EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON

Detection of Causality Relations in Plain Text
with the use of Word Embeddings

AIIIAOMATIKH EPrAvIA

I'enyoéproc K. Mnrdotag

EEwtepixdg EnBAenwyv: Philippe Muller
Associate Professor UPS

Enprenwyv E.M.II: Avdpéac-T'edpytog Ltagulondtng
Kodnyntic E.M.IL.

Adrvo, Xentéufeloc 2017

Edvixé Metoofio Iloauteyvelo
Yy ohfy Hhextpohdywv Mnyovixev xow Mnyovixaov Trohoylo ey
Touéag Teyvohroyiog ITAnpogopxrc xar Troloyio TV

Detection of Causality Relations in Plain Text
with the use of Word Embeddings

AIIAOMATIKH EPrAsIA

I'enydéproc K. MnrdoTtag

EEwtepixdg EnPAénwy: Philippe Muller
Associate Professor UPS

Enprénwy E.M.II: Avdpéac-Tempytog Ltagulondtng
Kodnyntic E.M.IL

Eyxpldnxe and tnv tpiweln eCetaotixn emtpony| v 27n Xentepfplouv 2017,

(Ymoypagry) (Tmoypagn) (Tmoypagn)
Avdpéoc-I'. Eragurondtng Iavayidtng Toovdxog Il'edpyloc Ltduou
Kodnyntic E.M.IL Kodnyntic E.M.IL Enixoupog Kadnyntric E.M.IL

Adrvo, Yentéufelogc 2017

Edvixé Metoofio Iloauteyvelo
Yy ohfy Hhextpohdywv Mnyovixev xow Mnyovixaov Trohoylo ey
Touéag Teyvohroyiog ITAnpogopxrc xar Troloyio TV

(Troypagn)

I'PHrorioxr K. MITIASTAXS

Amhopotovyoc Hiextpohdyoc Mryovinde xou Mnyovixde Troroyotov E.M.IL
©) 2017 — All rights reserved

Copyright (©)—All rights reserved T'enyéploc K. Mndotac, 2017.

Me emupOhaln novtdg SLXaOUATOS.

Arnoayopedeton 1 avTiypapr, amotixeuon xou Slovouy| Tng moapoloog epyactiog, €€ oAoxApou
1) TWAUATOS QUTAG, Yid EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xal dloavour
Yot OXOTO U] XEEOOOKOTUNO, EXTOUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolndleoT va
OVaPERETOL 1) TINYT| TTROEAELOTG XAk VoL BlaTneeltan To Tapoy urivupa. Epotiuata mou agopoly

N XeMoT TNS EpYUCLAS VLol XEPOOOXOTILXO OXOTO TEETEL VoL aneudiVOVTAL TEOC TOV CUYYRPEX.

Ov amédeic xan Tol CUUTERACUTA TIOL TEQLEYOVTOL OF AUTO TO EYYEAUPO EXPEAlOLY TOV
ouyypoapéa xou Oev mpénel va epunvevdel 6Tl avtitpoownebouy TiC enionueg VEoE TOL

Edvixol Metodflou ITohuteyvelou.

ITepirndm

H aviyveuon atiotnrac amotehel pla and Ti¢ Mo onNuoavTixés TEOXANOES 0To TEdio NG
Enegepyaocioc Puomic I'hdoocac. Xe auth v epyaoia, EMLYERHOUUE VO AVTIETWTICOVYUE
T0 €V AOY® TEOBANUa a&lomoldvTog ueYod0oug Unyovixig Uenong mou EMXEVTIPWVOVTOL OTH
OMutouEYlol SLUVUCUOTIXGY OVATORUCTACEWY AEEEWY NG Yohhixig YAwooag. Ilop” 6ho mou
EQYOUOTAXOUE UOVO TV ool I'ahixd, 1 pedodoloyia pag €xel eQapuoyy| xou 6 TOAES GANES

YAOGOOES Yden otn yewxotnto tne. H epyacio poag propel va yopiotel o tpla Pacixd péen.

To npwto pépoc oyetileton Ye TN Onutovpyla TV SEG0UEVLY EXTIOLBELONC HUC UECK TNG
auTtopaTng oy wyNg (VYWY arTiou-amoTEAEGUATOC oo TO YohAxo ooua xewévou frWac. T
aUTd T0 oX0Td, CUMEEUUE un-oppionues hextinés povédee (ané 1o ASFALDA French Fra-
meNet) ot onoleg uTOdNAGVOLY oyéaoelc atidTntac. Méow autmy, unopéoaue va eZaydyoupe
oUVOAOL AEEEWY TIOU GUUTUXVMYOLY TO VoMU €(Te Tou artiou elte TOu amOTEAEGUATOC TOU €-
x4oToTE AuTioxol oTiypotuTou. Tor var emiteuydoly Ta mapandve, adlonot{inxe o BEVopo
eCopThoewy xdie TEdTUONS oL TO UEEOS TOL AOYOL xdde AEENC, TS AUTE XWBXOTOLOUVTOL

OTO DOCUEVO GOUN XEWEVOU HAG.

To deltepo pépog apopd TNV LTOAOYICTIXY ETEEERY ATl TWVY BEBOPEVWY EXTTALBEVOTC TOU
SUMEY UMy, Kote va dnuoveynioly word embeddings ot Bdorn Twv ouoloTH TRV TV oU-
TV TAaotwy xdde AéEng. Xe autd To 0TAdL0, To anTioxd Ledyn oL amoTEAOUY Tar dedouéval
EXTIUOEVOTC YENOULOTIOLOUVTAL UE XOUVOTOUO TEOTO ¢ EI0OB0L TWV HOVTEAWY UNY VXS Udd-

onc Word2vec, SVD xoau NMF, dote va dnuovpyniody autiaxd embeddings.

To tpito pépog €xel vau xdvel ue v aflohOYNoN TwV UOVTEAWY Uag. Muyxelvaue tny
outtax) ey xOTNTAL LELY WY AEEEWY YENOWOTOUMVTAS TO ECMOTEPLXO YIVOUEVO XAl T1) GUVNUNTOVIXT
opoldtna (cosine similarity) twv Stvuoudtomy mou dnuoupyRinxay xotd Ty exnaidevon
TV POVTEAY pog. T Ty adlohdynon twv anoteleoudtwy o&tonotiinxay to dedouéva Tou

Semeval Task8 (uepixdde uetoppocuévo oto Fodhxd).

A€Zeig xAELBLA: OYETELC UTIOTNTOC, DLVUCHUATIXES OVATRAOTAOELS, ENEEERYATT QUOLXTG

YADGCOUS, unyovixt udinon

Iepidngn

Abstract

Causality detection is one of the most challenging topics in Natural Language Process-
ing (NLP). In this project we tried to cope with this open problem by employing training
methods focused on the creation of vector representations of french words. While we only
worked on the problem of causality detection in the French language, our methodology is
applicable in many other cases thanks to its generality. Our whole project can be separated

into three major tasks.

The first task pertains to the creation of our training data through the automatic
extraction of cause-effect tuples from a syntactically annotated French corpus. For this
purpose, we collected non-ambiguous lexical units from the ASFALDA French FrameNet,
that denote causality relations. We, therefore, extracted tuples of meaningful sets of words
that represent either the cause or the effect of the captured frame. To achieve all of this,
we took advantage of the dependency tree of each sentence and the part-of-speech tag of

each word.

The second task deals with the computational processing of our training data extracted
in the previous task, in order to create causal word embeddings based on cause-effect
context similarity. At this stage, the cause-effect tuples created in the first task are
treated in an innovative manner as the training data set for the models Word2vec, SVD

and NMF, in such a way as to create causal embeddings.

The third task is about the evaluation of our models. We compared the causal prox-
imity of cause-effect test pairs by employing our word embeddings. For the evaluation, we

use the SemEval Task8 test data (partially translated in French).

Keywords: causality relations, word embeddings, natural language processing, ma-

chine learning

Abstract

Euyapiotieg

Oa fleha va euyaploThow Tov emPBAénovtd wou x. Philippe MUller, Associate Professor
oto Université Toulouse III - Paul Sabatier (unetduvo tng opddac MELODI-IRIT). Axéya,
Ohor Tor €A TN opddoc MELODI tng onolag unhp€a mpocwpevo uéhog oe OAN T SLdpxeta
TNC CUMPETOYNC Hou oTo pdypauuo Erasmus+ péow tou onolou you 869 e 1 SuvatodTnTa
VoL LhoToLiow TNV epyacio wou otny mohn Toulouse tng lN'udilag. Emniéov, ogeihw va euya-
plotiow tov x. Andreas Herzig (Directeur de Recherches CNRS) yux tnv éyxpion tou va
gpyoaotw oo IRIT xou tnv xadodrynor Tou 1660 Yoo TNV EMAOYT TWV CUVERYUTWY UOU 6GO

xaL Tou VEUATOSC TNS OIMAWUATIXNAS LOU.

Enlong, euyopioted wiaitepa tov emPBAénovia xadnynty tou E.MIL x. Avopéa-I'ewpyio
L TAPUAOTATY YLOL T1) DUVATOTNTA TTOL UOU EBWOE VAL PEEW ELG TEQUS TT) OLTAWUATIXT| LOU EQYaGia

070 eEWTEPIXO %O VLol OAEC TIC YENOWES OLUBOUAES oL You TopelyE.

Téhog Va AHleha va evyaplothon Toug Yovelg pou, Polin xouu Kwoti, yio v ouéplotn
CUUTOEACTACT) TOUG OTIC ETLAOYES HOU, TOUG QPLAOUC TOU AMEXTNO XUTA TNV TUEAUUOVY| LOU
otnv Toulouse, touc cuvadérgoug pou and 1o IRIT xou Toug lloug pou and v EANEDa,

TIOU GOl TOUC UE OTARIEAY OTIC BUOXOAES TOU AVTWETHOTICA.

Abstract

Extetopevn EAAnvixr Tlepiindm

To mpoBAnUe ue TO OTOl0 XATATLAVOUACTE OE AUTY| TNV epYaoia elvon auTd TNE aviyveuong
OYECEWY AUTLOTNTIC OE YUOXT| YADGGA. AOUAEPOPE CUYXEXPIIEVA TAVG G TN YUAALXT YAGCO
o€LOTOLOVTAC, OUWG, Wit ueYoBoROYIa AEXETA YEVIXT (OO TE Vo umopel vor olomoinVel ue pixpéc

TPOCUPUOC TIXES puUUloElC xou o8 TANYWEN GAAWDY YAWOCOY.

Apywd Yo mpoonaticoupe va xatadel&ouue T GUOT ToU TEOBAAUATOC AELOTOLOVTIC XAl
optopéva topadetyyato. Mo yerown yio Ty epyacio pog didxplon elvor outh YTl eNThc
(explicit) xou unbépentne (implicit) awndtnroc. Lty mpodtn tepintwon, n wwndtnTo yiveton
EXONAN péow iog AexTixhc povddac mou hertoupYel we unraugionuoc deixtne (indicator) tng
ev AMOY®w oyéong. XN OeUTERN MEQIMTWOT), N AVIYVEUST TNG auTiaxAC oyéone OEV amoTeAEL
TETEWWUEVO TEOPBANUA OTwe oty TenTn. Kotd Bdor, v va cuvarydyoupe miovég outlomég
ouvdéoelg, oTNELOUACTE OTIC ONUACLOAOYXES OYEoelg PETaED Aé&ewv. Méhnua pog etvan o

UTIOAOYLOTAC VoL UTTOREL VoL vl VEVEL TNV OUTLOTNTOL XAk O TIC OVO TMEPLTTWOELS.

‘Eva nopddetypo otiygotinou pntrg atiotntog ebvan: « YmAplav cofopol tpoupatiopol
eCoutiog Tou TLEOVAEY. EBG eugaviletan o un-auglonuog deixtng awtidtntog «efoutiogy. Ilo-
padelypaTo oTYHOTOTWY LTOEENTNG wutoTNnTog elvan: «Elya movoxegpdioug and tny éxdeon
0710 ®oWougploy xon «To unyovAuota Aray tokd. ‘Evae epydtng tpoupatiotnxe coPopd.» e
xavéva and ta Vo TeAeuTala TopadElyuaTo OeV eu@aviCeTal xdmolor AEXTIXY) LOVAd TOU VoL

UTOOEXVVEL TIEOONAA OY €T AUTIOV-ATOTEAEGUATOS.

Trdpyouv 6V0 Baoxés xATEVVUVTARIES YROUUUES YL TNV AVTWETOTLON TOU TEOPBAAUATOS
Tou Tapouctdooue. And TN la Theupd unopolue va BacloTOVUE TN XeNOT YAWCGOAOYIXWY
ued60wY, Vo afloTOINCOUUE BNAUBT) CUVTOXTIXG XU OTUACLOAOYIXY pYahela. Amd Tnv dhAn,
UToEOUUE Vo BaCIOTOVUE OTY XPNON OTATICTIXMY HOVIEAWY XAl EUPUOY CUCTNUATWY. Edw
emAéloue va emixevipwidolue otny Belteprn uéBodo aVTIHETOTIONS TOU TEOBAAUATOS, GAAY
TAUTOY POV OELOTIOLACUUE XAk TNV TEWOTN TN PACT TNG CUANOYHS TwV BEGOUEVKLY EXTIOLBELOTC

Y10 TOL UTONOYLO TUIXGL JOIG [LOVTERAL.

ITio cuyxexpwéva unopolue va ywpelcouue TNy epyocia pag oc tpla otdd. To meo-
TO OTAO0 apopd TNV e€aywyr SeB0UEVLDV eEXTAdEUOTE amd YoAXd corpus. XTo OeUTERO
oTddlo exnatdevouue To wovtéla unyavixhc wdinone (Word2vec, SVD, NMF) pe otdyo

onwovpylor Word Embeddings. ¥to tpito 61d810 aflohoyolye Tor amoTeAEGUOTA YOG,

8 Abstract

H pédodoc pagc unogetl vo cuvodiotel otn Aoy Tng o&lonolnone oTiylotuTwy pnTng ou-
TLOTNTOC YO TNV EXTABEVOT) LOVTEAWY TURAYWYHS TUXVOY AEXTIXDV OLUVUCUATIXGDY AVATOQO0-
OTAOEMY. 2TOYOC EVOL 1) oVory VERLOT) auTlad GUVBEBEUEVWY AéEewv TN Bdon Tne onuaciolo-
YA TOUG AAANAOCUGYETIONG Xl XAT EMEXTAUOT), 1) aviyVEUOT) OYECEWY antiou-amoTEAEGUATOS
OE CTUYMLOTUTIOL UTppnTNS outtoTnToc. Anhady), and Tig pNnTéc aTIonES EXPAVOELS «TNOJUEY
otig dpenteg. OuolaoTind, exTadedoUE TO WOVTENOD oG (O TE Vo TPOPBAENEL TNV midovoTnTa
e (ouv-)eupdvione oe oTiydTuUTo oyéone aTdTnTag, wag AEne w (eloodog), ye dhec Tig
GMheg Aé€ewg Tou Ae€lhoyiou pog. Ltnewlduacte oTny LnoYeor OTL 1 oNUacloAoYLXT Oyéon
peTal 800 AéZewv ¥ 800 xatnyopnudtwy, uropel va eZoyel (ue xohd Tocootd emtuyioc)
omd tov TpéTo oL KON autéc/d cuoyetilovtar cUVTUXTIXE OE EXBNha AUTLIXG ONUACIONOYIX

mhaiclo oTo TapeAOY.

H @domn tng ouhhoyrc dedouévey exmaideuone otnplleton cuyxexpiuéva otny aflonoinom
CUYXEXPUEVWY CUVTAXTIX®Y UOTIBwY TOU €Y0LUV WC XEVTPIXO KOTORO» €Vl GOVORO ATO oUTLO-
xoUg Beixteg Tng emhoyhc Wog, e€ol xau 1 ovouacio seed patterns. Xpnowonoolye autd to
potifo yior vor cUAAEEOLUE TIC BUO BLAXELTES OUTIAXEC CUVIGTCOOES TOU GLYXPOTOLY TNV oUTLoY
oyEon, ONhadY| TNV aVATIEAG TUCT, OE PUOLXY| YAWGoa 600 arTioxd GLLELYUEVKY YEYOVOTWY,
Tou aftiou xou Tou amoteréouatog. Koatd Bdon, Vélouue va armodnxedouue Tic Aéelc mou
GUUTUXVOVOLY XOADTERA TO ONUACIONOYIXO TEQIEYOUEVO TOU EXUGTOTE QUTLOXOU YEYOVOTOC.
Auto omnuoabver 6TL ayvoolue éva alivolo Aé€ewv Tou ovoudloupe stop-words, AéEelg mou ey-

pavilovtar TOA) LY VA GTOV XUUNUEPLVO AGYO %ol BEV GUUTIUXVEOVOUV TOAD TANRO(ORLd.

To SeSouéva pog cukhéyovton amd to frWac (annotated) odua xewwévou xon omodnxed-
ovToL GE VO TNEA Sounuévn xat Tholota oe TAneogopia poppt o éva apyeto xml. Autd To
apyeto adlomoteiton yior TNV e€aywyr) SE00UEVWY EXTIOOEUOTNC GE GYETIXA GUVTOUO YEOVO XoL
Yiot TOMES DLAPORETIXEC TapaUETEOUC. O e€ETATOUUE cUVTOUA T Elvon AUTEC Ol TUPAUETEOL.
H peiowon tou ypdvou elvon onuovtiny| wag xow oto xml apyelo yog €youue anoUnxevuéveg
HOVOLYd TEOTACEL TOU AMOTEAOVY ENTE cuTlaxd G TLYULOTUTIA Xou OEV Ypetdletar TAéov va Tpo-
oTeEAAOVOUPE OAO TO oW XeWEvou ot avalAtnor yio oauttaxols delxteg. Avalntolue xdde
ulor Eeywplotd Tic AEEELC xdde TEOTACTC TOU CWUATOS XEWEVOU XAl G TNV TEPITTMOY TOU TETU-
yodbvoupe évav mpddnho awttaxd Beixtn (m.y. a_cause_de) xpatdue TV TEéyouca TEOTUON Xou
CUMEYOUUE ToL yerowor outlaxd dedouéva. To antiond Sedouéva etvon oL emuépoug AEEEC TwY
UTLAXDY CUVOTWOWY Loll UE GANES HOPPOROYIXES, YRUUUATIXES X0 CUVTUXTIXES TANPOPORIES

v xqe plo €€ auToV.

