avaykeg Tov xprotn Stadiktvakn Atema@r, TPoKelUEVOL va StevkoAvvel TV emiAeyn

kat tn diayeiplon vrodopng oe Kévtpa Aedopévwv peydAng kipakag.

1.2 Awrdnwon IIpoPAnuarog-Kivnrpo

v emoxn pag, n paydaia avénon tov pvBuod mapaywyng YneLakng TANpopopiag
gxeL 08NN OEL OTNV EMEKTAOT TNG QUOIKNG VITOdonG Twv Kévipwv Aedopévwy, ahld
Kat o1 oxediaon e&eldikevévouv AoyLOIKOD, TTIPOKELHEVOL Va givat Suvath 1) arodo-
Tikr anoBrkevon kat ene§epyacia dedopévwv peydhov dykov(Big Data). H emkpd-
TNOT TWV KATAVEUNUEVWY CLUOTNUATWY, TWV TEPIPAAAOVTOV ELKOVIKOTIOINOTG, AAAA
KAl TWV VIINPECLAOV VEQPOUG O€ VTTOAOYLIOTIKEG TAATPOPUEG LEYAANG KAipaKag éxel Ka-
TaoTnoet avaykaia t Stapkn mapakohovOnomn kat derypatolnyio Twv Sopkwv Tovg
Hovadwv 1600 ot eminedo vVAIKOV, 00 Kat AOYLOULKOV, 0TOXEVOVTAG OTNV VYNAN and-
doomn Kat TNV mapoxn TOLOTIKOV VIINPETIOV 0TOVG XprioTec. Ta onpepva Kévtpa Ae-
Sopévwv gival o “mukvd” and moté, ehoevwvTag £va TEPAOTIO £DPOG LTTOAOYL-
OTIKWV ovoTnuatwy. Katd ovvénela, Bafeg 1 aotoyies, onpeia cupgdpnong, kabwg
KOl VTTOAELTOVPYIa ETUHEPOVG TUNUATWY ELVAL CUXVA PALVOUEVA TIOV aPOpoLV TN dta-
xelplon NG vrodoung evog Kévrpov Aedopévwv. AkolovBa, n kotvotnta Texvolo-
yrwv ITAnpogopkng(IT) 110n enevdvel oty avamtuén pag véag katnyopiag Aoylout-

ko0, yvwotr) wg DCIM *, n onoia mepthapPdvetl €va ovvolo epyaleiwv kat vimpe-

'Data Center Infrastructure Management

1. EIXATQI'H 2

oV yia T Atayeipion Ymodopng Kévipawv Aedopévwy. Ot DCIM Moeig mAéov amo-
TENOVV avamoomaoTo pépog tng otpatnytkng twv IT emxepnoewy, kabwg odnyodv
oe Peltiwon g anddoong, avénon g evelidiag kat kakbtepo éleyxo Twv e£6dwv.
Zvykekpipéva, Ta DCIM gpyaleia mapéxovv avaldon Tng amddoong Twv MuéPovg
SopdV VOGS OLOTHHATOG OE TIPAYHATIKO XPOVO, ATOHOVWOT) VTTO-GVOTNHUATWY Yla TOV
dpeco eVTOTIOHO SVOAELTOVPYLWY, EVWD CLUVTEAOLV OTN AN TOLOTIKOTEPWYV ATOPA-
OV PEOW TNG OVOLWOOVE KATAVONOTG TNG CUUTEPLPOPAG TOV CLOTNHATOG. TTapdA-
Anha, optopéva and avtd VTOoTNPI{OVV OTTIKOTOINOT TOV CLCTIHUATOG TTOV TTAPAKO-
AovBovv, Staypdppata, aAld Kat el8OTOOELS TIPAYHATIKOD XpOVOL OTO XPHOTN OXE-
TIKA e OLUPAVTA EVTOG TOV CLOTAHATOG VIO TTapakolovnon. Onwg yivetat avtin-
TTO, 1] YPAPIKI] AVATPACTACT TWV HETPIKWY aOO00NG TOV “CLOTHHATOG-OTOXOV , OE
oLVOLAOO pe TNV ATEIKOVLON TNG ECWTEPIKNG TOV TOTOAOYiaG, odnyolv oe fua gv-
ANTTn Kat TEPIANTITIKY Tapovaiaot] Tov, Kabdg kat o€ éva o a§lomoTo kat PLwotpo

neplpdAlov Aettovpyiag.

1.3 Ymapyxovoeg Avoeig & EvaAlaktikn IIpooéyyion

Ta tedevtaia xpovia €xovv avantvybei moAvapiBueg DCIM vmnpeoieg, oL meplooo-
TepeG amd TIG OTIOIEG KPIVOVTAL LKAVOTIOLNTIKEG WG TIPOG TO TEALKO AMOTEAETHUA KAl TG
SuvatdtnTeg TOL TPOOPEPOLY GTOV TEAIKO XpTOTH. QL0TO00, BewpOovE TWG VIIAPYOLY
onuavtika meptdwpta PeATLwoNG KVpiwg wg TPog T Aoyikn TnG oxediaomng Tovg, ahAd
Kal TN HOVTEAOTIOINOT TWV CLOTNHATWY OTa oToia evowpatwvovtal. ITio cuykekpt-
Héva, Ta eplocotepa and ta vapxovra DCIM gpyaleia oty ayopd eivat ididoktnTa
Kat KAELOTOV KWOIKA, YEYOVOG TIOL avTIPaivel OTIG OVYXPOVEG TIPAKTIKEG avATTLENg
Aoytopkov. Ot xprioteg e§apTwvTat and Tovg TapOXoVGS, EVW TO CVUOTIHA TAPAKOAOD-
Onong eykabiotdrar wg “padpo kovti’, pe TNV €vvola 0Tt dev eivau duvatn n MANPNG
AVTIANYN TV E0WTEPIKWY UNXAVIOPW®Y AELITOVPYIAG TOV. ACPAAWG, KATL TETOLO OV €V-
VOEL TNV TIPOCAPHOOTIKOTNTA Kat TNV eveAEia wg TTPOG TIG aAvAyKeg TOV XProTh. ATO
NV AAAn TAevpd, oL avTioTotXeg VAOTOW|OELG avotkTol kKwdika Pacilovtat oe Takaww-
HEVEG TEXVOAOYIES, EVW APKETEG ATTO AVTEG OEV AVATTVOCOVTAL EVEPYA, UE EAAYLOTEG

efatpéoelg.

Emnpoobfeta, ta mepiocotepa epyaleia diaxeipiong kat mapakoAovdnong Kévrpwv

Agdopévwv v1oBeTobV CLUVTNPNTIKEG TIPOCEYYIOELG AVAPOPLKA IE TNV AVATIAPAOTACT

1. EIXATQI'H 3

TV eMPEPOVG SOUWDY EVOG CLOTHUATOG LeYAANG KAipakag. AvTtég ovviiBwg meptap-
BAvovv To caPr 0pLOUO AVTIKEIHEVWY OTATIKOD TOTTOV, Ta omtoia ovuvhBwg aviikovy oe
Kamnota Tpokaboplopévn kKAAon kat SlatnpodV CUYKEKPLHEVEG OLOTNTEG. AVTO amop-
péeL amod To yeyovog otL ot vdpyovaeg DCIM Avoelg eivar oxedlaopéveg va mapako-
AovBobv éva oVYKEKPLHEVO GVOTNHA-0TOXO, YVWPIloVTag €K TWV TIPOTEPWV TNV E0W-
TEPLKI| TOL 0pYAVWOT), KaBwg kat e§eldikevpéves TAnpo@opieg ya ta Soptkd Tov oToL-
xela. H ev Aoyw mpooéyyion anokAeiel Ty emavaypnoipomnoinon kat tn Staletrovpyt-
KOTNTA TUNUATWV KWOLKa, VA TpodTobETel e1ikég peBodovg xeplopon kat eAéyyov,
TIPOCAPHOOHEVEG OTOV TUTIO TOV EKAOTOTE AVTIKELUEVOV. (G EK TOVTOV, TTPOAYETAL [Lat
APXLTEKTOVIKT] PACIOUEVT 08 KAAOELG KAl AVOTNPWS TUTTOTIOMNHEVA avTikeipéva pe Oe-
dopéva XapakTnpLoTIKA, TOV OpwG Bpiokovy eQappoyn Hovo oTo v Aoyw ovoTnua-
otoxo. Etot, meprlopifetat onpavIikd To epog TWV CLGTNUATWY 0T OTIOIA UTOPEL VL
evowpatwOel pa kown mAateopua mapakohobBnong kat onTikomoinong, Xwpig va
npaypatomotnOei n xpovoPopa eméktaon tng. Avtifeta, To OntoMon povtelomotel
TIG OVTOTNTEG KAL TIG OXECELG TOV CLOTHUATOG-OTOXOV O APNPNHUEVA, WG TPOG TO TIE-
PLEXOUEVO, Kal EMAPKWG KaBoplopéva, wg mpog Tn dopr, avTIKeiLeVa, VAOTIOLOWVTAG
YEVIKOU GKOTIOV XELPLOTEG KA HYavIopovg enegepyaoiag mov dev e§aptvtat amd
onuactoloyia. AkohovBwg, Pacicape tnv avarntvén tov OntoMon oe padnuatikég
Ovtoloyieg. Me dedopévo 0TI 6TOXOG pag eivat TapakoAovOnon molvdiaotatwy ov-
otnuatwy, Bewpovpe Twg n xprion ovtoloytdv Stevkolbvel kat e§umnpeTel TNV mepL-
YPAQPT) ETEPOYEVWV GUOTNUATWV-OTOXWV [E EVTEAWG SLAPOPETIKA XAPAKTNPLOTIKA, OF

HLa eviaia Kat 0a@wg opLtopévn Sopn mov mpooapuoletal 0TIG EKATTOTE AVAYKES.

Axopn, peletavrag dtagpopa Aoytopukd yla tn Staxeipnon vrodopng Kévipwv Aedo-
HEV@V, KaTaAn&aple 6TO OTLapKETA amd avTtd £xovv vTtepPolikd ovvOeTn dopn, e§apth-
o€Lg kat ToAvmhokoTnTa oXediaons. MaAiota, ot Tpoo@epdueveg Slampoowneieg Xpr-
otn(UI) eivat avotnpd kabopiopéveg ek Twv TPoTépwV wg mtpog TN doun, Bact{opeveg
0T OTATIKY AVATIAPAOTACT] TOV CLOTHHATOG-GTOXOV, YEYOVOG ToV Tieplopilel onpa-
VTIKA TNV eKQPAoTIKOTNTA Kat TV eveAi&ia. Tia To AoOyo avtd, n apyItekTovIKn TG
TPOTELVOUEVNG TAATPOpUAG TTapakolovBnong amoteleitat amod 3 StakpiLtd oTpwpaATA,
kaBéva and ta omoia eowkAeiel ave§apTnTeg eMUéPOVG LOVASEG IOV Elval EMIPOPTL-
opéveg 1N Siekmepaiwon cagwg kaboplopévwv Aettovpylwv. Evowpatwoape apketég
TEXVOAOYIEG AVOIKTOV KWSIKA PE OTOXO TNV KALUAKWOLHOTNTA Kat TNV VYnAT entidoon,

EVW QPOVTioapE ONEG OL ECWTEPIKEG ETUKOVWViEG HeTAED TWV SlaQOpPeTIKWY eTESWVY

2. ZXEATAZH 4

Va TPAYHATOTIOLOVVTAL ATOTEAEOHATIKG, péow kabapwv ISON APIs. [TapdAAnAa, to
UI nov vrootnpilet to OntoMon eivat mANpwg Suvapiko, Kataokevdletal TNV wpa
NG eKTEAEONG He PAOT) TO EKAGTOTE GVOTNUA-OTOXO KAl ELVAL EMAPKWG TPOCAPUOCLUO
OTIG EKAOTOTE AVAYKEG TOV XPHOTI WG TTPOG TNV OMTIKOTOINOT TG TapakolovBovpe-

VNG LTTOJOUNG KAl TN HOPPT} TWV ELGOTOLTEWV.

1.4 Egappoyn-E\leyxog

[Tpokelpévov va eléyfovpe Tr AMOTEAEOUATIKOTNTA TNG TAATQOPUAG TIOV AVATITD-
Eape, mpooopolwaoape Tn Aettovpyia evog mpotumov Kévipov Aedopévwy. Zuykekpt-
Héva, dnuovpynoape éva mepPAAlov EXEYXOV HEOA OTO OTOIO EYKATACTIOAUE Lot
OVOTOLYIA EIKOVIKWY VTTOAOYLOTWY artoTehobpevn and 3 kopBove. Tta va anodeifovpe
6711 To OntoMon mpaypatt pmopei va mapakoAovOroel etepoyeviy cvuoTHHaTA, pehe-
THoapE 2 SLaQOPETIKE GVOTHUATA-OTOXOVG, T OTIOLA TTEPLYPAPNKAY ATIO AVTIOTOLXEG
Ovtoloyieg mov d6OnKav wg eilcodog 0TV TAATPOPUA HAG: OTO TPWTO GEVAPLO TIAPA-
KohovOnoape T uotkn vrodopr evog Kévtpov Aedopévwy, evw 0to debTepo €0TIA-
OQE OTIG OVTOTNTEG EMUTESOV AOYIOUIKOV EVOG KAILAKWOLHOV KATAVEUNHEVOV CLOTH-
Hatog anodnkevong dedopévwv. Kat otig 2 mepimtwoelg mapeuPrikaple 0TV Kavovikn
AetrTovpyia TV CVOTNUATWV-OTOXWYV, EMPAAAOVTAG VTTOAOYLOTIKA QOPTiaA KAl TTPOKA-
AwvTtag mpoPAnHata GUVTOVIOHOV. AKOAOVOWGE, TTAPATHPTOALLE TIG AVTOUATEG OTITIKEG
avavewoelg otn Atemagng Xpnotn tov OntoMon, kabBwg kat TIGg OXETIKEG ELOTOLNOELG
0€ TIPAYHATIKO XpOVO, katadetkvoovTtag TNV aAllayr| TnG Katdotaong Aeltovpyiag Tov

OVLOTHHATOG-OTOXOV.

2 2xediaon

2.1 Zkentiko Xxediaong

Ta oVyxpova voloyloTikd cvoTrpata eival o ocbvOeTa Kat TOAVTAEVpA Ao TOTE,
ovvenwG Bewprioape anapaitnto n MAATPOPHA pag va Tpooapuoletal ebkoAa Kat amo-
TeAEOUATIKA O SLAQOPETIKA WG TIPOG TO AVTIKEIUEVO GLOTHUATA-OTOXOVG. ZUVETWG,
AmopPIYALE TNV TPOCEYYLOT TWV APETAPANTWV avTikelpévwy Kat Sopwy, kabwg kat

™V eMPOAN ALOTNPOV TUTWV KAl OHACGLOAOYIAG KATA TN HOVTENOTIOINOT TWV OVTO-

2. ZXEATIAZH 5

THTWV VIO Tapakolovdnon. Avtibeta, eoTidoape TNV Tpoooxn pag otn oxediaon pag
apBpwTng apXITeKTOVIKNG, 1 omoia TiepthapPavet oplopéves Paotiés Sopukeg povadeg
yta tov kaboplopd Tov Pactkol “okeleTov” TNG, KAOWG Kat OPLOUEVEG TPOTAPUOOIUES
HOVASEG yia TV e§LTNPETNOT TWV avVayKWV Staxeipnong Tov eKkAoTOTE GLOTAUATOG-
otoxov. Koprog afovag tng oxediaong pag eivat n anaykiotpwon and 1o TePLEXOHUEVO
Kat TN onpactoloyia Tov mapakolovBovpevov ovotipatog, dnladn n emitevén Sa-
Aertovpykotnrag. Akodlovba, mpoxwproape oty vAOTOOT LG TTOAOTAELPGH Kot
TawTOXpOva eviaiag TAaT@Oppag mapakoAovBnong yla tnv vrroBoronon tng Staxei-
pLONG SLAPOPETIKWY VTTOAOYLOTIKWY CLOTNHATWY. Taw ONUAVTIKOTEPA XAPAKTNPLOTIKA
NG mpotevopevng oxediaong, kabwg kat ot Oepehiwdelg apxég mov akohovdnoape ov-

voyiovTtal Tapakdtw:

« Evowpatwon oe etepoyevi) vroloyiotika cvotipara: to OntoMon eivat oxedia-
OUEVO WOTE VA TIAPEXEL VTINPETLEG TTapakolovBNong Kat AMEIKOVIONG SLAPOPETIKWY
OVLOTNUATWV-0TOXWV XPTOLHOTIOLOVTAG TNV iSla faon KwiKa, KAVOVTAG TPOTAPO-
Y£G LOVO O€ OLYKEKPLUEVA TUAHATA TOV. [la To Adyo avTd, émperte va Bpovpe éva Po-
Ao Kat TATOXPOVA CLVETT TPOTIO VLA TNV TEPLYPAPT] TWV SLAPOPWY CLOTNUATWV-
oTOXWV. ()G €K TOVTOV, ATOPACICAE Va Xprotpomotrjoovpe pia Ovtoloyia) omoia
Oa Aertovpyei wg onpeio avagopag kat Oa opilet TIG OVTOTNTES, TIG OXETELS KAt TNV
eowTepLkr| SO Tov CLOTHHATOG-0TOXOV. H ovToAoyikr avtr Teptypagr] amotelei
™ Baon mévw oty omoia TeAkd SopovvTtal OAa Ta emineda THG TAATQOPUAG HAG.
Ta trv evkoAOTEPT Sraxeipion kat emaknBevon tng Ovroloyiag mpoxwproape oTov
kaBoplopod evog ovrodoyikov oxruatog, To omoio meplapBavel emapkeic 18LOTNTES

yla TNV TAR PN TEPLYPAPT] TNG VTTOJOIG TOV EKAOTOTE GLUOTNATOG-GTOXOV.

o AQNPNUEVI HOVTEAOTIOINGN: 08 OVUQWVIA UE TN YEVIKNG PVOEWG OVTOAOYIKT] TOV
Baomn, oxedidoape To OntoMon e TETOLOV TPOTIO, WOTE VAL AVATIAPLOTA TIG TPy
TIKEG OVTOTNTEG VAIKOV KAl AOYLOWKOD [E TOV TAEOV APPTUEVO KAl EVEALKTO TPOTIO:
avTikeipeva. H povtehomoinon Twv evvoldy TOL CUOTHHATOG-0TOXOV IE APnpnuEVa
G TPOG TO TepLeXOUEVO, Al cagpwg kaboplopéva wg Tpog TNy ecwTteptkr doun,
AVTIKEIHEVA [LAG EMETPEYE VAL VAOTIO OOV E HeBOSOVG Kal XELPLOTEG YEVIKOV OKOTIOU
7oL avTIpeTwiCoLY OAa Ta avTikeipeva pe Tov i8lo akpwg Tpomo, avedptnta and
TN onpactoloyia Tovg 6ToV TPaypatiko koouo. Ta avtikeipeva oto OntoMon eivat

emekTAotpa Kat Stahettovpyikd, kabwg dev opifovtal GuykekpluEvoL TUTIOL 1) KAG-

2. XXEAIAYXH 6

o€1G avTIKELLEVWY. AkoAoDBwG, OAeG oL ecwTeEPIKEG eMKOVwVieg peTald Twv doput-
KOV HEPWV TNG TAATPOPHAG HAG TTPAYUATOTIOLOVVTAL [e TN AoYIKT TnG docoAnyiog
“yevikov-tomov” avtikelpévoy kat Pacilovtar oe APIs mov emPailovv avamapd-

otaon tng TAnpogopiag oe pop@r; ISON.

o IToAvxpnotwotnta & IlpocappooTikdTnTA: i ATO TIG ONUAVTIKOTEPEG EMSLW-
€elg Tov OntoMon eivat 1 TPOCAPUOOTIKOTNTA OAWVY TWV EMMESWV TOVL OTO €KA-
0TOTE CVOTNHA-0TOX0G. H mpotetvopevn oxediaon evBappiver Tnv mapépfaon tov
TEMKOD XprOTN KATA TNV apXIKOTOINOT), Voo TNpilovTag TNV enéktaon Tng Sourng
TWV AVTIKEHEVWY, TOV 0pLopo e&eldikevpévwy vinpectwv eAéyxov 1 detypatoAn-
Viag, kabwg kat TAfpn €éAeyxo emi TG onTIKOTOINONG TNG TapakolovBovpevng vTo-
dopng péoa oto UL AeSopévov otin Atemagr Xprjotn tov OntoMon Ppioketat oty
KOPLPT TNG APYLTEKTOVIKNG Kat XTileTau Suvapikd katd 1o Xpovo ekTéleong, oL xpn-
0TEG UTTOPOVV VA KATAOKEVATOVV e€atoptkevpéVeG el80TOOELG Kat va eAéyEovv oe
Heyalo Babuod tn ovpmepLPOpA TWV OTTIKWY GTOLKEIWV TNG EPAPUOYTS, HECW AVTO-

HATOTIONHEVWY UNXAVIOUWY.

o KhMpakwopotnta & AvOektikotnra Texvoloytwv: katd tnv avdntvén tov OntoMon
Oéoape WG TPOTEPALOTNTA TNV EVOWIATWOT) TTOLKIAWY TEXVOAOYLWV AVOIKTOV-KWIIKA,
oL o7oieg va amodidovV LKAVOTIONTIKA 0€ HEYAAN KAILAKA, TIPOKELUEVOV VAL VTTOOTH-
piovtat ovotripata-otoyol peydhov peyéBoug kat modvmhokng Soung. ITapdAAnAa,
emOuHODUE 1) TAATQOPHA HAG VA EIVAL GVYXPOVIOUEVT [E TIG TILO TIPOOPATEG eEeNi-
Eelg oTov Topéa TNG AvAmTLENG AOYLOUKOV, YLUAUTO GPOVTICANE VO XPTOLHOTION]-
OOVLE AVOIKTA TTPOTLTIA, OTIwG TO JSON Kkat To SVG, Ta omoia e§ao@alifovv cuupato-
ta pe mohvdpiBua ewtepikd ovotnuata Texvoloyiwv IIAnpogopikrg. Me avtov
TOV TPOTO, VOO TNPIOVHE EUTPAKTA TIG AVTIOTOLXEG KOLVOTNTEG KAl amokAgiovpe

10 evieXOpeVo eEAPTNONG Ao IOLWTIKOVG TAPOXOVSG.

o ITolveninedn Apytrektoviki: faci(opevot otov poadioptopd avedptntwy Soput-
KOV HOVASwV Kal 0TOXeLOVTAG TOOO 0TO StaXwplopd Twv appodloTiTwy, 660 Kat
o1 SlevkOAvvon TNG HEANOVTIKNG GUVTIPNONG TNG TAATPOPHAG [AG, TTPOTEIVOVLE
Hia apLTEKTOVIKT 1) omoia xwpiletal o€ Eexwplotd emineda opydvwong avdloya e
v emtelodpevn Aettovpyia. ITio ovykekpipéva, kabe otpwpa mepthapPavet mo-

AvdapiBpeg Stakpitég povaded, kabepd amod TG OMOIEG eivat EMPOPTIOUEVT (e TNV

2. ZXEATIAZH 7

TOPOXT) CVUYKEKPLUEVWY VTINPECLWV GTO GVVOAIKO ovoTnpa. Ta dtagpopeTikd oTpw-
Hato aAANAeTOpoLV pe KAAWG OPLOHEVA TIPWTOKOAA ETIKOLVWVIAG Ta OTola €L
TPETOVV TNV ATIPOOKOTTI por) dedopEVEY amd Ta XapnAoTepa oTa VYNAOTEPA OTPW-
Hata, Kat avtiotrpo@a. H amokevtpicomopévn avtr) TpooEyyLon eMITPETEL TNV TiA-
paAAnAomoinon TNG AVATTLENG TNG TAATPOPUAG HAG, ETULTAXVVEL TOV EVTOTIOUO OPAN-

HATWV Kat amAoTolel TNV emiAvor Tovg.

2.2 Awxwpropdg PoAwv

2 autd TO ONUELO €ival XPHOLHO VA ETILOUAVOVE TOVG POAOVG TWV XPNOTWYV TIOV
aAAnAemdpodv pe TNV mAat@oppa poag. AdGyw TnG Kataveunpuévng oxediaong Kat tng
TPOOAPHOCTIKOTNTAG Tov, To OntoMon Sev mpoopiletat yia anevbeiag xpnotpomnoi-
non and tov teAkd xprotn, alAd amautel T GVUPOAT EVOG TPOYPAUUKTIOTH EVOW-
UETWONG CVOTHUATWY KATA TNV ApXLKT TOL pUOLLOT), TTPOKEWMEVOL VA TIPOCAPUOOTEL
0TO €KAOTOTE OVOTNUA-OTOXO KAl Vo UTOPETEL va eEUTINPETTOEL AMTOTENETUATIKA TIG

SlaelploTikég avaykeg Tov Tehikob xpnotn. ITio ovykekpiuéva:

o Ilpoypappatiotig Evowpatwong Zvotnuatwv: mpokettat yia £va dtopo 1 opdda
TIPOYPAUHATIOTWV TTOV AVAAAUPAVEL TO GUVTOVIOUO Kat T1) pOOULOT OAWV TV ETLUE-
POLG TUNUATWV TNG TAATPOPRAG HaG e OKOTIO TV Ttapoxn e&etdikevpévav vinpe-
oLV TapakoAovBnong Kal OMTIKOTOIONG EVOG CUYKEKPLHEVOV GVOTHHATOG-0TOXOV.
O mpoypaUHATIOTNG EVOWHATWONG OOVAEVEL OE OTEVI] GUVEpPYasia e TOV TeAIKO
XPNOTN TPOKELHEVOL VA KATAVOT|OEL TNV E0WTEPLKT] OOUT TOV CVOTHUATOG-OTOXOV
Kat va SladO0EL TN VO™ aUTH OTHV TAATQOPUA [HAG. XTOXOG TOV ELvaL 1) TILOTH ava-
Tap&oTaon Twv VITOSOUNG TIPOG TtapakolovBnomn, o cagng kaboplopdg Twv vinpe-
otV Staxeiplong kat 1 VAOTOINOT TNG TOALTIKAG TTapakoAovOnong kat Tov pnxavi-
ooV eldoTOIoEWY, e PAon TIG ekaoToTe avdykes. Onwg yivetat avTIANTTo, KATL
Tétolo anoutei TN Pabid katavornon TG APXITEKTOVIKNG Kal TWV AELTOVPYLWV TOV €p-

yakeiov pag, wote va mpayparonotfel n mapépBaocn oe ovykekpLuéva Sopkd pépn.

o Tehkog Xpriotng: ovviifwg mpokettal yia To SLaxeLpLOTr) TOL CVOTHHATOG-OTOXOV
1 evog full-stack pnyavikov vévBuvov yia T eniPAeyn g anddoong oAdkAnpng
™G vrodoung. Ynd avtod to mpiopa, o TEAIKOG XPHOTNG EVIHEPWVEL TOV TIPOYPALL-

HATIOTT] EVOWUATWONG CLOTHHATWY YLa TIG VTNPETieg TapakolovOnong kat ontt-

2. XXEAIAYXH 8

KoToinong mov embupei and v mMAat@oppa pag. TeAkd, n alAnAenidpaot| Tov pe
70 OntoMon e0Ttd{eTal amoKAelOTIKA 0TNY TPOoPaocn ot Stadiktvakr Alemaen

Xprotn yla Ty emiPAeyn kat Tn Staxeiplon ToL CLOTHHATOG-CTOXOV.

2.3 Apyirektovikn

Ze auTnV TNV evOTNTA TapoLOoLdfovpe avalvTikd TIG SOHIKEG ApXITEKTOVIKEG HoVAdeg
Tov OntoMon, kaBwg Kat TG ONUAVTIKOTEPEG OXESLAOTIKEG ATTOPAOELG TIOV AdPaple
kata N Stadikacia avantugng g mAateoppag pag. To OntoMon eivat éva tepap-
Xtka Sopnpévo mAdioto AoyLopikoD, To omoio amoteleital amd 3 SlakpiTd oTpWHATA
nov aAAnAemdpovv petald tovg. Kabéva anod ta otpwpata autd aviimpoownevel pia
StagopeTikny anoyn g MAaT@Oppag pHag Kat, akdlovda, eowkAeiel Sidpopeg ovTod-
TNTEG AOYLOHIKOD Trov eivan vriévBuveg yla Tn Siekmepaiwon ovykekpuévwy Aettovp-
yov. ITpokelpévov va dwoove 0TOV avayvaoTtn pa mpwtn Staiodnon oxeTikd pe
dopn tov OntoMon, mapaBétovpe pa vynAov emmédov mapovoiact NG 0To akod-

AovBo oxnpa:

embeds
graphs

OntoMon
Web Ul

Graph
Composer

G

Upper
Layer

retrieves
metrics | REST

OntoMon
Observer

a

OntoMon
Server

nede

Metrics
Collector

;"‘ICInGA

Storage
Middle Backend

Layer

formally
Base Target System describes JSON

Layer @ Ohttécrgy

is
uploaded

Ixfua 1: Zrpopara Apyitektovikng Tov OntoMon

Onwg aivetat, n por} Twv Sedopévwy Eektvd amd To Pactkd OTpWHA, TTEPVA GTO Hedaio
OTpWHA Kol KATAARYEL 6TO VYNAG, OTov TeAkd AapBavel xwpa 1 aAAnhemnidpaon pe

TOV TeEAKO XproTn.

2. ZXEATIAZH 9

Baowo Ztpopa

To Paotko otpwpa kabopilet kat Statvnwvel Ty eicodo yla TNy mAat@dpua pag. Amo-
Teleitat amod 1o ZVotnpa-Ztdx0, T0 0moio opifeTal wg va OVVOAO Ao EMUEPOVG OVTO-
NTeG ot omoieg aAAnAemSpobv kat cuvepyalovtat yia tnv emitevén evog oToOXoL, Kat

v Ovtoloyia, 1) omoia eivat pa emionpn, kakd Sounpévn kat AEMTOpEPHG TEPLYpa@n

TNG LTTOSOUNG KA TWV ETUHEPOVG OXETEWV TIOL OPIlOVTAL EVTOG TOV CLOTAHRATOG-OTOXOV.
TNV ovoia TPOKELTAL VLA (Lot CAPWG KAOOPLOUEVT AVATOPACTACT) TWV EVVOLWDVY TOV TIE-

Siov ev8lagépovtog, nonoia avtiotouyilet Ta mpaypatikd Soptkd oTolxeio TOV CVOTAUATOG-

OTOXOV O€ ELIKOVIKA AVTIKEIpEVA EVTOG Tov OntoMon.

Xvotnua-Xtoxos: To mpyapatikd vITOAOYIOTIKO OVOTNHA TO OToi0 TTapakoAovbel
KAl OTITIKOTIOLEL 1) TAAT@POppa pag. Yevbvvog yla Tny opydvwon kat T oxediaomn tov
eivat, ovvnOwe, o Tedkdg xpriong. To akpiPég avTikeipevo kat oL VNPeoieg TOL ev
AOYw OLOTAUATOG UTTOpEL Va TToLKIAOVY avaloya pe To edio eQapoYnG TOV, WGTOCO
vnoBétovpe OTL og kdmolo eminedo mepthapPdvel LTOAOYLOTEG(SErvers), TPOKELHEVO
va KataoTel @ikt 1 detypatoAnyia tng enidoong Tovg anod To pecaio otpwpa. Kabe
oVOTNHA-0TOXO0G amoTeleitat and mToAvapBpeg ovrotnTeg(assets) kat Tig petagd Tovg
Staovvdéoeig(relations). Zvykekpipuéva, Umopei va gival TPooavatolopévo oTo emi-
ned0 TOV AOYLOUIKOV, OTIWG €va KATavepnpévo cvoTnua anodnkevong dedopévwy,
070 eminedo TOv VAKOV, OTWG 0L VOKEVEG Kat ot Slataelg 0To eowTeptkd evog Keé-
vtpov Aedopévay, 1] kat ota §0o Tavtoxpova. H tehevtaio ovvévaotikn mpooéyylon
nepLypa@et £va vBpdko cvoTNUa, TOL omoiov 1 Staxeiplon amautel TNV TapaKoAov-
Onon oe 6Aa ta emineda, and dkpn o Akprn. e TETOLEG TMEPIMTWOELG, 1] TAATPOPUA
HaG TIPpoo@épel 0TOV TEAIKO XproTn T duvatdtnta va ovoyetioet pvBuioelg emumé-
Sov VAKoD pe avtioTotyeg HETPIKEG amddoaelg emimédov Aoylopikol, woTe va e§ayet
XPOUA CUUTIEPACUATA OXETIKA [UE TIG E0WTEPIKEG AAANAETIOPAOELG TOV CLOTAHNATOG-
otoyov. Evdewktikd, xatavepnuéva ovotripata Aoylopkod aAlld kat cvoTolyieg vmo-
AoyloTIKOV KOPPwV HeYAANG KAILaKAG AmOTEAOVV AVTITIPOOWTEVTIKA Ttapadeiypata
OVOTNHATWV-0TOXWY 0T omoia To OntoMon pmnopei va evowpatwdel anoteeopa-

TIKA.

2. ZXEATAZH 10

Ovtoloyia: TIpokertat yia pia avotnpr kat avotnpd Sounpévn ovIoAoyikn mept-
YPAQT] TOL CLOTHHATOG-OTOXOV, 1 OTola SiveTal WG £l0080G GTNV TAATPOPUA HAG Ko
anote)el T Paom ya tn Aettovpyia Tng. Apxikd, To OntoMon eAéyyxel TV eyKLPOTNTA
g Ovtoloyiag, tn StaPadet kat oTn ovvéxeta puOpilet TIG OXeTIKEG AetTovpyieg mapa-
KoAovOnong kat ontikomoinong. Ipokepévov va npotvmomnotnBei n Soun tng ev Aoyw
Ovtoloyiag eloayape éva ovrodoyiko oyrfua, To omoio umopei va OewpnOei wg o “amo-
Tonwpa” kdbe ovotipatog-otoxov. To oxNua avtd TPEMeL va TIPOoPEPEL £va eviaio
Kal T TOXpova SIAAEITOVPYIKO UNXAVIOUO Yl TN AEMTOUEPT| TiEpLypa@r} SlapopeTi-
KWV OLOTNUATWV-0TOXWYV. ZUVETIWG, ATTOPACIOAE VA XPTOLLOTIOL|TOVLE TO TIPOTLTIO
JSON yta tnv vlomoinon g ekdotote Ovtoloyiag, kabBwg cuvdvdlet Ta xapatnpt-
OTIKd oV eT{NTAE. ZUYKEKPLUEVA, TIPOKELTAL YL £VOL AVOLKTO, EAAPPD Kal EVPEWG
XPTOLUOTIOLOVHEVO TIPOTUTIO AVaATIAPAoTAOTG SedOHEVWY, TO OTIOIO Eival AVAYVOOLUO
1600 amnod Tov &vOpwo, 600 Kat amd Tr pnxavr. ZTnV TPayHaTIKOTNTA givat fia doun
“kAetSLoV-TIn G, N oTola ELvaL QopNTH, €6’ 0PLOUOD ETEKTATIUN Kt CUUPATT HE TIG TTE-
pLo0cOTEPEG YAWOOEG TIPOYpapUaTiopoD. To yeyovog avto StevkoAbvel Ty avtalAayn
TIANPOPOpLAG AVApETH O EQAPUOYEG, KABWG Kat TOV OPLOHO epPWAEVEVWY SopwV O
TOANG emtimeda.

Ooov agopd v mhatgopua pag, n Ovtoloyia povtedomoteitatl wg Evag mivakag amod
JSON avTikeipeva, kabéva amd ta omoia avIImpoowmnevel éva SOUIKO OTOLKEID TOV
TPAYUATIKOD GLOTHHATOG-0TOX0V. EmAé€ape OAa ta avTikeipeva va opifovtal oto idto
eninedo, xwpic wAtdopata, evw ot petafd Tovg eaptroelg exppdlovtat pe padnua-
TIkéG oxéoelg oe avtioTolxeg WotnTeG. Etol, n mpotetvopevn doun tng Ovrtoloyiag
npocopoLalel og auTthv pag eminedng “mioivag” avtikepévwv(object pool), Tpoo@é-
povTag VYNAR anddoon 6Tav TOANA AVTIKEILEVA AVAKTWVTAL Yia HKPO Xpoviko Sid-
otnpa. Emmpoobeta, yia Adyovg ovvagetag kat opotopop@iag, tpoodwoape ota ISON
avtikeipeva tng OvtoAloyiag ovykekpiuéva xapaktnplotikd. Ilpwtov, kdbe avtukei-
Hevo TipéTel va TavTomoLeital povadikd. AebTtepoy, kabe avtikeipevo “nepléxetat oe”
KATOL0 GANO TIpOKEPEVOL Va amoTuTwOel 1) LepapXikr opydvwor TOV CLOTHUATOG-
otoyov. To mpwto eivau To avtikeipevo-maidi, eva To devTEPO eival TO avTikeipevo-
natépag. Tpitov, kdbe avtikeipevo avtiotoryifetal oe pa Tpokaboplopévn and Tovg
XPNOTEG OTTIKY AvATIApAOTACT|(APXEIO EIKOVA), WOTE TEAKA VA ATTEIKOVIOTEL ATO TN
Atemagr Xprjotn tov OntoMon. Akopn, emiPAaAAape €va 6OVOAO KAVOVWY OVAPOPLKA

LLE TNV TOTIOAOYIKT] 0pYAVWOT) TWV AVTIKEHEVWY £VTOG TNG Ovtoloyiag, wote va e&a-

2. ZXEATIAZH 11

o@alioovpe Tnv emBountr tepapyikn doun:
» Kabe avtikeipevo éxet akpipag éva matépa, mov aviket oty idta Ovroloyia
o Yrapxet povadiko avtikeipevo pe null matépa, To avtikeigevo-pila

« O ypdgog mov mpoxbmtel mpémet va eival ouvOedepévog, SnAadn va vdpxet po-

VOTIATL IOV va 6uvOEeL omolovadnmote 2 kOUPovg eVTOG TOV

H napandvw oxediaon odnyei oe pa akvkAikn kat ovvoedepévn tonoloyia, dnhadn
éva §évtpo pe povadikn pifa kat mToAAotg evdidpeoovg koppoug. To ovtoloyikd avtod
dévtpo avtimpoownedel TNV tepapyia evtog g Ovtoloyiag Kat givat 0 akpoywviaiog
AiBog Tov OntoMon, a@ov mepLéxet OAN TNV amapaitnTn TANPOPOpia yia To CVOTNHA-
010x0. TeAkd, 0 TPOYPAUUATIOTHG EVOWHATWONG OVOTAHATOS “avePaler” To Ontology.json

apyeilo otov efumnpetntr Tov OntoMon péow pag amAng HTTP POST aitnong.

Meoaio Ztpwpa

To peoaio otpapa @hogevei Tig Aettovpyieg mapakorobBnong kat vAoToLei TIG TOAL-
TIkEG EAEyXoL AapPavovTag amopdoels. Amoteleitat amd ta 4 Eexwplotd Sopukd pépn
Ta omoia eivat alvodwtd ovvdedepéva. Apyikd, oL agents TOL CLOTNHUATOG TTAPAKO-
AovOnong ovAAéyouv petpuicég amddoong Kat TiG armofnkevovy wg XpovooeLpEg o pia
e&eldikevpévn Pdaon dedopévwv. Ztn ovvéxela, o IapakoAovdnTig avakTd Tig HeTpL-
KEG QUTEG, TIG emegepyaleTal Kot CLUTEPALVEL AVAPOPLKA [UE TNV TPEXOVOA KATAGTAOT
TOV CLOTHRATOG-0TOXOV. TeAikd, evnuepwvet Tov Server(e§unnpetnth) Tov OntoMon

OXETIKA, TIPOKELLEVOL 1] TTANpoopia va StaBodei 6To oTpwpa Tapovoiaons.

YvAAéktng Metpikwv Anodoong: To mpaTo Pripa yla TV mapatiprorn Tov CLOTHUATOG-
0TOXOV gival) eykatdoTtaot kat poduion Tov ovotrpatog detypatolnyiag. To epya-
Aelo avTo eival kaiplag onuaciag, kabwg eivat vtevBuvo yia t Sievépyela meplodi-
KOV eEAéyXwV eMid0oonG TV SOUIKOV HEPWV TOV OVOTHHATOG-OTOXOV Kat Tr) GVAAOYN
OXETIKWV HETPOEWYV KAl OTATIOTIKWYV. O TPOYPAUUATIOTHG EVOWUATWONG OCLOTHHA-
T0G avaAapPAvel TOV OpLOUO VIINPETLOV EAEYXOV TIPOCAPHOOUEVWY OTIG AVAYKEG TWV
Saxelplotwv. And tn otiypr) mov to OntoMon kaleitat va Staxelplotel amartnTikd

VTIOAOYLOTIKG CLOTHHATA HEYAANG KAIHaKAG, SWOAE APKETT TTPOCOXT OTNV ETAOYN

2. ZXEATAZH 12

€VOG KaTAAANAOL punxaviopov mapakolovdnong, o omoio va pmopei va pvOuiotei ka-
TAAANAa Kat va TeTOXEL VYNAEG amodooelg.

AxolovBa, emAégape to Icinga, éva epyaleio mapakolovOnong oxediaopévo ya
OVANOYT HETPIKWV amtodoong o€ kKataveunuéva meptpdAlovta pe ToANoVG KOHBOUS.
[Tpoxwpnoape o€ fua tepapylkn opydavwaon tng ovototxiag Tov Icinga, amotelovpevn
and master kat client agents(“mpdktopes”), kaBwg kat TG avtioTowyes (wveg péoa oTIg
omoieg dpaotnplonolovvtat. MAAOTA, CXETIKA e Ta AVTIKELHEVA TTOV opilovTal uéoa
otn ovototyia tov Icinga(Zones, Endpoints,Objects), emAégape cuyxpoviopo anod
TEVW TIPOG T KATW, WOTE Va SlaTnprioovpLe OAEG TIG KOLVEG, Yl TOVG clients, puBpioelg
0TI master {Wveg, kat va TG oTeilovpe palikd. Me auTOV TOV TPOTO HELWVOVE TNV
moAvmAokoTnTa, emtaxbvape T Stadikacia g mpooappoyng Tov Icinga otig ava-
YKEG TOV €KAOTOTE GVOTHUATOG-0TOXOV, kabBwg dev amatteitat ovvdeon oe kabe client
agent Eexwptotd yia tn pOBuLon twv vinpeotwv Setypatonyiag. IapaAinia, ot client
agents eykaBloT@vTaL 0TOVG SLAPOPOVG servers ToL CLOTHHATOG-OTOXOV Kat SOVAED-
OVV ATOKEVTPWHEVA, EKTEADVTAG TOTIKA TOVG EAEYXOVG KOl TETLXALVOVTAG KATAVOUT
Tov Qoptiov epyaciag oe OAo To TAATOG TNG ovaTolxiag Tov Icinga. Xvykekpipéva, ot
client agents Aapfavovv odnyieg and tovg velBvVvovg master agents OXETIKA e TOVG
eA€éyxovg amodoong mov TPETEL Va TpAyHATOTOo0vV. MOAIG oAokAnpwaovv T dety-
HatoAnyia otéAvouv Ta anotedéopata icw otov vTebBVVO master agent, o omoiog Ta
OVLYKEVTPWVEL avd Katnyopia. Me TN oelpd Tovg, oL master agents katabétovv Tig Tt-
HEG TwV HeTpkV amodoong oe pia e&etdikevpévn Pdon dedopévwv xpovooelpwy, T
InfluxDB, yia peAovtikn enegepyaoia. To Icinga eivat ovpuPatd kat vootnpiet mo-
AvapiBpa backend oxriuata amobrikevong, péow tov Writer Module mov mapéxe,
TPAYHATOTIOLWVTAG KATAAANAEG puBpioels.

Ooov agopd v emkowvwvia, To Icinga xpnoiponoel Ta TpwTOkoAAa mov opilet To
HTTP API tn¢ Influx mpokeipuévov va ovvdebei oe mpaypatikd xpovo otov efumnpe-
T TG TAvw amod To SiKTLO Kal Vo amooTeilel Xpovo- kat péta-Oedopéva oxeTIKA
He TNV anodoon Twv SOUKOV HEPWV TOV CLOTHHATOG-0TOXOV. TTio avalvtikd, Oétet
HTTP attoelg Tomov POST oTo dkpo mov “akovel” kat anodéxetat cvuvdéoelg o influx-
daipovac. H emhoyn pag va evowpatwoovpe £va i0n vmdpxov c0oTHHa CLANOYTG Kal
SetypatoAnyiog LeTpIkWVY amdd00nG amooKoTel TO0O 0T UEAETN KAl TNV KATAVON 0T
EVOG TIPAYHATIKOD CUOTHUATOG TTOV XPNOLUOTIOLEITAL 0TV TIApaAywYT), 000 Kal 0TV

enitevén kKApaxkwong oe ovvBeta meparlovra.

2. ZXEATIAZH 13

AmnoOnkevon Xpovodedopévwv Ta xpovodedopéva opilovtal wg pia oelpd TIHDY
nov deiktodotovvtal o ioa Stadoxikd xpovika Staothpara. AkodovBwe, pa Paon
Xpovooelpwv opiletat wg éva e&etdikevuévo ovaTna Aoylopkol To omoio eivan oye-
daopévo yia tn BeAtiotomoinomn g amobnkevong kat Saxeiplong xpovodedopévwy.
Ot Baoelg xpovooelpwv vToaTnpilovy TIG AVAYKEG CULOKEVWY) VTINPECLWV TIOV TIAPAL-
youv dedopéva oe Stapkn pory. Eeocov To ovotnua mapakoAovbnong tov OntoMon
derypatoAnmrel kat GVAAEYEL HETPLKEG ATTOSOOTG TTPOEPYOUEVEG ATIO TO CVOTNHA-CTOXO
0€ TAKTA XPOVIKA SlaoTrpaTa, £Mpeme va fpovpe Evav amodoTIKO TPOTIO Yl TV amo-
Onkevon kat tn Statrpnon Twv xpovodedopévwy avTwv yia peAAovTikn avélvon(my
YPAPHHATA, LOTOPIKT HEAETT), EVTOTIOUOG HOTIBwV KAT). Tl va emAvoov e TO CUYKe-
KPLHEVO (TN ATOQACICAE VA EVOWHUATWOOVHE 0TV TAATPOPHA pag TG Baomn xpo-
vooelp@v InfluxDB, 1 onoia Paciletal o€ ia KATAVEUNUEVT] APXITEKTOVIKT|, TPOOPE-
peL LYNAT StaBeotpdTnTa Kat pHotpdleL To POPTO EpYaTiag o€ EMUEPOVG HOVASEG, EPO-
oov eykataotabel oe Tapandvw tov evog ovvepyalopevous kOpPovg. fa Tig avaykeg
NG mapovoag epyaciag nrav apketd va eykatactioovpe tnv InfluxDB o€ évav povo
KOHPO, HELWVOVTAG TNV TOAVTAOKOTNTA TNG TOMOAOYIAG KAt TETVXAVOVTAG HIKPOUG
XPOVOLG ATOKPLONG. ZVYKEKPUEVA, TPOKELUEVOD VA TTPOTPEPEL LYNAT emtidoon o€ To-
AMomhoka xpovoepwtrparta, 1 Influx Bacifet Tovg vtohoyiopovg otig e&fig mapadoxés:
1. ot Aettovpyieg delete kat update eival meploplopéveg oe oxéon pe v write, n
omolia givat) o ovvidng 2. Ta xpovodedopéva anodnkevovtat oe abovoa xpovo-
Aoyikr| o€lpd 3. o€ KATAOTAOELS LYNAOD POpTOV, SiveTal TepLooOTEPT PapvTNTA OTN
SaBeopdTnTa and otL 0T oLVETELA.

EmnpdobBeta, n Influx vrootnpiet éva e&edikevpuévo HTTP API avw oe dnpociwg
yvwota diadiktvakd dkpa(my /ping, /query, /write), mpokeiuévov va StevkoAvvel
TNV AOUAKPLOPEVT TTPOOPaon TwV XpnoTwy oTa Xpovodedopuéva mov anodnkevel. Xe
vty NG TNV 110TNTaA Pacioape TIG TEPLOCOTEPES EMKOLVWVIEG TTOV TEPIAAUBAVOLV
™ SocoAnYia HETPIKWY amddooN G TpayUATIKOD XpOvov. Akopn, maporo mov n Influx
elvaw pa NoSQL Baon, e§umnpetel epwtnuata o€ pa mpocaploopévn YAWooa epw-
uatwy, Ty InfluxQL. H yAdwooa avtr) tpocopotdfet o€ GuVTakTIKO Kat Sour oTnv
SQL, mpoo@épovtag €va o otkeio meptPaiAov epyaoiac. H popgomoinon twv xpo-
vodedopévwv mepthapBavel measurements, series, metrics, tags kat dANa edia, Omwg

avalveTal TapaKATw.

2. ZXEATAZH 14

OntoMon ITapakolovOntig Mia and Tig o ovoLwdELG ATOPATELS TTOV AdPapte KaTd
10 oXedlaouo Ttov OntoMon, Tav 1 VAOTIOINOT £VOG TAT PWG EAEYXOHEVOL UNYAVIOUOD
napakolovdnong kat anootoAng eldomotroewy, opifovtag mpooapuoopéva APIs yua
TNV EMKOLVWVia. ZUVETWG, CUUTEPINAPANE GTNV APXITEKTOVIKI LG UL AKON SOUIKN
Hovada n omoia avahapPavel va CUUTEPAVEL TNV TPEXOVOA KATAOTAOT) TWV EMUEPOVG
TUNUATWY TOL CVOTHHATOG-OTOXOV e BAOT) TLG TILO TIPOOPATEG HETPLKEG amddoong Ka,
AaKOAOVOWGE, Va EVIUEPWTEL TO CTPWHA OTITIKOTOINONG Yl TNV avavéwon tng Atema-
¢ng Xprotn tov OntoMon o€ paypatiko xpovo. Ilpénet va onpeiwoovpe, OTLvTapyet
oa@ng Staxwplopog petafd twv agents tov Icinga kat tov Iapakolovdnrr, kabwg ot
TPWTOL AMAWG CLAAEYOLVY Kat EEAYOLV GE TIPAYHATIKO XPOVO TIG TIHEG TWV HETPIKDV
andS00nG Ao TO CVOTNUA-OTOXO, EVW 0 SEVTEPOG VAL APOCIWUEVOG OTNV AVAKTNOT
TOVG amtd TN PAon XpPOvVooelpwy, TNV enegepyaaio TOVG, TNV TPAYHATOTOINOT VTTOAOY!L-
opWV, kaBws kat T Pabvtepn avalvon kat adAnrorovoyétion Tovg. O Ilapakolovbn-
¢ Tov OntoMon eivat évag Saipovag viomonpévog oe Python, npocapuodletat oto
€KAOTOTE OVOTNHA-OTOXO ATIO TOV TIPOYPAUUATIOTT] EVOWUATWONG KAl OVYKEVTPWVEL
OAN TN GVAAOYLOTIKT Kl TI§ TOALTIKEG TNG TTapakolovOnong mov BéAet va emiPBalAet o
xpnotng. [paktikd, o ITapakoAdovOnTng oLYKpIveL TIG KATAYPAPOUEVEG UETPLKES ATIO-
doong kat Tig eviei&elg Aettovpyiag Twv SOUIKWY OTOKEIWV TOV CLOTHHATOG-GTOXOV
He ipokaboplopéveg oTabepég kat 0T ovvEXELa OnpooLevEL OXETIKEG evpepwoelg. Ot
EVIUEPWOELG AVTEG TTAPAYOVTaL TIEPLOdIKA Kal prtopovv va BewpnBolv wg otrypuotuma
TOVL OLOTHUATOG-OTOXOV O Sladoxikég Xpovikég oTiypés. Ieptéxovy avahvtikég mAn-
poPopieg Kal SeSOUEVA OXETIKA [LE TNV TPEXOVOA KATAOTAOT) TNG TapakoAovhovpevng
dopukng povadag(asset), Tig HETPIKEG amOOOOTG TNG KAl TNV OTTIKOTOINOT TNG OXETL-
KNG eldomoinong evtog TG Atema@ng Xpnotn yia TNy eVipépworn Tov TEAKoD XproTh.
Katd v apykomnoinor tov, o ITapakolovOntng anattei tov mpoodloplopd twv servers
TIOV TIpOKeLTAL Va tapakolovBnBolv eite oe eninedo Aoylopkov, eite VAoV, kabwg
KaL TIG avTioToLXeG vinpeoieg eAéyxov. H emkotvwvia peta&d tov IapakolovOntr kat
™g Baong xpovooelpwv tov OntoMon TPAYHATOTOLEITAL e CLUVAPTHOELG-XELPLOTEG
ot omoigg eival TANpwg ovpPatég pe to HTTP API tn¢ Influx. Tia Adyovg opotopop-
@lag, emAégapie v LOVTEAOTIOOOVIE TIG TTAPAYOUEVEG EVIULEPWTELG KATAOTAOTG TOV
OVOTHHATOG-0TOXOV 0¢ Hop@PT} ISON e OLYKEKPLHEVES LOLOTNTEG. Aedopévov OTt kaDe
EVIHEPWOT AVAPEPETAL OE LA CUYKEKPLHEVT) SOULKT] HOVASA TOV CUOTHHATOG-OTOXOV,

o ITapakolovOntrg TNG MAATPOPHAG pag TPETEL va yvwpilel TNV avToToiXIoN TV

2. ZXEATIAZH 15

Sopkwv povadwv avtwv oe avtikeipeva g Ovroloyiag. Katd ovvénela, o IMapa-
koAovOnTtNg aAAnAemdpd pe tov E§umnpetnt tov OntoMon wg e€fig: apxikd ava-
KT 10 Ontology.json péow evog HTTP GET epwTHHATOG, OTN CUVEXELX TTPAYUATOTOLEL
Tovg {NTovHEVOLG ENEYXOVG Kat, TEAKA, anooTtéAAel éva Update.json avTikeipevo péoa
0710 owpa evOGHTTP POST autrjpartog. H oxediaon avtn e§aopalilet mArpn cuppoto-
TNTA PE TNV OVTOAOYIKT] TIEPLYPAPT] TOV PACIKOV OTPWHATOG KAl EL0AYEL EVa TIPOCApP-

Hoopévo API eidomotnoewy yia TNV MKOLVWVIA PE TO AVWTEPO OTPWHAL.

