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Abstract

One of the most essential biological signals for the diagnosis of the heart is the Elec-
trocardiogram (ECG). The need of constant monitoring and on-time heart condition as-
sessment have imposed new requirements for acceleration and power consumption of ECG
Analysis Flow. Due to complexity of assessing and predicting heart’s condition, machine

learning techniques have become dominant on the field of ECG analysis.

Support Vector Machine classifiers is the most efficient way to predict accurately the
heart’s condition. Based on multiple computational operations, SVM classifiers lead to
excessive power consumption and high execution time. The approach of this thesis is to
implement and optimize the algorithm in respect of performance and power consump-
tion. Working towards meeting these specifications, the filter and the Support Vector
Machine classifier, the first and the last part of the ECG Analysis Flow respectively, were
accelerated, as the most time consuming and power demanding parts of the flow. In
this thesis, the ECG Analysis Flow was implemented into an ultra-low-power multicore
System-on-Chip Myriad 2, designed for high computational tasks for mobile, wearable
and embedded applications, provided by Movidius. Firstly, the original filter and classifier
codes are modified, in order to utilize the micro-architectural features and the memory
hierarchy of Myriad 2. Afterwards, the computational tasks are delivered to the VLIW
micro-processors of Myriad 2, where they are executed in parallel for higher performance

efficiency.

Finally, our implementation proved that Myriad 2 can achieve up to 97% and 99%
latency gain compared to the original filter code and SVM code respectively, coming with

significant energy efficiency.

Keywords

Medical embedded system design, ECG analysis, machine learning, Support Vector

Machines, Movidius Myriad 2, Very Long Instruction Word operations, Vectorization






ITepirandm

‘Eva and ta mo onpoavtixd xou Boacixd Bloloyixd ofjuota eivar to Hiextpoxapdioypdgpnua
(HKT). H avéyxn v cuveyr napoxoholinan xon €yxaien Bidyvemaon tne xotdotoons tne
%EOLIC €yEl AENOEL TIC AMOUUTACELS YIOL ETLTAYUVOY] XAl UELWUEVT XUTAVIAWGOT 1oy 00C oTnV
PoYy Avéhuone Hiextpoxapdioypagriuatoc. Egaitiog tng moAUTAOXOTATAC Ylot TNV avaxTnom
OTOLYELY VIOl TNV XATAOTUON TN XAUEBLAS, Xordidg xou 1) TEOBAEDT TOUE, O TEYVIXES UNYAVIXAC
udinong €xouv xataotel xuplapyeg oto medlo g avdivorne Hiextpoxapdloypagpruatog.

Ot ta€vounTég Slavuoudtwy LTOoTARLENS VAL O TILO ATOTEAECUATIXOC TEOTOC Yiol TNV O-
ooy TeoPhedn e xatdoTtaone e xapedids. Baowlduevol oe TOMATAEC UTONOYIC TIXEC
oladixaoieg, ot Tagvountég auth 0dnyoly oe TohD LPNAG Ypdvo exTéleong, xadde xon LPMAY
xatovddwon evépyetag. [ to Adyo autd, o oxondg auThc TN dimhwuatixig ebvar 1 Lho-
noinon xau BeAtiotonoinoy tou akyopliuou avdiuong HKI' and tnyv drnodn tou yedvou xau
NG XATAVIAWONG WoyLog. AoukebovToag TEog auTh TNV xatebBuVoT, emiTayOVOUE To QIATEO,
%xo0OC %o ToV THEVOUNTY BLIVUOUATOY UTOG TARIENS, TO TEMTO X0 TO TEAEUTOO XOUUATL TOU
olyopldupou avtiotolya, xodog Aty Tor 600 TO AMATNTING XOPUATIO TOU XWOOXA. 2TV Ol-
mhwpatxy auty, 1 Por Avdivone HKI' uhonowfdnxe oe éva mohunbenvo enelepyaotn, TOAD
YounArc xatavddwong to Myriad 2 tng Movidius, o onolog €yet oyediactel yia ToOA) uUTOAO-
YO TIXEC DLadIXAalEC VLol POPNTES, POPETEC XAl EVOWUNTWUEVES CUOXEVES. Apyind, To @ikTpo
xaL 0 TaEVOUNTAC TEOTOTOLUNXAY, ETOL WOTE VO YENOWOTOLCOUUE TO UXQO-OYLTEXTOVIXA
YOEAXTNELO TIXG xou TNV Lepayto uviung tne Myriad 2. X1tnv cuvéyeia, ta utohoyloTixd uéen
Ta TEpdooue oToug utomupriveg TN Myriad 2, 6mou exel extelolvTan TopdAANAa Yiat xoahOTERN

anéooo.

Tehxd, 1 vhomoinon pac delyver 6t 1 Myriad 2 unopel vo netiyer péypt xou 97% xou
99% %épboc oe YEOVO GUYXELTIXA UE TOUG apytx0oUS YpOVOUS TOU QIATEOU XU TOU TOEVOUNTH,

avTioTOL o, EVE TAUTOYEOVA EYOUUE TOAD CNUAVTIXS XEEOT) OE XATAVIAWOT| EVEQYELAS.

AéEeic KAeoud

Yyedouog latpudv Evooyoatwuévey Yuotnudtewy, Avaivorn Hiextpoxopdioypapriuotog,
Teyvinéc Mnyavixic Méainong, Hohunbpnvol enegepyactéc, Movidius Myriad 2
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EIXATOQI'H

O xopdiaryyetox) voooc elvon mhéov 1 emxpatovoo outior Yvnodtntac nayxoopine [1]. O
ac¥éveleg mou oyeti{ovton Ue To XoESLY YELXG CUCTAHUN TEOGBAAAOUY xUEIKS TNV XoEOLE 1) Ta
oupopopa ayyela o mepthauBdvouy TNy xoeotaxt) TEOGBOAY, TNV LTEPTACLXY| XaEOLXT VOGO,
N QAP Vpoufwon xou dhhe xoapdiaxés ntatfoelg. Xougpova e tov Hoyxdouio Opyavioud
Tyelag, o apriude Twv Yavdtny Aoyw xapdloryyeloaxhc vooou €yl auiniel Spauatixd, Tepinou
41% péoa ota tehevtaio 30 ypoévia. Adyw NS EMXpaToNoUS XATACTAONGS, 1) axEBhC Xat EyXupn

OLdyveon xplveton w¢ dadixactio Yéytotng onuaciog.

‘Eva ané tar o onuoavTixd Blohoyind ohuato yior TNy Toeoxohoinoy xo Sty vewor Tne
xatdotaong e xoedlds eivon to nhextpoxapdoypdenua (HKT'). To HKI' eivar otevd cuv-
0E0EUEVO UE T1) pop@ohoYio xaL TN Quotohoyla TNg xuEdlde. {2¢ ex TOUTOU, TO NAEXTEOXVE-
doypdgnua épeuvac (HKT) éyel ypnotponomiel eupéme yior tn didyvewon ToARGY %apdloxdv
nadnoewy. T'a vy alohdynon xou Ty e€aywyy|, TaylTepa xou axpBéoTepa, TANEOGOplag
an6 1o HKT, elvon amopabtntn xon pmopet vo emtevydel ye tn cupfoly| tng teyvoroyiag. Ta
TeheuTador YEOVIa, TOMAES NAEXTEOVIXES PORNTEC CUOKEVES EYOLY XAUTACKEVAG TEL YOl LUTELXO-
U¢ oxomole. Autéc ol cUoXEUES elvan o VEGT Vo ToEaXOAOUTODY XOL VoL XOTAYEB(POUY TNV
xapdloxt] xatdoTaoy o Nueprol Bdor. §2¢ anotéheoua, elvor EUXOAOTERO ol ToYUTERO Yo
ToV YlTeo Vo eEeTdoEL ToV acVeVy), eved €xel Beatiwiel eniong 1 mowdtnto {whc Tou acdevo-
0¢, EAUYLOTOTIOLWVTOS TO XO0TOG TNG UYELoVOUXTE Tepldoldmng, UeldvovTag TNy avayxn yia
voonhela xaL amoPelYOVTOC TOAES WEES AVAUUOVAC OTIC 0LEEC GTO voooxouelo. Emniéov, o
xivduvog Yavdtou, e€outiog TéTouwy acVevelny, Eyel exundevio Tel, eoutiag Tng amd-amdoTIoNG

EYXAENS 0Ly VKOG, axdua Xt 6Tay 0 acVeVAC BeloxeTon paxpld amd To TEd XEVTPO.

Adyo tng mohumhoxdtnTog TS e€aywyhc axpBwy povtéhwy tou ofjuatog HKI' yio tnv
extiunon xou Ty TEOBAEd TN XUTAG TUONG TNS XUEOLEC, OL TEYVIXES UNYoVIXAC Uddnong xo-
téyouv xupiopyn ¥éon oto nedio e avdhuone HKI. Ta Support Vector Machine [2] éyet
amodetydel 6Tl ebvan 0 O ATOTEAECUATINOS TEOTOC Yol Vo EEETUOEL XATOLOG %ol VoL eEaydyeL
yopaxtnelo txd ofuoatog evoc HKI'. And tn ula mhevupd, to Support Vector Machine e£ooga-
ACouv ol LN axpeifelor TaEvoUNoNG axdun XoL GE TOAOTAOXES U1 YROUUIXES XUTOVOUES
07O YWPO TV eE0YOUEVKDY AeltoupYlwy. And tnv dhin, Bacilovton oe moAhaniolc uToloyi-
ouolg, oL omolol 0dNYolY oe LPNAG YEOVo exTéAeons xo®S XaL O UTEPBOALXT) XAUTAVEAWON
evépyewac. 2to [6], €xel anodetydel 611, OTOU Ol UTONOYLOTIXES ATOUTHOCELS X0 Ol OOUTHOELS
oy og tou Ta&vounth SVM nodlamhacidlovTon, 1) emitdyuvoT) VAU uropet va etvar 1o xAeldl
YLOL TNV IXAVOTIOMOT) TV TERLORICUMY YEOVOL Xal Loy Vo Tne pofic aviyvevorg orjuatog ECG.
Y10 (8], éyer avantuydel o emtdyuvon LMoV, 1ot GOTE 1) oY) AVEAUGTC TOU NAEXTEOXAP-
OLOYEAPAUATOS VoL TATEOL TOL TROTUTIAL Y POVIGUOU ol Loy 00C Yla Uilal GUOXELT) Tapaxorhovinong
oe mpaypatxo yeovo. H pon avdivone HKI' egapudctnxe oto hoylouxod, extodc and Ttov
Tagvounth Yoo tnemtxol unyoaviuatog untocsTheEne o omolog Lhomotinxe wg emTayUVTHS

vAxol mou ctoyelel FPGAs.

Ye auth) T Oimhwpatixy epyaoio, mpoonaolue va BEATICTOTOLACOUNE TNV AmddooT TNG

porc avahuong tou HKI' xou cuyxexpuuéva ecTldlouUe oTny EMTEYLVCT TOU TRMTOU XoL TOU
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teheutaiou oTadiou Tou alyopituou, Tou giktpou agaipeons YoplfBou xou Tou TagvounTy TWV
Support Vector Machine. H unegBoluxr} avdyxn yia €vo abotnuo avdhuone tou HKI' oe
TEUYUATIXO YPOVO OYETIXG UE TIC POPNTES 1| EUPUTEUCIUEC CUCKEVEC OONYEL OE aVAmOPEL-
ATOUG TEPLOPLOMOUE Ypovou xal loylog. H mpocéyyion oe auth tng dwtpBric o oyéomn ue
BeAtiotomoinon xou emtdyuvon tng eong avdiuong HKI' ebvan 1 egoapupoyr tou aiyopituou
o€ éva TohOTAEUpO VG TNUN TOAD Uxerc toyVog ot toin. Ilpoonodwvtag va avtamoxprdoiye
oe auTéc TIC mpodlaypapég, mpotelvoupe tov enelepyacts) Movidius Myriad 2, évav mohu-
mopnvo SoC cuyxexpiévou oxomol, ctov onolo LAoroleitar 6hog o akyopriuog, aAld Bei-
TIGTOTOLOVUVTOL T TILO AMOUTNTLXG X0l EVEQYELOXS UTOUTNTIXG UERT) TNG POTIC, XPTNOULOTOUDVTAS
TOL UIXQOUPYITEXTOVIXG. Yoo TNEto Tixd Tou encéepyaocth. O enelepyaotric Movidius Myriad
2 mopéyel 12 pivt enelepyactée, ol omolol utootneiCouv Aertovpyiec Very Long Instruction
Word (VLIW), éc0 xou upnif andédoon xou Bertiotonomuéves Piphodfxes C, yio vor etvon
dLVATH 1 BlavVLOUdTLOY TV ahyoplduwy. AduBdvoviag autéd Lo, Eexwvhouue Vo ToEOU-
otdlouue BLdpopeS BEATIC TOTOINTELS, ETUTUYYAVOVTOS HEYLO T anddooT). Apyixd, €yive avadl-
GeVpwoT ToL aEYIX0) XWOWI TEOXEWEVOL Vo afloTolnlody TARe®S oL EYYEVELS BUVATOTNTES
TapahAnAlopol Twv adyopliuwy. Emniéov, ol feitiotonoifoeic Baciotnxay otn uelwon g
emPBdpuvone g UviUNg e egopuoyrc. Me tov meploplopnd Tou apriuol THV ATUTOVUEVLY
TEOOTEASCEWY OTN VAN, unopécope v emiteéoupe otoug enelepyaoctéc VLIW tou Myr-
iad 2 va Tpé€ouv anoteheoyatixd Tov ahyopriuo. Emmiéov, epopudotnxe €vag alyoptduixog
METACY NUATIOUOS Yial Vo EVYLYQOUULOTOUY OL TO AMOUTNTIXES AELTOURYIEC UE TO OYfU ETE-
Cepyaoiog twv SHAVESs. To Myriad 2, avtideta ye toug napadoctoxolc encepyactég, €yel
oyedlao el Ylor Vo AetToupYel TORdAANAL, TEOCTEAAUVOVTIS TOVOUS TANPOGPORLMY TAUTOYEOVA.
Emopévee, xdvovtag wa oyetixt| BeAtiotonolnon oTic Bacixég Aettovpyieg, EMTUYOUE oxoOun
uPnhotepa enineda anddoong. Autéc ol otpatnyixéc €youv anodelyvel 6Tt elvon oe Véarn va

TOEAYOLY Oyl UOVO TOAD LPNAS xEEDT, AAAG Xou YOUNAT XATAVAIAWGT| EVERYELIS.

Avdivon Hiextpoxapdioypapiuatos. H por) twv onudtwyv tou HKI' eivon pio
amo TG ONUOVTIXOTERPES TNYES OLY VWO TIXWY TANeooptey. 'Eva ofjua niextpoxopdioypa-
pruatoc (HKT) eivon 1 exdnhomon nhextpixc Bpao TnetdtTnTag Tou puoxapdiou oTny empdvet
TOL OWPATOC, 1) oTola eugavileton we éva oyeddy Teptodixd ofua [6]. O hentéc petaBoréc oto
£0pOC %ol TN OLIPXELN AUTWY TWV XUUATLY LTOBNAWVOUY BIAPOpEC TAVOAOYIXES XAUTAC TACELS

NG XOEOLAS, UEPIXEC AmO TIC OTOIEC PatvOVTOL GTO YU 33.
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Moggoloyia Tng xaedidc.

Pulmonary
vain
Superior

vena cava Pulmonary

artery

l LEFT
Imleratnal ATRILM
seplum
Pulmonary
wain
Pulmonary
RIGHT trunkK

ATRILM LEFT

VEMNTRICLE

Latt
Right AV valve
AV vahlve
Intenor
véna Cava

RIGHT
VENTRICLE

Pulmanary and Intervemncular
aortic valvas seplum

Eyua 1: Puctohoyio tne xapdlog xat 1 o) TOU AUATOS GTOUC XOATOUG Xt OTIC XOthieS [3]

H »opdid etvan éva puixd 6pyovo, 1o onolo avthel afyo U€ow TV apo@dpwy ayyeiwy Tou
HUXAOPOELIXOU CUGTAUNTOC. LTOV dvipmTo, 1 xoEdld, 1 onola aroteheitar and to 6e&i xou
T0 aploTepd Uépog, ywelletan o Téooeplc Yahduous: emdve aploTepd xou OEr] XOATO oL
%dtw oplotepr] xou de€Ld xothio. Ot 800 dvw xoATol elvon urebuvol yia ™ AT Tou afyoatog
xaL oL 8V0 %3t xothieg elvon uTedYuvee Yo TNV EXHEVWOT TwV Yohduwy. O 8elldc xdAToC
0€yetan oo amo Tic xOplec YAERec Tou owuatog. To afpa péet and To Be€ld xOATO OTN
0e€1d xothla Yéow tne teryAwyivag PorBidag xon tne delde xothlag xou avtiel To afpo meog
TOUC TVEOUOVES PECK TOU TIVEUUOVIXOU XOPUOU X0l TV OEEUOY TVEUHOVIXMDY 0QTNEWOV. X1
CUVEYELYL, TO VEO OEUYOVWUEVO Aol ETICTEEPEL OTOV UPLOTERO XOATIO XA, UECW TNG ULTROEWDOUG
BahBidoc, Siépyeton oTNV aploTepn) XOoLAla, 1 omtolo avTAEl TO ol o€ OAOXANPO TO CWUA HECE

e aopthc BaABidoac. H @uotohoyio tng xapdide ameixovileton oto Myrua 1.
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O %0pBLoxd¢ xOUUNOG AVUPERETOL GTNV AXOAOLT{OL TWV UNYOVIXWY Xl NAEXTEXWDY GUUBAVTLY
Tou emavahauBaveTon ue xde X TOTO TNG XUEOLIC Xl AMOTEAELTAL OO T PAOT TNG YUhdpLoNg,
TIOU OVOUALETAL «OLUGTOAY Xou 1) @dom TN cVoTAoNS, ToU OVOUdleTo «cUGTOATy. ‘Oneg
avapEpUNUE TEONYOLUEVWLS, 1) avipOTVY %aEOLd eival TETEAYWVO OPYOUVO, CUVETKS UTHEYEL
XOATUXT] GUGTOAY|, XOATUXY OLAGTOAY|, XOLALAXT] GUGTOAY| xou xollaxt| olacTohr. H ouyvéotn-
TAL TOU XUEOLX0U XUXAOU TEPLYPAPETOL amd TOV Xapdloxd ELUUOG, TUTUIXE Y TUTE avd AETTO.
Kdie xapdlaxdg xixhog unopel va ywploTel o Técoepa xDpta TAdW: TN QAoT) EL0RONC, TNV
LOOUETEIXY) GUGTOAY, TN QAoT EXEOTC xou TNV toopeTexn ydAaot. To mpdto xou o TétapTto
GTdB0 AmoTEAOLY TN QACT TNS Xothloxhc SLo ToANG, 1 omtola apyilel dtav oL xothieg apyilouv
VoL yohopvouy. ‘Otay 1 TleoT 6ToV TVEUUOVIXO x0pus Yiveton udmAdTeERN and TNy Ttleon yéoo
OTIC XOWMES, xS To alyol Tou TEONYOLUEVOLU xOxAou cuvey(llel va eC€pyeTat, 1) NUITENXT
BohBida Yo xheloet. 3tn cuvéyeta, ot BahBidec nuiteAixol xau A7 elvan xAeio tég, 1) onola etvon
1 @don TNe WopeTEt| yohdpwons. Tehxd, ol xoAtoxothoxég BarBideg avolyouv xou oL xot-
Mec yepilovtar ypryopa ue ofyo amd Toug xOATOUC. XTo TENOC QUTASC TNS QAONS, Ol XOATOL
GUGTEAAOVTOL, AVTADVTOG TEQIGCOTEQO Aol 0TI XOWMES. ()¢ amoTtéleoua, 1 Tleon auidveta
oTIC x0thieg xou ot xohmoxowhoxég BaBideg Ya xAeloouy, mpoxewévou va anogeuyvel 1 elo-
eon) Twv apdpwoewy. AuTH 1 QAcT OVOUGLETOL LWOOUETEIXT) GUGTOAY, AoYw TN ad&nong tng
nieone. H @don exporic apyilet, dtav n nicon otic xolheg yiveton upnidtepn and to alyo 6Tov
TVEUPOVIXOG %0ppo (00pTh). Autd t0 yeyovoc odnyel oe nuitehxés BaiBidec yia vo avoilet xou
To alya péel €€w amd TNV TveupovixT| apTnelo. 210 TENOG Tou Xapdlaxol XUXAOU, Ol AOPTIXES

xou veuovixég BokBidee G wAeloouy, xadde ol xoukleg e€avtiolvTal.

