3
£
5

/ﬁ“

NPOMHOEV S -

s
nVPPOPOS

E®GNIKO METXOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKON YTIOAOTIEZTON

TOMEAZ TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTIZTQN

Enextaon tov Tvotnparog Awaxeipiong Eikovikwv
Mnxaveov Google Ganeti yia tnv ITapoxn YynAng
AwaBeopotnrag pe Avtopartn Metantwon tov Koplov
Kopfov

AITIAQMATIKH EPTAXIA

NikoAaog A. ITapacvpng

EmpAénov KaOnyntig: Nextdaptog Kolvpng
KaBnyntig EMIT

ABnva, IovAiog 2017

E®NIKO METZOBIO I[IOAYTEXNEIO

TOMEAZX TEXNOAOTITAY ITAHPO®OPIKHE KAI YIIOAOTIETQON

Enéxraon tov Zvotiparog Awaxeipiong Eikovikwv
Mnxavwv Google Ganeti yia tnv Ilapoxn YynAng
AwBeopotnrag pe Avtoparn Metantwon tov Koplov
Kopfov

AITIAQOMATIKH EPTAXIA

NikoAaog A. ITapacvpng

EmpAénov KaOnyntig: Nextdprog Kolopng
KaOnyntig EMII

EyxpiOnxe anod v tpipeAn e€etaotikr emtponi tnv 18n Ioviov 2017.

Nextdprog Kolopng NikoAaog Ianaomvpov Tewpyrog Ikovpag
Kabnyntrg EMII Av. Kabnyntrg EMII Av. KabBnyntrg EMII

ABnva, Iovhiog 2017

>XOAH HAEKTPOAOTI'ON MHXANIKQN KAI MHXANIKQON YIIOAOTIEZETON

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE

Extending the Google Ganeti VM cluster Manager for
High-Availability via Automated Master Node Failover

DIPLOMA THESIS

Nikolaos A. Parasyris

Advisor: Nectarios Koziris
Professor NTUA
Nectarios Koziris Nikolaos Papaspyrou Georgios Goumas
Professor NTUA As. Proffesor NTUA As. Professor NTUA

Athens, July 2017

NikoAaog A. ITapacvpng
HAektpoAdyog Mnxavikog kat Mnxavikog Ynoloyotwv EMIT

Copyright © Nikohaog A. ITapacvpng, 2017

Me empOAagn mavtog Sikatwpatog. All rights reserved.

Anayopedetatn avtypagr, anobrkevon kat Stavour| Tng Tapovoag epyaciag, e§ ohokAnpov
TUAHATOG AVTNG, Yia EUTTOPLKO oKkoTo. Emitpénetal n avatbnwon, anodrnkevon kat Stavour yia
OKOTIO 1 KEPOOOKOTILKO, EKTTAUSEVTIKNG 1] EPEVVITIKNG QVONG, VTIO TNV Tipovto0eon va avae-
petal 1 TNy Tpoéhevong kat va dtatnpeitat To mapdv pfvopa. Epotipata mov agopodv T
XpPNomn g epyaciog yla kepSooKOTIKO OKOTO Tipémel va anevfhvovTtal Tpog Tov ocvyypagéa.
Ot amOYEL§ KAl To CUUTEPACHATA TIOV TIEPIEXOVTAL OE AUTO TO £YYPAPO eKPPAlovv TOV GLY-
ypagéa kat 8ev mpémel va eppunvevdei 0Tt avtimpoownebovv Tig emionpeg Béoelg Tov EOvikod
MetooPiov ITohvteyveiov.

ITepiAnyn

Ztn ovyxpovi emoxn, N (tnon yia vanpecieg StadtkTHOL Kat VTTOAOYLOTIKOD VEQPOLG
av&avetat Stapkwg. Eva Baotko povtélo vinpeciag vépoug eivatn Yrodopr wg Yrnpe-
ola, 0oL TAPOXOL TPOCGPEPOVY VTTOAOYLOTIKEG LTTOJOES WG TOPOLG 0TOVG XprjoTes. H
OLVEXNG AetTOVpYia TETOLWY CLOTNHATWY aoTeAEL PACIKO KPLTHPLO YLa TOVG XPTIOTEG
KaL dpa elvatl OHAVTIKO Yl AOYOUG aVTaywVIOHOD Kal peylotomnoinong képdovg. Eva
Wdavikd ocvotnpa Ba pmopovoe TAvTa va Tpoopépel ovvexn Aettovpyia. AvoTLXWG, N
amoAvTn ovvexng Aettovpyia eivat avéQikTn, kabBwg otn mpaypatikotnta n mbavo-
TNTA ATOTVXIAG TOANATAWDY CLOTATIKOV TOL CVOTHIATOG TTOL 08N YOUV OE TPOCWPLVN
dakomr) Tng vrnpeoiag eivar un undevikr. Enopévwge, n peylotonoinon tov xpovov
Aettovpyiag, €va XapakTnploTikd yvwoTtd kat wg vynAn dabeoipotnra, eivar dai-

TEPAL ONUAVTIKT).

To obotnua dtaxeipiong ewovikwv pnxavaov Google Ganeti XproOTOLEITAL O CVOTH-
HaTa LTOSOUWV WG VTTNPECIA IOV TTPOOPEPOVV EIKOVIKEG UNXAVEG WG TTOPOVG. Eva ov-
otnua Ganeti Tpéxel oe moAAamAovg kopBovg, mov oxnuatifovv pia ocvatoiyia. Evag
Hovadikog koppog, o kKvptog KOpPog, eivat vevBLVVOG yia TN Slaxeiplon TG cvoToL-
xiag kat tnv enegepyaocia twv dedopévwv Stapopewong tov. Edv o kdpog koupog yi-
Vel avevepyog, évag SlapopeTikog kKOpPog xpetdletat va avaldaPetl kabnrkovrta kvplov
KOpPov woTe va ovvextoTel) Aettovpyia Tng ovototxiag. Avtn n dtadikaoio Aéyetal
HeTAMTWOoT KVptov kOUPov kat 0to Ganeti ekteleital and évav SlaxelploTh Tov ov-
otpatog. H molitikn ektéheong peTantwong kuptov kOpPov and daxelplotr, odnyel
o€ avgnomn Tov XpOvou pn AeLTovpyiag Kat EL0AYEL TO TApdyovTa Tov avBpwmivov Ad-

Bovg.

[TpdBeon pag eivan va av€rjoovpe t Stabeopotnta tov cvotnparog Ganeti vAomolw-
VTag pa v topatn pébodo petantwong kbptov kopBov. Zroyot eivat n Stac@aion tng
ovvoxng Twv dedopévwv Stapdpwong kat 1 opOn Aettovpyia vid ovvOnkeg Stapépt-
ong ovototxiog. To eted, éva a&lomioto katavepnpuévo cvotnua anobrkevong kAetStwv-
TIHWV, XprjoponoOnke wg péoo amobrkevong Twv dedopévwv Stapdppwong tov Ga-
neti. EmmAéov, vhomouOnxke évag unxaviopog mov, avtoparta evromnifet anotvyieg Tov
KVpLov KOpPov kat ekkivel TN dtadikacia HeTdnTwong oe katdAAnio kopPo. H vho-
TOINOT| HAG IKAVOTIOLEL T TTAPATIAVW KPLTAPLa Kat odokAnpwvetl TN Stadikacia evtog

EVOG HIKPOV XPOVIKOV SLAOTHHATOG

viii

AéEeig khetdid: ovotorxia, vynAr StaBeoipotnta, Ganeti, Eted, avtoparn petantwon

KVpLov kOUPov

iX
Abstract

In modern times the demand for web and cloud computing services is ever growing.
Infastructure as a Service (IaaS) is a basic cloud-service model where providers offer
computing infrastructure as a service to subscribers. Continuous service of such sys-
tems is a basic client criterion and therefore it is important for competitiveness and
profit maximizing. An ideal system would always provide continues service. Unfortu-
nately this is not feasible, due to the possibility of multiple node failures, cluster par-
titions and network system failing. Therefore being as close as possible to continues

service, a feature called high-availability, is of high importance.

Google’s Ganeti virtual machine (VM) cluster manager is such a system that can be
used in an Iaa$ to offer VMs as a resource. Ganeti has a single node as master, that is
the only node allowed to run cluster-wide commands and modify the cluster’s configu-
ration data. If this node fails, for the ganeti service to continue to operate another node
has to take over as master, a procedure called master-failover. In a master node failure
scenario, an administrator has to manually execute a master failover operation, which
substantially increases the downtime of the service and induces the human error ele-
ment. Our objective is to extend ganeti for high-availability with an automated master

failover procedure that will, in any scenario, ensure configuration data consistency.

After a thorough inspection of the current implementation of Ganeti, we concluded
that the checks executed during configuration data distribution and master failover do
not ensure configuration data consistency. We decided to migrate the configuration
data on etcd, a distributed reliable key-value store, that will ensure configuration data
consistency. In addition, we implemented a mechanism that will detect a master node
failure or a cluster partition and initiate a master failover if needed. Our implemen-
tation operates correctly under cluster partitions, detects a master node failure and
completes a master failover within a short period of time while ensuring configura-

tion data consistency.

Keywords: cluster, high-availability, VM cluster manager, Ganeti, automated master-

failover, etcd.

Preface

Ze avto To onpeio Bafela va evxaplotiow tov emiPAémovta kabnyntr pov Nektdplo
KoQbpn yia ta epebiopara, tnyv éumvevon kat tnv kabodnynon mov pov mpocé@epe.
OéAw akoun va evxaplotnow tov BayyéAn Kovkn, yia tnv dptia ovvepyaoia pag, Tig
YVWoeLg, Ti 0€eg Kat TNV VOO TAPLEN TOV KATA TNV EKTIOVION QUTHS TNG EPYACIAG.
Eva 1d1aitepo evxaplotw o@eilw Kat 0Tov XprjoTo ZTavpakdkn, ylo Ty VOOV, TOV
XPOVvo Kat TiG ToAVTIHEG oLEPOVAEG Kat vrTodeifelg Tov. Téhog, evxaptotd Bepud tnv
OLKOY£VELA OV YyLa TNV oTNPLER TNG, TO0O Katd TNV SLdpKeta avtr§ TG SIMAWUATIKAG,

000 Kal 0g OAa Ta akadnpaikd pHov xpovia.

Nikoraog Hapaovpyg
TovAioc 2017

Xi

xii

Contents

IepiAnyn vii
Abstract ix
Preface xi
List of figures XV

Enéktaon tov Xvotnuatog Ataxeipiong Eikovikwv Mnyavwv Google Ganeti yia

v Hapoyxn Yuning AraBeopotnrag pe Avtoparn Metantwon tov Koplov

Képpov 1
1 Ewoaywyn 1
2 YoBaBpo e e 3
2.1 Eloaywyn otn Bewpia ovotoryiwv kat TpokANoeg 3
2.2 Toovotnua Ganeti 8
2.3 OalyopBuogRaft. 10
2.4 Toovomnua Eted 12
3 Avdalvon tov ovotiuatog Ganeti kat oxeSloHoG .. . L L. L. L L 12
3.1 AmoBrikevon kat Stapolpacuog dedouévwy Stapoppwong . . . 13
3.2 MeTAmTwon KVPLoV KOUPBOL 14
3.3 [TpOTEWVOUEVEG OANAYEG « « v v v v v v e e e e e e e e 15
4 YANOTOINOM . . v v v e e e e e e e e e e e e e e e e 16
4.1 Alayxeipion tng etcd oVOTOXIAG &« v v v L . . . 16

4.2 Metagopd twv dedouévwv dtapopewongotoeted 17

xiii

Xiv

4.3

MnYaviopog AVTOUATNG LETATTTWONG KVPLOL KouPBov

5 AEOAOYNON Kat HEANOVTIKEG SUVATOTNTEG « « v v v v v v e e e e e a

5.1

AGloNOynon

5.2

MEANOVTIKEG OUVATOTNTEG .+ & v v v v v v e e e e e e e .

1 Introduction

1.1 Problem

1.2 Incentives e e e e e

1.3 Shortcomings e

1.4 Objective e

1.5 Design

andevaluation

2 Background

2.1 Introduction to Cluster Theory and Challenges

2.1.1 Split-brain
212 CAPtheorem
22 Ganeti. o o e e e e e e
2.2.1 Ganeti cluster architecture and noderoles
222 Ganetidaemons
223 GanetiCLI
23 RaftandEted
231 Raft.
232 Eted
3 Design

3.1 Ganeti configuration store and distribution policy

3.2 Ganetimaster failover

3.3 Proposedchanges,

4 Implementation

4.1 Managingtheetcdcluster

4.2 Migrating ganeti configurationtoeted

4.3 Automatic mechanism for master failover

5 Evaluation & Discussion

6 Future Work & Conclusions

Bibliography

21
21
21
22
22
22

25
25
29
33
37
40
41
45
48
48
52

59
59
62
65

67
67
74
77

83

89

93

List of figures

2.1 Example of a high availability cluster 27
2.2 Example of aload-balancingcluster 28
2.3 Example of a high-performancecluster 29
24 Atwo-nodeclustersetup. 30
25 CAPtheorem e 34
2.6 Exampleofaganeticluster 38
2.7 Interactions between the main ganetidaemons 45
2.8 Replicated state machine architecture 49
2.9 Raft server roles and transitions between them 50

XV

xvi

1. EIXATQI'H 1

1 Ewoaywyn

To mpoPAnua vro e€étaon eivat i EMEKTAOT TOV CLOTHRATOG SLAXEIPLONG ELKOVIKDVY
unxavwv Google Ganeti[RK14] yia tnv mapoxn vynAng Stabeotpuotnrag pe avtopatn
petdntwon Tov kvptov kopPov. To Ganeti eivat €va cvotnpa Ynodoun wg Ynnpeoia
(Infrastructure as a Sevice) TOV TPOOPEPEL EIKOVIKEG UNXAVEG WG TOPOVG OTOVG XPN-
oteg. Eikovikég unyavég eivat Sidomapteg oe ToANovG kOpPovg, mov oxnuatiCovy pia
voAoyloTikr ovototyia (computing cluster). Evag ovykekpipévog koppog, o kvplog
KopPog, eivat vrevBovvog yla TNV Slaxeipton TG ocvoTolyiag. Xe MePIMTwon oPAApa-
TOG OTOV KUPLO KOUPO TOTE, TPOKEIUEVOL VO GUVEXLOTEL 1] KAVOVIKT A€LTOVPYiat TOV
OLOTNHATOG, €vag AAA0G KOpPog mpémel va avahdPetl kabnkovta kbprov koppov. H
Aertovpyia avtr) ovopaletat petdntwon kOpLov kopPov. Zrnv vdpxovoa vAomoinon
Tov Ganeti) HETAMTWOT KVUPLOL KOHPOV yiveTal XelpoKivTa, OOV évag SLaXELPLOTNS
TOV OLOTHHATOG avakapPdavel Ty evBOVN va evtomicel To QAN KOPLOL KOHPOV Kat
va poxwpnoel peTatpénovtag £vav dAlov koppo oe kvpto. H xetpoxivntn mpooéy-
yton eoayet Stagopa mpoPAnpata kat Sidpopeg TPOOEYYIOELS Yyl AVTOUATOTION O

avtng NG Stadikaoiag kpiBnkav avemapkeig kat TPOPANUATIKEG.

2t ovyxpovn €MOXT, OTOL Ot LTINPeCieg SLASIKTVOV KAl LTTOAOYLOTIKOV VEQOUG Stap-
KOG emekTeivovTal, N {fiTnon ya cvotriuata Yrodopng wg Ymnpeoia avdvetat ovve-
X0G. Xpnoteg embupovv va Bacicovy Tig eQappoyég Tovg o€ LTIAPXOVTA CLOTHIATA
IOV avaAapPAvouV AeNMTOUEPELEG VTTOSOUWY OTIWG AVTIYPAPA ACPANELAG, KATAVOUN
dedopévwy, emektaotuotnta, k.a. H ovvexng Aettovpyia tétolwv ovotnuatwy kpive-
Tl AKPWG ONUAVTIKH ard Tovg Xpnoteg. Ot mdpoxol mpoonabolv va PeAtiotomnot-
OOVV T CLOTHUATA TOVG Yia AGYOLG avTAYWVIOUOD Kal HEYLOTOTOINONG KEPOOUG.
Emopévwg, ot mpoypappatiotég vAomotovy didgopeg texvikég[vV14] wote va peyt-

OTOTIOLOOVV TNV SLaBECIHOTNTA TWV GVLOTNUATWY TOVG.

Onwg avagépOnke, n petdntwon kvptov kopPov oto Ganeti yivetat xetpokivnta. Evag
SloyelploTig TPEMEL VAL EVTOTIIOEL TO OQAAA 0TOV KUpLo kOUPo Kat va Ppet évav ka-
TAAANAo kOpPo 6mov Ba ekkivioet Ty Stadikaocia peTdnTwong kKVpLov kopPov. H dia-
dwaoia avtn Stapkel éva oefaotd xpoviko Slaotnua, 6Tov 1 vinpecia dev eivat Sia-
Béoun, kabwg kat elodyel Tov mapayovta tov avOpwmivov Aabovg. Adgopeg mpo-
ogyyioeg ya v emilvon Tov {ntipatog kpibnkav avemapkeiq kat TPOPANHATIKEG,

kaBwg eite odnyovoav oe anwleta dedopévwv Stapdpewong eite dev Siaxetpilovrav

1. EIXATQI'H 2

owoTA ogvdpla Slapéplong Tng ovototxiag kat odnyodoav ot kataotaoelg split-brain.
H xatdotaon split-brain eivat anotéAeopa Siapéplong ovoTolyiag, OTOV SLAKOULOTES
dev pmopodv va emkovwviioovy petagd Tovg Kat va ouyxpovicovv dedopéva kat Aet-
Tovpyieg. ITap’ OAa avtd ovvexifovv kat Aettovpyovv avBaipeta dnovpywvtag dbo
SragopeTikd ovvola dedopévwv Stapdpewong kat avaapBavovy kotvoig topovg. H
OVUTIEPLPOPA aTH 0dNyel O KATAOTPOPLKA ATTOTEAEOHATA Yl T VYELA TG CLOTOL-

xlag.

Zkomog pag eivat n emitev€n vynAng StabeoidtnTag oto ovotnua Ganeti pe tnv ev-
OWUATWOT] EVOG HNXAVIOHOD aVTONATNG HETATTWONG KVptov kopBov. H vhomoinon
Hog ipémet va Stao@alilel T ouvoyr| Twv Sedopévwy Stapdpewong kat va Aettovpyei

opOa og oevdpla Stapéplong cvoToiiag.

[Tpoteivovpe Ty evowpdtwon tov etcd[Devce] oto Ganeti, wg péoo anobnkevong twv
dedopévwv dtapdpewong. To eted eivat éva aglomoto kataveunuévo ovotnua anobn-
KEVONG KAEWSLWV-TIHWY, IOV GVVHBWG XpnotpomoLeital yia TNV anodrkevon kpiotpwy
dedopévwv evog kataveunuévov ovotnuatog. To eted Oa mpoo@épel pia eviaia kot
OVVETNG elkOVa TwV deSoPEVWV SLapOpPwonG o€ GAOVG TOVG KOPBOVG THG CLOTOLYIAG.
EmumAéov, n mohrtikn anaptiog (quorum)’ tov eted Ba emtpéyet to owoth Srayeipion
dapepioewv TG ovoTtolyiag amopebyovrag kataotaoel split-brain. Emmpoofétwg,
Ba vdomonel évag pnxaviopog mov avtopata Ba aviyvevetl PAdPeg kbplov kouPfov
kat Oa ekkivel TNy dadikacia HETAMTWONG KVPLOL KOUPOL 0€ KATAAANAO VITOYTPLO
KopPo. Ymoynetot kouPot oto Ganeti eivar emhexBei kopBot ot omoiot peAlovtikd
iowg avalapovv tov poro Tov kvptov kOpPov. H vomoinon pag éxet évav Paoikd me-
PLOPLOO, TIOV glval amoppoLa TNG TOMTIKAG anaptiag Tov etcd. O meploplopog avtog
elval OTL, TTPOKEWEVOL 1) VAOTIOINOT) HaG VAL AELTOVPYEL KAVOVIKA AV TTACA OTLYUN TTPE-
TeL 1] TAELOVOTNTA TWV LTIOYHPLWV KOUPwV TNG cvoTolyiag va eivat Stabéotpot kat n
emkovwvia peta&d Toug vying. O mePLopLoUOg avTdg givat avaykaiog WoTe va Stayel-
ptlopaote cwotd Ti§ Stapepioelg ovototxiag. H vhomoinon pag ehéyxOnke oe ovotot-
Xl TPV KOUPwv OOV 1 AVTOHATN HETATTWOT) KUPLOL KOBOL OAoKANpwOnKe eVTOG
40 devteporénTwy evw mapdAAnia n ovvoxn Twv dedopévwy Stapdpewong Staoea-

Ailetau.

'H nohtikr| amaptiog Snhavel tov apBud ynewv mov pia katavepnuévn ovvallayn npénet va
anmokTioel woTe va ekteheotel. ITohTik anaptiag xpnoiponoteital yia va Slac@ahioet TNV OUVEKTIKN
AetTovpyia €VOG KATAVEUNUEVOD CVOTHHATOG.

2. YIIOBA®GPO 3

2 YnoPaBpo

To kepalato avtod mepiéxet Paoikn Bewpia yia vTOAOYLOTIKEG OVOTOLXIEG Kat Bt avalv-
000V TPOKANOELG IOV TPOKVTITOVY O€ VTTOAOYLOTIKA GG TAIATA TIOV XPNOLHOTOLODVTAL
oe ovotolxieg. EmmAéov Ba avalvBovv dvo epyaleia cvoToryiag mov Ba xpnotpomnot-

nBovv otnv vAomoinomn pag, To Ganeti kat To etcd.

2.1 Ewaywyn ot Oewpia cvototyiwv kat TpokAnoeig

H vroloylotikr] ovotoxia (computing cluster) eivat évag tomog mapailinlov/kata-
VEUNUEVOV VTTOAOYLOTIKOD GUOTHHATOG, IOV ATOTEAEITAL Ao pia GVANOYT| LTTOAOY!L-
OTIKWV povadwy, yvwoTtol kat wg koppot, mov ovvepydlovtat petagd Tovg WoTe va
TPOOPEPOLYV £vay eviaio vToAoyloTiko mopo[Bak01]. Ou Aeitovpyieg Twv kOUPwv op-
yavavovtal ano éva eninedo Aoylopkov, To onoio eival evepyo oe kdbe koupo kat
EMTPETEL OTOVG XPIOTES Vot XelpilovTal Tr cvuoToLyia wg Hia eviaio GUVEKTIKI| LTTOAO-
yotkr povdda. Otkoppot, cuvrBwg, cuvdéovTtat Kat eMKOVwVOLV peta&d Toug péow

€VOG YPNYOPOL TOTIKOD StkTOOV.

Ot voAoyloTikéG ovoTolieg Oev e@evpédnkav and kamolo mapoxo, aAld dnpovp-
ynOnkav amé Ty avaykn Xpnotwy ylo TEPLOTOTEPOVG VTTOAOYLOTIKOVG TOPOLG AANG
Kat avtiypaga acgaleiag Twv dedopévwy Tovg. Ao TNy dnpovpyia TOVG, 0TS apxES
Tov 1960, uéxpt oTpepa 1 XPHON Kat I avantuEn TwV VTOAOYLOTIKWY CLOTOLKLWY AV-

Edvel Slapkwg AOyw Twv TAEOVEKTNHATWY TIOV TTPOa@Epovy. Ta mAeovekTrpata avtd

eivat[enga][engb]:

« anddoon ko6oTovg: H oxéon vmoloyiotikng Svvaung kat taxdTnTag Twv ovoTot-
XWOV [E TO KOOTOG KATAOKEVNG TOVG eival apKeTd amodoTIKr o€ OVYKPLOT He

AAeGg TEXVIKEG, OTIWG 1) Spovpyia HEYAAWY KEVTPIKWY VTTOAOYLOTWY.

o Toaxvtnta enefepyaociag: [ToAaMAEG Ypriyopes VTOAOYIOTIKEG OVASEG TLVEP-

yalovtat kat Tpoo@épouy gviaia VYNAN TaxLTNTA eNegepyaoiag.

