

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών Και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων Και Σύστηματών Αποφάσεων

Διερεύνηση των Θερμικών Αποτελεσμάτων Στατικών Ηλεκτρικών Συνδέσμων υπό Ηλεκτρική Καταπόνηση

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Παναγιώτα Δ. Γκάτση Ελευθερία-Μαρία Α. Γκιζά

Επιβλέπων:

Περικλής Δ. Μπούρκας Καθηγητής Ε.Μ.Π.

Αθήνα Ιούνιος, 2005

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών Και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων Και Σύστηματών Αποφάσεων

Διερεύνηση των Θερμικών Αποτελεσμάτων Στατικών Ηλεκτρικών Συνδέσμων υπό Ηλεκτρική Καταπόνηση

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Παναγιώτα Δ. Γκάτση Ελευθερία-Μαρία Α. Γκιζά

Επιβλέπων: Περικλής Δ. Μπούρκας Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή επιτροπή την 15^η Ιουνίου 2005.

Π. Δ. Μπούρκας Καθηγητής Ε.Μ.Π.

Κ. Γ. Καραγιαννόπουλος Καθηγητής Ε.Μ.Π.

.....

Αθήνα Ιούνιος, 2005

.....

.....

Παναγιώτα Δ. Γκάτση Ελευθερία-Μαρία Α. Γκιζά Διπλωματούχοι Ηλεκτρολόγοι Μηχανικοί και Μηχανικοί Υπολογιστών Ε.Μ.Π.

Copyright © Παναγιώτα Γκάτση, 2005 Copyright © Ελευθερία-Μαρία. Γκιζά, 2005

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Η εργασία αυτή πραγματοποιήθηκε στο εργαστήριο Ηλεκτρικών Μετρήσεων και Υψηλών Τάσεων της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Ε.Μ.Π. κατά το ακαδημαϊκό έτος 2004-2005, στα πλαίσια των εκπαιδευτικών και ερευνητικών δραστηριοτήτων του εργαστηρίου.

Θα θέλαμε να εκφράσουμε θερμές ευχαριστίες στον Καθηγητή μας Δρ. Περικλή Μπούρκα για την εμπιστοσύνη του κατά την ανάθεση της παρούσας διπλωματικής εργασίας, καθώς και για τις πολύτιμες συμβουλές που μας παρείχε κατά την διάρκεια της εκπονήσεώς της.

Ιδιαίτερες ευχαριστίες οφείλουμε και στην Δρ. Αικατερίνη Πολυκράτη, για την συνεχή επιστημονική υποστήριξη, την ηθική συμπαράσταση και την πολύτιμη συνεισφορά της κατά την διάρκεια της εργασίας μας.

Τέλος, ευχαριστούμε την εταιρεία Πιττάς και Δραγνής Α.Ε. η οποία ως κατασκευαστής των υπό δοκιμή συνδέσμων, μας προμήθευσε με τα απαραίτητα δοκίμια που χρησιμοποιήθηκαν για τη πραγματοποίηση των πειραμάτων.

> Παναγιώτα Δ. Γκάτση Ελευθερία-Μαρία Α. Γκιζά Αθήνα, 2005

0 Γενικές Πληροφορίες	9
0.1 Περίληψη- Λέζεις Κλειδιά	9
0.2 Abstract - Keywords	. 11
0.3 Κατάλογος Σχημάτων και Πινάκων	12
0.3.1 Κατάλογος Σχημάτων	. 12
0.3.2 Κατάλογος Πινάκων	. 13
0.4 Εισαγωγή	14
Ι Στοιχεία Θεωρίας	15
1.1 Γενικά περί κεραυνού	15
1.1.1 Το ατμοσφαιρικό ηλεκτρικό πεδίο και οι μεταβολές του	. 15
1.1.2 Ο μηχανισμός της ατμοσφαιρικής εκκένωσης	. 16
1.1.3 Παράγοντες που επηρεάζουν τη δημιουργία κεραυνού	. 17
1.1.4 Παράμετροι του κεραυνού	. 18
1.2 Συνέπειες από την πτώση κεραυνού	19
1.2.1 Θερμικές επιδράσεις	. 19
1.2.2 Υπερπήδηση κεραυνού	. 19
1.2.3 Ακουστικές επιδρασεις	. 19
1.5 Αντικεραυνικη προστασια	20
1.3.1 2 κοπος αντικεραυνικής προστασίας	. 20
1.3.2 2001ηματα αντικεραθνικής προσταστάς και γετώσεων 1.3.3 Υλικά κυκλωμάτων	. 2 2
1.4 Γενικά περί στατικών ηλεκτρικών επαφών	29
1.4 1 Ορισμοί και βασικές έννοιες στατικών ηλεκτρικών επαφών	30
1.4.2 Mn νραμμικά φαινόμενα	. 39
1.4.3 Διαδικασίες μετρήσεων επί ηλεκτρικών επαφών	. 44
2 Διαδικασία και Κυκλώματα Μετρήσεων	48
2.1 Skozác zne sonaciac	18
$2.1 \Delta k o k o \zeta (\eta \zeta c \rho) (k o l \alpha \zeta \dots \beta c n c n c n c n c n n n c n n c n n c n n c n n n c n n n c$	40
2.2 $\Delta 0 \kappa i \mu \eta \alpha \zeta (0 \lambda 0 \gamma \eta 0 \eta \zeta 0 (\alpha 0 \epsilon \rho \omega \nu \eta \lambda \epsilon \kappa i \rho i \kappa \omega \nu 0 0 \nu 0 \epsilon 0 \mu \omega \nu \kappa \alpha i \alpha i 0$	50
ευρωπαικο προτυπο ΕΝ 50104.01	50
2.2.1 Στοιχεία για το κρουστικό ρευμα 2.2.2 Απαιτήσεις Ευρωπαϊκού προτύπου ΕΝ50164.01	. 50
2.2.3 Αξιολόνηση των συνδέσμων κατά το ευρωπαϊκό πρότυπο	. 53
2.3 Πειραματική διαδικασία	55
2.4 Περινραφή Αρνισμικού Κατανραφής Μετρήσεων	59
2. Γ Ποριγραφη Πογισμικου Παταγραφης Ποιρησσων	60
2.5 Aupunt aprotinu 0000000000	00
3 Επεξεργασία αποτελεσμάτων και Συμπεράσματα	63
3.1 Παρουσίαση των αποτελεσμάτων των πειραματικών μετρήσεων	64
3.1.1 Αποτελέσματα μετρήσεων δοκιμίου 2001010 Cu III	. 66
3.1.2 Αποτελέσματα μετρήσεων δοκιμίου 2212021 Cu I	. 69
3.1.3 Αποτελέσματα μετρήσεων δοκιμίου 1001010 St/tZn III	. 72
3.2 Επεξεργασία των αποτελεσμάτων των πειραματικών μετρήσεων	74

3.2.1 Σύγκριση θεωρητικού τύπου για το φορτίο του κεραυνικού ρεύματος με τα πειοαματικά αποτελέσματα	74
3.2.2 Σύγκριση θεωρητικού τύπου για τη σχέση 'πτώσης τάσης – θερμοκρασίας' μ τα πειραματικά αποτελέσματα	uε . 78
3.3 Γενικά συμπεράσματα	83
4 Παράρτημα: Αναλυτικές πειραματικές μετρήσεις	85
4.1 Αναλυτικές Μετρήσεις Συνδέσμου 2001010 Cu III	86
 4.2 Αναλυτικές Μετρήσεις Συνδέσμου 2212021 Cu I 4.3 Αναλυτικές Μετρήσεις Συνδέσμου 1001010 St/tZn III1 	95 101
5 Βιβλιογραφία	11

Ο Γενικές Πληροφορίες

0.1 Περίληψη- Λέζεις Κλειδιά

Η παρούσα διπλωματική εργασία αφορά στη διερεύνηση της αξιοπιστίας μόνιμων ηλεκτρικών συνδέσμων συστημάτων αντικεραυνικής προστασίας και γειώσεων, για βιομηχανική εφαρμογή.

Στο πλαίσιο αυτό, πραγματοποιήθηκε μία σειρά από πειραματικές μετρήσεις με απώτερο στόχο τον προσδιορισμό του εναλλασσομένου ρεύματος το οποίο δημιουργεί την ίδια καταπόνηση στους συνδέσμους με το κεραυνικό πλήγμα, έτσι ώστε οι εταιρείες παραγωγής να ελέγχουν την αξιοπιστία των προϊόντων τους, με πολύ απλό και βασικό εξοπλισμό.

Για το σκοπό αυτό, καταγράφηκαν και μελετήθηκαν μεγέθη που σχετίζονται με τη θερμική καταπόνηση των συνδέσμων και εξετάσθηκε η συμπεριφορά τους με βάση συγκεκριμένο ευρωπαϊκό πρότυπο.

Το πρώτο τμήμα της παρούσας εργασίας περιλαμβάνει το θεωρητικό υπόβαθρο για την καλύτερη κατανόηση των πειραματικών αποτελεσμάτων που δίνονται στη συνέχεια. Έτσι, παρατίθενται κάποια γενικά στοιχεία για τον κεραυνό και τις συνέπειές του, για την αντικεραυνική προστασία και τη χρησιμότητα των ηλεκτρικών συνδέσμων σ' αυτή, καθώς και κάποια στοιχεία περί στατικών ηλεκτρικών επαφών και των φαινομένων που τις διέπουν.

Το δεύτερο τμήμα αποτελεί ουσιαστικά μια σύνδεση με το αμιγώς πειραματικό μέρος που ακολουθεί. Περιλαμβάνει το σκοπό της εργασίας, το ευρωπαϊκό πρότυπο για τον έλεγχο της αζιοπιστίας των στατικών επαφών (το οποίο αποτέλεσε βάση για τη διερεύνηση της θερμικής συμπεριφοράς τους), τα χαρακτηριστικά των συνδέσμων που χρησιμοποιήθηκαν στις πειραματικές μετρήσεις, την περιγραφή της πειραματικής διαδικασίας και του κυκλώματος που υλοποιήθηκε. Τέλος, γίνεται η παρουσίαση των πειραματικών μετρήσεων, η επεξεργασία των αποτελεσμάτων και των συμπερασμάτων που εξήχθησαν.

Λέζεις κλειδιά: ηλεκτρικές επαφές, στατικοί ηλεκτρικοί σύνδεσμοι, αντικεραυνική προστασία, πειραματικές μετρήσεις ηλεκτρικών μεγεθών, έλεγχος αζιολόγησης, λυόμενοι σύνδεσμοι

0.2 Abstract - Keywords

This diploma thesis concerns the investigation of reliability of stationary electrical contacts used in lightning protection and grounding systems.

A series of experimental measurements were carried out, in order to determine an alternate current value (referred as equivalent lightning current) that affects the stationary contacts in the same way a lightning current does. During the process the thermal results as well as the drop of voltage in each coupling were examined.

The first part of this report includes a theoretical background, essential for a better understanding of the presented measurements. It includes an introduction on lightning and its consequences, the lightning protection system and the use of contacts in it, as well as a short theory about stationary electrical contacts and the phenomena that occur during their operation.

The second section includes the aim of this thesis, the European Standard for the reliability of static contacts (that determines the requirements for their thermal behaviour), the constructive characteristics of the contacts used and the description of the experimental process.

Finally, the results of the measurements are given, as well as comments on them and the conclusion of this thesis.

Keywords: stationary electrical contacts, lightning protection, experimental measurements of electric quantities, stationary electrical couplings

0.3 Κατάλογος Σχημάτων και Πινάκων

0.3.1 Κατάλογος Σχημάτων

Σχήμα [1.3-1]:	Η ειδική αντίσταση ρ (Ωm) σε σχέση με το μήκος του	75
Σχήμα [1.4-1]:	Απλοποιημένη παράσταση της επίδρασης της θερμοκρασίας	, ,
	στη δημιουργία οζειδίων	17
Σχήμα [1.4-2]:	Το προτεινόμενο ισοδύναμο κύκλωμα	14
Σχήμα [2.2-1]:	Τυπική μορφή κρουστικού ρεύματος	0
Σχήμα [2.2-2]:	Διάγραμμα για τον υπολογισμό των χρονικών σταθερών του κρουστικού ρεύματος	52
Σχήμα [2.3-1]:	Το κύκλωμα μέτρησης	56
$Σ_{\chi \eta \mu \alpha} [2.4-1]:$	Γραφικό περιβάλλον λογισμικού καταγραφής των μετρήσεων (50
Σχήμα [3.1-1]:	Γραφική απεικόνιση της διαφοράς θερμοκρασίας σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του	
	$σ_{0}$ ναριήση με το χρονο, σχων των σοκιμών επί του συνδέσμου 2001010 Cu III, μο δύναμη σύσαι της 25 Nm	57
Σχήμα [3.1-2]:	Ευνδευμου 2001010 Cu III, με ουναμή συσφιζής 23Nm Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 2001010 Cu III,	. –
	$\mu \varepsilon \ \delta \delta \nu \alpha \mu \eta \ \sigma \delta \sigma \varphi \iota \zeta \eta \varsigma \ 25 Nm \dots c$)/
Σχήμα [3.1-3]:	Γραφική απεικόνιση της θερμοκρασίας (ΤΙ: στο δοκίμιο, Τ2: στον αγωγό, Δθ: στο δοκίμιο) σε συνάρτηση με το χρόνο, επί του συνδέσμου 2001010 Cu III	58
$\Sigma_{\chi n \mu a} [3] - 41$	Γοαφική απεικόνιση της διαφοράς θερμοκρασίας σε	,0
$2\chi\eta\mu\alpha$ [5.1 η].	συνάοτηση με το χοόνο, όλων των δοκιμών επί του	
	συνδέσμου 2212021 Cy L με δύναμη σύσωιξης 11Nm	70
Σχήμα [3.1-5]:	Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το γρόνο, όλων των δοκιμών επί του συνδέσμου 2212021 Cu I.	U
	με δύναμη σύσφιζης 25Νm	70
Σχήμα [3.1-6]:	Γραφική απεικόνιση της θερμοκρασίας (Τ1: στο δοκίμιο, Τ2: στον αγωγό, Δθ: στο δοκίμιο) σε συνάρτηση με το χρόνο, επί	Ŭ
	του συνδέσμου 2212021 Cu Ι	1
Σχήμα [3.1-7]:	Γραφική απεικόνιση της διαφοράς θερμοκρασίας σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του	
	συνδέσμου 1001010 St/tZn III. με δύναμη σύσφιζης 25Nm	73
Σχήμα [3.1-8]:	Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 1001010 St/tZn	-
	III, με δύναμη σύσφιζης 25Nm	73
Σχήμα [3.1-9]:	Γραφική απεικόνιση της θερμοκρασίας (ΤΙ: στο δοκίμιο, Τ2: στον ανωνό Αθ: στο δοκίμιο) σε συνάρτηση με το χρόνο επί	
	τ_{00} grysfiguen 1001010 St/tZn III	71
Σχήμα [3 2-1].	Γοαφική απεικόνιση της οίζας της διαφοράς της	'
$2\chi\eta\mu\alpha$ [5.2-1].	Αρμοκοασίας σε σχέση με την πτώση τάσης, επί του	
	$σ_{\mu\nu}\delta \dot{\sigma}_{\mu\nu}$ 2001010 C_{μ} III	2 N
$\sum m m m \alpha [3, 2, 2]$	Constant = Constant	0
$2\chi\eta\mu\alpha$ [5.2-2].	Τραφική απεικονισή της ριζας της σταφοράς της Αρομοκοασίας σε σχέση με την πτώση τάσης, επί του	
	συνδέσμου 2212021 Cu I	21
Sumua [2 2 2].		, 1
$\Delta \chi \eta \mu \alpha [5.2-5]$	Γραφική απεικονισή της ριζας της οιαφορας της Αρομοκοασίας σο σχόση μο την πτώση τάσης, οπί τος	
	σερμοκρασίας σε σχέση με την πτωση τασής, επί του) 1
	ουνοεομου τουτοτο δι/τΖη τη) /

0.3.2 Κατάλογος Πινάκων

Пі́vакаς [1.3-I]:	Η μέση απόσταση αγωγών καθόδου σε σχέση με τη στάθμη προστασίας	24
Πίνακας [1.3-ΙΙ]:	Ορισμοί Ζωνών Αντικεραυνικής Προστασίας	26
Πίνακας [1.3-ΙΙΙ]:	Διατομές αγωγών σε σχέση με το υλικό (για μεγάλο ρεύμα κεραυνού)	27
Πίνακας [1.3-ΙV]:	Διατομές αγωγών σε σχέση με το υλικό (για μικρό ρεύμα κεραυνού)	27
Πίνακας [2.2-1]:	Αποτελέσματα μέσου όρου διαφοράς θερμοκρασίας χάλκινων δοκιμίων μετά την καταπόνησής τους με κεραυνικό ρεύμα	54
Πίνακας [2.3-1]:	Επιλογή δύναμης σύσφιζης των συνδέσμων επί του αγωγού, ανά δοκίμιο, ανάλογα με τις τιμές της δύναμης σύσφιζης που εφαρμόστηκαν στις δοκιμές με το κεραυνικό ρεύμα	55
Пі́vакаς [2.5-I]:	Τεχνικά χαρακτηριστικά δοκιμίων	62
Пі́vакаς [3-I]:	Το θερμικά ισοδύναμο (σταθεροποιημένη ενεργός τιμή εναλλασσόμενου ρεύματος) του κεραυνικού ρεύματος	63
Πίνακας [3.1-Ι]:	Συνοπτικά αποτελέσματα δοκιμίου 2001010 Cu III	66
Πίνακας [3.1-Π]:	Συνοπτικά αποτελέσματα δοκιμίου 2212021 Cu I	69
Πίνακας [3.1-ΙΙΙ]:	Συνοπτικά αποτελέσματα δοκιμίου 1001010 St/tZn III	72
Πίνακας [3.2-1]:	Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 2001010 Cu III	80
Πίνακας [3.2-ΙΙ]:	Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 2212021 Cu I	81
Πίνακας [3.2-ΙΙΙ]:	Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 1001010 St/tZn III	82

0.4 Εισαγωγή

Αντικείμενο της παρούσας εργασίας είναι η μελέτη της αξιοπιστίας λυόμενων ηλεκτρικών συνδέσμων συστημάτων αντικεραυνικής προστασίας και γειώσεων, μέσω μιας σειράς εργαστηριακών μετρήσεων. Για το λόγο αυτό, μελετήθηκε και έγινε προσπάθεια προσδιορισμού μίας τιμής ρεύματος που να ισοδυναμεί θερμικά με την καταπόνηση του κεραυνικού ρεύματος στους συνδέσμους, υπό την επίδραση συγκεκριμένης ροπής σύσφιζης. Επίσης εξετάστηκαν τα θερμικά αποτελέσματα καθώς και η προκαλούμενη πτώση τάσης στον σύνδεσμο.

Κατά τη συγγραφή της εργασίας κρίθηκε σκόπιμο στο πρώτο κεφάλαιο να παρουσιαστούν βασικά στοιχεία της θεωρίας των κεραυνών, των συνεπειών από την πτώση του και των συστημάτων αντικεραυνικής προστασίας. Στη συνέχεια, δίνονται κάποιοι ορισμοί και έννοιες για τις στατικές ηλεκτρικές επαφές που χρησιμοποιούνται στα κυκλώματα αντικεραυνικής προστασίας καθώς και τα φαινόμενα που τις διέπουν.

Το δεύτερο κεφάλαιο, περιλαμβάνει το σκοπό της εργασίας αυτής και την περιγραφή των μέσων που χρησιμοποιήθηκαν για τη διεξαγωγή της. Έτσι, γίνεται μια συνοπτική περιγραφή του ευρωπαϊκού προτύπου για τον έλεγχο της αξιοπιστίας στατικών ηλεκτρικών επαφών το οποίο αποτέλεσε βάση για τη διερεύνηση της θερμικής συμπεριφοράς τους. Επίσης γίνεται η περιγραφή της πειραματικής διαδικασίας, του κυκλώματος που υλοποιήθηκε, καθώς και του λογισμικού καταγραφής των μετρήσεων. Τέλος δίνονται τα κατασκευαστικά χαρακτηριστικά των συνδέσμων πάνω στους οποίους έγιναν οι μετρήσεις,

Ακολουθεί το τρίτο κεφάλαιο, στο οποίο παρατίθενται τα συνοπτικά αποτελέσματα των πειραματικών μετρήσεων – οι αναλυτικές μετρήσεις δίνονται στο παράρτημα – καθώς επίσης και η επεξεργασία τους. Ολοκληρώνοντας την εργασία, παρουσιάζονται τα συμπεράσματα που απορρέουν από την εκπόνηση αυτής.

1 Στοιχεία Θεωρίας

1.1 Γενικά περί κεραυνού

Η ηλεκτρική εκκένωση μεταζύ νέφους και γης λέγεται κεραυνός. Το φαινόμενο αυτό, αν και είναι τόσο παλιό όσο και ο πλανήτης μας, μπόρεσε να εξηγηθεί μόνο κατά τους τελευταίους δύο αιώνες. Από το 1753 όπου ο B. Franklin απέδειζε την ύπαρζη ατμοσφαιρικού ηλεκτρισμού μέχρι σήμερα, με πολλές μοντέρνες μεθόδους και πειράματα έχει αποκτηθεί αρκετή γνώση επάνω στο φαινόμενο αυτό και κατά συνέπεια έχουν αναπτυχθεί αρκετά ασφαλείς τρόποι προστασίας από τους κινδύνους ενός κεραυνού.

1.1.1 Το ατμοσφαιρικό ηλεκτρικό πεδίο και οι μεταβολές του

Η ατμόσφαιρα παρουσιάζει μια μικρή αγωγιμότητα που οφείλεται στην ύπαρξη φορτίων μέσα σε αυτή. Απαραίτητη προϋπόθεση για την δημιουργία κεραυνού είναι ο διαχωρισμός των ηλεκτρικών φορτίων εντός των νεφών. Όλες οι προτεινόμενες θεωρίες για τους μηχανισμούς διαχωρισμού ηλεκτρικών φορτίων αντιμετωπίζουν το νέφος ως ένα ηλεκτρικό δίπολο. Η δημιουργία ηλεκτρικού δίπολου συνεπάγεται τη διαφορά δυναμικού εντός του νέφους και επομένως την έναρξη ατμοσφαιρικών εκκενώσεων, δηλαδή τη δημιουργία κεραυνού.

Οι ατμοσφαιρικές εκκενώσεις διακρίνονται σε τρεις κατηγορίες:

α) Μεταξύ σύννεφου και γης και αντίστροφα

Οι κεραυνοί της κατηγορίας αυτής, παρατηρούνται όταν το ηλεκτρικό πεδίο πάρει την κρίσιμη τιμή πλησίον νέφους, οπότε έχουμε κατερχόμενη εκκένωση, ή πλησίον της γης, οπότε έχουμε ανερχόμενη εκκένωση.

β) Εντός του ίδιου σύννεφου

Γενικά στην περίπτωση αυτή, η εκκένωση λαμβάνει χώρα ανάμεσα στο ανώτερο θετικό και το κατώτερο αρνητικό κέντρο του χωρικού φορτίου. Η διάρκεια της εκκένωσης είναι μεγάλη, το ρεύμα της έχει τιμές μερικές εκατοντάδες Α έως 1kA.

<u>γ) Μεταξύ των σύννεφων</u>

Κεραυνοί ανάμεσα στα σύννεφα εμφανίζονται σε ύψος μεγαλύτερο του lkm και μικρότερο των 12km. Βασικό χαρακτηριστικό των κεραυνών αυτών είναι ότι έχουν μεγάλο μήκος κεραυνικού τόζου μέχρι και 40km.

1.1.2 Ο μηχανισμός της ατμοσφαιρικής εκκένωσης

Ο πιο συνηθισμένος τύπος κεραυνού είναι ο γραμμικός. Για τον αρχικό της εκκένωσης αυτής, η οποία ονομάζεται σχηματισμό και ολισθαίνουσα εκκένωση, αρκεί σε μια περιοχή του νέφους η τιμή της πεδιακής έντασης να υπερβεί την τιμή των 8-10 kV/m. Τότε δημιουργείται ένας οχετός (αγώγιμος δρόμος) με κατεύθυνση από το νέφος προς τη γη, που τροφοδοτείται συνεχώς με φορείς ηλεκτρικού φορτίου από το σύννεφο και που κατά κανόνα διακλαδίζεται σε άλλους μικρότερους οχετούς. Κατά την πρόοδο του οχετού, το φαινόμενο εξασθενεί, εξαιτίας της αδυναμίας του νέφους να δώσει τα απαραίτητα ηλεκτρικά φορτία. Καθώς ο οχετός, ο οποίος ονομάζεται και οδηγός οχετός ή οχετός προεκκένωσης, κατέρχεται στη γη αυξάνει το ηλεκτρικό πεδίο μεταξύ σύννεφου και γης. Έτσι είναι δυνατό να αναχωρήσει από το έδαφος μια ανερχόμενη εκκένωση ή εκκένωση αντιθέτου φοράς, συνήθως από μια φυσική ή τεχνική έζαρση, η οποία κατευθύνεται προς συνάντηση του κατερχόμενου οχετού. Τότε ακολουθεί η κύρια εκκένωση, η οποία αποτελεί και τον οχετό επιστροφής, κατά την οποία το ηλεκτρικό φορτίο από το έδαφος (στις περισσότερες περιπτώσεις θετικό), τείνει να εξουδετερώσει ολόκληρο φορτίο που αναχώρησε από το νέφος (στις περισσότερες τo περιπτώσεις αρνητικό). Η ταχύτητα προόδου του οχετού επιστροφής

είναι κατά πολύ μεγαλύτερη από την ταχύτητα του οδηγού οχετού και συνοδεύεται από το φαινόμενο της βροντής.

Η μορφή του εδάφους δεν ασκεί καμιά επίδραση στη δημιουργία του αρχικού οχετού. Μόνο όταν ο οχετός φθάσει κοντά στο έδαφος, ζεπηδά κατά κανόνα από μια φυσική ή τεχνητή έζαρση (εζαιτίας της σημαντικής αύξησης της πεδιακής έντασης), ένας δεύτερος οχετός, ο οχετός επιστροφής, ο οποίος πάει να συναντήσει τον πρώτο, όταν δε πραγματοποιηθεί η συνάντηση αυτή λαμβάνει χώρα η κύρια εκκένωση. Γι' αυτό το λόγο επιζητούμε πάντοτε να δημιουργήσουμε τεχνητές εζάρσεις (όπως τις ράβδους $\tau \omega v$ αλεζικέραυνων) για vα προκαθορίσουμε το σημείο πτώσης του κεραυνού.

1.1.3 Παράγοντες που επηρεάζουν τη δημιουργία κεραυνού

Τα χαρακτηριστικά του κεραυνού επηρεάζονται από τρεις κυρίως παράγοντες: την ορεογραφική κατάσταση, την εποχή και το κλίμα που επικρατεί στην περιοχή. Ο αριθμός των εκκενώσεων στις ορεινές περιοχές είναι πάντοτε μεγαλύτερος από εκείνον στις πεδινές.

