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AmayopeleTol 1 avTiypan, amodiKeuon Kal JlaVopUn NG Topovods epyoaciog, €€ OAOKANPOL 1
TUNHOTOG 0TS, Yo EUTOP1kd okomd. Emtpénetol ) avatunmon, amwobikeno Kot Slovopn Yo 6KoTo
L1 KEPOOGKOTMIKO, EKTOIOEVTIKNG 1) EPEVVNTIKNG GUOTG, VIO TNV TPoLIOBEST Vo avapEPETAL 1| TN
npoélevong kot va dtatnpeiton to Tapdv unvope. Epotipata mov apopoldv ) ypion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VO OTELOVVOVTAL TPOG TOV GUYYPUPEQ.

Ot amOWeELg Kol TO. GUUTEPACLOTO TOL TEPLEXOVIOAL GE OVTO TO £YYPUPO EKPPALOLY TOV GUYYPOUPEN
Kol dgv mpémel va, epunvevdel Ot avtmposmnrevovy Tig enionueg Béoelg Tov EBvikod Metcofiov
[Tolvteyveiov.



Iepiinyn

Ta televtaia povia plokOHacTE UTPOGTA GE dVO PEYAAES AVOTAPAEELG TAV®D GTOV TOWEN TNG ETL-
GTHUNG VTOAOYIOTOV.

Amd 1t pio ) avaykn yo ereEepyacio HEYAAOL OYKOL O£dOUEVOV GE GUVOVOGUO LE TIG TEXVOAOYIEG
OV AVOTTOYONKAY GYETIKA TPOGPATO, EPEPAY GTO TENIO TIG U1 OYECIUKES PATELS OEOOUEVDY .
[TAéov pumopovpe va amobnkedovpe kot va eneEepyalOpaote Leydlovg OYKOVG SEQOUEV®V, SLOUOLPO-
CUEVOV GE VITOAOYIGTIKA VEQY], YOPIg TIG TOPAO0GLOKES GYECIOKEG PAGELS TOL Bol amoTVYY VOV GTO
GKOTO.

H dvvopikn kotovoun mopmv 6 ouTd To VTOAOYIGTIKA VEQT ovoudleTal ELaoTIKOTNTA.

Amd v GAAN M TEYVOLOYIKT EEEMEN Hag ETETPEYE TN OMoVPYia TOV PafeldV VEVPOVIKOV SIKTO®V.
To 2013 svvdvdotnkoy ta Pabeld vevpwvikd dikToa e TNV 106 TNG EVIGYVTIKNG Lddnong.
"Eva mévtpepa yvooto kot wg Deep Reinforcement Learning mov épeie va tapdéet ta vepd oo medio

g nénong ToyKosimg.

e outn TV gpyacio mpoomafodiE Vo GULVIVAGOVLE ALTOVE TOVG dVO GYETIKE VEOGVGTATOVS KOl PO~
ydaio avaTTLGGOUEVOVG KAAOOVS, TNG EAIGTIKOTNTOG OTH VTTOAOYIGTIKG VEQT Kot Tov Deep reinforcement
learning.

Amotéleopa anTod Tov TaVTPEUATOG lval Mariana Trench, évo cuotn o mov “padaivel” Tic avaykeg
TOV YPNGTY EVOG VIOAOYIGTIKOD VEPOLS, VOTEPA OO AUEST] O1dOpacT LE TO TEPPAAAOV, TPOGUPLLO-
Cetan TaydTOTA Kot TETLYOEVEL VO SLOUOLPALEL TOVG TOPOVE TOL YPNOTI OVALOYA LLE TIC CUYKEKPLULEVEC
avaykeg tov, ypnoponotd@vtoag to Deep RL adAd kot d00 e£01peTiKd Am0od0TIKEG ETEKTACELS TOV.

To Full Deep RL «at to Double Deep RL.

Teotdpovpe TV VAOTOINGT HOC TAVED O OMALTNTIKEG TPOCOUOIDGELS LE EVPV OYKO EIGEPYOLEVDV
OEQOLEVOV KO TAPAUETPMV Y10L TO SIKTVO LG, OTMG KoL LLE TEPALATO TAVED GE TPOLYLLOTIKE VTOAOY1-
oTwkd véon (vmpecio Okeanos), o EAIPETIKG ATOTELECLATO TMV OTOI®V GOC TAPOLGLALOVLLE.
BAénovpe mmg metvyaivovpe onpavtikn ertioon g taews Tov 60 % 610 KEPSOC TOL GLAAEYOLLLE
Ko ToyvTEPN cUYKAoN 01N BEATIOTN cLUIEPLPOPE amd Tponyoveves vAomomoels. Eniong metuyoi-
VOULE VO LETOTPEWYOVLLE TO HEYAAO OYKO EIGEPYOUEVMV DESOUEVOV OO UELOVEKTN L0 OE TAEOVEKTNLLOL
TOV TPAKTOPE HOG, KAODG 660 PEYOADTEPOG XDPOG KATUGTAGE®V TOGO AMOTEAEGUATIKOTEPT 1 AEL-
Tovpyia TOL.

21N GLVEXELD SEIYVOVLLE TIG TPOEKTAGELC LG TETOLUG VAOTTOINoNG, mov eépvel To Deep RL € amod
T 6TEVA Opa TG emeepyaciog 6edopévav EIKOVOV 1| NV Kot avalntovpe ta dpila mov tifovtat ota
ePPAALOVTO GTO OTTOT0 LTOPEL VO AEITOVPYNOEL KAl VO EETEPATEL TOV AVOP®TO £vag TPAKTOPOS TOV
Deep RL, gbv avtd vdpyovv.

AL Khed1d

Elootikdmra, Awyeipion [Hopawv, Yroloyiotikd Népog, Babeld evioyvtikr pabnon, Babewd pnyo-
vikn pdonon, Aumin Pabeld evioyvtikn pddnon, Mn oyeclokég Bacelg, Mariana Trench






Abstract

Over the last years we have witnessed two significant breakthroughs in computer science. On one
hand the need to elaborate with Big Data in combination with the newly formed technologies, brought
to spotlight NoSQL databases.

We now can store and manipulate Big Data spread across cloud services, without using the traditional
Relational Databases which have failed in the field.

In order to manage to dynamically allocate resources for these cloud application laaS use the so called
elasticity in cloud computing.

On the other hand, the rapid development of computational power has allowed us to leverage ideas
created in the past and efficiently construct and train Deep Neural Networks.

In 2013 a combination of Deep Neural Networks and Reinforcement learning occurred. This com-
bination became known as Deep Reinforcement learning (Deep RL) shook the world in the field of
machine learning.

In this paper we are trying to combine these two newly formed but exponentially growing fields, the
field of elasticity in cloud computing for Big Data manipulation and the field of Deep Reinforcement
learning.

The result of this effort is Mariana Trench, an agent that ”learns” a user’s behaviour and needs in a
cloud service and manages to dynamically allocate his resources based on his needs, by using Deep
RL and two really promising extensions of Deep RL, Full Deep RL and Double Deep RL.

We test our agent in a variety of demanding simulations with large incoming data and factors for our
network and also with experiments in a real cloud service (Okeanod [aaS). We present our significant
results. We show that we manage to succeed better profit up to 60 % and fastest convergence than
previous approaches. Also we manage to turn the disadvantage of previous version in handling large
amount of data into our advantage as the biggest the space of our incoming data, the better Mariana
Trench behaviour is.

We then show the extensions of our implementation that push Deep RL beyond the narrow limits of
image or sound processing where it is usually applied and we search out the limits in environments
where a Deep RL agent can perform better than a human being, if there are any.

Key words

Elasticity, Resource management, Cloud computing, Deep Reinforecement learning, Deep Q learning,
Double deep Q learning, NoSQL databases, Mariana Trench






Evyoprotieg

Me v gkmovnon avtg g epyaciog Oa nbsia va gvyapiotiom tov k. Kolvpn mov pov £dwoe v
gukaipio vo aoyoAndd pe Eva 1060 evilapEpov BEpa Tov Eepedyel amd To OpLol LOG POPUAAGTIKNG
SMA®UOTIKNG,.

®a 1Bela va guyoploTom Tov petadtdoktoptkd epevvnti lodvvn Kovoetaviivov mov 6yt povo pov
£0woe To eEAeV0EPO AALA LE TPOETPEYE VO OOKLUAGOVLE Kot Vo EXVASOKILLACOVE GUVEXMG KOVOVPLOL
npapoto tdveo oto Deep Reinforcement Learning, péypt va ptdcovpe 6to embountd anotéAecia.
®a H0era va guyoploto® Tov ddakTopikd gpevvnth Iavayuntn @lvtion, yopic ™ Pondela Tov
0m010V (TAV® GTNV KOTOVONGCT) TV VEVPMVIKOV SIKTO®V) aVTh 1) epyocia 6¢ Oa ixe olokAnpwbei 1
Ba elye olokAnpwbei tedeimg dtopopeTikn Tpia XPOVIQ TPLV.

Téhog Ba Oeda va evYOPIOTACM TOVG YOVEIG KL TN YLOyld OV Yia T 6THPEN TOV LoV TOPELY OV KOTA
™ S16PKELD TOV GTOVOMV OV, YUYOAOYIKT] KOl TPOKTIKT.

Kovortavtivoc Mmitedkoc,

AbMva, 241 Oxtoppiov 2017
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Chapter 1

Ewcayoyn

g autn v gpyacia mapovoidlovpe Evav Deep Reinforcment Learning (DRL) wpdixtopa mwov ypnoipomoteiton
Yy vo avEopetmvel To Uéyebog oG ouatddos vrtoAoylotdyv. O mpdktopag metvyaivel vo Ppioket

NV W00VIKT GUUTEPLPOPA HEGO oe Eva TepPdAlov, €av Tov €xel dobel pio KatdAANAn cvvdptnon
OVTOHOPNG KoL V0L GET A0 TOPAUETPOVE TTOV APOPOVV TI| AELTOVPYIN TNG GLGTASNG,

AvTt6¢ 0 TpdKTOpOC, TOV 0Toi0G omokahov e Mariana Trench [ 18] anotelel évav emttuynuévo cuvdvacUd
TOV 10 EEEAYIEVOVY OAYOPIOUIK®Y TPOCEYYicE®V TAV® o PBabetd punyavikn pddnon (deep machine
learning) kot Tov Topéa Yoo SUVOUIKT avadiopOBion Topwv oe £va VTOAoYLoTIKO VEQOG (elasticity).
e kdBe Pripa Long Tov TPAKTOPA 1) WAVIKT CUUTEPLPOPE amopaciletal avaioyo e To pEyedog g
ovotadog (tpdobece/apaipece TOPOLY UNV KAVELS TImOTA), PEe GKOTO VO, KEPOIGEL TIG UEYOADTEPES
AVTOUOPEC TPOTOVTOG TOL YPOHVOV.

2av TPOEKTAGT, Ol VTALOPBEG LITOPOVY VO TPOGAPLOGTOVV GTIG OVAYKEG TOV EKAGTOTE PN OTH, OTWG
exeivog kpivel. Edv o xpnotng Bélel va dtotnpnoel tkpd KOGTOG OTIG TAPOYEG TOV, UTOPEL VO, SDGEL
peyardtepo Papog 6to vo KpatiEtor To PEYEBog TG GLOTASNG KPS, GTN CLUVAPTNGT AVTOUOPNC.
Edv o ypnotng Béhet va éxel LeyoldTePN Kol OMOTEAEGLOTIKOTEPT SlOKivN o JESOUEVOY HECH OTN
GLGTAdN TOV, UTOPEL VO dMGEL PeYoldTEPO PApog oYETIKE, TN GLVAPTNON AVTOUOPNIC.

1.1 Kivntpo gpyaociog

Ta tedkevtaio déka xpovia BIOVOVE Lo EKPNKTIKT 00ENGCT) OTIG VANPEGIEG VTOAOYIGTIK®Y VEPGOV. H
eEEMEN OTIG TEYVOAOYIEG TTOV APOPOVY TO VIOAOYIGTIKA VEPT G GLUVOLACUO UE TN PEYAAN avénon
GTOV OYKO TANPOPOPIBY TOL Ypedovtar vo amodnkentody Kot va eneéepyacstodv, onuodpynce Ty
avAyKN Yo VEEC TEYVOAOYIEC TTOV B0l LITOPoVG OV Vo EMEEEPYACTOVV AVTO TOV LEYAAO GYKO SEOOUEVMV.
20V amOTELEGLO AVTOV, 01 TAPASOCLUKES GYECIKES Paoelg dedopévav (SQL) £dwoav n Béon Tovg
oTIG Un oyeowokés Paocelg dedopévov (NOSql databases) [23]. Ot un oyeotaxéc Pdoelg dedopéEvmv
OVOTTOGGOVTOL TAV® GE L1t TAELAS 0 EEXMPITTMV KEVIP®V OEOUEVOV, OTOV amodnKedovVY Ta, dedoéEVaL
TOVG, [LE OLOPOPETIKA OPYITEKTOVIKA LLOVTEAN IO OUTA TOV Ol GYECLUKES PAGELS XPTOLLOTOLOVGOV Y10l
™V amobnKevon.

Ta un oyec10K GUCTALUTO EVOMUATOVOVTOL TAV® GTO, VITOAOYIOTIKG VEPT LLE GKOMO VO, EXLTLYOVLV
KOADTEPO YEIPIGHO TOV TANPOPOPIDY TOL YPNGLUOTOI0VVTOL 0td TIC VINpecies vepdv. H Cassandra,
1 Hbase, 1 Mongo DB &ivot povo pepikd mopadetyploto i oxeslokov BAcE®V. € aUTh TNV pyacio
YPNOLOTOLOVE EVOL TEPPAALOV DTOAOYIGTIKOD VEPOVG dOUNUEVO TTAV® GE o Pdon dedopuévav, Cas-
sandra. O 0yKog TV ded0UEVOV TTOL YPELELOVTOL 0O KEVGT GNEPT, GTA VTOAOYLIGTIKA VEPT] PTAVEL
o€ PeyEdn Tplodkig ekatopvpiov oe gigabyes 1 axopo Kot zetabytes.

Ext6g amod 10 yeiptopd tov peydlo 6yKo TANpoeopLdV, To 0moio AVONKE 0o TG [ GYECLOKES PACELS,
OLVTINPEGIEG DITOAOYIGTIKMY VEQPAV L0V akOpa Eva TpoPAnua va avtipetonicovy. [ldg va tpoceyyicovv
TIG GLYKEKPIUEVEG OVAYKEG EVOG GUYKEKPILEVOD YPNOTH, MOTE VO, GLYOLPEVTOLY OTL TOALOL TOPOL
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dev mhve yopévol kat o pévouv aypnotpomointot eEartiog pog Adbog amdeaong; H andvinon oe
ovTd TO TPOPAN U 601 KE ATd TOV KAAOO TNG EAMIOTIKOTNTOG GTO LTOAOYIGTIKA VEQN (elasticity). H
EAQGTIKOTNTO GTO VITOAOYIOTIKA VEQT) £ivar £vag KAAS0G LEAETIG TOV APOPA TO TTAOG VOL LEYOADMVELS N
va pikpaivelg o péyefog Hog cueTAdNS VITOAOYIGTMV ALTOHOTO AVAAOYQ LE TIG OVAYKEG TOV XPNOTN.

Onwg Oa dei&ovpe oty enduevn evotnta 3.2, vedpyovv ToAlol TpOTOL Y10 VoL VTIHETOTIGELS TO Bépa
NG EAACTIKOTITOG GTO VITOAOYIOTIKG VEQT).

To deep reinforcement learning £yt ypnoiponombei amotelecpatikd og tepPdilovta 6oL 1) £16000G
glvar gwoveg N MNTIKA dedopéva. O GTOYOC VTG TNG EPYACIAG EIVOL VO EPEVLVIICOVIE TO OV OL
aiyopdpot Baberdc evioyvtikng pébnong (Deep Reinforcement Learning), pmopodv va ypnoiponotnodv
610 ePPAALOV TG ehaoTIKOTNTAG OTTOV YelpilovTal dPOPETIKO TOTO JEOOUEVDV amd EIKOVEG N
NYNTIKA dESOUEVAL.

Onwg 0o cag dci&ovpe, metvyaivovpe o mpdxtopag DRL mov katackevdalovpe va metvyaivel v
Bértiotn cvpmepipopd oto mepPdrdov g eAactikOTnTaG. ['eyovdc mov katadewkviel 6Tt oo DRL
TPAKTOPES UTOPOLV VO, XPNOLLOTOIN OOV GE Eva EVPL TEDTO TAPOLOIWV KATAGTACEMV-TEPIPAALOVT®OV
OTNV EMGTAUN €V YEVEL, GTOV TOUEN TOV UNYOVIKOV TPpoPANudtov, otn Bewpio TAnpogopioc, ot
oy vidlo, 6TV TOALTIKTY, OKOUO KO GTO TPOPARIATE KOWVOVIKOV ETIGTNUOV KTA KTA.

1.2 Xyetikéc gpyoaocieg

2e autd 10 KEPUAULO O TOPOVGIACOVUE EPYOCIEG OYETIKEC UE TN OIKN HOG, KOTNYOPLOTOMUEVES
0€ LIOKATIYOPiES. ZTNV TPATN VIOKATNYOPio B0 LATCOVLE Y10 GYETIKES EPYAGIEG GTOV TOUEN TG
EMOOTIKOTNTOG OTO, VTOAOYIOTIKA VEQN Kol ot dg0TEPT LITOoKATNYOoPio B0 LWANGOVLE Y10 GYETIKEC
gpyocioeg oto DRL.