« BeAtiwpévn vrodoun diktvov: Ot kopPot ovvdéovtarl pe didpopeg Tomohoyieg

ditvov woTe ehaytoTomotnBel To KOOTOG eMIKOLVWViaAG Kat va arogevxBovv on-

Heia ovppoOpnoNgG.

2. YIIOBA®GPO 4

o Eveli&io: OtkopPot tng ovotoryiag umopovv va tpomonotndovy oXeTkd eVKOAA

WOTE VO TTPOTPEPOVV VEEG VTINPECIEG 1) VA XPTOLUOTIOO0VV VEEG TEXVOAOYIES.

» YynAn dtabeoipotnra nopwv: Edv kdmolo cvotatikd Tng ovotolyiog mapovotd-
oet TpOPANpa, TOTE Ta VITOAOLTA CVOTATIKA GUVEXI(OVY Va AelTovpYODV, KaAV-

TITOLY TO KEVO KAl IPOGPEPOLY WLt OLVEXNG AetTovpyia.

Mia ovototyia oxediadetal e SLaQopPETIKEG TPOTEPALOTNTEG KAl XAPAKTNPLOTIKA oVAL-
Aoya pe Tt vmpeoia Oa mpoogépet oTovg XprioTeG. Ot LTTOAOYLOTIKEG CLOTOLYIEG [TTO-
povV va katnyoptomotnfovv oe T€00epI§ Opddes avaloya pe TIG VTN PETieg IOV TPo-

o@épovv. Ot opadeg avtég eivat[Har99]:

« Zvotolxieg amoBnkevong: Ipoogépovy éva eviaio Kal CLVETNG GVOTNHA APXELWV
o€ 0A0VG TOVG KOUPOVG Kal TOVG ETUTPETOVY Va EKTEAOVY TAVTOXpOva AeLTOVp-
YieG avayvwong Kat yypagrg 0To Kovo ovoThua apxeiwv. Aettovpyieg omwg
avtiypaga ac@aleiag Kal amoKATAOTAOT KATACTPOPWDY ATTAOTOLODVTAL EVW 1)
avaykn ya meptrta avtiypaga egakeigetal EmmAéov, n Saxeipion tétowwy ov-
oTol LV eival evkoAoTepn Kabwg 1 eykatdoTtaon kat dSiopOwon epappoywv me-

plopifetatl oe éva ovOTNHA apyeiwY.

« Zvotolxieg vynAng Stabeotuotntag: EXaxiotomotovy tov xpdvo Stakomnng tTwv
gQappoywv mov vrootnpilovtal and T ovotolxia, eEaleipovtag pepovwpéva
onpeia amotvyiog. Avtd emtvyydvetat pe Aoylopkd vynAng Stabeoipotntag
TIOL XPNOLOTIOLEL TAEOVALOVTEG VTTOAOYLOTIKOVG KOUPOVG. ZPAApata AoyLopL-
KoU/VAIKOD o€ évav kopBo evromilovtal amd To AoyLoKo vynAng Stabeoipo-
TNTAG TTOV 0TI OLVEXELA EKKIVEL TIG EQAPUOYEG TTOV eMNpedoTNKAY 08 dANOVG
koppovg. H Aettovpyia avtn eivat yvwoth kat wg petantwor. H datnpnon
NG akepaLOTNTAG Kat ouVETELAG TwV dedopévwv petald KOpPwy eivat avaykaio
WOTE va PNV bTOSAVALOTEL] AetTovpYia [iaG EQAPUOYNG EMELTA ATO HETATTWOT).
Yndpxovv SLaQopeg apXITEKTOVIKEG GVOTOLLWY VYNATG StabeotuotnTag avd-
Aoya pe tov aptBpd twv kopuPwv mov eivar evepyoi, Snhadn glogevovv epap-
HOYEG, Kat Tov aplipd Twv kéuPwv mov eivat mabntikol, SnAadn mepiuévovy va

avadPouv eQaployEg Emerta and pia petantworn[Ste0l].

« YvoTotxieg e§loopponmaong goptiov: To cuvoAiko goptio Stapolpdletar petald

TV KOpPwv NG ovoTotyiag wote va avéndei n taxvtnta dteknepaivong. O al-

2. YIIOBA®GPO 5

yopBpog mov Srapotpalel To @optio umopel va givatr anlog, yia mapaderypa
amn pébodog kukAikng avabeong oe mepintwon evog Stakopotn dtadiktvov,
1] APKETA TTLO TIEPITAOKOG, Yia TApASELYHa OTAV TO POpTio £XeL TOANATAOVG €TL-
oTnHoVIKOVG vToAoyLopovs. Eav kdmotog koupog tng ovotorxiag eivar pn Aet-

TOVPYIKOG TOTE Oev OTEAVOVTAL TAEOV AUTAHATA O€ QUTOV péxpt va AvBei to (-

TN

 Zvotolxieg vynAng amodoong: E@appoyég ektehodvrtal mapdAinia oe moAla-
TAOVG KOUPoLG, OToV 0 KaBévag avalapPdvet Eva ave§dptTnTo VITOAOYLOTIKO
KOUUATL TNG EQapHOYNG Kat To Siekmepatwvel. Evag kevtpikog koppog eivat vmev-
Buvog 0710 va SlaoTd To apXtko PopTio oe aveEapTnTa QopTia Ta oMol KATOAVE-

HEL 0TOVG KOPPBOVG KAl 0TT GUVEXELL CUANEYEL Kl OLYXWVEDEL Ta ATTOTEAETHATAL.

Split-brain

Mia ano 116 factkég TPOKANOELG TTOV AVTIHETWTI(OVY CLOTHHATA TTOV AVATTVCCOVTAL
0€ LTIOAOYLOTIKEG OVLOTOLYiEG elval va StaxetpilovTal owotd Tig Stapepioelg cvoTtoiyiag
wote va pnv odnynBovv oe katdotaon split-brain. H diapépion cvotoryiag mpokvmtel
and o@alpata otny emkovwvia petald Twv kOpPwv pe anotéAeopa tnv Staipeon g
ovotolxiag og vtoovoTotxieg. Ot kopBol evTog piag vroovoToLiag UmopovV Kal emt-
KOWV@WVOLV LeTa&L TOVG aANd adLVaTODY Va ETKOVWVHOOLV e omtotovdnmote kOupo
ekTOG NG vroovoTtotyiag. H katdotaon split-brain eivat 6tav StagopeTikég voov-
otolxieg ovveyifovv va Aettovpyolv xwpig va AdPouv vtoyn Tovg TNV Tapovsia Twv
dAAwv voovotoixiwv. Etot dnpovpyovvtat dtagopetikd chvola dedopévwy, mov ap-

yoTepa dev yivetal va ouyxwvevBolv og éva eviaio.

To split-brain eivou amoppota TG anogaong kdbe vmoovoToLiag va ovveyioet va Aet-
Tovpyel Oewpwvtag TIg vVTOAOITEG VITOCVOTOLXIEG aveVEPYEG. OUWE, 1] aviKavoTnTa
eTKoLvoVviag pe Evav koupo dev 0dnyel o€ ao@alr) CLUTEPACHATA YL TV KATAOTAOT
avtol Tov kopPov. O kopuPog Hropei va eival avevepyog Aoyw TpoPARHaTtog i 1) €Mt
Kovwvia peta&d Tovg va eivat poPAnpatikr. Emopévwg, n anogaon piog vroovotot-
xlag va Bewpnjoet avevepyég TIg LTOOVOTOLXIEG e TIG OTTOiEG SEV UTOPEL VAL EMKOLVW-
vnoel, eivat avBaipetn. Eav moAamAég vtoovotoiyieg AaBovv nv idta and@aon toTe
Ba Aettovpyodv TavToXpOVa XWPIG OUWS va HopolV va guyxpovioovy ta dedopéva

TOVG, YEYOVOG Tov 0dnyel oe katdotaon split-brain.

2. YIIOBA®GPO 6

‘Evag an\dg tpomog avtipetwmiong Twv split-brain eivat va pewwBovv ot mepimtwoetg
Sapépiong ng ovotorxiag. Avto pnopei va mpaypatomnotndel vAomowvtag ToAATAG
ave§aptnra diktva emkotvwviag petald Twv koppwv. Etot, efaleipovtal pepovopéva
onpeia anotvxiag Tov diktvov. Iap” 6Aa avtd, n Stapépion Tng cvoTtorxiag ival mi-
Bavn, dpa texvikég Staxeipiong Sapepioewv éxovv avantvyxbel wote va amopevxBovv

Kataotdoelg split-brain.

Ot texvikég diayeiplong Stapepioewv yia v amoguyr split-brain pmopodv va katn-

yoptomotnBovv og 0o opddeg[Ske85]:

o a101080&eG: Ot MPpooeYYioelg AVTEG EMTPETOVY OTIG VTTOCVGTOLXIEG VAL GUVEYI-
OOVLV Vo AELTOVPYOVV KAVOVIKA, amofnkevovTag Opws emmAL0V TANPOPOpieg
yta kaBe Aertovpyia mov ektedodv. Otav amokataotabobv ot Siapepioels, TOTE
ot erumAéov amofnkevpéveg TAnpoopieg xpnoLpomolovVTAL WoTe Ta Slapope-
Tikd ovvola dedopévwy va evwBolv o €va eviaio kat ovvenég ovvolo dedopé-

VV.

o anatotodogeg: Ot mpooeyyioelg avtég meplopilovv Tnv Aettovpyia kat v mpod-
oPaon oe Stapolpalopevouvg TOPOLS TWV VTTOGVGTOLXLDY, He GKOTO va Slao@a-
Aioovv v ovvémeta Twv dedopévwy TNG ovaTtolxiag. ZTig mpooeyyioelg avTég,
ot 800 Paciiég TEXVIKEG TTOV XPTOLUOTIOLOVVTAL ELVAL 1] TEXVIKT AmapTiog Kat To

fencing.

To fencing amotpénet évav kouPo va xpnotpomotroet Stapotpalopevovg toépovg. Mmo-
pel va yivel og Svo dlaopetikd emimeda. Ze eninedo kopPov n texvikn fencing epumodi-
(et Tov kOpuPo va xpnotponotroet onotodnmote Stapopalopevo mopo xwpig e€aipeo.
‘Evag ouvrOng tpomog mov emtvyxavetat avto eivan teppatifovtag teleiwg tn Aet-
Tovpyia Tov kopPov, pia texvikn yvwotn kat wg STONITH (Shoot The Other Node
In The Head). Z¢ eninedo nopov, n texvikn evromilet motovg Stapotpalopevous mopovg
HTopel 0 KOPBOG Vo XPNOLHOTIOL|OEL KAl ATOTPETEL TNV TIPOSPACT) TOL HOVO 0 AVTEG.
Kot ta dvo emimeda anautovv emmAéov VAIKO Kat AOYIOUIKO Yla Vo AELTOVPYTOOLV.
2vvnBwg To fencing exkiveital amod évav kOpPo pe otoxo £vav aAlov koppo, pe Tov
omoio dev pnopei va emkotvwvioet kat apa Bélel va Befatwdei ot dev Ba xpnotpo-
nowoet Stapotpalopevoug mopovg. Yrdpxet Opwg mepintwon to fencing va ekkiveital

amnd évav KOpPo yia va eunodicel Tov eavTO TOL Vo X P1OLHOTIO| 0L Stapolpalopevovg

2. YIIOBA®GPO 7

nopove. H texvikn avtr| ovopdletat self-fencing, aAlla eivat ogadepr| kabw¢ Paciletal
o€ évav Tavwg TpoPAnpatikd kopBo va ano@acioet kat va ekTeAéoel TNV AetTovpyia

Tov self-fencing cwoTd.

H texvikn tov fencing dev emapkei, kabwg xwpig emmAéov epyaleio mpoPAnuatikég
KATAOTAOELG UTTOPEL VA TIPOKVYOLV. ZuYKeKpLéva, eivat mbavav dvo koppot A ko B,
TIOV JeV UTOPOVV VA EMKOLVWVIOOLY HETAED TOVG, VA ATOPACICOVV VOl EQAPULOCTOVY
fencing peta&d tovg. AnAadn o koupog A otov B kato B otov A. Av auTo yivel, TOTE Kat
ot 0o kopPot Ba amokleloTodV anod Tovg Stapopalopevovg TOPOLG, Kat LANLOTA av
yivet fencing oe eminedo kOpPov pe emavekkivion kOpBov 10Te To cVoTNHA Do el0éNDeL
o€ évav aévao kUkAo enavekkivioewy petadd twv §vo kopPwv. Tia va AvBovv tétota

oevapla xpetdletat pia emUTAEOV TEXVIKT,] TEXVIKI anapTiag.

H texvikn anaptiag[Coull] ovotaotikd eivan pia péBodog mov emiAvel To apotPaio di-
Anppa fencing. To Baotko mpoPAnpa eivat va emhexOei pia kat povo pio vmoovotoryia
nov Ba ovveyioet va Aettovpyei emPaAlovtag Tnv TeXvikn fencing otovg vdAotmovg.
H anogaon avtn mpémnet va eivat idla o OAeG TIG VTTOCVOTOLYIEG XWPIG VAL VTTAPXEL ETIL-
Kowvwvia petad tovg. H ovuvnOng Aon oe avtd 1o mpoPAnua eivar n mhetoyngia.
Kabe voovotoria apiBpei ta péhn tov kat edv anotehovv mAeloyn@ia Tov ovvo-
Aol aptBuod pedwv tng ovotolyiag ToTe epappodlet fencing otovg vIOAOLTOVG Ka
ovveyiCet va Aettovpyel. Atartwvtag mAeloyn@ia n texvikn BePatwvet 6Tt To TOAD pia
vroovoTtotyia Oa ovvexioet va Aettovpyel. BéBata eivar mbavav kapia vmoovotoryia
va unv tkavomotel TNy ovvOnkn g mAetoyneiag kat dpa OAEG oL VTTIOCVOTOLYIEG Va
“Taydoovy” kat va pny vrap&et mpoodog ot ovaTolyia HEXpL 1 Stapépton va emiAv-

Osi.

H xprion texvikwv fencing kat amaptiog ouvioTatal @oTe Ta oevapla Slapéplong ov-

otoiyiag va avtipeTwmilovtal cwoTd kat va armo@ebyovtal kataotdoelg split-brain.
Oewpnua CAP

To Bewpnua CAP[Bro][Tha][Gil02] meplopiCet To 0XeSIATTIKO XWPO TWV TPOYPALAL-
TIOTWV OLOTNUATWVY TIOL AVATITOOCOVTAL O€ GVOTOLYIEG. ZUYKEKPIUEVA, Opilel OTL Eva
ovotnpa dev Umopel TavTOXpOVaA Va IkavoToLel o€ amdAvTto Babuod kat Tig Tpelg mapa-

KATW IOLOTNTEG.

 Zvvoxn dedopévwv (Consistency)

2. YIIOBA®GPO 8
o AwBeopotnta (Availability)

o Avoyxn dapepioewv (Partition tolerance)

Andlvn ovvoxn twv dedopévwy kat StabeoipdtnTa Tng vIENpeoiag eival dSuvatr dtav
n ovotolxia Oev Ppioketal oe kardotaon Swapéplong. Eav mapovolaotei Sapépion
T0TE 0 0XeOLAOTHG TipéTel va Bvotdoel eite TN ovvoxn Twv deSopévwy Tov emTpEmo-
VTaG 0T0 CVOTNPA Va oV VeXioeL TN AetTovpyia Tov, eite va meplopioet Tn StabeoipdtnTa
TOVL OLOTHHATOG TOV WOTe va eEaopalioet T cvvoxn Twv dedopévwy. YAoTooELg
nov e§ao@alifovv évav Pabud ovvoxng dedopévwv kat StaBecipdTnTag TOV CLOTH-
Hatog vmd ovvOnkeg dtapépiong eiva duvartég. Enedn oe mpaypatikd cvotipata ot
Stapepioelg eivat avandQevkTeg, 0 oxedlaoThs opeilet va yvwpilet mwg Aettovpyei To
OVOTNHA TOV 08 TETOLEG KATAOTAOELG, KAt TOAVADG Vo TPOTIOTIOLOEL TT) CUUTEPLPOPAL
Tov woTte va e§aopalilet tov Babpod cuvoxns 1 StabeotudTnTag oL amaLTel N LTINPETia

TIOL TTPOOPEPEL.

2.2 To ovotnua Ganeti

To Ganeti eivat éva ovoTnpa Staxeiplong etkovikwy unxavav oe ovototxia. To Ganeti
StevkoADveL TN Slaxeiplon TNG CLOTOLYIAG KAl TWV ELKOVIKWV HNXOVOV ETUTEAWVTOG

Aettovpyieg Omwg:

o dnuovpyia diokwv
* EYKATAOTAON AEITOVPYIKWV CUOTNUATWY YLO TIG EIKOVIKEG UNXOVEG

o £vapEn/anevepyomnoinon Twv EKOVIKWV UNXAVWOV KAl HETATTWOTN UETAED KOp-

Bwv

YmootnpiCet Stapopeg TeXVIKEG Kal TEXVONOYIEG Yl TN SnuLovpyia EKOVIKWVY pnxa-
v, Siokwv, Sikthov petadd Twv pnxavoy, k.a. Mepikd and ta TAEOVEKTHHATA TOV
ovotrpatog Ganeti eival 1) amAn Kat €0VONTH APXITEKTOVIKT, 1] KALLAKOGILOTNTA TOV, O
VYNAOG Pabuog phBuiong mov emitpémet kat 0Tt Staxetpiletat evkoha amd Kpod aptduod

Saxelplotwv.

2. YIIOBA®GPO 9

H Aettovpykodtnta mov vootnpilet kat ot evBveg mov €xet évag kKOpPog cvaTtoiyiag
Ganeti e§apTwvtat and Tov podo tov. Ot o ovyvol, kat onpavTikol yo Ty vAomoinon

Hag, poAot eivat:

» Koprogkoppog: vevbuvog yia tn dStaxeipion Tng ovotoryiog Kal va eKTeAel evTo-
A£G amod Tovg SlaelploTég kat Tovg Xpnotes. EmmAéov eivau vevBuvog yia tnv

Tpomomnoinomn Kat To Stapolpacud tTwv dedopévwv Slapopewong.

o Ymoynelog kOuPog: eival LTTOYNPLOG VA YivEL KUPLOG KOWBOG €AV TApOVOLAoTEL

o@Aalpa otV AetTovpyia TOL TWPLVOL KUPLOL KOUPOV

o« Kavovikog koppog: YrevBuvog yia tn @ulogevia elkovikwV (Xavwy KAt Tr eKTE-

Aeon ATPATWY amd TOV KVPLO KOUPo

Ot xoppot pmopei va alra&ovv polo pe Tig katdAAnheg evtolég amd tn Sieman ypap-
G EVTOA@V Tov €xetl vAomotjoet To Ganeti. O pohog evog kopupot kabopilet tn Aet-
TovpytkoTnTA OV TPooPépel. H ovvoAikn Aettovpyikotnta Tov Ganeti éxet Staxwpt-
otel og avedpTnTe OVTOTNTEG, KAOE ia ek TwWV oMoiwvV €Xet avateBei oe Evav daipova.

Ot daipoveg mov vAomolovv TN Pacikn Aettovpytkotnta tov Ganeti eivat:

o ganeti-noded[Devm]: eival evepydg og OAovg TOVG KOpPOLG Kat eival vevOVVOG
010 va déxeTat LEPog Twv dedopévay SLapopewong TnG ovoToLxiag and Tov Kv-
pLo koo kat va ta amodnkevet EmmAéov, ektehel evTolég amod Tov kOpLo koo

TIOV APOPOVV ELKOVIKEG HNYAVEG

o ganeti-confd[Devi]: eivat evepydg povo oe vmoyn@lovg kOpPovg kat SExeTaL pé-
poG Twv dedopévwy SlaudpPwong TnG cvoTolyiag Kat Ta anodnkevel. Avtd Ta
dedopéva eivar Stabéoipa povo 0Tovg LTTOYNPLOVG Kal 0TOV KVPLo KOUPo Kat

elvatl avaykaia yia va avalafet apydtepa Aettovpyio wg KOpLog kopuPos.

o ganeti-wconfd[Devq]: eivat evepydg povo otov kbplo kopuPo kat eivat vevdo-
VOG 0TO va eKTeAel EVTONEG TTOVL TpoTroToLOLV Ta dedopéva SlapopPwong Tng
ovotolxiag, va amofnkevel Tig alhayég kat va Stavépel Ta véa dedopéva da-

HOPPWONG OTOVG VTTOAOLTIOVG KOWUPOVG,.

o ganeti-luxid[Devk]: eivau evepyog povo otov kbplo koppo. Aéxetal OAa Ta at-

THHATA SLAXEPLOTWYV Kal Ta €Lodyet 0Ty ovpd epyaociag Tov Ganeti. EmumAéov

2. YIIOBA®GPO 10

elvar vtevBLVog yla TV Stayeipton ™G ovpag epyaciog kat TNV évapén kade

epyaoiag.

o ganeti-rapid[Devn]: eivat evepyog Hovo atov kVpto KopPo kat emtpénel oe efw-
TepIKA epyaleia va oteilovy autipata oto Kvuplo kopBo. YAomotel kat mapéyet

tia Stampoowmia kat Tpowdei kat autrpata mov AapBavel otov ganeti-luxid.

Onwg avagépOnke ndn 1o Ganeti mapéxet pia Stema@r ypapung eVIoA®v thv onoia
HTTOPOVY Vo XPNOLHOTIOooVY SLaxelploTéG. Ot evTOAEG avTéG VAOTIOLODY ONEG TIG Al
Tovpyieg mov vtooTnpilel To ovoTnud Ganeti. Mia evtoln petagpaletal o€ évar ToA-

Aamhé artrjpata ov tpowBovvtat otov ganeti-luxid.

2.3 O aAyopiOpog Raft

O Raft eivat évag akydpiBpog ovvaiveong (quorum algorithm)? mov mpoo@épet Evav
YEVIKO TPOTIO SLAVOUNG [iag UNXAVIG KATAOTACEWY O€ [iot oVOTOLXio VTTOAOYIOTIKWY
ovotnudtwy, Stac@alifovtag 0Tt kabe kKOpUPog ovpwvel oTnV idta oelpd petdPaong
kataotacewv. O Raft oxedidotnke wote va eivat acaing vd Oleg TG ouvOnKeg
Kat StaBéotpo vId TvTkEG CLVONKEG KavOVIKNG AetTovpyiag. EmmAéov mpoogépet éva
TPAKTIKO LTTOPabpo yia TV AVATTUEN CLOTNUATWY, ATTAOTIOLWVTAG TNV EPYATIA TWV
TPOYPAUHATIOTWYV KAl Eival EDKOAA KATAVONTAG, £vag amd Tovg Pactkovg oxedlaoTt-

KoUG otoxovg Tov[Ongl3].

Ot akyopiBpotl ovuvaiveong ovxvd xpnotponolovvtal 6To TAaiolo Twv replicated state
machines, To kaBéva ek TwV onolwV amoTeAeiTal Ao [ia VIETEPUIVIOTIKN UNXAVT] Ka-
TAOTACEWY, £Va NIEPOAOYLO EVTOAWYV Kat pia povdda ovvaiveong. O akyopiBuog ov-
vaiveong eivat pépog tng povadag ovvaiveong mov eivat vevbuvn va avanapdyet To
NHEPOAOYLO EVTOAWYV O€ OAEG TIG OVTOTNTEG UE ONEG TIG EVTONEG OTNV akpLPwG idta
oetpd. Ot pnyavég kataotaoewv StaPafovy TiG eVTOAEG amd TO NUEPOAOYLO EVTOAWV
Kat Tig ekteAovV EQOOOV ot nyavEG eival VIETEPUIVIOTIKEG KAl OL EVTOAEG OTO NEPO-
Aoyto éxovv avamapayBel pe Ty idta akplpag oelpd, OAeg oL evOLapeoeS Kat 1) TEAIKN

KATAOTAOT] OAWV TWV UNXAVOV KATAOTACEWY ivat iOLeg.

