A N
i
B

AL
D,

ﬁﬁ"?a/‘\

HOE

nVvpPopos

|

E®GNIKO METXOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQON
KAI MHXANIKON YTIOAOTIZTON

TOMEAZ TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTIZTQN

BeAtiotonoinon Enidoong Eyypagwv oto Karaveunuévo
Yvotnua AroOnkevong KAedov-Tiung eted péow

Evowpdatrwong tov ArofOnkevtikov Mnxaviouov
RocksDB

AITTAOMATIKH EPTAXIA
Iewpyia M. Kokkivov

Epyaotiplo YmoAoyloTikwv ZuoTthpuatwy
ABnva, Maptiog 2018

E®GNIKO METZOBIO ITOAYTEXNEIO
>XOAH HAEKTPOAOTI'ON MHXANIKQN KAI MHXANIKQN YIIOAOTIZETON
TOMEAZX TEXNOAOTITAY ITAHPO®OPIKHE KAI YIIOAOTIETQON

BeAtiotonoinon Enidoong Eyypagwv oto Karaveunuévo
Yvomnua AroOnkevong KAedov-Tiung eted péow
Evowpdatrwong tov ArofOnkevtikov Mnxaviouov
RocksDB

AITTAOMATIKH EPTAXIA

Iewpyia M. Koxkkivov

EmpAénwv KaOnyntig: Nextdaptog Kolvpng
KaBnyntrg EMIT

EyxpiOnxe anod tnv tpipen eEetaotikn emtponr v 8n Maptiov 2018.

Nextdptog Kolvpng NikoAaog Ianaomvpov Tewpylog Icovpag
Kabnyntrig EMII Av. KaOnyntrig EMIT En. Kabnyntng EMII

Epyaotiplo YToAoyloTikwv ZuoTthpuatwy
ABnva, Mdptiog 2018

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN oF COMPUTER SCIENCE

Optimizing Write Performance in the etcd Distributed
Key-Value Store via Integration of the RocksDB Storage
Engine

DIPLOMA THESIS

Georgia M. Kokkinou

Computing Systems Laboratory
Athens, March 2018

Tewpyia M. Koxkivov
HAektpoAdyog Mnxavikog kat Mnxavikog Ynoloyotwv EMIT

Copyright © l'ewpyia M. Kokkivov, 2018

Me emgpOAagn mavtog Sikawwpatog. All rights reserved.

Anayopedetatn avtypaer, anobrkevon kat Stavour| Tng Tapovoag epyaciag, e§ ohokAnpov)
TUAHATOG AVTNG, Yia EUTOPLKO oKkoTo. Emttpénetal n avatbnwon, anodrikevon kat Stavour yia
OKOTIO N kepOOOKOTIKO, EKTIAUOEVTIKNG 1} EPEVVITIKNG VOTG, VTIO TNV TTpoitobeom va avagé-
petatl 1 TNy Tpoéhevong kat va dtatnpeitat To mapdv pnvopa. Epotipata mov agopodv T
XpPNomn g epyaciog yo kepSOOKOTIKO OKOTO TPEMeL Va anevfhvovTal Tpog TNV ovyypagéa.
Ot andyelg Kat Ta CUUTEPACHATA TTOV TIEPLEXOVTAL O AVTO TO £YYPaQo eKPPAlovy TNV ovy-
ypagéa kat ev mpémel va eppnvevdel 0Tt avtimpoownebovv Tig emionpeg Béoelg Tov EOvikod
MetooPiov ITohvteyveiov.

iii

IlepiAnyn

O etcd eivat éva a&LOMOTO KaTaveunuévo ovotnua anodnkevong kKAetSLov-Tiung avot-
XToU kwdika. XxedlaoTnKe MPWTIOTWG yla anobnkevon petadedopévwy kat Xpnotuo-
noteitat ouvHBWG yla EVTOTIOUO VTIINPECLWY, KOLVOXPNOTH pLOOT TTapapéTpwy Kot
Kataveunuéva kAedwpata. Qotdoo,) vYnAnR tov dtabeoipdTnTa, N ATAOTNTA Kat oL
aloonpeinteg emdooelg, o cLVOLAOUO (e TO OTL VTOOTNPIleTAL ATO i pHeYdAN Kat
SpaoTipla KOWVOTNTA TPOYPAUUATIOTMV, TOV KABIOTOOV EAKVOTIKT EMAOYN Kal yia
dAAa eidn e@appoywv. O Tpéxwv amodnkevTikodg unxaviopog tov etcd eivau n BoltDB,
o evowpatwpévn Baon dedopévwv mov otnpiletal ota B+ dévtpa kat eivan Pektt-
OTOTIONHEVT VLA AVAYVWOELG. XTNV EMOXT TWV KATAVEUNUEVWY CLUOTNUATWY, VTTAP-
XeL €va evpl PACHA EQAPUOYWYV LE EUPAOT) OTIG EYYPAPEG TTOL Ba emwpeAovVTAY ATO
évav aflomoto tpono anobrkevong Sedopévwy oe pia ovototyia vtoloytotav. Ila-
padeiypata TETOLWV EQAPUOYDV amoTEAOVV Ol SLadIKTLAKEG VTN PETiES AVTLYpAPWY
ac@aleiag, ovAoyr| dedopévwy and alobntrpeg, oL eEumnpetnTég NhekTpovikoD Ta-
XvSpopLeiov Kat ot LoTOTOTOL KovwViknig dikTdwong. Etol, oe avtrv Tnv epyacia oxe-
Stalovpe kat vAomolobpe TNV avtikatdotaon NG BoltDB pe v RocksDB, pia vynAav
emdooewv Paon dedopévwv mov ecwTepikd xpnotpomnotel €va LSM-6€vtpo, pe okomo
va Beltiotonotjoovpe Tov etcd yla TEPIMTWOELG XPTIOTG CLXVWV EYYPAPWY. AVTO TO
KATAPEPVOVHE AVATITOOCOVTAG €va TakéTo Kwdika o yYAwooa Go mov petappdlet
OLVAPTNOELG Kal EVVoLeg amd TNV mpoypappatiotikn Stemagr (API) tng BoltDB otig
avtiotoixeg TG RocksDB, tpononowwvtag Tov kwdika tov idtov Tov etcd povo ota
onueia mov eivar anapaitnro. Katd tn didpketa g Stadikaoiag avtng, vAomotodue
Kdmoleg SuvatoTnTeG oL dev LT PXAV 10N oTA gUTAEKOUEVA TIPOYPANIATA, KAVO-
VTOG Kal TIG avTIOTOLXEG OLVELTQPOPEG AOYLOIKOD. 2T oLVéyela, emaknbevovue Tnv
opBotnTa Kal TNV evpwoTia TNG VAOTIOINOTG HAG, [E XPOT TNG TAATPOpHAG AELlTOVp-
ytkov eAéyyov tov eted petald alwv epyaleiwv. Emmhéov, dnpovpyodpue pia ov-
oTtouyia EKOVIKWV unxavwv og meptarlov vépoug, wote va aftohoyroovpe péow Tov
evowpatwpévov epyaleiov benchmark tnyv enidoon tov etcd oty mepintwon xpriong
™G RocksDB wg amobnkevtikd unxaviopo kat va Tnv ovykpivovpe pe tnv enidoon
otnv mepintwon xpnong s BoltDB. Enetta, epappolovpe otadiakd kamoteg Perti-
oToTO0ELG, e§eTAlOVE TNV EMIGPAOT) EVOG GLVOAOL TTAPAUETPWY OTA ATOTEAETPATA,
Kat oXOAA{OvE To TAEOVEKTHHATA KAl HELOVEKTHHATA TwV VO TTpooeyyioewv. TéNog,

oktaypagovpe 18éeg yla Pektiwon kat TepaITéPw Epevva TAvVw oTo Bépa.

Aé€eig-Kedua

ovoTnpa anodrkevong kAeOL10V-TIUNG, kataveunuévn anobrkevor, Hnxaviopog amo-

Onkevong, dopég dedopévwv, B+ dévtpo, LSM-8¢vtpo, etcd, BoltDB, RocksDB

Abstract

Etcd is an open-source, distributed key-value store with a focus on reliability. It was
primarily designed to store metadata and is often used for service discovery, shared
configuration and distributed locking. However, its numerous good qualities, such as
its high-availability, simplicity and notable performance, in conjunction with the fact
that it is an actively maintained project backed by a large developer community, render
it an attractive option for other usecases as well. Etcd currently uses BoltDB, a read-
optimized persistence solution based on B+ trees, as its storage engine. In the era of
distributed computing, there is a wide range of write-intensive applications that would
benefit from having a reliable way to store data across a cluster of machines. Examples
of such applications include cloud backup services, sensor data collection, mail servers
and social media websites. To that end, in this thesis we design and implement the
replacement of BoltDB with RocksDB, a high-performance embedded database that
internally uses a log-structured merge-tree (LSM-tree), in order to optimize etcd for
write-heavy workloads. We achieve this by developing a Go wrapper that maps BoltDB
API functions and concepts to their RocksDB counterparts, modifying core etcd code
only where necessary. During this process, we make software contributions to some
of the projects involved, implementing features that we needed but were missing. Fur-
thermore, we verify the functionality and robustness of our implementation, using
the functional test suite of etcd, among other tools. In addition, we set up a cluster
of virtual machines on a cloud platform, in order to evaluate the performance of etcd
with RocksDB as its storage engine using the built-in benchmark tool, and compare it
to that of BoltDB-backed etcd. Then, we gradually apply a number of optimizations
upon our initial implementation, examine the impact of a set of parameters on the
results, and comment on the trade-offs of both approaches. Finally, we suggest some

improvements and outline directions for further investigation on this topic.

Keywords

key-value store, distributed storage, storage engine, data structures, B+ tree, LSM-tree,

etcd, BoltDB, RocksDB

vi

AvtiIIpoAoyov

>10 onueio avtd Ba nBeka va ekppdow TNV EVYVWUOOLVH HOL TTPOG TOVG avOpwTovg
7oV oLVESpapaY oTNV OAOKANPWOT avTHG TNG SIMAWHATIKNAG epyaciag, aANd Kat 6TnV
evpLTEPN akadnuaikn pov mopeia. Apxikd, Oa ndeka va evxaplotiow tov emPAéno-
vta kaOnyntr pov k. Nektapio Kolopn, mov péoa and tig Stalé€elg Tov kaliépynoe
TO eVOLAPEPOV OV YLa TOV TOpEA TwV YTTOAOYLOTIKWY XvoTnpatwy. Eniong, evxapt-
ot Beppd tov Sidaxtopa BayyéAn Kovkn yia Ty epmiotoovvn mov pov £8eiée, yla
TOV HETAdOTIKO £VOOLOLAOHO TOV KAl TIG TOAVTIHES YVWDOELG TTOV ATTOKOULOO KATA T1)
didpketa NG eKMOVNONG ALTNG TNG epyaciag xapn otn Porbetd Tov. Akoun, Oédw va
gVXAPLOTHOW TOV XPTOTO XTAVPAKAKD, TTOV €LVAL KAl O EUTVEVOTNG TOL BEpaTog avTrg
NG SIMAWUATIKAG, YLaL TNV OLOLACTIKT GUUPOAT TOL OTNV AVTIUETDTILON TOGO TEXVIKDV
600 kat BewpnTikdy (Tnpdtwy, Kabwg kat Tov ovpgottnth pov Xproto Katoakiwpn
yta TiG taitepa emotkoSounTikég oLiNTNoELS Lag yopw amod to avrtikeipevo twv Ka-
Tavepnpuévov Zvotnuatwv Arodnkevong. Emmiéov, 0éAw va exppdow tnv evyvwpo-
o0VI] OV TIPOG O0EG KAl 0G0VG LTI TNPilovy éumpakta Tnv eAevBepn kat Swpedv Sia-
Kivnon TG yvwong, ava@épovtag XapakTnpLOTIKA TOUG TIPOYPAUHATIOTEG EAeVOEpOV
Aoytopkov. TéNog, evxaploTtd amd kapdLdg TNV OIKOYEVELA OV Kal TOVG AYATTHEVOVG

1oL @ilovg yla Tr oTHPLEN, TNV KATAVONOT KAt THV AVEKTIUNTN CLVTPOPLA TOVG,.

Tewpyia Koxkivov

Mdptiog 2018

vii

viii

Contents

IepiAnyn
Abstract

Avti IIpoAoyov

List of figures

List of tables

BeAtiotonoinon Eyypagwv otov etcd néow Evowparwong tng RocksDB

1 Ewoaywyn o e

2.3 O AmoBnkevtikog MnyavioudgRocksDB

3 IXEQLAOUOC © v o o o e e e

3.1 Apyitektovikn & Zyedaotikég Emloyeg L.

3.2 Avtiotoixion Evvowwv & Aopwv . ..o oo

4 YAOTIOINOT . . o v o o e e e e e e e e e e e e e e
4.1 H BifAioOnkn IepitvAiEng tng RocksDB otnv BoltDB

4.2 Tpomnomowoetg otov Kwdika toveted

iX

iii

vii

xiii

O W W N

16
24
24
29
32
32

4.3 BEATIOTOTIOOEIG o o o e e e e e e 38

4.4 EEwtepikég ZuveloQopés 44
4.5 Fleyxog OpBotnTag 45
5 IMewpapatik) AELOAOYNOT o 47
5.1 EpyaAeia, MeBodohoyia & ITepiBdAov 47
5.2 ATOTENEGUATO . . & v v v o e e e e e e e e e e e e e e 48
6 EmAoyog 56
6.1 SUUTTEPAOMOTO « v v v v v v e e e e e e e e e e e e 56
6.2 MEeAMOVTIKEG AUVATOTNTEG « « « v v v v e e e e e e e e e e 56
Introduction 59
1.1 Problem Statement, 59
1.2 Motivation 60
1.3 Existing Solutions 61
1.31 CockroachDB 62
1.3.2 TiKV . . e 63
1.3.3 OtherRelatedWork, 64
1.4 ThesisStructure 66
Background 67
2.1 Distributed Systems & Data Storage Concepts 67
2.1.1 An Overview of Distributed Storage 67
2.1.2 Key-ValueStores. 69
213 CAPTheorem i iii iy 71
2.14 ACID Properties 73
2.1.5 Consistency Models & Isolation Levels 74
2.1.6 Write-Ahead Logging 76
2.1.7 Multi-Version Concurrency Control 77
2.1.8 'The Raft Consensus Algorithm 79
2.2 etcd Distributed Key-Value Store 84
221 Overview. e 84
2.2.2 Evolution of the Storage Backend 89
223 UseCaseso it 90
224 SimilarSystems 93

225 Performance o 94

2.3 BoltDB StorageEngine
231 B4Trees
2.3.2 BasicConcepts &API
2.3.3 Caveats & Limitations
2.4 RocksDB Storage Engine
2.4.1 Log-Structured Merge-Trees
242 BasicConcepts & API
243 ComparisonwithBoltDB
2.5 The Go Programming Language
251 Overview.
252 Cgo:ANecessaryEvil
3 Design
3.1 Proposed Architecture & Design Choices
3.1.1 Integration of RocksDBintoeted
312 WhyRocksDB?
3.1.3 The gorocksdb Wrapper
314 TheRocksDBCAPI.
3.1.5 Removing the StorageQuota
3.2 Mapping of Concepts & Constructs
321 DB .. e
322 BucketstoPrefixes.
3.2.3 Get, Put & Delete Operations
324 Cursortolterator
325 Transactions
3.2.6 Snapshot to Checkpoint
3.2.7 Defragmentation
328 Read-OnlyMode

4 Implementation

4.1 Wrapping RocksDBinBoltDB.
4.2 ModificationsinetcdCode L.
4.3 Optimizations e e
4.3.1 Base Implementation
432 BucketAccess

xi

96

96
102
104
106
106
115
119
121
121
124

129
130
130
132
132
134
135
136
136
136
138
138
139
139
141
141

xii

4.3.3 Optimistic Transactions
43.4 WriteBatchWithIndex & Snapshot
435 WriteBatch
436 TuningRocksDB
4.4 External Contributions L.
4.5 Installation & Configuration
46 Testing
46.1 UnitTests
4.6.2 Functional Test Suite

5 Experimental Evaluation

5.1 Tools, Methodology & Environment
52 Results

6 Conclusion

6.1 ConcludingRemarks
6.2 FutureWork

Bibliography

199
200
201

213
213
214

217

List of figures

1.1 Overview of CockroachDB architecture 62
1.2 Sharding and region replicationin TiKV 64
1.3 Basic concept of a heterogeneous MyCassandra cluster 65
2.1 Visualization of the CAP theorem 72
2.2 Replicated state machine architecture 79
2.3 The leader election process in the Raft consensus algorithm 81
2.4 Replicated Raftlogs 82
2.5 LogcompactioninRaft 83
2.6 v2and v3 storage enginesinetcd 90
2.7 Average throughput as clients scale: etcd vs ZooKeeper vs Consul . . . 96
2.8 AB-treeoforder5 97
29 AB+treeoforder4d 99
2.10 A copy-on-write B+ treewith3levels 101
2.11 On-disk layout of the pagesof aB+tree 101
2.12 A copy-on-write B+ tree after updatingavalue 102
2.13 Internal fragmentationinBoltDB 105
2.14 External fragmentationinBoltDB 106

xiii

Xiv

LIST OF FIGURES
2.15 Schematic diagram of an LSM-tree of two components 107
2.16 LSM-treestorage o i v v i i e 108
2.17 A Bloom filter with a 32-bit array and 3 hash functions 110
2.18 Levelled compaction layout in LSM-trees 112
2.19 The architectureof RocksDB. 115
2.20 Popularity growthofgolang 122
3.1 Architecture of the etcd backend with RocksDB as its storage engine . 131
4.1 ‘Therole of theWriteTo() function. 154
4.2 CPU profile of the base implementation 176
4.3 The functional test suiteofeted 197
5.1 Write throughput of etcd in all versions 202
5.2 Average write latency of etcd in all versions 203
5.3 Contributing factors in the write latency ofeted 204
5.4 Point lookup throughput of etcd in all versions 204
5.5 Average point lookup latency of etcd in all versions 205
5.6 Range query throughput of etcd in all versions 206
5.7 Average range query latency of etcd in all versions 206
5.8 The impact of cgo overhead on putlatency 207
5.9 Total duration of put and commit operations 208
5.10 Write throughput of etcd with number of clients 209
5.11 Average write latency of etcd with valuesize 210
5.12 On-disk size of the backend database ofeted 211
5.13 Memory consumptionofetcd 212

List of tables

2.1 Quorum and fault tolerance in relation to etcd cluster size 89
2.2 Write performanceofetcd 95
2.3 Read performanceofeted 95
2.4 Complexity of basic operations in B-trees and B+ trees 100
2.5 Read & write amplification in universal and levelled style compaction 112
3.1 Key differences between BoltDB and RocksDB 142

XV

xvi

1 Ewayoyn

1.1 Zkomog & Kivnrpo

Ta kataveunuéva ovotiuata amobikevons yivovtal onpuepa ohoéva kat 1o Snpo@iin
egattiag TG KAUAKWOIHOTNTAG TOVG, TG VYNANG StaBectpdTnTag Kat Tng avoxng oe
o@dApata ov apovotdlovv. Eva ovotnua amobrikevons kAeidiov-tiuns eivat éva ei-
dog NoSQL Baong deSopévwy mov ecwteptkd XpNOILOTOLEL Evay TIivaKa GVOXETIONG

yta v anoBrikevon Sedopévwv ot pop@r| (evywv KAelSLOD-TIHNAG.

O etcd eivau éva kataveunuévo ovotnua anodnkevong KAELSLOV-TIHUNRG IOV XPNOLpO-
noteital ovvhBwg ya TV anobnikevon Twv kpiotpwv dedouévwy AWV KaTavepnLeé-
vov cvotnuatwy. Ia v enitevén opogwviag oe oxéon pe v katdotaon Twv dedo-
Hévwv petadd Twv kopPwv mov anaptifovy pia cvototyia (cluster) etcd xpnotpomnotei-
Tat 0 akyoptBpog opogwviag (consensus) Raft. O oxediaopodg tov eted evvoei tnv emi-
doon Twv artnpateV avdyvwong, kabwg avtd anavtwvtat ovxvoTepa oTnv ovvnon
TEPIMTWOT XP1IONG TOV, APVOVTAG TNV eMIS00N TWV AUTNUATWY EYYpAQTG 0 SevTepn
Hoipa. O Tpéxwv pnxaviopodg anmobrkevong tov eted eivat n BoltDB, pua vAomoinon tng

BetioTomonuévng yia avayvaoelg doung dedouévwv B+ §évtpo.

2koTog TN mapovoag epyaociag eivat) fektiotonoinon tov etcd yia Tnv mepintwon
QOPTOV epyaciag Pe EUPACT) OTIG EYYPAPES, HECW AVTIKATAOTAONG TOV UNYAVIOUOV
anoBnkevorg Tov. (g eVAAAAKTIKOG UnXaviopog anobnkevong emAéxOnke n RocksDB,
éva Tomikd ovotnpa anodrkevong kAetdov-Tiung Baciopévo ota LSM-3évipa, Ta o-

nola eivat dopn} dedopévwy oxediaopévn eldikd ylo amodoTikég eyypagE.

v emoyr| Twv Big Data, 0Ao kat TepLocOTePES EQAPHOYEG TAPOVGLALOVY ELPAOT) OTIG
eyYpa@eg kat Oa umopovoav va enw@eAnfovv and tn cuvelopopd pag. AkolovBovv
Heptkd mapadetypata: ovotripata ovAloyng dedopévwv (m.x. and diktva aodntrhpwy,
SradikTvakég épevveg, mapakolovBnon g kivnong oto 0diko dikTvo), StadikTvakég
VTN Peoieg Statrpnong avitypdpwv ac@aleiag, eEunnpeTnTE NAEKTPOVIKOD Tayvdpo-
Heiov, L0TOTOTOL KOWVWVIKNG SIKTOWOTG, dtadpacTikd mawyvidia, dtatrpnon apxelwv
Kataypagng yeyovotwv (event logs) kat TéAog dtadiktvakd ovotnpata diekmepaiw-

ongG ouVaAAY@V (T.X. TapayyEALWY, KPATHOEWY AEPOTIOPIKWYV ELOLTNPIWV).

1

2 1. EIZAT'OI'H

1.2 Ymapxovoeg IIpoceyyioelg

Mia pooéyylon mapopota pe tn dikr| pag ovvavtape otnv CockroachDB [8], pua ka-
Tavepnuévn SQL Pdon dedopévwv mov Aertovpyel mAvw amod €va LOXVPNG GUVETELAG
ovotnua anobnkevong kAedlod-Tiung mov vrootnpilel cuvallayég (transactions).
[Tpokertar yia éva vynAng StabeotnoTnTag, CLUVETEG Kat avekTiko oTiG Stapepioets Ot-

ktVov ovotnpa (CP), mov xpnotpomnotei To mpwtdkoAlo opogwviag Raft, onwg o eted.

H apyirektovikn tng CockroachDB mepthapfdvet éva ovvolo kopPwy, kdbe évag amod
TOVG OTIOIOVG TIEPLEXEL €Val 1 TTEPLOOOTEPA OVOTHHaTA anobnkevong. Kabe éva amo
auTa Ta oVoTHpata arobnkevong eivat ToroBetnuévo oe Eexwplotod Sioko kal Xpnot-
pototei v RocksDB w¢ amoBnkevtikd punxaviopd. H CockroachDB e€aogalilet opt-
{ovTia kKAtpakwopotnta péow katatunong (sharding) tov nediov kAedwv kat Sa-
Holpaopuol Tov ota mpoavagepbévta ovotripata anobnkevong. Ia kdbe TpRpa Tov
nediov kAelddv Satnpovvrat avtiypaga ot Tpelg TovAdylotov kopBovs. H Paotkn
Stagopd g CockroachDB pe tov etcd evromiletal oto 0Tt pmopei va Staxetplotel
oyko dedopévwv tng tagews Twv terabytes, kabwg n Tpoadnkn véwv kOUPwv oTo 0L-
oTnHa avgdvet TN XwpNTIKOTNTA TOov. Ao TNV dAAN TMAevpd, N tapén Tov emmédov
SQL, kaBwg kat n avdykn ouvtoviopov petald Twv Slagopwv opddwv avtypdwy

eloayovv emnpoofeteg kabvotepnoelg.

To TiKV [11] eivat éva akdpa ovvemnés, kataveunpévo oo Tnpa arobnkevong kAediov-
TIUNG pe voothpEn cuvaAlaywy, mov xpnotpornotel Tov alydpiBuo opogwviag Raft
Kat Tov amobnkevtikd pnxavioud RocksDB. AkoAovOel pa otpatnyikn Katdtpnong
napopota pe avtrv g CockroachDB, otnv onoia 0 Odnyog TomoBétnong (Placement
Driver), mov vAomoteitat wg pia cvototyia etcd, £€xeL To poLo Tov evopxnotpwtr. QoTO-

00, to TiKV votepei oe oxéon pe tov eted otnv mAnpotnta tov API' tou.

! Application programming interface / Stemagr TPOYPAUUATIOUOD EQAPHOYDV

2. YIIOBA®GPO 3

2 YnoPaBpo

Ztnv evotnta avtr] Ba mapovotacovpe ta Pacikd Bewpnrtikd ototxeia mov eivau ana-
paiTNTA Yo TNV KaTavonon g epyaciag pag, Sivovtag £Ueact) oTnV apLTEKTOVIKT
Kat ot Aettovpyia tov eted, tng BoltDB kat tng RocksDB, kaBwg kat otig dopég Se-

Sopévwv oTig omoieg avtég Pacifovrat.

2.1 To Zvotnua AnoOnkevong KAetdrov-Tiung eted

Yta ovotrpata anodnkevong kAetdLov-Tiung o poAog Tov kAetdLov eivat va Tavtomotei
Hovadikd pia Tiun, 1 omoia epLéxel Ta mpaypatikd dedopéva. To kKheldi £xet T popen
avBaipetng ovpPolooelpdg, evw n TN Hopel va eivat omotoadnmote TOTOG dedoyLe-
VOV, TLX. €EIKOVA, £YYpapo KTA. ZTn YEVIKN TEPIMTWOT, Ta cvoTHHATA anodnkevong
KAetdtov-Tipng dev StabéTovy kamota yAwooa epwtnudtwy (query language). Atayet-
piovtatl ta dedopéva péow amAwv evIOAWY avayvwong, eyypaens kat Staypagng. H
amAdTH T ATOV TOL HOVTENOL Ta KAOIOTA TaxEa, EDKOAA OTN XPTOT), KALHAKWOLHA KAl

cVENIKTAL.

O etcd [1] eivau éva avorytov KwdiKa, KATaveUnuévo ovoTnpa arobnkevong kAetdtov-
TG ya aflomotn anobrkevon dedopévwy o pia cvototyio vtoAoylotwy. Eivat éva
OVVETIEG, AVEKTIKO 0€ o@alpata, vynAng dtabeoipdtntag ovotnpa. Me Béaon tnv opo-

Aoyia tov Bewpripatog CAP?, o eted amotelei ovotnua CP.

Tpéxet oe kdBe éva amd Ta PnXavHHATA HLAG GVOTOLKIAG KAl XPNOLHOTIOLEL TOV aAyO-
ptOpo Raft yia v enitevin opogwviag. Mia cvotoiyia amoteAeitat ovvhBwe and 3
HEAN, aAAG OLXVA XPTOLUOTIOLOVVTAL KAl GVOTOLKIEG e TIEPLOCOTEPOVG KOUPOVG e
OKOTIO TNV ab&non tng avoxng o€ opaipata. EQapuoyég mov tpéxouvy oe pnyavrpata-
TeAdTeG OTEAVOLY auTrpata avdyvwong (range), eyypaeng (put) i Staypagng (delete)
otov etcd. KaBe eloepyopevo aitnpa tpomomoinong mpémet va mepaoel and To mpwTo-

KoAAo Raft mpwv katoxvpwOei.

O etcd eivau ypappévog otn y\wooa mpoypappatiopot Go kat) ovopaoia Tov mpogp-

xetatw and Tov kataAoyo “/etc’, mov xpnowpomoteitat yia v anodnikevon pvbpicewv

*Zopewva pe 1o Bewpnpa CAP, eivar advvatov éva katavepnpévo cOOTNHA Va TTapéxeL TALTOXpOVa
ovvémela (consistency), Stabeopdtnta (availability) kat avoyr otig Siapepioeig (partition tolerance)
[24].

4 2. YIIOBA®PO

« 1»

OLOTHHATOG, Kat To ypappa “d” and tn Aé€n distributed (katavepnuévog). Akolov-

Bovv ovvnOeig mepimTwoelg xprong Tov etcd:

» Kowoxpnotes pvBuioceis: ot koppol evog Kataveunpévov GVOTHIATOG TTOV ATTO-
Onkevel TIC TapapETpovg Tov ot pia cvoTotxia etcd pmopovv va potpdlovtal Tig
i0teg puOpioELS KAl Vo EVIIUEPWVOVTAL AVTOHATA YL OTIOLETONTTOTE aAAayEg o

AVTEG.

o AVakaAvyn VINPECLWYV: O€ AVTH TNV TepinTwon 1 ovototyia etcd mailel To poho
evog UnTpwov Stabéoipwy vInpeotwv 0to SiKTLO, TTOV AVTOUATOTIOLEL TNV aVi-
xvevon Tovg anod Tpitovs. H ovotoikia eted Swatnpel emiong kat mAnpogopieg

obvdeong otnv kdbe vrnpeoia (m.x. dStevbvvon IP, apBpog Bvpag).

o Kataveunuéva kAeidwpata: okomog evog kataveunpuévov kAeldwpatog eivat
va eEaopalioet 0Tt petad oplopévwv kOuPwv mov Ba anonelpabody va kdvovy
[l CUYKEKPLUEVT epyaoia, HOvo évag kabe popd Oa Tnv kavel. XapakTnplotiko
TapASELYpa EQAPUOYNG ival 1] EKTENEDT) EVIUEPWOEWY. X€ AUTH TNV MEPIMTWOT),
€av OAoL 0L KOUPOL EVOG KATAVEUNUEVOL GUOTHHATOG EKTEAODOAV TIG EVIUEPW-
O£1G KAl EMAVEKKIVODOAV TAVTOXpOVa, To cvoTnpa Ba éxave tn Stabeotpotntd

TOV.

2.1.1 O aAyopiBpog opogwviag Raft

H Swatrpnon avtiypdewv pnxavng kataotdoewv (state-machine replication) otovg
KOpPovg piag ovotolxiag vTOAOYLOTWY, dnAadr n TEXVIKN OV XproLHOTOLEiTAL Yiat
NV emitevén TG AVOXNG 08 CPANUATA OTA KATAVEUNHEVA CLOTHHATA arobnkevong,
elodyet TV avaykn enitevdng opogwviag. H opogwvia avagépetar otn Stadikaoia
emiTeving ovvaiveong HeTagd SLaQopeTIKWV KOUPWY, OXETIKA UE TIG TIHEG TWV amodn-

KELUEVOV dedopEVWY.

Kevtpikd poho otnyv Statripnon aviypdwy unxavig kataotaoswy nailet to apyeio
kataypapnc (replicated log). Avto Bpioketal amoBnkevpévo oe kabe kOuPo NG ov-
oTtotxiag kot mepLEXeL pio akoAovdia eVTOAWDV, TIG OTIOLEG 1) HNXAVE) KATAOTACEWY TOV
KOpPov extelei pe Tn oelpd. Ot alydpiBuot opogwviag e§ao@alifovv tn cuvémnela Tov
apyelov kataypa@ng, Snhadr povtilovy avtd va meptéxet Tig idteg eVTOAEG pe v idta

o€lpd og OAOVG ToVG KOpPoug [35]. H ovvémeia Tov apxeiov kataypa@ng ouvenayetal

2. YIIOBA®GPO 5

OTLOAEG oL evOLapeses aAAA Kat 1 TEAKT KATAOTAOT OAWV TWV UNXAVWV KATACTACEWY

{ \“
) L Jerver state machine) [|I
client consensus x: 3
| module

y:9
® flog ®

z:0
[x8]ye1]y<9]]
.

Ixnua 1: ApyiTekTovVIKH avTiypaQwy unxaviG Kataotkoewy [35]

eivaut i0Lec.

Ztov alyoplBpo opogwviag Raft’ kdbe koupog Ppioketal oe pia and tig e&ng Tpelg
KATAOTAOELG: HYETHS, akOAovBog 1) vToYrPiog. YTIO KavovikEG oLVONKeG LTIAPXEL HOVO
évag ny£Tng kat ot vtohourot kopBot eivar akohovBot. O akyopiBuog Raft cuveyiCet
Aettovpyia Tov 600 eival Stabéon omotadnmote mAeloyn@ia kOPPwWV TNG CVOTOLIAG.

Awaomd to TpdPANpa NG emitevEng opo@wviag ota mapakdtw Vo vrompoPAnpaTa:

« Exloyn ny€tn: ot kopPot ekkivodv oTnV Katdotaon akohovBov kat mapape-
Vouv o€ auThyv yla 600 didotnua AapBavovv etdikd meplodikd unvopata and
Tov NyETn. Av évag akohovBog dev Aafet TéTolo prvupa katd tn Stdpkela Tov
xpovikov opiov ekAoyrg, petafaivel otV kataotaon vroyngiov. Tote, ite Oa
AaPet yrgovg ano tny mAeloyneia Twv peAwv NG ovotolyiog kat Oa exhexOei
ny£tngG, eite Ba eldomonBei 6TL kAmoL0G dANOG €xel exAexOei kat Oa emoTpéyel
otV katdotaon akolovBov. Ot yrpot divovtal pe oelpd TPOTEPALOTNTAG VTIO
v podndbeon OTL TO apxelo KaTAypaAPrG TOL VTOYNPIOV €ival TOVAAXLOTOV
e§ioov evnuepwpévo pe to avtod Tov kopPov akolovBov, eva kdbe vToYTPLOG
yneilet Tov eavtd tov. Eav vdp&et ooyneia n Stadikaocia ekhoyng emavaloy-
Bavetal. Emmhéov, oe mepintwon Stapépiong Tov SikTdov, 6Tay avtod emavérDet
OTNV QUOLOAOYIKT) TOV KATAOTAOT LIApPXeL epinTworn dvo kopPot va Ppioko-
VTaL TATOXpova 0e Katdotaon nyETn. Tote o nyétng pe to Atyotepo mpdogato
aptBpo meplodov mapaxwpel tn B€on tov [35]. H mepiodog otnv opoloyia Tov
Raft eivat pa povada xpovov avBaipetng didpketag mov xapaktnpiletal and

£VaAV OVYKEKPLUEVO NYET.

*https://github.com/coreos/etcd/tree/master/raft

https://github.com/coreos/etcd/tree/master/raft

6 2. YIIOBA®PO

o Avtiypa@n apxeiov kataypa@ng: o nyEtng AapPdavet ano tovg mehdteg (clients)
artnpata, kabe éva and ta omoia meEPLEXEL [EVTOAN TPOG EKTEAEDT A0 TIG
Hnxavég kataotaoewy. Ilpwta, mpooapTd TNV €VIOAN 0TO apXelo KaTaypaPng
Tov. Yotepa, TNV Stavéel 0TOvG VTTOAOTOVG KOpPovG. MoAig AdPet emiPePai-
won AYnG TG EVIOANG antd TNy mAeloyn@ia Twv KOpBwv, o NYETNG epapuolet
TNV EVTOAN 0TI UNXAVT] KATAOTACEWV TOV. Ze AUTO TO ONelo 1) eVToAr Oewpei-
Tat katoyvpwuévy (committed). Tote o0 ny£Tng eMoOTPEPEL TO AmOTEAETUA OTOV
TENATN KAl EVI|HEPWVEL TOVG VTIOAOLTIOVG KOUPOVG OTL LTOPOVYV VA EPAPUOCTOVY
KL OTOL TNV EVTOAT] OTIG HNXAVEG KATAOTACEWV TOVG. Ol A0VVETELEG TIOV HTTOpPEL
VA TPOKVYOLV HETAED TWV APYELWV KATAYPAPTG OTAV O NYETNG VTTOOTEL OPAA A
emAvovTal e TNV eMPOAT TOL APXEIOL KATAYPAPTIG TOV VEOL NYETH GTOVG VLTIO-

Aotrovg koupoug [35].

T va amotparmei 1 xwpic Opto avgnon tov peyeBovg Tov apyeiov kataypaeng, epap-
Hoetan wa texvikn “cvpnvxkvwons” (compaction). ZUuwva pe avuThy, 1 TPEXOLOA
KATAOTAOT] TOV OVOTHUATOG EYYPAPETAL 08 €va oTiyutdTummo (snapshot) otov dioko

Kal TO apxeio kataypagng HEXPL EKEIVo TO onpeio anoppinTeTal.

2.1.2 Eyyvnozig tov etcd

o Atopkotnrta: kabe aitnua otov etcd eite odokAnpwvetal eite dev mpaypato-

moteitat kaboAov.

o Yvvénewa: o etcd e§ao@aliCel akohovBiakn ovvémeia, Snhadn avefaptitwg Tov
egumnpetnt etcd oTOV OTOIO O TTEAATNG OTéNVEL Eva aitnua, Oa StaPdoet Ta idta

yeyovota pe v idta oelpd.

o ATopovwon: Ta attipata avayvwong dev “BAémovv” moté dedopéva mov mpo-

otéfnkav katd TN Stapketa Stekmepaiworng TOVG (CELPLOTIOOLUN ATTOHOVWOT)).

o AvOekTikOTNTA: 0Nt Ta OAOKANpWHEVA auTrpata gival avOekTikd, kabwg ey-

YPA@POVTAL € GUOKELT UOVIUNG amodnKkevong.

o YynAn draBeoipotnra: pia cvotoryia etcd pmopel va ouvexioet TNV Kavovikn

Aettovpyia TNG 600 VIAPYEL Uit AELTOVPYIKT TIAELOYNPia KOUBwWV.

2. YIIOBA®GPO 7

» Avoxn dapepicewv: av n ovotolyia amoteleital and meptttd apliuo kopufwv
elvau B€Pato 6Tt 0 eted Ba pmopéoet va cuveyioet T AetTovpyia TOL KAVOVIKA O€
nepinTwon Stapéplong Tov SIKTLOL, kAW éva amd Ta TuRpata mov Ba €xovv

TpokLYeL Ba epiéxel TV mMAeloyn@ia Twv KOUPwV.

2.1.3 Movtélo dedopévwv

O etcd vioBetei édeyyo TavToypoviopod moAamAwv ekdéoewv? (multi-version concur-
rency control / MVCC). Etol, kdBe tpomomoinon dnpiovpyei pa véa avabewpnon
(revision) tov mediov kAewdiwv. H Aoywkr| o0yn Tov anobfnkevtikod ocvuoThpatog eivat
éva eminedo (xwpic kataldyovg), ahgaPntikd tafvounuévo medio khetdiwv. O eted
anoBnkevel Ta puotkd dedopéva wg Levyn kAedlov-Ting otov dioko, oe éva B+ O¢-
VIPO, VAOTIONUEVO AT TOV PnXavIopUo amobnkevong tov, Tnv BoltDB. Kabe kAeidi
TIOV el0dyeTal 0To B+ §€vTpo éxel TN poper| piag mAelddag TpLwv oTotxeiwv: (major,
sub, type). To ototxeio major eivat n avaBewpnon otnv onoia mpaypatonomdnke n
oxetikn Tpomonoinom. To otowyeio sub Stagopomotei petald tpomonoioewy e Tov
i0to aptOuod avabewpnong, SnAadn Tpomomouoewv oL €ytvayv katd Tr StapKela TG
idtag ovvalhayrig. To ototxeio type kabopiCet Tov TOMO TNG TpomOTOiNONG (TT.X. put,
tombstone). H tiur) mov ouvodevet to kAewdi mov etodyetat oto B+ 8évSpo, mepiéyet To
TPAYHATIKO {e0Y0G KAELSL0D TG 0TO 0T0i0 ava@épeTal 1 Tpomomnoinom, padi pe dAAa
petadedopéva. O eted dwatnpei emiong éva devtepevov B-dévtpo otn pviun, wote va
emTayVVeL TNV e§UINPETNON TWV epwTNUATOY avayvwong. Ta kAetdid oe avtod to B-
dévtpo eivat Ta mpaypatikd kKAetdid, SnAadr avtd mov “PAémel” o TEAATNG, EVW OL TIHES

TePLEYOVV OEKTEG OTNV TILO TPOTPATN TPOTTOTOINOT| TWV KAeWSLWwV 0T0 B+ 8évTpo [40].

Ta va anotpamei n veepPolikr| avénon tov peyéBovg tov B+ dévipov Aoyw tng ovo-
OWPEVOTG TTPOTYOLHEVWY avabewprioewy, o etcd dievepyei meplodikd pa Stadikaocia
ovunmUkvwors (compaction), KATA TNV OTOLA ATTOPPITTOVTAL OL TTAPWYNHEVES EKDOTELG

Twv dedopévwv.

“Te wa Pdon dedopévwv mov xpnotponotel MVCC, ol evnpepwoelg dev avtikablotovv Ta makid
dedopéva. AvtiféTw e, Ta emonaivovy wg mapwynpéva kat tpooBétovv véa ékdoor| Tove. Etot, Sia-
povvTal TOANATAEG ekdOTELS, AN pHOVo pia givat 1) Tio Tpoagatn [34].

8 2. YIIOBA®PO

2.1.4 AmokatdoTaon KATAGTPOPWY

2e mepintwon mov 1 mAeloyneia Twv KOPPwv pag ovototxiag etcd vrootel opaiua,
1 ovoTolyia otapatd va d€xetat autfpata. Ia va avaviyel and avth TNy Katdotaon
amatteital éva apyeio oTtypotunov (snapshot). Avtod Tov TUTTOV Ta GTLYLOTLTL A€L-
TOVPYoLV WG avTiypaga ac@aleiag Twv dedopévwy tov eted kat oOAdKANpn n ovoTol-
xla pmopel va amokataoctabel pe xprion evog and avtd [43]. O idlog Tomog oTIypIoTO-
TIOV OTEAVETAL HEOW TOV SIKTVOL O€ veoeloaxOévTta PéAn TG ovoTolxiag 1) o€ akoloD-
Bovg mov éxovv vooTel peydhn kabvotépnon yla va tovg fondnoet va gtacovy oto

idto onpeio mpoddov e TV vITOAoLTN cvoToLyia.

Eivat xpriotpo og avtd o onpeio va ToVioovpe OTL TPOKELTAL Yl SLAPOPETIKO TVTIO
OTLYHLOTOTIOV atd avTOV IOV Xpnotpomoteital oto eninedo tov aAyopiBuov Raft yia
VA ETUTPEYEL TNV OLUTUKVWOT) TOL apyeiov kataypang. O devtepog avtdg TOTOG dev
eivau mpooPaotpog péow tov APL Q¢ oTLylOTLTIO Yia THY GUUTUKVWOT) TOV apyxeiov
Kataypagng xpnotpomnoteitat) idta n Paon dedopévwv Tov unxaviopov anobnkevong

BoltDB.

2.1.5 Emnidoon

Orav pilape ya tnv enidoon tov etcd ava@epopaote ovolaoTikd o SVO HETPIKEG: TV
Stekmeparwtikn tkavotnta (throughput) kat tnv kabvotépnon (latency) eEvnnpétnong

artnpdtwy. H enidoon tov eted kaBopiletal and moAhamhovg napayovteg [50]:

» KaBvotépnon E/E diokov: n evnuépwaon tov apxeiov katayparg tov akyopid-
Hov Raft amautei ovyvég kAnoelg Tng ovvaptnong fsync. H ovvOng Suapkela
HLag TéTolag kKANnong oe okAnpo dioko (HDD) avépyetat mepimov ota 10ms, evw
oe Oioko oTepedg katdotaong (SSD) eivat ovyva ukpdtepn and 1ms. Ipoket-
HEVOL va av€noel TNV SLEKTIEPALWTIKT] TOV LKAVOTNTA, 0 etcd opadomotei moA-
Aam\d artfpata (batching) kat ta vitoPfdAet padi otov akyopiBpo Raft. Me av-
TOV TOV TPOTIO TO KOGTOG TNG KANONG FSync polpdletatl petad Twv autnpdtwy.
Q0T1600, 1 EVNUEPWOT) TOV apyeiov KaTaypa@ng mapapével kaboploTikog mapd-

yovTag yta Ty emidoon Twv eyypagav otov etcd.

» KaBvotépnon Suktvov: o eAdx1oTog Xpovog mov anatteitat yia va ohokAnpwBet

éva aitnpa otov eted woovtal pe Tov XpOvo anooTolnG pet emotpors (RTT)

2. YIIOBA®GPO 9

EVOG UNVOHATOG HETAED TV KOUPWV TNG OVLOTOLXIAG OLY TOV XPOVO TNG KAT-
ong fsync mov eyypaget ta dedopéva otov dioko. To RTT evtdg evog kévipov
dedopévwv (datacenter) eivat g TENG HePIKWV EKATOVTASWY [1S, EVTOG TWV
HIIA avépxetar mepimov ota 50ms, evw umopel va ¢ptacel kat ta 400ms otav

ot kouPot PpiokovTtat o€ SlaopeTikég nreipovg.

« KaBvotépnon aroOnkevticod pnxaviopov: kabe aitnua otov etcd mpémet te-
Akd va tepdoel and Tov anobnkevtiko pnxaviopuo BoltDB, kdtt To omoio diap-

kel ovvnBwg pepiég dexadeg fus.

o SVUTUKV®OT): Ol CUUTIVKVWOELG LOTOPLKOV TTOL CUUPAIVOUY OTO TAPACKIVLO ETTN-
pedlovv Tnv emidoomn tov etcd. Evtuxwg, n enidpact} Tovg eivat cuxvé aonpavn,
kaBwg yivovtal otadiakd, ondte dev avraywvifovTtal fe Ta aTHpaTa yia Toug

TIOPOVG TOV CLOTIHHATOG.

« gRPC API: 10 obotnpa KAfoNng amopakpuopévwy Stadikactwy Tov Xpnotuo-
notei 0 eted yla TV emikowvwvia petald Twv HEA®V TG ovoTotyiag, kabwg Kat
yta TV emkotvwvia teAdtn-eEunnpetn T, elodyet pia pikpr| emupdodetn kabu-

oTEPTON.

2.2 O AnoOnkevtikog Mnxaviopog BoltDB

O amoBykevTiKog unyaviouogs eivat €va TURA AOYLOHIKOV, OKOTIOG TOV OTIOIoV €ival 1)
diayeiplon Twv dedopévwy mov amobnkevovtal otn pviun 1§ otov dioko. Zvvibwg, ev-
OWHATOVETAL 0€ AANQ OLOTAHATA AOYLOHLKOV TIOV amattovy TpooBaocn ot dedopéva.
KaBe amoOnkevtikog punyaviopog viomnotei évav akyopibpo evpetnpiov (indexing algo-

rithm) [15].

O amoBnkevtikog pnyaviopog BoltDB [58] eivat éva evowpatwpévo ovoTnpa ano-
Onkevong kKhedlov-Tipng. AmoOnkedel Ta dedopéva oe éva apyeio avTioToixions uvi-
pns (memory-mapped file), vAomowwvtag éva copy-on-write (avtiypa@ng kata tnv
eyypagn) B+ 8&vtpo mov vootnpilet Eleyxo Tavtoxpoviopod TOANATAWY eKSOTEWY.
To yeyovog avTo kabloTd Tig avayvaoelg egatpeTika Taxeies, kabwg Umopovv va exTe-
AoVVTAL TAVTOXPOVA [LE TIG EYYPAPEG XWPIG va X petdleTat kdmoto kAeidwpa. Xtnv Bolt-
DB emitpénetal va vidpyxet povo €vag eyypagéag kabe otiypr], alld dev vmapxet me-

pLOpLOUOG oToV aplBpod Twv avayvwotwv. Eniong, n BoltDB dtabétet suvallayég to-

10 2. YIIOBA®PO

nov ACID® pe oetplomotiotun anopdvwon. OAeg oL evépyeleg yivovtal VTIOXPEWTIKA

HEOW OUVAAAAYWV.

2.2.1 B+ 8évrpa

To B+ dévtpo, To omoio eivat pa mapailayn tov B-8évtpov, eivar n dopr| evpetnpiov
nov xpnotponotei n BoltDB. AkolovBwg, Ba dwoovpe TOV 0pLopod Kat Ta xapakTnpt-

oTIKA Kot Twv dV0 aVTWV SOHWV.

To B-8¢vtpo eivar pia yevikevorn tov Svadikov dévipov avalitnong, vmd Ty €vvola
OTL oL KOpPoL UopovV va €xovv eplocoTepa amo dvo matdid [51]. Ipdkertal yia pia
avtoeglooppomovpevn Sopr mov Statnpei ta dedopéva ta&vopnuéva. Ot evépyeleg
(avalntroeis, eloaywyég, Staypagég) mov yivovtat o€ éva B-0¢vipo odokAnpwvovtat
oe AoyapiBuixkd xpovo. Zopgwva pe tov optopd tov D. Knuth [52], éva B-dévtpo tdéng

M IKAVOTIOLEL TIG TAPAKATW CLVOTKEG:

1. KaBe kopPog éxet To mohv m moudid.

2. KdaBe kopPog mov dev eivat gOAN0 (ekt06 amd TN pila) £xet Tovhdytotov [m/2]

Toudid.
3. H pila €xet TovAdyiotov §vo madid av dev eivat guANo.
4. KaBe xoppog mov dev eivat OANO kat €xet k& maidid meptéxet k — 1 kAetdid.

5. Oha ta @OAAa givan oto 1o eminedo.

o v avévon TOALTAOKOTHTAG TV evepyelwy o€ £va B-0évipo wotdoo, pag Bo-
AeDeL TEPLOOOTEPO VA XPTOLUOTIOCOVHE TOV 0pLopod Tov D. Comer [51], cbpupwva pe
Tov omoio 1 Ta&n d Tov B-8évtpov eivar o eAdx1otog aptBuog kKAeldiwv oe Evav koppo
nov dev eivan @OANo. To urkog h Tov povomatiov and t pila oe onolodrmote pOANO
Ka\eitat Uyog Tov GEVTpPoL Kal eival 0TN XelpoOTEPT TEepinTwon ioo pe log, n, 6moL N
eivat 0 aplOuog Twv kAedLwv mov vLapxoLV 0To §éVTPO. 210 B-6évTpo Ta KA etdLd kabe
£0WTEPLKOV KOUPOV AelTovpyovv wg SLawploTiké TIHEG yia ToV KabBoplopd Twv vmo-
dévtpwv Tov. Tla mapddetypa, av €vag eowTeptkog KOUPOG €xet 3 maudid, Tote Ba mpémet

va meptéxet 2 KAEWLA: To a1 Kal To ag. Ot TIHéG 0TO aploTEPO VTTOSEVTPO TIOV EKKIVEL

® Atomicity, consistency, isolation, durability / atopkdTnTa, GLVETELA, ATOLOVWOT], LOVILOTITAL

2. YIIOBA®GPO 11

ano Tov KOpPo avTtov Ba eivatl (KpOTEPES TOV a1, OL TIUEG TOV pecaiov vodévtpov Ba
BpiokovTtat HETAED TWV a; KAl ag, VM OL TIEG 0TO Se&i uTodévTpo Ba eivar peyalbepeg

TOV as.

Ava{ntnon: n ava{rtnon oe éva B-8évtpo eivat mapopota pe avtryv o éva Svadiko
dévtpo avaltnong. Eekivavtag and N pila kat cvykpivovtag to {nrodpevo khetdi
He Ta kAedLd mov mepLéxovtal oe évav KopPo, emAéyetal To katdAAnlo povomnatt. H
Sradikaoia avth emavalapPdvetal oe kabe kKOpPPO £wG OTOL va evToToTel TO KAELdi N
va kataAn&et oe @OAN0. Mia avalrjtnon oe B-8évtpo ta&ng d mov mepiéxet n kAetdid

Oa emokeOei 0N xelpdTEPN MEPiNTWON 1 + log, 1 kopPovg [51].

Ewoaywyn: n dtadikacia eloaywyng mepthappdvet Svo Prpata. Apyikd, dievepyeital
ta avalrtnon pe oToxo va evtomiotei To katdAAnho UANO ya TNV eloaywyn. Tote,
TIPAYUATOTIOLELTAL T) ELCAYWYT] KAl av gival amapaitnto anokabiotatal n looppomia
Tov 0€vTpov. Av To @UAAO pmopel va grho&evioet aAlo éva kAedi xwpig va kata-
otpatnyel TNy Mpwtn oLVONKN Tov optopod tov D. Knuth, tote dev xpetdletat va yi-
vel kapia aAAn evépyeta. Av woTtdoo to UANO givat 10N yepato ovpPaivel Sikomaoy
Tou: Ta Tp@Ta d and ta 2d + 1 kAetdid Tomobetovvtal o évav kopPo, Ta TeAevtaia d
oe évav aAAov Kat To evamopévov kAeldi mpodyetat 0tov Koppo yovéa. Av o koupog
yovEag givat Kt auTtog yepdtog epapuoletat Eavd n Stadikacia Stdomaong. Xtn xepo-
Tepn mepinTwWOoT, ot Staomaoelg Oa pracovy péxpt TN pia kat To VYog Tov dévtpov Ba
avgnBel kata éva eminedo. H dadikacia ewcaywyng anartei O(2log, n) mpooPaocelg

o€ kopPoug [51].

Awaypa@n: avtr 1 dtadikaoio anartel tpwta pia avaliitnon mov Ba evromioet To kAeldi
npog Staypa@r|. Xe mepintwon mov To kAewdi PpiokeTal oe kOpPo mov dev givat UANO,
éva véo Staxwplotikd khetdi Oa mpémet va Bpebel kat va To avTikataoTioel, woTe ot
ava(ntroetg oto 8évTpo va ovveyicovv va Aettovpyovv. To khetdi avtd Ppioketat oTo
aptoTepdTEPO PUANO TOL Se€loV VTTOSEVTPOL TTOL eKKLvel amtd T Béom mov Pplokotay
10 Stayeypappévo khetdi. MoAig mpaypatomotnfel n avtikataotaon, yivetat EAeyxog
yta va Stao@aliotel 6t e§akorovBovv va vtapxovv Tovhaxtotov d kKAelditd to gOANo.
Ye mepintwon vmoyeilions, yia va anokataotabei n) .ooppomia pumopel va petagepOei
070 PUANO €va kAeldi amod kdmoto yeltoviko @UANo ov dtabétel tapamdavw and d kAet-
S1d. Av dev vmapyet kavéva TEToLo PUAAO, TOTE To eEAATTEG UANO Ba pémetl va ovyxw-

vevtei pe kdmoto aAAo. Tote o yovéag Tov xavel éva Staxwptotikd kAetdi kat givat -

12 2. YIIOBA®PO

Bavo va xpelaotel va epappoatel enavefioopponnon tov Sévipov, mov Oa efamhwbei
néxpt tn piCa otn Xetpdtepn mepintwon. H dwadikacia Staypagng anaurei O(2log, n)

npooPdoelg o€ koppoug [51].

AkolovOiakég TPooPacers: PEXpL OTLYUNG EXOVHE EEETATEL LOVO TNV TEPIMTWOT TWV
Tuxaiwv avalnrioewv. H enidoon tov B-dévtpov opwg dev eivat to idto kalr otnv
TePIMTWOoT oV éva aitnua agopd €va e0pog kAewduwv (range query). H Aettovpyia
gVPEONG TOV €MOUEVOL KAeLSL0V 010 B-8évTpo umopel va xpetaotei uéxpt kat log, n
npoofPdoelg oe kOUPovg. To mpoPAnpa avtd Aovetal and 1o B+ dévipo pe tov 1pdMO

nov Ba dovpe mapakdtw [51].

To B+ dévtpo eivar pia Sopr Sedopévwv e€atpetikd mapopota pe o B-6évtpo, alld

He Heplkég ovolaoTikég Stapopég [51]:

1. OAa ta kAewdid Ppiokovtal ota pUAAa. Ta avotepa enineda Tov dévtpov amo-
TeEAOVV amAWG €Va EVPETHPLO, EVaY XAPTH IOV KaBLOTA SuvaTo TOV amoteleopa-

TIKO EVTOTILOUO TWV TIPAYUATIKWV KAELSLWV.

2. Toa @O eivar ovvdedepéva petadd Toug and apiotepd mpog ta defia, efaoga-

AiCovtag 1ot anodotikég akolovBiakég TpooPaoels.

Onwg @aivetat oto Zynua 2, Ta GUANA HTopovV eMMAL0V va TepLExOVV SeikTeg OTIG

TIHEG TTOV AVTLOTOLXOVV OTa KAELOLA TOVG.

Yxfua 2: B+ 8évrpo taénc 4 [54]

H anoolevén twv khetdiwv amod ta SlaxwploTikd aTolgela TOL eVPETNPiov amAoToLel
™ Sadikacia enaveflooppdnnong Hetd amod Staypagés, Kabwg eMTPETEL TO Va LTIAP-

Xovv StaxwploTikd otolyeia mov Sev eivat kAl 0To TUApHA TOL GEVTPOL TIOV Ael-

2. YIIOBA®GPO 13

Tovpyel wg evpeTnplo. Mia Stagopd o€ oxéon e To B-6¢vtpo, mov agopd tn Stadika-
oia eloaywyng, eivat 0Tt otav ovpPaivel viepyeilion kat To OANO xwpiletat ota dbo,
avti To peoaio kAewdi va mpowbnbei otov kopPo yovéa, mpowbeitat éva avtiypago
TOL Kat To TpwToTLTIO Statnpeitat 0to Se&i UANO oV Tpoékvye amd Tov daxwpt-
opo. Emmiéov, ot avalntioeig oto B+ §évtpo dev otapatodv polig ocvvavtiioovv to
{ntodpevo atoteio av avTod PpiokeTal 0TO TUAHA TOL SEVTPOL TTOV AELTOVPYEL WG EVPE-
tpto. AvtiBétwg, akolovBeitat o e§log deiktng kat i avalrtnon cvvexiletat womov

Va QTACEL € KATIOLO GUANO.

O aplBuog mpooPacewv MoV AmaTovVTAL TN XELPOTEPT TIEPIMTWOT YL TNV ELCAYWYT,
v avalntnon kat) Staypar) evog khediov oto B+ dévtpo eivar O(log, n), omwg
Kat 6to B-8évtpo. Qotdoo, dtav mpokertal yia akodovbiakés avalntnoetg To TAeove-
KTnpa tov B+ dévtpov eivan EekdbBapo. Xapn otn ovvdedepévn Aiota mov Ppioketat
0TO KATWTEPO eTinedd TOv, N AelTovpyia eVPEONG TOV EMOUEVOL KAEOLOV amattel To
ToAV 1 mpooPaon oe kOpPo. Avto onuaivel 6T TpdoPacn oe OAa Ta kKAeldLd amoutei

O(log, n + n) mpooPacelg oe kOpPoLE, v 0To B-Sévtpo anattei O(nlog,n) [51].

To copy-on-write B+ 8¢vtpo, mov eivai) dopr| evpetnpiov mov xpnotponotei n BoltBD,
amo@ebyel TIg Tuxaieg emtomieg (in-place) eyypagéc, avtikabloTwvTag TeG e akoAov-
Olakég eyypagég oto Téhog Tov apxeiov. [evikd, Ta copy-on-write B+ 8¢vtpa dev vmo-
otnpilovv ovvdéopovg petald Twv GUAAWY, apov av to ékavav Ba énpemne OAOKANpO

T0 86VTpO va emaveyypa@eTal pHeTd amo kabe evnuépwon.

