E®GNIKO METZOBIO I[IOAYTEXNEIO

X XOAH HAEKTPOAOI'QON MHXANIKQN KAI
MHXANIKQN YTIOAOTTIETOQN

El
AW Fgoro

b

TOMEAX ITAHPO®OPIKHE KAI YIIOAOT'TETQN
EPIAXTHPIO MIKPOYTIOAOTIETOQN &
VYHOIAKON XYITHMATON

iy
»

i
53]
=
5
&
=

Performance and energy consumption evaluation of a distributed
key-value store in x86 and ARM-based architectures

MeAetn ¢ amro800M¢ KAl TNG KATAVAA®MOTG EVEPYELAG
kataveunuevng Paong dedopevwv oe x86 kat ARM apy1TeEKTOVIKEG

ATMAQMATIKH EPTAZIA

BAAZAMIAHE XTAMATIOX

EMIBAEIQN: Zovvtpng Anuntprog, Avaninpotg Kabnyntg
E.M.IL

AGHNA, lIoyaAloz 2017

E®GNIKO METZOBIO IIOAYTEXNEIO

2 XOAH HAEKTPOAOI'QN MHXANIKQN KAI
MHXANIKOQN YTIIOAOTIETOQN

El
AV Egoro

TOMEAX ITAHPO®OPIKHE KAI YTIOAOTIETOQN
EPrAZTHPIO MIKPOYTIOAOTIETOQN &
YHOIAKON XYITHMATON

il

iy
»

i
53]
=
5
&
=

Performance and energy consumption evaluation of a distributed
key-value store in x86 and ARM-based architectures

MeAetn ¢ amro800M¢ KAl TNG KATAVAA®MOTG EVEPYELAG
kataveunuevng Paong dedopevwv oe x86 kat ARM apy1TeEKTOVIKEG

ATMAQMATIKH EPTAZIA

BAAZAMIAHE XTAMATIOX

EMNIBAEION: Zovvtpng Anuntpilog, AvoarmAnpontgs Kadnynmg
E.M.II.

EyxpiOnke amo tnv tpuedn e€etaotikn emrponn v 27/07/2017.

(Yroypaen) (Yroypaoen) (Yroypaor))

Xo0vtpng AnunTplog IMexpeotln Kuoapdr T'edpylog I'covpog
Av. Kabnyntg E.M.IT Kabnyntig E.MLIT En. Kabnyntmg E.MLIT

3

(Ynoypagn)

BoAcopiong Zrapdtiog

Aumhopatovyog Hiektpoldyog Mnyavikdg kor Mnyovikodg Ynoroyiotov E.MLIT
© 2017- All rights reserved

AToryopeVETAL 1) AVTLYPOQT|, OTOONKELGN KOl SLOVOUT TNG TAPOVCAG EPYACIOG,
€€ OAOKANPOL M TUNUATOS OVTNG, Yo EUmopikd okomd. Emrpémeton n avatdmmwon,
amofNKeELOT Kol OLVOUN Y10l GKOTO U1 KEPOOGKOTIKO, EKTOLOEVTIKNG 1| EPEVVNTIKNG
@OoNG, VIO TNV TPOLHTOOESN VAL OVOPEPETAL 1 TNYT TPOEAELONG Kot VoL dlaTnpeiTatL To
napov uvopa. Epotipata mov agopoldv tn ypnon g epyaciog yio. KEPOOTKOTIKO
oKOTO TPEMEL VoL ameLBVvVoVTaL TPOS TOV GLYYpaPEa. Ot ATOWYELS KO TO, GUUTEPAGLOTO
OV TEPLEXOVTAL GE AVTO TO EYYPOPO EKPPALOLV TOV CLYYPOPEN Kol OEV TPEMEL VoL
epunvevdel 6t1 avtimpoowmevovy TG emionueg 0éoelg tov EBvikod Metoofiov
[ToAvteyveiov.

Ytapdtiog Boloapiong, 27/07/2017

|. [IEPIAHYH

Kabodg ot kotavalotikés avaykeg avEAvovial, ot OlodIKTVOKES LINPECIES
TOPAyouV €vav GVEL TPONYOLUEVOL OYKO Sopnpévav kot pn oedopévav. Emeidn ot
TAPOYOL LINPESIOV AVTAOUV TEPAoTIO a&io amoKTOVTOG YpIyopn TpdcPact oe tétoln
dedopéva, eivar kpioyun 1 VIopén KOTAAANA®V VTOJOUMOV Yo amofnKevon Kot
avaKTNon SedOUEVMVY. ZVUVETMOG, 01 TEXVOAOYIEG TOL KALOK®OVOVTOL KOt 1) arrodnKevuon
KAEWOOV-TIUNG OMOTEAODV €K TMV TPOAYUAT®V TPOTLTTO Yo, TN ONovpyio TE€TOI®mV
VTOOOULMV.

H duthopotikn avt) eotidlel oto Memcached, pio ToAd dnupo@iAn, avoryton
Koo faon amobnkevong kAewov-Tiuns. H enidoor| Tov kot 1 KatavaAwnon evEpyeLag
petpovvral o€ x86 kai faciopéveg oe ARM viomomoels. ['a Adyovg oOyKplong, otnv
010 x86 mhateoppa vAoTolovE To MemC3, to onoio amoteiet pua feltiopévn ékdoon
tov Memcached.

210 KEQAALO 1, TPOYHATOTOIEITOL L0l EIGOYMYT) GE CYETIKEG EVVOLES KO TOWELG
™G TANPOPOPIKNG, OTMG 1 KOTAVEUNUEVT] TANPOPOPIKT, N TANPOPOPIKT LVYNADV
EMOOCEMV KOl 1 TANPOPOPIKY] TOV GUVVEQPOVL, OTMG EMIONG KO 1 TEPLYPOPN TNG
amofNKeLOTN G KAEWDI0V-TIUNG. ZTO KEPAANLO 2, TAPOLGLALOVTOL LEAETES GYETIKEG LLE TO
Memcached, pe to kOpia onueio avtov va toviCovtat. 1o kepdaiato 3 mapovctdaleral
T0 KOPLO TUNHO TNG OOVLAEWAG TNV OMOi0. TPUYUOTELETOL 1 OMAMUOTIKY OLTH).
Atepguvovtor ol apyrtektovikeég Tov Memcached kot tov MemC3, 6mtwg eniong kot Ta
benchmarks mov ypnowomoodvral yio 1 pé€tpnon g enidoong tovg. EmumAéov,
aVOADOVTOL TG TEWPAUATIKO OmOTEAECUATA. XTO KEQPOAowo 4, ovvayoviot
CLUTEPACLLATO GYETIKA LLE TNV EMIOOGT KO TNV KATAVAA®GON evEPYELag Tov Memcached
kot Tov MemC3. Térog, 610 KEQAAULO 5 TPOTEIVETAL GYETIKY LEALOVTIKY| EpYAGTiaL.

AEEEIX KAEIAIA: Anoffkevon kAeidio0-tiufig, Memcached, ITAnpogopikr] vynidv
emdocenv, Katavepunuévn tAnpoeopikn, Baoeig doedopévav, Katavdilmon evépyetog

Il. ABSTRACT

As consumer needs increase, web services generate an unprecedented amount
of structured and unstructured data. Because service providers derive tremendous value
from obtaining fast access to such data, it is critical to have the right infrastructure for
data storage and retrieval. Consequently, scale-out technologies and key-value stores
have become the de facto standard for deploying such infrastructure.

The focus of this thesis is Memcached, a very popular, open-source key-value
store. Its performance and energy consumption are measured on an x86 and an ARM-
based implementation. For comparison purposes, MemC3 is also implemented on the
same x86 platform, which is an optimized version of Memcached.

In Chapter 1, an introduction to related notions and sectors of computing is
made, namely distributed computing, high performance computing and cloud
computing, as well as key-value storage. In Chapter 2, work related to Memcached is
presented, with key points being highlighted. In Chapter 3, this thesis’ main body of
work is presented. Memcached’s and MemC3’s architectures are explored, as well as
the benchmarks used to measure their performance. Furthermore, the experimental
results are analyzed. In Chapter 4, conclusions are drawn regarding Memcached’s and
MemC3’s performance and energy consumption. Finally, in Chapter 5, related future
work is proposed.

KEYWORDS: Key-value store, Memcached, High performance computing, Distributed
computing, Databases, Energy consumption

I1l. EYXAPIZTIEE

Apykd, Bo N0 va evyaprotiow Beppd tov a&loTipo kabnynt) K. Anuntplo
200VTPN TOL LoV LETEOMGE TO LEPAKL TOV Y10 TOV TOUEN TV UiKpobToAoylotav, VLSI
KOl EVEOUOTOUEVOV GUOTNUATOV, TOGO GTO TAAIGLO TOV HoONUAT®V, 0G0 Kol EKTOG
avtoVv. Akoun, o N0k va EKPPACH TNV ELYVOUOGUVT OV Y10 TV EVKOPIO TOV LoV
£0M0E, EMTPEMOVTAC OV VO 0oYOoAN0d pe éva TOGO evolapépov Béua mov apopd
GLYYPOVES Kol EUTOPIKA YPNCUYLOTOLOVUEVES TEXVOAOYIES.

EmutAéov, Ba nBela va gvyoapiotiow to op. Adlapo IMamaddomovio yio
ouvveyn kaBodnynon Tov ko’ OAN TN S1dpKeELD EKTOVIONG TS TOPOVOTG SUTAMUATIKNG
epyaoiag, dlywc v onoio KAtl T€T010 B TV advvatov. Evyoapiot®d moAd kot toug
I'edpyro ZepPaxn xor ['dvvn Kovtpa yio tnv moA0TIUN GUVEIGPOPE TOVS GE TEYVIKA
Intuata.

Téhog, Ba MBeha va gvyapiotnom Bepud TOLG GTEVOLG HOVL OIAOVG Yo TNV
ouvveyn vrootNpEn tovg. Idwaitepa, dpme, BEA® va evYAPIGTHC® TNV OIKOYEVELL [LOV,
N omoia pe oTHPIEE TACEL SVVALEL GE OAOKANPN TN HOONTIKY KoL QOITNTIKN LoV TTopEia
kot cvveyilel va pe otnpilel o€ kKGO pov P,

10

11

I\V. EKTETAMENH ITEPIAHYH

"Evag kAGd0¢ TG TANPOPOPIKNG TOV EXEL EMNPEACEL GNUOVTIKA TIG CVYYPOVES
eQapuoyég eivol n TAnpoopiky vynAdv emddcewv (High Performance Computing,
HPC), mov acyoleital e TN CLCCHOPELGTN VITOAOYIGTIKAOV TOPWOV UE TETOO TPOTO MOTE
va emtevyfobv TOAD UeEYOADTEPEG EMOOGELS GE OVYKPLoN HE &va emtpaméllo
VTOAOYIOTY, HUE GKOTO TNV EMIALGON UEYAAW®V Kol SLGETIALTOV TPOPANUATOV GTOV
EMOTNUOVIKO 1 emyelpnuoatikd topéa. o va emrevyBodv Tétolol oToOYOL, Ot
VIOAOYIOTEG OpYavVAOVOVTOL 6€ 6VoTAdES (Clusters). Mia tumikn 6VoTAdA VITOAOYIGTOV
umopel va mepiéyet amd 4 TEPUOTIKA GE ol kpn| emyeipnon £og 64 teplatikd o€ o
peyoAvtepn emyeipnon. Av 1o Kabe TepUATIKO S100£TEL TEGGEPIS VITOAOYIGTIKOVG
Topnveg, Tote glvan d100éc1ol cuvolikd and 16 g 256 muprveg oy emyeipnon.

[TAéov, 01 GLGTAdES KO YEVIKOTEPQ O1 VTTOAOYIGTIKOL TOPOL, AAAG Kot Ol BAGELS
dedopévov, de Ppiokovtal oe éva dwpdtio. Mrmopel va PBpiokovtal oe Eexmplotd
doudtio, KTpwo, yOPes N akoun Kot o dweopetikéc nreipovs. Katd cvvémeia,
dNuovpyndnke n €vvola TOL KOTAVEUNUEVOD GUGTNUOTOG. XVVETMGS, AV 1 e£EMEN
odnfynoe ot onuovpyio evdg Eexoplotod KAAOOL NG TANPOPOPIKNG, TNG
TANPOPOPIKNG KOTOAVEUNUEVOV GLGTNUATOV. ZE Vo KATOVEUNUEVO GOOGTNUO, TO
dapopa LEPMN OV ATOTEAOVV TO GUGTNLO EXKOIVMOVOVV Kol GLVTOVIOLV TIC EVEPYELES
TOUC HECEH TEPACUATOS Unvupdtov. Me ovtd tov Ttpdmo, Ol GLUVIGTMOGEG TOL
GLGTNUATOG OAANAETOPOVV Yo v emtthyovv évav kowvd okomd. Tpila onpovtikd
YOPOKTNPIOTIKE £VOG KATOVEUNUEVOL GUOTNUATOS €ival 1 TopoAAnAio LETAED TV
GLVIGTOG MV, 1] ATOLGI0 KOVOU pOoAOY100 Kot 1) aveEdptnTn PAAPN 1 amoTuyio TG KO
GLUVICTAOGOC.

Or avotépom pébodol kol £vvoleg €xovv ouveloépel KaboploTikd o1
dNUovpyio TV HOVTEPVMOV LINPECLAV, Ol OTOIEG TAPEYOVTOL LEGM TOV KGVVVEPOLY
(cloud). Xvvendc, n «TAnpo@opiky Tov cHvvepovy (cloud computing) £yel aAlaet
Gponv v Kabnuepwv Lom. O Tapamdve KAAOO0G TNG TANPOPOPIKNG OGYOAEITAL LE TV
TopoyN OLLUOIPOLOUEV®OV VTOAOYIGTIK®OV TOPMOV Kol dEOOUEVOV GE VITOAOYIGTES Ko
dAAec ovokevég kot’ amaitnon. H otpoen 1tng mANpoQOpIKNG TPog ovTn TNV
KatevBovvon €xel aAldEeL TOo Tomlo GV EVNUEPMOT), TNV KOW®MVIKY SIKTV®OT, TNV
eKTAiOEVOT), TIC EMOTNLESG, TNV LYEID Kol 6€ TOAALOVG AAAOVS TOUELG TOV dNUAGLOL Kot
010TIKoL Piov.

12

The Cloud

J

Smartphone ' Laptop
Tablet Desktop

Servers

Ewova 0.1: H minpopopixn Tov chVVEQOL amoTeAel pio, peyddn aAlayn oty
TANPOPOPIKT].

Me v mAéov gupeia YpNOT TOV TOPATAVED TEXVIKOV £xel emtevydel avénon
™G TAXVTNTOS EELANPETNONG TOV KATAVOA®TIKOD KOOV GTO YMPO TOV SLIKTUOKMV
VINPESLOV. Q6THG0, OGO 01 KATOVAAMTIKES ALEAVOVTOL, 01 VIINPEGIES ONUoVPYOHV Eval
AmTPOCOOKNTO HEYOAO OYKO OOUNUEVOVY Kot urn dedouévov. Tavtdypova, to ev Ady®
dedopéva drabétovy TepdoTia a&ia Yo TOVG TaPdYOLS. ZVVETMG, elval emPBePAnuévn N
Omapén TOV KOTGAANA®V VTOSOU®Y Yo, THV amofiKeELoT Kot TNV oVAKTNOT TOUG.
Teyvohoyieg mov KMpakdvovtar alAdd kot amobfkevon pe {evyn kAedrov-tiung (key-
value store) éxovv edpawbel mg TETOEC VITOOONES, EMTPEMOVTOG 08 UEYGANG KATHLOKOG
GLGTNLLOTO TOPOYNG TEPLEYOLEVOL VO OVTOTOKPIVOVTOL IKOVOTOMTIKE GTNV OAOEvVa
av&ovopevn Kivnomn Kot Topayyr dedopévoy.

Yndpyovv moArhd cvotiuato amobrkevons pe (edyn kiewdov-tipng. To mo
YVOoTd Té€T010 cvotnuo givar to Memcached, oto omoio eotdler m mopodoa
dumhopatikn epyoocioa. To Memcached eivatl éva avorytod kdOKa, YEVIKOD GKOTOVD
CUOTNUO KPVONG KOTOVEUMUEVNS WAUNG. Emtuyydvel emtdyvvon 16t0TOT®OV TOL
Bacilovior oe Suvapikég Pdoelg 0edopéveoyv HEC® TOTMOOETNONG dEdOUEVEOV KOl
OVTIKEWEVOV GE KPLPT UV U VAOTOMUEVN 6€ uviun tuyaiog tpoonéhacng (RAM),
®ote va petmbel o apBpog tv avayvooewv pog eEotepikng myng dedopévov. H
amAY] oxe0lOo] TOL SLELKOAVVEL GTNV €UKOAN KOl YPNyopn oavamtuél] Tov, evd M
TPOYPOUUATIOTIKY SlETaPN TOL glvan SbBéoun yuo TIg TEPIGGOTEPEG ONUOPIAEIS
YADGGEG Tpoypappatiopov. Apykd, to Memcached eiye avamtuyei oand v Danga
Interactive yiwa to Livelournal, aiid mAéov ypnowomoleitar gvpvtota (1 €xet
ypnoporombei 6to mopeAbov) amd TOAAE GLOTNUATO, GUUTEPIAAUPAVOUEVOV TMV
MocoSpace, YouTube, Reddit, Survata, Zynga, Facebook, Orange, Twitter, Tumblr kot

13

Wikipedia, evd éyer amoteléoer) Pdon ko v Eumvevon Yyl mOAAG vedTepa
napduolo cvotiuata, 6mmg to Redis, to Voldemort kot to Amazon ElastiCache.

To Memcached mapéyet éva amAd cOVOLO AELTOVPYIDV, AVAUEGO, OTIC OTOiEC
etvon ot set, get kou delete, pe tig dvo TpdTES VO givol ot onpavtikdtepes. H mpd
vphoper 10 KoBopiopévo (ehyog KAEWOV-TIUNG OTOV OMOONKELTIKO YDOPO TOL
Memcached e&vmmpetmti. H Ty givar tomkd pikpd avtikeipevo, cvoyva peyébouvg
Kanowwv ekatoviadmv bytes. H devtepn (mov givar n o cuvnOicpévn) avaktd thy Tun
mov oyetieton pe 10 KaBoplopEVO amd To YPNOoTN KAEWL, oV oVTH LAAPYEL GTOV

eEumnpetn.

@ | | @D N

T TP T TR —— -
Data +
Caet |"':—
peration = _‘. - ; - Ead User
Weh Al e an loel E iegWeh
request lookups Browser)
L A4S Application
M'llli‘“l‘llﬂ! "l“tll T"'lr
Beturn =] rﬂp:,:m".:',- - @Mﬂnrﬂchﬂ!
Data |— % Tier
Set
Operation = -
J\=.Tb . i =
Weh —,
M!MJ'GI'IIH‘
request Write

L3S

Ewova 0.2: Atdypappo apyttektoviknig Kot ypriong tov Memcached

Mia cvotado Memcached e&umnpetntdv TopEyovy EVay KATaVEUNUEVO VKA
KOTOKEPLOATIGUOD Y10 TNV OTOONKEVST TOV AVTIKEIEV®V. To KAWL TOL aVTIKEEVOL
¥pNoonoteitol yioo Tov kKaopiopd tov eEumpent| €vtog TG cvotddog Omov O
arofnkevbel to avrikeipevo. Mo GUVAPTNON KOTOKEPUATIGUOV EMAEYETOL DGTE VO,
ooKatoveUnfovv to KAEWLA 6T GLGTAJO.

H Swyeipion g pvnung tpaypotonoteitat pEcm tov dtoveunt niaxkov (slab
allocator). O diaveuntng opyavmOVEL T1 UVAUN 0 KAACELS TAAK®DV, KaOegud amd Tig
omoieg mePLEYEL TPOKAOOPIGUEVOL, OLOOLOPPOV LEYEBOLG TUNHOTO LWVILNG, T OTTOln
Eexvouv and 64 bytes ko @tévouv péypt to 1 MB. To Memcached amoOnievet
avTIKeipeva ot LikpOTEPN duvary KAdon mAdkag Kot {nté teplocdTepn UVHUN 0T
popon mAakdv tov 1 MB 6tav 1 avtictoyn AMota adetdoel.

