Implementation of Computational
Intensive Convolutional Neural Networks
on Embedded Devices with Limited
Resources

YAoroinon 'Evtovav YroAoylotika ZuveAIKTK®OV NeEUpOVIK@V
AktUuwv os Evoopatopéveg Apx1teKtovikeg pe [eploplopévoug
[Topoug

Mnaptowkag Avactaoclog

EmBAénov: Anuntplog Zouvipng
Av. Kabnynug E.M.II
ABrva Iouviog 2018

EBvikd MetodBLo NoAuteyveio

ZxoAf HAekTpoAdywv Mnyavikwy Kal Mnyavikwy YrmoAoyLotuwy
Topéac Teyvohoyiac Ninpodoplkic Kal YoloyioTwy
Epyaotripio Mikpolmohoyiotwy & Wndiakwv ZuoTnUatuwy

Chapter O

Implementation of Computational
Intensive Convolutional Neural Networks
on Embedded Devices with Limited
Resources

YAoroinon 'Evitovev YroAoyiotikd ZuveAMIKuKov NeUp@VIKQV
ARTUev oc Evoopatopéveg Apxitektovikeg pe [leploplopévoug
[Topoug

Mnaptoorag Avactaolog

EmBAeniov: Anuntplog Zouvipng
Av. Kabnynwg E.M.II

EykpiBnke ano v tpiuedr) e€etactikn ermrtportt] tov lovvio tou 2018.

(Yroypagn) (Yroypagn) (Yroypagn)

Anpntplog Zouvipng KuapdA IMekpeotdy Kovotaviivog Zimdiog
Av. Kabnynug E.M.IT Kabnynuig E.M.IT En. Kabnynng A.I1.G

A
o
- >
Wi

PAHBEYE

|

—H
YV FORD

T

EBviké MetodBlo NoAuteyveio

ZyoAn HAektpoldywy Mnyavikwyv Kal Mnxavikwy Yoloylotwy
Topéag Texvohoyiag NAnpodopkic Katl YmoAoyLoTwv
Epyactripio MikpoUmohoylotwv & WrndLakwv Zuotnuatwy

iEG

3

Chapter O

Copyright - All rights reserved. Me v eruguAadn naviog S ikatopatog.
Mrnaptookag Avaotaotog, 2018.

Arnayopetetal) avuypadr], anobrjkeuor) kat diavopr] g napouoag epyaciag, €& 0AoKApou 1
TUNPATOG AUTrg, Y ERIOPIKO oKoro. Empénetal n avatinwon, anobrjkeuon kat 61avopr) yla oKorno
P KePOOOKOIIKO, EKMAIOEUTIKIG 1 EPEUVITIKNG QUOTG, UTIO TV IpoUndbeon va avapépetat 1 mnyx)
pogAeuong Kat va diatnpeital 1o apov privupa. Epeothipata mou agopouv) Xpron g pyaciag yia
KePOOOKOITKO OKOITO IIPETIEL va Arteuduvovial Ipog Tov ouyypadeéda.

Ot amoye1g Kat ta cUPIepdopatd mou MEPLEXOVIAL 08 AUTO T0 £yypado eKPpAlouv Tov ouyypapea Kat
bev mpemnet va eppnveubel OTL AVIIIIPOOKITIEVOUV 11§ erTionpeg 9¢oelg tou EOvikou MetooBiou
[ToAuteyveiou.

AHAQXH MH AOT'OKAOITHZ KAI ANAAHWHY ITPOZQIIIKHEZ EYOYNHZ

Me mAnpn eMiyvoon TV CUVETIEL®V TOU VOPOU IEPT MVEUPATIKOV S1IKAIOPATROV, SNADVE VUIToypddp®g
OT1 £1j1a1 ATIOKAEIOTIKOG OUYyypadEag tng napovoag Autdeopaukng Epyaociag, yia tnv oAokArpoorn g
ortoiag kABe Por)Bela eival MANPEG AvVaAyVOPLOPEVT] KAl avaPEPETAl AETTIOPEP®S otV epyaocia autr). 'Exe
avagépel MANPKG Kat pe oadeig avapopeg, OAeg TG TNYES Xprong dedopévav, anoyemv, Y€oemv Kat
[POTACERV, 18EMV KAl AEKTIKOV avapopav, eite Katd Kuptodedia eite BACEL EMMOTNPIOVIKIG TAPAPPACT|G.
AnAeve, ouvenag, ot auty) n AutAopatiky Epyaoia nipostotpdotnke Kat 0AoKANp®Onke amnod epéva
TIPOOMITIKA KAl ATIOKAEI0TIKA KAl OTl, avaAdpBave TANP®G OAEG TIG CUVETIEIEG TOU VOLI0U OtV
nepimwon Katd v onoia arodeiyBel, dHraxpovikd, ot) epyaocia avty 1 TPHPA TG SEV POU aviKel
8101 eivat poidv AoyokAorr)g AAANG mveupatikeg 610K oiag.

(Yroypagn)

A. Mnaptookag

Iouviog 2018

Chapter O

Ilepidnyn

Ta tedeutaia xpovia yivovial ouveXwg £Peuveg YUpw ard v avarrudn v Texvntov Neupovirov
Awktiov (TNA). Ta TNA eival gpriveuopéva and BloAoyikoug opyaviopoug Kl £X0UVE SEMEPAOEL Katd
IOAU og amnddoon Tig mpnyoupeveg popdeg texvning vonpoouvng. 'Eva TNA amotedeitatl and amloug
UIMOAOY10TIKOUG KOPBoug 81acuvdedpépoug petady toug, ol ortoiot eivatl eKnatbeupévotl va avibpouve oe
epebiopata. Ta TNA rou maipvouve wg £i0080 e1koOveg ovopdlovial ZuveAlktika Neupovika Aiktua
(ENA) xat xpnotpornoovvial yia v €miucr PoBANPAtev 0pacng UMOAOY10T®V, OTIOG £ival 1 avaye-
VOPL0L AVIIKEPEVAV, 1] eUPEOT] IE01G TOV AVIIKEIPEVOV K.d.

Ta tedeutaia xpovia ta TNA €xouve e1oaxBel 0TOV KOO0 TOV EVOORATOPREVAV CUCKEUVROV, KAO®OG eival
dlaitepa oNPAvVIIKO 1000 yla ToUg Snpioupyous AOY1IOPIKOU 000 KAl EVIUNIOOIAKO yld TOUG XPIOTEG va
€xouve 1 duvatdtnta va avayvopifouve aviikeijleva He Ti§ OUOKEUEG TOUG IT.Y. KWvNTd tALpava.
Z16x0¢ g rapovoag Sumepatikrg sivat n e§€A€n evog ouotruatog ektéAeong EZNA 010 EVOOPATOUEVO
ovotnpa Myriad2. H pnyavr) vnoowpidet fabid diktua pe peyddo mAr0og opotipev KOpBwev, mou
€xouve ekmaideutel oe tepdotia ouvola Sedopévav. Auto onpaivel 0t 1o oUvolo Hedopévev TV S1IKTUGV
etvatl oAU peyddo yia T PVApn 1) EVOOUAT®HEVNG OUOKEUNG, 1] OIola OP®G £XEl TO TAEOVEKTNIA Xa-
HNAng Katavddwong evépyelag ava povada urodoyiopou. H apyitektovikr) tng Myriad 2 ouvictatat
aro 12 VLIW enefepyaotég, XToPEVOUS YUP® ard Pid PKpn Katl YPHyopr) VL Kat AAAOUg 1ou £Xouve
OUVIOVIOTIKO poAo. Amod 1 @uon toug ta LNA arattouve S1axeiplon TepAotiou OyKou Sebopévev mou
onpaivel kat petagopd dedopévev petady tov pvnuev. Ta Badid ZNA repléX0ouve OUVEMKTIKEG OTPMOOELG
1€ APKETEG MTAPAPETPOUG, O1 OTIOIEG £XOUVE MG OKOTIO VA HPEIDVOUVE TI§ ATIAITHOEIS O€ PV TOU S1KTUOU.
Autég ulomno|OnKave pe anodoTiko TPOITo, aKOPA Kal Pe 1) Xprjon oupBoAlkng yAwooag, epBabuvovtag
O TEXVIKEG EKPETAAAEUONG TG APXITEKTOVIKAG. ErurAéov avartuxbnke véog TpOMog UAOMOinong Tov
OUVEALKTIKOV OTPOOERV, MPOKEIIEVOU VA HEIWOEL TOV XPOVO EKTEAECNG OTPOOEDV 1€ OUYKEKPIIEVEG
npodlaypadég, adAd Kat 1 OUVOAKY Katavddworn evépyelag. TéAog, 1o yeyovog ot to cuotnpa eivat
TOAUETTEEEPYAOTIKO, AQUEAVEL TV TTIOAUTMAOKOTITA AKOWA IEPIOCOTEPO.

Ta raparndve erekteivovial oe KABe EVOOPATOIEVO EMECEPYAOTE], O OII010G UIOOTNPiel EKTEAEDT] VEUP®-
VIKQOV S1ktuwv Kabmg o1 pebBoboAoyieg rmou xpropornow)fnkave epappodeviat Kat €§e arnd) Myriad2.
TéAog avartuxbnke pia epapiioyr] MPAypatkoy Xpovou, 1 Oroid KAVel Ta§lvopnorn oupdeva [e 1o
ImageNet.

Acte1g KAeda

Mnxavikr] pabnorn, ZuveAlkuka veupwvika diktua, Babia veupovika diktua, Evoopatopéva cuotpara,
IMoAvenegepyaotika ouotpata, Myriad 2, Néog tpornog ouvédigng, Epappoyr) paypatkou Xpovou.

Chapter O

Abstract

During the recent years, science community is focusing on the field of Artificial Neural Networks
(ANN). ANN function by following a similar way with biological computational models and they are
more efficient than older classification models. An ANN contains simple computational nodes linked
between them, which are trained to activate when they have the appropriate signal. ANNs which
accept images as input on their nodes, are named Convolutional Neural Networks (CNNs) and they
are known for solving computer vision problems such as image classification, object detection etc.
During the last years, it is surprising that ANNs tend to enter more and more into embedded world
as it is so important to recognize objects on images, both for the application developers and for the
users of devices. A typical example of an embedded device, which uses image classification is mobile
phones.

The aim of this diploma thesis is to extend a CNN engine to test Deep Neural Networs in Myriad2.
The CNN engine is able to deploy Neural Networks which have been trained in large datasets like
Imagenet. This means that the memory demands of the application are enormous. Placing all these
data inside memories of the device remains a challenge. The main advantage of Myriad2 is the little
memory consumption per computation unit. In order to imlement the new version of the CNN Engine
importance was given to the Myriad2 architecture. More specifically, this device comprises 12 VLIW
processors built around a small yet fast memory block and 2 RISC processors with an arbitrator
role. Naturally, CNNs require the transfer of large amount of information. Deep CNNs contain
convolutional layers with parameters, which decrease memory demands like group, striding or even
1x1 convolution layers. All these were implemeneted efficiently, even using Assembly Language,
taking adantage of Myriad2 Architecture. Furthermore, a different approach using General Matrix
To Matrix Multiplication (GEMM) for testing convolutional layers was implemented. Finally, the fact
that the system is SIMD increases the complexity even further. The basic ideas and methodologies
which have been followed for the CNN implementation in Myriad2 can be used in other embedded
devices too.

Finally, a real-time application for ImageNet’s Classification has been implemented.

Key Words

Machine Learning, Convolutional Neural Networks, Deep Neural Networks, Embedded Systems,
Multi-processing Systems, Myriad 2, GEMM Approach for Convolution, Real Time Classification

Chapter O

Adrépworn

Ze yoveig kat gijfoug,

10

Chapter O

Euyxapiotieg

Katapyag 9a ndefa va euyxapiomow tov kadnynin k. Zouvvipn Anunipto yia mv eni6Asyn aving mg
SumAeouaukng spyaociag Kat yia mv evkaiia mov Uou €60 va tnv EKTOVHO® 010 £pyaoctrjpto MukpoiUno-
Aoyotov kar ¥ngraxov Svomuatev. Emiong, euxapoto biaitspa tov Ap. Aalapo IlaradomouAo yia tnu
Kadobrynon v Kai m ovvgpyaoia mouv eiyaue. H ovvepyaoia pov uadi toug 9ewpe Ot pe UETETPEWE amo
@Ot o unyavkd. Emmiéov éva peyaio euyapiote afifouv ot yoveic Lou yia t otrpin toug ofa avia
Ta xpouva.

Eexwplota euxaplotpla Kataveuovial oe Kamola aroua nov uadli avaxkaivyaue kair avaxkajluntovpe tov
0ptopo g AEENS “ulia”.

AB1jva, Iouviog 2018

Mmnaptoorxag Avaotaoiog

11

12

Chapter O

IIsprexopceva

1 YAomnoinon Evtovev YoAoytotika ZUVeAMKTIKAOV NEUPOVIKOV ARTU®V ot Evoopatopéveg

Apxtrtertovikrég pe Iepropiopévoug IIépoug
1.1 Ewayoyrn ot Mnxaviky) MABnon o oo e e e e e e e e e e
1.1.1 Kamnyopieg epyactov Mnxavikng Mabnong
1.1.2 Ta§ivounon otnv ermtneoupevr padnon : IIpoBAeroviag TG ETIKETEG
1.1.3 TIaAwdpounon otnv ermnpoupevn pabnon: [poBAénoviag ocuvexn anotedéopatd . .
1.2 NeUPOVIKA ATKTUA . . v v v v v v v e e e e e e e e e e e e e e e e e e s e e e e
1.2.1 Bodoyikog NEUP@VAG « . . . o o v v i ittt e e e e e e e e e e e e e e e e
1.3 ApxttektovikY] NEUPOVIKOV ATKTUGV v v v v v o bt it e e e e e e e e e e
1.4 ZuveMKUKA NEUPOVIKA ATKTUA . v v v v v v v e
1.4.1 Emokonnor APXITEKTOVIKYG ZUVEAMKTIKOV NeEUPOVIKOV AIKTUOV
1.4.2 Baoikég otpioelg ZUVEAKTIKOV NEUPOVIKOV AIKTURV o o v v v v o o oo o .
1.5 Movdda Enetepyaociag Ewwovag Myriad2
1.5.1 Xapaxkmnplotukd Apxttektovikng Myriad2o o oL L.
1.6 Zuvortuikn Ilepiypadn) [Iponyoupevng Exdoongo
1.7 Zuvelopopeg yia Vv Yootr)pigh HeYAAUTEPOV AKTUGY . . v & v v v v v v e v e e e e e e
1.8 EvaAAaktuikog tporog YAoroinong g ZUVEAKTIKAG ZTIPWONG « « v v v v v v v v v o v v o
1.9 AT0AOYNOI TG YAOITOMNOIIG + « v v v v v v e e e e e e e e e e e e e e e e e e
1.9.1 TIAeovektrpata KAOe TPOTIOU ZUVEAIENG « « v v v v v v v v e e e e e e e e e e e
1.9.2 METPHOEIS « + v v v v vt e
1.9.3 E¢appoyn IIpaypatukot Xpovou AVAYVOPIONG . « « v v v v v v v v o e e e e e a

Building Intelligent Machines

2.1 Machine Learning L. e e e e e
2.1.1 Three Different Types of Machine Learning
2.1.2 Classification and Regression in Supervised Learning

2.2 Artificial Neural Networks e
2.2.1 ANNs Architecture L

2.3 Convolutional Neural Networks
2.3.1 Layers of CNNS o i i it e e

2.4 Development of CNNs 0 e e e

Introduction to CAFFE, Myriad2 and Tegra Jetson TX1

3.1 Convolutional Architecture for Fast Feature Embedding
3.1.1 Layers o e e e e e e e e e e e e e
3.1.2 Traininga Network e e
3.1.3 TestingofaNetwork oo

3.2 Description of Myriad2 multiprocessor SoC L.
3.2.1 Uniqure VPU Architecture oo

3.3 Description of NVIDIA Tegra Jetson TX1 o ..
3.3.1 Building Al Applications with Tegra

3.4 Description of Imagenet CNNs e
3.4.1 AlexNet

33
33
33
34
36
36
37
38
40

INEPIEXOMENA

3.4.2 ZFNet L 48
3.4.3 Networkin Network e 49
3.4.4 VGG Net o 50
3.4.5 GoogleNet e e 51
3.4.6 SqueezeNet L e e e e 52
Basic Concept of CNN Engine 54
4.1 CNN Engine’sBasicIdeas L e 54
4.2 Hardware Attributes 56
4.2.1 Memory MapoftheDevice oo 56
4.2.2 Efficient Resource Managemento 59
4.2.3 CMXDMADIIVEr o v v i e e e e e e e e s e e e e e e e e 60
Configure CNN Engine to Support ImageNet’s Contest Deep CNNs 63
5.1 Sequence of the Input Datain DDR 63
5.2 Preprocessing oftheInput L e 66
5.2.1 Convolution’s Layer Parameters, 69
5.3 SHAVE’s Implementation and Parallization Scheme 72
5.3.1 JumpTable and SHAVE’s Computations 74
5.3.2 Convolution 1x1 Kernel 000 77
General Matrix to Matrix Multiplication in Deep Learning 79
6.1 Theoretical Analysis of Im2Col Convolution 79
6.1.1 Fully-Connected Layers i ii i 80
6.1.2 Convolutional Layers with GEMM 80
6.2 Im2Col’s Convolution Implementation in Myriad2 83
6.2.1 Import Input and WeightData 000 83
6.2.2 Preprocess and start Layer’s Execution L0 83
6.2.3 SHAVE code and Computationo 85
Evaluation of the Implementation 88
7.1 Evaluation of Direct’s Convolution Parameters 88
7.2 Comparison of the Different Convolutional Approaches 90
7.3 Comparison with Other Implementations 92
7.4 Real-Time Application L L e e e e 94
Conclusion 95
8.1 Summary e e e e e e e e e e 95
8.2 Future Work L e e e 95

Chapter O

Kataloyog Zxnpatwov

1.1 Auabikr) ta§ivopunon oty ermuPoUPeVn MAONoT. v . . .t e e e e 20
1.2 Tpappikn naAvépopnon oty EMIEPOUPEV PABNON.« « v v v v v v v e e e . 20
1.3 Biodoyikog Neupovag apiotepd pe 1o pabnuatko poviédo 6e€a. 21
1.4 NeupaVvikO ATKTUO € VA KPUPO OTPWIIC. « + v v v v v o v v e e e e et e e e e e e e e e 22

1.5 'Eva NA 1p1ov otpooeav pe 6 €10060uUg, 2 KpupEg otproelg pe 4 kat 3 veupaveg 1) kabspia

avtiotola) otpwor) €§060U e 1 VEUPWVA. . « « v v v v v v v e e e e e e e e e e e 22

1.6 Apiotepd, éva NA 2 "kpupov” otpioewnv. Astld, éva ZNA e veupwveg 3 Saotdoswv. Kabe

otP®OoT petacynpatidet tov 3A 6yko £10060u o £va 3A 0yko £§060U Arto VEUpwVeG. Ze autod
10 IAPAdEY A, 1] KOKKIVI] OTPROOT £10000U EUMEPIEXEL TV E1KOVA, OUVETIRG TO ITAATOG KAt
10 UYPOG TOU OYKOU TPETTEL va avilotoixei otig Siaotdoeig g ekovag. To BaBog tou dykou

9a eivat 3, urmoBetoviag ot 1) €l00dog eivat pia RGB ewodva.o oL oL 23
1.7 Zuvortukn Ilepiypadr) ng Apxrtektovikng Myriad2.o ... 24
1.8 Ot dopég tng Apxitektovikng g Myriad2. oL Lo oL 25
1.9 Lenet8 11e 7 OTPMOEIG. . .« .+« v v v v vt e e e e e e e e e e e e e e e 26
1.10H apywektovikr tou AlexNet.o 27
1.11 Metatpor) oe 6106140TATOUG TIIVAKEG KAL VIVOLIEVO. « « + v v v v v v v v e o e e e e e e e 28
1.12 K60T0g PETatportt|§ 0 H1061A0TATI POPPI]. « « v v v v v v v v e e e e e e e e e e e e e 28
1.13IMapddetypa tunuatonoinong e10060U/e§060U.o e . 29
1.14 Ko6pBot rou ermtaxyvovial o oXEoT PE TV APEST) GUVEA.« v v v v v v v v o v v . 30
1.15KépSog Im2Col oe oxéon pe Direct oL L e 30
1.16Képdog Direct o oxéon pe Im2Col L e e e 30
1.17 XapnAr katavadeoon evépyelag g Myriad2 oe oxéon pe to Caffe oy TegraTX1. 31
1.18IMapddetypa ta§ivopnong He epappoyr) mpaypatikou Xpovou, Ormou aplotepd @aivetat to

YPAPIKO 11eP1BAAAOV NG EPAPIIOVTG, OTH HEOH TA AIMOTEAE0PATA ITOU EMMOTPEPEL Katl Hedla
Karnotwa and ta arotedéopara g tagivopnong g Myriad2 yia to GoogleNet rou extedeitat. 32

2.1 Three Types of Machine Learning. 33
2.2 Supervised Machine Learning. 0000000 34
2.3 Reinforcement Learning. oL 34
2.4 Binary classification Task. Lo o e 35
2.5 Linear Regression. oo e e e e e 36
2.6 Biological neuron (left) and its Mathematical model (right). 36

2.7 Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output

layer with 2 neurons), and three inputs. Right: A 3-layer neural network with three
inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both
cases there are connections (synapses) between neurons across layers, but not within a

layer.o e e e e e e e e 37
2.8 Example of Direct Convolution, in the left first output map, right second one. 39
2.9 Pooling layers downsamples the Input. 0000000 40

3.1 Training Prototxt of AlexNet, where the colored boxes represent layers and the gray

octagons represent data blobs produced by or fed into the layers. 42

3.2 Hardware Parts of Myriad2. e 43

KATAAOI'OX 2XHMATQN

3.3 Processors of Myriad 2. L L e e e e e e 45
3.4 Detailed Overview of Myriad’s Hardware. 45
3.5 Jetson TX1 Module. 46
3.6 AlexNet Architecture with two "streams", due to computationally expensive training
PYOCESS. .« . . o v v it e 47
3.7 ZF Net architecture. L e e e e e 48
3.8 The 6 different versions of VGG Net, with configuration D giving the best results. 50
3.9 GoogleNet’s Architecture. L e 51
3.10Full Inception Module. L L e 52
3.11SqueezeNet Architecture. Lo e 53
4.1 Lenet8 CNN. e e e e e e e 55
4.2 Engine’s Memory OVEIVIEW. o o v v v v v it e e e 60
4.3 DMA transaction with same width. 61
4.4 DMA transaction with different DST, SRC width, with conversion from row form into
COlUMM ONE. L ottt e e e e e 61
5.1 Convolution Operation. e e 65
5.2 Wrong Produced Output. e e 66
5.3 Real boundary padding. Lo e e e 66
5.4 Inputdata alignment. L e e e e 67
5.5 Preprocess Analysis. L .o L L e e e e e e 68
5.6 Layout of input channel in memory.o 69
5.7 Layout of input channel in memory with DMA buffers. 70
5.8 How the convolution routine "sees" data in memory. 70
5.9 AlexNet’s best results with groupequalsto2. 71
5.10Detailed testing of AlexNet’s second layer. 72
5.11Parallization Scheme. L e e e 73
5.12First parallization Scheme. L Lo 76
5.13Final Optimized Parallization Scheme. 76
6.1 How GEMM WOTrKS. 0 i it ettt e e e e e e e e e e 79
6.2 Fully Connected Layer. e e 80
6.3 RGB Form of Inputand Kernel. o oo 80
6.4 Kernels ‘fit’ in Input and provide Output. L. 81
6.5 Kernels look for special patterns in Input.o 0000000 81
6.6 Conversion of the input to 2 Dimensions. 82
6.7 GEMM’s Convolution ready. o . vttt e e e e 83
6.8 Parallization scheme of Im2Col Approach 85
6.9 DMA transfering Methodology e 87
7.1 Increase of the kernel_size means increase of the Execution time and Energy
consumption. oL L L L L e e e e e e e e e e e e e e e e e e 88
7.2 Partitioning’s Parallization Scheme succeeds a notable Speedup. 89
7.3 Group Parameter Dependance. L0 0o e 89
7.4 Im2Col for 1x1 kernel succeeds better execution time for restricted number of SHAVEs. . 90
7.5 Directis faster for bigkernels. L 90
7.6 Influence of the number of Output Maps. 91
7.7 Scalability for 1x1 kernel. Lo 91
7.8 Improved scalability for 3x3 kernel. Lo oo oL 91
7.9 Increased memmory Demands of Im2Col approach. 92
7.10SqueezeNet’s Layers executed with both convolution’sways. 92
7.11Low Energy Consumption in Myriad2 related to Caffe in TegraTX1. 93
7.12Screenshot of the real-time Application. 94

Chapter O

Kataloyog ITtvarwv

1.1
1.2

4.1
4.2

7.1
7.2

Xpovotl ektedeong ms KAl ZUYKPIoelg YAOTIOINOEDY« v v v v v v v v v i e e e e e 31
ExteAéoeig Nevwvikov Aiktuev tou ImageNet o 000000 32
Memory areas of Myriad 2. L0 L e 56
CMX slices appropriate for SHAVES. ittt et e 57
Execution times of different Implementations 93
Imagenet’s CNNs execution’s times oo 94

17

Kepalawo 1

YAonoinon Evioveov YnoAoyiotikra
ZUVEAKTIKOV NEUPOVIKOV ALKTURV OE
Evoonatopeveg ApXITEKTOVIKEG HE
IIspropiopévoug Iopoug

1.1 Ewaywyn otn Mnxavikny Maénong

H Mnyxavikr) pabnon etvat éva umomnedio g €motung T@V UMTOAOYIOTOV IOU avartuyxOnke aro
HEAETN NG avayveoplong MPOoTUN®V Kat g UTTOAOY10TIKYG dewpiag pdbnong otnv 1exvntr) vornpoouvr. O
Tom M. Mitchell mpdteve évav mo emionpo opilopd mou xpnotponoteitat eupéwg [19]: «Eva mpoypappa
urtodoytotr) Aéyetat ot pabaiver anod eprneipia E og ripog piia kAdon epyaociov T kat éva pérpo enidoong 11,
av 1) eriboor) 1ou ot epyaocieg g kAdong T, onwg anotipdtat amno 1o pétpo P, Bedtidvetat pe v eprnepia
E». O tepdotiog 06ykog Hebopévav Kat MANPoPopi®v mou UNtdpXel OfHepa pag odrynoe otnv avaruin
avtodidaktev aAyopibumv, ot oroiot eivat oe 9¢on va avidouv yveoorn ano ta dwabéopa dedopéva. To
TMIPOTOYVOPO XAPAKTINPIOTIKO TNG PNXAVIKAS Pabnong sivat 0t dev anattet v avlparivr napgpbaon yia
1 POVIEAOTIOINOT TV KAVOV®V TTOU TIEPLYPAPOUV Ta UTo pedétn 6edopéva. O Adyog eivatl ot ot id1ot ot
aAyop1Opotl Kataokeuadouve ta POVIEAd TEptypadns tov dedopévav Kat ta BeATi®vouve cuyKkpivoviag ta
HE autd 1mou £€X0UVve &g otoXo. H pnyavikr pabnon éxet a§lobavpacteg epapioyeg otnv kadbnpepvotnta,
adou eivat 0 AGyog TOU UMAPXOUVE ATTOTEAECHATIKEG UNYXAVEG avalfjtnong, £PpApHoyES avayvoplong
€1KOVAG KAl I)X0U, £UPUN] POUITOT KAl autokabopidopeva autokivita K.a.

1.1.1 Katnyopieg epyaciodv Mnyxavikng Mabnong

O1 gpyaoieg unxavikrg pdbnong ouvrBwg tadivopouvial oe TPe1g PEYAAEG Katnyopieg avaloya pe tn @uor
TOU eKMMALSEUTIKOU «ONPATOG» 1) TV «avatpododotnorny mou eival Siabéopia o éva ouotnpa eKpdadnong.
Autég oupgeva pe [19] etvar:

e Emutnpotpevn padnon (aAdiwg eruBlerndpevn pdbnon 1 pdbnon pe eniBAeyn): To urtoAoylotiko
mpoypappa déxetal 1g nmapadsiypatikeég £10060ug Kabwg Kat ta embupntd arnotedéopata aro
évav «ddokalor, Kat 0 otoxXog €ivat va pabet Eévav YeVIKO Kavova MPOKEIPIEVOU va AVIloTotioet TG
£10080UG € ta anoteAéopard.

e Mn esrmtnpovpevy padnon (aAdwwg emiBlertn pdbnorn 1) padnon xepig eniBAeywn): Xopig va na-
PEXETAL KATIOW ePIElpia otov aAyoplOpo padnong, nipéret va Ppet tv dopr)| tev Sedopévev e10odou.
H pn permnpoupevn pabnon prnopel va eival autookorog (avakaAurnioviag Kpuppéva potiBa oe
6edopéva) 1 péoo yla éva téAog (XapaKInplotiko g pabnong). Kavovtag xpron tov texvikeov au-
)G NG Hop®ng nabnong, urapxet n Suvatdinta egepevivnong tng Sopng v dedopévav, pe otdxo
Vv edaywyrn Xpnowung rmnpogopiag, Sixeg tv mapoxr] yvewong mou arateitat otg urndloireg
Katnyopieg pnxavikng pabnong.