Oewpovpe 6Tt kabe kOUPOG TOV GEVTPOL avTIoTOLKEL OF L 0eAida. ZTo apyeio TG Pd-
ong dedopévwv ot oelideg amobnkevovtal Stadoxikd. OTav evnuepwveTal pia I oe
o oehida Tov 8EvTpov, avTi va yivel eMITOTIA EVIUEPWOT) TNG OEAIdaC, [l VEa Oe-
Aida pe ta meplexopeva NG TAALAG, Kabwg Kal TV EVUEPWHEVT TIUR, TTPOCAPTATAL
oto téhog tov apxeiov. Enedn n tonoBeoia tng oelidag dAhage, Oa mpémet va evnue-
pwOei kat n oelida yovéag wote va deixvel ot owotr tonobeaia. Etot, avtn n dtadt-
kaoia emavalapPdavetat péxpt tn pida. Ot makiég oelideg dev daypdpovtal apéows,
EMTPETOVTAG OTIG AELTOVPYIEG AVAYVWONG TIOL €XOLY TipOaPacn oty malid pila va
“BAémMOLY” éva OLVETIEG OTIYHLOTLTIO TOV SEVTPOV. ZVUTEPACUATIKA, TO COPY-On-write
B+ 8évtpo amogevyel TIg TuXaieg yypaPEG alAd elodyEL ONUAVTIKT EVioXVOT EYYpa-

PwV kat wpov (write and space amplification)® [55].

0 0pLOHOG TNG EVIOXVONG AVAYVWOEWY, EYYPAPDV Kal Xdpov Sivetat otnv voevoTnTa 2.3.2.

14 2. YIIOBA®PO

2.2.2 Baowkég évvoreg & API

Ot Baoikég évvoleg TG BoltDB, kabwg kat ot Aettovpyieg mov mMPoo@épovTal amod To

API g ovvovilovtat otn Aiota mov akoAovBei [58]:

« DB: otnv BoltDB 10 avwtepov emmédov avtikeipevo eivat pia DB (Pdon dedo-
HEVWYV), TIOL AVTITPOCWTEVEL €V APXELO AVTIOTOIXIONG UVAUNG atoBnKevEVO
oto dioko. ITapadeiypata cuvapToewV OV UTOPOVY VA EYAPHOCTOVV TTAVW

otnv DB anotelovv ot DB.Open() kat DB.Close().

o Yvvallayég: Hovo pia ovvaAlayn avayvwons ke eyypagns (read-write) emi-
TpEMeTAL Va givat evepyn KABe oTiypn, v Oev LTIAPXEL TEPLOPLOUOG OTOV aplOpd
TWV EVEPYWV OLVAAAAYWV Udvo avdyvwors (read-only). Kdbe cuvallayr) éxet
npooPaon o€ pia cvveny oy TG Paong dedopévwy OTwWG aVTH RTAV OTAV T} OL-
vaAlayn &ekivnoe. Mia cuvalhayr| pmopet va dnovpynOei (DB.Begin()), va
katoxvpwOet (Tx.Commit()) n va avaipedei (Tx.Rollback()). HBoltDB dia-
Oétel emiong 11§ ovvaptnoelg DB. Update () kat DB.View() mov amokpbntovv

TG AemTopépeLeg Slaxeiplong Twv ovvaAAaywy.

« Kdadou: o ywpog amobrikevong otnv BoltDB eivat ywpiopévog oe kadovg (buck-
ets). Ot kadot eivar oLVANOYEG Cevywv KAESLOV-TIUNG EVTOG TwV OToilwV Kdbe
Khewdi mpémet va eivar povadiko. Katd wa évvola, ot kddot avtimpoownehovy
Slakpttovg xwpovg ovopdtwv (namespaces). Evag kddog pmopei va dnpuovp-
ynOei (Tx.CreateBucket()), va diaypagei (Tx.DeleteBucket()) i va em-
otpagel oTov Xprotn oto mAaioto pag cvvaAlayng (Tx.Bucket()), ue okomo
otn ovvéxeta va TonobetnBolv i} va emotpagpovy (evyn kAedtov-Tiung og/and

AVTOV.

o Zevyn kAedtov-tipung: n tonofétnon evog (ebyoug kAeldLov-Tiung oe évav kado
Tpaypatoroteital pe tn ovvaptnon Bucket.Put (). ITapopoiwg, n emotpoen
evog Cebyovg kAetdtov-Tiung yivetat pe kAnon tng ovuvdptnong Bucket.Get (),
evw 1 Staypagr| pe kAnon tng Bucket.Delete().

o« Apopeig: évag Spopéag (cursor) xpnotpomnoteitat yia va Statpé€et Ta kAetdid mov
eivat amoBnkevpéva oe évav kado. Anpovpyeitat pe tny ovvdptnon Bucket. -

Cursor() kat Kiveitat 6To wpo Twv KAy pe TIg ovvapTtrioelg Cursor. -

2. YIIOBA®GPO 15

2.2.3

First(), Cursor.Last(), Cursor.Seek(),Cursor.Next() kat Cursor. -
Prev(). Emm\éov, n ovvdptnon Bucket.ForEach() emtpénel Tnv ektéAeon
Hag kaBopLopévng amod Tov xproTn ovvaptnong yta kabe (evyog kKAetS1o0-Tiur|g

oe évav kado.

Avtiypaga ac@aleiag: To yeyovog ot i fdon dedopévwv otnv BoltDB eivau
éva pepovopévo apyeio kablotd evkoAn T dnpovpyia avTypagwv ac@aleiog.
H ovvaptnon Tx.WriteTo() umopel va kAnbei oto mAaioto pag cuvalhayng
HOVO aVAYVWONG KAl va Ypawel fia ovvenn oyn tng Baong dedopévwv ot évav

eyypagéa (m.y. o€ éva apxeio 1§ og évav owAnva g Go).

Meovektnpata & eplopiopoi

H xprion ¢ BoltDB evdeikvutat yia 9OpTo gpyaciog pe ELPaocn oTIG avayvw-
oetg. H emidoon Twv akolovBiakwv eyypagwv eivat tkavomomTikr, aAld ot Tv-
xoies eyypapés teivouv va eivat apyég, etdika kabwg to péyedog tng Pdong de-

Sopévwv avEdvetat [58].

To Aertovpykd obotnpa dtatnpel 0T PVRHN 000 TEPLOTOTEPO ATIO TO APXELO
avTioToixtong uvhpng tg BoltDB eival Suvato. Zvvenwg, n BoltDB epgavilet
vYnAY Katavidwon uvauns otav n Paon dedopévwy eivar peydn [58].

v BoltDB gpgavifetat 1060 T0 AUVOHEVO TOV EEWTEPIKOV KATAKEPUATIOHOV
(fragmentation), 600 kt éva €i00G ECWTEPIKOV KATAKEPHATIOUOD. ZXETIKA HE TO
Sevtepo, n BoltDB kdBe popd mov o Stabéatpog xwpog Tov apyeiov TG eEavtAei-
Tat, Sumhaotdlel To péyebog Tov. Amo TN aTLypr| oL To apxeio @tavel To 1GB ki
VoTEPQ, TO PéyeBOg Tov avkdvetat oe Pripata tov 1GB.'Etot, 1) féon Sedopévwvy
deopevel xwpo oTov dioko TOV OMoio OTNV TPAYUATIKOTNTA OEV X PN OLUOTIOLEL

[60].

O e&wtepikog Katakeppatiopnos ovpPaivet katd t Staypagr dedopévwv and
v BoltDB. Eneidr| ot oelideg mov @ido&evoiv avtd ta Sedopéva pmopei va
Ppiokovtat omovdnmoTe péoa 0To apyeio, OTAV AVTEG amopakpvVovTaL SeVv eivat
dvvarr n mepikomnn (truncation) tov apyeiov. IlapdAo mov o xwpog mov kata-

AapBavovv ot oelideg avtég dev amodeopevetal, BoltDB Swatnpet pa Aiota pe

16 2. YIIOBA®PO

TG eAevBepeg oehideg, woTe va pmopel va Tig emavaypnotponowost. H avaov-
ykpotnon (defragmentation) pmopei va emitevyOei povo pe Tnv avtypagr olo-

KAnpng g Pdong dedopévwy ot £va véo apxeio [58].

2.3 O AnoOnkevtikog Mnxaviopog RocksDB

H RocksDB [69] eivat pua fipAtoBrikn C++, mov mapéxet £va eVowPaTwuévo cOOTHHA
amobnkevong kAedov-tiung. H dopr evpetnpiov mov xpnotpomnotei eivar to LSM-

dévtpo (log-structured merge-tree / d€vipo ovyxwvevong pe dopr apyeiov kataypa-

oNQ).

2.3.1 LSM-dévtpa

Ta Paowkd dopukd otoyeia evog LSM-0évTtpov eivat o mivakag uviuns (memtable)
Kot ta apyeio SST (sorted string table files / apxeia Ta&ivounuévov mivaka ovpupo-
Aocepwv). Eva apyeio SST mepiéxet éva avBaipeto ovvoro ta&vounpévov (evywv
KAetdtov-Tiuns. Ta apxeia SST anobnrevovral orov dioko kat pmopei va meptéxovv Ot-
TAOTUTIAL KAEWOLd. Mia amd Tig onpavTikotepeg 810TnNTeg Twv apyeiwv SST eivat oTL

napapévouy apetaBAnTa. Xuxva vAomotovvtal wg B-8évtpa.

O mivakag pvnung eivat pia devdpoetdng dopn mov dwatnpeitat oty puviun. H amkov-
otepn pop@r Tov LSM-8évtpov €xet povo dvo emimeda: Tov mivaka PHVApNG Kt £va emi-
nedo pe SST apyeia otov dioko [61]. QoTd00, Ta MeplocdTepa LSM-8¢vtpa mov xpn-
owpomnotobvTat oty pakn Stabétovv ToAanAd emtineda avEavopevov peyédovg otov
dioko. Me avtdv TOV TpOTIO, petwveTat o apliuog apxelwv avd eminedo, kabloTwvTag
O amoSOTIKEG TIG avaYVWOOELG AAAd Kal TIG OLYXWVEVOELG amd To £va eminedo 0To

emopevo. Itn ovvéyela, Oa e€etdoovpe T Paocikég Aettovpyieg Tov LSM-8évtpov.

Ewoaywyn: 0Aeg ol eyypagég katevBhvovtal oTov mivaka uviung, yU avtod kat givat

e§ALPETIKA TaXeleg.

AvalnTnon: 6tav mpaypatomoLeital €va aiTnpa avayvwong, eEAEyxetat TpaTa o Ti-
vakag pvipng. Av to {nrovpevo khedi Sev Ppedei exel, Ta apyeia SST otov dioko Ba
eheyxOolV éva mpog éva e avTioTpo@n XpOoVOAoYIKT Oelpd Snutovpyiag, WoToL va
Bpebdei To kAewdi [7]. X1 Xepdtepn mepintwon umopel va xpetaotei va eheyxBodv ola

Ta entineda Tov dévtpov mptv va Ppedel To kAedi) va anoaototei 6TL dev vapyet. H

2. YIIOBA®GPO 17

eEUTNPETNON AUTHHATWY TIOV AQOPOVV €va eVPOG KAELSIWV eival apkeTd xpovoPopa,
KaBwg Ta kAedLd oV avrKovV 0TO £UPOG AVTO UTOpPEL va eival SLATKOPTILOHEVA OE
ToAAamAd eminmeda Tov GEVTPOV, pe AMOTENEOHA VA AmaUTOVVTAL TOAAEG TTPOOPAoELg

oe apyeia.

Evnuepwoeis kat Staypa@ég: oL evpepwoelg dev eivat emTOMIES, APOV OTIWG £XEL AVaL-
@epBei ta apyeia SST eivat apetaPAnta. AvtiBétwg, elodyovtal 0ToV mivaka PVipnG.
Eniong, 0tav ovpPaivet pia Staypaen, €va onpddt Staypaeng (tombstone) amoOnked-
eTal otov Tivaka uvhung. Emetdn ehéyyetal mpwta o mivakag pviung, eEaopalietat

OTL Ta AUTHHATA AvAYVWOonG Aapavovy Tny o mpdo@atn ékdoon evog kheldlov [62].

MOoAig To puéyebog tov mivaka Lviung @Tacet pia tpokaboplopévn Tipn, o mivakag pe-
Tagépetal 0Tov 8i0KO (e TN HOPPT) £VOG VEOL apeTAPANTOL apyeiov SST, v évag véog
mivakag pviung maipvet tn 0éon tov. H opadomoinon twv eyypagwv mov ovpPaivet

Le aVTOV ToV TpoOT0 0T0 LSM-0¢vTpo eao@alilet Tov Stapotpacd tov kdotovg E/E.

Otav o aptBuog 1} to ovvolikd puéyebog twv apxeiwv ot €va eninedo Tov LSM-8¢vtpov
Eemepdoel £va pokaboplopévo katw@Al, mpaypatomnoteitat a Stadikaoio ovumt-
kvwong (compaction). Katd tn ovpnovkvwon, ta apyeia SST ovyywvevovrar dSnuiovp-
ywvTag véa apyeia Ta omoia amobnkevovTtal 0To emopevo eminedo Tov dévtpov. Emi-
nAéov, kata TN ddpketa avtng tng dadikaciag yivetat analowpn Twv StmhoTdnwy,
dnhadn datnpodvTal Hovo ot o TPOoPATEG EVHEPWOELS Kat Ta onpddia Staypaprig

evw Ta talatotepa dedopéva anoppintovral.

,ével 0
RAM

Merge
= Level 1
8. Disk Merge
Level 2
Disk
Merge

Yxqua 3: H Soury tov LSM-6évpov [63]

Mia onpavtikn 18t0tnTa Tov LSM-8£vTpov mov mpokuTeL and TNV mapandvw mept-
ypagr), elvat 0Tt peTatpémer TIG TVXAIEG EYYPAPEG 0€ akolovOiakég. Zvxva, To LSM-

dévtpo ovvodevetal and éva apxeio mpoeyypaeng (write-ahead log / WAL), mpoxet-

18 2. YIIOBA®PO

Hévou va Staopaliotel n povipodtnta (durability). Etol, oe nepintwon anwletag pev-

Hatog, Ta dedopéva mov Ppiokovtal oTov Tivaka Hvpng dev xavovtal.

2.3.2 Evioxvon avayvaooewy, Eyypagmv Kat Xwpov

H evioxvon avayvwoewv (read amplification), n evioxvon eyypagav (write amplifica-
tion) kat 1 evioyvon xwpov (space amplification) eivat évvoleg bytotng onpaciag ya
TG 0XedLa0TIKEG amo@aoelg Tov TpEmet va AngBovv katd tnv vAomoinon evog LSM-
dévtpou. H evioyvon eyypapwv eivar o Adyog Twv bytes mov ypagovtatr otn ovokevr
anoBnkevong mpog ta bytes mov ypdgovtal otn Paon dedopévwv. H vynAr evioxvon
eYYPOQWV eivat avem@ountn, oxt povo emetdr) PAantel Ty enidoon Twv £yypagwy,
oAl kat ylati eivat emilfpia yia Touvg Siokovg otepeds katdotaong. H evioyvon ava-
YYwoewy avaépeTal otov apldud avayvwoewv and tov 8ioko ava aitnua avayvo-
ong. Télog,) evioyvon ywpov meptypdPel TOCO eMMAEOV XWpOo 0TOV Sioko katalapfa-
vel pa Baon dedopévwv oe cUYKpLON e TOV OYKO Twv dedopévwy ToL GUAGCTOVTAL OE
avtrv. Eva péoo yla tn peiwon tng evioxvong xwpov eivat n ovpumieon (compression)

[64].

2.3.3 Tomot ovpndkvwong

Otav xpnowpomoteitar o kaBodikdés Tomog cvumvkvwons (universal compaction), ta
apyeia SST eivat Sratetaypéva pe fdon t ypovoloyiks oeipd tovg. Kabe €va amd avta
KAADTITEL OAOKAT PO TOV XWPO KAELSLWV KAl TTEPLEXEL TIG EVIHEPWOELG EVOG OVYKEKPLLLE-
VOV XpOVIKOV SlaoTnpatog. Avapeoa ota apxeia SST Sev vapyet xpovikn emkdAvymn,
vndpyel Opwg emkaivyn oto medio kAediwv. H ovumvkvwon mpaypatomnoteitat pe-
Ta&V S0 1) MeplocdTEpWV yertovikwy apyeiwv SST kat) £§080¢ Tng eivan éva apxeio
SST 1o omoio anoBnkevetal oto endpevo eminedo Tov LSM-8évtpov kat Tov omoiov
TO XPOVIKO SLACTNHA TIPOKVTITEL ATTO TOV OLVOVACHUO TWV SLACTHHATWY TWV aApXEiwV

eloodov [67].

Koatd n xprjon tov tomov ovpnvxkvwons pe emineda (levelled compaction), ta mo npo-
opata dedopéva dtatnpovvTal 0To TPWTO EMIMESO EVW T TAAALOTEPA OTO TEAEVTALO.
KdOe eminedo ex1o6 and 1o mpwTto, TO oMoio eival Sounuévo 6mwg otny kabohkn ov-
HTTOKVWOT), €Xel éva KaTw@AL peyéBoug kat 6To eocwTePKO TOV SeV VIIAPYOVV ETIKA-

Ayeig oto medio Twv kKhewdwv. Me dAla Aoyia, To dtdotnua twv kKAeSiwv Stapotpd-

2. YIIOBA®GPO 19

Cetaw ota apyeia SST evog emumédov ki £Tat oAdKANpo To eminedo eivat Tatvounpévo
pe Pdon ta kKAetdid. Ztnyv mepintwon Tov THTOV CVUTOKVWOTG e enineda, OAa Ta ap-
xeta SST éxovv To iSto uéyeBog. Otav to uéyebog evog emméSov Eemepdoet To KATWPAL,
emhéyetat éva apyeio SST kat ovyxwveveTal 0To endpevo eminedo. Zvvibwg, kdbe emi-
nedo eivat 10 gopég peyaldtepo and to mponyovpevo [68]. O ovykpitikog Iivakag 1

TAPOLOLALEL TNV EVIOXVOT AVAYVWOEWYV KAl EYYPAPWY OTOVG SVO THTOVG CUUTVKVW-

ong.
KaBoAwkn Younvkvwon pe
Sopunvkvwor Enineda
, Ton pe
, . Msya)wtqu.' number_of_L0_files+

Evioxvon avayvwoewv [TpooPaon oe kabe (n— 1), émov 1 0

(xepotepn mepintwon) | apyeio SS'T o€ OAa Ta ApIBBG T ETTES Y
emineda ,
otov dioko

MeyaAbtepn. Ze kaOe
OLUTVKVWOT) avTi va

ypd@etat povo to

Kda0e evnpépwon Oa apxeto mov
, , , , ovyXwvevETAL ATtd TO
Evioxvon eyypagwv YPAQTEL TO TOAD 1
00 L, 010 L1,

popes ETAVEYYPAPOVTOAL KAl
Ta apxeia Tov L, 41 pe

Ta OTIOlaL LTTAPYEL

eTKAALYT

Iivakag 1: Evicyvon avayvwoewy & eyypaguy aTovs 00 TOTOVS CUUTUKVWOHG

2.3.4 Baowkég évvoleg & API

AxolovBwvtag Tov oxedtaopod tov LSM-8évtpov, RocksDB éxel wg Baoikég tng do-
HEG TOV TTivaka HVHHNG, Ta apxeia SST kat To apyeio mpoeyypagwv. MOALG o mivakoag
HVHUNG Yepioel kat petagepbel wg apxeio SST otn ovokevr poviung amobnkevong,
TO apXelo TPOEYYPAPWY TOL TOL avTIoTOlKEel Umopel va Staypagei pe aopaleta. H
RocksDB pmopei emiong va puBuiotei wote va vrootnpilet Tnv vmapén moAanAov
TUVAKWV PVRUNG. OTtav €vag amd avtovg yepioel, yivetal apetdPAnTog kat éva vijpa
OTO TTAPACKAVIO avalapPavel va peTapépel Ta TepleXOpevd Tov otov dioko. ITapdA-
Anha, ot véeg eyypagég katevBhvovTal og évav véo mivaka Lviung, avti va tifevtot

o€ avapovi péxpt va ohokAnpw0ei n petagopd [69].

20

2. YIIOBA®PO

Read Request 4— :::::f::::::

LSM

¥ N :
e ESues, =y i Gompaction |
' L]

3 r-:ll_; 'l..: D i

Xxnua 4: H apyirextovik 16 RocksDB [73]

H akolovOn Aiota ovvoyilet pepikég Baotkég évvoleg kat Aettovpyieg g RocksDB

[69]:

« DB: 10 6vopa mov divetar otn Paon dedopévwy avTioTolkel og évav KatdAoyo

0To ovoTnua apxeiwv. Ot cvvapTHoelg Tov punopovV va kAnBovv mdvw otnv DB

ovpmepdapfavovy tny Open() kat trv DestroyDB().

Key-value pairs: ta k\eidid kat ot Tipég otrv RocksDB éxovv tn popen mivakwv
arno bytes. H ouvaptnon Get () emttpémnet Ty emotpo@n evog (evyovg kAetdiov-
TG ano tn Paon dedopévwy. Avtiototxa, n ovvaptnon Put() ewodyet kat
n ovvaptnon Delete() Swaypagel éva (evyog kAedov-tipng. H ouvdptnon
Write() emtpénel v atopiky eloaywyn, evnuépwon 1 Staypapn moAamiwv
Cevywv kAetdtov-Tiung tavtdxpova. To ovvolo avtwv twv (evydv KAetdlov-

Tiung kakeitat WriteBatch. Me aAa Aoyia, To WriteBatch mepiéxet pua axo-

AovBia evnpepwoewv mov pokettat va yivovv otn faomn dedopévav kat Tig epap
Holetl pe t oepd otav kakeitarn Write (). ZvvnBwg, n xprion tov WriteBatch
yta TV evnpépwon TOANATADY (evydV KAELOLOV-TIUNG €ivat 1o amoSoTIKY and
™ Xprion ¢ ovvdptnong Put () ya kabe éva amod avtd, kabwg To k601G TNG
aUyxpovHG eyYpa@ns 0To apxeio poeyypapwv Stapotpdletat petald twv evn-

HEPWOEWV.

ToWriteBatchWithIndex eivat pua maparlayn tov WriteBatch, oxeSiaouévn

yta TV €EUINPETNON TNG TEPIMTWONG OTNV OOl £VAG AVAYVWOTNG XPEeLdle-

2. YIIOBA®GPO 21

T TPOOPaAct) OTIG PN KATOXVPWHEVEG EYYPaPEG evog WriteBatch. To Write-
BatchWithIndex 1o kata@épvel avtd SlATNPOVTAG EVAV ECWTEPIKO ATTOUO-
vwTn (buffer) ue popen evpetnpiov, mov mepiéxet OAa Ta kAedLA OV ExOVV EY-
ypagei. Ta artfipata avdyvwong and éva WriteBatchWithIndex ovvdvdaovy
ToL TIEPLEXOHEVA TOV ATIOHOVWTH pE Ta Teplexopeva g Paong dedopévov kat

EMOTPEPOVV Ta TILO TIPOTPaTA anoteAéopata [74].

« Emavalnmrng: o enavainming (Iterator) xpnowomnoteital yio tnv e§unnpé-
TNON EPWTNUATOV TIOL aQopovV éva evpog kKAewdwv (range queries). Exet
Suvatotnta va evtomifet éva ovykekpuévo kAeldi kat 0T oLVEXeL, EekvwvTag

amo eKeLVO TO onueio, va capwvel £va KAeldl T @opd.

o Aopég emAoywv: n RocksDB xpnotponotel dopég emAoywv yia tn pvbpuon twv
TAPAPETPWY TNG o€ ia TAnBwpa Tepmtdoewy, uetadd Twv omoiwv Ppioketat
To &votypa tng Paong dedopévwy, n kabe avayvwon, n kabe eyypaen kat n 6n-
HovpYia [Lag oLVaANayrG.

o ZTrypuotumo: to otiypdtuno (Snapshot) emtpénel Tn Snuovpyia poag ovve-
mov¢ oy TG Paong dedopévwy. H ovvaptnon Get () kato Iterator umopovv
va puBotodv étot wote va StaPdlovv Sedopéva anod éva Snapshot, oplopévo

otnv dopn emAoywv TOVG,.

 Xnueio eEAéyxov: To onpeio eAéyxov (Checkpoint) eivan éva avtiypago tng Pa-
ong dedopévwy, mov Ppioketat o€ SlagopeTikd katdhoyo oTo idlo cvoTnua ap-
Xelwv kat éxet T Suvatotnta va avorxBel wg Eexwploth Paon dedopévwy. H
OLauTepOTNTA TOL £yKeLTaL 0TO OTL tepLéyel hard-links ota apyeia SST tng mpw-
TOTUTNG Pdong SdeSopévwy, avTi yla KavoviKd avTiypag@d Tovg, YEYOvOG Tov

kaBotd tn Snpovpyia Tov edatpetika anodotikn [76].

o Zuvallayég: ot ouvallayég ot RocksDB e€ao@alifovv ot pua opdda eyypa-
pwv Ba mpaypartonomnBei povo av dev vrapyxovv Sievé€els. H dayeipion twv
ovvaAlaywv yivetat pe Tig ovvaptrioels Begin (), Commit () xat Rollback().
Yrootnpilovy emiong v avdyvwon Twv {evywv KAEOLI00 TG oV €OV €L-

oaxOel oe avtég aAla dev éxovv akopn katoxvpwdei [77].

H RocksDB Siabétet 1000 auaiédoleg (optimistic) 600 kot anaroiédoées cuval-

Aayég (pessimistic transactions). Otav xpnotponotovvtat anatotddoeg cuval-

22

2.3.5

1.

2. YIIOBA®PO

Aayég, kabe @opd mov ypdgetal éva kAeldi ot cvvailayrn, avto kKAeldwveTal
E0WTEPIKA, WOTE va yivel aviyvevon Otevé€ewv. Av éva kAeldi dev umopei va
KhedwOel emotpépetar unvopa Aabovg. Ot awotddoeg ovvarlayég mpaypato-
ToLoVVY TNV avixvevon Stevé€ewv katd TNV KAtoXUPWOT) TOVG YLa VA EMKVPWD-
OoLV OTL Kavévag AANog eyypagéag dev £XeL TPOTTOTIOLOEL T KAELOLA TTOV YpA-
ovTat ano avtég. Av evromiotei SiéveEn, n ovuvdptnon katoxvpwong Commit ()
emotpé@el uvopa AaBovg kat n ouvallayn avatpeitat. Ot anaiotddoeg ov-
vallayég eival mpoTipoTepeg oe mepBAAAOVTA OTOL 1) oVYVOTHTA TWV SlEVE-
Eewv elval HeydAn, omtoTe T0 KOOTOG TWV KAESWUATWY Yla TNV TTPOOTACIA TWV
dedopévwv eival pkpOTEPO ATO TO KOGTOG TNG SLapKOLG Avaipeon§ KL EMAVeEK-
Kivnong twv cuvaAlayav. AvtiféTwg, ot atotddogeg ouvallayég mpoTiovvTaL

oe epPdAlovta O6mov ot StevéEelg eivat oTAVLEG.

Kpveny pviaun yua blocks: n RocksDB xpnoipomotel pia kpu@r pviun tomov
LRU (least recently used / Atydtepo mpdo@ata xpnotponownpéva) mov ghogevei
ta blocks Twv apyeiwv SST pe T peyakvtepn {ftnon yua Ty anodotikotepn

eEUINPETNON TWV ATNUATWY AVEYVWOTG.

Yoykpion pe tnv BoltDB

Onwg eidape oTig avtioTotyeg evotnTeg, To LSM-8¢évtpo eivat Sour Pektioto-

TIONUEVN Yla EYYPAPEG eV TO B+ dévTpo yla avayvwoelg. Xuvenwe, n xprion
G BoltDB ev8eikvutat 0tav o ¢optog epyaciag xapaktnpiletat and ovyveég

avayvwoelg evw 1 RocksDB mpotipdtatl oe mepimtwoelg xpriong He £Hgaoct oTig

EYYPAPEG.

H Sieknepatwtikn) tkavotnta eyypagav tov copy-on-write B+ §&vtpov eivau pe-
yalvTepn amo avt Tov amAov B+ §évtpov, Aoyw Tov 0Tl amo@edyel TIg TuXaieg
EYYPAPEG. QQOTOOO, 1 EVIOYLOT EYYPAPWY OE AVTO €ivaL OHAVTIKA HEYAADTEPT
amno 0,1t 0to LSM-8évtpo, emeldr| kabe evnuépwon mpokalel Tnv emaveyypaen

EVOG [EPOVG TNG Soprs.

H enidoon twv B+ §¢vtpwy, kat kat’ enéktaon tng BoltDB, peiwvetat Spapatikd
otav to obvolo Twv dedopévwv Eemepva oe péyeBog t Stabéowun pvnun tov

ovoTtnpartog, kabwg avgavetat n mbavornta ot 6elideg mov amatrtovvTaL yia TV

2. YIIOBA®GPO 23

eEUTNPETNON EVOG AUTHHATOG VAL NV BpiOKOVTAL 0T (VI KAl V& XPELAOTEL Vat

StaPaotovy and tov dioko.

4. To B+ 6évtpa xetpiCovrat Tig TIpég peydhov peyéBoug mo anodotika. Xta LSM-
dévtpa n etoaywyrn HeydAwv TIHOV popel va mupodotnoet Stadoxtkég cuumv-

KVWOELG Ol 0TtoieG TpoKaloVV emimpdobetn kabvotépnon.

5. HRocksDB aftomotei o anodotikd tov xwpo otov dioko, kabwg dev eppavilet

TO QALVOUEVO TOV KATAKEPHATIONOD Kat Qappolel ovpmieon Twv dedopévwy.

6. Tooo 1 BoltDB 600 kat 1 RocksDB éxovv vynhég anaitroelg oe pviun Aoyw

Twv Sopwv dedopévwv otig onoieg PaciCovrar.

7. O xpovog emavekkivnong TG RocksDB katd Ty avavnyn and o@dipa eivat pe-
YaAvTepOG ol xpetdletatl va StaPdoel To apXeio TPOEYYPAPWY YL VAL ETIAVAL-

KATAOKEVAOEL TOV THiVaKa LVIUNG KAl Vo EVTOTIOEL TNV TEAELTALA EMTVXT EVN-

Hépwon.

8. TéAog, n RocksDB eivat cvotnpa moAd o mepinhoko and tnv BoltDB, pe mAn-
Bwpa tapapétpwv mov anartovy Steodikn peAéTn mpokeLEvo va pubotovv

ETUTLXWG.

24 3. 2XEAIAXMOZX

3 2xeduaopog

Onwg €xet N0 avagepOei, o eted eivan oxedtaopuévog ya v alomotn amobrkevon
Hetadedopévmy, ota omoia ot eviuepwoelg dev eivat ouxvég. O MpwTebwv 0TOXOG Hag
elvat va ektiwoovpe TN SlekTePALWTIKT KAVOTNTA £YypaPwV Tov, kKabwg Bewpodpe
oTL éxel TN SuvatoTnTa va xpnotpononfei wg cvotnua anobrkevong KAelSLo0-TInG
YEVIKOD OKOTIOV. ZKOTIEVOVE VAL TO EMUTVUXOVUE ALTO avTIKABLOTOVTAG TOV TpEYOVTA,
PeAtioTomomnuévo yla avayvaoelg armofnkevtikd punxaviopd tov, tnv BoltDB, ue tnv
Betiotonomuévn yla eyypagés RocksDB. Ot mpoodoxkieg pag amd 1o TeAikd ovoTtnua,

oVpQWVa HE TNV avalvon mov €ytve 6To KepdAato 2 eivat ot €n¢:

« Beltiwon tng emidoong twv eyypagwv

o Alatnpnon twv gyyvnoewv aflomotiag, cuvénetag kat vYnANG StabeopotnTag

Tov etcd

o Elagpd emdeivwon tng enidoong twv avayvooewy

3.1 Apyxitektovikn & Zxedraotikég EmAoyég

3.1.1 Evowpatwon tng RocksDB otov etcd

Kd0e aitnua eyypaeng otov etcd mepvd mpwta and 1o mpwtdkoAlo Raft kat otn ov-
véxela mpowbeitat oto maxéto backend tov etcd, To onoio To katevBOvel oTOV Un-
Xaviopd amobnkevong. Xto mhaiolo avtrg TG epyaociag, vVAomotovpe pia BiBAiobnxy
meprrohi€ng (wrapper library) oe YA\ wooa npoypappatiopod Go, 6kondg tng onoiag ei-
vatL n avTioToixion Twv KARoewv mov mpaypatonotei o backend tov etcd otnv BoltDB
oTIG avaloyeg kAnoelg ovvaptioewy TG PtpAtodnkng RocksDB. H mpooéyyion avtn

HOG ETUTPETEL VA EAAXLOTOTIOOOVE TIG tapePaoels 0Tov kwdika Tov idtov Tov eted.

TomoBetovpe tn PtAL0OM KN eptTvAENG pag oto akéto bolt, dmov Pplokdtav mpon-
youvpévwg 1 PLpAobnkn BoltDB. Me avtov Tov Tpomo 1 adAayn Tov unxaviopov ano-
OnKevong dev eivat opatry ota volowma makéta tov eted. Awarnpovpe otn PipAio-
Onkn 0Aeg T ovvaptroelg Tov API g BoltDB mov xpnotponolodvtal anod tov eted,

Opwg aAldlovpe TOV KWOIKA TOVG WOTE VA KAAOUV TIG AVTIOTOLEG CUVAPTHOELG TNG

3. 2XEAIAXMOZ 25

RocksDB. Télog, mpooBétovpe Tig anapaitnteg fondntikég cuvaptrioelg ota onpeia
OOV 1] AELTOVPYIKOTNTA TWV SVO ATOONKEVTIKWY UNXAVIOPW®Y amokAivel. ApyoTtepa,
Ba eivat TOAD an\o va tpomomnotoovpe Tov eted wote va vtootnpilet kat Tovg dHo
Hnxaviopobvg anobnkevong. Apkel va mpocbEcovie Tr OXETIKN €MAOYT 0T QACT TNG

HETAYAWDTTLONG 1) TNG EKKIVIONG.

To 2xfua 5 avamaplotd tnv apyirektovikn Tov backend tov etcd petd v evowud-
twon G RocksDB. Ta dopukd ototxeia Tov backend meprypagovrat otig mapaypa-

QovG oL akoAovBovv.

etcedctl

/ eted \

Raft Protocol

e

4 R

BoltDB to RocksDB
Wrapper

A
=/

gorocksdb

Storage Backend

RocksDB C API

:
W\ /,

Ixfua 5: Apyirektoviky] Tov etcd backend pe) RocksDB w¢ amofnkevtino unyavioud

26 3. 2XEAIAXMOZX

3.1.2 Tati RocksDB;

O kvpiapxog Aoyog yra tnv emthoyr tng RocksDB eivain feAtiotomomuévn yia eyypa-
Q€6 dopr) evpetnpiov ov vAomotei, To LSM-0€vTpo. ZUp@wva [Le TOV TIPOYPAHUATIOT
¢ BoltDB, Ben Johnson, n RocksDB eival n kaAOTepn eMAOYT OTIG TEPITTWOELG TTOV
amatteital LYNAN SlekmepaLWTIKN tkavoTnTa eyypagwy (>10.000 eyypagéc/sec) [58].
EmmAéov, n RocksDB eivat pia vynAng enidoong Baon dedopévwv kAeIOL00-TIUNG Kot
TO YEYOVOG OTL VTTOOTNPIleTaL ATTO WA EUTTELPT] KOLVOTNTA TIPOYPAUUATIOTWY, KaBWG
Kal TO OTL XprolpomoLeitat dn oTnv mapaywyn and apKeTd CLOTHHATA AOYLOULKOV

Vv kabloTovv ebpwoTn kat oTabep.

‘Evag axopn Adyog mov pag odrfynoe otnv emloyn g RocksDB avdpeoa oe dAleg
Bdoetg dedopévwv mov Pacilovrat oto LSM-8évtpo, fitav OtL eivat nj povn tng omoiag
TOL XAPAKTNPLOTIKA LKAVOTIOLODY OAEG TIG ATAUTHOELG AG YLt £VOL AVOLXTOV KWOLKa, TO-
Tk ovoTnua anobrkevong kAetdtov-Tiung Pactopévo oto LSM-8évtpo, ot popen
evowpatwpevng PipAodnkng. Télog, n evowpdtwon g RocksDB eivat pua déa mov
Kat ot {Stot ot Tpoypappatiotég Tov etcd éxovv oVNTHOEL KATAAYOVTAG OpWG OTO
ott 1 BoltDB kaAvTTEL 1KAVOTIONTIKA TNV TPEXOLOA TIEPIMTWOT) XPHONG KAl AP VO-

VTag avolyto To eviexopevo peAlovtiknig Stepebvnong tov {ntnpatog [102].

3.1.3 H BipAo0Onkn eprrodi§ng gorocksdb

KaBwg o kwdikag Tov etcd eivar ypappévog oe Go, evw o kwdikag tng RocksDB oe
C++, amauteitatl ya TNV entkowvwvia tovg éva evdiapeco ovotnua. H RocksDB dua-
Bétel o éva API oe C (a PipAodnkn meprtvAigng tov C++ API tng), ondte avtod
Tov pag Aeirmet givat pia BAobnin mepitvAigng tov API avtov oe Go. H PipAtoBrikn
gorocksdb’ efumnpetei akpifwg avtov tov okomnod. Kabe ovvaptnon avtrg tng BipAio-
Orkng mepttodiEng mepiéxet a kAnon otny avtioton ovvaptnon tov C API tng
RocksDB. Emniong, kafe Soun (struct) otnv gorocksdb mepiéyet éva nedio mov @tho-
Eevei évav deiktn g C otnv avtiototxn dopr} tov C API tng RocksDB.

"https://github.com/tecbot/gorocksdb

https://github.com/tecbot/gorocksdb

3. 2XEAIAXMOZ 27

3.1.4 To epyaleio cgo

O pnxaviopog mov emitpémnel TNV kKANon ovvaptioewv TG C and kwdika ypappévo
oe Go eivat To gpyaleio cgo. Me TN Xprjon Tov cgo apkei 1 9OpTwon evog yevdoma-
kéTov Tov kaAeitar "C" yia va umopel 070 €€rg 0 kwdikag Go va avagépetal og TO-
novg NG C 6mwg o C.size_t, petaPAntég omwg n C. stdout kat cvvaptioelg Omwg
n C.putchar. Otav n evtoAn go build “PAénel” 611 éva 1) meploodTepa apyeia Go
xpnotpomotovy To £18tk6 import "C", yayvel yia C/C++ apxela 0TOV KaTAAOYO Ko
KaAel Tov C/C++ HeETAYAWTTIOTH Yl Vo Ta HETAYAWTTIOEL WG THRHA TOL TtakéTov Go.
Av apéowg mptv to import "C" vndpyetl éva oXOAL0, TOTE avTO TO OXOALO, TTOV KaAei-
Tal mpooipto (preamble) kat mepiéxet kwdika oe C, Aertovpyei wg emkealida katd TN

HeTayAwTTIoN TwV apXeiwv C Tov kataldyov [93].

ITaporo mov to gpyaleio cgo eivatl e§alpeTika XprOLHO, TTAPOVOLACEL [l OELPA OTpaL-
VTIKOV HELOVEKTNHATWV amtd Ta oToia To Tito kKaboploTikd yia Tnv bAoTmoinom pag eivat
ot mpokalel emdeivwon Tn¢ emidoons. Mia and Tig autieg Tng kabvotépnong mov el-
oayetn xprion tov cgo eivau 6t N C dev yvwpilet Timota yia Tov TpoOTO KANONG GUVap-
Thoewv 1 yla T Svvatdtyta enéktaons ¢ otoifac® otnv Go. Emopévwg, wa k\non
oe kwdka C mpémel va kataypayel OAeg TIg Aemtouépeleg TG otoipag tng goroutine’

npwv va T avrikataotioer'’ pe pwa otoifa g C [95], [96].

QoT1600, T0 HeyalhTepo pépog TNG kKaBvoTépnong o eLodyeL TO CEO OPeileTAL OTO Ye-
yovog 0Tt kabe kArjon ovvapTnong péow avtov Bewpeital 6Tt umhokapet (blocking) kat
avtipeTwniCetar and to meptPdAlov xpovou ektéheong (runtime) tng Go oav kAfon
ovothpatog. Otav pa goroutine mpaypatomnotel kKANon cgo, kAeWdwvetal 6To Vipa
OTO OTOI0 €TPEXE KAl AVTO TO VA UTAOKAPEL TIEPLUEVOVTAG TNV ONOKANPWOT TNG
KAnong. Avtr n Stadkacio anaitei cuvtoviopo pe Tov runtime scheduler tng Go kot
evOéxeTal va mpokaléoel Tn Snpovpyia vOG VEOL VIIHATOG WOTE VA OLVEXIOOLV Va

TpéXoLvV oL vtdlowmeg goroutines [98], [99], [100]. Akoun pa nyn kabvotépnong eivat

*H Go npoketpévou va efotkovopnioet pviun avfavel to péyebog g otoifag Twv goroutines ota-
Slakd Kat kat anaitnon avti va Tovg ekxwpei and Ty apyn pa otoifa tkavod peyéboug, omwg kdvetn C
pe ta vijparta. O kwdikag g C Sev Ba yvwpilel g va emexteivel T otoifa av xpelactei neplocdTepo
Xxwpo amod ta Ayootd kilobytes mov mpoogépet otoifa tng Go.

’H évvola tng goroutine otnv Go eival avTioToLXN [e aUTH TOV VAUATOG, e TN Stagopd 6TL 0 Xpo-
VIKOG TPOYPAUUATIONOG TwV goroutines yivetat and tov Go scheduler kat 6x1 and to Aettovpyiko6 ov-
otnpa. ZuvBwg moAAanAég goroutines Tpéxovv 0To iSto vijpa.

H avtikatdotaon otoifag (stack switch) ovviotatat otnv anobrkevon Twv KataxwpnTdv Katd
™V KAfon TG ovvapTnong NG C kat 6TV ENAVAPOPE TOVG KATA TNV EMOTPOPT TNG.

28 3. 2XEAIAXMOZX

1 dnovpyia avtiypdewv mov cvxva gival amapaitnTn Katd To népacpa dedopévwvy

an6 v Go ot C xat avtiotpoga.

H ovvolwkr| kaBvotépnon mov elodyel To cgo eKTILATAL OTL €ival amd SEka £wG EKATO
QopEG peyaAvTepn and Ty kabvotépnon piag amAng kAnong otny Go. Xvunepaocpa-
TIKG, 1) XP1OT) TOV €gO OLVIOTATAL HOVO OTAV 1) SLAPKELA EKTENEOT|G THG CLVAPTNOTG TNG
C mov kaeitat kablotd Tnv eloayopevn and to cgo kabvotépnon apeAntéa n 6Tav N
emidoomn ¢ kakobuevng ovvaptnong g C eivat onpavtikd kakvtepn anod 6,1t a

frav otnv Go.

3.1.5 To C API tng RocksDB

To C API g RocksDB'! givat vhomomnpévo wg éva Ledyog apxeiov C++ kat apyeiov
emke@alidag C. Ot Sopég mepttvdng tov C API mepiéxovv éva povo medio, To omoio
@ulogevei évav deiktn oty avtiototx tovg C++ dopry. [apopoiwg, oL cuvapTnoelg

nepttOAMENG TTePLEXOLY pia KANon 0Ty avtioTtotyn Tovg cuvaptnon C++.

3.1.6 Apon Tov TEPLOPIGHOD ATTOONKEVTIKOD XWPOL

O etcd emPdaAdet éva avw @pdyua oto péyebog Tov backend tov, To omoio umopet
va puBuotei and ta 2GB éwg ta 8GB. TTapolo Tov N xWPNTIKOTNTA AVTAG TNG TAENG
[0wG va eivat apkeTr yla KATOoLEG amd TI§ TEPIMTWOELG XPpriong Tov etcd wg ovoTnHA

amoBrkevong petadedopévwy, olyovpa dev emapkei 0Tn YEVIKN TEPIMTWOT.

ZOupwva pe Ta Eyypaga Tekunpiwong Tov etcd, o TEPLOPLONOG AVTOG TiDeTaL eV pépel
yta va anotpéyel Ty eédvrAnon Tov ywpov oto dioko kat tny vofdbuion ¢ emidoons
[41]. H e&dvtAnon tov xwpov oto Sioko de Ba émpeme va pag avnovxei, apol ta me-
pLOCOTEPA CVYXPOVA DTTOAOYLOTIKA GVOTHpATA eival eEOTAIOHEVA e CLOKEVEG ATTO-
Orkevong xwpnTikoTNTAG TIOL EEMEPVA KTt TOAD Tae 8GB. EmumAéov, n vmofadpion
g emidoong mbavotata avagépetat oty advvapio arodotikng Saxeiplong ovvo-
Awv dedopévwv peyalvtepwy and t Stabéoun pvrhpn and mAevpdg tng BoltDB. To
pOPANua avtd dev vrdpyxet 0T OIKr pag VAOTOINOT, OOV £XOVUE AVTIKATAOTHOEL

v BoltDB pe t RocksDB.

https://github.com/facebook/rocksdb/blob/master/db/c.cc

https://github.com/facebook/rocksdb/blob/master/db/c.cc

3. 2XEAIAXMOZ 29

Katom oxetikng ov{rtnong pag pe tov Xiang Li, évav and tovg factkovg mpoypal-
HaTIOTEG TOL etcd, 0Tn oxeTikn pe v avantuén tov eted Aiota nAektpovikod Tayv-
Spopeiov, pdbape mwg 0 KLPLOTEPOG AOYOG VTTAPENG TOV TIEPLOPLOUOD €ivart N StaTh-
pNOT TOL éoov ypoévov amokatdoTaors (mean time to recovery / MTTR) evtodg amo-
dektwv opiwv. Zto oevdplo 010 omoio éva pélog Tng ovoTtotxiag veioTatal PAAPN Kt
éva véo To avtikabiotd, n avapovr yla Afym evog peydhov peyéBovg otrypiotvnov Ha
¢Phamte N StabeotpdTnTa ToL eted [104]. AvTo eivat éva pdPAnpa mov dev pmopodue
va Eemepdoovie eVKOAA, WATOOO, AV yia KAToLa TepinTwon Xpriong n duvvatotnrta dwa-
xelplong evog peyalov dataset €xet peyakvtepn onpacia andé to MTTR, propovpe va

To apaPAéyouype.

3.2 Avtioroixion Evvolwv & Aopwv

Ze avti) v evoTnTa e€eTdlovpe TIG apXikég EMAOYEG IOV KAVAUE KATA TNV AVTLOTOL-
xton evvoldv kat dopwv g BoltDB otig avdhoyeg dopuég kat évvoleg tng RocksDB,

oto mhaioto g PtPAodnKng mepLTuAENG Tov avantvEaye.

3.2.1 DB

[Ipogavag, umopobpe va epappocovpe anevbeiag avtiotoixion Tov avrikepévov DB
¢ BoltDB oto avtikeipevo DB G RocksDB. ITapodAo mov ta dvo avtd avtikeipeva
VAOTIOLOVVTAL [E OVOLACTIKA SLAQOPETIKO TPOTIO (TO TPWTO WG APXELO AVTIOTOIXIONG
HVTHNG eV TO de0TEPO WG KATANOYOG), £XOLV TIG idLeg AetTovpyieg (.. Open(), Clo-

se()) kat o peyaro Paduo to API tovg eivat kowvo.

3.2.2 Kadot pe mpoBépata

O porog twv kadwv otnv BoltDB eivat va Statpodv o ovvolo dedopévwy ot Stago-
PETIKOVG XWpovg ovopdtwy. [a va emtdyovpe to idlo anmotédeopa oTnv VAoMOINOM
Hag TTpocapTovpE TO GVopa Tov kadov w¢ TpdBepa oo {nrovuevo KAeldi mpLy mpow-
Onoovpe éva aitnua otn RocksDB. Eneidr| ot ovpufolooelpég mov avamapiotody Tovg
Kadovg oTov eted OKIANOVLY O KOG Kot KATTOLEG aTtd avTEG EeKLvoUV pe TNV idta ako-
AovBia xapaktipwyv xpetalopaote Evav optobétn (delimiter) yia va prmopovue va dia-

Kpivoupe To onpeio 0To omoio Telelwvet To TPOBepa Kt apyilet TO Gvopa TOV KAELSLOV.

30 3. 2XEAIAXMOZX

[ta avTtdV TOV oKOTO eMAEXONKe 0 xapaktrpag “/”. Ita mapddetypa, av 6To TAaioo
evog artrpatog mpémel To kAetdi foo va anobnkevtel otov kddo keys, amobnrevovue

10 kAeldi keys/foo otn RocksDB.

3.2.3 A&atovpyieg avayvwong, eyypagns Kat dtaypagng

Ze 0,TLagopd Tov muprva Tov API, uropei va epappootei evbeia avtiotoiyion petagy
Twv dVo unxaviopwv arobnkevong. Kabwg eivat kat ot dvo cvotnpata arobnikevong
KAedov-Tipng, Stabétovv ovvaptroeig Get (), Put () xatDelete() pe v idia onua-
otohoyia. Kat 0115 §00 mepintwoelg avtég ot Aettovpyieg Oa epappootodv 0to mAaioto

ovvaAlaywv.

3.2.4 Apopéag pe emavalnnrn

H avtiotoixion tov dpopéa (Cursor) tng BoltDB oe katdAAnAn évvola tng RocksDB
dev mapovotdlet dvokolia. O emavaAnmtng (Iterator) g RocksDB vhomotel Tig
idteg Paotkég Aettovpyieg ov xpetalovrart yia va Statpé€et kaveig éva chvolo (evywv

KAetdtov-Tiung (m.x. First(), Seek (), Next () ktA.).

3.2.5 Zvvallayég

Ze mpwTn @aon, avtiototxilovpe TG cuvalAayég Tng BoltDB pe Tig anatotodogeg ov-
vatayég tng RocksDB. Zto kepdAato 5 Ba dovpe mwg avtr n mpooéyylon odnynoe
oe vroBéAtiota anotedéopata kat oty evotnta 4.3 Oa e§eTdoovpe mepLooOTEPO ATTO-

SoTikég evallaxTikég, e§nywvtag mapdAnia tnv opOOTNTA TOVG.

H évvota g ouvaAlayng oty BoltDB kat ot RocksDB napovotddet opiopéveg on-
HAGLOAOYLKEG SLAPOPEG TIOL APOPOVY KVPILWG TNV TOAVOTNTA AMOTLXIAG, OTIWG TTPOKV-

TITEL ATO TNV TEPLYPAPT] TNG, OTNV VIOEVOTNTA 2.2.2 KAt 0TV voevotnta 2.3.4 avti-

ototya. Q0T600, 0T0 MAaiclo Tov etcd, 6TTOL LVITAPXEL UOVO pic EVEPYT) CLVAAAAYT AvA-
YVWOonG Kat eyypa@ng kdbe otiypr, Sev vitdpyovv Stevégel, omote avtég ot onuacto-

Moyikég Stagopég dev mailovv kavéva podo.

3. 2XEAIAXMOZ 31

3.2.6 Ztrymotvmo pe onueio EAéyxov

Onwg éxet avagepBei otny voevotnta 2.1.4, o etcd xpnotpHomoLel Ta OTLYHIOTVTIA WG

avVTiypa@a ao@aleiag ylo TV amoKATACTACT KATAOTPOPWY, aAAd kal yia va fondn-
o€l véa PEAN TG ovoToLXiag va Tacovy ypiyopa ato eninedo mpoddov twv rdn vap-
XOvTwv peAwv. Ztnv BoltDB n Afyn otrypotomov yivetal pe trnovvdptnon Tx. Write-
To() n omoia ypdeet pia ovvenn oyn g Paong dedopévwv oe éva apxeio 1 fa ow-

Afvwon, OTwG £XOVLE TTEPLYpAYEL GTNV VTTOEVOTNTA 2.2.2.

YioBetwvtag tnv RocksDB wg amobnkevtikd pnyaviopd tov eted, emAéyovpie va avtt-
oTOLYlOOVE TNV €Vvola Tov oTLyplotuTov (Snapshot) tng BoltDB otnv évvola tov
onpeiov eAéyxov (Checkpoint), kabwg avtn kpibnke kataAAnAotepn and dAAeg ma-
pep@epeis évvoleg TG RocksDB. Agilet va onuetwdei ot 0 kwdikag Tov eted avripe-
TwTifel To OTLYUOTLTIO WG apXEio, evd pa Baor dedopévwv RocksDB kat kat’ emé-
ktaon to Checkpoint tng €xet T pop@n) kataldyov. [a va emAvGOLE AVTO TO TIPO-
PANHa amo@ebyovTag EKTETAPEVT TPOTIOTOINOT) TOV Kwdtka Tov etcd peTatpémovie To

Checkpoint ot apyeio tar.

3.2.7 Avacvykpotnon

H autia TG avdykng TakTikng avacvykpotnong (defragmentation) otnv BoltDB éyel

egnynOet otnv vroevotnta 2.2.3. H RocksDB, w¢ vhomoinon LSM-6évtpov, dev ma-

POLOLACEL KATAKEPUATIONO. ZUVETIWG, Sev XpetaleTal va avTioTolicovue tn ouvdp-

tnon avacvykpotnong Defrag() tng BoltDB pe kdmota Aettovpyia ot RocksDB.

3.2.8 Asztovpyia povo avayvwong

H ovvaptnon Open() tng BoltDB déxetar éva opiopa to omoio kabopilel To av n
Bdon dedopévwv Ba avorxbei oe katdotaon Aettovpyiag avdyvwong Kat eyypaeng
1 0g Kataotaon Aettovpyiag Hovo avdyvwong. Xtnv mepintwon g RocksDB, xpn-
olpomolovye TIG ovvaptroelg Open() kat OpenForReadOnly () avtiotorxa yia to
avorypa otig mpoavagepBeioeg kataotdoelg Aettovpylag. Appotepeg ot Paoelg dedo-
HEVWV ptopovv va avotxBovv and modhég Siepyaocieg Tavtoxpova o€ KatdoTaon Aet-
Tovpyiag pévo avayvwong, aAkd povo amno pia Stepyacia o Katdotaon Aettovpyiag

avdyvwong Kol yypaer|G.

32 4. YAOIIOIHXH

4 YM\omoinon

4.1 H BipAo0nkn HepirvAi§ng tng RocksDB otnv BoltDB

Onwg avagépOnke kat otnv vroevotnTa 3.1.1, yla va emTpéYouve 0Tov KOSIKA TOV

etcd va ovveyioel va xpnotpomotei yia Tov anofnkevtikod tov pnyaviopo to idto API
pe mpty, Sratnpnoape T dSnAwoelg Twv ocvvaptioewyv TG BoltDB avémageg kat al-
Aaape povo TNV vAOTOINOT TOVG, WOTE VA KAAODV TIG AVTIOTOLXEG CUVAPTHOELS TNG
gorocksdb. AoxoAnOnkape povo pe To vmoobvoro tov API g BoltDB nov xpnotpo-
notel o etcd. Me avaloyo tpomo, Statnpndnkav ot dopég Tov makétov bolt, pdvo mov
Twpa AetTovpyodv wg Sopég mepttoAgng Twv avtiototywv dopdv tng gorocksdb. Emi-
oG, oTa onpeia TOL 1 avTioToixton evvolwv TG BoltDB og évvoleg tng RocksDB nrav

N TeETpLpéVN poobécapie emmAéov kddika kat BondnTikég ovvapTHOELG.

Y auTH TNV eVOTNTA, OKLAYPAPOVE TNV TeNKN, BeATioTomomuévy ékdoomn TnG vAo-
noinong pag. Adyw tng peyding éktaong mov Oa kataAdpPave n avaAvtikn Tepypagn
OAwV Twv cuvaptnoewv kat dopwv g PtpAtodnkng, mapabétovpe anhwg dvo xapa-
KTNpLoTikd mapadeiypata. Q0T000, KAVOLUE EOIKT AVAPOPA OTIG TIEPITTWOELG OTLG
omoieg ovvavtnoape eunddia 0TV EQAPHOYN TWV OXESLAOTIKAOV ATOPATEWDY HAG, K-
B¢ Kkal oTIG evépYyeLeg OV €ylvay woTe va Ta Eemepdoovpe. O TARPNG TNyaiog K-

dkag g vlomoinong pag eivat Stabéopog otn Stevbvvon https://github. com/

boolean5/etcd-rocks.

Xapaktnptotikd mapddetypa Soung mepttohgng otn PtpAtodnkn pag amotelei) doun
DB, 1 omoia avtimpooweveL T Baon dedopévwv. Asttovpyei wg Sopr epttoAgng yia
™ dopr} DB tn¢g gorocksdb, mov mapéxet mpdoPaocn otn Paon dedopévwv atov dioko.
Ta media g mepiéxovv mAnpoopieg yia tnv tomobeoia (path) tov kataldyov tng
Bdong dedopévwy Kal ylo To av auTr €XeL avVOLXTel 08 KATAOTAON AeLTovpyiag Hovo
avayvwong. Emmhéov, ovunepthappdvovy évav unxaviopo apotBaiov amokAelopov
(mutex) mov emiTpéneL TNV VIAPEN LOVO VOGS eyypagéa kaBe atiyun, Eévav Seiktn oe
o dopr| emAoywv (Options struct) ki évav xaptn (map) mov mepiéxet TOVG Kd-
dovg mov vrapyxovv ot Paon dedopévwv. Téog, avapeoa ota media tng doprg DB
Bpioketat kit évag deiktng oe dour WriteBatch g gorocksdb, mov xpnotpomotei-

Tal ylo TV Tpocopoiwon pag ovvailayng BoltDB, kabBwg ki évag deiktng oe doun

https://github.com/boolean5/etcd-rocks
https://github.com/boolean5/etcd-rocks

4. YAOIIOIHXH 33

WriteBatchWithIndex, mov xpnowpomoteital povo oty eIk MEPIMTWON TTOL AVa-

@épetal oTny voevotnta 4.2.5.

9
10

type DB struct {

readOnly bool

db *gorocksdb.DB

path string

rwlock sync.Mutex

wb *gorocksdb.WriteBatch

wbwi *gorocksdb.WriteBatchWithIndex
options *Options

buckets map[string]bool

Andonaopa kwdwka 1: H doun DB

H ovvaptnon (b *Bucket) Put(key []byte, value []byte) error, nov

tomoBetel éva (e0yog KAeLSIOV-TIUNG o€ évav KAdo, amoTeAel XApAKTNPLOTIKO Tapd-

Setypa ovvaptnong mepttohiéng. H cuvdptnon avtr apyika Sievepyel éeyxo o@al-

HATWV KAl 0TT) OUVEXELA TTpaylaTomoLel kKAjon otn ovvdaptnon Put () tng gorocksdb,

1 omoia epapUoOleTal OTO GUOXETIOUEVO (e TNV Tpéxovoa auvailayn WriteBatch 1

WriteBatchWithIndex. To kAewdi mov Tomofeteital otn Pdon dedouévwy mpokidmTel

amod TNV oVVEVWOT| TOL TIPOBERATOG TOV KASOVL e TO apXIKO OVOpa TOL KAELSLOD.

ul (O8]

(<N e

func (b *Bucket) Put(key []byte, value []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.tx.writable {
return ErrTxNotWritable
} else if len(key) == 0 {
return ErrKeyRequired
} else if len(key) > maxKeySize {
return ErrKeyToolLarge
} else if len(value) > maxValueSize {

return ErrValueToolarge

34 4. YAOIIOIHXH

13 s := make([][]byte, 3)

14 s[@] = b.prefix; s[1] = sep; s[2] = key
15 b.tx.wb.Put(concatenate(s), value)

16 return nil

17 [}

Andoonacpa kwdwka 2: H ovviapryon Put()

Katd 1o dvotypa tng pdong dedopévwv anod tn cvvaptnon Open(), mpémet va Ad-
Povpe v OYLY pag T mepinTwon 1 Tonobeaia mov divetal wg Optopa avti va Seixvel
o€ évav katdAoyo onwg ovpPaivel ovvnBwg va deixvel oe éva Checkpoint oe popen
apyeiov tar. [ta Tov okond avtdv vAOTOLODpE Evav OXETIKO EAeYXO UE XPTIOT) TWV OL-
vaptrioewv Stat () xou IsDir() g Go kat tng Pondntikig cvvaptnong IsTar()
™G PPAoOnKNG pag. H IsTar() emPePaiwvet 0T mpodketTal yia apyeio tar embew-
PWVTAG TNV VTOYPAQT payik@v apiBudv'* tov. Etol, avaloya pe to anotéeopa tov
eAéyxov, kahobpe av xpetdletal tn cuvdptnon untar () mpLv EMXELPTOOVUE VA AVOi-

Eovpe n Paon dedopévwv.

