L
o
5

Nl
a8
s

‘l\
po"
. o ®
] b. %
NPOMHOEV
X2l
nvpP$oPo

t»

EBvikd Metodfo MoAvutexveio
>X0AR HAekTpOAdywv Mnxavikwv
Kdl Mnxavikwy YIToAoyloTwVv

Topéag Texvoloyiag MAnpodoptkAC Kal YITOAOYLOTWV
Epyaotrplo MikpoUToAoylotwyv & WndLakwv ZuoTnUATwyY

Implementation of

Convolutional Neural Networks
on Embedded Architectures

YAomoinon

SUVeAMKTIKWV Neupw ViKWV AIKTUWV
o€ EvowuatwUEVEC APXITEKTOVIKEC

AtmAwpaTtikf Epyaocia

TOou

AOANAZIOY A. =YTKH

ETUBAETIWV: AnuATELOC Z0UVTPENG
Av. KabnyntAc E.M.M.

ABrva, ZemtéuPplog 2017

EBvik6 MetaodBlo MoAuteyveio

>X0An} HAeKTPOAGYWwV MNXavikwy Kat MnNYavikwy YTTOAOYLOTWY
Topéag Texvoloyiac NAnpodoptkAg Kal YITOAOYLOTWY
Epyaotrplo MikpolToAoylotwy & Wnolakwv Zuotnudtwy

i
£
7

Ao
rE
r® I
[0 ﬂ A
N
’ Q‘
NPOMHOEVS
L3l
nvpPopo

t

Implementation of
Convolutional Neural Networks
on Embedded Architectures
YAomoinon

SUVeAKTIKWV Neupwvikwv AIKTOwWV
o€ EvowuaTtwUEVEC APXITEKTOVIKEC

AtmAwpaTtik Epyaocia

TOou

AOGANAZIOY A. =YTKH

ETUBAETTWV: AnpATPELOC Z00VTPNG
Av. KaBnyntig E.M.M.

EvkpiBnke amé tnv tpiuen e€eTaoTikA emITpoT TNV 28N emtepPBpiov 2017.

(Yroypadri) (Yroypagr) (Yroypadri)

AnuATPLOC Zo0VTPNC KlapdA Nekpeotln lewpylog rkovpac
Av. KaBnyntic E.M.M. KaBnyntAc E.M.M. Em. KaBnyntng E.M.N.

ABrva, emtéuPplog 2017

EBvik6 MetaodBlo MoAuteyveio

>X0An} HAeKTPOAGYWwV MNXavikwy Kat MnNYavikwy YTTOAOYLOTWY
Topéag Texvoloyiac NAnpodoptkAg Kal YITOAOYLOTWY
EpyaotAiplo MikpolToAoylotwy & Wndlakwv Zuotnudtwyv

£

3

7 NPOMHBEVS .
3l
nvpPopo

to

Copyright © - All rights reserved. Mg tnv empOAa€n avtdg dikalwpatog.
ABavdolog =0ykng, 2017.

Amayopeletal n avtiypadn, amobrkevon kat dtavour tng mapoloag spyaociag, €€
OAOKANPOU 1] THANATOC AUTAG, YLd EPTIOPLKO OKOTIO. ETITpEmeTal n avatimwan, anobn-
Keuon kal dlavopn yia okotd PN KePOOOKOTILKG, EKTIALOEUTIKAC A €peuvnTIKAC duong,
uTté TNV TIPoUTOBeaN va avadEpeTal n TNy TPoEAeLONG Kal va dlatnpeitatl To apdv
hAvupa. EpwtApata mou adopolv Tn XPAON TNG £pyaciag ylia KEPOOOKOTILKG OKOTIO
TPETEL va aneuBivovTal Ttpoc Tov ouyypadEa.

Ol amoPELC KAl TA CUUTIEPACHATA TIOU TIEPLEXOVTAL O auTO To €yypado ekppdlouv Tov
ouyypadéa Kat dev TpETel va epunveuBel 4Tl avtimpoowTteUouV TIC ETONUEG BETELS
Tou EBvikoU MetaodBlou MoAuteyveiou.

AHAQZH MH AOIFOKAOIMHXZ KAI ANAAHWHZ NMPOZQMIKHX EYOYNHX

Me TAPN ETIYVWON TWV GUVETIELWV TOU VOPOU TIEPL TIVEUHATIKWY SIKALWHATWY, &n-
Awvw evuttoypddwc 4Tl eipal amokAeloTikd¢ ouyypadéac TnG Ttapoloag AIMAWHATIKAG
Epyaoiag, yia tnv oAokAnpwon tng omoiag kdBe BonBela sival TARpwG avayvwplopévn
Kal avadEPETal AETTOMEPWC OTNV gpyacia autr. Exw avadpépel TAAPWCS Kat Ye oadeic
avadopeg, OAeC TIC TINYEG Xprong dedopévwy, amoPewyv, BE0swV Kal TIPOTACEWY,
OEWV Kal AeKTIKWV avadopwv, eite katd kuploAetia eite Pdoel emOTNPOVIKAG Tta-
pddpaong. AnAwvw, CUVETIWGE, OTL autA N AmAwpatiki Epyacia mpoetolpdotnke Kat
OAOKANPWONKE amod euéva TIPOCWTILKA KAl ATIOKAELOTIKA Kat OTL, avdAauBavw TARPwWS
OAEC TIC OUVETIELEC TOU VOUOU OTNV TiepIimTwon Katd tnv omoia amodeixOel, dtaxpovika,
OTL n gpyaoia auvtA A THAKA NG dev pou avAkel dLdTL eivat Ttpoidv AoyokAoTtAg AAANG
TIVEUMATIKAG dlokTnoiac.

(Ymoypaori)

28n ZemtepuPpiov 2017

MNepiAnyn

Ta tedevtaia xpovia, 0To EMOTNHPOVIKO TIEd(0 TNC MNXAVIKAS HdBnong, tpaypato-
TIolo0VTaL EKTETAUEVEC €peUvVeEC YUpw amd ta Texvntd Neupwvikd Aiktua (TNA). Ta
TNA amoteAolv UTIOAOYLOTIKA POVTEAQ, ePTiveuopéva amd BLoAoylkoUg opyaviopoug,
Ta omoia €xouv katadépel va Eemepdoouv og anddoaon TIG TtPoNyoUHEVEG HOPDEC TE-
XVNTAC vonuoolvng, yid apkeTd amnd ta mpofAAUATA TNG HNXAVIKAC HABnong. Mwa utto-
katnyopia twv TNA eivat ta ZuveAikTikd Nevpwvikd Aiktua (ENA), tou gpdavidouv pe-
YAAn emituyia otnv amoteAeopatikn emiAuon TPoBANPATWY TNG 6pACNG UTIOAOYLOTWY,
OmwG eival n avayvwplon me{wv, OTEPEOTKOTILKN dpaacn K.a.

lMa ToAAd atd ta ocluyyxpovd TIPOBAANATA TNS 6PACNC UTIOAOYLOTWY UTIAPXEL MEYAAN
emBupia yia ektéAeon TPoTeEVOPeEVWY ADOEWV OE EVOWHATWHEVEC TIAATHOPHEC, TIOU
bivouv éudaon otnv katavdAwaon evépyelag, epdoov 6Aa deixvouv twe To Aladiktuo
Twv Mpaypdtwy Ba kuplapxAoeL Ta emoPevVa Xpovia.

>1éx0¢ TNC Tapouvoag SUMAWMATIKAC epyaociag sival n avdmtuén evd¢ ocuoTAPATOC
ekTéAeonG ENA, yia Tov evowpatwpévo ToAvemneEepyaotri Myriad2. Mo avaAuTikd, n
Myriad2 €xel w¢ peyaAlTePO TTAEOVEKTNHA TNV XAUNAR KatavdAwaon evépyelag, avd po-
vdda utoAoytopol. Ma va emitdXEL AUTA TA XAPAKTNPLOTIKA, N Myriad2 cuviotatat and
12 VLIW emeepyaoTtég, XTIOPEVOUCG YUpw amod pla Pikpr aAAd kat ypryopn pvAun. H
vAoTtoinon plag uttodopng ektéleong dev eival amAi umdBeaon, étav kaveic €xel Tnv
amddoaon Kat TNV KatavdAlwaon evépyelag we Kupiapxa kpttipla. Amé tn ¢pvon Toug, Ta
>NA amattolv petadopd peydAng moootntag Sedopévwy, e to peyaAlTepo TPORANUa
va eival n amoteAeopatikn dtatpnon vPniol pubuol pong dedopévwy TPog Toug 12
emteepyaoTéC. KaTd oUVETIELD, ATIALTE(TAL TIPOOEKTIKOG OXESLAONAC 0TV ToTtoBETNON
Twv dedopévwy Kal Tou Tnyaiou kwdika oTig dlddopeg Lepapxieg pvAUNG. YYPnAR amod-
doan kal xapnAn katavdAwaon pmopel va emitevxBel poévov dv oplopéva TPUAPATA TOU
ouoTAuatog ektéAeong vAotolnBolv oe cupBoAkA YAwaooa, Kablotwvtag anapaitntn
TNV egPBdabuvon oTic WlattepdtTnTeg TOu UAKOU. TEAOG, TO yeyovag OTL To cuoTnua sival
ToAueme€epyaotikd, av€dvel Tnv TOAUTIAOKOTNTA AKOUA TIEPLOCATEPO.

>€ JeydAo Babud, ta mapamdvw TPoPAAUATA CUVAVTWVTAL O KABE EVOWNATWHEVO
enelepyaoTr], CUVETIWCG OL TIPOTEWVONEVEC HEBOSOAOYIEC KAl TIPOCEYYIOELS TIOU AKOAOU-
BoulvTtal £xouv tedio epappoyncg €€w amd tn Myriad2.

A€Eelg KAsba

Mnxavikfi paenaon, UVEAKTIKA VEUPWVLIKA dikTua, Evowpatwuéva cuothuata, MoAve-
TIEPYAOTIKA cuoTApata, Myriad 2

Abstract

During the recent years, the scientific field of machine learning has made an extended
research effort towards the development of Artificial Neural Networks (ANN). ANNs are
biologically inspired computational models, which have managed to exceed the perfor-
mance of previous forms of artificial intelligence for a lot of machine learning tasks.
A subcategory of ANNs are Convolutional Neural Networks (CNN), that show great suc-
cess in the effective solution of computer vision problems, such as pedestrian detection,
stereoscopic vision etc.

For many of the contemporary computer vision problems, there is a great desire to
be able to come up with ways so that their solutions can be executed in embedded plat-
forms. These platforms pay great attention to energy consumption, since the Internet
of Things will most likely prevail in the coming years.

The goal of this thesis is to develop a CNN engine for the Myriad2 embedded pro-
cessor. Specifically, the greatest advantage of this processor is the low energy con-
sumption, per unit of computation. In order to achieve such characteristics, Myriad2
comprises of 12 VLIW processors, built around a small yet fast memory block. Imple-
menting such an engine is not an easy task, especially when somebody is driven by
performance and energy consumption as leading criteria. Naturally, CNNs require the
transfer of large amount of information. This makes the task of keeping a high rate of
data flow towards the 12 processors the major problem. Consequently, a careful data
and source code placement design across the various memory hierarchies is required.
High performance and low energy can be achieved only if some parts of the engine are
implemented in assembly language, which requires delving into hardware subtleties. Fi-
nally, the fact that the system is multiprocessing increases the complexity even further.

To a great extent, the problems above arise in every embedded processor, making
the suggested methodologies and approaches applicable outside the scope of Myriad2.

Keywords

Machine learning, Convolutional neural networks, Embedded systems, Multiprocessing
systems, Myriad 2

OTOUC YOVEIC HoU

Euxaplotieg

Oa nBeAa Katapxnv va suXaploTAowW Tov KabnyntA K. AnuATplo Zolvtpen yia TV
eTiBAePn autng TNG SIMAWPATIKAG €pyaciac Kat yla Tnv sukalpia mouv pou £€dwaoe va
TNV EKTIOVAOW OTO EPYAOTAPLO MIkpoUTIoAOYLOTWY Kal Wndlakwy Zuotnudtwy. Emiong,
guxaplotw Wlaitepa tov Ap. Adlapo Mamaddmoulo yia tnv kabBodriynor Tou Kat Tnv
efalpeTikn ouvvepyaoia mou siyape. TEAoc Ba riBeAa va suXapLOTACOW TOUC YOVEIC hou
yla Tnv Nk cupmapdoTacn Tou Pou Tipooédepav OAd autd ta Xpovia.

ABnAva, ZemtéuPplog 2017

ABavdoioc¢ Z0ykn¢

Table of Contents

NMepiAnyn 1
Abstract 3
Euxaplotieg 7

1 YAomoinon ZuveAKTIKWY NeEUPpWVIKWYV ALKTOWV o€ EVOWHATWHEVEG ApXLTE-

KTOVLKEG 19
1.1 Alya Adyla yia tn NXavikg Jaenono 19
1.1.1 Ta tpia €ldn unxavikAGUAdBNoNG. 19

1.1.2 Ta&wounon otnv emitnpolpevn pabnaon: MNpoPAEmovTag Tig eTIKETEG 20
1.1.3 NaAwvdpdunon otnyv ettnpeolpevn pabnon: NpoBAémovtag ouvexni

Lo 1 (o1 =Y, X=To ¥ Lo & o KA 21
1.2 TeEXVNTA VEUPWVIKA OIKTUGL . . . v v v oo e e e e e e e e e e e e 22
1.2.1 BLOAOYLKO K(VNTPO KAL GUOXETION . « « « v v v e e e e e e e e e e 22
1.2.2 ApPXITEKTOVIKEG TEXVNTWYV VEUPWVIKWY SIKTOWV 23
1.3 ZUVEAIKTIKA VEUPWVIKA dIKTLA o oo 25
1.3.1 Awdta&n twv dedopévwv oe VA INA L. 25
1.3.2 >uvABelg OTPWOELG TTOU XpNoLhoToolvTalt oTa TNA 26

1.4 Caffe: ZuveAlkTik APXLTEKTOVIKN yla Mpriyopn Evowpdtwon Xapaktnpt-
OTIKIOV & v o e 28
1.4.1 EKmaideuon evOGOIKTOOU o o v 28
1.5 MNoAuvemelepyaoTik@ SoOCMyriad2 29
1.5.1 TEVIKA XAPOKTNPLOTIKA v v o i e e e e e e e e e e 29
1.5.2 EAeykTAGDMA TNQUVAUNGCMX 31
1.6 BEATIOTOTIOLNOEIG TIOU EQAPHOOTNKAV . .+« v v v e e e e e e e e e e e e e 32
1.7 ATLloAdynon TNCUAOTIOINONG v o e 35
1.7.1 Ta veupwvikd diktua CIFAR10 Quick katnViso 35
1.7.2 METPACEIG . . o v o o e e e e e e e e e 35
1.7.3 AplBunTikA akpifela Twv UTIOAOYIOHWY o o o o o ot . 38
I Theory 41
1 Background on artificial neural networks 43

Table of Contents

1.1 Machine learningingeneral 43
1.1.1 The three different types of machine learning 43
1.1.2 Classification in supervised learning: Predicting class labels 44
1.1.3 Regression in supervised learning: Predicting continuous outcomes 45

1.2 Mathematics of linear classification forimages 46
1.2.1 Parameterized mapping from images to label scores 46
1.2.2 The linear classifier matrix-vector multiplication. 47
1.2.3 Linear classifier: Images as high-dimensional points 48
1.2.4 Thelossfunction, 49

1.3 Artificial neural networks 50
1.3.1 Biological motivation and connections 50
1.3.2 Commonly used activation functions 51
1.3.3 ANNs architectures 52
1.3.4 Forward-step computation oL, 54

1.4 Convolutional neural networks 55
1.4.1 DataarrangementinaCNN 55
1.4.2 Common layersusedtobuildCNNs 56
1.4.3 Convolutional Layer 57
1.4.4 Poolinglayer. e 61
1.4.5 Fully-connectedLayer. 62

2 Introduction to Caffe and Myriad2 63

2.1 Caffe: Convolutional Architecture for Fast Feature Embedding 63
211 Layers e 63
2.1.2 Traininganetwork 64
2.1.3 Usageinthe CNN implementation 64

2.2 Myriad 2 multiprocessorSoC 64

2.3 CMXDMAC Controller 67

2.4 Myriad2 DevelopmentKit L. 67
2.4.1 MDK Components 68

II Implementation 69
3 Configuring and running a CNN architecture 71

3.1 Descriptionof aparticular CNN 71
3.1.1 Pictorial representationoftheCNN 71
3.1.2 Storage of the weights required by the CNN 73
3.1.3 Provided API 73

3.2 Detailed explanationofthe APT 74
3.2.1 APlLinternals 74

Table of Contents

4 Description of the source code peripherals

4.1

4.2

4.3

4.4

Memory Layout
4.1.1 Why CMXis not enough . .
4.1.2 Proposed memory map . .

4.1.3 Creatingthe memorymapincode

Setting up Myriad2 SoC
4.2.1 Settingup RTEMS
4.2.2 Switching off power islands
4.2.3 Setting up SHAVEs cache .
SHAVE code residing in CMX . . .
4.3.1 Memory allocator code . .
4.3.2 Bootstrapcode.

SHAVE code and data residinginDDR

4.4.1 Trained parameters
442 ThelJumpTable
4.4.3 Operation of the jumpTable

5 Optimization of CNN computational nodes

5.1
5.2

53

54

DMA CMX Driver
Convolution.
5.2.1 Parallelization schema . .
5.2.2 Convolution in assembly .

5.2.3 Optimization: Reduced number of routinecalls.
5.2.4 Optimization: Reduced number of DMA transfers
5.2.5 Optimization: DMA transfers are “hidden” in computation

Pooling
5.3.1 Parallelization schema . .
5.3.2 Poolinginassembly

5.3.3 Optimization: Reduced number of routinecalls.

Fully connected
5.4.1 Matrix-vector multiplication
5.4.2 Parallelization schema . .
5.4.3 Optimized implementation

III Epilogue

6 Evaluation of the Implementation

6.1

6.2

Specific CNNsused
6.1.1 CIFAR10 Quick CNN
6.1.2 nVisoCNN
Measurements
6.2.1 Different input sizes
6.2.2 Different number of SHAVEs

isI/Obounded

81
81
81
82
85
87
89
92
94
97
98
99
106
106
112
115

121
121
123
123
124
126
129
131
135
135
136
137
140
140
140
141

147

149
149
149
149
151
151
152

Table of Contents

6.2.3 Differentfrequency 158

6.3 Comparison with other implementations 159
6.4 ACCUIACY i i it e e e e e e e e e e 161

7 Summary 165
7.1 Conclusion e e e e 165
7.2 Futurework e e 168
Bibliography 172
Abbreviations 173

List of Figures

B N = NN
N w i

The supervised learning approach 44
Binary classification in supervised learning 45
Linear regression in supervised learning, 46

An example of mapping animage to class scores. For the sake of visualization,
it is assumed that the image has only 4 pixels (4 monochrome pixels,
color channels are not considered for in this example for brevity), and

that there are 3 classes (red (cat), green (dog), blue (ship) class). (Clarification:
in particular, the colors here simply indicate 3 classes and are not related

to the RGB channels). The image pixels are stretched into a column and

the matrix-vector multiplication gives the scores for each class. Note that

this particular set of weights W is not good at all: the weights assign the

cat image a very low cat score. In particular, this set of weights seems
convinced thatitisadog. 48
Illustration of the bias trick. Doing a matrix multiplication and then adding

a bias vector (left) is equivalent to adding a bias dimension with a constant

of 1 to all input vectors and extending the weight matrix by 1 column - a

bias column (right) 48
Cartoon representation of the image space, where each image is a single
point, and three classifiers are visualized. Using the example of the car
classifier (in red), the red line shows all points in the space that get a
score of zero for the car class. The red arrow shows the direction of
increase, so all points to the right of the red line have positive (and linearly
increasing) scores, and all points to the left have a negative (and linearly

decreasing) SCOresS. o i i i e e 49
A cartoon drawing of a biological neuron (left) and its mathematical model
(right) e 51
The sigmoid o(x) activation function (left) and the Rectified Linear Unit
(ReLU) activation function (right) 52

Left: A 2-layer Neural Network with three inputs, one hidden layer of

4 neurons and an output layer with 2 neurons. Right: A 3-layer neural
network with three inputs, two hidden layers of 4 neurons each and an
output layer with one neuron. Notice that in both cases there are connections
(synapses) between neurons across layers, but not withina layer. 53
Example topology of a CNN suitable for handwritten digit recognition . . 55

List of Figures

1.11

2.1

2.2
2.3
2.4

3.1

41

5.1
5.2

Cross-section of an input volume of size: 4 x 4 x 3. It comprises of the 3
color channel matrices of the inputimage. 56
Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons

in three dimensions (width, height, depth), as visualized in one of the
layers. Every layer of a CNN transforms the 3D input volume to a 3D
output volume of neuron activations. In this example, the red input layer
holds the image, so its width and height would be the dimensions of the
image, and the depth would be 3 (Red, Green, Blue channels). 56
Computing the output values of a discrete convolution. The shaded regions
indicate the numbers involved at each step of the computation. The result

is placed intheteal coloredgrid. 58
An example input volume in red (e.g. a 32 x 32 RGB image), and an
example volume of neurons in the first convolutional layer. Each neuron

in the convolutional layer is connected only to a local region in the input
volume spatially, but to the full depth (i.e. all color channels). Note, there

are multiple neurons (5 in this example) along the depth, all looking at

the same region in the input, each one contributing to the generation of

a separate outputfeaturemap. L. 59
Left: The neuron strided across the input in stride of 1, giving output of

size 5. Right: The neuron strided across the input in stride of 2, giving
outputofsize3. L 60
An example of a zero-padded 4 x 4 matrix that becomes a 6 x 6 matrix. 60
Convolving a 3 x 3 kernel over a 5 x 5 input padded with a 1 x 1 border

of zerosusing 2 x 2strides. L 61
Left: In this example, the input volume of size [224 x 224 x 64] is pooled

with filter size 2, stride into the output volume of size [112 x 112 x 64].
Notice that the volume depth is preserved. Right: The most common
downsampling operation is max, giving rise to max pooling, here shown

with a stride of 2. That is, each max is taken over 4 numbers (little 2x2
SQUAME). . v e e e e e e e e e e e e e e e e 62

An MNIST digit classification example of a Caffe network, where blue
boxes represent layers and yellow octagons represent data blobs produced

by or fedintothelayers. 64
Overview of Myriad2 hardware 65
More detailed overview of Myriad2 hardware 66
CMXDMAengineof Myriad2, . 68

An example CNN architecture that will be built with the CNN implementation. 71

Proposed memory map that is suitable for CNNs 83
2D striding illustration. 122
2D striding transaction with different DST_WIDTH, SRC_WIDTH. 122

List of Figures

53 Parallelization of convolutioninan RGBimage 123
5.4 Layout of input channelinmemory 127
5.5 Layout of input channel in memory with pointers placed appropriately . . 128
5.6 How the convolution routine “sees” the datainmemory 128
5.7 Parallelization of poolinginan3Dvolume 136
5.8 Layout of input channelinmemory 138
5.9 Layout of input channel in memory with pointers placed appropriately . . 138
5.10 How the pooling routine “sees” the datainmemory 139
5.11 Parallelization of fully connected nodes matrix-vector multiplication . . . 141

6.1 Left: CIFAR10 Quick CNN for terrain classification. Right: nViso CNN for

emotion classification from facial expressions. 150
6.2 Execution time of CIFAR10 Quick CNN for various input images. 151
6.3 Energy consumption of CIFAR10 Quick CNN for various input images. . . 152
6.4 Time execution of convolution with respect to the number of SHAVEs. . . 153
6.5 Scalability convolution with respect to the number of SHAVEs 153
6.6 Energy consumption of convolution with respect to the number of SHAVEs.154
6.7 Time execution of pooling with respect to the number of SHAVEs. 154
6.8 Scalability pooling with respect to the number of SHAVEs. 155

6.9 Energy consumption of pooling with respect to the number of SHAVEs. . 156
6.10 Time execution of fully connected with respect to the number of SHAVEs. 156

6.11 Scalability fully connected with respect to the number of SHAVEs. 157
6.12 Energy consumption of fully connected with respect to the number of
SHAVES. e e 157

6.13 Time execution of the CIFAR10 Quick CNN with respect to the SoC frequency.158
6.14 Energy consumption of the CIFAR10 Quick CNN with respect to the SoC

frequency. e 159
6.15 Time execution of the CIFAR10 Quick CNN on different devices and/or
implementations. 160

6.16 Time execution of the nViso CNN on different devices and/or implementations.160

7.1 Optimization 1: Increasing CMX available memory space for data. 165
7.2 Optimization 2: Reducing the number of required DMA transfers. 166
7.3 Optimization 3: Reducing DMA transfers overhead. 166
7.4 Optimization 4: Reducing the number of convolution kernel calls. 167

List of Tables

3.1

4.1
4.2

6.1

6.2

CNN implementation API 74
Memory areasof Myriad2 82
CMX memory OVErVIEW o e e e e e e e 84
Comparison of accuracy of CIFAR10 Quick CNN layer “ip2” between Caffe

and Myriad2 implementation. 162
Comparison of accuracy of nViso CNN layer “hidden_out” between Caffe

and Myriad2 implementation. 163

KepaAao n

YAomtoinon ZUVEALKTIKWV NEVPWVIKWV ALKTOWV
o€ EVOWHATWHEVEC APXLTEKTOVLKEC

1.1 Alya Adywa yia tn pnxavikn padnon

>tn olyxpovn emoxn otnv omoia {ovpe, uTtdpxel apBbovia dlabéoipwyv dedopévwy,
Ta omola Bpiokovtal oe dounuévn | adéuntn popdn. Katd to deltepo plod tou 200U
atwva, TéBnkav ol eTLOTNHOVIKEG BATELS TNG NXAVIKAG HABNnong, evég kKAddou tou Tie-
6lou TNC TEXVNTAC VOoNuoouvnc, TIou €XeL w¢ aTdXo TNV avamtuén auvtodidaktwyv ayo-
piBpwv, ol omoiol eival oe B€on va avtAolv yvwon amd ta dtabéopa dedopéva. Eldo-
ToL10¢ dladopd NG UNXAVIKAG HABnong amd Tig mponyoUUEVEG TIPooeYYioelg elval To
YEYovAc 6Tt Sev amatteital avBpwTvn apéuBacn yla tn JovieAomoinon Twv Kavévwyv
TIOU TtEPLYPAadouv ta uttd peAETn dedopéva. AvtiBETwc, ol idlol ol alydplBuot sival og
B€on va kataokeudlouv Kal va BeATLWVOUV Ta POVTEAA Tieplypadng Twv dedopévwy.
Ektdg amd to peydAo evdlad€pov TnG PNXavikAg pdbnong améd emioTnuovikn dmoyn, ot
ebappoyEg o tpoodépel otnv KabBnueptvr {wn eival emiong akloonueiwteg. Na ma-
paAdelypa, n UNXavikg pdbnon sivat o Adyoc Ttou UTIAPXOUV ATIOTEAEOHATLKEC PNXAVEC
avalAtnong, afdmioTa AOYIOPIKA avayvwpelong AXou Kat elkévag, supuéotepa auTod-
voua POuTIOT K.a. [1].

1.1.1 Ta tpia €(dn pnxaviking pabnong

AuTtA n utoevétnTa Ba TTAPOUCIACEL CUVOTITIKA Ta Tpla €idn pnxavikig paénong:
Emitnpouuevn pabnaon, Evioxutikni udbnon kaw Mn emitnpououevn udbnon [11].

* ETutnpouuevn udbnon: O KUplog otdXog TNV emitnPolpuevn udbnon sival n ekpd-
Bnon evog povtéAlou - kavovtag xprion dedopuévwy ekTtaidevong Pe ETIKETEC - TIOU
ETUTPETIEL TNV TIpaypatoToinon mpoPAEPewyv o véa dedopéva.

* Evioxutikri udbnon: Exel wg otéxo tnv avdmtuén evéc ocuotiuatog (mpdkTopa)
TIoU BeATIwvel TNV anddoaor] Tou KabBwg aAAnAeTdpA pe 1o TEPLBAAAOV. TNV EVL-
OXUTLKA paénon, n mAnpodopia OXETIKA PE TNV TPEXOUCA KATAOTACH TOU TEPL-
BaAAovtog teplAapBdavet eTumA£ov Kal éva orua emiBpdBevonc, Ttou JoOVTEAOTIOLEL

Kepdlawo 1. YAotoinon ZUVEAIKTIKWY NEUPWVIKWV ALKTUWV 0 EVOWHATWHEVEG APXITEKTOVIKEC

Téo0 KaAn eivat n pla dpdon Tou TpdkTopa. Katd ouveémela, péoa amnd tnv aAin-
Aemtidpacn tou pe to TtepLBAiov, o pdkTopag sival oe B€on va pdBet pla oslpd
amd dpdoelg TTou €XoUV w¢ 0TAX0 TNV HEYLOTOTIOINGN TNG ETILRPABEVONC TOU.

* Mn emitnpouuevn uabnon: stnv emitnpolpevn pabnon - katd tn didpkela ekmai-
dguong Tou HovTEAOU - N CWOTH ATAVTNON £ival YVWOTA €K TWV TIPOTEPWY, EVW
OTNV EVIOXUTIKA pabnon opiletal éva onua emiPpdPeuvong yia TG EVEPYELEG TOU
mpaktopa. Qotdoo, oTNV PN emiTtnEolPevn pabnaon, ta dedopéva site dev dlabe-
TOUV €TIKETEG, (TE €xouv dyvwaotn dopn. Kdvovtag XprAon Twv TEXVIKWY AUTAC
NG HopdnG pdbnaong, uttdpxel n duvatdtnta e€epedivnong tng Soung Twv dedo-
HEVWV, JE 0TOXO TNV e€aywyn xpriowng mAnpogopiac, dixwc tnv Tapoxn yvwong
TIoU amatteitatl otic 00 TaPATIAVW KATNYOoPLeEC UNXAVIKAG nabnong.

1.1.2 Ta&wopnon otnv emttnPoVpeVN HABnon: MNPoBAEToOVTAC TLG ETLKETEG

H ta&wvépunon eivat yia uttokatnyopia tng emITnPoUUeVnG pabnaong, otnv otoia oto-
¥o¢ eival n TpoPAeYn tng KAdong/katnyopiag evég véou aviikelgévou, Bdoel TtaAald-
TepwV Tapatnpioewy [2]. H tafvounon svoc avtikelpévou og pla katnyopia yivetal
HE TNV avdBbeon plag eTIKETAC O€ AUTO, PE TIC ETIKETEC va elval SLaKPLTEC Kal pn diate-
TaYHEVEC TIHEG.

To povtéAo TPORAedNG To omolo pabaivel évag alyoplBuog eTTNPOUHEVNG HNXAVL-
KNG pabnong pmopei va avabéoel omoladnmoTe €TIKETA, TIOU PPaAvVIiOTNKE 0TO oUVOAO
dedopévwy katd tn didpkela TG ekmaidevong, og éva véo Pn TaflVouNUEVO AVTIKE(-
MEvo. ‘Eva TuTtikd Ttapddetypa eival n avayvwplon xelpoypadwyv XapakTipwy. € auth
TNV Tepimtwon, éva olvolo dedopévwv ekmaidevonc Tou TePLEXEL XEPOYpada Ta-
padeiypata yia kdbe ypdupa tou aAdapntou eivat éva onueio ekkivnong. Emelta, edv
0 XPNOoTNG elodyel €va Xelpdypado xapaktipa, HEOW HLaG oUoKEUAG eloddou, To Ho-
vtélo tpOPAeYdng Ba eival og B€on va eKTIHACEL TO CWOTO ypdupa Tou aAddpntou Pe
kamola akpifela. Qotéoo, o alydplBuocg o Ba eival oe Béon va avayvwploel emLTU-
xw¢ omotodAmote amd ta Pndia pndév ewg evvéa, edv avtd dev umtdpyxouv oto olvolo
ekmaidevong Tou.

To oxAua 1.1 amotumwvel TNV W0€a NG duadikric taévounoncg, vmoBEéTovtag otL
gxouv 600¢i 30 delypata katd 1o oTddlo TnG ekmaidevong: 15 delypata €xouv TNV €TL-
KETA TNG apvNTIKAC Katnyopiag (kOkAoL) Kat 15 deilypata €xouv TNV €TIKETA TNG BETIKAG
katnyopiag (o0uBoAo ouv). e autd To oevdplo, To oUvoAo dedopcvwy sival dlodld-
OTATO, TO OTIO(0 onuaivel 6tL kKABe Selypa sutepléxetl 00 TIPEG: X1 KAl Xp. ‘Evag aAyo-
pLBpo¢ (emTnPOUVPEVNC) UNXAVIKAG HdBnong pmopel va xpnowgototnBel yia va pdbet
éva Kavova - To cUvopo TG amdpaong TTou avarmapiotatal Je tn Havpn SLOKEKOUHEVN
ypauun - ou dtaxwpilet Tig dVo katnyopiec kal tafvopuel Ta véa dedopéva o pia amd
TIC KATNYOPIEC SESOPEVWV TWV TIHWV X1 Kal xp [1].

1.1 Alya Adyla yia Tn gnxavikn paénon

Xz O O .rf++++
o, g
O ! +
0O o / + +
o / + + +
o, * + + ,

sxAua 1.1: Avadikn taéivéunon otnv smtnpoUuevn uabnon

1.1.3 MaAwvdpounon otnv emttnpolpevn Hadnon: NpoBA€movtag cuvexn
anoteAéopata

H mtponyoupuevn uttoevotnta £6€1&e we 0 otdxo¢ NG Tafvounong sival n avadeon
un SlateTaypEévwy ETIKETWVY O€ avTikeipeva [2]. ‘Eva 6g0Tepo €(60¢ TNG €TITNPOUHEVNG
pHadnong eival n mpoPAedPn cuvexwv amoTeAEoUdTWY, TIOU gival yvwotd otov KAddo
TNG OTATIOTIKAC WG avdAuaon maAtvépdunonc [2]. Ztnv avdiuon taAvdpopnong, uttoBg-
Toupe OTL SivovTal €va AriBoc amnd petaBAnTEC mpdBAsyYnc Kal pla cuveXAC HETAPBANTA
amokplong (amotéAsoua). ZToX0G eival n ebpeon pla oxéong PeTafld Twv PeTaBANTWV
TPOBAePNC oL eTTPETEL TNV TIPOBAEYPN VG amoteAéopatog. Ma Tapddelypa, ag uto-
Béooupe 6tL B€Aoupe va TpoPAEdoupe Toug Babuolg Twy PabnTwy oto dlaywviopa
TWV pabBnuatikwy. Eav utdpyel pa oxéon Yeta&ld tou Xpdvou Ttou adlepwbnke otn Pe-
ATn yla 1o Slaywviopa Kat Twv Babuwv Tou éAaBav ol pabntég mou to €ypalav, Ba
utTopoloe va xpnotpotmolnBel wg olvolo dedopévwv ekmaideuong yla tnv ekuabnon
gVOC povTéAou. To pJovTtélo, Sedopévou Tou Xpdvou PEAETNG TToU oKoTieVEL va TIEVOU-
oel évag NEAAOVTIKOC pabntncg, tpoBAémel To BaBud Tou Ba AAPEL OTO CUYKEKPLUEVO
dlaywviopa.

To oxAua 1.2 amoTuTwVeL TNV 18€a TNG ypauutkic maAivdpdunonc. Asdopévwy piag
HETABANTAG TPOPAedNG X Kal plag HETaBANTAG amokplong y, oxedldletal pia eubeia
ypauun mou “talptdlel” ota dedopéva kal eAaxlotoTolel tTnv andotaon - TToU GuVN-
Bwc¢ eival n péon TR Tou TETPAYWVOU TNG amdoTaons - HETAED Twv SELYPATWY Kal
NG YPAMMAC. ETIELTA, AUTH N ypauunA Xxpnotlyotoleital yia va tpoBAEPel Tn petaBAnth
amokplong o€ véa dedopéva [1].

Kepdlawo 1. YAotoinon ZUVEAIKTIKWY NEUPWVIKWV ALKTUWV 0 EVOWHATWHEVEG APXITEKTOVIKEC

v

X

SxAua 1.2: Mpauutkn maAivdépounan otnv eMITNPOUUEVN uAbnaon

1.2 Texvntd veupwvVviKA diktua

Ta Texvntd Neuvpwvikd Aiktua (TNA) sivat diktua spmveuvopéva amd BloAoyikolg
opyaviopouc, TTou ouvoEovTal HE £€Va CUYKEKPLPEVO TPOTIO, avdaloyd PE TIC ATALITACELS
NG ekdoTtote epappoynq. Eva amd ta KupldTeEPA TTAEOVEKTANATA TWV TEXVNTWV VEUPW-
VIKWV SIKTOWV elval dtL amattolv eAdxiotn f kauia mpoemnetepyaoia twv dedouévwy
gl0660u. ATtd TNV AAAn pepld, ol tapadoaoiakoi epitexvol pnxaviopol eEaywyng xa-
paktnploTikwy (feature extractors) puBpuifovtal XelpokivnTa yla T0 CUYKEKPLPEVO - UTIO
HEAETN - olvoAo dedopévwy. Ta POVTEAA TEXVNTWV VEUPWVIKWY SIKTUWV €Xouv Tn du-
vatotnTa va pabaivouv kal va yevikebouv Xpnolgomowwvtac apadsiypata. Katd ou-
VETIELQ, AUTA N LKAVOTNTA TIPOOAPHOYAC OE CUYKEKPLUEVN Epyacia avayvwplong, akopa
Kal JETA To 0TAS10 oXedlaopol Toug, Ta KAVEL HOVASIKA, CUYKPLTLKA PE AAAEC TEXVIKEG
NG TEXVNTAG vonuoolvng.

