[image: image1.png]

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΕΩΝ ΓΝΩΣΕΩΝ ΚΑΙ ΔΕΔΟΜΕΝΩΝ
ΥΛΟΠΟΙΗΣΗ ΣΧΕΔΙΑΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

ME ΥΠΟΣΤΗΡΙΞΗ XML KAI PSTRICKS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Bachar E. El-Zoghbi

Επιβλέπων : Τιμολέων Σελλής
 Καθηγητής Ε.Μ.Π
Αθήνα, Οκτώβριος 2003
	[image: image2.png]

	 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΕΩΝ ΓΝΩΣΕΩΝ ΚΑΙ ΔΕΔΟΜΕΝΩΝ

ΥΛΟΠΟΙΗΣΗ ΣΧΕΔΙΑΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

ME ΥΠΟΣΤΗΡΙΞΗ XML KAI PSTRICKS
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Bachar E. El-Zoghbi
Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 23η Οκτώβριος 2003.

...................................

...................................

...................................

Τ. ΣΕΛΛΗΣ
Π. ΤΣΑΝΑΚΑΣ

 Ν. ΚΟΖΥΡΗΣ

Καθηγητής Ε.Μ.Π.

 Καθηγητής Ε.Μ.Π.

 Καθηγητής Ε.Μ.Π.

Αθήνα, Οκτώβριος 2003
...................................
BACHAR E. EL-ZOGHBI

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Bachar El-Zoghbi, 2003

All rights reserved.

Με επιφύλαξη παντός δικαιώµατος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ ολοκλήρου ή

τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανοµή για

σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν µήνυµα. Ερωτήµατα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συµπεράσµατα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερµηνευθεί ότι αντιπροσωπεύουν τις επίσηµες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.
Abstract

Development of a designing program with the support of XML and PSTricks.

The present project concerns the creation of a tool to design simple geometrical shapes such as rectangles, ellipses, arcs, lines, multi-lines and points, and also to write a text.

The description of these shapes will be given using XML and PSTRICK script (LATEX). The user will be able to design, store and retrieve images in a graphic, user-friendly manner.

Short Description:

 The purpose of this dissertation is to produce a simple design program for images. These images will consist of objects such as text, lines, rectangles, ellipses, multi-lines, points etc. in various line-colors and fill-colors.

The program – Java – will provide the standard function of design tools.

That is, it will allow the movement, alteration, deletion and addition of objects in an image.

Finally, the program will produce the description of an image in XML and PSTRICK, which the user will be able to store and also retrieve for further processing.

Περίληψη
Η παρούσα εργασία έχει στόχο την δηµιουργία ενός εργαλείου για την σχεδίαση απλών γεωµετρικών σχηµάτων όπως ορθογώνια, ελλείψεις, γραµµές και σηµεία. Η περιγραφή των σχηµάτων θα γίνεται µε υποστήριξη XML και PSTricks.

 Ο χρήστης θα µπορεί να σχεδιάζει, να αποθηκεύει και να ανακτεί εικόνες µε ένα γραφικό και εύχρηστο τρόπο.
ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ:
 Στόχος της διπλωµατική είναι η κατασκευή ενός απλού σχεδιαστικού προγράµµατος για εικόνες. Οι εικόνες θα αποτελούνται από αντικείµενα όπως κείµενο, γραµµές, ορθογώνια, ελλείψεις, γραµµές, σηµεία κλπ. σε διάφορα χρώµατα.
Το πρόγραµµα –Java- θα παρέχει την συνήθη λειτουργικότητα των σχεδιαστικών εργαλείων. Θα επιτρέπει, δηλαδή, την µετακίνηση,

τροποποίηση, διαγραφή και προσθήκη αντικειµένων σε µια εικόνα. Τέλος το πρόγραµµα θα παράγει την περιγραφή της εικόνας σε XML την οποία ο χρήστης θα µπορεί να αποθηκεύσει αλλά και να ανακτήσει για περαιτέρω επεξεργασία.
CONTENTS:

1. CHAPTER 1:

Problem and solution ………………………………………….. 9

2. CHAPTER 2:

 JAVA …………………………………………………………… 10

2.1 Packages

2.2 Operation

3. CHAPTER 3:

 XML ……………………………………………………………… 55

4. CHAPTER 4:

 PSTricks …………………………………………………………. 65

4.1 Introduction to LATEX

4.2 PSTricks

5. CHAPTER 5:

 Save and Load ……………………………………………….… 75

5.1 Save and Load using XML

5.2 Save and Load using PSTricks

6. CHAPTER 6:

 Manual ………………………………………….………………. 82

7. Bibliography ……………………………………………………. 85
 CHAPTER 1:
1- Problem and solution
In this thesis, we design and implement JAVA-PSTtricks, a user-friendly drawing tool that allows the design of colored geometrical shapes and text.

 Using JAVA-PSTtricks, we can create simple and more elaborate drawings that include geometrical shapes (such as lines, multi-lines, rectangles, ellipses, circles, arcs), text and color.

JAVA-PSTtricks interface is divided into two main parts: the drawing pad and the toolbar.

 The drawing pad displays the actual drawing. The toolbar provides buttons that include all the available shapes, text insertion and color management. All the design facilities are performed using mouse clicks, the toolbar and the drawing pad. The user selects an available shape from the toolbar and using simple mouse clicks draws this shape on the pad. In a similar user-friendly manner the user can change the color of the shapes and add text.

JAVA-PSTtricks allows the user to save the drawing into two ASCII formats: XML and PSTRICKS. We have designed a XML DTD that is able to store all the drawing entities of JAVA-PSTtricks. We use this compact description to represent and store a drawing into an ASCII file.

Similarly, using JAVA-PSTtricks we can save a drawing using the PSTRICKS scripting language for drawings. PSTRICKS is a very famous scripting language within LaTeX users. Such files can be included as they are into a LaTeX document. Both the above file descriptions (XML and PSTRICKS) can be loaded to the JAVA-PSTtricks for further manipulation.

Summarizing, JAVA-PSTtricks is a complete and compact drawing tool supporting a variety of geometrical objects, text and color. Moreover, JAVA-PSTtricks is able to store the designed drawings into two very useful and compact ASCII formats XML and PSTRICKS.

 CHAPTER 2:
2- Java

2.1- PACKAGES:

 Packages are containers for classes that are used to keep the class name space compartmentalized. A Package allows us to create a class, which we can store in our own package without concern that it will collide with some other class, with the same name, stored elsewhere.

The following are used as packages in order for this program to function:

· Package UI

· Package Run
· Package GraphicObject
· Package Action
· Package Context
· Package Display
· Package Loader
· Package Editable
2.11- Package UI:

 Before describing in details how Frame, menu and toolbar work, we have to mention in a brief overview some important classes, which typically provide built-in support for package UI.

- Java.lang: java.lang is automatically imported into all programs. It contains classes and interfaces that are fundamental to virtually all of java programming. It is java’s most widely used package.

- Java.awt: The Abstract Window Toolkit (AWT) provides support for applets. The AWT contains numerous classes and methods that allow us to create and manage window, manage fonts, output text, and utilize graphics. Although the main purpose of the AWT is to support applet windows, it can also be used to create stand-alone windows that run in a GUI environment, such as Windows.

- javax.swing: Swing is a set of classes that provides more powerful and flexible components than are possible with the AWT. In addition to the familiar components, such as buttons, check boxes, and labels, Swing supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables. Even familiar components such as buttons have more capabilities in Swing.

 For example, a button may have both an image and a text string associated with it. Also, the image can be changed as the state of the button changes. Finally, unlike AWT components, Swing components are not implemented by platform-specific code. Instead , they are written entirely in java and, therefore, are platform-independent.

- Component: The Component class is at the top of the AWT hierarchy. It is an abstract class that encapsulates all of the attributes of a visual component. All user interface elements that are displayed on the screen and that interact with the user are subclasses of Component. It defines over a hundred public methods that are responsible for managing events, such as mouse and keyboard input, positioning and sizing the window and repainting…

A Component object is responsible for remembering the current foreground and background colors and the currently selected text font.

- Container: The Container class is a subclass of Component. It has additional methods that allow other Component objects to be nested within it. Other Container objects can be stored inside of a Container. This makes for a multileveled containment system.

 A Container is responsible for laying out any components that it contains. It does this through the use of various layout managers. So, to include a control in a window (frame), we must add it to the window. To do this, we must first create an instance of the desired control and then add it to a window by calling

add (), which is defined by Container.

The add () method has several forms. The following form is the one that is used in this class:

 Container.add(Container object)

Here, object is an instance of the control that we want to add. A reference to object is returned. Once a control has been added, it will automatically be visible whenever its parent window is displayed.

Each Container object has a layout manager associated with it. A layout manager is an instance of any class that implements the Layout-Manager interface.

- Layout Managers: Each container object, such as a panel or frame, has a layout manager associated with it which may be changed when an instance of that container is created. The layout of components in a container may be governed by a layout manager. A layout Manager is an instance of any class that implements the Layout-Manager interface. The layout manager is set by the setlayout() method. Each layout manager keeps track of a list of components that are stored by their names. The layout manager is notified each time we add a component to a container.

The following layout managers are included with the java language:

· FlowLayout: the default layout manager of Panels and Applets.

· BorderLayout: the default layout manager of Windows, Dialogs, and Frames.

· Gridlayout.
· CardLayout.

· GridBagLayout.
· Frame
Cframe:

 This class imports java.awt.event, swing and context package.

It extends Jframe which is the top-level Swing class for the design window.

Public class JFrame extends Frame.

It implements WindowConstants, Accessible, and RootPaneContainer.

An extended version of java.awt.Frame that adds support for the JFC/Swing component architecture.

The JFrame class is slightly incompatible with Frame. Like all other JFC/Swing top-level containers, a JFrame contains a JRootPane as its only child. The content pane provided by the root pane should, as a rule, contain all the non-menu components displayed by the JFrame. This is different from the AWT Frame case.

 For example, to add a child to an AWT frame we write:

 frame.add(child);

However using JFrame we need to add the child to the JFrame's content pane instead:

 frame.getContentPane().add(child);

The same is true for setting layout managers, removing components, listing children, and so on. All these methods should normally be sent to the content pane instead of the JFrame itself. The content pane will always be non-null. Attempting to set it to null will cause the JFrame to throw an exception. The default content pane will have a BorderLayout manager set on it.

Unlike a Frame, a JFrame has some notion of how to respond when the user attempts to close the window. The default behavior is to simply hide the JFrame when the user closes the window.

To change the default behavior, we invoke the method

setDefaultCloseOperation(int).

To make the JFrame behave the same as a Frame instance, we have used setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE).

A frame, implemented as an instance of the JFrame class, is a window that typically has decorations such as a border, a title, resizing corners, and buttons for closing and iconifying the window. Applications with a GUI typically use at least one frame. Applets sometimes use frames, as well.
Frame encapsulates what is commonly thought of as a “window “. It is a subclass of a window.

BorderLayout:

The border-layout class implements a common layout style for top-level windows. It has four narrow, fixed-width components at the edges and one large area in the center. The four sides are referred to as North, South, West, and East. The middle area is called Center.

The following constants are defined by Borderlayout to specify the regions.

BorderLayout.CENTER.

BorderLayout.NORTH.

When adding components, we will use these constants with the following form of add (), which is defined by Container.

container.add(BorderLayout.CENTER,context.getDisplayUI().getContainer());

container.add(BorderLayout.NORTH,context.getToolbar().getToolbar());

GridBagLayout functionality:

container.setLayout(new GridBagLayout());

This creates an instance of the GridBagLayout, and installs it into the frame.

GridBagLayout layout manager is by far the most flexible layout manager provided in the standard java distribution. It aligns components within a rectangular grid of ‘cells’. It utilizes an object called GridBagConstraints.

By setting values within the GridBagConstraints object, components can be aligned vertically or horizontally, with or without insets and padding, told to expand to fill the given area, and instructed how to behave upon resizing of the window.

GridBagConstraints(int numRows, int numColumns, int horz, int vert)

 which creates a grid layout with the specified number of rows and columns, and allows us to specify the horizontal and vertical space left between components in horz and vert, respectively.

· Toolbar

Ctoolbar:

This class imports java.awt and swing and it imports also action and context packages.

JPanel toolbar=new JPanel();
Here a JPanel object is created. Once a Panel object is created, it must be added to the frame object in order to be visible. This is done using the add () method of the container class .

The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it simply implements Container. Panels, like Frames, provide the space for us to attach any GUI component, including other panels.

A panel may be thought of as a recursively nestable, concrete screen component. Panel is the superclass for Applet. When screen output is directed to an applet, it is drawn on the surface of a Panel object. In essence, a Panel is a window that does not contain a title bar, menu bar, or border. This is why we don’t see these items when an applet is run inside a browser. When we run an applet using an applet viewer, the applet viewer provides a title and border.