A¢ e€etdoouye dpwe oe yeyolitepo Bddog autd mou anoxolécoue seed patterns. Ipo-
XELTOL OLCLAOTIXE Vit €Val GOVORO XAVOVWY BaCIOUEVKDY OE AOYXES GUVITIXES TIOU apoEOUY
CUVTOXTIXES XL YEOUUATIXES OyEoelc. Baowde odnydc pog anotehel to Aévopo ECaptrioewy
(Dependency Tree) mou anOTUTOVEL TIC CUVTUXTIXES OYECELS HETOED OAWY TV MEEWY xdle
npotaone. ‘Otav Peloxouye €vav awtioxd deixtn T6TE axoAouIOVTaS T AOYIXES CUVITXES
7oL UTOdEXYVOLY Ta YoTiBa o, anodnxebouue €va LTOGUVOLO TV AéEewy Tou Aévdpou E-

CopTAOEWY AAVOVTOE OUCLAC TIXG ovalHTNOT TIEVL GTOUC XOUBOUG-AEEELS TOU, EXXIVMVTAS AT

Abstract 9

Tov %0uPBo-plla Tou arTloxoU BelXTN XaL xAvovTag dldxeloT HETAED Tou UTOOEVDOEOUL pe pilo Tov
TpdTEPO YOVEX Xou Tou UTdEVDpoL e pila To TpdTepa ToudLd Tou x6uPou (Tou Théov avTiye-
wniloupe o¢ pila). H didxpion auth xabdopilel 10 onuactohoyind Sloyweloud Twy oUTLoaxY

YEYOVOTWYV OF ofTLol X0l ATOTEAECUATAL.

AZiomotolye tpla Paowd wotifa mou Slapépouy apyixd we TEOS To U€Eoug Tou AOYOU Tou
auttoxol Seixtn (npdldeom, ovvdeopog, pua). Xtny mepintwon tou cuvdéopou (m.y. car)
Yewpolpe OTL oL auTloxég TEoTdoel oTny TAsodnglo Toug dopolvTtal o1 popgrh: Pruatixd
YOvoho (amotéreoya) — LOvdeopog — Pruatixd Xovolo (aitio). Avtiotorya yio Tic npotécels
(m.y. grace.a) : Pruatxd Liovoho (amotéreopa) — Ilpddeon — Ovopatxd Liovoho (aito).
Téhog yio Toug delxtec-phuata (T.y. causer) tpoxUTToUV B0 dlaopeTind (UTd-)uotiBa éva
YioL TV TEPIMTWOT oL To EYua eu@avI(EToL O EVERYNTIXY WV Xou Eva OTay eu@avi{eTon oe
rodnuxr. Evepynuidd gwvi: Ovopotixd Liovoho (aitio) - PAua — Ovopotind Lovoro (amo-
éheopa). Hadntxh @wvh: Ovopatixd Xovoro (anotéheopa) — PAuc — Ovopotixd Lovoho
(adt0). Ta potifo poc eivar homdy tétola HOTe Vo GUNUPBEVOLY AUTES TIC SLUPOPETIXES
CUVTOXTIXES HOPYES EUPAVIONG TWV AUTLIXWY OYECEWY. To GUVOAO TV UTIAXDY OEXTMY TOU

yenowonopinxav culhéydnxay and to Asfalda French FrameNet.

Or e€aywyég dedopévwy oe xdlde Teplntwan unopolv vo odnyHoouy oe amodxeuon ToAD
HEYSAoL ool AEEEWVY. XTNY TEOYUATIXOTNTO, OUKS, OTdvia oloTolo0UE OhO TOV OYXO
oUTASC NG TAnpogopiag. MdhioTta TOAD GUYVE OAOXATPES UTIOXES TPOTACELS AMOPEITTOVTOL
tehelwe yatl dev €youv xauio yerown TAnpogopla va hag Bcouv, dnAady| 6ev tepthaufdvouy
non-stopwords Tou VoL GUUTUXVOVOUY TO VONUA TV ALTLOXOY YEYOVOTWY. AXOUX, XATOLES
TPOTACELS GTUYMLOTUTIAL JUTLOXWY OyEoewy dev Tafptaloay ota wotiBo eaywyhc dedouévmy eite
Aoy VopUBou 6To apyLxd aBOUNTO COUN XEWEVOL Xl AotV o T @dor Tou annotation, eite
AOY® TPOTACEWY TOL ATAOVUCTATA AMOTEAOVY EEAiPETT) OTIC BOUXES HOPYES EUPAVIONS PNTNC

UTLOTNTOC OV TOPOVCLICUE.

Tnv «eudivny g ayvénong oployévey dedouévwy tou xml apyelou avohopfBdvel €va e-
mrAéov oUvVolo and hoywéc cuvirxec Tou AelToupyYel oucLao T wS GihTeo VYopUPou xau
TEPETALPW TANPEOPOEIUC, TOU AVAAOYO UE TIC AMUUTHCELS KOG Vit XA)E TEP(MTWOT BOXUACTIXOY
oLVohouL exmaldevorg, Yewpolue mAcovdlovoes. Eivar axpBde autd to @lAteo mou avoloy-
Bdvel va amopelder dhec Tic non-stopwords Aé€eic mou Bev avixouv ot €va ThoUGLo YOAMXO
A6, MéZewc mou dev Eexvave and ahgoprduntind yopuxthpa R oand teld ypdupo (étol anop-
pintouye oprduoie xou xOptor ovopota). Axdua, To @ikteo auTtd TEPhoPPBAVEL XATOlES AOYIXES
cLVIXES TOL GUVIGTOUY PLIULLOUEVES TOROUETEOUC TOU Yiatl Umopoly var ahAdlouy avdhoya
HE Tot EMOUUNTE YoUEUXTNELO TIXG TOU GLVOAOL exTaldeLoTg Hog. O mopdueTeol auTol apopolv
™ pUduon tou Badoug avalitnone oto Aévdpo E€aptrioewy Hog xon TNy EMAEXTIXT Ypnion
HOVEY Ol XATOUWY EX TWV QUTLOXMY OEXTOY, eite avdhoya ue to Thadota (tou FrameNet) ota
ornola avAxouy, elte pe 1o U€pog Tou AoYou touc. Me Tn pUUUoN AUTGY TOV TUEUUETEWY
UTOPOUUE VoL SNULoLEYcOUNE BEdopEva exTaldeuoTg Tou elte yapoxtneilovTon and Ty éuga-

o1 0T MOWTXA €lTe 6To TocOoTIXd yopoxTneloTxd. Na tovicoupe oe autd To ornueio 6TL

10 Abstract

xaTd TN @don dnuovpyiag Twv dedouévev exntatlideuone and to xml apyelo yprnoylonotoue
HOVEy oL AjUMOTaL Xa €TOL AVOPEROUEVOL TIEOTYOUUEVWS OF «AEEEIC» OUCLAGTIXE EVVOOVCUUE

CAAPPATO .

"Totepa, TEPVAUE 0TO GTASO TN exToldeVONE TwV WovTéhwy pag. Tlpwta duwe, ag ede-
TACOUKE TIC BLIPORES S PO T Bour) xou TN Aettoupyio Twv teheutainy. To Word2Vec etvan
wia ooyévela HovTEAmY (VEUpVIXGOY BIxTUmVY) Tou déyovTon we elcodo emuépouc AEEELS xou
exTadeOVTUL MO TE VoL TROBAETOUY TNV THAVOTNTO CUV-EUPAVIONS AUTWY TWV AEEEWY UE OAEG
TIC dAheg mou €youde 0To AEIAOYLO Uac. AuTod axpBng To yopoxtneoTixé tou Word2Vec
elvol TOU EXPETAAAEVOUACTE YOl VO ONUIOVPYCOUUE TETOLEC DLUVUOUATIXES VAU TAGELS
(OO TE VoL CUUTUXVMVOLY TANEOQOoplaL Yior TNV TIoVOTNTO GUV-EUPAVIOTS 800 AEEEWY WG GTOL-
Yela autioxwy mpotdoewy. To xooptoTindtepo cuoTatind ctoyeio Tou Word2vec eivan éva
eninedo mou ulomotel softmax regression. Ot mopduetpor Tng softmax cuvdptnong eivou
oL (BlEC Ol BLAVUOUATIXES OVATOPUC TACELS TV AEEEWY TOU AEELAOYIOU TOU Y ENOULOTOLOVUE.
ITowo cuyxexpyéva dnpoupyoLvToL 800 CexmwELoTol TVAXES BLUVUCUATWY, EVIS ELGOBOU XL
évog ££660v. LTy medln alonoleiton wla tpocéyyion tne softmax cuvdptnong, 1 wédodog
Negative Sampling. H unodetinr} cuvdptnon autod tou povtélou pog umodewviel 6Tl 600
OLtVOOATOL €Y 0LV UXEO ECWTERIXO YIVOUEVO OTOY €Y0UV PEYAAN THOVOTNTO CUV-EUPAVIONG.
Mo mopahhoryévn exdoy | auto) Tou HETEOL (BNA. TOU ECWTERPXOU YIVOUEVOU) YENOWOTO00-
WE ot yior vor yeteriooude To Bardud awtioxric oucyEéTiong 600 AEEEwV, %dTL Tou ovoudlouue
outto) eyyUTnta (causal proximity). Ta endueva povtéla mou yenowonotfooue otneilovo
o TNV TogayovTonoinon mivoxa ue 500 dlapopeTixég pedodouc. H mpdtn etvor 1 Singular Value

Decomposition (SVD) evd 1 Sebtepn eivon Non-negative Matrix Factorization.

H mpddytn poppt| 6edouévny lc6dou mou a&lomotfinxe yiot TNV eXTABELCT, TV UOVTEAWY
wog etvan xowi xou yioo T tela. Anuiovpyfooue dedopéva exmaldeuone otr woppn (euywy
AMEZewv Tou cLUYXEOTOVY To afTio (cause-words) xou AEEEWY TOU CUYXEOTOUY TO ATOTEAECUA
(effect-word) ofonowdvtog to xml apyeio yac xou to giktpo mou meprypddayue. Kdde cause-

word €yel yio context uio effect-word xan avtictpoga.

To Word2vec npochopfdver autd ta Lebyn we Aé€eic tou 1 tapovsia tng plag (eloodog)
TpEmeL var TpofBAénel Ty mapouoia e dhhne (é€odoc). H AéEn «mapoucioy eV TpOXEWWEVEL
agopd TNV awtioxr) eYyVuTnTa 800 Aélewy. BOewpolue Yo Toug Aoyoug mou e€nyrinxay mo
TV OTL UTY 1) TANEOPORIN EVOWUATOVETOL GTOV EEWTERLXO X0 ECWTEPIXO TVAXO TGV BLoyu-
OUOTIXMY HOC OVOTOQROC TACEWY XL TIO CUYXEXPUIEVO GTN OYEoT, aUT®Y. AUTO TO OXETTIXO
OLPOPOTIOLELTOL ONUAVTIXG AT TOV TEOTO TTou Yenotdonoleiton cuvidng To poviého Word2vec,
6mou olomotelton Yovdyo o mivaxag elo68ou. OBNYOUUACTE GTN CUYXEXPWEVT) GTRUTNYIXT O-
glomoinong tou ev AdYw povTéLou xodmg BeV TO OELOTOLOUUE YOl VOL OVLYVEUGOUUE OYECELS
opotdTNTog 6mwe elthotan, oAkd oyéoelc auttotntoc. To cuyxexplévo poviého To ovoudoo-
ue Single Word-pair Model oe avtidlaoTory| ye v evolloxtixr Yédodo exmaldeucnsc Tou

Word2vec nou Yo mopouctdoouue Topoxdte.

Abstract 11

‘Eneita, xatd T Yerion TwV LOVTEADY TopoyOVTOTOMNONS TVOXA ETLC TEUTEVGOUE T GUVEEe-
won PMI (Pointwise Mutual Information) yix vo Snuiovpyficoupe tov apyixd pog mivoxo.
Ot ypaupég avtioToryoly ota cause-words xou oL o threg ota effect-words. Kdde el tepiéyel
Vv Twwr PMI tov Mewv tng avtioToyng oThANG xou ypouurs. Ocwpolue 6Tl 1 cuvdpeTno
PMI etvon évat TOAD avTITEOoKTELTIXG PETEO Yol TNV awTioxy) eyyLtnta. O Adyog mou Bev
yenowonotoLue arevdeioag 1o PMI odAd emAélope Ty Toporyovionol|on Tou ev Aoy w mivaxa
elvor OTL uTdEy oLV TOAAG Leuydiplo AEEewY oL BEV GUV-eU@aVI{oVTaL TOTE GTAL UTLAXE CTLY-
woTUTTAL IOV EEAYEYUUE AT TO GWHUA XEWEVOL [og. Axduo, 1 TopoyovioTolnon mivoxo divel

TN duvatdTnTa VYNAAC Yevixeuone ot TpoBAEdelc Yoc.

Xenowonoinxe pio axourn exmouudeutint| uédodog n onola dlapopomoleitol and T TEOT-
YOUUEVES 0C TPOG TN Uop@n TwV Bedouévwy €lo6dou. Auth 0 @opd afloTOLCUUE UOVO TO
Word2vec, 6une, avtl vo Tou Topoustdooupe ¢ ZexwElo TEC ToTdoelS amAd (euydpla cause-
words xou effect-words, Tou 6ivouue OAe TIC AEEEIC TWV AUTIAAWDY CUVICTWONY XAVE TEOTUCTC
ot oepd. ‘Btol, wg miaicio wag Aééng umopel va Yewpniolv diec ol undroineg AEelC TV
OUTLOXWY GUVICTOOWY TANY TN Blag. o xdde AéEn npoonadolue va tpoBiédoupe o mhoiotd
e, Me v B Aoy 6mwe xou mponyouuévee oltonololue To embeddings elo6dou xan
e€600u yia ta test mou axohoutolv. H ev Aoyw uédodog mopoucidlel TNy napadogoTnTo 6T
mheov Yo TeoPBAEneTon UEYAAN EYYOTNTA O)t UOVO UETOEY BLovuoudTtony AEEewy and Blapope-
TIXG ouTiaxd YEYOvOTa, aAAS xou AEEewv Tou (Blou yeyovotog. Autd dev pag eunodilet mop’
Ol LT Vo TpoPBAETOLUE ouTlor) EYYOTNTA, OE00UEVOL OTL TNV EETALOUPE HOVAY O Yiot AEEELS
mou Eépoupe (1 ToUAGY Lo TOV UTOVETOUPE) OTL UTOBNAMVOUY BlapopeTind yeyovota. Auth 7
teheutalor cuVITHn amotehel Tpolnddeon yia TNV xahy| Aettoupyiot OAWY TWV LOVTEAWY oG XAl
amOTEAEL XUADC 1) XAXWS EVAY TEQLOPLOUSO GTO GTOYO UG YL TNV VLY VEUCT] OYECEWY UTLOTT-
tac. H teheutaio autr yédodoc anoterel ndvtwe Ye eppovy) SLopopd TNV AmOTEAECUATIXOTERT
am6 OAEC TIC UEVOBOUC TOL TAPOLCIACTNXAY Em¢ Twpd. To yeyovog autd ogelleton 6T0 pe-
ydro Bodud yevixeuong mou emtuyydvel. Adyw tou otL otneiletar TNy exanideuon mhve oe
Cebyn awtiax@v cuvioTwo®y (tuples) xaw oyt oe Lebyn AMéewv, ovopdlouye autd T0 PHoVTENO

uac Tuple-based model.

H aohdynon towv povtéhnv pog €ytve mdve o Lebyn yarhxwy Aéewv tou Task8 tou
Semeval. Ilpdxeiton, mo cuyxexpéva, yio LEVYN OLCLIGTIXGOY TIOU €YouV emAeYEl Ue TéTOLO
TEOTO WOTE VO GUUTUXVOVOUY XOTE TO BUVITOV THO OVTITPOCWTEUTIXE T OYECT NS onolag
oL avT{oTOLYEC TPOTACELS AMOTEAOUY GTIYUIOTUTO. AEV €YOUUE VA AVTWETOTIGOUUE, AOLTOY,
HOVO ouTioxd CTLYMLOTUTIOL 0AAG TOAAEG oxoua oyéoelg. [lpémet, ev téhel, va unopéoouue va
mpoPiédouue ue 1o peyahlTepo SuvaTd TocOoTH emituylag av xde éva and T Ledyrn Tou

7. 4 7 7 7
Task8 etvon 1} Oyt outlond oTLyOTUTO.

To yétpo mou yenowwonoioaye yia Ti¢ TeofBiéeic pog etvar o cosine similarity. Ipdxerton
YioL ot XOVOVIXOTIONUEYY) HORYT] TOU ECWTERIXOU YIVOUEVOU PETUED TWY BLOUVUCUATIXGDY OVo-
TORUC TACEWY AEZewY Blaope T autlaxhc ouvotwoog. ‘Ocov agopd 1o Word2vec, ndvta

aflomotolpe tor dlavhopata Tou eowtepixol (1o eminedo) xou e€wtepixol mivaxa (20 enine-

12 Abstract

80). AvtioTtorya yio Tic pedddouc maporyovtonoinone mivaxa aZlOTOWVPE TIC JLVUOUATIXES

OVOTIOEOIC TAOELC TTOU AMOTUTIOVOVTAL G TOUC 000 TVOXES TOU TEOXUTTOUV.