1o Tepdpote Tov TopovctdlovTol 6TV TOPOVCH EPYAGI XPNoLLOTOLEiToL —
népav tov Memcached- pia Beltiopévn ékdoon tov Memcached, to MemC3
(Memcached with CLOCK and Concurrent Cuckoo Hashing). To MemC3
xpnopomolel éva PBeATIOUEVO TIVOKO KOTOKEPUATIGUOD OV EKUETOAAEVETAL TNV
TOTKOTNTA TNG KPLONG LVIUNG Yl VO TEPLopicel ToV aplBUd TV TPOSTEALGE®MY 6T
ViU KaBdS Kat Tn SuvaTOTNTA Y10 TOPUAANAi0 O ETITEDO EVIOAMY KOl LVUNG OTOV
npénel vo mpoypatoronfel kamown mpooméhacn. Akoun, to MemC3 kdével ypnon
a161000EWV GYMUATOV KAEWODUOTOS GTOYELUEVO GTN GLVNOIoUEVT TTEPIMTMOOT), TOL
gtvor 1 avayvoon. TéLog, ypnoYOTOoLEl o TapaAlayn TOL KOTAKEPUATIGHOD CUCKOO,

14

max throughput

TOV 0161080E0 KOTAKEPUATIGUO CUCKOO, OV eMITPEMEL TOAAATAEC AVOYVADOELS KO pio,
eYYpOe Vo AapBavouy xdpo TanTdYPOVa GTOV TIVOKO KOTOKEPUOTIGHOV.
AxoAov00o0V TO TEPAUATIKG OTOTEAEGLOTA, TO OTOI0 TPAYUATOTOMONKOAV LE
™ ¥PNoTM OVO EPUPUOYDOV AELOAOYNONG TOL UTOPOLV VO GTEAVOLV OLTNHHOTO GTOV
e&ummpemn Kot va Aapfavouy aravtioels Taipvovtag petpnoels. Avtd etvat: to Data
Caching Benchmark, pépoc tg oovitag mpoypappdtov CloudSuite mov éyet
avantuydel 610 £pyasTAPo TOPAAANA®Y cvuotnudtov kat apyrtektovikng (PARSA,
PArallel Systems Architecture) tov Opoocmovéiokod IToAvteyveiov g Awlavvng
(EPFL, Ecole Polytechnique Fédérale de Lausanne) kot to Mutilate. to npdto Siveton
N dvvatdTa Tpocouoimong evog eEvmmpetnth tov Twitter péocwm evog avtiotoryov
GLVOLOL OedoUEVOV, EVD UTopohV vo aAroyBovv o apBudc twv TCP cuvdécewv, Tov
VUatov-epyatdv (VNIUATOV omd TV TAELPA TOL TEAATN), 1 OVOAOYID CLTNUATOV
GET/SET kot m kotavoun mov okoAovbel m emloyn tov KAEW100. XT0 0e0TEPO
umopovv va petafAnfovv o apBudg tov TCP cuvdécewv, TV VUATOV-EPYATOV
(WMuatov and v mevpd tov meAdtn), n avaroyio crtmpdtov GET/SET kot ta
YOPOUKTNPLOTIKA TV dedopévev (LEyeBog kKAEW100, TYNG Kot aplBpog yypaedV).
‘Exyovv mapbel petpnoelg yu tn pEYIOTN SEKTEPAUMTIKY] IKOVOTNTO TOL
eELINPETNTN GLVAPTHGEL TNG «AVVAUNG KAEWODUOTOC», TOL Eivat 0 AoyapiBLog pe Bdon
70 2 T0V GLVOAOL TV KAEWopAT®V Tov Memcached, kat Tov apBpod TV Vudtov
tov e&ummpettn. Emiong, €yovv mapbel perpnoeig yi 10 xpovo amdKPIoNng TOL
eELMNPETNTN GLVOPTNHGEL TNG SIEKTEPAULOTIKNG IKOVOTNTAG TOL GTOYEVEL VAL EMLTVYEL O
e&ummpemmc. TNa ta Tepdpota ypnoiporodnkay to Memcached kot to MemC3.

MEY16TI OLEKTEPOLMOTIKT] LKAVOTNTO GUVUPTHGEL OVVUUNC KAELODNUTOC

33000
11000

10900 32000

10800 31000 == mutilate, 88B max packet
10700 5 30000 ’ size, 1M records, 0.9 ratio
./ == Uniform, 0.9 ratio 2 —4— mutilate, 888 max packet
10600 A —de— Zipf, 0.5 ratio §' 29000 size, 1M records, 0.5 ratio
10500 Zipf, 0.9 ratio £ y Mutilate, 12248 max packet
.) = 28000 size, 10K records, 0.9 ratio
10400 ==¢==Uniform, 0.5 ratio g)
27000 == Mutilate, 12248 max packet
10300 size, 10K records 0.5 ratio
10200 26000
10100 25000
0123 456 7 8 9 10111213 0123456786 910111213
lock power lock power
(o) (B)

Ewoéva 0.3: (o) Memcached, Data Caching Benchmark, 100 cuvdéoeig, 2 vijpata-gpydrec. (B)
Memcached, Mutilate, 100 cuvdéoeig, 2 vijpota-gpydTeg.

15

max rps

max rps

max rps

MEY16TN SIEKTEPOLOTIKT] IKAVOTNTO GVVAPTNGEL aptOnov vnudtmv sEvntnpetnn

16000
15000
14000
== epfl, uniform, 0.9 ratio
13000 =4 epfl, 68=0.99, 0.9 ratio
epfl, uniform, 0.5 ratio
12000 ==de= gpfl, 6=0.99, 0.5 ratio
11000
10000
1 2 4 8 16 24
of server threads
(o)
14000
13300
13000
12500 == epfl, uniform, 0.9 ratio
12000 =4 epfl, 8=0.99, 0.9 ratio
epfl, uniform, 0.5 ratio
11500 :
== epfl, 6=0.99, 0.5 ratio
11000
10500
10000
1 2 4 8 16
of server threads
18000
17000 ‘_.\/‘/‘
16000
15000 == epfl, uniform, 0.9 ratio
== epfl, 8=0.99, 0.9 ratio
14000 epfl, uniform, 0.5 ratio
== epfl, 6=0.99, 0.5 ratio
13000
12000
11000
1 2 4 8 16 24

of server threads

(€)

max rps

max rps

70000

5400

max rps

5100

4800

4700

4500

4300
4200

== mutilate, 88B max packet size,
1M records, 0.9 ratio

== mutilate, 88B max packet size,
1M records, 0.5 ratio
Mutilate, 12248 max packet
size, 10K records, 0.9 ratio

== Mutilate, 12248 max packet
size, 10K records 0.5 ratio

4 8 16 24

of server threads

(B)

== mutilate, 88B max packet size,
1M records, 0.9 ratio

== mutilate, 88B max packet size,
1M records, 0.5 ratio
Mutilate, 12248 max packet
size, 10K records, 0.9 ratio
== Mutilate, 1224B max packet
size, 10K records 0.5 ratio

4 8 16 24

of server threads

(4)

== mutilate, 88B max packet size,
1M records, 0.9 ratio

—4— mutilate, BBB max packet size,
1M records, 0.5 ratio

Mutilate, 1224B max packet
size, 10K records, 0.9 ratio

== Mutilate, 1224B max packet
size, 10K records 0.5 ratio

4 8 16 24

of server threads

(01)

Ewoéva 0.4: (o) Memcached, Data Caching Benchmark, 100 cuvdéoeis, 2 vijpata-gpydrec. (B)
Memcached, Mutilate, 100 cvvdéoelg, 2 vijpata-epydres. (y) Memcached, Data Caching
Benchmark, 1 cOvdeon, 1 vijua-gpyatnc. (6) Memcached, Mutilate, 1 cOvdeon, 1 vijua-
epyamg. (g¢) MemC3, Data Caching Benchmark, 1 ctvdeon, 1 vijpa-epydtng. (ot) MemCs3,
Mutilate, 1 oOvéeon, 1 vipa-epydne.

16

95th percentile (ms)

95th percentile (us)

95th percentile (ms)

XpoOvoc awOKPLENC GUVOPTNGEL UEYLGTNC OLEKTEP UIMTIKNC LKAVOTNTOC

450 160
400 140
330])
=& Epfl, uniform, 0.9 ratio, 16 _ 120 == Epfl, uniform, 0.9 ratio, 16
300 threads 2 | threads
250 —e—Epfl, uniform, 0.5 ratio, 16 5 100 —a— Epfl, uniform, 0.5 ratio, 16
threads E] 80 threads
200 Epfl, zipf, 0.9 ratio, 16 % Epfl, zipf, 0.9 ratio, 16
150 threads @ 60 threads
== Epfl, zipf, 0.5 ratio, 16 § 40 == Epfl, zipf, 0.5 ratio, 16
100 threads « threads
50 20
0 o
2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
Targetrps Target rps
(o) ()
12200 1100
) 1000
10200 == mutilate, 88B max packet == mutilate, 888 max packet
size, 1M records, 0.9 ratio, 900 size, 1M records, 0.9 ratio,
8200 16 threads _ 800 16 threads
== mutilate, 88B max packet H 700 =—4— mutilate, 88B max packet
6200 size, 1M records, 0.5 ratio, z size, 1M records, 0.5 ratio,
16 threads 5 600 16 threads
4200 mutilate, 1224B max packet 2 500 mutilate, 12248 max packet
size, 10K records, 0.9 ratio, & 400 size, 10K records, 0.9 ratio,
2200 16 threads] f 16 threads
-
] 300

== mutilate, 12248 max packet == mutilate, 1224B max packet
size, 10K records, 0.5 ratio, size, 10K records, 0.5 ratio,

’é§> "§ ég ’€§§) <S§§) ,{S§§) ><§ 10 threads @@ ’g§§) cgggh 'éQ d}§§) Q\@ é§§) 16 threads

Target rps Targetrps

) (4)

. d

70
60
7 90)
== Epfl, uniform, 0.9 ratio, 4 E == Epfl, uniform, 0.9 ratio. 4
threads % 40 threads
=& Epfl, uniform, 0.5 ratio, 2 g —#— Epfl, uniform, 0.5 ratio, 2
threads % 30 threads
Epfl, zipf, 0.9 ratio, 8 threads g Epfl, zipf, 0.9 ratio, 8 threads
== Epfl, zipf, 0.5 ratio, 2 threads E 20 ==ie= Epfl, zipf, 0.5 ratio, 2 threads
10
O Witk
2000 4000 6000 8000 10000 1200014000 16000 18000 2000 4000 6000 8000 10000 1200014000 1600018000
Target rps Target rps

(e) (o7)

Ewoéva 0.5: (a) Memcached, Data Caching Benchmark, 100 cuvdéoeic, 2 vijpota-pydtes.
(B) Memcached, Data Caching Benchmark, 100 cuvdéoelc, 2 vijuata-gpydreg. (y)
Memcached, Mutilate, 100 cuvdéoelg, 2 vijpata-gpydrec. (6) Memcached, Mutilate, 100
ovvdioelg, 2 vijnota-epydtes. (€) Memcached, Data Caching Benchmark, 1 covéeon, 1 vijpa-
gpydrnge. (ot) Memcached, Data Caching Benchmark, 1 covéeon, 1 vipoa-gpydang.

17

95th percentile (us)

95th percentile (ms)

A5th percentile (us)

== mutilate, 88B max packet size.
1M records, 0.9 ratio, 4 threads

=@ mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4
threads

= mutilate, 12248 max packet
size, 10K records, 0.5 ratio, 4
threads

0 1000 2000 3000 4000 5000
Target rps
(o)
18
16
14
12] == Epfl, uniform, 0.9 ratio, 8
10 threads
=== Epfl, uniform, 0.5 ratio, 8
threads

Epfl. zipf, 0.9 ratio, 8 threads
==de=Epfl, zipf, 0.5 ratio, 16 threads

6000 8000 10000 12000 14000 16000 18000
Targetrps
450
== mutilate, 88E max packet size,
400 1M records, 0.9 ratio, 16
threads
350 == mutilate, BBB max packet size,
1M records, 0.5 ratio, 4 threads
mutilate, 12248 max packet
300 size, 10K records, 0.9 ratio, 4
-"\" threads
250 === mutilate, 12248 max packet
size, 10K records, 0.5 ratio, 4
threads
200
0 1000 2000 3000 4000 5000
Target rps

(¢)

average latency (us)

average latency (us)

average latency (ms)

280
270
== mutilate, B8B max packet size,
260 1M records, 0.9 ratio, 4 threads
250 =4#= mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
240 mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4
230 \\ threads
220 —i— mutilate, 12248 max packet
size, 10K records. 0.5 ratio, 4
210 threads
200
o 1000 2000 3000 4000 5000
Targetrps
8
7
6
== Epfl, uniform, 0.9 ratio, 8
5] threads
4 == Epfl, uniform, 0.5 ratio, 8
threads
Epfl, zipf, 0.9 ratio, 8 threads
== Epfl, zipf, 0.5 ratio, 16 threads
6000 8000 10000 12000 14000 16000 18000
Target rps
310
200 —8— mutilate, 888 max packet size,
270 1M records, 0.9 ratio, 16
threads
250 =& mutilate, 88B max packet size,
230 3 1M records, 0.5 ratio, 4 threads
As mutilate, 12248 max packet
210 size, 10K records, 0.9 ratio, 4
threads
190 —d— mutilate, 12248 max packet
170 size, 10K records, 0.5 ratio, 4
threads
150
0 1000 2000 3000 4000 3000
Tametmps

(07)

Ewoéva 0.6: (a) Memcached, Mutilate, 1 ocbvdeon, 1 vijpa-epydatng. (B) Memcached, Mutilate,
1 oOvdeon, 1 vijpa-gpyatnc. () MemC3, Data Caching Benchmark, 1 ocbvdeon, 1 vijua-
epyamg. (8) MemC3, Data Caching Benchmark, 1 covdeon, 1 vijpa-gpydng. (€) MemC3,
Mutilate, 1 o0vdeon, 1 vijuo-gpydnc. (ot) MemC3, Mutilate, 1 oovdeon, 1 vipa-epydne.

Yvvolkd, ta amoteléopata dsiyvouy ott pio avoroyia 0.5 GET/SET anodidet
ueyaAvtepo pubpo dekmepaioong and pio avaroyio 0.9 GET/SET (kotd) pétpnon
™G UEYIOTNG OLEKTEPAUMTIKNG TKOVOTNTOG GCUVOPTNOEL TG OUVOUNG KAEWMUATOS, TO
TOPATAVE® YIVETOL TOAD TTO EUPAVEG GE VYNAEG TIUNG TNG SVVAUNG KAEWOMUATOC, OTTMC
eaiverar otig ekdveg 0.3 (a) kot (B)), evd Tapovctdlovy PHEYUADTEPO KATMOPAL pLOLLOV

18

dtekmepaimonc, mpotov 1 Kabvotépnon avéndel dpapatikd. ALilel vo onuelwdel g
T amoTeEAEo AT Yio X86 cuoTiata o8 OelyvouV GUVETELN, OTTMG QaiveTal oTi¢ Eukoveg
0.3 (o) xat (B). Qo10060, 01 SLOPOPES OTI SIEKTEPAUMTIKY IKAVOTNTO Y10, TIG SLAPOPES
TWEG ™C OOvaung KAEWdUaTog (0VoOTIKA, TOV apluod TOV SLOPOPETIKMV
KAEWOUATOV) elvol GYETIKA LKPES.

YYHETIKA LE TNV KATOVOUT TOV aKOAOVOEL 1] EMAOYT T®V KAEOIDV TOL POPTIOV,
eaivetal Twg n opotdpopen kot 1 Zipf, ot omoieg ypnooromOnkay, dev Topovctalovy
loitepeg O1POPEG OTNV amOd00T] TOL GLOTHUHOTOS. Q0TdG0, ®C TPOS 1T
OLEKTEPULMTIKY] KAVOTNTO, 1) OUOIOMOPPT) KOTOVOUN QOiveTol va Olvel eAAPPOS
ueyaAvtepo puOud dieknepainong oe cOykpion pe tn Zipf katavoun (Ewdveg 0.3 (o),
04 (a), 0.4 (y)). Ao Vv GAAN, kobBOc o pvBudg dlekmepaimong avéavetal, 1M
OLLOIOHOPPN KaTOvVOUN TEIVEL VO «EKTOEEVE TNV KAOVGTEPNON GE HEYOAVTEPES TULES
(Ewoveg 0.5 (a) ko (B)) 1 taydtepa (ewcovee 0.5 (g), 0.5 (o7), 0.6 (v), 0.6 (8)) o€ oyéon
ue 1t Zipf. Emmiéov, vynhotepor pubuoi dekmepainong emetedydnoav
YPNOLOTOIDVTAG QopTio peyddo aplBud mokétwv pikpol peyédovg, mapd and Eva
eoptio Mydtepav mokétwv peydrov ueyébovg (Ewovee 0.3 (B), 0.4 (B), 0.4 (8), 0.4
(o1)). Axoun, ta ypoeNUaTo TOL YPOVOL ATOKPIONG GLVOPTAGEL TNG MEYIOTNG
OLEKTEPUIMTIKNG KOVOTNTOG delyvouv OTL eoption optio piKpoy aplBpod TokEToV
peydrov peyébovg mpokadoHv paydaio avEnom tov YPOGHVOL AmOKPIoNG KATOTLY £VOG
KATOOAOL TOAD Yp1yopoTepa omd peyddo aptbpd mokétmv pkpov peyédovg (Ewkoveg
0.5 (y), 0.5 (3)).

Avapopikd e TN PEYIOTN SIEKTEPALOTIKT IKOVOTNTO GUVOPTNGEL TOL OPLOUOD
TV yuatov, o&iCel va onueimdel 611 1o MemC3 mapovcialel kKaidtepn KAMUAK®OON
and to Memcached, 6tav o &vanpem g d100£Tel TEPIGGOTEP OO EVOL VIIUALTOL, OTIMGC
eaivetat otig Ewkoveg 0.4 (g) ko 0.4 (o1) (o€ o0yKkpion pe ta avtioTotyo dtorypopLpoto
otic Ewovee 0.4 (y) xor 0.4 (8)). Emmpdcbeta, mapatnpodue 0Tl meptocdtepa
TOPOAANAL ouTtHpaTo 0dNYyovv o€ peyaAvTtepo puBud dekmepainong amd Tov
eEumnpetnn, YEYovOg oL €ivar AoYiKO, apov pio cUVOEST Kot Eva VIILO-EPYATTG OEV
elval apkeTd Y10 va TPOKOAEGOVY KOPEGUO TNG ENEEEPYACTIKNG 1GYVOG TOV.

EmumAéov, mpémer va onpewwbel mog 1o MemC3 mapovsialer koAidtepm
ovumepipopd and to Memcached wg mpoc to Ypdvo amdKPIoNG, UE TO TELELTAIO VL
VIOQEPEL AmO paydaies ALENGELS TOL XPOVOL OTOKPIONG TOAD YP1YOpdTEP OO TO
TpOT0, Kabmg avEavetat o puOudg dekmepainong (Ewoveg 0.6 (y), 0.6 (3)). Qotdoo,
yoo xopniég Tég pubpod diekmepaioong, to Memcached kot to MemC3
napovctalovv mapopola cvuprepipopd (Eucoves 0.6 (a), 0.6 (B), 0.6 (¢), 0.6 (o1)).

Mo va emitevybel pia meprocoOTePo v T Pdbel avdivon oYeTkd pe TNV
ektéleon tov Memcached og évav e&umnpetni X86 0pYITEKTOVIKNG, XPNOIUOTOIONKE
10 gpyodreio SystemTap, to omoio emTpénel TV EXOTTELGN TOV GLGTHUOATOS UECH
scripts ¢ opm@voung yAdooog. Xvykekpuyéva, to SystemTap (noli pe éva Python
script) ypnowomomOnke yw va petpnbel o xpovog Twv KAGEMYV GLOTHLOTOS TOV
oyetiCovion pe kdbe Tunpo Tov KOUKAOL ektédeons tov SystemTap (otoifa diktvov,
éleyyog maparinAiag, dtayeipion pviung, enegepyacio KAEW100-TIUNG). AkoAovBodv
T oYETIKG e apotikd anoteléopata (Eucoveg 0.7, 0.8, 0.9).

19

é 100 -
g 80
S e KV %
= Concurrency %
'-E 407 Mem %
£ 20+ Metwork %
u —
~ oS q.q:x %*a? o,'h>
- ﬁ o =T & o & o &
o Q-- o?
. . . . 4;./ / ,@/ g
N -{ﬂ'
Ewova 0.7: Memcached, avéivon koxlov ektédeonc.
120
o
)
Q
E Metwork %
2 KV 9
= Concurrency %
S Mem %
'1':3
q‘ 4:': ﬂnz ﬁgx
c#‘ éﬁ“ 4>‘5‘ ,t& @,w e*’ @ &7

S £ & &

N
Ewucova 0.8: MemC3, avilvon koklov ektéleon.

20

6
L}
s 5
&
§ 4
5 KV %
] 3
a B Concurrency %
'-g 2 ®m Mem %
£ 1 .
o R | N e e W -
F F F FFFFF
& 3 @ e & & 4 @
S & O £ & & & &
e ‘h ‘b wD o |5¥ WO w0
Q‘q’ {;j Qﬁh Q@ oy o Qﬁ?‘ “ r Oy

R
Ewova 0.9: MemC3, avdivor khklov ektédeong yopig enesepyocio SkTOOV.