Other components can be added to a Panel object by its add () method (inherited from Container). Once these components have been added, we can position and resize them manually using the set () methods defined by Component.

FlowLayout flowLayout=new FlowLayout(FlowLayout.LEFT,5,0);

FlowLayout is the default layout manager. This is the layout manager that the preceding examples have used. FlowLayout implements a simple layout style, which is similar to how words flow in a text editor. Components are laid out from the upper-left corner, left to right and top to bottom.

When no more components fit on a line, the next one appears on the next line. A small space is left between each component, above and below, as well as left and right.

Here the constructor for FlowLayout that we have used is the same form as :

FlowLayout(int how, int horz, int vert)

This form creates the default layout and lets us specify how each line is aligned. The valid value for how that we have used here is:

 FlowLayout.RIGHT

This value specifies the left alignment. Vert and horz allow us to specify the horizontal and vertical space left between components, respectively.

· Menu
 Cmenu:

A menu provides a space-saving way to let the user choose one of several options. Other components with which the user can make a one-of-many choice include combo boxes, lists, and tool bars.

Menus are unique in that, by convention, they aren't placed with the other components in the UI. Instead, a menu usually appears either in a menu bar or as a popup menu. A menu bar contains one or more menus and has a customary, platform-dependent location — usually along the top of a window. A popup menu is a menu that is invisible until the user makes a platform-specific mouse action, such as pressing the right mouse button, over a popup-enabled component. The popup menu then appears under the cursor.
Like CFrame and Ctoolbar, this class imports java.awt and swing and it imports also action and context packages.

Menu bars and Menu:

A top-level window can have a menu bar for associated with it. A menu bar displays a list of top-level menu choices. Each choice is associated with a drop-down menu. This concept is implemented in Java by the following classes:

MenuBar, Menu and MenuItem.

In general, a menu bar contains one or more Menu objects. Each Menu object contains a list of MenuItem objects. Each MenuItem object represents something that can be selected by the user.

Since Menu is a subclass of MenuItem, a hierarchy of nested submenus can be created.

It is also possible to include checkable menu items.

 To create a menu bar, first create an instance of MenuBar. This class only defines the default constructor. Next, create instance of menu that will define the selections displayed on the bar.

Following we create the invoking Menu items:

JMenu fileMenu=new JMenu("File"); create “file” item.

JMenu toolsMenu=new JMenu("Tools"); create “tools” item.

Once we have created these two menu items (file, tools), we must add them to a Menu object by using add ().

 Here, file and tools are the items being added. Items are added to a menu in the order in which the call add() take place. The two items are returned.

Once we have added them to a menu object, we can add that object to the menu bar by using this version of add() defined by MenuBar: which has the following form:

menuBar.add(fileMenu);

menuBar.add(toolsMenu);

2.12- Package Run:

· StartApp:

 Startapplet class is a subclass of Applet, it imports java.applet and java.awt. Recall that AWT stands for the Abstract Window Toolkit. An Applet is a piece of java code that runs in a browser environment. It differs from an application in the way that it is executed. An application is started when its main() method is called. Beside, Applet provides all necessary support for applet execution, such as starting and stopping. It also provides methods that load and display images.

All but the most trivial applets override a set of methods that provides the basic mechanism by which the browser or applet viewer interfaces to the applet and controls its execution. Two of these major methods – init(),start() - are defined by Applet and used here.

Init() : this member function is called at the time the applet is created and loaded into a java-enabled browser. The applet can use this method to initialize data values. The method is not called every time the browser opens the page containing the applet, but only the first time.

Start () : the start() method is called after init(). It is also called to restart an applet after it has been stopped. Whereas init () is called once – the first time an applet is loaded –

start () is called each time an applet document is display onscreen.

 CContext context = new Ccontext ();

// Create a Ccontext object called context.

 context.init ();

 // This context is responsible of creating all the application main modules.

2.13- Package Context:

· Ccontext:

It imports Display, UI, Editable and Javax.swing. Context is an object that contains all the modules of the application –

Displaydatamodel, toolbar, displayUI, frame, editable and menu –

and every object in the application contains an instance of this context.

 // Object object = new Object(this);

 This way all the application modules can deal with each other without any complexity.

public Object getobject(){

 return object;

// This method returns the object stored at the specified index within the invoking collection.

A quick rerun on class.context:

Class Context

extends java.lang.Object

Context is a collection of key/value pairs, and is an enhanced form of the standard Java electric.util.Properties class because it allows more than one value to be associated with a particular key.

We can associate a Context object with a service or proxy to modify its behavior. For example, we can use a Context object to set the activation mode of a service or the authentication credentials of a proxy. We can add one or more listeners to a context to receive callbacks when properties are added or deleted.

2.14- Package GraphicObject:

Before we examine this package, we have to mention in brief some classes and interfaces that provide the necessary support for GraphicObject.

-Vector implements a dynamic array. It is similar to Arraylist, but with two differences: Vector is synchronized, and it contains many legacy methods that are not part of the collections framework.

With the release of java2, vector was reengineered to extend Abstractlist and implement the List interface, so it now is fully compatible with collections.

All vectors start with initial capacity. After this initial capacity is reached, the next time that we attempt to store an object in the vector, the vector automatically allocates space for that object plus extra room for additional objects. By allocation more than just the required memory, the vector reduces the number of allocations that must take place.

This reduction is important, because allocations are costly in terms of time. The amount of extra space allocated during each reallocation is determined by the increment that we specify when we create the vector. If we don’t specify an increment, the vector’s size is doubled by each allocation cycle.

Vector defines these protected data members:

Int capacityIncrement;

Int elementCount;

Object elementdata[];

The increment value is stored in capacityIncrement.

The number of elements currently in the vector is stored in elementcount. The array that holds the vector is stored in elementdata.

- Java.util: the java.util package contains one of java’s most powerful subsystems: collections.

A Collection is a group of objects. The addition of collections caused fundamental alterations in the structure and architecture of many elements in java.util. It also expanded the domain of tasks to which the package can be applied.

Collections are a state-of-the-art technology that merits close attention by all java programmers.

In addition to collections, java.util contains a wide assortment of classes and interfaces that support a broad range of functionality.

-Java.io: java.io provides support for Input/Output operations. Most programs cannot accomplish their goals without accessing external data. Data is retrieved from an input source. The results of a program are sent to an output destination.

- Coordinate Systems: The Java 2D system maintains two coordinate spaces.

· User space is the space in which graphics primitives are specified (drawing pad).

· Device space is the coordinate system of an output device, such as a screen, window, or a printer.

User space is a device-independent logical coordinate system: the coordinate space that your program uses. All geometries passed into Java 2D rendering routines are specified in user-space coordinates.

When the default transformation from user space to device space is used, the origin of user space is the upper-left corner of the component's drawing area (the drawing pad). The x coordinate increases to the right, and the y coordinate increases downward.

 (x=0,y=0)
(x)

(y)
Device space is a device-dependent coordinate system that varies according to the target-rendering device. Although the coordinate system for a window or the screen might be very different from that of a printer, these differences are invisible to Java programs. The necessary conversions between user space and device space are performed automatically during rendering.
The Class hierarchy of the drawable objects:

	CaddElipseObject

	CaddLineObject

	CaddmultilineObject

	CaddRectangleObject

	CaddArcObject

	CaddLetterObject

· CbaseObject:
This object imports java.awt. It is the parent of all the graphical objects (CoptionObject and CdrawableObject).

It has only one abstract method:

Abstract public void paint (Graphics2D graphics2d)

The paint () method is called each time the frame must be redrawn. This situation can occur for several reasons. For example, the window in which the applet is running may be overwritten by another window and then uncovered. Or the frame window may be minimized and then restored.

Paint () is also called when the frame begins execution.

 Whatever the cause, whenever the frame must redraw its output, paint () is called. The paint () method has one parameter of type Graphics. This parameter will contain the graphics context, which describes the graphics environment in which the frame is running. This context is used whenever output to the frame is required.

· CoptionObject:

 Coptionobject imports java.awt, and extends CbaseObject:

Abstract public class COptionObject extends CbaseObject

It is the global settings for the background color (color of the whole page, the drawing pad).

· CbackgroundObject:

It imports java.awt and extends Coptionobject.

Color color;// creates an object color of type Color.

The AWT color system allows us to specify any color we want for the background. As we said before color is encapsulated by the Color class.

Public void setColor (Color color){

 this.color=color;

After setting the background color, we can change that color by calling the Graphics method setcolor() that has the general form

 Void setColor(Color newcolor)

Where the newcolor specifies the new drawing color.

Color getColor(): is to obtain the current color by calling getColor method.

We are also using here Paint constructor and fillRect() to display a filled rectangle.

graphics2d.fillRect(0, 0, 5000, 5000);

It is like the form (int top, int left, int width, int height) where the upper-left corner of the rectangle -the whole page, the background here- is at top, left (0,0). The dimensions of the rectangle are specified by width = 5000 and height = 5000.

· CdrawableObject:

This object imports java.awt and java.util. It’s a subclass of cbaseobject and a superclass of all the drawable objects. It is a main object in which the main methods are calling and all the others drawable object extend these methods.

It creates all the common property shared by all the graphical objects such as line-color, fill-color, and points.

Color color; // creates an object color of type Color.

Vector points;// creates an object points of type Vector.

· CeditableObject

This class is a subclass of CdrawableObjects.

Package graphicobject;

Abstract public class CEditableObject extends CdrawableObject.

It implements all the common properties created above, plus it creates other options used by arcs and text, such as start-angle and arc-angle in case of arcs and fonts size, style… in case of text.

Drawable Objects:

Object: Public class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrays, implement the methods of this class.

Graphics: Public abstract class Graphics extends Object.

 The Graphics class is the abstract base class for all graphics contexts that allow an application to draw onto components that are realized on various devices, as well as onto off-screen images (here the drawing pad).

A Graphics object encapsulates state information needed for the basic rendering operations that Java supports. This state information includes the following properties:

· The Component object on which to draw.

· A translation origin for rendering and clipping coordinates.

· The current clip.

· The current color.

· The current font.

· The current logical pixel operation function (Paint).

Coordinates are infinitely thin and lie between the pixels of the output device. Operations that draw the outline of a figure operate by traversing an infinitely thin path between pixels with a pixel-sized pen that hangs down and to the right of the anchor point on the path. Operations that fill a figure operate by filling the interior of that infinitely thin path. Operations that render horizontal text render the ascending portion of character glyphs entirely above the baseline coordinate.

The graphics pen hangs down and to the right from the path it traverses. This has the following implications:

· If we draw a figure that covers a given rectangle, that figure occupies one extra row of pixels on the right and bottom edges as compared to filling a figure that is bounded by that same rectangle.

· If we draw a horizontal line along the same y coordinate as the baseline of a line of text, that line is drawn entirely below the text, except for any descenders.

All coordinates that appear as arguments to the methods of this Graphics object are considered relative to the translation origin of this Graphics object prior to the invocation of the method.

All rendering operations modify only pixels which lie within the area bounded by the current clip, which is specified by a Shape in user space and is controlled by the program using the Graphics object. This user clip is transformed into device space and combined with the device clip, which is defined by the visibility of windows and device extents.

The combination of the user clip and device clip defines the composite clip, which determines the final clipping region. The user clip cannot be modified by the rendering system to reflect the resulting composite clip. The user clip can only be changed through the setClip or clipRect methods. All drawing or writing is done in the current color, using the current paint mode, and in the current font.

The Graphic class defines methods for painting the following kinds of shapes:

· Lines, Multi-lines (drawLine)

· Rectangles (drawRect and fillRect)
· Raised or lowered rectangles (draw3DRect and fill3Drect)
· Round-edged rectangles (drawRoundRect and fillRoundRect)
· Ovals, ellipses (drawOval and fillOval)
· Arcs (drawArc and fillArc)
Here is an example of painting the outline of a rectangle:

g.drawRect(x, y, rectWidth - 1, rectHeight - 1);

Here is an example of painting a filled rectangle of the same size.

g.fillRect(x, y, rectWidth, rectHeight);

Note that for the drawRect method, we must specify one pixel less than the desired width and height. This is because the painting system draws lines just below the specified rectangle, instead of within the specified rectangle.

Graphics2D: This part shows how to use Graphics2D to display graphics with fancy outline and fill styles, transform graphics when they are rendered, constrain rendering to a particular area, and generally control the way graphics look when they are rendered. It will also show how to create complex Shape objects by combining simple ones and how to detect when the user clicks on a displayed graphics primitive:

Public abstract class Graphics2D extends Graphics.

This Graphics2D class extends the Graphics class to provide more sophisticated control over geometry, coordinate transformations, color management, and text layout. This is the fundamental class for rendering 2-dimensional shapes, text and images on the Java(tm) platform.

