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Abstract

Interacting Particle Systems are models encountered in many natural sys-
tems. The main purpose in their study is to deduce the macroscopic behavior
from the microscopic dynamics. In the spectre of this thesis we consider first
a particle system without interaction and deduce its macroscopic profile us-
ing techniques which are also applied in systems with interaction. Then,
using these techniques, we study two of the most popular models of Inter-
acting Particle Systems: Simple Exclusion Process and Zero Range Process.
In addition, we discuss the possible universality of the Tracy-Widom distri-
bution which very often emerges in systems with interacting components.
Last but not least, we present results acquired by Monte Carlo simulations
on our Interacting Particle Systems.

Keywords

Markov Processes, Interacting Particle Systems, Simple Exclusion Processes,
Zero Range Processes, Monte Carlo Methods
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Chapter 1

Introduction

Interacting Particle Systems are models encountered in many natural sys-
tems, for which the local mechanics are very simple, but it might be con-
siderably difficult to extract a global behavior. In most cases, the factors
that contribute to this difficulty is the introduction of stochastic dynamics
and interaction into them. Examples can be found in problems from natu-
ral sciences, such as reaction diffusion and gas particles systems, extending
to problems from social sciences such as traffic flow, opinion dynamics and
spread of epidemics.

The main purpose in the study of such Interacting Particle Systems is
to deduce the macroscopic behavior, which is usually described by hydrody-
namic equations, from the microscopic interaction, namely the underlying
stochastics. The mathematical term associated to this is called the scaling
limits. Scaling limits are of great interest in physics and in particular in
mathematics. Furthermore, it usually interests us to find equilibrium states
in our system, namely when the macroscopic profile does not change. These
equilibriums are described mathematically by the establishment of invariant
distributions.

1.1 Object of Thesis

On the one part, the goal of the current thesis is to study and apply math-
ematical techniques on the subject of Interacting Particle Systems and help
us elucidate specific behaviors from a theoretical view. In this study we will
consider the following models of Particle Systems:

e Independent Random Walks
e Simple Exclusion Process
e Zero Range Process
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On the other part, we present Monte Carlo simulations on such models,
which help us visualize their characteristics and approximate specific scaling
limits for which there has not been an analytic result.

1.2 Following Chapters

In chapter [2| we present the basic concepts and "tools" from the field of
Stochastic Processes which will assist us to establish concepts in Interacting
Particle Systems.

In chapter [3] we will attempt to make the reader familiar with the mathe-
matical techniques usually applied on Interacting Particle Systems.

In chapter 4 we will study Simple Exclusion Process and establish an invari-
ant distribution. Moreover, we will give results on a certain variance of the
process and discuss the emergence of a special distribution.

In chapter [5] we will study Zero Range Process, establish again an invariant
distribution and discuss special properties of the model.

In chapter [6] we will present the results acquired by the Monte Carlo simu-
lations on our Interacting Particle Systems.
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Chapter 2

Theoretical Background

In this chapter we will introduce basic theorems and definitions of Stochastic
Processes that will be used on a regular basis in the following chapters. Keep
in mind that each Interacting Particle System is a continuous-time Markov
process describing the collective behavior of stochastically interacting com-
ponents. We use this section to state properties related to Markov processes
which yield the background for our following investigation on interacting
particle systems.

2.1 Markov Processes

Let us start with some basic notation. For a topological space X, we denote
with B(X) the Borel o-algebra generated by the open sets of X and equip
X with this o-algebra if not stated otherwise. M(X) denotes the space of
Borel measures on X and M;(X) is the subset of all probability measures.

A continuous time stochastic process (1;)¢>0 is a family of random vari-
ables n; taking values in a compact metric space X, which is called the state
space of the process. Let

DJ0,00) = {n. : [0,00) — X cadlag}

be the set of right continuous functions with left limits (cadlag), which is the
canonical path space for a stochastic process on X. To define a reasonable
measurable structure on D[0, c0), namely a suitable o-algebra, let F be the
smallest o-algebra on D[0,00) such that all the mappings 7. +— 75 for s > 0
are measurable with respect to F. That means that every path can be
evaluated at arbitrary times s, namely

{ns € Ay ={nlns € A} € F

for all measurable subsets A € X. If F; is the smallest o-algebra on DJ0, co)
relative to which all the mappings n. — 7, for s < ¢ are measurable, then
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(Ft : t > 0) provides a natural filtration for the process. The filtered space
{D]0,00), F, (F; : t > 0)} provides a generic choice for the probability space
of a stochastic process which can be defined as a probability measure P on
DI0, 00).

Definition 1. A (time-homogeneous) Markov process on X is a collection
(PS¢ : ¢ € X) of probability measures on D[0, c0) with the following proper-
ties:

1. PS(n. € D[0,00) : g = ¢) = 1 for all ( € X, namely P¢ is normalized
on all paths with initial condition ng = (..

2. The mapping ¢ +— P¢(A) is measurable for every A € F.

3. PS(nyy. € A|F;) =Pr(A) forall ( € X, A€ F and t > 0. (Markov
property)

2.2 Markov Chains

Let X now be a countable set. Then a Markov process (1;):>0 is called a
Markov chain and it can be characterized by transition rates ¢(¢,¢") > 0,
which have to be specified for all {,{’ € X. Often ¢(-,-) is described as a
matrix. For a given process (P¢ : ¢ € X) the rates are defined via

P (= ¢') = c(¢, )t + o(t) as t \, 0, (2.1)

and represent probabilities per unit time.
At this point, we would like to give an intuitive understanding of the
time evolution and the role of the transition rates in a process. Denote by

We :=inf{t > 0:n # (}
the holding time in state (. The value of this time is related to the total exit
rate out of state (,
cc= ) e(6. ).

¢'#¢
If ¢ =0, ¢ is called an absorbing state and W, = oo.

Proposition 1. If ¢ > 0, then W¢ ~ Exp(cc) and IP)C(nWC = () =
(6, ¢") e
Proof. W¢ has the Markov property

PS(We > s+ t{We > s) = PS (W, > s +tns = ¢) = PS(W¢ > t).

Therefore PS (W, > s +t) = PS(W¢ > s)P*(W, > t). This is the functional
equation for an exponential and it suggests that

PC(W; > t) = e with initial condition P*(W > 0) = 1.
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For the parameter A we will have that

d PS(We > t) — 1
U | Rl U

dt o N0 t S

since according to equation [2.1
PS (W > 0) =1—P(n; # ¢) +o(t) = 1 — cct + oft).
Now, conditioned on a jump occurring we get

P =¢) _, el6.¢)

B (e = (W < 1) = PC(We <) c¢

ast \,0

by L’ Hospital’s rule. With the right-continuity of paths, this implies the
second statement. O

Remark 1. Let {W7, ..., W, } be a sequence of independent exponentials W; ~
Exp(X;). Regarding the distribution of W = min{W7, ..., W, }, we will have
that

P(W >t)=P(W1 >t,..,. W, >t) =
P(Wy > t)--P(W, >t) = e M.t = g~ Qubtin)t

n

S W o~ Exp(z Ai)-
i=1

Keep in mind that what was presented in this section, will be very useful at
the design of our simulations in chapter [6]
2.3 Feller Processes, Semigroups and Generators
Let X be a compact metric space and denote by

C(X)=A{f:X — R continuous}

the set of real-valued continuous functions, which is a Banach space with sup-
norm || f|lec = sup,cx [f(n)|. Functions f can be regarded as observables,
and we are interested in their time evolution.

Definition 2. For a given process (n:):>0 on X, for each t > 0 we define the
operator S(t) : C(X) — C(X) by

S(E)f(n) == E"f(ne).

In general f € C(X) does not imply S(¢)f € C(X), but all the processes we
consider have this property and are called Feller processes.
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Proposition 2. Let n be a Feller process on X. Then the family (S(t) : t >
0) is a Markov semigroup, namely

1. S(0) = Id, (identity at t =0)
2.t S(t)f is right-continuous for all f € C(X), (right-continuity)
3. 8(t+s)f =8t)S(s)f forall f € C(X), s,t >0, (Markov property)
4. S(t)1 =1 for allt > 0, (conservation of probability)
5. S(t)f >0 for all non-negative f € C(X). (positivity)
Proof. 1. S(0)7(n) = E"(f(m0)) = f(n) since no = 7 (det. [[(1)).
2. follows from right-continuity of n; and continuity of f.
3. follows from the Markov property of n; (def. [1f3))
S(t+s)f(n) =

E"f (nets) = ENE(Sf (ne45)[F2) = BTE" (f (e45))) = E7((S(s)f)(m))
=S(t)S(s)f.

4. S(t)1 = E"(1,,(X)) = 1 since iy € X for all ¢ > 0 (conservation of
probability).

5. is immediate by definition.
O

The Markov semigroup S(¢) will appear frequently in our computations
and theorems as it expresses in a natural way how a process will "behave"
at a later time ¢. It determines the expected value of observables f on X
at time ¢ for a given Markov process 7. Specification of all these expected
values provides a full representation of 7.

Let P(X) denote the set of all probability measures on X, with the topol-
ogy of weak convergence:

tn — p if and only if /fdun — /fd,u
for all f € C'(X). Note in particular that with respect to this topology, P(X)
is compact since X is compact. If p € P(X) and {P7, n € X} is a Markov

process, then the corresponding Markov process with initial distribution p
is a stochastic process 7 whose distribution is given by

p# :—/)(P”u(dn).

18



In view of this,
B ) = [ S(6)
X
for all f € C(X). This leads to the following definition.

Definition 3. For a process (S(¢) : ¢ > 0) with initial distribution u we
denote by uS(t) € P(X) the distribution at time t, which is uniquely deter-
mined by

[ saus) = [ stsan
X X
for all f € C(X).

Now, since (S(t) : t > 0) has the Markov property, in analogy with
the proof of proposition [I] we expect that it has the form of an exponential
generated by the linearization S’(0), namely

S(t) =75 O = 144+ §'(0)t + o(t) with S(0) = Id,
which is made precise in the following.

Definition 4. The generator £ : Dy — C(X) for the process (S(t) : t > 0)
is given by
Lf = tim SO =T
t\O t

for f € Dy, where the domain Dy C C(X) is the set of functions for which
the limit is exists.

Note that, in general, D, is a proper subset of C'(X) for processes on infinite
lattices, and this is in fact the case even for the simplest examples.

Proposition 3. L as defined above is a Markov Generator, namely
1. 1 € Dy and L1 =0, (conservation of probability)

2. for f € Dg, A > 0: mingex f(¢) > mineex (f — ALS)(C), (positivity)

3. Dr is dense in C(X) and the range R(Id—\L) = C(X) for sufficiently
small X > 0.

The proof is rather technical and can be found in [12].
In general, for Markov chains with countable X and jump rates ¢(n,n’)
the generator is given by

L) =Y e, )F0r') = f(n))

neX
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which, using equation follows for small ¢\, 0 from

S()f(n) =E"(f(m) = Y P =n)f(n)

n'eX
=D el ) ft+fn) (1= ()t ] +o(t)
n'#n n'#n
and the definition of L.

Definition 5. For X = {0,1}", where A is a countable lattice, f € C(X)isa
cylinder function if there exists a finite subset A C A such that f(n*) = f(n)
for all z € A, n € X, namely f depends only on a finite set of coordinates of
a configuration. We write Cp(X) C C(X) for the set of all cylinder functions.

2.4 Invariant Measures

One of the main questions we need to address in the study of Interacting
Particle Systems is the characterization of all invariant measures.

Definition 6. A measure p is invariant or stationary if uS(t) = p. Equiv-

alently,
| sosdn= [ sa

or shorter u(S(t)f) = u(f) for all f € C(X).

The set of all invariant measures of a process is denoted by Z. In addition, a
measure y is called reversible if u(fS(t)g) = u(gS(t)f) for all f,g € C(X).

Taking g = 1 in the previous equation we see that every reversible mea-
sure is also stationary. Stationarity of p implies that

P(n. € A) =P (m. € A)

for all t > 0, A € F, namely if a state 7 follows a distribution with respect to
1, it will continue to do so after time ¢. Using 7; ~ u as initial distribution,
the definition of a stationary process can also be extended to negative times
on the path space D(—o0,c0).

Proposition 4. Consider a Feller process on a compact state space X with
generator L. Then
peEL e u(Lf)=0

for all f € Cy(X), and similarly

w is reversible < u(fLg) = u(gLf)
forall f,g € Co(X).
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Proof. Follows from the definitions of semigroup/generator and the fact that
w(fn) = w(f) if || fn — flleo — O by continuity of f,, f and compactness of
X. O

In particular, not every Markov chain has an invariant distribution. If X
is finite there exists at least one invariant distribution, as a direct result of
linear algebra (Perron-Frobenius theorem). For Interacting Particle Systems
we have compact state spaces X, for which a similar result holds.

Theorem 1. For every Feller process with compact state space X we have:
1. T is non-empty, compact and conver.

2. Suppose the weak limit p = lim;_,oo TS(t) exists for some initial distri-
bution m € P(X), namely

S()(f) = /X S(t)fdx — u(f)

for all f € C(X), then u € Z.
For the proof see Theorem 1.9 in [6].

Definition 7. A Markov process (P : n € X) is called irreducible, if for all
n,n €X

P"(ne =n') >0
for some ¢t > 0.

So an irreducible Markov process can sample the whole state space, and if
X is countable this implies that it has at most one invariant distribution.

Definition 8. A Markov process with semigroup (S(t) : t > 0) is ergodic if
1. Z = {u} is a singleton, and (unique stationary measure)
2. and limy_ oo 7S (t) = p for all 7 € P(X). (convergence to equilibrium)

Note that in an irreducible Markov process we can observe phase tran-
sitions, that is, mathematically speaking, a change between invariant dis-
tributions. Phase transitions are related to the breakdown of ergodicity in
irreducible systems, in particular, non-uniqueness of invariant measures.

Proposition 5. An irreducible Markov chain with finite state space X is
ergodic.

Proof. A result of linear algebra, in particular the Perron-Frobenius theorem:
The finite matrix ¢(n,n’) has eigenvalue 0 with unique eigenvector pu. O

Consequently, mathematically phase transitions occur only in infinite
systems. Infinite systems are often studied as limits of finite systems, which
show traces of a phase transition by divergence or non-analytic behavior of
certain observables. In terms of applications, infinite systems are approxima-
tions or idealizations of large finite systems, so results have to be interpreted
with "care".
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Chapter 3

Independent Random Walks

In this chapter we want to investigate the system of indistinguishable par-
ticles following independent random walks. Our main goal is for the reader
to get familiar with the main concepts and techniques used in the field of
Interacting Particles System.

3.1 Model

Denote by Z% the d-dimensional integer lattice. For a positive integer L,
denote by Ty the torus with L points: Tp, = Z; = {0,1,...,L — 1} and
let T¢ = (Tz)% Here L represents the inverse of the distance between the
points of TdL, namely the particle sites, which are represented by x, y and z.
By letting L — oo, the distance between particles will go to zero and so, we
pass from microscopic to macroscopic.

We want to describe the evolution of the system, so let N denote the total
number of particles and let x1, x2,...xy denote their initial positions. Also,
because particles evolve as independent translation invariant discrete time
random walks on the torus, we need to fix a translation invariant transition
probability p(z,y) on Z<, for which p(z,y) = p(0,y — x) =: p(y — z) for
some probability p(-) on Z%, called the elementary transition probability of
the system. This probability expresses the stochastic characteristic of the
random walk.

Let pi(x,y) represent the probability of being at time ¢ on site y for a dis-
crete time random walk with elementary transition probability p(-) starting
from z. In addition, we have that p;(-,-) inherits the translation invariance
property from p(-,-), and so pi(x,y) = pi(0,y — z) =: pi(y — x).

It is time to describe the motion of each particle. Let us take N in-
dependent random walk variables {Z}, Z2,..., ZN} on Z? with elementary
transition probability p(-) and initially at zero. As a result, the position of
each particle ¢ on the torus T% at time ¢ will be

X! =ux; + Z! mod L.
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However, since particles are indistinguishable in our model, it does not
interest us the exact position of each particle, but the number of particles
on each site of the space. Specifically, the state space of the system, also
called configuration space, is NTZ. Configurations are denoted by 7, ( and &.
Under this definition, if z is a site of T¢, then n(x) is the number of particles
on this site for the configuration n. Therefore, if the particles are initially at
1, T9,...xN, then

N
(@) =) U=}
i=1

On the other hand, if we are given (n(z) : * € T¢), we can first label the
particles and then let them evolve according to the stochastic dynamics we
have described.

Of course, we want the configuration at time ¢, which will be denoted by
n¢(x) and defined by

N .
n(x) = Uz = Xj}.
i=1

Moreover,the process (1:):>0 inherits the Markov property from the random
walks {X], 1 < i < N} because all particles have the same elementary
transition probability and they do not interact with each other.

3.2 Poisson Measure

Since the state space is finite and since the total number of particles is
the unique quantity conserved by the dynamics of the system, for every
positive integer N representing the total number of particles, there is only
one invariant measure, as long as the support of the elementary transition
probability p(-) generates Z¢, namely the process is irreducible. The Poisson
measures in our study will play a central role.

Recall that a Poisson distribution of parameter o > 0 is the probability
measure {por = Pi, k> 1} on N given by

Pr = eaclzl:, keN
and its Laplace transform is equal to
oo ok
e Z e_)‘kﬁ = e 0 = g1
k=0

for all A > 0.

Definition 9. For a fixed positive function p : ']I‘% — R, we call Poisson
measure on ']I‘j—f associated to the function p, a probability on the configura-
tion space NT%, denoted by yﬁ(.), having the following two properties:
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e under v% | the random variables (n(z) : @ € T¢), representing the
number of particles at each site, must be independent,

e for every fixed site x € T¢, n(z) is distributed according to a Poisson
distribution of parameter p(x).

In the case where the function p is constant equal to «, we denote l/g(.), just

by 1/5. We will, also, denote expectation with respect to a measure v by E,,.
The measure Vﬁ(.) is characterized by its multidimensional Laplace trans-
form:

— > crd Mz)n(z) @) S ep(a:)(efk(l),l)
EVFI,/() |:e ZETL } g H ep(ﬁ)(e - ) —e CBETL
z€Te

for all positive sequences (A(x) : x € T%) [4].
Now, let us move on to establishing that the Poisson measures associated
to constant functions are invariant for a system of independent random walks.