E&etdooue Tn CUUTERLPORA TWV UOVTEAWY UAC YENOWOTOLOVTIC TNV YRUPIXY| oVOTOQRd-
otoor Precision-Recall xou Receiver Operating Characteristic. Trnv xahOtepn cuuneplpopd
emdeviel to Tuple-based povtého poac pe AUC (Area Under Curve) ico pe 0,69 yu to
Precision-Recall. 'Enceita axolouvdolv 1o SVD (AUC = 0,63), to Single Word-pair (AUC
= 0,61) xar to NMF (AUC = 0,58), ye auty| tn oepd. Xpenotwonotfoode dxoua €va Lo-
VvTéLo w¢ baseline, cuyxexpiuéva évo Word2Vec poviého mpo-exmaudeupévo méve 6To ooy
xewévou frWac (1o B0 dnhadr nmou ypnowonotoaue xt gueic Yoo ™y e€aywyh TwV ou-
TLXOY [ag dedopévmv). ‘Onwe Aoy avoevouevo, to ev Aoy PovTéAo Bev emédelle xolN
CUUTERLPORE GTNV ovay VEpton antlaxd cuoyeTllouevwy Leuydv hAéEewv (AUC = 0,58). H e-
TWAOYT| TWV TUPAUETEWY XAUE LOVTEAOU UoC TEOEXV(PE UETH amd TOMAES BOXUIES DLUPOPETIXWY
dedopévmy exnaidevong (BtapopeTinéc pUIIES 0TO QIATEO UoC) Xt SOXIUES YLa SLaPOPETIXG
Yoo TNEIo TiXd Tou Lovtéhou xad auvtol. Eyouue xotaypdel o€ Ypopixée Topao TICE TO
Twe axpPog ennpedlouvy tétoleg puluioelg ouyxexpiuévo to Tuple-based povtého pog. A-
XOUOL OVUTIOPLO TOVUE T GUUTERLPORd pioc oppidpounc (bi-directional) mopadhoyhic touv SVD
HOVTEAOL pacC.

Téhog, xatodhlaue oc xdnola yevixdtepa cuumepdopota. Metd and tn obyxplon g
CUUTEQLPORASC TWV UOVTEAWY UOC XL TNV XATAVONOY| TNS ECWTEPIXNG Boung xou Asttoupyiag
TOUC €YWVE EUpavic N onuacia TNS IXavoTNTaG Tou Yovtéhou Yl uPnin yevixevon. Autd
pévnxe xo and TNy aduvouior Tou PMI vo xokOel Tig avdryxeg tne epyaociog poag xodog enlong
xoL amd TNV copag To emttuynuévn Asttovpyilo Tou Tuple-based povtélou poc oe oyéon
ue ta umdroma. Elvow onuavtixd vo toviotel 6Tl T povTEAa Yag ovTHETOTILOUY OyeTIXT
OLOXOA L TNV AVl VELOT) AUTIONTOG OE TOAUTAOXES TEOTACES xoWE TOAMES amd TIC AEEES
TIOU GLUYXEOTOVY TO VONUA TOUG AVTWETOTIC TNXAY amAd 0¢ stop-words. Oewpolue 6Tt TohéG
amd TIC O TOYIEC TWY MOVTEAWY pog oyeTilovton ye To €ldog Twv dedouévwy exmaldeuong.
H emloyyh tov xatdAAnlov dedopévwy exnaldeuone eivar éva onpovtixd (Atnue To omolo
UGALOTOL ool TEL X0 OLUPORETIXY] AVTIUETOTLON Yiot Xdde YAOoow. Oewpolue OTL LUTAEYOUV
oM mepripta Bedtioong oTn dladxactia GUAAOYAG AUTWY TwV dedouévwy. Behtiwoeig ot
AUTO TO XOPPATL TNG EPYACTAC Hog Yol UTOPOUGAY VO TROGOMGOUY GTA HOVTEAX PO UEYUAUTERT

ATOTEAEGUATIXOTTAL.

Contents

[TeptAngn 1
[Abstractl 3
(Euyapioticg) 53
[Extetapevn EAAnvixn llegiAndn) 7
1__Introduction| 15
[2__Semantic Relation Extraction 17
2.1 _Methods of semantic relations extractionl. 17
[2.1.1 Distributional approaches| 18

[2.1.2 Pattern-based approaches| oL 19

[2.1.3 Latent Feature Approaches| 20

[2.2 Causality detection| 20
[2.2.1 Statistical vs. Non-Statistical Techniques| 21

|3 Machine Learning: Theory and Models| 25
[3.1 Supervised learning|. 25
[3.1.1 Linear regression| 26

3.1.2 Logistic regression| oo 28

[3.1.3 Softmax Regression| L. 29

[3.2 Stochastic Gradient Descentl L 30
3.2.1 Word Embeddings| oo 32

3.3 Language Models| 34
B4 Word2ved e 36
[3.4.1 Continuous Bag-ot-Words Model| 38

[3.4.2 Continuous Skip-gram Model| 42

[3.4.3 Digression: From Brain-Inspired representations to mathematical |

| abstractionl 44
[3.4.4 Softmax Approximation Strategies| 46

[3.4.5 Subsampling |o o 49

Contents

14
(3.5 Mutual Information Measuresf
3.6 Unsupervised Learning|.
[3.6.1 Dimentionality Reduction|

[4 Creation of Causality Detection Models|

[5.5 Discussion: Qualitative Results|

[5.5.1 Interpretation of our Models’” Flaws|

5.6 Extra Quantitative Tests|.

6 Conclusion|

[Bibliography|

Chapter 1

Introduction

Human readers have the extraordinary capability to infer event causality from plain
text. This attribute is partly due to our inclination, as human beings, to easily recognize
special lexical units such as because, as a consequence, hence, cause, result, originate,
etc., that explicitly indicate such a relation between two events. In this particular type of
phrases, causality can be inferred even in the case that we don’t have any knowledge of

the meaning of the words describing the causal events.

However, another cognitive characteristic that makes us humans capable of detecting
causality even in cases where there are no explicit causal lexical units, is our ability to
employ semantical relations, intuitional notions about how probable it is that two events
are causally connected. Many causality instances in natural language, either involve only
ambiguous connectives (and, from) or they don’t involve any connectives at all. Yet, we
are still able to notice if there is a causal link between events merely because we have some

prior knowledge that forms our intuitional interpretation abilities.

Here are some examples of event causality instances. The first one is an explicit case

of causality where causality is indicated by the noun cause:
Suicide is one of the leading causes of death.
The second one is an implicit case involving an ambiguous connective:
He had chest pains and headaches from mold.

The next one does not involve any cause-effect lexical units or any other connectives.

The events that are causally linked appear in two separate sentences.
The woman had an infection. She took antibiotics.
The causality relation is more than evident in all of the above cases.

We should also notice that humans have the ability to deny the existence of a causal

link. For example, it would be easy for a human to deny a causal relation in the next

15

16 Chapter 1. Introduction

example of sentence pair that appears in the same form as the sentences in the previous

case:
The woman had an infection. She washed her hands.

Even so there are cases where even humans are not sure but they can still can guess
quite well and even this attribute is very important for language understanding and com-

munication.

Yet, it is not at all evident how a computer could perform such a task. Thus, there
arises a very interesting problem for the NLP community to tackle. There is already a lot
of effort given from researchers to cope with such a task, a tricky task, considering the

various forms that causality may appear.

In this project our work deals with causality detection specifically in french language.
We contribute to the relevant research field by making some suggestions about prediction
and distributional models that could be employed for direct detection of such relation
instances or that could be used as auxiliary tools for future projects that will concen-
trate more into formal semantic and pragmatic approaches. We also try to make some
useful observations derived as general conclusions from our work and specifically from
its evaluation part. This commenting gives additional insight into the employed models
(word2vec, matrix factorization), their special features and innovative ways that could be
used. We also provide the NLP community with a succinct set of data comprising causally
connected words extracted from the frWac corpus, and we store them encoded in an .xml
file for further use. For each and every word there are stored several grammatical and
syntactical information. We consider this dataset a very useful tool for researchers that
want to get involved with information retrieval tasks related to causality, specifically in

the french language.

In this project, we rallied four main different methods dealing with causality detection.
All of them relying on knowledge based on focused distributional similarity, specifically
what we call causal proximity between individual words. As indicator of the existence
of causal relation, we consider the probability of the co-occurrence of individual words
related as cause-effect pairs. The first two of our methods rely on the state-of-the-art
Word2vec tools designed from Mikolov et al. We trained this model aiming at the cre-
ation of word embeddings that bear information useful to deduce causal relations, using
two different training techniques. The next two methods that we employed use matrix fac-
torization algorithms. We decided to test the Non-negative Matrix Factorization (NMF')
and Singular Value Decomposition (SVD) methods for linear dimensionality reduction of
a matrix by factorizing it in matrices that in a way constitute our alternatively trained

causal embeddings.

Chapter 2

Semantic Relation Extraction

One of the most important chalenges for the NLP community, today, is the automatic
extraction of valid knowledge from plain text. If we want to effectively simulate or at least
mimic the humans’ ability to understand written texts, we need to develop models that
will be able to cope with the various forms of syntax, semantics, a continually evolving
vocabulary, and ambiguous linguistic constructs like figurative expressions, metaphors,
rhetorics, sarcasm and slang. Many simple tasks like the identification of negation are still
problems that need to be solved [I]. We can’t neglect, however, the huge breakthroughs
made in the field of NLP during the last three decades. The current research seems to

progress quite efficiently, especially in what pertains to information extraction tasks.

A critically important research topic that emerged in the past few years is the au-
tomated extraction of semantic relations or the practically equivalent topic of semantic
relation detection. Relevant research finds great applications in question answering, in-
formation retrieval, event prediction, generating future scenarios and decision processing.
Typical relations that have raised the interest of NLP researchers are part-whole, if-then,
cause-effect. The cause-effect relation, with which we are dealing in this project is strongly

connected to decision making and thus it plays a crucial role in human cognition [I].

2.1 Methods of semantic relations extraction

Most research on automatic extraction of semantic relations focuses on exploiting large
amounts of unannotated corpora, which have become increasingly available for many lan-
guages and domains, often by harvesting from the web. Such approaches are based on
the distributional hypothesis of Harris [16], stating that words in similar contexts have

similar meanings, hence, word meanings can be derived in part from their distribution

17

18 Chapter 2. Semantic Relation Extraction

across different linguistic envionments. Other formulations of the same assertion are the
following: “You shall know a word by the company it keeps” as stated by Firth [11] , and
also suggested by Harris [I7]: “the linguistic meanings which the structure carries can

only be due to the relations in which the elements of the structure take part.”

Distributional semantics are more or less founded in this very idea, where finding the
meaning of a word is based on its linguistic environment and relevant distributional pat-
terns. This information can be encoded in vectors, one for each word of our vocabulary,
that contains the measure of the frequency of co-occurrence of the corresponding word
with the rest of our vocabulary. We are going to focus, firstly, on two types of tradi-
tional “distributional” approaches that are based on the distributional hypothesis. The
first type (distributional approaches) exploits distributional semantic representations in-
discriminately in order to infer semantic relatedness between words. The second type of
approaches (pattern-based approaches) does the same but exploits only specific types of

explicit relations.

2.1.1 Distributional approaches

A great advantage of distributional approaches is that they are purely unsupervised.
Vector representations created automatically from large corpora by recording the frequen-
cies of co-occurrence between what we can call target words and context words and by
this we mean the surrounding words. We can actually measure the co-occurrence either
by using a word context window of fixed size or by exploiting syntactical dependencies.
In Figure 2.1, we show examples of co-occurrence counts for several words occurring with

different context words.

red delicious fast
apple | 2 1 0
wine 2 2 0
car 1 0 1
truck 1 0 1

Figure 2.1: Examples of co-occurence counts for a few english words

Words that have many common co-occurring words are thought to be semantically

related, take under consideration the distributional hypothesis (e.g., car and truck have

2.1. Methods of semantic relations extraction 19

identical vectors in our very simple representation in Figure 2.1, while car and wine have
very different vectors). A good measure to represent the proximity of two word vectors

considering the amount of common co-occurring words is the cosine similarity.

Budanitsky and Hirst [7] made a clear distinction between semantic similarity and
semantic relatedness. They considered the former to be a subset of the latter. Semantic
similarity denotes relations of synonymy, hyponymy (and hypernymy), antonymy, or tro-
ponymy, while semantic relatedness denotes any semantic relation existing between two
words. Furthermore, they formalize this distinction according to the syntactic relations
between each word and its co-occurring words context by claiming that in order for two
words to be distributionally similar it is necessary to have the same syntactic relation with
their co-occurring words and if the don’t, they are merely distributionally related. Thus,
a way to measure similarity instead of general relatedness is to look specifically at context
words that are syntactically related with the target words, instead of using a fixed window

of surrounding words.

An important limiting factor of distributional approaches is that distributional mea-
sures put some barriers in our will for an effective distinction between different semantic
relations, they only achieve a quantification of the level of relatedness between lexical

items.

To get at more precise semantic relations, another type of approaches, based on lexico-
syntactic patterns, has been investigated by a number of researchers. We present these

techniques in the following section.

2.1.2 Pattern-based approaches

Pattern-based approaches are based on a different view of the distributional hypoth-
esis. In distributional approaches, when we measure the relatedness between two words
considering their co-occurrence in similar contexts, there is no restriction on the type of
contexts. On the contrary, pattern-based approaches target specific relations indicated by

explicit lexical units.

Here, we exploit word pairs that are syntactically linked within patterns marked by
specific indicators of the targeted relations. Approaches like these are considered to be
”weakly supervised” because manual extraction is needed for the specification of patterns
[10].

Pattern-based semantic relation extraction usually consists of four main steps: (A)
definition of the semantic relation of interest, (B) discovering of the specific patterns

which explicitly express these relations and also the syntactic conditions under which the

20 Chapter 2. Semantic Relation Extraction

meaning of the targeted relation is realized, (C) the search for instances of the relation by
exploiting the patterns, and (D) structuring the new instances as part of a new or existing

ontology (or terminological database) [10].

Pattern-based approaches have been shown to achieve high precision and to allow for
the identification of particular relations and their distinction. Yet, they tend to have very

low recall scores.

2.1.3 Latent Feature Approaches

Latent feature based methods exploit linguistic features extracted from large corpora.
For our task we chose to employ and compare Word2vec [25] and Matrix Factorization
techniques that create dense vectors, latent feature representations of our lexical units. An
important issue that constitutes a prominent research topic is the specific manner that we
can use such models not just for semantic similarity tasks but also for tasks of (causality)
relation detection. We claim to have some answers on this question, but we are going
to discuss more about the ways that word embedding models can be used in the next

chapters.

For now, to make a connection between these methods and the previous discussion,
we can say that our strategies for relation detection rely on pattern-based approaches
either explicitly as with SVD and NMF or implicitly as with Word2vec. In the explicit
pattern-based methods we firstly count co-occurrences of words in our carefully chosen
causal patterns and we then store these counts in a huge matrix that is then factorized.
In the implicit methods we create dense vector representations by training our models to
predict a word from its context or inversely. The context of a word is determined by our
causal patterns. In all of these models the most distinctive element is the use of latent

features, the employment of dense vector representations, what we call word Embeddings.

2.2 Causality detection

The world can be seen as a network of causality where people, organizations, and other
kinds of entities causally depend on each other. This network is so huge and complex that

it was unavoidable for it to be put under the microscope of science. Hence, causality has

2.2. Causality detection 21

been studied extensively in a wide range of disciplines, including Psychology, Linguistics,
Philosophy and Computer Science. One of the simplest ways to express cause-effect rela-
tions is through propositions of the form ‘A causes B’ or ‘A is caused by B’. It is a highly
intuitive notion and yet, the topic has been surrounded by much controversy because ex-
perts belonging to these fields often disagree about when two events are causally linked.
This is understandable, because causality can be expressed using many different types
of propositions (e.g., active, passive, subject-object, nominal or verbal) and have several

diverse syntactic representations.

Causality can be expressed using many different types of propositions (e.g., active,
passive, subject-object, nominal or verbal) and have several diverse syntactic representa-
tions. Omne popular classification of its explicit representations was given by Khoo et al
[22].

1) Causal links can be used to connect clauses or sentences. Altenberg classified causal
links into four types: a) adverbial links, e.g. so, hence, therefore, b) prepositional links,
e.g. because of, on account of, ¢) subordination, e.g. because, as, since, and d) clause-

integrated links, e.g. that’s why, the result was.

2)Causative verbs are transitive verbs whose meanings include a causal element. Ex-
amples include break and kill, whose transitive forms are: to cause, to break and to cause
to die.

3)Resultative constructions are sentences in which the object of a verb is followed by a
phrase describing the state of the object as a result of the action denoted by the verb.An

example is ‘I painted the car red’.
4)If-Then conditionals often indicate that the antecedent causes the consequent.

5) Causation adverbs and adjectives have causal element in their meanings, e.g. fatal

or fatally, that can be paraphrased as to cause to die.

We can discriminate between two basic categories of causal relation detection methods
-
I) linguistic, syntactic and semantic pattern matching

IT) statistical and machine learning techniques

2.2.1 Statistical vs. Non-Statistical Techniques

Many previous studies have attempted to extract implicit cause-effect relations from
text using knowledge-based inferences. These studies were based on hand-coded, domain-

specific knowledge bases difficult to scale up for realistic applications. More recently, other

22 Chapter 2. Semantic Relation Extraction

researchers (Garcia [12] and Khoo et al. [21]) used linguistic patterns to identify explicit

causation relations in text without any knowledge-based inference.

Garcia used French texts to capture causation relationships through linguistic indica-
tors organized in a semantic model which classifies causative verbal patterns. Khoo at al.
used predefined verbal linguistic patterns to extract cause-effect information from business
and medical newspaper texts. They presented a simple computational method based on
a set of partially parsed linguistic patterns that usually indicate the presence of a causal

relationship. The relationships were determined by exact matching on text.

The need to make use of a large amount of labelled, domain-and-type-independent,
textual data and to extract implicit patterns in text automatically, meant that machine
learning techniques could potentially do much better than purely linguistic techniques.
Thus, beginning in the early 2000s, the paradigm to tackle the problem of automatic
causal relation extraction began shifting to statistics and machine learning. The early
studies relied on finding explicitly marked cause-effect pairs in sentence, but with the
passage of time, researchers progressively began to account for implicit and ambiguous

constructs through careful feature extraction.