1.2.1 BLOAOYLKO KiVNTPO KAl CUGXETLON

H Bacotkn povada utmtoAoylopwyv Tou eykeddiou eivat o veupwvag [2]. Ytdpyxouyv Te-
pimou 86 SloekaTouplpLA VEUPWVEG GTO avBpwTILVO VEUPLKG cloTnHa Kadl cuvdéovTal
peTatl toug pe mepimou 10'4 - 10> veupkéc ouvayelc. To oxApa 1.3 Selxvel pla
amAoTotnNpévn amelkévion evog BloAoyikol VEUPWVA OTA APLOTEPA KAl TOU ouviBoug
pHadnuatikou povtéAdou ota defid. Kabe vevpwvag AapBdavel onpata lodédou amd toug
devdpiteg katl Tapdyel cApata e€660u katd ta prikog tou (evog) d€ovd Tou. To UTtoAO-
YLOTIKO JOVTEAO TOU VEUPWVA, Ta ofjpata tou Tatdeouv otov dova (Tt.X. Xg) aAAnAe-
TSpouv TToOAAATTAACLAOTIKA (TT.X. WoXg) HE TOUC devpiteg Tou dAAoL veupwva, avdioya
he Tn d0vapn TG abvayng (T.X. wp). H 16€a eivat 6tL n d0vapun Twv cuvapewv (ta Bdpn
w) elval petaBAntd, ptopolv va ektatdeuTolV Kal EAEYX0UV TNV ETILPPON EVOC VELPWVA
o€ €va aAAo veupwva. 2to Baotkd BloAoyikd povteAo, ol Sevdpiteg petadpEpouv To orpa
TO CWHO TOU KUTTAPOU, OTToU TipaypatoToteital n dBpoton. EAv to TeAlkd dBpolopa i-

1.2 Texvntd veupwVIKA dikTua

val Ttdvw atod KAmolo KatwoAl, o veupwvag tupodotel, otéAvovtag éva cUVTOHO onpa
KaTd PAKog Tou d€ovd Tou. 2To UTTOAOYLOTLKG HOVTEAO, yiveTal n uTtdBeon GTL oL akpLPeig
XPOVOL TOU OUVTOMOU ofpaTtoc dev €Xouv onuacia, Kat 0Tt yovo n ouxvoTnTa TwV TIUPO-
dotAoswyv petadidel mAnpodopia. Bdoel autAg Tng epunveiag, o puBudc upodotnong
TOU VEUPWVA POVTEAOTIOLE(TAL JE Yl CUVAPTNON EVEPYOTIOiNONG f, TTOL avamaploTd th
ouxvétnTta Ye TNV otoia ta cuvtopa onpata taftdelouv otov dEova. Iotopikd, pia ou-
vABNC €TLAOYA YLd TN OLVAPTNON EVEPYOTIOLNONC €lval N otypoetdic ouvaptnon o, TIou
AapBdavel weg eicodo éva payuatiké apBuod (to oApa PeTAd Tnv dBpolon) Kat To TIEPLO-
pilel To €0poC peTatL O kat 1.
o wo

synapse

impulses carried axon from a neuron
WoZo

toward cell body
branches
of axon

cell body

I (Z w;T; + b)
Z w;T; + b '

output axon

activation
function

. ~—axon

terminals

impulses carried
away from cell body

IxApa 1.3: AmAomoinuévn ameikovion Tou BLloAoyikoU veupwva (aplotepd) kat Tou La-
BnuatikoU Tou povtéAou (Seéid)

Me dAAa AdyLa, kKdBe veupwvag TtpayHatoTolel éva ecwTePLKO YIVOPEVO TNG El06S0u
Kal Twv Bapwyv, TIPooBETEL TNV TIPA TTOAWONC Kal epapudlel hia hn yPAPULIKA ouvap-
Tnon (yvwoTH Kal w¢ ouvaptnon evepyomoinong). =& auTr TNV Tep{MTWaon, N ouvap-
Tnon evepyomoinong eivat n olypoeldng ouvaptnon o(x) = 1/(1 + e™X).

Mpémel va TovIoTEl OTL TO JOVTEAO TOU VEUPWIVA TIOU TIAPOUCLACGTNKE €ival TIoAD Xov-
Spocldéc. MNa mapdadetypa, uttapyxouv dladopeTikd 16N veupwvwy, kabéva pe dladope-
TIKEC 1OLOTNTEC. OL Hevdpitec oTOUC BLOAOYLKOUC VEUPWVEG UTTOPOUV VA TIPAYHATOTIOL-
loouv TIOAUTIAOKOUC N YPAPHLKOUC uTtoAoylopolc. Ot veupwVIKEC ouvalelg dev eivat
amAwg éva Bapog, dAAa TtoAUTIAOKA PN YPAUULIKA duvaplkd cuothpata. EEattiag OAwv
aUTWYV TwWV amilovoTteloswy, Tad TNA gival amAwc epymveuopéva atod ToU TIPAYHATIKOOC
VEUPWVEC Kal §eV TTpooTtaBolv va Toug TIPOCOHOLWO0UV.

1.2.2 APXLTEKTOVLKEG TEXVNTWYV VEUPWVLKWV SLKTOWV

Ta texvnTd veupwvikd diktua pmopolv va avamapadotabolv wg ypddot [3]. Suy-
KEKPLWEVA, JovTeAoTiololvTal wg Pla cUAAoy attd VEUPWVEC TIou cuvdéovtal HeTagld
Toug, oxnuatilovtag éva akukAlkO ypado. Me dAAa Adyia, ol £€€0dol KATIOLWY VEUPW-
vwV pttopei va eivat elcodol og kamoloug dAAoug veupwveg. Ot KUKAOL Sev ETIITPETIOV-
Tat, kabwe avtd Ba uttovooloe éva atéppovo Bpdxo katd tnv tpododdtnon dedopévwv
oto diktuo. Avti yla duopdeg dlatdielg veupwvwy, ta povtéda twv TNA opyavwvov-
Tal oUVABWC O€ SLAKEKPLPEVEC OTPWOELS VEUPWVWV. STA KAVOVIKA VEUPWVIKA dlKTua, N
L0 ouVNBLOPEVOG TUTIOC OTPWONG eival N MARpw¢ ouvOeSEUEVN OTPWON, TNV OTtola oL

KeddAawo 1. YAomoinon SuveAKTIKwV NEUPWVIKWY AIKTOWV 0€ EVOWHATWHEVEC APXITEKTOVIKEC

VELPWVEG PETAEL 800 YELTOVIKWY OTPWOEWV gival TTARpwS cuvdedepévol, alAd ot veu-
PUWVEG TIOU avAKoUV aTnV idla otpwaon dev €xouv petald Toug cuvdéaoelg. 2To oxAua 1.4
amelkoviovtal SUo tomoAoyiec TNA TIOU XPNOLOTIOOUV TIANPWC CUVOESEPEVEC OTPW-
OELG.

R
A

4
N\
s

output layer

)
@

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

sxAua 1.4: Aptotepd: Eva TNA dUo otpwoewy ue 3 e10660uc, uia kpugrn otpwaon 4 veu-
pwvwv Kat Tnv otpwon géédou e 2 veupwveg. Ag&ia: Eva TNA Toiwv oTpwoswy e 3
£10060UC, 2 KPUPEC OTPWOEIC LIE 4 VEUPWVEC N KaBeuia kat tn otpwon eEédou ue 1 veu-
pwva.

Ta govTépva OUVEAIKTIKA VEUPWVIKA SUKTLA TIoU TtapouctdlovTal oTn CUVEXELD Tie-
pLExouv MARBo¢ tapap€Tpwy tTNG TA&Ng Twv 100 ekatoppupiwy Kal amoteAovvTal amd
10-20 otpwoelc. QoTtdo0, To TTARBOC TWV OUCLAOTIKWY CUVOETEWYV EVaL ONUAVTLKA Pe-
yaAUtepo, e€attiag Touv yeyovoTtog OTL TTOAAEC amd TIC TTapaPETPOUG potpdlovTal peTatu
TWV OUVOETEWV.

1.3 ZUVEAIKTLKA VEUPWVLKA SiKTUO

1.3 ZUVEALKTIKA veEupwVLIKA diktua

‘Eva SuveAlkTikd Neupwvikd Aiktuo (ENA) amoteAel plag €861k TomoAoyia TeEXvn-
ToU veupwvikoU diktlou, n omoia eivat eumveuopévn atod Tov OTtTIKG eYKEPAALKS dAoLd
Twv {Wwv. Ol TTAPAUETPOL AUTWV TWV TOTIoOAoYLwV pubuioTnkav KatdAAnAa amd tov
Yann LeCun oTic apx€¢ tou 1990 [4], woTe va uymop£oouv Ta AUoouv TipoBAAuata otnv
Opaon uttoAoylotwv. ETti Tng ovoiag, éva SNA eival éva povtéhou TNA Ttou €xeL oxedla-
otel amokAElOTIKA yla TNV avayvwplon dlodldotatwy avtikelpévwy, Ttapovatdlovtag
vdhnAS Babud avaAioiwtng cupmepldopdg KaTd TNV HeTABEDN, KALMAKWON, OTPERAWGN
Kal AAAeC TTapapopPwaoelS TNG elcddou.

C, S C, S; n, n;
input feature maps feature maps feature maps feature maps output
32 x32 28 x 28 14 x 14 10x 10
N
\] ‘ |
= — 8
\— \
5%5 2x2 5x5 o
convolution \ subsampling convolution 2x2 \\ C fully \
N subsampling \ \ connected \
feature extraction classification

TxAua 1.5: Mapddetyua tomoAoyiac €voc ENA katdAAnAou yia avayvwplon xeipoypapwv
Ynpiwv

>e éva ZNA kdBe veupwvag Aaupdvel kamoleg €lod6doug, TPAYHATOTIOLEL hia pabn-
HATLKA TIPAEN Kal TTPoalPETIKA T ouvodelel amd pia ypapptikdtnta. ‘0Ao 1o dikTuo €xel
w¢ oToX0 va Talvounosl pla elkéva og Kamola katnyopia BAocel Twv €lKovooTolxeiwv
nG. ‘OAN n yvwon mou epappootnke ota TNA e€akoAouBei va toxVel kal va epapudletal
ota XNA. Eldototdc dtadopd Twv apXLtekTovikwy ENA gival To yeyovoc OTL KAvouv TN
pntr uttdéBeon 6tL N elcodoc ival pla elkdva, yeyovoc TIoU ETILITPETIEL TNV KWSLKOTIONGN
OPLOHEVWV LOLOTATWY OTNV APXLTEKTOVLKI TOUG.

1.3.1 Awata&n twv dedopévwyv og éva INA

Ta ZNA ekpeTalAelovtal To yeyovog OTL n eicodog amoteAeital amd lKOVEG Kal Te-
pLopilouv TNV APXLTEKTOVLKH TOUC ME TPOTIO TIOU va £XEL TIEPLOOOTEPO vonua [5]. Zuy-
KEKPLUEVA, og avTiBeon pe éva kavovikd TNA, oL oTpwaoelg evog ENA opyavwvovTal o€
3 dlaotdoelg: AdTog, Uocg, BaBog. MNa mapddetypa, 32 x 32 RGB ekdveg eloddou ava-
Taplotolv €va dyko eloddou Tou €xet Slaotdoelg 32 x 32 x 3 (TAdtog, 0Yog, BAbocg av-
TloToxa). Ol veupwVveC o€ pia oTpwon sivat cuvdedepgvol Pdvo PE Pla JIKpA TiEPLoxn
NG TPonyoUHEVNC OTPWONG, O avtiBeon Pe OAOUC TOUC VEUPWVEC TNG T(ponyoUuE-
VNG OTPWONG TTIOU CUVAVTATAL OTIC TTAAPWC ouVOESEUEVEC OTPWOELS. H TiEpLOpLOpEVN,
ToTIKA ouvdeopoTnTa Twv ZNA Ba amooadnviotel olvtopa. Evag 3A dykog elc6dou
amelkoviletal oto oxAna 1.6 ywa pa 4 x 4 RGB skéva. Snuelwote OTL TO EUPOC TWV
TIHWV oTov 3A Oyko l06dou pmopel va puButoTel, wote va BonBAoel otnv ekmtaidsuon

KeddAawo 1. YAomoinon SuveAKTIKwV NEUPWVIKWY AIKTOWV 0€ EVOWHATWHEVEC APXITEKTOVIKEC

Tou 8ikTUou. H dladikacia petaoxnuatiopol twv dedopévwy eloddou - poTol autd
TpododotnBolv oto INA - woTte va €xouv TNV emBupntA popdn, Aéyetal mpoemeéep-
yaoia.

Height: 4 Units
(Pixels)

FaN
S

Width: 4 Units
(Pixels)

SxAua 1.6: Atatouri evo¢ Oykou Sedougvwy e10660U 4 x 4 x 3. AoteAeital amd 3 UATPEC,
TToU avTioTolyouv ota 3 kavdAia tnc¢ stkovac.

Katd ouvémela, éva SNA amoteAeital amd oTPpWOELS, He TNV KaBepia va XL pia atmAn
Sdlemadn. Metaoxnuatilel éva 3A dyko el06dou ot €va 3A dyko €£E660u, XPNOLUOTIOLWV-
Tag ouUVaPTAOELS Tou PTtopel va €xouv 1 OxL TtapapP€TPouG. Mwa amelkévion Tapouoid-
(etaL oto oxAua 1.7.

(elele] height

|

/
o
Q
Q
O
08

i

output layer OCOOOCOW yidih

input layer
hidden layer 1 hidden layer 2

sxnua 1.7: Aptotepa: Eva kavoviké TNA 3 otpwoswv. Ae&a: Eva SNA opyavwVvel ToUG
VEUPWVEC TOU O€ TPEIC SL1AOTAOELG, OTTw¢ TTapouatd{etal o€ uia amod TI¢ oTPWOELS. KaBe
otpwon tou SNA uetaoxnuatilet Tov 3A dyko eioédou oe €va 34 dyko eEddou amd veu-
PUWVEC EVEPYOTIOINONG. S8 QUTO TO TAPASELYLA, 1l KOKKIVN OTPWOI EL0OS0U EUTIEPLEXEL
TNV €IKOVA, CUVETIWC TO TTAATOC Kal TO UYoC Tou Oykou TPETEL va avTioTolyel oti¢ dia-
OTAOE(C TNG slkovac. To Baboc¢ Tou dykou Ba eivat 3, utoBETovtac o1t n eicodoc¢ sivat uta
RGB eikova.

1.3.2 JuvnOELg OTPWOELG TIOU XpnotpoTotolvTal ota TNA

Yrdpyouv tpia €idn oTPWOEWYV TIOU XPNOLUOTIOOUVTAL Yia T SAPNon ApXLTEKTOVL-
KWV ENA: SUVEAIKTIKEC OTPWOELC, Pooling Layer, and MAfpw¢ ouvSeSeUEVEC OTPWOELG

1.3 ZUVEAIKTLKA VEUPWVLKA SiKTUO

[3]. H teAeutaia sival (dla pe avutr mou ouvavtd kavei¢ ota kavovikd TNA. Autég ol
TPELG oTpwoel oTolBdalovtal oe pla alAniouxia, wote va mapdfouv evdladp€épouoeg
OPXLTEKTOVIKEC. YTIAPXEL €TTiONG Kal n STpwon Etoédou, Tou dev eival Timote meplo-
0d4TEPO ATO TOV TAUTOTIKO PETAOXNMATIONO, dnAadn n €€066¢ tng eival n (dta pe tnv
£{00606 TNC. AUTEC OL OTPWOELS AVAAUOVTAL TIAPAKATW:

» STpwon Eiodédou: Epmepléxel ta dedopéva €loddou, Ttou PTtopel eivat oL TIPEG TwV
ELKOVOOTOLXE{WV TNC EIKOVAC €L00S0U) TO amoTtéAsopa TG Tpoemeepyaoiag auv-
Twv. To BaBo¢ tTNC oTpwaong l0660u TPETEL va (810 pe To TARB0C TwV KavaAlwv
NG €kOvag €Loddou.

* SUVEAIKTIKA STPpwon: Oa uttoAoyiosl TNV €€060 TwWV VEUPWVWYV TtoU gival ouvdede-
MEVOL PE TOTILKEG TIEPLOXEC TNG l06dou. KABe uttoAoylopog yivetal og éva Pikpd
Tapdbupo otnv tpoacodn (Ttou opilel To TAATOC Kat To UPoc) Tou dykou slgddou,
aAAd og 6o To BaBog tou dykou €lcddou. To BaBog Tou dykou slcddou ekaptd-
Tat amd to MARB0¢ Twv GIATpwV TTOU TTAPEXOVTAL OTNV OTPWON WE LA ETITTAEOV
TaPAPETPOC.

» 3Tpwaon Pooling: ©a TpaypatoTolioel pla uttodetypatoAnyia r/kat e€opdAuvaon
Katd pAkog Tou BdBoug tou dykou loddou.

* [MARpwc¢ ouvdebeuévn Stpwaon: Omwg eival NN yvwotd amd to TNA, kabe veu-
pwWvag o auTh Tn oTpwon cuvdEeTal he OAd Ta oTOLXEl TOU OyKou €l08d0oU NG
oTPWONC.

» STpwon RelLU: Epappdlel pla ouvaptnaon evepyotoinon otolxeio tpog oTolxelo,
v f(x) = max(0, x) Tou gpdavifel kKatwdAL oto Pndév. Auth n OoTPWGCN XPNOL-
poTtoleital ge okomd tnv uttofonBnon TN ekmaidevong Tou SIKTUOU Kal Ttapdyel
otnv £8060 £va Oyko Tou €xel SlaoTdoslC (OleC e aUTEC TOU OYKOoU €loddou.

Kat’ autd Tov tpdto, Ta ENA petaoyxnuati(ouv tnv elkéva eloddou kabwg avutr dla-
oxoilel TIC oTPWOELG TOU. ETOL peTatpémel TNV elcodo amd eikovooTtolxeia o €TIKETEG
TIOU AVTITIPOOWTIEUOUV TNV KaTnyopila otnv omola sktipdtat 6Tl avikouv. Emionuaive-
Tal OTL KATIOLEG OTPWOELS TIEPLEXOLV/ATIAUTOUV TIAPAUETPOUC, VW AAAEC OXL. SUYKE-
KPLP€vda, N OUVEALKTIKN Kal TARPpwWC ouvdedepévn otpwaon petaoxnuatilel tnv eicodo
amaltwvTag emimAgov TI¢ TIHES Twv Bapwv (Kat TG TOAwoNng) dlacuvdEcEWV TWV VEL-
pwVwWV. Atd TNV AAANn peptd, n ReLU kat Pooling otpwon epapudlel yla yvwoTA yn ma-
PAPETPLKNA ouvaptnon. Ol TTAPAPETPOL TWV CUVEAIKTIKWYV Kal TIARPWC CUVOESEPEVWV
oTpwoewv ekmatdedovtal aflomolwvTag tn Habnuatiki TeXVIKN BeATiotomoinong tng
katapaong pe tn péBodo tng KAiong.

Kepdlawo 1. YAotoinon ZUVEAIKTIKWY NEUPWVIKWV ALKTUWV 0 EVOWHATWHEVEG APXITEKTOVIKEC

1.4 Caffe: ZuveAlKTIKA ApXLTEKTOVLKA yia Fpriyopn Evowpdtwon
XapaKTNPLOTIKWV

To Caffe eival éva ouykpoTnUEVO Kal TPOTIOTIOL OO TIAQICLO0 AOYLOHLKOU, TIOU TtapE-
XEL OTOUC XPNOTEC TOU Hla oslpd amd alyopiBuoug pnxavikig pabnong, kabwg emiong
Kal pla ouAdoyn amd povtéAa avadopdg. Autd To AoyLlopLkd uTtooTnPilel TNV ekmai-
devuon Kal ekTEAEON TANBWPAC CUVEAKTIKWY SIKTOWV yevIKoU okoToU, divovtacg €u-
daon otnv amodotikdTnTa Kal TNV Taxutnta. To Caffe ouvtnpseital kat avamtiooeTat
amd to Berkeley Vision and Learning Center (BVLC) kat amoteAei kevtplkd epyaleio oe
EPELVNTIKA TIPOTIEKT 1 BlopNXavikEG edappoyEG HEYAANG KAIUOKAG OTOUG TOMEIG TNG
opaong uttoAoylotwy, tne emefepyaoiac puoilkic yYAwooag Kat Twv TIoAUPEowy [6].

1.4.1 Ekmnaidevon evog diktiou

To Caffe ekmaidelel Ta HovTéAa XPNOLUOTIOWWVTAC TOV aAydplBuo ypriyopng 1 ka-
VOVIKNC OTOXAOTIKAC KatdBaong pe tn HEBodo tng kAlong. To oxAua 1.8 mapouotdlel
éva TUTIIKO Ttapddetypa diktoou (yia tnv Tagwvéunon Pnodiwv amd to oclvolo dedopé-
vwv MNIST) katd tn ¢don tng ekmaidevong [6]: pla otpwon dedopévwv Aaupdvel Tig
ELKOVEC Kal TIC €TIKETEC TOUC amd 1o okAnpd diloko, Tpododotel Ta dedopéva dlapé-
00U TIOAAATIAWYV OTPWOEWV, OTIWC ival N ouvéALEn, kat Tpododotel To TEAKO amoté-
Aeopa mPoPAsdNC O Yla OTPWOHN KATnyoploToinong. AUt n otpwaon uttoAoyilel To
obdApa katnyoplotmoinong Kat Tig KAloglg tou ekmatdelouv 6Ao To dikTuo, pe OKOTIO TN
BeAtioTOoTONON TWV TTAPAPETPWY TOU. To GUYKEKPLPEVO Ttapadelypa uttopel va Bpebeti
otov Ttnyaio kwdika tou Caffe, otn Sladpopr| examples/lenet/lenet_train.prototxt.
H emefepyaoia twv dedopévwy yivetal og PIKpEG opddeg ou Tpododotolvtal oto oi-
KTUO o€lplakd. Kpiowo otn ekmaidevon eival n pvBuion tou pubuou e€acBévnong tng
EKPABNONG, N opun Kal Ta oTypLOTUTId. Ta TeAeutala smitpEmouy T taldon Kat ouveé-
Xton tng ekmaidevong tou diktdou.

loss (softmax_loss)

mnist-input (data)

g g
g E £
: - :
< 2 £
g - B

SxAua 1.8: Mapddetyua katnyoptomoinon¢ Yneiwv tov cuvdlou dedouévwv MNIST,
omou ta umAe opBoywvia avamaploTolv OTPWOEIC Kal Ta Kitptva opBoywvia avamapi-
otoUv ta 6edouéva mou mapdyovral kat Tpo¢podotolvtal o aQUTEC.

1.5 MNoAuvemegepyaoTtikd SoC Myriad 2

1.5 MoAveneepyaotiké SoC Myriad 2

1.5.1 TEeVIKA XapakTnpLloTIKA

la TNV VAOTIOINGN TOU CUCTAMPATOC EKTEAECNC CUVEALKTIKWY SIKTOWV €TIAEXONKE N
gvowpatwpévn mAatdépua Myriad2 [7]. To ocuykekpipgévo SoC avamtdooeTal amd tn
Movidius Ltd, n omoia Tpdodata €ywve pélog tng opddag Perceptual Computing Group
¢ Intel, ye otdyo TNV emiomevon NS dnUloupyildc EVPUWV CUCKEUWY OE EPAPHOYEC
opaonc utoloylotwv. H Myriad2 katadpépvel va tpoodEpel uPpnAn amddoon os edap-
HOYEC TNG 6pacng UTIOAOYLOTWY, KATw amd efalteplkd TEPLOPLOTIKEG OUVOAKEC KaTa-
vdAwong Loxvog. N’ autd to Adyo, amoteAel Tov TtpwTo eneepyaot dpaocng utTtoAoyL-
oTwvV - Vision Processing Unit (VPU) - Ttou 0ToxXeUEL OTNV ETUTAXUVON EVOWUATWHEVWV
edpappoywyv. Ta KUPLOTEPA XAPAKTNPLOTIKA TNG Myriad2 sivat:

» Sxeblaoudc moAu xaunAng toxvoc: Kdvovtdg tn katdAAnAn yia xprion oe popntég
OUOKEUEC, TIOU N autovouia Tng pmatapldg sival kupiapxn mapauetpoc.

» Emeéepyaotric unAnc amédoonc: Alvovtag tn duvatdtnta EKTEAECNC TWV UTIOAO-
YIOTIKA ATIAUTNTIKWY o0YXPovwy hapuoywyv tTng 6paonc UTIOAOYLOTWV.

* EuéAiktn apyttektoviki: Mapéxovtag TpdoBacn oTiC AETTTOPEPELEC TNC APXLTEKTO-
VIKNC, Ol TIPOYPAUUATIOTEG elval og B€on va BeATIOTOTOIO0UV TIC EQAUAPHOYES
TOUC aKOua TIEPLOOATEPO.

* Mikpéc puaikéc Staotdoeic: ‘Qote va ival epiktA n evowpdtwon tng Ynodidag oe
omtoladrmote GopPNTH CUOKELN.

Muwa meptypadr vPnAol emmédou Tou UALKOU TNG Myriad2 divetal oto oxua 1.9.
A6 autd, sival pavepd Twe To CUYKEKPIPEVO SoC Slabétel 14 emefepyaotéc. O Suo
emeepyaotég ota Sefld Tou oxApatog eival BepeAlwdwe dladopetikoi amd toug 12
enelepyaoTEC oTa aploTePA. Mo avaAuTikd, ot eTeEepyaoTtéC e to dvoua “CPU” ulo-
Tolo0v TNV 32-bit SPARC apXITEKTOVIKH, TIOU AVAKEL OTNV OLKOYEVELA ETEEEPYATTWV
RISC.

Mua Aettopepéotepn Teplypadr akoAouBei otn ouvéyela [8]:

* Leon OS: Eivaw o évag amé toug eme€epyaotég SPARC. Avnkei oto utoocUotnua CPU
sub-system (CSS) mou €xel oxedlaoTel WoTe va eival n kOPLA povada emikovwviag
Kal eAéyxou pe tov eEWTEPLKO KOO0, dvtag edpodlacpévo pe ta akdlouba TepL-
depelakd cuoTApata smkowvwviacg: I12C, 12S, SPI, UART, GPIO, ETH kat USB3.0.
H povdda gAéyyxou tou CSS eival o emetepyaotnc Leon OS (LOS), tou Stabétel
OPKETA peydAeC KPUPEC pvAueg L1 (32 KB) kat L2 (256 KB), smitpémovtag th
duvatdtnta ekTéAeong evog HOVTEPVOU AELTOUPYLKOU GUOTAPATOC TIPAYHATIKOO
xpovou (RTOS).

* Leon RT: AmoteAel 1o deltepo amd toug eme€epyaoctég SPARC. AVIKEL OTO UTIO-
ovotnua Media sub-system (MSS), uta dopikr povada Tou eTTPETEL TNV dlaoUv-
deon pe oUOKeEVEG elkOvVac, OTIwG aloBntApeg lkdvag, 08éveg LCD, eAeyktéc HDMI

KeddAalo 1. YAomoinon SUVEAIKTIKWY NEUPWVIKWY AIKTOWY o€ EVOWUATWHEVEG APXLITEKTOVIKES

e A

[IMU][SD][WIFI]

] I3
Interfaces

Hardware Accelerators
Image Signal Processing

Sensor

SHAVE
Vector
Processors
x12

Sensor

MA2x5x Intelligent Memory Fabric
| System Example

\

IxAua 1.9: Emokdmnnon tou vAtkou tn¢ Myriad2

K.ATL.. Tautoxpova, To MSS eival utte0Buvo yia to €Aeyxo ¢iAtpwy (OTIWC TT.X. TO
DeBayer) vAoTolnpévwy oTo UALKG, Ttou dtateiBevtat amnd tnv Myriad2.

» SIPP:Mpodkeltal yia éva dlotayn pnxaviopo uAtkol/AoyLlopikol Ttou XPNOLUOTIOLE -
Tal amo TN Myriad2, pe okomd tnv amodotik dpopoAdynon epyactwv bndla-
KN¢ eme€epyaaiac eikdvag. AuTtdg o unxaviopog sival Bactopévog oe emefepyaoia
HopdAG cwARvwang Kat xpnotpoTotel Ta ¢piAtpa uAIkol Ttou Ttapéxovtal and tnv
Myriad2, wote va emitixel Tnv tax0tepn duvath ektéAeon. To utoocVotnua SIPP
amelkoviletal oto oxApa 1.9 pe TTOPTOKAAL Xpwua.

||
Software Controlled 1/0 Multiplexing

INTERFACES
SPI, USB3, 12C, 128, LCD, CIF, UART, ETHERNET, ETC.

Intelligent Memory Fabric M

| 12 Vector VLIW ,SHAVE* Processors |

EEEEEEEEENENE

Myriad 2 MA2x5x Block Diagram

IxAua 1.10: AeTTouEPEDTEPN EMOKOTNON TOU UALKOU TN¢ Myriad2

* Microprocessor Array (UPA): Eival n apXLTEKTOVLIKH povada tng Myriad2 Ttou ouy-
kpoteieTal amd Toug 12 Very Long Instruction Word (VLIW) StavuopatikoUc eTe-
Eepyaotég SHAVE (BA. oxfpa 1.10), tTn CMX pvAun SRAM pey€Boucg 2 MB Kkal pe-

1.5 MNoAuvemegepyaoTtikd SoC Myriad 2

PLKEC aKOPA POVASEG, €K TWV OTIOLWV Ol TILO ONUAVTIKEG sival: H e€eildikeupévn
DMA engine kat n 256 KB L2 kpudr pvApn Tou €ival kowvh yla toug SHAVE eTe-
EepyaoTéc. O otd)oC Tou UPA eival va utootnpitel tnv avdmtuln Eeldikeupévv
aAyopiBuwyv, TTou amattolvtal amd TOAAEC ePUPHOYEC OPACNC UTIOAOYLOTWV Kal
HNXAVIKAG HaBnong, kabwg emiong Kat AAAwWY UTIOAOYLOTIKA ATALTATIKWY aAyo-
piBuwv. KaBévag amd toug VLIW emelepyaotéc eival oe B€on va eA€yxel TTOAAa-
TIAEC SopLKEC povadec, ol omtoiec StaBétouv duvatdtnteg SIMD, yia peyaAltepo
TIAPAAANALONO KAl SLEKTIEPALWTLKN tKavdTnTa, T000 o€ eTitedo doULKAC povadag,
600 Kal ot eminedo enefepyaotn. Kabepia amd tic povddeg tou eme€epyaoTr Pmo-
pel va ekteleital Tavtdypova, otov idlo KOkAo poAoylol. Ot SHAVE umtootnpilouv
evToA€c SIMD yua dtddopoucg TiTouC, OTIwG: 8 bits akepaiouc, 16 bits akepaiouc,
32 bits akepaioug, 16 bits aplBuouc kvntAg uTtodLacTtoAng, 32 bits aptBpolg Ki-
vNTAG UTIOSLACTOANG.

CMX: Npdkettal obvTunon tTou “Connection Matrix”, To omoiou dikatoAoyeital amd
To yeyovog 6tL n CMX amoteAeital amd apKeTég HIKPOTEPEG HovAdeG SRAM, ue
OUVOALKO pEyeBoC Ta 2 MB. KdBe emelepyaotrc SHAVE €xel Eexwplotég BUpeg
yla tpdoPacn o pla ouykekpuevn d€ta Twv 128KB tng pvAung CMX. Suvemwe,
Ta 12x128 KB = 1536 KB XpnotgoTtolouvTal Je Tov KaAlTepo duvatd tpdto amd
Toug Ttuprveg SHAVE, evw ta uttéAotrta 512 KB tng pvAung CMX memory xpnot-
poTtotouvTal amd dAAeg povadeg. Zuviotatal n xprion Twy apamdvw 512 KB amd
Ta piAtpa uAkoU Ttou eilvat evowpatwpéva oto SIPP A amd Kplolua KOPYPATLO KW-
S1ka Tou TPETEL va ekteAolvTdl 600 To duvaTtd ypnyopoTEPA, KAl CUVETIWG OV
pTopoUlv va tomtoBetnBolv otn pvrun DDR.

DDR: Eival n peyaAltepn povada mTnNTIKAG PvAUNG Tiou SlabBétel n Myriad2, pe to
HEyeBOC TNC va eival 128MB 1) 512MB, avaAdywg Pe TV €kdoon avabewpnaong Tou
SoC. H kuptétepn Stadopd petald tng Myriad2 kat AAAwv emtelepyaotwy sivat n
B€on tng DDR. 31N Myriad2, n DDR BplokeTal evtog Tou SoC, woTtdoo n pvAun sival
ToToBeTnUévN ekTOC TNG Pndidag, tou onuaivel étL ot 14 emelepyaoTtég Xpnot-
poTtoloUV Tov (810 EAEYKTA yla va TNV TIPOCoTEAATOUV.

1.5.2 EAeyktnAg DMA tng pvApng CMX

AuTdc o0 eAeykTiC BplokeTal avapeoa tou dtadAou MXI twv 128-bit kal TG PvAUNG

CMX [9]. Napéxel petadopéc dedopévwv vPniol glpouc {wvng petald tne CMX kat
™n¢ DDR, po¢ omotadnmote katelBuvaon. EmimAéov, utootnpilel petadopéc dedopé-
vwv amné DDR oe DDR kal amd CMX og CMX. To oxAua 1.11 mapouotdlel éva vPpniov
gerumnédou Sidypappa tng DMA engine.

H DMA engine povteAoTtolel Tnv petadopd dedopévwy péow dooonPLwyv. Mmtopolv

VO OUVUTIAPXOUV £WwG Kal TEOOEPLC ouvdedepévec AloTeg amtd doooAnyPieg Tavtodxpova,
To omoio onuaivel 6tL n Ikavotnta eEumtnpétneng docoAniwv amd tnv DMA engine dev
glval ameptéplotn. O mpoypappatioTAg popel e0koAa va Eemepdoel ta ¢uolkd dpla
Tn¢ DMA engine, av tnv xpnowoTtolel dixwc pétpo.

Kepdlawo 1. YAotoinon ZUVEAIKTIKWY NEUPWVIKWV ALKTUWV 0 EVOWHATWHEVEG APXITEKTOVIKEC

Slice Ports
Shave Spare Slice Ports CMX Slice
CMX
CMX DMA Control
Registers
MXI Bus
Media Subsystem DDR Subsystem

IxAua 1.11: CMX DMA engine of Myriad2

1.6 BEATLOTOTIOLACELG IOV EPpappéoTNKAV

H avdmtu€n tou tnyaiouv Kwdika yia 1o cUOTNHA EKTEAECNC TWV CUVEALKTIKWV VEU-
PWVLKWV SIKTOWV TIpaypatoTolonke €xovtag tn Myriad2 katd vou. Qotdoo, avti yia
TANPN e€edikeuon oto ouykekplpévo emetepyaoTh, €ylvav TTPOoTIABELEC WOTE TO ATIO-
TéAeopa va sival ave&dptnTo amod 1o apamdvw UALKS. AuTd 08rynoe O€ PLa TILO VEVIKNA
peBodoloyia, Ta BApata Tng omoiag pmopolv va epapUocToUV Kal o€ AAAEC TTAPOUOLES
EVOWHATWHEVEC APXLITEKTOVIKEC, Je aTdX0 TNV avénon tng anddoonc Kat Tn yelwon tng
KatavaAwong evépyeLag.

‘Eva amd ta mpoPAnuata mou epdaviotnkav ota apxikd otadia tng avamtuéng nrav
n amodotikn aflomoinon tng pvAung CMX. Eivat ¢pavepd, Twg n yvAun CMX pmopei va
TpoodEpel heydAn BeAtiwon otn anddoaon, edv Kaveic katadp€pel va TNV eKPUETAAAEUTEL
pe owoTo TPOTO. H TtpoTelvOpevn tpoogyylon amnelkovi(etal oto oxAua 1.12, ye amo-
TéAeopa TV av€&non tou dtabéaou xwpou tTng CMX - tou SatiBetal ota dedopéva -
Katd mepimou 50%.

SUVOTITIKA, N onuavtikh dtadopd svtomiletal oto B€on TomoBE€TNONG TOU KWALIKA
TIoU eKTEAOUV oL ee€epyaotég SHAVE. Metakivwvtag tov kwdika amd tn CMX otn DDR
Kdl KAVovVTac XPron ToU UTTOCUOTANATOC TNG KPUPAC MVAHNG €XEL HEYAAo KEPHOC. AuTd
oupBaivel 1dTL - KATA yeVIKO Kavova - n eKTEAEoN Tou Kwdika amd tov emeepyaoTth
yivetal oglplakd, to omoio wdeAel TNV Kpudn pvAun. ETumAéov, n Kpudr pvAun sival
APKETA HEYAAN WOTE VA XWPAEL CNUAVTIKA THAKATA TOU KWALKA Ttou ekTeA00V ot SHAVE
yld Kamowo Xpoviké didotnua. Ta mapamndvw, pall pe 1o yeyovdcg 6Tl eAsuBepwveTal
HeyAAo pépog tng CMX, kavouv auth tn BeAtiotomoinon eEalpeTIKA ATTOTEAECHATLK).

E€aitiag Tng peydAng évtaong petakivnong Twv dedopévwv petalld tng pviung DDR

1.6 BeATIOTOTIOIAOELC TIOU EHUPUOTTNKAV

Proposed approach

SHAVE instructions are fetched in
CMX though cache.

Slice 0 Slice 1 <J Slice 11

1 LCMX_ j ;f____i__

Direct approach
SHAVE instructions in CMX.

1
1
1
Limited available space for data :
1
1
1
1

Slice 0 Slice 1
Shave Shave
Instr. Instr.

Slice 11
Shave
Instr.

-1
I
I
I
I
I
|

1
DRAM I DRAM [Shave| | ¢ Cache o |
1

Instr.

Ixnpa 1.12: BeAtiotomoinon 1: AUénan tou xwpou tn¢ uviunc CMX mou ditatsiBstat ota
debouéva.

kat CMX, elvatl amapaitntn pgla otpatnytkni mpdopaonc twv dedopévwy Tou va eAaxl-
OTOTIOLEL TIG HETAKLVAOELG aUuTwV. H Baotkn £a ival va TpaypaTtoTole(tdl n HéyloTn
duvatnA ekpeTdAAeuon evog TUAPATOC Twv dedopévwy Tou petadépetatl and tn DDR
otn CMX, mpotol autd avtikataotabel amod éva dAio Tuiua dedouévwy. MNa va emi-
Tev)Bel kATt TéTOl0, amatteital N avadlopyavwon Twv ENPWAEUNEVWV ETIAVAANTITIKWV
BpdxwV TTOU TIPAYHATOTIOOUV TOUG UTIOAOYLOHOUC, TO OTtoio TtapouctdleTal oTto oxAua
1.13.

>0pdwva pe To oxAua, n dtadopd £ykeltal 0To YeYovag OTL he TN GpépTwon Twv de-
dopévwy €loddou pla dpopd, apdyovtal TTOAAATAA KavdaAla Twv dedopévwv eEddou.
PuBuilovtac mpooekTikd tnv avaioyia Twv dedopévwv €10660U Kal Twv dedopévwv
e€ddou mou pmopolv va cuvuttdpyouv otn pvAun CMX tnv (dla xpovikn otiyun, sivat
duvatnA n emitevEn ONUAVTIKAG ETLITAXUVONG OTNV EKTEAECN. SUYKEKPIPEVA, N TIPOTEL-
vOpevn Ttpooéyylon €Xel w¢ amoTéAeopa Peiwan Tou Xpovou ekTéAeong Katd mepimou
30%.

Mpoketpévou va HelwBel 0 xpOvocg EKTEAEONC AKOPA TIEPLOCOTEPO, OL HETAPOPEC TNC
DMA engine €TUKAAUTITOVTAL XPOVIKA HE TNV TIPAYHATOTIONGN UTIOAOYLOUWY. ATIOTEAE-
opa NG eTKAALYPNG eival n eAaxlotomoinon Tou KOoTouC HETAPOPAC, KABwWC KABE eTte-
Eepyaotc SHAVE bev xpetdletal va epipével ta Slabéoipa dedopéva. ZnNUELWVETAL
TIwC auth n BeAtiotomoinon amattel tnv OTap€n SIMAWY TIPOCWPLVWYV XWPwV 6ed0-
puévwv (double buffering). ETumA£ov, eival amoteAeopatik 60Tav Kaveic TpaypatoTmolel
UTIOAOYLOHOUC TWV OTIOlWV N TIOAUTIAOKOTNTA €ival ApKETA PeYAAN, WOTE va Slapkolv
TEPLOoOTEPO amd tn petadpopd Twv dedopévwv.

Oa €Aeye Kaveilc TTwg n Tapamdvw TeXVIKA dev elval KATL kalvouplo, wotdoo sival
Tdpa ToAl onuavtikA. Ma mapddelypa, ot emeepyaotég ypadilkwy tng nVidia kata-
okevdlovtal pe SimAéc DMA engines, woTe va uttootnpiéouv akdpa 1o amodoTikd To
double buffering. H tpotewvopevn tpoogyylon ameikovileTal oto oxAua 1.14 kat tpo-

KeddAawo 1. YAomoinon SuveAKTIKwV NEUPWVIKWY AIKTOWV 0€ EVOWHATWHEVEC APXITEKTOVIKEC

Proposed approach

The same input volume is used for
generating more output maps, before

Direct approach
Re-reading of all input layers is
required to generate each output maps.