YyeTIKEG EPYUGIOES TAV® GTNV ELUGTIKOTITU GTA VTOAOYIGTIKG VEQN

O Tiramola [13] eivat ol vINpecio oL SOVAEVEL TAV® GE VITOAOYIGTIKA VEPT KoL YPTCLOTOLELTAL Y10l

Vo 0EOUEIDVEL CVTOHOTO TO UEYEDOC VTOAOYIGTIKOV GUOTASMY AVAAOYA LE TNV EMOVUNTH TOAITIKY
Tov ekdotote Ypnotr. O Tiramola avédver | peidvel o puéyebog Liag cLGTASNG LLE TO VO TPOCTHETELT VO
agaipei éva éva VM og Ka0e pdon eKTédeonc, [LE GTOXO VO KEPOIGEL TO HEYUADTEPO KEPOOG AVOADY®DGS

pe Tig avdykeg tov ypnotn. Ot mapdperpot mov e&etaletl To povtédo tov Tiranola eivon 1 daxivnon
TANPOQOPLOV péca ot cvotdda (throughput), n kabvotépnon (latency) kot o apBudg Twv VMs.

O Tiramola povtelomotel T cvGTAOA OC Lo LopKOPLovi] SLodIKAGTN OTOPACEDY OOV OLOPOPETIKA
Ley£€0M VTTOALOYIGTIKAOV CLGTAS®V EKTPOSMOTOVY SIUPOPETIKEG LAPKOPLOVEG KOTAGTAGELS. Ol EMTPEMOUEVES
gvépyeteg etvan 1 apaipeon N n tpodcbeon evog VM. T va Kata@EPOLLE VO OTOHOVAGOVE TIG TTLO
TPOCOUTES EUTELPIEC TOL TPAKTOPA, 0 Tiramola ypnoonotel pio K-opadomroinon) tov eloepoypeveov
0ed0UEVOV DOTE TO AVAUEVOLEVO KEPOOG VAL LTTOAOYIGTEL PAGEL TNG KEVTPOELOOVG LTS TNG OLLAOOTOIN oG,

M o cvyypovr popen tov Tiramola and tov Kmvetavtivo Adro [14], eivar pia vanpesio o
SOOVAEVEL TAV® GE DITOAOYIOTIKA VEPT TTOL ypnoiponoteitat akplPdg 6nwc o Tiramola, adAd Siapopomoteital
OVGLOOTIKA TAVE® GTO TMG TO GLGTI O, LOVTEAOTOIEL TNV HOVADO OTOQACEDY TOV. X QLTI TNV EKOOYN

tov Tiramola ypnoipomolovvtol dEvIpa aro@acewy [ 7] pe oKOmd vo ETLTHYOVY OLVOUIKO SLOHOPAGHO

TOV YDOPOL KATUCTAGEMV GE Uid, LopKoPiavn dtadikacio. AVt 1 TPOcEYYLo TPOTEIVEL Evay aAYOPIOLLO

IOV LOVTEAOTOLEL TO YMPO GV Lo popkoPlovn dadikacio Kot ¥p1GILOTOLEL OEVTIPA ATOPACEMY Yo

VoL YEVIKEVGEL ETTL TNG IGO0V TOL.

H Nefeli [11] eivor po vimpesio Sopnpévn Tave o€ DVTOAOYIGTIKA VEQN OTTOV 01 YPNOTEG TAPEXOVY
otolyeio yio To €id0g TNG EQPUPLOYNG, EMTPEMOVIOS GTO TPOYPOLLO VO, TPOTOTOWOEL TIG TUKTIKES
TPOYPOULOTIGLOV Y10 VO, BEATIOGEL TNV amddoom TG epappoyns. Ordnuiovpyoi g Nefeli ioyvpilovion
O KOTAPEPAY VO TETVYOVV EVTUTMGLOKT BEATIOON GTO GUVOAIKS ¥POVO KOL TNV EVEPYELR TOV YPELGLETOL
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YO TNV EKTEANGT] TOV POPTIOV EPYUCING KOl GTIS TPOGOIMGELS OAAG KOl GTO, TEIPALATO, OE TPOLYUATIKO
VIOAOY16TIKO VEQOG. To petovéktnua g Nefeli elvar mog eivor avaykaio va givol eykatestnévo Eva
€VOLOLLECO AOYICHIKO OTO GTPMLLE SOYEPIONG TOV VEPOLG, Y10 VO AEITTOVPYNOEL OLOAL, KATL TOVL dE
ovpPaivel pe tov Tiramola

YyeTikég epyacioes mdvo 6to Deep Reinforcement Learning

H mpdn mpoomdbeia vo cuvdvaotel n evicyvtiky pnabnon pe to Pabeid vevpaovikd diktva (BNN)
TPoTadNKe oTN oYETIKN epyacia g Deepmind [21] démov BNN ypnciponombnkay yio va tpofAéyovy
T1 GUUTEPLPOPA GE EVOL TEPIPAALOV KOL VO, ATOPAGICOVY TNV KAADTEPT SVVATH ATOPACT) TTOL LTOPOVCE
Vo ThPEL EVOG TPAKTOPOG AVAPOPIKE LLE TNV KATACTOGT 0TV omoia fpiokotay KdOe popd to mepdiiov.
H ovopasio tov akyopifuov oy Deep Q Learning, pog kot yio vo vroAoyilel tovg 6todyovg Too BMN
ypnoonotovoe TG e&lodoelg tov Bellman. O wpdxtopag ypnoponotel wivakeg pe pixels gicovov
oTNV €10000 TOV, TPOKEWEVOD VO OMTOPAGIGEL TNV ETOUEVT] KiVNOT| TOVG.

Ed® [6] n BEM ypnoiponoteiton TpokeEVOL 0 TPAKTOPOS VO, LTOPESEL VAL TAIEEL TO YVOOTO TToyvidt
Go ka1 TOAL YPNCYLOTOLDVTAG TIVOKES pE pixels eikovav oav €i6000, OTOV LOVTEAOTOLOVIEVOS GOV
BNN npoonadei va fpet tnv 10avikni copmeptpopd 6to mepAAlov Tov motyvidlod. AVToG 0 TPAKTOPOS
ovopoagotav AlphaGo kot £yve apketd YVmoTog KOTaQEPVOVTOS Vo KEPOioeL Tov dg0TEPO KOADTEPO
naiktn otov kOGpo 010 GO pe tehkd oxop 4-1.

Téhog ot oyxetikn epyacia [34], 1 BEM ypnoyomofnke mpoxeiévou va dnpovpyn et évog Tpaktopog
OV pmopel vo Aettovpynoetl Kat va Bpel ) BEATIOT TOMTIKY Héoa o€ Eva TEPIPAAAOV QUOIKMOV
eMoTNUAOV. O1GLVTEAEGTEG ONULOVPYN GOV VOV OAYOPLTOLLO TTOL € ¥PNGILOTOLEL LOVTEAL TOV TTEPIPAAAOVTOG
Kol BacileTol 68 O VIETEPLVIGTIKY TOALTIKN TOL LITOPEL VO AEITOVPYNOEL G€ TEPIPAANOVTOG IE
GLVEYN KOTOVOUN EMTPENT®V eVEPYELDV. H TPocEyyion Toug KaTapépvel vo ADGEL OMOTELECLATIKA

Tove amd 20 uoikd TpofAnpata, 6TmS To TPOPAN LY

In [34], DRL is used in order to create an agent that can manage itself in physics based environments.
The authors created an actor-critic, model-free algorithm based on the deterministic policy gradient
that can operate over continuous action spaces. Their approach robustly solves more than 20 simulated
physics tasks, including classic problems such as icopponiog gvoc poundt ce d0k0, T0 TPOPANUA
YEPOVOKTIKNG EMOEEOTNTAG EVOG pOUTOT, TO TPOPANUL Kiviong e meprdtnpa evog pounds Kot To
TPOPAnLe 001 ynong apa&lod omd poundt. Kot auth n mpocéyyion ypnoonolel TivaKeg EIKOVOV oo
glcodo.
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1.3 H oo Tov Kepévou

H doun tov kepévov givor 1 e&ng:

270 KeQAA10 4 ovorvov e To Bempntikd VITdPabpo g KoTaokeLNC poc. [Topovctdlovie TV APYLTEKTOVIKT
tov Tiramola, Tdve otnv omoia ytilovue v extéheon pog. Eriong mapovcidlovpe ) un oyeoiokm

Baon dedopévmv, Cassandra, Tavm otnyv onoio tp€yet o Tiramola, v Ganglia tnv mAat@oOppo LEGHD

g onoiog maipvovpe PETPIKESG Yo TO cOoTNUA pog kot To YCSB o doun tov yahoo, ota miaicio

TOV EAEVLOEPOV AOYIGUIKOD TTOV PN GUYLOTOLEITOL Y10, VO TAPAYOVLLE L0 TOIKIALOL O10POPETIKDOV POPTMV
€PYACIOGC GTNV KOTOOKELT LOG LLE GKOTO VO, TEGTAPOVUE TNV EXLTVUYN AEtTovpYia TNG.

210 KEPAAOI0 5 KAvoulEe po Tapovsinon Tov Bacikdv Oepediov mve otn Bempio TG UNXoviKng
puéonong Kot TG eVIGYLTIKNAG LABNONG Kol ETKEVIPAOVOLLE TO evOLOPEPOV oG Tave oto Q learn-
ing, TNV HopeN EVIGYVTIKNG pdbnong mov Ba xpnoorocovpe Téve ota fabdeld vevpmvikd diktva
TPOKEEVODL va yticovpe T Mariana Trench.

Ta vevpwvikd diktva kot 1 fabeid evioyvTikig pabnon mtopovsidloviol 6to KePdAalo 6, dTwg Kot
évag mpdtumog akyopiBuog tov Deep Q Leargning mov Oa ypnoiporon0el yio vo SOUNGOLVLE TAV®
TOV TN Hovada anopacewy tng Mariana Trench.

Y10 kepdhato 7 mapovoidlovpe tn Mariana Trench. Kédvovpe puo epfaduven oty apyitektovikn kot
TN Sopn Tov SIKTHOL MO Kol TOPOVGLALOVE TIC TPEIS OLOPOPETIKES aAYOPIOLIKES ekdOYEG TTOL Ba
ypnoomomoovpe, to Deep Q learning,to Full Deep Q learning kot to Double Deep Q learning.

210 KePAAa0 8 TOPOVGIALOVUE TO ATOTEAEGHLOTO TOV TPAKTOPE LOG HESO OE VO KOKAO OO OpKETA
OTTOLTNTIKEG TPOCOUEIMGELS Ol OTTOIEG YPTOLUEVOVY EMIONG KOLL Y10 TO KOALUTPAPIGLLO TOV SIKTOOV HLOC.
Teotdpovpe TOV TPAKTOPA LG GE VA ATAO KOl G€ £volL IO GVUVOETO GEVAPIO.

270 KEPAALO0 9 TECTAPOVLE TO GUOTNUA LOG GE EVO TPAYLOTIKO TEPIPAALOV DTOAOYIGTIKOD VEQPOUG,
GLAAEYOVLE KO KPIVOLLLE Ta TEPAUATIKG amoTeAéopaTd poc. [TapdAinia Bydlovpe coumepdopoto
Y10 TO CUGTNILA LOC KOl TPOGPEPOVLE DAKO Y10, LEALOVTIKEG OYETIKEC EPYUGIEC TAV®D GTOV KAGDO.
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Chapter 2

IHewpopatikd 0moTEAECROTE KOl COUTEPACNATO,

e aUTO TO KEPAAOLO TOPOVGIALOVE TO TEPUUOTIKG ATOTEAEGUOTO TOV CLAAEELLE TEGTAPOVTOC TN
Mariana trench e mpayuatikd ypoévo oe mpaypatikd nepipdirlovia. Xpnoiponowovpe tov Okeano
Y10 TO VITOAOYIOTIKO VEPOG oV ypetalopacte. Exovue @TIdEEL o GLGTASO VTOAOYIGTAV TAVE® GTOVG
omoiovg tpEyovpe tnv Cassandra, Kot TEPLOOIKA TUPOSOTOVLE T BACT] LOG LLE OLTILLOTOL Y PT|CLLOTOLDVTOG
™V vanpecia Tov yesb. TvAléyovue Tig pETPNoElg pog ypnoorolovtag to XML API g Ganglia
Kol TELOG PN OILOTOLOVE TN povada amopdoemy g Mariana Trench yio va mépovpe pio amdQao
péca 610 TEPPAALOV, POV TPAOTO TNV £)ovUE eKTadeVaEL. To TpoypappoTiotikd teptPdiiov mov
ypNoonolovpe eivar 1 Anaconda [2] kou 1 BfAobnkn mov pag mapéyel To KatdAAnAo epyaieio yio
To veupovikd diktva kot Tnv eknaidevon| Toug givar to Tensorflow tng Google [1].

ApyiKa 0 TopOLGIACOVLE T, KUPLO, KOUUATLO TS VAOTOINGTG LA,

2.1 Ymooom

"Exovpue po cuotdda 16 1koVIKOV VTOAOYIGTOV 6TO VTOAOYIGTIKO VEQOG Tov Okeanos [ 12]. [Tupodotodpe
eoptio pe artnuato otn Paorn pog pe to yesb [40], ta omoio akoAovBobv o NUITOVIKY] KOTavoun
oo ouTHLaTe, Yo amodnkevon 1 ovacvpon dedouévav amd tn Paon pag. To m1060oTo amobnkeveemv
Kol avacvpoewv gival Tuyaio. Xpnoyomotovpe kdbe KOUPO TG GLGTASAG LAG GOV ATOJ0YEN TV
ornuaTov pag, pog kot oty Cassandra kéBe koppog pmopel va eEumnpetiost Tt Kot dgv
VILAPYEL KATO10G KEVTPIKOG KOUPOC Omm¢ oe dALeG un oyedakég faoels, onwg 1 Hbase. télvovue ta
oITNHOTA pog ypnoporotdvtag to kamaki API [10], and évav vroAoyiotr]. O vworoyiotig ’ondet”
Tov apliud TV artnudtov o ica Kopudtio 1edpdpe pe tov aptipo tov KOUP®V 6TV VITOAOYIGTIKY
pag ovotdda. H Mariana trench onpiiovpyel éva vijpa yio kéfe kopfo kot votepo oTéEAVEL TO O1KO
g uepidlo amd ortnuate otov avtiototyo KopPo. Kabe déka deutepOAento GUAAEYOVLE PETPIKEG
ypnoponolmvtog To telnet yio va emkotvovicovpe pe to XML API g Ganglia [9]. Ot petpikéc mov
YPNOLOTOLOVLE Y10 VO TOPACTCOVUE Uit Katdotaon (S) Tng cvotddag pog etvarl ot eEng:

O apBpdc tov elkovik®v VToAoy1oTdVv (VMS) 611 6uoTdado LaG.

H xoBvotépnon oy eéuanpétnon tov artnudtov pLog.

H amoteleopotikn dtokivinorn dedopévav Hésa 6T GLOTASA HaG.

e To 1006 KATOVAMGKAOUEVNG KPLONG LVAING GTN GLGTASM [LOGC.

O ap1Bu6G amd Aettovpyiec/ Tt TOL UITOPEL VoL EEVTNPETNOEL ] GLGTANN LLOG GTNVY TOPOVTOL
oTLyun.

O ap1Bpdc and Aettovpyiec/outnpato Tov ELTNPETNGE 1) GLGTASN LLOG GTIV TPONYOVUEVT] KATAGTOON.
Xpelalopaote autn TV TANPOPOPIo. Y10 VO, ATOPUGIGOVE v 0 apOUOC arTnuatoy Tov do
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e&umnpeToel LEALOVTIKA 1) GLOTASA Log Eivar o Tavo vo avéndei ) va pelmbet, va omoeoacicovpe
ONAad TV KMo TG KOUTOANG TOV CITNUATOV.

e To mocbd elevbepng Pvipng ot cLGTASA LLOG.

e To 10606TO TG KEVIPIKNG HovAdag emelepyaoiog Tov HEVEL 0PN OLLOTOINTT.

e To mocd g pviung tv buffers tng cvotddag pog.

e To moc6 g daBESIUNG LVAUNG OTH GLGTASA LLOC.

e To mocd g dapopalouevng LVIING GTI GLOTASN LOG.

e To 1066 elebBepov ¥DPov 670 dioKO TG GLOTASAG LOC.

e To 1oc6 TV bytes mov g16épyovtal og Kabe KOUPO TNV TOPOOGO GTIYUN OT GLOTASA LOG.

e To mocd tv bytes mov e&€pyoviat o kB KOUPO TNV TapoVGa PACT) GTH GLGTASA LLOC.

H ocvuvépton avtopoPng sivor

Reward = 0.01 * throughput — 0.00001 * latency — 2« V M s 2.1

pog Kol BEAOVLE VO KPATHGOVUE YOUNAG TO KOGTOG TWV EIKOVIKMOV UNYOVOV VA TUPIAANA0 Vo
TETVYOIVOVLLE LEYAAT O10KIVIOT) OESOUEVMV BT GLOTAdA LLOG Kat LikpT| kabvuotépnon otny e&vmnpénon
TOV UTNUATOV HoG. Ze kdOe Prino ekTéleong 0 TPAKTOPAG LAG TOIPVEL L0 ATTOPACT], CUAAEYEL LETPIKEG,
vroAoyilel T cVVAPTNON AVTAUOPNG, TalpVEL i VEQ amOPAoT) KOl EKTEAEL Lia VEO EVEPYELOL.