Κατά συνέπεια, στις ορεινές περιοχές, η ένταση του ρεύματος του κεραυνού όπως και το σχετικό φορτίο είναι μικρά. Αυτό οφείλεται στο γεγονός ότι η μικρή απόσταση γης-νέφους προκαλεί εκκενώσεις στη γη πριν ολοκληρωθεί η διαδικασία φορτίσεως του νέφους και στο ότι το μικρό σχετικά μήκος του αγωγού του κεραυνού έχει σαν αποτέλεσμα τη συσσώρευση ενός μικρού μόνο φορτίου κατά μήκος αυτού.

Αντίθετα, στις πεδινές περιοχές, όπου η απόσταση νέφους-γης είναι μεγαλύτερη, σημειώνονται λιγότερες εκκενώσεις αλλά με υψηλή ένταση ρεύματος. Αυτό οφείλεται στο γεγονός ότι σπάνια, σχετικά, το ηλεκτρικό πεδίο είναι τέτοιο ώστε να επιτρέπει κεραυνό νέφους-γης. Η μεγάλη ένταση ρεύματος οφείλεται στην παρουσία νεφών πολύ φορτισμένων και οχετών εκκενώσεως μεγάλου μήκους. Επίσης σημαντικό ρόλο στη δημιουργία κεραυνικών εκκενώσεων έχει και η εποχή. Το καλοκαίρι λόγω του σημαντικού ύψους των νεφών από το έδαφος πολλές εκκενώσεις πραγματοποιούνται εντός ενός νέφους ή μεταξύ των νεφών. Αυτό έχει σαν συνέπεια μια απότομη μεταβολή του ηλεκτρικού πεδίου στην επιφάνεια του εδάφους. Εάν υπάρχει κάποια αιχμηρή κατασκευή, το πεδίο πλησίον του εδάφους μπορεί να γίνει τόσο έντονο ώστε να δημιουργήσει μια ανερχόμενη εκκένωση.

Ο αριθμός των ανερχόμενων εκκενώσεων κατά την καλοκαιρινή περίοδο είναι πολύ μεγαλύτερος από εκείνον των κατερχομένων. Στο άλλο διάστημα του χρόνου (άνοιζη, φθινόπωρο), τα νέφη κινούνται χαμηλότερα. Αυτό διευκολύνει την εκκένωση προς τη γη πριν ακόμη η διαδικασία φορτίσεως του νέφους ολοκληρωθεί κάνοντας λιγότερο συχνές τις εκκενώσεις μεταζύ νεφών και περισσότερο συχνές τις εκκενώσεις μεταζύ νέφους-γης.

1.1.4 Παράμετροι του κεραυνού

Ο κεραυνός σαν ηλεκτρικό φαινόμενο χαρακτηρίζεται από ορισμένες παραμέτρους:

τη μέγιστη τιμή ρεύματος i_{max} τη μέγιστη κλίση μετώπου του ρεύματος $(di/dt)_{max}$ το μεταφερόμενο φορτίο $\int_{0}^{\infty} i(t) dt$ το ολοκλήρωμα του τετραγώνου του ρεύματος $\int_{0}^{\infty} i^{2}(t) dt$, ποσότητα ανάλογη της εκλυόμενης από το κεραυνικό πλήγμα ενέργειας.

Η κάθε μια από τις παραμέτρους αυτές έχει ενοχλητικές μέχρι καταστροφικές συνέπειες για ανθρώπινες ζωές και τεχνικές εγκαταστάσεις.

1.2 Συνέπειες από την πτώση κεραυνού

1.2.1 Θερμικές επιδράσεις

Η εκλυόμενη ενέργεια υπό μορφή θερμότητας κατά τη δίοδο του κεραυνού δια αντιστάσεως R, σύμφωνα με το νόμο του Joule είναι:

$$W = R \cdot \int_{0}^{\infty} i^{2}(t) dt \qquad [1.2-1]$$

Είναι λοιπόν προφανές ότι όσο πιο μεγάλη αντίσταση έχουμε, τόσο πιο ισχυρές υπερθερμάνσεις αναπτύσσονται. Σε αγωγούς με μεγάλη διατομή τα φαινόμενα αυτά δεν γίνονται αισθητά. Υπερθερμάνσεις μέχρι θερμοκρασίας τήξεως παρουσιάζονται σε μικρές διατομές αγωγών ή σε αγωγούς μεγάλης ειδικής αντίστασης. Σε κακούς αγωγούς ή σε λυόμενους συνδέσμους που είναι χαλαρά τοποθετημένοι, εκλύεται μεγάλη ποσότητα ενέργειας υπό μορφή θερμότητας.

1.2.2 Υπερπήδηση κεραυνού

Αυτή παρουσιάζεται αφενός μεν λόγω της μεγάλης πτώσης τάσης κατά τη διάβαση του κεραυνού προς τη γη και αφετέρου κατά τη διέλευση του κεραυνού μέσω αγωγού μεγάλης αυτεπαγωγής, λόγω αδράνειας του μαγνητικού πεδίου που εξελίσσεται ταχύτατα.

1.2.3 Ακουστικές επιδράσεις

Κατά τη διάρκεια του κεραυνού, κατά την οποία έχουμε ροή κεραυνικού ρεύματος αναπτύσσεται ηλεκτρομαγνητική δράση (δυνάμεις), με αποτέλεσμα ο μανδύας αέρα που περιβάλλει τον οχετό να συμπιέζεται. Η ηλεκτροδυναμική υπερπίεση είναι περίπου 2-3 ατμόσφαιρες. Με την εξασθένιση του κεραυνικού ρεύματος, εξασθενίζει και η υπερπίεση και έτσι ο θερμός πυρήνας του κεραυνού εκρήγνυται και προκαλεί βροντή.

Η βροντή γίνεται αισθητή σε μικρή σχετικά απόσταση, που δεν υπερβαίνει τα 10-15km, γεγονός που σημαίνει ότι η χρονική διάρκεια από τη στιγμή που αντιλαμβανόμαστε την αστραπή μέχρι τη στιγμή που ακούμε τη βροντή, είναι κάτω των 45s.

1.3 Αντικεραυνική προστασία

1.3.1 Σκοπός αντικεραυνικής προστασίας

α) Προστασία της ανθρώπινης ζωής

Εάν ένα μέρος του ρεύματος του κεραυνού περάσει από το ανθρώπινο σώμα παρατηρούνται τα ίδια φαινόμενα όταν το σώμα βρεθεί κάτω από διαφορά δυναμικού μιας συνηθισμένης ηλεκτρικής εγκαταστάσεως αλλά σε πολύ μεγαλύτερο βαθμό. Πιο συγκεκριμένα κατά το ατύχημα της κεραυνοπληξίας παρατηρούνται σοβαρές οργανικές ανωμαλίες όπως καρδιακή μαρμαρυγή, απώλεια αισθήσεων, στάση της καρδιάς, shock με νευρική παράλυση, βαριά εγκαύματα κλπ.

Στην περίπτωση όπου το ατύχημα της κεραυνοπληξίας δεν έχει θανατηφόρο αποτέλεσμα εμφανίζονται κατά κανόνα παραλύσεις νεύρων ή μυών χωρίς παρενέργειες. Μέσα σε μερικές ώρες ή το πολύ μέσα σε μερικές μέρες επανέρχεται η φυσιολογική τους λειτουργία.

Επικίνδυνη είναι επίσης η παρουσία ατόμου σε μέρος όπου κοντά πέφτει κεραυνός και αυτό γιατί το σώμα με την εκκένωση χάνει ζαφνικά το ηλεκτρικό φορτίο που είχε πάρει από επαγωγή από το νέφος, αλλά κυρίως διότι η βηματική τάση που αναπτύσσεται μπορεί να πάρει μεγάλες τιμές. Σε κλειστούς χώρους ο άνθρωπος είναι κατά μεγάλο ποσοστό εξασφαλισμένος όταν το κτίσμα έχει καλή αντικεραυνική προστασία.

Στο ύπαιθρο υπάρχει κίνδυνος όταν σε ώρα καταιγίδας σταθεί κανείς όρθιος σε ανοικτό πεδίο, εξαιτίας της αυζημένης πεδιακής εντάσεως που δημιουργείται πάνω από το σώμα του. Επικίνδυνη είναι επίσης και η παραμονή ατόμων κοντά σε δένδρα ή ψηλούς τοίχους, όπου κατά την κακοκαιρία τα άτομα καταφεύγουν για να προφυλαχθούν από τη βροχή. Οι τοίχοι είναι επικίνδυνοι γιατί είναι δυνατό κάπου κοντά να υπάρχει γείωση αλεξικέραυνου. Πρακτικά βρίσκεται κανείς σε ασφάλεια σε απόσταση 30 m από το σημείο εισόδου του κεραυνού στην γη.

Επίσης όταν κανείς στέκεται σε ώρα κακοκαιρίας πρέπει να έχει τα πόδια του κλειστά, για να αποφύγει τη δημιουργία βηματικής τάσεως (βηματική τάση είναι η διαφορά δυναμικού που αναπτύσσεται μεταξύ των πελμάτων, όταν αυτά απέχουν 1m μεταξύ τους, τη στιγμή εισόδου του ρεύματος του κεραυνού στο έδαφος). Στην πράζη πρέπει να έχει ο καθένας υπ' όψη του ότι όταν η χρονική διαφορά μεταξύ κεραυνού και βροντής είναι μικρότερη από 10 δευτερόλεπτα, τότε η καταιγίδα βρίσκεται σε απόσταση το πολύ 3 χιλιομέτρων και από τη στιγμή εκείνη βρίσκεται σε περιοχή αυζημένου κινδύνου.

β) Προστασία κτιρίων

Οι κίνδυνοι των κτιρίων συνίστανται κατά κύριο λόγο, στην πρόκληση πυρκαγιών αλλά και σε εκρηκτικά φαινόμενα που οφείλονται σε απότομη ατμοποίηση ποσοτήτων νερού. Τέτοιο κίνδυνο διατρέχουν οι στέγες, οι εζώστες και οι κεφαλές των καπνοδόχων. Πυρκαγιές από κεραυνούς σημειώνονται σε αγροτικά σπίτια με ελαφρές στέγες. Στον κίνδυνο της απότομης ατμοποιήσεως νερού είναι εκτεθειμένα τα αρχαιολογικά μνημεία. Τα μνημεία αυτά, άφθονα στη χώρα μας, βρίσκονται τις περισσότερες φορές πάνω σε υψώματα. Το πρόβλημα της προστασίας των μνημείων αυτών, έγκειται στην σχεδίαση αντικεραυνικής εγκαταστάσεως, αόρατης από τους επισκέπτες το οποίο παρουσιάζει σημαντική δυσκολία.

<u>γ) Προστασία ηλεκτρικών εγκαταστάσεων</u>

Το τμήμα εκείνο των ηλεκτρικών εγκαταστάσεων που υποφέρει άμεσα από τις πτώσεις κεραυνών, είναι τα εναέρια ηλεκτρικά δίκτυα και οι υπαίθριες συσκευές, όπως μετασχηματιστές, διακόπτες, κλπ. καθώς και τα τηλεφωνικά δίκτυα, κεραίες, τηλεοράσεις, VIDEO, ηλεκτρονικοί υπολογιστές, ασύρματοι, γενικά ηλεκτρικές συσκευές, αναμεταδότες τηλεοράσεως, αντλιοστάσια, ηλεκτρικά μηχανήματα εγκαταστημένα στο ύπαιθρο κλπ. Τόσο από την απ' ευθείας πτώση κεραυνού πάνω σε στοιχεία του ηλεκτρικού δικτύου όσο και από τη διέλευση φορτισμένου νέφους πάνω από το δίκτυο δημιουργούνται υπερτάσεις με μορφή κρουστικών κυμάτων οι οποίες καταπονούν τα υπόλοιπα στοιχεία των ηλεκτρικών εγκαταστάσεων. Τα κυριότερα χρησιμοποιούμενα μέσα για την προστασία των ηλεκτρικών συσκευών είναι :

Γειώσεις στύλων και ιστών γραμμής Γραμμές ή αγωγοί γης Σπινθηριστές Αλεξικέραυνα τύπου βαλβίδας ή μη γραμμικής αντιστάσεως και τύπου ιονισμού

1.3.2 Συστήματα αντικεραυνικής προστασίας και γειώσεων

Προκειμένου να αποφανθούμε εάν απαιτείται η εγκατάσταση ενός Συστήματος Αντικεραυνικής Προστασίας (ΣΑΠ) σε μια κατασκευή και εάν απαιτείται σε ποια Στάθμη Προστασίας θα πρέπει να εντάζουμε τον σχεδιασμό της, θα πρέπει να συμβουλευθούμε το Πρότυπο ΕΛΟΤ 1412. Στο συγκεκριμένο Πρότυπο δίδοντας δεδομένα όπως, την χρήση της κατασκευής, τις διαστάσεις της, την γεωγραφική της θέση κ.λ.π. και λαμβάνοντας διάφορες παραμέτρους βαρύτητας από αντίστοιχους πίνακες, εζάγεται κάποιο αποτέλεσμα με την βοήθεια του οποίου τεκμηριώνεται η τελική απόφαση.

Αφού έχουμε κατατάζει την υποψήφια κατασκευή σε κάποια εκ των Σταθμών Προστασίας ζεκινώντας από την πιο αυστηρή (Ι), προβαίνουμε στον σχεδιασμό και στην υλοποίηση της εγκατάστασης του ΣΑΠ σύμφωνα με το ΕΛΟΤ 1197 ή το Ευρωπαϊκό ΕΝV61024-1. Σύμφωνα με το παραπάνω Πρότυπο το ΣΑΠ, αποτελείται από το Εζωτερικό ΣΑΠ και το Εσωτερικό ΣΑΠ.

1.3.2.1 Εξωτερικό ΣΑΠ

Το Εξωτερικό ΣΑΠ αποτελείται από το Συλλεκτήριο Σύστημα, τους Αγωγούς Καθόδου και το Σύστημα Γείωσης.

α) Συλλεκτήριο σύστημα

Το συλλεκτήριο σύστημα σκοπό έχει να συλλέζει το κεραυνικό ρεύμα και να το διοχετεύσει μέσω των αγωγών καθόδου στο σύστημα γείωσης με ασφάλεια. Μπορεί να σχεδιασθεί ανεζάρτητα ή σε συνδυασμό σύμφωνα με τις παρακάτω μεθόδους:

Ο κεραυνός σαν ηλεκτρικό φαινόμενο χαρακτηρίζεται από ορισμένες παραμέτρους:

Γωνία προστασίας Κυλιόμενης σφαίρας Βρόχου

Το συλλεκτήριο σύστημα μπορεί να αποτελείται από οποιοδήποτε συνδυασμό των ακόλουθων στοιχείων :

Ράβδων

Η τοποθέτησή τους γίνεται με τέτοιο τρόπο ώστε να παρέχουν προστασία υπό μία γωνία η οποία εξαρτάται από την υψομετρική διαφορά μεταξύ αυτών και της υπό προστασία επιφάνειας και της στάθμης προστασίας. Υπάρχουν κατά DIN τυποποιημένα μεγέθη αυτών.

Τεταμένων συρμάτων

Ισχύουν ανάλογα με τα των μεταλλικών ράβδων

Πλέγματος αγωγών

Πλέγμα, από αγωγούς συνήθως κυκλικής διατομής, οι οποίοι τοποθετούνται επί του δώματος ή επί της στέγης.

β) Αγωγοί καθόδου

Οι αγωγοί καθόδου σκοπό έχουν να οδηγήσουν το κεραυνικό ρεύμα από το συλλεκτήριο, με ασφάλεια στο σύστημα γείωσης.

Τοποθετούνται είτε περιμετρικά στις εζωτερικές παράπλευρες επιφάνειες του κτιρίου, είτε εγκιβωτισμένοι στο σκυρόδεμα των υποστυλωμάτων της κατασκευής, σε μέση απόσταση που δίδεται στον Πίνακα [2.3-I], ανάλογα με την κατάταζη της στάθμης προστασίας της κατασκευής.

Στάθμη Προστασίας	Μέση Απόσταση Αγωγών Καθόδου
Ι	10 m
II	15 m
III	20 m
IV	25 m

Πίνακας [1.3-Ι]: Η μέση απόσταση αγωγών καθόδου σε σχέση με τη στάθμη προστασίας

<u>γ) Σύστημα γείωσης</u>

Σκοπός του συστήματος γείωσης είναι να επιτυγχάνει τη διάχυση του κεραυνικού ρεύματος μέσα στη γη, με ταχύτητα και ασφάλεια χωρίς να δημιουργούνται επικίνδυνες υπερτάσεις στο χώρο όπου είναι κατασκευασμένη. Η απαίτηση της τιμής της αντίστασης του συστήματος γείωσης είναι, είτε κάτω από 10Ω, είτε ένα ελάχιστο μήκος γειωτή όπως φαίνεται στο Σχήμα [2.3-I] που ακολουθεί που είναι ισοδύναμος του Ευρωπαϊκού Προτύπου ΕΝΥ 61024-1.

Σχήμα [1.3-1]: Η ειδική αντίσταση ρ (Ωm) σε σχέση με το μήκος του ηλεκτροδίου

Τα παραπάνω μπορούν να επιτευχθούν είτε τοποθετώντας σε κάθε κάθοδο ηλεκτρόδια όπως:

Ραβδοειδείς (σταυρού θερμά επιψευδαργυρωμένα, κυκλικής διατομής ηλεκτρολυτικώς επιχαλκωμένα) Πλάκες θερμά επιψευδαργυρωμένες ή χάλκινες Ταινίες θερμά επιψευδαργυρωμένες ή χάλκινες Γειωτές τύπου "Ε" θερμά επιψευδαργυρωμένοι ή χάλκινοι

είτε κατασκευάζοντας Περιμετρική ή Θεμελιακή γείωση.

1.3.2.2 Εσωτερικό ΣΑΠ

Το Εσωτερικό ΣΑΠ σκοπό έχει την μείωση των τάσεων που αναπτύσσονται κατά την διάρκεια κεραυνικού πλήγματος επί της κατασκευής ή πλησίον αυτής, στις ηλεκτρικά αγώγιμες εγκαταστάσεις της, σε αποδεκτά επίπεδα έτσι ώστε να μην υπάρχει κίνδυνος ανάπτυξης επικίνδυνων σπινθήρων ή τάσεων επαφής. Η μείωση των τάσεων επιτυγχάνεται με Ισοδυναμικές Συνδέσεις και τους Απαγωγούς Κρουστικών Υπερτάσεων.

α) Ισοδυναμικές συνδέσεις

Ο σκοπός των ισοδυναμικών συνδέσεων είναι να μειώσουν τις διαφορές δυναμικού μεταξύ των μεταλλικών μερών και εγκαταστάσεων στο εσωτερικό του υπό προστασία χώρου και να μειώσουν το ηλεκτρομαγνητικό πεδίο που δημιουργείται κατά την άμεση ή έμμεση κεραυνοπληξία, εντός αυτού. Ο εσωτερικός χώρος του υπό προστασία χώρου πρέπει να διαιρεθεί σε Ζώνες Αντικεραυνικής Προστασίας (ΖΑΠ) προκειμένου να ορισθούν χώροι διαφορετικής επίδρασης κεραυνικής ηλεκτρομαγνητικής κρούσης σύμφωνα με το IEC 61312-1.

Ζ.Α.Π. ΟΑ	Ζώνη όπου τα στοιχεία της κατασκευής που ανήκουν στη ζώνη, υπόκεινται σε άμεσα κεραυνικά πλήγματα, και συνεπώς μπορεί να χρειαστεί να μεταφέρουν το πλήρες κεραυνικό ρεύμα. Σ' αυτή τη ζώνη το ηλεκτρομαγνητικό πεδίο δεν είναι ασθενές.
Z.A.П. OB	Ζώνη όπου τα στοιχεία της κατασκευής που ανήκουν στη ζώνη, δεν υπόκεινται σε άμεσα κεραυνικά πλήγματα. Το ηλεκτρομαγνητικό πεδίο επίσης δεν είναι ασθενές.
Z.A.Π. 1	Ζώνη όπου τα στοιχεία της κατασκευής που ανήκουν στη ζώνη, δεν υπόκεινται σε άμεσα κεραυνικά πλήγματα και όπου τα ρεύματα σε όλα τα αγώγιμα μέρη που περιλαμβάνονται σε αυτή τη ζώνη είναι πολύ μειωμένα σε σχέση με τα ρεύματα των ζωνών ΟΒ. Σε αυτή τη ζώνη, το ηλεκτρομαγνητικό πεδίο μπορεί να είναι ασθενές ανάλογα με τα μέτρα θωράκισης

Πίνακας [1.3-ΙΙ]: Ορισμοί Ζωνών Αντικεραυνικής Προστασίας

Εάν απαιτείται μία επιπλέον μείωση των επαγόμενων ρευμάτων και/ή πεδίου, του ηλεκτρομαγνητικού πρέπει vα δημιουργούνται συμπληρωματικές ζώνες. Στα όρια $\tau \omega v$ $ZA\Pi$ τοποθετούνται Ισοδυναμικοί Ζυγοί (ΙΖ) πάνω στους οποίους γεφυρώνονται τα

μεταλλικά μέρη και οι εγκαταστάσεις που διασχίζουν τα όρια των Ζωνών (μεταλλικές σωλήνες, καλωδιώσεις κ.λ.π) με τη χρήση κατάλληλων περιλαιμίων και συνδέσμων. Προτείνεται ο ισοδυναμικός ζυγός σχήματος ταινίας για την ελαχιστοποίηση των ηλεκτρομαγνητικών κρούσεων.

Οι ισοδυναμικές συνδέσεις πραγματοποιούνται είτε μέσω γυμνών αγωγών είτε μέσω καλωδίων και εάν είναι απαραίτητο μέσω απαγωγών κρουστικών υπερτάσεων και υπερεντάσεων. Η διατομή των αγωγών των ισοδυναμικών συνδέσεων δίδονται από τον Πίνακα [2.3-ΙΙΙ] του ΕΛΟΤ 1197, για την περίπτωση όπου οι παραπάνω αγωγοί διαρρέονται από μεγάλο μέρος του ρεύματος του κεραυνού $I_{\kappa}>=25\%$ I_{κ} . Για την περίπτωση όπου οι παραπάνω αγωγοί διαρρέονται από μικρό μέρος του ρεύματος του κεραυνού $I_{\kappa}<25\%$ I_{κ} οι απαιτούμενες διατομές, δίδονται από τον Πίνακα [2.3-IV] του ΕΛΟΤ 1197.

Στάθμη προστασίας	Υλικό	Διατομή (mm²)
	Cu	16
Ι έως και ΙV	Al	25
	Fe	50

Πίνακας [1.3-ΙΙΙ]: Διατομές αγωγών σε σχέση με το υλικό (για μεγάλο ρεύμα κεραυνού)

Στάθμη προστασίας	Υλικό	Διατομή (mm²)
	Cu	6
Ι έως και ΙV	Al	10
	Fe	16

Πίνακας [1.3-IV]: Διατομές αγωγών σε σχέση με το υλικό (για μικρό ρεύμα κεραυνού)

Στον ισοδυναμικό ζυγό μπορούν να απολήζουν διαφορετικές γειώσεις όπως Ηλεκτρολογική, "Καθαρή" κ.λ.π είτε απ' ευθείας είτε μέσω Απαγωγών Κρουστικών Υπερτάσεων και Σπινθηριστών στην περίπτωση που επιθυμούμε τον διαχωρισμό τους. Χρήση των τελευταίων γίνεται κατά την περίπτωση όπως η σύνδεση σωλήνων ή μεταλλικών αντικειμένων που βρίσκονται υπό καθοδική προστασία, ή σε ειδικές περιπτώσεις που δεν επιτρέπεται η άμεση ηλεκτρική σύνδεση γειώσεων που εζυπηρετούν διαφορετικές εγκαταστάσεις.

<u>β) Απαγωγείς κρουστικών υπερτάσεων – υπερεντάσεων</u>

Οι Απαγωγείς Κρουστικών Υπερτάσεων είναι διατάζεις προστασίας ηλεκτρικών και ηλεκτρονικών συσκευών έναντι κρουστικών υπερτάσεων 01 οποίες μειώνουν τις υπερτάσεις αυτές που δημιουργούνται από φυσικές ή τεχνητές πηγές, όπως κεραυνοί, αστραπές, ηλεκτροστατικές εκφορτίσεις, χειρισμοί διακοπτών και βραχυκυκλωμάτων, σε ασφαλή επίπεδα.

1.3.3 Υλικά κυκλωμάτων

Τα υλικά και οι διαστάσεις των εξαρτημάτων καθορίζονται ανάλογα με το είδος της κατασκευής που πρόκειται να εγκατασταθούν, τις ηλεκτρικές καταπονήσεις από τον κεραυνό, τον κίνδυνο διαβρώσεων, την ασφάλεια του εγκαταστάτη στις δυσμενείς συνθήκες που εργάζεται (μεγάλο ύψος κ.λ.π.), καθώς επίσης να παρέχουν ευχέρεια για τον έλεγχο και τη συντήρηση της εγκατάστασης.

Θα πρέπει να αποφεύγεται η χρησιμοποίηση υλικών με μεγάλη διαφορά ηλεκτρολυτικής τάσεως, διότι σε σύντομο χρόνο θα διαβρωθούν και θα υπάρζει πρόβλημα στην εγκατάσταση.

Ειδικότερα, εφόσον χρησιμοποιούνται αγωγοί από χάλυβα, θερμά επιψευδαργυρωμένοι ή αλουμινίου τα στηρίγματα καθώς και οι σφικτήρες συνδέσεων θα πρέπει να είναι από χάλυβα, θερμά επιψευδαργυρωμένοι, χυτοσίδηρο θερμά επιψευδαργυρωμένοι, χυτό ψευδάργυρο ή πλαστικό, με βίδες χαλύβδινες, θερμά επιψευδαργυρωμένες ή ανοζείδωτου χάλυβα. Εξαρτήματα από χυτοχάλυβα (μαντέμι) δεν πρέπει να χρησιμοποιούνται. Για χάλκινους αγωγούς, τα στηρίγματα και οι σφικτήρες συνδέσεων πρέπει να είναι από χαλκό ή κόκκινο ορείχαλκο με βίδες χάλκινες ή ανοζείδωτου χάλυβα ή κόκκινου ορείχαλκου.

Εφόσον απαιτείται η σύνδεση εξαρτημάτων χαλκού με αλουμίνιο ή με χάλυβα θερμά επιψευδαργυρωμένα, πρέπει οπωσδήποτε να χρησιμοποιείται διμεταλλική επαφή. Η σύνδεση αγωγών μεταξύ τους με ηλεκτροσυγκόλληση ή οξυγονοκόλληση πρέπει να αποφεύγεται και να χρησιμοποιούνται οι κατάλληλοι σφικτήρες για κάθε περίπτωση. Αγωγός αλουμινίου και εξαρτήματα από χυτό ψευδάργυρο ή χυτό αλουμίνιο, είναι επικίνδυνο να χρησιμοποιούνται σε τμήματα της εγκαταστάσεως θαμμένα στο έδαφος.