OntoMon E§umpetntiig O efumnpetntrig Tov OntoMon givat £€va amd Ta KEVTPIKO-
Tepa Sopkd Tov pépn, kabwg mpaypatonolel cuvaAlayég pe TOAVAPLOpEG OVTOTNTEG
kat Stavépet dedopéva oe OAa Ta OTpWHATA TNG TAATPOppag pag. Eivat n dopukr po-
vada 1 omoia “yvwpilel” avd mdoa oTLyun TNV KATdoTAoT TOV CUOTHHATOG-GTOXOV.
[Tpokertar yia éva eAa@pv, KAIHAKWOOLHO Kat TARPWGS AEITOVPYIKO KOUUATL EKTENEDL-
Hov kwdika(script), vhomownpévo €€ ohokAnpov oe JavaScript. O OntoMon g§umnn-
PETNTNG YEPUPWVEL TA KEVA HETAED TWV SOUIKWDY HEPWV TNG TAATPOPUAG HAG KL Ei-
vat vévBuvvog TOo yia To Xelplopd HTTP ep@THATWY TIPOG AVTOV, 0G0 KAl Yl TNV
ATOOTOAT OTATIKOV apXelwy, Otav avtd (nrndovv. Ilio ovykekpipéva, “akodel” kat
anodéxetal ovvdéoelg oe TOAATAGL StadikTvaKkd dKkpa TAVTOXPOVa, VITOoTHPifovTag
emkowvwvia pe ToAAovg clients oe mpaypatikd xpovo. Ava@opikd [e TNV eMKolVwvia
pe To Paoiko otpwpa, o efummpetnTrg Tov OntoMon KovoTOLEl VA GUYKEKPLHUEVO
S1ad1KkTVAKO AKPO GTO OTOIO O TPOYPAUUATIOTHG EVOWHATWOTG CLOTNHATWY UTOPEL
va anooteilet Ta Ontology.json kal Ta .svg apXeia TOL AVTIOTOLXODV OTA AVTIKEIHEVA

™6 OvToloyiag péow evog HTTP POST epwTrpaTOg.

MOAG ta apyeia avtd “avéBouv” emTuxwe, amobnkevovtal TomiKd 0ToV eEUTNPETNTH
Kat Stateievtal og €va dANo, emtiong evpéws YVwoTo yia Ty TAAT@OpHa pag Sta-
diTvaKo AKkpo, WOTE va avaktnOovv peTEMELTA amd Ta SOHIKA UEPT TOCO TOVL He-
oaiov, 600 kat Tov LYNAOL oTpwUaTog péow HTTP GET artnuatwyv. la mapadetypa, o
OntoMon ITapakoAovOntrg aAld kat n Atemtagn Xprotn tov OntoMon xpetalovrat
10 Ontology.json apxeio, WOTE VA TPOCAPUOGOVV TIG AEITOVPYIEG TOVG OTO CVOTNHUA-
otoxo. Baon oxediaong, o OntoMon e§unnpeTnTig KpATE TAVTA TIG TILO TTPOCPATEG
ek000ELG TWV apxeiwv avTwy, kabloTwvtag Suvatn TNV aAlayr TOvG akopa Kal Katd
T0 XpOvo ektéleons. TéNog, vAomouoate pia e§elOIKEVUEVT) GUVAPTNON XELPLOUOD TWV

Update.json avTIKELPEVWY TIOV AVTITIPOCWTIEVOLV TIG EVIUEPWOELS KATAGTAOTG,) OTIO {0t

2. XXEAIAYXH 16

Ta oelplomotei og ovpd, StaPdlet Ta empépovg media Tovg kat Ta “oepPipel” oe Eva Tpito
eVpews YvwoTto Sadiktvakd dkpo. [TapdAAnAa, kataypdet OAEG TIG AUTHOELG EVILLE-
pwong katdotaong Aettovpyiag oe éva Update.log apxeio, mapéxovtag éva avOpwri-
VWG AVAYVWOOLHO LOTOPLKO TNG CVVOAIKHG OVUTEPLPOPAEG TOV GVOTHUATOG-0TOXOV OTO

Xpovo.

Storage

HTTP POST /query HTTP GET /query
(perf metrics & metadata, (perf metrics & metadata,

Monitoring (Ontology.json)
Tool Observer
Icinga daemon
Master Zone (Update.json,

HTTP RESPONSE
(success/failure)

HTTP POST

H (Ontology.json,
Targetg System .svg files)

5 e, B Ontology.json
‘ _ . 0

Icinga Icinga Icinga Ontology
Client Client Client Rules

.svg files

designed for
assets

Xxnua 2: Emxonvwvia uetald faoikot ke peoaio otpdpatog

2. XXEAIAYXH 17
YynAo Zrpopa

210 VYNAO OTPWUA TNG TAATPOHAG TIPAYHATOTIOLELTAL] OTITIKOTIOINOT] TOV GUOTAUATOG
0TOXOV, KaBWG Kal N CLYKEVTPWTIKI TTAPOVOILACT) THG TPEXOVOAG KATAOTAOTG Tov. To
oTpwpa avTod amoTeAeitat and doptkd LEpn Ta omoia cuvepyalovtal Hetagd Tovg, ava-
KTOOV Xpovodedopéva and To Heoaio OTPWHA KAL TTPOGPEPOVY GTOV TEALKO XPOTN Wiat
YEVIKT] €IKOVA TOV CLUOTHHATOG VTIO TtapakoAovOnorn. OVolaoTIKA, TTPOKELTAL Yl TNV
Telkn €§080 Tov OntoMon, e TV onoia aAAnAemdpd anevdeiag o TeA KOG xproTnG.
ITio ovykekppéva, @hogevei wa dtadiktvaxn Aemagn Xprotn kat évav e§etdikev-

Hévo Xvvétn Ipagnuatwy xpovooelpwy.

Awertagn Xpniotn Amotelel TOV TUPHVA TOL LYNAOV CTPWUATOG Kat eEKPPAleL oe Le-
yéo Pabpd tnv evpvtepn Aoyikn oxediaong tov OntoMon, ekeTAAAEVOpEVT) OAN TNV
ene€epyacia MOV TPAYHATOTOLEITAL 0TA KATWTEPA OTPDHATA. ZKOTIOG TNG elvan 1) Tta-
pox1 vinpeowwv emiPheyng kat dtaxeiptong tng mapakolovbovpevng vrodoung otov
TeAKO XpNoTH, HEOW ULAG OVYXPOVNG Kat eVEAKTNG StadikTvakng epappoyng. Ilpo-
KELWLEVOL VA EKHETAAAEVTOVE TIG SUVATOTNTEG IOV TIPOTPEPOLVYV Tt TILO CVYXPOVAL £p-
yaheia avdntudng StadikTvakwy egappoywy kat povtépva Stadiktvaxd APIs, ano-
aocioape va vAomotoovpe TN Atemagr Xprnotn(UI) tov OntoMon pe tnv telev-
taia ékdoon g Angular. Onwg avagépape mponyovuevwg, emdiwape va avamntod-
Eovpe pa Atemagn Xpriotn n onoia va Staxetpiletat amodoTikd apnpnuéVoL TePLEXO-
Hévou ovotrpata kat va un Paocilet Ty Aettovpyia tng oe e&etdikevpéves TAnpopopieg
yravtd. Etol, mpoxwprioape oe pa mARpws Suvaukn vAomoinomn, n omoia otnpile-
TAL OTNV OVTOAOYIKY TIEPLYPA@PT) TOV PACIKOV OTPWHATOG KAl ATEKOVI(EL OTTIKA TaL
avTikeipeva g oto DOM tov mepinyntri(browser). Aopalwg, n Atemagn Xprotn avtn
npEMeL va givat anolvta ovpPatn kat va yvwpilet ta APIs ota omoia Pacifovrtal ot
ETUKOLVWVIEG EVTOG TNG TAATPOPHAG LG,

Ava@Qopiid pe TNV OTTIKOTOINGOT TWV AVTIKEILEVWY, AVTI] TIPAYHATOTIOLEITAL AVTOWA-
TOTIOUNUEVA HECW TIPOYPAHUATIOTIKOD eAEYXOL €Tl Twv SVG apyeiwv, Ta omoia peTa-
oxnuatifovtat kat, TEMKA, opyavwvovtal oe pa eppwievpévn Sopr. Eivar afroonpei-
wTo, 6Tt o¢ frontend eminedo kapia anogaon 8¢ AapPdavetat pe Pdon kdmolo ocvyke-
KPLUEVO TOTIO AVTIKELHEVOD, Aol Kata obuPaocn Ola ta avrtikeipeva Tov OntoMon

elvat apnpnpéva wg IPog TO TEPLEXOUEVO KAl AVTIHETWTI{OVTAL e EViaio TpOTO. ATta-

2. ZXEATAZH 18

paitntn mpoimobeon yia TNV AMEIKOVION TOV CLOTNUATOG-CTOXOV ELVAL 1] AVAKTNON
1600 G OvTtoloyiag(Ontology.json), 660 Kal TwV .svg apxeiwy anod tov E§umnpetnt
Tov OntoMon, péow HTTP attrjoewv tomov GET.

EktOg6 amo TNV ameikovion Tov CLOTNUATOG-0TOXOVL OTOV TIEPINYNTN LOTOV, | AleTa@n
Xpnotn tov OntoMon GLYKEVIPWVEL KAL AVATIAPLOTA UE YPAPIKO TPOTIO ONEG TIG e-
TpLkéG amdSoomnG, TIG EVIUEPWOELG KATAOTAONG AetTovpylag, Ta petadedopéva Kat Ta
apxeia Kataypag@rg mov IPoEPYOVTAL ATO TO HECAIO OTPWHA. ZTNV TIPOTELVOUEVT) O)E-
Siaomn, n Angular epappoyn elodyet pa vinpeoia mov mpaypatonotel Stapkn “ocPuy-
HOUETPNOT” TOV CLOTNHATOG-0TOXOV, amooTéEANOVTAG Tteptodikd HTTP GET autroelg
otov OntoMon e§umnpetnth. ZTI¢ AUTHOELG AVTEG 0 EELTINPETNTIG TNG TAATPOPUAG HAG
amavTd 0TEAVOVTAG TIG TILO TIPOOPATESG AVAVEWDOELS KATAOTAONG Kol HETPLKEG amddo-
ong Twv SopkdV povadwyv vio mapakoAovdnon, mavta oe popen ISON. Me) oepa
™6, N Aemtagn Xprjotn SwaBalet ta Update.json avtikeipeva kabBwg ¢Tdvouy ano tov

E€umnpetntr| kot 0T ovvéyela emtelei Tig e€n¢ Aettovpyieg:

1. ITapdyet 100TOIOELG OXETIKA [UE TA CLUPAVTA TTOL APOPOVY HEUOVWHEVA SOUIKA
HEPT) TOV GLOTHHATOG-0TOXOV, TPOOPLOUEVEG Yia TOV TeAkO xpriotn. H popen, To
TepLeXOUEVO Kat 1) TEAIKT UPAVION TwV eldomonoewy avt@v evtog tov Ul tov
OntoMon kaBopilovtat TAPwWG amod To MeEPLEXOUEVO GUYKEKPIHEVWY Tediwv TOV

ekaotote Update.json avTikelévou.

2. TIapovotalel CUYKEVTPWTIKA TIG THHEG TWV HETPIKWY amodoong kabe Soutkng pova-
dag og MPAYHATIKO XpOVO, TOCO O€ TIVAKEG, 00 KAl 0€ YPAPIKEG TTAPACTACELG TTOV

avavewvovtal avtopata kabwg katagdavovv véa xpovodedopéva.

Mia onpavTikn oxeSlaoTikn anod@aon mov AABape OXETIKA HEe TNV AVATAPAOTAOT TNG
anddoong TOL CVOTHHATOG-OTOXOV O Ypagrpata, HTav va arnaAldfovpe tnv Angular
Ao TNV AmUTNTIKE AT Aettovpyia. (UG €K TOVTOV, EVOWUATWOAE OTNV TAATPOpUA
Hog pa Eexwptotn ovtoTnTa 1 omtoia avakapPavel €€’ 0ONOKANPOL TNV KATAOKELT] Kat
egaywyn StadpacTtikdv Staypappdtwy anddoong pe Paon Ti§ HETPLKEG ATOSOTELS TOV
OVOTHHATOG-0TOXOV, Kal 1 omola emikovwvei pe T Atemagn Xprotn mdvw ano to di-
ktvo. H andaot pag avtr otoxevel 010 Staxwplopd Twv evbuvav evtog Tov vynAov
OTPWHATOG, AANA Kal OTNV ATMOTEAECHATIKT) KATAVOT] TOU CLVOALKOV QOPTOL gpya-

olag.

2. ZXEATIAZH 19

XvvOetng Ipagnuatwv ‘Eva amd ta mAéov amapaitnta xapakTnploTikd pag ovy-
Xpovng Atemagrg Xpriotn eivat i tkavotnta va cuvoyifouv kat va mapovatdiouv
(ntovpevn mAnpogopia pe EANTTO KAl EVOTIKTWSN TPOTO GTOV TEAIKO XPHOTH, WOTE
va kataotel Suvatr n dUeST KATAVONOT TNG TPEXOVOAG KATAOTAONG Kal 1] e§aywyn
OXETIKOV CUUTEPACUATOV. BewpolUE, AOITOV, WG 1) EVOWUATWOT YPAPNUATWYV Yla
TNV OTTIKY avamapdotact Twv deSopévwv pag epapuoyng eivatl apbvovoag onua-
olag, kabwg amhomoLel ONUAVTIKA TOV EVTOTIOWO TIPOPANHATWY EVTOG TOV CUOTHHATOG-
OTOXOV, V(W OLEVKOADVEL TNV LOTOPIKT AVAAVLOT TWV HETPIKOV antdS00onG Kal TNV ava-
KaAvymn potipwv. Etot, Stevkolbvetal i) Staxeipton Tov OVOTHHATOG-OTOXOV KAl 1) aTo-
HOVWUEVT HEAETT) TNG CLUTEPLPOPAG CVYKEKPIUEVWY SoptkwY povadwy oto xpovo. H
Texvoloyia mov emAégape ya to Zvvoétn Ipagnudtwy frav n Grafana, pia avolktov
Kwka TAATPOpLa OTTIKOTIOINONG Xpovodedopévay ypapupévn oe Go kat JavaScript,
1 omoia vtoatnpilet ToAvapBueg Aettovpyieg avalvong, Onwe pabnuatikég cuvapTr-
oelg, piktpa, ovvabpoton kAm. H Grafana kataokevalet Aemtopepn kat Stadpaotikd
YPOPIHLATA, T OTIOIC OKLAYPAPOVV ATTOTEAECHATIKA T1 OLVOALKT) Amdd00T) TOV CLOTHHATOG-
otoxov. Eva anod ta onpeia-kAetdid oto oxediaouod tng Grafana, eivat n avakataokevn
TWV YPAPNUATWV OTNV TAEVPAE TOV TENATH, HELWVOVTOG TOV VTTOAOYLOTIKO QOPTO TOV
eEUTNPETNT). ZUYKEKPLUEVQ, OTIV APXLKT| aiTnom Tov TeAdtn o e§umnpetntrg Tng Grafana
anavtd pe 1o factkd HTML okeAeTO TOV YPAPTHATOG, EVW TO LVTTOAOLTIO TIEPLEXOUEVO
gopTwvetal duvapika xpnotpomowwvtag JavaScript. Ta ypagrpata avta fondovv
TOV TEAIKO XPT|OTN VA ATTOKTHOEL ALETA LA EVPVTEPT] ELKOVA TOV CUOTHHATOG-CTOXOV
KAl Vo TIpaypatonolroet TPoPAEYELS Yia T HEANOVTIKT] CUUTIEPLPOPA HEUOVWUEVDV
ovtotitwv. Tavtdxpova, n Grafana vrootnpifet Tov 0pLopod xpnoTwy Kat opadwy, Ka-
Bwg kat TNV avabeon pddwv, wote n tpdoPaocn ota dashboards mov e€ayet va eivan
TN PWG EAEYXOHEVT).

AX\o éva mheovéktnpa tng Grafana eivat n ovpPatotnra pe moAvdptOpa backend
nepParlovta amobrkevong xpovooelpwy, Ta omoia amoteAodV Kat TNV €icod6 Tov
ZuvOétn Ipapnudtwv. Ztn oxediaon pag kabopicape tnv Influx Baon xpovodedo-
HEVOV wg v Ty Tov ZuvOétn [pagnudtwy, o e§UINPETNTAG TOL OTOIOV AVAKTA
Héow tov HTTP API tn¢ Influx petpikég ko petadedopéva and to ovoTNUA-GTOXO
o€ TakTd xpovikd Staothipara. H duvatdtnta avth g Grafana emtpénet Ty anev-
Beiag emkovwvia petadd tov ZuvOétn Ipagnudtwy kat g Baong Xpovooepwv, xw-

pic va eumAéketal kabBolov otn dadikacia avth 1 Atenagn Xprotn. Etol, anaAldo-

2. ZXEATAZH 20

OOVUE TNV TAATQOpUA pag antd TepLTTég Swooknyieg, petapopd dedopévwy peydlov
OYKOUL Kal, KAT& CUVETIELR, VTTEPPOPTWOT TOv SikTVoV. AkoAoDBwG, kabwg o daipo-
vag ¢ Grafana avaxta xpovodedopéva and tnv Influx fdon, kataokevdlet Suvapka
dashboards kat panels yia kdBe mapakorovBovpevn dovikr povada Tov CLOTAHUATOG-
otoyov(asset), Ta Omoila Avavewvel ALTOpATA KaBwG KatapBdvovy véeg TIHég Twv e-
Tpikwv anodoong. Tavtdxpova, Ta Stabétet oe €va gvpéwg yvwoTd StadikTvakod dkpo
ytat LEANOVTIKT) EVOWUATWOT] TOVG O epappoyés. TTo avalvtikd, avtioTtotyilet kdbe
panel pe éva povadikoé URL, To omoio meptéxet pia mapapetpo mov mpoodiopilet
dopukn povada oty omoia avagépetat To ev Aoyw ypdenua. TeAwkd, n Angular egap-
HOYT QOPTWVEL WG ATOUAKPVOUEVOG TTEAATNG TAL YPAPTHLATA TTOV APOPOVY TO OVOTHHA-
0TOX0G KAaTA TNV wpa NG ektéleong tov OntoMon, evowpatwvovtdg ta oe HTML

<iframes>.

3. YAOIIOIHXH 21

OntoMon Web

HTTP RESPONSE
(Update.json objects,

User Interface

HTTP GET
HTTP RESPONSE
json, .svg files,

Embeds inline (Ontology.jso
<iframes>

. Composer

HTTP POST /query
(perf metrics & metadata,

Influx Native
HTTP API

Storage
Backend

HTTP POST /query HTTP GET /query
(perf metrics & metadata, (perf metrics & metadata,

o

=

Monitoring (Ontology.json)
Tool Observer OntoMon

Icinga dasmen HTTP POST Server
(Update.json,

HTTP RESPONSE
(success/failure)

Yxnua 3: Emxowvwvioa petad peoaiov ko vynAod otpdpatog

3 YMomoinon

3.1 Iepapatikn Aratadn

Onwg 10N avagépapte, To OntoMon eVOWUATWOVETAL OE ETEPOYEVT] VTTOAOYLOTIKA OV-
OTHHATO T OTIOlA OHWG 08 KATIOLO ETITed0 TNG OPYAVWOTG TOVG TIEPLEXOVV SErvers,
Ol OTIO{OL UTTOPOVV AVTIHETWTILOTOVV €iTe WG OVTOTNTE VAIKOU, £iTe Aoylopikov. IIpo-
KELLEVOV VA TIPAYHATOTIOL|OOVE T HEAETN HAG, AOLTIOV, ETPETIE VA EYKATAOTI|COVHE
éva TELpApATIKO TTepBAANOV TO 0TT0i0 Va givat CLUPATO Kal pe TOVG 2 AVTOVG TUTTOVG
ovotnpdtwy. Katd ovvénela, ano@acioaple va 6THOOVUE pia TANPwWG EAEYXOUEVT KL
AELTOVPYIKT CLOTOLYIA EIKOVIKWY HNXOVWY,] OTIOlo avTavakAd TNV eowTepikn doun

€VOG VTTOAOYLOTIKOD GCLOTHHATOG TOOO O€ eMinedo LVAIKOV, 600 Kat AOYLOUIKOD TAVTO-

3. YAOIIOIHZH 22

XPOVAL.ZVYKEKPIUEVA, XpTOLpoTOoape To Qemu, {a avolkToD KWwdLka Unxavi lko-
VIKOTI0INoNG WoTe va pubuicovpe amod dkpn oe dkpn T Aettovpyia 3 VITOAOYLOTIKOV
KOUPwV, Stacuvdedepévwy petagd Tovg. Ot 3 auTéG elkoVIKEG HNXavES LlogevolvTal
oto 0o guotkod pnxdvnuathost). Ita Adyovg opolopop@iag eYKATAOTHOAUE O OAEG
TIG EIKOVIKEG UnxavEG Kat 0To host pnyaviua to ido Aettovpyikd ovotnpa(Ubuntu

16.04.2), to omoio vtooTnpilel AelTOVPYiEG ELKOVIKOTOINOTG.

PyOpon ISiwtikov Awktoov

Baow(opevol otny vmdeon OTL 1) GLOTOLKIA EIKOVIKWV UNXAVWV [AG TIPOCOHOLALeL o
OPYAVWOT] KAl TEPLEXOUEVO £VAL TIPAYHATIKO VTTOAOYLOTIKO TtepIPAAlov péoa o€ éva
Kévtpo Aedopévov, Enperne va eEao@alicovpte T SIKTVAKT EMKOVWVIA AVAUETA OTOVG
koppovg tng. Etol, anogaciocape va mpoxwprocovpe 0Ty VAOTOINON VOGS TTPOTApPHO-
OUEVOV OTPWUATOG SIKTOOV HETAED TWV EKOVIKWY UNXAVWYV KL TOV QUOLKOD UNYAVH-
natog, kabopifovtag pa Tomohoyia pe tpocBaocn oto Sadiktvo miow and NAT. Katd
TNV vAomoinor pag avtr ekpeTaAlevtrkape Tig Stema@ég StkThov oV vtooTnpilovy
1o Qemu kat To Linux. Apyikd opioape pia Stemagn yépupag(bridge) oto host unxa-
vnua(bre) avabétovtag tng pa otatikr IP StevOvvon(10.0.0.254. H eikovikr avtn
Stemar| emmédov AoyLoptkoD TPOCOUOLDVEL TN AetTOVpYia evog peTaywyéa(switch),
VAOTIOLEITAL €A GTOV TTVPTIVA TOV AEITOVPYLKOV OVOTHHATOG Kat avalapPavel tn Sia-
xelplon g Siktvaxng kivnong. ITdvw otn diemagn-yépupa tov emPAENOVTOG KO-
Bou(hypervisor) pvBuicape tn diepyacia dnsmasq, n onoia vVAomotel vinpeoieg Si-
KTOOV. XuyKekplpéva katevBvvape T SikTVakKT KiVIoT TTOL TIPOEPXETAL AT TIG EIKO-
VIKEG HnxavEg kat aopd ta DNS kat DHCP mpwtokoAla otn Siemagr-yépupa pe IP
10.0.0.254, n onoia avadétet otatikég IP devBuvoelg ebpovg 10.0.0.0/24 011G
KapTeG SikTVOLV OAWVY TWV oVVSedepévwy KOUPWY, avTtioTolyilovTag Tig oe MAC Stev-
Bvvoeig. Tavtoxpova, amavtd oe DNS gpwtrpata kat dpopoloyei OAa Ta TakETa OV
npoopifovtat yia to StadikTvo, Aettovpydvtag wg TOAN(gateway) Tov StwTikod Ot-
KTOOV.

T va mpaypatomnowmBei n obvdeon petadd tng etkovikng KApTag SIKTVOL Kat TG Stemang-
yépupag tov host, kdBe Qemu Siepyacia Tov userspace eivar vebBvVN va “onkwoel”
Hio tap dema@n kat va TNV cuvayel Tavw oTtn YEQupa, akplpag onwg cuvééovTal
Ta ethernet kalwdia o€ éva Quotko petaywyéa. Iia TNV avtoparomoinon tng ma-
parmavw dadikaciag mpooapudoape katdAAnia to gemu-if-up script, dnuovp-

ywvtog éva taiptacpa 3 tap Stemagav otn Stemagn-yépupa. To tedevtaio Prpa ya

3. YAOIIOIHZH 23

NV emtuxn Aettovpyia Tov LwTikov pag Sikthov agopovoe tr pvOuon tov host un-
xavnuatog. ITio avalvtikd, evepyomouoape TNy mpowbnon IPV4 makéTwy eVTog TG
diepyaciag Staxeplotn Siktdov, evw mapdAAnAa opicape évav Kavova ya To Teixog
npootaociog(firewall), o omoiog emtpémnel T “peTappieon” TWV MAKETWV TOL KATAPOA-

vouv otn Stema@n-yépupa and to 8LwTikd dikTvo kat Tpoopifovtat yia to Stadiktvo.

Guest Guest Guest
[o]] [o]] [o]]
Ubuntu Server1 Ubuntu Server2 Ubuntu Server3
eth0 eth0
MAC address: MAC address: MAC address:

DE:AD:BE:EF:14:AC DE:AD:BE:EF:CD:CA DE:AD:BE:EF:16:7EV,"

Userspace

virtual virtual
port port port

tap0 [] tap1 |] tap2
dnsmasq bridge br0 ‘S’\'A'/‘I;’C‘ﬂ

« Router
« DNS
« DHCP Host OS

physical ethernet
[ﬁ1 interface
enp1s0 f

DNAT SNAT

2xnua 4: Tomodoyia Zvororyias Eikovikawv Myyavay

3.2 IIpocdiopiopog Xxnuarog Ovroloyiag

2 auTnVv TNV evotnTa Ha mTapovotacovpe Tov akpLPr Tpomo goppaliopov tng Ovto-
Aoyiag, GTOXEDOVTAG OTNV AVATIAPACTACT] TNG HE €Va OO TTOV OPYAVAOVETAL HE TO
avolkto mpotumo JSON. Kabe avtikeipevo mov aviket otnv Ovtoloyia akohovBel Tnv
npotevopevn dopr, mpokelpévou va StevkoAvvBovv ot Aettovpyieg Stapdopatog kat
avaAvong amd TNV TAATQOPHA HAG. ZOPPWVA HE TIG OXeSLA0TIKEG Hag apXEG, XPELalo-
HAOTE £VOL APTPTHEVO WG TIPOG TO TTEPLEXOUEVO, AAAA AVOTNPO Kl KATAANTTO HOVTERO
dedopévwv, To omoio de Ba mepiéxel mepiTTr) MANpogopia kat Tavtdxpova Ba mept-
YPAPEL ETAPKWG TNV OPYAVWOT) KAl TIG EVVOLEG TOV EKAOTOTE CLOTHUATOG-0TOXOV. To

TIPOTELVOUEVO OVTOAOYIKO OXTHA QAIVETAL TAPAKATW:

[\S)

= W

6

N

10

. YAOIIOIHZH 24

"uuid": "c8bd7185-6349-4df5-8628-187115222987",

"name": "Ubuntu-Server-1",
"label": "Server",
"file": "Server.svg",

"parent": "25e2ce69-2445-4b28-9a71-e7ca®lbc57ea",
"info": {

"description"”: "Server asset"

Listing 1: Example of JSON Ontology object

uuid: éva 128-bit avayvwplotikd yia to povadiko mpoodioplopd kabe avtikelpé-

VOU, L€ OTOXO TNV ATOPLYT CUYKPOVOEWY O€ UEYAAN KAIHAKAL.

name: nedio TVmov string mov kaBopiletal and To XpOTN Kal TEPLEXEL TO OVOLA
kaBe avtikepévov. Tlapoho mov to OntoMon dev mpaypatonoLel onNUACIOAOYLKO
g\eyxo, 1 Tipn Tov mediov avtov BewpnTikd AvTIOTOLXEL OF e SOpKN HovAda Tov

OVLOTNHATOG-OTOXOV.

label: npoogépet opadomoinon mapOpOLWY AVTIKEUEVWY eVTOG TNG Atemtapris Xpr-
0TN, XWPI§ OHWG va Tpooappoletat 0motoodmote AANOG XEPLOHOG TOVG avAAoya e
v T Tov. Etol, oe kapia mepintwon de Oa mpémel va ovyxéeTal e TNV ELOAYWYT

TOTIWV OTA AVTIKEIPEVA.

parent: ek@pdlet Tig e§aptnoelg avdpeoa ota avtikeéva tng Ovtoloyiag, opi-
Covtag oxéoelg “natépa-nadiov”. H tipn tov mediov avtov eivat eite null yua to
avTikeipevo-pifa, eite To uuid evog VTapXOVTOG AVTIKEILEVOL. AKOAOVOWVTAG TIG
oxéoelg mov katadetkviel 1) ISLOTNTA AVTH KATAokeVAJOVLE TO LEpapXLkO SEVTPO TNG

OvToAoyiag Tov CLOTAHATOG-CTOXOV.

file: opilet 10 apyeio KApakoOpeVOY SlavVoUATIKWV Ypagkwy (SVG) To omoio
Ba xpnoonomnBei anod tn Aemagrn Xpnotn yla TV TPOCapHOCUEVT) OTITIKOTIOIN 0T
TOL CUYKEKPIUEVOL avTikelpuévoy Tng Ovtoloyiag. To apyeio avtd mpémet va eiva
ot 8tdBeomn tov E§ummpetnth Tov OntoMon katd Ty ekTéleon, evw anatteital va
elval TOTIOV . SVE, WOTE Va VAL EPLIKTOG O TIPOYPAUHATIOTIKOG EAeYXOG Tov. Emtion,
anattovpe o XML kwdikag mov vAomoLel To apxeio SVG va €xel OpLOpEVEG IOLOTNTEG

T1G omoieg Xpetafopaote yia tr xaunho emmédov enefepyacia Tov. ZToX06 Hag eiva

3. YAOIIOIHZH 25

Va ameIKOVioovpe Ta SVG apyeia pe eppwAevpévo Tpomo péoa oto DOM Tov meptn-
YNTH L0TOV, WOTE VA OKLAYPAPTTOVUE TNV OPYAVWOT) TOV CLUOTHHATOG-OTOXOV Kal
va @avoLv ot oxéoelg e§apTtnoelg petald Twv Sopukwy Tov pepwyv. Emopévawg, xpeta-
{OpaOTE £VaL UNXAVIOUO IOV Va EKPPACEL TNV IKAVOTNTA TWV AVTIKEUEVWY VoL TTEPLE-
Xovv dAAa. ATo@acicape va OVTEAOTIOLTOVE TO UNXAVIOUO aLTO WG pia inline
SLoTNTA TWV . SVE apXeiwy, elocdyovtag Tnv évvola twv slots. Kabe slot opiletat

amo éva onpeio avapopag(mavw aploTepd) Kat SLAoTACELG HIKOVG Kat TAATOVG:
<upper-left-point1-x>, <upper-left-point1-y>, <width>, <height>

Kabe SVG pe n slots pmopei va mepiéxel €éwg kat n dAAa SVGS, evw 1 ovoxétion
Twv slots pe tnv WiotnTa parent pag divel pia avTITPOOWTEVTIK AVATAPACTAOT
TNG EOWTEPIKNG 0PYAVWONG TNG TapakolovBovpevng vodoun. Emmpdoobeta, mpo-
KEWWEVOL VOl KATAOTEL EPLKTH 1] TPOCAPUOYT TWV OTTIKWVY 80TONOEWY TIOL TTaL-
padidet n Alemagn Xprotn anattodpe Tov oplopod evog ototxeiov(element) kAdong
indicator oto cwpa Tov SVG apxeiov amod Tov TPOYPAUHATIOTH) EvowpaTtwong. H
amOPAOT) HAG AVTH APOPE TOV EVKOAO EVTOTIONO TOV 0ToLXelov indicator katd
Aettovpyia Tng ontikomnoinong. ITo avalvtikd, oe avtd To HTML otowyeio Ba mpay-
patorotnOei kamota petaPoAr otny Tiun kamotag and Ti§ inline Wd16TNTESG TOV, AVTL-
TPOCWTEVOVTAG TNV AVAVEWOT TNG TPEXOVOAG KATAOTAONG AELTOVPYIAG TOV avTi-

0TOLYOL SOULKOV [EPOVG TOV OVOTHHATOG-OTOXOV.

1 <svg xmlns="http://www.w3.0rg/2000/svg" width="100%" height="100%"

2 slots="15,25,200,50,45,75,240,60">

3 <g>

4 <circle>

5 <animate class="indicator" attributeName="fill"
6 values="#62c36e;#36a242;#62c36e"/>

7 </circle>

8 </g>

9 </svg>

Listing 2: SVG apyeio pe 2 slots kot 1 indicator oTotyeio

 info: mepiéxel omoleodnmote mAnpogopieg Oéhel va ovumepthafet o xprioTng oxe-

Tika pe kabe avtikeipevo Tng Ovroloyiag, yla TNV Lo TANP1 TEPLYPAPT] TWV OVTO-

3. YAOIIOIHZH 26

THTWV TOV CLOTAUATOG-0TOXOV. ZVVIBwWG TpodKetTal yia éva IJSON avTikeipevo, e
emuépoug media kat TIHES, Ta omoia TapovatalovTtat evtog NG Atemagng Xprot

yta Adyovg mAnpoTnTag.

3.3 YMomoinon tov OntoMon E§vmnpetnti)

H vlomoinon evog e§umnpetntn Stadiktvov(web server) givat pia, YeVIKd, AmattnTikn
Stadkaoia. ITpokeévov va emtaxbvovpe tnv avamtvén tov OntoMon kat va unv
Tpoxwproovpe o€ SikTvakég puOuioelg xapnAov emmédov, anmo@acioape va xTicove
tov E§umnpetnt Tov OntoMon mavw ot pnxavn ektéleong JavaScript Nodejs,
Kal OLYKEKPLEVA 0To TTAaiolo Aoyloptkov Express.js. To mAaiolo avtd Paoiletan oe
acbyxpova ovpBavta ta omoia Staxepiletatl éva Hovadikd vipa eKTEAEONG, OE avTi-
Oeomn pe 1o mapadootaxo Request/Response moAvvnpatikod povtélo. To Express.js pag
EMETPEYE VAL VAOTIOOOVE pe am\o TpoTo éva KAtpakwotpo E&unnpetntr, ypappévo
e§’ oMok pov o JavaScript, enweelovpevol TO00 and To peydho ebpog LVITOGTNPL-
(opevwv BiPAodnkwv vynhov emmédov, 600 kat and ta povrépva Stadiktvakd APIs.
O E&umnpetntic Tov OntoMon evopXnotpwvel kat e§unnpetel OAa To aUTHpATA OXE-
Tikd ta dedopéva Tng mMAatoppag pag, mpooeépovtag dounuéva APIs emkovwviag
Kat Stadiktuakd dkpa yla TG ovvdéoelg Twv mehatwv. Ot Pacikég Aettovpyieg mov

vlomooape gaivovtal otov akolovBo mivaka:

Awadiktvakn Yanpeoia Akpo ITehatng

AvéBaoua .json, .svg apyeiwv /upload TeAkog-Xprotng

A1&Beon oTaTikdV apyeiwy /resources| Aenagr; Xpnotn, ITapakoAov-
Ontng

XepIopog evpUepwoew /updates | Awienagr Xpnotn, IlapakoAov-
Ontng

A1&Beon apyeiov kataypapng /history | Alemagn Xprot

IMivakag 1: Yanpeoieg tov OntoMon Eévnnpetnty

Zto Siktvako dxpo ontomonHost : 8080/upload o eEvnnpetnTig pag mtapalapPavet
apyeia péow amhwv HTTP POST autndTwy, Ta OTOla GTEAVEL O TIPOYPAUHATIOTNG EV-
owuaTwong ovotrhpatog. Ta apyeia avta(Ontology.json, .svg) diateibevral mpog ava-
KTNon 0710 SIkTvako dkpo ontomonHost : 8080/ resources. Tavtdxpova, Tpoxwpr-
oape oty vAomoinon pag ewdikng ouvaptnong, n onoia Sayelpiletat ta HTTP POST

QLTAHATA TIOV APOPOVYV TIG EVIHEPWOELS KATAOTAONG TNG TapakolovBovpevng vmo-

3. YAOIIOIHZH 27

Soung(Update.json) oto diktvakd akpo ontomonHost :8080/updates. Télog, mpo-
KEWWEVOL Va SLATNPHOEL TO LOTOPIKO TWV EVIIUEPWOEWV KATAOTAONG AELTOVPYiaG TOV
ovoTHpatog-otdxov, o EEumnpetntg Hog mapdyet éva apxeio katayparg To omoio
dabétel oT0 Arpo onotmonHost:8080/history. To apxeio avtd avaktatal peTé-
netta and tn Atemagn XproTn, WOTE Vo EVIUEPWOEL TOV TEAIKO XPHOTN OXETIKA U

v wotopikn e&€AEn TG cupmeptpopdg TG mapakolovBovevng virodourng.

3.4 ZvAloyn Metpikwv Amodoong pe to Icinga

[Tpokelpévov va SelyHATOANTITHCOVE CWOTA TO OVOTNHA-OTOXO, TPOXWPT|OAE OF
TPOOEKTIKY pLOLOT TG ovoTOLXiag Tov Icinga B£TOVTAG WG TPOTEPALOTNTEG TNV LYNAT
am6doon Kat Tr) EDKOAN OLVTHPNOT Kal eMEKTAOT o€ PeyaAn kAipaka. IIapolo mov 1o
doxipaoTikd meptBaAAov pag anotedeital and 3 kopPovs, povticape n vAomoinon
TWV VINPECLWV GVAAOYNG HETPIKWV amdd0on G va eivat KAHAKDOLun o€ 1o ouvOeTeg
TOTIOAOYiEG KAl VA AVTAVAKAL TAT|PWG TIG AVAYKEG TWV SLAXEPLOTWYV.

Apyxikd eykataoTnoape o€ 6AOVG TOVG KOUBOVG TOV CLOTNHHATOG-OTOXOV TA TIAKETA
Aoytopkov Tov Icinga péow amopakpvopévng ssh ovvdeong kal 0tn ovvéxeta xpnot-
pomotwvtag To Icinga node wizard gykatactrioape Tov avtiototyo Icinga agent
o€ kdBe kopPo. Zrov koppo mov giloevei tov Icinga master agent opicape tnv embv-
UnTn tepapyia ano Zones kat Endpoints: 1 master Zone pe Endpoint tov koupo pe
IP 10.0.0.1 kat 2 10oTpeG client Zones pe Endpoints 10.0.0.2 ka1 10.0.0.3,
avtiotowa. Etol, kabévag anod tovg client agents yvwpiCet tov vevbuvo koppo otov
omoio Ba katabéTel TIG HeTpikEG amdSoong mov ovAAEYeL, péow Tov Icinga API. H ey-
ypaen twv client agents 0tov master agent mpayatonotOnke HETA amd TAVTOTOINOT
CA motomointikwv kat CSR vroypagwv yia Aéyovg acpdletac. Etot, metdxape pia
KATAVEUNUEVT OPYAVWOT TOV CLUOTNHATOG TTapakoAovOnong, otnv omoia ot éeyxol
andS00nG TWV EIKOVIKWOV server Aappavouy xwpa TOTIKA, KATAVEHOVTOG OUOLOHOPPa
TO POPTO €pyaOiag.

Zmv ida katevBuvon, 0 optopds Twv avTikeévwy tov Icinga mov mpoadiopiCovy
TO TEPLEXOUEVO KAl TNV TOALTIKT] THG TTapakolovhnong Tov cLoTHUATOG-0TOXOV(TTX
Hosts, Services, CheckCommands)mpaypatomnowOnke otov Icinga master koupo,
WoTe va Oepe ooV E TOV ATO Ta TTAVW TPOG TA KATW GUYXPOVIOUO Twv puOuicewy

evtog TG ovotolxiag Tov Icinga. H Soun avtn eivat eDAnmTn kat tavtoxpova anodo-

3. YAOIIOIHZH 28

TIKY), evw pmopei va emektabel apketd bkola TPOKEIUEVOL va LTTOOTNPIEEL peyaD-
Tepo aptBuo client kopPwv. O client agents mapalapfdvovy avtépata TAVW ANd TO
dikTvo Ta avtikeipeva mapakolovBnong tov Icinga, Ta AVTLYpAPOLY TOTIKA KAt TTPO-
XwpoOV 6NV eKTEAEOT TWV {NTOVHEVWY EAEYXWV aOSOONG TWV SOUKWDY HEPWV TOV

ovoThpatog-otoxov. H ovotouxia tov Icinga @aivetal 0to mapakatw oxnipa:

reports
collected metrics

Icinga
Client Zone

Endpoint:
Ubuntu-Server-2
10.0.0.2

hardware or software
assets

expcﬁs
time series
data

Endpoint:
Ubuntu-Server-1
10.0.0.1

pushes configuration files
(Commands, Services,
Hosts, Zones)

Icinga
1 Master Zone

reports
collected metrics

™ Icinga

Endpoint: .
“.Client Zone

Ubuntu-Server-3
10.0.0.3

hardware or software
assets

Ixnua 5: Icinga Monitoring Cluster

OMa ta apyeia puOpicewv Tov cvoTaTOg Tapakolovbnong eival tomoBeTnpéva kKATW
and Tov kataloyo /etc/icinga2/zones.d tov Icinga master kopBov, 6mov €xovue
Snpovpynoet avtiotoryoug pakélovg yia kdbe Zone. Olot ot kOpPot evtog piag fw-
vng tov Icinga AapPdvovv akpipag Tig idieg puBuioelg kat 0dnyieg, oL omoieg mepiéxo-
vTal oTa oxeTika apyeia hosts.conf, services.confkar templates.conf. Ta
CheckCommand avtikeipeva mpoadiopifovv evtolég evtog tov Icinga yla tnv exté-
Aeomn katdAANAwv scripts Tov SetylaToANTTOUY TNV anddoon Tov eKAOTOTE KOHBOV
Kat kataypd@ovv petpikég anodoongc. Ta scripts avtd €xovv tn popen plugins kat ov-
vOwg eivar ypappéva oe bash, Pythonn Perl. o tnv mapakolobBnon twv cvotnudtwy-
OTOXWV TIOVL HEAETHOAE, XPELAOTNKE Va ypayovupe Ta dikd pag plugins 1} va mpooap-
Hooovpe oplopéva RO VIIAPXOVTA OTIG AVAYKES Hag. Ao Tnv alAn, Ta Services
avtikeipeva kabopitovv motd CheckCommand Oa exteheoTtei, pe mold opiopata, kade
TOTE KAT.

Avagopikd pe v egaywyn Twv pHeTpikwv anddoong mov cuAAEéxOnkav oe mpaypa-

TIKO Xpovo, to Icinga eivat amdvta cupPato pe v InfluxDB v onoia emhé€ape

3. YAOIIOIHZH 29

yta TV anoBrkevon twv xpovodedopévwy mov StaxetpiCetar to OntoMon. Apxikd
evepyomnotroape To evowpatwpévo influxdb feature tov Icinga, To omoio apyuko-
notei tov Influx Writer, éva avtikeigevo tov Icinga oxedlaopévo va emkovwvel pe
To backend mepipdAlov amodnkevong kat va arootéAAet teptodikd Ta anoteAéopata
Twv eAéyxwv anodoong tng mapakolovBovpevng vtodopns. AkolovBa, xpetdotnke
va mpoxwprioovpe otny e&etdikevpévn pobpor tov, mapéxovtag akpiPeic mAnpogo-
pieg oxeTika pe to daipova g Pdong xpovodedopévwy mov e§uINPETEL TIG AUTNOELS
amoOrkevong. Zvykekpipéva kabopioape 1o 6vopa Tov kOUPOV, TO SIKTVAKO AKPO, TO

ovopa TnG Pdong, To dvopa xproTn Kat Tov kwdikd TpooBaotg.

3.5 AmnoOnkevon Xpovooepwv pe tnv InfluxDB

2e autd TO ONUeio EXOVHE EYKATAOTNHOEL EMTLXWG TO CVOTNUA SELYHATOANYiAG Kat
OVANOYNG HETPIKWYV amdS00NG, EMOUEVWG OELPd £XEL 1] EVOWHATWON TG Baong xpo-
VOOELPWYV YLa TT HAKPOXPOVIa SLATHpNon TwV TIHOV avTwv. ONwg Kal Tponyovueva,
EYKATAOTHOAE T TTAKETA TNG TLO TPOoPatng ékdoong tng InfluxDB otnv nelpapa-
Tk pog Stdtagn, avth T @opd Opws atov enPAénovta kouPo(hypervisor), kabwg
exei exteheitat o ITapakolovOntng Tov OntoMon, 0 0T0i0G XPELALETAL TIG TILO TTPOTPA-
TEG PUETPNOELG EMGOONG TOV CVLOTHUATOG-0TOXOV.)G €K TOVTOV, 1) AVAKTNOT TWV Le-
TPIKWV amodoong yivetal dpeoa Kat TOTKA, xwpic emmAéov eniPdpvvorn Tov Stktdov.
[Tépa amod avtd, puBpuicape évav NTP efunmpetnth yia Tov anoteAeopatikd cuyypo-
VIOHO TWV PETPHOEWYV Kat TN B€0Tiong fag Xpovikng ovppaocng.

2t ovvéyxela kabopioape v ovtotnta database tng Influx, npoodiopifovtag To
OvVopd TG aAAd Kat TNV TNV TOATIKH KPATNONG Twv Xpovodedouévwy og avthy, On-
Aadr| To xpovikd Staotnpa yia To onoio ot HeTpikég anddoong Bewpovvtal £ykvpeg
Kat Tapapévovy dtabéotpeg mpog avaktnon. Katd tn Aetrovpyia tng,) Influx eicayet
€0WTEPIKA TIG £VVoleg Twv shards, groups ywa Tnv kakvtepn opydvwor| tng. Kabe
Influx database anoteAeitar and data points, ta omoia eivat avtikeipeva pe 1816-
nteg name, tags, timestamp kat fields, evd ovviiBwg eival cvoxeTiopéva pe
KATola Xpovooelpd petprioewv(series f measurement).

Amookonwvtag oTov AN EAeyX0 TNG GOUNG TWV PETPIKWY OV CLAAEYOVTAL OTO
OVOTNHA-0TOXO, ETIPETIE VA TIPOTAPHOTOVHE TIG puOptioelg Tov InfluxDBWriter avi-

Kelpévov tov Icinga otig avaykeg pag. Etol, okiaypagroape To TpoOTUTO TWV EYYpa-

3. YAOIIOIHZH 30

QWV OV amooTéAAEL 0 CVANEKTNG LeTpikwV anddoong oto backend mepifpariov amo-
Orkevong, kaBopilovrtag emaxpiPwg kabe medio Tovg, ovpmepthappavovtag petadedo-
HEVAL Kal TIHEG-KATWPALA. Xvykekpipéva Oéoape wg ovopa Tov ediov measurement
KaBe eyypagng to 6vopa tov avtiotorov CheckCommand avtikelpévov mov mpay-
patorotel Tnv kataypaen tov. IlapdAAnia, mpooBéoape éva pikpo oet anod tags ta
omoia dtevkoAvvovy ta InfluxQL epwthpata wg mpog tn ovvabpotlon kat To PIATPA-
ptopa. Télog, ovunephdPape To medio timestamp to omoio vrrpxe €& opiopov, mpo-

KELPEVOL va yvwpilovpe Toug xpovoug Setypatonyiag.

3.6 IIapakolovOntig Tov OntoMon

Amo tn otiypn mov ot agents tov Icinga eival emQOPTIOUEVOL ATTOKAEIOTIKA [E TNV
eKTENEDT) TIEPLOSIKWYV EAEYXWV Kat T1) GLAAOYT TWV AVTIOTOLXWV UETPIKDOV amodoong
and TG SOMKEG HOVASEG TOV CLOTHUATOG-OTOXOV, ETIPETE VAL EL0AYOVUE pta e&etdi-
KELUEVN OVTOTNTA Yl TNV VAOTIOINOT TNG EKAOTOTE TOAITIKNG TTapakolovOnong Tov
OVOTHHATOG-0TOXOV, OTWG aTh eMPBAAAETAL AMO TOV TEAIKO XPiOTH KAl TWV TPO-
YPAUPATIOTH evowpaTtwonG. AnAadn xpetalopaotav pa Stapkws Stabéoun Stepya-
oia n omoia Ba tpéxet 0To MApackvio, Oa epappdlel TNV EKAOTOTE CLANOYLOTIKT €Tt
Twv xpovodedopévwy kat Oa evnuepwvet Tn Atemagr XproTn yla Ty TpéXovoa KaTd-
0TOOT TOV CUOTHHATOG-0TOXOV. ()G ek ToLTOV, avantvéape Tov ITapakolovdnth Tov
OntoMon wg €va Saipova ypappévo €’ ohokArpov oe Python, pe anwtepo oTo)0 Vot
egao@alifel 2 Pactkd XapakTnpLoTIKA: TpocappootikdTnTa Kot evel§ia. Ev mpokel-
Hévw, o Tlapakohovdntrg TG MAATPOpHAG HLag TTpETEL va LTTooTNpiet e§atoptkevpé-
VeG VTN peoieg TapakolovOnong yla kabe cOoTNHA-0TOXO Kal TavTdXpova va kabopi-
(el TNV OTTIKY AVATIAPACTACT] TWV AVTICTOLXWV EISOTIO|0EWY TIOL TTpoopilovTat yla
TOV TEANIKO XProTn, XWpiG va e§apTaTaL and Tr ONUACLOAOYia TWV SOUKWY HEPWY TNG
VTOSOWNS.

AxolovBa, n tpotetvopevn vAomoinon Baciotnke oTNV avamTugn UNavIoUWy KatL uTtn-
PEOLDV YEVIKOV OKOTIOV TIOL eival oxedlaopéveg va poaappofovtat and tov mpo-
YPAUUATIOTH) EVOWHATWONG OTLG AVAYKEG ETEPOYEVWYV CLOTNHATWYV-0TOXWV. H Tpo-
o€yylon pag mpoodiopiletal and StalertovpykoTnTa TWV EMLPEPOVS neBddwv Xetpt-
opoV Twv Xpovodedouévwy, evw evBapphvetal | vepyr GUVELCPOPE TWV TPOYPAL-

HOTIOTOV EVOWUATWONG Yl TNV TANPN TPocappoyn Tov mupnva efaywyng oupre-

3. YAOIIOIHZH 31

paopatwv tov ITapakohovdntr kat Tov kabopiopod g “vonuoovvng” tov. Ta 3 mo
Oepediwdn modules ov otkodopovv tov IapakolovOntn Tng MAatedprag Hag TTapE-

xovtag t {nrodpevn Aettovpykdtnta eivan Ta e&ng:

« Observer.py: mpokeltat ylo Tov Kevipiko okehetd tov IapakorovOntr, kabwg
edw Ppioketal 0 kSIKAG-08NYOG 0 0TI0i0G CLVTOVIEL TIG S1APOpPES VTN PETieg ENEY-
xov. ITpooapuofovtag To GUYKEKPIUEVO KWIKA, O TIPOYPAUHUATIOTHG EVOWUATWONG
HTopel va opioel wg mapapéTpovs ypappng evrodwv(CLI) ta avayvwplotikd Twv
Vo TapakolovBnon servers TOL CLOTAHUATOG-OTOXOV, TPOKELUEVOL VA XPNOLHOTIOL-
nNBovV wg KAESLA yla TNV AVAKTNON TV OXETIKWV LETPIKOV anddoong and tn fdon
xpovodedopévwv. Emmpdobeta, eviog tov Observer. py kahovvtat OAeG oL Guvap-

THOELG EAEYXOV €T TWV SOUIKWDY HOVAWYV TOV CLOTAHUATOG-OTOXOV.

» Services.py: oe avtd To module mepiéxovtal oL 0pLOHOL TWV EKACTOTE OLVAPTH-
oewv xelptopov tov IapakolovOntn, 010 WA TWV OTOIWY LAOTTOLOVVTAL OL LTIN-
peoieg mapakorobOnong, eAéyyov kal cuumepacpoy Tpéxovoag katdotaons. Kabe
v peoio EAEyxXov avTIOTOLKEL O€ o cVVAPTHOT-XepLoTh. Tia va diekoAvvovpe Tnv
TPOCAPHOYT), TAPEXOVE TNV AP PNHUEVT WG TTPOG TO TIEPLEXOHEVO OLVAPTN O get_ -
measurement (), n omoia xtiCet Suvapukd InfluxQL epwtripata Ta onoia anooTé\-
Aet péow HTTP GET awtnpdtwv otov eumnpetnt e Influx Baong xpovodedopé-
VWV Kat OLYKeKPLPEVA 0TO SIKTVAKO dkpo ontomonHost : 8080/ query. XN cuvé-
Xeta, StaPadet TNy andvtnon tov eEUINPETNTI, LOVTENOTIOLEL TIG TIHEG TWV HETPIKWDV
anddoong mov avékTnoe o€ popPn AloTag kat TeAka TNV mpowbel 0TV ekdoToTE
OLVAPTNON-XELPLOTH Yla TNV TPAYHATOTOINOT OVYKPIOEWV HE TIHEG-KATWPALA TIG
omoieg éxel kabopioel o TpoypaAUHATIOTHG EVOWHATWONG. Kabe ovvaptnon-xetptotng
ATOHOVWVEL 1] OLVSVALEL XpovodeSopéva Kal EKTIHAE TNV TPEXOVOA KATAOTACT] TOV
€KAOTOTE SOUIKOV HEPOVG TOV CLOTAHATOG-GTOXOV. Ot SuVATEG TIHES TNG KATAOTA-
ong(state) tov kabe Sopkod pépovg eivar OK, WARNING kat CRITICAL, evw n
nAnpogopia avtr cvunepthapPavetat otn dour evnuépwong mov TpoopileTat yia

70 VYNAS oTpwpa Tov OntoMon.

« Dispatcher.py: avtd 1o koppdti kwdika avalapPavel Trny kataokevr tov Update.json
AVTIKELHEVOD YL TV AVATIAPAOTAOT] TNG TPEXOVOAG KATAOTAONG TNG TAPAKOAOV-
Bovpevng vTodopng, OTWG AVTH TIPOEKLYE ATIO TNV AVTICTOLKT CLVAPTNON-XELPLOTT).