2.2 Exnaidogvon

Apyika ekmadevovpe Tov Double Deep Q learning, Mariana trench mpditopd pog yio 20000 frpata.
Ta Prparto peioong g e-greedy moAttikng eivat 2000. Avto onpaiver 6t yio ta tpate. 2000 ot
0 aAyOpPONOG Hog Kavel Tehelmg Tuyaieg eVEPYELES, TPOKEUEVOL VO EEEPEVVIGEL KAADTEPO KOl O
peyodvtepo Pabog 1o mepPAriov kot LOVO 6T0 TELOG TEAOG TNG EKTAIdEVONG OAES O EVEPYELEG TTOV
Kével amopaciloviat €€ oAokApov Bacel Tng povadag aropdacewyv tng Mariana trench (oniadn g
KOADTEPNG OTOPOOTG Vil HVYIGTO KEPHOG)

Xpnowomowobpe 620 Prpata Tpo eknaidevong, OnAadn Ta PHOTO TOV apYIKE TaipVEL 0 TPAKTOPAS
pog teheimg Toyaio, KivoOEVOg TUY o 6TO TEPIPAIAOV PLEYPL va YepioeL Tov buffer yia tnv Teyvikn g

emavaAnymc epmelptov (experience replay). Onmg vroloyilovpe Kot 10 KOAUTPAPIGLLA TOV SIKTHOL
HoG 6To Ke@Aahoto 8 BETovpe TOVG KATWOL TAPAYOVTEG:

e To péyebog tov buffer pog yo v eravdinyn euneipuov givar 360 TapelBovtikég epumetpiec.
e To learning rate pog sivor 0.00025.
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2.3 Teot

A@ob TEAELDOEL TO GTASI0 TNG EKTAIOELOTG, TECTAPOVLE TIG EMBOGELG TG Mariana trench ywa 2000
Pruata. Teotdpovpie kat TG TPELG S0pOopETIKEG £KOOYEC TG Mariana trench, to Simple DQN, to Full
DQN «ou to Double DQN. IMapatnpodpe 6TL 0 TpdkTtopdc oG pabaivetl ypriyopa to eptBaAilov Toug
KoL GUYKAVEL TPOG TNV PEATIOTN GLUUTEPIPOPE, GLAAEYOVTAG HeYOra KEPOT. Otav 0 TPAKTOPAS Hag
glvar o Simple DQN, t61€ onataldel Alyo meplocdOTEPO ¥POVO UEXPL VO GUYKAIVEL TPOG TN PEATIOTN
ADoT, P0G KO OE YPNCILOTOLEL SLOPOPETIKO HIKTVO Y10 TOVG GTOYOVS KO SLUPOPETIKO Y10 TIG ATOPAGELG
OT®G delyvovpe 6To KePdAaio 6 7. BAémovpe ta anmoteAéopata oTic €ikoveg 9.1, 9.2, 9.3 .

Otav gpnoiponotodpe Tov KaAvtepo mpdxtopd pag, Tov Double DQN pe peyoddTtepo GET EUTEIPLOV
v ekmaidevon, nrot 60000 napeAbovtikég eumeipieg, PAEmovpe To PEATIOUEV OTOTEAEGUATO OTNV
gwova 9.4
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2.4 XopumepdopoTo oo TO TEPUNATIKO OTOTEAECHOTO,

Ta cuunepdopoto mov Byalovpe amd To TEWPAUOTIKE OTOTEAEGUATO OE SLAPEPOVY OO TOL CUUTEPAGLLALTOL
7OV PYAAOpE OTO KEQPAAOLO LE TIG TPOGOUOIDGELS 8.

2.4.1 Yw0étnon g WBAVIKNG CUUTEPLPOPAS

H Mariana trench metvyaivel ypiyopa kot amotelecatikd va viofethoet ) tn BEATIOTN CLUUTEPLPOPA,
ACYETMG TOL LeYEBOVE TOV GET [E TIC eUmELpieg exmaidgvonc. Av e&apéoovpe TNV TPOGEYYIoN LE TO
Simple Deep Q leagning, o mpdktopdg pog pmopel va cuykAivel Tpog ) PEATIOTN AVGT e OPKETA
UIKPG GET EKTOIdEVOT|G.

2.4.2 Béhtiotn ekperdrigvon TG £16000v

H Mariana trench metvyaivel va cuyKeKpievomoleitol i Tng 1600V TNG, EVVODVTOG OTL KATUPEPVEL
YPRYopa vo LoBaivel TOleg Ao TIG ELGOO0VE TG EXOVV OVIMG KATO10 OVTIKTLTO 6T PEATIOTH GLUTEPLPOPA
NG Kol TOlEG OYL. XTO TEPAUATA HaG EIYOIE KOTOUGTAGEIS TOV Olakpivovtag amd 15 dlapopetikég
€16000VG Kot 0 TPAKTOPAS LG TETHYOVE VO OTOPAGIGEL TO TOEG OO AVTEG TIG ELGOO0VE T TAV G UOVTIKEG
Kol woteg Oyl otV Topeio TG NG TOL aKOUA KOl e PIKPO Tocd amd Prioto ekmaidevonc.

243 Xopwn mroloTAoKOTNTO

H mpocéyyion g Mariana trench engidn ypnoyomotel veupmvikd diktoa oG divel TEpACTIO TAEOVEKTN LA
OGOV aQOpd TN YWPIKN TOAVTAOKOTNTA, oG kot To. NA 0g ¥pnoyLomotohV VTOAOYIGTIKO YDPO Yo
va amofnkevboovv TAnpopopia. O,tt TAnpogopia ypelaldpuacte amodnkeveTal oto Bapn Tov diKTOHOV
LOG. XT1) O1KT OGS TPOGEYYIOT], OTTOV KOTUPEPOLE VO TETVYOIVOVUE BEATIOTO ATOTEAEGLOTO. LE LOALG 3-
EMimEDd A, 0 YMPOG LVIUNG OV Ypetalopaote sivol EapeTikd LiKpOG. AvTod oG SiVEL TNV EAUCTIKOTNTO
VO UITTOPOVLE VUL SIUXEIPLOTOVUE OGO TEPIGTOTEPD HEGOUEVE, OGO TEPLGCOTEPT| EUTELPIN, OGO TEPIGGOTEPT
TANpoopia BELOVLLE, Lag Kat O YPELALETOL VO AvNGUYOVLE Y10, TOV AToONKeLTIKO Ydpo. Eva amod ta
TAEOVEKTNLOTOL OVTYG TNG TPOGEYYIONG, Eival OTL UTOPOVE EDKOAN VO KAUOKDGOVE TOV TPAKTOPAS
LaG 6€ PEYOADTEPO TEPPAALOVTO, LE LEYOADTEP GET EUTEIPLAOV KO EIGOIMV, YMOPIG VO TOL TPOoKAN D&l
dvuokoAia 6to va Ppet T PEATIOTN ADGT, aALG (Kot 0@ €ivol TO KOPLO TAEOVEKTNUA [LOG) VO UTOpel
VoL TNV EVTOTIGEL IO EDKOAN KOl TTLO OTOTEAECUATIKA TOTE.
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Chapter 3

Introduction

In this diploma thesis we present a Deep Reinforcement Learning (DRL) agent for managing the
cluster size in cloud applications. The agent is able to find the optimal behaviour in an environment,
given a reward function and a set of cluster parameters.

This agent which we call Mariana Trench [ 18] constitutes a successful combination of cutting edge al-
gorithmic approaches in deep learning and resource management in cloud based environments. At any
given time the optimal decision is determined in regards to the size of the cluster (increase/decrease/do
nothing), in order to accumulate the best rewards over time.

Furthermore, the rewards can be adapted according to the needs of each cloud user. If the user wants
to keep a low cost then the reward function gives a larger weight on keeping the cluster’s size small. If
the user is in a higher need of producing better throughput results in his cluster, then the agent assigns
a larger weight on the throughput parameter.

3.1 Motivation

The last ten years an explosive growth of cloud computing services has taken place. The evolution
of cloud technologies and also the large growth of information that needs to be stored and managed
created the need of new technologies that could handle these large amounts of data. As a result, tradi-
tional SQL databases gave their place to the NOSQL [23] databases. NoSQL databases spread across
many data points where they store their data, with different models than the traditional relation model
that SQL databases commonly use.

NoSQL systems have been integrated onto cloud computing systems providing better handling of the
information being used by cloud services. Cassandra, HBase, and MongoDB are some examples of
NoSQL databases. In this diploma thesis we are using a cloud based environment built on a Cassandra
database. The volume of data stored nowadays within the cloud is counted in trillions of gigabytes (or
Zetabytes).

Apart from the handling of the information which has been solved by the use of NoSQL systems, large
IaaS (Infrastructure as a Service) providers had another problem to face: How to manage the specific
needs of a user, in order to make sure that these large resources are not being wasted? The answer to
this problem was provided by elasticity. Elasticity is the area of study on how to scale up or down a
cluster automatically based on the user requirements.

As it will be shown in the next section 3.2, there are many ways that have been used to manage
elasticity on cloud computing. DRL has already been employed successfully in environments where
the inputs are waveforms/images. Our goal in this thesis was to explore whether DRL algorithms can
improve current state-of-the-art elasticity methods and handle other sources of information. Our results
show that we achieve optimal behaviour using DRL, and also suggest that DRL can be employed in a
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vast area of similar situations in science, engineering, information technology, gaming, politics, social
relationships etc.

3.2 Related Work

In this section we will present related works, separated in two different subsections. The first subsec-
tion presents works in elasticity in cloud computing and the second Deep Reinforcement works.

Related works in Cloud computing Elasticity

Tiramola [13] is a cloud-enabled open-source framework used to perform auto scaling in clusters
based on user’s defined policies. Tiramola increases or decreases the size of a cluster by adding or
removing one VM at a time in order to gain a biggest reward based on the user’s needs. The factors
that tiramola’s decision module examines are the throughput of the cluster, the latency and the number
of the VMS. Tiramola models the cluster as a Markov Decision Process where different cluster sizes
represent different states. The available actions are adding or removing a VM. In order to isolate
the most relevant experiences to the expected resulting state of each action, tiramola uses K-means
clustering so that the expected reward is being calculated using the centroid of the cluster.

Tiramola’s extended version [14] is a cloud-enabled open-source framework that is used exactly as
tiramola, but differentiates on how the system is modeled and how the decision module works. In this
version of tiramola decision trees [7] are used in order to perform dynamic partitioning of the state
space in a Markov Decision Process. This approach proposes a full-model Markov Decision Process
based algorithm that uses a Decision Tree to generalize over its input.

Nefeli [11] is a cloud-enabled infrastructure gateway that offers mechanisms to migrate virtual ma-
chines as needed, in order to adapt to the changing performance needs of each user. Each user needs
to provide Nefeli with information regarding the handling of their jobs. The authors suggest that using
Nefeli, they managed to get significant improvements in overall time needed and energy consumed
for the workload’s execution in simulated and also real cloud computing environments. The downside
of Nefeli is that it needs internal information about the cloud platform infrastructure in order to work
properly, whereas tiramola does not.

Related works in Deep Reinforcement Learning

A first attempt to Reinforcement Learning using Deep Neural Networks (DNN) (a.k.a. Deep Rein-
forcement Learning - DRL) was proposed in [21] where DNNs were used to forecast the behaviour of
an environment and determine the best decision that an agent should make in a specific environment
state. This approach was called “Deep Q learning”, as it employed neural networks in order to simulate
the Bellman equation. The agent receives image vectors as inputs in order to determine its next move.

In [6] Deep Reinforcement Learning is employed to play the famous “Go” game again using images
of the “Go” board as input and employing DNNs to find the optimal policies. This DRL agent which
was called AlphaGo, enjoyed a lot of publicity after beating the second best player Go player in the
world with a score of 4 to 1.

In [34], DRL is used in order to create an agent that can manage itself in physics based environments.
The authors created an actor-critic, model-free algorithm based on the deterministic policy gradient
that can operate over continuous action spaces. Their approach robustly solves more than 20 simulated
physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged
locomotion and car driving. This approach also uses as input images.
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3.3 Thesis Structure

The structure of this thesis is as follows:

In Chapter 4 we analyse the theoretical background behind our infrastructure. We introduce the Tiramola
architecture upon which we built our implementation. We also present the NoSQL database Cassandra
where tiramola is integrated on, Ganglia, a metric system that we use to collect our cluster metrics.
and YCSB, which is an open source framework developed by Yahoo to test clusters with a variety of
different workloads that imitate a real life cluster workload.

In Chapter 5 we present basic machine learning and reinforcement learning concepts, and especially Q
learning which is the reinforcement learning technique which is improved by employing Deep Neural
Networks.

Neural Networks and Deep Reinforcement Learning is presented in Chapter 6, a version of which we
are using in our approach, as an agent on our decision module of Marianna Trench.

In chapter 7 we present our agent Mariana Trench. We elaborate in its architecture and its network
infrastructure and we present the three different algorithmic approaches that we are gonna use, Deep
Q learning, Full Deep Q learning and Double Deep Q learning.

In Chapter 8, we present the results of our approaches in some demanding simulations scenarios. We
first test and calibrate our network in order to get best results upon our needs. We test our agent in a
simple and a more complex scenario.

In chapter 9 we test our network on a real environment of a cloud computing application, similar
with the one shown in chapter 2. We collect and discuss about our experimental data. Then we talk
about our approach effectiveness (spoiler alert: it was extremely effective!) and make a conclusion
about our thesis. Finally we present possible future work that could be inspired by this thesis, and the
assumptions that one can make for the future of machine learning in general.
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Chapter 4

Necessary theoretical background

In this chapter we will discuss about the different services that we use to test our implementation on.
Let us introduce you the system that is our goal to improve by using our new approach, Tiramola.
We are using Tiramola with the same way we used to do but with one major difference, its decision
making system. We are presenting Tiramola in Section 4.1

The cluster we use is a Cassandra cluster. We will discuss about Cassandra on Section 4.2. We test
our cluster by using ycsb benchmark service, which we present in Section 4.4 and we collect metrics
by using Ganglia, as shown in Section 4.3

4.1 Tiramola

The platform in which we are going to implement our work on is Tiramola[13]. Tiramola is a cloud-
enabled, open-source framework for automatic resizing of NoSQL clusters. In the older versions of
Tiramola, the decision for adding or removing resources was modeled as a Markov Decision Process.
In his Diploma Thesis, Konstadinos Lolos [14] tested a different approach and used Adaptive Space
Partitioning Markov Decision Processes. In this Thesis, by using deep neural networks, we are going to
approach the problem with the decisions that Tiramola makes. But first let us introduce you Tiramola.

Tiramola offers the following features:

e A generic VM-based module which monitors cloud-based NoSQL clusters. This module, offer-
ing multi-grained, scalable monitoring, is further modified in order to report real-time, client-side
statistics.

e Animplementation of the decision-making module as a Markov Decision Process or RL q learn-
ing algorithms later using Adaptive State Space Partitioning of Markov Decision Processes, en-
abling optimal policy generation relative to both changes in the environment and different cost
functions.

e A real-time system that integrates these modules; utilizing popular open-source implementa-
tions for NoSQL, Cloud APIs and benchmarking tools, our system decides on the appropriate
add/remove VM action according to the chosen optimization function and relative to cluster
performance.

4.1.1 Tiramola’s Architecture

The architecture of Tiramola is displayed on this figure 4.1. The Decision Making module incorporates
both on the user-policy defined through an optimization function and on cluster- and client- side mon-
itored metrics and periodically decides on cluster resize actions. In order to release or acquire more
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virtual machines it outputs resize actions to the Cloud Management module that interacts with the
cloud vendor. At this point, the Cluster Coordinator is responsible for orchestrating the addition and
removal commands relative to the particular NoSQL cluster in hand. The Monitoring module main-
tains up-to-date performance metrics which are collected from both client nodes and cluster nodes.
Let’s describe in detail each module.

TIRAMOLA \

( Decision Making ) I @

User policies

~

Get fresh/ NosQ Hardware
metric Clustel resize resize

Monitoring Cluster Cloud
Coordinator Manageme

Adjust
resources

Cloud
Provider

Figure 4.1: Tiramola’s architecture

Decision Making Module

This module is responsible to decide the appropriate cluster resize action according to the applied load,
the cluster and user-perceived performance and the optimization policy. Older versions of Tiramola
formulated this particular process as a Markov Decision Process (MDP). We approach the subject
by using deep neural networks (REF) as predictors that constantly identify the most beneficial action
relative to the current system state. The user goals are defined through a reward function that translates
the optimization on each application wishes to adhere to. When a resize module is reached, it then
forwards this command to the Cloud Management module.

Monitoring

Tiramola uses Ganglia, a scalable 4.3 distributed monitoring tool which allows the remote collection
of live or historical cluster statistics (such as CPU load averages, network, disk or memory space
utilization, number of open client threads and many more) through its XML API. Apart from the
server-side metrics, Ganglia is capable of collecting user-related metrics due to modifications that
have been performed. That was necessary, because the system state may also depend on user-related
information such as mean query latency. In order to achieve this, we modified our clients so that each
one of them will report its own metrics by utilizing a well-known Ganglia operation called gmetric
spoofing. With this mechanism, the monitoring module feeds the decision making module with an
up-to-date system stake,taking into account both client and server side metrics.
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Cloud management

Using the well-known kamaki, an API for communicating with Synnefo iaas, our system interacts
with the cloud vendor. Our iaas service is Okeanos[24]. This module received while input commands
for a NoSQL cluster resize (in the number of running VMs). The communication through kamaki’s
API with our cluster helps us manage that.