Normal Heartbeat

:A_ Fast Heartbeat

Qs
QRS Complex T Wave

Slow Heartbeat

Aclivation of the Activation of the Recovery wave
atria ventricles
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Eyfuo 2: Hiextpoxopdioypdgnuo xot uepixéc TadohOYIXES XATAC TACELS TG XoEOLAS TOL UTo-

poVV va eZaydouv and avtd. [2]

O %0pdLoxdg xOUNOG, TOU TEPLYPAPETOL TUPAUTAVE), CUVOEETOL OTEVE UE EVal NAEXTELXO OY|UaL,
70 onolo mapdyeTon and Tov heBoxoufBo mou Beloxetal 6To TAVEL Pépog Tou Belloy aldptou.
To ofjua autd eAMAOVETUL UECK TWV XOATWY, TEEVE TOV XOATOXOWALXO xOUL0o xou UEow
Twv vov Purknje xatodfyer oe oheg Tic xothieg. To npdtuno HKI' Bacileton yevixd otnv
ATOTOAWGT) XL TNV ETUVATOAWST TNG xoeotds. H yevinr| xatedduvon tng anomdhwong xou
TN EMOVUTOAWONG TaEdYEL €var Bldvuoua mou dnutovpyel Vet 1 apvnTXy ToEouop@®war
oto HKI'. Mo xavovixt| xupatopop@y tou HKI' amoteheitan and 3 xlpieg ovtotntes: éva
xOpo P, éva xdpa QRS xon évar xOuo T. To wdpa P avtimpoownelel tnv xokmixy| anondrnon.
Koatd tn Sidpxeior authc TN @pdong, To nAexteixd orjua @ddvel 6To aplotepd xan to 8e&l aitio,
T0 omolo oTr CUVEYEW CUCTEAMETOL Xou avTAel emmhéov alyo péoa ot xoklec. Tehxd,
TO NAEXTEOVIO XVUA PTAVEL GTOV XOATOXOLALOXO xOUfo, odnyhvToag oc cumheypa QRS. To
obumheyua QRS avtimpoownelel v xotkoxr) anomolwot), 1 onola axolovdeiton amd TNV
xothloxr) ouoToh. H nhextoinr) cusTolr) TV xothwy apy (el 0TV apy ) TOU CUUTAEYUNTOS
QRS. Kotd 1 didpxela Tov cuumiéypatog QRS, ol xotkieg cucTtéhhovton Yo vo eExTogeboouy
70 aipo oe xuxhogopio. H xothio enovamdhwon (avéxtnomn) oxorhoudel GUGTOM TwY XOLALGY,
1 omola avinpocwnedeTon and o xVua T\ Ye auth T @do, oL xothieg avaxToLy xou TEPLUEVOUY

vo Eavaryepioouy pe o abua xuxhogoplog.

‘Onwe avapépdnxe mopamdve, unopel va oy Vel ot UeYSAn TOCOTNTU TANEOPORLOY CYE-
TG PE TN BOUT| TNG XUEOLAS %ot TN AELTOUEYIa TOU NAEXTEIXOU GUOTHUUTOS AYWYILOTNTIC.
Meta€l dAAwVY, 0 puiudg xaL 0 PUIULOS TWV XAEBLIXWY TUAUOY UTopoly Vo UeTendoly uéon
tou ofpatog Tou HKI'. ‘Olec ov ovtotnreg tne xuyotopoperc tou HKI' xou tar Sioo thuata
uetagd toug €youv wa TeoBAEdUn Yeovixt Sidexela, éva e0pog amodEXTHOY HEYEVDOY XL pla
Tumr) popporoyia . Omoladrrote andxhion and 10 TUTXS TEOTUTO Elvor XAVIXTS onuaciog.
H appuiuio Yewpelton wg plo amd Ti¢ mo xaxoneig ducheitovpyleg tng xapdude. H xapdio-
x| appuiulo, emlong Yoo T ¢ xapediaxt Sucpuiuio 1 axavoVIcoTOg xoEdlaxdc TaAUOS, elval
Lol OGON XUTAOTACEWY GTIC OTOEC O XAUPOLIXOE TUAUOS €Vl oXaVOVIOTOS, TOAD YRTYOROSg
1 TOAD apY6c. oTOG0, OPIOUEVES ACUUTTOUATIXES appuiulec oyetilovton ye avemdiunTteg
evépyeteg. Tupadelypata nepthouBdvouy uPNAOTERO XvOuVo TAENG AluaToC GTNY XaEBLA Xo U-
PNAGTERO HIVOLVO AVETEX0VE PETAPORAS AUATOS TIEOC TNV XoEdLd AOYw ao¥evoUS xoEdLOXOU
maAgo0. Aldol aunuévol xivouvol eivon 1 EYPOATY xou TO EYXEPUAXO ETELCOOLO, 1) XAUPOLOXT
AVETIAEXELOL Xk O aupviBlog xapdiaxdg Vdvatoc. H atpixn a€lohdynorn tne avouaiiog ye nie-
ATEOXVEOLOY PPN elvol EVag TEOTOSC OLdY VKGNS Xl EXTIUNCNS TOU XWVOUVOU OTOLUGOHTOTE

appuduiog.

AopBdvovtog unodn Ty xelown xaTdo Ao EVOE ATOUOL TOU TECYEL 0o ENELGOBIAL apEUD-
ulag, o medlo aviyvevong onueiwy appuiuioc o orjua tou HKI' éyel dicpeuvniel oe peydho
Borduo. Acdopévou 6t t0o ofjuor HKI' elvon évar un ototind ofua, ot appuduiee pnopel vo
EUPaVioToUV Tuyaka o€ Ypovixh xhluoxa. Emoyévewe, 1 UEAETN TOU GHUATOS TOU NAEXTROXIQ-

BLOYPAPAUATOS Xou TNS EVOEIENE HETUBANTOTNTOS TOL Xapdlaxol puduol evBEyeTal Vo YpELo TEl
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vo untoBAndel oe eneepyaoio apxetés wpeg. AuTtod onualvel 6TL TEETEL Vo EXTEAECTEL €val Te-
edcTo GOVORO BEdOPEVWV TpOXEWEVOL Vo emiteuy Vel anotedeopatxd 1 didyvworn. ‘Etot, ol
TEYVIXES Unyovixhc Lddnone[7] etvan 8avixéc yia Ty eniluomn tou tpofAfuatos didyvewone. To
GUVOAO BEBOUEVMY YPENOUOTOLETOL (G TO OET XUTAPTIONE TOU amanTeltan amd ACELS Unyavinic
uddnorng, oL omoleg UTOEOUY VoL BWGOLY Uil BLAYVKGT) UETE TNV OAOXATRWGT TNG EXTOLOEVCY|C
TOUC. XLTIC TEPLOCOTERES UEAETES, Yenolponolelton we TNyt eyyeapany HKI', n Bdon dedopévwy
appuiuiey MIT-BIH. 'Etot, n Bdon dedopévwy MIT-BIH yenotuomoteiton yior var Sloptoppoet
70 oUvolro exmaidevone. H Bdorn dedopévwv appuiuwwy MIT-BIH arotehetton and 48 uioa-
PO ATOCTACUAT NAEXTEOXAROLOYEAUPHUATLY OLTAWY XoVOMKOY antd ac¥evels ue dlapopeTind
tated apyeio xou TOnoug apeululoy, ¢melortonuéva oe 360 delyuota ovd SeuTEPOAETTO Ve
xavahL pe avdAuon 11 bit oe neployr) 10 mV. Emmiéoy, 600 1 nepiocdtepot xopdlohdyol oy o-
Naooy aveldptnta xdde eyypapy| xal oYOMacUol avopopds yia xdde xTOno cuurnepthipinxoy
o1n Bdon dedouevmy. (1g anotéeoua, OnuLoLEYHUNXY GUVOAL BEDOUEVWY EXTIAUUBEUCTC Yidl TO
TEOBANU aviyveuang apeulley, yenolonownvtoas TN Bdon 6edopévwy MIT-BIH. Ilpwtov,
€vog exmandeuTrc mou Tadvourinxe Ue BAon TIC TEXYVIXES UAUNONG UNYAUVEOY EXTAOEDTNXE
YENOWOTOUWVTAUS OUTO TO GOVOAO BEBOUEVV AL, GTY) CUVEYELN, YENOWOTOINXE YioL TNV o-
viyveuon appudulny oe pepovwuévoug puiuolc. O alyodpriuog andxtnong xou encéepyosiog
tou ofuoatoc HKI' mpoxewévou va e€aytel xou va tadvouniel xdie xtinog anoteieiton and
owdpopar otadla. Ataywpetleton ot tpla xOpla oTdda: 0Tadl0 PUATEUplouaTOS, aviyveEuon xop-
01000 TAAULOU %ol OTABL0 EE0YWYNS YARUXTNELO TIXWY %ot pdom Tagvounone. Mo emoxonnon

¢ porc avdiuone ECG amewxovileton oto oyfua 3 .

Agaipeorn YoplBou. ¥’ autd 10 0TABI0 TO CHUN PINTEUEETAL YIdL TNV OTOUIXQUVOT)
YopiPou, cuvitwe yenowworownvtag gihteo diéieuone Lovng. To oruota teyvoleyou mou
apanpolVTOL TERLAOPPBAVOUY TNV TEPLOTEORT TNE Yeouung Bdong, TNy TaeeuBohn TS YeuUUnC
oyVog xar Tov VopuPo uhniic ocuyvotntag. Ta teyvoupyHuaTa TOU TEOXVOTTOLY Omo TNV
avomvor] xon TNV xivnor Twv acVevoy teénel eniong va agoupetoly. Ta guktpopiouéva oruata

HKT' ypnowonowolvton o 6heg Tic emoxdhovdeg enelepyaoies.

Aviyvevon xopuprc R. Ye autd 10 0Tdd0 0 andtepog 6Toy0g elvar vor aviyveudolv
oL xopdtaxol mohyol mou cuviétouy éva ofua HKT' peyohOtepng oudpxetag. T var yivel
oawTO CLVHIWE TEETEL VoL VY VWELOTOUY X0pLUYES Tou cuumAéyuatoc QRS xou mdavae P
xoparta, T wOuoata xouw QRS avtiotdoeic xou avtiotaduiosic. H xopdid ytimnoe v axpl3h
Tomo¥eaio xou 1 Sidpxelo unopet vo aanpedel and autéc Tic TAnpogopiec. H Bdon dedopévwy
appuiuiwy MIT-BIH nogéyel oto yehotn Aeitovpyleg uhonoinone mou eviomilouv autd To
Baowd onueta. Autéc ol Aettoupyieg umopolv va egopuoctoly oto diodéotua oruata HKI
xou oL amoTeAéouaTo Unopoly vo etoindeutoly pe ) Bordelo Twv apyelnv oyolMaouol Twv
yiateov. Etol xatagépoue Vo amopovecoude Toug pLUUoUE Xal ETOL VO XOTUOXEUCCOUUE
Toug pLlUoUE TTou Yo cuUTERIANPUOUY GTO GUVORO BEBOUEVKY EXTIABEVOTNC. e €va a0OTNHA
amoxtnone HKI' o npaypatind yedvo, o xapdlaxds ToAUoS OeV Evol YVWOTOE, OTKS Xl To
omnuela evdlapépovtog, 6Tng N xopueth P, mpénel va xadopiotoly ue Bdomn uévo toug aviyveutég

QRS movu elvon Srordéoydol Tpoxeévou v evtomoTel €vag VEog xapdlaxdg mahuoc. Muxpdtepa
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xhdopata tou ofpatog HKI enegepydlovtan tihHpa yior Tunuatonoinomn tou puduol ol g ex

4 ’ 7 7 e e
ToUTOL avtyvelovTtol Aydtepol puduol xdide qopd.

EZaywyn yapoxtneiotixnv. Eyoviac xodopicer véo xopdloxd pudud, emBdiheton
i Brodixacion €Ay YNE YURAXTNRIO TV TEOXEWEVOL Var oy YoV To YopoXTNELO TIXd TNG.
AvTd Tor Yoo TNELO TIXG AVAPECOVTOL OE ELOIXEC TUPAUUETEOUS OYUTOS TOU EVOL EVOEIXTIXES
e QUOLOAOYWXTC xaTdoTaong evilagépovtog. o Ty aviyveuon apputulac uTdpEyel uia Tol-
Aol TOTOV YUEUXTNPLO TIXWY TIOL UToEoLY va yenotporointoly, xadéva and ta omolo elodyel
odpopar xAixd cuunTopata. O o TAAENE TEOTOC YLl TNV EUPAVICT] TWV TANROPORLY TOU
nepthoufBdvovton oto orjuo HKI efvan 1 nparypatonoinon gacupatixrc avéhuong. O yetooynuo-
Tlou6e TNe xupotopopehc(QT), o enéxtaom tou xhaowxol yetaoynuatiopol [Fourier, propel
VoL eQappoaTel Yo TNV e€aywYn) TV CUVTEAEG TV wavelet SLoxpitdy oNuUdtwy Ypovou, 0K
7o HKI'. To WT Aeitoupyel 1660 60V TOUEN YPOVOLU OGO XL GUYVOTNTAUS XOU EMLTEETEL TNV
arocOvieon evog ofuatog oe evay apldud XAUEXwWY, OToU XdUe XA UoXA AVTITPOCWTEVEL ULol
ouyxexpWévn TeaytnTa Tou und uehétn ofuatoc. To WT éyel enlong tn duvatotntar va
umohoyilel xan va yepileton Sedouéva o8 GUUTIECUEVES TUPUUETEOUS TTOU OVOUGLOVTaL Yopo-
xtnploTixd. ‘Etot, yenowonowwvtag to yetaoynuationd WT, 1o ofjua HKI', mou arotehelzon
an6 TOAAG onueio SedoPEVWY, UTOpEL Vo CUUTLECTEL OE UEQIXEC TUPUUETEOUS TOU YUEAUXTY)-
etlouv TN cuuTEELPOEd TOL xou BeV elvan EPPAVEIC A TO aEYIXG CHU TOL YEOoVIXO TEdiOL.
O xapdiaxég maigol mou aviyveddnxay 6To mponyoUUevo GTddto, anocuvtiievTon oe mopa-
OTAGELS YPOVIXAC CLUYVOTNTOS YENOOTOLWYTIS BLOXEXPULEVO UETOOY NUTIoNS woeket (AQT)
xat oL cuvteAeoTég wavelet unoloyilovtal yio vo avTintpocwnedouy to ofuata. Ot é€odot mou
TEAYOVTAL OE QUTO TO GTABLO ATOTEAOVLY TOUG SLOVUCUOTA YOQUXTNELC TIXY TOU YEYOUOTOLO-

OvTon Yoo Ty Tovounon.

TaZwounon-Awdyvwon. To 1ehxd 6Tddlo Tng pohc avdhuong Elvor oVl VEUST) oV O
%0EOLOXOC TOAUOS epavilel onuddia appuiuioc 1 Oyt. Autd YivETal YENOWOTOIWVTAS EVay
alyoprduo ta€vouncng, o onolog aviyvelel To mpdTUTO TEOBANUaTIX0U puluol. O exnawdeu-
ThC €xel exmaudeuTel 0To GUVOAO BEBOUEVLY TOU TEQLAOPBAVEL TOUC BLoyOOUATA YUEAX TPl
OTIXOY TOV ATOUOVWUEVOY XTUTNUATWY. AeB0UEVOU EVOC VEOU BLAVUOUA YARUXTNELO TIXMY,
o Tagvountig Umopel vo anogacioel €dv To avtioTolo xTOmNUa eugoavilel onuddia apeul-
wlag. Trootnputixol unyaviopol utootheng etvar o Bactopévol otn udldnorn unyoviouot
Tagvounone mou yenowonolvton oe auth TN UeAétn. Ta SVM elvon dnuogiieic Todivountég
unyovixAc pdinong yio Loviehonolnon xat Ta&vounon BAcel SEBOUEVMV XAl UTOPOVUY VoL EXTIOL-
0EUTOUY amOTEAECUATIXG EXTOC oUVOEoTC. H Braduxacio xatdpTiong Toug €yel ooy anoTéAecua
éva olvolo Qopéwv, ou ovoudlovtor @opeic utoothpEne (SVs), ol omolol yenotuonotolvto
Yi0L VoL LOVTEAOTIOLOUV Tol BEGOUEVA AVTITROCKTEVOVTAS €Vl Oplo amdPaonc. AuTtod To 6plo
ATOPACTNC Y PNOWOTOLELTAL OTr CUVEYELXL VLol VoL TAEWVOURACEL Lol VEA EUPEVIOT], TO OLEvVUGUAL
YAEOXTNELO TIXWY EVOS aTatvountou pudpod. O aprduds Tev dlavuoudtwy othelEng xat 1 dio-
CTACLOAGYNOT| TWV YUEAXTHEWY UTOEOVY VoL EYOLY CNUAVTIXO AVTIXTUTO TNV TOAUTAOXOTNTA

Tou To&vounTH.
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M Band pass R peak Discrete Heart beat Diagnosis —
> Filtering det:ction Wavelet diagnosis Normal /
Y .’ process Transform classifier Abnormal

Yyfuo 3: PoRy Avdhuone HKT [11]
YyeTixr) €psuva.