Ovolaotikd péoa otn ovvdptnon dispatcher() vhomoteitat to efatopukevpévo

3. YAOIIOIHZH 32

API eidomnoioewv tov OntoMon, EMOUEVIG GTO ONUEIO AVTO O TPOYPAUUATIOTAG
evowpatwong kabopiCet Tov THTO TNG OMTIKOTOINONG TWV eldoTO|oEWY TNG Ate-
nagng Xpnotn mov embupei o TeAkog xpnotng. Mo ohokAnpwOei, Aowmdv, n ka-
Taokevr] tov Update.json avtikelpévov, o Ilapakolovdntng otéAvel €va HTTP POST
aitnpa otov E§unmpetnt tov OntoMon oto diktuakd dkpo onotmonHost : 8080/ updates,
WoTE va SNUOCLEVTEL TNV TIO TPOCPATN EIKOVA TNG TapakolovBovuevng vodo-
HAG Kal auTr &V ovvexeia va avTtikatonTplotel otnv Angular epappoyn tov vyn-
Ao¥ oTpwpatog TG MAATPOpUAG Hag. To TPOTLTIO TOV UNXAVIOHOV ELSOTOLNOEWY
TIOV VAOTIOLOQUE TIAPAYEL LEUOVWHEVEG EVIUEPWOELG KATAOTAONG AELTOVPYiag OV
ava@épovTal o€ OVYKeKpLUEVA avTikeipeva Tng Ovtohoyiag kat Teptéxovy TNy Tpé-
XOVOA KATAOTACT] TOVG, TIG TILO TTPOTPATEG TLHEG TWV HETPIKWYV AtOS00TG TOVG, Ka-

Bwg ko AemTopepeic 00N Yieg OXETIKA [E TNV OTTIKOTIOINOT TNG eviuépwong oto Ul:

LA

2 "uuid": "ff2802db-15d1-42a6-bcfe-0dd3af12c9c7",
3 "name": "icinga2-clientl",

4 "timestamp": "2017-05-15 00:56:12",

5 "state": "OK",

6 "metrics": {

7 "cpu_loadl": @.5,

8 "cpu_load5": 0.7,

9 "cpu_loadl5": 0.8

10 ¥

11 "type": {

12 "element_class": "indicator",

13 "attribute_name": "values",

14 "attribute_value": color

15 },

16 "description": "No issues were detected.”
17 }

Listing 3: Update.json Avtikeipevo Evquépwons Katkotaons

3. YAOIIOIHZH 33

3.7 Avantoén g Aetagrs Xpnotn

Agdopévov 0tiLn Atemagn Xpriotn Tng TAATPOpHAG Hag eivatl 1 LOVAdIKN OVTOTNTA TNG
TAQTQOPHAG [Hag [e TNV omoia aAANAETIOpA 0 TEAIKOG XPTOTNG, APLEPWOAE APKETO
XPOVo Kat TpooTdBeta Katd TNV avantul NG TPOKEUEVOL VA TIPOTPEPEL i GLVO-
TTIKT KAl TALTOXPOVA OAOKANPWUEVT] EIKOVA TOV TTAPAKOAOVOODUEVOL GVLOTAHNATOG-
OTOXOV, aAAA Kal Va €ival EVOPUOVIOUEVT pE TIG apxés oXedlaong Twv KATwTEpwV
otpwpdtwv. [ta tnv kataokevr| g emhé€ape tnv Tehevtaia ékSoon Tov TAatoiov Sta-
dwctvakov Aoylopkod Angular, vhomoiwvtag Tnv mAnpwg oe Typescript, éva vmep-
obvolo tng JavaScript mov evowpatwvel emmAéov Aeltovpyieg Kal £VVoleg OTWG
KAAoelg kat TOmovg petaPANT@V. Avagopikd pe T oxediaon Tng euAaviong Kat Tov
Pacikob okeAeToL akoAovOnoape TiG PEATIOTEG TPAKTIKEG KAl CLOTAOELG TWV dnLovp-
ywv NG Angular, evd ava@opikd pe To meplexOpevo emAE§ape va Uy vIEPPOPTW-
OOVUE TNV EQAPHOYN Hag He TANpogopia, aAAd va E0TIACOVE 0TV OVOLWSN avama-
paoTtaon TG mapakoAovBovevng VTTOSOUNG e KATAVONTO TPOTIO.

Apxikd, epdoov ot Angular epappoyég Pacifovtat katd kdpov e Components, ava-
nrofape 4 faoikég Oyelg yia tn Atemtagn Xprotn oe 4 Stakpira Components: overview,
assetview, log, settings. H overview oymn mapovotalet ONOKANpo To 6O THHA-0TOXO, EVD
1 OYn assetview EMKEVIPWVETAL OE KATOLO CLYKEKPLUEVO Sopukd pépog tov. Tavtod-
Xpova, bAomotnoape kat oplopéva Pondntikd Components ta omoia EVOWUATWVOVTOL
ota Paotkd Kat Tpocfétovy emmAéov AelTOVPYIKOTNTA, OTIWG 1) ATELKOVIOT TWV Ypa-
PHATWV Kat TOL tepapytkod 8évtpov tng Ovtoloyiag.

Ex166 avtwy, mpoxwproape otov optopod Services evtog g Aemagng Xpnot, n-
Aadn) exeldikevpEvwy KAAOEWV-VTNPECIWYV OL OTIOLEG EVOWNATWVOVTALoTa Components
KalL €lval EMPOPTIOUEVEG [UE TNV TIEPATWOT) CLYKEKPUEVWY AetTovpyLwy. Ta Mo onua-
VTikd Services tng Aermagng Xprnotn tov OntoMon agopovv tn Staxeipton attn-
oewv HTTP ywa v avaktnon twv Ontology.json kai .svg apxeiwv, Tnv emaAndevon tng
EYKLPOTNTAG TWV ATAUTOVUEVWY oUWV, Kabwg Kal TNV apxIkomoinon Twv ecwTepL-
KWV TNG HeTAPANTWV.

Ta T pelwon NG TOAVTAOKOTNTAG KAt TOV KAADTEPO SLAXWPLOUO TV appHoSIOTHTWY

xwpioape Tig Aettovpyieg Tng Atemagng Xpnotn tov OntoMon oe 3 kOkAovG:

3. YAOIIOIHZH 34

Parser
Service

Validator
Service

injects injects

imports imports

AppComponent

Toolbar
Component

inject:

Sidenav
Component
queries
imports .
- XY injects HTTP
e T Service
‘., Router <

Tree
Component [" -queries ==
A\ o -~
Lt Service
queries

decides and imports
current view

queries queries queries

Overview Assetview Log Settings
Component Component Component Component

injects imports

A

Polling Graph Metrics
Service Component Component

Ixnua 6: Aremagn Xprioty OntoMon: ApyitekToviky

KukAogl: Atafacpa kat EAeyxog Ovrodoyiag e mpwtn @don ta Components kat
Ta Services g e@appoyng vlonolodv T Bepehiddn ovrohloyikn faon tov OntoMon.
Apxika avaxtatal to apxeio g Ovtoloyiag,Ontology.json, and to SikTvakd dkpo
ontomonHost :8080/resources tov E§unnpetntr tov OntoMon péow tngHttpService
Kat 0T ovvéxela mpowbeital oty ValidatorService yia éAeyxo. MoAig oAokAn-
pwBel 0 EAeyxog eykvpoTnTag TNG OVvToloyiag wg TPOg To OXNHKA KAl TNV ECWTEPLKT
G opyavworn og Tomoloyia Sévtpov, n vinpeoia ParserService t StaPalet Siefo-
Swkd kat apxkomotel To Ae&ikd Controller, a ecwtepikr| dopry TOTOL Object yia
TNV avanapaotacn Twv TANPoopLdV kat Twv dedopévwy mov agopovv kdbe avtt-
Kkeipevo g Ovtoloyiag. O Controller eivat i o onpavtikn Sopr TG QApUOYNG
Hag, n omoia deiktodotel Ta media NG pe Paon To uuid kabe avtikepévov, evw otV
ovoia emekteivel dSuvapkd Ta media Twv ISON avtikepévov g Ovtoloyiag katd
v enefepyacia TovG. Te avtd TO ONEIO TPETEL VAL ETUONUAVOVE TIWG ATIAULTEITAL O

ACVYXPOVOG XELPLOHOG TWV TTAPATAVW AELTOVPYLWY woTe Ta Components mov e§ap-

3. YAOIIOIHZH 35

TwvTal and kdmota acvyxpovn Aettovpyia va “Eumvioovv” dtav ta Sedopéva mov
xpetdfovrtat eivat étotpa. Tia To AOyo avTo XpnoLUOTIOIOApE TOCO TA EVOWUATWHEVA
Events tng Angular, 600 kat T BipAobrkn rxjs tng JavaScript. [la mapdderypa,
10 TreeComponent to omoio ontikomoLel To §€vTpo TG Ovroloyiag kdvovTag xpnon
™G PtPAtoBrkng D3. js, pmopei va Aettovpynoet povo av éxet ndn avaktnOei, exeyxOei
kat StaPaotel To apxeio Ontology.json. Etol, opicape tnv vnnpecia DataService, n
omoia avalapPdavel tn didbeon Twv dedopévwy oe OAa Ta PUEPN TNG EPAPHOYNG HAG KAl

va “mvpodotroel” Ta oxeTkd Events.

1 Object {

2 "uuid": "c8bd7185-6349-4df5-8628-187115222987",
3 "name": "Ubuntu-Server-1",

4 "label": "Server",

5 "file": "Server.svg",

6 "parent": "25e2ce69-2445-4b28-9a71-e7ca®lbc57ea",
7 "state": "OK",

8 "lastUpdated": "2017-05-15 00:56:12",

9 "description”: "No issues were detected.",

10 "slotAvailability": [false, true, true, true],
11 "children": ["9c5d5b73-68ac-4a9d-92a7-7c60e492a7bd"],
12 "info": {

13 "0S": "Ubuntu 16.04.2",

14 "brand": "IBM",

15 "chassis_type": "Rackmount",

16 "description": "Server asset",

17 "form_factor": "7U",

18 "model": "88861TU",

19 "series": "BladeCenter S"

20 }s

21 "metrics”: {

22 "cpu_loadl": 0.5,

23 "cpu_load5": 0.7,

24 }

25}

Listing 4: Aiemagn Xprotn: Avtikeipevo evtog tov Controller

3. YAOIIOIHZH 36

KvkAog2: Ontikonoinon Twv SVG MOAiG odokAnpwOei emtuxwg n @aon apyiko-
TOINONG 1] EQPAPHOYT| HAG EEKIVA VA OTITIKOTIOLEL TO GVOTNHA-0TOX0. APXLKA, Kot TTAAL T
vnnpeoia HttpService avaktd OAa ta SVG apyeia TOL AVTIOTOLXOVY OTA AVTIKEIHEVA
™G OvTtoloyiag HEow OXETIKWY AUTHOEWY 0TO AKpo onotmonHost : 8080/ resources
oto omoio déxetat artnoelg “akovel” o EEumnpetntrig Tov OntoMon. Ta . svg apyeia
auTa Ta €xel “aveBaoel” TPONYOLHEVWG O TIPOYPAUHUATIOTHG EVOWHATWOTNG, EVW 1] AVAL-
KTNon Toug AapBavel xwpa kdbe popd oV popTwVETAL EITE 1) OVerview eite 1 assetview
oelida, oe epintwon mov avtd avavewdnkav oto eviiapeoo.

T tnv emitevén vynAng enidoong amogacioape va mapépPovpe anevbeiag oto HTML
DOM mov mapdyet j Angular 6tov mepinynti 10Tov kat va tpocBétovpe kel Suvapikd
Ta SVG apyxeia, petaxetpilovtag ta wg umAok XML kadika. H mpooéyyion avtn pog emé-
TPEYE VAL KATAOKEVACOVE TIPOCAPHOOHEVOLG HTML kOUPOVG KaTd TO XpOVO ekTéNE-
OTMG TNG EPAPUOYTG KAl VAL ATTOKTHTOVE AR PT €AeyXO €Tt avTwV. L0TOCO, TO ONpeio
KA€LSi KATA TNV OTTIKOTOINOT) TOV GLOTHUATOG-GTOXOV HTAV 1) opyavwuévn Staoxion
Tov Lepapylkol dévtpov g Ovtoloyiag, ot kOpPolL Tov omoiov eival, TPAKTIKA, Ta
avtikeipeva tov Controller. Zvykekpipéva, pe T pébodo traversal() Swaoyilovpe
He BFS to 8¢vtpo g Ovtoloyiag ava emineda, Ppiokovpie molo SVG avTioToLXel 0TOV
TpéXOVTa KOUPO péow Tov uuid Tov Kat To TPooHETov e WG PUANO 0TO LTTApPXOV HTML
DOM §évtpo Ttov meptnyntn totob. EmAéyovtag katd BovAnon tov kouPo-agetnpia
yta to BFS eivat eDkolo va amelkovioove ouykekpiéva SOUKA HéPT) TOV GLVOALIKOD
OVLOTNHATOG-0TOXOV, SLATPEXOVTAG TO AVTIOTOLXO LTTOSEVTPO.

H napandve Stadikacia mapéxet évav aflomioTo Kal GUVETT) TPOTO ATEKOVIONG TNG
Ovtoloyiag Tov Pactkod oTpwpatog péoa otn Atemagn Xprnotn tov OntoMon, npo-
oBétovtag Tovg SVG kouPovg pe owotr oelpd(mpwta ol parent KOpBOL KaL 0T OL-
véxeta ot child koppor). Zro onueio avtd, woTdCO, TPOEKLYE TO (TNHA TNG CWOTHS
Tonofétnong Twv SVGs péoa oTnv ekdotote oehida TNG EQAPUOYNG HAG, TPOKELE-
VOU TO OUVOALKO OTITIKO QTTOTEAECHA VA €ival OLOLWOEG KAl VL AVTOTIOKPIVETAL OTNV
TPAYUATIKOTITA, OTIwG aTh) kaBopiletat péoa otnv Ovtoloyia. Tia tnv avtipetwnion
ToL (THHATOG AVTOY, ekpeTaANevTrKape TOo0 TNV inline 1816TNTA s10t OV OpioTNKE
anod TOV MPOYPAUHUATIOTH EVOWHATWONG EVTOG TOV KWOLKA TWV .sVg apXelwy, 600 Kal
v 8otnTa parent tov avtikepévoy g Ovtoloyiag. Ta Prjpata mov akohovBovpe
KATA TNV ATEKOVIOT] EVOG AVTIKELHEVOD eivat Ta e€NG: 1. EVTOTUOHOG TOV AVTIKEWWEVOL-

natépa 2. éEAeyxog tng Stabeopotnrag twv slots Tov avrikepévov-natépa 3. dafPa-

3. YAOIIOIHZH 37

opa TG TG Tov mpwtov dabéoipov slot(onueto avagopdg, dtaotaoelg) 4. vmo-
AOYLOpHOG HAONUATIKWY CUVTEAECTWV KAl EQAPUOYT| HETAOXNUATIOUWY 0TO SVG LTIO

tonoBétnon(petaxivinon kat KAIHdkwon)

/ object0 \

contains

object1

contain.

object2

contains

object3

contains

slot

111

slot

slot slot

)

o\

Ly
~

< <

SVG- SVG-
object4 object5

SVG-object2.

SVG-object6

SVG-object1

Y-Axis

object4 object5 object6

SVG-object3]
SVG-object0

,,,,,,,,,,,,,,,,, X-A¥iSee e mmeemmeemnenas

Ixfua 7: Avniotoiyion 6évipov Ovroloyiag o€ eppwlevuévovs HTML DOM képfovg

KvkAog3: Etdonouoeis o Ilpaypatiko Xpovo Katd tnv televtaia ¢daon tng Aet-
Tovpyiag g, n Atemagn Xprjotn tov OntoMon €MKEVIPWVETAL GTNV TOLOTIKI] TIaL-
povoiaon TNnG TPEXOLOAG KATAOTAONG TOV CLOTHHUATOG-OTOXOV KAl TNV ATEIKOVION
™G anddoong katdotaong Twv Sopkwv Tov povadwyv. To mpwto Pripa ya TV emi-
TeLEN TWV OTOXWV AVTDV HTAV 1] AVAKTNOT] TWV HETPIKWV TTOV GUYKEVTPWOE TO HEGAIO
OTPWHA O TTPAYHATIKO XpOVvo.)G ek TOVTOV, evowuaTwoape otn Aermagn Xpnot
AAAN wa vmnpeoia, Tnv PollingService, tnyv onoia pvBuicape kataAAnla wote va
otéhvel meplodika HTTP GET autrpata 0to dkpo onotmonHost : 8080/updates tov
E&vmnpetnt) Tov OntoMon pe 0KOTO TNV AvAKTNOT TWV TILO TPOCPATWYV EVIUEPD-
OEWV KATAOTAONG OXETIKA PE TO CVOTNHA-0TOXO, OTIWG AVTEG ONIOTLEVOVTAL ATIO TOV
[MapakorovOntr Tng mMAatgopuag pog. Kabe Update.json avtikeipevo mov mapalap-
Pdavet n Angular epapoyn avTIOTOLXEL O€ [Lo AVAVEWOT) KATAOTAONG EVOG AVTIKELLE-
vou NG Ovtoloyiag Kat, CLVETWG, TIPETEL VO AVTIKATOTITPLOTEL EVTOG TNG Alemagng
XpnoTn, Tpokeluévov va evuepwdei o TeAkdg XproTng.

Ooov agopd 11§ peTpikég anodoong, n Aemagr) Xprotn StaPdlet to medio metrics
tov Update.json avTikelévov kat amofnkevel TOMKA TIG TO TPOCPATEG UETPTOELG
anddoong. Ztn ovvéxela, To MetricsComponent Tig CUYKEVTPWVEL O€ £VAL GUVOTITIKO
Tiivaka 2 oAy, og Sopn KAELSLOD-TIUNG, O OTIOIOG TTPOOPEPEL UL YPTIYOPT| EMOTITELA
otovg Staxetptotég. [TaparinAa, To GraphComponent evowpatwvet Stadpaotika Sta-

YPAUHOTA T OTIOl AVATIAPLOTOVV [E YPAPIKO TpOTIO Ta Xpovodedopéva mov Katé-

3. YAOIIOIHZH 38

ypawe o Icinga kau anoBnkevoe n InfluxDB. Ta Staypappata avtd kataokevaiovtat
and tov ZuvOétn Ipagnuatwv Tov vYNAod CTPWHATOS Kat OPTWVOVTAL SUVAULIKA
péoa otV KatdAAnAn oelida tng Atemagng Xpnotn, péow HTTP emkowvwviag, 0mwg
TIEPLYPAYALE TIPOTYOVHEVWG. AKOUN, PPOVTICALE VA OTITIKOTIOINOOVE Ot EeXwPLOTH
oehida ta apxeia kataypaeng(log files) ta omoia dnpovpyei 0 OntoMon e&umnpetn-
NG, TapovotdfovTtag ae xpovoloytkr) Oelpd TIG aAAayEég KaTaoTaong Aettovpyiag Twv
ETUEPOVG SOUIKDV HOVASWYV TOV GUOTHUATOG-OTOXOV.

H tehevtaia, alAd iowg Mo onpavTikn vanpeoia g Atemagng Xpnotn agopd tnv
gykatpn mapadoon Kat eEATOMKEVHEVT OTITIKOTIOINOT TV etdoTOoEWV aANayng Ka-
TAOTAONG TOV GLOTHUATOG-0TOXOV. [la TNV avTopatonoinon tng Stadikaoiag avTng,
eloayovpe tn pébodo updateUI(), n omoia ekteleital acvyxpova, HOvVo OTAV KaTA-
@0doeL 0T0 LYNAO OTpWHA KATTOLA EVHEPWOT) amtd Tov [TapakolovOntr Tov OntoMon,
KaTtadelkvhovTag oTL 1 Tpéxovoa OYn Kamotag SOUKNG pHovadag Tov CLOTHNATOG-
otoyov mpémnel va avavewbel. Apov dafaoctel To ekdotote Update.json avtikeipevo,
Kat ovykekpipéva ta media uuid, state kat type, apyikd eppavifetal pia meprypa-
@wn) eldomoinomn oto endvw de€Ld LEpog TG 006vng, vtodekviovtag ToLd Sopkd e-
poG avTipetwiCel TPOPANpa. Xtn ovvéyela, evromiletat o katdAAnAog SVG kopfog
Tov HTML DOM §£vTpov Tov TeptnynTr L0TOL oV avTioTolKel 0To uuid TG evnuépw-
ONG Kat, EVTOG avTov, epappofovtal oto ototxeio kAdong indicator ot petaBolég

OLOTATWV Kal TIHWV TIOV TeptypagovTal oto Update.json avTikeipevo.

3.8 ZXvvOeon Ipagnuatwv pe Grafana

Onwg avagépape TPONYOVHEVWSG, 1) EVOWHATWOT YPAPIKWY TIAPACTACEWY 0T Ale-
napn Xpnotn eivar KopPikng onpaciag yla Tn oLVONKN eumelpia Tov TEAKOD Xpr)-
0T, aAld kat TNV anotedeopatikotepn dlaxeipion tng mapakolovboluevng vrrodo-
uns. Ipokelévov va metvxovpe peiwar TOv LTTOAOYLOTIKOD POpTOL Yyl TNV Angular
EQPAPOYN, AVABECOVLE TNV KATAOKEVT) TWV SLaypappdTwY anddoong ToL GUOTHHATOG-
0toxXoL o€ pia EexwptoTn Hovada AoyLopikol, eykafloTwvTag Ty To TpdoPATH £K-
doon g Grafana(4.3) otov emPAémovra kopPo(hypervisor) kopPo. Ztn ovvéyela mpo-
Xwprjoape oTn pOOULOT TV ATAUTOVHEVWY TTAPAUETPWY TIPOKEILEVOL 0 XuvOETng Ipa-
PNUATOY TNG TAATPOPUAG HAG VO ATTOKTNOEL TN {nTovpevn AettovpytkotnTa. Apxikd

npoodiopioape TG TAnpogopieg yia tn ovvdeon pe to backend meparov amobn-

3. YAOIIOIHZH 39

KEVOTG XPOVOOELPWY, KATw and Tov kataloyo /etc/grafana/, Bétovrag tn Paon

InfluxDB wg v mnyn etc68ov xpovodedopévwv:

2 # Protocol, access domain, port
protocol = http
domain = localhost
http_port = 3000

4
5
6 root_url = http://localhost:3000
7 # Basic AUTH for login

8

enabled = true

LA

2 "Name": "Cluster Metrics",
3 "Default": true,

4 "Type": "InfluxDB",

5 "Url": "http://ontomonHost:8086",
6 "Access": "proxy",

7 "Enable_http_auth": false,
8 "Details": {

9 "Database": "icinga2",
10 "User": "icinga2",

11 "Password": "secret"

12 }

13}

Listing 5: P00uion nnyns eioodov oty Grafana

O Saipovag tng Grafana emkowwvei angvBeiag péow HTTP artnudtwy pe tov e§umn-
petntn ™6 Influx, avaktdvrag ta mo npdogata dedopéva oe TakTd Xpovikd SlaoTh-
Hata. Me ta dedopéva avtd xTilel ypagrpata Tpaypatikod Xpovou, Ta onoia ava-
vewvovtat kabwg épxovtal véa Sedopéva, oKIaypapovTag ETOL TH CUUTEPLPOPA TWV
eTHEPOVG SOV Hovadwy o €va dedopuévo xpovikd mapdbupo.

To devTepo Kkat MO OVOLAOTIKO [EPOG TNG pLOoNG Tov ZvvBétn Ipagnudtwv ago-

4. TIEIPAMATIKH AEIOAOI'HZH 40

povoe To OTHoWo Twv panels péoa oto dashboard mov e€dyet n Grafana. Kafe
panel ecwkAeiel TO Sdypappa Hag CLYKEKPLHEVNG HETPIKNG anddoonG Kal amattel
ToV poodioptopod evog InfluxQL epwTrpaTog yia THY anmdKTNOT OXETIKWY XPOVOOdE-
Sopévov. Ta InfluxQL epwtripata mov diatvnwoape Empemne va eival EVENKTA Kat va
npocappolovrat oe Sta@opeTikég Sopukég Lovddeg, kabwg detypatoAnmtioape GAovg
TOVG KOHPBOVG TNG CLOTOLKIAG EKOVIKWY UNXAVWV TIAVW OTLG i0LeG HETPLKEG amOS0oTN.
AxolovBa, opicape template petaPAntég(my asset,interval), Tig onoieg ovpme-
ptAdPape ota InfluxQL epwtnpata wg napapétpovs. Etol, katagépae va mpooappo-
oovpe ta idla akpipwg panels ota xpovodedopéva SlapopeTIKWV servers, amoPevyo-
VTAG TV EMAVAANYN TAVOpOLOTUTIOV Kwdtka. MAALoTa, ekpeTaAAevdpevol To peydlo
gVpog VTooTNPLlOpEVWY TOTIWY Ypagnuatwv(my bars,lines,histograms,singlestats,pie
charts,gauges kAm) omtikonomoape anodotikd TNV anddoon kdbe dopkov pEpovg,
avaloya pe tov tomo tov. Téhog, pvBuicape tn Grafana va §ayet kabéva and ta
panels avtd péow evog exwplotod URL, amooKomwvTag 0TnV EVOWRATWOT TOVG OE

<iframe> otouxeia Tng Aemagng Xpnotn tov OntoMon.

4 Tepapatikn A§toAoynon

Ze auThV TNV EVOTNTA TAPOLOLALOVLE TNV EUTELpia pag and Tnv epappoyr| Tov OntoMon
oty npd&n. O otox06 pag Nrav va Pefatwboipe 0Tt N mpotetvopevn oxedioon eival
tkavn va ano@épet Ta {nrodpeva anotehéopata, aAld Kat OTL oL avoLKTOL KWSIKA Te-
xvoloyieg mov emhé€ape ovvepyalovtal appovika. Emurhéov, mpokepévou va moTto-
ToooLpE TN SLAAELITOVPYIKOTNTA TNG TAATQOPHAG HAG, peAeTHOAUE 2 SLAPOPETIKA

0€ AOYIKI] OLOTHHATA-OTOYOVG, T OTOL0L TTEPLYPAPOVE OTT) CUVEYELOL.

4.1 Bnpata Evowpdtwong kat EAéyxov

[Savikd Ba B¢ape va dokpacovpe tn Aettovpyia Tov OntoMon o€ €va TPAYUATIKO
Kévtpo Aedopévwv peyaAng KAHAKAG, wOTO0O0 KATL TETOLO eV NTaV EPIKTO oTA TTAA-
ola NG mapovoag epyaciag. 6 ek To0TOV, TO TEPIBAAAOV TO OTTOIO XPNOLHOTIOOAE
yla TiG SOKIUEG pag TAV 1) GVOTOLXIA TWV 3 EKOVIKWYV HNXAVWV TIOV EYKATACTHOAE
katd tn Stadikaoia Tng vAomoinong otov emPrénovta kOpPo. Emmpoobeta, Aapfa-

vovtag v oyny 0Tt to OntoMon e0Tidlel 0€ VTOAOYLOTIKA CVOTHHATA TOCO OTO €Ti-

4. TIEIPAMATIKH AEIOAOI'HZH 41

1ed0 TOL VAIKOD, 000 Kat AOyLopIKoV, kaBwg kat 0Tt Ta 2 oevapla mapakolovOnong
Tov peletnoape dev HTAV AvTIKPOOLHEVA, AANE CUUTANPWHATIKE, HTAV SuVaTd va
XPTOUOTIOCOVUE TIG IOL1EG aKPIPWG EIKOVIKEG UNXAVEG KAl OTIG 2 TEPITTWOELG, UELWD-
VOVTOG TOVG XPOVOUG avamTuéng Kot e§0IKOVOHMVTOG TTOPOVG GTO QUOLKO UNXAVIHA.
Ta Prjpata yia TNy EVOWUATOOT TWV GCVOTNUATWV-0TOXWV KAl TNV TPAYHATOTOINOT

Tov {nTodpevov eAéyxov cuvoyilovTal TapakdTw:

1. Apxika ovvtdooovpe pa Ovrohoyia o poper ISON 1 omoia akolovOei Tig oe-
SO TIKEG apYEG TTOV TTAPOVCLACAE KOl TTEPLYPAPEL AVANVTIKA TIG OVTOTNTEG KOl

TIG OX€0EIG TOL CVOTNHATOG-OTOXOL IOV TTpOKeLTAL Va TtapakolovBroet to OntoMon

2. Z1n ovvéxela, SpwVTag WG TPOYPAUHATIOTEG EVOWHATWONG GVOTHUATOG, TIPO-
xwpape otov kaboplopod Twv vnpectwv tapakoAovdnong, eAéyxov kat eldomot-
|OEWV 0TO UEOAIO OTPWUA. ZUYKEKPLUEVQ, TTPOadLopifovLe Ta AVTIKEIUEVA TTOV
anattel To Icinga kot VAOTOLOVUE TIG AVTIOTOLXEG GUVAPTOEIG-XELPLOTEG EVTOG

tov [TapakorovOntr Tov OntoMon.

3. MO\ BePfatwBolpe Ott ot emipépovg povadeg cuvepyalovtal ATOTENEOUATIKA,
eloepyopaote 0tn Atemagn Xprjotn tov OntoMon w¢ TeAkoi-XprioTeg Kat ava-
HEVOULE LLOL AVTITIPOOWTEVTIKT OTITIKT| AVATIAPACTAOT TOV CLUOTHHATOG-0TOXOV,
KaBwg Kat TnG TPEXOVOAG KATACTAOTG TWV SOUKWY TOV OTOLXEIWYV TTOL TTAPAKO-

AovBei n mMAat@opua pHag.

4. Téhog, pe okomO TNV eMAANOELON TNG ATOTEAEOHUATIKOTNTAG TOV UNXAVIOHOV
Tapadoong el0MOINOEWY 08 TPAYHATIKO XPOVO, TAPEUPIKAUE GTNV KAVOVIKT
Aettovpyiat TOL CLOTHUATOG-CTOXOV KAl TPOCOUOLWOAUE KATAOTAOELS AOTV-
xlag 1 vynAov @opTov oTig onoieg pmopei va Ppebei o choTHA-0TOXOG, TTPOOT-
SoKWVTAG OXETIKEG EVIEPWOELG KATAOTAONG EVTOG TNG Alemagpng XproTn Tov

OntoMon.

4.2 TIlapakolovOnon @vowig IT Yrodoung

e avtrv T dokIpn 0 0TOX0G Hag ival 1) TapakoAovOnon kat ONTIKOToINoT THG PL-
otwkng(hardware) vmodoung oto ecwtepikd evog Kévipov Aedopévwv. Enedn ta obvy-

xpova Kévtpa Aedopévwv ecwkAeiovv mohvapiBpeg puotkég ovtotnteg, emAégape va

4. TIEIPAMATIKH AEIOAOI'HZH 42

€0TIAOOVIE OTIG ONUAVTIKOTEPES A0 AVTEG, opiovTag tnv akodlovdn tepapxia: Pida,
Koopog, Kévipa Aedopévwv, Pagia, E§ummpetntés, Movadeg EneEepyaciag, Aiokot,
Mvnueg kat Kdpteg Atktvov. @swpolie mwe oL QUOLKEG OVTOTNTEG AVTEG EMAPKOVV
yta TV oAokAnpwuévn detypatoAnyia evog VITOAOYLOTIKOD OLOTHKATOG O€ EMinedo
VAoV, Tapovatdlovtag Tig SuvatdTnTeG TNG TAATPOpag pHag. H opydvwon tov ov-
YKEKPLLEVOVL GVOTNHATOG-0TOXOV PacioTnKe og TANPOPOpPieg TOL PpriKaple CXETIKA e
™ Sopr Twv Kévipwv Aedopévwv oto dadiktvo, kat akodovbwg mpaypatonomoapie
HLOL AVTIOTOIXLOT] TWV TIPAYHATIKWV QUOIKWDV HOVAOWYV O EIKOVIKEG.

H Ovtoloyia mov cvvta&ape yia avtry tn ok mepiéxet 1 Kévtpo Aedopévov, 2
racks, 5 eummpetnTég ko moAvdpBua avtikeipeva enegepyactwy, pvnuwv, dickwv
Kat kaptav Siktvov. (g Telkoi xprioteg anogaocioape va mapakolovdroovye tnv
VTOdoT AVTH WG TTPOG TOVG EEUTINPETNTEG, YLA TOVG OTIOIOVG OpioApE TIG AKOAOVDEG

vnnpeoieg mapakoAovBnong oto Icinga:

Physical Asset Icinga Services Metrics
check_load, procs num, cpu usage,
CPU check_procs, average
cpu_stats load(1m/5m/15m)

per partition,

disk usage & capacity

Disk check disk, io_stats reads/s, writes/s,
tps, iowait
memory usage &
Memory check_memory capacity, swap usage

& capacity

transmit/s &

check_traffic, receive/s per

check_http,
check_ssh,
cluster_zone

Network

to cluster

interface, hostalive,
ssh time, connection

IMivakag 2: Yrnpeoies mapakolovOnons yia 1 uoiks voSoun

Ooov agopa tov [TapakorovOnti Tov OntoMon, TpwWTOV TpOTOTOLOAE TO Observer. py

module yta va tpoodlopicovpe Ta OVOLATA TWV SETVers oL TPOKELTAL VA TTAPAKOAOV-

Onoovpe aAAd kat va KAAECOVE TIG AVTIOTOLKEG OLVAPTHOELG-XELPLOTEG. AgDTEPOY,

enekteivovtag To module services. py vAomotoape tig ovvaptriioeigmemory_check(),

disk_check(), cpu_check() kot network_check(), oto cwpa tov omoiwv Ppi-

OKETAL 1] AOYLKT| KAl OL EAEYXOL VLot TIG EVIHEPWOELG KATATTAONG. ZXETIKA (L€ TNV OTITL-

4. TIEIPAMATIKH AEIOAOI'HXH 43

KOTI0INOT) TwV e1d0TOIN oWV AANAYTG KATAOTAONG EVTOG TNG Atemagng XproTh, apke-
OTHKApE O€ [a amAr] alhayn Xpwpatog(KokKLvo, Tpdotvo, kitptvo) tov indicator
otolxeiov Tov avtioTtolyov SVG kopuPov, avaloya pe TnV TPEXOLOA KATAOTAOT AgL-
Tovpyiag Tov(OK, WARNING, CRITICAL).

Ztn ovvéxela elon\Bape ot Aertagn Xprotn tov OntoMon péow evog efumnpetnr
LOTOV, WOTE Va SOVE AV 1| TPOCPEPOUEVT] OTITIKOTIOINOT] AVTATIOKPIVETAL OTLG ATTALL-
THOELG TOV VTTOKEIHEVOV CLOTHHATOG-0TOXOV. [TpdypaTtt, Tapatnpove TV ePPWAEL-
Hévn opydvwon twv SVGs otn oelida g epappoyns, eva kabe dopukn povada Ppi-
OKETAL OTNV avapevopevn Béomn. Avto anodetkviel TNV 0pHOTNTA TWV VITOAOYLIOHWY
KAl TWV HETACYNUATIONWY TIOL e@appooe N Angular eappoyn katd tnv ene§epyaoia
Tov 8évtpov g Ovtoloyiag kal TNV Mpoobnkn Twv avtiotolywv kKOpBwv oto DOM.
2V kopvr opadomolovvtal Ta avTikeipeva Tng Ovroloyiag o€ pevov, oTa aplotepd
@aivetal To Lepapxtkd §évtpo tng OvVToAoyiag Tov CLOTHUATOG-OTOXOV, VA 0T Oe-
€14 0 Tehkog xprotng PAéneL emumpdoBeTeg MANpoPopieg OXETIKA pe T Soptkr| povada

mov amnetkoviCet n) oehida oty omoia €xet mAonynOei.

&% OntoTree @ Overview B DataCenter &= Rack [J Server & Disk @ Processor == Memory 2 NetPCl [Cooler B Events S¢d

Ontology Tree Asset: APC-Rack-1
APC-Rack-1
Primary Info
T 12-client2 "
icinga2-master1 icingazclient 'einggZ cllen Brand Description Model Type
o o o APC Rack Asset AR4038A ‘Wall Mount Cabinet
Secondary Info
Inte (Clsco-NetPCL1__Intel-CPUEBsCo-NetPCl-2 IM%PHCDNQPCI
1osTh) e HosTDISEGaTens. HOSTDSESRaTIenS
[eXe) OO0 0000 Dimensions(H/W/D) Units ~ Weight_lbs
77295445
Current State
Status LastUpdated Reserved Slots
© WA b
Show Metrics
Metrics Visualization
None Basic Detailed
Refresh Graphs
© ontoMon - 2017 Github @

Ixnua 8: Aiemagr XpHoty: ontikomoinon uoikhs vroSouns

[la TNV Tpaypatomoinon Tov EAEYXOV TOV UNXAVIOHOD €L0TOIOEWY, XPNOLHOTIOL)-
oape o epyaleio stress (1) tov Unix, To omoio ivatl IKavo va YEVVIOEL KAl va €TTL-
BaAAeL @opTO epyaciag o vTOAoYLoTIKOVG KOUPOVG. ITio cuykekpipéva, ovvdeOnKkape
Héow ssh oe pa amd TIG 3 e1KOVIKEG pnxaveg Tov vontob Kévtpov AeSopévwv pag kat
emPapOvape tn Aettovpyia Tng pe acvvriBota peyalo @opTo epyaociag wg TPog Tov
ene€epyaotn), T pvrpn kat to Sioko. Avapévouvye, Aotmdv, eviuépwon TnG KatdoTa-

onG Tov cuykekptuévov egunnpetntr oe CRITICAL 600 Siapkei To stress TeOT, €Mma-

4. TIEIPAMATIKH AEIOAOI'HZH

Ixnua 9: Aiemagn Xpnot: ypagikt avamapkotacs UETPIKWY amodoons

44

vagopd og katdotaon OK 6tav ohokAnpwbei, kat oxetikég eldomoinoeig oto Ul Tov

OntoMon. Onwg @aivetat Kat 6Ta OTIYHLOTUTIA TTOV TIapaBETOVE, N TAATPOPUA [aG

emBePatwvet Tig vroBéoelg pag oty Tpakn, mapadidovrag eldomotroelg oe TPaAypa-

TIKO XPOVO OL OTIOLEG AVTATIOKPIVOVTAL GTNV TPEXOVOA KATAOTACT TNG TapakolovBov-

nevng vrodopns. Etat, Stevkoldvetal onpavtikd o épyo Tng dtayeiplong Tov Kévtpov

Agdopévwv.

spawn 8 workers spinning on sqroot() for 45 seconds
stress --quiet --cpu 8 --timeout 45
spawn 8 workers spinning on malloc()/free() for 45 seconds

stress --quiet --vm 8 --vm-bytes 256M --timeout 45

Listing 6: Command to stress hardware assets

& ontoTree @ Overview B3 DataCenter == Rack [J Server & Disk @& Processor == Memory @ NetPCl

Asset: icinga2-masterl

I e s

Corsair-Mem-1
HGSB@H \me\é))Pul CiscoNetPCl-1

o

Secondary Info

Color ~ Chassis_type ~ Form_factor Dimensions(H/W/D)
Black Rackmount v 28917512

icinga2-master1

=] - 0s
Ubuntu 16.04.2

Current State

Status Last Updated Reserved Slots

2017.0522 011034

Metrics Visualization
O None O 8asic O petalled

000 €D

© ontoMon-2017 Githuo @

Ixnua 10: Aenagn Xproty: eidomoinon kardotaons CRITICAL

4. TIEIPAMATIKH AEIOAOI'HZH 45

4.3 TIlapakoloVvOnon IMlatgopuag emmédov Aoyioputkov

21 Oevtepn SoKLUn LG ATOPAGIOALE VA EOTIACOVE 0TV TTAPATHPNOT EVOG VTTONO-
YLOTIKOV OLOTHHATOG Oepedtwpévov oo eminedo Tov Aoytopikov(software) kat Oxt Tov
VAKOV, Tpokelpévov va Befatwbovpe 6Tt To OntoMon eivat Tpaypatt ikavo va dia-
XELPLOTEL ETEPOYEVT) CLOTHHATA HECW TNG APTPIHEVIG LOVTEAOTIOINOTG AVTIKELUEVWY.
Me avtdv Tov Tpdmo pmopéoapie va Byalovpie XproLo OVUTEPAOUATA OXETIKA HE TO
€VPOG TWV CLOTNUATWV-CTOXWV OTA OTola Umopeil va evowpatwdel o OntoMon. H
TAAT@Oppa Aoytopkob ov emhé€apie va apakolovBnoovpe ntav éva Ceph cluster,
dnhadn pa ovotoiyia kKOUPwV TEvw oTovg omoiovg Tpéxel To Ceph, €va ovotnua Ao-
YIOULKOV Ylal TV KATavepnuévn kat kKApakwotpn arnodnkevon dedopévwv. Eva Ceph
cluster amoteheital amd mohvapiOpes ovToTNTEG AOyIopIKOD, OTIWG Monitors, OSDs
kat MDSs, kaBepid anod T omoieg MPOoPEPEL CLYKEKPLUEVEG VTINPECieg oTo cluster
kat viomoteitat pe éva Ceph daipova-diepyaoia. IlapdAAnAa, n opydavwon tng eow-
Teptknig Tov douns Paciletar otov optopo Pools, Placement Groups kat Objects,) ma-
pakolovOnon Twv omoiwv kpivetal avaykaia yia tnVv enifAeyn evog Ceph cluster. To
Baowkd xapaktnplotikod Tov Ceph eival dtt meTv)aivel VYNAT emidoon akoun katl xwpig
egeldikevpéveg ovokevég amobnkevong oe eminedo LVAKOD, evw oL AetTovpyieg Tuprva
OXETKA He TN Ayn ano@doewv alld kat Tnv anobnkevon, ToroBétnon kat avamna-
PAYWYT] TWV AVTIKEILEVWY HEoa 0TO object store TOL(RADOS) mpaypatomotovvTal o€
entinedo Aoylopkob ovpgwva pe Tov akyoplbpo CRUSH. XpnotlomolwvTag To epya-
Aeio ceph-deploy eykataotiioape to Ceph oty 1101 vtapxovoa cvoTolyio elkovL-
KOV pnxavay, opiCovtag 1 Monitor KOpBo yla T0 GUVTOVIOHO TWV AELTOVPYLOY EVTOG
Tov cluster xat 2 OSD kopfovg yia tnv e§unnpétnon Twv attfoewv anodrkevong kat
avaktnong avtikelpévwy ano 1o RADOS. Aedopévov oti to Ceph cluster pag anote-
Aeitat ano 2 OSDs kat €€’ optopov Satnpei mapandvw and éva avtiypaga kabe avti-
KeILEVOL 0TO object store, opicaple Tov Tapdayovta avanapaywyng(replication factor)
TOV {00 € 2 TIPOKELPEVOD Va eival EQIKTO va gTaceL o€ active+clean kardotaon.

Onwg KaL 0To TPWTO 0EVAPLO, TO TPWTO Prpa yla TNV evowudtworn tov OntoMon
OTO GUYKEKPLHEVO GVOTNHA-0TOXO TtepthapPavel T ovvtagn evog Ontology.json ap-
xetov, dnAadn pag avotnpwg dounuévng Ovrtoloyiag n omoia va TepLypaget ava-
AuTiKA TNV ecwTeptkr Tov opydvwon. H ovykekpipévn Ovrtoloyia elodyet Ty &g
tepapyia: Pifa,Koopog,Kévtpa Aedopévwv,Zvotoryies, Koppor,Ceph-Monitors kat

Ceph-OSDs. ITio ovykekpipéva, n tomooyia pag aroteleitat and 1 Kévrpo Aedopé-

4. TIEIPAMATIKH AEIOAOI'HZH 46

vwv, 1 Ceph cluster, 3 Ynoloyiotikovg Koppovg, 1 Ceph-Monitor kat 2 Ceph-OSDs.
Ze auTo To onueio a&iCet va onpewwoovpe nwg avti ya To Ceph, Ba propovoape va
napakolovOroovpe omoladnmote AAAN TAATQOpuUa AoYIOpIKOV, apKel va vTrpye Sta-
Béowun wa ovpPatr ovroloykr| eptypa@n tg. Mo ohokAnpwBei n ovvra&n g
Ovtoloyiag emAéyovtag ta emBountd SVG apyeia ya Ty avanapdotaot tTwv dop-
KOV povadwv Aoylopikov, ta anootéAlovpe otov E§unnpetnth tov OntoMon. Ako-
AovOa, SpwVTag WG TPOYPAUHATIOTEG EVOWUATWONG, EMEKTEIVOVIE TO HECAIO OTPWHA
Tov OntoMon kat opifovpe oto Icinga TI¢ Mapakdtw vinpecieg eEAEYXov, oL oToieg
SetypatoAnmrovv Aentopepwg to Ceph cluster kataypdpovtag TiG KatdAANAeG HeTpL-

K€G amOS00NG Yl TO CUUTEPACHO TNG TPEXOVOAG KATAOTAOTG KAl CUUTEPLPOPAG TOL:

Software Asset Icinga Services Metrics
daemon_state,monmap_-
check ceph _daemon epoch,mon_-
Monitor —Ceph_ ? poch,mon_
check_ceph_mon total, quorum_-

in,quorum_out

daemon_state,read_-
bytes sec,write_ -

OSD check_ceph_daemon, bytes sec,in_osd,out -
check_ceph_osd osd,up_osd,down_-
osd,apply lat,commit_-
lat
health_-
status,epoch,num_-
check_ceph_health, pgs,pg._-
Cluster check_ceph_df states,objects_per -

pool,total GB,total -
used_GB,raw_used_pct

Iivakag 3: Ynnpeoies napaxorovOnons yia ty vodoun Aoyiopikov

Tavtoxpova, Tpomomotove kat TdAL To faciko okeleto Tov [apakolovOnti Tov OntoMon,
ILE OKOTIO TOV OPLOUO TWV AVTIOTOLXWV oVVapTHoEwV-Xelplotwy. Eni mapadeiypati, oto
module observer. py kaBopiocape Ta FQDN Twv kopPwv tov Ceph cluster tovg omoi-

0VG TTPOKELTAL VAL TTAPAKOAOVONOEL 1) TAATQOPUA HAG, EVW PPOVTICAE VA CUUTIEPIAA-
Bovpe kat TIG KAOELG TWV CLVAPTHOEWV EAEYXOV e Ta kKaTaAAnAa opiopata. Ev ov-
vexela, enekteivape to services. py module vAomolwvTag Tig CUVAPTHOELG-XELPLOTEG
check_ceph_health(), check_ceph_daemon(), check_ceph_df(), check_-

ceph_mon() kat check_ceph_osd(), ot omoieg mapalappavovv Ta oXeTIKA XpOVO-

4. TIEIPAMATIKH AEIOAOI'HXH 47

dedopéva, emiredovy ovykpioelg kat TeEAkd ovpmepaivovy Ta enineda anddoong Tov
OVOTHHATOG-OTOXOV.

Onwg kot Tponyovueva, eloepxopacte otn Aenagn Xprjotn tov OntoMon kat emiPe-
Batwvovye Twg N unxavn onTikonoinong Aettovpynoe pe amolvtn emtvxia. Ta avti-
keipeva g Ovroloyiag eppavifovtat eppwAevpéva oTig oeAideg TG eQappoyng, ma-
POLCLALOVTAG UL YEVIKT] ELKOVA TOV TTAPAKOAOVOOVHEVOL GUOTAATOG AOYLOUIKOD.
Suykekpiéva, 1 Thonynon otn oekida /assetview/Ceph-Cluster-1 amewovilet
ovvolika to Ceph cluster kat mpoo@épet éva dashboard yia tnv mapakolobOnorn tov
oe paypatikd xpovo. Ta va edéyEovpe v anokpiotpdtnta TG Atemagns Xpnotn,
XPTOLLOTIOCAE TO eVowpaTwuévo epyaleio rados bench tov Ceph, To onoio mpo-
oopolwvel paikés eyypagés kat Stafaocpata avtikepévov oto Ceph cluster. ITpay-
HaTL, Ta avTioTotXa SlaypapUaTa Tov eVOWHATWVOVTAL and Tov XvvOetn Ipagpnud-
TV avavewdnkav avtopata, mapovotalovrag akpiPeiq Tiég anddoons, Onws avtég

TPOEKLYAY atO TN SOKII HAG.

&5 OntoTree @ User

Primary Info

Ontology Tree

Ceph-Cluster-1

Description Platform Version

icingaelent2 Distributed Object Storage Cluster ~ Ceph Jewel v10.02

icingaz-mastert icingaz-clientl

Replication_factor
2

Ceph-DSD-4 Secondary Info

Ceph-MON-D Ceph0SD3
Num_nodes ~ Num_mons Num_osds Num_mds
3

1 2 [
Current State

Status LastUpdated Reserved Slots
N/A 344

Show Metrics

Metrics Visualization

O None O Basic O Detailed

Refresh Graphs

© ontomon - 2017 Github @

Ixfua 11: Aenagry Xprioty: ontikomoinoy vimodouns Aoyiopikot

4. TIEIPAMATIKH AEIOAOI'HZH 48

TéNog, amo@acioaple Va TPOTOUOLWOOVE Hia KATAGTAOT AMOTVXIEG TOV CVOTHUATOG-
0TOX0V, WoTe va PePatwBovpe yia TV ETOLOTNTA TOV pnXaviopol eldomotnoewy. (g
ek To0TOV, ovvdebnkape oe évav OSD koupo tov Ceph cluster kat otapatioape xet-

pokivnta TV avtiototyn diepyaoia.

1 osd@icinga2-clientl:~$ systemctl stop ceph-osd@4.service

2 osd@icinga2-clientl:~$ systemctl start ceph-osd@4.service

Listing 7: Xeipiou6g ceph-osd daipovar

Eneidn, mAéov, ot evepyoi OSDs tov ovoTtripatog-otdxov eivat 1 kat 0xt 2, n vyeia Tov
Ceph cluster avapévetat va Aafet tnv tiu HEALTH_ERR. Qot600, poAi “Savaonkw-
oovpe” To OVYKeKPLUEVO 0sd-daemon TepIHEVOVE VEA EVIIEPWOT] KATAOTAONG KAl
emavapopa NG vyeiag Tov Ceph cluster oe HEALTH_OK. Ta emopeva oTLyloTUTA ETTL-
BePatwvovy OAeg TIg VITOOECELG IOV TIEPLYPAYALE KAl TILOTOTOLOVV OTL 1] A@nPNUEVN
Hovtelomoinon mov xpnotpomotel To OntoMon yia Ti§ vinpeoieg mapakoAovOnong

KaLL OTITIKOTIONOMG £XOVV TIPAYHATL EQAPUOYT| OE ETEPOYEVT] VTOAOYLOTIKA CLOTHHATA.

& OntoTree @ Overview b DataCentre [} Cluster & Node % Monitor 7 0SD 3 Event:

0SDs DOWN

Ixnua 12: Aenapn Xprioty: Ceph dashboard kou evdein opddpatog

5. ZYZHTHXH-XYMIIEPAXMATA 49

B Events

. =i & . "
l) o A
Asset: Ceph-Cluster-1 Zoom Level: 1.00 Details
0 e -
Primary Info

Description Platform Version Replical -l \/
Distributed Storage Cluster Ceph Jewel v10.0.2 3:5‘:: No issues were

Secondary Info

icinga2-mastert Icinga2-clientt
Ceph-MON-D Geph-0SD4

Num_nodes Num_mons Num_osds Num_mds
3 1 2 0

Current State

icinga2-client2
Status Last Updated Reserved Slots
s @ 070522191916 34

Show Metrics

Meirics Visualization
© None O Basic @ Detalled

Refresh Graphs

© ontoMon -2017 Githuo @

Ixnua 13: Aenagn Xproty: emroyns emavagopd katdotaons Ceph cluster

5 Zv{ntnon-Zounepacpata

Zovoyn

v napovoa epyaocia eiape TNy evkapia va peletroovpe epyaleia Staxeipiong vmo-
Sopng Kévipwv Aedopévwv kat va efotkiwBolpe pe Tig €vvoleg Tng mapakoAovon-
ONG KAl OTTIKOTIOINONG VTOAOYLOTIKWY CUOTNUATWV HEYAANG KAIHaKag og Tpaypa-
ko xpovo. To kivtpd pag va avantvgovpe tn Sikny pag mhat@dpua, to OntoMon,
fTav Kupiwg n EAAelyn epyaleiwv avolkToy kwSIKa oL va gival tkavd va Staxetpt-
OTOVV TAVTOXPOVA ETEPOYEVI] CUOTIHHATA TTPOCAVATOANLOHEVA EiTE OTO VAIKO, €iTE OTO
AoyLopikd. ZUyKeKPLHEVA, VAOTIOOAUE £Va EVEANIKTO KAl TTPOTAPUOCLHO TAAICLO Ao-
ytopkov(framework) mapakolovBnong, to onoio dev eaptatat and to evvololoyikod
TIEPLEXOHEVO TOV EKAOTOTE CLOTHATOG-CTOYOV.