2ANyopiBpot cuvaiveong Advouy to TipdPAnpa TG ovvaiveong, dTov OAeG oL OVTOTNTEG EVOG OVLOTH-
HaTOG TIPETIEL VO CUHPWVI|OOVY OF [Uid CLUYKEKPLUEVT] TLUT

2. YIIOBA®GPO 11

Ot koppot oe pia ovotoryia mov xpnotponotei Raft éxovv dtagopetikovg poovg. Ot

polot avtol eivat:

o Hyétng: nyétng eivat To oAb €vag koppog avé maoa oTrypn Kat eivat o povadt-

KOG LTELBLVOG YLa va Staxetpiletat kat va Stavépel To NHePONOYLO EVTOAWV.

» Kavovikog: atov podo avtd o koupog déxeTal artriipata amd tov ny£Tn yia ey-

YPAPEG OTO NUEPOAOYLO EVTONWYV KAl TIG EKTEAEL

« Yrnoynetog: Eav évag kavovikdg koppog dev AdPet privopd and tov nyétn péoa
0€ €Va OPLOHEVO XPOVIKO SLACTNHA TOTE YIVETAL VTTOYNPLOG KAl eKKLVEL T Sta-

Swaoia ekhoyng nyét.

Exovtag éva povo koppo va Aertovpyei wg ny£tng kat va givat o povadikog vmevuvog
yta Ty dtaxeipion tov nuepoloyiov evtodwv o Raft amdomotei tnv por| dedopévwv oo

ovoTnua Kat Staomdel To TpOPANpa TnG ovvaiveong oe dVo Pacikég Aettovpyieg:

o ekhoyn Ny£TN: 0 NYETNG 0TéAVEL TTEPLOSIKA UNVOHATA 08 OAOVG TOVG KOpBOVG
wote va datnpnoet Ty apxnyeia. Eav évag koppog dev AaPet tétolo unvopa
HEOO OE OLYKEKPIUEVO XPOVIKO SLAOTNHA TOTE YiVETAL LTTOYHPLOG KAl EKKLVEL TN
Sadikaoio ekdoyng. Ta va exhexBei otédvel prvopa oe kabe kopBo dmov mepié-
XELTIANPOQOPieG yla TN TEAEVTAIA KATAXWPTOT) OTO NePOAOYLo eVTOAWYV Tov. Ot
KOUPoL TwV Yyneilovy av kat Hdvo av Kpivouv 0Tt 0 VTOYHPLOG EXEL TOVALLOTOV
e§ioov pdoPato nuepoldyLo pe tovg idovg. Evag koppog pmopet va wngioet
HOVO pia @opd oe kaBe dtadikaoiag exhoyng. [la va pumopéoet o vIOYNHPLOG va
ovveyioel wg nyEtng mpémet va AdPet Oetikovg Yyrgovg and T mAsloyn@ia Tng

ovoTolxiag.

o avtiypagr nuepoloyiov evtodwv: H avtiypaen tov nuepoloyiov eviodwv yi-
vetat e§ 0AoKkApoL amd Tov NyETn. O NYETNG SEXETAL AUTHOELS Yia KATAXWPTIOELG
oTo npepoloyto. Otav yivel avtd mpowdei Ty kataxwpnon oe OAa ta PéAn g
ovototxiag. Otav AdPet Oetikég amavtioelg amod tn mAeloyn@ia TnG ovoTorxiag
OTL §XTNKAY TNV KATAXWPNOT TOTE KATOXVPWVEL TNV KATAXWPNOT], TNV ekTeAEL
OTNV UNXAVH KATAoTaoewV ToL Kat Tpowdei Ta anoteAéopata 6Tov XprioTn Tov

ékave TnV aitnon.

3. ANAAYZH TOY ZYZTHMATOZXZ GANETI KAI ZXEAIAXMOX 12

H molitikr) mAetoyneiag katd tn Stdpkela TnG EKAOYNRG NYETN Kal TNG avIlypa@ng
TOL NuepoAoyiov, oe GUVSVACUO e TNV HovadkOTNTA Tov NYETN, e§acalifovv OTL
omnotadnmote katayxwpnon katoxvpwdei dev Ba xabei akopa kar av aAllaet o nyétng.
EmmAéov OAeg katoxvpwpéveg kataxwpnoelg eival, 1 peAlovtika otav eloayxbovv Ha
ewval, pe akpPwg TnVv idla oelpd oe OAa Ta nePoAdYLA EVTOAWDY TNG ovoTolyiag. Emo-

HEVwG, 0 aAyoptOpog Raft emAvel o mpdPAnpa tng cuvaiveong.

2.4 To ovotnua Etcd

To eted eivat éva aflomioto katavepunpévo ovotnua anodnkevong KAESLOV-THHWY, TTOV
ovviBwg xpnotpomoteital yia tnv amobrkevon kpiowv dedopévwy evog Kataveun-
HEVOV GUOTHUATOG. ZKOTIOG TOV ELvAL VA TTPOOPEPEL EVaL ATIAO, AOPANEG, YPIYOPO KA
a&lomioto péco anoBrkevong oe éva katavepnuévo cvotnua. To etcd vAomotei Tov
akyopiBuo Raft mpoxeipévov va e§aopalioet tn ovvénela Twv Sedopévwv mov anobn-
kevel. EmumAéov éxel oxediaotel wote va unv ennpedletat n opOOTNTA TOL ATO GPAN-

Hata peAwy, nyETn, mAeoyn@iog 1 ductdov.

To etcd mpoo@épel didpopeg dSuvatotnTég yia v dnpovpyia piag ovotolyiag eted,
NV €L0aywYyr| Véwv Hedav, tnv ovvdeon petald avtwv, kat kKupiwg Std@opeg mapa-
HeTpomonoelg ot anobnkevon Twv kheduwyv. EmmAéov, ot Stadikacieg amodrkevong
dedopévwy, avaliitnong kAedidv kat oVvdeong peta&d pedwv éxovv BektiotomonOei

He OKOTIO TNV TaXUTEPT OAOKANPWOT) AVTWYV TWV AEITOVPYLWV.

3 Avdlvon tov ovotiuatog Ganeti kot oxedLaopog

Zto kepdAalo avto Ba avalvoovpe Twg 1 TwpLvr VAomoinon Tov Ganeti emteAel kd-
Toleg Paoctkég Aettovpyieg mov cvvéEovTal dpeoa e TN Stadikacia HETATTWONG KUPLOV
Koppov. EmmAéov Ba avalvoovpe yiati avtég ot Stadikaoieg eivat TpoPAnUaTikEG Kat
anatovuvtatl aAAayég woTe va VAOTOoovpe pia avtopartn dtadikaoia HeTATTWwonG

KVpLOL KOUPOvL.

3. ANAAYZH TOY ZYZTHMATOZXZ GANETI KAI ZXEAIAXMOX 13

3.1 AmnoOnkevon kat Staporpacpog dedopévwv dtapopewong

Ta dedopéva dtapdpewong piag ovototxiag Ganeti amotedovvtat amd Sidpopa apyeia
mov amofnkevovtal Tomkd 6Tovg kOpPovs. To Paotko apyeio mov epmepiéxet TV oAO-
ta twv dedopévwv Stapdpewong eival to config.data. Anéd avtod to apyeio e§dyovtal
Kat OLadOTOLOVVTAL CUYKEKPLULEVEG TANPOPOPIES TIOL amoBnkevovTaL o€ SLaQopETIKA
apyela ssconf. Omwg €xet avagepbei o povadikdg vevBuvvog yla v amobrkevon kat

v dtavoun avtwv Twv apxelwv eival o ganeti-wconfd mov eival evepydg oTov KvpLo

Koppo.

O ganeti-wconfd, 6tav pia aitnon odnyei oe ponomnoinomn Twv dedopévwy Stapdpew-
ong, amodnkevel TIG aAAayEg TOTIKA Kat EMELTA TIG SLAVENEL GTOVG VTTOAOLTIOVG KO-
Povg tng ovoTorxiag. ia va To emtdyel avtd, katd TNV ekkivnon Tov dnovpyei Tpia
viuata/epyateg to kabéva pe ovykekpiuévn evfovn. O mpwtog epydtng amodnkedet
Ta Tponontotnpéva dedopéva Slapdpewong oto Tomko apyeio config.data Tov kKVpLov
koppov. Enerta exkivel Tov dedtepo kat Tov tpito gpyatn. O devtepog epydtng dia-
Holpdlet To apyeio config.data oe GAoVG TOVG LTTOYTPLOVG KOUPOLG TNHG CLGTOLXIAG.
Ta va 1o kdvet avtd StaBadet Ta dedopéva Stapopewong kat e§dyet T Aiota pe Tovg
VTIOYT|PLOVG KOHPBOVG, GTOVG OTOIOVG OTEAVEL €Val TIAKETO [E TO VEO TPOTIOTIOLNHEVO
config.data. O tpitog epydtng e&dyet ano ta dedopéva Stapdpewong Tig TAnpoPopieg
nov anofnkevovtal oe OAa ta ssconf apyeia, TG opadomnotel kat TIG anobnkevel oe pia
KatdAAnAn Sopn dedopévwv. Tn Sopr| avtn TNV oTtélvel Emerta oe OAOVG TOVG KOUPOLG

NG ovoTolyiag.

Eivaw onpavtikd va tovicovpe 6Tt o ganeti-wconfd dev kdvel kavévav €éAeyxo katd
ddpxeta TG dtavoung tTwv dedopEvwy Slapdpwong. AvTod eival daitepa ONHAVTIKO
yta To apxeio config.data mov oTéAvel 0TOVG LTTIOYNPLOVG KOUPOVG. E@doov Sev kavel
Kavévav éleyyxo yla va dtao@aiioet 0Tt Ta dedopéva avtd mapaleigOnkav and Tovg
VTOYNPLOVG KOUPOVG 1) piat TAELOVOTNTA aTwV givat Suvatdv va vrdpéet anwleta
dedopévav dapopewong onwe Ba avalvbei otn ovvéxela. H EAeryn ehéyxwv emiPe-
BatwOnke o€ pio Sokipao Tk VoTOLXiA TPLWY KOHPWY OTIOL 0 KVPLOG KOWBOG TLVEXileL
va Aettovpyei kavovika kat va tpomtomotel Ta Sedopéva SLadpewong akopa kat dtav

ot dA)ot dvo kopPot eival ekTOG Aettovpyiag.

3. ANAAYZH TOY ZYZTHMATOZXZ GANETI KAI ZXEAIAXMOX 14

3.2 Merantwon kOpLov kopupfov

To Ganeti Tpoo@épel T AetTovpyia HETATTWONG KOpLov KOUPOV 1 oToia prtopei va k-
KvnOet amd évav Staxelploth péow NG KATAAANANG eVTOANG and Ty Sieman ypappng
EVTOAWYV 1) pe Xpromn NG Stemagng Tov ganeti-rapi.

H Aeirtovpyia petantwong emrelel Vo Pactkos eAEyXovg, ol omoiol Tpémel va ei-
vat fetikol wote 1 Aettovpyia va ohokAnpwOei. O mpwtog éAeyxog PePatwvet OTL N
dradikacia petdntwong dev ekkiviOnke o kOpPo mov eivat dn o0 KVPLOG KOUPOG TNG
ovototyiac. Ita va 1o kavel avto StaPdlet and ta Tomikd dedopéva HeTAMTWONG Kat
Bpiokel molog eivat o kOpLog kOUPog. Edv eivat o idtog tdTe N Stadikaocia petantwong
akvpwvetat. Eqv dev eivat 1ote ouveyilet pe tov Sedtepo édeyyo. O Sevtepog éeyxog
gxel popr yneogopiag. O koupog, otov omoio n dadikacio LETATTWONG EXEL EKKLVT-
Oei, oTéAveL ufvopa og OAoLG TOVg KOpPOLG TG CVOTOLiAG, TNV AioTa TwV omoiwV PBpi-
okel oTa ToTikd dedopéva SladpPewaong, (NTWVTAG Va TOV AAVTHCOVV [E TO OVOQ
TOV TWPLVOL KOPLov KOpPov Tov €xet kabe kOpPog ota Tomikd dedopéva StapopPw-
ong. Enerta ovANéyel Tig anavtnoeig kat Tig opadomotel og 3 katnyopies. Tig Oetikég
ATAVTHOELG, OTIOV 0 KUPLOG KOHPOG TTOv EUTEPLEXEL T} AMAVTNOT) €ivat 0 (310G pe avTOV
TIoL €XeL 0 KOHPOoG oTa ToTikd Tov Sedopéva. Tig apvnTIKEG ATAVTHOELG OTAV VTIAPYEL
aovpwvia kat TEA0G, 1) Tpitn opdda amoteleital and Tovg kOpPovg mov dev amavn-
oav eite S10TL eival ekTOG Aettovpyiag eite S1OTL vIEApXeL TPOPANUA oTo SikTvo. Ila va
ovvexioel 1 Stadikaoia petantwong o kKOUPog mpémel va AdPet mAeloyneia Betikwv

ATAVTNOEWV.

O devtepog éheyxog av kat givat Yo mheoyngiag Sev e§aopalifet 6Tt 0 kKOUPOG
VIO LETATTWOT) €XEL TN TTLO TIPOOoPaTH ekdOXT TwV deSOUEVWVY HETAMTWOTG. ZVUYKEKPL-
Héva o éNeyxog YiveTal avagopikd pe Tov kOplo kopBo mov PAémet kdbe kOpPPog Kat
OxL pe tnv €kdoomn twv dedopévav SlapdpPwong. AvTto o cuVOVACHO pE TO YeYoVvog
oTL katd tn Stavopn} Twv dedopévwy Stapudpewong dev yivetal €éAeyxog mAeloyn@iog
odnyei oe mBavr anwleta dedopévav diapdpewong. Evag kopPog pmopei pe emrvyia
va ohokAnpaaoet Tn Stadikacia HETATTWONG KVpLov KOpPov xwpig va Stabétet Tnv Mo

npooatn £kdoon Twv dedopévwv Slapopewong

[a mapadetypd, £0tw pia ovotoryia TpLwv kOuPwv, A, B, T’ ue Tov koppo A wg kvpto. O
KOUPog I eivan €xtog Aettovpyiag kat 0 KOpPoG A ovveyilel va AetTovpyel Kat va Kavet

aAlayég ota dedopéva Stapdpewong. Enetta o koppog A tiBetan ektog Aettovpyiog

3. ANAAYZH TOY ZYZTHMATOZXZ GANETI KAI ZXEAIAXMOX 15

evw o kopPog I' ekkiveital. Ztov koppo I' pia Stadikacia petdntwong Oa mepdoet Tovg
eAéyxovg kat Oa ohokAnpwBel emTvxnuéva, mapott o kouPog Stabétel makid éxdoon

TV dedopévwy Slapdppwong.

EmmAéov, katd tnv Stadikacio HeTAMTWONG KUPLOL KOEBOV, 0 KOPOG 0TOV OTIOI0 EKTE-
Aeitat ouvSEeTal 0TOV TWPLVO KVPLO KOUPO Kat OTAHATAEL TN AeLlTovpyia TOL WG KVPLO
kopPo. Eav dev pmopei va ouvdebei otov kvpto kopPo ,eite Aoyw mpoPAnuarog Ot-
KTVOV eite emeldn eival eKTOG Aettovpyiag, TOTe odokAnpwvel Tn dtadikacia HeTAMTW-
ong emruxws. Etot oe mepintwon Stapépiong g cvototyiag eivat mbavov n dradika-
ola petantwong va ohokAnpwei oe pia voovoTolia evw vVIApXeL kat AAAOG evepydg
KVPLoG KOpBog oe A voovoTotyia. Apa Ba vitdpyovv Tavtdxpova 2 KvpLot Kop ot

Kat 1 ovototxia Ba 0dnynOei oe katdotaon split-brain.

3.3 IIpotervopeveg aAllayég

Exovpe det wg Twpa 6TL N Twptvy VAomoinon tov Ganeti emtpénet anwAela dedopévwv
Srapopewong kat pumopel va odnynoet oe katraotaon split-brain. H Stadwkaocio petd-
TTWONG eKTENEITAL OO SLaXELPLOTH, 0 OTOl0G eMwifeTat TNV vBVVN va amopevyBovv
Ta §Vo mapamavw eawvopeva. Tia va o k&vel avto mpémnel va eEao@alioel OTL 0 KO-
Pog mpog petdntwon €xet T Mo TpdoPatn ékdoon Sedopévwv StapdpPwong Kat OTt
dev vmdpyxet dANog evepyds kOplog koppog. H dadikaoio avtn eival xpovoPopa kat

UTopel va yivouv o@dApata.

T va avtopatomotrjoovpe TN Stadikacia avtr, mpénet va eaogalicovpe ott Sev Oa
vnapet anwheta Sedopévwy Stapdpewong kat emMAL0V OTL ot Stapepioels cuoToLxiag
avTipeTwnilovtat owotd. Ia va to metvyovpe avtd Ba XproLHOTOL|COVHE TO CVOTNHA
etcd wg péoo amoBrkevong Twv dedopévwy Stapndpewong tov Ganeti ovotoiyiog. To
etcd Oa e€aopalioel pia eviaia eikova Twv dedopévwy Stapdpewong oe VAo Tn ov-
ototyia kat emmA£ov) TOALTIKT TAgtoyn@iag mov xpnotpomotei Oa e§aopalioet 6TL ot
dapepioelg ovotoryiag dev Oa odnynoovv ot split-brain. EmmAéov, mpémnet va vAomot-
nOei évag pnxaviopog mov Ba evtomilelt opdApata Tov KVpLov kOpPov kat Ba ekkivel

™ Sradkacia HeTAMTWONG.

4. YAOIIOIHZH 16

4 YM\omoinon

H vlomoinon pag etodyet véeg ovtotnteg 0To ovotnua Ganeti kal TpomomoLel vap-
xovoeg Aettovpyies. H vhomoinon pag pmopei va StaomaoTel o Tpelg eVOTNTEG TTOV
emteAoVV SLapopeTiko £pyo. AvTEG eival 1 daxeipion g etcd ovoTtoryiag and To ov-
otnpa Ganeti, n anobnkevon twv dedopévav Stapdppwong oto etcd kat o pHnxaviopog

AUTOUATNG HETATITWONG KOPLOV KOUBOV.

4.1 Awyeipion tng etcd ovotoryiag

To péln tng etcd ovotoiyiog Ba eival ot vmoyngiotl koppot tng ovototyiag Ganeti. H
emAoyn avtn €ytve 8161 oto eted Ba amoBnkevovtat Ta dedopéva Stapdppwong ya
Ta omoia vrtevBuvol eivat oL VITOYTPLot Kat dpa oL Aettovpyieg Tov eted mpémet va e€ap-

TwvTal atd AVTOVC.

Ot Aertovpyieg Tov Ganeti mov aAldlovy Ta pHEAN TNG CLOTOLXIAG TIPETEL VAL TPOTIOTIOL-
nbobdv wote va tpomonolodv katdAAnAa kat Ta péAN g etcd ovoTolyiag. Zvykekpl-

HéVa, oL AelTovpyieg Kat ot aAAay£€G IOV XpeldoTnKay eivat:

« apxtkomoinon ovototxiag Ganeti: n Aettovpyia avtr) TpomonoOnke €101 WOTE
va dnuovpyet kat éva véa ovatotxia etcd. To povadiko pélog kat Twv dvo ov-

otol v eivat o kKOpHPog oTov omoio ekkiviOnke avtn n dtadikaoia.

» mpooOnkn/agaipeon pélovg: o kKVpLog kOpPog Tov Ganeti pumopei va Tpoobétel
Kat va a@atpei LEAN amod Tn ovotolyia. AvTtég ot Aettovpyieg TpomomoOnkav
¢tol wote va StaxetpiCovtal kat T eted ovoTtoryia. Zvykekpiuéva, OTav mpo-
otifetat éva péAoG oL elval Kat LITOYNRPLOG TOTE AVTOG 0 KOUPOG TpooTiBeTal
Kat wg péAog ot etcd ovototyia. Otav agatpeitat éva péAog anod Tn cvoToLyia

Ganeti ov fTav LITOYNHPLOG KOPPOG, TOTE aatpeital kat and Tr cvoTotxia etcd.

o alayr| pohwv: o kOpLog kOUPog pmopei va alla&et Tov poro evog pHEAOVG TOv
etcd. Otav mpowbei éva péAog 6To pONO TOV LTIOYNPLOV TOTE AVTO O KOUPOG TTPE-
meL va yivet péhog tng etcd ovotoryiag. Opoiwg dtav vtoPialet évav voyneLo
KOpPo oe dANo poAo, 0 kOuPog avTdg Tpémel va agatpedei amod TN cvoToryia

etcd.

4. YAOIIOIHZH 17

Me 11§ mapandvw alkayés, o ovotnua Ganeti Staxetpietar tn etcd ovotoryia. Xpetd-
Cetan Opwg pia emmAéov ovtoTnTa WOTE 0€ KABe KOUPO va ekKiveitan n) vinpecia eted
otav ekkiveitat kot vmnpeoia Ganeti. H ovtotnta avtn eivat £vag véog daipovag Tov
Ganeti ovotrpartog, o ganeti-etcd, o 0m0I0G EKKIVEITAL TPDTOG KATA TNV EKKIVNOT TNG
vnnpeoiog Ganeti. Zvykekpipéva, o daigovag ganeti-etcd apxika ehéyyxet av o kOpUPog
elvat pélog tov eted, SnAadr vroynerog kouPog oto Ganeti, 1) Oxt. Eav eivat tote e-
Kivdel Tnv vmnpeoia etcd wg pélog tng ovotoryiag. Eav dev eivau tote dnpovpyel pia
ovvdeon oo etcd ovoTolkio WOTE AUTHHATA Ylo avayVwon TwV dedopévay Stapopepw-

ong va mpowBovvtal kat va anaviwvtat and To etcd.

4.2 Metagopa Twv dedopévwv Stapdpewong oto etcd

Ta dedopéva Sapopewong tng Ganeti cvototyiag Oa amodnkedovtat TAéov oo etcd,
KOl ETOUEVEG OAQ TAL AUTTHATA EYYPAPTIG KAl AVAYVWOT|G AUTWV TIPETEL Va YivovTal
Héow eted. Zvykekpipéva, Eyvav aklayég otov ganeti-weonfd, Tov Saipova tov Ganeti
TIov eivat vevBuvog yla Ty eyypaer twv dedopévav Stapdpewong. I éov, avti va
dnovpyel tpia vijpata/epydre. mov amobnkevovv Tomkd Kot dtavépovv ta dedo-
Héva Stapopewang, dnpiovpyei Hovo éva to omoio ypdget ta dedopéva Stapdppwong
oto etcd. AvTo yivetal pe aitnon éyypagng Twv kAedwwv config.data kat ssconf oto
etcd. Atavopr| ev xpetdletat, agod eyypagn oto etcd loovTat pe Stavour) TOvAdyLoTOV

oe pia mAeloyneia tng ovoTolyiag etcd.

EmmAéov, dAeg ot ovtotnTeg mov €kavav avdyvwon twv dedopévwv Stapopewong
Yl OLYKEKPLUEVEG AEITOVPYIEG, TpoTTOTTOONKAY WOTE 1] Avdyvwor avTr va yivetat
Héow etcd, pe aitnon avdyvwong mpog tn ovotoixia. Otavayvawoeig ano to etcd éxovv
0pLoDel £TOL WOTE VO ATTOPEVYOVTAL AvayVoEeLg TTaAlwy dedopévwy. TéNog, Stagpopeg
OVTOTNTEG EKTENODOAY TOTILKOVG EAEYXOVG yia TNV Utap€r Tomkwy apyeiwv pe dedo-
Héva dtapdpewong. Avtoi ot éheyyot tpomomoOnkay, agov Tomikd apxeia TAéov dev

VTLAPYOVY, WOTE OL OVTOTNTEG VA AELITOVPYODV KAVOVIKA.