18

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

e Evioxutikf pdOnon: 'Eva npoypappa urodoyiotr] aAAnAerudpd pe éva duvapiko rnepiBaAdov oto
ortoio mpérmet va ermteuxOel évag OUYKERPIIEVOG OTOXO0G (T1.X. 1 0dnynon evog oxnuatog), xopig
Karolog §aokadog va Tou Agel pntd av €Xel PTACEL KOVId oto otoXo tou. 'Eva dAdo mapddsiypa
eivat va pabet va naidel éva aiyvidl evavtiov karoilou avurdiou.

Mia dAAn Katnyoplonoinon tev mpoBAnpdiov pnxavikng pabnong, onweg PAéroupe oto [19] mpoxurttet
OTav KAT010§ YE®P Ol T0 EMOUPNTO ATIOTEAEGHIA TOU CUCTNHATOS PUNXAVIKHG 11abnong.

e Ztnv tafwvopnon, ta dsdopéva e1006ou xwpidovial oe U0 1) MEPLO0OTEPEG KAAOELG, KAl 1] UNXavh
TMIPETIEL VA KATAOKEUAOEL £€va POVIEAO, To ortoio Sa avtiototyilel ta 6edopéva os pia 1 IEPIOCOTEPES
(multi-label tagvopnon) KAdaoelg. Autd ouvrBwg edrtirel oty ermtnpovpevn padnon. Ta @idtpa
spam eivat éva niapadeypa taivounong, orou ot eicodot eivat ta emails 1) adAa pnvupata Kat ot
KAdoegig eivat “spam” kat "oyt spam”.

e Zinv maAwdpopunon, crriong npoBAnua eminpovpevng padnong, ta arotedéopata £ival ouvexn
Kat oxt Sakpird.

e Ztnv ouotadomnoinon, £va oUvolo £1008wV MPOKettal va Xwplotel oe opadeg. Te aviibeon pe v
tadwvounor), ot opadeg Sev elval YVOOTEG €K TV IIPOTEPRV, KABIOTOVIAG AUTOV TOV S1aX0P1010 O
TUITIKI) €EpYyaoia | ermnpoupevng pabnong.

e XNV EXTipNON nukvotntag Ppiokel v Katavour twv dedopévev e10660u 0e KATIO10 XOPO.

e e mpoBAfjjiata peiwong dractacipotnrag (dimensionality reduction), ta debopéva arhoroto-
Uvtal Kat aviototxidoviat o éva Xwpo Atyotepwv draotdoewv. To otatiotiko poviedo Sepatwv (Topic
modeling) eivat éva oxetiko npoBAnpa, omou n pnxavy Kaleitat va Bpet eyypada mou KaAutouv
napopola Ypata aro Eva oUVOAO EYYPAP®V YPAPEV®OV O QUOIKL) YA®OOd.

1.1.2 Tafwvopnon otnv entnpoupevy padnon: IIpoBAinovtag Tig ETIRETEG

H ta§ivopnorn eivatl pia vrokatnyopia g ermtnpoupevng pdbnong, otnv oroia otdxog eivat n ripoBAeyn
g KAAong/Katyopiag evog véou avukelpévou Bdaoet madaotepev napatnprnoewv. H ta§ivopnon evog
AVTIKEPEVOU O HPla Katnyopia yivetat pe tyv avabeon pag etketag oe avuto. Ot eTikETeg PItopouv va
IAPOUV S1aKPITEG KAl 11 S1aTETAYIEVES TIHIEG.

To povtédo npdBAewng to ortoio pabaiverl évag alyopOpog ermtnpovpevng NNXavikng pddnong propet
va avabeoel onoladnIote EUKETA, MOV EPPAVIOTNKE OTO OUVOAO Sedop€évav Katd T S1apKeld NG EKIA-
i6euong, oe éva véo un ta§ivopnuévo avukeipevo. 'Eva turukoé napddetypa eival n avayveopion eiboug
EVIOU®V. Z& AUty TV MEPUTIDOT, £€va oUVvoAo Hebopévev eknaibeuong mou meplexel H1a0TAoelg KOG ma-
pabeiypata yla avvayvoplon Katnyopiag eviopev eivat éva onpeio ekkivnong. 'Enerta, edv o xprjotng
eloayayet d1aotdoelg, PEO® 110G CUOKEUNG £10060U, T0 poviédo ripdBAleyng Sa eival oe 9¢orn va ektipnoet
10 OMOTO £VIONO HE KATola akpiBela. Qotoco, o adydpiOpog e Sa eival oe 9€on va avayvopiost EmTuxng
ortoadrote €viopda, £Aav autd §gv UTIAPXOUV OTO GUVOAO eKMAidEUONS TOU.

To mapaxkdate oxfjpa 1.1 pag deixvel v 18€a tng duadikrg tadvounong, urtobétoviag ot €xouv obet
13 deilypata katd 1o otadio g exknaibeuong: 7 delypata €xouv v eukéta g Katyopilag rapra
(kOKKIVOl KUKAOY KAl 6 Selypata €Xouv TNV €UKETA TOV KOKKIVEAIS®V (pdotvol KUKAOY. Xe& autd To
oevaplo, To ouvolo dedopévav elvat 61061aotato, to oroio onpaivetl, 6t KAOe delypa eprepiExet SUo Teg
x1 xatr x2. 'Evag aAyopiBpog (emitnpoupievng) pnxavikng pddnong pnopet va xpnotpomnownBei ya va
pabet €éva kavova - 10 oUVOoPOo 1§ Aropact g ITOU avarnapiortatal pe) Prie ypappr) - mou diaxwpidet
g Yo kanyopieg kat tagvopet ta véa dedopéva oe pia and ug kawmyopieg dedopévav tov ttpov x1 kat
x2. To mapaderypa €xel epvevotel ano to PiBAio [14].

1.1.3 IMaAwdpopnon otnv emtnpoupevn padnon: IIpoBAénoviag ouvexn anoteAéopa-
Ta

H nponyoupevn urosvotnta €6e1§e niwg o otdxog g tadivounong eivat n avabeon un datetaypéveov
EUKETOV o¢ aviikeipeva. 'Eva deutepo €160g tng emtnpoupevng pabnong sivatl n mpoBAeyn ouvexomv a-
MOTEAEOPATOV, TIOU £ival YveoTtd otov KAAS0 NG OTATIOTIKAG ®G avaduor naAtvdpounong. Zinv avdiuon

Chapter 1 19

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

Widiths and Lengths of Garden Bugs

length

" C
e %% C

width

Zxnpa 1.1: Auvadikr) ta§ivopnorn oy ertnpoupevy) padnon.

naAvépounong cupgwva pe 1o [13], unobétoupie ot Sivovrat éva mAnBog anod petaBAntég mpoBAleyng Kat
H1a ouvexng PetaBAntr) anokplong (arotédeopa). TtoxXog eivatl 1 eUPEOT) Pia 0XE0NG HETASU TV petaBAn-
1OV IPOBAEYNG TOU eIMITPETEL TNV NPOBAeYn evog amotedéopatog. a mapadetypa, ag unobéooupe ot
9¢Adoupe va poBAEPoupe toug PBadpoug v pabniov oto Sayoviopa v pabnpatkev. Edv unapyet
Hta oxéon petady tou Xpovou rmou aplepwbnke otn pedétn yia 1o Siayoviopa kat 1ov Badpov rou ¢édabav
o1 pabntég mou 1o Eypayav, Sa Propouoe va Xpnotponon el ®g ouvodo Sedopévev eknaideuong yia v
eKpadnon evog poviedou. To poviédo, dedopEvou ToU XPOVoU PEAETNG TTIOU OKOTTEUEL va ETEVOUOEL £vag
pedAoviikog padnrg, rpoBAéret 1o fabpo rmou da AdBet oto cuykekpipévo Sayoviopa.

To mapakdt® oxfpa 1.2 amotuniwvel v 16€a g YPAPHIKLYG raAtvépopnong. Asdopévev piag peta-
BAntHg poBAeywng X Kat pag petaBAntng anokpong Y, oxediadetal pa eubeia ypappn mou “taiptadet”
ota debopéva Kal eAaxiotorolel v anootacn - nou ouvhBwg eival n PEon T TOU TEIPAYOVOU NG
anootaong - Petady twv detypdtwv Kat mg ypapphs. ‘Eneura, aut) n ypappr xphnowonoteitatl ya va
npoBAEYPel T PetaBAntr) anokplong oe véa dedopéva.

Zxfpa 1.2: Tpappikr raAivépounorn oty ermepoupievn pabnon.

1.2 Nesupwvika Aiktua

Neupwviko diktuo [20] ovopddetatl £éva KUKAoPA d1acuvdedepévav veupmvav. Ztny nepintoon Blodoyt-
KOV VEUPOVOV, TIPOKELTAL Y1d £va THHCA VEUPIKOU 10TOU.

IV nepimeon tEXVNIOV VEUPOVOV, TIPOKELTAL Y1d £va apnpniEVo aAyoplOiKo KAataoKeUuaaopid 10 Ortoio
EUITITIEL OTOV TOPEA TG UMMOAOYIOTIKLG VONOOUVHG. XTOX0G TOU VEUPWVIKOU S1KTUOU eival 1 ermiAuon

20 Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

KATI010U UTIOAOY10TIKOU TIPOBAN|1ATOG, 1) TS UITOAOY10TIKIG VEUPOETUOTING. ErmmA£ov otoxog pnopet va
elvatl] UTIOAOY10TIKY| TIPOCO01MOT TG Ae1Toupyiag TV PLOAOYIKGOV VEUPOVIKOV SIKTUGV 1€ Aot KATT010
Pabnpatiko PovieAo Toug.

H nieproxn) tov Neupovikov AIKTUGV apX1KA EPNVEUCTNKE KUPI®G ATO T0 OTOXO TG POVIEAOTION0NG TV
B1OAOYIK®V VEUPOVIK®V OUCTNHAT®V, AAAd aTlo TOTE AMOKAIVEL KAl yivetatl {tnpa PnxXavikhg Kat EItuy-
Xavovtag kadd arotedéopata otug epyaocieg Machine Learning.

1.2.1 BuolAoyikog Neupovag

H Baoikn) urodoyiotiky povada tou eykedadou eivat évag veupovag [10]. IMepirnou 86 dioekatoppupla
VEUPOVESG PITOPOUV va Bpeouv 010 avOpOITvo VEUPIKS oUoTnHa Kat ouvbioviat pe riepirou 1014 - 1017
ouvayeig. To napaxkdte Sidypappa 1.3 Seixvel éva oxEd10 Kaptdv evog Blodoyikou veupwva (aplotepd)
Kat éva Kowo pabnpauxo poviédo (6e81d). Kabe veupovag AapBavet onpata e10660u artod toug Sevpiteg
Kat rmapdayet ofpata e506ou katd prkog tou (povadikou) dfova tou. O dfovag teldkd eKAEyetal Kat ouv-
béetal péow TV ouvayeVv e 1oug devdpiteg AAAGV VEUPHOVKOV. £T0 UTIOAOYIOTIKO POVIEAO £VOG VEUP®VA,
ta onpata rov tagibevouv Katd PrKog TV agovev X0 aAAnAsrudpouv nodAaridd wOx0 pe toug Hevdpiteg
TOU AAAoU veupwva He BAor) T OUVAITTIKT avioX1) o€ autr) tr ouvadpela wO. H 16€a eivatl ot o1 ouvantikeg
duvapeig (ta Bapn w) priopouv va eknatdeutouv Kat va eAéyEouv v ermppor] Bondnukd (Setuko Bapog)
1] avaotaATiKo (apvnTiko BApog) evog veupmva ot €va dAAo. X210 Baoiko poviédo, ol Hevdpiteg petadpepouv
10 OfjPd OT0 OWHA T®V KUTIAP®V, OTIOU 0A0ol ouyKevipovovidl. Edv to tediko mood eival mave anod éva
OUYKEKPIEVO 0P10, O VEUP®VAS UITOPEl va mupodotrjoel, otédvoviag pia akiba katda prkog tou dgova
TOU. ZTO UMMOAOY10TIKO PoViEAo, utoBEtoupe Ot o1 akpiBeig xpoviopol tov akibev dev €xouv onpaocia
Kat 0Tt povo n ouxvotnta g rupodotnong petadidet minpopopieg. Me Bdon auvtn v epunveia KOdika
pubpoU, poviedomouw|oape Vv tTaxUInta mupodotnong T0U VEUPOVA HE Hla ouvdptnor evepyoroinong f,
1 OIO{A AVIUTPOOWITEVEL T CUXVOTHTA TV AIXHOV KATA WUNKOG Tou dfova. [otopikd, pia Kowr| ermAoyr)
111G OUVAPTNOTG EVEPYOITIOINONG eivat 1) Olypoedng ouvaptnon o, dedopévou 0tt AapBavet pia mPaypatike)
T £10060U (tnv 10XV TOU Ofjatog Hetd 1o abpoilopa) Kat v avuotoixel oe eupog petadu O kat 1.

Iy wy
synapse

WoTo

axon from a neuron

impulses carried

toward cell body
aw. branches cell body f (Zm,-'r,- | b)
dendrites A1 4 aof axon - i y
S Lwrm! +b -
\5‘ i : : output axon
nucleus__i.ﬁ_. axon______ activation

—_— function

. impulses carried |
away from cell body 8

cell body

i

Zxnpa 1.3: Biodoyikdog Neupaovag apiotepd pe 1o pabnpatiko poviédo 6e€ia.

Me aAda Adyua, kABe veupovag ektedel €va €0®IEPIKO yvopevo pe v eicodo kat ta Papn tou,
pooBEtel v Pdaon Kat epappodet) P ypappikotnta (f)) Aettoupyla evepyoroinong), o€ auty v
nepimoon to sigmoid o(x) = 1/(1+ £ X).

1.3 Apxttektovikiy NeupoVviKOV ALRKTUGV

1o 1.4 apouoiadetal £éva VEUP®VIRG §iktuo, aro 1o oroio Sa avidrjooupe ta §1g:

Chapter 1 21

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

output

Zxnpa 1.4: Neupoviko AlKtuo pe €éva Kpudpo otpopda.

To apiotepd otpopa ovopddetal orpwia £10060U Kal anotedsital arno veupoveg Tou ovopddoviat
VEUPWVEG £10080U. Avtiotoixa, To 6edi otpopa Kaldeital orpopa e§O60u Kal mepPlEXel veupwveg £5odou,
OTIOU OtnVv Tepintwon pag PAEroupe povo éva. To peoaio otpdpa KaAeital "KpUPHEVO™, adoU 01 VEUP®VES
tou Bev eival oute £10660u oute €§6dou. Ta "Babid™ veupwvika Siktua arotedouvial ard TOUAAXIOTOV
éva "KpudPo” oTpopd. XTa KAVOVIKA VEUPOVIKA SiKtud, 0 1o ouvnBOiopévog turmog otp@ong €ivat 1)
MANPWG ouvbedepévn OTPWOT), OtV OIoia 01 VEUPROVEG HETASU U0 YEITOVIKOV OTPWOE®V £ival MANP®G
ouvdebelévol, aAAd Ot VEUP®VEG TTIOU AviiKouv otV idta otpmorn dev £xouv petadu toug ouvbéoelg, OTwg
BAéroupe oto 1.5.

hidden layers

output layer

input layer

Zxnua 1.5: 'Eva NA tpiev otpooeav e 6 £10080UG, 2 KPUPESG OTPRoelg 1e 4 KAl 3 veupmveg 1) kabepia
avtiotoya tr otpwon e§6dou pe 1 veupwva.

1.4 XuveAdiktikra Neupovika Aiktua

Ta CUVEALRTIRA VEUP®VIKRA Siktua (ENA) eival mapopola pe ta Neupowvikd Aiktua, kabwg arotedouviat
ano veupaveg Tou drabétouve Pdapn kat facelg. Kabe veupdvag déxetat pepikég e10060ug, urtodoyidet eva
E0WTEPIKO YIVOIEVO TPV Ao KAroleg adAeg rpddelg kat divel tnv €€o6o. Ertiong, ta ENA e§akoloubouv
va €xouv pa Asttoupyia anwieiag (.. SVM / Softmax) oto tedevtaio (rAnpwg ouvdedepévo) otpond,
eCaxodoubovtag va 1oxvouv autd nou eidape maparnave yua ta Nevpwvika Aiktua. Ermi g ouoiag, éva
ZNA eivat éva poviedo Neupwvikou AKtUou mou €xel oxeblaotel armoKAEI0TIKA Yia TV avayvoptlon d10-
daotatov aviikelpévey, apouotadoviag UPnio Babpd avaldointng oupnepipopdg Katd v petadeon,
KAPAK®OT, O0TpeBAmorn) Kal aAAeg mapapopPpaoelg g e100dou. Auto rou dradoporotei ta ENA sivatl ot
1000 1) €10060¢ 000 KAl TO OET HeBOPEVOV TTOU £XE1 EKMTAIOEVUOEL TO HIKTUO ATTOTEAOUVIAL AITO EIKOVESG.

22 Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

1.4.1 Emoxonnon ApXITEKTOVIKNG ZUVEAKTIROV NEUPOVIROV AKTUQV

Ta texvnta veupevika diktua dev anodidouv kadd pe ewkoveg [10]. Lro CIFAR-10, o1 eikOveg €xouv
péyebog povo 32x32x3 (32 mAdrog, 32 Uwog, 3 ravddla Xpwpatog), €101 £vag POVO VEUPOVAS Ot £va
PAOTO KPUPO TANPKRG oUVOESEPEVO OTpOHaA £vOg veupikoU Siktuou 9a éxetl 32 x 32 x 3 = 3072 Bapn.
To roo6 auto egakodoubel va @aivetat diaxeiprioio adldd oe diktua pe Peyadutepeg £1KOVEG G €10060
npokalel onpavuko (upa. Eival cagég o1t 1o mAnpeg ouvbedepiévo otpopa ocuvduddetal e 1epaotio
OYKO IApApETP@V ITOU 08nyouve ot urepxeiAton).

Ta OUVEAIKTIKA VEUPGOVIKA diKTua enM@PeA0OUVIAL ATIO TO YEYOVOS OTL 1] £10060G ATIOTEAEITAL ATIO EIKOVEG
Kal Tep1opilouve v apXIKETOVIKY] TOUG HE TPOITo 1ou Byadet rieploootepo vonua. ITo ocuykekpipéva
oe avtiBeon pe ta kowvd Neupovikd Aiktua ot otpwoelg evog ZNA €xouve veupoveg Slatetaypévoug oe 3
Odlaotaocelg: mAdrog, vwog kat abog avtiotorxa. Ot veupwveg og pia otpwor) eivatl ouvbedepévotl povo pe
Hla PIKp1 TEPLOXY] TS IPONYOUHEVNG OTPXOOTG, O aviifeor Pe OAOUG TOUG VEUPWVEG TG TIPONYOUHEVIS
OTPWONG TTOU ouvavtdtal otig MANpeg ouvdedbepéveg orpwoelg. Ma mapdadetypa, ot e1koveg £100860U OTO
CIFAR-10 eivat évag 6ykKog £10060U eVePYOITOOEMV KA1 0 OYKOG £Xel draotdoelg 32x32x3 (rmAatog, vyog,
Babog avtiotoixa). Ot veupwveg ot €va otpopa da ouvdeboUv POVo O Ja PIKPT TIEPIOXT] TOU OTP®ILATOS
PV arod autd, avtl yia 0A0Ug TOUG VEUPQVEG e AN PG ouvdedepévo tporto. EmumAéov, 1o teAkd otpopa
€¢06ou yla 1o CIFAR-10 9a £xet Siaotdoeig 1x1x10, 81011 péxpt 10 1€A0G TG APXITIEKTOVIKYG Tou ZNA Sa
Pewwooupe v AP £1Kova o £va povo didvuopa Babpoloyiag kAdong, diatetaypévo Katd NHKog g
diaotaong Bdadoug.

=l e ; ’O depth

: '_ LR 7.?0’_ -E; O 00"666 esightt

- _ o - 4 output layer Ea ki OOOOO: - ﬁ
input layer OOOOO i

hidden layer 1 hidden layer 2

Ixnua 1.6: Apiotepd, éva NA 2 "kpudpwv” otpooewv. Aegid, éva ZNA pe veupoveg 3 draotacemv. Kabe
otpwor petaoynpatidel tov 3A dyko £10660u ot €va 3A 6yko £§060U aro veupmveg. e aUTO TO Ia-
padelypa, 1 KOKKIVI] OTp®OT] £10000U EPTEPIEXEL TNV E1KOVA, CUVETIOG TO TTAATOG KAl TO UYPOG TOU OYKOU
pémel va avuototxet otg diaotdoeig g ewovag. To BaBog tou oykou Sa eivat 3, urobétoviag ot 1)
eioodog eival pia RGB sikova.

1.4.2 Baoikég oTprOoelg TUVEAMKTIKAOV NEUPQOVIKAOV AKTUGV

[Mapakdie® avapépovial KAroa arno ta Pacikd €16 orpOoe®v 1ou ouvavioviat oe ENA, cuppeva pe [10].
ZUVEAIKTIKEG OTPOOELG, MANPKG OUVOEDEPEVEG OTPMOELS, OTPWOEIS CUYKEVIPOONG KAl KAVOVIKOITOiNonG.
Autég o1 orpwoelg dlatacoovial pe d1apopoug Tporoug Kat dnuioupyouve apyliektovikeg ZNA. e 6Aa
1a diktua napatnpeitatl Kat n otpoorn 100860V TOU 1] Asttoupyia tng €ivatl va aviypdgetl v £i00do g
oTp®ONG otV £§060. AETTIOPEPEIES V1A TIS UTIOAOUTES OTPOOELS

e Itpaon Ewoo6dou Eprnepiéxet ta debopéva €10060u, 1ou eivat ot TIHEG TV EIKOVOOTOIXEIDV NG
MPOETEEEPYAOEVNS £1KOVAG £10060u. To BABog tng otpmong £10060uU eivat to 1610 pe 10 AN 00g TV
KavaAigv g eikovag e10odou.

e TUVEMKUKL ZTpodon Aivel v £5060 TV VEUPOVROV TTOU eival ouvdebe1€Vol 0e TOTUKEG TIEPLOXES
g £10060U, UTIOAOYIOVIAG TO E0MTEPIKO YIVOHEVO PETASU TV BAPQOV TV ITUPTIVOV KAl TG TIEPIOXAS
ou avtiotoixet oty €i00do. Av yia ntapddetypa yivel ouvedi€n pe 12 @idtpa, n £€odog 9a eivar 12
X W X h, orou w,h to mAdatog kat to vyog £506ou avriotoxa.

e ZuykevipwTKY Ztpaon Ilpaypatonosi urnodeiypatodnyia pe 51apopoug Tporoug Katd PrKog
TV TOTK®V dlactacenv (rmAdtog, Uyog).

Chapter 1 23

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE

ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

e AvopOotiry Ztpodon H douleia autig tng otpwong eivat va urodoyidel to max(0,x). Aut n

1.5

otpworn dev ennpeddel kabBodou 1ig Slactdoelg £10060U KABMOG 1 oUVAPTNON ePpapPodetal oe KABe
otoixeio Eexwplotd.

Zipwoelg Ravovironoinong H Kavovikonoinon rmpoxkadei mapaddayég ot @otevotnta, Unolo-
yidovtag pecoug 0poug, apaipLoelg, KAvoviag uyirepatd @dtpapiopata aAlld Kal TorKeg sgopa-
AUvoeig g aviifeong Kat AAAa Xapakinplotikd IOV EIKOVOV.

IIAfpwg Zuvdedepéveg ZTpcdoeig Xprnoomoouvidl yid vd UTOAOYICOUVE Ta OKOP TV KATIYOPl-
wv. Metatpénouve v €i0odo oe éva Sidvuopa Orou o1 H1a0Tdoelg ToU eival 60eg Katl 01 KAtnyopieg
g tagvounong. Ot VEUup®Veg autr|g g oTpwong ouvbéovial pe KABe veupmva ToU P yoUHEVOU
otadiou.

Movada Ence§epyaciag Eixkovag Myriad2

H vloroinon g punxavrg extédeong NA €yive oto moduvenedepyaouxd ovotnpa Myriad2. H povada
eneepyaoiag ewkovag avantuydnke and Movidius Ltd., n ornoia éywve pédog tng opadag Perceptual
Computing Group tng Intel, pie otoxo v dnuioupyia eUPUOV CUCKEUGV OE EPAPHOYEG OPAOTG UTTOAOY1-

OtV.

To KUP10 XAPAOKINPIOTKO TG MAATPOpHAg eival 0tt KataPpEPVel va MPOooPEPEL EEAIPETIKA XAUNAD

KAtavAA®or) eVEPYELag O TIOAU "Baplég” epapoyEG avayvmplong IIPOTUN®V, ONeg etvat n ektédeorn ENA.

1.5.1 Xapartnplotikd ApXITeKTOVIKNG Myriad2

Ta xupdtepa Yapaxkinplouka mg Myriad2 sivar:

24

£xeblaopog moAu yapnAng toxvog: Kdavoviag) katdAAnAn yla Xprjon oe @opniég OUOKEUEG,
OU 1] AUTovolia g prataplag eivat Kupiapxrn mapapeIpos.

Enefepyaotng uypning anodoong: Aivoviag) Suvatdinta eKTEAEONG TRV UTTOAOYIOTIKA AItatty)-
TIKOV OUYXPOVQRV £PAPHOYROV TG OPAOCHS UTIOAOY10T®V.

EuéAiktn apXtteRTOViKY : [Tapéxoviag rpooBacr otig ASITIOPEPEIEG TG APXITEKTOVIKI|G, Ol ITPO-
ypappatioteg eivatl oe 9€or va BEATIOTONOI00UV TG EPAPHIOYES TOUG AKOHA TIEPLO0OTEPO.

Mikpég @UOIKEG Sraoctdoelg: '‘Qote va eival @K 1 eVoOOPAT®on tg whneidag os omowadnrnote
(pOPITI] CUCKEUT).

ErunAéov Aentopépeteg: H apyitektovikn g Myriad2 nepidapBavet eva ogt ano Sienagég, and
OITUKOUG erutayuvieg, 12 Siavuopatikoug VLIW ene§epyaotég rou Aéyoviat SHAVE kat piia pvhpn
mou o€ cuvduao0 Pe TOUG UTTOAOITTIOUS TTIOPOUG TIPOCPHEPET T SUVATOTNTA ATIOSOTIKNG KATAVAA®ONG
10XU0G.

Interfaces

Hardware Accelerators

Array of RISC CPU
Vector

RISC CPU

Processors -

Memory Fabric

Zxnpa 1.7: Zuvortuikn Ieprypadr) ing Apxitektovikng Myriad2.

Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

Mia 1110 AETTTOPEPTG TIEPIYPAPT] TNG APXITEKTOVIKNG Sivetal mapakat® oty 1.8:

e O Leon OS cival 0 KUP10G £Medepyaotis, KaOwg HETA TV EKKIVNOL] TG OUOKEUNG 1] EKTEAECT] TOU
MPOYPAPIATOS apXidel amd autd Tov emedepyaot), O oroiog avrkel oto urnocuotnua CPU sub-
system (CSS) rou eivat n) KUpta povada ermxoveviag He oV eERTEPIKO KOO0 PEOR TV EERNTEPIKGOV
EPPEPEIAKROV erukowvaviag: 12C, 12S, SPI, UART, GPIO, ETH ka1 USB3.0. H kUpta povada eAgy-
Xou tou CSS eivat o ente€epyaotis LeonOS (LOS), rou §1abétet apretd Peyadeg KPUPES PIVIIES, ETTL-
TpErmoviag 1 Suvatotnta EKTEAECTS EVOG PIOVIEPVOU AEITOUPYIKOU CUCTIATOG IIPAYHATIKOU XPOVOU
RTOS.

e O Leon RT cival o erurpooBetog SPARC eneepyaotr|g Kat avrkel oto vrocvotnua Media sub-
system (MSS), pia Sopikn povada mou ermtpénetl S1a0UVOEDT) le OUOKEUEG £1KOVAG, OTIOG a1o0n-
) peg ekoOVag, 00oveg LCD, edeyktég HDMI k.A.1t.

e O1 SHAVES £x0UV UrtoAoy1otko podo kat dieubuvoviat ard toug 2 SPARC ene€epyaotég. [Ipoxet-
HEVOoU va mpoopEépouv UWPnNAL arnodoon KAl XapnAn KAtavdaA®orn MePEXouv eupelg register-files,
orou og ouvduaopo pe napaddndia tinou SIMD peyiotonolotve v enidoon ava povada kata-
vAA®or) 10XU0g6.

e H DDR civat) KUpla Pvijpn tou ouotfjpatog kat ot 2 SPARC eneepyaotég avapEépovial o autr) T
BV PE PIKPO KOOTOG, AOY® TV EMAEYHEVROV PeYEOwV NG Kpupng pvnung. Eival tonoBetnpévn
€KTOG NG Ynoidag, rmou onpaivel ot o1 14 enedepyactég Xpnotporolouv tov 1610 eAeyKir) ya va
TNV MPOCTIEAACOUV KA1 £X0UV EMMITAEOV KOOTOG.

e CMX: Ilpdkettat yia t ouviopoypadia tou Connection Matrix, to omoio Sikatodoyeitat anod to
yeyovog ot nf CMX aroteAeital amno apketeg Pikpotepeg povadeg SRAM, pe ouvoAko péyebog ta 2
MB. Kd6e eneepyaotrg SHAVE £xet Eexopiotég 9€oelg yia pooBaot) oe 11ia CUYKEKPIIEVE] QETA TV
128KB 1ng pvhpng CMX. Zuveniog, ta 12x128 KB = 1536 KB xprnotiornoiouvial pe 1oV KaAUtepo
duvato tpdro ano toug nupnveg SHAVE, eve ta unodoua 512 KB g pvipng CMX memory
Xprnotporolovviatl ano aiAeg p1ovadeg.

e CMX DMA Controller: Autog o sdeyking Ppioketal avdpeoa tou dtavdou MXI teov 128-bit kat
g pvhung CMX. IMapéxel petapopég debopévav vwnlou eupoug {wvng petadu tng CMX kat tng
DDR, mipog oroladnnote kateubuvor). ErmumAéov, unootnpilel petagopeg Sedopévav ano DDR oe
DDR kat anté CMX oe CMX.

e SIPP: IIpokettal yia éva pnxaviopo UAKoU/Aoyiopikou Iou Xpnotporoteitat and) Myriad2, pe
OKOITO TNV arodotikr) popoAdynon epyactov Pndlakng neepyaoiag elkovag. Autog 0 pnxavi-
opog eivat Bacilopiévog oe ernedepyacia PopPng OOANVOONG KAl XPNOtHoTolel ta @iAtpa UAIKOU Iou
napéyovtat arno v Myriad2, dote va ermtuxet v taxvutepr duvatr) eKTEAEoT).