Ta amoteléopata, mov omewkoviCovtar omv Ewodva 0.7, deiyvouv 6t TO
LEYOADTEPO €UMOOI0 OTNV amdOOGT TOV GLGTHUOTOS EIval Ol GYETIKES LE TN UVIUN
KMOELG GLUGTHUOTOC, TTOV KaToAauPdvouy, katd péon Tn, to 36% TOov KUKAOU
extédeonc. Ot oxeTIKES e TO OIKTLO KANGEIS GUOTNUOTOS Elval GVVEXDG Eva PEYAAO
KOpUATL TOL KUKAOL ekTéAeONC (29% Katd péon tun). EmmAéov, cupnepaivouvpe 6Tt
10 QopTio pe peyaro uéyebog mokétmv Kot pkpd péyefog eyypapmv dev amodidel Kald,
AOY® TOL HIKPOV TOGOGTOV oL KatoAapuPavel n emeEepyacio KAEW0V-TuNG. A&ilet
va onuetwdel mog o éleyyoc maporinAiog de @aivetar vo epmodilel onuavTIKE Tig
emdooelg Tov Memcached yia tig Tiuég mapapéTpwy Tov eTAEXOnKay.

[MapoéAn v oamovcio wopaAinAioc, 1N avdAvon Tov KUKAOVL EKTEAEGMG TOL
MemC3 mapéyetr g KoAvtepn ewdva. Apywd, €ivar epeovég OTL TO KOUUATL TOV
dktHov Kvplapyet Evavt Tov vroAoinwv (Ewodva 0.8). Me) Borfsia tov devtepov
Swypdppotog (Ewova 0.9), oty omoic 1 GLVEIGQOPA TOV GYETIKOV HE OIKTLO
KMoemv cvotnuatog £xel apopedel, paivetar 6Tl o1 GYETIKEG e TN VAU KANGELS
OLOTNHOTOG KATAAAUPAVOLY €va TOAD HIKPO TOGOOTO TOL KUKAOL ektéheons. H
enefepyacio KAEWWOV-TIUNG KoTaAouPavel €va OpKETE UEYOADTEPO TOCOGTO TOL
KOKAOL EKTEAEONG GE OYEON LE TO KOUUATL TOV OYETICETOL e T LVAU.

EmumAéov g viomoinong oe X86 cvotnua, o Memcached viomombnke otov
LS2085A enelepyaotr|, 0 0moiog dtoB€TEL VTTOAOYIGTIKOVG TVPNVES PAGIGUEVOVS TNV
ARM apyttextovikn. 1o oyetikd mepdpota ypnoponomdnke povo to Memcached
pe 100 TCP ovvdéoelg war 2 viuata-gpydres. To mepopatikd omoteAéopoTo
napotifevtonl TopaKATo.

21

"]
[-%
©

MEY16TN SIEKTEPOLMOTIKT] IKAVOTNTO GUVUPTHGEL OVVAUNC KAELODNATOC

18000 120000
I e Camnenmseeea
14000 100000
= mutilate, 88B max packet
+ 12000)) . B00DO size, 1M records, 0.9 ratio
—_ 5
2 10000 U.nn‘arm, 0'9 ratio 2 =& mutilate, 888 max packet
g T L | , =& Zipf, 0.5 ratio 2 50000 size, 1M records, 0.5 ratio
2 goo0 R T B g T e])) H
£ ./_ Zipf, 0.9 ratio £ Mutilate, 12248 max packet
& 6000 ==& Uniform, 0.5 ratio ¥ 40000 size, 10K records, 0.9 ratio
€ 4000 E —#— Mutilate, 12248 max packet
20000 size, 10K records 0.5 ratio
2000 i
]]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 012 3 4567 8 910111213
lock power lock power
(o) (B
Ewova 0.10: (o) Memcached, Data Caching Benchmark. (B) Memcached, Mutilate.
, , , , , 1 ,
MS’YIGTTI SISKTCSD(II(DTIKH LKOVOTITA GLUVUPTIGEL GDIOHOD VIUATOV 8&1)7"] PETNTN
)
17000 ,‘Q,Q P
e
Fs
15000 o
o QQQ —&— mutilate, 888 max packet size, 1M
D.QQQQ records, 0.5 ratio
13000 & epil, uniform, 0.9 ratio 3 » —&— mutilate, 88B max packet size, 1M
1 520,99, 0.0 o1l Sy records, 0.9 ratio
—®—epil, §=0.99, 0.) Mutilate, 12248 max packet size,
11000 epil, uT\fnrm, 05ratio ge b’bQO,Q 10K records. 0.9 ratio
epfl, 6=0.99, 0.5 ratio o Mutilate, 12248 max packet size,
& 10K records 0.5 ratio
9000 » e
£
o
P e
7000 »D)QQQ
o
o o
5000 0 2 4 6 8 10 12 14 16 18
0 2 4 6 8 10 12 14 16 18 # of threads

of threads

(o)

(B)

Ewova 0.11: (o) Memcached, Data Caching Benchmark. (B) Memcached, Mutilate.

22

95th percentile (ms)

average latency (us)

95th percentile (us)

XpoOvoc awOKPLENC GUVOPTNGEL UEYLGTNC OLEKTEP UIMTIKNC LKAVOTNTOC

1200
T00
1000 - 600
800) _ 500 L
—I—E]?E,agsmfarm, 0.9 raio, 16 2 im0 == Epfl, uniform, 0.9 ratio, 16
600 -) E threads
Epfl, Zipf, 0.9 ratio, 16 threads § 300 Epfl, Zipf. 0.9 ratio, 16 threads
400 —i— Epfi, pr, 0.5 ratio, 1.6 threads % 20 Epfl. Zipf. 0.5 ratio, 16 threads
200 === Epfl, uniform, 0.5 ratio. 16 g o— Epfi, uniform, 0.5 ratio, 16
| threads g 100 threads
| m [
0 0
F &S S & S P L P S
Target QPS Target GPS
(o) (B)
14000
6000
12000
5000
10000
4000 .
£ 8000 —— mutilate, 12248 max packet
3000 == mutilate, 88B max packet size, }._’ Sr']ze“leOK records, 0.9 ratio, 4
1M records, 0.9 ratio, 4 threads g 6000 threa
2000 —#— mutilate, 888 max packet size, 5 4000 —— mmllate, 12248 max pacl_(et
1M records, 0.5 ratio, 4 threads = size, 10K records, 0.5 ratio, 4
1000 g 2000 threads
0 0
FELFESEET TS FECEFLLEEEEES
Target QPS Target QPS
2300 18000
16000
2000 14000
. 12000
1500 2 10000 —8— mutilate, 12248 max packet
== mutilate, 888 max packet size. oy size, 10K records, 0.9 ratio, 4
1000 1M records, 0.9 ratio, 4 threads E; 8000 threads
—#— mutilate, 888 max packet size, E 6000 == mutilate, 1224B max packet
500 1M records, 0.5 ratio, 4 threads g 4000 size, 10K records, 0.5 ratio, 4
] threads
@ 2000
0 0
FFEFFSEFF S S SESSSEEESELESE

Target QPS
(¢)

Ewova 0.12: (o) Memcached, Data Cachi
Benchmark. (y) Memcached, Mutilate.
Mutilate.(ot) M

Target QPS
(o7)

ng Benchmark. (B) Memcached, Data Caching
(6) Memcached, Mutilate. (¢€) Memcached,
emcached, Mutilate.

23

Tao avotépm dtoypaupato deiyvouy o id1o YopaKTNPIoTIKE e TNV TEPITTOON
Tov X86 GUOTNUOTOG GVAPOPIKA UE OAAUYEC OTIC TAPAUETPOLS TOL QopTiov. [To
OLYKEKPIEVA, O €ELINPETNTNG TEIVEL VO 0modidel koAvTepa pe pio avaioyio 0.5
GET/SET o¢ oyéon pe pio avoroyioo 0.9 GET/SET, kabmdg ot peyoaddtepm
OLEKTEPALMTIKY] IKOVOTNTA Kot STIPapdTNTO MG TPOG TO YPOVO AmOKPIoNG UE UEYAAO
péyebog eyypapmv kot pkpd péyedog TaKETwv Topd pe PKpo HEYEDOC eyypoapodv Kot
ueydro péyeboc moxétwv. Emmpocheta, n opodpopen ko 1 Zipf xatavoun mov
aKOAOVOOVV TO KAELLA 001 YOVV GE TOPOUOLES EMOOGELC.

Qot600, 0o LS2085A, o omoiog kdvel yprion mupnvev Paciopévav oty
apyrtektovikn ARM, paivetal va emituyyavet vynAdtepovs pubpote diekmepainong oe
oyéon pe tov eneepyaotn| Intel Xeon, mov givon X86 apyrrektovikng (yia Ti¢ 116G TIHES
TOPOUETPOV), KPATOVTAS TO Xpovo omokpiong otabepd (Ewdvec 0.10 (a), 0.10 (B), 0.11
(o), 0.11 (B)). Amd v GAAN TAELPA, O TPMTOG PAIVETAL VO EYEL UKPOTEPT AVOYT OF
VYN OLEKTEPALMOTIKT KAVOTNTO OO TO OEVTEPO, TPAYLO TO OToio PaiveTol Amd TO
yeyovog OtL 0 xpovog Kabvotépnong avePaivel mepiocdTePo OTaV Eva KATOPAL pOLOD
dekmepainong &xet Eemepaotel (Ewcoveg 0.12 (a), 0.12 (B), 0.12 (y), 0.12 (), 0.12 (¢),
0.12 (ot)). Axoun, mpéner vo. onuelmbel mog, pe €va 6OVOAO OES0UEVMV TOV
yopaktnpileton amd peydro péyeboc eyypoaeav kot pukpd péyebog maxétwv, O
LS2085A emttuyydverl dtekmepamtiky| tkavotnta pio ta&n peyéboug peyolvtepn amd
TNV OVTIGTOL(T TTOL TPOKLTTEL O GHVOLO JESOUEVMDV OV Yopaktnpiletal amd piKpo
uéyebog eyypaeav kot peydro péyebog makétov (Ewoveg 0.10 (b), 0.11 (b)).

Téhog, mpaypoatomomOnKoy HETPNOELS Y10 TN OEKTEPOULMTIKY KAVOTNTO OV
Hovada 1oyxvog, M®oTE va Pavel av gival m@éAun 1 vAoroinon tov Memcached og évav
eneéepyaot) Paciopévo oe ARM apyitextovikyy amd ™ oKOTd NG KOTOVOAMONG
woyvos. Kabwg avéavotav o apBuoc tov vnudtov tov eéumnpetntn, to omoio
avafétovtay oe CLYKEKPIUEVOLG emelepyaoTikohg Tupnves, Ppébnke Ot 1 péyiom
dtekmepotwtikn wavomra etvor 165 KRPS (yihdoeg axtipata avd deutepdriento) yia
5, 6, 7 xau 8 viuota. Kotd ovvémewa, yioo ™ pétpnon g katavdiwong oyvog,
emAEYONKE 0 eAdylotog aplBudc vmudtov, onAadon 5. Me 1t PonBeia Patopétpov,
petpnnke 0t 0 e&umnpeNS Katavdimoe 51.6 W oe npepia, 58.5 W pe 6Aovg toug
mopnveg evepyovg kot 57.2 W pe mévte moprveg evepyovs. Katd cuvénela, n pnéyiot
dekmepamtiky wovotta tov LS2085A eivon 160KRPS/57.2W = 2.9 KRPS/Watt. H
obykplon pe diiec viomomoelg tov Memcached mov Bpickovion ot Biproypaeio
(OiVOVTOL GTOV TOPOKAT® TTivoKa.

24

Yhomoinon PvOpoc Aekmepaioong KRPS/Watt
(KRPS)

MemC3 (NSDI ‘13) 1500 KRPS 3.8
LS2085A 165 KRPS 2.9

Ylomoinon oc Xeon 700 KRPS 1.8
(NSDI ‘14)

Ylomoinon oc Xeon 410 KRPS 1
(ISCA’13)

Ylomoinon oc Xeon 300 KRPS 0.8
(ISCA ‘15)

[Mivaxag 0.1: bykpion viomoinong tov Memcached otov LS2085A pe Ghlec VAOTOMGELG

Amd T TEWPOUOTIKE OTOTEAEGUOTO UTOPOLV vo. ovTAnfoldv kdmolo
CLUTEPGGOTA GYETIKG [E T cvumepipopd tov Memcached. Apyud, to Memcached
eatveror va mapovotdlel mpoPAnuata anévavtt oe outipata torov GET mapd SET.
Av16 ogeidetarl 6To Yeyovag ot T ontipata tomov GET koaotilovv mepiocdtepo amd
To outipato Torov SET' ta mpdta amottovv 7 kootoBopa Pripata yio v EKTEAEGTOVY,
evo Ta OevTepa 6 amAovotepa Puata. EmmAéov, to aitqua GET propel va epmiéxet
KA£101 TO 071010 dEV VTLAPYEL GTNV KPLPT VAN, YEYOVOGS TO 0Toi0 EMPAAAEL TEPALTEP®
kaBvotépnon. Axoun, moAAd mokéto pe pkpod pEyefog HELOVOLV OMUAVTIIKG TN
dekmepomtiky wkavomrta tov Memcached ce oyéon pe Alyo mokéta peyaiov
peyébovg, OOTL Ta MPAOTO TMPOKAAOVV kopeoud TG coinveons s CPU tov
e€ummpemn, eved T TEAELTAIO OEV KOTUPEPVOLV VO TPOKOAECOVV KATL TETOLO.
Yuykekpéva, To teAevTaio £100g poptiov mepropiletar amd to £0Pog LOVNG TNG KAPTOS
Olemapng OKTHOL TOL €ELANPEINTY, MOV, OTIS TMOPATAVEO TEPUITAOGCELS, OEV
aSlomomOnke €& ohokAnpov. QoT1060, GTO TOPATAVED TEPAPATO TOPOTHPNONKOV
KOAVTEPEG EMOOGELS LE UIKPOVL pHeYEBOVG akETa o cOykplon pe peydiov peyéboug
ToKETA. AVTO CLUPOLVEL ETELON YOPOVV AYOTEPA AVTIKEIHEV GTN) UV U (o€ oYéomn Le
Vv TPOTN TEPITTOON) Ko eivan Alya og mAn0og. vvenmg, n mhoavotnta va {ntnOel
OVTIKEILEVO IOV £YEL TPOTYOLUEVMG EKOLOYOEL Ao TNV KpLEN LviUN elvan peyavTep,
ooMymOVTOG o YauUnAOTEPN OlekmepaldTikn wavotta. Emmpdcbeta, mpémer va
onuewdel mwg N Kotavoun mov akoAovBel n emAloyn tov KAEWWD de Qaivetar vao
emnpedlel oNUOVTIKG TIG EMOOCELS TOV GLGTHLOTOS, OV KOl GLVNOMS 1 opoLOHOPEN
KOTOVOUT €01ve KOADTEPO OTOTEAEGUATO OC TPOC TN OEKTEPOUMTIKY IKOVOTNTO.
Qo1060, 0 YPOVOG EKTEAEONG ElvaLl £VOG ONUAVTIKOG TOPAYOVTOS DGTE VO, KATOOEL e
oV aLTN N TOPAUETPOG EMNPEALEL CNUAVTIKG TO CLGTNHO 1] OYL.

YyeTk@ pe v avdAvon tov kOkAov ektéleong tov Memcached, kotéot
Qovepd TO YEYOVOG OTL Ol CGYETIKEG PE TN OloXElPLon UVAUNG KANGELS GLGTIUATOG
QTOTEAOVV GILOVTIKO MO0 6TV omddoon Tov Memcached, aveEaptnto Tov €idovg
TOV POPTIOV. LVVETMG, CUUTEPAIVETOL OTL TO CGYLLOL dLoyElPLoNG LVIUNG HE TAAKES OEV
etvar Waitepo amodotikd. EmumAiéov, 10 moapeyOpevo and to AEITOVPYIKO CUGTN LN
POSIX 1/0 emPapiverl onpovrikd to Memcached, kabiotdvtog o akatdiinio yio £va
amodoTIKO cuoTnua amodnKevong Levyovg KAEO10V-TIUNG.

Avagpopkd pe to MemC3, elvar eppaveg 0Tt pmopet va emtiyel TOAD KaAVTEPES
emdooelg omd o Memcached, ywpic kav vo ypnoipomombody 6Aeg o1 BEATIGTOTOGELG

25

7oL &ovv yivel. Avtd deiyvel 6T To oyfua Katakepuatiopuov Tov Memcached dev giva
amodoTIKO, UE To avtiotoryo oynuo Tov MemC3 va amotelel P KAAVTEPT) ETAOYT.

Télog, m vAomoinon tov Memcached otov LS2085A édeiée kaAd
AmOTEAEGUATO. AVOTNPE MG TPOG TIG EMOOGELS, EMTEVYON LEYOAVTEPT SIEKTEPOUWTIKN
KavOTNTa € GYEoT e TO X86 e&umnpetnTn, 1010iTEPA Y10 TO EHKOAN OVTILETOTICLLLOL
(QOpTiO, TEPUTTMOELS OTIG OTO1Eg LANPYE doPopd piag TAENS peyébovg otnv amddoon.
Qo61660, 0 YPOHVOS amOKPIONG ALEAVETOL TTLO YPTYOPa KOOMG 0LEAVETOL 1] TIU-GTOYOG
oV pLOUOY dekmepaimonc otov LS2085A oe oyéon pe tov X86 e&ummpetnti. Axoun,
0 LS2085A eupavice eEapetikn amddoon avdé Lovada 16y00G, EEMEPVAOVTAG UPKETES
viomomoelg o evmnpetntég pe Intel Xeon CPUS mov avagépovtatl otn BipAoypapio.
Yvvolkd, Oo mpémer vo efetootel cofapd cav vmoynelr TAATEOPUO Yo TO
Memcached ka1 GAAec cuvaQeic epapuoyEC.

Y10 péhdov Ba Mrav Kohd vo egetactodv ot duvatdtnreg tov MemC3
aSlomolwvtog TANP®S TIG PEATIOTOTOMGES TOL €YoLV Yivel, OAAG Kot TANPN
TopoAAla. AAAo wopdpHolo. GLGTAHATO HTOpoVV vo e&etacBolv Yoo GKOTOVG
oUYKPIONG G€ OPOpO. GEVAPLOL KOl GLUVOLOCHOVS mapopétpov. To mopamdve
ocvotipate arodnkevong (ebyovg KAEWO100-TIUNG uropohv va LAOTOmMBoLV 1060 o€
egummpem apyrtektoviknig X86, 6co otov LS2085A. Emiong, Oa mpémer va
EKTEAEGTOVV TEPAUOTO UEYOHANG YPOVIKTG SIAPKELNS, OAAALOVTOG TNV KATOVOUTR TOV
axolovbei n emAoyn TV KAeWOV, ®ote va e&akpiPwbel n enintwon mov £xet T0 £160¢
NG KOTOVOUNG OTLS EMOOGELS TOV GLOTHHATOS. TéA0G, Ba NTav evolapépov va yivel
npoonadelo. TANPOLS AElOTOMGELS TOV VAOTOMGE®V oL dtnbétet o LS2085A ya
OIKTLOKEG EQOPUOYEC.

26

27

V. CONTENTS

0000 g VAN & (PSPPSRSO 7
N = 1 I =\ o LR STPPR 8
[R 0% 0N 2 5 24 N 1 D) S PSPPI 10
IV. EKTETAMENH IIEPIAHYH..........cocoiiiiiiiiiiiiiiiiee ettt e e e e e seattte e e e e e e e e s nnnraneeeeas 12
[©0] Vi = 1 RSP RRSTSRSTRN 28
1. INTRODUCTION .. uitiiie ettt e ettt e e sttt e e e et e e e s st e e e s st e e e e e nbe e e e e snsaaeeeannaeeeeannreeeeeannes 31
1.1. High Performance COMPULINGccoiiiiieiiiieiic ettt 31
1.2. Distributed COMPULINGcvviiiiiiiie e 32
1.3, CloUd COMPULING ...vviiiiieie ettt s re e et e et e sbe e e e srestaesre s 33
1.4, KEY-VAIUE STOTE.....c.eoiiiiieiieiei ettt 35
2. MEMCACHED RELATED WORKccutiiiitiieiiieesieeessteeesieeessteeessseeesssessnssesssseesnsseennns 39
2.1. Memcached adVANTAGEScccoiiiririeieiei e 39
2.2. Memcached DOTLIENECKScoviiiiieii et 39
2.3. Memcached OptiMIZATIONScccooviiiieieie e 40
2.3.1. SOftware OPtiMIZATIONS........cccoiviiiiiieie s 40
2.3.2. RDMA-based optimizations..........cccccciiieiiiiiiie it 44
2.3.3. Hardware OptimiZationscccooeieiiiiinise e 48

3. IMPLEMENTATION IN X86 AND ARM-BASED ARCHITECTURES........ccccvvrrireeiieeennn 57
3.1. Memcached and MEmMEC3 ..ot e et 57
3.1.1. MEMCACKNEA ... e e e 57
3.1.1.1. Memcached COMMEANTScccceiieiiee et sre e re e e e e sraenreens 57

3.1.1.2. HaSN TaDIE ..ottt 58

3.1.1.3. MemOry ManagemMENT.......cccuiiiieiiee ittt ste e ste e st sae e s eesbe e s beessbeesrbeesnaee e 59

TR |V, =1 o [SO SRRSUS 60

3.2. BENCAMAIKS ...t et st be e be et e e s be e ste e e raeenre e 61
3.2.1. Data Caching BENChMArK...........ccccoiiiiiii i 61
B.2.2. MIULIHALE ...ttt be e be e be e beesbeesbeeerneenneebeens 61

3.3. EXperimental RESUILSooioiiii e 64
3.3.1. X86 IMPIEMENTALION ..o e 64
3132, SYSTEMT AP .ttt bbbttt b bbb 69
3.3.3. Communication Processor Implementation...........cccccoovveiviienenieeiene e 72
3.3.4. Communication processor/x86 Comparison on Power Consumption............ 74

O OL o] N[0 I U 1] [0 N RS UPRTPRTRPTRN 77
5. FUTURE WORK ...ttt ettt ettt e st ettt e e st e e e e st a e e e sntta e e e s nnnneeeennntnaaeennsanaeeans 80
REFERENCES.eiiiiittite e i ittt e e sttt e e et e e e st e e e e st e e e e sstt e e e e aansaeeeeantaeeeesnnneeeeaansreeeeannnes 82
F N =] 5 o =3 TSP 85

1. SYSTEMTAP SCRIPT FOR CREATION OF FILE TO BE PARSED CONTAINING
NETWORK-RELATED SYSTEM CALL TIMESTAMPS.......cooiiiiiiiii 85

28

2. PYTHON PARS

ING SCRIPT .ot

LIST OF FIGURESviiiitieiitie sttt sttt sttt et e et e e e e enbe e e enbne s

LIST OF TABLES

29

30

1. INTRODUCTION

1.1. HIGH PERFORMANCE COMPUTING

A notion and sector of computing that has impacted modern applications greatly
is high performance computing (HPC). High Performance Computing most generally
refers to the practice of aggregating computing power in a way that delivers much
higher performance than one could get out of a typical desktop computer or workstation
in order to solve large problems in science, engineering, or business [16].