1.4 Γενικά περί στατικών ηλεκτρικών επαφών

Μια ευρεία χρήση των μονίμων ηλεκτρικών συνδέσμων είναι στα συστήματα αντικεραυνικής προστασίας και στα κυκλώματα γειώσεων. Οι σταθεροί σύνδεσμοι αντικεραυνικής προστασίας χρησιμοποιούνται για τη σύνδεση των αγωγών απαγωγής του κεραυνικού πλήγματος προς τη γείωση. Στην παρούσα διπλωματική εργασία ασχολούμαστε με τη μελέτη της συμπεριφοράς μονίμων ηλεκτρικών συνδέσμων. Για το λόγο αυτό, θεωρήθηκε σκόπιμη η παράθεση βασικών ορισμών και αρχών που ισχύουν για τους ηλεκτρικούς συνδέσμους γενικότερα

Είναι ήδη γνωστό ότι οι ηλεκτρικοί σύνδεσμοι αποτελούν βασικό τμήμα των ηλεκτρικών εγκαταστάσεων. Κάθε ηλεκτρική εγκατάσταση περιλαμβάνει ηλεκτρικούς συνδέσμους, η αζιοπιστία των οποίων είναι απαραίτητη προϋπόθεση για την εύρυθμη λειτουργία της.

Οι ηλεκτρικοί σύνδεσμοι μεταζύ των ρευματοφόρων μερών στις ηλεκτρικές εγκαταστάσεις διακρίνονται σε μόνιμους και λυόμενους. Μόνιμοι ηλεκτρικοί σύνδεσμοι είναι αυτοί που τα δύο μέρη τους συνδέονται μεταζύ τους σταθερά μέσω κοχλιών. Τέτοιοι σύνδεσμοι είναι οι συνδέσεις των καλωδίων μέσω των ακροδεκτών τους, οι συνδέσεις μεταζύ των ζυγών, οι συνδέσεις μεταζύ των γειώσεων, κ.λ.π. Λυόμενοι σύνδεσμοι είναι αυτοί που μπορεί κανείς να χειρισθεί μέσω εζωτερικά εφαρμοζόμενης δύναμης, όπως οι επαφές των διακοπτών γενικά, καθώς και οι επαφές μεταζύ ασφαλειών και ασφαλειοθηκών.

Οι ηλεκτρικές επαφές διακρίνονται σε δύο βασικές κατηγορίες, τις στατικές ηλεκτρικές επαφές (stationary electrical contacts) και τις ηλεκτρικές επαφές που έχουν ισχύ διακοπής (switching electrical contacts). Οι στατικές ηλεκτρικές επαφές, δηλαδή οι επαφές που δεν έχουν ισχύ διακοπής, χειρίζονται μόνο όταν το κύκλωμα έχει τεθεί εκτός τάσης, μέσω π.χ. ενός διακόπτη φορτίου ή ισχύος, ανάλογα με το είδος παροχής της τάσης. Αντίθετα, οι επαφές με ισχύ διακοπής χαρακτηρίζονται από τη δυνατότητά τους να διακόπτουν τη ροή του ηλεκτρικού ρεύματος, χωρίς να υφίστανται συνέπειες στη συμπεριφορά τους από το ηλεκτρικό τόζο που δημιουργείται κατά το χειρισμό του φορτίου.

Στη συνέχεια δίνεται μια σύντομη εισαγωγή για τις στατικές ηλεκτρικές επαφές χωρίς ισχύ διακοπής που αφορούν στην εργασία αυτή και καθορίζονται βασικές αρχές σχετικά με την αζιολόγησή τους. Εζετάζονται επίσης περιληπτικά τα φαινόμενα που εκδηλώνονται κατά τη λειτουργία των επαφών και δίνεται μια σύντομη ανασκόπηση των μέχρι σήμερα ερευνών σχετικά με το θέμα.

1.4.1 Ορισμοί και βασικές έννοιες στατικών ηλεκτρικών επαφών

Οι επαφές αυτού του τύπου, αναφέρονται στη διεθνή βιβλιογραφία ως "stationary contacts". Οι αποζεύκτες, γειωτές, ασφαλειαποζεύκτες και ασφαλειοθήκες θεωρούνται στατικές ηλεκτρικές επαφές. Ως στατικές επαφές θεωρούνται επίσης και οι επαφές των αυτόματων διακοπτών, των διακοπτών φορτίου, καθώς και γενικά όλων των διακοπτών που έχουν ισχύ διακοπής, όταν όμως αυτές βρίσκονται στη στατική τους κατάσταση (διακόπτης στη θέση εντός). Ως ηλεκτρική επαφή ορίζεται μια λυόμενη σύνδεση δύο αγωγών η οποία έχει τη δυνατότητα να άγει το ηλεκτρικό ρεύμα. Η παραπάνω λυόμενη σύνδεση αποτελείται από δύο μέρη, την κινητή και τη σταθερή επαφή. Η δύναμη η οποία συγκρατεί τα δύο μέρη της επαφής μεταξύ τους καλείται δύναμη σύσφιζης των επαφών F.

Τα μέταλλα από τα οποία κατασκευάζονται συνήθως οι επαφές έχουν, για λόγους διευκόλυνσης της διάβασης του ρεύματος, μεγάλη ειδική ηλεκτρική αγωγιμότητα. Για το λόγο αυτό η σκληρότητα των μετάλλων αυτών δεν είναι μεγάλη και υπό την επίδραση των δυνάμεων σύσφιζης παραμορφώνονται ελαστικά και πλαστικά στις περιοχές που εφάπτονται δύναμης σύσφιζης. Αποτέλεσμα επίδραση της υπό την $\tau \omega v$ παραμορφώσεων αυτών είναι η δημιουργία ορισμένων περιοχών πάνω στο λυόμενο σύνδεσμο, οι οποίες φέρουν το φορτίο σύσφιζης της επαφής, χωρίς αυτό να σημαίνει αναγκαστικά ότι μέσω αυτών των περιοχών γίνεται η διέλευση του ρεύματος. Το σύνολο των περιοχών αυτών δίνει την επιφάνεια σύσφιζης Α_b. Υπάρχει μια εμπειρική σχέση που συνδέει τη δύναμη σύσφιζης F με την επιφάνεια σύσφιζης A_b , η οποία είναι:

$$F = \xi H A_b \qquad [1.4-1]$$

όπου Η είναι η σκληρότητα της επαφής και ξ ένας συντελεστής αναλογίας που κυμαίνεται από 0,2 έως 1. Η κατανομή των παραπάνω περιοχών είναι στατιστική και εξαρτάται κυρίως από το είδος των υλικών και την τραχύτητα των επιφανειών.

 Ω ς πραγματική επιφάνεια A_c (true contact area) μίας επαφής εννοούμε την επιφάνεια μέσω της οποίας γίνεται τελικά η διέλευση του ρεύματος από το ένα μέρος της επαφής στο άλλο. Η επιφάνεια αυτή είναι, λόγω των ξένων επικαθίσεων στις επαφές (κυρίως οξείδια μετάλλων και σκόνη), μικρότερη από την A_b . Όταν παρατηρεί κανείς μία ηλεκτρική επαφή νομίζει ότι τα δύο μέρη της εφάπτονται σε μία πολύ ευρύτερη επιφάνεια από το σύνολο των περιοχών επαφής A_b που προαναφέρθηκαν. Αυτή η μακροσκοπικά παρατηρούμενη επιφάνεια ονομάζεται φαινόμενη επιφάνεια επαφής A_a (apparent contact area) και είναι κατά πολύ μεγαλύτερη από το σύνολο των επί μέρους επιφανειών πραγματικής επαφής A_c, οι οποίες έχουν την δυνατότητα να άγουν το ηλεκτρικό ρεύμα. Γενικά ισχύει:

 $A_{a} > A_{b} > A_{c} \qquad [1.4-2]$

Ο όρος αντίσταση διάβασης αφορά την αντίσταση που παρουσιάζει μια επαφή κατά τη διέλευση του ηλεκτρικού ρεύματος. Η αντίσταση διάβασης R περιλαμβάνει γενικά δύο όρους: την αντίσταση στένωσης Rc (constriction resistance) και την αντίσταση του στρώματος των επικαθίσεων στις επαφές R_f . Η αντίσταση στένωσης R_c , είναι αποτέλεσμα της εξαναγκασμένης ροής του ηλεκτρικού ρεύματος από το ένα μέρος της επαφής στο άλλο. Η αντίσταση στένωσης περιλαμβάνει εξ ορισμού, την αντίσταση και στα δύο μέρη της επαφής. Η αντίσταση του στρώματος των επικαθίσεων οφείλεται στη δυσκολία των ηλεκτρικών φορέων να διαπεράσουν το στρώμα αυτό.

Η κατασκευή των ηλεκτρικών στατικών επαφών στην πράζη βασίζεται συνήθως στην κατασκευή ενός δοκιμίου, μέσω του οποίου επιδιώκεται η μείωση της αντίστασης διάβασης έτσι, ώστε κατά τη λειτουργία των επαφών αυτών υπό ονομαστικό ρεύμα να ικανοποιούνται οι απαιτήσεις των δοκιμών υπερθέρμανσης μηχανικής αντοχής και αντοχής στο ρεύμα βραχυκύκλωσης. Η τιμή της αντίστασης διάβασης επηρεάζεται κυρίως από το είδος των υλικών, τη δύναμη σύσφιζης των επαφών και γενικά από τη γεωμετρία του λυομένου συνδέσμου, από την οποία εξαρτάται η απαγωγή της θερμότητας Joule. Μεγάλη σημασία για τη διαμόρφωση της τιμής της αντίστασης διάβασης έχουν οι ζένες επικαθίσεις σε αυτές, οι οποίες μπορεί να είναι χημικές ενώσεις όπως οζείδια, οργανικές ουσίες, σκόνη κ.λ.π.

Όλες οι προσπάθειες υπολογισμού της R_c οι οποίες έχουν επιχειρηθεί έγιναν κάτω από τις ακόλουθες παραδοχές :

Το υλικό των επαφών ήταν το ίδιο και για τα δύο μέρη της επαφής

Το υλικό ήταν ισοτροπικό και η ειδική αντίσταση του σταθερή Η θερμοκρασία είναι σταθερή σε όλα τα σημεία της επιφάνειας επαφής A_c, η οποία είναι ισοδυναμική επιφάνεια.

Για τον υπολογισμό της αντίστασης μεταζύ διαδοχικών ισοδυναμικών επιφανειών ισχύει Δφ=0, όπου φ το δυναμικό.

Η ακόλουθη σχέση δίνει την αντίσταση στένωσης για επιφάνεια A_c κυκλικής διατομής σε συνάρτηση με την ειδική αντίσταση του υλικού ρ και την ακτίνα r.

$$R_C = \frac{\rho}{2r}$$
[1.4-3]

Ένας παράγοντας που επηρεάζει την τιμή της αντίστασης R_c είναι η θερμοκρασία. Όταν η αντίσταση στένωσης μιας επαφής θερμανθεί από το ηλεκτρικό ρεύμα που τη διαπερνά, τότε η τιμή της δίνεται από τη σχέση:

$$R_c(\theta) = R_c(\theta_0) [1 + \alpha_x(\theta - \theta_0)]$$
[1.4-4]

όπου $R_c(\theta_0)$ η τιμή της αντίστασης στένωσης σε θερμοκρασία θ_0 , $R_c(\theta)$ η τιμή της αντίστασης στένωσης σε θερμοκρασία $\theta > \theta_0$ και a_x ο θερμικός συντελεστής μεταβολής της αντίστασης στένωσης. Θεωρητικοί υπολογισμοί επαληθεύουν την παραπάνω σχέση και προσδιορίζουν το συντελεστή a_x ίσο προς τα 2/3 του θερμικού συντελεστή α του υλικού των επαφών. Έτσι η σχέση [2.4-4 γίνεται:

$$Rc(\dot{e}) = Rc(\dot{e}_0)[1 + \frac{2}{3}\alpha(\dot{e} - \dot{e}_0)]$$
[1.4-5]

Οι σχέσεις [2.4-3] και [2.4-5] για τα συνήθη μέταλλα, που χρησιμοποιούνται στις επαφές, δίνουν τιμές της R_c οι οποίες είναι

πολύ μικρές. Πειραματικά δεδομένα για συνήθης επαφές των πρακτικών εφαρμογών, δίνουν επίσης πολύ μικρές τιμές της R_c . Οι τιμές αυτές της αντίστασης στένωσης δεν μπορούν να δικαιολογήσουν τις συνήθεις τιμές της πτώσης τάσης. Γι' αυτό μπορεί κανείς να υποθέσει ότι η αντίσταση λόγω των ξένων επικαθίσεων σε μια επαφή έχει πρωτεύοντα ρόλο στη τιμής της ολικής αντίστασης διάβασης.

1.4.1.1 Η πτώση τάσης σε μία επαφή σε σχέση με τη θερμοκρασία που αναπτύσσεται

Η θερμική και η ηλεκτρική ροή υπακούουν σε παρεμφερείς νόμους. Η θερμική ενέργεια ρέει σε συνάρτηση με τις θερμοκρασιακές διαφορές και αντίστοιχα το ηλεκτρικό ρεύμα σε συνάρτηση προς την διαφορά δυναμικού. Σε συμμετρικά συστήματα ηλεκτρικών επαφών, η θερμική ροή ακολουθεί τον ίδιο δρόμο με την ροή του ηλεκτρικού ρεύματος. Ως εκ τούτου υπάρχει μία σχέση μεταξύ θερμοκρασιακής διαφοράς και διαφοράς δυναμικού. Η σχέση αυτή διερευνήθηκε κάτω από διάφορες παραδοχές, όπως π.χ. ότι ο αγωγός (που συνδέεται με την επαφή) είναι μονωμένος θερμικά και ηλεκτρικά σε όλο το μήκος του.

Για την διατύπωση μίας ενεργειακής σχέσης, που διέπει μία επαφή, έχουν γίνει οι παρακάτω παραδοχές:

Σαν είσοδος του ηλεκτρικού ρεύματος νοείται η πραγματική επιφάνεια επαφής, και σαν έζοδος μία επιφάνεια αρκετά μακριά από την είσοδο ώστε η ροή σε αυτή να μην επηρεάζει την θερμική και ηλεκτρική ροή στο άμεσο περιβάλλον της επαφής.

Το σύστημα των δύο μερών της ηλεκτρικής επαφής είναι συμμετρικό.

Η δεύτερη παραδοχή σημαίνει ότι τα δύο μέρη της επαφής είναι από το ίδιο υλικό, το οποίο είναι ισοτροπικό, δηλαδή ότι η ειδική αντίσταση ρ (constant resistivity), και ο συντελεστής θερμικής αγωγιμότητας λ_{θ} (thermal conductivity), εξαρτώνται μόνο από την θερμοκρασία. Σημαίνει επίσης ότι η επιφάνεια επαφής είναι ισοθερμική και ισοδυναμική (ταυτόχρονα για τα δύο μέρη της επαφής) και ότι αυτή έχει την υψηλότερη θερμοκρασία του συστήματος, λόγω συμμετρίας του οποίου δεν συμβαίνει ροή της θερμότητας από το ένα μέρος της επαφής προς το άλλο.

Κάτω από αυτές τις παραδοχές ως συνάρτηση μεταξύ θερμοκρασίας Τ και τάσης U, για μία συμμετρική αντίσταση στένωσης, έχει προταθεί η σχέση:

$$\int_{0}^{AT} \rho(T) \lambda_{\theta}(T) dT = \frac{U^{2}}{8}$$
[1.4-6]

όπου ΔΤ η διαφορά της θερμοκρασίας των σημείων επαφής από την θερμοκρασία του περιβάλλοντος.

Εάν χρησιμοποιηθεί η μέση τιμή του γινομένου $\overline{\rho\lambda}_{\theta}$ τότε η Σχέση [2.4-6] γίνεται:

$$\overline{\rho\lambda}_{\theta} \cdot \Delta T = U^2/8$$
[1.4-7]

,	
η	

$$U = \sqrt{8 \cdot \overline{\rho \lambda}_{\theta}} \cdot \Delta T$$
[1.4-8]

Η Σχέση [2.4-8] δίνει τη μέγιστη θερμοκρασία που μπορεί να αναπτυχθεί σε επαφές λόγω της αντίστασης στένωσης για δεδομένη πτώση τάσης.

Σε περίπτωση, που μέρος της παραγόμενης θερμότητας, διαφεύγει προς το περιβάλλον μέσο (όπως συμβαίνει στην πράζη), τότε η Σχέση [2.4-7] γίνεται:

$$\rho\lambda_{\theta} \cdot \Delta T \le U^2/8 \tag{1.4-91}$$

και

$$U \ge \sqrt{8 \cdot \overline{\rho \lambda}_{\theta} \cdot \Delta T}$$
[1.4-10]

Θεωρώντας το νόμο των Wiedemann – Franz – Lorenz, κατά τον οποίο:

$$\rho(T)\lambda_{\theta}(T) = LT \qquad [1.4-11]$$

όπου L σταθερά ανεξάρτητη από το μέταλλο $(L \cong 2, 4 \cdot 10^{-8} (V/^{\circ}K)^2)$, τότε η Σχέση [2.4-6] γίνεται:

$$\int_{0}^{4T} \rho(T)\lambda_{\theta}(T)dT = \int_{T_{0}}^{T} LTdT = \frac{L}{2} \left(T^{2} - T_{0}^{2}\right) \leq \frac{U^{2}}{8}$$
[1.4-12]

ή

$$U \ge 2\sqrt{L(T^2 - T_0^2)}$$
 [1.4-13]

όπου Τ₀ η θερμοκρασία του περιβάλλοντος.

Οι σχέσεις [2.4-8], [2.4-10] και [2.4-13] παρέχουν την δυνατότητα του κατά προσέγγιση υπολογισμού της πτώσης τάσης σε επαφές χωρίς επικαθίσεις. Στις πρακτικές εφαρμογές χρησιμοποιούνται για τον υπολογισμό της ελάχιστης τιμής της πτώσης τάσης σε καινούργιες επαφές.
1.4.1.2 Οξείδια σε επαφές διακοπτών και η σημασία της θερμοκρασίας στην αύξηση του πάχους τους

Οι επικαθίσεις σε μια επαφή είναι, όπως προαναφέρθηκε, αιτία αύζησης της αντίστασης διάβασης και επομένως ο κύριος λόγος κακής λειτουργίας της. Μπορούμε να διακρίνουμε τις επικαθίσεις σύμφωνα με την σύνθεσή τους, σε δυο κατηγορίες: σε χημικές ενώσεις (όπως π.χ. τα οζείδια του μετάλλου της επαφής) και σε διάφορα παρασιτικά στοιχεία (όπως η σκόνη, τα λιπαντικά και υδρατμοί). Με διακριτικό στοιχείο το πάχος μπορούμε να διακρίνουμε τις παρακάτω κατηγορίες επικαθίσεων :

επικαθίσεις με πάχος λίγων ατόμων (όπως ένα στρώμα μιας ή δύο στοιβάδων μορίων νερού)

προστατευτικές επικαθίσεις, που είναι χημικές ενώσεις, και οι οποίες δεν αυζάνονται όταν αποκτήσουν ένα μικρό πάχος. Οι επικαθίσεις αυτές θεωρείται ότι προστατεύουν την επιφάνεια της επαφής, και

επικαθίσεις, που είναι χημικές ενώσεις, στις οποίες συμμετέχει το μέταλλο της επαφής, των οποίων το πάχος αυξάνει με το χρόνο

Η επίδραση της θερμοκρασίας στην δημιουργία οζειδίων και γενικά επικαθίσεων στις επαφές παρουσιάζει ενδιαφέρον δεδομένου ότι το φαινόμενο ανακυκλώνεται κατά την σειρά που απεικονίζεται στο Σχήμα [2.4-I]. Ως παράδειγμα εξετάζονται παρακάτω επαφές από Cu ή Ni.

Σχήμα [1.4-1]: Απλοποιημένη παράσταση της επίδρασης της θερμοκρασίας στη δημιουργία οζειδίων

1.4.1.3 Η επίδραση της υγρασίας του ατμοσφαιρικού αέρα στην οζείδωση των επαφών

Το πάχος του στρώματος της υγρασίας του ατμοσφαιρικού αέρα εξαρτάται από την τραχύτητα των επιφανειών της επαφής. Στον άργυρο, αυτό το στρώμα θεωρείται ότι είναι μικρότερο από 50Å. Στρώματα νερού του πάχους αυτού δεν αντέχουν την πίεση των δύο μερών της επαφής και γι' αυτό διατάσσονται περιφερειακά στην επιφάνεια A_C και στα πιθανά κενά που υπάρχουν. Έχει υποστηριχθεί ότι λεπτά στρώματα νερού, ανάμεσα σε μεταλλικές επιφάνειες αφ' ενός και οξείδια και άνθρακας αφ' ετέρου μπορούν να δημιουργήσουν τοπικά ηλεκτρικά στοιχεία, τα οποία με ηλεκτροχημική δράση οζειδώνουν τις επαφές. Αυτή η διεργασία χρειάζεται μικρότερο χρόνο από την οξείδωση της επαφής στον ατμοσφαιρικό αέρα. Για να συμβεί όμως αυτό απαιτούνται μεγάλες ποσότητες υγρασίας (πάνω από 70%) και λεπτά ασυνεχή στρώματα νερού (που μπορούν με ιόντα να άγουν το ηλεκτρικό ρεύμα), ή υγροσκοπικά τεμάχια σκόνης.

Έχει διατυπωθεί επίσης η άποψη, ότι τα στρώματα του νερού και των στερεών λιπαντικών σε μία επαφή επηρεάζουν ελάχιστα την αντίσταση διάβασης γιατί ο κύριος όγκος τους απομακρύνεται με το κλείσιμο του λυόμενου συνδέσμου και μένουν μόνο απλές στοιβάδες ατόμων, οι οποίες είναι αγώγιμες λόγω εκδήλωσης του φαινομένου σήραγγος. Στερεά κατάλοιπα όμως μαύρου χρώματος και μικρού πάχους (έως 10Å), που έχουν γίνει αναπόσπαστο μέρος της επιφάνειας της επαφής παρουσιάζουν στην πράζη μεγάλη αντίσταση και μπορούν να γίνουν αιτία αύζησης της αντίστασης διάβασης.

Μία ερμηνεία μπορεί να δοθεί από την μείωση των δυνατοτήτων απαγωγής θερμότητας, που έχουν γενικά οι επιφάνειες μαύρου χρώματος, συγκριτικά προς επιφάνειες με άλλη απόχρωση. Οι επικαθίσεις αυτές είναι συνήθως άμορφες οργανικές ουσίες μεγάλου μοριακού βάρους, που προέρχονται από οργανικούς ατμούς, οι οποίοι παράγονται στους οργανικούς μονωτές που χρησιμοποιούνται στη στήριζη των ηλεκτρικών επαφών. Ο πολυμερισμός είναι πολύ διαδεδομένος στους υδρογονάνθρακες και έχει επισημανθεί ότι πάρα πολλά μονωτικά υλικά παράγουν ατμούς κατά τον πολυμερισμό τους. Ορισμένα υλικά επαφών όπως το Pd, Pt, Ru, Mo και το Cr δρουν καταλυτικά για την εναπόθεση οργανικών ουσιών σε αυτά και άλλα. Όχι, όπως π.χ.: Cu, Fe, W, Ag και το Ni. Τέλος όταν σε μια επαφή δημιουργούνται τοπικά μικρές ηλεκτρικές εκκενώσεις τότε τα οργανικά στρώματα, που προαναφέρθηκαν, απανθρακώνονται, με αποτέλεσμα από τα λεπτά στρώματα άνθρακα, να διευκολύνεται η εκδήλωση ηλεκτρικών εκκενώσεων μεγαλύτερης ενέργειας.

Ο σχηματισμός γενικά των επικαθίσεων στις επαφές διέπεται από περίπλοκους μηχανισμούς, που δεν έχουν ερμηνευτεί πλήρως, παρά τις εκτεταμένες έρευνες. Στην εργασία αυτή γίνεται μια προσπάθεια διερεύνησης των παραπάνω επικαθίσεων σχετικά με τις δυνατότητες τους να άγουν το ηλεκτρικό ρεύμα

1.4.2 Μη γραμμικά φαινόμενα

Σύμφωνα με την κλασική φυσική, επικαθίσεις πάχους λίγων Angstrom μονώνουν ηλεκτρικά τα δυο μέρη μιας επαφής. Αντίθετα όμως κατά την κβαντική θεώρηση τα ηλεκτρόνια αγωγιμότητας μπορούν να περάσουν λεπτά στρώματα μονωτικών υλικών ως κύματα De Broglie. Αυτή η δυνατότητα, που έχουν τα ηλεκτρόνια αγωγιμότητας να μπορούν να διαπεράσουν φράγματα δυναμικού τα οποία έχουν εισαχθεί από ένα λεπτό στρώμα μονωτικού υλικού, ονομάζεται φαινόμενο σήραγγας. Οι Sommerfeld και Bethe έκαναν πρώτοι μια θεωρητική προσέγγιση του θέματος για μερικά mV πτώσης τάσης στα ηλεκτρόδια. Αργότερα ο R.Holm εξέτεινε την θεωρία αυτή για μεγαλύτερες τιμές της πτώσης τάσης από προηγουμένως. Η εκδήλωση του φαινομένου σήραγγας εξαρτάται κατά κύριο λόγο από το πάχος s του μονωτικού στρώματος μεταξύ των δύο ηλεκτροδίων και από την τιμή του φράγματος δυναμικού που εισάγει το παραπάνω λεπτό μονωτικό στρώμα. Αυτά τα δύο μεγέθη δεν είναι ποτέ ακριβώς γνωστά και οι διάφοροι υπολογισμοί έχουν γίνει με απλουστευτικές παραδοχές.

1.4.2.1 Οι επαφές ως ένα μη γραμμικό δυναμικό σύστημα

Η μη γραμμική συμπεριφορά των ηλεκτρικών επαφών σύμφωνα με τη βιβλιογραφία εξηγείται λαμβάνοντας υπ' όψιν τις ακόλουθες παραμέτρους συνολικά ή μέρος από αυτές:

Τις μικροδομές ΜΜ (μέταλλο-μέταλλο), ΜΙΜ (μέταλλο-μονωτήςμέταλλο), ΜΟΜ (μέταλλο-οζείδιο-μέταλλο) και MGM(μέταλλοπεριβάλλον υγρό ή αέριο μονωτικό-μέταλλο) συνδεδεμένες παράλληλα μεταξύ τους, οι οποίες συναντώνται στη μακροσκοπική απεικόνιση δύο μεταλλικών ηλεκτρικών επαφών.