Controlled /0

INTERFACES
MIPI SPI, USB3, I2C, 125, LCD, CIF, UART, ETHERNET, ETC.
x 12 lanes I

[Vision

'El

} RISC-RT }—«
RISC-RTOS F
Intelligent Memory Fabric

T =]
@ w

Main Bus

Zxnpa 1.8: O1 dopég g ApXteKTovikg tg Myriad2.

Chapter 1 25

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

1.6 Zvuvontikn Ieprypadn IIponyoupevng 'ExSoong

ApX1KA yla v €KTEAEOT] TOV VEUP®VIKOV O1KTU®V, €10ayAYOUHE OTATIKA OV KUpld HPVIHIr TO00 TNV
€1KOVa €10060U PETd TV Mpoenegepyaoia nmou xpetadetat, 6co kat ta PAapn tou veupwvikou Siktuou oe
KataAAnAn popdr aro to Caffe. Zinv cuvéxela, dnpioupyouvial ot KopBot T1ou S1ktUou avdloya pe 1o
eldog toug kat apyidouve va exktelouvial oelplakd ypagpoviag o kabévag v £§odo tou oty €i0odo tou
endpevou. Atiel va onpelmdei 1o yeyovog ot ta Sedopéva mperet va petadpEpoviat aro v KUpla PV
DDR ot CMX 1ou eivat kovida otoug SHAVES, enedr) exel yivovial yprjyopa ot UITOAOY1OHOL KAl Otr)
OUVEXELD TA ATIOTEAEOPATA VA ETIOTPEPOVIAL. AUTEG O1 PETAPOPES EMTITUYXAVOVIAL PEO® Tou DMA eAeykir)
yla taxuinta. 'Eva napdadetypa ektédeong VeEUpmVIKOU S1KTUOU [TV IIPONyoupevn €KO00T TG PNXAVS
artoteAel 1o mapakate Lenet-8.

data: Data
data ——* blobshapes:

shape:[1,8,28,28]

convl: Convoluion
convolution param l
num output: 24
kernel size: 5 pooll: Pooling
stride: 1 convl pooling param
blob shapes: * pool: max
convl [1,24,24,24] J‘ kernel size: 2

stride: 2
———* blob shapes:
pooll pooll:[1,24,12,12]

conv2: Convoluion

convolution param J'
num output: 56
kemel size: 5 < conv?

stride: 1
blob shapes:)
conv2 [1.5%.8.8] l peci2:Booling
pooling param
pool: max
pool2 kernel size: 2
stride: 2
blob shapes:
ipl: InnerProduct l pooi2:[1,564.4]
inner product param
num output: 496 ipl
blob shapes: -
ipl [1,496]
relul
relul: RelLU InPlace
blob shapes: l
ipl:[1,496] ip2: InnerProduct
ip2 inner product param
num output: 10

blob shapes:
pooll: [1,10]

Zxnpa 1.9: Lenet8 pe 7 otpooeig.

1.7 Zuvelopopeég yia tnv Yoot pi§n peyaAutepov ALRTUOV

Ytox0g rtave va ektedeotouve Babia ENA kat va eruteuyBei ta§ivopnon pe Bdoest 10 ouvoro Sebopevav
ImageNet, apyidoviag amod to AlexNet [7] vikntr) tou Sayeviopou ImageNet Large Scale Visual Reco-
gnition Challenge 1o 2012, 1 apX1TeKTOVIKY] TOU OIOi0U @aiveral Kat mapakatem oto 1.17. Kabe kavdil
G ekoOvag €10060U autou Tou Siktuou reptAapBavetl dedopéva ta oroia 6e xwpdve otnv pvaun CMX
TOU MOAUETIESEPYAOTI] V1A VA PITOPECOUVE VA YIVOUVE 01 UTIOAOY1oH0L. AUTO £Xe1 ®G AmotéAeopa, 1) E1KOvaA
va ypelddetal npoenesepyacia wote va otaABel amo v kupla pvnun. Ermuurdéov oe autd 1o Siktuo Aoy
TEPAOTIOU OYKOU e60EVROV XP1OTHI0TIOI0UVIAL TIAPAIETPOL, Ol OITO101 PEIWVOUVE TOV OYKO TV Sedopévav
Kat BonOdve otnv akpiBela, onwg arodeixOnke. Térolou eidoug napdaperpot arotedovve ot group, stri-
ding. Mia erutAéov TeXVIKN IOV Xpnotpornot|fnke oe dAAa emopeva LNA rou yivave train oto ImageNet
Atave n xpnon v 1x1 cuveMikukov otpooewv. O Adyog sivatl ot n diactdoeig £5odou Sa eival ioeg pe
Vv 10060, o1toTe av 10 MANO0G TV PIATP®V ival PikpOTEPO Ao OTt 10 BAabog TG £10060U, TO VEUPOVIKO
biktuo meplopidel TOUG VEUP®VEG TOU Kal TIG OUVOEDELS Toug, Pe dAAa Aoyia ta Bapn tou. H uvlormoinon
10U 1x1 ouvelkTIKOU @iAtpou £yive pe oUpBoAIKY YA®ooa yia Adyoug arodoorng.

26 Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

conv3: Convolution
convolution param
num output: 384
data: Data kemz!;lie. 3
blob shapes: — data convd / sFI]ridé' 1
shape: [1,3,227,227] blob shapes:
l — [1,384,13,13]
convl: Convolution
convolution param convl J' conv4: Convolution
num output: 96 < convaolution param
kernel size: 11 convd num output: 384
stride: 4 relul kernel size: 3
blob shapes: [1,96,55,55] I group: 2
relud pad: 1
blob shapes:
11: Paoli l [1,384,13,13]
pooll: Pooling
pooling param guint
keprﬁgll: Srir;? 3 e convs: Convolution
stride: 2' l convaolution param
blob shapes: " relus e :IIE:':é .2356
00| :
[1,96,27,27] p l group: 2
pad: 1
conv2: Convolution l biob shapes: 0015: Poolin
convolution param pools W [1,256,13,13] Eoolin-g parangl
num output: 256 pool: max
kernel size: 5 T i » kernel size: 3
group: 2 < stride: 2
stride: 1 fc6 InnerProcuct blob shapes:
blob shapes: relu2 fc6 inner product param [1,256,6,6]
[1,256,27,27] — num output: 4096
l blob shapes: [1,4096]
relub
norm2 l
fc7 InnerProduct
pool2: Pooling l 7 inner product param
pooling param — num output: 4096
poal: max blob shapes: [1,4096]
kernel size: 3 [€— pool2 relu?
stride: 2 ¢
blob shapes: fc8 InnerProduct
[1,256,13,13] inner product param
fcd > num output: 1000
blob shapes: [1,1000]

Zxfpa 1.10: H apyitektovikn tou AlexNet.

To 2010 é£yve, yia npwtn @opa, o dayeviopog ILSVRC, o npotog pie 1000 peyddo oyko dedopévov:
ZuykevipeOnkav 14 skatoppupla €ikoveg anod 10 Aadiktuo kat avBperiol onpeinoav 1t de@pouv ot
@atvetal oe kABe e1kOvVa (yata, okuAog, rapadia, fouvo ktd). Katomy, to «onpeimoav» kat ot adyopiOpot.
Ztov S1ayeviopo auto, 10 oQpAApd, akOn KAl IOV €06 TOTE o0 £5eAMYHEVOV AAYOPIOI®V TG ETNOTIOVIKYG
Kowotntag, frav 25%. a pia otig t€ooepig €1KOVEG, autod rou Sewpouoav ot AvOp®IIot 0Tl arelkovidetal
OT1§ €1KOVeG Oev N)TAV KAV OTI§ TIP®IEG MEVIE EMAOYEG TOV ouotnpatev. '‘Ola autd, pexpt to 2012. To
2012 o Alex Krizhevsky, onwg idape pe 1o AlexNet képdioe 1o ILSVRC, pewwvoviag 1o opdipa Katd
10 oAdrAnpeg povadeg, amnod 1o 25%, oto 15,3%. Tote, 6Aol 01 OXETICOPEVOL, ETALPEIEG KA EMIOTIOVIKI)
Kowotnta, apytoav va divouv ava onpacia ota TNA. ITAéov, ta emineda audavoviai, kat ta dikrua
ovopalovtat Babia (deep) orwg PAtmoupe apakdatew. EmmAéov, eve autd ta TEXVNTA VEUPGOVIKA diktua
Baoiotnkav otnv i61a apxr) Aettoupyliag pe ToUg TeXVNToUg veupmveg Tou 1970, topa 1 eknaideuon kat ta
pabnuatika toug eixav oAAd ororyeia ypappikng diyeBpag. ‘Etot, av pn tt aAdo yia va onpatodotnBei
drapopd, apxioe va kuplapxet o opog Deep Learning. Amo 1o 2012 kat petd, 6ev UTIAPXEL KAVEVAG VIKI TG
otov ILSVRC, kat yevikd oxedov kapia Snpooieuon ya enefepyacia e1kovag, mou va Jr XPrnotponotet
ZNA. H ékboong g pnxavng exktédeong ZNA unootnpidetl ta e€ng diktua: AlexNet, GoogleNet, NiN-
ImageNet, SqueezeNet, VGGNet, ZFNet

1.8 EvaAAartikog tponog YAonoinong tng TuveALKTIRNG ZTtpwong

Metd v extédeon tov napanave XENA tou diayoviopou ImageNet napatnpnbnke ot ta @idtpa rou
ulorolouve ouvéAEn pe ruprva 1x1 eival apKetd apyd yia KAMOES TIHEG TRV TTAPAPEIPROV TOV OTPOOEDV
Katl 1 oupBoAikn yAdwooa e propet va ypagtel xopig kukdoug kabuotépnong. 'Etotl, éyve n avarnmudn

€VOG VEOU TPOIOU MOV XP1CIHONOEL YpapRIKRL aAyeBpa Kal CUYKeEKPIPEVA YIVOHEVO TTivaKa He Tiivaka

Chapter 1 27

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

yia va vdorowBei. Autd yia va oupBel BéBata, PEMel MPOTA va PETATPATIOUVE TO0O 1] £10060G 0G0 Kal
ta Bapn oe 61061dotatoug nivakeg otnv KAtdAAnAn popor onwg @aiverat oto oxnpa 1.11 kat tote 10
ywopevo toug 9a Swoetl 10 katdAAndo anotédeopa.

Input Matrix Kernel Matrix
E K -
Patch 1 i A
Patch 2
£
3 X
o AN
o 28
s k|2
_U - PN
D
o]
=
3
\ 4
v <

v

Number of Kernels

Zxnpa 1.11: Metatpornry os §1061d0tatoug rmivakeg Kat yIvOHEVO.

Zinv nepimmieor) o6movu 1o stride eivat peyadutepo anod to kernel n petatporns os 2 61a0tdoetg peyalmvet
Vv €10060 TOAU 0g amattoelg Pvhung, onwg PAénoupe oy ekoéva 1.12 ya 1ig mpoteg oIpWoelg TV
OIKTU®V ITOU eKTEAOUIE.

Cost of Image Conversion

Il Direct :
..|H Im2Col |...............

4000

3500

3000

2500

2000

1500

1000

Memory Demands of Input Layers (KB)

500

0
AlexNet GoogleNet NiN-ImageNet SqueezeNet VGGNet ZFNet
Deep Neural Networks

Zxnua 1.12: Kootog petatporn)g oe diod1aotatn popot.

O naparnave Aoyog odnyel o THNRATOMOiLNOT TG £10080U Kat kataAAnAn SpopoAdynon oote
va xepave ta dedopéva otnv pikprn kat ypryopn pvipn CMX. Tédog to DMA g €§06ou mpénet va
yivetat kataAAnla oote ta Sedopéva va anobnkevoviatl katd Badog kat va Sivovial oto MOPEVO OTpOHA
KatdAAnda, ave§dptta amnod tov oo ouudeva e tov oroio 9édoupe va yivel n ouvédign. 'Eote ot
otnv Mepimton evog apadelyiatog 10 CUVEAKTIKO @iATpo £xel Sraotdoelg (1x1x64) kat) eicodog eival
dlaotacewv (64x56x56). Ot anaitfjoslg 0e PV g €10060U petda trv 61061d0tatn PETATPon: ewvat:
64 %« 1 x 1 = 64 6oov apopd tg otmdeg kat H6 *x 56 = 3136 ypappég. Autd onpaivel 611 01 CUVOAIKEG

28 Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME INIEPIOPIXMENOYZY IIOPOYZ

antattfjoetg ivat 3136 * 64 x 2 = 401408 bytes. H tpnpatonoinon 9a yivel 0niwg @aivetal oty mapakdtem
ewova 1.13 pe 4 xoppdrtia kat 3 SHAVESs, oupgova pie tov adyoptfpo mou xpnotponosital yia to roco
Xopaet oty kabe pvhun. O kabe shave 9a avardBer (3136/12) * 64 x 2 = 33536 bytes mepirou.

Partition0 Partition1 PartitionN

T T 1 |
SHAVEO | SHAVEL | SHAVE2 SHAVEISHAVEZ SHAVED | SHAVEL | SHAVEZ

Zxnpa 1.13: [Mapadetypa tpnpatornoinong ei0odou/egodou.

1.9 ASwoAoynon tng YAomoinong

Autr) 1) evotnta IAPOUCIAel TV EKTEAEOT] KATIOIQV VEUPOVIKOV d1KTUmV, ontwg AlexNet, GoogleNet, Squ-
eezeNet ka1t VGGNet kat 1ig PETPRoelg 1ou eAfpOnoav otav autd exktedéotnke tooo ot Myriad2 6co kat
otov ente§epyaotr) Nvidia Tegra X1 pe 1) xopig xpron g P1BAodnkng cuDNN, 1 oroia eivat f18A1001Kr
TIOU €rtayuvel v exktédeor tov ENA pe 1 XPnolonoinon eV mopev g KAaptag ypapikov. TéAog
KATo1eg petprjoetg eAngOnoav kat oto Movidius Neural Compute Stick, to oroio amnoteAeitat amno to
1610 VA0 (Myriad2), aAAd 10 TTAKETO AOYIOMIKOU €ival KAE10ToU Kadika. ErmmAéov, kamoieg otpwoeig
XPTOHOTIO0UVE TOV APECO TPOTTIO OUVEANG KAl KATIOEG AAAEG AUTOV TG YPPARHIKEG dAyeBpag, o oroiog
bivel kaAUtepa anoteAéopata 0e KATOEG TIEPUTINOELS TOO0 O KATAVAAMOTL] EVEPYELAS 000 Kal O€ XPOVO
EKTEAEONG.

1.9.1 IIAsovektujpata KAOe tponou TuveAlng

Eivat yeyovdg Ot 1) UTIOAOY10TIKY] 0UVAPTH oL TG OUVEANG HE T petatportr) og §1061dotato xmpio £xel u-
AoroinBet pe ouvdaptnon rnoAAandactacpou S1avuopatog pe mivaka. Autd onuaivel 6t yia Kabe eomtept-
KO yvopevo Slavuopdtev oAdamiactadoviat ototxeia mAn0oug kernelyiqin xkernelpeight*input feature—maps
Katl 10 MAN00G6 TRV E0RTEPTIKAV YIVOUEVOV S1aVUORAT®V etvatl outputyidsh *OUutPput peight *OUtPUL feature—maps-
Zto GoogleNet untdpyxouv otpwoelg IIou 61a0£T0UV TETO10U £160UG XAPAKTINPLOTIKA, ONI®G @aivetat oto 1.14
KAl auteg kepdidouv oe XpOvo eKTEAEONG HE TO SEUTEPO TPOTTO UAOTOINoNG. Ao Vv AAAn mAsupd arnodet-
KVUETAl 0Tl P PEYAAUTEPOUG TTUprveg arto 1x1 o 1porog apeong ouveAng kepdilet oe xpodvo ektéAeonG.
Erurdéov napatnpeital ouvexég kEPHOG 0 XPOVO eKTEAEONS OO0 AUEAVOVIAL Ol UTOAOYIOTIKEG Povadeg
otoV TPOIo Apeong ouvEAENG eve otov AAAO auto €xel va Kavel pe g Sraotdaoelg tou diobidotatou miva-
Kd. ZTOoV IP®TO TPOTo 1 tapaiAnAoroinor yivetal katd Babog eved otov dAAo katd MAATOg ToU Tivakda.
‘Otav 1o MAAToug gival HiKpo, 0600 auiavovial ot ernegepyaotég andd availapBdvouve pikpdtepa TpHpata
OUVEX®WS KAl KAVOUVE Alyoug UTTOAOY10110UG, €101 0 XpOVOG EKTEAEONS AVAAWVETAL O PETAPOPES HETASU
TOV PVNU®V, EKTOG av T0 VYOG £ival apKetd peyddo yia va egioopportei t Siadpopd kat tdte napatnpeitat
BeAtinon.

Chapter 1 29

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

hception.woutpu‘ I -

inception_4d/3x3_reduce

inception_4d/poal
inception_4d/relu_3x3_reduce

inception_4d/1x1 inception_4d/3x3 inception_4d/5x5

inception_4d/relu_Sx5

inception_4d/relu_1x1 inception_4d/relu_3x3

Zxnpa 1.14: KopBot rmou srmtaxuvovial o oXE0T] e TV APECT] OUVEALET).

[Mapaxkdt® PALMOUpE MG KAPAROVOUVE Ol 2 TpOnot ouvEALNG ot oxéon pe TV avinon twv
ENEFEPYACTIRAOV HOVAS®V, ITpita yia PiKkpo rmuprva ocuveA§ng Katl otr) CUVEXELd yia Peydlo, aplotepd
@aivovtat o1 Xpovot ektédeong Kat 8e§1d 1 KATavaA®or evépyelag:

Im2Col vs. Direct

8 . - - - 45 ‘ Im2‘CoI vs. D\r‘ect ‘
I 1x1_Kernel_Direct
T R 1x1_Kernel_Im2Col |4 4.0
6 16 Output Ma;:)s, 14x14 Dimensions 35
= E 30
E 5
g 225
: S
c 2
S 2
2 S 2.0
0 >
1 o
fal g 15
o : : : : :
100 |mmE 1x1_Kernel_Direct
E 1x1_Kernel_Im2Col
0.5k]
. 16 Output Maps, 14x14 Dimensions
0 i i i i H H ; i ; ; ; 0.0 i i i i i i i i i i i
1 2 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12
Number of Shaves. Number of Shaves

Zxnpa 1.15: Képdog Im2Col oe oxéon pe Direct

Im2Col vs. Direct Im2Col vs. Direct
% — T T T T T T 16 — T T T
i B 5x5_Kernel_Direct : :
H 5x5_Kernel_Im2Col
20 ‘32 Output Maps, 28x28 D'imen&ions’

2 £
£ €
E 150 5
o =1
E g
= 2
g &
=] (9]
o 10+ >
[2
I @

& : :

A | fecieio N 5x5_Kernel_Direct
5t Il 5x5_Kernel_Im2Col
32 Output Maps, 28x28 Dimensions
P I N T T S S S S w—
1 2 3 4 5 6 7 8 9 10 11 12
Number of Shaves Number of Shaves

Zxnpa 1.16: Képdog Direct oe ox€on pe Im2Col

1.9.2 Metprioelg

AxoAouBoUve HETPHOEIS KAl OUYKPIoElg Petadl TV EVOOPATOHEVEOV CUOKEUMV Yid 4 ard ta Imo yveotd
ZNA. To éva eivatl 1o AlexNet, to oroio €petvel otV 10TOPia ®G TO MPWIO TOU £PTACE Of TO0A UYPNAdA
MO000TA euotoyiag mpoBéwemv kat ddAade v 1otopia ya ta ENA kat 1o devtepo mou £xoupe 1én a-
vagépet 1o GoogleNet dAAage) voorporoia tov “Bablov”’ veupavikov SiIKtuenv Kat adaipeoe 1g Papiég

30 Chapter 1

KE®AAAIO 1. YAOIIOIHZH ENTONQN YIIOAOI'TETIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENXQMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYX

oe Pvnun mAnpeg ouvdedbepéveg otpwoetg. EmumAéov, 1o SqueezeNet eivat katdAAnAo yia va tpéxel o
EVOOIATOHIEVEG OUOKEUEG AOY® TG PIKPOV ATIAToe®V Pvhung rou €xet. Tédog 1o VGGNet £xel apKeteg
drapopetikeg ekdOOELG, O1 OTIOlEg XProtponotouviatl oe dAda eiboug iktua érwg Region-CNNs. H napo-
voa vldornoinon Ya ouykpBei pe 1o Movidius Neural Compute Stick. Tédog, ta diktua ektedouvral Kat
pe 1o Caffe, ounv evoopatopévrn ovokeur) Nvidia Tegra TX1 pe enefepyaotr) Quad ARM A57 pe 1) Xopig
m xpnon g GPU. 'Eywe xprion povo tou evog core tou Quad ARM A57 yia va gavel 1o KOOTog TV
nipdageav. To Caffe extedeital oe Quad ARM® A57/2 MB L2 enefepyaotr) pie 1) Xopis NVIDIA Maxwell ™,

[Mivakag 1.1: Xpovol ektédeong ms Kat ZUYKPioelg YAOIooemv

CNNs Current Movidius NCS | Caffe in Caffe with CuDNN
Implementation Quad ARM A57

AlexNet 98.3 96.27 7518 22.2

GoogleNet | 246.1 99.04 16836 180

SqueezeNet | 85.5 50.26 8961 695.38

VGGNet 586 733.50 7587 85.8

256 CUDA cores. To oupmnépacpia aro tig eKTeAE0elg 1oV S1ktuwmv eival ot to Caffe pe) xprjon ing GPU
TIETUXAIVEL KAAUTEPOUG XPOVOUG Og KAroria diktua, adAd dev arodidet oAU KAAUTEPA CUYKPITIKA HE T
Myriad2. Aut6 opiletal kat 0to yeyovog 0Tt 0 rapayoviag trg Katavalmong evépyelag eival pia tagn
peyeboug mave akopa kat pe) xpnon mg GPU. Emiong, gaitvetat éu 1o Caffe aképa kat pe) xpron
g GPU uotepei ota diktua mou éxouv rapdAAnloug kopBoug, Adyw pn agiddoyng rapaiAndomnoinong
Katl eKpetdaAdeuong tov mopwv. To oiyoupo eivat 6t ot GPU emituyydavetatl kaAutepn napaiAndomnoinon
otV NMANpwg ouvdedepévn oTpwoT).

Comparison in Energy Consumption

Il Tegra
N Myriad2

Energy Consumptio ()

0
GoogleNet SqueezeNet AlexNet VGGNet
Deep Neural Networks

Zxnua 1.17: Xapndr katavdAweon evépyelag tng Myriad2 oe oxéorn pe to Caffe ot TegraTX1.

Ztov mivaka 1.2 napouotiadovial Ta anoteAéopata g rnapouodg UAomnoiong yla Siapopa veupmvika
biktua:

1.9.3 Ed¢appoyn IIpaypatikou Xpovou Avayvopilong

TéAog 6Ad ta Maparnave ocuvdudotnKav Kat emieUxOnKe 111a Epappoyr] avayvoplong O PAYRATIKO
Xpovo. Autr 6éxetal oroladrnote e1kéva, v eneepyadetal KataAAnda xepig tnv xpron g PiBAio-
9rkng tou Caffe adAd pe 1006Uvapeg ouvaptjoelg rou vdornondnxave pe python. It cuvéxela exivaet
ermkowevia pe) xpnon sockets pe tov unodoyiotr) rou PBpioketat n Myriad2 kat otéAvel v ekova
péow tou Ethernet. To koppdu tng ermkoveviag oto socket yivetatl pe) Xprotonoinon ouvaptrosmy

Chapter 1 31

KE®PAANAIO 1. YAOIIOIHXH ENTONQN YIIOAOTI'TZTIKA YYNEAIKTIKQN NEYPQNIKQN AIKTYQN ZE
ENX2QMATQMENEY APXITEKTONIKEY ME IIEPIOPIZMENOYX IIOPOYZ

[Tivakag 1.2: Extedéoeig Nevwvikov Aiktuev tou ImageNet

CNN Execution Time(ms) | Energy Consumption(mdJ) | layers | memory(MB)
AlexNet 98.3 125.6 13 117
GoogleNet 249.1 365.2 83 16.6
NiN-imagenet | 244 335.7 16 15.5
SqueezeNet 85.5 126.7 38 4.68

VGG 586 961 16 276

ZFnet 99 130.3 13 121

HETAtporr|g tou pnvupartog and Python oe C kat aviiotpopa. Ta pnvupata £10680u 1) erne§epyacpévn
ekova €10060u kat g €§06ou ta anotedéopata g Tagvopnong Kat o xpovog extédeong. Ilapdderypa
mg epappoyng ya v oroia vdorow|Onke kat GUI oe Python G.T.K @aivetat mapakdtw. H ewxova
€10080u elvat amo 1o ouvolo debopévav ImageNet yi autd n poBAeyrn eivatl 1000 EMTUXNG KAl ATTOAUTA
oupBatn pe avty tou Caffe. O xpovog extédeong eivatl yia tuxaio ouvbuaopo anod processing units kat
1POIIOoUG UAOIOINoNg g CUVEARNG.

= Answer

In the first position we see 196 "miniatur nauzer, with 0.979
In the secend position comes | chnauzer' with 0.005
Our Execution time is 365.71 ms. using Im2Col approach for 10 layers saving 20ms

Zxnpa 1.18: Mapdadetypa ta§ivopnong pe epappoyrn npaypatikou Xpovou, 0rou aplotepd @aivetat to
YPAP1KO Tep1BAANOV TG EPAPIOYTG, Ot HECT] T ATOTEAE0PATA TIOU £MOTPEPEL Kat He81d KATO1a Ao
1a anotedéopata g tagivopnong mg Myriad2 yia to GoogleNet rou exteAeitat.

32 Chapter 1

Kepalaio 2

Building Intelligent Machines

2.1 Machine Learning

In this age of modern technology, there is one resource that there is in abundance: a large amount
of structured and unstructured data. In the second half of the twentieth century, machine learning
evolved as a subfield of artificial intelligence that involved the development of self-learning algori-
thms to gain knowledge from that data in order to make predictions. Instead of requiring humans to
manually derive rulesand build models from analyzing large amounts of data, machine learning offers
a more efficient alternative for capturing the knowledge in data to gradually improve the performance
of predictive models, and make data-driven decisions. Not only is machine learning becoming incre-
asingly important in computer science research but it also plays an even greater role in our everyday
life. Thanks to machine learning applications can be seen in our every day life. Examples of these
applications are robust e-mail spam filters, convenient text and voice recognition software, reliable
Web search engines, challenging chess players, and, hopefully soon, safe and efficient self-driving
cars [13].

2.1.1 Three Different Types of Machine Learning

The three types of machine learning are: supervised learning, unsupervised learning and reinfo-
rcement learning.

Unsupervised Supervised
Learning Learning

Reinforcement
Learning

Zxnpa 2.1: Three Types of Machine Learning.

The main goal in supervised learning is to learn a model from labeled training data that allows us
to make predictions about unseen or future data. Here, the term supervised refers to a set of samples
where the desired output signals (labels) are already known. Considering the example of e-mail
spam filtering, a model can be trained using a supervised machine learning algorithm on a corpus
of labeled e-mail, e-mail that are correctly marked as spam or not-spam, to predict whether a new
e-mail belongs to either of the two categories. A supervised learning task with discrete class labels,
such as in the previous e-mail spam-filtering example, is also called a task. Another subcategory of
supervised learning is regression, where the outcome signal is a continuous value:

33

KE®PAANAIO 2. BUILDING INTELLIGENT MACHINES

Labels

Machine Learning ‘

Algorithm

New Data |E>| Predictive Model ‘ >

Zxnpa 2.2: Supervised Machine Learning.