4.3 MnXaviopog aUTORATNG HETATTWOTG KVPLOV KOuPov

H tehevtaia amapaitntn ovtoTnTa givat évag punxaviopog mov Oa evromilet ogaApata

KVpLov kKOpPov kat Ba exkivei TNV Stadikaoia HeTATTWONG KOPLOL KOUPOL O Evay Ka-

4. YAOIIOIHZH 18

TaAANA0 vrioyn@Lo kKOpPo. O pnxaviopog avtog mpémet va Stao@alilet 0Tt povo évag
KOUPOG Aettovpyei wg kVPLog kat va Stayelpiletal owotd TG Stapepioelg cvaTtoiyiag

WOTE va ano@evyovTal kataotdoelg split-brain.

®a vAomotrjoovpe évav véo daipova kat Oa Tov elodyovpe otny vinpeoia tov Ganeti.
O daipovag avtdg, ganeti-med, ekkiveital HOVO 6TOLG VIIOYHPLOVG KOUPOVG Amd TOV
ganeti-etcd. EmumAéov, Oa xpnotpomnouoovpie €va kataveunpuévo kheidwpa oto eted, n
omoia Ba xpnotpomnoteitat and GAovg Tovg ganeti-med Saipoveg mov Tpéxovv o€ Sia-
QOPETIKOVG KOUPOVG. ZvykeKpIéva, oTny apxn Aettovpyiag o ganeti-mecd mpoomnabei
Va aMOKTHoEL TO Katavapnpévo kAeidwpa. Eqv ta katagépel, eite ekkivel Tnv vmnpe-
ola Tov KVPLOL KOUPOVL eite ekTENEL LETATTWOT KUPLOV KOUPOL avaloywg e TOV av
nTav o kOpLog kOUPog. Etn ovvéyela, emavalapPavel Ty e§ng Stadikacia: EAéyyxet av
1 vmnpeoia Aettovpyei kKupLov kOpPov Aettovpyet opBa, av val avavedvel To Katave-
Hnuév kAeidwya, av oxt otapatdaetl Tn Aettovpyia kOpLov kOUPov kat eEhevbepvel To
KAeidwpa. To kAeidwpa éxet T popen kKAewdtov oo etcd To omoio ypdeetar pe T Time
To Live 1810tnta. Emopévwg, edv 1o kAetdi avtd dev vmdpyet ToTe 0 mpdTog ganeti-med
Oa to dnpovpynoet kat Ba To avavewvel wote kaveig AANog ganeti-med va pnv pumopei

Va TO ATOKTNOEL WOTE va Eekivioet Aettovpyia kVptov KOpov.

H xpnon kataveunpévov khedwpatog pag e§acpalifet 0Tt povo évag koppog Oa ex-
Kivnoet tn Aettovpyia kvptov koppov. EmmAéov oe mepintwon dapépiong g ovotot-
xtag, n oAtk mAetoyn@iag Tov eted Staogalifet 6Tt To TOAD pia vtoovoToyia Ba
Hmopel va ypayet 0to eted kat va amoktioet To kAeidwpa wote va ekkivnOei n Aettovp-
yia kOplov kopPov and évav and Tovg kOpUPovg NG voovototxiag. EmmAéov, edv o
KVPLOG KOHPOG evToTioel GQAAHA AOYLOUIKOV 0TIV LTINPesia KUpLov kOuPov ToTe Tep-
HatiCet T Aettovpyia tng kat eAevBepwvet To kKAeidwpa. Eav mapovotaotei mpopfAnua
VAKOD 0ToV KUplo kOpuPo toTe dev Ba pmopéoel va avavewoel To kAeidwpa Kat €vag

vroyneLog kopPog Ba tnv anoktroet kat Oa yivel kOpLOG KOpPOS.

H vlomoinon avtod tov unxaviopov e§acgalifet 6T opaipata kOpLov KOpPov evTo-
nifovtal kat StaxetpiCovrtat eykaipws. EmmAéov Saxetpiletar opBd Sapepioelg ov-
otolxiag kat amogevyovtal kataotdoelg split-brain. H mbavotnra anwleiag dedopé-
vov Stapopewong e§aleipetat kabBwg o kOuPog mov avalapfaver kabrkovta KOpLov
Koppov dabétel mdvta Ty Mo TPOTPATN €KG00N TwV SeSOUEVWY HETATTWONG HECW

ToV etcd.

5. AEIOAOI'HXH KAI MEAAONTIKEX AYNATOTHTEZ 19

5 A§loAoynon kat peEAAOVTIKEG SUVATOTNTEG

5.1 A§oloynon

H vlomoinon pag emekteivel T Aettovpyia Tov Ganeti TPOCPEPOVTAG AVTOHATN He-
Tantwon koplov kopPov. MapdAnka egaopalilet opBn Aettovpyia oe KATAOTAOELS
Stapéptong ovotoryiog kat eEaleiget T mOavotnTa anwlelag dedopévwv StapopPw-
ong. [ta va to metOyel OUwWG ALTO el0AYEL £vaV ONUAVTIKO TEPLOPLOUO, O OTOLOG elval
OHwG avaykaiog yia tnv opOn Aettovpyia NG ALVTONATNG HETATTWONG KUPLOV KOUPOV.
O meploptopdg, mov myadet and tn moATikn anaptiag Tov akyoptduov Raft mov xpn-
otpomotei o etcd, eivat: Ava &Aoo OTLYHT [l TTAELOVOTNTA TWV VTIOYHPLWV KOUPwV
TIPETIEL VA €lvaL EVEPYN Kat Ue VYIS emtkovwvia peta&d toug” Eav avtn n ouvOrkn
dev 1o Vel 10Te 1) VTINpeoia Ganeti otapatdel va Aertovpyel ewg 6ToL tkavorotnOei

ovvOnkn

Enopévwg, n vhomoinon pag avéavet tn Stabeoipotnta g vinpeoiog Ganeti tpoo@é-
POVTAG YPIYOPT,A0PAANG KAl QUTOUATN HETATTWOT KUPLOV KOUPOL, aAAd Tieptopilet
T OEVAPLOL OTA OTIOLAL 1) TINPETIA UTTOPEL VO AELTOVPYTOEL. Z€ [iot CLOTOLYIO TPLWV KO-
Bwv, n vVAomoinon pag evrtomilet kat emMAvEL GQANpaTA KUPLOL KOUPoL evTdg 40 devte-
poléntwv. Emmhéov, n anodoomn tng vAomoinong pag Stagépet and tnv anddoorn tov
ovotnparog Ganeti, Aoyw g allayng otnv amobrkevon kat Stavour) Twv dedopé-
vov Stapopewong. H obykpion twv §vo anoddcewv eaptatat and tnv anddoorn tov

STOOL KAl TWV TOTIKWV pEcWV amobnKkevong TNG ovaToLXiag.

5.2 Mellovtikég SuvatoTnTeg

Hvlomoinon pag petagépet ta dedopéva Stapdpewong oto eted. O kOpLog kOpPog Tov
Ganeti amoOnkebel emmAéov TANPoPopieg yia TIG EVTOAEG OV ekTeel, KaBwG Kat TNV
KAtdoTaon Tov. AvTég N mAnpo@opieg StapolpdlovTal Kat 0TOVG VoY PLOVG KOUBOUG.
MehAovTikd avTég ot TAnpoopieg umopodv va petagpepBovv otov etcd wote va punv

vrdpyet mbovr anwAeLa.

EmmAéov, mpoteivovpe Ty ahAayn Tng apyLTEKTOVIKNG TG binpeoiag Ganeti. Xvyke-
KPLéEva, TpoTeivoupe TNV dnpiovpyia piag ovtotnrtag, n omoia Ba eivar e§ohokAnpov

vrevBovn yla Ty anoBnkevon kat T Stavopn Twv dedopévav Stapdpewong kat OAa

20 LIST OF FIGURES

To auTpata eyypagng/avayvoong twv dedopévwy Ba mpowbovvtat oe avtry. Otvno-
Motmeg ovtotnTeg Sev Oa yvwpilovy mwg vAomolohvTat avutég ot Aettovpyieg kat To o0-
otnua anoBrkevong mov xpnowonoteitat. H véa ovtotnta Ba vtootnpilet Sidpopa
ovoTtrpata arodnkevong kat o Staxetplotns Ba emAéyet oo Ba xpnoonomn el katd
¢ Stapkela eykaraotaong tov Ganeti. Etot, o Siaxeipiotrg Oa éxel) duvatdtnta
va emiAégel To KatdAAnAo cOOTNHA avAAoya e TIG TPOTEPALOTITEG KAl TOUG TIEPLOPL-
opovg ov €xet. EmmAéov, n vnmpeoia Ganeti Oa pmopei evkoda va elodyel véeg Texvo-

Aoyieg kat ovotrpata anodrkevong.

Introduction

1.1 Problem

The problem under investigation is extending Google’s Ganeti[RK14] cluster manager
for High- Availability’ with an automated master failover procedure. Ganeti is a Infras-
tructure as a Service (IaaS) system that offers virtual machines as resources. Virtual
machines are spread over multiple nodes that form a cluster. Responsible for manag-
ing this cluster is a single node, the master node. Ifa failure occurs on the master node,
another node has to take over as the master node. This operation, known as master
failover, in the current Ganeti implementation is executed manually by an adminis-
trator. Manual execution of a master failover induces several problems but various

approaches to automate this process were deemed inadequate.

1.2 Incentives

In the modern era where web applications and cloud computing are ever-growing, the
demand of IaaS$ systems is rapidly increasing. Customers prefer to facilitate their ap-
plications on existing services that take care of infrastructure details like physical com-
puting resources, location, data partitioning, scaling, security, backup etc. Vendors try
to optimize their systems to increase their customer base and maximize profit. IaaS

systems may be configured differently depending on the features they offer and priori-

'High-availability clusters are groups of computers that support server applications that can be re-
liably utilized with a minimum amount of downtime.

21

22 CHAPTER 1. INTRODUCTION

tize. In any case, Iaa$S system developers implement various design strategies[vV14] to

maximize the uptime of their system, which is an important criterion for customers.

1.3 Shortcomings

Ganeti currently has a manual master failover procedure. An administrator has to
detect and resolve a master node failure, a process that adds a considerable amount
of downtime and the element of human error. Various Ganeti contributors and co-
developers have proposed different approaches to solve this issue. Some of the ap-
proaches suffered from potential configuration data loss as they did not ensure that
a node initiating a master failover has an up-to-date copy of the configuration data.
Other approaches did not handle cluster partitions correctly and allowed multiple
nodes to run as master leading to a split-brain condition®. Therefore these propos-

als were deemed naive and erroneous and were not imported to Ganeti.

1.4 Objective

Our objective is to extend Ganeti for high-availability with an automated master failover
mechanism. Our approach has to eliminate the possibility of configuration data loss
during a master failover and correctly handle cluster partitions to avoid a split-brain

condition.

1.5 Design and evaluation

We propose integrating Etcd[Devc], which is a distributed reliable key-value store
commonly used for storing the most critical data of a distributed system, as the back-
end storage system to Ganeti. Etcd will offer a single and consistent image of Ganeti’s
configuration data throughout all nodes. Furthermore Etcd’s quorum policy will al-

low us to correctly handle and recover from cluster partitions, avoiding split-brain

?A split-brain condition is the result of a Cluster Partition, where servers cannot communicate and
synchronize their data with each other. Data or availability inconsistencies originate from this state as
each side holds a separate data set and may proceed to take over shared resources.

1.5. DESIGN AND EVALUATION 23

conditions. A mechanism will be implemented in order to detect master node fail-
ure, whether that is a hardware/software failure or a cluster partition, and initiate a
master failover procedure on a master candidate. Our implementation sufters from
an important constraint that emanates from Etcd’s quorum policy. In order for our
implementation to run and make progress at any given time, a majority of the master
candidates has to be active and communication between them has to be healthy. While
this constraint can be crucial, Etcd’s quorum policy is necessary to avoid split-brain
conditions, a major objective of our approach. On a 3-node Ganeti cluster, our imple-
mentation can automatically detect and recover from a master node failure within 40

seconds while ensuring the consistency of the configuration data.

24

Background

This chapter will provide the basic cluster theory and discuss some of the challenges
raised in such systems. It will also discuss two cluster tools that will be used in our

implementation, Ganeti and Etcd.

2.1 Introduction to Cluster Theory and Challenges

A cluster is a type of parallel/distributed processing system, which consists of a collec-
tion of stand-alone computers, commonly referred as nodes, that cooperatively work
together as a single, integrated computing resource. The activities of the computer
nodes are organized by a software layer that sits atop of the nodes and allows users to
treat the cluster as a large cohesive computing unit [Bak01], called "clustering middle-
ware”. Usually, but not always, the nodes are connected through a fast local area net-
work, in order to minimize the communication overhead. Computer clustering differs
from other approaches, such as peer to peer or grid computing, due to a centralized
management approach which offers a single system image concept instead of a more

distributed one.

Computer clusters were not invented by any specific vendor, but were created by the
need of customers, who could not fit all their work on a single computer or needed a
backup. This goes back to early 1960’s. The history of early computer clusters is tightly
connected with the history of early networks, as one of the primary reasons to develop
a network was to to link computer resources. Ever since their creation, the applicability

and deployment of computer clusters has grown immensely and today it ranges from

25

26

CHAPTER 2. BACKGROUND

small business clusters with a couple of nodes to some of the fastest supercomputers

in the world.

Computer clusters are used for computation-intensive purposes, rather than handling

IO-oriented operations such as web service or databases. When used this way, com-

puter clusters offer [enga] [engb]:

Cost efficiency: The cluster technique is cost effective for the amount of power
and processing speed being produced. It is more efficient and much cheaper

compared to other solutions like setting up mainframe computers.

Processing speed: Multiple high-speed computers work together to provide uni-

fied processing, and thus faster processing overall.

Improved network infrastructure: Different LAN topologies are implemented to
form a computer cluster. These networks create a highly efficient and effective

infrastructure that prevents bottlenecks.

Flexibility: Unlike mainframe computers, computer clusters can be upgraded to

enhance the existing specifications or add extra components to the system.

High availability of resources: If any single component fails in a computer clus-
ter, the other machines continue to provide uninterrupted processing. This re-

dundancy is lacking in mainframe systems.

Computer clusters may be configured for different purposes, and thus they can be cat-

egorized to four major types of clusters, depending on the purpose they serve[Har99]:

Storage
High availability
Load balancing

High performance

Storage clusters provide a single,consistent file system image across all servers in the

cluster, allowing servers to simultaneously read and write to a shared file system. By

doing so, functions as backup and disaster recovery are simplified while the need for

2.1. INTRODUCTION TO CLUSTER THEORY AND CHALLENGES 27

redundant copies is eliminated. Moreover, administration of a storage cluster is easier

by limiting the installation and patching of applications to a single file system.

Figure 2.1: Example of a high availability cluster

Hisarthaat 1
Hsartheat 2

High availability clusters, also known as HA clusters or failover clusters, minimize the
amount of downtime of server applications by eliminating single points of failure. This
is achieved by using high-availability software that utilizes redundant computers. HA
clustering detects software/hardware failures that occur on a node, and immediately
restarts the application to a different node of the cluster without needing any admin-
istrative intervention, a functionality commonly known as failover. Maintaining data
integrity between the two nodes is indispensable, in order to achieve failover with-
out fomenting the application’s behavior. Different architectures of HA clusters exist,

depending on the number of active and passive nodes of the cluster[Ste01]. These are:

o active/active: All the nodes are active and traffic intended to the failed node can

pass to any of the remaining nodes. Homogeneous software configuration is

28 CHAPTER 2. BACKGROUND

needed for this architecture. Figure 2.1 shows an example of a active/active HA

cluster architecture.

« active/passive: A single fully redundant node is available to each node, in case

of a failure

o N+1: A single extra node is responsible for taking the role of any of N nodes

should a failure occur

« N+M: M, more than one, extra nodes are responsible for taking the role of any
of N nodes in case of a failure. This architecture increases redundancy but the

multitude of M is a trade-off between cost and reliability requirements

Load balancing clusters are configurations were cluster nodes share workload in order
to provide better performance. The algorithm that determines how to share the work-
load may differ depending on the nature of the service. For example, a web-server may
use a simple round-robin method but a more sophisticated approach may be needed
for a high-performance cluster used for scientific computations. If a node becomes
inoperative, the load-balancing software detects the failure and redirects requests to

other cluster nodes. A load-balancing cluster is shown in Figure 2.2.

Figure 2.2: Example of a load-balancing cluster

!
Laad ™,

LAN Balancer ™,
%

" Interhal Network

Clients b

N~

Servers

High-performance clusters allow the application to work in parallel, by performing

concurrent calculation on cluster nodes, therefore enhancing the performance of the

2.1. INTRODUCTION TO CLUSTER THEORY AND CHALLENGES 29

application. A usual high-performance cluster architecture, as shown in Figure 2.3, is
when a single node splits and distributes the calculation workload between the node-

workers and collects the results after the calculations are complete.

Figure 2.3: Example of a high-performance cluster

High Performance Cluster

e _f_.--'m.___‘_ . Py

7
7\

F\

e

/

External | Network

W - ﬁ' xx - llri' t
Wen\ M-
X

)

Switch. — —

}

S

Head Mode

- ﬁ, '."-\

A \»
Q'ﬁ' \)@%’ g@’aﬁ’ x>g.ﬂ \

6.‘#’ \ﬁ. N\ e @*.
))
\

oy
§

Internal Network of nodes

2.1.1 Split-brain

Depending on the type of cluster, there are a few delicate issues that need to be handled.
One of them, and probably the most important, is split-brain. Split-brain is a condition
that occurs as a result of a cluster partition. Cluster partition occur when there are
communication failures between cluster nodes resulting to the cluster being divided
into subclusters. Each subcluster consists of an arbitrary number of nodes that can
communicate with each other but cannot communicate with any other node of the

cluster that is not a part of this subcluster.

An example would be a two-node cluster consisting of node A and node B with a shared
storage that allows read and write operations, such an architecture is shown in Figure
2.4. If A cannot communicate with B, and vice-versa, the cluster is in a split-brain con-

dition. There are no means for node A to determine the state of node B. Node B could

30 CHAPTER 2. BACKGROUND

be powered off or there is a network failure that blocks the communication between
nodes A and B. Making an assumption about the state of node B , and therefore ne-
glecting Dunn’s Law’, could lead to a variety of problematic scenarios. For example,
node A could assume that node B is powered off and continue to serve read and write
requests, and at the same time, node B could make the same assumption. This would
lead to data corruption. Similar issues would arise for any shared resource between

these nodes.

Figure 2.4: A two-node cluster setup

Public Cluer Cnnedinn

Private Cluster Connection
=
L

Shared Dizk

" Mode 2

Since split-brain is the result of a cluster partition, an easy way to minimize split-brain
occurrences is by eliminating a single point of failure in the communication system.
This is done by configuring redundant and independent cluster communications paths
so that loss of a single interface or path does not break communication between the
nodes. Even with a redundant communication system, split-brain conditions can oc-

cur and thus should be handled properly.

There are various approaches that try to handle the split-brain problem. Davidson et

al.[Ske85] classified them in two major classes:

o optimistic: The optimistic approach simply lets the partitioned nodes work as

”What you don’t know, you don’t know - and you can’t make it up”. This law is attributed to former
Raytheon vice president Bruce Dunn and it is highly applicable in the case of cluster failure where all
that is observed is inability to communicate.

2.1. INTRODUCTION TO CLUSTER THEORY AND CHALLENGES 31

usual, which provides a higher level of availability in the cost of sacrificing cor-

rectness.

o pessimistic: The pessimistic approach limits the access of sub-partitions to shared
resources in order to guarantee consistency. This approach sacrifices availability

in exchange for consistency.

On the optimistic approach, once the problem has ended and the cluster partition has
been resolved, automatic or manual reconciliation might be required in order to re-
store a consistent state to the cluster. A great example of this approach is Hazelcast,
a key-value store system which values availability over consistency, that allows the
system to keep running while a cluster partition has occurred and runs an automatic

reconciliation after, in order to reach a consistent state.

On the other hand, on pessimistic approaches there are two basic concepts that take
part, fencing and quorum. Fencing is the idea of putting a fence around a subclus-
ter in order to deny any access to shared resources. In our previous example with a
2-node cluster setup, node A could fence node B and, after taking positive feedback
for the fencing operation, continue to operate normally. Fencing in a way answers the
question "is the inability to communicate with node B caused by a network error or
because node B is inactive?”, by forcefully setting node B unable to access shared re-
sources, thus making him inactive. It is an excessive but effective way of ensuring that

a consistent cluster state will be preserved. There are two classes of fencing:

 Node fencing is blocking a node from accessing any cluster resource, without
knowing what resources it might be accessing. A common way of accomplishing
this is by powering off or resetting the errand node. This technique is also called
STONITH, which is an acronym standing for Shoot The Other Node In The
Head.

« Resource fencing is a more elegant approach that can be used if there is knowl-
edge about which resources the errand node uses or may use. In this case, a
method can be used to block the node from using these specific resources, with-
out powering it off. For example, if one has a disk that is accessed by a fiber
channel, then one can communicate with the fiber channel switch in order to

deny any access of the errand node.

32 CHAPTER 2. BACKGROUND

In any case, an important aspect of good fencing techniques is that they are performed
without the cooperation of the node being fenced off and give a positive confirmation
that the fencing was done in order to continue safely. It is far better to rely on positive
confirmation from a correctly operating fencing component, than to rely on errant
cluster nodes you cannot communicate with to police themselves. In such a case, spe-

cial hardware and software components are needed to perform fencing operations.

Another form of fencing, is self-fencing, where the node itself detects any inability to
communicate with the rest of the cluster and proceeds by fencing itself. This can be
done on a node level by resetting or on a resource level, by blocking access to shared re-
sources. While this approach has the benefit of no extra hardware needs, as mentioned

it is not prudent to rely on a malfunctioning component to fence itself.

While fencing can help a cluster to continue operating in a split brain condition, it not
sufficient on its own. There is still the problem to decide which subcluster should be
fenced off. On the two-node cluster approach, node A could try to fence off node B,
and simultaneously node B could try to fence off node A. This could lead to an infinite
reboot loop between the nodes. To solve this problem, the most-commonly method

used is quorum.

Quorum is a method used to solve the mutual fencing dilemma [Cou01]. The main
problem is to somehow select a single distinguished subcluster to carry on and fence
off the rest. This must be done without communicating with any other subcluster, since
this is the main problem. The most classic solution to selecting a single subcluster is
a majority vote. In case of a cluster partition, every subcluster proceeds by counting
the members that are part of it. If the majority of the cluster nodes are part of this
subcluster, then it proceeds by fencing off the rest of the cluster nodes and continue
normal cluster operation. Of course, there is the possibility that none of the subclusters
reach a majority leading to a frozen state for the cluster, as no part of it can continue
normal operation. Since, in real systems the most common cluster-partition splits the
cluster in 2 subclusters most clusters consist of an odd number of nodes that will lead

to a successful majority vote.

Unfortunately a majority vote approach is not eligible for a two-node cluster, which is
a common cluster size, especially for failover clusters. In this case, there are a variety

of other methods that use a third party arbitrator who selects what node to fence oft.

2.1. INTRODUCTION TO CLUSTER THEORY AND CHALLENGES 33

This arbitrator can be either hardware or software. A hardware example would be a
SCSI? reserve where both nodes try to reserve a disk partition available to both of
them, and the SCSI reserve mechanism ensures that only one of them will succeed,
and after doing so, proceeds to fence off the other node. A software example would be
a quorum daemon, whose sole purpose is to arbitrate quorum disputes between cluster
members. Such daemons are implemented in Linux-HA, HP and SUN systems, and
operate more reliably and conveniently over geographical distances than the hardware

solutions.

Using both fencing and quorum methods is highly recommended in order to success-

fully handle split-brain conditions.

2.1.2 CAP theorem

While referring to possible solutions to a split-brain condition, we encountered a case
where the cluster designer had to sacrifice consistency over availability or vice versa.
This is a common design dilemma when designing a clusters’ behavior and is a effect

of the CAP theorem.