H ovvaptnon Begin() ovvhfwg kakeitat yia va dnpovpynoet pia véa cuvaliayn,
WOTOOO0 KATIOLEG POPEG KAAELTAL [le OKOTIO TNV dnjovpyia evog oTLyptoTuToL TG Ba-
ong dedopévwv. 210 mAaioto ¢ BoltDB, 1 évvola tov otiypotdmov tavtifetar pe
™V évvola TG ouvaAlayng, eivat Snhadr pa GLVETNG, HOVO TPOG AVAYVWOT OYT TNG
Pdong dedopévwy. Zto mhaioto Tng Sikng pHag vAomoinong Opwg, xpetdletat va Staxpi-
voupe peta&d Twv dvo mepimtwoewv. ETot, apyikd eAéyxovpie oo cuvapTnomn kdheoe
v Begin(), pe T Porfeta Twv ovvaptrioewy Caller() kaw CallersFrames() tng
Go. Av n ovvaptnon avtn eivat 1 ovvdptnon Snapshot tov makétov backend tov

etcd, T0Te akolovOei kAron tng createCheckpoint ().

v tehikn €kdoon TG LAOTOINoNG Hag, Ylo TNV Tpocopoiwon piag ouvaliayng Bolt-
DB xpnotponoteitat n dopr) WriteBatch. Tia Adyovg amodotikdtntag n dnpovpyia
dopng WriteBatch ovpPaiver povo pia popd kata Siapketa Aettovpyiag Tov eted:
otav ekva n mpwtn ovvaAlayn. ZTig eMOUeVEG CUVAANAYEG EMAVAXPTOLUOTIOLOV LE
v S doun, €xovtag @povtioel yla TNV ekkabapLon TG KAt TNV KatoXOpwon n

avaipeot TG avtioToXng TPONYoLUEVNG GUVAAAAYHG.

201 paytkol apBpol eivar ovykekpuéves otabepés mov Ppiokovral oe cuykekpipéveg Béoeig petakd
TwV apytkwv bytes evog apyeiov kat mapéxovv Evav Tpomo SlakpLong HETaEy Twv SLAYOPWY HOPPWV
apxeiwv.

4. YAOIIOIHXH 35

H ovvaptnon Size() g PpAodnkng pog kaleitar and tov etcd oe dvo mepimtw-
O£1G: KATA TNV KATOXVPWOT] Hiag CUVAANAYNG e OKOTO Tr oVYKpLoT Tov peyéBoug
™G Baong dedopévwv otov Sioko e TO EMTPENOUEVO OPLO Kat OTav 0 TTEAATNG {nTd
va padet to uéyebog evog Snapshot pe tnv eviodn etcdctl snapshot status.
2y mpwTn mepintwon, kalovpe tn Bondntikn ovvaptnon rocksdbSize(), n omoia
EMOTPEQEL [La eKTiunon Tov pueyébovg tng Baong dedopévwy. Kabwg n RocksDB dev
TIAPEXEL KATIOLOV aTtAO Kat akpLP1) TPOTO EMOTPOPTIG TOV OLVOALKOD peyEBovg TG oToV
XPNOTN, To VITOAOYiov e TPOTEYYIOTIKA, TPOOOHETOVTAG TO GLUVOALKO péyeBog Twv ap-
xelwv SST oto péyefog Twv mvdkwv pvrpng. Oewpodpe Tt To HEYEDOG TWV MIVAKWY
HVTUNG eivat epimov 600 kat To péyebog Tov WAL, agod avtd Staypdgetat avtopata
K&Be Popd oL oL TVaKEG UVIUNG HETAPEPOVTAL OTOV BI0KO KAl OVOLAOTIKA TEPLEXEL

T1G idleg eyypagég.

H ovvaptnon WriteTo() xpnowpomoteitar and tnv BoltDB yia va ypdyet éva otry-
ULOTVTIO 0TO AKPO ULAG CWANVWOTNG, WOTE AVTO Vo HeTa@epBel aTOV TTEAATT TTOL €Kave
TO OXETIKO aitnpa ARYngG. Ztnv VAOTOINOT HaG aVTi Vo avTypa@ovpe pia pio Ti§ oe-
Aideg evog apyelov avTioTOiXIONG UVAUNG, avoiyovpe To apxeio tar tov Checkpoint
Kat fe Xprion evog emavaknmrikov Ppoxov Stafdlovpe otadiakd ta meplexOUeVa Tov
tonoBetwvTag ta o évav anopovwtr (buffer) kat Ta avtiypdgovpe 0To dkpo TG ow-

AVWOTNG PEXPL VO TACOVHE GTO TENOG TOV apXEiov.

4.2 Tpomnomnouoeig otov Kwdwka Tov eted

[TapdAo mov mpoomadrjoape va meplopicovpe TIG AAAAYEG [HAG OTO ECWTEPIKO TOV TaL-
kétov bolt kat va amo@iyovye Ti§ TpomomnoLoel oTov kKwdika Tov etcd, vp&av

QOpPEG IOV AVTEG TTAV AVATOSPAOTEG.

4.2.1 Avacvykpotnon

Onwg e§nynoape otnv vtoevotnTa 3.2.7, HeTd TNV avTikatdotaon T BoltDB amnd v

RocksDB dev vrdpyxet mAéov avdykn yla avaovykpotnon. Zto nakéto backend tov
etcd amopaxkpOvovpe Ta meplexdpeva g ovvaptnong Defrag() étoL wote avth va
EMOTPEPEL APEowS Xwpig va paypatonolel kapta evépyeta. Emiong, amopakpovovpe

TN OXeTIKN ovvdptnon eAéyxov, TestBackendDefrag().

36 4. YAOIIOIHXH

4.2.2 Awypagn Tov kataloyov tnG faong dedopévwv

O kwdikag Tov eted avtipetwmnilel ™ Pdon dedopévawv tov backend wg apyeio, pe
amotéleopa otav emdiwkel T Staypa@r TG and To cVOTNUA apXeiwV va Kalel TN
ovvaptnon Remove() tov makétov os tng Go. H ovvaptnon avtn opwg mpoopile-
Tat amoKAELOTIKA yia TN Staypa@r) Hepovwpévoy apxelwv kat dev éxet Tn dSuvatoTnTa
avadpokng Staypagng oAokAnpwv kataloywv [97]. Ztn Sikn pag mepintwon i faon
dedopévwv tov backend éxel T popeny katakdyov, emopévwg kpibnke amapaitnTn n

avTIKataotaon OAwv Twv kAfoewv tng Remove () pe kAfoeig TG RemoveAll().

4.2.3 E@apuoyrn Tov oTIypotvmov

H ovvdptnon applySnapshot () tov makétov etcdserver givat vevBuvn yia v
avtikataotaon tov backend evog kopPov eted pe éva doBév otrypotvmo. To epmo-
S0 mov ovvavtroape oe avto To onpeio mponAle yla pa akoun eopd and and TN
Stagopa ot popen g Paong dedopévwv petald BoltDB kat RocksDB. H cuvap-
tnomn Rename () Tov maxkétov 0s TnG GO ATMOTLYXAVELOTAY TO OVOUA IPOOPLOHOV AVTL-
oToLXel o€ KATmolov vTtapxovTa katdAoyo [97]. H Rename () xpnotpomoteitat and tnv
applySnapshot () yia va dwoel 6TOV KATAAOYO TOV OTLYHLOTOTIOV TO OVOUA TOV Ka-
Taldyov tov mponyovpevov backend, mpokaAwvTag TNV avTIKATAGTACT TOL TEAEL-
Taiov. Eenepaocape avtryv T SVokoAia amopakphvVovTag Tov KATdAoyo Tov Tponyov-

Hevov backend mptv emiyelprioovpe T HETOVOHAGIA TOV KATAAOYOV TOV OTLYHLOTOTIOV.

EmmAéov, vroxpewaoapie To mponyovpevo backend va odokAnpwoet tn dtadikacio kA et-
oipatog Tov mpwy avoifovpe to véo backend, kabwg To apyeio LOCK tng RocksDB dev
enétpene N dnuovpyia devtepng Paong dedopévwy otny idia tomobeaia. Xtnv apxikn
vlomoinon Tov etcd, To kAgiowo Tov Takiov backend diekmepatwvetat and diagope-
Tikn) goroutine, woTe va ano@evyOel n avapovr oAokAnpwong Tng TeAevtaiag cuval-

AayrG.

4.2.4 IIpocPacn oTnV KATAGTAGT] GTIYHLOTVTIOV

H Bondntikn ovvaptnon dbStatus (), mov kakeita amod trn ovvaptnon snapshotSta-
tusCommandFunc () étav o melatngeloayet tny evioAnpetcdctl snapshot status,

TpomoToLOnKe WOTE TIPLV TNV EMOTPOPT) TNG VA EMAVAPEPEL TO GTLYULOTVTIO 0TI LOPPT

4. YAOIIOIHXH 37

apxeiov tar, Tov eivatn avapevopevn ano tn ovvdptnon snapshotRestoreCommand-
Func (), mov kaAeitat 6tav o meAdtng eloayet Ty evtolr etcdctl snapshot re-

store.

4.2.5 Metafaon ano WriteBatch oe WriteBatchWithIndex

[t Adyovg Satrpnong tng onpactoAoyiag, 0e OPLOHEVEG TIEPIMTWOELG ival amapai-
™t N petaPaon ano tn Soun WriteBatch, mov avtiotoryel oe pia cuvailayr, oe pia
dopn WriteBatchWithIndex. Xvykekpipéva, avtd ovpPaivel 0TIG TEPITTWOELG TTOV
éva aitnua avdyvwong katevBuvetat oe kado ekTog Tov kKadov keys. Ze avtifeon pe
tov kado keys, otov omoio epapuoletat MVCC, atoug vrtdolotmovg kadovg eivar mi-
Bavn n mapovoia Stmhotinwy peta&d tov anopovwtn (buffer) Twv Sopwv batchTx
Kat readTx Tov makétov backend kat Tov pnxaviopod amobnkevong. Tote, pe okomo
™V anouyn entotpo@ng Simhotimwy i {evydv KAeldlod-Tung Twv omoiwv n Sa-
ypagr 8ev €xet akoun katoxvpwbei, o etcd mapakaunTel TOV AMOHOVWTH KAt eQap-
Holel o aitnpa avayvwong oto tpéxov batchTx avti yia to readTx onwg yivetat

ovvrfws.

Ztnv telkr) €kSoomn TG VAOTOINoNG Hag OpwG, avTioTtotilovpe oto batchTx tn Sopr)
WriteBatch, n omoia oe avtibeon pe t dopr) WriteBatchWithIndex dev mapéyel
TMPOOPAOT) OTIG [N KATOXVPWHEVEG EVIHEPWOELG TNG. ZEMEPVAE AVTO TO TPOPANUA
TPAYUATOTIOLWVTAG AVTILYPAPT| TWV £YyYpawv Tov TpéxovtocWriteBatch oe évalri-
teBatchWithIndex mpwv tnv diekmepaiwon kabe AUTAHATOG AVAYVWONG TTOV KATEL-
Bvvetat oe kado exTOG TOL KAdOV keyss, Stadikacia MoV £x0oV{LE VAOTIOIOEL 0TT GUVAP-
ton Switch() g PPAobnxng pag. [pooétovpe kAR oelg TG ovvapTnong Switch-
() evtog Twv ovvaptioewy UnsafeRange () kat UnsafeForEach() mov egapuolo-

vtat tavw og batchTx kat Bpiokovtal oto makéto backend.

Oa Hmopovoape Vo amo@OYOLLLE ALTHV TNV TpontoToinaon avtiotolyifovtag e§apxng to
batchTx oto WriteBatchWithIndex, wotoco yvwpifovtag Tt 1 CLXVOTHTA AVTHG
NG MeTAPaong eival OXETIKA [KPT, emAéyovpe va enw@eAnfovpe amd Tnv kakvTepn
enidoon tov WriteBatch oe oxéon pe to WriteBatchWithIndex, 6nwg Oa meprypa-

Youpe Kat oTny voevotnta 4.3.5.

38 4. YAOIIOIHXH

4.2.6 Apon Tov TEPLOPLOOY aroOnKeVTIKOD XWPOV

H e@appoyn g apong Tov mepLloptopov amodnkevTikod Xwpou o TEPLYpAYaE OTNV

vroevotnta 3.1.6 emrvyxavetat 0éTovrag Tig otabepég Defaul tQuotaBytes katMax-

QuotaBytes tov maketov etcdserver ioeg pe math.MaxInt64. O xprotng umopei
akoun va emiPalet éva dvw @paypa oto péyebog tov backend edv to embupel, péow

™G mapapétpov - -quota-backend-bytes katd tnv ekkivnon Tov etcd.

4.2.7 Script eykatdaotacng

>1o script eykatdotaong tov eted (build), kaBwg kat 0To script eykatdoTAONG TNG
TAATPOPHAG AELTOVPYIKOD EAEY YOV, O€Tov e TN peTaBAnTr teppdAlovTog CGO_ENAB-
LED ion pe tnv Tn 1, wote va emtpéyovpe Tn Xprion tov cgo. EmmAéov, tomobetodue
oG petaPAnrtég meptBaAlovrog CGO_CFLAGS kat CGO_LDFLAGS Ti§ anapaitnteg on-
Haieg (flags) petaylwttiots kat ovvdétn yia) xpnon s RocksDB wg kowvoypnory
BLPALoOrKkn. TéNog, avtikabiotove Ty Tiun TG ORG_PATH étol wote va Seiyvel 6To
do pag amobetrplo kat mpoobétovpe otn ovvaptnon etcd_build() tnv katdA-
AnNAn evtoln woTe To script va eykataotroel kat To gpyaleio benchmark ektdg and

Tov etcd kat TV epappoyn mekarn etcdctl.

4.3 BeAtiotomouoelg

H evotnTa autr) mapéxel fia EMOKOTNOT TWV CNUAVTIKOTEPWV and TG PeATIoTONON)-

O£1G IOV EQAPUOCANE OTNV APYLIKT Hag VAOTIOINOT).

4.3.1 Apyxwn vAomoinon

H npwtn pag mpooéyylon oty evowpdtwon tns RocksDB otov etcd akolovBei mi-
0T4 TIG OXESLAOTIKEG ATTOPATELG TTOV TTAPOVCLATTNKAY 0TO KEPAAato 3. MeTtalh aAwv,
€ytve avtioToixion Twv ovvailaywv tng BoltDB pe tig anatotodo&eg ouvailayég tng
RocksDB. H andgaon avtn fitav onpactoloytkd opBr) alhéd odfynoe otnv avamntouén
niepimAokov kwdika kat eméPale mepirth kabvotépnon. Eniong, omwg ovvéParve kat pe
v BoltDB mpwv tnv aAXayn, kdbe aitnpa avdyvwong / eyypaeng / Staypaeng ixe wg

anotéleopa d0o kKANoelg 0T0 akéTo bolt, pia ya Ty evpeon Tov kataAAnAov kadov

4. YAOIIOIHXH 39

Kat pia devtepn yia TNy avayvwon / eyypaer| / Staypagr tov (edyovg kAetdov-Tipng

amod avToV.

4.3.2 IIpocPaon otovg kadovg

Onw¢ Ba deifovpe 010 KEQAAaLo 5, 1) emidoon NG apxikng vAomoinong dev frav diai-
Tepa tkavomotntikn. Edikotepa, maporo mov Bewpnrika avapevotav Pektiwon tng
emidoong Twv eyypagwy, mpokAnonke emdeivworn tng. Ze avtod To onpeio, Xpnotuo-
Towoape To epyaleio Snuiovpyiag mpogid (profiler) Tng Go pe 0komd va evtomicovle
Ta aitia meptoplopod NG emidoong. Xvykekpiuéva, AdPape €va mpo@i 30 devtepolé-
ntwv TG CPU evw goptwvape otov etcd 1000000 {evyn kAetSLov-Tipng e xprion tov
gpyaleiov benchmark. Mia patid ota anoteAéopata anokaAvye 0TLn o xpovofopa

Aettovpyia otov eted frav ot kAfjoeis cgo.

Me pia 0 TPOCEKTIKT HEAETT) TWV ATOTEAEOUATWY TOL gpyaleiov dnpovpyiag mpo-
@i\, avTIANQONKALE OTL OL TEPLOTOTEPEG KATOELG CZO TIPOEPXOVTAY ATO TN CLVAPTNOM
Bucket () tov maxétov bolt. Onwg avagépOnke mponyovpévwe, n TPWTN EVEPYELa
yta T e§unmpéTnon evog alTiatog eyypagns ano to backend eivatl) edpeon Tov
katdAAnlov kadov. EmmAéov, n apxikr pag vhomoinon tng ovvaptnong Bucket()
akoAovBovoe a@eddg TNV avtiototyn vAomoinon g BoltDB, pe anotéAeopa va me-

pthapPavet dvo kAnoelg cgo.

[a va amo@Oyovpe avTég TG KANOELG cgo SLatnpovye aTh uvhun To 6OVOANO TWV vTTap-
XOVTWV KdSwv, VIO TN Hop@r XapTn (map) TG Go. Me avtdv ToV TPOTO 1 GLVAPTNON
Bucket () dev xpetdletatl ma va anevBhvel kKATOL0 EpOTNHA OTOV ATOONKEVTIKO pn-
xaviopo. O xaptng twv kadwv dnpovpyeital anod tn cvvaptnon Open() Kal evnpe-
paveTalL amo Tn ovvaptnon CreateBucket (). Me avtr Tnv alkayr), neplopioape tov
aptOpod kAoewv OV anmatTovVTaAL avd aitnua eyypagng oto backend and tpeig oe

Hovo pia'>.

1*Fro eminedo Wag eyypagng otov etcd mepopioape Tig KAHOEL cgo and 6 oe 2, kabwg avtr peta-
@paletat og 800 eyypagég oto backend: pio yia v amoBrkevon tov {edyovg KAESIOV-TIUNG Kat pia
Sevtepn yla v evuépwon tov consistentIndex.

40 4. YAOIIOIHXH

4.3.3 Aw01000&eg ouvallayég

2to mhaioto Tov etcd, poOvo pia cuvaAlayr avayvwong Kat eyypagng eivat evepyn
KdOe oTypn. Zvvenwg, dev vdpxovv SteveLelg kat elvat ACPANnG N avVTIKATACTAOT
Twv analolddofwv ouvallaywv pe atotodogeg ouvallayég. Avtr n alayn TpoocE-
@epe o onpavTikn Pertioon otnyv enidoon Twv eyypagwy, kabwg anépuye tnv kabv-
0TEPNON TOL EL0dyoLY Ta kAedwpata Twv anatotddowy cuvallaywv. Ta tnv epap-
HOYN aLTNG TNG PEATIOTOMOINONG XPELAOTNKE 1) AVTIKATAOTAOT TNG OLVOEdEUEVNG (e
TN dopr DB doprig TxnDB tn¢ gorocksdb e tn doun OptimisticTxnDB, kabwg kat n
AVTIKATAOTAOT KATOWWY cuvapthoewy NG gorocksdb pe tnv toodvvapn poper tovg

yia atot680&eg cuvalhayés.

4.3.4 WriteBatchWithIndex & Snapshot

Me Bdomn To yeyovog 0Tt 0To mAaiolo Tov etcd povo pia suvallayr avdyvwong Kat Y-
ypagnG eivat evepyr| kdBe oTiyun, cvpmepaivovpe 0Tt dev LTTAPXEL AVAYKN Yl EAeYXO
TavtoXpoviopol oty mAevpd TG RocksDB. Me dAAa Aoyia, eivan apketn i e§ao@d-
Alon aTopKOTNTAG KAl HOVIHOTNTAG. AVTO TIPAKTIKA ONaivel OTL Hmopovue va Tpo-
OOUOLWOOVE Lot CUVAAAAYT avayvwong kat eyypaeng tnG BoltDB pe pia Sopr Wri-
teBatchWithIndex tng RocksDB, n omoia oe avtifeon pe tn Souny WriteBatch
Tapéxet TN SLVATOTNTA AVAYVWONG TWV [N KATOXVPWUEVWY EVIUEpWOEWV TNG. Emt-
TIAEOV, UTTOPOVLE VO TIPOCOUOLWCOVE Lot GUVAAAayn Hovo avayvwong tng BoltDB
e éva Snapshot tng RocksDB, to omoio and onuactohoywkr anoyn eivat to ido

TPAYHO: [Lat GUVETIG, HOVO TIPOG avayvwaT) oy TG Pdong dedopévwv.

H Soun WriteBatchWithIndex eiodyet moAD pikpdtepn kabvotépnon and pa ov-
vaAlayn g RocksDB kaBwg dev mpaypatomnotel éAeyyxo Stevé€ewv katd tnv kato-
xvpwon. [t va vhomowmoovpe avtny 1 BeATIOTOTOINOT XPELATTNKAY Ol akOAOVDEG

aAlayéc:

 Avtikatdotaon tng ovvdedepévng pe tr dopr) DB Sdoprg OptimisticTxnDB trg
gorocksdb pe tn doun DB tn¢ gorocksdb. Emiong, avtikataotaon tng ovvdede-
HévnG pe T Soun Tx doprig Txn tng gorocksdb pe tn Sopr WriteBatchWithIn-

dex.

4. YAOIIOIHXH 41

o Tpomomoinon tngovvaptnong beginRWTx () wote va dnovpyei o Sopn Wri-
teBatchWithIndex avtiva Eexiva pa véa atotodo&n cuvalhayr|. Akoun, tpo-
momoinomn Tng ovuvaptnong beginROTx () wote va dnpovpyei éva véo Snapshot

avti ya pa atotddo€n ouvalhayn.

X1 ovvaptnon Rollback(), exkaBapion g dopng WriteBatchWithIndex

e kAnon g Clear() 1 anelevBépwon Tov Snapshot avti yia avaipeon g

atot6do&ng ovvarlayne. ITapopoiwg, otn ovvaptnon Commit (), xprion tgWri
teWithIndex() tng gorocksdb yia tnv eyypaen tov WriteBatchWithIndex

otn Pdon Sedopévwy, avti yla katoxbpwon tng atotodogng ovvaiiayng.

« 2116 ovvaptroelg Put () xat Delete, epappoyn tng eyypagnc / Staypaeng otn
dopn WriteBatchWithIndex. Ztn ovvaptnon Get(), kAfjon tng GetBytes-
FromBatchAndDB().

« 21N ovvaptnon Cursor(), xpnon g NewIteratorWithBase() ywa tn 6n-
Hovpyia emavaAfmTn pe SuVATOTNTA CLVSVACUOD TWV [N KATOXVPWHEVWY EVI]-
pepwoewv Tov WriteBatchWithIndex pe ta mepiexopeva g Paong dedopé-

VV.

« Amopdkpuvorn tov kwdika Staxeiptong Twv OptimisticTxnOptions.

4.3.5 WriteBatch

H dopn WriteBatchWithIndex eiodyet Aiyo mepiocotepn kabvotépnon and T doun

WriteBatch, agov omwg eidape otnyv voevotnTa 2.3.4, dtatnpei Eévav ecwtepikd amo-

HOVWTN LTIO TN popPr| evpeTnpiov. Mia pdopatn allayn oto makéto backend tov
etcd 081ynoe otV anocOPTAEEn TV avayvwoewy and TG Eyypages, Slatnpwvtag
évav evllapeoo amopovwTh Tov kabiotd duvatn v mpdoPacn TwV aAvayvaoewv
OTIG [N KATOXVPWUEVEG EYYPAPEG. To YEYOVOG AUTO, HAG ETITPETEL VAL XPT|OLUOTIOLT-
oovpe 1N dopry WriteBatch otn 6éon tng WriteBatchWithIndex. Qotdoo, 6Mwg

e&nyndnke otnv voevotnNTa 4.2.5, VTAPXOLV OPLOHEVEG TIEPLTTWOELG OTIG OTIOLEG T

Sour) WriteBatchWithIndex eakolovBei va eivan amapaitntn. [ta Tnv vAomoinon
auThG TNG PEATIOTOTOINONG XPELAOTNKE VA AVTIKATACTIOOVHE KATIOLEG GUVAPTNOELG

g gorocksdb mov oyetiCovtat pe T Soprn WriteBatchWithIndex pe tig loodvvauég

42 4. YAOIIOIHXH

Tovg yla tr Soun WriteBatch, kabwg kat va vhomomoovpe tn ovvaptnon Switch(),

otnv omoia avagepOnkape otny vrogvotnta 4.2.5.

4.3.6 POOpon mapapétpwv tng RocksDB

O ovvtoviouodg (tuning) tng RocksDB eivar pua mepimAokn dtadikacia mov mepthap-
Bavel tn pOOon MepLlocdTEPWV amd 120 mapapétpwv pe StapopeTikovg Pabpovg al-
AnAegaptnong. Ot mpoemheypéveg Tipég odnyovv oe xaunAr emidoon, kabwg dev a&lo-
TOLOVV AT PWG TIG SLUVATOTNTEG TOL OLOTHHATOG. Ot idtot ot oXedaoTéG TG RocksDB
napadéxovtat 6Tt 0 PEATIOTOG GUVTOVIOUOG TNG eival pn TETppEVn Stadikaoia kat
TPOTEIVOLV pia Tetpapatikny mpooéyylon [64]. Ektog and to Stabéoipo vAko, o ov-
vToviopog eaptatat kat and To €id0og Tov avauevopevov eopTov epyaciag. Mmopel
va 18wBel we £vag ouuPiPacpos peta&d evioxvong eyypagwy, avayvwoewy KoL Xwpou.
2TV TEPIMTWOT Hag, EMOIWKOVIE VA EVVOTCOVHE TNV EVIOXVOT EYYPAPWY €LG PApOg
Twv SVo AAAWV TUTIWY evioxvong, kabwg o TeAkOg Hag 0TOXO0G eival N PeAtiwon g

emidoong Twv eyypaewv otov etcd.

H npooéyyion pag otov ovvtoviopd g RocksDB ovviotatat apxikd otnv emAoyn
£VOG LTTOOVVOAOV TWV TTAPAPETPWY TTOL Bewpovpe OTL Ba €xeL TN peyakvtepn emidpaon
otny emidoon Twv eyypagwy, pe Paon Tig cvpPoviég Tov 0dnyol cvvToviopoL [64]
KAl TOV OPOL TWV TPOypappatiot@v TnG RocksDB, kabwg kat Tig avagopég mpo-
oeyyioewv ano Tpitovs. Katomy, xpnowonolovpe to epyaleio benchmark tov eted
yta T Stevépyeta melpapdtwy. Eekivape and pia mapapetpo kat Sokipdlovpe yi av-
THV TOAAATIAEG TUHEG, ETMAEYOVTAG AUTHYV TIOV HEYLOTOTIOLEL T1) SLEKTIEPAUWTIKT LKAVO-
TNTA EYYPAPWDV. XTT) OLVEXELA, OTADEPOTOLOVUE AVTHV THV TIAPAUETPO OTNHV EMIAEY-
HéEVN Tun kat epappolovpe tnv idta Stadkacia oTny eMOEV, womov va otabeporot-

o0V E ONEG TIG TTAPAUETPOUVG.

AxoroVBwG, avapépovpe TIG TTLO EMSPATTIKEG ATO TIG TTAPAUETPOVG HE TIG OTIOLEG TrEL-
PAUATIOTAKAE Kat TEAKA Slatnprjoape oTnV TeAKN Hag VAOTOINoT TNG CLUVAPTNONG

createOptions().

» ®iktpa Bloom: Ta @iltpa Bloom mapéxovv évav tpomo va yvwpilovpe av éva
apyeio dev mepiéxel £va ovykekpiluévo kAetdi, xwpic Tnv mpaypatomnoinon mpod-
oPaong oto apyeio. YAomolovvtal wg évag mivakag bit oe cvvdvaouod pe k da-

QOPETIKEG TUVAPTNOELG KATAKEPUATIONODV [66]. Me TN Statrpnon ¢iktpwv Bloom

4. YAOIIOIHXH 43

0TI UV KATAQEPVOLLE Va pelwoovpe atoOnta tig mpooPaoelg oe apyeio SST
otov dioko ava aitnua avdyvwong, kabwg anopedyovTtal ot TPooPacels ota

apxeia ota omoia yvwpilovpe 6Tt Sev mepLEXeTaL TO EKAOTOTE {NTOVUEVO KAELSL.

» PvOpioeig mapaAAnAiopov: Ztnv apxitektovikr tov LSM-8¢vtpov vapyxovv
dvo diepyaoieg oV AetTOVPYOVV OTO TTAPACKNVLO: 1] HETAPOPA TILVAKWYV VNG
otov Sioko (flushing) kat ot ovpnvkvwoetg. PvBuifovpe t RocksDB wote va
a&loToL0eL TOV TAVTOXPOVIOUO 0TO emtinedo TexvoAloyiag amodrnkevong, Stabé-
TOVTAG £Va VLA VLo TN HETAQOPE TILVAKWY UVIUNG Kot aptduod vipdtwy oo pe
Tov aptpod Twv muprvwv g CPU peiov éva yla Tig ovpmukvaoetg. Akopn, Oi-
voupe T peyakvtepn Tov 1 otov péytoTto aplipod vnpdtwv mov pmopodyv va
TPAYUATOTIOLOVY TAVTOXPOVA L CUUTUKVWOT), XwpilovTdg Tnv oe ToAamAEg
HIKPOTEPEG CUUTVKVWOELG IOV TPEXOLV TIapdAAnAa. Ot amodoTikdTepeg GUUTL-

KVWOeLG ennpedlovy Oetikd tn StekmepalwTIKN tkavoTnTa eyypagwv [113].

o PvOpiceig petagopis mvakwv pviung otov dicko: Ilpoadiopilovpe katdl-
Anha to péyeBog kat Tov péyloto aptBpd twv mvakwv pvApung. H vmapén me-
PLOCOTEPWY TOV EVOG TIVAKWYV HVAUNG ETUTPETEL TNV GLVEXLOT TWV EYYPAPWV
Katd TN Sdpkela petapopag evog mivaka pvrpng otov dioko. Emiong, kabopi-
Covpe TOV EAdLOTO aplOpUO TIVAKWY PVHUNG IOV TIPETEL Va cuyxwvevBovv mpiy
netagpepHovv otov dioko. Otav moAlamhol mivakeg uvipung cvyxwvebovrat ei-
vat lavo va eyypag@ovv ot ovokevr anodnkevong Atyotepa dedopéva agpol

Ol EVIUEPWOTELG TTOV apopoDV To idto kAedi cvyxwvebovtatl o pia [64].

» PvOpiceig ovpnikvwong: Zopewva e 6ca avapépape otny vmoevotnta 2.3.3

KAl To AMOTEAEOHATA TWV TIELPAHATWY GLUVTOVIOHOD TTOV KAvape, 0 KaBoAkog
(universal) TomOG CVPMOKVWONG €ival KATAAANAOTEPOG ATTO TOV TUTTO CUUTV-
kvwong pe enineda (levelled) yia @dpto epyaciog pe EUPaoct oTIG EYYPAPES.

Q0T1600, AVEAVEL TV EVIOXVOT AVOLYVOOEWV KAl XWPOV.

« PvOpiceig ovpmieong: Kabe block ovpméletal mpv tnv eyypaer tov otn ov-
OKEVN HOVIUNG amoBnkevong. Atatnpodpe tny mpoemAeypévn uébodo ovumie-

ong, Snappy, 1] onoia eivatl apkeTa Taxeia.

44 4. YAOIIOIHXH

4.4 E{wtepkég ZuveloQopEg

Y& apKETEG TIEPIMTWOELG KATA TN SLAPKELA TG VAOTIOINONG HAG, XPELAOTAKAE AELTOVP-
yieg mov dev frav dabéoipeg oto C API g RocksDB 1) otnv gorocksdb kat mpoyw-
prioape 6TV avanTvén ToL avTicTot oL KWdIKA yia avTéG Tig Svo PiAodnkec. O mn-

yaiog Kwdkag Twv GLVVELTQOPWV pag eivat Stabéoiog ota mapakdtw anobetrpia:

e https://github.com/boolean5/rocksdb

e https://github.com/boolean5/gorocksdb

AkoAovBei oVvTOUN TTEPLYPAPT] TOVG.

« Kavéva amo ta dvo eidn ouvallaywv dev vootnpildotav and to C API g
RocksDB kat tnv gorocksdb. Xvvenwg, mpooBéoape kat otig dvo PipAobnkeg

neploodTepeg and 40 dopiég kat cuVapTHOELS Yia Tn Slaxelpton cuvailaywy.

o Xtnv gorocksdb vnripxe emiong éAAewyn vrootpiéng Tov WriteBatchWithIn-
dex, yeyovog mov pag odrynoe otny avantudn Twv anatopevwy ouvapT-
otV yta Tr dnuiovpyia Kat KATAoTpoPr} TOv, TNV eyypaer}, avdyvwon kat dta-
YPaQr TIHWV and avTd, Tnv ekkabdapiorn Tov, Tnv eyypaer tov otn Paon dedo-

HEVWV KTA.

o Am6 1o C API g RocksDB kat trv gorocksdb é\ewne emiong n vtootript&n tTov
Checkpoint. Emexteivape kat tig dvo Piphiobnkeg pe Tig oxetikég Sopég kat

OLVAPTHOELG.

o Kamoteg and 15 mapapétpovg pvBiong g RocksDB dev eixav e€axBei oto C
API g kaw otnv gorocksdb. Ta va 116 kataotioove TPOOPActipeg amd KwSiKa
ypappévo oe Go, mpooBéoape TI¢ avtioTolxeg ovvapTroels kat oTig dvo PiAio-

Onxec.

« H ovvdptnon GetProperty() tng RocksDB mapéxet mpooPaocn oe xproupeg
TANPOQOpieG, OTWG TO CLVOAIKO péEyefog TwV TVAKwWY Pviung 1 Twv apxeiwv
SST. IIpooBéoape oto C API kat otnv gorocksdb pia emmAéov ekdoxn avtng
™G ovuvaptnong, ovpParr pe tov tomo Paong dedopévwy mov vtootnpilel ov-

vailayés.

https://github.com/boolean5/rocksdb
https://github.com/boolean5/gorocksdb

4. YAOIIOIHXH 45

4.5 'Eleyxog Op0otnrag

Ze autiv TV evoTNTa, mapovotdiovpe TG peBodovg eEAéyxov uéow Twv omoiwv ema-
AnBevoape 0tL 0 etcd ouveyilel va AelTovpyei He TOV avapeVOUEVO TPOTO UETA TNV
AVTIKATAOTAOT TOL Hnxaviopol anobnkevong tov pe T RocksDB. Enetta and apke-
TOVG YVPpouG SOk Kat S1opOwoewv CQANHATOV KATAPEPANE VA KATAGTHOOVLE TNV

vAomoinor pag evpwoTtn Kat aftomoTtn.

4.5.1 Aoxég evotntwv

2ZKkomog Twv SoKIHDY evoTnTeV (unit tests) eivat o éAeyxog opfoTnTag pepovwpévwy
dopkwv oToleiwv evog Takétov, Onwg pia ovvaptnon. O etcd Stabétel éva eldikod
script pe Tnv ovopaocia test, To omoio kdvovTtag xprion Tov epyaleiov go test tpéxel
O\eg T1G SoKLEG evoTrTY TIoV BpiokovTal 0Tov Kwdikd Tov. [Tapadeiypata Aettovp-
YLV oV eAEyXovTalL amod TG SOKIHEG EVOTHTWY ATTOTEAOVV 1] AVAYVWOT| KAl EYYPaPN
Cevywv kAeldLo0-TIunG o€ [a ovaTotyia,) Tpoadnkn Kat apaipeon HeEAWY amd avThy,

1 Ay OTLYHLOTUTIOV Kat 1] EKKIVOT €VOG VEOU LEAOVG aTtd avTO KTA.

EmumAéov, to script test ehéyxet tnv alAnAenidpaon mehdtn kat e§unnpeTnT: eKKLVEL
évav egummpetntn etcd 0TOV 0MOI0 OTENVEL AUTAHATA KAt EAEYXEL TIG ATIAVTIOELG TOV OE
avtd. Emiong, dnuovpyel pia tomikr cvototyia anoteAovpevn and 3 péAn mpokelLéE Vo

va emaAnfevoet T cwot Aettovpyia NG Stemagpng ypappng evrohwv tov eted [114].

4.5.2 IT\at@opua AerTovpytkov eEAéyxov

H mAat@dppa Aettovpykov eAéyyov (functional test suite) Tov eted eival oxedtaopévn
yta va e§aogaliCet 6tLo eted tnpei Tig eyyvnoeig aflomiotiog kat evpwoTtiag tov. H por

gpyactwv g eivat n e§ng [115]:

1. Anuovpyei pia véa ovototyia etcd kat otéhvel Stapkwg o€ ALTAY aTHpATA £Y-

ypaens.

2. Ewayel éva opalpa otn ovototyia. Ald@opot TOTOL CYAAUATWY CLOTHHATOG
Kat SikTvoL éxovv povrehomownOei: TepUATIONOG TVXAiOV KOHBOV, TEPHATIONOG

NYETN, TEPHATIOUOG TAELOYNPIAG, TEPUATIONOG OAWY TWV KOUPWV, TEPHATIONOG

46 4. YAOIIOIHXH

KOHPOVL Kal EMAvaQopd TOV HETA amd HEYAAO XPOVIKO SIACTNHA WOTE Vo TTPO-

KAnOei amootoAn otrypotumoy, Stapépion diktvov, Siktvo pe kabvoteprioeis.

3. EmdiopBwvel To o@alpa Kal avapével TNV amokatdotaon opalng Aettovpyiog

™G ovoTolxiag etcd eVvTdg OVVTOHOV XPOVIKOV SLAOTANATOG.

4. Tlepével péxpt n ocvatolyio va eivatl TAPWG CLVETG KAl EEKIVAL TOV ETTOUEVO
yVpo etoaywyng opaipdtwy. Kabe yopog mepthappavel GAovg Tovg TOovG o@al-

HATwV IOV avaépOnkav oto Prpa 2.

2e mepIMTWOTN TOL 1) GVOTOLKia OEV KATAPEPEL VL ATTOKATACTHOEL TH AEITOVpYia TNG
HETA o KATOLo 0@AaApa, dnovpyeital £€va apxeio e TNV KATAGTAOT TG CLOTOLiag
To omoio pmopel va peletnOel apyotepa yla Tov evtomopd tov mpoPAfuarog [115].
Agrioape TV TAaT@Oppa Aettovpytkov eAéyxov va tpé€et ylia 10 ovvexopevovg yo-

povG xwpic va avagepBovv mpoPArpuata ot ovoTtolxia pag.

H mAat@oppa Aettovpytkod edéyxov amoteleital and dvo Sopkd otoixeia: Tov dai-
Hova etcd-agent mov tpéxet oe kdBe kOUPO TG cvoToLyiag kat Staxelpiletal TNV Ka-
taotaon tov eted kat Tov etcd-tester mov tpéxel oe EexwPLOTO UNXAVNHQ, ELOAYEL
oPAApaTa HEow emiKovwviag pe Tovg etcd-agent kat emaknBevel Tnv opOr) Aettovp-

yia tov etcd.

5. TEIPAMATIKH ASIOAOTHSH 47
5 Iepapatikn A§todoynon

5.1 Epyaleia, MeBodoroyia & ITepipaiiov

T v metpapatikr) a§loAOynon KAvoupe AmOKAELGTIKN XPHOT TOV EVOWUATWHEVO
gpyaleiov ypapung eviodwv benchmark tov etcd, eva xpnoonomdnkav ot mapa-

KATW eKOOOELG AOYIOUIKOV:

e Go1.8.3

etcd 3.2.0, TpomomoNUEVOG OTIWG TIEPLYPAPNKE 0TV eVOTNTA 4.2

o RocksDB 5.5.1, emekTeTapévn (e TIG CUVELCPOPEG TTOV avagépOnkav oTny evo-

mra 4.4

gorocksdb, emekteTapévn pe Tig ovveloQopég mov avagépOnkav otny evotnta 4.4

KaBe meipapa mpaypatomotr|fnke Tpelg Qopég kat yia TNy e§aywyr| Twv ypagnuatwy
mov akolovBovv xpnotpomotOnke o pécog 6pog Twv anoteAeopatwy. Onov dev ava-
QépeTal KATL StagopeTiko, To uéyefog Twv KAy Tpog avayvwon / eyypaen nrav
8 bytes kat To péyeBog Twv TiHWV yTav 256 bytes. To mepiPdAlov 010 omoio dievep-
ynOnkav ta melpapata anoteleito and 4 elovikég unxavég Tomov m3.xlarge oto
Elastic Compute Cloud (EC2) tn¢ Amazon. Tpeig and avtég oxnuati{av pa cvoTtot-
xta eted, evw) tétaptn natle Ttov poo tov meldtn. Kabe pia jrav e§omhiopévn pe 4
nopnveg, 15GB pvung, 2 diokovg SSD twv 40GB kat £ykatdotaot Tov AelTovpytkov

ovotnuarog Ubuntu.

Ztnv enopevn evotnta Ba xprnoonomoovpe TN akdoAovdn ocduPaocn yia tTnv ovopa-

ola Twv Stdpopwv ekdOTEWV TNG LAOTIOINOTG HaG:
« original:nmpwtoTummn ekdoxn Tov etcd, pue Tnv BoltDB wg unxaviouo anobin-
KELONG, TNV oTola PacioTnkay ot emodueveg eKOOTEL.
« base: n apxur pag vhomoinon, xwpic kapia feAtiotonoinon.

» bucket: avtr n ékSoon mepLEXeL TNV OXETIKN He TNV TPOTPAOT 0TOVG KASOVG

BeAtiotomnoinon.

48 5. IIEIPAMATIKH AEIOAOIrHXH

o optimistic: og avtrv v ékdoon, ot anatotddogeg cuvaAlayég avTikaTaoTa-

Onkav pe aotodoec.

« wbwi: og avtrv TNV ékdo0om, ot cuVallayEg avTikataoTabnkay pe Tov ovvdva-

opo WriteBatchWithIndex kat Snapshot.

« wb: og avtv TNV ékdoor), n dopr WriteBatchWithIndex avtikataotdOnke pe

v meplocdTepo anodotikr Sopn WriteBatch.

o final: n tehikn, PeAtioTomompévn €kdoon, Owg mpoékvye peta Tn pLOLON

napapétpwv' g RocksDB.

5.2 Amoteléopata

5.2.1 Enidoon eyypagwv

H dieknepatwtikn tkavotnta eyypagwyv mov emttevxOnke ano kabe éxdoon tng vho-
ToINoNG Hag, kabwg kat n PeATiworn TNG WG TOCOOTO TNG SLEKTEPAUWTIKAG LKAVOTITOG
™G éxdoong original, pmopovv va peletnBovv oto Zxnua 6. Xe avtd To mEeipapa
1000 mehdteg etonyayav otov etcd 1000000 Levyn kAediov-tiurng. Ot meldrteg mpooo-
HoltwvovTal and To gpyaleio benchmark pe diagpopetikég goroutines. Omwg avapé-
vaype, kabe BeAtioTomoinomn mov epappocape emépepe pa acOntn PeAtiowon emidoong

o€ OX£€0™ UE TNV TponyoLuevn €kdoom TnG vAomoinong.

25000
0 +3.4% +4.4%
0% -2.5%

20000 Y
S -21% A
(]
2]
@
% 15000
>
o
L
2 10000 -36.1%
<
[=))
>
2
=

5000

0
original base bucket optimistic whbwi whb final

Ixnua 6: Arekmepaiwtiky) IKAVOTHTA £YYpaQwy Tov etcd o€ OAeS TiG ek800ELS

HEnuetdvetat OTL Exovpe eQapuooet oe Oheg TG ekbooelg Tig puBpioelg mapalinliopot mov mept-
ypdenkav otny voevotnTa 4.3.6.

5. IIEIPAMATIKH AZIOAOIrHXH 49

[Tpokelpévou va gpunvevoel Kaveig owoTd autd Ta anoteAéopata, Oa mpénet va yvw-
piCet 6Tt n kaBvotépnon mov emiPdAletal and Tov pnxaviopd anodrjkevong tov etcd
elval Ovo €vag amod Tovg TapdyovTeg TOL CUVELCPEPOVV OTH OLVOAIKT KabvoTépnon

e§UTNPETNONG EVOG AUTHHATOG eYYpa@nG. Onwg avagépBnke oty voevotnta 2.1.5,

Kupiapyol mapdyovteg mov enmpealovv tnv emidoon eivau n kabvotépnon E/E otov
dioko Aoyw Twv kAfoewv fsync yia v evnuépwon tov WAL, kat n kaBvotépnon
SiktHov AOYyw TNG avTaAAayng HNVLHATWY yla TV enitevén opogwviag. Xto Zxnua 7
PAEmOLYE Lot TTPOOEYYLOT TOV TTOCOOTOV OLVELOPOPAG kdbe Tapdyovta 6TV oLVO-
Awry kaBvoTépnon pag eyypagng otov etcd oto melpapatikd pag meptPdAlov, dnwg
AUTH TIPOEKVYE ATIO TIG UETPLKEG XPOVOL eKTENEDTG TOV eted, Tn péon kabvotépnon
HLOG EYYPAPTIG OTOV ATOONKEVTIKO UNXAVIOUO KAl TOV XPOVO ATTOOTOANG UET EMLOTPO-

¢116 (RTT) petafd dvo eikovikwy punyavwv oto EC2.

Write Latency

7%
22%
47%

24%

wal fsync ' storage engine = network latency other factors

Ixnua 7: Iapdyovteg mov ovveiopépovy otny kabvotépnon eyypagwv otov etcd

5.2.2 Enidoon avayvwoewv

To Zxfpa 8 ametkovifet T SIEKTEPALWTIKT LKAVOTNTA AVAYVWOOEWV UEUOVWUEVWY KAEL-
diwv (point lookups) oe kabe éxdoon tng vAomoinong pag. Ta anotedéopata avtd mpo-
EKLYAV O TNV EKTEAEOT] TTEPAHATOG KATA TO omoio 1000 meAdteg mpayparonoinoav
1000000 artripata avdyvwong VoG CLUYKEKPLIEVOL KAELOLOV TTOV eixaple amd TpLy Qpo-

vtioel va amoOnkevoovpe otov eted, avdpeoa og 1000000 dAAa.

Onwg avapévape, mapatnpeitat emdeivwon TnG emidoong TwV avayvwoewy OTav avTL-
kaBiotovpe tnv BoltDB pe tn RocksDB. Qot600, mapoho mov ot feAtiotonooelg

Hag oxedtdoTnKay oTo vevpa TG Bektiwong tng emidoong Twv eyypagwy, forndnoav

50 5. IIEIPAMATIKH AEIOAOIrHXH

60000
0%

50000 12.4% -9.4% -8.6%

-19.9% -20.4%

40000
-36.5%

30000

20000

Throughput (requests/sec)

10000

original base bucket optimistic wbwi whb final

Ixnpa 8: AlekmepaiwTiky IKAVOTHTA AVXYVWOEWY pepovwuévwy kletdiwv Tov etcd

KAl 0TV eMavagopd tng emidoong Twv avayvwoewv o€ anodektd emimeda. XTnv €k-
doon final mapatnpovpe pia pkpr dvodo tng emidoong oe oxéon pe v €kdoomn wb,
egattiag TG pvOWong mapapétpwv g RocksDB, mov cuuneptédaPe tnv avénon tov

Hey€Boug kat Tov aptduod Twv MVAKWV pvAung kat tTny mpocdnkn eiltpwv Bloom.

H Stekmepatwtikn tkavotnta avayvwoewy eipovs kAetdiwv (range queries) pmopel va
napatnpnOet oto Zxnua 9. Ta amoteAéopata avTtd TPOEKLYAV ATO TNV EKTENEOT) TTEL-
papatog katd to onoio 100 mehdteg mpaypatonoinoav 100000 aitipata avayvwong

€VOG OVYKEKPLUEVOL EVPOVG KAELSLDV.

16000
14000 0%
—~ 12000
[S]
Q
0
£ 10000
[%]
(V]
>
g 8000
5
2 6000
S -66% -64.8% -64.1%
3 69.6% -69.5%
£ 4000 -77.8%
2000
0
original base bucket optimistic whbwi wb final

IxXNua 9: AlekmepaiwTiKy IKAVOTHTX avayvwoewy eVpovs kAetdiwv Tov etcd

e auTtnv Vv mepintwon, n emdeivwon eivat TOAD peyalvtepn and O,TL oTnV Tepi-

TTWOT] TWV AVAYVWOOEWY UEHOVWUEVWY KAESLWYV. [EVIKA, Ol avayvwoelg eDpovg KAeL-

5. IIEIPAMATIKH AZIOAOIrHXH 51

Swwv ota LSM-8évtpa eivat apyég, emeldr) ta kAedLd Tov avijKovy 0To e0pog umopei
va eivat Staokopmiopéva oe ToAamAda enineda tov dévtpov. Etot, kdbe eninedo mpémet
va eheyxOel, kdtt mov petagpdletal oe moAvapiBueg tpooPdoelg oe apyeia. EmmAéoy,
Ta 0QEAN TV PiATpwV Bloom yia TG avayvwoelg pepovopuévaov kKAetdtwv Ogv emekTei-
VOVTaL KL OTIG avayVWoeLg epovg kKAedtwvy, kabwg ta (nrovpeva kAedid Sev eivau
€K TV TTPOTEPWYV YVWOTA. ATd TV AAAn mhevpd, n dopry Tng BoltDB otov dioko tng
Sivet EexdBapo mAeovékTnpa yia avTOV TOV TOUTIO POpTOL Epyaciag, Onwg eidape TNV

vroevotnTa 2.2.1.

5.2.3 H kaBvotépnon tov cgo

Me Bdaon ta 6ca e&nyndnkav otnv vroevotnta 3.1.3, kabwg kat Ta gvprpaATa TOV

gpyaleiov dnuiovpyiag mpo@il mov mMapovoLaoTKAV OTNV VIToEVOTNTA 4.3.2, £XOUuE

Aoyoug va voylalopaoTte OTL 1) Xprion Tov epyaleiov cgo éxel eloaydyet kKabvoté-
pnon mov dev emitpénel 0TV LVAOTOINOT Hag va enweAnBei mAfpwg anod Tig dvva-
1otNTEG NG RocksDB oe eninedo enidoong. Tia v efakpifwon avtrg g vrode-
one, Tpaypatonotoape meipapa’® katd to onoio 1000 meAdteg eloryayav otov etcd
1000000 (evyn kAelSLOV-TIHNG KAt XPOVOUETPIIOAE TIG EVEPYELES eloaywYnG (put) o€
Tpia StagopeTika onpeia otov kwdika. Ta §vo and avtd Ppiokovtav otnv ékdoon
final xatftav n ovvaptnon rocksdb_writebatch_put() tov C API tngRocksDB
Kat 1 ovvdptnon WriteBatchPut () tng gorocksdb, n omoia xpnoomnotei to cgo yia
va kahéoet tnv rocksdb_writebatch_put(). To tpito onpeio PpiokdTav otnv €x-
doomn original, otn ocvvaptnon Put() tov makétov bolt, mov emevepyei otn dopn

Bucket. To Zxfjua 10 anetkoviCet Tr péon SLAPKEL TWV TPLOY AVTWV EVEPYELDV.

Eivat tpogavég 6tin RocksDB Stabétel Eexdbapo mheovéktnua oe oxéon pe tnv Bolt-
DB 0¢ 0,TL a@OpA TIG EVEPYELEG ELOAYWYTG. LOTOCO, TO TAEOVEKTNUA AVTO ETLOKIALETAL
amo TNV eloayopevn and To ¢go KabBvotépnorn. Zav anoTEAETUA, (Lo EL0AYWYT OTNV
¢kdoon final katalryet va eival Aiyo mo xpovoPopa and tnv avtioTtorxn evépyela

otnv ékdoorn original.

To Zxnua 11 deixvel Tov 6LVOAKO Xpovo mov damaviOnke oe evépyeleg eloaywyng

(put) kot katoxOpwong (commit) otig ekddoelg final kat original tov eted, katd

1*Autd 1o melpapa, kaBwg kat To emopevo, dev dieEfxbnoav oty cvotorxia EC2, al\d tomikd, oto
unxavnud pag pe 4 moprves, 4GB pvnung, Sioko SSD kat Aettovpyikd cvotnua Ubuntu.

52 5. IIEIPAMATIKH AEIOAOIrHXH

9
8 7.78
7.1
7
@ 6
=
>
& 5
o]
S 4
()
g
qg 3
< 2
1.38
1
0
rocksdb-c-api-put gorocksdb-put boltdb-put

Xxfua 10: H eniSpaon tov k60T0UG TOV cgo 0THY kaBvaTépnon eyypapwv

Vv mpaypatomnoinon melpdpatog oto omoio 1000 mekdreg etoryayav 1000000 {evyn
KAetdto0-Tipng. Ta dedopéva avtd amokthOnkav H€ow TV HETPIKWY XPOVOL eKTéNE-
ong tov etcd kat NG ABPOLONG TWV TIHOV SLAPKELAG TWV EVEPYELWV ELCAYWYTNG TOV

T(PONYOUUEVOV TIELPANATOG.

18
16
14
12
10

original
8 final

Total Duration (sec)

put commit

Ixnua 11: Svvodikn Sikpreia Aeitovpyiwv eyypagns (put) ke katoypwons (commit)

O avTiKTLTIOG TOV KOGTOVG TOVL €gO OTNV €MIGOOT TWV EVEPYELWV KATOXVPWONG &i-
vat TOAD HKpOTEPOG amd O,TL OTIG EVEPYELEG ELOAYWYNS, KABWG 1) eLoaydpevn and To
cgo kabvotépnon ava kAnon eivar apeAntéa oe oxéon pe T Stapkela KANONG TG
ovvapTNONG Katoxvpwong. Eniong, to mpotépnua g doprg TG RocksDB otov di-
OKO a&LOTIOLEITAL KATA TNV KATOXVPWOT), OTAV Ta AMOONKEVHEVA GTOV ATTOHOVWTT| TOV

WriteBatch (evyn khetdiov-Tiung eyypagovtat oto LSM-8évtpo.

5. IIEIPAMATIKH AZIOAOIrHXH 53

5.2.4 Enidpaon tov apiBpov nedatwv & tov pey£dovg Tipng otny enidoon

Zto emopevo meipapa eeTalovpe TNV KALAKWOHOTNTA TNG VAOTIOINONG HAG HE TOV
aptOuo medatwy MoV GTEAVOLY TAVTOXPOVA AUTHHATA EYYpaPriG oToV etcd kat Tr ov-
ykpivovpe pe Tnv kAlpakwotgotnta g ékdoong original. Katd tn Sidpkeld tov, o
aptBpog Twv medatwv mrpe TI§ TéG 1, 10, 100 kat 1000, evw kdbe gopd eloayovtav

100000 Levyn kAetdov-Tirng. Ta amotedéopata napovotalovrat 6to Zxnpa 12.

30000
+3.1%

25000

3
& 20000
2]
D
g +13.3%
i‘,’ 15000 original
= final
>
£
> 10000
3
o
<
[
5000 +7.6%
+1.8%
0
1 10 100 1000

Ixfua 12: AekmepaiwTiks] IKRVOTHTA €YYPAPWDY CVVAPTHOEL TOV apiOuot melatwv

AveEapttwg apBpod tehatwy, n ékdoon Final Eemepva oe enidoon v ékdoon ori-
ginal. Qot600, Ta peyaldtepa mOCOOTA PEATIWONG ATAVTWVTAL OTIG TTEPIMTWOELG
Tov 10 kat Twv 100 melatwv. [la va gpunvevoovpe avtiy TV TAOT, apkei va oke-
@Tobpe TNV oAtk opadomnoinong (batching) tov etcd. Oco mepiocdTepol merdteg
OVUUETEXOVY OTO Tieipapia, TO00 TtLo anodoTikr yivetal 1) opadomoinon. Xe OAeg Tig me-
PIMTWOELG 0 aplOpog Twv evepyelwv eloaywyns (put) mapapévet o idlog, aAld o aptd-
HOG TWV EVEPYELWV KATOXVPWOTG (commit) eival avTIoTpOPwG avaAoyog Tov aplBpod
nedatwv. Ooo mepLocOTEPEG ival OL EVEPYELEG KATOXVPWOTG, TOCO TEPLOTOTEPO EMW-
@elobpaOTE QMO TNV LTIEPOXT TNG €MIBOONG KATOXVPWONG TNG VAOTOINOTG Hag, Tov
Tapovoldotnke oto Zxnua 11. Evtovtolg, avtn n yevikn taon 0gv loxvel 0Ty mepi-
TTWOT) 7oL 0 aptBudg mehatwv eivat ioog pe 1, kabwg n Stagopd petald g Sidpketag
TWV EVEPYELDV KATOXVpwONG avdpeoa ol ekdooelg final kat original amotelei
HIKPOTEPO TTOCOOGTO TOV GLVOAIKOD XPOVOL OAOKATPWOT|G TOV TIELPANATOG OE OXEOT) [UE
TIG dANeg mepmTwoelg. Avtd ovpPaivel Aoyw Tng emidpaocng Tov pikpdtepov Paduod
TAVTOXPOVIOHOV OTNV OHAGOTIOINOT ATNUATWY OTO €MINESO TOV APXEIOL KATAYPAPHG

Tov alyopiBpov Raft, mov yivetat yia Tov Stapolpacd Tov k6aTovg TNG Fsync.

54 5. IIEIPAMATIKH AEIOAOIrHXH

Zto meipapa mov akolovbei e€etdlovpe Ty emidpaon Tov peyéBovg TG TG OTNY
enidoon tng ékdoong final oe ovykplon pe v ékdoon original. 100 meAdteg et-
oayovv (ebyn kAetdtov-tiung pe péyebog khetdiov 8 bytes otov eted, evw o aptBpog
TV kAetStwv kat To péyedog Twv Tipwv tibevtal kdbe popd ioa pe Eva dtapopeTikd
Cevydpt Tov ovvolov 256 kat 1000000, 4000 kat 64000, 64000 kat 4000, 512000 kat
500, 1000000 kat 256. Ta amoteAéopata pmopovv va mapatnpndovv oto Zxnpa 13.

12 +15.6%
1
2 08
o
oy
c -8.8% "
% 0.6 original
- final
[}
g
§ 0.4
<
0.2
+0.2%
-7.9% -4.1%
0
256B 4K 64K 512K Y

Ixnua 13: Méon kaBvotépnon eyypapwy atov etcd ovvaptroet Tov peyé0ouvg Tiung

211 MepLoodTepeg epntoelg 1) ékdoon final Eemepva oe emidoon tnv ékdoomn ori-
ginal. Otav opwe ot Tipég anoktroovy péyedog ioo pe 1IMB, n BoltDB tig Staxetpile-
Tat o anodoTikd. Xta LSM-8évtpan eloaywyn peydAwv Tipwy givat mboavo va mupo-
dotnoet alemdAANAEG CUUTTVKVWOELS, TPOKAAWVTAG £TOL eMMPOoDeTn kaBvoTépnon.
21 ovykekppévn mepintwon, to 1IMB eivat to mAnotéotepo 010 oLVOAKO péyebog
TV TUVAKWV uviung péyebog tipng. Zvvenwg, mpokalel efalpetikd ovxvd n peta-

Qopa TovG 0TOV SloKO.