To Baoiko xapaktnplotiko Tov OntoMon eivat 0Tt facifet TNV 0pydvwor Kat TG E0w-
Teplkég Aettovpyieg Tov oe pa Ovrohoyia, SnAadn oe po ONOKANpwWHEVT Kat QVOTH-
PG SOUNUEVT) TIEPLYPAPT] TOV EKAOTOTE CLOTHHATOG-0TOXOL. H apxitektovikr oye-
Siaon mov avalvoape mepthapPavel 3 Eexwplotd oTpwATA OV GLVepyalovTal Kat
EVOWHATWVOLY TTOAVAPLOpEG KALHAKWOLHEG TEXVOAOYIEG AVOLKTOD KWIKa. ZvyKeKpL-
Héva, To OntoMon ypnotponotei to Icinga wg GLAAEKTN HETPIKWY anddoong Tpaypa-
TikoD Xpovov, Tnv InfluxDB wg fdon amobrikevong xpovooetlpwy, T Grafana yia
ovvBeon ypaenudtwy kat v Angular yia v avantuén pag Stadtktvakn Stema-

¢n6 xpnotn. [apdAAnla, mpokeévov va kataotel Suvatr n mapakoAovbnon kat n

5. 2YZHTHXH-ZYMIIEPAXMATA 50

OTITIKOTIOINOT] TOV OVOTHHATOG-OTOXOV O€ TPAYUATIKO XPOVO, KaBWE Kal 1 amooToAn
EVIUEPWOEWY OTOV TEAIKO XPHOTI OXETIKA HE TNV TPEXOVOA KATAGTAOT AELTOVpYiog
Tov, avantvdape opiopéves povadeg Stacvvieong OV GUVOEEOLY TA CTPWHATA KAl
kaBlotovv Suvath TNV TPOCAPHOYH TNG TAATPOPHAG HAG 0TI OVANOYLOTIK Tapa-
KoAo0Onong mov emBupel o TeAkdg Xpriotng. OAeg ot evdiapeoeg emkovwvies Pa-
oiCovtal e kalag optopéva APIs Ta omoia avamaptotody Ty TAnpo@opia oe Hoper)
JSON.H mAat@dpua pag oToxevel KUpIwe 08 KATAVEUNUEVA CVOTHHATA (e TTOAVAPLO-
HOVG KOUBOVG, TAPEXOVTAG ULt CVVOTITIKT KAl TAVTOXPOVA AVTITPOCWTEVTIKT EIKOVA
™G vtodopng vtd apakolovBnon. Mahiota, n evowpdtwon SladpacTikwy ypaen-
Hatwv otn Atemtagn Xprotn StevkoAbveL TOV EVTOTIIOUO ONUEIWY GVHPOPNONG KAl V-
vtehel otn Pabutepn katavonon Twv aAAnAemidpdoewv TV eMUEPOVS HOVASWV TOV
OLOTHHATOG-0TOXOV. AKOWT, O TPOCAPHOOHEVOG OTIG AVAYKEG TOV XPNOTN UNXAVL-
OpOG Tapddoong el80TONOEWY TTOL AVTITPOOWTEVOLY AANAYEG OTNV KATAOTAOT A€L-
TOVPYIAG, ATOTVTIWVEL TIG TILO TTPOOPATEG AANAYEG 1] TAL YEYOVOTA TTOV OLVEPNOAV GTO
OVOTNHA-0TOXO O€ €Va OLYKEKPIUEVO XPOVIKO TTAAiT!1O.

[Tpoketpévou va motomotjoovpe 6Tt to OntoMon TeTvXaiveL ATOTEAETUATIKA TO OKOTIO
ylat TOV 0Toi0 0XeSIAOTNKE, LEAETHOAE 2 ETEPOYEVT] OVOTHHATA TA OTIOIL TIEPLYPA-
Yape pe avtiototxeg Ovtoloyieg, Tig omoieg dwoape wg i0o0do TNV MAATPOPHA HAG.
210 TIPWTO CEVAPLO, Xpnopomotroape To OntoMon yia va aviyvELGOLUE TNV 0pYd-
vwor Kat TNy enidoon tng euotkng vrodoung evog vontov Kévipov Aedopévwv. And
NV AAAn, 670 Se0TEPO GEVAPLO ATOPACICALLE VA EYKATAOTI|OOVE KAl VO LEAETHOOVLE
NV ano6doom evOG KATAVEUNHEVOL OVOTHRATOG anodnkevong dedopévwy oe eminedo
Aoylopkob, kat ovykekpipéva tnyv vyeia evog Ceph cluster.

Kat 0116 2 mepimtwoetg n mAat@oppa pag €8woe Ta avapevVOHEVa AmoTEAETUATA OGOV
agopd TNV mapakolovdnon, Tnv ontikonoinon kat Ty mapddoon eldonoloewy 0To
XPNOTH O€ TPAYUATIKO XpOVO. Zuykekplpéva, To OntoMon avtamokpinke tkavomot-
nTikd o€ 0Aa ta gpebiopata mov Tov Swoape Kal 0g OAEG TIG TPOCOHOLWOELS TTPAYULA-
TikoD eptPdAlovtog mov mpaypatonomoape. Katd cvvénela, 1600 1 mpoTetvopevn
oxediaom, 600 Kat 1) VAOTIOWOT| Hag KpivovTal MITUXNHEVEG OTa TTAAOLA TNG EKTIO-
vnong tng mapovoag epyaciag. ITapdro mov o 0TdX0G pag dev HTav n avantuén pag
TAATPOPUAG TPOOPLOUEVNG YL XPTIOT) 0TIV TTapaywyT), Oewpovpie mwg o OntoMon el-
odyel pia eVOANAKTIKT) TTPOGEYYLOT] OTOV TOPEA TNG TapakoAovONong LITOAOYLOTIKWY

OVOTNHATWY, TTAVw 0TV oToia Ba umopovoe va Pactotel avantvdn emayyeApuatikwy

5. 2YZHTHXH-ZYMIIEPAZMATA 51

IT epyaleiwv mapakolovOnong oto péAlov.

MeAMovtikég Enektaoelg

Av xat n mhat@oppa pag ndn vrootnpilet Tig o Pactkég SuvatoTnTeG TapakoAovOn-
ong kat Staxeiptong mToAVSIACTATWY CLOTNUATWV-CTOXWY, Eival CAPEG TTWG VTIAPXOLY
apketa meplBwpta PeAtiwong Tng molOTNTAG TWV TapeXopevwy vrnpectwyv. Ta peAlo-

VTIKA pag ox€dta oXeTkd pe To OntoMon, akoAovBwg, agopovv:

o Avotnpotepog EAeyxog TG Ovtoloyiag: oty mapovoa oxediaor, oL EXeyxoL eykv-
POTNTAG KAt OL TIEPLOPLOPOL TTOV EMIPBANAEL TO TTPOTELVOHEVO OVTONOYIKO OXMHaL YLaL
TNV TEPLYPAPT] TOV CLOTHHATOG-OTOXOV eival KAmwg meptoptopévot. Mia Avon Oa
HTopovoE va eival n evowrdTwor tov JISON-Schema oto Baoikd otpwpahttp://json-
schema.org/, evogAe§iloyiov Tov vtoatnpilel tnv eloaywyn oxohiwv(annotations)
Héoa oe ISON avtikeipeva. Etot, Oa pmopovoe va mpaypatonotndei evdehexng éey-
X0G w¢ TTPpog TN dopn Kat To ouvTakTikd Tng Ovroloyiag, kabwg kat va mpootebovv

netadedopéva yia Adyovg TANpOTNTAG.

o YrootnpiEn moAandwv backend facewv: Tpog 10 TAPHV N TAATPOPUA [AG VTIO-
otnpiCet povo tn Paon xpovooepwv InfluxDB. Qotdoo, Ba propovoaye va eme-
KTEIVOUE TO pECAio OTPOHA WOTE Vo VOO TNHPifovTal kat dAANeG TexvONOYieg yla
v anobnkevon xpovooelpwy, 6nwg TSTB, Elasticsearch kat Prometheus, divovtag

0ToV TEMKO XprioTn TN Suvatdtnta va emiAéget dOmota emBuylei.

 Evepynrikn Siayxeipion vrodoun: pia onpavTikn mpoodnkn oTig mapexOpeves vmn-
peoieg Tov OntoMon Ba pnopovoe va givat 1 VAoToINon evog pnxaviopov mov Oa
OVUTTANPWVEL TOV VTIAPXOVTA UNXAVIOUO €100TIO0EWV Kal 0 omoiog Ba emétpemne
v apeon mapéuPacn Tov TEAKOD XproTn 0TO CVOTNUA-OTOXO HEOW TNG AleTa-
@16 XprioTn. ZuYKeKPLUEVA, O TEAIKOG XPTOTNG apov evipepwdei yia tnv Tpéxovoa
Kataotaon Aettovpyioag Tng vrodoprng Oa pmopel va mpoxwproeL 0e OXETIKEG EVEP-
yeteg Sraxeiptong(my kheiowo server, emavekkivinon vmnpeciov diktvov, pvOpon
Sapovwv AoyLopukov KAT) ot omoieg Oa avagépovtal o CLYKEKPLUEVESG SOKES [LO-
vadeg. Mahota, n Stadikacio avtr pmopei va avtopatomotndel ekmatdebovrag to
OntoMon va mpaylatomoLel avtovopa TG eMOLUNTEG evEpyeleg péow akyopiOuwv
HNXaviknG pabnong. Ta mapaderypa, edv évag 6iokog Tapovotdlet apyn amokpLon
Kat VYNAEG Oeppokpaoieg, eivar apketd mBavo va mpokAnbel anwieia dedopévwv

070 apeco uéALov, ondte To OntoMon Ba umopoboe va TPoXwPNoEL AVTOVOUA OTNHV

5. 2YZHTHXH-ZYMIIEPAXMATA 52

amooVVEDT| TOV ATtO TO AEITOVPYIKO OVOTNUA UE OKOTIO TNV AVTIKATACTAON | TN

OLVTHP1OT] TOV.

o Ao@dalewa: ota mAaiota TG epyaciag avtng de Oéoape e TOAD VYNAN TpoTEPALO-
TNTA TNV A0PANELA TOV ETUKOLVWVLWV KAL TNV KPUTITOYPAPnon Twv dedopévwy mov
kaAeitat va Staxetplotel To OntoMon. QQ6TO00 OTIG [éPEG pag Kat Ta 2 avtd {ntn-
pata eivat Bapbvovoag onuaciag, Tpokeevov va e§ac@aliletal n akepatdtTnTa Kot
n aflomotia evog ovvBetov IT cvotrpatog. AkoovBa, oxedidlovpe TNV evowua-

Twon e&etdikevpé vy VTINPeoLOV ao@alelag oe OAa Ta otpwpata tov OntoMon.

o BeATLwpévog XeLpLopog apxeinv kataypagrs: OAa Ta cVYXpOova VTTOAOYLOTIKA OV-
OTHHATA KATAYPAPOLY TOCO TO LOTOPLKO TOVG, 000 KAl ONHAVTIKA YEYOVOTA 1] ATTO-
TLXiEG AVaPOPLKA [TN AELTOVPYia TOVG O apXeia kataypang. Ynootnpilovpe mwg
elvat Suvato va efaxBel xpriotun TAnpo@opia oXETIKA e TN CLUTEPLPOPA TNG KADe
Sopukng povadag kat Twv peta&d Tovg oxEoewv anod Ta apyeia avtd, EQOCOV ePap-
Hootel katdAAnhov emmédov avdvor. [ta To Adyo avTd OKOTEVOVE VA EVOWHATW-
oovpe éva gpyaleio 6mwg to Logstash 0to OntoMon, a@ov n mhat@oppa pag mepté-
XEL APKETA oVOTHHATA EMMESOV AOYLOpIKOD IOV SNUIOVPYOVV apyeia KaTaypaPng.
ITio ovykekpuéva, To Logstash eivat tkavo va cvvabpoioel, va dtafdoet kat va pe-
Taoxnpatiost oty embopunth poper ocvvheTa kat ToAvdpBua apyeia kataypagrg

kabwg avta dnuovpyodvtat.

Introduction

In this chapter, we outline the scope of our work. We first provide a quick overview of
the problem we are trying to solve and argue about its importance. Next, we shortly
describe some existing solutions and highlight potential problems in achieving their
goal. We move on to illustrate our proposed design and how it fits in as a solution,
meeting all requirements. Finally, we conclude with an early preview of some promis-

ing results and the structure of the document.

1.1 Problem Statement

The primary objective of this thesis is the design and implementation of a versatile,
general-purpose, real-time monitoring and visualization platform, named OntoMon,
that integrates well with heterogeneous computing systems. The proposed framework
is content-agnostic, in the sense that it runs equally well on more than one target
systems, either hardware- or software-oriented, without relying on their semantics.
OntoMon is founded upon a formal ontological description of the target system that is
about to be monitored and introduces an abstract object model to represent all entities.
Besides, in order to facilitate the supervision and management of IT infrastructure, it
supports a dynamic and highly customizable Web User Interface, that is generated on-

the-fly and offers a holistic overview of the monitored target system.

With the prevalence of cloud and distributed computing, constant instrumentation
and proactive administration of components inside large-scale deployments has be-

come a necessity in order to preserve high performance and quality of services. In

53

54 CHAPTER 1. INTRODUCTION

large scale environments, such as Data Centers that host multi-node computer clus-
ters, it is common that administrators have to deal with dense and diverse computing
systems that need constant supervision, due to asset failures, performance deteriora-
tion or under-utilization of resources. Thus, close attention must be paid to the oper-
ation of the underlying infrastructure, referring to both physical devices and software
services. Although existing monitoring solutions fullfill their goal, most of them are
designed to operate on specific target systems and have a rather narrow spectrum of
application. Thereby, the ultimate goal of OntoMon is to offer an interoperable and
unified monitoring solution, that alleviates the problem of developing system-specific
monitoring software to manage individual computing platforms. In this regard, the
proposed framework is designed to timely detect asset-related issues or abnormal be-

havior, and deliver respective real-time notifications to the end-user.

1.2 Motivation

In the era of Big Data, the exponential production rate of digital information, together
with the needs for data consistency and availability pose a challenging task on both the
academia and the industry: efficiently storage and processing of data in the petascale.
Therefore, it is essential that Data Centers, as well as all the entire IT infrastructure
that is housed within them, operates smoothly and seamlessly, in order to achieve high

levels of performance and sufficiently cover the current needs of the IT market.

Furthermore, the worldwide demand for new and more powerful IT-based applica-
tions, combined with the economic benefits of consolidating software and physical
assets, has led to the expansion of Data Centers in both size and complexity. Modern
Data Centers are more dense than ever, housing a huge variety of computing platforms,
varying from Cloud and Virtualization environments, to IoT applications. However,
in recent years, the environmental laws impose serious space, energy and power lim-
itations on Data Centers, making their administration even more sophisticated than
before. As improvements in processing engines, networking topologies and storage
equipment continue along their impressive paths, the IT community has recognized
the significant importance of efficient tracing and orchestration of the inner compo-

nents of large systems. Consequently, rise has been given to the development of new

1.2. MOTIVATION 55

toolset in the field of IT, referred to as DCIM . These tools are fully dedicated on the
supervision of Data Center infrastructure, providing real-time asset management and

integrated services to fulfill their design purposes.

Today, the area of DCIM is rapidly emerging, aiming at enhancing the efficiency, agility
and robustness of Data Centers. The majority of storage vendors and enterprises are
largely investing in this field, mainly driven by economy-of-scale benefits and the en-
deavour of improving storage technologies. Data Center asset management encom-
passes more than simply locating a specific asset. It additionally involves gaining a
deeper insight into the behavior of individual devices and services, by correlating their
configuration with real-time performance metrics. Once properly deployed, DCIM
solutions provide administrators with direct and clear visibility of the underlying in-
frastructure, such as server functionality, network connectivity or software availability.
Data center assets, either hardware- or software-defined, can be conveniently located
and instrumentated. In this way, provisioning of new assets can be timely scheduled,
so that system downtimes can be reduced, as the latter are usually translated in un-
predictable costs for the enterprise. For those IT organizations that consider device
intelligence and service agility as top priorities, the effective usage of DCIM software
is becoming a strategic necessity. Increasingly, a wide range of software tools and accel-
erated subsystems are combined to offer enhanced IT monitoring, management, and
control, with regard to an accurate, real-time, end-to-end view of IT service delivery.
Furthermore, DCIM software allows for efficient management of risks, distribution of

workloads away from failure points, and more cost-effective deployments.

Taking the aforementioned into consideration, it is essential to build a versatile and
adaptable DCIM framework that is capable of profiling different kinds of assets inside
modern Data Centers, regardless of their type. Hence, real-world entities inside Data
Centers should be represented in an abstract manner, while their visualization should
provide a holistic and intuitive overview of their current state of operation. In this re-
gard, the preferences of the end-user must be reflected, while avoiding the definition
of content-specific objects with static types or classes. The more generic and versa-
tile the implementation, the broader the area of application. Of course the traditional
features of DCIM software can be preserved or extended, allowing administrators and

engineers to make well-informed decisions about planning, forecasting and driving

'Data Center Infrastructure Management

56 CHAPTER 1. INTRODUCTION

automated systems to manage resources. In this context, we argue that visualization
of the Data Center layout, graphical representation and analysis of real-time perfor-
mance metrics, along with respective push notifications and alerts will definitely lead

to a more reliable, secure and sustainable operating environment.

1.3 Existing Solutions

Today, there is a great variety of DCIM software solutions available on the market of
IT, promising to face common system administration challenges. Varying from pro-
prietary, closed-source tools to free, open-source solutions, most of them introduce
some core features, such as asset discovery and tracking, real-time data collection, ca-

pacity planning, performance evaluation, alerting and others.

Despite their satisfactory performance and impressive capabilities, we argue that the
integration of DCIM software into the enterprise should adopt a different logic regard-
ing design. To begin with, the majority of most high-end monitoring solutions are
entirely commercial and closed-source. While these platforms are, generally, efficient
and qualitative, such as Sunbird ? and Hyperglance °, it is claimed that closed-source
monitoring solutions discourage end-users from deeply understanding their inner ar-
chitecture and components, resulting in non-customized, “black box” deployments. In
addition, solely depending on proprietary DCIM software can lead to vendor lock-in,
resulting in hardware conflicts or incompatibilities. At the same time, the open-source
alternatives are rather stationary and admittedly limited in number, employing out-
dated technologies. Most of them are based on the LAMP * stack, such as openD-
CIM [1] and Racktables [2]. Only a handful of them are actively developed today, like
Netbox [3], a promising DCIM tool currently designed by Digitalocean which greatly

inspired us to implement our own custom monitoring platform.

We also suggest that there is room for an alternative approach regarding the mod-
eling of the monitored infrastructure inside DCIM software. The majority of cur-
rent solutions are founded upon a rather conservative representation of supervised

assets, explicitly introducing static methods or type-specific handlers to manipulate

*https://www.sunbirddcim.com/
*https://www.hyperglance.com/
*Linux Apache MySQL PHP

https://www.sunbirddcim.com/
https://www.hyperglance.com/

1.3. EXISTING SOLUTIONS 57

them. Knowing beforehand the internal structure and specific information about the
basic building blocks of the target system, they propose class-oriented architectures
and encourage strong typing of internal objects. Therefore, their implementation is
intimately coupled with the semantics of the targeted system, while its expansion is
time-consuming. DCIM solutions abiding by these principles are obliged to define
specific attributes and behavior of individual components in advance, according to
their type, ruling out reusability and interoperability of code. Thus, hard-coded sup-
port is needed throughout their implementation. In essence, every object is treated
as an instantiation of a pre-defined asset prototype, with standard characteristics that
are usually determined by the respective software vendor. This design decision deci-
sively narrows the breadth of supported target systems and use cases. Furthermore, it
poses serious limitations regarding the level of customization by the end-user, so that
specialized needs can be served, either in the monitoring or the visualization layer. In
our work, we reject the approach of immutable objects and classes; instead, we pro-
pose generic and dynamic manipulation of abstract objects, along with programmatic

control and definition of well-structured APIs.

Besides, since OntoMon attempts to monitor diverse target systems, we decided to
structure it upon Ontologies. To our knowledge, there are no existing DCIM software
solutions based on Ontologies, in terms of determining the structure and concepts of
the monitored target system. We argue that mathematical Ontologies are a powerful
tool that can be effectively used to define the entities and relations of the infrastruc-
ture being monitored. An Ontology provides a unified, yet interoperable structure to
describe heterogeneous target systems, comprising of different assets. Enabling end-
users to generate the respective ontological description of their system and providing
it as input to OntoMon allows for modular design and great adaptation to personal-
ized administrator needs. Therefore, we regard Ontologies as the cornerstone of the
proposed design, offering support for dynamic content and higher customization ca-

pabilities, as it is further discussed later on.

Last but not least, after studying various DCIM platforms, we concluded that many
of them are rather complex in terms of structure and have multiple dependencies in
their deployment, as they attempt to incorporate diverse services into a single solution.
Meanwhile, most of them deliver a pre-configured User Interface for the supervision of

the infrastructure, that is built upon the static representation of the monitored assets,

58 CHAPTER 1. INTRODUCTION

resulting in reduced flexibility and expressivity. Conversely, the proposed framework
is based on a multi-level architecture, introducing 3 discrete layers that successfully
integrate open-source technologies to offer functionality. The User Interface provided
by OntoMon is fully-dynamic, generated on-the-fly based on the ontological descrip-
tion of the target system and is highly customizable in terms of asset visualization and

alerting.

1.4 Results

In order to evaluate the overall functionality of OntoMon, we configured a testing en-
vironment to simulate real Data Center infrastructure and operations. We studied 2
different use cases, involving both hardware- and software-based monitoring. There-
fore, we needed a testbed suitable for both cases, in order to showcase the versatility of
our platform with regard to the target systems it can manage. Thus, we set up a 3 node
VM cluster. The target system of each use case was represented by a different Ontol-
ogy, that was provided to OntoMon as input. As such, we assumed a notional Data

Center topology containing various assets and introduced the following scenarios:

» Monitoring the physical infrastructure of a Data Center:
In this scenario, the Ontology describes the hardware assets of the notional Data
Center. In our test we designedly imposed heavy computational workloads on
the physical components of specific nodes belonging to our virtual cluster and
waited for the corresponding updates in the Web UI of OntoMon. Indeed, we
observed an automatic UT update concerning the visualization of the respective
asset, indicating its performance degration. Alongside, a push notification was

delivered offering additional details about the issue that occured.

» Monitoring the software components of a software-defined Cluster:
In this scenario, we initially deployed a Ceph distributed storage cluster on the
existing virtual cluster. This time, the Ontology described the hierarchy of the
software assets inside the Ceph cluster, while the Web UI of OntoMon accom-
modated a Ceph-specific supervision dashboard. As in the previous scenario,
we interfered in the normal operation of the cluster and forced a Ceph storage

daemon to stop. Subsequently, we verified that OntoMon delivers respective

1.5. THESIS STRUCTURE 59

notifications and the automatic visual updates in the User Interface, indicating

the failure.

1.5 Thesis Structure

The structure followed in this thesis is described below:

« Chapter 2: presentation of the theoretical background and concepts that our

application is founded upon

« Chapter 3: analysis of the core architectural principles and design decisions

from a higher-level perspective

 Chapter 4: demonstration of the focal points of our implementation, reference
to the problems we faced during the development process, as well as the pro-

posed workarounds
« Chapter 5: evaluation and testing of our solution

« Chapter 6: concluding remarks and possible future extensions

60

Background

In this chapter, we provide all the necessary background knowledge required to fully
understand the design and implementation of the monitoring platform proposed in
this work. Initially, we review the basic principles of Ontologies along with their in-
tegration in modern software systems. In the next section, we thoroughly analyze the
concept of System monitoring and inspect the main features of the Icinga distributed
monitoring platform. After that, we discuss the importance of distributed storage so-
lutions today, present their most important aspects and concentrate on the structure
of the Ceph storage sluster. Furthermore, we provide an overview of the web tech-
nologies we used to build the User Interface of our OntoMon. More specifically, we
provide an inclusive description of Scalable Vector Graphics and debate why this web
standard could be part of the future web. Last but not least, we examine the contribu-
tion of Web Frameworks in the field of web development and outline the architecture

of a typical Angular application.

2.1 Ontologies

2.1.1 Definition

The word “Ontology” generates a lot of controversy and has been given different detf-
initions in the literature. Etymologically, the compound word “Ontology” combines
onto-, which derives from the Greek dv, dvrog(=“being”), present participle of the verb

eipi(=“be”), and -logia from Adéyog(=“logical discourse”). In this thesis, we adopt the

61

62 CHAPTER 2. BACKGROUND

definition given by Thomas R. Gruber in [5]: ”In the context of knowledge sharing, the
term ontology means an explicit specification of a conceptualization” Meanwhile, in
discussion to [6] he states: "In the context of computer and information sciences, an
ontology defines a set of representational primitives with which to model a domain of
knowledge or discourse. The representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations among class members). The
definitions of the representational primitives include information about their mean-
ing and constraints on their logically consistent application”

A conceptualization denotes an abstract semantic structure that is used to encode im-
plicit knowledge of a certain domain. Accordingly, its specification takes the form of
the definitions of representational vocabulary(classes, relations, and so forth), which
provide meanings for the vocabulary and formal constraints on its coherent use. Es-
sentially, an Ontology is a formal description of the entities, objects, concepts, and
relationships that are presumed to exist among them in a given area of interest, for an
agent or a community of agents. Ontologies can be regarded as taxonomic hierarchi-
cal views of the world that we wish to represent for some purpose. They concentrate
on providing a notion of shared understanding upon the perception of a domain of
knowledge, delivering a controlled and well-structured vocabulary. There is also an
expectation that the features of the proposed model in an Ontology should closely
resemble the real world. An Ontology is characterized by a common syntax(symbols,
expressions), explicit semantics, hierarchical organization of concepts and content rea-

soning.

2.1.2 Types

Today, Ontologies are closely associated with automated reasoning and are identified
as the basic building blocks of modern knowledge systems. Scientists in the field of

artificial intelligence categorize Ontologies in the following types:

« Domain Ontologies
« Upper Ontologies

« Hybrid Ontologies

2.1. ONTOLOGIES 63

Domain Ontologies A domain Ontology focuses on a specific part of the world and
attempts to model its basic concepts by providing particular meanings of the terms
applied to that domain. The representation of domain Ontologies is rather specific
and eclectic. Thus, incompatibility issues may occur among different Ontologies that
describe the entities and relations of the same domain. With the expansion of systems
that are founded upon domain Ontologies, it is common to merge multiple narrow
domain Ontologies into a broader representation of concepts. It is also frequent that
great diversity exists among Ontologies dealing with the same domain, depending on
description languages, intended usage, and, ultimately, human perception of the same
domain. Present-day systems are capable of automatically merging domain Ontologies
that are founded upon the same top-level Ontology. This is feasible because they use
the same set of general-purpose terms to specify the semantics of entities and relations
inside the respective domain. This automation feature is of significant importance in
the field of information systems, since manual merging domain Ontologies is a very

complex and time-consuming process.

Upper Ontologies An upper Ontology (also known as top-level or foundation On-
tology) is an Ontology that encloses general purpose terms, such as “object”, “prop-
erty’, “relation” “function” etc, that are common across multiple domains. Upper On-
tologies are conceptually well-founded and use a semantically transparent standard
glossary. To represent the meaning of terms, Ontologies contain categories that are
organized in an is-a hierarchy, ultimately forming a taxonomy. The key role of an up-
per Ontology is to provide an application-independent description of the world and
guarantee interoperability among a large number of domain-specific ontologies, thus
facilitating the integration of semantics. For this, a common ontological foundation is
proposed upon which the domain specific Ontologies can formulate their definitions.
Therefore, the terms described in domain Ontologies can be regarded as specialized
extensions of the general purpose terms defined in an upper Ontology. In essence,
the entities and attributes introduced by upper Ontologies must be abstract enough
to allow specification of concepts in multiple and diverse domains. This indicates that
domain specific Ontologies can share a common starting point. In this way, the devel-
opment of new Ontologies is greatly facilitated and simplified. In addition, upper level

Ontologies are regarded as richly axiomatized, since they apply formal restrictions and

64 CHAPTER 2. BACKGROUND

rules upon the abstract terms they introduce in the form of axioms. These restrictions
are, subsequently, inherited by the domain Ontologies and determine their core struc-
ture. Hence, upper level Ontologies provide the means to verify the consistency and
the conditions of domain specific Ontologies, mainly in terms of the general categories
upon which they are founded. Some of the most widely accepted Upper Ontologies
are DOLCE *, SUMO 2 and GFO *.

Hybrid Ontologies A hybrid Ontology, as its name suggests, is a special type of on-
tology that borrows features from both domain and upperOontologies. It includes an
“upper” part that defines concepts, terms and relations and a “lower” part that is more
domain-specific and provides high extensibility. Hybrid Ontologies usually offer rich

semantics and high expressivity.

2.1.3 Core Components

Every Ontology is assumed to comprise of numerous different components. The names
of these components may differ among Ontologies, depending on the representation
language used to formulate them or the purpose of creation. Despite this, most On-
tologies share a typical structure and set of basic building blocks. To this end, we list

the most important ontological components below, as stated in Wikipedia [7]:

o Individuals: the basic, “ground level” components of an Ontology. They can be

either concrete or abstract.

« Classes: abstract groups, sets or collections of objects that classify individuals, other
classes, or a combination of both. Ontologies can vary based on whether classes can
contain other classes, a class can belong to itself, there is a universal class, etc. In
general, classes can be very different in terms of attributes and content. It is also
possible that a class inside an Ontology can be subsumed by another class; the former
is referred to as the subsuming class(or supertype), while the latter as a subclass (or

subtype) of the former.

'http://www.loa.istc.cnr.it/o0ld/DOLCE.html
*http://www.adampease.org/OP/
*https://en.wikipedia.org/wiki/General formal ontology

http://www.loa.istc.cnr.it/old/DOLCE.html
http://www.adampease.org/OP/
https://en.wikipedia.org/wiki/General_formal_ontology

2.1. ONTOLOGIES 65

o Attributes: aspects, properties, features, characteristics or parameters, that desig-
nate objects or classes. Each attribute can be a class or an individual, while its value

of can be a simple or complex data type.

« Relationships: formal specifications that determine how objects or entities are re-
lated to each other. Commonly, a relation is subject to a specific type or class that
describes the essence of the specified connection between the objects. Relations
usually retain a uni- or bi-directional form of expression (e.g. ObjectA is defined as
child of Object B), that intuitively describes the semantics and dependencies inside
the domain. An important type of relation is the subsumption relation, defining

classified objects.

o Restrictions: Formally stated descriptions of what must be true in order for some

assertion to be accepted as input. Mostly attached to relations.

« Rules: Statements in the form of an if-then sentence that describe the logical infer-

ences that can be drawn from an assertion in a particular form.

« Axioms: Assertionsin alogical form that together with the rules, comprise the over-

all theory that the Ontology describes in the application domain.

2.1.4 'The Semantic Web

The Semantic Web [8] represents the evolution of the Web as we know it today and
is an initiative mainly supported by the World Wide Web Consortium. The Semantic
Web aims at providing extensions of the current web standards so that computer sys-
tems can automatically process and integrate information and resources available on
the Web, via trusted network interactions. In this direction, collaborative efforts have
been made to enrich abstract data on the Web with explicit meaning and semantics,
in order to dissolve ambiguities and avoid collisions. Therefore, the development of
modern data sharing technologies, as well as the specification of strong vocabularies

that involve rules, axioms and data handlers, are absolute necessities.

The W3C * community regards domain Ontologies as the cornerstone of the Seman-
tic Web, offering a technological stack to facilitate its definition and development.

The aforementioned stack consists of numerous languages that are designed to pro-

*https://www.w3.org/

https://www.w3.org/

66 CHAPTER 2. BACKGROUND

vide a meaningful description of data on the Web, such as RDF®, OWL ° and XML ".
Since its birth, the Web has greatly depended on hyperlinks and HTML documents, a
markup convention capable of integrating both text and multimedia objects into its
code. Combinations of these languages can be used in order to supplement the cur-
rent and future Web documents with additional semantics or specifications in terms
of content. One can regard this as an extension of HTML-based resources, as well
as Web-accessible databases. What's more, this approach outlines the foundation of
Linked Data, a concept intimately related to the Semantic Web. In practice, the Seman-
tic Web already applies to web resources, by embodying machine-readable metadata
about cross-referenced web content. More specifically, it standardizes format and de-
termines how web resources are related to each other. In this manner, fully-automated
agents can mimic human deductive reasoning and inference, efficiently inferring facts

or retrieving information for web endpoints.

The Semantic Web relies on a common framework that allows data to be shared and
reused across interconnected applications and web services. Its ultimate goal is the
integration of semantics into large scale data and, in the long run, the aggregation of
knowledge spread across the Web. In the Semantic Web, it is quite common to use
the term “Vocabulary” instead of “Ontology”. Although there is no clear distinction
between an Ontology and a Vocabulary, the former is used for complex and formal
collection of terms, while the latter involves looser or occasional formalism. The main

roles of Ontologies, in the applications of the Semantic Web are summarized below:

« Contribution to data integration, by formal definitions and dissolution of am-

biguities

« Organization of knowledge, by effectively managing large collections of for-

malized data

« Definition of metadata terms, by determining the core semantics of the web

content

*Resource Description Framework
*Web Ontology Language
’Extensible Markup Language

2.1. ONTOLOGIES 67

2.1.5 Why use an Ontology?

The most important reasons for developing an Ontology are given below:

Analyzing domain knowledge

As stated in [9], “ontological analysis clarifies the structure of knowledge. Given a do-
main, an Ontology forms the heart of any knowledge representation system for that
domain, capturing its intrinsic conceptual structure. These conceptualizations are re-
quired so that a vocabulary for representing knowledge can be formulated. Thus, the
first step in devising an effective knowledge representation system, and vocabulary;, is
to perform an effective ontological analysis of the field, or domain.” Unless a declara-
tive and formal specification of entities and relations existing in a domain of knowledge
is given, no coherent or extensive analysis can be performed. As a result, weak or dubi-
ous analyses might lead to conflicting or inconsistent knowledge bases. For example,
ontological analysis of a domain can prove the distinction between a category and a

role.

Sharing of common understanding

Undeniably, one of the most important reasons for generating an Ontology is the dis-
tribution of knowledge in a specific domain and the common understanding of con-
cepts among both humans and software agents. Given a thorough analysis on a spec-
ified area of interest, one can arrive at a representational set of conceptualizations
of entities and their inner relations. Hence, the resulting Ontology comprises of a
well-defined syntax that encodes all knowledge related to the domain and associates
terms with concepts. Accordingly, this representation language (or vocabulary) can be
shared with the community, so that anyone having similar needs or is interested in the
respective field can refer to specific concepts in a standardized manner. In addition,
sharing of Ontologies on the Web encourages the extraction, aggregation and query of
information by both end-users and services, acting as a single source of truth for the
given domain of knowledge. However, while a commitment to an Ontology guaran-
tees consistency, it does not guarantee the completeness, with respect to queries and

assertions using the vocabulary defined in the Ontology.

68 CHAPTER 2. BACKGROUND

Enable reuse of domain knowledge

The dominance of Ontologies throughout time is certainly due to their capability of
reusing domain knowledge. In scientific research, it is quite common that different
domains need to represent the same or similar notions. Let’s assume that numerous
groups of researchers wish study the same knowledge domain. Aslong as a formal on-
tological representation of the respective domain exists, all groups of researchers can
simply base their work upon it or extend it to meet their specialized needs. Therefore,
shared Ontologies can be used as the foundation upon which new domain-specific On-
tologies can be built. In this direction, the duplication of the domain-specific analysis
procedure is eliminated, while redundancy is greatly reduced. Meanwhile, integrating
or investigating pre-defined Ontologies along with the corresponding vocabularies can

prove both time- and effort-saving for scientists.

Explicit domain assumptions

Since the perception of the world constantly changes with time, it is essential that
knowledge systems and related platforms are kept updated with the latest knowledge.
As Ontologies make explicit assumptions about the domain of study, they provide a
convenient mechanism for mutating these assumptions at any time. Hard-coded most
knowledge assumptions in the fields of programming and computing systems are quite
difficult to locate, grasp and update. Contrariwise, the knowledge assumptions made
in Ontologies are rather straightforward and held in a single domain-specific reposi-

tory, simplifying the update process even for inexperienced users.

Separating domain from operational knowledge

Ontologies are commonly used to separate domain knowledge, which refers to the
concepts in the area of interest, from operational knowledge, which refers to the un-
derstanding of the manipulation mechanisms. By design, Ontologies belong to the
semantic specification level and are, generally, independent of data modeling strate-
gies and platform- or language-specific implementations. They provide the required
concept specifications and the theoretical foundation, upon which programs or sys-
tems are built. In this manner, interoperability is facilitated, as heterogeneous services

are capable of integrating the same formalized domain knowledge representation.

2.1. ONTOLOGIES 69

2.1.6 Ontology-based Software Systems

It is widely admitted, that the most significant role of Ontologies, with regard to infor-
mation systems and software developing, is to determine a well-structured data model
capable of representing concepts in an abstract manner. This model is independent
of specific logical or physical design patterns and aims at facilitating data acquisition,
translation, refinement and uniformal sharing among seemingly unrelated systems or
services. In particular, Ontologies are widely applicable in applications that query,
cross-check or merge information from diverse sources across the Web. Today, an in-
creasing number of software systems are built upon a common, converged, universally
accepted representation of domain knowledge in the form of ontological descriptions.
Such practice results in the definition of strongly linked tools and mechanisms that

encourage reusability of components and simplified maintenance in the future.

The majority of software systems and applications undertake specific tasks and offer
dedicated services to end-users, usually related to a well-specified domain of knowl-
edge. Given an ontological description of this particular domain, developers can ben-
efit from a formalized model in the development process, which enables acceleration
of iterations and optimization of individual components, as well as the interplay be-
tween them. Specifically, an Ontology introduces specific vocabulary, semantics and
logic related to the domain and, thus, it improves system consistency and coherence.
Besides these, such model can optimize architecture, automate processes via integra-
tion of information and contribute to a deeper understanding of the workload dis-
tribution inside the application, leading to efficiency improvements on the software
side. Modern ontology-based design patterns involve specification of dynamic parts,
reusability of software entities and automatic translation of high-level models into ex-
ecutable programs. In this direction, the development of a software system that relies
on Ontologies focuses on having as few hard coded components as possible and deriv-
ing everything from a single source. In most cases, a concrete user interface consists of
a subset of repeated interface elements, having different meaningful components. Asa
result, the number of procedural components developed in the course of designing an
interface becomes considerably less. Meanwhile, specificying the underlying concepts
of the model could provide a solid basis for future extensions. Hence, evolving the sys-

tem is then a matter of updating this input source and having the updates propagate

70 CHAPTER 2. BACKGROUND

through the rest of the system.

Bearing in mind the purpose of this thesis, along with the fact that, nowadays, User
Interfaces are regarded as core components of modern software systems, we empha-
size our analysis on the design of ontology-based User Interfaces. Multiple efforts have
been made aiming at bridging the gap between the generation of Ontologies and soft-
ware engineering methodologies. For the sake of completeness, we demonstrate the

approach described in [11], so that the reader can gain some intuition on the subject.

In this paper, an ontology-based framework is proposed, aimed at dynamically build-
ing User Interfaces. In general, ontology-based tools provide an alternative approach
to software development, compared to the traditional model-based one. Their main
feature is the automatic translation of the declarative, high-level models of interface
components into executable programs. Most model-based approaches to the devel-
opment of User Interfaces suffer from certain limitations. Mainly, they require the
definition of individual, targeted, statically modeled components, discouraging the
prevalence of a universally accepted standard. As a result, components that are iden-
tical by meaning and effect might have different names or conflicting interpretations,
according to the terminology used to define them. Also, for every model definition,
specific principles and mechanisms are used, imposing difficulties in the process of
linking and transfering among models. Finally, a detailed description of the appli-
cation program must be provided, making the development and maintenance even
more difficult. Therefore, ontology-based approaches extend model-based solutions

by introducing the following concepts and individual components:

- Information and attributes regarding each model of a user interface must be repre-
sented in the form of an ontology model. This model might need to be modified if

conditions of using software change.

- Universally accepted ontological models must be widely available for use and main-
tenance. Thus, models of different domain ontologies can be hosted on the Web, in

order to facilitate further development and integration of semantics in applications.

- There is a clear distinction between the core application and the corresponding
User Interface, in the sense that they should be independently designed and im-
plemented. However, a concrete communication layer must be defined for their

interaction with a common set of variables. This architecture separates the tasks of

2.1. ONTOLOGIES 71

model description and linking and reduces development and maintainability costs.

- The designer of the User Interface should be provided with a set of tools aimed at
the implementation, integrating inputs, functions and UI elements reflecting the

requirements of users.

Domain Concept System Model The domain concept system provides the notional
background regarding the broader domain of interest. In particular, it comprises of
formal and well-structured definitions of the core concepts of the domain, along with
their inter-relations. Explicit representation of these definitions leads to a domain On-
tology. Thus, the domain concept model can be reduced to a domain Ontology that
offers a well-formulated terminology to study behavior and correspondence of enti-
ties. A standard structure is usually followed, aiming at general use and simplification
of the design of Uls. Besides, the domain concept system model is responsible for
appropriately expressing inputs and outputs of the system, intellectually decoding the

actions of users.

The Display Model User Interfaces usually consist of a presentation layer, an inter-
action layer and the respective relations among objects. The display model is closely
related to the concept system models, in terms of content and information, as well
as to the application program model, in terms of variables and values. Any interac-
tion between the end-user and the application model is carried out by views and dis-
play aspects defined in the display model, transmitting information in both directions.
Hence, there is a correspondance between the domain concept system and the display
aspects of the UL Modifications made during the life cycle of the system, either to the
concept system or the application program, must be mapped to the display model of
the interface. Essentially, the display aspects can be regarded as formal definitions re-
lying on the concept system model. Their structure, description and purpose must be

general, while they should also be extensible, to support new objects and properties.

The Application Program Model The application program of a software system is
the core component that is responsible for solving tasks based on the given input. Any
process that is fulfilling a task can be considered as part of the application program.

Ideally, the application program should contain minimal information, boiling down

72 CHAPTER 2. BACKGROUND

to the determination of a set of variables used to exchange information with the Ul
layer. Description of the application program variables can be related to the domain
concept system, the implementation language and mathematical terms. The design of

the application program model is inseparable from the design of the interface.

2.1.7 Representation

Ontologies are typically formulated in languages which are closer in expressive power
to logical formalisms, such as the predicate calculus. These languages allow abstraction
from data structures and implementation strategies. This enables the Ontology design-
ers to impose semantic constraints without forcing any particular encoding strategy.
Thereafter, Ontologies are ranked at the semantic level, whereas database schemas are
models of data at the logical or physical level. Subsequently, languages used to formu-

late ontologies differ from languages used to model databases.

An Ontology can be regarded as a set of relation definitions between terms. In prac-
tice, ontological descriptions involve formal “is-a”, “part-of”, “connected-to” relations,
as well as class taxonomies and class-instance relations. The relations inside an On-
tology are formal, in the sense that they are expressed in some formal description
language. The main goal of description languages is to guarantee conceptual clarity
and consistency. Accordingly, combining relations can lead to implicit conclusions,
given that certain terms are related. Higher level approaches provide a set of tools
and mechanisms to implement an Ontology, such as frames or simplified description
logics. Languages belonging to this level allow the definition of classes, instantiation
of objects and building of relations among the. Yet, some designers prefer even more
formalized tools, so they choose fully-constrained logical theories to represent onto-
logical relations. Such theories contain modal, first or higher order logics to express
intended usage of terms and inter-connections. When working with informally de-
scribed Ontologies, it is very difficult to automate processing in computing systems,
since these are mainly based on natural language descriptions. While more intuitive
and simplified, less formal description of concepts does not represent the objective of
depending on Ontologies in software systems. Conversely, strict, standardized and
well-formatted descriptions can be automatically processed by reasoners and encode

their intended meaning. Furthermore, sharing and extending Ontologies that contain

2.1. ONTOLOGIES 73

formally structured definitions is a lot easier than manipulating abstract ones. Best
practices suggest that a correct modeling language should be used depending on the
application, that would not limit the designers during the development process and

would allow a high-level of expressivity and detail.

What really matters is the utilization Of ontologies to provide the representational ma-
chinery with which to instantiate domain models in knowledge bases, make queries
to knowledge-based services, and represent the results of calling such services. Hav-
ing a central, interoperable, reusable, and comprehensive metamodel during the de-
velopment of a software system proves useful when flexibility and interoperability are
needed. Additionally, sticking to widely accepted standards in representing metamod-

els and transformations, greatly facilitates access and manipulation of data.

74 CHAPTER 2. BACKGROUND

2.2 System Monitoring

2.2.1 Overview

In the extremely fast-paced world of IT, where interacting with large and complex
computing systems is the norm, monitoring the underlying infrastructure is the key
for the effective supervision and administration of every platform. Today’s data cen-
ters are more dense and complex than ever, containing physical, virtual, cloud-based
and legacy servers. Monitoring services are capable of reliably modeling information
and statistics about these assets in a single data structure, so that it can be actively stud-
ied and analyzed based on numerous uses cases and scenarios. This process outlines
the overall behavior of individual components in a large system, along with their in-
ner relations. It also enables humans to track down weaknesses, improve security and
optimize performance. Therefore, integrated monitoring and management software
is an emerging field of the enterprise that promises to bridge the gap between IT and

facilities, ultimately aiming at facilitating the administration of Data Centers.

Indeed, in current production environments, systems are always seeking for consis-
tency and durability, in order to provide high-quality services to the end-users. In
addition, efficiently dealing with failures or system outages is of paramount impor-
tance, as downtimes are translated in huge financial and business costs. In smaller,
self-contained systems it is easier to detect issues and have an overview of the plat-
form state. Growing in scale, though, means more complicated architectural design,
multiple inter-dependent components and, thus, numerous risk areas that might cause
faults or slowdown. Therefore, it is vital to deal with inconsistencies efficiently, in the
sense of quickly isolating the root cause of the failure and actively restoring the system
back to a functional state as soon as possible. This can lead to cost-effective architec-
tures that increase the operational efficiency of clusters and extend the lifetime of their
components. Picking the right infrastructure for the right purpose certainly leads to

higher ROI ® values in the long term.

Monitoring services enable sophisticated infrastructure analytics, by simplifying op-
erational processes and delivering meaningful information about the building blocks

of big clusters. By summarizing performance data, they intend to maintain system

__ gain—cost

8Return On Investment k
cost

2.2. SYSTEM MONITORING 75

availability, distribute workloads and minimize latencies. At the same time, moni-
toring platforms contribute to decision making regarding IT resources, since the col-
lected data and statistics can be used to design predictive models about infrastruc-
ture(e.g. optimal workload distribution, scheduling of future hardware upgrades, re-
source sharing policies etc). When instrumentation points are carefully chosen, ad-
ministrators can observe the high-level state of the system, along with its delivery to
end-users. A good monitoring system should always address the following questions:
“which part failed?” and “what caused that failure?” In this direction, it is much easier
to effectively isolate and troubleshoot any existing issues related to infrastructure. It
is notable that monitoring is applicable both in physical and virtual resources across

different vendors.

However, intense monitoring systems or instrumentation platforms might prove counter-
productive if they are not properly implemented or configured. In such cases, it is com-
mon that large amounts of storage are required, together with high resource utilization
or interference in normal operations. It is a responsibility of the administrators to fine
tune the monitoring system so that it serves its intended purpose. For example, in re-
mote monitoring approaches, there is an additional network load to track and record

metrics. Extra layers of interaction add more complexity to the existent system.

2.2.2 Features of Monitoring Solutions

The majority of monitoring platforms and software shares a set of common features.

Some of the main ones are listed below:

Real-time Tracking Monitoring tools provide system administrators with a concise,
yet holistic overview of how well a system is currently performing, by manipulating
real-time performance metrics and statistical data. Efficiency indicators of individual
assets can be regarded as the “heartbeat” of the target system, outlining its overall status
and health. Collection of such metrics, along with proper aggregation and refinement,
can indicate service availability, functionality of equipment and identification of pos-
sible bottlenecks. Moreover, monitoring checks and policies can be adequately con-
figured to target specific sub-systems, in order to accumulate component- or service-

specific measurements. Observation of the underlying infrastructure in real-time, al-

76 CHAPTER 2. BACKGROUND

lows administrators to correlate running services and server workload with system
profiling results, ultimately helping them discover allocation patterns and perform
trend analysis on-the-fly. Besides, effective change management and awareness of cur-

rent configuration contribute to rapid scaling and more intelligent deployments.

Energy & Power Management By installing energy sensors and the respective sup-
porting hardware on the power infrastructure of a data center, monitoring software
can accurately calculate power and performance measurements, such as PUE ° and
DCIE *°. Data Centers operating at 1.5 PUE or lower are considered efficient. What's
more, these measurements can be combined with fluid dynamic analysis in order to de-
fine models that allow prediction of energy consumption when infrastructure changes
or gets updated. For example, this can lead to optimized air flow, cooling system and
equipment placement inside the building. Rapid and unanticipated turnarounds in
heat densities may impose additional burdens on the physical infrastructure, resulting

in performance deterioration and increased risks of overloading and outages.

Remote Access Administration As ROBO'' and edge data centers are constantly
gaining popularity, many administrators rely on remote server monitoring. This means
accessing the data center assets that are connected to the network via RESTful APIs and
performing custom diagnostic checks locally. In case an issue occurs and the system is
unable to automatically resolve it, human intervention might be needed to investigate
the situation and tackle the problem. With remote administration, it is possible that

no physical presence is needed inside the data center to manage infrastructure.

Visualization & Alerting It is quite common for monitoring software to provide
an administration panel or dashboard, that aggregates and analyzes performance data
and statistics. Such interfaces usually employ visualization tools that, given a collec-
tion of time-series performance data, produce comprehensive and interactive graphs.
Graphical representation of asset performance can accurately demonstrate the current
status of a complex system in a rather intuitive way. In this respect, administrators are

capable of timely detecting issues or gaining insight into the underlying system. Thus,

“Power Usage Effectiveness
°Data Center Infrastructure Efficiency
""Remote Office Branch Office

2.2. SYSTEM MONITORING 77

this can lead to enhanced control of resources and qualitative decision making. In
addition, dashboards can be configured to deliver real-time notifications intended for
humans, which are usually pushed to the system in the form of a ticket queue. These
alerts are raised when pre-defined threshold values are hit, targeting specific hosts,
services or even the entire cluster. Alerting can be determined by raw performance
metrics, or derived statistical parameters through filtering and aggregation(e.g. ratios,
averages, dispersion). Noteably, notification thresholds and frequency must be care-
tully specified, so that alerts are sent only when a solid indication of real issues exist.
Thereby, proactive monitoring alerts provide a better understanding of the internal
working of the monitored system and are considered essential for resolving issues or

system failures before they impact end-users.

Reporting & Logs System monitoring platforms are capable of collecting and read-
ing logs from multiple machines and keeping track of server activity throughout time.
This enables administrators to perform complex queries or aggregation functions upon
log data, isolating specific time windows or services. Also, record keeping of important
events (e.g. a server failure, a spike in bandwidth utilization, etc.) can be combined

with running services or user requests, leading to ad-hoc conclusions about the system.

2.2.3 Monitoring and DCIM

According to the definition given in Wikipedia [14], “Data Center Infrastructure Man-
agement (DCIM) represents any set of tools(including software programs as well as
hardware devices in the form of computer parts) that help organize and manage the
information stored in a Data Center. The energy required to organize and store large
amounts of data can be used with greater efliciency if the infrastructure of that data
is carefully and appropriately managed. Thus, DCIM represents a class of IT products
and services designed to assist the growing global demand for storage of digital data
and information”

In our days, DCIM solutions involve both software- and hardware-based approaches.
The former focus on devising efficient storage algorithms and implementing scale-out
platforms to manage large sets of unstructured data. The latter concentrate on en-

hancing the organization and capabilities of the physical infrastructure enclosed in a

78 CHAPTER 2. BACKGROUND

Data Center, such as extension of the capacity, prevention of overheating, network
upgrades and others. The DCIM marketplace is rapidly evolving since its identifica-
tion as a missing component of the IT stack. Currently, there are multiple proprietary
and open-source DCIM solutions available, aiming at optimizing performance and
reliability of Data Center deployments. Integrating DCIM software into the lifecycle

management of data centers offers the following benefits:

- Data safety, accuracy and consistency

- Accurate detection and visualization of hardware and software assets

- Automation of control and asset provisioning

- Complete control over running services and respective configurations

- Observation of power availability and reduction of energy consumption

- Deep understanding of inner system structure and component interrelations

- Supervision and orchestration of operations inside the data center, aligning IT to

the needs of the enterprise

The latest tendency in the IT community and the leading storage vendors recommends
Saa$ '? versions of DCIM software, that is delivered to end-users via cloud and offers
all core monitoring services. It is obvious, that DCIM is intimately related with mon-
itoring and visualization platforms, that provide system administrators with a deeper
insight of the entire infrastructure, such as racks, servers, switches, storage devices,
power generators and cooling systems. Therefore, DCIM deployments might require
setting up specialized software, hardware and sensors. Monitoring individual assets
inside a data center focuses on improving the conditions under which the physical in-
frastructure operates, contributing to higher reliability and efficiency. Data and statis-
tics coming from the real-time monitoring process can be used for intelligent decision
making, capacity planning and business analytics. DCIM Suites are also capable of re-
ducing costs associated with mismatched supply/demand and, consequently, improve

operational efficiency by accurately supporting remediation.

Fundamentally, DCIM is about adding interactivity and visibility to the physical world
that traditional IT runs upon. Based on the analysis stated in [13], we summarize the

most critical capabilities of a well-rounded DCIM tool below:

12Qoftware as a Service

2.2. SYSTEM MONITORING 79

Power & Environmental Monitoring
 Reporting & Visualization
« Resource & Workflow Management

o IT Asset Monitoring & Management

Predictive Analysis, Modeling & Simulation

Integration with Virtualization Platforms - virtualization platforms are widely used
in IT production evnironments today, achieving high performance at dramatically
lower costs. Server and network virtualization is a software-based solution to extend
the capabilities and capacity of IT applications without making additional invest-
ments in physical equipment. Virtualized operating systems and applications are
encapsulated in individual, isolated software containers upon which administrators
retain full control. Virtualization guarantees rapid provisioning cycles and applica-
tion co-ordination. Hence, modern DCIM should support such platforms, inter-
act with their services and APIs, as well as include corresponding Virtual Machine
operations(create, remove, reboot, shutdown) in their management dashboards to

enhance user control.