Cluster coordinator

The orchestration of freed or newly commissioned resources from the NoSQL cluster is being per-
formed with a remote execution of shell scripts and the injection of automatically created NoSQL-
specific configuration files to each VM. A high-level “start cluster”, “add NoSQL node(s)” and “re-
move NoSQL node(s)” command is thus translated to a workflow of the aforementioned primitives.
With the use of applicable time-outs, our implementation ensures that each step has succeeded before
moving to the next one. Our framework has successfully incorporated three popular NoSQL systems
that exhibit elastic behaviour: HBase (see experimental evaluation), Cassandra and Riak. With the
implementation of the system’s abstract primitives in the Cluster Coordinator module and with the
inclusion of the system’s binaries to the existing AMI virtual machine image the system is extensible
enough to include more engines that support elastic operations. In the project’s website the precooked
virtual image is available for download. TIRAMOLA also strives to be robust: It sometimes check-
points and it may restart after a failure; required state is maintained through the monitoring module as
well as the underlying laaS platform.

4.2 Cassandra

The powerful database system on whose shoulders we are going to build our implementation on is the
Apache Cassandra, a free and open-source distributed NoSQL database. Its highly scalable and high-
performance distributed database allows it to handle large amounts of data across many commodity
servers providing high availability. Cassandra isn’t familiar with the word failure. Assuming that the
reader has basic knowledge with NoSQL databases, we present to you some features and information
about Cassandra that led us to choose her among the other NoSQL databases.

Cassandra:

e is scalable, fault-tolerant, and consistent.
e is a column-oriented database.

e has a distribution design which is based on Amazon’s Dynamo and its data model on Google’s
Bigtable.

e implements a Dynamo-style replication model with no single point of failure, but adds a more
powerful “column family” data model.
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We present some special features of Cassandra below

30

o Fast linear-scale performance - Cassandra is linearly scalable. It increases your throughput as
you increase the number of nodes in the cluster resulting to maintain a quick response time.

e no single point of failure - Cassandra has no single point of failure, fact that makes it an ideal
choice for business-critical applications that cannot afford a failure.

o Fast linear-scale performance - Cassandra is linearly scalable. It increases your throughput as
you increase the number of nodes in the cluster. Therefore it maintains a quick response time.

e Elastic scalability - Cassandra is highly scalable; it permits us to add more hardware to accom-
modate more customers and data as per requirement.

e Fast linear-scale performance - Cassandra is linearly scalable. It increases your throughput as
you increase the number of nodes in the cluster. Therefore it maintains a quick response time.

e Easy data distribution - Cassandra provides the flexibility to distribute data to where you need
them by replicating data across multiple data centres.

e Fastwrites - Cassandra is designed to run on cheap commodity hardware. It performs blazingly
fast, writes and can store hundreds of terabytes of data without sacrificing the read efficiency.



4.2.1 Cassandra’s Architecture

Cassandra’s design goal is to handle big data workloads across multiple nodes without having any
single point of failure. Cassandra has peer-to-peer distributed system across its nodes, and in a cluster
data is distributed among all the nodes.

e In a cluster all the nodes play the same role. Each one is independent and at the same time
interconnected to other nodes.

e When a node goes down, read/write requests can be served from other nodes in the network.

e Everynode in a cluster can accept read and write requests, regardless of where the data is actually
located in the cluster.

Data Replication

In Cassandra, for a given piece of data, some of the cluster’s nodes act as replicas. If some of the
nodes respond with an out-of-date value, Cassandra will then return the most recent value to the client.
Cassandra’s next step will then be to perform a read repair in the background to update the stale values.
The image 4.2 presents a schematic view of how Cassandra uses data replication among the nodes in
a cluster in a way to ensure that it does not have a single point of failure.

Cassandra’s components

e Data center — A collection of related nodes.
e Node — The place where data is stored.
e Cluster — A cluster is a component that contains one or more data centres.

e Commit log — The commit log is a crash-recovery mechanism in Cassandra. Every write oper-
ation is written to the commit log.

e Mem-table — Mem-table is a memory-resident data structure. After commit log, the data will be
written to the mem-table. Sometimes, for a single-column family, there will be multiple mem-
tables.

o SSTable — A disk file to which the data is flushed from the mem-table when its contents reach
a threshold value.

e Bloom filter — These are nothing but quick, non-deterministic, algorithms for testing whether
an element is a member of a set. It is a special kind of cache. Bloom filters are accessed after

every query.

Cluster

Cassandra is distributed through several machines that operate together. A Cluster is the outmost
container of this system. In order to handle a failure every node contains a replica, and when such
time comes the replica takes charge. The nodes at a cluster are arranged on a ring format and data
assign to them.
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Figure 4.2: Data replication in Cassandra

Keyspace
The outermost container for data in Cassandra is a Keyspace. The basic attributes of a Keyspace are —

e Replication factor — It is the number of machines in the cluster that will receive copies of the
same data.

e Replica placement strategy It is the strategy to place replicas in the ring. We have strategies such
as simple strategy (rack-aware strategy), network topology strategy (datacenter-shared strategy)
and old network topology strategy (rack-aware strategy.

o Column families — Keyspace is a container for a list of one or more column families. A col-
umn family, in turn, is a container of a collection of rows. Each row contains ordered columns.
Column families represent the structure of your data. Each keyspace has at least one and often
many column families. An example of Keyspace is shown here 4.3
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Figure 4.3: Cassanda’s Keyspace

4.3 Ganglia

Ganglia [9] is a scalable distributed monitoring system for high-performance computing systems such
as clusters and Grids. It is based on a hierarchical design targeted at federations of clusters. It lever-
ages widely used technologies such as XML for data representation, XDR for compact, portable data
transport, and RRDtool for data storage and visualization. It uses carefully engineered data structures
and algorithms in order to achieve very low per-node overheads and high concurrency. The implemen-
tation is robust, has been ported to an extensive set of operating systems and processor architectures,
and is currently being used on thousands of clusters around the world. It is used to link clusters across
university campuses and around the world and is capable of scaling up to handle clusters with 2000
nodes. Ganglia consist of two system daemons, gmond and gmetad.

4.3.1 Ganglia Monitoring Daemon (gmond)

Gmond is a multi-threaded daemon which runs on each cluster node you want to monitor. Installation
does not require having a common NFS filesystem or a database back-end, neither install special
accounts or maintaining configuration files.

Gmond has four main responsibilities:

e Monitor changes in host state.
e Announce relevant changes.
e Listen to the state of all other ganglia nodes via a unicast or multicast channel.

e Answer requests for an XML description of the cluster state.
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4.3.2 Ganglia Meta Daemon (gmetad)

Federation in Ganglia is achieved by using a tree of point-to-point connections amongst representative
cluster nodes to aggregate the state of multiple clusters. At each node in the tree, a Ganglia Meta
Daemon (gmetad) periodically polls a collection of child data sources, parses the collected XML,
saves all numeric, volatile metrics to round-robin databases and exports the aggregated XML over a
TCP socket to clients. Data sources may be either gmond daemons which represent specific clusters,
or other gmetad daemons which represent sets of clusters. Data sources use source IP addresses for
access control and can be specified using multiple IP addresses for failover. The latter capability is
natural for aggregating data from clusters since each gmond daemon contains the entire state of its
cluster.

4.3.3 Using Ganglia to monitor Tiramola

The Ganglia gmetad component listens on ports 8651 and 8652 by default and replies with XML
metric data. Gmetad needs to be configured to allow XML replies to be sent to specific hosts or all
hosts. By default only localhost is allowed. Connecting to port 8651 will get you as a response a default
XML report of all metrics. Port 8652 is the interactive port which allows customized queries. Gmetad
will recognize raw text queries sent to this port, i.e. not HTTP requests. This way we are receiving
constantly metrics for our system, including metrics for:

e memory usage
o disk usage

e bytes coming in

bytes coming out

memory buffers

shared memory

cached memory

Cached memory, memory buffers, free memory and shared memory are combined to calculate the
total memory.

4.4 Yahoo Cloud Serving Benchmark

With all these new serving databases available including Sherpa, BigTable, Azure and many more,
the decision on which system is right for your application might be difficult, due to the fact that the
features differ between systems, and also because there is not an easy way to compare the performance
of one system versus another. The goal of the Yahoo Cloud Serving Benchmark (YCSB)[40] project
is to develop a framework and common set of workloads for evaluating the performance of different
”key-value” and cloud” serving stores. The project comprises two areas:

The YCSB Client, an extensible workload generator The Core workloads, a set of workload scenarios
to be executed by the generator Although the core workloads provide a well-rounded picture of a
system’s performance, the Client is extensible so that you can define new and different workloads
to examine system aspects, or application scenarios, not adequately covered by the core workload.
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Similarly, the Client is extensible to support benchmarking different databases. Despite that we include
sample code for benchmarking HBase and Cassandra, it is straightforward to write a new interface
layer to benchmark your favorite database. A common use of the tool is to benchmark multiple systems
and compare them. For example, you can install multiple systems on the same hardware configuration,
and run the same workloads against each system. Then you can plot the performance of each system
(for example, as latency versus throughput curves) to see when one system does better than another.

4.4.1 Using ycsb with Tiramola

We are using ycsb to load periodically our Cassandra cluster and get results as for the throughput and
the latency we observe. The incoming load is determined after each step of our experiments.
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Chapter 5

Machine learning- Reinforcment learning

In this chapter we will shortly discuss the history of machine learning before we meet MDPs, where
we are going to elaborate. Then we are going to discuss about different approaches used to solve
MDP problems, until ending up to the origins of Reinforcement Learning. The user should be aware
of the fact that this little journey will help me obtain a bigger understanding of the machine learning
philosophy and the foundations of the first MDP mathematical models. These models will then lightly
travel us to the idea behind the Reinforcement learning and especially Q learning. We have to fully
understand Q learning and the maths behind Q learning before we see the Deep Q learning algorithms,
that this Diploma Thesis uses in order to construct Mariana Trench 7.

5.1 Machine learning through the years

It was in the Ancient Greek tragedies that the concept of deus ex machina emerged. Writers used this
technique when they had painted themselves into a corner as a way to progress the plot. It means
”god by the machine”. The Antikythera mechanism [3] was the first analog computer to be used to
comfort knowledge and data and extract finite conclusions. Aristotle was the first philosopher who
tried to formalize the concept of knowledge and invented syllogistic logic, the first formal deductive
reasoning system. In the newest history Leibniz tried to carry on Aristotle’s vision, by creating a
language that could describe and solve every problem that exists. We all know how that story went
on, from 1700 to the early 90’s, when Godel proved that such a language could never exist.

Back to machines that can think and act like humans, inventions like talking heads[32], Da Vinci’s
walking lion [38] and Pascal’s calculator [25] achieved to imitate certain human’s behaviour.

The first machine which was believed to have truly accomplished to “think and act” like a human,
meaning to be capable to be left alone in an environment and take decisions for its own good and
benefit while it also interacts with another being in the very same environment was the Turk[36]. The
Turk was able to beat some of the best chess players of each era. Nowadays the Turk is believed to
have been nothing more than a scam.

In the beginning of the 19th century Andrey Markov, a Russian mathematician, in his attempt to predict
whether the next letter of Alexander’s Pushkin’s poem, Eugene Onegin, was going to be a vowel or
not, created the famous Markov chains [19], most widely known as Markov chains for discrete time
problems and Markov processes for continuous time problems.

5.1.1 Markov chains and processes

Markov processes obey to the Markov property. In probability theory and statistics, the term Markov
property refers to the memoryless property of a stochastic process, which is defined as
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Pr(Xn+1=z|X1=21,X2=22,..,Xn=2n) = Pr(Xn+1=xz|Xn=2an)

5.1
wherePr(X1=z1,...,Xn=Xn) >0 -1

A stochastic process has the Markov property if the conditional probability distribution of future states
of the process (conditional on both past and present values) depends only upon the present state; that
is, given the present, the future does not depend on the past. A process with this property is said to be
Markovian or a Markov process.

Markov State Diagram

10% 60% 50%

40% 403

Figure 2

Figure 5.1: Markov Chain

Markov decision processes [22] ,in situations where outcomes are partly random and partly under the
control of a decision maker,provide a mathematical framework for modeling decision making.

A Markov decision process is a 5-tuple (S, A, P.(-,-), R.(+,), ), where

S, is a finite set of states

A, is a finite set of actions (alternatively, A is the finite set of actions available from state s),

P.(s,s") = Pr(sy11 = s’ | st = s,a; = a), is the probability that action a in state s at time ¢
will lead to state s” at time ¢ + 1

Ry(s,s') , is the immediate reward (or expected immediate reward) received after transitioning
from state s’ to state s’ °, due to action a

v € [0, 1], is the discount factor, which represents the difference in importance between future
rewards and present rewards.

The goal of MDPs is to choose a policy m which will maximize some cumulative function of the

random rewards, typically the expected discounted sum over a potentially infinite horizon:
[ee]

ZVtRat(St, St+1) (Where we choose a; = (s¢)ar = (s¢))
t=0
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The above problem can be solved with dynamic programming with Value Iteration or Policy Itera-
tion Older versions of Tiramola used MDPs and that’s why we are going to briefly introduce to you
these two basic algorithms.

Value Iteration

The first algorithm we will look at is value iteration. The essential idea behind Let’s look at the value
iteration of the first algorithm. The essential idea behind value iteration is: if we knew the true value
of each state, our decision would be simple: always choose the action that maximizes expected utility.
Only that we don’t know a state’s true value from the start; we only know its immediate reward. But,
for example, a state might have low initial reward but a potential for a high-reward state. The true
value (or utility) of a state is the immediate reward for that state, plus an expected discounted reward
if the agent acted optimally from that point on.

e Algorithm

— Start with V' (s) = 0 for all s.
— Fori =1, ..., H Given Vix, calculate for all states s € S:

Vi 4+ 1%(s) maxz T(s,a,s)[R(s,a,s") + V(s
a
Sl
— This is called a value update or Bellman update/back-up

o V*(s')= the expected sum of rewards accumulated when starting from state s and acting opti-
mally for a horizon of i steps

Theorem 1. Value Iteration Convergence

Value iteration converges. At convergence, we have found the optimal value function V* for the dis-
counted infinite horizon problem, which satisfies the Bellman equations

VS e S:Vi+1%(s) mIiIXZT(S, a,s)[R(s,a,s") + V()]

e What should we do then when we have infinite horizon with discounted rewards:

— Run value iteration till convergence.

— This produces V*, which in turn tells us how to act, namely following: *(s) = argmax T(s,a,s")[R(s,a,
ac 7
YW (s)]

S
o Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the
same action at all times. (Efficient to store!)

Policy Iteration

Value iteration works fine apart from two weaknesses: the first one is that it can take a long time to
converge in some situations, even when the underlying policy is not changing, and the second one is
that it doesn’t actually do what we really need. We don’t really care what the value of each state is;
that’s just a tool to help us find the optimal policy. Why then can we not have the policy right away?
We actually can, by modifying value iteration to iterate over policies. We start with a random policy,
compute each state’s utility given that policy, and then select a new optimal policy.
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e Recall value iteration iterates: V; + 1*(s) < mjlxz T(s,a,s)[R(s,a,s") +~V*(s)]
e Policy evaluation: V;_; (s) < ZT(S, (), 8")[R(s, (s),8) + V(5]
e At convergence: VsV (s) Z T(s,(s),s)[R(s,(s),s") +~vV(s)]

Theorem 2. Policy iteration is guaranteed to converge and at convergence, the current policy and
its value function are the optimal policy and the optimal value function!

5.2 Reinforecment learning

The journey to the Machine learning field continues and in 1950 Alan Turing developed the Turing test
[35]. A test which was able to determine if a machine could exhibit intelligent behaviour equivalent
to, or indistinguishable from, that of a human. This very same year, the Three Laws of Robotics by
Isaac Asimov was also published.

* A robot may not harm a human being, or, through inaction, allow a human being to come to
harm.

* A robot must obey the orders received by humans except where such orders would conflict with
the First Law.

* A robot must protect its own existence as long as such protection does not conflict with the First
or Second Law.

In 1951 the first Neural Network is constructed. We are going to discuss about Neural Networks,
in the next chapter. In 1956 John McCarthy coined the term “artificial intelligence” as the topic of
the Dartmouth Conference, the first conference devoted to the subject. In 1989 the concept of Rein-
forcement Learning [27] emerges. Reinforcement learning is an area of machine learning inspired by
behaviourist psychology, concerned with how software agents ought to take actions in an environment
so as to maximize some notion of cumulative reward.

In machine learning, the environment is typically formulated as a Markov decision process (MDP),
as many reinforcement learning algorithms for this context utilize dynamic programming techniques.
The main difference between the classical techniques and reinforcement learning algorithms is that
the latter do not need knowledge about the MDP and they target large MDPs where exact methods
become infeasible. Reinforcement learning differs from standard supervised learning because correct
input/output pairs are never presented, nor sub-optimal actions explicitly corrected. Apart from that,
there is a focus on on-line performance, which involves exploitation (of current knowledge) and find-
ing a balance between exploration (of uncharted territory). The exploration vs. exploitation trade-off in
reinforcement learning has been most thoroughly studied through the multi-armed bandit [4] problem
and in finite MDPs.

RL played a major role in the bond between artificial intelligence and other engineering disciplines.
Not so long ago, Al was viewed as almost entirely separate from control theory and statistics. It had to
do with logic and symbols, not numbers. Al was large LISP programs, not linear algebra, differential
equations or statistics. Over the last decades this view has gradually eroded. Modern Al researches
accept statistical and control algorithms, for example as relevant competing methods or simply as tools
of their trade. The previously ignored areas lying between Al and conventional engineering are now
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among the most active, including new fields such as neural networks, intelligent control and RL. In
RL we extend ideas from optimal control theory and stochastic approximation to address the broader
and more ambitious goals of Al

The top part of Figure shows that several academic disciplines that have contributed to RL.
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Figure 5.2: Reinforecment learning
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One can identify four main sub elements of a reinforcement learning system. A policy, a reward
function, a value function and optionally a model of the environment.

