

Eeniko Metzobio Пo八ytexneio
इхолн Нлектрологлn MhXAnikএn

Tomeas EIIkoinsnisn Hлektponikhг
КАІ Гyгthmatan ПлhРОФОРІКнг

ェY $\Sigma T H M A ~ M E T P H \Sigma H \Sigma ~ \triangle I H A E K T P I K H \Sigma \Sigma T A \Theta E P A \Sigma$ BAILMENO Σ E MIKPOEАEГКTH

Δ IП $\Lambda \Omega$ МАТІКН ЕРГАГIA

A

 К $\alpha \theta \eta \gamma \eta \tau \eta \varsigma$ Е.М.П.

Eeniko Metzobio Пo八ytexneio

Tomeas EIIkoinsnisn Hлektponikhг
КАІ Гyгthmatan ПлhРОФОРІКнг

ェYェTHMA METPH $\Sigma H \Sigma$ \triangle IHAEKTPIKH $\Sigma \Sigma T A \Theta E P A \Sigma$ BAILMENO Σ E MIKPOEАEГКTH

Δ IП $\Lambda \Omega$ МАТІКН ЕРГАГIA

A

Елı $\beta \lambda \varepsilon ́ \pi \epsilon \mathrm{v}: ~ I \omega \alpha ́ v v \eta \varsigma ~ A \beta \alpha \rho \imath \tau \sigma ı \omega ́ \tau \eta \varsigma ~$ К $\alpha \theta \eta \gamma \eta \tau \eta ́ \varsigma$ Е．М．П．

К $\alpha \theta \eta \gamma \eta \tau \eta ́ \varsigma$ Е．М．П．

К $\alpha \theta \eta \gamma \eta \tau \eta \varsigma$ Е．М．П．

Вабíheıos лои́ μ оя
А $\downarrow \alpha \pi \lambda$ ．К $\alpha \theta \eta \gamma \eta \tau \eta \prime \varsigma$ Е．М．П．

AAEEANAPOE Ф. TOYAOYZAE

$\mathrm{M} \varepsilon \varepsilon \pi \iota \varphi \cup ́ \lambda \alpha \xi \xi \eta \pi \alpha v \tau o ́ \varsigma ~ \delta ı \kappa \alpha ı \omega ́ \mu \alpha \tau \circ \varsigma$. All rights reserved.

 боүүраєє́а.
 бטүүрарદ́а каı $\delta \varepsilon v ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \varepsilon \rho \mu \eta \nu \varepsilon v \theta \varepsilon i ́ ~ o ́ \tau ı ~ \alpha v \tau ı \pi \rho о \sigma \omega \pi \varepsilon v ́ o v v ~ \tau ı \varsigma ~ \varepsilon \pi i ́ \sigma \eta \mu \varepsilon \varsigma ~ \theta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \tau о v ~$ ЕӨviкoú Мєтбóßıov Подvтєұveíov.

I would like to take this opportunity to thank my thesis advisor, MMr. John Avaritsiotis, for all the valuable help he provided during the implementation of this final year thesis project, the patience he exhibited, and the indispensable advice given in order to overcome the various difficulties that were encountered. The measurements for this thesis project were taken in the Microelectronics Laboratory of the Electrical and Computer Engineering Department of the National Technological University of Athens, Greece. I would also like to thank everyone from the Microelectronics Laboratory that assisted me during the course of this thesis project.

Abstract

The goal of this final year thesis project is to investigate the use of a custom made cylindrical capacitor as a sensor, which is constructed from two concentric copper pipes. The varying dielectric constant of the liquid placed between the two pipes of the capacitor and the resulting change in the capacitance will be the basis of the measurements taken.

The various circuits that are necessary for the sensor's operation and which will inter work with it will also be studied and analyzed. This analysis will determine which circuits are most suited to the required specifications and it will also determine which ones yield optimum results. A microcontroller will be used to control these circuits, and to collect the output from the sensor that will be displayed accordingly.

Finally, the actual characteristics of the capacitor will be analyzed to determine how the measurements taken compare to the theoretical values calculated. Any discrepancies found will be explained and possible improvements, if any are required, will be suggested. In conclusion, several sample applications of such a type of sensor coupled with a microcontroller will be discussed.

Key Words

Capacitor, Dielectric Constant, Microcontroller, 555-Timer, Transistor Switching Circuits, Sensor.

Пєрі́ $\eta \psi \psi \eta$

 опоіа Өа عпıठєıкvப̇ยтаı avà入oүa．

 μ нкроглєүкт门்．

 Кик $\lambda \dot{\mu} \mu$ ата траvそїтор，АıбӨŋтп்рая

Table of Contents

I. INTRODUCTION 9
2. Theory Of Sensor Operation IO
3. Capacitor Geometry Calculations I3
4. Switching Circuits 2 I
4.I Initial MOSFET Circuit 2 I
4.2 Darlington Transistor Circuit 24
4.3 Solid-State Relay Circuit 25
4.4 Final Transistor Switching Circuit 27
5. Power Supply Circuits 28
5.I Initial Circuits 28
5.2 Final Circuit 30
6. The Tiny Tiger Microcontroller 3 I
6.I Introduction 3 I
6.2 Tiger Basic 32
6.3 Pulse Generation 32
6.4 A/D Input 34
7. Pulse Generation 37
7.I Using the 555-Timer 37
7.2 Using the Tiny Tiger Microcontroller 39
8. Construction Details 40
8. I Capacitor Construction 40
8.2 Holding Tank Construction 4I
8.3 Electrolysis and Corrective Measures 4I
9. Measurements and Results 43
9.I Initial Capacitor Response Measurements 43
9.2 Tiny Tiger Measurements 44
9.3 Final 555-Timer Measurements 46
9.4 Precision Component Tester Measurements 5 I
io. Conclusions and Further Developments 58
io. I Conclusions 58
Io. 2 Improvements 59
io.2.I Capacitor Construction Improvements 59
Io.2.2 Sample Applications 59
II. Bibliography 62
12. Appendices 64
i2.I Appendix A: Oscilloscope Output 65
I2.I.I INITIAL CAPACITOR RESPONSE MEASUREMENTS 65
i2.i. 2 Tiny Tiger Measurements 68
i2.i.3 Final 555-Timer Measurements (45Cm Capacitor) 72
I2.I.4 Final 555-Timer Measurements (75Cm Capacitor) 77
i2.2 Appendix B: Tiger Basic Program Codes 78
i2.2.I Main Project Program 78
i2.2.2 Sample Program for the analog2 Device Driver 79
12.3 Appendix C: TIMERA Device Driver Frequency Range Tables 80
I2.3.I RaNGE I 8o
I2.3.2 RANGE 2 8I
I2.3.3 RANGE 3 83
12.4 Appendix D: Datasheets 85

I. Introduction

Various types of sensors can be found all around us in almost every electronic device that we use. These sensors can be as simple as a thermostat in a refrigerator and a water heater or as complex as the speed measurement sensors in a particle accelerator. Sensors are commonly used as an input to control a type of device, and the sensitivity of a sensor determines its overall precision and usually its cost as well.

Microcontrollers are increasingly being used for a wide variety of tasks, as an abundant variety of compact and economical models is available on the market. This allows a designer to use a sensor and a microcontroller to control almost anything he can think of. As most microcontrollers cannot handle large currents, a relay can be added to solve this problem, thus allowing for an unlimited amount of ideas that can be developed.

The scope of this final year thesis project is to develop a sensor whose output will be connected to a microcontroller that will display the readings taken. The sensor will operate as a capacitor and the capacitive fluctuations generated by the variable height of the dielectric will be measured. Three qualities of a typical sensor, linearity, sensitivity, and discreteness will be analyzed so that the overall performance of the sensor can be determined.

2. Theory Of Sensor Operation

The capacitance of a capacitor is determined by two factors: The geometry of the conductors that it is constructed of and the permittivity of the medium between these conductors. When a DC voltage is applied across the conductors of a capacitor, a transfer of charge occurs with $+Q$ on one conductor and $-Q$ on the other ${ }^{1}$.

For this project, a cylindrical capacitor will be used as a sensor. This capacitor will consist of two conductors, one with an inner conductor of radius \boldsymbol{a} and an outer conductor of radius \boldsymbol{b}. The length of the capacitor will be \boldsymbol{L}, and the area between the two conductors will either consist of free space or it will be filled with a dielectric medium whose permittivity is $\boldsymbol{\varepsilon}$. Figure 1 below depicts the cylindrical capacitor geometry ${ }^{1}$.

Figure 1
By applying Gauss's Law to the cylindrical Gaussian surface within the dielectric, the \boldsymbol{E} field can be obtained ${ }^{1}$. This results in:

$$
E=a_{r} E_{r}=a_{r} \frac{Q}{2 \pi \varepsilon L r}
$$

[^0]The potential difference between the inner and outer conductors is ${ }^{2}$:

$$
V_{a b}=-\int_{r=b}^{r=a} E \bullet d l=-\int_{b}^{a}\left(a_{r} \frac{Q}{2 \pi \varepsilon L r}\right) \bullet\left(a_{r} d r\right)=\frac{Q}{2 \pi \varepsilon L} \ln \left(\frac{b}{a}\right)
$$

And the resulting capacitance for the cylindrical capacitor is ${ }^{2}$:

$$
C=\frac{Q}{V_{a b}}=\frac{2 \pi \varepsilon L}{\ln (b / a)}
$$

The capacitor's discharging time will be the characteristic used and the basis of the sensor's operation for this project. After the capacitor is initially charged to a certain potential, it may be allowed to discharge by placing a resistor in parallel with it. The product of \boldsymbol{R} and \boldsymbol{C} yields the time constant of the circuit and it is this time constant that determines the amount of change in the potential over a specific period of time. The formula below represents the voltage of the capacitor discharging through a resistor in relation to time \boldsymbol{t}. ${ }^{3}$

$$
v(t)=V_{o} e^{-t / R C} \quad t \geq 0
$$

Similarly, the equation for the charging of a capacitor from an initial potential of OV is the following. ${ }^{4}$

$$
v(t)=V_{\text {VoltageSource }}\left(1-e^{-t / R C}\right)
$$

[^1]By increasing or decreasing the total capacitance, the time required to discharge the capacitor varies. Similarly, if $\mathbf{t}=\mathbf{0}$ is the time at which the discharging begins, at a constant interval $\mathbf{t}=\mathbf{t}_{\mathbf{1}}$ the voltage $\mathbf{v}\left(\mathbf{t}_{\mathbf{1}}\right)$ will vary accordingly as well. This can be seen in the graph below where time versus voltage is plotted for 2 different RC values. $\mathbf{V}_{\mathbf{o}}$ is set to 50 V and the time from $\mathbf{0}<\mathbf{t}<\mathbf{4 5}$ represents the charging of a capacitor, $\mathbf{4 5}<\mathbf{t}<\mathbf{5 5}$ represents the stable state of a fully charged capacitor and $\mathbf{5 5}<\mathbf{t}<\mathbf{1 2 0}$ represents the discharging of a capacitor. At $\mathbf{t}=\mathbf{7 0}, \mathbf{v}(\mathbf{7 0})$ will be approximately 5 V for one RC constant and approximately 15 V for another RC constant.

Figure 2
The simple circuit shown below can be used to charge and discharge a capacitor:

Figure 3

3. Capacitor Geometry Calculations

The capacitor geometry that was used in this project is based on materials that were available in the local market. A cylindrical configuration was selected, as a capacitor can be constructed from two copper pipes, one of a small diameter inserted and centered into a larger diameter copper pipe. Plain copper pipes (1 mm thickness) commonly installed in household plumbing installations were used. The following table lists the diameters that were available in the local market.

$\varnothing 12 \mathrm{~mm}$
$\varnothing 15 \mathrm{~mm}$
$\varnothing 18 \mathrm{~mm}$
$\varnothing 22 \mathrm{~mm}$
$\varnothing 28 \mathrm{~mm}$
$\varnothing 35 \mathrm{~mm}$
$\varnothing 42 \mathrm{~mm}$
$\varnothing 54 \mathrm{~mm}$

Table 1
As one can see, a great number of combinations were possible and each was examined so as to determine if it could be used. Two restrictions were set in order to simplify the task of determining the final capacitor geometry. The first restriction was that the total capacitance should be approximately 10 nF . The reasoning behind this was to have a resulting RC constant that was measurable. The second restriction was that the total length of the capacitor should not be longer than 100 cm . This restriction was placed so as to have a length that was easy to work with while still being able to divide the total length in as many 5 cm sections as possible, thus yielding many measuring points.

Using the following formula for the cylindrical capacitor, as discussed in the previous section, yielded the following:

$$
C=\frac{2 \pi \varepsilon L}{\ln (b / a)}
$$

where the permittivity ε was the product of the permittivity of free space, ε_{0}, and the relative permittivity of the dielectric used, ε_{r} : ${ }^{5}$

$$
\varepsilon=\varepsilon_{o} \varepsilon_{r}=\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / m \times \varepsilon_{r}=8.85 \mathrm{pF} / m \times \varepsilon_{r}
$$

[^2]By choosing a different dielectric, it was possible to determine the characteristics of the capacitor. For the specific cylindrical capacitor geometry, the dielectric had to be in a liquid form, as the two concentric copper pipes were fixed together with insulating rubber washers in order to ensure a uniform dielectric thickness and to prevent short circuits. A dielectric such as oil would require thorough cleaning after each use in order to ensure accurate measurements. Considering the construction of the cylindrical capacitor, this would have been a very difficult task, thus oil was not used. Other dielectrics like alcohol or diesel fuel presented fire safety hazards and for this reason they were not considered. By default, one of the dielectrics was air. Distilled water and seawater were the other two candidate dielectrics as they were easy to find and work with. Even though oil was not used, the calculations will be presented for comparison purposes only. The relative permittivity constants of the dielectrics are the following ${ }^{6}$:

$$
\begin{aligned}
& \varepsilon_{r}(\text { air })=1.00 \\
& \varepsilon_{r}(\text { oil })=2.30 \\
& \varepsilon_{r}(\text { distilled_water })=80.0 \\
& \varepsilon_{r}(\text { seawater })=72.0
\end{aligned}
$$

thus resulting in the following permittivities:

$$
\begin{aligned}
& \varepsilon_{\text {air }}=8.85 \mathrm{pF} / \mathrm{m} \\
& \varepsilon_{\text {oil }}=20.4 \mathrm{pF} / \mathrm{m} \\
& \varepsilon_{\text {disitiled_water }}=708 \mathrm{pF} / \mathrm{m} \\
& \varepsilon_{\text {seawater }}=638 \mathrm{pF} / \mathrm{m}
\end{aligned}
$$

In order to calculate the capacitance using all of the possible copper pipe combinations, \mathbf{L} was set to $\mathbf{L}=100 \mathrm{~cm}$ and $\boldsymbol{\varepsilon}$ was set equal to the respective permittivity constant. The radius of the inner copper pipe was \boldsymbol{a} and the outer dimension of the copper pipe was used. The radius of the outer copper pipe was \boldsymbol{b} and the inner dimension was used. As the copper pipes had a thickness of 1 mm , the inner dimensions of \mathbf{b} were 2 mm less than the diameters listed in table 1.

[^3]The resulting capacitances can be found in table 2 listed below. The values for oil as a dielectric are listed for comparison purposes only. This dielectric was not used for reasons described earlier.