[
1
1
[
: discarded.
| I
I ~
1
1
1
[
Input 3D Output 3D 1 Input 3D Output 3D
Volume Volume I Volume Volume
I

sxAua 1.13: BeAtiotomoinon 2: Meiwan tou aptBuol Twv amaltoUUEVWY UETAPOPWV
DMA.

odépel av&non TnG amddoong TwV UTIOAOYLOTIKA ATIALTATIKWY TiPpdEewv Katd mepimou
20%.

Direct approach : No overlapping between data transfers and computation

Fetch Fetch Return J
A
o> input data B weight data >R EOMBUEES—> results

Proposed approach : Overlapping between DMA transfers and computation

~ Fetch N Fetch Compute ‘_> Return J

input data weight data result

Fetch next Return 7

. revi
weight data > previous
results

IxAHa 1.14: BeAtiotomoinon 3: Meiwaon Tou kK60TOUC TwWV UeTadopwv DMA.

TéNog, e€attiag Tou apxltektovikol oxedlaopol tng Myriad2, n emiluon tTwv dla-
kAadwoewv (oe opoAoyia cUPPBOALKAG YAWOoaG) €xel OXETIKA PeydAo kdoToG, KABwg
0 OUYKeKPLPEVOG eTteepyaoThG e SlaBétel pnxavioud mpoPAedng StakAadwoewv. M
autd To Adyo, oL HETPAOELG TIoU TtpaypatoToliBnkav €6e1€av étL ol Bpdyol Pe TOAD pL-
KPO OWHA KAl Ol EKTETAMEVEG KAAOELG OE CUVAPTAOELS €XOUV WN apeAntéo k6oToG. ETal,
gywvav TpooTdteleg va PELwBoUV ol KAACELS 0€ OUVAPTACELG EKTEAOUV TOUG UTIOAOYL-
opoUG. To oxApa 1.15 g&nyel oxnUATIKA TTwG auTtd eTLITUYXAVETAL yid T CUVEALEN.

SUYKEKPLUEVA, N W€a Paciletal oto yevovdg OTL uTtdpxEL n duvatdTnTa va UTToOAoyL-
otel n ouvéNEn oe éva opBoywvio xwpio, xwpic va amatteitat diatripnon tou dodid-
oTaToU OoXAMATOC autol. Me dAAa Adyla, ToTtoBeTwvTag Toug deikTeg OTIWCG daiveTal
ota 6e€ld Tou oxAuartog, n ocuvéAEn pmopei va mpayuatomolnBei ye pia pévo kARon
oTov UTtoAOYLOTIKG TtupAva. To 6deA0G pLag TETolag HETATPOTIAG elval Ttepimou 6% uei-
waon Tou XpOvou eKTEAEDONG.

1.7 AfoAdynon tng vAomoinong

Proposed approach

Each convolution kernel call produces
multiple outputs.

Direct approach
Each convolution kernel
call produces a single output.

Output

PtrO-A mlinero
— Pl ine 1
7/ P2 hine2

True layout in memory

PtrO Ptrl Ptr2
Input

/) Line 0 Line 1 Line 2 Line 3
Line 0 - Rotate pointers . .)
Hﬂg % \~ New conv. kernel call Now convolution “sees” input as if
Line 3 ~a Eggi Line 1 mg&o;y thd d(l;lp/ICGL'.teS ?lf data:
Ptl’ZI L!ne 2 Ptrl* L!ne 1 L!ne 2
Line 3 Ine ine

P2 line2 Line3

sxAMa 1.15: BeAtiotomoinon 4: Meiwon tou aptBuoU Twv KARGEWYV yia Tov UTTOAOYLOTIKO
nupriva thg ouveéAnéng.

1.7 A&loAdynon tng vAomoinong

AutA n evotnTa TAPoucLdlel Suo CUVEAIKTIKA VEUPWVIKA Siktua pall pe TIg HeETPA-
o€lg TTou eAAdOnoav amd tnv ektéAeor Toug otn Myriad2.

1.7.1 Ta veupwvika diktua CIFAR10 Quick kat nViso

To mpwTo SikTUO TIOU YXPNOoLPoTIoiBnke yia TNV afloAdynaon tng vAotmoinong sivat
To CIFAR10 Quick, ou tapouoidaletal oto oxAua 1.16. H CUYKeKPLUEVN APXITEKTOVLKNA
ekmtalde0tTnke otnVv Tafvéunon tng udpng touv edddouc amd dopudoplkég dwtoypadieg.
Mo avaAuTikd, xpnotpotoliBnke To clvoAo dsdopévwy [10], To oTtoio amoteAeital and
glkOvec pey£Bouc 28 x 28 Tou avrkouv o€ pia amd Ti¢ akdAouBeg 6 Katnyopieg: dyovn
vn, 6évdpa, xaunAn BAdotnon, dpdpol, KTipla, vddativol dykol.

To deltepo dikTUO TIOU XPNOoLoTIoBNKE, TtPoodEpBnke amd tnv etalpia nViso,
Ttou e€e1dikeleTaL O€ TEXVOAOYiEC NETPNONC Tou ouvalcBAuatoc. E¢altiac meploplopwy
otnv adsla xpriong Tou diktuou, kapia AAAn TAnpodopia oxeTikd pe To olvoAo dedo-
HéVwV pe To ottolo €ytve n ekmaidevon tou SIKTOOU 1 AAAEG TEXVIKEC AETITOMEPELEG
Oev eival dlabéolun. To CUYKEKPLHWEVO CUVEAIKTIKO VEUPWVLIKG dikTuo XpnolhoToleitat
yla taflvopunaon Tou ouvaloBripatog oTic akdAouBec katnyoplec, e PAon TIC EKPPATELC
Tou TIpoowTou: Bupdc, améxBela, poPog, xapd, ovdétepo cuvaiodbnua, BAIPN, EKTTANEN.
To oxAua 1.16 amelkovilel TNV APXITEKTOVIKA TOU.

1.7.2 MeTpAoELg

AxkoAouBel olykplon Tou Xpdvou ekTéAeanc Twv d00 TtpoavadepBEVTWY OUVEALKTL-
KWV VEUPWVIKWYV SIKTUWV, XpNolhoTolwvTas SladopeTIKEC OUOKEVEG /KAl UAOTIOLA-
oelG. H mapovoa vAotoinon Ba ouykpiBei pe to Fathom NCS, to omoio amoteAsitat amo
10 (610 LAKG (Myriad2), aAAd cuvodeleTal amd TAKETO AOYLOUIKOU EKTEAECNG VELPW-
VIKWV SIKTOWV KAEloToU KwdLKa. ETtionc, Ta diktua Ba ekteAeotolv Kal ye 1o Caffe, og
x86 Intel emefepyaoTtéc, woTe va uTtdpEel pla aioBnon yila tn cuptepldpopd Tou Xpdvou

KeddAawo 1. YAomoinon SuveAKTIKwV NEUPWVIKWY AIKTOWV 0€ EVOWHATWHEVEC APXITEKTOVIKEC

nViso CNN

CIFART0 Quick CNN

hidden_1

relu_7

hidden_2

relu_8

hidden_out

Ixnua 1.16: Aptotepd: CIFAR10 Quick CNN yia taéivdunon ebdgouc. As&ia: nViso CNN
yia taévéunon ocuvaloBniuaToc amo TIC EKPPATEIC TOU TTPOCWTIOU.

ekTéAeong oe dladopeTikolg emelepyaotéc. Ta oxApata 1.17 kat 1.18 amelkovilouv
™n olyKpLon.

YrtevBupiletal Twe n Myriad2 Ttou XpnolPoTotBnKe yia tnv ektéAeon tTng mapoloag
vAottoinong sival To povtélo MA2150, tou dtaB€tel 128MB pvrun DDR, ota 533MHz.

1.7 AfoAdynon tng vAomoinong

Execution of CIFAR10 CNN on different implementations

4.5 Il Convolution EEE |nner Product
Pooling |

[|
401 P e
3.5
m
£ 30
)
E o5
|_
C
0 20
=
3
Q 1.5
g B
1.0 — i — —]
| - B = =
0.5 | l l B l
00 L I H = = = = = |
S Q Q Q> Q> Q> Q
O o [[$) o o
X 2O % ,{@/) ,&?/ Q,‘J ,&Q/ 06 ,&0 06 5{\0 09 (\0 Q;%
00‘&2&0\\ '&o‘Q C;Q’,\Oé O?Loé C:'Zfboé O'bb‘oo‘ Ozoé < oé
& «?
N2
\é\Q

Different Implementations

Note:
Both Myriad2 and Fathom NCS are configured for maximum performance.
Caffe is executed on an 8-core Intel® Xeon® Processor E5-2650 v2.

IxAua 1.17:.Xpdvo¢ ektéAeang tou CIFAR10 Quick CNN o€ Stagopetikous emtekepyaotes
ri/kat UAOTTOLAOELC.

Execution of nViso CNN on different implementations

I Convolution EE Inner Product
Pooling

o N ®
o =} =}

o
o

«
o

N
=}

o —_

o =} <
0 L
o, [I

Execution Time (ms)
5
|
I

Q Q
O 9 o
) > @ @ Q@ & Q@ & Q@ & @ 2
SF & A S S S S S
P& & N 9/ > ™ o ©
N2

Different Implementations
Note:
Both Myriad2 and Fathom NCS are configured for maximum performance.
Caffe is executed on an 8-core Intel® Xeon® Processor E5-2650 v2.

IxAua 1.18: Xpovoc ektéAsanc tou nViso CNN oe SiapopetikoUc emeéepyadtéc ri/kat

vAomotrjoeLg.

A6 TNV AAAn, to Caffe ekteAeital otov eme€epyaotr| Intel Xeon E5-2650 v2 CPU, Ttou
Sl1a0£€tel 20MB amd lepapxieg KPudAg PvAUNG, €xeL 8 Ttuprveg, 16 vApata kat 2.60 GHz

Kepdlawo 1. YAotoinon ZUVEAIKTIKWY NEUPWVIKWV ALKTUWV 0 EVOWHATWHEVEG APXITEKTOVIKEC

Baoikn ouxvoTnTa eme€epyaoTh. 2 YEVIKEC YPAUMEG, 0 E5-2650 eival évag oAl oxu-
po¢ eme€epyao T IOV TIpoopileTal Yid TIOAUTIPOYPAHUHATIOTIKA TtEPIBAAAovTa.

ATt TIc ypadikég TTapaoTdoelg sival opatd we to Caffe dev amodidel mdpa mTOAD
KAAOTEPA OUYKPLTIKA pe TN Myriad2. EQv 1o éAAewppa amddoong tng Myriad2 dev &i-
val 1600 onuavTiko, Téte n Myriad2 amoteAel kaAltepn emidoyn, e€attiag TNG XapunAng
KatavaAwaong evépyelag Tou dlabEtel.

1.7.3 ApBuntikA akpifela Twv UTTOAOYLOHWV

NPOKELUEVOU N EKTEAED TWV VEUPWVIKWYV dIKTOWV otn Myriad2 va yivel taxltepn,
xpnotgotololvtal 16-bit aptBuoi kivntA¢ utodlactoAng. Qotdoo, n ekmaidevon Twv
SkTOwvV pe To Caffe yivetal pe 32-bit aptBuolc kivntAc utodlaoctoAnC. Katd ouveTelaq,
TO €PWTNUA TtOU eyeipeTal elval edv pia T0o0 PeydAn peiwaon otnv aplBuntikn akpifela
TwV UTIOAoYLopWY, Ba €xel emtimtwon otnv akpifela pdPAePng tng Tafvounong tou
OUVEALKTIKOU VELPWVIKOU SLkTUou. TovileTal, TtwE To eVOLADEPOV ETIIKEVIPWVETAL OTO
péyeBoc Tou opdApatoc petalld Twv aplBuwy Tou Ttapayet n Myriad2 kat Twv aplBpwv
TIou Ttapdyel To Caffe, katd tn dadikacia tng MPAPBAePNC.

EkteAwvtag Ta d0o diktua Tou TteplypddovTal tapattdvw, XPNoLHOTIOLWVTAS WG €i-
0000 PEPLKEC TUXAiEC lkOVES, eEAAdBnoav amoteAéopata Tou Seixvouv OTL n eKTEAEDN
HE aplBpouc KwvntAg uTtodLlaoToAnC Twv 16 bits dev sival kKataoTpodikr. EVOEIKTIKA,
mapouatdlovtal oplopéva anoteAeopdra amnd to nViso CNN otov ivaka 1.1. Z€ autd
Tov Tivaka, pe to ypdaupa “C” cupPoAilovtal ta amoteAéopata mou divel to Caffe, pe
ypdaupa “M” gupBoAifovtal ta anoteAéopata mou divel n vAomoinon otn Myriad2, evw
pe 1o dlypappa “RE” cupyBoAiletal TO OXETIKO OPAAPA TWV TIHWV TIOU TTapAyeL n Myr-
iad2, avadopikd pe TIg TIPEC TTou Ttapdyel to Caffe.

SuPTEPACHATIKE, 0 Tiivakag 1.1 emPBePfatwvel Twg n ekmaidevon oe 32-bit kat n
ekTéAeon Tou BApatog TPOBAeYNnC ota 16-bit eival pla amodektr TPAKTIKA. ETLAE0V,
Sdladaivetal kat n akdéAoubn evdladépouvoa OWOTNTA. Av Kal Ta amdAuta PeyEdn otnv
aplBunTikg Twv 16-bit pmtopel va dtap€pouv, CUYKPLTIKA PE TNV aplBunTikh Twv 32-bit,
n oelpd toug dlatnpeital idla pe avth Twv amoteAeopdtwy Tou Caffe. Katd ouvémela, o
TpoTIOC e Tov oTtoio To Caffe avabétel Tic TBavatnTeg pla eilcodog va aviKel og KATola
Katnyoplia, sivat idta pe autr ou apdyetal and tnv ektéAeon otn Myriad2.

1.7 AfoAdynon tng vAomoinong

"ZPDLIAW
b10 10X 94y 30 01 SV1NMY3143 “49AD] NND OSIAU NO1 ,1N0~Uapply,, Stomdiro Sui Svi3gidip Slixilngiop Sur Loid¥Anzg :1L° | SoivAIl
%6500 %€c0°0 %S80°0 %1¢C0 %1.S0°0 %8010 %9100 ER| -
S/.896°09 GLE60L°LL- | 94896C°0C- | TL988EC- S8y SLLE- SLEVEOC- W
686700°+9 | 8EEELL'LI- | L6IVIEQOC IEBEC- L6SLCS'8Y | 6EPPBL LE- | LEEESEOC- D T
%5900 %910°¢ %S€0°0 %€cC00 %LEL0 %S00 %1200 ER| d
SCLESY L1~ | 6SSCLE Q- | GL8IVPS LT~ | T9SG LS8 LI~ SCTEL- SLE609°LE | SC90¥9'8¢ W
LSLIVY LL- 7€08E°0- 9LEGES'IC- | 9/488Y8° L L- | TI9CSECEL- | PCCSBS'LE | £LSLV9'8C D
%¢c0°0 %0500 %6€£0°0 %¢c0LY %1000 %1900 %¢E€L0°0 3
S.89'19 S/81¢C6°'GL- | GC9SL0O°LC- | 96651 L 0- SLEVS VY GC906°ce- GCost0¢- W
8LCELIVY | 6886C6'GL- | SIPLOOLC- | BGEVEEL'DO- | LLICP8 VY | L00LC6'EE- | §588G1°0¢- 8]
%¢€00°0 %80¢°0 %LEL0 %LL0°0 %9¢0°0 %8050 %0100 3
¢959.6°CL- | 90VIv6' Y G/896L°V- | SLEGSE9C- | SCI8C8'LL- | 8E60LLY SL€60°09 W
9169/6°€lL- SYLLIEG Y 9S¥E08' - | ¥806EE'9C- | 869CEB'LL- | [LB86VEL'Y LLPEL0°0S)
%6¢0°0 %9L1L°0 %8€0°0 %1%.L0°0 %S00 %8ET 0 %0%0°0 ER|
05.€60°6- 760LCL'G- 05¢9St'6- | 000SC9'¢CcS | ¥65€£89°9- C9SLSE'C- | 0GLEVS LI~ W
9/0160°6- €L0CL1'G- 0L/LTSL'6- | 8EL¥99'CS | ¥959L9'9- SLLLSETC- | SE60S8°LL-)
50Q00]3
TRININED oy 0d313900 pdpyx S0godp D139X3LY SornE 00AUDY

Part ﬂ

Theory

Chapter n

Background on artificial neural networks

his chapter begins with an overview of artificial neural networks and continues with
Tthe description of convolutional neural networks. By the end of this chapter the
reader should have a basic understanding of neural networks, which is required for sub-
sequent chapters.

1.1 Machine learning in general

In this age of modern technology, there is one resource that exists in abundance: a
large amount of structured and unstructured data. In the second half of the twentieth
century, machine learning evolved as a subfield of artificial intelligence that involved
the development of self-learning algorithms to gain knowledge from that data in order
to make predictions. Instead of requiring humans to manually derive rules and build
models from analyzing large amounts of data, machine learning offers a more efficient
alternative for capturing the knowledge in data to gradually improve the performance
of predictive models, and make data-driven decisions. Not only is machine learning be-
coming increasingly important in computer science research but it also plays an ever
greater role in the everyday life. Thanks to machine learning, robust e-mail spam filters,
convenient text and voice recognition software, reliable web search engines, challenging
chess players, and, hopefully soon, safe and efficient self-driving cars are a reality [1].

1.1.1 The three different types of machine learning

This subsection takes a look at the three types of machine learning: supervised learn-
ing, unsupervised learning and reinforcement learning [1].

* Supervised Learning: The main goal in supervised learning is to learn a model from
labeled training data that allows to make predictions about unseen or future data.
Here, the term supervised refers to a set of samples where the desired output
signals (labels) are already known.

* Reinforcement Learning: The goal is to develop a system (agent) that improves
its performance based on interactions with the environment. Since the informa-

Chapter 1. Background on artificial neural networks

tion about the current state of the environment typically also includes a so-called
reward signal, reinforcement learning can be thought of as a field related to super-
vised learning. However, in reinforcement learning this feedback is not the correct
ground truth label or value, but a measure of how well the action was measured
by a reward function. Through the interaction with the environment, an agent can
then use reinforcement learning to learn a series of actions that maximizes this
reward via an exploratory trial-and-error approach or deliberative planning.

» Unsupervised Learning: In supervised learning, the right answer is known before-
hand when the training of the model is performed, and in reinforcement learning, a
measure of reward for particular actions by the agent is defined. In unsupervised
learning, however, the data are unlabeled or have unknown structure. Using unsu-
pervised learning techniques, it is possible to explore the structure of the data, in
order to extract meaningful information without the guidance of a known outcome
variable or reward function.

The focus of subsequent sections will be solely on supervised learning, whose essence
is shown in figure 1.1. Considering the example of e-mail spam filtering software: The
approach is to train a model using a supervised machine learning algorithm on a cor-
pus of labeled e-mail, —-mail that are correctly marked as spam or not-spam - to predict
whether a new e-mail belongs to either of the two categories. A supervised learning task
with discrete class labels, such as in the previous e-mail spam-filtering example, is also
called a classification task. Another subcategory of supervised learning is regression,
where the outcome signal is a continuous value.

Labels
Training Data

Machine Learning ‘

Algorithm

New Data |:> Predictive Model |:> Prediction

Figure 1.1: The supervised learning approach

1.1.2 Classification in supervised learning: Predicting class labels

Classification is a subcategory of supervised learning where the goal is to predict the
categorical class labels of new instances based on past observations [2]. Those class
labels are discrete, unordered values that can be understood as the group memberships
of the instances. The previously mentioned example of e-mail spam detection represents

1.1 Machine learning in general

atypical case of a binary classification task, where the machine learning algorithm learns
a set of rules in order to distinguish between two possible classes: spam and non-spam
e-mail. However, the set of class labels does not have to be of a binary nature.

The predictive model learned by a supervised learning algorithm can assign any class
label that was presented in the training dataset to a new, unlabeled instance. A typical
example of a multi-class classification task is handwritten character recognition. Here,
a training dataset that consists of multiple handwritten examples of each letter in the
alphabet would be the starting point. Now, if a user provides a new handwritten character
via an input device, the predictive model will be able to predict the correct letter in the
alphabet with certain accuracy. However, the machine learning system would be unable
to correctly recognize any of the digits zero to nine, for example, if they were not part of
the training dataset.

x| © o,'f++++
(@] K4
©, +
00 / + +
o/ + 4+ *t
o/ * 4+ +

Figure 1.2: Binary classification in supervised learning

Figure 1.2 illustrates the concept of a binary classification task given 30 training
samples: 15 training samples are labeled as negative class (circles) and 15 training
samples are labeled as positive class (plus signs). In this scenario, the dataset is two-
dimensional, which means that each sample has two values associated with it: x; and x.
Now, a supervised machine learning algorithm can be used to learn a rule - the decision
boundary represented as a black dashed line - that can separate those two classes and
classify new data into each of those two categories given its x1 and x, values [1].

1.1.3 Regression in supervised learning: Predicting continuous outcomes

The previous section showed that the task of classification is to assign categorical,
unordered labels to instances [2]. A second type of supervised learning is the predic-
tion of continuous outcomes, which is also called regression analysis [2]. In regression
analysis, a number of predictor (explanatory) variables and a continuous response vari-
able (outcome) is given, and the goal is to find a relationship between those variables
that allows the prediction of an outcome. For example, assume that there is interest in

Chapter 1. Background on artificial neural networks

predicting the Math SAT scores of students. If there is a relationship between the time
spent studying for the test and the final scores, it could be used as training data to learn
a model that given the study time, predicts the test scores of future students who are
planning to take this test.

v

X

Figure 1.3: Linear regression in supervised learning

Figure 1.3 illustrates the concept of linear regression. Given a predictor variable x
and a response variable y, a straight line is fitted to this data that minimizes the distance
- most commonly the average squared distance - between the sample points and the
fitted line. Then, the intercept and slope learned from this data is used to predict the
outcome variable of new data [1].

1.2 Mathematics of linear classification for images

This section will delve into the mathematics of the linear classification problem. The
formulation presented here will be useful in the next section, which will extend the no-
tions discussed here. In particular, the problem of linear classification will be applied to
images. Eventually, the approach described will naturally extend to entire Artifical Neural
Networks and Convolutional Neural Networks, which will be presented in the following
sections. The methodology will have two major components: a score function that maps
the raw data to class scores, and a /oss function that quantifies the agreement between
the predicted scores and the ground truth labels [3].

1.2.1 Parameterized mapping from images to label scores

The first component of this approach is to define the score function that maps the
pixel values of an image to confidence scores for each class [3]. The approach will be
developed making references to examples for better understanding. Assume a training
dataset of images x; € R”, each associated with a label y;. Here,i = 1,...,Nand y; €
{0,...,K— 1}. That s, there are N examples (each with dimensionality D) and K distinct

1.2 Mathematics of linear classification for images

categories (or classes). For example, if the dataset contains 32 x 32 RGB images, then
D = 32x32x3 = 3072 pixels. The score function f: R® — RK maps the raw image pixels
to class scores. The linear classifier is arguably the simplest possible score function. It
is expressed as:

f(xi, W,b) = Wx; + b

In the equation above, it is assumed that the image x; has all of its pixels flattened
out to a single column vector of shape [D x 1]. The matrix W (of size [K x D]), and the
vector b (of size [K x 1]) are the parameters of the function. The parameters in W are
often called the weights, and b is called the bias vector because it influences the output
scores, but without interacting with the actual data x;. However, ofter people use the
terms weights and parameters interchangeably.

There are a few things to note:

* First, note that the single matrix multiplication Wx; is effectively evaluating K sep-
arate classifiers in parallel (one for each class), where each classifier is a row of
w.

* Notice also that the input data (x;,y;) is given and it is fixed, but there is control
over the setting of the parameters W, b. The goal is to set these in such way that
the computed scores match the ground truth labels across the whole training set.
Intuitively it is expected that the correct class have a score that is higher than the
scores of incorrect classes.

1.2.2 The linear classifier matrix-vector multiplication

Notice that a linear classifier computes the score of a class as a weighted sum of all
of its pixel values across all of its color channels [3]. Depending on precisely what values
are set for these weights, the function has the capacity to like or dislike (depending on
the sign of each weight) certain colors at certain positions in the image. For instance,
you can imagine that the “ship” class might be more likely if there is a lot of blue on
the sides of an image, which could likely correspond to water. You might expect that
the “ship” classifier would then have a lot of positive weights across its blue channel
weights, i.e. the presence of blue increases score of “ship” class. Similarly, the classifier
would have negative weights in the red/green channels, i.e. the presence of red/green
decreases the score of this class. A more pictorial explanation of this is presented in
figure 1.4.

The reader also needs to be aware of one common trick regarding the bias term in-
troduced it the score function of the linear classifier. This trick is widely used across
Machine Learning and will be silently inferred in subsequent sections mentioning Artifi-
cial Neural Networks. Recall that the score function was defined as:

f(x;, W, b) = Wx; + b

Itis alittle cumbersome to keep track of two sets of parameters (the biases b and weights

Chapter 1. Background on artificial neural networks

stretch pixels into single column

02 |-05| 01| 20 56 1) -96.8 | catscore

15|13 | 21 | 00 | |231| 4| 32 | — | 437.9 | gog score

— ima;- 0 025| 0.2 | -0.3 24 -1.2 61.95 SHiEaE
Z;

Figure 1.4: An example of mapping an image to class scores. For the sake of visualization,
it is assumed that the image has only 4 pixels (4 monochrome pixels, color channels are
not considered for in this example for brevity), and that there are 3 classes (red (cat),
green (dog), blue (ship) class). (Clarification: in particular, the colors here simply indicate
3 classes and are not related to the RGB channels). The image pixels are stretched into
a column and the matrix-vector multiplication gives the scores for each class. Note that
this particular set of weights W is not good at all: the weights assign the cat image a very
low cat score. In particular, this set of weights seems convinced that it is a dog.

W) separately. A commonly used trick is to combine the two sets of parameters into a
single matrix that holds both of them by extending the vector x; with one additional
dimension that always holds the constant 1 - a default bias dimension. With the extra
dimension, the new score function will simplify to a single matrix multiplication:

f(Xia Wvb) = WXi

This trick is presented in a concise manner in figure 1.5. For notational simplicity, W
instead of W will be used, even when bias term is present.

02 |-05| 01|20 56 11 02 |-05|01|20] 11 56

15 | 1.3 | 21 | 00 231| 4|32 | «— |[15|13 |21 |00] 32 231

0 0.25| 0.2 | -0.3 24 -1.2 0 025| 0.2 | -03 || 1.2 24
w 2 b w b 2

T new, single W ;

Z;

Figure 1.5: Illustration of the bias trick. Doing a matrix multiplication and then adding a
bias vector (left) is equivalent to adding a bias dimension with a constant of 1 to all input
vectors and extending the weight matrix by 1 column - a bias column (right)

1.2.3 Linear classifier: Images as high-dimensional points

Since the images are stretched into high-dimensional column vectors, each one can
be interpreted as a single point in a D-dimensional space [3]. Analogously, the entire
dataset is a (labeled) set of points. Having defined the score of each class as a weighted

1.2 Mathematics of linear classification for images

sum of all image pixels, each class score is a linear function over this space. This D-
dimensional space cannot be visualized, but if it was comprised of only two dimensions,
then it would look like something presented in figure 1.6.

car classifier

airplane classifier/ &%

deer classifier

Figure 1.6: Cartoon representation of the image space, where each image is a single
point, and three classifiers are visualized. Using the example of the car classifier (in red),
the red line shows all points in the space that get a score of zero for the car class. The
red arrow shows the direction of increase, so all points to the right of the red line have
positive (and linearly increasing) scores, and all points to the left have a negative (and
linearly decreasing) scores.

1.2.4 The loss function

The score function from the pixel values to class scores, that was parameterized by a
set of weights W, is essential for predicting which image belongs to what class [3],[11].
Moreover, in the context of supervised learning, there is no control over the data (x;, y;),
but the weights are free to change. These weights should be set so that the predicted
class scores are consistent with the ground truth labels in the training dataset.

For example, going back to the example image of a cat and its scores for the classes
“cat”, “dog” and “ship” shown in figure 1.4 itis obvious that the particular set of weights
in that example was not very good at all, since the cat is recognized to be a dog instead.
A measure of unhappiness is given by the loss function, sometimes also referred to as
the cost function or the objective. Intuitively, the loss will be high if the algorithm is doing
a poor job of classifying the training data, and it will be low if it is doing well.

One popular choice of loss function is using the softmax function, which gives a
slightly more intuitive output in terms of class probabilities. In this case, the function
mapping f(x;, W, b) = Wx; stays unchanged, but now these scores are fed into the soft-
max function:

Chapter 1. Background on artificial neural networks

exp (fy,)
>_jexp (fy,)
where the notation f; means the j-th element of the vector of class scores f = Wx, for
some input vector x. To put it another way, f; is actually a shorthand for the inner product
of line j in weight matrix W with some input vector x, i.e. f; = ijx. For a specific input

P(Y:y,' |X:X;, W) =

vector x;, then: f,, = w/ x;.

In other words, a given input x; with a given set of parameters W, has a probability
of belonging to the class y; that can be calculated by the formula above. Notice that for
mathematical convenience the different classes “cat”, “dog”, etc. have been converted
to the numbers 0, 1, etc.. Thatis, y; € {0, 1,...,K — 1}. Since there is no control over the
data (x;,y;), the loss function is actually dependent upon the parameters W. As a result,
the goal of training is to find suitable values of the parameters W in order to minimize -
in some meaningful way - the loss function. The search for suitable values is called opti-
mization. For very simple problems, such as this, the optimization can be performed ana-
lytically and can be expressed in closed form. However, for more complicated problems,
which will be presented in the next section, the optimization is performed heuristically
using the numerical method of gradient descent and its extensions.

1.3 Artificial neural networks

Artificial Neural Networks (ANNs) are biologically inspired networks interconnected
in a specific manner as per the application requirement. One of the many advantages
of artificial neural networks is that they require minimum or no preprocessing of input
data. On the other hand, the traditional elaborate feature extractors are hand tuned for
particular sets of data. Artificial neural network models have the ability to learn and
generalize by using examples. This ability to adapt to the recognition task even after
design time, makes them unique compared to other artificial intelligence approaches.

1.3.1 Biological motivation and connections

The basic computational unit of the brain is a neuron [2]. Approximately 86 billion
neurons can be found in the human nervous system and they are connected with approx-
imately 10" - 10'° synapses [3]. Figure 1.7 shows a cartoon drawing of a biological
neuron on the left and a common mathematical model on the right. Each neuron receives
input signals from its dendrites and produces output signals along its (single) axon. The
axon eventually branches out and connects via synapses to dendrites of other neurons.
In the computational model of a neuron, the signals that travel along the axons (e.g. xp)
interact multiplicatively (e.g. woxg) with the dendrites of the other neuron based on the
synaptic strength at that synapse (e.g. wg). The idea is that the synaptic strengths (the
weights w) are learnable and control the strength of influence (and its direction: excitory
(positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic
model, the dendrites carry the signal to the cell body where they all get summed. If the

1.3 Artificial neural networks

final sum is above a certain threshold, the neuron can fire, sending a spike along its axon.
In the computational model, it is assumed that the precise timings of the spikes do not
matter, and that only the frequency of the firing communicates information. Based on
this rate code interpretation, the firing rate of the neuron is modeled with an activation
function f, which represents the frequency of the spikes along the axon. Historically, a
common choice of activation function is the sigmoid function o, since it takes a real-
valued input (the signal strength after the sum) and squashes it to range between 0 and
1. Details of these activation functions will be discussed later in this section.

Lo Wy

. . synapse
impulses carried axon from a neuron

toward cell body WoTo
) branches
of axon

cell body

I (Z w;T; + b)
Z w;T; + b '

output axon

activation
function

P ‘ axon

terminals

impulses carried
away from cell body

Figure 1.7: A cartoon drawing of a biological neuron (left) and its mathematical model
(right)

In other words, each neuron performs a dot product with the input and its weights,
adds the bias and applies the non-linearity (or activation function), in this case the sig-
moid o(x) = 1/(1 + ™).

It is important to stress that this model of a biological neuron is very coarse. For
example, there are many different types of neurons, each with different properties. The
dendrites in biological neurons perform complex nonlinear computations. The synapses
are not just a single weight, they are a complex non-linear dynamical system. The exact
timing of the output spikes in many systems in known to be important, suggesting that
the rate code approximation may not hold. Due to all these and many other simplifica-
tions, ANNs are only inspired by real neurons, they do not try to simulate them.

1.3.2 Commonly used activation functions

Every activation function takes a single number and performs a certain fixed mathe-
matical operation on it [3]. There are several activation functions encountered in prac-
tice and two of the most common are presented below.

* Sigmoid: This non-linearity has the mathematical form o(x) = 1/(1 + e7*) and is
shown on the left of figure 1.8. As pointed out previously, it takes a real-valued
number and “squashes” it into range between 0 and 1. In particular, large negative
numbers become 0 and large positive numbers become 1. The sigmoid function
has seen frequent use historically since it has a nice interpretation as the firing
rate of a neuron: from not firing at all (0) to fully-saturated firing at an assumed

Chapter 1. Background on artificial neural networks

Lo - 10
A
ogp Jf 8
|In'
/
06 &
/
n4r 4t
/ i
I
f L
J,J'U.E F 2t
L L — . L L 1 / 1 1
=8 =8 5 10 1 -5 5 10

Figure 1.8: The sigmoid o (x) activation function (left) and the Rectified Linear Unit (ReLU)
activation function (right)

maximum frequency (1). In practice, the sigmoid non-linearity has recently fallen
out of favor and it is rarely ever used. It has two major drawbacks:

1. Sigmoids saturate and kill gradients: A very undesirable property of the sig-
moid neuron is that when the activation of the neuron saturates at either tail
of 0 or 1, the gradient at these regions is almost zero. This makes the training
of the ANN a very difficult process.

2. Sigmoid outputs are not zero-centered: This has implications on the dynamics
during gradient descent, the optimization algorithm that is used during the
training, posing another difficulty during the training of the ANN.

* ReLU: The Rectified Linear Unit has become very popular in the last few years. It
computes the function f(x) = max(0, x). In other words, the activation is simply
thresholded at zero. The main advantages of ReLUs are:

1. It was found to greatly accelerate the convergence of stochastic gradient de-
scent compared to the sigmoid function. It is argued that this is due to its
linear, non-saturating form.

2. Compared to sigmoid neurons that involve expensive operations (i.e. expo-
nentials, and divisions), the ReLU can be implemented very easily with as-
sembly instructions.

In conclusion, ReLU activation functions are preferred in practice. However, care must
be taken, because ReLUs are not problem-free. The ReLU units can irreversibly die during
training. As much as 40% of the network can become “dead” (i.e. neurons that never
activate across the entire training dataset) if the learning rate is set too high. With a
proper setting of the learning rate this is less frequently an issue.

1.3.3 ANNSs architectures

Artifical neural networks can be presented as neurons in graphs [3]. In particular,
they are modeled as collections of neurons that are connected in an acyclic graph. Put

1.3 Artificial neural networks

differently, the outputs of some neurons can become inputs to other neurons. Cycles
are not allowed since that would imply an infinite loop in the forward pass of a network.
Instead of amorphous blobs of connected neurons, ANN models are often organized into
distinct layers of neurons. For regular neural networks, the most common layer type is
the fully-connected layer in which neurons between two adjacent layers are fully pairwise
connected, but neurons within a single layer share no connections. In figure 1.9 two
example ANN topologies that use a stack of fully-connected layers are shown.

W

output layer
output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2

z
N
o
o§

Figure 1.9: Left: A 2-layer Neural Network with three inputs, one hidden layer of 4 neurons
and an output layer with 2 neurons. Right: A 3-layer neural network with three inputs, two
hidden layers of 4 neurons each and an output layer with one neuron. Notice that in both
cases there are connections (synapses) between neurons across layers, but not within a
layer.

A couple of terminology is worth mentioning:

* Naming conventions: An N-layer neural network, does not count the input layer.
Therefore, a single-layer neural network describes a network with no hidden layers
(input directly mapped to output). ANNs are also called Multi-Layer Perceptrons
(MLP).

* Qutput layer: Unlike all layers in an ANN, the output layer neurons most commonly
do not have an activation function (or can be thought of as having a linear iden-
tity activation function). This is because the last output layer is usually taken to
represent the class scores (e.g. in classification), which are arbitrary real-valued
numbers, or some kind of real-valued target (e.g. in regression).

 Sizing neural networks: The two metrics that are commonly used to measure the
size of ANNs are the number of neurons, or more commonly the number of param-
eters. Working with the two example networks in figure 1.9:

1. The first network (left) has 4 + 2 = 6 neurons (not counting the inputs),
(3x4) + (4x2) = 20 weights and 4 + 2 = 6 biases, for a total of 26 learnable
parameters.

2. The second network (right) has 44+-4+41 = 9 neurons, (3x4)+(4x4)+(4x1) =
12+16+4 = 32 weightsand 4 +4 + 1 = 9 biases, for a total of 41 learnable
parameters.

Chapter 1. Background on artificial neural networks

Modern Convolutional Neural Networks contain an order of 100 million parame-
ters and are usually made up of approximately 10-20 layers (hence the term Deep
Learning). However, the number of effective connections is significantly greater
due to parameter sharing. More on Convolutional Neural Networks in the next sec-
tion.

1.3.4 Forward-step computation

Forward-step computation is the computation involved in predicting the output result
using already known network parameters [3], [12]. The processing required for learning
these parameters is called training and is usually done through backward-step compu-
tation. Based upon the explanations regarding the linear classifier and the right image of
figure 1.7, itis visible that there is a close relationship between the matrix-vector mul-
tiplication formulation in the linear classifier problem and the mathematical model of a
neuron. As a matter of fact, these are two representations of the same thing, meaning
that ANNs are comprised of several multiplications.

ANNSs are essentialy repeated matrix multiplications interwoven with activation func-
tions. One of the primary reasons that ANNs are organized into layers is that this struc-
ture makes it very simple and efficient to evaluate neural networks using matrix-vector
operations. Working with the example three-layer neural network in the figure 1.9 the
input would be a [3 x 1] vector. All connection strengths for a layer can be stored in
a single matrix. For example, the weights W; of the first hidden layer would be of size
[4 x 3], and the biases for all units would be in the vector b4, of size [4 x 1]. Here, every
single neuron has its weights in a row of W4, so the matrix vector multiplication W1 x eval-
uates the activations of all neurons in that layer. Similarly, W, would be a [4 x 4] matrix
that stores the connections of the second hidden layer, and W3 a [1 x 4] matrix for the
last (output) layer. The full forward pass of this 3-layer neural network is then simply
three matrix multiplications, interwoven with the application of the sigmoid activation
function. For better understanding, the pseudocode algorithm 1.1 is given.