H épeuva yio to onpo nhextpoxapdoypagpiuatoc (HKT) éyer yenowonoinlel eupéwe yio
v mapaxohovinon xan TN Sy vwor ToAGY xoedlaxodv madnoewy. To tedeutola yedvia
€youv OLe€oyVel TohudpLiues EpELVES Yol TNV avdhuon xou tagvounct tou ofjuatog HKI. Ou
TEPLOCOTERES PBLolatpinéc GUOXEVES oL yenotpomowlvTal Yo Ty avéhuon HKI' npénel va
ToEEY 0LV oxEU3Y| ATOTEAECUATA GE TEAYHATIXG YEOVO. MUVETWS, TEETEL Vo enelepyaoTel €val
HEYEAO Uépoc BedoUEVLY UE eZaupeTnd TOMNIThOXES cuoyeTioelc. Lougwva pe [7], oL Teyvi-
xé¢ povteronoinong nou Bacilovton oe dedouévar eupovilovTal we ULo LoYUET TEOCEYYLoN Yid
Vv uépPaoct Twy avapeplévimy tpoxhioeny [15], xadde avortiydnxay yeryopa molléc
TEYVIXES Exudinong unyovmy, ol omoleg elvan oe Véon va dloyetpllovtal peydheg TocHTNTES
OEDOUEVMV YL VO LOVTEAOTIOLCOUY GUYXEXPUIEVOUS CUCYETIOUOUS XOL GTY) CUVEYELD, YPNOL-
HOTOLAOTE HOVTEND péoa o€ ol Aettovpyio andgoone [14]. Emniéov, o Boiatpinéc cuoxeuvéc
amouToOV TOAD YAUUNAT) XUTUVAAWOT) EVERYELS, ETEDT elvan cuVADWS QopnTég cuoxevéc. Tlpog
T TNV xaTeYuVoT), oL cuyYpagelc TEoTElVOLY Vo YENoYOTOO0OY AEYITEXTOVIXES YLl E-
pappoyéc younhic evépyeoc [20], [21], dmou yenowonooly aviyvevon appuduioc xon pov
avdiuone HKI'. Xenowonowolyv eniong talvountéc mou Bocilovtar otov gopéa unoctrpl-
Ene ot Baduido tavéunone xar ot Aettovpyior Tou muphva RBF (extetixn) otov nuphva
Tagvounong, dedouévou 6T oL ypauuxol Tuprveg Bev elvon xotdAinhol yiot To Pordud mohu-
TAOXOTNTAC TNG CUCYETIONS TV LaTexwv onudtwy. H cuvdptnon tou nuprva pall pe tov
optdud TV BLVUCHATOY UTOCTARIENG oL T OLAGTUOT, TWV YORUXTNEIC TV OLVUOUTWY
umopel vou €yel onuavTIXd avTiXTUTO GTNY TOALTAOXOTNTA Tou TagvounTth. Autd anodetydnxe
ME TNV EQapUOYT 0AOXANEOU Tou alyoplduou aviyveuong oppuiulag o EVOWUXTWUEVO ETE-
EePYAO T YAUNATC Lo 0OC YENOWOTOIWVTAS HOVTERX avlyveuang uPning avdAuong Yo oxplt
TagVOUNCT, OAUATOS XU AvAAUCT) EVERYELXAC amodoone.  AlmoTOVETHL OTL 1) To&vounom
VETEL TN CLUPOENOTN TNG EVERYELWIC AOY® TNG TOAUTAOXOTNTAS TWV ATAUTOVUEVGY UOVTEAWY.
‘Etot, otn yehétn toug atoyelouy otn Pektiotonoinon Tou oTadiou Tagvounong 6Gov apopd
TNV anodo0n oL TNV omodoTXOTNTa TG evépyeloc. [a va emiteuydel autd, Siepeuvoly Tnv
OVATTUE N L0 0EYLTEXTOVIXNS UE BAoT ToV eNe€epY o T TOU Efvol XATEAANAT, YioL TN POT| avaAU-
ong BLapoEeY PLOTATEIXGY ONUETLY Tou amontoly Tadvouncn. Evog enelepyaothc yevinol
O%OTOV YENOWOTOIELTOL YLl TOV UTOAOYIGUO YORAUXTNRIO TGV, EVG EVag BEATIOTOTOMUEVOC
ouv-eneepyaoThc yenowonoteitar yior Tadvounon SVM Bdoel mupriva. Ou npodiarypopé yio
TNV TAATPORUA TANEOUY TOUC TEPLOPLOUOUE YLoL TNV OVEYVEUGT], TNV EVEQYELNXT amddOCT Xal

NV eveMElar OE TPAYUATIXG YeOVO, £TOL WOTE Vo oo TNellet Bidpopeg Plolatpinés EQopUoYES.
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H apyrtextovir €xel tplo xOptar tuuarto: buffer yio toug gopéa utoctheEng xou Soxung,
uovddec MAC xou mpoypoupatilOUevo Tuprivo ToALKYLUIX0D Tuphva. Ot gopelc utoc theEng
poptwvovtar ota buffer uetd v ohoxhfpwon tne exnaldeuong extéc GOVBESTC XAl Ol YORE(S
BOXWNAC PORTWVOVTOL BUVAULIXA OTa avTioToLY A TPOCWEVE Toug dedopéva. Kdie povddo MAC
elvor LUTEDYUVY YioL TOV UTOAOYLOHO TWV TROOVTIOY xouxidwy Tou Tavounth SVM uetold
£VOC BLoVUOUOTOS BOXIUNE Xl TV PopEwy Lo THEENS ot éva Tpoowpetvd buffer gopéa uno-
otheEng. Mohc ohoxhnewiel 0 TOAATAACIACUOS TIEVL GE OAOUS TOUS PORELS LT TARLEN,
To TEOLOVTOL XOUXXIBWY TOAUTAEXOVTOL OTOV TROYEUUUATICOUEVO TUEHVA TONUGYUULIXOU TTU-
efva, 6mou umohoyileTal O UETACYNUATIONOS ToALKVOUOU BelTepne, Teltng 1 TéTopTng TaEng
%0 xon o Tuphvae tou tadvounth SVM nou emhéyetan Q¢ RBF, sigmoid, xin). Ta o-
ToTeEAéopATA XALaXOVOLY xat adpoilovTal amd Evay TEMXO CUCCWEEUTY TOU OTolov TO GHUA
e€600ou xadopllel To anotéheoya togvouncong. Ot urtohoyiouol extehodvTon o axépueg THES.
Ot meplopiopol o8 TEAYHATIXG YEOVO ETUTUYYAVOVTAL UE TURUAANALOUO TV UTOAOYIOUOY TWV
xoUXidwV Ue TN yeHomn TorhamAOY wovadwy MAC xou 1 evepyetaxt| anddoor emiTuyydveTal

HEOW TNG XAUAXWONS TNG Tdong oTig wovadee MAC.

Emnéov, oe [8], avortiydnxe évog co-processor FPGA vhixol yio 1o otddio tadvéunong,
Tpoxelwévou va Bedtiotomoinlel ) anddoor xou 1 evepyeloxy| anodotixdtnTa. Anuloveynoay
€Voly OLV-EEEERYATTY YPNOILOTOWOVTAS epyaheia oUvieong Aol emmédou xau ETol 1) apyi-
Textovxr] xadoplleton GUUPOVL UE TN AELTOURYIa TOU TUEYvaL Xau Tor dedouéva tou oyetilovTtan
e to povtého SVM, omwe o aprdudg Twv @opéwy UToc THRIENS Xat oL cLVTEAECTEC, elvon hard-
coded avti va goptwvovtar. H Bertiotonoinom epopudleton ye tnv tpomonoinon tng doung
TOU WO, TNV AOENCT TOU TURUAANAIGUO) ETUTESOU BLOACHIAAS xou TN YEeNOT TWV 0ONYLOY
Behtiotomolnong tou gpyahelou. Xe auty| T dwTePn, o otdyog elvor 1 LVAoToino xan BeA-
Tiotomoinon tng eorg avdiuvong HKI' and v drodn tou xépdouc Aavidvoucas xotdo taong
XL TNG EVERYELUXAC AmOB00NC O €val UG TN TOANATAMY EVIOA®Y TOAD YouNnAAS toyvog,
7o Movidius Myriad 2, oyedouévo yio eldinég epapupoyég enelepyaciag opaong. Ilpoxel-
uévou va emitevydel 1 Behtiotonoinon, n avdntuin tng poric oto VPU Myriad 2 Bacictnxe
oToL Ol TN aEyLTEXTOVIXG. YopoxTneoTixd. O enelepyaotric Mpewad 2 anoteheiton and ou-
vohxd 14 muprvec. Aoufdvovtog autd unddn xou To yeyovog otL to Myriad 2 €pyeton ye
uviAun DRAM molamhéyv Sioxwy 2MB, 1o xatactiote xotdhhnho yia Ty extéheon iy
UTIOAOYLOTIXWY EPYOCUWY O auTo, 6mws ol SVM classifiers. Emmiéoyv, ou 12 "uiv’ mupriveg
vnootnellouv v apyttextovixr) SIMD (single instruction multiple data), enitpénovtoc tov
umoloytopd aprdudy 128 bit oe évav xixho (teplocdtepec TANPOPOPIES YIo TNV UEYLITEXTOVIXN
Myriad 2 neprypdgovton 6o xe@dhato 4). Aopfdvovtag urddhn autd To Yopox TNeto Tixd, EQap-
HOCTNXE TORUAANALOUOG ETITEDOU OLdaoxahlog, Tpoxeévou va ueytoTonondel o mapdAAniog
umohoyioude oe xde SHAVE xou va yiver duvath 1 yerion tou yopaxtneotixod SIMD tou
enelepyaoth). Emniéov, n apyitextovin] TOU CUCTAUATOC UVAUNG EYEL MEYAAT onuacia oTo
Myriad 2. "Etot, ot gogelc unoothping yaptoypagoivtou atn 2-MB DRAM, npoxeévou va
emteuy Vel peyalbtepn xoaductépnon x€pdoug, EAUYLOTOTOLOVTOS TIG 0L TAUPOVUEVES YEPU-

cec uviune SHAVE.
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OcwpenTixd vnéBadeo

‘Onwg €yel 1on avagepiet, €youv avagepiel dedopéva and tn wuix aptnelo MIT-BIH yen-
owonoinxe Bdon dedouévwy. Auth 1 Bdon Sedouévmv eivon anotéAeouo Tng cuvepyasiog
Tou latpixod Kévtpou Beth Israel Deaconess xan tou MIT xou ebvon plor amd tig mo yenowuo-
TotoVueves Bdoelc Sedopévmy yia epeuvnTixole oxornole. H Bdor dedouévev anoteheltan and
48 uiodwpa anoondouato SITAOY xovohiwy xotayeaphc HKI' tou npoépyovton and 47 dropa.
And autd, exoottécoeplc eyypapéc emAEyInxay Tuyola amd Wi GUAROYY Tdve and 4.000
24-wpoyv xataypapéc HKI, mou yenoiusvay w¢ aviinpocwneutind delyua xhvixay opyeiwy
poutivac. Ot undhoineg exoot xoataypapés emAEydnxay and To (Blo OeT Yo var cuunepAdBouy
i Towhior oTEVIwY 0ANE XAVIXE PEPOVTLVY parvouévewy (cUVIETES XOLAoXES, DlahadIXES Xou
umepxothaxéc appuduiec), ot omoleg dev Yo exnpocwrodvTaY Xohd o€ Eva uxped Tuyaio delypar.
Ta Yéuora meprehduPovay 25 dvdpeg nhwdag 32 €wg 89 etav xon 22 yuvaixeg niixiog 23 €wg 89
etwv. To 6edopéva €youv guktpaplotel and éva Lwvomepatd QiATeo xat €xouy Ynplomoindel ue
ouyvotnta Serypatondiog 360 kHz to deutepdiento avd xavdh. H MIT-BIH nopéyel enlong
oyohaouolg yio xdde eyypapn, 6Tou xaedloAdyol Eyouv TaEvounoet xdde toaud. YTrdpyouy
nepimou 110.000 oyolaouol Toahumy.

Yy ahyoprduix| avdihuon mou oxohoulel, €youv yenoulornotniel dedouéva amo Ol To
TEOTO XAVAALYL OAWY TWV EYYEAPMY exTOC Twv 102, 104, 114. "Eyouv egetaciel dVo cidn

aEELIULOY, OL XUVOVIXOL XAl OL UT) XUVOVIXOL.

Metaoynuatiopos Alaxelttod Xpovou. O UETaoyNUATIONOS SLoxpltod Yeovou
elvow TopoUolog Ue To Yetaoynuatiolnd Fourier, pe tn dlagpopd 6Tt umopel va topéyel Toautdypova
TANEOYORIEC XL Yl TOV YEOVO ohhd xou Yl TV ouyvotnta. Autéd elvar onuavtixd dtov
OVOADELS UN-OTATIXG OYUOTAL, OTWE TO NAEXTEOXAEOLOYEApNU. ['evindTepa, 0 HETATYNUATIOUOS

OLoxELTOV YeOVoU UTopel Vo exppaciel amd TNV Tapaxdtw cLVAETNON:

Fah) = [ £l (e)da )

6mou 1o *

elvon 0 GUPBONO TOU GUUTANEOUATOS XL 1) cUVdETNoT (b elvon 1 cuUVEETNON e-
TAoYNUTIoPoL. O UETACYNUATIONOS BLoxpltol Yedvou Yia Vo eEAYEL EVaL GO OTNV XAl
TOU YpOVou, yenoulorotel dlagopeTtind Gihtpo anmoxonhc cuyvothtwy. To ofua Tepvdel and
eval LYNTEEATO PIATEO Ylol Vo TaEEL OAEC TG LUPNAES cuYVOTNTES Xxou amd eva Badunepd Yo
Tic Youniéc. ‘Etot, n avdhuon tou ofuatog uropel va odAAGEeL avdloya pe T piktea Tou Yo

yernotuonotnioiv.

BOewpioc Mnyavov Altavuoudtewyv YroothieiEng. O Mnyavéc Awavucudtwy T-
noothene (Support Vector Machine - SVM) efvon povtého emPBrenduevne udidnong mou
eXTAUOEVOVTOL UE €VOL UEYAAO GUVOAO BEBOUEVWLV Xa Efval XUTIAANAT Yiar TNV ToEVOUNOT TWY
VEWV L0600V o BU0 uTohrpleg xAdoel; cuuTAnewuaTxés uetald Toug. To cUvolo exna-
{devong amoTeAe(Tol amO BLVOCHUATO UE CUYXEXPWUEVA YAUEaXTNEWOTIXd Xardéva amd T omola
olordeTon o eTxETal ONAWTIXAG TS xAdong oTtny omola avixel. Eva cOvolo amd dAla da-

VOOUOTA UE ToL {BLol YopoX TNELG TS X0 YVWO TEG TIC ETIXETES Ypnoylomoteltan yiar var ehey Vel 1)
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oxpifBeto Tng TedPBAedNC.

Ta SVM eqapuolouv opyxd pLor cuVAETNoT TURTVOL TOLU avayeL Tot BlavOoUATo OE €Vl
YWEO TEPLOGOTERMY DLACTACEWY, OTOU EVOL TILO EUXOAOS O BLAYWEICHOS TOUG. XTO YMOEO AUTO
Beloxouv éva unepeninedo to omolo amoteleiton amd Tor SLVOOUTA TOL ATEYOUV PEYLOTA ATO
Ta Btavdopato Tou avixouy o xdde xAdor. Kdie véo Bidvuoua avdyeton o aUTOV TO YWEO,
unohoy(letar 1 amb6CTUOT TOU amd TO UTEPETINEdO xou oo e Bdon tn Véon Tou o oyéo
ue awto Todvoueiton oty avtiotolymn xhdorn. H cuvdptnon nuprva eivan xadoplotinn yior tny
oxpifBetor xou TNV TOAUTAOXOTNTO TOU UOVTENOL. AdY® TWV UN YROUUUXOY OYECEWY UETOED
TWV YOROXTNELOTIXWY TOU BLavOCUATOC XAUE TOALOU YENOWOTOWOUUE YN YROUUIXY CLVIETNON

TUENVOL XU CUYXEXEWIEVA EXVETIXAC PUOTC.

Axoloutdel 1 pordnuotixn e€lowmaon Tou TepLY pdPEeL TOV UTOAOYLOTIXG TUEY VAL TOU TAELVOUNTH

X0l 0 AvTIoTOLYOC XWBXOC * TOU TNV LAOTOLEL:

N _sv
Class = sgn( Z (yi * a; * K(x, sup_vector;)) — b) (2)
i=1
omou K elvou ) cuvdptnom tuehva, z lvor To SLAVUCHO TOU TahUoU Tpog T vounoT), sup-vector;
elvor 10 i-00T6 BLdvuoua TAEWVOUNCNS XL s, @; €Vl THIES BLaPORETIXES Yol xdde Bldvuoua UTo-
othetEng xa mpoéxuday xotd Ty extaldeuot. H petofAntd b etvon wio yetaBAnTty obyxplong,

ATOTEAECUA TN EXTALOEVCTC Xt o Tardepy| Yior OAa Tor BlaviouaTo UTOG THRLENC.
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Listing 1: Apyxoc xodouxag SVM

const float sv_coef[N_sv];

const float sup_vectors[D_sv]|[N_sv];
void SVM_predict (int xy, float test_vector [D_sv]){

for (i=0; i<N_sv; i++){
for (j=0; j<D_sv; j++){
diff=test_vector[j] — sup_vectors[j][i];

norma = norma + diffxdiff;

}

sum = sum + exp(—gammasknorma)*sv_coef[i];
norma = 0;
}
sum = sum — b;
if (sum<0)
xy = —1;
else
xy = 1;

Ytov mopamdvey xwdwa 1, 1 YeToBANTH sv_coef 1GoBUVOHEL UE TO YIVOUEVO TO  Y; XL Gy
¢ e€lowong Tou untohoytoTixol Tuphva. O aprdude Twv Swvuoudtwy utoothelEne N_sv xou
0 aELiUOC TWV YoEoXTNEOTIXWOY D_svu, OTwe Xl 1) ETAOYY) CUVIETNOTG TUETIVOL £YOUV UEYUAT

enidpaomn oTNY TOAUTAOXOTNTOL.
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ITapovocioorn Tov Myriad 2 System-on-Chip

H Myriad 2 etvon évag enelepyactric TOnou System-on-Chip, o omolog elvon oyedlaouévog
YioL Vo Tporyatontotel ToAUTAOXES UTOAOYIOTIXES BLadixaciec. 2uvdudlel TNy mopoAniia xon
UXQOUPYITEXTOVIXG. Y AU TNEIO TIXY, (WOTE Vo TUPEYEL TOMD XUAEG ETUOOCELS OE TOAAES EQUE-
Hoyec.

O neplocdtepol eneepyactég System-on-Chip (SoC) eivon cuvidwe Bactopévol oe évay
1) meplocoTepoug enelepyaotég apyttextovinric RISC, ol onolol mepiBdhhovton amd Sidpopoug
EMUTOYUVTEC LAXOU ot potpdlovtan o Tohueninedrn cache xou éva mepiBdAiov ané DRAM.
Avutéc oL xowvég Bopég elvon EAXVOTIXEC amo dmodn x60ToUS, AAAd SnuLovpYel TOANS TEOBAU-
ToL oo TNV TAEURE TNE TpooTE aoNS NG uviung. Mio xolbtepn Adon elvon vor gtidEoupe o
TEOYPOUUATICOUEVY) ORYLTEXTOVIXY|, WS OEUTERELOY eMeepYaoTr o €val xUpto, o omolog Va
avohopBdver 6ho To Bopl popTo cpyaciag oe TEAYHATIXG Ypovo, xododg xou Yo yewileton dAa

Ta GAAOL CUC THULTA ELXOVAS X0l 1Y OU.