Την στατιστική φύση των μικροδομών των οξειδίων στην φαινόμενη επιφάνεια της επαφής, δηλαδή τις μικροδομές MOM και την δράση του φαινομένου σήραγγος.

Την εκπομπή πεδίου στις προηγούμενες μικροδομές.

Την ανάπτυξη πέρα από ένα όριο, ενός μηχανισμού σκέδασης (π.χ. σκέδαση στην επιφάνεια), ο οποίος θα μπορούσε πιθανώς να προκαλέσει απρόσμενες διακυμάνσεις της ειδικής αντίστασης διάβασης της επαφής, με αποτέλεσμα χαοτικά φαινόμενα.

Την πιθανή μαγνητική φύση των επικαθίσεων στην επαφή και γύρω από αυτή, οι οποίες θα έφταναν στον κόρο όταν το τοπικό μαγνητικό πεδίο περάσει μία συγκεκριμένη τιμή.

Όπως και άλλα κυκλώματα οι επαφές οι οποίες λειτουργούν κάτω από υψηλούς ρυθμούς έγχυσης φορτίου έχουν μοντελοποιηθεί από μία διαφορική εξίσωση σύμφωνα με τη βιβλιογραφία. Αυτή προσδιορίζει την συμπεριφορά των χαρακτηριστικών ποσοτήτων (αγνώστων) όπως το ρεύμα και η τάση σε συνάρτηση με το χρόνο. Εξαιτίας της μη γραμμικής φύσης ενός τουλάχιστον στοιχείου του κυκλώματος, ως ανωτέρω ανεφέρθη, επαφές που λειτουργούν κάτω από υψηλούς ρυθμούς έγχυσης φορτίου εκλαμβάνονται ως μη γραμμικά δυναμικά συστήματα. Τέτοια συστήματα μπορούν να επιδεικνύουν διαφορετική απόκριση ανάλογα με τις αρχικές τους συνθήκες. Μπορούν ακόμα να περνούν από τη μία κατάσταση στην άλλη με αφορμή μία μικρή αλλαγή σε μία από τις παραμέτρους τους. Το απλούστερο μη γραμμικό την περίπτωση των ηλεκτρικών επαφών που δεν έχουν ισχύ διακοπής, όταν λειτουργούν σε υψηλή πυκνότητα ρεύματος, αποτελείται από μία πηγή ημιτονοειδούς τάσης, μία χωρητικότητα προερχομένη από την παρουσία επιφανειακών οξειδίων και γενικά επικαθίσεων στις επαφές και μία μη γραμμική αντίσταση σε συνδυασμό με μία επαγωγή που να προσομοιώνει την έγχυση φορτίων διαμέσου μικροεπαφών (που έχουν ενεργοποιηθεί) και οι οποίες είναι τυχαία κατανεμημένες στη φαινόμενη επιφάνεια της επαφής. Όλα τα παραπάνω στοιχεία είναι συνδεδεμένα σε σειρά, και μόνο ο πυκνωτής παράλληλα.

Εάν η καμπύλη κόρου (ρεύμα σαν συνάρτηση της μαγνητικής ροής) της επαγωγής αποδίδεται από μία κυβική σχέση, τότε η διαφορική εξίσωση δευτέρου βαθμού που αποδίδει το σύστημα είναι του ακόλουθου τύπου:

$$\frac{d^{2}x}{dt^{2}} + k\frac{dx}{dt} + x^{3} = b\cos(t)$$
 [1.4-14]

όπου η παράμετρος b χαρακτηρίζει την πηγή τάσης και η παράμετρος k τις απώλειες της αντιστάσεως στο κύκλωμα. Για ορισμένες τιμές των παραμέτρων b και k οι επαφές χωρίς ισχύ διακοπής έχουν επιδείζει κατά τη βιβλιογραφία, χαοτικά φαινόμενα ικανά να εισάγουν μη προβλέψιμη συμπεριφορά του δυναμικού συστήματος μετά από μακρά λειτουργία.

Για λόγους καλύτερης κατανόησης, η συμπεριφορά των δυναμικών συστημάτων συνήθως παρατηρείται σε διάγραμμα ενός φασικού χώρου. Για την κάθε στιγμή η κατάσταση λειτουργίας αντιστοιχεί σε ένα σημείο που έχει συντεταγμένες τις μεταβλητές που το προσδιορίζουν (διέγερση - απόκριση συστήματος). Σε αυτό το διάγραμμα η απόκριση του συστήματος, όταν αυτό ενεργοποιείται από μία εζωτερική πηγή δείχνεται από μία τροχιά σημείων (τουλάχιστον για ένα κλασικό φυσικό σύστημα). Στην περίπτωση ενός συστήματος που ενεργοποιείται από μία περιοδική πηγή, η απόκριση του συστήματος είναι γενικά περιοδική, και η αντίστοιχη τροχιά των προαναφερθέντων σημείων είναι μία κλειστή καμπύλη. Συστήματα που παρουσιάζουν συνολικά τυχαία συμπεριφορά τείνουν να γεμίσουν το σύνολο του χώρου παρατήρησης του διαγράμματος από σημεία που παρουσιάζουν την κατάσταση μετά από κάποιο χρόνο λειτουργίας. Εξάλλου στην περίπτωση των συστημάτων με χαοτική συμπεριφορά οι τροχιές των σημείων περιβάλλονται από συγκεκριμένες περιβάλλουσες (όρια) με περίπλοκη γεωμετρία, γνωστές στη διεθνή βιβλιογραφία ως "strange attractors". Σε μαθηματικούς όρους είναι αντικείμενα φραγής που χαρακτηρίζονται από μη ακέραιες ευκλείδειες διαστάσεις. Η μαθηματική θεωρία της διστάθειας (bifurcation theory) έδωσε τα απαραίτητα εργαλεία προκειμένου να μελετηθεί και να κατανοηθεί η απόκριση αυτών των συστημάτων.

Τα διαγράμματα διστάθειας βοηθούν στην απεικόνιση των σταθερών και ασταθών καταστάσεων μη γραμμικών δυναμικών συστημάτων με πολλά σημεία λειτουργίας (σταθερότητας). Στην προκειμένη περίπτωση τα διαγράμματα της σχετικής βιβλιογραφίας παρουσιάζουν μία παράμετρο διέγερσης του κυκλώματος (το ρεύμα της πηγής) και μία παράμετρο απόκρισης που χαρακτηρίζει την επαφή, την πτώση τάσης σε έναν κύκλο 50Hz. Η ανάπτυξη της διστάθειας μπορεί να διερευνηθεί συστηματικά με την μεταβολή μιας ακόμα φυσικής παραμέτρου. Στην περίπτωση των επαφών τέτοιες παράμετροι είναι κατά τη βιβλιογραφία, η δύναμη σύσφιζης, ή η αναπτυσσόμενη θερμοκρασία. Σαν μία γενική παρατήρηση, έχει λεχθεί ότι για μία διεδομένη ένταση ρεύματος υψηλότερες τιμές για την δύναμη σύσφιζης των επαφών τείνουν να αποκαταστήσουν γραμμική συμπεριφορά παρά το γεγονός ότι η πολυστάθεια είναι προφανής κατά τις μέγιστες τιμές ρεύματος σε όλες τις περιπτώσεις.

1.4.2.2 Ένα ισοδύναμο κύκλωμα νια την ερμηνεία των μη γραμμικών φαινομένων στις επαφές

Ένα ισοδύναμο κύκλωμα που κατά τη βιβλιογραφία ικανοποιεί τις παραπάνω προϋποθέσεις δίνεται στο Σχήμα [2.4-II]. Πρόκειται για μία συμπλήρωση του ισοδύναμου κυκλώματος των μερικών εκκενώσεων κατά Gemant και Philipoff, όπου όμως η τιμή του ρεύματος έχει σημασία για την εκδήλωση των επιμέρους φαινομένων. Οι τιμές C και G εκφράζουν την ιδανική συμπεριφορά της επαφής (αντίσταση στένωσης και χωρητική συμπεριφορά).

Για τιμές ρεύματος (μικρότερες του ονομαστικού) οι οποίες έχουν την ικανότητα να δημιουργήσουν ισχυρά τοπικά πεδία στις μικροδομές MIM, MOM και MOM διασπάται ο σπινθηριστής Sp και στο κύκλωμα εισάγεται ο πυκνωτής ΔC, η μη γραμμική αγωγιμότητα ΔG, και πιθανώς η επαγωγή L.

Σε συνδυασμό αυτά τα στοιχεία είναι ένα απλό μη γραμμικό δυναμικό σύστημα το οποίο μπορεί να εμφανίσει αρνητική διαφορική αντίσταση (NDR).

Σχήμα [1.4-2]: Το προτεινόμενο ισοδύναμο κύκλωμα.

Όπου:

- C: Πυκνωτής που αποδίδει την χωρητική συμπεριφορά της επαφής
- G: Η γραμμική αγωγιμότητα στένωσης
- Sp: Σπινθηριστής
- ΔC: Η αύξηση της χωρητικής συμπεριφοράς αφού διασπασθεί η σπινθηριστής Sp
- ΔG: Η μη γραμμική αγωγιμότητα των επικαθίσεων
- Επαγωγή που αποδίδει την πιθανή επαγωγική συμπεριφορά επαφών, την εκδήλωση του φαινομένου σήραγγος καθώς και την πιθανή εκδήλωση της αρνητικής διαφορικής αντίστασης

1.4.3 Διαδικασίες μετρήσεων επί ηλεκτρικών επαφών

Η αδιάλειπτη ροή ηλεκτρικού ρεύματος μέσα από μια ηλεκτρική επαφή διασφαλίζεται από πλήθος παραγόντων και παραμέτρων, όπως το μέγεθος και η κατάσταση της ηλεκτρικής επαφής, η επιβαλλόμενη πίεση (λόγω της εξασκούμενης ροπής) και η ολική αντίσταση διάβασης. Πολλά είδη μετρήσεων έχουν προταθεί έτσι ώστε να εξασφαλίζεται η αξιόπιστη λειτουργία των επαφών. Παρακάτω αναφέρονται βασικές τεχνικές που χρησιμοποιούνται για το σκοπό αυτό.

Για την αξιολόγηση των στατικών ηλεκτρικών επαφών και τη διερεύνηση των φαινομένων τα οποία εκδηλώνονται σε αυτές, έχουν γίνει κυρίως μετρήσεις με εναλλασσόμενη τάση 230V/50Hz. Οι μετρήσεις αφορούν βασικά :

στο αρχικό στάδιο λειτουργίας των επαφών και ειδικότερα τη διαχρονική διερεύνηση της πτώσης τάσης και της αντίστασης διάβασης σε διάφορες τιμές της θερμοκρασίας υπό σταθερή τιμή του ηλεκτρικού ρεύματος και στην κατάσταση θερμικής ισορροπίας των επαφών, για διάφορες τιμές του ρεύματος που διαρρέει τον λυόμενο σύνδεσμο και ειδικότερα την ενεργό τιμή της πτώσης τάσης στα πλαίσια μίας περιόδου λειτουργίας (50Hz).

Η αξιοπιστία των στατικών ηλεκτρικών επαφών βασίζεται σε δοκιμές ποιοτικού ελέγχου, ανάλογα με το ονομαστικό τους ρεύμα. Το προαναφερθέν μέγεθος είναι τυποποιημένο και αντικατοπτρίζει τη δοκιμή υπερθέρμανσης.

1.4.3.1 Δοκιμή υπερθέρμανσης

Η δοκιμή υπερθέρμανσης (ή ανύψωσης της θερμοκρασίας) αφορά την εξακρίβωση του ονομαστικού ρεύματος (μέγιστο ρεύμα συνεχούς λειτουργίας) μίας κατασκευής μέχρι τα προγραμματισμένα όρια συντήρησης. Η τιμή αυτή δε μπορεί να είναι τυχαία, γιατί πρέπει να ανταποκρίνεται σε προδιαγεγραμμένες τιμές ρεύματος (π.χ.: 10Α, 200Α, 400Α κ.λ.π.). Η δοκιμή διαρκεί συνήθως αρκετές ώρες. Στους μετασχηματιστές π.χ. ελαίου του δικτύου διανομής είναι της τάξης των 24 ωρών και θεωρείται ότι είναι επιτυχής, όταν η θερμοκρασία δεν υπερβεί κάποιο συγκεκριμένο κατά τις προδιαγραφές όριο (για χαλκό εντός μονωτικού ελαίου η μέγιστη θερμοκρασίας, ως προς τη θερμοκρασία περιβάλλοντος, 40°C).

Η εξακρίβωση της ικανότητας σε ονομαστικό ρεύμα ενός στατικού ηλεκτρικού συνδέσμου βασίζεται κυρίως, κατά τη δοκιμή υπερθέρμανσης, στη μέτρηση της διαφοράς θερμοκρασίας Δθως προς το περιβάλλον, που αναπτύσσεται σε αυτόν. Η τιμή Δθθεωρείται ότι έχει σταθεροποιηθεί όταν μεταξύ δύο διαδοχικών μετρήσεων, που απέχουν μεταξύ τους μία ώρα, η αύξηση της τιμής είναι μικρότερη από 1°C. Στην πράξη συμβαίνει αυτό συνήθως για Δθπερίπου 55°C. Η τιμή του ρεύματος, κατά την οποία επιτυγχάνεται η ανωτέρω σταθεροποίηση της θερμοκρασίας, ονομάζεται ονομαστικό ρεύμα I_{κ} της επαφής.

1.4.3.2 Διηλεκτρικές δοκιμές διακοπτών

Οι διηλεκτρικές δοκιμές στοχεύουν στην εξακρίβωση της ικανότητας μόνωσης. Η ονομαστική τάση (ή τάση σειράς) κάθε κατασκευής δεν μπορεί να είναι μία τυχαία τιμή, γιατί πρέπει να ανταποκρίνεται στην προδιαγεγραμμένη διαβάθμιση των τάσεων, που είναι π.χ.: 0,4kV, 6,6kV, 15kV, 20kV, 150kV, κ.λ.π. Συνήθως γίνεται αναφορά, εκτός από την ονομαστική τάση (ή τάση σειράς), στη στάθμη μόνωσης της κατασκευής (μέγιστη τάση λειτουργίας), που είναι μεγαλύτερη από την ονομαστική τάση (π.χ.: για ονομαστική τάση 20kV η στάθμη μόνωσης είναι 24kV). Οι μετρήσεις, που γίνονται για τον έλεγχο της ικανότητας μόνωσης, αφορούν κυρίως τις μέγιστες λειτουργικές καταστάσεις της κατασκευής (κυρίως υπερτάσεις από κεραυνούς και χειρισμούς), από τις οποίες επιβεβαιώνεται η στάθμη μόνωσης.

1.4.3.3 Δοκιμή μηχανικής αντοχής

Η δοκιμή μηχανικής αντοχής αφορά βασικά την ικανότητα σε ονομαστικό ρεύμα των στατικών επαφών μετά από ένα μεγάλο αριθμό χειρισμών, ενώ παράλληλα ελέγχεται η στιβαρότητα της κατασκευής (ενδεχομένως παραμορφώσεις των επαφών ή τυχόν απόσυναρμολογήσεις ή ακατάλληλα ελατήρια κλπ). Ένας αποζεύκτης π.χ. 20 kV / 400A θα πρέπει να έχει μετά από 1000 πλήρεις κύκλους χειρισμών την ίδια ικανότητα σε ονομαστικό ρεύμα (400 A). Μετά το πέρας δηλαδή της δοκιμής αυτής, θα πρέπει να γίνει η δοκιμή υπερθέρμανσης.

1.4.3.4 Δοκιμή υπό τριπολικό βραχυκύκλωμα

Με τη δοκιμή σε τριπολικό βραχυκύκλωμα ελέγχεται η καταπόνηση μίας κατασκευής από τις μεγάλες δυνάμεις και θερμοκρασίες που αναπτύσσονται κατά το βραχυκύκλωμα. Η δοκιμή διαρκεί 1s, αρκετό δηλαδή χρόνο, ως προς εκείνον ενεργοποίησης των μέσων προστασίας του δικτύου. Κατά τη δοκιμή μετρώνται οι συνιστώσες του ρεύματος βραχυκύκλωσης, ανάλογα με την απαιτούμενη ισχύ βραχυκύκλωσης, που καθορίζεται από τη θέση της κατασκευής στο δίκτυο. Η δοκιμή θεωρείται επιτυχής όταν, μετά το πέρας της, δεν έχουν αναιρεθεί η στάθμη μόνωσης και η ικανότητα σε ονομαστικό ρεύμα (δηλαδή, στη συνέχεια πραγματοποιούνται στο συγκεκριμένο δοκίμιο οι διηλεκτρικές δοκιμές και η δοκιμή υπερθέρμανσης.

2 Διαδικασία και Κυκλώματα Μετρήσεων

Οι μετρήσεις που έγιναν στο πειραματικό μέρος της εργασίας, αφορούν στην αξιοπιστία μόνιμων ηλεκτρικών συνδέσμων που χρησιμοποιούνται στα συστήματα αντικεραυνικής προστασίας για τη σύνδεση των αγωγών απαγωγής του κεραυνικού πλήγματος προς τη γείωση. Το ευρωπαϊκό πρότυπο για τον έλεγχο της αξιοπιστίας των στατικών επαφών, αποτέλεσε βάση για τη διερεύνηση της θερμικής συμπεριφοράς των υπό δοκιμή συνδέσμων. Οι ηλεκτρικοί σύνδεσμοι αντεπεξήλθαν επιτυχώς σε σειρά καταπονήσεων με κρουστικό ρεύμα ώστε να επιβεβαιωθεί η αξιοπιστία τους. Οι δοκιμές με την επιβολή κρουστικού ρεύματος σύμφωνα με το ευρωπαϊκό πρότυπο υπήρζαν το αντικείμενο πρότερης Διδακτορικής Διατριβής [2].

Το παρόν κεφάλαιο αποτελεί το εισαγωγικό μέρος των μετρήσεων. Στην παράγραφο 1 περιγράφεται αναλυτικά ο σκοπός της εργασίας. Τα συμπεράσματα των μετρήσεων, όσον αφορά στη μεταβολή της θερμοκρασίας του δοκιμίου, καθώς και οι αντίστοιχες προβλέψεις της θεωρητικής μελέτης παρουσιάζονται συνοπτικά στη παράγραφο 2 αυτού του κεφαλαίου μαζί με αναφορά στις απαιτήσεις του ευρωπαϊκού προτύπου.

Η διαδικασία και το κύκλωμα των μετρήσεων περιγράφονται στη παράγραφο 3. Τα χαρακτηριστικά των υπό δοκιμή συνδέσμων παρουσιάζονται στην παράγραφο 4. Τα αποτελέσματα, η επεξεργασία, καθώς και τα συμπεράσματα των μετρήσεων είναι αντικείμενο επόμενων κεφαλαίων.

2.1 Σκοπός της εργασίας

Σκοπός της εργασίας αυτής είναι η μελέτη της συμπεριφοράς των μόνιμων ηλεκτρικών συνδέσμων που χρησιμοποιούνται σε κυκλώματα αντικεραυνικής προστασίας και κυκλώματα γειώσεων γενικότερα. Οι σταθεροί ηλεκτρικοί σύνδεσμοι πρέπει να ανταπεζέρχονται σε ισχυρά κεραυνικά πλήγματα καθ' όλη τη διάρκεια της ζωής τους. Οι απαιτήσεις στις οποίες πρέπει να ανταποκρίνονται οι λυόμενοι σύνδεσμοι, περιγράφονται από το ευρωπαϊκό πρότυπο ΕΝ50164.01 [1]. Το παραπάνω πρότυπο ορίζει τις επιτρεπόμενες μεταβολές στα ηλεκτρικά χαρακτηριστικά ενός συνδέσμου με την επιβολή δοκιμών κρουστικού ρεύματος συγκεκριμένων απαιτήσεων (κορυφή-τιμή εκλυόμενης ενέργειας, διάρκεια κρούσης, αριθμός κρούσεων), ώστε ο ηλεκτρικός σύνδεσμος να θεωρείται αζιόπιστος. Οı έλεγχοι αξιολόγησης που απαιτούνται από το Ευρωπαϊκό Πρότυπο ΕΝ50164.1 και αφορούν στην αξιοπιστία των συνδέσμων, προϋποθέτουν ειδικό εξοπλισμό που συνήθως δεν είναι διαθέσιμος στις περισσότερες ελληνικές εταιρίες παραγωγής αυτών των συνδέσμων. Πρέπει ακόμα να σημειωθεί ότι αυτή τη στιγμή στην Ελλάδα δεν υπάρχει πιστοποιημένο εργαστήριο που να πραγματοποιεί τους ελέγχους αυτούς.

Για το σκοπό αυτό, στα πλαίσια αυτής της διπλωματικής εργασίας, θα γίνει μια προσπάθεια σύνδεσης των θερμικών αποτελεσμάτων επί των μόνιμων ηλεκτρικών συνδέσμων που μπορεί να έχει η κρούση με κεραυνικό ρεύμα, με τα αποτελέσματα που προκαλούνται από την καταπόνησή τους με εναλλασσόμενο ρεύμα δικτύου. Κυρίως ενδιαφέρει η μελέτη των ηλεκτρικών χαρακτηριστικών, ώστε να δοθεί η δυνατότητα εξαγωγής συμπερασμάτων για την καταλληλότητα των συνδέσμων κατά το στάδιο της παραγωγής τους χωρίς να είναι απαραίτητος ο ειδικός εξοπλισμός. Εδώ πρέπει να σημειωθεί ότι οι προσεγγίσεις ποιοτικού ελέγχου δεν έχουν σκοπό σε καμιά περίπτωση να μειώσουν την σπουδαιότητα των προτύπων, πολύ δε περισσότερο να τα υποκαταστήσουν. Απλά στόχο έχουν να διευκολύνουν τους κατασκευαστές των λυόμενων συνδέσμων και να παρέχουν ένα χρήσιμο εργαλείο για την έγκαιρη αξιολόγησή τους, κατά τον σχεδιασμό των

Αντικείμενο της παρούσας Διπλωματικής εργασίας είναι η αναζήτηση της ενεργούς τιμής εναλλασσόμενου ρεύματος (συχνότητας 50 Hz) που προκαλεί κατά τη σταθεροποίηση, την ίδια μεταβολή στη θερμοκρασία του δοκιμίου με αυτή που προκαλείται από το κρουστικό ρεύμα του ευρωπαϊκού προτύπου. Για το σκοπό αυτό, κατά τη διαδικασία των μετρήσεων χρησιμοποιήθηκαν οι ίδιοι σύνδεσμοι με αυτούς που μελετήθηκαν στα πλαίσια πρότερης Διδακτορικής Διατριβής [2] και υπό την επιβολή της ίδιας δύναμης συσφίζεως, ώστε να καθίσταται δυνατή η σύγκριση και η εξαγωγή συμπερασμάτων.

2.2 Δοκιμή αξιολόγησης σταθερών ηλεκτρικών συνδέσμων κατά το ευρωπαϊκό πρότυπο ΕΝ50164.01

2.2.1 Στοιχεία για το κρουστικό ρεύμα

Το ρεύμα της κύριας εκκενώσεως του κεραυνού έχει τη μορφή μιας απεριοδικής ταλάντωσης, δηλαδή μοιάζει με ένα κρουστικό ρεύμα. Τυπική μορφή της μεταβολής ενός κρουστικού ρεύματος φαίνεται στο παρακάτω σχήμα.

Σχήμα [2.2-1]: Τυπική μορφή κρουστικού ρεύματος T_s : χρόνος μετώπου, T_r : χρόνος ημίσεως εύρους

Το κρουστικό ρεύμα χαρακτηρίζεται από τη διάρκεια μετώπου T_s , που είναι ο χρόνος που χρειάζεται για να φθάσει η τιμή του ρεύματος το 90% της μέγιστης τιμής του I_{max} και τη διάρκεια ημίσεως εύρους της ουράς T_r , που είναι ο χρόνος κατά τον οποίο η τιμή του ρεύματος

επιστρέφει από τη μέγιστη τιμή της στο 50 % του I_{max} . Η αναφορά στο κρουστικό ρεύμα γίνεται με τις τιμές των δύο αυτών χρόνων μετρούμενων σε με με τη μορφή T_s/T_r , π.χ. 1,2/50. Επιπλέον χαρακτηριστικά του κρουστικού ρεύματος είναι η μέγιστη τιμή του I_{max} καθώς και η συνολική ενέργεια W/R που εκλύεται από αυτό.

Ο φυσικός κεραυνός προσομοιώνεται με κρουστικό ρεύμα 1,2/50 μs, έχει δηλαδή: $T_s=1,2$ μs και $T_r=50$ μs.

Παρακάτω, δίνεται μια μαθηματική σχέση που προσομοιώνει το κρουστικό ρεύμα:

$$i(t) = \frac{I_{max}}{n} \frac{t^{10}}{T^{10} + t^{10}} e^{\frac{t}{\tau}}$$
[2.2-1]

όπου I_{max}: η κορυφή του κεραυνικού ρεύματος, n: συντελεστής διόρθωσης κορυφής, Τ: χρονική σταθερά κορυφής, τ: χρονική σταθερά ουράς

Πολύ συχνά το κεραυνικό ρεύμα προσομοιώνεται και με διπλοεκθετική εξίσωση για ένα παλμό:

$$i(t) = A_n(e^{-\lambda_1 t} - e^{-\lambda_2 t}) + B(e^{-\lambda_3 t} - e^{-\lambda_4 t})$$
[2.2-2]

όπου

Α_n: η μέγιστη τιμή του ρεύματος του πρώτου παλμού,

Β: η μέγιστη τιμή του ρεύματος του παλμού που ακολουθεί τον πρώτο
 με χρονικό μεσοδιάστημα της τάξεως των ms,

λ1 και λ3: χρονικές σταθερές κορυφής,

λ2 και λ4: χρονικές σταθερές ουράς

Στην πράξη το κεραυνικό ρεύμα προσομοιώνεται μόνο με το πρώτο μέρος της παραπάνω εξίσωσης (που εκφράζει τον κύριο πρώτο παλμό). Έτσι, η εξίσωση γίνεται:

$$i(t) = \frac{I_{max}}{n} (e^{-\lambda_1 t} - e^{-\lambda_2 t})$$
 [2.2-3]

Ένας τρόπος υπολογισμού των χρονικών συντελεστών λ_1 και λ_2 είναι μέσω διαγραμμάτων που δίνονται στη βιβλιογραφία [3]. Ένα τέτοιο διάγραμμα δίνεται στο Σχήμα [3.1-2] όπου ο λόγος T_2/T_1 αντιστοιχεί στον λόγο του χρόνου μετώπου προς τον χρόνο ημίσεως εύρους T_s/T_r και α και β στις χρονικές σταθερές λ_1 και λ_2 αντίστοιχα.

Σχήμα [2.2-2]: Διάγραμμα για τον υπολογισμό των χρονικών σταθερών του κρουστικού ρεύματος.