Source code 1.1: Mathematical representation of 3-layer ANN from fig. 1.9

Input: Input vector x
Input: Weight parameters W
Output: Value of output neuron o
Let f (be the element-wise sigmoid activation function)
Let h1 = f(W1x + by) (that calculates the activations of the first hidden layer (4x1))
Let h2 = f(W2h1 + by) (that calculates the activations of the second hidden layer (4x1))
Let o = W3h, + b3 (that calculates the value of the output neuron (1x1))

In the pseudocode, W4, W>, W3, b1, by, bz are the learnable parameters of the net-
work. Notice also that the final network layer usually does not have an activation func-
tion.

1.4 Convolutional neural networks

1.4 Convolutional neural networks

A Convolutional Neural Network (CNN) is a special type of artificial neural network
topology, that is inspired by the animal visual cortex and tuned for computer vision tasks
by Yann LeCun in early 1990s [4]. It is a multi-layer perceptron, which is an artificial
neural network model, specifically designed to recognize two-dimensional shapes. This
type of network shows a high degree of invariance to translation, scaling, skewing, and
other forms of distortion.

C, S C; S n n;
input feature maps feature maps feature maps feature maps output
32 x32 28 x 28 14 x 14 10x 10 5x5
\—\ \\:QO \
VO
| N
N\ L | = NN O WO\
——————\‘::7 — —— \\ \ Oﬁ,ﬁi 9
N NN 9%\
5x5 2x2 5x5 O
convolution \ subsampling convolution 2x2 \\ O fully \
N subsampling \ \ connected AN
feature extraction classification

Figure 1.10: Example topology of a CNN suitable for handwritten digit recognition

In a CNN each neuron receives some inputs, performs a mathematical operation and
optionally follows it with a non-linearity. The whole network still expresses a single score
function: from the raw image pixels on one end to class scores at the other. Also, CNNs
still have a loss function (e.g. softmax) on the last (fully-connected) layer and all the
knowledge developed for regular ANNSs still applies. The main difference of CNN archi-
tectures is that they make the explicit assumption that the inputs are images, which
allows the encoding of certain properties into the architecture. The position invariance
of the features makes it possible to reuse most of the results of the feature extractor,
this makes a CNN very computationally efficient for object detection tasks.

1.4.1 Data arrangement in a CNN

CNNs take advantage of the fact that the input consists of images and they constrain
the architecture in a more sensible way [5]. In particular, unlike a regular ANN, the lay-
ers of a CNN have neurons arranged in 3 dimensions: width, height, depth. Note that
the word depth here refers to the third dimension of an activation volume, not to the
depth of a regular ANN, which can refer to the total number of layers in the network. For
example, 32 x 32 RGB input images represent an input volume of activations, that has
dimensions 32 x 32 x 3 (width, height, depth respectively). The neurons in a layer will
only be connected to a small region of the layer before it, instead of all of the neurons in
a fully-connected manner. The constrained, local connectivity of CNNs will be clarified
shortly. An input 3D volume is shown in figure 1.11 for a 4 x 4 RGB image. It is noted
that the range of values in the 3D volume can be adjusted to assist the training of the

Chapter 1. Background on artificial neural networks

network. The process of manipulating the input data, prior to feeding them to the CNN,
in order to bring them to the desired form is called preprocessing.

\'\
\\\\ 3 Colour Channels

Height: 4 Units
(Pixels)

PN
S

Width: 4 Units
(Pixels)

Figure 1.11: Cross-section of an input volume of size: 4 x 4 x 3. It comprises of the 3
color channel matrices of the input image.

As a result, a CNN is made up of layers, each one having a simple interface. It trans-
forms an input 3D volume to an output 3D volume using some function that may or may
not have parameters. A visualization is shown in figure 1.12.

WA
" .

a

5

A =

i =

e

NSRS Soseat:
RS -;““/ - ~ 50000 ~ =7
‘\‘.'//A . output layer OO000 ’width

input layer
hidden layer 1 hidden layer 2

Figure 1.12: Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons
in three dimensions (width, height, depth), as visualized in one of the layers. Every layer
of a CNN transforms the 3D input volume to a 3D output volume of neuron activations. In
this example, the red input layer holds the image, so its width and height would be the
dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).

1.4.2 Common layers used to build CNNs

There are three main types of layers to build CNN architectures: Convolutional Layer,
Pooling Layer, and Fully-Connected Layer [3]. The latter is exactly as seen in regular
ANNs. These three layers are stack interchangeably to produce interesting architectures.
There is also the Input Layer, which is nothing more than the identity transform, i.e. its
output is the same as its input. These layer are analyzed briefly below:

1.4 Convolutional neural networks

» Input Layer: Holds the raw pixel values of the input image. The depth of the Input
Layer volume matches the number of channels of the input image. Also, the spatial
dimensions of the input volume match the dimensions of the input image.

* Convolutional Layer: Will compute the output of neurons that are connected to
local regions in the input. Each computation is a spatial (width, height) convolution
between their weights and a small region they are connected to in the input volume.
The depth of the output volume depends on the numbers of filters that is given to
the layer as an extra parameter.

* Pooling Layer: Will perform a downsampling operation along the spatial dimen-
sions (width, height).

* Fully Connected (FC) Layer: As with ordinary ANNs and as the name implies, each
neuron in this layer will be connected to all the elements in the input volume of the
layer.

* RelLU Layer: Will apply an elementwise activation function, namely f(x) = max(0, x)
thresholding at zero. This layer is used for helping the network training and leaves
the size of the input volume unchanged.

In this way, CNNs transform the original image layer by layer from the original pixel
values to the final class scores. Note that some layers contain parameters and other do
not. In particular, the convolutional/fully-connected layers perform transformations that
are a function of not only the activations in the input volume, but also of the parameters
(the weights and biases of the neurons). On the other hand, the ReLU/pooling layers will
implement a fixed function. The parameters in the convolutional/fully-connected layers
are trained with gradient descent.

1.4.3 Convolutional Layer

The convolutional layer is the core building block of a CNN and lifts most of the
computational burden [13]. Before proceeding any further, it is better to explain how
convolution is performed, though a simple example.

Suppose the input image, which is commonly called input feature map is single chan-
nel, i.e. its 3D volume depth is 1. For the sake of this example, suppose the input image
is 5 x 5 and the kernel of the convolution is 3 x 3. Their values are shown below.

33210
0 01 3 1 0O 1 2
Input=13 1 2 2 3 Kernel=12 2 0O
2 00 2 2 01 2
2 0 0 0 1]

A discrete convolution is a linear transformation that is sparse (only a few input units
contribute to a given output unit) and reuses parameters (the same weights are applied

Chapter 1. Background on artificial neural networks

to multiple locations in the input). Figure 1.13 provides an example of a discrete convo-
lution. The light blue grid is the input feature map. To keep the drawing simple, a single
input feature map is represented, but it is not uncommon to have multiple feature maps
stacked one onto another. The kernel (shaded area) slides across the input feature map.
At each location, the product between each element of the kernel and the input element
it overlaps is computed and the results are summed up to obtain the output in the cur-
rent location. The procedure can be repeated using different kernels to form as many
output feature maps as desired.

Figure 1.13: Computing the output values of a discrete convolution. The shaded regions
indicate the numbers involved at each step of the computation. The result is placed in the
teal colored grid.

Notice that the convolution can be also performed though matrix multiplication. This
is clearly shown below:

33200131 2]fJo
32101312 3|[1
2 1013122 3|2
00131220 0f]2
Output=10 1 3 1 2 2 0 0 2|2
13122302 2|]0
31220020 0[]0
12200200 0f|1
2 2302200 1|2

With this representation, the convolution can be related to the model of interconnected

1.4 Convolutional neural networks

neurons presented for ANNSs.

Extending the previous example for images of multiple input channels is straight-
forward. The parameters of this layer consist of a set of learnable filters. Every filter is
spatially (i.e. along width and height) small, but extends through the full depth of the in-
put volume. For example, a typical filter on a first layer of a CNN might have size 5x5x3,
i.e. 5 pixels width and height stacked into 3 layers. The number three is because it is
assumed that the input image has three color channels. During the forward pass, each
filter is slided (more precisely, convolved) across the width and height of the input vol-
ume and dot products between the entries of the filter and the input is computed at any
position. As the sliding of the filter over the width and height of the input volume occurs,
it will produce a 2-dimensional activation map that gives the responses of that filter at
every spatial position. There will be an entire set of filters in each convolutional layer
(e.g. 12 filters), and each of them will produce a separate 2-dimensional activation map.
These activation maps are stacked along the depth dimension and produce the output
volume.

This paragraph will discuss the important matter of local connectivity [3]. When deal-
ing with high-dimensional inputs such as images, it is impractical to connect neurons
to all neurons in the previous volume. Instead, each neuron is connected only to a local
region of the input volume. The spatial extent of this connectivity is a hyperparameter
called the receptive field of the neuron. The extent of the connectivity along the depth
axis is always equal to the depth of the input volume. It is important to emphasize again
this asymmetry in how the spatial dimensions (width and height) and the depth dimen-
sion are treated: The connections are local in space (along width and height), but always
full along the entire depth of the input volume. Notice , in conjunction with figure 1.14
that the neurons still compute a dot product of their weights with the input followed by
a non-linearity, but their connectivity is now restricted to be local (spatially).

A

- —=00000

3

Figure 1.14: An example input volume in red (e.g. a 32 x 32 RGB image), and an example
volume of neurons in the first convolutional layer. Each neuron in the convolutional layer
is connected only to a local region in the input volume spatially, but to the full depth (i.e.
all color channels). Note, there are multiple neurons (5 in this example) along the depth,
all looking at the same region in the input, each one contributing to the generation of a
separate output feature map.

Spatial arrangement

Chapter 1. Background on artificial neural networks

Previous paragraphs explained the connectivity of each neuron in the convolutional layer
to the input volume, but did not discuss how many neurons exist in the output volume or
how they are arranged [3]. Three hyperparameters control the size of the output volume,
namely the depth, stride and the zero-padding.

» Depth of the output volume: This hyperparameter corresponds to the number of

filters used, each learning to look for something different in the input. For example,
if the first convolutional layer takes as input the raw image, then different neurons
along the depth dimension may activate in presence of various oriented edges or
blobs of color.

Stride: Is the amount of sliding of the filter before performing a dot product. When
the stride is 1 the filters move one pixel at a time. When the stride is 2, then the
filters jump 2 pixels at a time as they get slided around. This will produce smaller
output volumes spatially. In the example of figure 1.15 there is only one spatial
dimension (x-axis), one neuron with a receptive field size of 3 and the input size is
7. The neuron weights are [1,0,—1] and its bias is zero. These weights are shared
across all yellow neurons (see parameter sharing below).

0 1 2 || -1 11 -3 0 0 1 2 |l -1 110 -3 0

Figure 1.15: Left: The neuron strided across the input in stride of 1, giving output of size
5. Right: The neuron strided across the input in stride of 2, giving output of size 3.

» Zero-padding: is the amount of zeros around placed around the border of the input

[5]. The size of the zero-padding is also a hyperparameter. Figure 1.16 shows an
image (in red) with a zero-padding of one pixel. The nice feature of zero padding is

0 13 22 16 53 0

o | 4 3 7 |10 | o
0o |9 8 1 3 |0
o | o 0 0 o |o

Figure 1.16: An example of a zero-padded 4 x 4 matrix that becomes a 6 x 6 matrix.

that it allows the control of the spatial size of the output volumes. Most commonly,

1.4 Convolutional neural networks

it is used to preserve the spatial size of the input volume so the input and output
width and height are the same.

Figure 1.17 shows a visualization of convolution with zero-padding and non-unit stride
[13].

Figure 1.17: Convolving a 3 x 3 kernel over a 5 x 5 input padded with a 1 x 1 border of
zeros using 2 x 2 strides.

Parameter Sharing

Is used in convolutional layers to control the number of parameters. It turns out that
the number of parameters can be drammatically reduced by making one reasonable as-
sumption: If one feature is useful to compute at some spatial position (x1,y1), then it
should also be useful to compute at a different position (x2,y>). In other words, denot-
ing a single 2-dimensional slice of depth as a depth slice (e.g. an input volume of size
[55 x 55 x 96] has 96 depth slices, each of size [55 x 55]), then the neurons in each
depth slice are constrained to use the same weights and bias. Notice that if all neurons
in a single depth slice are using the same weight vector, then the forward pass of the
convolutional layer be computed as followes: each depth slice is equal to a convolution
of the neuron’s weights with the input volume Put differently, the specific parameter
sharing scheme converts a fully-connected layer into a convolutional one. This is why
it is common to refer to the sets of weights as a filter (or a kernel), which is convolved
with the input.

1.4.4 Pooling Layer

In a neural network, pooling layers provide invariance to small translations of the
input [3], [5]. It is common to periodically insert a pooling layer in-between successive
convolutional layers in a CNN architecture. Its function is to progressively reduce the
spatial size of the representation, thus reducing the amount of parameters and com-
putation in the network. The pooling layer operates independently on every depth slice
of the input and resizes it spatially. The most common kind of pooling is max pooling,
which consists in splitting the input in (usually non-overlapping) patches and outputting
the maximum value of each patch. Other kinds of pooling exist, e.g., mean or average
pooling, which all share the same idea of aggregating the input locally by applying a
non-linearity to the content of some patches. In practice a frequent form is a pooling
layer with filters of size 2 x 2 applied with a stride of 2, which downsamples every depth
slice in the input by 2 along both width and height, discarding 75% of the activations.

Chapter 1. Background on artificial neural networks

Every max operation would in this case be taking a maximum over 4 numbers (little 2x2
region in some depth slice). The depth dimension remains unchanged.

The pooling layer operates in a similar manner as the convolutional layers. The main
differences are:

* The pooling layer does need weights to operate. In fact it is just a fixed function
applied to the input volume.

* In contrast with convolution, the pooling layer produces an output feature map for
every depth slice of the input.

Figure 1.18 illustrates the operation of a pooling layer.

224x224x64
pool Pl Single depth slice
T 111 1]2]4
max pool with 2x2 filters
5|6 (7|8 and stride 2 6| 8
l b 3(2(1]0 3] 4
1 | 2 [ESEE
> SR 112
s downsampling y

224

Figure 1.18: Left: In this example, the input volume of size [224 x 224 x 64| is pooled
with filter size 2, stride into the output volume of size [112 x 112 x 64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max,
giving rise to max pooling, here shown with a stride of 2. That is, each max is taken over
4 numbers (little 2x2 square).

1.4.5 Fully-connected Layer

Neurons in a fully connected layer have full connections to all activations in the pre-
vious layer, as seen in regular ANNs. Their activations can hence be computed with a
matrix multiplication followed by a bias offset. See section 1.3 explaining the ANNs for
more information.

Chapter E

Introduction to Caffe and Myriad2

his chapter is going to introduce basic terminology about the software and the hard-
Tware used that make up the CNN implementation. The reader is strongly suggested
to pay attention to this chapter, since subsequent chapters will make references to no-
tions defined here.

2.1 Caffe: Convolutional Architecture for Fast Feature Embed-
ding

Caffe provides multimedia scientists and practitioners with a clean and modifiable
framework for state-of-the-art deep learning algorithms and a collection of reference
models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings
for training and deploying general-purpose convolutional neural networks and other
deep models efficiently on commodity architectures. Caffe fits industry and internet-
scale media needs by CUDA GPU computation, processing over 40 million images a day
on a single K40 or Titan GPU (= 2.5 ms per image). By separating model representa-
tion from actual implementation, Caffe allows experimentation and seamless switching
among platforms for ease of development and deployment from prototyping machines
to cloud environments. Caffe is maintained and developed by the Berkeley Vision and
Learning Center (BVLC) with the help of an active community of contributors on GitHub.
It powers ongoing research projects, large-scale industrial applications, and startup
prototypes in vision, speech, and multimedia [6].

2.1.1 Layers

Caffe stores and communicates data in 4-dimensional arrays called blobs. Blobs pro-
vide a unified memory interface, holding batches of images (or other data), parameters,
or parameter updates.

A Caffe layer is the essence of a neural network layer: it takes one or more blobs
as input, and yields one or more blobs as output. Layers have two key responsibilities
for the operation of the network as a whole: a forward pass that takes the inputs and
produces the outputs, and a backward pass that takes the gradient with respect to the

Chapter 2. Introduction to Caffe and Myriad2

output, and computes the gradients with respect to the parameters and to the inputs,
which are in turn back-propagated to earlier layers. Caffe provides a complete set of
layer types including: convolution, pooling, inner products, nonlinearities like rectified
linear and logistic, local response normalization, elementwise operations, and losses
like softmax and hinge. These are all the types needed for state-of-the-art visual tasks.
Coding custom layers requires minimal effort due to the compositional construction of
networks.

2.1.2 Training a network

Caffe trains models by the fast and standard stochastic gradient descent algorithm.
Figure 2.1 shows a typical example of a Caffe network (for MNIST digit classification)
during training [6]: a data layer fetches the images and labels from disk, passes it
through multiple layers such as convolution, pooling and rectified linear transforms, and
feeds the final prediction into a classification loss layer that produces the loss and gra-
dients which train the whole network. This example is found in the Caffe source code at
examples/lenet/lenet_train.prototxt. Data are processed in mini-batches that pass
through the network sequentially. Vital to training are learning rate decay schedules,
momentum, and snapshots for stopping and resuming, all of which are implemented
and documented.

mnist-input (data)

loss (softmax_loss)

g g
3 3 i
2 2

Figure 2.1: An MNIST digit classification example of a Caffe network, where blue boxes
represent layers and yellow octagons represent data blobs produced by or fed into the
layers.

2.1.3 Usage in the CNN implementation

In the context of the CNN implementation in Myriad2, the training of the network
is performed by Caffe in an x86 machine. Afterwards, the blobs containing the trained
parameters are copied and then placed inside the DDR of Myriad2. As a result, the im-
plementation has all the required parameters for performing the forward pass, although
this time the execution is performed on the specialized hardware of Myriad2.

2.2 Myriad 2 multiprocessor SoC

The target platform of implementation is the Myriad2 System-on-Chip (SoC) pro-
cessing unit [7]. It is developed by Movidius Ltd, that recently joined Intel’s Perceptual
Computing Group to accelerate adoption of visually intelligent devices. Myriad2 delivers

2.2 Myriad 2 multiprocessor SoC

high-performance machine vision and visual awareness in severely power-constrained
environments. For that reason, it is the world’s first Vision Processing Unit (VPU) that
specifically targets embedded applications. The main characteristics of Myriad2 are:

* An ultra-low power design: For mobile and connected devices where battery life is
critical, Myriad2 provides a way to combine advanced vision applications in a low
power profile. This enables new vision applications in small form factors that could
not exist before.

* A high-performance processor: Bringing vision technologies in connected devices
closer to the capabilities of human vision is what Myriad2 is all about. It enables
advanced vision applications that are impossible with conventional processors.

» A programmable architecture: The flexibility for developers to implement differen-
tiated and proprietary applications is fundamental to Myriad2. The provided opti-
mized software libraries give device manufacturers the ability to differentiate, not
duplicate, at the core level.

* A small-area footprint: To conserve space inside mobile, wearable, and embed-
ded devices, Myriad 2 was designed with a very small footprint that can easily be
integrated into existing products.

A high level view of the hardware is shown in figure 2.2. From there, it is seen that
Myriad2 SoC contains fourteen different processors. The two processors on the right
are fundamentally different from the twelve vector processors on the left. In fact, the
processors named “CPU” are of 32-bit SPARC architecture, which belongs to the RISC
family of processors.

(N

(mu | [sp | [wiri |
! } }

SHAVE
Vector

Processors
x12

MA2x5x Intelligent Memory Fabric
| System Example

Figure 2.2: Overview of Myriad2 hardware

A more detailed view follows below [8]:

* Leon 0S: Is one of the SPARC CPUs. It belongs to the CPU sub-system (CSS) that
has been designed to be the main communication and control unit with the out-
side world via the external communication peripherals: 12C blocks, I2S blocks, SPI

Chapter 2. Introduction to Caffe and Myriad2

blocks, UART, GPIO, ETH and USB3.0. The control unit of this block is the Leon 0S
(LOS) RISC processor, but in this block the Leon owns much bigger L1 (32 KB)
and L2 (256 KB) caches, which allows to put a modern RTOS on it. This block also
offers an AHB DMA engine for more optimal data transfer via the external periph-
erals. Beside handling the external interfaces and communication, Leon OS could
also control SHAVE processors imaging algorithms.

* Leon RT: Is the second of the SPARC CPUs. It belongs to the Media sub-system
(MSS), an architectural unit designed for allowing external connections with imag-
ing devices (camera sensors, LCDs, HDMI controllers etc.) as well as allowing use
of the Hardware (HW) filters available in Myriad2. As such it is comprised by the
MIPI, LCD, CIF interfaces, the SIPP HW filters and well as the AMC block which en-
ables connections between these and CMX (SRAM) memory. Coordinating frame
input and controlling the pipelines set in place usually require some effort. As such
the Myriad2 platform offers the Leon RT RISC as part of the MSS. Leon RT (LRT)
is a RISC processor with a fair amount of L2 cache memory (32 KB). Leon RT is
only one arbiter away from any Interface or HW filter register settings so it can
efficiently change any required parameters of the MSS blocks with the minimum
amount of delay due to bus arbitration.

» SIPP: 1Is a proprietary software/hardware mechanism used by the Myriad2 pro-
cessor to achieve highly optimized scheduling of Image Signal Processing (ISP)
pipeline functionality. This mechanism is responsible for utilizing the HW filters
provided by Myriad2 to achieve the best performance possible. This component is
the orange block shown in fig. 2.2.

||
Software Controlled 1/0 Multiplexing

i INTERFACES
SPI, USB3, 12C, 28, LCD, CIF, UART, ETHERNET, ETC.
x12 lanes yY
Intelligent Memory Fabric RISC-RTOS g

| 12 Vector VLIW ,SHAVE*“ Processors |

RISC-RT g

L2 Cache

Myriad 2 MA2x5x Block Diagram

Figure 2.3: More detailed overview of Myriad2 hardware

* Microprocessor Array (UPA): Is the unit in Myriad 2 holding the 12 Very Long In-
struction Word (VLIW) SHAVE vector processors (see fig. 2.3), the 2 MB CMX SRAM

2.3 CMX DMA Controller

memory and a few other blocks from which the most important are: the specialized
DMA engine and the 256 KB L2 cache memory available to the SHAVE cores. This
unit’s main purpose is to provide support for customized code required by many
computer vision and machine learning applications, as well as any other general
computation intensive algorithms. Each VLIW processor controls multiple func-
tional units which have SIMD capability for high parallelism and throughput at a
functional unit and processor level. Each of these units can be launched in par-
allel in a single instruction. SHAVEs support SIMD instructions on multiple types,
including but not limited to: 8 bits integers, 16 bits integer, 32 bits integer, 16 bits
float, 32 bits float.

* CMX: Stands for Connection Matrix, which belies the fact it is comprised of several
smaller SRAM blocks reaching a total of 2 MB. Each SHAVE processor has prefer-
ential ports into a 128 KB slice of the CMX memory. As such, 12x128 KB = 1536 KB
are preferentially used by SHAVE cores but the remaining 512 KB of CMX memory
are generally usable by any other units. The recommended usage for these 512 KB
is for HW SIPP filters usage or Leon OS timing critical code which would otherwise
not be able to be kept in DDR.

* DDR: Is the largest volatile available memory unit of Myriad2 and has a size of
128MB or 512 MB, depending on the revision. The main difference between this
and other platforms is that Myriad2 comes with DDR inside the SoC. However it
memory is off-chip, meaning that the 14 processors use a single DDR controller to
access it.

2.3 CMXDMA Controller

The CMX DMA resides between the 128-bit MXI bus and CMX memory [9]. It provides
high bandwidth data transfers between CMX and DDR in either direction. It also supports
data transfers from DDR back to DDR or from CMX to CMX, allowing data to be relocated
within the same physical location. Figure 2.4 shows a high level description of the DMA
engine.

The unit of work in the DMA engine is expressed though transaction tasks. Up to four
linked lists of transactions are maintained in system memory, thus the DMA capability
of serving transactions is not unlimited and can be easily flooded with requests if the
programmer makes unregulated use of it.

2.4 Myriad2 Development Kit

The Myriad2 Development Kit (MDK) comprises common code which includes both
drivers and components, and some example applications [8]. Also, the MDK provides an
extensive build system - based on the GNU Makefile - that offers the means to build an

Chapter 2. Introduction to Caffe and Myriad2

Slice Ports
Shave Spare Slice Ports CMX Slice
CMX
CMX DMA Control
Registers
MXI Bus
Media Subsystem DDR Subsystem

Figure 2.4: CMX DMA engine of Myriad2

application, the means to configure it and some functional targets, such as make, make

run and make start_server.

2.4.1 MDK Components

This subsection provides a brief description of the reusable components included
in the MDK [8]. Components are located under the mdk/common/components directory
and selectively included in projects through the Makefile. A detailed description of each
components can be found to the header file comments within each component. For the
purposes of CNN implementation, an essential component is the KernelLib/MvCV, i.e.
the Movidius Computer Vision kernel library. This library contains optimized assembly
SHAVE routines for performing convolution, pooling and other related operations that
are important to the implementation of the CNN.

Part [ﬂ

Implementation

Chapter a

Configuring and running a CNN architecture

his chapter describes all the steps required to make the CNN implementation ready
Tto process an input image. It is suitable for programmers that need to use the ex-
isting implementation, without the overwhelming amount of details explaining the inner
workings of the how everything is designed and written.

3.1 Description of a particular CNN

For better understanding, a specific CNN architecture is presented. The rest of the
chapter will try to build the provided network in a step-by-step manner.

3.1.1 Pictorial representation of the CNN

Figure 3.1 shows the CNN.

pool_1

relu_1 - RelLU - InPlace

Figure 3.1: An example CNN architecture that will be built with the CNN implementation.

Chapter 3. Configuring and running a CNN architecture

Note that the CNN presented in figure 3.1 consists of three computational nodes
and uses square bracket syntax to declare the shape of the data moving between the
nodes. The format of this syntax is [A, B, C, D], where:

A defines the batch size, i.e. the number of images that will be processed by the
network in one forward pass. Although Caffe supports batch processing, the cur-
rent CNN implementation does not. Thus, this value always needs to be 1.

* B define the number of channels in an image. For example, a grayscale image has
only one channel, while an RGB image has three.

C defines the height of the image.

D defines the width of the image.

While the definitions above talk about images, they can be extended for image-like ob-
jects. Such objects are 3D volumes and have been extensively described in the previous
chapters.

Explanation of the computational nodes follows below:

* data: This node feeds the data into the network. Its shape is [1,1,50,50]. As a
result, the input to this network is a 50 x 50 grayscale image.

» conv_1: This node performs a convolution to the input volume, which turns out to
be an image, using a 5 x 5 kernel. It generates 32 output maps, which means that
there are 32 different kernels that perform convolution. The depth of each kernel
equals the depth of the input volume, thus each output map needs 1 x 5 x 5 weight
elements for the generation of each output map. In total, [32 x 1 x 5 x 5] weight
elements are needed. Because padding is zero and stride is one, sliding the kernel
across the image will generate 46 output pixels in each dimension. This means that
the size of the output volume will be [1 x 32 x 46 x 46].

* pool_1: This node is a pooling node and does not need weight parameters to op-
erate. It changes the spatial dimension of the input volume [1 x 32 x 46 x 46],
reducing it to [1 x 32 x 23 x 23].

» out: This is a fully connected node that generates a vector of 7 elements and needs
a matrix of weights to operate. In particular, it needs a [7 x (1 x 32 x 23 x 23)]
matrix, because the input 3D volume collapses into a vector and gets multiplied
with a weights matrix whose size is given above. This matrix-vector multiplication
results into a [7 x 1] matrix, i.e. a 7-element vector.

Finally notice that bias is also added to the result of each computational node, before
it is fed to the next node. For convolutional nodes, the same value is added to each
element of an output map. This value changes between output maps. For fully connected
nodes, a bias vector is added to the result of the matrix-vector multiplication.

3.1 Description of a particular CNN

3.1.2 Storage of the weights required by the CNN

The previous subsection makes clear the need for storing the weights of the convolu-
tional and fully connected nodes. These weights are stored inside C files in the following

manner:

struct conv_weights
conv_1_weights = {

.masks = {
.depth = 1,
.height = 5,
.width = 5,

.element_size = 2,
.data = conv_1_masks_raw

B
.biases = {

.depth = 32,

.height = 1,

.width = 1,

.element_size = 2,

.data = conv_1_biases_raw
b

Notice the following:

struct fc_weights
out_weights = {
.matrix = {
.depth = 1,
.height = 7,
.width = 32 * 23 * 23,
.element_size = 2,
.data = out_weights_raw

¥,
.biases = {
.depth = 1,
.height = 7,
.width = 1,
.element_size = 2,
.data = out_biases_raw
)

* The dimensions of depth, height and width match those explained in the previous

subsection.

* The element_size field defines the length of each element in the input data. The
value 2 means that 16-bit floating point numbers are given as weights.

* data field holds a pointer to the actual weight data, which are:

#define DBUF __attribute__ ((section(”.ddr_direct.data”), aligned (16)))

fp16 DBUF conv_1_masks_raw[32*1*5*5]
fp16 DBUF conv_1_biases_raw[32]

fp16 DBUF hidden_out_weights_raw[7*(32 * 23 * 23)] = { /* Data here */ };
fp16 DBUF hidden_out_biases_raw([7]

3.1.3 Provided API

{ /* Data here */ };
= { /* Data here */ };

{ /* Data here */ };

Currently the implementation provides the Application Programming Interface (API)
presented in table 3.1. This API allows the construction of several different CNNs, due
to its modular design. The programmer is advised to carefully read the example source
code 3.3 in order to make sure that has a very good grasp of how all of it fit together.

1
2
3
4
5
6
7
8

9
10
11
12
13
14

Chapter 3. Configuring and running a CNN architecture

Table 3.1: CNN implementation API

C function Brief description

struct network_node *network_node_source_create(...); | Definestheinput data source

struct network_node *network_node_conv_create(...); Creates a convolutional
computational node and
attaches it to the network

struct network_node *network_node_pool_create(...); Creates a pooling computa-
tional node and attaches it to
the network

struct network_node *network_node_fc_create(...); Creates a fully connected
computational node and at-
taches it to the network

void network_execute(network_node *); Executes the network

Note: “...” indicate parameters that specify the number of SHAVES, the type of compu-
tational kernel, padding, stride, weights (if necessary), etc.

3.2 Detailed explanation of the API

The current CNN implementation is flexible enough to allow the execution of vari-
ous different CNNs. For this reason, there is be a way to assemble the desired neural
network, using the provided API. After the assembly, the network is preprocessed and
several necessary actions are performed. The network preprocessing occurs only once
and brings the network to a state where it can accept input and process data over and
over again.

3.2.1 API internals

The whole implementation is written in C, however the API follows an object ori-
ented approach. Each computational node, such as convolution or pooling is obligated
to implement the following API:

Source code 3.1: API of each computational node of the CNN, leon/network/node.h

#ifndef _ NETWORK_NODE H__
#define _ NETWORK_NODE_H__

#include "node_defines.h”
struct network_node {
struct data_blob *(*get_output_data)(struct network_node *);

void (*execute)(struct network_node *);

struct network_node *next;

+i

struct data_blob *get_output_data(struct network_node *);
void network_execute(struct network_node *);

3.2 Detailed explanation of the API

15

16 #endif

As seen from source code 3.1, each node implements the following:

The struct network_node keeps a pointer to two functions and also has a next
pointer, which is used to link several network nodes together to make a linked list.
Currently the implementation does not support the execution of arbitrary Directed
Acyclic Graphs (DAGs). The reason is because a DAG requires the existence of a
scheduler, which is a very complicated piece of software on each own.

get_output_data, which uses the get_output_data pointer of the network_node
structure, with the purpose of returning the data produced by the current node.
This function facilitates the linkage of several nodes in a chain. Each next node
uses this function to access the data of the previous node in the architecture.

network_execute, which uses the execute pointer of the network_node structure
to initiate the computation of the current node.

Reiterating, each computational node implements two functions. The first function
is network_execute and the second is get_output_data. At the same time, nodes
use several other functions to implement their functionality. However, these func-
tions are not exposed to the rest of the code.

Using this primitive data layout the programmer is able to instantiate the computa-
tional nodes. Each type of node fills the fields of the network_node struct in a different
way, thus providing different functionality. The instantiation functions are:

oo Nt bh wnN =

a A -
N = O

13

—_
N

network_node_source_create: With this function the programmer is able to create
the input data source that will be fed into the network for computation. It returns
a struct network_node pointer. All the instantiation functions - mentioned below
- follow the same pattern, so this is a good place to present some code.

Source code 3.2: leon/network/node_source.c

#include <stdio.h>
#include <stdlib .h>
#include <string.h>

#include "node_defines.h”
#include "node.h”

#include ”"node_source.h”

static struct data_blob *
get_output_data_source(struct network_node *node)

{

struct network_node_source *n = (struct network_node_source *)node;

Chapter 3. Configuring and running a CNN architecture

15
16 }
17

return &(n—>output_blob);

18 static void
19 execute_source(struct network_node *node) {

20
21 }
22

ERROR(”Cannot execute a source node”);

23 struct network_node *
24 network_node_source_create(struct data_blob *output_data_blob)

25 {
26
27
28
29
30
31
32
33
34
35
36 }

struct network_node_source *source = malloc(sizeof(*source));
// Connect the methods
source—>node.get_output_data = get_output_data_source;

source—>node.execute = execute_source;

memcpy (&(source—>output_blob), output_data_blob,
sizeof (struct data_blob));

return &source—>node;

Source code 3.2 shows the following:

. Thenetwork_node_source_create allocates (line 26) and prepares (lines 29-

32) the data structure presented in source code 3.1.

. The actual implementations of get_output_data and execute are not ex-

posed, since they are prefixed with the keyword static.

. The input and output data are modeled as 3D volumes with the use of the

struct data_blob, which is:

typedef u8 byte_t;

struct data_blob {
int depth;
int height;
int width;
int element_size;
byte_t *data;

Data of a 3D volume are stored as contiguous arrays in row-major order. In a
row-major order, the consecutive elements of a row reside next to each other.
While the term alludes to the rows of a two-dimensional array, i.e. a matrix,
the orders can be generalized to arrays of any dimension by noting that the
term row-major is equivalent to lexicographic order.

3.2 Detailed explanation of the API

* network_node_conv_create: With this function the programmer is able to create
a convolutional node and attach it to the network. Thus, during the creation of the
node, the options below are available:

1.
2.

out_maps: The number of output maps that will be generated.

ddr_function: The specific routine that will perform the convolution. The
name of this routine is exported by the SHAVE array library which will be
described in the next chapter. For now, it is sufficient to know that such a
name looks like “MV_conv5x5s1hhhh” for convolution with 5 x 5 kernel and
unit stride.

3. padding_v: Is the vertical padding used during convolution.

10.

. padding_h: Is the horizontal padding used during convolution. Details about

padding are provided in the previous chapter.

. with_relu: Indicates whether the convolution will apply the ReLU function to

the output 3D volume.

. alignment: This is an optimization parameter used for increasing the perfor-

mance. The numbers allowed are powers of 2, such as 1, 2, 4, 8, etc. Expla-
nation about this parameter will be given in the chapter after next. For now,
the programmer is suggested to make a bruteforce search in order to find the
value that performs the best.

. coalescing num: This is also an optimization parameter, which will be ex-

plained in the chapter after next. The programmer is suggested to start from
the number 1 and keep increasing the value until execution fails due to mem-
ory exhaustion.

. shaves_no: This value defines how many SHAVEs will be used to execute the

convolution. Increasing this number will most likely reduce the execution time.
The way this operation is parallelized will be explained in the chapter after
next. There are in total 12 SHAVEs, so shaves_no € [1,12]. The programmer
is suggested to start from the number 1 and move sequentially to the num-
ber 12. The point to stop increasing this number is when little to no gain is
observed.

. Struct conv_weights *weights: Points to the weights needed by the convo-

lution. This struct defines a 3D volume and follows the same principles as
the struct data_blob. An example will be given shortly that will clarify how
it is used.

struct network_node *prev_node: This pointer is needed to create the linked
list of nodes. The list is important, because it defines the data flow, i.e. how
the output data of one node are used as the input data in the next node.

* network_node_pool_create: With this function the programmer is able to create
a pooling node and attach it to the network. Thus, during the creation of the node,
the options below are available:

Chapter 3. Configuring and running a CNN architecture

1. ddr_function: The specific routine that will perform the pooling. The name
of this routine is exported by the SHAVE array library which will be described
in the next chapter. For now, it is sufficient to know that such a name looks
like “MV_maxPool12x2s2hh” for 2 x 2 max pooling with 2 x 2 stride.

2. padding_v: Is the vertical padding used during pooling.

3. padding_h:Isthe horizontal padding used during pooling. Details about padding
are provided in the previous chapter.

4. shaves_no: This value defines how many SHAVEs will be used to execute the
pooling. Increasing this number will most likely reduce the execution time.
The way this operation is parallelized will be explained in the chapter after
next. There are in total 12 SHAVEs, so shaves_no € [1,12]. The programmer
is suggested to start from the number 1 and move sequentially to the num-
ber 12. The point to stop increasing this number is when little to no gain is
observed.

5. struct network_node *prev_node: This pointer is needed to create the linked
list of nodes. The list is important, because it defines the data flow, i.e. how
the output data of one node are used as the input data in the next node.

* network_node_fc_create: With this function the programmer is able to create a
fully connected node and attach it to the network. Thus, during the creation of the
node, the options below are available:

1. ddr_function: The specific routine that will perform the matrix-vector multi-
plication. For now, the only available option is “MV_matvecmul_hhhh”.

2. with_relu: Indicates whether the matrix-vector multiplication will apply the
ReLU function to the output matrix.

3. shaves_no: This value defines how many SHAVEs will be used to execute the
matrix-vector multiplication. Increasing this number will most likely reduce
the execution time. The way this operation is parallelized will be explained in
the chapter after next. There are in total 12 SHAVEs, so shaves_no € [1,12].
The programmer is suggested to start from the number 1 and move sequen-
tially to the number 12. The point to stop increasing this number is when little
to no gain is observed.

4. struct fc_weights *weights: Points to the matrix needed by the matrix-
vector multiplication. This struct defines a 3D volume (although only two di-
mensions are used) and follows the same principles as the struct data_blob.
An example will be given shortly that will clarify how it is used.

5. struct network_node *prev_node: This pointer is needed to create the linked
list of nodes. The list is important, because it defines the data flow, i.e. how
the output data of one node are used as the input data in the next node.