Another type of machine learning is reinforcement learning. In reinforcement learning, the goal
is to develop a system (agent) that improves its performance based on interactions with the envi-
ronment. Since the information about the current state of the environment typically also includes a
so-called reward signal, reinforcement learning can be thought as a field related to supervised lear-
ning. However, in reinforcement learning this feedback is not the correct ground truth label or value,
but a measure of how well the action was measured by a reward function. Through the interaction
with the environment, an agent can then use reinforcement learning to learn a series of actions that
maximizes this reward via an exploratory trial-and-error approach or deliberative planning. A popular
example of reinforcement learning is a chess engine. Here, the agent decides upon a series of moves
depending on the state of the board (the environment), and the reward can be defined as win or lose
at the end of the game:

Environment

Reward Action

State

Agent

Zxnpa 2.3: Reinforcement Learning.

In supervised learning, the right answer is known beforehand the training of our model, and
in reinforcement learning, a measure of reward for particular actions is defined by the agent. In
unsupervised learning, however, dealing with unlabeled data or data of unknown structure is usual.
With unsupervised learning techniques, it is possible to explore the structure of the data in order
to extract meaningful information without the guidance of a known outcome variable or reward
function.

2.1.2 Classification and Regression in Supervised Learning

Classification is a subcategory of supervised learning where the goal is to predict the categorical
class labels of new instances based on past observations. Those class labels are discrete, unordered
values that can be understood as the group memberships of the instances. The previously mentioned
example of e-mail-spam detection represents a typical example of a binary classification task, where

34 Chapter 2

KE®PAAAIO 2. BUILDING INTELLIGENT MACHINES

the machine learning algorithm learns a set of rules in order to distinguish between two possible
classes: spam and non-spam e-mail.

However, the set of class labels does not have to be of a binary nature. The predictive model learned by
a supervised learning algorithm can assign any class label that was presented in the training dataset
to a new, unlabeled instance. A typical example of a multi-class classification task is handwritten
character recognition. Here, a training dataset can be collected that consists of multiple handwritten
examples of each letter in the alphabet. Now, if a user provides a new handwritten character via an
input device, the predictive model will be able to predict the correct letter in the alphabet with certain
accuracy. However, our machine learning system would be unable to correctly recognize any of the
digits zero to nine, for example, if they were not part of our training dataset.

The following figure illustrates the concept of a binary classification task given 30 training samples:
15 training samples are labeled as negative class (circles) and 15 training samples are labeled as
positive class (plus signs). In this scenario, our dataset is two-dimensional, which means that each
sample has two values associated with it: x1 and x2 . Now, a supervised machine learning algorithm
can be used to learn a rule that the decision boundary represented as a black dashed line, that can
separate those two classes and classify new data into each of those two categories given its x1 and x2
values:

x» o O / +"'++
o F
° +
o / + +
o/ ++ *
o/ * + +
X; .

Zxnna 2.4: Binary classification Task.

In regression analysis, a number of predictor (explanatory) variables and a continuous response
variable (outcome) is given, and a relationship between those variables that allows us to predict an
outcome as stated in [13] is trying to be found. For example, let’s assume that there is interest in
predicting the Math SAT scores of students. If there is a relationship between the time spent studying
for the test and the final scores, it can be used as training data to learn a model that uses the study
time to predict the test scores of future students who are planning to take this test. The following
figure illustrates the concept of linear regression. Given a predictor variable x and a response variable
y, a straight line to this data is fitted that minimizes the distance, most commonly the average squared
distance, between the sample points and the fitted line. The intercept and slope learned from this
data can be used in order to predict the outcome variable of new data:

Chapter 2 35

KE®PAANAIO 2. BUILDING INTELLIGENT MACHINES

Zxnpa 2.5: Linear Regression.

2.2 Artificial Neural Networks

The area of Neural Networks has originally been primarily inspired by the goal of modeling biological
neural systems, but has since diverged and become a matter of engineering and achieving good results
in Machine Learning tasks. The basic computational unit of the brain is a neuron. Approximately 86
billion neurons can be found in the human nervous system and they are connected with approximately
10™ — 10" synapses. The diagram below shows a cartoon drawing of a biological neuron (left) and
a common mathematical model (right). Each neuron receives input signals from its dendrites and
produces output signals along its (single) axon. The axon eventually branches out and connects
via synapses to dendrites of other neurons. In the computational model of a neuron, the signals
that travel along the axons (e.g. x0) interact multiplicatively (e.g. w0x0) with the dendrites of the
other neuron based on the synaptic strength at that synapse (e.g. w0). The idea is that the synaptic
strengths (the weights w) are learnable and control the strength of influence (and its direction: excitory
(positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic model, the
dendrites carry the signal to the cell body where they all get summed. If the final sum is above a
certain threshold, the neuron can fire, sending a spike along its axon. In the computational model,
it can be assumed that the precise timings of the spikes do not matter, and that only the frequency
of the firing communicates information. Based on this rate code interpretation, the firing rate of the
neuron with an activation function f can be modeled. This function represents the frequency of the
spikes along the axon.

Tp Uy
synapse
W)

—_—e
axon from a neuron

impulses carried
toward cell bady

branches cell body

dendrites J r/l'/ "/ of axon

f (Zu:r i b)

>
output axon

activation
function

S S
,-;‘j;? .-"J\\ impulses carried b
i away from cell body iy

cell body

Zxnpa 2.6: Biological neuron (left) and its Mathematical model (right).

2.2.1 ANNs Architecture

Neural Networks as neurons in graphs. Neural Networks are modeled as collections of neurons
that are connected in an acyclic graph. In other words, the outputs of some neurons can become
inputs to other neurons. Cycles are not allowed since that would imply an infinite loop in the forward

36 Chapter 2

KE®PAAAIO 2. BUILDING INTELLIGENT MACHINES

pass of a network. Instead of an amorphous blobs of connected neurons, Neural Network models
are often organized into distinct layers of neurons. For regular neural networks, the most common
layer type is the fully-connected layer in which neurons between two adjacent layers are fully pairwise
connected, but neurons within a single layer share no connections. Below are two example Neural
Network topologies that use a stack of fully-connected layers:

depth
-:; O) 5 OUC()BE) height
. output layer - . OOOOO: - ﬁ
input layer 00000 width

hidden layer 1 hidden layer 2

Zxnpa 2.7: Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output
layer with 2 neurons), and three inputs. Right: A 3-layer neural network with three inputs, two hid-
den layers of 4 neurons each and one output layer. Notice that in both cases there are connections

(synapses) between neurons across layers, but not within a layer.

Notice that when the N-layer neural network is referred, the input layer is not measured. Therefo-

re, a single-layer neural network describes a network with no hidden layers (input directly mapped to
output). In that sense, you can sometimes hear people say that logistic regression or SVMs are simply
a special case of single-layer Neural Networks. You may also hear these networks interchangeably
referred to as "Artificial Neural Networks" (ANN) or "Multi-Layer Perceptrons" (MLP). Many people do
not like the analogies between Neural Networks and real brains and prefer to refer to neurons as
units.
Output layer. Unlike all layers in a Neural Network, the output layer neurons most commonly do not
have an activation function (or you can think of them as having a linear identity activation function).
This is because the last output layer is usually taken to represent the class scores (e.g. in classifica-
tion), which are arbitrary real-valued numbers, or some kind of real-valued target (e.g. in regression).
Modern Convolutional Networks contain on orders of 100 million parameters and are usually made
up of approximately 10-20 layers (hence deep learning). However, the number of effective connections
is significantly greater due to parameter sharing. More on this in the Convolutional Neural Networks
module.

2.3 Convolutional Neural Networks

Convolutional Neural Networks [10] are very similar to ordinary Neural Networks from the previous
chapter: they are made up of neurons that have learnable weights and biases. Each neuron receives
some inputs, performs a dot product and optionally follows it with a non-linearity. The whole network
still expresses a single differentiable score function: from the raw image pixels on one end to class
scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the last (fully-connected)
layer and all the tips/tricks, which were developed for learning regular Neural Networks still apply.
ConvNet architectures make the explicit assumption that the inputs are images, which allows us to
encode certain properties into the architecture. These then make the forward function more efficient
to implement and vastly reduce the amount of parameters in the network. As seen in the previous
chapter, Neural Networks receive an input (a single vector), and transform it through a series of hidden
layers. Each hidden layer is made up of a set of neurons, where each neuron is fully connected to all
neurons in the previous layer, and where neurons in a single layer function completely independently
and do not share any connections. The last fully-connected layer is called the "output layer" and in
classification settings it represents the class scores.

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are only of size 32x32x3 (32
wide, 32 high, 3 color channels), so a single fully-connected neuron in a first hidden layer of a regular

Chapter 2 37

KE®PAANAIO 2. BUILDING INTELLIGENT MACHINES

Neural Network would have 32*32*3 = 3072 weights. This amount still seems manageable, but
clearly this fully-connected structure does not scale to larger images. For example, an image of more
respectable size, e.g. 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights.
Moreover, it is useful to have several such neurons, so the parameters would add up quickly! Clearly,
this full connectivity is wasteful and the huge number of parameters would quickly lead to overfitting.
Convolutional Neural Networks take advantage of the fact that the input consists of images and they
constrain the architecture in a more sensible way. In particular, unlike a regular Neural Network,
the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note that
the word depth here refers to the third dimension of an activation volume, not to the depth of a full
Neural Network, which can refer to the total number of layers in a network.) For example, the input
images in CIFAR-10 are an input volume of activations, and the volume has dimensions 32x32x3
(width, height, depth respectively). As quickly is going to be proved, the neurons in a layer will only
be connected to a small region of the layer before it, instead of all of the neurons in a fully-connected
manner. Moreover, the final output layer would for CIFAR-10 have dimensions 1x1x10, because by
the end of the ConvNet architecture the full image into a single vector of class scores will be reduced.
This image will be arranged along the depth dimension.

2.3.1 Layers of CNNs

Convolutional Layer is the core building block of a Convolutional Network that does most of the
computational heavy lifting.

Convolution layer’s parameters consist of a set of learnable filters. Every filter is small spatially (along
width and height), but extends through the full depth of the input volume. For example, a typical
filter on a first layer of a ConvNet might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because
images have depth 3, the color channels). During the forward pass, each filter across the width and
height of the input volume is slided (more precisely, convolved) and compute dot products between
the entries of the filter and the input at any position. As the filter is slided over the width and height
of the input volume a 2-dimensional activation map that gives the responses of that filter at every
spatial position is produced. Intuitively, the network will learn filters that activate when they see
some type of visual feature such as an edge of some orientation or a blotch of some color on the first
layer, or eventually entire honeycomb or wheel-like patterns on higher layers of the network. Now,
there is an entire set of filters in each CONV layer (e.g. 12 filters), and each of them will produce
a separate 2-dimensional activation map. All these activation maps along the depth dimension are
stacked and produce the output volume.

When dealing with high-dimensional inputs such as images, it was proven that it is impractical
to connect neurons to all neurons in the previous volume. Instead, it is better each neuron to be
connected only to a local region of the input volume. The spatial extent of this connectivity is a
hyperparameter called the receptive field of the neuron (equivalently this is the filter size). The extent
of the connectivity along the depth axis is always equal to the depth of the input volume. It is
important to emphasize again this asymmetry in how the spatial dimensions (width and height) are
treated and the depth dimension: The connections are local in space (along width and height), but
always full along the entire depth of the input volume.

Right now it has been specified how many neurons there are in the output. In order to see how they
are arranged the following hyperparameters have to be explained according to [10]:

e The depth of the output volume is a hyperparameter: it corresponds to the number of filters
that is going to be used. Each filter is learning to look for something different in the input. For
example, if the first Convolutional Layer takes as input the raw image, then different neurons
along the depth dimension may activate in presence of various oriented edges, or blobs of color.
A set of neurons that are all looking at the same region of the input is a depth column.

e The stride with which the filter is slided. When the stride is 1, then the filters are moved one
pixel at a time. When the stride is 2 (or uncommonly 3 or more, though this is rare in practice)
then the filters jump 2 pixels at a time. This will produce smaller output volumes spatially.

38 Chapter 2

KE®PAAAIO 2. BUILDING INTELLIGENT MACHINES

e Sometimes it will be convenient to pad the input volume with zeros around the border. The size
of this zero-padding is a hyperparameter. The nice feature of zero padding is that it will allow
us to control the spatial size of the output volumes (most commonly this parameter is used to
exactly preserve the spatial size of the input volume so the input and output width and height
are the same).

e Parameter sharing scheme is used in Convolutional Layers to control the number of para-
meters. The number of parameters can dramatically be reduced by making one reasonable
assumption: That if one feature is useful to compute at some spatial position (x1,y1), then it
should also be useful to compute at a different position (x2,y2).

A convolutional’s layer example is shown below, where parameters have the following values:

e The depth of the output volume is equal with the number of different convolutional filters, which
means that it is 2.

e Striding parameter is equal with the unit as the filters slide one pixel per time and the output
is a square of 3x3 dimensions.

e Here a zero-padding parameter is used and its value is one. The reason is that the output has
to keep information which will be used along the way of the CNN’s execution.

e From the example is is not obvious to define if a sharing parameter is used. The most known is
grouping parameter, whose functionality is going to be explained later.

ol

=
g

S -k mNe-ol ok -oo ool eroo o ats

e (+pad 1) (737x3) Filter W0 (3x313) Filter W1 (3x3x3) Output Volume (3x3x2)
wol, :,0] wils, : 0] oft,:,0] Input Volume (+pad 1) (7x7x3) Filter W (3x3x3) Filier W1 (333x3) Output Volume (3x3x2)
1 395 X[:, 1,01 wol:, :,0] ol:, 1,01

u
el 0 Vi, 0 1
- N I 10 1 e 39 5
DIEE CIENE il 2 [R 1o [l BT
DIe e L [E] BIeIT]o o o o 100 oo 133
0 2 wlllrumll] t:[:,ﬂ:,lz] 0020000 wol:,:,1] wif:, ¢, 1 of:,:,1]
o o [o] =TT == 0002100 Qe — []s 2
o1 [0 : - vrra00e i PEM w2
0 o[B sest LTI o v i (A

I wil:,:,2] XLirtr — wel:,:,2] ,//; T,2)

JRCAE DGO s 8 1

011 — T P

- o]
e oz S A g 1 1 L1

= < - <[
s =

Zxnpa 2.8: Example of Direct Convolution, in the left first output map, right second one.

It is common to periodically insert a Pooling Layer in-between successive Conv layers in a ConvNet
architecture. Its function is to progressively reduce the spatial size of the representation to reduce
the amount of parameters and computation in the network, and hence to also control overfitting.
The Pooling Layer operates independently on every depth slice of the input and resizes it spatially,
using operations like Max, Average, etc. The most common form is a pooling layer with filters of
size 2x2 applied with a stride of 2 downsamples every depth slice in the input by 2 along both width
and height, discarding 75% of the activations. Every MAX operation would in this case be taking a
max over 4 numbers (little 2x2 region in some depth slice). It is worth noting that there are only two
commonly seen variations of the max pooling layer found in practice: A pooling layer with kernelg; .. =
3, stride = 2 (also called overlapping pooling), and more commonly kernels;,. = 2, stride = 2. Pooling
sizes with larger receptive fields are too destructive.

Last but not least, in addition to max pooling there is General pooling too. The pooling units can
also perform other functions, such as average pooling or even L2-norm pooling. Average pooling was
often used historically but has recently fallen out of favor compared to the max pooling operation,
which has been shown to work better in practice.

Chapter 2 39

KE®PAANAIO 2. BUILDING INTELLIGENT MACHINES

224x224x54

e Single depth slice
ool IR 2 (4
X max pool with 2x2 filters
5|6 |78 and stride 2 6| 8
3 | 2 3|4
1| 2 SR
e downsampling ! e ;
112
224 y

Zxnpa 2.9: Pooling layers downsamples the Input.

Neurons in a fully connected layer have full connections to all activations in the previous layer,

as seen in regular Neural Networks. Their activations can hence be computed with a matrix multipli-
cation followed by a bias offset.
Many types of normalization layers have been proposed for use in ConvNet architectures, sometimes
with the intentions of implementing inhibition schemes observed in the biological brain. However,
these layers have since fallen out of favor because in practice their contribution has been shown to
be minimal, if any.

2.4 Development of CNNs

After the establishment of the CNNs for object’s classification applications, a lot of research was
invested to find ways not only to classify one object in an image but many objects and also detect
them. Object detection is the task of finding the different objects in an image and classifying them.
This function happens with the use of algorithms known as Regions with CNNs (R-CNNs). The goal
of R-CNN is to take in an image, and correctly identify where the main objects in the image are, so a
R-CNN functios as follows:

e Input: Image
e Output: Bounding boxes + labels for each object in the image.

R-CNN creates these bounding boxes, or region proposals, using a process called Selective Search
which you can read about in [4]. An R-CNN arcitecture uses the following steps:

e Generate a set of proposals for bounding boxes.
e Run the images in the bounding boxes through a pre-trained AlexNet.

e Run the box through a linear regression model to output tighter coordinates for the box once
the object has been classified.

Testing R-CNNs has the drawback of slow velocity due to many executions, one for every bounding
box. In order to overcome this, researchers were driven to Fast and Faster R-CNNs as stated in [4]
using techniques such as Region of Interest Pooling in order to decrease the overall execution time.

40 Chapter 2

Kepaiawo 3

Introduction to CAFFE, Myriad2 and
Tegra Jetson TX1

This chapter is going to introduce basic terminology about the software and the hardware used for
the CNN implementation. Useful information about the ImageNet’s CNNs is provided as well.

3.1 Convolutional Architecture for Fast Feature Embedding

Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is
developed by Berkeley Al Research (BAIR) and by community contributors. Yangqing Jia created the
project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Caffe is an
anvanced framework with the following advantages as stated in [9]:

o Expressive architecture encourages application and innovation. Models and optimization are
defined by configuration without hard-coding. Switch between CPU and GPU by setting a single
flag to train on a GPU machine then deploy to commodity clusters or mobile devices.

o Extensible code fosters active development. In Caffe’s first year, it has been forked by over
1,000 developers and had many significant changes contributed back. Thanks to these contri-
butors the framework tracks the state-of-the-art in both code and models.

e The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training
and deploying general-purpose convolutional neural networks and other deep models efficiently
on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU
computation, processing over 40 million images a day on a single K40 or Titan GPU (2.5 ms
per image).

3.1.1 Layers

Caffe stores and communicates data in 4-dimensional arrays called blobs. Blobs provide a unified
memory interface, holding batches of images (or other data, parameters, or parameter updates. A
Caffe layer is the essence of a neural network layer: it takes one or more blobs as input, and yields
one or more blobs as output. Layers have two key responsibilities for the operation of the network
as a whole: a forward pass that takes the inputs and produces the outputs, and a backward pass
that takes the gradient with respect to the output, and computes the gradients with respect to the
parameters and to the inputs, which are in turn back-propagated to earlier layers. Caffe provides
a complete set of layer types including: convolution, pooling, inner products (example in fig.3.1),
nonlinearities like rectified linear and logistic, local response normalization, elementwise operations,
and losses like softmax and hinge. These are all the types needed for state-of-the-art visual tasks.
Coding custom layers requires minimal effort due to the compositional construction of networks.

41

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

3.1.2 Training a Network

Caffe trains models by the fast and standard stochastic gradient descent algorithm. Figure shows
a typical example of a Caffe network (AlexNet) for visual recognition tasks. During training, a data
layer fetches the images and labels from disk, passes it through multiple layers such as convolution,
pooling, normalization and inner products and feeds the final prediction into a classification loss layer
that produces the loss and gradients which train the whole network. This example is found in the
Caffe source code at "models/bvlc_alexnet/train_val.prototxt". Data are processed in mini-batches
that pass through the network sequentially. Vital to training are learning rate decay schedules,
momentum, and snapshots for stopping and resuming, all of which are implemented and documented.

|r=|||5 (ReLU) | | poolS (MAX Pooling) kemel size: 3 siride: 2 pad: 0

pooll (MAX Pooling) kemel size: 3 stride: 2 pad: 0

56

Zxnpa 3.1: Training Prototxt of AlexNet, where the colored boxes represent layers and the gray o-
ctagons represent data blobs produced by or fed into the layers.

3.1.3 Testing of a Network

Caffe supports testing of any Convolutional Neural Network by using two files. The first file named
deploy.prototxt desrcibes the architecture of the Network. The .prototxt file has two different formats
for serialized data (textual or binary). The text format is human-readable and modifiable (and the
corresponding files usually have the extension .prototxt), but it takes up a lot more space than the
binary format. On the other hand, .caffemodel file comes as a result from the Network training and
it contains both the weights of the appropriate layers(e.g. Convolutional and InnerProduct) and the
biases. This file is on binary form in order to allocate less memory. Furthermore, except for these
two files that need to be provoked, an appropriate input in every Convolutional Neural Network has
to be given as well. This input is an image, which is provided through preprocessing with Python
Libraries.

3.2 Description of Myriad2 multiprocessor SoC

The Myriad2 SoC [2] is developed by Movidius Ltd, that recently joined Intel’s Perceptual Computing
Group to accelerate adoption of visually intelligent devices. The Intel Movidius Myriad 2 VPU is
the industry’s first always-on vision processor. It delivers high-performance machine vision and
visual awareness in severely power-constrained enviroments. Standing at the intersection of low-
power and high performance, the Myriad 2 family of processors are transforming the capabilities
of devices. Myriad 2 gives developers immediate access to its advanced vision processing core, while

42 Chapter 3

KE®PAANAIO 3. INTRODUCTION TO CAFFE, MYRIADZ AND TEGRA JETSON TX1

allowing them to develop proprietary capabilities that provide true differentiation. Benefits that the
Myriad 2 VPU offers are:

An ultra-low power design. For mobile and connected devices where battery life is critical,
Intel’s Myriad™ 2 VPU provides a way to combine advanced vision applications in a low power
profile. This enables new vision applications in small form factors that could not exist before.

A high-performance processor. Important is bringing vision technologies in connected devices
closer to the capabilities of human vision. Intel’s Myriad™ 2 VPU enables advanced vision
applications that are impossible with conventional processors.

A programmable architecture. The flexibility for developers to implement differentiated and
proprietary applications is fundamental to Intel® Movidius™ Myriad™ 2. Our optimized so-
ftware libraries give device manufacturers the ability to differentiate, not duplicate, at the core
level.

A small-area footprint. To conserve space inside mobile, wearable, and embedded devices,
Intel’s Myriad™ 2 VPU was designed with a very small footprint that can easily be integrated
into existing products.

Additional Chip Details. The Intel® Movidius™ Myriad™ 2 architecture comprises a complete
set of interfaces, a set of enhanced imaging/vision accelerators, a group of 12 specialized ve-
ctor VLIW processors called SHAVEs, and an intelligent memory fabric that pulls together the
processing resources to enable power efficient processing.

Interfaces

Hardware Accelerators

Array of RISC CPU
Vector

RISC CPU

==e -

Memory Fabric

Zxfpa 3.2: Hardware Parts of Myriad2.

3.2.1 Uniqure VPU Architecture

A brief overview of the Myriad 2 common features are presented below:

12 x SHAVEVLIW vector processor, 2 x RISC processor
There is 2 MB of on-chip RAM (CMX)

128/512 MB of in-package stacked DDR

LEON RISC has 256 KB L2 cache memory

LEON RT has 32 KB L2 cache memory

Exceptionally high sustainable on-chip bandwidth
SIPP Image Signal Processing hardware accelerators

Wide range of 10 peripherals interfaces, such as SPI, 12C, I12S, SDIO, Ethernet, USB

Chapter 3 43

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

e Imaging interfaces, such as MIPI, CIF, LCD
The Myriad 2 family consists of the following socket revisions:
e MA2x5x { MA2150 / MA2155 / MA2450 / MA2455

The design principles for Intel® Movidius™ Myriad™ VPUs follows from a careful balance of program-
mable vector-processors, dedicated hardware accelerators and memory architecture for optimized
data flow. Myriad VPUs feature a software-controlled, multi-core, multi-ported memory subsystem
and caches which can be configured to allow a large range of workloads. This proprietary technology
allows for exceptionally high sustainable on-chip data and instruction bandwidth to support the array
of SHAVE processors, 2 CPUs and high-performance video hardware accelerators as extracted from

[1]:

e LeonOSs is the main processor, because after booting the device the execution of the program
starts from OS, which belong to the CPU Sub System(CSS). The CSS have been designed to be the
main communication and control unit with the outside world via the external communication
peripherals: 12C blocks, I12S blocks, SPI blocks, UART, GPIO, ETH and USB3.0. Leon OS (LOS)
RISC processor is the control unit of this block, but in this block the Leon owns much bigger
L1 (32 KB) and L2 (256 KB) caches, which allows to put a modern RTOS on it. This block
also offers an AHB DMA engine for more optimal data transfer via the external peripherals.
Beside handling the external interfaces and communication Leon OS could also control SHAVE
processors imaging algorithms.

e LeonRT is the additional coordinator and belongs to the Media Sub System(MSS). The MSS is
the architectural unit designed for allowing external connections with imaging devices (camera
sensors, LCDs, HDMI controllers etc.) as well as allowing use of the HW filters available in
Myriad 2. As such it is comprised by the MIPI, LCD, CIF interfaces, the SIPP HW filters and well
as the AMC block which enables connections between these and CMX (SRAM) memory. Coordi-
nating frame input and controlling the pipelines set in place usually require some coordination
effort. As such the Myriad 2 platform offers the Leon RT RISC as part of the MSS. Leon RT (LRT)
is a RISC processor with a fair amount of L2 cache memory (32 KB). Leon RT is only one arbiter
away from any Interface or HW filter register settings so it can efficiently change any required
parameters of the MSS blocks with the minimum amount of delay due to bus arbitration.

e SHAVEs have a computation-role and they are managed by the two SPARC processors. In
order to guarantee sustained high performance and minimize power, the Movidius proprietary
processor called SHAVE (Streaming Hybrid Architecture Vector Engine) contains wide and deep
register-files coupled with a Variable-Length Long Instruction-Word (VLLIW) controlling multiple
functional units including extensive SIMD capability for high parallelism and throughput at
both a functional unit and processor level. The SHAVE processor is a hybrid stream processor
architecture combining the best features of GPUs, DSPs and RISC with both 8/16/32 bit integer
and 16/32 bit floating point arithmetic as well as unique features such as hardware support
for sparse data structures. The architecture is designed to maximize performance-per-watt
while maintaining ease of programmability, especially in terms of computer vision and machine
learning workloads.

As far as the memory of the chip is concerned, Myriad 2 provides both DDR Memory and CMX
Memory and ways to share data between them:

e DDR is the main memory of the chip, both LeonOS and LeonRT may execute from DDR with
minimum penalty due to optimally choosen cache sizes. This is the place, where heavy data,
like weights of a DNN can be stored statically.

e The CMX acronym comes from Connection Matrix, which belies the fact it is comprised of
several smaller SRAM blocks. The CMX memory of 2 MB may be considered as 16x128 KB
‘slices’. Each SHAVE processor has preferential ports into a 128 KB slice of the CMX memory.

44 Chapter 3

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

Zxnua 3.3: Processors of Myriad 2.

As such, 12x128 KB = 1536 KB are preferentially used by SHAVE cores but the remaining 512
KB of CMX memory are generally usable by any other resources. Usually, this area is used by
CMX-DMA driver or even by HW SIPP filters usage or Leon OS timing critical code which would
not be able to be kept in DDR.

e The CMX DMA resides between the 128-bit MXI bus and CMX memory. It provides for sche-
duling high-bandwidth data transfers between CMX and DRAM in either direction. It also
supports data transfers from DRAM back to DRAM or from CMX to CMX, allowing data to be
relocated within the same physical location. The CMX DMA engine processes a linked-list of
DMA descriptors, which are created by the driver.

e SIPP is a proprietary software/hardware mechanism used by the Myriad2 processor to ach-
ieve highly optimized scheduling of Image Signal Processing (ISP) pipeline functionality. This
mechanism is responsible for utilizing the HW filters provided by Myriad2 to achieve the best
performance possible.

Software Controlled 1/0 Multiplexing)
INTERFACES
SPI, USB3, 12€, 125, LCD, CIF, UART, ETHERNET, ETC.
I
[Imaging/Vision Hardware Accelerators]

Main Bus

Zxnpa 3.4: Detailed Overview of Myriad’s Hardware.

Chapter 3 45

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

3.3 Description of NVIDIA Tegra Jetson TX1

A powerful supercomputer on a module, Jetson TX1 is capable of delivering the performance and
power efficiency needed for the latest visual computing applications according to [3]. It’s built around
the revolutionary NVIDIA Maxwell™ architecture with 256 CUDA cores delivering over 1 TeraFLOPs of
performance. 64-bit CPUs, 4K video endcode and decode capabilities, and a camera interface capable
of 1400 MPix/s make this the best system for embedded deep learning, computer vision, graphics,
and GPU computing.