H Myriad 2 w¢ xhacowxd SoC, cuvdudlel 2 encéepyaoctéc LEON opyitextovixric RISC.
Enlong, npoogéper 12 SHAVES, to omola npocgépouy xohltepeg emdooes. O dUo udptol
eNeCEQYAOTES UTOPOUY VoL EAEYYOUV TOUC 12 1) évar apldud amd TOUG EVOWUATWHUEVOUS TURY|VES.
O LEON OS pmopetl vo eAéyyel OAeC TI TERLPERELANES ELTOB0UC Xat EEHBOUC XoL YLOUTO EYEL
wla L1 cache 32KB xou uio L2 cache 256KB, divovtog tou tn Suvatotnta vo Teeel éva
hertoupy o ovotnua. O LEON RT eivon unedidevog yio OAEC TIC GUGKEVES 1) 0L 0L EXOVOC,
xan €yel o L1 cache 4KB o L2 cache 32KB.

Emniéov, n Myriad 2 nepihopfBdver pio eheyyduevn and to hoylouixd, Tohuthenvn UvAun,
ueyédouc 2MB, 1 onolo uropel vo untootneiel Tou 12 enelepyactes, xoddg xou Toug 2 PIX®
enelepyaotéc. Eniong, pla unyavn dueoeg mpoonélacne tne uviung eivon dladéotun, €Tol WoTe
vo etvon Buvatr 1) Blenapy| Twv eNEEERYATTOY TOG0 PETAED TOUG, OGO X0l UE OAOL TOL TEPLPEQRELANS.

CUCTAUAT TNG TAUTPOPUIS.
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wte multiported RAM subsystem
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17 independent power islands
power

Yyfuo 4: H Myriad 2 w¢ povéda eneepyaociag ewdvoc (VPU) oto Aentoupepéc Sudypop-
uo(SoC) odetyver touc 12 muphivec SHAVE xou ) oyetind Sioolvdeon twv SHAVE pe to
UTOCUC TN UVAUNG TOAATAGY eYYpap@y. 1Idve and tn uviun CMX civar ol cuoxevég e-
TTdyUVoNS LAXO0O Yo TNV 6pocT) xou TNy eneepyaoia emdvag, xadde xal GAAEG CUOXEVES
TONUPECWY, TOL EAEYYOVTOL and Tov enelepyaoTh enelepyaoTy| utohoyiotwy RISC pe yeww-
uévn odnyla LEON RT. Ildvew and autd, eivon ta tepipepetaxd 1/0, to omola eléyyovton and
dMho enegepyacth RISC (LEON OS).[7]

H Myriad 2 tpocgépet Toug 12 SHAVE nupriveg, ol ontolol unootneilouv Tnv apyitextovixt
128-bit VLIW, ta omolo mpoopépovton yia UeYIAEC UTOAOYIOTIXES Oladxaciec. Emedy n
XATAVAAWOT) EVERYELNC Efvan €vag x0pLlog TopdyovTag, o enelepyaoThc yenoylomotel 17 vnoldeg
1o 00g, €TOL (OOTE VoL UTOPOVUUE Vol BEATIGTOTOOVUE TNV XATOVIAWGT] Loy 00G avehoYa UE TNV
epappoy?) wag. H Myriad 2 nepihopfdver ta e€¥ic 3 wlpla opyttextovind tufuo: Media Sub
System(MSS), CPU Sub System(CSS) xou to Microprocessor Array(UPA).

YAoroinor tng Porc Avdiuong HKI' otnv Myriad 2Apyuxd, avoiyet o LEON
OS, o omnolog teéyel éva Aettoupyind cUOTNUA, EVE PSRN TEEYEL Evay ahydprluo Yo T
AN HETEAoEMY TOGO YioL TNV XATAVEIAWOT Lo} 00C XAl TOV YeOVo eXTEAEONC TOU olyopiluou.
Autoég ye ) oepd tou avoiyer tov LEON RT, o omolog Eexwvder tov olyoprduo tne Porg
Avdhuone HKT', yenowonowwvtog o SHAVES yia vo mopodAnlomotfor xon vor emtory OveL Tov
akyoprduo tou gidteou xou Tou SVM classifier.
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Myriad2 Programming Flowchart

SHAVES SHAVES

(svm classifier)

(FIR filter)

LEON RT

(ecg analysis flow,
reading data, boot
Filter on SHAVEs)

LEON RT

{QRS detection,
Coefs Extraction)

Yyfuor 5: Awdrypappor Poric tne Poric Avduong HKT' otn Myriad 2

Pirtpo analorprc YoplBou. Apyixd, vhonojooue xou BertioTonotooue To @iktpo. H
Teo TN Lhoroinon €ywve otov LEON RT. Y1n cuvéyela, nepdoaue tov xdoduxa oe évo SHAVE.
Apywnd mapatnerioope 6Tl 0 x@dixag dev Umopel va dtavucuotononiel, HoTe Vo UTopoUuE Vo
XAVOUUE TEPLOCOTERES Ao Wit TEdEELS ot Eva x0xAo Tou pohoYlool. Autd cuVEPauve, xodog
oev Slaoytlotay 6lol ot Tivoxeg Ye Ny Bl @opd. ' 1o Adyo autd, TEayUATOTOWCUUE EVal
loop interchange otic 800 eugwievuévee enavarieic, 6mwe @atvetan TNy exdvo 6. Me autd
Tov TPOTO XoTapépaus va ooy (Covtar Ghol oL Tivaxeg ue TNV (Blor opd, oTE Vo Umopolv
Vo Topolknhomoinoly oL TEAEElS, TEAYHATOTOIWVTAS 4 TEdiels ot éva xUXAo Tou POAOYI0U,
aflomoldvtag €tol TNy apyltextovixy Twv SHAVESs. Ytnv cuvéyeta, apod xatapépoye vor Emi-
TayUvoupe Tov xwdxa oe évo SHAVE, 1 x0pla 16éa Tne mopahAnhomoinong ftay v polpdoouue

T0 pbdpTO Tou PihTeou ot TeplocoTepa amd éva SHAVEs. Autd do yvotay, ueidvovtog To
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ol el66d0ou Tou Yo Thyawve ot xdde éva and o SHAVESs. Ye autd to onueio mopotneriinxe
OTL Oev umopel var UolpaoTel we €xEL TO G EL0OB0U, XIS Yo ETNEEdcTEL 1) 0pUOTNTA TOU
olyoptduov. T'a autd TO AOYO, ATOY AMUEUUTATO VoL £YOUNE UEEIXE ONUELN TOU CHUNTOS LS

TEWY TO eMAEYUEVO Tpog eneepyacion GHuaL.

for n=0to N+D_| fori=0to len
fori=0to len for n=0to N+D_|
v_low_ext[nl=y_low_ext[nH+Num_low[i]*ext_siz_low[n-i]; v low_ext[nl=y_low_ext[nlNum_low[i]*ex_sig_low[n-i];

0 Ext_sig_low[n-i] g

,____:_____,:>

N+D_| n+D |

Yyfua 6: Loop interchange
SVM ta&wopuntrc.Agol Beitiotonomiooue tov olyoprduo tou @ilteou, mpoomodo-

7 7 . . 4 7
Ope va emtoyOvouue tov Support Vector Machine classifier, 1o mo amutnuixd tufue tou

alyoplduou pac. H apyr popgn Tou x@owa gatveton oTov xmodixa 1.

‘Onwe mopatneoluE, 0 xWOos anoTeAeiton amd 2 eupwiedyeve enavahiels, 6Tou 1 ecw-
Tept| enavaAnm vtohoyilet Ty Euxeidelo amdotaon uetald twv dlavuoudteny Voo THRLENS
X0 TWV YOROXTNELO TIXMY TOU TUAUOU XoL GTNV CUVEYELN, GTNV eEWTERIXT| ETavaAnn uTolo-
yiletan 1 ouvdpTtnon tuerva Tou tadvountr. H Ty autrh tolamhacidleton pe Eva Topdyovta
Bdpouc tou exdotote Blaviopatog LTooTHEKENS. XTo TEAOC, TO anoTéAEcU TpooTiletan o
€Vl CLYOAXO dlpoloua, To oTolo 6TO TEAOC GUYXEIVETAL UE TO UNBEY, OOTE Vo Byel 1 TeAnh
anogoot. Iapatneodue 6Tl ev €youue e€opTRoelg BEBOPEVLY XOTE TOUSC UTONOYIGHOUE ol

door oL uTohoYIopol UToEoLY Vo Yivouv TapdAANAa, OTwS alvetal oTny eixova 7.
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DMA Support vectors from
memory to 1 CMX slice

DMA Support vectors from memory
to every CMX slice

o | [ | [ [ [ [T ENEESSNNEEEENEE.
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o HN EEEEEEEEEE HEN III-IIII

0 N sv 1*Nsy/ 2*Nsv/ 3*Nsv/ a*Nsvf
DMA DMA; sh_num sh_num sh_num sh_num

CMX/RAM Memory CMX/RAM multiported memory
L» J

Classification result

Yy 7: Tlopariniioudc SVM to€ivountn

Classification result

J
=

‘Onwe xon oto @ihteo, o mivaxog pe ta dtavidouato LTooThEENS UTopel va yweloTel ot
UxpoTEPOLG Tivaxeg pe Alyotepa dtavOopata.  Autol ol mivaxeg Yo €youv to Blo péyedoc.
Kde mivoxag Yo cuvelopépel 6tov unohoyiopsd evog epixol adpoloyotog xat 6hot pall otov
uTohoYLlou6 Tou GUVOAXOU adpolouatog. Ot UTOAOYLGUOL TOU ATAUTOUVTAL YO TOV UTOAOYIGHE
TWV YEPLXWY adpOloUdT®Y UTopoUY Vo TeEyouy Topdihnia. 'Etot, xatapépaue va yetatpédou-
UE TO apyd Wog TeoPAnua o emuépous uxed meoBArfuata. ‘Oleg ol uxpdtepes dlodixacieg
umopoly va Teé€ouv mapdhhnha xou ave&dpTnTo UETHEY TOUC Xl 0TO TENOS, OAAL T UEPIXT

adpolopata emioteépovton otov LEON RT, émou unoloyiletar 10 cUVOAx6 dipoioya.

Apywd, 6ho to TuRua Tou olyopldpou umoroyldtav otov LEON RT, aAdid otn ou-
véyew, ywpllovtag to TEOBANUL OE UXPOTERES UTO-BIERYUOIES, LOLPAG TNXAY Ol UTOAOYLOMOL
oto SHAVESs. Yt apyuég exteléoelg, Ta 6edopéva Tou mivaxor Ue Tar BlotvOoUOToL UTOG THEL-
&ne Betoxodvioucav oty DDR pvAun xou dwBdlovtay ansudeiog and tn uviun. Autd, ounc,
elye wg amoTéAeoUa Vo £YOUNE T8RN TOAES TPOOTEAAGEL GTN) VAT, dEa xou ALENUEVO YEOVO
extéheong Tou ahyopltuou xou augnuévn xatavdhwon woybog. Io vo amogidyouue auTh TNy xo-
TAOTAOT), ATOPAGIGUUE Vo Yenotonoticouyue o unyovy) ‘Aueong Hpoonéhaong tne MvAung,
1 omoio yetépepe tor 6edopéva ano v DDR pvAun oty CMX-RAM pvrun, émou ta SHAVESs
€y 0LV TayOTEPO YPOVO TPOCTENACTIC X0 UIXPOTERT) XUTAVAAWGT| EVERYELNC. LTNY dpyT), Elyoue
TOMAEG UETAPORES BEBOPEVWLY amd TNV Wia uviun oTny GAAN. Anuoveydvtog éva dimho buffer,
HATUPEPUUE VAL UEWDOOCOVUE TIC UETAPORES o€ BV0. Etol, pépvaue otny apyn To TeTa dEdOUEVA
nou Yo eneepyaldtary 0 OAYORIIUOC UAC XAk OTH CUVEYELD, XAHMC AUTOS EXOVE TOUG TRETOUS
UTIOAOYLOUOUC, QPERVOE ol ToL UTOAOLTIAL BEOUEVA 6TO BeVUTERO Wi Tou buffer. Télog, xodng

xdde SHAVE éyel anoxhelotixdtnta oe éva xouudtt g CMX pvAung, anodnxéucoye pe tnv
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noppt evog apyelouv header to Sraviouata vnoctheEng oty puvAun. ‘Etol, éyouue oxdua
TayOTEPT) TPOCTENAONG TN UVAUNG %o xoplor HETopopd Twv dedopévwy and tnv DDR otnv
CMX pvhun.

Yty ouvéyela, mépa and TNy mapahknionoinon oe eninedo SHAVE, nopatnerooue 6T
UTOPOUUE Vol TOPUAANAOTIOLACOUPE TIC TRAEELS OTNV ECWTERIXT| ENAVAANYT TOU WO, OTOU
urohoy(lovton ot Euxheldeieg anoctdoeic. I'a va 1o methyouue autd, xdvaue €vo loop unroll
XUTd 2, €T0L OOTE Vo TRoyaTontolo0vToL 800 TRAEELS THUTOYEOVA. 2T0 TEAOC, ATOPUGIGOUE Vol
OAAGEOLUE TNV CUVAETNOT TLETVOL TOU TAELVOUNTH XOL VO YPNCLLOTOLCOUUE WUld TROCEYYLoN
e exdeTinnc ouvdptnone pe tn oepd Taylor tne cuvdptnong, onwe @aivetow oTNny exdva 8
. To xbpo mheovéxtnua authc TN emAoyic elvan 6Tt 1 axpifeta Tou ahyoplduou unopel va
eheyvel pudullovtag tov mapdyovia tng oepdc. ‘Etol, yenoyomoidviag To avamTuyue Sng
TAENG HATAPEROUE VO EAOLYLOTOTIOLACOUUE XAUTE TORD TIC TEAEELS Xalk VoL €Y OUNE €var X€pBOg TNg

8Ene tou 30%.

i >
?—ll.’rlilil...

% 3 d
T T
e =
1

e

Eyfua 8 Avdantuyua tne Xewpdc Taylor tne exdeting ocuvdptnong

Arnoteléopata

Hapaxdte mapouctdlovial T ATOTEAECUATA TV BEATIOTOTOACEWY TOU EQUOUOC TNV
otov xwdixa g Poric Avduong HKI'. Apyxd, mogousidlovton oL yedvol Tou @iATeou xatd
Ta emp€poug Bruata tne Bedtiotomoinong tou. Ilpdta, etvon o ypdvoc tne apyixhc vhomoin-
one tou giATteov, éneta 1 extéheon o éva SHAVE pe ta 8edopéva tou gidtpou oty CMX
UVAUN. L TNV CUVEYELYL, O YPOVOC EXTENECTIC TOU XMDOLXA OTOY AUTOG EVOL BLOVUCUITOTIOUNUEVOS
xaL TEANOG, 0 TEAXOC YPOVOC Tou PLhTpopiouatog Tou aAyopiluou 6Tay TapaAAnAoTOlElTaL GE
oho o SHAVES.
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Optimization steps vs Average Performance gain of NR filter
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Leon - DDR SHAVE - CMX Vectorized Task Based Parallelism

Execution Time(ms)
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Optimization steps

Eyfuo 9: Anddoon ota EMUEPOUS BAUNTA ETLTAYUVONC TOU QIATEOU

X1n ouvéyela, BAémouye Toug ypeovoug extéleong Tou SVM taivounts| ota xdie emuéooug
Brua vhomoinone tou. Apyuxd, ta dedouéva Beloxoviar otny DDR pvrun, otnv cuvéyelo ta
poptdvouue ye DMAs oty CMX uvAun. ‘Eneita, mpoonodolue va yewdocouvpe to DMAS,
Ty vovTag éva ditAd buffer xau téhog, maparinionotolue tov xHdxa o Gha T SHAVES.

Optimization steps vs Average Performance Gain of SVM classifier

12

a
2 . -
. L] -

Initial porting SHAVE DMAs DoubleBuffer Data on CMX Task Based Parallelism

=
oo o

@

Execution Time (ms)

Optimization Steps

Eyua 10: Anédoon ota empépouc Bruata emtdyuvong tou SVM tadivounty

YTIC TopoxdTe) YeupéS TAUpAoTAOELS, BAETOUUE TNV XUTAVAAWGT) EVERYELNS TNG PONC o-
vaiuone HKI' oe empépoug Brua uhonolnong tou adyopiuou. Erlong, PAénoupe tnv xoto-
Ve woT evépyelag, avdroya ue o toco SHAVES yenoylomoolue, xodog xon 1o Ypbvo extére-
onc avdroyo ye to noéco SHAVES yenowonooue. Xe autég Tic 800 Ypapxés Topos TUCELS
TpATNEOVUE OTL XIS 0 YpoOvog exTEAECNC GUVEYILEL VAL UELWVETAUL OGO YEYNOWOTOLOVUE TE-
eloaotepo SHAVES, dev cuufaivel 1o (8lo xou Ye Ty xotavdinaon evépyeloc. Autod ouuPaivet,

xa0dg 600 avolyoupe teptocdtepa SHAVES, autd xatavahdvouy teplocdtepn oy D xal, Tou-
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TOY POV, TO €ED00C OE YEOVO Bev elval TOCO MOTE Vo AVTIO TAOUIOEL TNV XATUVIAUCKOUEVT|

oy .
Energy efficiency gain
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~ DMA Support  Optimized classifier
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Yyfua 11: H yelwon otnv xatavdhworn evépyela oe eTPEEOUC UAOTIOOELG
ECG Analysis Flow
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Energy of ECG Analysis Flow w.r.t. SHAVEs used
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Yyfuo 13: H xatavdiwon evépyetag tng Poric Avdiuone HKI' avdhoyo e tov oprdud twy
SHAVESs nou yenoylomoobvto

[opaxdtw BAénovye Tov yedvo extéreonc tou SVM tadvountr oe SlapopeTinole encéep-
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Yupnepdopata