High-performance computing has become indispensable to the ability of
enterprises, scientific researchers, and government agencies to generate new
discoveries and to innovate breakthrough products and services [17]. More specifically,
high performance computers of interest to small and medium-sized businesses today
are really clusters of computers. Each individual computer in a commonly configured
small cluster has between one and four processors, and today’s processors typically
have from two to four cores. In HPC, individual computers in a cluster are often referred
to as nodes. A cluster of interest to a small business could have as few as four nodes,
or 16 cores. A common cluster size in many businesses is between 16 and 64 nodes, or
from 64 to 256 cores [16]. In science, HPC provides the tools and methods needed for
data intensive and computationally intensive applications. For example, the Human
Genome Project uses HPC in order to determine the sequence of nucleotide base pairs
that make up human DNA and of identifying and mapping all of the genes of the human
genome from both a physical and functional standpoint [18]. Another well-known
example is IBM’s Watson, a supercomputer which, in tandem with its cognitive
capabilities, tackles challenges in Big Data in healthcare and finance [19].

31

Typical HPC Workflow
High-throughput Tier 2 Storage
Instruments X200 1Q NL-Series

HPC Compute Cluster

Tape Library

i Experimental Data
=
Compound Libraries

Local Researchers and Analysts Remote Researchers and Analysts

Figure 1.1: Typical HPC Workflow [50].

1.2. DISTRIBUTED COMPUTING

As mentioned before, computers are organized in clusters. Thus, computing
resources, as well as databases, tend to exist in different computers, rooms, buildings,
countries or continents. Thus, there is a field of computer science that studies distributed
systems: distributed computing. A distributed system is a model in which components
located on networked computers communicate and coordinate their actions by passing
messages. The components interact with each other in order to achieve a common goal.
Three significant characteristics of distributed systems are: concurrency of components,
lack of a global clock, and independent failure of components [20].

The key goals of a distributed system include:

e Transparency: Achieving the image of a single system image without
concealing the details of the location, access, migration, concurrency,
failure, relocation, persistence and resources to the users.

e Openness: Making the network easier to configure and modify.

e Reliability: Compared to a single system, a distributed system should be
highly capable of being secure, consistent and have a high capability of
masking errors.

e Performance: Compared to other models, distributed models are expected to
give a much-wanted boost to performance.

e Scalability: Distributed systems should be scalable with respect to
geography, administration or size.

32

In the enterprise, distributed computing has often meant putting various steps in
business processes at the most efficient places in a network of computers. For example,
in the typical distribution using the 3-tier model, user interface processing is performed
in the PC at the user's location, business processing is done in a remote computer, and
database access and processing is conducted in another computer that provides
centralized access for many business processes. Typically, this kind of distributed
computing uses the client/server communications model. [21]

1.3. CLouD COMPUTING

The above notions, methods and models help power modern applications, which
exist and are accessible through the cloud. Consequently, it would be fair to say that
cloud computing is changing our lives in many ways. We are, as never before, seeing
cloud technology impact our world on many levels. The likes of YouTube and Google
are testimony to a shift in how people are now interacting with each other. From remote
locations to the global center stage, an event can reach the four corners of the planet by
going viral. Global has reached its true significance, and we’ve seen the emerging of
the “citizen journalist” on this global stage. [43]

So, what is cloud computing? Cloud computing is a type of Internet-based
computing that provides shared computer processing resources and data to computers
and other devices on demand. It is a model for enabling ubiquitous, on-demand access
to a shared pool of configurable computing resources (e.g. computer networks, servers,
storage, applications and services), which can be rapidly provisioned and released with
minimal management effort [45], [46].

The Cloud

—

4

Smartphone Laptop
Tablet Desktop

Servers

Figure 1.2: Cloud computing represents a major generational shift in enterprise IT [51].

33

Nowadays, anyone can turn into an instant reporter and live news feeds are
constantly streaming the media, at times sparking social upheavals. Through social
networks, one can look up forgotten friends and classmates with ease; Facebook is a
prime example of this. Twitter has turned into a platform for public figures and
politicians in order to convey their views to the public and influence peoples’ opinion.
Furthermore, social media platforms, in combination with cloud-based information
resources, provide an immense data pool from which businesses can get better insights
on potential services, innovations and customer requirements, if analyzed properly.

Cloud computing has had an enormous impact on education, as well.
Educational institutions have been quick to realize the advantages of cloud technology
and have been eagerly adopting it for several reasons, including:

e Ability for the students to access data anywhere, anytime, to enroll in online

classes and to participate in group activities.

e The value of combining business automation processes to streamline
subscription, class enrollments and assignment tracking, thus reducing
expenses significantly.

e Ability for the institutional body to leverage the storage cloud to store the
daily 2.5 quintillion bytes of data securely and without the need to cater to
a complicated infrastructure.

e The benefit of process billing and charging for education and non-education
related activities.

e While these are probably most obvious in a mature and developed market,
cloud computing technology also offers benefits to students from
developing countries. Access is now instantly available and in many
instances free thanks to the proliferation of websites dispensing educational
material and cloud knowledge-sharing communities.

As mentioned above, cloud technology also offers other benefits to developing
countries since they no longer have the burden of investing in costly infrastructures and
can tap into data and applications that are readily available in the cloud. This does not
apply only to education, however, as the same can be said about banking, agriculture,
health and science. A prime example of this is the telecom industry, with developing
countries embracing the smart mobile technology that accelerated development by
leaping over the traditional wire and copper infrastructure.

Finally, cloud computing has changed the health sector quite noticeably. There
are many reasons why using cloud technology in the healthcare industry is gaining pace.
Some examples include:

e Managing non-siloed patient data and sharing it among different parties such
as medical professionals or patients checking their own status and treatment
follow-ups;

e Reducing operational costs such as data storage;

e Accessing this data through pervasive devices such as mobile phones and
going beyond the traditional intranet;

e Implementing a quick solution in a secure environment that is compliant
with the Health Insurance Portability and Accountability Act regulations.

34

While there may be challenges in integrating old or current tools with new
technologies and the corresponding level of services, the benefits will outweigh the
inhibition to move to the cloud. According to the industry, healthcare will be a growing
market in the coming years, running into the billions [43], [44].

1.4. KEY-VALUE STORE

Nowadays, as consumer needs increase, web services generate an
unprecedented amount of structured and unstructured data. Because service providers
derive tremendous value from obtaining fast access to such data, it is critical to have
the right infrastructure for data storage and retrieval. Scale-out technologies and key-
value stores have become the de facto standard for deploying such infrastructure, as
most of the largest content-serving systems rely on the ability to scale quickly in
response to increasing client traffic and data generation [4].

A key-value store, or key-value database, is a data storage paradigm designed
for storing, retrieving, and managing associative arrays, a data structure more
commonly known today as a dictionary or hash. Dictionaries contain a collection of
objects, or records, which in turn have many different fields within them, each
containing data. These records are stored and retrieved using a key that uniquely
identifies the record, and is used to quickly find the data within the database [47].
Many implementations that are not well-suited to traditional relational databases can
benefit from a key-value model, which offers several advantages, including:

e Flexible data modeling: Because a key-value store does not enforce any
structure on the data, it offers tremendous flexibility for modeling data to match
the requirements of the application.

e High performance: Key-value architecture can be more performant than
relational databases in many scenarios because there is no need to perform lock,
join, union, or other operations when working with objects. Unlike traditional
relational databases, a key-value store doesn’t need to search through columns
or tables to find an object. Knowing the key will enable very fast location of an
object.

e Massive scalability: Most key-value databases make it easy to scale out on
demand using commodity hardware. They can grow to virtually any scale
without significant redesign of the database.

e High availability: Key-value databases may make it easier and less complex to
provide high availability than can be achieved with relational database. Some
key-value databases use a masterless, distributed architecture that eliminates
single points of failure to maximize resiliency.

e Operational simplicity: Some key-value databases are specifically designed to
simplify operations by ensuring that it is as easy as possible to add and remove
capacity as needed and that any hardware or network failures within the
environment do not create downtime [48].

There are many key-value stores that are used commercially. The most well-known

key-value store is Memcached, which is the focus of this thesis. Memcached is an open-
source, general-purpose distributed memory caching system. It speeds up dynamic

35

database-driven websites by caching data and objects in RAM to reduce the number of
times an external data source must be read. Its simple design promotes quick
deployment, ease of development and solves many problems facing large data caches.
Its API is available for most popular languages [22]. Memcached was originally
developed by Danga Interactive for LiveJournal, but is now used (or has been used) by
many other systems, including MocoSpace [23], YouTube [24], Reddit [25], Survata
[26], Zynga [27], Facebook [2], [28], [29], Orange [30], Twitter [31], Tumblr [32] and
Wikipedia [33] and has been the basis and inspiration for many newer key-value stores.

Database/Storage
= e Mysm/ MvSQl/ Mysm/ MvSQI-/
NoSQL NoSQI.
Tier Cache Cache
2 SOLARFLARE onnumm _\ - o

- l COCL

Tier

Web Server Web Server Web Server

Figure 1.3: Web Server/Memcached/Database tier.

Another very popular key-value store is Redis. Redis (REmote Dlctionary
Server), which is mainly developed by Salvatore Sanfilippo and is currently sponsored
by Redis Labs, is an in-memory database open-source software project implementing a
networked, in-memory key-value store with optional durability. Redis supports
different kinds of abstract data structures, such as strings, lists, maps, sets, sorted sets,
hyperloglogs, bitmaps and spatial indexes. Redis is used commercially by Twitter [34],
Github and Blizzard Interactive [15].

LinkedIn makes use of Voldemort, which is a distributed data store that is
designed as a key-value store used for high-scalability storage. Voldemort is neither an
object database, nor a relational database. It does not try to satisfy arbitrary relations
and the ACID properties, but rather is a big, distributed, fault-tolerant, persistent hash
table [35].

Amazon adopts a different approach. Amazon’s subsidiary, Amazon Web
Services, provides on-demand cloud computing platforms to both individuals,
companies and governments, using the technology of the same name. Amazon Web
Services uses Amazon ElastiCache, which is a fully managed in-memory data store and
cache service. Amazon ElastiCache supports both Memcached and Redis (also called
“ElastiCache for Redis”). As a web service running in the computing cloud, Amazon
ElastiCache is designed to simplify the setup, operation, and scaling of memcached and
Redis deployments. Complex administration processes like patching software, backing

36

up and restoring data sets and dynamically adding or removing capabilities are managed
automatically. Scaling ElastiCache resources can be performed by a single API call
[36], [37].

Finally, Facebook turned to a flash memory key-value implementation.
Compared with memory, flash provides up to 20 times the capacity per server and still
supports tens of thousands of operations per second Thus, Facebook replaced
Memcached with McDipper, a flash-based cache server that is Memcache protocol
compatible (Memcache is Facebook’s Memcached implementation, which is further
discussed in chapter 2) [38].

Hash Buckets Data Volume

/\.

key key

.ee oo large value "e
value v

Figure 1.4: McDipper storage layout. [39]

37

38

2. MEMCACHED RELATED WORK

As has already been discussed, distributed in-memory key-value stores have
become a critical part of the infrastructure for large scale Internet-oriented datacenters.
They are deployed at scale across server farms inside companies such as Facebook,
Twitter, Amazon and LinkedIn [1]. In particular, Memcached, which is the focus of this
thesis, is one of the most popular choices implemented by the industry.

In this chapter, work related to Memcached will be presented. This work is
conducted by researchers from both the industry and academia and is primarily focused
on optimizing Memcached using varying methods and secondarily on identifying its
bottlenecks. Before presenting this work, however, Memcached’s advantages will be
summarily presented.

2.1. MEMCACHED ADVANTAGES

One of the most fundamental aspects to Memcached is its all-in memory design.
By solely utilizing memory, Memcached provides lower latency data access than other
comparable storage systems. This low-latency performance is critical for interactive
web applications, evidenced by web service providers such as Facebook and Zynga
dedicating an entire tier of servers to Memcached [4].

Moreover, Memcached is easy to scale from a cluster perspective. Memcached
servers themselves do not directly interact, nor do they require centralized coordination.
If either throughput or capacity demands grow, a pool can be scaled simply by directing
clients to connect to additional servers; consistent hashing mechanisms immediately
map a fraction of keys to the new servers. Operationally, it is useful that key-value
throughput can be scaled independent of the back-end storage system (database servers
are typically considerably more expensive than Memcached servers) [3].

2.2. MEMCACHED BOTTLENECKS

Unfortunately, Memcached presents poor scalability in terms of performance.
It does not achieve the performance that modern hardware is capable of [1]. As such,
there has been a dire need to pinpoint Memcached’s bottlenecks, which prevent it from
scaling well. To that end, a lot of research has been conducted by experts both in the
academic and industrial field. Work in [1] suggests that the issue is that Memcached
uses the operating system’s network stack, heavyweight locks for concurrency control,
inefficient data structures, and expensive memory management. These impose high
overheads for network processing, concurrency control, and key-value processing. As
a result, Memcached shows poor performance and energy efficiency when running on
commaodity servers.

39

Furthermore, it is mentioned in [3] that Memcached suffers from architectural
inefficiencies. More specifically, the most significant bottlenecks lie in the processor
front-end, with poor instruction cache and branch predictor performance. Also, it is
shown that object size plays a significant role in Memcached’s performance: below 1
KB, performance is CPU-bound, while above 1 KB object size, the performance
bottleneck shifts to the network. However, it should be noted that the quality of the NIC
used is more important than raw bandwidth [3].

Another bottleneck was the global cache lock that Memcached utilized for
concurrency control. In particular, the global cache lock was a major bottleneck for
Memcached’s performance for more than four threads. However, this has been
resolved, as lock striping has been implemented to reduce lock contention [40].

2.3. MEMCACHED OPTIMIZATIONS

2.3.1. SOFTWARE OPTIMIZATIONS

MemC3

MemC3 (Memcached with CLOCK and Concurrent Cuckoo Hashing) is
introduced in [10] and features several software optimizations. MemC3 has
architectural features can hide memory access latencies and provide performance
improvements, leverages workload characteristics and introduces a new hashing
scheme. These changes will be presented more thoroughly in chapter 3.

MICA

In [14] MICA (Memory-store with Intelligent Concurrent Access) is presented,
which is an in-memory key-value store that achieves high throughput across a wide
range of workloads. MICA can provide either store semantics (no existing items can be
removed without an explicit client request) or cache semantics (existing items may be
removed to reclaim space for new items). Under write-intensive workloads with a
skewed key popularity, a single MICA node serves 70.4 million small key-value items
per second (Mops), which is 10.8x faster than the next fastest system. For skewed, read-
intensive workloads, MICA’s 65.6 Mops is at least 4x faster than other systems even
after modifying them to use our kernel bypass. MICA achieves 75.5-76.9 Mops under
workloads with a uniform key popularity. MICA achieves this through the following
techniques:

e Fast and scalable parallel data access: MICA’s data access is fast and scalable,
using data partitioning and exploiting CPU parallelism within and between
cores. Its EREW mode (Exclusive Read Exclusive Write) minimizes costly
inter-core communication, and its CREW mode (Concurrent Read Exclusive
Write) allows multiple cores to serve popular data. MICA’s techniques achieve
consistently high throughput even under skewed workloads, one weakness of
prior partitioned stores.

40

CPU core

CPU core

Shared
data

| CPU core —{ Partition |
| CPU core —=| Partition |
| CPU core —>{ Partition |
| CPU core ——>{ Partition |

(a) Concurrent access

(b) Exclusive access

Figure 2.1: Parallel data access models. [14]

e Network stack for efficient request processing: MICA interfaces with NICs

directly, bypassing the kernel, and uses client software and server hardware to
direct remote key-value requests to appropriate cores where the requests can be
processed most efficiently. The network stack achieves zero-copy packet 1/0

and request processing.

New data structures for key-value storage: New memory allocation and

indexing in MICA, optimized for store and cache separately, exploit properties
of key-value workloads to accelerate write performance with simplified

memory management.

N Y p—
[Clicnt 1 W CPUcore NT" 0" | i,
. At i~ Parallel % Key-value }
- '\efq““‘;\ﬂ“ B CPUcore H—data — % data |
i NIC staek : : . N . :
39 49 ACLESsS '__‘E structures :
| (§3:2/842) Pl 1 (g9.1/84.1) N3 (§3.3/§4.9)

Figure 2.2: Components of in-memory key-value stores. [14]

It should be noted that an optimized MICA design in introduced in [1], which
manages to reach approximately 1.2 billion RPS.

Memcache

Facebook engineers utilize Memcached to construct a distributed key-value
store that supports Facebook that they call Memcache [2]. Memcache serves as a
demand-filled look-aside cache in order to lighten the read load on Facebook’s
databases, as well as a more general key-value store (e.g. to store pre-computed results
from sophisticated machine learning algorithms which can then be used by a variety of

other applications).

41

web web
SO Mer SEner

1. get k 2 SELECT .. 1. UPDATE ..
2. delete k
cset (k)
m ﬁ m ﬁ

Figure 2.3: Memcache as a demand-filled look-aside cache. The left half illustrates the read
path for a web server on a cache miss. The right half illustrates the write path. [2]

Region (Master) Region (Slave)
Front-End \ / Front-End \
Clusters Clusters
Web Server J] Web Server]J
=) =)
Memcache / (Memcache /
R4
- oE
Storage Cluster (Master) @ %— Storage Cluster (Slave)
Sa
.- 05065
\

Figure 2.4: Memcache overall architecture. [2]

Some changes are implemented in order to scale out Memcache. First, latency
and overhead are reduced by relying on UDP for get requests (which is the common
case), while set and delete are performed over TCP. Furthermore, a new mechanism is
introduced, leases, to address two problems: stale sets and thundering herds. A stale set
occurs when a web server sets a value in Memcache that does not reflect the latest value
that should be cached. This can occur when concurrent updates to Memcache get
reordered. A thundering herd happens when a specific key undergoes heavy read and
write activity. As the write activity repeatedly invalidates the recently set values, many
reads default to the more costly path. Also, to accommodate differences between

42

workloads (access patterns, memory footprints and QoS requirements), a cluster’s
Memcached servers are partitioned into separate pools.

Moreover, performance optimizations were implemented, namely (1) allow
automatic expansion of the hash table to avoid look-up times drifting to O(n), (2) make
the server multi-threaded using a global lock to protect multiple data structures, and (3)
giving each thread its own UDP port to reduce contention when sending replies and
later spreading interrupt processing overhead, with the first two being implemented in
the open source version. On top of these optimizations, an adaptive slab allocator was
implemented that periodically re-balances slab assignments to match the current
workload. It identifies slab classes as needing more memory if they are currently
evicting items and if the next item to be evicted was used at least 20% more recently
than the average of the least recently used items in other slab classes. If such a class is
found, then the slab holding the least recently used item is freed and transferred to the
needy class. Finally, a hybrid eviction scheme was introduced that relies on lazy
eviction for most keys and proactively evicts short-lived keys when they expire. Short-
lived items are placed into a circular buffer of linked lists (indexed by seconds until
expiration) — called the Transient Item Cache — based on the expiration time of the item.
Every second, all of the items in the bucket at the head of the buffer are evicted and the
head advances by one.