Girju [I3] was the first one who used machine learning techniques. She specifically em-
ployed a supervised method using C4.5 decision trees. A training corpus of 6000 sentences
and a test corpus of 1200 sentences containing each of the 60 simple causative verbs was
created using a domain-independent text collection. Using a syntactic parser, 6523 rela-
tions of the form NP1-Verb-NP2 were found, from which 2101 were causal relations and
4422 were not. These were the positive and negative examples used to train the decision-
tree classifier. As features, the constraints on the nouns and verb, which were necessary
for a pattern to be a causal relation, were identified. In particular, for each value of NP1
(and similarly for each NP2), nine noun hierarchies from WordNet were used as semantic
features: entity, psychological feature, abstraction, state, event, act, group, possession and
phenomenon. The training process produced several constraints, which were ranked based

on frequency and accuracy.

For our project, other highly influential works in (causality) relation detection are the

following.

Juliette Conrath [I0] addressed the challenge of relation extraction using a purely
distributional method to automatically extract the necessary semantic information for
common-sense inference. Typical associations between pairs of predicates and a targeted
set of semantic relations (causal, temporal, similarity, opposition, part/whole) were ex-
tracted from large corpora, by exploiting the presence of discourse connectives which

typically signal these semantic relations.

Sharp et al. [31] generated causal embeddings cost-effectively by bootstrapping cause-

effect pairs extracted from free text using a small set of seed patterns. Nextly, they trained

2.2. Causality detection 23

dedicated embeddings over these data, by using task-specific contexts, i.e., the context of
a cause is its effect. Finally, they extended a state-of-the-art re-ranking approach for
QA to incorporate these causal embeddings. For the embeddings creation task they used
a dependency-based variant of Mikolov’s word2vecf model [25] introduced by Levy and
Goldberg [23]. Their model was trained using single word training pairs. They compared
several variations of this method and a Convolutional Neural Network, an Alignment
model and simple baselines, using test word-pairs drawn from SemEval 2010 Task 8 and

by representing their detection capacity using a Precision-Recall curve.

24

Chapter 2. Semantic Relation Extraction

Chapter 3

Machine Learning: Theory and
Models

Machine learning is a branch of Artificial Intelligence used for data analysis. It is based
on the idea that computers should be able to learn, adapt and thus find structure, predict,
cluster and classify data. In this section we are going to present the basic theoretical foun-
dations of machine learning and explain both mathematically and in terms of applicability
the functioning of several models either those used in our project for causality detection

or other ones that are strongly connected with them.

3.1 Supervised learning

A supervised learning problem is, given a training set (z(1, y(M), (22, @), .., (x(™) (™)),
to learn a function h : X — Y so that h(x) can effectively predict the corresponding value
of y [27]. X and Y denote the space of input values and the space of output values

respectively. For historical reasons, the h function is called a hypothesis.

Here, we will use 2(?) to denote the “input” variables, also called input features, and y®
to denote the “output” or target variables that we are trying to predict. A pair (z(®,y(®)
is called a training example. We will call a dataset that will be used for training a training

dataset -a list of m training examples {(z® , y®);i=1,. .., m}.

If we deal with a target variable y that is continuous, we call the learning problem
a regression problem. On the contrary, if y can take only discrete values, we call it a

classification problem. [27]

In supervised learning our goal is to find a function y=h(z) so that we have y(i)~h(x(7)

for each training example.

25

26 Chapter 3. Machine Learning: Theory and Models

Training
sel

Learning
algorithm

X predicted y
(living area of (predicted price)

house.) af house)
Figure 3.1: Supervised Learning process
3.1.1 Linear regression

A regression problem can often be faced with a linear regression model. In this case

we choose a linear function of x:

ho(z) = (0W2") =0T (3.1)

where 0 is a vector (6y, 01, ..., 6,), and the ; ’s are the parameters (also called

weights) parametrizing the space of linear functions mapping from X to Y.

Here, h(x) represents a large family of functions parametrized by the choice of 6. (We
call this space of functions a “hypothesis class”.) With this representation for h, our task
is to find a choice of 0 so that h(x(7)) is as close as possible to y(7). In particular, we will

choose a 0 that minimizes:

This function, called mean squared error (MSE), is the “cost function” for our

problem, and measures how much error is incurred in predicting y(i) for a particular

3.1. Supervised learning 27

choice of #. This may also be called a “loss”, “penalty” or “objective” function [27].
When J(#) is minimized the log likelihood 1(8) of p(y |x ;), the distribution of 3
given () parametrized by 0, is actually maximized. This implies that when we chose this
particular cost function we relied on the principle of maximum likelihood which says

that we should choose 6 to maximize the likelihood function L(6).

In order to express p(y|x;f) as a specific function we need to make some assumptions
based on mere intuition. We will firstly assume that the target variables and the inputs

are related via the equation:

y D =0Tzl 4 0 (3.3)

where € is an error term. Let us further assume that the () are distributed according
to a Gaussian distribution (also called a Normal distribution) with mean zero and some
variance o2. We have that “e (i) ~ N (0, 62).” or “y|x; ~ N (i, 02)”. The density of
¢ is calculated by:

) (3.4)

which can be re-written as:

) (3.5)

Thus:

£(6) = [L PuO1:6) (3.6)
l (i) _ §T 402
11 :W exp(— Y 2; Y (3.7)

and

28 Chapter 3. Machine Learning: Theory and Models

1 1 ‘ ‘
¢ (0) =log L(0) = nlog §Ji\/—7“7r0 — > =0Tz (3.8)
o -

Hence, maximizing ¢ () (the log likelihood) is equivalent to minimizing

> " -0y, (3.9)

1

3.1.2 Logistic regression

Logistic regression is a model used for classification tasks. In contrast to the regression
problems the values y that we now want to predict are discrete values. Logistic regression is
an algorithm which deals specifically with binary classification problems. More specifically,
these are problems in which y can take on only two values, 0 and 1. Given z(® | the

corresponding y(is called the label for the current training example.

The hypothesis function we choose here is:

1
@) = oy (3.10)
Furthermore:
P(y = 1|z;0) = hy(x) (3.11)
P(y =0|z;0) =1 — hy(x) (3.12)

and in a more succinct form:

P(ylz;6) = (ho(2)) (1 — ho(a)) " (3.13)

3.1. Supervised learning 29

Once again following the maximum likelihood principle and by assuming the distribu-

tion y|x; 6 ~ Bernoulli(p) we choose as loss function:
JO) =~ |y loghg(x?) + (1 — y'?)log(1 — he(z™))| (3.14)
i=1

3.1.3 Softmax Regression

In cases where we are interested in multi-class classification we can employ the softmax
regression model. In this case, the output y can get K different values, not only two. Thus,

in our training set, we now have that ye{1,2,...,K}.

The hypothesis function of softmax regreesion is able to estimate the probability that
P(y=k|z) for each value of k=1,... K, for a given test input. Hence, our hypothesis
function will give us as a result a K-dimensional vector, whose elements sum to 1 and
each of these values corresponds to one of the K estimated probabilities. Our hypothesis

ho(x) can also be represented like this:

Py =1]z:0) | exp(0V)7z) |
P(y = 2|x;0) 1 exp (0?7 x)
hﬁ(x) - . — K . .
: > exp(0U) T) :
P(y = K|z;6) exp (0")
(3.15)
where 0 0@ 0K cRn correspond to our model’s parameters.

Similarly, by assuming multinomial distribution, our loss function is:

30 Chapter 3. Machine Learning: Theory and Models

IO == |33 1 {y" = k}log ZEXP(WW) (3.16)

1=1 k=1

9963

In the equation above, 1{-} is the ”‘indicator function,”’ so that 1{a true statement}=1,

and 1{a false statement}= 0.

The above function, commonly called categorical cross-entropy loss, generalizes
the logistic regression loss function presented in the previous section [27]. We should

finally note that in softmax regression, we have that:

exp (80T 20))

S exp(60)T0)

Py = k|zD; 9) = (3.17)

3.2 Stochastic Gradient Descent

Stochastic Gradient Descent is an algorithm normally used for the training procedure
of neural networks. This algorithm takes as input the cost function and the training data
set. It calibrates the parameters in such a way that the cost function becomes smaller
and smaller until it converges to a value that minimizes the loss. The algorithm works as
follows [14]:

Input: Function f (x; §) parameterized with parameters 6.
Input: Training set of inputs x 1, . . . , x n and desired outputsy 1,. .. ,yn.
Input: Loss function L.
while stopping criteria not met do
Sample a training example x i, y i
Compute the loss L(f (x1;6),y1)
g < gradients of L(f (xi;0),yi) wrté
0+—0—-ntg

return 0

3.2. Stochastic Gradient Descent 31

This algorithm aims at learning parameters 6 so as to minimize the total loss X; L(f(x;; 0), y;)
over the training set. It relies on sampling epoch by epoch each training example and by
computing the gradient of the error on each pair. Next, the parameters 6 are updated
oppositely from the gradient and is scaled by a learning rate 7. The learning rate can

either be fixed during the training, or decay as a function of the time step t.

In line 6, SGD calculates the error based on a single training example and it is conse-
quently a vague estimate of the loss that we are trying to diminish. Inaccurate gradients
may occur due to the noise in the loss computation. In order to reduce the noise we can
employ a sample of training pairs and then estimate the error and the gradient of the

batch instead of separated examples. This gives rise to the minibatch SGD algorithm [14]:

: Input: Function f (x;) parameterized with parameters 6.
: Input: Training set of inputs x 1, . . . , x n and desired outputsy 1 ,. .. ,yn.
: Input: Loss function L.

: while stopping criteria not met do

g+ 0
fori =1 tom do
Compute the loss L(f (xi;6),y1)
g < g + gradients of 1/m*L(f (xi;60),yi) wrté
10: 8+ 0—ntg

11: return 6

1
2
3
4
5: Sample a minibatch of m examples {(x 1,y 1),...,(xm,ym)}
6
7
8
9

The gradient g of the loss - based on the minibatch - is calculated in the line 6-9 by
repeatedly updating the value of g and finally of 8. The size of the minibatch is m and
in general the larger it is the better it can estimate the gradient, but small ones enable
faster convergence. It’s not however only the accuracy of the gradient calculation that is
improved with this new algorithm but also the training efficiency thanks to the ability of
parallelizing the calculations, often with the use of GPU[I4]. The convergence to global
optimum is guaranteed provided that we deal with convex functions, but even in the
case of non-convex ones we can get remarkable optimizations without however ensuring
convergence to global optimum. A drawback of the minibatch algorithm as compared with
the simple SGD is that it can get much slower, since it updates the parameters only after

scanning the whole batch.

The gradient computation is a key step for the SGD algorithm, as well as in all other
training algorithms. However, we haven’t yet dealt with the details about how to com-

pute the gradients of the neural network’s error with respect to the parameters. The

32 Chapter 3. Machine Learning: Theory and Models

Figure 3.2: Computation graph created for the implementation of backpropagation on a

MLP with one hidden-layer and a softmax output transformation [14]

solution comes in the form of an algorithm called backpropagation. Through the use of
the chainrule, the backpropagation algorithm takes on the responsibility to methodically
compute the required derivatives, while storing intermediary results to the memory [14].
It specifically exploits the computation graph of a training model such as the one shown
in the Figure We won’t, however, get into greater details for this method.

SGD is strongly connected to our work since we ourselves use prediction models such
as Word2vec, which are practically neural netwokrs. When training a prediction model,
the parametrized function f is the model itself, and the parameters 6 are the linear-

transformation matrices, bias terms, in our case the embedding matrices and so on.

3.2.1 Word Embeddings

If we want to make predictions we need to do computations and a good way to do
that is by processing on words as if they were vectors. Instead of vector representations
we could also use distinct symbols, but techniques based on this strategy usually suffer

for inefficiency and poor generalization. By using vector representations we can represent

3.2. Stochastic Gradient Descent 33

semantic features and thus infer similarity or other kind of relations between lexical units.
The distributional hypothesis that we mentioned above, gives us a good hint on how we
can create these representations. Many of the techniques employed till now in the NLP
community are based on this very assumption. The first approaches of this kind aimed
at encoding the association of words with the contexts in which they appear, either by

creating sparse vectors that incorporate this information, or by using clustering techniques.

However, the contemporary approach in tasks that require the use of word representa-
tions, is to create vectors with latent features, that is, small and dense vectors that enable
fast computations and low memory usage. This strategy is based on machine learning algo-
rithms that involve neural network language models. The creation of such representations
depends on training prediction models that can usually be seen as neural networks. Bengio
et al. [4] were the first ones who introduced in the NLP community the neural network
techniques for the creation of vector representations that they called word embeddings.
Collobert and Weston [9] in 2008 showed how useful could such pre-trained embeddings be
for linguistic tasks and then it was Mikolov et al. [25] in 2013 that introduced word2vec,
a familly of very efficient models for word embeddings, that have shaped, till the current
days, an eminent trend in word similarity tasks. The training of all these neural models

is based on stochastic gradient descent.

These kinds of models require supervised training, whilst there are some unsupervised
(distributional) training techniques that also seem to be quite competitive. SVD, a tech-
nique for dimensionality reduction through matrix factorization, has been proposed by
Bullinaria and Levy (2007) [8] for linguistic tasks and recently Levy and Goldberg (2014)
[24] have argued for a strong connection betweeen word2vec and SVD in terms of their
mathematical foundations. In 2014, Pennington et al. [28] released GloVe, a new global
log-bilinear regression model that combines the advantages of global matrix factorization

and local context window methods.

Yet, the choice of the training set is probably the most decisive factor for the behaviour
of our models. As we saw in the corresponding section there are several methods for se-
mantic relation extraction. A pattern-based, as contrasted with distributional approaches
in what has to do with the choice of training data, can lead to totally different model

behaviours.

There are several software packages for word embeddings creation such as word2vec
and Gensim using word-windows based contexts, word2vecf which is a modified version of
word2vec allows the use of arbitrary contexts, and GloVe implementing the GloVe model.

Many pre-trained word vectors are also available for download on the web.

34 Chapter 3. Machine Learning: Theory and Models

3.3 Language Models

Language models are algorithms that aim at predicting a word in a phrase, given its n-1
previous words i.e. p(wt|wt—1,---wt—n+1) [29]. The probability of the occurrence (and
hence the validity) of a sentence can be estimated through the product of probabilities of
each words by applying the chain rule considering the Markov property (the memoryless

property of a stochastic process):

P(wy, -+ ,wr) = HP(wz | w1, Wimpy1) (3.18)

In neural language models, the probability is estimated through a softmax layer. The

objective function in this case is:

exp(h'v7)
exp(hTv])

Pw | we—q, -+ Wi ny1) = 5 (3.19)

w; eV

The inner product thg represents here the log-probability of the word w;, which is
normalized by the sum of the log-probabilities of all the words in our vocabulary V. The
symbol h corresponds to the output vector of the hidden layer in the feed-forward network
in the Figure while v} is the output embedding of the word w, its representation in
the weight matrix of the softmax layer. We should note that although v represents the

word wy, it is created separately from the input word embedding v;.

At this point, we can’t but notice the similarity between the above formula and the

one presented in the section of softmax regression. Here, our model is parametrized by h.

3.3. Language Models 35

output
layer

g P (w, =]|h.J)

B F(w, =ilhy)

shared .
projection N

Figure 3.3: The structure of a Neural Language Model

Hence, we could write that:

Plwy | wi_y, - Wi—ni1) = Py = k|zD; h) (3.20)

The cost function can be derived as seen below:

T
1
J(0) = = > logP(wy | wi—y, -+ wi—ni1) (3.21)

t=1

We can see that we need to calculate the probability of every word w at the output
layer of the neural network. To do this efficiently, we perform a matrix multiplication
between h and a weight matrix whose rows consist of v} of all words w in V. We then give
the resulting vector, i.e. the output of a previous layer, as input to the softmax layer and

this, in turn, transforms the vector to a probability distribution over the words in V.

The reason that we describe the functioning and the structure of neural language
models, in which a network is trained to predict the next word based on a sequence of
preceding words, is because Neural word embeddings originated from the last one. The
big step for the emergence of the concept of word embedding is to stop caring about
predicting features of language models, to concentrate in the resulting parameters and
finally to ignore the constraint of caring merely for the previous words of the target word

and perceive the context as a symmetric window around the focus word [29].

36 Chapter 3. Machine Learning: Theory and Models

3.4 Word2vec

It was imperative to explain the softmax and logistic regression model and its use in
language models in order to have a deep understanding of Mikolov’s word2vec architectures
[25]. Word2vec, as mentined before, is a family of models that are used to produce
word embeddings. These models represented are shallow, two-layer neural networks that
are trained to predict linguistic contexts given a target word (Skip-gram) and inversely
(CBOW). An abstraction of each model’s functioning can be seen in Figure

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) wit-2)

w(t-1) wit-1)
_\SUM /
— wit) wit) —.L
wit+1) / \ wit+1)
wit+2) wit+2)
cBow Skip-gram

Figure 3.4: CBOW and Skip-gram abstract picturing [4]

Word2vec usually takes as input a large corpus, a set of discrete sentences, and produces
vector representations of words, typically of several hundred dimensions. According to the
authors’ note, CBOW is faster while skip-gram is slower but does a better job for infrequent

words.

An example of a sentence would be: “The quick brown fox jumps over the lazy dog.”
In Figure [3.5] we can see different training samples with the target word highlighted with

blue colour and the context words framed by a window of size C=2.

In general, feed-forward neural networks for NLP tasks are fed with words in the input
layer (usually represented in the form of one-hot vectors) and nextly these words are
embedded as dense vectors. These vectors, which are learnt through back-propagation,
constitute the models’ parameters. In the case of Word2vec our vocabulary is embedded
both in the weights of the input layer (i.e. input vectors) and in the weights of the output

layer (i.e. output vectors).

3.4. Word2vec 37

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. = (the, quick)
(the, brown)

The brown |fox | jumps over the lazy dog. = (quick, the)
{quick, brown)
{quick, fox)

The quic]{-fox jumps|over the lazy dog. = (brown, the)
{brown, quick)

{brown, fox)

{brown, jumps)

The|quick brown-jumps over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

Figure 3.5: Example of of Word2vec’s processing on a sentence

There is, however, a big difference between Neural Networks such as the neural lan-
guage models shown in Figure [3.3] where the vector space emerges more or less as a
byproduct of the training procedure, and models such as Word2vec where learning these
vectors constitute its ultimate goal from the very beginning. In contrast to Word2Vec,
regular neural networks usually produce task-specific embeddings with very limited use in
general tasks. Another very important advantage of Word2Vec as compared with other
Neural Networks is its ability to minimize the computational complexity of the training
phase due to its simple structure, i.e. the lack of non-linearities since it contains no hid-
den layer. It is, thus, wrong to consider Word2vec to be part of deep learning, as its

architecture is neither deep nor uses non-linearities.