2.2.4 Monitoring Perspectives

The most basic categorization of monitoring solutions regards the way they are de-
ployed in the system that is abou to be monitored:

Agent-based vs Agentless

In the field of IT management, there has always been a debate between agent-based
and agent-less monitoring approaches. A monitoring agent is a service or daemon, that
runs on a specific node of the system, performs script checks and ultimately collects
and reports performance data, statistics, event logs, metadata and trace information.
Undoubtedly, at some level or depth, every monitoring platform assigns the provi-
sioning of assets and the aggregation of respective results to some software entity. It
is noticeable, that several IT enterprises support a combination of both approaches to
observe underlying infrastructure in a more flexible manner. Manually configuring
how infrastructure tiers are monitored leads to a fully customized deployment that

serves all specified user needs. Of course, each of the aforementioned approaches has

80 CHAPTER 2. BACKGROUND

its benefits and shortcomings, so it is important to understand their differences in de-

sign and logic:

- Ease of Deployment & Maintenance
In agent-based approaches, a monitoring agent has to be deployed on each remote
server of the cluster to collect metrics locally. In large scale computing environments
with thousands of nodes, this process can prove very time- and effort-consuming.
Evaluating or upgrading such system also requires hard effort by the administra-
tors, since agent functionality on every node of the cluster must be verified. On the
contrary, agent-less approaches are generally easier to deploy, as only a central au-
thority is responsible for orchestrating the monitoring process, initiating all actions
inside the system, so no deployment of additional agents is required. As a result,

monitoring in an agent-less manner is, generally, more cost-effective.

- Network Overhead
Agent-oriented technologies are very bandwidth-efficient, since performance data
is collected and processed in the same host that the agent is running. The only inter-
action of the agent with the “outer world” is with regard to the transmission of the
performance measurements to the presentation layer. Conversely, agent-less solu-
tions impose additional network load to the targeted system, as raw performance
data must be propagated to the remote collector agent. Connections are established
at a rate of the most frequently collected data, while in most cases there is a constant

polling process going on.

- Security
Agent-based monitoring provides a high level of security as far as the communica-
tion policy and the transfer of data are concerned. The reason for this is that agent
communicates with the operating system or user applications internally, so no ad-
ditional network configuration to reach the Internet is needed(e.g. Proxy Servers,
Firewall rules, Network Adress Translation etc). Contrariwise, in single agent de-
ployments, the remote data collector must be given domain administration privi-
leges in order to be allowed to connect to the target servers, communicate on specific

network ports and successfully retrieve real-time metrics(e.g. via SSH, SNMP).

- Availability

*Simple Network Management Protocol

2.2. SYSTEM MONITORING 81

Monitoring using multiple agents offers high availability since in the case of a net-
work failure no performance data is lost, nor the monitoring stales. This could only
happen if the specific agent of a node encounters some issue. On the other side, a
network failure could bring down a whole agent-less monitoring system, as there is
no way to transmit the collected data without network connectivity. Of course, it is
also possible that the central monitoring agent might fail, due to heavy workloads

and escalation of traffic.

- Level of Monitoring
Agent-based monitoring solutions provide a deeper and broader overview of sub-
systems, compared to agent-less ones, since the latter are limited by application- or

system-related monitoring capabilities.

In short, agent-less monitoring has reduced deployment times, consumes fewer re-
sources and is designed for centralized environments that are capable of supplying
monitoring platforms with large amounts of network bandwidth. In this case, all mon-
itored assets are connected to that network. On the other side, agent-based monitor-
ing is based on pull technology, is less dependent on network connectivity and offers
monitoring capabilities and administrative control. At the same time, it guarantees

that each sub-system operates separately as an independent component.

Monitoring software can also be categorized based on content and objective. There are

two main different aspects regarding these parameters:

« System Performance Perspective:
In this approach, systems might be experiencing issues regarding performance and
need better utilization of the available resources. Services might be failing often or
the overall system might not be running at full potential. Performance monitoring

involves:
1. Performing monitoring and profiling checks in order to identify the nature and
scope of the component that is under-performing

2. Collection of data, systematic analysis and course of actions(e.g. configuring,

tuning, etc) that aim at resolving the issue

3. Re-apply monitoring checks to verify that the degradation issue is resolved

Though short in duration, the above process is often iterative, as these steps might

be executed multiple times until the system reaches the desired level of performance

82 CHAPTER 2. BACKGROUND

- as system resources interact with each other, their performance and utilization are
highly interrelated. Thus, the elimination of one resource bottleneck might lead to

the detection of another one, that was not yet noticed(chaining).

« Capacity Planning Perspective:
In this approach, system performance and efficiency are considered satisfactory and
require preservation at their current levels. That's why the duration of the monitor-
ing process is longer, aiming at determining the variance in the utilization of system
resources. Knowing the frequency and rates of change, administrators are capable
of devising long-term plans regarding resource management. The key difference
from performance monitoring lies in the facts that monitoring is constantly per-
formed and the level of detail is considerably lower. Collecting data and measuring
performance regularly over a longer period of time leads to a broader view of the
infrastructure from which one can extract useful information about the inner at-
tribute of a large scale cluster. Aggregation and correlation of performance data
coming from multiple sources promise to facilitate automated management of IT
applications. Consequently, administrators can accurately divide resources in cate-
gories, based on the mean-variance of their workload, and determine the impact of

running services upon system resources.

Finally, it is useful to clarify two basic monitoring approaches in terms of the policy of

the monitoring process:

- Pull-based Monitoring
In this approach, multiple monitoring agents are installed on the assets being moni-
tored, probing them at a regular interval. Their goal is to run pre-configured checks
to measure performance, generate reports based on these metrics and produce cor-
responding real-time alerts or notifications. External services or systems can col-
lect telemetry data from the agent. Hence, monitoring is essentially performed by
the agent itself, while communication is facilitated by client libraries. The main ad-
vantage of pull-monitoring is that it provides a standard mechanism for services to
expose their targets and a well-known format to pull data from. Nevertheless, pull
based methods are not so performant on event-driven environments, like individual

API requests or unexpected behavior of the infrastructure.

- Push-based Monitoring

2.2. SYSTEM MONITORING 83

The push-based method allows for “reverse” monitoring, in the sense that the data
collected by the agent installed on the targets, is pushed to a publicly available storage
repository, commonly a time series database that supports access via some RESTful
HTTP API. Pushing data into a time series database usually requires an extra step of
formatting the metrics into the line protocol of the database, before real-time metrics
are flushed. Subsequently, monitoring is essentially performed by an external service
that does not belong to the target system. Such service queries the database, retrieves

time series data and applies further processing upon them.

Depending on the scope of each application, either the push- or pull-based monitor-
ing approach might be more suitable. However, there are also cases that require the
combination of both in a hybrid deployment, in order to bring the best out of both

worlds and optimize the administration process.

2.2.5 Icinga Distributed Monitoring
About the Icinga Project

Icinga [18] is a distributed, scalable and extensible monitoring system that checks the
availability of resources, notifies end-users about current issues and provides exten-
sive business intelligence data. It is cross-platform and highly customizable, since it
executes user-defined checks in the form of scripts, aiming at automation of opera-
tions inside the targeted system. Icinga is an original fork of the Nagios [19]. With
an updated core, compared to Nagios, it offers great flexibility by providing additional
features and integrations with modern technologies. It relies on a highly modular ar-
chitecture that combines core capabilities with add-ons and plugins, as necessary.

Icinga is an entirely open-source monitoring solution, which is actively developed and
supported by a large community. Due to its multithreaded design, it performs excep-
tionally well in large scale systems, efficiently monitoring thousands of nodes at the

same time. We have studied and deployed the latest stable release, which is 2.6.
Why Icinga?

- Distributed environment: Icinga is designed to perform checks in a distributed
fashion, issuing checks across the entire platform. The nodes of an Icinga cluster are

capable of monitoring themselves and collecting performance data. Icinga instances

84 CHAPTER 2. BACKGROUND

autonomously replicate configuration and program states in real-time, ensuring data
integrity. Besides, Icinga nodes can be configured in groups for high availability, in
case of node failure. Hence, the monitoring process is not dependent on a single
central monitoring server, though metrics are ultimately propagated to the root of
the hierarchy tree for further analysis. Distributed monitoring guarantees higher
stability and redundancy; a failing component can be replaced by one of its peers,

without disrupting the normal operation of entire monitoring system.

- Object-based configuration: deploying and configuring Icinga requires the defi-
nition of macros, commands, services, notifications, hosts and other monitoring
concepts. All these entities are described, handled and understood in the form of
objects by Icinga. Users can extend the default templates by defining custom proper-
ties or adding conditional behaviors in order to meet their needs. This object model-
ing makes the configuration process more comprehensible and intuitive, separating

concerns and responsibilities.

- Compatibility with monitoring plugins: Icinga maintains backward compatibil-
ity with all existing Nagios plugins and configurations. Thereby, a numerous pre-

defined services and checks are available online for free use.

- Efficient integrations: Icinga is a monitoring platform that offers compatibility with
various technologies that are closely related to effectively storing performance data
and status information. More specifically, it provides connectors to PostgreSQL,
MySQL and Oracle databases. To achieve that, it introduces native Icinga Data Out-
put(IDO) modules that are responsible for formatting and writing time- series met-
rics to various storage backends. Icinga supports platforms that efficiently handle
time series, like Graphite, InfluxDB and TSDB and others that handle logs, like Elas-
tic and Gelf.

- Web Interface & HTTP API: the web administration panel of Icinga is a lightweight,
PHP-based, standalone software component, that shows the current status of hosts
and services inside the Icinga cluster. It can be configured to send alert notifications
to the user when performance checks return WARNING or CRITICAL status. It
is easily extendable and can support multiple backgrounds simultaneously. What’s
more, Icinga can communicate with external services via a RESTful HTTP API, so

users can define configuration objects, check asset availability or monitoring data

https://graphiteapp.org/
https://github.com/influxdata/influxdb
http://opentsdb.net/
https://www.elastic.co/
https://www.elastic.co/
http://docs.graylog.org/en/2.2/pages/gelf.html

2.2. SYSTEM MONITORING 85

via GET or POST calls. Results can be returned in XML or JSON format, while the
Icinga API supports filtering(choosing columns to be returned), aggregation and
count operations. User authorization can be performed either using cookies or sim-

ply as an in-request parameter.

- Security & Encryption: Monitoring servers are always given a certain level of trust
in order to query remote systems. The communication channels of the Icinga API
are secured by SSL X.509 certificates and public key cryptography. Furthermore,
they can be initiated by either endpoint and work behind a NAT boundary.

- Automated Deployments: Icinga supports Chef, Ansible, Saltstack and Puppet plat-

forms for automated management and setups of monitoring systems

- Powerful CLI: administrators can greatly benefit from the command line tools that
Icinga offers, aiming at validating configurations and automating the deployment

process

Icinga Cluster Architecture

From a higher-level perspective, Icinga consists of 3 fundamental components:

» Icinga Core, which manages monitoring tasks, receives check results and statistics

from plugins
« IDODB, which effectively stores performance data in specific formats

« Icinga Web, which provides a real-time administration dashboard

|
" Your i | Plugi)
| peren | 1000 %" Icinga @
|

| e e, EEE—

RESTAPI ¢+ T re Ty
77777777777777777 IDOMOD
' Command Control ! ‘
_____Interface | 1 IDO2DB
b Doctrine ' X
! Abstraction Layer ! /

IDODB

MySQL
Oracle
PostgreSQL

Figure 2.1: Icinga Architectural Components

https://www.chef.io/chef/
https://www.ansible.com/
https://saltstack.com/
https://puppet.com/

86 CHAPTER 2. BACKGROUND

Configuration Design

In order to formalize the structure of the cluster and perform the monitoring checks,
Icinga introduces certain entities that are represented as objects in the configuration
files and interfaces. CheckCommands, Services, Hosts and Templates are the most
important ones and can describe almost anything inside a cluster, varying from net-

work services like DHCP'* , SMTP, SSH etc. to switches and server nodes.

CheckCommands

CheckCommand objects are used to describe monitoring checks performed by Icinga.
Their definition always contains a command attribute, which holds a full path to the
check plugin to be executed. Optionally, the arguments attribute is determined, hold-
ing any command line arguments needed for the proper execution of the check script.
CheckCommand objects are usually referenced by Host or Service objects, while pa-
rameters can be passed to them on-the-fly. Accessing attributes of other objects re-

quires runtime macros, that dynamically retrieve current values.

Services

Service objects must always contain the check_command attribute, that specifies the
filesystem path where the command to be executed by the service is saved, as well as
the host_name attribute, which holds the host object associated with the service. Ser-
vices can be in any of the following states: OK, WARNING, CRITICAL and UKNOWN,

depending on the output value of the corresponding command.

Hosts

Host objects may contain already defined services or commands to be executed di-
rectly. Since host objects usually represent server nodes, it is quite common to contain
an address field that holds the associated network address. Hosts can either be in an

UP or DOWN state.

Templates

Built-in Template objects are provided by Icinga for all object types. They intro-
duce various default attributes, along with predefined values that users are likely to
find useful. Objects, as well as templates, can import an arbitrary number of tem-

plates. If necessary, attributes inherited from a template can be overridden inside

"Dynamic Host Configuration Protocol

2.2. SYSTEM MONITORING 87

the object definition. In addition to built-in attributes, users can define custom ones
under the vars attribute, which is actually a dictionary. Valid value types include
string,number,boolean,array and function. Loop iteration over arrays or dic-
tionaries and “if-then-else” conditions are also supported. Icinga templates and objects

share a common namespace, so no duplicate names are accepted.

Rules

Rules automate and extend the definition of configuration objects since they describe
logical expressions and patterns that determine the application of services and com-
mands. Decision making can rely on attribute values, existence of objects, compar-
isons with constants, etc. It is usual, that several objects need to be correlated with
other objects and external attributes. Manually managing large sets of configuration

objects that match on a common pattern, is both time-consuming and error-prone.

The official Icinga documentation provides an extensive description of all Icinga ob-
jects. For the scope of this thesis, it is sufficient to present the definition of the most

important ones:

1 |# Definition of Host Object

2 |object Host "serverl" {

3 import "generic-host"

4 address = "10.0.0.1"

5 check_command = "hostalive"

6|}

7 |# Definition of Service Object

8 |object Service "pingd" {

9 import "generic-service"

10 check_command = "ping4d"

11 # Rule applying to all hosts with 'address' attribute defined
12 assign where host.address && host.vars.os == "Linux"

13 |}

14 |# Definition of CheckCommand Object,

15 |object CheckCommand "ping" {

16 command = [PluginDir + "/check ping", "-H", "$ping_address$"]
17 arguments = {

18 "_w" = "100,5%"

88 CHAPTER 2. BACKGROUND
19 ".c" = "250,10%"
20 "_p" = "5"
21 }
22 # runtime macro refering to host <address> attribute
23 vars.ping_address = "$address$"
24 |}
25
26 |# Definition of Template Service Object
27 |template Service "generic-service" {
28 max_check_attempts = 3
29 check_interval = 5m
30 retry interval = 1m
31 enable perfdata = true
32 |}
33
34 |# Definition of Template Service Object
35 |template Service "generic-host" {
36 max_check_attempts = 5
37 check_interval = 1m
38 retry_interval = 3@ms
39 check_command = "hostalive"
40 |}
Listing 2.1: Definition of Icinga Objects
Distributed Design

The Icinga cluster is a distributed monitoring environment that supports load balanc-

ing and high availability among cluster nodes. Icinga defines certain roles for the nodes

that belong to the cluster, in order to establish a hierarchical topology and assign du-

ties. This design highly adaptable to any scale(size, complexity), simplifies node con-

figuration and provides great flexibility to administrators. In ?2 the reader can observe

the tree structure of the Icinga cluster, consisting of 3 types of nodes-master, satellite

and client- which are bidirectionally connected:

2.2. SYSTEM MONITORING 89

master

/ N\

D satellite D satellite

N\

client client

Figure 2.2: Distributed Setup of Icinga Cluster

Roles
o Master:

- has no parent, only child nodes(root)

- aggregates performance metrics from clients and commits them into the storage

backend

- serves Icinga Web administration dashboard

« Satellite:

has a parent and a child node

- executes checks on its own or delegates check execution to child nodes

- receives configuration files for Hosts, Services, etc. from the master node

- runs independently from the master node, while its presence is not mandatory
inside the cluster

o Client:

- only has a parent node - leaf of the tree

- receives command execution events from its parent node and executes the speci-

fied checks

- sends check execution results and performance data to the parent node

90 CHAPTER 2. BACKGROUND

Zones & Endpoints

For more convenient organization of nodes that share the same role, Icinga introduces
the concept of Zones, creating an abstraction grouping layer. In this way Icinga or-
ganizes the cluster in a hierarchical structure, by defining Zone objects that depend
on “parent-child” relationships. Child Zones are not allowed to push, but only receive
configurations and updates from their parents, by setting the accept_config=true
option in the respective definition. This option instantiates the Icinga API Listener
object. In order to preserve consistency in operations, a Zone should have no inter-
ferance with other zones, while every defined host or service object can belong to one
zone only.The members of a Zone are called Endpoints and are also configured as
objects. A Zone usually consists of multiple Endpoints that co-operate to offer spe-
cific services. All members of the same zone trust each other and can be configured to
share the total workload (distributed monitoring) or replace each other in case of fail-
ure(high availability). Besides, all communications between Endpoints are secured

with SSL certificates to prevent system vulnerabilities.

1 |# Definition of Endpoint object
object Endpoint "icinga2-masterl" {
host = "192.168.56.101"

}
Definition of Endpoint object

(02 B N OS E \S)

6 |object Endpoint "icinga2-clientl" {
host = "192.168.56.102"
81}
9 |# Definition of Zone object
10 |object Zone "master-zonel" {
11 endpoints = ["icinga2-masterl”]
12 |}
13 |# Definition of Zone object

14 |object Zone "client-zonel" {

15 endpoints = ["icinga2-clientl"]
16 parent = "master-zonel"
17 |}

Listing 2.2: Definition of Icinga Zones and Endpoints

2.2. SYSTEM MONITORING

E

icinga2-masteri localdomain

E

icinga2-satellite1.localdomain

(a) master + satellite

master

satellite

’

icinga2-masteri.localdomain

master

Execute command

=

icinga2-client1.localdomain

(b) master + client

client1

91

Figure 2.3: Icinga Zone Hierarchy

Configuration Modes

Icinga supports two different modes to synchronize configurations, depending on the
direction that configuration files, checks, updates and notifications flow: Top >Down
and Bottom >Up. We focus and analyze only the Top >Down configuration option,
since it is the recommended and most popular approach across most Icinga deploy-
ments. This mode is suitable for topologies that need all the configuration files to be
stored in the master Zones and get pushed or synced into satellite or client Zones.
The definition of the configuration objects takes place only once inside the master
node under the /etc/icinga2/zones.d directory, while each Zone is individually
configured regarding hosts, services and checks. Then, configuration files are pushed
down to satellites or clients that run their own local scheduler and send check results
back to the master. No manual restart of the Icinga daemon is required on the child
nodes since validation and syncing are done automatically. Endpoints that belong to
the same Zone receive the exact same configuration from the corresponding master
Zone. Thus, monitoring large scale clusters that consist of thousands of nodes can be
greatly simplified and accelerated. For additional flexibility, Icinga usually introduces
aGlobal Zone object, that is used for sharing Icinga objects across separate Zones of
a single Icinga cluster. In this manner, individual or unrelated Zones share a common
set of Icinga configuration objects, like Commands, Templates,Users and Groups,

to perform monitoring.

92 CHAPTER 2. BACKGROUND

2.3 Distributed Data Storage

2.3.1 The current picture

It is beyond doubt that, in the time of Big Data, digital technologies have prevailed
in almost every aspect of human life. The massive amounts of unstructured data that
are globally produced on a daily basis, raise the demands for massive capture, storage,
analysis and curation. Consequently, both the research community and the enterprise,
concentrate their efforts on the design of cost efficient storage systems that are capable
of facing this challenge, as storage is at the core of every I'T-related service. Even though
centralized storage solutions are barely 20-25 years old, they are no longer able to keep

up with the exponential data growth.

Traditional storage solutions involve disk arrays, multiple controllers and a lot of disk
trays attached to a SAN ' in order to provide data storage services to clients. The disk
trays are connected to the storage controllers and clients are able to perform data op-
erations through those controllers. Scaling up the capacity and performance of such
systems requires the constant provisioning of new hardware, together with proper con-
figuration. As expected, this approach suffers from throughput, capacity and band-
width bottlenecks, as controllers get overloaded over time. The typical solution is to
buy additional controllers and disk arrays, moving some load to the new hardware. Of
course, this solution is expensive and definately not flexible, as it is limited to the ter-
abyte scale and does not fit the current demands of the industry for elasticity and high
availability in the petascale. Therefore, it is argued that we have reached the stage at
which conventional ways of storing data using stand-alone network attached devices

have been declared dead, as they no longer serve their intended purpose.

Despite the fact that commodity storage hardware is rapidly improving, future-proof
storage solutions do not lie in faster drives or higher network bandwidth. Instead,
a new concept of storing data is introduced suggesting an alternative approach, re-
ferred to as distributed data stores. This concept proposes a software-defined stor-
age(SDS) solution, in which all storage-related tasks are handled programmatically by
software entities which are entirely decoupled from the underlying physical hardware.

Software-defined architectures reject centralized, networked storage resources and es-

'*Storage Area Network

2.3. DISTRIBUTED DATA STORAGE 93

tablish a clustered, dynamic, server-based system that relies on sharing each server’s
local storage resources. Such storage solutions employ powerful computational algo-
rithms, that distribute workloads across available resources and guarantee data con-
sistency and redundancy. Currently, distributed data storage platforms are the most
promising approach to satisfying the ever-growing demands for the efficient storage

of data in large scale.

2.3.2 Distributed Storage Definition

According to Wikipedia, “A distributed data store is a computer network where in-
formation is stored on more than one nodes, often in a replicated fashion. It usually
refers to either a distributed database where users store information on a number of
nodes, or a computer network in which users store information on a number of peer
network nodes”.

Distributed databases are mostly non-relational databases that support quick access
of data over a large number of nodes. Some distributed databases provide rich query
capabilities to the end-users, while others are rather limited due to a key-value store
semantics. Meanwhile, in peer network data stores, the user can usually reciprocate
and allow other users to use their computer as a storage node as well. Information may
or may not be accessible to other users depending on the design of the network. A dis-
tributed storage system can relate to any of the 3 types of storage: block, file or object.
The goal is to achieve high reliability and ubiquitous availability of data. Moving to a
software-defined model ensures a smooth future transition to hybrid and multi-cloud
operations. In order to gain deeper insight into distributed data stores, it is useful
to observe their core characteristics, along with their main differences compared to

traditional storage solutions:

« Philosophy
The main difference between traditional storage techniques(like SAN or NAS) and
distributed data storage ones(like HDFS, GFS, Ceph) is that the former mostly de-
pend on the underlying hardware(hardware defined), while the latter do not require
specific hardware support(software defined). This means that SAN & NAS storage
solutions propose a hardware-specific, limited, proprietary deployment, whereas a

software defined storage cluster can be deployed using non-specialized commodity

94 CHAPTER 2. BACKGROUND

hardware(servers, drivers, network etc), separating logical aspects of storage from
the physical components. Software-defined storage typically includes a form of stor-
age virtualization that separates the physical storage hardware (data plane) from the

data storage management logic or intelligence(control plane).

« Cost
Considering the always increasing demand for storage, the philosophy and design of
distributed storage solutions make them very cost-effective with regard to the IT in-
frastructure needed to set up a reliable alrge-scale storage system. Software-defined
data storage, being hardware-independent, has a positive impact on I'T deployments,
as it converges storage, increases the utilization of servers and restricts power and
space consumption by applying strong computational models. As a result, it consid-
erably reduces the cost per GB comparing to conventional storage solutions, espe-
cially when managing data in the petascale. In addition, the system administration
costs are greatly reduced since considerably less infrastructure entities need to be

managed.

o Flexibility & Automation
Traditional SAN & NAS come with limitations in terms of scalability, as they can
support a maximum number of controllers and number of drives connected to each
controller. On the contrary, distributed data stores are scale-out, since they have
theoretically unlimited capacity being expandable by design. One can keep adding
new nodes to the software-defined storage cluster and the cluster will keep increasing
in capacity and performance. This is also known as horizontal scaling. Besides, the
management of SDS is very flexible, as it provides the capabilities to add new nodes
or remove faulty ones on-the-fly, using some CLI programming tool. The fact that
there is no downtime during these processes greatly facilitates the maintenance and

expansion of software-defined storage clusters.

« Reliability
The majority of distributed storage solutions are fault-tolerant, meaning they are
likely to continue their operation even though one or more components have failed.
In addition, they are capable of replicating the data stored for any unpredicted fail-
ures. Due to their distributed nature and design, data is not stored on a single node;
instead, it is stored in multiple nodes across the cluster, depending on user-defined

policies and replication factor. It is also quite common that they regularly perform

2.3. DISTRIBUTED DATA STORAGE 95

data sanity checks to prevent data corruption. Since data movement around the
cluster is relatively expensive, some SDS technologies adopt pooling approaches that
suggest leaving data in place and creating an upper mapping layer to it that spans ar-
rays. In distributed data storage, it is the function of software-defined storage system
that ensures that everything is divided, distributed, replicated and, in case of failure,

rectified with intelligent algorithms.

Multi-tenancy

Software-defined storage solutions are designed to manage heavy cloud workloads
and, therefore, provide multi-tenant functionality. Multi-tenancy involves delega-
tion of management responsibilities, isolation of users and restriction of access based

on security policies.

2.3.3 Ceph Distributed Data Store

As a test case scenario for OntoMon we decided to deploy a Ceph distributed data

storage cluster and monitor its health. Ceph [20] is a software-defined platform that

belongs to next-generation storage solutions, combining various core characteristics:

Software-defined: agile deployment, faster hardware upgrades and lower costs

Enterprise-features: replication, snapshots, thin provisioning, auto-tiering and self-

healing guarantee efficiency in operations, protection and consistency of data

Unified storage: combines block, file and object interfaces offering great versatility,

as most other storage solutions are block-, file-, or object-only interfaces

Scale-out: incrementally expand the capacity of the cluster, based on current storage

needs, simply by adding commodity nodes

Open-source: collaboration, customizability, quality, interoperability and security

What is Ceph?

Ceph is an open-source software-defined storage platform, that implements object

storage on a single distributed computer cluster. It offers a truly unified, highly scal-

able and reliable storage solution by providing interfaces for object-, block- and file-

level storage. Ceph primarily aims for completely distributed data operations without

96 CHAPTER 2. BACKGROUND

a single point of failure, scalable to the exabyte level, and freely available. Using an
algorithm called CRUSH '°, it effectively stores, retrieves and replicates data across
various cluster nodes. Thus, it offers replica-based data protection, by retaining mul-
tiple copies of data across multiple cluster nodes in the case of failure. This makes it
fault-tolerant, while using commodity hardware that require no specific support. Due
to its design principles, the system is both self-healing and self-managing, aiming to

minimize administration time and other costs, without any centralized bottlenecks.

The object manipulation algorithm used by Ceph liberates storage clusters from the
scalability and performance limitations imposed by a centralized data table mapping.
It replicates and re-balances data within the cluster dynamically, while delivering high-
performance and infinite scalability. In traditional architectures, clients talk to a cen-
tralized component (e.g. a gateway, broker, API etc.), which acts as a single point of
entry to a complex subsystem. This imposes serioues limitations to both performance
and scalability, while introducing a single point of failure, if the centralized component
goes down. Ceph claims to achieve maximum uptime, due to its de-centralized design
and intelligent storage daemons. Also, Ceph does not rely on RAID technology for
data protection; rather, it uses replication and erasure coding. Regarding networking,
Ceph communicates over a regular TCP/IP network. Ceph has been rapidly evolv-
ing in the area of cloud storage and is grabbing center stage both with the major open
source cloud platforms, like OpenStack, CloudStack etc. and the leading developers
in both storage and Linux space, such as Canonical, Red Hat and SUSE.

Architectural Components

The architectural structure of a Ceph cluster, as well as its fundamental components,
are presented in Figure 2.4 and Figure 2.5. The former reviews the design of Ceph

from a high-level perspective, while the latter depicts some more technical details:

RADOS "’
RADOS [22] is the cornerstone of a Ceph cluster and is the component that imple-
ments distributed object storage. All data issued to a Ceph cluster is, eventually, bro-

ken up into objects before it gets written. The RADOS layer is responsible for ma-

*Controlled Replication Under Scalable Hashing
Y7 Reliable Autonomic Distributed Object Store

2.3. DISTRIBUTED DATA STORAGE 97

A A A
OBJECTS VIRTUAL DISKS FILES & DIRECTORIES
CEPH CEPH CEPH
OBJECT GATEWAY BLOCK DEVICE FILESYSTEM
A powerful S3- and Swift- A distributed virtual block A distributed, scale-out
compatible gateway that device that delivers high- filesystem with POSIX
brings the power of the performance, cost- semantics that provides
‘ Ceph Object Store to effective storage for storage for a legacy and
modern applications virtual machines and modern applications

legacy applications

CEPH STORAGE CLUSTER

A reliable, easy to manage, next-generation distributed object
store that provides storage of unstructured data for applications

Figure 2.4: High-level Ceph Cluster Architecture

nipulating and storing these objects irrespective of their data type. In this direction,
every data transaction from users is translated into an internal object operation in RA-
DOS. RADOS makes sure that data always remains in a consistent and reliable state,
by performing data replication, failure detection and recovery, as well as migration
and rebalancing across cluster nodes. Ceph manages everything as an object under-
neath, by assigning every object a unique identifier and storing it in a flat address space.
An object in RADOS contains both binary data and metadata, formalized as a set of
key-value pairs. RADOS is rather flexible and generic, so it is ideal for building more
complex systems on top of it. A RADOS cluster consists of multiple nodes upon which

the Ceph daemons are running. The most important ones are OSDs '® and Monitors:

o OSDs are running on top of a filesystem(e.g.xfs, btrfs, ext4), are associated with
a specific path of the filesystem (e.g. /var/1ib/ceph/osd-1) or a mounted storage
device (e.g. /dev/sda/ceph/osd-1) mounted to the filesystem, and mainly per-
form read and write operations upon that storage location. Ceph OSDs manage disk
block allocation internally, exposing an interface that allows others to read and write
named objects of variable-size in a flat namespace(i.e. no hierarchy of directories).
A Ceph cluster can support thousands of OSDs that serve objects to clients, work-
ing in a peer-to-peer fashion. There are 2 types of OSDs: primary and secondary.
Each object in RADOS is assigned to a primary OSD that handles all read and write

operations for the clients, while secondary OSDs are under the control of the pri-

*Object Storage Devices

98 CHAPTER 2. BACKGROUND

mary. OSDs communicate and collaborate with other object storage devices, in or-
der to perform replication and recovery tasks. More specifically, OSDs heartbeat
each other, so when an OSD fails, its “peers” inform the Monitor. RADOS consid-
ers two dimensions of OSD liveness: whether the OSD is reachable, and whether it
is assigned data by CRUSH. An unresponsive OSD is initially marked down and if
it does not quickly recover, it is marked out of the data distribution. Then, another
OSD joins to re-replicate its contents. What's more, OSD nodes are responsible for
performing the mapping of objects to blocks, a task traditionally done at the file sys-
tem layer in the client. This behavior allows the local entity to best decide how to

store an object. It is recommended to run one OSD per physical storage device.

APP APP [HOST/VM l I CLIENT l
r y r
L RADOSGW RBD CEPHFS
LIBRADOS
. - A bucket-based REST |4 raliable and fully- APOSIX-compliant

Alibrary allawing |eateway, compatible with | gictributed block device, |distributed filo systom,
SIS ALY 53 and Swift with a Linux kernal client |with a Linux kernel client
cEemm L, and a QEMU/KVM driver |and support for FUSE
with support for
C, G+, Java,
Python, Ruby,
and PHP

Figure 2.5: Technical Ceph Cluster Architecture

 Monitors, which are responsible for keeping track of the health of the cluster, man-
aging the cluster membership and orchestrating the data placement elections. Mon-
itors do not serve objects to clients; instead, they maintain a master copy of the map
of the cluster, representing its current state. Before a Ceph client reads or writes data
to the cluster, a copy of the latest cluster map should be obtained from the Monitor
node. Therefore, Monitors receive timely reports regarding the current state of OSDs
that belong to the cluster. When object storage devices fail or new devices are added,
Monitors get informed about these changes and, once agreed upon them, they issue
an updated valid version of the cluster map, that records the most recent changes.

Differences in map epochs are significant only when they vary between two commu-

2.3. DISTRIBUTED DATA STORAGE 99

nicating OSDs, which must agree on their proper roles with respect to the particular
PG the I/O references. This property allows RADOS to distribute map updates lazily
by combining them with existing inter-OSD messages, effectively shifting the distri-
bution burden to the OSDs. Aiming at consistency and durability, active Monitors
form a quorum, implementing PAXOS [24], a family of algorithms that provide con-
sensus for distributed decision making. To avoid split-brain situations, a majority of
monitors must always be available(i.e. odd number of quorum members) in order
to agree on updates of the cluster map and guarantee that no monitor distributes the

old map to the clients.

..

0sD 0sD 0sD 0sD 0sD

btrfs
xfs

...... b

.......................................

1_—

QQQIQDQI@@@I@@Q
e o

Figure 2.6: Overview of RADOS

LIBRADOS

As its name suggests, LIBRADOS is a set of software libraries, or an API, that pro-
vides a native interface for low-level access to the services of RADOS, available in
C,C++,Java,PHP and Python. The communication with the storage cluster is im-
plemented via TCP sockets, introducing no additional HTTP overhead, so it is really
direct and fast. LIBRADOS provides rich functionality over objects, supporting file-
like operations on them and as well as a locking primitive, called “watch-notify”. It is

also highly customizable, as user C++ code can be injected to manipulate object classes.

RADOSGW

RADOS Gateway is a FastCGI service that provides a RESTful API to store objects
and metadata to the RADOS cluster and can be used along with any FastCGI capable
webserver. It is a thin-layer HTTP gateway, that sits on top of LIBRADOS with its own

100 CHAPTER 2. BACKGROUND

data formats, and maintains its own user database, authentication, and access control.

The RADOS Gateway supports two interfaces:

 S3-compatible: provides object storage functionality with an interface that is com-

patible with the Amazon S3 RESTful AP],

« Swift-compatible: provides object storage functionality with an interface that is

compatible with the OpenStack Swift API

Since a unified namespace is used, web applications that are connected to RADOS
Gateway can read and write data using either API. Buckets, accounts and authentica-

tion are also integrated and supported.

CE
W reoosew NN NN

—
LIBRADOS |

¥ socket

e ———
| S m———
)

Figure 2.7: Rados Gateway for RESTful services

-
=
-

=

=
=
=
==

=
-
=
=

RBD"

RBD is the core component that provides the block storage interface of Ceph. It is a re-
liable and fully distributed block device that supports Linux kernel clients, along with
the QEMU/KVM virtualization driver. Ceph block devices are thinly provisioned,
largely resizeable and store data in multiple OSDs across the cluster. Block-based stor-
age interfaces are the most common way to store data with rotating media such as hard
disks, CDs, floppy disks etc. This means block device images are broken into smaller
chunks of volumes that are stored as objects in RADOS. By striping images across

the cluster, Ceph improves read access performance for large block device images and

Rados Block Device

2.3. DISTRIBUTED DATA STORAGE 101

decouples VMs from the host machine. The block device can be virtualized, provid-
ing block storage to virtual machines in various virtualization platforms. Ceph Block
Devices leverage RADOS capabilities such as snapshotting and copy-on-write clones,
that are widely used in VM environments. For example, one can create a “golden”
image inside a Ceph cluster and then use COW cloning to bring up multiple VMs us-
ing RBD-based image snapshots. As shown in Figure 2.8, there are 2 different ways of
accessing the RBD interface of Ceph:

| HOST

I KRBD (KERNEL MODULE) |
T TIBRADOS I

(a) librbd (b) KRBD

Figure 2.8: Rados Block Device access

1. Use librbd, which is a library that links the virtualization container with Ceph,
providing devices as disks to Virtual Machines. Ceph Block Devices integrate well
with the QEMU virtualization engine. Librbd is linked to LIBRADOS, in order to
communicate with the RADOS cluster, with the virtualization container, in order to
provide the virtual disk volume to the VM. The main objective of librd is to gather
chunks of space from RADOS, formalize them as a single block of storage and make
it available to the VM. The main advantage of this architecture is that, since the
image and all data related to the virtual machine are stored in the RADOS cluster,
we can easily migrate the VM by suspending it on one container and then bringing
it up on a different container on-the-fly. QEMU can access an image as a virtual
block device directly vialibrbd. This performs better because it avoids an additional

context switch on the hypervisor, and benefits from RBD caching.

2. Use KRBD, which is a Linux kernel module ** that makes RADOS block storage

available on a Linux server or host. This module grants higher flexibility to the

2http://elixir.free-electrons.com/linux/latest/source/drivers/block/rbd.c

http://elixir.free-electrons.com/linux/latest/source/drivers/block/rbd.c

102 CHAPTER 2. BACKGROUND

clients, as RADOS images can be exported as block devices to the host. The process
involves loading the RBD module and then mapping a block device image name to

a kernel module, by specifying some related info.

CephFS

CephFS is a distributed, POSIX-compliant filesystem that runs on top of the same dis-
tributed cluster that provides object and block storage interfaces. CephFS allows data
to be stored in files and directories and provides a traditional file system interface with
known POSIX semantics. The Ceph Filesystem requires at least one Ceph Metadata
Server daemon(MDS) to be running on some node of the RADOS Cluster.In the back-
end, the MDS handles all data related to the filesystem as objects and saves them in
RADOS. Interacting with CephFS requires communication with the MDS involving
permissions, ownerships, timestamps, along with the specification of file and directory
hierarchies. Once the needed semantics are provided to, data is retrieved and deliv-
ered to the client by the OSD. The Metadata Server does not handle any data, it just
stores and manages the POSIX semantics. CephFS is horizontally scalable, since when
the number of metadata server increases, the workload is split among themselves pro-
viding a high-availability setup. Another feature that the Ceph FS introduces is file

sharing, as multiple clients can work on the same file simultaneously.

Data Placement

One of the most intriguing and powerful features in Ceph lies in the way it faces the
challenge of efficiently managing data at large scale. Essentially, this refers to the
mechanism that is responsible for computing the placement and storage of a grow-
ing amounts of data across the cluster. Ceph avoids lookup of data locations in some
central directory, in order to facilitate addition or removal of nodes. Thus, it aims at
moving as few objects as possible, while still maintaining balance across new cluster
configurations. Ceph focuses on reducing periods of high IO, as it is designed to bal-
ance IO traffic, by distributing the workload to sufficiently many nodes. To achieve
this, Ceph implements the CRUSH algorithm to store and retrieve data, by delegat-
ing the computation of the explicit storage location of each object inside the cluster to
the client. In order to explore CRUSH, it is required to analyze the concepts of pools,

placement groups and OSDs, as presented in the official Ceph docs [25]. Without loss of

2.3. DISTRIBUTED DATA STORAGE 103

generality, the problem of data placement can be reformulated into an “object-to-osd
mapping” problem.

Objects

0SD.0 0SD.1 0SD.2 0osD.3 0SD.4 0SD.5 - D
Oma [=] ‘ O ‘-EI_' I_-H =0 PG

Pool —B (rep size =3)

Pool=C(repsize=2)

Pool - A Pool - B Pool - C

Figure 2.9: Overview of Ceph Data Placement

Pools

Pools are a logical group for storing objects inside Ceph. They provide the highest level
of abstraction that partitions Ceph global storage. Hence, this abstraction can be used
to define the configuration of storage policies, such as the level of resilience(replication
factor), the number of placement groups, the CRUSH ruleset, ownerships, etc. In
Ceph, each object will be stored in a concrete pool, so the pool identifier(a number)
and the name of the object(a string) are used to uniquely identify the object in the
system. When a pool is created, it is assigned a number of placement groups (PGs).
Storing data in a pool requires user authentication with permissions for the specific

pool. Ceph is also capable of taking snapshots of pools.

Placement Groups

Placement groups(PGs) define the second level of storage abstraction inside a Ceph
cluster, and actually are shards or fragments of a logical object pool that places objects
as a group into OSDs. Though invisible to clients, PGs are very important entities in-
side a Ceph cluster, as they dynamically map objects to OSDs and are, thus, regarded as
the distribution unit in Ceph. The objective of placement groups is to aggregate objects
within a pool, since tracking per-object placement and metadata adds disproportion-

ate computational workloads. In addition, aiming at higher reliability, Ceph spreads

104 CHAPTER 2. BACKGROUND

PGs across multiple OSDs inside the cluster. It is notable, that every single Placement
Group is guaranteed to always be consistent and, therefore, could be regarded as a sub-
cluster. By convention, the first OSD mapped to a PG is the primary OSD, while the
rest ODSs mapped to the same PG are secondaries. Every object inside a Ceph cluster
is mapped to exactly one PG. In general, more PGs improve performance and lead to
a well-balanced storage system. However, increasing the number of OSDs, requires
careful specification of pg_num value, since it significantly influences both the behav-
ior of the cluster and the durability of stored data. A recommended general rule to

evenly distribute data across the Ceph cluster is given below:

0OSDs 100

Total PGs =
ot N Replication Factor

Figure 2.10: Choosing the right number of PGs

CRUSH Map

CRUSH empowers Ceph clients to communicate with OSDs directly, rather than through
a centralized server by performing client-side calculations. Hence, clients need to pro-
vide an overview of the current cluster state to CRUSH algorithm in order to perform
any data operation inside the Ceph cluster. The CRUSH map aggregates OSDs into
physical locations and contains a list of rules that tell the CRUSH algorithm how it
should replicate data in the pools of the Ceph cluster. This is actually a hierarchy of
nodes(also referred to as “buckets”) and leaves, that are defined by their type. Hier-
archies are, in general, arbitrary in order to serve each user needs. However, the leaf
nodes always represent OSDs and each leaf belongs to a node or bucket.

The CRUSH rules allow modeling of the actual physical topology of the Ceph deploy-
ment, in terms of data centers, racks, shelves, hosts etc. New elements can be de-
fined in the hierarchy, while failure domains(e.g. a shared power source, a shared net-
work, etc.) can be targeted to handle errors more efficiently. In essence, the CRUSH
map contains information that helps tracking down the physical locations where the
Ceph stores redundant copies of data. It is quite common for larger clusters, that each
pool may have its own CRUSH ruleset, replication strategies or distribution policies.
CRUSH models the underlying physical structure of assets and can, therefore, identify

sources of failure.

2.3. DISTRIBUTED DATA STORAGE 105

ROQT

¥ h 4

‘ DC-EAST ‘ ‘ DC-WEST ‘

¥ v I
ROOM 1 ROOM 2 ROOM 10
| ' | '

ROW{-A | ROW1-B ROW 2-A ROW 100-A
e e (v [) e
'W] g OO l%l 'w] oo O OO0
l?] lfl osD osD I?] l?] I?] l?] 0SD ©OSD OSD
.-(.)SI:.:-. ._t.)s:.:_. Py

Figure 2.11: Example of a cluster topology

CRUSH Algorithm Overview

The CRUSH algorithm that Ceph uses was proposed in [23]. Within storage systems,
its goal is to distribute object replicas randomly among available storage resources and
lead to a probabilistically balanced distribution, by uniformly mixing old and new data
together. This approach has the critical advantage that, on average, all devices will be
similarly loaded, allowing the system to perform well under any potential workload.

CRUSH is a deterministic, pseudo-random function that maps an input value, typi-
cally an object or object group identifier, to a list of devices that will store the desired
replicas of the object. For that, CRUSH only needs a compact, hierarchical cluster
map that describes the devices available in the storage cluster, along with the knowl-
edge of the replica placement policy. This description usually comes in the form of
a hierarchy that contains storage devices, weights and placement rules. In addition,
CRUSH ensures stability and efficient reorganization of data, moving around a very
limited number of objects in case storage devices are added or removed. Being aware
of the underlying physical infrastructure, organization policies and rule sets, CRUSH
can effectively detect sources of failure and maintain the desired distribution of data

across the cluster.

106 CHAPTER 2. BACKGROUND

Key CRUSH properties

- Avoids failed devices, by taking care of the data placement itself and managing where
to place objects. Replication across multiple devices acts as a safety valve in case of

unexpected failures.

- Works as a function, allowing clients to do calculations on their side and directly
communicate with storage devices, without the need of a central proxy. This elimi-

nates any bottlenecks and increases cluster performance and scalability.

- Pseudo-random, meaning that the set of devices that sharing replicas for one item
appears to be independent of all other items. This prevents concurrent, correlated

failures from causing data loss.
- Fast, as placement calculation takes up microseconds, even for large clusters.

- Deterministic, since identical inputs produce identical outputs.

[10100101101001110110]

hash(object name) % num pg
pEDCCDDBan

CRUSH(pg, cluster state, rule set)

e N

-

J

J

\ J N J\

G
=
\

Figure 2.12: CRUSH calculation overview

Using CRUSH as a Ceph client

Having in mind the above, we can proceed and present the way a Ceph client discovers
the placement of a specific object inside a Ceph cluster. All the calculations listed below
take place in the client-side, imposing no additional overhead to the Ceph cluster. Of
course, these calculations can be performed in other any entity(OSD, MDS) verifying
that CRUSH is fully distributed in design. Once the client discovers which storage
device is currently associated with the specific object, he directly connects to that OSD

and performs any object-related operation.

2.3. DISTRIBUTED DATA STORAGE 107

oo 1111, hash(*f00") % 256 = 0x23 |——#
10101101 POOL: "bar" 323
00111011 3 [P
OBJECT PLACEMENT GROUP
-
(0 24 —
298 L >
| LA) —>
(]
PLACEMENT GROUP CRUSH TARGET 0SDs

Figure 2.13: CRUSH 2-step calculation

As shown in the figure above, the object name gets hashed and then a modulo calcu-
lation into pg_num is performed. Given the pool that the object belongs to, the pool
id is appended to the result of the hash function, ultimately giving the id of the place-
ment group of the object. In order to locate the target OSDs, the PG id is passed to
CRUSH, along with the latest OSD cluster map(cluster state, hierarchy & placement
rules) that the client obtains from the Monitors. CRUSH performs various calculations
and responses with an ordered list of n OSDs, for n-way replicated storage policy. The
length of the list, n, must be equal to the replication factor, while the calculated loca-
tions are explicit and not user-selected. All write operations coming from the client
are directed to the primary OSD of the respective PG that the object belongs to. The
object version gets updated and then the primary propagates the write operation to
all additional replica OSDs(secondaries). In this way, CRUSH simultaneously solves
both the problem of effective distribution and instant location of data. This method
results in a statistically even distribution of objects into different OSDs available across

the cluster.

2.3.4 Monitoring a Ceph Cluster

When interacting with a Ceph cluster, in order to guarantee high performance and
scalability, it is crucial to supervise the underlying infrastructure, to diagnose issues,
handle common errors and ensure that every component is operating as expected.
Monitoring a Ceph cluster from a higher level ensures that all Ceph daemons(Monitors,
OSDs, MDSs) are up and running, while administrators can retrieve specific informa-

tion about individual Ceph processes, using some of the native CLI tools. If a daemon

108 CHAPTER 2. BACKGROUND

is not running or under-performing, it is vital to detect the source causing the issue.
For example, if an OSD is marked down, that could imply that an error concerning its
corresponding disk has occurred. Similarly, if an OSD is marked out, network connec-
tivity issues may exist. Therefore, dedicated monitoring services should be introduced
to keep track of cluster behavior, states and infrastructure-wide historical data, such as
throughput and latency. Besides, a Ceph cluster should also be monitored with regard
to the physical assets and storage devices it employs(e.g. CPU usage, memory availabil-
ity, disk stats, etc.), so that a full-stack overview of the deployment can be concluded.
Hardware metrics can be correlated with the performance of the Ceph cluster, leading
in a deeper understanding of dependencies, the discovery of patterns and, in the long
run, reduction of recovery times and costs. In addition, administrators can fine-tune
individual components, by pinpointing bottlenecks and appropriately provisioning re-
sources. Some of the most important aspects of monitoring and investigating Ceph’s

operations are given below:

+ Cluster Health
Indicates the overall status of the Ceph Cluster: “HEALTH_OK?” status obviously
means that the Ceph cluster is up and running, and that there are no observable
issues that were detected by Ceph’s built-in self-diagnosis. Other possible statuses
are “‘HEALTH_WARN” and “HEALTH_ERR”. The built-in command line tools can

provide more detailed information about the health of the cluster.

o Cluster Capacity
Total storage availability is a must-watch metric, as near-full clusters may face per-
formance issues. Also, even distribution of objects across the cluster requires a bal-
ance between the number of OSDs, PGs and replicas, so storage capacity should be
monitored at every level(cluster, pool, placement group, OSD).In some cases, for
example, instead of simply aggregating metrics from divergent sources together, it
is useful to monitor each pool separately. This means running pool-specific checks
that store performance statistics like read/write throughput, capacity usage, the num-
ber of stored objects, etc. in pool-level resolution. System administrators can lever-
age this feature to gather details about each pool usage pattern and quickly spot

overloaded pools to tune the application for better performance.

+ Monitors

Since Monitors are the dedicated masters of the cluster, admins should know which

2.3. DISTRIBUTED DATA STORAGE 109

Monitors currently form the quorum, as well as the latest monitor map epoch. It
is important to get timely alerts when monitor nodes go down, in order to avoid

deadlocks during the voting process of the monitor quorum

« OSDs
As mentioned before, OSDs can be in “UP, DOWN, IN” and “OUT” states. It is
important to be aware when an OSD is simultaneously “DOWN + IN”, as Ceph is
likely to experience difficulties in recovering or migrating data from this node and
manual intervention might be needed. In addition, OSDs should be monitored in
terms of capacity, as near-full OSDs may break the data placement balance of the

cluster.

e MDSs
In the case of CephFS, it is mandatory to ensure MDS nodes are active and respon-

sive, as they co-ordinate every file-based operation on RADOS.

o Placement Group states
Proactive monitoring of PGs can lead to the detection of inconsistencies in the Ceph
cluster. Knowing the states of PGs(active, clean, inactive, unclean, undersized, de-
graded or stale) indicates which operations are currently taking place inside the clus-

ter and helps understanding and isolation problems.

o Cluster throughput & IOPS
Throughput is defined as the maximum rate of production or processing. Thus, its
value can depict the data rates delivered by the Ceph Cluster and outline how well
it performs. This measurement is closely related to the number of IO operations

performed per second.

« Cluster latency
If caching is enabled, Ceph does not write all updates directly to disk. A transaction
is marked complete, after the operation is successfully committed to the journal -
the time required for this step is reported as “commit latency”. Data is permanently
stored when actual data is written to disk - the time required to flush the operation
to disk is reported as “apply latency”. Observing these times ensures that the system

is performing quickly enough and is sufficiently robust to data loss.

« CPU, Memory utilization

Ceph daemons are quite demanding, regarding CPU and memory resources. There-

110 CHAPTER 2. BACKGROUND

fore, it is essential to watch usage and availability percentages of processors and
memory chips, to ensure that each cluster node is functional. Furthermore, spikes
in cpu and memory usage might indicate congestion or unusual workload in specific

storage components.

« Disk statistics
Disks, being the physical storage devices where user data is ultimately placed, should
be extensively monitored to prevent data loss or even predict future failures. High
temperature, slow IO and high latencies might identify a failing disk. Timely equip-
ment replacement assures that the corresponding OSD can continue performing its

tasks normally.

« Network activity
In a large cluster, network traffic congestion is a frequent phenomenon that can
burden performance. Simple ping checks show if cluster nodes are connected and
responsive. Furthermore, tracking of overall throughput, exchanged packets, in-
coming or outcoming traffic, response times and the number of transactions can

certainly verify if the network stack of the cluster is operating normally.

2.4 Scalable Vector Graphics

2.4.1 About SVG

Scalable Vector Graphics [26] is an XML-based vector image format for two-dimensional
graphics, with comprehensive support for interactions and animations. SVG doc-
uments are dynamic in nature and, generally, highly customizable. Their content
is stylable, scalable to different display resolutions, and can be viewed stand-alone,
mixed with HTML content, or embedded within other XML languages by using respec-
tive namespaces. The World Wide Web Consortium (W3C) originally developed the
SVG specification in 1999 as an open standard. The latest release is 1.1, while SVG ver-
sion 2 is currently under development and still in draft. There are, also, SVG profiles

that are designed for mobile.

2.4. SCALABLE VECTOR GRAPHICS 111

2.4.2 Overview

SVG is a format that is completely independent of the resolution of the rendering de-
vice, typically a display monitor. Its platform consists of two parts: an XML-based file
format and API for graphical applications. SVG is a standard that is used in multiple
business areas including Web graphics, animations, user interfaces, mobile applica-
tions, graphics interchange and high-quality design. This is proved by the fact that
all major modern web browsers provide SVG rendering support. Sophisticated appli-
cations of SVG are possible by accessing SVG Document Object Model(DOM), which
provide complete access to all elements, attributes and properties. In addition, a rich
set of event handlers, such as onmouseover, onclick, onload etc. can be assigned to
any SVG graphical object to provide interactivity. The MIME *' type for SVG is im-
age/svg+xml, its namespaceis http://www.w3.0org/2000/svg and its public iden-
tifier is PUBLIC"-//W3C//DTD SVG 1.1//EN". SVG integrates well with other W3C
specifications and standards, such as: XML,HTML, CSS and SMIL??. By conforming to
multiple open standards, SVG becomes more powerful and enables users to incorpo-
rate vector graphics into their Web sites. At this point, it is essential to analyze the core

characteristics of the SVG standard:

Scalable

In terms of graphics, scalability means not being limited to a single, fixed, pixel size
and, hence, adapting to multiple resolutions without sacrificing quality. On the Web,
scalable means that a particular technology can grow to a large number of files, users
or applications. SVG, being a graphics technology intended for the Web, is scalable
in both senses. SVG graphics are scalable to different display resolutions while the
same SVG graphic can be placed at different sizes on the same Web page. Another
important parameter to note regarding SVG scalability is that their content can both
be viewed as a stand-alone graphic and be referenced or included inside other SVG
graphics. Thereby, it is possible to build a complex illustration in smaller parts, perhaps

by several people.