Τι : χρόνος μετώπου, Τ2 : χρόνος ημίσεως εύρους

2.2.2 Απαιτήσεις Ευρωπαϊκού προτύπου ΕΝ50164.01

Σύμφωνα με το ευρωπαϊκό πρότυπο ΕΝ50164.01 [1], τα δοκίμια αρχικά πρέπει να υποβληθούν σε συνθήκες γήρανσης (αλατώδης ομίχλη και ατμόσφαιρα ύγρανσης). Στη συνέχεια και χωρίς να μεσολαβήσει καθαρισμός της διάταζης, τα δοκίμια υποβάλλονται 3 φορές σε κρούση ρεύματος δοκιμής συγκεκριμένων χαρακτηριστικών (βλ. παρακάτω) για διάρκεια μικρότερη ή ίση των 2 ms.

Χαρακτηριστικά ρεύματος δοκιμής:

Δοκιμή normal class: 50 kA \pm 10% με ελάχιστη ενέργεια 0,63 MJ/Ω Δοκιμή high class: 100 kA \pm 10% με ελάχιστη ενέργεια 2,5 MJ/Ω

Το μεσοδιάστημα μεταξύ των κρούσεων πρέπει να είναι επαρκές για την ψύξη της διάταξης των δοκιμίων κοντά στη θερμοκρασία περιβάλλοντος.

Μετά την καταπόνηση η αντίσταση διάβασης μετρούμενη με πηγή τουλάχιστον 10 Α, δεν πρέπει να υπερβαίνει το 1 mΩ. Καμία παραμόρφωση ως προς το αρχικό σχήμα, ρωγμή ή χαλάρωση στη δομή του συνδέσμου ικανή να παρατηρηθεί με γυμνό μάτι, δεν επιτρέπεται.

Ένα ρεύμα που ικανοποιεί τις απαιτήσεις του προτύπου είναι το κρουστικό μορφής 10/350 μs.

2.2.3 Αξιολόγηση των συνδέσμων κατά το ευρωπαϊκό πρότυπο

Κατά τη διαδικασία των δοκιμών υπό κρουστικό ρεύμα στο πλαίσιο πρότερης Διδακτορικής Διατριβής [2], οι λυόμενοι σύνδεσμοι αντεπεξήλθαν επιτυχώς στις απαιτήσεις του ευρωπαϊκού προτύπου EN50164.0 για διατήρηση της αντίστασης διάβασής τους μέσα σε συγκεκριμένα όρια. Η θερμοκρασία, όπως αναφέρθηκε και στην εισαγωγή, είναι καθοριστικός παράγοντας για την τιμή της αντίστασης διάβασης μετά την προαναφερθείσα καταπόνηση. Για το λόγο αυτό μετρήθηκαν η θερμοκρασία καθώς και η αντίστασή των λυόμενων συνδέσμων πριν και μετά την καταπόνησή τους με κρουστικό ρεύμα. Η εφαρμογή του κρουστικού ρεύματος συνεπάγεται την αύξηση της θερμοκρασίας συνεπώς αύξηση της αντίστασης και μείωση της αξιοπιστίας του δοκιμίου. Η μέτρηση της θερμοκρασίας έγινε αμέσως μετά την τρίτη καταπόνηση με κεραυνικό ρεύμα της τάξεως high class.

Οι μετρήσεις έγιναν σε χάλκινα δοκίμια και ενδεικτικά σε επιψευδαργυρωμένα χαλύβδινα δοκίμια.

Γνωρίζοντας ήδη για κάθε δοκίμιο την μεταβολή που επιφέρει η εφαρμογή του κρουστικού ρεύματος στη θερμοκρασία του δοκιμίου, θα αναζητήσουμε πειραματικά την ενεργό τιμή του εναλλασσόμενου ρεύματος που προκαλεί την ίδια διαφορά θερμοκρασίας στο δοκίμιο. Κατά τη διαδικασία των μετρήσεων θα καταπονηθούν τα ίδια δοκίμια για τα οποία έχουμε διαθέσιμα τα αποτελέσματα.

Στον παρακάτω πίνακα παρουσιάζονται τα διαθέσιμα αποτελέσματα ανά σύνδεσμο, δηλαδή η αύξηση της θερμοκρασίας των συνδέσμων που θα μας απασχολήσουν, μετά την καταπόνησή τους με κρουστικό ρεύμα.

Ονομασία δοκιμίου	Υλικό δοκιμίου	Μέσος όρος μετρήσεων διαφοράς θερμοκρασίας
2001010 Cu III	Χαλκός	5,2 °C
2212021 Cu I	Χαλκός	5,9 °C
1001010 St/tZn III	Επιψευδαργυρωμένος χάλυβας	6,0 °C

Πίνακας [2.2-I]: Αποτελέσματα μέσου όρου διαφοράς θερμοκρασίας χάλκινων δοκιμίων μετά την καταπόνησής τους με κεραυνικό ρεύμα

2.3 Πειραματική διαδικασία

Γνωρίζουμε ήδη το θερμικό αποτέλεσμα ανά σύνδεσμο που έχει η εφαρμογή κρουστικού ρεύματος σύμφωνα με τις προδιαγραφές του ευρωπαϊκού προτύπου EN50164.01. Αναζητούμε την ενεργό τιμή του εναλλασσόμενου ρεύματος που προκαλεί την ίδια διαφορά θερμοκρασίας ανά δοκίμιο.

Το θερμικά ισοδύναμο εναλλασσόμενο ρεύμα που επιφέρει στην σταθεροποίηση την ίδια μεταβολή στη θερμοκρασία του κάθε δοκιμίου με το κεραυνικό του ευρωπαϊκού προτύπου και άρα έχει την ίδια επίδραση στα ηλεκτρικά χαρακτηριστικά των συνδέσμων, θα προκύψει πειραματικά μετά από μια σειρά μετρήσεων - δοκιμών.

Η διαδικασία των δοκιμών που διεξήχθησαν στο εργαστήριο Υψηλών Τάσεων τηρώντας όλες τις προδιαγραφές ασφαλείας, έχει ως εξής: Αρχικά, με τη βοήθεια δυναμόκλειδου που μας παρέχει την κατάλληλη ακρίβεια, συσφίγγεται το δοκίμιο με τις ράβδους, διαμέτρου 8 mm, με συγκεκριμένη τιμή δύναμης σύσφιζης. Με βάση τα συμπεράσματα πρότερων Διπλωματικών εργασιών [4,5] αναφορικά με την επίδραση της δύναμης σύσφιζης επί των ηλεκτρικών χαρακτηριστικών των συνδέσμων, καθώς και με τις τιμές της δύναμης σύσφιζης που εφαρμόστηκαν στις δοκιμές με το κεραυνικό ρεύμα, επιλέγονται ανά σύνδεσμο οι ακόλουθες τιμές:

Ονομασία δοκιμίου	Δύναμη σύσφιζης
2001010 Cu III	25 Nm
2212021 Cu I	11 Nm
1001010 St/tZn III	25 Nm

Πίνακας [2.3-I]: Επιλογή δύναμης σύσφιζης των συνδέσμων επί του αγωγού, ανά δοκίμιο, ανάλογα με τις τιμές της δύναμης σύσφιζης που εφαρμόστηκαν στις δοκιμές με το κεραυνικό ρεύμα Στην συνέχεια το εζεταζόμενο δοκίμιο προσαρμόζεται στη πειραματική διάταξη που φαίνεται στο παρακάτω σχήμα.

Σχήμα [2.3-1]: Το κύκλωμα μέτρησης

Διακρίνονται:

- 1. Πηγή Α/C τάσης
- 2. Καταμεριστής τάσης (VARIAC)
- 3. Μονοφασικός μετασχηματιστής (Μ/Σ)
- 4. Αμπερόμετρο
- 5. Υπολογιστής
- 6. Α / D μετατροπέας
- 7. Θερμοστοιχεία
- 8. Ψηφιακό πολύμετρο
- 9. Δοκίμιο

Ως πηγή εναλλασσόμενου ρεύματος χρησιμοποιήθηκε ρεύμα δικτύου. Μέσω κυκλώματος αυτό-μετασχηματιστή και αμπερόμετρου, που δηλώνει την τιμή της έντασης του ρεύματος που διαρρέει το δοκίμιο, παρέχεται η δυνατότητα ρύθμισης και ελέγχου του ρεύματος. Το ρεύμα εγχύεται σε μικρή απόσταση από το δοκίμιο και συγκεκριμένα σε απόσταση περίπου 3 cm, έτσι ώστε οι μετρήσεις της αντίστασης να αφορούν κατά το δυνατόν μόνο το δοκίμιο και όχι και τον αγωγό. Σημειώνεται ότι το ρεύμα μετράται με αμπεροτσιμπίδα, δηλαδή με τρόπο επαγωγικό και όχι άμεσο επί του κυκλώματος πράγμα που θα είχε ως αποτέλεσμα την εισαγωγή σοβαρού σφάλματος ειδικά στις μετρήσεις που έχουν να κάνουν με την υπολογιζόμενη αντίσταση του συνδέσμου. Στα σημεία έγχυσης του ρεύματος προσαρμόζονται και οι ακροδέκτες ενός ψηφιακού βολτόμετρου, το οποίο ρυθμίζεται να μετρά τιμές τάσεων της τάζης των mV, για την μέτρηση της πτώσης τάσης πάνω στο δοκίμιο.

Για την μέτρηση της θερμοκρασίας χρησιμοποιούνται δύο θερμοστοιχεία τύπου Pt 100. Το ένα επικολλάται στο κέντρο του δοκιμίου, ώστε να καταγραφεί η θερμοκρασία του ηλεκτρικού συνδέσμου ενώ το άλλο στο μέσο της απόστασης του συνδέσμου και του σημείου έγχυσης του ρεύματος, δηλαδή σε απόσταση 1,5 cm από το σύνδεσμο, ώστε να καταγραφεί η θερμοκρασία που αναπτύσσεται στους αγωγούς.

Τόσο το βολτόμετρο όσο και τα θερμοστοιχεία είναι συνδεδεμένα με ειδική κάρτα μετατροπής των αναλογικών σημάτων της πτώσης τάσης στα άκρα του δοκιμίου και της θερμοκρασίας, σε ψηφιακά. Τα δεδομένα για την πτώση της τάσης πάνω στο δοκίμιο που μας δίνει το ψηφιακό βολτόμετρο, καθώς και τα δεδομένα για την θερμοκρασία που μας δίνουν τα θερμοστοιχεία, είναι είσοδοι, μέσω του ψηφιακού / αναλογικού μετατροπέα, για το ειδικό λογισμικό που είναι εγκατεστημένο στον υπολογιστή. Η λειτουργία του λογισμικού που χρησιμοποιήθηκε περιγράφεται σε επόμενο κεφάλαιο.

Αρχικά, ρυθμίζονται οι επιλογές που δίνονται από το λογισμικό ώστε να καταγράφονται σε προκαθορισμένο αρχείο οι τιμές της θερμοκρασίας στο δοκίμιο και στην ράβδο καθώς και οι τιμές της πτώσης τάσης στο δοκίμιο, με συχνότητα δειγματοληψίας 60 sec και συνολική διάρκεια μέτρησης 10800 sec.

Πριν την εκκίνηση της κάθε δοκιμής, ελέγχεται το δοκίμιο ώστε να βρίσκεται σε θερμοκρασία περιβάλλοντος και καταγράφεται η θερμοκρασία αυτή. Εφόσον ο σύνδεσμος και τα όργανα καταγραφής των μετρήσεων είναι συνδεδεμένα και ρυθμισμένα κατάλληλα, τροφοδοτείται το κύκλωμα με ρεύμα και εκκινάται ταυτόχρονα η διαδικασία καταγραφής των μετρήσεων. Καθ΄ όλη τη διάρκεια της δοκιμής, η τιμή του ρεύματος θα παραμείνει σταθερή και ίση με την αρχική. Ανά σύνδεσμο λαμβάνει χώρα μια σειρά δοκιμών κατά τη διάρκεια της οποίας ελέγχονται διάφορες τιμές ρεύματος ώστε να προκύψει η τιμή του εναλλασσόμενου ρεύματος που προκαλεί την ίδια μεταβολή στη θερμοκρασία του δοκιμίου με αυτή που προέκυψε από την αντίστοιχη δοκιμή με κρουστικό ρεύμα σύμφωνα με το πρότυπο EN50164.01. Η διάρκεια κάθε δοκιμής είναι 3 ώρες και η καταγραφή των τιμών της τάσης και της θερμοκρασίας επί του δοκιμίου γίνεται ανά λεπτό.

Κατά την πρώτη από την σειρά δοκιμών για τον κάθε σύνδεσμο, έγινε μία προσπάθεια εκτίμησης της τιμής του θερμικά ισοδύναμου κεραυνικού ρεύματος με βάση την – ήδη γνωστή από τα αποτελέσματα των δοκιμών με κρουστικό ρεύμα – τιμή της αντίστασης ανά δοκίμιο που θέλουμε να επιτευχθεί.

Με το πέρας κάθε δοκιμής, υπολογίζεται η διαφορά θερμοκρασίας του δοκιμίου, αφαιρώντας την τελική θερμοκρασία του δοκιμίου από αυτήν που είχε κατά την έναρξη της διαδικασίας. Το ζητούμενο θερμικά ισοδύναμο ρεύμα του αντίστοιχου κρουστικού, ορίζεται ανά σύνδεσμο, όταν η θερμοκρασία έχει σταθεροποιηθεί, με διαφορά θερμοκρασίας σύμφωνα με τον Πίνακα [2.2–1], δηλαδή περίπου 6°C. Η θερμοκρασία θεωρείται ότι σταθεροποιείται όταν η τιμή της διαφοράς δύο διαδοχικών τιμών της, που απέχουν μεταξύ τους μία ώρα, δεν είναι μεγαλύτερη από 0,5 °C. Οι μετρήσεις είναι δυνατό να διακοπούν αν παρατηρηθεί υπερθέρμανση, ή αν παρατηρηθεί μεγάλη απόκλιση από το αναμενόμενο αποτέλεσμα. Σε αυτή τη περίπτωση η δοκιμή διακόπτεται και το δοκίμιο αφήνεται να επανέλθει σε θερμοκρασία περιβάλλοντος.

Ανάλογα με το αποτέλεσμα κάθε σειράς μετρήσεων προκύπτει το ρεύμα της επόμενης δοκιμής ώστε βαθμιαία πετυχαίνουμε με σειρά δοκιμών την ζητούμενη τιμή.

2.4 Περιγραφή Λογισμικού Καταγραφής Μετρήσεων

Κατά τη διαδικασία των μετρήσεων χρησιμοποιήθηκε το ειδικό λογισμικό που συνόδευε των αναλογικό / ψηφιακό μετατροπέα. Το πρόγραμμα παρέχει το γραφικό περιβάλλον για τον ορισμό του χρόνου δειγματοληψίας σε δευτερόλεπτα (πεδίο: 'Sampling Period' [sec]) καθώς και του συνολικού χρόνου των μετρήσεων επίσης σε δευτερόλεπτα (πεδίο: 'Sampling Time' [sec]). Το πεδίο 'DME' προσφέρει δύο επιλογές που δύο κανάλια αντιστοιχούν $\sigma \varepsilon$ καταμέτρησης: επιλέγοντας το '0' ορίζεται η πρόθεση καταγραφής της πτώσης τάσης και επιλέγοντας το '1' ορίζεται η πρόθεση καταγραφής του ρεύματος. Για την καταγραφή της θερμοκρασίας υπάρχουν 8 διαφορετικά κανάλια, τα οποία ενεργοποιούνται αυτόματα με τη σύνδεση των θερμοστοιχείων στην κάρτα.

Η διαδικασία των μετρήσεων ζεκινά επιλέγοντας την ένδειζη 'Start Sampling' και τελειώνει είτε με την επιλογή της ένδειζης 'Stop', είτε αυτόματα με την συμπλήρωση του χρόνου που ορίστηκε στο πεδίο 'Sampling Time'. Ακόμα, υπάρχει η δυνατότητα προσωρινής διακοπής της διαδικασίας των μετρήσεων με την επιλογή του πλήκτρου-διακόπτη 'Pause' και συνέχισή της με το ίδιο πλήκτρο που εμφανίζει τώρα την ένδειζη 'Continue'.

Πριν την έναρζη της διαδικασίας των μετρήσεων, ο χρήστης προτρέπεται να ορίσει το όνομα του αρχείου μέσα στο οποίο θα καταγραφούν τα αποτελέσματα των μετρήσεων σε ascci μορφή (πεδίο: Data File Name'), καθώς και τη θέση του αρχείου αυτού, μέσω του browser που βρίσκεται αριστερά στην οθόνη.

Κατά τη διάρκεια των μετρήσεων το πρόγραμμα παρέχει ενδείζεις για τον αριθμό των δειγμάτων που έχουν ληφθεί στο πεδίο 'Sample Number', για τον χρόνο που υπολείπεται για να ληφθεί κάθε μέτρηση στο πεδίο 'TTNS', καθώς και για τον χρόνο που υπολείπεται για να ολοκληρωθεί η διαδικασία των μετρήσεων στο πεδίο 'Time to End'. Επίσης, στα πεδία '0' εως και '7' με την ένδειζη 'Temperature' εμφανίζονται οι τρέχουσες τιμές τις θερμοκρασίας που λαμβάνουν τα θερμοστοιχεία.

Το γραφικό περιβάλλον του περιγράφηκε, παρουσιάζεται στο Σχήμα που ακολουθεί:

🐃 Sampling		
Sampling Image: Symplex set of the set of	Sampling Period (Sec) T T N S 60 1 Sampling Time (Sec) Time To End 3600 1 Start Sampling Sample Number Pause DME 0 Stop Sampling 1	Temperatures 0 U30,4 1 030,5 2 -L50,L 3 -C50,C 4 -050,0 5 -C50,C 6 -C50,C 7 -C50,C
o \mcasuiements_cata		

Σχήμα [2.4-1]: Γραφικό περιβάλλον λογισμικού καταγραφής των μετρήσεων

Για τις ανάγκες των μετρήσεων της παρούσας εργασίας στα πεδία 'Sampling Period' και 'Sampling Time' ορίστηκαν η συχνότητα δειγματοληψίας (60 sec) και η συνολική διάρκεια κάθε κύκλου μετρήσεων (10800 sec). Στο πεδίο 'DME' επιλέχθηκε το κανάλι '0', ώστε να εξασφαλισθεί η καταγραφή των τιμών της πτώσης τάσης που λαμβάνει το ψηφιακό βολτόμετρο που συνδέθηκε με την κάρτα. Στο πεδίο 'Temperature' εμφανίζονται οι τρέχουσες τιμές που αντιστοιχούν στα 2 θερμοστοιχεία που χρησιμοποιήθηκαν: κανάλια '0' και '1'.

2.5 Χαρακτηριστικά συνδέσμων

Στην παρούσα ενότητα θα παρουσιαστούν τα χαρακτηριστικά των υπό δοκιμή συνδέσμων. Οι μόνιμοι ηλεκτρικοί σύνδεσμοι που χρησιμοποιούνται στις μετρήσεις, αφορούν κυρίως στα συστήματα αντικεραυνικής προστασίας για την σύνδεση των αγωγών απαγωγής του κεραυνικού πλήγματος προς τη γείωση. Οι απαιτήσεις για τους λυόμενους αυτούς συνδέσμους, προδιαγράφονται στο πρότυπο EN50164.01 [1]. Κατά τη διαδικασία των μετρήσεων, για την αναζήτηση του θερμικά ισοδύναμου εναλλασσόμενου ρεύματος που επιφέρει στην σταθεροποίηση την ίδια μεταβολή στη θερμοκρασία του κάθε δοκιμίου με το κεραυνικό του ευρωπαϊκού προτύπου, επιλέχθηκε να καταπονηθούν τα ίδια δοκίμια για τα οποία η επίδραση του κεραυνικού ρεύματος στη θερμοκρασία τους είναι ήδη γνωστή. Το κύκλωμα και η διαδικασία των μετρήσεων έχουν περιγραφεί σε προηγούμενη ενότητα.

Στον ακολουθεί δίνονται πίνακα που συνοπτικά τεχνικά τα χαρακτηριστικά των συνδέσμων. Δίνονται δηλαδή η ονομασία, το υλικό, η μάζα, η αντίσταση σε θερμοκρασία περιβάλλοντος μετρούμενη με εναλλασσόμενο ρεύμα 100 Α, οι διαστάσεις των εξωτερικών και των εσωτερικών μεταλλικών μερών που αποτελούν τον σύνδεσμο (φύλλα συνδέσμου), καθώς και οι φωτογραφίες τους. Η ονομασία των δοκιμίων έχει κωδικοποιηθεί, με δύο διαφορετικές μεθόδους. Εκτός από την ονομασία των δοκιμίων από την εταιρία παραγωγής τους, μέσω ενός αριθμού, έχει ορισθεί στα πλαίσια προηγούμενης Διδακτορικής Διατριβής [2] να γίνεται η αναφορά σε αυτά με έναν όρο που αποτελείται από δύο πεδία - το πρώτο αφορά στο σύμβολο του υλικού του συνδέσμου και το δεύτερο είναι ένας λατινικός αριθμός που προσδιορίζει τα χαρακτηριστικά μεγέθη του συνδέσμου – με σκοπό την ευκολότερη χρήση τους. Έτσι, η αναφορά π.χ. στο χάλκινο Δοκίμιο 2001010 γίνεται $\omega \varsigma$ Δοκίμιο Cu III και η αναφορά στο επιψευδαργυρωμένο χαλύβδινο Δοκίμιο 1001010 γίνεται ως Δοκίμιο Zn III. Όλοι οι σύνδεσμοι έχουν τη δυνατότητα σύνδεσης αγωγών διατομής 8 mm² και 10 mm².

Σύνδεσμος αγωγών κυκλικής διατομής τριών πλακιδίων									
(ενδιάμεσο πλακίδιο 2mm) DIN 48845K.									
		Μορφής σύνδεσης –	┝┌┬║						
		Δοκίμιο 2001010	Ονομασία 2212021	Δοκίμιο 1001010					
Ονομασία δο	οκιμίου	Cu III	Cu I	St/tZn III					
Απεικόνιση									
Υλικό		Χαλκός (Cu)	Χαλκός (Cu)	Επιψευδ- αργυρωμένος χάλυβας (St/tZn)					
Μάζα [gr]		400	200	380					
Αντίσταση [μ	ιΩ]	30	10	140					
Διαστάσεις [mm]	Εζωτερικού φύλλου	60 × 60 × 4	$50 \times 50 \times 4$	$60 \times 60 \times 4$					
	Εσωτερικού φύλλου	60 × 60 × 2	$50 \times 50 \times 2$	$60 \times 60 \times 2$					

Πίνακας [2.5-Ι]: Τεχνικά χαρακτηριστικά δοκιμίων

3 Επεξεργασία αποτελεσμάτων και Συμπεράσματα

Η διαδικασία των δοκιμών που διεξάχθηκαν στο εργαστήριο Υψηλών Τάσεων και Ηλεκτρικών Μετρήσεων καθώς και η περιγραφή των χρησιμοποιούμενων δοκιμίων, αναπτύχθηκαν ήδη σε προηγούμενο κεφάλαιο. Αυτό που ενδιαφέρει κυρίως, είναι το δοκίμιο αρχικά να βρίσκετε σε θερμοκρασία περιβάλλοντος και η δύναμη σύσφιζης να είναι η ίδια με αυτή της δοκιμής με κρουστικό ρεύμα. Γνωρίζοντας ήδη για κάθε δοκίμιο την αλλαγή που επιφέρει η εφαρμογή του κρουστικού ρεύματος στη θερμοκρασία του δοκιμίου, αναζητήσαμε πειραματικά την ενεργό τιμή του εναλλασσόμενου ρεύματος που προκαλεί –στη σταθεροποίηση– την ίδια διαφορά θερμοκρασίας. Η τιμή αυτή του εναλλασσόμενου ρεύματος είναι το θερμικά ισοδύναμο του κεραυνικού ρεύματος ανά ηλεκτρικό σύνδεσμο.

Το αντικείμενο του παρόντος κεφαλαίου είναι η γραφική παρουσίαση και επεξεργασία των αποτελεσμάτων των πειραματικών μετρήσεων ανά δοκίμιο και ανά ρεύμα δοκιμής. Στον πίνακα που ακολουθεί παρουσιάζονται συνοπτικά τα αποτελέσματα ανά σύνδεσμο.

Ονομασία δοκιμίου	Θερμικά ισοδύναμο ρεύμα [A]
2001010 Cu III	85
2212021 Cu I	100
1001010 St/tZn III	45

Πίνακας [3-Ι]: Το θερμικά ισοδύναμο (σταθεροποιημένη ενεργός τιμή εναλλασσόμενου ρεύματος) του κεραυνικού ρεύματος

3.1 Παρουσίαση των αποτελεσμάτων των πειραματικών μετρήσεων

Αναλυτικά οι μετρήσεις που διεξάχθηκαν κατά τη διάρκεια των πειραμάτων παρουσιάζονται στο Παράρτημα. Στους πίνακες του Παραρτήματος παρατίθενται τα αποτελέσματα των μετρήσεων βάση της διαδικασίας και του κυκλώματος που παρουσιάσθηκαν στην ενότητα 2.2, όπως προέκυψαν ανά δοκιμή από το λογισμικό που αναλύθηκε στην ενότητα 2.3 και αφορούν στους σταθερούς ηλεκτρικούς συνδέσμους που περιγράφηκαν στην ενότητα 2.4.

То ειδικό λογισμικό καταγραφής των μετρήσεων είχε χρόνο δειγματοληψίας το ένα λεπτό, η διάρκεια κάθε δοκιμής ήταν τρεις ώρες και επομένως καταγράφηκαν 180 μετρήσεις για κάθε δοκίμιο και κάθε ρεύμα δοκιμής. Κάθε μία από αυτές τις μετρήσεις περιλαμβάνει την πτώση τάσης στον εζεταζόμενο σύνδεσμο $(\Delta V[mV])$ και $\tau\iota\varsigma$ θερμοκρασίες στο δοκίμιο ($\theta_1[^\circ C]$) και τον αγωγό ($\theta_2[^\circ C]$). Με βάση την θερμοκρασία του δοκιμίου τη στιγμή της έναρζης κάθε δοκιμής, που ταυτίζεται με την θερμοκρασία του περιβάλλοντος $(\Theta_{apy}, [°C]),$ υπολογίστηκαν ανά μέτρηση και οι αντίστοιχες διαφορές της θερμοκρασίας για το δοκίμιο (Δ $θ_1[°C]$) και για τον αγωγό (Δ $θ_2[°C]$). Επίσης ανά μέτρηση, υπολογίστηκε η στιγμιαία αντίσταση διάβασης του δοκιμίου (R[mΩ]) με βάση την σχέση $R = \frac{\Delta V}{I}$, όπου I [A] είναι το ρεύμα δοκιμής το οποίο παραμένει σταθερό σε όλη την διάρκεια της δοκιμής.