Inner Pipe		Outer Pipe		b/a	Capacitance (nF)			
$\begin{aligned} & \varnothing(\mathrm{a}) \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{r}(\mathrm{a}) \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{aligned} & \varnothing(\mathrm{b}) \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{r}(\mathrm{~b}) \\ (\mathrm{mm}) \end{gathered}$		Air	Oil	Sea Water	Water
12	6.0	13	6.5	1.083	0.695	1.598	50.019	55.577
12	6.0	16	8.0	1.333	0.193	0.445	13.917	15.463
12	6.0	20	10.0	1.667	0.109	0.250	7.838	8.708
12	6.0	26	13.0	2.167	0.072	0.165	5.178	5.753
12	6.0	33	16.5	2.750	0.055	0.126	3.958	4.397
12	6.0	40	20.0	3.333	0.046	0.106	3.325	3.695
12	6.0	52	26.0	4.333	0.038	0.087	2.730	3.034
15	7.5	16	8.0	1.067	0.862	1.982	62.035	68.928
15	7.5	20	10.0	1.333	0.193	0.445	13.917	15.463
15	7.5	26	13.0	1.733	0.101	0.233	7.279	8.087
15	7.5	33	16.5	2.200	0.071	0.162	5.078	5.642
15	7.5	40	20.0	2.667	0.057	0.130	4.082	4.535
15	7.5	52	26.0	3.467	0.045	0.103	3.220	3.578
18	9.0	20	10.0	1.111	0.528	1.214	37.999	42.222
18	9.0	26	13.0	1.444	0.151	0.348	10.888	12.097
18	9.0	33	16.5	1.833	0.092	0.211	6.605	7.339
18	9.0	40	20.0	2.222	0.070	0.160	5.014	5.571
18	9.0	52	26.0	2.889	0.052	0.121	3.774	4.193
22	11.0	26	13.0	1.182	0.333	0.766	23.966	26.629
22	11.0	33	16.5	1.500	0.137	0.315	9.874	10.971
22	11.0	40	20.0	1.818	0.093	0.214	6.697	7.441
22	11.0	52	26.0	2.364	0.065	0.149	4.654	5.171
28	14.0	33	16.5	1.179	0.338	0.778	24.367	27.075
28	14.0	40	20.0	1.429	0.156	0.359	11.225	12.472
28	14.0	52	26.0	1.857	0.090	0.207	6.468	7.186
35	17.5	40	20.0	1.143	0.416	0.958	29.983	33.314
35	17.5	52	26.0	1.486	0.140	0.323	10.113	11.237
42	21.0	52	26.0	1.238	0.260	0.599	18.746	20.829

Table 2
The graphs depicted by figures 4 and 5 show the relationship between the capacitance versus the ratio of b/a. Figure 4 shows the capacitances for a cylindrical capacitor filled with distilled water and seawater respectively while figure 5 shows the capacitance for a cylindrical capacitor filled with air and oil respectively.

Figure 4

Figure 5
The first conclusion that can be made is that a cylinder filled with air or oil cannot meet the conditions set previously ($\mathrm{C}=10 \mathrm{nF}, \mathrm{L}=100 \mathrm{~cm}$) as the resulting capacitance is between 0.05 nF to 0.90 nF and 0.10 nF to 2.00 nF respectively. In order to construct a cylindrical capacitor filled with air that had a capacitance of approximately 10 nF , the resulting length would have to be anywhere between 33 to 152 meters, depending on the ratio of b/a that was used. Constructing such a capacitor would not be feasible as it would be very hard to work with an apparatus of such length. Also, there are inherent difficulties in constructing such a capacitor as the longest copper pipe available on the market is 3 meters in length, thus these sections would have to be soldered together to produce the desired length. The soldered
connections would alter the geometry, as the diameter would be different at the joints. These diameter variations would also alter the capacitance as the ratio of \boldsymbol{b} to \boldsymbol{a} would not be uniform. An argument would be to use the copper pipes that are available on the market in a rolled up coil whose total length exceeds the 3 meters that the straight copper pipes are available in. Using these copper pipes would require straightening them manually, a task that cannot guarantee a perfectly straight copper pipe. The resulting irregularities would produce segments of the capacitor with difference dielectric thicknesses, which would in turn lead to incorrect measurements.

The second conclusion that can be made is that the ratio of \mathbf{b} / \mathbf{a} has to be approximately equal to or less than 1.5 when using seawater or distilled water as the dielectric. This requirement is necessary in order to produce a 10 nF capacitor with a maximum 1 m length copper pipe; thus resulting in a length that is easy and possible to work with. If the ratio is significantly less than 1.5 , the resulting capacitance is greater than 10 nF ; therefore the length could be decreased accordingly to maintain the required total capacitance of 10 nF . The length could not be decreased too much or else the resulting number of 5 cm divisions would not be enough to allow for many measurements.

In order to verify the above conclusions, a plot of capacitance versus length was made for different ratios of \mathbf{b} / \mathbf{a}. The graphs depicted by figures 6 to 9 show the results using distilled water, seawater, oil, and air for five sample ratios. These ratios span the total available range of the copper pipe diameters available on the market.

Figure 6

Figure 7

Figure 8

Figure 9

Based on all of the calculations above, there were 13 possible combinations of copper pipes that conformed to the restrictions that were placed. These are listed below along with the corresponding dielectric thickness:

$\emptyset 12$ and $\emptyset 15$ (1mm)	Ø18 and Ø 28 (8mm)	Ø35 and Ø42 (5mm)
$\emptyset 12$ and $\emptyset 18$ (4mm)	$\emptyset 22$ and Ø 28 (4mm)	Ø35 and Ø54 (17mm)
$\emptyset 15$ and $\emptyset 18$ (1mm)	$\emptyset 22$ and Ø${ }^{\text {¢ }}$ (11 mm)	$\emptyset 42$ and Ø 04 (10mm)
Ø15 and Ø22 (5mm) $\emptyset 18$ and $\emptyset 22$ (2mm)	Ø28 and Ø35 (5mm) $\emptyset 28$ and $\varnothing 42$ (12 mm)	

Table 3

The resulting dielectric thicknesses from the 13 possible combinations ranged from 1 mm to 17 mm . There were three combinations that resulted in a dielectric thickness of 5mm; Ø15/Ø22, Ø28/Ø35, and $\varnothing 35 / \varnothing 42$. By selecting these three combinations, geometrical uniformity was ensured while the ratio of \mathbf{b} / \mathbf{a}, total length \mathbf{L}, and the dielectric material with permittivity $\boldsymbol{\varepsilon}$, could be experimented with.

The three combinations of copper pipes resulted in the following ratios of \mathbf{b} / \mathbf{a} : $1.333,1.179$, and 1.143 . As the desired capacitance was approximately 10 nF , the following copper pipe dimensions were required. Only distilled water and seawater are listed, as the restrictions placed could not be fulfilled with either air or water.

Inner Pipe (mm)		Outer Pipe (mm)		b/a	Distilled Water		Seawater	
Ø(a)	r(a)	$\emptyset(\mathrm{b})$	r(b)		L (cm)	$\mathrm{C}(\mathrm{nF})$	L (cm)	$\mathrm{C}(\mathrm{nF})$
15	7.5	20	10.0	1.333	65	10.05	72	10.02
28	14.0	33	16.5	1.179	37	10.02	41	9.99
35	17.5	40	20.0	1.143	30	9.99	34	10.19

Table 4

The dielectric thickness was 5 mm for all three combinations. As $0.05 \mathrm{~cm} \ll 30 \mathrm{~cm}$ (the shortest length in the table), the fringing effect near the edges of the conductors could be ignored as it was negligible. The final lengths of the copper pipes, based on table 4 , were 75 cm , 45 cm , and 35 cm respectively.

There is one remaining factor that must be calculated, and this is the total capacitance. Up until now, it has always assumed that the copper pipes were completely filled with the dielectric, whether it was air, oil, distilled water or seawater. If the copper pipes were not completely filled with a liquid, the remaining unfilled length would contain air, and this would result in two capacitors in parallel. One capacitor had the dielectric of the liquid and the second capacitor had the dielectric of air. As the two capacitors were connected in parallel, the equivalent capacitance was the sum of the individual capacitances. The level of the liquid

[^4]determined the capacitance of each capacitor as one had $\mathbf{L =}$ (liquid level) while the second one had $\boldsymbol{L}=$ (total length)-(liquid level). Plotting the length versus the total capacitance for each of the three ratios of \mathbf{b} / \mathbf{a} that were used yields the following graphs depicted by figures 10 and 11 for distilled water and seawater respectively:

Figure 10

Figure 11

4. Switching Circuits

The principle on which the cylindrical capacitor operated is the following. The capacitor would be continuously charged and discharged. At a specific time interval, \mathbf{t}_{1}, the voltage across the capacitor would be measured. This voltage would be proportional to the capacitance of the capacitor and thus proportional to the level of the liquid that acted as the dielectric in the capacitor.

4. I Initial MOSFET Circuit

Initially, the circuit shown below was used for taking measurements. The capacitor (C) shown was the cylindrical capacitor that was constructed for this project. The resistor (R) was used to discharge the capacitor.

Figure 12
Two transistors, the IRF640 or IRF740 N-Channel enhancement mode MOSFETs, were used as switches. This switching was accomplished by supplying a voltage less than or greater than the gate threshold voltage of the transistor, $\mathrm{V}_{\mathrm{GS}(\mathrm{Tн)}}$. For both the IRF640 and IRF740, $\mathrm{V}_{\text {GS(TH) MIN }}=2 \mathrm{~V}$ and $\mathrm{V}_{\text {GS(TH) }}$ max $=4 \mathrm{~V}$. By applying less than 2V, the transistor operates in its cutoff state and therefore it is "OFF". By applying more than 4 V , the transistor operates in its saturation region and it is " $\mathrm{ON}^{8}{ }^{8}$. As $\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$ ranges from 2 V to 4 V , standard TTL values can be used to control the transistors. Specifically, 0 V were used for "OFF" and +5 V were used for "ON".

It was determined that a high charging voltage would allow for better measurements as it would be easier to monitor the discharging of the capacitor. Due

[^5]to this, the initial capacitor voltage was set at approximately $\mathrm{V}_{0}=100 \mathrm{~V}$. Following the advice of the thesis advisor ${ }^{9}$, it was decided to have a RC time constant of 10 msec . Based on this, the corresponding value of the discharging resistor was $1 \mathrm{M} \Omega$. ($1 \mathrm{M} \Omega \mathrm{x}$ $10 \mathrm{nF}=0.01 \mathrm{sec}$)

The two resistors to the far right of the diagram were used as a voltage divider. This was necessary as the input voltage range on the microcontroller is $0-5 \mathrm{VDC}$ while the capacitor would be charged to approximately 100 V . The voltage divider consisted of two resistors, R_{1} and R_{2}, as shown in figure 13 :

Figure 13

The following equations were used to calculate the values of R_{1} and R_{2}.

$$
\begin{aligned}
& V_{\text {total }}=V_{1}+V_{2}=100 \mathrm{~V}(\text { approximately }) \\
& V_{2}=5 \mathrm{~V}(\text { Maximum_Microcontroller_Voltage }) \\
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V \quad V \quad V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V
\end{aligned}
$$

Before applying $\mathrm{V}_{0}=100 \mathrm{~V}$, it was decided to test the circuit and verify that the switching part of it worked properly and as expected. The test was done by applying $V_{0}=3 V$ using 2 "AA" batteries. Unfortunately the results were not the expected ones, as the switching did not work properly. According to the circuit, the voltage across the capacitor should have been equal to V_{O} during the charging period and it should have converged to OV during the discharging period.

[^6]Measurements taken showed that the voltage across the capacitor was $\mathrm{V}_{0}=3 \mathrm{~V}$ while the transistor was "ON" and charging and at a constant $\left(\mathrm{V}_{\mathrm{O}}-0.7 \mathrm{~V}\right)=2.3 \mathrm{~V}$ during the "OFF" transistor state.

After closer investigation of the datasheets for the IRF640 and IRF740 transistors, it was determined that the diode incorporated in this semiconductor could be at fault. This diode can be seen in figure 14 as included in the transistor datasheet.

Figure 14

4.2 Darlington Transistor Circuit

As a second alternative, a NPN Darlington transistor, the BU323A, was substituted for the IRF640/IRF740. The revised circuit used can be seen below in figure 15 :

Figure 15

Regrettably, this transistor also produced similar results to the IRF640/IRF740, possibly because this transistor also contained an integrated diode, as can be seen in figure 16 from the datasheet. Another solution had to be investigated that overcame these switching problems.

Figure 16

4.3 Solid-State Relay Circuit

A decision was made to try and find a solid-state relay that could be used for the switching function of the circuit. A simple low voltage solid-state relay was found to verify that such a device would work properly in the circuit as it would switch approximately 3 V instead of the 100V. The device selected was the EDR201A0500 relay. This relay produced the expected results as it switched the power to the capacitor properly but it could not handle the high DC voltage with which the capacitor was going to be charged. The circuit with this relay can be seen below in figure 17:

Figure 17
As the "test" solid state relay's operation was as expected, a final device would have to be found that would meet the following conditions: Ability to withstand at least 200VDC across the switching terminals, very fast switching times and switching operation with OVDC and +5 VDC. An extensive search on the Internet revealed many prospective candidates. These candidates were either solid-state relays or high voltage optocouplers.

Examples included the following:

- Siemens LH1056/LH1298/LH1540 High Voltage Solid State Relay Optocouplers
- Supertex HV214 250V Low Charge Injection 8-Channel High Voltage Analog Switch
- NAiS AQW210AH photoMOS Relay
- Crydom CMX200D3 Solid State Relay
- Fairchild HSR312/HSR412 Photovoltaic Solid-State Relay Optocouplers
- International Rectifier PVT412 Power MOSFET Photovoltaic Relay

Unfortunately none of these devices could be located in the local market and the lead-time for ordering most of them was extremely lengthy.

4.4 Final Transistor Switching Circuit

Following the advice of the thesis advisor ${ }^{10}$, a fourth circuit was implemented to overcome all of the shortcomings of the previous 3 switching circuit attempts. The new circuit can be seen below in figure 18 :

Figure 18

This new circuit required one pulse only, as opposed to two that were required by all of the previous circuits. When this pulse was "HIGH", (+5VDC) it turned "ON" the transistor, which in turn pulled the power resistor to ground. During this "ON" state all of the input current passed through the power resistor and the capacitor's charge was discharged through the discharging resistor (R). When the pulse was "LOW" (OVDC) the transistor was "OFF" and the input current charged the capacitor.

At this point, it should be noted that the charging voltage was reduced from approximately 130VDC to approximately 35VDC. This was necessary as the high voltage, in addition to several other factors, was causing electrolysis. The electrolysis phenomenon will be discussed further in section 8.3.

[^7]
5. Power Supply Circuits

Throughout the implementation of this thesis, several power supply circuits were required. As explained earlier, an initial condition for the capacitor's charging voltage was that it should be approximately 100 VDC .

5.i Initial Circuits

Two methods of producing this voltage were analyzed. The first and easiest method was the use of batteries. By connecting ten 9 V batteries in series, the resulting voltage was 99VDC, which fulfilled the approximate 100VDC criteria.

The battery power supply provided acceptable power for the purposes of this project. Unfortunately, due to the electrolysis issues that came up, the voltage fell to 75VDC in a short period of time. As a result, this method of supplying the necessary power was discarded.