.._E
Wi
"

1
]

a

(gt

Zxnua 3.5: Jetson TX1 Module.

3.3.1 Building AI Applications with Tegra

NVIDIA JetPack SDK is the most comprehensive solution for building Al applications. Key Features
in JetPack:

46

TensorRT is a high performance deep learning inference runtime for image classification, seg-
mentation, and object detection neural networks. It speeds up deep learning inference as well as
reducing the runtime memory footprint for convolutional and deconvolutional neural networks.

CUDA Deep Neural Network (cuDNN) library provides high-performance primitives for all deep
learning frameworks. It includes support for convolutions, activation functions and tensor
transformations.

CUDA Toolkit provides a comprehensive development environment for C and C++ developers
building GPU-accelerated applications. The toolkit includes a compiler for NVIDIA GPUs, math
libraries, and tools for debugging and optimizing the performance of your applications.

VisionWorks is a software development package for Computer Vision (CV) and image processing.
It Includes VPI (Vision Programming Interface), a set of optimized CV primitives for use by CUDA
developers. The NVX library enables direct access to VPI, and the OVX library enables indirect
access to VPI via OpenVX framework.

The NVIDIA® Tegra® Linux (LAT) Driver Package supports development on the Jetson Platform.

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine
learning software library. OpenCV was built to provide a common infrastructure for computer
vision applications and to accelerate the use of machine perception in the commercial products.
Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the
code.

Chapter 3

KE®PAANAIO 3. INTRODUCTION TO CAFFE, MYRIADZ AND TEGRA JETSON TX1

3.4 Description of Imagenet CNNs

Convolutional neural networks are fantastic for visual recognition tasks. Good ConvNets are beasts
with millions of parameters and many hidden layers. In fact, a bad rule of thumb is: ‘higher the
number of hidden layers, better the network’. Network architecture design is a complicated process
and will take a while to learn and even longer to experiment designing on your own. Most ConvNets
have huge memory and computation requirements, especially while training. Hence, this becomes an
important concern. Similarly, the size of the final trained model becomes an important to consider
if you are looking to deploy a model to run locally on mobile. As you can guess, it takes a more
computationally intensive network to produce more accuracy. So, there is always a trade-off between
accuracy and computation. Apart from these, there are many other factors like ease of training, the
ability of a network to generalize well etc. The networks described below are the most popular ones
and are presented in the order that they were published and also had increasingly better accuracy
from the earlier ones as stated in [5].

3.4.1 AlexNet

The one that started it all (Though some may say that Yann LeCun’s paper in 1998 was the real
pioneering publication). This paper, titled [7], has been cited a total of 6,184 times and is widely
regarded as one of the most influential publications in the field. Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton created a "large, deep convolutional neural network" that was used to win the 2012
ILSVRC (ImageNet Large-Scale Visual Recognition Challenge). For those that aren’t familiar, this
competition can be thought of as the annual Olympics of computer vision, where teams from across
the world compete to see who has the best computer vision model for tasks such as classification,
localization, detection, and more. 2012 marked the first year where a CNN was used to achieve a
top 5 test error rate of 15.4 percent. (Top 5 error is the rate at which, given an image, the model
does not output the correct label with its top 5 predictions). The next best entry achieved an error of
26.2 percent, which was an astounding improvement that pretty much shocked the computer vision
community. Safe to say, CNNs became household names in the competition from then on out.

In the paper, the group discussed the architecture of the network (which was called AlexNet). They
used a relatively simple layout, compared to modern architectures. The network was made up of
5 conv layers, max-pooling layers, dropout layers, and 3 fully connected layers. The network they
designed was used for classification with 1000 possible categories.

192

7

2048' 2048 \dense

{ X 192 192 128 Max
. 2088 2048
228\listride Max 128 Max pooling
of 4 pooling pooling
3 48

Zxnpa 3.6: AlexNet Architecture with two "streams", due to computationally expensive training pro-
cess.

e Trained the network on ImageNet data, which contained over 15 million annotated images from
a total of over 22,000 categories.

e Used ReLU for the nonlinearity functions (Found to decrease training time as ReLUs are several
times faster than the conventional tanh function).

Chapter 3 47

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

e Used data augmentation techniques that consisted of image translations, horizontal reflections,
and patch extractions.

e Implemented dropout layers in order to combat the problem of overfitting to the training data.

e Trained the model using batch stochastic gradient descent, with specific values for momentum
and weight decay.

e Trained on two GTX 580 GPUs for five to six days.

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012 was the coming out
party for CNNs in the computer vision community. This was the first time a model performed so well
on a historically difficult ImageNet dataset. Utilizing techniques that are still used today, such as
data augmentation and dropout, this paper really illustrated the benefits of CNNs and backed them
up with record breaking performance in the competition.

3.4.2 ZF Net

With AlexNet stealing the show in 2012, there was a large increase in the number of CNN models
submitted to ILSVRC 2013. The winner of the competition that year was a network built by Matthew
Zeiler and Rob Fergus from NYU. Named ZF Net [6], this model achieved an 11.2 percent error rate.
This architecture was more of a fine tuning to the previous AlexNet structure, but still developed
some very keys ideas about improving performance. Another reason this was such a great paper is
that the authors spent a good amount of time explaining a lot of the intuition behind ConvNets and
showing how to visualize the filters and weights correctly.

In this paper titled "Visualizing and Understanding Convolutional Neural Networks", Zeiler and Fergus
begin by discussing the idea that this renewed interest in CNNs is due to the accessibility of large
training sets and increased computational power with the usage of GPUs. They also talk about the
limited knowledge that researchers had on inner mechanisms of these models, saying that without
this insight, the "development of better models is reduced to trial and error". While currently there is
a better understanding than 3 years ago, this still remains an issue for a lot of researchers! The main
contributions of this paper are details of a slightly modified AlexNet model and a very interesting way
of visualizing feature maps.

image size 224 110 26 13 13 13 _ _
filter size 7 ¢ 3 13
1 e384 | W1 384 256
\2‘56 N \ N

stride 2 96 33 max 33 max C
3x3 max pool[| contras pool | [contrast pool 4096 4096 class
stride 2 norm, stride 2| [norm. stride 2 units| units| | softmax

5

3

55
lz 13 | 3 6
I 96 1 256 256

Input Image o = =
Layer 1 Layer 2 Layer 3 Layer4 Layer 5 Layer6 Layer7 QOutput

Yxfpa 3.7: ZF Net architecture.

e Very similar architecture to AlexNet, except for a few minor modifications.
e AlexNet trained on 15 million images, while ZF Net trained on only 1.3 million images.

e Instead of using 11x11 sized filters in the first layer (which is what AlexNet implemented), ZF
Net used filters of size 7x7 and a decreased stride value. The reasoning behind this modification
is that a smaller filter size in the first conv layer helps retain a lot of original pixel information

48 Chapter 3

KE®PAANAIO 3. INTRODUCTION TO CAFFE, MYRIADZ AND TEGRA JETSON TX1

in the input volume. A filtering of size 11x11 proved to be skipping a lot of relevant information,
especially as this is the first conv layer.

e As the network grows, also a rise in the number of filters used is observed.

e Used ReLUs for their activation functions, cross-entropy loss for the error function, and trained
using batch stochastic gradient descent.

e Trained on a GTX 580 GPU for twelve days.

e Developed a visualization technique named Deconvolutional Network, which helps to examine
different feature activations and their relation to the input space. Called "deconvnet" because it
maps features to pixels (the opposite of what a convolutional layer does).

The basic idea behind how this works is that at every layer of the trained CNN, you attach a "deconvnet"
which has a path back to the image pixels. An input image is fed into the CNN and activations are
computed at each level. This is the forward pass. Now, let’s say that there is a need to examine
the activations of a certain feature in the 4th conv layer. The activations of this one feature map
need to be stored and set all the other activations in the layer to 0.Then pass this feature map as the
input into the deconvnet. This deconvnet has the same filters as the original CNN. This input then
goes through a series of unpool (reverse maxpooling), rectify, and filter operations for each preceding
layer until the input space is reached. ZF Net was not only the winner of the competition in 2013,
but also provided great intuition as to the workings on CNNs and illustrated more ways to improve
performance. The visualization approach described helps not only to explain the inner workings of
CNNs, but also provides insight for improvements to network architectures.

3.4.3 Network in Network

It is interesting how the convolution filters are designed and how extracted features to class scores
are mapped. This formed the basis of the Inception architecture. Two new concepts were introduced
in this CNN architecture design according to [17]:

e MLPconv: Replaced linear filters with nonlinear Multi Linear Perceptrons to extract better fe-
atures within the receipt field (see the figure above). This helped in better abstraction and
accuracy.

e Global Average Pooling: Got rid of the fully connected layers at the end thereby reducing para-
meters and complexity. This was replaced by the creation of as many activation maps in the last
layer as there are classes. This was followed by averaging these maps to arrive at final scores,
which is passed to softmax. This is performant and more intuitive.

Network in network introduced the concept of having a neural network itself in place of a convolution
filter. The input to this mini network would be the convolution, and the output would be the value
of a neuron in the activation. Hence it does not alter the input/output characteristics of traditional
filters. This mini network, called MLPconv, can then convolved over the input. The benefit of having
such an arrangement is two-fold:

e It is compatible with the backpropagation logic of neural nets, thus this fits well into existing
architectures of CNN’s.

e It can itself be a deep model leading to rich separation between latent features.

In traditional CNN architectures, the feature maps of the last convolution layer are flattened and
passed on to one or more fully connected layers, which are then passed on to softmax logistics layer
for spitting out class probabilities. The issue with this approach is that it is hard to decode how the
usual fully connected layers seen at the end of CNN architectures map to class probabilities. They are
black boxes between the convolution layers and the classifier. They are also prone to overfitting and
come with lots of parameters to train. An estimate says that the last FC layers contain 90 percent

Chapter 3 49

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

of the parameters of the network. The last MLPconv layer produces as many activation maps as the
number of classes being predicted. Then, each map is averaged giving rise to the raw scores of the
classes. These are then fed to a SoftMax layer to produce the probabilities, totally making FC layers
redundant. The advantages of this approach are:

e The mapping between the extracted features and the class scores is more intuitive and direct.
The feature can be treated as category confidence.

e An implicit advantage is that there are no new parameters to train (unlike the FC layers), leading
to less overfitting.

e Global average pooling sums out the spatial information, thus it is more robust to spatial
translations of the input.

3.4.4 VGG Net

Simplicity and depth. That’s what a model created in 2014 (weren’t the winners of ILSVRC 2014) best
utilized with its 7.3 percent error rate. Karen Simonyan and Andrew Zisserman of the University of
Oxford created a 19 layer CNN that strictly used 3x3 filters with stride and pad of 1, along with 2x2
maxpooling layers with stride 2.

ConvNet Configuration

A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers

input (224 x 224 RGB image)
conv3-b4 conv3-64 conv3-b4 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv1-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv1-512 | conv3-512 | conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Zxnua 3.8: The 6 different versions of VGG Net, with configuration D giving the best results.

e The use of only 3x3 sized filters is quite different from AlexNet’s 11x11 filters in the first layer
and ZF Net’s 7x7 filters. The authors’ reasoning is that the combination of two 3x3 conv layers
has an effective receptive field of 5x5. This in turn simulates a larger filter while keeping the
benefits of smaller filter sizes. One of the benefits is a decrease in the number of parameters.
Also, with two conv layers, we’re able to use two ReLU layers instead of one.

e 3 conv layers back to back have an effective receptive field of 7x7.

e As the spatial size of the input volumes at each layer decrease (result of the conv and pool
layers), the depth of the volumes increase due to the increased number of filters as you go down
the network.

50 Chapter 3

KE®PAANAIO 3. INTRODUCTION TO CAFFE, MYRIADZ AND TEGRA JETSON TX1

Interesting to notice that the number of filters doubles after each maxpool layer. This reinforces
the idea of shrinking spatial dimensions, but growing depth.

e Built model with the Caffe toolbox.

Used scale jittering as one data augmentation technique during training.

e Used RelLU layers after each conv layer and trained with batch gradient descent.

Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

VGG Net is one of the most influential papers [18], because it reinforced the notion that convolutional
neural networks have to have a deep network of layers in order for this hierarchical representation of
visual data to work. Keep it deep. Keep it simple.

3.4.5 GoogleNet

The idea of simplicity in network architecture, Google threw it out the window with the introduction
of the Inception module. GoogLeNet is a 83 layer CNN and was the winner of ILSVRC 2014 with
a top 5 error rate of 6.7 percent. This was one of the first CNN architectures that really strayed
from the general approach of simply stacking conv and pooling layers on top of each other in a
sequential structure. The authors of the paper [12] also emphasized that this new model places
notable consideration on memory and power usage.

Zxnpa 3.9: GoogleNet’s Architecture.

After looking at the structure of GooglLeNet, someone can notice immediately that not everything
is happening sequentially, as seen in previous architectures. Pieces of the network are happening in
parallel. The box with the parallel layers is named inception module, let’s take a closer look at what
it’s made of.

Chapter 3 51

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

Filter
concatenation

ﬂ‘k

3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions) 4 [}
1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

Zxfhpa 3.10: Full Inception Module.

The bottom green box is our input and the top one is the output of the model (Turning the above
picture right 90 degrees will offer the visualization of the model in relation to the last picture which
shows the full network). Basically, at each layer of a traditional ConvNet, you have to make a choice
of whether to have a pooling operation or a conv operation (there is also the choice of filter size). What
an Inception module offers is that all of these operations can be performed in parallel. In fact, this was
exactly the "naive" idea that the authors came up with. They thought to remove 1x1 convolutions,
but following this way lead to too many outputs. Following this methodology would end up with
an extremely large depth channel for the output volume. The way that the authors address this is
by adding 1x1 conv operations before the 3x3 and 5x5 layers. The 1x1 convolutions (or network in
network layer) provide a method of dimensionality reduction.

e Used 9 Inception modules in the whole architecture, with over 100 layers in total.

e No use of fully connected layers. They use an average pool instead, to go from a 7x7x1024
volume to a 1x1x1024 volume. This saves a huge number of parameters.

e Uses 12x fewer parameters than AlexNet.

e During testing, multiple crops of the same image were created, fed into the network, and the
softmax probabilities were averaged to give us the final solution.

e There are updated versions to the Inception module.
e Trained on "a few high-end GPUs within a week".

GoogLeNet was one of the first models that introduced the idea that CNN layers didn’t always have
to be stacked up sequentially. Coming up with the Inception module, the authors showed that a
creative structuring of layers can lead to improved performance and computationally efficiency. This
paper has really set the stage for some amazing architectures that appeared in the latest years.

3.4.6 SqueezeNet

The paper of SqueezeNet [11] provides a smart architecture as well as a quantitative analysis. For the
same accuracy of AlexNet, SqueezeNet can be 3 times faster and 500 times smaller. The main ideas
of SqueezeNet are:

e Using 1x1(point-wise) filters to replace 3x3 filters, as the former only 1/9 of computation.

52 Chapter 3

KE®PAAAIO 3. INTRODUCTION TO CAFFE, MYRIAD2 AND TEGRA JETSON TX1

e Using 1x1 filters as a bottleneck layer to reduce depth to reduce computation of the following
3x3 filters.

e Downsample late to keep a big feature map.

The building brick of SqueezeNet is called fire module, which contains two layers: a squeeze layer
and an expand layer. A SqueezeNet stacks a bunch of fire modules and a few pooling layers. The
squeeze layer and expand layer keep the same feature map size, while the former reduce the depth to
a smaller number, the later increase it. The squeezing (bottoleneck layer) and expansion behavior is

common in neural architectures. Another common pattern is increasing depth while reducing feature
map size to get high level abstract.

1000

512
v
global allvgpool
softmax

convl
maxplooI/Z

3x3 Conv

1x1 Conv
Expand

1x1 Conv
Expand

Concat/Eltwise
128

Concat/Eltwise
128

Zxnpa 3.11: SqueezeNet Architecture.

The squeeze module only contains 1x1 filters, which means it works like a fully-connected layer
working on feature points in the same position. In other words, it doesn’t have the ability of spatial
abstract. As its name says, one of its benifits is to reduce the depth of feature map. Reducing depth
means the following 3x3 filters in the expand layer has fewer computation to do. It boosts the speed

as a 3x3 filter need as 9 times computation as a 1x1 filter. It is fact that too much squeezing limits
information flow and too few 3x3 filters limits space resolution.

Chapter 3 53

Kepaliawo 4

Basic Concept of CNN Engine

This chapter describes the process which is followed in order to make our CNN engine implementation
able to support Convolutional Neural Networks. Furthermore, it provides the basic ideas of the old
CNN engine’s version and outlines both the Hardware and Software changes, which had to be done
in order to support "deep" CNNs.

4.1 CNN Engine’s Basic Ideas

First of all, it is important to configure the Myriad2 SoC, by setting up the processor frequency and
the caches. The purpose is to describe the need for the existence of this code and how several
parts of it are bound together. The main idea begins by using the Caffe framework to import CNN’s
parameters, weights, biases and input data by taking advantage of CAFFE’s dictionaries net.blobs
and net.params. More specifically the CNN configuration defines the architecture and architectural
parameters of the network. Examples of these parameters include:

¢ Input data dimensions and channels (e.g. image size and colors)

e Number of convolutional filters

e Size of convolutional filters

e Pooling/downsampling size and method (e.g. max-pool or average)
e Number of convolution and pooling layers

e Size and number of fully connected layers

e Number of normalization layers

e Output representation size and type (e.g. the number of classes of the input dataset and the
predicted class of an input sample)

e Some more parameters like function variables of the Jumptable and the output buffer, which
will be explained later.

All these parameters and data (e.g. weights and biases) of the CNN Configuration are stored statically
in the main memory of Myriad 2. After this, a method is called which creates all the nodes of the
network initializing them with their parameters according to their layer type. Now, the execution of
the network’s nodes begin, which mean the following:

e Preprocess the Input appropriately with the specific way, which will be explained in chapter 5.

e Start SHAVEs, which execute their entry code from CMX until they use the Jumptable function.
With the Jumptable function, they jump back to DDR in order to save their C code into DDR
area.

54

KE®PAANAIO 4. BASIC CONCEPT OF CNN ENGINE

e After these, SHAVEs transfer their data into local memories and call the computation assembly

functions stated in CMX, before they return their results for the next layer’s execution.

The above ideas were applied for CNNs with restricted number of layers and input dimensions like

the one in 4.1.

data: Data
data ——™® blobshapes:

convl: Convoluion shape: [1.8.28,28]
convolution param l
num output: 24
kernel size: 5 pooll: Pooling
stride: 1 convl poaoling param
blob shapes: * pool: max
convl [1,24,24 24] .L kernel size: 2
stride: 2
——* blob shapes:
pooll pooll:[1,24,12,12]
conv2: Convaoluion
convolution param 'lv
num output: 56
kernel size: 5 < conv?
stride: 1
blob shapes: .)
conv2 [1,56,8,8] l LniERel LY
pooling param
pool: max
pool2 ———————» kemelsize:2
stride: 2
blob shapes:
ipl: InnerProduct l pooi2:[1,56.4.4]
inner product param
num output: 496 ipl
blob shapes: -«
ipl [1,496]
relul
relul: ReLU InPlace
blob shapes: i
ipl:[1.496] ip2: InnerProduct
ip2 inner product param
num output: 10
blob shapes:
pooll:[1,10]

Zxfpa 4.1: Lenet8 CNN.

In the image 4.1 the following layers and parameters are oserved:

data: This layer accepts the input and copies it to the output without editing it. Lenet8 has
an input blob of four dimensional shape [1,8,28,28]. In order to preprocess the input image
and transform it into appropriate form for the network, an one dimensional picture of a digit
between zero and nine is chosen. After this, the image is reshaped into 28x28 dimensions and
eight copies of the reshaped digit are made.

conv: Layers that perform convolution, include some parameters and a blob shape. Number of
outputs represent the number of different convolutional filters and the depth dimension of the
output as well. Kernel size represents the height and the width of the convolutional filter and
the quantum quantity that each filter will convolve in the input image. Thus, stride shows the
number with which the filter is slided, when the stride is 1 like in our fig. 4.1 filters are moved
one pixel at a time. Blob shapes show always the output dimensions.

pool: It is common to periodically insert a pooling layer in-between successive convolutional
layers in a ConvNet architecture. Its function is to progressively reduce the spatial size of the
representation in order to reduce the amount of parameters and computation in the network.
This is made with max or average operation.

Chapter 4 55

KE®PAAAIO 4. BASIC CONCEPT OF CNN ENGINE

e ip: This is a fully connected node that generates a vector of Y elements and needs a matrix of
weights to operate. In particular, it needs a [Y x previous output blob matrix], because the input
3D volume collapses into a vector and gets multiplied with a weights matrix. This matrix-vector
multiplication results into a [Y x 1] matrix, i.e. a Y element vector.

e ReLU: ReLU can be attached in every layer and its role is to compute the maximum element
between every element and zero. With other words it rejects negative values.

4.2 Hardware Attributes

In order to support the current implementation some drivers and hardware attributes had to be
used. First of all, the Myriad2 Hardware had to be configured. The code starts to be executed by Leon
OS as it is placed into the directory "/leon". As a result, the proper compiler is selected automatically
by the MDK build system. The entry point of the whole application is named POSIX_Init, as the
RTEMS operating system with thread support is used. Below the two main hardware attributes are
presented.

e The new Memory Layout of the Device which supports "deep" CNNs.

e The explanation of the CMX DMA Driver, which is used by every layer.

4.2.1 Memory Map of the Device

Deep neural networks are quite large for an embedded device. The CMX memory available for each
SHAVE is maximum 128KB. A large network requires multiple variations of common operations such
as convolution, pooling and inner product. For instance, convl1x11, conv7x7, convbxb, conv3x3,
convlxl, pool3x3, pool2x2 with different amounts of striding are required. For improved performance,
these variations are written in assembly language to fully exploit the SIMD capabilities of the ISA
provided by Myriad2. As a result, placing them inside CMX leaves little to no space available for local
buffers and other logic. Therefore CMX memory presents a limitation - at a very early stage - on the
capability of Myriad2 to run larger networks.

Another important reason that justifies the relocation of code away from CMX is the existence of
local buffers. The main idea of processing the data is based on the paradigm of bringing data from
DDR to the CMX, which is close to the SHAVEs, processing the data and finally writing the results
back to the DDR. The presence of local buffers are required to store intermediate data and other
temporary results before and after the processing step. Also, local buffers help to improve the overall
performance, since the bandwidth of SHAVEs to the CMX is practically unlimited. Before seeing the
memory map document of our CNN engine implementation memory regions of Myriad 2 should be
clear, so they are presented in table 4.1.

Memory | Size LEON Access Cost | SHAVE Access cost | Start Address
CMX 2 MB Low Low 0x70000000
DDR 128 MB | High High random access | 0x80000000

512 MB | Low when cache hit | Moderate L2 hit
Low for L1 hit

[Tivakag 4.1: Memory areas of Myriad 2.

CMX is organized like is shown in table 4.2. In fact, CMX is comprised of several smaller SRAM
blocks, which make it extremely fast. In other words, CMX is much like a cache, but it is manually
controlled by the programmer. The CMX memory of 2 MB may be considered as 16x128 KB "slices".
A couple of notes regarding CMX are worth mentioning at this point:

e Each SHAVE has higher bandwidth/lower power access to its "own" local slice.

56 Chapter 4

© 0N G WN

KE®PAANAIO 4. BASIC CONCEPT OF CNN ENGINE

e Local slices follow the same sequence with SHAVEs. SHAVEO refers to the lowest 128 KB of

CMX, SHAVE1 to next 128 KB, SHAVE11 is assigned to slice 11.

e Slices 12 to 15 are not tied to any SHAVE. They may be freely used for any other purposes, as
for example allocate there variables from Leon code, in order that SHAVEs access them rapidly.

Important to notice that there is also a possibility of accessing data from memory in an uncached
manner. Both the DDR and the CMX memory have uncached views of the memory address space.
In the case of DDR, addresses having MSB "0" for example: Ox8******* represent cached views,
while addresses starting with MSB "1", for example OxC******* represent uncached views. For CMX,
0x78****** represent uncached views and 0x70****** represent cached views. This feature allows easy
sharing of control data between the Leon OS and SHAVEs.

Slice | Start Address | End Address
0 0x70000000 0x7001FFFF
1 0x70020000 0x7003FFFF
2 0x70040000 0x7005FFFF
3 0x70060000 0x7007FFFF
4 0x70080000 0x7009FFFF
5 0x700A0000 0x700BFFFF
6 0x700C0000 0x700DFFFF
7 0x700E0000 0x700FFFFF
8 0x70100000 0x7011FFFF
9 0x70120000 0x7013FFFF
10 0x70140000 0x7015FFFF
11 0x70160000 0x7017FFFF
12 0x70180000 0x7019FFFF
13 0x701A0000 0x701BFFFF
14 0x701C0000 0x701DFFFF
15 0x701E0000 0x701FFFFF
[Mivakag 4.2: CMX slices appropriate for SHAVEs.

At this point the whole memory map of our initial CNN engine’s edition in Myriad 2150 platform with
DDR 128MB is presented.

Listing 4.1: Old memory map of Device

MEMORY
{
SHVO_CODE (wx)
SHVO_DATA (w)

SHV1_CODE (wx)
SHV1_DATA (w)

SHV2 CODE (wx)
SHV2_DATA (w)

SHV3 CODE (wx)
SHV3_DATA (w)

SHV4_CODE (wx)
SHV4_DATA (w)

SHV5_CODE (wx)
SHV5_DATA (w)

SHV6_CODE (wx)
SHV6_DATA (w)

SHV7_CODE (wx)
SHV7_DATA (w)

SHV8 CODE (wx)
SHV8 DATA (w)

SHV9 CODE (wx)
SHV9_DATA (w)

SHV10_CODE (wx)
SHV10_DATA (w)

Chapter 4

: ORIGIN = 0x70000000 + O # 128K,
: ORIGIN = 0x70000000 + O = 128K + 32K,

: ORIGIN = 0x70000000 + 1 # 128K,
: ORIGIN = 0x70000000 + 1 % 128K + 32K,

: ORIGIN = 0x70000000 + 2 = 128K,
: ORIGIN = 0x70000000 + 2 % 128K + 32K,

: ORIGIN = 0x70000000 + 3 # 128K,
: ORIGIN = 0x70000000 + 3 = 128K + 32K,

: ORIGIN = 0x70000000 + 4 = 128K,
: ORIGIN = 0x70000000 + 4 % 128K + 32K,

: ORIGIN = 0x70000000 + 5 * 128K,
: ORIGIN = 0x70000000 + 5 % 128K + 32K,

: ORIGIN = 0x70000000 + 6 # 128K,
: ORIGIN = 0x70000000 + 6 # 128K + 32K,

: ORIGIN = 0x70000000 + 7 = 128K,
: ORIGIN = 0x70000000 + 7 % 128K + 32K,

: ORIGIN = 0x70000000 + 8 = 128K,
: ORIGIN = 0x70000000 + 8 % 128K + 32K,

: ORIGIN = 0x70000000 + 9 = 128K,
: ORIGIN = 0x70000000 + 9 = 128K + 32K,

: ORIGIN = 0x70000000 + 10 * 128K,
: ORIGIN = 0x70000000 + 10 = 128K + 32K, LENGIH = 96K

LENGTH = 32K
LENGTH = 96K

LENGIH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGIH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K
LENGTH = 96K

LENGTH = 32K

57

KE®PAAAIO 4. BASIC CONCEPT OF CNN ENGINE

SHV11_CODE (wx) : ORIGIN = 0x70000000 + 11 = 128K, IENGTH = 32K
SHV11_DATA (w) : ORIGIN = 0x70000000 + 11 = 128K + 32K, LENGIH = 96K

CMX DMA DESCRIPTORS (wx) : ORIGIN = 0x78000000 + 12 # 128K , LENGIH = 12K
CMX OTHER (wx) : ORIGIN = 0x70000000 + 12 = 128K + 12K , LENGIH = 256K — 12K

LOS (wx) : ORIGIN = 0x80000000, LENGIH = 64M
LRT (wx) : ORIGIN = 0x70000000 + 14 = 128K LENGIH = 256K

DDR DATA (wx) : ORIGIN = 0x80000000 + 64M, LENGIH = 64M

}

INCLUDE myriad2_leon_default_elf.ldscript
INCLUDE myriad2_shave_slices.ldscript
INCLUDE myriad2_default_general_purpose_sections.ldscript

From the above ldscript the following conclusions are extracted:

58

e DDR is split into two areas. The lowest 64MB are assigned to the Leon OS processor that

runs the RTEMS operating system. Not so much space is needed by RTEMS itself. Most of
this space is used by the application, that performs memory allocation operations to keep the
data generated by the CNN nodes. The highest 64MB of DDR are used to store the network
parameters. These parameters are learned during the training phase of the CNN and are used to
perform the computation of several types of nodes. Not every type of node needs such parameters
to perform its computation. Convolutional and fully connected nodes need these parameters
and call them weights. On the other hand, pooling nodes do not need such parameters at all.

CMX is assigned to the SHAVEs the usual way. Each shave is assigned its own local slice to
utilize during the computation. The remaining slices - slices 12 to 15 - are used by all the
shaves to store shared parameters. More details will be provided in the following sections.