Here, we will express the training complexity of Word2vec family of models as:

O=FExTxQ, (3.22)

where E is the number of the training epochs, T is the number of the words in the
training set (the number of our samples) and Q is a quantity that will be defined separately
for each model architecture of Word2vec. Q is what we actually try to minimize through

model’s structure modifications.

38 Chapter 3. Machine Learning: Theory and Models

3.4.1 Continuous Bag-of-Words Model

This architecture consists of input, projection and output layers as shown in the Figure
3.0l

Input layer

o

| W

. N/

/
d/
|/

CxV-dim

Figure 3.6: CBOW'’s architecture

Before we start training our model, we have to find a way to represent our words in
such a form that we can feed them into the input layer of our Neural Network. We choose
to represent them as on-hot vectors which are sparse vectors of dimensionality V (our
vocabulary size). For example, the one-hot vector of the third word of our vocabulary

would be:

w3z — (323)

O = O O

With C we will refer to our window size. The input one-hot vectors can be represented
as z; and the output as y; or simply as y since in this case we deal only with one word in

the output layer. The unknown parameters of out model are represented in our two weight

R\V\Xn

matrices, the input matrix W, € RVl and the output matrix Wy,: € , where n

3.4. Word2vec 39

is an arbitrary size which defines the size of our embedding space, i.e. the dimensionality
of our word embeddings. The i-th column of W;, is the n-dimensional vector for the
input word w;. We denote this n x 1 vector as v;. Similarly, the j-th row of W, is an
n-dimensional output vector for w;. We denote this row of Wy,; as v;. During the training
phase we learn two vectors for every word w, i.e. the input word embedded vector v; and

output word embedded vector v

In Neural Network terms, our input layer is projected to our projection layer that has
dimensionality 2C X n, where n denotes the dimensionality of our embeddings. This is
how we get our embedded word vectors for a given context. In mathematical terms we

have:

3.24
3.25
3.26
3.27

Vi—C = WZ X (t — C),
Vi—C+1 = I/I/zn X (t —C+ 1),

°)

UVt+C = Wiy % (t + C)

o N R
e’ N N N

All words get projected into the same position; their vectors are averaged like this:

Vi—c +Vi—c41 + -+ Vit

H —
2C

(3.28)

The calculations done for the composition of the projection layer are not costly at all,
since only 2C inputs are active at each epoch. This architecture is called a bag-of-words

model because the projection is independent of the order of words in the history.

Finally, in the output layer, we get a transformation of this kind:

g = softmax(Weyy - H), (3.29)

apparently by employing the softmax method, as described above, or approximations

of it that we are going to examine afterwards.

40 Chapter 3. Machine Learning: Theory and Models

We aim at minimizing the error between the estimated probabilities, § and the true

probabilities, y, where y is the one-hot vector of the actual word. Here, y = y1,...,Yn
denotes a vector representing the true multinomial distribution over the labels 1, ... | n,
and § = 91, . .., Jn the network’s output, which was transformed by the softmax activation

function, and represent the conditional distribution §; = P (y = i|h).

The categorical cross entropy loss is a good measure of the dissimilarity between
the true distribution y and the predicted distribution §. It is the same loss function

presented in the section about softmax, here expressed in this simple form:

Z y;logy; = softmax(Woy - H), (3.30)

and since we use one-hot vectors, the loss is simplified to:
y; log y; = softmax(Weyy - H), (3.31)

At this point, i refers to the index where the correct word’s one hot vector is 1.
Furthermore, we notice that our cost function is slightly different from the one of language

model and can be formulated like this:

J(0) = —logP(wi | wi—c, -+, Wi—1, Wig1, -+, WiiC) (3.32)
= —logP(v, | H) (3.33)

T

H
— log P 1) (3.34)
>iexp(ur ;)

14
= —v} H +1log)_exp(v} v;) (3.35)

=1

This model is named after CBOW, as unlike standard bag-of-words model, it uses
continuous distributed representation of the context.
Returning to the discussion about the complexity issue, by employing the softmax

method the term Q becomes:

3.4. Word2vec 41

one-hot Xi-¢
vectors

Xi-c+1

Xi+c

Figure 3.7: CBOW computation graph

Q=Cxn+nxV (3.36)

The first term refers to the normalization taking place in the projection layer and

the second refers to the softmax function applied in the output layer. Finally, using

approximations of softmax such as hierarchical softmax, the training complexity is reduced
to:

Q=Cxn+nxlogV. (3.37)

Our model is trained using gradient descent and back-propagation in order to change
both the input and the output vectors.

42 Chapter 3. Machine Learning: Theory and Models

3.4.2 Continuous Skip-gram Model

This architecture is quite similar to CBOW, but instead of aiming at the prediction
of a word by its context, it learns to predict the context given the target word. The
representations created in Skip-gram emerge by repeatedly feeding our linear (or log-
linear as we will see soon) classifier with one-hot input vectors which are then projected
to the next layer similarly to the CBOW without however the need of the calculation of
the average, since we only deal with one input vector per epoch. We then try to predict

the surrounding words within a range determined by the window size we choose [25].

/8 Output layer
O]
/|
/oy
Y1y
/ .
-
Input layer -
5
[0
O]
X | o)
“
V-dim -
O]
R
\ "
\ N Yej
\F
\d
CxT-dim

Figure 3.8: Skip-gram’s architecture

The input one-hot vector will be represented similarly to the CBOW’s case with an x,
yet without any index since we need only one input word at a time. The output vectors
are y;. We define W;, and W,,; the same as in CBOW. Similarly as in the case of CBOW,

we generate our one-hot input vector x and we get our word embedding:

H = v, = Wj,x. (3.38)

Once again we employ a softmax layer:

y = softmax(Weyy - H). (3.39)

3.4. Word2vec 43

We desire our predicted probability distribution y to match the true vector y which
is produced as the sum of the 2C one-hot vectors surrounding words and hence contains

only 2C ones and V-2C zeros:

Yy=Yc+- - +Y1+y1+-+ Yo (3.40)

As in CBOW, we need to employ a cost function in order to evaluate the model.
Here we invoke a Naive Bayes, i.e. a strong (naive) conditional independence assumption.

Said differently, we assume that given the target word, all context words are completely

independent:
J(e) = _logp(wt—07 Crr oy W1, Wit 1, 00, Wi O | wt) (341)
—C<j<C,#0
== Y logP(w; | w) (3.43)
—C<j<C,#0
= — Z logP(viy ;| vt) (3.44)
—C<j<C.#0
exp(vl . v
—— Y g Vp(&E Tt) (3.45)
/
—C<j<C,#0 >_i=18xXp(v] vr)
1%
= — Z vgﬂ-Tvt +2C logZeXp(ngw) (3.46)
~C<j<CA0 i=1

The training complexity of this architecture is:

Q=Cx((n+nxV). (3.47)

With the assumption that we use an approximation of softmax like the ones we will

see in the sections to come, the complexity becomes:

44 Chapter 3. Machine Learning: Theory and Models

Q=Cx(n+nxlogV). (3.48)

3.4.3 Digression: From Brain-Inspired representations to mathematical
abstraction

In the previous sections, while studying CBOW and Skip-gram model we were mostly
thinking in terms of layers. This approach of Neural Networks derives from the convenience
of graphical representation of our training models. This way we have a good insight of
each separate component of the algorithms and at the same time we stick to the Brain-
Inspired graphical representation of ANNs, the basic source of inspiration of models such as
Multilayer Perceptron (MLP). In this type of representation of MLP, a neuron constitutes
a computational unit that has scalar inputs and outputs. Each input is associated with
a parameter called weight. The neuron multiplies each input by its weight, it sums them
and then applies to it a non-linear (sigmoid) function to produce the output [14]. The

neurons are interconnected, forming a network of the following form:

Output

: i Y2 3
layer

Hidden f f f | f _f

layer

Hidden

layer f f f f . f f

Input layer T X2 k3 T4

Figure 3.9: Multilayer Perceptron with two hidden layers (MLP2) [14]

Given that a neural network has enough neurons and a non-linear activation function, it

can approximate a huge amount of mathematical functions. It has been proven for example

3.4. Word2vec 45

that MLP1 - hence, every feed-forward network with linear output layer and at least one
hidden layer with a “squashing” activation function - is a universal approximator, i.e. it
can can approximate any Borel measurable function from one finite dimensional space to
another [14].

Function is the keyword here, since this is exactly what a Neural Network is and it
can be represented as one, i.e. as a hypothesis function. For example, the MPL1 can be

written as [14]:

NNMLpl(CC) = gl(xwl + bl)W2 + b? (349)

and the MLP2 shown in Figure [3.9|as [14]:

NNyrpi(x) = g(aW?h + b W? + b? (3.50)
ht = gt (W' +bh) (3.51)

h? = g*(zW? + b%) (3.52)

y = h2W?3 (3.53)

This representation is very powerful and succinct. It is very rarely in the literature
that we can find a mathematical abstraction of Word2vec models. Yet, considering the

rigorous presentation made above we are but just one step before we do this. Here it is:

thU(wOTda:) = h;gv(xone—hot) = hyon (W : x) = hyo (Ua:)y

softmax softmax
(3.54)
-P(wordy1 |V Wout)- _exp(Wo(iiTvx)
W () P(wordy,|ve; W) 1 exp(W5) ' v,)
w20\ L) = . - v NT .
: Sy exp(Won vs) :
| P(wordy, [vy; Wout) | _exp(WO%)Tvx)

(3.55)

46 Chapter 3. Machine Learning: Theory and Models

The difference between CBOW and Skip-gram is only the choice of v,, since in the
first case it constitutes the average of all the input context words and in the second case

it is merely the embedding of the input target word.

3.4.4 Softmax Approximation Strategies

In this section we will discuss different strategies that have been proposed to approx-
imate the softmax function. These approaches can be grouped into softmax-based and
sampling-based approaches [30]. Softmax-based approaches are methods that keep the
softmax layer intact but modify its architecture to improve its efficiency. Here, among
all the softmax-based approximation algorithms we will examine only the Hierarchical
Softmax. Sampling-based approaches on the other hand completely do away with the
softmax layer and instead optimise some other loss function that approximates the soft-

max. We will focus on one algorithm of this kind called Negative Sampling.

3.4.4.1 Softmax-based Approaches: Hierarchical Softmax

Hierarchical softmax is considered to be a computationally efficient approximation of
softmax, since it reduces the size of the output layer from V to log2V. In common NLP

tasks the use of hierarchical softmax can accelerate the training phase at least 50x [26].

Node 0
20 = J.
Node 1 Leaf wy
P = I,rJ“P(qU = []']I P{“':;_] — (}HP[(M =]IJII
Leaf w, Leaf wo

Plwy) =pmPlg1 =0) Plwz) =pPlg1 =1)

Figure 3.10: Hierarch-Softmax: Huffman Tree

The hierarchical softmax uses a binary tree representation of the output layer. Its

leaves correspond to the V words of our vocabulary and, in each node, we store the relative

3.4. Word2vec 47

probabilities of its child nodes. Thus, each leave can be reached through a path for the
root of our tree structure. This caching technique allows us to decompose the calculation
of the final probability of one word into a sequence of probability calculations. Thus, we
speed up the procedure because it’s not any more necessary to calculate the expensive
normalization over all words. More specifically, Mikolov et al. used a binary Huffman tree
as the one shown in Figure because ”it assigns short codes to the frequent words

which results in fast training” [26].

The regular softmax can be thought of as a tree of depth 1, with each word in V
represented as leaf. The problem is that we have to do V times (for all our word-leaves)

a normalization through this not negligible calulation:

exp(W39) ;)
S exp(W))

By employing hierarchical softmax we reduce the calculations to the logoV which is

P(word,, |vi; Wou) = (3.56)

the height of our binary tree.

One big difference between hierarchical softmax and ”vanilla” Skip-gram is that in
the first case we only need one matrix for our vector representations in contrast to the
second case where we need both an input and an output matrix. In our project, though,
we strongly rely on both input and output representations of each word. That is what
makes H-softmax method inadequate for our task and thus we will restrict ourselves from

further analysing its functioning.

3.4.4.1.1 Sampling-based Approaches: Negative Sampling The Sampling-based
approaches get rid of the softmax layer by introducing a much cheaper method instead of
the costly normalization technique used in softmax. However, it’s only during the training
phase that we can use these methods. That is not a problem as long as we don’t use our
model explicitly for predictions and we only care about the learned parameters, i.e. our

word embeddings.

The first Sample-based model we are going to look at is Noise Contrastive Estimation
(NCE). NCE exploits logistic regression for biinary calssification. For every word w it
generates k noise samples - something like a fake context - from a noise distribution Q.
The probability that a word together with its context (w,c) came form the initial corpus
is P(y = 1w, ¢) and the probability that it didn’t is P(y = O|w, c).

We represent the probability of sampling a positive or a noise sample as following;:

48 Chapter 3. Machine Learning: Theory and Models

1 k
P = —Piain — 3.57
0]6) = = Runlw|)+ Q) (357)
The probability of predicting a positive example is:

Plw|c) _ exp(h'v,,)

Ply=1|w,c) = = , (3.98

W=t 0 = BT+ 5 Q) — eptirey) + Q) °%
while predicting a negative one is naturally its complement:

Ply=0]|w,c)=1—Py=1]w,c). (3.59)

Now we pass to the next sampling-based model called Negative Sampling (NEG),
which is actually the one used by word2vec as an alternative to hierarchical softmax.
NEG further approximates the probability distribution produced by NCE by making it as
fast to compute as possible. For this reason, it sets the most expensive term, kQ(w) to

and so:

exp(h'v,) 1
exp(hTv)) +1 1+exp(—hTv))

Ply=1|w,c)= (3.60)

Since Skip-gram model is merely concerned with learning vector representations, we
can simplify NCE as long as the quality of the vector representations is not distorted.
By deciding to use logistic regression just like in NCE, our goal is to minimize our loss

function, i.e. the negative log-likelihood (or cross-entropy) of our training examples against

the noise.
1 k 1
Jo = —w;/[log T+ oxp(— T 0,) + ; log (1 — T eXp(—hT%ij)]
| (3.61)
1 k |
— —wize;/[log 1+ exp(—hTv),) + jz—; log (1 n eXp(th:Dij)] (3.62)

3.5. Mutual Information Measures 49

And by setting o(z)=1/(1+exp(—z)) we get the NEG loss function as presented by
Mikolov et al. [26]

G (36

=
|
=
oQ
q
D‘
_‘
IIMw
O
g
q
D‘
_‘

The parameters 6 - in this case our input and output matrix - for which the loss

function is minimized can be represented straightly as:

argmax lo
gt > log

’ZUZ'GV

~ 14exp(—hTd),)

)

(3.64)

1 +exp(—h'v,) i

.
Il M?v
o
—
O
(0]
—_

3.4.5 Subsampling

Word2vec gives the option to get rid of words that occur in high frequencies by ran-

domly removing those that appear more often than a threshold f with a probability
p=1—+/1/f [26].

3.5 Mutual Information Measures

Mutual information is defined as:

I(X;Y) =) Pxy(z,y)log

Y

Pxv(e, ?z) Pxy_(3.65)

=F 1)
Px(z)Py(y) Py 108 Px Py

Mutual information measures have been studied and used extensively in research topics
pertinent to the process of discovering typical lexical associations between words. For a
pair of co-occurring items x and y, Pointwise Mutual Information (PMI) is defined as the
logarithmic ratio of their joint probability to the expected joint probability if x and y were

independent:

50 Chapter 3. Machine Learning: Theory and Models

Pxy (z,y) Pxy

PMI(X;Y) =1o = Ep,, log ———.
() gPX(ZE)Py(y) P ngPy

(3.66)

PMI is in practice often replaced with positive PMI (PPMI) which replaces negative

values with 0 and is defined as:

PPMI(X;Y)=max(PMI(X;Y), 0) (3.67)

One weakness of PMI is that it is prone to overestimating low-frequency data. A

variant introduced by Bouma [6] normalizes PMI for smoother results:

PMI(X;Y)
—logy P(X;Y)

NPMI(X;Y) = (3.68)

3.6 Unsupervised Learning

In unsupervised learning we give an unlabeled training set to an algorithm and we
ask the algorithm to find some structure in the data for us. More accurately, it is the
machine learning task of inferring a function to describe hidden structure from unlabeled
data . Since the examples given to the learner are unlabeled, there is no evaluation of
the accuracy of the structure that is output by the relevant algorithm. This is one way of

distinguishing unsupervised learning from supervised and reinforcement learning.

The most common unsupervised learning models are related with clustering. During
the training phase, they create different clusters for the inputs and henceforth any new
input can be categorized in its appropriate cluster. Other than clustering, some unsuper-
vised learning techniques are: anomaly detection, Hebbian Learning and learning latent
variable models such as Expectation-Maximization algorithm, Method of moments (mean,
covariance) and Dimentionality Reduction (Principal component analysis, Independent

component analysis, Non-negative matrix factorization, Singular value decomposition).

3.6. Unsupervised Learning 51

3.6.1 Dimentionality Reduction

The idea behind dimensinality reduction is that, sets of data that are represented by
matrices of size n X m can be summarized by smaller matrices. Operations on these small
matrices can approximate the initial one. Naturally, the new matrices have either less rows
or less columns compared with the ones they approximate and hence can be manipulated

much more efficiently.

3.6.1.1 Principal Component Analysis (PCA)

Principal Component Analysis, or PCA, is a popular technique used for applications
such as dimensionality reduction, data compression, feature extraction, and visualization
[20]. PCA is defined as the orthogonal projection of the data onto a lower dimensional
linear space, known as the principal subspace, such that the variance of the projected data
is maximized [19]. PCA relies strongly on Gaussian features. Singular Value Decompo-
sition (SVD) is often employed as an efficient method to calculate the desired principal

components.