Source code 3.3 demonstrates how the provided API is used to construct a CNN.

oo N ot b wWwN =

W W W WwwwwwwhNNNDNNMNNMNNMNMNNNMNMNN=S 24 2 a4 a4 a a2
oo NoouhWN-LTOO0CONOTGDAWDN-=-OOVONOOOGVMWWN-= OO

39
40
41

3.2 Detailed explanation of the API

Source code 3.3: Snippet of leon/network/network.c

static struct network_node *data;
static struct network_node *conv_1;
static struct network_node *pool_1;
static struct network_node *out;
void prepare_network ()
{
struct data_blob
input_data = {
.depth = 1,
.height = 50,
.width = 50,
.element_size = 2,
.data = input_data_raw
e
data = network_node_source_create(&input_data);
conv_1 = network_node_conv_create(32, //
MV_conv5x5s1hhhh, //
0, //
0, //
1, //
2, //
6, //
12, //
&conv_1_weights, //
data); //
pool_1 = network_node_pool_create (MV_maxPool2x2s2hh, //
0, //
0, //
5, //
conv_1); //
out = network_node_fc_create (MV_matvecmul_hhhh,
1, //
6, //
&out_weights , //
pool_1); //
b

42 void execute_network() {
network_execute(conv_1);
network_execute (pool_1);
network_execute (out);

43
44
45
46

}

Output maps number
Convolution type
Vertical padding
Horizontal padding
With/without RelLU
Alignment
Coalescing Number
Shaves number
Weights required
Previous node

Pooling type
Vertical padding
Horizontal padding
Shaves number
Previous node

With/without RelLU
Shaves number
Weights required
Previous node

As seen from source code 3.3, there are two steps involved. The first step is the ex-
ecution of prepare_network. It uses data stored in DDR, shapes them into 3D volumes
and creates the nodes required by the specific CNN architecture. This step is also called

Chapter 3. Configuring and running a CNN architecture

preprocessing, since everything necessary during execution that can be calculated in
advance, is being computed. The next step involves the execution of a CNN with the pro-
vided input image. Using preprocessing, the time spent during execution is minimized,
which is a very desired feature for the following reasons:

* The preprocessing step is done only once during initialization and helps to reduce
the time during execution. A lot of applications are real-time, meaning that they
need to fetch and process images continuously and with high frame rate, making
preprocessing essential.

* When the CNN is not used frequently, one approach would be to turn off Myriad2
completely. However, Myriad2 provides advanced power management features,
one of them being sleep mode. Thus, in this scenario the SoC could be put into
sleep mode, which keeps the data in memory intact. As a result, the step of pre-
processing does not need to be performed more than once, saving both power and
time.

In conclusion, preprocessing is a very important step and there are multiple scenar-
ios - such as those described above - that benefit greatly from it. Therefore, in every
implementation of a CNN API the preprocessing step should become an indispensable
part.

Chapter E]

Description of the source code peripherals

his chapter provides information about the code residing in the CMX and DDR mem-
Tory and explains how this code is used by the SHAVE processors. However, the first
step is to configure the Myriad2 SoC, by setting up the processor frequency and the
caches. The purpose is to describe the need for the existence of this code and how sev-
eral parts of it are bound together. It is important to emphasize that the present chapter
is not going to explain in detail how convolution, pooling and inner product are written.
Such details will be the objective of the next chapter.

4.1 Memory Layout

4.1.1 Why CMX is not enough

The paradigm proposed by the MDK examples regarding the way to write applications
for Myriad2 is as follows:

* Leon OS processor is used to communicate with peripherals, such as USB and
Ethernet. This is because Leon OS provides extensive interrupts support that make
it suitable for being able to host the RTEMS operating system. As a result, it is
suggested to place the operating system in DDR - that is much larger - posing no
space constraints to the developer of the application.

* Leon RT processor is used to communicate with other peripherals, such as cameras
and microphones. This is because Leon RT provides extensive hardware support for
multimedia peripherals and relating protocols. Also, this processor in closer to the
SIPP engine and can manage the SHAVE processors directly, making it suitable for
managing the execution of parallel tasks in the SHAVESs. As a result, it is suggested
to place the code of this processor in CMX, if it is small enough. Otherwise, the only
remaining option is utilizing DDR for code of Leon RT.

» SHAVE processors are used for the computational intensive tasks. These proces-
sors are the main unit of work in Myriad2. They perform the bulk of the compu-
tations, thus speed is an essential property. For that reason, it is strongly recom-
mended to place SHAVE code in CMX exclusively. Although this would be great, it

Chapter 4. Description of the source code peripherals

is almost impossible to achieve is larger applications. Implementation of CNNs is
such an application and compromises need to be made.

4.1.2 Proposed memory map

Many modern neural networks are quite large for an embedded device. The CMX
memory available for each SHAVE is only 128KB. A large network requires multiple vari-
ations of common operations such as convolution and pooling. For instance, conv7x7,
conv5x5, pool3x3, pool2x2 with different amounts of striding are required. For improved
performance, these variations are written in assembly language to fully exploit the SIMD
capabilities of the ISA provided by Myriad2. As a result, placing them inside CMX leaves
little to no space available for local buffers and other logic. Therefore CMX memory
presents a limitation - at a very early stage - on the capability of Myriad2 to run larger
networks.

Another important reason that justifies the relocation of code away from CMX is the
existence of local buffers. The main idea of processing the data is based on the paradigm
of bringing data from DDR to the CMX, which is close to the SHAVEs, processing the data,
and finally writing the results back to the DDR. This requires the presence of local buffers
to store intermediate data and other temporary results before and after the processing
step. Also, local buffers help to improve the overall performance, since the bandwidth of
SHAVESs to the CMX is practically unlimited.

The reasons described above justify the use of another paradigm, different from the
paradigm proposed by the MDK examples. Figure 4.1 shows the proposed memory map.

Before explaining fig. 4.1 in detail, description of the memory structure is required.
Memory areas of Myriad2 are shown in table 4.1.

Table 4.1: Memory areas of Myriad2

Memory Size LEON Access Cost SHAVE access cost Start Address
CMX 2 MB Low Low 0x70000000
DDR 128 MB High High for random access | 0x80000000

Low when cache hit Moderate when L2 hit

Low for L1 hit

In particular, table 4.2 gives a deeper look in the CMX. In fact, CMX is comprised of
several smaller SRAM blocks, which make it extremely fast. In other words, CMX is much
like a cache, but it is manually controlled by the programmer. The CMX memory of 2 MB
may be considered as 16x128 KB “slices”.

A couple of notes regarding CMX are worth mentioning at this point:

* Each SHAVE has higher bandwidth/lower power access to its “own” local slice.

* Slice locality follows SHAVE number: Shave0 is assigned the lowest 128 KB of CMX,
..., Shave11 is assigned to slice 11.

4.1 Memory Layout

DRAM

Reserved for
compile-time
constants

>~
RTEMS Heap

L RTEMS Reserved

64M

64M

Shaves read computational kernels

/ Computational
kernels

Network weights and
precalculated data

\

Some of the data are moved between
DRAM and CMX through DMA

T SHAVE 0

T

SHAVEs utilize local buffers to store intermediate results

SHAVE 1 °

T

instructions through the instruction cache

Also, other read-only data are
brought to shaves though data
cache

SHAVE 11

I

Computations
bootstrap code

Data storage

CMX for SHAVE O

Computations
bootstrap code

Data storage

CMX for SHAVE 1

] SHAVEs read
Computations bootstrap
bootstrap code instructions

from CMX

Data storage

CMX for SHAVE 11

Figure 4.1: Proposed memory map that is suitable for CNNs

* Slices 12 to 15 are not tied to any SHAVE. They may be freely used for any other

purposes.

Important to notice that there is also a possibility of accessing data from memory

in an uncached manner. Both the DDR and the CMX memory have uncached views of
the memory address space. In the case of DDR, addresses having MSB “0” for example:
Ox8******* represent cached views while addresses starting with MSB “1”, for example
OXC******* represent uncached views. For CMX, 0x78****** represent uncached views
and Ox70****** represent cached views. This feature allows easy sharing of control data
between the Leon OS and SHAVEs.

The following bullets explain in detail fig. 4.1:

* DDR is split into two areas. The lowest 64MB are assigned to the Leon OS pro-
cessor that runs the RTEMS operating system. Not so much space is needed by
RTEMS itself. Most of this space is used by the application, that performs memory
allocation operations to keep the data generated by the CNN nodes. The highest
64MB of DDR are used to store the network parameters. These parameters are
learned during the training phase of the CNN and are used to perform the com-

Chapter 4. Description of the source code peripherals

Table 4.2: CMX memory overview

Slice | Start Address | End Address
0 0x70000000 | Ox7001FFFF
1 0x70020000 | Ox7003FFFF
2 0x70040000 | Ox7005FFFF
3 0x70060000 | Ox7007FFFF
4 0x70080000 | Ox7009FFFF
5 0x700A0000 | Ox700BFFFF
6 0x700C0000 | Ox700DFFFF
7 0x700E0000 | Ox700FFFFF
8 0x70100000 | Ox7011FFFF
9 0x70120000 | 0x7013FFFF
10 0x70140000 | Ox7015FFFF
11 0x70160000 | Ox7017FFFF
12 0x70180000 | Ox7019FFFF
13 0x701A0000 | Ox701BFFFF
14 0x701C0000 | 0x701DFFFF
15 0x701E0000 | Ox701FFFFF

putation of several types of nodes. Not every type of node needs such parameters
to perform its computation. Convolutional and fully connected nodes need these
parameters and call them weights. On the other hand, pooling nodes do not need
such parameters at all.

CMX is assigned to the SHAVESs the usual way. Each shave is assigned its own local
slice to utilize during the computation. The remaining slices - slices 12to 15 - are
used by all the shaves to store shared parameters. More details will be provided in
the following sections.

Each CMX slice is mostly used for data, rather than code. The code inside the
SHAVEs is minimal and its purpose it to act as an entry point to the actual code
that needs to run. The actual code resides in RAM and the code residing in CMX
tries to reach the appropriate part of the code in RAM needed for the particular
computation. That is why the figure refers to the entry point code as bootstrap
code.

In order to increase performance, utilization of cache subsystem is needed. Myr-
iad2 provides cache hierarchies for Leon 0S, Leon RT and the SHAVE processors.
The goal is to use cache of SHAVES, in order to diminish the impact of accessing
the DDR from these processors. The cache is utilized the following ways:

1. Instruction cache: It is used for executing the code that describes the compu-
tation. Every computational node, such as convolution or pooling may come
in different flavors, each one optimized for a particular class of the input size.

4.1 Memory Layout

Small CNNs do not require large size of code to execute, which makes it possi-
ble to fit this code inside CMX. However, for larger CNNs this approach is not
viable. A general solution that can support the code size of each CNN, with-
out sacrificing most of the performance, is using the instruction cache. Also,
another reason that makes cache a very attractive choice is that each com-
putational node is usually run in parallel from multiple SHAVE processors. As
a result, the exact same code is executed by several SHAVEs. This temporal
locality of accesses is a clear indication that cache can perform well.

. Data cache: Data cache is mostly used to increase the throughput of the

DDR. Myriad2 provides an advanced DMA engine that can transfer data asyn-
chronously between DDR and CMX. However, the resources of this engine are
finite and need to be used wisely. The DMA engine is used for transferring the
output data of the previous computational node to the current computational
node and also for transferring the output data of the current computational
node to the next computational node. These operations exhaust the resources
of the DMA engine. However, several nodes need extra trained parameters
(e.g. weights) on top of the input data to operate. In particular, the weights
needed by convolutional nodes are the kernel masks. Due to the nature of
convolution and the optimized code used (that will be described in detail in
the next chapter), these weights are needed in small quantities every once in
a while, making the data cache a suitable choice for this kind of data. As a
result, DDR data are transfered to/from CMX both implicitly - though cache -
and explicitly - through calls to the DMA engine.

. Note: The several cache hierarchies in Myriad2 are not related to each other

through a cache coherence protocol. Cache coherence needs to be main-
tained by the programmers themselves. However, the proposed paradigm
uses cache only for read-only data, making the need for keeping the caches
coherent unnecessary.

4.1.3 Creating the memory map in code

In order to create the memory map described previously, the GNU Linker needs to

be used [14]. The linker script only describes how each slice of CMX memory is split for
data and code and defines the regions of memory used by Leon OS and Leon RT.

Source code 4.1: scripts/Id/custom.ldscript

1

MEMORY

{
SHVO_CODE (wx) : ORIGIN = 0x70000000 + 128K, LENGTH 32K
SHVO_DATA (w) : ORIGIN = 0x70000000 + 128K + 32K, LENGTH 96K
SHV1_CODE (wx) : ORIGIN = 0x70000000 + 128K, LENGTH 32K
SHV1_DATA (w) : ORIGIN = 0x70000000 + 128K + 32K, LENGTH 96K
SHV2_CODE (wx) : ORIGIN = 0x70000000 + 128K, LENGTH 32K

Chapter 4. Description of the source code peripherals

10 SHV2_DATA (w) : ORIGIN = 0x70000000 + 2 * 128K + 32K, LENGTH = 96K

11

12 SHV3_CODE (wx) : ORIGIN = 0x70000000 + 3 * 128K, LENGTH = 32K

13 SHV3_DATA (w) : ORIGIN = 0x70000000 + 3 * 128K + 32K, LENGTH = 96K

14

15 SHV4_CODE (wx) : ORIGIN = 0x70000000 + 4 * 128K, LENGTH = 32K

16 SHV4_DATA (w) : ORIGIN = 0x70000000 + 4 * 128K + 32K, LENGTH = 96K

17

18 SHV5_CODE (wx) : ORIGIN = 0x70000000 + 5 * 128K, LENGTH = 32K

19 SHV5_DATA (w) : ORIGIN = 0x70000000 + 5 * 128K + 32K, LENGTH = 96K

20

21 SHV6_CODE (wx) : ORIGIN = 0x70000000 + 6 * 128K, LENGTH = 32K

22 SHV6_DATA (w) : ORIGIN = 0x70000000 + 6 * 128K + 32K, LENGTH = 96K

23

24 SHV7_CODE (wx) : ORIGIN = 0x70000000 + 7 * 128K, LENGTH = 32K

25 SHV7_DATA (w) : ORIGIN = 0x70000000 + 7 * 128K + 32K, LENGTH = 96K

26

27 SHV8_CODE (wx) : ORIGIN = 0x70000000 + 8 * 128K, LENGTH = 32K

28 SHV8_DATA (w) : ORIGIN = 0x70000000 + 8 * 128K + 32K, LENGTH = 96K

29

30 SHV9_CODE (wx) : ORIGIN = 0x70000000 + 9 * 128K, LENGTH = 32K

31 SHV9_DATA (w) : ORIGIN = 0x70000000 + 9 * 128K + 32K, LENGTH = 96K

32

33 SHV10_CODE (wx) : ORIGIN = 0x70000000 + 10 * 128K, LENGTH = 32K
34 SHV10_DATA (w) : ORIGIN = 0x70000000 + 10 * 128K + 32K, LENGTH = 96K
35

36 SHV11_CODE (wx) : ORIGIN = 0x70000000 + 11 * 128K, LENGTH = 32K
37 SHV11_DATA (w) : ORIGIN = 0x70000000 + 11 * 128K + 32K, LENGTH = 96K

38
39 /* The CMX_DMA section must be between the following addreses
40 * 0x78000000 + 12 * 128K

41 * and
42 * 0x78000000 + 13 * 128K
43 */

44 CMX_DMA_DESCRIPTORS (wx) : ORIGIN = 0x78000000 + 12 * 128K , LENGTH = 12K
45 CMX_OTHER (wx) : ORIGIN = 0x70000000 + 12 * 128K + 12K, LENGTH = 256K — 12K
46

47 LOS (wx) : ORIGIN
48 LRT (wx) : ORIGIN
49

50 DDR_DATA (wx) : ORIGIN = 0x80000000 + 64M, LENGTH = 64M
51

52 }

53

54 INCLUDE myriad2_leon_default_elf.ldscript

55 INCLUDE myriad2_shave_slices.ldscript

56 INCLUDE myriad2_default_general_purpose_sections.ldscript

0x80000000, LENGTH = 64M
0x70000000 + 14 * 128K, LENGTH = 256K

With this script the following arrangement is made:

* 32KB of CMX are used for code and 96KB of CMX are used for data in each SHAVE.

oo N ot b wN =

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23

4.2 Setting up Myriad2 SoC

12KB of CMX are used explicitly by the DMA Engine.

244KB of CMX are used for other purposes. In particular, this space will be used
for placing shared parameters used by the SHAVEs.

64MB of DDR are used by the Leon OS and the RTEMS operating system.

256KB of CMX are used by the Leon RT. In fact, for this application Leon RT is not
needed. However this space is provided for future extension of the implementation.

Finally, the rest 64MB of DDR are used for placing parameters/weights of the CNN.

In order to force the MDK to use this file as the default linker script the statement

LinkerScript = ./scripts/ld/custom.ldscript

needs to be added to the Makefile.

4.2 Setting up Myriad2 SoC

This section is concerned about the proper way to configure the Myriad2 hardware.
Care must be taken, because there are multiple drivers involved in the process. The
programmer is encouraged to delve into the details of the driver implementations for
better understanding of the code provided by the MDK. The final goal is to reach a state
where source code 4.2 can be executed.

Source code 4.2: leon/main.c
#include <stdlib .h>

#include <stdio.h>

#include <rtems.h>
#include <app_config.h>

#include <DrvLeon.h>
#include <OsDrvTimer.h>

extern u32 jumpTable;
u32 jumpTableAddr;

void POSIX_Init (void *args)
{
UNUSED(args) ;

// This needs to be an uncached store.
jumpTableAddr = (u32)&jumpTable;

s32 sc;

// Initiallize Clocks, DDR and enable subsystems
sc = InitClocksAndMemory () ;

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Chapter 4. Description of the source code peripherals

}

if (sc) {
puts(”initClocksAndMemory failed”);
exit(sc);

b

sc = InitShavelL2C();

if (sc) {
puts(”InitShavelL2C failed”);
exit(sc);

b

sc = ConfigShavelL2C();

if (sc) ¢
puts(”ConfigShavelL2C failed”);
exit(sc);

¥

sc = OsDrvTimerInit();

if (sc) {
printf(”Error initializing time driver.\n");
exit(sc);

¥

printf(”System frequency: %d Mhz\n\n",
DrvCprGetClockFreqKkhz (SYS_CLK, NULL) / 1000);

prepare_network () ;
while (1) {
read_image () ;

execute_network () ;
return_results () ;

exit(0);

A couple of explanations are needed:

* The code executed by Leon OS is placed into the directory 1leon. As a result, the

proper compiler is selected automatically by the MDK build system.

* The entry point of the whole application is named POSIX_Init, as shown in line

13. This name is mandatory if the programmer wants to use the RTEMS operating
system with thread support.

* Line 10 uses the extern symbol jumpTable which then passes it to the global vari-

able jumpTableAddr. The purpose of jumpTable is to support execution of SHAVE
code from DDR. The next sections explain in detail how this variable is used.

4.2 Setting up Myriad2 SoC

* Lines 20-45 deal with the hardware setup. There is nothing more to be said about
it right now, because it will be discussed shortly in detail.

* Since Leon OS uses the RTEMS operating system, the include rtems.h is needed,
as shown in line 4.

* Finally, lines 50-56 hint the required operations for the CNN implementation. The
prepare_network call is called once and prepares the CNN. Lines 52-55 indicate
that the CNN is capable of reading new data, processing them and returning the
results. There are various ways to communicate data in and out of Myriad2. It is
left to the programmer to achieve such functionality. For this reason, among these
lines, only line 54 will be analyzed.

4.2.1 Setting up RTEMS

RTEMS is provided in precompiled form by Movidius. In order to activate RTEMS, the
following lines of Makefile code are necessary:

MV_SOC_OS = rtems
RTEMS_BUILD_NAME = b—prebuilt

The next step is to write the code for setting up RTEMS itself, which is independent of
the target platform (Myriad2 in this case). The schema proposed for accomplishing this
involves the creation of a new directory 1leon/config. Afterwards the code presented in
source code 4.3 is required.

Source code 4.3: leon/config/rtems_config.c

1 #include <rtems.h>
2 #include "rtems_config.h” // Describes configuration of clock and cache

3

4 // User extension to be able to catch abnormal terminations
5 // This function is attached to RTEMS inside the rtems_config.h header.

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

static void Fatal_extension(
Internal_errors_Source the_source,
bool is_internal,
uint32_t the_error
)
{
switch (the_source)
{
case RTEMS_FATAL_SOURCE_EXIT:
if (the_error)
printk ("Exited with error code %d\n”, the_error);
break; // normal exit
case RTEMS_FATAL_SOURCE_ASSERT:
printk (s : %d in %s \n”,
((rtems_assert_context *)the_error)—>file ,
((rtems_assert_context *)the_error)—>line ,
((rtems_assert_context *)the_error)—>function);

Chapter 4. Description of the source code peripherals

23 break;

24 case RTEMS_FATAL_SOURCE_EXCEPTION:

25 rtems_exception_frame_print ((const rtems_exception_frame *) the_error);
26 break;

27 default:

28 printk (”\nSource %d Internal %d Error %d O0xaX:\n",
29 the_source,

30 is_internal , the_error, the_error);

31 break;

32 }

33 }

This piece of code is mandatory and its form is suggested by the examples of the MDK.
Its purpose is to define the behavior of RTEMS in case of failure. Such failure could be a
driver malfunction or an unhandled hardware exception. Notice the include statement in
line 2. This is an important line that defines a large part of the hardware configuration.

The version of RTEMS shipped with the MDK comes with a board support package
(BSP) that is capable of configuring Myriad2 with simple RTEMS directives. These direc-
tives are presented in the source code 4.4.

Source code 4.4: leon/config/rtems_config.h

#ifndef LEON_RTEMS_CONFIG_H_
#define LEON_RTEMS_CONFIG_H_

#ifndef _RTEMS_CONFIG_H_
#define _RTEMS_CONFIG_H_

#include "app_config.h”

oo N ot b wnN =

O

/*

10 * (Code removed for brevity)

11 */

12

13 // Program the booting clocks

14 // Clock configuration at startup

15 BSP_SET_CLOCK(OSC_CLOCK_KHZ, // Reference oscillator used

16 APP_CLOCK_KHZ, // PLLO Target Frequency

17 1, // Master Divider Numerator

18 1, // Master Divider Denominator

19 CSS_CLOCKS, //CSS Clocks

20 MSS_CLOCKS, // MSS Clocks

21 UPA_CLOCKS, // UPA Clocks

22 CLOCKS_NONE, // SIPP Clocks

23 CLOCKS_NONE // AUX Clocks

24);

25

26 // Program the L2C at startup

27 BSP_SET_L2C_CONFIG(1, // Enable (1) / Disable (0)

28 L2C_REPL_LRU, // Either L2C_REPL_LRU (default),
29 // L2C_REPL_PSEUDO_RANDOM,

30
31
32
33
34
35
36
37
38
39
40

oo N ot b wWwN =

N NN N NDNDMDNDNDNA 4 24 O a2 a a2 -
oo NouhWN-=LO0OO0VONOOOUG DA WDND-—= OO0

4.2 Setting up Myriad2 SoC

// L2C_REPL_MASTER_INDEX_REP
// or L2C_REPL_MASTER_INDEX_MOD
0, // Cache ways
L2C_MODE_COPY_BACK, // Either L2C_MODE_COPY _BACK
// or L2C_MODE_WRITE_TROUGH
0, // Number of MTRR registers to program
NULL // Array of MTRR configuration

);

#endif // _RTEMS_CONFIG_H_
#endif // LEON_RTEMS_CONFIG_H_

The main feature of source code 4.4 is the configuration of the different clocks of the
Myriad2 SoC. Lines 15-24 configure the various clocks. In particular, the 0SC_CLOCK_KHZ
statement declares the main frequency that is commonly set to 480 or 600 MHz. The
next three lines declare the frequency of the DDR RAM, which (the frequency) must be
compatible with the main frequency. Currently the DDR is set up at the maximum pos-
sible frequency. The next lines enable or disable specific units inside the Myriad2 hard-
ware. The statements in these lines are actually macros, which are defined in the file
app_config.hincluded in line 7. Indeed, the source code 4.5 contains this information.

Source code 4.5: Snippet of leon/config/app_config.h

#ifndef _APP_CONFIG_H_
#define _APP_CONFIG_H_

#include <OsDrvCprDefines.h>
#include <OsDrvShavelL2Cache.h>

/*

* (Code removed for brevity)

*/

#define APP_CLOCK_KHZ (600000)
#define OSC_CLOCK_KHZ (12000)

// CSS clocks

#define CSS_CLOCKS (\
DEFAULT_CORE_CSS_DSS_CLOCKS |
DEV_CSS_GETH |
DEV_CSS_I2CO)

-

// Enable needed Shave clocks, CMXDMA, Shave L2Cache and UPA Control interfaces

#define UPA_CLOCKS (DEV_UPA_SHO |\
DEV_UPA_SH1 |
DEV_UPA_SH2 |
DEV_UPA_SH3 |
DEV_UPA_SH4 |
DEV_UPA_SH5 |
DEV_UPA_SH6 |
DEV_UPA_SH7 |

— - -

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1
2

o b~ w

Chapter 4. Description of the source code peripherals

DEV_UPA_SH8
DEV_UPA_SH9
DEV_UPA_SH10
DEV_UPA_SH11
DEV_UPA_SHAVE_L2
DEV_UPA_CDMA
DEV_UPA_CTRL

_ — — — — — —
—

// Enable clocks needed for Leon and busses access
#define MSS_CLOCKS (DEV_MSS_APB_SLV |
DEV_MSS_APB2_CTRL |

DEV_MSS_RTBRIDGE |

DEV_MSS_RTAHB_CTRL |

DEV_MSS_LRT |

DEV_MSS_TIM |

DEV_MSS_LRT_DSU |
I

I

|

)

-

DEV_MSS_LRT_L2C
DEV_MSS_LRT_ICB
DEV_MSS_AXI_BRIDGE
DEV_MSS_MXI_CTRL

— s s s s s~

#endif

Continuing on source code 4.4, lines 27-36 configure the L2 cache of the Leon 0S
processor. The comments in the source code explain these lines in detail. However some
reference to MTRR is needed. Memory Type Range Registers (MTRRs) are a set of pro-
cessor supplementary capabilities control registers that provide system software with
control of how accesses to memory ranges by the CPU are cached. It uses a set of
programmable model-specific registers (MSRs) which are special registers provided by
most modern CPUs.

4.2.2 Switching off power islands

There are 20 power islands in the Myriad2 chip. Power islands can be turned off to
save dynamic and leakage power if not in use. For a CNN implementation this is a very
handy feature and can be exploited to lower the power required to process an input im-
age. Several operations are I/0 bounded, meaning that there is not gain in parallelizing
their execution across all the 12 SHAVESs. In such case, turning power islands off can be
only a benefit. Source code 4.6 shows that the Myriad2 turns all SHAVEs off during the
initialization process.

Source code 4.6: Snippet of leon/config/app_config.c regarding power management

int InitClocksAndMemory(void)

{
u32 sc;
tyAuxClkDividerCfg appAuxCIkCfg[] = {
// Give the UART an SCLK that allows it to generate an output baud

7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

4.2 Setting up Myriad2 SoC

// rate of of 115200 Hz (the uart divides by 16)
{AUX_CLK_MASK_UART, CLK_SRC_REFCLKO, 96, 625},

{0, 0, 0, 0}, // Null Terminated List
e

// Configure the system
sc = OsDrvCprlInit();

if (sc) {
puts(”0OsDrvCprlInit failed”);
return sc;
¥
sc = 0sDrvCprOpen();
if (sc) {
puts (”0sDrvCprOpen failed”);
return sc;
¥
sc = OsDrvCprAuxClockArrayConfig(appAuxClkCfg);
if (sc) ¢
puts(”0sDrvCprAuxClockArrayConfig failed”);
return sc;

// Null means default configuration. This forces DDR to reset and activate.
DrvDdrlInitialise (NULL);

// Also force the following subsytems to reset and activate
sc = OsDrvCprSysDeviceAction (UPA_DOMAIN, DEASSERT_RESET, UPA_CLOCKS);

if (sc) {
puts(”0OsDrvCprSysDeviceAction failed”);
return sc;
b
sc = OsDrvCprSysDeviceAction (MSS_DOMAIN, DEASSERT_RESET, MSS_CLOCKS);
if (sc) {
puts(”0OsDrvCprSysDeviceAction failed”);
return sc;

// Switch off shave power islands
sc = OsDrvCprTurnOffShaveMask(—1);

if (sc) {
puts (”0sDrvCprTurnOffShaveMask failed”);
return sc;
b
sc = OsDrvCprPowerTurnOffIsland (POWER_ISLAND_USB) ;
if (sc) ¢
puts(”OsDrvCprPowerTurnOffIsland failed”);
return sc;

Chapter 4. Description of the source code peripherals

59 }

60

61 return OS_MYR_DRV_SUCCESS;
62 }

Some explanations for source code 4.6 are:

* Line 14 initializes the Clock-Power-Reset (CPR) driver that controls the power is-
lands of the Myriad2 chip.

* Line 33 initializes the DDR. The purpose of this line is to reset the DDR content. This
helps during development time, since values from previous runs are not preserved,
assisting the programmer to track bugs.

* Finally, some power islands are turned off. More precisely, all the SHAVEs and the
USB unit are turned off. However, there is a caveat. In order for the power islands
to work properly, it is important to enable all required power islands beforehand.
For example, since all the SHAVEs are required for the CNN implementation, the
source code 4.4 in conjunction with the snippet 4.5 enables all SHAVEs in ad-
vance. However, afterwards, the CPR drivers turns them off, making it possible to
turn them back on when necessary. If the programmer tried to enable the SHAVEs
though the CPR driver without configuring them using the RTEMS BSP routine, an
error would occur.

4.2.3 Setting up SHAVEs cache

The initialization of cache that is performed in source code 4.4 is only for the Leon
0S processor. The CNN implementation also requires the initialization of the cache sub-
system used by the SHAVE processors. For this reason, it provides a far more advanced
software driver that is capable of separating the cache into several partitions. Source
code 4.7 contains the necessary commands.

Source code 4.7: Snippet of leon/config/app_config.c regarding SHAVE cache initialization

1 #define L2CACHE_CFG (SHAVEL2C_MODE_NORMAL)

2

3 int InitShavelL2C(void)

4 {

5 s32 sc;

6

7 sc = OsDrvShavelL2Cachelnit (L2CACHE_CFG) ;

8 if (sc) {

9 puts(”0OsDrvShaveL2Cachelnit failed”);

10 return sc;

11 }

12

13 // Reset the L2 cache partition configuration internal structure (The L2
14 // cache configuration registers are left unmodified).

15
16
17
18
19
20
21
22

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

4.2 Setting up Myriad2 SoC

sc = OsDrvShavelL2CResetPartitions () ;

if (sc) {
puts(”0OsDrvShavelL2CResetPartitions failed”);
return sc;

b

return OS_MYR_DRV_SUCCESS;
)

To understand the necessity of the source code 4.7, some clarification is required.
The driver responsible for setting up the partitions works in the following manner: It
keeps an internal structure that describes the partitioning schema. This structure is
reset and then built as the programmer desires. Afterwards, the partition schema is
instantiated into the hardware with another driver call that will be shown shortly. The
macro L2CACHE_CFG configures the cache behavior. The available options are:

* SHAVEL2C_MODE_DIRECT: In this mode the L2 cache acts as a 128KB SRAM at ad-
dress 0x40000000.

* SHAVEL2C_MODE_NORMAL: In this mode the L2 cache acts as a cache only for the
0x80000000-0xbfffffff address space of DDR.

* SHAVEL2C_MODE_BYPASS: In this mode the L2 cache is bypassed completely.

* SHAVEL2C_MODE_CACHED ALL:In this mode the L2 cache acts as a cache for the full
DDR address space.

According to the requirements of the CNN implementation, the most suitable choice is
SHAVEL2C_MODE_NORMAL. Details suggesting this choice are given in the following chapter,
which describes how cache can be efficiently used by the SHAVEs.

Finally, the actual set up of the partitions is shown in source code 4.8.

Source code 4.8: Snippet of leon/config/app_config.c regarding SHAVE cache partitions
configuration

int ConfigShavelL2C(void)
{

s32 sc;

// ID of the last allocated partition
int last_part_id = —1;

sc = OsDrvShavelL2CGetPartition (SHAVEPART128KB, &last_part_id);

if (sc) {
puts(”OsDrvShavelL2CGetPartition failed”);
return sc;

b

for (int i = 1; i <= 6; i++) {

sc = OsDrvShavelL2CGetPartition (SHAVEPART16KB, &last_part_id);

Chapter 4. Description of the source code peripherals

16 if (sc) {

17 puts(”0OsDrvShaveL2CGetPartition failed”);

18 return sc;

19 3

20 }

21

22 for (int i = 0; i < 12; i++) {

23 sc = OsDrvShavelL2CSetNonWindowedPartition(i, O,

24 NON_WINDOWED_INSTRUCTIONS_PARTITION) ;
25 if (sc) {

26 puts(”0sDrvShaveL2CSetNonWindowedPartition failed”);
27 return sc;

28 >

29 }

30

31 for (int i = 0, partld = 1; i < 6; i += 2, partld++) {

32 sc = OsDrvShavelL2CSetNonWindowedPartition (i, partld,

33 NON_WINDOWED_DATA_PARTITION) ;
34 if (sc) {

35 puts(”0sDrvShaveL2CSetNonWindowedPartition failed”);
36 return sc;

37 >

38

39 sc = OsDrvShavelL2CSetNonWindowedPartition(i+1, partld,
40 NON_WINDOWED_DATA_PARTITION) ;
41 if (sc) ¢

42 puts(”0sDrvShaveL2CSetNonWindowedPartition failed”);
43 return sc;

44 >

45 }

46

47 sc = OsDrvShavelL2CacheAllocateSetPartitions () ;

48 if (sc) {

49 puts(”0OsDrvShavelL2CacheAllocateSetPartitions failed”);
50 return sc;

51 }

52

53 for (int i = 0; i <= last_part_id; i++) {

54 sc = OsDrvShavelL2CachePartitionInvalidate(i);

55 if (sc) {

56 puts(”0OsDrvShavelL2CachePartitionInvalidate failed”);
57 return sc;

58 3

59 }

60

61 return OS_MYR_DRV_SUCCESS;

62 }

The source code 4.8 configures the L2 cache of the SHAVEs using 7 out of 8 par-
titions. The first partition is set to be 128KB, while the next 7 partitions are set to be
16KB each. This makes a total of 224KB of cache, while the total cache size is 256KB.

4.3 SHAVE code residing in CMX

More precisely:

* Lines 22-29 assign the instruction port of each SHAVE to point to the first partition.
This means that the first partition is going to be used as instruction cache and will
be shared among all SHAVEs.

* Lines 31-45 assign the Load-Store Unit (LSU) (or data) port of each SHAVE to
point to one of the six remaining partitions. In particular, every pair of consecutive
SHAVEs will have their LSU port pointing at the same partition. SHAVE 0 and 1 will
use the second partition, ..., SHAVE 10 and 11 with use the seventh partition.

* Lines 47-51 will instantiate the cache configuration defined in the previous lines.
This means the internal data structure of the cache driver is stored to hardware
registers.

* Finally, lines 53-59 invalidate the cache, in order to make sure there are no stale
cache entries in the memory hierarchy of the SHAVEs.

4.3 SHAVE code residing in CMX

Ideally, CMX is the best memory in term of performance and power consumption
that is available to the SHAVE processors. However, due to its limited size, only the most
essential parts of data and code can be placed there. In general, CMX is suitable for:

* Placing the entire SHAVE code, if it is able to fit. If not, a less space consuming
choice is to place routines that need to be extremely fast. For example, a mem-
ory allocator is such a choice. Also, widely used utility routines and some in-line
routines could also be placed there.

* Placing code that is used to bootstrap each computational node. It is a manda-
tory requirement to place some code inside CMX in order to be able to begin the
execution. This code can then refer to other code that is placed in either CMX or
DDR.

* Finally, parameters to CMX routines are also important. During the preprocessing
stage of the CNN, all parameters to the computational nodes are calculated. These
parameters are then provided to the computational routines that run in SHAVEs.
Due to the complexity of the routines, the size of the parameters is quite large
(e.g. 128 bytes), so not carefully handling them can result in a not-so-small time
penalty during the execution stage. However, by placing these data inside CMX the
time penalty vanishes.

The following subsections will provide code for the contents of the CMX.

- O VvV oo NOoOOuUu M WN =

—_

oo N ot b wnN =

N VM N NN 4 4 4 a4 a2 a2 4
AR W N2 OO0COONOOOGDN~AWDN-= OO

Chapter 4. Description of the source code peripherals

4.3.1 Memory allocator code

A memory allocator is an important part of the CNN implementation. Allocation op-
erations, such as malloc, are not available for SHAVE processors. Also, it is common that
these operations are optimized for allocating large blocks of memory, making them of
limited use for SHAVESs, because of their performance. The requirements of a memory
allocator for the SHAVE processors used in the CNN implementation are quite easy to
meet. First, the allocator needs to be extremely fast. Second, it not necessary for the
allocator to be able to free. As a result the implementation of 4.10 is compact and con-
cise.

Source code 4.9: shave/cmx/memory.h

#ifndef _ MEMORY_H__
#define _ MEMORY_H_
#include <ddr_functions.h>

// Size of the memory pool (in bytes) available for each shave
#define MEMORY_POOL 95*1024

void setAlignedMem(int shaveld, J_FUNCPTR_T jumpTable);
void *getAlignedMem(int alignment, int bytes);

#endif//__MEMORY H__

Source code 4.10: shave/cmx/memory.c

#include <swcWhoAmI.h>
#include <mv_types.h>
#include <stddef.h>

#include "memory.h”
#include <ddr_functions.h>

// Statically allocate the maximum available space available for local buffers
static u8 __attribute__ ((aligned (128))) mem[MEMORY_POOL];

static u32 nextAddress;
static PRINTF_PTR printf;

static int primaryShave;
void setAlignedMem(int shaveld, J_FUNCPTR_T jumpTable)
{
nextAddress = (u32)mem;
printf = (PRINTF_PTR) jumpTable(CM_printf);
primaryShave = shaveld;
¥
void *getAlignedMem(int alignment, int bytes)
{
u32 residue = nextAddress % (u32)alignment;
u32 ret = nextAddress + (residue ? ((u32)alignment — residue) : 0);

4.3 SHAVE code residing in CMX

25
26
27
28
29
30
31
32
33 }

nextAddress = ret + bytes;

if ((nextAddress — (u32)mem) > sizeof (mem))
if (primaryShave == (swcWhoAmI() — PROCESS_SHAVEOQ))
printf(”Error: Trying to allocate memory space that exceeds local”
” memory pool capacity!\n”);

return (void *) ret;

The way the allocator works is as follows:

Each shave statically allocates a fixed amount of memory that is used as a memory
pool. This pool is used as the memory that is available to each shave for performing
allocations. Each shave can perform multiple allocations, however the total size
allocated cannot exceed the size of the pool. The pool size is defined in line 11 of
the source code 4.9. Notice that the number placed there is compatible with the
size defined in the linker script, shown in source code 4.1.

The setAlignedMem function is responsible for initializing the allocator. It needs
to be called from each SHAVE separately and before any call to getAlignedMen is
performed. This function requires also the argument jumpTable, a function that
makes it possible for SHAVEs to refer to code that resides in DDR. For example,
printf is a function that would make sense to be placed in DDR.

The getAlignedMem makes the allocation and returns a pointer to the allocated
space. This function supports aligned allocation, a very important feature that can
boost performance of execution. Allocations may fail if the memory pool has been
exhausted. In such case, the printf function prints the appropriate message.

Finally, notice that setAlignedMem also requires a shaveId argument. This is be-
cause the printf function is not thread safe, so only one SHAVE at a time can use
it. By providing a shaveId, only the specified SHAVE is responsible for using printf
in case of memory pool exhaustion. A more sophisticated mechanism using lock
could be used, but this approach meets the needs.

4.3.2 Bootstrap code

The bootstrap code acts as an entry point for code execution from the SHAVEs. Its

size needs to be small in order to fit inside the reserved CMX space used for code.