5.2.5 Katavalwon xwpov otov dioko

Ztn ovvéxela, ovykpivovpe to uéyebog tov backend otov Sioko peta&y g éxdoong
final kot G ékdoong original, petd tnv oAokAnpwon TG POpTwWONG ToL etcd pe

4000000 Cevyn kAedov-Tipng. To amotédeopa @aivetat oto Zyrua 14.

Onwg frav avapevopevo, agov 1 RocksDB e@appoler ovpmieon dedopévov evw n
BoltDB oy, n katavalwon xwpov otov dioko eival katd 65, 7% [HKpOTEPT OTNV £K-

doon final. EmmAéov, onwg e&nynoape oty vroevotnta 2.2.3, n BoltDB epgavi-

5. IIEIPAMATIKH AZIOAOIrHXH

55

1600

1400

1200

1000

800

DB size (MB)

600

400

200

original

-65.7%

fina

Xxnua 14: Méyebos 16 faong dedopévwy Tov backend tov etcd otov dioko

el éva €id0¢ ECWTEPIKOD KATAKEPUATIOUOD, SECUEVOVTAG TIEPLOTOTEPO XWPO ATO O,Tt

XPNOLLOTIOLEL OTHV TIPAYUATIKOTNTAL.

5.2.6 Katavalwon pvijung

Exkivwvtag tov etcd pe v evtoln /usr/bin/time -v etcd xat eyypagovrag oe

avtdv 1000000 fevyn kAedov-Tipng, AaBape To pHéyloto XWPo QUOLKHG HVIUNG TTOV

katéhaPe n depyaoia etcd katd tn Sidpkela Tov TEPApATOG, 0TIG ekdOoelg Final kot

original. To Zxnjua 15 anekovilel Ta anotehéopata.

800000

700000

600000

500000

400000

300000

Maximum RSS (KB)

200000

100000

0

original

+91%

final

Ixnua 15: Katavadwon pviung otov etcd

[Mapatnpodue o1t n €kdoomn original katavalwvel TOAD Atydtepn Uviun and tnv

¢kdoon final. To amotéheopa avtd fTav avapevopevo, kabwg éxovpe pvOuioet

RocksDB wote va xpnotpomnotei ToMamAovg mivakeg pvipng peydlov peyéoug.

56 6. EIIIAOTOS
6 Emiloyog

6.1 Xvunepaopata

Yvvolikd, 1 vAomoinon pag katdeepe va avtanokpllei otig mpoadokieg mov Statvmw-
Onkav 010 keQAAalo 3. ZVuQwva e Ta anoTeAéopaTa TG TElpapatikng atoAdynong,
ETUTUYXAVEL KAAVTEPT €MIOOOT EYYPAPWY KL HKPOTEPT) KATAVAAWOT) XWPOL 0TOV di-

0KO, XAVOVTaG OUWG 0€ eMOG00T AVAYVWOEWY KAl KATAVAAW®OT) UVIUNG.

SUYKEKPLUEVQ, 1] EMOOOT AVAYVDOEWY, O€ 0,TL APOPA TIG AVAYVWOELG LELOVWUEVWDV
KAedwv, dtatnpndnke oe anmodektd enineda. H enidoon twv avayvwoewv evpovg
KAetSlwv woTdoo, Tapovotdlet onpuavtik emdeivwon. To mooooto Pertiwong Tng emi-
doong eyypagwv kupaivetat peta&d Tov 1, 8% kat tov 13, 3%, avdloya pe tov aptBuod
TEAATWV IOV OTEAVOLY auThpata TavToxpova. H katavalwon xwpov otov dioko vmo-
XWpnoe Katd meplocotepo anod 50%, evw 1 katavdAwon pviung oxedov dimhaotd-
otnke. Emiong, n mhatgopua eréyyov tov etcd emaAnbevoe v tMpnon twv eyyvn-
oewv aflomiotiag, ovvémetag kat VYNNG StabeotpudtnTag Tov petd v alayrn ano-
OnkevTikoD unxaviopov mov epapuooape. Emmpdodetn Oetikn enintwon tng vAomnoi-
NoNG pag anotéAeoe 1 eEAAenyn TNG aAvaykng TAKTIKNG avacvykpdtnong Tov backend

KA 1) ApOT) TOV TEPLOPLOUOV ATTOONKEVTIKOV XWPOU.

H epyaoia avtr katédei&e 0Tt pia mpooéyylon Paoctopévn ota LSM-évtpa umopel va
ennpedoel kaboplotika TNy kataAAnAdtnTa Tov etcd yla pOpTO epyaciag mov xapa-
KTnpiletar and ovxvég eyypagéc. QoTd00, TO KOGTOG XPNONG Tov cgo anodeixOnke

kaBe dANo mapd apeAnTéo Kat TEPLOPLOE TNV MIGOOT] TOV CLOTHUATOS A,

6.2 MellovTikég AvvatoTnTeg

Mia moAAG vrooxopevn evarllaktikr vhomoinon Ba avtikabiotovoe T RocksDB pe
évav ypappévo oe YAwooa Go amoBnkevtiko pnxaviopo factopévo ota LSM-8évtpa.
To Badger [116], éva véo kat apKeTA SNHOPIAEG EVOWHATWHEVO GVOTHHA amobrkevong
KAewdov-tipng Pactopévo ota LSM-0évtpa, mpoékvye akpifws amd tnyv avaykalod-
™ra pag anodoTikng Avong avtikatdotaong tng RocksDB yia ovotrpata AoyLopkon

ypappéva oe Go. To kvplapxo KiviTpo Twv oxeSIAoTOV TOL HTAV 1] AVAYKN ATOQUYNG

6. EIIINOI'OX 57

TOV KOOTOVG Kat TG TOAVTAOKOTNTAG TOL gpyaleiov cgo. O oxediaopog Tov Baoile-
Tat og pia dnpooievon tov L. Lu k.a. mov €yive to 2016 [117],) onoia mpoTteivet Tov
Saxwplopo Twv kAedwv and Tig TipéG. Ediotepa, ot Tipég amobnkevovral o éva
apyelo Tpoeyypagwy, mov ovopdletal apyeio kataypagng Tipwv (value log), evad ta
KAetdta amobnrevovtal 6to LSM-0£vTtpo padi pe Seikteg 0TIG TIHEG TTOL TOVG AVTLOTOL-
XoUV. Me auTOV TOV TpOTO, EAAXLOTOTIOLEITAL T) EVIOXVOT] AVAYVWOEWY KAl EYYPAPWY.
Kabwg ta kAedid teivouv va éxovv pikpdTtepo péyebog amo Tig TG, To Tapayopevo
LSM-8¢vtpo eivat emtiong oAV pikpotepo. Katd cuvémela, 10 KOOTOG TWV CUUTUKV®-
oewv ehattwvetat. Emiong, ta enineda tov LSM-8évtpov eivat Atyotepa, yeyovog mov
oVpBAaAAEL 0TI HEIWOT TWV ATIATOVHEVWY TIPOOPACEWY O€ apXeia ylo TNV VPEDT) EVOG

KAeLd1o0 01N XepOTEPN TEPiMTWOT) [118].

Eniong, Ba mapovoiale eviiagépov 1 Ste€aywyn evog TeLpApATog 6To 000 TO GUVOAO
Twv Sedopévwv Ba §emepvovoe ae uéyedog t Stabéoun pvnun, pe oxomnd Ty avddetén
NG vrepoxn g Tov LSM-dévtpov ot Saxeipion avtng Tng mepintwong. Onwg éxovpe

neptypdyel oty vrogvotnta 2.3.5, n BoltDB Oa avaykalotav va Stafalet Stapkwg

oehideg amod tov Sioko mpokelévov va eELTNpeToEL Ta l0EPXOEVA arThpata. Mia
QKON TPOTACT), OTO TIVEDHA TNG TAPOLG a&loToinoNg TNG TPEXOVOAG LVAOTIOINOTG
Hag, agopd tnv avtopatomnoinon tng Stadkaciag PEATIoOTNG pVOUIONG TApapETPWY
¢ RocksDB péow katdAAnAov script. EmmAéov, évag tpdmog va pHeTplacovpe To
KO00TOG TOv cgo Ba fTrav n mpoodnkn evog emmédov kwdika oe Go mov Ba Aettovp-
YyoU0E WG AMOUOVWTNG Yla T SLATHPNOT TV EVHEPWOEWV TOL katevBhvovTtal oTo
WriteBatch kat Oa 115 e@appole OAeg padi katd TNV KatoXOpwWOoT, AVTIKABIOTAOVTAG

€101 \IALAdEG KANOELG €gO e HoVo pia.

Mia emmpdobetn 18éa eival) epappoyn katatunong (sharding) tov xwpov kAediwv
oto eninedo G RocksDB, onwg mpoteivetar otov 0dnyod cvvtoviopod g [64], pe
OKOTIO TNV AP EKUETAAAEVOT) TOV TAVTOXPOVIOHOV TNG TexVoAoyiag amobrnkevong
amnd Tig ovpmukvwoels. Ipoxwpwvrag éva Pripa mapanépa, anmobnkevovtag ta TuN-
uata (shards) oe Stagopetikovg diokovg Ba pmopovoape va Stapolpdoovpe oe ALTOVG
TIG EYYPAPEG, av§avovTag onpavTika Tr StekmepatwTikn tkavotnta tov eted. Téhog,
Oa propovoape va tpomomotjoove Tov etcd woTe va vTooTnpilel TOANATAOVG NYE-

Teg, KaBe €vag ek Twv omoiwv Ba eival vTELOVVOG yia Eva SLAPOPETIKO TUAUA.

58

Introduction

In this chapter, we outline the scope of our work. We first provide a quick overview
of the problem at hand. Next, we illustrate our proposed solution and mention some
types of applications that can benefit from it. We move on to briefly describe some
existing solutions and their shortcomings. Finally, we present the structure of the doc-

ument.

1.1 Problem Statement

Data storage has always played a fundamental role in computing. Unlike centralized
storage, distributed storage is scalable, highly-available and fault-tolerant. Nowadays,
distributed storage systems not only provide a mere means to store data remotely, but
also offer innovative services like peer-to-peer file sharing, online backup solutions,

distributed file systems, etc.

A key-value store is a type of NoSQL database that internally uses an associative array
to store data in the form of key-value pairs. Key-value stores tend to be more scalable

and expose a simpler API' than relational databases.

Etcd is a distributed key-value store for the most critical data of a distributed system
[1]. Since it was designed for the purpose of storing shared configuration for large-
scale clusters, and for similar use cases where write requests are expected to be scarcer
than read requests, it favours the performance of the latter over that of the former by

design. A multitude of factors determine the performance of etcd. In this work we

! Application Programming Interface

59

60 CHAPTER 1. INTRODUCTION

focus on one of them: the storage engine. Currently, to persist key-value pairs to disk

etcd uses BoltDB, which implements a read-optimized data structure called B+ tree.

The above might become an inhibitory factor for applications that want to integrate
with etcd but exhibit mainly write-intensive workloads. In the age of Big Data, appli-
cations of this type are becoming increasingly common. Thus, the primary objective of
this thesis is the optimization of etcd for write-heavy workloads via replacement of its
current storage engine. RocksDB, a state-of-the-art local key-value store, was deemed
to be an ideal fit for this case. It is based on an LSM-tree?, which is an inherently write-

optimized data structure.

In the next chapters, we thoroughly describe the design and implementation of the

storage engine transition and present the obtained results.

1.2 Motivation

In this section we highlight the value of our contribution by mentioning specific types
of applications that could benefit from it. In other words, we construct an indicative
list of example applications that could leverage a distributed storage system like etcd

and whose workload is known to be write-intensive.

« Data collection systems: data collection is of great significance for scientific
research and everyday life. Sensor data collection, online surveys and traffic
monitoring are concrete examples of this application category. They all involve
voluminous amounts of incoming data that has to be efficiently loaded and re-

liably stored for subsequent analysis.

« Online backup solutions: they are characterized by frequent write operations
aiming to keep the backed up data up to date with their local copy, while reads

are only issued in case the local copy is damaged.

» Mail servers: The I/O operation mix that typically takes place in email mes-
sage stores is reported to be write-heavy [2], [3]. Adequate write throughput is

therefore essential for the provision of an acceptable quality of service.

*Log-Structured Merge-Tree

1.3. EXISTING SOLUTIONS 61

Social media websites: these are yet another big data system whose ability to

sustain a high write throughput is crucial.

« Interactive games: Maintaining player activity history entails large amounts of

writes; often every single move has to be recorded.

« Distributed logging: various types of software employ event logs for purposes
ranging from security management to debugging and user behaviour analysis
[4]. If the insertion of new log records is not handled efficiently enough we run

the risk of hampering the performance of the main application.

 Online transaction processing systems: examples include order processing,
airline reservations, payroll and financial transaction systems. These are all sce-

narios with write-intensive workloads.

The following excerpt from the etcd developers’ blog confirms that our effort is in
the right direction: “The ideal key-value store ingests many keys per second, quickly
persists and acknowledges each write, and holds lots of data. If a store can’t keep up
with writes then requests will time-out, possibly triggering failovers and downtime. If
writes are slow then applications appear sluggish. With too much data, a store may

crawl or even be rendered inoperable” [5].

What is more, Yahoo, reports a steady progression from read-heavy to read-write
workloads, driven largely by the increased ingestion of event logs and mobile data [6],

[7].

1.3 Existing Solutions

Our implementation is not the first one that integrates an LSM-tree-based storage en-
gine into a distributed storage system. In this section we briefly describe other such

approaches and mention their similarities and differences from our own.

62 CHAPTER 1. INTRODUCTION

1.3.1 CockroachDB

CockroachDB is a distributed SQL*> database built on a transactional and strongly-
consistent key-value store. It is developed by Cockroach Labs and can be used for
building global, scalable cloud services that survive disasters [8]. It is a highly-available

CP* system like etcd.

In the architecture of CockroachDB, the highest level of abstraction is the SQL layer. It
connects to the underlying key-value store by constructing prefixes from the SQL table
identifier, followed by the value of the primary key for each row. This way it manages to

combine the rich functionality of SQL with the scalability common to NoSQL stores.

A typical setup consists of a few nodes. Nodes contain one or more stores. Each store

should be placed on a unique disk and internally contains a single instance of RocksDB.

B

Distributed [St] \\
Cloud \
Infrastructure [Distributed, Monolithic KV Store] !
1

| 1

} ¥ !

/ Node 3 \ e Node 4 N :

B - 1

. - - - 1

Store Store Store Store :
RocksDB RocksDB RocksDB RocksDB 1
L = 1

S — . S— |

1

Store Store Store Store 1
RocksDB RocksDB RocksDB RocksDB !

)) ”. 1

S B !

B B 1

— - — 1

Store Store Store Store !
RocksDB RocksDB RocksDB RocksDB ,'
_— e

Figure 1.1: Overview of CockroachDB architecture [9]

CockroachDB scales horizontally, by dividing the key-value space in ranges and stor-
ing each range in a local instance of RocksDB. This technique is called sharding. Each
range is replicated to a total of three or more CockroachDB servers. In order to ensure

consistency between data ranges the Raft consensus protocol is used, just like in etcd.

*Structured Query Language
“*Consistent and partition tolerant

1.3. EXISTING SOLUTIONS 63

In fact, those two projects share the same implementation of the Raft algorithm”.

As data flows in, existing ranges split into new ones, aiming to keep a relatively small
and consistent range size. Newly split ranges are automatically rebalanced to nodes

with more capacity [8].

Compared to etcd, CockroachDB seems like a more ambitious project. Indeed, not
only does it support automated load-balancing and failover, but also its support for
horizontal scaling by partitioning data across multiple nodes, enables it to reliably han-
dle database sizes of terabytes and above. Etcd on the other hand lacks keyspace shard-
ing and is limited to several gigabytes. Adding more nodes to an etcd cluster, enforces

its fault-tolerance, but does not increase its capacity, as is the case with CockroachDB.

However, sharding of data across multiple consistent replication groups introduces the
need for a coordination protocol among them, which in turn induces longer latencies

than those of etcd, which supports only a single replication group.

What is more, CockroachDB possesses an external SQL API with richer semantics
than etcd’s API, but at the cost of additional complexity for processing, planning, and
optimizing queries [10]. Despite their similarities, each software has a different target
group. Etcd is more appealing to users who need a simple, lightweight, flat key-value
store, free from unnecessary overheads. Finally, etcd having been used in production
for a longer period, is a more mature project than CockroachDB and already has a

broad established user base.

1.3.2 TiKV

TiKV is yet another distributed key-value database that relies on the Raft algorithm for
consensus and stores its data on RocksDB instances. This transactional and consistent

store is developed by PingCAP and written in Rust.

TiKV provides horizontal scalability by following a sharding scheme very similar to
that of CockroachDB. In this case, the partition unit is called a region. A key compo-
nent of this key-value store is the Placement Driver, which manages region replication,
stores metadata such as the region location of specific keys, and performs automatic

load-balancing [11]. The Placement Driver is in fact an etcd cluster.

*https://github.com/coreos/etcd/tree/master/raft

https://github.com/coreos/etcd/tree/master/raft

64 CHAPTER 1. INTRODUCTION

‘ Client ‘
Placement

rec [] rec [1 rec [1 rec [l w

TiKV Mode1 TiKV Node2 TiKV Node3 TiKV Mode4
______________;:'_'_'_:'_'_'_:'_'_'_'_'__:'_'_'_:'_'_'_:'_'_'_:'_j_::::::::::::::3_;::::::::::::::,

| Region 1 | Region 1 | | Region 2 | | Region 1 |
! | Region 3 ‘ | Region 2 | | Region 3 | | Region 2 |
i Raftgroups ! .
|
B O Ot B SO

Store1 Store2 Stored Stored

Figure 1.2: Sharding and region replication in TiKV [11]

TiKV is actually a component of TiDBS, a distributed SQL database whose layered
architecture bears a notable likeness to that of CockroachDB. TiDB works as the SQL
layer and TiKV works as the key-value layer [12]. Even though it is possible to use
TiKV as a standalone key-value store, the completeness of its API is nowhere near that

of etcd.

1.3.3 Other Related Work

In this subsection we mention two more distributed storage projects and the ways in

which they attempt to optimize their write performance.

MongoDB

MongoDB’ is an open-source, distributed NoSQL database. It is horizontally scalable,
consistent and stores data as documents in a binary representation. Just like the sys-
tems previously described it harnesses the innovations of NoSQL, while maintaining

the semantic richness of relational databases.

Through the use of a pluggable storage engine architecture, it allows the user to se-
lect the most suitable storage engine based on their expected workload [13]. Cur-
rently, the default storage engine is WiredTiger®. It is a high-performance, transac-
tional, NoSQL storage engine that offers a choice between B-tree and LSM-tree data

structures. RocksDB is also a common option [14].

Shttps://github.com/pingcap/tidb
’https://github.com/mongodb/mongo
8https://github.com/wiredtiger/wiredtiger

https://github.com/pingcap/tidb
https://github.com/mongodb/mongo
https://github.com/wiredtiger/wiredtiger

1.3. EXISTING SOLUTIONS 65
MyCassandra

Cassandra’ is another open-source, distributed NoSQL database with a custom query
language interface, developed by the Apache Software Foundation. Itis scalable, highly-
available, decentralized and has an impressive user base. Internally it uses a storage

structure similar to an LSM-Tree.

MpyCassandra is an interesting effort to make a cloud storage system simultaneously
read and write-optimized via adaptation of a modular design, analogous to that of
MongoDB. The novelty of this approach resides in its proposal of a heterogeneous
cluster, built from MyCassandra nodes with different storage engines. In this archi-
tecture, a proxy receives incoming requests and depending on their type (read or write
query) routes them synchronously to nodes optimized for this query type, and asyn-
chronously to the rest. To maintain consistency among replicated data a quorum pro-
tocol is employed. In an example cluster of three nodes, this introduces the need for
at least one of them to perform well with both types of workloads. An in-memory

storage engine node satisfies this requirement [15].

For example, a write query is synchronously routed to write-optimized and on-memory
storage engine nodes and is asynchronously routed to a read-optimized storage engine

node, as shown in Figure 1.3. .

(a) Basic idea (b) Satisfy a quorum protocol

write query

* W: Write-optimized node
* R: Read-optimized node
* RW: On-memory node

Figure 1.3: Basic concept of a heterogeneous MyCassandra cluster [15]

It is worth noting again that the aforementioned projects are far from being simple dis-
tributed key-value stores, as lightweight as etcd. Other interesting, distributed, plain
key-value stores include project Voldemort'’, MemcacheDB''and Scalaris'?, but as far

as we know there are none that are both persistent and write-optimized, with the ex-

*https://github.com/apache/cassandra
https://github.com/voldemort/voldemort
"https://github.com/stvchu/memcachedb
2https://github.com/scalaris-team/scalaris

https://github.com/apache/cassandra
https://github.com/voldemort/voldemort
https://github.com/stvchu/memcachedb
https://github.com/scalaris-team/scalaris

66 CHAPTER 1. INTRODUCTION

eption of Riak KV. Even in the case of Riak KV'* though, or in cases that it is trivial
to integrate new persistence mechanisms into those key-value stores, they happen to
be fundamentally different than etcd regarding other important aspects, such as their

consistency guarantees or the functionality exposed by their API.

1.4 Thesis Structure

The rest of the document is organized as follows:

« Chapter 2: presentation of the theoretical background and concepts that our

work is founded upon.

« Chapter 3: analysis of the architecture of our solution and design decisions from

a higher-level perspective.

 Chapter 4: demonstration of the focal points of our implementation, reference
to the problems we faced during the development process, as well as the pro-

posed workarounds, optimizations and testing.
 Chapter 5: experimental evaluation of our solution.

« Chapter 6: concluding remarks, suggested future improvements and alternative

approaches.

Bhttps://github.com/basho/riak kv

https://github.com/basho/riak_kv

Background

In this chapter we provide the key theoretical elements for the understanding of our
work. First, we explain several fundamental principles from the area of distributed
systems and storage systems in general. We move on to describe the architecture and
functionality of etcd, the main software component of this project. Then, follows an
analysis of BoltDB, the current storage engine of etcd and its proposed replacement,
RocksDB. The analysis includes their respective on-disk data structures. This chapter
concludes with a brief presentation of Go, the programming language in which etcd,

BoltDB and our contribution are written.

2.1 Distributed Systems & Data Storage Concepts

2.1.1 An Overview of Distributed Storage

According to Wikipedia, “a distributed data store is a computer network where infor-
mation is stored on more than one node, often in a replicated fashion. It is usually
specifically used to refer to either a distributed database where users store informa-
tion on a number of nodes, or a computer network in which users store information

on a number of peer network nodes” [16].

67

68 CHAPTER 2. BACKGROUND
A paradigm shift: from centralized to distributed

In the era of Big Data, Web 2.0, and the Internet of Things (IoT) storage systems are re-
quired to manage a huge amount of digital data which is created daily and accumulates
to unprecedented amounts. A tipping point has been reached, at which the traditional

approach of using a stand-alone storage box no longer works [17].

A distributed approach to storage has emerged to face the challenges that cannot be
met by centralized systems. Distributed data stores, unlike their centralized counter-
parts, have an unmatched ability to scale horizontally (scale out), by adding more nodes
to the system. Their scalability results in improved performance, as requests can be
processed by many machines, instead of being limited to one. Moreover, when shard-
ing is applied, the addition of extra nodes to a distributed storage network increases

its capacity.

Scalability is not the only factor that has lead to this paradigm shift from centralized
to distributed. Centralized systems expose by nature a single point of failure. If the
central storage node is damaged, e.g., experiences a disk failure, then data will be irre-
vocably lost. There are applications though, for which reliability is crucial, introducing
the need for data replication. Distributed solutions ensure that there exist always con-
sistent copies of the data on different nodes, a fact that makes them fault-tolerant. In
this case, even if one or more nodes fail, the data can be retrieved from another. Also,
while repairing the failure, e.g., by replacing the failed node with a healthy one, the

system remains capable of servicing requests. It is in other words highly available.

Another reason for the prevalence of distributed data stores lies in their cost effec-
tiveness. Scaling out usually involves the addition of inexpensive, commodity hard-
ware. On the other hand, centralized solutions in an attempt to handle ever-increasing
amounts of data, resort to vertical scaling (scaling up). This means that they add re-
sources to a single node, typically involving the addition of CPUs', memory or disks
to a single computer. This requires the constant provision of new and often expensive
hardware. For example, an increase in the number of CPUs of a machine may require
a motherboard upgrade and introduce higher cooling and power requirements. Like-
wise, adding more disk trays might also require an extra storage controller. Today,

system architects often prefer to configure tens or hundreds of low-cost computers

'Central Processing Units

2.1. DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 69

into clusters to obtain aggregate performance that may supersede even that of a super-
computer, whose cost is prohibitively high [18]. In addition to that, scaling vertically

usually requires downtime, while scaling horizontally can be done on-the-fly.

However, there are cases where centralized systems are still the preferred option due

to their simpler programming design, security and smaller administrative overhead.

2.1.2 Key-Value Stores

A key-value store is a type of database that can store, retrieve and update information
in the form of key-value pairs. The key is used to uniquely identify the value, which
contains the actual data. Internally, this relationship is implemented via an associative
array, more commonly known as a dictionary or hash. The key is represented by an
arbitrary string, while the value can be any kind of data, e.g., an image, a document

etc.

In general, key-value stores do not have a query language. Data management is done
via simple get, put and delete commands. The simplicity of this model makes them fast,
easy to use, scalable, portable and flexible [19]. Like all databases, they can run locally
or in a distributed environment. Distributed key-value stores have been gaining a lot

of popularity lately, as part of the broader NoSQL movement.

NoSQL versus relational databases

NoSQL databases provide a mechanism for storage and retrieval of data that is mod-
elled in means other than the tabular relations used in relational databases. As it is
descriptively explained in a MongoDB article on NoSQL databases [20], “in the case of
relational databases individual records (e.g., “employees”) are stored as rows in tables,
with each column storing a specific piece of data about that record (e.g., “manager”,
“date hired”, etc.), much like a spreadsheet. Related data is stored in separate tables,
and then joined together when more complex queries are executed. For example, “of-
fices” might be stored in one table, and “employees” in another. When a user wants to
find the work address of an employee, the database engine joins the “employee” and

“office” tables together to get all the information necessary”.

Furthermore, to access data stored in relational databases a structured query language

70 CHAPTER 2. BACKGROUND

using select, insert, and update statements has to be used. NoSQL stores are accessed
through object-oriented APIs. Relational databases were mainly developed in 1970s to
deal with first wave of data storage applications, while NoSQL databases started being
developed around the late 2000s to deal with the limitations of the former.

When compared to relational databases, NoSQL databases are more scalable and pro-
vide superior performance, and their data model addresses several issues that the rela-
tional model is not designed to address. Specifically, relational databases lack agility,
as they need to know the type of data that is going to be stored in them in advance.
Also, each time new features are added the database schema needs to change. NoSQL
databases are free from these restrictions because they are built to allow the insertion

of data without a predefined schema.

Relational databases do not have native support for sharding and replication, which
makes their operation in distributed environments a very complex task that requires
the development of additional application code. In other words, they do not have the
inherent ability to scale horizontally. NoSQL databases, on the other hand, usually
support auto-sharding and auto-replication, meaning that they natively and automat-
ically spread data across an arbitrary number of servers, maintaining availability and

providing low latency [20].

The basic NoSQL database types include key-value stores, which we have already de-
scribed, and the following three:

« Document databases: they pair each key with a complex data structure known
as a document. Documents can contain many different key-value pairs, or key-
array pairs, or even nested documents and are often encoded in XML, YAML,

JSON or BSON?.

« Graph stores: this kind of database is designed for data whose relations are well
represented as a graph consisting of elements interconnected with a finite num-
ber of relations between them. The type of data could be social relations, public

transport links, road maps or network topologies [21].

+ Column stores: data is stored in cells grouped in columns of data rather than as

*Extensible Markup Language, Yet Another Markup Language, JavaScript Object Notation, Binary
JSON

2.1. DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 71

rows of data. Columns are logically grouped into column families. The follow-
ing example by G. Kumar illustrates the advantage of this type: “querying the
titles from a bunch of a million articles would be a painstaking task while using
relational databases as it would go over each location to get item titles. On the
other hand, when using NoSQL the titles of all the items can be obtained with

just one disk access” [22].

Obviously, key-value stores are the simplest among NoSQL types.

Use cases and notable implementations

The simplicity, low latency and flexibility of key-value stores render them ideal for
numerous use cases. Among the most popular is personalization (storing user prefer-
ences and profiles) and session management (in web applications, mobile applications

and multi-player online games).

The following are examples of prevalent key-value stores ordered by popularity, as re-
ported in the monthly DB-Engines Ranking of Key-value Stores [23] for August 2017:
Redis®, Memcached, Apache Cassandra, Riak KV, BerkeleyDB*, Level DB, RocksDB,
WiredTiger, TokyoCabinet®, Scalaris, Project Voldemort etc.

2.1.3 CAP Theorem

The CAP theorem states that it is impossible for a distributed system to simultaneously

provide all three of the following guarantees:

« Consistency: any read operation that begins after a write operation completes

must return that written value, or the result of a later write operation.

« Availability: every request received by a non-failing node in the system must

result in a response (non-error or timeout) within a reasonable amount of time.

« Partition Tolerance: no set of failures less than total network failure is allowed

to cause the system to stop functioning.

*https://github.com/antirez/redis
*http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
*http://fallabs.com/tokyocabinet/

72 CHAPTER 2. BACKGROUND

A network partition is a damage to the network connecting the components of a dis-
tributed system, that results in messages sent from one node of the system to other

nodes being delayed or dropped.

The CAP theorem was proposed by Eric Brewer in 2000. Seth Gilbert and Nancy Lynch
published a formal proof [24] in 2002. The theorem has often been characterized as
misleading, a common misconception being that a distributed system needs to pick
two out of the three guarantees for the whole duration of its operation. But what it
states is in fact that in the presence of a network partition, one has to choose between
consistency and availability. In absence of network failure, that is, during normal oper-

ation of the distributed system, both availability and consistency can be satisfied [25].

Consistency = CA Availability
cp ' AP

Partition

Tolerance

Figure 2.1: Visualization of the CAP theorem [26]

CP systems

If availability is not required, then it is easy to achieve consistency and partition toler-
ance. According to S.Gilbert and N. Lynch [24], “many distributed databases provide
this type of guarantee, especially algorithms based on distributed locking or quorums:
if certain failure patterns occur, then the liveness condition is weakened and the ser-

vice no longer returns responses. If there are no failures, then liveness is guaranteed”.

AP systems

It is possible to provide high availability and partition tolerance, if consistency is not
required. The system will return the most recent available version, at the risk of re-

turning stale data [24].

2.1. DISTRIBUTED SYSTEMS ¢ DATA STORAGE CONCEPTS 73
CA systems

If there are no partitions, it is clearly possible to provide consistent, available data [24].
However, as distributed systems are generally not safe from network partitions, their

designers are forced to chose if they will belong in the CP or AP category.

Constructive criticism of the CAP theorem, as expressed by Martin Kleppmann in a
2015 article [27], states that the theorem’s narrow definitions of consistency and avail-
ability fail to describe the variety of guarantees offered by modern distributed systems.
Indeed, there are many widely used systems that cannot be classified neither as CP or

AP.

2.1.4 ACID Properties

ACID is an acronym made up of a set of properties of database transactions®, that allow
the safe sharing of data: Atomicity, Consistency, Isolation and Durability. According

to G.Kohad et al., these properties are defined as follows [28]:

« Atomicity: either all of the tasks of a transaction are performed or none of them
are. Atomicity states that database modifications must follow an “all or nothing”
rule. If some part of a transaction fails, then the entire transaction fails, and vice

versa.

« Consistency: the database remains in a valid state, despite the transaction suc-
ceeding or failing and both before the start of the transaction and after the trans-

action is over.

« Isolation: other operations cannot access or see the data in an intermediate state
during a transaction. The Isolation property helps implement concurrency of

database.

« Durability: once a transaction is committed, its effects are guaranteed to persist

even in the event of subsequent failures.

At this point it is worth noting that consistency is defined here in a different way than

within the context of the CAP theorem.

®A transaction is a sequence of requests that is treated as a single unit.

74 CHAPTER 2. BACKGROUND

2.1.5 Consistency Models & Isolation Levels

The consistency model of a distributed system, whether strong or weak, is a significant
design choice. In this section we limit the discussion to the models directly relevant

to the subject of our thesis.

Strict consistency or linearizability

This is the strongest consistency guarantee. The following is an informal definition by
M. Kleppmann [27]: “if operation B started after operation A successfully completed,
then operation B must see the the system in the same state as it was on completion of
operation A, or a newer state”. This is the same notion as consistency in the context of

the CAP theorem, also known as atomic consistency.

Sequential consistency

This model is weaker than strict consistency and was first proposed by Leslie Lam-
port in 1979 [29]. According to him, “the result of any execution is the same as if the
operations by all processors were executed in some sequential order and the opera-
tions of each individual processor appear in this sequence in the order specified by its

program’”.

What this definition means is that when processes run concurrently on (possibly) dif-
ferent machines, any valid interleaving of read and write operations is acceptable be-
haviour, but all processes see the same interleaving of operations [30]. Thus, sequential
consistency offers a guarantee of ordering (also offered by strict consistency) rather
than recency. Serializability is a another term often used in literature to describe this

consistency model.

Eventual consistency

This consistency model defines that if no update takes place for a long time, all replicas
eventually become consistent [30]. The only requirement of eventual consistency is
that updates propagate to all replicas. If this requirement is met, in the absence of

updates, all replicas will converge.

2.1. DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 75

Read-your-writes consistency

A data store is said to provide read-your-writes consistency if the effect of a write op-
eration by a process on a data item x will always be seen by a successive read operation

on x by the same process [30].

Other consistency types include causal consistency, processor consistency, PRAM’

consistency and continuous consistency.

Isolation, like consistency, has a variety of levels. A lower isolation level makes con-
current access to data by multiple users easier, but does not offer protection against
undesirable concurrency effects, such as dirty reads and lost updates. On the other
hand, a higher isolation level eliminates concurrency effects, but consumes more sys-

tem resources and causes transactions to often block one another [31].

Serializable isolation

This is the highest isolation level and it guarantees that a transaction will retrieve ex-
actly the same data every time it repeats a read operation. It does this by performing
locking [31]. This is the same notion as the “I” in ACID. This isolation level provides

complete protection from concurrency effects.

Repeatable reads

In this isolation level, read and write locks are kept until the end of a transaction.

However, range-locks are not managed, so phantom reads® can occur.

Other isolation levels include read committed isolation and read uncommitted isola-

tion.

"Pipelined Random Access Memory

®A phantom read occurs when the same query executes twice in a transaction, and the second re-
sult set includes rows that were not visible in the first result set. This situation is caused by another
transaction inserting new rows between the execution of the two queries.

76 CHAPTER 2. BACKGROUND

2.1.6 Write-Ahead Logging

Write-ahead logging is a technique used in databases to provide atomicity and dura-
bility (two of the ACID properties). When using this technique, all changes are first
written to the write-ahead log (WAL), which resides on stable storage, and then they
are applied to the database.

Providing atomicity

To illustrate how the WAL helps achieve atomicity we borrow an example scenario
from Wikipedia [32]: “imagine a program that is in the middle of performing some
operation when the machine it is running on loses power. Upon restart, that program
might well need to know whether the operation it was performing succeeded, half-
succeeded, or failed. If a write-ahead log is used, the program can check this log and
compare what it was supposed to be doing when it unexpectedly lost power to what
was actually done. On the basis of this comparison, the program could decide to undo

what it had started, complete what it had started, or keep things as they are”.

Apparently, in some cases the WAL also ensures consistency. For example, if in the
above scenario there is a database constraint according to which variables x and y must
always have the same value, the operation is a transaction containing the commands
set x to 5andset y to 5 and the power outage happens just after the execution

of the first command.

Providing durability

When using a log our database need not flush data pages to disk every time a transac-
tion is committed. In the event of a crash the changes that may be lost can be replayed
from the WAL. This has an added benefit: it reduces the number of disk writes. The

WAL can also ensure durability for in-memory databases.

Additionally, the WAL makes it possible to support point-in-time recovery. Log com-

paction is discussed in subsection 2.1.8 within the context of Raft consensus algorithm

and is the same for the general case. Furthermore, logs play a vital role in the perfor-

mance of a database. Optimizations such as batching entries or storing the log on a

2.1. DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 77

dedicated disk to avoid competition between logging and other I/O operations can

make a considerable difference.

2.1.7 Multi-Version Concurrency Control

What is concurrency control?

In the words of Philip A. Bernstein and Nathan Goodman, “concurrency control is the
activity of synchronizing operations issued by concurrently executing programs on a
shared database. The goal is to produce an execution that has the same effect as a serial

(non-interleaved) one” [33].

Concurrency control is necessary in the presence of transaction concurrency in order

to provide isolation that will prevent problems like:

« Lost updates: these happen when two queries access and update the same data
item in a database. Then, the first of these updates is lost for other concurrent

transactions that need to read its value for their correct execution.

« Dirty reads: these occur when a transaction updates a database item and then
it is rolled back. The updated item is accessed by another transaction before it is

reverted to its original value.

o Incorrect summaries: if a transaction is calculating an aggregate summary func-
tion on a number of records while other transactions are updating some of these
records, the result will not be correct as it will depend on the timing of the up-

dates (some will be included and some not).
There are two main categories of concurrency control mechanisms:

« Optimistic: conflicts are assumed to be rare. Optimistic concurrency control
mechanisms allow concurrent transactions to proceed without blocking any of
their operations and only check for violations at commit time. Then, if a conflict
is found the transaction is rolled back. This approach favours throughput when
conflicts are indeed rare ; if they are not though, aborted transactions need to be

restarted, which involves an extra overhead.

78 CHAPTER 2. BACKGROUND

o Pessimistic: conflicts are assumed to be frequent. This category of concurrency
control mechanisms uses locking or a time-stamping technique to detect con-
flicts from the beginning of a transaction. Operations that cause violations are
blocked until it is safe for them to be executed. This incurs delays but is usually
a good strategy in high-contention environments, as the cost of protecting data

is less than the cost of rolling back and restarting transactions.

Common mechanisms for concurrency control include locking®, timestamp order-

ing'® and multi-version concurrency control (MVCC), which is described below.

MVCC

The central concept of MVCC is summarized descriptively by Wikipedia: “when an
MVCC database needs to update an item of data, it will not overwrite the old data
with new data, but instead mark the old data as obsolete and add the newer version

elsewhere. Thus, there are multiple versions stored, but only one is the latest” [34].

MVCC provides point-in-time consistent views of the database (snapshot isolation).
The main advantage of the MVCC technique is that readers never block writers and
vice versa. While a write transaction is in progress, readers can still access the previous
version of the data. Consequently, a read-only transaction never needs to wait and in
fact, does not have to use locking at all. Adoption of MVCC has to be accompanied by

a mechanism that compacts history (i.e., removes obsolete versions).

Apart from its contribution to concurrency control, access to a revision history of the
data is useful in itself for some types of applications. MVCC is supported by MySQL"},
PostgreSQL'?, SAP HANA", BerkeleyDB and Cassandra among many other databases.

°An operation cannot read or write data until it acquires an appropriate lock on it.
Every transaction has a timestamp associated with it, and the ordering is determined by the age of
the transaction.
“https://www.mysgl.com/
Zhttps://www.postgresqgl.org/
Bhttps://www.sap.com/products/hana.html

https://www.mysql.com/
https://www.postgresql.org/
https://www.sap.com/products/hana.html

2.1. DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 79

2.1.8 The Raft Consensus Algorithm

What is consensus?

State-machine replication, the technique used to ensure fault-tolerance in distributed
data stores, introduces the need for consensus. Consensus is the process of agreeing
on the values of the stored data among different nodes of a distributed system. The
problem of maintaining consensus becomes more complex when failures occur, either

on the nodes or on the network they use to communicate.

Replicated state machines are typically implemented using a replicated log. The log
is stored on each server of a cluster and contains a series of commands, which the
server’s state machine executes in order. Consensus algorithms make sure that the

replicated log is kept consistent (contains the same commands in the same order)

{ \“
@er state machine) |

across all servers [35].

consensus x: 3
| 1 module y:9

z:0

@)
@ (109 ©)

[x8]ye1]y<9]]

L

>———7))

Figure 2.2: Replicated state machine architecture [35]

The Raft protocol

The Raft algorithm was introduced by Diego Ongaro and John Ousterhout in 2013.
It is a consensus algorithm for managing a replicated log. Consensus is achieved by
electing a leader who has then full responsibility for the management of the replicated
log. The leader accepts log entries from clients, replicates them on the other servers of
the cluster, and tells servers when it is safe to apply log entries to their state machines.
In case a leader fails or becomes disconnected from the other servers, a new one is

elected.

At any given time, each server is in one of the following three states: leader, follower,

80 CHAPTER 2. BACKGROUND

or candidate. Normally, there is exactly one leader and all of the other servers are
followers. Followers do not issue requests on their own but simply respond to requests
from leaders and candidates. The leader handles all client requests (if a client contacts
a follower, the follower redirects it to the leader). The third state, candidate, is used for

leader election [35].

A term is in Raft terminology a time unit of arbitrary length denoted by a term number
and characterized by a certain election. Communication between the Raft servers is
performed via RPCs'* and involves two basic types of messages: RequestVote RPCs
used by candidates to initiate an election and AppendEntries RPCs, used by leaders

both for log replication and as a heartbeat'® when they carry no log messages [35].

Raft makes progress as long as any majority of the cluster’s servers is available. It
decomposes the consensus problem into three relatively independent subproblems:

leader election, log replication and safety. Each of them is analysed below:

« Leader election: servers begin in the follower state and remain in it as long
as they receive heartbeat messages from a leader in a periodic fashion or Re-
questVote messages from a candidate. If a follower does not receive such com-
munication during an election timeout, it becomes a candidate. Then, it may
either win the election if it receives votes from the majority of the cluster mem-
bers, thus becoming the leader, or be notified that someone else has won. Re-
quiring a majority of votes ensures that only one leader can be elected at a time.
Votes are granted in a first-come-first-served basis and a candidate always votes
for itself. The election time out should be configured to be an order of magni-
tude greater than the round trip time for heartbeat messages to prevent followers

from starting unnecessary elections.

In case of a split vote (no candidate establishes a majority of votes) the election
starts anew. To prevent split votes from occurring indefinitely Raft uses random-
ized election timeouts. This increases the possibility of only one server timing

out at a time and winning the election before any other has timed out.

Furthermore, conflicts between nodes that happen to be simultaneously in the

leader state, or between a leader an a candidate are resolved based on who has

“Remote Procedure Calls
A heartbeat is a periodic signal generated by hardware or software to indicate normal operation or
achieve synchronization [36].

2.1.

DISTRIBUTED SYSTEMS & DATA STORAGE CONCEPTS 81

the largest term number [35]. For example, when a network partition happens
and the leader at term x happens to be in the minority partition, a new leader
with term z + 1 will be elected among the nodes in the majority partition. When
the partition is healed the old leader will recognize that there is a leader with a
higher term number than its own and step down. Figure 2.3 contains a schematic

representation of the leader election process.

times out,
startsup timesout, new election

starts election
Candidate

discovers current
leader or new term

receives votes from
majority of servers

discovers server
with higher term

Figure 2.3: The leader election process in the Raft consensus algorithm [35]

« Logreplication: the leader accepts client requests each of which contains a com-
mand to be executed by the replicated state machines. First, it appends the com-
mand to its log as a new entry. Then, it issues AppendEntries RPCs in parallel
to each of the other servers in order to replicate the entry. Once the entry has
been replicated on a majority of servers the leader applies it to its state machine
and returns the result of that execution to the client. In Raft terminology the
entry is now committed. The leader also notifies the other servers that the entry
has been committed via AppendEntries RPCs so that they can apply it to their
state machines as well. RPCs that are not received (e.g., because a follower has

crashed) are resent indefinitely [35].

The log structure is shown in Figure 2.4. In each log entry a command is stored
along with the number of the term in which the entry was received by the leader.
In addition, entries are numbered sequentially by the log index. The term num-
ber is used to recover from inconsistencies between logs. Inconsistencies may
be caused by leader crashes and they are resolved by the new leader by forcing

the followers to duplicate its log [35].

82 CHAPTER 2. BACKGROUND

1 2 3 4 5 6 7 8 log index

1 (1] 1(2]3]3]|3]3
xe3|ye1|y9|xe2|x0|y<7|x<5[x4 leader

1112713)
xe<3|ye<1]y<9|x<2|x<0

11233]3]3
xe3|ye1llye9|xe«2|x<0|y«7|x<5]|x<4

> followers

1 1
xe<3|ly<1

1112333
xe3|ye1l|ly«9|xe«2|x<0]|y<7|x<5 J
k »]

committed entries

Figure 2.4: Replicated Raft logs [35]

« Safety: the essence of safety in the context of the Raft algorithm is that each
state machine executes exactly the same commands in the same order’®. To en-
sure that, Raft imposes a restriction according to which only a server whose log
contains all committed entries up to the current term may be elected leader. The
following is an illustrative example of the kind of situations this restriction helps
avoid, as described by D. Ongaro and J. Ousterhout in their paper [35]: “a fol-
lower might be unavailable while the leader commits several log entries, then it
could be elected leader and overwrite these entries with new ones; as a result,
different state machines might execute different command sequences”. The re-
striction is implemented as part of the election process, by not allowing servers

to vote for candidates whose log is not at least as up-to-date as their own.

Another interesting issue arises within the context of Raft with regard to the size of the
on-disk log. As client requests flow in, the log size increases but apparently it cannot
be allowed to grow without bound. This would cause it to occupy all available disk
space and log replay time would become unacceptably long. A technique called log
compaction is employed to deal with this problem. Snapshots'” are the simplest ap-
proach to compaction. Each time the log reaches a fixed size, the entire current system
state is written to a snapshot on stable storage and the log up to that point is discarded,

as depicted in Figure 2.5. Moreover, there’s an additional use for snapshots: they are

'°This is equivalent to saying that if any server has applied a particular log entry to its state machine,
then no other server may apply a different command for the same log index.
7 A snapshot is (a copy of) the state of a system at a particular point in time.

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 83

sent to new cluster members or followers that are too far behind progress-wise so that

they can catch up with the leader [35].

1 2 3 4 5 6 7 log index

111111213]3]3
Xe3|yel|ye9|xe2|x<0|y<7|x<5 before
shapshot 3 3
state machine state: |[y«7|xe5
X « 0 after
y«<?9

»l
>

x

committed entries

Figure 2.5: Log compaction in Raft [35]

Other consensus algorithms

Raft was actually developed in an attempt to provide a simpler, more understandable
alternative to Paxos, the consensus algorithm devised by Leslie Lamport in 1989 [37].
Paxos is equivalent to Raft regarding their produced results and efficiency, but its com-
plexity makes it exceptionally difficult to understand and does not provide a good
foundation for the implementation of practical systems. The most notable difference
between Raft and Paxos is Raft’s strong-leadership; in Paxos leader election only serves
as a performance optimization [35]. Other methods to achieve consensus across a set
of nodes include the two-phase commit protocol (2PC), the three-phase commit pro-
tocol (3PC), Oki and Liskov’s Viewstamped Replication and Chandra-Toueg consen-

sus algorithm.

Implementations of Raft

At least 89 open-source implementations of Raft exist today [38] and are in various
stages of development. It is worth mentioning LogCabin'®, D. Ongaro’s implementa-
tion of Raft in C++. Among software systems that make use of Raft to achieve consen-

sus etcd, RethinkDB*?, TiKV and Consul®® stand out.

8https://github.com/logcabin/logcabin
Yhttps://github.com/rethinkdb/rethinkdb
https://github.com/hashicorp/consul

https://github.com/logcabin/logcabin
https://github.com/rethinkdb/rethinkdb
https://github.com/hashicorp/consul

84 CHAPTER 2. BACKGROUND

2.2 etcd Distributed Key-Value Store

2.2.1 Overview

etcd®! is an open-source distributed key-value store that provides a reliable way to store
data across a cluster of machines. It is a consistent, fault-tolerant and highly-available
system. In CAP theorem parlance, etcd is a CP system. Etcd runs on each machine
in a cluster and uses the Raft consensus algorithm to handle communication between
machines and achieve consensus. The cluster acts as a replication group. Each mod-
ification is assigned a global unique ID, called a revision. An incoming modification
request first has to pass through the Raft protocol and then it can be committed. Ap-

plications running on client machines can issue read and write requests to etcd.

Etcd is written in Go and its name derives from the Unix “/etc” directory plus “d” from
distributed systems. The /etc directory is used to store system configuration so the
combination of this notion with that of distributed systems accurately epitomizes the
intended usage of etcd: to store configuration information for large-scale distributed

systems [1], [10].

Etcd is developed by the CoreOS company, a team of developers who have also built
an open-source operating system called Container Linux. This lightweight operating

system is intended for large server deployments and is optimized for containers.

Guarantees

 Atomicity: all API requests are atomic; an operation either completes entirely

or not at all.

« Consistency: as stated in etcd documentation [39], “All API calls ensure sequen-
tial consistency®’, the strongest consistency guarantee available from distributed
systems. No matter which etcd server a client makes requests to, a client reads

the same events in the same order”. “As with all distributed systems, it is im-

2https://github.com/coreos/etcd

*2A container is one of multiple isolated user-space instances running on a machine and sharing the
same kernel. From the point of view of a program running in it, it looks like a real computer.

**See subsection 2.1.5

https://github.com/coreos/etcd

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 85

possible for etcd to ensure strict consistency*!. Etcd does not guarantee that it
will return to a read the most recent value (as measured by a wall clock when a

request is completed) available on any cluster member”.

« Partition tolerance: if the cluster is made up of an odd number of servers it
is certain that in occurrence of a network partition there will exist a majority
partition able to resume operation normally. A leader election may be needed if

the old leader is not in the majority partition.

« High availability: since the key-value data stored within etcd is automatically
distributed and replicated with automated master election and consensus estab-
lishment using the Raft algorithm, all changes in stored data are reflected across
the entire cluster, while the achieved redundancy prevents failures of single clus-
ter members from causing data loss. More specifically, a cluster will remain
available as long as any server majority is functional. Being both CP and highly-
available does not contradict the CAP theorem. This is because in the context of
the CAP theorem availability is regarded as a binary property, whereas here it is
perceived as a spectrum (e.g., a system is available 99.99% of the time). In other
words, etcd being both CP and highly-available means that whenever a majority
of replicas can talk to each other, they should be able to make progress. Avail-
ability in the CAP sense of the term also differs from this definition because it
requires that “every request received by a non-failing node in the system must
result in a response (non-error or timeout) within a reasonable amount of time”,

as discussed in subsection 2.1.3.

« Isolation: etcd ensures serializable isolation®®, which is the highest isolation
level available in distributed systems. Read operations will never observe any

intermediate data.

« Durability: any completed operations are durable. etcd stores key-value pairs
in a persistent storage engine. What is more, it persists the Raft log to disk and

can replay it after power loss.

« Simplicity: being a key-value store etcd is inherently simple. In addition to that,

it has a well-defined, well-documented API.

*4See subsection 2.1.5
25See subsection 2.1.5

86 CHAPTER 2. BACKGROUND

« Security: etcd provides automatic TLS*® with optional client certificate authen-

tication, as well as user and role-based access control.

o Performance: latest benchmarks show that etcd can support tens of thousands

of writes per second.

Data model

By employing MVCC, etcd is capable of facilitating inexpensive snapshots and access

to revision history. Each mutative operation creates a new revision on the key space.

The store’s logical view is a flat binary key-space that is lexically sorted. Etcd stores the
physical data as key-value pairs in a persistent B+ tree, implemented by its storage en-
gine, BoltDB. The key-value pairs inserted in the B+ tree are slightly different from the
ones inserted in the database by the client application. As described in the documen-
tation of etcd [40], each key is a 3-tuple (major, sub, type). Major is the store revision
holding the key. Sub differentiates among keys within the same revision (i.e., keys that
have been updated in the same transaction). Type is set to t if the value contains a
tombstone or is empty for a put operation. The value contains the actual key-value
pair inserted in the database, which is the delta from the previous revision, along with

other information. The B+ tree is ordered by key in lexical byte-order.

Etcd also keeps a secondary in-memory B-tree index to speed up range queries. The
keys in this B-tree index are the keys that are exposed to the user. The values are point-

ers to the modifications of the persistent B+ tree [40].

Maintenance

« History compaction: to prevent the data store from growing excessively over
time due to the accumulation of past revisions, the option of periodic or manual
compaction is offered. Compaction discards the oldest versions of data when

they are no longer needed.

» Backend defragmentation: after numerous write and delete operations (e.g.,

after a compaction), the backend database may exhibit internal fragmentation.

**Transport Layer Security

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 87

API

This means that even though disk space has been freed up by BoltDB it is un-
available to the host file system (it is still available to etcd though). The reason

why this happens is explained in subsection 2.3.3. Etcd enables the user to issue

a defragmentation in order to release storage space back to the file system.

Storage space quota: According to the developers of etcd, the existence of a
space quota is necessary to prevent performance deterioration caused from ex-
cessive keyspace growth, or space exhaustion. For this reason, etcd has a hard-
coded quota with a default value of 2GB, configurable up to 8GB. When it is
exceeded, a cluster-wide alarm is raised and the cluster no longer accepts write
requests [41]. An additional reason behind the existence of the backend size re-
striction is to keep the mean time to recovery (MTTR) low. The impact of the
MTTR becomes evident when a cluster member crashes and has to be replaced
by a new one. Having to wait for a very large snapshot to be transferred to the

new member would hurt the availability of etcd.

Interaction with etcd usually happens through etcdctl, a simple command line client.

Here, we mention the functionality exposed by the gRPC?” API of etcd [42]:

« KV:range, put and delete range requests. Transactions and history compaction.

Range requests can also be used for point lookups if the range end is not spec-
ified. There are two types of range requests: linearizable and serializable. Lin-
earizable reads have higher latency and lower throughput than serializable re-
quests since they have to go through a quorum of cluster members, but reflect
the current consensus of the cluster. Serializable reads do not require consensus
and can be processed by any cluster member. They offer better performance as
they can be served by any single etcd member, but may return stale values. The
default option for range requests is linearizable. For a more thorough analysis

of linearizability and serializability see subsection 2.1.5.

Watch: a watch request watches for events happening or that have happened

and are related to a key or set of keys.

%’ An open source remote procedure call (RPC) system initially developed at Google.

88 CHAPTER 2. BACKGROUND

« Lease: granting, revocation and renewal of leases®

« Maintenance: alarm®’ activation and deactivation, member status queries, back-

end defragmentation, backend hash computation, snapshot.

« Authentication: configuration (enable/disable), creation, deletion and listing of

users and roles, granting of permissions.
o Cluster: addition, removal and listing of cluster members.

 Lock: the lock service exposes client-side distributed shared locking facilities as

a gRPC interface.

« Election: the election service exposes client-side election facilities as a gRPC

interface.

Disaster recovery

An etcd cluster can tolerate up to up to (/N —1) /2 server failures in a cluster of N mem-
bers, leader failure and network partitions. However, when a majority of its servers
fails, the cluster refuses to accept updates. To recover from this situation a snapshot
file is required. Snapshots serve as backups of the etcd keyspace and the whole cluster
can be restored from a single snapshot file [43]. This is the same snapshot file that is
sent over the network to a new cluster member or to a slow follower to help it catch up.
It is useful here to disambiguate between this kind of snapshot and the Raft snapshot
which enables log compaction and is internal to etcd (i.e., not exposed by the API).

The latter is further explained in subsection 2.2.2.

Recommended cluster sizes

As we have noted before, because etcd does not implement sharding, it does not scale
in capacity as we add more nodes to the cluster. Its performance does not improve
either, as every request still has to go through the leader and having to replicate data

across more machines induces extra latency for writes. The reason for adding more

*8Leases are a more efficient implementation of TTL (time to live). Instead of assigning a TTL to each
key, keys with the same TTL are attached to a common lease. When a lease expires all keys attached to
it are deleted.

**The etcd server raises an alarm whenever the cluster needs operator intervention to remain reliable.

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 89

nodes to an etcd cluster is to increase the replication level and therefore enforce its
fault tolerance. A 5-member cluster offers a good trade-off between fault tolerance (can
tolerate 2 member failures) and performance (the leader has to replicate to 2 members
before responding to the client). 3-member clusters are also very common. The reason
that odd cluster sizes are preferred is that for any such cluster adding one more node
will always increase the number of nodes necessary for quorum®’. According to the
documentation of etcd [44], “although adding a node to an odd-sized cluster appears
better since there are more machines, the fault tolerance is worse since exactly the same
number of nodes may fail without losing quorum but there are more nodes that can
fail”. The following table gives a better idea of how an odd-sized cluster tolerates the

same number of failures as an even-sized cluster but with fewer nodes.

Cluster Size Majority Fault Tolerance
1 1 0
2 2 0
3 2 1
4 3 1
5 3 2
6 4 2
7 4 3
8 5 3
9 5 4

Table 2.1: Quorum and fault tolerance in relation to etcd cluster size

Another reason in favour of odd-sized clusters is that during a network partition they
guarantee that there will be a majority partition that continues to operate. In the case
of even-sized clusters this does not hold and a network partition that separates N /2

nodes from the rest V/2 can render the whole cluster unavailable [44].

2.2.2 Evolution of the Storage Backend

In its previous version (v2) etcd stored the key-value pairs in an in-memory engine.
Among the changes made in v3 was the transition to a B+tree-based on-disk storage
engine with full MVCC support, BoltDB. This enables etcd to handle larger datasets,

while hot data is still retained in memory for fast access.

**The number of active members needed for consensus to modify the cluster state. Etcd requires a
member majority to reach quorum.

90 CHAPTER 2. BACKGROUND

In the latest releases of etcd the v2 backend is still accessible through the v2 API for
backward compatibility reasons. The new on-disk store and the old in-memory one
are separate and isolated. According to development plans, v2 backend will eventually

be deprecated.

v2 request v3 request :
Y
v2 API v3 APl
Y-

new storage
engine

Figure 2.6: v2 and v3 storage engines in etcd [45]

Incremental snapshots

The new disk-backed storage engine allows etcd to perform incremental snapshots.
While in v2 a snapshot was a separate file, in v3 the on-disk database file works as
the snapshot. This snapshot is updated via commits to the backend, which only write
updates (the delta) and without stopping the world, thus providing incremental snap-

shots. This leads to less I/O and CPU cost per snapshot.

2.2.3 Use Cases

“Etcd was designed to be the backbone of any distributed system’, as its developers

state. Its most common use cases up to date are:

« Shared configuration: by storing configuration in a globally accessible store,
one can offer the same options to each instance of a cluster with no additional
work. Some examples of shared configuration are: cluster membership details
(e.g., IP addresses), environment variables, cluster-wide alerts, database connec-

tion details, cache settings, feature flags or other application-specific settings.

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 91

This way, a configuration change can be automatically reflected across a cluster
of servers or containers. With etcd these values can be watched, allowing an

application to reconfigure itself when they change.

« Service discovery: service discovery is the automatic detection of services of-
fered on a computer network. Service discovery tools are generally implemented
as a globally accessible registry that stores information about the instances or
services that are currently operating. At its core, it is about knowing when any
process in a cluster is listening on a TCP or UDP port, and being able to look
up and connect to that port by name. As we read in an article on service dis-
covery by J. Ellingwood [46], “each service, as it comes online, registers itself
with the discovery tool. It records whatever information a related component
might need in order to consume the service it provides. For instance, a MySQL
database may register the IP address and port where the daemon is running, and
optionally the username and credentials needed to sign in. When a consumer
of that service comes online, it is able to query the service discovery registry for
information at a predefined endpoint. It can then interact with the components
it needs based on the information it finds. One good example of this is a load
balancer. It can find every backend server that it can feed traffic to by query-
ing the service discovery portal”. Changes can be dynamically reflected in the
registry, a very useful feature for modern, cloud-based microservices*', applica-
tions that have dynamically assigned network locations. Service discovery also
offers a way of monitoring machine liveness. If a component fails, the discovery

service will be updated to reflect the fact that it is no longer available [46].