A policy defines the way of behaving of a learning agent at a given time. Roughly speaking, policy
is a mapping of perceived states of the environment to actions to be taken when in those states. It
corresponds to, what psychology names, a set of stimulus-response rules or associations. In some
cases the policy may be a simple function or lookup table, whereas in others it may involve extensive
computation such as process. The policy is the core of an RL agent in the sense that it alone is sufficient
to determine behaviour. Generally speaking, policies might be stochastic.

A reward function defines the goal in an RL learning problem. Roughly speaking, it maps each per-
ceived state (or state-action pair) of the environment to a single number, a reward, indicating the
intrinsic desirability of that state. An RL agent’s sole objective is to maximize the total reward it re-
ceives in the long run. The reward function defines what are good and what are bad events for the
agent. In a biological system, it would not be inappropriate to identify rewards with pleasure and pain.
They are the immediate and defining features of the problem faced by the agent. As such, the reward
function must necessarily be unalterable by the agent. However, it may serve as a basis fot altering
the policy. For example, if an action selected by the policy is followed by low reward, then the policy
may change to select some other action in that situation in the future. In general, reward functions may
be stochastic.

Whereas reward function indicates what is good in an immediate sense, a value function is what
specifies as good in the long run. Roughly speaking, the value of a state is the total amount of reward
an agent can expect to accumulate over the future, starting from that state. Whereas rewards determine
the immediate, intrinsic desirability of environment states, values indicate the long-term desirability
of states after taking into account the states that are likely to follow and the rewards available in those
states. For example, a state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. The reverse could be also true.
To make a parallelism, in humans rewards are like pleasure (if high) and pain (if low), whereas values
correspond to a more refined and far-sighted judgement of how pleased or displeased we are that our
environment is in a particular state. Expressed this way, we help it clear that value functions formalize
a basic and familiar data.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary. Without
rewards there would be no values and the only purpose of estimating values would be to achieve more
reward. Nevertheless, it is values that concerns as the most when making and evaluating decisions.
Action choices are made based on value judgements. We seek actions that bring about states of highest
value, not highest reward, because these actions obtain the greatest amount of reward for us over
the long run. In decision-making and planning, the derived quantity called value is the one which
concerns us the most. Unfortunately, it is much harder to determine values than it is to determine
rewards. Rewards are basically given directly by the environment, but values must be estimated and re-
estimated from the sequences of observations an agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning algorithms is the method for estimating
values efficiently. Over the last decades, the most important thing we have learned about reinforcement
learning is arguably the central role of value estimation.

The fourth and last element of some reinforcement learning systems is a model of the environment. It
is something that mimics the behaviour of the environment. For example, when given a state an action,
the model might predict the resultant next state and rewards. Models are used for planning, and by that
we mean any kind of decision on a course of action, by considering possible future situations before
they actually happen. The incorporation of models and planning into reinforcement learning systems
is a relatively new development. Early RL systems were explicitly trial-and-error learners. What they
did was viewed as almost the opposite of planning.
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5.2.1 Basic RL Algorithms

A wide variety of algorithms exist to date with which RL problems can be addressed.

At the core of most RL algorithm lies the method of Temporal Differences [31], a prediction method
proved by Richard S. Sutton on converge in 1987. We consider a sequence of states followed by
rewards S¢, T'i41, St41, Tt42, -+, T'T, ST

The complete return R, to be expected in the future from state s; is

T-t-1 r

>

Ry =11+ o+ oo+

where y<I is a discount factor (distant rewards are less important). Reinforcement learning assumes
that the value of a state V(s) is directly equivalent to the expected return V (s) = Er(Ry|s; = s)

where 7 is here an unspecified action policy. Thus, the value of state s; can be iteratively updated with
V(s) = V(st) + [Re—V (st)]

where o is a step-size (often =1). Note, if V'(s;) correctly predicts the expected complete return R,
, the update will be zero in average and we have found the final value for V . This method requires
waiting until a sequence has reached its terminal state before the value-update can commence. For
long sequences this may be problematic. However, given that E(R;) = E(r: + 1) + V(s¢ + 1) we
can also update iteratively by

V(S) — V(St) + [Tt+1 + V(St + ].)—V(St)]

Properties of TD-learning

: This will converge to the final value function assigning to each state its final value, if all states have
been visited “often enough”. However, this can, lead to very slow convergence if the state space is
large. The expectation value of the §-error denoted by Z(3) will converge to zero, while 9 itself can -
for example - also alternate between positive and negative values. For large state spaces and/or sparse
rewards convergence may require many steps and can be very slow.

5.3 Q Learning

Q-learning [39] is a model-free reinforcement learning algorithm. It can be viewed as a method of
asynchronous dynamic programming (DP). Q-learning provides agents with the capability of learn-
ing how to act optimally in Markovian domains by experiencing the consequences of actions, while
Q-learning [39] is a model-free reinforcement learning algorithm. It can be viewed as a method of
asynchronous dynamic programming (DP). Q-learning provides agents with the capability of learning
how to act optimally in Markovian domains by experiencing the consequences of actions, without
requiring them to build maps of the domains. Learning proceeds similarly to the method of temporal
differences which we discussed above. An agent tries an action at a particular state, and evaluates its
consequences in terms of the immediate reward or penalty it receives and its estimate of the value
of the state to which it is taken. By trying all actions in all states repeatedly, it learns which is best
overall, judged by long-term discounted reward.

5.3.1 Q learning algorithm

To begin with, let’s introduce two very important variables of the q learning approach.
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Learning rate

« is the learning rate of the algorithm. It determines to what extent the newly acquired information
will override the old information. A factor of 0 will make the agent learn nothing, while a factor of 1
would make the agent consider only the most recent information. In fully deterministic environments,
a learning rate of oy = 1 is optimal. The algorithm, when the problem is stochastic, still converges
under some technical conditions on the learning rate that require it to decrease to zero. In practice,
often a constant learning rate is used, such as a; = 0.1 forallt

Discount factor

v is the discount factor. It determines the importance of future rewards. A factor of 0 will make the
agent "myopic” (or short-sighted) by only considering current rewards, while a factor approaching 1
will make it strive for a long-term high reward. If the discount factor meets or exceeds 1, the action
values may diverge. For v = 1, without a terminal state or, if the agent never reaches one, all environ-
ment histories will be infinitely long, and utilities with additive, undiscounted rewards will generally
be infinite. As we know from previous chapters there is at least one optimal stationary policy 7 which
is such that

V*(z) = V™ (2) = maza(Re(a) + 7Y Poyla]V™(y))

is as well as an agent can do from state x. Although this might look circular, it is actually well defined

and we are provided with a number of methods for calculating V* and one 7™, assuming that R (a)

and Py, [a] are known. The task facing a () learner is that of determining a 7* without initially knowing

these values. For a policy " , define @ values (or action-values) as:

Q" (z,a) = Ry(a) + v Z Ppy[m(x)]V™ (y) In other words, the @ value is the expected discounted
Y

reward for executing action « at state x and following policy 7 thereafter. The object in Q learning is to
estimate the () values for an optimal policy. It is straightforward to show that V' x () = max Q*(x, a)
a

and that if a* is an action at which the maximum is attained, then an optimal policy can be formed as
7" (x) = «*. Herein lies the utility of the Q values: if an agent can learn them, it can easily decide
what it is optimal to do. Although there may be more than one optimal policy or a*, the Q* values are
unique. In Q-learning, the agent’s experience consists of a sequence of distinct stages or episodes. In
the n'h episode, the agent:

e observes its current state x,,,

e selects and performs an action a,,,

e observes the subsequent state Y,,,

e receives an immediate payoft r,, and

e adjusts its Q),,—1 values using a learning factor a,,, according to:

1, 1—anQn-1(z,a)+ an[rn +vVo-1(yn) ifr = znanda = ayand

Qn(z,a) = { (5.2)

0, Qn-1(x,a)otherwise
where V,,_1(y) == mlle(Qn—l(ya b))
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is the best the agent thinks it can do from state y. Of course, in the early stages of learning, the Q
values may not accurately reflect the policy they implicitly define (the maximizing actions in the
second equation). The initial Q values, Qo (X, a), for all states and actions are assumed given.

This description assumes a look-up table representation for the @, (z, a). Watkins (1989) shows that
Q-learning may not converge correctly for other representations.
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Chapter 6

Neural Networks, Deep Q learning

In this chapter we are going to discuss about Neural Networks, an approach on machine learning
problems. Firstly let’s talk about linear regression [16]. Let’s have a look at the Figure 6.1 Take some
points on a 2D graph, and draw a line that fits them as well as possible. What you have just done
is generalized from a few examples of pairs of input values (x) and output values (y) to a general
function that can map any input value to an output value. This is known as linear regression, and it is a
wonderful, little 200 years old technique, for extrapolating a general function from some set of input-
output pairs. And here is why having such a technique is wonderful: there is an incalculable number
of functions that are hard to develop equations for directly, but are easy to collect examples of input
and output pairs for in the real world - for instance, the function mapping an input of recorded audio of
a spoken word to an output of what that spoken word is. Linear regression is a technique to solve the
problem of speech recognition, though a bit too wimpy, but what makes it essential is what supervised
Machine Learning is all about: given a training set of examples, where each example is a pair of an
input and output from the function (we shall touch on the unsupervised flavour in a little while), the
machine can ‘learn’ a function. To be more specific, machine learning methods should produce a
function that can generalize well to inputs not in the training set, since then we can actually apply it
to inputs for which we do not have an output. For example, the speech recognition technology that is
currently used by Google is powered by Machine Learning with a massive training set, but not nearly
as big a training set as all the possible speech inputs you might task your phone with understanding.

This generalization principle is so important that there is almost always a test set of data (more exam-
ples of inputs and outputs) that is not part of the training set. The separate set can be used to evaluate
the effectiveness of the machine learning technique by seeing how many of the examples the method
correctly computes outputs for given the inputs. The nemesis of generalization is overfitting - learning
a function that works really well for the training set but badly on the test set. Since machine learning
researchers had the need to state means to compare the effectiveness of their methods, over time there
appeared standard datasets of training and testing sets that could be used to evaluate machine learning
algorithms.

6.1 Neural Networks origins

6.1.1 The Perceptron

Linear regression resembles the first idea conceived specifically as a method to make machines learn:
Frank Rosenblatt’s Perceptron Figure 6.2 Rosenblat, a psychologist, conceived of the Perceptron as a
simplified mathematical model of how the neurons in our brains work: it takes a set of binary inputs
(nearby neurons), multiplies each input by a continuous valued weight (the synapse strength to each
nearby neuron), and thresholds the sum of these weighted inputs to output a 1 if the sum is big enough
and otherwise a 0 (in the same way neurons either fire or do not). Most of the inputs that a Perceptron
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10 20 30 40 50 60

Figure 6.1: Linear Regression

takes can be either the output of another Perceptron or some data, but an extra detail is that Percep-
trons also have one special ‘bias’ input, which just has a value of 1 and basically ensures that more
functions are computable with the same input by being able to offset the summed value. This model
of the neuron built by Warren McCulloch and Walter Pitts Mcculoch-Pitts[20] , who showed that a
neuron model that sums binary inputs and outputs a 1 if the sum exceeds a certain threshold value,
and otherwise outputs a 0, can model the basic OR/AND/NOT functions. In the first days of Al, this
was a significantly important issue - the predominant thought at the time was that making computers
able to perform formal logical reasoning would essentially solve AI. However, the Mcculoch-Pitts

— ()

R
1if 2 w:x:>0
0= e

0 otherwise

Figure 6.2: Perceptron

model lacked the crucial mechanism for learning, which was highly needed in order to be usable for
Al This is where the Perceptron excelled - Rosenblatt came up with a way to make such artificial
neurons learn, finding inspiration from the foundational work of Donald Hebb. Hebb put forth the un-
expected and hugely influential idea that knowledge and learning occurs in the brain primarily through
the formation and change of synapses between neurons - concisely stated as Hebb’s Rule:
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“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.”

This idea was not exactly the one that the Perceptron followed, but having weights on the inputs,
allowed for a very simple and intuitive learning scheme: given a training set of input-output examples
the Perceptron should ‘learn’ a function from, for each example increase the weights if the Perceptron
output for that example’s input is too low compared to the example, and otherwise decrease the weights
if the output is too high. To state the algorithm ever so slightly more formally, the basic steps are given
below:

1. accommodate the growth of load in a manner that does not impact the quality of the service and

2. utilize the addition of new resources to their full extend, in order to improve its performance.

There are two methods of scaling, horizontal (scaling out) and vertical (scaling up), which are ex-
plained below:

1. Start off with a Perceptron having random weights and a training set
2. For the inputs of an example in the training set, compute the Perceptron’s output

3. e Ifthe output should have been 0 but was 1, decrease the weights that had an input of 1.

e If the output should have been 1 but was 0, increase the weights that had an input of 1.

4. Go to the next example in the training set and repeat steps 2-4 until the Perceptron makes no
more mistakes

or and XOr

0|- ™~ + 0| - - 0|- +
0 1 0 1 0 1
Yep Yep Nope

Figure 6.3: limitations of Perceptrons. Finding a linear function on the inputs X,Y to correctly output
+ or - is equivalent to drawing a line on this 2D graph separating all + cases from - cases;
clearly, for the third case this is impossible
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6.1.2 The discovery of hidden layers

The single layer neural networks were quickly seemed to not be effective enough. But what was the
reason? The idea, after all, was to combine a bunch of simple mathematical neurons to do complicated
things, not to use a single one. In other words, we don’t only use one output layer to send an input
to arbitrarily many neurons, which are called a hidden layer 6.4 because their output acts as input to
another hidden layer or the output layer of neurons. All the intermediate computations done by the
hidden layer(s) can confront vastly more complicated problems than just a single layer, but only the
output layer’s output is ‘seen’, which is the answer of the neural net. In basic terms, hidden layers can

output layer

input layer
hidden layer 1 hidden layer 2

Figure 6.4: Neural net with two hidden layers

find features within the data and allow following layers to operate on those features rather than the
noisy and large raw data, which is very beneficial. For example, in the very common neural net task of
finding human faces in an image, the first hidden layer could take in the raw pixel values and find lines,
circles, ovals, and so on within the image. The next layer would receive the position of these lines,
circles, ovals, and so on within the image and use those to find the location of human faces - much
easier! And people, basically, understood this. In fact, until recently, machine learning techniques were
commonly not applied directly to raw data inputs such as images or audio. Instead, machine learning
was done on data after it had passed through feature extraction - that is, to make machine learning,
learning easier was done on preprocessed data from which had been already extracted more useful
features such as angles or shapes. It is highly important to mark that Minsky and Papert’s analysis
of Perceptrons did not merely show the impossibility of computing XOR with a single Perceptron,
but specifically argued that it had to be done with multiple layers of Perceptrons - what we now call
multilayer neural nets - and that Rosenblatt’s learning algorithm did not work for multiple layers. And
that was the real issue: the simple learning rule, that was previously outlined for the Perceptron, is
not functional for multiple layers. In order see the reason behind, let’s reiterate how a single layer of
Perceptrons would learn to compute some function:
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1. A number of Perceptrons equal to the number of the function’s outputs would be started off with
small initial weights

2. For the inputs of an example in the training set, compute the Perceptrons’ output

3. For each Perceptron, if the output does not match the example’s output, adjust the weights ac-
cordingly

4. Go to the next example in the training set and repeat steps 2-4 until the Perceptrons no longer
make mistakes

The fact why this does not operate for multiple layers should be clear: the example only specifies the
correct output for the final output layer, so how in the world should we know how to adjust the weights
of Perceptrons in layers before that? The answer, despite taking some time to derive, proved to be once
again based on age-old calculus: the chain rule. The key realization was that if the neural net neurons
were not quite Perceptrons, but were made to compute the output with an activation function that was
still non-linear but also differentiable, as with Adaline, the chain rule could be used to compute the
derivative for all the neurons in a prior layer and thus the way to adjust their weights would also be
known and also the derivative could be used to adjust the weight to minimize error. To make it more
clear: we can use calculus to assign some of the blame for any training set mistakes in the output
layer to each neuron in the previous hidden layer, and then we can further split up blame if there is
another hidden layer, and so on - we backpropagate the error. And so, we can find how much the
error changes if we change any weight in the neural net, including those in the hidden layers, and use
an optimization technique (for a long time, typically stochastic gradient descent) to find the optimal
weights to minimize the error.

6.2 The backpropagation breakthrough

In 1985, David Rumelhart, Geoff Hinton and Ronald J. Williams [30], described the process of back-
propagation, as a neural networks technique. Backpropagation was well known form the 60s but it
wasn’t till 1985 that Rumelhart, Hinton and Williams used the basic idea of backpropagation and
introduced to the world a new method of solving neural networks with hidden layers. To talk about
backpropagation we shall be first be familiar with the concept of gradient descent.