Proposition 6. If particles are initially distributed according to a Poisson
measure associated to a constant function equal to « then the distribution at
time t is exactly the same Poisson measure. [11]

Proof. Denote by P,z the probability measure on the path space Qp = NTZ x
NTL x - , namely the space of (7¢)¢>0, induced by the independent random
walk dynamics and the initial measure 1/£ . Expectation with respect to Pyé
is denoted by E, .. At this point, notice the difference between E, 1, which is
the expectation with respect to the measure defined on NT%, and E, -, which
is the expectation with respect to the measure defined on the path space ..
It is easy to see that

for all bounded continuous functions F on NTZ.
Since the measure vL | is characterized by its multidimensional Laplace
transform, we will compute here the expectation

E .

Vo

[e— Yoerd /\(w)nt(x)]

for all positive sequences (A(z) : € T¢). Furthermore, for a site y € T¢,
we will denote by Xty’k the position at time t of the k-th particle starting
from y. In this way, the number of particles on site x at time ¢ will be:

no(y)
m(z) =Y > Uz =xPF}

yeTd k=1
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And then, by inverting the order of summation, we will get that:

10 (y)
S A@m(z) =30 3 AP,
xGT% ygTi k=1

Since each particle evolves independently and the total number of parti-
cles at each site at time 0 is distributed according to a Poisson distribution
of parameter «,

E, .

Vo

[6— Yoerd /\(w)m(w)]

=E, . |:6_ ZyETdL ity ’\(Xg’k)] —
=E,.

[T By [ TEAED] =
[T [ vk ([0t ])"™ =

_ y,1
H ea<E|:e (XY )}_1) _ H ea(E[fA(th)]_l)
yeTe yeTy

where X} is a random walk at time ¢ on the torus ']I‘dL starting from the origin
and with transition probability p/(-) defined by

pf(z,y) = pilx,y+ L2)
2€74
for x,y € 'JTdL. Since, by definition,
B e X0] = 37 pl(a =),

d
z€T}

then, by inverting the order of summation and that ZyerL pF(z —y) =1,
we obtain

E, {e— Ypend A(x)m(x)] _ Zaerg (e7X-1)

O

Remark 2. Since the total number of particles erw n(x) is conserved by
the stochastic dynamics it might seem more natural to consider as reference
probability measures the extremal invariant measures that are concentrated
on the "hyper-planes" of all configurations with a fixed total number of
particles. These measures are given by

VT%,N(') = Vé ) Z n(z) =N



We should, also, note that the Poisson distributions are such that their
expectation is equal to
ok
—a -
E e T k=a«a

k>0

The Poisson measures are in this way naturally parametrized by the density
of particles. In addition, by the weak law of large numbers,

E;w\T 2 ) =a

z€Td

in probability with respect to Vé’. Consequently, imagine that the parameter
« describes the mean density of particles in a "large" box.

In conclusion, for this section, we established in proposition [6] the ex-
istence of an one-parameter family of invariant measures indexed by the
density of particles, which is the unique quantity conserved by the time evo-
lution.

3.3 Local Equilibrium

We said before that one of our main goals is to deduce the macroscopic
behavior of an Interacting Particles System. In this case, the passage from
microscopic to macroscopic will be done by performing a limit in which the
distance between the particle sites will go to zero. This is not difficult to
formalize and it is a technique used in many areas of Mathematics.

If we imagine the discrete torus ']I‘j—f as embedded in a continuous torus
T = [0,1)%, namely taking the lattice T? with "vertices" at z/L, x € ']T%,
then the distances between molecules is 1/L and tends to zero as L — oo.
In this way, for the inverse mapping, each macroscopic point u in T% is
associated to a microscopic site z = [uL] in T¢. We should note that, here
and below, for a d-dimensional real r = (11,72, ...,74), [r] denotes the integer
part of r: [r] = ([r1], [r2], ..., [ra])-

Now, we will start building the concept of a local equilibrium. Let
po : T¢ — R, be a function describing a density profile. Then, we distribute
particles according to a Poisson measure with slowly varying parameter on
T¢, that is, for each positive L we fix the parameter of the Poisson dis-
tribution at site = to be equal to po(xz/L). This is one way to describe a
local equilibrium and since this type of measure will appear frequently, we
introduce the following terminology.

Definition 10. For each smooth function py : T¢ — R, we represent by
pLO 0 the measure on the state space NT% having the following two properties.

Under vE () the variables (n(z) : * € T¢) are independent and, for a site
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T € ']I‘dL, n(x) is distributed according to a Poisson distribution of parameter
po(a/ L) ) )
Vpo(.){ﬁs n(x) =k}t = Vpo(x/L){U; n(0) =k}

for all z in T¢ and k in N. [11]

Therefore, we have associated to each smooth profile pg : T — R, and each
positive integer L a Poisson measure on the torus T”Ll.

Let us take it one step further and define a limit for the Poisson measures
with slowly varying parameter. Notice that, as the parameter L increases
to infinity, the discrete torus ']I‘dL tends to the full lattice Z¢. We can, also,
define a Poisson measure on the space of configurations over Z%. For each
a > 0 we will denote by v, the probability on NT% that makes the variables
(n(x) : € Z%) independent and under which, for every z in Z4, n(x) is
distributed according to a Poisson law of parameter a.

Now, with the definition of V/f’o(.), and since py : T — R, is assumed

to be smooth, as L — oo and we look very close to a point v € T%, around
x = [Lu|, we observe a Poisson measure of parameter almost constant and
equal to po(u). In fact, since the function po(-) is smooth, for every positive
integer [ and for every positive family of parameters (A(x) : |z| > 1),

lim E,. e*Z\z\zz)\(m)W([ULHx)} - B [6*2\1\5)\(95)77(90)] ) (3.1)

L—oo Veo() Pro(w)

In this sense the sequence VpLO ) describes an example of local equilibrium.

We should note here that, for u = (uy,us,...,uq) in R ||u|| stands for
Euclidean norm of v and |u| the max norm:

Jul|* = g;du?, [ul = max ui.
YA

In the configuration space NT% we denote by (72 : @ € T%) the group of
translations, namely for a site x, 7,1 is the configuration that, at site y, has
n(x + y) particles:

(rem)(y) = n(z +y), y € TF.

Keep in mind that the action of the translation group extends in a natural
way to the space of functions and to the space of probability measures on
NTZ. In fact, for a site z and a probability measure i, (Tp) is the measure
such that

/ £ (n) (o) () = / f(ram) ()

for all bounded continuous f.

With this topological setting, equation [3.1] expresses that for all points
u € T¢, the sequence T[UL}Vé’O(. converges weakly to the measure Vﬁo(u).
Finally, we will present the following definition.
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Definition 11. A sequence of probability measures (u”);>1 on NT% is a
local equilibrium of profile pg : T — R if

. L
i Tz = Vg )

for all continuity points u of po(-). |11]

3.4 Macroscopic Profile

3.4.1 Scaling Limits

In this section, we will address the matter of what will be the macroscopic
profile of our system after time ¢t. We assume that the initial state will follow
a product measure with slowly varying parameter as defined in definition [I0}
We see that if we start from a Poisson measure with slowly varying parameter
then

B, [e Seerd A(w)m(ﬂf)]

Yoo ()

ezzerL po(z/L) 32y erd pE(y—z)(e W) -1)

zyET% (eix(y) _1) EIE']I‘% pf (y—x)po(z/L)

e

Zverd (¢ =1)wLw)

In the above equation |11 the first step is reached by repeating the same
computations we did to prove proposition [6] and then by inverting the order
of summation, we get that, at time ¢, we still have a Poisson measure with
slowly varying parameter, which is now ¢, +(-) instead of po(-/L).

It is true that, up to this point, we have not really discussed much about
p(+) and how it affects the system. We have only said that it makes p(-,-)
translation invariant and thus bistochastic: ) pi(x,y) =1 for every y. Let
us now see what happens when ¢ is fixed and L increases to infinity. In this
case py(+) is a function with essentially finite support, that is, for all € > 0,
there exists A = A(t,€) > 0 so that

Z p(x) >1—e

2<|A|

From the explicit form of v+, we have that for every continuity point u of

L0,
Jim (L)) = polu).

What the above equation tells us is that the profile remained unchanged.
Even though time t have passed, it seems that the system did not have
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enough time to evolve and this reflects the fact that at the macroscopic scale
the particles did not move. Consider the following test: select a particle at
the origin; since it evolves as a discrete time random walk, if X; denotes its
position at time ¢, for every € > 0, there exists A = A(t,e) > 0 such that
P(|X:| > A) < e. Therefore, with probability close to 1, in the macroscopic
scale, the test particle at time ¢ is at distance of order L~! from the origin.

In order to solve this problem, we need to distinguish between two dif-
ferent time scales, as we already have different space scales, T¢ and L‘l']I‘dL.
Respectively, we need a microscopic time ¢ and a macroscopic time which
would be infinitely large with respect to t.

To introduce the macroscopic time scale, notice that the transition prob-
abilities p;(-) are equal to

where p** stands for the k-th convolution power of the elementary transition
probability of each particle.

Assume that the elementary transition probability p(-) has finite expec-
tation: m := > ap(z) € R?. We say that the random walk is asymmetric if
m # 0, that it is mean-zero asymmetric if p(-) is not symmetric but m = 0
and that it is symmetric if p(-) is symmetric. Recall that X; stands for the
position at time ¢ of a discrete time random walk with transition probability
p(+) and initially at the origin. By the law of large numbers for random
walks, for all € > 0,

Jim Z pen(z) = [Jim P (‘ —mt‘ ) =1
z; |z/L—mt|<e

In particular, from the explicit expression for 17 ;7 and since we assumed
the initial profile to be smooth, we have that

Jim g ([uL]) = polu — mt) =: plt,u)

for every u in T¢.

Now you can see that with the new time scale, tL the profile did not
remain unchanged. On the contrary, we observe a new macroscopic profile:
the original one translated by mt. More precisely, in this macroscopic scale
tL we observe a local equilibrium profile that has been translated by mt
since 9z, ;7, is itself slowly varying in the macroscopic scale.

3.4.2 Hydrodynamic Equation
Of course, the profile p(t,u) satisfies the partial differential equation
Op+m-Vp=0
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if Vp denotes the gradient of p: Vp = (0y, p, Ouyps -, Ouyp)-

We see that if we restrict ourselves to a particular class of initial measures,
we are able to establish the existence of a time and space scales in which the
particles density evolves according to the linear partial differential equation.
Consequently, we have derived from the microscopic stochastic dynamics a
macroscopic deterministic evolution for the unique conserved quantity.

An interacting particle system for which there exists a time and space
macroscopic scales in which the conserved quantities evolve according to
some partial differential equation is said to have a hydrodynamic descrip-
tion. Moreover, the partial differential equation is called the hydrodynamic
equation associated to the system.

Proposition 7. A system of particles evolving as independent asymmetric
random walks with finite first moment on a d-dimensional torus has a hy-
drodynamic description. The evolution of the density profile is described by
the solution of the differential equation

Op+m-Vp=0.

However, when the random walk is not asymmetric and the expecta-
tion m vanishes, the solution of this differential equation is constant, which
means that the profile didn’t change in the time scale tL. This makes sense
intuitively, as the system now is unbiased in direction. Still, if we consider
a larger time scale, times of order L?, even when the mean displacement m
vanishes, we can observe an interesting time evolution. [11]

Let (ST(¢) : t > 0) be the semigroup associated to the Markov process
(Mt)e>0. In Proposition we have proved that there is a time renormalization
07, such that

. L L
i SOL) Tur)Vpg () = V()

for all ¢ > 0 and all continuity points u of p(t, -).

All in all, we have proved in this chapter the following results:

e Description of the equilibrium states of the system.
e Conservation of the local equilibrium in time evolution.

e Characterization at a later time of the new parameters describing the
local equilibrium and derivation of a partial differential equation that
determines how the parameters evolve in time.

3.5 Equivalence of Ensembles

It is true that, we have chose a class of invariant measures to describe the
equilibrium states (the Poisson measures) when others would seem more
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appropriate. Following remark [2] and the fact that we want to describe the
equilibrium state associated to a given density on the torus T¢, we would be
led to study the behavior, as L — oo and 3 is kept fixed, of

vi 1D nl@) =18

d
z€TE

Performing a simple computation presented below, we get that for each fixed
positive integer r, and for all sequences (ki,...,k,) in N” and (z1,...,x,) in
7",

lim v [ n(z1) = ke, .on(a,) = ke Z n(z) = LB

L—o0
xETi
- Vﬁ(n(fﬁ) = k1, ---,77(%) = kr)'

Indeed, it is easy to check by computing the Laplacian transform that the
addition of independent Poisson distributions, is still a Poisson distribution
with parameter equal to the sum of the parameters. Consequently, the left
hand side of the above formula is equal to

eyl © (LB — (k1 + - + Fy))! (LB)!
(L — T)Ldﬁ—(k1+~~~+kr)
kil ke l(LA)L8

@bt g (L = r)a) Ptk ( L <Lda>”ﬁ) o

(LB)(LB — 1)+ (LB — (k1 + -+ + k) + 1)

which, as L — 0o, converges to

ﬁk1++kr

77;5
Kl kO

So, we see that the Poisson measures are "natural" for our system and
at the same time computations are made much easier and the definition of
local equilibrium is expressed in a very simple and elegant way in terms of
these measures. In this sense, this fact is known to the physicists as the
"equivalence of ensembles".
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Chapter 4

Simple Exclusion Process

In this chapter we are interested in Simple Exclusion processes (SEP). This
model was introduced in 16| and it is among the simplest and most widely
studied interacting particle systems. The Simple Exclusion process, in con-
trast with the independent random walks studied in the previous chapter,
allows at most one particle per site.

4.1 Model

First of all, the state space is {0, 1}T%. In order to prevent the occurrence of
more than one particle per site we introduce an exclusion rule that suppresses
each jump to an already occupied site. In fact, we shall focus only on the
simplest class of exclusion processes: systems where particles jump, whenever
the jump is allowed, independently of the others and according to the same
translation invariant elementary transition probability.

Definition 12 (Elementary jump probability). Let p be a finite range, trans-
lation invariant, irreducible transition probability on Z%:

p(z,y) =p(0,y —z) = p(y — x)

for all pair (x,y) of d-dimensional integers and for some finite range proba-
bility measure p(-) on Z%:

Z p(2) =1 and p(x) = 0 for |z| large enough. [11]
z€Z%

The generator

(LHM) =Y Y nl@) 1= nla+2)p" () (f(1"") = f(n),

€T 2eTd
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where n*Y is the configuration obtained from 7 letting a particle jump from
x to y, namely

n(z) ifz#ay,
7Y(z) =1 nx)—1 ifz==  and p"(2):= > p(z+yL),
ny)+1  ifz=y yezd

defines a Markov process called simple exclusion process with elementary
jump probability p(-). In the particular case where p(z) = p(—z) we say
that it is a symmetric simple exclusion process.

We believe that the interpretation is clear. Between 0 and dt each particle
tries, independently from the others, to jump from x to z+ 2 with rate p*(2).
The jump is suppressed if it leads to an already occupied site.

We remind here that a Markov process is said to be irreducible if it is
possible to get to any state from any state. Furthermore, since the transition
probability is assumed to be of finite range, there exists Ag in N such that
p(2) = 0 for all sites outside the cube [—Ag, Ag]?. In particular, p*(-) and
p(+) coincide provided L > Ay. For this reason, from now on we omit the
superscript L in the elementary jump probability.

At this point, it might be worthwhile to justify the terminology. The rule
that forbids jumps to occupied sites explains the term exclusion. Notice, on
the other hand, that the rate at which a particle jumps from x to y depends
on the configuration 1 only through the occupation variables n(z) and n(y).
This last dependence on n(x) and n(y) reflects the exclusion rule. Finally,
notice that the total number of particles is conserved by the dynamics.

4.2 Bernoulli Measure

We denote by v, = vL, for 0 < a < 1, the Bernoulli product measure
of parameter «, that is, the product and translation invariant measure on
{0, l}TdL with density «. In particular, under v, the variables (n(x) : x € T%)
are independent with marginals given by

vo{n(z) =1} =a=1—vu{n(xz) = 0}.

Proposition 8. The Bernoulli measures {vo : 0 < a < 1} are invariant
for simple exclusion processes. In addition, with respect to each v,, exclu-
sion processes with elementary jump probability p(z) := p(—=z) are adjoint
to processes with elementary jump probability p(z). In particular, symmetric
simple exclusion processes are self-adjoint with respect to each v,. [11f

Proof. It is easy to notice that by a simple change of variables

/f(no’z)g(n)n(o)(l —1(2))va(dn) = /f(n)g(no’z)n(z)(l —1(0))va(dn).

This identity, the fact that 1 =3 _,4p(2) = >, cza p(—2) and a change in
the order of summation prove the proposition. O
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In this case, the family of invariant measures v, is parametrized by the
density, for
By [0(0)] = va{n(0) = 1} = o
Remark 3. Since the total number of particles is conserved by the dynamics,
the measures

v N() =vq |- Z n(z) =N

d
z€T}

are invariant and it could have seemed more natural to consider them instead
of the Bernoulli product measures v,. Nevertheless, a simple computation
on binomials shows that for all finite subsets E of Z%, for all sequences
{€z : * € E} with values in {0,1} and for all 0 < a <1,

li = — o\ _
Jim vy () = € B | Y nfy) = [0
yeTy

Vao{n(z) = €z, © € E}

uniformly in «g. Consequently, the Bernoulli product measures are obtained
as limits of the invariant measures vy, y, as the total number of sites increases
to infinity.

4.3 Asymmetric Simple Exclusion Process with step
initial condition

One extensively studied variance of the simple exclusion process is the one-
dimensional nearest neighbour asymmetric simple exclusion process with
step initial condition. In this area, many significant results have been achieved
by Tracy and Widom.

Let us consider the integer lattice Z. In the case of step initial condition,
particles will begin from the positive integers Z,. As you know, a particle
waits exponential time, then moves to the right with probability p if that
site is unoccupied or to the left with probability ¢ = 1 — p if that site is
unoccupied. If the site where it is about to jump is occupied, then it stays
put.

The main quantity that will concern us in this section is the position of
the mth particle from the left at time ¢, denoted by

T (t), with z,,(0) = m.

Here we shall, also, assume that p < ¢, so there is a drift to the left, and
establish results on the position of the mth particle and the current of par-
ticles. Now we will start by describing the results which were presented and
proved in [21].
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The authors in [17], derived a formula for the quantity that interests
us, valid when p and g are non-zero. It is given in terms of the Fredholm
determinant of a kernel K (&,¢') on Cg, a circle with center zero and large
radius R described counterclockwise. The Fredholm determinant of a kernel
K is the operator determinant det(I — AK). It acts as an operator by

&) = | K(&&)f(E)de

Cr

for all £ € Cg. We will use the following notation

Yy=q—p, T=gq/p

The kernel is
&€ty

!/
K(,¢) = e e
where

e(§) =p& + g — 1.
The first formula is the following

[ det(I —AK) dA
P(xm(t/f)/) < 1‘) - Zn;)l(l o )\Tk) 2\ (4'1)

The integral is taken over a contour enclosing the singularities of the inte-
grandat A\=0and A=7—k, k=0,...,m — 1. It is easily derived from the
above equation that

P(zy(t/v) > z) = det({ — K).