« Distributed locking: “the purpose of a distributed lock is to ensure that among
several nodes that might try to do the same piece of work, only one actually
does it (at least only one at a time)”, in the words of M. Kleppmann. Examples
of such work are: synchronizing access to shared resources (e.g., writing data to
a shared storage system) or performing a critical update. In the latter case, if
all the servers of a cluster performed the update and rebooted at the same time,

the cluster would be unable to answer client requests during that interval. In-

*1As Martin Fowler has put it “the microservices architectural style is an approach to developing a
single application as a suite of small services, each running its own process and communicating with
lightweight mechanisms”.

92 CHAPTER 2. BACKGROUND

stead, if only one server at a time is updating, the system retains its availability,

performing what is called a rolling update.

+ Leader election: large-scale systems that operate in a cluster and have a single
leader, such as HDFS*?, typically use a separate replicated state machine to man-
age leader election and store configuration information that must survive leader

crashes [35].

Specific projects that utilize etcd in a production environment include:

 Container Linux by CoreOS: applications running on Container Linux get au-
tomatic, zero-downtime Linux kernel updates. To coordinate updates Container
Linux uses locksmith, which implements a distributed semaphore over etcd to
ensure that only a subset of a cluster is rebooting at any given time [10]. This is
the use case that inspired the development of etcd in the first place. Container
Linux runs etcd as a daemon across all computers in a cluster. It also uses etcd
to provide a dynamic configuration registry, allowing various configuration data

to be easily and reliably shared between the cluster members.

 Kubernetes®’: it stores configuration data into etcd for service discovery and
cluster management; the consistency of etcd is of vital importance for the correct
scheduling and operation of services. The Kubernetes API server persists cluster
state into etcd and uses the watch API of etcd to monitor the cluster and apply

critical configuration changes [10].

+ CloudFoundry’*: it uses etcd to store cluster state and configuration and pro-
vide a globallock service. etcd is also used, to a much lesser extent, as a discovery

mechanism for some components.

« TiDB: as we have already mentioned in subsection 1.3.2, the Placement Driver

(PD) is the central controller in the TiDB cluster and is implemented as an etcd

*?Hadoop Distributed File System (HDFS) is designed to reliably store very large files across machines
in a large cluster.

**Kubernetes is an open-source platform designed to automate deploying, scaling, and operating
application containers. https://github.com/kubernetes/kubernetes

**Cloud Foundry is an open source, multi cloud platform as a service (PaaS) on which developers
can build, deploy, run and scale applications.

https://github.com/kubernetes/kubernetes

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 93

cluster. It saves the cluster meta information, allocates the global unique times-
tamp for the distributed transactions, etc. The PD embeds etcd to supply high

availability and automatic failover [47].

2.2.4 Similar Systems

ZooKeeper

ZooKeeper is a distributed, open-source coordination service for distributed applica-
tions [48]. To achieve consensus it uses Zookeeper Atomic Broadcast (ZAB), a custom
algorithm based on Paxos. ZooKeeper servers keep their entire state machine in mem-
ory, but every mutation is written to a durable WAL. ZooKeeper is a mature project
used by many big companies like Yahoo and Rackspace. The developers of etcd ad-
mit that the lessons learned from ZooKeeper have influenced the design of etcd. It is
very similar to etcd but lacks some features that etcd offers: stable reads/writes under
high load, the MVCC data model, an API for safe distributed shared locks, etc. Also,

ZooKeeper is a very complex system related to etcd [10].

Consul

Consul is a distributed key-value store for service discovery and health checking. Its
similarities to etcd include also being a CP system, using Raft for consensus and being
written in Go. Consul stores its key-value pairs in an in-memory database. Consul’s
main difference from etcd and ZooKeeper is that it is heavily focused on service dis-
covery. While etcd and ZooKeeper only provide a plain key-value store and require
application developers to build their own system on top of that to provide service
discovery, consul also offers its own framework for service discovery, accessible via
a DNS or HTTP interface. Consul also uses a feature-rich gossip system that links
server nodes and clients. The gossip protocol implements efficient health checking
and allows clients to check that a web server is returning 200 status codes, that mem-
ory utilization is not critical, that there is sufficient disk space, etc. [49]. However,
as can be seen in Figure 2.7, Consul’s performance as a key-value store cannot scale
as well as that of etcd with the number of clients. What is more, its key-value API is

not as rich as that of etcd, as it does not support MVCC, conditional transactions or

94

CHAPTER 2. BACKGROUND

watches. To sum up, etcd and Consul solve different problems. The use of consul is

advised when looking for end-to-end cluster service discovery, while etcd is a better

choice when looking for a distributed consistent key-value store [10].

2.2.5 Performance

The performance of etcd is determined by multiple factors [50]:

Disk I/0 latency: maintaining the Raft WAL requires frequent fsync opera-
tions. The typical fsync latency for a spinning disk is about 10ms. For SSDs*?,
the latency is often lower than 1ms. To attain high throughput despite heavy
load, etcd batches multiple requests together and submits them to Raft. This
way, the cost of fsync is split among multiple requests. However, write perfor-

mance in etcd is dominated by logging consensus proposals.

Networklatency: the minimum time required to complete an etcd request equals
the Round Trip Time (RTT) between members, plus the duration of the fsync
operation that commits the data to permanent storage. Within a datacenter the
RTT is in the order of several hundred microseconds. A typical RTT within the

United States is around 50ms, whereas between continents it is around 400ms.

Storage engine latency: each etcd request must pass through the BoltDB-backed

MVCC storage engine of etcd, which usually takes tens of microseconds.

Snapshots: periodically etcd incrementally snapshots its recently applied re-
quests, merging them back with the previous on-disk snapshot, a process that

may lead to a latency spike.

Compactions: ongoing compactions impact the performance of etcd. Fortu-
nately, their impact is often insignificant since they are staggered and do not

compete for resources with regular requests.

gRPC API: this introduces a small additional latency.

*5Solid-State Drives

2.2. ETCD DISTRIBUTED KEY-VALUE STORE 95

In the tables below we present some performance numbers, as measured by the de-
velopers of etcd using the built-in CLI’° benchmark tool. Tests were run on a cluster
of 3 VMs®” running Ubuntu 17.04, on Google Cloud Compute Engine. Each VM has
8 vCPUs, 16GB memory, and a 50GB SSD. The client machine had 16 vCPUs, 30GB
memory and a 50GB SSD. The version of etcd was 3.2.0, compiled with Go 1.8.3. The

key size was 8 bytes and the value size was 256 bytes.

Number of | Number of Avel:age Average
kevs clients write latency per
¥ throughput | request (ms)
10, 000 1 583 1.6
100, 000 1000 50,104 20
Table 2.2: Write performance of etcd
Number of | Number of . Average read Average
. Consistency latency per
keys clients throughput
request (m.s)

10,000 1 Linearizable 1,353 0.7
10,000 1 Serializable 2,909 0.3
100, 000 1000 Linearizable 141,578 5.5
100, 000 1000 Serializable 185,758 2.2

Table 2.3: Read performance of etcd

Performance comparison with similar systems

Here we present a write performance comparison between etcd, ZooKeeper and Con-
sul, performed by the etcd developer team with dbtester®®. Tests were run on Google
Cloud Platform Compute Engine virtual machines with Ubuntu 16.10. Each cluster
used three VMs, each of which had 16 dedicated vCPUs, 30GB memory, and a 300GB
SSD with 150 MB/s sustained writes.

The chart below shows how scaling client concurrency impacts writes. As expected,
when concurrency increases, write throughput, tends to increase in order to match

request pressure. In the case of etcd it grows steadily. Zookeeper, on the other hand,

*¢Command Line Interface
*’Virtual Machines
3https://github.com/coreos/dbtester

https://github.com/coreos/dbtester

96 CHAPTER 2. BACKGROUND

loses its write rate on account of writing out full state snapshots; a much more expen-
sive procedure than the incremental snapshots of etcd, which write only updates and
without stopping the world, as G. Lee explains [5]. The throughput of Consul also

drops to low rates under concurrency pressure.

Create 1-million keys, 256-byte key, 1KB value, Key Creation Throughput

35K -=-etcd v3.1.0

Zookeeper r3.4.9
30k == Consul v0.7.4

25k
20k
15k

10k

] /‘

0 200 400 600 800 1000

Average Creates per Second

Concurrent Clients

Figure 2.7: Average throughput for creating one million keys as clients scale: etcd vs
ZooKeeper vs Consul [5]

2.3 BoltDB Storage Engine

A storage engine is a software component whose purpose is to manage data stored in
memory or on disk. It is usually integrated into other application software that requires

access to data. Each storage engine implements an indexing algorithm [15].

2.3.1 B+ Trees

The B+ tree, which is a variation of the B-tree, is the underlying indexing structure of

BoltDB. Below, we list the definition and attributes of both of these data structures.

B-trees

B-trees have become a de facto standard for file systems (e.g., NTFS, BTRES, Ext4)

and databases. A B-tree is self-balancing and keeps data sorted. Operations (searches,

2.3. BOLTDB STORAGE ENGINE 97

insertions, deletions) on a B-tree complete in logarithmic time. It is a generalization of

the binary search tree in the sense that a node can have more than two children [51].

According to Knuth’s definition [52], a B-tree of order m is a tree which satisfies the

following properties:

1. Every node has at most m children.

2. Every non-leaf node (except root) has at least [m/2] children.
3. The root has at least two children if it is not a leaf node.

4. A non-leaf node with £ children contains k-1 keys.

5. All leaves appear in the same level.

The literature is not uniform in its terminology concerning B-trees. More specifically,
Comer (1979) [51] as well as Bayer & McCreight (1972) define the order d of the B-tree
as the minimum number of keys in a non-root node (so the maximum is 2d), unlike
Knuth (1998) who gives the definition we presented above. From this point onwards,
we will follow Comer’s definition as it is more convenient for the complexity analysis

of operations.

The length h of the path from the root to any leaf is called the height of the tree. In the
worst case it is equal to log, n, where n is the number of keys in the tree. In the B-tree,
each internal node’s keys act as separation values which divide its subtrees. Wikipedia
provides an enlightening example: “if an internal node has 3 child nodes (or subtrees)
then it must have 2 keys: a; and a,. All values in the leftmost subtree will be less than
a1, all values in the middle subtree will be between a; and as, and all values in the

rightmost subtree will be greater than a,” [53].

Figure 2.8: A B-tree of order 5 [53]

Search: searching a B-tree is similar to searching a binary search tree. Starting from
the root and comparing the query key to each key stored in a node, the appropriate

path is chosen to proceed from. The decision procedure is repeated at each node until

98 CHAPTER 2. BACKGROUND

an exact match occurs or a leaf is encountered. A search operation in a B-tree of order

d that stores n keys will not need to visit more than 1 + log, 7 nodes [51].

Insertion: this is a two-step process. First, a search must be performed to locate the
proper leaf for insertion. Then, the insertion is performed and balance is restored if
necessary. If the leaf is able to accommodate another key without violating the first
constraint of Knuth’s definition, nothing else has to be done. If however the leaf is
already full, a split occurs: the first d of the 2d + 1 keys are placed in one node, the
last d in another, and the remaining key is promoted to the parent node. As D. Comer
explains, “if the parent node happens to be full too, then the same splitting process is
applied again. In the worst case, splitting propagates all the way to the root and the tree
increases in height by one level” [51]. The procedure of insertion requires O(2log, n)

node accesses.

Deletion: this operation also requires a search first, to locate the key that will be
deleted. In case the key resides in a non-leaf node, a new separator key must be found
and swapped into the vacated position so that subsequent searches will work as ex-
pected. This key is found in the leftmost leaf of the right subtree of the now empty
slot. Once this has been done (or in the case that the key to be deleted resides on a
leat node), we must check that at least d keys remain in the leaf. In case of an un-
derflow, to restore balance a key can be transferred from a neighbouring leaf that has
more than d keys. If no leaf can spare a key, then the deficient leaf must be merged
with another one. This causes the parent to lose a separator key and rebalancing may
have to be reapplied, continuing up to the root in the worst case. Just like insertion,

the procedure of deletion requires O(2log, n) node accesses [51].

Sequential accesses: so far we have only considered random searches. If a user re-
quests all the records in key-sequence order using a next operator the B-tree will not
perform so well. In fact, it may need up to log, n accesses to process a “next” operation.

Later we will see how this problem is solved by B+ trees [51].

An interesting property of B-trees is that their height and consequently the expensive

node accesses can be reduced by maximizing the number of keys within each node.

2.3. BOLTDB STORAGE ENGINE 99
B+ trees

The B+ tree is a data structure very similar to B-trees but with a couple of substantial

differences [51]:
1. All keys reside in the leaves. The upper levels, which are organized as a B-tree,
consist only of an index, a roadmap to enable rapid location of actual keys.

2. Leaf nodes are linked together from left to right, providing efficient sequential

accesses.

As can be seen in Figure 2.9, the leaves may also contain pointers to the values that

correspond to their keys.

6 | 7
o [o]
o

dg dg d;

5
* |
!

dy d,

Figure 2.9: A B+ tree of order 4 [54]

Decoupling the keys from the indices in B+ trees simplifies the rebalancing process
after deletions as non-key values can now be left in the index part. Insertions and
searches remain the same as in the B-tree for the most part, with a few exceptions. For
example, during an insertion that happens to overflow a leaf, when the leaf splits in two
instead of promoting the middle key, a copy of it is promoted, retaining the original
in the right leaf. What is more, search operations do not stop if a match is found in
the index part of the tree. Instead, the nearest right pointer is followed and the search

proceeds all the way to a leaf [51].

The number of accesses required in the worst case for searches, insertions and deletions
is the same as in the case of the B-tree, which is O(log, n). However, when it comes
to sequential searches the B+ tree demonstrates a clear advantage. Thanks to its linked
list at the leaf level, it requires at most 1 access to satisfy a “next” operation. This means

that accessing all the keys sequentially would require O(log, n+n) accesses, while in a

100 CHAPTER 2. BACKGROUND

B-tree it would require O(nlog, n). Therefore, B+ trees are a good fit for applications

which entail both random and sequential processing [51].

Structure
B-tree B+ tree
Operation
Search O(logn) O(logn)
Insertion O(logn) O(logn)
Deletion O(logn) O(logn)
Next O(logn) O(1)

Table 2.4: Complexity of basic operations in B-trees and B+ trees

Both in B-trees and B+ trees, given that the block size of a storage system is B and
the size of the keys to be stored is £, the most efficient tree is the one with an order
(in the sense of Knuth’s definition) of m = %. This takes into account the extra space
needed by the pointers stored in the node. To adjust this to a RAM environment it

would suffice to set B equal to the size of the processor’s cache line [54].

Copy-on-write B+ trees

What BoltDB uses as its underlying indexing structure is actually a copy-on-write B+
tree, also known as an append-only B+ tree. This way it avoids random in-place up-
dates replacing them with sequential writes at the end of a file. To understand how
this structure works we will consider the 3-level B+ tree of Figure 2.10. Copy-on-write
B+trees do not generally support links between the leaves, as that would require the

whole tree to be rewritten on each update.

In this example, borrowed from M. Hedenfalk [55], we assume that each node corre-
sponds to a page. In the database file the pages are stored sequentially as can be seen
in Figure 2.11. The meta page contains a pointer to the root page, a hash and statistic
counters. When the file is opened it is scanned backwards page by page until a valid

meta page is found that leads to the root.

When updating a value in leaf page 8, instead of changing the page in-place, a whole
new page is appended to the file (here as page 12). Because the location of the page

2.3. BOLTDB STORAGE ENGINE 101
root 9
branch 1 branch 4 branch 6
leaf 2 leaf 3 leaf 5 leaf 7 leaf 8
Figure 2.10: A copy-on-write B+ tree with 3 levels [55]
%\—\ N %\—\
branch 1 leaf 2 leaf 3 branch 4 leaf 5 branch 6 leaf 7 leaf 8 root 9 meta 10
‘_/

Figure 2.11: On-disk layout of the pages of a B+ tree [55]

is changed, the parent page needs to be updated to point to the new location and this

process is repeated until the root is reached. Any readers still holding a pointer to the

old root page can traverse the tree unaffected by the change. They will see a consistent

snapshot of the database. Dashed pages and pointers in Figure 2.12 still exist in the

file, they just do not reflect the latest version.

Changes are written sequentially by appending new pages to the file. Written pages

are immutable. After a new revision of the tree is created, a meta page pointing to the

new root is written. In our example changing one page resulted in 4 new pages being

appended to the file. This introduces significant write and space amplification, but

writing consecutive pages to disk is more efficient than writing at random locations.

102 CHAPTER 2. BACKGROUND

I
, root9 | root 13
I

branch 1 branch 4 ! branch 6

branch 11

leaf 2 leaf 3 leaf 5 leaf 12

Figure 2.12: A copy-on-write B+ tree after updating a value [55]

2.3.2 Basic Concepts & API

BoltDB*, is an embedded key-value store developed by Ben Johnson. It initially started
as a port of LMDB*’ to Go, but the two projects diverged. They share the same archi-
tecture but BoltDB is focused on simplicity and ease of use while LMDB is focused on
performance. LMDB is a high-performance embedded transactional key-value store

written in C.

BoltDB stores everything in a memory-mapped*' file, implementing a copy-on-write
B+ tree that supports MVCC. This makes reads very fast, as they can be executed con-
currently with writes without the need for a lock. Only one writer at a time is allowed,
but as many readers as necessary. BoltDB does not have a write ahead log. It provides
ACID transactions with serializable isolation. All commands must go through a trans-
action. It is a project of amazing simplicity (its code base is smaller than 3KLOC*?),

requires no prior configuration or tuning and has a small, well-documented API [57].

The basic concepts of BoltDB as well as the functionalities offered by its API are sum-

marized in the following list [58]:

*https://github.com/boltdb/bolt

*’Lightning Memory-Mapped Database
https://symas.com/lightning-memory-mapped-database/

*!'According to Wikipedia [56], “a memory-mapped file is a segment of virtual memory that has
been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource” “Once
present, this correlation between the file and the memory space permits applications to treat the mapped
portion as if it were primary memory’, thus increasing I/O performance.

423 Thousand Lines of Code

https://github.com/boltdb/bolt
https://symas.com/lightning-memory-mapped-database/

2.3. BOLTDB STORAGE ENGINE 103

« DB: in BoltDB the top level object is a DB, which represents a single memory-
mapped file on disk. Functions applicable on the DB include bolt.Open() and
DB.Close(). The DB can only be opened by one process at a time. However, it

does have the ability to be opened by multiple processes in ReadOnly mode.

o Transactions: only one read-write transaction is allowed at a time but as many
read-only transactions as the user wants. Each transaction has a consistent view
of the database as it was when the transaction started. Transactions may be cre-
ated, committed or rolled back manually (with functions DB.Begin(), Tx. -
Commit(), Tx.Rollback()), or by using BoltDB’s wrapper functions DB.Up-

date() and DB.View() that take care of all transaction management details.

 Buckets: the storage space in BoltDB is divided into buckets. Buckets are col-
lections of key-value pairs within which all keys must be unique, so in a sense,
buckets represent separate namespaces. Buckets may be created (Tx.Create-
Bucket()),deleted (Tx.DeleteBucket()) or retrieved (Tx.Bucket())bythe
user in the context of a transaction with the purpose of subsequently putting,
getting or deleting key-value pairs from them. Nested buckets are also sup-

ported.

+ Key-value pairs: to save a key-value pair to a bucket the Bucket.Put () func-
tion is called. Likewise, to retrieve a key-value pair the Bucket.Get () function

is used and deletion is performed by calling Bucket.Delete().

« Cursors: keys are stored in byte-sorted order within a bucket. This makes se-
quential iteration very fast. To iterate over keys a Cursor is used. Operations
applicable on a Cursor include Bucket.Cursor() for its creation, Cursor. -
First(), Cursor.Last(), Cursor.Seek(),Cursor.Next() and Cursor. -
Prev (). There is also a function called Bucket.ForEach() that can be used to

apply a user-defined function on every key-value pair in a bucket.

« Backups: being a single file, BoltDB is easy to backup. The Tx.WriteTo()
function can be called from within a read-only transaction to write a consistent
view of the database to a writer. The writer can be anything that implements

Gos io.Writer interface, e.g., a Go pipe, a file etc. [58].

104 CHAPTER 2. BACKGROUND

The following is part of a description of the query path when using BoltDB as an em-

bedded key-value store, as given by its creator, B. Johnson [59]:

1. “Start a transaction. This involves acquiring a single sync.Mutex lock which
takes around 50ns. After the transaction starts, the mutex is released and no

additional locks are required during execution.”

2. “Traverse through a B+ tree to find your key-value pair. Many times your branch
data is cached in-memory so only the leaf value needs to be fetched from disk.
This operation can take 1us if all pages are cached or a couple hundred ps if

pages need to be fetched from an SSD.”

Use cases

Admittedly, BoltDB is a better fit for read-heavy projects. It is currently used in high-
load production environments serving databases as large as 1TB. Some of the open-

source projects that embed BoltDB are etcd, Consul, Heroku** and InfluxDB**.

Embedded versus standalone databases

An embedded database is a library included in and compiled with application code.
Using a standalone database running in a remote server incurs a network transport
overhead not present in embedded databases. On the other hand, standalone databases
give systems flexibility to connect multiple application servers to a single database
server [58]. Also, it is easier for them to scale out. Finally, embedded databases tend

to be simpler to configure and use.

2.3.3 Caveats & Limitations

« BoltDB is a good fit for read-intensive workloads. Sequential write performance
is also fast but random writes can be slow, especially as the database size grows

[58].

“*https://www.heroku.com/
“https://github.com/influxdata/influxdb

https://www.heroku.com/
https://github.com/influxdata/influxdb

2.3. BOLTDB STORAGE ENGINE 105

 BoltDB uses a memory-mapped file so the operating system handles the caching
of the data. Typically, the OS will cache as much as possible of the file and release
memory to other processes when needed. Consequently, when working with
large databases BoltDB may exhibit high memory usage. Nevertheless, it can
handle databases much larger than the available physical RAM, provided that
the memory-mapped file fits in the virtual address space of the process. This

means that on 32-bit systems there is a 2GB restriction on the database size [58].

« BoltDB exhibits both external fragmentation and a kind of internal fragmenta-
tion. As far as the latter is concerned, BoltDB works by allocating 4KB pages
and organizing them into a B+ tree. New pages are written to the end of the file
as needed. When first created, a BoltDB database file has a size of 1MB. This
provides space for some metadata pages (M), a page for storing free pages (F),
some pages with actual data (D), and some unallocated page slots (). As more
data is written, the original 1MB will eventually be exhausted. BoltDB will then
remap the database to give the user 2MB. In other words, it keeps doubling the
file size until it reaches 1GB and from then on it applies 1GB increments. As a

result, the database may reserve disk space that it is not actually using [60].

(a)‘M|M|F|D‘D|D|D| | |

®(M|M|F|D|D|D|D D

(@

M|M|F|D|D|D|D|D|D|

(d)MMFDDDDDD|||“|||

Figure 2.13: Internal fragmentation in BoltDB

External fragmentation happens due to the arrangement of pages on disk. Ac-
cording to its documentation [58], BoltDB cannot truncate data files and return
free pages back to the disk. Instead, it maintains a free list of unused pages within
its data file, which can be reused by future transactions. This is an adequate ap-
proach for many use cases as databases generally tend to grow. However, it is
important to note that deleting large chunks of data will not allow the user to
reclaim their space on disk. Defragmentation can only be achieved by copying

the whole database to a new file. This operation is not yet supported by BoltDB

106 CHAPTER 2. BACKGROUND

but it is relatively easy to implement on top of it.

More precisely, when deleting data in BoltDB that causes a page to be removed,
that page could be located anywhere in the file. This is clearly illustrated in Fig-
ure 2.14. BoltDB is unable to truncate the file because the free page is in the

middle of it. Compacting pages from the end of the file to the beginning would
be complicated as it would require updating all references to each moved page

in its parent pages [60].

@ | M| M F D D D D D D

® | M | M F D D D D D

Figure 2.14: External fragmentation in BoltDB

2.4 RocksDB Storage Engine

2.4.1 Log-Structured Merge-Trees

RocksDB uses an LSM-tree as its indexing structure. The LSM-tree (Log-Structured
Merge-Tree) is a data structure proposed by O'Neil et al. in 1996. Its basic components
are the memtable and a set of Sorted String Table files.

A Sorted String Table (SSTable or just SST file) is a file that contains a set of arbitrary,
sorted key-value pairs. SST files are stored on disk and they may contain duplicate
keys. One of the most important properties of SSTs is that they are immutable. They

may be implemented as B-trees.

The memtable is a tree-like structure that resides in memory. The simplest version of
the LSM-tree is a two-level LSM-tree, like the one in Figure 2.15. Cj corresponds to
the memtable and C'; to the on-disk part of the tree. Although the C; component is

disk resident, frequently referenced page nodes in it will be cached in memory [61].

Most LSM-trees used in practice employ multiple levels of increasing size. Having
more than two on-disk levels reduces the number of files per level, hence leading to

more performant reads, as well as efficient merges from one level to the next.

2.4. ROCKSDB STORAGE ENGINE 107

C1 tree Co tree
| | |
| | |
Disk Memory

Figure 2.15: Schematic diagram of an LSM-tree of two components [61]

Insertion: when using an LSM-tree, all writes go to the memtable. They are always
performed in memory and hence are very fast (O(1)). The LSM-tree takes its name

because of the memtable’s log-like behaviour.

Search: when a read operation is requested, the system first checks the memtable. If
the key is not found there, the on-disk files will be inspected one by one, in reverse
chronological order, until the key is found [7]. In the worst case all levels may need
to be checked before either finding the key or deciding that it does not exist. Range
queries on LSM-trees tend to be slow as the keys of a range may be scattered across

multiple levels of the tree, thus requiring a lot of file accesses.

Updates and deletions: updates are not performed in place, since as we have already
mentioned SST files are immutable. Instead, they are stored in the memtable. Also,
when deletions happen, a “tombstone” record is stored in the memtable. Upon a read
request, the most recent versions (or tombstones) are returned, since the memtable is

accessed first [62].

Obviously, the memtable’s size is limited by a system’s memory capacity. Once it
reaches a certain size threshold it is flushed to disk as a new immutable SST file, and a
new memtable takes its place. Therefore, in LSM-trees the cost of writes is amortized
by batching them. Although in an LSM-tree a write may be issued multiple times as it
moves to lower levels of the tree, because the I/O cost is divided among a large batch,

the cost per insert ends up being smaller than one I/O operation.

When the number of files in a level exceeds a certain threshold, a compaction is per-
formed. During a compaction on-disk SST files are merged together into bigger files
and moved to the next level to keep the number of files low (a large number of files

degrades read performance). During this process deduplication is also performed,

108 CHAPTER 2. BACKGROUND

which means that recent updates and delete records overwrite and remove the older
data. Because the SST files are sorted the process of merging the files is quite efficient

[7]. However, it induces a periodic I/O penalty.

.-ével 0

Merge
- Level 1
8. Disk Merge
Level 2
Disk
Merge

Figure 2.16: LSM-tree storage [63]

An entry inserted in an LSM-tree will start in the memtable and eventually migrate to
the bottommost on-disk level through a series of asynchronous merge steps [61]. It is
worth noting that the system is only performing sequential I/O as files are not updated
in place. In that sense, we can say that an important property of the LSM-tree is that

it converts random writes to sequential writes.

Often an LSM-tree is complemented by a WAL to ensure durability. By writing key-
value pairs to an append-only log upon each insert and before storing them in the
memtable, we ensure that in case of power-loss the data of the memtable that has not
yet been flushed to disk will not be lost. On restart, the memtable can be reconstructed

by simply replaying the WAL.

All in all, the LSM-tree is most useful in applications where inserts are more common
than retrievals. BigTable*®, HBase*®, Cassandra, RocksDB, MongoDB, WiredTiger and

InfluxDB all use LSM-trees or variants.

Read, write and space amplification

Read, write and space amplification are notions of utmost importance for the design

decisions that must be made when implementing an LSM-tree. Write amplification is

**https://cloud.google.com/bigtable/
“*https://hbase.apache.org/

https://cloud.google.com/bigtable/
https://hbase.apache.org/

2.4. ROCKSDB STORAGE ENGINE 109

the ratio of bytes written to storage versus bytes written to the database. For exam-
ple, if data is written to a database at a rate of 10MB/s but a 30MB/s disk write rate
is observed, the write amplification is 3. High write amplification is undesirable not
only because it hampers write performance, but also because it is detrimental to SSDs.
Read amplification refers to the number of disk reads per read query. For example, if
5 pages need to be read in order to answer a query the read amplification is 5. Space
amplification describes how much extra space a database will use on disk compared to
the size of the data stored in the database. If I0MB is stored in the database but it uses
100MB on disk, then the space amplification is 10. Compression is a means to reduce

space amplification [64].

Bloom filters

As we have seen, the LSM-tree has a relatively high read amplification. This may not
be acceptable for applications where read performance is critical. Fortunately, there
are a number of optimizations that can be applied in this direction, including Bloom
filters and maintaining in-memory page indices for each file. Bloom filters ofter a way
to know if a file does not contain a certain key, without having to search through the
file. By keeping Bloom filters in memory when using an LSM-tree, disk accesses to
SST files are reduced substantially as reads from files that are known not to contain a

given key are prevented.

Bloom filters are memory efficient probabilistic data structures implemented as bit ar-
rays of m bits. At first all bits are set to 0. When an element is added to the file it is
ted to k different hash functions, each of which maps it to one of the m array positions.
The bits of those positions are then set to 1. To test whether an element is in the file,
it is fed to the % hash functions and k array positions are returned. If any of the bits
at these positions is 0, the element is definitely not in the set. If all the bits at these
positions are 1, then either the element is in the file, or the bits have by chance been set
to 1 during the insertion of other elements, resulting in a false positive. False positives

are possible but false negatives are not [65].

Elements cannot be removed from this simple version of the Bloom filter, as this would
introduce the possibility of false negatives. As it is explained in Wikipedia [65], “an

element maps to k bits, and although setting any one of those & bits to zero suffices to

110 CHAPTER 2. BACKGROUND

?
=3 X y z W7
k=3 | 1 00 h300

h,(x)

\0\1|0|o\0\0\1“0\0|o|o\1 \o|0|1|o|o|1‘0\0|o\o\1|0|0|0|0i1\0\0\0|0|
0

12 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m=32 bits

Figure 2.17: A Bloom filter with a 32-bit array and 3 hash functions [66]

remove the element, it also results in removing any other elements that happen to map

onto that bit”,

Like all probabilistic data structures, Bloom filters trade a small margin of error for
space-efficiency. The probability of false positives is given by the formula p = (1 —
¢~)k, where n is the number of elements inserted in the file. Using this formula one
can compute the optimal number of hash functions k given n and m, or the length of
the bit-array m that achieves the desired false positive possibility given n and % [66],

[65].

Levelled & universal compaction

So farin the description of the LSM-tree it has been assumed that universal compaction
is the compaction type employed. According to the documentation of RocksDB [67],
when using this compaction style the SST files are arranged in time order. Each of
them is organized as a sorted run covering the whole key space and data generated
during a specific time range. Different sorted runs never overlap on their time ranges
but they can contain overlapping keys. Compaction can only happen among two or
more sorted runs that are chronologically adjacent. The output of this merge is a single
sorted run whose time range is the combination of the input sorted runs and is stored
in the next level of the tree. After any compaction, the condition that sorted runs do

not have overlapping time ranges still holds.

Obviously, SST files stored in the lower levels of the tree are bigger, since they have been
created by merging the files of the higher levels and removing duplicates by keeping
only the most recent update on a given key-value pair. Often, when universal com-
paction is used there is only one on-disk level. This compaction style targets use cases

that require lower write amplification, trading off read and space amplification. For

2.4. ROCKSDB STORAGE ENGINE 111

a read request to be answered SST files are consulted in reverse chronological order,
but since their key ranges are overlapping, all of them may have to be consulted in the
worst case. On the other hand, every update will be written at most n times, where n

is the number of the on-disk levels of the LSM-tree.

Levelled compaction appears in newer implementations like RocksDB and Cassandra
and manages to reduce the number of files that must be consulted for the worst case
read. It also reduces the relative impact of compaction by spreading it over time, as
well as space usage. However, the write amplification is higher in this case. The main

differences of levelled compaction from universal compaction are that:

1. The more recent data resides in the first level and the oldest data is in the bottom-
most level. Each level has a size threshold and is guaranteed, as a whole, to not
have overlapping key ranges within it (except for the first on-disk level, which is
structured in the same way as in universal compaction). That is to say the keys
are partitioned across the available files. Thus, the whole level can be seen as one
sorted run and to find a key in it only one file needs to be consulted. To identify
a position for a key, we first perform a binary search over the key range of all
files to identify which file possibly contains the key, and then perform a binary
search inside the file to locate the exact position [68]. The number of SST files
that will have to be consulted in the worst case when performing a read is equal

to number_of_LO_files+ (n—1), where n is the number of the on-disk levels.

2. SST files are of fixed size (e.g., 2MB). A compaction is triggered when the files
in Level 0 reach a predefined number. Then, all files in Level 0 are merged in
Level 1. Files are also merged into lower levels one at a time, whenever the size
threshold of a level is exceeded, in order to create space for more data to be
added [7]. In the general case, a compaction process picks one file in level L,
and all its overlapping files in L,,; and replaces them with new files in L, 4,

[69]. Typically, each level is 10 times bigger than the previous one.

The write amplification is greater in this case, because upon compaction, instead of
only writing the file that is merged from L,, to L, 1, the overlapping files of L, 1
are also rewritten. Table 2.5 presents a comparison of read and write amplification

between universal and levelled style compaction.

112

Level 1 i’.. 'i 300 MB

Level 2

Level 3

CHAPTER 2. BACKGROUND

o

Levels DD EEE

300 GB

__ ’

Figure 2.18: Levelled compaction layout in LSM-trees [68]

Universal Compaction

Levelled Compaction

Read amplification
(worst case)

Greater, as every SST
file in every level will be

Equal to
number_of_LO_files+
(n — 1), where n is the

Write amplification

consulted number of on-disk
levels
Greater, because upon
compaction, instead of
Every update will be only writing the file that

written at most n times

is merged from L,, to

L, +1, the overlapping

files of L,, 1 are also
rewritten

Table 2.5: Read & write amplification in universal and levelled style compaction

Number of on-disk levels

It is rather common for someone recently acquainted with the structure of LSM-trees

to wonder why one on-disk level is not enough. In the case of levelled compaction,

having more than one on-disk level reduces the number of files that must be consulted

for the worst case read. If there was no Level 1, the number of files in Level 0 would

gradually grow very large. Of course, adding more levels sacrifices write performance.

In the case of universal compaction, having more than one on-disk level reduces space

amplification, as duplicates and deleted key-value pairs are removed during the com-

paction process. Obviously, in this case as well, this increases write amplification.

Likewise, one could ask themselves what the point of having more than two on-disk

levels is. The answer is that it makes compactions more efficient. If there is no Level

2.4. ROCKSDB STORAGE ENGINE 113

2, and keeping in mind that the size of the SST files is fixed, the ranges of the files in
Level 1 will gradually become very fine grained. Then, the keys of a file on Level 0
will overlap with many files in Level 1. As a result, a compaction will require opening,

reading and rewriting a lot of files in order to merge them with the Level 0 file.

There exist LSM-tree variations with SST files of variable size. In that case, not having
a third on-disk level would make the files of Level 1 gradually grow very large, which
would again be detrimental for read performance. Yet another explanation, is that an
LSM-tree with multiple on-disk levels that is employing levelled compaction acts as a
multi-level cache structure in which the most recently updated data is located in higher

levels.

Read I/O cost analysis

In an LSM-tree, read queries on SST files are performed using binary search. Searching
a file requires O(log &) I/Os, where N is the database size and B is the read block size.
If there are multiple SST files in a level, then a query may require an I/O operation for
each of them. In the case of LSM-trees following the levelled compaction style, the
largest level’s size is O(NN), thus requires O(log %) 1/Os. The level before that has a
size of O(ZL), where £ is the level-to-level size multiplication factor. It follows that
searching this level requires O(log) = O(log %) — O(log k) 1/Os. The next level
requires O(log =) = O(log %) — O(2log k) 1/Os and so on. So the total number of
I/O operations is asymptotically R = (log %) + (log & —log k) + (log & — 2log k) -+

..+ 1, which has a solution of R = O((log %) (log, %)) = (’)((kf;k%)) [70].

Comparison with B+ trees

Here we sum up the different traits of LSM-trees and B+trees:

1. LSM-trees are optimized for writes.
2. B+ trees are optimized for reads.

3. The SST files an LSM-tree creates are immutable. This makes the locking seman-

tics over them much simpler [7].

4. LSM-trees may put more pressure on memory.

114 CHAPTER 2. BACKGROUND

5. LSM-trees utilize disk space more efficiently as they do not exhibit fragmenta-

tion like B+ trees do.

6. The performance of B+ trees tends to degrade as the dataset becomes larger than

the available memory.

7. Copy-on-write B+ trees achieve better write throughput than regular B+ trees
by avoiding random writes. Still, their write amplification is significantly larger
than that of LSM-trees, as part of the structure has to be rewritten on each up-
date. Both in copy-on-write and regular B+ trees, when updating an element at

least one whole page has to be written to disk.

8. B+ trees can handle large values more efficiently. In LSM-trees insertion of large
values might trigger repeated compactions which will incur extra delays. In B+
trees write amplification is inversely proportional to the value size. In LSM-
trees on the other hand, write amplification does not depend on the value size.
Consequently, as one moves from smaller to larger values, there is a point where

B+ trees will become better [71].

Interesting variants of LSM-trees and B-trees

o bLSM-trees: they are a variant of LSM-trees that attempts to combine the read
and scan performance of B-trees with the fast writes of LSM-trees. bLSM-trees
ensure reads can stop after finding one version of a record, thus avoiding multi-
ple SST file lookups. Also, they ensure that SST file merges make steady progress

and do not block writes for a long time [6].

o DB*-trees / Fractal trees: they are a write optimized B-tree variation whose in-
novation is that as the working set grows larger than main memory, write per-
formance stays consistent. Internal nodes of the tree have buffers for each child
that batch write operations. When a data record is inserted into the tree, instead
of traversing the entire tree the way a B-tree would, it is simply added to the
buffer at the root of the tree. Buffers are flushed to lower levels of the tree when

they become full, until eventually data is flushed all the way down to leaves [72].

2.4. ROCKSDB STORAGE ENGINE 115

2.4.2 Basic Concepts & API

RocksDB* is alibrary that provides an embedded, persistent key-value store, written in
C++ and developed by Facebook. It builds upon earlier work on Level DB, developed
by Google. RocksDB has an LSM-tree design with flexible configuration settings that
may be tuned to run on a variety of production environments, and to achieve the de-
sired trade-oft between write, read and space amplification. RocksDB is optimized for
flash storage, delivering extremely low latencies. It also has the ability to scale linearly

with the number of CPUs.

RocksDB differs from existing key-value stores due to its focuses. It is a low-level
data engine whose primary design point is performance for fast storage and server
workloads. It is not a distributed database, it does not offer failure-tolerance or high-

availability but these features can be built on top of it if necessary.

15\-;1«:'1
S
Read Request <« [N - --------------- I

LSM

R
e, = ey i Gompaction |
o,

Figure 2.19: The architecture of RocksDB [73]

Following the LSM-tree design, the three basic constructs of RocksDB are the mem-
table, the SST file and the logfile (WAL). When the memtable fills up and is flushed to
an SST file on storage, its corresponding log file can be safely deleted. RocksDB also
supports memtable pipelining to increase write throughput. It may be configured with
an arbitrary number of memtables. When one of them becomes full, it becomes im-
mutable and a background thread starts flushing its contents to storage. Meanwhile,

new writes are directed to a newly allocated memtable instead of being stalled [69].

“"https://github.com/facebook/rocksdb/

https://github.com/facebook/rocksdb/

116 CHAPTER 2. BACKGROUND

The basic concepts of RocksDB as well as the functionalities offered by its API are

summarized in the following list [69]:

« DB: the name given to the database corresponds to a file system directory. Func-
tions that can be used upon the DB include Open() and DestroyDB(). A data-
base may be opened in read-only mode, ensuring higher read performance as
locks are avoided. A RocksDB database can be opened by multiple processes in

read-only mode but not in normal mode.

 Key-value pairs: keys and values in RocksDB have the form of arbitrary byte
arrays. Key ordering can be specified by the user via a comparator function. The
Get () function allows an application to fetch a single key-value pair from the
database. The MultiGet () function atomically retrieves a bunch of key-value

pairs. Bloom filters may be enabled to facilitate reads.

The Put () function inserts a single key-value pair to the database. Likewise, the
Delete() function removes a key-value pair from the database. The Write()
function allows multiple key-value pairs to be atomically inserted, updated or
deleted. The set of these key-value pairs is called a WriteBatch. In other words,
aWriteBatch holds a sequence of updates to be made to the database and ap-
plies them in order when the Write() function is called. Using a WriteBatch
to update multiple keys usually performs better than using Put() for each of
them, as the cost of synchronously*® writing to the WAL is amortized across all

of the updates in the batch.

WriteBatchWithIndexisa variation of WriteBatch thatservesthe read-your-
own-writes scenario, where a reader needs to have access to a transaction’s un-
committed writes. It achieves that by maintaining an internal buffer for all the
written keys, in the form of a searchable index that supports iteration. When
Get () iscalled onaWriteBatchWithIndex, before checking datain RocksDB,
it is first checked whether the value exists in the WriteBatchWithIndex, and
if it is, it is returned from there. In case of a range query, a super iterator is in-
ternally created, which merges the results of RocksDB with those of the Write-
BatchWithIndex’s bufter [74].

*8 Asynchronous writes return as soon as they have been delegated to the OS. A synchronous write
blocks until it has reached persistent storage. Adding updates to the WriteBatch is an asynchronous
operation, while calling Write() is synchronous.

2.4. ROCKSDB STORAGE ENGINE 117

Iterator: the Iterator API is used to perform range scans on the database.
The Iterator can seek to a specified key and then start scanning one key at a
time from that point. All keys returned via the Iterator are from the same

consistent view of the database.

Options: RocksDB uses options structs for a variety of purposes. There are DB
Options used when opening the database, ReadOptions and WriteOptions

used for each read or write, TransactionOptions and so on.

Snapshot: a Snapshot allows an application to create a point-in-time view of the
database. Then, the Get function and the Iterator can be configured to read
data from a specified Snapshot by passing it in their options struct. Snapshots

are a logical concept and are not persisted across database restarts.

Backup: creates a point-in-time snapshot that the database state can later be
rolled back to. The memtable is flushed before taking the snapshot so that its
changes are included. Backups work by copying the database and are normally
incremental. The database files can even be copied to a remote file system (e.g.,

HDEFS).

Checkpoint: a checkpoint creates a physical mirror of a running database in an
other directory of the same file system. SST files are hard-linked*®, rather than
copied, if the file system supports it, so it is a very lightweight operation [76].
Checkpoints are point-in-time snapshots and can be used as read-only copies of

the database or can be opened as standalone databases.

Transactions: transactions have a simple Begin(), Commit(), Rollback()
API and provide a way to guarantee that a batch of writes will only be written if
there are no conflicts. RocksDB supports both optimistic and pessimistic trans-
actions. According to the documentation of RocksDB [77], when using pes-
simistic transactions conflict detection is performed by internally locking all keys
that are written. In case a key fails to be locked the operation returns an error.
Optimistic transactions perform conflict detection at commit time to validate

that no other writers have modified the keys being written by them. If a conflict

* According to the Linux Information Project’s definition [75], “a hard link is merely an additional
name for an existing file on Linux or other Unix-like operating systems”. “The original file name and
any hard links all point to the same inode”

118

CHAPTER 2. BACKGROUND

is found the commit operation returns an error and no keys are written. For a
more thorough explanation of optimistic and pessimistic concurrency control,

see subsection 2.1.7. Transactions also support easy reading or iteration over the

keys currently batched in a transaction but not yet committed [77].

Compactions: in RocksDB compactions can be processed concurrently by mul-
tiple threads, thus affecting positively the overall write throughput. Two styles of
compaction are supported: universal style and levelled style. Both of these have

been outlined in subsection 2.4.1. Also, a number of threads can be reserved

for the purpose of flushing the memtable(s) to disk, so that incoming writes are
not stalled in case the memtable(s) are full and all threads are performing com-

pactions.

Compression: RocksDB supports multiple compression algorithms, including
Snappy, Bzip2, LZ4 and Zlib. A different compression algorithm may be chosen
for each level. A typical installation might configure no compression for levels
Ly-Lo, Snappy compression for the mid levels and Zlib compression for L,,,,.
LZ4 and Snappy keep the performance good, while Zlib significantly reduces the

data size.

Column families: they provide a way to logically partition the database into
separate key spaces. Column families share the WAL but don’t share memtables
and SST files. By sharing the WAL atomic writes across column families are

possible. Each column family is implemented as a separate LSM-tree.

Block cache: RocksDB uses an LRU®° cache for hot blocks of the SST files to

serve reads more efficiently.

After a compaction, compaction output files are added to the list of live SST files, while

compaction input files are removed from it. However, input files may not be instantly

deleted, as they may be in use by a Get () operation or an Iterator. The list of SST

files in the LSM-tree is kept in a data structure called version. Whenever a com-

paction or a memtable flush happens, a new version is created. At each point in time

only one of the preserved versions is the current one. Out of date versions are dropped

*Least Recently Used

2.4. ROCKSDB STORAGE ENGINE 119

when the Get () operations using them are finished or when Iterators are freed.

This logic is implemented using reference counts [78].

Improvements over Level DB

LevelDB is an open-source, fast key-value storage library written by Google. The im-

provements of RocksDB over LevelDB include support for [79]:

« Multi-threaded compactions. The single-threaded compaction process of Lev-

elDB was insufficient for server workloads and caused latency spikes.
 Multi-threaded memtable inserts
« Bloom filters
o+ Column families
« Universal style compaction
« Transactions and batching of writes
 Backup and checkpoints

« Many tunable configuration options, etc.

In general, RocksDB achieves better write and read throughput.

Use cases

RocksDB can be used as a storage engine or as an embedded database by applications
that need low-latency accesses. Facebook uses RocksDB as the storage engine for its
distributed database, ZippyDB. Other users of RocksDB are MySQL, Ceph, LinkedIn,
Yahoo, CockroachDB, Airbnb, Pinterest, Netflix, TiKV, etc. [80].

2.4.3 Comparison with BoltDB

Many of the differences between B+ trees and LSM-trees mentioned in subsection 2.4.1

apply here, as the underlying data structure is a determining factor for the behaviour

120 CHAPTER 2. BACKGROUND

of a database. The most important observation is that BoltDB is better at handling
read-heavy workloads because of the underlying B+ tree and the memory-mapping,

while RocksDB is better at handling write-heavy workloads.

According to the developer of BoltDB, B. Johnson, “if you require a high random write
throughput (>10,000 w/sec) or you need to use spinning disks then Level DB could be a
good choice. If your application is read-heavy or does a lot of range scans then Bolt could
be a good choice” [58]. Furthermore, RocksDB makes more efficient use of storage: it
applies compression and enables the user to tune it in order to achieve minimal write
and space amplification. With compression less storage space will be used, and with

less write amplification flash devices will last longer.

In addition, RocksDB supports I/O-bound®! workloads optimally, while BoltDB strug-
gles with datasets that are larger than the available memory. While the entirety of the
dataset is cached, write and read operations are very fast, but when the size of the B+
tree surpasses the available memory, performance drops significantly as it becomes
more probable for new requests to require pages that are not present in the cache, re-

sulting in disk reads.

On the other hand, RocksDB is a much more complex system, with a multitude of
tuning knobs that require a thorough study of its design in order to be successfully
configured. BoltDB’s inherent simplicity and its ability to be deployed right out-of-
the-box might sometimes be a good enough reason to prefer it. Also, BoltDB’s load
time is better, especially during recovery from crash, since it does not need to read
the log (it does not have one) to reconstruct a memtable and find the last succeeded
transaction: it just reads the IDs of two B+ tree roots, and uses the one with the greatest

ID.

1A workload is I/O-bound when the database size is much larger than memory and there are fre-
quent reads from storage.

2.5. THE GO PROGRAMMING LANGUAGE 121

2.5 The Go Programming Language

2.5.1 Overview

Go is an open source programming language created by Google and intended to com-
bine efficient compilation, efficient execution and ease of programming. It is statically
typed, with a user-friendly, C-like syntax and garbage collection. It easily uses multiple

cores, implements concurrency and works in distributed environments [81].

Itis believed that the open-source community can benefit greatly from a language such
as Go, as it was designed to facilitate the writing, debugging and maintenance of large
software systems. Code simplicity and understandability is key for projects that are
based on contributions and are therefore developed by multiple programmers [82].
On the other hand, Go has been extensively accused of being overly simplistic and
restricting [83], [84]. Its lack of generics, leading to violation of the DRY>? principle,
is one of its most often criticised traits. A common response to these disputes is that
Go, like every other programming language is just a tool, and one has to pick the right
tool for the particular job they want to do. Infrastructure as a Service, web servers,
backend services, cloud orchestration, DevOps and generally concurrent applications

are some examples of suitable usecases for Go.

Go is becoming increasingly popular, as can be seen in Figure 2.20. This graph depicts
the interest over time* in Go and some of the programming languages that it is often
compared with. Twitter, BBC, Github, Bitbucket, Canonical, DropBox, DigitalOcean,

SoundCloud and CoreOS, are only a few of its production users [89].

Some interesting Go constructs and tools that we utilized in our implementation in-

clude:

« Goroutines: functions that run in a goroutine are capable of running concur-
rently with other functions. Creating a goroutine is as simple as using the key-

word go followed by a function invocation [86]. A goroutine is similar to a

*>*Don’t Repeat Yourself (DRY) is a principle of software development aimed at reducing repetition

of software patterns, replacing them with abstractions”, according to Wikipedia [85]. For example, this
can be achieved by allowing the type of parameters of a function to be resolved at compile time, instead
of rewriting a function for each type of parameters one needs to use it with.

**The value of 100 represents the highest popularity for a search term in Google.

122

CHAPTER 2. BACKGROUND

Interest Over Time

source: Google Trends

60 — GO
= 50 v Erlang
= Scala
g 40
é. Rust
8 30

20 /\4

10

0

P P @ PP DI DO DEE DR

P EF PP P I PO SEPSFIO LSS S S,S
SR ARSERSEFNARN SRS SRR RN AN AR I SR SR SR SR\ SRR R IR NN SN SN SN N
L I M S S S A M M M M S I M M D S QA QI Q)

Figure 2.20: Popularity growth of golang

thread, with the difference that it is scheduled by Go and not the OS. Usually,
multiple goroutines run on the same OS thread. Goroutines are lightweight and

modern hardware can support millions of them [87].

Channels: they provide a means of communication and synchronization for two
or more goroutines. When a writer goroutine sends a message on a channel, it
will wait until a reader goroutine is ready to receive the message (i.e., block-
ing/synchronous communication). However, channels may also be buffered,
meaning that they behave in an asynchronous manner; sending or receiving
messages will not wait unless the channel is already full [86]. Furthermore, Go
has a very useful special statement called select. It resembles a switch state-
ment but it is used for managing multiple channels. As C. Doxsey explains in
his “Introduction to Programming in Go” [86], “select picks the first chan-
nel that is ready and receives from it (or sends to it)”. “If more than one of the
channels are ready then it randomly picks which one to receive from. If none of

the channels are ready, the statement blocks until one becomes available” This

provides a convenient way to implement a timeout.

Slices: Go slices are analogous to the concept of arrays but are more commonly
used in practice, as they possess a few extra properties that make them more
flexible. Unlike arrays their length is not fixed and can be adjusted dynamically
up to a predefined capacity. A slice is implemented in Go as a reference to an
underlying array segment. To grow a slice beyond its initial capacity its contents

must be copied into a larger slice [90].

2.5. THE GO PROGRAMMING LANGUAGE 123

o Defer and Panic: according to the Go Blog [91], “a defer statement pushes a
function call onto a list. The list of saved calls is executed after the surrounding
function returns. Defer is commonly used to simplify functions that perform

various clean-up actions”.

Also, “Panic is a built-in function that stops the ordinary flow of control and
begins panicking. When the function F calls panic, execution of F stops, any
deferred functions in F are executed normally, and then F returns to its caller.
To the caller, F then behaves like a call to panic. The process continues up the
stack until all functions in the current goroutine have returned, at which point

the program crashes”.

« Growable stacks: Go manages its goroutine stacks in a way that enables each
goroutine to take up the least amount of memory. Instead of giving each gorou-
tine a fixed amount of stack memory, like C does with threads, the Go runtime
attempts to give goroutines the stack space they need on demand. When a gor-
outine is created, a section of memory of a few kilobytes>* is allocated in order
to be used as its stack. Each Go function has a prologue at function entry, that
checks if the allocated space has been used up and calls the morestack function
it it has. The morestack function allocates a new section of memory with dou-
ble the size of the previous one and copies the old segment into it. At the bottom
of the stack, a stack entry for a function called 1lessstack is inserted, so that we
return into it when the function that caused running out of stack space finishes

its work [88].

« Vendoring: the practice of vendoring allows storing the external dependencies
(i.e, third-party packages) in a folder called vendor, which is located within
a project. This way, problems caused by unstable third-party libraries can be
avoided by keeping a local copy of a working version. The Go tools, such as go
buildorgo runfirst checkif the dependencies are located in the vendor folder.
Only if they are not found there, they are imported from $GOPATH/src/. There
exist various dependency management tools, such as godep and govendor, that

facilitate this process.

« The Go toolchain: it includes tools such as pprof, that provides a heap or CPU

**In C the stack is in the order of megabytes.

124 CHAPTER 2. BACKGROUND

profile, and race detector. go test is another useful tool that implements auto-
mated testing using test functions contained in _test.go suffixed files within

a package, and output PASS/FAIL messages.

2.5.2 Cgo: A Necessary Evil

In plenty of cases it may be needed to use a library written in C from within Go code.
There are two ways to do this. The first, is the cgo tool, which is part of the Go dis-
tribution. The second is the SWIG program, which is a general tool for interfacing
between languages® [92]. In this project we have opted to use cgo, as SWIG seemed

considerably more complex to configure.

Cgo enables the creation of Go packages that call C code by importing a pseudo-
package called "C". The Go code can then refer to types suchas C.size_tandC.int,
variables such as C. stdout, or functions such as C.putchar. When the go build
tool detects Go files that use the special import "C", it searches for C/C++ files in the
directory and invokes the C/C++ compiler to compile them as part of the Go pack-
age. As we learn from the documentation of Go [93], “if the import of "C" is im-
mediately preceded by a comment, that comment, called the preamble, is used as a
header when compiling the C parts of the package”. “The preamble may contain any
C code, including function and variable declarations and definitions. These may then
be referred to from Go code as though they were defined in the package "C"” What is
more, CFLAGS, CPPFLAGS, LDFLAGS, etc. may be defined with #cgo pseudo-directives

within the preamble to configure the behaviour of the C/C++ compiler [93].

The above can be clarified by the following code example [94], a Go package com-
prised of two functions - Random() and Seed () - that wrap C’s random and srandom
functions. The return value of random() is of type C. long and has to be converted to
a Go type in order to be used by Go code outside this package. The Seed() function
receives a Go int as its argument and converts it to the C unsigned int type before

passing it to srandom() [94].

*http://swig.org/

http://swig.org/

2.5. THE GO PROGRAMMING LANGUAGE 125

1 |package rand

/*
#include <stdlib.h>
*/

6 |import

ul H~ (S8 \S)

N

8 |func Random() int {

9 return int(C.random())
10 |}
11
12 |func Seed(i int) {

13 C.srandom(C.uint(i))
14 |}

Listing 2.1: Cgo example

There exist a few special functions that convert between Go and C types by making
copies of the data. C.CBytes is one of those functions and it is used to convert a
Go byte slice to a C array. The opposite conversion is performed by the C.GoBytes
function. Conversion between Go and C strings is done with the C.CString and
C.GoString functions. When a C string created with C.CString or a C array cre-

ated with C.CBytes is no longer needed it must be freed by calling C. free [94].

It is worth noting that there are restrictions on passing pointers between Go and C.
Go's garbage collector needs to know the location of every pointer to Go memory. As
a result, Go code may pass a Go pointer to C, provided the Go memory to which it
points does not contain any Go pointers®®. Moreover, C code may not keep a copy of

a Go pointer after the call returns [93].

Although cgo is a tremendously useful feature, it does not come without considerable

drawbacks. We briefly describe a few of them below [95], [96]:

« Performance degradation: C is not familiar with Go’s calling convention or

*°A Go pointer is a pointer to memory allocated by Go (i.e., by using the & operator or calling the
predefined new function).

126 CHAPTER 2. BACKGROUND

growable stacks®’, so a call to C code has to record the goroutine stack and then

switch®® to a C stack.

However, the stack switch, being a relatively cheap operation, is not the main
source of delay. The major part of cgo’s overhead is owed to the fact that every
cgo call is considered blocking and is treated by the Go runtime as a system call.
When a goroutine enters a cgo call, it is locked on the thread it was running on
and this thread blocks waiting for the call to complete. The thread also frees the
GOMAXPROCS®’ slot it was occupying®, so as not to block other goroutines or the
garbage collector. After the cgo call returns, the goroutine blocks until there is
an available GOMAXPROCS slot for it to run on. This requires coordination with
the Go runtime scheduler, that involves acquiring and releasing a lock, which are
atomic memory operations in the order of tens of nanoseconds. In addition,
while the thread is blocking, the scheduler may need to create a new OS thread

in order to run other ready goroutines [98], [99], [100].

Yet another source of overhead is that, as mentioned before, copies are often not

avoidable when passing data from Go to C and vice versa.

Thus, the transition is non-trivial and imposes an overhead which, depending
on where it exists in the code, may be insignificant or considerable. The overhead
of a cgo call is reported to be between ten and a hundred times larger than that
of a call within Go. For this reason, it is generally advisable to minimize the
number of cgo calls. For example, rather than calling a cgo function repeatedly

within a loop it is better to move the loop down to C code.

+ Slower build times: the C compiler has to be invoked for every C file in the

package.

« Complicated builds: a project using cgo can no longer be built by using the go

tool only. A C compiler has to be installed, environment variables may need to

*”The C code will not know how to grow the stack if it needs more than the few kilobytes that the Go
stack offers.

**A stack switch involves saving all registers when the C function is called and restoring them when
it returns.

*?GOMAXPROCS is an environment variable that determines how many operating system threads can
execute user-level Go code simultaneously. Its default value equals the number of available CPU cores.
Threads that are blocked in system calls or cgo calls do not count against the GOMAXPROCS limit [97].

®*In the latest versions of Go this only happens if the goroutine spends more than 20 microseconds
running C code.

2.5. THE GO PROGRAMMING LANGUAGE 127

be set, shared objects need to be kept track of and C library dependencies must
be satisfied. In addition, producing a single, static®' binary is no longer a simple

procedure and requires a lot of tweaking.

« Cross compilation is no longer supported: Go’s support for cross compilation®
is thought to be one of the language’s strong points. When using cgo one has to

give up this feature.

» Noaccess to Go’s toolchain: the race detector, the pprof profiler and other use-
ful Go tools cease working when cgo is added to the mix. As a result, debugging

becomes harder.

« Manual memory management: Go is garbage-collected, but C is not. As a re-

sult, special care must be taken when passing data from C to Go and vice versa.

« Concurrency issues: while goroutines are lightweight because of the size of their
stack, one must keep in mind that when they involve blocking cgo calls each of
them occupies a system thread. A thousand goroutines can easily be handled
by the go runtime, but when they translate to a thousand threads this might
cause significant performance issues. Thus, when a program contains calls to

cgo, concurrency has to be appropriately bounded.