6.2.1 Gradient Descent

Gradient descent [5] is used for finding the minimum of a function and it is a first-order iterative op-
timization algorithm. To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or of the approximate gradient) of the function at the
current point. On the other hand, gradient ascent is the procedure in which one takes steps propor-
tional to the positive of the gradient and one approaches a local maximum of that function, which
distinguishes it from the gradient descent. Gradient descent is based on the observation that if the
multi-variable function F(x) is defined and differentiable in a neighbourhood of a point a , then F(x)
decreases fastest if one goes from a in the direction of the negative gradient of F at a, —V F'(a). It
follows that, if a"! = a" — 4 VF(a") for ~ small enough, then F(a") > F(a""!) . In other words,
the term vYVF(a) is subtracted from a because we want to move against the gradient, namely down
toward the minimum. With this observation in mind, one starts with a guess X for a local minimum
of F', and considers the sequence Xy, X1, Xz, . . . such that x,4+1 = Xp — W VF(xy),n > 0 We have
F(xo) > F(x1) > F(xz2) > - - -, so hopefully the sequence x, converges to the desired local minimum.
Note that the value of the step size -y is allowed to change at every iteration. So what gradient descent

51



does is moving us to minimums of our functions. That is a powerful tool, that tells us that we can
re-evaluate our function variables, using gradient descent which takes us to a family of our variables
space where we can minimise our function. The way to use gradient descent on neural networks is
backpropagation. So what gradient descent does is moving us to minimums of our functions. That is
a powerful tool which tells us that we can re-evaluate our function variables using gradient descent,
fact which leads us to a family of our variables space where we can minimize our function. The way
to use gradient descent on neural networks is backpropagation.

6.2.2 backpropagation

Here is an introductive example about backpropagation. We are about to use a neural network with
two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will
include a bias. Here’s the basic structure: We put some random initial weights and biases. The goal

b b2

Figure 6.5

of backpropagation is to optimize the weights so that the neural network can learn how to correctly
map arbitrary inputs to outputs.
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o b2

Figure 6.6

The Forward Pass

To begin with, let’s see what the neural network currently predicts, given the weights and biases
above and inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network. We
figure out the total net input to each hidden layer neuron, squash the total net input using an activation
function (here we use the logistic function), then repeat the process with the output layer neurons.
Here’s how we calculate the total niat input for h: We then squash it using the logistic function to
1+ e_nety, 1+e—03775
get: outps = 0.59688 We repeat this process for the output layer neurons, using the output from the
hidden layer neurons as inputs. Here’s the output for o1: net,; = ws * ouiihl + wg * outh% + by x1

netoy = 0.4%0.59326 4 0.45%0.59688 4+ 0.6 % 1 = 1.10590 out,; = = =
14+e_net,;, 14+e—1.10590
075136

get the output of hy: outp; =

Carrying out the same process for ho we

Calculating the Total Error

We are now able to calculate the error for each output neuron using the squared error function and sum

1 1
them up to get the total error: Ey 01 = —(target — output)® The = is included so that exponent is
8 2 2

cancelled when we differentiate later on. The result is eventually multiplied by a learning rate anyway
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so it doesn’t matter that we introduce a constant here. For example, the target output for o1 is 0.01 but

1
the neural network output 0.75136507, therefore its error is: E,; = Z i(targetol — output01)2 =

1
Z 5(0.01 —0.75135)2 = 0.27841 and E,3 = 0.02356 The total error for the neural network is the

sum of these errors: F;,;q = 0.29837

The Backwards Pass

algtotal 8E‘total

8w5 ' 8’LU5
is is read as “the partial derivative of F,s, With respect to ws*. You can also say “the gradient with

. . oF oF dout Onet
respect to ws*. By applying the chain rule we know that: —.2al — Z—total Otlor , ltClol
ows Oout,1  Onetyy ows

Visually, here’s what we’re doing: We need to figure out each piece in this equation. First, how much

Consider ws. We want to know how much a change in ws affects the total error, aka

AE, . Y
ﬂutput il i }
hi
t
- E o1 = Y(target o4 - out,, )?
Etotal =Eo1*Eq2
1

Figure 6.7

. 1 1
does the total error change with respect to the output? Ey 0 = B (target,) — out01)2 + 5 (targetoo —

OF 1 OF

2 total 21 total
=2—(t to1 — out —-1+0

douty 2( argetor — outo) * + douty

. . . .1
When we take the partial derivative of the total error with respect to out,, the quantity 3 (target,o —

= —(targety1 — outer) = 0.74136

oute2)

0ut02)2 becomes zero because out,; does not affect it which means we’re taking the derivative of
a constant which is zero. Next, how much does the output of 0; change with respect to its total net

input? The partial derivative of the logistic function is the output multiplied by 1 minus the output:

1 t
outyl = ool _ outy1 (1 —outyr) = 0.75316 % (1 — 0.75316) = 0.18618 Finally, how
Y

1 + €_neto1 netol
much does the total net input of 01 change with respect to ws ? net,; = ws*outyl+wgxoutp2+box1
¢ o OF
Tl — 14 outpy * wél — 1) +0+0 = outp; = 0.59326 Putting it all together: — 2% —

Ws 8w5
OFiotar,  Ooutor  Onetor OFiotal _ o w1136, 0 18681 %0.50326 — 0.08216 To decrease the error,
80ut01 8net01 811)5 871)5

we then subtract this value from the current weight (optionally multiplied by some learning rate, eta,

. OE.
which we’ll set to 0.5): wl+) = ws * 7 * a“’ml = 0.4 —0.5%0.08126 = 0.35891
Ws
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6.3 Deep Q learning

Deep Learning

We have come to an understanding of what deep neural networks are all about when we referred
to backpropagation on the previous chapter. But before we proceed on deep reinforcement learning
let us define it accurately The application to learning tasks of artificial neural networks (ANNs) that
contain more than one hidden layer is called deep learning (also known as deep structured learning or
hierarchical learning). Deep learning is part of a broader family of machine learning methods based
on learning data representations, as opposed to task specific algorithms. Learning can be supervised,
partially supervised or unsupervised. Deep learning is a class of machine learning algorithms that

e use a cascade of many layers of non-linear processing units for feature extraction and transfor-
mation. Each successive layer uses the output from the previous layer as input. The algorithms
may be supervised or unsupervised and applications include pattern analysis (unsupervised) and
classification (supervised).

e are based on the (unsupervised) learning of multiple levels of features or representations of the
data. Higher level features are derived from lower level features to form a hierarchical represen-
tation.

e are part of the broader machine learning field of learning representations of data.

e learn multiple levels of representations that correspond to different levels of abstraction; the
levels form a hierarchy of concepts.

Classification-Reinforcement learning

Before we talk about Deep Q Learning, let us first understand Classification as an aspect of problems
solved with neural networks. Classification problems are a subcategory of supervised learning algo-
rithms. In classification problems we have a set of data. As we previously saw we divide our data to
a training and a test set. When we train our Neural Network we let it predict a value for a given input.
The difference between the real value, which we call target and the predicted value is the error that
we want to minimize. In classification problems the target is district. Meaning yes or no answers are
the right prediction. For example, ”does this image depicts a cat?”. But to train our algorithm we must
first know the right answer for the target. In reinforcement learning, as we saw on chapter 5, we don’t
know the right answer, the target from the beginning. What we do is letting the agent find the best
practice after feeding him with rewards. So how could the above two strategies combine?

6.3.1 DeepMind’s Deep RL

In 2013, Deepmind publicized a paper [21] that was about to change the course of learning evo-
lution. The paper’s name was Playing Atari with Deep Reinforcement Learning and that was what
they basically did. They found a way of combining deep neural networks techniques for classification
problems, with reinforcement learning, especially Q Learning. In this paper they demonstrated how
a computer learned to play Atari 2600 video games by observing just the screen pixels and receiv-
ing a reward when the game score increased. The result was remarkable, because the games and the
goals in every game were very different and designed to be challenging for humans. The same model
architecture, without any change, was used to learn seven different games, and in three of them the
algorithm performed even better than a human! Deepmind’s research took place in order to diminish
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the problems that occurred when trying to combine RL algorithms with Deep learning. Reinforcement
learning presents several challenges from a deep learning perspective. Firstly, most successful deep
learning applications to date required large amounts of hand labelled training data. RL algorithms,
on the other hand, must be able to learn from a scalar reward signal that is frequently sparse, noisy
and delayed. The delay between actions and resulting rewards, which can be thousands of timesteps
long, seems particularly daunting when compared to the direct association between inputs and tar-
gets found in supervised learning. Another issue is that most deep learning algorithms assume the
data samples to be independent, while in reinforcement learning one typically encounters sequences
of highly correlated states. Furthermore, in RL the data distribution changes as the algorithm learns
new behaviours, which can be problematic for deep learning methods that assume a fixed underlying
distribution. Deepmind’s goal was to create a neural network agent that could learn to play as many
games as possible. Atari 2600 games implemented in The Arcade Learning Environment (example in
Figure 6.8 . Atari 2600 is a challenging RL testbed that presents agents with a high dimensional visual
input (210 x 160 RGB video at 60Hz) and a diverse and interesting set of tasks that were designed to
be difficult for humans players.

Background

How did Deepmind managed set up its experiments? First of all they had to find a depiction of the
environment, so they used the raw pixels of the Atari screen. So first we have a ; = vector containing
all screen pixels. At each state s; our agent performs an action a; with a; € A = 1, .., K the legal
set of actions. When performing an action a; from state s; the agent receives a reward 7. As it is
pretty obvious it is impossible to understand the current situation from only the current screen state
x¢. Therefore they considered a sequence of actions and observations s; = 1, a1, T2, ag, ..., z7. All
sequences on the emulator are assumed to terminate in a finite number of time steps. This formalism
gives rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct
state. As a result, we can apply standard reinforcement learning methods for MDPs, simply by using
the complete sequence s; as the state representation at time t. They make the standard assumption
that future rewards are discounted by a factor of v per time-step. The future discounted return at

T
time t is defined as R; = Z ’yt/*trg. T is the time-step at which the game terminates. The optimal
t'=t
value Q * (s,a) classically is the maximum expected value after executing an action a when in a

state s. Q * (s,a) = max.E[R¢|s; = s,a; = a,n]. The optimal action-value function obeys an

important identity known as the Bellman equation which we discussed in chapter 5.1.1. @ * (s,a) =

E[r + ’ym/ax Q * (s',d|s,a)] The basic idea behind many reinforcement learning algorithms is to
a

estimate the action value function, by using the Bellman equation as an iterative update. In practice,
this basic approach is totally impractical, because the action-value function is estimated separately for
each sequence, without any generalisation. Instead, it is common to use a function approximator to
estimate the action-value function, Q(s, a, )=Q*(s, a) (s, a). In the reinforcement learning community
this is typically a linear function approximator, but sometimes a non-linear function approximator is
used instead, such as a neural network. We refer to a neural network function approximator with
weights 6 as a Q-network. A Q-network can be trained by minimising a sequence of loss functions
L;(6;) that changes at each iteration i, L;(6;) = E[(y; — Q(s, a,6;))?]

where, and this is the most important part, y; = E[r + ymaz,Q(s',d’,0;_1]s,a]. So our targets
are determined by the Bellman’s equation. In classification problems, we had fixed targets. Now we
obtain our targets by simply performing the Bellman’s equation on our network. We use our networks
weights to compute the ()* in one time-step on the future, so we can go then back and using backprop-
agation, compute our new network weights. This is the hole key. Where we were trying to get from the
beginning of this paper, so that we then be able to understand the thinking behind this diploma thesis.
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Figure 6.8: Atari game example

Note that this algorithm is model-free: it solves the reinforcement learning task directly using samples
from the emulator E, without explicitly constructing an estimate of E. It is also off-policy: it learns
about the greedy strategy a = max,Q(s, a; ), while following a behaviour distribution that ensures
adequate exploration of the state space. In practice, the behaviour distribution is often selected by an
e-greedy strategy that follows the greedy strategy with probability 1 — e and selects a random action
with probability e.
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The trick of experience replay

So Deepmind wanted to connect a RL algorithm with a deep neural network operating on RGB images
and being able to efficiently been trained by performing stochastic gradient descent updates. Tesauro’s
TD-Gammon [33] architecture provided a starting point for such an approach. Teasuro’s architecture
updates the parameters of the network which estimates the value function from on-policy samples of
experience S, ag, ', St+1, a¢+1 drawn from the algorithm’s interactions with the environment (or by
self-play, in the case of backgammon). This approach was able to outperform the best human backgam-
mon players 20 years ago! So it is natural to wonder whether two decades of hardware improvements,
coupled with modern deep neural network architectures and scalable RL algorithms might produce
significant progress. In contrast to TD-Gammon and similar online approaches, Deepmind utilized a
technique known as experience replay where they: store the agent’s experiences at each time-step,
er = (8¢, a4, 14, 8441) in a data-set D = ey, ..., en , pooled over many episodes into a replay mem-
ory. During the inner loop of the algorithm, they apply Q-learning updates, or mini batch updates, to
samples of experience, e € D, drawn at random from the pool of stored samples. After performing
experience replay, the agent selects and executes an action according to an e-greedy policy. It is easy
to see how unwanted feedback loops may arise and the parameters could get stuck in a poor local
minimum, or even diverge catastrophically. By using experience replay the behaviour distribution is
averaged over many of its previous states, smoothing out learning and avoiding oscillations or diver-
gence in the parameters. Since using histories of arbitrary length as inputs to a neural network can be
difficult, Deepmind’s Q-function instead works on fixed length representation of histories produced
by a function . The full algorithm, called as deep Q-learning, is presented below.

The Algorithm

Initialize replay memory D to capacity N Initialize action-value function Q with random
weights

for episode =1, M do

Initialise sequence s; = x1 and preprocessed sequenced 1 = (1)

for t=1,T do

With probability € select a random action a;

otherwise select a; = max Q = ((s¢),a;6)

Execute action a; and observe reward r; and image zt+ 1)
Set s¢41 = St, ag, T4+1 and preprocess ;11 = (S¢41)

Store transition (¢, az, 7, (¢ + 1)) in D

Sample minibatch of transitions (;, a;, 7, (j + 1)) from D

(6.1)

ot T forterminalj 41
ety; = .
I ri +ymaz,Q(j4+1,a’;6) fornonterminaljiq

perform a gradient descent step on (y; — Q(;, a;; 6))?
end
end

Algorithm 1: Deep Q learning
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Chapter 7

Mariana Trench

In the previous three chapters we discussed and explained all the things we must know. At this point,
we are going to demonstrate our approach. We are using Deepmind’s algorithm. But deep RL is applied
on neural networks that are used for computer vision. Deep RL takes as input image vectors. So how
is it possible for us to use this algorithm for a problem as specified in section 4.1; It is needless to say
that we are going to use Tiramola, after applying changes on its decision module. Apart from that it is
worth mentioning that in Mariana Trench we added control at the unite of cluster coordinator. From
here and now, Mariana Trenchamola will never fail on adding or removing VMSs, because it makes
sure that it has accomplished its orders before proceeding to a next action. Thus the number of VMs
after taking an action does not depend on a probability function.

Let’s return to Mariana Trenchamola. The idea is that if Deepmind’s RL can find patterns behind its
inputs, after being provided with a reward function, then it does not matter if the input is an image
vector or in our case a metrics vector. Of course, due to the fact that we are not playing with image
vectors, we don’t use convolution layers but fully connected layers as. We apply different processing
on the input data, from what we would do if we have image vectors. We use deep RL for hree main
reasons.

Experience replay

Using experience replay, we can be assure that our agent will not fall into local minimums and that
it will eventually find the optimal policy given the reward function. Therefore we have a system
that never fails. We break correlation between data, we are able to learn from all past policies and
we are basically using of-policy Q learning. As we previously discussed, the basic idea is that by
storing an agent’s experiences and then randomly drawing batches of them to train the network, we
can learn more robustly to perform well in the task. By keeping random the experiences we draw, we
prevent the network from learning only what it is immediately doing in the environment, and allow it
to learn from a more varied array of past experiences. Each of these experiences are stored as a tuple
of <state,action,reward,next state>. The Experience Replay buffer stores a fixed number of recent
memories, and as new ones come in, old ones are removed. When the time comes to train, we simply
draw a uniform batch of random memories from the buffer, and train our network with them.

Clustering

Deep RL allows the agent to find out on its own which input data play an important role on the
behaviour of the agent and which are not. Given these circumstances, we do not need to cluster our
input. We just feed the agent with any information we have and let it decide which input are important
and which one are insignificant for its future behaviour. That approach was first used in Tiramola,
in this paper [17]. Using decision trees and Adaptive State Space Partitioning the authors manage to
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Figure 7.1: Local Minimum

create an agent that could decide on its own which input data were important and which were not. With
our neural network approach, our networks weights approach zero for inputs which are insignificant
for its decision.

Data Size

The problem with the above method was that due to the obsolete RL approach the data provided to the
algorithm, it could not surpass some certain amounts. This is where Neural Networks outmatch classic
MDPs and RL algorithms. They do not need a table or any other storage form. Al the information they
need is being “stored” in the network weights. We are able feed it with as many information as possible
and never have a storage or latency problem. On the contrary, the more data we can provide it, the
better for us and for the agent.

We are going to introduce to you below the three different approaches we tried before ending up to
the best algorithmic approach for Mariana Trenchamola. Our agent can easily use one of these three
approaches, depending on our user’s demands.

7.1 Background

Let us first state our implementation in the technical level. We have the Tiramola architecture with its
modules, as presented in section 4.1. We have three modules:

e Monitoring module. This module provides us with input data from the environment. At the sim-
ulations, in replace of the monitoring module we just construct out data and feed our system.
Our system input parameters which also indicate our state are:
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the percentage of free ram

our cluster storage capacity

the percentage of the read loads
the number of VMs

the number of CPUs

— the I/O of the cluster per second

the percentage of CPU usage
the total load
the total capacity

e Cluster coordinator module. This module adds or removes VMs from our cluster. In our case it
can only add or replace one VM.

e Decision making module. In our case, at each section of the below sections we are going to use
a different algorithmic approach, all based in the idea behind Deep RL. The part of the reward
function which we set, plays significant role to the outcome of the algorithm. Our reward function
varies from if it is a simulation or it is a real life experiment. The main objective behind every
reward function is to maximize our throughput while minimize the network latency and the
number of VMs.