The second power supply that was constructed utilized an AC power transformer. The following equations show the relationship between the AC line voltage of a transformer and the RMS voltage at the output. V_{S} is the transformer's secondary voltage and V_{M} is the maximum of $\mathrm{V}_{\mathrm{s}} .{ }^{11}$

$$
\begin{aligned}
& V_{\text {line }}=\sqrt{2} V_{r m s} \sin \omega t \\
& V_{S}=V_{M} \sin \omega t \\
& V_{M}=N \sqrt{2} V_{r m s}
\end{aligned}
$$

Solving for $\mathrm{V}_{\mathrm{M}}=100 \mathrm{VAC}, \mathrm{V}_{\text {rms }}$ would have to be 70.7 VAC , thus requiring a 220 VAC to 71VAC transformer. This type of transformer was not readily available on the market and could only be obtained through a special order. This inherently would require a long lead-time and it would entail a high cost.

[^8]An alternative to this was to use a standard voltage transformer available on the market for adapting the local line voltage to appliances manufactured abroad. This is usually found in a 220VAC to 110VAC transformer. A multi-scale transformer was found that could transform the following voltages: $90 \mathrm{~V}, 110 \mathrm{~V}, 125 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, and 240 V . A picture of the transformer is shown below, along with a detailed picture of the input/output voltage selectors:

Figure 19

Figure 20

The line voltage was measured and was found to be 238.5VAC. Using the 240VAC to 90VAC step-down scale, with the given input line voltage, the output voltage was 89.4VAC. By using a full wave rectifier, and based on the formula listed previously, the final DC output voltage was 126.5 VDC . The power supply circuit used is shown below in figure 21 :

Figure 21

5.2 Final Circuit

As mentioned earlier, the capacitor's charging voltage had to be reduced from approximately 130 VDC to approximately 30VDC. The local market was investigated again and a survey was performed on the available step-down transformers. The largest standard transformer that was found was one that stepped down 220VAC to 24VAC.

Using the 220VAC to 24 VAC ratio and the fact that $\mathrm{V}_{\text {line }}=238.5 \mathrm{VAC}$, it was calculated that $\mathrm{V}_{\text {rms }}=26 \mathrm{VAC}$. By using the equation for V_{M} listed above, it was calculated that $\mathrm{V}_{\mathrm{M}}=36.8 \mathrm{VAC}$, and this was the voltage supplied to the capacitor in order to charge it. The complete final power supply circuit used is shown below in figure 22.A:

Figure 22.A
A picture of the final power supply circuit is shown below in figure 22.B.

Figure 22.B

6. The Tiny Tiger Microcontroller

6.I Introduction

The Tiny Tiger microcontroller is manufactured by Wilke Technology. Several models are available such as the BASIC Tiger, the Tiny Tiger and the Tiny Tiger Economy. For this project the Tiny Tiger Economy module was used along with the Tiny Tiger Prototyping Board. For the remainder of this paper, the Tiny Tiger Economy module will be referred to as the Tiger module for simplicity. The actual Tiger module is shown below with its pin-outs.

Figure 23

Figure 24

The basic features that differentiate the Tiny Tiger Economy microcontroller from the other two modules are the number of input/output ports, the on-board memory and the lack of an on-board real-time clock. This was acceptable for this project as the requirements of the microcontroller were quite simple: To generate a pulse for driving the switching circuit which in turn caused the capacitor to charge and discharge, and to take a voltage measurement during the capacitor discharging period at a precise interval t_{m}. As a 4 -line by 20 -character LCD module was also available for the Tiger module, this was used to display the voltage during the discharging period. This LCD module is shown below:

Figure 25

6.2 Tiger Basic

The Tiger module was programmed with Tiny Tiger Basic, ver 4.01. Tiger Basic includes a modified BASIC instruction set that reduces the familiarization period for the programming of the module and makes this task very simple.

The Tiger module supports multitasking and can execute up to 32 tasks simultaneously. Approximately 10,000 to 100,000 BASIC instructions can be executed per second depending on the complexity of the instruction and the data volume. The memory capacity of the Tiger module is 32 Kb . The BASIC program is compiled and downloaded to the Tiger module with the Tiger Basic development software suite.

6.3 Pulse Generation

The Tiger microcontroller can produce three ranges of frequencies using its base frequency and a division factor. The resulting frequency and time ranges that are possible are shown in the table below ${ }^{12}$:

Range	Range Frequency	Resolution	Time Range
1	$2,500,000 \mathrm{~Hz}$	$0.400 \mu \mathrm{sec}$	$0.0004 \rightarrow 26.214 \mathrm{msec}$
2	$625,000 \mathrm{~Hz}$	$1.600 \mu \mathrm{sec}$	$0.0016 \rightarrow 104.856 \mathrm{msec}$
3	$156,250 \mathrm{~Hz}$	$6.400 \mu \mathrm{sec}$	$0.0064 \rightarrow 419.424 \mathrm{msec}$

Table 5

The Tiger microcontroller can produce a pulse using two different methods. The first method is by using the time-base timer device driver that is called "TIMERA". This device driver creates an internal adjustable time base that can be used by other device drivers. The TIMERA device driver is installed with two parameters, RANGE and DIVISION FACTOR and these parameters produce the time ranges listed in the table above. A table in the User's Manual ${ }^{12}$ lists all of the possible division factors that can be used and the corresponding frequencies. A copy of these tables may be found in appendix C . To install the driver, the following syntax is used:

INSTALL_DEVICE \#X, "TIMERA.TDD", Y, Z

[^9]This installs the TIMERA driver as device $\# \mathbf{X}$ with the range parameter \mathbf{Y} and a division factor of \mathbf{Z}. Parameter \mathbf{X} can range from 0 to 63 and parameter \mathbf{Y} can be 1, 2,3 or 0 . If 0 is selected, the timer is stopped. A second device driver is required that will actually produce the pulse, and this is the PLSO2 device driver. To install this driver the following syntax is used:

```
INSTALL_DEVICE #X, "PLSO2_Pp.TDD"
```

This installs the PLS02 driver as device \#X on pin \mathbf{p} of port \mathbf{P}. To generate the pulse, the following BASIC instruction is used with the syntax shown:

```
PUT #X, CNT, DUTY, CYCLE
```

This instruction will output CNT number of pulses to pin \mathbf{p} of port \mathbf{P}. The total time of the pulse will be CYCLE and the time that the pulse will be "HIGH" is equal to DUTY. Both DUTY and CYCLE can have a range of 0 to 65535 . To produce 300 pulses on pin 0 of port 8 that are "HIGH" for 6 msec and "LOW" for 4 msec the following set of instructions would be required. Note that the installed time base is 10kHz.

```
INSTALL_DEVICE #2, "TIMERA.TDD", 1, 250
INSTALL_DEVICE #4, "PLSO2_80.TDD"
PUT #4, 300, 60, 100
```

The second method of producing pulses with the Tiger module is by using the PLSOUT1 device driver. This device driver enables a very fast pulse output and can output pulses with high resolution, thus the advantage in using it. The drawback to this method is that the fast drivers utilize available hardware that cannot be shared; therefore it is not possible to simultaneously use another fast driver. To install this device driver the following syntax is used:

```
INSTALL_DEVICE #X, "PLSOUT1.TDD", AREA
```

This installs the PLSOUT1 driver as device \#X and the parameter AREA determines the resolution of the driver. This parameter can be 1, 2 or 3 and these ranges
correspond to the ones listed in table 5 . The pulse output is always on pin 6 of port 8 and it cannot be changed. Similarly to the first pulse generation method, the PUT instruction is used to output the pulse but with the following difference; the DUTY parameter signifies the time for which the pulse is "LOW". To produce the same 300 pulses that are "HIGH" for 6 msec and "LOW" for 4 msec the following set of instructions would be required using this method.

```
INSTALL_DEVICE #3, "PLSOUT1.TDD", 2
PUT #3, 300, 2500, 6250
```

The output on pin 6 of port 8 is 300 pulses with a total time of 10 msec ($1.600 \mu \mathrm{sec} \times 6250$) of which $4 \mathrm{msec}(1.600 \mu \mathrm{sec} \times 2500)$ are "LOW", thus the remaining 6 msec are "HIGH".

6.4 A/D InPut

The last function of the Tiger module that needs to be examined for the scope of this project is the analog to digital input. The voltage drop across the capacitor during its discharging period will be measured using this input method. There are several ways to acquire measurements from the A/D-Inputs on the Tiger module using the two available device drivers, ANALOG1 and ANALOG2. The basic difference between these two drivers is that ANALOG1 reads the instantaneous value of the analog input while ANALOG2 samples the input and stores the results in a first in, first out (FIFO) buffer. The ANALOG2 device driver also requires the TIMERA device driver in order to function, whereas the ANALOG1 does not. Using the ANALOG1 driver, 8 -bit and 10-bit resolutions are supported, while using the ANALOG2 driver, 8 -bit, 10 -bit and 12 -bit-interpolated resolutions are supported. The following syntax is used to install the ANALOG1 driver:

INSTALL_DEVICE \#X, "ANALOG1.TDD"

The instantaneous inputs are then read with the GET command. Various ways of reading the A/D inputs are possible depending on the syntax of the GET command that is used, as shown below:

```
GET #X, #O, 1, VALUE (Reads 8-bit value from channel 0)
GET #X, #3, 2, VALUE (Reads 10-bit value from channel 4)
GET #X, #4, 4, VALUE (Reads 8-bit value from channels 0,1,2,3)
GET #X, #5, 8, W$ (Reads 10-bit values from channels 0,1,2,3
    into a string that should be 4 x 2 bytes)
```

The following example shows how to install and use the ANALOG1 device driver so that it reads the input from A / D channel 0 in a 10-bit format:

```
INSTALL DEVICE #6, "ANALOG1.TDD"
GET #6, #O, 2, ATOD
```

The ANALOG2 device driver is installed in the same way as the ANALOG1 driver. A prerequisite is the installation of the TIMERA device driver prior to that of the ANALOG2 device driver. The ANALOG2 device driver has several user function codes that set the necessary parameters required for the device driver to function properly and as required by the user. Due to this, the file "UFUNC3.INC" must be included in the program so that the compiler can recognize the symbol names used.

The following table from the user's manual ${ }^{13}$ lists the parameters available that can be set using the PUT command:

Parameter Name	Description
UFCO_AD2_CHAN	Set single channel mode. $\rightarrow 0,1,2$, or 3
UFCO_AD2_RESO	Set resolution $\rightarrow 8=8=$ bit, $10=10$-bit, $12=12$-bit
UFCO_AD2_INTEG	Integration width at 12 -bit. $\rightarrow 16,32,64$, or 128
UFCO_AD2_STOVL	Flag: Stop on FIFO Overflow $\rightarrow 0=y e s, n=n o=w r a p-a r o u n d ~$
UFCO_AD2_ANZ	No. of measurements per channel $\rightarrow 0=$ endless (FIFO), $\mathrm{n}=\mathrm{no}$ of measurements (LONG)
UFCO_AD2_PSCAL	Pre-scaler, that divides the reference frequency of TIMERA. \rightarrow $0,1=$ no pre-scaler, $\mathrm{n}=$ divider
UFCO_AD2_STOP	Stop A/D sampling
UFCO_AD2_GROF	Set string size adjustment flag $\rightarrow 0=$ spontaneous assignment at end of measurement, else=dynamic adjustment during measurement
UFCO_AD2_SCAN	Set multiple channels mode and number of channels used \rightarrow $\mathrm{n}=1$, channel used by UFCO_AD2_CHAN, $\mathrm{n}=2: 2$-channels (Ch-0, $\mathrm{Ch}-1$), $\mathrm{n}=3: 3$-channels (Ch-0, Ch-1, Ch-2), $\mathrm{n}=4: 4$-channels (Ch-0, $\mathrm{Ch}-1, \mathrm{Ch}-2, \mathrm{Ch}-3$)
UFCO_AD2_ISAMP	Integrate samples: Determines that every $\mathrm{n}^{\text {th }}$ measurement will be written to the buffer, only for 12-bit resolution
UFCO_AD2_PSCIMM	Set pre-scaler immediately, (without a restart)

Table 6

The ANALOG1 device driver was used in this project, as an instantaneous measurement was required after each pulse. For academic purposes, a sample program that uses the ANALOG2 device driver can be found in Appendix B. This program was written for experimental reasons in order to determine which method of measurements was most suitable for this thesis project.

[^10]
7. Pulse Generation

Even though the Tiger module is perfectly capable of producing the necessary pulses to drive the switching circuit that would charge and discharge the capacitor, a second alternative was used initially to examine and analyze the behavior of the capacitor. The second alternative consisted of the 555 -timer in an astable operation mode. Recompiling, download the program and restarting the Tiger module required a few minutes therefore this second alternative was chosen as the pulse frequency was easily varied by using a potentiometer with the 555-timer rather than reprogramming the Tiger module.

7.I Using the 555-Timer

The 555-timer is a highly stable controller capable of producing accurate oscillation ${ }^{14}$ (astable operation) by using two resistors and one capacitor, all of which are external components. The 555 -timer can also be used for monostable operation but this mode of operation will not be discussed, as it is not applicable to this project. The typical circuit for astable operation is the following, as shown from the datasheet ${ }^{14}$:

Figure 26

[^11]This circuit produces a square wave pulse output whose HIGH-level duration is $\mathbf{t}_{\mathbf{H}}$ and LOW-level duration is \mathbf{t}_{L}. The respective high and low level durations can be calculated using the following equations ${ }^{15}$:

$$
\begin{aligned}
t_{H} & =0.693\left(R_{A}+R_{B}\right) C \\
t_{L} & =0.693\left(R_{B}\right) C
\end{aligned}
$$

Using the above equations with the following component values resulted in these final high and low level durations: $\mathbf{t}_{\mathbf{L}}=25.6 \mathrm{msec}$ and $\mathbf{t}_{\mathbf{H}}=25.6 \rightarrow 25.8 \mathrm{msec}:$

$$
\begin{aligned}
& \mathrm{C}=10 \mathrm{nF} \\
& \mathrm{R}_{\mathrm{A}}=22 \mathrm{~K} \Omega \text { Potentiometer } \\
& \mathrm{R}_{\mathrm{B}}=3.7 \mathrm{M} \Omega
\end{aligned}
$$

These times were selected as such, since they were approximately $21 / 2$ times the RC constant (10msec) of the capacitor under analysis (10nF) and the discharging resistor ($1 \mathrm{M} \Omega$). This allowed ample time for charging the capacitor and provided an adequate settling period after the capacitor has discharged. As the switching circuit described in figure 18 from section 4.4 resulted in the capacitor's discharge during the pulse's high-level output, having $\mathbf{t}_{\mathbf{H}}>\mathbf{t}_{\mathbf{L}}$ ensured that the discharging time would be greater than the charging time.