Vectorized

Vector graphics use geometric objects such as lines, curves and polygons to represent

*'Multi-purpose Internet Mail Extensions
*2Synchronized Multimedia Integration Language

112 CHAPTER 2. BACKGROUND

images. They are based on vectors, which lead through locations called control points
or nodes. This gives greater flexibility compared to raster-only formats (such as PNG
and JPEG) which have to store pixel-specific information for the enclosed graphic.
Typically, vector formats can also integrate raster images and combine them with vec-
tor information such as clipping paths to produce a complete illustration. Since all
modern displays are raster-oriented, vector graphics need to be rasterized before they
are rendered; this process is computationally intensive and usually takes place on the
client side. Of course, raster-based graphics are by definition compatible with raster-
oriented displays. The SVG standard provides control over the rasterization process,

such as anti-aliasing low-quality vector implementations.

Stylable

Scalable Vector Graphics take advantage of style sheets in terms of presentational con-
trol, flexibility, faster download and improved maintenance. SVG extends this control
and offers great customization capabilities. The combination of scripting, manipu-
lation of DOM and generation of CSS code is often termed “Dynamic HTML” and is
widely used for animation, interactivity and presentational effects over vector images.

SVG allows the same script-based manipulation of the DOM tree and the style sheet.

XML-based

XML is a standard for structured information exchange, has become extremely popular
and is both widely and reliably implemented. Being written in XML, SVG builds upon
this strong foundation and gains many of the advantages XML offers. More precisely, it
has a sound basis for internationalization, powerful structuring capabilities, an object
model, etc. By building on existing, cleanly-implemented specifications, XML-based

grammars are open to implementation without a huge reverse engineering effort.

Namespaced

SVG is also intended to be used as one component in a multi-namespace XML appli-
cation. This multiplies the power of each of the namespaces used, to allow innovative
new content to be created. For example, SVG graphics may be included in a document
which uses any text-oriented XML namespace - including XHTML. SVG can be regarded
as a general-purpose component for multi-namespace environments that need to use

graphics.

2.4. SCALABLE VECTOR GRAPHICS 113

2.4.3 Fundamental Features

Some of the most important features that the SVG standard supports are listed below:

- Graphical Objects
SVG models graphics at the level of objects rather than individual points. There-
fore SVG provides a general path element that can be used to create any graphi-
cal object, by outlining curved or straight lines. As some geometrical shapes are
quite common in applications, SVG provides them as standard graphical objects,
like <rect>,<circle>,<ellipsis>,<line>. SVG provides fine control over the
coordinate system in which graphical objects are defined and the transformations
that will be applied during rendering. Essentially, XML is used to describe what the
image should look like by utilizing predefined attributes. Coordinate system inside

the SVG are determined by the viewport and viewBox attributes.

(a) (b) rectangle (c) star
circle

Figure 2.14: SVG Shapes

- Text & Fonts
Graphically rich material is often highly dependent on the particular font used and
the exact spacing of the glyphs. In many cases, designers convert text to outlines
to avoid any font substitution problems. This means that the original text is not
present and thus searchability and accessibility suffer. In response to feedback from
designers, SVG includes font elements so that both text and graphical appearance

are preserved.

- Painting & Colors
Graphical objects can be modified in terms of coloring by assigning their fill and
stroke properties to 3 or 6-digit hex or RGB values. Gradients, patterns and trans-

parency are also supported.

114 CHAPTER 2. BACKGROUND

- Filtering & Effects
SVG allows the declarative specification of filters, either singly or in combination,
which can be applied to the client-side when the SVG is rendered. These are specified
in such way that graphics are still scalable and displayable at different resolutions.

Common filters involve blurring, lighting, color adjustments, etc.

- Scripting
All aspects of an SVG document can be accessed and manipulated using scripts in
a similar way to HTML. The default scripting language is ECMAScript, which is
closely related to JavaScript and there are defined DOM objects for every SVG el-
ement and attribute. Scripts are enclosed in <script> elements. They can run in

response to pointer events, keyboard events and document events as required.

- Transformations
The transformations supported by SVG are translation, rotation, skewing, scaling,
as well as matrix operations. All transformations are summed up in an element’s
transform attribute can be chained simply by concatenating them, separated by
whitespace. When using transformations upon an element, a new coordinate system
is established. Thus, user-specified units for the element and its children might not
follow the 1:1 pixel mapping, as they might be skewed, translated or scaled based on

the applied transformation.

- Animations
SVG has built-in support for animations, using SMIL, but it is also compatible with
CSS animations and specifically keyframes. Animations can be triggered either
declaratively or via script-based manipulation of the document aiming at visualiz-
ing combinations of transforms. Main SVG animations focus on translation, scal-
ing, rotation, motion, paths, etc. Control values of attributes can be specified, along
with specific timing, repeat count and duration. Also, SVG elements can visualize

multiple animations, either simultaneously or serially.

- Metadata
In accord with the W3C’s Semantic Web initiative, SVG allows authors to provide
metadata about SVG content. The main facility is the <metadata> element, where
the document can be described using Dublin Core metadata properties (e.g. title,

creator/author, subject, description, etc.). Other metadata schemas may be used as

2.4. SCALABLE VECTOR GRAPHICS 115

well. In addition, SVG defines <title> and <desc> elements where authors may
also provide plain-text descriptive material within an SVG image to help indexing,

searching and retrieval by a number of means.

2.4.4 Vector vs Raster

In current Web there is a strong debate concerning the usage of the two main types
of image files: Raster and Vector. Raster images consist of pixels and are created with
pixel-based programs or captured with a camera or scanner. They are very commonly
used today (e.g. photography), including popular format extensions like jpg/jpeg, png, bmp,
and gif. Raster file formats store data related to each individual pixel, while the num-
ber of pixels is finite. Though rich in detail and precisely editable, raster images are
resolution dependent, meaning they cannot scale up to an arbitrary resolution with-
out loss of apparent quality. For example, when enlarged, a blurring effect occurs, as
computers automatically fill with arbitrary colors the extra pixels, not knowing the ex-
act desired shade. This interpolation of data causes the image to appear blurry since
many pixels are wrongly-colored. Once the image is created at a certain dimension, en-
larging the image is not feasible without losing quality(pixelation). Anti-aliasing tech-
niques can be used, but they are not adequetely efficient in big zoom levels. In addition,
raster images are usually large files(depending on the dpi) and require a considerable
amount of processing power to be handled. Compression of raster images also causes

partial loss of data (e.g. straight lines might appear “jagged” after compression).

On the contrary, vector images do not store per-pixel information; instead, they are
based on mathematical formulas and geometrical primitives to draw shapes, using
points, lines and curves. They are produced by vector-based software and have been
recently gaining more attention. The construction of such images relies on the defin-
ing a set of control points and strong mathematical models used to link them. Given
a vector image input, a viewing program interprets the vector image as a set of in-
structions that maps a series of grid points(coordinates) to the place where the lines
or curves are to be drawn. This guarantees smooth and crispy rendering no matter the
zoom level. For example, a raster image of a “1x1” square at 300 dpi will have 300
individuals pieces of information, while a vector image will only contain four points,

one for each corner. Accordingly, the computer will use mathematics to connect these

116 CHAPTER 2. BACKGROUND

points and fill in all of the missing information. Vector images are quite popular in

font and logo design, including file formats like svg, pdf and ai.

Raster Vector

1x 4x 1x 4x

Figure 2.15: Raster vs Vector

Rasterization Since modern display monitors and printers are raster/bitmapped de-
vices, vector image formats have to be converted to raster format (bitmap/pixel arrays)
before they can be rendered or printed. Intuitively, this implies that discrete fragments
must be created from continuous surfaces. During this process, in practice, each grid
point (or fragment) of the vector image corresponds to one pixel in the frame buffer
and this is represented in one pixel of the screen. These can be colored and possibly
illuminated. Raster devices correlate pixels directly to a certain number of bits in mem-
ory. The size of the (output) bitmap/raster format file generated by the conversion will
depend on the resolution required, but the size of the (input) vector file generating the
bitmap/raster file will always remain the same. Thus, it is easy to convert from a vector
file to a range of bitmap/raster file formats, but it is quite more difficult to go in the

opposite direction, especially if subsequent editing of the vector picture is required.

2.4.5 Whyuse SVG?

Taking the aforementioned into consideration, we believe there are several good rea-
sons for choosing SVG as the image format for the needs of our monitoring application.

More specifically SVG:

o is more powerful and flexible compared to other image formats used on the web, as
its nature enables higher accessibility via programmatic control and internal code

manipulation

« offers infinite scalability and higher quality at any size of display with no data loss

2.5. WEB APPLICATION FRAMEWORKS 117

- as vector graphics are not composed of pixels they are resolution-independent.
This goes back to the nature of vector graphics, which is visualizing the original
mathematic equation that creates a consistent shape every time, computing the path

between points.

« is object-based and thus self-aware, in the sense that, each element “knows” its at-
tributes and, as such, can be altered or morphed at run-time. Also, it supports single

object or layer modification without affecting other objects in the image.

o is file-size efficient and portable, as it more coarse-grained in design and produces

smaller files that are easier to store and transmit over networks.

2.5 Web Application Frameworks

2.5.1 Overview

It is undeniable, that Web development is a field of software engineering that is con-
stantly gaining in popularity, since more and more systems and services are becom-
ing web-oriented. As the Web matures, there have been major changes in the chal-
lenges that developers face daily, mainly regarding the sophistication of modern web
applications. Clients have growing demands from web-hosted services, varying from
improved performance and stability, to additional features and shorter development
times. As a result, the process of developing services and applications intended for the

Web can become rather complex and confusing, if the right toolbox is not selected.

In general, a framework can be regarded as any real or conceptual structure that facil-
itates the building or the expansion of a layered structure into something meaningful.
In the field of computer systems, a Web Application Framework is a set of resources
and tools designed for software developers, aimed at facilitating the building and man-
agement of web applications, web services and websites. It provides pre-defined tem-
plates, high-level APIs, modular libraries and built-in functions to the developers, for
accessing data resources and adding capabilities to their applications. At the same
time, web application frameworks effectively hide much of the boilerplate code needed
during initialization, abstracting low-level concerns from developers. It must be clari-

fied, that a web development framework is not a standalone software system - instead,

118 CHAPTER 2. BACKGROUND

it is usually built upon an existing infrastructure or stack, that usually involves oper-
ating systems, database management systems, web servers and others.

The main reason for using a web framework is the automation of the development
process. Specifically, it absolves hard-coding every individual feature of a large system
while it offers a structured and tested design for the application. Essentially, much of
the application functionality is deferred to the framework, compared to directly call-
ing methods provided by a library. In this regard, web frameworks are founded upon
the principle of not reinventing the wheel, leading to valuable time and effort savings.
The majority of modern web frameworks are entirely open-source, actively developed

and supported by large programming communities.

2.5.2 'Web Application Architectures

Application frameworks may have different foundations and principles, regarding their
approach to design applications and interfaces. For the scope of this thesis, it is suf-
ficient to examine two basic architectural approaches, along with two fundamental

design patterns:

MVC Architecture

MVC stands for Model-View-Controller and is a traditional software design pattern,
that is widely used when building user interfaces. Its primary objective is to isolate
business logic from the user interface, by separating concerns into three intercon-
nected units. This allows for decoupling of components and parallelization of tasks

during the development process.

Updates

Figure 2.16: MVC components and interactions

Modifies

2.5. WEB APPLICATION FRAMEWORKS 119

- Model

The Model is the central component of the pattern, holding application-related
information in the form of data and business rules. It is usually represented
by objects that manage application logic, behavior and details with regard to
the problem domain. The Model is responsible for storing updated data and
properties coming from the Controller. The current content of the Model is

always presented in the View via updates.

View

The View is the layer that is closer to the user, consisting of the elements forming
the user interface. Multiple views of the same information might exist simulta-
neously, providing any data outputs or visual representations that the applica-
tion produces(e.g. buttons, charts, forms, etc). The View is the component that

directly interacts with the user, perceiving actions and events.

Controller

The Controller is responsible for interacting with both the Model and the View,
managing the communication between them. It controls the data flow in both
directions: when user action events (e.g. mouse clicks, keystrokes, etc) are cap-
tured and propagated from the View, it first runs the corresponding handlers and
then issues corresponding updates to the Model, regarding properties, methods,

or entities.

In short, using the MVC pattern during the development process of both server- and

client-side applications, has the following benefits:

Parallel development of the application, since logically related operations and ac-

tions are grouped together
Each component is independent and does not block other components

Reusability of code, since developers can build or refactor applications based on al-

ready designed stand-alone components

Ease of maintainability and future modifications

120 CHAPTER 2. BACKGROUND

CB Architecture

Component-based architecture is a design concept that encapsulates individual com-
ponents of a complex system into self-managed subsystems. In this approach, compo-
nents are the basic building blocks of the interface and each of them offers a specific
service to the system. Components perform tasks independently from each other and
are usually implementing dynamic features, such as client-side request handling, auto-
refresh and re-render of document elements. Because of these principles, component-
based applications are regarded highly modular and highly cohesive. Frameworks
adopting this development strategy are capable of handling components in a very effi-
cient and performant way. Furthermore, CBA ensures consistent component design,
since it requires that all APIs and methods related to a component must reside in its
structure. In practice, components are implemented in the form of classes, objects or
related mechanisms. Of course, developers can maintain multiple instances of these
classes and reuse their features in different parts of the interface.

The main difference between CBA and MVC architectures can be tracked down to the
way that each architecture splits the responsibilities of the application. MVC frame-
works separate concerns horizontally: this means that all features needed by each tem-
plate of the UT are implemented at different levels of the architecture. Conversely, CBA
frameworks separate concerns vertically, in the sense that each component of the ap-
plication retains its design, logic and corresponding methods at the same level of the

architecture.

SPA vs MPA

Since web applications are gradually replacing desktop applications(e.g. social net-
works, mail services, cloud storage, etc.), two main design patterns have emerged with
regards to web application development: Multi-Page Application (MPA) and Single-
Page Application (SPA). Depending on the purpose, content and the scope of the ap-

plication, either model might be more suitable.

« Single-Page Model
Applications that adopt the SP model work inside web browsers without any page

reload or refresh during runtime. All contents and resources of a web page are

2.5. WEB APPLICATION FRAMEWORKS 121

loaded dynamically only once during startup, mainly using AJAX*’. While in use,
only session-bound data is transmitted. This approach aims at minimizing waiting
times, reducing network bandwidth utilization and providing a more “native-like”
user experience. SPA applications are, generally, fast, streamlined and rather easy to
debug, by monitoring network operations and investigating DOM elements. What’s
more, SPA is capable of effectively caching local storage and, consequently, still be
operational offline. On the downside, SPA applications might be more vulnerable to
security threats, such as client-side script injections via XSS (Cross-Site Scripting).

Also, SEO* is a quite complex task for SPA applications.

« Multi-Page Model
The MP model represents the traditional approach to designing applications. When
any update is issued to the application, like a user action or data submission, the ap-
plication propagates a request back to the server. As soon as the server successfully
handles the request, it responds to the application and a new page gets rendered in
the browser. As expected, MPA-based applications are larger than SPA-based ones
and consist of multiple Ul levels. Also, it is very common that the same or similar
pages of an application will be repeatedly requested so, ultimately, duplicate HTML
code is going to be transferred and loaded. Usage of AJAX requests during the com-
munication between the server and the application limits the amounts of markup
transferred over the wire, since in most requests only fragments of the application
actually need to be refreshed. Moreover, MPA-based applications require the devel-
opment of both the front- and the back-end services, resulting in a more complex

and time-consuming implementation.

2.5.3 Angular

About

Angular [27] is an open-source, component-based, front-end web application plat-
form. It is the full-platform successor of the widely popular Angular]S framework,
providing core libraries, multiple capabilites and a powerful compilation engine. An-

gular introduces Typescript, which is a typed superset of Javascript designed to

% Asynchronous JavaScript + XML
**Search Engine Optimization

122 CHAPTER 2. BACKGROUND

scale. Being cross-platform, it can run in heterogeneous systems, while it is optimized
for developer productivity and performance, supporting end-to-end testing. Due to
the various modern features it introduces, Angular is considered as one of the most
promising and future-proof frameworks of our days, largely inline with the W3C Web
Component specifications [28]. It is a well-documented framework, currently devel-
oped and supported by Google, in collaboration with a large community of individual

contributors.

Angular delivers single page applications that mainly follow the component-based ar-
chitecture. Everything inside the application can be regarded as a component. How-
ever, each individual component is independent and implemented in an MVC-like
logic. Due to structural dependencies, developers are constantly working on improv-
ing compatibility with emerging standards. Componentization of web applications
enables developers to precisely modularize, test and determine both behavioral and
presentation layers. In addition, Angular offers great versatility regarding target ap-
plications, as it is a framework designed also for mobile; supporting server-side or web
worker rendering of HTML, it leverages performance gains and fits the needs of portable
devices. Angular is entirely written in TypeScript, which offers familiar syntax and
semantics, along with support for the latest and evolving JavaScript features coming
from ECMAScript2015, such as types,classes,decorators,async functions
and others. These features provide developers with a richer API with stronger tools,
while compiling to clean JavaScript code that can be executed on various engines.
Of course, Typescript code is fully compatible with JavaScript libraries, as long as
the corresponding types for the APIs are defined. The design of Typescript is focused
on optimizing performance, together with automating the development workflow. The
CLI of Angular is also inline with these principles, as it is a well-rounded tool, that sim-

plifies the generation of code, configures typings and deploys the application.

Core Concepts

« Components
Components are the cornerstone of every Angular application. Patches of screen
or UT elements are always associated with components that contain their logic and

control their behavior. Components follow a tree-based structure, since every An-

2.5. WEB APPLICATION FRAMEWORKS 123

Module

Event Binding

Template Component

V Property Binding

Injector

Directive .
Service I

Metadata

Figure 2.17: Overview of Angular Architecture

gular application is based on a root component that contains all other components
in subsequentlevels. In such a structure, tree nodes represent components and edges
represent the way components are connected or interact with each other. They are
implemented using a class based model that introduces a view and and the associ-
ated controller code. The corresponding properties and methods of each component
are defined in the body of the class. Component controllers manage the model, in
terms of data, and update accordingly the current state of the view. Commonly, a
component is tightly coupled with a template, which is a set of native HTML and
custom directives that tell Angular how to display this specific component and ren-
der it in the browser. Component templates can be defined either inline, or exter-
nally via templateUrl. In addition, components include metadata that determine
the configuration(e.g. stylesheets,providers,directives,selectors) and
the processing of the class, using decorators. Angular Components are designed to
be portable and reusable in different parts of the application. Communication be-
tween the template and the body of the component can be implemented using the

following mechanisms:

- DOM >Component: event binding inside DOM elements and corresponding

handlers in the body of the Component

- DOM <«Component: property/data binding or interpolation, associating at-

tributes of the DOM elements with properties of the class

124 CHAPTER 2. BACKGROUND

- DOM <>Component: ng-model directive inside the DOM, which is enables

the bidirectional flow of data

Besides, since components frequently interact and exchange data with each other, a
dedicated mechanism is available to define input and output properties, using @In-

put and @Ouput decorators, respectively.

—|
)

| Tewaplate
— |
/' | < > |
! |
Illf e | I I .
Property | e 'l Ej'f’-“"f:
ELL"«J-{»V‘;‘ \ kS —r‘fl 5?9 % D::D’ | %L,-*,_‘ﬁ_:_v-,g.
P Y —

!
——
1
\ Contponent | /

Lt

Figure 2.18: Angular Component

« Services
Services are complementary to Components and are entities of code that efficiently
perform a well-defined task. For example, one service might be responsible for com-
municating with a web server via HTTP, while a different service might be defined
to digest and visualize data coming from in the body of the server response. Thus,
services are quite broad as a concept, encompassing any data structure, function
or feature the application needs. Typically, a service is a narrow, bounded class that
serves specific operational purposes. The importance of defining services is revealed
as the complexity of the application grows: when components are confronted with
multiple tasks and complicated logic, they can import services to separate concerns.
This eventually leads to improved readability, higher reusability and easier mainte-
nance of code. Services factor application logic and are made available to compo-

nents through the dependency injection mechanism.

e Modules
The structure of Angular applications is, generally, modular. A Module is cohesive
group of code that is bundled together and integrated with other modules to run ap-
plications. Modules mostly consist of components and services, and usually export
methods and classes that other modules might find useful. They essentially play the

role of libraries and provide additional functionality to applications when imported.

2.5. WEB APPLICATION FRAMEWORKS 125

Dependency Injection

Angular introduces Dependency Injection(DI) as a standardized tool to import de-
pendencies into components, modules or other services. In essence, it is a design
pattern that passes an object to different components across the application, and
creates new instances of its class and its inner dependencies. An injector mecha-
nism maintains a container with the service instances needed by the application.
Each time a provider is declared in the components metadata section, the injector
returns an instance of the requested service. When the service is resolved, the con-

structor of the component’s class is called with that service as an argument.

— ’

(njector |
| — | o — — N
|' Service A | |I teroService| | Sendeec | | SeniceD | |
BEE-™ | E-™ IRE - ™ K- 1 | {
_.'. I| t a:l} | II L:'-'-: }) _.l I| L : 3 } | I| t K- J _I| ||
|I Component \
._ HevosSendce |

1 R - s 3\
Constructor (Hevroseriiee) |
s

iy

Figure 2.19: Angular Dependency Injection

Directives

To ensure templates are both flexible and dynamic, Angular provides Directives,
which are classes that control the transformation of the DOM during the render-
ing process. Directives contain metadata that is attached to the component class by
the @Directive decorator. Angular supports 3 different types of directives, while

custom ones can also be defined:

- Directive-with-a-template: this is the typical definition of components - the

@Component decorator is a template-extended @Directive decorator.

- Structural directives: these directives are the ones updating the DOM, by re-

moving, adding and replacing elements(ngIf,ngFor,ngSwitch and others).

- Attribute directives: these directives are responsible updating the appearance
and behavior of DOM elements. In templates they look like regular HTML at-

tributes.

126 CHAPTER 2. BACKGROUND
Why Angular?

Designed for Performance

Angular applications set high performance as a priority by design. Compared to other
web application frameworks, it provides various strategies and mechanisms to over-
come performance bottlenecks and limitations. At first, Angular does not generate
raw HTML code and provide it to browsers for parsing; instead, its engine builds the
DOM nodes directly, entirely skipping the step of HTML parsing by the browser. Thus,
rendering of the application is a matter of attaching ready-to-use nodes to the DOM
tree of the browser. At the same time, since the rendering module is isolated, inten-
sive computations can be executed in dedicated worker threads.

The concept of an independent renderer allows for customization of templates and
higher performance. The Angular compiler offers two alternatives: Just-In-Time(JIT),
which compiles the application code every time it is loaded in the browser using differ-
ent sets of libraries, and Ahead-Of-Time(AOT), which compiles the application code
only once at build time using one set of libraries. While JIT is the default pattern and
widely used in development, AOT offers multiple benefits and is heavily used in pro-

duction environments. More specifically, AOT:

1. Ensures fast rendering, as the browser loads a pre-compiled version of the ap-

plication,

2. Effectively reduces the application size, since JavaScript payload is compressed

and there is no need to download the Angular compiler and

3. Avoids template errors, as they are reported and detected during the build step.

In addition, Angular applies optimal planning concerning the detection of changes in
the DOM tree, by avoiding unnecessary checks and focusing only on the parts of the
model that were possible to change. As shown in Figure 2.20 the change detection
graph of Angular represented by a directed tree, making our system much more pre-
dictable. By default, Angular will conservatively check all nodes of the tree - however
it is possible to prune multiple paths of the tree and avoid recursive scans when dealing
with immutable objects. For example, a Component depending only on immutable in-
put attributes can be skipped during checking. Alternatively, Observables can be used

for asynchronous handling of updated values, only when they are emitted.

2.5. WEB APPLICATION FRAMEWORKS 127

Figure 2.20: Angular Change Detection

Aligned with Web Components

The design decision of the Angular team to adopt a component-based approach is de-
finately an attempt to incorporate Web Components, a set of future Web standards and
specifications, into modern applications. Notably, Angular encourages developers to
create their own custom Web elements during the development of web applications,
suchasHTML tags,pipes,events,decorators etc. Furthermore it supports flexi-
ble Shadow DOM manipulation, in the sense that interactions and boundaries between
DOM trees can be established, enabling improved functional encapsulation of docu-
ments. Addition of properties and mixins of the Shadow DOM is also possible. Finally,
in Angular applications HTML documents can be included or reused in other HTML doc-

uments - this feature improves code readability and extends functionality.

Modularity

Angular is a highly modular framework that builds upon well-defined, independent
entities that serve specific purposes. Organization and grouping of related compo-
nents into modules produces cohesive blocks of functionality that can be reused across
the application. Modules are flexible, extendable and provide additional capabilities
to the application, resembling external libraries. Angular implements many of its core
APIs and features in the form of native modules(such as FormsModule, HttpMod-
ule, RouterModule. Each module has a narrow application domain, to separate
concerns and follows a typical workflow, to guarantee efficacy. Besides, this approach
expedites the process of error detection and correction, since each functionality of the
application is associated with a specific module. Another benefit of using modules is

the lazy loading feature; Angular can load modules on-demand, initially loading only

128 CHAPTER 2. BACKGROUND

the core and necessary features that the user expects. This method can effectively de-

crease startup time and enhance the user experience.

Reactive Programming

Angular is a framework that is capable of implementing applications that are based
on functional & reactive programming. This type of programming relies on asyn-
chronous data streams, which are sequences of data made available over time. There-
fore, function-oriented programs store their state on streams, and not inside their ap-
plication code. This approach is very performant, less error-prone and rarely produces
side effects. Though functional programming has only recently been adopted as a best
practice in the world of frontend development, Angular already supports, as it is com-
patible with the Rxjs *° library and internally implements Observables, as part of
its public API. Rxjs is a library that implements Observables for JavaScript. An
Observable is a new asynchronous development primitive whose name is steaming
from the Observer design pattern. The common practice when working with Observ-
ables is to define sources that emit streams of data, subscribe to these sources, be noti-
fied when new values arrive and react accordingly. It is also quite common to combine
multiple data streams in order to create new, more complex ones. This event-driven
style of programming is an alternative to the traditional object-oriented on of MV*
frameworks and is considered very promising for the future. Among others, some
standard functional operators that are widely applied to data streams are the follow-

ing: map,filter,subscribe,let,flatMap,reduce,merge,combinelLatest.

**Reactive Extensions for JavaScript

Architecture & Design

In this chapter, we thoroughly analyze the architecture of OntoMon from a high-level
perspective, along with the fundamental design decisions we made during the devel-
opment process. At first, we argue the importance of building a general-purpose mon-
itoring and visualization platform and highlight the design principles that differenti-
ate it from existing monitoring solutions. Then, we examine each individual layer of
OntoMon separately and present the open-source technologies we employed for ev-
ery inner component. In addition, we demonstrate how different layers communicate

with each other and provide an extensive description of all intermediate core APIs.

3.1 Design Rationale

As already stated in section 2.2, monitoring software plays a crucial role in the man-
agement of large-scale, multi-node, clustered environments that require constant su-
pervision. The IT industry pays great attention to DCIM tools, recognizing them as
indispensable components of the IT production stack. Subsequently, numerous mon-
itoring solutions are currently available on the market, sufficiently covering admin-
istrator needs. So what is the motivation behind developing yet another monitoring

platform?

Having studied and deployed multiple DCIM platforms we concluded that even though
existing solutions fulfil their goal, their design principles impose certain limitations
regarding broadness and scalability. Despite their high performance and efficiency,

the vast majority of existing system monitoring solutions have a rather narrow area

129

130 CHAPTER 3. ARCHITECTURE ¢ DESIGN

of application, in the sense that their design and implementation are targeted at the
supervision of specific target systems. In most cases, the underlying modeling of the
assets being monitored is rather static since it relies on pre-defined classes, attributes
and visualizations that are entirely determined by vendors. What’s more, the process
of adding, updating or removing entities depends on filling forms or instantiating
templates, that contain asset-specific or hardcoded handling. This implies that such
solutions rely on mechanisms that communicate with strongly-typed APIs, manipu-
lating assets as instances of immutable classes, significantly limiting expressivity and
customization. Since modern computing environments are rather multifarious, com-
prising of diverse hardware and software entities, we argue that a unified, adaptable,
general-purpose monitoring platform could leverage complexity and facilitate admin-

istration.

In our workflow, we were greatly inspired by the approach adopted in Tendrl [4], a
unified software defined controller that transparently manages diverse storage plat-
forms. Currently, Tendrl supports monitoring and provisioning of Ceph and Gluster,
though more SDS platforms are planned to be supported in the future . The main
objective in the architecture of Tendrl is to maintain a self-sufficient Core Stack, that
integrates with different systems and is not affected by possible failures. Tendrl de-
ploys agents on storage nodes, stores state information in abstract YAML files with no
pre-defined schema, represents all entities as objects and exports a stateless User In-
terface that provides integration with external systems. Whats more, Tendr]l mainly
works with interfaces and abstract definition files and is, thus, independent of the un-

derlying monitored system.

In this regard, we decided to structure our platform in a similar logic. The main char-

acteristics and design principles of OntoMon are listed below:

« Integration with Diverse Target Systems: OntoMon is a platform aimed at
monitoring and visualizing diverse target systems, without depending on system-
specific concepts or semantics. Our goal was to deliver a content-agnostic frame-
work, that is built upon a modular codebase that can be easily configured to
manage heterogeneous target systems in a standardized way. Thus, we did not
focus its design based on content, but on interoperable placeholders for mutable

content. To achieve this, we had to find a convenient, yet consistent way of for-

3.1. DESIGN RATIONALE 131

mulating the description of target systems, either hardware- or software-based.
Therefore, we decided to set an Ontology as the foundation of our platform,
so that any target system can be determined in detail, in terms of entities and
relations. An Ontology is capable of providing a detailed, accurate and consis-
tent overview of the target system. Hence, to automate processing and simplify
validation, we introduced a well-rounded schema for the ontological descrip-
tion presenting the inner structure of the target system. This schema involves a
certain number of general-purpose attributes that we consider sufficient for ex-
plicitly specifying the infrastructure that is about to be monitored. Our decision
to build a monitoring framework based on Ontologies also guarantees a strong

theoretical background that eliminates vagueness.

« Abstract Object Model: In accordance with its ontological foundation, On-
toMon represents every concept or asset defined in the target system in the most
abstract and flexible model: Objects. Working with abstract objects enabled us
to introduce generic handlers, focus interactions on interfaces and treat every
entity the same, regardless of its semantic content. Objects in OntoMon are
extendable, interoperable and integrated into all architectural layers. Notably,
no asset-specific actions or hardcoded support are needed, since objects in On-
toMon are not associated with specific types. Therefore, we decided to keep all
communications among the inner components of OntoMon aligned with this
generic object logic, by implementing comprehensive JSON-oriented APIs and

exporting meaningful standard endpoints.

« Elasticity & Customizability: One of the main objectives of OntoMon is to pro-
vide a versatile core that supports customization on all levels, so that the targeted
system can be properly managed, based on user needs. Our design encourages
user intervention during initial configuration, aiming at satisfying sensitivity
preferences. Users are empowered to extend structure of objects, perform spe-
cialized performance checks or analysis upon assets and take full control of the
visualization of their infrastructure. Since OntoMon provides general-purpose
monitoring services of diverse target systems, we developed a dynamic User In-
terface that is generated on-the-fly and sits on the top of the rest of our system. In

particular, users can benefit from self-descriptive APIs, construct personalized

132 CHAPTER 3. ARCHITECTURE ¢ DESIGN

notifications and take full control of the visual elements representing the moni-
tored assets. The sought-after flexibility of our framework is defined in terms of

automatically adapting to changes in the target system.

« Scalable, future-proof, open-source Technologies: OntoMon employs various
open-source technologies in order to provide functionality to individual com-
ponents. We have taken great care in selected technologies that are scalable by
design and bundled them together with some custom middleware, so that they
serve their intended purpose inside our platform. Given the fact that a target
system is likely to encompass thousands of physical or software assets, together
with corresponding configurations and interdependencies, it is vital to set scala-
bility as a priority. We argue that incorporating free software, actively developed
platforms and widely accepted open standards, like ISON and SVG, facilitate in-
tegration with external IT systems, prevents vendor lock-in situations and con-

tributes to respective communities.

« Multilayered Architecture: Focusing on modularity, separation of concerns
and simplification of future maintenance, we propose a multi-level architec-
ture for OntoMon. More specifically, we focused on developing stand-alone,
dedicated and performant components, each assigned to a specific task or ser-
vice inside our platform. Different layers are glued together with well-defined
communication mechanisms, that allow to smoothly streamline the flow of data
across the platform. This decentralized approach enables the parallelization of
the development process and faster detection of potential issues, since each fea-

ture is implemented in a specific layer and component.

3.2 Distinction of Roles

At this point, it is necessary to clarify the roles of users interacting with the OntoMon
framework. Due to its versatility and modularity, OntoMon is a monitoring platform
that is not intended to be used by end-users directly; in practice, the presence and col-
laboration of a systems integration engineer are needed, so that our tool can manage

diverse target systems. More precisely:

3.3. ARCHITECTURAL OVERVIEW 133

- The Systems Integrator(SI) is an individual or group of developers responsible
for regulating and aggregating component subsystems into a whole, while en-
suring functionality and automation. A system integrator works in conciliation
and cooperates closely with the end-user, so that the various subsystems deliver
the intended functionality. It is also quite common that, in modern software-
defined platforms, the integrator engineer might be required to provide a cus-
tomized implementation of software services or components, extending them
to serve a personalized purpose. As far as OntoMon is concerned, the system
integrator undertakes the task of aligning specific parts of the framework to con-
form to the underlying infrastructure. In particular, it the duties of the system
integrator involve generating the Ontology, configuring the monitoring system
and implementing the logic of the inductive reasoner component that initiates
the notification process. As expected, the integrator should be aware of the On-

toMon architecture and deeply understand its concepts.

- The End-User is usually a system administrator or a full-stack developer that
is responsible for supervising computing infrastructure and observing the over-
all performance of the target system. In this regard, the end-user forwards the
respective administration needs to the system integrator, so that the monitor-
ing tool can be customized based on his preferences. In our case, the end-user
merely interacts with OntoMon via its Web User Interface, which enables real-

time asset tracking and supervision of the target system.

3.3 Architectural Overview

In this section, we provide a detailed description of the architectural components of
our platform, together with the most important design decisions we made during the
development process. OntoMon is a hierarchical monitoring and visualization plat-
form, that consists of three distinct layers that interact with each other. Each of these
layers illustrates a different aspect of our framework and, in turn, comprises of various
software-defined components that are responsible for delivering discrete operations in
a specific area of concern. To provide the reader with some basic intuition, we provide

a high-level overview of the architectural design of OntoMon in Figure 3.1:

134 CHAPTER 3. ARCHITECTURE ¢ DESIGN

embeds
graphs

Graph
Composer

OntoMon (.-BI.E.S.T..i End

Web Ul
retrieves

metrics queries REST

Upper
Layer

responds

' commits
Metrics metrics Storage

posts
OntoMon updates OntoMon

retrieves
metrics

Middle Collector Backend Observer Server
Layer Ficinca ‘% e' nede
collects
metrics
formally is
Base Target System describes OJ'-:'C:N uploaded
Layer -\

i

Figure 3.1: OntoMon Architecture Layers

Obviously, the data flow starts in the bottom layer, passes through the middle layer and
terminates in the upper layer, demonstrating the order of operations. Every layer has
certain responsibilities and implements specific features of OntoMon, by tuning and

orchestrating numerous individual components:

Layer Inner Entities
Upper Target System, JSON Ontology
Middle Monitoring Tool, Storage Backend, OntoMon Observer,
OntoMon Server
Bottom OntoMon Web Interface, Graph Composer

Table 3.1: OntoMon Architectural Components

3.3.1 The Base Layer

The base layer determines and formulates the input given to our platform. It consists
of the Target System, which is a set of related assets that cooperate and are about to be
monitored, and the Ontology, which is a formal, structured and detailed description
adequately determining entities and relations inside the target system, based on certain
principles. The Ontology is a representation of the domain of interest, as it captures the

basic concepts of the target system, mapping its real-world entities and their relations

3.3. ARCHITECTURAL OVERVIEW 135
to well-structured ontology objects.

 Target System
This is the actual computer system that is going to be monitored and visualized by
our platform. It is entirely designed and deployed by the end-user for testing or pro-
duction purposes. Target systems may vary since OntoMon is capable of monitoring
divergent platforms, regarding content. However, there is a common assumption
that, in all cases and at some depth, the underlying system contains servers, that
are accessible by the middle layer, both to perform profiling and initially install the
collector agents. Every target system is assumed to consist of multiple entities, that
are also referred to as assets, along with relations or inter-dependencies that exist
among them. These assets usually follow a hierarhical structure. Namely, the target
system can be hardware-oriented, like a data center along with the physical assets it
encompasses, or software-oriented, such as a distributed storage cluster that relies
on multiple daemons or services. It is also possible, that the target system com-
bines both approaches; in this scenario, when hardware and software assets are con-
currently monitored and visualized, the end-user is provided with a fully detailed
overview of his deployment and can observe the whole stack end-to-end. In addi-
tion, useful conclusions can be made regarding the system since usage statistics of
physical assets and resource efficiency can be correlated with software performance
metrics. Indicatively, multi-node distributed software environments or large-scale

clusters are good examples of target systems that OntoMon integrates well with.

« Ontology
OntoMon is founded upon Ontologies since the input it requires is a formal onto-
logical description of the target system. It first parses, validates and processes the
input Ontology, and subsequently proceeds to the monitoring and visualization op-
erations. In order to formalize the definition of Ontologies that are intended for our
platform, a standardized ontological schema had to be introduced. This conceptual
schema is a blueprint of every entity in the target system and, therefore, had to be
concise, uniform, well-defined and formally structured. Thus, we decided to use
the JSON ! format for the representation of Ontologies, as it offers various benefits.

JSON is a lightweight open-standard file format, that is both human-readable and

'TavaScript Object Notation

136 CHAPTER 3. ARCHITECTURE ¢ DESIGN

performant. In essence, a JSON object is a key-value structure that is fully customiz-
able by definition. The fact that it is a portable, language-independent and browser-
compatible data format makes it ideal for storing and exchanging data among ap-
plciations. It also very flexible, as it supports both single- and multi-level object
structures. In our design, we defined the Ontology as a JSON Array that encloses
multiple JSON objects as entries: each object inside the Ontology corresponds to a
real-world entity of the target system. In general, these objects are defined by follow-
ing a specific structure, which can be, though, aribtrarily extended by the systems
integrator, who is the creator of the Ontology.json file. There are no nested defini-
tions of Ontology objects, while their inter-dependencies are determined by math-
ematical relations, described in respective attributes. Hence, the proposed JSON
formatted Ontology can be regarded as a collection of objects that are abstract in
terms of semantics and are organized in a structure that resembles that of a flat ob-
ject pool. Thus, there is no nesting of objects, as all objects of the Ontology are placed
at the same level. This design pattern is suitable when dealing with a large number

of objects that are repeatedly requested for short periods of time.

For coherence and uniformity reasons, we decided that Ontology objects should
have certain characteristics. At first, each object of the Ontology must be uniquely
identified. Secondly, these objects must define a notional hierarchical structure that
represents the organization of the corresponding real-world entities inside the tar-
get system. We presume that this hierarchical structure is expressed by parent-child
relations that exist among objects. Child objects are contained in parent objects.
Thirdly, each object must be associated with a specific visual representation(i.e. an
image file) so that our platform can manipulate and render it in the presentation
layer. The image files that are associated with the Ontology objects are determined
by the end-user and can be of arbitrary content, since no conceptual checks are ap-
plied by our framework. However, they need to specify certain attributes, as it is
thoroughly analyzed in chapter 4. In order to preserve the consistency of the pro-
posed ontological schema, we had to introduce 3 basic integrity constraints regard-

ing the topological structure of the objects forming the Ontology:

- Each object has exactly 1 parent, which is an object that exists in the Ontology

- There is only 1 object inside the Ontology with null parent (root object)

3.3. ARCHITECTURAL OVERVIEW 137

- The resulting graph must be connected, meaning there must exist a path from

any node to any other node inside the graph

The above design principles guarantee that the target system is represented by a
graph that is both acyclic and connected - essentially a Tree - with a single root node
and multiple intermediate or leaf nodes. This JSON-formatted, tree-structured On-
tology is the cornerstone of OntoMon. When ready, the system integrator uploads
the Ontology.json file containing all crucial information about the target system to
the OntoMon Server, at a well-known endpoint, so that our framework can use it as

input.

3.3.2 'The Middle Layer

The middle layer hosts the core monitoring and reasoning operations. It contains 4
discrete, but complementary components, each of which is responsible for deliver-
ing a specific task. These components are organized in a serial manner. At first, the
Icinga monitoring tool collects performance metrics by isolating individual assets of
the target system and sends time series data to the Influx storage backend. Then, our
custom Observer, which is implemented as a Python daemon, queries the time series
database, performs value checking and reports live-status updates to the OntoMon

Server, an Express web server.

o+ Metrics Collector
The first step in order to observe and accurately manage the target system is to care-
fully set up the monitoring system. This is the fundamental component that applies
asset-specific performance checks upon the target system entities and extracts cru-
cial information about them at a given interval. End-users or administrators can de-
fine fully customized checks to serve their needs. Undoubtedly, choosing the right
metrics collector for our platform was a decision of significant importance. Since
OntoMon is designed to manage demanding, large-scale systems, we had to employ
a monitoring mechanism that would reduce the configuration overheads and of-
fer the expected functionality. Subsequently, we decided to deploy Icinga, a highly
performant monitoring solution for distributed environments consisting of a large
number of nodes. We decided to deploy a distributed Icinga cluster, that synchro-

nizes Objects and Zones in a top >bottom fashion, in order to abstract much of the

138 CHAPTER 3. ARCHITECTURE ¢ DESIGN

configuration complexity, and also to execute checks locally on each node, aiming
at distributing monitoring workloads across the cluster. The Icinga clients, running
on the specified servers of the target system, are responsible for executing the checks
and report the respective real-time metrics back to the Master Zone, as soon as they
perceive them. Another important reason for choosing Icinga is its out-of-the-box
integration with a wide variety of time series storage backends. Hence, exporting
the collected performance data directly to a specialized database of our choice was a
matter of installing and configuring the respective Writer Module of Icinga. The
primary role of the Icinga cluster we deployed is that of the collector component,
that aggregates and commits times series performance data to a publicly available
storage backend.

In terms of communication, the Icinga Master Zone interacts with the time series
storage backend (InfluxDB) via a RESTful API, mainly sending the obtained real-
time metrics together with useful metadata over the network: as soon as metrics
arrive from the Icinga clients, the authoritative Icinga node sends an HTTP request
to the pre-defined web endpoint that the Influx server daemon is and accepting con-
nections and responding to. The format and the content of the requests are standard-
ized by the native HTTP API that the Influx protocol defines. More technical details

regarding this communication are discussed in section 4.4 and section 4.5. Our ini-

tiative behind setting up an Icinga cluster instead of developing our own monitoring
tool was, on the one side, to observe and understand the inner structure and opera-
tion of a real-world provisioning tool used in production environments and, on the
other side, to employ a tested, distributed and highly customizable collector of real-

time data, that by design seeks for performance and scalability.

 Time-Series Storage Backend
Time series (data) is defined as a sequence of data points, typically consisting of
measurements that are indexed by equally spaced points in time. Thus, a time series
database is a dedicated software system that is designed for optimized storage and
handling of time series data. Time series databases enable applications and services
to easily scale and support thousands of IoT devices or time series data in a continu-
ous flow. Since OntoMon periodically collects performance metrics and statistics at

a user-defined interval, we need an efficient way to store real time series data coming

3.3. ARCHITECTURAL OVERVIEW 139

from the target system for long-term usage. Collected metrics should be retained in
order to retrieve them in chunks over time, produce corresponding performance
graphs and conduct further analysis for trend or pattern identification. The ulti-
mate goal of such database is to effectively store daily, monthly or yearly data, keep
it available and support complex time range or filtering queries. Consequently, we
decided to set up an Influx server to efficiently undertake storage operations. In-
fluxDB is based on a distributed architecture, offers high availability and shares the
total workload among resources when deployed on multiple hosts. For the scope of
this thesis, we argue that a single instance of the Influx server is sufficient to cover our
needs, since the low operational complexity of a single-node environment makes it
really fast. Nevertheless, just like any other database, InfluxDB, entails some trade-
offs aiming at optimizing performance. Its storage engine is built upon the following

principles:

- If the exact same data is sent multiple times, no duplicate data is saved

- Sincedelete and update operations upon time series data are rare comparing

to write operations, the functionality of the former is rather restricted

- Mostwrite operations regard the most recent data, so time series data is stored

in time ascending order

- Under heavy load conditions, consistency might be sacrificed so that multiple

clients can be served simultaneously

- Focus on data aggregation and large data sets, rather than individual points

What's more, InfluxDB is easily accessible by clients, as the influx-server daemon
exports a well-designed HTTP API for performing requests upon specific well-known
endpoints(/ping, /query, /write. Furthermore, another key feature of InfluxDB
that encouraged as to select it as the storage backend of OntoMon, is that despite be-
ing a NoSQL database, it supports an SQL-like query language to formalize queries(
InfluxQL), facilitating interactions with a rather intuitive and familiar syntax. In-
fluxDB saves data in a particular format, suggesting measurements, series, metrics,

tags along with other fields, as it is demonstrated in section 4.5.

o OntoMon Observer

Even though Icinga is a monitoring system that is capable of sending notifications

140 CHAPTER 3. ARCHITECTURE ¢ DESIGN

to the end-user, we preferred to build our own custom Observer that would not
depend on the Icinga API. Our initiative was to gain full control over the alerting
mechanism, which originates at the middle layer and terminates in the upper layer
of OntoMon. The objective of the Observer we designed is to inform the upper layer
about the current state of the assets inside the target system so that real-time noti-
fications or alerts can be triggered in the web application. Since the Icinga agents
are committed on merely collecting and exporting performance metrics, we needed
a dedicated component that would perform reasoning, correlations and, perhaps,
more complex analysis over data obtained from the storage backend. Hence, we in-
troduced the Observer, which is a stand-alone component that is implemented as
a daemon, is written in Python and runs independently from the rest of the sys-
tem. All core logic, policies and reasoning upon monitoring are implemented in
this component. Its primary responsibility is to periodically compare the latest val-
ues of the collected metrics with pre-defined thresholds and programmatically pub-
lish status updates concerning the individual assets that are currently monitored.
Typically, these updates can be considered as instantaneous snapshots of the system
being supervised, containing information that determines the notification events in
the upper layer. Meanwhile, the system integrator can customize updates to explic-
itly specify the way that the status change events will be visualized inside the User
Interface of OntoMon. In order to facilitate integration with diverse systems, we
designed the OntoMon Observer using abstract and dynamic modules.

Upon startup, the Observer daemon requires a list of hosts that belong to the tar-
get system and enclose the assets(either software or hardware) that are about to be
monitored, along with a corresponding set of check services. Next, the Observer
component queries the storage backend about all performance data related to these
assets, with a view to obtaining the latest statistics or measurements. The commu-
nication between the Observer and the InfluxDB is, again, based on remote HTTP
requests and is implemented with functions and handlers that are compatible with
the HTTP API that Influx exports. Ultimately, when the Influx server successfully

responds, the Observer performs the following tasks:

1. Digestion and refinement of the received performance data
2. Comparison of metric values against pre-defined thresholds

3. Generation of the update outlining the current state of the asset, based on the

3.3. ARCHITECTURAL OVERVIEW 141

checks performed

4. Deliver the update to upper layer, involving asset state, latest metrics and visu-

alization guidelines

For API uniformity purposes, we concluded that these updates should also be mod-
eled as JSON objects, with formalized structure and pre-defined attributes. On the
grounds that each JSON update object strictly refers to a particular object of the On-
tology and, hence to a real-world asset, the Observer component is expected to be
aware of the JSON-formatted Ontology and, specifically, the mapping of real-world
infrastructure and concepts to Ontology objects. Hence, the Observer retrieves the
Ontology.json file from the OntoMon Server via an HTTP GET request and, as soon
as the Update.json is constructed and validated, the Observer dispatches it inside the
body of an HTTP POST request to a well-known endpoint that the OntoMon Server
is managing. In this way, a custom status notification API is defined, that is fully

compatible with the given ontological description of the target system.

« OntoMon Server
The OntoMon Server is a central component of our platform, that interacts with
multiple entities and distributes data across the architectural layers. In essence,
it is a very fast and lightweight web server(script) that is entirely implemented in
JavaScript. The OntoMon Server bridges the gap between components, as it takes
over the handling of HTTP requests and the sharing of static files related to our sys-
tem. It can be thought as the glue component, that provides services to various other
entities and knows the current state of the target system at any time. It concur-
rently listens to multiple web endpoints, accepts remote connections and supports
real-time communication with various clients. As far as the communication with
the base layer is concerned, the OntoMon Server exports a well-known endpoint
to the integrator of the system, so that the required files(Ontology.json, .svg files can
be uploaded via simple HTTP POST requests. As soon as these files are successfully
uploaded, the server of OntoMon stores them locally and delivers them in another
publicly available endpoint. It is notable, that even though these files are necessary
for the startup of our system, they might be updated later, even during runtime. By
default, the OntoMon Server is designed to always keep the latest versions of files

uploaded with the same name, by overwriting content. Legacy files can be also kept

142 CHAPTER 3. ARCHITECTURE ¢ DESIGN

in history with proper configuration of the server.

All the components of our platform that need these files for their operations, can
instantly retrieve them by sending an HTTP GET request to the specified endpoint.
For example, both the Observer component, as well as the User Interface component
require the Ontology.json file to properly function, so they inevitably have to issue
requests to the OntoMon Server every time they run. In particular, the Web UI of
OntoMon also needs to be aware of the Update.json and the . svg files. Last but not
least, the OntoMon Server is responsible for accepting HTTP POST requests from
the Observer daemon, containing JSON-formatted updates about the current state
and the visualization details regarding assets in their body. Our server parses the
Update.json objects it receives, serializes them in a queue and serves them in a third,
well-known endpoint. Besides, it tracks down these update requests and generates

concise, human-readable logs to retain a timeline of the target system behavior.

Storage

Backend
.............
= HTTP POST fquery HTTP GET /query ™
i (perf metrics & metadata) (perf metrics & metadata)
Influx Native
......................... HTTP API
s =
i HTTP GET 3
Middle Witer HTTP RESPONSE| [€ &
Monitoring P (Ontology.json) S8
Layer Tool Observer OntoMon
Icinga daemon HTTP POST Server
Master Zone (Update-json) |
PETEN > c
T HTTP RESPONSE |88
(success/failure) | |2 & upload
K < = endpoint
RIS A
’ HTTP POST
4 3 (Ontology.json,
Target: System e
X, LY Ll Ontology.json
- Lo) z {}
3 P8Ry i i
LAMNZE ARSI AR\~ ‘
Icinga cinga Icinga Ontology
Client Client Client Rules
A
A constructs
Base .svg files
Layer designed for respects
assets
i.....4.,.se/ec{9

K deploys, jpload k /

Figure 3.2: Communication between Base and Middle Layers

3.3. ARCHITECTURAL OVERVIEW 143

3.3.3 'The Upper Layer

The upper layer of our platform implements the visualization of the target system and
the presentation of the monitoring metrics. It accommodates higher-level components
that co-operate with the underlying layers in order to offer an “all-inclusive” overview
of the target system to the end-user. This layer is of vital importance, as it provides
direct interaction with the end-user. More precisely, it includes the OntoMon Web
Interface, a web application that aims at visualizing the current state of the monitored
target system. In addition, it includes the Graph Composer, a dedicated component

that produces interactive time-series data charts.

« OntoMon Web Interface

The Web UI of OntoMon is the fundamental component of the upper layer, taking
advantage of all the processing performed in the lower layers. It is the output of our
platform, offering supervision and management capabilities to the end-user. The
Web User Interface component is a flexible web application that is built upon the
latest version of the widely popular Angular framework, in order to familiarize with
a production-ready web development framework and benefit from the cutting-edge
capabilities it offers. The main reason for designing a web UI for our platform in the
first place, was to enhance end-user experience in terms of asset management, guar-
antee remote access via the Web and benefit from modern Web APIs and standards.
As stated previously, we focused our attention on developing a content-agnostic,
fully dynamic user interface, that renders objects directly to the browser DOM, solely
based on their pre-defined attributes stated in the Ontology. The Angular web ap-
plication is the top-level component of our platform and is fully compatible with
all inner APIs of OntoMon. The visualization of the monitored infrastructure in-
volves the programmatic control and manipulation of the SVG files that correspond
to the assets of the target system. More specifically, SVGs are usually transformed or
adjusted, in order to be organized in a nested structure, but no front-end action de-
pends on typesetting the asset they represent, since they are abstract by convention.
Prerequisite for the proper visualization of the object hierarchy, is the acquisition
of both the Ontology.json and the .svg files from the OntoMon Server, via targeted
HTTP GET requests.

Apart from the visualization of the target system, the Web User Interface retrieves

144 CHAPTER 3. ARCHITECTURE ¢ DESIGN

and aggregates performance metrics, status updates, metadata and logs from the
middle layer. In the proposed design, the Angular application injects a polling ser-
vice that periodically dispatches HTTP requests to the OntoMon Server to obtain the
latest updates and, thus, actively sample the current status and performance data of
each monitored asset. The OntoMon Web Interface parses the Update.json objects
and produces customized real-time notifications and alerts, based on the specified
guidelines. In this way, resources can be efficiently isolated and analyzed in-depth.
Based on the JSON-formatted status updates, our UI delivers solid indications of
asset-related issues that might occur to the end-user, along with a comprehensive
presentation of the related measurements. We provide different views of the same
performance data, such as tables and graphs, that are automatically updated as new
time-series data arrives from the underlying system. In respect to the generation of
real-time graphs, we decided to delegate this task to a dedicated platform, aiming
at a separation of concerns and distribution of load. Therefore, the Web UI is not
burdened with the computationally intensive operation of building graphs; instead,

it is able to embed pre-built, dynamic and easily pluggable graphs into its views.