The CAP theorem[Bro][Tha], also named Brewer’s Theorem, states that any networked
shared-data system can have at most two of three desirable properties. These proper-

ties, as described by Seth Gilbert and Nancy Lynch[Gil02], are:

« Consistency (C) : Atomic, or linearizable, consistency is the condition expected
by most web services today. Under this consistency guarantee, there must ex-
ist a total order on all operations such that each operation looks as if it were
completed at a single instant. This is equivalent to requiring requests of the
distributed shared memory to act as if they were executing on a single node,

responding to operations one at a time.

« Availability (A): For a distributed system to be continuously available, every
request received by a non-failing node in the system must result in a response.

That is, any algorithm used by the service must eventually terminate. When

*The Small Computer System Interface (SCSI) is a set of parallel interface standards developed by the
American National Standards Institute (ANSI) for attaching printers, disk drives, scanners and other
peripherals to computers.

34 CHAPTER 2. BACKGROUND

Figure 2.5: CAP theorem

Consistency | €A Availability
CcP ' AP

Partition
Tolerance

qualified by the need for partition tolerance, this can be seen as a strong defini-
tion of availability: even when severe network failures occur, every request must

terminate.

« Partition tolerance (P) : The system continues to operate despite an arbitrary
number of messages being dropped (or delayed) by the network between nodes.
Any pattern of message loss can be modeled as a temporary partition separating

the communicating nodes at the exact instant the message is lost.

However, by explicitly handling partitions, designers can optimize consistency and
availability, thereby achieving some trade-off. The "two of three” formulation is mis-
leading because it tends to oversimplify the tensions among properties. CAP, a visual
conception is shown in Figure 2.5, prohibits only a tiny part of the design space: per-
fect availability and consistency in the presence of partitions, which are rare. Although
designers still need to choose between consistency and availability when partitions are
present, there is an incredible range of flexibility for handling partitions and recovering
from them. The modern CAP goal should be to maximize combinations of consistency
and availability that make sense for the specific application. Such an approach incor-
porates plans for operation during a partition and for recovery afterward, thus helping

designers think about CAP beyond its perceived limitations.

The easiest way to understand CAP is to think of two nodes on opposite sides of a
partition. Allowing both sides to update their state will cause the nodes to become in-
consistent, thus forfeiting C[Brel12][Fri96]. Likewise, if the choice is to preserve con-
sistency, one side of the partition must act as if it is unavailable, thus forfeiting A[Gre].

Only when nodes communicate is it possible to preserve both consistency and avail-

2.1. INTRODUCTION TO CLUSTER THEORY AND CHALLENGES 35

ability, thereby forfeiting P. The general belief is that for wide-area systems, designers

cannot forfeit P and therefore have a difficult choice between C and A.

As already mentioned the "two of three” view is misleading on several fonts. First,
partitions are rare, thus forfeiting C or A when the system is not partitioned is not
necessary. Second, the choice between C and A can occur many times within the same
system, and the choice between those two can change depending on the subsystem, the
specific data or even the user involved. Finally, all three properties are more continuous
than binary. Availability is obviously continuous from 0 to 100 percent, but there are
also many levels of consistency, and even partitions have nuances. So, a design choice
can be made not between perfect C or perfect A but between a certain degree of C and

A.

Scope of consistency reflects the idea that, within some boundary, state is consistent,
but outside that boundary all bets are off. For example, within a primary partition,
it is possible to ensure complete consistency and availability, while outside the parti-
tion, service is not available. Independent, self-consistent subsets can make forward
progress while partitioned, although it is not possible to ensure global invariants. For
example, with sharding, in which designers prepartition data across nodes, it is highly
likely that each shard can make some progress during a partition. Conversely, if the
relevant state is split across a partition or global invariants are necessary, then at best

only one side can make progress and at worst no progress is possible

Another aspect of CAP confusion is the hidden cost of forfeiting consistency, which
is the need to know the system’s invariants. The subtle beauty of a consistent system is
that the invariants tend to hold even when the designer does not know what they are.
Consequently, a wide range of reasonable invariants will work just fine. Conversely,
when designers choose A, which requires restoring invariants after a partition, they
must be explicit about all the invariants, which is both challenging and prone to error.
At the core, this is the same concurrent updates problem that makes multithreading

harder than sequential programming.

Because partitions are rare, CAP should allow perfect C and A most of the time, but
when partitions are present or perceived, a strategy that detects partitions and explic-
itly accounts for them is in order. This strategy should have three steps: detect parti-

tions, enter an explicit partition mode that may limit some operations, and initiate a

36 CHAPTER 2. BACKGROUND

recovery process to restore consistency and compensate for mistakes made during a

partition.

Normal operation is a sequence of atomic operations, and thus partitions always start
between operations. Once the system times out, it detects a partition, and the detect-
ing side enters partition mode. If a partition does indeed exist, both sides enter this
mode, but one-sided partitions are possible. Systems that use a quorum are an exam-
ple of this one-sided partitioning. One side will have a quorum and can proceed, but
the other cannot. Once the system enters partition mode, two strategies are possible.
The first is to limit some operations, thereby reducing availability. The second is to
record extra information about the operations that will be helpful during partition re-
covery. Continuing to attempt communication will enable the system to discern when

the partition ends.

Deciding which operations to limit depends primarily on the invariants that the system
must maintain. Given a set of invariants, the designer must decide whether or not to
maintain a particular invariant during partition mode or risk violating it with the in-
tent of restoring it during recovery. For example, for the invariant that keys in a table
are unique, designers typically decide to risk that invariant and allow duplicate keys
during a partition. Duplicate keys are easy to detect during recovery, and, assuming
that they can be merged, the designer can easily restore the invariant. For an invariant
that must be maintained during a partition, however, the designer must prohibit or
modify operations that might violate it. In general, there is no way to tell if the opera-
tion will actually violate the invariant, since the state of the other side is not knowable.
Essentially, the designer must build a table that looks at the cross product of all oper-
ations and all invariants and decide for each entry if that operation could violate the
invariant. If so, the designer must decide whether to prohibit, delay, or modify the

operation.

At some point, communication resumes and the partition ends. During the partition,
each side was available and thus making forward progress, but partitioning has delayed
some operations and violated some invariants. At this point, the system knows the
state and history of both sides because it kept a careful log during partition mode. The
state is less useful than the history, from which the system can deduce which operations

actually violated invariants and what results were externalized, including the responses

2.2. GANETI 37

sent to the user. The designer must solve two hard problems during recovery:

« the state on both sides must become consistent

o there must be compensation for the mistakes made during partition mode

It is generally easier to fix the current state by starting from the state at the time of the
partition and rolling forward both sets of operations in some manner, maintaining
consistent state along the way. The tracking and limitation of partition-mode opera-
tions ensures the knowledge of which invariants could have been violated, which in
turn enables the designer to create a restoration strategy for each such invariant. Typ-
ically, the system discovers the violation during recovery and must implement any fix

at that time.

Summarizing, there a lot of different types of clusters, depending on the service they
provide. Since cluster partitions cannot be avoided on a real system, restrictions made
by CAP have to be considered. A cluster designer has to optimize the degree of avail-
ability and consistency the cluster offers, while at the same time respecting any invari-
ants and limitations the service may have. A lot of different strategies and techniques
exist and are implemented on current systems in order to satisfy the restrictions dif-

ferent type of services introduce.

2.2 Ganeti

Ganeti is a virtual machine cluster management tool initially developed by Google and
released as free and open-source software. An example of a Ganeti cluster is shown in
Figure 2.6. Ganeti is designed to facilitate cluster management of virtual servers and
to provide fast and simple recovery after physical failures using commodity software.
It uses existing virtualization technologies such as Xen® or Kernel-based Virtual Ma-
chines. Once Ganeti is installed it assumes management of the virtual machines, also

known as instances, by controlling:

« Disk creation management

*Xen Project is a hypervisor using a micro-kernel design, providing services that allow multiple
computer operating systems to execute on the same computer hardware concurrently.

38 CHAPTER 2. BACKGROUND

Figure 2.6: Example of a ganeti cluster

cluster

instance
instance instance

instance

 Operating system installation for instances

o start-up,shutdown and fail-over between physical systems

Ganeti provides the following features for managed instances[Devr]

o Support for Xen virtualization

Support for Xen Paravirtualization* and Xen Full Virtualization® instances

Support for live migration

visual console to control instances

support for virtio® or emulated devices

o Support for KVM virtualization

Support for live migration

Support for fully virtualized instances

Support for semi-virtualized instances

support for virtio or emulated devices

*Paravirtualization is an efficient and lightweight virtualization technique, where paravirtualized
guests require special kernel that is ported to run natively on Xen, so the guests are aware of the hyper-
visor and can run efficiently without emulation or virtual emulated hardware.

*Fully virtualized also known as HVM (Hardware Virtual Machine) guests require CPU virtualiza-
tion extensions from the host CPU. Fully virtualized guests don’t require special kernel. Fully virtualized
guests are usually slower than paravirtualized guests, because of the required emulation.

®Virtio is a virtualization standard for network and disk device drivers where just the guest’s device
driver “knows” it is running in a virtual environment, and cooperates with the hypervisor. This enables
guests to get high performance network and disk operations, and gives most of the performance benefits
of paravirtualization.

2.2. GANETI 39

o Cluster size of 1-150 physical nodes is recommended, but scales up to couple of

thousands with special administrative action

 Disk management

Plain Logical Volume Manager volumes

Files

RAID1 functionality using DRBD’ for quick recovery in case of physical

system failure

support for third party storage solutions using External Storage Providers

and shared filesystems
« Instance disk partitioning

 Export and import mechanism for backup purposes on migration between clus-

ters

 Automated instance migration across clusters

Ganeti can be used in Infrastructure As A Service (IaaS) implementations, and with
the functionality it provides, there are a few advantages in comparison with other IaaS

solutions, such as OpenStack® and VMware’. These are:

o Ganeti’s architecture is lightweighted and fairly easy to understand and deploy

Scales really well for small/medium organization needs
« Highly customizable backend and built-in redundancy

« Requires a minimal administrative staff in order to maintain and upgrade

"DRBD is a distributed replicated storage system for the Linux platform. It is implemented as a ker-
nel driver, several user-space management applications, and some shell scripts. DRBD is traditionally
used in high availability (HA) computer clusters.

®OpenStack is a free and open-source software platform for cloud computing, whereby virtual
servers and other resources are made available to customers. The software platform consists of in-
terrelated components that control diverse, multi-vendor hardware pools of processing, storage, and
networking resources throughout a data center

*VMware provides cloud computing and platform virtualization software and services. Where a
hypervisor is installed on the physical server to allow for multiple virtual machines (VMs) to run on
the same physical server and VM’s migration between physical servers that share the same storage is
simplified.

40 CHAPTER 2. BACKGROUND

At the same time there are a few disadvantages such as:

 No Graphic’s User Interface frontend is provided

« Application Programming Interface is not very cloud compatible and is not in-

tended to be open for general users of the platform

« No official vendor support from Xen or KVM

Ganeti is written in Python and Haskell and its functionality is divided in several dae-
mons, each one responsible for a specific task such as configuration management, in-
stance creation, etc. Managing all aspects of the cluster is done by a Command Line
Interface. The nodes of a Ganeti cluster have different roles and different functionality

and responsibilities depending on them.

2.2.1 Ganeti cluster architecture and node roles

A node belonging to a Ganeti cluster can have one of the following roles at a given

time[Devr]:

» Master node: is responsible for managing the cluster, accepting and carrying out
requests about cluster configuration, instance creation etc. The requests received
are divided to a number of different operations, knows as jobs, that are executed
in order to achieve the desired functionality. Also, the master node is responsible

for distributing cluster configuration to master candidates.

o Master candidate: is able to become the master node in case of a failure on the
current master. Full cluster configuration and knowledge must be up-to-date in

order to avoid erroneous situations

« Regular node: common node state where the purpose is to facilitate instances
and accept requests from the master node. Cluster configuration knowledge is

not required

« Drained node: state where the node is functioning normally but cannot receive
new instances. This state is forced to nodes when they are evacuated for hard-

ware repairs

2.2. GANETI 41

« Offline node: there is a record in the cluster configuration about the node, but
the master node will not communicate to this node for any request, and instances

facilitated on it will be flagged as erroneous

The role of a Ganeti node determines the subset of Ganeti daemons that will run on

the node. Beside the node role, there are other node flags that influence its behavior:

« Master capable: this flag denotes whether the node can become a master can-
didate. Setting this flag to 'no’ is done when the node is impractical to become

master due to networking or hardware constraints

o VM capable: this flag denotes whether the node can facilitate or not instances.
This can be set to no when there are hardware constraints, or this node is in-
tended to be master and by not hosting instances a faster processing of master

requests may be achieved.

Changing a node’s role can be done by an administrator executing specific commands
provided by the Ganeti CLI on the master node. When determining a node’s role hard-
ware and network constraints should be considered as well as possible trade-offs. For
example, increasing the master candidate pool'® will increase the fault-tolerance of
the cluster but also increase communication between the master node and the master

candidates when distributing the cluster configuration.

2.2.2 Ganeti daemons

Ganeti divides its functionality to various daemons, each having a specific task to per-

form. These daemons are:

« ganeti-watcher
« ganeti-cleaner
« ganeti-mond

o ganeti-kvmd

"®Master candidate pool is a cluster configuration number that determines the number of master
candidates on the cluster

42 CHAPTER 2. BACKGROUND

ganeti-noded

« ganeti-confd

ganeti-luxid

ganeti-rapid

« ganeti-wconfd

The ganeti-watcher is a periodically run script that has two separate functions, one for

the master node and another that runs on every node[Devp]. These are:

« Master operations: Will try to keep running all instances that are marker as up in
the configuration file, by trying to start them a limited number of times. More-
over, it will archive old jobs that master has completed. Last, it will verify and

repair any DRBD disks that are used in instances.

« Node operation: Depending on the role of the node, the ganeti-watcher is re-
sponsible for restarting a specific subset of Ganeti daemons that are appropriate

for the current node, in a case of a software failure.

The ganeti-cleaner is a periodically run script, that runs on every node and removes

old-files that are either master-specific or node-specific[Devh].

The Ganeti monitoring daemon, ganeti-mond, is responsible for running specific data
collectors and provide the accumulated data through an HTTP interface. Data-collection
is run periodically and the daemon listens to default port 1815 for TCP requests. The
default port can change during the cluster initialization or during the start-up of the

daemon by setting the -p flag[Devl].

The Ganeti kv daemon, ganeti-kvmd, runs on all nodes when the KVM virtual-
ization infrastructure is used for instances. The KVM daemon monitors KVM in-
stances, through their Qemu Machine Protocol socket, by listening for particular shut-
down,powerdown or stop events. These events determine if the instance was shutdown
by a Ganeti user or due to an internal error and the result is communicated to Ganeti,

which determines if instance migration is needed[Devij].

2.2. GANETI 43

The Ganeti node daemon, ganeti-noded, runs on every Ganeti node and is responsible
for the node functions in the Ganeti system. It listens to port 1811 for TCP requests

and runs the corresponding action[Devm]. These requests can be:

« job queue replication requests, sent from the ganeti-luxid
« configuration replication requests, sent from ganeti-wconfd

« single jobs that change the state of the node, such as creating disks for instances,activating

disks, starting/stopping instances, etc, sent from ganeti-wconfd.

The Ganeti configuration daemon, ganeti-confd, is automatically active on all master
candidates, and its role is to provide a highly available and very fast way to query cluster
configuration values. These values are obtained from the configuration file config.data
that is distributed from the master node to all master candidates. Each candidate keeps
a cached copy of the configuration in memory in order to minimize disk accesses. This
cached copy is reloaded from disk automatically when it changes, with a rate limit of
once per second. The provided information will be highly available, as in: a response
will be available as long as a stable-enough connection between the client and at least
one working master candidate is available, and its freshness will be best effort, the
most recent reply from any of the master candidates will be returned, but it might still
be older than the one available through the master node. The ganeti-confd daemons
listens to a port 1814 for UDP, so each query can easily be sent to multiple servers,

requests[Devi].

The Ganeti query daemon, ganeti-luxid, runs only on the master node and is respon-
sible for replying to all the LUXI, an internal Ganeti protocol, queries. These queries
include both queries about the configuration and the current live state of the Ganeti
cluster and queries that actually change the status of the cluster by submitting jobs.
Thus, ganeti-luxid is also responsible with managing the Ganeti job queue, which is a
queue that contains all the jobs that were, are or will be done in order to materialize
all the requests concerning the state of the cluster. When a job needs to be executed,
the LuxiD will spawn a separate process tasked with the execution of that specific job,
thus making it easier to terminate the job itself, if needed. When a job requires locks
in order to atomically change the state of the cluster, LuxiD will request them from

WConfD. In order to keep availability of the cluster in case of failure of the master

44 CHAPTER 2. BACKGROUND

node, LuxiD will replicate the job queue to the other master candidates by sending
job query replication requests to the ganeti-noded daemons that run on each master

candidate[Devk].

The Ganeti remote API daemon, ganeti-rapid, is automatically started only on the mas-
ter node and enables external tools to easily retrieve information about the cluster’s
state. The daemon listens to the "ganeti-rapi” port, default 5080, for requests and after
ensuring the validity, in terms of abiding the Ganeti RAPI protocol and the authentic-
ity of the user that sent the request, proceeds by forwarding the request to ganeti-luxid.
Ganeti rapi daemon reads on start-up usernames and passwords from a specified file,
default is /var/lib/ganeti/rapi/users, and changes to the file will be read automatically.
SSL encryption is used by default. Ganeti-rapid listens to a port with the IP address
given to the Ganeti cluster. This IP address is active on the master node. This allows
the external tools to use that IP to communicate without knowing which node is the
master nor having to change the IP each time a different Ganeti node takes over as

master[Devn][Devo].

The Ganeti configuration writing daemon, ganeti-wconfd, runs only on the master
node and is responsible for the management of the authoritative copy of the cluster
configuration and is the only entity that can accept changes to it. All jobs that need to
modify the configuration will do so by sending appropriate requests to this daemon.
Ganeti-wconfd is also responsible for managing the locks, granting them to the jobs
requesting them, and taking care of freeing them up if the jobs holding them crashed
or are terminated before releasing them. Locks are used in order to ensure that the
cluster configuration is changed atomically and is consistent. When the configuration
is updated, it pushes the received changes to the other master candidates, via RPCs to

the ganeti-noded daemon of each master candidate[Devq].

The basic Ganeti daemons and how they interact is shown in Figure 2.7.

2.2. GANETI 45

Figure 2.7: Interactions between the main ganeti daemons

RAPI CLI onD proto
. gnt-*
RapiD [M] clients [M] MonD [All]
Lux1 /LuxI RConfD /RConfD
proto proto
ork/exec
WConfD config.data
Jobs [M] proto [MC copyl]
RPC WConfD
proto
sync via
RPC | WConfD [M] NodeD RPC
RPC
ModeD [All] locks.data config.data

2.2.3 Ganeti CLI

Ganeti also offers a command line interface that enables the user to interact with the
Ganeti cluster configuration by retrieving specific information or by changing the state
of the cluster. These commands need to run on the master node, thus the user is
a Ganeti cluster administrator. All of Ganeti’s commands have a “gnt-” prefix and
are classified to different groups depending on the functionality they provide. These

groups are:

46 CHAPTER 2. BACKGROUND

gnt-backup: Commands in this group are used for backing up instances and migrating
them between different Ganeti clusters. The two basic commands of this group are
“gnt-backup export” and “gnt-backup import” where the master node takes a snapshot

of the current state of the instance and exports/imports it the node[Devs].

gnt-cluster: Commands is this group are used for cluster-wide administration of Ganeti

cluster. Most important functionalities provided by this group are[Devt]:

activating and de-activating the master ip
« initialize or destroy a Ganeti cluster

« show or modify various cluster parameters, such as enabled hypervisors used by

instances, disk templates used for instance storage, etc
« initializing a master-failover
« verifying or distributing the cluster configuration

« verifying or renewing the encrypted certifications used for communications be-

tween the cluster nodes

gnt-debug: Various commands that test if various components of the Ganeti system,
such as the jobqueue, the locking system, ganeti-wconfd are running correctly. These

commands are used for debugging the Ganeti system[Devu].

gnt-group: These commands aim to simplify the administrators work by grouping
different nodes to a single group. Running a command on a group of nodes translates
to running the same command to every node of that group. This creates a logical unit
that allows the administrator to modify node variables easier and faster. Node groups

usually consist of nodes with similar hardware and network constraints[Devv].

gnt-instance: Commands is this group are used for adding, removing, modifying, mi-

grating, starting, powering off or changing the disk management of an instance[Devw].

gnt-job: The gnt-job is used for getting the state of the cluster job queue and manipu-
lating it. Commands that list the current job queue or give specific information about
ajob on the queue are implemented as well as commands that allow the administrator

to cancel or watch a specified job[Devx].

2.2. GANETI 47

gnt-network: It is used for the definition and administration of the network used for
the Ganeti instance system. Network Interface Controllers, NIC, can be created and

connect to various destinations using this command tool[Devy].

gnt-node: Gnt-node is used for managing the physical nodes of a Ganeti cluster. Most

important functionalities provided by this group are[Gan]:

+ adding and removing nodes from the Ganeti cluster
 modifying the parameters of a node
« evacuating a node from all instances that are facilitated on it

» managing the storage provided from a specific node to the instances that run on

it
« get information and the nodes of the cluster and their state

gnt-os: The instances in the Ganeti cluster have various operating system. The gnt-
os allows the administrator to see the list of the available operating systems for the
instances, and to modify it by adding or removing an operating system or modify an

existing one[Devz].

A short summary of the Ganeti system would be that a Ganeti cluster consist of nodes
with different roles. The master node is responsible for modifying the cluster config-
uration and changing its status. In order to do so the ganeti-rapid, ganeti-luxid and
ganeti-wconfd daemons, which provide functionalities that allow the modification of
the configuration, start specifically on this node. The master node is also responsible
for distributing the configuration to all master candidates. A master candidate node
has an up-to-date copy of the cluster configuration and is eligible to become a master,
should such a need arise. Moreover, on all master candidate nodes ganeti-confd dae-
mon is running in order to provide a faster and highly available way to query for clus-
ter information. A regular node is responsible for accepting and carrying out requests
received from master, thus the ganeti-noded daemon which provides these function-
alities runs on all regular nodes as well as all the above mentioned nodes. Instances are
accommodated to all nodes that are flagged as v capable. In order to view or change

the cluster configuration and state, two tools are implemented. First, the Ganeti RAPI

48 CHAPTER 2. BACKGROUND

which allows external tools to send such requests to a Ganeti cluster and second the
internal command line interface that also creates such requests. There requests are
forwarded to the ganeti-luxi daemon which creates jobs that perform all the actions
needed for a specific requests. There jobs are queued to the Ganeti job queue and are
executed one-by-one in order that depends on the submit ion time and the priority of
each job. If a job intends to change the configuration of the cluster, ganeti-luxid has
to request locks, that are used so that the configuration is atomically updated, from
wconfd who is the solely responsible for managing a authoritative copy of the cluster

configuration.

2.3 Raft and Etcd

This section introduces Raft, a consensus algorithm that offers a generic way to dis-
tribute a state machine across a cluster of computing systems, ensuring that each node
in the cluster agrees upon the same series of state transitions, and Etcd which is a dis-

tributed key-value store that uses Raft to ensure consistency.

2.3.1 Raft

Raft is a consensus algorithm for managing a replicated log. Raft was designed to be
safe under all conditions and available under typical operating conditions, to provide
a complete and practical foundation for system building in order to simplify the work
of developers and to be easily understandable[Ong13]. The last two goals were set as
Raft was designed as an alternate of Paxos, another consensus algorithm that is excep-
tionally difficult to understand as its full explanation is opaque and it does not provide

good foundation for building practical implementations.

Consensus algorithms typically arise in the context of replicated state machines, where
states machines on a collection of servers compute identical copies of the same state
and can continue operating even if some of the servers are down. Replicated state
machines typically consist of a consensus module, a replicated log and a state machine
as shown on Figure 2.8. Each server stores a log containing a series of commands that

are executed in order by its state machine. Each log contains the same commands

2.3. RAFT AND ETCD 49

Figure 2.8: Replicated state machine architecture

@ . \ \

/@ | Server State Machine) ||
Client Consensus X: 3
Module y: 9
z:0
@\ .)
Log ®
X3 |y«1|y<9
~ JJJ)J

in the same order, so each state machine processes the same sequence of commands.
Since the state machines are deterministic, each computes the same state and the same

sequence of outputs.