Taking the component values that were calculated into account, the final 555timer circuit that was used for the initial measurements is the following:

Figure 27

[^12]
7.2 Using the Tiny Tiger Microcontroller

Using the Tiger module to produce a pulse was a relatively easy task, as described in section 6.3. The corresponding $\mathbf{t}_{\boldsymbol{H}}$ and $\mathbf{t}_{\mathbf{L}}$ times were set via software. The final Tiger module circuit that was used is the following:

Figure 28

8. Construction Details

8. i Capacitor Construction

Recalling from section 3, there were three possible combinations of copper pipes that could be used to construct a capacitor the met the restrictions placed. Two of these three possible capacitors were constructed, the 75 cm and the 45 cm ones. The inner copper pipe was left 3cm longer than the outer copper pipe in order to be able to solder the leading cables without creating any short circuits and to facilitate the alignment of the two copper pipes. The two copper pipes that made up the capacitor were placed concentrically and were kept centered with a rubber washer. This rubber washer was pushed in approximately 2 mm from the edge of the copper pipes and the resulting gap was filled with an epoxy-like compound that hardened and kept the copper pipes stable. The details of the copper pipe ends can be seen in the following pictures:

Figure 29

Figure 30

The outer copper pipe was drilled every 1 cm so that the dielectric could enter the two pipes and fill the gap in between them. This was necessary as the ends of the copper pipe were sealed. An early thought was to leave some holes in the ends of these washers so that the liquid could enter the tubes. This idea was discarded, as the holes would compromise the alignment of the two copper pipes. A detail of the holes that were made can be seen in the picture below, noting that the larger holes represent the 5 cm divisions:

Figure 31

8.2 Holding Tank Construction

A 75 mm diameter plastic pipe was used as a holding tank to house the liquids that would act as the capacitor's dielectric. The construction details of this plastic pipe can be seen in the picture below:

Figure 32

Figure 33

The small exterior transparent tube was used to view the level of the liquid inside the plastic pipe.

8.3 Electrolysis and Corrective Measures

The problem of electrolysis was encountered early during the initial measurement periods. This was a reason for redesigning half of the project, primarily the power supply circuit and the construction of the capacitor. The electrolysis problem was partially solved with the aid of a clear varnish spray. One of the capacitors constructed, specifically the 45 cm one, was taken apart and coated with a film of varnish on all 3 of the copper pipe surfaces, excluding the inner surface of the inner copper pipe. This capacitor was selected for the modifications as it was made of copper pipes that were shorter in length and larger in diameter than the 75 cm capacitor, thus making it easier to coat the interior copper pipe surface.

Special care was taken to ensure that the varnish was applied as uniformly as possible. Coating the entire inside surface of the outer copper pipe proved to be
difficult as the overall length of the copper pipe was 45 cm and the spray did not reach the center of the pipe easily. The inner surface of the inner copper pipe was not coated as the critical surfaces were the ones between the two copper pipes, specifically the outer surface of the inner pipe and the inner surface of the outer pipe. The varnish was allowed to dry over night and the capacitor was reassembled the next day.

The modified capacitor, along with the new power supply circuit, was successfully tested with the lowered voltage and the problem of electrolysis had been solved, at least for the most part. The solution was a partial remedy as some very minor electrolysis was still evident due to the fact that the varnish had not uniformly coated the copper pipe surfaces. This electrolysis was still evident as some green residue was visible in the holding tank's water after period of time had elapsed while taking measurements.

This layer of varnish surely altered the total capacitance of the capacitor. Determining the magnitude of this change was not pursued as the effect was assumed to be minimal. This is due to the thickness of the varnish coating being very small and the fact that varnish is an insulator thus the dielectric constant is insignificant compared to the dielectric constant of water. To illustrate the insignificance of the varnish, the following example can be used: Assume that the insulation thickness of a flat 2-conductor antenna cable is altered. If the distance between the two conductors is not changed, the effect on the capacitance will be insignificant. ${ }^{16}$

[^13]
9. Measurements and Results

9. I Initial Capacitor Response Measurements

A variety of measurements for each capacitor were made in the lab that yielded some very interesting results. Initial microcontroller A/D measurements were not usable, as the results did not show anything but zero values, mostly due to the electrolysis that was observed. An oscilloscope was then used to troubleshoot the behavior of the capacitor. With the help of the thesis advisor, ${ }^{17}$ and a colleague from the lab who had built a similar 555-timer pulse circuit, the response of the capacitor was examined. The results are shown in the picture below:

Figure 34
The waveform on the left shows the 555 -timer pulse and voltage across the 45 cm capacitor as it discharges, without any water. The charging voltage applied to the capacitor was 30VDC. The waveform on the right was obtained when the capacitor was completely filled with distilled water. The 45 cm capacitor had been coated with the coat of varnish when these measurements were made.

Comparing the above waveforms with the theoretical waveforms from section 2, one can see that the capacitor exhibits the expected results as the voltage across the capacitor exhibits an exponential decay. As the capacitance increases, due to an increase of the dielectric between the two pipes, the capacitor takes longer to discharge. The waveforms shown above depict the two extreme conditions of the dielectric's height; without any water and completely filled with water. Measurements were also taken at 10 cm intervals and these can be found in appendix A .

[^14]
9.2 Tiny Tiger Measurements

The second set of measurements taken was with the Tiger module. The Tiger module was used to produce the pulse output and the total pulse cycle was 6.4 msec , with a 3.2 msec high-level followed by a 3.2 msec low level. This translates to a pulse frequency of 156.25 Hz . Measurements were made at every 5 cm divisions of water. The resulting combined oscilloscope output is shown below.

Figure 35

The waveforms shown are not in line with the expected results for the following reasons. (Individual waveforms can be found in appendix A.) In fact, the results obtained are the exact opposite of the theoretical results. As one can see from the above waveforms, the capacitor discharges in a shorter period of time as the water level increases, incorrectly indicating that the capacitance is decreasing. A second irregularity is that the discharging of the capacitor appears to happen while the microcontroller pulse is low. This is also not in line with the expect results as the circuit used charges the capacitor while the pulse is low and discharges it while the pulse is high. These results may be the result of either one of the following: incorrect oscilloscope probe placement on the circuit or unexpected circuit behavior due to the
low frequency pulse that was used as the capacitor did not have enough time to charge and discharge completely.

Unfortunately, no additional measurements are available from the Tiger module. During the measurements phase, a resistor's connections from the A/D voltage divider were accidentally shorted and 40VDC were applied to the Tiger module's A/D input. This high voltage ruined the Tiger module, as the maximum A/D voltage input allowed is 5VDC. This Tiger module was obtained through a special order from abroad and ordering a replacement module in a timely fashion that would allow further measurements was not feasible.

9.3 Final 555-Timer Measurements

Additional measurements were also made with the oscilloscope using the 555timer circuit. The resistor values for R_{A} and R_{B} that were originally calculated in section 7.1 did not produce any useable results. One reason was that the potentiometer was not sensitive enough to lock onto a specific value. The resulting waveforms contained too much distortion and the oscilloscope's trigger couldn't work properly. This problem was overcome by using a $12 \mathrm{~K} \Omega$ precision trimmer that was available in the lab. R_{B} was replaced with a $1.1 \mathrm{~K} \Omega$ resistor instead of the $3.7 \mathrm{M} \Omega$ resistor, based on the following graph from the datasheets ${ }^{18}$:

Free-Running Frequency
Figure 36
These values result in a frequency range of approximately 10 kHz to 100 kHz , a range that is higher than the one used for the initial capacitor response measurements which was 5 kHz .

[^15]The resulting measurements from the capacitor were exactly as expected and in accordance with the theoretical results. The combined graph of the 45 cm capacitor discharging with water at every 5 cm interval can be seen below:

Figure 37

The pulse frequency is approximately 90 kHz and an adequate settling period can be observed on the graph. Based on that fact that each major division is $2 \mu \mathrm{sec}$, one can see that the microcontroller would have to take an A/D measurement $1.2 \mu \mathrm{sec}$ after the pulse generated initially goes into a HIGH state. Individual graphs for each 5 cm interval can be found in appendix A .

By taking a measurement at $1.2 \mu \mathrm{sec}$ after the capacitor starts discharging, the behavior of the sensor can be examined. This particular measuring point can be seen in figure 37, depicted by the blue vertical dashed line. The relationship between the height of the liquid and the voltage across the capacitor can be seen in the graph below depicted by figure 38 .

Figure 38
The individual measurements taken from the capacitor can be seen in the graph and a best-fit line has also been inserted. Several of the points exhibit a deviation from the best-fit line and this is expected as the cause can be experimental error and/or deviations caused by the electrolysis. The best-fit line shows that the sensor exhibits a linear response and discreteness in the measurements as each height has only one corresponding voltage. The relationship between the height of the liquid and the voltage can be depicted by the following equation, which results from the slope and y-intercept of the best-fit line:

$$
V=0.275 h+1.5
$$

The sensitivity of the sensor cannot be extracted from this graph. To measure the sensitivity, one would have to gradually increase the height of the liquid while observing the point at which the voltage would change. A sensor with a high sensitivity would exhibit a change in voltage with a few millimeters of liquid while a low sensitivity sensor would require several centimeters of liquid before showing a change in the voltage. As the microcontroller was damaged, it was not possible to take these sensitivity measurements.

Lastly, the 75 cm capacitor that was not coated with a coat of varnish was also measured for comparison reasons. Looking at the graph below, it is obvious that no measurements can be taken to distinguish the height of the liquid. The results are most likely due to the fact that electrolysis is taking place and therefore the capacitor is not exhibiting the characteristics of a capacitor.

Figure 39
Only the 0 cm and 75 cm individual graphs are included in appendix A for reference.
Inclusion of the remaining ones is deemed unnecessary.
Several photographs taken during the measurements are included below:

This photograph shows the breadboard and oscilloscope probe.
The Tiger module is being used to produce the pulses driving the transistors.

This photograph shows the overall power supply, Tiger module and breadboard interconnections.

A close-up photograph of the Tiger module without the LCD display module.

A photograph of the copper pipes inside the holding tank.

9.4 Precision Component Tester Measurements

The final measurements that were collected dealt with the capacitor itself. A precision component tester was available in the lab and three types of measurements were made for the capacitor at 5 cm intervals of dielectric liquid for the 45 cm capacitor. These measurements were the total capacitance, and AC impedance that consists of the resistance and the impedance angle of the capacitor. Under ideal conditions, a capacitor will have zero resistance and an impedance angle of -90°. (Similarly, an ideal inductor will have zero resistance and an impedance angle of $+90^{\circ}$.) A resistor does not have an impedance angle, as it is not an energystorage element ${ }^{19}$. The measurements taken are listed in the table below.

	10kHz	20kHz	40kHz	100kHz	200kHz	400kHz	1MHz
0cm	$\begin{gathered} 1.4 \mathrm{nF} \\ 5300 \Omega \\ -26.9^{\circ} \end{gathered}$	0.95 nF 4200Ω -30.0°	$\begin{gathered} \hline 0.65 \mathrm{nF} \\ 3300 \Omega \\ -32.2^{\circ} \end{gathered}$	$\begin{gathered} 0.41 \mathrm{nF} \\ 2400 \Omega \\ -38.1^{\circ} \end{gathered}$	0.33 nF 1800Ω -47.8°	0.29 nF 1200Ω -61.0°	0.28 nF 600Ω -74.8
10 cm	$\begin{gathered} 16.3 \mathrm{nF} \\ 387 \Omega \\ -23.7^{\circ} \end{gathered}$	$\begin{array}{r} 9.90 \mathrm{nF} \\ 314 \Omega \\ -23.1^{\circ} \\ \hline \end{array}$	5.68 nF 268Ω -22.6°	$\begin{gathered} 3.41 \mathrm{nF} \\ 227 \Omega \\ -29.1^{\circ} \end{gathered}$	$\begin{array}{r} 2.92 \mathrm{nF} \\ 183 \Omega \\ -42.0^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 3.94 \mathrm{nF} \\ 122 \Omega \\ -58.3^{\circ} \\ \hline \end{array}$	
15 cm	$\begin{array}{r} 25.5 \mathrm{nF} \\ 267 \Omega \\ -25.4^{\circ} \end{array}$	15.3 nF 214Ω -24.4°	$\begin{array}{r} 8.74 \mathrm{nF} \\ 182 \Omega \\ -23.6^{\circ} \end{array}$	$\begin{array}{r} 5.13 \mathrm{nF} \\ 152 \Omega \\ -29.3^{\circ} \end{array}$	4.31 nF 122Ω -41.5°	5.77 nF 82Ω -57.4。	$\begin{array}{r} \hline 5.09 \mathrm{nF} \\ 33 \Omega \\ -71.9^{\circ} \end{array}$
20 cm	$\begin{array}{r} 34.8 \mathrm{nF} \\ 211 \Omega \\ -27.5^{\circ} \end{array}$	$\begin{array}{r} 20.8 \mathrm{nF} \\ 167 \Omega \\ -26.0^{\circ} \end{array}$	67.3 nF 141Ω -24.7°	$\begin{array}{r} 6.7 \mathrm{nF} \\ 118 \Omega \\ -29.8^{\circ} \end{array}$	$\begin{array}{r} 5.6 \mathrm{nF} \\ 95 \Omega \\ -41.6^{\circ} \end{array}$	$\begin{array}{r} 7.5 \mathrm{nF} \\ 63 \Omega \\ -57.3^{\circ} \end{array}$	$\begin{array}{r} 7.0 \mathrm{nF} \\ 24 \Omega \\ -70.9^{\circ} \end{array}$
25cm	$\begin{array}{r} 42.2 \mathrm{nF} \\ 187 \Omega \\ -29.9^{\circ} \end{array}$	$\begin{array}{r} 24.1 \mathrm{nF} \\ 148 \Omega \\ -26.8^{\circ} \end{array}$	$\begin{array}{r} 74.6 \mathrm{nF} \\ 126 \Omega \\ -24.9^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 7.8 \mathrm{nF} \\ 107 \Omega \\ -31.4^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 6.7 \mathrm{nF} \\ 84 \Omega \\ -45.0^{\circ} \end{array}$	8.6 nF 53Ω -60.7°	$\begin{array}{r} 8.97 \mathrm{nF} \\ 19 \Omega \\ -72.4^{\circ} \end{array}$
30 cm	52.6 nF 162Ω -32.4 ${ }^{\circ}$	30.2 nF 126Ω -28.6°	86.1 nF 106Ω -25.7°	$\begin{array}{r} 9.2 \mathrm{nF} \\ 89 \Omega \\ -31.1^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 7.8 \mathrm{nF} \\ 71 \Omega \\ -44.3^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 10.21 \mathrm{nF} \\ 45 \Omega \\ -59.9^{\circ} \\ \hline \end{array}$	11.1 nF 15Ω
35cm	62.3 nF 148Ω -35.3 ${ }^{\circ}$	$\begin{array}{r} 36.6 \mathrm{nF} \\ 112 \Omega \\ -31.0^{\circ} \end{array}$	92.3 nF 93Ω -27.6°	$\begin{array}{r} 11.0 \mathrm{nF} \\ 77 \Omega \\ -32.3^{\circ} \end{array}$	$\begin{array}{r} 9.3 \mathrm{nF} \\ 61 \Omega \\ -44.9^{\circ} \end{array}$	$\begin{array}{r} 12.0 \mathrm{nF} \\ 38 \Omega \\ -60.2^{\circ} \end{array}$	$\begin{array}{r} 14.0 \mathrm{nF} \\ 12 \Omega \\ -69.8^{\circ} \end{array}$
40 cm	$\begin{array}{r} 71.9 \mathrm{nF} \\ 134 \Omega \\ -37.2^{\circ} \end{array}$	$43.1 \mathrm{nF}$ 100Ω -32.8°	$\begin{array}{r} 100.4 \mathrm{nF} \\ 82 \Omega \\ -28.9^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 12.9 \mathrm{nF} \\ 67 \Omega \\ -33.1^{\circ} \end{array}$	$10.8 \mathrm{nF}$ 53Ω -45.5°	$\begin{array}{r} 14.0 \mathrm{nF} \\ 33 \Omega \\ -60.4^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 17.9 \mathrm{nF} \\ 10 \Omega \\ -68.2^{\circ} \\ \hline \end{array}$
46 cm	79.2 nF 126Ω -38.0°	46.8 nF 94Ω -33.5°	$\begin{array}{r} 105.9 \mathrm{nF} \\ 76 \Omega \\ -29.5^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 13.9 \mathrm{nF} \\ 63 \Omega \\ -33.2^{\circ} \\ \hline \end{array}$	11.6 nF 49Ω -45.3°	15.1 nF 30Ω -60.1°	19.9 nF 9Ω -67.1

Table 7

[^16]Plotting the capacitance values for each frequency and height of water yields the following graph:

Figure 40

The same data can be plotted in a three dimensional graph as shown below:

Figure 41

Plotting the resistance component of the impedance versus the height of the dielectric and the frequency yields the following graph:

Figure 42
Examining the initial data and the graph above, one can see that the measurements taken when the dielectric height was 0 cm are about ten times greater than all of the other measurements. As a result, the above graph does not depict the $10 \mathrm{~cm}-46 \mathrm{~cm}$ values accurately. If the 0 cm measurements are omitted, the result is the following graph:

Figure 43
This new graph depicts the resistance of the capacitor more accurately.