3.6.1.2 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a variant of PCA that retains linearity but
does away with the requirement for Gaussian distribution. There are several cases where
real-world have non-Gaussian features. A common use is for the solution of the blind

sourve separation problem. [5]

3.6.1.3 Matrix Factorization

The objective of matrix factorization is to take an input matrix A and find an (approx-
imately) equivalent representation of it by using the product of other (smaller) matrices.

Among several matrix decomposition techniques, here, we will study only SVD.

3.6.1.4 Singular Value Decompostion(SVD)

SVD is one of the most popular methods for matrix factorization and found its place
into NLP via latent semantic analysis (LSA). This method decomposes a matrix A into
three matrices U1 XV). Generally, only the top d elements of the new matrices are used

when we deal with problems that require dimensionality reduction.

52 Chapter 3. Machine Learning: Theory and Models

Assuming a rectangular m x n matrix A with real entries and with rank equal to r,
there exists an m x m real orthogonal matrix U and an n x n real orthogonal matrix V
such that:

01 0 0
X0 0 - 0

A=UDV' where D = 0 0 ,and ¥ = | 0.2 . . (3.69)
_0 0 oy

where Dism x n, ¥ ist X r and the ¢ i’s are real numbers such that o1 >09> - - - >0,.>0.

This decomposition is also expressed using the following partition:

> ol [vf

A=|U;: U
Ul 1

— U2V} (3.70)

where U; and V] are m X r and n X r matrices, respectively, with orthonormal columns
and the O submatrices have compatible dimensions for the above partition to be sensible.
The diagonal entries o i of ¥ are known as the singular values of A. The columns of U
and the columns of V are called the left-singular vectors and right-singular vectors

of A, respectively.

SVD behaves similarly to spectral decomposition in the sense that both methods give
us orthonormal bases with respect to which the transformation of A can be represented
by a diagonal matrix. In the case of spectral decomposition, A is a real-symmetric matrix,

whereas in the case of SVD, A is rectangular [2].

Our orthogonal matrices U = [ug : ug : ... : up] and V = [v1 : vg : ... : v,] are chosen so
that:
AV =[Avy : Avy 2+ D Avp t Avpgy - - Aoy (3.71)
> 0

= loquy togug : -+ opuy 10 - 0] = [Ug 2 Uy 00 (3.72)

3.6. Unsupervised Learning 53

Numerical approach

For the computation of SVD there are typically two procedures employed. This takes
O(mn?) floating-point operations, where m > n. In the second step we compute the SVD
of the bidiagonal matrix with an iterative method. Normally, it suffices to compute the

SVD up to a certain precision.

The first step can be done using Householder reflections [32]. For the second step we
can use a variant of the QR algorithm for the computation of eigenvalues, as described by
Golub and Kahan [15].

3.6.1.5 Truncated SVD

In truncated SVD, which is the method we used in our project (implemented in sci-kit
learn), only the first d columns of U; and the first d rows of V{ (that correspond to the
largest singular values if) need to be calculated. By discarding the rest of the matrices
we employ a much faster model than the classic SVD assuming that d << r. The cost that
we pay is that we do not achieve an exact factorization of A, but this does not constitute
a problem in cases where our main concern is the high generalization of our model. The

matrix Uqg is thus m x d, X is d x d diagonal, and V} is d x n.

3.6.1.6 Non-negative matrix factorization

With the name Non-negative matrix factorization (NMF or NNMF), we refer to a group
of algorithms in multivariate analysis and linear algebra where a matrix A is factorized
into two matrices W and H, with all of the matrices’ elements being non negative elements.
This non-negativity makes the resulting matrices easier to inspect. Since the problem is

NP-Hard, it is commonly approximated numerically.

Let matrix A be the product of the matrices W and H,

V=WH (3.73)

The dimensions of W H must be significantly lower than those of A. Hence, NMF
does dimensionality reduction by generating factors with significantly reduced dimensions

compared to the original matrix.

54 Chapter 3. Machine Learning: Theory and Models

Wx[; ».,

We approximate A by minimizing the cost function:

IVIVHI? |A—WH]|, where W >20,H >0 (3.74)

Chapter 4

Creation of Causality Detection
Models

In this chapter we are going to describe how we built our models for the causality
detection task. At first, we will describe the process of training data extraction and then

we will present the training process and the special architectures that we employed.
4.1 Extraction of Training Data

As a resource for the creation of our training data we used the french annotated frWac
corpus, from the WaCky set of corpora [3]. FrWac contains 1.6 billion words and was
collected on the Web on the .fr domain. It is thus indeed very large and covers very
diverse domains. The corpus includes texts extracted from blogs, which implies that some
parts contain many spelling and grammatical errors. As a result, the annotations include

a considerable amount of noise that we have to deal with [10].

Our method of extracting words bearing causal meaning relies on the syntactic de-
pendencies of sentences, the part-of-speech tags and the lemmas of words. The syntactic
structure of each sentence is represented by a dependency tree in the CoNLL format. More
specifically in our case, the syntactic relations are represented through dependency-based
parse trees. In order to obtain these, three operations need to be performed: part-of-speech
tagging, lemmatization and dependency parsing. Dependency structures consist of lexical
items, linked by binary asymmetric relations called dependencies. The dependency trees
for the frWaC corpus were obtained using the Bonsai tool, which includes a part-of-speech
tagger and lemmatizer, Melt and the MaltParser , trained on the French Treebank, for

syntactic parsing. The resulting dependency trees are in the CoNLL format.

Annotations are encoded in plain text files (UTF-8, using only the LF character as

line break) with three types of lines:

55

56 Chapter 4. Creation of Causality Detection Models

P
ROOT (ADV)
(] NMOD | PC
DET SBJ VG DET
AR 1T o y
ROOTg A; hearings is3 scheduled; on; theg issue; todayg .9

Figure 4.1: Example of n english sentence’s Depandency Tree

e Word lines containing the annotation of a word/token in 10 fields separated by sing

tab characters.
e Blank lines marking sentence boundaries.

e Comment lines starting with hash (#).

Sentences consist of one or more word lines, and word lines contain the fields: ID,

FORM, LEMMA, UPOSTAG, XPOSTAG, FEATS, HEAD, DERPEL, DEPS

The most important units of the extraction process is a set of indicators of causality.
One can notice that, at this exact point, we rely on the pattern-based paradigm of relation
extraction aiming at creating a robust training set for our machine learning algorithms.
The causality indicators are lexical units retrieved from the ASFALDA French FrameNet.
FrameNet project provides a structured set of prototypical situations, called frames, along
with a semantic characterization of the participants of these situations called roles. For
our extraction procedure, we employed the following frames from the Causality domain:
Causation, Evidence, Explaining_the_facts, FR_Attributing_cause, FR_Cause_enunciation,
FR_Cause_to_start-Launch_process, FR_Contingency-Objective_influence, FR_Reason,
Make _possible_to_do, Preventing, Response. We also used the frame FR_Means_for_purpose
as far as its corresponding lexical units appear in very similar contexts with the other
causality frames although it doesn’t strictly belong to the causality domain. However, to
simplify matters we call all of the above indicators causality triggers. The lexical units

that we kept are those that we didn’t consider highly ambiguous.

We separated the triggers into two different categories. The ones that appear in sen-
tences in the form cause-indicator-effect and the ones that appear in the form effect-
indicator-cause. We worked on the assumption that the occurrence of a non-ambiguous
indicator in a sentence indicates the existence of a causality relation. Hence, we chose to

process only on sentences that contain at least one such lexical unit.

4.1. Extraction of Training Data o7

We managed to scan our corpus for such triggers quite efficiently. We unavoidably, of
course, processed on each and every line of the frWac corpus (each line gives us information
about a specific word). Then, we checked if the lemma belongs in our trigger set by
employing binary search in our 64 line trigger list. This way we eliminated the scanning
time from Nx64 to Nxlog64=Nx6, where N(=1.6 billion) is the number of the frWac lines

in total.

For each occurrence of a causality trigger in a sentence, we then had to retrieve the
useful information: the two components of the causality relation (causal components),
tuples of meaningful sets of words that represent either the cause or the effect of the
captured frame. For this purpose we rallied three different seed patterns based on the

part-of-speech of the employed triggers: prepositions, conjunctions and verbs.

An important constraint about a processed sentence to be considered as a valid source
of training data information was for the trigger not to be the (syntactic) root. Ensuring
that, by taking advantage of the (syntactic) dependency tree we can find the parent and
child nodes of the current trigger. The head is indicated in the corresponding CONLL
field, but, in order to find the children we should scan all the words appearing in our
sentence and take under consideration those that have as head number the ID of our
parent-word. However, we will see afterwards that we needed to have access on children
of many other words appearing in our sentence except form the trigger-word, so that we
process deeper on the syntactic tree and thus create larger training sets. Considering the
above need, we decided to represent each sentence, while processing on it, as an adjacency
list of the words’ IDs. This way we reassured an efficient and easy access to every word’s
syntactic child. We later used this structure to implement Best First Search algorithm for

the extraction of our causal components.
Here we present the basic patterns used for the extraction
1. Conjunction triggers

In this case, the most common and less ambiguous form that causality relation occurs

in a sentence is:

Verb Phrase (effect) - Conjunction - Verb Phrase (cause)

We consider our extraction valid if the parent node is a verb and the child node is a
noun. Then we have to analyze the verb phrase in the form Subject - Verb - Object. A
problem that arises is what we should consider as constituent words of our Subject and
Object. By ignoring stopwords, for each event, we can explore the Subject and Object
subtrees using a BF'S algorithm since each set of extracted components, what we shall call
causal triplets, can be structured as a (causal) dependency tree (a subtree of the whole

sentence dependency tree) derived from syntactic relations.

58 Chapter 4. Creation of Causality Detection Models

Figure 4.2: Pattern for conjunction triggers

If we have multiple valid children (nouns) of our conjunction trigger, in this case,
more than one verb-child, we have to deal with another instance of causal relation in our
sentence. We choose to extract more than one triplets from the same sentence, one for
every valid child. We chose to store all of the above extracted information to an XML file

for simpler and faster further manipulation and visualization.

2. Preposition triggers
This time the causality relation emerges as:
Verb Phrase (effect) — Preposition — Noun Phrase (cause)

The Noun Phrase is regarded as a subtree with the trigger’s child node as root. We
require that its root is a noun, otherwise we don’t consider it a valid instance of causal

event.
3. Verb triggers

We can distinguish between two sub-cases. The one with the trigger-verb occurring in

active voice:
Noun Phrase (cause) — Verb — Noun Phrase (effect)
and the other in the passive voice:

Noun Phrase (effect) — Verb — Noun Phrase (cause)

4.2. Storage of the Collected Data 59

Preposition

cause

Figure 4.3: Pattern for preposition triggers

The distinction is made by taking under consideration the part-of-speech and depen-
dency tree. More specifically, if the verb is in the past participle form (e.g. allé) and
it is not dependent syntactically by an auxiliary verb (étre, avoir) then we presume it is

occurring in passive voice. Otherwise, it occurs in active voice.

A small detail here is that, although we require the trigger parent node to be a noun
we do not have the same strict demand for the child node. We do that because there
are many occurrences of causality relation triggered by verbs where the syntactic children
of the verbs are stopwords and yet the following syntactically connected words of the
corresponding sub-tree constitute a valid causal component, that means that they are
good representatives of causal events. It is also important to underline that verb-triggered

triplets constitute only a small minority among our extractions.

4.2 Storage of the Collected Data

Extensible Markup Language (XML) is a markup language document encoding through

using a format that is both human-readable and machine-readable through use of tags.

The XML file where our extractions are stored, has a very descriptive and detailed
form. We aimed at creating a general structured set of causal relation instances in french
language. Naturally, it contains some information that didn’t find any use in our project.
However, we also regard this gathered data as a bequest to other researchers involved in

the causality problem in french language.

In our XML file one can find detailed information about each extracted triplet, namely

the name of frames triggered by the causal indicator, the indicator’s ID, its lemma and

60 Chapter 4. Creation of Causality Detection Models

Subj Obj

Figure 4.4: Pattern for verb triggers

its form as appeared in the sentence. We also store information about the type of the
causal and effect components (Verb Phrase or Noun Phrase). When dealing with a noun
phrase we present the part-of-speech, syntactic link, lemma, and natural form of all of its
constituents. We act similarly with the Verb Phrase just by additionally discriminating

between subject and object trees.

Here is an example of the causal triplet in the xml format, extracted from the sentence
”Le sage sait que le nettoyage de ’extérieur n’est pas suffisant, car Dieu voit les profondeurs

du coeur, ou doit se pratiquer I’ablution du repentir.”:

<tuple frame=Causation/Evidence/FR_Cause_enunciation/ id=1402 pos=CC trig-
ger=car word=car>
<effect type=VP>
<Verb lemma=savoir pos=V />
<Subject numOfWords=1 phrase=sage>
<w0 dist=0 lemma=sage pos=ADJ synt=suj word=sage/>
< /Subject>
<Objectl numOfWords=7 phrase=que est nettoyage n’ pas suffisant extérieur>
<w0 dist=0 lemma=que pos=CS synt=obj word=que/>
<wl dist=1 lemma=étre pos=V synt=obj word=est/>
<w2 dist=2 lemma=nettoyage pos=NC synt=suj word=nettoyage/>
<w3 dist=2 lemma=ne pos=ADV synt=mod word=n’/>
<w4 dist=2 lemma=pas pos=ADV synt=mod word=pas/>
<wbh dist=2 lemma=suffisant pos=ADJ synt=ats word=suffisant/>
<w6 dist=4 lemma=extérieur pos=NC synt=obj word=extérieur/>
</Object1>

4.3. Creation of Causal Embeddings 61

<Object2 numOfWords=0 phrase=/>
< Jeffect>
<cause type=VP>
<Verb lemma=voir pos=V />
<Subject numOfWords=1 phrase=Dieu>
<w0 dist=0 lemma=Dieu pos=NPP synt=suj word=Dieu/>
< /Subject>
<Objectl numOfWords=6 phrase=profondeurs doit coeur pratiquer ablution
repentir>
<w0 dist=0 lemma=profondeur pos=NC synt=obj word=profondeurs/>
<wl dist=1 lemma=devoir pos=V synt=mod_rel word=doit/>
<w2 dist=2 lemma=coeur pos=NC synt=obj word=coeur/>
<w3 dist=2 lemma=pratiquer pos=VINF synt=obj word=pratiquer/>
<w4 dist=3 lemma=ablution pos=NC synt=obj word=ablution/>
<wb dist=5 lemma=repentir pos=NC synt=obj word=repentir/>
</Object1>
<Object2 numOfWords=0 phrase=/>
< /cause>
</tuple>

4.3 Creation of Causal Embeddings

We used four different training models for the creation of causal embeddings. The first
two models were based on Word2vec and the others on SVD and NMF.

4.3.1 Word2vec

The first tool that we employed for this task was word2vec. The word2vec model
is normally used for word similarity tasks based on the distributional hypothesis [16].
Usually, the contexts of a word are considered to be words that precede and follow the
target word, typically in a window of k tokens to each side. In this project, we chose to
use word2vec in a slightly different way by employing arbitrary contexts [23] instead of
linear bag-of-words. Till now we had our data stored in the form cause-trigger — effect
triplets in the xml format as described above, but in this stage, we do away with the
triggers which do not anymore give us any useful information and then we use an extra
filter so that we create more delicate information in the form of cause-effect tuples a
set of words that comprises a cause and an effect component serving as our training data

set.

Examples of tuples presented in a more succinct form:

62 Chapter 4. Creation of Causality Detection Models

Alis a la pensée d’ Auguste Terrier, un pas est déja largement franchi entre ces alter
ego, car si le premier peut-étre considéré comme 1’ inventeur du réve tchadien, le second
sera le véritable chef de file des représentations coloniales durables autour_du Tchad.

Cause: second chef véritable file

Effect: pensée ego alter

Engagement qui leur permet, bien entendu, en_méme_temps_qu’ ils ajoutent leur pierre
a |’ édifice du Comité de I’ Afrique frangaise, de donner du poids a leur pensée, puisqu’ il
s’ agit alors de I’ organe de référence sur le sujet.

Cause: organe

Effect: poids pensée

Et cependant, le Bulletin est suffisamment hétéroclite dans sa composition pour_que se
pose le probleme de la frontiere entre ces derniers et ceux qui soutiennent la colonisation
du Tchad en_dehors_de ses colonnes <96> ¢’ est notre troisieme cercle- mais dont les
articles sont repris dans le mensuel.

Cause: probleme frontiere dernier

Effect: hétéroclite

We used two different training methods in respect to the different forms of the input
training data. The first one was a slightly changed implementation of the cEmbed model
presented in the paper of Sharp et al. cEmbed is a variant of Mikolov’s Skip-Gram with
Negative Sampling [26] model called word2vecf, implemented by Levy and Goldberg [23]
, which modifies the original algorithm to use an arbitrary, rather than linear, context.
The novel contribution of Sharp et al.[31] was to make this context task-specific: intu-
itively, the context of a cause is its effect. We followed the same methodology yet without
using word2vecf. We sticked to the more handy and malleable traditional word2vec

implementation in Gensim python library.

In the second method we took the ¢

‘risk” to do away with the intuitive concept that
the cause component is the context of the effect component (and inversly) and we used as
contexts all of the words contained in each tuple, both words of the cause and the effect
component. Instead of training our model with single cause-effect word-pairs as in the first
method, here we create word representations directly correlated with words of the same
tuple, indiscriminantly, through the target-context relation. The second method proved
to be more fertile than the first one since it provided highest generalization. We should
note that in both of these training methods the proper model to be used is Skip-Gram
with Negative Sampling and not Hierarchicahal Softmax since we need to exploit both the

input and output matrices, something that cannot be done with the latter model.