Protected Graphics2D ():

Constructs a new Graphics2D object. Since Graphics2D is an abstract class, and since it must be customized by subclasses for different output devices, Graphics2D objects cannot be created directly. Instead, Graphics2D objects must be obtained from another Graphics2D object, created by a Component, or obtained from images such as BufferedImage objects.

 Coordinate Spaces: All coordinates passed to a Graphics2D object are specified in a device-independent coordinate system called User Space, which is used by applications. The Graphics2D object contains an AffineTransform object as part of its rendering state that defines how to convert coordinates from user space to device-dependent coordinates in Device Space.

Coordinates in device space usually refer to individual device pixels and are aligned on the infinitely thin gaps between these pixels. Some Graphics2D objects can be used to capture rendering operations for storage into a graphics metafile for playback on a concrete device of unknown physical resolution at a later time.

Since the resolution might not be known when the rendering operations are captured, the Graphics2D Transform is set up to transform user coordinates to a virtual device space that approximates the expected resolution of the target device. Further transformations might need to be applied at playback time if the estimate is incorrect.

Some of the operations performed by the rendering attribute objects occur in the device space, but all Graphics2D methods take user space coordinates.

Every Graphics2D object is associated with a target that defines where rendering takes place. A GraphicsConfiguration object defines the characteristics of the rendering target, such as pixel format and resolution. The same rendering target is used throughout the life of a Graphics2D object.

When creating a Graphics2D object, the GraphicsConfiguration specifies the default transform for the target of the Graphics2D (a Component or Image). This default transform maps the user space coordinate system to screen and printer device coordinates such that the origin maps to the upper left hand corner of the target region of the device with increasing X coordinates extending to the right and increasing Y coordinates extending downward.

The scaling of the default transform is set to identity for those devices that are close to 72 dpi, such as screen devices. The scaling of the default transform is set to approximately 72 user space coordinates per square inch for high resolution devices, such as printers. For image buffers, the default transform is the Identity transform.

Rendering Process: The Rendering Process can be broken down into four phases that are controlled by the Graphics2D rendering attributes. The renderer can optimize many of these steps, either by caching the results for future calls, by collapsing multiple virtual steps into a single operation, or by recognizing various attributes as common simple cases that can be eliminated by modifying other parts of the operation.

The steps in the rendering process are:

1. Determine what to render.

2. Constrain the rendering operation to the current Clip. The Clip is specified by a Shape in user space and is controlled by the program using the various clip manipulation methods of Graphics and Graphics2D. This user clip is transformed into device space by the current Transform and combined with the device clip, which is defined by the visibility of windows and device extents. The combination of the user clip and device clip defines the composite clip, which determines the final clipping region. The user clip is not modified by the rendering system to reflect the resulting composite clip.

3. Determine what colors to render.

4. Apply the colors to the destination drawing surface using the current Composite attribute in the Graphics2D context.

The three types of rendering operations, along with details of each of their particular rendering processes are:

1. Shape operations

1. If the operation is a draw (Shape) operation, then the createStrokedShape method on the current Stroke attribute in the Graphics2D context is used to construct a new Shape object that contains the outline of the specified Shape.

2. The Shape is transformed from user space to device space using the current Transform in the Graphics2D context.

3. The outline of the Shape is extracted using the getPathIterator method of Shape, which returns a PathIterator object that iterates along the boundary of the Shape.

4. If the Graphics2D object cannot handle the curved segments that the PathIterator object returns then it can call the alternate getPathIterator method of Shape, which flattens the Shape.

5. The current Paint in the Graphics2D context is queried for a PaintContext, which specifies the colors to render in device space.

2. Text operations

1. The following steps are used to determine the set of glyphs required to render the indicated String:

1. If the argument is a String, then the current Font in the Graphics2D context is asked to convert the Unicode characters in the String into a set of glyphs for presentation with whatever basic layout and shaping algorithms the font implements.

2. If the argument is an AttributedCharacterIterator, the iterator is asked to convert itself to a TextLayout using its embedded font attributes. The TextLayout implements more sophisticated glyph layout algorithms that perform Unicode bi-directional layout adjustments automatically for multiple fonts of differing writing directions.

3. If the argument is a GlyphVector, then the GlyphVector object already contains the appropriate font-specific glyph codes with explicit coordinates for the position of each glyph.

2. The current Font is queried to obtain outlines for the indicated glyphs. These outlines are treated as shapes in user space relative to the position of each glyph that was determined in step 1.

3. The character outlines are filled as indicated above under Shape operations.

4. The current Paint is queried for a PaintContext, which specifies the colors to render in device space.

3. Image Operations

1. The region of interest is defined by the bounding box of the source Image. This bounding box is specified in Image Space, which is the Image object's local coordinate system.

2. If an AffineTransform is passed to drawImage (Image, AffineTransform, ImageObsever), the AffineTransform is used to transform the bounding box from image space to user space. If no AffineTransform is supplied, the bounding box is treated as if it is already in user space.

3. The bounding box of the source Image is transformed from user space into device space using the current Transform. Note that the result of transforming the bounding box does not necessarily result in a rectangular region in device space.

4. The Image object determines what colors to render, sampled according to the source to destination coordinate mapping specified by the current Transform and the optional image transform.

Default Rendering Attributes:

The default values for the Graphics2D rendering attributes are:

Paint

The color of the Component.

Font

The Font of the Component.

Stroke

A square pen with a linewidth of 1, no dashing, miter segment joins and square end caps.

Transform

The getDefaultTransform for the GraphicsConfiguration of the Component.

Composite

The AlphaComposite.SRC_OVER rule.

Clip

No rendering Clip, the output is clipped to the Component.

Rendering Compatibility Issues:

The JDK rendering model is based on a pixelization model that specifies that coordinates are infinitely thin, lying between the pixels. Drawing operations are performed using a one-pixel wide pen that fills the pixel below and to the right of the anchor point on the path. The JDK 1.1 rendering model is consistent with the capabilities of most of the existing class of platform renderers that need to resolve integer coordinates to a discrete pen that must fall completely on a specified number of pixels.

The Java 2D(tm) (Java(tm) 2 platform) API supports antialiasing renderers. A pen with a width of one pixel does not need to fall completely on pixel N as opposed to pixel N+1. The pen can fall partially on both pixels. It is not necessary to choose a bias direction for a wide pen since the blending that occurs along the pen traversal edges makes the sub-pixel position of the pen visible to the user. On the other hand, when antialiasing is turned off by setting the KEY ANTIALIASING hint key to the VALUE ANTIALIAS OFF hint value, the renderer might need to apply a bias to determine which pixel to modify when the pen is straddling a pixel boundary, such as when it is drawn along an integer coordinate in device space.

While the capabilities of an antialiasing renderer make it no longer necessary for the rendering model to specify a bias for the pen, it is desirable for the antialiasing and non-antialiasing renderers to perform similarly for the common cases of drawing one-pixel wide horizontal and vertical lines on the screen. To ensure that turning on antialiasing by setting the KEY ANTIALIASING hint key to VALUE ANTIALIAS ON does not cause such lines to suddenly become twice as wide and half as opaque, it is desirable to have the model specify a path for such lines so that they completely cover a particular set of pixels to help increase their crispness.

Java 2D API maintains compatibility with JDK 1.1 rendering behavior, such that legacy operations and existing renderer behavior is unchanged under Java 2D API. Legacy methods that map onto general draw and fill methods are defined, which clearly indicates how Graphics2D extends Graphics based on settings of Stroke and Transform attributes and rendering hints. The definition performs identically under default attribute settings.

For example, the default Stroke is a BasicStroke with a width of 1 and no dashing and the default Transform for screen drawing is an Identity transform.

The following two rules provide predictable rendering behavior whether aliasing or antialiasing is being used.

· Device coordinates are defined to be between device pixels that avoid any inconsistent results between aliased and antaliased rendering. If coordinates were defined to be at a pixel's center, some of the pixels covered by a shape, such as a rectangle, would only be half covered. With aliased rendering, the half covered pixels would either be rendered inside the shape or outside the shape. With anti-aliased rendering, the pixels on the entire edge of the shape would be half covered. On the other hand, since coordinates are defined to be between pixels, a shape like a rectangle would have no half covered pixels, whether or not it is rendered using antialiasing.

· Lines and paths stroked using the BasicStroke object may be "normalized" to provide consistent rendering of the outlines when positioned at various points on the drawable and whether drawn with aliased or antialiased rendering. This normalization process is controlled by the KEY STROKE CONTROL hint. The exact normalization algorithm is not specified, but the goals of this normalization are to ensure that lines are rendered with consistent visual appearance regardless of how they fall on the pixel grid and to promote more solid horizontal and vertical lines in antialiased mode so that they resemble their non-antialiased counterparts more closely. A typical normalization step might promote antialiased line endpoints to pixel centers to reduce the amount of blending or adjust the subpixel positioning of non-antialiased lines so that the floating point line widths round to even or odd pixel counts with equal likelihood. This process can move endpoints by up to half a pixel (usually towards positive infinity along both axes) to promote these consistent results.

The following definitions of general legacy methods perform identically to previously specified behavior under default attribute settings:

· For fill operations, including fillRect, fillRoundRect, fillOval (fillellipse), fillArc, fillPolygon, and clearRect, fill can now be called with the desired Shape. For example, when filling a rectangle:

 Fill (new Rectangle (x, y, w, h));

 is called.

· Similarly, for draw operations, including drawLine, drawRect, drawRoundRect, drawOval, drawArc, drawPolyline, and drawPolygon, draw can now be called with the desired Shape. For example, when drawing a rectangle:

 Draw (new Rectangle (x, y, w, h));

 is called.

The Graphics class defines only the setColor method to control the color to be painted. Since the Java 2D API extends the Color object to implement the new Paint interface, the existing setColor method is now a convenience method for setting the current Paint attribute to a Color object. setColor(c) is equivalent to setPaint(c).

The Graphics class defines two methods for controlling how colors are applied to the destination.

1. The setPaintMode method is implemented as a convenience method to set the default Composite, equivalent to setComposite (new AlphaComposite.SrcOver).

2. The setXORMode(Color xorcolor) method is implemented as a convenience method to set a special Composite object that ignores the Alpha components of source colors and sets the destination color to the value:

3. Dstpixel = (PixelOf (srccolor) ^ PixelOf(xorcolor) ^ dstpixel);

· CaddElipseObject:

This class is for drawing ellipses and circles we use drawArc (). To fill an ellipse, we use fillArc().

These methods are shown here:

Color c=color;

 If (fillColor!=null){

 Graphics2d.setColor (fillColor);

 Graphics2d.fillArc (minx, miny, maxx-minx, maxy-miny, 0,360);

 If(c==null){

 C=fillColor;}

 If(c!=null){

 Graphics2d.setColor(c);

 Graphics2d.drawArc (minx, miny, maxx-minx, maxy-miny, 0,360);}

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by minx, miny and whose bottom-right corner are specified by maxx-minx, and maxy-miny.

To draw circles specify a square as the bounding rectangle. 0 and 360 are the start-angle and the ellipse angle.

The CellipseObject extends CdrawableObject. It extends from it the color, the fill-color and two points the upper-left and the bottom-right as we mentioned before.

Public class CElipseObject extends CDrawableObject {

 Public CElipseObject (){

 super.maxPoints=2;

 points=new Vector(2);

 (X0,Y0)

 (X1,Y1)

· CaddLineObject:

Lines are drawn by means of the drawLine () method, shown here:

Point point0=(Point)points.get(0);

 Point point1=(Point)points.get(1);

 graphics2d.setColor (color);

 graphics2d.drawLine (point0.x, point0.y, point1.x, point1.y);

DrawLine () displays a line in the current drawing color that begins at startx (point0.x), starty (point0.y) and ends at endx (point1.x), endy (point1.y).

The Caddlineobject extends cdrawableobject and takes from it the line-color and maximum two points.

Public class CLineObject extends CDrawableObject {

 Public ClineObject (){

 super.maxPoints=2;

 points=new Vector(2);

 (X0,Y0) (X1,Y1)

· CaddmultilineObject

Same as lines, multi-lines are drawn using the same methods. It extends also Cdrawableobject and takes from it the line-color and maximum points = 1000.

Public class CMultiLinesObject extends CdrawableObject {

 Vector lines=new Vector (10,5);

 Public CmultiLinesObject (){

 super.maxPoints =1000;

 Points =new Vector (10,5);

Public void addPoint (Point point){

 super.addPoint (point);

 int size=points.size ();

 if (size>=2){

 CLineObject line=new ClineObject ();

 line.addPoint ((Point)points.get(size-2));

 line.addPoin t(point);

 line.setColor (color);

 lines.add (line);

 (X0, Y0)

(Xn, Yn)

 (X1, Y1)

· CaddRectangleObject:

The drawRect () and fillRect () methods display an outlined and filled rectangle, respectively.