Yy epyooio auty e€etdooue pior pedodoloyio yioo Tnv avdntudn xaw 0 BeAtioTonolnon
wog poric avdhuong HKI' oe evonuatwuéveg apyitextovxés. ¢ puerétn mepintwong, epya-
CTAXAUE OTNY ATOTEAECUOTIXNY EQRUOYT) TOU ahyoprdou poric avdhuone HKI' o miatpopua
TOU EBIXEVETAL XUplwe ot emedepyaoia exovag xat Bivieo, onwe 1 Movidius Myriad 2. O
oAYOEIHOC ETUTAYLVONG TNG AVIAUCTC NAEXTEOXAEOLOYEAUPAUATOS xou oL ohyopriuol Podidg
HdINoNG OE WUd EVOOUUTWUEYY OPYITEXTOVIXY| elvon Lo EVOLapEPOLGH LA Yiot TOANOUG ETiL-
OTAROVES xou UnyavixoLs Aoylouixol Ot ontolol €youy Tpdofacn o oyeTixéc PBiBAovxes ho-
Yiouxo0 yia unyaveES YEVIXAS yeriong xou YéAouy va yvewpeilouy tny mpoctdielo Tou amarTelTan
Yior TNV avamTLEY) ToUg OE Wial EVOLUATOUEVN Thatgdouo. H uedodoroyia Poociletar, npdtoy,
o1 OLEVEWTIXY UETATEOTY| TOU XWOXA, TEOXEWEVOL Vo Taporiniiodel oe ToAhoUE Tupriveg
xat, 0E0TEPOY, OTNV EQPUPUOYT] YELRWVAXTIXWY TEOTOTOLCEWY GTOV XWOOLXA, TEOXEWEVOU VoL
BonUhcel TOV PHETAYAWTTIOTY Vol ONULOVEYAOEL EVaY SLOVUOUOTIXG XWOWXAL 1) Vo BLOVEIUEL TNV
xwdwornoinon . Ou xupldTepeg TROXANCELS AUTAS TNS EPUPUOYTS dnuoveYRiNxay amd Toug
TEPLOPLOHOUE GTO UEYEVOS TNG UVIAUNG, EVAL XOWVO YURAXTNELO TIXO TWYV EVOWUATOUEVWY GUGTT-
pdtov. Extoc and tic tponomolfoelc mou yeiwoay Ty emiBdpuvor TS YNNG TS EQUQUOYNC,
EQUPUOCTNXAY ETONG TOAES BEATICTOTOIACELS TEOXEWEVOL Vol ETITELY VOOV LYNAL entineda

aAmOB00TG.
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MeAhovtixéc Enextdosig

Yhuepa, Wi €yxuen xou Eyxaier Sldyvenan tou TeofAfuatog evog acdevoig etvor uioTng
onuactac. Mo va uropéoouy va exterécouv Toug mepimioxoug ahyoplduoug Tou anoutodvTon
yio TETOLEC EpYaoies, oL Tapadoactoxol TedToL BEATIONC TWV EMBOCEWY OE QUTES TIC CUOXEVES
npénel vo enaveetaotolv. O vopog tou Moore emBpadlvetat, YEYOVOS TOU UEWWMVEL T1) BUVOUT
xal ToL X€EOT ambd00TE XATA TN UETAB00T oTOV €MduEVO xOuPo depyaciog. (¢ ex TolTou, o
EVOWUATOUEVOL GYEBLUOTES TAATPOPUNS TEETEL VoL XATOAREOUY OE To €EUTVOUC TEOTIOUS Yidl

VoL OMULOVPYHOOUV LOYURES X0 OLXOVOULIXY ATTOBOTIXEC GUOXEVEC.

e aut) ) SlotelB) Souléoaue Ye Uiol GUOXELT] OYEBIACUEVT] UE QUTOV TOV TEOTO, UE Bdon
NV xotavonon 6t urdpyet Bohd ahhnhe€dptnon petadd olyoplduwy xaL TNG aEyLTEXTOVIXNS
twv enelepyootyv. H Myriad 2 elvon i cuoxeur] Tou EWBXEVETAL GTNY ATOTEAECUATIXN
epyooio unyoavixhc opaong. 2otd6c0, yenowonotfinxe ce auTy T SlateBn yio var avarnTOEeL
évay olyoprdpo avéhuong HKI, tn po| avéivone HKI', n onola nepthapPdvel enlong tov
ahyopriuo unyaviig pdinone. H Myriad 2 elvon moAd eAmido@dpo yio TNy mTdyUVoT TWV
oahyoplduwyv Deep Learning. Ou Bocixéc teyvixéc mou meplypdpovion oe auth Tn dlateldh
unopolv eriong va yenotwomotnoly yio 1 BeATiwon AWV TapduolwY EQuoUoY®Y. Av xou
auTtol oL ahyopLiUoL avamTOYUNXAY Yio VoL TEEYOUV XURLWE OE UTEPUTOAOYIGTES, UTOROUY TWEA
VoL HETAPERYOVY OF LoYVPES EVOWUATWOUEVEG GUOXEVES XL VO YENOLLOTONUOUY GE TEOYHATIXO

Xeovo.

Emmiéov, éva evolagpépov Briua mpog To eumpdg Vo NTov 1 mepouTépw EMITAYUVOT EVOS
Support Vector Machine ta€ivounty| yenoylomoldviag TV EVOWOUATOUEVT YAMCOA TEOYEo-
uatiopol. Emnpoctétwe, extoc and to tunuato @iitpou xar SVM, Yo ¥itav evdlagpépov va
Bertiotomointoly tar dhha Yépn Tou aAyopiluou G GUC TAUATO TOANATALY EVIOADY XL VO E-
PUEUOCTOVY TEYVIXES Yiat TNV a€loTolnom Twy yopaxtTnelo Ty tou SIMD. To Bruo e€aynyrg

Yo TNEIG TIXWY BAcEL Tou BlaxeLto) PETaoy NUATIoHoD xOUaTtog Yo fTay 1bavindg uTodrplog.

Téhog, n pory avdruong HKI' Yo uropoloe va etvon €€ ohoxhfipou oe SHAVES, étol wote
oL ahyOpLIUOL TOV BLOPORETIXWY GLY VWY OELYUATOANPLOY Vo uTopoly va yenoylorointoly

ToUTOY POV
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Chapter 1

Introduction

Cardiovascular diseases has become the ascendant cause of mortality in the world [4].
That group of diseases are closely related with the heart or the blood vessels and include
heart attack, hypertensive heart disease, venous thrombosis and many other heart diseases.
According to the World Health Organization, the number of deaths due to cardiovascular
diseases has grown dramatically, about 41% over the past 30 years. Consequently, valid

and accurate diagnosis of heart condition is of utmost importance.

One of the most crucial biological signals for monitoring and diagnosing the condition
of the heart is the Electrocardiogram (ECG). The ECG is closesy related to the heart’s
morphology and physiology. Therefore, the investigation electrocardiogram (ECG) has
been extensively used for the diagnosis of many heart diseases. For assessing and deriving,
faster and more accurate, information from the ECG signal is essential the contribution of
technology. Over the past years, many electronic wearable devices have been manufactured
for medical purposes. These devices are able to monitoring and record heart condition on
day long basis. As a result, it is easier and faster for the doctor to examine the patient,
while also patient’s life quality has been improved, minimizing healthcare cost by reducing
the need for his hospitalization and avoiding many hours waiting in queues in the hospital.
Additionally, the risk of death, due to such diseases, has been deminished, because of the

remote on-time diagnosis, even when the patient is far away from the medical center.

Due to the complexity of deriving exact models of the ECG signal for assessing and
predicting heart’s condition, machine learnig techniques have become dominant on the
field of ECG analysis. Support Vector Machine [5] based classifiers specifically have been
proved to be the most efficient way to examine and extract ECG signal features. On
the one hand, Support Vector Machines ensure very high classification accuracy even on
complex non-linear distribution in the extracted features space. On the other hand, they
are based on multiple computation operations, which leads to high execution time as well
as, excessive power consumption. In [9], has been shown that, where the computational

and power requirements of the SVM classifier are multiplied, hardware acceleration can
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be the key for meeting both time and power constraints of the ECG signal analysis flow.
In [11], a hardware acceleration has been developed, so that the ECG analysis flow meet
timing and power standards for a real-time monitoring device. The ECG analysis flow
was implemented in software, except for the Support Vector Machine classifier which was

implemented as a hardware accelerator targeting FPGAs.

In this diploma thesis, we try to optimize the performance of the ECG analysis flow,
and specifically we focus on the acceleration of the first and the last stage of the algorithm,
the noiseremoval filter and the Support Vector Machine classifier. The excessive need for
a real-time ECG analysis system on wearable or implantable devices leads to inevitable
time and power constraints. The approach in this thesis in respect of the optimization and
acceleration of the ECG analysis flow is to implement the algorithm on an ultra-low-power
multicore system-on-chip. Working towards meeting these specifications, we propose Mo-
vidius Myriad 2 processor, a specific purpose multicore SoC , in which all the algorithm is
implemented, but the most time consuming and energy demanding parts in the flow are
optimized, utilizing the processor’s microarchitectural features. Movidius Myriad 2 pro-
cessor provides 12 mini-processors, which support Very Long Instruction Word(VLIW)
operations, as long as, high throughput and optimized C libraries, in order to be able to
vectorize the algorithms. Taking that into account, we started introducing several op-
timizations, reaching a maximum performance. Initially, manually restructuring of the
original code was made in order to fully utilize the inherent parallelization capabilities of
the algorithms. Moreover, the optimizations were based in reducing the memory overhead
of the application. By limiting the number of required memory accesses, we were able
to allow the VLIW processors of Myriad 2 to run the algorithm efficiently, without too
many stalls. In addition, an algorithmic transformation was applied in order to align the
most demanding functions with the processing scheme of the SHAVEs. Myriad 2, instead
of traditional processors, is designed for operating in parallel on tons of information that
they are all coming through at once. Therefore, by making a relevant optimization in the
basic functions, we were able to achieve even higher efficiency levels. These strategies have
proven to be capable of producing not only very high latency gains, but also low power

consumption.

In Chapter 2, a brief overview of the ECG Analysis Flow is presented. The stages of the
flow are explained to inform the reader of the steps required for a successful arrhythmia
detection. Related work progress on the field is also included, to highlight our approach
and its contribution. In Chapter 3, the theoritical backround of the thesis is presented, such
as the MIT database, from which the tested samples was taken. Additionally, extensive
backround information on Support Vector Machines is included, in order to explain its
functionality and complexity and stresses the need of efficient acceleration. In Chapter 4,
the development board, Movidius Myriad 2, is presented. Its technical features are detailed
and programming paradigms avalaible for the developer was also presented. In Chapter 5,

our implementation on Myriad 2 was presented. Every development option is justified and
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the impact of their application is analysed. The chapter concludes with a comparative
study of the results of all implementation during the development, as well as, with a
comparison of a hardware accelerated flow and our development. In last chapter, Chapter
6, imporant conclusions are discussed, as well as, ideas for improving and extending the

existing work in the future.






Chapter 2

Problem Overview

2.1 ECG Analysis Flow

ECG signals are one among the most important sources of diagnostic information.
An electrocardiogram (ECG) signal is the manifestation of myocardium electrical activity
on the body surface, which appears as a nearly periodic signal [?]. The subtle changes
in amplitude and duration of these waves indicate various pathological heart conditions,

some can be seen in Fig. 2.3.

Heart Morphology

The heart is a muscular organ, which pumps blood through the blood vessels of the
cirulatory system. In humans, the heart, which consists of right and left part, is divided
into four chambers: upper left and right atria and lower left and right ventricles. The
two upper atria are responsible for receiving the blood, and the two lower ventricles are
responsible for discharging the chambers. The right atrium receives blood from the major
veins of the body. The blood flows from the right atrium to the right ventricle via tricuspid
valve and right ventricle contracts and pumps the blood towards the lungs through the
pulmonary trunk and the right pulmonary arterties. Subsequently, the newly oxygenated
blood returns to the left atrium, and, through the mitral valve, passes to the left ventricle,
which pumps the blood to the entire body through the aortic valve. The phusiology of
the heart is depicted in Fig.2.1.

39
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Figure 2.1: Heart physiology and blood flow through the atria and ventricles. 3]

The cardiac cycle refers to the sequence of mechanical and electrical events that repeats
with every heartbeat and it consists of the phase of relaxation, called “diastole” and
the phase of contraction, called “systole”. As mentioned before, the human heart is
four chambered organ, thus there are atrial systole, atrial diastole, ventricle systole and
atrial systole. The frequency of the cardiac cycle is described by the heart rate ,typically
beats per minute. Each cardiac cycle can be divides into four major stages: the inflow
phase, isovolumetric contraction, outflow phase and isovolumetric relaxation. The first
and the fourth stages constitute the ventricular diastole phase, which begins when the
ventricles start to relax. When the pressure in the pulmonary trunk becomes higher than
the pressure inside the ventricles, as the blood of the previous cycle is still flowing out,
the semilunar valve will shut. Then, semilunar and AV valves are closed, which is the
phase of isovolumetric relaxation. Eventually, the atrioventricular valves (AV) open, and

the ventricles are being rapidly filled with blood from atria. At the end of this phase,
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atria contract, pumping more blood into the ventricles. As a result, the pressure rises in
the ventricles and the atrioventricular valves will shut, in order to prevent backflow into
the atria. This phase is called isovolumic contraction, due to the rise of pressure. The
outflow phase begins, when the pressure in the ventricles becomes higher that the blood
in the pulmonary trunk (aorta). This fact leads semilunar valves to open and the blood
flows out the pulmonary artery. At the end of the cardiac cycle, the aortic and pulmonary

valves will close, as the ventricles deplete.
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Figure 2.2: Heart cycle correlated to ECG signal.[1]

The cardiac cycle, described above, is closely connected with an electrical signal, that
is generated by the sinoatrial node, the heart’s peace maker, located in the upper part of
the right atrium. That signal spreads out through the atrium, passes the atrioventricular
node and via the Purknje fibers ends up throughout the ventricles. ECG pattern is gen-

erally based on the depolarization and repolarization of the heart. The overall direction
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of depolarization and repolarization produces a vector that creates a positive or negative
deflection on the ECG. A normal ECG waveform consists of 3 major entities: a P wave,
a QRS wave and a T wave. The P wave represents atrial depolarization. During this
phase, electrical signal reaches left and right atria, which subsequently contract and pump
additional blood inside the ventricles. Eventually, the electircal wave reaches the atri-
oventricular node, leading to QRS complex. The QRS complex represents the ventricular
depolarization, which is followed by the ventricular systole. The electrical systole of the
ventricles begins at the onset of the QRS complex. During QRS complex, the ventricles
contract in order to eject the blood into circulation. The ventricular repolarization (re-
covery) follows ventricles contraction, which is represented by the T wave. In this phase,

ventricles recover and wait to be refilled with the circulation blood.

As mentioned above, a large amount of information about the structure of the heart
and the function of its electrical conduction system can be extracted. Among other things,
the rate and the rhyhm of heartbeats can be measured throught ECG signal. All entities
of the ECG waveform and the intervals between them have a predictable time duration, a
range of acceptable amplitudes and a typical morpholoy. Any deviation from the typical
pattern is of clinical significance. Arrhythmia is considered as one of the most commly
encountered heart malfunctions. Cardiac arrhythmia, also known as cardiac dysrhythmia
or irregular heartbeat, is a group of conditions in which the heartbeat is irregular, too
fast, or too slow. However, some asymptomatic arrhythmias are associated with adverse
events. Examples include a higher risk of blood clotting within the heart and a higher
risk of insufficient blood being transported to the heart because of weak heartbeat. Other
increased risks are of embolisation and stroke, heart failure and sudden cardiac death.
Medical assessment of the abnormality using an electrocardiogram is one way to diagnose

and assess the risk of any given arrhythmia.
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Figure 2.3: ECG signal and some pathological heart conditions that can be derived from
the ECG signal.[2]

Taking into account the critical condition of a person suffering from arrhythmia episodes,
the field of detecting signs of arrhuthmia in an ECG signal has been highly investigated.
Since, the ECG signal is a non-stationary signal, arrhythmias may occur at random in
time scale. Therefore, the study of the ECG pattern and heart rate variability signa may
have to be processed several hours. This means that an enormous data set needs to be
carried out in order for the diagnosis to be reached effectively. Thus, machine learning
techniques [13] are ideal for solving the diagnosis problem. The data set is used as the
training set required by machine learning solutions, that can deliver a diagnosis after their

training is completed.

In most of the studies, MIT-BIH Arrhythmia Database [14] is used as the source of
ECG recordings. So, MIT-BIH database is used to form the training set. The MIT-BIH
Arrhythmia Database consists of 48 half-hour excerpts of two-channel ambulatory ECG
recordings from patients with different medical files and types of arrhythmias, digitized
at 360 samples per second per channel with 11-bit resolution over a 10 mV range. Fur-
thermore, two or more cardiologists independently annotated each record and computer-
readable reference annotations for each beat was included in the database. As a result,
training data sets for the arrhythmias’ detection problem was created, using MIT-BIH

database. Firstly, a classifier based on machine learning techniques was trained using this
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data set and, then, was used to detect arrhythmias in individual beats.

The algorithm of acquiring and processing the ECG signal in order to extract and
classify each beat was composed of varius stages. It is divides into three main stages:
a filtering stage, a heartbeat detection and feature extraction stage and a classification

stage. An overview of the ECG analysis flow is depicted in Fig.2.4.

-t/\—-&/ Band pass R peak Discrete Heart beat Diagnosis —
> Filtering det:ctian Wavelet diagnosis Neormal /
Y v process Transform classifier Abnormal

Figure 2.4: ECG Analysis Flow [11]

The following key features are included:

Noise removal.

In this stage the signal is filtered for noise removal, usually using a band-pass filter.
The artifact signals that are removed include baseline wander, power line interference and
high-frequence noise. Artifacts resulting from patient breathing and movement also have

to be removed. The filtered ECG signals are used in all subsequent processing.

R peak detection.

In this stage the ultimate goal is to detect the heart beats that compose an ECG signal
of a longer duration. In order to do that usually peaks of the QRS complex have to be
identified and possibly P wave, T wave and QRS onsets and offsets [15]. The heart beat
exact location and duration can be deducted from this information. MIT-BIH Arrhythmia
Database [14] provides the user with function implementations that locate these fiducial
points . These functions can be applied to the ECG signals available and the results can
be verified with the help of the doctors’ annotation files. That way we manage to isolate
beats and thus construct the beats which will be included in the training data set. In
a real-time ECG acquisition system, the heart beat is not known a priori and points of
interest such as the R peak have to be defined relying solely on the QRS detectors available
in order for a new heart beat to be identified. Smaller fractions of the ECG signal are now

processed for beat segmentation and as a result fewer beats are detected each time.

Feature extraction process.

Having determined a new heart beat, a feature extraction process is imposed on it in

order to extract its characteristics. These characteristics refer to speciffic signal parameters
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that are indicative of the physiological state of interest. For arrhythmia detection there
is a variety of types of characteristics that can be used, each of them introducing various
clinical trade-offs. The most complete way to display the information included in the
ECG signal is to perform spectral analysis. The wavelet transform (WT), an extension of
the classic Fourier transform, can be applied to extract the wavelet coefficients of discrete
time signals, such as the ECG. The WT works on both time and frequency domain and
allows the decomposition of a signal into a number of scales, each scale representing a
particular coarseness of the signal under study. WT also has the ability to compute and
manipulate data in compressed parameters which are called features. Thus using the WT
transform, the ECG signal, consisting of many data points, can be compressed into a
few parameters that characterize its behaviour and are not apparent from the original
time domain signal. The heart beats detected at the previous stage, are decomposed
into timefrequency representations using discrete wavelet transform (DWT) and wavelet
coefficients are calculated to represent the signals [16]. The outputs derived at this stage

form the feature vectors that are used for classiffication.

Diagnosis classiffication.

The final stage of the analysis flow is actually detecting whether the heart beat exhibits
arrhythmia signs or not. This is performed using a classification algorithm, which detects
the pattern of problematic beat. The classiffier has been trained on the data set that
includes the feature vectors of the isolated beats. Given a new feature vector the classifier

can decide on whether the corresponding beat displays signs of arrhythmia.