It is clear probabilistically that P(x,,(t) > x) = 0 for all ¢ when z > m,
as for a particle to be to the right of its initial position, all particles would
have to move simultaneously to the right, which surely has probability zero.

Although, the above formula required p > 0, the statement makes sense
when p = 0. The process where p = 0 and the particles move only to the
left is called Totally asymmetric simple exclusion process.

For the first asymptotic result, denote by K the operator on L?(R) with
kernel,

~

K(z,2) = 4‘;e—(p2+q2)(z2+z’2)/4+pqzz’.

Assume that 0 < p < q. For fixed m the limit

i (22000 <)

t—o0 71/2t1/2

is equal to the integral with K replaced by the operator K X(—s,00)- 1t 18
easy again to derive the special case

. z1(t/y) +t 2
A P <fy1/2tl/2 > =5 | = det(l - K&(00)).
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This is an apparently new family of distribution functions, parametrized
by p. When p = 0 the kernel has rank one and the determinant equals a
standard normal distribution.

Furthermore, we will state the asymptotic result when m and x both go
to infinity. We use the notation

c=m/t, ¢ =—1+4+2V0, ¢ =0 Y1 —a)/3

Theorem 2. When 0 < p < g we have

lim P <”’"m<t/”_clt < s> — Fy(s)

t—»00 02t1/3 -
uniformly for o in a compact subset of (0,1).

In the above theorem, the function Fy(s) that arises asymptotically is the
Tracy-Widom distribution. The Tracy-Widom distributions are a family of
probability distributions that were described explicitly by Craig Tracy and
Harold Widom [18, 19|, and shown to govern the maximal eigenvalue of large
random matrices.

The cumulative distribution function of the Tracy-Widom distribution
can be given as an integral

and ¢ is the unique solution to the Painlevé II equation
¢" = sq + 2¢>, with boundary condition g(s) ~ Ai(s) as s — oo,

where Ai is the Airy function.

Let us now introduce the following quantity. As the particles are initially
located at Z, and we have assumed that p < g, then there will be on average
a net flow of particles, or current, to the left. The total current Z at position
x <0 at time ¢,

Z(z,t) :== number of particles with position < z at time t.
With step initial condition, it stands that, for 0 < ¢ < ~, the current 7
satisfies the strong law [12],
. I( [_Ct]v t) 1 2
pim S = G-
Now, we want to examine the behavior of the current fluctuations
1 2
T(r,t) — 30— o)t

for large = and t. It has been proved [10, 22| that to obtain a nontrivial
limiting distribution the correct normalization of the fluctuations is cube
root in t.
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Theorem 3. For an asymmetric simple exclusion process with step initial
condition we have, for 0 <wv <1,

. Z([-vt], t/y) — ast
lim P < agt1/3

Jim < s) =1— Fy(—s),

where aq = 1(1 —v)? and ag = 2743(1 —v?)?/3. [29]

Proof. We are interested in the probability of the event,
{Z(z,t) = m} = {zn(t) <z, pmy1(t) > z}.

The sample space consists of the four disjoint events {z,(t) < z, Tp41(t) >
o}, {zm(t) < z, o (t) < x}, {Zm(t) > z, 2y (t) > x}, and {z,(t) >
x, Tmy1(t) < x}, and because of the exclusion property, we have

{om(®) <2, 2mia () < 2} = {2ma(t) < 2},
{2m(t) > 2, Tpsa (£) > 2} = {w(t) > 2},
{zm(t) > @, Ty (t) <z} =0
These observations result to the intuitively obvious
P(Z(2,1) = m) = P(am(t) < o) — B@my (1) < 2).
And, since P(Z(z,t) = 0) = P(z1(t) > ), we have
P(Z(z,t) <m)=1—-P(zp+1(t) < z).

Therefore, since x and x,,+1(t) are integers, the statement of the Theorem
is equivalent to the statement that

lim P(zp,41(t/v) < —vt) = Fa(s),
t—o0
when m = [a1t — agst'/3]. In particular, we shall show that
lim P(z,,(t/y) < —vt) = Fy(s),
t—r00

when
m = ot — agst'/3 4+ o(t/3).

Now, in order to obtain the last limit from Theorem [2| we determine o so
that
—vt = c1t + 025251/3.

Thus, after some computations, we get that

2
o= <1 ; U) — 52743 (1 — 2234728 4 o(+72/3).

Since this is exactly the statement that m = ot must satisfy, we see that the
Theorem is established. O
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4.4 Universality of the Tracy-Widom Distribution

In this section, we will discuss about the universality that Tracy-Widom
distribution has been found to exhibit lately. We will start by understanding
how we ended up in such hypothesis.

It is a fact that Random Matrix Theory has found a huge number of
applications ranging from statistical physics of disordered systems, quantum
information, finance, telecommunication networks to number theory, combi-
natorics and integrable systems. Among the recent developments in Random
Matrix Theory, the study of the largest eigenvalue Ay,q, of large random ma-
trices has attracted particular attention. The first questions were related to
the fluctuations of A4z, belonging to the wider topic of extreme value statis-
tics. Such extreme value questions arise naturally in the statistical physics
of complex and disordered systems like interacting particle systems. In par-
ticular, the eigenvalues of a random matrix provide an interesting "toolset"
to study extreme value statistics of strongly correlated random variables.

Biologist Robert May realized in 1972 a natural application of the statis-
tics of Ajqz, Which is to provide a criterion of physical stability in dynamical
systems such as ecosystems [14]. May considered a population of N distinct
species and introduced strong pair-wise interactions between the species.
May assumed that the interactions between pairs of species can be modeled
by a random matrix J, of size N x IV, which is real and symmetric. A natural
question is then: what is the probability, Pspe(, N), where a represents
the strength of interactions, that the system remains stable once the interac-
tions are switched on? [14] After some computations, May derived that the
system will remain stable, provided the eigenvalues A; of the random matrix
J satisfy the inequality:

Oé)\i —1 < 0,
for all ¢ = 1,...,N. This is obviously equivalent to the statement that the

largest eigenvalue A;,qp = maxi<;<n A; satisfies the inequality:

Ama:p <

Q|m

Hence the probability that the system is stable gets naturally related to the
cumulative distribution function of the largest eigenvalue Apqz-

The Tracy-Widom distribution was first established in 1992, two decades
later, by Tracy and Widom |18, [19], who observed it by studying the same
concept, namely the fluctuations of the largest eigenvalue A4 of random
matrices. Later in 1999, Baik, Deift and Johansson [2|, discovered that the
same statistical distribution also describes variations in sequences of shuffled
integers - a completely unrelated mathematical abstraction. Specifically, let
Sy be the group of all permutations of N numbers with uniform distribution
and let [y (7) be the length of the longest increasing subsequence of T € Sy.
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Let x be a random variable whose distribution function is F5 (4.2)). Then,

as N — oo
Iv — 2V N

N1/6 - X

in distribution.

Soon the distribution started to appear in models all over physics and
mathematics. Systems of many interacting components kept producing the
same statistical curve. This puzzling curve seemed to be the complex cousin
of the familiar bell curve, or Gaussian distribution, which represents the
natural variation of independent random variables. Like the Gaussian, the
Tracy-Widom distribution exhibits universality, a mysterious phenomenon
in which diverse microscopic effects give rise to the same collective behavior.

The Tracy-Widom distribution is an asymmetrical statistical bump which
is steeper on the left side than the right. Suitably scaled, its summit sits at
a telltale value: V2N, the square root of twice the number of variables in
the systems that give rise to it.

Tracy-Widom
—— Normal

Figure 4.1: Probability density functions of Normal and Tracy-Widom dis-
tributions

When the Tracy-Widom distribution turned up in the integer sequences
problem and other contexts that had nothing to do with random matrix the-
ory, researchers began searching for the "hidden thread" tying all its man-
ifestations together, just as mathematicians in the 18th and 19th centuries
sought a theorem that would explain the ubiquity of the Normal distribution.
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The Central Limit Theorem, which was finally made rigorous about a
century ago, certifies that natural observations and other "uncorrelated"
variables - meaning any of them can change without affecting the rest - will
form a bell curve. By contrast, the Tracy-Widom curve appears to arise
from variables that are strongly correlated, such as interacting species, stock
prices and matrix eigenvalues. The feedback loop of mutual effects between
correlated variables makes their collective behavior more complicated than
that of uncorrelated variables.

While researchers have rigorously proved certain classes of random ma-
trices in which the Tracy-Widom distribution universally holds, they have
a looser handle on its manifestations in counting problems, random walk
problems, growth models and beyond.

So far, there have been characterized three forms of the Tracy-Widom
distribution: rescaled versions of one another that describe strongly corre-
lated systems with different types of inherent randomness, namely different
types of random matrix ensembles. Specifically, the three classes of Fj(s)
are indexed by

—_

, for Gaussian orthogonal ensemble
b= 2, for Gaussian unitary ensemble
4, for Gaussian symplectic ensemble

)

But there could be many more than three, perhaps even an infinite number,
of Tracy-Widom universality classes.

0.5 4

0.4

0.3 1

0.2 §

0.1+

0.0 4

Figure 4.2: Classes of Tracy-Widom distribution
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Lately it is being extensively discussed the fact that the asymmetric
character of the distribution may represent some kind of universal phase
transition [13]. In May’s ecosystem model, for example, the critical point
at V2N separates a stable phase of weakly coupled species, whose popula-
tions can fluctuate individually without affecting the rest, from an unstable
phase of strongly coupled species, in which fluctuations cascade through the
ecosystem and throw it off balance. In general, systems in the Tracy-Widom
universality class exhibit one phase in which all components act in concert,
left tail, and another phase in which the components act alone, right tail.

Right now, many physicists and mathematicians are working in the field
of seeking some universal law tied to the Tracy-Widom distribution. If such
breakthrough were to be achieved, we would be able to interpret the macro-
scopic elements of systems with interacting components in a much more
natural way.
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Chapter 5

Zero Range Process

In this chapter we will study another widely known model of Interacting
Particle Systems. It was also originally introduced as a simple example of
an interacting Markov process in [16]. It is called Zero Range Process and
its name originates from the fact that the particles will only interact with
particles sitting on the same site.

5.1 Model

As in chapter [3] we will consider evaluations without restrictions on the total
number of particles per site. The state space will therefore be NTZ. The
process is defined through a function g : N — R vanishing at zero, which
represents the rate at which one particle leaves a site, and a translation
invariant transition probability p(-,-) on Z%. Its dynamics goes as follows. If
there are k particles at a site x, independently of the number of particles on
other sites, at rate g(k)p(x,y) one of the particles at x jumps to y. In this
way particles interact only with particles in the same site.

Definition 13. Let g : N — R, be a function with g(0) = 0 and p(-,-) be
a finite range, irreducible, translation invariant transition probability. We
assume that g is strictly positive on the set of positive integers and that it
has bounded variation in the following sense:

g" =sup|g(k +1) — g(k)| < oo.
k>0

Now, let Z : Ry — Ry be the partition function defined by

¢k
Z(¢)=> 10

k>0 9

and denote by ¢. the radius of convergence of Z. In the last formula g!(k)
stands for [[;.;, g(j) and by convention g!(0) = 1. Furthermore, notice
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that Z is analytic and strictly increasing in [0, ¢.). Assume that Z(-) in-
creases to 0o as ¢ converges to ¢.:
lim Z(¢) = oo. 5.1
Jim Z(¢) .1)
This assumption is not necessary to define the process, but will always be
required to prove following results. The generator

LHm =D > p"@)gn@)(f "+ = f(n)

€T zeTd

defines a Markov process on NT%, called zero range process with parame-
ters (g,p). Also here, as in chapter 4, n™Y represents the configuration 7
where one particle jumped from z to y and p” () represents the transition
probability translated to the origin and restricted to the torus:

p"(2) == p"(0,2) = Y p(0,z+yL)
yeTy

for every d-dimensional integer z.
In zero range processes each particle jumps, independently of particles
sitting at other sites, from x to y at rate

In particular, if g(k) = k for every k > 0, we obtain the superposition of
independent random walks studied in chapter On the other hand, the
case g(k) = 1{k > 1} models a system of queues with mean-one exponential
random times of service. Moreover, we will study, later, the case where g is
a decreasing function, and also perform experiments on it.

5.2 Invariant measures

We now turn our attention, as usual, to the characterization of invariant
measures for the process. Since the zero range process is irreducible and the
state space is finite, we have a unique invariant measure which we denote by
VL. We will refer to the measures X as the canonical ensembles. They
can be explicitly computed, but they can also be obtained by conditioning
the grand-canonical ensembles, whose definition follows, on the total number
of particles.

Definition 14. For each 0 < ¢ < ¢, let vy, = Dé’g denote the product

measure on NTZ with marginals given by
_ 1 ¢F
Uggin, n(z) =k} = Z00) 9 (k)
for each k > 0 and x € TdL.

44



Proposition 9. For each 0 < ¢ < ¢. the product measure vy 4 is invariant
for the zero range process with parameters (g,p). Moreover, the adjoint pro-
cess with respect to any of the measures vy 4 is the zero range process with
parameters (g, p). In particular, if p is symmetric the process is self-adjoint.
1]

Proof. The proof relies on the same computations we did for Proposition [§]
and on the following identity
¢F ¢

Wy ag ~V+Y

Pl i1
gi(k=1)g!(j +1)

O

Also, because the function g¢(-) will always be fixed, to keep notation
simple, we omit the dependence on g of the measure 74, and denote it
simply by 74. And so,

Now, let p(¢) denote the expected value of the occupation variable,
namely the density, under vy:

1 oF

k>0

The range of p is the interval [0, p.), with p(0) = 0 and

= lim
Pec ¢i> 5. P (d))
the critical density. Also, equation [5.2| can easily be transformed into the
following relation, which is usually seen in the concept of partition functions
and will be often used later:

p(6) = = 90, log Z(9). (5.3)

Computing the first derivative of p(-) shows that it is strictly increasing.

Remark 4. A natural object of interest is to explore the behavior of these
measures in the thermodynamic limit, namely as N, L, — oo in such a way
that the average particle density N/L converges to a constant p. Well, in the
subcritical case, when p < p., there exists a fugacity ¢ such that p = p(¢)
and the standard equivalence of ensembles for independent random vari-
ables holds [11]. That is, the finite dimensional marginals of the canonical
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ensembles p™V>l converge to the grand-canonical ensemble corresponding to
fugacity ¢. The equivalence of ensembles for critical and supercritical den-
sities, when p > p., was established in [7]. Using relative entropy methods
the authors prove convergence of the finite dimensional marginals of p™¥"* to
the grand-canonical ensemble at critical fugacity. Later in [1], the authors
showed that in the thermodynamic limit the sites have joint distribution
equal to the grand canonical measure at critical density, expect one site
which accommodates a macroscopically large number of particles.

Furthermore, we have often parametrized the invariant measures by the
conserved quantity, which here is the density of particles. For that reason,
we change variables in the definition of the invariant measures 7 as follows.
For a > 0, define the product measure v, by

Voz(’) = be(a)(')a

where ®(-) stands for

_ [ inverse of p(¢), for p < p.
lp) = { e, for p > pe

In the next lemma we show that assumption [5.1| guarantees that the range
of the function p(-) is all Ry. In this way, we obtained a family {v, : @ > 0}
of invariant measures parametrized by the density, since the expected value
of the occupation variables n(z) under v, is equal to a:

Evn(@)] = Epg,y 0(2)] = p(®(@)) = @

for every a > 0. Moreover, a simple computation shows that the function
® () is the expected value of the jump rate g(n(0)) under the measure vy:

P(ar) = Eu, [9(n(0))]-

Lemma 1. Recall that we denoted by ¢. the radius of convergence of the
partition function Z.

. = lim = 00.
p M%p(cﬁ)

Furthermore, for each 0 < ¢ < ¢ the measure vy has a finite exponential
moment: there exists 6(¢) > 0 such that

Ey,[e/9)] < .

v
Proof. Now to prove this we consider separately two different cases. Assume
first that Z is defined for all positive reals, namely the radius of convergence

is infinite. Suppose, by contradiction, that the function p is bounded by
some constant Cp. Then from equation [5.3]it would follow

dglog Z(¢) < Cop™ "
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Then, by integrating over ¢ we get that for every ¢ > 1,

Z(¢) < Z(1)6.
However, this is in contradiction with the fact that

¢kz
g'(k)
for every integer k by the definition of Z.
Let us assume now, for the second part, that the radius of convergence is

finite. Fix some positive ¢g < ¢. Since Z(+) is a smooth increasing function,
for ¢ > ¢o,

Z(¢) >

0]
log Z(¢) 51og2<¢o>+;0 [ oy tos 200

Since, on the other hand,

p(d) = ¢0ylog Z(9),

ontos (22 < [ ptwrav,

Since the left hand side of this inequality, by assumption [5.1} increases to co
as ¢ — ¢., we obtain that

it follows that

¢

li dip = co.
) p(Y)dip = oo

Since the function p is increasing the first statement of the lemma is proved.
Lastly, notice that
0
[6977(0)] _ Z(¢e )
Z ()

Therefore, the second statement follows from assumption [5.1 O

E

Vg

At this point we will give an example of zero range dynamics that does
not possess an invariant product measure for each density p > 0. However,
because of the previous lemma, the partition function Z(-) cannot satisfy
the assumption [5.1]

Example 1. Consider a one-dimensional, nearest neighbor, symmetric zero
range process, that is p(—1) = p(1) = 1/2, with jump rate g(k) = (1+k~1)3
for £k > 1. Then, ¢. = 1 and the partition function is
d)k
Z(p)=1 —_—
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so that

Consider an invariant product measure v. From proposition [ since
v is invariant, we have that [ Ln(z)dv = 0 for every z. Denote by ¢,
the expectation of ¢g(n(z)) under v: ¢, = E,[g(n(x))]. Since Ln(x) =
(1/2)(g(n(x+ 1)) + g(n(x — 1)) — 2g(n(x))), the previous identity gives that
(Ard)r =0, if Ay stands for the discrete Laplacian. This identity forces ¢,
to be constant; say equal to ¢.