Each CMX slice is mostly used for data, rather than code. The code inside the SHAVEs is
minimal and its purpose it to act as an entry point to the actual code that needs to run. The
actual code resides in RAM and the code residing in CMX tries to reach the appropriate part
of the code in RAM needed for the particular computation. That is why the figure refers to the
entry point code as bootstrap code.

In order to increase performance, utilization of cache subsystem is needed. Myriad2 provides
cache hierarchies for Leon OS, Leon RT and the SHAVE processors. The goal is to use cache
of SHAVESs, in order to diminish the impact of accessing the DDR from these processors. The
cache is utilized the following ways:

1. Instruction cache: It is used for executing the code that describes the computation. Every
computational node, such as convolution or pooling may come in different flavors, each
one optimized for a particular class of the input size. Small CNNs do not require large size
of code to execute, which makes it possible to fit this code inside CMX. However, for larger
CNNs this approach is not viable. A general solution that can support the code size of each
CNN, without sacrificing most of the performance, is using the instruction cache. Also,
another reason that makes cache a very attractive choice is that each computational node
is usually run in parallel from multiple SHAVE processors. As a result, the exact same
code is executed by several SHAVEs. This temporal locality of accesses is a clear indication
that cache can perform well.

2. Data cache: Data cache is mostly used to increase the throughput of the DDR. Myriad2
provides an advanced DMA engine that can transfer data asynchronously between DDR
and CMX. However, the resources of this engine are finite and need to be used wisely.
The DMA engine is used for transferring the output data of the previous computational
node to the current computational node and also for transferring the output data of the
current computational node to the next computational node. These operations exhaust
the resources of the DMA engine. However, several nodes need extra trained parameters
(e.g. weights) on top of the input data to operate. In particular, the weights needed by
convolutional nodes are the kernel masks. Due to the nature of convolution and the

Chapter 4

WNO O WN

KE®PAANAIO 4. BASIC CONCEPT OF CNN ENGINE

optimized code used, these weights are needed in small quantities every once in a while,
making the data cache a suitable choice for this kind of data. As a result, DDR data are
transfered to/from CMX both implicitly - though cache - and explicitly - through calls to
the DMA engine.

4.2.2 Efficient Resource Management

It is a fact that Myriad 2 MA2150 platform contains limited main memory of 128MB. On the other
hand talking about deep neural networks means ’heavy’ memory demands. More specifically AlexNet
and VGGNet, winners of Image Classification Contest, include weights of 117 MB and 276 MB re-
spectively. These data are not able to fit in DDR memory of MA2150 so MA2450 platform should
be provided. Following the main concept which is described above, proves that data should be sent
into CMX in order to be processed and give us the output. Here appears a big challenge as every’s
SHAVE Memory slice is maximum 128 KB and memory space which is needed in CMX local buffers for
both input and output feature maps are almost 500KB. The first contribution refers to the memory
map which is renewed in order to take advantage of MA2450 platform’s architecture and the limited
demands of CMX SHAVE'’s code.

Listing 4.2: Renewed custom.ldscript

MEMORY
{
SHVO_ CODE (wx) : ORIGIN = 0x70000000 + O = 128K, LENGTH = 4K
SHVO_DATA (w) : ORIGIN = 0x70000000 + O % 128K + 4K, LENGIH = 124K
SHV1_CODE (wx) : ORIGIN = 0x70000000 + 1 = 128K, LENGTH = 4K
SHV1_DATA (w) : ORIGIN = 0x70000000 + 1 = 128K + 4K, LENGIH = 124K
SHV2 CODE (wx) : ORIGIN = 0x70000000 + 2 = 128K, LENGTH = 4K
SHV2_DATA (w) : ORIGIN = 0x70000000 + 2 # 128K + 4K, LENGIH = 124K
SHV3 CODE (wx) : ORIGIN = 0x70000000 + 3 = 128K, LENGIH = 4K
SHV3_DATA (w) : ORIGIN = 0x70000000 + 3 % 128K + 4K, LENGIH = 124K
SHV4 CODE (wx) : ORIGIN = 0x70000000 + 4 = 128K, LENGIH = 4K
SHV4_DATA (w) : ORIGIN = 0x70000000 + 4 % 128K + 4K, LENGIH = 124K
SHV5 CODE (wx) : ORIGIN = 0x70000000 + 5 = 128K, LENGTH = 4K
SHV5_DATA (w) : ORIGIN = 0x70000000 + 5 = 128K + 4K, LENGIH = 124K
SHV6 CODE (wx) : ORIGIN = 0x70000000 + 6 = 128K, LENGTH = 4K
SHV6_DATA (w) : ORIGIN = 0x70000000 + 6 % 128K + 4K, LENGIH = 124K
SHV7_ CODE (wx) : ORIGIN = 0x70000000 + 7 = 128K, LENGTH = 4K
SHV7_DATA (w) : ORIGIN = 0x70000000 + 7 = 128K + 4K, LENGIH = 124K
SHV8 CODE (wx) : ORIGIN = 0x70000000 + 8 = 128K, LENGTH = 4K
SHV8_DATA (w) : ORIGIN = 0x70000000 + 8 = 128K + 4K, LENGIH = 124K
SHVY9 CODE (wx) : ORIGIN = 0x70000000 + 9 = 128K, LENGIH = 4K
SHV9_DATA (w) : ORIGIN = 0x70000000 + 9 % 128K + 4K, LENGIH = 124K
SHV10_ CODE (wx) : ORIGIN = 0x70000000 + 10 = 128K, LENGTH = 4K

SHV10_DATA (w) : ORIGIN = 0x70000000 + 10 * 128K + 4K, LENGIH = 124K

SHV11 CODE (wx) : ORIGIN
SHV11_DATA (w) : ORIGIN

0x70000000 + 11 = 128K, LENGTH = 4K
0x70000000 + 11 = 128K + 4K, LENGIH = 124K

CMX DMA DESCRIPTORS (wx) : ORIGIN = 0x78000000 + 12 = 128K , LENGIH = 128K
CMX OTHER (wx) : ORIGIN = 0x70000000 + 13 * 128K , LENGIH = 128K

LOS (wx) : ORIGIN = 0x80000000, LENGTIH = 2M
LRT (wx) : ORIGIN = 0x80200000 + 13 * 128K LENGIH = 2M

DDR DATA (wx) : ORIGIN = 0x80000000 + 4M, LENGTH = 400M

With the new script, the following are extracted:

e 4KB of CMX are used for code and 124KB of CMX are used for data in each SHAVE, in order to
afford as much memory space is possible.

e 12KB of CMX are used explicitly by the DMA Engine.

e 128KB of CMX are used for other purposes. In particular, this space will be used for placing
shared parameters used by the SHAVEs like the structs, which contain the network parameters.

Chapter 4 59

KE®PAAAIO 4. BASIC CONCEPT OF CNN ENGINE

e 2MB of DDR are used by the Leon OS and the RTEMS operating system, due to optimized code
from the Leon Part.

e 2MB of DDR again are given to Leon RT, which will run the same code in order to count the
energy consumption as will be explained below.

e Finally, 400MB of DDR are used for placing parameters/weights of the CNN.

DDR
2M LeonOS Code . Allocates Space for Network Parameters.
and RTEMS - A
| 2mLeonRT Code
and RTEMS
Input transferred with DMA
512 MB 400 M € -
Computational Kernels
Network Weights Weights read by "local” CMX
MNetwork F < buffers in read-only mode.
Free Space could
be used for data
f f v
SHAVED SHAVE1 SHAVE 11 Slice 12 Slice 13
AKB Bootstrap Code 4KB Bootstrap Code 4KB Bootstrap Code Statically
-INPUT/OUTPUT -INPUT/OUTPUT -INPUT/OUTPUT DMA \ a.”“famd:%"‘fg\"e;
IPOR R ol Descriptor Igo:e{gnework
124KB -TEMPORARY 124KB -TEMPORARY 124KB -TEMPORARY =
BUFFERS BUFFERS BUFFERS parameters

fast

SHAVES boot in CMX and then with a Jumbtable execute code from DDR, apart from computation assembly functions, placed in CMX again.

Figure 4.2: Engine’s Memory Overview.

The new LinkerScript in contribution with the ideas, which are going to be presented in the next
chapter are responsible for supporting really’ Deep Neural Networks (e.g. GoogleNet with 83 Layers).

4.2.3 CMX DMA Driver

The DMA engine is utilized extensively inside the computational nodes, transferring data between DDR
and CMX. Therefore, understanding the functionality of the DMA engine exposed by the respective
driver is essential. Each DMA transfer is performed through a transaction. For the purposes of the
CNN implementation, 2D transactions are needed, since the transferred data are shaped as images.
There are several driver functions for declaring 2D transactions:

e dmaCreateTransaction: This is the simplest form and can only copy contiguously laid data
and place them contiguously at the destination. For example, such function is useful when
transferring complete image channels.

e dmacCreateTransactionSrcStride: This form can copy non-contiguously laid data and place them
contiguously at the destination.

e dmaCreateTransactionDstStride: This form can copy contiguously laid data and place them
non-contiguously at the destination.

e dmaCreateTransactionFullOptions: This form is the most general. It can copy non-contiguously
laid data and place them non-contiguously at the destination.

The concept of contiguous and non-contiguous data layout is expressed through the "stride" term.
Figure 4.3 illustrates the use of a 2D striding transaction. The goal is to copy the rectangle named
"DMA SRC DATA' from the "SRC Start Address" and place it in the rectangle "DMA DST DATA' at "DST

60 Chapter 4

—_ =

— O © 00N O O & Wi+

KE®PAANAIO 4. BASIC CONCEPT OF CNN ENGINE

Start Address". However, both rectangles are not contiguously laid out in memory, since they are
embedded into larger rectangles. In this illustration the Source Line stride (SRC STRIDE) differs from
the Destination Line Stride (DST STRIDE) and could represent a part of an image being cropped from
one frame and placed inside another frame which is of different dimensions. Also, the Destination

DST Start Address

- 3
SRC Stan Address | \q

DMA DST DATA
DMASRC DATA

5 DST WIDTH -:.
< SRC WIDTH >

SRC STRIDE

DST 5TRIDE

Figure 4.3: DMA transaction with same width.

width can be programmed to a different value than Source width. This is illustrated in fig. 4.4, where
2D data are transformed from row form into column form.

DMA SRC DATA

DSTWIDTH
\ DMA DST DATA
SRC Start Address i DST Start Address A’ /
T > T [
SRC WIDTH
SRC STRIDE o LA
P DST STRIDE N

Figure 4.4: DMA transaction with different DST, SRC width, with conversion from row form into col-
umn one.

Also, a pseudocode of the driver is provided in Listing 4.3 in order to make the above transfer clear
and includes the following variables:

Listing 4.3: Code description from row into column form.

ref[0] = dmaCreateTransactionFullOptions (
id ,
&task|[O0],
input_src_addr, //src address
input_dst_addr, //dst address
bytes_in_line * number_of_lines, //bytes of 2d area
bytes_in_line, //src line width
bytes_of_variable, //dst line width
bytes_in_line, //src stride
bytes_in_line); //dst stride

dmasStartListTask(ref[0]);

e input_src_address refers to the memory location in DDR where the data rectangle is placed.

e input_dst_address is the memory location of the CMX buffer, in which the data rectangle
will be placed.

Chapter 4 61

KE®PAAAIO 4. BASIC CONCEPT OF CNN ENGINE

62

The variable bytes_in_1line describes how many bytes of data are included in every line of
the 2d rectangle.

number_of_lines describes how many lines of data are included in the 2d rectangle, which
are equal to the column size of the rectangle.

bytes_of_variable is the dst line width, which means that data will be placed in column
form as width size is equal with one element.

Finally, when the src line width is equal with the dst line width the shape of the input rectangle
does not change during transfer. Also, if src stride is equal to line width, data in DDR are
placed contiguously in the main memory. The conclusion is that DMA driver is used in order to
transfer data from DDR to CMX and the opposite way so let’s have a detailed description of the
two memories.

Chapter 4

Qb WN -

Chapter 5

Configure CNN Engine to Support
ImageNet’s Contest Deep CNNs

In this chapter is examined what happens after the initialization of the nodes till the execution of
the Convolutional layers with the direct approach. All the nodes follow the same methodology, but
other kind of layers do not contain so many optimization techniques due to the restricted number of
computations. Also, the methodologies, which are used in order to test "deep" CNNs, are becoming
clear. As stated above layer’s execution support the following technique:

e Begin layer’s execution from DDR side.
e Call the preprocess functions.

Start SHAVES to boot from CMX entry code.

Use JumpTable in order to continue from code placed in DDR.

e Transfer Input DMA and after calling Assembly functions placed in CMX by using again the
Jumptable transfer output with DMA.

5.1 Sequence of the Input Data in DDR

The basic idea for every’s layer execution is the following: Transfer both input data and layer’s parame-
ters from the main memory into SHAVEs local memory, in order SHAVEs undertake the computations
and afterwards transfer the results back into main memory. First of all, input data are statically
stored into DDR as shown from Listing 5.1 in the Leon code.

Listing 5.1: Static allocation of Input data.

#define DDR BUFFER __attribute__ ((section (".ddr_direct.data"), aligned (16)))

Y/ Output buffer declaration 7
fpl6 DDR BUFFER branch_output_buffer_0_0[maximum_size_of_blob];
fp16 DDR BUFFER branch_output_buffer_0_1 [maximum_size_of_blob];

These buffers are placed in DDR and they are double beacuse, in every linear neural network, the
output of a previous layer is the input of the next one. So, two buffers are needed for exchanging
the input and output data of every layer. The size of buffers has to be the maximum product of any
blob dimensions in the network. Apart from input data, the weights and biases are statically stored
into DDR buffers as well, but in specific address space, where SHAVE processors can have access too.
The reason that this happens is that later, in the computation code, SHAVEs need to have access into
weights and biases in order to execute convolution and fully conncected layers.

For every layer’s representation structs are used, whose variables can be seen both from the main
and local memories. In order to accomplish this, the structs are stored into the shared memory areas
and their code into the "/shared" file. An example for the direct convolution’s struct is presented
below in Listing 5.2, which contains both layer’s parameters and other information. This piece of
information is becoming clear below, when is assigned with the appropriate variables.

63

0N O WwN e~

© 00N O WN—~

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

Listing 5.2: Assignment of convolutional parameters

#ifndef __CONV_API_H__
#define __CONV_API_H__

#include <mv_types.h>

typedef struct{

int src_addr;

int dst_addr;

int elements;

int buffer_elements;
}conv_buffer_info;

typedef struct {
u8 xinput;
ul6 input_channel_offset;
u8 inputBPP;

u8 =output;
ul6 output_channel_offset;
u8 outputBPP;

u8 xconv_weights;
ul6é conv_weights_offset;
u8 conv_weights_channel_offset;

u8 xconv_biases;
u8 kernelBPP;

ul6 channels;
u32 ddr_function;
u8 kernel_h;
u8 kernel_w;

u8 coalescing_num;
u8 with_relu;

int in_buffer_shift;
ul6 line_width;

int out_src_addr, out_src_width, out_src_stride;
int out_dst_addr, out_dst_width, out_dst_stride;
int out_buffer_elements, out_elements;

ul6 maps;

u8 c_group;
u8 splits;

int in_src_width, in_src_stride;
int in_dst_width, in_dst_stride;

u8 in_stride;
int in_buffers_num;
conv_buffer_info in_buffers[8];

} conv_info;

#endif

After the allocation of the input data, every node is created in Leon and is starting to be prepared for
the execution as evey variable of the struct is assigned with the appropriate network’s parameters.
For example, below in Listing 5.3 the preparation code of a convolutional node is presented, where
for one layer one struct is used as the information of the struct currently fits into local memories.

Listing 5.3: Assignment of convolutional parameters

if CONVOLUTION
u64 Convolution:: execute (u8 xbottom_output_buffer, ul6é &bottom_channels,
ul6 &bottom_input_height, ul6 &bottom_input_width){

convolution_object—>input = bottom_output_buffer;
convolution_object—>output = this—output_buffer;
convolution_object—>conv_weights = (u8#)((u32)(this—>weight_pointer)
& (u32)0x8...);

convolution_object—>conv_biases = (u8x)((u32)(this—>bias_pointer)

& (u32)0x8...);

convolution_object—>c_group = this—>group:
convolution_object—>channels = bottom_channels / this—>group:
convolution_object—>output_channel_offset = this—>input_height
* this—>input_width;

convolution_object—>kernel_h this—>kernel_size;
convolution_object—kernel_w this—>kernel_size;
convolution_object—>with_relu = this—>ReLU_flag:
convolution_object—>in_stride = this—>stride:

convolution_object—>input_channel_offset = bottom_input_height
* bottom_input_width;

convolution_object—>splits = lines;
convolution_object—>maps = channels;

convolution_object—>coalescing_num = 1;

64 Chapter 5

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

while (convolution_object—>coalescing num = ((this—input_height
* this—>input_width)/lines) = 2 < 20000){
convolution_object—>coalescing_num ;

}

convolution_object—>ddr_function = ddr_function:

conv_prepare_dma (...):

This "convolution object" struct is stored statically into CMX. This assumption gives speedup and
guarantees that all SHAVE processors can refer to the variables of struct, in extension to all CAFFE
parameters and every other attribute that is needed for the computation. For a convolutional node
some variables, which are stated above and need to be described are:

e input is an address, which shows where in the main memory the input of this layer is stored.
Basically, it is the output address of the previous node, except for the parallel nodes in CNNs
like GoogleNet, SqueezeNet.

o offsets of the input and output, represent the bytes that input feature maps and output feature
maps allocate. The reason that this information is needed as stated later to the computation of
the layers.

e group, stride, channels and coalescing are parameters of the convolution and will be explained
later in the detailed analysis of convolution.

e conv_prepare_dma is a function, which preprocesses the input and makes it ready to be
sent with DMA into CMX, where SHAVE processors will compute the output. This funtion is
responsible in order that a lot of optimization parameters are introduced.

As stated above, every layer has the need of one struct in order to be executed, but for "heavy" layers
of Imagenet’s CNNs like the input layers this can not be the case, as the memory demands of input
and output feature maps exceed the local memories of SHAVEs. Following this assumption an array
of structs is used, where every struct corresponds to a partition of the input and the output for which
it is responsible. The following section proves the way that by preprocessing, both the input and its
corresponding output partition are computed.

Before the preprocessing function for direct convolution and pooling is exlpained, is important for the
reader to be familiar with these two operations. In order to accomplish this, a brief description is
described below. Convolution is the most intensive operation in a CNN architecture. In the general
case, it is performed in an input 3D volume multiple times, each time with a different kernel as figured
below in 5.1.

E| L) Nu:fber E L= |

Cutput Maps

Number
of -
Input Channels

Figure 5.1: Convolution Operation.

For the purposes of this example the input has only three input channels. Every channel of these
has to be convolved with every kernel. The output dimensions depend on the network parameters

Chapter 5 65

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

like kernel size and striding parameter. Furthermore, in pooling operation for every output map only
one input channel is needed, so it is a simpler operation. Let’s see how these operations have been
implemented in Myriad 2.

5.2 Preprocessing of the Input

First of all it must be clear that the preprocessing function has to be called for every single struct of the
array. Preprocessing does not offer only optimizations, which will later be explained but also serves
the correct execution of the CNN. Someone’s first reaction in order to fit high definition images in local
memories would be to break the input into tiles and send these tiles into CMX for computation. Let’s
display an example for an input image with input dimensions 10x10, kernel size equal to 3, striding
parameter equals 1 and with no zero-padding:

III =) |] - ;

Figure 5.2: Wrong Produced Output.

From the figure 5.2 above it is concluded that convolution is not indepedent between the neigh-
boring areas and there are some intersection areas, which lead to wrong results. In order to overcome
this problem, a specific operation is followed. Our initial process is to compute the output dimensions
of our node, which is possible knowing convolution’s parameters. Output width and height are given
with the following equations:

outputwidth = floorint(width + 2 * pad — kernel/stride) + 1

outputheight = floorint(height + 2 % pad — kernel /stride) + 1

After this, the real value of padding parameter has to be computed, because by partitioning the
input and assigning different partitions into structs, the value of zero-padding in the boundary areas
is changed. Also, CAFFE framework for its normal convolution’s computations sometimes changes
zero-padding value as stated in the example below. Let’s say that an input with width equals 4, 3x1
kernel, striding equal to 2 and zero-padding parameter 1.

é\\/m—»m

Figure 5.3: Real boundary padding.

The output dimensions are 2x1 so the value of right padding was not important. Under these
circumstanses our real right padding value was equal to zero.
After the above operations, input and output dimensions are transformed into rectangular areas with
coordinates, for example an input image with dimensions 100x100 will be transformed into an area
with initial point (z,y) = (0,0) and final points (z,y) = (100,0), (z,y) = (0,100), (z,y) = (100, 100).
The ouput respectively (e.g. dimensions 64x64) will be transferred into a square area called 'window’

66 Chapter 5

© 0N O WN =

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

with (0,0), (64,0), (0,64), (64,64) points. In addition to these, a base area is created, which hosts
both the padding and the input elements with dimensions:

basewidth = inputwidth + pade i + realpad,;gnt

baseheight = inputheight 4 pady., + realpad oy

As far as the output is concerned a reverse transformation in our ‘window’ area is made in order
to find out in which region of the base area it corresponds, with the following equations(below only
points of y ordinate,’height’, are presented because it is the same for width):

resyo = stride x (windowyy — outyy) + baseyo

resy; = stride x (windowy; — outy) + base,;

With all these functions computing the input area from which the output square is produced is
achieved. With other words, output is corresponded to a square described by four points and this is
transformed into the input area. This square contains padding elements too, which are unnnecessary
as they can be reproduced in CMX, escaping from addittional transfers which lead to DMA buffer
‘overloading’. One solution to this problem is to compute the intersection area between the input
area, which contains padding elemens, and input image, as presented below with pseudocode.

Listing 5.4: Select input image’s elements without padding

void get_intersection (
struct rect_plane =xconst intersection,
const struct rect_plane xconst area_input_image,
const struct rect_plane xconst area_reverse_transformed
)
{
intersection —>y1 = max(area_input_image—>y1, area_reverse_transformed—yl1)
intersection —>y2 = min(area_input_image—>y2, area_reverse_transformed—y2)

intersection —x1 = max(area_input_image—>x1, area_reverse_transformed—x1)
intersection —x2 = min(area_input_image—>x2, area_reverse_transformed —x2)

}

Furthermore, alignment of all elements, which are contained in the intersection area, has to be
done because the assembly functions convolve on one dimension. In the intersection area there are
elements, which are not useful as shown below in figure 5.5.

' L, 5 Elements N L, 5 Elements

3x1 Kernel

Figure 5.4: Input data alignment.

For the convolution function above, a 3x1 kernel with stride equals to 2 is applied in the rectangle
input with dimensions 6x2. The result of this operation will be a 2x2 square, but when SHAVEs
apply the convolution kernel they produce six elements from which two are ’junk’. The solution to
this problem is simple as the ouput DMA transfer contains stride of the junk’ elements, according to
figure 4.3 source width equals to two and source stride equals to three. Generally, due to SHAVEs
vector register unit sometimes ’junk’ elements are added in the input. This happens, in order to
ensure that the input line width is equal to a number, multiple of eight, which means multiple of
128 bytes as is the vector register’s capacity. This optimization is called ’alignment’ and it offers a
speedup in our execution procedure in layers with small input dimensions. Also, here a trade-off
between execution time and memory demands is observed, by adding junk’ elements in computation.
Finally, after the whole procedure of preprocess which is described above, every output partition
regardless its shape can be tranformed into its input partition, in order to receive results compatible
with CAFFE.

Chapter 5 67

N0 Ok W~

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

From the above, is becoming clear that the preprocess function finds for every output partition its
corresponding input given only one id, regardless of the partition’s shape. Below, the preprocess
algorithm is presented with a flow diagram and a figure and a code which finds from the id which
input/ouput slice is the appropriate.

Memory Demands of
Input/Dutput pixels
revesl the number Clnput Feature N Kernels of N Qutput Feature
of partitions.

Maps Weights Maps

—‘\(i A

A
7
/e

ComputeInput's and V\E

tart VPUs by assigning
them the appropriate
partitionsfrom both
Input and Output

Figure 5.5: Preprocess Analysis.

Listing 5.5: Correspond right partitions from the id number

if ((output_width%(tiles /2))==0){
//every tile has the same width and height
window_width = (out_width/tiles);
window_height = (out_height/tiles);
if (floor == 0){
window_x = (out_width/tiles)=* tile_id;
window_y = O;
}

else{
window_y = (out_height/tiles)=floor;
window_x = (out_width/tiles)=*(tile_id — (tiles/floor));
}
}
else{

if (tile is the last of every floor){

if (floor == 0){
//last of the first floor takes the rest width
window.width = out_width — (out_width/tiles);
window. height = (out_height/tiles);
window_x = (out_width/tiles)= (tile_id);
window_y = O;

}

else {
//second floor takes rest width and rest height
window.width = out_width — (out_width/tiles);
window. height = out_height — (out_height/tiles);
window_x = (out_width/tiles)=*(tile_id — (tiles/floor));
window_y = (out_height/tiles)xfloor;

68 Chapter 5

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

else

window.width = (out_width/tiles);

if (floor == 0){
//every tile has the same width and height
window. height = (out_height/tiles);
window_x = (out_width/tiles)*(tile_id);
window_y = (out_height/tiles)=(tile_id);

}

else {
//every tile has constant width and the rest height
window. height = out_height — (out_height/tiles);
window_x = (out_width/tiles)= (tile_id — (tiles/floor));
window_y = (out_height/tiles)«floor;

5.2.1 Convolution’s Layer Parameters

AlexNet, competed in the ImageNet Large Scale Visual Recognition Challenge in 2012 required group
and striding parameters in order to be tested, which were not implemented in our previous CNN
engine’s version. After partitioning, parameters had to be implemented regardless of the number of
tiles.

It is a fact that convolutional kernels are applied on one dimension, so in order to support striding
parameter the appropriate indexes on SHAVEs had to be provided. In the section of preprocessing
it became clear that the alignment of all lines hade to be made in order to use one DMA buffer
and transfer all the elements. On the other hand, in order to use striding greater than 1 previous
implementation is extended and an example is provided below in order to explain striding’s approach.
Imagine that the height and the width of an input channel is 7x7 and a 3x3 kernel with zero-padding
and stride 2 is applied. The data are laid out in memory as shown in figure 5.6. Due to the fact that
the convolution kernel is 3x3 with stride 2 and because the input channel height is 7, the height of the
ouput rectangle will be 3. Notice, in this figure, that the lines are shown symbolically. No elements
are presented, because a convolution routine that generates one output line is already provided.

Line0

Linel

Line2

Line3

Lined

Line5

Line6

Figure 5.6: Layout of input channel in memory.

For the specific convolution operation of the example, the first output line will use the input lines
"Line 0" to "Line 2", the second output line with use the input lines "Line 2" to "Line 4" and finally the
third output line will use the lines "Line 4" to "Line 6". Preprocess function is responsible to separate
the input in groups accordingly with the striding value, such as figure 5.7 shows.

Chapter 5 69

N Ok WwN -

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

Lined ‘ Line2 | Lined

A

Buffer0

Linel Line3

Bufferl

Line6 |

Figure 5.7: Layout of input channel in memory with DMA buffers.

In order that the input pointers in CMX take the appropriate input lines for computation, as many
pointers as output height are going to be used. It is now becoming clear how one call can calculate
the result of three output lines. Each pointer starts at the appropriate location and is able to see
the next input lines as it moves to the right. Effectively, the convolution routine "sees" the data as
presented in figure 5.8, although each line is present in memory only once.

ComputationPointerl |

Line0 - -

- ComputationPointer |
Linel
Line2 Line0 Line2 Lined
Line3 ::) - - -

= Linel Line3 Line5
Line4 - - -

" Line2 Line4 LineG
Line5
Line6 - -

ComputationPointer2 |

Figure 5.8: How the convolution routine "sees" data in memory.

This extension generates garbage results, much like it is done in convolution with stride 1. How-
ever, the gain from the reduction of routine calls outperforms the waste generated, which is especially
true for small kernels, that appear in abundance in CNNs. Also, for increase in performance it is
better to align the distance between successive pointers at a 16-byte boundary. In case that striding
parameter is greater than 1, no double buffering is used, below a pseudocode from the SHAVEs part
is presented, which will be later explained.

Listing 5.6: SHAVE’s scheduling algorithm

for every line do
for every dma buffer do
dma input buffer
end for
for every input pointer do
correspond input pointers with dma buffers
end for
for group in output_maps_groups do
for channel in input_channels do
Bring input channel with DMA
for map in group do
Apply 1D convolution using channel
Accumulate the result of 1D convolution
end for
end for
Send the group of map buffers back with DMA
end for
end for

Filter groups (AKA grouped convolution) were introduced in the now seminal AlexNet paper in 2012.
As explained by the authors [8], their primary motivation was to allow the training of the network
over two Nvidia GTX 580 gpus with 1.5GB of memory each. It was noted that filter groups seemed

70 Chapter 5

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

to consistently divide convolution layers into two separate and distinct tasks: black and white filters
and colour filters. AlexNet trained with varying numbers of filter groups, from 1 (i.e. no filter groups),
to 4. When trained with 2 filter groups, AlexNet was more efficient and yet achieves the same if not
lower validation error as shown in the figure 5.9.