Masstree

[12] introduces Masstree, which uses a combination of old and new techniques
to achieve high performance. Lookups use no locks or interlocked instructions, and thus
operate without invalidating shared cache lines and in parallel with most inserts and
updates. Updates acquire only local locks on the tree nodes involved, allowing
modifications to different parts of the tree to proceed in parallel. Masstree shares a
single tree among all cores to avoid load imbalances that can occur in partitioned
designs. The tree is a trie-like concatenation of B+-trees, and provides high
performance even for long common key prefixes, an area in which other tree designs
have trouble. Query time is dominated by the total DRAM fetch time of successive
nodes during tree descent; to reduce this cost, Masstree uses a wide-fanout tree to
reduce the tree depth, prefetches nodes from DRAM to overlap fetch latencies, and
carefully lays out data in cache lines to reduce the amount of data needed per node.
Operations are logged in batches for crash recovery and the tree is periodically
checkpointed.

43

Layer () interior nodes
indexed by
ki
ey bytes 07 border nodes
values
Layer 1
indexed by
key bytes 815 | !

—_ I

Figure 2.5: Masstree structure: layers of B*- trees form a trie. [12]

struct interior_node: struct border_node:
uint32_t version: uint32 _t version;
uints_t nkeys; uint8_t nremoved.,
uintod_t keyslice[15]; uint8_t kevlen[15];
node® child[16]; uint64 _t permutation;
interior_node* parent, uint64 _t keyslice[15];

link_or_value v[15];
border_node* next:

union link_or_value: border_node* prev;
node* next_layer; interior_node* parent,
[opaque] value; keysuffix_t keysufjixes:

Figure 2.6: Masstree node structures. [12]

2.3.2. RDMA-BASED OPTIMIZATIONS

The following optimizations make use of RDMA (Remote Direct Memory
Access), which reduces end-to-end latency by enabling memory-to-memory data
transfers over InfiniBand and Converged Ethernet fabrics [7]. RDMA requests are sent
over reliable connections (also called queue pairs) and network failures are exposed as
a terminated connection. Requests are sent directly to the NIC without involving the
kernel and are serviced by the remote NIC without interrupting the CPU. A memory
region must be registered with the NIC before it can be made available for remote
access. During registration the NIC driver pins the pages in physical memory, stores
the virtual to physical page mappings in a page table in the NIC and returns a region
capability that the clients can use to access the region. When the NIC receives an
RDMA request, it obtains the page table for the target region, maps the target offset and
size into the corresponding physical pages and uses DMA to access the memory. Many

-44-

NICs guarantee that RDMA writes (but not reads) are performed in increasing address
order [9].

CPU RNIC RNIC CPU

—dw

o ﬂ
:W
— | WRITE
" gl

S o—

WRITE, INLINED, | || ™

UNREALIABLE,
UNSIGNALLED
" "M <
PR e a-___-—-wu'hl""-- E
|
.* Ll

|| [SEND/RECV

L}

Figure 2.7: Steps in posting RDMA verbs. The dotted arrows are PCle PIO operations. The
solid, straight arrows are DMA operations: the thin ones are for writing the completion
events. The thick wavy arrows are RDMA data packets and the thin ones are ACKs. [11]

soNUMA

SoNUMA [7] is an architecture, programming model, and communication
protocol for distributed, in-memory applications that reduces remote memory access
latency to within a small factor (~4x) of local memory. SONUMA leverages two simple
ideas to minimize latency. The first is to use a stateless request/reply protocol running
over a NUMA memory fabric to drastically reduce or eliminate the network stack,
complex NIC, and switch gear delays. The second is to integrate the protocol controller
into the node’s local coherence hierarchy, thus avoiding state replication and data
movement across the slow PCI Express (PCle) interface.

SONUMA’s programming model, which allows for one-sided memory
operations that access a partitioned global address space, inspired by RDMA, is
provided by the RMC — a simple, hardwired, on-chip architectural block that services
remote memory requests through locally cache-coherent interactions and interfaces
directly with an on-die network interface. Each operation handled by the RMC is
converted into a set of stateless request/reply exchanges between two nodes. The model
is exposed through lightweight libraries, which also implement communication and

45

synchronization primitives in software. An overview of SONUMA and the RMC are

illustrated below.

Fd b
data ’,
App] - [App)(—
e A *
i lcontrol
0S A ~Y T
) e { LY
Moo ANANA])
g e o
|I/ 2 "-v-"{;-' - ﬂll
L = ;’;ﬁ,] ‘_‘: A “ |
[core core J core | RpA ?‘ ?d "[F:gg?ﬁ\r/
- ke al
| . | " § '__{\)
| 11 11 || L S
) | | | S NUMA fabric
Iy
LLC
e - ¢
Figure 2.8: SONUMA overview. [7]
Request Generation Pipeline (RGP)
No new WQ if RREAD Unroll request
) enfries _'V"’d:'\ /-———-\ "”Inli /...\\"'"?__ -
...................... / \ / / .
(Poll { Fetch Vaddr. Perform \ ./ Gen
RMC NI Router \ WO New \fequest) \ gansl | *\ Read Pt 7 packet ect |
LR N oy o TNEY Ny TN
m Send Remote Request Processing TN o \ __________
f - Pipeline (RRPP) { Gen N niect | packet
L1 Reply ~N N 7\ packet 'L \ Iec /L
\Rﬁ."u’ /’ﬁ w ’ Vaddr | ,-'/Comp. / Decode packet
Receive transl T VA packeta
. ReP _1 / S N
Pa VS T Y 7 I
. . Request Completion Pipeline (RCP)
"_'\. N N TN TN
|_1 Wnte \e [Update | le |Pen‘om} p ..'/Vaddr 4 Comp. "':< IDec,c»de '(packet
9 Reﬂuest\m/! INLZANGL2 BNV _ \packel)
T RWRITE
Figure 2.9: RMC inernal architecture and functional overview of the three pipelines.
[7]
FaRM

[9] describes FaRM (Fast Remote Memory), which is a main memory

distributed computing platform that exploits RDMA to improve both

latency and

throughput by an order of magnitude relative to many state of the art main memory
systems that use TCP/IP. FaRM exposes the memory of machines in the cluster as a
shared address space. Applications can use transactions to allocate, read, write, and free
objects in the address space with location transparency. It should be noted that FaRM
is a more general-purpose distributed computing platform than a key-value store; key-

value stores can be implemented on top of FaRM.

FaRM offers two mechanisms to improve performance where required with

only localized changes to the code: lock-free reads that can be performed

46

with a single

RDMA and are strictly serializable with transactions, and support for collocating
objects and function shipping to allow applications to replace distributed transactions
by optimized single machine transactions.

A new hashtable algorithm on top of FaRM is designed and implemented that
combines hopscotch hashing with chaining and associativity to achieve high space
efficiency while requiring a small number of RDMA reads for lookups: small object
reads are performed with only 1.04 RDMA reads at 90% occupancy. Inserts, updates,
and removes are optimized by taking advantage of FaRM’s support for collocating
related objects and shipping transactions.

Pilaf

In [13] Pilaf is presented, which is a distributed in-memory key-value store that
leverages RDMA to achieve high throughput with low CPU overhead. It is argued that
the sweet spot in the design space is to restrict the use of RDMA to read-only requests
(namely GETS), while letting the server handle all other requests via traditional
messaging. Thus, the class of memory access races that can occur is restricted to read-
write races; clients might read inconsistent data while the server is concurrently
modifying the same memory addresses. The overall architecture is illustrated below.

_ _ Server e Memory
Client Client <put= Write
<get> <put>
RDMA Verh Verb Read
Read Messages Messages
Infiniband HCA Infiniband HCA Infiniband HCA
put

o —_—

Figure 2.10: Pilaf’s overall architecture. [13]

Pilaf uses self-verifying data structures to address read-write races between the
server and the clients. A self-verifying data structure consists of checksummed root
data objects as well as pointers whose values include a checksum covering the
referenced memory area. Starting from a set of root objects with known memory
locations, clients are guaranteed to traverse a server’s self-verifying data structure
correctly, because the checksums can detect any inconsistencies that arise due to
concurrent memory writes done by the server. When a race is detected, clients simply
retry the operation.

47

...................
-

hash table entry (root object)

i hash func
o IN_use
used

. L
key size 4 checksum

| key value I

Figure 2.11: Self-verifying hash table structure. [13]

HERD

In [11] HERD is introduced, which, like FaRM and Pilaf, is a key-value cache
that leverages RDMA features to deliver low latency and high throughput. However, in
HERD, clients transmit their request to the server’s memory using RDMA writes over
an unreliable connection; RDMA reads sometimes require multiple round trips and, as
such, are not adopted. Thus, HERD takes a hybrid approach, using both RDMA and
messaging to best effect. The end result is throughput even higher than that of the
RDMA-based systems while scaling to several hundred clients.

2.3.3. HARDWARE OPTIMIZATIONS

TSSP

In [3] an SoC architecture is proposed that implements the most latency- and
throughput-critical - Memcached task, GET operations, in hardware. This design pairs
a hardware GET processing engine and networking stack near the NIC, integrating both
with a conventional CPU to handle less latency- and throughput-sensitive operations.

More specifically, the SoC has two memory controllers and a shared
interconnect that includes both the processors and the I/O devices. The hardware
accelerator can respond to a GET request without any software interaction, but all other
request types and memory management are handled by software.

This design leverages several common characteristics of Memcached
workloads. First, TSSP optimizes for GETSs, as they vastly outhumber SETs and other
request types in most Memcached deployments. Second, as Memcached is a best-effort
cache, TSSP use UDP, a lighter-weight protocol than TCP that provides more relaxed
packet delivery guarantees, for requests that will be handled by the hardware GET
accelerator. Requests that must be reliable (e.g., SETSs), are transmitted over TCP and
will be executed by software, since it is found that simply switching all traffic from
TCP to UDP is insufficient to obtain the power-efficiency that TSSP can achieve.
Lastly, Memcached’s lookup structure (hash table) is split from the key and value
storage (slab-allocated memory) to allow the hardware to efficiently perform look-ups,
while software handles the more complex memory allocation and management.

48

_ | Memcachs
NIC 7 | Accslerator
Y
Processors ¥
System MMU |

I

I
L J L J

Interconnect & L3 cachs

| !

Mamary Meamory
Controlisr Controller

Memcached Accelarated Sol
Figure 2.12: TSSP architecture. [3]

Figure 2.12 shows in detail the NIC and the Memcached hardware unit. The
flow affinitizer, which normally routes between several hardware queues destined for
different cores based on IP address, port, and protocol, has been modified to allow the
Memcached accelerator to be a target. Similarly, on the transmit path, the NIC has been
modified to allow packets to both be transmitted through the normal DMA descriptor
rings as well as from the Memcached hardware. After a packet is routed to the
Memcached hardware, it is passed to a UDP Offload Engine which decodes the packet
and places the Memcached payload into a buffer for processing. This design requires
few NIC modifications and leverages flow affinity features already present in Gigabit
NICs to route traffic across the accelerator (UDP on Memcached port) and software
(TCP on Memcached port).

Standard NIT with support for muftiple receive [e.g B55) and ransmit queuss

1
Flow .

Affinitizer Buz Interface Unit
T | L [AX DMA, Bufisring, Checksum]

1 :

]
1
TX Buffer

v4
v

PHY MAC

t4

-:-. Bas Interfacs Unit
_41 | [TX DMA. Buffering, Chechsum]

Packst Inpast uppP Owtput Rasponss
Deciphst -~ Memory |- Q‘Hnad = Memory [=#—= Packst
(FIFO) Engine (FIFO) Gianarator

| KI-?:}IS}'? L] Hash | Accounting |

(EIED) Lookup Data Update
A Access
rf

Mamcached Accelsraton

Figure 2.13: NIC and GET accelerator details. [3]

vh

Y

After the traffic is routed, the Memcached hardware deciphers the request and
passes control signals along with the key to a hardware hash table implementation.
Since one of the design goals is to allow the hardware to respond to GETs without
software involvement, the hardware must be able to perform hash-table lookups. This

49

hash table must be hardware-traversable, so a design is chosen in which the hardware
manages all accesses to the hash table (including on behalf of cores) to avoid expensive
synchronization between the hardware and software. The hash table and slab memory
management scheme are illustrated below.

:hga T, i.............................B.D.Mr.é.i:............................I........
i |
Tima !
stamp Slab
Kay ||
saa
alus B
1 |t
==‘...............
— |
Valus
ints
pointar 3 i + i
1 | 1
kay’ i :
1
Flaga | & |
[Valid] |

Figure 2.14: TSSP — Hardware and Software data structures. [3]

FPGA-based optimizations

[4] leverages the FPGA to implement a Memcached appliance, thus completely
converting the Memcached software to an FPGA implementation. The FPGA is
leveraged to provide specialized logic to implement the base functionality of the
Memcached server, consisting of accepting requests, finding the requested key-value
pair and performing the requested get or set operation.

An FPGA Memcached appliance can ensure tight integration between the
networking, compute and memory while removing software overhead. Also, power
consumption drops significantly, since FPGAs hold that advantage against a traditional
CPU. This design provides performance on-par with baseline servers, while consuming
only 9% of the power of the baseline. Scaled at the data center level, performance-per-
dollar improves substantially while improving energy efficiency by 3.2X to 10.9X. The
overall architecture is illustrated below.

50

Control
Signals Memcached
¥ ')
. Controller App lication
Hash Decoder
C‘I:' atrol Buse Addr for
Signals Hash Table |
Key to Hash
Decoder Memory Management
(FIFD)
Key to Hash
Network Processing el | | Hash Write | Slab Write Data Storage
Packet 5 :
Input Packet .l Decipher TIFD) Avalon (DDR2
From upre ; 8 [ﬂn‘l.gt Memary Memeache Hdr and :"N”r':l' Interface)
Network| Offload Engine (FIFO) Control Datn to Sab > o | |y
| ":"!_[EE’ Sional h{ﬂ;;_\n['s_-;-‘om"“l b Interface | | | -
ThE FIF()
Input | Qutput || Output Packet Y Hash Read Slab Read
Packet || Packet || Storage Memory Response Memeache Data
Parser | Parser (FIFG) = Packet == from Slab <
Gienerator Management

Figure 2.15: Overall FPGA Memcached appliance architecture. [4]

In [5] another Memcached implementation on an FPGA is introduced, which
enables the implementation of customized integrated circuits through programming
rather than designing and manufacturing custom chips. The circuit itself is designed as
a custom-tailored pipeline that fully extracts the parallelism in the application. The
prototype demonstrates full line-rate processing, handling up to 13 million of requests
per second (RPS), while providing a round trip latency below 4.5 microseconds (us).
Power consumption of the FPGA and its subsystem is around 50Watts (W), whereby
the FPGA itself consumes less than 15W.

The dataflow architecture (illustrated below) consists of five key processing
stages, namely network interface, request parser, hash table, value store and response
formatter. Packets are received on the board on a 10Gbps Ethernet interface and
streamed back-to-back through these processing stages before being transmitted back
into the network. The first stage, the network interface, handles all related processing
to Ethernet and includes a full UDP and TCP offload engine. Only the Memcached
requests themselves, bar all additional headers, are passed to the request parser together
with a connection identifier. The request parser analyzes the Memcached packets to
extract key, value, and meta-data information and generates an opcode for the currently
supported subset of operations. Currently only ASCII and binary protocols are
supported, however further protocols can easily be added with no impact on
performance. Independent of the incoming protocol, the request parser normalizes all
packets to the format of the standard interface. This information is then passed to the
hash table. The hash table’s responsibility is to produce an index into the value store
for any incoming key. The value store simply supports read or write operations on a
corresponding area of memory as defined by the opcode. For SET operations, the
presented value is written into memory. In case of GET operations, the retrieved value
is added to the packet information as it streams to the response formatter. Finally, the
response formatter supports formatting of responses according to the supported
protocols.

51

‘ 10Ghps

Ethernet
Xilinx FPGA +
rf'_ * _H-".
| Metwork
e
|L Interface | ‘
e F
(e d Y (N\ (Responsc
Request Parser, —m=! HashTable [# Value Store ‘ b—{ spons
WLk . Formatter |
L A ‘ o . e AN S
] ; A
[StandardizEdHJ'J B T\.
g
| AXl Stream | DRAM
\ Interface)
R —— Controller |

Figure 2.16: Memcached dataflow pipeline. [5]

[6] proposes an FPGA-based in-line accelerator for Memcached. In a
conventional server architecture, the NIC’s main functionality is to copy the incoming
and outgoing packets to/from the memory system. In a conventional server application,
the CPU expects packets to be available in the memory after which it will parse the
request packets and extract the relevant fields that form the arguments for the request,
process the request by performing computation and potentially modifying global data
structures, and finally create response packet(s) if required. If the application lives in
the user space, additional overhead is imposed to copy the packet data across various
buffers/privilege-levels including NIC FIFO, kernel network stack, application level
buffers. While zero-copy and user-space networking can be used to minimize the
user/kernel distinction at the cost of blurring the protection/privilege separation, such
approaches still maintain a strong distinction between the NIC buffer and the processor
memory.

An in-line accelerator architecture redraws how computation is done by
combining the NIC and the inline accelerator which receives the incoming request
packets, processes the request packets by accessing and modifying global application
data-structures through a coherent port without involving the CPU, and finally sends
the response packets if required. The in-line accelerator processes packets
speculatively, assuming the packet is a common case the accelerator can handle. If the
accelerator determines it cannot handle the packet, it ”bails out” from the fast path by
rolling back what the accelerator did speculatively, and passes the request packet to the
CPU cores via the conventional NIC interface.

52

Application

] control flow
In-line acceleratar

Rx Fifo -
Engines "—
— [= | ——
Tx Fifo
General General
Static TLB |+~ purpose purpose
Control / core core
Status Lock Sgs ;
table [7] ™ '
5 S

[3

X r r

Coherent Memary system

Figure 2.17: In-line accelerator architecture. [6]

The aforementioned design was implemented in a Xilinx Virtex-5 TX240T
FPGA and was capable of 583K gets/sec, while consuming less than 2W of power for
64 bytes objects, 6% of the FPGA’s LUTs and 1% of the FPGA registers.

Integrated 3D-Stacked Server Designs

In [8] a new approach is adopted, in which density is included as a primary
design constraint, rather than solely overall energy consumption and performance. With
that in mind, two integrated 3D-stacked architectures are proposed, called Mercury and
Iridium. With Mercury, low-power ARM Cortex-A7 cores are tightly coupled with
NICs and DRAM, while maintaining high bandwidth and low latency. More
specifically, Mercury is able to improve density by 2.9X, power efficiency by 4.9X,
throughput (TPS, transactions per second) by 10X and TPS/GB by 3.5X.

Also, to address Memcached servers that require higher density with similar
latency targets, but are accessed at much lower rates, Iridium is introduced, a Flash
based version of Mercury that further increases density at the expense of throughput
while still meeting latency requirements. By replacing the DRAM with NAND Flash,
density is improved by 14X, TPS by 5.2X and power efficiency by 2.4X, while still
mainiting latency requirements for a bulk of requests. This comes at the expense of
2.8X less TPS/GB due to the much higher density.

53

MHEEE IHY =2 E

i

441 rmmz 1

= A00- 1 1
BOA Machags | !

'

15U Motwsrbosrd
1,088 cmd

e Sidin
i T

\
‘.I.
R} o
1 % R
1 ' 3 X
v K oo
0 \ \]
| s i
[y & . a1l
\ \ ! L |
\) H
L1]
\ " _'.,,‘-" '

teSaes essngt poumieel

Ain

Figure 2.18: Left: 1.5U server with 96 Mercury stacks. Right: The 3D-stacked
Mercury architecture. [8]

Implementation on the TILEPro64 Architecture

In [15] Memcached is implemented on the Tilera TILEPro64 64-core CPU. By
using the UDP protocol for reads and altering the execution model of Memcached, as
illustrated below, the tuned version of Memcached can achieve at least 57% higher
throughput on the 64-core Tilera TILEPro64 than low-power x86 servers at comparable
latency. When taking power and node integration into account as well, a TILEPro64-
based S2Q server with 8 processors handles at least twice as many transactions per
second per Watt as the x86-based servers with the same memory footprint. The main
reasons for this advantage are the elimination or parallelization of serializing
bottlenecks using the on-chip network; and the allocation of different cores to different
functions such as kernel networking stack and application modules. It should be noted
that the TILEPro64 exhibited near-linear throughput scaling with the number of cores,
up to 46 UDP cores.

54

DDR2 Controdlerd DDRZ Cantraller 1

A A A A
R
RN
Ao A A A A
R
R

DORE Controllar3 DDR2 Controler 2

_—
-

Figure 2.19: High level overview of the Tilera TILEPro64 architecture. [15]

Figure 2.20: Execution model of Memcached on TILEPro64. [15]

55

56

3. IMPLEMENTATION IN X86 AND ARM-BASED
ARCHITECTURES

3.1. MEMCACHED AND MEMC3

3.1.1. MEMCACHED
3.1.1.1. MEMCACHED COMMANDS

Memcached provides a simple set of operations: set, get and delete [2], among
others, with the first two being the most important. In particular, the get command is
the most common, since it has been observed that users consume an order of magnitude
more content than they create. This behavior results in a workload dominated by
fetching data [2].