They are shown here:

Public void paint (Graphics2D graphics2d){

 If (!this.isReady ()){

 return;

 }

 Point point0=(Point)points.get(0);

 Point point1=(Point)points.get(1);

 int minx=Math.min(point0.x, point1.x);

 int maxx=Math.max(point0.x, point1.x);

 int miny=Math.min(point0.y,point1.y);

 int maxy=Math.max(point0.y,point1.y);

 Color c=color;

 if(fillColor!=null){

 graphics2d.setColor (fillColor);

 graphics2d.fillRect (minx, miny, maxx-minx, maxy-miny);

 if(c==null){

 c=fillColor;

 }

 }

 if(c!=null){

 graphics2d.setColor (c);

 }

 graphics2d.drawRect (minx, miny, maxx-minx, maxy-miny);

the upper-left corner of the rectangle is at top-left: minx and miny, and the bottom-right corner is at maxx and maxy.

The CaddrectangleObject extends CdrawableObject and uses the line-color, fill-color and maximum two points: the upper-left (point0x, point0y), and the bottom-right (point1x, point1y).

As shown here:

Public class CRectangleObject extends CDrawableObject{

 Public CRectangleObject(){

 super.maxPoints =2;

 points=new Vector(2);

(X0,Y0)

(X1,Y1)

· CaddArcObject:

Arcs can be drawn with drawArc () and fillArc (), shown here:

Point point0=(Point)points.get(0);

 Point point1=(Point)points.get(1);

 int minx=Math.min(point0.x,point1.x);

 int maxx=Math.max (point0.x, point1.x);

 int miny=Math.min (point0.y, point1.y);

 int maxy=Math.max (point0.y, point1.y);

 Color c=color;

 if(fillColor!=null){

 graphics2d.setColor (fillColor);

 graphics2d.fillRect (minx, miny, maxx-minx, maxy-miny);

 if(c==null){

 c=fillColor;

 }

 }

 if(c!=null){

 graphics2d.setColor (c);

 }

 graphics2d.drawArc (minx, miny, maxx-minx, maxy-miny, startAngle, arcAngle);

The arc is bounded by the rectangle whose upper-left corner is specified by minx, miny and whose bottom-right is specified by maxx-minx, maxy-miny. The arc is drawn from start-angle through the angular distance specified by arc-angle. Angles are specified in degrees. Zero degrees is on the horizontal, at the three o’clock position. The arc is drawn counterclockwise if arc-angle is positive, and clockwise if arc-angle is negative. Therefore, to draw an arc from twelve o’clock to six o’clock, the start angle would be 90 and the arc-angle 180.

Carcobject extends Ceditableobject, which in its turn is a subclass of Cdrawableobject. Thus, Carcobject takes line-color and maximum two points from Cdrawableobject and start-angle and arc-angle from Ceditableobject.

Public class CArcObject extends CeditableObject {

 int startAngle=0;

 int arcAngle=60;

 public CarcObject () {

 super.maxPoints=2;

 points=new Vector(2);

 }

 public void setStartAngle (int startAngle){

 this.startAngle=startAngle;

 }

 public int getStartAngle (){

 return startAngle;

 }

 public void setArcAngle (int arcAngle){

 this.arcAngle=arcAngle;

 }

 public int getArcAngle (){

 return arcAngle;

 }

 public void paint (Graphics2D graphics2d){

 if(!this.isReady()){

 return;

(X0,Y0)

 (X1,Y1)

· CaddLetterObject:

When we want to display text, we can use one of the text-oriented components, such as the Swing or components. When we use a text component, a lot of the work is done for us--for example, JTextComponent objects provide built-in support for hit testing and displaying international text.
Here, we just want to draw a static text string, we can render it directly through Graphics2D by using the drawString method. To specify the font, you use the Graphics2D setFont method.

In case we want to implement our text-editing routines or need more control over the layout of the text than the text components provide, we can use the Java 2D text layout classes in java.awt.font.

Font: the AWT supports multiple type fonts. Fonts have emerged from the domain of traditional typesetting to become an important part of computer-generated documents and display. The AWT provides flexibility by abstracting font-manipulation operations and allowing for dynamic selection of fonts.

The shapes that a font uses to represent the characters in a string are called glyphs. A particular character or combination of characters might be represented as one or more glyphs. For example, á might be represented by two glyphs, whereas the ligature fi might be represented by a single glyph.
A font can be thought of as a collection of glyphs. A single font might have many faces, such as heavy, medium, oblique, gothic, and regular. All of the faces in a font have similar typographic features and can be recognized as members of the same family. In other words, a collection of glyphs with a particular style form a font face; a collection of font faces forms a font family; and the collection of font families forms the set fonts available on the system.

When we are using the Java 2D API, we specify fonts by using an instance of Font. We can determine what fonts are available by calling the static method GraphicsEnvironment.getLocalGraphicsEnvironment and then querying the returned GraphicsEnvironment. The getAllFonts method returns an array that contains Font instances for all of the fonts available on the system; getAvailableFontFamilyNames returns a list of the available font families.

The GraphicsEnvironment also describes the collection of platform rendering devices, such as screens and printers that a Java program can use. This information is used when the system performs the conversion from user space to device space during rendering.

Text layout: Before text can be displayed, it must be laid out so that the characters are represented by the appropriate glyphs in the proper positions. Because we are using Swing, we can let JLabel or JTextComponent manage text layout for us. JTextComponent supports bidirectional text and is designed to handle the needs of most international applications.

Public class CLettersObject extends CeditableObject {

 String letters;

 String fontName="Courier";

 int fontSize=12;

 int fontStyle=Font.PLAIN;

 Font font;

 public CLettersObject() {

 super.maxPoints=1;

 points=new Vector(1);

 createFont();

 }

 public String getLetters(){

 return letters;

 }

 public void setLetters(String letters){

 this.letters=letters;

 }

 Private void createFont (){

 Font=new Font (fontName, fontStyle, fontSize);

 }

 Public void paint (Graphics2D graphics2d){

 int size=points.size ();

 if(size<1 || letters==null){

 return;

 }

 Point point=(Point) points.get (0);

 graphics2d.setColor (color);

 if(font!=null){

 graphics2d.setFont (font);

 }

 graphics2d.drawString (letters,(int)point.getX(),(int)point.getY());

 }

 public boolean contains(Point point){

 if(points.size()==0){

 return false;

 }

 Point point1=(Point)points.get(0);

 return point1.x<point.x && point.x<point1.x+30 && point1.y<point.y && point.y<point1.y+30;

 }

 public String getFontName(){

 return fontName;

 }

 public void setFontName(String fontName){

 this.fontName=fontName;

 createFont();

 }

 public int getFontSize(){

 return fontSize;

 }

 public void setFontSize(int fontSize){

 this.fontSize=fontSize;

 createFont();

 }

 public int getFontStyle(){

 return fontStyle;

 }

 public void setFontStyle(int fontStyle){

 this.fontStyle=fontStyle;

 createFont();
Thus, text is drawn by means of the drawString () method. ClettersObject extends Ceditableobject which extends Cdrawableobject. It extends from Cdrawableobject the line-color and maximum one point (pointx, pointy), which is at the beginning of the text message and specifies its coordinate on the drawing pad.

 GetFontName(), getFontSize (), and getFontStyle () specify the name, the size and the font style respectively.

2.15- Package Action:

· Action:

public abstract interface Action extends java.awt.event.ActionListener

The JFC Action interface provides a useful extension to the ActionListner interface in cases where the same functionality may be accessed by several controls.

In addition to the actionPerformed method defined by the ActionListener interface, this interface allows the application to define, in a single place:

· One or more text strings that describe the function. These strings can be used, for example, to display the flyover text for a button or to set the text in a menu item.

· One or more icons that depict the function. These icons can be used for the images in a menu control, or for composite-entries in a more sophisticated user-interface.

· The enabled/disabled state of the functionality. Instead of having to separately disable the menu-item and the toolbar-button, the application can disable the function that implements this interface. All components which are registered as listeners for the state-change then know to disable event-generation for that item and to modify the display accordingly.

Containers in the Swing set like menus and toolbars know how to add an Action object, as well as other components, using a version of the add method. When an Action object is added to such a container, the container:

a. Creates a component that is appropriate for that container (a toolbar creates a button component, for example).

b. Gets the appropriate property(s) from the Action object to customize the component (for example, the icon image and flyover text).

c. Checks the initial state of the Action object to determine if it is enabled or disabled, and renders the component in the appropriate fashion.

d. Registers a listener with the Action object so that is notified of state changes. When the Action object changes from enabled to disabled, or back, the container makes the appropriate revisions to the event-generation mechanisms and renders the component accordingly.

For example, both a menu item and a toolbar button could access a Cut action object. The text associated with the object is specified as "Cut", and an image depicting a pair of scissors is specified as its icon. The Cut action-object can then be added to a menu and to a toolbar. Each container does the appropriate things with the object, and invokes its actionPerformed method when the component associated with it is activated. The application can then disable or enable the application object without worrying about what user-interface components are connected to it.

This interface can be added to an existing class or used to create an adapter (typically, by subclassing AbstractAction). The Action object can then be added to multiple action-aware containers and connected to Action-capable components. The GUI controls can then be activated or deactivated all at once by invoking the Action object's setEnabled method.

· AbstractAction:

Public abstract class AbstractAction extends java.lang.Object

Implements Action, java.lang.Cloneable, and java.io.Serializable.

This class provides default implementations for the JFC Action interface. Standard behaviors like the get and set methods for Action object properties (icon, text, and enabled) are defined here. We need only subclass this abstract class and define the actionPerformed method.

· ActionListener:

public interface ActionListener extends EventListener.

The listener interface for receiving action events. The class that is interested in processing an action event implements this interface, and the object created with that class is registered with a component, using the component's addActionListener method. When the action event occurs, that object's actionPerformed method is invoked.

· Dialog:

Public class Dialog extends Window

A Dialog is a top-level window with a title and a border that is typically used to take some form of input from the user. The size of the dialog includes any area designated for the border. The dimensions of the border area can be obtained using the getInsets method, however, since these dimensions are platform-dependent, a valid insets value cannot be obtained until the dialog is made displayable by either calling pack or show. Since the border area is included in the overall size of the dialog, the border effectively obscures a portion of the dialog, constraining the area available for rendering and/or displaying subcomponents to the rectangle which has an upper-left corner location of (insets.left, insets.top), and has a size of width - (insets.left + insets.right) by height - (insets.top + insets.bottom).

The default layout for a dialog is BorderLayout.

A dialog must have either a frame or another dialog defined as its owner when it's constructed. When the owner window of a visible dialog is hidden or minimized, the dialog will automatically be hidden from the user. When the owner window is subsequently re-opened, then the dialog is made visible to the user again.

A dialog can be either modeless (the default) or modal. A modal dialog is one which blocks input to all other toplevel windows in the app context, except for any windows created with the dialog as their owner.

· Jdialog:

Public class JDialog extends Dialog implements WindowConstants, Accessible, RootPaneContainer.

The main class for creating a dialog window. We can use this class to create a custom dialog, or invoke the many class methods in JOptionPane to create a variety of standard dialogs.

The JDialog component contains a JRootPane as its only child. The contentPane should be the parent of any children of the JDialog. From the older java.awt.Window object we can normally do something like this:

 dialog.add (child);

Using JDialog the proper semantic is:

 dialog.getContentPane ().add (child);

The same principle holds true for setting layout managers, removing components, listing children, etc. All these methods should normally be sent to the contentPane instead of to the JDialog. The contentPane is always non-null. Attempting to set it to null generates an exception. The default contentPane has a BorderLayout manager set on it.

In a multi-screen environment, we can create a JDialog on a different screen device than its owner.

· CbaseAction:

Parent of all the CActions. It extends AbstractAction:

Abstract public class CBaseAction extends AbstractAction

It defines also three abstract methods:

abstract CDrawableObject getObject ();

abstract public String getName ();

abstract public Icon getIcon ();

· CchangeBackgroundAction:

This action is using to set the background color. It extends AbstractAction, uses JcolorChooser to display the color dialog and creates an object of type color to read the color required.

public void actionPerformed(ActionEvent event){

JColorChooser colorChooser=new JcolorChooser (color);

Color color=Color.white;

tempColor=colorChooser.showDialog(context.getFrame(),"Choose Color",color);

if(tempColor==null){

 return;

color=tempColor;

CBackgroundObject backgroundObject=new CBackgroundObject(); backgroundObject.setColor(color);

It also creates an icon background.gif to arrange it on the tool-bar:

public CChangeBackgroundAction(CContext context) {

super("BackGround",new ImageIcon("images\\backgroundcolor.gif"));

 this.context=context;

· CcolorAction:

Same as CbackgroundAction, CcolorAction set the line-color of the drawing object and the text message. It also creates an icon color.gif to arrange it on the tool-bar

public CcolorAction (CContext context) {

super ("Color", new ImageIcon("images\\color.gif"));

this.context=context;

context.getDisplayDataModel ().addDisplayListener(this);

public void actionPerformed(ActionEvent event){

JColorChooser colorChooser=new JcolorChooser (color);

Color tempColor=colorChooser.showDialog (context.getFrame(),"Choose Color",color);

· CfillColorAction:

CfillcolorAction and CcolorAction are almost the same, but CfillcolorAction is to set the fill-color of the drawing objects.