Όπως έχουμε ήδη αναφέρει, το ζητούμενο θερμικά ισοδύναμο ρεύμα του αντίστοιχου κρουστικού, ορίζεται όταν η θερμοκρασία του υπό εξέταση συνδέσμου έχει σταθεροποιηθεί, με διαφορά θερμοκρασίας σύμφωνα με τον Πίνακα [2.2–I] (δηλαδή 6°C με επιτρεπόμενη απόκλιση ±0,5°C). Η θερμοκρασία θεωρείται ότι σταθεροποιείται όταν η τιμή της διαφοράς δύο διαδοχικών τιμών της, που απέχουν μεταξύ τους μία ώρα, δεν είναι μεγαλύτερη από 0,5 °C. Η διαδικασία της σταθεροποίησης συμβαίνει ως εξής: Αρχικά ένα μέρος της ισχύος που

παράγεται από την πηγή καταναλώνεται στο σύνδεσμο προκαλώντας την αύξηση της θερμοκρασίας του και το υπόλοιπο μέρος της ισχύος πηγής διοχετεύεται στο περιβάλλον σαν θερμική ενέργεια. της Σταδιακά καθώς η θερμοκρασία και άρα η αντίσταση του συνδέσμου αυξάνεται, συμβαίνει να αυξάνεται και το ποσοστό της ισχύος που διοχετεύεται στο περιβάλλον $(P = I^2 R = I^2 R_0 (1 + \alpha(\theta - \theta_0))), \mu έχρι τη$ στιγμή της σταθεροποίησης της θερμοκρασίας του συνδέσμου. Τελικά στη σταθεροποίηση, η ισχύς που καταναλώνεται στον σύνδεσμο και διοχετεύεται στο περιβάλλον σαν θερμική ενέργεια ισούται με την συνολική στιγμιαία ενέργεια που παράγεται στην πηγή. Εδώ πρέπει να σημειωθεί ότι στις παρούσες μετρήσεις παρατηρήθηκε η σταθεροποίηση πρακτικά να συμβαίνει νωρίτερα από το πέρας των μετρήσεων, δηλαδή το όριο των τριών ωρών. Ακόμα πρέπει να σημειώσουμε ότι κάποιες από τις δοκιμές έχουν διακοπεί πριν το πέρας των τριών ωρών. Αυτό μπορεί να συμβεί αν παρατηρηθεί υπερθέρμανση, ή αν παρατηρηθεί μεγάλη απόκλιση από το αναμενόμενο αποτέλεσμα.

Στους πίνακες που ακολουθούν παρουσιάζονται εποπτικά τα πειραματικά αποτελέσματα των μετρήσεων ανά σύνδεσμο και ανά δοκιμή. Περιλαμβάνονται οι μέγιστες και οι μέσες τιμές της τάσης ($\Delta V[mV]$) και της αντίστασης ($R[m\Omega]$) στο δοκίμιο καθώς και οι μεταβολές της θερμοκρασίας στο δοκίμιο ($\Delta \theta_1[^{\circ}C]$) και στον αγωγό ($\Delta \theta_2[^{\circ}C]$). Προσεγγιστικά παρουσιάζεται και ο χρόνος σταθεροποίησης ανά δοκιμή [min]. Σημειώνεται ότι οι μέσες τιμές έχουν υπολογιστεί από την σταθεροποίηση και μετά. Με επισήμανση παρουσιάζονται οι μετρήσεις που αντιστοιχούν στο ζητούμενο θερμικά ισοδύναμο ρεύμα.

Ακόμα, ακολουθούν ανά σύνδεσμο οι γραφικές παραστάσεις των μεταβολών της θερμοκρασίας, καθώς και οι μεταβολές της τάσης για κάθε ρεύμα δοκιμής. Ιδιαίτερα για τη τιμή του ρεύματος που αντιστοιχεί στο ζητούμενο θερμικά ισοδύναμο, παρουσιάζονται οι μεταβολές σε όλες τις μετρούμενες τιμές.

Ονομα δοκιμί	σία ου	2001010 Cu III							
Δύναμ: σύσφιζ	Δύναμη σύσφιζης 25 Νm								
I [A]	t [min]	$\Delta V [mV]$		$R \ [m\Omega]$		Δθ1[°C]		Δθ2[°C]	
		Max.	Aver.	Max.	Aver.	Max.	Aver.	Max.	Aver.
150	60	11,0	10,4	0,073	0,069	15,3	14,4	15,8	14,9
100	60	7,3	6,9	0,073	0,069	8,9	8,5	9,4	9,0
85	45	5,8	5,6	0,068	0,066	5,8	5,6	6,3	5,9
80	45	5,2	5,1	0,065	0,064	4,9	4,5	5,3	4,8
50	-	-	-	-	-	-	-	-	-

3.1.1 Αποτελέσματα μετρήσεων δοκιμίου 2001010 Cu III

Πίνακας [3.1-I]: Συνοπτικά αποτελέσματα δοκιμίου 2001010 Cu III

Όπου:

- 1. F: η δύναμη σύσφιζης
- 2. t: ο χρόνος σταθεροποίησης
- 3. Ι: το ρεύμα δοκιμής

και οι μέγιστες και μέσες τιμές στη σταθεροποίηση:

- 4. ΔV: η πτώση τάσης στο δοκίμιο
- 6. Δθ1: η μεταβολή της θερμοκρασίας στο δοκίμιο
- 7. Δθ2: η μεταβολή της θερμοκρασίας στον αγωγό

Σχήμα [3.1-1]: Γραφική απεικόνιση της διαφοράς θερμοκρασίας σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 2001010 Cu III, με δύναμη σύσφιζης 25Nm

Σχήμα [3.1-2]: Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 2001010 Cu III, με δύναμη σύσφιζης 25Nm

Σχήμα [3.1-3]: Γραφική απεικόνιση της θερμοκρασίας (Τ1: στο δοκίμιο, Τ2: στον αγωγό, Δθ: στο δοκίμιο) σε συνάρτηση με το χρόνο, επί του συνδέσμου 2001010 Cu III

Ονομαι δοκιμίο	σία ου	2212021 Cu I							
Δύναμη σύσφιζ	ן ης	11 Nm							
I [A] t [min]		$\Delta V [mV]$		$R \ [m \Omega]$		Δθ1[°C]		Δθ2[°C]	
		Max.	Aver.	Max.	Aver.	Max.	Aver.	Max.	Aver.
120	60	9,8	9,7	0,082	0,081	10,7	10,5	9,5	9,0
100	40	8,2	8,1	0,082	0,081	6,8	6,5	5,8	5,3
90	30	7,3	7,2	0,081	0,081	4,1	3,8	3,2	2,9

3.1.2 Αποτελέσματα μετρήσεων δοκιμίου 2212021 Cu Ι

Πίνακας [3.1-ΙΙ]: Συνοπτικά αποτελέσματα δοκιμίου 2212021 Cu I Όπου:

- 1. F: η δύναμη σύσφιζης
- 2. t: ο χρόνος σταθεροποίησης
- 3. Ι: το ρεύμα δοκιμής

και οι μέγιστες και μέσες τιμές στη σταθεροποίηση:

- 4. ΔV: η πτώση τάσης στο δοκίμιο
- 5. R: η αντίσταση στο δοκίμιο
- 6. ΔθΙ: η μεταβολή της θερμοκρασίας στο δοκίμιο
- 7. Δθ2: η μεταβολή της θερμοκρασίας στον αγωγό

Σχήμα [3.1-4]: Γραφική απεικόνιση της διαφοράς θερμοκρασίας σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 2212021 Cu I, με δύναμη σύσφιζης 11Nm

Σχήμα [3.1-5]: Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 2212021 Cu Ι, με δύναμη σύσφιζης 25Nm

Σχήμα [3.1-6]: Γραφική απεικόνιση της θερμοκρασίας (Τ1: στο δοκίμιο, Τ2: στον αγωγό, Δθ: στο δοκίμιο) σε συνάρτηση με το χρόνο, επί του συνδέσμου 2212021 Cu I

Ονομα δοκιμίο	σία ου	1001010 St/tZn III							
Δύναμη σύσφιζ	ท โทร	11 Nm							
I [A] t[mi	t[min]	ΔV	$\Delta V [mV] \qquad R [m\Omega]$		$m\Omega$]	Δθ1[°C]		Δθ2[°C]	
		Max.	Aver.	Max.	Aver.	Max.	Aver.	Max.	Aver.
90	78	98,0	95,1	1,089	1,056	19,4	19,0	18,6	17,6
50	60	63,2	61,8	1,264	1,236	7,6	7,3	7,4	7,2
45	55	54,1	52,3	1,202	1,162	4,3	4,1	5,6	5,2
40	40	53,8	52,0	1,345	1,300	4,5	4,0	5,8	5,2
35	35	40,1	38,7	1,146	1,106	3,6	2,7	4,4	3,6

3.1.3 Αποτελέσματα μετρήσεων δοκιμίου 1001010 St/tZn III

Πίνακας [3.1-ΙΙΙ]: Συνοπτικά αποτελέσματα δοκιμίου 1001010 St/tZn III Όπου:

- 1. F: η δύναμη σύσφιζης
- 2. t: ο χρόνος σταθεροποίησης
- 3. Ι: το ρεύμα δοκιμής

και οι μέγιστες και μέσες τιμές στη σταθεροποίηση:

- 4. ΔV: η πτώση τάσης στο δοκίμιο
- 5. R: η αντίσταση στο δοκίμιο
- 6. Δθ1: η μεταβολή της θερμοκρασίας στο δοκίμιο
- 7. Δθ2: η μεταβολή της θερμοκρασίας στον αγωγό

Σχήμα [3.1-7]: Γραφική απεικόνιση της διαφοράς θερμοκρασίας σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 1001010 St/tZn III, με δύναμη σύσφιζης 25Nm

Σχήμα [3.1-8]: Γραφική απεικόνιση της πτώσης τάσης σε συνάρτηση με το χρόνο, όλων των δοκιμών επί του συνδέσμου 1001010 St/tZn III, με δύναμη σύσφιζης 25Nm

Σχήμα [3.1-9]: Γραφική απεικόνιση της θερμοκρασίας (Τ1: στο δοκίμιο, Τ2: στον αγωγό, Δθ: στο δοκίμιο) σε συνάρτηση με το χρόνο, επί του συνδέσμου 1001010 St/tZn III

Σε αρκετές γραφικές παραστάσεις, παρατηρείται ότι κατά τη σταθεροποίηση της διαφοράς της θερμοκρασίας, αυτή δεν παραμένει σταθερή αυστηρά σε μια μόνο τιμή, αλλά λόγω διάφορων εζωγενών ως προς τη μέτρηση παραγόντων μεταβάλλεται ελαφρά.

3.2 Επεξεργασία των αποτελεσμάτων των πειραματικών μετρήσεων

Στη συνέχεια θα γίνει μία προσπάθεια σύγκρισης των αποτελεσμάτων που βρέθηκαν πειραματικά, με αυτά που προκύπτουν από την ανάλυση του θεωρητικού μοντέλου.

3.2.1 Σύγκριση θεωρητικού τύπου για το φορτίο του κεραυνικού ρεύματος με τα πειραματικά αποτελέσματα

1η ΠΡΟΣΕΓΓΙΣΗ: Με βάση το φορτίο

Θεωρώντας γνωστά μεγέθη την τιμή του ισοδύναμου εναλλασσόμενου ρεύματος που μετρήθηκε για κάθε σύνδεσμο, καθώς και το χρόνο σταθεροποίησης, υπολογίσθηκε το μεταφερόμενο φορτίο. Στη συνέχεια υπολογίσθηκε το φορτίο που προκύπτει από το ισοδύναμο κεραυνικό ρεύμα και συγκρίθηκαν τα αποτελέσματα.

Από τις μετρήσεις που έγιναν, έγινε μια προσπάθεια ευρέσεως με πειραματικό τρόπο της τιμής του εναλλασσομένου ρεύματος (Ι) το οποίο είναι ισοδύναμο με το αντίστοιχο κεραυνικό, δηλαδή βρέθηκε η ενεργός τιμή του ρεύματος για το οποίο έχουμε διαφορά θερμοκρασίας στο σύνδεσμο περίπου 6°C.

Από τις δοθείσες γραφικές παραστάσεις παρατηρήθηκε επίσης ότι ο χρόνος σταθεροποίησης (t) της διαφοράς θερμοκρασίας είναι διαφορετικός για κάθε σύνδεσμο.

Έτσι έχουμε τα παρακάτω συγκεντρωτικά αποτελέσματα για κάθε σύνδεσμο:

2001010 Cu III	:	$I_1 = 85A$, $t_1 = 70min$
2212021 Cu I	:	$I_2 = 100A$, $t_2 = 30min$
1001010 St/tZn II	II :	$I_{3} = 45A$, $t_{3} = 65min$

Είναι γνωστό ότι το μεταφερόμενο φορτίο για κάθε σύνδεσμο, δίνεται από τη σχέση:

$$Q = \int_{0}^{t} i(t)dt \qquad [3.2-1]$$

και επειδή στη συγκεκριμένη περίπτωση θεωρούμε την ενεργό τιμή του ρεύματος (Ι) σταθερή, έχουμε:

$$Q = \int_{0}^{t} i(t)dt = I \cdot t \qquad [3.2-2]$$

Οπότε για την περίπτωση του ισοδύναμου ρεύματος Ι η τιμή του μεταφερόμενου φορτίου για κάθε σύνδεσμο, θα είναι:

 $Q_1 = I_1 t_1 = 357000 Asec$ $Q_2 = I_2 t_2 = 180000 Asec$ $Q_3 = I_3 t_3 = 175500 Asec$

Θεωρητικά το φορτίο του κεραυνικού ρεύματος δίνεται από τον τύπο:

$$Q_{\kappa\varepsilon\rho\alpha\nu\nu} = \int_{0}^{a} I_{max} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) dt \qquad [3.2-3]$$

όπου:

a = 2msec $I_{max} = 100 \ kA$ $\lambda_1 = 2.100 \ sec^{-1}$ $\lambda_2 = 150.000 \ sec^{-1}$

Όπου το λ_1 και λ_2 αφορούν τη μορφή 10/350μs του κεραυνικού ρεύματος. Έγινε η επιλογή αυτής της μορφής του κεραυνικού ρεύματος επειδή αυτή ικανοποιεί τις απαιτήσεις του ευρωπαϊκού προτύπου EN50164.1, για ανοιγμένη τιμή ενέργειας 2,5MJ/Ω για την διάρκεια των 2msec και κορυφή ρεύματος 100kA.

Με βάση τα παραπάνω δεδομένα και κάνοντας τις πράζεις βρέθηκε ότι

 $Q_{\kappa\epsilon\rho\alpha\nu\nu} = 46,2383$ Asec

Θεωρητικά σύμφωνα με την υπόθεση που έγινε, θα αναμενόταν ότι $Q_{\kappa \varepsilon \rho a \nu \nu} = Q_1 = Q_2 = Q_3$, γεγονός που δεν ισχύει. Παρατηρούμε ότι οι τιμές των Q_2 , Q_3 είναι σχετικά παρεμφερείς (τις ίδιας τάξης μεγέθους), αλλά απέχουν πολύ από την τιμή Q_1 καθώς και από την τιμή που προκύπτει από το θεωρητικό τύπο του $Q_{\kappa \varepsilon \rho a \nu \nu}$.

Ένας λόγος στον οποίο μπορεί να οφείλεται αυτή η διαφορά είναι ότι η φύση του κεραυνικού ρεύματος είναι διαφορετική από του εναλλασσόμενου που εφαρμόστηκε στους συνδέσμους, γεγονός το οποίο πιθανότατα οδηγεί σε μη συγκρίσιμα αποτελέσματα.

Ακόμα όταν σε υψηλές συχνότητες εφαρμόζουμε κεραυνικό ρεύμα στους λυόμενους συνδέσμους αυτό ρέει επιδερμικά σε αντίθεση με το εναλλασσόμενο το οποίο διαχέεται σε όλο τον σύνδεσμο. Αυτός μπορεί να είναι ένας επιπλέον λόγος για την μεγάλη απόκλιση που παρουσιάζεται στα θερμικά αποτελέσματα.

2η ΠΡΟΣΕΓΓΙΣΗ: Με βάση την ενέργεια

Θεωρώντας γνωστή την τιμή του θερμικά ισοδύναμου εναλλασσόμενου ρεύματος για κάθε σύνδεσμο, εφαρμόζεται η σχέση που προσομοιώνει το θεωρητικό μοντέλο:

$$\int_{0}^{2msec} \int_{\kappa \in \rho a \cup v}^{2} (t) dt = \int_{0}^{t_{\sigma \tau a \theta}} I^{2} (t) = 2,5 M J / \Omega$$
[3.2-4]

Η παραπάνω σχέση γίνεται:

$$\int_{0}^{t_{\sigma\tau\alpha\theta}} I^{2}(t)dt = \int_{0}^{t_{\sigma\tau\alpha\theta}} 2I_{\varepsilon\nu}^{2} \sin^{2}(\omega t)dt$$

$$2I_{\varepsilon\nu}^{2}\int_{0}^{t_{ora\theta}}\frac{1-\cos(2\omega t)}{2}dt = I_{\varepsilon\nu}^{2}\int_{0}^{t_{ora\theta}}(1-\cos(2\omega t))dt = 2,5MJ/\Omega$$
[3.2-5]

επιλύοντας την ως προς το χρόνο σταθεροποίησης έχουμε:

$$t_{\sigma\tau\alpha\theta} - \frac{1}{2\omega}\sin(2\omega t) = \frac{2.5 \cdot 10^6}{I_{\varepsilon\nu}^2}$$
[3.2-6]

Οπότε για κάθε σύνδεσμο, έχουμε τα παρακάτω αποτελέσματα:

2001010: $\gamma_{1\alpha} I_1 = 85A$ $t_1 = 692sec = 11,5min$ 2212021: $\gamma_{1\alpha} I_2 = 100A$ $t_2 = 500sec = 8,3min$ 1001010: $\gamma_{1\alpha} I_3 = 45A$ $t_3 = 2469,14sec = 41,15min$

Σε σχέση με τα αντίστοιχα πειραματικά αποτελέσματα, παρατηρούμε ότι υπάρχουν πολύ μεγάλες αποκλίσεις, πράγμα που καθιστά την προσέγγισή μας επισφαλή.

3.2.2 Σύγκριση θεωρητικού τύπου για τη σχέση 'πτώσης τάσης – θερμοκρασίας' με τα πειραματικά αποτελέσματα

Θα γίνει μια προσπάθεια να αποδείζουμε τον θεωρητικό τύπο με τον οποίο η ανύψωση της θερμοκρασίας σχετίζεται με την πτώση τάσης στον σύνδεσμο.

Η διαφορά δυναμικού κατά μήκος των συνδέσμων (ΔV) ή η διαφορά θερμοκρασίας στο σημείο επαφής (Δθ) αποτελεί κριτήριο για τη συμπεριφορά του διακόπτη υπό ονομαστικό ρεύμα (έλεγχος υπερθέρμανσης).

Ισχύει μια σχέση της μορφής:

$$\Delta V = k\sqrt{\Delta\theta}$$
 [3.2-7]

Όπου k μια σταθερά που εξαρτάται από το υλικό και τη γεωμετρία της επαφής και την ποσότητα των ξένων επικαθίσεων. Για καθαρές επαφές αργύρου η τιμή του κ είναι 0,00740 mV/°C, για χάλκινες επαφές είναι 0,00744 mV/°C. Ύστερα από μακρά χρήση, όταν ξένο υλικό έχει επικαθίσει στις επαφές, κυρίως σκόνη και μεταλλικά οζείδια, αυτή η σταθερά k μπορεί να πάρει τιμή διπλάσια της κανονικής που προκαλεί δυσλειτουργίες στις επαφές που λειτουργούν υπό ονομαστικά ρεύματα.

Οι μετρήσεις που έδωσαν τις παραπάνω τιμές του k έγιναν σε καθαρές επιφάνειες.

Στη συνέχεια παρατίθενται οι γραφικές παραστάσεις $\Delta V = f(\sqrt{\Delta \theta})$ για τον κάθε σύνδεσμο. Σε καθέναν από τους συνδέσμους βρέθηκε, για το κάθε ρεύμα που εφαρμόστηκε, η χρονική στιγμή στην οποία σταθεροποιείται η διαφορά θερμοκρασίας Δθ. Στη συνέχεια με βάση την αντίστοιχη γραφική παράσταση $\Delta V = f(t)$, παρατηρήθηκε η πτώση τάσης στον λυόμενο σύνδεσμο τη συγκεκριμένη χρονική στιγμή. Έτσι προκύπτουν τα παρακάτω αποτελέσματα ανά σύνδεσμο:

Ονομασία δοκιμίου	I [A]	t [min]	∆V [mV]	Δθ₁[°C]	$\sqrt{\varDelta heta_I}$
	150	60	11	14,6	3,820995
2001010	100	60	7	8,3	2,880972
	85	45	5,5	5,2	2,280351
	80	45	5	4,3	2,073644
	50	-	-	-	-

Πίνακας [3.2-Ι]: Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 2001010 Cu III

Σχήμα [3.2-1]: Γραφική απεικόνιση της ρίζας της διαφοράς της θερμοκρασίας σε σχέση με την πτώση τάσης, επί του συνδέσμου 2001010 Cu III

Ονομασία δοκιμίου	I [A]	t [min]	∆V [mV]	Δθ ₁ [°C]	$\sqrt{\varDelta heta_I}$
2212021	120	60	9,8	10,4	3,224900
	100	40	8,1	6,3	2,509980
a a	90	30	7,2	3,6	1,897367

Πίνακας [3.2-ΙΙ]: Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 2212021 Cu I

Σχήμα [3.2-2]: Γραφική απεικόνιση της ρίζας της διαφοράς της θερμοκρασίας σε σχέση με την πτώση τάσης, επί του συνδέσμου 2212021 Cu I

Ονομασία δοκιμίου	I [A]	t [min]	∆V [mV]	$\Delta \theta_1[^{\circ}C]$	$\sqrt{\varDelta heta_I}$
	90	78	93	19,1	4,370355
1001010	50	60	62	7,2	2,683282
	45	55	52,3	3,8	1,949359
0	40	40	52,3	4	2,000000
	35	35	38	2,4	1,549193

Πίνακας [3.2-ΙΙΙ]: Αποτελέσματα πτώσης τάσης και διαφοράς θερμοκρασίας για το δοκιμίο 1001010 St/tZn ΙΙΙ

Σχήμα [3.2-3]: Γραφική απεικόνιση της ρίζας της διαφοράς της θερμοκρασίας σε σχέση με την πτώση τάσης, επί του συνδέσμου 1001010 St/tZn III

Παρατηρήθηκε ότι και για τους τρεις συνδέσμους επαληθεύεται η γραμμική σχέση μεταξύ πτώσης τάσης και ρίζας διαφοράς θερμοκρασίας. Για την ακριβή τιμή του συντελεστή k πρέπει να γίνουν επιπλέον μετρήσεις.

3.3 Γενικά συμπεράσματα

Από τη θεωρητική προσέγγιση γίνεται φανερό ότι υπάρχουν μεγάλες διαφορές μεταξύ θεωρητικών και πειραματικών αποτελεσμάτων. Αυτό πιθανώς να οφείλεται στο ότι η καταπόνηση με το εναλλασσόμενο ρεύμα διαρκεί πολύ περισσότερο χρόνο, με αποτέλεσμα η παραγόμενη θερμότητα να απάγεται στο περιβάλλον και κατά συνέπεια, η υπολογιζόμενη ενέργεια να μην είναι συγκρίσιμη με την αντίστοιχη εκλυόμενη του κεραυνικού ρεύματος.

Evτούτοις, διαδικασία μέτρησης του ζητούμενου θερμικά η ισοδύναμου ρεύματος, με το αντίστοιχο κεραυνικό, είναι αρκετά απλή, εύκολα εφαρμόσιμη και εφικτή σε κάθε εργαστήριο, αφού απαιτεί πολύ βασικό εργαστηριακό εξοπλισμό. Και μπορεί μεν να μην οδήγησε στην επαλήθευση της αρχικής υπόθεσης για την εύρεση του θερμικά ισοδύναμου ρεύματος, αλλά στην εξαγωγή χρήσιμων συμπερασμάτων για τους συνδέσμους που χρησιμοποιούνται στα συστήματα αντικεραυνικής προστασίας.

Η διαδικασία αυτή εφαρμόστηκε σε συνδέσμους διαφορετικών υλικών και γεωμετρικών χαρακτηριστικών για λόγους σύγκρισης. Στις μετρήσεις που έγιναν στο χάλκινο δοκίμιο το ρεύμα αζιολόγησης είναι αρκετά μεγαλύτερο, η θερμοκρασία που αναπτύσσεται είναι μικρότερη και έχει μικρότερη τιμή αντίστασης σε σχέση με το χαλύβδινο δοκίμιο. Αυτό οφείλεται στο ότι ο χαλκός έχει καλύτερο συντελεστή αγωγιμότητας, οπότε μπορεί να θεωρηθεί ως καταλληλότερο υλικό για χρήση στα συστήματα αντικεραυνικής προστασίας και γειώσεων.

Η μάζα είναι επίσης ένας παράγοντας για την τιμή του ζητούμενου θερμικά ισοδύναμου ρεύματος, χωρίς αυτό να σημαίνει ότι είναι και απόλυτος. Από τις δοθείσες μετρήσεις, παρατηρούμε ότι δοκίμια με μεγαλύτερες μάζες έχουν και μεγαλύτερη τιμή ρεύματος. Τέλος, σημαντική παρατήρηση είναι ότι η απαίτηση του προτύπου για αντίσταση κάτω του 1mΩ τηρείται σε όλες τις μετρήσεις.

Προτείνεται η περαιτέρω διερεύνηση του θέματος με διαφορετική θεωρητική προσέγγιση του θέματος και επιπλέον μετρήσεις, ώστε να επιτευχθεί η εύρεση ενός ρεύματος θερμικά ισοδύναμου του κεραυνικού που πιστεύεται ότι θα αποτελέσει ένα χρήσιμο και εύχρηστο κριτήριο αξιολόγησης της αξιοπιστίας των συνδέσμων που χρησιμοποιούνται στα συστήματα αντικεραυνικής προστασίας και γειώσεων.

4 Παράρτημα: Αναλυτικές πειραματικές μετρήσεις

Στο παράρτημα αυτό δίνονται αναλυτικά οι μετρήσεις που ελήφθησαν κατά την πειραματική διαδικασία. Συνοπτική παρουσίαση των αποτελεσμάτων που ακολουθούν βρίσκεται στην ενότητα 3.1.