Plotting the impedance angle versus the height of the dielectric and the frequency yields the following graph:

Figure 44
By analyzing the graphs plotted above, some interesting conclusions can be made about the capacitor that has been constructed. One such conclusion is that the capacitor behaves a lot like the theoretical behavior discussed in the beginning of this paper when the test frequency applied is over 200 kHz . This applies to the total capacitance as the impedance angle starts to approach the theoretical value of -90° when the test frequency is about 1 MHz .

The impedance values measured consist of a resistance and an angle. These two values together constitute an impedance vector that is stated in polar coordinates as shown in the figure below.

Figure 45

To convert the polar coordinates to Cartesian coordinates, the following equations are used:

$$
\begin{array}{ll}
X=Z & \cos \left(\theta_{Z}\right) \\
Y=Z & \sin \left(\theta_{Z}\right)
\end{array}
$$

The following table shows the corresponding $X \& Y$ values that were calculated from the initial measurements table:

	10kHz	20kHz	40kHz	100kHz	200kHz	400kHz	1MHz
Ocm (X)	4726.5	3637.3	2792.4	1888.6	1209.1	581.8	157.3
(Y)	-2397.9	-2100.0	-1758.5	-1480.9	-1333.4	-1049.5	-579.0
10 cm (X)	354.4	288.8	247.4	198.3	136.0	64.1	14.6
(Y)	-155.6	-123.2	-103.0	-110.4	-122.5	-103.8	-48.9
15cm (X)	241.2	194.9	166.8	132.6	91.4	44.2	10.3
(Y)	-114.5	-88.4	-72.9	-74.4	-80.8	-69.1	-31.4
20cm (X)	187.2	150.1	128.1	102.4	71.0	34.0	7.9
(Y)	-97.4	-73.2	-58.9	-58.6	-63.1	-53.0	-22.7
25cm (X)	162.1	132.1	114.3	91.3	59.4	25.9	5.7
(Y)	-93.2	-66.7	-53.1	-55.7	-59.4	-46.2	-18.1
30cm (X)	136.8	110.6	95.5	76.2	50.8	22.6	4.9
(Y)	-86.8	-60.3	-46.0	-46.0	-49.6	-38.9	-14.2
35cm (X)	120.8	96.0	82.4	65.1	43.2	18.9	4.1
(Y)	-85.5	-57.7	-43.1	-41.1	-43.1	-33.0	-11.3
40cm (X)	106.7	84.1	71.8	56.1	37.1	16.3	3.7
(Y)	-81.0	-54.2	-39.6	-36.6	-37.8	-28.7	-9.3
46cm (X)	99.3	78.4	66.1	52.7	34.5	15.0	3.5
(Y)	-77.6	-51.9	-37.4	-34.5	-34.8	-26.0	-8.3

Table 8
Using the above X \& Y values to plot the impedance based on the frequency yields the following graph depicted by figure 46. The 0 cm values have been excluded, as they are not consistent with the other values, and this is expected because in this case the capacitor is filled with air only.

Figure 46

The same $X \& Y$ values can be used to produce an impedance graph based on the height of the dielectric. As the 0 cm values ten times larger in magnitude compared to all of the other values, a separate graph was made for this dielectric height. These two graphs are shown below, depicted by figures 47 and 48 :

Figure 47

Figure 48
From the above graphs and in addition to the frequency based impedance graph, one can see that the resulting impedance curve is dependent on the test frequency. The magnitude of the resistance depends on the height of the dielectric.

As the impedance curve based on the dielectric height for 0 cm differs from the other impedance curves based on the dielectric height, one can assume that this is due to the coat of varnish that hasn't coated the copper pipes entirely. The surface that is not covered with the coat of varnish contributes to electrolysis and this affects the overall capacitance. This results in the capacitor's "non-ideal capacitor" behavior and the resulting graphs.

io. Conclusions and Further Developments

io. I Conclusions

Every effort was made in this project to present numerous alternatives for every task being performed. This allowed the end user to determine which alternative was best suited to the task at hand and it also ensured that a successful end result was achieved.

There are many conclusions that can be drawn from all of the data that was collected and analyzed within the scope of this project. A basic capacitance theory was examined and a capacitor was constructed. As a result of initial measurements, this capacitor was improved so its modified behavior could be investigated. This led to a capacitor that provided very good results and also allowed it to be used as a very good sensor in determining the height of a liquid. This resulting sensor showed all of the desired characteristics of a sensor for linearity and discreteness.

Taking all of the information gathered in this thesis project one step further, one could further develop the concepts studied here and could improve upon some of the shortcomings that were discovered. The entire system that was investigated in the project, which consisted of the power supply circuit, the capacitor charging/discharging circuit, the microcontroller application and the capacitor that was constructed, can easily be used as a stand-alone product for various applications. These example applications and suggestions for further improvements will be discussed in the next section.

IO. 2 ImPROVEMENTS

This project, like all others, always has room for further improvements and developments. This is also evident in systems that are commercially available where upgrades are released periodically that correct faults from previous versions or new features and functionalities are added. There are two areas of development that can be applied to the capacitors that were built in this project. The first area is a better type of construction and the second area is the custom construction of the capacitor for specialized applications.

IO.2. I CAPACitor Construction Improvements

The basic improvement that is necessary for the construction of the capacitors is the proper coating of varnish to prevent electrolysis. This can be achieved by dipping the copper pipes into a varnish bath so as to ensure that the coating is uniform throughout the whole length of the copper pipes.

Another way to eliminate the electrolysis phenomenon is to coat the copper pipes with a liquid epoxy-type compound, provided that this coating is very thin. The type of coating would also allow the capacitor to measure the level of a solvent that would normally dissolve the coat of varnish. These types of solvents may include several types of fuels or certain corrosive chemicals.

IO.2.2 SAMPLE APPLICATIONS

The capacitance phenomena analyzed throughout this project could be used in many real-life applications. There are two ways of using the capacitor that was constructed. The first method involves using the capacitor to measure the height of a liquid whereas the second method is to use the capacitor to detect a change in the liquid.

For example, a common problem in automobiles when they age is that the flanges between the pieces of metal of the engine block break down either due to age and/or exposure to high temperatures. These flanges keep the water based antifreeze mixture that is used to cool the engine separated from the engine oil that lubricates and circulates in the pistons' oil rings. Should the flanges break down, the two different liquids will mix and contaminate each other, resulting in the potential damage of the engine. If left long enough, the anti-freeze and oil mixture create a soapy liquid that is damaging to the engine, radiator and to the oil pump. The capacitor used in this project could be used to detect this type of leak and
subsequent mixture from an early stage. If the engine oil is allowed to flow through the copper pipe capacitor, the capacitance will be a certain constant value based on the dielectric constant of the oil. Should a leak occur, the oil would be mixed with the water based anti-freeze solution and the dielectric constant would be altered. As the relative permittivity of oil is $\boldsymbol{\varepsilon}_{\mathbf{r}}=2.3$, and the relative permittivity of distilled water $\boldsymbol{\varepsilon}_{\mathrm{r}}$ $=80$, the resulting capacitance would increase significantly and this increase could be detected by the microcontroller which in turn could activate a warning light. The capacitor could also be placed on the anti-freeze system, something that is easier to implement in an engine as this system has many rubber tubes that can be tapped. Similarly, should oil enter the water based liquid, the capacitance would change due to a new dielectric constant, although the change would not be as great since the oil's relative permittivity is a lot less than water's. In this case the sensor would have to be more accurate to detect the smaller change, something that could be done by fine-tuning the A / D circuit of the microcontroller. A car's 12 V battery or a truck's 24 V battery could be used to apply the voltage to the capacitor and a voltage regulator could provide +5 V DC to the remaining circuit.

A second example of how this capacitor could be used in a real-life application is the following. Certain gas station owners may dilute the gas or diesel fuel they sell with water. The capacitor constructed in this project could be used to perform spot checks of the gas station's deposit tanks to verify that no dilution has taken place. As the various fuels have a lower density than water, they tend to float to the top while the water remains on the bottom, undetectable to the naked eye. A one meter capacitor could be constructed with the copper pipes used in this project. This capacitor could be calibrated with various types of fuel and the total capacitance could be calculated. In turn, this one meter capacitor could be dipped into the gas station's deposit tanks and a reading could be taken. Should water exist at the bottom of the tank, the total capacitance would be the capacitance due to the height of the water in the pipes plus the capacitance due to the height of the fuel. If the water and fuel mixture has not had enough time to settle, then the capacitor will still measure an altered capacitance as the dielectric between the copper pipes will consists of both water and the fuel in question, thus giving a different result compared to fuel only. The microcontroller can be programmed via a selector switch as to the type of fuel in question and a liquid crystal display could be used to display "OK" or "Not OK". For a more economical solution, two light emitting diodes could be used, a green one for "Ok" and a red one for "Not Ok". A third solution would be the
use of a buzzer where an audible beep could signify whether the fuel was diluted or not.

A third application could be the use of the capacitor to control the mixture of several liquids in the chemical or pharmaceutical industry. Each liquid component of a mixture would have a unique dielectric constant based on the permittivity of the liquid. When two or more liquid are to be mixed together, the resulting dielectric constant should also be unique. Based on this information, the microcontroller could use the input from the capacitor to control several servomotors that in turn would control the amount of liquid being mixed. The accomplishment is a system that accurately controls the mixing process of several liquids. The microcontroller could also control an electrical valve that would open and allow the mixture to flow to a holding tank only when the final mixture contained the proper ratios of the initial liquids. If the final mixture was not correct, the microcontroller could close the valve thus redirecting the output to a waste tank. The waste produced could be considered a disadvantage in this case.

it. Bibliography

Field and Wave Electromagnetics, $2^{\text {nd }}$ Edition
David K. Cheng
Life Fellow, IEEE
© 1992, Addison-Wesley Publishing Company
ISBN 0-201-12819-5
Electrical Engineering, Concepts and Applications, $2^{\text {nd }}$ Edition
A. Bruce Carlson

David G. Gisser
Rensselaer Polytechnic Institute
© 1990, Addison-Wesley Publishing Company
ISBN 0-201-14429-8
Basic Tiger Handbook, User-Manual "Programming Manual" (Vol.1)
© 1994-1999 Wilke Technology GmbH
Version 4.0 - August 6, 1999
Basic Tiger Handbook, User Manual "Installation / Hardware Manual" (Vol. 2)
© 1994-1999 Wilke Technology GmbH
Version 4.0 - July 15,1999
Basic Tiger Handbook, User Manual "Device Driver Manual" (Vol. 2)
© 1994-1999 Wilke Technology GmbH
Version 4.0 - May 20, 1999
"RC Time Constant" Web Page
Experiment 4: RC Time Constant
http://www.utc.edu/Faculty/Tatiana-Allen/rctime.html
Physics 102 "Experiment 4: RC Circuits" Web Page
http://www.owlnet.rice.edu/~Phys102/LAB/expt04.pdf
BD675A/677A/679A/681 Datasheet
Fairchild Semiconductor
http://www.fairchildsemi.com
BDW93/A/B/C Datasheet
Fairchild Semiconductor
http://www.fairchildsemi.com
NE555, SA555, SE555 Precision Timers
Texas Instruments
http://www-s.ti.com

NE/SA/SE555/C Timer
Philips Semiconductors
February 14, 2003
http://www.semiconductors.philips.com
Crydom Series CMX Solid State Relays
Crydom
http://www.crydom.co.uk
Series PVT412 Power MOSFET Photovoltaic Relay
International Rectifier
http://www.irf.com/
HV214 250V Low Charge Injection 8-Channel High Voltage Analog Switch
Supertex Inc.
http://www.supertex.com
HSR312/L HSR412/L Photovoltaic Solid-State Relay Optocouplers
Fairchild Semiconductor
http://www.fairchildsemi.com
12. APPENDICES

Appendix A: Oscilloscope Output
Appendix B: Tiger Basic Program Codes
Appendix C: Timera Device Driver Frequency Range Tables
Appendix D: Datasheets

i2.I Appendix A: Oscilloscope Output

I2.I.I INITIAL CAPACITOR RESPONSE MEASUREMENTS

Figure 49 (0 cm Water)

Figure 50 (10 cm Water)

Figure 51 (20cm Water)

Figure 52 (30 cm Water)

Figure 53 (40cm Water)

Figure 54 (50 cm Water)

Figure 55

Figure 56

Agilent Technologies

Figure 57

Figure 58

Agilent Technologies

Figure 59

Figure 60

Agilent Technologies

Figure 61

I2.I.3 Final 555-Timer Measurements (45CM Capacitor)

Figure 62

Figure 63

Agilent Technologies

Figure 64

Figure 65

Agilent Technologies

Figure 66

Figure 67

Agilent Technologies

Figure 68

Figure 69

Agilent Technologies

Figure 70

Figure 71

I2.I.4 Final 555-Timer Measurements (75CM CapaCitor)

Figure 72 ($\mathbf{0 c m}$ Water)

Figure 73 (75cm Water)

i2.2 Appendix B: Tiger Basic Program Codes

I2.2. I Main Project Program

```
' Name: Capacitor_Discharge.TIG (Main Program)
' Author: Alex Toulouzas
' Description: This program will generate a square wave pulse on pin
                                    6 of port 8 and will read the instantaneous A/D input
                                    from A/D input 0. The program will stop executing
', after the specified number of pulses have been output.
USER_VAR_STRICT ' compiler uses strict
variable checks
#INCLUDE UFUNC3.INC ' User Function Codes
TASK MAIN
    LONG COUNT, CYCLE, DUTY, ATOD, N ' variable declarations
' install the LCD-driver (TINY-Tiger)
    INSTALL DEVICE #1, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8
' install the ANALOG-1 driver
    INSTALL DEVICE #4, "ANALOG1.TDD"
' install the PLSOUT1 driver for pulse output
    INSTALL_DEVICE #9, "PLSOUT1.TDD", 3 ' Time base range = 3
' clear the LCD screen
    PRINT #1, "<1Bh>c<0><FOh>";
    PRINT #1, "<1>";
' display the headings for the number of pulses remaining
' and the A/D voltage
    PRINT #1, "<1Bh>A"; CHR$(0); CHR$(0); "<FOh>Remaining:";
    PRINT #1, "<1Bh>A"; CHR$(0); CHR$(2); "<FOh>Voltage:";
    COUNT = 65535 ' 65535 pulses of length
    CYCLE = 1000 ' 1000 x 6,4usec = 6,4msec
    DUTY = 500 ' duty 50% = 3.2msec
    PUT #9, COUNT, DUTY, CYCLE ' pulse output is on pin 86
    FOR N=999999999 TO 0 STEP -1 ' countdown end when N=0
        GET #9,#0,#UFCI OPL STAT, 4, N ' read remaining pulses
        PRINT #1, "<1Bh>A"; CHR$(11); CHR$(0); "<FOh> "; N
        GET #4, #0, 2, ATOD ' read A/D input
        USING "UD<5><4>* 0.0.0.2.3"
        PRINT USING #1, "<1Bh>A"; CHR$(9); CHR$(2); 5*ATOD; " "
    NEXT
END
```