A get command will retrieve the value associated with the user-specified key, if
its located in the Memcached server. If it is not found, it is up to the user to determine
where to obtain the proper value (typically a miss will then lead to a database lookup
and/or recomputation to determine the appropriate value). A key, which can potentially
be an ASCII string up to 250 characters long, is sent to the server in a message including
the command (get), the key length and any optional message flags [4].

A get performs the following steps: 1. The request is received at the network
interface and is sent to the CPU. 2. The Memcached server will read the data out of the
request packet to identify the key. 3. The server performs a hash on the key value to
translate the key into a fixed 32-bit value. 4. The value is used to index into a hash table
that stores the key-value pairs. 5. If the key is found, its value data is accessed and
prepared to be sent back to the client in a response message. 6. The entry corresponding
to the key is also promoted in a doubly linked list that is used to perform least recently
used (LRU) replacement if the Memcached server is full. 7. The server either sends out
a reply to the client with the key-value pair, or a message indicating that the key was
not found [4].

57

@ . @i
PTTTE R — m e

Data -
et -
peration = _L. - ; - Eud User
Weh Al e s loel S feg=Wels
requist loarkupe) B roveser)
L A4S Application
H'l:l‘l‘“l‘llﬂ! ! “EI. Tl‘."r
_ TESPHNSE -
Return E'..- P : @Mfllﬂ:l:ﬂlllﬂl
Data |=— |™ Tier
Set .
Operation -
— “I I b . 1 -
e .‘ “ﬁml'-ﬂl'll”‘
e s Write

L3S

Figure 3.1: Memcached architectural diagram and use case. [4]

A set will write the specified key-value pair into the Memcached server’s
storage. Values are typically small objects, often a few hundred bytes large. To handle
memory management, Memcached uses slab allocation. In slab allocation, Memcached
allocates a large chunk of memory and breaks it up into smaller segments of a fixed
size according to the slab class’ size. This method of allocation reduces the overhead
of dynamically allocating and deallocating many small objects. Memory is therefore
handled in fixed sizes, with values stored in the smallest slab class that will
accommodate the size of value. (Thus, there may be some internal fragmentation per
object.) When storing a new value, the LRU list for the slab class is checked to see if
the last element can be evicted. If there are no free segments within a slab class, a new
slab is allocated if there is free memory [4].

A set performs the following steps: 1. The request is received at the network
interface and is sent to the CPU. 2. The server will read the data from the packet to
identify the key, value, flags, and total message size. 3. The server then requests a slot
from the correct slab memory class to store the key-value pair. The item is promoted to
the most recently used position of the slab’s LRU list. 4. After copying the data into the
slab element, the server performs a hash on the key to determine the hash bucket to
store the data. 5. The data is written to the head of the hash bucket. 6. A reply is sent
back to the client to indicate the request is completed [4].

3.1.1.2. HASH TABLE

A Memcached cluster provides a lightweight, distributed hash table for storing
small objects (up to 1 MB), exposing a simple set/get interface. Each object’s key is
used to determine which individual Memcached server within the cluster will store the
object. Typically, a hash function is chosen to balance keys evenly across the cluster.
Individual Memcached servers do not communicate with each other, as each server is
responsible for its own independent range of keys. Because the servers do not interact,
the performance of a single Memcached server can be used to generalize the behavior
of an entire cluster [4].

58

The hash table data structure is an array of buckets. The array size (k) is always
a power of 2 to make finding the correct bucket quicker by taking the value of 2% -1 and
using it as a hash mask. Executing a bit-wise AND (e.g. hash_value & hash_mask)
quickly determines the bucket that contains the hash value. The buckets are constructed
as single linked-lists of cache items that are NULL-terminated [40].

Hash Table Array

Bucket O|Bucket 1|Bucket 2 Bucket | Bucket | Bucket

N-3 N-2 N-1

¥ l ¥ I I ¥

NULL NULL
. . . .
| | | '
v ; v "
NULL NULL

. .

I‘II I|

" >

NULL NULL

Figure 3.2: Data structure of hash table used to lookup cache items. [40]
3.1.1.3. MEMORY MANAGEMENT

Memcached employs a slab allocator to manage memory. The allocator
organizes memory into slab classes, each of which contains pre-allocated, uniformly
sized chunks of memory. Memcached stores items in the smallest possible slab class
that can fit the item’s metadata, key and value. Slab classes start at 64 bytes and
exponentially increase in size by a factor of 1.07 up to 1 MB, aligned on 4-byte
boundaries. Each slab class maintains a free-list of available chunks and requests more
memory in 1MB slabs when its free-list is empty. Once a Memcached server can no
longer allocate free memory, storage for new items is done by evicting the least recently
used (LRU) item within that slab class. When workloads change, the original memory
allocated to each slab class may no longer be enough resulting in poor hit rates [2].

59

3.1.2. MEMC3

MemC3 (Memcached with CLOCK and Concurrent Cuckoo Hashing) has
already been mentioned in chapter 2. It features several software optimizations with
regards to Memcached, which will now be presented. First, architectural features can
hide memory access latencies and provide performance improvements. In particular, a
new hash table design exploits CPU cache locality to minimize the number of memory
fetches required to complete any given operation and it exploits instruction-level and
memory-level parallelism to overlap those fetches when they cannot be avoided.

Second, MemC3’s design also leverages workload characteristics. Since many
Memcached workloads are predominately reads Memcached’s exclusive, global
locking is replaced with an optimistic locking scheme targeted at the common case.
Furthermore, many important Memcached workloads target very small objects, so per-
object overheads have a significant impact on memory efficiency. For example,
Memcached’s strict LRU cache replacement requires significant metadata—often more
space than the object itself occupies; in MemC3, a compact CLOCK-based
approximation is used instead.

Lastly, MemC3 introduces a novel hashing scheme called optimistic cuckoo
hashing. Conventional cuckoo hashing achieves space efficiency, but is unfriendly for
concurrent operations. Optimistic cuckoo hashing achieves high memory efficiency
(e.g., 95% table occupancy); allows multiple readers and a single writer to concurrently
access the hash table; and keeps hash table operations cache-friendly. The idea behind
finding the cuckoo path is illustrated below [10].

o i i

AN

CINR

4 ;’,b
key x 5 T

6| ~=a’

7

Figure 3.3: Cuckoo path. @ represents an empty slot. [10]

60

3.2. BENCHMARKS

3.2.1. DATA CACHING BENCHMARK

This benchmark was developed at PARSA (PArallel Systems Architecture) Lab
EPFL (Ecole Polytechnique Fédérale de Lausanne) and is included in CloudSuite,
which is a benchmark suite for cloud services. The Data Caching Benchmark uses the
Memcached data caching server, simulating the behavior of a Twitter caching server
using the twitter dataset. The metric of interest is throughput expressed as the number
of requests served per second. The workload assumes strict quality of service guaranties
[41].

A workload parameter that could be changed for the purposes of the
experiments was the distribution of the keys in the dataset. The default distribution is
uniform. However, the benchmark was modified for the purposes of the experiments
that are presented later in this chapter to support a skewed (Zipf) distribution, with the
user being able to input the value of the distribution’s skewness (theta) parameter (0 <
0 < 1). As such, a comparison between uniform and skewed distribution was made
possible. In skewed, theta was picked at 0.99, which is the standard skeweness for
YCSB (Yahoo Cloud Benchmark). The user can also change the packets’ inter-arrival
distribution (constant, exponential).

Another workload parameter that was of critical importance to the experiments
was the GET/SET ratio of the requests. In most applications, GETs tend to severely
outnumber SETSs. As such, 2 configurations were chosen, one with 0.9 and one with 0.5
ratio, respectively.

It should be noted that most parameters that define a dataset could not be altered.
The original dataset consumes 300MB of server memory, while the recommended
scaled dataset requires around 10GB of main memory dedicated to the Memcached
server (scaling factor of 30) [41]. Parameters such as key size, value size or number of
records cannot be changed.

The typical procedure followed for running this benchmark is, after having
started up the server, the client uses the option —j to “warm up” the server. The server
notifies the client when the warmup is over. The benchmark can then be run with the
number of TCP connections, worker threads, maximum throughput and other
parameters as desired.

3.2.2. MUTILATE

The second benchmark used in the experiments is Mutilate. Mutilate is a
Memcached load generator designed for high request rates, good tail-latency
measurements, and realistic request stream generation. Mutilate reports the latency
(average, minimum, and various percentiles) for get and set commands, as well as
achieved QPS and network performance [42].

61

In contrast with the Data Caching Benchmark, Mutilate allows for the alteration
of parameters regarding the dataset. Specifically, the number of records, key and value
size had their values changed in order for the experiments to be conducted using
datasets with different characteristics. Furthermore, the GET/SET ratio could also be
manipulated to provide a different mixture of requests. However, Mutilate does not
allow for change in key distribution (although the user can choose the packet inter-
arrival distribution, which is automatically adjusted to match the specified throughput
value).

The Mutilate benchmark features a list of options which can be used in order to
fine-tune an experiment. First, it allows for several agents to be deployed in order to
load the Memcached server or server cluster. Second, the experiment can be customized
with respect to duration and target throughput. Last, it offers varying levels of verbosity,
allowing the user to adjust the level of detail to which he is exposed, while granting
debugging potential.

Mutilate offers a few advanced options, as well. Mutilate has a warmup option,
for which the warmup time has to be specified, unlike the previous benchmark, in which
the server notifies the client that the warmup has been completed. Like the Data
Caching Benchmark, Mutilate allows the user to specify the number of connections per
server to be established and the maximum depth to pipeline requests. Also, it lets the
user assign threads to server in round-robin fashion, as well as customize parameters
regarding the transmissions, such as skip some if the previous requests are late, or
enforce a minimum time delay between requests. Moreover, Mutilate supports two
advanced modes: a) the search mode (--search=N:X), in which Mutilate searches for the
throughput where an N-order statistic is under X us; e.g. --search 95:1000 means find
QPS where 95% of requests are faster than 1000us) and b) the scan mode (--
scan=min:max:step), in which Mutilate scans latencies across QPS (Queries Per
Second) rates from min value to max value at step intervals.

It should be mentioned that Mutilate offers some agent-mode options. Using
these options, the user can run a client in agent mode, enlist a remote agent and adjust
the share of QPS of a specific client. It is also possible to define the number of the
master client’s connections per server, explicitly set its QPS (which is spread across
threads and connections) and its connection depth.

The table that follows compares the two benchmarks summarily.

62

Benchmark Connection Workload Key Packet Inter- Special
parameters parameters distribution arrival Modes
customization | customization choice distribution
choice
Data Caching v X v v X
Benchmark (uniform, (constant,
zipf) exponential)
Mutilate v v X v v
(constant,
uniform, normal,
generalized
pareto,
generalized

extreme value,
exponential)

Table 3.1: Data Caching Benchmark/Mutilate comparison

63

3.3. EXPERIMENTAL RESULTS

3.3.1. X86 IMPLEMENTATION

The graphs that follow are the results of the experiments conducted on a server
with x86 architecture. Measurements were taken regarding the maximum throughput
with respect to lock power and the number of server threads while latency remained
under 10 ms (QoS agreement), as well as regarding latency (both the average value and
the 95 percentile) with respect to a target throughput. The client is also an x86
machine. It should be noted that both the server and the client are virtual machines
(managed via KVM) and are connected via a virtual network, thus eliminating any
unrelated network traffic.

In the experiments where throughput is measured with respect to lock power
(the number of locks for Memcached), the client sets up 100 TCP connections and
utilized 2 threads to communicate with the x86-based Memcached server. In the
experiments conducted to determine the system’s maximum throughput and to measure
latency with respect to maximum throughput, 3 different setups were used on the x86
system: a) Memcached with 100 client/server connections and 2 client threads, b)
Memcached with 1 client/server connection and 1 client thread and ¢c) MemC3 with 1
client/server connection and 1 client thread. In every case, the memory reserved for
Memcached is 1 GB.

Virtualization | Number of | Memory (OR] NIC
tool threads
KVM 24 8 GBs Fedora Ethernet
release 25 (Virtual)

Table 3.2: x86 server specifications

64

max throughput

Maximum Throughput vs Lock Power

max rps

max rps

11000 33000
10900 32000
10800 31000 =@ mutilate, 88B max packet
10700 = size, 1M records, 0.9 ratio
./ —8—Uniform, 0.9 ratio 2 —4— mutilate, 888 max packet
10600 A —a— Zipf, 0.5 ratio 2 20000 size, 1M records, 0.5 ratio
10300 Zipf, 0.9 ratio £ 2 y Mutilate, 1224B max packet
10400 Uniform, 0.5 ratio % 8000 size, 10K records, 0.9 ratio
£ 57000 =i Mutilate, 1224B max packet
10300 size, 10K records 0.5 ratio
10200 26000
10100 25000
01 2 3 4 5 6 7 8 9 101 12 13 012 3 435678 910111213
lock power lock power
(a) (b)
Figure 3.4: (a) Memcached, Data Caching Benchmark, 100 connections, 2 worker threads. (b)
Memcached, Mutilate, 100 connections, 2 worker threads.
Maximum Throughput vs Server Threads
16000 70000
60000
15000
50000 == mutilate, 88B max packet size,
14000 1M records, 0.9 ratio
== epfl, uniform, 0.9 ratio » 40000 : —#— mutilate, BBB max packet size,
13000 —a— epfl, 8=0.99, 0.9 ratio 2 1M records, 0.5 ratio
epfl, uniform, 0.5 ratio E 30000 Mutilate, 1224B max packet
12000 epfl, 8=0.99, 0.5 ratio / size, 10K records, 0.9 ratio
20000 == Mutilate, 1224B max packet
size, 10K records 0.5 ratio
11000 10000
10000 0
1 2 4 8 16 24 1 2 4 8 16 24
of server threads # of server threads
(a) (b)
Max Throughput (x86)
14000
13500
13000
== mutilate, 88B max packet size,
12500 == epfl, uniform, 0.9 ratio 1M records, 0.9 ratio
- - : == mutilate, 88B max packet size,
12000 epfl 8__0'99‘ 09 rat|F| & 1M records, 0.5 ratio
11500 epfl, uniform, 0.5 ratio Mutilate, 12248 max packet
= epfl, 8=0.99, 0.5 ratio £ size, 10K records, 0.9 ratio
11000 == Mutilate, 12248 max packet
size, 10K records 0.5 ratio
10500 4000
10000 3800
1 2 4 8 16 1 2 4 8 16 24
of server threads # of server threads

(©)

(d)

65

max rps

95th percentile (ms)

95th percentile (us)

18000

17000

16000

—_—

== epfl, uniform, 0.9 ratio

max rps

5100
5000
4900
4800

4700
4600
4500

4400
4300

4200
1 2 4 8

of server threads

(f)

== mutilate, 88B max packet size,

1M records, 0.9 ratio

== mutilate, 88B max packet size.

1M records, 0.5 ratio

Mutilate, 1224B max packet
size, 10K records, 0.9 ratio

—— Mutilate, 12248 max packet

size, 10K records 0.5 ratio

Figure 3.5: (a) Memcached, Data Caching Benchmark, 100 connections, 2 worker threads. (b)
Memcached, Mutilate, 100 connections, 2 worker threads. (c) Memcached, Data Caching
Benchmark, 1 connection, 1 worker thread. (d) Memcached, Mutilate, 1 connection, 1 worker
thread. (¢) MemC3, Data Caching Benchmark, 1 connection, 1 worker thread. (f) MemC3,
Mutilate, 1 connection, 1 worker thread

13000
== epfl, 8=0.99, 0.9 ratio

14000 epfl, uniform, 0.5 ratio
== epfl, 6=0.99, 0.5 ratio

13000

12000

11000

1 2 4 8 16 24
of server threads
(e)
Latency vs Maximum Throughput
430
400

12200

10200

8200

6200

4200

2200

- /
230
200
130
100
50
0

2000 4000 6000 8000 10000 12000 14000 16000

Targetrps

(@)

=

R Ry

Targetrps

(©)

== Epfl, uniform, 0.9 ratio, 16
threads

=& Epfl, uniform, 0.5 ratio, 16
threads
Epfl, zipf, 0.9 ratio, 16
threads

=== Epfl, zipf, 0.5 ratio, 16
threads

== mutilate, 88B max packet
size, 1M records, 0.9 ratio.
16 threads

== mutilate, 88B max packet
size, 1M records, 0.5 ratio,
16 threads
mutilate, 12248 max packet
size, 10K records, 0.9 ratio,
16 threads

== mutilate, 12248 max packet
size, 10K records, 0.5 ratio,
16 threads

average latency (ms)

2000 4000 6000 8000 1000012000 14000 16000

Target rps

(b)

average latency (us)

Target rps

(d)

66

S LSS

f

. d

== Epfl, uniform, 0.9 ratio, 16
threads

== Epfl, uniform, 0.5 ratio, 16
threads
Epfl, zipf, 0.9 ratio, 16
threads

—&— Epfl, zipf, 0.5 ratio, 16
threads

=@= mutilate, 88B max packet
size, 1M records, 0.9 ratio,
16 threads

== mutilate, 88B max packet
size, 1M records, 0.5 ratio,
16 threads

mutilate, 12248 max packet
size, 10K records, 0.9 ratio,
16 threads

== mutilate, 12248 max packet
size, 10K records, 0.5 ratio,
16 threads

A5th percentile (ms)

95th percentile (us)

95th percentile (ms)

2000 4000 6000 8000 1000012000140001600018000

Targetrps

(€)

== Epfl, uniform, 0.9 ratio, 4
threads

== Epfl, uniform, 0.5 ratio, 2
threads

Epfl, zipf, 0.9 ratio, 8 threads
== Epfl, zipf, 0.5 ratio, 2 threads

average latency (ms)

10

0

== Epfl, uniform, 0.9 ratio, 4
threads

=—#— Epfl, uniform, 0.5 ratio, 2
threads
Epfl, zipf, 0.9 mtio, 8 threads
—&— Epfl, zipf, 0.5 mtio, 2 threads

2000 4000 6000 8000 1000012000140001600018000

Targetrps

(f)

Figure 3.6: (a) Memcached, Data Caching Benchmark, 100 connections, 2 worker threads. (b)
Memcached, Data Caching Benchmark, 100 connections, 2 worker threads. (¢) Memcached,
Mutilate, 100 connections, 2 worker threads. (d) Memcached, Mutilate, 100 connections, 2
worker threads. (e) Memcached, Data Caching Benchmark, 1 connection, 1 worker thread. (f)
Memcached, Data Caching Benchmark, 1 connection, 1 worker thread.

== mutilate, 88B max packet size.
1M records, 0.9 ratio, 4 threads

=@ mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4
threads

= mutilate, 12248 max packet
size, 10K records, 0.5 ratio, 4

threads
0 1000 2000 3000 4000 5000
Target rps
(a)
18
16
14
12 n == Epfl, uniform, 0.9 ratio, 8
10 threads
== Epfl, uniform, 0.5 ratio, 8
threads

6000 BOOO

Targetrps

(©)

Epfl, zipf, 0.9 ratio, 8 threads
== Epfl, zipf, 0.5 ratio, 16 threads

10000 12000 14000 16000 18000

67

average latency (us)

average latency (ms)

280
270
== mutilate, 88E max packet size,
260 1M records, 0.9 ratio, 4 threads
250 === mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
240 mutilate, 12248 max packet
size, 10K records, 0.9 ratio. 4
230 \ threads
220 == mutilate, 12248 max packet
size, 10K records, 0.5 ratio. 4
210 threads
200
o 1000 2000 3000 4000 5000
Targetrps
8
7
6
== Epfl, uniform, 0.9 ratio, 8
5 A | threads
4 =—#=— Epfl. uniform, 0.5 ratio, 8
threads
Epfl, zipf, 0.9 ratio, 8 threads
== Epfl. zipf. 0.5 ratio, 16 threads

6000 BOOO

10000 12000 14000 16000 18000

Targetrps

(d)

95th percentile (us)

450

400
330 N
300 o

230

—I\“

== mutilate, 88E max packet size,
1M records, 0.9 ratio, 16
threads

== mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4
threads

=== mutilate, 12248 max packet
size, 10K records, 0.5 ratio. 4
threads

average latency (us)

310
290
270
250
230
210
190
170

AN

e

=~ mutilate, 88B max packet size,
1M records, 0.9 ratio, 16
threads

=& mutilate, 88B max packet size,
1M records, 0.5 ratio, 4 threads
mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4
threads

=de= mutilate, 12248 max packet
size, 10K records, 0.5 ratio, 4
threads

200

150
2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Target rps Tametms

(€) (M)

Figure 3.7: (a) Memcached, Mutilate, 1 connection, 1 worker thread. (b) Memcached,
Mutilate, 1 connection, 1 worker thread. (¢) MemC3, Data Caching Benchmark, 1 connection,
1 worker thread. (d) MemC3, Data Caching Benchmark, 1 connection, 1 worker thread. (e)
MemC3, Mutilate, 1 connection, 1 worker thread. (f) MemC3, Mutilate, 1 connection, 1
worker thread.