Support Vector Machines [5] are the machine-learning based classiffiers that are used
in this study. SVMs are popular machine-learning classifiers for data-driven modeling and
classification and can be efficiently trained offline. Their training process results in a set
of vectors, called support vectors (SVs), which are used to model the data by representing
a decision boundary. This decision boundary is then used to classify a new instance, the
feature vector of an unclassified beat. The number of support vectors and the feature-

vector dimensionality can have a major impact on classifier complexity [9].
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2.2 Related Work

The investigation of the electrocardiogram (ECG) signal has been extensively used for
monitoring and diagnosing many cardiac diseases. In recent years, numerous research have
been conducted for analyzing and classifying the ECG signal. Most biomedical devices
used for ECG analysis have to provide accurate results in real time. Therefore, a large
amount of data with extremely complex correlations have to be processed. According to
[9], data-driven modeling techniques are emerging as a powerful approach for overcom-
ing the mentioned challenges [18] since a lot of machine-learning techniques have been
rapidly developed, that are capable of managing large amounts of data to model specific
correlations and then use models within a decision function [17]. Additionally, biomedical
devices require very low power consumption,because they are mostly wearable devices. To
that direction the writers propose to employ application-specific architectures for low en-
ergy [19], [20], where they use arrhythmia detection and the ECG analysis flow, stated in
section 2.1. They also use Support Vector Machine based classiffiers in the classiffication
stage and RBF (exponential) kernel function in the classiffication core since linear kernels
are not suitable for the degree of complexity of the correlation of medical signals. The
kernel function along with the number of support vectors and feature vector dimensional-
ity can have a major impact on classiffier complexity. This was proven by implementing
the entire arrhythmia detection algorithm on an embedded low-power base processor us-
ing high-order detection models for accurate signal classiffication and performing energy
analysis. Figures 2.5 and 2.6 show the energy of classiffication versus number of support
vectors and feature vector dimensionality, respectively. It can be seen that, because of
energy scaling, classiffication energy rapidly dominates that of feature extraction. It is
found that classiffication poses the energy bottleneck due to the complexity of the models

required.

Thus, in their study they aim to optimize the classification stage in terms of through-
put and energy efficieny. To achieve that they explore the development of a co-processor
based architecture suitable for the analysis flow of various biomedical signals that require
classification. A general-purpose processor is employed for feature computation, while an
optimized co-processor is employed for kernel-based SVM classification. The specifications

for the platform are meeting the constraints for real-time detection, energy efficiency and
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exibility so that it supports various biomedical applications. The architecture has three
main blocks: buffers for the support and test vectors, MAC units and a programmable
polynomial kernel core. The support vectors are loaded to the buffers after the offline
training is finished and the test vectors are dynamically loaded to their respective buffers.
Each MAC unit is responsible for the dot product computations of the SVM classifier
between a test vector and the support vectors in one support vector buffer. Once multi-
plication over all the support vectors is complete, the dot products are multiplexed to the
programmable polynomial kernel core, where a second-, third-, or fourth-order polynomial
transformation is computed as well as the kernel of the SVM classifier selected (such as
RBF sigmoid, etc). The results are scaled and summed by a final accumulator whose out-
put sign determines the classification result. The computations are performed on integer
values. The real-time constraints are met by parallelizing the dot product computations
with the use of multiple MAC units and energy efficiency is achieved through voltage scal-
ing in the MAC units. Furthermore, in [11], a hardware FPGA co-processor is developed
for the classification stage in order to optimize throughput and energy efficiency. They
built a co-processor using High Level Synthesis tools and, thus, the architecture is fixed
according to kernel function and the data related to the SVM model, such as the number of
support vectors and the coefficients, are hardcoded instead of being loaded. Optimization
is applied by modifying the structure of the code, increasing instruction level parallelism
and utilizing the optimization directives of the tool. In this thesis, the aim is to imple-
ment and optimize the ECG analysis flow in terms of latency gain and energy efficiency
on an ultra-low-power multicore system-on-chip, Movidius Myriad 2, designed for specific
vision processing applications. In order to achieve the optimization, the development of
the flow on the VPU Myriad 2 was based on its own architectural characteristics. Myriad
2 processor consists of a total of 14 cores. Taking that in mind and the fact that Myriad 2
comes with a 2MB multiported DRAM memory, make it suitable for implement high com-
putational tasks on it, such as the SVM classifiers. Moreover, the 12 "mini” cores support
Single Instruction Multiple Data (SIMD) architecture, allowing computations of 128-bit
number to be performed in one cycle (more information about Myriad 2 architecture is
described in chapter 4). Taking these characteristics into account, instruction level par-
allelism was applied, in order to maximize the computations parallelism on each SHAVE
and to make it possible of using the SIMD feature of the processor. Additionally, memory
system architecture is of great importance in Myriad 2. Thus, the support vectors are
mapped in the 2-MB DRAM, in order to achieve greater gain latency through minimizing
the SHAVE-memory bridges crossed.






Chapter 3

Theoritical Backround on ECG

analysis flow

As mentioned in chapter 2, a typical structure of the algorithm for the heartbeat
classification, which is implemented in this study, consists of four main parts. The first
lead of the digitized ECG signal is applied as the input to the system. A filtering unit is
used as a preprocessing stage, to remove baseline wander and noise from the ECG signal.
The filtered signal is then passed to the heartbeat detection unit, which attempts to locate
all the heartbeats contained in the input ECG signal. Since the QRS complex is located,
the ECG signal is segmented into single heartbeats. Next in the flow, a feature extraction
is included, in order to achieve greater classification performance. In this phase, a feature
vector is extracted for every single heartbeat with a smaller number of elements. This
feature vector is expected as an input for the classification stage, where the heartbeat will

be labeled as nornal or abnormal by a single classifier.

3.1 MIT Database

As already stated, for the purposes of this study, data from the MIT-BIH arrhythmia
database [14] were used. This database is a result of the collaboration of Beth Israel
Deaconess Medical Center and MIT, and it is one of the most utilized databases for

research purposes.

The database is composed of 48 half-hour excerpts of two-channel (two leads) ambula-
tory ECG recordings, obtained from 47 subjects. Of these, twenty three recordings were
chosen at random from a collection of over 4000 24-hour ambulatory ECG recordings,
serving as a representative sample of routine clinical recordings. The remaining twenty
five recordings were selected from the same set to include a variety of rare but clinically
important phenomena (complex ventricular, junctional and supraventricular arrhythmias),

which would not be well represented in a small random sample. The subjects included 25
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men aged 32 to 89 years and 22 women aged 23 to 89 years. Approximately 60% of the
subjects were inpatients and 40% outpatients. The data are bandpass filtered at 0.1-100Hz
and digitized at 360 samples per second per channel with 11-bit resolution over a 10 mV
range. In 45 recordings, the first lead is a modified limb lead IT (MLII), and for the resting
3 recordings it is lead V5. The second lead is lead V1 for 40 of the recordings, and it is
either lead II,V2, V4 or V5 for the other recordings.

The MIT-BIH database also provides annotations for each record, where cardiologists
placed a label for every beat detected in the record. There are approximately 110.000
annotations. Table 2.1 lists the heartbeat types included in the database and their mapping
to the American Heart Association (AHA) heartbeat classes (N, V, F, E,; P, Q and O).
Table 2.2 shows the percentages of beat labels that correspond to each heartbeat class.
The percentages are disproportionate, as the largest beat class, ‘N’ (normal beat), covers
84,8% of the beats found in the database.

In the algorithmic analysis that follows, data from the first-channel lead (MLII) of all
records of the database were used, apart from records 102, 104, 114, whose first-channel

lead is not a MLII. Two arrhythmia groups are examined, 'Normal’ (N), and ’Abnormal’
(V,F,E, P,Q, 0).

3.2 Discrete Wavelet Transform

The Wavelet Transform (WT) is similar to the Fourier transform, with the extension
that it is capable of providing the time and frequency information simultaneously, hence
giving a time-frequency representation of the signal. This is essential when analyzing
non-stationary signals (whose frequency response varies in time), such as the ECG signal,
where the time localization of the frequency spectral components are needed. Generally,

the wavelet transform can be expressed by the following equation:

F(ah) = [ 1@ (e)ds (3.1)

where the * is the complex symbol and function %) is the transforming function called
the mother wavelet. Dilation, also known as scaling, compresses or stretches the mother
wavelet and translation shifts it along the time axis. The WT can be categorized into
continuous and discrete. Continuous, in the context of the W'T, implies that the scaling and
translation parameters change continuously. However, calculating wavelet coefficients for
every possible scale can represent a considerable effort and result in a vast amount of data.
Therefore, discrete wavelet transform (DWT) is often used. In the DWT, a time-scale
representation of a digital signal is obtained using filtering techniques. Filters of different
cutoff frequencies are used to analyze the signal at different scales. The signal is passed

through a series of high pass filters to analyze the high frequencies, and it is passed through
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a series of low pass filters to analyze the low frequencies. The resolution of the signal,
which is a measure of the amount of detail information in the signal, is changed by the
filtering operations, and the scale is changed by upsampling and downsampling operations.
Downsampling a signal corresponds to reducing the sampling rate, or removing some of
the samples of the signal. Upsampling a signal corresponds to increasing the sampling rate
by adding new samples to it (usually zeros or interpolated values). The DWT analyzes the
signal at different frequency bands with different resolutions by decomposing the signal
into a coarse approximation and detail information. DW'T employs two sets of functions,
called scaling functions and wavelet functions, which are associated with low pass and

high pass filters, respectively.

The decomposition of the signal into different frequency bands is simply obtained by
successive highpass and lowpass filtering of the time domain signal. The original signal
x[n] is first passed through a halfband highpass filter g[n] and a lowpass filter h[n]. After
filtering, half of the samples can be eliminated according to the Nyquist’s rule, since the
signal now has a highest frequency of p/2 radians instead of p. The signal can therefore

be downsampled by 2, simply by discarding every other sample.

This constitutes one level of decomposition and can mathematically be expressed as

follows:

Ynighlk] = ) x[n] * g2k — 1] (3.2)

n

Yiowlk] = x[n] x b2k — n] (3.3)

n
where ypign[k] and yjo, [k] are the outputs of the highpass and lowpass filters, respectively,
after downsampling by 2. This decomposition halves the time resolution since only half the
number of samples now characterizes the entire signal. However, this operation doubles
the frequency resolution, since the frequency band of the signal now spans only half the
previous frequency band, effectively reducing the uncertainty in the frequency by half.

The above procedure can be repeated for further decomposition.

3.3 Background Information on SVM Classifiers

Support vector machines (SVMs) are machine learning algorithms, based on the statis-
tical learning theory, that analyze data and recognize patterns. They are used for classifi-
cation and regression analysis. Given a set of training examples, each labeled for belonging
to one of two categories (supervised learning), an SVM training algorithm builds a model
that assigns new examples into one category or the other, making it a non-probabilistic
binary linear classifier. SVMs can only handle binary classification problems. Multiclass

classification can be obtained through the combination of multiple binary classifiers.
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An essential component of SVMs is the separating hyperplane. In a binary classification
task, the hyperplane is the geometrical division or separation between the two categories.
In a one- dimensional space, this is a single point, in a two-dimensional space a line, in
a three-dimensional space a plane. We can extrapolate this procedure mathematically to
higher dimensions. The general term for a separator in such a high dimensional space is a
hyperplane. The SVM algorithm will try to find the optimal hyperplane, called maximum
margin hyperplane that offers the best classification. This is achieved by the hyperplane
that has the largest distance to the nearest training-data point of any class, since in general
the larger the margin the lower the generalization error of the classifier. The decision of the
optimal hyperplane is fully specified by a (usually small) subset of the data which defines
the position of the separator. These points are referred to as the support vectors. In order
for the SVM to be able to deal with errors in the data by allowing a few misclassiffication,
soft margins can be set around the hyperplane. They determine the number of examples
that are allowed to push their way through the margin of the hyperplane at a certain

distance without affecting the final result.

A SVM is a kernel-based technique that makes use of a kernel function. While the
original problem may be stated in a finite dimensional space, it often happens that the
categories to discriminate are not linearly separable in that space. For this reason, it
is proposed that the original finite-dimensional space be mapped into a much higher-
dimensional space, making the separation easier in that space. A kernel function will add
a dimension to data, in order to obtain the most optimal classiffication. Any given dataset
with consistent labels can be brought into a dimension where it can be linearly separated

by a hyperplane.

Figure 3.1: Separation of data classes possible in a higher-dimensional space [10]
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The hyperplane decision function for classifying feature vector x is of the following

form:

N_sv
Class = sgn( Z (yi * a; * K(x, sup_vector;)) — b) (3.4)

i=1
where K is the kernel function, x is the feature vector, sup_vector; is the i-th support
vector and y;, a; are values related to it and result from the classifier training process.
Coefficient b is a bias value, also a result of the training process and is constant for all
support vectors. The kernel function is very important to the accurate prediction of testing
data. Depending on the characteristics of the dataset, different kernel functions are able

to provide the desired classification accuracy.

The most popular kernels are the following:

T

e linear: K(x, sup_vector;) = z' * sup _vector;

T d

e polynomial: K(x, sup_vector;) = tanh(y % ' * sup_vector; + r)

e radial basis function (RBF): K(x, sup_vector;) = exp(—~ * ||z — sup_vector;||?)
e sigmoid: K(x, sup_vector;) = tanh(vy x sup_vector; + r)

If the feature vectors of our data set were linearly separable, a linear kernel function
could be used for classification. The test vector x could be pulled out of the summation
in 3.1, allowing the summation to be precomputed over all of the support vectors into a
classification energy would remain constant. However, biomedical applications have shown
to perform poorly when linear decision functions are used with medical datasets [9]. Non-
linear functions, such as high-order polynomials, RBFs, or sigmoidal kernels, are needed

for acceptable classifier accuracies.

In this study, RBF kernel function is implemented, since the complex correlations
between the attributes of our feature vector and the physiological states of interest typically
require the flexibility afforded by non linear kernel functions. The advantage of the RBF
kernel over the other non linear kernels is that RBF has fewer parameters and fewer
numerical difficulties [22]. The RBF kernel for test vector x and the i-th support vector

sup_vector; is defined as:

K (z, sup_vector;) = exp(—~ * ||z — sup_vector;|?) (3.5)

Combining the equations , the final function, which will be implemented, is the follow-

ing:

N _sv

Class = sgn( Z (yi * a; * exp(—7 * ||z — sup_vector;||?)) — b) (3.6)
i=1

The original kernel code of this equation is provided in C language in 3.1. In ??, sv
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_coef for the product of y; and a; of equation 3.1. The complexity of the algorithm depends
on the number of the support vectors N_sv and the length of the feature vector D_sv. The
support vectors were trained using the Matlab interface of LIBSVM library for Support
Vector Machines [21].

Listing 3.1: SVM original kernel code

const float sv_coef|[N._sv];

const float sup._vectors[D_sv]|[N_sv];
void SVM _predict (int xy, float test_vector [D_sv]){

for (i=0; i<N_sv; i++){
for (j=0; j<D.sv; j++){
diff=test_vector[j] — sup_vectors[j][i];
norma = norma + diffxdiff;

}

sum = sum + exp(—gammasnorma)*sv_coef[i];

norma = 0;
}
sum = sum — b;
if (sum<0)

xy = —1;
else

xy = 1;







Chapter 4

Myriad 2 System-on-Chip

Presentation

This chapter describes the functionality and use of the Myriad 2 multiprocessor SoC.
In addition, it introduces details regarding the architecture of this chip as well as the

programming paradigms it supports.

4.1 Myriad 2 Implementation Board

Myriad 2 is a multiprocessor SoC, that is designed to perform highly computational
tasks for mobile, wearable and embedded applications. Myriad 2 incorporates parallelism,
instruction set architecture and microarchitectural features to provide highly sustainable

performance efficiency for a wide range of applications.

4.1.1 Myriad 2 System Architecture

Most typical application processors systems-on-chip (SoCs) are typically based on one
or more 32-bit reduced-instruction-set computing (RISC) processor, surrounded by hard-
ware accelarators, that share a common multilevel cache and DRAM interface. This shared
infrastructure is attractive from a cost perspective, but creates major bottlenecks in terms
of memory access, where highly computational tasks demand real-time performance but
must contend with user applications and a platform OS such as Android. A better solution
is to build a software programmable architecture as a coprocessor to an application proces-
sor, which can take over all the hard real-time workload, dealing with multimedia systems
and accelerometers. As a result, the architecture presented in [6] focuses on power-efficient
operation, as well as area efficiency, allowing the programmer to choose between software

or hardware implementation of his product.

Myriad 2 as a typical SoC combines two 32-bit reduced-instruction-set-computing(RISC)

o7
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processors LEON. Also offers twelve SHAVES to provide exceptional performance effi-
ciency and flexibility. Both 32-bit processors can control the 12 or a number of the inter-
grated SHAVE processors algorithms. The first LEON is called LEON OS and is designed
to communicate with the outside world. LEON OS can control all external peripherals,
such as Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral Inter-
face (SPI), ETHERNET, GPIO, USB 3.0, etc, connected to a reduced number of I/O pins
using a tree of software-controlled multiplexers. In this way, these interfaces support a
broad range of use cases in a low-cost plastic ball-grid array package with integrated 2 to
4 Gbit low-power DDR2/3 synchronous DRAM stacked in package using a combination
of flip-chip bumping for the VPU die and wire bonding for the stacked DRAM.LEON
OS comes with bigger caches, a L1 cache of 32KB and a L2 cache of 256 KB, making it
possible to run a simple RTOS on it. The other LEON, called LEON RT, is responsi-
ble of controlling the media devices of Myriad 2, such as camera sensors, LCDs, HDMI
controllers etc, as well as, of using high performance video hardware filters for vision pro-
cessing applications. Hardware accelerators help speed up hard-to-parallelize functions
required by video codecs. Up to 12 independent high-definition cameras can be connected
to 12 programmable MIPI D-PHY lanes supporting CSI-2 organized in six pairs, each of
which can be independently clocked. In order to be able to control all these devices and
the dataflow, LEON RT has a 32KB L2 cache and 4KB L1 cache.

Additionally, Myriad 2 comes with a software controlled, multicore and multiported
memory subsystem with the size of 2MB, which can support the 12 processors and two
RISC processors with high, sustainable on-chip data. In order to be able the processors
and hardware accelarators to communicate with the memory and offload data movement
between them and a large range of peripherals, a multichannel direct memory access engine

is available to move the data between them.

Myriad chip offers Streaming Hybrid Architecture Vector Engine (SHAVE) 128bit Very
Long Instruction Word (VLIW) cores with a particular instruction set, able to process high

computational tasks. Myriad 2 intergrates 12 SHAVE processors as depicted in Fig.4.1.
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Figure 4.1: Myriad 2 vision processing unit (VPU) system on chip (SoC) detailed block
diagram shows the 12 SHAVE cores and associated Inter-SHAVE interconnect with the
multicore memory subsystem. Above the CMX memory are the hardware accelarators for
computer vision and image processing, as well as other media devices, controlled by the
LEON RT reduced-instruction-set computing processor (RISC) processor. Above that,
are the I/O peripherals, which are controlled by other RISC processor (LEON OS).[7]

Because power efficiency is an ascendent factor, the implementation board utilizes 17 power
islands, including one for each of the 12 SHAVE cores, providing a tailormade power control
using software.The device supports 8-, 16-, 32- and 64-bit integer operations as well as
fp16 and fp32 arithmetic. Thus, Myriad’s architecture offers an increased performance per
watt across a wide range of highly computational applications. Myriad 2 family consists

of the following two series:
e MA2100, the one we use on this thesis, and
e MA2x5 - MA2150/MA2155/MA2450/MA2455

MAZ2100 is the first generation Myriad 2 SoC with 500 Mhz system clock and 128 MB
DDR2 at 500 Mhz.