It creates an icon fillcolor.gif to place on the tool-bar.

JcolorChooser: public class JColorChooser extends JComponent implements Accessible

JColorChooser provides a pane of controls designed to allow a user to manipulate and select a color. This class provides three levels of API:

1. A static convenience method which shows a modal color-chooser dialog and returns the color selected by the user.

2. A static convenience method for creating a color-chooser dialog where ActionListeners can be specified to be invoked when the user presses one of the dialog buttons.

3. The ability to create instances of JColorChooser panes directly (within any container). PropertyChange listeners can be added to detect when the current "color" property changes.

JColorChooser
Public JColorChooser()

Creates a color chooser pane with an initial color of white.

 Use the JColorChooser class to provide users with a palette of colors to choose from. A color chooser is a component that we can place anywhere within our program's GUI. The JColorChooser API also makes it easy to bring up a dialog that contains a color chooser.

The color chooser consists of everything within the box labeled Choose Text Color. This is what a standard color chooser looks like in the Java Look & Feel. It contains two parts, a tabbed pane and a preview panel. The three tabs in the tabbed pane select chooser panels. The preview panel below the tabbed pane displays the currently selected color.

Showing a Color Chooser in a Dialog: The JColorChooser class provides two class methods to make it easy to use a color chooser in a dialog. CbackgroundAction uses one of these methods, showDialog, to display the background color chooser when the user clicks the Show Color Chooser... button. Here's the single line of code from the example that brings up the background color chooser in a dialog:

Color newColor = JColorChooser.showDialog(

 ColorChooserDemo2.this,

 "Choose Background Color",

 banner.getBackground());

The first argument is the parent for the dialog, the second is the dialog's title, and the third is the initially selected color.

The dialog disappears under three conditions: the user chooses a color and clicks the OK button, the user cancels the operation with the Cancel button, or the user dismisses the dialog with a frame control. If the user chooses a color, the showDialog method returns the new color. If the user cancels the operation or dismisses the window, the method returns null. Here's the code from CbackgrounAction according to the value returned by showDialog:

if (newColor != null) {

 banner.setBackground(newColor);

}

The dialog created by showDialog is modal. If we want a non-modal dialog, we can use JColorChooser's create Dialog method to create the dialog. This method also lets us specify action listeners for the OK and Cancel buttons in the dialog window. Use JDialog's show method to display the dialog created by this method.

· CexitAction

This class extends also AbstractAction

public class CExitAction extends AbstractAction{

 CContext context;

 public CExitAction(CContext context) {

 super("Exit",new ImageIcon("images\\exit.gif"));

// To call the exit.gif icon from the images file

 this.context=context;

 }

 public void actionPerformed(ActionEvent event){

// Invoked when an action occurs.

 System.exit(0);

// The Java.lang package defines a class called system, which encapsulates several aspects of the run-time environment.

Here System.exit is to close the active frame and then quit.

· CloadAction:
This class creates an icon (load.gif from image file), and arranges it on the tool bar and the menu bar.

 Double-clicking on this icon makes the load dialog displays and lets the user retrieves a file from his archive using XML or PSTricks for further processing.

Public class CLoadAction extends AbstractAction {

 CContext context;

 CXMLLoader loader;

 Public CloadAction (CContext context) {

 Super ("Load", new ImageIcon ("images\\load.gif"));

 this.context=context;

 loader =new CXMLLoader (context);

The following code creates the loading display dialog using JfillChooser:

Public void actionPerformed (ActionEvent event){

 context.getDisplayDataModel ().reset();

 JFileChooser fileChooser=new JfileChooser ();

 fileChooser.showOpenDialog (context.getFrame ());

 File file=fileChooser.getSelectedFile ();

 CBaseObject[] objects=loader.load (file);

 context.getDisplayDataModel ().load(objects);

 context.getDisplayUI ().drawObjects ();

· CsaveAction:
Same as CloadAction, this class creates a saving icon (save.gif). Clicking on this icon, the saving dialog displays. The user can press on one button (xml or Pstricks), and stores his project at any file he desires.

Public class CSaveAction extends AbstractAction {

 CContext context;

 CXMLLoader loader;

 public CSaveAction(CContext context) {

 super("Save", new ImageIcon("images\\save.gif"));

 this.context=context;

 loader=new CXMLLoader(context);

To create the saving dialog:

JFileChooser fileChooser=new JFileChooser();

 fileChooser.showSaveDialog(context.getFrame());

 File file=fileChooser.getSelectedFile();

 loader.save (file, vec);

Drawable objects:

· CaddArcAction

· CaddElipseAction

· CaddLineAction

· CaddmultilineAction

· CaddRectangleAction

· CaddTextAction

All these above classes (line, multi-line, text, ellipse, arc and rectangle) are from the Package named ACTION and have just about the same similarities which they import javax.swing, and also Context and GraphicObject packages.

They all extend CbaseAction.

package action;

import context.*;

import graphicobject.*;

import javax.swing.*;

public class name-Action extends CBaseAction{

 public name-Action(CContext context) {

 super(context); // to call context.

 }

 CDrawableObject getObject(){

 return new name-Object();

 //by calling getObject () method we can // obtain all the objects stored in cdrawableobject.
 }

 public String getName(){

 return "name";

// getName returns the name of the file.

 }

 public Icon getIcon(){

 return new ImageIcon("images/name.gif");

 }

}

 // In swing, icons are encapsulated by the ImageIcon class, which paints an icon from an image.

The general form of its constructor is:

 ImageIcon (String filename);

This form uses the image in the file named filename.

The ImageIcon class implements the Icon interface. The icon associated with the Label can be read by the following method:

 Icon getIcon().

2.16- Package Display:

- Hashtable

This Package implements hashtable, which maps keys to values. Any non-null object can be used as a key or as a value. To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method and the equals method.

An instance of Hashtable has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. Note that the hash table is open: in the case a "hash collision", a single bucket stores multiple entries, which must be searched sequentially. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of entries in the hashtable exceeds the product of the load factor and the current capacity, the capacity is increased by calling the rehash method.

Generally, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the time cost to look up an entry (which is reflected in most Hashtable operations, including get and put).

The initial capacity controls a tradeoff between wasted space and the need for rehash operations, which are time-consuming. No rehash operations will ever occur if the initial capacity is greater than the maximum number of entries the Hashtable will contain divided by its load factor. However, setting the initial capacity too high can waste space.

If many entries are to be made into a Hashtable, creating it with a sufficiently large capacity may allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

As of the Java 2 platform v1.2, this class has been retrofitted to implement Map, so that it becomes a part of Java's collection framework. Unlike the new collection implementations, Hashtable is synchronized.

The Iterators returned by the iterator and listIterator methods of the Collections returned by all of Hashtable's "collection view methods" are fail-fast: if the Hashtable is structurally modified at any time after the Iterator is created, in any way except through the Iterator's own remove or add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Hashtable's keys and values methods are not fail-fast.
- Vector

public class Vector extends AbstractList implements List

As we mentioned before (Package GraphicObject), the Vector class implements a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement)

. The capacity is always at least as large as the vector size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.

As of the Java 2 platform, this class has been retrofitted to implement List, so that it becomes a part of Java's collection framework. Unlike the new collection implementations, Vector is synchronized.

The Iterators returned by Vector's iterator and listIterator methods are fail-fast: if the Vector is structurally modified at any time after the Iterator is created, in any way except through the Iterator's own remove or add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Vector's elements method are not fail-fast.

- Enumeration:

Public interface Enumeration. An object that implements the Enumeration interface generates a series of elements, one at a time. Successive calls to the nextElement method return successive elements of the series.

For example, to print all elements of a vector v:

 for (Enumeration e = v.elements(); e.hasMoreElements() ;) {

 System.out.println (e.nextElement());

 }

Methods are provided to enumerate through the elements of a vector, the keys of a hashtable, and the values in a hashtable. Enumerations are also used to specify the input streams to a SequenceInputStream.

NOTE: The functionality of this interface is duplicated by the Iterator interface. In addition, Iterator adds an optional remove operation, and has shorter method names. New implementations should consider using Iterator in preference to Enumeration.

· CdisplayDataModel:
CdisplayDataModel contains the list of the graphical objects.

This class imports import java.util, java.awt, context and graphicobject.
Vector drawableObjects=new Vector(10,5); // creates a vector object called drawableobject whose initial capacity is specified by size = 10 and whose increment is specified by incr = 5. the increment specifies the number of elements to allocate each time that a vector is resized upward.

 Hashtable optionObjects=new Hashtable(10,.5f); // this creates an hash table object called optionobject that has an initial size specified by size= 10 and a fill ratio specified by fillratio =0.5.

This ratio determines how full the hash table can be before it is resized upward. Specifically, when the number of elements is greater than the capacity of the hash table multiplied by its fill ratio, the hash table is expanded.
· CdisplayUI

Draws the list of graphical objects into the java canvas.

JPanel mainPanel=new JPanel(new GridBagLayout());

 CContext context;

 Canvas canvas;

 CDrawableObject selectedObject;

 SelectionPoint selectionPoints[];

 TransPoint transPoint;

 MouseHandler mouseHandler=new MouseHandler();

 KeyboardHandler keyboardHandler=new KeyboardHandler();

 public CDisplayUI(CContext context) {

2.17- Package Editable:

· Ceditable:

This package displays the input panel corresponding to the arc and text.

It creates two dialogs for editing more options used by arcs and text.

dialog=new JDialog(context.getFrame(),"Edit Arc" “Edit Letter” ,true,);

 dialog.setBounds(100,100,200,200);

 dialog.getContentPane().add(BorderLayout.CENTER,this);

 load();

 dialog.setVisible(true);
2.18- Package Loader:

· CBaseloader:

This class has two methods: save and load for drawableobjects and coptionobject and also two implementations XML and PSTricks.

abstract public class CBaseLoader {

 abstract public boolean save (File file, Vector baseObjects);

 abstract public CBaseObject[] load (File file);

· Cloader:

This class has two instances CMXLloader and CPSTricksloader.

Public class CLoader {

 CContext context; //creates an instance of context.
 Vector loaders=new Vector (3,2);

 public CLoader(CContext context) {

 this.context=context;

 loaders.addElement(new CXMLLoader(context));

Saving and Loading group:

(We will talk about this group in chapters 3,4 and 5)

· CXMLLoader

· CpstrickLoader

· CpstrickReader

· CPCObject

2.2- OPERATION

How this Program works:

The application starts by running the startApp in the package run. This file creates a context for the application that is responsible of creating all the applications main modules.

The idea of a context is that one object contains all the modules of the application and every object in the application contains an instance of this context. This way all the application modules can deal with each other without any complexity.

The application modules are the Ceditable, ctoolbar, cframe, cdisplayui, cmenu, loader, and cdisplaydatamodel.

The cdisplaydatamodel is the data model that contains all the object drawn (ellipse, line… etc) in the application. It memorizes them in a stack from which the elements are displayed depending on the order of the stack.

Cdiplayui is the canvas that draws the object in the datamodel. The objects drawn are divided into two categories: options and drawableobjects. Basically the option category contains only the background color. And the rest fall in the other category.

All the drawable object are defined or we can say bounded by a certain number of points depending on the type of the object. Moreover, they share the color and the background color properties. Each object can be set a background color or a color attribute the same way as the other depending on which is selected.

The only objects that get out of this rule are the arc and the text display. Those objects need more attributes than the other that is why these objects are defined as editable objects. Editable objects means that they have all the characteristics of the other objects (point, color and background color) and, in addition, they have a panel of their own to set their additional characteristics. For example the arc needs the radius and the arc angle and the text needs text to be displayed along with the font to be displayed with.

The loader section handles the loading of the application. There are two types of loading: XML and Pstrick. Both of them they have the same interface to load from the appropriate file.

Finally, comes the last group of the application which is the UI section.

The main parts of the UI are the actions. The actions are a set of elements found on the toolbar and on the menu which creates the shapes as defined in the application and add them to the cdisplaydatamodel. And then when added to the data model the cdisplayui will start filling them with their characteristics by using the mouse to define the points or choosing the color of the background color of the objects, or in case of editable displaying the appropriate panel.

 At the end, the cframe comes layout all these objects in a frame to give the application its layout.

 CHAPTER 3:
3- XML

3.1- XML and Java

XML (Extensible Markup Language) is a language that develops documents in a platform and vendor-neutral format.

Java is a platform-independent programming language. So, that makes us believe that Java and XML were made for each other. We can write java to run on nearly any computing platform. On that platform, the program can read XML documents or even transform the documents itself.