On the other hand, for every z € T¢ and p > 0, [ L1{n(x) = a}v(dn) =
0. Since

L1{n(z) = p} = —g(a)1{n(z) = p}
+ (1/2)1{n(x) = p — 1}(g(n(z + 1)) + g(n(z — 1))),

since the measure v is assumed to be product and since E,[g(n(x))] = ¢ is
constant, we have that

g()v{n, n(x) = p} = ¢v{n, n(z) =p—1}.

Furthermore, in this example, since g(k) = (1 + k~1)3,

k
P(¢) = Z k(k:b_l)g

k>1

so that

k
li = 5 = P < 00.
im0~ St <

Consequently, for p > p., there is no invariant product measure with density
p-

5.3 Relation to the Simple Exclusion Process

There exists an exact mapping from the one-dimensional zero-range process
to the one-dimensional simple exclusion process. This is illustrated in the
figure below. The idea is to consider the particles of the zero range process
as the zeros (empty sites) of the exclusion process. Then the sites of the zero
range process become the moving particles of the exclusion process. This
is possible because of the preservation of the order of particles under the
simple exclusion dynamics. Note that in the exclusion process we will have
L particles hopping on a lattice of L + N sites.
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g(l) Zero Range

Simple Exclusion

g(1) 9@3) g(1)

)
o _ o 00
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Figure 5.1: Equivalence of zero range process and simple exclusion process

An interesting feature of the mapping is that it converts a model where
the local degree of freedom can take unbounded values (particle number in
the zero range process) to a model where the local site variable is restricted
to two values. On the other hand, a hopping rate g(k) which is dependent on
k corresponds to a hopping rate in the exclusion process which depends on
the gap to the particle in front. Thus, the particles can "feel" each other’s
presence and it is possible to have a long-range interaction.

5.4 Supercritical Properties

Throughout this section we will see properties of zero range processes where
pe < oo0. As a result, there is a critical background density and excess
particles condense on a non-extensive fraction of the volume. Precisely, if
p > pc then
lim pNF <max n(z) > (p— pC)L> =1.
N,L—00 m@r%

N/L—p
While, in the subcritical case, the size of the largest component is of order
log(L) 19]. If we were to get the picture of the system in the supercritical
phase, we would distribute the bulk of the sites according to independent
copies of v, and pile all the excess mas on a single randomly located site.

We will now study the case where g(k) is decreasing in k, which then
induces an effective attraction between particles. Specifically, the jump rates

will be given by
0, ifk=0
mm_{1+z,ﬁk21
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as studied in [3]. The author, also, observed for b > 2 that limg 4, Z(¢)
and p. are both finite. With this choice of g, we also get

(140  T(b+k+1) kb

9k = = T Tor R T ToL1)

where () = Hf;ol (a+1) denotes the Pochhammer symbol and I'(-) denotes
the standard Gamma function. The grand canonical partition function is

(DD ¢*
(1+0b); K

[e.e]

Z(¢) =

k=0

and its radius of convergence is ¢, = 1.

At this point, we will analyze the grand-canonical single site measure
Uy = v, in the limit ¢ — 1, namely near the critical density p.. For p. < oo
the limit 77 is well defined and it is the distribution of the non-condensed
phase for super critical systems with N/L = p > p.. As long as ¢ < 1
the distribution 74 has exponential moments. For ¢ = 1 the exponential
tail of v, disappears and the tail becomes proportional to 1/¢!(k). These
distributions have moments up to order b — 1. Therefore, different scenarios
are encountered as b is varied.

For b <1 we get that

2(6) - oo,

p<¢) _>pC:OO7

as ¢ — 1. For every density, the invariant distribution in the limit L — oo
is given by the grand-canonical measure 4. The probability to have a fixed
number of particles on a given site vanishes with increasing density. Thus in
the limit there is an infinite number of particles on every site with probability
one, as it should be for homogeneous systems with p — oo.
For 1 < b <2, as we see a change of order, we get that
b

26) ~ 2(1) = =,

p(¢) = pe = o0,
as ¢ — 1. In particular, p. = oo and the stationary distribution is described
by the grand-canonical ensemble for every density p.
However, the character of this distribution for large p differs from the

previous case, where b < 1. Since Z(1) is finite, 7; is well defined and there
is a positive probability to have a fixed number of particles at a given site,

_ 1 b—1
nO=zm =
vi(k) = Z(l)lg‘(k) ~ T(b)(b — 1)k~ for large k.
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For example, the probability of an empty site, given by

1
vp(0) = m,

decreases monotonically. Note that in case b < 1 the probability vanishes in
the limit p — oo, while here, it reaches the non-zero value 71 (0) = (b—1)/b.
So no matter how large the density, the fraction of empty sites in a typical
configuration is always greater than (b — 1)/b.

For b > 2, besides the normalization also the first moment of the grand
canonical distribution converges:

Z(¢) = Z2(1) = -—=

p(@) = pe = h_9

as ¢ — 1. In addition, for b > 3 also the second moment o of the distribution
7y is finite, with
o (b—1)
-~ (0—-2)2(b-3)

and the number of particles satisfies the usual central limit theorem

2. 1(x) — pel.

One more thing we should note is that the invariant distribution investi-
gated so far carries no information on the dynamics of the condensation. A
natural initial condition is to start with particles uniformly distributed at the
supercritical density p > p.. In the beginning the excess particles condense
at a few random sites. Such a site containing many excess particles is called
a cluster site. On the remaining sites, called bulk sites, the distribution re-
laxes to 1. With increasing time the larger clusters will gain particles at the
expense of the smaller ones, causing some of the clusters to disappear. Even-
tually only a single cluster containing all excess particles survives, which is
typical for the invariant distribution, as was discussed starting this section.
We will observe the above image later in our simulations.
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Chapter 6

Experimental Results

In this chapter we will show all the results we acquired from our experiments
on the subject. We have simulated models of Interacting Particle Systems
that we studied in the previous chapters and furthermore, we have tried to
determine various scaling limits. In addition, we give an efficient method for
simulating such Interacting Particle Systems.

6.1 Independent Random Walks

The dynamics of independent random walks were specified in section
Moreover, in section it was proved that for a system of indistinguishable
particles following random walks, there is a unique family of invariant mea-
sures, parametrized by the density of particles, called the Poisson measure.

6.1.1 Invariant Distribution

First, let us validate the result of the invariant distribution. We consider
an one-dimensional torus with 1000 sites. Then, we distribute the particles
initially according to the Poisson measure and we observe the distribution at
later times of order N and N2. In the following figures, we see, for different
particle densities, that this result, indeed, stands.
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Figure 6.1: Distribution at time ¢ of IRW on T}gy, with a =5
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Figure 6.2: Distribution at time ¢ of IRW on T}gy, with a = 10
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6.1.2 2D Visualization

In addition, we wanted to visualize the evolution of a system of independent
random walks in two dimensions. In order to achieve that, we have consid-
ered an image which represent the two-dimensional torus and we created a
logarithmic color scale for the number of particles in each site. According
to the normalized logarithmic value of the number of particles, the color is
outputted in the following spectre:

— — red — black. (6.1)

In the images placed below, we see the evolution of the system, with total
density 10, after some time, with the particles initially positioned at the
center of the torus. In the first image, the elementary transition probability
{p(z,y) : (x,y) € T3y} is symmetric, when in the second is asymmetric
with:

p(1,0) = 0.3 (right), p(—1,0) = 0.1 (left),

p(0,1) = 0.5 (up), p(0,—1) = 0.1 (down).

Figure 6.3: Symmetric IRW on T%OO
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.

Figure 6.4: Asymmetric IRW on ']I‘%00 at time t; > 0

Figure 6.5: Asymmetric IRW on ’]I‘%00 at time t9 > t1
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6.2 Continuous to Discrete Time Simulations

In this section we see an efficient method for simulating particle systems with
interaction. This method was not needed for the previous model, as inter-
action does not actually exists. Throughout the previous chapters we define
the time evolution of our systems to be continuous and that is something
necessary in order to support other concepts like scaling limits. However, as
you know, in a computer, the evolution must happen in discrete times.

In section we said that a Markov chain is a Markov process (n:):<o
defined on a countable set and it is characterized by the transition rates
¢(¢,¢’) > 0. Furthermore, we denoted by

We=inf{t > 0:n # ¢}

the holding time in state ¢, and by

cc =Y ().
¢'#¢

the total exit rate out of state (. Obviously if ¢, = 0, then W, = oco. After
that, we proved proposition |1, which certifies that if ¢, > 0, then

We ~ Exp(ce),

where Exp()\) denotes the exponential distribution with rate \.

While simulating a system of particles with interaction on a torus ']I“i,
there is always a large loop, in which each iteration represents a transition,
namely the jump of one particle. The choice of the particle is strongly
connected with the holding time in its state. Note here that the transition
rates for the zero range process are:

1
c(n,n™¥) = g(n(x))ply — z)——.
n(x)
With this notation, the steps of the simulation of zero range processes
(similarly in SEP) are expressed by the following algorithm.

rates + sum{g(n(x)) for each x in T4}

time < 0

while true do
choose a site x with probability g(n(z))/rates
choose a site y with probability p(y — z)
n(z) < nlz) -1
n(y) < n(y) +1
time < time + Exp(rates)

rates « g(n(x)) + g(n(y)) — g(n(z) +1) — g(n(y) — 1)
end while
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We believe that all the steps are pretty straight-forward. Remember
remark [T} where we proved that

min(Ezp(A1), ..., Exp(Ay)) ~ E:cp(z Ai).
i=1

This justifies the increments in time variable.

6.3 Simple Exclusion Process

The dynamics of simple exclusion process were specified in section Fur-
thermore, in section [£.2] it was proved that for a system of interacting parti-
cles following simple exclusion process, there is a unique family of invariant
measures, parametrized by the density of particles, called the Bernoulli mea-
sure.

Later in that chapter, in section |4.3] we presented the nearest neighbor
asymmetric simple exclusion process with step initial condition. We will
now perform experiments regarding the behavior of the distance | X7| that
the marginal particle has covered on a given time.

First, we will establish the dependence of the mean value of | X ()| from
the time ¢, for both totally asymmetric and non-totally asymmetric cases.
We assume that

E(IX1(t)]) ~ et

which is expressed linearly
log E(|X1(t)]) ~ alogt + logc.
For the totally asymmetric case we found that
E(|X1(t)]) ~ t.

Now, remember the notation v = ¢ — p, where p is the probability that
a particle jumps one place at the right and ¢ that jumps one place at the
left. When in the totally asymmetric case is v = 1, we also consider the

asymmetric case where v = % — i = % The result in this case was

E(X1(0)]) ~ 5 =t

N |

Finally, one could say that

E(Xu(t/v)]) ~ 1

for every v € (0,1].
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Next, we need to establish the order of the fluctuations around the mean
value as the time increases. Following the same strategy as before we found
for the totally asymmetric case that

X1(8)] = E(| X1 (1)) ~ O(VE).

Now regarding the fluctuations for the non-totally asymmetric version
we found that

[ X1(8)] = E(IX1()]) ~ O(™).

And then, by looking at the following plot of the distribution of the
translated and normalized value of |X;(t)| for the non-totally asymmetric
case and the following table we notice an extraordinary similarity with the
Tracy-Widom distribution.

0.8 1

0.7 4

0.6

0.5 1

0.4 1

0.3 4

0.2 1

0.1+

0.0 T T T T

Figure 6.6: Distribution of | X (¢)| with v = 0.5

Mean Variance | Skewness | Excess kurtosis
-0.93205 | 0.241756 | 0.23716 0.0714276

Table 6.1: Characteristics of the distribution
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6.4 Zero Range Process

Throughout this section we will perform simulations on Zero Range Pro-
cesses, considering the Evans model |3|, where

0, ifk=0
““—{1+g,ﬁk21

In addition, we will consider only supercritical cases with density p > p. and
b > 2 to ensure that p. < oc.

The following image represents a two-dimensional torus equipped with
the normalized logarithmic color scale described in [6.1} In order to produce
it, we have let a zero range process, with particles uniformly initially dis-
tributed, unfold for a considerable amount of time ¢. Then each site in the
picture represents the maximum number of particles accommodated in that
site for some time ¢’ < ¢t. With that information we can roughly deduce all
the system evolution from time 0 in the following way.

As we described in section [5.4] starting from initial condition with par-
ticles uniformly distributed at the supercritical density p > p., the excess
particles condense at a few random sites, called cluster sites. With increas-
ing time the larger clusters will gain particles at the expense of the smaller
ones, causing some of the clusters to disappear. In that way, if you choose
a threshold density p;, > pe and filter the image with it, then you get the
cluster sites for some arbitrary time. And if you increase that density, then
you get fewer cluster sites which correspond to some later time.

Figure 6.7: Zero Range Process with state (;(x) = maxo<y<¢ v ()
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6.4.1 Scaling Order

Now, we will attempt to determine the order of the time needed for the sys-
tem to reach equilibrium. We will work in one dimension. Remember here
that the equilibrium state contains one condensed site and all the others dis-
tributed according to v,,. Consider the following three initial distributions:

)
)

0) = pL — 4p.L/5,
)

The last case is visualized as follows.

103 4

102 4

101 4

10° 1 —

T T
0 200 400 600 800 1000

Figure 6.8: Example with L = 1000, p =1, p. = 0.1

Although the actual time for reaching equilibrium from these states is
different, the order of the time is the same. After running simulations for
two different cases of elementary jump probability we found the following
results. In a totally asymmetric zero range process, namely with p(1) = 1,

we have that
T.y = O(L?).

When in a symmetric zero range process, namely with p(—1) = p(1) = 1/2,
we have that,
T., = O(L?).

We would expect the time in the symmetric case to be of higher order as the
particles diffuse without a drift.
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6.4.2 Tagged Particles

Here we will assume the third initial distribution described above and we will
study the dynamics of a tagged particle, whose location will be traced, in
contrast with the others indistinguishable particles. Consider the following
three classes of a tagged particle. If a particle is about to jump from the site
x where the tagged particle is located,

e First class: then this particle will always be the tagged one,

e Random: then this particle will be the tagged one with probability

1/n(z),

e Second class: then this particle will be the tagged one if it is the last
one at the site.

We are called here to determine the dependence of the distance of the
tagged particle from its initial position from the time ¢. The tagged particle
will be initially located at site z = L/2. We also scale the space by L and
the time by L? [15]. The simulations gave us:

e First class: Xioq(tL™2)/L = O(1),
e Random: Xy, (tL72)/L = O(V1),
e Second class: Xyq0(tL72)/L = O(V1).

We suspect that the first class tagged particles do not seem to depend on
the time because of their tendency to reach fast the condensed site.
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Chapter 7

Conclusion

Closing this diploma thesis, we would like do a short review of the ideas
and problems studied and sum up its contribution. Furthermore, we will
describe, in a bit, some possible future lines of work on the subject.

7.1 Contribution

We started by establishing all the essential mathematical foundations, de-
rived from the field of Stochastic Processes, in order to describe completely
the notion of Interacting Particle Systems. This necessity has emerged due
to the wide range of applications of Interacting Particle Systems in natural
problems. The next step, was to define the simplest form of a particle sys-
tem, namely the independent random walks, and then start asking questions
about the underlying behaviors. These questions included the existence of
invariant distributions in the system, the deduction of the macroscopic pro-
file of the system in given time and space scales, defining these scales, etc.
After that, it was time to turn our attention to a bit more complex In-
teracting Particle Systems, like the Simple Exclusion Process and the Zero
Range Process. These models along with many popular variances of them
are already widely studied by the researchers. In one of the variances of Sim-
ple Exclusion Process, the asymmetric one with step initial condition, the
Tracy-Widom distribution appears. Occasioned by that, follows a discus-
sion regarding the universality that this specific distribution seem to exhibit
lately. In addition, while studying Zero Range Processes, we focused es-
pecially on a variance where attraction is introduced between the particles.
Such model has started to be applied more and more often. Furthermore, the
simulations which we performed gave us a very good intuitive understanding
of our models and help us determine and validate several properties.
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7.2 Future Work

As future lines of work on the field, we would suggest gaining a deeper
understanding on the properties of Tracy-Widom distribution, as it seem to
play a central role in concepts with interacting components. Moreover, it
would be very advantageous to apply Variance Reduction Techniques on the
simulations including tagged particles, as they could manifest considerably
big fluctuations due to the nature of the quantity we want to approximate.
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>Yuvorntixy EAANvixr) Exooyn

Ta Yuothpata AMNAETOEMVTWY Lwpatidinv eival HOVIEAL TOU CUVAVTHOVTOL
o€ TOAAG QUOIXE GUOTAUOTA, YLt ToL ool oL ToTuxol unyoviouol etvor TOA) o-
mhol, ohhd pumopel va efvar Toh) 80oxoho var e€orydel pio xordohxr GuUTERLPOEA.
YTIC TEQIOGOTERESG TMEQIMTAOELS, Ol TUPAYOVTES TOU GUUBAAAOUY GT1 BUGXOALd
aQUTH] EVOL 7] ELOAYWYY| OTOYACTIXNAG SUVOULXNC Xou AAANAETBPOONC GE QUTA.
[Mopadelypota umopolv vo evIioToToLY 08 TEOPBAAUATY Omd TS QUOLXES ETL-
GTAUES, OTWE CLUCTAUNTA BLdYVOTE TNG AVTIOEAOTC X CLUATIOW aepiwy, Tou
enextelvovian o€ TEOPBAAUATO MO TIC XOWVWVIXES ETUCTAUES, OTWS N EOY NG
XUXAOPORLG, 1) BUVAUIXY) TNG YVWONE XoU 1) EEATAWOT TWV ETLOTULDYV.

O xdprog oxomdg TG UEAETNE TETOWWY LU TNUATWY ARNANAETUBROVTWY Y-
potdlev etvon 1 e€aywyr| TNG HAXPOCKOTUXAC CUUTERLPORAS, 1) oTtola GUVAYKC
TEPLY PAPETOL ATO LOPOBLVAUIXES EELOWOELS, ATO T UXEOCXOTUXT) AAANAETBEO-
o1, ONAXDY Amd TOUS UTOXEIPEVOUS GToYacTIX00E Unyaviopols. O uodnuo-
Txo¢ bpog mou cucyetileton Ye autd ovopdleton dpta kAipudkwons. Tao dpa
HAAHODONG EYOLY UEYEAO EVOLAQEROY YOl T (PUOLXT| XAl LOtaTEPL Yol ot pord 1
potxd. Emniéov, yog eviagpéper cuvidwe v fpolue xatao TUCELS LoOpEOoTag
070 GUCTNUE Hog, SNAaBT OTAY TO LUXEOOXOTIXO TEOYIA Bev aAAdlel. AuTéc oL
Llo0PEOTES TEPLYPAPOVTOL LOIMUATIXG UE TOV YoRUXTNELONO avaAdoiwTwy Kkata-
VOUY.