Allinall, cgo should be used with care and only in cases where it is absolutely necessary.
For example, cgo can be very helpful when one needs to avoid reimplementing in Go a
large and complex library that already exists in C. What is more, it is generally advisable
to use cgo only when the C function called does a substantial amount of work, such that
its execution duration causes the overhead of the cgo call to be unnoticeable. Finally,
the use of cgo is also justified when the performance of the function implemented in
C is notably better than it would be in Go. Common use cases of cgo include calls to

physics engines and graphics libraries such as OpenGL.

®!A static binary has all of the required library code built in. In contrast, a dynamically linked binary
uses shared libraries to satisfy its dependencies.

®2Cross-compilation refers to the process of producing executable code for a platform other than the
one on which the compiler is running [101].

128

Design

In this chapter we thoroughly analyse the fundamental design decisions we made prior
to the implementation of our solution. At first, we mention the expectations we want
our final system to meet and present the architecture of etcd after the integration
of its new storage engine. Then, we discuss the reasons that led us to the selection
of RocksDB among other storage engines. In addition, we describe the mapping of
BoltDB concepts and constructs to their RocksDB counterparts with the preservation

of initial semantics in mind.

As stated previously, etcd is designed to reliably store infrequently updated data and
be used as a metadata store. Our primary aim is to improve its write throughput, as
we believe that it has the potential to be used as a general-purpose key-value store. We
plan to do this by replacing its current, read-optimized storage engine, BoltDB, with

write-optimized RocksDB. Our expectations from the final system are that:

o A better write performance will be achieved

o Etcd’s guarantees of reliability, consistency and high-availability will be hon-

oured

+ Read performance will deteriorate slightly, within acceptable levels, as has been
made obvious by our analysis of the two storage engines and their underlying

data structures in chapter 2

129

130 CHAPTER 3. DESIGN

3.1 Proposed Architecture & Design Choices

3.1.1 Integration of RocksDB into etcd

The final step in the path of an incoming request to etcd involves being serviced by
the storage engine. More specifically, a new put request first passes through the Raft
protocol and then is processed by the backend package of etcd, which directs it to the

storage engine in order to be persisted.

According to our initial design, we implement a wrapper whose purpose is to map the
calls that the backend of etcd makes to the BoltDB library to the corresponding calls to
the RocksDB library. This approach enables us to minimize interventions in core etcd
code. In fact, we have only made changes to etcd code where the abstraction between
the backend package and the storage engine key-value API was not good enough and

the implementation was strongly coupled to BoltDB.

Our wrapper code is written in Go and is placed inside the bolt package that was
already vendored in etcd. This way, the change of the storage engine is not visible to
other etcd packages. We have preserved all BoltDB API functions used by etcd, but
changed their code to call the corresponding functions of RocksDB. Finally, wherever
the functionality of the two storage engines diverged we added the necessary helper

functions to preserve the semantics.

Later, it will be trivial to add support for both storage engines, adopting a pluggable

design like the one of MongoDB, which we outlined in subsection 1.3.3. This can

be done by simply adding an appropriate compile-time or startup-time configuration

option to etcd.

Figure 3.1 is a schematic representation of the architecture of etcd’s backend after the
integration of RocksDB. The components of the backend are described in the following

subsections.

Understanding the steps that an etcd server takes in order to reply to a client request
helps get a better idea of the role of the backend and its position in the workflow of
etcd:

3.1. PROPOSED ARCHITECTURE & DESIGN CHOICES 131

etedctl

/ eted

Raft Protocol

1L

4 R

BoltDB to RocksDB
Wrapper

=)
\—/

gorocksdb

Storage Backend

L[]

RocksDB C API

;
A /)

Ul

Figure 3.1: Architecture of the etcd backend with RocksDB as its storage engine

1. The etcd server receives a client request
2. It registers a new Go channel with a unique id in a map of channels
3. It forwards the request to the Raft protocol

4. It listens on the registered channel for a response, which it will forward to the

client
5. The request is written to the WAL and passes through consensus
6. Then, it is applied to the backend

7. Finally, the result of its application is sent to the aforementioned channel

132 CHAPTER 3. DESIGN

This means that, for example, when writing a key-value pair in etcd, the client will only
receive a response when it has been successfully persisted to the backend. Besides, that

is when etcd is ready to actually return the written value upon a get request.

3.1.2 Why RocksDB?

The principal reason behind the selection of RocksDB was the write-optimized un-
derlying indexing structure it implements, the LSM-tree. According to Ben Johnson,
developer of BoltDB, RocksDB is a better choice in cases where a high random write
throughput (>10,000 writes/sec) is required [58]. What is more, RocksDB is a high-
performance key-value database, backed by an experienced developer community. It
is trusted to be stable and robust as it is already being used in production by many

impressive software systems.

Some of the most popular databases that implement an LSM-tree are BigTable, HBase,
Cassandra, SQLite', MongoDB, LevelDB, and InfluxDB. Out of them, the majority are
distributed databases (BigTable, Hbase, Cassandra, MongoDB) with some of them also
being proprietary. Others, like SQLite and InfluxDB are relational or have an SQL layer
that renders them unsuitable for our scenario. Apparently, among the above only Lev-
elDB and RocksDB fulfill our requirements of an LSM-tree based, open-source, local
key-value store in the form of an embedded library. Having mentioned the differences
between these two in subsection 2.4.2 there is obviously no reason to prefer LevelDB

over RocksDB.

Furthermore, the integration of RocksDB is an idea that the developers of etcd have
discussed themselves. In fact, in an etcd community Google Hangout in December
2015, they mentioned the possibility of trying RocksDB as a storage engine for etcd.
They concluded that BoltDB is good enough for the current use case of etcd and left

this open as an option for future investigation [102].

3.1.3 'The gorocksdb Wrapper

As etcd is written in Go and RocksDB is written in C++ an intermediate software com-

ponent is required for their integration. RocksDB already has a C API (a C wrapper

'https://www.sqlite.org/

https://www.sqlite.org/

3.1. PROPOSED ARCHITECTURE & DESIGN CHOICES 133

of its C++ API) so what we need is a Go wrapper for this API. Gorocksdb? is exactly
that: an open-source Go wrapper for RocksDB. There exist a few projects similar to

gorocksdb but none is as actively maintained and feature complete.

Each function in the gorocksdb wrapper contains a call to the corresponding function
of the RocksDB C API. Cgo is used to enable calling C functions from Go code. A

typical gorocksdb function follows this workflow:

1. Argument conversion: Go byte slices are converted to *C.char pointers by
using a function from Go’s unsafe package to cast them to Pointer?® type first,
and then by being cast to *C.char, Go bool types are converted to C.uchar,

etc.
2. Function call: the C function of the RocksDB C API is called via Cgo.

3. Return values & Error handling: the return values of C functions are converted
to Go types in a manner analogous to that of argument conversion before being
returned to the Go program. Also, error arguments are converted from *C. char

pointer to Go error type.

Moreover, each wrapper struct in gorocksdb contains a field with a C pointer to the
corresponding C struct. The above is clarified by the two following examples from

gorocksdb code [103]:

1 |// Put writes data associated with a key to the database.
2 |func (db *DB) Put(opts *WriteOptions, key, value []byte) error {
var (

cErr *C.char

cKey = byteToChar(key)

cValue = byteToChar(value)

)
C.rocksdb_put(db.c, opts.c, cKey, C.size_t(len(key)), cValue,

L NN N Ul

C.size_t(len(value)), &cErr)

*https://github.com/tecbot/gorocksdb

*Go’s Pointer type belongs to the unsafe package and represents a pointer to an arbitrary type.
A pointer value of any type can be converted to a Pointer, and vice versa. Therefore, Pointer allows
code to override the type system and read and write arbitrary memory [97].

https://github.com/tecbot/gorocksdb

134 CHAPTER 3. DESIGN

9 if cErr = nil {

10 defer C.free(unsafe.Pointer(cErr))
11 return errors.New(C.GoString(cErr))
12 }

13 return nil

14 |}

Listing 3.1: gorocksdb Put () function

1 |// WriteOptions represent all of the available options when writing
2 |// to a database.

3 |type WriteOptions struct {

4 c *C.rocksdb_writeoptions_t

5}

Listing 3.2: gorocksdb WriteOptions struct

3.1.4 The RocksDB C API

The C API of RocksDB* is implemented as a single C++ file and C header file pair. All

wrapper structs and functions are enclosed in an extern "C"® block.

Wrapper structs only have one field: a pointer to their corresponding C++ struct.
Wrapper functions contain a call to their corresponding C++ function. The SaveEr-
ror () helper function is used to convert the Status struct returned by C++ functions

to a char pointer.

1 |void rocksdb_put(

2 rocksdb_t* db,

3 const rocksdb_writeoptions_t* options,
4 const char* key, size t keylen,

5 const char* val, size t vallen,

6 char** errptr) {

*https://github.com/facebook/rocksdb/blob/master/db/c.cc

*The extern "C" attribute on a C++ function turns off name mangling so that the public or external
name becomes compatible with the C language. Name mangling is a technique to distinguish functions
with the same identifiers by including extra information (e.g., number and type of arguments).

https://github.com/facebook/rocksdb/blob/master/db/c.cc

3.1. PROPOSED ARCHITECTURE & DESIGN CHOICES 135

N

SaveError(errptr,
8 db->rep->Put(options->rep, Slice(key, keylen), Slice(val,
vallen)));

91}

Listing 3.3: RocksDB C API rocksdb_put () function

1 |struct rocksdb _writeoptions t { WriteOptions rep; };

Listing 3.4: RocksDB C API rocksdb_writeoptions struct

3.1.5 Removing the Storage Quota

As mentioned in subsection 2.2.1, etcd imposes a restriction upon the size of its storage

backend, implemented as a configurable quota ranging from 2GB to 8GB. Although
such a capacity may be reasonable for some of the use cases of etcd as a metadata store,

it is certainly not enough for the general case.

Before removing the limitation we decided to carefully investigate the reasons behind
its existence. The documentation of etcd mentions that it isimposed in order to prevent
disk space exhaustion and performance degradation [41]. Running out of disk space is
not a concern, as most modern computer systems are equipped with storage devices
of a capacity much larger than 8GB. Performance degradation most probably refers to
the B+ tree’s and consequently BoltDB’s tendency to not handle well datasets whose
size exceeds the available memory. Since in our implementation we will be replacing
BoltDB with an LSM-tree based storage engine, there is no reason to worry about this

either.

However, there is an environment where the 2GB constraint would make sense: a sys-
tem with a 32-bit architecture. While in theory the address space of a 32-bit system is
4GB, the largest available contiguous block of memory is 2GB. As BoltDB uses a file
memory mapped to a contiguous block of memory it cannot support datasets larger
than 2GB on 32-bit systems [105]. By integrating RocksDB, which does not use a

memory-mapped file, we can overcome this problem as well.

After discussing the matter with Xiang Li, one of the core developers of etcd, on the

project’s development mailing list, we gained some new insights. According to Xi-

136 CHAPTER 3. DESIGN

ang Li, the main reason why the constraint exists is to keep the mean time to recovery

(MTTR) within acceptable bounds. As we have mentioned again in subsection 2.2.1

the impact of the MTTR becomes evident when a cluster member crashes and has to
be replaced by a new one. Having to wait for a very large snapshot to be transferred to
the new member would hurt etcd’s availability. More specifically, Xiang Li states that
in case of a member crash, “simply adding a new member should bring the cluster
back to full health within tens of seconds”, and today’s average hardware is not capable
of transferring a very large snapshot in such a short time [104]. This is a problem we
cannot easily overcome, but if for a specific usecase being able to accommodate a large

dataset is a more important concern than the MTTR we can choose to ignore it.

Thus, we can safely lift the backend size restriction. The quota size is stored in a con-
stant in the backend package of etcd, so it is trivial to change it to a larger value or to

math.MaxInt64.

3.2 Mapping of Concepts & Constructs

In this section we examine the choices we made when mapping BoltDB concepts and
constructs to their analogous concepts and constructs of RocksDB, and explain why

each option was preferred. All concepts have been described in detail in subsection 2.3.2

and subsection 2.4.2.

3.2.1 DB

Obviously, BoltDB’s DB object can be conveniently mapped to a RocksDB DB ob-
ject. Even though the two are fundamentally different (i.e., the first corresponds to
a memory-mapped file and the second one to a directory) they share the same basic
functionality (e.g., Open(), Close() API calls, starting a new transaction on the DB
etc.).

3.2.2 Buckets to Prefixes

In BoltDB buckets partition the dataset into separate namespaces. There are two ways

to achieve this in RocksDB. The first one is to use Column Families. The second one is

3.2. MAPPING OF CONCEPTS & CONSTRUCTS 137

to simply append the name of the bucket to the requested key before servicing queries
to the database. Of course, as the strings representing the buckets in etcd vary in length
and some of them even start with the same character sequence, we need to use a de-
limiter, in order to be able to determine where the prefix ends and the key name starts.
We chose the “/” character for this. For example, if the key foo needs to be stored
in bucket keys, we store keys/foo in RocksDB. Likewise, if the key bar has to be

retrieved from bucket meta, we search for meta/bar.

According to the documentation of RocksDB, Column Families are most commonly

used when:

1. Different compaction settings, comparators, compression types, or compaction

filters are used in different parts of data.

2. Whole groups of data need to be deleted at once. This is achieved by dropping a

Column Family.

3. Metadata needs to be stored separately from data. In this case, each is stored in

their own Column Family.

Our implementation falls under the third case. However, in the documentation it is
also stated that it is only a good idea to use Column Families when each key space is
reasonably large, as maintaining multiple Column Families is a troublesome program-

ming experience [44]. In the case of etcd 11 buckets are used:

« root: this bucket contains all other buckets.
o key: this is where all the key-value pairs stored in etcd are placed.

« meta: this bucket stores metadata, like the current consistent index, the next
scheduled key space compaction, etc. The consistent index is a global, monoto-
nically-increasing value, incremented for every update. It is also the offset of an

entry in the consistent replicated log.
« alarm: this bucket stores a key for each activated cluster-wide alarm.

o test: this bucket is only used for testing purposes, not during normal operation

of etcd.

o members: the IDs of active cluster members are stored here.

138 CHAPTER 3. DESIGN

 members_removed: this bucket stores the IDs of members that have been re-

moved from the cluster.
« cluster: the version of etcd is stored in this bucket.

« auth: authentication related metadata is stored here (e.g., whether authentica-

tion is activated or not).

o authUser: this bucket contains a key per user. Each user’s name, password, and

roles are stored in the corresponding value.

« authRoles: this bucket contains a key per role. The name and permissions of

roles are stored in the value.

« lease: this bucket contains a key per active lease, containing information about

their expiration times.

Obviously, the only bucket hosting a large key space is the “key” bucket. Therefore,
prefixing was preferred in order to avoid the redundant programming complexity of

using Column Families.

3.2.3 Get, Put & Delete Operations

Intuitively, a direct mapping can be applied as far as the core key-value store API is
concerned. Both storage engines are key-value stores so they expose Get (), Put()
and Delete() functions with the same semantics. In both cases, these operations will

be applied within a transaction.

3.2.4 Cursor to Iterator

The case of mapping the BoltDB Cursor to a RocksDB concept is a simple one. The
RocksDB Iterator implements the same basic functions required to iterate over a set

of key-value pairs (e.g., First(), Seek(), Next (), Prev(), etc.).

3.2. MAPPING OF CONCEPTS & CONSTRUCTS 139

3.2.5 Transactions

The possible RocksDB alternatives that we could map BoltDB transactions to include
Pessimistic Transactions, Optimistic Transactions and a combination of Snapshot
(to simulate read-only transactions) and WriteBatch (to simulate read-write trans-
actions). Our first intuition was to map BoltBD transactions to RocksDB Pessimistic
Transactions. In chapter 5 we will see how this approach led to suboptimal results and

in chapter 4 we will try more efficient approaches and explain their correctness.

As has been made obvious by the description of the concept of a transaction in each

storage engine in subsection 2.3.2 and subsection 2.4.2, the semantics differ slightly.

Firstly, it is worth mentioning that unlike BoltDB, RocksDB supports running multiple
concurrent transactions. BoltDB offers pure ACID transactions that do not fail, while
RocksDB’s Pessimistic Transactions might fail or deadlock (if no timeout has been
set) if two of them simultaneously try to lock a specific key that the other has already
acquired a lock for. Furthermore, RocksDB transactions offer a lower level of isolation
(i.e., phantom writes are not detected [107]). Atomicity, consistency and durability are

ensured by RocksDB transactions by design.

However, etcd maintains only one active read-write transaction at any given point.
More specifically, in etcd a new transaction is created only once the previous one has
been committed. This means that the semantic difference between the two storage en-
gines can be safely disregarded. Failures of transactions or deadlocks will not happen,
as there is no contention over keys when only one read-write transaction is running
at a given time. In other words, the semantics of BoltDB transactions and RocksDB

Pessimistic Transactions are the same in this context.

3.2.6 Snapshot to Checkpoint

As has been discussed in section 2.2, etcd uses snapshots as backups of its keyspace for
the purpose of disaster recovery. The client can request the creation of a snapshot by
issuing the command etcdctl snapshot save backup.db. The snapshot is then
sent to the client over a stream. Later, if the cluster for example loses quorum, it can
be reinitialized using the most recent snapshot available, with the command etcdctl

snapshot restore backup.db. This command creates an etcd data directory for

140 CHAPTER 3. DESIGN

an etcd cluster member from a backend database snapshot. Restoring overwrites some
snapshot metadata (e.g., member ID, cluster ID) in order to reflect the new cluster
configuration [106]. Those snapshots are also automatically created and sent over the
network to new members joining the cluster or to slow followers in order to help them

catch up.

In BoltDB a snapshot of the database can be taken with the Tx.WriteTo() function

which writes a consistent view of the database to a file, as described in subsection 2.3.2.

If called from a read-only transaction, Tx.WriteTo() performs a hot backup, which

means that it does not block other reads and writes on the database [58].

When adopting RocksDB as the storage engine of etcd we have three options for the
implementation of the snapshotting functionality, namely Snapshot, Backup and

Checkpoint. These have all been analysed in subsection 2.4.2. After carefully evalu-

ating each of them, we conclude that Checkpoint is the most suitable. Specifically, a
Snapshot cannot be used by itself as it is a logical concept with no physical represen-
tation (e.g., a file) and is not persisted across database restarts. Theoretically, we could
use a Snapshot to iterate over the keyspace of the database and copy the key-value
pairs one by one to a new database, but this seems like an inefficient approach. Both
Backup and Checkpoint satisfy our requirements as they perform a hot backup that
is persistent. Checkpoint however, is preferred as it provides the extra benefit of hard
linking the SST files instead of copying them, rendering it a more lightweight opera-
tion. Since SST files are immutable hard linking is very convenient. What is more,
reference counting makes sure that SST files that belong to a Checkpoint will not
be deleted when compaction removes them from the database directory. Even if the
original database is deleted in its entirety the Checkpoint will remain intact. When
opening a Checkpoint as a new database, and once compactions cause the original

SST files to become obsolete, hard links are removed.

Furthermore, it is worth noting that throughout etcd code the snapshot is treated as a
single file, matching the BoltDB snapshot concept. However, a RocksDB database and
by extension its Checkpoint is a directory. To avoid extensive alteration of etcd code,

we transform the Checkpoint to a tar archive®. This means that we end up copying the

Star is a computer software utility for collecting many files into one archive file, often referred to as a
tarball, for distribution or backup purposes. The name is derived from tape archive, as it was originally
developed to write data to sequential I/O devices with no file system of their own. [108]

3.2. MAPPING OF CONCEPTS & CONSTRUCTS 141

SST files in the archive. Even this way though, we benefit from using a Checkpoint,

as in the case of a Backup the contents of the database would have to be copied twice.

3.2.7 Defragmentation

The need for regular defragmentation in the case of BoltDB has been explained in sub-
section 2.3.3. The Defrag() function forms part of etcd’s backend API and is usually
called manually by the user via the command line client (i.e., etcdctl), when a space
quota alarm is raised, in order to free up some disk space and enable the resumption of
normal cluster operation. Obviously, RocksDB as an LSM-tree implementation does
not experience fragmentation. However, the most similar RocksDB concept to de-
fragmentation is that of compaction, in the sense that both result in a reduction of the
database’s size on disk. A call to the function of BoltDB that implements defragmenta-
tion could easily be replaced by a manual compaction function call in RocksDB, but we
deemed this to be unnecessary since compactions are already performed by RocksDB

in a periodic fashion.

3.2.8 Read-Only Mode

BoltDB’s Open () function accepts an argument that determines whether the database
will be opened in read-write mode or in read-only mode. The underlying database
is only opened in read-only mode by etcdctl when inquiring the status (i.e., hash,
revision, number of keys, size) of a previously taken snapshot. When using RocksDB,
in case that the aforementioned argument to Open() indicates opening in read-only
mode, we use the OpenForReadOnly() function instead of the Open() function.
Both databases can be simultaneously opened by multiple processes in read-only mode

and by only one process in read-write mode.

The below table summarizes the differences between BoltDB and RocksDB that di-

rectly affect the design of our solution.

More details on the issues stemming from semantic discrepancies between BoltDB and

RocksDB concepts and the way they were dealt with are presented in chapter 4.

142 CHAPTER 3. DESIGN

BoltDB RocksDB

DB format memory-mapped file directory

Transactions ACID ACT*D (no phantom writes)

Concurrency one txn at a time multiple txns

Namespaces buckets prefixes / column families

Tuning not required multitude of tunable options

Defragmentation required not required

Table 3.1: Key differences between BoltDB and RocksDB

Implementation

In this chapter, we give a detailed description of the storage engine replacement pro-
cess within the context of etcd and the development of the related BoltDB to RocksDB
wrapper. We analyse the obstacles encountered while trying to put our design deci-
sions into practice and the steps we took in order to overcome them. We then go on
to present the rationale behind each optimization applied upon our initial approach.
In addition, we outline the software patches we wrote in the cases that it was not pos-
sible to have a direct mapping because functionality available in BoltDB was missing
from RocksDB. Finally, we describe in detail the methods and tools used to ensure the

correctness of our code.

Below we have only included a few select segments of code, in order to aid the reader’s
understanding of our implementation. The complete source code is available on https:

//github.com/boolean5/etcd-rocks

4.1 Wrapping RocksDB in BoltDB

As it was described in subsection 3.1.1, in order to allow etcd code to continue using

the same API as before, we kept the declarations of the BoltDB library functions intact
and only changed their implementation, so that they call the corresponding gorocksdb
functions. We only worked on the subset of the BoltDB API that etcd uses. In an anal-
ogous manner, the structs declared in the BoltDB package are retained, but they now

act as wrappers for the corresponding gorocksdb structs, and other fields are added

143

https://github.com/boolean5/etcd-rocks
https://github.com/boolean5/etcd-rocks

144 CHAPTER 4. IMPLEMENTATION

to or removed from them as needed. Also, whenever the mapping from BoltDB to

RocksDB concepts was not trivial we added extra code and auxiliary functions.

In this section we provide a complete list of the functions and structs that were imple-
mented, along with an explanation. This list refers to the final, optimized implemen-
tation of our wrapper. Later on, in section 4.3, we will present our path towards this
final version, starting from our base implementation and reviewing the optimizations

applied on it, highlighting the changes made on our functions and structs.

DB struct: this struct represents the database. Its main purpose is to act as a wrapper
for the underlying gorocksdb DB struct, which is a reusable handle to a RocksDB
database on disk. Besides that, its fields include information about the path of the
database directory, and whether the database has been opened in read-only mode.
They also include a mutex responsible for allowing only one writer at a time, a handle

toanOptions struct anda map that contains the buckets that exist in the database’.

Finally, among the fields of the DB struct there is a pointer to a gorocksdb Write-
Batch, which is used to simulate a BoltDB transaction, and a pointer to a gorocksdb
WriteBatchWithIndex, which is only used in the special case mentioned in sec-
tion 4.2. For a description of the WriteBatch and WriteBatchWithIndex concepts,

see subsection 2.4.2.

1 |type DB struct {

2 readOnly bool

3 db *gorocksdb.DB

4 path string

5 rwlock sync.Mutex

6 wb *gorocksdb.WriteBatch

7 wbwi *gorocksdb.WriteBatchWithIndex
8 options *Options

9 buckets map[string]bool

10 |}

Listing 4.1: The DB struct

'The bucket hierarchy present in BoltDB is preserved, even though RocksDB does not inherently
provide such a concept.

4.1. WRAPPING ROCKSDB IN BOLTDB 145

Open(path string, mode os.FileMode, options *Options) (*DB, error):
this function opens an instance of RocksDB at the given path. If a directory does not
already exist at the provided path it will be created automatically. Also, depending on

the value of the mode argument, which is processed by the isReadOnly () function,

the database will be opened either in read-only mode by calling the gorocksdb func-
tion OpenDbForReadOnly () or in normal read-write mode by calling the gorocksdb
function OpenDb (). Right before that, the appropriate database Options are created.

It is worth noting here that while this function is usually invoked with the purpose
of creating a new database, it might also be used to open an existing database from a
regular database directory (i.e., when an etcd node is restarted) or from a Checkpoint
(i.e., when recovering a cluster). In the latter case, instead of pointing to a directory as
usual, the path argument points to a tar archive that needs to be untarred before we
attempt to open it. To differentiate among these cases, we implemented a check using
Go's built-in functions Stat () and IsDir() from the os package. Stat () returns the
FileInfo associated with a path, which is then used by IsDir() to report whether
the path points to a directory [97]. In the latter case, we can immediately proceed to
the call of gorocksdb that opens the database. On the other hand, if it points to a file,
we use our IsTar () function to confirm that the file is indeed a tar archive, and then
we untar it via our untar() function, rename the resulting directory properly and

delete the tar archive, before proceeding to open the database.

Before returning, the map of buckets of the DB struct is updated, so that it will
include the buckets present in the database if the latter was not created by this call to
Open but it already existed. Open returns aDB_struct, and an error in case any of the
functions it calls fail, or if the provided path points to a file that is not a tar archive, or

to a tar archive that does not contain a Checkpoint.

(db *DB) Close() error: thisfunction closes the RocksDB instance and releases all
resources. More specifically, it destroys the WriteBatch, the WriteBatchWithIn-
dex and the Options that are associated with the database, by calling the appropri-
ate gorocksdb functions. After that, it calls the gorocksdb function Close() on the
database. Throughout this process, it holds the writer lock of the DB _struct, to make
sure that no other goroutine attempts to use the released resources or write to the

database while it is being closed. Even though the initial BoltDB Close function re-

146 CHAPTER 4. IMPLEMENTATION

turns an error, our implementation does not contain any operations that can fail, so it

always returns nil.

(db *DB) Begin(writable bool) (*Tx, error): Thisfunction createsa RocksDB
WriteBatch as a means to simulate a BoltDB transaction. Depending on the value of
the writable argument, one of two functions is called: either beginRWTx () to create

a read-write transaction or beginROTx () to create a read-only transaction.

While Begin is most often called to start a new transaction, sometimes it is invoked by
etcd in order to provide a snapshot of the database. In the context of BoltDB a snapshot
can be perceived as a consistent, read-only view of the database, which is the definition
of a BoltDB transaction. In our case however, we need to differentiate between these
two circumstances, so we implement a check that determines who the caller of the Be-
gin function is. If the caller is identified as the Snapshot function from the backend

package of etcd, a call to createCheckpoint () follows. To implement this check we

utilize the Caller() and CallersFrames () functions from Gos runtime package.
The former returns information about function invocations on the calling goroutine’s
stack, including a program counter, while the latter, based on this program counter

value, returns a stack frame that contains the name and file of a function [97].

The Begin function returns a pointer to a Tx_struct and an error which is only non-
nil in case one of the called functions fails. If a checkpoint has been created, its path is
stored in the appropriate field of the Tx struct. Whenever an error is returned the
Tx pointer is nil. When createCheckpoint() fails, we make sure to roll back the

transaction that has already been created.

1 [func (db *DB) Begin(writable bool) (*Tx, error) {
2 var (

3 err error

4 tx *Tx

5)

6 if writable {

7 tx, err = db.beginRWTx()

8 } else {

9 tx, err = db.beginROTx()

10 }

4.1. WRAPPING ROCKSDB IN BOLTDB 147

11 if err I= nil {

12 return nil, err

13 }

14

15 pc, _, _, ok := runtime.Caller(1)

16 if lok {

17 _ = tx.Rollback()

18 return nil, ErrRuntimeCaller

19 }

20 pcs := make([Juintptr, 1)

21 pcs[@] = pc

22 frames := runtime.CallersFrames(pcs)

23 frame, _ := frames.Next()

24 if pathpkg.Base(frame.Function) ==
{

25 tx.checkpoint, err = tx.createCheckpoint()

26 if err = nil {

27 _ = tx.Rollback()

28 return nil, err

29 }

30 }

31 return tx, nil

32 |}

Listing 4.2: The Begin function

(db *DB) beginRWTx() (*Tx, error): this function first obtains the writer lock
associated with the DB_struct to enforce the existence of only one writer transaction
(i.e., WriteBatch) at a time. This lock is released when the transaction is committed
or rolled back. Then, beginRWTx allocates a new Tx struct and initializes its fields
with the appropriate values, including a pointer to the WriteBatch that will be used
to simulate the read-write transaction. In order to boost performance, we only allocate
anew WriteBatch the first time beginRWTXx is called, via calling the gorocksdb func-
tion NewWriteBatch(). In subsequent calls to beginRWTx we can reuse the same

WriteBatch which we have made sure to clear upon the commitment or rolling back

148 CHAPTER 4. IMPLEMENTATION

of its associated read-write transaction. beginRWTx returns a pointer to a Tx struct
and an error. The error is only non-nil if the database has been opened in read-only

mode.

(db *DB) beginROTx() (*Tx, error): this function allocates a new Tx struct
and initializes its fields with the appropriate values. We simulate a BoltDB read-only
transaction by using a RocksDB Snapshot which provides a consistent, read-only
view of the database and thus has the same semantics. The new Snapshot is created
by calling the gorocksdb function NewSnapshot(), and with the SetSnapshot ()
gorocksdb function it is associated with the gorocksdb ReadOptions struct, freshly
created by the createReadOptions () function. A pointer to this gorocksdb Read-

Options structiskeptinoneofthe Tx struct fields. beginROTx returns a pointer

to a Tx struct and an error, which is always nil.

(db *DB) View(fn func(*Tx) error) error: this function provides a way for
the function that it receives as an argument to be executed in the context of a read-only
transaction. It is used by etcd to iterate through the buckets and keys of its backend
with the purpose of printing a list of them, or computing a hash value. In the context
of BoltDB, the View function offers a managed way to work with read-only transac-

tions, as opposed to the manual way that involves direct calls to Begin(), Commit ()

and Rollback() functions. First, a new transaction is started by a call to Begin().
Subsequently, the function-argument is called. This function must receive a pointer
toa Tx struct as its unique argument and return an error. Finally, Rollback() is
called®. By using Go's defer statement we make sure that Rollback() will be called
on the transaction even in the event of a panic in the function-argument. View returns

an error in case one of the functions it calls returns an error.

Tx struct: this struct represents an active transaction. Its main purpose is to act as a

wrapper for the underlying RocksDBWriteBatch interface, which serves to sim-

ulate a BoltDB transaction. Besides that, its fields include information about whether
the transaction is read-write or read-only, whether the transaction is simulated by a
WriteBatch or aWriteBatchWithIndex®, and the path of the Checkpoint tar file,
if the transaction has been created as a result of a call to the Snapshot() function

of the backend package of etcd. Among its fields, there is also a pointer to the DB

*Commit () is only called to close read-write transactions.
*For an explanation of these two cases see section 4.2.

4.1. WRAPPING ROCKSDB IN BOLTDB 149

struct of the database, a pointer to the gorocksdb Snapshot that is used to simulate
the transaction if it is read-only and serves as a handle for release when the transaction
is rolled back, a pointer to the gorocksdb ReadOptions that contain the aforemen-

tioned Snapshot and a Bucket struct that serves as the root bucket. Finally, one

of the struct’s fields contains a slice that holds all the gorocksdb Iterators allocated
during the transaction’s lifetime, so that they can be released when the transaction is

committed or rolled back.

1 |type Tx struct {

2 writable bool

3 db *DB

4 index bool

5 wb RocksDBWriteBatch

6 shapshot *gorocksdb.Snapshot

7 ro *gorocksdb.ReadOptions
8 root Bucket

9 checkpoint string

10 iterators []*gorocksdb.Iterator
11 [}

Listing 4.3: The Tx struct

(tx *Tx) Switch() error: this function switches between a WriteBatch and a
WriteBatchWithIndex. Even though in the final, optimized version of our imple-
mentation we simulate read-write transactions using the WriteBatch concept, seeing
considerable performance benefits over the version that uses WriteBatchWithIn-
dex®, there exists a corner case where WriteBatchWithIndex is still necessary. This
corner case is explained in detail in section 4.2 and Switch is called from etcd code

whenever it is encountered.

The switch is implemented by iterating over the WriteBatch’s records and replaying
the Put and Delete actions upon a new WriteBatchWithIndex. ThisWriteBatch-
WithIndex is only allocated the first time it is needed and is later reused, making sure

itis cleared every time its associated transaction is committed or rolled back. After the

“For more details on this see subsection 4.3.5

150 CHAPTER 4. IMPLEMENTATION

“copying” is complete, the WriteBatchWithIndex replaces the WriteBatch in the
Tx struct’swb field.

Switch() returns an error when the transaction has already been closed or when the

WriteBatch Iterator returns an error.

(tx *Tx) Size() int64: if the transaction has been created as a result to a call to
the Snapshot () function of the backend package and has an associated Checkpoint,
this function returns the size of this Checkpoint in tar archive form, as computed by
the function tarSize(). If the transaction has no associated Checkpoint then the
return value represents the size of the database directory on disk, as computed by the

function rocksdbSize(). Size is called by etcd whenever a transaction is created

and committed, to update the relevant field of its backend struct. Itis also called to
compute the size of an etcd Snapshot when the client issues a etcdctl snapshot

status backup.db command.

(tx *Tx) Cursor() *Cursor: this function returns a Cursor struct that can

be used to iterate over the prefixes that exist in the database. In the context of BoltDB,
this function returns a Cursor associated with the root Bucket. In the context of
our implementation it returns a Cursor able to iterate over the keys that are prefixed

by “root”. For details on the mapping of buckets to prefixes see subsection 3.2.2. The

implementation of this function consists only of a call to the (b *Bucket) Cursor()

*Cursor function and the return of its result.

(tx *Tx) Rollback() error: this function closes the ongoing transaction and dis-
cards all previous updates. Read-only transactions must be rolled back and not com-
mitted. If the transaction is a read-write one, we implement Rol1lback by clearing the
underlying WriteBatch via a call to the gorocksdb Clear() function on it. In addi-
tion, upon rolling-back a read-write transaction, the writer lock of the DB _struct is
released. If the transaction is read-only, to implement Rol1lback it is enough to release
the underlying Snapshot and destroy the ReadOptions that contain it. Moreover, if
the transaction has an associated Checkpoint, the related tar archive is removed us-
ing Gos Remove () function from the os package. We also make sure to remove the
Checkpoint directory if the tar archive has been untarred. To that end, we use Go's
functions filepath.Abs() and os.RemoveAll(). Finally, in both cases we close all

Iterators used during the lifetime of the transaction. Rollback returns an error

4.1. WRAPPING ROCKSDB IN BOLTDB 151

if the transaction has already been closed, or if any of the functions it calls return an

€Iror.

(tx *Tx) Commit() error: this function writes all transaction changes to disk. It
is implemented by calling the gorocksdb function Write() or WriteWithIndex()
to persist changes made on the underlying WriteBatch or WriteBatchWithIndex
respectively. After that, the WriteBatch or WriteBatchWithIndex is cleared and
the writer lock of the DB struct is released. Finally, all Iterators used during
the lifetime of the transaction are closed. Commit returns an error if the transaction
has already been closed, if it is called on a read-only transaction or if Write() or

WriteWithIndex() fails.

1 |func (tx *Tx) Commit() error {

2 if tx.db == nil {

3 return ErrTxClosed

4 } else if !tx.writable {

5 return ErrTxNotWritable

6 }

7 // rocksdb commit

8 if ltx.index {

9 wb, _ := tx.wb.(*gorocksdb.WriteBatch)

10 if err := tx.db.db.Write(tx.db.options.writeOptions,
wb); err = nil {

11 return err

12 }

13 } else {

14 wb, _ := tx.wb.(*gorocksdb.WriteBatchWithIndex)

15 if err :=

tx.db.db.WriteWithIndex(tx.db.options.writeOptions,

wb); err I= nil {
16 return err
17 }
18 }
19 tx.wb.Clear()
20 // release writer lock

21 tx.db.rwlock.Unlock()

152 CHAPTER 4. IMPLEMENTATION

22

23 tx.db = nil

24 tx.wb = nil

25 tx.ro = nil

26 tx.snapshot = nil

27 tx.checkpoint =

28 tx.root = Bucket{tx: tx}
29

30 // close iterators

31 for _, iter := range tx.iterators {
32 iter.Close()

33 }

34 tx.iterators = nil

35

36 return nil

37 |}

Listing 4.4: The Commit function

(tx *Tx) Bucket(name []byte) *Bucket: in the context of BoltDB this function

retrieves and returns a Bucket struct by name. In the context of our implementa-

tion, we simply check the map of buckets of the DB _struct to confirm the the bucket
has previously been created and we return a freshly allocated Bucket struct with
the requested name. If the Bucket is not found in the map nil is returned. The ini-
tial, non-optimized version of this function involved a call to function Get (), applied
on the root Bucket, to retrieve the requested Bucket from the database. For the

rationale supporting this change see subsection 4.3.2.

(tx *Tx) ForEach(fn func(name []byte, b *Bucket) error) error: it
executes the function that it receives as its argument for every Bucket in the root. Ifat
any point the provided function returns an error, the iteration is stopped and the error

is returned to the caller. It is implemented as a call to (b *Bucket) ForEach(fn

func(k, v []byte) error) error,usingas its argument a function that executes

fn on the current Bucket and checks if the error returned from fn is non-nil.

4.1. WRAPPING ROCKSDB IN BOLTDB 153

(tx *Tx) CreateBucket(name []byte) (*Bucket, error): this function
creates a new Bucket in the database. In our implementation the Put () function is
called to write the new Bucket to the database as a key-value pair with key equal to the
concatenation of “root” with name and value “-”. Then, the new bucket is added to the

map of existing buckets of the DB _struct. Finally, a newly allocated Bucket struct

with the requested name is returned. CreateBucket returns an error if the Bucket
already exists, if the bucket name is blank, if the transaction has been closed or if the

transaction is read-only. In addition, an error is returned if the Put () function fails.

(tx *Tx) createCheckpoint() (string, error): this function creates a go-
rocksdb Checkpoint by calling the gorocksdb function NewCheckpointObject()
and consequently calling the gorocksdb function Create () on this newly created ob-
ject. In RocksDB a Checkpoint object needs to be created for a database before check-
points are created. createCheckpoint() is called by Begin() when it has been
invoked by the Snapshot() function from the backend package. The path of the
Checkpoint is constructed from the absolute path of the database directory by replac-
ing its last component (i.e., the name of the database directory) with “Checkpoint” and
appending a timestamp. This ensures that there will not be any path conflicts among
different checkpoints. Subsequently, the Checkpoint directory is transformed into a
tar archive by a call to tarit () function and a . tar extension is added to the path. Fi-
nally, the Checkpoint object is destroyed. An alternative would be to retain the object
for the creation of future checkpoints. However, even if createCheckpoint() hap-
pens to be called multiple times during the lifetime of an etcd node, in the general case
these calls will be seldom enough to render the overhead of recreating the Checkpoint
object every time negligible®. This function returns a string that represents the path
of the Checkpoint tar archive (e.g., /tmp/test/member/snap/Checkpoint2017-
06-28 12:21:34.34229393 +0300 EEST) and an error which is non-nil if one of
the called function fails. createCheckpoint is not part of the BoltDB AP]I, it is a
function we implemented to avoid excessively complicating the code of Begin () with

the addition of the Checkpoint creation operations.

(tx *Tx) WriteTo(w io.Writer) (n int64, err error): this is the function
that BoltDB uses to write a consistent view of the database to a writer. An io.Writer

is an interface that includes anything that implements the Write() method (e.g., a

*For the usage of checkpoints in etcd see the paragraph on Disaster Recovery in subsection 2.2.1

154 CHAPTER 4. IMPLEMENTATION

file, a pipe, a buffer, a stdout). In our case the Writer is an io.PipeWriter, which
is the write end of a synchronous in-memory pipe. This kind of pipe is often used in

Go to connect code expecting an io.Reader with code expecting an io.Writer.

In order to better understand the role of the WriteTo function it is important to outline
the general process followed to send a snapshot to the client. First, the client requests
a snapshot by issuing the command etcdctl snapshot save backup.db. On the
client’s side, a file is created at the given path (i.e., the last argument of the command)
and a snapshot request is sent to the server over a gRPC stream. In addition, a pipe
is created. The initial goroutine reads from the pipe’s io.PipeReader end (pr) and
writes to the file, while a separate goroutine reads the servers response from the gRPC

stream and writes it to the pipe’s io.PipelWriter end (pw).

On the server’s side, when the snapshot request is received over the gRPC stream, a
snapshot of the backend is created (i.e., a Checkpoint in our implementation). Sub-
sequently, a pipe is created. A new goroutine is started and it calls WriteTo() with
the pipe’s io.PipeWriter end (pw) as its argument, while the initial goroutine reads

from the pipe’s io.PipeReader end (pr) and sends the contents to the client over the

gRPC stream.
client) server (etcd node) O
S
0
DB pr pw gRPC stream
~CS =
snapshot l snapshot

A N A

Figure 4.1: The role of the WriteTo() function

In our implementation of the WriteTo function we open the Checkpoint file (i.e.,
the tar archive) associated with the transaction and inside a for loop we gradually read
its contents into a buffer and then copy them using the io.Writer’sWrite() method
until end-of-file is reached®. As etcd always calls WriteTo from a read-only transac-

tion, it performs a hot backup and does not block other database reads and writes. The

°An improvement over this would be to direct the output of the tarring procedure straight to the
pipe upon creation of the Checkpoint, thus avoiding the intermediate copy. This would require mod-
ifications in etcd code.

4.1. WRAPPING ROCKSDB IN BOLTDB 155

return values are the number of bytes written and an error. If the error is equal to nil
then exactly tx.Size() bytes will be written to the writer. The error is non-nil when
the function is called on a transaction that does not have an associated Checkpoint

or when one of the called functions fails.

1 |func (tx *Tx) WriteTo(w io.Writer) (n int64, err error) {
2 if tx.checkpoint == {

3 return 0, ErrNoCheckpoint

4 }

5 var num inté4

6 fi, err := os.0Open(tx.checkpoint)

7 if err 1= nil {

8 return 0, err

9 }

10 defer func() {

11 if err = fi.Close(); err != nil {
12 panic(err)

13 }

14 30O

15 buf := make([]byte, 1024)

16 for {

17 n, err := fi.Read(buf)

18 if err I= nil && err != i0.EOF {
19 return num, err

20 }

21 if n == @ { break }

22 n2, err := w.Write(buf[:n])

23 num = num + int64(n2)

24 if err = nil {

25 return num, err

26 }

27 }

28 return num, nil

29 |}

Listing 4.5: The WriteTo function

156 CHAPTER 4. IMPLEMENTATION

Bucket struct: this struct represents a bucket in the database. As we have seen in

subsection 3.2.2 the concept of buckets does not exist in RocksDB, so in order to ensure

the required namespace separation among keys we use prefixes. Thus, the first field of
this struct contains the prefix of the specific bucket, which is no other than the bucket’s
name in the form of a byte slice. The second field of the Bucket struct contains a
pointer to the associated Tx _struct. A bucket is always accessed in the context of a
transaction and in a multitude of cases we need a handle to this transaction (e.g., in the
Put() function, where we need access to the transaction’s associated WriteBatch).
Finally, the last field of the Bucket struct is not used at all by our implementation
and is only retained for compatibility reasons, so as to avoid changing etcd code that
uses it. More specifically, this is a float value that in BoltDB determines the fill per-
centage of a bucket. The fill percentage is a concept specific to BoltDB and B+ trees that
sets the threshold for filling nodes before they split” and is not relevant in RocksDB.

(b *Bucket) Cursor() *Cursor: this function creates and returns a Cursor
struct associated with the bucket it is called on. In our implementation a gorocksdb
Iterator is created via a call to the gorocksdb NewIterator() function, with the
ReadOptions of the associated transaction. This means that if the transaction is read-
only the Iterator will operate on its underlying RocksDB Snapshot. However, in
case that the transaction uses an underlyingWriteBatchWithIndex instead of a Wri-
teBatch, the creation of the Iterator involves two steps. First, we create the base
iterator, which is just a normal Iterator over the database. Then, we call the go-
rocksdb function NewIteratorWithBase(), which uses the aforementioned base it-
erator to construct an Iterator that merges the results of RocksDB with those of the
WriteBatchWithIndex s buffer. Finally, in both cases the newly created Iterator
is appended to the transaction’s list of iterators so that it can later be closed. This func-
tion will panic in case the bucket’s associated transaction has already been closed, as

its declaration in BoltDB does not allow us to return an error value.

(b *Bucket) ForEach(fn func(k, v []byte) error) error: thisfunction ex-
ecutes the function that it receives as its argument for each key-value pair in a bucket.
If at any point the provided function returns an error, the iteration is stopped and the

error is returned to the caller. This function also returns an error if the associated

7Tt can be useful to increase the fill percentage if it is known that workloads are mostly append-only
[58]. Etcd code sets this value to 0.9 when performing sequential writes.

4.1. WRAPPING ROCKSDB IN BOLTDB 157

transaction has been closed. The implementation of ForEach consists of creating a
new Cursor and using it to iterate over the key-value pairs of the bucket it has been
called on and call the function-parameter on each of those pairs, with the appropriate

error checking. For this iteration the functions First() and Next() are used. In-

terestingly, as this function’s initial implementation was made up only of calls to the

BoltDB API we did not have to change it at all.

(b *Bucket) Put(key []byte, value []byte) error: this function sets the
value for a key in a specific bucket. It basically works as a wrapper for the underlying
gorocksdb Put () function which is called on the associated transaction’s WriteBatch
or WriteBatchWithIndex. The key that is actually put in the database results from
the concatenation of the Bucket’s prefix, the “/” separator and the key that was passed

as an argument to this function, which is performed by the concatenate() function.

Put returns an error if the transaction has been closed, if it is read-only, if the key is
blank, if the key is too large or if the value is too large. The maximum recommended

key size in RocksDB is 8MB, while the maximum recommended value size is 3GB.

1 |func (b *Bucket) Put(key []byte, value []byte) error {
2 if b.tx.db == nil {

3 return ErrTxClosed

4 } else if !b.tx.writable {

5 return ErrTxNotWritable

6 } else if len(key) == 0 {

7 return ErrKeyRequired

8 } else if len(key) > maxKeySize {

9 return ErrKeyToolLarge

10 } else if len(value) > maxValueSize {
11 return ErrValueToolarge

12 }

13 s := make([][]byte, 3)

14 s[@] = b.prefix; s[1] = sep; s[2] = key
15 b.tx.wb.Put(concatenate(s), value)

16 return nil

17 |}

Listing 4.6: The Put () function

158 CHAPTER 4. IMPLEMENTATION

(b *Bucket) Get(key []byte) []byte: thisfunction retrieves the value for a key
in a specific bucket. If the key does not exist, nil is returned. It basically works as a
wrapper for the underlying gorocksdb GetBytes () function, passing as an argument
to it the ReadOptions of the associated transaction. This means that if the transaction
isread-only GetBytes () will operate on its underying RocksDB Snapshot. However,
in case that the transaction uses an underlying WriteBatchWithIndex instead of a
WriteBatch (i.e., Get has been called in the context of a read-write transaction) we
call GetBytesFromBatchAndDB() instead of plain GetBytes(). The former looks
for the key in the WriteBatchWithIndex’s buffer before checking the database. The
key that we look for is produced from the concatenation of the Bucket’s prefix, the “/”
separator and the key that was passed as an argument to this function. This function
will panic in case the bucket’s associated transaction has already been closed or in case
its equivalent underlying gorocksdb function fails, as its declaration in BoltDB does

not allow us to return an error value.

1 |func (b *Bucket) Get(key []byte) []byte {

2 if b.tx.db == nil {

3 panic(fmt.Sprintf(, ErrTxClosed))

4 }

5 var (

6 err error

7 v []byte

8)

9 s := make([][]byte, 3)

10 s[@] = b.prefix; s[1] = sep; s[2] = key

11 if b.tx.db.readOnly || !b.tx.writable || !b.tx.index {

12 v, err = b.tx.db.db.GetBytes(b.tx.ro, concatenate(s))

13 } else {

14 wb, _ := b.tx.wb.(*gorocksdb.WriteBatchWithIndex)

15 v, err = wb.GetBytesFromBatchAndDB(b.tx.db.db,
b.tx.db.options.readOptions, concatenate(s))

16 }

17 if err I= nil {

18 panic(fmt.Sprintf(, err))

19 }

4.1. WRAPPING ROCKSDB IN BOLTDB 159

20 return v

21 |}

Listing 4.7: The Get () function

(b *Bucket) Delete(key []byte) error: this function removes a key from a
specific bucket. If the key does not exist then nothing is done and a nil error is returned.
An error is returned if the transaction has been closed or if the bucket was created from
a read-only transaction. This function basically works as a wrapper for the underlying
gorocksdb Delete() function, which is called on the associated transaction’s Write-
Batch or WriteBatchWithIndex. The key that is actually deleted from the database
results from the concatenation of the Bucket’s prefix, the “/” delimiter and the key that

was passed as an argument to this function.

Cursor struct: thisstructacts as a wrapper for the underlying gorocksdb Iterator.

It also has a field that contains a pointer to a Bucket struct, the bucket that the

Cursor is associated with.

(c *Cursor) First() (key []byte, value []byte): this function moves the
Cursor to the first key of its associated Bucket and returns that key-value pair. In our
implementation this is the first key in the database with a specific prefix (i.e., the prefix
of the Bucket the Cursor operates on). If the bucket is empty then a nil key and value
are returned. The prefix is constructed by appending the “/” delimiter to the Bucket’s
name. Then, we use the gorocksdb Seek() function on the Cursor’s underlying go-
rocksdb Iterator tolook for the first occurrence of this prefix in the database. Right
after that, we use the gorocksdb function ValidForPrefix() to check whether the
Iterator has stopped at a key that has the requested prefix, in other words, if there
exists at least one key with this prefix in the database. If yes, we obtain the current key-
value pair of the Iterator via calls to the gorocksdb Key () and Value() functions.
As those two functions return gorocksdb structs (i.e., Slice structs) that contain
pointers to the key and value in memory allocated by C, we need to copy the key and
value in Go byte slices and subsequently free the C data. Finally, the Err() function
of the gorocksdb Iterator is used to check if any errors occurred during the usage of

the Iterator.

Before returning the appropriate key-value pair, the prefix and delimiter are removed

160 CHAPTER 4. IMPLEMENTATION

from the key’s name with the aid of Go’s function Sp1itN() from the bytes package.
SplitN() splits the byte slice that it receives as its first argument into as many subslices
as its third argument determines, separated by the delimiter defined from its second
argument [97]. First will panic in case the associated transaction has already been
closed or in case the Iterator returns an error, as its declaration in BoltDB does not

allow us to return an error value.

1 |func (c *Cursor) First() (key []byte, value []byte) {

2 if c.bucket.tx.db == nil {

3 panic(fmt.Sprintf(» ErrTxClosed))
4 }

5 // move the cursor to the first element of its corresponding

bucket

6 s := make([][]byte, 2)

7 s[@] = c.bucket.prefix; s[1] = sep

8 prefix := concatenate(s)

9 c.rocksdbIterator.Seek(prefix)

10 if lc.rocksdbIterator.ValidForPrefix(prefix) {

11 return nil, nil

12 }

13 k := c.rocksdbIterator.Key()

14 key = make([]byte, k.Size())

15 copy(key, k.Data())

16 k.Free()

17

18 v := c.rocksdbIterator.Value()

19 value = make([]byte, v.Size())
20 copy(value, v.Data())

21 v.Free()

22

23 if err := c.rocksdbIterator.Err(); err != nil {

24 panic(fmt.Sprintf(, err))
25 }

26

27 // remove prefix

4.1. WRAPPING ROCKSDB IN BOLTDB 161

28 s = bytes.SplitN(key, sep, 2)
29

30 return s[1], value

31 |}

Listing 4.8: The First() function

(c *Cursor) Last() (key []byte, value []byte): this function moves the
Cursor to the last key of its associated Bucket and returns that key-value pair. This
function is generally analogous to the First() function. In this case however, we
iterate to the last key with the prefix of the given Bucket. To do that we first seek the
first key after the keys that have the requested prefix, with a for loop based on the
gorocksdb functions Seek(), ValidForPrefix() and Next(). Once we reach that
key, we call the gorocksdb function Prev() and once again use ValidForPrefix()

to eliminate the case of not having any keys with the requested prefix in the database.

(c *Cursor) Next() (key []byte, value []byte): this function moves the
Cursor to the next item in the Bucket and returns its key and value. If the Cursor
is at the end of the bucket then a nil key and value are returned. This function acts
as a wrapper for the underlying gorocksdb Next () function which is applied on the
gorocksdb Iterator associated with the Cursor. To check if we have iterated past
the last key in the Bucket or the last key in the database we call the gorocksdb Valid-
ForPrefix() function, where the prefix is constructed by appending the “/” delimiter

to the Bucket’s name. The rest of the implementation is identical to that of function

First().

(c *Cursor) Prev() (key []byte, value []byte): this function moves the
Cursor to the previous item in the Bucket and returns its key and value. If the Cursor
is at the beginning of the bucket then a nil key and value are returned. Prev’s imple-
mentation is completely analogous to that of Next (), the only difference being that it
is a wrapper for the gorocksdb Prev () function applied on the gorocksdb Iterator

associated with the Cursor.

(c *Cursor) Seek(seek []byte) (key []byte, value []byte): this function
moves the Cursor to the key passed as its argument and returns the key and its value.

If the key does not exist then the next key is used. If no keys follow in the Bucket,

162 CHAPTER 4. IMPLEMENTATION

a nil key and value is returned. Seek works as a wrapper for the gorocksdb Seek()
function, applied on the underlying gorocksdb Iterator of the Cursor. The key
passed as an argument to the gorocksdb Seek () function is constructed by appending
the “/” delimiter and the actual name of the key to the Bucket’s name in that order.

Other than that, its implementation is analogous to that of function First().

Options struct: this struct contains all the kinds of options used by RocksDB, plus
two fields accessed by etcd code, which have only been included in order to avoid
changing code outside the bolt package. The latter are two int fields, MmapFlags
and InitialMmapSize, that contain parameters related to the memory-mapped file
of BoltDB and are not relevant in the context of RocksDB. The different kinds of Op-
tions required by RocksDB include gorocksdb Options, WriteOptions and Read-
Options.

(opts *Options) createAllOptions() *Options: this function creates all the
kinds of options used by RocksDB and is called before opening a database. More

specifically, it contains calls to the functions createOptions(), createWriteOp-

tions() and createReadOptions() and it stores pointers to the created RocksDB

options in the appropriate fields of the Options struct that it returns. createAl-
1options(), as well as the following option-related functions, do not form part of the
BoltDB API. BoltDB, which is far less tunable than RocksDB, is started with the default
options and whenever something needs to be changed it is done by directly accessing

the appropriate field of its Options struct.

(opts *Options) destroyAllOptions(): this function destroys all the options
associated with a RocksDB database and it is called right before closing it. More specit-
ically, it destroys the gorocksdb Options, BlockBasedTableOptions, Env®, Write-
Options and ReadOptions by calling the gorocksdb Destroy () function for each of

them and assigning nil to the Options struct’s fields.

createOptions() *gorocksdb.Options: this function creates and returns the
necessary options to open a RocksDB instance. The implementation starts with a call
to the gorocksdb function NewDefaultOptions() which returns a new gorocksdb
Options struct. Then, the gorocksdb function SetCreateIfMissing(true) is
applied on those newly created options to make sure that gorocksdb OpenDb () will

8For details on BlockBasedTableOptions and Env see subsection 4.3.6.

4.1. WRAPPING ROCKSDB IN BOLTDB 163

create a new database directory if one does not already exist at the given path. The
largest part of this function implements RocksDB parameter tuning. For an analy-
sis of our tuning methodology and a detailed description of each parameter’s role see

subsection 4.3.6. Listing 4.9 contains the source code of this function.

createlWriteOptions() *gorocksdb.WriteOptions: this function calls the go-
rocksdb NewDefaultWriteOptions() function and returns the created gorocksdb
WriteOptions. WriteOptions are passed as an argument to the gorocksdb func-
tions Write() and WriteWithIndex(). The most important WriteOptions deter-
mine whether a write will be flushed from the operating system buffer cache before it is
considered complete or whether a particular write should first be written to the WAL
of RocksDB. Our implementation always uses the default WriteOptions. This means

that writes are synchronously written to the WAL before being considered complete’.

createReadOptions() *gorocksdb.ReadOptions: thisfunction calls the gorocks-
db NewDefaultReadOptions() function and returns the created gorocksdb Read-
Options. ReadOptions are passed as an argument to the gorocksdb functions Get -
Bytes(), GetBytesFromBatchAndDB() and NewIterator(). The ReadOptions
may contain a RocksDB Snapshot. In our implementation the default ReadOptions
are always used, except for the case of read-only transactions, where we use the go-
rocksdb SetSnapshot() function on the ReadOptions to set the Snapshot that

should be used for reads.

concatenate(slices [][]byte) []byte: thisfunction is usually used to perform
the concatenation of a Bucket’s prefix, the “/” delimiter and the key that was passed

as an argument to functions like Put (), Get () and Seek(). First, it iterates through

the slice of byte slices passed as its argument, computing the sum of lengths of the byte
slices. Subsequently, it allocates a new slice with length equal to the computed sum,
and once again iterates through the slice of byte slices, copying one after the other into
the newly allocated byte slice. Finally, it returns this byte slice. concatenate, as well
as the following three functions, are auxiliary functions implemented by us and are

not part of the BoltDB API.

tarSize(path string) (int64, error): this function computes and returns the

size of the tar archive at the given path. It uses Go's Stat () function from the os pack-

°For more information on this choice see subsection 4.3.6

164 CHAPTER 4. IMPLEMENTATION

age and then applies the Size () function on the returned FileInfo [97]. tarSize

is called by tx.Size() to report the size of the transaction’s associated Checkpoint.

rocksdbSize(database *DB) (int64, error): this function returns an estima-
tion of the on-disk size of the RocksDB database. It is called by tx.Size(), which in
turn is called whenever a transaction is created and committed to update the relevant
field of the backend struct. Then, backend.size is used by etcd code to trigger
the backend quota alarm. Since in our implementation we have decided to remove the

storage restriction (see subsection 3.1.5), the accuracy of rocksdbSize’s result is not

crucial.

Theoretically, the size of a RocksDB database on disk can be computed as the sum
of the sizes of the SST files, the WAL and the rest of the files present in the database
directory, namely LOG, MANIFEST, OPTIONS, CURRENT, IDENTITY and LOCK'®.

Our first approach to the implementation of this function was based on calls to Go's
Walk() function from the filepath package. According to Gos documentation,
Walk(root string, walkFn WalkFunc) error “walks the file tree rooted at
root, calling walkFn for each file or directory in the tree, including root” [97]. In
our case, walkFn would check if the current “node” was a directory or a file with a call
to IsDir(), and in the latter case call Size() from package os and add the returned
size to the sum. However, when we tested this approach, rocksdbSize caused etcd to
crash several times, as ongoing RocksDB compactions constantly add and remove SST
files in the database directory''. Another idea to make this work would be to close the
RocksDB instance, compute the directory’s size and then reopen it. However, since
accuracy is not that crucial for the usecase of rocksdbSize we decided to avoid a

solution that would incur such a big overhead.