7.1.1 Our network

Our network is a 3-layer fully connected network. It is important to mention that we had to test different
type of networks, number of layers and number of neurons at each layer before we end up to this
approach. This approach surely can be modified to get even better results. The think with Neural
Networks is that one can only go with trial and error approach on network’s architecture before finding
the optimal solution for his specific problem. The first layer consists of 64 neurons, the second 128
neurons and the third 256 neurons. Our activation function at each layer is a relu function [28].

As atrainer we use tesnorflow’s RMSPropOptimizer [29]. In all of our cases we use mini batches of for
learning. RMSProp algorithm is an algorithm for handling this kind of problems. What it does is that
it divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight. This is the mini-batch version of just using the sign of the gradient. RMSProp has shown
excellent adaptation of learning rate in different applications. RMSProp can be seen as a generalization
of Rprop and is capable to work with mini-batches as well opposed to only full-batches. There is also
a memory. As memory we call the buffer where we store passed experiences of our agent, meaning
(8¢, a, St4+1,7¢). The function sample, of the object memory, selects every time a random sample of
our buffer data so that we can feed our networks and train it from the beginning.

e Input size is the number of our network parameters

e batch size is the number episodes that we are going to take from our memory everytime we
make a training step to our network

e Pretrain steps is the number of steps our algorithm is going to take until we start using mini-
batches from our memory.

e Experience replay finally is up to us whether or not, we are going to use experience replay to
our algorithm.

So now I think that we are ready, to fully understand the three below versions of our algorithmic
approach.
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Figure 7.2: Example of 3-layer network

7.2 Simple Deep Rl on Mariana Trenchamola

In this version we implement the Deepmind’s approach as published in 2013. We only have one
deep neural network which we use both for taking a decision and for computing the targets using the
Bellman’s update, described in subsection ?? .
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7.2.1 The algorithm

Initialize replay memory D to capacity N Initialize action-value function Q with random
weights 6

for episode =1, M do

Initialise sequence s; = x1 and preprocessed sequenced 1 = (1)

for t=1,T do
With probability € select a random action a;

otherwise select a; = max @ * ((s¢), a; 0)
a

Execute action a; and observe reward 7; and image z(t + 1)
Set S¢41 = St, at, Tr1 and preprocess 141 = (St+1)

Store transition (¢, a¢, ¢, (t + 1)) in D

Sample minibatch of transitions (;, a;, 7, (j + 1)) from D

Sety; — Tj fort/erminalj/+1 | 7.1
ri +ymax,Q(j+1,a’;6) fornonterminaljq
perform a gradient descent step on (y; — Q(;,a;;0))?
end
end

Algorithm 2: Simple Deep Q learning

7.3 Full Deep Rl on Mariana Trenchamola

The second network is a clone of our main network and is being used to compute the target values. It
is used to generate the target-Q values that will be used to compute the loss for every action during
training. Why can we just use one network for both estimations? The reason is that at every step
of training, the Q-network’s values shift, and if we are using a constantly shifting set of values to
adjust our network values, then the value estimations can easily spiral out of control. The network
can become destabilized by falling into feedback loops between the target and estimated Q-values.
In order to mitigate that risk, the target network’s weights are fixed, and only periodically or slowly
updated to the primary Q-networks values. In this way training can proceed in a more stable manner.
Instead of updating the target network periodically and all at once, we will be updating it frequently,
but slowly. An approach of this technique was introduced in DeepMind’s 2015 paper [15], where they
found that it stabilized the training process.

Every C steps we are re-evaluate our target networks with our main network values.
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7.3.1 The algorithm

Initialize replay memory D to capacity N Initialize action-value function Q with random
weights 0

Initialize target action-value function )’ with weights ' =

for episode =1, M do

Initialise sequence s; = x1 and preprocessed sequenced 1 = (s1)

for t=1,T do

With probability € select a random action ay

otherwise select a; = max Q * ((s¢),a;0)

Execute action a; and observe reward r; and image zt+ 1)
Set S¢+1 = St, at, Tr+1 and preprocess 141 = (St+1)

Store transition (¢, a¢, ¢, (t + 1)) in D

Sample minibatch of transitions (;, a;, 7, (j + 1)) from D

Set T forterminal j 41 a2
ety; = .
g rj +ymazeQ(j11,a’; 0) fornonterminal j 41

perform a gradient descent step on (y; — Q(;, a;; 6))?
Every C-steps reset Q' = Q

end

end

Algorithm 3: Full Deep Q learning

7.4 Double Deep Rl on Mariana Trenchamola

The main intuition behind Double DQN [37] is that the regular DQN often overestimates the Q-
values of the potential actions to take in a given state. While this would be fine if all actions were
always overestimated equally, there was reason to believe this wasn’t happening. You can easily easily
imagine that if specific suboptimal actions were regularly given higher Q-values than optimal actions,
the agent would have a hard time ever learning the ideal policy. So, in order to correct this, the authors
of DDQN paper propose a simple trick: instead of taking the max over Q-values when computing the
target-Q value for our training step, we use our primary network to choose an action, and our target
network to generate the target Q-value for that action. By decoupling the action choice from the target
Q-value generation, we are able to substantially reduce the overestimation, and train faster and more
reliably.

The new DDQN equation for updating the target value is:
Q@ —Target = r +~Q(s’, argmaz(Q(s’,a,),’))

Theorem 3. Consider a state s in which all the true optimal action values are equal at Q) * (s,a) =
V x (s) for some V x (s). Let Q be arbitrary value estimates that are on the whole unbiased in the

1
that t -V = 0, but that tall t, such that — ,a)=V
sense tha ;(Qt (s,a)=V % (s)) ut that are not all correct, such tha m;(Qt(s a)-V x
()2 = C for some C' > 0, where m=>2 is the number of actions in s. Under these conditions,

maxaQe(s,a)>V x (s) + — T This lower bound is tight. Under the same conditions, the lower
m—

bound on the absolute error of the Double Q-learning estimate is zero.

The lower bound in Theorem 1 decreases with the number of actions. This is an artifact of considering
the lower bound, which requires very specific values to be attained. More typically, the overoptimism
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Figure 7.3: At the first image we see a simple DQN and at the second we see a Double DQN

increases with the number of actions as shown in Figure 7.4. Q-learning’s overestimations there in-
crease indeed with the number of actions, while Double Q-learning is unbiased.

1

'. "B max, Q(s,a) = V,(s)
0 l Q' (s.argmax,Q(s, a)) — V(s)
0.0 H'.

L = N N )y
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CIror

o

number of actions

Figure 7.4: The orange bars show the bias in a single Qlearning update. The second set of action
values Q, used for the blue bars, was generated identically and independently. All bars
are the average of 100 repetitions

The goal of Double Q-learning is to reduce overestimations. This is getting done by decomposing the
max operation in the target into action selection and action evaluation. Although not fully decoupled,
the target network in the DQN architecture provides a natural candidate for the second value function,
without having to introduce additional networks. So it is better to evaluate the greedy policy according

65



to the online network, but using the target network to estimate its value. In reference to both Double
Q-learning and DQN, the algorithm name was Double DQL. Its update is the same as for DQN, but
replacing the target Y2 QN with

YPQN = rep1 + YQ(Stp1, argmaxy(Q(st + 1, a;64)0”))

True value and an estimate All estimates and max Bias as function of state Average error

2 - . . LY )
Quls.a) 1 ‘leutuf?r[a.g‘]_ - H1.61

¥ -
0 - e — =P

9 . max, 0y (8, a)
2 e

Figure 7.5: Illustration of overestimations during learning. In each state (x-axis), there are 10 actions.
The left column shows the true values VII(s) (purple line). All true action values are
defined by QUI(s, a) = VII(s). The green line shows estimated values Q(s, a) for one
action as a function of state, fitted to the true value at several sampled states (green dots).
The middle column plots show all the estimated values (green), and the maximum of
these values (dashed black). The maximum is higher than the true value (purple, left plot)
almost everywhere. The right column plots shows the difference in orange. The blue line
in the right plots is the estimate used by Double Q-learning with a second set of samples
for each state. The blue line is much closer to zero, indicating less bias. The three rows
correspond to different true functions (left, purple) or capacities of the fitted function (left,
green).



7.4.1 The algorithm

Initialize replay memory D to capacity N Initialize action-value function Q with random
weights 0

Initialize target action-value function @)’ with weights " =

for episode =1, M do

Initialise sequence s; = x1 and preprocessed sequenced 1 = (s1)

for t=1,T do
With probability € select a random action ay

otherwise select a; = max @ * ((s¢), a; 0)
a

Execute action a; and observe reward r; and image zt+ 1)
Set S¢+1 = S¢, at, Tr+1 and preprocess 141 = (S¢+1)

Store transition (¢, at, 7¢, (t + 1)) in D

Sample minibatch of transitions (;, a;,7;, (j + 1)) from D

Set rj forterminal 1
s i +7Q(j+1, argmaz(Q(j+1,a,6),6”)) fornonterminal j1
(7.3)
perform a gradient descent step on (y; — Q(j, a;j; 0))?
Every C-steps reset Q' = Q
end

end
Algorithm 4: Full Deep Q learning
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Chapter 8

Simulation results

Now we are going to present results from a number of simulations. The goal of the simulations is
to better understand the behaviour of the reinforcement learning models described, in the context of
resource allocation problems in a cloud computing environment. Our goal is to better understand the
behavior of Deep RL models that we described in chapter 7, in problems where our agent has to
perform elasticity decisions in a cloud computing environment. For the simulations we are using the
setup that Konstadinos Lolos described in his deploma Thesis [17], so we can test the performance
of our approach in oppose to Lolos approach as well as former versions of Tiramola approaches. So
we firstly creating Lolos environment, then testing our approach and changing some of our network
parameters and lastly testing our algorithms versus former Tiramola’s algorithms.

The following algorithms will be tested throughout this chapter:

e MDP The full-model based Markov Decision Process approach, having a fixed number of states
and maintaining transition and reward information in its Q-states

e Q-learning The model-free reinforcement learning approach, also having a fixed number of
states but not maintaining transition and reward information

e MDDPT A full-model based decision tree implementation
e QDT The Q-learning decision tree algorithm

e Simple Deep Q learning The deep RL algorithm designed for mariana trenc covered in section
7.2

e Full Deep Q learning The full deep rl algorithm designed for mariana trench covered in section
7.3

e Double Deep Q learning The double deep rl algorithm designed for mariana trench covered in
section 7.4

All simulations were implemented in Python, using google’s tensorflow [1] and numpy library. The
environment was create with anaconda package-environment manager|2].

8.1 Parameterization

To correctly setup our network we firstly experiment with a number of different options that affect our
agent performance. We will be using a simulation scenario from the field of cloud computing. In our
scenario, the agent is asked to make elasticity decisions that resize a cluster running a database under
a varying incoming load. The load consists of read and write requests, and the capacity of the cluster
depends on its size as well as the percentage of the incoming requests that are reads. Specifically:
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e The cluster size can vary between 1 and 20 virtual machines

e The available actions to the agent in each step are to increase the size of the cluster by one,
decrease the size of the cluster by one, or do nothing.
27t

e The incoming load is a sinusoidal function of time: load(t) : 50 + 50 sin(%)

e The percentage of incoming requests that are reads is a sinusoidal function of time with a dif-

27t
ferent period: r(t) : 0.75 + 0.25 sin(i)
340
e If ums(t) is the number of virtual machines currently in the cluster, the capacity of the cluster
is given by: capacity(t) = 10vms(t)r(t)

e The reward for each action depends on the state of the cluster after executing the action and is
given by: R; = min(capacity(t + 1),load(t + 1)) — 3vms(t + 1).

As we can see the reward function encourages the agent to increase the size of the cluster to the point
where it can fully serve the incoming load, but punishes it for going further than that. In order for the
agent to behave optimally, it needs to not only identify the way its actions affect the cluster’s capacity
and the dependence on the level of the incoming load, but also the dependence on the types of the
incoming requests. We shall not forget that one of our algorithms goals is to be able to recognise
which input parameters matter for the outcome and which are not. So we feed our agent with 7 more
randomly valued parameters. MDDPD and QDT managed to recognise and ignore those parameters
as Simple DQN, Full DQN and Double DQN did.

All tests included a training phase and an evaluation phase. During the training phase, the selected
action in each step was a random action with probability e, or the optimal action with probability 1-e
(e-greedy strategy). During the evaluation phase only optimal actions were selected, as proposed by
the algorithm. The metric through which different options are compared is the sum of rewards the
agent managed to accumulate during the evaluation phase.

Simulation

Setup:

e Training steps: 5000

Evaluation steps: 2000

Algorithms: Simple DQN, Full DQN, Double DQN

Statistical test max error 10~°

We are going to test three different parameters and compare our results,

e The batch size
e The annealing steps

e The learning rate
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Discount Factor

Surprisingly enough we do not have to test different values for our discount factor as it turns out
that it plays no role at the outcome of the algorithm. That may seem strange at the beginning but if
we give it a closer look it makes sense. As we can see Deep Rl uses experience replay buffers with
a major number of different experience that train the algorithm at every step of its execution. In a
simple RL problem it is useful to look at the future rewards, but in Deep Rl we train our agent with
a batch of random experience which might be past, present, or future experienced rewards at every
step. Given that we have a very small size of input parameters our agent does not need to more extract
informations than it already does. So our snick pic on the future does not affects our agent neither
positive or negative.

8.1.1 Testing the Batch size

Firstly we test different values for our batch size, which is the memory buffer that we use to train our
network with at every step. For that we obtain our learning rate at 0.00025 and our annealing steps
equal to our training steps, 5000. We are using 3 different batch sizes, in sizes of 20, 80 and 360
experiences. We are testing them in both Simple DQN and Double DQN.

8.1.2 Batch size=20
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Figure 8.1: Simple DQN
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8.1.4 Batch size=360
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As we can see when using Simple DQN bigger batch sizes provides us with better results, where
smaller batch sizes give us questionable results. In this particular example depicted our algorithm

fails to converge to optimal behaviour. Double DQN on the other hand give us the same results for all
batch sizes.

8.1.5 Testing the annealing steps

As we saw in the algorithms section every annealingsteps/10 we tell our agent to take the optimal
decision and not a random one. Thus is, that every annealingsteps/10 we reduce the e, which starts at
value 1. So when we have a small value of annealing steps our agent explores more optimal decisions
form the begging, meaning we give more attention to the exploitation, whereas when we have a bigger
value of annealing steps, our agent takes more random action at the beginning, meaning we give more
attention to the exploration. For that we obtain our learning rate at 0.00025 and our batch size at

360. We are using 3 different annealing steps values, 1000, 5000, 20000. We are testing them in both
Simple DQN and Double DQN.

8.1.6 Annealing steps=1000
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Figure 8.7: Simple DQN
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8.1.7 Annealing steps=5000
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Figure 8.9: Simple DQN
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Figure 8.11: Simple DQN
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As we can see again Double DQN does not have any problem with every different value that we give
to our annealing steps, proving once again how powerful tool it is. Simple DQN from the other hand
experiences problems when we give it low or high values at annealing steps.

8.1.9 Testing the learning rate

Lastly we are going to test different values for our learning rate. We are going to be messing with
the learning rate of the gradient descent method that we use for backpropagation, especially the RM-
SpropOptimizer. In order for Gradient Descent to work we must set the learning rate to an appropriate
value. This parameter determines how fast or slow we will move towards the optimal weights. If the
learning rate is very large we will skip the optimal solution. If it is too small we will need too many
iterations to converge to the best values. So using a good learning rate is crucial. For that we obtain
our annealing steps at 5000 and our batch size at 360. We are using 3 different learning rate values,
0.0000025, 0.00025, 0.0025. We are testing them in both Simple DQN and Double DQN.

Figure 8.13

8.1.10 Learning rate=0.0025

83



5

§

84

20.0 +

17.5 4

15.0 4

12.5 -

10.0 4

7.5 4

5.0 ~

2.5 7

- 100

A 1 4
- _BD
L]
L]
LI
ol e o - 60
LAR]
- |
- - L a L ap
- -
- - i
- - .
- 20
-
I 1o

0 25|'D 5[5"[] 750 lD:[}ﬂ lEIEI’J 15:[}(] lTISG 2[]':[]0
time(s) total reward= 28231

Figure 8.14: Simple DQN
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8.1.11 Learning rate=0.00025
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Figure 8.16: Simple DQN
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8.1.12 Learning rate=0.000025
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We see that a high or a low learning rate value damages our agent’s decisions both in Simple DQN
and Double DQN. This is the first time that a parameter messes up our Double DQN outputs, so that
it means that the leraning rate is one of the most crucial parameters when it comes to neural networks
optimizations.

So the best parametrization given the simulations is to pick a value of about 360 experience batch size
for our memory buffer, a value of about 0.00025 for our learning rate and a value of annealing steps
equal to our training steps every time, so that our e value decreases linearly to our input. One can also
play with the number of neurons our networks has, or the number of layers. Also with the sequence
that the target network update occurs in both Full DQN and Double DQN. We did, but we demonstrate
here some examples, just to see the procedure. By playing with the networks and algorithm parameters
you can optimize your solutions further and further.

8.2 Comparison between different Algorithms in a simple scenario

We will attempt to compare and evaluate the overall performance of the algorithms discussed in this
work, namely Simple DQN, Full DQN, and Double DQN and algorithms used formerly by tiramola
such as MDP, Q-learning, MDDPT, QDT . For that purpose we will use a scenario from the field of
cloud computing. We use the simple cluster used for the parametrization of the algorithms in section
8.1.