Ave&dptnrol Tuyalol Ilepinatol

Ye authv TNV evoOTNTA YEAOLUE VO BLEPELVHCOUNE TO GUCTNUA TV U1) Slory wplot-
MWV COUUTIOY Tou exteholy aveldotntoug tuyaioug mepindtous. O xdplog
0TOY0C Yag lvon 0 avary Voo Tng v e€otxetwiel ue Poaoixéc EVvoleg xon TEYVIXES
TIOU Y EMNOYLOTOL00VTOL GTOV TOUEN TV LUCTUATOV AMNAETSpOVTLY Lwyo-
Tolwv.

Movzéro

Yruewdote pe Z4 7o d-didotato mhéyua axépowv aprdudy. T éva detind o-
xépouo L, onpewdote ye Ty, tov tépo pe L onueto: T, = Zg, = {0,1,...,L —1}
Ol T% = (']I'L)d. Ede) to L avtinpoownelel To avtlioTpogo Tng andcToong
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petoll TV onuelov T, dnhadh Twv Teploydy TV GLUATIRY, oL onolec o-
VIImpoownevovton and x, y xo z. Agrvoviag L — 0o, n andotaon UeTa)
TWV oWPATOiwY Yo TdeL 6TO UNdEV Xt ETOL TEPVAUE ATO TO UXPOCXOTUIXO OTO
Haxpooxomixd medio.

©éloupe va teprypddoupe TNy eEENEN TOL CUCTHUATOS, OTOTE Yo Te To N
VoL ONAWOEL TOV GUVOALXO aPLIUO TWV CWUATIOIY XAl APACTE TA L1, L2, ..., TN
Vo dNAOCooLY TG apyxéc Toug Véoewc. Ernlong, eneldy) to owpatidio e€ehicoo-
VoL ¢ aveEdpTnTol Tuyolol TERITATOL BLoXELTol YEOVOoU, TEETEL Vo 0plCOLUE
wiar avehholwtn mdavétnta petdBaone p(z,y) oto Z4, yiu tnv onola p(z,y) =
p(0,y—1) =: p(y—x) yio xdmowa mdavétnta p(-) 670 Z%, TOU OVoudleTon oToI-
X€100NS petapatikny mavétnta Tou cuoTALAToS. AuTy 1 TiavoTnTa expedlel
TO GTOYUCTIXO YARAXTNELOTIXG TOU TUYALOU TEQLTATOL.

‘Eotw 6t 10 pr(x, y) avunpoonnetetl tnv mdavotnta vo eivon évo owuotidlo
GTO YWEO Y OTO YEOVO T yial Ulal BLaxELTY| Yeovixr) Tuyola Topeld UE O TOLYELDOT
mdavotnTa petdfaong p(-) Zexwvodvtog and to z. Emmiéov, to pe(-,-) xAnpo-
vopel v Lot ta petdPBaone and to p(-, ) xou étol py(x,y) = pe(0,y — x) =:
pe(y — ).

Etvor xoupdc va meptypddouye tnv xivnon xdie cwpatidiov. A¢ ndpoupe N
aveZdptntec petaPhntéc tuyaov tepdtov {Z1, Z2, ..., ZN} 610 Z% pe oror-
YOO mdavotnta petdfoone p(-) xau apyxd oto pundév. (¢ anotéheoua, 1
Véor %dde cwpatdiou i otov oo T¢ oto ypdvo t Vo etvor

X} = x; + Z} mod L.

2071600, eneldn To cwUATOLL BV BlaxpivovTol GTO UOVTENO Uag, BEV HAG EV-
Otapépel 1 oxpPhc Véon xdie cwuatidlov, ahhd 0 aptiuos TwV cwPATOIWY e
x&de Y€omn Tou YWEOoL. LUYHEXPUIEVY, O YMPOG XATACTACTS TOU GUC THUATOG,
ToU ovoudleTal ETONG Y WEOS BaUORYLONS, Elvol NTZ. O xaractdoeic OTUEL-
ovovTon Ye 1, ¢ xon . XouQwva U autdv Tov 0ploud, v To T elval yHEog
oto T¢, t6te n(z) civar 0 opiPdC TwWY GLUATIBIWY AUTOY TOU YMEOU YL TNV
xatdotoon 1. Enoyévee, av ta couotiow elvo apyixd ota o1, T2, ...T N, TOTE

N
n(z) = Z I{x = z;}.
i=1

Amé TV &N Theupd, edv pac ddoouve (n(x) @ @ € TE), uropolue TpMTa Vo
ETUONUAVOLUE ToL GOUATIOW Xou Vo Tat apricouye va e€eAty Yoy cOUQOVL UE TNV
GTOYACTIXNY BUVOULXT] TOU TEELY PApOE.

Puowd, H€houpe TNV Slopdepwor o yeovo t, 1 onola Yo cuufolileton ye
ne(x) xaw Yo oprotel and

N .
n(x) = Z 1{z = X{}.
i=1
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Emnhéov, n dwodixaocto (1:)i>0 xAnpovopel v Widtnta Markov and toug tu-
yodoug mepimdtoug { X/, 1 < i < N} enedr) 6ho tor owportidior Eyouv tnv (Brot
o TOLELOOT) TavOTNTO UETABAoTE ot BEV AAANAETLOPOUY PETAED TOUC.

Meézpo Poisson

AeBopévou OTL 0 YWEOC XATACTACNC EVOL TETMEPACUEVOS Xt BEBOUEVOU OTL O
GUVOAXOG aELIUOC TWV CWPATOWY eival 1 Lovadixy TOGOTNTA TOU dLaTrEElTal
amd TN BUVOLXT) TOL CUCTARATOS, Yiot Xde VeTind axépono N TOL AVTLITEOCW-
TeVEL TOV GUVOANXO 0ptdud CLUATIONWY, UTdpYEL uovo Eva aueTdBANTO PETEO.
H unocthpi&n g ototyelddoue mdavétnrac petdPaonc p(-) mopdyer tn Z4,
onhaot] 1 otaduxaocto etvon un uroPiBdowun. To yétpa tne Poisson otn uyeiétn
uac Yo mat&ouv xevtpind pdo.

Ouundeite 6tL 1 xotavour Poisson ye mopdupetpo o > 0 elvon to pétpo

mavotnrac otov N pe
k

pk:e_o‘%, keN

xa o petaoynuatiopog Laplace eivon {cog pe

> Ctk A A
e ¢ E e_Akﬁ — e e — ea(e —1)’

k=0

vt xéde A > 0.

Opilovpe t0 mopaxdte pétpo. Do wo Yetnd ouvdptnon p @ T¢ — Ry,
ovopdlouye to Poisson pétpo 670 T4 nou oyetileton ye tn ouvdptnom p, W
TavoTNTO OTOV YOO BLAORPOONC NTZ, 7ou UTOONAWVETOL Ao yﬁ(,), €y ovTag

TIC TOEOXATR BUO OLOTNTES.

e ¥dTw and 1o V[f(_) oL tuyaiec petoBhntéc (n(z) : x € TY), mou avtirpo-
OWTEVOUY TOV GUVORLXO apliud cwuaTdlnwy, TEENEL Vo elvon avegdptnTeg,

e vl x8de yOpo x € T, 1 () xoTavEUETOL CUUPOVOL UE Lol XATAVOUT
Poisson napopétpou p(z).

Yy mepintwon 6mou 1 cuvdptnon p ebvan otadepr xou fon ye o, uTooT-
AGVOULUE TO pL(.), wévo pe vL. Enlone, 9o unodnAGvouue Tnv ovauevopevn T
oc oyéon Ue eva YEtpo v w¢ B,

To yétpo VPL(‘) yopoxtneiletan omd ToV TOAUBLACTaTO YeTaoynuotioud La-
place:

(@) (e @)1
EVL |:6 er’ﬂ‘% )\(:p)ﬁ(x):| _ H ep(m)(e—k(x)_l) _ eszT% o ( )
p(+) et

yiar x&de Yetinh) axohovdia (A(x) : @ € T) [4].
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Tpa, o¢ TEOYWEHCOUUE OTO VoL SLITO TWCOLUE OTL Tar u€tpa Poisson mou
oyetilovtal pe otodepéc cuVaPTACELS efvan avaAholwTa yior €vol GUG TN ave-
EaoTNTOVY TUY ALY TEPLTATWY.

ITpotaom. Av ta owpotidio apyixd xotoveundoly cOUGOVL UE EVol HETEO
Poisson nou oyetileton ye pla otodepr) cuvdptnon lon e a TOTE 1 XATAVOUN
070 yeovo t elvon axpBne to Blo uétpo Poisson. [11]

Anodedn. Oplote ¢ Por 1o pétpo mavétniac 670 YOpo LOVOTATIOV
Qp = NTZ x NTZ x ..., 5nhadh 0 ydeoc ™ ()10 TOU Tapdyeton amd Tic
BuVaPIKEC TRV OVEEGRTNTLY TuYOLWY TEPTETWY Xot To apyxd uétpo v, H
avapevouevn T o mpog to P r unodnioveta oné E,r. Ye autd to onpelo,
TapotnenoTe T dlopopd petody L, mou elvon 1 avoevopevT) Tt oe oyéon
ue to pétpo mou oplletal oTO NTL xou E,r, n onolo efvor n ovapevopevn tpd
o oyéon Ue To UETpo Tou oplleTon 6To Yweo ywovoratiwdy 2. Eivon ebxoho va
Ol 6Tt

E,o[F(no)] = B,z [F(n)]

yio xdie payuévn ouveyn cuvdptnon I oto NTZ.
Asﬁoué,vou OTL TO UE€TPO Vf(_,) chpomm’piiswt ano oV Tco)\u&/dcwro METO-
oynuatiopo Laplace, Yo utohoylcoude €66 TNV OVOUEVOUEVT] TN

N Pl oREFRICLHO)

Va

i %8 Yetver axohoudia (A(z) @ z € TE). Emmiéov, yia évav ydpo y €
T4, Yo unodeioupe pe Xty’k ) ¥éon o0 yedvo t Tou k-o6T0U cwuaTIdiou
Eexwvwvtag amd y. Me autd Tov TpoTo, 0 apldudc cwpATSikY ToV YMEo & 6To
yeovo t Ha elvou:

n0(y)

m(e) =Y Y Mz= X"}

yG’]I‘dL k=1

Ko t67e, avactpégovtag 1 oepd adpoloeng, Vo ndpouye:

10 (y)
ST A@me(x) =30 3 AP,
xET‘i yg’]ffé k=1

Acbdopévou 6Tt xdlde cwuatidio eelMooeton aveldpTnTa X0l O GUVORLXOC
apriuoe ocwpatdiny ot xdde Vo 6To Ypovo 0 XATAVEUETOL GUUPWVOL UE UL
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xatovour, Poisson mopouétoou o
b

B [o St ] Sy [ Bt s )

[T B, [ T 200Y) =
yeTY
IT [ vt (2 [eo]) ™ =
yET%
H ea(E{e*A(Xty’l)} _1) _ H ea(E[e*A(erXt)]—l)
yeTd yeTd

‘Onou X ebvan évog tuyolog meplnatog 6o Yedvo t GTOV TOUO T”Ll EextvavToc
amd TV apy A xon pe mdavétnTa petdPaonc pr(-) pe

ptL(xay) = Z pt(x>y + LZ)

zeZ4

v 7,y € T, AeBopévou 61, €€ oplopol,

E [e—A(y+Xt)] _ Z P — y)e @),

d
z€Tq

TOTE, AVTIOTEEPOVTOC TN Oelpd adpoloswe xou 6Tt ZyeT% pF(z —y) = 1, nadp-
VOUUE
=3 _d Mx)ne(z) S d @ e~ Mw) 1
]EVL |:6 zeTL —e zeTL ( ) |:|
«
o mEémel enionc Vo oNUELWooLUE OTL ol xatavouéc Poisson efvon tétolec
(C] o) P
OOTE 1) AVUUEVOUEVY] TWT| TOUS VO LlOOUTOL [UE

Ta pétpa Poisson pe autdv 10V TpOT0 QUCLOAOY XS TURUUETEOTOLOUVTOL AT TNV
TUXVOTNTO TV cwUATOiwy. Emmiéov, and Tov vouo twv UeYdAnY aptiudy,

1
lim —— =
fim, gy 2 @) =

d
z€T}

wotd mdavéTnTo o oyéon pe vL. Suvende, gavtaoteite 6Tt N TopdueTEOC @
TEQLYPAPEL TN UECT) TUXVOTNTA TWV CWHATOIWY o€ €val UeYd o xouTl™.

Y UUTEQUCUATING, VIO QUTT TNV EVOTNTOL, BLATIO TOCUUE TNV LTIOEET UL OLXO-
YEVELLG OVIANOIWTWY PETEWY ULOC TTUROUETEOU TIOU TEOGOL0RILEL TNV TUXVOTNHTA
TWV owPaTdinY, 1 onola elvon 1 Lovadixy) TocoTNTA ToL dlaTnee(ton omd TNV
eZ€MEn ToL YpodVOoUL.
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YBpoduvapixy] LuunepLpopd

Elnope mponyoupévmg 6Tl €vag amd Toug xUPLOUS GTOYOUS UoG Elvol Vo GU-
VOYAYOUUE TT| UAXQOCXOTIXT] CUUTERLPORE EVOC GUC TAUATOS AAANAETLORMOVTWDY
COUUTIOWY. TNy Teplntworn auth, 1 UeTdPacT amd ToV UXEOXOCUO GE GTOV
poxpdxoouo Va yivel ue TNV TpayUaTonolnon evog oplou 6To omolo 1) andc To-
om UETOEY TV Yéoewy Twv cwuatdiny Ya @tdoet oto undév. Autd dev elvan
0UoXONO Vo ExppacTel xan elvon Wiar TEYVIXT Tou Yenoulornoleitar og ToAholg
Touelg Twv Madnuotixmy.

Av gavtacTolpe 6Tt o dloxprtéc tépoc T elvan evowpatwuévoc oe évay
ouveyh topo T = [0,1)%, dnhadh raipvoviac To mAéypa T4 e «xopupécr ota
x/L, x € ']I‘d, TOTE Ol ATMOOTAOELC PETOEY TwV owpatdiwy eivon 1/L xou telvouv
6T0 UNndév 6tav L — 0o. Me autd tov TpoTO, Yoo TNV avTioTeOogn YopTo-
Yodpnon, x&de poxpooxomixd onueio u oto T cuvdéeton Ye pia UixpooXoTXH
toroVeoia x = [ul] oto TY.

Eoto tépa po : T — Ry va efvon pior opok# cuVERTNGT| TOU TEpLYpdpeL T0
aEYXO TEOMIA TUXVOTNTAS. TN CUVEYELX, OLUVEUOUUE CWUATIOI CUUPWVIL UE
éva pétpo Poisson e apyd petoBodhbpev tapdpetpo oto T, dnhad yio xdde
Yeuxd L xodopiloupe Ty mopduetpo tne xotavourc Poisson atov ydpo  va
ebvau {on pe po(x/L).

Biénouye 6t av Eextvricoupe amd éva uétpo Poisson e apyd petoahhouevn
TUEAUETEO TOTE

T P oREFECIE

Yoo ()

o Zverd PO/ Eyend pL(y—a) (e ¥ —1)

eZyET% (e_)‘(y)fl) er’ﬂ‘% Pf (y*Z)pQ(x/L) _.

eEyerL (e_A(y)—l)'lZ’L,t(y)

Yy mapamdve e&lonmon Talpvouue 0T, oE Yeovo t, eaxohoLVOUUE Vo EYOUUE
évo pétpo Poisson ye opyd uetoBalhouevn topdueteo, n onolo tweo ebtvon 1, ¢(-)
avti vy po(-/L).
Ané 1 et popen) Tou Y1 ¢, Exouue 6T Yo xdde onuelo CUVEYEINS U TNS
P,
lim ¥ 4([ul]) = po(u).
L—o0

Autéd nou pag Aéel 1 mapamdve e€lowon elvon 0T To TEoPiA TapéuElve ae-
téBAnto. Ilopdro mou o ypdvog t €yel mepdoel, Qalvetal 6Tl TO GUCTNU OEV
elye apxeTo YEOVOo Yia Vo eEeMy Vel XL AUTO AVTOVOXAY TO YEYOVOS OTL GE Uo-
%xpooxoTLXY) XAoxa Tor cwuatidla dev xwvinxay. Me mdavétnta xovtd c6To 1,
O HOXEOOXOTILXY) XA{HoaL, To CwUATIOW OE Yedvo t Exouv xahiel amdoTao
Té4ENe L1
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Hpoxewévou va emhudel autd To TEOBANUa, TEEtel Vo dlaxplvoupe dVo Blo-
POPETIUES YPOVXES XAiaxeS, xS €YOUUE 10T OLUPOPETIXES XALUAXES Y WEOL,
T4 xon L71T4. Avtiototye, ypetalbpaoTe évay pixpooxomixd yebvo t xo évoy
HoxEOooXOTIXG YEOVO 0 omolog Yu elvan amelpwg yeydrog oe oyéon e To t.

Trodétoupe 6T 1 oToyewddne mbavotnta petdBaone p(-) Exel TENEPACUEVN
avopevépevn Th: m = Y ap(z) € RY. Aédue 6T o tuyaioc epinatoc ebvor
aoUupetpog av m # 0, 6t elvon aoUupetpos e undeviké péoo av n p(-)
dev elvon ouppetex) oMk m = 0 xou 6Tt elvon ouppeTpikés av 1 p(-) ebvon
GUUHETEWX.

SUYHEXQWEVA, OO TN ENTH EXPEACT] TOU P, ¢, X apo) LTOVECAUUE OTL TO
apy 6 TEOPIA elvon OO, EYOUNE

Jim i gr () = po(u — me) = p(t,u)

v x&de u € T,

Tpo ymopeite va dette oL pe ) VEo ypovixn xhipaxa, tL, to mpopih dev
TopEUEVE oeTEBANTO. AvtideTo, TapaTneolUe €vol VEO UaxpOooXOTIXO TEOpIA:
TO TPWTOTUTO TOU UETATOTIGTNXE oo M.

‘Eva cbotnua couatdioy tou egellooetar we aveldpTnTol acOUUETEOL Tu-
yool mepinaTol UE METEPUOUEVT) TTEMTY CTIYHY) O €val d-OLdcGTATO TOUO EYEL Uil
udpodLvouxy Teptypar. H e&EMEn Tou TEogih TUXVOTHTAC TEPLYEAPETAL Amd
™0 Aoom g Slopixng e€lowong

Op+m-Vp=0.