12.2.2 SAMple Program for the analogz Device Driver

```
' Name: Analog2_Sample.TIG
' Author: Alex Toulouzas
' Description: This program will charge the capacitor for 5 seconds
                                    and then it will measure the discharging by using a
                                    FIFO buffer. This action is done once. The reset button
                                    on the Tiger module must be pressed to repeat the
                                    charging & discharging sequence.
USER_VAR_STRICT
#INCLUDE DEFINE_A.INC ' general defines
#INCLUDE UFUNC3.INC ' User Function Codes
TASK MAIN
    FIFO SAMPLE (2048) OF WORD ' Sample-buffer
    WORD ATOD ' var. for analog value
    WORD K
' install LCD-driver (TINY-Tiger)
    INSTALL DEVICE #1, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8
' install TIMER-A driver (time-base timer: 12500 Hz)
    INSTALL_DEVICE #2, "TIMERA.TDD", 2, 50
' install ANALOG-2 driver
    INSTALL_DEVICE #4, "ANALOG2.TDD"
    DIR_PORT 8,0 ' configure port 8 as output
    PUT #4,#0,#UFCO_AD2_RESO, 10 ' 10-bit resolution
    PUT #4,#0,#UFCO_AD2_SCAN, 1 ' no. of channels = 1
    PUT #4,#0,#UFCO_AD2_STOVL, 0 ' stop on overflow
    PUT #4,#0,#UFCO_AD2_PSCAL, 5 ' prescaler:12500/5=2500 S/sec
    CLEAR_FIFO SAMPLE ' clear the FIFO buffer
    LL_IPORT_OUT 8, 00000000b ' set all pins on port 8 LOW
```

' clear the LCD screen and display the headings
PRINT \#1, "<1Bh>c<0><FOh>";
PRINT \#1, "<1>";
PRINT \#1, "<1Bh>A"; CHR\$(0); CHR\$(0); "<FOh>Action:";
PRINT \#1, "<1Bh>A"; CHR\$(0); CHR\$(2); "<FOh>Voltage:";
LL_IPORT_OUT 8, 00001100b ' set pins $2 \& 3$ on port 8 HIGH
PRINT \#1, "<1Bh>A"; CHR\$(8); CHR\$(0); "<FOh>Charging(5s)";
WAIT DURATION 5000 ' wait 5 sec
PRINT \#1, "<1Bh>A"; CHR\$(8); CHR\$(0); "<FOh>Discharging ";
LL_IPORT OUT 8, 00000000b ' set all pins on port 8 LOW
PUT \# 4, $\overline{\text { SAMPLE }}$ ' start measurement
$K=0$
WHILE K < $60 \quad$ ' end when FIFO is full
$\mathrm{K}=\mathrm{LEN} \operatorname{FIFO}(\mathrm{SAMPLE})$
PRINT \#1, "<1Bh>A"; CHR\$(0); CHR\$(3); "<FOh>K="; K; " ";
ENDWHILE
' display the values sequentially from the FIFO buffer
FOR K = 0 TO LEN_FIFO (SAMPLE)
GET FIFO SAMP $\bar{L} E, ~ A T O D$
USING "UD<5><4>* 0.0.0.2.3"
PRINT USING \#1, "<1Bh>A"; CHR\$(9); CHR\$(2); 5*ATOD; " "
WAIT_DURATION $250 \quad$ ' wait 0.25 sec
NEXT
PRINT \#1, "<1Bh>A"; CHR\$(8); CHR\$(0); "<FOh>** DONE ** ";
PRINT \#1, "<1Bh>A"; CHR\$(0); CHR\$(3); "<FOh>Reset to Repeat Meas";
END
12.3 Appendix C: TIMERA Device Driver Frequency Range Tables

12.3.I RANGE I

Factor	Frequency	Factor	Frequency	Factor	Frequency
200	12.500	219	11.416	238	10.504
201	12.438	220	11.364	239	10.460
202	12.376	221	11.312	240	10.417
203	12.315	222	11.261	241	10.373
204	12.255	223	11.211	242	10.331
205	12.195	224	11.161	243	10.288
206	12.136	225	11.111	244	10.246
207	12.077	226	11.062	245	10.204
208	12.019	227	11.013	246	10.163
209	11.962	228	10.965	247	10.121
210	11.905	229	10.917	248	10.081
211	11.848	230	10.870	249	10.040
212	11.792	231	10.823	250	10.000
213	11.737	232	10.776	251	9.960
214	11.682	233	10.730	252	9.920
215	11.628	234	10.684	253	9.881
216	11.574	235	10.638	254	9.842
217	11.521	236	10.593	255	9.803
218	11.468	237	10.549	0	9.765

12.3.2 RANGE 2

Factor	Frequency
50	12.500
51	12.255
52	12.019
53	11.792
54	11.574
55	11.364
56	11.161
57	10.965
58	10.776
59	10.593
60	10.417
61	10.246
62	10.081
63	9.920
64	9.765
65	9.615
66	9.469
67	9.328
68	9.191
69	9.057
70	8.928
71	8.802
72	8.680
73	8.561
74	8.445
75	8.333
76	8.223
77	8.116
78	8.012
79	7.911
80	7.812
81	7.716
82	7.621
83	7.530
84	7.440
85	7.352
86	7.267
87	7.183
88	7.102
89	7.022
90	6.944
91	6.868
92	6.793
72	
7	

Factor	Frequency
93	6.720
94	6.648
95	6.578
96	6.510
97	6.443
98	6.377
99	6.313
100	6.250
101	6.188
102	6.127
103	6.067
104	6.009
105	5.952
106	5.896
107	5.841
108	5.787
109	5.733
110	5.681
111	5.630
112	5.580
113	5.530
114	5.482
115	5.434
116	5.387
117	5.341
118	5.296
119	5.252
120	5.208
121	5.165
122	5.122
123	5.081
124	5.040
125	5.000
126	4.960
127	4.921
128	4.882
129	4.844
130	4.807
131	4.770
132	4.734
133	4.699
134	4.664
135	4.629
10	

Factor	Frequency
136	4.595
137	4.562
138	4.528
139	4.496
140	4.464
141	4.432
142	4.401
143	4.370
144	4.340
145	4.310
146	4.280
147	4.251
148	4.222
149	4.194
150	4.166
151	4.139
152	4.111
153	4.084
154	4.058
155	4.032
156	4.006
157	3.980
158	3.955
159	3.930
160	3.906
161	3.881
162	3.858
163	3.834
164	3.810
165	3.787
166	3.765
167	3.742
168	3.720
169	3.698
170	3.676
171	3.654
172	3.633
173	3.612
174	3.591
175	3.571
176	3.551
177	3.531
178	3.511

Factor	Frequency	Factor	Frequency	Factor	Frequency
179	3.491	205	3.048	231	2.705
180	3.472	206	3.033	232	2.693
181	3.453	207	3.019	233	2.682
182	3.434	208	3.004	234	2.670
183	3.415	209	2.990	235	2.659
184	3.396	210	2.976	236	2.648
185	3.378	211	2.962	237	2.637
186	3.360	212	2.948	238	2.626
187	3.342	213	2.934	239	2.615
188	3.324	214	2.920	240	2.604
189	3.306	215	2.906	241	2.593
190	3.289	216	2.893	242	2.582
191	3.272	217	2.880	243	2.572
192	3.255	218	2.866	244	2.561
193	3.238	219	2.853	245	2.551
194	3.221	220	2.840	246	2.540
195	3.205	221	2.828	247	2.530
196	3.188	222	2.815	248	2.520
197	3.172	223	2.802	249	2.510
198	3.156	224	2.790	250	2.500
199	3.140	225	2.777	251	2.490
200	3.125	226	2.765	252	2.480
201	3.109	227	2.753	253	2.470
202	3.094	228	2.741	254	2.460
203	3.078	229	2.729	255	2.450
204	3.063	230	2.717	0	2.441

12.3.3 RANGE 3

Factor	Frequency
12	13.020
13	12.019
14	11.160
15	10.416
16	9.765
17	9.191
18	8.680
19	8.223
20	7.812
21	7.440
22	7.102
23	6.793
24	6.510
25	6.250
26	6.009
27	5.787
28	5.580
29	5.387
30	5.208
31	5.040
32	4.882
33	4.734
34	4.595
35	4.464
36	4.340
37	4.222
38	4.111
39	4.006
40	3.906
41	3.810
42	3.720
43	3.633
44	3.551
45	3.472
46	3.396
47	3.324
48	3.255
49	3.188
50	3.125
51	3.063
52	3.004
53	2.948
54	2.893
55	2.840
23	

Factor	Frequency
56	2.790
57	2.741
58	2.693
59	2.648
60	2.604
61	2.561
62	2.520
63	2.480
64	2.441
65	2.403
66	2.367
67	2.332
68	2.297
69	2.264
70	2.232
71	2.200
72	2.170
73	2.140
74	2.111
75	2.083
76	2.055
77	2.029
78	2.003
79	1.977
80	1.953
81	1.929
82	1.905
83	1.882
84	1.860
85	1.838
86	1.816
87	1.795
88	1.775
89	1.755
90	1.736
91	1.717
92	1.698
93	1.680
94	1.662
98	1.644
96	1.627
99	1.610
95	1.594
7	
75	

Factor	Frequency
100	1.562
101	1.547
102	1.531
103	1.516
104	1.502
105	1.488
106	1.474
107	1.460
108	1.446
109	1.433
110	1.420
111	1.407
112	1.395
113	1.382
114	1.370
115	1.358
116	1.346
117	1.335
118	1.324
119	1.313
120	1.302
121	1.291
122	1.280
123	1.270
124	1.260
125	1.250
126	1.240
127	1.230
128	1.220
129	1.211
130	1.201
131	1.192
132	1.183
133	1.174
134	1.166
135	1.157
136	1.148
137	1.140
138	1.132
139	1.124
140	1.116
141	1.108
142	1.100
143	1.092
10	

Factor	Frequency	Factor	Frequency	Factor	Frequency
144	1.085	183	853	222	703
145	1.077	184	849	223	700
146	1.070	185	844	224	697
147	1.062	186	840	225	694
148	1.055	187	835	226	691
149	1.048	188	831	227	688
150	1.041	189	826	228	685
151	1.034	190	822	229	682
152	1.027	191	818	230	679
153	1.021	192	813	231	676
154	1.014	193	809	232	673
155	1.008	194	805	233	670
156	1.001	195	801	234	667
157	995	196	797	235	664
158	988	197	793	236	662
159	982	198	789	237	659
160	976	199	785	238	656
161	970	200	781	239	653
162	964	201	777	240	651
163	958	202	773	241	648
164	952	203	769	242	645
165	946	204	765	243	643
166	941	205	762	244	640
167	935	206	758	245	637
168	930	207	754	246	635
169	924	208	751	247	632
170	919	209	747	248	630
171	913	210	744	249	627
172	908	211	740	250	625
173	903	212	737	251	622
174	897	213	733	252	620
175	892	214	730	253	617
176	887	215	726	254	615
177	882	216	723	255	612
178	877	217	720	0	610
179	872	218	716		
180	868	219	713		
181	863	220	710		
182	858	221	707		

12.4 Appendix D: Datasheets

ECONO-Tiger ${ }^{T M}$

High Speed Multitasking Computers

Tiny, high speed multitasking computers in the size of a component. ECONO Tigers ${ }^{\text {TM }}$ are universal, full featured control computers used in numerous projects and series products as:

- GPS systems + traffic control
- Medical instruments
- Security applications + access control
- Vending machines
- Communication equipment
- Industrial control
- Point of sales applications
- Power plants ... and many more

ECONO Tigers ${ }^{\text {TM }}$ offer

- Shortest development cycles
- Highest product reliability
- Low cost
- Innovative, additional features

For further information, detailed literature and manuals in printed or downloadable formats visit:
www.wilke.de
or
www.wilke-technology.com

544 kB to 1 MB FLASH + SRAM

ENN-R/4, ENN-1/4, ENN-4/4

- Dimensions:
- Weight:
- Operating temperature:

Standard:
Expanded:

- Power supply:
- System timebase accuracy:
- Reset:
- I/O pins:
approx. $28.1 \times 39.4 \times 10.0 \mathrm{~mm} / 1.11 \times 1.55 \times 0.39$ "
28-pin DIP type case
pin to pin clearance $2.54 \mathrm{~mm} / 0.1^{\prime \prime}$, row distance $22.86 \mathrm{~mm} / 0.9^{\prime \prime}$
square pins $0.64 \times 0.64 \mathrm{~mm} / 0.025 \times 0.025$ "
approx. $20 \mathrm{~g} / 0.7$ ounces
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
expanded temperature ranges on request
4.6V - $5.5 \mathrm{~V} / 45-60 \mathrm{~mA}$ typ.
+/-50 ppm base tolerance,
$+/-30 \mathrm{ppm}$ over temp. range $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+/-5 ppm per year max. aging
Other specifications available optional
Power-ON reset internal, active @Vcc=4,5V +/- 0.1 V
Reset input: LOW-active, internal pull-up $\mathrm{R}=10 \mathrm{~K} \Omega$ typ.
24 universal I/O-pins

ECONO-Tiger"'

High Speed Multitasking Computers

- Max currentfor digital outputs:
- Rising time / falling time
- Impedance digital Inputs:
- Digital Inputs:
- Analog input:
- Vref analog inputs:
- Impedance analog inputs:
- Analog input range:
- Analog input resolution:
- Analog input accuracy:
- Analog sampling rate:
- Analog sampling buffer:
- Memory internal:
- Serial channels:
$1.6 \mathrm{~mA} /$ pin (low, $\mathrm{U}=0.45 \mathrm{~V}$ max)
$-0.4 \mathrm{~mA} /$ pin (high, $\mathrm{U}=2.4 \mathrm{~V} \mathrm{~min}$)
Max. darlington driver current: $-3,5 \mathrm{~mA}(\mathrm{U}=1.5 \mathrm{~V})$, max 8 pins
15 ns typ. (10\%, 90\%)
High-Impedance or additional pull-up resistor:

L33 ... L37	pull-up	$50 . .150 \mathrm{k} \Omega$
L41	pull-up	50 ... $150 \mathrm{k} \boldsymbol{\Omega}$
L60 ... L67	pull-up	50 ... $150 \mathrm{k} \boldsymbol{\Omega}$
L80...L87	pull-up	50 ... $150 \mathrm{k} \boldsymbol{\Omega}$
L90...L94	pull-up	50 ... $150 \mathrm{k} \Omega$

Input voltage „high": 0.7 * Vcc min Input voltage „low": 0.8 V max

4 channels
Vcc internal
$20 \mathrm{k} \boldsymbol{\Omega}$ typ., note: low impedance in power down state
0...Vcc