3.11- Why These Two:

What is it about XML and Java that make them such a good match?

 On the surface it may be hard to see the fit, since the two seem to be very different. After all, XML is a markup language, while Java is a programming language. XML is a standard promoted by the Word Wide Web Consortium, whereas Java is essentially a de facto standard controlled by a single software and hardware company, Sun Microsystems.

Many web developers have come to the conclusion that XML and Java are the perfect pair because they complement each other so well. Thus, as we said before, XML contributes platform-

independent data -- portable documents and data. Java contributes platform-independent processing -- portable object oriented software solutions.

 That is, XML provides the data for Java to process in several specialized application areas. It is like "XML gives Java something to do". XML can do for data what Java has done for programs, which is to make the data both platform-independent and vendor-independent.

Much as Java provides programmers the ability to represent complicated data structures and object-oriented models, XML is ideal for representing complex, hierarchical data models. While Java developers have benefited from a rich development environment for several years, XML proponents are more recently experiencing the widespread availability of tools to support their ability to write applications that process XML documents.

3.12- XML and Java: Definitions

To understand the relative pros and cons of the diverse Java XML software discussed in our program, there are several terms which must be clarified.

3.12.1- APIs

APIs are Application Programming Interfaces.

In Java, an API specifies the class name and usually its superclass, the return types, the methods, and the parameters to the methods. APIs are described using javadoc.

 The following API example is from the start-element method of SAX:

 public void startElement(String name,

 AttributeList attributes) throws SAXException.

3.12.2- Document Object Model

The DOM specifies a standard tree-based API for XML documents.

 The DOM provides "a platform- and language-neutral interface that allows programs and scripts to dynamically access and update the content, structure and style of documents."

The goal of the DOM specification is to define a programmatic interface for XML. It defines the logical structure of documents and the way a document is accessed and manipulated. This specification defines the foundation of a platform- and language-neutral interface to access and update dynamically a document's content, structure, and style.

 Programmers can build documents, navigate their structure, and add, modify, or delete elements and content. Anything found in a XML document can be accessed, changed, deleted, or added using the Document Object Model, with a few exceptions.

3.12.3- Parsing

Parsing is the process of splitting up a stream of information into its constituent pieces. In the context of XML, parsing refers to scanning an XML document (which need not be a physical file -- it can be a data stream) in order to split it into its various elements (tags) and their attributes. XML parsing reveals the structure of the information since the nesting of elements implies a hierarchy. It is possible for an XML document to fail to parse completely if it does not follow the well-formedness rules described in the XML recommendation.

 A successfully parsed XML document may be either well-formed or valid.

3.12.4- Non-validating Parser

A non-validating parser is the minimal case. The parser does not check a document against any DTD (Document Type Definition); it only checks that the document is well-formed (that it is properly markedup according to XML syntax rules).

However, a non-validating parser is typically smaller than a validating one, so it may be more appropriate for use in a Java applet.

3.12.5- Validating Parser

In addition to checking well-formedness, a validating parser verifies that the document conforms to a specific DTD (either internal or external to the XML file being parsed). Although a validating parser is generally larger than a non-validating one, its rigor is necessary in cases where the structural integrity of the XML data is important, such as in database and eCommerce applications. It is likely that web browsers will need to include validating parsers.

Note that for an XML document to be valid, it must either contain or refer to a DTD. Authors of XML documents will provide DTDs in situations where a group (company or industry) wants to standardize on a particular set of elements. A DTD is also necessary to supply default values for attributes and to designate binary entities (CDATA).

3.13- SAX and DOM

The java community has developed two main parsing technologies: the simple API for XML, or SAX, and the Document Object Model, or DOM.

3.13.1- Event-based Parsing (e.g., SAX)

Event-based parsers provide a data-centric view of XML. When an element is encountered, process it and then forget about it. The event-based parser returns the element, its list of attributes, and the content. This is more efficient for many types of applications, especially searches. It requires less code and less memory since there is no need to build a large tree in memory as you are scanning for a particular element, attribute, and/or content sequence in an XML document..

An event-based API.... reports parsing events (such as the start and end of elements) directly to the application through callbacks, and does not usually build an internal tree. The application implements handlers to deal with the different events, much like handling events in a graphical user interface. An event-based API provides a simpler, lower-level access to an XML document: you can parse documents much larger than your available system memory, and you can construct your own data structures using your callback event handlers.

3.13.2- Tree-based Parsing (e.g., DOM)

Tree-based parsers provide a document-centric view of XML. In tree-based parsing, an in-memory tree is created for the entire document (extremely memory-intensive for large documents). All elements and attributes are available at once, but not until the entire document has been parsed. This technique is useful if you need to navigate around the document and perhaps change various document chunks, which is precisely why it is useful for the Document Object Model (DOM), the aim of which is to manipulate documents via scripting languages or Java.

A tree-based API compiles an XML document into an internal tree structure, then allows an application to navigate that tree. The Document Object Model (DOM) working group at the World-Wide Web consortium is developing a standard tree-based API for XML documents....

Tree-based APIs are useful for a wide range of applications, but they often put a great strain on system resources, especially if the document is large (under very controlled circumstances, it is possible to construct the tree in a lazy fashion to avoid some of this problem). Furthermore, some applications need to build their own, different data trees, and it is very inefficient to build a tree of parse nodes, only to map it onto a new tree.

3.14- JDOM, JCRIMSON (XML Reader)

JDOM and JCRIMSON define an API for easy and efficient reading, manipulation, and writing of XML documents and XML data.

There is no compelling reason for a Java API to manipulate XML to be complex, tricky, and unintuitive. JDOM/ JCRIMSON are both Java-centric and Java-optimized. They behave like Java, they use Java collections, they are completely natural API for current Java developers, and they provide a low-cost entry point for using XML.

 While JDOM/JCRIMSON interoperates well with existing standards such as the Simple API for XML (SAX) and the Document Object Model (DOM), it is not an abstraction layer or enhancement to those APIs. Rather, it seeks to provide a robust, light-weight means of reading and writing XML data without the complex and memory-consumptive options that current API offerings provide.

Following are the goals for JDOM (JCRIMSON):

JDOM should be optimized for Java. It should use the full power of the Java 2 Platform (collections, reflection, and method overloading).

 JDOM should integrate well with DOM and SAX. In addition to reading and writing to/from files, JDOM documents should be build able from both DOM and SAX sources, and should be output table to both DOM and SAX consumers.

JDOM should have a run-time pluggable parser architecture so any DOM or SAX implementation may be used. JAXP should also be supported, but should not be required

JDOM should ensure that documents in memory are always well-formed. Element names, text content, parentage hierarchies, and so on should be checked on build so documents are never allowed to violate the well-formedness constraints of the XML specification.

JDOM should not attempt to be an "XML parser" or "XML processor"; rather it should use XML parsers and processors to enable convenient input and output.

3.14.1-The JDOM philosophy

JDOM API has been developed to be straightforward for Java programmers. While other XML APIs were created to be cross-language (supporting the same API for Java, C++, and even JavaScript), JDOM takes advantage of Java's abilities by using features such as method overloading and the Collections APIs.

The API has to represent the document in a way programmers would expect. For example, how would a Java programmer expect to get the text content of an element?

<element>This is my text content</element>
In some APIs, an element's text content is available only as a child Node of the Element. While technically correct, that design requires the following code to access an element's content:

String content = element.getFirstChild()
.getValue();
However, JDOM makes the text content available in a more straightforward way:

String text = element.getText();
JDOM's second philosophy is that it should be fast and lightweight. Loading and manipulating documents should be quick, and memory requirements should be low. JDOM's design definitely allows for that. For example, even the early, untuned implementation has operated more quickly than DOM and roughly on par with SAX, even though it has many more features than SAX.

Why JDOM (CRIMSON) and not DOM and SAX:

As we mentioned before, DOM represents a document tree fully held in memory. It is a large API designed to perform almost every conceivable XML task. It also must have the same API across multiple languages. Because of those constraints, DOM does not always come naturally to Java developers who expect typical Java capabilities such as method overloading, the use of standard Java object types, and simple set and get methods. DOM also requires lots of processing power and memory, making it intractable for many lightweight Web applications and programs.

SAX does not hold a document tree in memory. Instead, it presents a view of the document as a sequence of events. For example, it reports every time it encounters a begin tag and an end tag. That approach makes it a lightweight API that is good for fast reading. However, the event-view of a document is not intuitive to many of today's server-side, object oriented Java developers. SAX also does not support modifying the document, nor does it allow random access to the document.

JDOM attempts to incorporate the best of DOM and SAX. It's a lightweight API designed to perform quickly in a small-memory footprint. JDOM also provides a full document view with random access but, surprisingly, it does not require the entire document to be in memory. The API allows for future flyweight implementations that load information only when needed. Additionally, JDOM supports easy document modification through standard constructors and normal set methods.

3.14.2- Getting a document

JDOM represents an XML document as an instance of the org.jdom.Document class. The Document class is a lightweight class that can hold a DocType, multiple ProcessingInstruction objects, a root Element, and Comment objects. We can construct a Document from scratch without needing a factory:

Document doc = new Document (new Element("rootElement"));

The constructor of documents from a preexisting file, stream, or URL:

SAXBuilder builder = new SAXBuilder ();
Document doc = builder.build (url);
We can build documents from any data source using builder classes found in the org.jdom.input package.

Currently there are two builders, SAXBuilder and DOMBuilder.

SAXBuilder uses a SAX parser behind the scenes to build the Document from the file; the SAXBuilder listens for the SAX events and builds a corresponding Document in memory. That approach is very fast (basically as fast as SAX), and it is the approach we recommend.

DOMBuilder is another alternative that builds a JDOM Document from an existing org.w3c.dom.Document object. It allows JDOM to interface easily with tools that construct DOM trees.

JDOM's speed has the potential to improve significantly upon completion of a deferred builder that scans the XML data source but doesn't fully parse it until the information is requested. For example, element attributes don't need to be parsed until their value is requested.

The SAXBuilder and DOMBuilder constructors let the user specify if validation should be turned on, as well as which parser class should perform the actual parsing duties.

public SAXBuilder(String parserClass, boolean validation);
public DOMBuilder(String adapterClass, boolean validation);
The defaults are to use Apache's open source Xerces parser and to turn off validation. Notice that the DOMBuilder doesn't take a parserClass but rather an adapterClass. That is because not all DOM parsers have the same API. To still allow user-pluggable parsers, JDOM uses an adapter class that has a common API for all DOM parsers. Adapters have been written for all the popular DOM parsers, including Apache's Xerces, Crimson…

 Each one implements that standard interface by making the right method calls on the backend parser. That works somewhat similarly to JAXP, except it supports newer parsers that JAXP does not yet support.

3.14.3- Outputting a document

We can output a Document using an output tool, of which there are several standard ones available. The org.jdom.output.XMLOutputter tool is probably the most commonly used. It writes the document as XML to a specified OutputStream.

The SAXOutputter tool is another alternative. It generates SAX events based on the JDOM document, which we can then send to an application component that expects SAX events. In a similar manner, DOMOutputter creates a DOM document, which we can then supply to a DOM-receiving application component. The code to output a Document as XML looks like this:

XMLOutputter outputter = new XMLOutputter ();
outputter.output (doc, System.out);
XMLOutputter takes parameters to customize the output. The first parameter is the indentation string; the second parameter indicates whether we should write new lines.

For machine-to-machine communication, we can ignore the niceties of indentation and new lines for the sake of speed:

XMLOutputter outputter = new XMLOutputter ("", false);
outputter.output (doc, System.out);

3.15- The appropriate description

In this program there does not exist a DTD for the drawing objects. Thus, we have designed a XML DTD that is able to store all the drawing entities of it. So for every geometrical shape and text we have created an appropriate description as definition for these shapes. We use this compact description to represent and store a drawing into an ASCII file.

The header of this description is Root and has 2 parts Draw and Option

.

<ROOT>
<DRAW>
<OPTION>
 </DRAW>
 </OPTION>
 </ROOT>
DRAW:

Draw gives the description of all the drawing objects (lines, multi-lines, rectangle, ellipse, and arcs) plus the description of the text message. It defines which object it is, including its color, fill-color, and its points.

The following example shows the definition of a rectangle:

- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>456</X>

 <Y>202</Y>

 </POINT>
- <POINT>
 <X>625</X>

 <Y>421</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>0</RED>

 <GREEN>0</GREEN>

 <BLUE>0</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>0</GREEN>

 <BLUE>102</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CRectangleObject</CLASS>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>

 which its points is point0 (point0x = 456, point0y = 202), and point1 (point1x = 625, point1y = 421). The color of the rectangle is in RGB (from 0 till 255) and its fill-color is also in RGB.

The <Class> defines the type of the shape.