2o7t600, 6Tav 0 TUYAiog TEp(TUTOC BEV Efval ACOUUETEOC XOUL 1) AVOUEVOUEVT)
Ty m e&agavileton, n Adon authc T dlagopixic e€lowone eivan otadepy,
Tedyua mou onuoivel 6Tt To Teogik dev dhhae TNy yeovixr xhivoxa tL. Autd
€yeL vonua StouoinTixd, xadde To cloTNUA eival TOREA AUEROANTTO TEOS TNV
xatedduvon. QoTt600, edv e€eTdoouye Ua LEYUADTERT YeoVIXT xAluoxa, TEENg
L2, oebun xou 6tay 1) péor extomion m eEapoavioTel, PTopolpe Vo TopatneRcou-
ue pla evitagépovoa eEENEN atov yeodvo. [11]

AnAY Arodixacio AtoxAsicpon

Y auTAY TNY EVOTNTA YUaC EVOLUPEPOLY OL BLladacieg anho) anoxAelouol. Au-
6 10 povtélo mpotddnxe oto [16] xou elvon évo amd tar amholoTEPR XL TO
MEAETNUEVA CLUOTHUOTA AAANAETLOPWOVTOY cwpaTdiny. H dwdixacio anhol o-
ToxAelolol, oe avtideon pe Toug aveZdpTNTouc TUYAOUS TEPLTETOUS OV |E-
AeThON@ay oTNY TEONYOUUEVT EVOTNTY, ETTEENEL TO TOAD Vol CWUATIOW0 avd
YWEO.

Hpdta am ‘6ha, 0 yweog xatdotaong etvan {0, 1}T%. [Tpoxewévou va ano-
pevy Vel 1 EUPAVIOT TEQLIOGOTERMY A6 EVal CLUATISWY avd Totoveata, elodyou-
HE EVOY XOVOVOL ATOXAELOUO) TTOU XATAG TEAAEL xAUE AU OE 1T XATEYOUEVO
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YWEO. LTNV TEayUaTXoOTNTa, o eMXEVTPWIOVUE HOVO GTNY ATAOVCTERT XATT-
yopla BLadLXACLOY ATOXAEIGUOV: GUCTAUATO OOV Tal CLPATIOW TNdolY, 6ToTE
EMTEEMETOL TO GAUA, oveEHPTNTA OO ToL SAAAL Xo GUUPVOL PE TNV (Blal G TOLYEL-
007 peTAPBaTN TovOTNTA

O yevvATopag

(L) =Y Y nl@)(=nla+2)p"()(f (") = f(n),

xeT? zeT?

omou ™Y elvan xaTdoTOOT TOU TUHEVOUUE OO TNV 1) APHVOVTUS €V CWUATIOW0
VoL UETATNOYOEL 06 TO T OTO Y, ONAdY)

n(z)  ovz#ay,
Y(z) =< nx)—1 ovz=x  xu pi(z):= Z p(z+yL),
ny)+1  avz=y yezs

optlet wia Sradixactior Markov mou ovopdletar amhy| dtadxoacior antoxheloUol e
otoyetdn mdavotnta yetofdoewy p(-). LN ouyxexpwévn tepintwon dtou
p(z) = p(—=2) Mue ot elvon o ouPPETEXH oAy dtadixacia amoxAelopol.

[Iioteboupe otL 1 epunveia elvon cagric. Metald 0 xou dt, xdde cwuatidio
npoonadel, aveZdpTnTa and to dhha, var TndrZeL omd 10 & 670 T+2 PE (ExVETING)
oudu6 pF(z). To dhua xotacTéMeTon €dv 0dNYEl OE HBN XATEYOUEVO YORO.

TreviupiCoupe €8¢ 6TL wiar Sodixactia Markov Aéyeton otL elvon pn umof-
Bdown av elvor SUVATOV Vo PTACOUUE OE OTOLUOHTOTE XATACTACT) UG OTOLO-
ofjrote xatdctoor. Emniéov, dedouévou oti n mavdtnTa yetdBoong Yewpelton
ot ebvon temepaouévou evpoue, utdpyet Ag oto N tétolo hote p(z) = 0 yio Gheg
Tic Tonodesiec extéc Tou xOBou [—Ag, Agld. Suyxexpyéva, o ph(-) xu p(*)
ouumintouy Yo L > Ap. 't dutdv tov Adyo, and €6 xou népa Yo topalelpouue
Tov 0eixtn L otny ototyetwdn mdavotnta yetdBoonc. Axdua, mapatneolue 6Tt
0 pLIUOC e ToV 0Tolo Eva CLWUATIBL YETATNBE and To T 6To Y e€upTdToL And TN
BLopdEPWOTN 1 HOVO PECW TV PETABANTOVY dtopdppwone 1(z) xou n(y). Avth
n terevtala e€dptnon and o n(x) xou N(y) avixotontpilel Tov xavova ano-
xhewopou. Téhog, TapatneHoTe 6TL 0 GUVORIXOS dELIUOS CLWUATIOIWY dlartneeito
ano T SUVOLXTY.

Anévoupe pe v = vE yiw 10 0 < a < 1, 1o pétpo Bernoulli nopopuétpou
a, dnhadY) o avalholwto péteo oto {0, I}T% ME TUXVOTNTO (. DUYHEXQUIEVQ,
#8Tw A6 Vg, ot petofintéc (n(x) 1 @ € T) eivon aveldptnrec ue

va{n(z) =1} = a =1 —va{n(x) = 0}.

IMpétaocy. Ta pétpa Bernoulli {v, : 0 < a < 1} ebvor apetdfBinto
yioo amA€g Oladacieg anoxielopol. Emniéov, oe oyéon ue xdde v, ot diep-
yaolec anoxhewopol pe mdovétnto otoyewndoue petdfBaonc p(z) = p(—=)
elvon cupTANEwUATIXES UE Bladixacieg pe oTolyewwdr Tavotnta tavotnTog
P(2). Buyrexpyéva, ol CUPHETEIXEC amhég dladixaoies anoxhelopol elvor auto-
CUUTANPWUATIXES OE oyéon e xdle vq. [11]
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Anédeiln. Eivou ebxolo va mopatneioeTe 0Tl Ue Lol AmAT) oAy T TV Ue-
TaBANTOV

/f(no’z)g(n)n(o)(l —1(2))va(dn) = /f(n)g(no’z)n(Z)(l —1(0))va(dn).

Auth 1 tautoTTe, To Yeyoveg 6T 1 = Y sap(2) = Y cza P(—2) X W
ahhayry ot oelpd adpoicewe, amodexviouy Ty TpoTao. [

Y auTY| TNV TEPITTWOT), 1) OXOYEVELL TWV AVIANOIWTWY UETEWY Vo TOUQOE-
TEOTOLE(TOL AT TNV TUXVOTNTA, APOV

Epo[n(0)] = va{n(0) = 1} = a.

AclOupeten UE BNRatiny] dp) X XATACTACY)

Mot extevidg JeAETNUEVT Topohhay ) TN amArc dtadixaciog amoxhelopol etvar
1 LOVOOLAOTATY) TANCIECTERY YELTOVIXT) AcVUUUETET Bladixaoior anoxhelopol Ue
BruoTie apyxh) XATAoTACT).  ME QUTOV TOV TOUEd, €youv emiteLyVel TOAAG
onuavTixd anoteréopata and toug Tracy xon Widom.

Ac eetdoouye To TAéYU TV oxepainv Z. Xtnv mepintworn Brpotindg
apY S XATACTAOTG, T cwuatidla Yo apyicouv amd toug YeTixole axéponoug
Z. 'Onoe yvopllete, €vo owpatidlo TEpUEvel eXVETIXG YPOVO XoL GTT) GUVEYELL
HETOVELTAL TPOg Tol Beld pe THoVOTNTA P OV O GUYXEXPWEVOS YWOEOS Elval
XEVOC 1) TPOC Tl APLOTERA HE TWaAVOTNTA ¢ = 1 — P oV O GUYXEXQIIEVOS YWOEOS
elvon xevog. Edv o ywpoc otov onolo mpdxeirton va tndhEet xortohouBdveTon,
TOTE ToPUEVEL exEl TTOL elval.

H x0po mocdtntar mou Yo yog anaoyolfoel oe auty| TV evotrnta eivon 1)
Y€an Tou MTN CLUATIOOL and To APLOTER TNV OTYUN t,

T (1), e zm(0) = m.

Ed¢) Yo umodécoupe enlong 6TL p < g OCTE var UTHEYEL Yot TAOT| TEOS TAL UPLO TE-
ed. Twpa Yo EeXVACOUUE TEQLYPAPOVTIS TA ATOTEAEGHUATO TOU TOROVCLIC THXAY
xou amodetydnxay oto [21].

Or ouvtdxtec oto [17], amédetloy par QOO Yior THY TOCHTNTA TOU YOG
evolapépet, mou toylel Otav T p xan g ebvon undevixd. Abveton pe Bdon tnv
Fredholm opilouca evic nuphva K (&,&’) oto Cr, évav xixho ye xévipo oto
UNBEV xou Lol weydhn axtiva R. O mpwtog tomog elvar o axdrovdog

det(I — AK) dX

Plan(t/2) <9) = [ mmt o3

Edxoha mpoxintet amd tnyv napamdve e&lowmon ot
P(x1(t/v) > x) = det({ — K).

Eivou Zexdidopo 6Tt 10 Pz (t) > x) = 0 v 6hat T t Sty & > m,
x9S Yl évol cwpatido va Beloxeton ota deid TN apytxig Tou Yéong, Gha
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Ta cwuatidia Yo €mpene vo xtvnlolv TauToyedvee Tpog Ta Bedid, To omolo €yel
olyoupa undevixr) mdovoTnTa.
Av xon o mapandvey tonog amoutel p > 0, 1 dRhwon €yl vonua 6tay p = 0.
H Swowocio 6mou 10 p = 0 xou to oUATON UETAXVOUVTUL UOVO TEOS T
apLoTERY OVOUALeTon TAPMS ACUUUETET AAT) SLlodixacior amoxAElouoU.
Emniéov, Yo napadécoupe 10 aoUUTTWTIXNG ATOTEAEOUA OTAV TOL 1M XOL T
xat T 600 Tyalvouy oTo dnelpo. XpeNoUWOTOWOUE TOV GUUBOAIGUO

c=m/t, c1=—1+2/0, ¢ =0 Y1 —/0)?/3

‘Otav 0 < p < g €youue

lim P (W)_Clt < s) — Fy(s)

t—00 C2t1/3

oumoLopoppa Yot 0 oe éva cupmayég utocivoho tou (0, 1).

Yo moapoandve Yedpnuo, 1 ouvdetnon Fi(s) mou mpoxinTel aouuntwTixd
elvon 1 xotovopry Tracy-Widom. O xatovouée Tracy-Widom eivon wia oixo-
Yével xatavoumy mavothTey Tou teptyedgnxay and toug Craig Tracy xou
Harold Widom [18, [19], xou gaivetor 6Tt Sl€TOUY TN PEYLOTN WOIOTWH HEYSAWY
TUY WY TUVAXOVY.

H ovowpeutint cuvdptnon mdavotntoc tng xotavourc Tracy-Widom pno-
el va 50Uel ¢ ohoxhpwua

Fiy(s) = I o)t @)is
ME g va gbvon 1) wovadixy Aoon oty eéiowon Painlevé 11
q" = sq+2¢°, ue ouvoplaxh ouvdixn q(s) ~ Ai(s) 6tav s — 00,

onou A1 ebvar 1 cuvdptnon Airy.

KadoAuxdtnta xatavoung Tracy-Widom

Ye auth Ty evotnTa Yo cLLNTHCOUUE VLol TNV XoJOAXOTNTA TTOL €YEL DLUTLO Tk~
Vel npdogata 6TL delyvel 1 xatovouy| Tracy-Widom.

Etvor yeyovog ot 1 Oewpla Tuyolwy IIvdxwv €xet Beet évay tepdotio o-
ELUO EPUPUOY®Y TOU XLUOVOVTOL amd TN CTATICTIXY PUOLXY| uéypel TN Vew-
elo apriudy, Tor oLUVBLACTIXG Xon Tol OAOXANEWTIXG cuoTAUATH. MeTalld TwV
TeoopaTwY eCelewy oTn Yemplo Tuyalwy TVexwY, N UEAETN NG MEYAALTERNC
WOOTWAS Adnaz LEYOAOY TUY OV TVEXWY EYEL TEOGEAXUCEL WOWETERT, TROGOY .
Ot mptTeg EpMTATELS APopoVoUY TI BLOXUUAVOELS TOU Ampaz, TOU AVAXOLY OTO
gLPVTEPO VEUA GTUATIO TIXWDY OXEULWY TUIWV.

O Bordyog Robert May mpaypatomoinoe to 1972 pia guoiny| e@apuoyr twy
CTATIO XDV TOU Ajpaq, TOU EVOL VO TORAGYEL £VOL XPLTTRLO TNS QPUOLXTE o Tade-
péTNTaG o8 Suvaixd cuo THRNTY OTwe Ta ooovoThuata [14]. Osdpnoe évav
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TANOUoUO N BLoXELTOY EBMY Xl ELCTYUYE LoYLRESC AANAETIBPACELS UeTadD TwV
ewwv. Trédeoe 611 o1 alnhemidpdoelc petah (euy v edwyY Uropoly va Uo-
viehonoindolyv and tuyaio mivaxa J, yeyédougc N x N. Eva guoixd cpmdtnua
elvon howdv: mota ebvon 1 mdovdTNTa Patapre (e, N), 6OV T0 @ AVTITPOCHTE-
UEL TN BUVOUN TWV AAANAETLORACEWY, OTL TO0 GOOTNUA TUPUUEVEL GTOERD OTAY
evepyonotndolv o alniemdpdoeic [14] Metd and pepixoic unoloylogois, o
May amédwoe 6TL 10 oo TN Yo Tapaelvel oTodepd, UTd TNV TEolnddeoT OTL
oL WTWES A; Tou Tuyaiou Tivoxa J ixavomololy TV oavichTN T

a)\i—lgo,

yioo Ohat T i = 1, ..., N. Autd elvan mpogavade Lloodivauo pe tn SRAwor OTL 1)
HEYUADTERN WOOTWN Appar = MAX|<i<N A; IXOVOTOLEL TNV aviooTnTOL:

Q|m

Enopévewe n mboavétnta otadepdtntog Tou cucthuatog oyetiletal QuUod Ue
TNV XATovour| TNG UEYOADTERNS WOTWNAS Amaz-

H xatovour Tracy-Widom dnuiovpyrinxe yia mpodtn @opd to 1992, 6o
dexoetiec apyotepa, and tov Tracy xo tov Widom [18| [19], ot omoiot tnv
TOEATARNONY UEAETWVTAS TNV (Otar €vvola, ONAAOY TIC DLUXUUGVOELS TNG UEYO-
ANOTEENG WOTWAC Apmar TUYOV TvdXwY. Apydtepa To 1999, ou Baik, Deift,
Johansson [2], avaxdhuday bt 1 Blor oTaTio TIXr xatavour] TEpLypdpet eniong
TIC OLOXUUBAVOELC OE aXONOUDIEC AVaDLATOYUEVWY OXEQUULMY AELUUY - Lol EVTE-
AOC oveZdoTnTn pordnuaTixy €vvola.

Y0vtopa 1) oTaTIo TIXT XAUTOAY dpytoe vo ehgavileton og LOVTEAX OE O
N QUOLXT o T YardnuaTixd. AuTh 1 awvly ot XoTOAY QouvoTay Vo £lvol o
cUVIETOC EABEAPOC TNG YVWO TS XaUTOANG xaumdvag, tne Gaussian xatovo-
ung, N omolo AVTITEOCWTEVEL T1) QPUOLXT) SLOXOUAVOT) TWV AVEEAETNTWY TUY LWV
petoBAnTOY. ‘Onwe xan ) Gaussian, 1 xatovour Tracy-Widom moapgouctdlet xo-
YoAXOTNTA, EVa LUOTNPLWOOES PUUVOUEVO GTO OTIOLO BLOPOPETIXG ULXPOCHOTILXSL
YEYOVOTA BivOLY TNV (BLot GUANOYIXT) CUUTERLPORT.
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Tracy-Widom
—— Normal

Yuvapthoelg tuxvotntag mavotntoc Kavovire xou Tracy-Widom xotavouric

‘Orav 1 xatavour| Tracy-Widom eugavictnxe 6to mpoBinua Tomv oxépatemy
oaxoAoLILBY Xt o€ dAAa TAaloLa Tou Bev elyav xoplo oyéon pe tn Yewpla Tu-
Yoy TVExwy, oL epeuvNTES dpyloay vor (JdyVouv Yo TO “XEUUHEVO VAL TOU
ouvdEel Oheg Tic mTuyée pall, omwe ol poinuatixol Tov 180 xou 190 awcdvor o-
valntoloay €va Yedpnua mou Ho e&nyodoe TNV TovToy o) TUpOoUCN XAVOVIXT)
XATOVOUY).

To xevtpxd oplond Vewpnua, To omolo TEMXE EYIVE AUGTNEO TEWY And TE-
elmou évay ALV, TIOTOTOLEL OTL OL PUOIXES TUPATNPENOELS Xl GAAES “UT CUCYE-
TIOUEVES” PETUPBANTES - TOU ONPALVEL OTL OTIOLUBHTOTE ATO AUTEG UTOPOUYV VoL OA-
ANEEoLV ywelc Vo ETNEEACOUY TIC UTOAOLTES - Vol ATOTEAOVY XOUTUAT) XAUUTEVOG.
Avtieta, n xaunOin Tracy-Widom qaiveton va mpoxntel and UeTaBAnTéC TOU
cuoyeti{ovta €vtova, OTwe 1 AAANAETBpOT UETHEY TV EWBMY, Ol TYWES TwV
HETOY OV ot oL WLOTWES Twv mvixwy. O xdxhog avddpaons twv ouolBolny
ATOTENEOUATWY PETOED TV CUGYETIONEVWY UETABANTOY xarhoTd Tr GUAAOYIXT)
GUUTERLPOEA TOUG TILO TERITAOXT] AT QT TWV (U] CUCYETIOUEVWY UETABANTOV.

Eve ou epeuvntéc €youv anodellel auoTned OploU€veS xaTnyopleg Tuyo-
lwv mvdxwy otic omoleg emxpatel yevixwe 1 xatavour Tracy-Widom, €youv
TEPLXUXAGDCEL AYOTERO TIC EUPAVIOELS TNG OF TEOPBAAUITA XATUUETENONS, TTEO-
BAoTar TUY eV TEPLTATWY, LOVTEAX AVATTUENG XAl GAAQL.