The filter used for the creation of our tuples, either in the form of single cause-effect
word-pairs or in the form of cause-effect component-pairs, is crucial in order to minimize

noise. Specifically, we dispose of standard french stopwords (e.g. alors, mais, maintenant,

4.3. Creation of Causal Embeddings 63

ou), words that don’t begin with a miniscule letter (such as names, cities, numbers etc.),
one-letter tokens and, most importantly, words that are not adjectives, nouns or verbs.
We also discarded words that don’t belong in a simple french dictionary. Some other filter
parameters are important for further calibration of our model’s behaviour: we can set a
boundary in the depth of the subject, object and noun phrase trees, and we can choose to
use only specific frames or use only triplets that are triggered by an indicator of specific
part-of-speech. We created more than one training data set by slightly changing various

parameters of our filter and evaluating our model’s behaviour in each different case.

4.3.1.1 Single word-pair model

Input layer Hidden layer Output layer
Xy 6 6}71
X2 |0 O
X3 O h;5 (-:’.V3

| > H > |
X 10 h, O O
W=l hNé Wia~{w}
Xy |0 ol

Figure 4.5: Single word-pair model’s structure

In this method, our first step was to decompose each cause-effect tuple stored in our
xml file, in a way that each word of the cause component is paired with a word in the effect
component. From now on, the words of the first kind will be called cause-words and those
of the second kind, effect-words. We practically regard these pairs as an input sentence
for word2vec. In our case, our input file consists of two columns containing words: a
cause column and an effect column. Assuming that the sentences used as training data for
word2vec are separated by a change line character. That means that we store our word

pairs line by line separated by a space in a simple text file.

An important detail is that we added special prefixes (“cs.” for cause and “ef.” for ef-
fect) so that different embeddings can be created for each specific word either by occurring

as a cause-word or as an effect-word. The form of the file can be represented like this:

cs_-wordl ef_word2

cs_wordl ef_word3

64 Chapter 4. Creation of Causality Detection Models

cs_word4 ef_wordb

Example of a cause-effect tuple:

cause_component = (second, chef, véritable, file, représentation)

effect_component = (pensée, ego, alter)
and the same tuple decomposed for training purposes:

cs_second ef_pensée
cs_second ef_ego
cs_second ef_alter
cs_chef ef_pensée
cs_chef ef_ego

cs_chef ef_alter
cs_véritable ef_pensée
cs_véritable ef_ego
cs_véritable ef_alter
cs_file ef_pensée

cs_file ef_ego

cs_file ef alter
cs_représentation ef_pensée
cs_représentation ef_ego

cs_représentation ef_alter

A word in the left column of our data (a cause word) will always have as context a
word in the right column (an effect word) and vice versa. We should always keep in mind

that a word cs_word; is different from the word ef_word;.

After the pre-processing, the time comes for us to train our model and create our word
embeddings. Similarity between the embeddings can be expressed as the cosine similarity

or as the Euclidean dot product (the unnormalized version of the cosine vector proximity).

Cosine Similarity:

A-B

cos(0) = —|A\2|B|2

(4.1)

It is evident that the cosine similarity measure is the normalized version of the dot

product.

4.3. Creation of Causal Embeddings 65

What we first of all can expect from our model is to create such vectors for our words
so that similar cause-words have similar vectors and that similar effect-words have similar
effect-vectors.

That is really the case. We can give a good qualitative example. These are the 10
most “similar” words of the french word cs_guerre (death) after training our word2vec

with negative_sampling=15, vector_dimensionality=200, syntactic_subtree_depth=12:

cs_napoléonien (napoleonian) 0.741778314114
cs_sanguinaire (bloody) 0.717320024967
cs_pillage (loot) 0.70711171627

cs_anticlérical (anticlerical) 0.706969916821
cs_déchainement (outburst) 0.706715583801
cs_collatéral (collateral) 0.706022918224
cs_féodalité (feudalism) 0.705951690674
cs_pacifiste (pacifist) 0.705151259899
cs_blindé (tank) 0.70389854908
cs_cataclysme (cataclysm) 0.703700780869

This fact is a very interesting feature of our model’s behaviour and it can find some
good use in several NLP tasks. Yet, it is not exactly what we were actually aiming for.
We will soon examine how this fact gives our model the ability for good generalization. It
is also this exact fact that pushed us into testing the second training method of word2vec
that we will present later on. Before that though we should get a deeper insight into our

initial goals.

4.3.1.1.1 Digression: a better understanding of our objectives

Our main objective is to detect causal relations. For this task, we take advantage of
our knowledge about the frequency of the co-occurrence of words as parts of cause and

effect components. What was the motive for us to use this specific measure?

Firstly, a conviction, persistent to those of us who use machine learning methods, that
patterns that appear in very large set of data will reappear in another. Furthermore,

patterns that appeared in the past will reappear in the future.

Our second motive has to do with our adherence (from the point of view of an engineer)
to the distributional hypothesis, which is itself justified from the assertion above. This
assumption can be re-interpreted in a form, specialized to our task, as the idea that if
a cause-effect word pair appears frequently in a big corpus, then the occurrence of these
words, relatively close and syntactically connected to each other in a sentence or generally
in a text, will indicate a high probability of the existence of causality relation. In a case

like this we say that there appears high causal proximity between the two words. Notice

66 Chapter 4. Creation of Causality Detection Models

that we don’t rely any more on special causal indicators as indicators of causal relations.
The implicit causality relation instances (cases where causality is not triggered by special
indicators) are numerous in all of human languages and it is especially this challenge that

we are facing when trying to tackle causality detection

4.3.1.1.2 Input and Output Embeddings

Now, it’s time to explain how our newly created vectors can indeed be useful for our

own task. The idea is based on a statement of Levy and Goldberg [23]:

”[SGNS’s] learning procedure is attempting to maximize the dot product v ¢ -v w for

good (w, c¢) pairs and minimize it for bad ones. ”

This assertion can be explained by the formula (3.64) for the loss function of SGNS
(Skip-Gram with Negative Sampling). Having this idea in mind, we can choose as a
measure of causal proximity of two words, the dot product of their corresponding input
and output vector. The cosine similarity proved to be a valid measure (and even more
accurate), too, something that didn’t come as a surprise, since it merely constitutes a

normalized version of the dot product.

As a consequence, the resulting trained model of ours gives strongly correlated output
and input vectors. The context vocabulary C is identical to the word vocabulary W in
contrary to the architecture of word2vecf (the variant model of Levy and Goldberg) where
W contains only words of the first column (target-words) and C contains only words of the
second column (context words). Furthermore, concerning the input and output matrices,
each one corresponds to words of only one event, either cause or effect, depending on
the arrangement of the input data. The identifiability of W and C and, henceforth, the
direct (one-step) bidirectional training of our model is the only essential difference between
our training technique and the one of Sharp et al. In their project Sharp et al. have
also employed bidirectional training (cEmbedBi), yet, in two distinct steps by employing
word2vecf and they observed ameliorated results. We followed their example in the case

of our matrix factorization methods.

It is important to underline here that the special form of our training data, the arbitrary
causal context approach that we employed by using word2vec constitutes a novelty of ours.
This technique can be used for any kind of context categorization (for whatever number of

different categories) just by adding a special suffix to the words of each distinct category.

The strength of our method resides on its generalization since, as we noted above,
words of the same column (the ones deriving from the same event component) have similar

vectors. Even test pairs which have never co-occurred in our training set will be correlated

4.3. Creation of Causal Embeddings 67

due to the similarity of the first word of the pair with other words of the same event (cause
or effect) that have indeed co-occurred with the word of the other event. This phenomenon
is exactly what we noted above about the similarity between words of the same event (cause

or effect).

The above feature of our model is what renders it suitable for our task in contrast to

other distributional methods very often used in the past [10] for causality detection.

4.3.1.2 Tuple-based model

In this method, we don’t decompose our filtered tuples into pairs but instead we use
the whole tuple intact as an input “sentence” for word2vec. Of course, this time we used
a very large context window, at least as large as the number of the longest used tuple. We
stuck to the suffix based event discrimination. Thus, the form of a each single input line

in the text file derived from our causal xml extractions looks like this:
cs_wordi ... cs_wordi+p ef_wordj ... ef_wordj+q
The same tuple givean as example above transforms into:
cs_second cs_chef cs_véritable cs_file cs_répresentation ef_pensée ef_ego ef_alter

Once again, after the training phase we use cosine similarity as a measure of causal
resemblance between two word embeddings of the input and the output matrices. We will
take a good look at the produced results in the next section that concerns our models’
evaluation. At this point we restrict ourselves to a mere attempt of explaining the observed

improvement of our quantitative measures.

Our interpretation of this phenomenon is based on the idea presented above concerning
the generalization achieved through the high correlation among same event-type words.
It is this idea that pushed us into employing this second method which is practically
different from the previous one, only in that it invests more in the creation of same event-
type word correlations. This very interesting feature has unfortunately its own cost that

we will discuss soon.

With this method it would make sense to use the Embeddings stored in one matrix,
naturally the input matrix. Similar contexts give similar vectors right? Yet, our model
captures causal proximity much better when we use as a measure the cosine similarity
of input and output vectors instead of exploiting only one matrix. This fact makes it
evident that this idea about employing knowledge from both input and ouput matrices
of word2vec seems to be very interesting and unfortunatelly not much attention has yet

been paid to it. The interpretation of such a behaviour still remains to be done.

68 Chapter 4. Creation of Causality Detection Models

4.3.2 Matrix Factorization

The second tool we employed to create causal embeddings is matrix factorization;
specifically SVD and NMF. For these unsurpervised training methods we use the exact
same form of training data as the one used in the single word-pair method for word2vec
training. Each cause-effect pair indicates the co-occurrence of the corresponding words in
a causality frame instance of our french corpus. Thus, we created a matrix Anxn, where n
is our vocabulary size containing the PPMI values for each pair. We then factorized this
matrix so that it could be expressed as the inner product of two other matrices: Unxk
and Vnxk, where k is a value of our choice (practiaclly around 100 to 200). The rows
of these two matrices constitute our new vector representations. Bearing in mind that
UxV’ is an approximation of the initial A matrix we deduce that the dot product of U[i]
and V[j] vectors is an approximation of the cell A[i,j] which contains the value PPMI(U]i],
VIj])- It is exactly the value of PMI or any of its variant that is practically the measure
of co-occurence probability in respect to the individual frequency of each words and thus
it is a very accurate and explicit measure of the causal proximity between two words.
A small detail is that we didn’t use the actual PPMI but the rounding down to integer

(int8) of 10*pmi value, so that we avoid the use of high rate memory usage.

A reasonable question that arises is why do we use an approximation of PMI and not
the actual function. Why haven’t we actually used this measure in the first place instead
of employing all these costly training models? The answer is simply that since we need to
measure the causal proximity of two words, if we rely on the PMI, it is imperative that
our words have indeed co-occured, that we have this word-pair in our training data. This
is practically impossible if we consider a vocabulary size of 15,000 to 20,000 words (we are
always talking about lemmas). Furthermore, we understand that many of the cells of A

matrix are 0.

We used two separate matrix factorization techniques: SVD and NMF. The former
performs much better than the latter. SVD also outperforms the single word-pair word2vec
model. The relatively satisfying results have to do once again with the high generalization
achieved through matrix factorization when using small singular value matrices, that is low
dimensional vector representations (around 100-200 dimensions). Th superiority of SVD
relies on its proximity with Skip-Gram in terms of mathematical foundation, since as
Levy and Goldberg argued, Skip-Gram with Negative Sampling is is implicitly factorizing
a word-context matrix, whose cells are the pointwise mutual information (PMI) of the

respective word and context pairs, shifted by a global constant.

4.3. Creation of Causal Embeddings 69

4.3.3 DSMs vs. Predict models

Both SVD and NMF are Distributional Semantic Models (DSMs). We can view DSMs
as count models since they practically count co-occurrences among words by operating
on co-occurrence matrices. In contrast, neural word embedding models can be seen as
prediction models, since they form their embeddings during the training phase by trying
to predict surrounding words. Both DSMs and word embedding models act on the same

underlying statistics of the data, i.e. the co-occurrence counts between words.

SVD has some computational advantages over neural embedding models that use SGD
such as that it is exact, and does not require learning rates or hyper-parameter tuning.
Also, it is trained on count-aggregated data (i.e. {(w, ¢, #(w, c))} triplets), and hence it
can be applied to much larger corpora than SGNS, which requires each observation of (w,

c) to be presented separately. [24]

Yet, SGD as well has several advantages. For example, SVD can’t cope with un-
observed values as efficiently as SGD and SGD can distinguish between observed and

unobserved events even though SGD can’t [24].

70

Chapter 4. Creation of Causality Detection Models

Chapter 5

Evaluation

We begin the testing of our models with a quantitative evaluation of their ability to
capture cause-effect relations. We compare their results with a simple baseline. In or-
der to avoid bias towards our extraction methods, we evaluate our models on a partially
translated (100 cause-effect pairs and 100 word pairs of other relations) drawn from the
SemEval 2010 Task 8 [I§], originally a multi-way classification of semantic relations be-
tween nominals. SemEval (Semantic Evaluation) is an ongoing series of evaluations of
computational semantic analysis systems, organized under the umbrella of SIGLEX, the

Special Interest Group on the Lexicon of the Association for Computational Linguistics.

5.1 Test Data

In our test data we have been given pairs of nominals that contain the meaning of the
two components that constitute each relation. The full list of our nine relations follows is

shown below:

Cause-Effect: An event or object leads to an effect.

Example: Smoking causes cancer.

Instrument-Agency: An agent uses an instrument.

Example: laser printer

Product-Producer: A producer causes a product to exist.

Example: The farmer grows apples.

Content-Container: An object is physically stored in a delineated area of space, the
container.
Example: Earth is located in the Milky Way.

Entity-Origin: An entity is coming or is derived from an origin (e.g., position or

material).

71

72 Chapter 5. Evaluation

Example: letters from foreign countries

Entity-Destination: An entity is moving towards a destination.

Example: The boy went to bed.

Component-Whole: An object is a component of a larger whole.

Example: My apartment has a large kitchen.

Member-Collection: A member forms a nonfunctional part of a collection.

Example: There are many trees in the forest.

Communication-Topic: An act of communication,whether written or spoken, is
about a topic.

Example: The lecture was about semantics.

There is a tenth element added to this set, the pseudo-relation OTHER. It stands for

any relation which is not one of the nine explicitly annotated relations.

Our models rank the pairs using the cosine similarity (for word2vec) and dot product
(for SVD and NMF) between cause-vectors and effect-vectors. We aim at ranking the

causal pairs above the others.

5.2 Baseline: Vanilla Embedding Model

As a baseline model we used a word2vec model (pre-)trained on the same french corpus
(frWac) that we also used to extract our causal triplets. We call this model Vanilla
Embedding Model. It is trained on lemmas using 500 dimensional vectors. As with the
Single word-pair and the Tuple-based model, SemEval pairs were ranked using the cosine

similarity between the vector representations of their arguments.

5.3 Statistical Measures: Precision and Recall

For our evaluation we firstly use a precision-recall curve. The precision-recall curve
shows the trade-off between precision and recall for different thresholds. Precision can be
seen as a measure of exactness or quality, whereas recall is a measure of completeness or
quantity.

Precision (P) is defined as the number of true positives (7,) devided by the number

of true positives plus the number of false positives (F}).

5.3. Statistical Measures: Precision and Recall 73

relevant elements

false negatives true negatives

true positives false positives

selected elements

How many selected How many relevant
itemns are relevant? items are selected?
Precision = —— Recall = ——

Figure 5.1: Picturing of Precision and Recall on a random classification task

Ty

= — 5.1
T, + F, (5.1)

Recall (R) is defined as the number of true positives (7},) devided by number of true

positives plus the number of false negatives (F},).

Ty

=P 2
o (5.2)

74 Chapter 5. Evaluation

True positives indicate the number of items that are correctly classified as belonging
to the positive class. False positives represent the number of items that were incorrectly
classified as belonging to the positive class. False negatives are the items which were
not classified as belonging to the positive class but should have been. True negatives
are the items which were not classified as belonging to the negative class but should have

been.

5.4 Results

Precision-Recall

1.0
0.9
0.8 1
0.7 1
= 0.6 1
2
Lh
E 0.5
=T
0.4
0.3 4+ == Tuple-Precision-Recall curve (area = 0.69)
- Pairs-Precision-Recall curve (area = 0.61)
021 __ Vanilla-Precision-Recall curve (area = 0.53)
014 = SVD-Precision-Recall curve (area = 0.63)
— NMF-Precision-Recall curve (area = 0.58)
D.ﬂ T T T T T T T T

T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure 5.2: Precision-Recall: Our testing results

Figure [5.2|represents the Precision-Recall curve for our 4 causal models and our vanilla
one. We chose to compare here our models for the parameters that appeared to ensure the
best possible performance for each individual model. We will examine soon how different

training and filter parameters result in slight differences in the behavior of our models.

The Area Under Precision-Recall Curve (AUC), indicated in the graph simply

as area, is obtained by the trapezoidal interpolation of the precision. We use this measure

5.5. Discussion: Qualitative Results 75

to rank the performance of our models.
The ranking goes as following, from worst to best:

Word2Vec Tuple-based model
SVD model

Word2Vec Single word-pair model
NMF model

Vanilla Embedding model

DAl

As expected, our causal models are much better able to rank causal pairs than our
baseline. Incorrect rankings were largely driven by low frequency words whose embeddings
could not be robustly estimated due to lack of direct evidence. The Tuple-based model
significantly outperforms the other models especially for high recall values. In the second
place comes the SVD model which behaves quite well for recall values smaller than 0.5.
It is admitedly not as stable as our Tuple-based model. Next comes our Single Word-pair
Embedding model with an unsatisfying capacity of detecting the causality frame instances
in comparison with the above methods and the Arizona’s almost identical model (yet for
a different training set, specifically in the English language). Nextly, we can notice the
poor predictive behavior of the NMF model. Finally, it becomes evident from the results

of the Vanilla Embedding Model its inadequacy for causality detection tasks.

Another representation of the performance of our models can be achieved by using the
Receiver Operating Characteristic (ROC). In statistics, a receiver operating characteristic
curve, i.e. ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The ROC curve is created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. This graphical representation (Figure gives us very similar results

with the previous one.
5.5 Discussion: Qualitative Results

At this point we will try to give a better insight into the behavior of our models by

looking at a few of our SemEval test pairs and check each model’s rating.