« Graph Composer
The primary objective of building a monitoring web interface is to offer a compact,
yet analytical overview of the underlying infrastructure and highlight the core as-
pects of the monitored infrastructure. The most instinctive and comprehensive way
of demonstrating performance, utilization of resources or any asset-related statis-
tics, is to represent real-time data into graphs or numerical language. All modern
monitoring dashboards ship with powerful graphical representations of collected
metrics, so that administrators can effortlessly gain meaningful insight of the mon-
itored system, at a glance. We argue that this is a well-engineered approach that
allows for fast issue detection, historical analysis of performance and discovery of
patterns. Thereafter, it facilitates asset management and restriction of attention on
individual components. In general, graphs and dashboards are designed to adapt
to end-user needs, so that the enclosed information is presented in the most intu-
itive and comprehensible way. The goal is to expose interactions between series and
correlate seemingly unrelated data. In this way, issues can be effectively handled as

soon as they appear.

Considering the above, in order to maximize the understanding of the target system

3.3. ARCHITECTURAL OVERVIEW 145

and make high-quality decisions about the management and provisioning of the in-
frastructure, we decided to introduce a dedicated component that takes care of the
visualization of the performance metrics in graphs. The respective technology we
employed is Grafana, an open-source data visualization platform written in Go and
JavaScript, that is optimized for presenting, querying and examining time series.
It supports a wide variety of data analytics operations, such as mathematical func-
tions, filtering, aggregation etc. Grafana produces detailed and interactive graphs
that are easy to follow and provide a concise description of the specified asset per-
formance. One of its key features is the client-side rendering of graphs, alleviating
server nodes from heavy processing workloads. Thus, the client only receives the
bare bone HTML code, along with a JavaScript file that ultimately loads the rest of
the content dynamically. Based on these graphs, end-users not only obtain a holistic
and intuitive view of the target system behavior in a certain time window, but are
also empowered to conduct an automated inspection of future anomalies. To our
knowledge, this mechanism is one of the most powerful features that the user in-
terface of a monitoring tool can offer, as statistical models can be defined aiming at
predicting asset availability or equipment replacement times. What's more, Grafana
offers a built-in RBA ? that allows the specification of users, groups and permissions

upon dashboards.

Grafana is compatible with multiple storage backends, such as Graphite, TSDB,
Prometheus and InfluxDB as input sources. Hence, wiring the proposed Graph
Composer to the already deployed system was a trivial task. We set up the grafana-
server and configured it to perform queries about time series data on the exist-
ing InfluxDB storage backend of the middle layer, via its rich HTTP API and native
query language. This topology has the benefit that the collected performance data
is not transmitted back and forth between the Web User Interface and the Influx
server; instead, the Grafana daemon queries the InfluxDB for time series in a speci-
fied time frame. As data arrives at a given interval, Grafana initially composes, and
then updates the corresponding graphs, while serving them locally at a pre-defined
endpoint. In order to import these graphs into the User Interface of OntoMon, we
implemented a dedicated service inside the Angular application, that is responsible

for fetching and embedding real-time performance graphs as raw HTML iframes,

2Role Based Administration

146 CHAPTER 3. ARCHITECTURE & DESIGN

fetching them from the well-known URL that Grafana exports them. Grafana pro-
duces a separate dashboard for each monitored asset, comprising of multiple stan-
dalone panels. Since these dashboards are asset-specific, we configured the URL that
Grafana exports to contain an asset parameter, in order to designate the desired as-

set. This parameter is mapped to a template variable internally handled by Grafana.

OntoMon Web

HTTP RESPONSE
(Update.json objects,

User Interface

HTTP GET
HTTP RESPONSE
Embeds inline (Ontology.json, .svy files,
Composer

HTTP POST /query
(perf metrics & metadata,

Influx Native
HTTP API

Storage
Backend

HTTP POST /query HTTP GET /query
(perf metrics & metadata, (perf metrics & metadata,

o

Writer HTTP RESPONSE

Monitoring (Ontology.json)
Tool ?’bserver OntoMon
Icinga gemon HTTP POST Server

(Update.json

HTTP RESPONSE
(success/failure)

Figure 3.3: Communication between Middle and Upper Layers

Implementation

In this chapter, we methodically present the building of OntoMon. After demonstrat-
ing the theoretical background and the architectural design of our framework, we al-
low the reader to follow the steps we took during the development process, grasp the
logic behind our code and observe how we overcame the difficulties we faced. In each
iteration, we isolate a specific component of OntoMon platform, refer to the technolo-
gies and algorithms we used and illustrate the key points of the proposed implemen-

tation.

4.1 Experimental Target System

As already mentioned, OntoMon is a monitoring platform that sits on top of hetero-
geneous target systems. However, at some depth, we assume that every target system
accommodates computer machines that are either treated as hardware or software en-
tities. Based on this premise, we had to set up a testbed environment that would act as
a candidate target system for our platform and serve for both hardware- and software-
oriented case approaches. Therefore, we decided to deploy a small computer cluster,
consisting of 3 virtual machines that are interconnected with each other. For this pur-
pose, we decided to use Qemu ', a free open-source machine emulator and virtualizer,
that facilitated the deployment of our cluster. The Qemu virtualization engine enabled
us to perform a full-stack configuration of the VMs and make any needed adjustments

in their settings. At first, all 3 virtual machines were attached on the same physical host

'http://www.gemu.org/

147

http://www.qemu.org/

148 CHAPTER 4. IMPLEMENTATION

system, running Ubuntu 16.04.2, an operating system that has virtualization capa-
bilities and integrates well with Qemu. For uniformity reasons, we decided to install
the same guest operating system, Ubuntu Server 16.04.2, on all nodes across the

testing cluster.

Private Network configuration

Bearing in mind that this cluster resembles a real-world distributed computing system,
we had to ensure network connectivity both among the nodes(internal operations and
protocols) and to the Internet(installation of software packages, utility services, remote
access). Therefore, we decided to set up a fully-customized networking layer, employ-
ing network interfaces provided by Linux and Qemu. Our aim was to build a private
network behind NAT, that could access the outer world as a usual home environment.
At first, we created a bridge interface > (br@) on the hypervisor system and assigned
it with a static IP address(10.0.0.254). A Linux bridge is really a virtual switch im-
plemented inside the kernel, that carries incoming and outcoming traffic. Next, we
extended the configuration of the dnsmasq * running on the hypervisor, a lightweight
service providing network infrastructure for small networks. Primarily, we modified
the configuration file of the dnsmasq service. We set the default Router and DHCP
server options on 10.0.0.254 and also determined the dchp-range of the private
network to be 10.0.0.0/24, explicitly mapping physical MAC addresses to IP ad-
dresses, ensuring uniqueness. In this way, each server receives an IP address that is
bound to the MAC address of its (virtual) network card. At the same time, all network
traffic coming from the virtual machines will be routed to the br@ interface of the hy-
pervisor, that acts as the gateway of the private network.

However, in order to forward network packets from the virtual to the physical world,
we had to set up a mechanism to redirect all network traffic to the hypervisor: tap
interfaces. In short, tap interfaces are created by Qemu processes and are software
entities that act as virtual ports that are hooked on a Linux bridge, just like ethernet
ports on a real physical switch. They exist only in kernelspace and their goal is to
provide an endpoint for the emulated NICs * of the VMs, so that a connection can be

established to forward ethernet frames. Each virtual server needs a single tap interface

*http://man7.org/linux/man-pages/man8/bridge.8.html
*http://www.thekelleys.org.uk/dnsmasq/doc.html
“Network Interface Cards

http://man7.org/linux/man-pages/man8/bridge.8.html
http://www.thekelleys.org.uk/dnsmasq/doc.html

4.1. EXPERIMENTAL TARGET SYSTEM 149

as network backend. Thus, we configured Qemu through its CLI options to create a
new tap interface during the bootup of the VMs, along with a gemu-if-up script that
automatically attaches the newly created virtual ports to the bre interface of the hy-
pervisor. Spinning up n VMs for our cluster results in a n to 1 port matching inside

the bridge interface of the hypervisor.

=
7

www.innervoice.in

(a) vNET topology

wireless router with internet
access running a DHCP server

{lan)

| gemu guest | tap0 |

(b) vNet diagram

Figure 4.1: Virtual Bridge Networking

The last step was to proceed with the configuration of the host system and the bridge
interface. At first, since we are setting up a Linux router for our private virtual net-
work, we had to enable IPv4 Packet Forwarding on the hypervisor, as in most mod-
ern Linux distributions this feature is disabled by default. Subsequently, we edited
the /etc/network/interfaces file inside the host system, in order to permanently

provide details about the definition of the bre interface, such as static IP address,

150 CHAPTER 4. IMPLEMENTATION

Netmask and others. Finally, we determined some Firewall rules using the ipta-

bles ° service: our initiative was to redirect traffic coming from the virtual private

10.0.0.0/24 network to the physical enp1s@ ethernet interface of the host, so that it

could be dealt with as usual host traffic. Precisely, we configured NAT * Masquerading

upon enp1s@, which is a method of hiding or remapping one IP address space(usually

private) into another(usually public), by modifying the source and destination fields

inside the header of the IP packets. The topology discussed above is known as bridged

networking using NAT. The most notable points in the configuration of the private net-

work for our cluster are provided below:

192 I N S B \S]

<IN)

- SS I)

6

10
11

$ cat /etc/NetworkManager/dnsmasq.d/cluster.conf
interface=breo

bind-interfaces

dhcp-range=10.0.0.0,static
dhcp-host=DE:AD:BE:EF:14:AC,10.0.0.1
dhcp-host=DE:AD:BE:EF:CD:CA,10.0.0.2
dhcp-host=DE:AD:BE:EF:16:7E,10.0.0.3
dhcp-option=option:router,10.0.0.254
dhcp-option=6,10.0.0.254

Listing 4.1: dnsmasq configuration

bridge setup
$ brctl addbr bre
show bridge while VMs are running

$ brctl show

bridge name bridge id STP enabled interfaces
bro 8000.526a92e3be49 no tap®

tapl

tap2

enable and verify IP packet forwarding
$ echo 1 > /proc/sys/net/ipv4/ip_forward
$ cat /proc/sys/net/ipv4/ip_forward

*https://linux.die.net/man/8/iptables
SNetwork Adress Translation

https://linux.die.net/man/8/iptables

4.1. EXPERIMENTAL TARGET SYSTEM 151

12 |1
13 | # SNAT to forward traffic to hypervisor ethernet interface
14 | iptables -t nat -A POSTROUTING -o eth@ -s 10.0.0.0/24 -j MASQUERADE

Listing 4.2: IP forwarding on hypervisor

1 | # /etc/network/interfaces

auto bro

iface bre inet static
bridge_ports none
bridge_stp off
bridge maxwait ©

address 10.0.0.254

0 NN Ut ok W

netmask 255.255.255.0

Listing 4.3: Bridge definition

Guest Guest Guest
(O8] oS (o]
Ubuntu Server3
MAC address: 7 MAC address: 8
: DE:AD:BE:EF:CD:CA DE:AD:BE:EF:16:7I§;’
Qemu
S, Userspace — —\
virtual virtual virtual _.
port 4 port ¥ port ¥ j
tap0 [1 tap1 [1 tap2
_J _
dnsmas 7 virtual
q E »| bridge br0 switch
« Router
« DNS
« DHCP Host OS
K physical ethernet
(o n) interface
npi
e f §o I
DNAT : | SNAT
I, 4

Figure 4.2: Cluster Topology

152 CHAPTER 4. IMPLEMENTATION

4.2 Ontological Schema Definition

In this section, we demonstrate how we formalized the Ontology component and pro-
vide an extensive description of the proposed ontological schema. As already stated,
one of our primary design decisions was to formulate the ontological description of
the target domain as a collection of JSON objects. Every object belonging to the On-
tology must follow a specific structure, in order to facilitate parsing and validation. We
needed an abstract, in terms of content, yet formal and apprehensible object model that
would be free of superfluous information, reflecting the design principles described

in subsection 3.3.1. Therefore, we argue that the proposed object attributes meet the

aforementioned requirements, as presented below:

LA
2 "uuid": "c8bd7185-6349-4df5-8628-187115222987",
3 "name": "Ubuntu-Server-1",
4 "label": "Server",
5 "file": "Server.svg",
6 "parent": "25e2ce69-2445-4b28-9a71-e7ca®lbc57ea",
7 "info": {
8 "description": "Server asset"
9 }
10 | }
Listing 4.4: Example of JSON Ontology object
« UUID

In order to guarantee that the each JSON object inside the Ontology can be
uniquely referenced and identified, we employed the Universally Unique Iden-
tifier standard. This is a 128-bit number, expressed in 32 hexadecimal digits,
separated by hyphens in form 8 — 4 — 4 — 4 — 8 that is used to identify infor-
mation about components of computer systems. Their main advantage lies in
the fact that there is no need for consulting a central authority to assign indi-
vidual unique identifiers to our objects; instead UUIDs can be easily produced

by pre-defined mathematical functions. By introducing a uuid attribute into

4.2. ONTOLOGICAL SCHEMA DEFINITION 153

our schema, we do not have to rely on user-defined names or labels for the reg-
istration and management of the Ontology entities. In this way, we effectively
avoid object collisions and contradictions, since UUIDs promise to minimize the
probability of producing duplicate identifiers, even in large scale. Another im-
portant thing to note is that we entirely abstract the generation of UUIDs for
objects from the system integrators, as it is a procedure that does not concern
the conceptual design of the Ontology. Instead, we internally manipulate the

input Ontology and create mappings between object names and UUIDs.

« Name
This attribute is a string specified by the integrator-user and is, essentially, a
conventional name assigned to each object defined in the Ontology. While en-
tirely arbitrary in terms of context, it is expected to refer to the real-world entity
of the target system it represents. The value of this attribute is parsed by the On-
toMon Web Interface component and is used for adding additional information

during the visualization process.

« Label
Since the User Interface of OntoMon is content-agnostic, we needed a generic
property based on which we could dynamically aggregate and group objects
inside UI elements of the Angular application(e.g. menus, search fields, etc).
Again, the value of the 1abel attribute is a string of arbitrary context. How-
ever, we consider as best practice that assets of the same type in the real-world
system are given the same label value, so that the categorization inside the User
Interface is solid and meaningful. The label attribute must not be confused
with objects types, models or classes, as no label-specific action is taken upon
objects by the monitoring or visualization layers. In other words, the label

attribute does not add any semantics to the object.

« Parent
The parent attribute, as its name suggests, is an attribute that implements our
principle of building a hierarchical structure among the objects of the Ontol-
ogy. The parent attribute is also a string field that points to a UUID assigned
to an existing object of the JSON array. By following the parent attribute of

each object, we gradually construct the individual levels of the Ontology tree

154

CHAPTER 4. IMPLEMENTATION

and observe the complexity of the target system. Only a single object inside the
Ontology is allowed to have null as parent and it is the root object. Essentially,
the parent attribute is a foundational property of the ontological objects, as it
encloses the mathematical formula that interconnects Ontology entities. Un-
like the “is ancestor of” relation, the “has parent” relation is not transitive and,

of course, not symmetric.

File

One of the primary objectives of OntoMon is to empower end-users to fully
customize the visualization of their system. In this direction, we had to figure
out an efficient way of mapping the objects inside the Ontology to optical ele-
ments that will appear in the various views of the User Interface. Accordingly,
we introduced the file attribute, which is a string holding the image file that
will be associated with the respective object. Since the visualization layer of our
platform performs low-level operations upon image files, we require that end-
users exclusively specify and upload . svg files for each defined object, so that
transformations can be applied without sacrificing quality or detail, depending
on the display.

Furthermore, in order to facilitate the visualization of nested SVG elements in-
side the DOM of the browser, we needed a conceivable, yet operable way of de-
picting the parental relations that exist among objects. In practice, we had to
come up with a mechanism that efficiently expresses the capability of objects
to contain others. Our initial approach was to introduce anchor points inside
the SVGs: parent objects would have sockets at certain X-Y coordinates, while
children objects would have plugs at their central point. By convention, plug
anchors fit inside sockets anchors so a relative placement among SVGs would
be feasible. Soon enough, we realized that this approach was rather restrictive
for our application, as it does not allow full control over transformed objects at
runtime and has a quite rambling implementation. Therefore, we modeled the
“parent-child” in a similar, but more elegant and flexible way. Instead of deter-
mining anchor points, we proposed the concept of slots. Typically, slots can
be regarded as conceptual instating areas of fixed, pre-defined dimensions. They
are implemented as a custom element attribute, that is directly encapsulated into

the XML/SVG code. More precisely, its value is a string consisting of 4 comma

4.2. ONTOLOGICAL SCHEMA DEFINITION 155

separated values, in the following form:

“<upper-left-point1-x>, <upper-left-point1-y>, <width>, <height>,
<upper-left-point2-x>, <upper-left-point2-y>, <width>, <height>, ...”

As expected, the SVG files corresponding to parent objects in the Ontology must
include a number of different slots in their code, that is equal to the number of
their children. An SVG element with n slots can accommodate up to n child SVG
elements. By convention, objects that are placed at the leaves of the ontology
tree must set the empty string as the value of their slots attribute, indicating
they contain no objects. The combination of slots with the parent attribute
of the Ontology objects, is the base of our visualization engine. The main benefit
of working with slots is that end-users of SVG file designers can accurately de-
termine the exact position and size at which every asset of the target system will
be rendered. Such functionality expands customization capabilities and pro-
vides an intuitive overview of the hierarchical relations among real-world as-
sets. Finally, since the OntoMon UI performs asynchronously gets informed
about status updates of assets, we searched for an elegant way of depicting these
status updates upon SVGs. Our proposed solution involves the definition of an
element specified by the system integrator, that is classified as indicator, in-
side the body of the SVG file. In this manner, status updates can be reflected as
visual animations, shape updates, color variations, etc upon this indicator ele-
ment, showcasing that an issue has occurred regarding the respective asset. It is

also possible to define multiple indicators with different visual notifications.

1 |<svg xmlns="http://www.w3.0rg/2000/svg" width="100%" height="100%"
2 slots="15,25,200,50,45,75,240,60">
<g>
4 <l-- SVG markup here -->
5 <circle>
6 <animate class="indicator" attributeName="fill"
7 values="#62c36e;#36a242;#62c36e"/>
8 </circle>
9 </g>
10 |</svg>

156 CHAPTER 4. IMPLEMENTATION

Listing 4.5: SVG element with 2 slots

« Info
The info attribute is an optional, and rather complementary, attribute for our
schema. It is deliberately defined so that end-users together with integrators
can fill in additional information or details about the assets of the target system,
such as hardware specifications or custom configurations. Ordinarily, the info
attribute is itself a JSON object that comprises of arbitrary fields and values. The
values of these fields are presented in the OntoMon User Interface component,
when the corresponding asset is viewed by the end-user. Combining specific as-
set options or details with real-time graphs and metrics can prevent performance

degradation, leading to a fine-tuned and well-operating system.

4.3 Development of the OntoMon Server

Developing a web server is, in general, a challenging and complicated task. However,
our platform designates quite specific tasks and requirements from its internal server.
Hence, in order to accelerate the development process and slide over a lot of boilerplate
code, we settled for building a robust web server on top of the Node. js platform, a
powerful JavaScript execution engine written in C. This platform does not follow the
traditional Request/Response multi-threaded model; instead, it is built upon an event-
driven approach that relies on the “Event Loop” Component, a single-threaded process
that instantly processes non-blocking requests coming from clients. Only blocking
requests are assigned to separate threads so that resource utilization is reduced and

more concurrent requests can be handled by the server.

Mainly, we decided to utilize the fast and mature Express [29] application framework,
that allows for writing scalable, yet simplified server-side code in pure JavaScript.
The development process is rather quick and dry, while the Express web application
runs as a standalone web server that abstracts concerns and is not dependent on Apache
or Nginx. In addition, Express supports numerous built-in HTTP utility methods and

middleware, facilitating the construction of solid RESTful APIs. Furthermore, there

4.3. DEVELOPMENT OF THE ONTOMON SERVER 157

is a great variety of high-level libraries available, that are designed to plug into Express
and implement basic concepts like routing, serving of static files, authentication, data
encryption, database integration and others. Thereafter, this state-of-the-art software
stack allowed us to easily spin up a reliable and performant web server, without having
to concern about complex low-level networking concepts.

OntoMon Server is a central component, that is responsible for orchestrating commu-
nication and exchange of data across our platform. It is publicly available and exposes
a set of well-known HTTP API endpoints. More specifically, we configured the On-
toMon Server to run on the hypervisor node, providing the various web services and

resources to respective clients, as shown in Table 4.1:

Web Service Endpoint Client
Upload .json and .svg files /upload End-User
Serve static files /resources | OntoMon WebUI, OntoMon Observer

Handle status update requests /updates OntoMon WebUI, OntoMon Observer

Generate and serve log file /history OntoMon WebUI

Table 4.1: OntoMon Server API

As shown in the table above, our web server listens and responds to specific endpoints.
At first, it acts as a storage repository that supports file uploading via simple HTTP
POST requests at ontomonHost :8080/upload. It is notable, that these files are per-
sistently stored in the local memory of the OntoMon Server host and are not disposed
after the termination of every application session, as end-users are likely to reuse the
same Ontology.json and .svg multiple times. Thus, there is no need to re-upload identi-
cal data in order to produce the same OntoMon dashboard. In this way, files are always
available for remote access during the runtime of our system, by sending HTTP GET

requests to ontomonHost :8080/resources, either for SVGs or Ontology . json.

Besides, the OntoMon Server has a quite active role in the alerting mechanism of our
framework. More specifically, we set up a web service at ontomonHost : 8080/updates,
that accepts HTTP POST requests of JSON-formatted asset status updates and also re-
sponds to HTTP GET requests with the latest status updates available. This service re-
tains a time-sorted queue of Update.json objects, in the exact same form they were
pushed by the OntoMon Observer. When an Update.json object arrives at the /up-

date endpoint, the OntoServer pushes the object to the queue and then adds a corre-

158

CHAPTER 4. IMPLEMENTATION

A

/ atest) Updates Queue

n+1 n n-1 n-2
A {} {} S
pushéd into
Written tO==ss=sssassassans)

Outc Jming\

{}

Log file
(events)

v

Figure 4.3: OntoMon Server: Status Update mechanism

sponding entry to the generated Update.log file, keeping track of status update events in

chronological order. The Update.log file is statically served at ontomonHost : 8000 /history,

so it can later be accessed by the Angular application.

Obviously, the OntoMon Server is a standalone component that is decoupled from the

rest of the system and can be deployed on a remote node, as long as it is reachable via

the network. A simplified version of the OntoMon Server implementation is provided

response.write('Upload was successful."');

below:
1 |// create the Express.js application
2 |var app = express()
3 |// accept POST requests to upload files
4
response, next){
5 response.setHeader('Content-Type",
6
7 response.status(204);
8 response.end();
911

app.post('/upload', upload.single('filename'), function(request,

‘text/plain');

10 |// accept GET requests for asset status updates

11 |app.get('/updates', function(request, response){

4.3. DEVELOPMENT OF THE ONTOMON SERVER 159

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

1)

response.setHeader('Content-Type', 'application/json');

if (queue.length > 0) {

var obj = queue.shift();
} else {
var obj = {};

}
response.json(obj);
response.status(200);

response.end();

// accept POST requests to update asset status

app.post('/updates', function(request, response){

1)

handleUpdatePOSTRequest(request);
response.setHeader('Content-Type', 'text/plain');
response.write('POST request was successful.');
response.status(204);

response.end();

function handleUpdatePOSTRequest(req){

var filePath = __dirname + '/log/update.log';

var uuid = req.body['uuid'], name = req.body['name’'];

var timestamp = req.body['timestamp'],state = req.body['state'];
var type = req.body['type'], metrics = req.body['metrics'];

var description = req.body['description’];

var log string = '[' + timestamp + ']: + name + ' - ' + state

+ - + description + '\n’;

// push to queue and log file

log.push(req.body);

queue.push(req.body);

fs.appendFile(filePath, log_string, function (err) {
console.log(err);

})s

return;

160 CHAPTER 4. IMPLEMENTATION

46 |}

Listing 4.6: OntoMon Server: file upload and Updates queue

4.4 Metrics Collection with Icinga

The setup and the configuration of the Icinga monitoring tool required our close at-
tention, so that the data collection mechanism would be efficient and sustainable in

large scale environments and reflect administrator needs.

o Icinga Cluster Deployment
We began with the installation of the Icinga software packages on all cluster nodes
that were about to be monitored. Since two different types of Icinga daemons had
to be installed on individual nodes, we executed the Icinga node wizard utility
command on every node, in order to automate the installation process. In OntoMon,

we worked with the latest Icinga 2.6.3 Release:

1 | root@ontomonHost:~# wget -0 -
https://packages.icinga.com/icinga.key | apt-key add -

2 | root@ontomonHost:~# echo 'deb https://packages.icinga.com/ubuntu
icinga-xenial main' >/etc/apt/sources.list.d/icinga.list

3 | root@ontomonHost:~# apt-get update && apt-get install icinga2

Listing 4.7: Installation of Icinga packages

1 | root@ontomonHost:~# icinga2 node wizard
2 | Welcome to the Icinga 2 Setup Wizard!
3 | Please specify if this is a satellite setup ('n' installs a

master setup) [Y/n]:

Listing 4.8: Running icinga node wizard on master node

At first, we set up the Icinga Master at the hypervisor node, by specifying its FQDN
7 and accepting the default settings regarding the Icinga API(e.g. port). During the

"Full Qualified Domain Name

4.4. METRICS COLLECTION WITH ICINGA 161

installation process, configuration files and directories were generated on the Mas-
ter node, along with a CA certificate, a private key and a CSR for authentication
purposes. Afterwards, we set up the Icinga Clients at 10.0.0.1, 10.0.0.2 and
10.0.0. 3, respectively, following a similar procedure. Due to the fact that every
Icinga Client is accounting to some Icinga Master, we specified the FQDN of the
corresponding Master node when prompted by the icinga node wizard,soasto
carry out the hierarchical structure. It is also worth mentioning, that the registra-
tion of a Client to some Master is secured by ticket certification: the Icinga Master
generates a client-specific ticket that is based on its FQDN, distributes it to the con-
cerned Icinga Client who then submits it back to the Master. Once identified, the
client subscription is considered successful and the Icinga cluster is functional, com-

prising of nodes that “talk” the same API and have built trust relations among them.

« Icinga Cluster Configuration

As already mentioned in subsection 3.3.2, our goal is to configure the Icinga mon-

itoring platform in a distributed Top>Down manner. This configuration mode is
decidedly more convenient and robust for multi-node environments, that enclose
a large number of hosts which need to be monitored. Even though the following
setup was designed for the target system described in section 4.1, its logic and prin-
ciples certainly provide a solid basis for configuring monitoring in more complex
topologies. Bearing in mind the concept of Icinga Zones, we managed to build a hi-
erarchical structure by determining a single authoritative Master Zone(127.0.0.1)
and three sibling -but discrete- Client Zones(10.0.0.1,10.0.0.2and 10.0.0.3),
that pertain to the Master Zone. Thus, the Icinga tree consists of 1 root and 2 leaf
nodes. We argue that the discussed classification of our cluster nodes greatly sim-
plifies the monitoring process, is comprehensible and explicitly separates concerns.
Its most powerful feature, thereafter, lies in the fact that we had to define the con-
figuration objects only once inside the Master Zone, while synchronization takes
place automatically by pushing down the configuration to thousands of Clients in
a distributed fashion. Replication of configuration objects requires network con-
nectivity and trusted communication between Master and Client, as preconditions.
Indisputably, this hierarchical design fits extremely well in clusters that comprise of

a large number of client nodes which need to be monitored on the same physical or

162 CHAPTER 4. IMPLEMENTATION

software assets. The overview of our testing topology is portrayed in Figure 4.4:

1

- Exports "
time series
data
- Icinga
‘Master Zone
Endpoint: !
Ubuntu-Server-1
10.0.0.1
reports e Rt reports

collected metrics collected metrics

pushes configuration files
(Commands, Services,
Hosts, Zones)

I/ /

Icinga . Endpoint: Endpoint: N Icinga
Client Zone .- Ubuntu-Server-2 Ubuntu-Server-3 “.Client Zone
/ 10.0.0.2 10.0.0.3 :

icinga agent

A A -

icinga agent

A A A

Y ¥l ¥l S A A 4
hardware or software : ' hardware or software
assets assets

Figure 4.4: Icinga Monitoring Cluster

In order to regulate the monitoring process, we proceeded with the definition of var-
ious Icinga configuration objects, such as Hosts,Services and CheckCommands.
As administrators, we do not have to define any configuration objects on the client
nodes; instead, these nodes only receive the configuration objects coming from the
authoritative Master and store them locally. Therefore, it is sufficient to provide an
indicative presentation of the proposed configuration of the Master node. To begin
with, all configuration files are stored under /etc/icinga2 directory. Zone and
Endpoint objects, along with their hierarchy, are defined in the zones. conf file.
In the Top >Bottom configuration mode, the /zones.d directory recursively in-
cludes configuration folders that are named after Zone. These folders contain dec-
laration files(e.g. hosts.conf,services.conf), in which Icinga configuration
objects, such as Hosts and Services, are denoted. Each Icinga Zone is aware only of
the objects defined in its respective folder. In this manner, nodes belonging to the
same Zone receive the exact same configuration. However, the /zones . d directory
might also contain a special configuration folder named /global-templates. Ev-

ery Icinga object that is defined inside this folder is globally available in all Zones,

4.4. METRICS COLLECTION WITH ICINGA 163

including the Master one. We found this auxiliary feature extremely useful, as it
provides and automated way of synchronizing Templates, Services, Check-

Commands and other objects across irrespective Zones of the cluster.

1 |object Endpoint "icinga-master-1" {
2 host = "10.0.0.1"

30}

4 |object Endpoint "icinga-client-1" {
5 host = "10.0.0.2"

61}

7 |object Endpoint "icinga-client-2" {
8 host = "10.0.0.3"

91}

10 |object Zone "icinga2-masterl" {

11 endpoints = ["icinga-master-1"]
12 |3}

13 |object Zone "icinga2-clientl™ {

14 endpoints = ["icinga-client-1"]
15 parent = "icinga-masterl”

16 |}

17 |object Zone "icinga2-client2" {

18 endpoints = ["icinga-client-2"]
19 parent = "icinga-masterl”

20 |}

21 |object Zone "global-templates™ {

22 global = true

23 |}

Listing 4.9: Definition of Zones and Endpoints(zones.conf)

1 |object CheckCommand "cpu_stats” {
import "plugin-check-command"
command = [PluginDir + "/check_cpu_info"]

arguments = {

(92 I N O B \S]

164 CHAPTER 4. IMPLEMENTATION

Listing 4.10: Definition of CheckCommand(commands.conf)

1 |apply Service "cpustat" {

2 import "generic-service"

3 check_command = "cpu_stats"”

4 assign where host.name == "icinga-clientl”
51}

Listing 4.11: Definition of Service(services.conf)

Plugins

Meanwhile, another crucial implementation aspect of the monitoring system was
the designation of the checks that are going to be executed by the Icinga agents.
Thanks to the integration of Icinga with most plugins of the Nagios platform, we
were able to utilize various open-source performance checks, published in Nagios
Exchange ® and Icinga Exchange °. These plugins allow for generic monitoring of
hosts, devices, services and applications. As we expected, however, our test cases
called for instrumentation of asset-specific attributes, that were only partially com-
patible with any pre-defined plugin. Subsequently, we studied the structure and
format of various Nagios plugins and followed it to define our custom performance
check plugins. To this end, we made modifications or wrote from scratch various
plugins, with respect to the test cases we studied. For example, we configured plugins
that collect performance data from physical assets(e.g. cpu_load,disk_capac-
ity,memory_usage,network_utilization), as well as others that measure the
efficiency of software assets(e.g.ceph_cluster_health, cluster_IOPS, clus-
ter_throughput, ceph_daemon_state). An analytical guide for writing cus-
tom Icinga Plugins that collect the desired performance data is available in the offi-

cial Icinga documentation.

8https://exchange.nagios.org
*https://exchange.icinga.com

https://exchange.nagios.org
https://exchange.icinga.com

4.4. METRICS COLLECTION WITH ICINGA 165

1 |root@ontomonHost:~# ./check_http -H icinga2-clientl -w 10 -c 20
2 |HTTP OK: HTTP/1.1 200 OK - 85997 bytes in ©.293 second response
time |time=0.293414s;10.000000;20.000000;0.000000
size=85997B;; ;0

Listing 4.12: Remote execution of HT'TP plugin

Integration with InfluxDB

At this point, we have successfully deployed the Icinga monitoring platform on the
nodes of our cluster and configured it to aggregate real-time performance statis-
tics from all hosts at a regular interval. However, in order to effectively store these
metrics into the Influx time series database, we have to enable the native influxdb
feature of Icinga. This feature instantiates an Influx Writer object, thatis respon-
sible for determining the structure of the output data. In particular, it transforms
the collected key-value metrics into an influx-compatible format, by dynamically
tagging instances of executed service checks. Its configuration is pretty straightfor-
ward and requires specific inht formation about the target storage backend, such
as host,port,database,username and password. In addition, we were able
to take full control over the format in which the time series data is exported, as
the Influx Writer is capable of explicitly specifying the fields of the InfluxDB
entries, as well as reporting metadata and threshold values. Combining the meta-
data that describe service checks(execution_time, latency,max_check_at-
tempts, max_check_attempts, etc)with thethresholds settings providesa deep
insight about downtimes or critical states of services. The configuration file of the

InfluxDBWriter is shown in Listing 4.16:

1 |root@ontomonHost:~# icinga2 feature enable influxdb

Listing 4.13: Enabling the InfluxDBWriter in Icinga

166 CHAPTER 4. IMPLEMENTATION

4.5 Metrics Storage with InfluxDB

Our next concern was to deploy the time series storage backend. We decided to also
set up the latest stable version of the influx-server(1.2) on the ontomonHost node,
so that the Icinga Master node can directly perform write requests and the network
traffic congestion can be moderated. Therefore, we installed the respective . deb pack-
age files, along with the NTP '° server, so that the timestamps of the data series would

be correctly synchronized:

1 |root@ontomonHost:~# wget

2 |root@ontomonHost:~# sudo dpkg -i influxdb_1.2.2_ amd64.deb

3 |root@ontomonHost:~# sudo apt-get install ntp

https://dl.influxdata.com/influxdb/releases/influxdb_1.2.2 amd64.deb

Listing 4.14: InfluxDB and NTP installation

Our intention was to gain full control over the format in which time series are stored
in the storage backend. Thus, we had to understand the storage engine and schema
that Influx is using. By knowing the exact structure and APIs used during data ex-
change process, we would be able to conveniently orchestrate both the request meth-
ods and the response handlers inside all consumer components of OntoMon. The
top level container of InfluxDB is the database, that comprises of several compo-
nents. Under the hood, data is stored in shards, which are in turn organized in shard
groups, but this layer is almost transparent to the user. Every Influx database is char-
acterized by its name and a retention policy, which determines both the repli-
cation factor and the time period after which data expires and is no longer consid-
ered valid(flush of the database). A retention policy is, actually, a bucket that di-
vides a timeline into smaller segments. Hence, any incoming data points will fall into
the corresponding segment, which is a retention policy bucket. The database con-
tains multiple data points, which comprise of objects with the following attributes:
name, tags,timestamp and fields. Data points are always associated with se-
ries or measurements that are created on the fly based on the aforementioned at-

tributes. Supposing a collector agent is performing disk checks on a server and report-

1Network Time Protocol

4.5. METRICS STORAGE WITH INFLUXDB 167

ing the collected metrics to an InfluxDB, we can query the Influx server and get the

following JSON response:

LA

2 "database"” : "test-db",

3 "retentionPolicy"” : "24h",

4 "points" : [{

5 "name" "disk",

6 "tags" : {

7 "server" : "test-server", "unit" : "1"
8 }s

9 "timestamp" : "2015-03-16T01:02:26.234Z",
10 "fields" : {

11 "total usage" : 100, "used" : 40, "free" : 60
12 }

13 }]

14 | }

Listing 4.15: Sample Influx server response

Our approach involved proper configuration of the Icinga InfluxDBWriter object,
in order to connect to the storage backend and perform writes of time series data.
Firstly, we assigned the measurement of each data point the same name as the respec-
tive CheckCommand that collects it. Secondly, we introduced a small set of dedicated
tags, that are used as keys in the InfluxQL queries, simplifying filtering and aggre-
gation of data. No particular option was specified for the timestamp field, as it is

automatically managed and encapsulated into data points.

1 | object InfluxdbWriter "influxdb" {
2 host = "127.0.0.1"
port = 8086
4 database = "icinga2"
5 username = "icinga2"
6 password = "supersecret”
7 service_template = {
8 measurement = "$service.check command$"

168 CHAPTER 4. IMPLEMENTATION

9 tags = {

10 fgdn = "$host.name$"

11 hostname = "$host.name$"
12 service = "$service.name$"
13 }

14 }

15 enable_send_thresholds = true

16 enable_send_metadata = true

17 | 3}

Listing 4.16: InfluxDBWriter configuration

4.6 Development of the OntoMon Observer

The monitoring stack of OntoMon has its foundation on the push monitoring method,
since the deployed Icinga agents only push real-time metrics into the Influx database,
and do not perform any alerting themselves. In this direction, though, soon arrised
the need to develop a custom, highly available middleware that would be complemen-
tary to the Icinga platform, perpetually consuming the time series data and notifying
the upper layer of our platform about any incidents regarding the assets of the target
system. Hence, our approach was to design and implement the OntoMon Observer as
a daemon that would silently run in the background, understand the Influx API and
bridge the gap between the low-level monitoring stack and the user-level interface ap-
plication. We implemented it entirely in Python, a high-level programming language
that fully covered our needs. Throughout the development of the Observer daemon,
we concentrated on ensuring two main characteristics: modularity and adaptivity.
The logic behind this decision steams from the great diversity in both target systems
and monitoring needs, as well as the ability to define custom visual notifications. Un-
deniably, different target systems comprise of conceptually divergent assets that are
likely to have very specific performance indicators or attributes. However, even given
the exact same target system, it is quite common that end-users or administrators have
largely different perspectives and requirements from the monitoring platform. In such

cases, the Observer is not aware of the content or policy of the performance check a

4.6. DEVELOPMENT OF THE ONTOMON OBSERVER 169

user wishes to perform upon the target system, resulting in non-uniform requests.

Consequently, we needed a well-structured and standardized way of processing data:
our implementation builds upon general-purpose concepts and mechanisms, provid-
ing a basic core of functionality. Nonetheless, in order to fulfil the user expectations,
the abstract methods and handlers of the OntoMon Observer need proper specifica-
tion by the system integrator, so as to serve the needs of different target systems. For
the scope of this thesis, it was enough to direct methods and handler towards pre-
defined monitoring services of fundamental physical and software assets, as it is fur-
ther described in chapter 5. Furthermore, users are encouraged to further customize
the Observer component to fit their needs, by following the proposed structure. For
example, they can define arbitrary CLI arguments, combinatorial metric checks or
priority policies. We argue that this approach can lead to a more versatile and flexible
Observer component. The proposed implementation of the Observer comprises of 3

distinct components:

e Observer.py
This module contains the central driver code for our Observer daemon and de-
termines the check services upon which the Influx server will be queried so that

the latest corresponding metrics can be periodically retrieved.

1 |import threading

2 |import services

(O8]

import constants

import argparse

support for CLI arguments

N Y U W

parser = argparse.ArgumentParser()

oo

parser.add_argument("--hosts", nargs='+"', help="Enter hosts to
be monitored")

9 |args = parser.parse_args()

10

11

12 |def execute_checks(hosts):

13 for host in hosts:

14 if services.host_alive(host):

170 CHAPTER 4. IMPLEMENTATION

15 # Observe cpu asset of given host

16 services.cpu_check(host)

17 # Observe memory asset of given host

18 services.memory_check(host)

19 # Observce disk asset of given host

20 services.disk _check(host)

21 else:

22 print host, 'is down-Cannot get real time metrics'

23 threading.Timer(constants.CLUSTER_HEARTBEAT, execute_checks,
[args.hosts]).start()

Listing 4.17: Simplified version of Observer.py

e Services.py
This module implements the core logic of the OntoMon Observer, as it includes
definitions of handler functions for each monitoring service applied to assets in
the observer.py file. Our daemon is responsible for communicating via HTTP
with the storage backend in order to fetch the corresponding real-time perfor-
mance metrics from ontomonHost:8086/query. The respective InfluxQL re-
quests are dynamically generated at runtime by the general-purpose get_mea-
surement () function we provide. This function also parses the JSON body of the
response coming from the Influx storage backend and returns a 1ist containing
the desired performance metrics. The next task regards the digestion and refine-
ment of data and is implemented inside the body of the handler functions. For
example, users might need isolated or aggregated values(e.g. mean usage of a re-
source) in order that proceed to the performance evaluation phase. In this phase,
the parsed performance data is passed to respective reasoners, which are respon-
sible for performing comparisons against pre-defined notification thresholds. Es-
sentially, these reasoners illustrate the monitoring and alerting policies that sys-
tem integrators integrate into OntoMon. Consequently, the Observer concludes
on the current state of individual monitored assets. This threshold-based tech-
nique to detect anomalies can be regarded as a form of service level agreement
(SLA), which is practically a commitment between the service provider and the
end-user. Based on the comparison, it can be any of the following: 0K, WARNING
or CRITICAL. Itis important to carefully determine the notification thresholds so

4.6. DEVELOPMENT OF THE ONTOMON OBSERVER 171

that no time or attention is spent on non-issues or instantaneous changes. The
last step involves propagating the results of the evaluation phase to the OntoMon

Server in the form of asset state updates, using the dispatcher module.

1 |import httplib, urllib, json

2

3 |def get_measurement(hostname, measurement, metrics, fields,

time):

4 metrics _number = len(metrics)

5 metrics string = ",".join(metrics)

6 fields number= len(fields)

7 fields string = ",".join(fields)

8 if metrics_number > 1:

9 query=("select metric,"+fields_string+" from
"+measurement+

10 " where fqdn='" + hostname +

11 "' and time >= now()-"+time+" and (metric='" +

metrics[0]+"'")

12 metrics.pop(0)

13 for m in metrics:

14 query+=" or metric=""+m + """

15 # aggregators

16 query += ") order by time desc limit "+str(metrics_number)

17 else:

18 query=("select metric,"+fields_string+" from
"+measurement+

19 " where fqdn='"+hostname+"' and time >= now() -

"+time)

20 # aggregators

21 query+=" order by time desc limit 1"

22

23 params=urlencode({"q": query, "db": constants.DATABASE NAME})

24 headers={"Content-type": "application/x-www-form-urlencoded",

25 "Accept": "application/json"}

26 conn_query =

© 0 NN A U bk W oD

[N T N T N T N T N T N N N T N T S S S e e S Sy
NN G o W D= OO0 0N N WD = O

172 CHAPTER 4. IMPLEMENTATION

httplib.HTTPConnection(constants.INFLUX_HOST_ENDPOINT)
27 conn_query.request("POST",
constants.INFLUX_QUERY_ENDPOINT,params, headers)

28 r = conn_query.getresponse()

29

Listing 4.18: Simplified version of get_measurement()

import constants

import dispatcher

observe usage percentage of memory asset

def memory_check(hostname):

get metrics by specifying host, measurement, metrics, fields and time window
mem_measurement_list = get _measurement(

hostname, "memory", ["MUSED", "MTOTAL", "SUSED", "STOTAL"], ["value"], "5m")
for m in mem_measurement_list:

mem_dict[m[‘'metric']] = m['value']

data analysis
mem_timestamp = mem_measurement_list[@]["time"]
mem_used MB = round(mem_dict["MUSED"]/(1024*1024), 2)
mem_total MB = round(mem_dict["MTOTAL"]/(1024*1024), 2)
mem_used_percentage = round(100*mem_used MB/mem_total MB, 2)

mem_free_percentage = 100-mem_used_percentage

if (mem_used_percentage >= constants.MEM_USAGE_CRITICAL):
issue_description = "Check: mem_used percentage"
mem_status = "CRITICAL"

elif (mem_used_percentage >= constants.MEM_USAGE_WARNING):
issue_description = "Check: mem_used_percentage"

mem_status = "WARNING"

mem_metrics = {

‘mem_used': str(mem_used_MB) + 'MB',

28
29
30
31
32
33
34
35
36

4.6. DEVELOPMENT OF THE ONTOMON OBSERVER

‘mem_total': str(mem_total MB) + 'MB',
‘mem_used_%"': str(mem_used_percentage) + '%',

‘mem_free_%': str(mem_free_percentage) + '%'

}
if (mem_status != "OK"):

issue_description = "Check " + issue_description
else:

issue_description = "No issues were detected."

Send latest memory usage status to OntoMon Server

173

dispatcher.send_update(hostname, mem_timestamp, mem_status, mem_metrics,

issue_description)

Listing 4.19: Simplified Service example

e Dispatcher.py

In this module, we implement functions that formalize the structure of the JSON

objects describing the current state of the monitored assets, as well as the latest

values of metrics and direct guidelines regarding the visualization of the alert in

the UI of OntoMon. The dispatcher() function serially publishes updates at

ontomonHost:8080/updates. Technically, this is where our custom alerting

API is specified, in the sense that we introduce a standardized format for the ob-

jects representing a change in the status of an asset. At the same time, we employ

a regex-based validation of attribute payloads, so as to ensure that every Up-

date.json object is constructed as expected. The proposed notification protocol

is expressed in the JSON object presented in 4.6:

IR

2 "uuid": "ff2802db-15d1-42a6-bcfe-0dd3af12c9c7",
3 "name": "icinga2-clientl",

4 "timestamp": "2017-05-15 00:56:12",

B "state": "OK",

6 "metrics": {

7 "cpu_loadl": 0.5,

8 "cpu_load5": 0.7,

9 "cpu_loadl5": 0.8

0| 3,

174 CHAPTER 4. IMPLEMENTATION

11 "type": {

12 "element_class": "indicator",

13 "attribute_name": "values",

14 "attribute_value": color

15 ¥

16 "description": "No issues were detected."
17 |}

Listing 4.20: Update.json Object

In our custom alerting chain, each Update.json object is associated with a specific
asset and check service, while it is a responsibility of the system integrator to de-
termine its content. Accordingly, the timestamp field holds the time of the most
recent data sampling, the state field retains the most recent state of the respec-
tive asset, as deduced by the reasoner. Furthermore, the metrics field contains a
nested JSON object with key-value pairs of performance metrics names and val-
ues. The type attribute is a quite important one, as it explicitly defines the way the
respective status change will be depicted in the Angular application: it is a nested
JSON object whose fields determine which element and attribute will be updated
inside the corresponding SVG. Finally, the description attribute provides use-
tul insight to quickly observe which metrics are, possibly, causing performance

degradation.

4.7 Development of the OntoMon User Interface

As in any monitoring platform, the implementation of the Web UT of our framework
was of significant importance. Due to the fact that the User Interface is the only visible
component of OntoMon, we focused its design on providing a solid, comprehensive
and consistent overview of all the underlying computations made by our engine. We
decided to build our web application on top of Node.js: we used the latest stable version
(4.0) of Angular, along with TypeScript 2.1. As far as appearance is concerned, we
followed some widely accepted guidelines and laid emphasis on simplicity and func-
tionality. From our perspective, a successful Ul should not be overloaded with infor-

mation; instead, it should be concise and dedicated, while eliminating confusion and

4.7. DEVELOPMENT OF THE ONTOMON USER INTERFACE 175

facilitating usability.

According to the aforestated principles, we designed the User Interface of OntoMon
as a single page application, that serves 4 different pages: overview, assetview, log and
settings. The overview page is the default one, and provides a holistic view of the target
system. On the other hand, the assetview page targets a specific asset and provides all
related information, performance metrics and graphs. Each page is implemented in a
different Angular Component. Besides, we decided to construct additional auxiliary
Components that would be responsible for managing various complementary UT ele-
ments, such as a header toolbar, a side navigation bar with the Ontology tree, a pop-up
dialog window with performance metrics and the panels coming from the Graph Com-
poser. Meanwhile, following the best practices concerning the architectural design
of Angular applications, we introduced task-specific Services, that abstract various
concerns from the main Components and extend their functionality. Such concerns
involve the retrieval and validation of the Ontology.json and .svg files, as well as the
local storage and distribution of data among Components. Hence, we greatly simpli-
fied the structure of our application and facilitated its future maintenance by defining

clean and reusable code entities.

In order to reduce the complexity during the development process of OntoMon Web

Interface, we decided to work in an iterative fashion:

« Cyclel: Ontology parsing and validation
In this phase, we conduct all the pre-processing needed to build our application.
As expected, the Components and Services active in this phase implement the
fundamental ontological concepts of OntoMon. At the same time, they perform
the initialization of the basic data structures used across our application, by hit-
ting the ontomonHost :8080/resources endpoint. Initially, the AppCompo-
nent retrieves the Ontology.json file using the HttpService and forwards it
to the Validator Service. Our validation mechanism employs the D3.js
library to manipulate the JSON data and build the hierarchical tree structure,
based on the parent attribute of each object of the Ontology. After ensuring
that no cycles or undefined objects exist inside the Ontology, the TreeData
array is initialized and the ParserService is invoked. The latter parses the

contents of the Ontology.json file into the Controller object, which is later ex-

176 CHAPTER 4. IMPLEMENTATION

Validator
Service

Parser
Service

injects injects

imports imports

Toolbar
Component

Sidenav
Component

inject:

_ queries
imports .
X injects HTTP
e T 9 Service
‘. Router <
Tree :)
Component Tt -queries Ut
A\
decides and imports . Service
current view
queries queries queries queries

Overview Assetview Log Settings
Component Component Component Component

injects imports

/ v
Polling Graph Metrics
Service Component Component

Figure 4.5: OntoMon UI: Angular application architecture

tended with additional information about each individual asset. It is notable,
that the entries of the Controller, which is the most crucial data structure in-
side our U, is indexed by the uuid attribute of the objects. Both the TreeData
and the Controller are stored inside the DataService, so that data is made
available to all components of our application by simply injecting the DataSer-

vice.

Since the aforementioned operations involve client-server communication or
end-to-end parsing of large files, the methods implementing them are mainly

asynchronous. Thus, in order to effectively synchronize our application, we

4.7. DEVELOPMENT OF THE ONTOMON USER INTERFACE 177

needed a listener/notifier mechanism. Subsequently, we decided to utilize the
native EventEmitter class, along with the rxjs/Observable package. In this
way, we were able to timely instantiate Components and trigger their methods at
the right time. More specifically, when the DataReady event was emitted, the
TreeComponent proceeded to the reactive visualization of the Ontology Tree
using the treemap structure that the D3. js supports. Similarly, the Toolbar-
Component was able to group the objects of the Ontology based on their 1abel
attribute, and dynamically build drop down menus used for asset-oriented rout-

ing inside the application.

1 |Object {

2 "uuid": "c8bd7185-6349-4df5-8628-187115222987",
3 "name": "Ubuntu-Server-1",

4 "label": "Server",

5 "file": "Server.svg",

6 "parent": "25e2ce69-2445-4b28-9a71-e7ca®lbc57ea",
7 "state": "OK",

8 "lastUpdated": "2017-05-15 00:56:12",

9 "description”: "No issues were detected.",

10 "slotAvailability": [false, true, true, true],
11 "children": ["9c5d5b73-68ac-4a9d-92a7-7c60e492a7bd"],
12 "info": {

13 "0S": "Ubuntu 16.04.2",

14 "brand": "IBM",

15 "chassis_type": "Rackmount",

16 "color": "black",

17 "description": "Server asset",

18 "dimensions(H/W/D)": {

19 "depth": 12,
20 "height": 28.9,
21 "width": 17.5
22 }
23 "form_factor": "7U",
24 "model": "88861TU",
25 "series": "BladeCenter S"

178

CHAPTER 4. IMPLEMENTATION
26 ¥
27 "metrics": {
28 "cpu_loadl": 0.5,
29 "cpu_load5": 0.7,
30 "cpu_loadl5": @.8
31 }
32 |}

Listing 4.21: Formulation of Ontology objects inside the Controller

 Cycle2: SVG visualization

After the initialization phase successfully completes, our application proceeds
with the visualization of the monitored assets, strictly following the hierarchy
specified in the ontological description. Again the first step is to reach the On-
toMon Server at ontomonHost :8080/resources, but this time obtain all the
.svg files that the end-user has already uploaded. As already mentioned, each
.svg file is associated with a specific object of the Ontology and denotes its vi-
sual representation inside the OntoMon User Interface. However, it is possi-
ble that adjustments are made by end-users upon the target system and, conse-
quently in the Ontology.json and . svg files. Subsequently, in order to make
our platform adaptive to such changes, both the Overview and the Assetview
Components are configured to make respective HTTP requests to the OntoMon
Server each time they are loaded, always obtaining the most recently updated
resources.

As soon as all .svg files arrive, they are immediately stored locally and the visual-
ization process is initiated. Aiming at preserving the performance and scalabil-
ity of our application, we made the pretentious decision to directly manipulate
the browser DOM, handling SVGs as raw XML code. With this approach, we were
able to create fully-controlled HTML nodes on-the-fly and extend the DOM Tree
that the Angular application has already defined. However, the key point of our
implementation lies in the well-defined Ontology Tree: by calling the traver-
sal() method, the view Components perform a BFS'' traversal of the current

Ontology Tree, starting from the root node. As every node of the Ontology Tree

"Breadth First Search

4.7. DEVELOPMENT OF THE ONTOMON USER INTERFACE 179

is an entry of the Controller object, we can easily retrieve the associated SVG
via its uuid attribute and append it to the existing DOM Tree as a leaf node. Sim-
ilarly, visualizing a specific sub-system of the initial target system is a matter of

traversing the corresponding subtree of the Ontology Tree.