Méypl otiyuric, €xouy yapuxtneloTel Teelg Loppeg davourc Tracy-Widom.
Etvon petaoynuatiouéveg exdoyég 1 uiot Tng GAANG TOU TEQLYPAPOUV LoYURE GU-
OYETIOMEVO UG TAUATOL UE DLAPORETIXO0VE TUTOUE EYYEVOUS TUYUOTNTAS, ONhadT
OLAPOPETIXOUE TUTOUG TUYAEWY TUVAXWY. MUYXEXPWEVA, Ol TEEIC XAJCELS TOU
Fp(s) onuewdvovtar and f = 1,2,4. Qotéoo, Yo unopoloav vo umdpyouv
TEPLOGOTERES Amd TEELS, (0WG oxOUT xat €vag dmelpog aptdudc, TEEEmY.
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K\doewc xatavourc Tracy-Widom

Tov teheutato xoupd culnTteiton EXTEVHOC TO YEYOVOS OTL 0 AGUUUETEOC Y-
QUXTARUC TNG XATUVOUNG UTOREL VAL AVTITPOOWTEVEL XAmolo €l60g xadoAXhS
petdPBaonc @done [13]. Xto poviého tou owocuothuatoc tou May, yior To-
pdderyua, o xpiowo onueio oto V2N yopellel pra otadeph pdon tov acdevdy
oLLELYUEVWY EWBOY, TV 0Tolwy oL TAYUCUOL UToEOUY VO XUUOIVOVTOL UEUO-
Vouéva ywplc vo emneedlovton Tor UTdAOLTA, omd war ao Tadn PAon TV oY LEd
oLCEUYUEVWY EWBWY, OTOU Ol BlaXUPAVOELS “TagldedouY LoyUEd UECK TOU OL-
XOOUG TAUATOC Xl UTopolV Vo To TETAEoUV exTOC looppomiag. T'evixd, ta ou-
othuato oTny Tagn xoolwotntag Tracy-Widom napoucidlouv pia gdon otny
omolat OAAL TA CUCTUTIXA EVERYOUV GE GUVEVVONOT), 1| APLOTERY| OUE, XalL [LdL
GAAN @dom oTNY onola T GLUCTATIXA EVERYOUY UOVAL TOUg, 1) 6e€Ld oURd.

Avty ) otiyus), toAhol guotxol xou podnuotixol epydlovtor oTov Topéa TG
embiwéng xdmoou xodohixol vopou Tou cuvdéeTan Ue TNV xatovour Tracy-
Widom. Edv emtevydel éva tétolo xoatéplwua, Yo umopoloaye vo epurnve-
GOLUE TO HOUXPOCHOTIXY YULAUXTNELO TIXO TWY CUCTNUATWY UE AAANAETLOPWVTA
CUCTUTIXA YE TOAD TO (QUOIXO TEOTO.

Awadraxacieg Mnodevixod Elgoug

Ye authv TV evotnTa Yo UEAETHACOUNE €Val GAAO EUREWS YVWOTO HOVTEND 2U-
oTNudTeY AAMnAeTdpdvIwy Ywpatdiny. Ewefydn enione apyxd we éva anid
Topdderypo wog dtadixaoctag Markov oto [16]. Ovoudletar Aradixaotio Mnde-
vixol Edpoug xou 1o 6voud tne mpodpyeTtan amd To YEYOVOS OTL ToL CWUTIOWN
AAANAETOPOLY H6VO pE cuuatidla Tou xddovion oTov (Blo Yweo.
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Movztéro

O yopog xatdotaong elvou NTZL. H Suduasto xadopileton and T cuVETNON
g : N = Ry pe g(0) = 0, mou aviitpocwnelel Tov pudud pe tov onolo éva
cwuatidlo pebyel and wa 9éom xon o mdavétnta uetdPacne p(-,-) oto Z%.
H Suvopux tne mnyadver ¢ e€hc. Edv undpyouv k owpatidio oe wa 9éon
x, ove€dptnTa and Tov opliud TwV cwuaTdiny o dhhoug Yweous, Ue puiUd
g(k)p(x,y) éva and ta owpatidio oto = petafoivel oto y. Me autd Tov tpdmo
ToL OWUATIOW AAANAETLOPOVUY UOVO UE cwuatiol otny Bl Véor. Trodétouue
eniong 6T M g elvon awoTNEd VeTixr) 0T0 GUVORO TWV VETIXWV AXEQEAUWY XL OTL
EXEL PPAYHEVY DLAXVUOVGT), ONAAON:

g*==suplg(k +1) — g(k)| < .
k>0

Topea, éotw Z : Ry — R elvon 1) cuvdptnon Swopéplong ue

k
2(6) =3 -2

= 9'(F)

xou 0T ¢ M oaxtiva obyxhone e Z. Xtny teleutada oyéon eivan gl(k) =
[Ti<j<k 9(4) xou g!(0) = 1. Emndéov, napatnerote éti n Z ebvon avohutie xou
auotned avZovoa oto [0, ). Troétouue 6t 1 Z(-) awidver oto 00 6Tay O
¢ ocuyxhivel 610 P

lim Z = 0.
Hm (®)

Avuty| n unddeon dev eivon amopaltnTn Yot ToV 0plopd TN dladixactog, oAkd Yo
yeedletan yio var amodetouyue opxetd anotehéoyato. §2¢ €x TOUTOU, TEOTIATAL
vo. ouuneptingVetl otov opiopd. O yevviTopag

(LHm) =Y > P Egm@) (") = f(n)

€T zeTd

xadopilel pio Sodixacio Markov oto NTZ, 7ou ovoudaleton dradixactio undevixol
ebpoug pe napopéteous (g, p). Enlong €8, 6mwe xaw o€ tponyoluevn evotna,
n n*Y avunpoownelel TN SladeYwoT 1 6Tou éva cwuatido THdNEE and To T
oto y xeu 1 pL(-) avrimpocwreder TNy mdavétnTa uetdBuonc mou petoaveiton
otnVv opyY| xou teptoplleTal GTOV TOUO:

p"(2) :=p"(0,2) = > p(0,2+yL)
yeTd

yioe x&ie d-OLdGTATO AXEPAO Z.
Ye Siepyooieg undeviniic euPéretac xdde copotido tndd, aveldptnta and
Ta owyotio mou xddovton oe dhieg Tomodeaieg, and 1o T oTo Y Ue puiud

Py — 2)g(n(z)) —

n(z)
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Avoarhoiwto Métpo

YTp€QoudE THORA TNV TPOCOYT WIS, KOS GUVATWS, GTOV YUEUXTNEIOUS TWV O-
vohholwtwy Y€tpnv yia T dladacta. Acdoyévou 6Tt 1 dadixacior undevixon
e0poug elvon un uTOPIBAoLUN XL 0 YWEOSE XUTACTACT EiVAL TEMEQUCUEVOS, £YOU-
Ue éva povadixd avalhoiwto uétpo mou unodnidvouue pe pV'l. Oo avapep-
Yotpe ota pétpa 't we xavovixd. Mropolhv vo LTOAOYIGTOOY e cuphveld,
oA umopoLy emiong vo An@dolv xou Ue TNV BECUEUCT) TWV UEYIAWY XAVOVL-
%OV UETPWY, TWY OTOlY 0 0plodg axoloudel, el Tou GUVOAIXOL a0l TwV
CLUATLOIWY.

4 z - - 4 7 z d
[N xdde 0 < ¢ < e, €0T0 Vg g = V¢L>g T0 UeYdho xavovixd péteo oto NTL
ue

) 1
Zo.o (s (@) =k} = 7o

v xde k> 0 xou z € ']I‘dL.

IIpotaon. Ta xde 0 < ¢ < ¢e T0 Pé€TPo Vg 4 Ebvan avorrolwTo Yia
™ Srodixaoio undevixol ebpouc e g mopauéteous (g,p). Emmiéov, n ou-
UTANewpoTLXy dladixacto oe oyéor Ue OmOlOOHTOTE and To YT Vg 4 clvan 1)
dradixacto undevixol ebpoug pe Tic mapopéteous (g,p). Ebixdtepa, €dv to p
elvar ouPPETEXO, 1 dladixaoia efvon auto-cuuTAnpwuatixf. [11]

Anodeiln. H anddeln Pooileton otoug (Bloug uToroyIopoUs ToU XEVOUE Yid
Ta pé€tpa Bernouli xou oty mapoxdtey tawtdTTA

Pl HiH1

o g
Ak DG -

90) ) 915)

=g(j+1)

Eniong, eneidn n ouvdptnon g(-) Ya €yer otodepn neptypapn, yior va Sortn-
erioouue amholc Toug cupPBollouole, Tapakeitouue Ty e€dptnon and 1o g Tou
HETEOU Ty ¢ %o TO Yedpouue amhd ue vy Ko étot,

d
z€TY

Topa, cugforilouye pe p(¢) ™y avopevouen T e petaBinthic doude-
PLONG, ONAADY TNG TUANVOTNTAS, XATW ATO Ug!

1 o*
() = Ep,[n(x)] = Z(4) 2 kg!(’f)‘

To ebpoc e p givor 70 [0, pc), pe p(0) = 0 xou

. = lim
pe = Jir ¢Cp(¢)
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1 xplown tuxvotnta. Enlong and tny napandve e€lowon ebxola nalpvouue OTL:

_ 299
Z(6)

O umoloylopde e TpdTNS Toparydyou e p(-) delyver OTL elvan aLoTNEGOS
adEovoa.

Ynueiwon. 'Eva guoixd aviixelyevo evolopépovtog elvar vor Slepeuvioou-
ME TN CUPTEELPORE AUTOY TV UETPGY OTO VEQUOBLVAULIXG Opto, dnhadY| OToy
N,L — 00 pe €100 1p610 WoTE 1) Yéon nuxvotnta couatdioy N/L va ou-
yxhiver oe éva otadepd p. Aowmdv, otny unoxplown teplntwor, étay p < pe,
udpyel ¢ TéTol HOTE p = p(P) xou 1 TUTIKY LoOBUVIULN TWY UETEWV VLol O
veldptntec Tuyaiec petafAntéc woylet xavovixd [11]. Aniadn, ta nenepaouévo
BlaoTaotond Tepriwplond Twy xavovxdy pétpwy ul cuyrivouy oto peydho
XAVOVIXO PETEO oL avTioTolyel 6To ¢. H icoduvapulio twv yétpmy yio xploueg
xou UmepXploles TUXVOTNTES, OTaY p > pe, anodelydnxe oto [7]. Xenowonolr-
OVToG PeO80UC OYETINAC EVTIPOTIAS, Ol CUYYPAPEIC ATOBEXVUOLY TN GUYXALOT
TV TEnEpaouévey daotactuxdy teprinpiny tou ull oto peydio xavovixd
uétpo otny xplown xatdotaon ¢.. Apyodtepa oto [1], ov ouyypoageic Edeav
OTL 070 VEPUOBLVOULXG ORLO OL YWOEOL £YOLY XOWT xoTavouy| (o1 UE To UEYHAO
XoVOVIXO PETPO OE Xplown TUXVOTNTA, EXTOC amd pla Véon mou @uhoevel Evay
HOXEOCKOTUXS, UEYAAO aptdUd CLUATLOIWY.

Emniéov, €youue cuy vl TOQUUETPOTOLACEL ToL AVAAAOIOTA UETEA OO TNV
TocOTNTO oL dlatnee(te, 1 omola €8¢ efvan 1 TUXVOTNTA TWV cwPATWOiwY. Ta
T0 A6YO0 auThd, ahhGLoupE PETABANTEC GTOV 0RO TWY AUETIBANTWV UETPWY Vg
¢ e€hc. o a > 0, oplote T0 Pé€TEO Vo ©C

p(®) = ¢0ylog Z(¢).

Va() = Vo) (),

omou 1 @(-) opiletan we

_ | avtlotpogn e p(¢), Y p < pe
®(p) = { e, YL p > pe

Y10 emouevo Aupa gotvetar 6Tl 1) UTOVEST) TOU XAVAUE YL T1) CUVAETNOT) OLo-
péptone Z eyyvdton 6Tt T0 €Vpog tne ouvdptnone p(-) eivar 6ho to Ry. Me
oUTO TOV TEOTO AMOXTACOUE ULat ooYévewr {vg : o > 0} avahholwTtov uétpmv
TIOU TURPAUETEOTOLUNXAY amd TNV TUXVOTNTA, 0Po) 1 AVUUEVOUEVT TUT| TOV
HETABANTOV Blopdppwong N(x) x4t and v, Loodta Ye a:

Ev n(@)] = Epy,y n(2)] = p(@(a)) =

yioe xde o > 0. Axouo, pe évov amhéd UTOROYIGUO BAETOLUE OTL 1) GUVEETNOT)
O () eivon 1 avaevouenvn tur g(n(0)) xdte and to péteo vq:

®(r) = B, [9(n(0))]-
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Ao ‘Eyoupe onueidosl wg ¢, TNy oxtivol a0yXAong Tng ouvdpetnong
olauéptong .

Pe #ﬁpw> o

Eniong, vy xéde 0 < ¢ < ¢ yio 10 uétpo g, undpyel §(¢) > 0 tétolo wote
By, (/0] < .

A¢ Solue twpa T oupPaivel oty TepinTwon dmou p. < 0o. §lg anotéheoua,
UTdpyEL Uit xplodn TuXvOTNTA TEPUBEANOVTOC Xou Tol TAEOVALOVTA CWUATIOW
CUUTUXVOVOVTUL OE €Vl U1 EXTETUUEVO xAdopa Tou oyxou. Iho cuyxexpéva,
av p > pe TOTE

lim p™F (max n(x) > (p — pC)L> =1.
N,L—00 x€T?
N/L—p E

Evo, otnv unoxpltxr tepintwon, to yéyedog tou yeyolitepou otolyeiou etvan
e téEne log(L) [9]. Av 9éhape vo Bydhoupe Ty emdva TOL GUCTAUNTOC GTNV
urepxplon @dor, o Slovéuae To UEYUADITERO UEPOC TMVY TOTOVETLOY COUPOVA
pe aveldptnTo avtlypapa Tou v, xou Yo cucowpelouue OAN TV LTEpBoAXT
udlo o€ €va HOVO TUY AL EVIOTIGUEVO Y WEO.

Oa e&etdooupe THpa TNV TEpinTwon émou o g(k) yewdveton oto k, To omolo
OTN CLUVEYELN TPOXVAEL plat ROy arTXr) EAEN HETOED CLUATIOIY. JUYXEXEWEVA,
oL pupol dipatog Vo ebvon

0, av k=0
g(k:)—{ l—i-%, av k>1

onwe mpotdinxe oto [3]. O ouyypagéac, eniong, mopathence yio b > 2 ot
limg_,¢. Z(¢) %o pe ebvar xou tar 800 nENEPAUCUEVL
o cuyxexpyéva, yia b > 2:

p(@) = pe = h_9

6ty ¢ — 1. Emmiéov, Yo b > 3 1 deltepn por| 02 Trc xatavouhc 7 elven
eniong MENEQUOUEVT), UE
o (b—1)?
~ (b=22(b-3)

xat 0 PGS TWV CLUATIOIOY IXaVOTOLEL TO XEVTEIXG optaxd Yempnuo

2. 1(x) — peL
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‘Eva oxoun medrypo mou meénet vo onuetwiel etvon 0Tt 1) aeTABANTN Storvou
TIOL OLEPELVHUNXE UEYPL TWEA BEV TEPLEYEL TANEOPORIEC TYETING UE T1) BUVOLXN
TNe oupnixvewonc. Mo guoixt| oy cuviixn elvar vo apylcouue e couo-
T{Oll OUOLOUOPPA HATAVEUNUEVA GTNY UTEEXEIOIUN TUXVOTNTA P > pe. DTNV
apy”) To TAEOVALOVTA CWUATIOW CUUTUXVMVOVTAL OE UEpéS Tuyaleg Véoelg.
M tétota Tonodeoia mou mepiéyel Tohd Theovalovta cuuatidlor ovopdleTtal
TEPLOYY| CLUUTAEYHATOG. XTIC UTdAoneg Tonoveoieg, mou ovoudlovton yalixég
tomoleoie, 1 Slavoun yohopovel oe V1. Me tov aulavouevo yeovo, To UeYo-
ANotepa oprivn Vo xepdicouv cupatidl o€ BApog TwV UXEOTEPWY, TEOXAADVTOC
v e€apdvion xdmowwy and to oufvn. Tehxd yévo pla oudda mou mepéyel
Oho Tt TheovalovTa oottt ETBIOVEL, XETL TOU elvol TUTIXG Yiol TNV oE-
TABANTY xoTavout|, omwe culnthvnxe apyiloviag and authy TNy evotnta. Oa
TOEATNPHCOVUE TNV TURATAVE EXOVL JPYOTERA OTIG TEOCOUOLWOELS UOC.

IIcocopolwon

Ye auth v evotnTa PAETOVUE plar amoTeAEoUaTIXY u€Vodo Yio TNV TEOGOUO-
{won cuoTNUdTWY cLUATIOIWY Ye aAANAETBpuoT. e OAEC TIC TPOTYOUUEVES
evotnteg opllovye TN yeovixy eCEMET TWV CUCTNUATOY UaC Vo eival GUVEYHAC
XL oUTO elvo XATL amaEalTNTO Yl Vo UTOGTNEIEoUUE GAAEC EVVOolEg OTWE Ta
opLal xAdxwone. §2otdo0, Onwe YVwelleTe, o évav LTOAOYIGTH, 1 e&EMEN
Teénel vo oupfaivel e BLoxpELtols YEOVoUC.

OpiCoupe war oducida Markov vo eivon war Swadixocio Markov oplouévn
o€ €Val UETEHOWO GUVOAO xai va yapoxtneiletan amo Toug puiuols petdBoong
c(¢,¢") > 0. Emnhéov, onuedVOuYE e

We :i=1inf{t > 0:n # (}

TOV YPOVO TUPUUOVAC OF ULl XUTAOTAOT ¢, XOU UE

cc= ) e(6.¢).
¢'#¢C
TOUS GUVOALXOUS puUUoUE e€bdou armo v (. Ipogavae av ¢ = 0, tote
W¢ = o0o. Axdua, woylel 6Tt av ¢¢ > 0, to1e

We ~ Exp(ce),

omou e Exp(\) onuewdvoupe v exdetixf xatavour| Ue ToapdUeETEO A.