Source code 4.11: shave/cmx/entry.c

1 #include <svuCommonShave.h>
2 #include <swcCdma.h>
3 #include <swcWhoAmI.h>

4

5 #include <stddef.h>

0o N o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Chapter 4. Description of the source code peripherals

#include <mv_types.h>
#include <moviVectorUtils.h>
#include ”../ddr/ddr_conv.h”
#include ”../ddr/ddr_pool.h”
#include ”../ddr/ddr_fc.h”
#include <ddr_functions.h>
#include "memory.h”

#define DMA_TASKS_MAX 3
#define DMA_REFS_MAX 3

dmaTransactionList_t __attribute__ ((section(”
task [DMA_TASKS_MAX], *ref[DMA_REFS_MAX];

//#define DRIVER_ROUTINES_INSIDE_CMX

#ifdef DRIVER_ROUTINES_INSIDE_CMX

#include ”../ddr/utils.c”
#include ”../ddr/ddr_conv.c”
#include ”../ddr/ddr_pool.c”
#include "../ddr/ddr_fc.c”
#endif

void

shave_conv(conv_info *info,
u32 firstMapNo,
u32 lastMapNo,
J_FUNCPTR_T jumpTable

int shaveld =
conv_context context = {
.dma = (dma_context){
.dmalnitRequester
.dmaCreateTransactionFullOptions
.dmaStartListTask
.dmaWaitTask = dmaWaitTask,
.task task,
.ref = ref

= (common_context){
.shaveld shaveld ,
.jumpTable = jumpTable

.mem = (memory_context){

.setAlignedMem setAlignedMem,

.cmx.cdmaDescriptors”)))

swcWhoAmI() — PROCESS_SHAVEO;

dmalnitRequester,
dmaCreateTransactionFullOptions,
dmaStartListTask,

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

4.3 SHAVE code residing in CMX

.getAlignedMem = getAlignedMem

3,

.info = info,

e

#ifndef DRIVER_ROUTINES_INSIDE_CMX

CONV_DDR_PTR conv_ddr = (CONV_DDR_PTR) jumpTable(CM_conv_ddr);

#endif

conv_ddr(firstMapNo, lastMapNo, &context);

SHAVE_HALT;

void
shave_pool(
pool_info *info ,
u32 firstMapNo,
u32 lastMapNo,
J_FUNCPTR_T jumpTable

/*
* (Code omitted for brevity)
Y/

#ifndef DRIVER_ROUTINES_INSIDE_CMX

POOL_DDR_PTR pool_max_ddr = (POOL_DDR_PTR) jumpTable(CM_pool_max_ddr);
POOL_DDR_PTR pool_ave_ddr = (POOL_DDR_PTR) jumpTable(CM_pool_ave_ddr);

#endif
switch (info—>type) {
case pooling_AVE:
pool_ave_ddr(firstMapNo ,
break;
case pooling_MAX:
pool_max_ddr(firstMapNo ,
break;
b
SHAVE_HALT;
b
void
shave_fc(
fc_info *info,
int firstLineNo ,
int lastLineNo,
J_FUNCPTR_T jumpTable
)
{

lastMapNo, &context);

lastMapNo, &context);

Chapter 4. Description of the source code peripherals

110
111
112
113

/*
* (Code omitted for brevity)
*/

114 #ifndef DRIVER_ROUTINES_INSIDE_CMX

115

FC_DDR_PTR fc_ddr = (FC_DDR_PTR) jumpTable(CM_fc_ddr);

116 #endif

117
118
119
120
121 }

fc_ddr(firstLineNo, lastLineNo, &context);

SHAVE_HALT;

The way the entry points for SHAVEs are set up is as follows:

+ It contains the functions shave_conv, shave_pool, shave_fc, each one acting as

an entry point to the computations regarding convolutional, pooling and fully con-
nected nodes, respectively. The aforementioned computations receive an argu-
ment named context that contains all the required parameters for performing
the computation. As seen from lines 41-61, convolutions need to make use of the
DMA engine, the memory allocator and the jumpTable. Also, the info argument is
passed, which is responsible for parameters concerning the computation itself. For
example, contents of this argument are the address of the kernel masks needed for
performing the convolution, the address of the input data etc. The three functions
follow the same pattern. For this reason, only the function shave_conv is shown
completely.

In line 23, there is the preprocessor macro DRIVER_ROUTINES_INSIDE_CMX. This
macro alters the place where the computational routines are placed. If not de-
fined, the computational routines are placed in DDR. This is the default behavior
and the only solution for the general case, where many different computational
routines are needed. Otherwise, the computational routines are placed inside CMX.
The existence of this feature is there to assess the performance penalty of access-
ing SHAVE code from DDR. In fact, if the macro is not commented the performance
gain is insignificant, justifying that placing the SHAVE code inside DDR is not a
disastrous choice.

Lines 17-21 define the structures required by the DMA engine. These structures
are placed in a special place of CMX memory that is dictated be the hardware
itself. This is accomplished by using the compiler attribute syntax which positions
the structures in the section .cmx.cdmaDescriptors that is placed at the region
CMX_DMA_DESCRIPTORS (referring to source code 4.1) by the MDK build system. It
is not only an obligation to place DMA related code inside CMX, but also a safety
concern. Because this piece of code is actually a driver and is already provided
by the MDK, placing it inside CMX is guaranteed for it to operate correctly. On the
other hand, using DDR for this code can lead to bugs difficult to track down.

o o h W N =

1
2

4.3 SHAVE code residing in CMX

* Notice that each entry point requires two more arguments. For example, convo-
lution requires the arguments firstMapNo and lastMapNo. These arguments are
used for parallelization. More precisely, each SHAVE receives a different parame-
ter of these arguments, indicating that each one produces a different part of the
output. The precise parallelization strategy has bee explained in a previous chap-
ter.

It is suggested to use the GNU Linker garbage collection option for code and data re-
siding in CMX [8]. Keep in mind that the MDK uses two compilers for generating code. The
first compiler is used for code that is executed by Leon OS and Leon RT, while the second
compiler is used for code that is executed by the SHAVE processors. These compilers
are completely separated and do not communicate with each other. The linker garbage
collection mechanism tries to find code and data that with no reference to. However
the search for references is confined within each compiler generated code separately.
For example, if a function is defined but never used, then the executable file will never
contain this function. Also, if a function is defined in SHAVEs and only used by Leons,
again the executable file will never contain this function. As a result, the SHAVE compu-
tational node entry points, that are referenced only by the Leons, are garbage collected.
To circumvent this mechanism the Makefile needs to contains some extra instructions.

The specific lines of the Makefile that handle this functionality and perform the
garbage collection are presented in source code snippet 4.12.

Source code 4.12: Snippet of Makefile for entry points garbage collection

ENTRYPOINTS1 = —e shave_conv —u shave_pool —u shave_fc —gc—sections
$(CNNApp) . mvlib : $(SHAVE_CNN_OBJS) $(PROJECT_SHAVE_LIBS)
$(ECHO) $(LD) $(MVLIBOPT) $(ENTRYPOINTS1) \
$(SHAVE_CNN_OBJS) \
$(PROJECT_SHAVE_LIBS) \
$(CompilerANSILibs) -0 $@

The -e option defines the entry point. If there are multiple entry points, as in the
case of the current implementation, then only one of them, whose choice is arbitrary -
is used with the -e option. The -u option forces the symbol following it to be entered in
the output file as an undefined symbol. This prevents the garbage collector from erasing
it. If fact, by replacing the -e with —-u would make no difference. However it is left this
way for readability and better understanding by programmers not familiar with the GNU
Linker.

Finally it is worth commenting on the info argument. Each computational node re-
quires its own type of the info argument. However, these arguments contain essentially
the same information, so only the case of convolution will be presented.

The information required is expressed with the struct of source code 4.13.

Source code 4.13: info argument used by convolution

#ifndef __CONV_API_H__
#define __ CONV_API_H__

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 4. Description of the source code peripherals

#include <mv_types.h>
#include <network_config.h>

typedef struct {
// Input data place
u8 *input;
int input_channel_offset;
u8 inputBPP;

// Output data place
u8 *output;

int output_channel_offset;

u8 outputBPP;

u8 *conv_weights;

int conv_weights_offset; // Offset between different masks

int conv_weights_channel_offset; // Offset between layer of the same
mask

// Input DMA

int in_src_addr, in_src_width, in_src_stride;
int in_dst_addr, in_dst_width, in_dst_stride;
int in_buffer_elements, in_elements;

// Output DMA

int out_src_addr, out_src_width, out_src_stride;
int out_dst_addr, out_dst_width, out_dst_stride;
int out_buffer_elements, out_elements;

/*

* (Other fields are removed for brevity)

*/

} conv_info;

#endif//__CONV_API_H__

Source code 4.13 is pretty much self explanatory. It is just reiterated that convolution
requires input and output, as well as weight parameters. Also, instructions for the DMA
engine are provided to specify the way data will be moved from DDR to CMX and vice
versa. During convolution the DMA transfers 2D images. Someone could argue that the
only information necessary for DMA is the size of the data and the width of the image.
Sadly, this is not the case, because of several optimization steps that are involved along
the way and will be described in the next chapter.

The data that fill the info struct are computed during the preprocessing stage of
the CNN, that is performed by the Leon 0S. Again, for convolution this is presented in
source code 4.14.

Source code 4.14: How and where the info parameter is prepared

oo No b wnNn =

— ot b el e -
o o h W N = O 0

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39

40
41

42
43
44
45
46
47
48
49

4.3 SHAVE code residing in CMX

~N
*

*

N

static conv_info __attribute__ ((section(”.cmx_direct.data”), aligned (16)))
info_list [NETWORK_MAX_CONV_NODES;

static int info_list_occupied = 0;

static void
prepare_arguments(struct network_node_conv *n) {

if (info_list_occupied == NETWORK_MAX_CONV_NODES)
ERROR(”Network does not support any more convolution nodes”);
conv_info *info = &info_list[info_list_occupied++];

if (info == NULL)
ERROR(”Could not allocate!”);

info—input (u8*)(n—input_data.data);

info—>input = (u8*)(n—>input_data.data);

info—>input_channel_offset = n—>input_data.width * n—>input_data.height;
info—>inputBPP = n—>input_data.element_size;

info—>output = (u8*)(n—>output_data.data);
info—>output_channel_offset = n—>output_data.width * n—>output_data. height;
info—>outputBPP = n—>output_data.element_size;

/*

* o ..

Y/

info—>conv_weights = (void *)((u32)(n—>weights.masks.data) &
(u32)0x8fffffff);

info—>conv_weights_channel_offset = n—>kernel_size * n—>kernel_size;

info—>conv_weights_offset = info—>conv_weights_channel_offset *

info—>channels;

info—conv_biases = (void *)((u32)(n—>weights.biases.data) &
(u32)0x8fffffff);
info—>kernelBPP = n—>weights.masks.element_size;

conv_prepare_dma(info,
n—>input_data.height, n—>input_data.width,
info—>kernel_h, info—>kernel_w,
n—>padding_v, n—>padding_h,
n—>stride , n—>stride ,
n—>alignment

50
51
52
53
54

Chapter 4. Description of the source code peripherals

)é

n—>tensor = info;

55 /*

57

The following lines of snippet 4.14 are worth mentioning:

* Lines 5-8 allocate the space in CMX memory where the parameters will be placed.
The .cmx_direct.data section instructs the linker to place this section in the
CMX_OTHER region (referring to source code 4.1) and access it in an uncached
manner. This ensures that the Leon OS will indeed update the contents of the CMX
immediately. Although this piece of code is executed by the Leon OS, even this
processor does not support dynamic memory allocation for CMX. A simple - yet
effective - way is to statically allocate the space in advance. Making this allocation
statically is not a problem, since this value can be easily altered if a certain CNN
requires more convolutional nodes.

* The function prepare_arguments receives as argument a high level description of
the type of convolution and the data to apply it to. Afterwards it builds the specific
parameters needed by the computational routines of the SHAVEs. Notice lines 37
and 39. These lines convert the addresses for the weights needed by the compu-
tation, such that the access to them will be though the cache subsystem of the
SHAVE processors.

4.4 SHAVE code and data residing in DDR

This section will describe in detail the pieces of code and data - used by SHAVEs
- that have been placed in DDR, as well as the way this is accomplished. In fact, the
procedure that compiles and places the SHAVE code in DDR is not directly supported by
the MDK, as a result it is a bit cumbersome and needs attention.

4.4.1 Trained parameters

These parameters are generated by Caffe during the training phase of the network.
They are usually called weights and are essential for performing the computations in-
volving convolutional and fully connected nodes of the CNN. It is important to note that
the parameters grow larger in size for deeper CNNs and can quickly fill the entire DDR. As
explained earlier, parameters for convolution are read through the cache subsystem by
the SHAVESs. On the other hand, parameters for fully connected nodes are read through
DMA, because they need to be available to the computational routines in large bulks.

O VW oo N u b wWwN =

—_

11
12
13
14
15
16
17

O oo No b wWwN =

4.4 SHAVE code and data residing in DDR

The parameters generated by Caffe are stored in a special format called binary proto
that was introduced by Google in their protobuf library. Caffe performs the training using
32-bit floating point numbers (IEEE 754), while the SHAVEs are configured to use 16-
bit floating point numbers (fp16 for short). The SHAVEs operate at a lower precision,
even though they support 32-bit floating point numbers (fp32 for short), because they
can perform more computations in the same amount of cycles with this configuration.
This compromise is not a problem by itself, because CNNs are - in general - numerically
robust. However, the loss in precision will be put under test in the chapter analyzing the
experimental results on specific networks. Since the entire CNN operates at fp16, a way
to convert from fp32 to fp16 is needed.

The MDK provides the functionality of f32 to/from f16 conversion, because Leon 0S
and Leon RT do not support fp16 numbers. The conversion code is located at the direc-
tory common/components/Fp16Convert and is used to create the python module shown
in source code 4.15.

Source code 4.15: FpConvert python module setup.py
#!/usr/bin/python2.7
—*— coding: UTF-8 —*

To install to local user directory type:
python2.7 setup.py install —user

from distutils.core import setup, Extension
import numpy as np

ext_modules = [Extension(’'FpConvert’, sources = ['Fp16Convert.c’,
"module.c’])]

setup (
name = ’'FpConvert’,
version = '1.0",
include_dirs = [np.get_include ()], #Add Include path of numpy
ext_modules = ext_modules
)

From source code 4.15 itis visible that the module uses the Fp16Convert . c file which
is provided by the MDK. Also, it uses the module.c file that is shown in source code 4.16.

Source code 4.16: FpConvert python module module.c

#include <Python.h>
#include <numpy/arrayobject.h>

#include <stdio.h>
#include <stdlib.h>
#include "Fpi16Convert.h”

static PyObject™
fp32tofp16 (PyObject *dummy, PyObject *args)

107

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60

Chapter 4. Description of the source code peripherals

NPY_FLOAT32, NPY_IN_ARRAY);

dimensional (i.e. flattened).”);

{
PyObject *arg1 = NULL;
PyArrayObject *arr1 = NULL;
if (!PyArg_ParseTuple(args, "0”, &argl)) return NULL;
arri = (PyArrayObject*)PyArray_FROM_OTF(arg1i,
if (arr1 == NULL) goto fail2;
int nd = PyArray_NDIM(arr1); //number of dimensions
if (nd > 1) {
PyErr_SetString (PyExc_RuntimeError,
"Input array must be 1—
goto fail2;
¥
float acc = 0.0f;
float *elem = NULL;
PyObject* list = PyList_New(arr1—>dimensions[0]);
if (list == NULL) goto fail1;
for (int i = 0; i < arri—>dimensions[0]; ++i) {
elem = (float*)PyArray_GETPTR1(arr1, i);
PyList_SetItem(list, i, Py_BuildValue(”I”, f32Tof16(*elem)));
b
Py_DECREF(arr1);
return list;
failt :
Py_XDECREF(list);
fail2:
Py_XDECREF(arri);
return NULL;
by
static struct PyMethodDef methods[] = {

{"f32Tof16"”, fp32tofp16, METH_VARARGS,
equivalent”},
{NULL, NULL, O, NULL}
1
PyMODINIT_FUNC

initFpConvert (void)
{

"Convert float32 to float16 hex

61
62
63

oo N o b wWw N =

W W W W wwwwNNNDNDNNDNNNMDNMNNDN=2 24 2 g a4 2 d a4
NoubhwdNnN-2 00NN~ WN-=LOOVONOOOGAMAWDND-—=OO

4.4 SHAVE code and data residing in DDR

(void)Py_InitModule (”FpConvert”, methods);
import_array () ;

}

Compiling the python module is very simple and requires the following terminal com-
mand:

$ python2.7 setup.py install —user

Afterwards, it is possible to import the FpConvert module in python and use its
£32Tof16 function. The script of source code 4.17 can then run without a problem.

Source code 4.17: Python script that converts Caffe trained parameters

#!/usr/bin/python2.7
—*— coding: UTF-8 —*—

import numpy as np

import caffe

import FpConvert

SUPPORTED_LAYERS = [’'Input’, ’'Convolution’, 'Pooling’, ’'InnerProduct’, 'ReLU’]
caffe.set_mode_cpu()

net = caffe.Net(’path/to/.prototxt’, ’'path/to/.caffemodel’, caffe.TEST)
GENERATE_BLOBS = True

DATA_C = []

def array2fpi6(array):
return FpConvert.f32Tof16(list (array.flatten()))

def tup2mult(t):
return '*’ _join (map(str, t))

def list2str(t):

]

return ', ’'.join(map(str, t))

def node_with_weights_name(net):
for k, _ in net.params.items():
yield k

def generate_buffer(node_data, buf_prefix):
shape = node_data.data.shape

blob = '’
if GENERATE_BLOBS:
blob = list2str (array2fp16(node_data.data))

Chapter 4. Description of the source code peripherals

38 DATA_C.append(
39 "fp16 DATA_BUFFER ” + buf_prefix +
"_raw[{}]{};” .format(tup2mult(shape), ' = { \n’ + blob + '\n}"))
40
41 n = node_with_weights_name(net)
42
43 # Process input data
44 try:
45 node_data = net.blobs['data’]
46 shape = node_data.data.shape
47 generate_buffer (node_data, ’input_data’)
48 except IndexError:
49 raise IndexError(”Input data node must be named ’'data’”)
50
51 # Process the rest layers with blobs
52 for | in net.layers:
53 x = |.blobs
54
55 if |.type not in SUPPORTED_LAYERS:
56 raise NotImplementedError(’'Only ' +
57 str (SUPPORTED_LAYERS) + ' are supported’)
58
59 if len(x) > 0:
60 node_type = |.type
61 node_name = next(n)
62 weight = x[0]
63 bias = x[1]
64
65 if node_type == 'Convolution’:
66 generate_buffer (weight, node_name + '_masks’)
67 generate_buffer(bias, node_name + ’'_biases’)
68
69 elif node_type == ’'InnerProduct’:
70 generate_buffer (weight, node_name + ’'_weights’)
71 generate_buffer(bias, node_name + ’'_biases’)

Note that the script of source code 4.17 is a simplified version of the actual script,
in order to explain the key elements, without sacrificing much space. Lines that need
attentions are:

* Line 8: Contains the Caffe layers that the script is able to parse. Caffe is a large
framework with many different layers of computation for CNNs. The goal of this
script is to be able to support the subset of operations that is required by the
current CNN implementation in Myriad2.

* Line 12: With this line Caffe parses the .prototxt file, that contains the description
of the network and loads the trained parameters included in the .caffemodel file.

* Lines 31-39: These lines make the conversion from fp32 to fp16. They store the
result in the DATA_C list in the form of text, which is then printed to generate C code

oo N ot h W N =

N N NN = 4 = a4 a4 = o =
W N2+ 00V NOOU D~ wWN-= OO0

4.4 SHAVE code and data residing in DDR

that is embedded inside the CNN source code. This will become clearer with the
next piece of source code.

Then complete version of source code 4.17 exports the trained parameters in C code.
A snippet of such exporting is shown in source code 4.18.

Source code 4.18: Converted Caffe trained parameters

#include "node_defines.h”

#define DATA_BUFFER __attribute__ ((section(”.ddr_direct.data”), aligned (16)))

fp16 DATA_BUFFER input_data_raw[1*1*50%*50] = {
15636, 15521, 15681,
e

fp16 DATA_BUFFER conv_masks_raw[32*1*5*5] = {
13040, 13579, 13540,

+s

fp16 DATA_BUFFER conv_biases_raw[32] = {
47182, 45891, 47157,

+s

fp16 DATA_BUFFER fc_weights_raw[200*1152] = {
11484, 40758, 9013,

}s

fp16 DATA_BUFFER fc_biases_raw[200] = {
43883, 39963, 43263,
g

The following parts of source code 4.18 are worth mentioning:

* Line 3: The section .ddr_direct.data is placed at the region DDR_DATA (referring
to source code 4.1) by the MDK build system. Also, the access to the data is un-
cached, making sure no caches are used without explicitly stated by the program-
mer.

 Itisreiterated that the source code presented is compiled by the Leon compiler. As
a result, the fp16 data type is actually an alias for uint16_t. That is why the data
defined by the arrays are integer numbers. These integers are in fact the binary
representation of 16-bit floating point numbers, which are generated by the script
of source code 4.17.

* The ellipses shown are just for brevity, because the data of each array are quite
large. Array names prefixed with conv refer to required parameters for convolu-
tional nodes. On the other hand, array names prefixed with fc refer to required
parameters for fully connected nodes. These prefixes are just a convention, there
is no special semantic meaning to them.

0o No b wnNn =

N N N NMNMNNAA 4 2 a4 a4 4 a4 a4 4
a A WN 2 O00O0C0ONOOOGPNMNWDN-=L OO

Chapter 4. Description of the source code peripherals

4.4.2 The Jump Table

Although MDK comes with mechanisms for feeding SHAVEs with instructions residing
in DDR, these solutions ended up not being useful for the needs of a CNN implementa-
tion. These mechanisms are designed for dynamically replacing the application running
on the SHAVESs, however, the time to perform the switch is substantial. This leads to the
development of a simpler approach based on the Dynamic Shave Loading source code
provided by the MDK. The general idea behind the developed schema is the following:
The jumpTable is a function that acts as the entry point for SHAVE code in DDR. With
this function the programmer is able to “jump” between different functions of the DDR
code, that are finally executed on the SHAVEs. In other words, the jumpTable exports
the position of all the required SHAVE functions that are placed in DDR. The exact imple-
mentation of the jumpTable will be presented shortly. For now, the process of placing
SHAVE compiled code in DDR will be presented.

The main difficulty is to instruct the MDK to compile a set of files with the SHAVE
compiler - named moviCompiler - and then place the resulting object file in DDR. Thus,
the Makefile is extended, as show in source code 4.19.

Source code 4.19: Makefile extension code that places SHAVE instructions in DDR

ENTRYPOINTS2 =
$(ddrApp) . mvlib : $(SHAVE_ddrApp_OBJS) $(PROJECT_SHAVE_LIBS)
$(ECHO) $(LD) $(MVLIBOPT) $(ENTRYPOINTS2) \
$ (SHAVE_ddrApp_OBJS) \
$(PROJECT_SHAVE_LIBS) \
$(CompilerANSILibs) -0 $@

$(ddrApp) _shvdlib.text : $(ddrApp).shvdlib
$(ECHO) $(OBJCOPY) —O binary —only—section=.dyn.text $< $@

$(ddrApp) _shvdlib.data : $(ddrApp).shvdlib
$(ECHO) $(OBJCOPY) —O binary —only—section=.dyn.data $< $@

SHVDLIB_DEPS := $(ddrApp)_shvdlib.text $(ddrApp)_shvdlib.data
$(ddrApp) _shvdlib.combined : $(SHVDLIB_DEPS)
$(ECHO) (diff=$(shell cat $(ddrApp)_shvdlib.text | wc —c); \
dd if=/dev/zero bs=1 count=$$((0x00100000 — $$diff)) \
>> $(ddrApp)_shvdlib.text)

$(ECHO) cat $(SHVDLIB_DEPS) > $@

$(ddrApp)_bin.o : $(ddrApp)_shvdlib.combined
$(ECHO) $(0OBJCOPY) —I binary —rename—section \
.data=.ddr.data —redefine—sym \
binary$(subst /,_,$(subst .,_,$<))_start=jumpTable \

—0 elf32—sparc —B sparc $< $@

The lines of source code 4.19 are explained as follows:

* Lines 1-6: These lines generate the relocatable SHAVE object file using moviCom-

4.4 SHAVE code and data residing in DDR

piler. Normally the .mv1ib file that is produced would be placed in CMX.

* Lines 8-9: The prerequisite of thisruleis a . shvdlibfile thatis generated from rules
provided by the MDK. This file contains two sections. The first section is .dyn.text
and contains compiled code. The second section is .dyn.data and should con-
tain constant data, such as a lookup table or const C variables. The action of the
rule uses the GNU Linker script scripts/1d/1ib.1ldscript (source code 4.20) to
resolve relative addresses and place the code of section .dyn.text in absolute
address space. The result is stored in the target file of the rule.

* Lines 10-11: These lines perform the same operation as the two previous lines do,
although this time for the section .dyn.data.

* Lines 14-19: Absolute addresses have now been resolved and two files have been
produced, namely files with suffixes _shvdlib.text and _shvdlib.data. This rule
pads the end of the _shvdlib.text file with zeros to create a new file of size
0x00100000 bytes, i.e 1MB, and afterwards combines the resulting file with the
_shvdlib.data file. The padding operation will make the code generation to fail if
the _shvdlib.text grows larger than 1MB, thus attention should be paid to ensure
this value changes if the code surpasses the size of 1MB.

* Lines 21-25: The library is now compiled with moviCompiler and is ready to be
placed in DDR [15]. The MDK provides a method to insert raw binary files into the
executable .elf file (that is sent to Myriad2) and this method is exploited in these
lines to insert machine code instead. The code is placed in the .ddr.data section
and the symbol jumpTable is introduced to point at the beginning of the code. This
symbol is actually introduced by the objcopy tool called at line 22 and will be used
to call library functions from other parts of the CNN application.

* In conclusion, the above description tries to clarify the procedure where the piece
of code generated by the object files $ (SHAVE_ddrApp_0BJS) is converted into a
.mv1ib library. From this library is then converted to .shvdlib library that con-
tains two sections, one for text and one for data. The two sections are slightly
manipulated and their address are converted from relative to absolute ones. The
resulting file, with suffix _shvdlib.combined is then objcopyed so that it is in-
cluded in the executable . elf that is sent to Myriad2. The objcopy tool essentially
copies the _shvdlib.combined file and pastes it in the .elf file, at the begging of
section .ddr.data. At the same time, it introduces a new symbol into the .elf file
that is called jumpTable (see line 24). As a result, the symbol jumpTable is avail-
able inside the C source code of Leon OS. However, in order for this symbol to be
useful, it is important to point to a function of our choice. This function is named
the same way and is presented in source code 4.21.

The tokens 0x00100000 and jumpTable of the lines 17 and 24 need special atten-
tion, since they are tightly coupled with some other parts of the application. Source code
4.1 specifies that the .ddr.data section begins at address 0x80000000 + 64MB, i.e. at

Chapter 4. Description of the source code peripherals

address 0x84000000 and has length of 64MB. With these in mind, the source code 4.20
contains the magic numbers 0x84000000 and 0x84100000.

Source code 4.20: scripts/Id/lib.Idscript

1 /*Linker script file which sets all dynamic code*/
2 SECTIONS {
3 /*Setting up shave slices memory with absolute addresses*/

4 . = 0x84000000;

5 .dyn.text ALIGN(4) : {

6 *(S.text™)

7 *(S.__TEXT__sect)
8 *(S.__MAIN__sect)
9 *(S.init*)

10 }

11 . = 0x84100000;

12 .dyn.data : {

13 *(S.data*)

14 *(S.rodata*)

15 *(S.__DATA__sect™)
16 *(S.__STACK__sect?*)
17 *(S.__static_data*)
18 *(S.__HEAP__sect?*)
19 *(S.__T__™)

20 %}

21 }

Reiterating, source code 4.20 instructs the GNU linker to resolve the relative ad-
dresses to absolute ones. The .dyn.text section is placed in address 0x84000000,
which is the same address as that defined in 4.1. It is important to ensure these two
addresses match. Also, the .dyn.data section is placed in address 0x84100000 that is
0x00100000 bytes apart from the .dyn.text section. This value matches the value in
line 17 of source code 4.19.

The Makefile needs to be extended further more, in order to make use of the 1ib.script
of source code 4.20. This is accomplished by placing the following lines in the Makefile:

LDDYNOPT =L . —L ./scripts —nmagic —s
LDDYNOPT+=-T ./ scripts/Ild/lib.ldscript

LDSYMOPT =-L . —L ./scripts —nmagic
LDSYMOPT+=-T ./ scripts/Ild/lib.ldscript

Finally the jumpTable token of 4.19 should match the name of the function in 4.21.
Source code 4.21: shave/ddr_functions.c

1 #include "ddr_functions_exports.h”
2

3 FUNCPTR_T jumpTable(int i)

4 {

00 N o !

11
12
13
14
15
16
17
18
19
20

4.4 SHAVE code and data residing in DDR

struct lib_function func = lib[i];

switch (func.category) {
case func_common:

return func.cat.cm.func;
case func_conv:

return func.cat.conv.func;
case func_pool:

return func.cat.pool.func;
case func_acc:

return func.cat.acc.func;
case func_fc:

return NULL;

b

return O;

More specifically it is important to ensure the jumpTable symbol of the intermedi-
ate file is placed at address 0x84000000. To satisfy such restriction the source file
ddr_functions.c contains only this function and nothing else. Also, it is the first file that
is compiled among the other files that generate the DDR SHAVE instructions. To check
wether the symbol jumpTable is placed at address 0x84000000, one way is to verify if
the command sparc-myriad-elf-readelf -a $(ddrApp)_sym.o | grep -i jumpTable
produces non-blank output, where $(ddrApp) is defined in the Makefile of the applica-
tion.

The purpose of the jumpTable is to provide an entry point to the DDR SHAVE code.
This entry point is identified as an extern symbol by the Leon OS compiler and is used
across multiple files of the application. The reason this process is not automated is be-
cause it would require changes to provided MDK code. This would make the solution to
break with every new MDK release. The current approach does not break with new MDK
releases, although requires attention during development time.

4.4.3 Operation of the jumpTable

The previous subsection described the procedure necessary to put SHAVE compiled
code in DDR. The result of this procedure is that the jumpTable symbol is accessible by
Leon OS and also points to a function with the same name. How this function is actually
used will be described in this section.

The jumpTable function, shown in source code 4.21 takes an integer argument and
indexes the array 1ib with it. The array contains pointers to a struct and the argument
selects one of those pointers. The struct is presented in source code 4.22.

Source code 4.22: Snippet of shared/ddr_functions.h

1 #ifndef _DDR_FUNCTIONS_H_
2 #define _DDR_FUNCTIONS_H_

13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Chapter 4. Description of the source code peripherals

/*

* (Code removed for brevity)

Y/

struct lib_common {
char *name;

F
+s

enum

UNCPTR_T func;

lib_func_cat {func_common, func_conv, func_pool, func_acc, func_fc};

struct lib_function {
enum lib_func_cat category;
union {

}
+s

/*

struct lib_conv conv;

struct lib_pool pool;

struct lib_acc acc;

struct lib_fc fc;

struct lib_common cm;
cat;

* (Code removed for brevity)

*/

#define MV_conv3x3sihhhh 0
#define MV_conv3x3s2hhhh 1

/*

* (Code removed for brevity)

Y/

#define CM_pool_ave_ddr 38
#define CM_pool_max_ddr 39
#define CM_fc_ddr 40

#endif

In the source code 4.22 notice the following:

The type of struct of array 1ib is shown at line 15. From there it is seen that each
library function has a category, and data that describe each specific library func-
tion. Lines 18-22 indicate that are currently supported five different categories.
The last category is named cm and includes library functions that do not fit in any
other category. For example, printf function belongs to this category.

Each one the structs in lines 18-22 contains a field that stores the pointer to the
actual function. In the case of category cm, this is clearly shown in line 10. The

oo N o b wWw N =

W W W W wwwwNNNDNDNNDNNNMDNMNNDN=2 24 2 g a4 2 d a4
NoubhwdNnN-2 00NN~ WN-=LOOVONOOOGAMAWDND-—=OO

4.4 SHAVE code and data residing in DDR

reader is encouraged to cross reference these lines with the line 9 of source code
4.21.

* Finally, lines 30-40 are symbolic names for numbers 0 to 40. Each symbolic name
corresponds to an index of the library array. Thus, it is mandatory for the cor-
responding numbers to grow sequentially, starting from 0. For example, if the
jumpTable (MV_conv3x3s1hhhh) call is made, then the jumpTable function will re-
turn the index O of the library array. The symbolic name MV_conv3x3s1hhhh is a
mnemonic for the programmer.

The last bullet above indicates that there must be a mechanism populating the library
array with new functions. Indeed this is done in source code 4.23.

Source code 4.23: Snippet of shared/ddr_functions_exports.h

#ifndef _ DDR_FUNCTIONS_EXPORTS_H__
#define _ DDR_FUNCTIONS_EXPORTS_H__

#ifdef __MOVICOMPILE__
#include <mv_types.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

#include <accumulateFp16.h>

#include <convolution3x3Fp16ToFp16.h>
#include <convolution5x5Fp16ToFp16.h>

/*
* (Code removed for brevity)

*/
#include ”../shave/ddr/asm/vecVecDotProduct32.h”

#include ”../shave/ddr/ddr_conv.h”
#include ”../shave/ddr/ddr_pool.h”
#include ”../shave/ddr/ddr_fc.h”

#endif //__MOVICOMPILE _
#include ”ddr_functions.h”

/*
* (Code removed for brevity)

Y/

#ifdef __ MOVICOMPILE__
#define LIB_FUNC_CM(f_name, f_func)
{.category = func_common,
.cat = {
.cm = {

— - =

117

Chapter 4. Description of the source code peripherals

#f _name,
(FUNCPTR_T) f_func

38 .name
39 .func
40 >

41 }

42 3

43 #else

44 #define LIB_FUNC_CM(f_name, f_func)

45 {.category = func_common,

46 .cat ={

47 .cm = {

48 .name = #f_name,

49 .func = (FUNCPTR_T)NULL

50 3

51 3

52)

53 #endif

54

55 struct lib_function lib[] = {

56

57 LIB_FUNC_CONV(MV_conv3x3s1hhhh, hhhh, k3x3,
58 stride1 , mvcvConvolution3x3Fp16ToFp16_asm),
59

60 LIB_FUNC_CONV(MV_conv3x3s2hhhh, hhhh, k3x3,

61 stride2 , mvcvConvolution3x3s2hhhh_asm) ,

62

63 /*

64 * (Code removed for brevity)

65 */

66

67 LIB_FUNC_CM(CM_pool_ave_ddr, pool_ave_ddr),

68 LIB_FUNC_CM(CM_pool_max_ddr, pool_max_ddr),

69 LIB_FUNC_CM(CM_fc_ddr, fc_ddr),

70

71}

72

73 #endif//__DDR_FUNCTIONS_EXPORTS_H__

— - =

— s s~

Source code 4.23 requires a couple of explanations:

* Lines 55-71 define the library array that is used by the jumpTable function. Notice
the symbolic names appearing here are those defined in the source code 4.22. The
symbolic names are wrapped around preprocessor macros that will be explained
below. Each macro defines an array element. The important detail here is that the
integer value of each wrapped symbolic name corresponds to the same position
of the initializer list of 1ib. For example, MV_conv3x3s2hhhh is the symbolic name
for the number 1, it is wrapped around the macro LIB_FUNC_CONV and appears as
the second element (i.e. index 1) in the initializer list of 1ib.

* Macros such as LIB_FUNC_CONV or LIB_FUNC_CM are used to create elements in the
library array. For brevity, only the LIB_FUNC_CM macro is shown completely. The

4.4 SHAVE code and data residing in DDR

purpose of the macro is to properly initialize the struct presented in source code
4.22. Notice that this macro is defined twice. It is defined for the first time in lines
34-42. These lines are activated if the __MOVICOMPILE__ directive is defined, which
happens when this code is compiled with moviCompiler. Otherwise, if this code is
compiled with the gcc compiler used for Leon OS, then lines 44-52 are activated
instead.

The purpose of doubly defined macros is to declare and initialize the library array
1ib twice, once for each compiler. Thus, the first definition of lib is done for the
SHAVEs. The lib is constructed and placed in DDR, since this file is included in the
source code 4.21 containing the jumpTable function. Therefore, the jumpTable
function associates the symbolic names, such as MV_conv3x3s2hhhh with the ac-
tual implementation of code, which ismvcvConvolution3x3s2hhhh_asmin this case.
The second definition of 1ib is done for Leon 0S. The reason for the second defini-
tion is to make sure Leon OS code can associate symbolic names with a description.
For example, the MV_conv3x3s2hhhh name represents - among other information -
a convolution of kernel 3x3 and striding 2x2. This can be easily inferred by a human,
straight from the name. However, the program relies in the description associated
with the symbolic name to get the same information. Such description is useful for
validation purposes during the preprocessing stage of the CNN. For instance, if a
fully connected node is provided with the symbolic name MV_conv3x3s2hhhh, an
error will occur, since the application is able to conclude that this library function
is suitable only for convolutional nodes.

Again, notice the macro LIB_FUNC_CM. When src__MOVICOMPILE__ directive is de-
fined, the last argument of the macro stores the actual function implementation in
the array library 1ib. This is shown in line 39 of source code 4.23. However, for
the same library in Leon OS, the last argument of this macro has no effect, as seen
in line 49 of source code 4.23.

Finally, the reader is advised to pay attention to the first lines of source code 4.23
and more specifically the include directives. These directives introduce the dec-
larations of function that will be included in the array library. includes of lines
10, 12 and 13 are provided by the MDK. In order to be able to access them, the
following lines need to be added in the Makefile:

SHAVE_COMPONENTS = yes
ComponentList_SVE += kernelLib/MvCV

Also, lines 19, 20-23 include functions provided by the implementation, which in-
clude assembly written code and C code. Among this code are the routines de-
scribing the computation of convolutional, pooling and fully connected nodes. It is
advised to place only thread-safe functions in the DDR array library, because these
functions may be executed by multiple SHAVEs at the same time. If, for example,

Chapter 4. Description of the source code peripherals

a function depends on global variables, calling it from multiple SHAVEs simultane-
ously would create unexpected and absurd behavior.

In conclusion, the DDR library of the implementation uses code provided by the MDK,
as well as code written in the directories shave/ddr and shave/ddr/asm. Because it is
useful for the library to be accessible by the SHAVEs and the Leon OS, the source code
describing and building the library is put in the directory shared. The MDK build system
automatically makes code of this directory available to both compilers, thus both SHAVEs
and Leon OS.

Chapter E

Optimization of CNN computational nodes

his chapter presents in detail the implementation of the SHAVE source code that
Tperforms the computation of convolution, pooling, and matrix-vector multiplication.
The goal is to describe the specifics of each operation and the optimization steps that
improve the execution time.

5.1 DMA CMX Driver

The DMA engine is utilized extensively inside the computational nodes, transfer-
ring data between CMX and DDR. Therefore, understanding the functionality of the DMA
engine exposed by the respective driver is essential. Each DMA transfer is performed
thought the issue of a transaction. For the purposes of the CNN implementation, 2D
transactions are needed, since the transferred data are shaped as images.

There are several driver functions for declaring 2D transactions:

* dmaCreateTransaction: This is the simplest form and can only copy contiguously
laid data and place them contiguously at the destination. For example, such func-
tion is useful when transferring complete image channels.

* dmaCreateTransactionSrcStride: This form can copy non-contiguously laid data
and place them contiguously at the destination.