Δοκ	íµıo 20(01010 _	50 A _	25 Nm	ם _ T _{αρχ.}	=29 °C		Δοκ	íµıo 200	01010 _	50 A _	25 Nm	η _ Τ _{αρχ.}	=29 °C
α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	Ī	α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	3,2	31,1	2,1	30,3	1,3	0,064	ľ	46	3,2	29,8	0,8	31,2	2,2	0,064
2	3,2	30,3	1,3	30,3	1,3	0,064		47	3,2	31,7	2,7	31,1	2,1	0,064
3	3,2	31,4	2,4	30,3	1,3	0,064		48	3,2	32,1	3,1	31,1	2,1	0,064
4	3,2	29,9	0,9	30,4	1,4	0,064		49	3,2	30,7	1,7	31,2	2,2	0,064
5	3,2	29,1	0,1	30,4	1,4	0,064		50	3,2	29,9	0,9	31,1	2,1	0,064
6	3,1	31,2	2,2	30,3	1,3	0,062		51	3,2	31,2	2,2	31,1	2,1	0,064
7	3,2	29,1	0,1	30,5	1,5	0,064		52	3,2	32,0	3,0	31,1	2,1	0,064
8	3,2	31,3	2,3	30,5	1,5	0,064		53	3,2	31,0	2,0	31,1	2,1	0,064
9	3,2	30,6	1,6	30,6	1,6	0,064		54	3,2	30,6	1,6	31,2	2,2	0,064
10	3,2	29,9	0,9	30,5	1,5	0,064		55	3,1	31,3	2,3	31,2	2,2	0,062
11	3,2	30,5	1,5	30,7	1,7	0,064		56	3,2	31,4	2,4	31,1	2,1	0,064
12	3,2	29,2	0,2	30,7	1,7	0,064		57	3,1	29,8	0,8	31,2	2,2	0,062
13	3,2	29,7	0,7	30,7	1,7	0,064	-	58	3,1	29,9	0,9	31,2	2,2	0,062
14	3,2	31,5	2,5	30,6	1,6	0,064	-	59	3,1	31,0	2,6	31,2	2,2	0,062
15	<u> </u>	<u>31,0</u> 20.7	2,0	30,7	1,7	0,004		61	<u>, ।</u> २२	32, I 31 7	, । ০ ব	31,2	2,2	0,062
10	3.2	29,7	23	30,7	1,7	0,004		62	 3_1	32 /	2,1	31,2	2,2	0,004
18	3.2	30.4	2,3	30,7	1,7	0,004		63	3.1	31.5	2.5	31.7	2,1	0,002
19	3.2	31.9	2.9	30.7	1,7	0,004	-	64	3.1	31.5	2,5	31.2	2,2	0,004
20	3.2	31.8	2.8	30.7	1,7	0.064		65	3.1	29.7	0.7	31.2	2.2	0.062
21	3.2	31.6	2.6	30.8	1.8	0.064		66	3.1	29.9	0.9	31.2	2.2	0.062
22	3.2	31.6	2.6	30.8	1.8	0.064		67	3.1	30.0	1.0	31.2	2.2	0.062
23	3,2	31,9	2,9	30,8	1,8	0,064		68	3,1	30,9	1,9	31,2	2,2	0,062
24	3,2	29,7	0,7	30,9	1,9	0,064		69	3,1	29,9	0,9	31,2	2,2	0,062
25	3,2	31,0	2,0	30,8	1,8	0,064		70	3,1	30,7	1,7	31,2	2,2	0,062
26	3,2	30,2	1,2	30,9	1,9	0,064		71	3,1	29,8	0,8	31,2	2,2	0,062
27	3,2	32,0	3,0	30,9	1,9	0,064		72	3,1	29,9	0,9	31,0	2,0	0,062
28	3,2	29,6	0,6	31,0	2,0	0,064		73	3,1	31,2	2,2	31,0	2,0	0,062
29	3,2	31,2	2,2	30,9	1,9	0,064								
30	3,2	31,6	2,6	30,9	1,9	0,064								
31	3,2	30,8	1,8	30,9	1,9	0,064								
32	3,2	30,8	1,8	31,1	2,1	0,064	-							
33	3,2	32,1	3,1	31,0	2,0	0,064								
34	<u>3,∠</u>	30,8	1,8	31,0	2,0	0,064								
20	3,2	30,0	1,0	30.9	2, I 1 Q	0,004								
30	3.2	20,0	1,0	31.2	2.2	0,004								
38	3.2	31.7	27	31.0	2,2	0,004								
39	3.2	30.7	1.7	31.0	2.0	0.064	╞							<u></u>
40	3.2	31.7	2.7	31.1	2.1	0.064								
41	3,2	32,2	3,2	31,0	2,0	0,064								
42	3,2	30,3	1,3	31,2	2,2	0,064								
43	3,2	32,3	3,3	31,0	2,0	0,064								
44	3,2	32,0	3,0	31,2	2,2	0,064								
45	3,2	32,2	3,2	31,1	2,1	0,064								

4.1 Αναλυτικές Μετρήσεις Συνδέσμου 2001010 Cu III

Δοκίμ	ווס 200 [,]	1010_3	80 A _	25 Nm	_ Ταρχ	.=30 °C	Δοκί	μιο 200	1010 _	80 A _	25 Nm	_ Ταρχ	(.=30 °C
α/α	ΔV [Mv]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [Μω]	α/α	ΔV [Mv]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [Μω]
1	5,1	30,8	0,8	31,2	1,2	0,064	46	5,1	34,4	4,4	34,5	4,5	0,064
2	5,1	30,8	0,8	31,3	1,3	0,064	47	5,1	34,1	4,1	34,8	4,8	0,064
3	5,1	31,1	1,1	31,5	1,5	0,064	48	5,1	34,3	4,3	34,6	4,6	0,064
4	5,1	31,2	1,2	31,4	1,4	0,064	49	5,1	34,2	4,2	34,8	4,8	0,064
5	5,1	31,4	1,4	31,7	1,7	0,064	50	5,2	34,5	4,5	34,5	4,5	0,065
6	5,1	31,4	1,4	32,0	2,0	0,064	51	5,1	34,2	4,2	34,9	4,9	0,064
7	5,1	31,6	1,6	32,3	2,3	0,064	52	5,2	34,3	4,3	34,8	4,8	0,065
8	5,0	31,8	1,8	32,1	2,1	0,063	53	5,1	34,5	4,5	34,7	4,7	0,064
9	5,0	32,0	2,0	32,5	2,5	0,063	54	5,2	34,5	4,5	34,7	4,7	0,065
10	5,1	32,0	2,0	32,7	2,7	0,064	55	5,2	34,3	4,3	34,9	4,9	0,065
11	5,1	32,2	2,2	32,8	2,8	0,064	56	5,2	34,5	4,5	34,6	4,6	0,065
12	5,1	32,4	2,4	32,7	2,7	0,064	57	5,1	34,4	4,4	34,8	4,8	0,064
13	5,1	32,4	2,4	32,9	2,9	0,064	58	5,2	34,5	4,5	34,7	4,7	0,065
14	5,1	32,5	2,5	32,9	2,9	0,064	59	5,2	34,4	4,4	34,8	4,8	0,065
15	5,1	32,7	2,7	33,2	3,2	0,064	60	5,2	34,4	4,4	34,8	4,8	0,065
16	5,1	32,8	2,8	33,2	3,2	0,064	61	5,2	34,6	4,6	34,7	4,7	0,065
17	5,1	32,9	2,9	33,2	3,2	0,064	62	5,2	34,4	4,4	34,8	4,8	0,065
18	5,1	33,0	3,0	33,2	3,2	0,064	63	5,2	34,6	4,6	34,7	4,7	0,065
19	5,1	33,0	3,0	33,6	3,6	0,064	64	5,2	34,6	4,6	34,7	4,7	0,065
20	5,1	33,2	3,2	33,5	3,5	0,064	65	5,2	34,6	4,6	34,9	4,9	0,065
21	5,1	33,2	3,2	33,7	3,7	0,064	66	5,2	34,5	4,5	35,1	5,1	0,065
22	5,1	33,3	3,3	33,8	3,8	0,064	67	5,2	34,5	4,5	34,9	4,9	0,065
23	5, I	33,5	3,5	33,0	3,0	0,064	60	5,2	34,5	4,5	34,9	4,9	0,065
24	5,1 5,1	33,5 33,5	3,5	33,0	3,0 3,0	0,004	70	5,2	34,5	4,5	30,1	5, I ⊿ 7	0,005
25	5,1	33,5	3,5	33,8	3,9	0,004	70	5,2	34,7	4,7	34,7	4,7	0,005
20	5,1	33,0	3,0	34.1	 _/_1	0,004	72	5.2	34,0	4,0	35.0	4 ,0	0,004
28	5,1	33.7	37	33.9	39	0,004	73	5.2	34.8	4.8	34.7	<u> </u>	0,005
29	5 1	33.8	3.8	33.9	3.9	0.064	74	5.2	34.8	4.8	34.8	4.8	0.065
30	5 1	33.8	3.8	34.0	4.0	0.064	75	5.2	34.5	4.5	35.1	5.1	0.065
31	5.1	33.6	3.6	34.3	4.3	0.064	76	5.2	34.6	4.6	34.9	4.9	0.065
32	5.1	33.7	3.7	34.4	4.4	0.064	77	5.2	34.7	4.7	34.9	4.9	0.065
33	5,1	33,8	3.8	34,3	4,3	0,064	78	5.2	34,5	4,5	35,1	5,1	0,065
34	5,1	34,0	4,0	34,2	4,2	0,064	79	5,2	34,8	4,8	34,8	4,8	0,065
35	5,1	33,8	3,8	34,5	4,5	0,064	80	5,2	34,8	4,8	34,8	4,8	0,065
36	5,1	34,1	4,1	34,1	4,1	0,064	81	5,2	34,8	4,8	34,9	4,9	0,065
37	5,1	33,9	3,9	34,5	4,5	0,064	82	5,2	34,8	4,8	34,9	4,9	0,065
38	5,1	34,0	4,0	34,6	4,6	0,064	83	5,2	34,5	4,5	35,2	5,2	0,065
39	5,1	34,0	4,0	34,7	4,7	0,064	84	5,1	34,6	4,6	35,1	5,1	0,064
40	5,1	34,1	4,1	34,5	4,5	0,064	85	5,1	34,6	4,6	35,1	5,1	0,064
41	5,1	34,0	4,0	34,6	4,6	0,064	86	5,1	34,9	4,9	34,9	4,9	0,064
42	5,1	34,2	4,2	34,5	4,5	0,064	87	5,1	34,7	4,7	34,9	4,9	0,064
43	5,1	34,1	4,1	34,7	4,7	0,064	88	5,1	34,6	4,6	35,1	5,1	0,064
44	5,1	34,3	4,3	34,4	4,4	0,064	89	5,1	34,7	4,7	34,8	4,8	0,064
45	5,1	34,3	4,3	34,5	4,5	0,064	90	5,1	34,7	4,7	34,9	4,9	0,064

Δοκ	ίμιο 20	01010 _	80 A _	25 Nm	ם_ T _{αρχ.}	=30 °C	Δοκ	íµıo 200	01010 _	80 A _	25 Nn	n _ T _{αρχ}	=30 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	<u></u> Δθ2 [°C]	R [mΩ]
91	5,1	34,8	4,8	34,9	4,9	0,064	136	5,2	34,6	4,6	34,9	4,9	0,065
92	5,1	34,8	4,8	34,8	4,8	0,064	137	5,1	34,5	4,5	34,9	4,9	0,064
93	5,1	34,7	4,7	34,7	4,7	0,064	138	5,2	34,5	4,5	34,9	4,9	0,065
94	5,1	34,7	4,7	34,9	4,9	0,064	139	5,2	34,5	4,5	34,9	4,9	0,065
95	5,1	34,7	4,7	34,9	4,9	0,064	140	5,2	34,4	4,4	34,9	4,9	0,065
96	5,1	34,7	4,7	34,8	4,8	0,064	141	5,2	34,4	4,4	34,9	4,9	0,065
97	5,1	34,8	4,8	34,7	4,7	0,064	142	5,2	34,5	4,5	34,8	4,8	0,065
98	5,1	34,7	4,7	34,8	4,8	0,064	143	5,2	34,5	4,5	34,7	4,7	0,065
99	5,1	34,8	4,8	34,7	4,7	0,064	144	5,2	34,4	4,4	34,8	4,8	0,065
100	5,1	34,5	4,5	35,0	5,0	0,064	145	5,2	34,5	4,5	34,5	4,5	0,065
101	5,1	34,5	4,5	35,0	5,0	0,064	146	5,2	34,5	4,5	34,6	4,6	0,065
102	5,1	34,8	4,8	34,7	4,7	0,064	147	5,2	34,3	4,3	34,9	4,9	0,065
103	5,1	34,5	4,5	35,0	5,0	0,064	148	5,2	34,4	4,4	34,6	4,6	0,065
104	5,1	34,6	4,6	35,1	5,1	0,064	149	5,2	34,5	4,5	34,5	4,5	0,065
105	5,1	34,6	4,6	34,9	4,9	0,064	150	5,2	34,2	4,2	34,9	4,9	0,065
100	5, I 5 1	34,0	4,0	34,9	4,9	0,064	151	5,2	34,2	4,2	34,5	4,5	0,005
107	5, I 5 1	34,5	4,5 1 Q	30,2),∠ 2,2	0,064	152	5,2	34,4	4,4	34,5	4,5 4 Q	0,005
100	5,1	34,0	4,0	35.0	4,0 5,0	0,004	153	5.1	34,2	4,2	34,0	4,0	0,005
110	5,1	34,5	4,5	35,0	5,0	0,004	154	5.1	34,3	4,5	34,4	4,4	0,004
111	5,1	34,5	4,5	35.0	5.0	0,004	156	5.2	34.0	4,5	34.0	4,0	0,004
112	5.1	34.8	4.8	34.9	4.9	0.064	157	5.2	34.3	4.3	34.4	44	0,005
113	5.1	34.5	4.5	35.1	5.1	0.064	158	5.2	34.4	4.4	34.4	4.4	0.065
114	5.1	34.7	4.7	34.8	4.8	0.064	159	5.2	34.1	4.1	34.6	4.6	0.065
115	5,1	34,5	4,5	35,1	5,1	0,064	160	5,1	34,1	4,1	34,6	4,6	0,064
116	5,1	34,9	4,9	34,8	4,8	0,064	161	5,2	34,1	4,1	34,3	4,3	0,065
117	5,1	34,6	4,6	35,1	5,1	0,064	162	5,2	34,1	4,1	34,5	4,5	0,065
118	5,1	34,8	4,8	35,2	5,2	0,064	163	5,2	34,1	4,1	34,5	4,5	0,065
119	5,1	34,6	4,6	35,3	5,3	0,064	164	5,2	34,2	4,2	34,2	4,2	0,065
120	5,1	34,7	4,7	35,1	5,1	0,064	165	5,1	34,0	4,0	34,5	4,5	0,064
121	5,1	34,7	4,7	35,2	5,2	0,064	166	5,1	34,1	4,1	34,4	4,4	0,064
122	5,1	34,7	4,7	35,2	5,2	0,064	167	5,1	34,2	4,2	34,2	4,2	0,064
123	5,2	34,5	4,5	35,2	5,2	0,065	168	5,1	34,2	4,2	34,1	4,1	0,064
124	5,1	34,9	4,9	34,9	4,9	0,064	169	5,1	34,1	4,1	34,5	4,5	0,064
125	5,1	34,6	4,6	35,2	5,2	0,064	170	5,1	34,1	4,1	34,3	4,3	0,064
126	5,2	34,6	4,6	35,2	5,2	0,065	171	5,1	34,1	4,1	34,1	4,1	0,064
127	5,1	34,7	4,7	35,1	5,1	0,064	172	5,1	34,0	4,0	34,2	4,2	0,064
128	5,2	34,6	4,6	35,0	5,0	0,065	173	5,1	34,0	4,0	34,2	4,2	0,064
129	5,2	34,6	4,6	34,9	4,9	0,065	174	5,1	34,1	4,1	34,1	4,1	0,064
130	5,2	34,5	4,5	35,1	5,1	0,065	175	5,1	34,0	4,0	34,3	4,3	0,064
131	5,2	34,5	4,5	35,0	5,0	0,065	1/6	5,1	33,8	3,8	34,5	4,5	0,064
132	5,1	34,5 24 G	4,5	35,1	5,1 1	0,064	1//	5,1	34,0	4,0	34,1	4,1	0,064
133),∠ ⊑ 1	34,0	4,0	34,0	4,ð	0,000	1/8	5, I 5 2	33,9	3,9	34,3	4,3	0,004
134	5,1	34,0 34 8	4,0 4 R	34,9	4,9 1 0	0,004	1/9	5.2	33.9	<u>,</u> २ व	34, I 34 3	4, I ⊿ २	0,000
133	J, I	J + ,0	+,0	J+,J	+,3	0,004	100	J,Z	55,9	5,9	J 1 ,J	+,J	0,000

Δοκί	μιο 200	1010 _	85 A _	25 Nm	_ Τ _{αρχ.} =	=29,5 °C	Δοκί	μιο 200	1010 _	85 A _	25 Nm	_ Τ _{αρχ.} =	=29,5 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	∆θ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	5,4	29,5	0,0	30,1	0,6	0,064	46	5,4	34,5	5,0	35,3	5,8	0,064
2	5,4	29,9	0,4	30,0	0,5	0,064	47	5,4	34,6	5,1	35,0	5,5	0,064
3	5,4	29,7	0,2	30,5	1,0	0,064	48	5,4	34,5	5,0	35,3	5,8	0,064
4	5,4	30,1	0,6	30,7	1,2	0,064	49	5,4	34,8	5,3	35,0	5,5	0,064
5	5,3	30,4	0,9	30,7	1,2	0,062	50	5,5	34,6	5,1	35,3	5,8	0,065
6	5,4	30,4	0,9	31,0	1,5	0,064	51	5,5	34,6	5,1	35,3	5,8	0,065
7	5,4	30,8	1,3	31,1	1,6	0,064	52	5,5	34,6	5,1	35,3	5,8	0,065
8	5,4	30,7	1,2	31,6	2,1	0,064	53	5,5	34,9	5,4	35,0	5,5	0,065
9	5,4	31,2	1,7	31,5	2,0	0,064	54	5,5	34,9	5,4	35,1	5,6	0,065
10	5,4	31,2	1,7	32,0	2,5	0,064	55	5,5	34,7	5,2	35,4	5,9	0,065
11	5,4	31,6	2,1	31,9	2,4	0,064	56	5,5	34,9	5,4	35,1	5,6	0,065
12	5,4	31,7	2,2	32,0	2,5	0,064	57	5,5	34,9	5,4	35,1	5,6	0,065
13	5,4	31,7	2,2	32,4	2,9	0,064	58	5,5	34,9	5,4	35,1	5,6	0,065
14	5,4	32,0	2,5	32,4	2,9	0,064	59	5,5	34,8	5,3	35,4	5,9	0,065
15	5,4	32,3	2,8	32,5	3,0	0,064	60	5,5	34,9	5,4	35,4	5,9	0,065
16	5,4	32,1	2,6	33,0	3,5	0,064	61	5,5	34,9	5,4	35,2	5,7	0,065
17	5,4	32,4	2,9	32,8	3,3	0,064	62	5,5	34,8	5,3	35,5	6,0	0,065
18	5,4	32,6	3,1	32,9	3,4	0,064	63	5,5	35,0	5,5	35,2	5,7	0,065
19	5,4	32,5	3,0	33,3	3,8	0,064	64	5,5	35,0	5,5	35,1	5,6	0,065
20	5,4	32,8	3,3	33,2	3,7	0,064	65	5,5	35,0	5,5	35,3	5,8	0,065
21	5,5	33,1	3,6	33,2	3,7	0,065	66	5,5	35,1	5,6	35,3	5,8	0,065
22	5,5	33,0	3,5	33,7	4,2	0,065	67	5,5	34,9	5,4	35,4	5,9	0,065
23	5,4	33,3	3,8	33,6	4,1	0,064	68	5,5	35,2	5,7	35,3	5,8	0,065
24	5,5	33,4	3,9	33,6	4,1	0,065	69	5,5	34,9	5,4	35,4	5,9	0,065
25	5,5	33,3	3,8	34,1	4,6	0,065	70	5,5	35,1	5,6	35,3	5,8	0,065
26	5,4	33,5	4,0	34,1	4,6	0,064	/1	5,5	35,0	5,5	35,3	5,8	0,065
21	5,4	33,6	4,1	33,9	4,4	0,064	72	5,5	35,0	5,5	35,3	5,8	0,065
20	5,4	33,5	4,0	34,2	4,7	0,004	73	5,5 5,5	35,1	5,0 5,7	30,3	5,0 5,0	0,005
29	5,4	22,0	4,1	34,2	4,7	0,004	74	5,5	25.2	5,7	25.2	5,9	0,005
30	5,4	34.0	4,3	34,3	4,0 1 0	0,004	75	5,5	35.2	5,7	35,3	5.8	0,005
32	5.4	33.0	4,5	34,4	4,9 5.0	0,004	70	5,5	35.0	5,7	35.5	5,0	0,005
32	54	34 1	4.6	34.3	3,0 4 8	0,004	78	5,5	35.1	5,5	35.5	6,0	0,005
34	54	33.9	4,0	34.6		0,004	70	5,5	35.3	5.8	35.3	5.8	0,005
35	55	34 1	4.6	34.7	5.2	0.065	80	5.6	34.9	54	35.6	6.1	0.066
36	55	34.0	4.5	34.8	5.3	0,005	81	5,0	35.2	5,4	35.3	5.8	0.065
37	54	34.3	4.8	34.6	5 1	0.064	82	5.6	35.3	5.8	35.4	5.9	0.066
38	5.5	34.2	4 7	34.9	54	0.065	83	5.6	35.1	5.6	35.5	6.0	0.066
39	5.5	34.2	4.7	34.9	5.4	0.065	84	5,6	35.2	5,3	35.4	5,9	0.066
40	5.5	34.5	5.0	34.7	5.2	0.065	85	5.6	35.1	5.6	35.7	6.2	0.066
41	5.5	34.3	4.8	35.0	5.5	0.065	86	5.6	35.2	5.7	35.4	5.9	0.066
42	5.5	34.6	5.1	34.7	5.2	0.065	87	5.5	35.0	5.5	35.7	6.2	0.065
43	5.5	34.4	4.9	35.0	5.5	0,065	88	5.5	35.1	5.6	35.6	6.1	0,065
44	5.5	34,7	5.2	34.8	5.3	0,065	89	5.5	35.3	5.8	35.4	5.9	0,065
45	5,4	34,5	5,0	35,0	5,5	0,064	90	5,5	35,0	5,5	35,8	6,3	0,065

Δοκί	μιο 200	1010 _	85 A _	25 Nm	_ Τ _{αρχ.} =	≈29,5 °C	Δοκί	μιο 200	1010 _	85 A _	25 Nm	ι_ Τ _{αρχ.} :	=29,5 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	5.5	35.1	5.6	35.6	6.1	0.065	136	5.6	35.2	5.7	35.6	6.1	0.066
92	5,5	35,3	5,8	35,3	5,8	0,065	137	5,6	35,0	5,5	35,7	6,2	0,066
93	5,6	35,0	5,5	35,7	6,2	0,066	138	5,6	35,2	5,7	35,6	6,1	0,066
94	5,5	35,0	5,5	35,4	5,9	0,065	139	5,7	35,3	5,8	35,4	5,9	0,067
95	5,6	35,0	5,5	35,5	6,0	0,066	140	5,8	35,0	5,5	35,7	6,2	0,068
96	5,6	35,3	5,8	35,3	5,8	0,066	141	5,8	35,2	5,7	35,6	6,1	0,068
97	5,6	35,0	5,5	35,6	6,1	0,066	142	5,7	35,3	5,8	35,4	5,9	0,067
98	5,5	35,0	5,5	35,7	6,2	0,065	143	5,6	35,2	5,7	35,4	5,9	0,066
99	5,6	35,3	5,8	35,3	5,8	0,066	144	5,6	35,3	5,8	35,4	5,9	0,066
100	5,6	35,1	5,6	35,5	6,0	0,066	145	5,6	35,3	5,8	35,3	5,8	0,066
101	5,6	35,2	5,7	35,2	5,7	0,066	146	5,7	35,1	5,6	35,6	6,1	0,067
102	5,6	35,2	5,7	35,3	5,8	0,066	147	5,7	35,3	5,8	35,3	5,8	0,067
103	5,6	34,9	5,4	35,6	6,1	0,066	148	5,7	35,0	5,5	35,7	6,2	0,067
104	5,6	35,0	5,5	35,7	6,2	0,066	149	5,7	35,1	5,6	35,6	6,1	0,067
105	5,6	35,2	5,7	35,3	5,8	0,066	150	5,6	35,3	5,8	35,3	5,8	0,066
106	5,6	34,9	5,4	35,6	6,1	0,066	151	5,6	35,3	5,8	35,3	5,8	0,066
107	5,0 5,6	35,2	5,7	35,4	5,9 5,9	0,066	152	5,0	35,3	5,8	35,3	5,8	0,066
100	5,0 5,6	30,2	5,7	35.6	0,0 6 1	0,000	153	5,0	35,2	5,7	35,5	6.2	0,000
109	5,0	35.0	5,4	35,0	0,1	0,000	154	5,0	35,0	5,5	35,7	0,2 5.8	0,000
111	5,0	35.2	5,5	35.5	0,2 6.0	0,000	156	5,0	35,3	5.8	35,3	5.8	0,000
112	5,0	35.2	5,7	35.4	59	0,000	150	5,0	35.0	5,0	35.5	6,0	0,000
113	5.6	35.2	57	35.5	6,0	0.066	158	5.6	35.1	5.6	35.7	6.2	0,000
114	5.5	35.0	5.5	35.7	6.2	0.065	159	5.6	35.0	5.5	35.7	6, <u>2</u>	0.066
115	5.6	35.3	5.8	35.3	5.8	0.066	160	5.6	35.2	5.7	35.3	5.8	0.066
116	5,6	35,3	5,8	35,3	5,8	0,066	161	5,6	35,0	5,5	35,4	5,9	0,066
117	5,6	35,2	5,7	35,4	5,9	0,066	162	5,6	35,3	5,8	35,4	5,9	0,066
118	5,6	35,3	5,8	35,3	5,8	0,066	163	5,6	35,0	5,5	35,5	6,0	0,066
119	5,6	35,3	5,8	35,4	5,9	0,066	164	5,6	35,3	5,8	35,3	5,8	0,066
120	5,6	35,3	5,8	35,3	5,8	0,066	165	5,6	35,0	5,5	35,7	6,2	0,066
121	5,5	35,0	5,5	35,7	6,2	0,065	166	5,6	35,2	5,7	35,7	6,2	0,066
122	5,5	35,1	5,6	35,6	6,1	0,065	167	5,5	35,0	5,5	35,6	6,1	0,065
123	5,5	35,3	5,8	35,3	5,8	0,065	168	5,6	35,3	5,8	35,3	5,8	0,066
124	5,5	35,2	5,7	35,5	6,0	0,065	169	5,6	35,0	5,5	35,6	6,1	0,066
125	5,6	35,0	5,5	35,7	6,2	0,066	170	5,6	35,0	5,5	35,4	5,9	0,066
126	5,6	35,1	5,6	35,7	6,2	0,066	171	5,6	35,2	5,7	35,3	5,8	0,066
127	5,6	35,1	5,6	35,7	6,2	0,066	172	5,7	35,2	5,7	35,5	6,0	0,067
128	5,6	35,3	5,8	35,4	5,9	0,066	173	5,7	35,0	5,5	35,7	6,2	0,067
129	5,6	35,3	5,8	35,5	6,0	0,066	174	5,7	35,0	5,5	35,7	6,2	0,067
130	5,7	35,1	5,6	35,7	6,2	0,067	175	5,1	35,1	5,6	35,5	6,0	0,067
131	5,6	35,0	5,5	35,6	6,1	0,066	176	5,1	35,3	5,8	35,3	5,8	0,067
132	5,6	35,3	5,8	35,5	6,0	0,066	1/7	5,1	35,3	5,8	35,3	5,8	0,067
133	5,0 5,0	<u>১৩,∠</u>	5,1 E E	35,1	0,Z	0,000	1/8	5,1 5,7	১ ১,2	5,1	30,3 25 4	5,8 5,0	0,067
134	5,0 5,0	30,U	5,5 E 0	35,0	0,1	0,000	1/9	5,1 5,7	30,3 25.0	5,8	35,4	5,9 6 1	0,067
135	5,6	35,3	5,8	35,4	5,9	0,066	180	5,1	35,2	5,1	35,6	6,1	0,067