‘Oco mpocououmvoupe €va GOOTNUO COUATOIWY Pe dANAET{BpaoT ot Evary
w6po TY, urdpyet mévia évac ueydhoc Pedyoc, otov omoio xdde emavdhndn
AVTITPOOWTEVEL Uiat UETEPaoT, dnAad To dApa evog owpatidiou. H emhoyn
TOU CWUATIO0U CUVOEETAL GTEVA UE TO YPOVO TOQUUOVAS GTNY XATAGTACT) TOU.
Ynuewwote 6Tl oL petoPatixol puduol yia T dtadxacta undevixol edpoug etvou:

1

c(n,n™?) = g(n(x))p(y — x)m-
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To BApate tpocopoinone tng dadixaciog undevixol ebpouc exgppdlovion
Amo TOV TORUXATE kY OEWIUO.

rates < sum{g(n(x)) yw xéde z oto T¢}
time < 0
while true do
enéhede éva x pe mbavétnta g(n(x))/rates
eméhele éva y pe mdavétnta p(y — )
n(z) — n(z) - 1
n(y) < nly) +1
time < time + Exp(rates)

rates < g(n(z)) + g(n(y)) —gn(z) +1) — g(n(y) — 1)
end while

IIiotebouye 6L Ghar Tor Bridortar efvon opreTd amhd. Snuewdsvouue BéBona mwe
oy Vel OTL

n

min(Ezp(A1), ..., Exp(Ay)) ~ Emp(z Ai).
1=1

To mopandve artioloyel Tig auhoeic Tng HeToBANTg times.

ITeipopoatind AnoteAEéopota

Ave&dptntol Tuyaiol Ilepinator

To ctoyacTnd LOVTEND TV aveldpTNTwY TUY KV TEQITATWY TEOocdloploTnXE
oTNY TEOTN evoTNTa. EmnAéov, anodelytnxe 6Tt yio éva cbo Tnua Un dloywelot-
MWV COUATIOWY Tou oaxoAouYoly Tuyaloug TEQLTATOUS, UTHEYEL ULl LOVAOLXT
OLXOYEVELXL OO oVOANOLWTA UETEA, TUPAUUETEOTOACLUT A0 TNV TUXVOTNTO TWV
cwUaTdlwy, Tou ovoudlovtar Poisson yétpa.

Apywnd, ag emBefout®dooVPE TO ATOTENEOUA TN AVOANOIWTNG XUTAVOUTC.
Ocwpolpe éva povodldoTtato Touo e 1000 ydpoug. XTn cUVEYELRL, XUTAVEUOUUE
oy d ToL cwpaTidla clPPeVA PE To UETpo Poisson xau mopatneolue T Slovour)
oe petayevéotepec ypovixée otiyuée 18Enc N xon N2, Yta emduevo oyAuotd,
BAETOLYE, Yiot BLUPOPETINES TTUXVOTNTES CWUATIOIWY, OTL AUTO TO ATOTENECUD,
TedyuaTt, Loy VEL.
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Emmiéoyv, Béhape vo aneixovicouye tnyv e€EMEN eVOC oL TAUATOC aveldpTr-
TV TUYlwY TEPITATKY o€ BU0 dlacTdoelg. ['a var o emthyouue autod, ThpaUe

Kotavopt| og ypévo t otov Thygy we o = 10
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HLoL EXOVAL TTOU AVTITPOCWTEVEL TOV SLOBIICTATO TOUO ol ONULOURYHOUUE ULdL
Aoy oprI T XAUoX YEMUATOS Yia TOV 0ptlud TV cuuaTdlny ot xdde éon.
LOUQWVOL UE TNV XAVOVIXOTOUNUEVT AoYaLOUXT| T TOU ool TV owuaTL-
blwy, To ypwua egdyetar 6TO axdloudo Pdoua:

— — 1OXUWVO — podpO.

YTg exdveg Tou TapouctdlovTal TapaxdTw, BAEmouvye TNy e&ENEN TOU OUL-
O TALATOS, UE TUXVOTNTA COUTIOWY 10, HETE and xATOoL0 YEOVIXS BLdC TN, UE
ToL owPATOLL Vo BploxovTon opyxd 0TO XEVTRPO TOU TOUOU. LTNV TEMTY EXOVA,
1 ototyewddne mdavétnta petdBaonc {p(z,y) : (x,y) € Thyo} etvon cupueTew,
EV( 070 BeVUTEPO ACVUUETET UE!

p(1,0) = 0.3 (8e&id), p(—1,0) = 0.1 (apioTepd),

p(0,1) = 0.5 (mdve), p(0, —1) = 0.1 (xdtw).

Yuppetpol Tuyoiol Tepinator otov T2y,
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.

Actppetpol Tuydiol Tlepinotol otov T2y, o€ ypdévo t > 0

Aotypetpor Tuydiol Tlepinatol otov T2, o€ ypdévo ta > t;
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AnAY Awoduxacio AntoxAsiopou

Y1n ouvéyeta, Yo ueAeTACOLUE TNV amAy| Sadixacio amoxAeiouol. ‘Onwg eldo-
UE OF TEONYOUMEVY EVOTNTA, YLt TNV ATAY OLadXAGIal ATOXAEIOUOL, UTEOYEL
HLOL LOVOIOLXY] OIXOYEVEL OO OVOANOITO UETEX, TOQUUETPOTOLACILY) ATd TNV
TUXVOTNTO TV cwUATBlwY, Tou ovoudlovton Bernoulli yétpa.

Apyotepa ¢ aUTAV TNV EVOTNTA, TOEOUCLAGOUE TNV ACUUUETEN ATAY| Blo-
Owcactor AmOXAELOPOU UE Bruatiny opyx xatdotacy. Xe autod To onucio Yo
EXTENECOUYE TIELRSUOTA OYETIXG PE TNV CUUTERLPORE TNg ambotaons |Xi| mou
10 TepLlmpELoXd cwuatidlo Eyel xahlel o Eva Boouévo yedvo.

Hpdta, Yo Swmotdooupe ™y e€dptnon e péone Twhc tou | Xi(t)| and
TOV YPOVO t, TOCO YIa EVIEADS AGUUUETEES OGO O YLOL UT) EVIEAWS ACUPUETELXES
repimtwoelc. Yrodétouue 6T

E([X1(0)]) ~ et?,
TOL EXPEACETOL YEUUULXAL
log E(|X1(t)]) ~ alogt + log c.
[Mo v evtedog acOuueten tepintwon Perxaue
E(X1(0)]) ~t.

Tapa, Yuundeite tov cuyfohioud v = g — p, 6mou p eivon 1 mdavoTnToL EVval
owuatido vo tnddel plo Véom oto deid xou ¢ Tou TNddEL Wiot Y€on oTa dpLoTE-
ed. Eved otny dxpwe acluueten mepintwon eivar v = 1, Yewpolue enlong tnv
aAoVUUETEN TEQITTWOT 6oL 7§ = % — i = % To anotéheoya oty mepintwon
auTH RTor

t
BIX(0)) ~ 5 = .
Téloc, Vo unopoloe xavelc vor To TEL OTL

E(Xa(t/v)]) ~ 1

v xdde v € (0, 1].

21N ouvéyela, TEETEL Vo xooplGouUE TN OELRd TV BLUXUPAVOEWY YUEW
and TN UEoT T 660 augdveTon 0 Yeévoc. AxolouddvTag TNy Bla oTeaTnYXN
OTWS TEONYOUHEVWS, BLATIGTWOUUE OTL YL TNV EVIEANS ACOUUETET TERITTOON

[X1(8)] = E(IX1(D)]) ~ O(V?).

Topo 660V apopd TIC BLXUPAVOELS TNG YN EVIEAMS ACUPUETENG EXDOOTC,
OLAMICTOOOUE OTL

1X1(1)] = E(|X1(t)]) ~ Ot*°).

Ko otn ouvéyela, eetdlovtag tnv oxdroudT) Ypoplxr Topdc TooT| TNG Xo-
TOVOURAG TNG LETOXVNUEVNS X0 XOVOVIXOTIOINUEVNGS THrc Tou | X1 (t)| yio tn un
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EVIEAWS OCVUHPETEN TEQIMTWOT Xl TOV oxOhoLVO Ttivaxal ToEaTNEOVUE (Lol €t
peTxt| opoloTnTa Ye TNy xatavour] Tracy-Widom.

0.8

0.7 4

0.6

0.5 1

0.4 4

0.3 A

0.2 1

0.1 +

0.0 T T T T T

Kartavour tou | X1 (t)| pe v = 0.5

Méon wy | Awonopd | Teitn Pony | IThedvaoua Tétaptne Ponrc
-0.93205 | 0.241756 0.23716 0.0714276

Xopax TNEIGTIXG TNG XATAVOUNG

Aladixocio Mndevixod Edgoug

Ye autd to TRua Yo EXTEAECOUUE TROCOUOLOCEL; Ot Bladixacieg undevixol
ebpoug, hopPdvovtag unddn to povtérho tou Evans [3], 6mou

0, av k=0
g(k)—{ 1—4—%, avk>1

Emmiéov, Vo e€etdoouue Hovo TIC UTEPXELTIXES TEQITTAOOELS UE TUXVOTNTA p >
pe xou b > 2 yio va dlaopakicovue Ot p. < 00.

H axdhoudn exdvo avtinpocownelel €vay SLodldoTato TOUo eE0TAOUEVO UE
TNV XOUVOVIXOTIONUEVT AOYoeLiuLxy] XAUoXa YeMUATOS TIOU TEPLYPAPTNXE TOQP0-
mavew. Tlpoxewévou va to mapdyouue, €xyoupe agroet uio dlodixactior Undevixon
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€0pOUC, UE COUOTIOW OUOLONOPPA aEY XS XUTAVEUNUEVA, Vo eCENOETOL Yiar Eval
ONUAVTIXG YEOVIXO OldoTnua t. XTn cuvéyel, xdle Tonoveoia oTny exdva o-
VTITPOOWTEVEL TO PEYLOTO optid CuUATIOWY Tou €xouy grholevnlel oe auTdy
TOV YOPO YL Xdmoto ypovixd dtdotnua. Me autéc Tic TAnpogopleg umopolue
vau e€aydryoule oyeddY OAN TNV EEMEN TOL CLUCTHUATOS amtd TO Ypovo 0 e Tov
axéloudo TeoTO.

‘Onwe neptypddope otny evoTTa TV Bladixacldy Undevixol ebpoug, Ee-
XWVOVTAUS OO TNV 0EYIXT XATACTACT] UE OUOLOMOPPOL XAUTAVEUNUEVO COUOTIOWL
OTNV LTEPXEIOUN TUXVOTNTO, Tl TAEOVALOVTA COUATIOL GUUTUXVMVOVTOL OE
uepéc tuyaieg Véoelg, mou ovoudlovton YEoe CUPTUXVOUAT®WY. Me Tov au-
Eavouevo ypovo, To Yeyalbtepa ouivn Yo xepdicouy cwyatido ot Bdpog Twv
UXEOTEQWY, TEOXUAWVTAS TNV ECAPAVIOT) OPLOUEVOY CUUTUXVOUAT®Y. Me ou-
TOV TOV TEOTO, av ETMAEEETE UId TUXVOTNTA XATWPAIOL prp, > P XL PUATRALETE
NV eova, 16T Yo ExeTe TIC TOTOVEGIEC CUUTUXVWUATODY Yia xdmolo audalpeTn
opa. Kow av aurioete auth Ty muxvotnta, tote Yo €yete Ayotepeg Tonovesieg
CUUTIUXVOUATWY TTOU AVTICTOLYOLY GE XATOLN UETETELTOL G TLYUY.

Awduacioo Mndevixob Ebpouc (¢(x) = maxo<y<¢ n ()

Tdpa, Yo tpootadicouye va xadoploouue TNy T4EN TOU YPOVOU TOU UTOLTE-
fran yio va emiteuy Vel toopporia 6to cUoTrua. Oa epyacTolue oe uia didoTao.
Ouuneite €de OTL 1 XATACTUOT) LGOEEOTING TEPLEYEL VAL UOVO GUUTHXVOUOL XL
OMOL OL UTOMOLTIOL YOEOL XATAVEUNUEVOL CUUPOVA UE TO V,,. Eletdoaue Tig
AXONOUVES TRELG UPYINES HATOVOUES:

1. n(z) =p, z €Ty
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2. 9(0) = pL — 2p.(L — 1) scu () = 2p.., @ € T1/{0}

3. 1(0) = pL — 4p.L/5,
n(x) = 4pe, © € [2L/5,3L/5), adhde n(z) =0

H tehevtalo mepintwon eygavieton wg e€hc.

103 4

102 4

10! 4

107 —

T T
0 200 400 600 800 1000

[Mopdderypo e L = 1000, p =1, p. = 0.1

Av xau o mpaypaTixde yedvog Y TV eniteudn t1ooppoTiag amd AUTES TIC
XATUC TACELS EVOIL DLAPORETIXOC, 1) TAEN Tou Ypovou elvan 1) (Bla. Aol Eexwvroo-
UE TPOCOUOUMCELS VLol BUO BLUPORETINES TEQITTWOELS G TOLYEWWBOUE TIovOTNTAS
dhpatog, Perxaue o axdAoudo anoTeAEoUATA. e Udl EVIEADS ACUUHIETET) OLo-
duxaoto undevixol ebpoug, dnhadh ue p(1) = 1, éyouye ot

T., = O(L?).

‘Otav oe pa ouppetewxr Stodxaoior undevixol edpoug, dnhadh e p(—1) =
p(1) = 1/2, éyouye 6T
Teq = O(L?).

[epévape o ypdvog otny oupueTer TeplnTwon va elvar LPNAGTEENE TEENG
x00¢ Tar couoTio dlay€ovion Ywele CUYREXPIIEVT xaTELVUVOT).

YN ouvéyela, Yo YeNoyonotcouUE TNV TElTH dEyIXr XATovour Tou Tepl-
Yedpope Topamdve xon Yo LEAETAGOUUE TN SUVOLXT EVOS COUATIO0U UE ETIXETA,
Tou omolou 1 ¥€on Yo nopaxorovdeitan, oe avtideon pe ta dhha un draxpioua
oouatida. OewpnoTe TIC aXOAOVUES TEEIC XATNYORIEC EVOS CLUATIOOU UE ETL-
xéto. Edv éva copotidio mpdxeiton vo yetanndhoel and tnyv tonodecia & 6mou
Beloxetan To eTixeTomOINUEVO CLUATIOW,
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7. e 7 7 7 7 4 4 4
o Ilpchn xAdom: t6Te AUTH TO cwUTdlo Vo elvar TévTa LTS e ETIXETA,

o Tuyalo: t6TE ALTO TO cwLpATdO Vo elvon LT pe eTéTa pe ThovoTnTo

1/n(z),

’ e 4 4 7 7 7 4 7
o Acitepn xhdom: TOTE aUTH TO CLWUATIOW Vo elvar aUTO Pe eTIXETA, oy bvon
70 TEAEUTAlO OTOV YWEO.

Kolobuaote thpa va mpoodlopicovye tnv e€dptnomn tne andcTaons Tou
COUITIO0L Ue eTXETA amd TNV apyixt| Tou Yéon and to yeovo t. To etxeto-
Tomuévo owpatidio Ya Peioxeton apyixd otnv tonovesio x = L/2. Eniong, to
HNUIXOVOULE TOV Yo e L xon tov ypévo pe L? [15]. O npocopolmosic poc
€0woay:

o Ilpitn xhdon: Xiqg(tL™2)/L = O(1),
o Tuyaloe: Xiag(tL™2)/L = O(V/1),
o Acltepn xhdon: Xiag(tL72)/L = O(V).

Trohdlopar OTL Tt CLPATIOW PE ETXETA TEMTNG TAENC dev poatveTar vor e€op-
TOVTAL o6 TO YPOVO AOYW TNE TUOTNS TOUS VAL PTAVOLY YETHYOEO GTOV GUUTU-
HVOUOL.

Exiloyoc

To teheutaior ypdvia €xer mpox el €viova 1 avdyxn TS HEAETNG TV LUoTr-
LAtV AANNAETOPOVTWY LwpaTdiwy, eCoutlag Tou VpEog PACUATOS EQPURUO-
Y&V o€ Quoxd TeoPfAfuaTta.  MTnv mopoloa cpyaoia, Zexwrooue opllovtag
TNV anAoVOTERT, HOP®PT) EVOC CUCTAUANTOS COUATIOWY, dNAadr Toug aveldpTn-
TOUG TUYAOUG TEQLTATOUS, XAl OTY) CUVEYEW opyloaue Vo VETOUPE EpTHUATA
OYETIXA UE TIC UTOXEIUEVES GUUTERLPORES. AUTEC Ol EpWTHOELS TEPLAGUBavay
NV Umoedn AUETABANTWY XATOUVOUWY 0To GG TNUY, TNV eCAYwYY| TOU UaXEO-
oXOTUX0U TEOPIA TOU GUOTHUUTOS OE BEQOUEVY] YPOVIXT Xou YwEWXT XA{Uoxa,
TNV 0pLOVETNOT QUTWV TOV XAWIXwY ¥AT. Metd and auto, Hede n dpo va
o TEEPOUPE TNV TPOCOY T Hog OE Ay To cOVIETA GUG TAHUATA AAANAETUSROVTWY
COUTIOWY, OTWS 1) amhy) Slodixocia amoxAelopol xou 1) dtadxacta undevixod
e0poug. Autd ta povtéha yall ue mTohhég dnuopheic Sloxuudvoelg Toug €youv
7on yeretniel cupwe amd Toug epeLVNTES. X Ula amd TIC BLUXUUAVOELS TNG O-
TATc Bradixaciog anoxheiouol eugavileton 1 xatavour| Tracy-Widom. Me tnv
euxonplor auTY), Eextvioaue Pl oLLATNOT OYETXE YE TNV XOWOAMXOTNTO TTOL AUTH
1) CUYXEXPUEVT] Dlovour| gofveTtar var exdnhwvel teheutaio. Emimiéov yeietrioo-
ME TIC OLodxacieg Undevixol VPOUS, XATOAAZOUE GTNY OVOANOIWTY XAUTAYOUT
TOUC o ldope PEPXES IBLOTNTEC O UTEEXEICIIES TUXVOTNTES.

Q¢ pehhovTtixég ypoupés epyaoiog oto nedio, mpoteivouue va amoxtniel uio
BardOtepn xatovénon Twy Wiothtwy e xatavourc Tracy-Widom, xodde ¢o-
tveton vor Soldpouatilel xevtpd pOAO o€ EVVoLeg UE AAANAETUORMOVTA CUC TATIXA.
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