§ A e
ia 20% 14 groups |
— * . no groups
C>G 19% e
v 2 groups : '
S 18% @ : .;
=

0.6 0.8 1 1.2

Model Parameters (# floats) 107

Figure 5.9: AlexNet’s best results with group equals to 2.

Typical convolution filters in CNNs have full connections between the input and output feature
maps. If the input feature map has c¢;,, channels and the output feature map has c,,; channels, the
filter dimension is h X w X ¢;, X cout- This means that the height of the filter is h, the width is w, the
channel depth is ¢;,, and there are c,,; filters of corresponding shapes. Filter groups disconnect the
connectivity between the input and output feature maps. For example, if n filter groups are applied, n
uniform filter groups with c,,;/n filters are used. Each filter group has a dimension of h X w X ¢;, /n,
i.e. total filter dimension becomes h X w X ¢;, /n X cout. Total parameters required for this convolution
layer is n times smaller than that of the original full convolution layer. Group parameter ensures
that the network has decreased memory demands for its weights. This happens as each of the filters
in the grouped convolutional layer is now exactly half the depth, i.e. half the parameters and half
the compute as the original filter. Let’s introduce the first convolutional layer of AlexNet with group
parameter equals to 2. Input dimensions are 96x27x27, kernels 256*48*5*5 and output equals to
256*27*27.

Chapter 5 71

N0 O WN -

©

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

Input = 48 Output
™
——
T

128

128
256 Output Maps

0-128

48 |:| 128
E

128-256

e

Figure 5.10: Detailed testing of AlexNet’s second layer.

As far as the implementation in Myriad 2 is concerned, it is more flexible for speedup to fulfill group
parameter in SHAVE’s code. As stated before, every SHAVE is responsible for producing a specific
number of output maps. The range of output maps will determine how many times the SHAVE code
is going be executed. In other words, if both the first and last map are less than the whole maps
divided by group, the execution will happen once. The same happens both if the first and last map
are greater than the whole maps divided by group. Otherwise, the SHAVE code will be repeated twice
with the appropriate weight parameters and input channels seen in 5.10. So according to the range
of output maps, SHAVE’s pseudocode is the following:

Listing 5.7: Group Implemntation

if (group != 1) do
if (firstmap &% lastmap < maps/group) do
firstChannel = 0O
elif (firstmap && lastmap>maps/group) do
firstChannel = channels/2
else
execution_times = 2
temporaryMap = lastmap
lastmap = maps/group
.../ / first execution: firstmap—>maps/group
.../ /second execution: maps/group—>lastmap
endif
end if

5.3 SHAVE’s Implementation and Parallization Scheme

After computing the appropriate input/output partitions and assigning all the parameters it is time
to start SHAVEs in order to make the computations. They are assigned with different output maps
and the parallization scheme concerns the depth of the output maps as show in the figure 5.11 below.

72 Chapter 5

©0ONO U WN~—

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

L e

Figure 5.11: Parallization Scheme.

An input image with three channels and six output maps is given, so convolutional kernels should
be six. Above three SHAVEs are used and every one of them is responsible for two ouput maps. The
first SHAVE generates the purple output maps, the second SHAVE generates the white blue output
maps and the third SHAVE generates brown output maps. Generally, every SHAVE undertakes output
maps divided by number of shaves. If there is a remainder, it is shared one by one to every SHAVE
until remainder equals to zero. This procedure is translated with the code below:

Listing 5.8: SHAVE’s scheduling algorithm

u8 first_shave = 0;
u8 last_shave = shaves_used — 1;
u8 current_shave = 0;

ul6é number_of_outputs_per_shave = channels / shaves_used;

ul6 remained_outputs = channels % shaves_used:

ul6 first_map = O;

ul6 last_map = 0;

for (u8 shave_index = 0; shave_index < shaves_used; shave_index++){

last_map += number_of _outputs_per_shave;
if (remained_outputs > 0){

last_map++;

remained_outputs—;
}

ResetShave (first_shave + shave_index);

StartShaveCC (first_shave + shave_index,
(u32) startShave_conv|[shave_index + first_shave],
"iiiit,
convolution_object, first_map, last_map, jumpTableAddr):
first_map = last_map:
current_shave++;
if (last_map > channels){
break;
}
}

for (u8 shave_index = 0; shave_index < current_shave; shave_index++){
WaitShave (first_shave + shave_index);

}

From the code above, when function StartShaveCC is called, SHAVEs begin with a serial sequence.
SHAVE processors start their execution with an entry function, code placed in CMX. The arguments
of the StartShave function contain are presented below:

e shaveld, it depends of how many shaves for our application are going to be used. Shave index
can take values from zero to eleven.

e entrypoint, is the address inside CMX that SHAVE processors will start to execute code, defined
in Makefile as well.

e convolution-object is a struct which contains both network parameteres and useful attributes,
which later will be explained.

o first-last map represent the range of output maps that every shave will undertake.

jumpTableaddr is the address of Jumptable, which is used from SHAVESs in order to jump from
the bootsrap code inside CMX into DDR. The opposite direction is followed later, when assembly
kernels for computations are used.

Chapter 5 73

N0 Ok WN

1
2

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

Well, after the initialization of the SHAVES, code is executed from the "/shave/cmx/entry.c" directory:

Listing 5.9: SHAVE’s entry function in CMX

void shave_conv(conv_info =xinfo, u32 firstMapNo, u32 lastMapNo,
J_FUNCPTR T jumpTable) {

int shaveld = swcWhoAml() — PROCESS SHAVEO;
//attributes of convolution initialied
conv_context context = {

.dma = (dma_context){
.dmaCreateTransactionFullOptions =
dmaCreateTransactionFullOptions,
.dmaStartTask = dmaStartTask,
.dmaWaitTask = dmaWaitTask,
.task = task,

bo

.com = (common_context) ({
.shaveld = shaveld,
.jumpTable = jumpTable

bo

Jem = (memory_context) {
.setAlignedMem = setAlignedMem,
. getAlignedMem = getAlignedMem

bo
.info = info,

he

CONV_DDR PIR conv_ddr = (CONV_DDR PIR) jumpTable (CM_conv_ddr);

conv_ddr (firstMapNo, lastMapNo, &context);

SHAVE_HALT;

}

The first argument refers to the different structs, which are passed as variables into the function
and later will be passed into SHAVE’s DDR side for the appropriate computations. The aforemen-
tioned computations receive an argument named context that contains all the required parameters
for performing the computation. Convolution layers also need to make use of the DMA engine. This
is accomplished by using the compiler attribute syntax, which positions the structures into the sec-
tion .cmx.cdmaDescriptors that is placed at the region CMX_DMA_DESCRIPTORS by the MDK build
system. It is not only an obligation to place DMA related code inside CMX, but also a safety concern.
Because this piece of code is actually a driver and is already provided by the MDK, placing it inside
CMX is guaranteed for it to operate correctly. Also, here arguments for both memory allocaton and
the Jumptable are shown.

5.3.1 JumpTable and SHAVE’s Computations

Although MDK comes with mechanisms for feeding SHAVEs with instructions residing in DDR, these
solutions ended up not being useful for the needs of a CNN implementation. These mechanisms
are designed for dynamically replacing the application running on the SHAVEs, however, the time to
perform the switch is substantial. This leads to the development of a simpler approach based on the
Dynamic Shave Loading source code provided by the MDK. The general idea behind the developed
schema is the following: The jumpTable is a function that acts as the entry point for SHAVE code in
DDR. With this function the programmer is able to "jump" between different functions of the DDR
code, that are finally executed on the SHAVEs. In other words, the jumpTable exports the position of
all the required SHAVE functions that are placed in DDR, providing an entry point to the DDR SHAVE
code. This entry point is identified as an extern symbol by the Leon OS compiler and is used across
multiple files of the application.

Listing 5.10: "/shave/ddr/ddr_functions.c"

#include <ddr_functions_exports.h>
FUNCPIR_T jumpTable(int i)

74 Chapter 5

N0 0Lk WIN -

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

struct lib_function func = lib[i];
switch (func.category) {

// Utility Functions
case func_common:

return func.cat.cm.func;
case func_conv:

return func.cat.conv.func;
case func_pool:

return func.cat.pool.func;
case func_acc:

return func.cat.acc.func;
case func_fc:

return func.cat. fc.func;
case func_lrn:

return func.cat.lrn.func;
case func_im2col:

return func.cat.im2col.func;

}

return O;

}

Above, the reason that structs contain a variable ddr_function is shown, as SHAVEs have to know
from which function placed in DDR will start their execution. Thus, after execution is started from
the entry points in CMX, SHAVEs jump into the DDR functions in order to decrease SHAVE code
demands and increase the ones for data.

It is a fact that in order to produce an output map in convolution, every input channel with the
corresponding weights has to be multiplied and then accumulated. So for every output map that is
going be produced DMA transfers for all input channels have to be implemented. According to the
striding parameter’s value, it determines the number of DMA buffers. Group parameter may increase
the executions of the computation function. Finally, after calling assembly functions for computation
and accumulating output maps will be returned with DMA engine. Below, the convolution function
placed in DDR with a brief pseudocode is shown:

Listing 5.11: SHAVE’s convolution function

for map in output_maps do
for channel in input_channels do
Bring input channel with DMA
Apply 2D convolution using channel
Accumulate the result of 2D convolution to map buffer
end for
Send map buffer back with DMA
end for

Worth to mention here is two optimization techniques, which reduced the execution time:

e SHAVEs undertake the whole input channel so far and they are working on it as figured in 5.12.
With the partitioning methodology a way to place the image classification’s networks input into
CMX has been found, but an efficient scheduling methodology on how SHAVEs will work at
these partitions had to be implemented too. First of all, it is a fact that as partitions increase,
the execution requirements of the layer increase so the minimum partition number has to be
found. Supposing that our CNNs have input images of 3x227x227, an input channel requires
almost 105 KB, but the demands for evey shave are bigger as space for an input double buffer
and the output is allocated as well. The double buffering technique is used for speedup, as
while DMA transfers data from DDR to CMX in one buffer, at the same time the computation is
performed in another buffer.

As far as scheduling is concerned, the first implementation was to use four convolution-object
pointers instead of one. By this way, SHAVEs worked in series, by computing first lineO, after

Chapter 5 75

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

76

WNO O WN

they undertake linel 5.12 and so on. The process described above is presented in the following
figure, for four input lines, eight convolution kernels and four shaves. Different shades of gray
symbolize output maps on which SHAVES 1,2,3 work, meanwhile the other colours refer to the
ouput maps of SHAVEO.

Figure 5.12: First parallization Scheme.

The above methodology ensures that SHAVEs are started once and work on input partitions in
a serial manner. An optimization methodology has been applied here, as by giving an argument
to SHAVEs an array of pointers describing the whole input channel SHAVEs are obligated to
work on the whole input channel. This parallelization schema does not require the use of locks,
because there is no data sharing and SHAVEs are SIMD. This is of great benefit in an embedded
platform, since locks and synchronization of accesses tend to increase power consumption.

—

line2

Figure 5.13: Final Optimized Parallization Scheme.

e Reduced number of DMA transfers [16], as local buffers have limited space. It is necessary to

bring the same input multiple times during the execution of convolution. It would be beneficial
if these transfers could be reduced, for a couple of reasons. First, less DMA transfers lower
the power consumption. Second, DDR memory can serve fewer transactions more easily, than
being clogged by a large number of requests.

Listing 5.12: SHAVE’s convolution function

Split output_maps into several groups
for group in output_maps_groups do
for channel in input_channels do
Bring input channel with DMA
for map in group do
Apply 2D convolution using channel
Accumulate the result of 2D convolution to map buffer
end for

Chapter 5

oGk W~

N0 Ok WN -

— =
WN~=O O

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

9 end for
10 Send the group of map buffers back with DMA
11 |end for

5.3.2 Convolution 1x1 Kernel

Finally an assmebly function executed by SHAVEs in CMX will be presented. In order to deploy
GoogleNet, it is necessary to use 1x1 kernel convolutional functions. GoogleNet uses a lot 1x1
convolution, almost in the half of its total layers, due to the reasons, which are desribed here:

e To reduce the dimensions inside GoogleNet’s "inception module".
e To make network deep, as layers become almost double.
e To add more non-linearity by having ReLU immediately after every 1x1 convolution.

It can be seen from GoogleNet’s description, that 1x1 convolutions, are specially used before 3x3 and
5x5 convolution to reduce the dimensions. It should be noted that a two step convolution operation
can always be combined into one, but in this case and in most other deep learning networks, convo-
lutions are followed by non-linear activation and hence convolutions are no longer linear operators
and cannot be combined. These type of functions were not implemented in the source code of the
Myriad 2 developement tool. Taking this into account assembly routines for 1x1 convolution have
been implemented. As it was said in the subsection of the preprocess, before transfering input data
with DMA is important to align them because convolution routines are implemented into one dimen-
sion. The computational function is easy as for every input channel, only one value of weight has to
be provided as an argument. Moreover, because 1x1 kernels are applied only with stride equals to
one, input and output dimensions are the same.

Listing 5.13: Pseudocode of 1x1 Convolution in High Level Language

function convolutionlxlsl (in, out, conv, width)
for every input_element in width do

sum = 0O
sum += in[element] * conv[O]
out[element] = sum

end for

First of all, in order to test GoogleNet and SqueezeNet, which have 1xlconvolutional layers, this
routine was written in C language. Execution time of GoogleNet was near 2 seconds, where 1x1
convolutional nodes lasted almost 1.85 seconds. After this, SHAVE Assmebly function was written
with serial commands using integer register file. This routine was like this:

Listing 5.14: Serial Assembly Pseudocode

function convolutionlxlsl (in, out, conv, width)

load regl, out

load reg2, conv

load reg3, width

loop:
load regO, in
mul regl, regO, reg2
st out, regl
add in, in, 1
add out, out, 1
decr reg3, reg3, 1
brnez loop

end loop

The above function was not so helpful as far as the execution time is concerned. If the width is equal
to two hunderd for example, two hundred accesses to memory will take place. Generally, memory
accesses and especially loading data from memory addresses is the slowest procedure in a program,

Chapter 5 77

N0 Ok Wi+

CHAPTER 5. CONFIGURE CNN ENGINE TO SUPPORT IMAGENET’S CONTEST DEEP CNNS

as it lasts the most clock circles. By taking this into account, vector register file was used, in order
to load more than one elements parallel in vector registers and multiply them in parallel. Also,
SHAVE'’s Internal architecture offers us the ability to use in parallel different units such as Branch
and Load/Store unit for example.

Listing 5.15: Efficient SHAVE Assembly Pseudocode

function convolutionlxlsl(in, out, conv, width)

load vec2, conv

load reg3, width

loop:
//load and increase address to show the next 8 elements
load vecl, in || add vecl, vecl, 1
//multiply every element from vecO with—
//less significant number of vec2
mul vecd, vecl, vec2 || swizzle vec2
st out, vec4
shr reg3, reg3, 3
add out, out, 1
brnez loop

end loop

This routine had less no operations commands end led to speedup, as the less memory accesses and
parallel multiplications led to 300 ms from almost 2 seconds. Despite the fact that the difference was
remarkable, still improvement margins existed. This led to a new approach, which is shown below.

78 Chapter 5

Chapter 6

General Matrix to Matrix Multiplication
in Deep Learning

It is a fact that a lot of optimizations have been applied in order to speed up convolution. The
results were remarkable but the final aim was to minimize execution time of 1x1 kernels, where the
no operations commands of our assembly delayed the whole process. Taking this into account, a
different way of convolution had to be implemented. More specifically, a way which is supported by
General Matrix to Matrix Multiplication (GEMM) and uses the tecnhique of Image to Column (Im2Col)
conversion.

6.1 Theoretical Analysis of Im2Col Convolution

General Matrix to Matrix Multiplication known as GEMM does exactly what it says on the tin, mul-
tiplies two input matrices together to get an output one as staten in [15]. The difference between it
and the kind of matrix operations used to in the 3D graphics world is that the matrices it works on
are often very big. For example, a single layer in a typical network may require the multiplication
of a 256 row, 1,152 column matrix by an 1,152 row, 192 column matrix to produce a 256 row, 192
column result. Naively, that requires 57 million (256 x 1,152, x 192) floating point operations and
there can be dozens of these layers in a modern architecture. It is a fact that there are networks that
need several billion FLOPs to calculate a single frame. A diagram of how it works is shown below 6.1:

j|
A
\/

Figure 6.1: How GEMM works.

79

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

6.1.1 Fully-Connected Layers

Fully-connected layers are the classic neural networks that have been around for decades, and it’s
probably easiest to start with how GEMM is used for those. Each output value of a FC layer looks at
every value in the input layer, multiplies them all by the corresponding weight it has for that input
index, and sums the results to get its output. In terms of the diagram above, it looks like this:

Input Weights Output
n

\

-l
-

K
m=1{ . | = mil

X

\

Figure 6.2: Fully Connected Layer.

There are k’ input values, and there are n’ neurons, each one of which has its own set of learned
weights for every input value. There are T’ output values, one for each neuron, calculated by doing
a dot product of its weights and the input values.

6.1.2 Convolutional Layers with GEMM

Using GEMM for the convolutional layers is a lot less of an obvious choice. A conv layer treats its
input as a two dimensional image, with a number of channels for each pixel, much like a classical
image with width, height, and depth. Unlike the images used to dealing with though, the number of
channels can be in the hundreds, rather than just RGB or RGBA! The convolution operation produces
its output by taking a number of kernels’ of weights. and applying them across the image. In the
figure 6.3 is shown how an input image and a single kernel look like:

Input Image

Depth

Convolution Kernel

\l?epth

Kernel
Size

—

Kernel
Size

Figure 6.3: RGB Form of Input and Kernel.

Each kernel is another three-dimensional array of numbers, with the depth the same as the input
image, but with a much smaller width and height, typically something like 7x7. To produce a result,

80 Chapter 6

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

a kernel is applied to a grid of points across the input image. At each point where it’s applied, all of
the corresponding input values and weights are multiplied together, and then summed to produce a
single output value at that point. Here’s what that looks like visually:

Output

Figure 6.4: Kernels fit’ in Input and provide Output.

This operation is something like an edge detector. The kernel contains a pattern of weights, and
when the part of the input image it’s looking at has a similar pattern it outputs a high value. When
the input doesn’t match the pattern, the result is a low number in that position. Here are some typical
patterns that are learned by the first layer of a network, courtesy of the awesome Caffe and featured
on the NVIDIA blog:

Figure 6.5: Kernels look for special patterns in Input.

Chapter 6 81

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

Because the input to the first layer is an RGB image, all of these kernels can be visualized as
RGB too, and they show the primitive patterns that the network is looking for. Each one of these 96
kernels is applied in a grid pattern across the input, and the result is a series of 96 two-dimensional
arrays, which are treated as an output image with a depth of 96 channels. Someone can see how
each one of these is a bit like an edge detector optimized for different important patterns in the image,
and so each channel is a map of where those patterns occur across the input.

The key controlling factor for the grid in the figure 6.5 above is a parameter called ‘stride’, which
defines the spacing between the kernel applications. For example, with a stride of 1, a 256x256 input
image would have a kernel applied at every pixel, and the output would be the same width and height
as the input. With a stride of 4, that same input image would only have kernels applied every four
pixels, so the output would only be 64x64. Typical stride values are less than the size of a kernel,
which means that in the diagram visualizing the kernel application, a lot of them would actually
overlap at the edges.

As far as GEMM in convolution is concerned, it seems like quite a specialized operation. It involves
a lot of multiplications and summing at the end, like the fully-connected layer, but it’s not clear how
or why this into a matrix multiplication for the GEMM should be turned.

The first step is to turn the input from an image, which is effectively a 3D array, into a 2D array
that can be treat like a matrix. Where each kernel, which is applied, is a little three-dimensional
cube within the image. So each one of those cubes of input values can be taken and be copied as a
single column into a matrix. This is known as im2col, for image-to-column, from an original Matlab
function, and here’s how it seems:

Input Image
| \
Patch Patch EZ:E:;
1 2 ~ ’
im2col
o~ _>O

Figure 6.6: Conversion of the input to 2 Dimensions.

Now the expansion in memory size seems to happen with this conversion if the stride is less
than the kernel size. This means that pixels that are included in overlapping kernel sizes will be
duplicated in the matrix, which seems inefficient. Now the input image is in matrix form, the same
for each kernel’s weights has to be done, serializing the 3D cubes into rows as the second matrix for
the multiplication. Here’s what the final GEMM looks like:

82 Chapter 6

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

Input Matrix Kernel Matrix
<l k -
r Patch 1 4 N
Patch 2
=
S X
o AR
o] 2|2
o k|22
_U — N
2
Q
=
3
v
A J 4 Py

Number of Kernels

Figure 6.7: GEMM’s Convolution ready.

Here k’ is the number of values in each patch and kernel, so it’s kernel width * kernel height *
depth. The resulting matrix is ‘Number of patches’ columns high, by Number of kernel’ rows wide.
This matrix is actually treated as a 3D array by subsequent operations, by taking the number of
kernels dimension as the depth, and then splitting the patches back into rows and columns based
on their original position in the input image.

6.2 Im2Col’s Convolution Implementation in Myriad2

Sections below show the way that Im2Col layer is implemented in Myriad2.

6.2.1 Import Input and Weight Data

First of all, the input and weight parameters are given from the CAFFE Framework with the same way.
It is a fact that these data have to be edited and be reshaped in order that the GEMM'’s convolution
happen but this is implemented in the code of the platform. This methodology gives the opprortunity
to the programmer to choose with which way the convolution function will be imlpemented. In other
words, again almost the same number of statical buffers placed in DDR for the network weights are
used. The only difference is one additional buffer, which allocates as many bytes as the biggest Im2Col
layer is going to need. This buffer is used for the Image to Column transformation.

6.2.2 Preprocess and start Layer’s Execution

Below, the struct is provided with the variables, which are needed to be set in order to implement
Im2Col approach.

Listing 6.1: Im2Col struct with the appropriate information

© 0N U WN

typedef struct {
u8 xinput;
u8 inputBPP;

ul6 tiles;

u8 =xinput_column;
u8 =output:

u8 outputBPP;

u8 xconv_weights;

u8 xconv_biases;
u8 kernelBPP;

ul6é shaves:
ul6 channels;

Chapter 6 83

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

u8 ddr_function;
u8 kernel_h;
u8 kernel_w;
u8 with_relu;

ul6 maps:
u8 c_group:
u8 in_stride;

ul6 offset:

ul6 in_col_height;
ul6 in_row_width;

ulé weight_col_height;
ul6é weight_row_width;

} im2col_info;

The preprocess function here takes over to transform the 3 dimensional input volume into a 2 di-
mensional array and repeat the elements which are needed according to the values of the network
parameters. In order to accomplish this, someone has to consider that for every input channel
kernel_size x kernel_size elements have to been received, thus the size of the elements will be
input_channels x kernel_size x kernel_size as shown in the figure 6.6. The other dimen-
sion of the array is going to be equal to output_width * output_height. The total dimensions
and how they are going to increase related to the 3-Dimensional volume, has to do with the striding
value as well. Below, preprocessing values are presented, which depend on the zero-padding value. In
case that padding parameter is provided, first zero-padding elements are added and then the volume
is transformed:

Listing 6.2: Import padding Elements into the initial 3D Volume

©ONO G WN~

u8+ NewMapWithPad (u8+ previous, int width, int height, int kernel, int stride, int padding, int channels){

int out_height = floor_int (height + 2«padding — kernel, stride) + 1:
int out_width = floor_int(width + 2xpadding — kernel, stride) + 1;

int paddingbottom = (out_height — 1) = stride + kernel — height — padding:
int paddingright = (out_width — 1) % stride + kernel — width — padding;

int new_width = width + padding + paddingright;
int new_height = height + padding + paddingbottom;

for (int ch = 0; ch < channels; ch++){
for (int y_column = 0; y_column < new_height: y_column++){
for (int x pad = 0; x _pad < padding; x_pad ++){
data_pad[2 % ch * (new_width * new_height) + 2 % y_column * new_width + 2 * x pad] = 0:

data_pad[2 = ch * (new_width * new_height) + 2 % y_column * new_width + 2 % x pad + 1] = O:
}
for (int x pad = (new_width — paddingright); x_pad < new_width; x_pad++){
data_pad[2 = ch * (new_width * new_height) + 2 % y_column * new_width + 2 * x pad] = 0O:
data_pad[2 * ch * (new_width * new_height) + 2 * y _column * new_width + 2 » x pad + 1] = O;
}
}
for (int x_column = padding: X_column < new_width — padding: x_column++){
for (int y_pad = 0; y_pad < padding; y_pad++){
data_pad[2 = ch * (new_width * new_height) + 2 * y_pad * new_width + 2 » x column] = 0;
data_pad[2 = ch * (new_width * new_height) + 2 * y_pad * new_width + 2 » x column + 1] = O;
}
for (int y_pad = (new_height — paddingbottom): y_pad < new_height: y_pad++){
data_pad[2 = ch * (new_width * new_height) + 2 * y_pad * new_width + 2 * x column] = 0;
data_pad[2 = ch * (new_width * new_height) + 2 % y _pad * new_width + 2 % x column + 1] = O:

}
}
for (int y_pad = (padding): y_pad < (new_height — paddingbottom); y_pad++){
for (int x column = (padding): x_column < (new_width — paddingright); x_column++){
data_pad[2 = ch * (new_width * new_height) + 2 % y_pad * new_width + 2 = x column] =
previous[2 * ch % (widthxheight) + 2 % (y_pad * width — padding * width) + 2 % (x_column — padding)];
data_pad[2 = ch * (new_width * new_height) + 2 * y_pad * new_width + 2 % x column + 1] =
previous[2 * ch * (widthxheight) + 2 » (y_pad = width — padding * width) + 2 = (x_column — padding) + 1]:
}

For every input channel zero-padding elements are added into the boundary areas as shown above,
before transform below:

Listing 6.3: Convert Input Volume into 2-dimensional array

O W WON® Ok WN~

—

u8x InputstoColumns (u8+ pointer, int width, int height, int kernel, int stride, int padding, int channels){

int out_height = floor_int (height + 2 * padding — kernel, stride) + 1;
int out_width = floor_int(width + 2 = padding — kernel, stride) + 1:

for (int ch = 0; ch < channels; ch++){
for (int y_kernel = 0; y_kernel < kernel; y_kernel++){
for(int x_kernel = 0; x_kernel < kernel; x_kernel++){
for (int y_stride = 0; y_stride < out_height; y_stride++){

84 Chapter 6

© 0N O R WN—~

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

for (int x_stride=0; x_stride < out_width; x_stride++){
data[(2=*chx(kernelxkernel=out_widthxout_height))+(2xy_kernel «(kernelxout_heightxout_width))+
(2+x_kernel *(out_widthxout_height))+(y_stride=2xout_width)+(2*x_stride)] =
pointer [(x_stride=2xstride+x_kernel*2)+(stride=2xy_stride=width)+(y_kernelxheight=2)+
(chx(width+height)=2)]:
data[(2+ch=(kernel«kernel=out_widthzout_height))+(2=y_kernel «(kernelxout_heightxout_width))+
(2+x_kernel *(out_width=out_height))+(y_stride*2xout_width)+(2=+x_stride)+1] =
pointer [(x_stride=2+stride+x_kernel+2)+(stride=2+y_stride =width)+(y_kernelxheight=«2)+
(ch=(width+height)*2)+1]:

}
}

return data;

As discussed above, after the Im2Col transform, the 2-dimensional arrays may have increased mem-
ory demands. For sure, this is translated into more memory transfers, but also a partition strategy
has to be implemented in order to overcome the overflow problem. This strategy has been imple-
mented with the following way, partition the 2-dimensional array into groups of columns. For every
single group of them, seperate it into the number of SHAVEs in order that the final group of columns
fit in local CMX memory. This means that the number of the partition depends to the number of
SHAVES too. An example is shown below, where the input_width is partitioned in 4 tiles and every
tile assigns its columns into 3 SHAVEs.