As Figure 4.1 shows, there are 3 major architectural units in the Myriad 2 processor:
the Media Sub System (MSS), the CPU Sub System (CSS) and the Microprocessor Array
(UPA).
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The Media Sub System (MSS)

The MSS is the subsystem, that is responsible for the external connections between
Myriad 2 processor and the camera sensors, LCDs and HDMI controllers, and, at the same
time, for making use of hardware filters, located on Myriad 2. Therefore, MSS consists
of the MIPI, LCD, CIF interfaces, the SIPP filters, as long as the AMC block which is

designed for making it feasable all these to communicate with the CMX memory.

Main part of MSS is LEON RT RISC processor, which is responsible for all above
stated parts. LEON RT has a 32 KB of L2 cache memory, sufficient enough to support
the coordination, LEON RT is responsible for. Furthermore, LEON RT is the only one,
which can change any parameters of MSS block with the minimum delay due to fewer

bridge crossing.

The CPU Sub System (CSS)

The CSS have been designed to be the main communication and control unit with the
outside world via the external communication peripherals: 12C blocks, 12S blocks, SPI
blocks, UART, GPIO, ETH and USB3.0. The control unit of CSS is the Leon OS RISC
processor, but in this block the Leon has much bigger L1 (32 KB) and L2 (256 KB) cache
memories, which allows to run a modern RTOS on it. This block also offers an AHB
DMA engine for offloading large amounts of data from DDR memory or peripherals to
the processors. Beside handling the external interfaces and communication Leon OS could

also control SHAVE processors imaging algorithms.

The Microprocessor Array (UPA)

The UPA subsystem consists of the 12 VLIW SHAVE vector processors, the 2 MB
CMX SRAM memory and a few other blocks from which we list: the specialized DMA
engine, the 256 KB L2 cache memory available to the SHAVE cores. The main purpose
of UPA is to support the 2 LEON processors by taking over many imaging or computer
vision tasks as well as any other general computation intensive algorithms. Each SHAVE
processor has preferential ports into a 128 KB slice of the CMX memory, which will be
detailed in a following subsection. As such, 12x128 KB = 1536 KB are preferentially used
by SHAVE cores but the remaining 512 KB of CMX memory are generally usable by any
other resources. The recommended usage for these 512 KB is for HW SIPP filters usage
or Leon OS timing critical code which would otherwise not be able to be kept in DDR.

4.1.2 Streaming Hybrid Access Vector Engine processor overview

To achieve high performance and low power consumption, Myriad 2 employs 12 SHAVE

processor, which contain wide register files with couples with a Very Long Instruction Word
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(VLIW). VLIW packets can control multiple functional units, which support SIMD for
high parallelism and throughput. Each one of these SHAVE cores can be launched in
parallel. SHAVE’s architecture is shonw in Fig. 4.2.

SHAVE supports SIMD instruction on multiple type, such as 16 bits integer, 32 bits
integer, 16 bits float and 32 bits float. Assembly, C and C++ can be used for SHAVE pro-
gramming. As a result, SHAVEs are easy to program and can manage higher performance

per watt.

As mentioned before, VLIW packets can control multiple functional units, supporting
SIMD for high parallelism. The functional units are 32-bt Integer Arithmetic Unit, 32-bit
Scalar Arithmetic Unit, 128-bit Vector Arithmetic Unit, which supports 8, 16, 32-bit of
both floating point and integer types. Besides, there is a 128-bit Compare Move unit
(CMU), load-store units and predicated execution units. Each functional unit can be
used either from a Vector Register File with 32 registers of 128 bits each or from Integer
Register File with 32 registers of 32-bits each. The SHAVE processors have access both
to L1 and L2 cache memories, 1 KB and 256 KB respectively. L2 cache memory can be
divided up to 16 of 16 KB each.

(12 ports)
(18 ports)

PEL BRU LS L5U1 1AL

1
B parallal SHAVE functional unita supplied with VAF and IAF deta

Figure 4.2: The Streaming Hybrid Architecture Vector Engine (SHAVE) core microarchi-
tecture, able to perform 128-bit vector load/store, floating-point, integer and control-flow

operations in one clock cycle [7]

The SHAVE processors are easily programmable using C, C++ and/or Assembly lan-
guages, and being compiles via Movidius internally developed tools. Multiple vector types
are supported by Movidius C/C++ compiler, such as int4, uint4, float2, short4 etc. Ad-

ditionally, numerous standard C and C++ libraries are delivered along with the Movidius
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compiler.

Multiple core systems are usually equiped with internal locks, in order to give exclusive
access to a particular resource for a single processor. So, Myriad 2 comes with eight
mutexes, thus SHAVESs can predicate-stall on mutex availability in order to avoid multiple

memory accesses by multiple processors.

The SHAVE processor is typical used for performing intensive computational tasks.
Usually, data would be loaded from DDR to CMX memory piece by piece and it would
be processed there. In order to achieve the best results and minize the development time,
C level design is prefered for control code on SHAVEs and optimized routines for the
inner loops of the computational tasks. It is better to let LEON handle various inter-
rupts, while SHAVEs are processing the data. Typically, the Streaming Image Processing
Pipeline (SIPP) engine is handled by the SHAVE processors, in order to achieve optimized

scheduling of its functionality.

4.1.3 Memory Overview

The most ascedent factor for image processing and computer vision algorithms is the
ability of combing pipelines of hardware and software. Therefore, the connection, as well
as, data sharing between SHAVE processors and hardware accelerators was the key of
designing Myriad 2 multicore system-on-chip. In order to achieve that, Myriad 2 was
designed around a 2-MB multiported memory block called Connection Matrix (CMX)
memory(as shown in Fig.4.3), which can be configured to manage different instructions

and workloads.

subsystem

CDR
interface
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Figure 4.3: Myriad 2 VPU SoC die plot and 6 x 6 mm ball-grid array packaging. As you
can see, SHAVE processors and hardware accelerators are built around the CMX memory
subsystem. By the SHAVE processors and the SIPP filters, the DRAM interface, MIPI,
USB and other peripherals was placed, with the remainder of the die plot being occupied
by the RISC processors and other subsystems.|[6]

The CMX memory can be divided to 16 blocks of 128 KBytes, which are independently
arbitrated, allowing each RAM block to be accessed independently. Theoritical, the 12
SHAVE processors can move 12 X 128 bits of code and 24 X 64 bits of data. This software-
controlled memory can be configured to allow many workloads to be handled, providing
high sustainable on-chip bandwidth of 307 GBps to support data and instruction offload to
12 SHAVE processors. Additionally, the CMX memory can support multiple traffic classes
for latency-tolerant hardware accelerators to latency-intolerant SHAVE vector processors,
allowing construction of pipelines from a mix of software running on SHAVEs and hardware
accelerators, which can perform simultaneously without performance loss [6]. Finally,
each SHAVE has higher bandwidth and lower power access to ”its” own local slice. The
time penalty of accessing different slice is about 10 percent of SHAVESs running time, as
measured in lab. As such, each SHAVE is more energy-efficient to its local slice, and this

is worth keeping in mind at design time for optimal performance.

4.2 Myriad 2 Basic Programming Paradigms

There are three different programming paradigms supported by Myriad 2 platform.
Each one offers features suitable for specific applications and is selected based on the

relevant requirements.

Standard Programming Paradigm

The standard programming paradigm for Myriad 2 involves using RTEMS running on
LeonOS and the SIPP scheduler on Leon RT. In this way, it provides parallelization in
an environment that is easily used and configured. The SIPP scheduler is designed to
ensure parallel pipeline configurations for managing the HW filters and exterior interfaces
with a low footprint. Hence, LeonRT optimized utilization is guaranteed. The number
of SHAVESs used for SIPP applications is configurable, so those that are not used for line
based pipelines will remain free to be used by the RTEMS operating system running on

Leon OS for various other purposes such as computer vision algorithms.

The One Leon Programming Paradigm

This paradigm is suitable for applications that might not require heavy line based

processing. Such applications might choose to make the Leon RT processor completely



64 Chapter 4. Myriad 2 System-on-Chip Presentation

inactive and instead use only the LeonOS with or without RTEMS. HW filters can still
be used in this paradigm. In this programming model, Leon OS would control all of the

applications running on the 12 SHAVE cores.

Bare Metal Programming Paradigm

It is often wanted by developers to write applications which will not be affected by
any operating system overhead. For this reason, a bare metal programming paradigm is
also be supported by Myriad 2. This allows the usage of both LEON cores without any
operating system. Only minimal schedulers are required in order to control the pipelines
application. Even though this paradigm requires more integration efforts, it offers the

developers a model in which operating systems cost is absent.

4.3 Myriad 2 Applications

The capabilities that were described previously make this embedded platform ideal
for various computer vision applications, as stated in [6]. The SHAVE DSP supports
streaming workloads from the ground up, making decisions about pixels or groups of pixels
as they are processed by the 128-bit VAU. Because 128-bit comparison using the CMU and
predication using the PEU can be performed in parallel with the VAU, higher performance
can be achieved compared to a GPU in which decisions must be made about streaming
data because GPUs suffer from performance loss due to branch divergence. Futhrermore,
Myriad 2 System-on-Chip is capable of running machine learning algorithms, due to high
level of parallelism that can be achieved, high workloads that can be processed and all
above Myriad 2 features that help accelerate any data analysis, such as VLIW and float4
or float16 data type support.

For example, the SHAVE processor excels when processing the FAST9 algorithm, where
25 pixels on a Bresenham circle around the center pixel must be evaluated for each pixel
in, for instance, a 1080p frame. The FAST9 algorithm looks for nine contiguous pixels
out of 25 on a Bresenham circle around the center that are above or below a center-pixel
luminance value, meaning hundreds of operations must be computed for each pixel in a
high-definition image. This requires hundreds of instructions on a scalar processor, and
performance optimization requires the use of machine learning and training to improve

detector performance [15].

In general, the application domain of Myriad 2 is Intelligent Machine Vision with some

examples being ( Source: www.movidius.com) :
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Robotics

Drones and household robots are increasingly small and affordable enough to become
serious consumer product categories. As new types of service, companion and collabora-
tive robots emerge, these devices are demanding visual intelligence in order to navigate,
understand and proactively assist us in our daily lives. Movidius provides the platform
to create visually intelligent drones and robots without sacrificing size, battery life or

performance.

Augmented and Virtual Reality

Virtual Reality (VR) and Augmented Reality (AR) devices are hitting the market and
technological demands on the hardware are huge: gesture recognition, head tracking and
object recognition are just a few of the necessary technologies to convincingly blend the
real world with the digital. Myriad 2 allows VR and AR devices to crunch huge amounts
of data at low power and ultra-low latency, two absolute musts in compact, immersive

head-worn devices.

Wearables

Wearables are emerging as a category of devices that can augment our lives in mean-
ingful ways. By passively filtering visual information and acting on cues relevant to their
user, the dream of a truly capable digital assistant is in sight. Ultra-low power, high
performance vision processors mean that even the smallest wearable devices can benefit
from visual intelligence. The Myriad 2 platform allows devices to remain small and battery
efficient, yet provide powerful new applications based on the rich variety of visual informa-
tion available as users go about their daily lives. Smart Security Security and surveillance
technology is getting a huge boost from visual intelligence. Imagine, a doorbell camera
that not only alerts you to a visitor, but has already identified them as a courier. Visually
intelligent cameras can detect fires from heat maps and alert authorities long before a fire
builds up enough smoke to trigger a smoke detector; and motion detection cameras will
be able to differentiate potential burglar from house pet. By bringing Myriad’s visual
intelligence to our security and surveillance, these new systems can detect and then intel-
ligently act on data in real-time, providing safe and personalized security to homeowners

and businesses alike.

Smart Security

Security and surveillance technology is getting a huge boost from visual intelligence.
Imagine, a doorbell camera that not only alerts you to a visitor, but has already identified

them as a courier. Visually intelligent cameras can detect fires from heat maps and alert
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authorities long before a fire builds up enough smoke to trigger a smoke detector; and
motion detection cameras will be able to differentiate potential burgler from house pet.
By bringing Myriad’s visual intelligence to our security and surveillance, these new systems
can detect and then intelligently act on data in realtime, providing safe and personalized

security to homeowners and businesses alike.



Chapter 5

Implementation of ECG Analysis
flow on Myriad 2

In this chapter we introduce the main focus of this thesis, the software acceleration
of the ECG Analysis flow algorithm. As mentioned above, ECG analysis flow algorithm
consists of 4 different parts, the Low-pass Filter, QRS detection algorithm, discrete wavelet
transform and the support vector machine classifier. In this study, we try to accelerate
the low pass filter and the SVM classifier, as their execution time is 80x times slower than

the QRS detection and the discrete wavelet transform.

In the following sections, the C-code was implemented from scratch on Myriad 2 and
the architecture capabilities of Myriad 2 are presented, in order to achieve the best pos-
sible performance of the ECG analysis flow. The results of this thesis, as well as, the

development step, that were taken, are detailed below.

5.1 Initial porting

In the first approach, the original code was tested on the LEON RT. Standard pro-
gramming paradigm has been used and the main block diagram of the flow is shown in
Fig.5.1. The execution starts from the LeonOS processor, which runs the RTEMS op-
eration system. This processor, then, boots up the LeonRT, and simultaneously, starts
measuring the execution time, as well as, the power and energy consumption of the code.
That decision was made, in order the time measurement and the code execution to be
independent. In turn, LeonRT starts executing the ECG flow analysis, using the SHAVEs
to accelerate the filter, as well as, the SVM classifier. More details about the development
will be given in each of the following steps. In the first stage of the implementation, we

try to develop the filter execution time.

67
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Myriad2 Programming Flowchart

SHAVES SHAVES

(svm classifier)

(FIR filter)

LEON RT

(ecg analysis flow,
reading data, boot
Filter on SHAVEs)

LEON RT

{QRS detection,
Coefs Extraction)

Figure 5.1: ECG Analysis Flowchart on Myriad 2

5.2 Lowpass filtering process

Noise removal filter had a large share of the execution time of the original code, about
40 percent of the total execution time. An extended signal window is normalized, and then,
the signal is filtered, by calculating the Eucledes distance of the low-pass filter coefficients

and the signal.

At first, we implement the original code on Myriad 2, composed by a band-pass filter.
After an extensive analysis, it was decided that a removal of the high pass filter had no

impact on the decision’s accuracy of the analysis flow. The removal of the high pass filter
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resulted to a 50% latency gain, compared to the original code. The C-code of the low pass

filter is provided below in Listing 5.1.

Listing 5.1: Low pass filter main

for (j=0; j<len;j++){
ext_sig[j] = (bufferedSig[j]—baseline)/gain;

for (i=len; i<len+D_l; i++){
ext_sig_low[i] = 0;
}
for (n=0; n<(len+D_1); n++){
y-low [n]=0;
for (i=0; i<llen; i++){
if ((n—i)>=0) {

y-low [n]=y_low [n]+Num_low|[i]|*ext_sig [n—i];

}
for (i=D.1; i<(D_l+len); i++) {
y-low[i—D_1] = y_low([i]xgain + baseline;

The signal window’s form, which is processed by the filter, is shown below.

Noiseremoval window

Figure 5.2: The filtered window of the signal is smaller than the input signal window of
the noiseremoval filter, because of the functionality of the low pass filter. As a result, the

input signal window can not be divided. So the execution time is not the expected time.
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Noiseremoval window can not be divided in just half parts, since the filter loses its
precision and depth and does not behave the same way, when running on multiple SHAVES,
resulting on wrong classification results. Therefore, the input signal window keeps its
original form, only the processed part is being divided, depending on how many SHAVEs
are being used (Fig.5.2).

At first we try to increase the vectorization of the filter algorithm. To do that suc-
cessfully, a good understanding of the algorithm is required. In that direction, a detailed

explanation of the filter is provided below.

In the code in Listing 5.1, Array Num_low represents the features of the lowpass filter.
Array FEaxt_sig contains the normalized pre-filtered signal, the input of the noiseremoval
algorithm. Its size depends on the sampling frequency of the ECG analysis flow. D_l is
the depth of the filter and llen represents the size of the lowpass filter. The array y_low
contains the newly filtered signal, which is returned back to the LEON RT as an output.
At the beginning of the filter algorithm, gain and baseline are parameters of the flow,

which is used in order to normalize the ECG signal around zero.

According to chapter 5, the signal has to be multiplied with the filter’s coefficients in
order the filtered signal to be computed. The resulting algorithm is an array of sums of
the multiplication of input signal and the lowpass filter’s features. Each time in every
loop this sum is computed for every sample of the input signal of the filter. In order a
code to be vectorizable, it should be transformed, so as the data in the memory to be
accessed continiously. Each filtered signal’s sample is calculated, using the D_l previous
samples. As a result, the computations can be performed simultaneously, although, in
every partition, we need to take a window of the previous samples of the signal as input,
in order to deduct the same results. This is illustrated in Fig 5.2, where the noiseremoval
window is presented, as a combination of the D_I window, the processed window(SHAVE

window) and the llen window.

This is the main idea of this parallelization technique. The signal, that will be filtered,
can be partitioned in every shave, each one containing fewer signal samples. Different part
of the signal is given as input in the filter. So, multiple samples of the filtered signal can
be computed simultaneously and independently. The calculated samples of the signal is
returned to different addresses and their combination result to the filtered signal. Thus,
we have accomplished to extract coarse level parallelism from the initial problem and the
same result is being solved faster. The coarse level parallelism results are presented in
Chap.5.4.

So far, we examined how to parallelize the ECG analysis flow algorithm in every SHAVE
core on Myriad2, by performing the computations simultaneously. In our next step, we
tried to exploit the architectural features of Myriad2 processors, and specifically, the mi-
croarchitectural features of the SHAVE cores. As it was mention in Chapter 4, SHAVEs
support SIMD instructions on multiple data types. Very Long Instruction Words can
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control multiple functional units, such as 128-bit Vector Arithmetic Unit, which supports
8, 16, 32-bit of both floating point and integer data types. Each Vector Register File
consists of 32 register of 128 bits each. In our algorithm, signal samples are of floating
point data type. Thus, we tried to modify the code structure in order to achieve 4 floating
point(float4*) vectorization. 32-bit floating point vector size was implemented, as high
computational precision was demanded and this size was proved to fit better in flow’s

requirements.