Keeping the replicated log consistent is the job of the consensus algorithm. The con-
sensus module on a server receives commands from clients and adds them to its log.
It communicates with the consensus modules on other servers to ensure that every
log eventually contains the same requests in the same order, even if some servers fail.
Once commands are properly replicated, each server’s state machine processes them
in log order, and the outputs are returned to clients. As a result, the servers appear to

form a single, highly reliable state machine.

Raft implements consensus by first electing a distinguished leader and giving him full
responsibility for managing the replicated log, the form of which is described above.
The leader accepts log entries from client, replicates them on the other servers and in-
forms them when it is safe to apply log entries to their state machines. Having a leader
simplifies the management of the replicated log, as the leader can solely decide where
to place the new entries in the log without consulting the other servers. Moreover the
data flow is simple, from the leader to other servers. Given the leader approach, Raft
decomposes the consensus problem into two relatively independent subproblems, an
approach that also helps with the understandability of the algorithm. These subprob-

lems are:

50 CHAPTER 2. BACKGROUND

Figure 2.9: Raft server roles and transitions between them

times out,
starts up times out, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current
leader or new term

discovers server
with higher term

o Leader election: a new leader must be chosen when the existing leader fails

 Log replication: the leader must accept log entries from clients and replicate

them across the cluster
At any given time each server is in one of three states:

o leader: responsible for handling client requests and managing the replicated log
o candidate: a state during a leader election

« follower: passive role that simply responds to requests from leaders and candi-

dates

During normal operation there is exactly one leader and all the other servers are fol-
lowers. Raft divides time into terms of arbitrary length, which act as a logical clock
and are increased monotonically over time. Each term begins with an election, where
one or more candidates attempt to become leader. If one succeeds then it serves as
leader for the rest of the term. If the election has no success due to a split vote then
the term ends with no leader and a new one starts shortly. Each server stores a cur-
rent term number that is exchanged is any communication with other servers. If the
current term is smaller that the other’s, then it is updated to the larger value. If the
server is a candidate or leader state, it immediately reverts to follower. Raft’s roles and

transition between them is shown in Figure 2.9.

2.3. RAFT AND ETCD 51

Leader election is triggered by a heartbeat'' mechanism. All servers, at start up, as-
sume the role of a follower and remain in this state as long as they receive valid heart-
beats from a leader or a candidate. Leaders send periodic heartbeats to all followers
in order to maintain their authority. If a follower receives no communication over a
period of time called the election timeout, then it assumes there is no viable leader and

begins an election to choose a new leader.

To begin an election, a follower increments its current term and transitions to candi-
date state. It then votes for itself and issues a remote procedure call, RPC, requesting
vote in parallel to each of the other servers in the cluster. A candidate wins an election
if it receives votes from a majority of the servers in the full cluster for the same term, a
rule ensures that at most one candidate can win the election for a particular term. Each
server will vote for at most one candidate in a given term, on a first-come-first-served
basis. While waiting for votes, a candidate may receive an RPC from a server claiming
to be the leader, and proceeds by reverting to follower if the term of the server is equal
or larger than its own. Once a candidate wins an election, it becomes leader,and imme-
diately sends heartbeat messages to all of the other servers to establish its authority and
prevent new elections. Another possible outcome is that a candidate neither wins nor
loses the election: if many followers become candidates at the same time, votes could
be split so that no candidate obtains a majority. When this happens, each candidate
will time out and start a new election after a election timeout. The election timeout is
chosen randomly between a fixed interval in order prevent split-votes from happening

indefinitely.

Log replication is managed by the leader. When a client sends a request, the leader
appends the command on its log and issues RPCs to all the other servers containing the
command and the index and the term of the entry in its log that immediately precedes
the new entry. A follower receives the RPC, compares the index and the term of the
last entry with its own, if they match it proceeds with inserting the new entry in its
log and sends a positive response to the leader, otherwise it sends an error respond to
the leader, in order to inform him that its log is out-of-date. If such an error RPC is
received by the leader, he proceeds by finding the latest log entry that matches with

the log of that server,delete any entries in the follower’s log after that point and send

"a heartbeat is a periodic signal generated by hardware or software to indicate normal operation or
to synchronize other parts of a computer system.

52 CHAPTER 2. BACKGROUND

the follower all of the leader’s entries after that point. The same procedure is done
to every server after a leader election in order to minimize communications after. A
log entry is committed, which means it is safe to apply to the state machines, when
the leader receives a positive responses concerning this entry from a majority of the
cluster. A positive response is then sent to the client that initiated the request. This
log replication mechanism allows Raft to accept, replicate and apply new log entries as

long as a majority of the servers are up.

Raft guarantees that each of these properties is true at all times[Ong13]:

o clection safety: at most one leader can be elected in a given term

« Leader Append-Only: a leader never overwrites or deletes entries in its log, it

only appends new entries

« Log Matching: if two logs contain an entry with the same index and term, the

the logs are identical in all entries up through that index

o Leader Completeness: if alog entry is committed in a given term, then that entry

will be present in the logs of the leaders for all higher-numbered terms

o State Machine Safety: if a server has applied a log entry at a given index to its
state machine, no other server will ever apply a different log entry for the same

index

These properties do not depend on timing'?.By ensuring these properties Raft achieves
consensus of the log.Raft also define functionalities such as cluster membership live

changes, log compaction and snapshots.

2.3.2 Etcd

Etcd is a distributed key-value store for the most critical data of a distributed system[Devc].
The name “etcd” originates from two ideas, the unix “etc” folder, which is a folder
where configuration data for a single system is stored, and "d” from "distributed”, thus

“etcd”. Etcd emphasizes on being:

?’the system must not produce incorrect results just because some event happens more quickly or
slowly than expected

2.3. RAFT AND ETCD 53

Simple: well-defined and user-friendly API

o Secure: automatic Transport Layer Security cryptographic protocols are used,

with optional client certification authentication

o Fast: emphasis to fast write and read request time completion. Etcd is bench-

marked with 10,000 writes/sec

« Reliable: Rigorous testing is done in order to ensure reliability and a faultless

implementation of the Raft consensus algorithm

As a key-value store, etcd treats the data as a single opaque collection which may have
different fields for every record. This offers considerable flexibility and more closely
follows modern concepts like object-oriented programming. Key-value stores often
use far less memory , than other store concepts such as Relational DataBases, which

can lead to large performance gains in certain workloads.

Etcd stores data in a multiversion persistent key-value store, that preserves the previous
version of a key-value pair when its value is superseded with new data. The key-value
store is effectively immutable, its operations do not update the structure in-place, but
instead always generates a new updated structure. All past versions of keys are still
accessible and watchable after modification. To prevent the data store from growing
indefinitely over time from maintaining old versions, the store may be compacted to

shed the oldest versions of superseded data.

In order to achieve the above mentioned functionalities etcd internally stores the phys-
ical data as key-value pairs in a persistent b+tree'®. Each revision of the store’s state
only contains the delta from its previous revision to be efficient. A single revision may
correspond to multiple keys in the tree. The value of the key-value pair contains the
modification from previous revision, thus one delta from previous revision. The b+tree
is ordered by key in lexical byte-order. Ranged lookups over revision deltas are fast;
this enables quickly finding modifications from one specific revision to another. By
doing so, etcd provides a persistent, multi-version, concurrency-control data model

that is a good fit to reliably store infrequently updated data, provide reliable watch

*A B+ tree, a data structure, is an n-array tree with a variable but often large number of children per
node. A B+ tree consists of a root, internal nodes and leaves. The root may be either a leaf or a node
with two or more children

54 CHAPTER 2. BACKGROUND

queries, expose previous versions of key-value pairs to support inexpensive snapshots

and watch history events[Devf].

Etcd can be used as storage for metadata or important configuration data since it repli-
cates all data within a single consistent replication group. Each modification of cluster
state, which may change multiple keys, is assigned a global unique ID, called a revi-
sion in etcd, from a monotonically increasing counter for reasoning over ordering.
Since there’s only a single replication group, the modification request only needs to go
through the Raft protocol to commit. By limiting consensus to one replication group,
etcd gets distributed consistency with a simple protocol while achieving low latency
and high throughput. On the other hand, having a single global replication group pro-
hibits etcd from horizontally scaling since it lacks data sharding'®. So, etcd is a very
efficient for storing up to a few Gigabytes of data, for cases that surpass this magnitude
of data another approach should be used, such as a newSQL database, that implements

data sharding and allows horizontally scaling.

Etcd, since it offers primitives such as event watches, leases, elections, and distributed
shared locks, can also be used for distributed coordination. In theory, it’s possible
to build these primitives atop any storage systems providing strong consistency but

choosing etcd can help prevent operational headaches and save engineering effort.

Starting an etcd cluster requires that each member knows another in the cluster. Etcd
can start with various ways, depending on whether information about all members

and their IP addresses is available ahead of time or not[Deva]. These ways are:

« static: If there is knowledge of all the cluster members, their addresses and the
size of the cluster before starting, an offline bootstrap configuration can be used,
and each machine will be given the necessary variables in order to know on start-
up all the cluster members and their addresses. Member changes are allowed

after start-up by using the online cluster reconfiguration tool.

o etcd discovery: If there is no information about all the cluster members, their
addresses and the size of the cluster before starting, the etcd discovery service

can be used where a single discovery URL identifies a unique etcd cluster will be

*A database shard is a horizontal partition of data in a database or search engine. Each individual
partition is referred to as a shard or database shard. Each shard is held on a separate database server
instance, to spread load.

2.3. RAFT AND ETCD 55

used by all members on start-up. This will cause each member to register itself
with the custom etcd discovery service and begin the cluster once all machines

have been registered[Devb].

« DNS discovery: Instead of etcd discovery a Domain Name Service SRV record

can be used as a discovery mechanism for the members of the etcd cluster.

Etcd also offers an etcd proxy and an etcd gateway. While the etcd proxy can be used
for improving performance and minimizing the load of the etcd cluster by coalescing
multiple watch and lease requests, the etcd gateway as a simple TCP forward mecha-
nism is only for simplifying access to the etcd cluster by multiple applications on the

same machine[Deve][Devd].

Etcd is highly configurable through various command-line flags and environment vari-

ables. By setting these variables an administrator is able to:

o change the default security protocol TLS

« change the logging level in order to access more information about possible er-

rors
« enable profiling of etcd and export specific metrics
« enable proxy

« configure cluster and member variables, such as snapshotting interval, port us-

age, etc

Furthermore, etcd has an authentication feature that specifies different users and roles.
The most important user and role is root, that must be created before activating au-
thentication. The root user is used for administrative purposes such as managing roles
and ordinary users, modifying cluster membership, defragmenting the store and tak-
ing snapshots. The root user also has global read-write access and permission to up-
date the cluster’s authentication configuration. By adding users with different roles
and privileges an administrator is able to allow limited access to the cluster to other

users of the cluster.

An etcd cluster can suffer failures due to hardware or software malfunctions. The dif-

ferent kind of failures and how etcd is designed to tolerate them are cataloged here[Devg]:

56 CHAPTER 2. BACKGROUND

 Minor followers failure: When fewer than half of the followers fail, the etcd clus-
ter can still accept requests and make progress without any major disruption.
However, any clients that access the etcd client through any of the failed mem-
bers will lose connectivity, thus client libraries should hide these interruptions
by automatically connecting to any other responding member leading to an in-

creased load on these members.

o Leader failure: When a leader fails, the etcd cluster automatically elects a new
leader. During the leader election the cluster cannot process any writes, and
writes sent to the old leader but not yet committed may be lost. Write requests
sent during the election are queued and will be processed after a new leader is

elected. Read requests continue to function normally.

 Majority failure: If a majority of the members of the cluster fail, the etcd cluster
cannot accept any write requests due to the inability to reach consensus. The
cluster is in a “frozen” state until a majority of the members becomes available

again.

 Network partition: During a network partition an etcd cluster is partitioned to
an arbitrary number of subclusters. If majority is achieved is any of the sub-
clusters, then this subcluster can function normally and progress can be made.
A leader election may be needed if the old leader is not a part of the subclus-
ter. Once the network partition clears, the minority side automatically recog-
nizes the leader of the majority side and recovers its state. If majority cannot be
achieved in any of the subclusters, then the cluster is in a "frozen” state and no

progress can be made until the network partition clears.

Even though etcd can recover from most of the cluster failures, it is recommended to
frequently back up the etcd cluster, by taking snapshots, in order to correctly recover

from rare failures that etcd cannot handle.

Some use cases of etcd are:

« Container Linux by CoreOS: Application running on Container Linux gets au-
tomatic, zero-downtime Linux kernel updates. Container Linux uses locksmith
to coordinate updates. locksmith implements a distributed semaphore over etcd

to ensure only a subset of a cluster is rebooting at any given time.

2.3. RAFT AND ETCD 57

 Kubernetes stores configuration data into etcd for service discovery and cluster
management; etcd’s consistency is crucial for correctly scheduling and operating
services. The Kubernetes API server persists cluster state into etcd. It uses etcd’s

watch API to monitor the cluster and roll out critical configuration changes.

58

Design

In order to integrate Ganeti with an automated master failover procedure we have
to check how specific functionalities are provided in the current implementation of
Ganeti, and how those functionalities may be problematic in an automated scenario.

These functionalities are:

« How Ganeti stores, changes and distributes the Ganeti cluster configuration

« How the master-failover functionality is implemented and what checks are done

during its operation

o Isthere a mechanism that triggers a master failover in the occurrence of a master

failure

3.1 Ganeti configuration store and distribution policy

The entirety of the configuration of a Ganeti cluster is stored on a single file named
config.data, usually in the directory /var/lib/ganeti. From this file, specific data is ex-
tracted and grouped to various files with the prefix ssconf. These files are also stored at
the same directory and contain information about a specific entity, such as the nodes
of the cluster, the master candidates, etc. The config.data file is distributed to all mas-
ter candidates and the ssconf files to all nodes of the cluster. As mentioned in section
2.2.2 the ganeti-wconfd daemon runs only on the master node and is responsible to

change and distribute the cluster config. Requests to access the configuration of the

59

60 CHAPTER 3. DESIGN

cluster are translated as jobs that are queued on the Ganeti job queue. These jobs are
threads that execute different operations based on the request. In order to ensure the
consistency of the configuration ganeti-wconfd has a single lock that any entity that
wishes to access the configuration, has to acquire. This lock is shared by functions that

read the config and acquired exclusively by functions that modify it.

Ganeti-wconfd also stores internally the configuration of the cluster as a data struc-
ture. This data structure is called DaemonState and is passed to threads acquiring the
lock, to avoid unnecessary disk or memory accesses. Any changes to the configuration
of the cluster are first done on this structure and then written to the config.data file.
This is done while holding exclusively the lock and thus other job can not modify the

configuration during this operation.

Ganeti-wconfd also on start-up creates three threads, named workers, each with a spe-

cific task:

o saveConfigWorker: thread that is responsible for writing the configuration to

config.data file and also waking up the other two workers

o distMCsWorker: As its name implies, this thread is responsible for distributing

the configuration data to the master candidates

o distSSconfWorker: This thread is responsible for distributing all the ssconf files

to all the nodes of the cluster

Ganeti-wconfd also creates two more workers that are responsible for storing the lock
state and the temporary reservations. These two workers don't affect the Ganeti config-

uration modification and distribution and thus we will not describe how they operate.

Communication between the workers and the main wconfd thread is done by haskell’s
MVar, a structure that is a mutable location. Each of the three mentioned workers
has a different M Var that it watches for changes. The worker is inactive until a change
on the MVar is noticed. When a notice occurs the worker wakes up and executes the
procedure he is tasked for. Moreover another MVar is created for every worker that is

used for passing the operation’s result to the main wconfd thread.

SaveConfigWorker, when woken up by a change on its MVar, proceeds by atomically

writing the new configuration state to config.data and wakes up distMCsWorker and

3.1. GANETI CONFIGURATION STORE AND DISTRIBUTION POLICY 61

distSSconfWorker by writing the DaemonState on their MVar. SaveConfigWorker
writes on the output MVar the return value of the atomic write operation that was
executed. DistMcsWorker when woken up reads the DaemonState from its MVar and
extracts the configuration data. Using the data it creates a list with the master candi-
dates of the cluster and their IP addresses. It proceeds by creating a specific Remote
Procedure Call(RPC) containing the configuration data and sending it to all the mas-
ter candidates. Then it waits for the response of the master candidates, either a positive
one or a timeout error. A timeout error is received if a candidate is inactive or there
is a communication error between the nodes. A summary or the master candidates
responses is then written to the output MVar. DistSSonfWorker operates in a similar
fashion as the distMCsWorker. When woken up by a change on its MVAr, reads the
DaemonState from input MVar, extracts the configuration data and from it creates a
list containing all the cluster nodes and their IP addresses as well as a dictionary with
every ssconf file and their value. A specific RPC containing the ssconf dictionary is af-
terwards sent to every node of the cluster, and a summary of their responses is written

on the output MVar.

The ganeti-wconfd process grants the exclusive lock and a copy of the DaemonState,
which contains the current configuration data, on a job and receives another Dae-
monState structure as a result. A check is done to the new DaemonState structure to

determine:

o If there has been any modification to the configuration data by the job then a
True value is returned, otherwise False. The value is stored on a variable named

modified.

o If this modification has been done to some core values that need a different ap-
proach then True is returned otherwise False. The value is stored on a flag named

distSync.

If the modified flag is set then the wconfd process proceeds by writing the new Dae-
monState on the saveConfigWorkers MVar. The saveConfigWorker is triggered and
proceeds with a locally write of the new configuration and triggers the two other work-
ers to distribute the config.data and the ssconf files as mentioned above. If the distSync

flag is set then the main wconfd process waits for the responses summary of the distM-

62 CHAPTER 3. DESIGN

CsWorker and distSSconfWorker before releasing the lock.

It is important to note that the wconfd process does not take any particular action
when an error occurs in distributing the configuration, whether that is on config.data
distribution to master candidates or the ssconf files distribution to all nodes. Specifi-
cally when such an error occurs when distributing the configuration the correspond-
ing worker notes it to its output MVar. The wconfd process reads the output MVar
of both distMCsWorker and distSSconfWorker and when an error is noted the only
action taken is logging an error message in the ganeti-wconfd log. This can lead to

problematic scenarios.

These scenarios have been tested and carried out on a experimental 3-node cluster.
The master node could continue to operate and change the configuration of the cluster
even when the other two nodes of the cluster, that were master candidates, were pow-
ered off. Ganeti also has push-only policy concerning the configuration, which means
that only the master sends the configuration to the other nodes and a node cannot re-
quest for an update. Due to this policy, when a master candidate became active again,
its configuration data will be out-of-date until the master sends new configuration to
master candidates. This will occur only when the master receives a modification re-

quest and executes it.

The master does not implement any consistency or consensus check when distributing
the configuration. This can potentially lead to out-of-date copies on master candidates.
Therefore, it is really important to check the procedure where a master candidate takes
over as master and what checks are done during this operation. Afterwards we will
be able to determine if a master candidate with an outdated configuration can become

master.

3.2 Ganeti master failover

Ganeti has implemented a master failover procedure on its command line interface.
Specifically it is gnt-node masterfailover with a possible flag no-voting that will be ana-
lyzed below. This command has to be executed by a Ganeti cluster administrator that

has local access to a master candidate node that is not the master.

3.2. GANETI MASTER FAILOVER 63

A Ganeti master failover procedure incurs various checks. First, as mentioned, the
node where master failover is initiated, reads its local configuration files and checks
if it is a master candidate and not the master. If this is not the case an error message
is returned and master failover is stopped. If the node meets these prerequisites then
master failover continues with an important check which is a majority vote. The node
reads from its local configuration the node list of the Ganeti cluster and proceeds by
sending to all nodes a RPC request asking the node name of the Ganeti master, that
each node has on its local configuration. The responses are gathered and grouped to

three different groups:

« positive votes(P): The node initiating the master failover and the queried node

agree on the current master node
« negative votes(N): The master node, as seen by the asked node, is different

o timed out(T): The node asked is either powered off or not reachable from the

network, thus the request timed out

In order to continue the master failover procedure the node has to have a positive vote
from the majority of the cluster. This can be formulated as 2 P > P + N + T, where
P + N + T is the entirety of the Ganeti cluster nodes. If this is not the case, then the

master failover procedures is terminated with an appropriate error message.

The same check is executed when a node starts the master functionality without a
master-failover. This is done when the cluster was inactive and became active by start-
ing the Ganeti service on multiple nodes. The node that was master before the service
became inactive will be prompted to start the master functionality and a vote like this
will take part when starting ganeti-wconfd and ganeti-luxid. This check can be by-

passed if the —no-voting flag is declared.

If the master failover procedure passes all the above mentioned checks, then the node
proceeds by forcing the current master to deactivate its master-ip and stop the three
Ganeti daemons that carry out the master node functionality. These daemons are
ganeti-rapid, ganeti-luxid and ganeti-wconfd. Then the node proceeds by starting
these daemons, activating master-ip and changing the master node on the cluster con-
figuration which will be sent to all nodes, informing them that the master node has

changed.

64 CHAPTER 3. DESIGN

The majority voting check, does ensure that a majority of the cluster is active and sees
the same master as this node it is not enough to ensure that the node, soon to be master,
has an up-to-date copy of the configuration. A three node cluster example will exhibit
such an scenario. Nodes A,B and C are all master candidates and node A is currently
master. If node C becomes inactive and cluster configurations are made, nodes C con-
figuration copy becomes out-of-date. If node A is powered off and node C becomes
active then node C can become master should such an operation be initiated on it.
That is because nodes B and C are active and both configurations of nodes B,C contain
node A as master node. Therefore node C will pass all checks during a master failover
even though its configuration data is out-of-date. This will lead to configuration data

loss. All modifications that were executed while node C was inactive will be lost.

On the current Ganeti implementation there is no mechanism that triggers a master
failover when a failure occurs on the current master node. This operation has to be
executed by a Ganeti cluster administrator. The Ganeti administrator has to be aware
of the Ganeti cluster state and if a master failure occurs, either by a node failure or a
network partition, initiate a master failover procedure. In order to do so, the admin-

istrator has to:

« release the master-node resources that are used for master operation, such as the
master-ip, specific daemons etc. This will ensure that if the problem originates

from a cluster partition the cluster will not undergo a split brain condition

« choose a master candidate node to become the new master and ensure that this

node has an up-to-date copy of the cluster configuration

« start the master failover operation on the chosen node

It is not always possible for the administrator to find a master candidate with an up-to-
date copy of the configuration. As mentioned above a master can continue to operate
and change the cluster configuration when all master candidates are offline, since no
checks regarding master candidates’s state are made when changing and distributing
the configuration. Therefore, the administrator has to check the local configuration of
the master and compare it with a master candidate’s local configuration and possibly
manually copy the configuration to the master candidate. This scenario is not possible

if the master was totally destroyed and no access to its storage is possible, a case that

3.3. PROPOSED CHANGES 65

may seem extreme but should be taken into account. If this is the case then the ad-
ministrator has to chose a master candidate as the next master without ensuring that it
has an up-to-date copy of the configuration in order for the Ganeti cluster to continue

operating.

Having an administrator execute a master failover induces several drawbacks. First,
as mentioned above, there are extreme scenarios where the Ganeti cluster will lose
some configuration data. Secondly, a considerable amount of time may be needed for
the administrator to perform a master failover. The administrator first must realize
there is a master failure on the cluster, then get access to the possibly destroyed master
node and a master candidate to ensure configuration is up-to-date and then perform
a master failover. This can take from several minutes to days. Finally, the procedure is

prone to human errors.

3.3 Proposed changes

It has become apparent that the current implementation of Ganeti relies on an ad-
ministrator to perform a master failover can be erroneous. Introducing a automated
master failover procedure can eliminate the human error factor and increase the up-
time of the Ganeti master service. To create such an automated procedure changing
the method that Ganeti implements configuration distribution and master failover is
necessary. Moreover, a mechanism must be implemented that will safely and securely
detect any master node failures and initiate a master failover procedure on an appro-

priate master candidate.