The first three are nominals appeared in causal sentences. They are pairs of such kind
that it would be easy for a human to deduce a causal link between the two nominals

without looking for causal indicators (in this case the verbs “trigger” and cause).

sentence: A <el>fire</el> triggered by the <e2>blasts</e2> damaged eight build-
ings at the plant, including one that was burned down.

Translated test pair: explosion feu

76 Chapter 5. Evaluation

Receiver Operating Characteristic (ROC)

1.0 4
0.9
0.8 1

w 0.7 4

)

[15]

o

w 0.6 _

=

)

@ 0.5 -

(=8

S 0.4 -

}_
0.3 4 == Tuple-ROC curve (area = 0.72)

— Pgirs-ROC curve {(area = 0.60)
0-2 1 vanilla-ROC curve (area = 0.54)
01 4. SVD-ROC curve (area = 0.64)
m— NMF-ROC curve (area = 0.59)

ﬂ.ﬂ T T T T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive Rate

Figure 5.3: Receiver Operating Characteristic: Our testing results

Relation Type: Cause-Effect (e2,el)
Tuple-based model rating: -0.130009
Single word-pair model rating: -0.0197744
Vanilla Embedding model ratig: 0.364054
SVD model rating: 0.212785

NMF model rating: 0.107053

Sentence: But the <el>earthquake</el1> triggered by the <e2>eruption</e2> of
Thera struck first.

Translated test pair: séisme éruption

Relation Type: Cause-Effect (e2,el)

Tuple-based model rating: -0.0908807

Single word-pair model rating: 0.0491519

Vanilla Embedding model ratig: 0.473948

SVD model rating: 0.207729

NMF model rating: 0.222042

Sentence: Once they grow there, the <el>swelling< /el> and inflammation caused

5.5. Discussion: Qualitative Results 77

by the <e2>infection</e2> closes off the sac, causing it not to shed bacteria, and pro-
tecting the bacteria inside from antibiotics and your body’s own immune cells.

Tranlated test pair: infection inflammation

Relation Type: Cause-Effect (e2,el)

Tuple-based model rating: -0.0287006

Single word-pair model rating: 0.0601631

Vanilla Embedding model rating: 0.502571

SVD model rating: 0.523963

NMF model rating: 0.445636

The next three are pairs of other kinds of relations, for which a human would admittedly

give a low probability of designating causal relation.

Sentence: <el>Beaver</el> <e2>dams</e2> are created as a protection against
predators

Translated tuples: castor barrage

Relation Type: Product-Producer(e2,el)

Tuple-based model rating: -0.416389

Single word-pair model rating: -0.336954

Vanilla Embedding model ratig: 0.30219

SVD model rating: 0.143796

NMF model rating: 0.0290136

Sentence: There has been intense <el>debate</el> over the circles’ <e2>origins</e2>.
Tranlated test pair: débat origine

Relation Type: Message-Topic(el,e2)

Tuple-based model rating: -0.384409

Single word-pair model rating: -0.132343

Vanilla Embedding model rating: 0.12804

SVD model rating: -0.0343494

NMF model rating: 0.029079

Sentence: The second <el>simulation</el> was started from the uncomplexed x-
ray <e2>structure</e2> after insertion of the ligand into the binding site.

Translated test pair: simulation structure

Relation Type: Entity-Origin (el,e2)

Tuple-based model rating: -0.21932

Single word-pair model rating: -0.0565504

Vanilla Embedding model rating: 0.325763

SVD model rating: 0.100709

NMF model rating: 0.0470929

78 Chapter 5. Evaluation

In a few words, in these six examples it is easy for humans to detect or deny causality.
We can see that actually our models perform relatively well considering that they give much
smaller ratings to non-causal pairs. Note that the rating values of our model cannot be
compared among them. Word2vec seems to be much more “strict” than our factorization
models. The low ratings given by the Tuple -based method can be partly explained by a
special feature of it that we haven’t yet discussed. It is the fact that the causal proximity
gets mixed up with word similarity in terms of causal contexts. To make this plain clear
we can give as example the results of the top 10 closest (most similar output embeddings

for input embedding of the word (cs_)guerre (war):

cs_mondial: 0.00306198
cs_civil: -0.00311063
ef_saoudite: -0.0331004
cs_meurtrier: -0.033403
cs_atrocité: -0.0369734
ef_syrien: -0.0421228
cs_sanglant: -0.0468483
cs_décolonisation: -0.0505369
cs_invalidité: -0.0521121
cs_atroce: -0.0541832
cs_terrorisme: -0.054809

Here, we see that the majority among the top 10 “most similar” words are cause-words,
words of the same event type as the word geurre. This attribute of our model does not
constitute any problem as far as the event types of the words in our vocabulary can be
distinguished by their prefix. These results also show us that our model is indiscriminantly

“strict” giving negative cosine values almost for every possible word-pair.

The behavior of our Single word-pair model is different, and even though it seems to
work more robustly, the quantitave results above disprove this almost as an illusion. Once
a gain we can check the top ten results among output embeddings for the word cs_guerre

of the input matrix:

ef_guerre: 0.117155
ef_destruction: 0.0765318
ef_saoudite: 0.0642342
ef_massacre: 0.0558169
ef nazi: 0.0459338
ef_armée: 0.0444262

ef ravage: 0.0413298
ef_militaire: 0.0381308
ef_empire: 0.037602

5.5. Discussion: Qualitative Results 79

ef_paix: 0.0344615
ef_mort: 0.0330351
ef_soldat: 0.0304276

5.5.1 Interpretation of our Models’ Flaws

Here we will try to give an interpretation of our models’ flaws by examining some of

the difficulties that they are confronting in this specific evaluation task.

Many flaws originate from the phase of the training set creation. One major problem
is that, if a word is part of a causal component in the training tuples, it does not really
mean that it is the main bearer of the meaning of the component (the actual causal event).
It is really difficult to create such a filter that can cope with such noise. This constitutes

the most important factor of our problem. The main source of our inefficacy.

A relevant example is this pair of words, heel and shoe, that could naturally appear in
causal components simply because of their close relation and thus their possible syntactic

link in a sentence of our corpus.

Sentence: He decided to pad the <el>heel</el> of <e2>shoes</e2> with a shock

absorbing insole or heel pad.

Tranlated test pair: talon chaussure
Relation Type: Other
Tuple-based model rating: -0.0290125

Single word-pair model rating: -0.0525966
Vanilla Embedding model rating: 0.577776
SVD model rating: 0.132815

NMF model rating: 0.2837

Another problem is the orthography and types of mistakes in the frWac corpus. Also,
the imperfections of the annotation program play a major role. The combination of these

two flaws create serious blemishes to our training data.

Other problems have their origin in the difficulties that we have to face specifically
when testing our models with SemEval pairs. For example, even humans wouldn’t expect

high causal proximity among test pairs like the ones in the next examples:

Sentence: The <el>disruption</el> has been caused by a sensitivity reaction in
the brain to an ingested <e2>substance</e2>.
Tranlated test pair: perturbation substance

Relation Type: Cause-Effect

80 Chapter 5. Evaluation

Tuple-based model rating: -0.242246
Single word-pair model rating: -0.118238
Vanilla Embedding model rating: 0.199395
SVD model rating: 0.129461

NMF model rating: 0.0699259

Sometimes human rating of the causal proximity might depend on our beliefs, our
ideologies. In terms of pattern recognition, what corresponds to the human beliefs is the
ideological inclinations of the sources from which originated our training set, that is our
corpus. If we want to build a general purpose machine we have to expect to face certain
difficulties, of the same type that a totally non-biased human-being would face. Let’s take

a glimpse into the following SemEval example:

Sentence: police officials offer apologies for the <el>suffering</el> caused by the
responsible police <e2>officers</e2>.

Tranlated test pair: policier souffrance

Relation Type: Cause-Effect (e2, el)

Tuple-based model rating: -0.293355

Single word-pair model rating: -0.0570472

Vanilla Embedding model rating: 0.181807

SVD model rating: 0.115398

NMF model rating: 0.332066

Here all of our models predict relatively low causal proximity except of our NMF that
we can assume that its response is quite arbitrary since taking under consideration the
above quantitative results. This example made apparent one more difficult that our model
has to cope with, but at the same time implicitly it gives us some information about the
corpus used for training and hence an insight on the ideological contents appearing on the

internet.

Another difficulty is that a very common word may appear much more often in causal
relations in our corpus together with specific words and not with some others even if the
last ones have obvious causal proximity with it. For example, the word price in our next

test pair, where the collapse is a perfectly possible effect yet a very special one:

Sentence: The low oil <el>prices</el> caused the <e2>collapse</e2> of the wall

and the Russian empire.

Tranlated test pair: prix effondrement
Relation Type: Cause-Effect (el, e2)
Tuple-based model rating: -0.312424

Single word-pair model rating: -0.165238
Vanilla Embedding model rating: 0.12077

5.6. Extra Quantitative Tests 81

SVD model rating: 0.0568018
NMF model rating: 0.150254

Another good example of the same type is the following involving the word movement:

Sentence: The beautiful hydrothermal features in the park (geysers, hot springs, mud
pots, etc.), the uplift and subsidence, and many of the <el>earthquakes</el> are caused
by the <e2>movements</e2> of hydrothermal and/or magmatic fluids.

Tranlated test pair: séisme mouvement

Relation Type: Cause-Effect (e2, el)

Tuple-based model rating: -0.196879

Single word-pair model rating: 0.00350669

Vanilla Embedding model rating: 0.196323

SVD model rating: 0.16437

NMF model rating: 0.0426388

Other causes of our models’ inefficacies would include imperfections in our pairs’ trans-
lation. We can think that a translation from single word to single word is not an easy task

and can cause differentiations in the meaning of our test corpus.

5.6 Extra Quantitative Tests

We also tested weather bidirectionality could imporve our evaluation results in the
case of SVD as [31] had proposed for the case of the word2vecf model. We should note
here that with our word2vec models bidirectionality is ensured in the first place and thus

we don’t need a second training phase.

The results do not show any major improvement. We could though notice a slight

amelioration of our model’s stability.

Finally, we present some other tests that show how different parameters of our Tuple-
based training model have an effect on the behaviour of our model. These graphs represent
also more or less the procedure we followed in order to conclude in our final choice of

parameters.

Precision

82 Chapter 5. Evaluation

Precision-Recall example: AUC=0.63

1.0

0.9 +

0.8

0.7

0.6

0.5 A
0.4

0.3 4 = SVD-Precision-Recall curve
- MNMF-Precision-Recall curve
= SVDinv-Precision-Recall curve
0.1 1 MMFinv-Precision-Recall curve
= SVDbi-Precision-Recall curve

D.ﬂ T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.2

Figure 5.4: Precision-Recall: Bidirectional SVD

5.6. Extra Quantitative Tests 83

Precision-Recall

1.0~

0.9 +

0.8

0.7

0.6

0.5 A

Precision

0.4
0.3 4
0.2 —
= Tuple-12-200-55 AUC=0.69
= Tuple-6-200-55 AUC=0.68
= Tuple-2-200-55 AUC=0.67

D.ﬂ T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.1 +

Figure 5.5: Precision-Recall: Impact of different dependency subtrees depth on the Tuple-

based model

84 Chapter 5. Evaluation

Precision-Recall

1.0

0.9 +

0.8

0.7

0.6

0.5 A

Precision

0.4

0.3 4

0.2

= Tuple-12-200-55 AUC=0.69
= Tuple-12-200-30 AUC=0.65
= Tuple-12-200-15 AUC=0.67

0.1 +

D.ﬂ T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

Figure 5.6: Precision-Recall: Impact of different number of negative samples on the Tuple-

based model

5.6. Extra Quantitative Tests 85

Precision-Recall

1.0~

0.9 +

0.8

0.7

0.6

0.5 A

Precision

0.4

0.3 4

0.2

0.1 +

= Tuple-12-300-55 AUC=0.67
= Tuple-12-200-55 AUC=0.69
= Tuple-12-100-55 AUC=0.67

0.0
0.0

T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure 5.7: Precision-Recall: Impact of dimensionality on the Tuple-based model

86

Chapter 5. Evaluation

Chapter 6

Conclusion

Finally, we have been able to draw some conclusions. After the comparison of our
models’ behaviour and the deep understanding of their inner structure and functioning
it has become clear to us that the ability of generalization plays the most crucial role in
the effectiveness of our models. This fact has become clear also by the inadequacies of
the PMI measure to cover our needs and by the apparent superiority of our Tuple-based

model in relation to the others.

We consider important to underline the fact that our models face some difficulties
in causality detection tasks where there appear highly complex sentences since, in our
project, many of the words that form their meaning, were seen merely as stop-words. We
actually believe that many of our models’ flows are related with the specificities of our
training sets. Choosing the proper training data is a great challenge for relation extraction
in general. We think that there is still a lot of work to be done pertinent to the process

of automated collection of good causality instances.

87

88

Chapter 6. Conclusion

Bibliography

1]

2]

N. Asghar. Automatic extraction of causal relations from natural language texts: A

comprehensive survey. arXiv preprint arXiv:1605.07895, 2016.

S. Banerjee and A. Roy. Linear algebra and matriz analysis for statistics. Chapman
& Hall/CRC texts in statistical science series. CRC Press, Taylor & Francis Group,
Boca Raton, 2014.

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta. The wacky wide web:
a collection of very large linguistically processed web-crawled corpora. Language
resources and evaluation, 43(3):209-226, 2009.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137-1155, 2003.

C. M. Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, 2006.

G. Bouma. Normalized (pointwise) mutual information in collocation extraction.

Proceedings of GSCL, pages 31-40, 2009.

A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics, 32(1):13-47, 2006.

J. A. Bullinaria and J. P. Levy. Extracting semantic representations from word co-
occurrence statistics: A computational study. Behavior research methods, 39(3):510~
526, 2007.

R. Collobert and J. Weston. A unified architecture for natural language processing;:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160-167. ACM, 2008.

J. Conrath. Unsupervised extraction of semantic relations using discourse informa-
tion. PhD thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2015.

J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1-32, 1957.

D. Garcia. Coatis, an nlp system to locate expressions of actions connected by causal-

ity links. Knowledge Acquisition, Modeling and Management, pages 347-352, 1997.

89

[13]

[19]

[20]

90 Bibliography

R. Girju. Automatic detection of causal relations for question answering. In Pro-
ceedings of the ACL 20038 workshop on Multilingual summarization and question

answering- Volume 12, pages 76-83. Association for Computational Linguistics, 2003.

Y. Goldberg. A primer on neural network models for natural language processing. J.
Artif. Intell. Res.(JAIR), 57:345-420, 2016.

G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis, 2(2):205-224, 1965.

Z. Harris. Distributional structure. Word, 10(23):146-162, 1954.

7. Harris. Mathematical structures of language. Interscience tracts in pure and applied

mathematics. Interscience Publishers, 1968.

I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. O. Séaghdha, S. Padé, M. Pennac-
chiotti, L. Romano, and S. Szpakowicz. Semeval-2010 task 8: Multi-way classification
of semantic relations between pairs of nominals. In Proceedings of the 5th Interna-
tional Workshop on Semantic Fvaluation, SemEval ’10, pages 33-38, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

I. T. Jolliffe. Principal component analysis. Springer series in statistics. Springer,
New York, 2nd ed edition, 2002.

C. S. Khoo, S. Chan, and Y. Niu. Extracting causal knowledge from a medical
database using graphical patterns. In Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, pages 336-343. Association for Computa-

tional Linguistics, 2000.

C. S. Khoo, J. Kornfilt, R. N. Oddy, and S. H. Myaeng. Automatic extraction of
cause-effect information from newspaper text without knowledge-based inferencing.
Literary and Linguistic Computing, 13(4):177-186, 1998.

O. Levy and Y. Goldberg. Dependency-based word embeddings. In ACL (2), pages
302-308, 2014.

O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization.

In Advances in neural information processing systems, pages 2177-2185, 2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Bibliography 91

[26]

32]

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111-3119, 2013.

A. Ng. Lecture notes 1. CS 229: Machine learning. Technical report, Stanford, CA,
2003.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word represen-

tation.

S. Ruder. On word embeddings - part 1. http://ruder.io/word-embeddings-1/
index.html, 2016.

S. Ruder. On word embeddings - part 2: Approximating the softmax. http://ruder.

io/word-embeddings-softmax/index.html#hierarchicalsoftmax, 2016.

R. Sharp, M. Surdeanu, P. Jansen, P. Clark, and M. Hammond. Creating causal
embeddings for question answering with minimal supervision. arXiw preprint
arXiw:1609.08097, 2016.

L. N. Trefethen and D. Bau III. Numerical linear algebra. philadelphia: Society for
industrial and applied mathematics. Technical report, ISBN 978-0-89871-361-9, 1997.

http://ruder.io/word-embeddings-1/index.html
http://ruder.io/word-embeddings-1/index.html
http://ruder.io/word-embeddings-softmax/index.html#hierarchicalsoftmax
http://ruder.io/word-embeddings-softmax/index.html#hierarchicalsoftmax

92

Bibliography

Bibliography

93

	
	Abstract
	
	µ
	Introduction
	Semantic Relation Extraction
	Methods of semantic relations extraction
	Distributional approaches
	Pattern-based approaches
	Latent Feature Approaches

	Causality detection
	Statistical vs. Non-Statistical Techniques

	Machine Learning: Theory and Models
	Supervised learning
	Linear regression
	Logistic regression
	Softmax Regression

	Stochastic Gradient Descent
	Word Embeddings

	 Language Models
	 Word2vec
	Continuous Bag-of-Words Model
	Continuous Skip-gram Model
	Digression: From Brain-Inspired representations to mathematical abstraction
	Softmax Approximation Strategies
	Subsampling

	Mutual Information Measures
	Unsupervised Learning
	Dimentionality Reduction

	Creation of Causality Detection Models
	Extraction of Training Data
	Storage of the Collected Data
	Creation of Causal Embeddings
	Word2vec
	Matrix Factorization
	DSMs vs. Predict models

	Evaluation
	Test Data
	Baseline: Vanilla Embedding Model
	Statistical Measures: Precision and Recall
	Results
	Discussion: Qualitative Results
	Interpretation of our Models' Flaws

	Extra Quantitative Tests

	Conclusion
	Bibliography