This forced us to turn to a second approach, involving direct calls to RocksDB methods

that would give us information regarding the current size of the database. Even though

'"MANIFEST maintains a list of SST files at each level and their corresponding key ranges, among
other metadata. It is used to identify the SST files that may contain a given key. It functions as a log
to which the latest changes on SST files are appended. CURRENT is a special file that identifies the latest
manifest log file. OPTIONS stores the options used in the database. LOCK is used to ensure that only
one process at a time can open RocksDB on a single directory. LOG is where statistics are dumped and
changes in options are recorded. Finally, IDENTITY contains a serial number, unique to the database.

"Walk()’s internal implementation makes a list of all the names in the directory and calls Go’s
Lstat() function from the os package for each of them, which returns a FileInfo. A “disappear-
ing” file will cause Lstat () to return nil. Also, a file created after the creation of the name list will not
be taken into account.

4.1. WRAPPING ROCKSDB IN BOLTDB 165

this approach seems more natural, we encountered a problem: RocksDB does not pro-
vide a straightforward and completely accurate way to return its total size to the user.
Therefore, we approximate the on-disk size of the database by adding the size of the SST
files to the size of the memtables, which are returned by the gorocksdb function calls
db.GetProperty("rocksdb.total-sst-files-size") and db.GetProperty(
"rocksdb.cur-size-all-mem-tables") respectively. The LSM-tree’s structure is
such that the size of the memtable is approximately the same as the size of the WAL.

This is because the WAL is automatically purged whenever memtables are flushed to
disk.

The rest of the files in the database directory can be safely ignored as the sum of their
sizes is in the order of a few tens of kilobytes and would not change the result signif-
icantly. The majority of those files retain the same size throughout the lifetime of a
RocksDB instance, while the ones that grow (i.e., LOG and MANIFEST) do so at a very

slow rate'?.

isReadOnly(mode os.FileMode) (bool, error): thisfunction receivesaFile-
Mode and extracts permission information for the database. It returns true for read-
only and false for read-write. An error is returned if the FileMode does not provide
read permission. isReadOnly is called by Open() to determine whether the database
should be opened with a call to gorocksdb function OpenDb() or OpenDbForRead-
Only().

RocksDBWriteBatch interface: this is an interface with the following set of func-
tions: Clear(), Put(key, value []byte), Delete(key []byte), NewIter-
ator() *gorocksdb.WriteBatchIterator and Destroy(). Both WriteBatch
and WriteBatchWithIndex implement this interface. As we have mentioned pre-
viously, even though in the final, optimized version of our implementation we simu-
late read-write transactions using the WriteBatch concept, there exists a corner case
whereWriteBatchWithIndex is still necessary. This corner case is explained in detail
in section 4.2. This means that before applying an operation on a transaction we need

to know if it is simulated by an underlying WriteBatch oraWriteBatchWithIndex.

The RocksDBWriteBatch interface was introduced in order to simplify our code.

Before its existence, we had two different fields in Tx struct for WriteBatch and

?They add up to a few hundreds of kilobytes when the database size is ~1GB.

166 CHAPTER 4. IMPLEMENTATION

WriteBatchWithIndex. Every time an operation needed to be applied on the trans-
action’s underlying concept, we used an if clause to decide which of the two fields it
should be applied on. Now, with the addition of the RocksDBWriteBatch interface
we can have one common field of type RocksDBWriteBatch for both and there is no

need for all those if clauses, which makes the code more readable.

However, there are still some cases where we need to distinguish between a Write-
Batch and a WriteBatchWithIndex. For example, when we need to use functions
that are unique to WriteBatchWithIndex, such as those that enable combining the
contents of of its buffer with those of the database (i.e., GetBytesFromBatchAndDB(),
NewIteratorWithBase()). In those cases we use the index boolean field of the Tx
struct and a type assertion. The type assertion converts the RocksDBWriteBatch
interface type to one of the types that implement it. It uses a dot and the required

type in parentheses and looks like this:
wb, ok := tx.wb.(*gorocksdb.WriteBatchWithIndex)

This statement asserts that the interface value tx.wb holds the concrete type *go-
rocksdb.WriteBatchWithIndex and assigns the underlying *gorocksdb.Write-
BatchWithIndex value to the variable wb. If tx.wb does not hold a *gorocksdb. -
WriteBatchWithIndex, the boolean value ok will be false, reporting the failure of

the assertion [109].

tarit(source, target string) error: this function produces a tar archive
from the directory at source and saves it at the path defined by target. The source
code for this function was found on Svetlin Ralchev’s blog [110]. tarit uses func-
tions and structs from Go’s archive/tar package and Walk() from filepath pack-
age. Walk() traverses the directory tree starting at source and for every “node” a
tar.Writer writes to the tar archive a header that encodes metadata information,
followed by the “node’s” contents if it is a file. tarit returns an error if any of the

functions it calls fails.

untar(tarball, target string) error: this function produces a directory
at the path determined by target by untarring the tar archive located at tarball.
The source code for this function was found on Svetlin Ralchev’s blog [110]. It uses
functions and structs from Gos archive/tar package. A tar.Reader isused to read

all headers and use the metadata encoded in them to recreate the files and directories.

4.1. WRAPPING ROCKSDB IN BOLTDB 167

untar returns an error if any of the functions it calls fails.

IsTar(path string) (bool, error): this function receives a path and returns
true if it points to a tar archive and false if it does not. Open() uses it to confirm
that the file its path argument points to is indeed a tar archive before proceeding to
untar it. IsTar opens the file at path and stores its 262 first bytes in a buffer which it
then feeds to the auxiliary function isTar (). An error is returned if one of the called

functions fails.

isTar(buf []byte) bool: this function receives the first 262 bytes of a file in the
form of a byte slice and returns true if the file is a tar archive. It determines this by
inspecting the file’s magic numbers signature. Magic numbers are specific constants
in specific positions among the first bytes of a file that provide a way to distinguish
between file formats. For example, a tar archive is expected to have the hexadecimal
values 75, 73, 74, 61 and 72 at its 258th, 259th, 260th, 261st and 262nd bytes respec-
tively.

Next, we provide a brief description of all the error types defined in the bolt package.
Some of them already existed in the original implementation of BoltDB, while others
where added by us to cover extra failure cases. Each of these errors belongs to Go's
error type and encloses a descriptive message, indicating the cause of failure. They

are declared as can be seen below:
Err = errors.New("error message")

ErrDatabaseReadOnly: this error is returned when a read-write transaction is started

on a read-only database.

ErrTxClosed: this error is returned when attempting to commit or roll back a trans-

action that has already been committed or rolled back.

ErrTxNotWritable: this error is returned when attempting to perform a write oper-

ation on a read-only transaction.

ErrBucketExists: this error is returned when attempting to create a bucket that

already exists.

ErrBucketNameRequired: this error is returned when attempting to create a bucket

with a blank name.

168 CHAPTER 4. IMPLEMENTATION

ErrKeyRequired: this error is returned when attempting to insert a zero-length key.

ErrKeyTooLarge: this error is returned when attempting to insert a key that is larger

than the maximum recommended key size in RocksDB.

ErrValueTooLarge: this error is returned when attempting to insert a value that is

larger than the maximum recommended value size in RocksDB.

ErrRuntimeCaller: this error is returned when runtime.Caller or runtime. -

FuncForPC, called by Begin () fail to return the caller function’s name.

ErrInadequatePermissions: thiserror is returned when Open() is called with per-

missions that do not provide read access.

ErrFileTypeNotSupported: this error is returned when Open() is called with a
path that points to a file which is not a tar archive, or to a tar archive that does not

contain a Checkpoint.

ErrNoCheckpoint: this error is returned when WriteTo() is called on a transaction

that has no Checkpoint associated with it.

4.2 Modifications in etcd Code

Even though we tried to contain our changes in the bolt package and avoid alterations
of core etcd code, there were times when they were inevitable. We provide a detailed

description of those cases below.

Defragmentation

Aswe have explained in subsection 3.2.7, now that BoltDB has been replaced by Rocks-

DB, defragmentation is no longer necessary. For that reason we have commented out
the contents of the function Defrag() in the backend package and removed the aux-
iliary functions defrag() and defragdb(). Any defragmentation command issued
by the client will now result in a dummy function call. TestBackendDefrag() test
function was also removed as it obviously is not needed anymore. In a future im-
proved version of our implementation, etcdct1 will return an appropriate error when

a defragmentation is attempted while etcd has been configured to use RocksDB as its

4.2. MODIFICATIONS IN ETCD CODE 169

storage engine, and will apply the defragmentation as requested when etcd has been

configured to use BoltDB.

Removal of the database directory

In a lot of places throughout etcd code, mainly in test functions, the backend database
needs to be removed from the file system. Go’s Remove () function from the os pack-
age was used for this purpose. Remove() though is only able to remove single files
and cannot recursively remove whole directories [97]. This approach was appropriate
when etcd used BoltDB as its storage engine, as the database was a single file. How-
ever, in our implementation, where the backend is a RocksDB database whose on-disk
representation is a directory, this is not enough. Therefore, we had to replace all calls

to Remove () with calls to RemoveAll() from the same package.

Application of the snapshot

The function applySnapshot () from the etcdserver package is responsible for re-
placing an etcd node’s backend with a given backend snapshot. It does this by starting
a new backend based on the given snapshot, then closing the old backend and finally
assigning the new backend to the etcd node. The obstacle we ran into, once more stems
from the difference of the database format in BoltDB and RocksDB. Go's Rename ()
function from package os does not work if the target name points to an existing di-
rectory’’ [97]. applySnapshot() uses Rename() to rename the untarred snapshot
directory to the old backend’s name, replacing the latter. We overcame this by first

removing the old backend’s directory and then renaming the snapshot’s directory.

What is more, closing the old backend might block until all the transactions on it are
finished. To avoid waiting, in the original implementation of applySnapshot() a
goroutine is invoked to call the Close() function of the backend package. This caused
our implementation to fail some tests, as the LOCK file of RocksDB prevented us from
opening a second instance of RocksDB at the same path. Our workaround for this was
to make sure the old backend has been closed before attempting to open the new one,

which was done by simply placing the call to Close() in the initial goroutine, before

*Remove () works as expected if the the target name points to an existing file or if there is no existing
file or directory at the location it points to.

170 CHAPTER 4. IMPLEMENTATION

the command that opens the new backend. This change is slightly detrimental to the

performance of snapshot application in etcd.

Getting the snapshot status

When the command etcdctl snapshot status backup.db isissued by the client,
a backend is opened based on the given snapshot in order to get the required statistics.
The call to newBackend () function of the backend package involves a call to Open()
function of the bolt package, which as we have seen untars the snapshot tar archive.
The problem is that the snapshotRestoreCommandFunc () function which is called
when the client issues the command etcdctl snapshot restore backup.db
expects to see a file and not a directory’*. When a etcdctl snapshot status
backup.db command comes before a etcdctl snapshot restore backup.db
command, that will cause an error. To eliminate this case we had to alter the db-
Status() auxiliary function called by snapshotStatusCommandFunc() to tar the

snapshot again after untarring it and getting the desired metrics.

Switching between WriteBatch and WriteBatchWithIndex

As we have mentioned in section 4.1, sometimes we need to change the underlying
representation of a transaction fromaWriteBatchtoaWriteBatchWithIndex. This
change is performed by the Switch() function. Here we explain the exact reason why
this switch is necessary and describe the modifications we made to etcd code outside

the bolt package to make it happen.

An intermediate version of our implementation used WriteBatchWithIndex to sim-
ulate BoltDB transactions. Later, we discovered that using WriteBatch instead of
WriteBatchWithIndex would offer a significant performance improvement, as it will

be further analysed in subsection 4.3.5. For a description of the properties of those two

RocksDB structures see subsection 2.4.2.

Actually, replacing WriteBatchWithIndex with WriteBatch was made possible be-
cause of a recent change in the backend of etcd. Before this change, WriteBatch-

WithIndex was indispensable for our implementation. The focus of this change in

*snapshotRestoreCommandFunc() copies the snapshot file to the appropriate directory before
starting a backend from it.

4.2. MODIFICATIONS IN ETCD CODE 171

etcd was decoupling reads from writes so that they do not have to contend for the
same lock (i.e., the lock of the batchTx struct). Reads are issued on a readTx and
writes are issued on a batchTx, while before the change both reads and writes were
issued on a batchTx. batchTx and readTx are structs defined in the backend pack-
age and are basically wrappers for a bolt Tx struct. In the case of batchTx this
is a read-write transaction, while in the case of readTx it is a read-only transaction.
In etcd only one of each is active at a given time'®. Every access to the storage engine

passes through a batchTx or a readTx.

This decoupling practically means that etcd read requests will be mapped to the readTx
and etcd write requests to the batchTx. Reads must be able to see the updates con-
tained in the batchTx even before they get committed. For this reason, there exists a
buffer associated with the readTx that contains all of the batchTx’s updates (i.e., key-
value pairs that are pending commit). Reads first check this buffer and then the storage
engine. The buffer is basically a shared in-memory map in front of the batchTx and

readTx.

A problem arises from this approach, as an iteration will inadvertently return dupli-
cates if some keys in its range happen to have been recently updated and reside both
in the buffer and the storage engine. This is only a problem for buckets other than the
key bucket. Because of MVCC, keys are never updated in-place in the key bucket'®.
This makes it impossible for duplicates of the keys existing in the storage engine to
exist in the readTx buffer. What is more, uncommitted deletes will be ignored: the
deleted keys are found in the storage engine and returned as if they had never been

deleted.

To avoid returning duplicates and deleted keys in the cases that an iteration is directed
to buckets other than the key bucket, the read request must circumvent the buffer
and be directly applied on the batchTx, which has the inherent ability to correctly
combine its uncommitted updates with the contents of the storage engine and produce
the appropriate result. A BoltDB read-write transaction has this ability and so does a

RocksDB WriteBatchWithIndex. A WriteBatch however, does not.

*The first batchTx begins when etcd starts and the backend is created. The batch interval, which
is the maximum time before committing a batchTx, is equal to 100ms. The batch limit, which is the
maximum number of updates before committing the batchTx, is set to 10000. A dedicated goroutine
commits the batchTx when one of these limits is exceeded and begins a new one.

'%For a description of the data model of etcd, see subsection 2.2.1.

172 CHAPTER 4. IMPLEMENTATION

Knowing that etcd already implements read-your-own-writes with a shared buffer and
that no reads will be applied to the batchTx in the general case permits us to imple-
ment it with an underlying WriteBatch, but we must account for the aforementioned

case.

A solution is to generally use WriteBatch but copy it into a WriteBatchWithIn-
dex whenever a read request is applied on the batchTx instead of the readTx. We do
this by calling the Switch() function before applying a read request to a batchTx.
Switch() iterates over the WriteBatch’s records and replays the Put and Delete ac-

tions upon a new WriteBatchWithIndex, with which it replaces the WriteBatch.

To do this we have a added a call to Switch() in functions (t *batchTx) Un-
safeRange(bucketName, key, endKey []byte, limit int64) ([][]byte,
[1[]byte) and (t *batchTx) UnsafeForEach(bucketName []byte, visitor
func(k, v []byte) error) error of the backend package. UnsafeForEach()

is called on a readTx only in two cases:

o to read the activated alarms from the alarm bucket and store them in an in-

memory map

« to delete the stored members of the old cluster from the members bucket when

starting an etcd node from a snapshot

UnsafeRange() is called on a readTx in the following cases:

to retrieve lease information from the lease bucket when starting an etcd node

« to read the consistent index from the meta bucket when the client issues a com-
mand to migrate the keys of the v2 store to the v3 store, or when a snapshot is

applied

« to retrieve information from the meta bucket when an MVCC history com-

paction is applied

o to retrieve information from the auth bucket upon client request

None of these calls happens very often compared to the average lifetime of a transac-

tion, which is shorter than 100ms. Thus, we decided that there is no reason to switch

4.2. MODIFICATIONS IN ETCD CODE 173

back to a WriteBatch after having switched to a WriteBatchWithIndex. When a

new transaction is created, it always starts with a WriteBatch.

Removal of the storage quota

For the reasons explained in subsection 3.1.5 we have decided to lift the restriction

placed by etcd on the size of its storage backend. The default quota size and the max-
imum configurable quota size are stored in the constants DefaultQuotaBytes and
MaxQuotaBytes in the etcdserver package. Thus, removing the quota is as trivial
as setting those constants equal to math.MaxInt64. We can also consider setting the
constants to reasonably large values, such as 30GB for the DefaultQuotaBytes and
50GB for theMaxQuotaBytes. The user is still able to impose a restriction on the back-
end size if they wish to do so, through the start-up time - -quota-backend-bytes
flag.

Scripts

The build script of etcd sets the CGO_ENABLED environment variable to 0 before com-
piling etcd. We set this variable to 1 in order to enable the use of cgo. As a side effect,
this renders the compilation no longer static. We also set the environment variables
CGO_CFLAGS and CGO_LDFLAGS appropriately in order to be able to use RocksDB as
a shared library as can be seen below. These environment variables contain compiler
and linker flags; the first one allows the C compiler to “see” the RocksDB header files
(i.e., the rocksdb/c.h header, which is imported in the cgo preambles of various go-
rocksdb files) and the second one allows our pre-compiled RocksDB library and its

dependencies to be used by the linker.

export CGO_CFLAGS="-I ${GOPATH}/src/${ORG_PATH}/rocksdb/include"
export CGO_LDFLAGS="-L ${GOPATH}/src/${ORG_PATH}/rocksdb -1lrocksdb
-1lstdc++ -1m -1z -1bz2 -lsnappy -11z4"

Those two changes are also applied in the build script of the functional tester, lo-
cated at etcd/tools/functional-tester/build, with the difference that CGO_-
ENABLED only needs to be set to 1 for the etcd-tester. What is more, we set the

174 CHAPTER 4. IMPLEMENTATION

variable ORG_PATH to point to "github.com/boolean5". Finally, in the function
etcd_build() we add the following line to make the script build the benchmark
tool along with etcd and etcdctl:

CGO_ENABLED=1 go build $GO_BUILD_FLAGS -installsuffix cgo -1ldflags
"$GO_LDFLAGS" -0 ${out}/benchmark ${REPO_PATH}/cmd/tools/benchmark

|| return

4.3 Optimizations

In this section we review the most impactful of the optimizations we applied over our
base implementation and provide the rationale behind each of them. In chapter 5 we

will present their beneficial effect on the performance of etcd.

4.3.1 Base Implementation

Our first approach to the integration of RocksDB into etcd resulted from applying the
design decisions described in section 3.2. Among other things, BoltDB transactions
were naively mapped to RocksDB transactions, a design which was semantically cor-
rect but lead to the development of overly complex code and imposed an unnecessary
overhead. Furthermore, just like it happened with BoltDB before the change, every
put/get/delete request to etcd resulted in two calls to the bolt package, one to fetch
the appropriate bucket and a second one to get/put/delete the key-value pair.

4.3.2 Bucket Access

As the reader can confirm by taking a look at chapter 5, the performance of the base
implementation was rather unsatisfactory. Specifically, although the write perfor-
mance should theoretically have improved, it was a little worse than before. At that
point we used Go’s profiler to identify potential bottlenecks. It allowed us to get a
30-second CPU profile, while loading etcd with a million key-value pairs, using the

built-in benchmark tool. Etcd already supports profiling'’, so all we had to do was

If it did not we would have to import runtime/pprof or net/http/pprof if the application runs
an http server and add a few lines of code.

4.3. OPTIMIZATIONS 175

run it with the appropriate flag: ./etcd --enable-pprof. Then, to interpret the

profile we used the following command:
go tool pprof http://localhost:2379/debug/pprof/profile

When in interactive mode, typing top 10 showed the 10 most CPU-consuming sam-

ples. The output of this command can be inspected below.

Showing top 10 nodes out of 225 (cum >= 680ms)

flat flat¥% sum% cum cumk

10780ms 17.61% 17.61% 10980ms 17.94% runtime.cgocall
8600ms 14.05% 31.66% 9010ms 14.72% syscall.Syscall
1800ms 2.94% 34.60% 4950ms 8.09% runtime.mallocgc
1510ms 2.47% 37.07% 1510ms 2.47% runtime.readvarint
1330ms 2.17% 39.24% 2890ms 4.72% runtime.selectgoImpl
1330ms 2.17% 41.41% 2840ms 4.64% runtime.step

1170ms 1.91% 43.33% 4350ms 7.11% runtime.pcvalue

850ms 1.39% 44.71% 850ms 1.39% runtime.heapBitsSetType

780ms 1.27% 45.99% 1270ms 2.07% runtime.deferreturn

680ms 1.11% 47.10% 680ms 1.11% runtime.adjustpointers

We also used the svg command, which constructs a graph of the profile data in SVG'®
format. Each box in the graph corresponds to a single function, and the boxes are
sized according to the time consumed in the function. An edge from box x to box y
indicates that x calls y; the number along the edge is the number of seconds spent in a
function [111]. A glance was enough to reveal that the most time-consuming opera-
tions in etcd were the cgo calls. For a discussion on the overhead imposed by cgo, see

subsection 2.5.2. To get a more comprehensible graph with less noise that would allow

us to trace the source of the problem we ran the experiment again, this time using the
command go tool pprof --nodefraction=0.1 http://localhost:2379/de-
bug/pprof/profile, that ignores nodes that don’t account for at least 10% of the to-
tal duration of the profiling, and the command svg cgocall that narrows the graph
down to the functions that result in cgo calls. Part of the output graph appears in

Figure 4.2.
'¥Scalable Vector Graphics

176 CHAPTER 4. IMPLEMENTATION

github. d (*batchTx).unsafePut
0of 11.425(18.79%)

‘% 8.63s
Y

github. di d l db/bolt.(*Bucket).Put ithub. i db/bolt.(*Tx).Bucket
0 0f 2.795(4.59%) 0 of 8.635(14.20%)
2.79s /1.075 2.77s
github.com/boolean5/gorocksdb.(*Txn).Put github.com/boolean5/gorocksdb.(*Iterator).Seek github. 15/g db.(*Txn).
0 0f 2.795(4.59%) 0 0f 4.075(6.70%) 00f 2.775(4.56%)
2.79s 14.075 \2.775
github.com/boolean5/gorocksdb.(*Txn).Put.funcl github.com/boolean5/gorocksdb.(*Iterator).Seek.funcl github. t ksdb.(*Txn). funcl
0 of 2.79s(4.59%) 0 0f 4.075(6.70%) 0 0f 2.775(4.56%)
2.72s j4.03s k2.665
github.com/by ksdb._Cfunc_rocksdb_t ion_put github.com/by 5 ksdb._Cfunc_rocksdb_iter_seek github.com/boolean5/gorocksdb._Cfunc_rocksdb_transaction_create_iterator
0 of 2.725(4.48%) 0 of 4.035(6.63%) 0 of 2.665(4.38%)
2.72s 4.03s 2.66s
\
runtime.cgocall
11.895(19.56%)
of 12.04s(19.81%)

Figure 4.2: CPU profile of the base implementation

From this graph we can deduce that the most frequent caller of cgo is the Bucket()
function of the bolt package. When a put request is issued to the backend of etcd,
it results in two calls to the bolt package, one to fetch the appropriate bucket and a
second one to put the key-value pair in that bucket. What is more, our base implemen-
tation of the Bucket () function involved two calls to the storage engine (i.e., two cgo
calls): one to create a RocksDB iterator and a second one to seek the specific bucket,

using this iterator.

An obvious improvement over this naive design that copied the implementation of the
original Bucket () function of BoltDB, would be to replace those two cgo calls with
one cgo call to the Get () function of RocksDB. However, we can achieve an even better
result by eliminating both calls to cgo and instead maintaining an in-memory set of
existing buckets, implemented as a Go map. This way the Bucket () function will not
need to query the storage engine. The map of buckets is associated with the DB struct,

itis created in function Open () of the bolt package and filled with any already existing

4.3. OPTIMIZATIONS 177

buckets stored in the database. Finally, it is updated in CreateBucket (). The map’s
usefulness in the context of the Bucket () function, lies in confirming that a certain
bucket exists and not in retrieving a value that will be returned to the caller. Those
changes can be seen in the corresponding code segments of section 4.1. The map of
buckets would normally need to be lock protected, but since within etcd the buckets are
only created when a node is started and before any other operation can be applied, this
is not necessary. It is worth noting here that buckets are an internal concept, employed

for the separation of keyspaces; the etcd client cannot access or modify them.

We can confirm that after this change runtime.cgocall no longer takes up such a
significant part of the run time, by running the profiler again and issuing a top 10
command, whose output can be seen below. We have now managed to reduce the
cgo calls per put request to the backend from three to just one'®. In chapter 5 we will
see how this change in the way buckets are accessed led to a significant performance

improvement.

Showing top 10 nodes out of 220 (cum >= 940ms)

flat flat% sum% cum cumk

7570ms 12.80% 12.80% 8000ms 13.52% syscall.Syscall
5060ms 8.55% 21.35% 5110ms 8.64% runtime.cgocall
2110ms 3.57% 24.92% 6170ms 10.43% runtime.mallocgc
1910ms 3.23% 28.14% 5900ms 9.97% runtime.pcvalue
1870ms 3.16% 31.30% 3570ms 6.03% runtime.step

1700ms 2.87% 34.18% 1700ms 2.87% runtime.readvarint
1430ms 2.42% 36.60% 3430ms 5.80% runtime.selectgoImpl
1130ms 1.91% 38.51% 1130ms 1.91% runtime.heapBitsSetType
1e50ms 1.77% 40.28% 9060ms 15.31% runtime.gentraceback
940ms 1.59% 41.87% 940ms 1.59% runtime.adjustpointers

At the level of a put request to etcd, we have reduced the number of cgo calls from 6 to 2, as each
of those requests is translated into two put requests to the backend: one to store the key-value pair and
a second one to update the consistentIndex.

178 CHAPTER 4. IMPLEMENTATION

4.3.3 Optimistic Transactions

As it has been mentioned before, pessimistic transactions are better for workloads with
heavy concurrency, while optimistic transactions are more suitable for workloads that

do not expect high contention between multiple transactions.

In the context of our current implementation, only one read-write transaction is active
atatime. This fact is enforced both by the DB struct’slockin the bolt package and by
etcd’s internal design, which channels all changes to the storage engine through a single
batchTx object that is reused after being committed. Therefore, since write-conflicts
are practically non-existent, we replaced pessimistic transactions with optimistic ones
and saw a significant improvement in write performance due to avoiding the locking

overhead of the former.

For a thorough analysis of the semantic and performance differences between pes-

simistic and optimistic concurrency control see subsection 2.1.7 and for a comparison

of the two types of transactions in RocksDB see subsection 2.4.2.

Putting this optimization into practice was rather trivial: it was enough to substitute
the gorocksdb TxnDB associated with the DB_struct with an OptimisticTxnDB and
replace some gorocksdb functions with their equivalent version for optimistic trans-

actions.

4.3.4 WriteBatchWithIndex & Snapshot

Taking the conclusions of subsection 4.3.3 a little further, we can deduce that if the

design of etcd and that of the bolt package ensure that there are no concurrent trans-
actions, there is no need for concurrency control on the side of RocksDB. In other
words, providing atomicity and durability is enough. This means that we can simulate
a read-write BoltDB transaction using a RocksDB WriteBatchWithIndex, which,
unlike WriteBatch, allows us to perform reads that have access to the uncommit-
ted writes of the batch. Moreover, we can simulate a read-only BoltDB transaction
using a RocksDB Snapshot which from a semantic point of view is essentially the
same thing: a consistent, read-only view of the database. For a description of the

concepts of WriteBatchWithIndex and Snapshot in the context of RocksDB see

subsection 2.4.2.

4.3. OPTIMIZATIONS 179

A WriteBatchWithIndex is much more lightweight than a RocksDB transaction,
since transactions are implemented with an underlying WriteBatchWithIndex and
a concurrency control mechanism. In fact, a simple benchmark revealed that writing
1 million key-value pairs to the database with a WriteBatchWithIndex is 2.5 times

as fast as with an optimistic transaction.

To implement this optimization we had to:

« Replace the underlying gorocksdb OptimisticTxnDB attached totheDB struct
with a plain gorocksdb DB

« Replace the underlying gorocksdb Txn attached to the Tx struct with a
WriteBatchWithIndex

» Make beginRWTx() create a WriteBatchWithIndex instead of beginning an

optimistic transaction

» Make beginROTx() create a new Snapshot instead of beginning an optimistic

transaction

o InRollback(),Clear() theWriteBatchWithIndexorRelease() theSnap-

shot instead of rolling back a RocksDB transaction

o In Commit(), use the gorocksdb WriteWithIndex() function to write the
WriteBatchWithIndex tothe database, instead of committing a RocksDB trans-

action

o In Put(), put the key-value pair in the WriteBatchWithIndex instead of an

optimistic transaction

o In Get(), use the function GetBytesFromBatchAndDB() on the
WriteBatchWithIndex

« InDelete(), apply the delete operation on the WriteBatchWithIndex instead

of an optimistic transaction
e In Cursor(), use NewIteratorWithBase()

o Remove all code that handles OptimisticTxnOptions

180 CHAPTER 4. IMPLEMENTATION

After the application of this optimization the code also became less complex. Before,
there existed several if clauses, to distinguish between an OptimisticTxnDB and a
plain DB, which was used when the database was opened in read-only mode. Now, it
was possible to eliminate those if clauses, as we use a plain DB both when working in

read-only mode and read-write mode.

WriteBatch and WriteBatchWithIndex are not thread safe, in the sense that mul-
tiple operations cannot be issued to the same batch concurrently, and require external
synchronization. Because this is also the case for the batchTx struct of the backend

package of etcd, adequate locking protection is already implemented®.

Initially, every read-write transaction had an attached Snapshot, created in begin-
RWTxX (), to ensure repeatable reads. After careful inspection, we realized that this was
not necessary. Since only one read-write transaction is active at any given time, it will
already possess a consistent view of the database. On the other hand, read-only trans-
actions still need a Snapshot, as the database may be changed by a read-write trans-
action during their lifetime. The removal of Snapshots from read-write transactions

gave a small extra performance benefit.

4.3.5 WriteBatch

A simple benchmark revealed that writing 1 million key-value pairs to the database
with aWriteBatch is 3.5 times as fast as with an optimistic transaction and 1.4 times
faster than with aWriteBatchWithIndex. WriteBatchWithIndex has a little more
overhead compared to WriteBatch, because it maintains an internal buffer in the

form of a searchable index.

As we have mentioned before, a recent change in the backend package of etcd, en-
abled readTx to access the uncommitted entries of batchTx. This allows us to replace
WriteBatchWithIndex with WriteBatch in our implementation. For a description

of the concept of the WriteBatch see subsection 2.4.2. Also, the semantic correct-

ness of this change is thoroughly explained in section 4.2, as well as the reason why

WriteBatchWithIndex is still needed in some cases.

To implement this optimization we had to replace some gorocksdb functions related

*In etcd, functions whose name has “Unsafe” as a prefix must be called while holding the lock of the
associated batchTx.

4.3. OPTIMIZATIONS 181

to WriteBatchWithIndex with their equivalent version for WriteBatch. We also
had to add some if clauses to distinguish between the case of using a WriteBatch
and the case of using a WriteBatchWithIndex, and write a function to switch from
one to the other when necessary. The resulting code has been described and explained

in section 4.1.

4.3.6 Tuning RocksDB

Tuning RocksDB is a complex task involving more than 120 configurable parameters
with different degrees of interdependencies. The default values do not match up to
the actual potential of the system, thereby delivering low performance. The following
segment from the documentation of RocksDB [64] gives a good idea of the complexity

of the tuning process:

“Unfortunately, configuring RocksDB optimally is not trivial. Even we as
RocksDB developers don't fully understand the effect of each configura-
tion change. If you want to fully optimize RocksDB for your workload,
we recommend experiments and benchmarking, while keeping an eye on

the three amplification factors.”

Besides depending on the expected workload, tuning is hardware dependent®, so it
should be readjusted for different machines. It can be viewed as a trade-off between
the three amplification factors: write amplification, read amplification and space am-
plification®. In our case, we try to favour write amplification, as our ultimate goal is
to improve the write performance of etcd and we are willing to sacrifice read perfor-
mance and space consumption within reasonable bounds. This can be translated into
following a strategy of less aggressive compactions®’ and generally tuning the options

in the direction of faster writes.

We will now present a few documented existing approaches to tuning RocksDB. Devel-

opers at Samsung’s memory solutions laboratory used a greedy algorithmic approach

*'The storage technology (i.e., SSD vs HDD), available cores and memory capacity should be taken
into account.

*’For a definition of read, write and space amplification see subsection 2.4.1.

**Performing compactions often, increases write amplification and reduces space and read amplifi-
cation.

182 CHAPTER 4. IMPLEMENTATION

to identify optimal values for RocksDB configuration parameters. They identified ~25
parameters that significantly affect performance, as well as ~5 possible values for each
of them. Then, they performed a benchmark with each of those different values for
an isolated parameter, while keeping the rest fixed to reasonable values, and selected
the value that gave the highest operations/second rate. This process was repeated for
all of the selected parameters. It is worth noting that as this process is not exhaustive,
it only finds local optimal values and might miss the global optimal ones. However,
the developers at Samsung report a 77% increase in performance over the baseline

configuration [112].

Furthermore, the developers of Redis-on-Flash** have ran a series of experiments to
tune RocksDB and have published a paper where they report in detail both the param-
eters that significantly improved performance, as well as configurations that seemed
promising but had a negative effect. They managed to improve overall performance

by more than 11 times over the baseline performance [113]

M. Callaghan, one of the developers of RocksDB, has created a script* that receives
some of the configuration options of RocksDB as parameters and runs a series of
benchmarks, to facilitate tuning. Finally, the Apache Flink framework?® has estab-
lished 4 predefined option configurations®’, empirically determined to be beneficial
for performance under different hardware and workload settings, based on experi-

ments by the Flink community and guidelines from RocksDB documentation.

Our approach was very similar to that of Samsung’s memory solutions laboratory. We
selected a subset of parameters worth experimenting with, based on tuning tips found
in the documentation of RocksDB [64], in the RocksDB developers forum?® and in the
reports of the approaches mentioned above. Then, starting from the parameters that
we had identified as the most influential based on previous tests, we ran some bench-
marks for several values of each one, stabilized it choosing the value that maximized

write throughput and moved on to the next.

**Redis-on-Flash is an implementation of the Redis in-memory key-value store that uses SSDs as an
extension to RAM in order to increase the capacity per-node. Hot data are retained in RAM, while
RocksDB is utilized for storing cold data on SSD drives [113].

https://github.com/mdcallag/mytools/blob/master/bench/rocksdb.db bench/
all.sh

%https://flink.apache.org/

*’https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/
apache/flink/contrib/streaming/state/PredefinedOptions.html

2https://www.facebook.com/groups/rocksdb.dev/

https://github.com/mdcallag/mytools/blob/master/bench/rocksdb.db_bench/all.sh
https://github.com/mdcallag/mytools/blob/master/bench/rocksdb.db_bench/all.sh
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/contrib/streaming/state/PredefinedOptions.html
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/contrib/streaming/state/PredefinedOptions.html
https://www.facebook.com/groups/rocksdb.dev/

4.3. OPTIMIZATIONS 183

Below we provide a theoretical description of each parameter we have included in our
configuration and an explanation of the related trade-offs and side effects if any. The
parameters we experimented with were a lot more than those mentioned below, but
they did not appear to have a significant performance impact for our workload and

hardware configuration.

Bloom filters: In order to reduce read amplification we enable Bloom filters by calling
the functionblockOpts.SetFilterPolicy(gorocksdb.NewBloomFilter(10)).
This filter will keep 10 bits of data in memory per key, reducing the number of un-
necessary disk reads needed for get operations by a factor of approximately 100 and
yielding a ~1% false positive rate [64]. Increasing the bits per key will lead to a larger
reduction at the cost of more memory usage. However, Bloom filters are only use-
tul for point lookups and not for range scans. For the definition of Bloom filters see

subsection 2.4.1.

Parallelism options: In the LSM-tree architecture, there are two background pro-
cesses: flushing memtables and compaction. We can enable concurrent execution for
both of them in order to take advantage of storage technology concurrency. The HIGH
priority thread pool contains threads used for flushing, since flushing is in the criti-
cal code path, while the LOW priority pool contains threads used for compaction.
To set the number of threads accessible by RocksDB we call opts.IncreaseParal-
lelism(total_threads). To adjust the number of threads in each pool we call:
env.SetBackgroundThreads(total threads - 1) and env.SetHighPrior-
ityBackgroundThreads(1). To compute the number of available threads in the

system we use the Go function runtime.NumCPU() [64].

To benefit from more threads we call the following functions to change the maxi-
mum number of concurrent compactions and flushes: opts.SetMaxBackground-
Compactions(total threads - 1) and opts.SetMaxBackgroundFlushes(1).
The default maximum number of concurrent compactions is 1, but to fully utilize our
CPU and storage it is recommended to increase this to approximately the number
of cores in the system. Two compactions operating at different levels or at different
key ranges are independent and may be executed concurrently. More parallelism on
the compaction threads shortens the compaction cycles and provides a higher write

throughput [113]. As far as the maximum number of concurrent flush operations is

184 CHAPTER 4. IMPLEMENTATION

concerned, it is usually good enough to set it to 1*° [64].

Moreover, we use opts.SetMaxSubcompactions() to set the maximum number of
threads that will concurrently perform a compaction job by breaking it into multiple,
smaller ones that are run simultaneously. With opts.SetAllowConcurrentMem-
tableWrites(true) we allow concurrent memtable updates. According to the doc-
umentation, when doing this it is strongly recommended to also call opts . SetEnable-

WriteThreadAdaptiveYield(true).

Flushing options: There are numerous options that control the flushing behaviour.
To determine the size of a single memtable in bytes we use the function opts.Set-
WriteBufferSize(). Once a memtable exceeds this size, it is marked as immutable
and a new one is created. To set the maximum number of memtables, both active
and immutable, we call opts.SetMaxWriteBufferNumber(). If the active mem-
table fills up and the total number of memtables is larger than this, we stall further
writes. This may happen if the flush process is slower than the write rate. In addition,
with opts.SetMinWriteBufferNumberToMerge() we can set the minimum num-
ber of memtables to be merged before flushing to storage. If for example this option
is set to 2, immutable memtables are only flushed when there are two of them. When
multiple memtables are merged together, less data may be written to storage since dif-
ferent updates of the same key are merged. On the other hand, every get operation
must traverse all immutable memtables linearly to check if the requested key is there

[64].

An issue we encountered while experimenting with the flushing options was that when
the total capacity of the memtables was large, RocksDB was quite slow to restart after
being closed. This happens because, in order to recover its previous state, RocksDB has
to read its WAL and reload everything that was in memory before being closed. This

trade-off between write performance and recovery time should be taken into account.

Compaction options: According to the documentation and the outcome of our ex-
periments, Universal Compaction is more suitable than Level Compaction for write-
heavy workloads. On the other hand, it increases read and space amplification. To se-
lect this style of compaction we call opts.SetCompactionStyle(gorocksdb.Uni-

versalCompactionStyle) and opts.OptimizeUniversalStyleCompaction()

2 Another reasonable configuration is to assign the 2/3 of the available cores to compactions and the
remaining 1/3 to flushes.

4.3. OPTIMIZATIONS 185

for further optimization. More information on compaction styles is available in sub-

subsection 2.4.1.

Compression options: Each block is individually compressed before being written
to persistent storage. The default compression method, Snappy is very fast. We tried
disabling compression entirely by calling opts.SetCompression(gorocksdb.No-

Compression), but this did not yield a performance improvement.

Other options: There exists an option, accessed through the DisableWAL() func-
tion, that disables the use of the WAL in RocksDB, offering a significant performance
benefit. Putting a key-value pair in RocksDB with the WAL disabled involves only an
in-memory operation. Since etcd keeps a WAL, one might think that a second one at
the level of the storage engine is redundant. In the event of a crash all data stored in the
memtable of RocksDB would be lost. Then, theoretically, when the node is restarted,
etcd could check the latest revision stored in the storage engine and replay its WAL

from that revision onwards.

In practice however, disabling the WAL of RocksDB might render the cluster state
inconsistent. This is because in etcd v3, the on-disk storage engine database serves as

an incremental snapshot, as we have seen in subsection 2.2.2. In other words, if any

updates committed’°® to the storage engine reside exclusively in memory, etcd will not
be able to recover its state correctly after a crash. The WAL of etcd (i.e., the raft log)
and the snapshot (i.e., the storage engine database) are complementary. A snapshot
record is appended to the WAL every 100000 entries to the backend, and previous log
entries are discarded. The snapshot record is a marshalled struct with an index and
a term. Right before this happens a commit is also issued, that commits outstanding

transactions to the underlying backend.

RocksDB also offers the option to make all write operations (i.e., calls to the Put()
and Delete() functions) synchronous. We need not configure this option since all

our updates are done through the Write() function which is synchronous by default.

Another frequently tuned option is the block size. When reading a key-value pair
from an SST file, an entire block is loaded into memory. The default block size is 4KB.

Increasing this value makes memory consumption decrease, since the blocks per SST

**The uncommitted updates of the current transaction are sure to be kept in the Raft log so it is safe
for them to exist only in the in-memory component of the storage engine.

186 CHAPTER 4. IMPLEMENTATION

file become fewer and the in-memory indices that list the offsets for all blocks contain

fewer entries [64].

Before running the benchmarks of chapter 5, we enabled parallelism in all versions of
our implementation. However, only the final version is actually tuned. An example
tuning configuration on a machine with an SSD, 4 cores and 4GB of RAM is available

in the code segment below.

1 |func createOptions() *gorocksdb.Options {

2 opts := gorocksdb.NewDefaultOptions()

3 opts.SetCreatelfMissing(true)

4

5 // 3k 3k 3k 3k 3k ok ok ok sk sk sk >k >k ok ok kosk sk sk k Tuning ROCI(SDB >k 3k 3k 3k 3k 5k 3k sk sk >k >k >k ok ok sk sk sk sk sk k
6 // Bloom Filters

7 blockOpts := gorocksdb.NewDefaultBlockBasedTableOptions()
8 blockOpts.SetFilterPolicy(gorocksdb.NewBloomFilter(10))
9 opts.SetBlockBasedTableFactory(blockOpts)

10

11 // Parallelism Options

12 total threads := runtime.NumCPU()

13 opts.IncreaseParallelism(total threads)

14 env := gorocksdb.NewDefaultEnv()

15 env.SetBackgroundThreads(total threads - 1)

16 env.SetHighPriorityBackgroundThreads (1)

17 opts.SetEnv(env)

18

19 opts.SetMaxBackgroundCompactions(total_threads - 1)

20 opts.SetMaxBackgroundFlushes(1)

21 opts.SetMaxSubcompactions(2)

22 opts.SetAllowConcurrentMemtableWrites(true)

23 opts.SetEnableWriteThreadAdaptiveYield(true)

24

25 // Flushing Options

26 opts.SetWriteBufferSize(512 * 1024 * 1024)

27 opts.SetMaxWriteBufferNumber(3)

4.4. EXTERNAL CONTRIBUTIONS 187

28

29 // Compaction Options

30 opts.SetCompactionStyle(gorocksdb.UniversalCompactionStyle)
31 opts.OptimizeUniversalStyleCompaction (2048 * 1024 * 1024)
32

33 return opts

34 |}

Listing 4.9: Example tuning configuration for RocksDB

4.4 External Contributions

In numerous occasions during the course of our implementation we found ourselves in
need of functionality that was not available in the RocksDB C API or gorocksdb, which
are both relatively incomplete libraries. As a result, we worked on certain patches,
some of which were merged in the original upstream projects. This section provides a
complete list of our contributions. The full source code can be found in our repos-

itories, forked from RocksDB and gorocksdb: https://github.com/boolean5/

rocksdb and https://github.com/boolean5/gorocksdb. In this section we in-

clude only a few code segments to give the reader a general idea of the content of the
patches. For a brief description of how the C API and the gorocksdb wrapper work,

see subsection 3.1.4 and subsection 3.1.3.

Transactions

At the time of our implementation neither the C API of RocksDB nor gorocksdb
supported Transactions or Optimistic Transactions. Therefore, we added to both of
them more than 40 structs and functions to handle a transaction/optimistic transac-
tion database (e.g., rocksdb_transactiondb_open()), the transaction/optimistic
transaction options (e.g., rocksdb_transaction_options_create(), rocksdb_-
transaction_options_set_set_snapshot()), and the transactions or optimistic
transactions themselves (e.g., rocksdb_transaction_begin(), rocksdb_trans-
action_get(), rocksdb_transaction_commit()). Some indicative code exam-

ples follow.

https://github.com/boolean5/rocksdb
https://github.com/boolean5/rocksdb
https://github.com/boolean5/gorocksdb

188 CHAPTER 4. IMPLEMENTATION

1 |struct rocksdb_transaction_t {

2 Transaction* rep;

30}

Listing 4.10: The rocksdb_transaction_t struct in the RocksDB C API

1 |char* rocksdb_transaction_get(rocksdb_transaction_t* txn,
2 const rocksdb_readoptions_t* options,

const char* key, size t klen, size_ t* vlen,

4 char** errptr) {

5 char* result = nullptr;

6 std::string tmp;

7 Status s = txn->rep->Get(options->rep, Slice(key, klen), &tmp);
8 if (s.ok()) {

9 *vlen = tmp.size();

10 result = CopyString(tmp);

11 } else {

12 *vlen = 0;

13 if (!s.IsNotFound()) {
14 SaveError(errptr, s);
15 }

16| }

17 return result;

18 |}

Listing 4.11: The rocksdb_transaction_get() function in the RocksDB C API

1 |type Txn struct {

2 C *C.rocksdb_transaction_t
3 opts *WriteOptions

4 txnOpts *TxnOptions

51}

Listing 4.12: The Txn struct in gorocksdb

4.4. EXTERNAL CONTRIBUTIONS 189

1 |func (txn *Txn) Get(opts *ReadOptions, key []byte) (*Slice, error) {

2 var (

3 cErr *C.char

4 cVallen C.size_t

5 cKey = byteToChar(key)

6)

7 cValue := C.rocksdb_transaction_get(txn.c, opts.c, cKey,
C.size_t(len(key)), &cVallLen, &cErr)

8 if cErr I= nil {

9 defer C.free(unsafe.Pointer(cErr))

10 return nil, errors.New(C.GoString(cErr))

11 }

12 return NewSlice(cValue, cVallLen), nil

13 |}
Listing 4.13: The transaction Get () function in gorocksdb

WriteBatchWithIndex

Gorocksdb was also lacking support for WriteBatchWithIndex, leading us to de-

velop a patch with the required functions for the creation and destruction of the batch,

for writing, reading and deleting values in the batch, clearing it, iterating over its

records, etc. We also had to implement a function to persist the batch to the database,

equivalent to Write(), but for a WriteBatchWithIndex. Because function over-

loading is not supported in Go, this function was named WriteWithIndex().

type WriteBatchWithIndex struct {

c *C.rocksdb_writebatch _wi_t

Listing 4.14: The WriteBatchwWithIndex struct in gorocksdb

func (wb *WriteBatchWithIndex) Put(key, value []byte) {
cKey := byteToChar(key)
cValue := byteToChar(value)

190 CHAPTER 4. IMPLEMENTATION

4 C.rocksdb_writebatch_wi_put(wb.c, cKey, C.size_t(len(key)),

cValue, C.size_t(len(value)))

51}

Listing 4.15: The WriteBatchWithIndex Put() function in gorocksdb

Checkpoint

Yet another thing that was missing both from the RocksDB C API and the gorocksdb
wrapper was support for Checkpoint. We extended both of them with the structs and
functions required to create and destroy a Checkpoint object and an actual check-

point of the database. Some representative code examples follow.

1 |void rocksdb_checkpoint_create(rocksdb_checkpoint_t* checkpoint,

2 const char* checkpoint_dir,
3 uinte4_t log_size_for_flush, char**
errptr) {

4 SaveError(errptr, checkpoint->rep->CreateCheckpoint(

std::string(checkpoint_dir),

Ul

log size_for_flush));
61}

Listing 4.16: The rocksdb_checkpoint_create() function in the RocksDB C
API

1 |func (c *Checkpoint) Create(checkpointDir string, logSizeForFlush

uint64) error {

2 var (

3 CErr *C.char

4 cDir = C.CString(checkpointDir)
5)

6 defer C.free(unsafe.Pointer(cDir))

7 C.rocksdb_checkpoint create(c.c, cDir,

C.uint64_t(logSizeForFlush), &cErr)
8 if cErr != nil {

9 defer C.free(unsafe.Pointer(cErr))

4.5. INSTALLATION & CONFIGURATION 191

10 return errors.New(C.GoString(cErr))
11 }

12 return nil

13 |}

Listing 4.17: The checkpoint Create () function in gorocksdb

Tuning options

In the process of fine tuning RocksDB, which is described in subsection 4.3.6, we had

to set the values of multiple configuration options, some of which had not yet been
exported to the C API of RocksDB or to the gorocksdb wrapper. To make those
options accessible from Go code we added the function rocksdb_options_set_-
max_subcompactions() to the C API and the following functions to gorocksdb:
SetCompactionReadaheadSize(), SetEnableWriteThreadAdaptiveYield(),
SetMaxSubcompactions(), GetBlockBasedTableOptions() and GetEnv().

Database properties

The function GetProperty () of RocksDB allows accessing database properties, such
as the number of SST files on a specific level of the LSM-tree, the total size of the
memtables, the total size of the SST files, database statistics and other useful infor-
mation. This function was only implemented in the C API and gorocksdb for a plain
database and not a transaction database, so we added this extra version to both (i.e.,

rocksdb_transactiondb_property_value() and GetProperty () respectively).

4.5 Installation & Configuration

In this section, we provide detailed instructions for the installation of etcd with Rocks-
DB as its storage engine, as well as for the process of setting up an etcd cluster of 3
nodes. Our tests in section 4.6 and benchmarks in chapter 5 have been run with the

following versions of software:

192 CHAPTER 4. IMPLEMENTATION

« Go1.83

etcd 3.2.0, modified®' as mentioned in section 4.2

RocksDB 5.5.1, extended®? by our contributions mentioned in section 4.4

gorocksdb extended* by our contributions mentioned in section 4.4

1. Go installation

First of all, to build etcd from source a working installation of Go is required*.

1 | root@etcdl:~# wget https://storage.googleapis.com/golang/

2 | gol.8.3.1linux-amd64.tar.gz

3 | root@etcdl:~# tar -C /usr/local -xzf gol.8.3.linux-amd64.tar.gz
4 | root@etcdl:~# export PATH=$PATH:/usr/local/go/bin

5 | root@etcdl:~# mkdir $HOME/go/src/github.com/boolean5

Listing 4.18: Installation of Go

2. RocksDB installation

The next step is the installation of RocksDB and its dependencies****. We use RocksDB

as a shared library, using the flags mentioned in section 4.2.

1 | root@etcdl:~# apt-get update

2 | root@etcdl:~# apt-get install zliblg-dev

3 | root@etcdl:~# apt-get install libbz2-dev

4 | root@etcdl:~# apt-get install libsnappy-dev
5 | root@etcdl:

2
H*

apt-get install 1liblz4-dev

Listing 4.19: Installation of RocksDB dependencies

*'"https://github.com/boolean5/etcd-rocks

Zhttps://github.com/boolean5/rocksdb/tree/v.5.5.1-extended

3https://github.com/boolean5/gorocksdb/tree/temp-extended

*https://golang.org/doc/install

**Complete list of RocksDB dependencies: https://github.com/facebook/rocksdb/blob/
master/INSTALL.md#supported-platforms

*°If the machine has just been created it will also be necessary to run apt install make and
apt-get install build-essential before being able to install RocksDB.

https://github.com/boolean5/etcd-rocks
https://github.com/boolean5/rocksdb/tree/v.5.5.1-extended
https://github.com/boolean5/gorocksdb/tree/temp-extended
https://golang.org/doc/install
https://github.com/facebook/rocksdb/blob/master/INSTALL.md#supported-platforms
https://github.com/facebook/rocksdb/blob/master/INSTALL.md#supported-platforms

4.5. INSTALLATION & CONFIGURATION 193

1 | root@etcdl:~# cd $HOME/go/src/github.com/boolean5

2 | root@etcdl:~/go/src/github.com/boolean5# wget
https://github.com/boolean5/rocksdb/archive/v.5.5.1-extended.zip
3 | root@etcdl:~/go/src/github.com/boolean5# unzip

v.5.5.1-extended.zip && mv rocksdb-v.5.5.1-extended rocksdb

4 | root@etcdl:~/go/src/github.com/boolean5# cd rocksdb && make
shared_1lib

5 | root@etcdl:~/go/src/github.com/boolean5/rocksdb# cp
librocksdb.so.5.5 /usr/1lib

Listing 4.20: Installation of RocksDB

3. Gorocksdb download

1 | root@etcdl:~/go/src/github.com/boolean5# wget
https://github.com/boolean5/gorocksdb/archive/temp-extended.zip
2 | root@etcdl:~/go/src/github.com/boolean5# unzip temp-extended.zip

&& mv gorocksdb-temp-extended gorocksdb

Listing 4.21: Downloading gorocksdb

4, etcd installation

1 | root@etcdl:~/go/src/github.com/boolean5# wget
https://github.com/boolean5/etcd-rocks/archive/master.zip

2 | root@etcdl:~/go/src/github.com/boolean5# unzip master.zip && mv
master etcd

3 | root@etcdl:~/go/src/github.com/boolean5# cd etcd && ./build

Listing 4.22: Installation of etcd

To be able to try all the versions of our implementation, which reside in different
branches, and not just the final version which is in the master branch, it would be
better to use the git clone https://github.com/boolean5/etcd-rocks com-

mand.

194 CHAPTER 4. IMPLEMENTATION

5. Setting up a cluster

To start etcd on each node, from within /go/src/github.com/boolean5/etcd/bin

we run the following script, in which the correct IP addresses must be filled.

1 [#!/bin/bash

2 | #This script is used to bootstrap an etcd cluster
3

4 | #This section is the same for all members

5 | TOKEN=token-01

6 | CLUSTER_STATE=new

7 | NAME_1l=etcd-1

8 | NAME_2=etcd-2

9 | NAME_3=etcd-3

10 | HOST_1=192.168.10.11

11 | HOST_2=192.168.10.12

12 | HOST_3=192.168.10.13

13 | CLUSTER=${NAME_1}=http://${HOST_1}:2380, \

14 |${NAME_2}=http://${HOST_2}:2380, \

15 |${NAME_3}=http://${HOST_3}:2380

16

17 | #This section is member-specific

18 | #For machine 1

19 | THIS_NAME=${NAME_1}

20 | THIS_IP=${HOST_1}

21 | ./etcd --data-dir=data.etcd --name ${THIS_NAME} \
22 --initial-advertise-peer-urls http://${THIS_IP}:2380 \
23 --listen-peer-urls http://${THIS_IP}:2380 \
24 --advertise-client-urls http://${THIS_IP}:2379 \
25 --listen-client-urls http://${THIS_IP}:2379 \
26 --initial-cluster ${CLUSTER} \

27 --initial-cluster-state ${CLUSTER_STATE} \

28 --initial-cluster-token ${TOKEN}

Listing 4.23: etcd cluster setup script

4.6. TESTING 195

The above 5 steps are followed for each of our etcd servers. To set up an etcd client we
only have to follow steps 1 and 4, but before running the build script, comment out
the line responsible for the compilation of etcd in function etcd_build(), leaving
only the line that compiles etcdctl. To apply the configuration of etcdctl we issue
the command source etcdctl-config.sh. The contents of this script are displayed

below.

1 |#!/bin/bash

2 | #etcdctl configuration

3 | export ETCDCTL_API=3

4 | export HOST_1=192.168.10.11

5 | export HOST_2=192.168.10.12

6 | export HOST_3=192.168.10.13

7 | export ENDPOINTS=${HOST_1}:2379,%${HOST_2}:2379,${HOST_3}:2379

Listing 4.24: etcd client setup script

We can confirm that everything is functioning properly with the command . /etcdctl

--endpoints=$ENDPOINTS -w table endpoint status.

4.6 Testing

In this section, we present the testing methods we used to verify that etcd still functions
as expected after the replacement of its storage engine with RocksDB. After several
testing and bug fixing iterations we managed to make our implementation robust and
reliable. Because of the critical role etcd plays in a distributed system, its developers
have put a lot of effort in the development of an adequate testing framework. In fact,

over half of its code base is dedicated to tests.

Before using the official testing framework of etcd, we ran some rounds of manual test-
ing in order to spot and fix the most obvious bugs. This involved trying the commands
exposed by the API one by one and confirming that their output is as expected, both

on a standalone etcd node and a local 3-node cluster.

196 CHAPTER 4. IMPLEMENTATION

4.6.1 Unit Tests

Unit tests are used to test individual components within a package, such as a function.

Etcd provides a test script that uses the go test tool, mentioned in subsection 2.5.1,

to run all the unit tests in the code base. Examples of what these unit tests check include
reading and writing key-value pairs to the cluster, adding and removing members from

it, taking a snapshot and starting a fresh etcd instance from it, etc.

The test script also performs integration tests and end-to-end tests, among other
things. Integration tests check client and server interactions by starting an etcd server,
sending client requests to it and checking its responses. End-to-end tests configure a
local 3-node cluster and simulate real-world operations to verify that the command
line interface of etcd is working correctly [114]. After fixing several bugs pointed out

by this test script we managed to get every unit test to run successfully.

4.6.2 Functional Test Suite

Functional tests are used to test a piece of functionality in a system. The functional
test suite of etcd is designed to make sure that etcd fulfills its reliability and robustness

guarantees. This is its main workflow, based on the description given by Y.Qin [115]:

1. It sets up a new etcd cluster and makes continuous write requests to it in order

to simulate heavy load.

2. It injects a failure into the cluster. Various types of system and network failures

are modelled:

« kill random node: a single machine needs to be upgraded or maintained
o kill leader

« kill majority: part of the data center experiences an outage, and the etcd

cluster loses quorum

o kill all nodes: the whole data center experiences an outage and the etcd

cluster in the data center is killed

« kill node for a long time to trigger snapshot when it comes back: a single

machine is down due to hardware failure, and requires manual repair

4.6. TESTING 197

« network partition: the network interface on a single machine or the router

or switch in the data center is broken
o slow network

3. Itrepairs the failure and expects the etcd cluster to recover within a short amount

of time (i.e., one minute).
4. It waits until the etcd cluster is fully consistent and making progress.

5. It starts the next round of failure injection.

If the cluster cannot recover from a failure, the functional tester archives the cluster

state so that it can be inspected later [115].

etcd-tester

failure injection / —— stress cluster
recover s S=sl
AY ~ :' ~
Y ~ v
\
\

etcd-agent etcd-agent

— -
= =)=240=:0=2= -

Figure 4.3: The functional test suite of etcd [114]

The functional test suite of etcd has two components: the etcd-agent and the etcd-
tester. An instance of the etcd-agent daemon runs on every node of the cluster
and controls the state of etcd: it starts it, stops it, restarts it, manipulates network con-
figurations etc. etcd-tester runs on a single separate machine and injects failures
(e.g., by triggering the etcd-agent via RPC to stop/start etcd) and verifies the correct
operation of etcd. etcd-agent stops etcd by sending a kill signal to its process, sim-

ulates network partitions by manipulating the iptables®’, and slow network with the

*’https://linux.die.net/man/8/iptables

https://linux.die.net/man/8/iptables

198 CHAPTER 4. IMPLEMENTATION

help of the tc command®®. It also performs crash tests, such as power loss and I/O er-
ror, by triggering failpoints® carefully placed in various critical positions in etcd code

[114]. Figure 4.3 presents the architecture of the test suite.

To run the functional tests on a single machine using goreman*’, we build with the
provided build script and run with the provided Procfile [1]. We can also redirect the

output of the tester to a file so that we can inspect it later.