We have to mention here that Arcs take more options such as Start-angle and arc-angle:

 <CLASS>graphicobject.CArcObject</CLASS>
 <ARCANGLE>170</ARCANGLE>

 <STARTANGLE>20</STARTANGLE>

 </DRAWABLEOBJECT>

And Text define more options like font-name, font-size, font-style and the displaying message.

 <CLASS>graphicobject.CLettersObject</CLASS>
 <FONTNAME>Courier</FONTNAME>

 <FONTSIZE>18</FONTSIZE>

 <FONTSTYLE>0</FONTSTYLE>

 <TEXT>this is a sample output</TEXT>

 </DRAWABLEOBJECT>
OPTION:

In Option there is only the color of the background (color of whole page, the drawing pad).

The color is in RGB and from zero till 255. For example:

- <OPTION>
- <BACKGROUND>
- <COLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>51</BLUE>

 </COLOR>
 </BACKGROUND>
 </OPTION>

 Chapter 4:

4- PSTRICK
4-1 Introduction to LATEX:

 TEX is a computer program for typesetting documents. It takes a computer file, prepared according to the rules of TEX, and converts it to a form that may be printed on a high-quality printer to produce a printed document of a quality comparable with good quality books and journals.

Simple documents, which do not contain mathematical formulae or tables may be produced very easily: effectively all one has to do is to type the text straight in. Typesetting mathematics is somewhat more complicated, but even here TEX is comparatively straightforward to use when one considers the complexity of some of the formulae that it has to produce.

The LATEX system is based on TEX. LATEX is a document preparation system that enables the document writer to concentrate on the contents of their text, without bothering too much about the formatting of it. For example, chapters are indicated by \chapter {(title)} rather than selecting 18pt bold.

The file that contains the information about how to turn logical structure (like \chapter) into formatting (like 18pt bold) is a document class.

4.1.1- Producing a LATEX input file

To produce a simple document using LATEX one should create a LATEX input file, beginning with \documentstyle (the document class mentioned before) command and the \begin {document} command. The input file should end with the end {document} command, and the text of the document should be between the \begin and the \end commands.

In addition, some features (such as color or included graphics) are independent of the document class and those are contained in Packages.

Thus, any options given in the \documentclass command that are unknown by the selected document class are passed on to the packages loaded with \usepackage.

\usepackage[options]{pkg-name} command

For example:

\usepackage {pstricks} // for graphics

\usepackage {pstcol} // for color

 Thus, the first line of the input file should consist of a document-style command:

 \documentstyle[options]{class}

For example:

\documentclass [12pt,a4paper]{article}

Note that the first thing to do when we want to put some new LATEX commands in a file is to decide whether it should be a document class or a package. The rule of thumb is: if the commands could be used with any documents class, then they are a package, else we must make them a class. There are two major types of class: those like article, report or letter, which are freestanding, and those which are extensions or variations of other classes. For example, the proc document class, which is built on the article document class.

All the standard classes accept the following options for selecting the typeface size (10 pt is default): 10pt, 11pt, and 12pt.

All classes accept these options for selecting the paper size (default is letter): a4paper, a5paper, b5paper, letterpaper, legalpaper, executivepaper

The documentstyle command may be followed by certain other optional commands.(such as \usepackage for example).

After the \documentstyle command and these other optional commands, as we mentioned before, we place the command

\begin{document}
This command is then followed by the main body of the text.

Finally, we end the input file a line containing the command

\End{document}

The LaTeX command typesets a file of text using the TeX program and the LaTeX Macro package for TeX. To be more specific, it processes an input file containing the text of a document with interspersed commands that describe how the text should be formatted. It produces at least three files as output:
1. A "Device Independent", or .dvi file. This contains commands that can be translated into commands for a variety of output devices. You can view the output of LaTeX by using a program such as xdvi, which actually uses the .dvi file.

2. A "transcript" or .log file that contains summary information and diagnostic messages for any errors discovered in the input file.

3. An "auxiliary" or .aux file. This is used by LaTeX itself, for things such as sectioning.

4.2- PSTRICKS

PSTricks is a collection of PostScript-based TEX macros that is compatible with most TEX macro packages, including Plain TEX, LaTEX, AMSTEX, and AMS-LaTEX.

PSTricks gives color, graphics, rotation, trees and overlays.

The main macro file is pstricks.tex/pstricks.sty. Each of the PSTricks macro files comes with a .tex extension and a .sty extension; these are equivalent, but the .sty extension means that we can include the file name as a LaTEX document style option.
The macro-commands of the PSTricks package offer impressive additional capabilities to LATEX users, by giving them direct access to much of the power of PostScript, including full support for color.

When a PostScript output device and a dvi-to-ps driver are used to print or display TEX files, TEX and PostScript work together, as a preprocessor and a postprocessor, respectively. The role of PostScript may simply be to render TEX dvi typesetting instructions.

However, the full power of PostScript can be accessed through \special’s and through features, such as font handling, built into the dvi-to-ps driver.

One can divide the PostScript enhancements to TEX into roughly four categories:

1. The use of PostScript fonts.

2. The inclusion of PostScript graphics files.

3. The coloring of text and rules.

The PSTricks package started as an implementation of some special features in the Seminar document style/class, which is for making slides with LATEX. However, it has grown into much more. Below are some of its current features:

1. Graphics objects (analogous to LATEX picture commands such as \line and \frame), including lines, poly-lines, polygons, circles, ellipses, curves, springs and zigzags.

2. Other drawing tools, such as a picture environment, various commands for positioning text, and macros for grids and axes.

3. Commands for rotating, scaling and tilting text.

4. Text framing and clipping commands.

5. Nodes and node connection and label commands, which are useful for trees, graphs, and commutative diagrams, among other applications.

6. Overlays, for making slides.

7. Commands for typesetting text along path.

8. Commands for stroking and filling character outlines.

9. Plotting macros.

Using of PSTricks: A goal of PSTricks is to be compatible with any TEX format and any dvi-to-ps driver. Compatibility with the various TEX formats is not difficult to achieve, because PSTricks does not deal with page layout, floats or sectioning commands.

However, compatibility with all dvi-to-ps drivers is an unattainable goal because some drivers do not provide the basic \special facilities required by PSTricks. All of PSTricks’s features work with the most popular driver.

Two dvi-to-ps drivers that support the same \special facility may have different methods for invoking the facility. Therefore, PSTricks reads a configuration file that tells PSTricks how to use the driver’s \ special’s.

Header files: A PostScript header file is analogous to a TEX macro file. It comes towards the beginning of the PostScript output, and contains definitions of PostScript procedures that can be subsequently used in the document.

It is always possible to add a header file to a PostScript file with a text editor, but this is very tedious. Most drivers support a \special or a command-line option for giving the name of a header file to be included in the PostScript output. For example, the \special

 \special {header = pstricks.pro}

tells dvips to include pstricks.pro.

PSTricks can also be used without header file. From a single source file, one can generate a header file, an input file for use with headers, and an input file for use without headers.

One can also use the source file directly, in which case no header is used. This is convenient when developing the macros, because TEX and PostScript macros can be written together, in the same file, and it is not necessary to make stripped input and header files each time one is testing new code.

The use of header files in PostScript documents reduces the size of the documents and makes the code more readable. However, the real benefit of the using header files with PSTricks is that it substantially improves TEX’s performance. It reduces memory requirements. It reduces run time because the writing of \special strings to dvi output is very slow. A file that makes intensive use of PSTricks can run 3 to 4 times slower without header files.

Arguments and delimiters:

Here is some nitty-gritty about arguments and delimiters that is really important to know.

The PSTricks macros use the following delimiters:

Curly braces {arg}

Brackets (only for optional arguments) [arg]

Parentheses and commas for coordinates (x, y)

 = and, for parameters par1= val1

Spaces and commas are also used as delimiters within arguments, but in this case the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decimal point, so that PSTricks doesn’t mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is to mess up the delimiters. This may generate complaints from TEX or PSTricks about bad arguments, or other unilluminating errors such as the following:
! Use of \get@coor doesn’t match its definition.

! Paragraph ended before \pst@addcoor was complete.

! Forbidden control sequence found while scanning use of \check@arrow.

! File ended while scanning use of \lput.

Delimiters are generally the first thing to check when we get errors with a PSTricks macro.

Since PSTricks macros can have many arguments, it is useful to know that we can leave a space or new line between any arguments, except between arguments enclosed in curly braces. If we need to insert a new line between arguments enclosed in curly braces, we put a comment character % at the end of the line.

As a general rule, the first non-space character after a PSTricks macro should not be a “[“ or “(“. Otherwise, PSTricks might think that the “[“ or “(“ is actually part of the macro. We can always get around this by inserting a pair {} of braces somewhere between the macro and the “[“ or “(“.

Graphics with PSTricks:

LATEX has only limited drawing capabilities, while PostScript is a page description language that has a rich set of drawing commands; and there are programs (such as dvips, as we mentioned before), which translate the dvi output to PostScript. We can include PostScript code in a TEX source file itself for programs such as dvips to process after the TEX compilation. This is the idea behind the PSTricks. The beauty of it is one need not know PostScript to use it – the necessary PostScript code can be generated by TEX macros defined in the package.

Any picture is drawn by stringing together appropriate points. The PSTricks package uses coordinates to specify points to plot and then various other commands to join them.

Drawing shapes:

The basic package to use is pstricks and so we assume in all the codes given here that this package has been loaded with the command

 \usepackage {pstricks}

in the document preamble.

1. Lines:

To draw simple line, the command is \psline with the coordinates of the points to be joined (the beginning and the end points), for example:

\psline (x0,y0)(x1,y1)

\begin {center}

 \begin {pspicture}(0,0)(5,5)

 \psline (2,1)(3,4)

 \end {pspicture}

\end {center}

2. Multi-lines:

As in the case of lines we can draw multiple lines with a single \psline command but with many coordinates, for example:

\psline (x0,y0)(x1,y1)(x2,y2) … (xn,yn)

3. Rectangles:

for drawing rectangles, there is a simpler command \psframe in which we need only specify the bottom-left and top-right coordinates. There is also a \psframe* command for a filled-up version. For example:

\psframe (x0,y0)(x1,y1)

\psframe (1,1)(3,3)

\psframe* (1,2)(3,4)

4. Arcs:

\psarc draws a circular arc of specified center and radius from a given angle to another going counterclockwise. Note that the angles are measured from the horizontal. For example:

\psarc (center){radius}{start-angle}{arc-angle}

\psarc (0,0){3}{30}{60}

5. Ellipses:

An ellipse in a sort of a stretched circle and can be drawn much the same way as a circle. The command is \psellipse and we have to specify the center and half the width and height (technically, the semi-major and semi-minor axes). For example:

 \psellipse (x0,y0)(w,h)
thus, to draw an ellipse centered at (1,1) with width 4 cm and height 2 cm, we type:

\psellipse (1,1)(4,2)

· Setting graphics parameters:

PSTricks uses a key-value system of graphics parameters to customize the macros that generate graphics (e.g., lines and circles), or graphics combined with text (e.g., framed boxes). We can change the default values of parameters with the command \psset, as in

\psset {fillcolor=yellow}

\psset {linecolor=blue, framearc=.3,dash=3pt 6pt}

The general syntax is:

\psset { par1=value1, par2=value2...}

As illustrated in the examples above, spaces are used as delimiters for some of the values. Additional spaces are allowed only following the comma that separates par= value pairs.

Nearly every macro that makes use of graphics parameters allows us to include changes as an optional first argument, enclosed in square brackets. For example,

\psline [linecolor=green, linestyle=dotted](8,7)

 draws a dotted, green line. It is roughly equivalent to

{\psset{linecolor=green, linestyle=dotted}\psline(8,7)}

For many parameters, PSTricks processes the value and stores it in a peculiar form, ready for PostScript consumption. For others, PSTricks stores the value in a form that we would expect.
However, even for these parameters, PSTricks may do some processing and error-checking, and we should always set them using \psset or as optional parameter changes, rather than redefining the command where the value is stored.
Color in PSTricks:

PSTricks comes with a set of macros that provide a basic set of colors and lets the user defines his own colors. However, it has some incompatibility with the LATEX package color. Package pstcol modifies the PSTricks color interface to work with LATEX colors. All of the codes here assumes that this package is loaded, using the command:

\usepackage {pstcol}

in the preamble. Note that this loads the pstricks package also, so that it need not be separately loaded.

The color support is built around the idea of a system of Color MODELS. The color models supported by a driver vary, but typically include

· Rgb: Red Green Blue (that we are using here). A comma separated list of three numbers between 0 and 1, giving the components of the color.

· Cmyk: Cyan Magenta Yellow Black.

· Gray: Grey Scale.

· Named: Color accessed by name, e.g. ‘JungleGreen’.

Defining Colors:

The color black, white, red, green, blue, cyan, magenta, yellow should be predefined, but in case we want to mix our color (case of our program). We use the\definecolor command.