At this point, we have a both reliable and consistent way of visualizing the On-
tology objects, since their respective SVGs are processed and rendered in the
correct order: gradually, scanning the Ontology tree in horizontal levels, guar-
antees that parent elements will be attached first to the DOM Tree, followed by
their children. Still, we had to tackle the issue of precisely translating and scal-
ing the nested . svg files, so that they appear at the anticipated position in the
display and exactly fit inside their parents. To achieve that, we parsed the slot
attribute of the user-defined SVGs and modeled slots as containers that have a
concrete reference point and fixed dimensions. The number of slots, along with
their exact dimensions and availability are also stored in the Controller ob-
ject of our application, extending the already existing entries. Next, we call the
native getBBox () JavaScript method upon the SVG that is about to be ren-
dered. This method returns the width and the height of a notional rectangle
that exactly encloses this specific HTML element. Relying on this information, we
calculated the necessary scale and displacement factors and subsequently ap-
plied the proportional transformations upon each SVG element. In particular,
we delegated these transforms to <animation> elements that we appended to

SVGs, making the UI of OntoMon more graceful and user-friendly.

 Cycle3: Real-time data and alerting
As far as the last phase of operation is concerned, we invested much time and
effort on the presentation layer and specifically on the display of performance
metrics that the underlying system has collected. Since this is the actual output
of the instrumentation that our monitoring platform has performed, the core
mission of our User Interface is to provide end-users with an instant overview
of their assets and give them qualitative insight regarding their current state
and functionality. The precondition to achieving this was to actually acquire
the most recent performance metrics gathered by the Icinga agents. Hence, we
employed a PollingService that we scheduled to periodically query the On-
toMon Server at ontomonHost :8080/updates via HTTP GET requests about

180 CHAPTER 4. IMPLEMENTATION

slot slot slot
slot .
/ object0 \ '« ‘ \
. SVG- SVG-
containg object4 object5
objecti

SVG-object2 !

contain Y-éxis

object2 object3 :
SVG-object6
contains contains

SVG-object1

- . s SVG-object3,
object4 object5 object6
SVG-object0

Figure 4.6: Ontology Tree mapped to nested HTML DOM nodes

pending target system updates. Every Update.json object returned by the On-
toMon Server represents the most recent known state of the respective asset.
Accordingly, parsing the values of the Update.json object attributes supplied our
application with extensive details about the visualization of the alert, together
with its latest metrics and state of operation. Both the state and the met-
rics attributes are also reposited in respective fields of the Controller. Aim-
ing at comprehensively demonstrating the different check services executed on
each host, we incorporated this information into two equivalent but alternative
views: the MetricsComponent and the GraphComponent. These components
inject the DataService holding the latest real-time data of each asset in the
Controller data structure. The former summarizes performance indicators
into a concise 2-column table for quick examination, while the latter communi-
cates with the grafana-server server via HTTP and embeds real-time graphs
of the same metrics, as described in section 4.8. We argue that the aggregation
of all asset-specific metrics into a single view allows for efficient inspection and
proper management of the monitored infrastructure. Moreover, we configured
the Web UI of OntoMOn to periodically dispatch HTTP GET requests to the on-
tomonHost:8080/1og web endpoint, in order to obtain an aggregated log of all
events that were recorded during the runtime by the OntoMon Server. This log
file(Update.log) is visualized inside the template of the LogComponent, demon-

strating the timeline of the status updates of the target system in chronological

4.8. GRAPH COMPOSITION WITH GRAFANA 181

order.

The last feature we had to design was the OntoMon notification mechanism,
which is mainly implemented in the devoted updateUI() method we defined.
The main problem that this method alleviates, is the inconsistency between our
current visualization of the target system and the actual state of the real-world
assets. Initially, we presume that all assets of the target system, either software
or hardware, are operating as expected. Though, while our application pulls
metrics and updates from the OntoMon server the current view presented to the
end-user must be updated in order to reflect any issues that might have occurred
inside the target system. The updateUI () method is triggered asynchronously
by subscribing to Observables. Asa result, every time our application receives
a new Update.json object, it actively checks whether the state of the given asset
has changed since the last time its state was reported by the monitoring system.
If so, it takes the following actions: firstly, it sends an alarm to the end-user, in the
form of a push notification which appears in the upper right corner of the screen
and, secondly, using the querySelector method upon the HTMLdocument of
the AssetviewComponent, itlocates the indicator element of the “dirty” SVG
and performs a pre-determined visual update of it, which in our implementation

is a simple change of coloring.

4.8 Graph Composition with Grafana

In the proposed design, the generation of real-time graphs is of significant importance,

so we had to deliberately configure Grafana. In the first place, we installed the related

software packages(latest stable 4.3 version) on a the ontomonHost node so that a sin-

gle, dedicated process of the OS would manage the composition of time series graphs:

= W N

root@ontomonHost:~# wget https://s3-us-west-2.amazonaws.com/

grafana-releases/release/grafana_4.3.0_amd64.deb

root@ontomonHost:~# apt-get install -y adduser libfontconfig
root@ontomonHost:~# sudo dpkg -i grafana_4.3.0_amd64.deb

Listing 4.22: Installation of Grafana

182 CHAPTER 4. IMPLEMENTATION

Afterwards, we proceeded to the regulation of the grafana daemon, mainly to de-
termine its core options and input data sources. Plotting time series with Grafana,
requires that its data puller is capable of reaching and querying the storage backend
via HTTP. In our case, we had to specify certain fields inside the configuration file of

Grafana, located at ontomonHost: /etc/grafana/, such as:

2 |# Protocol, access domain, port
3 |protocol = http

4 |domain = localhost

5 |http_port = 3000

6 |root_url = http://localhost:3000
7 |# Basic AUTH for login

8 |enabled = true

9 |# Database for storing users and settings

10 |type = sqlite3

11 |host = 127.0.0.1:3306
12 |name = grafana

13 |user root

14

Listing 4.23: Grafana Server configuration

Alongside, we defined a new data source for Grafana, named “Cluster Metrics”, con-
taining all real-time data that Icinga is collecting from the nodes of the target system.

Specifically, we determined the following core attributes:

A

2 "Name": "Cluster Metrics",
"Default": true,

4 "Type": "InfluxDB",

5 "Url": "http://ontomonHost:8086",

6 "Access": "proxy",

7 "Enable_http_auth": false,

8 "Details": {

9 "Database": "icinga2",

4.8. GRAPH COMPOSITION WITH GRAFANA 183

10 "User": "icinga2",
11 "Password": "secret"
12 }

13 |}

Listing 4.24: Grafana Data Source configuration

The Grafana daemon issues HTTP requests at a regular interval at the specified tar-
get Url, pulling the latest performance metrics related to the monitored assets from
InfluxDB. The last step was to set up the panels inside the Grafana dashboard. Each
panel is the graphical representation of a specific performance measurement, provid-
ing insight into the behavior of the respective asset over time. The core configuration
of a panel requires the definition of InfluxQL queries upon the storage backend, so that
the desired metrics are returned by the influx-server. Since we monitored multiple
hosts on the same assets using the same check services, we had to find an efficient way
of avoiding duplicate panels and redundant definitions. Therefore, we introduced tem-
plate variables, such as asset, so that the exact same panels and queries are applicable
on different assets and present the respective performance values. Two characteristic

examples of the queries we generated are provided below:

1 |-- Query on hardware performance
SELECT mean("value") FROM "cpu_load"
WHERE "fqgdn" =~ /~$hostname$/

= W N

AND "metric" = 'load_1min' AND $timeFilter
GROUP BY time($interval) fill(null)

¢

6
7 | -- Query on software performance

8 |SELECT mean("value")

9 |FROM "ceph_osd_stats™

10 |[WHERE "hostname" =~ /~$hostname$/ AND "metric" =~ /_bytes_/
AND $timeFilter

11 |GROUP BY time($__interval), "metric" fill(null)

Listing 4.25: Example InfluxQL queries used in Grafana

The first query retrieves the cpu_load measurement monitored on the node with

184 CHAPTER 4. IMPLEMENTATION

fqdn tag equal to the template variable hostname. Then it filters the result by the
load_1min metric, as long as it was collected in the timeFilter time window, and
selects its mean value. Then, it aggregates the results along the time scale, by organiz-
ing them into groups determined by an interval. Analogously, the second query re-
trieves the ceph_osd_stats measurement monitored on the hostname node, filters
by the bytes metricand the timeFilter time window, selects the mean value and ag-
gregates the result. As far as the display options are concerned, Grafana supports rich
and diverse graphs to visualize the obtained time series data. In particular, we selected
bars,points,lines,singlestats,pie charts,histograms and gauges to ef-

fectively illustrate each performance metric.

Finally, in order to import the generated panels into the Web User Interface of On-
toMon, these graphical components must be served at a be publicly available endpoint.
Hence, we took advantage of the dashboard sharing feature of Grafana that generates
direct 1inks to individual Grafana panels. These 1inks include the user-specified
time range and template variables as parameters. These links can lead either to inter-

active Grafana graphs or snapshots.

1 |<iframe

2 src="http://ontomonHost:3000/dashboard/db/dashboard-0?

3 orgId=2&var-asset=icinga2-clientl&panelId=2&from=now-15m&to=now"
4 width="450" height="200">

5 |</iframe>

Listing 4.26: Import of Grafana panels as iframes

We decided to use these 1inks inside <iframe> elements included in the HTML code
of our Angular application. In this way we benefit from client-side rendering fea-
ture that Grafana supports, which involves rendering web content inside the browser
using JavaScript: initially, only the bare minimum HTML is transferred from the
server, while the rest of the content is dynamically loading by script elements and

dependency libraries on the client(e.g. Phantom. js).

All implementation code is available in https://github.com/gozek/Ontomon

https://github.com/gozek/Ontomon

Experimental Evaluation

In this chapter, we will describe our experience from using OntoMon in practice. Our
goal is to test the behavior of our monitoring and visualization platform in diverse
use case scenarios and draw useful conclusions regarding our design and deployment
choices. As a proof-of-concept, we generated two different inputs for OntoMon and
observed the corresponding outputs. In section 5.2 we define a testing environment
that is monitored with regard to its hardware assets, while in the section 5.3 we focus on
the software assets of a different target system. Throughout this chapter, we guide the

reader with comprehensive screenshots and analysis of the respective configurations.

5.1 Testbed Environment & Checkpoints

In order to confirm that the platform we deployed is properly operating and delivers
meaningful output to the user, we decided to deploy OntoMon in a testing environ-
ment that resembles real-world systems in both architecture and design. Ideally, we
would like to test our platform on real Data Centers, however, this was not feasible in
the scope of this thesis. Hence, the testbed we used for both test cases was the neat
and convenient 3-node VM cluster that we previously deployed as the target system
in section 4.1. In addition, we decided to use the hypervisor node as the ontomon-
Host, which accommodates the full OntoMon stack and all the core components of
our platform, including the OntoMon Server, the OntoMon Observer and OntoMon
Web Interface. Since the test cases we studied were not conflicting but complementary

to each other, we used the exact same virtual nodes to emulate two different use case

185

186 CHAPTER 5. EXPERIMENTAL EVALUATION

scenarios for our tool, in order to reduce resource utilization on the physical host. In
general, the procedure we followed in both scenarios can be summarized in the steps

below:

« We first generate a JSON-formatted Ontology that describes the target system
we are going to supervise, clearly specitying its assets and inner relations by fol-
lowing the proposed design principles. We also upload the Ontology.json and

all corresponding .svg files to the OntoMon Server.

« We then proceed to the configuration of the monitoring layer based on each
test case, acting as system integrators, so as to determine which assets of the
target system will be monitored and which performance checks will be executed.
Therefore, we configure all Icinga objects and implement the respective handler

functions inside the Observer.

« Next, we access the Web Interface of OntoMon, acting as end-users, and expect
to see a representational visualization of the target system described in the On-

tology, along with the current state of the monitored assets.

« Finally, aiming at cross-checking the alerting mechanism and the automatic up-
dates of the UI, we focus on specific assets, fake some failure or performance
degradation upon them and anticipate to observe the corresponding real-time

notifications and performance evaluation inside the UI of OntoMon.

5.2 Physical IT Infrastructure Monitoring

In this test case, our goal is to monitor and visualize the physical infrastructure in-
side a Data Center. Since modern Data Centers enclose innumerable physical assets,
we decided to restrict our attention to certain types of entities, such as: World, Data
Centers, Racks, Servers, CPUs, Disks, Memories and NICs. We grounded this deci-
sion upon the fact that the aforementioned entities are of significant importance when
measuring the performance of large-scale computer clusters. Alongside, these entities
were sufficient and diverse enough to demonstrate the monitoring and visualization
capabilities of our platform. In essence, we had to create a mapping between physical

assets and virtual equipment. Therefore, we came up with a notional description of

5.2. PHYSICAL IT INFRASTRUCTURE MONITORING 187

assets and their placement inside a Data Center, depending on documentation avail-
able on the Web. The ontological description we generated was confined, yet complete
regarding content. We defined several objects, determined their parent relations and

associated each object with an SVG file:

Ontology Tree
Root

Warld

Data Center-US

APC-Rack-1 APC-Rack-3
APC-Rack-Z
icinga2-client1 . Debian-Server-2
icinga2-master1 O icinga2-client2 Debian-Server-1
HGST-Disk-1 Corsair-Mem-1 HGST-Disk-2 Corsair-Merm-2 HGST-Disk-3 Corsair-Mem-3
Intel-CPU-1 Cisco-NetPCI-1 Inte-CPU-2 Cisco-NetPCl-2 Intel-CPU-3 Cisco-NetPCl-3

Figure 5.1: OntoMon UI: Ontology Tree of physical infrastructure

As shown in Figure 5.1, the Ontology.json file includes a single Root object, 1 Data Cen-
ter, 3 Racks, 5 Servers and multiple CPUs, Memories, Disks and NetPCls attached to
the Server assets. Every edge of the Ontology Tree denotes a parent relation between
assets. Our virtual cluster is represented in the leftmost subtree, hosted in the APC-
Rack-1 cabinet and consisting of the 3 server nodes we are targeting. Even though we
concentrated our analysis on the supervision of 3 Server assets, the scope of the pro-
posed Ontology revealed the capability of OntoMon to efficiently monitor even larger
deployments. Moving to the configuration of the monitoring layer, in order to effec-
tively measure performance and timely detect failures of server instances, we had to
collect indicative metrics that reflect how well assets are currently performing. Based
on our assumption that each server contains 4 physical assets, we configured various

respective Icinga Services to perform their instrumentation, as shown in Table 5.1.

We can confirm that the compiled time series data coming from the hardware assets are
stored in the desired format in the Influx storage backend, by querying the influx-
server from a terminal. Hence, the next step was to regulate the OntoMon Observer
to enable consumption and reasoning over the collected metrics. To achieve that, we

had to modify the core implementation of the Observer and extend its processing ca-

188 CHAPTER 5. EXPERIMENTAL EVALUATION
Physical Asset Icinga Services Metrics
check load, procs num, cpu
CPU check_procs, usage, average
cpu_stats load(1m/5m/15m)
disk usage &
capacity per
Disk check _disk, io_stats | partition, reads/s,
writes/s, tps,
iowait
memory usage &
Memory check_memory capacity, swap usage
& capacity
transmit/s &
check_traffic, receive/s per
check_http, interface,
Network check_ssh, hostalive, ssh time,
cluster_zone connection to
cluster

Table 5.1: Performance checks for physical server assets

pabilities to support hardware monitoring. At first, we adjusted the observer.py
module by adding two command line arguments: the --hosts argument determines
which hosts are going to be watched by the OntoMon Observer and the --time argu-
ment specifies the time range of the queries issued on the time-series storage back-
end. Secondly, we implemented the services_hw.py module, where we defined
various dedicated handler functions that receive and manipulate performance met-
rics associated with individual physical assets. In particular, we introduced the mem-
ory_check(), disk_check(), cpu_check() and network_check() functions
and set the corresponding OK, WARNING and CRITICAL thresholds for the scheduled
checks. Each performance value is compared to the threshold we have already defined
and the result determines the current state of the asset. As far as the visual notifi-
cations are concerned, we provided very simple instructions inside the Update.json
object, only changing the coloring of the indicator element of the respective SVG.
For debugging purposes, we also configured the Observer to output monitoring re-
sults per service in the terminal. Furthermore, by measuring the system resources uti-
lized by OntoMon Observer during runtime, we ascertained that we implemented a
low-overhead daemon that efficiently serves the intended purpose. Indicatively, using

native Linux tools we measured 0.25% of CPU and 8.7MB of RAM.

5.2. PHYSICAL IT INFRASTRUCTURE MONITORING 189

192 I N S B \S]

11
12
13

python observer hw.py --hosts icinga2-masterl --time 10
Getting Ontology from OntoMon Server...
Successfully received JSON Ontology
OntoMon Server is up + running
Trying Influx Server...

Influx Server is up + running!
[2017-05-21 17:23:59]

[CPU-status]: OK

[CPU-used]: 14.7%

[CPU-idle]: 85.3%

[CPU-1owait]: 11.8%

[CPU-1load average(im)]: 1.03

[CPU-1load average(5m)]: 1.07

[CPU-load average(15m)]: 0.63
[Description]: No issues were detected.

[object5]: State was updated.
[2017-05-21 17:24:08]
[MEMORY-status]: OK
[MEMORY-total]: 992.23 MB
[MEMORY-used]: 320.35 MB (32.29%)

[MEMORY-swap]: 0.0/1021.0 MB (0.0%)
[Description]: No issues were detected.

[object5]: State was updated.
[2017-05-21 17:24:15]
[DISK-status]: OK
[DISK-total]l: 8942.0 MB
[DISK-free]: 3222.0 MB (36.03%)
[DISK-used]: 5720.0 MB (63.97%)
[DISK-read]: @ KB/s
[DISK-write]: 104.52 KB/s
[DISK-tps]: 10.55
[DISK-iowait]: 11.06%
[Description]: No issues were detected.

[object5]: State was updated.
[2017-05-21 17:23:41]
[NETWORK-status]: OK
[NETWORK-ping packets lost]: 0
[NETWORK-ping rtal: 0.064ms
[NETWORK-ssh time]: 10.656ms

Figure 5.2: OntoMon Observer: monitoring hardware assets of single host

$ curl -G 'http://ontomonHost:8086/query?pretty=true’ \
\ --data-urlencode "db=icinga2" --data-urlencode "q=SHOW MEASUREMENTS"
{ T"results": [{
"series": [{
"name": "measurements",
"columns": ["name"],
"values": [
["cluster-zone"], ["cpu_stats"], ["disk"],["hostalive"],
["http"], ["io_stats"], ["load"], ["memory"], ["pingd"],
["network_traffic"], ["procs"],["ssh"],["swap"]]
}]
}]

Listing 5.1: Influx server JSON response

190 CHAPTER 5. EXPERIMENTAL EVALUATION

Subsequently, we accessed the User Interface of OntoMon. Our first objective was to
verify that the optical representation of the Data Center inside the web application cor-
responds to the ontological description we provided to OntoMon. More specifically,
we navigated to the assetview/APC-Rack-1 page, where all 3 server assets should
be visible. Indeed, the SVGs associated with the 3 servers we supervise are clearly de-
picted inside the rack SVG, placed in different rows. This also expected, as we correlated
each row of the rack with a single slot in its SVG. Server SVGs additionally enclose
the CPU, Memory, Disk and NetPCI SVGs that we previously defined. Notably, each
physical asset is scaled and translated to occupy exactly one slot of its parent asset,
indicating that the relative transformations we performed were accurate. Our second
objective was to observe the presentation layer of the Web Interface, select a specific
server and observe its behavior through concentrated tables and reactive graphs. From
our point of view, the representation of performance time series data is both insight-
ful and qualitative, helping the end-user attain a deeper and clearer perception of its
current performance. To this end, we regard the integration of Grafana as the graph

composer of our Web UT successful.

if OntoTree @ Overview [DataCenter &= Rack) Server & Disk @& Processor == Memory T NetPCl [B Cooler JB Events

APCRack m Data Center-US> | APC-Rack-1
Q Primary Info

APC-Rack-1
fcing 1

icingaz-master] icinga2zelient! Brand Description Model

ype
APC RackAsset AR4038A Wall Mount Cabinet

Secondary Info

Dimensions(H/W/D) ~ Units ~ Weight_Ibs
77295445 38U 439

Current State

Status Last Updated Reserved Siots
o]

Show Metrics

Metrics Visualization
© None O Basic O Detailed

Refresh Graphs

© ontoMon - 2017 Github @

Figure 5.3: OntoMon UI: visualization of nested hardware assets

5.2. PHYSICAL IT INFRASTRUCTURE MONITORING 191

% OntoTree Overview)ataCenter &= Rack Serve isi @ Processol 5 NetPCl Cooler B Event

(1] e

. Performance Metrics:icinga2-master1 2017-05-21 19:23:43

Value
_
disk_free 35.69%

disk_total 8942.0%
disk_used 5751.0(MB)
io_wait 21.61%
mem_swap_total 1021.0MB
mem_swap_used 0.0MB
mem_swap_used_% 0.0%

mem_total 992.23MB

mem_used 375.61MB

mem_used_% 37.86%

packets_lost 0%

reads 0(KB/s)

Figure 5.4: OntoMon UI: performance metrics in table

Figure 5.5: OntoMon UL: graphical representation of performance metrics

Last but not least, we needed to certify that the alerting mechanism is working as ex-
pected. Thus, we decided to simulate a real-world environment, where underperfor-
mance of software services or failures of physical devices are routine. We decided to
impose heavy workload regarding CPU, memory and disk on one of the 3 virtual ma-
chines we are supervising, by using the native stress(1) Unix tool. As its name suggests,
this is a lightweight tool that imposes certain types of computational stress upon Unix-
like systems. Thereafter, we connected to the icinga2-masterl host via ssh and ex-
ecuted the following commands as root. Our objective was to make the monitored

target system operate under abnormal circumstances.

https://linux.die.net/man/1/stress

192 CHAPTER 5. EXPERIMENTAL EVALUATION

1 |# spawn 8 workers spinning on sqroot() for 45 seconds

stress --quiet --cpu 8 --timeout 45

I O I (S}

spawn 8 workers spinning on malloc()/free() for 45 seconds

Ul

stress --quiet --vm 8 --vm-bytes 256M --timeout 45

NN

spawn 4 workers spinning on sync() and 4 workers on

write()/unlink() for 45 seconds

8 |stress --quiet --io 4 --hdd 4 --hdd-bytes 1G --timeout 45

Listing 5.2: Command to stress hardware assets

Since resource utilization, data traffic and latency times dramatically increase in both
stress tests, we expect that current performance statistics collected from the server ex-
ceed the pre-defined threshold values that determine the state(WARNING, CRITICAL)
of the icinga2-masterl asset. Accordingly, we wait for corresponding real-time
alerts in the User Interface of OntoMon, indicating that performance issues that have
just occurred. We also anticipate that after the timeout of the stress test expires, the
state of the icinga2-masterl server asset will revert back to OK. As shown in the
screenshots below, the UI we implemented successfully delivers the requisite notifica-
tions, facilitating the identification of performance bottlenecks of the monitored asset.
Each notification is colored based on the current status of each asset, while the indi-
cator element of the respective SVG gets automatically updated. Thus, administrators
are timely informed about performance degradation of physical components and ef-
fectively guided on how to examine the related metrics, aiming at resolving the prob-
lem as soon as possible. Undeniably, this mechanism leads to reduced management
times and deeper understanding of the underlying system that is under supervision.

Finally, Figure 5.6 and Figure 5.7 demonstrate the performance lifecycle of the server

and verify that the Web UI of OntoMon is fully functional according to our design

specifications.

5.2. PHYSICAL IT INFRASTRUCTURE MONITORING 193

= Memory

{cingazmastert [orid> | Data Center-us » | APC-Rackc1 > o
! Prit

==
i Description Brand Serles Model
Intel-GPU-1 \ C‘ﬂbgtml'l Serverasset IBM BladeCenter S 88861TU

Secondary Info

Color Chassis_type Form_factor Dimensions(H/W/D)
Black Rackmount 7u 28.9,17.512

icinga2-master! @

0s
Ubuntu16.04.2

Current State

Status Last Updated Reserved Slots
WARNING. 2017-05-22 01:07:08 4/4

Show Metrics

Metrics Visualization

O None O Basic O Detailed

°° o Refresh Graphs

© ontoMon - 2017 Github @

Figure 5.6: OntoMon UI: notification of WARNING state

NetPCl

icinga2-master1
State: Critical Check
cpu_load] cpu_used

0
lcingaz-mastert DataCenter-US> | APC-Rack-1> | icinga2-masterl

= —
— o Description Brand Series Model
HGS'B!SK"‘ \ME.O U1 O C\S(’:Dgﬂ’ﬂlJ Server asset IBM BladeCenter S 88861TU

Secondary Info

Color Chassis_type Form_factor Dimensions(H/W/D)
icinga2-master1 Black Rackmount U 28.9,17.512

0s
Ubuntu 16.04.2

Current State

Status Last Updated Reserved Slots
M 201705220110:34

show Metrics

Metrics Visualization

O None O Basic O Detailed

°e° Refresh Graphs

© ontoMon - 2017 Github @

Figure 5.7: OntoMon UL notification of CRITICAL state

194 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3 Software Defined Storage Monitoring

In order to reason about the correctness of our solution and verify that OntoMon
is actually content agnostic, we decided to study a different use case, focusing on a
software-defined target system. The main reason behind this choice was to showcase
the versatility of our tool and prove that it is capable of extending monitoring on soft-
ware clusters as well. At the same time, we would draw useful conclusions regarding
the breadth of the target systems that our platform supports. Therefore, in this test
case, we decided to test OntoMon upon a Ceph Cluster, that provides scalable and
distributed object storage. This scenario can be regarded as a variation of the pre-
vious one, with the key difference that we now target software - and not physical -
assets inside a Data Center. Of course, a Ceph Cluster requires disparate supervision
and management compared to the physical infrastructure we monitored in the first
test case. However, we followed analogous steps in order to observe and administrate
the software-defined target system. As already stated in section 2.3, a Ceph Cluster
comprises of multiple software components and daemons. For our testing purposes,
it was sufficient to deploy a minimal 3-node Ceph Storage Cluster with 1 Monitor and
2 OSDs. As expected, we installed Ceph (Jewel v10.2.0) on the aforementioned 3-VM
testbed environment, where all nodes can communicate with each other inside their
private network. To accelerate the deployment process, we used the ceph-deploy
tool of Ceph, since our needs did not call for any complex or detailed manual con-
figuration. We executed ceph-deploy on the hypervisor node and granted current
user with root privileges on the cluster nodes, in order to allow installation of ceph
packages via ssh. Furthermore, since our Ceph cluster encloses only 2 Object Stor-
age Daemons, we had to set its replication factor equal to 2, so that the Ceph Cluster
could reach an active+clean health state in this topology.

Bearing in mind that different target systems are represented by different Ontologies,
we had to generate an Ontology.json file that would accurately describe the hierarchy
of entities inside the Ceph Cluster. The hypothesis upon which we rely our analysis is
that the deployed Ceph Cluster “lives” inside a notional Data Center, that is capable
of hosting multiple clusters. The key differentiation from the previous scenario lies
in the type of assets that are enclosed in the Data Center, as we now ignore physical

equipment and concentrate on ceph-related assets instead. Accordingly, the following

http://docs.ceph.com/docs/master/man/8/ceph-deploy/

5.3. SOFTWARE DEFINED STORAGE MONITORING 195

entities are introduced: World, Data Centers, Clusters, Nodes, Ceph-Monitors and
Ceph-OSDs. Besides, we associated each of the aforementioned entities with separate
. svg files, aiming at a more intuitive visualization inside the UI. The respective onto-
logical description is shown in Figure 5.8. It is important to point out that we could
have tested OntoMon on any multi-node software platform, and not only on a Ceph

Cluster.

Ontology Tree
Root

World

DataCenter-Us

Ceph-Cluster-1

Q

) icinga2-client1 "~ .
cingaZ-master] icinga2-client2

Q

Ceph-0SD-4 Ceph-0SD-3

O O

Ceph-MON-0

Figure 5.8: OntoMon UI: Ontology Tree of software-defined cluster

Our next concern was to regulate the monitoring environment in order to observe
and thoroughly examine how the Ceph Cluster behaves. Admittedly, determining the
correct metrics to monitor inside a Ceph Cluster is rather difficult even for experts
in the context of today’s complex and dynamic computer systems. Still, we had to
make some assumptions and choose which metrics are necessary to monitor, while
setting the right values of the thresholds for different scenarios. Subsequently, we im-
plemented dedicated monitoring services to collect real-time performance data and
perform calculations. During this process, we utilized the native CLI tools of Ceph
that efficiently summarize the current status of the cluster and indicate possible issues.
In particular, we combined multiple check commands and implemented combinato-
rial services. When operating in high-scale, it is important to provide administrators

with an instant cluster-wide overview that outlines the general performance, rather

http://docs.ceph.com/docs/jewel/rados/operations/control/

196 CHAPTER 5. EXPERIMENTAL EVALUATION

than focusing on individual nodes of the cluster. Based on this principle, we initially

concentrated on global metrics, such as:

o Cluster health: shows current overall health of the Ceph Cluster. If its value
is other than HEALTH_OK, then the cluster is probably facing some issues.

« Total & used capacity: the storage availability of the Ceph Cluster. Near-

full clusters are more likely to underperform.

« Throughput: how many operations are performed per second by the Ceph

Cluster

« Latency: the average time interval between stimulation and response required
by the OSDs to either apply(flush to disk) or commit(append to journal) an op-

eration.

However, effective supervision of a Ceph Cluster also involves awareness of its ba-
sic building blocks, meaning the status of Monitors, OSDs, MDSs, Pools, Placement
groups, etc. Therefore, we introduced additional coarse-grained check services that

report critical asset-specific information and statistics:

« UP, DOWN OSDs & Monitors: availability of hosts running either OSD or Mon-

itor daemons

« IN, OUT OSDs & Monitors: presence of specific OSD or Monitor inside the
Ceph Cluster

« Total and per pool objects: the total objects stored in the cluster, along
with their allocation in pools. Keeping the Ceph Cluster balanced in terms of

storage load can lead to higher performance.

o Throughput & IOPS per pool: pool specific statistics that depict reads and

writes in both bytes and operations per second.

« State of Placement groups: indicates how many placement groups are cur-

rently active, degraded, stale,undersized,unclean etc.

« Total number of PGs: this is a crucial value for every Ceph Cluster, greatly

influencing performance.

5.3. SOFTWARE DEFINED STORAGE MONITORING 197

Software Asset Icinga Services Metrics

daemon_-
state,monmap_-
epoch, mon_-
total,quorum_-
in,quorum_out

check_ceph_daemon,

Monitor check_ceph_mon

daemon_state,read_-
bytes sec,write -
check_ceph_daemon, bytes sec,in_-
check_ceph_osd osd,out_osd,up_-
osd,down_osd, apply_-
lat,commit_lat

OSD

health_-
status,epoch,num_-
PES,PE_-
states,objects per -
pool,total -
GB,total_used_-
GB,raw_used_pct

check_ceph_health,

Cluster check_ceph_df

Table 5.2: Performance checks for software assets

Again, acting as system integrators, we extended the implementation of the OntoMon
Observer and adjusted the respective Python modules to serve the monitoring needs
of the current software-defined target system. Firstly, we modified the observer.py
module and added three command line arguments, --mons, --osds and --time, in
order to specify the FQDNs of the respective Ceph cluster hosts and the time window for
the retrieval of the performance metrics. Alongside, we implemented a services_-
sw.py module based on the default services.py one, which encloses all respec-
tive handler functions for digesting time-series data and performing threshold checks.
When these functions are ultimately called with the needed parameters, they perform
time-series data processing, proceed to pre-defined threshold-based comparations and
conclude on the current status of each monitored software asset. At the same time, we
configured them to dynamically construct the Update.json object that holds the most

recent metrics, state and notification guidelines and dispatch it to the OntoMon Server.

198 CHAPTER 5. EXPERIMENTAL EVALUATION

[object4]: State was updated.
[2017-05-23 03:43:54] ic

[Ceph-Daemon]: OK

[Daemon running]: 1

[Description]: No issues were detected.

[object4]: State was updated
[2017-05-23 03:44:37] ici

[Ceph df]: OK

[Used Capacity]: 3.73%

[Total Objects]: 20

[Used/Total]: 0.22/5.98GB
[Description]: No issues were detected.

15
[2017-05-23 03:44:30] 1ici
[Ceph-Health]:
[Cluster Health]: HEALTH OK
[Epoch]: 144
[Active/Total PGs]: 192/192
[Stuck Unclean/Total PGs]: 192/192
[Stuck Peering/Total PGs]: 0/192
[Description]: Check ceph_health_pg_clean

[object4]: State was update

[2017-05-23 03:43:54] ic

[Ceph-MON]: OK

[Monitors in quorum]: 1/1

[Monmap Epoch]: 1

[Description]: No issues were detected.

[object4] tate was update

[2017-05-23 03:44:37] icir

[Ceph-0SD]: WARNING

[0SDs UP]: 1/2

[Num_pools]: 3

[0SD apply latency]: 127ms

[0SD commit latency]: 121ms

[Description]: Check ceph_osd up ceph_osd_apply_latceph_osd_commit_lat

Figure 5.9: OntoMon Observer: monitoring software assets

The next part of the evaluation process involves interaction with the Web UI of On-
toMon. Initially, we can confirm that our visualization engine is, indeed, content-
agnostic, as the exact same implementation delivers diverse optical results regarding
objects defined in the Ontology. Meanwhile, it proves the capacity of our platform
to integrate into various systems without any special adaptations or adjustments. As
shown in Figure 5.10, our User Interface illustrates software-defined assets, providing
a holistic overview of the monitored Ceph Cluster and its enclosed nodes. Navigating
to the /assetview/Ceph-Cluster-1 page of the web application allows administra-
tors to gain insight into the current state of the cluster by observing a comprehensible
real-time dashboard. In order to test the responsiveness of the Ceph dashboard we
developed, we executed the most frequent operations that users and services perform
upon a Ceph Cluster: read and write of data. As already mentioned, every trans-
action with regard to the Ceph Cluster is internally handled as an object operation in

RADOS. Hence, we decided to use the native bench utility of rados to perform re-

http://docs.ceph.com/docs/master/man/8/rados

5.3. SOFTWARE DEFINED STORAGE MONITORING 199

spective benchmark operations. In Figure 5.11 it is obvious that our dashboard is op-
erating as expected, updating the performance graphs of Throughput and Latency

on-the-fly, as fresh metrics arrive from the monitoring layer.

i OntoTree @

Ontology Tree

Ceph-Cluster-1 .
Primary Info

N
- ~

Description Platform Version

7“""'1'5&@32-(:“&"& Distributed Object Storage Cluster Ceph Jewelv100.2
5

{cinga-mater] feinga.clintl

icinga2-master{ icinga?-clien Replication_factor
2

Ceph-MON-O (Ceph-05D-4

CephDSD-4 Secondary Info

Ceph-MON-0 Ceph-0SD-3

Num_nodes Num_mons Num_osds ~ Num_mds
3 1 2 0

icinga2-client2 Current State

Ceph-08D-3 Stalus LastUpdated Reserved Slots
N/A 34

Show Metrics

Metrics Visualization

O wone O Basic O Detalled

°°° Refresh Graphs

(© ontoMon - 2017 Github @

Figure 5.10: OntoMon UL visualization of nested software assets

1 |# Write fixed size object to pool 'foo' for 60 sec

rados bench -p foo 60 write

Sequentially read objects from pool 'foo' for 30 sec

[2 B OS S

rados bench -p foo 30 sec

Listing 5.3: Benchmarking RADOS

Finally, we had to verify whether the anomaly detection mechanism of our platform
is functional for software assets, as well. Since malfunction of storage daemons is a
common phenomenon in distributed storage clusters and large-scale deployments, we
decided to reproduce an OSD failure. Thus, we connected to the icinga2-client2
OSD node via SSH and manually stopped the respective 1 ceph osd service for a

short period of time by running the following Ceph administration command:

200 CHAPTER 5. EXPERIMENTAL EVALUATION

% OntoTree @ Overvie w @b DataCentre [Cluster 4 Node i3 Monitor EZ0sD P Ew

©o0ntoMon-2017 Github @

Figure 5.11: OntoMon UI: RADOS throughput and latency graphs

1 |osd@icingaClientl:~$ systemctl stop ceph-osd@4.service

Listing 5.4: Command to bring down OSD daemon

Since we have deployed only 2 OSDs and ask for duplicate replicas of all objects across
the nodes of the cluster, the awaited results involve a push notification in the Web UI of
our platform, indicating that the Ceph Cluster is no longer in HEALTH_OK state. Ceph
will try to rebalance and self-heal, but its state will remain unclean and all P1lacement
groups will be stuck degraded. As soon as we restore the ceph osd service inside
the icinga2-client2 node and the needed relocations take place, the Ceph Cluster
will recover and achieve an active+clean health state. The testing procedure ana-
lyzed above is evidently presented in the screenshots provided below. In Figure 5.12
we observe as end-users that the current state of our Ceph cluster is HEALTH_ERR, since
atleast 1 OSD daemon is down. Meanwhile, in Figure 5.13, we observe the push noti-
fications delivered by OntoMon’s mechanism regarding the degradation and recovery

of the Ceph cluster.

5.3. SOFTWARE DEFINED STORAGE MONITORING 201

o OntoTree @ Overview & DataCentre i Events

Cluster Status

0SDs UP 05Ds DOWN

Figure 5.12: OntoMon UI: Ceph dashboard indicating Cluster error

i OntoTree @ Overview &B DataCentre [it} Cluster

Ceph-Cluster-1 @
Primary Info

ceph_health_status
Ceph-Cluster-1 Description Platform Version Replicaf
Distributed Storage Cluster Ceph Jewelv10.0.2

Q O User

ode i Monitor 0sD B Events

icingaZ-masteri icingaZ-clent!

Secondary Info
CephMON-D Czpn.0SD4

Num_nodes Num_mons Num_osds Num_mds
2 0

Current State

icinga2-client2

Status Last Updated Reserved Slots
Ceph.0SD3 @ wresazieeis 4

Metrics Visualization

O Nene O Basic @ Detailed

000

(© ontoMon- 2017 Github @

Figure 5.13: OntoMon UL: notifying successful recovery of Cluster

202

Conclusion

In this chapter we provide a short synopsis of our work, reviewing some focal points of
the development process. Next, we list some future extensions and additional features
that could make OntoMon even more powerful and robust, once implemented and

integrated into our platform.

6.1 Concluding Remarks

The goal of this thesis was to study current DCIM solutions and familiarize with the
concepts of monitoring and visualization in large-scale computer systems. In the chal-
lenging times of excessive data growth, we consider real-time system instrumentation
and performance analysis as a must-have service for every IT-related platform. The
initiative for our work was the lack of advanced open-source DCIM tools that can ef-
fectively supervise and manage both software- and hardware-defined systems. Thus,

we decided to develop our own monitoring and visualization tool, named OntoMon.

The core feature of OntoMon lies in the fact that it requires a standard-formatted On-
tology as input, describing the target system that is going to be monitored. The reason
behind this foundation is to broaden the range of supported platforms and grant versa-
tility. Besides, OntoMon is a multi-layered tool that combines various scalable open-
source technologies to build a solid and well-rounded stack. Specifically, we employed
Icinga as the collector agent, InfluxDB as the time series storage backend, Grafana as
the graph composer and Angular to develop a dynamic content-agnostic Web User In-

terface. To accomplish our goals of proactive monitoring, as well as real-time alerting,

203

204 CHAPTER 6. CONCLUSION

we also introduced several middleware components that facilitate cross-layer commu-

nications and implement inner APIs.

The main candidate target systems for our platform are large scale, multi-node, dis-
tributed environments. By using OntoMon, administrators can observe both physical
and software infrastructure of Data Centers, directly isolate specific assets and detect
performance bottlenecks or abnormalities in running services. Visualization of assets
offers an instant and holistic overview of the current deployment, while observation
of real-time graphs can lead to pattern discovery and deeper understanding of system
behavior. Meanwhile, thanks to our custom alerting protocol, the OntoMon WebUI
interacts with the OntoMon Server and timely delivers push notifications regarding
the current state of the target system or any recent events of interest. The core logic of

the alerting mechanism is implemented in a Python daemon, the OntoMon Observer.

As a proof of concept for our platform, we studied two different target systems that
were described in respective Ontologies. In the first use case, we used OntoMon to
monitor the status and performance of hardware assets enclosed inside a notional Data
Center, whose structure and topology closely resemble a real-world one. Conversely,
in the second use case we decided to monitor a software-defined storage platform and,
thus, deployed a simple, yet functional, 3-node Ceph Cluster. In both scenarios we ob-
served satisfactory results in terms of real-time monitoring, visualization and alerting
of the respective target systems. In particular, OntoMon efficiently reacted to every
stimulation we provided, delivering meaningful insight into the state of both target
systems in real time. Thereafter, the proposed design and implementation can be con-
sidered successful, as our platform had the expected behavior. Even though the ob-
jective of this thesis was not the implementation of a production-ready monitoring
and visualization platform, we argue that the core logic and principles proposed in
our framework certainly provide a sound basis for the development of versatile and

well-rounded IT infrastructure monitoring solutions in the future.

6.2 Future Work

Even though OntoMon supports a wide variety of features in both visualization and

monitoring layers, several enhancements regarding its current capabilities could be

6.2. FUTURE WORK 205

discussed, as well as additional. In addition, aiming at constantly improving the quality

of services, we demonstrate our future plans for OntoMon:

« Stricter Ontology definition and validation: we could introduce a more de-
tailed schema for the ontological description of the target system, in the sense
that the currently employed schema imposes very few restrictions and rules.
Since we introduced JSON-formatted Ontologies, we could leverage this issue by
using the promising JSON Schema *, a vocabulary that describes existing data
format with annotations and performs complete structural validation of JSON
documents. This schema is also capable of extending already defined schemas
available on the Web, while it would also simplify the verification of syntax and

the incorporation of metadata.

+ Add multiple storage backends: instead of only supporting InfluxDB as the
storage backend for the time-series monitoring data, we could also integrate
storage platforms, such as TSTB, Prometheus and Elasticsearch, in the middle
layer and let the end-user select the one he prefers. Of course, this implies the
parallel extension of the OntoMon Observer component and the implementa-

tion of respective handler functions.

+ Extend monitoring capabilities: although OntoMon already covers the most
crucial checks regarding supervised assets, we could perform low-level, special-
ized checks and maybe correlate software- and hardware-based instrumentation
to extract useful information about the performance and the inter-dependencies

of the target system.

» Implementation of Action Chain: currently OntoMon offers monitoring and
visualization of Data Center assets, along with an alerting mechanism that in-
forms administrators when issues or state updates occur. We could extend the
functionality of OntoMon to actively provision the behavior of the target system,
by training it with artificial intelligence techniques that would trigger predefined
system administration actions. This could lead to a fully-automated manage-
ment of the underlying system, of course under human supervision and coor-

dination. For example, when a disk suffers from slow response times and high

'http://json-schema.org/

http://json-schema.org/

206

CHAPTER 6. CONCLUSION

temperature, OntoMon could automatically unmount it from the filesystem, so
that it can be examined or replaced. Similarly, in case of network failure or ex-
piry of request timeouts, a reboot of a server or router could be automatically

triggered to resolve the issue.

Security: for the scope of this thesis, security of communications and encryp-
tion of transferred data were low priorities in our design. However, in order to
secure sensitive performance metrics against interceptions or interference from
third-parties, respective services should be implemented to guarantee integrity.
In addition, we plan to introduce a strong authentication system inside the On-

toMon Web Interface, so that only verified users are granted access rights.

Enhanced log manipulation: a key feature of modern platforms is the efficient
handling of large and complex log files. Bearing in mind that OntoMon supports
a wide variety of software-defined target systems, we could integrate a manage-
ment tool like Logstash ? in order to formalize and digest logs in a streaming
fashion. Logstash can pull logs from various sources(e.g. web applications,
data stores, etc.) and supports aggregation, parsing and transformation opera-
tions upon any type of log data. It is also compatible with Grafana, the graph

composer we already have employed.

2https://www.elastic.co/products/logstash

https://www.elastic.co/products/logstash

1]

2]

Bibliography

OpenDCIM project
http://www.opendcim.org/

Racktables project
https://github.com/RackTables/racktables/

Netbox project
https://github.com/digitalocean/netbox/

Tendrl project
https://github.com/Tendrl/

Thomas R.Gruber: Toward Principles for the Design of Ontologies Used for Knowl-
edge Sharing Stanford Knowledge Systems Laboratory, Palo Alto, CA 94304, 1993
https://dl.acm.org/citation.cfm?id=219701

Ling Liu and M. Tamer Ozsu: Encyclopedia of Database Systems Springer Pub-
lishing Company, 2009
https://www.springer.com/us/book/9780387355443

Ontologies in Information Science

https://en.wikipedia.org/wiki/Ontology (information science)

World Wide Web Consortium-The Semantic Web Semantic Web

https://www.w3.0org/standards/semanticweb/

207

http://www.opendcim.org/
https://github.com/RackTables/racktables/
https://github.com/digitalocean/netbox/
https://github.com/Tendrl/
https://dl.acm.org/citation.cfm?id=219701
https://www.springer.com/us/book/9780387355443
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://www.w3.org/standards/semanticweb/

208 BIBLIOGRAPHY

[9] B. Chandrasekaran, John R. Josephson, V. Richard Benjamins: What Are On-
tologies, and Why Do We Need Them? 1EEE Educational Activities Department,
Ohio State University, 1999
http://dx.doi.org/10.1109/5254.747902

[10] Ben Liu, Hejie Chen, Wei He: Deriving User Interface from Ontologies: A
Model-based Approach Department of Computer Science, Beijing Institute of
Printing, China, 2005
http://ieeexplore.ieee.org/abstract/document/1562946/

?’reload=true

[11] Kleshchev Alexander, Gribova Valeriya: From an ontology-oriented approach
conception to User Interface development International Journal “Information
Theories & Applications”, Vol.10, 2007

https://www.semanticscholar.org/paper/

From-an-0Ontology-oriented-Approach-Conception-to-U-Alexander-Valeriya/

36d00Palleefa2816f6fe6180d1ad6cb88689ddO

[12] Paulheim, Heiko: Ontology-based Modularization of User Interfaces SAP Re-
search CEC Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany, 2009
http://doi.acm.org/10.1145/1570433.1570439

[13] April Adams, David]. Cappuccio, Jay E. Pultz, Neha Kumar, Tiny Haynes:
Critical Capabilities for Data Center Infrastructure Management Tools, 2014
https://www.gartner.com/doc/3240917/

critical-capabilities-data-center-infrastructure

[14] Data Center Infrastructure Management

https://en.wikipedia.org/wiki/Data center infrastructure

management

[15] L.A.Barroso,].Clidaras, U.Hoélzle: The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines Morgan & Claypool Publishers, 2013
Editor: Mark D. Hill, University of Wisconsin, Madison
http://dx.doi.org/10.2200/S00516ED2VO1Y201306CACO24

http://dx.doi.org/10.1109/5254.747902
http://ieeexplore.ieee.org/abstract/document/1562946/?reload=true
http://ieeexplore.ieee.org/abstract/document/1562946/?reload=true
https://www.semanticscholar.org/paper/From-an-Ontology-oriented-Approach-Conception-to-U-Alexander-Valeriya/36d000a11eefa2816f6fe6180d1ad6cb88689dd0
https://www.semanticscholar.org/paper/From-an-Ontology-oriented-Approach-Conception-to-U-Alexander-Valeriya/36d000a11eefa2816f6fe6180d1ad6cb88689dd0
https://www.semanticscholar.org/paper/From-an-Ontology-oriented-Approach-Conception-to-U-Alexander-Valeriya/36d000a11eefa2816f6fe6180d1ad6cb88689dd0
http://doi.acm.org/10.1145/1570433.1570439
https://www.gartner.com/doc/3240917/critical-capabilities-data-center-infrastructure
https://www.gartner.com/doc/3240917/critical-capabilities-data-center-infrastructure
https://en.wikipedia.org/wiki/Data_center_infrastructure_management
https://en.wikipedia.org/wiki/Data_center_infrastructure_management
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

BIBLIOGRAPHY 209

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

J.Moore, J.Chase, K.Farkas, PRanganathan: Data Center Workload Monitoring,
Analysis, and Emulation Eighth Workshop on Computer Architecture Evalua-
tion using Commercial Workloads, 2005
https://pdfs.semanticscholar.org/bda2/
0125ce93bbf{dc752894313194139b9c93d7.pdf

A. Memari, J.Vornberger,].M.Gémez, W.Nebel: A Data Center Simulation
Framework Based on an Ontological Foundation Proceedings of the 28th Envi-
rolnfo Conference, Oldenburg, Germany, 2014 Springer International Publish-
ing, 2016

http://dx.doi.org/10.1007/978-3-319-23455-7_3

Icinga project

https://www.icinga.com/

Nagios project
https://www.nagios.org/

Weil, Sage A. and Brandt, Scott A. and Miller, Ethan L. and Long, Darrell D. E.
and Maltzahn, Carlos Ceph: A Scalable, High-performance Distributed File System
Berkeley, CA, USA, 2006
http://dl.acm.org/citation.cfm?id=1298455.1298485

Ceph Distributed Data Store
http://ceph.com/

Weil, Sage A. and Leung, Andrew W. and Brandt, Scott A. and Maltzahn, Carlos
RADOS: A Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters
Storage Systems Research Center, University of California, Santa Cruz, 2007

http://doi.acm.org/10.1145/1374596.1374606

S.Weil, S.Brandt, E.Miller, C.Maltzahn CRUSH: Controlled, Scalable, Decentral-
ized Placement of Replicated Data Storage Systems Research Center, University
of California, Santa Cruz, 2006
http://doi.acm.org/10.1145/1188455.1188582

https://pdfs.semanticscholar.org/bda2/0125ce93bbffdc752894313194139b9c93d7.pdf
https://pdfs.semanticscholar.org/bda2/0125ce93bbffdc752894313194139b9c93d7.pdf
http://dx.doi.org/10.1007/978-3-319-23455-7_3
https://www.icinga.com/
https://www.nagios.org/
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://ceph.com/
http://doi.acm.org/10.1145/1374596.1374606
http://doi.acm.org/10.1145/1188455.1188582

210 BIBLIOGRAPHY

[24] Roberto De Prisco, Butler Lampson, Nancy Lynch Revisiting the paxos algorithm
Theoretical Computer Science, Volume 243, Issues 1-2, 2000
https://doi.org/10.1016/S0304-3975(00)00042-6

[25] Ceph official docs-Architecture

http://docs.ceph.com/docs/master/architecture/

[26] Scalable Vector Graphics(SVG) 1.1 Web Standard
https://www.w3.0rg/TR/SVG/

[27] Angular web application framework

https://angular.io/

[28] W3C standards-Web Components
https://www.w3.org/standards/techs/components#w3c all

[29] Express.js project
https://expressjs.com/en/4x/api.html

https://doi.org/10.1016/S0304-3975(00)00042-6
http://docs.ceph.com/docs/master/architecture/
https://www.w3.org/TR/SVG/
https://angular.io/
https://www.w3.org/standards/techs/components#w3c_all
https://expressjs.com/en/4x/api.html

	Περίληψη
	Λέξεις-Κλειδιά
	Abstract
	Keywords
	Preface
	List of figures
	List of tables
	DCIM Πλατφόρμα Βασισμένη σε Οντολογίες, με Προγραμματιστικό Έλεγχο
	Εισαγωγή
	Σκοπός
	Διατύπωση Προβλήματος-Κίνητρο
	Υπάρχουσες Λύσεις & Εναλλακτική Προσέγγιση
	Εφαρμογή-Έλεγχος

	Σχεδίαση
	Σκεπτικό Σχεδίασης
	Διαχωρισμός Ρόλων
	Αρχιτεκτονική
	Βασικό Στρώμα
	Μεσαίο Στρώμα
	Υψηλό Στρώμα

	Υλοποίηση
	Πειραματική Διάταξη
	Προσδιορισμός Σχήματος Οντολογίας
	Υλοποίηση του OntoMon Εξυπηρετητή
	Συλλογή Μετρικών Απόδοσης με το Icinga
	Αποθήκευση Χρονοσειρών με την InfluxDB
	Παρακολουθητής του OntoMon
	Ανάπτυξη της Διεπαφής Χρήστη
	Σύνθεση Γραφημάτων με Grafana

	Πειραματική Αξιολόγηση
	Βήματα Ενσωμάτωσης και Ελέγχου
	Παρακολούθηση Φυσικής ΙΤ Υποδομής
	Παρακολούθηση Πλατφόρμας επιπέδου Λογισμικού

	Συζήτηση-Συμπεράσματα

	Introduction
	Problem Statement
	Motivation
	Existing Solutions
	Results
	Thesis Structure

	Background
	Ontologies
	Definition
	Types
	Core Components
	The Semantic Web
	Why use an Ontology?
	Ontology-based Software Systems
	Representation

	System Monitoring
	Overview
	Features of Monitoring Solutions
	Monitoring and DCIM
	Monitoring Perspectives
	Icinga Distributed Monitoring
	About the Icinga Project
	Icinga Cluster Architecture
	Configuration Design
	Distributed Design

	Distributed Data Storage
	The current picture
	Distributed Storage Definition
	Ceph Distributed Data Store
	What is Ceph?
	Architectural Components
	Data Placement
	CRUSH Algorithm Overview

	Monitoring a Ceph Cluster

	Scalable Vector Graphics
	About SVG
	Overview
	Fundamental Features
	Vector vs Raster
	Why use SVG?

	Web Application Frameworks
	Overview
	Web Application Architectures
	MVC Architecture
	CB Architecture
	SPA vs MPA

	Angular
	About
	Core Concepts
	Why Angular?

	Architecture & Design
	Design Rationale
	Distinction of Roles
	Architectural Overview
	The Base Layer
	The Middle Layer
	The Upper Layer

	Implementation
	Experimental Target System
	Ontological Schema Definition
	Development of the OntoMon Server
	Metrics Collection with Icinga
	Metrics Storage with InfluxDB
	Development of the OntoMon Observer
	Development of the OntoMon User Interface
	Graph Composition with Grafana

	Experimental Evaluation
	Testbed Environment & Checkpoints
	Physical IT Infrastructure Monitoring
	Software Defined Storage Monitoring

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