At first, we examined the code to find any data dependences or data locality, in order
to create opportunities for further optimizations, such as vectorization of the array assign-
ments. It was noticed that, in the second loop (i_loop), the access of the array elemenents
of y_low, ext_sig and Num_low was not in the same order. Thus, we chose to make a loop
interchange between the inner loop(n_loop) and the outer loop(i_loop). This optimization
technique will allow the use of the VLIW features, as not only the elements are accessed in
the same order, which are present in memory, improving the locality of reference, but also
vectorization of the mathematical operations is now feasible. The result of the application

of the loop interchange on the nested loop and array access are displayed in Fig. 5.3

for n=0to N+D_| fori=0to len
for i=0to llen for n=0to N+D_|
y_low_ext[n}=y_low_sxt[n+Hum_low[i]*ex_siz_low[n-i]; v_low_ext[n}=y_low_sxt[n+Num_low[i]*ex_sig_low[n-i];

0 Ext_sig_low[n-i] g

f:)

N+D_| N+D_|

Figure 5.3: Loop interchange and array access

Subsequently, explicit vectorization techniques was applied on the filter’s code. First,
we vectorized the normalization process of the filter. We built 2 arrays of 4 integers, one
for the gain and one for the baseline. Building these arrays of integers allows to vectorize
the first loop. Accordingly, we vectorized the main loops of the filter. After applying loop
interchange, we built an array of 4 floats, containing the same coefficient of the lowpass
filter. Then, we implemented explicit vectorization on the arrays. The final code and

mathematical processed is displayed in Listing 5.2.
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Listing 5.2: Final filter code

float gain [4] = {gain , gain , gain , gain };
float baseline [4] = {baseline ,baseline ,baseline , baseline };

floatdx v_.8 = (floatd=*)&(gain[0]);

floatdx v_9 = (floatd«)&(baseline [0]);

for (j=0; j<noiseremoval_ window ;j+=4){
floatdx v_1 = (floatd«*)&(bufferedSig[j]);
floatdx v_2 = (floatdx)&(ext_sig[j]);
xv_2 = ((xv_1l) — (%v_-9))/(*xv_8);

int k = D _filter;
for (i=0; i<llen; i++){
float Nlow[4] = {Num_low_360[i], Num_low_360[i],
Num_low_360[i],Num_low_360[i]};
float4d* v_nl = (floatd=*)&(Nlow[0]);
if ((i—D_filter)>0){

D _filter=i;
}
for (n = D_filter;n < noiseremoval_window ;n++){
if (i==0)
y-low [n]=y_low [n+1]=y_low [n+2]=y_low [n+3]==0.0;
floatdx v_.7 = (floatd=*)&(y_-low[n]);
floatdx v_6 = (floatdx)&(ext_sig[n—i]);
xv_ 7T = *v_7T + (xv_nl)*x(xv_6);
n+=3;
}
D_filter = k ;

floatdx v_.3 = (floatd*)&(sig_filt [D_1]);
floatdx v_4 = (floatd*)&(y_-low|[D_filter + D_1]);

for (i = D_filter + D.1; i < D_filter+ D_.1 + input_window; i+=4){
*v_3 = ((*xv_4)x(xv_8)) + (xv_9);
V_3++;
v_4++;
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5.3 SVM classification

After optimizing the FIR filter, we try to accelerate the Support Vector Machine clas-
sifier, the most power and time demanding port of the ECG analysis flow. The original

code of the SVM classifier is presented in chapter 3, in Listing 3.1.

Firstly, a detailed explanation of the SVM kernel code classifier is required for the
better understanding of the reader. In the code in Listing 3.1, test vector represents the
feature vector of the pulse to be classified and has been created at the previous stage of the
ECG analysis flow, feature extraction. It is implemented as an array of D_sv elements, as
many as the attributes of interest are. The classification and differentiation of beats into
normal and abnormal is based on these chosen features of the pulse. Array sup_vectors
contains the support vectors of the hyperplane that divides the space into two classes.
It has N_sv columns, one for each support vector, and each column-support vector has
D_sv elements-attributes. Array sv_coef holds the values of the coefficients of the support
vectors, and thus has N_sv elements, one for each support vector. Constant b is also a
parameter of the derived SVM classifier and represents the bias to which the final result

is compared, so as to decide the class to which the current beat belongs.

According to the decision function given in Chapter 3, the squared euclidean distance
between the test vector and each support vector is computed and then the RBF kernel
function is applied on it. This value is then multiplied by a weighting factor equal to
the coefficient of the current support vector. The resulting value is finally added to the
total sum, which is compared to the bias in order for the class to be deducted. The
contribution of each support vector to the total sum is irrelevant to the contribution of
the other support vectors. This means that there are no data dependencies regarding
the computations performed between the test vector and each column of the support
vector’s array. As a result, these computations can be performed simultaneously. This is
illustrated in Fig.4.1 where the use of different colours indicates that the computations
performed between each coloured column and the test vector can happen in parallel with

the computations of the other columns.

Just like in filter section, array sup_vectors can be partitioned in smaller arrays, con-
taining fewer support vectors. These arrays will be of the same size, since the number
of attributes does not change. Each array will contribute a partial sum to the total sum
used for classiffication. The calculations required for the partial sums to be computed
can be performed in parallel. We have thus managed to divide the initial large prob-
lem into smaller ones, which are then solved at the same time. Each smaller problem
is not a subtask of the initial task but the same task performed on a smaller dataset.
All the smaller-scale problems are processed independently and simultaneously and their
results are combined for the final computations. Thus, we have accomplished to extract
coarse level parallelism from the initial problem. The coarse level parallelism is presented

schematically in Fig 5.5.
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Figure 5.4: Coarse Level Parallelism 2

In the initial porting of the SVM code in Myriad 2, the main part of the code, that
is responsible for computing the total sum, is going to be implemented as a separate
function, running on SHAVEs. That function will be called by the LEON processor, as
many times as many SHAVEs run each time. A different partition is assigned each time
on each SHAVE core. Every SHAVE returns the partial sum of its partition to LEON
processor, where the total sum is computed and the classification result is exported. Array
sup-vectors is initially saved in the DDR memory and its elements are read and written
directly from the memory, which means thousands memory accesses resulting to increased

execution time and huge power consumption.

Firstly, because array sup_vectors can not fit into each SHAVE’s memory slice in our
first try on Myriad 2(MA2100 model), the array is transfered into CMX/RAM memory us-
ing Direct Memory Accesses(DMAs). DMAs should not being used in abundance, because

they consume not only time, but also power. So, we tried to reduce the number of DMAs.
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At first, we increase the number of the elements, that are transfered into the memory. As
a result, we achieve to reach 100 DMA transfers from 5140 initially. But that idea was not
enough, as DMAs are still too many. Our next thought was to implement a double-buffer
transfer. Thus, we create an array that is half-loaded with the first support vectors at the
beginning of the execution of the code. As the support vectors are processed, the second
half of the array is filled with the elements, which will be processed next. This way, only 1

DMA is going to delay the execution of the code, and the execution time will be minimum.

DMA Support vectors from DMA Support vectors from memory
memory to 1 CMX slice to every CMX slice

0 N_sv 1*Nsv/ 2*Nsvf 3*Nsy/ 4N svf
DMA DMAs sh_num sh_num sh_num sh_num

CMX/RAM Memory CMX/RAM multiported memory

l 1111
= NN N
Uit J

Classification result Classification result

Figure 5.5: Coarse Level Parallelism

DDR Memory

Normally, each SHAVE has 128KB of memory in the CMX, 96KB for data usage and
32KB for its code. However, this size is not enough to fit the support vectors array in
one or two SHAVEs. Therefore, we have used a configuration LD script that changes the
memory that is available for each SHAVE only in Myriad2 MA2150 model. So, since only
a single SHAVE was used at first, we could allocate to it the size of the CMX memory,
that can afford the size of the sup_vector array. Now, there is enough memory for the

data, which are cached into the CMX memory, and so, DMAs are not required.

Below a part of the ldscript, that makes the described configuration, is avalaible in
Listing 5.3. The memory, allocated to all SHAVEs, can be seen in this script. LENGTH
is the only thing, that we have to change, in order to change the memory size of each
SHAVE. CMX memory addresses start from 0x70000000, while the addresses, that point
to DDR, start from 0x80000000.
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Listing 5.3: LD script Memory Configuration

MEMORY

{

SHVO_CODE (wx): ORIGIN = 0x70000000 + O * 128K, LENGTH = 32K
SHVO_DATA (w) : ORIGIN = 0x70000000 + O * 128K + 32K, LENGTH = 96K

SHV1_CODE (wx): ORIGIN = 0x70000000 + 1 % 128K, LENGTH = 32K
SHV1_DATA (w) : ORIGIN = 0x70000000 + 1 % 128K + 32K, LENGTH = 96K

SHV2_CODE (wx): ORIGIN = 0x70000000 + 2 % 128K, LENGTH = 32K
SHV2_DATA (w) : ORIGIN = 0x70000000 + 2 % 128K + 32K, LENGTH = 96K

SHV3_CODE (wx): ORIGIN = 0x70000000 + 3 * 128K, LENGTH = 32K
SHV3_DATA (w) : ORIGIN = 0x70000000 + 3 * 128K + 32K, LENGTH = 96K

SHV4_CODE (wx): ORIGIN = 0x70000000 + 4 * 128K, LENGTH = 32K
SHV4_DATA (w) : ORIGIN = 0x70000000 + 4 % 128K + 32K, LENGTH = 96K

SHV5_CODE (wx): ORIGIN = 0x70000000 + 5 % 128K, LENGTH = 32K
SHV5_DATA (w) : ORIGIN = 0x70000000 + 5 % 128K + 32K, LENGTH = 96K

SHV6_CODE (wx): ORIGIN = 0x70000000 + 6 * 128K, LENGTH = 32K
SHV6_DATA (w) : ORIGIN = 0x70000000 + 6 * 128K + 32K, LENGTH = 96K

SHV7_CODE (wx): ORIGIN = 0x70000000 + 7 * 128K, LENGTH = 32K
SHV7_DATA (w) : ORIGIN = 0x70000000 + 7 * 128K + 32K, LENGTH = 96K

SHV8_CODE (wx): ORIGIN = 0x70000000 + 8 * 128K, LENGTH = 32K
SHV8_DATA (w) : ORIGIN = 0x70000000 + 8 * 128K + 32K, LENGTH = 96K

SHV9_CODE (wx): ORIGIN = 0x70000000 + 9 * 128K, LENGTH = 32K
SHV9_DATA (w) : ORIGIN = 0x70000000 + 9 * 128K + 32K, LENGTH = 96K

SHV10_CODE (wx): ORIGIN = 0x70000000 + 10 * 128K, LENGTH = 32K

SHV10_DATA (w) : ORIGIN = 0x70000000 + 10 * 128K + 32K, LENGTH = 96K
SHV11_CODE (wx): ORIGIN = 0x70000000 + 11 * 128K, LENGTH = 32K
SHV11_DATA (w) : ORIGIN = 0x70000000 + 11 * 128K + 32K, LENGTH = 96K

CMX_DMA_DESCRIPTORS (wx) : ORIGIN = 0x78000000 + 12%128K , LENGTH = 3K
CMX_OTHER (wx): ORIGIN = 0x70000000 + 12%128K + 3K, LENGTH = 128K - 3K
DDR_DATA (wx) : ORIGIN = 0x80000000 , LENGTH = 128M

LOS (wx) : ORIGIN = 0x80000000 + 100M , LENGTH = 3*128K-10K

LRT (wx) : ORIGIN = 0x80000000 + 100M + 3%128K-10K , LENGTH = 10K

}

In the previous paragraphs, we examined ways to amplify parallelization by modifying
the structure of the original code and ways to minimize the memory accesses’ effect. These
are first level optimizations. This means that the performance can be further improved

by combining these modification with the features of the SHAVE cores.

The directives chosen for optimization differ from one application to another, depend-
ing on the nature of the algorithm under study. For the SVM classifier, the selection of

the applied modifications is based on the instruction level parallelism that can be accom-
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plished. Most of the directives used, aim at optimizing the inner loop that computes the
euclidean distance between the test and support vector. As mention above, the squared
differences that compose the euclidean distance can be computed in parallel, as there are
no data dependences between each support vector. That means that the inner loop can

be vectorized. As a result, we try to evaluate the best vectorization techniques.

The optimization techniques applied on the classifier are loop unrolling and scalar
expansion. The first one performs loop unrolling, a well known standard transformations,
that duplicates loop bodies by a given unroll factor. In this study, a factor of 2 and 4 (64-
and 32-bit floating point values) was tested, in order to achieve the required precision of
the floating point operations. The second technique serves to split accumulators within

unrolled loop bodies into multiple variables that are added after the loop execution.

Eventually, the compiler could automatically vectorize the inner loop by the factor of 2.
However, in the case of 4-element vectors, it could not. This concept requires the addition
of padding to each support and test vector to ensure that they are multiples of 4. At the
end, Taylor expansion of the exponential function was used, in order to achieve further

development.
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Figure 5.6: Taylor Expansion of Exponential

The main advantage of this strategy is that the accuracy of the exponential function
can be controlled by varying k . In the limit (k towards infinity) the sum converges
to the exact value of the exponential function. However, this approach has a very slow
convergence rate for increasing values of &, unless z is close to zero. In our example, the
x is very close to zero and k is chosen to be 5. Even though, k is not big enough, the
declination between the approximation and the exponential function of libc.h is about
105, which does not affect the results of our code. The results of every step and method

are presented in section 5.4.
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5.4 Results

In this section, the result of the optimizations applied on the ECG Analysis Flow are
presented. Firstly, the results of the implementation of the filter are displayed in Fig.5.7.
LEON-DDR is the initial implementation on LEON RT. Afterwards, SHAVE-CMX is the
code on SHAVES, as well as, the filter’s features are on CMX-RAM memory. The third
column shows the execution time of the vectorized code, and, the last column shows the
execution time of the filter running on 12 SHAVEs. After our optimizations, we managed

to reach a 17x speedup, regarding the execution time of the filter.

Optimization steps vs Average Performance gain of NR filter
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Figure 5.7: Optimization steps vs Average performance gain of the Noise removal filter

Afterwards, in Fig. 5.8, the performance gain of the SVM classifier can be derived.
After the initial porting, the Support Vectors are transfered from DDR to CMX memory,
using DMA. The next step is to reduce the DMA transfers. The fifth column displays
the execution time of the classifier, when the Support Vectors are loaded directly to CMX
memory and the last displays the SVM classifier running on all SHAVEs. The speedup,

compared to the initial implementation, is about 105x.
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Optimization steps vs Average Performance Gain of SVM classifier
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Figure 5.8: Optimization steps vs Average performance gain of the SVM classifier

In Fig.5.9, the average instant power consumption of the ECG analysis flow can be
seen. The maximum power consumption is below 950mW, and the minimum is about

450mW.
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Figure 5.9: Average power consumption w.r.t SHAVEs used

Below, in Fig.5.10, the energy efficiency gain is shown. The consumpted energy in
different configurations during the development of the ECG analysis flow can be seen.

The energy reduction is about 85%, compared to the initial version of the ECG analysis
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Energy efficiency gain
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Figure 5.10: Energy Efficiency Gain in different examined configurations

In Fig.5.11 and in Fig.5.12, we can see the ECG Analysi flow execution time and
energy consumption per SHAVEs used. The deduction, that can be derived from these
two graphs, is that when more and more SHAVEs are used, the execution time reduction
is not beneficial in terms of energy. As it can be seen, the minimum energy consumption
is achieved, when 6 SHAVEs are employed.
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Figure 5.11: ECG Analysis flow execution time w.r.t. SHAVEs used
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Energy of ECG Analysis Flow w.r.t. SHAVEs used
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Figure 5.12: ECG Analysis flow energy consumption w.r.t. SHAVEs used

In the next graph, Fig.5.13, the execution time of the SVM classifier on different im-
plementation boards is displays. As we can see, the execution time on Myriad 2 is very

low and comparable with the execution time on a HLS based HW implementation.
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Figure 5.13: Execution time of SVM classifier on different implementation boards
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Specifically, in Fig.5.14 and in Fig.5.15, a more detailed comparison between Myriad 2

and Zyng-7000 is presented. The execution time on Myriad 2 is still double the execution

time on Zyng-7000, but the instant power consumption is 80% lower than the Zynqg-7000.
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Figure 5.14: Execution Time of SVM on Myriad 2 and Zyng-7000
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Figure 5.15: Instant power consumption of the SVM on Myriad 2 and Zyng-7000



Chapter 6

Conclusion

6.1 Summary

Arrhythmia detection for chronic patients suffering from various cardiovascular prob-
lems requires constant monitoring by recording the ECG signal and thus processing an
enormous data set characterized by complex non-linear distribution among its samples.
Given the complexity of deriving exact models for assessing the ECG signals and predict-
ing the heart’s condition, machine learning techniques have recently dominated the field
of ECG analysis. Support Vector Machines particularly are widely used as classifiers and
are often incorporated in ECG arrhythmia detection flow. In the detection algorithms,
classification is found to pose the primary energy and performance bottleneck and is thus

targeted for optimization.

In this thesis, we examined a methodology for developing and optimizing an ECG
Analysis Flow into embedded architectures. As a case study, we worked on efficiently
implementing the ECG Analysis flow algorithm in a platform specialized mainly for vision
tasks, Movidius’ Myriad 2. Accelerating electrocardiogram analysis algorithm and deep
learning algorithms into an embedded architecture is an interesting concept for many
scientists and software engineers who have access to relevant software libraries for general
purpose machines and want to know the effort needed to deploy them into an embedded
platform. The methodology relies, firstly, on structurally transform the code, in order to
parallelize it on many cores, and, secondly, on implementing manually modifications to
the code, in order to assist the compiler to build a vectorized code or to vectorize the
code explicity. The main challenges of this implementation were posed by the constraints
in the memory size, a common feature of embedded systems. Apart from modifications
that reduced the memory overhead of the application, several optimizations have also been

applied in order to reach high efficiency levels.
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6.2 Future Work

Nowadays, valid and timely diagnosis of a patient’s problem is of utmost importance.
In order to be able to run the complex algorithms needed for such tasks, the traditional
ways of performance improvement on these devices have to be reconsidered. Moore’s law
is slowing down which is causing the power and performance benefits in transitioning to
the next process technology node to decrease. Therefore, designers of embedded platforms
have to come up with more artful ways of creating powerful and at the same time, power

efficient devices.

In this thesis we worked with a device which was designed in this way, based on the
understanding that there is a deep interdependency between algorithms and chip archi-
tecture. Myriad 2 is a device specialized for efficiently performing machine vision tasks.
However, it was used in this thesis to develop a ecg analysis algorithm, the ECG Analysis
flow, that includes also machine learning algorithm. Myriad 2 is very promising for accel-
erating Deep Learning algorithms. The basic techniques described in this thesis can also
be used to improve other similar applications. Even though such algorithms were devel-
oped to run mainly on supercomputers, they can now be ported into powerful embedded

devices and be used on real time basis.

In addition, an interesting step forward would be to further accelerate Support Vectors
Machine classifier, using builtin assembly programming language. Additionally, apart
from the parts of the filter and the SVM classifier, it would be interesting to optimizing
the other parts of the algorithm, as well, on multicore systems and apply techniques, in
order to take advantage of the SIMD features. The feature extraction stage that is based

on Discrete Wavelet Transform would be an ideal candidate.

Finally, the ECG analysis flow could be entirely on the SHAVES, so that the algorithms

of different sampling frequences can be used simultaneously.
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