Partition0 Partition1 PartitionN

T T 1 |
SHAVEO | SHAVEL | SHAVEZ SHAVEISHAJEZ SHAVED | SHAVEL | SHAVEZ

Figure 6.8: Parallization scheme of Im2Col Approach

6.2.3 SHAVE code and Computation

The entry code for Im2Col approach of convolution is stated again in CMX and is described below:

Listing 6.4: Boot code into CMX for Im2Col placed in "/shave/cmx/entry.c"

void shave_im2col (im2col_info xxinfo, u32 firstMapNo, u32 lastMapNo, J_FUNCPTR_T jumpTable){
int shaveld = swcWhoAml() — PROCESS_SHAVEO;
im2col_context context = {
.dma = (dma_context){
.dmalnitRequester = dmalnitRequester,
.dmaCreateTransactionFullOptions = dmaCreateTransactionFullOptions,
.dmaStartListTask = dmaStartListTask,
.dmaWaitTask = dmaWaitTask,
.task = task,
.ref = ref

B

.com = (common_context){
.shaveld = shaveld,
.jumpTable = jumpTable

}

.mem = (memory_context) {
.setAlignedMem = setAlignedMem,
. getAlignedMem = getAlignedMem

Bo

.info = info,

IE

IM2COL_DDR PTR im2col_ddr = (IM2COL_DDR PTR) jumpTable(FT_im_col):
im2col_ddr (firstMapNo, lastMapNo, &context);

SHAVE_HALT;

Chapter 6 85

-

© 0N G WN

— O ©WONOU B WN -~

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

Again the Jumptable is being used in order to follow the main idea and place the SHAVE code of the
layer into DDR apart from the computation function. As someone can see from the entry code the ddr
function "im2col_ddr" is called with parameters firstMapNo, lastMapNo and context. The 2 first
parameters indicate the range of columns that every SHAVE is going to undertake in every partition.
The third variable "context", which is passed by reference contains the following information as
someone observes in "im2col_context":

Listing 6.5: Definition of the DDR’s function parameters

#ifndef _DDR_CONV_H__
#define __DDR CONV_H__

// 1: Includes
//
#include "ddr_common.h"
#include <conv_api.h>

#include <im2col_api.h>

// 2: Source Specific #defines and types (typedef, enum, struct)

//

typedef struct {
dma_context dma;
memory_context mem;
common_context com;

conv_info xxinfo;
} conv_context;

typedef struct {
dma_context dma;
memory_context mem;
common_context com;

im2col_info *+info;
} im2col_context;
typedef void (*CONV_DDR PIR) (u32 firstMapNo, u32 lastMapNo, conv_context =context);

typedef void (*IM2COL DDR PIR) (u32 firstMapNo, u32 lastMapNo, im2col_context =context);

// 3: Static Local Data
//

// 4: Exported Functions (non—inline)
//
void conv_ddr(u32 firstMapNo, u32 lastMapNo, conv_context xcontext);

void im2col_ddr(u32 firstMapNo, u32 lastMapNo, im2col_context xcontext);

#endif//_DDR_CONV_H__

The SHAVE code placed in DDR, is responsible to transfer the input matrix and compute the product
with the weight matrix placed in the uncached memory of the DDR. This memory space can be
accessed by the local memories as well, so both weights and biases are stored there. The assembly
function, which is used for this operation is vector with vector product and is saved into the CMX
memory. The computation function is being called many times. Below a pseudocode of the pre-
Computation function in DDR is shown:

Listing 6.6: Im2Col pre-Computation Code

for every tile in the partitions of the width do
for every column in the tile do
Bring input columns with DVA
for every row in the 2—dimensional weight array do
Apply vector with vector multiplication in Assebmly
end for
//after this the whole vector will be ready
Accumulate the vector result with the biases
Send the output columns back with DMA
end for
end for

Finally, the DMA transfering methodology is presented with two brief schemes as shown in 6.9.

86 Chapter 6

©ONO A WN~

CHAPTER 6. GENERAL MATRIX TO MATRIX MULTIPLICATION IN DEEP LEARNING

DMA Input DMA Qutput
DST
SRC — SRC
Form Form Form - DsT
Form

Figure 6.9: DMA transfering Methodology

The code, which is used for the Input/Output transfers is the following:

Listing 6.7: Input/Output DMA code

for(u8 gr = 0; gr < info[0]—>c_group; gr++){
for (ul6 i = 0; i < info[0]—>tiles ; i++){
for (u8 mapNo = firstMapNo:; mapNo < lastMapNo; mapNo++){
// bring columns of every tile

ref[0] = dmaCreateTransactionFullOptions (
id ,
&task|[0],

(info[0] —>input_column + (gr * info[0]—>in_col_height = info[0]—>in_row_width x info[0]—>inputBPP))
+ i x (info[0]—>in_row_width/info[0]—>tiles) * info[0]—>inputBPP + mapNo = info[0] —>inputBPP, // src
input_column [mapNo] , // dst
info[0] —>in_col_height * info[0O]—>inputBPP, // byte length
info[0] —>inputBPP, // src line width
info[0] —>in_col_height % info[0]—>inputBPP, // dst line width
info[0] —>inputBPP = info[0]—>in_row_width, // src stride
info[0] —>inputBPP) ; // dst stride
dmasStartListTask (ref [0]);
dmaWaitTask(ref[0]);

//Computation routine
//for every input vector column multiply it with the weight matrix

ref[0] = dmaCreateTransactionFullOptions (
id ,
&task|[0],

(u8 x)(localOutput[mapNo]), // src
info[0] —>output + mapNo * info[0]—>outputBPP + i % (info[0]—>in_row_width/info[0]—>tiles)
x info[0] —>outputBPP + (gr * info[0]—>in_row_width * info[0]—>weight_col_height * info[O]—>outputBPP),// dst
info[0] —>weight_col_height * info[0]—>outputBPP, // byte length
info[0] —>outputBPP =« info[0]—>weight_col_height,// src line width
info[0] —>outputBPP,// dst line width
info[0] —>outputBPP, // src stride
info[0] —>in_row_width = info[0]—>outputBPP); // dst stride
dmasStartListTask (ref [0]);
dmaWaitTask(ref[0]);

Chapter 6

87

Chapter 7

Evaluation of the Implementation

This chapter evaluates the implementation testing some CNNs from ILSVR challenge trained in Im-
ageNet. Furthermore, conclusions are drawn for the rating of the software, which was produced.
Finally, the explanation of the results give a first impression for the Myriad’s hardware and architec-
ture.

7.1 Evaluation of Direct’s Convolution Parameters

It is a fact that every convolution layer has the parameter of kernel_size. For every convolution
filter, the number of the operations is equal with the whole dimensions of the filter (e.g. 3x3 filter
means 9 pixels and 9 multiplications). This means that the more the kernel size is, by raising the
mutiplications, the more the execution time of the layer will be. Below 2 layers executed with direct
convolution are shown with the same input_dimensions, output_maps and striding parameter,
their only difference is their kernel_size.

45 30

Kernel_Size Execu:tion Time scalability in Myriad

KémeIiS\ze Energy Consumption: scalability in Myriéd
40 | : : :
25 b
35+

30+

N
S

25 -

Hm Kernel_Size = 7 |
2 H Kernel_Size = 3

@ : : Kernel_Size = 7
i N i | Kernel Size =3 |
o

Execution Time(ms)

15+

=
o
T

Energy Consumption(m])
=
v

10 -

i I 1 1 i i I I I I I i i 1 I I i i 1 I i I
1 2 3 4 5 6 7 8 9 10 1 12 1 2 3 4 5 6 7 8 9 10 11 12
Number of Shaves Number of Shaves

Figure 7.1: Increase of the kernel_size means increase of the Execution time and Energy con-
sumption.

As far as the partitioning methodology is concerned, supposing that an input volume has
dimensions hexadecimal than an other one, the maximum execution time of this convolution should
be hexadecimal as well. This means that the best case scenario for the speedup is x16. In order to
compute the speedup that the partitioning function offers, 2 layers with almost the same convolution’s
parameters apart from the input channels were executed. In fact the layer with the smaller dimensions
had three input channels more, the results were the following:

88

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

25 . . . P W . . .
Partitiong Methodology Execution Time scalability in Myriad Partition Methodology Energy Consumption scalability in:Myriad

12
20 b

10

15

I Input_dimensions = 56x56
HE [nput_dimensions = 227x227

Input_dimensions = 56x56
HEEl [nput_dimensions = 227x227

Execution Time(ms)
Energy Consumption(m])

5+] ° © @ o
2+
0 L L L L 1 L L L L L L 0 L 1 L L L L 1 L L L L
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Number of Shaves Number of Shaves

Partitioning's Methodology Speedup

i
1 2 3 4 5 6 7 8 9 10 11 12

Number of Shaves

Figure 7.2: Partitioning’s Parallization Scheme succeeds a notable Speedup.

In chapter 5 group parameter was explained, which is used for a reduction in the memory de-
mands of the weights. As referred previously, group parameter means that the computation function
may be executed twice for some combinations of VPUs number. Below are considered 2 different
layers, which have exactly the same parameters apart from the group variable. These layers are layer
number 3 and 4 in AlexNet.

120 ‘ . T [y
Group Parameter Execution Time scalability in Myriad Group Parameter. Energy Consumption scalability in Myriad

60 -

u
8 3

w
=3

Execution Time(ms)
Energy Consumption(m])

N
S

10

Number of Shaves Number of Shaves

Figure 7.3: Group Parameter Dependance.

From the figure 7.3 is becoming clear that by reducing the weights both execution time and energy
consumption are reduced. The reason is that the references to the main memory are less and this
seems to be more important factor than times, that the computation routine is going to be executed.
Finally, striding is a factor, which determines the output dimensions. Striding greater than 1 means
that the output dimensions will be decreased and this parameter shows how many times the square
of each weight kernel can be placed in the input. In other words, striding parameter greater than one
is going to reduce operations and improve both execution time and energy consumption.

Chapter 7 89

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

7.2 Comparison of the Different Convolutional Approaches

As far as the Im2Col approach is concerned, in the previous Chapter was shown, that the input has
width = outputy;qin*outputpeign: and height = kernelg;.cxkernels.exinput pannels- The weight matrix
dimensions are width = kernelsi.c x kernelsi.e * inputchannels and height = output,qps. Description
above shows that for every vector with vector product kernelg;.e * kernelsize * inputchannels €lements
are multiplied. Taking into account the number of vector to vector products kernelg;,. seems to be
an important factor as well as the input panners- Below is shown how 2 layers with different kernels;..
scale for every convolutional approach.

Im2Col vs. Direct Im2Col vs. Direct

&~
&

Bl 1x1_Kernel_Direct

.|l 1x1_Kernel_Im2Col |{

;16 Output Maps, 14x14 Dimensions

&~
o

w
[

5
T

w

o

N
v

Execution Time(ms)
B
N
o

w
T

Energy Consumption(my)

1.0} L | L EEN 1x1_Kernel_Direct ||
HEEE 1x1_Kernel_Im2Col

16 Output Maps, 14x14 Dimensions |

1 2 3 4 5 6 7 8§ 9 10 1 1 T 2 3 4 5 6 7 8 8 10 1 1
Number of Shaves Number of Shaves

Figure 7.4: Im2Col for 1x1 kernel succeeds better execution time for restricted number of SHAVEs.

25 Im2Col vs. Direct Im2Col vs. Direct

Bl 5x5_Kernel_Direct
HEEl 5x5_Kernel_Im2Col

20 32 Output Maps, 28%28 Dimensions |

Execution Time(ms)
Energy Consumption(m])

ar | 5x5_Kernel_Direct [

Il 5x5_Kernel_Im2Col

2p B = = 1
| 32 Dutput Maps, 28x28 Dimensions

i i i i i i H H i i i
1 2 3 4 5 6 7 8 9 10 11 12
Number of Shaves

Number of Shaves

Figure 7.5: Direct is faster for big kernels.

It is a fact that for small kernels the Im2Col scalability is saturated after 4 SHAVEs, because by

partitioning the width into many tiles the number of columns, which correspond to every shave are
decreased. So a lot of transfers happen for few computations. On the other hand for bigger kernels,
where the output matrix width is a bigger number, it is observed that Im2Col approach continues to
scale for bigger combinations of vector process units too.
Input channels are going to influence the implementation with the same way but without the square
factor. As far as the output maps are concerned, below in 7.8 is seen that increasing output maps will
lead to an increase in execution time, as expected. Furthermore, in direct approach the parallization
scheme of SHAVESs is based on the depth as stated in previous chapters, which justifies the slope of
the 2 lines in 7.6.

90 Chapter 7

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

15 Execution Time Vs. Output Maps

Energy Consumption Vs. Output Maps

T 18 T
m2Col I Im2Col
16}F..- irect : 16}F..- R e . . BN Direct (4
14 |--832-input. Channelsﬁ 7x7 Dimensions 14+ i ; 832 Input Channels, 7x7 Dimensions|
& 12f Enf
£ £
=]
g 10} S 10t
= =
= 2
S £
g 5 S o
S
5 g
a6k @ 6
]
4+ a+
2 2+
0 L 1 1 L 0 L L L L
48 128 192 384 48 128 192 384
Number of Output Maps Number of Output Maps

Figure 7.6: Influence of the number of Output Maps.

The last factor is outputjimensions, Which are depending on the network’s striding parameter. It
is a fact that 1x1 convolution are used in the late layers of the networks, when the dimensions have
been decreased (e.g GoogleNet). This means that the input width of the 1x1 layers is limited related
to bigger kernels. Trying to partition a 2-dimensional array with small width does not offer a good
scalability, as power and time is consumed pointless in tranfers. According to the above, bigger
kernels have good scalability but not a notable execution time. Worth to mention is that in 1x1
kernel’s execution time for a little VPUs number is better in Im2Col approach than direct.

4.0 e

Im2Col Convolution scalability in Myriad Im2Col Energy consumption in Myriad
254
= E 20}
E 5
[=3 o °
E 3 o ®
’E 2 15¢ . - o @ -
p=s 5 ° ° . @
.é o
5 &
a5 T 10}
P}
05+
05
0.0 0.0
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 1 12
Number of processing units Number of processing units

Figure 7.7: Scalability for 1x1 kernel.

450 - 300

Im2Col Convolution scalability in Myriad Im2Col Energy consumption in Myriad

250 -

Execution Time(ms)
~
S
o
T

Energy Consumption(my])
—
v
o

—
o
S
T
°

50

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Number of processing units Number of processing units

Figure 7.8: Improved scalability for 3x3 kernel.

In chapter 5 was explained that when the kernel size is greater than the striding parameter, the
memory demands of Im2Col’s layers are increased. The diagram below shows exactly this by providing

Chapter 7 91

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

memory demands of the first layer of every CNN. Squeezenet is the only one, which has not so big
difference between these 2 numbers, because kernel is equals to 3 and striding to 2.

4000

3500 -

3000 -

2500 -

2000

1500

1000

Memory Demands of Input Layers (KB)

500

0
AlexNet

Cost of Image Conversion

Il Direct
|l Im2Col

GoogleNet NiN-ImageNet SqueezeNet
Deep Neural Networks

VGGNet

ZFNet

Figure 7.9: Increased memmory Demands of Im2Col approach.

Below is provided a comparison for every layer in Squeezenet between the 2 convolution ways. It
is clear that the only values, which are competitive refer to 1x1 kernels. Finally, GoogleNet provides 7
layers with better execution time with Im2Col approach for every combination of SHAVEs, while with
number of SHAVEs less than 4 Im2Col’s times are better for many layers.

See.|Clamels |Maps |Dimersions | Dimensions | V€K™ | Im2Colims) | Diveatnly | m2Coiuy
3x3 3 64 51529 12769 2.56 27.52 433 34.64
1x1 64 16 3136 3136 150 4.67 247 6.62
1x1 16 64 3136 3136 1.14 4.66 187 6.45
3x3 16 64 3136 3136 1.55 14.17 2,69 19.31
1x1 128 16 3136 3136 2.98 8.39 4.84 12.28
1x1 16 64 3136 3136 1.14 4.67 185 6.48
3x3 16 64 3136 3136 1.55 14.18 2.70 19.33
1x1 128 32 784 784 1.22 1.90 196 2.66
1x1 32 128 784 784 1.07 3.03 1.56 3.60
3x3 32 128 784 784 1.50 13.97 244 1517
1x1 256 32 784 784 243 3.27 3.84 4.57
1x1 32 128 784 784 1.07 3.00 155 3.64
3x3 32 128 784 784 1.50 14.50 242 15.76
1x1 256 48 196 196 1.08 1.23 168 1.51
1x1 48 192 196 156 0.73 117 1.02 1.38
3x3 48 192 196 156 1.07 11.20 167 11.58
1x1 384 48 196 196 1.61 172 2.5 2.1
1x1 48 192 196 196 0.73 1.17 1.02 1.38
3x3 48 192 196 196 1.07 111 165 11.50
1x1 384 64 196 156 2.29 2.28 324 2.62
1x1 64 256 196 156 131 213 178 2.36
3x3 64 256 196 156 1.54 28.57 2.89 29.02
1x1 512 64 196 196 3.04 2.90 443 3.38
1xl 64 256 196 196 1.31 2.14 1.79 2.37
3x3 64 256 196 196 1.94 29.61 2.89 30.17
1x1 512 1000 196 156 44.74 128.71 63.03 125.7

Figure 7.10: SqueezeNet’s Layers executed with both convolution’s ways.

7.3 Comparison with Other Implementations

This section will compare the execution time of the CNNs presented at the chapter 3, using different
devices and/or implementations. The current CNN implementation will be compared with Movidius

92

Chapter 7

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

NCS, which is essentially the same piece of hardware, accompanied by a closed source software
package capable of executing neural networks on it. Also, caffe will be run on a Tegra TX1 with
or without CuDNN device in order to get a filling of the execution times between multiple hardware
devices. Figure 7.11 and table 7.1 below present the comparison.

First of all, notice that the current CNN implementation is executed on Myriad2, more precisely model
MA2450. The Movidius NCS uses the same chip, which makes the comparison more fair, since the
hardware is almost identical. On the other hand, Caffe is executed on Quad ARM A57, which has one
to four cores, each with their L1 instruction and data caches, together with a single shared L2 unified
cache. In general, this is an extremely powerful processor that is intended for server applications. In
our case only one core is being used, because Tegra TX1 gives us the opportunity to use cuDnn with
GPU 256-core Maxwell. Also one core only is used, in order to show the load of the computations.
Caffe with cuDNN as well, performs better than the current CNN implementation in 2 out of 4 CNNs.
If the lack in performance of the current CNN implementation (in comparison with the performance
on Caffe) is not of critical importance, then this implementation should be used, because of the energy
consumption. Myriad2 is designed for low power embedded applications, while the GPU is designed
high performance server applications.

Table 7.1: Execution times of different Implementations

CNNs Current Movidius NCS | Caffe in Caffe with CuDNN
Implementation Quad ARM A57

AlexNet 98.3 96.27 7518 22.2

GoogleNet | 249.1 99.04 16836 180.26

SqueezeNet | 85.5 50.26 8961 695.38

VGGNet 586 733.5 7587 85.8

Comparison in Energy Consumption

Il Tegra
N Myriad2

Energy Consumptio ()

0
GoogleNet SqueezeNet AlexNet VGGNet
Deep Neural Networks

Figure 7.11: Low Energy Consumption in Myriad2 related to Caffe in TegraTX1.

Figures above show that linear CNNs execute very fast in Tegra. Obviously, a good parallization
scheme for fully-connected node is achieved in Tegra, as VGG, AlexNet have huge weight matrices
for these layers. Below, ImageNet’s CNNs are presented with their execution time and some other
attributes:

Chapter 7 93

CHAPTER 7. EVALUATION OF THE IMPLEMENTATION

Table 7.2: Imagenet’s CNNs execution’s times

CNN Execution Time(ms) | Energy Consumption(mdJ) | layers | memory(MB)
AlexNet 98.3 125.6 13 117
GoogleNet 249.1 365.2 83 16.6
NiN-imagenet | 244 335.7 16 15.5
SqueezeNet 85.5 126.7 38 4.68

VGG 586 961 16 276

ZFnet 99 130.3 13 121

7.4 Real-Time Application

This thesis, targeted to develop an efficient CNN engine for the Myriad2 embedded multiprocessor in
order to test "deep" CNNs, which are trained in ImageNet dataset. After this, different approaches
for the convolution layer were implemented. By achieving this, a real-time application was later an
interesting challenge. This application was developed in order to classify objects by accepting images,
which belonged in ImageNet. The accuracy results were the same with Caffe Framework. Also, it
is observed that ImageNet’s CNNs succeed in classifying objects in images, which do not belong in
ImageNet.

In order to accomplish the real-time oject classification, a GUI with Python GTK was written. This GUI
provides the user the ability to select the image, that wants to classify. After this, a selection to send
the image to the embedded device is provided. This was implemented via socket-communication and
with appropriate functions in order that GUI sends the preprocessed image and receives the results.
A screenshot of the app is provided below.

re schnauzer’, with 0.979
dard schnauzer',with 0.005 2
Im2Col approach for 10 layers saving 20ms gi4

In the first position we see 126
In the second position comes 1
Our Execution time is 365.71 m

Figure 7.12: Screenshot of the real-time Application.

94 Chapter 7

Chapter 8

Conclusion

8.1 Summary

Some basic ideas which were used in the current implementation could be applied to any embedded
application which would have to suppport CNNs.

e It is a fact that in order to parallelize convolution, a procedure had to be implemented, which
is going to provide the corresponding input and output partitions. After this, processing in
these data can be done with every way (e.g. alignment, rebuilding of zero-padding elements).

e One of the major problems that needed to be solved early was the efficient management of given
CMX memory. CMX can offer a very large performance boost if exploited correctly. In order to
accomplish this boost, code segment of the CMX had to be as restricted as it is possible by
writing efficient code residing in CMX. This contributed to provide more memory space for the
data of ImageNet’s CNNs.

e Myriad2 achieves low energy consumption in Al applications, like CNNs.

8.2 Future Work

After taking results of the implementation of the CNN engine, several ideas were grasped. Some of
them refer to changes in the current implementation and some to additions. For a future extension,
the following seem to be of the greatest importance:

e Extend the CNN engine, in order to reduce DMA transfers. The general idea of the implementation
is to transfer the input from the main memory into local memories, make the computations and
return the results back to the main memory for every layer. A great variation to this, would
be to keep the data into the local memories after the first transfer, share them into the local
memories and return them back once. This would need the SIPP engine.

e Provide a matrix to matrix multiplication function with decreased complexity. Im2Col convolution
is a memory-bound problem, which transfers the whole input only for one multiplication per
element. This means that not so many optimizations could happen apart from optimizing the
computation routine with a new algorithm (e.g. Scharr’s Algorithm).

e The biggest percent of the whole execution time is devoted in convolutional kernels bigger than
1x1. This means, that if these kernels are segmented into 1x1 kernels, then a noteable speedup
may happen.

e The developement of CNNs and object classification is_followed nowadays by object detection and
R-CNNs. The goal of a R-CNN is to take in an image, and correctly identify both where the main
objects in the image are and classify them. R-CNN propose a bunch of boxes in the image and
see if any of them actually correspond to an object, so it tests a CNN like AlexNet many times,
taking as an input every box of this bunch.

95

Bibliography

[1] Movidius Ltd. Movidius Myriad2 Development Kit: Programmer’s Guide (under non-disclosure
license).

[2] Myriad 2 Ma2xbx Vision Processor. https://uploads.movidius.com/
1463156689-2016-04-29_VPU_ProductBrief.pdf.

[3] NVIDIA Jetson TX1 Module. https://www.nvidia.com/en—us/autonomous—-machines/
embedded-systems—dev—-kits—-modules/.

[4] A Brief History of CNNs in Image Segmentation: From R-CNN to Mask R-CNN. https://blog.
athelas.com/a-brief-history-of-cnns—-in-image-segmentation-from-r-cnn.
—to-mask-r—-cnn-34ea83205de4.

[6] Adit Dashpande. The 9 deep Learning Papers You Need To Know About. http://
adeshpande3.github.io/The-9-Deep-Learning-Papers—-You-Need-To-Know-About.
html.

[6] Matthew D. Zeiler, Rob Fergus. ZF-Net. https://arxiv.org/pdf/1311.2901.pdf.

[7] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. AlexNet. https://papers.nips.cc/
paper/4824-imagenet—-classification-with-deep-convolutional-neural-networks.
pdf.

[8] Yani Ioannou. Group Parameter. https://blog.yani.io/filter—-group—-tutorial/.
[9] Yangqing Jia. Caffe. http://caffe.berkeleyvision.org/.

[10] Andrej Karpathy. Stanford University CS231n: Convolutional Neural Networks for Visual
Recognition. http://cs231n.github.io/.

[11] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt
Keutzer. SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND
<0.5MB MODEL SIZE. https://arxiv.org/pdf/1602.07360.pdf.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Going deeper with convolutions.
https://arxiv.org/pdf/1409.4842.pdf.

[13] Sebastian Raschka. Python Machine Learning. 2015.
[14] Tariq Rashid. Make Your Own Neural Network. 2016.

[15] Pete Warden. Why GEMM is at the heart of deep learning. https://petewarden.com/2015/
04/20/why-gemm—-is—at—-the-heart-of-deep-learning/.

[16] Thanasis Xiggis. Implementation of Convolutional Neural Networks on Embedded
Architectures. http://artemis—-new.cslab.ece.ntua.gr:8080/jspui/bitstream/
123456789/8247/1/DT2017-0208.pdf.

96

https://uploads.movidius.com/1463156689-2016-04-29_VPU_ProductBrief.pdf
https://uploads.movidius.com/1463156689-2016-04-29_VPU_ProductBrief.pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn.-to-mask-r-cnn-34ea83205de4
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn.-to-mask-r-cnn-34ea83205de4
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn.-to-mask-r-cnn-34ea83205de4
http://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://arxiv.org/pdf/1311.2901.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://blog.yani.io/filter-group-tutorial/
http://caffe.berkeleyvision.org/
http://cs231n.github.io/
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
http://artemis-new.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8247/1/DT2017-0208.pdf
http://artemis-new.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8247/1/DT2017-0208.pdf

BIBLIOGRAPHY

[17] Min Lin, Qiang Chen, Shuicheng Yan. Network In Network. https://arxiv.org/pdf/1312.
4400 .pdf.

[18] Karen Simonyan, Andrew Zisserman. VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION. https://arxiv.org/pdf/1409.1556.pdf.

[19] Bixutaideta. Mnyxavikr) MdSnon. https://el.wikipedia.org/wiki/$CE%$9C%CE%B7%CFE%
87%CE%BLl%CE%BD%CE$B9%CE%BASCESAE_%$CE$SBCSCESACSCESBS8%CESBT7%$CF%83%CES%B7.

[20] Bwinaibela. Neuvpwvikd Aiktua. https://el.wikipedia.org/wiki/$CE%$9D%CE%$B5%CFES
85%CF%81%CF%89%CES$BD%CE%BI9%CESBASCEFS$8C_%$CE%B4%CESAFSCESBASCEF%84%CF%85%
CES$BF.

Chapter 8 97

https://arxiv.org/pdf/1312.4400.pdf
https://arxiv.org/pdf/1312.4400.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://el.wikipedia.org/wiki/%CE%9C%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE_%CE%BC%CE%AC%CE%B8%CE%B7%CF%83%CE%B7
https://el.wikipedia.org/wiki/%CE%9C%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE_%CE%BC%CE%AC%CE%B8%CE%B7%CF%83%CE%B7
https://el.wikipedia.org/wiki/%CE%9D%CE%B5%CF%85%CF%81%CF%89%CE%BD%CE%B9%CE%BA%CF%8C_%CE%B4%CE%AF%CE%BA%CF%84%CF%85%CE%BF
https://el.wikipedia.org/wiki/%CE%9D%CE%B5%CF%85%CF%81%CF%89%CE%BD%CE%B9%CE%BA%CF%8C_%CE%B4%CE%AF%CE%BA%CF%84%CF%85%CE%BF
https://el.wikipedia.org/wiki/%CE%9D%CE%B5%CF%85%CF%81%CF%89%CE%BD%CE%B9%CE%BA%CF%8C_%CE%B4%CE%AF%CE%BA%CF%84%CF%85%CE%BF

	 µµ µ µ
	E
	
	µ µ µ: ß
	µ µ µ: ß µ

	
	

	
	
	
	

	 Myriad2
	 Myriad2

	 µ
	 µ
	
	
	µ
	
	µ µ

	Building Intelligent Machines
	Machine Learning
	Three Different Types of Machine Learning
	Classification and Regression in Supervised Learning

	Artificial Neural Networks
	ANNs Architecture

	Convolutional Neural Networks
	Layers of CNNs

	Development of CNNs

	Introduction to CAFFE, Myriad2 and Tegra Jetson TX1
	Convolutional Architecture for Fast Feature Embedding
	Layers
	Training a Network
	Testing of a Network

	Description of Myriad2 multiprocessor SoC
	Uniqure VPU Architecture

	Description of NVIDIA Tegra Jetson TX1
	Building AI Applications with Tegra

	Description of Imagenet CNNs
	AlexNet
	ZF Net
	Network in Network
	VGG Net
	GoogleNet
	SqueezeNet

	Basic Concept of CNN Engine
	CNN Engine's Basic Ideas
	Hardware Attributes
	Memory Map of the Device
	Efficient Resource Management
	CMX DMA Driver

	Configure CNN Engine to Support ImageNet's Contest Deep CNNs
	Sequence of the Input Data in DDR
	Preprocessing of the Input
	Convolution's Layer Parameters

	SHAVE's Implementation and Parallization Scheme
	JumpTable and SHAVE's Computations
	Convolution 1x1 Kernel

	General Matrix to Matrix Multiplication in Deep Learning
	Theoretical Analysis of Im2Col Convolution
	Fully-Connected Layers
	Convolutional Layers with GEMM

	Im2Col's Convolution Implementation in Myriad2
	Import Input and Weight Data
	Preprocess and start Layer's Execution
	SHAVE code and Computation

	Evaluation of the Implementation
	Evaluation of Direct's Convolution Parameters
	Comparison of the Different Convolutional Approaches
	Comparison with Other Implementations
	Real-Time Application

	Conclusion
	Summary
	Future Work