On the whole, the results show that a 0.5 GET/SET ratio yields a higher
maximum throughput than a 0.9 GET/SET ratio (when measuring maximum
throughput with respect to lock power, this becomes more apparent at higher lock
power values, as shown in Figures 3.4 (a) and (b)), while having a higher throughput
threshold before the latency increases dramatically. One thing that is noted by looking
at the Figures 3.4 (a) and (b), however, is that the results for x86 systems showed great
inconsistency. However, the differences in throughput for varying values of lock power
(in effect, varying number of locks) are relatively small.

As regards to workload distribution, it appears that Uniform and Zipf do not
present significant differences in terms of performance. However, throughput-wise, a
Uniform distribution appears to yield a slightly greater throughput than a Zipf
distribution (Figures 3.4 (a), 3.5 (a), 3.5 (¢)). On the other hand, as throughput increases,
Uniform distribution leads to latency “blowing up” to higher values (Figures 3.6 (a)
and (b)) or faster (Figures 3.6 (e), 3.6 (f), 3.7 (c), 3.7 (d)) than Zipf does. Also, higher
throughput was achieved with a workload characterized by a large number of smaller-
sized packets, rather than a workload of fewer, larger-sized packets (Figures 3.4 (b),
3.5 (b), 3.5 (d), 3.5 (f)). Moreover, the latency — target throughput graphs show that a
smaller number of large packets cause latency to spike more quickly and higher than a
larger number of smaller-sized packets (Figures 3.6 (c), 3.6 (d)).

Regarding maximum throughput with respect to the number of server threads,
it should be noted that MemC3 seems to scale better than Memcached on more server
threads (though we can only speculate as to how much better it scales, due to the lack
of client-side parallelism), as seen in Figures 3.5 (e) and 3.5 (f) (compared to the
corresponding graphs depicted in Figures 3.5 (¢) and 3.5 (d)). Furthermore, we observe
that more concurrent requests lead to a higher throughput achieved by the server, which
is logical, since 1 connection and 1 client thread are not enough to saturate its processing
power.

In addition, it should be mentioned that MemC3 exhibits better behavior
latency-wise than Memcached, with the latter suffering from latency spikes much
earlier than the former as target throughput increases (Figures 3.7 (c), 3.7 (d)).

68

However, for low throughput values, Memcached and MemC3 seem to exhibit similar
behavior (Figures 3.7 (a), 3.7 (b), 3.7 (e), 3.7 (f)).

3.3.2. SYSTEMTAP

In order to achieve a more in-depth analysis as regards to how Memcached is
executed in an x86 server and to identify its bottlenecks, SystemTap scripts were used.
SystemTap is a scripting language and tool for dynamically instrumenting running
production Linux kernel-based operating systems. More specifically, SystemTap is a
tracing and probing tool that allows users to study and monitor the activities of the
computer system (particularly, the kernel) in fine detail. It provides information similar
to the output of tools like netstat, ps, top, and iostat, but is designed to provide more
filtering and analysis options for collected information.

SystemTap offers:

o Flexibility: SystemTap's framework allows users to develop simple scripts for
investigating and monitoring a wide variety of kernel functions, system calls,
and other events that occur in kernel space. As a result, SystemTap is not so
much a tool as it is a system that allows one to develop his/her own kernel-
specific forensic and monitoring tools.

e Ease of use: as mentioned earlier, SystemTap allows users to probe kernel-
space events without having to resort to instrument, recompile, install, and
reboot the kernel. SystemTap scripts (many of which can be found in the
official documentation) can demonstrate system forensics and monitoring
capabilities not natively available with other similar tools (such as top, oprofile,
or ps) [49].

In this case, SystemTap was used to measure the time spent in each system call
related to Memcached and MemC3. In [1] it is stated that Memcached’s execution cycle
can be broken down into four parts:

e Network processing, which consists of system calls related to the

networking stack. Memcached uses the Linux kernel stack.

e Concurrency control, which refers to the mechanisms that maintain data
consistency while Memcached allows for parallel data access. Memcached
uses a set of mutexes for that purpose.

e Memory management, which is how the system allocates and deallocates
memory. Memcached employs the SLAB scheme in order to manage
memory.

e Key-value processing, which consists of key-value request processing and
housekeeping in the local system. In Memcached, this is implemented via a
hash function and a hash table, while the eviction policy is LRU.

At first, a script was written (in SystemTap language, which is a C/C++/awk-
like scripting language made only for SystemTap), which measured the time that system
calls related to each of the aforementioned parts of Memcached’s execution cycle by
subtracting the timestamp of the system call’s entry (when the OS enters kernel mode)

69

from the timestamp of the system call’s return (when the OS leaves kernel mode).
However, this did not account for the overlapping that occurred due to system calls
entering without waiting for the return of others; as such, measurements were not
correct.

To correct the measurements, the same idea was applied, albeit differently. A
simple bash script calls four SystemTap scripts, which print the timestamps in the
following format: a) X 0 in the case of a system call entry, b) 0 X in the case of a system
call return (where X is the timestamp, which is the number of microseconds from the
Epoch). Afterwards, a Python script parses the output file containing the above data and
returns the total time spent in each part of the execution cycle. However, there was one
last problem to be solved. The output files were extremely large to be parsed in a
reasonable amount of time, containing up to 6 GBs of data each. Thus, only 1/1000 of
the output files were parsed, specifically the latter thousandth of the file, since, at the
start of the experiment, the server has not yet reached a stable state. One of the
SystemTap scripts used, as well as the Python script, have been added in the Appendix.

The results of the above method are presented below. For Memcached, the setup
is 100 connections and 2 worker threads, while for MemC3 it is 1 connection and 1
worker thread. Both are run on an x86 server (virtual machine). The number of server
threads for each setup was chosen based on the maximum throughput measured in the
corresponding experiments.

120
o
P =l N
.E 80
E 60 B KV %
- Concurrency %
-E 40 B Mem %
£ 20 l B Metwork %
0
& & FFFFFF
S T A & &
: ak B B R+ Ty LT &
o Q‘T o - s & - 14 Q 7
ad ad d ’ ; @? .@\?
R R O L P N
RN & 7 G A
U

Figure 3.8: Memcached, execution cycle breakdown.

70

% of execution cycle
=
8 &5 8 8 8

B Metwork %
KW %4
B Concurrency %
B Mem %
A

Figure 3.9: MemC3, execution cycle breakdown.

KW %4
B Concurrency %o
B Mem %

% of execution cycle
[TR S N o I =]

* 1l
I

L
Figure 3.10: MemC3, execution cycle breakdown without network processing.

Memcached’s execution cycle breakdown graphs provide a more in-depth view
of its performance. The results, depicted in Figure 3.8, show that the greatest impedance
to the application’s performance are memory-related system calls, taking up 36% of the
execution cycle (on average). Network-related system calls are consistently a large part
of the execution cycle as well (29% on average). It is concluded that large packet/small
record size workload performs badly, due to the small percentage that key-value
processing takes up. It should also be noted that concurrency control does not seem to
be impeding Memcached’s performance greatly for these setups.

Finally, MemC3’s execution cycle breakdown provides a little more insight,
despite the lack of concurrency. First, it is apparent that network system calls are
severely more frequent than any other part of the execution cycle (Figure 3.9). With the

71

max throughput

help of the second graph (Figure 3.10), in which the contribution of the network-related
system calls has been removed, it can be seen that memory-related system calls take up
a very small percentage of the execution cycle. Key-value storage takes up a much
larger portion of the execution cycle in comparison to memory.

3.3.3. COMMUNICATION PROCESSOR IMPLEMENTATION

The graphs that follow are the results of the experiments conducted on a server
with ARM architecture. More specifically, the machine used is Freescale’s QorlQ
LS2085A communication processor. The client is an x86 computer connected to the
server via a 1 GbE port. As with the previous set of experiments, measurements were
taken regarding the maximum throughput with respect to lock power and the number
of server threads while latency remained under 10 ms (QoS agreement), as well as
regarding latency (both the 95" percentile and the average value) with respect to a target
throughput. However, the only configuration used was with 100 TCP connections and
2 worker threads.

The table below presents the communication processor’s specifications.

Communication Number of | Memory oS NIC
Processor cores
QorlQ LS2085A Upto8X ARM | 8GBs | Ubuntu | 1 Gb Ethernet
Cortex- A57

Table 3.3: Communication processor specifications [52].

Maximum Throughput vs Lock Power

18000 120000

14000 100000
== mutilate, 888 max packet
12000 ~ 80000 size, 1M records, 0.9 ratio
)) =
10000 = U.mform_ 0'9_ ratio a =& mutilate, 888 max packet
R T, B y =& Zipf, 0.5 ratio 2 60000 size, 1M records, 0.5 ratio
T T - . .
8000 ./_ Zipf, 0.9 ratio E Mutilate, 12248 max packet
6000 =4 Uniform, 0.5 ratio % 40000 size, 10K records, 0.9 ratio
4000 E == Mutilate, 12248 max packet
20000 size, 10K records 0.5 ratio
2000 il
0 0
o1 2 3 4 5 6 7 8 9 10 11 12 13 012 3 4567 8 910111213
lock power lock power
(@) (b)

Figure 3.11: (a) Memcached, Data Caching Benchmark. (b) Memcached, Mutilate.

72

Maximum Throughput vs Server Threads

o
o
17000 S 2
g Lo = =2
S
RS
15000 o
o —&— mutilate, 88B max packet size, 1M
Y & records, 0.5 ratio
13000 X Q}PQ ~&— mutilate, 888 max packet size, 1M
~@— epfl, uniform, 0.9 ratio ,\"PQ records, 0.9 ratio
—@—epil =099, 09ratio 1 & Mutilate, 12248 max packet size,
E 11000 epfl, uniform, 0.5 ratio g2 @QQQ 10K records. 0.9 ratio
« epfl, 8=0.99, 0.5 ratio S Mutilate, 12248 max packet size,
&2 10K records 0.5 ratio
9000 ¥
&
e
S
7000 e
e
&y
5000 o 2 4 6 8 10 12 14 16 18
0 2 4 6 8 10 12 14 16 18 # of threads
of threads
(@) (b)
Figure 3.12: (a) Memcached, Data Caching Benchmark. (b) Memcached, Mutilate.
Latency vs Maximum Throughput
1200
T00
1000 600
= =
_ 800 500
] i i —
E —.—;eg,agsmfarm, 0.9 ratic, 16 £ 400 == Epfl, uniform, 0.9 ratio, 16
o 600 -) E threads
5 Epfl, Zipf, 0.9 ratio, 16 threads S 300 Epfl, Zipf, 0.9 ratio, 16 threads
E 400 == Epfl, pr, 0.5 ratio, 1.6 threads ﬁ 200 —sd— Epfi, Zipf, 0.5 ratio. 16 threads
£ 200 =& Epfl, uniform, 0.5 ratio, 16 g —¢— Epfl, uniform, 0.5 ratio, 16
B | threads g 100 threads
[L] I|
0 0
R i P S R N P P P R
Target QPS Target GPS
(@) (b)
6000
14000
5000 12000
4000 10000
] _—
3] i
> 3000 == mutilate, 838 max packet size, = 6000 —#= mutilate, 12248 max packet
= ™ ds. 0.9 ratio. 4 threads o size, 10K records, 0.9 ratio. 4
; recards, 0. ratio, 4 t rea = 6000 threads
g 2000 —&— mutilate, 888 max packet size, E 2000 —— mutilate, 12248 max packet
= 1000 1M records, 0.5 ratio, 4 threads |2 size, 10K records, 0.5 ratio, 4
] g 2000 threads
0 1]
FFEESSFFSEE SEESLSESSEESSSE
Target OPS Target QPS

(©) (d)

73

average latency (us)

2500 18000

16000
14000

1500 12000
10000 == mutilate, 12248 max packet
size, 10K records, 0.9 ratio, 4

2000

== mutilate, 88B max packet size,

@
2
M ds, 0.9 ratio, 4 thread g
1000 records, 0.9 ratio, 4 threads 5 8000 threads
=& mutilate, 888 max packet size, 2 6000 —4— mutilate, 1224B max packet
1M records, 0.5 ratio, 4 threads) size, 10K records, 0.5 ratio, 4
500 E 4000 ' + 0.5 ratio,
] threads
@ 2000
0 0
O H D O » O H O
QQQQQQQQQQQ D D H D R B e B
&7 & & O O & & 8 £ FPFPLL PP PRSP
CHFFPEPEFE S FEPEFFEEFLEEEE
Target QPS Target QPS
(e) ()

Figure 3.13: (a) Memcached, Data Caching Benchmark. (b) Figure 3.32: Memcached, Data
Caching Benchmark. (c) Memcached, Mutilate. (d) Memcached, Mutilate. () Memcached,
Mutilate. (f) Memcached, Mutilate.

The above graphs show the same characteristics as in the x86 case regarding
changes in the workload parameters. More specifically, the server tends to yield better
results with a 0.5 GET/SET ratio than with a 0.9 GET/SET ratio and a higher maximum
throughput and robustness to latency with a large record size/small packet size
workload than a small record size/large packet size workload. Furthermore, Uniform
and Zipf key distributions lead to similar performance.

However, the LS2085A communication processor, which makes use of cores
based on ARM architecture, seems to achieve higher maximum throughput than the
server making use of the x86-based Intel Xeon processor (for the same configuration),
while keeping latency constant (Figures 3.11 (a), 3.11 (b), 3.12 (a), 3.12 (b)). On the
other hand, the former exhibits less tolerance to higher target throughput than the latter,
which can be observed by the fact that latency shows a higher spike when a certain
target throughput threshold has been crossed (Figures 3.13 (a), 3.13 (b), 3.13 (c), 3.13
(d), 3.13 (e), 3.14 (). Also, it should be noted that, with a dataset characterized by a
large record and small packet size, the LS2085A processor achieves throughput an
order of magnitude greater than the throughput achieved with a dataset characterized
by a small record and large packet size (Figures 3.11 (b), 3.12 (b)).

3.3.4. COMMUNICATION PROCESSOR/X86 COMPARISON ON POWER
CONSUMPTION

Since LS2085A features a multi-core ARM architecture CPU, it is worth
exploring its power consumption while running Memcached, as well as its performance
(throughput) per watt. The results will be compared to implementation results found in
the related work.

The measurements that follow were taken using the following configuration:
12288 MBs of memory, GET/SET ratio of 0.95, 128 B object size, 64 B key size, 64
connections and 4 worker threads. While increasing Memcached threads bound to
specific cores, it was found that, without violating the QoS agreement, the server
achieved a maximum throughput of 165 KRPS for 5, 6, 7 and 8 threads. As such, the

74

least number of threads was chosen, meaning 5. A wattmeter was set up in order to
measure the power consumed by the server. It was found that the server consumed 51.6
W while idle, 58.5 W with all cores active and 57.2 W with 5 cores active. This leads
us to conclude that the maximum throughput per watt of the LS2085A communication
processor is 160KRPS/57.2W = 2.9 KRPS/Watt. The comparison with Memcached’s
implementations found in the related work is shown in the following table.

Implementation KRPS/Watt Maximum Latency
MemC3 (NSDI ¢13) 3.8 0.1 ms
LS2085A 2.9 10 ms
Xeon implementation (NSDI ‘14) 1.8 Ims
Xeon implementation (ISCA’13) 1 5 ms
Xeon implementation (ISCA ‘15) 0.8 0.1 ms

Table 3.4: Performance/watt comparison between Memcached’s implementation on the
LS2085A communication processor and others found in the related work.

75

76

4. CONCLUSIONS

From the experimental results presented in chapter 3, some conclusions can be
drawn about Memcached’s behavior. These can be summarized as follows:

Regarding the workload, Memcached appears to be struggling with GETs
rather than SETs. This occurs because GETs are costlier than SETSs; as
explained in chapter 3, GETs require 7 costly steps to be executed, rather than
6 simpler steps. The latter are relatively less costly than the former, because the
GET request might involve a key that does not exist in the cache, which can
delay the completion of the request.

Workloads with a large number of records and small packet size stress
Memcached significantly more than workloads with fewer records but larger
sized packets. This happens because packets with size smaller than 1 KB are
CPU-bound, while packets with size larger than 1 KB are network-bound. In
other words, the former saturate the CPU’s pipeline, while the latter saturate
the NIC first [3]. However, in this case, the NIC was never saturated; there was
either a virtual network that featured virtual interfaces that were characterized
by a large bandwidth, or a physical 1 GbE port. The lower throughput that was
observed for fewer, larger-sized packets (compared to many small-sized
packets) was due to the fact that, since the total number of items that could be
contained was lower, the probability of a certain item being evicted before it
was requested again was higher. As such, if the available memory is not
enough, large packets can stress the Memcached server, even if the NIC has
enough bandwidth.

The key distribution didn’t seem to have a significant effect on Memcached’s
performance, although for the uniform distribution (which is, in theory, the best
case scenario) the maximum throughput was slightly higher in most cases. This
leads to the conclusion that this is not a deciding factor for Memcached’s
performance, however longer experiments (with respect to time), which could
not be conducted, could prove otherwise and reveal a larger performance gap
between uniform and zipf distribution. Experiments with a longer duration
would reveal if skewness in key choice stresses the server heavily or not.

As regards Memcached’s execution cycle breakdown, it was revealed that:

Memory-related system calls are a serious impedance to its performance,
regardless of workload type. It can be concluded that the SLAB memory
management scheme is not very efficient, which is why many key-value
stores do not employ it.

The OS-provided POSIX I/O induces a significant overhead on Memcached’s
performance, thus making it unsuitable for a highly efficient key-value store.

Regarding MemC3, it was shown that:

e It can achieve much better performance than Memcached in every way, even
without making use of all its optimizations. This shows that Memcached’s

77

hashing scheme, the Jenkins algorithm, is not very efficient. MemC3’s
optimistic cuckoo hashing scheme seems to perform much better, making it
a better choice.

Finally, Memcached’s implementation on the LS2085A communication processor
showed promising results. More specifically:
e Strictly performance-wise, the LS2085A communication processor achieves
a higher maximum throughput than the x86 server, especially for easier-to-
handle workloads, in which cases it can achieve throughput an order of
magnitude higher. The same cannot be said about its performance when it is
trying to achieve a higher target throughput; latency rises faster than on an
x86-based server.
e The LS2085A communication processor showed great performance per watt
while running Memcached, surpassing many implementations running on
servers with Intel Xeon CPUs. On the whole, it should be considered as a
possible candidate for running Memcached or other key-value stores.
The conclusions that were drawn are shown in the table below.

Implementation Workload- Execution cycle- | Performance | Performance/Watt
related related
bottlenecks bottlenecks
x86 (Memcached) GETs; many Memory-related | 13.5 KRPS 1.8 KRPS/Watt
small-sized system calls; (without
packets; large- secondarily parallelism);
sized packets Network-related 60 KRPS
(depends on system calls (with
available parallelism)
memory)
x86 (MemC3) GETs Network-related 17 KRPS 3.8 KRPS/Watt
system calls (without
parallelism)
Communication GETs; many - 111 KRPS 2.9 KRPS/Watt
Processor (Memcached) small-sized (with
packets; large- parallelism)
sized packets
(depends on
available
memory)

Table 4.1: Summary of conclusions.

78

79

5. FUTURE WORK

First, experiments quite long in duration (e.g. lasting days) can be conducted in
order to determine the true impact of the distribution that key choice follows.
Furthermore, MemC3 should be run using full parallelism and optimizations, in order
to gauge its true potential and compare it with Memcached. Other optimized versions
of Memcached (e.g. MICA) and key-value stores like Redis should also have their
performances measured in different configurations and scenarios, in order to determine
which is superior and in which cases, since some may perform better in specific
workloads than others.

It would also be interesting to implement MemC3 on the LS2085A
communication processor, in order to conduct a comparison between MemC3 and
Memcached, especially on the performance-per-watt level. This could be done for
other key-value stores, as well. Last, it should be attempted to draw the communication
processor’s full potential by utilizing its unique characteristics that make it (in theory)
ideal for such applications. The LS2085A communication processor features advanced,
high-performance datapath and network peripheral interfaces required for networking,
telecom/datacom, wireless infrastructure, military and aerospace applications. Attempts
should be made to make use of its network-oriented design in order to achieve higher
performance and performance per watt, especially on key-value stores, which are of
critical importance to large scale datacenters.

80

81

REFERENCES

[1] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia, Michael
Kaminsky, David G. Andersen, Seongil O, Sukhan Lee, Pradeep Dubey, “Architecting
to Achieve a Billion Requests Per Second Throughput on a Single Key-Value Store
Server Platform”, ISCA ’15, June 2015.

[2] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, Venkateshwaran Venkataramani “Scaling Memcache at Facebook”,
USENIX Association,10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI *13).