A first approach to creating such a mechanism was to implement the Raft algorithm
internally in Ganeti. The configuration distribution would follow the Raft log repli-
cation rules, making sure that a modification of the configuration is done only when
there is a majority of the master candidates available and that they have accepted the
change. If the majority was not available the master would return an error message
informing the user. Moreover that master failover procedure would abide the leader
election rules of the Raft algorithm. The serial number of the Ganeti configuration
would be used as the epoch number of Raft. Votes would be granted to a candidate it

the number is equal or larger that the current nodes. Lastly, a heartbeat mechanism

66 CHAPTER 3. DESIGN

would be introduced in order to initiate master failover operations. Such an approach
would solve the shortcomings of the current Ganeti implementations and lead to an
automated master failover functionality but it was deemed that an internal implemen-

tation of the Raft could be pesky.

Instead of implementing Raft on Ganeti, we decided that we will use a existing imple-
mentation of Raft as storage for the Ganeti configuration and a mechanism for trig-
gering a master failover will use it. This implementation is Etcd that was thoroughly
analyzed in Chapter 2. The main configuration file config.data and all ssconf files will
be stored on etcd, and any entity that wishes to read or write them will use etcd opera-
tions. Moreover, any change to the Ganeti cluster membership will lead to a change to
the etcd cluster membership. Last, new entities will be introduced which will handle

the etcd cluster and implement the master failover trigger mechanism.

Implementation

As already mentioned, in order to extend the current ganeti functionalities with an
automated master failover mechanism we will integrate etcd to ganeti. An etcd cluster
will be created and managed by ganeti, The etcd cluster will have a similar membership
as the ganeti cluster and will be used to provide a consistent replicated configuration
of the ganeti cluster. Also, a distributed lock in the form of an etcd key will be used
from the master failover trigger mechanism. Changes and additions that were made

in this implementation can be grouped as:

« Changes to the current ganeti implementation in order to create and manage the

etcd cluster

« A new entity that will be responsible for starting an etcd instance during the

ganeti service start-up

« Changes to the current ganeti implementation in order for all write and read

operations of the configuration to go through the etcd cluster

« A new entity that will serve as the master failover trigger mechanism

4.1 Managing the etcd cluster

Each node of the ganeti cluster will run an instance of etcd. It is important decide
the members of the etcd cluster. A first approach is for every ganeti member to be a

member of the etcd cluster. This approach is simple but does not depict correctly the

67

68 CHAPTER 4. IMPLEMENTATION

usage of etcd, which is to serve as storage for the ganeti configuration. Since ganeti
master candidates are responsible for the configuration it deemed appropriate to set
master candidates as members of the etcd cluster. Normal ganeti nodes will connect
to the etcd cluster through an etcd gateway, which is a TCP proxy that will forward read
queries from normal nodes to the etcd cluster. This approach is better as only master
candidates should participate in log replication, majority votes and leader elections in

the etcd cluster.

So every ganeti node will connect to the etcd cluster, either with a normal connection
as a member or through a gateway, depending on whether it is a master candidate or
not. This connection must take place during the ganeti service start-up. Specifically
there has to be an etcd connection before ganeti-node and ganeti-conf daemons start,
because these daemons need access to the ganeti configuration in order to start and
operate. Therefore a new ganeti daemon, named ganeti-etcd, was implemented. Its
responsibility is to create a correct etcd connection, normal or gateway, to the etcd
cluster. This daemon was set to start before any other ganeti daemon on service start-
up, in order to provide cluster configuration information to any other daemon that
needs it. Ganeti-etcd is implemented in python and was added to the ganeti service
initialization script.It follows ganeti conventions on how to start and stop daemons

and can be used as any other ganeti daemon by ganeti administrator tools.

In order for ganeti-etcd to determine what kind of etcd connection to create, informa-
tion about etcd members is needed. This information is the etcd members list which is
equivalent to the ganeti master candidates list and is stored locally in a file, named mas-
terCandidates. This file is distributed by the master node to all nodes if any changes
to the membership occur and it is the only configuration that is stored locally. The in-
formation in this file may be out-of-date if the node was offline or unreachable during
membership changes. In order for the ganeti-etcd to run properly only one member
in the masterCandidates file has to be correct and active. The etcd membership in-
formation is necessary to connect correctly to the etcd cluster and storing it locally is
unavoidable, since the node has no other configuration information that can be used

to access the membership list.

Ganeti-etcd on start-up reads the masterCandidates file and creates a list. Afterwards

it proceeds by sending an etcd membership query to all members of the list,using the

4.1. MANAGING THE ETCD CLUSTER 69

etcd command line tool etcdctl, as follows:

1 etcdctl --endpoints=local_member_list member list

This is needed because as mentioned information on the local masterCandidates file
may be out-of-date and the above query will answer with the most up to date list. This
query asks each member of the endpoints flag to answer with the member list of the

etcd cluster that it is part of. Ganeti-etcd receives a response that can be:

+ up-to-date member list: a majority of the etcd members is active and thus a

response was sent containing an up-to-date membership list of the etcd cluster.

o timeout: there is no majority online thus a timeout was received

In the first case, ganeti-etcd proceeds by refreshing its data stored on the masterCandi-
dates file and then determines if this node is part of the etcd cluster, and thus an ganeti
master candidate, or not. If it is not a member then it connects to etcd by creating an

etcd gateway. This is done by running the command 4.1

1 etcd gateway start --endpoints=renewed_member_list

2 --listen-addr=127.0.0.1:2379

After creating such a connection any request received at listen-addr will be forwarded
to one of the members in the endpoints flag. Such requests will be read requests ini-

tialized from ganeti entities wishing to read part of the ganeti configuration.

If the node is a member than a normal connection to etcd has to be achieved. We have
used the static discovery etcd protocol, which means that a member when connecting
for the first time to the etcd cluster has to have knowledge about the members. etcd
creates a data directory for each different etcd cluster that a node connects to, and
this directory name and location can be set when connecting. We have a specific data
directory and checking its existence will determine if the node connects for the first
time to this etcd cluster. If the data directory does not exist then specific initialization
information is extracted by the member list by ganeti-etcd. This information is then
used to initialize correctly the etcd connection. Specifically for each member of the

etcd cluster, its IP address and the port that it listens for etcd peer communication has

70 CHAPTER 4. IMPLEMENTATION

to be determined. The IP address is found by using the host command line tool which
is a simple Domain Name System look-up utility and the peer port is set to default
port 2380 in every node. Then ganeti-etcd sets two environment variables, ETCD_-
INITIAL_CLUSTER with a list of each member’s IP and port and ETCD_INITIAL_-
CLUSTER_STATE to "existing” since the etcd cluster already exists. After setting these
variables ganeti-etcd proceeds with creating an etcd connection by running the code

4.1.

etcd --name=${node_name}
--initial-advertise-peer-urls=http://${node_ip}:2380
--listen-peer-urls=http://${node_ip}:2380
--listen-client-urls=http://${node_ip}:2379,http://127.0.0.1:2379

G B W N =

--advertise-client-urls=http://${node_ip}:2379 --data-dir=${data_dir}

All the above flags are necessary in order for etcd to run properly. The variables node_-
name and node_ip are found by DNS query and data_dir is a constant declared in the
ganeti constants file, and it is same for all nodes. If the node has already connected
to etcd before, thus the etcd data_dir already exists, ganeti-etcd runs the above com-
mand without setting the initial cluster flags. It is important to note here that these
commands are executed within the ganeti-etcd, which is written in python, using the
appropriate libraries, such as os.subcommand and others depending on the function-

ality that is needed.

The case where ganeti-etcd receives a timeout response is more interesting and calls
for a more careful approach. By getting a timeout response ganeti-etcd cannot deter-
mine if the node is a master candidate, and thus an etcd cluster member, or not. The
only safe conclusion that can be made is that currently there is no etcd majority active
that would allow for a member list response. If the decision was to keep polling for the
etcd member list then no majority would ever be active. This is because no node would
connect as a member and thus etcd would freeze at the same state. So an implemen-
tation decision was made that if a timeout response is received then ganeti-etcd will
proceed optimistically and connect as a member by executing the above mentioned
command. If the node was a member then the connection is correct, if not then the
node will not be accepted to the etcd cluster. After connecting, ganeti-etcd proceeds

with polling for the member list in a similar way as it does in the start. By following this

4.1. MANAGING THE ETCD CLUSTER 71

optimistic approach majority at some point of time will be achieved and ganeti-etcd
will receive a member list response. This response is then parsed in order to determine
if the node correctly connected as a member or not. If it is a member then the existing
etcd connection is maintained, otherwise the existing connection is terminated and a

gateway connection is executed instead.

The behavior of ganeti-etcd can be better explained with a four node cluster example
where node A,B,C are master candidates and thus members of the etcd cluster and
node D has normal role. If all nodes are down and then nodes A, B and D start op-
eration and after a short delay node C also. When ganeti-etcd on nodes A, B and D
tries to get the member list, a timeout response will be received. If we did not follow
the optimistic approach all nodes would keep trying to get the member list with no
success. After the timeout response is received nodes A, B and D will try to connect as
members to the etcd cluster. Nodes A and B will succeed because they have the neces-
sary local information stored that verifies them as members and a majority of the etcd
cluster will be active. Nodes’ A and B connection to etcd as members is kept. Node D
will have a faulty connection and by polling to the master candidates list for a member
list, a response will be received when the etcd majority is active. Node D will then
determine that it is not a member of the etcd and will drop to a gateway connection.
Node C will connect later and as a majority is already active it will receive a response

and will connect as a member and no polling will be done afterwards.

Ganeti-etcd after connecting as a member to the etcd cluster, knowing that it is a mas-
ter candidate in the ganeti cluster, it will proceed by starting ganeti-mcd, a new ganeti
daemon that is implemented as the master failover trigger mechanism that will be an-
alyzed further on, and then terminating. If the node is not a master candidate then

ganeti-etcd terminates without starting the ganeti-mcd daemon.

We have seen how ganeti-etcd creates the correct connection to the etcd cluster that
will allow other ganeti entities to access it for read and write operations. It is also im-
portant to change critical ganeti operations that change the membership of the ganeti
cluster or the roles of the nodes to also change the membership of the etcd cluster. This

operations are:

ganeti cluster initialization is done by the CLI command gnt-cluster init. This com-

mand is executed locally by an administrator on a node and it creates a single node

72 CHAPTER 4. IMPLEMENTATION

ganeti cluster by initializing its configuration, setting it as master and starting the
ganeti service which was disabled as this node was not a part of any cluster. Dur-
ing this operation a new single node etcd cluster has to be created. As the node might
have been part of an old ganeti cluster when initializing the etcd cluster we have to
make sure that there is no existing etcd data_dir. If such a directory exists it is re-
moved and then we proceed by making a new etcd cluster and connecting to it. This
operation is incorporated within the code that implements the ganeti cluster initializa-
tion. Furthermore, it is important to create and connect to the etcd cluster before the
ganeti initialization operation tries to write the configuration because the configura-
tion has to be written on the etcd cluster. After the configuration is written on etcd we
terminate the etcd connection as the initialization procedure proceeds by starting the
ganeti service, and thus ganeti-etcd will run and it will create a new connection. Also
the master_candidate file is written with a single entry. The command to initialize and
connect to the etcd cluster is the same that the ganeti-etcd runs4.1, with an empty etcd

data_dir and no initialization flags set.

The ganeti add and remove node operations are executed on the master node by us-
ing the CLI command gnt-node add/remove node_name. It is important to alter these

operations in order to also change the membership of the ganeti cluster accordingly.

The add member operation can be split in several parts. First the master node creates
a ssh' connection to the node, the administrator provides the necessary credentials,
and ssh certificates are created for future connections. The second step is to connect
to the node and transfer the necessary configuration data files and start ganeti-node
daemon which is needed for the next step. The third is that the master actually adds
the node to the cluster by modifying the cluster configuration. The last step is that the
master node connects to the note and starts the ganeti service. In order to alter this

operation to our needs two basic changes were needed:

o The second step instead of transferring the configuration data, a temporary con-
nection to the etcd cluster is made and the necessary configuration data will be

accessed through it.

o After the third step is completed, we change the membership of the etcd cluster

'Secure Shell (SSH) is a cryptographic network protocol for operating network services securely
over an unsecured network

4.1. MANAGING THE ETCD CLUSTER 73

accordingly. The master node has to check if the node was successfully added
and if the node is a master candidate. If this is the case then it proceeds by adding
itasa member to the etcd cluster by executing 4.1, renews the master_candidates
file and sends a copy to all nodes. If the node is not a master candidate there
is no need for these actions. Then step four is executed, after terminating the

temporary etcd connection created at step 2.

1 etcdctl member add node_name http://node_ip:2380

The remove member operation is implemented in a similar way. The master node
connects via ssh to the designated node, stops the ganeti service and removes any con-
figuration files. It then proceeds by removing the node from the ganeti cluster con-
figuration. The changes made is that before connecting the master node determines if
the designated node is a master candidate. If that is the case the when connecting to
the node it removes etcd data directory. In any case the master_candidate local file is
removed and no other file deletions are needed as there are no local copies of the con-
figuration. After removing the node, if that node was a master candidate, the Master
node also has to remove it from the etcd cluster. In order to do so the node’s etcd ID

is retrieved with a etcd member list query and the node is removed, by running 4.1
1 etcdctl member remove node_id

After removing the node from etcd master node has to refresh the master_candidates

file on all nodes.

Membership changes are also needed when a ganeti node is promoted to master can-
didate or demoted from master candidate to normal. This operation can be done on the
master node by the CLI command gnt-node modify —-master-candidate=yes|no node.
This operation is simple, the master node first changes the configuration and then
connects via ssh to the node and starts the ganeti-conf daemon, if the node is pro-
moted to master candidate, or stops the ganeti-conf daemon if the node is demoted to
normal role. The changes added in order to also manage the etcd cluster are in each

case different.

« master candidate >normal: the master node has to also stop the ganeti-etcd and

74 CHAPTER 4. IMPLEMENTATION

ganeti-mcd daemons and then proceed to change etcd membership in a similar
way as when removing a node. The etcd data directory has to be removed and

the master_candidates file needs to be refreshed on all nodes

 normal >master candidate: the master node has to stop the ganeti-etcd daemon
and then proceed to change etcd membership in a similar way as when adding
a master candidate role. the master_candidates file needs to be refreshed on all

nodes.

By implementing ganeti-etcd and adding the above mentioned changes in ganeti ganeti
is able to manage the etcd cluster membership and the correct etcd connection is cre-
ated to all the cluster nodes. This setup has been tested on a three node experimental

cluster.

4.2 Migrating ganeti configuration to etcd

The ganeti cluster configuration is stored in the config.data file. This file contains all
the cluster and instance information and it is used by the ganeti-wconfd daemon that
runs on the master node. From this file specific information is extracted and stored in
separate ssconf files. Each file stores a specific piece of information, such as the node
list, the master node, etc. The ssconf files are used by ganeti-noded daemon on all

nodes in order to access necessary information to execute specific operations.

In section 3.1 it was mentioned that ganeti-wconfd to store and distribute the con-
figuration it creates three thread-workers, each with a specific task. The first worker
is responsible for storing locally the configuration in the config.data file, the second
is responsible for distributing config.data to all master candidates and the third is re-
sponsible for creating a dictionary containing all ssconf files and their values and then
distributing this dictionary to all the nodes. These three workers run sequentially. This

approach is not necessary when the configuration is written on etcd.

Instead of having three different workers, a single worker is created which is respon-
sible for writing the config.data and the sscontf files to etcd. No distribution is needed
because writing to etcd automatically replicates the data to a majority of the cluster.

The single worker, named saveConfig, waits on a Haskell M Var for input from the main

4.2. MIGRATING GANETI CONFIGURATION TO ETCD 75

ganeti-wconfd process. This occurs when ganeti-wconfd wants to modify the config-
uration. Ganeti-wconfd writes the modified data structure that contains the configu-
ration in saveConfig’'s MVar. SaveConfig is noticed and starts operating. It writes the
configuration to the config.data key on etcd and then extracts all ssconf values from
the configuration and writes them on etcd. The code, implemented in Haskell as is the

rest of ganeti-wconfd, implementing the operation is shown at 4.2.

1 saveConfig :: FilePath -- ~ Path to the config file

2 -> FStat -- ~ The initial state of the config. file

3 -> I0 ConfegState -- ~ An action to read the current config

4 -> ResultG (AsyncWorker (Any, DistributionTarget) ())

5 saveConfig path fstat cdRef =

6 lift . mkStatefulAsyncTask

7 EMERGENCY "Can't write the master configuration file" fstat

8 $ \oldstat (Any flush, _) -> do

9 cd <- liftBase (csConfigData ~1iftM" cdRef)

10 1iftI0O $ writeFileToEtcd "config.data" (J.encodeStrict cd)

11 1iftI0 $ writeSSConfToEtcd $ mkSSConf cd

12

13 writeFileToEtcd :: String -> String -> I0 ()

14 writeFileToEtcd key value = do

15 (exitCode, _ , stdErr) <- readProcessWithExitCode "etcdctl"
["set","--", key, value] ""

16 if exitCode == ExitSuccess

17 then logDebug $ "key" ++key++ "succesfully written to etcd"

18 else logError $ "unsuccessfully written key"++key++"to etcd"

19

20 writeSSConfToEtcd :: M.Map SSKey [String] -> I0 ()
21 writeSSConfToEtcd ssconfs = do

22 writeSSC keys values $ length keys

23 where

24 keys = M.keys ssconfs

25 values = M.elems ssconfs

26 writeSSC [] [] @ = logInfo "SSConf files written succesfully"

27 writeSSC [] [] _ = logInfo "SSConf files written unsuccesfully"

28 writeSSC (k:ks) (v:vs) n = do

29 (exitCode, _ , _) <- readProcessWithExitCode "etcdctl" ["set","--",
keyToFilename "" k , unlines v] ""

30 if exitCode == ExitSuccess

76 CHAPTER 4. IMPLEMENTATION

31 then writeSSC ks vs $ pred n
32 else writeSSC ks vs

If saveConfig is successful then config.data and the ssconf files were successfully writ-

ten on etcd and are available to read by any ganeti entity.

The config.data key is stored initially in etcd during the ganeti cluster initialization
procedure with a simple etcdctl set config.data “config_string” command. Every time
the ganeti-wconf daemon starts it initializes the internal configuration data structure
that it uses by reading the config.data value from etcd. This, and all etcd reads in this
implementation, are done with the quorum flag set. When the quorum flag is set etcd
treats the read operation as a write, which translates that the request is forwarded to
the etcd leader that responds with the most recent committed value of the key. This

prevents stale reads and is necessary in order to avoid configuration data loss.

By adding this changes to ganeti all operations that access config.data are done through

etcd. More changes are needed in order to migrate all ssconf file reads to etcd.

The current ganeti implementation has accumulated all ssconf operations into a single
python class. This class, called SimpleStore, implements different methods, like Get-
MasterNode, GetNodeList, GetMasterCandidates, GetMasterCandidatesIPList, etc, in
order to read different ssconf files. Any ganeti entity that wishes to read any ssconf file

needs to create a new SimpleStore object and use its methods.

All of SimpleStore methods determine which ssconf file should they read and then
proceed by calling the ReadSsconfFile method, that is implemented in SimpleStore.
ReadSsconfFile reads the local ssconf file and returns a list of its contents. We changed
ReadSsconfFile to read from etcd with a simple etcdctl get "key” operation, instead of a
read from alocal file. Again the etcd read operation is done with the quorum flag set in
order to avoid stale reads. By doing so, all ganeti entities that need information stored
in any ssconf file will get this information through etcd, providing the most up-to-date

value.

More changes were needed in order to avoid several failures. Various ganeti daemons,
such as ganeti-noded, on start-up run checks in order to determine if the nodes state is
healthy and all necessary data is there. These checks include checking the existence of

the config.data and ssconf files. Since this files are no longer locally stored the checks

4.3. AUTOMATIC MECHANISM FOR MASTER FAILOVER 77

would fail. Thus, we either removed the checks on these files or changed them into
an etcd query that lists the etcd contents depending on the situation. Similar checks
are done by ganeti verification or debugging operation such as gnt-cluster verify. These

operations were also changed.

After all these changes, the migration of the ganeti cluster configuration to etcd is com-
pleted. On a three node experimental cluster we were able to determine, after running
several benchmarks and multiple scenarios, that ganeti continues to operate normally

without any unexpected failures of its components.

It is important to note here that by migrating ganeti cluster configuration to etcd write
and read operations cannot be successful if there is no majority of the etcd cluster,
equally of the master candidates, active and reachable. Thus, any procedure that uses
such operations will fail and return an error message either reporting the inability to

either read or write the configuration.

4.3 Automatic mechanism for master failover

The last part that is necessary for an automated master failover procedure in ganeti
is a mechanism that safely and securely recognizes a master node failure and triggers
the master failover procedure on a suitable master candidate node. The master node
failure can be due to hardware or software error on the master node or due to a network
partition. This functionality is achieved by introducing the ganeti master candidate
daemon, ganeti-mcd. ganeti-mcd is implemented in python and its operation starts
by ganeti-etcd only on master candidates nodes. ganeti-mcd is responsible for starting
the ganeti master service on a master candidate node as well as triggering a master

failover. This is achieved with a distributed lock on etcd.

The distributed lock has the form of a key value on etcd that is set with a Time To Live,
TTL, parameter. The TTL parameter sets a specific number of seconds after which the
key expires. Each instance of ganeti-mcd that runs on every master candidate tries to
set this distributed lock, named masterUp, by using the etcd flag prevExist and setting
a specific TTL. By setting the prevExist flag, an etcd write operation first checks if that
key already exists on etcd, and if it does it returns the error code 105 which translates

as: the write operation failed as the key already exists. If they key does not exist then the

78 CHAPTER 4. IMPLEMENTATION

write operation is successful. This allows the key masterUp to be used as a distributed
lock, because only a single instance of ganeti-mcd will be able to write the key and all

others will fail.

The TTL parameter is really important. It allows us to use the masterUp key as a live-
liness indicator of the node that has acquired the lock. The ganeti-mcd instance that
succeeds in writing the masterUp key continues to refresh its value and the TTL pa-
rameter, restraining all other ganeti-mcd instances to take the lock. We will now ana-

lyze how ganeti-mcd operates.

Ganeti-mcd starts by running some initiation commands. After that, it enters an infi-

nite loop where he tries to acquire the lock. First, ganeti-mcd sleeps for READ_INTERVAL

and then tries to acquire the lock. This operation4.3 may fail for several reasons. The
connection to etcd is faulty, the etcd cluster has no majority active and reachable and
thus the quorum read fails or the masterUp key already exists. In all these cases ganeti-
mcd returns to the start of the loop and tries again to acquire the lock after sleeping for
READ_INTERVAL. If the operation succeeds then it means that there is a majority of

the etcd cluster active and the key did not exist previously.

1 curl -L http://127.0.0.1:2379/v2/keys/masterUp?prevExist -XPUT -d
value=True -d lockTTL

If ganeti-mcd successfully acquires the lock, it proceeds by spawning a separate process
using Process from pythons multiprocessing module. The process is responsible for

starting the ganeti master service on this node by running 4.3.

1 def becomeMaster():

2 logger = logging.getLogger(__name_)

3 logger.setLevel(logging.DEBUG)

4 result=utils.RunCmd(['gnt-cluster', 'getmaster'],timeout=10)

5 if result.failed:

6 logger.error('etcd cluster lost quorum before succesfully starting
master')

7 return

8 masterNode=result.stdout[:-1]

9 currentNode=netutils.GetHostname().name

10 logger.info('currently on node ' + currentNode + 'and master_node is'

4.3. AUTOMATIC MECHANISM FOR MASTER FAILOVER 79

+ masterNode)
11 if masterNode == currentNode :
12 logger.info('starting master, since i am the master in the
up-to-date config')
13 if startMaster():
14 logger.error('error while starting master, stopping and

restarting")

15 else:

16 logger.info('starting master-failover')

17 result=utils.RunCmd(['gnt-cluster', 'master-failover'])

18 if result.failed:

19 logger.error('error while executing master-failover, stdout &
stderr were:"')

20 logger.error(result.stdout + ' ' + result.stderr)

21 return

22

23 def startMaster():

24 result = utils.RunCmd([pathutils.DAEMON_UTIL, "start-master"])

25 return result.failed

The process first checks the current master of the ganeti cluster. If the master is a dif-
ferent node then a master failover procedure is initiated. If it is the same node then the
master service is started using the daemon-util tool. daemon-util start-master basically
starts the three ganeti daemons that consist the ganeti master service. These daemons

, as already mentioned, are ganeti-rapi, ganeti-wconfd and ganeti-luxid.