* dmaCreateTransactionDstStride: This form can copy contiguously laid data and
place them non-contiguously at the destination.

* dmaCreateTransactionFullOptions: This form is the most general. It can copy
non-contiguously laid data and place them non-contiguously at the destination.

The concept of contiguous and non-contiguous data layout is expressed through the
“stride” term. Figure 5.1 illustrates the use of a 2D striding transaction [9]. The goal is
to copy the rectangle named “DMA SRC DATA” from the “SRC Start Address” and place
itin the rectangle “DMA DST DATA’ at “DST Start Address”. However, both rectangles are
not contiguously laid out in memory, since they are embedded into larger rectangles.
In this illustration the Source Line stride (SRC STRIDE) differs from the Destination Line

Chapter 5. Optimization of CNN computational nodes

Stride (DST STRIDE) and could represent a part of an image being cropped from one
frame and placed inside another frame which is of different dimensions.

DST Start Address/_\‘

SRC Start Address — | \

DMA DST DATA
DMA SRC DATA

6 DST WIDTH ;

é SRC WIDTH ;

SRC STRIDE

DST STRIDE

Figure 5.1: 2D striding illustration.

Also, the Destination Width can be programmed to a different value than Source
Width. This is illustrated in figure 5.2.

DST Start Address

SRC Start Address/

DMA

DMA SRC DATA DST

DATA

SRC WIDTH
DST WIDTH
SRC STRIDE

DST STRIDE

Figure 5.2: 2D striding transaction with different DST_WIDTH, SRC_WIDTH.

A snippet using the driver is shown below, where an contiguous 2D rectangle is trans-
ferred from DDR to CMX.

ref[0] = dmaCreateTransactionFullOptions(

id,

&task[0],

input_src_addr, // src
input_dst_addr, // dst

line_width * number_of_lines, // byte length
line_width , // src line width
line_width , // dst line width
line_width , // src stride
input_dst_stride); // dst stride

dmaStartListTask(ref[0]);

where:

* input_src_addr refers to the memory location in DDR where the rectangle resides.

5.2 Convolution

* input_dst_addr refers to the CMX local buffer location the rectangle will be em-
bedded.

* line_width refers to the length (in bytes) of each line of the rectangle.
* number_of_lines refers to number of input lines.

* input_dst_stride configures the bytes skipped at the end of each line transferred
to the local buffer. If this value is equal to 1ine_width, then the lines are placed in
memory contiguously, without skipped byte in-between.

* Notice that src line width and dst line width are equal to 1ine_width. This means
the shape of the input rectangle will not change during the transfer. Also, the src
stride is equal to 1ine_width, which means that the input rectangle is contiguously
laid out in memory.

5.2 Convolution

This section will describe in detail the implementation of convolution. It will focus on
the optimization steps that reduce the execution time, by employing several techniques
to achieve the final result.

5.2.1 Parallelization schema

Convolution is the most intensive operation in a CNN architecture. In the general
case, it is performed in an input 3D volume multiple times, each time with a different
kernel. For the purposes of a CNN implementation, parallelizing convolution with respect
to the output (feature) maps is a suitable choice. More precisely, each SHAVE utilizes the
whole input 3D volume and generates some of the output maps. An example is shown in
figure 5.3.

Input 3D Volume Output 3D Volume

Figure 5.3: Parallelization of convolution in an RGB image

For the purposes of this example, the input 3D volume is supposed to be an RGB
image and 3 SHAVEs are used. The convolution computation generates 6 output maps.
If the computation is spread among 3 SHAVESs, then each SHAVE will generate 2 output

Chapter 5. Optimization of CNN computational nodes

maps. The first SHAVE generates the light gray output maps, the second SHAVE gener-
ates the (normal) gray output maps and the third SHAVE generates the dark gray output
maps. Remember that each output map requires all three input channels and a different
set of weights, among the rest of the output maps.

This parallelization schema does not require the use of locks, because only read-
only data are shared. This is of great benefit in an embedded platform, since locks and
synchronization of accesses tend to increase power consumption.

5.2.2 Convolution in assembly

An important step towards the improvement of time is writing critical parts of the
computation in assembly language. MDK already provides assembly routines for several
types of convolution, and all of them share the same interface. For example, one such
routine has the form:

void conv(half** in, half** out, half mask[], u32 inWidth);

Suppose, for the sake of the example, that this routine performs a 5x5 convolution. The
code above is explained in detail:

* half: Thisis an alias for the 16-bit floating point datatype supported by the SHAVE
processors. Because each SHAVE can operate on 128-bit vectors with SIMD in-
structions, this means that each vector can be set up to contain 8 half numbers.

» mask: Convolution requires a kernel to perform the operation. This array param-
eter requires the same number of elements as the size of convolution. The 5 x 5
convolution would require 25 array elements.

* in: Each one of these routines requires the appropriate amount of input lines to
generate just one output line. The number of required input lines depends of the
size of the convolution kernel. The 5 x 5 convolution would require 5 input lines.
in is actually an array of pointers, each one pointing to a different line.

* out: Although the routines generate only one line, the output parameter has the
same format as the input one. out pointer array needs to contain one element only.

* inWidth: This defines the width of the input line. Because the assembly routine
utilizes SIMD instructions, it is important to bare in mind that inWidth needs to
be a multiple of 8. If this is not the case, usually inWidth is rounded down to the
closest multiple of 8, however this is not always the case (there is a discrepancy
among the MDK routines). Also, convolution routines exhibit another peculiarity,
namely they access data beyond the input buffer passed to them. This is shown at
the following C code that performs a - not optimized - 5 x 5 convolution:

void conv(half** in, half** out, half mask[], u32 inWidth)
{

int x, y;

5.2 Convolution

unsigned int i;
half* lines[5];
half sum;

//Initialize lines pointers

lines[0] = in[0];
lines[1] = in[1];
lines[2] = in[2];
lines[3] = in[3];
lines[4] = in[4];

//Go on the whole line

for (i = 0; i < inWidth; i++){
sum = 0.0;
for (x = 0; x < 5; x++)

{
for (y = 0; y < 5; y++)
{

sum += lines[x][y — 2] * conv[x * 5 + y];

}

lines [x]++;

out[O][i] = sum;

Finally, it is explained how SIMD instructions can be used to perform convolution.
Suppose a 3 x 3 convolution with input:

11 412 013 d14 415 016 017 G18 d19 0110
in= |ay1 a2 023 024 Q25 Q26 027 Q28 029 0210
G341 Q432 0433 034 035 0436 037 d38 039 0310

and kernel:
bi1 b1 b1
k= |by1 bas bo3
bs1 b3z b33

Then, the convolution can be performed as follows:

Source code 5.1: Explanation of SIMD version for 3 x 3 convolution

Input: In (Three input lines)
Output: Out (Single output line)

Declare ky = |b11 b1q - bu} (8 elements)
Declare k> = :b172 bio - b172} (8 elements)
Declare k3 = :b173 byz - b173} (8 elements)
Declare k4 = :b271 byt --- b2,1} (8 elements)

Chapter 5. Optimization of CNN computational nodes

Declare k5 = -bz,z by - bzyz- (8 elements)
Declare kg = :b273 bysz --- b2,3: (8 elements)
Declare k7 = :b3’1 bz --- b3,1_ (8 elements)
Declare kg = :b372 bz, --- b3,2- (8 elements)
Declare kg = :b373 bzsz --- b3,3: (8 elements)
Declare Acc :_ oo - 0} (8 e/_ements)

> All operations below are single element-wise assembly instructions

Acc+ = a{1 Q412 -+ 0418 x Ky
Acc+ = _01,2 aiz - 01,9_ X k2
Acc+ = _0173 14 -+ 01,10} X k3
Acc+ = _0271 azo --- 02,8- X kg
Acct = [ay5 ar3 -+ azg x ks
Acc+ = _02,3 aza --- 02,10} x kg
Acc+ = -03,1 azp - 0318— X k7
Acc+ = -03,2 assz - 03,9- X kg
Acc+ = -03,3 aza - 03,10} X Ko

> Now Acc contains the result of 8 output elements

Note that 5.1 tries to clarify the approach used, not describe precisely the assembly
instructions chosen. In fact, the assembly version is far more sophisticated in terms of
operations used. Finally, this example does not show the loop that employs the described
technique whenever the input width is larger.

Finally, this subsection makes clear that the assembly routines used for convolution
are far from performing convolution in a 3D volume. In fact, these routines cannot even
perform convolution in a (2D) rectangle, which means that a lot of work needs to be
done.

5.2.3 Optimization: Reduced number of routine calls

The first step towards the implementation of convolution for 3D volumes is perform-
ing convolution in a (2D) rectangle. The results of several convolutions on rectangles
will be combined to generate an output map. For the rest of the section, the terms in-
put/output rectangle and input/output channel will be used interchangeably.

The traditional approach towards convolution on rectangles is using the assembly
routine to produce one output line, and repeat this process iteratively, to generate all
the output lines dictated by the input rectangle and the type of convolution.However,
an alternative approach is employed. Input data are carefully placed inside local CMX
buffers to compute the result making a single call. The characteristics of this optimiza-

5.2 Convolution

tion are:
* Only one call is required irrespectively of the size of the input channel.

» Multiple calls are especially wasteful for small input channel sizes. For these sizes,
each input line to the convolution routine is not large enough to benefit from the
SIMD capabilities of Myriad2.

* Assembly language uses delay slots in branch instructions. Tight loops, as those
generated by the multiple calls approach, cannot use the delay slots. This results
in wasted cycles and thus inferior performance.

The remaining of this subsection will explain how this mechanism operates through
the presentation of meticulously designed diagrams. It is important to emphasize that
the present optimization is only concerned about a single input channel, and does not
account for the relation between other input channels. For the sake of the example, it
is assumed that the height of the input channel is 6 and a 5 x 5 convolution with zero-
padding and unit stride is applied.

First of all, the input channel is laid out in memory in row-major order, much like C
stores 2D arrays in memory. This is clearly shown in figure 5.4. Due to the fact that the
convolution kernel is 5 x 5 and because the input channel height is 6, the height of the
output rectangle will be 3. Notice, in this figure, that the lines are shown symbolically.

Figure 5.4: Layout of input channel in memory

No elements are presented, because a convolution routine that generates one output
line is already provided.

Normally three calls to the convolution routine would be necessary. This is shown in
pseudocode 5.2. The first call uses the first 5 lines to generate the first output line. The
inWidth argument is equal to the number of elements in each line. The remaining two
calls follow the same pattern. This optimization is based on the following observation:
The same pointer variable in each call to conv changes sequentially. For example, the
second pointer variable in the first call to conv points to “Line 1”. The same variable in

127

Chapter 5. Optimization of CNN computational nodes

Source code 5.2: Multiple-call convolution on input channel

1: Call conv with input: Lines 0-4, output: Outline 0, width: Line elements
2: Call conv with input: Lines 1-5, output: Outline 1, width: Line elements
3: Call conv with input: Lines 2-6, output: Outline 2, width: Line elements

the second call to conv points to “Line 2”. Finally, the same variable in the third call to
conv points to “Line 3". This is true for all the pointer variables, e.g. the fifth pointer
variable points to “Line 4”, then “Line 5” and finally “Line 6.

As a result, if the pointers are placed as show in figure 5.5, making a single call to
conv With inWidth equal to 3 times the number of elements in each line, gives equivalent
results. Notice, that the pointers in the first line of pseudocode 5.2 and the pointers
shown in figure 5.5, point to the same locations. Since the inWidth is now tripled, each
pointer points to three times more data. For example, “Ptr1” points to the memory block
“Line 17, “Line 2", “Line 3.

A A A A

PtrOf Ptrl Ptr2 Ptr3 Ptrd
Figure 5.5: Layout of input channel in memory with pointers placed appropriately

It is now becoming clear how one call can calculate the result of three output lines.
Each pointer starts at the appropriate location and is able to see the next input lines as it
moves to the right. This is because data are laid out continuously in memory. Effectively,
the convolution routine views the data as presented in figure 5.6, although each line is
present in memory only once.

ouos
e e e

ove-» S T Y
- I I T
- I T AT

Figure 5.6: How the convolution routine “sees” the data in memory

Comparing figure 5.6 with figure 5.4 it is visible that sliding horizontally the 5 x 5
convolution kernel across the figure 5.6 is the same as sliding horizontally the 5 x 5
convolution kernel three times - starting from “Line 0”, then “Line 1” and finally “Line

5.2 Convolution

2" -in figure 5.4. A concrete example is given below with smaller sizes:

3 3 2 1 0]
001 3 1 0O 1 2
Inputasinfig. 54=Iy=1{3 1 2 2 3 Kernel=K= |2 2 0
2 00 2 2 01 2
2 0 0 0 1
3 3210/0013 1312 23
Inputasinfig. 5.6=L=[0 0 1 3 1|3 1 2 2 3[(2 0 0 2 2
3122 3/20022(2000 1
The output of the convolution I x K is:
12 12 17
It«*K= |10 17 19
9 6 14

While the output of convolution I, * K is:
LxK=|12 12 17\14 10\10 17 19\23 17\9 6 14}

One drawback of this method is that garbage results are generated when the con-
volution kernel passes from one column to another, as seed in vector I, x K. However,
the gain from the reduction of routine calls outperforms the waste generated between
intermediate columns. This is especially true for small kernels, that appear in abundance
in CNNs. Also, for increase in performance it is better to align the distance between suc-
cessive pointers at a 16-byte boundary. In other words, it is better Ptr1 — PtrO = 0
(mod 128), ...Ptr3 — Ptr4 = 0 (mod 128). To achieve such alignment it is important to
pad each input line with junk elements. Padding can be performed efficiently using DMA
stride, as explain at the beginning of the chapter.

5.2.4 Optimization: Reduced number of DMA transfers

Because local buffers have limited space, it is necessary to bring the same input
multiple times during the execution of convolution. It would be beneficial if these transfer
could be reduced, for a couple of reasons. First, less DMA transfers lower the power
consumption. Second, DDR memory can serve fewer transaction more easily, than being
clogged by a large number of requests. The normal approach to convolution is described
as follows:

The focus on pseudocode 5.3 is at the for-loops of lines 1 and 2. The approach
described here brings all the input channels from memory to generate every output
map. The optimization of this subsection tries to mitigate this problem. The idea is to
make better use of each input channel before bringing the next input channel. That is,

Chapter 5. Optimization of CNN computational nodes

Source code 5.3: Normal approach to DMA transfers in convolution

1: for map in output_maps do

2 for channel in input_channels do

3 Bring input channel with DMA

4 Apply 2D convolution using channel

5: Accumulate the result of 2D convolution to map buffer
6 end for

7 Send map buffer back with DMA

8: end for

every input channel participates in partial calculation of multiple output maps before it
is replaced by the next input channel. This is shown in pseudocode 5.4.

Source code 5.4: Coalescing approach to DMA transfers in convolution

1: Split output_maps into several groups

2: for group in output_maps_groups do

3 for channel in input_channels do

4 Bring input channel with DMA

5 for map in group do

6: Apply 2D convolution using channel

7 Accumulate the result of 2D convolution to map buffer
8 end for

9 end for

0 Send the group of map buffers back with DMA

1:

10:
11: end for

The optimization is called coalescing, because multiple memory accesses to the
same data are merged together. Essentially, the two loops of pseudocode 5.3 have
been swapped. Lines 7 and 10 of pseudocode 5.4 indicate that multiple local buffers are
needed to store the output maps, before they are returned back to DDR. In other words,
DMA transfers are reduced by using multiple local buffers efficiently. Output maps are
split into groups due to the limited amount of local buffers. If there was enough space
to simultaneously keep all the generated output maps in local buffers, then each input
channel would be brought in (with DMA) only once.

The careful reader will soon realize that pseudocodes 5.3 and 5.4 do not mention
anything about the convolution kernel masks. This omission is deliberate, in order to
simplify the description of the optimization. In reality, kernel masks are accessed by the
SHAVESs thought the data cache subsystem. This has a couple of benefits:

» Although DMA would be the ideal choice, the hardware supporting it has limited
amount of DMA agents. In fact the are four DMA agent that are responsible for serv-
ing DMA requests. When multiple SHAVEs are running in parallel, which is usually
the case, it is more wise to task DMA engine with doing larger data block transfers.

* The access pattern to the kernel masks is sequential, which means that spacial
locality of data favors the cache utilization.

—_

O VW oo Nou b wnNn =

5.2 Convolution

* Another reason that justifies the use of cache is an extension of the current paral-
lelization schema. When performing convolution in spatially large input channels,
each SHAVE could be assigned to a different part of the input channel. This means
that all the shaves use the same kernel masks at the same time to calculate the
output maps. In other words, the access pattern to kernel masks exhibits temporal
locality.

* Finally, utilizing both DMA and cache for data transfers fully exploits the bandwidth
of DDR, since the requests for data are both explicit and implicit. This also simplifies
the algorithm of convolution.

Note: Myriad2 has multiple processors and multiple cache hierarchies. However, it lacks
a cache coherence protocol to maintain the synchronization of the same data across
those caches. This makes cache management a burden for the programmer. Neverthe-
less, fetching kernel masks through cache does not come with these problems, because
the data are read-only and are placed in a permanent place in memory.

5.2.5 Optimization: DMA transfers are “hidden” in computation

Myriad2 DMA engine operates in an asynchronous way. This means that a DMA re-
qguest can be made, and while data are being transferred between DDR and CMX, other
computations can be performed. Source code 5.5 show this functionality.

Source code 5.5: Asynchronous operation of DMA engine

ref = dmaCreateTransactionFullOptions(...parameters...);

// Send request to DMA engine to begin transfer of data
dmaStartListTask(ref);

// Perform computations here
do_computations () ;

// Wait for DMA request to finish
dmaWaitTask(ref);

It is important to emphasize a limitation of the DMA engine. It is not possible to
issue another DMA request from the same SHAVE, while some other DMA request is
already active. For example, the do_computations () functionin code 5.5 cannot contain
a DMA request. The optimization presented tries to exploit this asynchronous behavior.
If the do_computations() function takes longer time than the DMA transfer running
simultaneously, then the DMA transfer is as if it never happened in terms of time spent
to it. In other words, DMA transfers are "hidden” in computation. This technique is used
both for transferring data from DDR to CMX and vice versa. A simplified version of code
will be presented to clarify and comment on various aspects of the optimization. Note
that two versions will be presented to assist the understanding of the technique.

Chapter 5. Optimization of CNN computational nodes

Source code 5.6: First version of "hiding” DMA inside computation

1 // Loop over the number of maps
2 u32 mapNo = O;
3 while (mapNo < info—>outputMapsNo)

4 {

0 N o w;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

// Coalescing
for (u32 i = 0; i < info—>coalescing_num; i++)
bzero(localOutput[i], outputBufferBytes);

// Swap prefetchBuffer between locallnput and locallnput1
prefetchBuffer = locallnput;
inputPtr = inputPtr2;

// Prefetch the first ping pong input buffer to warm up
u8* inputAddr = (u8*)info—>input[0];

ref[0] = dmaCreateTransactionFullOptions(...);
dmaStartListTask(ref[0]);

// Now go in loop
for (int channelldx = O;
channelldx < info—>channelsNo; channelldx++) {
// Ensure our last input DMA task completed
dmaWaitTask(ref[0]);

prefetchBuffer = (void *) ((u32)prefetchBuffer ~
(u32)toggleInputBuffer);

// Prefetch next buffer if not the last one
if ((channelldx+1) < (info—>channelsNo)) {
inputAddr = (u8*)info—>input[channelldx+1];

ref[0] = dmaCreateTransactionFullOptions(...);

dmaStartListTask(ref[0]);
// Do not wait for DMA completion here;
// We do this at top of next loop.

inputPtr = (void *) ((u32)inputPtr ~ (u32)togglelnputPtr);

// Coalescing
for (u32 i = 0; (mapNo+i) < info—>outputMapsNo &&
i < info—>coalescing_num; i++) {
// Convolution and accumulation
do_convolution_and_accumulation () ;

}

Y // end for channels in map

// Apply the bias
if (info—>convBiases != NULL) {
// Coalescing

5.2 Convolution

51 for (u32 i = 0; (mapNo+i) < info—>outputMapsNo &&

52 i < info—>coalescing_num; i++) {
53 apply_bias () ;

54 3

55 Y // end for apply the bias

56

57 // Output the result with coalescing

58 for (u32 i = 0; mapNo < info—>outputMapsNo &&

59 i < info—>coalescing_num; i++, mapNo++) {
60 ref[1] = dmaCreateTransactionFullOptions(...);

61

62 dmaStartListTask(ref[1]);

63 dmaWaitTask(ref[1]);

64 3

65 }

The code 5.6 contains optimizations mentioned in subsection 5.2.4. These opti-
mizations have not been removed because the next version of the current optimization
will exploit them to better "hide” the DMA transfers in computation. Focus is on specific
lines:

* Line 3: mapNo seems to increase one unit at a time. However, if coalescing is used
the increase happens in larger amounts at once, as seen in line 59.

* Lines 10 and 11: Double buffering for the input data is used. While DMA transfers
data from DDR to CMX in one buffer, at the same time the computation is performed
in another buffer.

* Lines 16 and 17: The first input channel needs to be transfered from DDR. This
transfer cannot be hidden in computation. Nevertheless, the next transfers will
happen simultaneously with computations.

* Lines 20-36: These lines bring data in (with DMA) and perform 2D convolution at
the same time. Hiding of DMA transfers happens inside this loop.

* Lines 58-64: Calculated output channels are returned to DDR. At the current form,
these lines act as a barrier reducing performance, because the DMA operation is
not accompanied by computation. Another drawback of this version is that the
larger the coalescing, the more time these lines take, because DMA is the only
operation happening. It is clear that improvements can be made regarding these
lines.

Loop unrolling is used to "hide” the DMA transfers from CMX to DDR. More specifically,
the last iteration of the for-loop in lines 20-46 of code 5.6 is moved below the for-loop.
Also, another loop-unrolling occurs at the for-loop in lines 41-45 of code 5.6. As the
result, lines 48-64 of this code need to change to the code presented in 5.7.

Source code 5.7: Second version of "hiding” DMA inside computation

1
2
3
4

00 N o »;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Chapter 5. Optimization of CNN computational nodes

// Loop over the number of maps
u32 mapNo = O;
while (mapNo < info—>outputMapsNo)

{
// Code here remains unchanged.
// Code omitted for brevity.
actual_coalescing = MIN(info—>coalescing_num, info—>outputMapsNo — mapNo) ;
// Loop—unroll the last channelldx
// Ensure our last input DMA task completed
dmaWaitTask(ref[0]);

inputPtr = (void *) ((u32)inputPtr A~ (u32)togglelnputPtr);

// Convolution and accumulation
do_convolution_and_accumulation () ;

if (info—>convBiases != NULL) {

apply_bias();

// Also, loop—unroll the for—loop inside the channelldx for—loop
for (u32 i = 1; i < actual_coalescing; i++) {
ref[1] = dmaCreateTransactionFullOptions(...);

dmaStartListTask(ref[1]);

// Convolution and accumulation
do_convolution_and_accumulation () ;

if (info—>convBiases != NULL) {
apply_bias();

dmaWaitTask(ref[1]);

ref[1] = dmaCreateTransactionFullOptions(...);

dmaStartListTask(ref[1]);
dmaWaitTask(ref[1]);

mapNo += actual_coalescing;

}

The characteristic of unrolling both loops are:

* As shown in code 5.6, the last iteration of the for-loop in lines 20-46 does not
bring new data. In fact, this iteration only makes computations and then the bias
is applied (shown in lines 48-55). Thus, the bias term can be moved inside the last

5.3 Pooling

iteration code. So, lines 48-55 of the code 5.6 move inside for-loop in lines 41-45.
However, this movement happens at the iteration only, where loop unrolling has
occurred. This is shown at lines 17-22 and lines 30-34 of code 5.7.

* Next, from code 5.6 is seen that it is possible to improve the lines 58-64. Dur-
ing the last iteration it would be better if the order of convolution, accumulation,
application of bias, and DMA transfer of output map to DDR was followed for each
output map. Instead in 5.6, the DMA transfer happens at the end for multiple maps
together. To perform the idea described here, another loop unrolling is necessary.
Notice that the for-loop in lines 24-37 of code 5.7 starts from index 1 instead of
0.

* The benefit of performing the change described in 5.7 is great. The execution
time is lowered and at the same time the amount of coalescing can be increased
dropping the execution time even more. In contrast to the code in 5.6, where the
DMA transfer of output maps acted as a barrier before processing the next group
of output maps, the code in 5.7 does not suffer from this behavior. As a result, if
local CMX buffer have enough space to support larger coalescing numbers, then it
is better to do so.

5.3 Pooling

This section will describe in detail the implementation of pooling. In fact, poolingis a
simplified version of convolution, since there are a couple of similarities between them.
First, both convolution and pooling operate in 2D rectangles, where the generation of an
output element requires several input elements. Second, pooling accepts as input a 3D
volume and generates an output 3D volume, much like convolution does. However there
is a caveat, since each output map generated by pooling requires data from a single input
channel. In contrast, convolution requires all the input 3D volume to generate a single
output map. This section will present the optimization applied to pooling that reduces
the execution time.

5.3.1 Parallelization schema

Pooling is not a computationally intensive operation, compared to convolution, since
each input element is used exactly once to participate in the generation of a single output
element. For the purposes of a CNN implementation, parallelizing pooling with respect
to the output (feature) maps is a suitable choice. More precisely, each SHAVE uses some
of the input channels to generate the respective output maps. An example is shown in
figure 5.7.

As shown in this example, the input 3D volume consists of 6 input channels and 3
SHAVESs are used. The pooling computation generates 6 output maps. If the computation
is spread among 3 SHAVEs, then each SHAVE will generate 2 output maps. The first
SHAVE generates the light and dark gray output maps, the second SHAVE generates the

Chapter 5. Optimization of CNN computational nodes

Input 3D Volume Output 3D Volume

Figure 5.7: Parallelization of pooling in an 3D volume

light and dark green output maps and the third SHAVE generates the light and dark red
output maps. Remember that each output map, in order to be produced, requires the
respective input channel, i.e. the input channel of the same color.

This parallelization schema does not require the use of locks, because there is no
data sharing. This is of great benefit in an embedded platform, since locks and synchro-
nization of accesses tend to increase power consumption.

5.3.2 Pooling in assembly

As with convolution, itis important to use an assembly optimized routine for the time-
critical parts of the computation. MDK already provides assembly routines for several
types of pooling, and all of them share the same interface. For example, one such routine
has the form:

void pool(half** in, half** out, half mask[], u32 outWidth);

Suppose, for the sake of the example, that this routine performs a 2x2 pooling with stride
2. The code above is explained in detail:

* half: Thisis an alias for the 16-bit floating point datatype supported by the SHAVE
processors. Because each SHAVE can operate on 128-bit vectors with SIMD in-
structions, this means that each vector can be set up to contain 8 half numbers.

* in: Each one of these routines requires the appropriate amount of input lines to
generate just one output line. The number of required input lines depends of the
size of the pooling kernel. The 2 x 2 pooling would require 2 input lines. in is
actually an array of pointers, each one pointing to a different line.

* out: Although the routines generate only one line, the output parameter has the
same format as the input one. out pointer array needs to contain one element only.

* outWidth: This defines the width of the output line. Because the assembly routine
utilizes SIMD instructions, it is important to bare in mind that outWidth needs to

5.3 Pooling

be a multiple of 8. If this is not the case, usually outWidth is rounded down to the
closest multiple of 8, however this is not always the case (there is a discrepancy
among the MDK routines). For better understanding, the following C code that
performs a - not optimized - 2 x 2 max pooling with stride 2 is given:

void pool(half** in, half** out, u32 outWidth)
{

half max;

u32 tl = 0;

u32 i;

for (i
{

0; i < outputWidth; i++)

tlh =i * 2;
/7 XTI
/70 I]

max = src[O][tl];

/7L I[X]
/7010]

max = (max < src[O][tl + 1]) ? src[O][tl + 1] : max;

/7010]
/XTI]

max = (max < src[1][tl]) ? src[1][tl] : max;

/7010
/7T I[X]

max = (max < src[1][tl +1]) ? src[1][tl + 1] : max;
dst[0][i] = max;

Notice that the source code above refers to max pooling. The operation of average
pooling is not provided in a separate assembly routine, since it is equivalent to
convolution with proper weights in the kernel masks. For example, 3 x 3 average
pooling can be performed with a 3 x 3 convolution routine, where the weight of
each kernel mask element would be equal to 1/9. However, using convolution for
pooling requires a wrapper routines that converts the convolution assembly rou-
tine interface to a pooling one. It is suggested to write separate assembly routines
for average pooling, for better performance and arithmetic precision.

5.3.3 Optimization: Reduced number of routine calls

This is the same optimization applied to convolution, although this time it is extended

to support striding. The extension is straightforward and will be described though an
example. It is important to emphasize that the present optimization is only concerned
about a single input channel. For the sake of the example, it is assumed that the height

137

Chapter 5. Optimization of CNN computational nodes

of the input channel is 6 and a 3 x 3 pooling (average or max makes no difference) with
zero-padding and stride 2 is applied.

Again, as with convolution, suppose that the data are laid out in memory as shown
in figure 5.8. Due to the fact that the pooling kernel is 3 x 3 with stride 2 and because
the input channel height is 6, the height of the output rectangle will be 3. Notice, in

Figure 5.8: Layout of input channel in memory

this figure, that the lines are shown symbolically. No elements are presented, because a
pooling routine that generates one output line is already provided.

For the specific pooling operation of the example, the first output line will use the
input lines “Line 0” to “Line 2", the second output line with use the input lines “Line 2”
to “Line 4” and finally the third output line will use the lines “Line 4" to “Line 6.

As a result, if the pointers are placed as show in figure 5.9, making a single call to
pool with proper outWidth, gives equivalent results.

PtrO Ptr2

Ptrl

Figure 5.9: Layout of input channel in memory with pointers placed appropriately

More precisely, the outWidth should be equal to the output width that is generated if
pooling is performed in a line with length thrice as much as the length of “Line 0”. Notice
that since stride is 2, two separate buffers are required. This also means that two DMA

5.3 Pooling

transfers are necessary to place the input data in these two buffers.

It is now becoming clear how one call can calculate the result of three output lines.
Each pointer starts at the appropriate location and is able to see the next input lines
as it moves to the right. Effectively, the pooling routine “sees” the data as presented in
figure 5.10, although each line is present in memory only once.

o>
o [we e
vz~ N AT AT

Figure 5.10: How the pooling routine “sees” the data in memory

This extension generates garbage results, much like it is done in convolution. How-
ever, the gain from the reduction of routine calls outperforms the waste generated, which
is especially true for small kernels, that appear in abundance in CNNs. Also, for increase
in performance it is better to align the distance between successive pointers at a 16-byte
boundary.

With this optimization in mind, the pooling computation is described in the source
code 5.8.

Source code 5.8: Main part of computation in pooling

1 // Loop over the number of maps

2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21

u32 mapNo = firstMapNo;

while (mapNo < lastMapNo) {

for (int i = 0; i < info—>in_buffers_num; i++) {
if (info—>in_buffers[i].elements == 0) continue;
ref[0] = dmaCreateTransactionFullOptions (...) ;
dmaStartListTask(ref[0]);
dmaWaitTask(ref[0]);

b

pool ((void**)inputPtr, (void**)&localOutput, info—>out_buffer_elements);

ref[1] = dmaCreateTransactionFullOptions (...);

dmaStartListTask (ref[1]);

dmaWaitTask(ref[1]);

mapNo++;

b

Each iteration of the while-loop defined in line 4 transfers data from DDR to CMX,
computes a single output map and returns the result data back to DDR. The for-loop

Chapter 5. Optimization of CNN computational nodes

in lines 5-11 perform the input DMA transfer. Every iteration of this loop transfers a
part of the input data and places them in a separate local CMX buffer. For instance, the
example described previously requires two such local buffers, as seen in figure 5.9.
Notice, that pooling does not employ the rest of optimization steps used in convolution.
This is because the computational part, performed in line 13, is very brief. As a result, the
overhead and the code complexity posed by these extra optimizations does not worth
integrating them into the implementation.

5.4 Fully connected

This section will describe in detail the implementation of matrix-vector multiplication.
Matrix-vector multiplication is the operation needed for the fully connected nodes of a
CNN. Improving the performance of this operation is a challenge, since its characteristic
are rather constraining.

5.4.1 Matrix-vector multiplication is I/0 bounded

The main characteristic of this operation is that each element of the matrix is used
exactly once. More precisely, every element participates in the computation that gener-
ates one element of the output vector. On the other hand, the input vector of the multi-
plication is needed by every row of the matrix. At the same time, the primitive operations
dictated by the matrix-vector multiplication are simple, namely addition and multiplica-
tion. This offers little room for techniques used in convolution. In fact, the matrix-vector
multiplication is I/0 bounded, meaning that transferring the data from DDR to CMX and
vice versa is more time consuming than the time required by the computation itself. As
a side note, matrix-matrix multiplication offers greater reusability of the the same data,
making it optimization-friendly.

5.4.2 Parallelization schema

For the purposes of a CNN implementation, parallelizing fully connected nodes by
separating the input matrix into row bands is a suitable choice. More precisely, each
SHAVE uses some rows of the input matrix to generate the respective elements in the
output vector. An example is shown in figure 5.11.

For the purposes of this example, the input matrix is split into 3 bands, since 3
SHAVEs are used. Each SHAVE will use the whole input vector multiple (in this exam-
ple it is 3) times to perform a vector-vector inner product operation with some rows of
the input matrix. The first SHAVE generates the blue output vector elements, the second
SHAVE generates the green output vector elements and the third SHAVE generates the
red output vector elements.

This parallelization schema does not require the use of locks, too.

1
2

oo N o o bhw

11
12
13
14
15
16

5.4 Fully connected

Output
Vector

Input Matrix

Input Vector

Figure 5.11: Parallelization of fully connected nodes matrix-vector multiplication

5.4.3 Optimized implementation

A simple, yet effective implementation of this operation is presented in source code
5.9. The optimizations used are the following:

* Double buffering is used. This way DMA transfers are “hidden” inside computa-
tion. As a result, the time of transferring the data is overlapped with the time of
computation, which makes the effective time of transfer to be reduced.

» For supporting larger matrices, the input vector is not transferred to local buffers
at once. Instead, it is split into segments that are transferred piece by piece. This
will be explained shortly in more detail.

Source code 5.9: Matrix-vector multiplication for the fully connected nodes

// In each iteration, we process a part of all rows in the matrix
for (int width_start = 0; width_start < inputWidth;
width_start += seg_width) {

prefetchBuffer = (half *)locallnput;
currentBuffer = (half *)locallnputt;

true_seg_width = MIN(seg_width, inputWidth—width_start);
true_input_bytes = info—>inputBPP * true_seg_width;

// Bring a part of the input vector and store it in the vector buffer.
ref[0] = dmaCreateTransaction (...) ;
dmaStartListTask(ref[0]);

// Round—up Tto true_seg width to make it multiple of 8
true_seg_width8 = ((true_seg_width + 7) / 8) * 8;

Chapter 5. Optimization of CNN computational nodes

17

18 dmaWaitTask(ref[0]);

19

20 // Bring a part of the first row assigned to the current SHAVE
21 // that is compatible with the vector buffer elements.

22 // Put the result into the prefetchBuffer.

23 ref[0] = dmaCreateTransaction (...) ;

24 dmaStartListTask(ref[0]);

25 dmaWaitTask(ref[0]);

26

27 // Perform the inner product of this part of the row with the vector
28 // buffer.

29 for (int lineNo = firstLineNo + 1; lineNo < lastLineNo; lineNo++) {
30 // Bring the same part of data of the next row.

31 // Put the result into the currentBuffer.

32 ref[0] = dmaCreateTransaction (...);

33 dmaStartListTask (ref[0]);

34

35 // Inner product

36 localOutput[lineNo — firstLineNo — 1] +=

37 (half)dot(vectorBuffer, prefetchBuffer, true_seg_width8);
38

39 // Swap buffers.

40 toggleInputBuffer = prefetchBuffer;

41 prefetchBuffer = currentBuffer;

42 currentBuffer = toggleInputBuffer;

43

44 dmaWaitTask(ref[0]);

45 }

46

47 // Inner product for the last row assigned to the current SHAVE.
48 localOQutput[line_diff — 1] +=

49 (half)dot(vectorBuffer, prefetchBuffer, true_seg_width8);
50 }

51

52 // Apply bias
53 if (info—>bias != NULL) {

54 half *bias = (half *)(info—>bias);

55 for (int i = 0; i < lastLineNo — firstLineNo; i++) {
56 localOutput[i] += bias[i + firstLineNo];

57 }

58 }

59

60 // Apply RelLU (if needed)

61 if (info—>with_relu) {

62 relu_inplace64_h(localOutput, line_diff64);
63 }

64

65 // Return results

66 ref[0] = dmaCreateTransaction(...) ;

67 dmaStartListTask(ref[0]);

5.4 Fully connected

68 dmaWaitTask(ref[0]);

Explanation of the source code 5.9 follows below:

* Line 2: This for-loop iterates over the segments of the input vector. With this it-
eration technique, it is possible to process matrices whose number of columns is
very large. Each segment of the input vector is brought in (with DMA) exactly once.
Afterwards, the inner product between this segment of the input vector and the re-
spective part of a matrix row is computed. The result is stored inside a local buffer.
Notice, that every inner product calculates part of the result of an element in the
output vector. The complete result requires the inner product of the whole input
vector, i.e. all the segments of the input vector.

* Lines 5, 6: These lines indicate the double buffering scheme. While one buffer is
involved in a computation, the other buffer is fed with data.

* Line 11: Transfers the appropriate input vector segment. The first element of this
segment is indicated by the width_start variable in line 2.

* Line 23: Fills the prefetchBuffer with part of the first row of the matrix band that
is assigned to the current SHAVE. The number of matrix rows, which are assigned
to the SHAVE, are indicated in the second for-loop (lines 29-45).

* Lines 29-45: These lines compute part of the output vector elements that are as-
signed to the current SHAVE. Each iteration uses the same segment of the input
vector to perform the inner product with part of a different row of the input ma-
trix. The result of each inner product is accumulated to the 1ocalOutput buffer. To
better understand the way an output element is calculated, the following concrete
example is provided:

Suppose a SHAVE is responsible for the matrix-vector multiplication A x b, where

0

33 210 2 1

A 0013 10 b 2
31 2 2 3 2 2

2 00 2 2 1 2

0

Then, the output y = [y1,¥2,¥3,y4] = [9,10, 15,8]T, if it is assumed that each
segment of the input vector is 3 elements long, is computed as follows:

Y1 :[3>3a2] X [0>1?2]T

y2=1[0,0,1] x [0,1,2]"

Chapter 5. Optimization of CNN computational nodes

y3=1[3,1,2] x[0,1,2]"
ya=1[2,0,0] x[2,2,0]"
yi+=1[1,0,2] x [2,2,0]"
yo+=1[3,1,0] x [2,2,0]"
y3+=1[2,3,2] x [2,2,0]"

Yat =[2,2,1] x [2,2,0]"

Each iteration of the outer loop updates the result of all the components of the
vector y. The inner for-loop is responsible for the computations involving the same
segment of the input vector. In the example given above, the first 4 lines are com-
puted by the first outer for-loop iteration and the next 4 lines are computed by the
second outer for-loop iteration.

Line 32 refers to the double buffering technique. The data transfer is initiated there
and the wait for it to finish happens at line 44. Between these lines the inner prod-
uct is performed.