10 bit internal hardware resolution,
12 bit through moving window integration.
Linearisation and calibration through software function LIN_APPROX and flash calibration tables.
+/- 0.5 LSB quantize error
$+/-1.5$ LSB typ, +/- 4 LSB max at normal speed $\left(-20^{\circ} \mathrm{C} . . .70^{\circ} \mathrm{C}\right)$
$+/-4.0$ LSB typ, +/- 8 LSB max in high speed $\left(-20^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}\right)$
up to 50,000 samples / sec
up to 30 kByte
32 KB ... 512 KB Static RAM
512 KB FLASH
2 buffered UART channels:
CH-0: RxD, TxD, CTS
Baudrates: 300,600,1200, 2400, 4800, 9600, 19200, 38400, 76800, 153600, 614400
Data/Parity: 7N, 7E, 7O, 8N, 8E, 8O, 9N
Buffer sizes: 256, 512, 1024, 2048, 4096 Bytes
$\mathrm{CH}-1$: as above, RxD and TxD lines
Level systems: 5V TTL levels
Up to 8 additional serial I/O channels through software driver SER2.TDD.
Selectable: RxD, TxD or RxD + TxD per channel
Max baudrate (1 channel): 9600 Bd TxD, 4800 Bd RxD
Max baudrate multi channel: -> divided by no of channels
Resolutions: 0.4 / 1.6 / 6.4 / $50 \mu \mathrm{~s}$

- Pulses:

ECONO-Tiger ${ }^{\text {Tw }}$

High Speed Multitasking Computers

ECONO Tiger ${ }^{\text {TM }}$ Computer Modules:

Type	SRAM	FLASH	Serial	Realtime Clock
ENN-R/4	32 KByte	512 KByte	5 V	-
ENN-1/4	128 KByte	512 KByte	5 V	-
ENN-4/4	512 KByte	512 KByte	5 V	-

Typical Characteristics

Figure 1．DC current Gain

Figure 3．Base－Emitter On Voltage

Figure 5．Power Derating

Figure 2．Collector－Emitter Saturation Voltage

Figure 4．Safe Operating Area

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	HiSeC ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-8
Bottomless ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {m }}$	POP'м	UHC ${ }^{\text {m }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {T }}$	PowerTrench ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT ${ }^{\text {т }}$	QFET ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	
$\mathrm{FAST}^{\text {® }}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO ${ }^{\text {™ }}$	SuperSOT™-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Thermal Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units	
$\mathrm{R}_{\text {®jc }}$	Thermal Resistance	Junction to Case	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
$\mathrm{BV}_{\text {CEO }}$ (sus)	* Collector-Emitter Sustaining Voltage : BDW93 : BDW93A : BDW93B : BDW93C	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	$\begin{gathered} 45 \\ 60 \\ 80 \\ 100 \end{gathered}$			$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
${ }^{\text {cbo }}$	Collector Cut-off Current $:$ BDW93 BDW93A BDW93B $:$ BDW93C	$\begin{aligned} & V_{C B}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {CEO }}$	Collector Cut-off Current $:$ BDW93 $:$ BDW93A BDW93B $:$ BDW93C	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {EBO }}$	Emitter Cut-off Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$			2	mA
$\mathrm{h}_{\text {FE }}$	* DC Current Gain	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 1000 \\ 750 \\ 100 \\ \hline \end{array}$		20000	
$\mathrm{V}_{\text {CE }}$ (sat)	* Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA} \end{aligned}$				$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{BE} (sat)	* Base-Emitter Saturation Voltage	$\begin{aligned} & I_{C}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA} \end{aligned}$			$\begin{array}{r} 2.5 \\ 4 \end{array}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{F}	* Parallel Diode Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 1.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Typical characteristics

Figure 3. Base-Emitter On Voltage

Figure 5. Safe Operating Area

Figure 2. Collector-Emitter Saturation Voltage

Figure 4. Collector Output Capacitance

Figure 6. Power Derating

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	HiSeC ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-8
Bottomless ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {m }}$	POP'м	UHC ${ }^{\text {m }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {T }}$	PowerTrench ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT ${ }^{\text {т }}$	QFET ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	
$\mathrm{FAST}^{\text {® }}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO ${ }^{\text {™ }}$	SuperSOT™-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

International ISRRectifier

- Advanced Process Technology
- Dynamic dv/dt Rating
- $175^{\circ} \mathrm{C}$ Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements Description
Fifth Generation HEXFET ${ }^{\circledR}$ Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
The $D^{2} \mathrm{Pak}$ is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D^{2} Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application.

The through-hole version (IRF640NL) is available for low-
Exfiso

	Parameter	Max.	Units
I_{D} @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, V ${ }_{\text {GS }}$ @ 10V	18	A
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, V ${ }_{\text {GS }}$ @ 10V	13	
I_{DM}	Pulsed Drain Current (1)	72	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Power Dissipation	150	W
	Linear Derating Factor	1.0	W/ ${ }^{\circ} \mathrm{C}$
V_{GS}	Gate-to-Source Voltage	± 20	V
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy ${ }^{(2)}$	247	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current (1)	18	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy (1)	15	mJ
dv/dt	Peak Diode Recovery dv/dt ©	8.1	V / ns
T_{J}	Operating Junction and	-55 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew(4)	$10 \mathrm{lbf} \cdot \mathrm{in}(1.1 \mathrm{~N} \cdot \mathrm{~m})$	

Electrical Characteristics @ $\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR)DSS }}$	Drain-to-Source Breakdown Voltage	200	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\text {(BR) } \mathrm{VSS}^{\prime} / \Delta \mathrm{T}_{\mathrm{J}}}$	Breakdown Voltage Temp. Coefficient	-	0.25	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-to-Source On-Resistance	-	-	0.15	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=11 \mathrm{~A}$ (3)
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	2.0	-	4.0	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
g_{fs}	Forward Transconductance	6.8	-	-	S	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=11 \mathrm{~A}$ (3)
IDSs	Drain-to-Source Leakage Current	-	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-		250		$\mathrm{V}_{\mathrm{DS}}=160 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {GSS }}$	Gate-to-Source Forward Leakage	-		100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-		-100		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
Q_{g}	Total Gate Charge	-	-	67	nC	$\begin{array}{\|l} \hline I_{D}=11 \mathrm{~A} \\ V_{D S}=160 \mathrm{~V} \\ V_{G S}=10 \mathrm{~V}, \text { See Fig. } 6 \text { and } 13 \end{array}$
Q_{gs}	Gate-to-Source Charge	-	-	11		
Q_{gd}	Gate-to-Drain ("Miller") Charge	-	-	33		
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	-	10	-	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=100 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=11 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=2.5 \Omega \\ & \mathrm{R}_{\mathrm{D}}=9.0 \Omega \text {, See Fig. } 10 \text { (3) } \end{aligned}$
t_{r}	Rise Time	-	19	-		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time	-	23	-		
t_{f}	Fall Time	-	5.5	-		
L_{D}	Internal Drain Inductance	-	4.5	-	nH	Between lead, 6 mm (0.25in.) from package and center of die contact
Ls	Internal Source Inductance	-	7.5	-		
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	1160	-	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \text {, See Fig. } 5 \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	185	-		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	-	53	-		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_{S}	Continuous Source Current (Body Diode)	-	-	18		MOSFET symbol showing the integral reverse $p-n ~ j u n c t i o n ~ d i o d e . ~$

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\text {өJC }}$	Junction-to-Case	-	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өCS }}$	Case-to-Sink, Flat, Greased Surface (4)	0.50	-	
$\mathrm{R}_{\text {OJA }}$	Junction-to-Ambient ${ }^{4}$	-	62	
$\mathrm{R}_{\text {OJA }}$	Junction-to-Ambient (PCB mount)(5)	-	40	

International
IOR Rectifier

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

IRF640N/S/L

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance
Vs. Temperature

IRF640N/S/L

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

International
$I \cong R$ Rectifier

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International
IER Rectifier

Fig 9. Maximum Drain Current Vs. Case Temperature

IRF640N/S/L

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF640N/S/L

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

$$
\text { * } \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \text { for Logic Level Devices }
$$

Fig 14. For N-Channel HEXFET ${ }^{\circledR}$ Power MOSFETs

IRF640N/S/L

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M

www.irf.com

D²Pak Package Outline

MINIMUM RECOMMENDED FOOTPRINT

D2Pak Part Marking Information

TO-262 Package Outline

NOTES:

1. DIMENSIONING \& TOLERANCING PER ANSI Y14.5M-1982
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. HEATSINK \& LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L
LOT CODE 1789
ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

wWW.irf.com

D2Pak Tape \& Reel Information

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 86458000

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 4532200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 617296590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 390114510111
IR JAPAN: K\&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 39830086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 23779936 Data and specifications subject to change without notice. 10/00
www.irf.com

International Ior Rectifier

SMPS MOSFET
IRF740A
HEXFET ${ }^{\circledR}$ Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply

$\mathrm{V}_{\text {DSS }}$	Rds(on) max	I_{D}
400 V	0.55Ω	10 A

- High speed power switching

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss specified (See AN 1001)

Absolute Maximum Ratings

	Parameter	Max.	Units
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\text {GS }}$ @ 10V	10	A
$\mathrm{ID} \mathrm{O}^{\text {O }} \mathrm{C}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, VGS @ 10V	6.3	
IDM	Pulsed Drain Current (1)	40	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Power Dissipation	125	W
	Linear Derating Factor	1.0	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {GS }}$	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt (3)	5.9	V / ns
TJ	Operating Junction and	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	$10 \mathrm{lbf} \cdot \mathrm{in}(1.1 \mathrm{~N} \cdot \mathrm{~m})$	

Typical SMPS Topologies:

- Single transistor Flyback Xfmr. Reset
- Single Transistor Forward Xfmr. Reset
(Both for US Line Input only)

Notes (1) through (5) are on page 8

Static @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	Drain-to-Source Breakdown Voltage	400	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
	Breakdown Voltage Temp. Coefficient	-	0.48	-		$\mathrm{V} /{ }^{\circ} \mathrm{C} \quad$ Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-to-Source On-Resistance	-	-	0.55	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}$ (4)
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	2.0	-	4.0	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
ldss	Drain-to-Source Leakage Current	-	-	25	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=320 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$
IGss	Gate-to-Source Forward Leakage	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-	-	-100		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$

Dynamic @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
g_{s}	Forward Transconductance	4.9	-	-	S	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}$
Q_{g}	Total Gate Charge	-	-	36	nC	$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DS}}=320 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \text {, See Fig. } 6 \text { and } 13 \oplus \\ \hline \end{array}$
Q_{gs}	Gate-to-Source Charge	-	-	9.9		
Q_{gd}	Gate-to-Drain ("Miller") Charge	-	-	16		
$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	-	10	-	ns	$\begin{aligned} & \hline V_{D D}=200 \mathrm{~V} \\ & I_{D}=10 \mathrm{~A} \\ & R_{G}=10 \Omega \\ & R_{D}=19.5 \Omega \text {,See Fig. } 10 \end{aligned}$
tr_{r}	Rise Time	-	35	-		
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time	-	24	-		
t_{f}	Fall Time	-	22	-		
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	1030	-	pF	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \text {, See Fig. } 5 \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	170	-		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	-	7.7	-		
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	1490	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=1.0 \mathrm{~V}, f=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	52	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=320 \mathrm{~V}, f=1.0 \mathrm{MHz}$
Coss eff.	Effective Output Capacitance	-	61	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 320 V (5)

Avalanche Characteristics

	Parameter	Typ.	Max.	Units
E_{AS}	Single Pulse Avalanche Energy(2)	-	630	mJ
I_{AR}	Avalanche Current(1)	-	10	A
E_{AR}	Repetitive Avalanche Energy(1)	-	12.5	mJ

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\theta \mathrm{JC}}$	Junction-to-Case	-	1.0	C / W
$\mathrm{R}_{\theta C S}$	Case-to-Sink, Flat, Greased Surface	0.50	-	
$\mathrm{R}_{\theta \mathrm{JJ}}$	Junction-to-Ambient	-	62	

Diode Characteristics

| | Parameter | Min. | Typ. | Max. | Units | Conditions |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- | :--- |
| I_{S} | Continuous Source Current
 (Body Diode) | - | - | 10 | | MOSFET symbol
 showing the
 integral reverse
 $p-n j u n c t i o n ~ d i o d e . ~$ |

Internationa
IOR Rectifier

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF740A

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International
I@R Rectifier

Fig 9. Maximum Drain Current Vs. Case Temperature

IRF740A

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF740A

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

International IOR Rectifier

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current
www.irf.com

Fig 14. For N-Channel HEXFETS

IRF740A

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220AB

EXAMPLE: THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
(2) Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=12.6 \mathrm{mH}$ $R_{G}=25 \Omega, I_{A S}=10 \mathrm{~A}$. (See Figure 12)
(3) $\mathrm{I}_{\mathrm{SD}} \leq 10 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 330 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$, $\mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$

(4) Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
(5) $\mathrm{C}_{\text {oss }}$ eff. is a fixed capacitance that gives the same charging time as $C_{o s s}$ while $V_{D S}$ is rising from 0 to $80 \% V_{D S S}$

International
I \cong Rectifier
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 3223331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 441883732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 4532200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49617296590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39114510111
IR FAR EAST: K\&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81339830086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 658384630 IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 9/99

8

Initial Release

250V Low Charge Injection 8-Channel High Voltage Analog Switch

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology for high performance
- Very low quiescent power dissipation - 10 $\mu \mathrm{A}$
- Low parasitic capacitances
- DC to 10 MHz analog signal frequency
- -60 dB typical output off isolation at 5 MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- On-chip shift register, latch and clear logic circuitry
- Flexible high voltage supplies
- Surface mount package available

Applications

- Medical ultrasound imaging
- Piezoelectric transducer drivers
- Inkjet printer heads
- Optical MEMS modules

General Description

The Supertex HV214 is a low charge injection 8-channel high voltage analog switch integrated circuit (IC) intended for use in applications requiring high voltage switching controlled by low voltage control signals, such as medical ultrasound imaging, piezoelectric transducer drivers, inkjet printer heads and optical MEMS modules.

Input data is shifted into an 8-bit shift register that can then be retained in an 8 -bit latch. To reduce any possible clock feedthrough noise, the latch enable bar should be left high until all bits are clocked in. Data are clocked in during the rising edge of the clock. Using HVCMOS ${ }^{\oplus}$ technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.
The device is suitable for various combinations of high voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}:+40 \mathrm{~V} /-210 \mathrm{~V},+125 \mathrm{~V} /-125 \mathrm{~V},+210 \mathrm{~V} /-40 \mathrm{~V}$.