After creating the process, ganeti-mcd enters a second infinite loop. Inside this loop
ganeti-mcd first runs a check of the ganeti master service state. This is achieved by
checking if ganeti-rapid, ganeti-wconfd and ganeti-luxid are running and if the ganeti
master IP is active. This checks also takes into consideration the status of the created
process. Specifically a time window of one minute is given to the process in order to
successfully start the master service. The value of this time window is determined by
the maximum time needed for a master failover or a start-master procedure to termi-
nate. This window depends on the system and may need to be configured in different
systems that may operate in a slower or faster pace. During this time window ganeti-
wconfd does not run the above mentioned check because it is possible that the process

is still trying to start the master service. After the time window pass if the check is

80 CHAPTER 4. IMPLEMENTATION

not successful then ganeti-mcd proceeds by terminating any ganeti master daemon
that is still active and release the master IP. Then it proceeds by falling back to the
first infinite loop and tries to become master node again. This approach is a form of
self-fencing. Ganeti-mcd realizes that the master service does not run properly, and
decides to release all resources and fall down to master candidate state. Then the lock
will eventually be released and another ganeti-mcd instance will try to start correctly

the master service.

If the check is successful, the ganeti-mcd knows that the master service runs properly
and proceeds by refreshing the masterUp lock. This allows this node to remain master
of the ganeti cluster since no other instance of ganeti-mcd will be able to acquire the
lock. The lock is refreshed by running4.3 command which is similar with the com-

mand that tries to acquire the lock, but the prevExist flag is not set.

1 curl -L http://127.0.0.1:2379/v2/keys/masterUp -XPUT -d value=True -d
lockTTL

Ganeti-mcd checks the output of the command. This is really important because any
error in this operation means the inability of the node to retain its master status. The
refresh command may fail due to an etcd connection error or due to a majority failure.
A majority failure is possible if a majority of the nodes is offline or if a network partition
occurred. Ganeti-mcd cannot differentiate these cases and in any case proceeds by
releasing the master service resources and stopping the appropriate daemons. Then it
drop backs to the first infinite loop in order to acquire the lock. If the refresh operation
is successful ganeti-mcd sleeps for WRITE_INTERVAL time and then goes back to the
start of the second infinite loop in order to check the master service status and refresh

the lock.

It is important to specify the values of the READ_INTERVAL. WRITE_INTERVAL
and lockTTL. A first approach was for ganeti-mcd to try and start the ganeti master
service without spawning a separate process. This meant that the above mentioned
intervals had to be greater that the time that is needed for the ganeti master service to
start, which is around 40 seconds in our system. This is because during this procedure
any other ganeti-mcd should no be able to acquire the lock and then try to become

master. We changed our approach by creating a separate process that is responsible for

4.3. AUTOMATIC MECHANISM FOR MASTER FAILOVER 81

starting the ganeti master service and having ganeti-mcd monitor this process. This
allows us to lower the intervals substantially. Specifically, in our experimental cluster,
we set READ_INTERVAL and lockTTL to 6 seconds and WRITE_INTERVAL to 4
seconds. WRITE_INTERVAL has to be lesser than the other two intervals in order to

always keep the lock and avoid race conditions.

Our current implementation is able to recognize a master failure in a short period of
time and trigger a master failover operation. In the worst case scenario lockTT'L +
READ_INTERV AL? is needed before a master failover is triggered. This scenario
is when the master node refreshes the lock for lockTTL, right after the ganeti master
service crashes all all other ganeti-mcd successfully read the lock just before lockTTL
expires. Then a READ_INTERVAL is needed before the see that the lock is free. In
our implementation, with the intervals set to 6 seconds and 4 seconds, the worst case

scenario is 12 seconds.

On our three node experimental cluster we were able to test our implementation. Var-
ious scenarios were executed and the behavior of our system was checked. A normal
scenario is where nodes A,B,C start the ganeti service roughly at the same time. In a
short amount of time the etcd cluster has majority and a single ganeti-mcd instance
acquires the lock and starts the ganeti master service, presumably node A. Node A
then is either hard resetted or a artificial network partition is created. The ganeti-mcd
lock is not refreshed and after a short period of time node B or node C will acquire it
and start the ganeti master service. This operation in our system completes in under

40 seconds. No configuration data loss occurs since etcd is used as storage.

lockTTL and READ_INTERVAL can have the same value, which is the case in our implementation

82

Evaluation & Discussion

Infrastructure as a Service, Iaa$, is a basic cloud-service model where providers offer
computing infrastructure, virtual machines and other resources, as a service to sub-
scribers. High-availability of systems providing such a service is crucial and impera-
tive for competitiveness and profit maximizing. Google’s Ganeti VM cluster manager
is such a service. Ganeti’s current master failover policy is for an administrator to de-
tect a master failure and execute a master failover procedure manually. This leads to
a considerable amount of downtime and inserts the possibility of human error. We
were able to implement an automated master failover procedure by using etcd as the
storage backend for Ganeti and implementing a master failover trigger mechanism.
The automated master failover functionality we implemented ensures configuration
data integrity and operates correctly under cluster partitions. On our three node ex-
perimental Ganeti cluster a master node failure triggers the automated master failover

functionality which completes within 40 seconds.

The integration of etcd to Ganeti leads to some drawbacks. These drawbacks emanate

from etcd due to the immanent constraints of the Raft algorithm.
Majority constraint

Our implementation has two constraints that have to be satisfied:

1. A majority of ganeti members is active and reachable

2. A majority of etcd members, equally ganeti master candidates, is active and

reachable

83

84 CHAPTER 5. EVALUATION ¢ DISCUSSION

The first constraint emanates from the voting procedure during a Ganeti master ser-
vice start-up or a master failover. This constraint has to be met only during the start
of a the Ganeti master service and can be bypassed by using the -no-voting flag, but
may lead to some strange scenarios. For example, a cluster with a hundred members
with only three of them as master candidates is partitioned to a 2-node subcluster
with two master candidates and a 98-node subcluster with 1 master candidate. The 2-
node subcluster will be able to start the Ganeti master service and continue to operate.
The second constraint emanates from the nature of etcd, which needs a majority of its
member active and reachable to make progress. This constraint has to be satisfied in

any given time.

If a network partition occurs, the current master has to satisfy the second constraint,
meaning he has to be member of a subcluster where a majority of the master candidates
is reachable. If this constraint is not met, if a subcluster that satisfies both constraints
exists then a master candidate that is part of this subcluster will automatically execute
a master failover procedure and the Ganeti cluster can continue to operate. If such a

subcluster does not exist then the Ganeti cluster will freeze.

The original Ganeti implementation only has to satisfy the first constraint during the
Ganeti master service start-up or a master failover. After these procedures complete a
network partition does not affect the master’s state. In the original Ganeti implemen-

tation a master will continue to operate even when all other nodes are unreachable.

In summary, a network partition or multiple node failures may lead to a Ganeti cluster
freeze in our implementation. The original Ganeti implementation does not suffer in
these scenarios and can continue to operate normally. This may increase the downtime
of our system but is a necessary feature in order to achieve our two main objectives: no
configuration data loss during a master failover and avoid split-brain conditions. This
is a trade-off between the two implementations. Our approach automatically handles
a master node failure and minimizes the downtime of such a scenario, but introduces

scenarios where it will not be able to operate.

Moreover, these two constraints and when they are applied can be complicated. This
emanates from our design decision to use only master candidates as etcd members.
Simpler approaches would lead to less complicated constraints. Such approaches could

be:

85

« All Ganeti members will be master candidates and thus members of etcd. This
approach would lead to a single constraint. If a majority of Ganeti members is
active and reachable then Ganeti service will operate normally and make progress.
While this approach simplifies the constraint, it also increases the etcd com-
munication. Furthermore, a Ganeti node may have hardware or software con-

straints that prohibit it from being a master candidate.

« All Ganeti members are also etcd members but not necessarily master candi-
dates. This approach simplifies the constraints. Progress can be made if a ma-
jority of the nodes and a single master candidate is active and reachable. Etcd
communication will increase again but nodes with software or hardware con-

straints can have the normal role and not master candidate.

Erroneous membership changes

Specific etcd membership changes lead to erroneous situations. The most common
one is when a single node etcd cluster adds a second node to the cluster. When adding
the second member etcd will temporarily lose majority until the second member suc-
cessfully connects. In our implementation, during the temporary loss of majority,
ganeti-mcd will be unable to refresh the lock and therefore self-fence itself from master
status and release all master resources. To bypass this problematic situation a ganeti ad-
ministrator has to terminate the ganeti-mcd daemon on the master node before adding
the second member. Furthermore the administrator has to add a temporary member
to etcd. That member can be another node or a process that listens to a different port.
After the membership change to Ganeti completes, the administrator has to restart
ganeti-mcd on the node and remove the redundant member from etcd. A master-
failover may occur because the second node may acquire the masterUp lock. This
problematic scenario can be generalized when the etcd cluster consists of 2xk+1, KEN

nodes, only £ + 1 are online and a new master candidate node is added.

Since membership changes are rare and usually supervised by an administrator, this

problematic behavior is not crucial and can be resolved.
Performance

By integrating etcd to Ganeti, any configuration write operation has to complete the

Raft replication protocol. While at first this operation may seem slower than the orig-

86 CHAPTER 5. EVALUATION ¢ DISCUSSION

inal distribution method, a closer look is needed in order to compare these two meth-

ods.

o Original distribution method: A configuration write operation splits in 3 sub-
operations, as described in section 3.1. The total workload of an operation can
be summed as a single local write and sending
MCHT,whereMC = numberofmastercandidates, T = numberofnodes,
RPCs. If the write operation has to be executed synchronously, wconfd waits for
the response of all of these RPCs. An RPC sent for replicating config.data to a
master candidate leads to a single local write before a response is sent. An RPC
sent for ssconf replication to any node leads to multiple, equal to the number
of ssconf files, local writes before a response is sent. If the write operation is
executed asynchronously wconfd does not wait for the response of the RPCs.

Most operations are executed asynchronously.
o etcd replication: an etcd write operation in order to complete has a workload of:

- RPC sent to every etcd member
- response from a majority of the etcd members

- local write of the key

This process is executed two times, once for config.data and once for the ssconf
files where an etcd batch request is used. Etcd has implemented a lot of opti-

mizations in order to maximize the performance of its replication procedure.

These two operation highly depend on the network and storage performance. A com-
parison between these two approaches on a system may lead to different results de-

pending on the subsystems used for networking and local storage.

A different distribution policy would be to store onlyconfig.data on etcd and each
Ganeti entity extract the specified ssconf value from it. This approach would reduce

the cost of the write operation by having a single write request instead of two.

Moreover, in our current implementation all configuration read operations are exe-
cuted with the quorum flag set. This means that every read request is forwarded to the

etcd leader and serialized. The leader checks its own log for the last committed entry

87

of this key and returns its value. The serialization of all requests on the leader of etcd
may diminish the performance. This can be resolved by either using etcd proxies for
read operations or remove the quorum flag from specific read operations where a stale

read is acceptable.

88

Future Work & Conclusions

We have mentioned a few possible changes in our policy and our implementation in
order to resolve specific problems or optimize the performance. In this section we

purpose future additions to our implementation .
Jobqueue migration to etcd

On our implementation we considered config.data and the ssconf files as the entirety of
the configuration data of a Ganeti cluster. In reality, another important part of Ganeti’s
configuration is the jobqueue. As mentioned in section 2.2 every request to the master
node is converted to a job and queued to Ganeti’s jobqueue in order to be executed.
Ganeti-luxi daemon replicates the jobqueue, alongside with the state of the locks and
the temporary reservations, to all master candidates by sending RPCs to them each
time the state of the jobqueue changes. When a master failover occurs, the new master
initializes the status of its jobqueue by copying the local jobqueue data he has received
from the previous master node. Locks and temporary reservation data is taken into

account during the initialization.

The distribution of the jobqueue to master candidates follows the same policy as con-
fig.data distribution. The master node sends a single RPC and does not wait for a
response. Moreover, a distribution check is not executed in order to ensure that the
master candidates successfully received the jobqueue data. This may lead data loss of
the jobqueue during a master failover. A job that was queued and waiting to be ex-
ecuted may be lost if a master failover occurs and the new master does not have an

up-to-date copy of the jobqueue.

Our current implementation follows this policy. A migration of the jobqueue to etcd

89

90 CHAPTER 6. FUTURE WORK & CONCLUSIONS

would eliminate the possibility of data loss of the jobqueue during a master failover

but would significantly increase the load of the etcd cluster.

Change the architecture of the ganeti service and support different back-end stor-

age systems

The current architecture of the Ganeti service allows different entities to access the
configuration by executing write or read operations. We purpose that a Ganeti entity
is introduced that will be responsible for answering all configuration access requests.
All Ganeti entities that wish to access the configuration will have to do so by sending
requests to the new entity and will be unaware of the backed storage system that is

used.

This new entity will offer a front-end API for read and write operations and will listen
to a specific port for requests. Different back-end storage systems will be supported,
such as local storage, etcd or even databases. The Ganeti administrator will have to
choose the storage system during installation of the Ganeti service. The right versions
of write and read operations will be installed. For example, a write operation on a
local filesystem storage system will correspond to a local write and distribution of the
data to other nodes. If etcd is used as the storage system then a write operation will
correspond to an etcd write operation and distribution will be handled by the etcd

system.

Each different storage system will have to treat specific write operations different. For
example a write operation that changes the membership of the cluster by adding a
member. An etcd implementation will have to recognize this membership change
and execute a membership change on the etcd cluster as well, but a local filesystem
storage will just have to copy the configuration data to the new node. Moreover, dif-
ferent storage systems will have to introduce entities to enable the storage system to
operate. For example, an etcd implementation will have to start a connection to the
etcd cluster when the Ganeti service starts. A database implementation would have
similar behavior. These extra entities have to be implemented and added to the Ganeti

service initialization during the installation of Ganeti.

By changing the Ganeti architecture we enable Ganeti to be more configurable and
meet different standards. A Ganeti administrator will be able to decide the storage

system that will be used during installation. The decision may be different depending

91

on priorities and constraints that the service has. Moreover, new back-end storage
systems can be easily imported to Ganeti by implementing a few different operations

enabling Ganeti to keep up with new and different storage technologies.

92

[Bak01]

[Brel2]

[Bro]

[Cou01]

[Deva]

[Devb]

[Devc]

[Devd]

[Deve]

Bibliography

Mark Baker, Cluster computing white paper.

Eric Brewer, Cap twelve years later: How the rules have changed, Computer

Magazine (2012).

Julian Browne, Brewer’s cap theorem, http://www.julianbrowne.com/

article/viewer/brewers-cap-theorem.

Jean Coulouris, George; Dollimore, Distributed systems: concepts and design,

3rd ed., Addison Wesley, 2001.

Etcd Developers, Etcd clustering guide, https://github.com/coreos/

etcd/blob/master/Documentation/op-guide/clustering.md.

Etcd Developers, Etcd discovery protocol, https://github.com/coreos/

etcd/blob/master/Documentation/dev-internal/discovery

protocol.md.

Etcd Developers, Etcd documentation, https://coreos.com/etcd/

docs/latest/.

Etcd Developers, Etcd gateway, https://github.com/coreos/etcd/

blob/master/Documentation/dev-internal/gateway.md.

Etcd Developers, Etcd proxy, https://github.com/coreos/etcd/

blob/master/Documentation/dev-internal/grpc proxy.md.

93

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/discovery_protocol.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/discovery_protocol.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/discovery_protocol.md
https://coreos.com/etcd/docs/latest/
https://coreos.com/etcd/docs/latest/
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/gateway.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/gateway.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/grpc_proxy.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/grpc_proxy.md

94

[Devf]

[Devg]

[Devh]

[Devi]

[Devj]

[Devk]

[Devl]

[Devm]

[Devn]

[Devo]

[Devp]

[Devq]

[Devr]

BIBLIOGRAPHY

Etcd Developers, Etcd storage documentation, https://github.com/

coreos/etcd/blob/master/Documentation/learning/data

model.md.

Etcd Developers, Undestanding failures, https://github.com/coreos/

etcd/blob/master/Documentation/dev-internal/failures.md.

Ganeti Developers, Ganeti-cleaner manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-cleaner.html.

Ganeti Developers, Ganeti-confd manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-confd.html.

Ganeti Developers, Ganeti-kvimd manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-kvmd.html.

Ganeti Developers, Ganeti-luxid manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-luxid.html.

Ganeti Developers, Ganeti-mond manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-mond.html.

Ganeti Developers, Ganeti-noded manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-noded.html.

Ganeti Developers, Ganeti-rapid manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-rapid.html.

Ganeti Developers, Ganeti remote api, http://docs

.ganeti.

org/

ganeti/current/html/rapi.html

Ganeti Developers, Ganeti-watcher manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-watcher.html.

Ganeti Developers, Ganeti-wconfd manpage, http://docs

.ganeti.

org/

ganeti/current/html/man-ganeti-wconfd.html.

Ganeti Developers, Ganeti’s documentation, http://docs

.ganeti.

org/

ganeti/current/html/index.html

https://github.com/coreos/etcd/blob/master/Documentation/learning/data_model.md
https://github.com/coreos/etcd/blob/master/Documentation/learning/data_model.md
https://github.com/coreos/etcd/blob/master/Documentation/learning/data_model.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/failures.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-internal/failures.md
http://docs.ganeti.org/ganeti/current/html/man-ganeti-cleaner.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-cleaner.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-confd.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-confd.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-kvmd.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-kvmd.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-luxid.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-luxid.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-mond.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-mond.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-noded.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-noded.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-rapid.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-rapid.html
http://docs.ganeti.org/ganeti/current/html/rapi.html
http://docs.ganeti.org/ganeti/current/html/rapi.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-watcher.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-watcher.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-wconfd.html
http://docs.ganeti.org/ganeti/current/html/man-ganeti-wconfd.html
http://docs.ganeti.org/ganeti/current/html/index.html
http://docs.ganeti.org/ganeti/current/html/index.html

BIBLIOGRAPHY 95

[Devs]

[Devt]

[Devu]

[Devv]

[Devw]

[Devx]

[engb]

[Fri96]

[Gan]

[Gil02]

Ganeti Developers, Gnt-backup manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-backup.html.

Ganeti Developers, Gnt-cluster manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-cluster.html.

Ganeti Developers, Gnt-debug manpage, http://docs.ganeti.org/
ganeti/current/html/man-gnt-debug.html.

Ganeti Developers, Gnt-group manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-group.html.

Ganeti Developers, Gnt-instance manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-instance.html.

Ganeti Developers, Gnt-job manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-job.html.

Ganeti Developers, Gnt-network manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-network.html.

Ganeti Developers, Gnt-os manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-os.html.

IBM engineers, Ibm cluster system: Benefits, http://web.archive.

org/web/20160429022854/http://www-03.ibm.com/systems/
clusters/benefits.html

Microsoft enginners, Evaluating the benefits of clustering, http:
//web.archive.org/web/20160422092651/https://technet.

microsoft.com/en-us/library/cc778629(v=ws.10).aspx.

Ken Friedman, Roy; Birman, Trading consistency for availability in dis-

tributed systems, 1st ed., Cornell University, 1996.

GanetiDevelopers, Gnt-node manpage, http://docs.ganeti.org/

ganeti/current/html/man-gnt-node.html.

Nancy Gilbert, Seth; Lynch, Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services, ACM SIGACT news (2002).

http://docs.ganeti.org/ganeti/current/html/man-gnt-backup.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-backup.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-cluster.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-cluster.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-debug.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-debug.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-group.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-group.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-instance.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-instance.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-job.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-job.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-network.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-network.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-os.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-os.html
http://web.archive.org/web/20160429022854/http://www-03.ibm.com/systems/clusters/benefits.html
http://web.archive.org/web/20160429022854/http://www-03.ibm.com/systems/clusters/benefits.html
http://web.archive.org/web/20160429022854/http://www-03.ibm.com/systems/clusters/benefits.html
http://web.archive.org/web/20160422092651/https://technet.microsoft.com/en-us/library/cc778629(v=ws.10).aspx
http://web.archive.org/web/20160422092651/https://technet.microsoft.com/en-us/library/cc778629(v=ws.10).aspx
http://web.archive.org/web/20160422092651/https://technet.microsoft.com/en-us/library/cc778629(v=ws.10).aspx
http://docs.ganeti.org/ganeti/current/html/man-gnt-node.html
http://docs.ganeti.org/ganeti/current/html/man-gnt-node.html

96

[Gre]

[Har99]

[Ongl3]

[RK14]

[Ske85]

[Ste01]

[vV14]

BIBLIOGRAPHY

Robert Greiner, Cap theorem: Revisited, http://robertgreiner.com/
2014/08/cap-theorem-revisited/.

Forrest M. Hargrove, William W.; Hoftman, Cluster computing: Linux taken

to the extreme, Linux Magazine (1999).

John Ongaro, Diego; Ousterhout, In search of an undestandable consensus

algorithm.

Muskan Bansal Rakesh Kumar, Sonu Agarwal, Open source virtualization
management using ganeti platform, National Conference on Emerging Tech-

nologies in Computer Engineering (2014).

Susan B. Davidson; Hector Garcia-Molina; Dale Skeen, Consistency in a par-

titioned network: a survey, ACM Computing Surveys (CSUR) (1985).

Thomas Sterling, An introduction to pc clusters for high performance com-
puting, International Journal of High Performance Computing Application

(2001).

Royans Tharakn, Brewers cap theorem on distributed

systems, http://www.royans.net/wp/2010/02/14/

brewers-cap-theorem-on-distributed-systems/.

Sander van Vugt, Pro linux high availability clustering, 1st ed., Apress, 2014.

http://robertgreiner.com/2014/08/cap-theorem-revisited/
http://robertgreiner.com/2014/08/cap-theorem-revisited/
http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-distributed-systems/
http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-distributed-systems/

	Περίληψη
	Abstract
	Preface
	List of figures
	Επέκταση του Συστήματος Διαχείρισης Εικονικών Μηχανών Google Ganeti για την Παροχή Υψηλής Διαθεσιμότητας με Αυτόματη Μετάπτωση του Κύριου Κόμβου
	Εισαγωγή
	Υπόβαθρο
	Εισαγωγή στη θεωρία συστοιχιών και προκλήσεις
	Το σύστημα Ganeti
	Ο αλγόριθμος Raft
	Το σύστημα Etcd

	Ανάλυση του συστήματος Ganeti και σχεδιασμός
	Αποθήκευση και διαμοιρασμός δεδομένων διαμόρφωσης
	Μετάπτωση κύριου κόμβου
	Προτεινόμενες αλλαγές

	Υλοποίηση
	Διαχείριση της etcd συστοιχίας
	Μεταφορά των δεδομένων διαμόρφωσης στο etcd
	Μηχανισμός αυτόματης μετάπτωσης κύριου κόμβου

	Αξιολόγηση και μελλοντικές δυνατότητες
	Αξιολόγηση
	Μελλοντικές δυνατότητες

	Introduction
	Problem
	Incentives
	Shortcomings
	Objective
	Design and evaluation

	Background
	Introduction to Cluster Theory and Challenges
	Split-brain
	CAP theorem

	Ganeti
	Ganeti cluster architecture and node roles
	Ganeti daemons
	Ganeti CLI

	Raft and Etcd
	Raft
	Etcd

	Design
	Ganeti configuration store and distribution policy
	Ganeti master failover
	Proposed changes

	Implementation
	Managing the etcd cluster
	Migrating ganeti configuration to etcd
	Automatic mechanism for master failover

	Evaluation & Discussion
	Future Work & Conclusions
	Bibliography