8.2.1 Cluster setup

e The cluster size can vary between 1 and 20 virtual machines

e The available actions to the agent in each step are to increase the size of the cluster by one,
decrease the size of the cluster by one, or do nothing.

27rt)
250
e The percentage of incoming requests that are reads is a sinusoidal function of time with a dif-

27t
ferent period: r(¢) : 0.75 + 0.25 sin(ﬁ)

e The incoming load is a sinusoidal function of time: load(t) : 50 4 50 sin(

e If ums(t) is the number of virtual machines currently in the cluster, the capacity of the cluster
is given by: capacity(t) = 10vms(t)r(t)

e The reward for each action depends on the state of the cluster after executing the action and is
given by: R; = min(capacity(t + 1),load(t + 1)) — 3vms(t + 1).

e Training steps € [2000, 5000, 10000, 20000]
e Evaluation steps: 2000

e max error: 107°

e Learning rate: 0.00025

batch size: 360

In the first figure 8.20 we see the results of using MDP, Q-learning, MDDPT and QDT algorithms
in our cluster and each rewards. One limitation is that we have to define a number of states in these
algorithms in opposed to our approach where we don’t have “’states”. Neural Networks work by finding
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correlations between agent’s inputs. The more the number of inputs, the better, meaning that we do
not have any limitations.

In the second figure 8.21 we see the results of using our three approaches in our cluster and observing
the rewards. It is pretty obvious that Full DQN and Double DQN quickly adapt to the problem, find
correlation between input parameters, manage to find which input parameters to ignore and obtain
large rewards by choosing optimal decisions. Simple DQN on the other hand, shows some deficient
compared to the above two approaches, but it is not such a bud solutions as a stand alone approach,
compared to simple MDPs or Q-learning.

Performance all models used in former tiramola versions (100 runs)
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Figure 8.20
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In figure 8.22 we compare our best player Double DQN with MDDPT and in figure 8.23 with QDT.
Our approach give better results than the approaches based on decision trees models. We must take
under consideration here that the simulation test that we are using, were formally used to better test
these models, so the fact that our approach surpasses theirs, in these tests proves a better adaptation
by our side.

Comparison between MDDPT and Double DQN
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Figure 8.22
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8.3 Comparison between different Algorithms in a complex senario

Here we are testing our agent’s performance for each of our algorithms in a more complex cloud-
computing based scenario. An example of our Double DQN agent handling the Difficult requirements
and challenges of the complex scenario we can see in figure 8.24
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Figure 8.24: Double DQN in the complex scenario

8.3.1 Cluster setup

e The cluster size can vary between 1 and 20 virtual machines

e The available actions to the agent in each step are to increase the size of the cluster by one,
decrease the size of the cluster by one, or do nothing.

2t
e The incoming load is a sinusoidal function of time: load(t) : 50 + 50 sin(i

)

250
e The percentage of incoming requests that are reads is a sinusoidal function of time with a dif-
2wt
ferent period: () : 0.7 + 0.3 sin(i)
340
. . 2wt
e 1/0 operations per second: I1O(t) : 0.6 + 0.4 sm(ﬁ)

e 1/O penalty:
0 if0.7 > I0(t)
I0pen(t) = IO(t) —0,7 if0.7 < IO(t) < 0.9 (8.1)
0.2 ifIO(t) > 0.9
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o If ums(t) is the number of virtual machines currently in the cluster, the capacity of the cluster
is given by: capacity(t) = 10vms(t)r(t)

e The reward for each action depends on the state of the cluster after executing the action and is
given by: R; = min(capacity(t + 1), load(t + 1)) — 3vms(t + 1).

e Training steps € [2000, 5000, 10000, 20000, 500000]
e Evaluation steps: 2000

e max error: 1076

e [earning rate: 0.00025

batch size: 360

To increase the difficulty of this scenario, we have increased the effect of the types of the queries to the
capacity of the cluster, and have also added one more parameter that affects the behavior of the system
in a non-linear manner, namely the 1/O operations per second. This parameter takes values between
0.2 and 1.0, but only affects the performance of the cluster if its value is higher that 0.7 by adding
a penalty to the performance of each VM. Just like in the simple scenario we included 6 additional
random input parameters. Three of them followed a uniform distribution within [0, 1], and another
three took integer values within [0, 9] with equal probability.
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In the first figure 8.25 we see the results of using MDP, Q-learning, MDDPT and QDT algorithms in
our cluster and each rewards.

In the second figure 8.26 we see the results of using our three approaches in our cluster and observing
the rewards.

Performance of all models used in former tiramola versions (100 runs)
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Figure 8.25
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In figure 8.27 we compare our bet player Double DQN with MDDPT and in figure 8.28 with QDT.

Comparison between MDDPT and Double DQN
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Figure 8.27

8.4 Conlcusions

As we see Deep Rl carrys a lot of advantages in opposed to former algorithms used on Tiramola. We
will mention some of them, observed by the experimental results we have just provided you.

Adaptation

The adaptation of Deep R1 model is robust and and rapid, regardless the size of the training set. As
we see in former algorithmic models used by Tiramola, the more complex models needed larger set
of datas before fully adapting to the problem and finding the optimal solution, whereas more simple
algorithmic approaches such as MDP, adapted more quickly but did not manage to find the optimal
decision the most times and obtain a larger reward.

Clustering

Deep Rl algorithms manage to cluster the data and find which input data really matters to the outcome
of the algorithm and which not. Deep R1 algorithms can do that at any set of data, regardless how big
this is. They do not need any number of states provided and as much more data we have to feed our
agents, including the number of input parameters, the better.
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Comparison between QDT and Double DQN
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Figure 8.28

Space complexity

The space complexity of the Deep Rl approach is what gives it a large edge against other approaches.
Thus because all other RL approaches need computer space for storaging past experiences. The attempt
of the former version of Tiramola, using the decision trees approach was to find a way to manage the
data without using to much computer space and at the other hand extract as much information as
possible. Deep Rl uses Neural Networks which gives a tremendous advantage in the aspect, as NN do
not have to use any of computer space to store information. Every information needed is simply stored
in the network’s weighs. That gives as the elasticity to handle as much data, as much experience, as
much information as we want, cause we do not have to worry about storage space our about handling
the information extracted from this tons of data. One of the main advantages of our approach is that it
can scale to really large environments and datasets and not struggle, but become more efficient.

Total Rewards

Even if all the above sections were handled sufficiently by our agent, still that would be meaningless
if it couldn’t get sizeable enough rewards. But as we can see in our examples our Full DQN agent
and our Double DQN agent manage to get large enough rewards, even better from all the previous
versions of Tiramola.

At the end of the game Mariana Trench surpasses its ancestors in terms of sufficiency, efficiency,
adaptation, storage economy and scaling.
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Chapter 9

Experimental Results and Conclusion

9.1 Experimental results

In this section we are going to present you the experiments we did with Mariana Trench in real life
environments. We are using Okeanos service as our cloud infrastructure. We have built a Cassan-
dra cluster upon okeanos, which we trigger with different workloads produced by ycsn service. We
collect metrics with ganglia XML backend and use our Mariana Trench agent to determine the best
decision on every step of the procedure, after we have trained it. The programming environment that
we use is Anaconda [2] and the library that provide us the neural network and training tools is google’s
Tensorflow [1].

Let us present the basic factors of our implementation.

9.1.1 Infrastructure

We have a cluster containing 16 VMs on okeanos [12] cloud infrastructure. We produce workloads
with ycsb [40] framework. Our workloads are sinusoidal reads and writes on our cassandra database.
The load of those reads and writes follows a sinusoidal distribution. The percentage of reads or writes
requests is random. We use every single node of our cluster as a receiver of our requests as in Cas-
sandra every node can serve requests and there is no central node as in other NOsql databases such as
Hbase. We send the request using kamaki API [10], by one single computer. The computer splits the
workloads in as many pieces as the cluster number of nodes. It then generates as many threads as the
number of splits and each thread sends requests to each one of the cluster VMs. Every 10 seconds we
obtain metrics using telnet to contact with ganlia’s [9] XML API. These metrics represents the cluster
current state and consist of the following parameters:

e The number of active VMs on the cluster.

e The latency of the cluster.

e The throughput of the cluster.

e The amount of cached memory on the cluster.

e The current number of operations/requests served by the cluster at the current point.

e The number of operations/requests served by the cluster on the last state. We use this informa-
tion to determine if the size of operations is currently more possible to be on an increasing or
decreasing slope.

e The amount of free memory on the cluster.
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e The percentage of cluster CPU idle.

e The cluster amount of buffered memory.

e The cluster amount of available memory.

e The cluster amount of buffered memory.

o The cluster amount of shared memory.

e The cluster amount of free disc space.

e The amount of bytes in, that each node of the cluster experience in the current state

e The amount of bytes out, that each node of the cluster experience in the current state

Our reward function is

Reward = 0.01 % throughput — 0.00001 *x latency — 2+ VMs 9.1

as we want to keep the cost of our cluster low (VMs) while achieving the highest throughput and the
lowest latency we can. In each step the agent takes a decision, collects new metrics, calculates a new
reward function makes a new decision and takes a new action.

9.1.2 Training

We let our Double Deep Q learning, Mariana Trench agent train for 20.000 steps. We set the annealing
steps factor at 2000. The annealing steps arrange the amount of steps taken before we decrease the e
factor for our e-greedy policy algorithm. Thus means that for the first 2000 steps the algorithm takes
actions completely randomly in order to achieve better exploration of the environment and only at the
very end of the experiment all of our agents actions are based on our networks best decision.

We use 620 pretrain steps, thus meaning the number of steps our algorithm makes completely random
moves in the environment in order to fill our memory-batch. As we have calculated at the calibration
of our system in the previous chapter we set the following factors as so:

o Our batch size is set at 360 experiences

e Our learning rate is set at 0.00025.

9.1.3 Testing

After the training part, we test our Marianna Trench agent for 2000 execution steps. We test it for
our three different approaches, Simple DQN, Full DQN and Double DQN. We observe that our agent
quickly converts its behaviour to the optimal, obtaining large rewards. When Simple DQN is the case,
our agent, spends a little more time until it finds the optimal solution. We see the results in images
9.1,9.2,93

Then we test our best agent, Double DQN with a biggest dataset for training, containing 60000 dif-
ferent states. We see the result in image 9.4

102



12 ~

- 2500000

l ! 2000000
11 + -) S e -

10 - ' ~-. F 1500000
(93] =
g ]
!
g - F 1000000
g - - 500000
T - - -0
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
time (s)

Figure 9.1: Performance of our agent when using the Simple Deep Q learning algorithm
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Figure 9.2: Performance of our agent when using the Full Deep Q learning algorithm



vms

Figure 1 - + X

- 2500000
11 - - - - - - -
10 -
- 2000000
99 = - - - - L] L] - L L] - -
B 1 ] ] ] ] ] ] . ] ] . ] ] F 1500000
=]
7 A 1] - 1] - [] - L - L] . . - g
- 1000000
64 = - & = - = @ - & » - ® @ - ® & |=
54 =  — — n— = -
- 500000
41 =
3 - - - == - F 0

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
time (s)

Figure 9.3: Performance of our agent when using the Double Deep Q learning algorithm
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9.1.4 Conclusions of experimental Results

The conclusions we get from the experimental results does not differ from the conclusion we got from
our simulation in the previous chapter 8.

Adaptation

Mariana trench approach is robust and and rapid, regardless the size of the training set. If we except
the Simple Deep RL approach, our agent converges to the optimal solution with small datasets sizes.

Clustering

Mariana Trench manages to cluster the data and find which input data really matters to the outcome
of the algorithm and which not. In the experiments our input consist of 15 different parameters and
yet our agent manages to determine which of them are important and which are not after experiencing
a small amount of training steps.

Space complexity

Mariana’s Trench Deep Rl approach because of using Neural Networks gives us a tremendous ad-
vantage in the aspect of space complexity, as NN do not have to use any of computer space to store
information. Every information needed is simply stored in the network’s weighs. That gives as the
elasticity to handle as much data, as much experience, as much information as we want, cause we
do not have to worry about storage space. One of the main advantages of our approach is that it can
scale to really large environments and datasets and not struggle, but (and this is our main advantage)
become more and more efficient as we have mentioned before.
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9.2 Conclusions

In this work we presented a Deep Reinforcement Learning agent called Mariana Trench for cloud
elasticity problems by combining cutting edge algorithmic techniques in both deep learning and cloud
resource management areas. Our results show that our agent significantly outperforms all previous
approaches used in previous versions of the Tiramola architecture. In our experimental settings the
input consisted of 13 input parameters, however our agent can perform efficiently with much larger
more complex environments.

To summarise, the advantages of our approach are the following:

e Mariana Trench can learn and perform tasks in large environments where each state depends on
multiple parameters. In addition, Mariana Trench does not need any space partitioning or data
clustering and does not experience problems when dealing with large input data. On the contrary
the biggest the data pool, the best for Mariana Trench.

e Mariana Trench shows that we can efficiently use DRL outside of image problems where it is
usually used, and achieves excellent results even in an environment where the state is controlled
by a small number of parameters. Our agent behaved optimally in a cloud environment where it
provides each user with the best resource previsioning based on his predefined needs.

e Our approach successfully updated Tiramola without using more computer space (memory) or
resources than its previous versions. Its decision module does not lack speed although one of
its versions (Simple Deep RI) does take a little more train time before converging to the best
decisions.

e Finally, Marianna Trench includes a lot of our network factors than can be recalculated and
achieve better results for different environments. Some of these factors include the number of
layers/neurons or the number of steps that pass before doing a target network update.

It is our belief that one now can see that Deep RL if carefully used (as it has many different versions
that provide us with different benefits) can solve problems at every aspect of science. We showed that
Deep Rl agent can perform optimally in an environment that is built upon a human user needs and
manage to get the best out of it. As we shown at the introduction [34] Deep Rl has been shown to be
successful in achieving great results in the area of physics (although in this area it is still only tested
on image vector inputs). Many more aspects such as mathematical problems, physic problems, social
or economy problems are worthy of giving a Deep Rl agent a shot on them. Perhaps we are in front
of a new area, where machines can truly replace human minds in every field that does not require
consciousness. It is certain that we have not yet scratched the surface of this new world, as it has been
introduced to us 4 years ago by Deepmind. Let’s hope that thesis like this are helping on the better
understanding of the Deep RL potentials and not helping in future birth of skynet.

9.3 Future work

In this diploma thesis we explored some of the aspects of Deep RL in an environment of cloud com-
puting but there are a lot of things that we did not have the opportunity to tackle with. Although we
believe that they are worth dealing with and being investigated in the future. Some of them are:
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Recalibrating of the current network and Mariana Trench parameters

As mentioned above there are a lot of parameters in our current version of Mariana Trench that can
be revised and maybe achieve better results. Such parameters, are the number of steps that we do the
update of our second network in both Full DQN and Double DQN. The numbers of the layers or the
neurons that we use in our network could also be tuned better. Someone might try to use convolutional
neural networks instead of our fully connected network. Getting a lot more input parameters or testing
Mariana Trench in a real life environment with a pool of real life users-testers would be a great idea
too, to check how Mariana Trench scales and if it can sufficiently give the results it promises to give,
in real life environments.

Using Recurrent Neural Networks

For those who are not familiar with Recurrent Neural Networks [26], they are neural networks known
for their ability to deal with incomplete data. Meaning environments where the agent sometimes can
only partially observe. Deep Rl can be combined with recurrent networks and achieve great results. As
Mariana Trench deals with a cloud environment where the metrics might sometimes contain noise, or
be not so accurate, or even have been failed to be collected, Deep RL with recurrent neural networks is
possible to give better results in the long run than the current versions. An investigation on the subject
would be sourly really interesting and revealing.

Using Dueling Deep Q learning

Dueling Deep Q learning [41] deals with Deep RL using a different approach than the q learning
bellman’s function. Let us first remember bellmans’ equation in simple terms:

Q(s,a) =V(s)+ A(a) (9.2)

thus mean that our Q value is a combination of the value function V(s), which simply says how good
it is to be in any given state and the advantage function A(a), which tells what our agent would earn by
taking an action a at this particular point. In our approach out target networks computes the Q values
as one. In Dueling deep q learning the agent’s goal is to separately compute the advantage and value
functions, and then combine them back into a single Q-function only at the final layer. Why doing
that? In some points of our agent’s life in our environment the best action might as well be to take no
action. To stay still in its current state. In that case the advantage function is not needed and worthy
of calculating. In cloud computing suppose we have a user whose preferred policy is to almost never
change the number of VMs at his cluster, meaning the state of the cluster, except in exceptional cases.
For this particular user it would be better to calculate the rewards he gets separately for being in this
current state and for hypothetically moving to another state.

Experimenting with different approaches that examine the exploration-exploitation duel

In our approach we use e-greedy policy. In this approach the agent, when in training, takes at first
random actions and gradually takes more beneficial than random actions until it gets to a point that it
only takes the best action given by the decision module of the network at each step.

One can test different approaches, such as boltzmann approach, in which the agent instead of always
taking the optimal action, or taking a random action, chooses an action with weighted probabilities.
This is accomplished by using a softmax over the networks estimates of value for each action. The
advantage over the e-greedy policy would be that information about likely value of the other actions
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of our agent can also be taken into consideration.

One can also tests bayesian approaches. A bayeasian nueral network is known for maintaining a
probability distribution over possible weights in oppose to traditional NN which are deterministic. In
a RL setting, the distribution over weight values gives us the ability to obtain distributions over actions
as well. Yarin Yal’s phd thesis [8] researches the subject in depth, with some really interesting results.
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