\definecolor {name}{model}{color specification}

this defines {name} as a color which can be used in later color commands. For example:

\definecolor {mycolor}{rgb}{0.8,1,0.35}

now mycolor can be used as predefined color.

Background color: the background color of the whole page can be set using \pagecolor. Its argument form is

 \pagecolor {name}

where name is a predefined color.

For example:

\definecolor {mypagecolor}{rgb}{1,0.2,0,8}

\pagecolor {mypagecolor}

A simple example of a PSTricks code:

\documentclass [12pt,a4paper]{article}// document type article begin
\usepackage {pstricks} //calling pstricks package
\usepackage {pstcol}// calling pstcol package

\begin {document}

\begin {center}

\definecolor {mybackgroundcolor}{rgb}{1.0,0.56,0.46}// defining the background color

\pagecolor {mybackgroundcolor} // setting the background color
\begin {pspicture}(0,0)(4,4)//coordinates of the drawing pad (bottom-left, upper-right)

\definecolor {mycolor}{rgb}{1.0,0.7,0.2}// defining the rectangle’s line-color

\definecolor {myfillcolor}{rgb}{1.0,0.4,1.0} // defining its fill-color
\psframe [linecolor=mycolor, fillstyle=solid, fillcolor=myfillcolor]

(-3.8,-2.89)(-1.72,-0.4) // drawing a rectangle

\definecolor {mycolor}{rgb}{0.0,0.5,0.48} // the color of the arc

\definecolor {myfillcolor}{rgb}{1.0,1.0,1.0} //arc’s fill-color = null

\psarc [linecolor=mycolor](-0.4,-1.38){-4.28}{20}{160}// drawing an arc

\end {pspicture}

\end {center}

\end {document}

 Chapter 5:

5- Save and Load

 The loading in this application is done in two ways: XML and Latex script.

All the objects in the application can be loaded and saved with those two types mentioned before.

Both files have one base structure that is composed by the header objects followed by the drawable objects. The header set includes options like background color page which defines the color to fill the whole page before displaying the drawable objects (or the division of the page in the case of Pstrick).

The Drawable objects are defined by the color, fill the color, and the number of points. Depending on the objects, these attributes define the shape of the object drawn.

For example, the rectangle (which is the psframe in the case of pstrick) is defined by two points to specify the limits of the rectangle and the color to draw the line color of the rectangle and the fill color to fill the inside of this object.

Those objects are represented in java objects deriving from one root object that is the Cobject.

 The job of the loader comes when the application tries to serialize those objects into one specific format in a file so that it can be displayed later.

As mentioned before, there are two types of serialization in this application XML and PSTRICK. But both of them save the list of points in the object and the color along with the fill-color attributes.

Loading and saving using XML:
In the XML object, using the JDOM package, we serialize the objects into two sections in the XML file: Draw and option.

 - The option section represents the header of the page (global settings) that, basically till now, contains the background color (but it can be extended later for other objects).

 - Draw section: there is also the draw section that contains the Drawable objects to be displayed. Each Drawable object in the XML contains the following information: the java class that represents it, the list of points, the color, and the fill color.

The arc and the text object will include additional information to those mentioned before.

 For example the arc will write the start angle and the arc angle, and the text object will write the text to be displayed along with the font to be displayed with.

In case of loading:

File.txt (JDom (CXMLloader (Cbaseobject.

And saving:

Cbaseobject (CXMLloader (Jdom (file.txt.
Loading and saving using Pstrick:

As for the Pstrick, because we do not have any package to help us serialize the objects, we had to create our own serialization that is similar to the XML package.

Basically the concept is the same as the XML but instead of being transformed to an XML element the objects are transformed to PSObject which is a pstrick object that contains the following characteristics:

 The name of the object, the list of attributes, list of points, and list of values.

The name of the object, the attributes and the list of values are defined in java as String, while the list of point is java.point.

Also, there should be a setFill in the object to specify whether this object has a (*) in front of its name (the * is used when we want to fill the object with a certain color) or we can use in this case fill-style = solid. (As we mentioned in chapter 4).

Loading:

file.txt (Cpstricksreader (Pcobject (Cpstricksloader (Cbaseobject.

Saving:

Cbaseobject (Cpstricksloader (Pcobject (Cpstricksreader (file.txt.
The classes hierarchy for Save and Load:

CbaseLoader
 CLoader

 XML PSTricks

 Where Cbaseloader has two methods: save and load for the two basic objects (Drawableobjects and Coptionobject) and also two implementations: XML and Pstrick.

abstract public boolean save (File file, Vector baseObjects);

abstract public CBaseObject [] load (File file);

While Cloader creates instances of CXMLloader and Cpstricksloader.

Here is a sample output saved and loaded using XML and PSTricks:

(Fig 6.1)
The XML output as represented and stored into an ASCII file

<?xml version="1.0" encoding="UTF-8" ?>
- <ROOT>
- <DRAW>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>111</X>

 <Y>211</Y>

 </POINT>
- <POINT>
 <X>328</X>

 <Y>458</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>51</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>102</GREEN>

 <BLUE>255</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CRectangleObject</CLASS>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>604</X>

 <Y>244</Y>

 </POINT>
- <POINT>
 <X>693</X>

 <Y>552</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>255</RED>

 <GREEN>0</GREEN>

 <BLUE>51</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>0</RED>

 <GREEN>255</GREEN>

 <BLUE>204</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CElipseObject</CLASS>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>360</X>

 <Y>183</Y>

 </POINT>
- <POINT>
 <X>410</X>

 <Y>23</Y>

 </POINT>
- <POINT>
 <X>458</X>

 <Y>189</Y>

 </POINT>
- <POINT>
 <X>508</X>

 <Y>28</Y>

 </POINT>
- <POINT>
 <X>562</X>

 <Y>179</Y>

 </POINT>
- <POINT>
 <X>617</X>

 <Y>25</Y>

 </POINT>
- <POINT>
 <X>686</X>

 <Y>183</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>255</RED>

 <GREEN>51</GREEN>

 <BLUE>0</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>255</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CMultiLinesObject</CLASS>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>100</X>

 <Y>521</Y>

 </POINT>
- <POINT>
 <X>348</X>

 <Y>521</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>0</RED>

 <GREEN>102</GREEN>

 <BLUE>204</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>255</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CLineObject</CLASS>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>388</X>

 <Y>291</Y>

 </POINT>
- <POINT>
 <X>531</X>

 <Y>450</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>51</RED>

 <GREEN>0</GREEN>

 <BLUE>102</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>255</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CArcObject</CLASS>

 <ARCANGLE>160</ARCANGLE>

 <STARTANGLE>20</STARTANGLE>

 </DRAWABLEOBJECT>
- <DRAWABLEOBJECT>
- <POINTS>
- <POINT>
 <X>71</X>

 <Y>86</Y>

 </POINT>
 </POINTS>
- <COLOR>
 <RED>0</RED>

 <GREEN>204</GREEN>

 <BLUE>0</BLUE>

 </COLOR>
- <FILLCOLOR>
 <RED>255</RED>

 <GREEN>255</GREEN>

 <BLUE>255</BLUE>

 </FILLCOLOR>
 <CLASS>graphicobject.CLettersObject</CLASS>

 <FONTNAME>Courier</FONTNAME>

 <FONTSIZE>16</FONTSIZE>

 <FONTSTYLE>0</FONTSTYLE>

 <TEXT>a sample output</TEXT>

 </DRAWABLEOBJECT>
 </DRAW>
- <OPTION>
- <BACKGROUND>
- <COLOR>
 <RED>255</RED>

 <GREEN>204</GREEN>

 <BLUE>102</BLUE>

 </COLOR>
 </BACKGROUND>
 </OPTION>
 </ROOT>
While its output using PSTricks is:

\documentclass [12pt,a4paper]{article}

\usepackage {pstricks}

\usepackage {pstcol}

\begin {document}

\begin {center}

\definecolor {mybackgroundcolor}{rgb}{1.0,0.8,0.4}

\pagecolor {mybackgroundcolor}

\begin {pspicture}(-5.05,-5.05)(-4.95,-4.95)

\definecolor {mycolor}{rgb}{1.0,1.0,0.2}

\definecolor {myfillcolor}{rgb}{1.0,0.4,1.0}

\psframe [linecolor=mycolor,fillstyle=solid,fillcolor=myfillcolor](-3.88999999997,-2.89)(-1.7200000000002,-0.41999999999993)

\definecolor {mycolor}{rgb}{1.0,0.0,0.2}

\definecolor {myfillcolor}{rgb}{0.0,1.0,0.8}

\psellipse [linecolor=mycolor,fillstyle=solid,fillcolor=myfillcolor](1.04,-2.56)(1.9299999999999997,0.5199999999999996)

\definecolor {mycolor}{rgb}{1.0,0.2,0.0}

\definecolor {myfillcolor}{rgb}{1.0,1.0,1.0}

\psline [linecolor=mycolor](-1.4,-3.17)(-0.9000000000000004,-4.77)(-0.41999999999999993,-3.1100000000000003)(0.08000000000000007,-4.72)(0.6200000000000001,-3.21)(1.17,-4.75)(1.8600000000000003,-3.17)

\definecolor {mycolor}{rgb}{0.0,0.4,0.8}

\definecolor {myfillcolor}{rgb}{1.0,1.0,1.0}

\psline [linecolor=mycolor](-4.0,0.20999999999999996)(-1.52,0.20999999999999996)

\definecolor {mycolor}{rgb}{0.2,0.0,0.4}

\definecolor {myfillcolor}{rgb}{1.0,1.0,1.0}

\psarc [linecolor=mycolor](-0.41000000000000014,-1.38){-4.28}{20}{160}

\end {pspicture}

\end {center}

\end {document}

 Chapter 6:

6- Manual:

6.1- Run.bat:

The run.bat access the starting class that opens the application. (Fig 1)

C:\program\classes\run.bat

 -Fig 1-

(Tip: make sure that you are using the same java’s version (j2sdk1.4.1_02), this will help you edit yours by right-clicking on run.bat, select edit then change it to your suitable one.)

 6.2- menu and toolbar

Once the application is running, you can see the display canvas and above it the toolbar and the menu.(Fig 2)

 The menu and the toolbar are divided into 2 sections the file and the tools. The file group contains commands like open file, save file, and exit. The tools group contains commands like adding geometric objects and changing their color and their filling color.

The file group deals with application file access.

Open file asks for the type of the file to be displayed (XML or Pstrick) and then shows a file selection panel to help you choose the desirable file.

The save file acts the same as the open file but instead saves the objects on the screen into the chosen format and saves it into the selected file name.

The exit command exits the application.

	File menu

	Load
	load an existing file from disk.

	Save
	Save current file in PsTricks format or XML format

	Exit
	Close active frame, then quit

A sample output for the program :

 -Fig 2-

As for the tools group it can be divided into 2 groups:

· Object creating group

· Object editing group.

-The first group (Object creating group)

It creates the geometric objects and adds them to the screen. All the objects are defined by points selected sequentially by the mouse buttons. The number of points needed depends on the object itself.

For example: the text object needs only one point as for the multi-line object it stops accepting points once you click on another object or you press escape.

All the rest of the objects take 2 points to define their boundaries.

-The 2nd group (editing group):

 It includes commands like change color and change fill color.

 These 2 commands change the line color and the filling color of the object consecutively.

 As for the edit button, this button is only activated when two objects are selected:

 The arc and the text object.

 Because these 2 objects need extra input, the edit button displays the appropriate panel to help the user define the desired output.

 The arc takes the start angle and the arc angle as extra input data and the text action takes the text to be displayed and the characteristic of the font to be displayed with.

 The background action changes the background color of the whole page.

Finally, a simple right-clicking on an object drawn, allows you to do various operations on that object like rotations, movement, alteration, add and delete any drawings by pressing the following (Key DELETE).

	Tools

	Line
	To draw line [two points (x1, y1) (x2, y2)]

	Multi-lines
	To draw multi-lines [(xn, yn)]

	Rectangle
	To draw rectangles

	Ellipse
	To draw ellipses

	Arc
	To draw arcs

	Text
	To edit a text object

	Color
	To change the color of the drawing objects

	Fill-color
	To change the fill color

	Background
	To change the background color of the whole page

BIBLIOGRAPHY

· David Hunter, XML, Wrox Press ltd, 2000.

· Eric Ladd, J Odnnell, Platinum Edition Using XHTML, XML, and java, Que 2001.

· Herbert Schildt, the Complete reference java2, fifth edition, 2002.

· Timothy Van Zandt, PSTricks: PostScript macros for Generic TeX, 1993
· www.java.sun.com
· www.tug.org.in

CEditableObject

CbackgroundObject

CdrawableObject

COptionObject

 CbaseObject

CFrame

CEditable

CContext

CDisplayUI

CMenu

CToolbar

CDisplayDataModel