[^17]
Ordering Information

$\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$	Package Options		
	28-lead plastic chip carrier	48-lead TQFP	Die
	HV214PJ	HV214FG	HV214X

Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions

DC Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, over recommended operating conditions unless otherwise noted)

$\mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance			55	Ω	$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-210 \mathrm{~V} \end{aligned}$
				49		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
				42		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{PP}}=+125 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-125 \mathrm{~V} \end{aligned}$
				36		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
				38		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{PP}}=+210 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$
				32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	
$\Delta \mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance			20	\%	$\mathrm{I}_{\mathrm{SIG}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+125 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-125 \mathrm{~V}$	
$\mathrm{R}_{\text {ONL }}$	Large signal switch on-resistance		23		Ω	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$	
$\mathrm{I}_{\text {SOL }}$	Switch off leakage per switch			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ and $\mathrm{V}_{\text {NN }}+10 \mathrm{~V}$	
	DC offset switch off			300	mV	$\mathrm{R}_{\text {LOAD }}=100 \mathrm{~K} \Omega$	
	DC offset switch on			500	mV	$\mathrm{R}_{\text {LOAD }}=100 \mathrm{~K} \Omega$	
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current			50	$\mu \mathrm{A}$	All switches off	
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current			-50	$\mu \mathrm{A}$	All switches off	
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current			50	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5 \mathrm{~mA}$	
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current			-50	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5 \mathrm{~mA}$	
	Switch output peak current			2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle 0.1\%	
$\mathrm{f}_{\text {sw }}$	Output switch frequency			50	KHz	Duty cycle $=50 \%$	
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current			7.0	mA	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-210 \mathrm{~V}$	All output switches are turning On and Off at 50 Khz with no load.
				5.0		$\mathrm{V}_{\mathrm{PP}}=+125 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-125 \mathrm{~V}$	
				5.0		$\mathrm{V}_{\mathrm{PP}}=+210 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$	
I_{NN}	Average V_{NN} supply current			-7.0		$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-210 \mathrm{~V}$	
				-5.0		$\mathrm{V}_{\mathrm{PP}}=+125 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-125 \mathrm{~V}$	
				-5.0		$\mathrm{V}_{\mathrm{PP}}=+210 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$	
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current			10	$\mu \mathrm{A}$		
I_{DD}	Average VDD supply Current			4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
$\mathrm{I}_{\text {SOR }}$	Data out source current	0.45			mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$	
$\mathrm{I}_{\text {SINK }}$	Data out sink current	0.45			mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	
$\mathrm{C}_{\text {IN }}$	Logic input capacitance			10	pF		
$\mathrm{T}_{\text {A }}$	Ambient temperature range	0		70	${ }^{\circ} \mathrm{C}$		

Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions

AC Electrical Characteristics $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, over recommended operating conditions unless otherwise noted)

$\mathrm{t}_{\text {SD }}$	Set up time before LE* Rises	150			ns	
$\mathrm{t}_{\text {wLE }}$	Time width of LE*	150			ns	
t_{DO}	Clock delay time to data out			150	ns	
$\mathrm{t}_{\text {wCL }}$	Time width of CL	150			ns	
t_{su}	Set up time data to clock	15	8.0		ns	
t_{H}	Hold time data from Clock	35			ns	
$\mathrm{f}_{\text {CLK }}$	Clock frequency			5.0	MHz	50% duty cycle, $\mathrm{f}_{\text {DATA }}=\mathrm{f}_{\text {CLK }} / 2$
$t_{R}, t_{\text {F }}$	Clock rise and fall times			50	ns	
$\mathrm{T}_{\text {ON }}$	Turn on time			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$
$\mathrm{T}_{\text {OFF }}$	Turn off time			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$
				20		$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-210 \mathrm{~V}$
$\mathrm{dv} / \mathrm{dt}$	Maximum $\mathrm{V}_{\text {SIG }}$ slew rate			20	V/ns	$\mathrm{V}_{\mathrm{PP}}=+125 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-125 \mathrm{~V}$
				20		$\mathrm{V}_{\mathrm{PP}}=+210 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$
KO	Off isolation	-30			dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1 \mathrm{~K} \Omega / 15 \mathrm{pF}$ load
	Ofisolation	-58				$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega \mathrm{load}$
K_{CR}	Switch crosstalk	-60			dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
$\mathrm{I}_{\text {ID }}$	Output switch isolation diode current			300	mA	300 ns pulse width, 2.0% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to Gnd	5.0	12	17	pF	$0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{SG}(\mathrm{ON})}$	On capacitance SW to Gnd	25	38	50	pF	$0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$	Output Voltage Spike			200	mV	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-210 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=50 \Omega$
$-V_{\text {SPK }}$				200		
$+\mathrm{V}_{\text {SPK }}$				200	mV	$\mathrm{V}_{\mathrm{PP}}=+125 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-125 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
- $\mathrm{V}_{\text {SPK }}$				200		
$+\mathrm{V}_{\text {SPK }}$				200	mV	$\mathrm{V}_{\mathrm{PP}}=+210 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
$-V_{\text {SPK }}$				200		

Absolute Maximum Ratings*

V_{DD} Logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ Supply voltage	260 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive high voltage supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+250 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ Negative high voltage supply	+0.5 V to -260 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog Signal Range	V_{NN} to V_{PP}
Peak analog signal current/channel	2.5 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	$28-$ pin PLCC

* Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

Operating Conditions

Symbol	Parameter	Value
V_{DD}	Logic power supply voltage	4.5 V to 13.2 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	40 V to $\mathrm{V}_{\mathrm{NN}}+250 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 V to -210 V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$ to V_{DD}
V_{IL}	Low-level input voltage	0 V to 1.5 V
$\mathrm{~V}_{\mathrm{SIG}}$	Analog signal voltage peak to peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air-temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Power Up/Down Sequence:

1 Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
$2 \mathrm{~V}_{\text {SIG }}$ must be $\mathrm{V}_{\text {NN }} \leq \mathrm{V}_{\text {SIG }} \leq \mathrm{V}_{\text {PP }}$ or floating during power up/down transistion.
3 Rise and fall times of power supplies $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$, and V_{NN} should not be less than 1.0 msec .

Truth Table

D0	D1	D2	D3	D4	D5	D6	D7	$\overline{\mathrm{LE}}$	CL	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	OFF							
H								L	L	ON							
	L							L	L		OFF						
	H							L	L		ON						
		L						L	L			OFF					
		H						L	L			ON					
			L					L	L				OFF				
			H					L	L				ON				
				L				L	L					OFF			
				H				L	L					ON			
					L			L	L						OFF		
					H			L	L						ON		
						L		L	L							OFF	
						H		L	L							ON	
							L	L	L								OFF
							H	L	L								ON
X	X	X	X	X	X	X	X	H	L				HOLD PREVIOUS STATE				
X	X	X	X	X	X	X	X	X	H	OFF							

Notes:

1. The eight switches operate independently.
2. Serial data is clocked in on the $\mathrm{L} \rightarrow \mathrm{H}$ transition CLK.
3. The switches go to a state retaining their present condition at the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low the shift register data flows through the latch.
4. $D_{\text {OUT }}$ is high when switch 7 is on.
5. Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}}$ is H .
6. The clear input overrides all other inputs.

Logic Timing Waveforms

Block Diagram

Test Circuits

Switch OFF Leakage

DC Offset ON/OFF

Isolation Diode Current

$\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\text {OFF }}$ Test Circuit

OFF Isolation

$\mathrm{K}_{\text {CR }}=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$
Crosstalk

$Q=1000 \mathrm{pF} \times \Delta V_{\text {OUT }}$
Charge Injection

Output Voltage Spike

Pin Configurations

HV214	28 Pin J-Lead		
Pin	Function	Pin	Function
1	SW3	15	N/C
2	SW3	16	$D_{\text {IN }}$
3	SW2	17	CLK
4	SW2	18	LE
5	SW1	19	CL
6	SW1	20	$D_{\text {OUT }}$
7	SW0	21	SW7
8	SW0	22	SW7
9	N/C	23	SW6
10	$V_{\text {PP }}$	24	SW6
11	N/C	25	SW5
12	$V_{\text {NN }}$	26	SW5
13	GND	27	SW4
14	$V_{\text {DD }}$	28	SW4

Pin Configurations

HV214 48-Pin TQFP

Pin	Function	Pin	Function
1	SW5	25	V $_{\text {NN }}$
2	N/C	26	N/C
3	SW4	27	N/C
4	N/C	28	GND
5	SW4	29	V $_{\text {DD }}$
6	N/C	30	N/C
7	N/C	31	N/C
8	SW3	32	N/C
9	N/C	33	DIN $_{\text {IN }}$
10	SW3	34	CLK
11	N/C	35	LE
12	SW2	36	CLR
13	N/C	37	$D_{\text {OUT }}$
14	SW2	38	N/C
15	N/C	39	SW7
16	SW1	40	N/C
17	N/C	41	SW7
18	SW1	42	N/C
19	N/C	43	SW6
20	SW0	44	N/C
21	N/C	45	SW6
22	SW0	46	N/C
23	N/C	47	SW5
24	VPP	48	N/C

Package Outlines

Package Outlines

Series CMX

3-10 Amp • 0-60, 0-100 Vdc, 0-200 Vdc • DC Output SIP

- MOSFET Output

- Extra Low On-State Resistance

$\square \square \square \square$

Control over power

DC output SPST-NO solid state relays use MOSFET output for high switching capabilities in a PC-mount air-cooled package. Pinouts are compatible with Series 6 and ODC type I/O modules.

Manufactured in Crydom's ISO 9001 Certified facility for optimum product performance and reliability.

International IGR Rectifier
 HEXFET ${ }^{\circledR}$ Power MOSFET Photovoltaic Relay

General Description

The PVT412 Series Photovoltaic Relay is a singlepole, normally open solid-state relay that can replace electromechanical relays in many applications. It utilizes International Rectifier's proprietary HEXFET power MOSFET as the output switch, driven by an integrated circuit photovoltaic generator of novel construction. The output switch is controlled by radiation from a GaAIAs light emitting diode (LED) which is optically isolated from the photovoltaic generator.
These SSRs are specifically designed for worldwide telecom applications. PVT412L employs an active current-limiting circuitry enabling it to pass FCC Part 68 and other regulatory agency current surge requirements when overvoltage protection is provided. PVT412 does not employ the currentlimiting circuitry and offers lower on-state resistance.
Series PVT412 Relays are packaged in a 6-lead molded DIP package with either through-hole or surface mount ('gull-wing') terminals. It is available in standard plastic shipping tubes or on tape-andreel. Please refer to part identification information opposite.

PVT412L Features
HEXFET Power MOSFET output
Bounce-free operation 4,000 VRMS I/O isolation

Load current limiting
Linear AC/DC operation
Solid-State reliability
UL recognized and CSA certified

Part Identification

PVT412L current limit, through-hole PVT412LS current limit, surface-mount PVT412LS-T current limit, surface-mount, Tape and Reel
PVT412 no current limit, through-hole PVT412S no current limit, surface-mount PVT412S-T no current limit, surface-mount, Tape and Reel

Electrical Specifications $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right.$ unless otherwise specified)
$\left.\begin{array}{|l|c|c|}\hline \text { INPUT CHARACTERISTICS } & \text { Part Numbers } & \text { Units } \\ \hline & \text { PVT412L } & \text { PVT412 }\end{array}\right]$

OUTPUT CHARACTERISTICS	PVT4	12 L	PVT412	
Operating Voltage Range	0 to ± 400			V (DC or AC peak)
Maximum Load Current @ $\mathrm{T}_{\mathrm{A}=+40^{\circ} \mathrm{C}}$ 5 mA Control (see figures 1 and 2)				
A Connection	120		140	mA (AC or DC)
B Connection	130		150	mA (DC)
C Connection	200		210	mA (DC)
Maximum On-State Resistance @ $\mathrm{T}_{\mathrm{A}=+25^{\circ} \mathrm{C}}$				
For 50mA Pulsed Load, 5mA Control (see figure 4)				
A Connection	35		27	Ω
B Connection	18		14	Ω
C Connection	9		7	Ω
Maximum Off-State Leakage @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm 400 \mathrm{~V}$ (see figure 5)	1.0			$\mu \mathrm{A}$
Current Limit @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, For 5mA Control Current:				
Connection:	A	C		
Minimum	130	260	n/a	mA
Maximum	220	440	n/a	mA
Complies with FCC Part 68 Surge Requirements*	yes		yes	
	2.0			
				ms
Maximum Turn-Off Time @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (see figure 7)				
For $50 \mathrm{~mA}, 100 \mathrm{~V}_{\mathrm{DC}}$ load, 5mA Control	0.5			ms
Maximum Thermal Offset Voltage @ 5mA Control	0.5			$\mu \mathrm{V}$
Maximum Output Capacitance @ 50V ${ }_{\text {DC }}$	12			pF

GENERAL CHARACTERISTICS	ALL MODELS	
Minimum Dielectric Strength, Input-Output	4000	$\mathrm{~V}_{\text {RMS }}$
Minimum Insulation Resistance, Input-Output $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 50 \% \mathrm{FHH}, 100 \mathrm{~V}_{\mathrm{DC}}$	1012	Ω
Maximum Capacitiance, Input-Output	1.0	pF
Maximum Pin Soldering Temperature (10 seconds maximum)	+260	${ }^{\circ} \mathrm{C}$
Ambient Temperature Range:	Operating	

Connection Diagrams

IER Rectifier

Figure 1. Current Derating Curves*

Voltage Drop (Vdd)
Figure 3. Linearity Characteristics

Figure 5. Typical Normalized Off-State Leakage

[^18]

Figure 2. Current Derating Curves*

Figure 4. Typical Normalized On-Resistance

Figure 6. Input Characteristics (Current Controlled)

Figure 7. Typical Delay Times

Figure 8. Delay Time Definitions

Figure 9. Typical Output Capacitance

Note: PVT412L relays will pass FCC Part 68 surge current requirements operating into rated load or short circuit when protected from overvoltage by a transient protection device such as a 175 VRMS rated MOV placed between the tip and ring terminals of the telephone line or across the output of the relay. PVT412 relays will pass the above FCC Part 68 requirements when overcurrent protection devices (such as fusible resistors) are placed in series with tip and ring lines in addition to the aforementioned overvoltage protection. Consult factory for additional information.

International IER Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 3223331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 441883713215
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 4751897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49617296590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39114510111
IR FAR EAST: K\&H BIdg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: ++ 81339830641
IR SOUTHEAST ASIA: 315 Outram Road, \#10-02 Tan Boon Liat Building, Singapore 0316 Tel: ++ 652218371
http://www/irf.com/

[^0]: ${ }^{1}$ Field and Wave Electromagnetics

[^1]: ${ }^{2}$ Field and Wave Electromagnetics
 ${ }^{3}$ Electrical Engineering: Concepts and Applications
 ${ }^{4}$ Experiment 4 "RC Circuits"

[^2]: ${ }^{5}$ Field and Wave Electromagnetics

[^3]: ${ }^{6}$ Field and Wave Electromagnetics

[^4]: ${ }^{7}$ Field and Wave Electromagnetics

[^5]: ${ }^{8}$ Electrical Engineering: Concepts and Applications

[^6]: ${ }^{9}$ Mr. John Avaritsiotis

[^7]: ${ }^{10}$ Mr. John Avaritsiotis

[^8]: ${ }^{11}$ Electrical Engineering: Concepts and Applications

[^9]: ${ }^{12}$ Basic Tiger Handbook, User Manual: Volume 2

[^10]: ${ }^{13}$ Basic Tiger Handbook, User Manual: Volume 2

[^11]: ${ }^{14}$ NE/SA/SE555/SE555C Datasheet, Philips Semiconductors

[^12]: ${ }^{15}$ NE555, SA555, SE555 Precision Timers Datasheet, Texas Instruments

[^13]: ${ }^{16}$ Field and Wave Electromagnetics

[^14]: ${ }^{17}$ Mr. John Avaritsiotis

[^15]: ${ }^{18}$ NE555, SA555, SE555 Precision Timers Datasheet, Texas Instruments

[^16]: ${ }^{19}$ Electrical Engineering: Concepts and Applications

[^17]: 09/17/02

[^18]: * Derating of ' B ' and ' C ' connection at $+85^{\circ} \mathrm{C}$ will be 70% of that specified at $+40^{\circ} \mathrm{C}$ and is linear from $+40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