Lines 53-58 apply the bias vector. After the finish of the outer for-loop, the bias is
applied. The whole part of the output vector has been produced and is kept in CMX
memory, in array variable localOutput.

Lines 61-63: The ReLU operation is applied in-place. This routine is written in C,
rather than assembly, since it follows a canonical access pattern that the compiler
is able to optimize by itself.

This function is given below, to satisfy the curiosity of the reader:
void
relu_inplace64_h(half *ptr, int size)
{
// +Inf in fp16 format
int p_inf_bin = 0x00007C00;
half p_inf = *((half *) &p_inf_bin);

half8 v = {p_inf, p_inf, p_inf, p_inf, p_inf, p_inf, p_inf, p_inf};
half8 *addr_h8 = (half8 *)ptr;

for (int j = 0; j < size/8; j += 8) {
addr_h8[j] = __builtin_shave_cmu_clampO_f16_rr_half8 (addr_h8]Jj
1, v);
addr_h8[j+1] =
__builtin_shave_cmu_clampO0_f16_rr_half8(addr_h8[j+1], v);
addr_h8[j+2] =
__builtin_shave_cmu_clamp0_f16_rr_half8 (addr_h8[j+2], v);
addr_h8[j+3] =
__builtin_shave_cmu_clampO0_f16_rr_half8(addr_h8[j+3], v);
addr_h8[j+4] =
__builtin_shave_cmu_clamp0_f16_rr_half8 (addr_h8[j+4], v);

5.4 Fully connected

addr_h8[j+5] =
__builtin_shave_cmu_clampO_f16_rr_half8(addr_h8[j+5], v);
addr_h8[j+6] =
__builtin_shave_cmu_clamp0_f16_rr_half8 (addr_h8[j+6], v);
addr_h8[j+7] =
__builtin_shave_cmu_clampO_f16_rr_half8(addr_h8[j+7], v);

Finally, lines 66-68 return the localOutput back to the DDR.

Part [[ﬂ
Epilogue

147

Chapter E

Evaluation of the Implementation

This chapter evaluates the CNN implementation, conducting a range of measure-
ments with respect to different parameters. The explanation of the results will try to
give a deeper insight on the limits posed by the hardware and the implementation itself.

6.1 Specific CNNs used

Several results of the evaluation are drawn from the execution of two specific con-
volutional neural networks. These networks are described below.

6.1.1 CIFAR10 Quick CNN

The first network used is the CIFAR10 Quick, that is presented in figure 6.1. In par-
ticular, this architecture is used for terrain classification from satellite images. More
precisely, the NAIP dataset [10] is used, which consists of image patches each of size
28 x 28 and covering 6 land classes: barren land, trees, grassland, roads, buildings and
water bodies.

Details about the architecture are imposed on this figure. CIFAR10 CNN was origi-
nally used for the classification of 10 categories, hence the number 10 in its name. In
order to adapt this CNN for the NAIP dataset, that outputs 6 classes, the “num output”
variable of the “ip2” node needs to be set at 6. Except that, the network presented in
figure 6.1 and the original CIFAR10 Quick are identical.

6.1.2 nViso CNN

The second network is provided by the nViso company that specializes on emotion
measurement technology. Due to licensing constraints, no further information has been
made available, such as a dataset or other technical information. This CNN is used for
the classification of emotions from facial expressions, that belong to the following cat-
egories: anger, disgust, fear, happiness, neutral, sadness and surprise. Figure 6.1 de-
scribes its architecture.

Chapter 6. Evaluation of the Implementation

nViso CNN

CIFART0 Quick CNN

hidden_1

relu_7

hidden_2

relu_8

hidden_out

Figure 6.1: Left: CIFAR10 Quick CNN for terrain classification. Right: nViso CNN for emo-
tion classification from facial expressions.

6.2 Measurements

6.2 Measurements

This section will present several plots regarding the performance and the power con-
sumption of the CNN implementation. Both metrics will be evaluated with respect to
three different parameters, namely input size, number of SHAVEs and frequency of the
Myriad2 SoC.

6.2.1 Different input sizes

For these measurements, the CIFAR10 Quick network is used. Its choice is arbitrary
and other networks could be used instead.

Performance vs. Input Size

10 I Convolution EE Inner Product
Pooling

Execution Time (ms)
[6)]

16x16 32x32 48x48 64x64 80x80 96x96 112x112128x128

Input Image Size
Note:
Myriad2 operates at 600 MHz with up to 12 shaves.

N
L[]

I
]
-1 1]

Figure 6.2: Execution time of CIFAR10 Quick CNN for various input images.

Notice, on figure 6.2, that the color coding of the bars is based on the color of the
computational layers shown in figure 6.1. From this plot it is seen that convolution is
the most time consuming operation, which justifies the effort to optimize it as much as
possible. Also, observe that the height of the bars grows quadratically with respect to
the input. In conclusion, convolutional layers are the most time demanding operations,
followed by the fully connected layers and the pooling layers.

Figure 6.3 show the energy consumption needed for the execution of the same CNN.
It is natural to expect that longer execution times require more energy, which is con-
firmed by the gathered data. Much like in figure 6.2, the energy consumption grows
quadratically. This is justified by the fact that the average power consumption remains
constant during execution and the execution time exhibits quadratic behavior. As a re-
sult, the product of power and time (which is energy) also behaves quadratically.

Chapter 6. Evaluation of the Implementation

Energy Consumption vs. Input Size

-
[}

- - -
o N S

Energy (mJ)
[ee]

0 T T T T T T T T
16x16 32x32 48x48 64x64 80x80 96x96 112x112 128x128

Input Image Size

Note:
Myriad2 operates at 600 MHz with up to 12 shaves.

Figure 6.3: Energy consumption of CIFAR10 Quick CNN for various input images.

6.2.2 Different number of SHAVEs

This subsection will examine the time and energy requirements of the building blocks
used by the CNNs presented in figure 6.1. These two metrics will be evaluated with re-
spect to the number of SHAVEs executing each building block. It is a very important set
of measurements, since they will reveal the inherent properties and the performance
boundaries of the parallelization schema used by the computational nodes of the imple-
mentation.

Convolution

A typical example of convolution, that appear on many CNNs, is examined. In particular,
the convolution is performed on an input volume of 64 x 64 spacial dimensions and 32
channels deep. The output volume contains 128 feature maps and its size is 64 x 64 x
128.

Notice, from figure 6.4, the large times required for this computation. This, once
more, confirms the observation mentioned on figure 6.2 and is justified by the fact that
convolution involved in CNNs is a 3D operation, in contrast with regular convolution used
for grayscale images (which is a 2D operation).

The absolute times presented in figure 6.4 have their merit, however scalability is of
great interest. Figure 6.5 gives a different look at the data presented in figure 6.4. The
results are extremely satisfactory, since the implementation is very close to the ideal
case of linear scalability. The reason for such success is mostly because of the nature of
the operation, which reuses a lot of the same data. As a result, convolution is a compute
bounded operation, which means that the multiple SHAVE processors do not need to
compete intensively for - the shared resource that is - DDR.

Another interesting result is the energy consumption of this operation. The measure-
ments are plotted in figure 6.6.

6.2 Measurements

Convolution: Performance vs. SHAVEs

140

120

-
o
o

Execution Time (ms)
8

60
40
20
0 , , , ’ . i . . . , ' '
1 2 3 4 5 8 7 8 9 10 11 12
Note: Number of SHAVEs

Myriad2 operates at 600 MHz.
Convolution kernel is 5x5 (spatially), padding is 2 and stride is 1.
Convolution is performed on an 32x64x64 (DxHxW) input volume with 128 output feature maps.

Figure 6.4: Time execution of convolution with respect to the number of SHAVES.

Convolution: Scalability vs. SHAVEs

12 §o
11 7
//
7~
10 e
9 /’//
7~
//
_g— 8 S
o 7 27
[0} -
Q. Pie
»n 6 T
5 7
4
3
2
1 2 3 4 5 6 7 8 9 10 1 12
Number of SHAVEs
Note:

Myriad2 operates at 600 MHz.
Convolution kernel is 5x5 (spatially), padding is 2 and stride is 1.
Convolution is performed on an 32x64x64 (DxHxW) input volume with 128 output feature maps.

Figure 6.5: Scalability convolution with respect to the number of SHAVESs

Surprisingly, the energy consumption drops when increasing the number of SHAVEs.
Even though usage of more SHAVEs increases the average power consumption, the
shorter time of execution required for the operation results in less energy consumed
overall. Notice, that this behavior is mostly because of the very good scalability of the
operation.

Chapter 6. Evaluation of the Implementation

Convolution: Energy Consumption vs. SHAVEs

Energy (mJ)

1 2 1;: 4 5 6 7 8 9 10 11 12
Number of SHAVEs

Note:

Myriad2 operates at 600 MHz.

Convolution kernel is 5x5 (spatially), padding is 2 and stride is 1.

Convolution is performed on an 32x64x64 (DxHxW) input volume with 128 output feature maps.

Figure 6.6: Energy consumption of convolution with respect to the number of SHAVES.

Pooling
A typical example of pooling is examined, where the operation is performed on an input
volume of 64 x 64 spacial dimensions and 128 channels deep.

Pooling: Performance vs. SHAVEs

1.2
1.1
1.0
0.9
0.8
0.7
0.6

Execution Time (ms)

0.5
0.4
0.3

0.2 T T T T T T
1 2 3 4 5 6 7 8 9 10 1 12

Number of SHAVEs

Note:

Myriad2 operates at 600 MHz.

Pooling kernel is 2x2, operation is MAX pooling, padding is 1 and stride is 2.
Pooling is performed on an 128x64x64 (DxHxW) input volume.

Figure 6.7: Time execution of pooling with respect to the number of SHAVEs.

Notice the absolute times of this operation. Even though the input volume is similar
to the input volume of convolution shown in figure 6.4, their execution times differ by
orders of magnitude. This is another indication of the large computational requirements
of convolution, which makes pooling seem a trivial operation.

The scalability of pooling, shown in figure 6.8, is far from great. This kind of behavior
is due to the I/0 bounded nature of this operation. If fact, in the particular operation

6.2 Measurements

Pooling: Scalability vs. SHAVEs

= N W A OO0 O N 00 ©
\
\

1 2 3 4 5 6 7 8 9 10 11 12
Number of SHAVEs

Note:

Myriad2 operates at 600 MHz.

Pooling kernel is 2x2, operation is MAX pooling, padding is 1 and stride is 2.
Pooling is performed on an 128x64x64 (DxHxW) input volume.

Figure 6.8: Scalability pooling with respect to the number of SHAVES.

shown in this figure, every element of the input volume is only used for the generation
of a single element on the output volume. Also, the computation involved for generating
each output element on the output volume is very simple. This leads to a very high
and frequent demand for data residing in DDR, which ultimately (the DDR) reaches its
maximum bandwidth.

Another interesting result is the energy consumption of this operation. Figure 6.9
indicates that increasing the number of SHAVESs, which perform the pooling operation in
parallel, leads to increase in energy consumption. This is an expected result, since in-
creasing the number of SHAVESs also increases the average power consumption. Higher
power combined with inability for lowering the execution time when using a lot of SHAVES,
naturally leads to increase in energy consumption.

Chapter 6. Evaluation of the Implementation

Pooling: Energy Consumption vs. SHAVEs
08

0.7

Energy (mJ)
o
(o]

o
o

0.4

0.3 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12

Number of SHAVEs

Note:

Myriad2 operates at 600 MHz.

Pooling kernel is 2x2, operation is MAX pooling, padding is 1 and stride is 2.
Pooling is performed on an 128x64x64 (DxHxW) input volume.

Figure 6.9: Energy consumption of pooling with respect to the number of SHAVES.

Fully Connected
Finally, the same measurements are performed for a fully connected computational node,
that involves the matrix-vector multiplication [1000 x 10240] x [10240 x 1].

Fully Connected: Performance vs. SHAVEs

= N
o o

Execution Time (ms)
® o 8N & >

[}

I

1 2 :I’: 4 5 6 7 8 9 10 1 12
Number of SHAVEs

Note:
Myriad2 operates at 600 MHz.
Fully Connected has 10240 input neurons and 1000 output neurons.

Figure 6.10: Time execution of fully connected with respect to the number of SHAVEs.

The behavior exhibited on figures 6.10, 6.10 and 6.12 is similar to the behavior
of pooling. This is because both operations are I/0 bounded. The operation involved
in a fully connected node is matrix-vector multiplication, in which every element of the
matrix participates in the computation of only one element of the output vector. Also,
the computation in which it is involved is inner product, which Myriad2 can perform
very efficiently in just one clock cycle per eight elements (with SIMD instructions). As
a result, the time needed for data transfers is far larger that the time required by the

6.2 Measurements

Fully Connected: Scalability vs. SHAVEs

= N W A OO0 O N 00 ©
\
\

Number of SHAVEs

Note:
Myriad2 operates at 600 MHz.
Fully Connected has 10240 input neurons and 1000 output neurons.

Figure 6.11: Scalability fully connected with respect to the number of SHAVEsS.

Fully Connected: Energy Consumption vs. SHAVEs

6 T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 0 11 12
Number of SHAVEs

Note:
Myriad2 operates at 600 MHz.
Fully Connected has 10240 input neurons and 1000 output neurons.

Figure 6.12: Energy consumption of fully connected with respect to the number of
SHAVEsS.

computation, leading to the presented plots.

In conclusion, observing the scalability plots of this subsection, it is obvious that it
is not a good practice to execute an entire CNN dedicating all SHAVESs at each operation.
This is because some of the operations cannot benefit from more processing power, due
to their I/0 bound limitations. As a result, dedicating all SHAVEs at each operation is
only going to increase the energy consumption without any performance gain, which is
a serious loss (especially) for an embedded platform. This explains the note “with up
to 12 SHAVEs” on the figures 6.2 and 6.3, that indicates that performance is the first
priority, but energy consumption is silently considered.

157

Chapter 6. Evaluation of the Implementation

6.2.3 Different frequency

This subsection will examine the time and energy consumption of the CNN imple-
mentation, with respect to the SoC clock frequency. The CIFAR10 Quick architecture is
selected as the test CNN, because it contains a balanced amount of the different oper-
ations (convolution, pooling, fully connected).

Performance vs. Frequency

Execution Time (ms)
- - - - N
w o ~ © N

-
o

0.9 T T T T T T T
240 300 360 420 480 540 600
Frequency (MHz)

Note:
Network executed is CIFAR10 Quick

Figure 6.13: Time execution of the CIFAR10 Quick CNN with respect to the SoC frequency.

It is natural to expect faster execution with higher frequency, since this is predicted
by the basic performance equation: CPU Time = IC x CPI x CT, where:

* IC is the Instructions Count of the given program.
* CPI is the Clocks Per Instruction of the given processor.
* CT is the Clock Time of the given processor.

Notice that the different parameters above are not independent, since there are sub-
tle architectural details that correlate them. For example, increasing CT will probably
increase the CPI as well. However, in the general case this formula is true. As a re-
sult, increasing the SoC clock frequency is equivalent to decreasing the CT (because
CT = 1/Frequency), which explains the behavior of the plot presented in figure 6.13.

Figure 6.14 shows the energy consumption of the same CNN. Surprisingly, the en-
ergy consumption increases as the frequency is lowered, since the CNN needs to run
longer in order to complete the same amount of work, i.e. classify an input image. Again,
the power consumption drops with the decrease of frequency, but the increased time of
execution leads to increase in energy consumption overall.

6.3 Comparison with other implementations

Energy Consumption vs. Frequency

1.35

-
w

Energy (ms)
5

1.2

1.15

240 300 360 420 480 540 600
Frequency (MHz)

Note:
Network executed is CIFAR10 Quick

Figure 6.14: Energy consumption of the CIFAR10 Quick CNN with respect to the SoC
frequency.

6.3 Comparison with other implementations

This section will compare the execution time of the two CNNs presented at the begin-
ning of the chapter, using different devices and/or implementations. The current CNN
implementation will be compared with Fathom NCS, which is essentially the same piece
of hardware, accompanied by a closed source software package capable of executing
neural networks on it. Also, caffe will be run on a x86 Intel CPU in order to get afilling of
the execution times between multiple hardware devices. Figures 6.15 and 6.16 present
the comparison.

First of all, notice that the current CNN implementation is executed on Myriad2, more
precisely model MA2150. The Fathom NCS uses a slight improvement of this chip, which
is MA2450, whose main advantage is larger and faster DDR RAM (512MB instead of
128MB, 933MHz instead of 533MHz). This makes the comparison more fair, since the
hardware is almost identical. On the other hand, Caffe is executed on Intel Xeon E5-2650
v2 CPU, that comes with 20MB of cache hierarchies, has 8 cores, 16 threads and 2.60
GHz of base processor frequency. In general, this is an extremely powerful processor
that is intended for server applications.

Caffe does not perform far better than the current CNN implementation. If the lack in
performance of the current CNN implementation (in comparison with the performance
on Caffe on the Intel Xeon processor) is not of critical importance, then this implemen-
tation should be used, because of the energy consumption. Myriad2 is designed for low
power embedded applications, while the Intel Xeon processor is designed high perfor-
mance server applications. This means that the energy consumption is not fair at all,
although for the specific CNNs Myriad2 wins the energy test.

Chapter 6. Evaluation of the Implementation

4.5

4.0

35

3.0

25

2.0

1.5

Execution Time (ms)

1.0

0.5

0.0

Execution of CIFAR10 CNN on different implementations

BN Convolution EE |nner Product
Pooling

— — e — - —
— H = = = = =
S Q Q Q Q Q QO
(@] [[[[9 (S
L) < @ @ & & & &P & &P §@ P §@ &
0\)\@2&& &o"(\ 'z’,\ 2 O?Loé O?boé C;Q’b‘o‘§ Ozjoé 0’2(9‘
& <®
&
Different Implementations
Note:

Both'MyriadZ and Fathom NCS are configured for maximum performance.
Caffe is executed on an 8-core Intel® Xeon® Processor E5-2650 v2.

Figure 6.15: Time execution of the CIFAR10 Quick CNN on different devices and/or im-
plementations.

Execution Time (ms)
A A
o o o o o o

o
o

Execution of nViso CNN on different implementations

I Convolution B [nner Product
Pooling

., I I
8 F-I

Q N
()

IRt > e @ Q 2 Q 2 Q 2 Q 2 @ 2
S & F® N K K KK S
RAES & Q° S »C & o

[be\
N2
\&Q

Different Implementations
Note:
Both Myriad2 and Fathom NCS are configured for maximum performance.
Caffe is executed on an 8-core Intel® Xeon® Processor E5-2650 v2.

Figure 6.16: Time execution of the nViso CNN on different devices and/or implementa-

tions.

6.4 Accuracy

6.4 Accuracy

This section will take a look at the accuracy of the current CNN implementation.
Accuracy is an important part of the evaluation, since the training of the CNN is done in
32-bit floating point arithmetic, while Myriad2 executes the forward step (i.e. the testing
phase) operating in 16-bit floating point arithmetic. Thus, a question arises whether
this decrease in precision affects accuracy and by how much. It is pointed out that the
term accuracy is used to describe the magnitude of the arithmetic error in the output
of the forward-step execution between Caffe and Myriad2. The two example networks
presented in the beginning of this chapter are used, executing the forward step of some
sample images. The results are presented in tabular form below. Keep in mind that Caffe
results are annotated with “C”, while Myriad2 results are annotated with “M". Also, the
relative error of the Myriad2 result with respect to the Caffe result is annotated with
“RE".

The conclusion drawn from these tables is that the loss in precision in floating point
arithmetic does not have a devastating effect on the output. More importantly, the results
show that total order of the categories is preserved. In other words, there are no two
categories in which the Caffe output is in different order compared to the Myriad2 output.
The same inequalities that are true for the Caffe output are also true for the Myriad2
output. This is a very desirable property, since this way the prediction sequence (i.e. the
sequence of probabilities assigned for each image) a made by Caffe is identical to the
predicition sequence made by Myriad2.

Chapter 6. Evaluation of the Implementation

‘uonoy

-uswajduwll zppliAi pup ayp) usamiaq ,zdi,, 48Abj NN 421n0 0 L §VHID 40 Ao04n32p Jo uosLipdwo) :1L°9 a|qeL

%¢€90°0 %6090 %¢85°0 %0150 %0¢6° | %6¢L0 3y

S.89'81 SL8'C 7€2066°C- CE8LLO- 6GE895°0- | SCLEOL'S- W
6CE669°81 L6G/S8'C | 9¥6CL6°C- | CLEVLLO- | 88V6/LG0- | LLEVIL 8- 0]

%1.420°0 %¢cv L0 %¢00°0 %¢€90°0 %LLT 0 %1600 ER| oy
1828ET'G- | 290V9L kL | 6L/988' V- | 88LCVL 8- GGS81G°0 ¥609¥C'S W '
0889E€C°G- | €966LL°LL | 948988V~ | LOLLYL 8- 9666150 €9LIPT'S 0] il

%5800 %5900 %9010 %7PvELO %1100 %¢€60°0 3y
PP86EE°G- | BEV8YI'E- | 889698 | 89¢C68Y |- €0¢8SlL°L | 614988°¢- W
86EVVE G- | €C8099°€¢E- L€£6889'8 | C9CL6Y |- 6CE8SLL | OEC068°E- 0]

%9910 %S8LZ6lL %¢SG90°0 %¢80°0 %6010 %¢E¢€00 ER|
G/89Y'¢- 9G91L¥0°0 | ¥¥86E8Y | 8896LL VI vE€LCS0'E | SLEVR6'L- W
ECSPLY'E- | LP6VPED'O | S66CV8'Y | 08EL6LPL LIV6¥0°E | 0C0L86°L- 0]

%9800 %9€0°0 %1000 %0000 %8000 %S00 3y
GLE6S8'8- | 88LLL9'E- | 6SEBLEC 8E6GEL'S- | 8E60LLOL | L8LSCV €~ W
866998'8- | /68S519°€E- | 6/LE8BLEC LZ6SEE'G- | SPOOLLOL | LEELCY E- 0]

%9600 %8¢0°0 %9800 %8€0°0 %1PSL'C %¢E¢€0°0 ER| I
90Vv91L€E'G- LEGP68'E G/€60°8- GLEBSCL- 6088¢0°0 SLEVEL'6 W t
LLGLZE'S- | $#09G68°€E | SEL00L'8- | 8¥7986G°CL- | 20¢82¢0°0 L6SLEL6 0]

1ndug
1918 peoy pue|sselo saall pue| ualieg Buip|ing

Kiobaie)

6.4 Accuracy

"U01IDIUBW|d W] ZPDLIAW PUD 344D U33MIS] ,, N0~ USPPIY,, 19AD] NN OSIAU JO A204n23D JO UOSIIDAWO) :Z°9 3|qeL

%650°0 %¢€cC0°0 %S80°0 %1220 %S00 %8010 %9%0°0 3 -
S/896°09 SLE60L°LL- | 94896C°0C- | TL988E'¢C- S8y SLLE- SLEVEOC- W

686700°L9 | 8EEELL'LL- | L6LVLIEOC- I7E8E'C- L6SLCS'8Y | 6EVPPBL LE- | LLLESEOC-) o
%5900 %9%0°¢ %S€0°0 %¢€¢0°0 %LLL0 %¢S10°0 %1200 ERS| d

GCLESY'LL- | 6SSCLE0O- | SL89VS LC- | C99LG8 LI~ SCTEL- SLE609°LE | 9C90¥9'8¢ W

LSLLVY L)~ 7€08€E°0- 91E6ES’LC- | 9/88¥8 L L- | CI9CSETEL- | PCCS6S LE | €LSLV9°8C)
%¢¢0°0 %0500 %6€0°0 %¢c0L'V %1000 %1900 %¢€L0°0 ERS| Y
S.89'%9 GL81L¢6'SL- | §C9S9L0°LC- | 966SYL0- SLEVS VY GC906°¢ce- GC9oslt0¢- W

8LCEL9V9 | 6886C6'SL- | SIVL00°LC- | 6EVEEL'0- | LLICV8'vY | LO0OLZ6'EE- | G598851°0¢C-))
%€00°0 %8020 %LELO %LL0°0 %9¢0°0 %8050 %0%0°0 ERS|

C959.6°EL- | 90VIV6'PY S/L896L°Y- | SLEGSE9C- | SCI8C8'LI- | 8E6OLLY S.£60°0S W

9169L6°CEL- | SPLIER Y 9S1¥E08' - | ¥806EE'9C- | 869CEB'LL- | LB86VELY LLYPELO°0S) .

™

%6¢0°0 %9L1°0 %8€0°0 %1%L,0°0 %S00 %8€¢C0 %0%0°0 ERS|

05.€60°6- v60LCt G- 0G¢C9St+'6- | 000S9C9'CS | P6S9E89°9- C991GEC- | OSLEVS L1~ W ,m.-
9/0160°6- €L0CL L S 0LLTSL'6- | 8ELP99'CS | 1959/.9'9- SLLLSE'C- | SL60S8°LL-) .
aslding ssaupes |eJinaN ssauiddeH leaq 1snbsiq Jlabuy indu

A1obaje)

Chapter

Summary

7.1 Conclusion

This thesis, tried to develop an efficient CNN engine for the Myriad2 embedded mul-
tiprocessor. Instead of specializing explicitly on this specific processor, an effort was
made, resulting in a more general methodology. The end result is a collection of steps
that can be applied to any relevant embedded platform, helping the increase of perfor-

mance and decrease of energy consumption.

One of the major problems that needed to be solved early on was the efficient man-
agement of given CMX memory. It was immediately obvious that CMX can offer a very
large performance boost if exploited correctly. The proposed approach is depicted in
figure 7.1. It results in about 50% increase of CMX space that is available for data.

Direct approach
SHAVE instructions in CMX.

1

1

1

Limited available space for data :
1

1

1

1

Slice 0 Slice 1
Shave Shave
Instr. Instr.

Slice 11
Shave
Instr.

Figure 7.1: Optimization 1: Increasing CMX available memory space for data.

Proposed approach
SHAVE instructions are fetched in

CMX though cache.

+ #

Slice 0 Slice 1 Slice 11

-1
I
I
I
I
I
I

ﬁ____i__

Cache

DRAM Shave
Instr.

<>

Due to extremely intense movement of data back and forth, from DDR to CMX and vice
versa, a non wasteful access strategy was important. The key idea is to try to exploit the
data as much as possible, before discarding them. This leads to reformulation of nested
iterations, as depicted in figure 7.2. The proposed approach resulted in about 30%

Chapter 7. Summary

reduction in execution time.

Proposed approach

The same input volume is used for
generating more output maps, before

Direct approach
Re-reading of all input layers is
required to generate each output maps.

I
1
1
1
: discarded.
) I
! | | \“‘

I ~N
I
1
[
I

Input 3D Output 3D 1 Input 3D Output 3D

Volume Volume 1 Volume Volume
I

Figure 7.2: Optimization 2: Reducing the number of required DMA transfers.

In order to decrease the execution time even further, the DMA engine transfer time
was overlapped with computation, making the transfer cost minimal. This requires dou-
ble buffering and is especially true for compute bound operations, such as convolution.
Notice that such a technique is not an extreme innovation, however it is a very important
one. For instance, recent nVidia graphics processing units come with dual DMA engines,
to assist the double buffering in the hardware level. The proposed approach is depicted
in figure 7.3 and gives a performance boost of 20% for compute bound operations.

Direct approach : No overlapping between data transfers and computation

Fetch

input data%>

Fetch

weight data

Compute

Return
results

Proposed approach : Overlapping between DMA transfers and computation

ol

Fetch Fetch Return
. . C t
input data B weight data ompute —> result
Fetch next Retyrn
. % previous
weight data
results

Figure 7.3: Optimization 3: Reducing DMA transfers overhead.

Finally, due to the hardware design of the Myriad2 processor, branches have a rel-
atively large penalty, since there is no branch prediction mechanism, only a delay slot
one. For this reason, measurements showed that short for-loops and many function calls
have a measurable cost. Towards this direction, an effort was made to decrease function
calls. Figure 7.4 explains how this was achieved for convolution. The reduction in the
number of calls resulted in a 6% reduction in execution time.

In conclusion, many engineers around the world have developed several CNN frame-
works targeting embedded platforms. Specifically, the ARM platform is the most popular

7.1 Conclusion

Proposed approach

Each convolution kernel call produces
multiple outputs.

Direct approach
Each convolution kernel
call produces a single output.

Output

PtrO-A mlinero
— Pl ine 1
7/ P2 hine2

True layout in memory

PtrO Ptrl Ptr2
Input

/ . Line0O = Linel = Line2 Line 3
Line 0 - Rotate pointers oy -)
tmg % \~ New conv. kernel call Now convolution “sees” input as if
Line 3 ~a E§r2$ ine 1 mg&o;y thd d(L)lleccll-}‘es c;f data:
2 Lne2 Pl e g - Line:2
Line 3

P2 line2 Line3

Figure 7.4: Optimization 4: Reducing the number of convolution kernel calls.

one. Our belief is that the techniques and methodology developed and tested in this the-
sis, will most definitely have a beneficial effect for these frameworks.

167

Chapter 7. Summary

7.2

Future work

Throughout the course of the implementation of the CNN engine, several problems
were faced. The proposed solutions of these problems are not always generic and the
reason for this is the nature of these problems themselves. For example, the improve-

ment

in terms of performance and energy consumption of convolution requires the de-

velopment of a wide range of different approaches, depending on the ratio of the ker-
nel sizes over the input data, as well as the shape of them. This leads to vast design
space, that makes the exhaustive evaluation of these decisions intractable. As a result,
it is essential to consider advanced techniques for design space exploration, in order to
haystack only the reasonable and worthy options for the problem at hand. For a future

exten

sion, the following seem to be of the greatest importance:

Extend the CNN engine, in terms of functionality. Taking the Caffe framework as a
complete CNN implementation, the first goal will be to become functionally equiv-
alent with it. At the same time, recent state-of-the-art CNN architectures invented
new CNN layers. This makes the effort of closing the functional gap between the
current implementation and the latest developments in CNN architectures a daunt-
ing task.

Develop a powerful compiler for the graph model of the CNN. This thesis focused
mainly on optimizations that are closer to the hardware. However, another essen-
tial area of extension is transforming the graph model of a given CNN, into an in-
termediate format that is suitable for optimizations. Ideally, this format would be
able to apply platform agnostic optimizations, such as merging of layer nodes in a
CNN, as well as platform specific ones. For example, the choice of a particular im-
plementation of a specific layer (e.g. convolutional) with respect to the parameters
given to this layer, depends on the underlying hardware.

Consider the implementation of a sophisticated runtime system. The fact that mul-
tiprocessors is the only solution to increasing computational power these days,
makes runtime systems a valuable asset. In the context of a CNN engine, the main
goal of such runtime system would be to make online decisions regarding the
scheduling of computational layers. As already mentioned in previous chapters,
CNNs consist of a mixture of both compute, as well as I/0 bound operations. In
general terms, it is best to parallelize these two types of operations, abiding by the
data dependencies they have.

* Autotuning. It is common, for most computational layers of a CNN to have several

tunable parameters, such as:

1. The chunk size for transferring the data between CMX and DDR.
2. The alignment boundary of blocks of data in DDR and CMX.
3. etc.

7.2 Future work

Implementing more and more computational layers, makes the tuning of such pa-
rameters very difficult. Consequently, an automatic way of finding effective values
for them is important. Most likely, this mechanism will follow several heuristics,
that may differ from layer to layer and depend on hardware subtleties, because -
once more - the dimensionality of the search space for these parameters may be
extremely large.

* Finally, let as briefly discuss questions that are part of the design space:

1. Is it better to use memcpy or the DMA engine to transfer data from DDR to
CMX and vice versa? When memcpy is a much better choice?

2. What is the best sharing scheme among the data already in the CMX, con-
sidering that each SHAVE is subjected to arbitration when trying to access a
different CMX slice? When load stalls from sharing CMX data cost more than
not sharing at all?

3. When is double buffering a good solution, considering that decreases the ef-
fective available space of CMX? Is it better to process larger chunks of data
at once and not overlap computation with data transfer?

All the questions are reasonable, but the answers are not clear. In fact, the
answers to these questions begin with the phrase "It depends”, making the
design space exploration essential.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

Sebastian Raschka. Python machine learning : unlock deeper insights into machine
learning with this vital guide to cutting-edge predictive analytics. Packt Publishing,
Birmingham, UK, 2015.

Ian Goodfellow, Yoshua Bengio kat Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Andrej Karpathy. Stanford University CS231n: Convolutional Neural Networks for
Visual Recognition.

Gaurav Raina. Deep Convolutional Network evaluation on the Intel Xeon Phi: Where
Subword Parallelism meets Many-Core. METAMTUXLOKN SUTAWHATIKA €pyaocia,
Eindhoven University of Technology, 2016.

Convolutional Neural Networks (CNNs): An Illustrated Explanation. http:
//xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-
illustrated-explanation/. Accessed: 05-05-2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama
kaL T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding. ArXiv
e-prints, 2014.

Myriad 2 MA2x5x Vision Processor. https://uploads.movidius.com/
1463156689-2016-04-29_VPU_ProductBrief.pdf. Accessed: 05-05-2017.

Movidius Ltd. Movidius Myriad2 Development Kit: Programmer’s Guide (under non-
disclosure license).

Movidius Ltd. Movidius Myriad2 MA215x Databook (under non-disclosure license).

S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki kat R. Nemani. DeepSat
- A Learning framework for Satellite Imagery. ArXiv e-prints, 2015.

Brian Dolhansky. Artificial Neural Networks: Linear Multiclass Classifi-
cation. http://briandolhansky.com/blog/2013/9/23/artificial-neural-
nets-linear-multiclass-part-3. Accessed: 05-05-2017.

Tarig Rashid. Make your own neural network : a gentle journey through the math-
ematics of neural networks, and making your own using the Python computer lan-
guage. CreateSpace Independent Publishing, United States, 2016.

LA

http://www.deeplearningbook.org
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
https://uploads.movidius.com/1463156689-2016-04-29_VPU_ProductBrief.pdf
https://uploads.movidius.com/1463156689-2016-04-29_VPU_ProductBrief.pdf
http://briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3
http://briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3

Bibliography

[13] V. Dumoulin kat F. Visin. A guide to convolution arithmetic for deep learning. ArXiv
e-prints, 2016.

[14] John Levine. Linkers and loaders. Morgan Kaufmann, San Francisco, Calif. u.a,
2000.

[15] Milan Stevanovic. Advanced C and C++ compiling. Apress,Distributed to the Book
trade worldwide by Springer, Berkeley, CA New York, NY, 2014.

172

Abbreviations

IEEE
CIFAR
BVLC
MNIST
GNU
API
DAG
ANN
CNN
MPL
RGB
FC
SoC
CPU
VPU
SHAVE
DRAM
SRAM
CMX
DDR
DMA
LSU
CSsSs
MSS
UPA
MDK
LOS
LRT
CPR

Institute of Electrical and Electronics Engineers
Canadian Institute for Advanced Research
Berkeley Vision and Learning Center

Mixed National Institute of Standards and Technology
Gnu’s Not Unix

Application Programming Interface

Directed Acyclic Graph

Artificial Neural Network

Convolutional Neural Network

Multi-Layer Perceptron

Red Greed Blue

Fully Connected

System-on-Chip

Central Processing Unit

Vision Processing Unit

Streaming Hybrid Architecture Vector Engine
Dynamic Random Access Memory

Static Random Access Memory

Connection Matrix

Double Data Rate

Direct Memory Access

Load-Store Unit

CPU sub-system

Media sub-system

Microprocessor Array

Myriad2 Development Kit

Leon OS

Leon RT

Clock-Power-Reset

173

	Περίληψη
	Abstract
	Ευχαριστίες
	Υλοποίηση Συνελικτικών Νευρωνικών Δικτύων σε Ενσωματωμένες Αρχιτεκτονικές
	Λίγα λόγια για τη μηχανική μάθηση
	Τα τρία είδη μηχανικής μάθησης
	Ταξινόμηση στην επιτηρούμενη μάθηση: Προβλέποντας τις ετικέτες
	Παλινδρόμηση στην επιτηρούμενη μάθηση: Προβλέποντας συνεχή αποτελέσματα

	Τεχνητά νευρωνικά δίκτυα
	Βιολογικό κίνητρο και συσχέτιση
	Αρχιτεκτονικές τεχνητών νευρωνικών δικτύων

	Συνελικτικά νευρωνικά δίκτυα
	Διάταξη των δεδομένων σε ένα ΣΝΔ
	Συνήθεις στρώσεις που χρησιμοποιούνται στα ΤΝΔ

	Caffe: Συνελικτική Αρχιτεκτονική για Γρήγορη Ενσωμάτωση Χαρακτηριστικών
	Εκπαίδευση ενός δικτύου

	Πολυεπεξεργαστικό SoC Myriad 2
	Γενικά χαρακτηριστικά
	Ελεγκτής DMA της μνήμης CMX

	Βελτιστοποιήσεις που εφαρμόστηκαν
	Αξιολόγηση της υλοποίησης
	Τα νευρωνικά δίκτυα CIFAR10 Quick και nViso
	Μετρήσεις
	Αριθμητική ακρίβεια των υπολογισμών

	I Theory
	Background on artificial neural networks
	Machine learning in general
	The three different types of machine learning
	Classification in supervised learning: Predicting class labels
	Regression in supervised learning: Predicting continuous outcomes

	Mathematics of linear classification for images
	Parameterized mapping from images to label scores
	The linear classifier matrix-vector multiplication
	Linear classifier: Images as high-dimensional points
	The loss function

	Artificial neural networks
	Biological motivation and connections
	Commonly used activation functions
	ANNs architectures
	Forward-step computation

	Convolutional neural networks
	Data arrangement in a CNN
	Common layers used to build CNNs
	Convolutional Layer
	Pooling Layer
	Fully-connected Layer

	Introduction to Caffe and Myriad2
	Caffe: Convolutional Architecture for Fast Feature Embedding
	Layers
	Training a network
	Usage in the CNN implementation

	Myriad 2 multiprocessor SoC
	CMX DMA Controller
	Myriad2 Development Kit
	MDK Components

	II Implementation
	Configuring and running a CNN architecture
	Description of a particular CNN
	Pictorial representation of the CNN
	Storage of the weights required by the CNN
	Provided API

	Detailed explanation of the API
	API internals

	Description of the source code peripherals
	Memory Layout
	Why CMX is not enough
	Proposed memory map
	Creating the memory map in code

	Setting up Myriad2 SoC
	Setting up RTEMS
	Switching off power islands
	Setting up SHAVEs cache

	SHAVE code residing in CMX
	Memory allocator code
	Bootstrap code

	SHAVE code and data residing in DDR
	Trained parameters
	The Jump Table
	Operation of the jumpTable

	Optimization of CNN computational nodes
	DMA CMX Driver
	Convolution
	Parallelization schema
	Convolution in assembly
	Optimization: Reduced number of routine calls
	Optimization: Reduced number of DMA transfers
	Optimization: DMA transfers are “hidden” in computation

	Pooling
	Parallelization schema
	Pooling in assembly
	Optimization: Reduced number of routine calls

	Fully connected
	Matrix-vector multiplication is I/O bounded
	Parallelization schema
	Optimized implementation

	III Epilogue
	Evaluation of the Implementation
	Specific CNNs used
	CIFAR10 Quick CNN
	nViso CNN

	Measurements
	Different input sizes
	Different number of SHAVEs
	Different frequency

	Comparison with other implementations
	Accuracy

	Summary
	Conclusion
	Future work

	Bibliography
	Abbreviations