./tools/functional-tester/build

goreman -f tools/functional-tester/Procfile start |& tee func-out

To run the functional tester on an actual etcd cluster, after building it on each machine
we start the etcd-agent on every cluster node and the etcd-tester on a separate

machine with the following commands:

./etcd-agent --etcd-path=$ETCD_BIN_PATH
./etcd-tester -agent-endpoints="$MACHINE1l IP:9027,$MACHINE2 IP:9027,
$MACHINE3 IP:9027” -1limit=3 -stress-key-count=250000

-stress-key-size=100

Each time we ran the functional tester we checked the saved output for panics, and the
agent nodes for failure archives. With the aid of this information we tracked down nu-
merous bugs and fixed them. Finally, we let the functional test suite run for 10 consec-
utive rounds with no reported failures of our cluster. In each round all the mentioned

types of failures are injected.

*https://linux.die.net/man/8/tc

*https://github.com/coreos/gofail

*%goreman is a clone of foreman written in Go. Foreman is a tool that manages Procfile-based appli-
cations. It starts the executables defined in the Procfile as separate processes.

https://linux.die.net/man/8/tc
https://github.com/coreos/gofail

Experimental Evaluation

In this chapter, we run a series of carefully selected benchmarks, in order to evalu-
ate the read and write performance of our implementation and compare it to that of
etcd with BoltDB as its storage engine. We present the results in graphic form and
draw conclusions based on them. More specifically, we will examine and compare the

following points between our implementation and the original version of etcd:

Write and read' performance (throughput and latency)

Scalability with the number of clients

o Effect of the value size on performance

« Disk space consumption

« Memory usage

We will also conduct a performance comparison between the intermediate versions of
our implementation and the final version, so as to quantify the contribution of each
optimization. Finally, we will attempt to measure the overhead introduced by cgo and

assess its impact on the overall performance.

'Both for point lookups and range queries.

199

200 CHAPTER 5. EXPERIMENTAL EVALUATION
5.1 Tools, Methodology & Environment

We make exclusive use of the built-in CLI benchmark tool of etcd, which commu-
nicates with the etcd servers via gRPC. To install it, we use the build script of etcd,
modified as described in section 4.2 to include the compilation of the benchmark tool.
What is more, we made a minor modification in the code of the benchmark tool: we
disabled the printing of its progress bar in order to make the output more readable.

Sample benchmark commands are:

./benchmark --endpoints=${ENDPOINTS} --conns=100 --clients=100 put
--key-size=8 --sequential-keys=false --key-space-size=100000

--total=100000 --val-size=256

./benchmark --endpoints=${ENDPOINTS} --conns=100 --clients=100
range a --consistency=1 --total=100000

The first one sets up 100 clients that over 100 gRPC connections concurrently per-
form 100000 random? writes of key-value pairs with key size 8 bytes and value size
256 bytes. The key-space-size parameter defines the maximum possible number
of different keys. The second command sets up 100 clients that over 100 gRPC connec-
tions concurrently perform 100000 linearizable® point lookups for the key “a”. Clients
are implemented as separate goroutines. Each client waits for a reply to its current

request before sending the next one.

A complete list of the benchmarks we ran can be found in our benchmarking scripts on

https://github.com/boolean5/ntua-thesis. Each measurement is performed

three times and the average values are used. Before moving on from one write bench-
mark to the next, the data directory of etcd is removed on all nodes. When performing
read benchmarks however, we make sure to populate the database beforehand by run-

ning a write benchmark that puts 1000000 key-value pairs in etcd.

*The --sequential-keys parameter does not actually make a big difference in the results. As we
have seen in subsection 2.2.1, in the data model of etcd all writes to the storage engine are sequential
and sorted by the revision number. However, writes to the in-memory B-tree index are still affected by
this parameter.

*For an explanation of the concept of linearizable reads, see subsection 2.2.1.

https://github.com/boolean5/ntua-thesis

5.2. RESULTS 201

The exact versions of all software used, as well as a guide for the installation process,
can be found in section 4.5. The experimental evaluation set up consisted of 4 Amazon
Elastic Compute Cloud (EC2) virtual machines of type m3.x1large. Three of them
formed the etcd cluster and the remaining one was used as the client. Each had 4

cores, 15GB of memory, 2 SSDs of 40GB and the Ubuntu OS installed.

In the next section, we will use the following naming convention, which is also used
in the branches of our repository, to distinguish between the different versions of our

implementation:

« original: thisisan unmodified fork of etcd, with BoltDB as its storage engine,

upon which the rest of the versions were based.

 base: this is our baseline implementation, with no optimizations applied. For

a brief description see subsection 4.3.1.

 bucket: this version contains the optimization related to the retrieval of buck-

ets from the backend, described in subsection 4.3.2.

« optimistic: in this version, pessimistic transactions were replaced by opti-

mistic ones, an optimization described in subsection 4.3.3.

« wbwi: in this version, transactions were replaced by a combination of Write-
BatchWithIndex and Snapshot, an optimization discussed in detail in sub-

section 4.3.4.

 wb: inthisversion, WriteBatchWithIndex was replaced by the morelightweight

WriteBatch, an optimization introduced in subsection 4.3.5.

« final: this is our final, optimal version, obtained after tuning RocksDB as ex-

plained in subsection 4.3.6.

5.2 Results

In this section, we describe each of our experiments, present the results in graphic
form and attempt to interpret them based on our previous analysis of etcd, BoltDB

and RocksDB.

202 CHAPTER 5. EXPERIMENTAL EVALUATION

Write performance

The write throughput achieved by each version of our implementation, as well as its
improvement as a percentage of the original versions throughput, can be studied
in Figure 5.1. In this experiment, we ran the benchmark tool with the following pa-
rameters: --conns=100 --clients=1000 put --key-size=8 --sequential-

keys=false --key-space-size=1000000 --total=1000000 --val-size=256.

As expected, every optimization we applied yielded a more or less noticeable perfor-
mance improvement over the previous version of our implementation. More specif-
ically, the bucket version provided a significant increase over the rather disappoint-
ing throughput of base version, by eliminating unnecessary accesses to the storage
engine. Versions optimistic and wbwi offered a small boost over their correspond-
ing previous ones, by switching to more lightweight structures, with wb being the first
version to surpass the throughput of the original. Finally, tuning RocksDB in the

final version gave us a small extra lead over the original.

25000
0 +3.4% +4.4%
0% -2.5%

20000 17 4%
S 21% U7
)
(2]
@
$ 15000
>
o
o
2 10000 -56.1%
<
D
>
o
S

5000

0
original base bucket optimistic whbwi wb final

Figure 5.1: Write throughput of etcd in all versions

We can also observe the average latency® for the same experiment in Figure 5.2. We

later ran this experiment with - -clients=100 --total=100000and --clients=1000

--total=100000 and the general tendency was the same.

“The values depicted in the average latency graphs refer to the latency from the point of view of a
single simulated client. To obtain the latency from the point of view of the whole benchmark we just
need to divide these values with the number of clients used in the given benchmark.

5.2. RESULTS 203

0.12

+128.1%
0.1

0.08

0.06 +26.8% 151 306

o +2.6% -3.4% -4.3%

0.04

Average Latency (sec)

0.02

original base bucket optimistic whbwi wb final

Figure 5.2: Average write latency of etcd in all versions

In order to interpret these results with the correct perspective, one should bear in mind
that the latency imposed by the storage engine of etcd is only a small contributing factor

to the latency depicted in these graphs. As it has been made clear in subsection 2.2.5,

the performance of etcd is dominated by disk I/O (i.e., WAL fsync operations) and
network latency (i.e., message exchange between members for the establishment of
consensus). Therefore, the suitability of the LSM-tree and by extension RocksDB for
this particular workload should not mislead us into expecting to see a groundbreaking
improvement. Nevertheless, as we will see later on, under some circumstances we

managed to get a throughput increase as high as 13.3%.

Based on the runtime metrics of etcd®, the average latency of a put operation as we
time it later on and the round trip time as reported by the ping command when run
from one EC2 instance to another, we can deduce that the contribution of each fac-
tor in the duration of a write benchmark’s execution and by extension in the average
write latency of etcd in our particular environment, follows the rough approximation
depicted in Figure 5.3. Besides the WAL, the network and the storage engine, other
factors contributing to the latency are the compactions of the MVCC store running in

the background and the small overhead of the gRPC APL

It should be noted here that as all of our EC2 instances belonged in the same region

and availability zone the round trip time between them was in the order of a few mi-

>The metrics etcd_disk_wal_ fsync_duration_seconds_sum and etcd disk_backend -
commit_duration_seconds_sum in particular. All metrics can be accessed with the command curl
-L $ENDPOINTS:2379/metrics > metrics.txt.

204

CHAPTER 5. EXPERIMENTAL EVALUATION

storage engine ™ network latency other factors

Write Latency

Figure 5.3: Contributing factors in the write latency of etcd

croseconds. If the instances were located in different datacenters though, the network

latency which could be in the order of tens of milliseconds would constitute the dom-

inant factor in the write latency of etcd.

Read performance

Figure 5.4 shows the point lookup throughput of every version of our implementation

and Figure 5.5 shows the average point lookup latency. We obtained these results by

running the benchmark tool with the parameters --conns=100 --clients=1000

range a --consistency=1 --total=1000009, after having loaded the store with
1000000 key-value pairs and added the key “@”.

Throughput (requests/sec)

60000

50000

40000

30000

20000

10000

-9.4% -8.6%

-12.4%
-19.9% -20.4%

T T T
bucket optimistic whwi wh final

Figure 5.4: Point lookup throughput of etcd in all versions

5.2. RESULTS 205

0.035

0.03 +58.9%

0.025 +25:7% +26.5%

+145% 1109% +9.8%

0.02 0%
0.015

0.01

Average Latency (sec)

0.005

original base bucket optimistic whbwi wb final

Figure 5.5: Average point lookup latency of etcd in all versions

As expected, read performance deteriorates when we switch from BoltDB to RocksDB.
However, even though our optimizations were devised with the write performance in
mind, they helped bring read performance back to acceptable levels. In the final
version we note a slight improvement over wb due to tuning, which involved the en-

largement of the memtables and the addition of Bloom filters.

The throughput and average latency of range queries can be observed in Figure 5.6 and
Figure 5.7 respectively. These results were obtained by running the benchmark tool
with the parameters - -conns=100 --clients=100 range a z --consistency=1
--total=100000, after having loaded the store with 1000000 key-value pairs and
added the keys “a” to “z”.

Here, the performance deterioration is much worse than in the case of point lookups.
In general, range queries on LSM-trees are slow because the keys in the range may be
scattered in multiple levels of the tree, thus requiring multiple file accesses. To put it
in different words, since the keys that are to be returned are not known a priori, every
level of the LSM-tree must be checked. Furthermore, the benefits of the Bloom filters
on point lookups do not extend to range queries, again because the keys that are to be
returned are not known a priori. The on-disk structure of BoltDB on the other hand,

gives it a clear advantage for this type of workload, as we have seen in subsection 2.3.1.

206 CHAPTER 5. EXPERIMENTAL EVALUATION

16000
14000 0%
—~ 12000
(8]
(]
v
£ 10000
(%]
[}
>
g 8000
5
2 6000
=) -66% -64.8% -64.1%
3 -69.6% -69.5%
£ 4000 77.8%
2000
0
original base bucket optimistic wbwi wb final

Figure 5.6: Range query throughput of etcd in all versions

0.035 +354.1%

0.03

0.025 +230.9% +230.5%

+1968% 18649 415006

0.02

0.015

Average Latency (sec)

0.01
0%

0.005

original base bucket optimistic wbwi wb final

Figure 5.7: Average range query latency of etcd in all versions

Cgo overhead

Based on what we have explained in subsection 2.5.2 and on the profiler findings pre-

sented in subsection 4.3.2, we have reasons to suspect that the use of cgo has intro-

duced an overhead that does not let our implementation profit from the full potential
of RocksDB in terms of performance. The experiment® we are about to describe shed
some light on the extent of this phenomenon. During the execution of a benchmark

that loaded etcd with 1000000 key-value pairs using 1000 clients, we timed” put opera-

®This experiment, as well as the following one that measures the total duration of commit operations,
was not conducted on the EC2 cluster but on our local machine with 4 cores, 4GB of memory, SSD and
Ubuntu OS.

’Timing in C code was done using the sys/time. hlibrary and in Go code using the time package.

5.2. RESULTS 207

tions in three different places. Two of them were in the final version: the rocksdb_-
writebatch_put() function of the RocksDB C API and the WriteBatch Put()
function of the gorocksdb wrapper, which uses cgo to call rocksdb_writebatch_-
put (). The third one was in the original version: the Bucket Put () function of the

bolt package. Figure 5.8 shows the average duration of those three put operations.

9
) 7.78
7.1

7
©w 6
=
g s
i)
S 4
)
g
5 3
>
< 2

1.38
1
0
rocksdb-c-api-put gorocksdb-put boltdb-put

Figure 5.8: The impact of cgo overhead on put latency

Apparently, RocksDB demonstrates a clear advantage over BoltDB in terms of put op-
eration performance. However, this advantage is overshadowed by the ~6.41s average
overhead of cgo. Asaresult, a put operation in the final version ends up being slightly

more costly that its counterpart in the original version.

The rocksdb_writebatch_put() function is a good example of a case where the
use of cgo is discouraged, as its duration is comparable to the overhead of cgo (~4.6
times smaller in this case). Additionally, rocksdb_writebatch_put() is called very
often in the context of our targeted workload, a fact that makes the small additional
latency of a gorocksdb put operation over a BoltDB put operation significant for the
overall performance of etcd. The rocksdb_write() function on the other hand, used
to implement the commit operation, constitutes a much more suitable usecase for cgo.
It is called less often and does a substantial amount of work before returning; work that
dwarfs the cost of cgo. What is more, the commit operation is where we expect the on-
disk structure of RocksDB to be leveraged, as this is where the key-value pairs stored
in the WriteBatch buffer by put operations are actually written to the LSM-tree. The
above, justifies what we see in Figure 5.9.

208 CHAPTER 5. EXPERIMENTAL EVALUATION

18
16
14
12
10

original
8 final

Total Duration (sec)

put commit

Figure 5.9: Total duration of put and commit operations

Figure 5.9 shows the total time spent on commit and put operations both in the final
and the original version of etcd after having run a benchmark that loaded the data-
base with 1000000 key-value pairs using 1000 clients. This data was obtained by ac-
cessing the runtime metric etcd_disk_backend_commit_duration_seconds_-
sum and by summing the put operation duration values obtained in the previous ex-

periment.

At this point, it might be useful to review what put and commit actually do in each ver-
sion. In the original version, a put operation traverses the B+ tree to the appropriate
page and position and stores the key-value pair there. It is an in-memory operation
unless the required pages must be read from disk (e.g., when the dataset does not fit in
memory). A commit operation writes the dirty pages of the B+ tree to disk [58]. In the
final version, a put operation appends a key-value pair to the WriteBatch. This op-
eration is always in-memory. A commit operation is translated to a call to Write(),
which writes the WriteBatch to the memtable of the LSM-tree and synchronously
updates the WAL.

The effect of the client number & value size on performance

In the next experiment, we examine our implementation’s scalability with the number
of clients concurrently sending write requests to etcd and compare it to the scalability
of the original version. We used the benchmark tool with the following parameters:

--conns=100 put --key-size=8 --sequential-keys=false --key-space-

5.2. RESULTS 209

s1ze=100000 --total=100000 --val-size=256. The --clients parameter was
set each time to a different value from the set of 1, 10, 100, and 1000. The result can be

observed in Figure 5.10.

30000
+3.1%

25000

20000

+13.3%
15000 original

final

10000

Throughput (requests/sec)

5000 +7.6%

+1.8%

1 10 100 1000

Figure 5.10: Write throughput of etcd with number of clients

Regardless of the number of clients, the final version of our implementation out-
performs the original. However, the largest improvement percentages are obtained
in the cases of 10 and 100 clients. To interpret this tendency we have to think about
the request batching policy of etcd, described in detail in section 4.2. When more
clients participate in the benchmark the batching becomes more efficient. The num-
ber of total put operations is the same in all cases but the number of commit opera-
tions changes. With 1000 clients we have ~1000 puts per commit, which means ~100
commits. Similarly, with 100 clients we have ~1000 commits, with 10 clients ~10000
commits and with 1 client 100000 commits. The more the commits the more we ben-
efit from our implementation’s superiority of commit performance, demonstrated in

Figure 5.9. Naturally, read benchmarks do not exhibit this behaviour.

Nevertheless, one may note that based on this interpretation we should expect the
throughput to reach its maximum improvement percentage in the case of 1 client,
which is not happening. Indeed, the etcd_disk_backend_commit_duration_-
seconds_sum metric shows that the difference of the total time spent on commit
operations between the original and the final version consistently grows larger
when the number of clients decreases. However, this difference represents a smaller

percentage of the total benchmark completion time in the case of 1 and 10 clients than

210 CHAPTER 5. EXPERIMENTAL EVALUATION

it does in the case of 100 because of the smaller degree of concurrency®.

In the next experiment, we examine the effect of the value size on the performance
of the final version of our implementation compared to the original. We use the
benchmark tool with the following parameters: --conns=100 --clients=100 put
--key-size=8 --sequential-keys=false. The --val-size and --total pa-
rameters were set each time to a different pair from the set of 256 and 1000000, 4000
and 64000, 64000 and 4000, 512000 and 500, 1000000 and 256. The - -key-space-size
parameter follows - -total. The results are presented in Figure 5.11.

12 +15.6%
1
o 08
2
&
c -8.8% .
% 0.6 original
o~ final
o
g
§ 0.4
<
0.2
+0.2%
-7.9% -4.1%
0
256B 4K 64K 512K 1M

Figure 5.11: Average write latency of etcd with value size

Apparently, the final version outperforms the original in most cases. When the
values are as large as IMB however, BoltDB handles them considerably better. In LSM-
trees the insertion of large values might trigger repeated compactions which will incur
extra delays. In this particular case, IMB is the value size that is closest to the total size

of the memtables, repeatedly causing them to be flushed to disk.

Disk space consumption

Next, we compare the on-disk size of the backend database between the final version
and the original, using the du -sh db command, after having run a benchmark
that loads etcd with 4000000 key-value pairs, where the key size was 8 bytes and the
value size is 256 bytes. The result may be inspected in Figure 5.12.

Setcd also applies batching at the level of the Raft log, so as to amortize the cost of fsync over

5.2. RESULTS 211

1600

1400

1200

1000

800

DB size (MB)

600
-65.7%

400

200

original final

Figure 5.12: On-disk size of the backend database of etcd

As expected, since we have configured RocksDB to use Snappy compression and Bolt-
DB does not apply any kind of compression, the disk space consumption is 65.7%

smaller in the final version. Moreover, as we have discussed in subsection 2.3.3,

BoltDB exhibits a kind of internal fragmentation, reserving more disk space than it is
actually using at a given time, in order to avoid constant allocations. This is why in
the case of the original version the size of the database is larger than the size of the

inserted data (i.e., 1056MB).

Memory usage

In order to monitor the memory consumption of etcd in the final and original
version we started etcd with the /usr/bin/time -v ./etcd command and used
the benchmark tool to load it with 1000000 key-value pairs, where the key size was 8
bytes and the value size 256 bytes. After the termination of etcd, this command returns
the maximum resident set size (i.e., the portion of virtual memory occupied by the etcd

process that is held in physical memory). Figure 5.13 displays the obtained results.

Obviously, the original version uses a lot less memory than the final. This result
was not unexpected, as we have configured RocksDB to use multiple large memta-
bles. For a use case that demands a smaller memory footprint, the size and number of

memtables can be easily adjusted, trading off write performance.

multiple requests.

212 CHAPTER 5. EXPERIMENTAL EVALUATION

800000
+91%
700000
600000
500000

400000

300000

Maximum RSS (KB)

200000

100000

0
original final

Figure 5.13: Memory consumption of etcd

As we have analysed in subsection 2.3.3, most of the memory consumption of BoltDB

stems from the fact that the OS will cache as much of the memory-mapped file as it
can in memory. In the case of RocksDB, besides the memtables, other factors that
contribute to memory usage are the block cache (i.e., where RocksDB caches uncom-
pressed data blocks), page indices for each SST file, and the bloom filters, which in this
particular case occupy just 1.25MB as we have configured them with 10 bits per key.

Conclusion

In this final chapter, we make an overall assessment of our implementation and outline

a few directions for further improvement that we deem worthy of investigation.

6.1 Concluding Remarks

All in all, we have managed to meet the expectations formulated in chapter 3. Accord-
ing to the experimental evaluation results, our implementation achieves a better write
performance and disk space consumption, trading off read performance and memory

consumption.

In more detail, read performance, as far as point lookups are concerned, has remained
within acceptable levels. Range queries however exhibit significant deterioration. The
write performance improvement varies between 1.8% and 13.3%, depending on the
number of clients concurrently issuing requests. Disk space consumption has dropped
by more than 50%, while memory usage has almost doubled. Furthermore, the test-
ing framework has validated that after the changes we applied, etcd still honours its
guarantees of reliability, consistency and high-availability. Positive side effects of our
implementation include the elimination of the need for a periodic manually initiated

defragmentation of the backend and the removal of the storage quota.

This work has demonstrated that an LSM-tree-based approach can make a big differ-
ence in the suitability of etcd for write-heavy workloads. However, the overhead of cgo

has proven to be far from negligible and has taken its toll on our system’s performance.

213

214 CHAPTER 6. CONCLUSION

6.2 Future Work

A very promising alternative implementation, would replace RocksDB with an LSM-
tree-based storage engine written purely in Go. Badger [116], a new' and quite popu-
lar embedded LSM-tree-based key-value store, has emerged precisely from the neces-
sity of a performant RocksDB replacement for Go projects. The main motivation of
its developers was the need to avoid the cost and complexity of cgo. Its highly SSD-
optimized design is based on a paper published in 2016 by L. Lu et al. [117], which
proposes the separation of keys from values. More specifically, according to this de-
sign, values are stored in a write-ahead log, called the value log, and keys are stored in
the LSM-tree, alongside a pointer to their respective value in the value log. This way,
read and write amplification are minimized. Since keys tend to be smaller than values,
the generated LSM-tree is also much smaller. As a result, compaction costs are re-
duced. Also, with fewer levels in the LSM-tree, the number of file accesses required to
retrieve a key in the worst case is reduced [118]. Badger’s API can be directly mapped

to that of BoltDB, making the transition trivial.

Furthermore, it would be interesting to conduct an experiment in which the dataset
would be larger than the available memory, with the intent of comparing the behaviour
of the two storage engines under I/O-bound workloads. BoltDB would be forced to
constantly read pages from disk in order to satisfy incoming requests, as we have de-

scribed in subsection 2.4.3. Another proposal, in the direction of getting the most out

of our current implementation, would be to automate the process of optimally tun-
ing RocksDB with an appropriate script. Storing the contents of the “meta” bucket
in a separate RocksDB column family, might also offer a performance benefit, as this
would render updating the consistent index of etcd more lightweight. What is more,
in order to mitigate the cost of cgo, we could add a layer in Go that would bufter the
updates directed to the WriteBatch and apply them all together at commit time, thus

reducing thousands of cgo calls to one.

An additional idea, is to apply sharding on the key space at the level of RocksDB, as
proposed in its tuning guide [64], so as to allow compactions to fully utilize storage

concurrency. Taking this one step further, by storing the shards on different disks, we

'Badger was announced in May 2017.

6.2. FUTURE WORK 215

could spread write operations across them, increasing the throughput of etcd signifi-
cantly. Finally, we could modify etcd to support multiple leaders, each responsible for

a different shard.

216

[1]

2]

5]

[7]

Bibliography

etcd project, https://github.com/coreos/etcd, accessed August 14th,
2017.

N. Christenson, Sendmail Performance Tuning, Addison-Wesley Professional,

2003.
T. Critchley, High-Performance IT Services, CRC Press, 2016.

Z. Cao et al., LogKV: Exploiting Key-Value Stores for Event Log Processing, Pro-
ceedings of the 6th Conference on Innovative Data Systems Research, CIDR

2013, California, USA, January 2013.

Exploring Performance of etcd, Zookeeper and Consul Consistent Key-value Data-

stores, G. Lee, CoreOS blog, February 2017, https://coreos.com/blog/

performance-of-etcd.html, accessed August 27th, 2017.

R. Sears and R. Ramakrishnan bLSM: A General Purpose Log Structured Merge
Tree, Proceedings of the 2012 ACM International Conference on Management of

Data, SIGMOD ’12, Arizona, USA, May 2012.

Log Structured Merge Trees, B. Stopford, February 2015, http://www.
benstopford.com/2015/02/14/1og-structured-merge-trees/, ac-

cessed August 31st, 2017.

CockroachDB project, https://github.com/cockroachdb/cockroach/,
accessed August 16th, 2017.

217

https://github.com/coreos/etcd
https://coreos.com/blog/performance-of-etcd.html
https://coreos.com/blog/performance-of-etcd.html
http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
https://github.com/cockroachdb/cockroach/

218

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

BIBLIOGRAPHY

Hello World: Meet CockroachDB, the Resilient SQL Database, J. Edwards,
October 2015, https://thenewstack.io/cockroachdb-unkillable-
distributed-sql-database/, accessed August 23rd, 2017.

etcd versus other key-value stores, etcd Documentation, https://github.com/

coreos/etcd/blob/master/Documentation/learning/why.md, accessed

August 17th, 2017.

TiKV project, https://github.com/pingcap/tikv, accessed August 17th,
2017.

TiDB Documentation, https://github.com/pingcap/docs, accessed Au-
gust 17th, 2017.

MongoDB architecture, https://www.mongodb.com/mongodb-

architecture, accessed August 18th, 2017.

MongoDB storage integration layer for the Rocks storage engine, https://
github.com/mongodb-partners/mongo-rocks,accessed August 18th, 2017.

S. Nakamura and K. Shudo, MyCassandra: A Cloud Storage Supporting both Read
Heavy and Write Heavy Workloads, Proceedings of the 5th Annual International
Systems and Storage Conference, SYSTOR 2012, Haifa, Israel, June 2012.

Distributed data store, In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Distributed data store&
01did=777883924, accessed August 19th, 2017.

What is a distributed storage system and why is it important?, StorPool Distributed
Storage, https://storpool.com/blog/what-is-distributed-storage-

system, accessed August 19th, 2017.

Scalability, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=Scalability&o1did=789065570, accessed Au-
gust 20th, 2017.

What is a Key-Value Store?, Aerospike, http://www.aerospike.com/what-

is-a-key-value-store/, accessed August 21st, 2017.

https://thenewstack.io/cockroachdb-unkillable-distributed-sql-database/
https://thenewstack.io/cockroachdb-unkillable-distributed-sql-database/
https://github.com/coreos/etcd/blob/master/Documentation/learning/why.md
https://github.com/coreos/etcd/blob/master/Documentation/learning/why.md
https://github.com/pingcap/tikv
https://github.com/pingcap/docs
https://www.mongodb.com/mongodb-architecture
https://www.mongodb.com/mongodb-architecture
https://github.com/mongodb-partners/mongo-rocks
https://github.com/mongodb-partners/mongo-rocks
https://en.wikipedia.org/w/index.php?title=Distributed_data_store&oldid=777883924
https://en.wikipedia.org/w/index.php?title=Distributed_data_store&oldid=777883924
https://en.wikipedia.org/w/index.php?title=Distributed_data_store&oldid=777883924
https://storpool.com/blog/what-is-distributed-storage-system
https://storpool.com/blog/what-is-distributed-storage-system
https://en.wikipedia.org/w/index.php?title=Scalability&oldid=789065570
https://en.wikipedia.org/w/index.php?title=Scalability&oldid=789065570
http://www.aerospike.com/what-is-a-key-value-store/
http://www.aerospike.com/what-is-a-key-value-store/

BIBLIOGRAPHY 219

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

Top 5 Considerations When EvaluatingNoSQL Databases, A MongoDB White Pa-
per, 2016. https://www.mongodb.com/nosql-explained, accessed August
21st, 2017.

NoSQL, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/

w/index.php?title=NoSQL&01did=794350817, accessed August 21st, 2017.

Exploring the Different Types of NoSQL Databases Part ii, G. Kumar,
https://www.3pillarglobal.com/insights/exploring-the-

different-types-of-nosql-databases, accessed August 21st, 2017.

DB-Engines Ranking of Key-value Stores, DB-Engines, Knowledge Base of Re-
lational and NoSQL Database Management Systems, https://db-engines.

com/en/ranking/key-value+store, accessed August 21st, 2017.

S. Gilbert and N. Lynch, Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services, ACM SIGACT News, New York, USA,
June 2002.

CAP Theorem, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=CAP_theorem&oldid=791473737, accessed Au-
gust 21st, 2017.

CAP Theorem, T. Viraj, February 2016, https://blingtechs.blogspot.gr/
2016/02/cap-theorem.html, accessed August 21st, 2017.

Please stop calling databases CP or AP, M. Kleppmann, May 2015,
https://martin.kleppmann.com/2015/05/11/please-stop-calling-

databases-cp-or-ap.html, accessed August 22nd, 2017.

G. Kohad et al., Concepts and Techniques of Transaction Processing of Distributed
Database Management Systems, International Journal of Computer Architecture

and Mobility, Volume 1, Issue 8, June 2013.

L. Lamport, How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs, IEEE Transactions on Computers, Issue: 9, September

1979.

https://www.mongodb.com/nosql-explained
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=794350817
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=794350817
https://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
https://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://en.wikipedia.org/w/index.php?title=CAP_theorem&oldid=791473737
https://en.wikipedia.org/w/index.php?title=CAP_theorem&oldid=791473737
https://blingtechs.blogspot.gr/2016/02/cap-theorem.html
https://blingtechs.blogspot.gr/2016/02/cap-theorem.html
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

220

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

A. S. Tanenbaum and M. Van Steen, Distributed Systems - Principles and
Paradigms, Prentice Hall, 2007.

Isolation Levels in the Database Engine, Microsoft Technet, https://technet.

microsoft.com/en-us/library/ms189122(v=SQL.105).aspx, accessed
August 23rd, 2017.

Write-ahead logging, In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Write-ahead logging&
01did=709989245, accessed August 25th, 2017.

P. A. Bernstein and N. Goodman, Multiversion Concurrency Control - Theory and
Algorithms, ACM Transactions on Database Systems (TODS), Volume 8, Issue 4,
New York, USA, December 1983.

Multiversion Concurrency Control, In Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Multiversion

concurrency_control&oldid=796567230, accessed August 25th, 2017.

D. Ongaro and J. Ousterhout, In Search of an Understandable Consensus Algo-
rithm, Proceedings of USENIX ATC ’14: 2014 USENIX Annual Technical Con-
ference, Philadelphia, USA, June 2014.

Heartbeat, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/w/index.php?title=Heartbeat (computing)&oldid=786649097,
accessed August 24th, 2017.

L. Lamport, The Part-Time Parliament, ACM Transactions on Computer Sys-
tems, Volume 16, Issue 2, SYSTOR 2012, New York, USA, May 1998.

List of Raft Implementations, The Raft Consensus Algorithm (Official Website),
https://raft.github.io/#implementations, accessed August24th,2017.

KV API guarantees, etcd Documentation, https://github.com/coreos/

etcd/blob/master/Documentation/learning/api guarantees.md, ac-

cessed August 25th, 2017.

https://technet.microsoft.com/en-us/library/ms189122(v=SQL.105).aspx
https://technet.microsoft.com/en-us/library/ms189122(v=SQL.105).aspx
https://en.wikipedia.org/w/index.php?title=Write-ahead_logging&oldid=709989245
https://en.wikipedia.org/w/index.php?title=Write-ahead_logging&oldid=709989245
https://en.wikipedia.org/w/index.php?title=Write-ahead_logging&oldid=709989245
https://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control&oldid=796567230
https://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control&oldid=796567230
https://en.wikipedia.org/w/index.php?title=Heartbeat_(computing)&oldid=786649097
https://en.wikipedia.org/w/index.php?title=Heartbeat_(computing)&oldid=786649097
https://raft.github.io/#implementations
https://github.com/coreos/etcd/blob/master/Documentation/learning/api_guarantees.md
https://github.com/coreos/etcd/blob/master/Documentation/learning/api_guarantees.md

BIBLIOGRAPHY 221

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Data model, etcd Documentation, https://github.com/coreos/etcd/

blob/master/Documentation/learning/data model.md, accessed Au-

gust 25th, 2017.

Maintenance, etcd Documentation, https://github.com/coreos/etcd/

blob/master/Documentation/op-guide/maintenance.md, accessed Au-

gust 26th, 2017.

etcd API Reference, etcd Documentation, https://github.com/coreos/

etcd/blob/master/Documentation/dev-guide/api reference v3.md,

accessed August 26th, 2017.

Disaster recovery, etcd Documentation, https://github.com/coreos/

etcd/blob/master/Documentation/op-guide/recovery.md, accessed
August 26th, 2017.

Frequently Asked Questions (FAQ), etcd Documentation, https://github.

com/coreos/etcd/blob/master/Documentation/fag.md, accessed Au-

gust 26th, 2017.

CoreOS Delivers etcd v2.3.0 with Increased Stability and v3 API Preview, X. Li,
CoreOS Blog, March 2016, https://coreos.com/blog/etcd-v230.html,
accessed August 26th, 2017.

The Docker Ecosystem: Service Discovery and Distributed Configuration
Stores ,]. Ellingwood, February 2015, https://www.digitalocean.com/

community/tutorials/the-docker-ecosystem-service-discovery-

and-distributed-configuration-stores, accessed August 27th, 2017.

Production users, etcd Documentation, https://github.com/coreos/etcd/

blob/master/Documentation/production-users.md, accessed August

27th, 2017.

ZooKeeper Documentation, https://zookeeper.apache.org/doc/trunk/

zookeeperOver.html, accessed August 27th, 2017.

Consul vs. ZooKeeper, doozerd, etcd, Consul (Official Website), https://www.

consul.io/intro/vs/zookeeper.html, accessed August 27th, 2017.

https://github.com/coreos/etcd/blob/master/Documentation/learning/data_model.md
https://github.com/coreos/etcd/blob/master/Documentation/learning/data_model.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/maintenance.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/maintenance.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-guide/api_reference_v3.md
https://github.com/coreos/etcd/blob/master/Documentation/dev-guide/api_reference_v3.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/recovery.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/recovery.md
https://github.com/coreos/etcd/blob/master/Documentation/faq.md
https://github.com/coreos/etcd/blob/master/Documentation/faq.md
https://coreos.com/blog/etcd-v230.html
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-service-discovery-and-distributed-configuration-stores
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-service-discovery-and-distributed-configuration-stores
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-service-discovery-and-distributed-configuration-stores
https://github.com/coreos/etcd/blob/master/Documentation/production-users.md
https://github.com/coreos/etcd/blob/master/Documentation/production-users.md
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
https://www.consul.io/intro/vs/zookeeper.html
https://www.consul.io/intro/vs/zookeeper.html

222

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

BIBLIOGRAPHY

Performance, etcd Documentation, https://github.com/coreos/etcd/

blob/master/Documentation/op-guide/performance.md, accessed Au-

gust 27th, 2017.

D. Comer, The Ubiquitous B-Tree, ACM Computing Surveys (CSUR), Volume
11, Issue 2, New York, USA, June 1979.

D. Knuth, The Art of Computer Programming, Volume 3, Sorting and Searching ,
Addison-Wesley, 2nd edition, 1998.

B-tree, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/

index.php?title=B-tree&oldid=794880526, accessed August 28th, 2017.

B+ tree, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/

w/index.php?title=B%2B_tree&oldid=790327312, accessed August 29th,
2017.

How the append-only btree works, http://www.bzero.se/ldapd/btree.

html, accessed September 1st, 2017.

Memory-mapped file, In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Memory-mapped file&
01did=784434520, accessed August 29th, 2017.

Bolt — an embedded key/value database for Go, Progyville, January 2015, https:
//www.progville.com/go/bolt-embedded-db-golang/, accessed August
29th, 2017.

BoltDB project, https://github.com/boltdb/bolt, accessed August 29th,
2017.

WTF Dial: Data storage with BoltDB, B. Johnson, September 2016, https://
medium.com/wtf-dial/wtf-dial-boltdb-a62af@2b8955, accessed Au-
gust 29th, 2017.

database file size not updating?, BoltDB, Issue#308, https://github.com/
boltdb/bolt/issues/308, accessed August 29th, 2017.

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/performance.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/performance.md
https://en.wikipedia.org/w/index.php?title=B-tree&oldid=794880526
https://en.wikipedia.org/w/index.php?title=B-tree&oldid=794880526
https://en.wikipedia.org/w/index.php?title=B%2B_tree&oldid=790327312
https://en.wikipedia.org/w/index.php?title=B%2B_tree&oldid=790327312
http://www.bzero.se/ldapd/btree.html
http://www.bzero.se/ldapd/btree.html
https://en.wikipedia.org/w/index.php?title=Memory-mapped_file&oldid=784434520
https://en.wikipedia.org/w/index.php?title=Memory-mapped_file&oldid=784434520
https://en.wikipedia.org/w/index.php?title=Memory-mapped_file&oldid=784434520
https://www.progville.com/go/bolt-embedded-db-golang/
https://www.progville.com/go/bolt-embedded-db-golang/
https://github.com/boltdb/bolt
https://medium.com/wtf-dial/wtf-dial-boltdb-a62af02b8955
https://medium.com/wtf-dial/wtf-dial-boltdb-a62af02b8955
https://github.com/boltdb/bolt/issues/308
https://github.com/boltdb/bolt/issues/308

BIBLIOGRAPHY 223

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

P. O'Neil et al., The log-structured merge-tree (LSM-tree), Acta Informatica, Vol-
ume 33, Issue 4, June 1996.

SSTable and Log Structured Storage: LevelDB, 1. Grigorik, February
2012, https://www.igvita.com/2012/02/06/sstable-and-1log-

structured-storage-leveldb/, accessed August 30th, 2017.

Research Scientists Put RocksDB on Steroids, Yahoo!, April 2015,

https://research.yahoo.com/news/research-scientists-put-

rocksdb-steroids, accessed August 31st, 2017.

RocksDB Tuning Guide, RocksDB Wiki, https://github.com/facebook/
rocksdb/wiki/RocksDB-Tuning-Guide, accessed August 31st, 2017.

Bloom filter, In Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/w/index.php?title=Bloom filter&oldid=822632093, accessed

September 1st, 2017.

Bloom Filters: Is element x in set S?, A. Tiwari, April 2017, https://

abhishek-tiwari.com/bloom-filters-is-element-x-in-set-s/, ac-

cessed September 1st, 2017.

Universal Compaction, RocksDB Wiki, https://github.com/facebook/

rocksdb/wiki/Universal-Compaction, accessed August 31st, 2017.

Leveled Compaction, RocksDB Wiki, https://github.com/facebook/

rocksdb/wiki/Leveled-Compaction, accessed September 3rd, 2017.

RocksDB Basics, RocksDB Wiki, https://github.com/facebook/rocksdb/

wiki/RocksDB-Basics, accessed September 2nd, 2017.

B. C. Kuszmaul, A Comparison of Fractal Trees to Log-Structured Merge (LSM)
Trees, A Tokutek White Paper, April 2014.

RocksDB IAmA page - Reddit, https://www.reddit.com/r/IAmA/

comments/3de3cv/we are rocksdb engineering team ask us

anything/, accessed September 4th, 2017.

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://research.yahoo.com/news/research-scientists-put-rocksdb-steroids
https://research.yahoo.com/news/research-scientists-put-rocksdb-steroids
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=822632093
https://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=822632093
https://abhishek-tiwari.com/bloom-filters-is-element-x-in-set-s/
https://abhishek-tiwari.com/bloom-filters-is-element-x-in-set-s/
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/RocksDB-Basics
https://github.com/facebook/rocksdb/wiki/RocksDB-Basics
https://www.reddit.com/r/IAmA/comments/3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/
https://www.reddit.com/r/IAmA/comments/3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/
https://www.reddit.com/r/IAmA/comments/3de3cv/we_are_rocksdb_engineering_team_ask_us_anything/

224

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

(82]

BIBLIOGRAPHY

TokuMX Fractal Tree(R) indexes, what are they?, Z. Kasheff, July 2013,
https://www.percona.com/blog/2013/07/02/tokumx-fractal-

treer-indexes-what-are-they/, accessed September 1st, 2017.

Optimizing RocksDB for Open-Channel SSDs,]. Gonzalez, October 2015,

https://www.slideshare.net/JavierGonzlez49/optimizing-

rocksdb-for-openchannel-ssds, accessed September 2nd, 2017.

WriteBatchWithIndex: Utility for Implementing Read- Your-Own-Writes, S. Dong,
RocksDB Blog, February 2015, http://rocksdb.org/blog/2015/02/27/
write-batch-with-index.html, accessed September 3rd, 2017.

Hard Link Definition, The Linux Information Project, http://www.linfo.

org/hard_link.html, accessed September 3rd, 2017.

RocksDB FAQ, RocksDB Wiki, https://github.com/facebook/rocksdb/
wiki/RocksDB-FAQ, accessed September 3rd, 2017.

Transactions, RocksDB Wiki, https://github.com/facebook/rocksdb/

wiki/Transactions, accessed September 3rd, 2017.

How we keep track of live SST files, RocksDB Wiki, https://github.com/

facebook/rocksdb/wiki/How-we-keep-track-of-1live-SST-files, ac-

cessed September 3rd, 2017.

Features Not in Level DB, RocksDB Wiki, https://github.com/facebook/

rocksdb/wiki/Features-Not-in-LevelDB, accessed September 2nd, 2017.

RocksDB Project, https://github.com/facebook/rocksdb/, accessed
September 4th, 2017.

Googles Go (golang) Programming Language, C. Brown, https:

//medium.com/@charliebrown9/googles-go-golang-programming-

language-c7953e826b2e, accessed October 11th, 2017.

Why Golang is doomed to succeed, Texlution, June 2015, https://texlution.

com/post/why-go-is-doomed-to-succeed/, accessed October 11th, 2017.

https://www.percona.com/blog/2013/07/02/tokumx-fractal-treer-indexes-what-are-they/
https://www.percona.com/blog/2013/07/02/tokumx-fractal-treer-indexes-what-are-they/
https://www.slideshare.net/JavierGonzlez49/optimizing-rocksdb-for-openchannel-ssds
https://www.slideshare.net/JavierGonzlez49/optimizing-rocksdb-for-openchannel-ssds
http://rocksdb.org/blog/2015/02/27/write-batch-with-index.html
http://rocksdb.org/blog/2015/02/27/write-batch-with-index.html
http://www.linfo.org/hard_link.html
http://www.linfo.org/hard_link.html
https://github.com/facebook/rocksdb/wiki/RocksDB-FAQ
https://github.com/facebook/rocksdb/wiki/RocksDB-FAQ
https://github.com/facebook/rocksdb/wiki/Transactions
https://github.com/facebook/rocksdb/wiki/Transactions
https://github.com/facebook/rocksdb/wiki/How-we-keep-track-of-live-SST-files
https://github.com/facebook/rocksdb/wiki/How-we-keep-track-of-live-SST-files
https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB
https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB
https://github.com/facebook/rocksdb/
https://medium.com/@charliebrown9/googles-go-golang-programming-language-c7953e826b2e
https://medium.com/@charliebrown9/googles-go-golang-programming-language-c7953e826b2e
https://medium.com/@charliebrown9/googles-go-golang-programming-language-c7953e826b2e
https://texlution.com/post/why-go-is-doomed-to-succeed/
https://texlution.com/post/why-go-is-doomed-to-succeed/

BIBLIOGRAPHY 225

(83]

[84]

(85]

(86]

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

Go Is Unapologetically Flawed, Heres Why We Use It, T. Treat, May 2015,

http://bravenewgeek.com/go-is-unapologetically-flawed-heres-

why-we-use-it/, accessed October 17th, 2017.

Why Go’s design is a disservice to intelligent programmers, G. Willoughby, March
2015, http://nomad.so/2015/03/why-gos-design-is-a-disservice-

to-intelligent-programmers/, accessed October 12th, 2017.

Don’t repeat yourself, In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Don%27t repeat
yourself&o1did=804674085, accessed October 17th, 2017.

C. Doxsey, An Introduction to Programming in Go, O’Reilly, 2016.

K. Seguin, The Little Go Book, https://github.com/karlseguin/the-
little-go-book, accessed April 27th, 2016.

How Stacks are Handled in Go, D. Morsing, https://blog.cloudflare.com/

how-stacks-are-handled-in-go/, accessed November 3rd, 2017.

Companies Currently Using Go Throughout the World, Go Documentation,
https://github.com/golang/go/wiki/GoUsers, accessed October 27th,
2017.

Go Slices: usage and internals, The Go Blog, https://blog.golang.org/go-

slices-usage-and-internals, accessed December 27th, 2017.

Defer, Panic, and Recover, The Go Blog, https://blog.golang.org/defer-

panic-and-recover, accessed December 27th, 2017.

Command go, Go Documentation, https://golang.org/cmd/go/#hdr-

Calling between Go and C,accessed October 30th, 2017.

Command cgo, Go Documentation, https://golang.org/cmd/cgo/, ac-
cessed October 30th, 2017.

C? Go? Cgo!, The Go Blog, https://blog.golang.org/c-go-cgo, accessed
October 31st, 2017.

http://bravenewgeek.com/go-is-unapologetically-flawed-heres-why-we-use-it/
http://bravenewgeek.com/go-is-unapologetically-flawed-heres-why-we-use-it/
http://nomad.so/2015/03/why-gos-design-is-a-disservice-to-intelligent-programmers/
http://nomad.so/2015/03/why-gos-design-is-a-disservice-to-intelligent-programmers/
https://en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=804674085
https://en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=804674085
https://en.wikipedia.org/w/index.php?title=Don%27t_repeat_yourself&oldid=804674085
https://github.com/karlseguin/the-little-go-book
https://github.com/karlseguin/the-little-go-book
https://blog.cloudflare.com/how-stacks-are-handled-in-go/
https://blog.cloudflare.com/how-stacks-are-handled-in-go/
https://github.com/golang/go/wiki/GoUsers
https://blog.golang.org/go-slices-usage-and-internals
https://blog.golang.org/go-slices-usage-and-internals
https://blog.golang.org/defer-panic-and-recover
https://blog.golang.org/defer-panic-and-recover
https://golang.org/cmd/go/#hdr-Calling_between_Go_and_C
https://golang.org/cmd/go/#hdr-Calling_between_Go_and_C
https://golang.org/cmd/cgo/
https://blog.golang.org/c-go-cgo

226 BIBLIOGRAPHY

[95] cgois not Go, D. Cheney, https://dave.cheney.net/2016/01/18/cgo-is-

not-go, accessed November 2nd, 2017.

[(96] The Cost and Complexity of Cgo, T. Schottdorf, https://www.

cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/, ac-

cessed November 6th, 2017.

[97] Packages, Go Documentation, https://golang.org/pkg/, accessed Novem-
ber 7th, 2017.

[98] cgocall.go, Go runtime source code, https://golang.org/src/runtime/

cgocall.go, accessed November 7th, 2017.

[99] Foreign Function Interface in Go and Assembly, golang-nuts mail-
ing list, https://groups.google.com/forum/#!msg/golang-
nuts/NNaluSgkLSU/@bglkXZueCw3, accessed November 7th, 2017.

[100] What is the overhead of calling a C function from Go?, golang-nuts
mailing list, https://groups.google.com/forum/#!topic/golang-

nuts/RTtMsgZi88Q, accessed November 7th, 2017.

[101] Cross compiler, In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Cross compiler&oldid=

807526997, accessed November 7th, 2017.

[102] etcd community hangout 2015-12-01, December 2015, https://www.

youtube.com/watch?v=J5AioGtEPeQ&feature=youtu.be&t=2170, ac-

cessed September 4th, 2017.

[103] gorocksdb Project, https://github.com/tecbot/gorocksdb, accessed
September 4th, 2017.

[104] etcd as a general-purpose key-value store, etcd-dev mailing list, December 2016,

https://groups.google.com/forum/#!topic/etcd-dev/vCeSLBKC M8,

accessed September 5th, 2017.

[105] Maximum database size on 32bit architectures, BoltDB, Issue#280, https://
github.com/boltdb/bolt/issues/280, accessed September 5th, 2017.

https://dave.cheney.net/2016/01/18/cgo-is-not-go
https://dave.cheney.net/2016/01/18/cgo-is-not-go
https://www.cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/
https://www.cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/
https://golang.org/pkg/
https://golang.org/src/runtime/cgocall.go
https://golang.org/src/runtime/cgocall.go
https://groups.google.com/forum/#!msg/golang-nuts/NNaluSgkLSU/0bq1kXZueCwJ
https://groups.google.com/forum/#!msg/golang-nuts/NNaluSgkLSU/0bq1kXZueCwJ
https://groups.google.com/forum/#!topic/golang-nuts/RTtMsgZi88Q
https://groups.google.com/forum/#!topic/golang-nuts/RTtMsgZi88Q
https://en.wikipedia.org/w/index.php?title=Cross_compiler&oldid=807526997
https://en.wikipedia.org/w/index.php?title=Cross_compiler&oldid=807526997
https://en.wikipedia.org/w/index.php?title=Cross_compiler&oldid=807526997
https://www.youtube.com/watch?v=J5AioGtEPeQ&feature=youtu.be&t=2170
https://www.youtube.com/watch?v=J5AioGtEPeQ&feature=youtu.be&t=2170
https://github.com/tecbot/gorocksdb
https://groups.google.com/forum/#!topic/etcd-dev/vCeSLBKC_M8
https://github.com/boltdb/bolt/issues/280
https://github.com/boltdb/bolt/issues/280

BIBLIOGRAPHY 227

[106] etcdctl, etcd Documentation, https://github.com/coreos/etcd/tree/
master/etcdctl, accessed October 6th, 2017.

[107] RocksDB Transactions, RocksDB Meetup - A. Giardullo, December 2015,
https://www.youtube.com/watch?v=tMeon8FHF31I, accessed October 9th,
2017.

[108] tar (computing), In Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Tar (computing)&oldid=
804463187, accessed October 10th, 2017.

[109] Type assertions, A Tour of Go, https://tour.golang.org/methods/15, ac-
cessed September 4th, 2017.

[110] Golang: Working with Gzip and Tar, S. Ralchev, http://blog.ralch.com/

tutorial/golang-working-with-tar-and-gzip/, accessed August 7th,
2017.

[111] Profiling Go Programs, 'The Go Blog, https://blog.golang.org/

profiling-go-programs, accessed December 29th, 2017.

[112] Fine-tuning RocksDB for NVMe SSD, P. Krishnamoorthy and C. Choi,
Percona Live: Data Performance Conference, California, USA, April 2016,
https://www.percona.com/live/data-performance-conference-

2016/sites/default/files/slides/Percona RocksDB v1.3.pdf

[113] K. Ouaknine et al., Optimization of RocksDB for Redis on Flash, Proceedings
of the International Conference on Compute and Data Analysis, ICCDA 2017,
Florida, USA, May 2017.

[114] Testing Distributed Systems in Go, G. Lee, CoreOS blog, January 2017, https:
//coreos.com/blog/testing-distributed-systems-in-go.html,
accessed December 30th, 2017.

[115] New Functional Testing in etcd, Y. Qin, CoreOS blog, May 2015, https:
//coreos.com/blog/new-functional-testing-in-etcd.html, accessed

December 30th, 2017.

https://github.com/coreos/etcd/tree/master/etcdctl
https://github.com/coreos/etcd/tree/master/etcdctl
https://www.youtube.com/watch?v=tMeon8FHF3I
https://en.wikipedia.org/w/index.php?title=Tar_(computing)&oldid=804463187
https://en.wikipedia.org/w/index.php?title=Tar_(computing)&oldid=804463187
https://en.wikipedia.org/w/index.php?title=Tar_(computing)&oldid=804463187
https://tour.golang.org/methods/15
http://blog.ralch.com/tutorial/golang-working-with-tar-and-gzip/
http://blog.ralch.com/tutorial/golang-working-with-tar-and-gzip/
https://blog.golang.org/profiling-go-programs
https://blog.golang.org/profiling-go-programs
https://www.percona.com/live/data-performance-conference-2016/sites/default/files/slides/Percona_RocksDB_v1.3.pdf
https://www.percona.com/live/data-performance-conference-2016/sites/default/files/slides/Percona_RocksDB_v1.3.pdf
https://coreos.com/blog/testing-distributed-systems-in-go.html
https://coreos.com/blog/testing-distributed-systems-in-go.html
https://coreos.com/blog/new-functional-testing-in-etcd.html
https://coreos.com/blog/new-functional-testing-in-etcd.html

228 BIBLIOGRAPHY

[116] Badger project, https://github.com/dgraph-io/badger, accessed Jan-
uary 21st, 2018.

[117] L. Lu et al., WiscKey: Separating Keys from Values in SSD-Conscious Storage,
Proceedings of USENIX FAST ’16: 14th USENIX Conference on File and Storage
Technologies, California, USA, February 2016.

[118] Introducing Badger: A fast key-value store written purely in Go, M.R. Jain,
May 2017, https://blog.dgraph.io/post/badger/, accessed September
4th, 2017.

https://github.com/dgraph-io/badger
https://blog.dgraph.io/post/badger/

	Περίληψη
	Abstract
	Αντί Προλόγου
	List of figures
	List of tables
	Βελτιστοποίηση Εγγραφών στον etcd μέσω Ενσωμάτωσης της RocksDB
	Εισαγωγή
	Σκοπός & Κίνητρο
	Υπάρχουσες Προσεγγίσεις

	Υπόβαθρο
	Το Σύστημα Αποθήκευσης Κλειδιού-Τιμής etcd
	Ο αλγόριθμος ομοφωνίας Raft
	Εγγυήσεις του etcd
	Μοντέλο δεδομένων
	Αποκατάσταση καταστροφών
	Επίδοση

	Ο Αποθηκευτικός Μηχανισμός BoltDB
	Β+ δέντρα
	Βασικές έννοιες & API
	Μειονεκτήματα & περιορισμοί

	Ο Αποθηκευτικός Μηχανισμός RocksDB
	LSM-δέντρα
	Ενίσχυση αναγνώσεων, εγγραφών και χώρου
	Τύποι συμπύκνωσης
	Βασικές έννοιες & API
	Σύγκριση με την BoltDB

	Σχεδιασμός
	Αρχιτεκτονική & Σχεδιαστικές Επιλογές
	Ενσωμάτωση της RocksDB στον etcd
	Γιατί RocksDB;
	Η βιβλιοθήκη περιτύλιξης gorocksdb
	To εργαλείο cgo
	Το C API της RocksDB
	Άρση του περιορισμού αποθηκευτικού χώρου

	Αντιστοίχιση Εννοιών & Δομών
	DB
	Κάδοι με προθέματα
	Λειτουργίες ανάγνωσης, εγγραφής και διαγραφής
	Δρομέας με επαναλήπτη
	Συναλλαγές
	Στιγμιότυπο με σημείο ελέγχου
	Ανασυγκρότηση
	Λειτουργία μόνο ανάγνωσης

	Υλοποίηση
	Η Βιβλιοθήκη Περιτύλιξης της RocksDB στην BoltDB
	Τροποποιήσεις στον Κώδικα του etcd
	Ανασυγκρότηση
	Διαγραφή του καταλόγου της βάσης δεδομένων
	Εφαρμογή του στιγμιοτύπου
	Πρόσβαση στην κατάσταση στιγμιοτύπου
	Μετάβαση από WriteBatch σε WriteBatchWithIndex
	Άρση του περιορισμού αποθηκευτικού χώρου
	Script εγκατάστασης

	Βελτιστοποιήσεις
	Αρχική υλοποίηση
	Πρόσβαση στους κάδους
	Αισιόδοξες συναλλαγές
	WriteBatchWithIndex & Snapshot
	WriteBatch
	Ρύθμιση παραμέτρων της RocksDB

	Εξωτερικές Συνεισφορές
	Έλεγχος Ορθότητας
	Δοκιμές ενοτήτων
	Πλατφόρμα λειτουργικού ελέγχου

	Πειραματική Αξιολόγηση
	Εργαλεία, Μεθοδολογία & Περιβάλλον
	Αποτελέσματα
	Επίδοση εγγραφών
	Επίδοση αναγνώσεων
	Η καθυστέρηση του cgo
	Eπίδραση του αριθμού πελατών & του μεγέθους τιμής στην επίδοση
	Κατανάλωση χώρου στον δίσκο
	Κατανάλωση μνήμης

	Επίλογος
	Συμπεράσματα
	Μελλοντικές Δυνατότητες

	Introduction
	Problem Statement
	Motivation
	Existing Solutions
	CockroachDB
	TiKV
	Other Related Work
	MongoDB
	MyCassandra

	Thesis Structure

	Background
	Distributed Systems & Data Storage Concepts
	An Overview of Distributed Storage
	A paradigm shift: from centralized to distributed

	Key-Value Stores
	NoSQL versus relational databases
	Use cases and notable implementations

	CAP Theorem
	CP systems
	AP systems
	CA systems

	ACID Properties
	Consistency Models & Isolation Levels
	Strict consistency or linearizability
	Sequential consistency
	Eventual consistency
	Read-your-writes consistency
	Serializable isolation
	Repeatable reads

	Write-Ahead Logging
	Providing atomicity
	Providing durability

	Multi-Version Concurrency Control
	What is concurrency control?
	MVCC

	The Raft Consensus Algorithm
	What is consensus?
	The Raft protocol
	Other consensus algorithms
	Implementations of Raft

	etcd Distributed Key-Value Store
	Overview
	Guarantees
	Data model
	Maintenance
	API
	Disaster recovery
	Recommended cluster sizes

	Evolution of the Storage Backend
	Incremental snapshots

	Use Cases
	Similar Systems
	ZooKeeper
	Consul

	Performance
	Performance comparison with similar systems

	BoltDB Storage Engine
	B+ Trees
	B-trees
	B+ trees
	Copy-on-write B+ trees

	Basic Concepts & API
	Use cases
	Embedded versus standalone databases

	Caveats & Limitations

	RocksDB Storage Engine
	Log-Structured Merge-Trees
	Read, write and space amplification
	Bloom filters
	Levelled & universal compaction
	Number of on-disk levels
	Read I/O cost analysis
	Comparison with B+ trees
	Interesting variants of LSM-trees and B-trees

	Basic Concepts & API
	Improvements over LevelDB
	Use cases

	Comparison with BoltDB

	The Go Programming Language
	Overview
	Cgo: A Necessary Evil

	Design
	Proposed Architecture & Design Choices
	Integration of RocksDB into etcd
	Why RocksDB?
	The gorocksdb Wrapper
	The RocksDB C API
	Removing the Storage Quota

	Mapping of Concepts & Constructs
	DB
	Buckets to Prefixes
	Get, Put & Delete Operations
	Cursor to Iterator
	Transactions
	Snapshot to Checkpoint
	Defragmentation
	Read-Only Mode

	Implementation
	Wrapping RocksDB in BoltDB
	Modifications in etcd Code
	Defragmentation
	Removal of the database directory
	Application of the snapshot
	Getting the snapshot status
	Switching between WriteBatch and WriteBatchWithIndex
	Removal of the storage quota
	Scripts

	Optimizations
	Base Implementation
	Bucket Access
	Optimistic Transactions
	WriteBatchWithIndex & Snapshot
	WriteBatch
	Tuning RocksDB

	External Contributions
	Transactions
	WriteBatchWithIndex
	Checkpoint
	Tuning options
	Database properties

	Installation & Configuration
	1. Go installation
	2. RocksDB installation
	3. Gorocksdb download
	4. etcd installation
	5. Setting up a cluster

	Testing
	Unit Tests
	Functional Test Suite

	Experimental Evaluation
	Tools, Methodology & Environment
	Results
	Write performance
	Read performance
	Cgo overhead
	The effect of the client number & value size on performance
	Disk space consumption
	Memory usage

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