[3] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, Thomas
F. Wenisch “Thin Servers with Smart Pipes: Designing SoC Accelerators for
Memcached”, ISCA 13 Tel Aviv, Israel.

[4] Sai Rahul Chalamalasetti, Alvin AuYoung, Kevin Lim, Parthasarathy
Ranganathan, Mitch Wright, Martin Margala, “An FPGA Memcached Appliance”,
FPGA’13, February 11-13, 2013, Monterey, California, USA.

[5] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bar, Zsolt
Istvan “Achieving 10Gbps line-rate key-value stores with FPGAs”

[6] Maysam Lavasani, Hari Angepat, Derek Chiou, “An FPGA-based In-line
Accelerator for Memcached”, Department of Electrical and Computer Engineering,
The University of Texas at Austin, 2014.

[7] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, Boris
Grot, “Scale-Out NUMA”, ASPLOS ’14, March, 2014, Salt Lake City, Utah, USA.
[8] Anthony Gutierrez, Michael Cieslak, Bharan Giridhar, Ronald G. Dreslinski,
Luis Ceze, Trevor Mudge, “Integrated 3D-Stacked Server Designs for Increasing
Physical Density of Key-Value Stores”, ASPLOS 14, March 1-4, 2014, Salt Lake City,
Utah, USA.

[9] Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, Miguel Castro
“FaRM: Fast Remote Memory”, 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14), April, 2014, Seattle, WA, USA.

[10] Bin Fan, David G. Andersen, Michael Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing”, USENIX
Association 10", USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13).

[11] Anuj Kalia, Michael Kaminsky, David G. Andersen, “Using RDMA Efficiently
for Key-Value Services”, SIGCOMM’14, August, 2014, Chicago, IL, USA.

[12] Mao, Yandong, Edward W. Kohler, and Robert Morris, “Cache Craftiness for
Fast Multicore Key-Value Storage”, 7th ACM European Conference on Computer
Systems: April, 2012, Bern, Switzerland.

[13] Christopher Mitchell, Yifeng Geng, Jinyang Li, “Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store”, USENIX Association 2013
USENIX Annual Technical Conference (USENIX ATC ’13).

[14] Hyeontaek Lim, Dongsu Han, David G. Andersen, Michael Kaminsky, “MICA:
A Holistic Approach to Fast In-Memory Key-Value Storage”, NSDI, 2014.

82

[15] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, Kenneth Steele,
“Power and Performance Evaluation of Memcached on the TILEPro64 Architecture”,
October 10, 2011.

[16] https://insidehpc.com/hpc-basic-training/what-is-hpc/

[17] http://www?2.itif.org/2016-high-performance-computing.pdf

[18] Robert Krulwich (2001-04-17). Cracking the Code of Life (Television Show).
PBS.

[19] http://www.hpctoday.com/state-of-the-art/ibm-watson-the-future-problem-
solving-supercomputer/].

[20] Coulouris, George; Jean Dollimore; Tim Kindberg; Gordon Blair (2011).
Distributed Systems: Concepts and Design (5th Edition). Boston: Addison-Wesley.
ISBN 0-132-14301-1.

[21] https://www.techopedia.com/definition/18909/distributed-system

[22] Memcached.org

[23] MocoSpace Architecture - 3 Billion Mobile Page Views a Month. High
Scalability (2010-05-03). Retrieved on 2013-09-18.

[24] Cuong Do Cuong (Engineering manager at YouTube/Google) (June 23, 2007).
Seattle Conference on Scalability: YouTube Scalability (Online Video - 26th minute).
Seattle: Google Tech Talks.

[25] Steve Huffman on Lessons Learned at Reddit Archived 2010-05-17 at the
Wayback Machine.

[26] https://www.survata.com/jobs/

[27] http://gigaom.com/2010/06/08/how-zynga-survived-farmville/

[28] https://web.archive.org/web/20100527004122/http://developers.facebook.com/
opensource/

[29] https://www.facebook.com/note.php?note_id=39391378919&ref=mf

[30] https://partner.orange.com/

[31] https://blog.twitter.com/official/en_us/a/2008/its-not-rocket-science-but-its-
our-work.html

[32] http://www.jobscore.com/jobs2/tumblr/engineer-core-applications-
group/cvAFBCbcyr47JbiGakhP3Q?ref=rss&sid=68

[33] https://www.mediawiki.org/wiki/Memcached

[34] http://highscalability.com/blog/2014/9/8/how-twitter-uses-redis-to-scale-
105tb-ram-39mm-gps-10000-ins.html

[35] http://www.project-voldemort.com/voldemort/

[36] https://aws.amazon.com/elasticache/redis/

[37] http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Scaling.ht
ml

[38] https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-
value-cache-for-flash-storage/10151347090423920/

[39] https://gigaom.com/2013/03/05/facebook-kisses-dram-goodbye-builds-
memcached-for-flash/

[40] Alex Wiggins, Jimmy Langston, ‘Enhancing the Scalability of Memcached’,
May 2012.

[41] http://parsa.epfl.ch/cloudsuite _old/memcached.html

[42] https://github.com/leverich/mutilate/blob/master/README.md

83

https://insidehpc.com/hpc-basic-training/what-is-hpc/
http://www2.itif.org/2016-high-performance-computing.pdf
http://www.hpctoday.com/state-of-the-art/ibm-watson-the-future-problem-solving-supercomputer/
http://www.hpctoday.com/state-of-the-art/ibm-watson-the-future-problem-solving-supercomputer/
https://www.techopedia.com/definition/18909/distributed-system
https://www.survata.com/jobs/
http://gigaom.com/2010/06/08/how-zynga-survived-farmville/
https://web.archive.org/web/20100527004122/http:/developers.facebook.com/opensource/
https://web.archive.org/web/20100527004122/http:/developers.facebook.com/opensource/
https://www.facebook.com/note.php?note_id=39391378919&ref=mf
https://partner.orange.com/
https://blog.twitter.com/official/en_us/a/2008/its-not-rocket-science-but-its-our-work.html
https://blog.twitter.com/official/en_us/a/2008/its-not-rocket-science-but-its-our-work.html
http://www.jobscore.com/jobs2/tumblr/engineer-core-applications-group/cvAFBCbcyr47JbiGakhP3Q?ref=rss&sid=68
http://www.jobscore.com/jobs2/tumblr/engineer-core-applications-group/cvAFBCbcyr47JbiGakhP3Q?ref=rss&sid=68
https://www.mediawiki.org/wiki/Memcached
http://highscalability.com/blog/2014/9/8/how-twitter-uses-redis-to-scale-105tb-ram-39mm-qps-10000-ins.html
http://highscalability.com/blog/2014/9/8/how-twitter-uses-redis-to-scale-105tb-ram-39mm-qps-10000-ins.html
http://www.project-voldemort.com/voldemort/
https://aws.amazon.com/elasticache/redis/
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Scaling.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Scaling.html
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://gigaom.com/2013/03/05/facebook-kisses-dram-goodbye-builds-memcached-for-flash/
https://gigaom.com/2013/03/05/facebook-kisses-dram-goodbye-builds-memcached-for-flash/
http://parsa.epfl.ch/cloudsuite_old/memcached.html
https://github.com/leverich/mutilate/blob/master/README.md

[43] https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-
is-impacting-everyday-life/

[44] https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-
is-impacting-everyday-life-2/

[45] Hassan, Qusay (2011). "Demystifying Cloud Computing”. The Journal of
Defense Software Engineering. CrossTalk. 2011 (Jan/Feb): 16-21.

[46] Peter Mell and Timothy Grance (September 2011). The NIST Definition of
Cloud Computing (Technical report). National Institute of Standards and Technology:
U.S. Department of Commerce. doi:10.6028/NIST.SP.800-145. Special publication
800-145.

[47] https://www.valentina-db.com/en/valentina-key-value-database

[48] http://basho.com/resources/key-value-databases/

[49] SystemTap 3.0, SystemTap Beginners Guide

[50] http://www.ndm.net/isilon/high-performance-computing

[51] http://www.datamation.com/cloud-computing/what-is-cloud-computing.html
[52] http://www.nxp.com/products/microcontrollers-and-processors/arm-
processors/qorig-layerscape-arm-processors/development-resources/qorig-1s2085a-
rdb-reference-design-board:L S2085A-RDB

84

https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-is-impacting-everyday-life/
https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-is-impacting-everyday-life/
https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-is-impacting-everyday-life-2/
https://www.ibm.com/blogs/cloud-computing/2013/04/how-cloud-computing-is-impacting-everyday-life-2/
https://www.valentina-db.com/en/valentina-key-value-database
http://basho.com/resources/key-value-databases/
http://www.ndm.net/isilon/high-performance-computing
http://www.datamation.com/cloud-computing/what-is-cloud-computing.html
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/development-resources/qoriq-ls2085a-rdb-reference-design-board:LS2085A-RDB
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/development-resources/qoriq-ls2085a-rdb-reference-design-board:LS2085A-RDB
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/development-resources/qoriq-ls2085a-rdb-reference-design-board:LS2085A-RDB

APPENDICES

1. SYSTEMTAP SCRIPT FOR CREATION OF FILE TO BE
PARSED CONTAINING NETWORK-RELATED SYSTEM CALL
TIMESTAMPS

#systemtap script for creation of file to be parsed containing
network-related system call timestamps
probe syscall.socket {

if (execname () =="memcached") printf ("%1lu o\n",
gettimeofday us())
}

probe syscall.bind {

if (execname () =="memcached") printf ("$1u o\n",
gettimeofday us())
}

probe syscall.epoll ctl {

if (execname () =="memcached") printf ("%1lu o\n",
gettimeofday us())
}

probe syscall.epoll wait ({

if (execname () =="memcached") printf ("%1lu o\n",
gettimeofday us())
}

probe syscall.read {

if (execname () =="memcached") printf ("%1lu o\n'",
gettimeofday us())
}

probe syscall.sendmsg {

if (execname () =="memcached") printf ("%1lu o\n",
gettimeofday us())
}

probe syscall.socket.return {
if (execname () =="memcached") printf ("0 %1lu\n",

gettimeofday us())
}

probe syscall.bind.return {

85

if (execname () =="memcached")
gettimeofday us())
}

probe syscall.epoll ctl.return ({

if (execname () =="memcached")
gettimeofday us())
}

probe syscall.epoll wait.return {

if (execname () =="memcached")
gettimeofday us())
}

probe syscall.read.return {

if (execname () =="memcached")
gettimeofday us())
}

probe syscall.sendmsg.return {

if (execname () =="memcached")
gettimeofday us())
}

2. PYTHON PARSING SCRIPT

Python parsing script
Import modules

import pandas as pd
import numpy as np

Insert filepath
filepath

printf ("0

printf ("0

printf ("0

printf ("0

printf ("0

%$1lu\n",

%$1lu\n",

%$1lu\n",

%$1lu\n",

%$1lu\n",

"/home/valsamidis/measurements systemtap memcached 100 connect
ions 2 workers/measurements/epfl uniform 0.9 24 threads/mem ou

t.txt"

Open file
f = pd.read csv(filepath,
sep = n u,

names = ["entry time","return time"])

def merge(listl, list2):

merged list = []

86

while (listl and 1list2):
if 1istl[0][0] > 1list2[0][0]:
merged list.append(list2[0])

1ist2[0:1] = []
else:
merged list.append(listl[0])
1ist1[0:1] = T[]
if listl:

merged list merged list + listl

else:

merged list merged list + list2

return merged list

Create lists
entry time list = list(f["entry time"])
return time list = list(f["return time"])

Create shorter lists

initial entry length = len(entry time list)
initial return length = len(return time list)
factor entry = initial entry length // 1000

factor return = initial return length // 1000
entry time list = entry time list[-factor entry:]
return time list = return time list[-factor return:]

Remove zeroes
i=20
while (1 < initial entry length):
try:
if (entry time list[i] == 0):
del entry time list[i]
initial entry length = initial entry length - 1
else:
i=1+1
except IndexError:
break

i=20
while (i < initial return length):
try:
if (return time list[i] == 0):
del return time list[i]
initial return length = initial return length -

87

except IndexError:
break

Get lists' length
entry length = len(entry time list)
return length = len(return time list)

Create arrays
entry time tuples = [(entry time 1list[0] , 1)]
return time tuples = [(return time 1list[0], -1)]

for 1 in range(l, entry length):

entry time tuples = entry time tuples
[(entry time list[i], 1)]
for 1 in range(l, return length):

return time tuples = return time tuples
[(return time listf[i], -1)]

Concatenate and sort
full array = merge(entry time tuples, return time tuples)

Start with entry

i=0

while (full array[0][1] == -1):
full array([0:1] = []

Initializations

start = 0
total time = 0
offset = 0

flag = True
full array length = len(full array)

Main program
for 1 in range(full array length):
offset = offset + full array([i][1]
if (offset == 0):
total time = total time + (full arrayl[i] [0] -
flag = True
if ((offset == 1) and (flag == True)):
start = full array[i] [0]
flag = False

Print Output
print ("Total time spent: " + str(total time) + "\n")

88

start)

89

LIST OF FIGURES

[1] Ewova 0.1: H mAnpoopikn tov cOvvepov amotelel pio peydin oadiayn oty
TANPOPOPIKT).

[2] Ewova 0.2: Atdypappo opyitektovikng Kot xprions tov Memcached.

[3] Ewova 0.3: (o) Memcached, Data Caching Benchmark, 100 cuvdécelg, 2
vuata-gpyates. (B) Memcached, Mutilate, 100 cuvdéoelg, 2 vijnata-epydTec.

[4] Ewova 0.4: (o) Memcached, Data Caching Benchmark, 100 cuvdécelg, 2
vuato-gpyates. (B) Memcached, Mutilate, 100 ocvvoéoelg, 2 vipata-gpydrtec. (Y)
Memcached, Data Caching Benchmark, 1 cOvdeon, 1 vipa-gpydtng. (8) Memcached,
Mutilate, 1 obvdeon, 1 vipa-gpydtng. (¢) MemC3, Data Caching Benchmark, 1
ovvdeon, 1 viua-epydatngs. (ot) MemC3, Mutilate, 1 cOvdeon, 1 vipa-epydnc.

[5] Ewova 0.5: (o) Memcached, Data Caching Benchmark, 100 cuvdéoeic, 2
viuata-gpyates. (B) Memcached, Data Caching Benchmark, 100 cuvééoeig, 2 vipoto-
gpyares. (Y) Memcached, Mutilate, 100 cuvdéoetlg, 2 vijpata-gpydrec. (6) Memcached,
Mutilate, 100 cuvvdéoelg, 2 vijuata-gpydtec. (€) Memcached, Data Caching Benchmark,
1 ovvdeon, 1 vipa-gpydng. (ot) Memcached, Data Caching Benchmark, 1 covdeon, 1
VNHO-EPYATNG.

[6] Ewova 0.6: (o) Memcached, Mutilate, 1 ovvdeon, 1 vAua-gpydme. (B)
Memcached, Mutilate, 1 ocvOvdoeon, 1 viuoa-gpydts. (y) MemC3, Data Caching
Benchmark, 1 obvdeon, 1 viua-gpydnc. (6) MemC3, Data Caching Benchmark, 1
ouvdeon, 1 vipa-gpydtng. (¢) MemC3, Mutilate, 1 ocOvoeon, 1 vua-gpydtng. (or)
MemC3, Mutilate, 1 cOvdeon, 1 vijpa-epydrng.Euova 0.6: Memcached, Mutilate, 100
OLVOEGELS, 2 VIILOTO-EPYATEC.

[7] Ewoéva 0.7: Memcached, avaivon koklov ektéleonc.

[8] Ewoéva 0.8: MemC3, avdivon kokAov eKTELECTC.

[9] Ewova 0.9: MemC3, avaivon kokAov ektédeong ywpis eneEepyacio Siktdov.
[10] Ewova 0.10: (o) Memcached, Data Caching Benchmark. () Memcached,
Mutilate.

[11] Ewova 0.11: (o) Memcached, Data Caching Benchmark. () Memcached,
Mutilate.

[12] Ewova 0.12: (o) Memcached, Data Caching Benchmark. (B) Memcached, Data
Caching Benchmark. (y) Memcached, Mutilate. (5) Memcached, Mutilate. (g)
Memcached, Mutilate.(ot) Memcached, Mutilate.

[13] Figure 1.1: Typical HPC Workflow.

[14] Figure 1.2: Cloud computing represents a major generational shift in
enterprise IT.

[15] Figure 1.3: Web Server/Memcached/Database tier.

[16] Figure 1.4: McDipper storage layout

[17] Figure 2.1: Parallel data access models.

[18] Figure 2.2: Components of in-memory key-value stores.

90

[19] Figure 2.3: Memcache as a demand-filled look-aside cache. The left half
illustrates the read path for a web server on a cache miss. The right half illustrates the
write path.

[20] Figure 2.4: Memcache overall architecture.

[21] Figure 2.5: Masstree structure: layers of B+- trees form a trie

[22] Figure 2.6: Masstree node structures

[23] Figure 2.7: Steps in posting RDMA verbs. The dotted arrows are PCle PIO
operations. The solid, straight arrows are DMA operations: the thin ones are for writing
the completion events. The thick wavy arrows are RDMA data packets and the thin
ones are ACKs.

[24] Figure 2.8: sONUMA overview.

[25] Figure 2.9: RMC inernal architecture and functional overview of the three
pipelines.

[26] Figure 2.10: Pilaf’s overall architecture.

[27] Figure 2.11: Self-verifying hash table structure.

[28] Figure 2.12: TSSP architecture.

[29] Figure 2.13: NIC and GET accelerator details.

[30] Figure 2.14: TSSP — Hardware and Software data structures.

[31] Figure 2.15: Overall FPGA Memcached appliance architecture.

[32] Figure 2.16: Memcached dataflow pipeline.

[33] Figure 2.17: In-line accelerator architecture.

[34] Figure 2.18: Left: 1.5U server with 96 Mercury stacks. Right: The 3D-stacked
Mercury architecture.

[35] Figure 2.19: High level overview of the Tilera TILEPro64 architecture.

[36] Figure 2.20: Execution model of Memcached on TILEPro64.

[37] Figure 3.1: Memcached architectural diagram and use case.

[38] Figure 3.2: Data structure of hash table used to lookup cache items.

[39] Figure 3.3: Cuckoo path. @ represents an empty slot.

[40] Figure 3.4: (a) Memcached, Data Caching Benchmark, 100 connections, 2
worker threads. (b)Memcached, Mutilate, 100 connections, 2 worker threads.

[41] Figure 3.5: (a) Memcached, Data Caching Benchmark, 100 connections, 2
worker threads. (b) Memcached, Mutilate, 100 connections, 2 worker threads. (c)
Memcached, Data Caching Benchmark, 1 connection, 1 worker thread. (d)
Memcached, Mutilate, 1 connection, 1 worker thread. (¢) MemC3, Data Caching
Benchmark, 1 connection, 1 worker thread. (f) MemC3, Mutilate, 1 connection, 1
worker thread

[42] Figure 3.6: (a) Memcached, Data Caching Benchmark, 100 connections, 2
worker threads. (b) Memcached, Data Caching Benchmark, 100 connections, 2 worker
threads. (c) Memcached, Mutilate, 100 connections, 2 worker threads. (d) Memcached,
Mutilate, 100 connections, 2 worker threads. (¢) Memcached, Data Caching
Benchmark, 1 connection, 1 worker thread. (f) Memcached, Data Caching Benchmark,
1 connection, 1 worker thread.

[43] Figure 3.7: (a) Memcached, Mutilate, 1 connection, 1 worker thread. (b)
Memcached, Mutilate, 1 connection, 1 worker thread. (¢) MemC3, Data Caching

91

Benchmark, 1 connection, 1 worker thread. (d) MemC3, Data Caching Benchmark, 1
connection, 1 worker thread. (e) MemC3, Mutilate, 1 connection, 1 worker thread. (f)
MemC3, Mutilate, 1 connection, 1 worker thread.

[44] Figure 3.8: Memcached, execution cycle breakdown.

[45] Figure 3.9: MemC3, execution cycle breakdown.

[46] Figure 3.10: MemC3, execution cycle breakdown without network processing.
[47] Figure 3.11: (a) Memcached, Data Caching Benchmark. (b) Memcached,
Mutilate.

[48] Figure 3.12: (a) Memcached, Data Caching Benchmark. (b) Memcached,
Mutilate.

[49] Figure 3.13: (a) Memcached, Data Caching Benchmark. (b) Figure 3.32:
Memcached, Data Caching Benchmark. (c) Memcached, Mutilate. (d) Memcached,
Mutilate. (e) Memcached, Mutilate. (f) Memcached, Mutilate.

92

LIST OF TABLES

[1] [Tivaxag 0.1: X0ykpion vAomoinong tov Memcached otov LS2085A pe ddheg
VAOTOMNGELG

[2] Table 3.1: Data Caching Benchmark/Mutilate comparison

[3] Table 3.2: x86 server specifications

[4] Table 3.3: Communication processor specifications.

[5] Table 3.4: Performance/watt comparison between Memcached’s
implementation on the LS2085A communication processor and others found in the
related work.

[6] Table 4.1: Summary of conclusions.

93