Δοι	cíµıo 20	01010 _	_100 A	_ 25 Nr	n _Τ _{αρχ.}	=28 °C	Δок	ίμιο 20	01010 _	_100 A	_ 25 Nı	m _Τ _{αρχ}	=28 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	6,9	28,4	0,4	29,1	1,1	0.069	46	6.9	35.8	7.8	36.0	8,0	0.069
2	6,9	28,9	0,9	29,5	1,5	0,069	47	6,9	35,7	7,7	36,3	8,3	0,069
3	6,9	29,1	1,1	29,9	1,9	0,069	48	6,9	35,7	7,7	36,2	8,2	0,069
4	6,9	29,3	1,3	30,2	2,2	0,069	49	6,9	35,7	7,7	36,4	8,4	0,069
5	6,9	29,6	1,6	30,5	2,5	0,069	50	6,9	36,1	8,1	36,2	8,2	0,069
6	6,9	30,0	2,0	30,7	2,7	0,069	51	6,9	36,1	8,1	36,2	8,2	0,069
7	6,9	30,5	2,5	31,0	3,0	0,069	52	7,0	35,7	7,7	36,5	8,5	0,07
8	6,9	30,8	2,8	31,3	3,3	0,069	53	6,9	35,8	7,8	36,5	8,5	0,069
9	6,9	30,8	2,8	31,8	3,8	0,069	54	6,9	35,8	7,8	36,6	8,6	0,069
10	6,9	31,4	3,4	31,9	3,9	0,069	55	6,9	36,2	8,2	36,3	8,3	0,069
11	6,9	31,6	3,6	32,0	4,0	0,069	56	6,9	35,9	7,9	36,5	8,5	0,069
12	6,9	31,6	3,6	32,5	4,5	0,069	57	6,9	35,9	7,9	36,7	8,7	0,069
13	6,9	31,9	3,9	32,8	4,8	0,069	58	7,0	36,0	8,0	36,5	8,5	0,07
14	6,9	32,3	4,3	32,8	4,8	0,069	59	7,0	36,3	8,3	36,5	8,5	0,07
15	6,9	32,3	4,3	33,2	5,2	0,069	60	6,9	36,0	8,0	36,7	8,7	0,069
16	6,9	32,8	4,8	33,2	5,2	0,069	61	6,9	36,0	8,0	36,7	8,7	0,069
17	6,9	33,0	5,0	33,5	5,5	0,069	62	6,9	36,3	8,3	36,5	8,5	0,069
18	6,9	32,9	4,9	33,9	5,9	0,069	63	6,9	36,3	8,3	36,5	8,5	0,069
19	6,9	33,4	5,4	33,7	5,7	0,069	64	7,0	36,0	8,0	36,8	8,8	0,07
20	6,9	33,3	5,3	34,2	6,2	0,069	65	7,0	36,0	8,0	36,7	8,7	0,07
21	6,9	33,7	5,7	34,1	0, I 6 4	0,069	67	7,0	30,5	0,0 0,0	30,5	8,5 9 5	0,07
22	6.0	3/ 1	5,0	34,4	0,4 6.4	0,009	68	7,0	36.0	8.0	36.8	8.8	0,07
23	6.0	3/1	61	34,4	0, 4 6.5	0,009	60	7,0 6,0	36.4	8.4	36.5	8.5	0,07
24	69	34.2	6.2	34.8	0,5 6.8	0,009	70	0,9 7 0	36.2	8.2	36.8	8.8	0,009
26	69	34 5	6.5	34.7	6,0 6,7	0,000	71	69	36.1	8.1	36.6	8.6	0,07
27	6.9	34.4	6.4	35.1	7 1	0.069	72	7.0	36.2	8.2	36.8	8.8	0.07
28	6.9	34.4	6.4	35.3	7.3	0.069	73	7,0	36.2	8.2	36.8	8.8	0.07
29	6.9	34.5	6.5	35.0	7.0	0.069	74	7.0	36.2	8.2	36.7	8.7	0.07
30	6,9	34,7	6,7	35,3	7.3	0,069	75	7.0	36,5	8.5	36,6	8,6	0,07
31	6,9	34,7	6,7	35,5	7,5	0,069	76	7,0	36,3	8,3	36,6	8,6	0,07
32	6,9	35,0	7,0	35,3	7,3	0,069	77	7,0	36,4	8,4	36,7	8,7	0,07
33	6,9	34,9	6,9	35,4	7,4	0,069	78	7,0	36,2	8,2	37,0	9,0	0,07
34	6,9	35,2	7,2	35,4	7,4	0,069	79	7,0	36,6	8,6	36,7	8,7	0,07
35	6,9	34,9	6,9	35,8	7,8	0,069	80	7,0	36,5	8,5	36,7	8,7	0,07
36	6,9	35,1	7,1	35,7	7,7	0,069	81	6,8	36,4	8,4	36,9	8,9	0,068
37	6,9	35,3	7,3	35,8	7,8	0,069	82	7,0	36,6	8,6	36,7	8,7	0,07
38	6,9	35,2	7,2	36,0	8,0	0,069	83	6,9	36,3	8,3	37,0	9,0	0,069
39	6,9	35,4	7,4	35,7	7,7	0,069	84	6,9	36,4	8,4	37,0	9,0	0,069
40	6,9	35,3	7,3	35,9	7,9	0,069	85	6,9	36,5	8,5	36,8	8,8	0,069
41	6,9	35,4	7,4	36,1	8,1	0,069	86	6,9	36,3	8,3	37,1	9,1	0,069
42	6,9	35,7	7,7	36,0	8,0	0,069	87	6,9	36,6	8,6	36,8	8,8	0,069
43	6,9	35,7	7,7	35,9	7,9	0,069	88	6,9	36,5	8,5	37,0	9,0	0,069
44	6,9	35,6	7,6	36,0	8,0	0,069	89	6,9	36,7	8,7	36,7	8,7	0,069
45	6,9	35,8	7,8	36,0	8,0	0,069	90	6,9	36,6	8,6	36,9	8,9	0,069

Δοι	κίμιο 20	01010	_100 A	_ 25 Nr	n _Τ _{αρχ.}	=28 °C	Δc	κίμιο 20	01010 _	_100 A	_ 25 Ni	m _Τ _{αρχ}	_=28 °C
α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	6,9	36,5	8,5	37,0	9,0	0,069	136	6,9	36,6	8,6	36,9	8,9	0,069
92	6,9	36,7	8,7	36,9	8,9	0,069	137	6,9	36,5	8,5	36,9	8,9	0,069
93	6,9	36,7	8,7	36,8	8,8	0,069	138	6,8	36,3	8,3	37,1	9,1	0,068
94	6,8	36,5	8,5	37,2	9,2	0,068	139	6,9	36,6	8,6	36,8	8,8	0,069
95	6,9	36,4	8,4	37,1	9,1	0,069	140	6,8	36,6	8,6	36,8	8,8	0,068
96	6,8	36,7	8,7	36,9	8,9	0,068	141	6,8	36,5	8,5	37,0	9,0	0,068
97	6,9	36,5	8,5	37,1	9,1	0,069	142	6,8	36,5	8,5	36,8	8,8	0,068
98	6,9	36,7	8,7	36,8	8,8	0,069	143	6,9	36,2	8,2	37,1	9,1	0,069
99	7,0	36,4	8,4	37,1	9,1	0,07	144	6,9	36,4	8,4	37,1	9,1	0,069
100	7,0	36,6	8,6	37,2	9,2	0,07	145	6,8	36,4	8,4	36,9	8,9	0,068
101	6,9	36,5	8,5	37,1	9,1	0,069	146	6,6	36,5	8,5	36,9	8,9	0,066
102	7,0	36,6	8,6	36,8	8,8	0,07	147	6,9	36,4	8,4	37,1	9,1	0,069
103	6,9	36,5	8,5	37,0	9,0	0,069	148	6,9	36,4	8,4	37,0	9,0	0,069
104	7,0	36,4	8,4	37,2	9,2	0,07	149	7,0	36,2	8,2	37,1	9,1	0,07
105	7,0	36,7	8,7	37,0	9,0	0,07	150	7,1	36,6	8,6	37,0	9,0	0,071
100	6,9	30,8	0,0	30,9	8,9	0,069	151	7,2	30,4	8,4	37,0	9,0	0,072
107	0,0	30,7	0,1	37,0	9,0	0,000	152	7,3	30,7	0,1	30,0	0,0	0,073
100	0,9	36,7	0,7	36.0	9,0	0,009	153	7,3	36,5	0,0	37,1	9,1	0,073
109	6.9	36.7	87	37 1	0,9	0,009	154	7,3	36.5	0, 4 8.5	37,3	9,3	0,073
111	6.9	36.8	8.8	37.0	9,1	0,009	156	6.8	36.5	85	37,4	9,4 0 /	0,073
112	69	36.4	84	37.4	9,0 9.4	0,003	150	6.8	36.5	85	37.4	9.4	0,000
113	6.9	36.6	8.6	37 0	9.0	0,069	158	6.8	36.6	8.6	37 1	91	0.068
114	6.9	36.8	8.8	36.9	8.9	0.069	159	6.8	36.7	87	37.1	91	0.068
115	6.9	36.5	8.5	37.3	9.3	0.069	160	6.8	36.6	8.6	37.2	9.2	0.068
116	6,9	36,6	8,6	37,1	9,1	0,069	161	6,8	36,7	8,7	37,0	9,0	0,068
117	6,9	36,7	8,7	36,8	8,8	0,069	162	6,8	36,5	8,5	37,3	9,3	0,068
118	6,9	36,7	8,7	37,0	9,0	0,069	163	6,8	36,5	8,5	37,4	9,4	0,068
119	6,9	36,7	8,7	36,9	8,9	0,069	164	6,8	36,5	8,5	37,4	9,4	0,068
120	6,9	36,6	8,6	37,0	9,0	0,069	165	6,8	36,9	8,9	37,0	9,0	0,068
121	6,9	36,7	8,7	36,9	8,9	0,069	166	6,8	36,9	8,9	37,0	9,0	0,068
122	6,9	36,7	8,7	37,0	9,0	0,069	167	6,8	36,5	8,5	37,3	9,3	0,068
123	6,9	36,4	8,4	37,1	9,1	0,069	168	6,8	36,6	8,6	37,2	9,2	0,068
124	6,9	36,5	8,5	37,1	9,1	0,069	169	6,8	36,6	8,6	37,0	9,0	0,068
125	6,9	36,4	8,4	37,2	9,2	0,069	170	6,8	36,6	8,6	37,3	9,3	0,068
126	6,9	36,5	8,5	37,2	9,2	0,069	171	6,8	36,9	8,9	37,0	9,0	0,068
127	6,9	36,4	8,4	37,4	9,4	0,069	172	6,8	36,9	8,9	37,0	9,0	0,068
128	6,9	36,7	8,7	36,9	8,9	0,069	173	6,8	36,5	8,5	37,3	9,3	0,068
129	6,9	36,8	8,8	37,0	9,0	0,069	174	6,8	36,9	8,9	37,0	9,0	0,068
130	6,9	36,4	8,4	37,3	9,3	0,069	1/5	6,8	36,5	8,5	37,1	9,1	0,068
131	6,9	36,7	8,7	36,8	8,8	0,069	1/6	6,8	36,5	8,5	37,3	9,3	0,068
132	6,9	30,0	8,6	36,9	8,9	0,069	1/7	6,8	36,5	8,5	31,1	9,1	0,068
133	0,9	30,1	0,1 0 E	36.9	0,9 0 0	0,009	1/8	0,0	30,5	0,0 9 5	37,3 27.2	9,3	0,000
134	0,9	36,5	0,0 07	30,0 36.0	0,0 0.0	0,009	1/9	0,0	30,5	0,0 9 5	31,2 271	9,2	0,000
135	0,9	JO,1	0,1	30,9	0,9	0,069	180	0,8	30, 5	0,0	J/,4	9,4	0,008

Δοκί	μιο 200	1010 _	150 A _	_25 Nm	_Τ _{αρχ.} =	29,7 °C		Δοκί	μιο 200	1010 _	150 A _	_ 25 Nm	n _Τ _{αρχ.} =	=29,7 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]		α/α	ΔV [mV]	θ1 [°C]	∆θ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	10,2	30,3	0,6	30,7	1,0	0,068	ľ	46	10,7	43,8	14,1	44,4	14,7	0,071
2	10,1	30,6	0,9	31,6	1,9	0,067		47	10,6	43,6	13,9	44,6	14,9	0,071
3	10,1	31,1	1,4	32,0	2,3	0,067		48	10,6	44,0	14,3	44,3	14,6	0,071
4	10,3	31,6	1,9	32,9	3,2	0,069		49	10,6	44,0	14,3	44,3	14,6	0,071
5	10,3	32,5	2,8	33,5	3,8	0,069		50	10,6	44,1	14,4	44,4	14,7	0,071
6	10,3	33,1	3,4	34,0	4,3	0,069		51	10,6	44,0	14,3	44,4	14,7	0,071
7	10,3	33,5	3,8	34,9	5,2	0,069		52	10,6	43,9	14,2	44,9	15,2	0,071
8	10,3	34,0	4,3	35,3	5,6	0,069		53	10,6	44,4	14,7	44,4	14,7	0,071
9	10,2	34,6	4,9	36,1	6,4	0,068		54	10,6	44,4	14,7	44,7	15,0	0,071
10	10,2	35,5	5,8	36,5	6,8	0,068	Í	55	10,6	44,2	14,5	44,7	15,0	0,071
11	10,2	36,1	6,4	36,9	7,2	0,068		56	10,6	44,4	14,7	44,9	15,2	0,071
12	10,2	36,2	6,5	37,4	7,7	0,068		57	10,6	44,3	14,6	44,8	15,1	0,071
13	10,2	36,9	7,2	37,8	8,1	0,068		58	10,5	44,5	14,8	44,8	15,1	0,070
14	10,2	37,4	7,7	38,4	8,7	0,068		59	10,5	44,1	14,4	45,2	15,5	0,070
15	10,2	37,6	7,9	38,9	9,2	0,068		60	10,6	44,3	14,6	44,8	15,1	0,071
16	10,2	38,1	8,4	39,3	9,6	0,068		61	10,6	44,2	14,5	45,3	15,6	0,071
17	10,2	38,3	8,6	39,6	9,9	0,068		62	10,6	44,4	14,7	44,9	15,2	0,071
18	10,2	38,7	9,0	40,0	10,3	0,068		63	10,6	44,3	14,6	45,2	15,5	0,071
19	10,2	39,4	9,7	40,1	10,4	0,068		64	10,4	44,4	14,7	44,8	15,1	0,069
20	10,2	39,5	9,8	40,6	10,9	0,068		65	10,5	44,4	14,7	45,2	15,5	0,070
21	10,2	39,7	10,0	40,7	11,0	0,068		66	10,5	44,3	14,6	45,3	15,6	0,070
22	10,2	39,9	10,2	41,1	11,4	0,068		67	10,5	44,4	14,7	45,1	15,4	0,070
23	10,2	40,3	10,6	41,4	11,7	0,068		68	10,5	44,4	14,7	45,3	15,6	0,070
24	10,2	40,5	10,8	41,3	11,6	0,068		69	10,5	44,6	14,9	44,9	15,2	0,070
25	10,1	41,1	11,4	41,5	11,8	0,067		70	10,6	44,5	14,8	45,0	15,3	0,071
26	10,2	41,1	11,4	41,9	12,2	0,068		71	10,5	44,8	15,1	45,0	15,3	0,070
27	10,2	41,1	11,4	42,0	12,3	0,068		72	10,5	44,7	15,0	44,9	15,2	0,070
28	10,2	41,5	11,8	42,1	12,4	0,068		73	10,5	44,4	14,7	45,3	15,6	0,070
29	10,2	41,6	11,9	42,2	12,5	0,068		74	10,5	44,4	14,7	45,3	15,6	0,070
30	10,6	41,6	11,9	42,6	12,9	0,071		75	10,5	44,4	14,7	45,4	15,7	0,070
31	10,6	42,0	12,3	42,8	13,1	0,071		76	10,4	44,5	14,8	45,3	15,6	0,069
32	10,6	42,1	12,4	43,1	13,4	0,071		77	10,4	44,7	15,0	45,1	15,4	0,069
33	10,6	42,2	12,5	43,2	13,5	0,071		78	10,5	44,8	15,1	45,3	15,6	0,070
34	10,5	42,4	12,7	43,3	13,6	0,070		79	10,5	44,8	15,1	45,1	15,4	0,070
35	10,5	42,5	12,8	43,2	13,5	0,070		80	10,5	44,5	14,8	45,3	15,6	0,070
36	10,5	42,6	12,9	43,6	13,9	0,070		81	10,4	44,4	14,7	45,4	15,7	0,069
37	10,5	43,1	13,4	43,3	13,6	0,070		82	10,4	44,8	15,1	45,0	15,3	0,069
38	10,5	42,9	13,2	43,8	14,1	0,070		83	10,4	44,8	15,1	45,0	15,3	0,069
39	10,5	43,0	13,3	44,0	14,3	0,070		84	10,4	44,8	15,1	45,1	15,4	0,069
40	10,5	43,5	13,8	43,7	14,0	0,070		85	10,4	44,9	15,2	45,1	15,4	0,069
41	10,5	43,2	13,5	44,0	14,3	0,070		86	10,3	44,8	15,1	45,1	15,4	0,069
42	10,5	43,6	13,9	43,9	14,2	0,070		87	10,4	44,8	15,1	45,0	15,3	0,069
43	10,6	43,3	13,6	44,3	14,6	0,071		88	10,4	44,5	14,8	45,3	15,6	0,069
44	10,6	43,7	14,0	44,0	14,3	0,071		89	10,4	44,8	15,1	45,1	15,4	0,069
45	10,7	43,7	14,0	44,2	14,5	0,071		90	10,3	44,8	15,1	44,9	15,2	0,069

Δοκί	μιο 200)1010 _	150 A _	25 Nm	_Τ _{αρχ.} =	29,7 °C	Δο	κίμιο 200	1010 _	150 A _	_ 25 Nm	n _Τ _{αρχ.} =	=29,7 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	10,4	44,7	15.0	45.0	15.3	0.069	13	3 10.2	43.8	14,1	44.0	14,3	0.068
92	10,4	44,4	14,7	45,3	15,6	0,069	13	10,2	43,5	13,8	44,3	14,6	0,068
93	10,4	44,8	15,1	45,1	15,4	0,069	13	3 10,2	43,8	14,1	44,1	14,4	0,068
94	10,3	44,8	15,1	45,1	15,4	0,069	139	10,2	43,6	13,9	44,3	14,6	0,068
95	10,3	44,8	15,1	45,1	15,4	0,069	14	0 10,2	43,6	13,9	44,2	14,5	0,068
96	10,3	44,4	14,7	45,2	15,5	0,069	14 [.]	l 10,1	43,6	13,9	43,8	14,1	0,067
97	10,4	44,8	15,1	44,9	15,2	0,069	142	2 10,3	43,3	13,6	44,2	14,5	0,069
98	10,5	44,8	15,1	45,0	15,3	0,070	14:	3 10,3	43,5	13,8	44,0	14,3	0,069
99	10,5	44,8	15,1	44,9	15,2	0,070	144	10,2	43,6	13,9	43,9	14,2	0,068
100	10,5	44,6	14,9	44,9	15,2	0,070	14	5 10,3	43,6	13,9	43,9	14,2	0,069
101	10,5	44,6	14,9	45,3	15,6	0,070	14	3 10,3	43,2	13,5	44,1	14,4	0,069
102	10,5	44,5	14,8	45,3	15,6	0,070	14	7 10,3	43,4	13,7	43,7	14,0	0,069
103	10,5	45,0	15,3	45,2	15,5	0,070	14	3 10,3	43,3	13,6	43,9	14,2	0,069
104	10,5	44,5	14,8	45,3	15,6	0,070	149	10,3	43,6	13,9	43,7	14,0	0,069
105	10,5	44,9	15,2	45,2	15,5	0,070	15	0 10,2	43,3	13,6	44,0	14,3	0,068
106	10,5	44,8	15,1	45,2	15,5	0,070	15	10,2	43,5	13,8	43,7	14,0	0,068
107	10,8	44,6	14,9	45,4	15,7	0,072	152	2 10,3	43,5	13,8	43,7	14,0	0,069
108	11,0	45,0	15,3	45,2	15,5	0,073	15	10,3	43,5	13,8	44,0	14,3	0,069
109	10,9	44,0	15,1	45,2	15,5	0,073	154		43,2	13,5	44,1	14,4	0,000
110	10,9	45,0	15,5	45,5	15,0	0,073	15	1 0,1	43,4	13,7	43,0	14,1	0,007
112	10,8	44,7	15,0	45,5	15,6	0,072	15	10,2	43,2	13,5	44,0	14,3	0,008
113	10,0	45.0	15,3	45,0	15,0	0,072	15	10,2	43.6	13.9	43.6	13.9	0,000
114	10,4	40,0	15.2	45.3	15.6	0,000	15	10,2	43.2	13.5	43.7	14.0	0.068
115	10,4	44.9	15.2	45.0	15.3	0.069	16) 10,2	43.5	13.8	43.6	13.9	0.068
116	10.3	45.0	15.3	45.1	15.4	0.069	16	10,2	43.2	13.5	43.7	14.0	0.068
117	10.3	44.8	15.1	45.0	15.3	0.069	16	1 0.2	43.1	13.4	43.8	14.1	0.068
118	10,3	44,4	14,7	45,3	15,6	0,069	16	3 10,3	43,4	13,7	43,6	13,9	0,069
119	10,3	44,8	15,1	45,0	15,3	0,069	164	10,3	43,2	13,5	43,7	14,0	0,069
120	10,3	44,7	15,0	44,9	15,2	0,069	16	5 10,3	43,2	13,5	43,3	13,6	0,069
121	10,3	44,7	15,0	44,8	15,1	0,069	16	3 10,3	43,3	13,6	43,5	13,8	0,069
122	10,3	44,7	15,0	44,8	15,1	0,069	16	10,3	43,1	13,4	43,5	13,8	0,069
123	10,3	44,7	15,0	44,8	15,1	0,069	16	3 10,2	42,8	13,1	43,8	14,1	0,068
124	10,3	44,0	14,3	45,0	15,3	0,069	169	10,3	43,2	13,5	43,4	13,7	0,069
125	10,3	44,3	14,6	44,6	14,9	0,069	170) 10,3	42,9	13,2	43,9	14,2	0,069
126	10,3	44,4	14,7	44,5	14,8	0,069	17 [,]	l 10,3	42,8	13,1	43,8	14,1	0,069
127	10,3	44,0	14,3	44,4	14,7	0,069	17:	2 10,2	43,2	13,5	43,4	13,7	0,068
128	10,3	43,9	14,2	44,8	15,1	0,069	17:	3 10,3	43,0	13,3	43,6	13,9	0,069
129	10,3	44,1	14,4	44,4	14,7	0,069	174	10,2	42,8	13,1	43,8	14,1	0,068
130	10,3	43,7	14,0	44,5	14,8	0,069	17	5 10,2	42,8	13,1	43,9	14,2	0,068
131	10,2	43,9	14,2	44,4	14,7	0,068	17	10,2	42,8	13,1	43,6	13,9	0,068
132	10,2	44,0	14,3	44,1	14,4	0,068	17	<u>/ 10,3</u>	42,8	13,1	43,6	13,9	0,069
133	10,2	43,6	13,9	44,4	14,7	0,068	178	i 10,3	43,2	13,5	43,5	13,8	0,069
134	10,2	43,9	14,2	44,1	14,4	0,068	1/3	10,2	43,1	13,4	43,3	13,6	0,068
135	10,2	43,9	14,2	44,0	14,3	0,068	18	1 0,2	43,1	13,4	43,4	13,7	0,068

Δок	ίμιο 22 ⁻	12021 _	_90 A _	25 Nm	_Τ _{αρχ.} =:	23,6 °C		Δοκ	ίμιο 22 ⁻	12021 _	_90 A _	25 Nm	_Τ _{αρχ.} =2	23,6 °C
α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]		α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	7,2	33,6	0,0	33,7	0,1	0,080		46	7,2	37,5	3,9	36,5	2,9	0,080
2	7,2	33,7	0,1	33,8	0,2	0,080		47	7,3	37,5	3,9	36,6	3,0	0,081
3	7,2	34,1	0,5	33,7	0,1	0,080		48	7,3	37,6	4,0	36,5	2,9	0,081
4	7,2	34,1	0,5	34,1	0,5	0,080		49	7,3	37,4	3,8	36,7	3,1	0,081
5	7,2	34,3	0,7	34,2	0,6	0,080		50	7,2	37,4	3,8	36,8	3,2	0,080
6	7,2	34,5	0,9	34,4	0,8	0,080		51	7,3	37,6	4,0	36,5	2,9	0,081
7	7,2	34,7	1,1	34,3	0,7	0,080	_	52	7,3	37,6	4,0	36,6	3,0	0,081
8	7,2	34,9	1,3	34,5	0,9	0,080		53	7,2	37,6	4,0	36,5	2,9	0,080
9	7,2	35,1	1,5	34,7	1,1	0,080	_	54	7,2	37,5	3,9	36,7	3,1	0,080
10	7,2	35,3	1,7	34,9	1,3	0,080	_	55	7,3	37,6	4,0	36,6	3,0	0,081
11	7,3	35,4	1,8	34,9	1,3	0,081		56	7,3	37,5	3,9	36,7	3,1	0,081
12	7,2	35,5	1,9	35,3	1,7	0,080	-	57	7,3	37,7	4,1	36,5	2,9	0,081
13	7,2	35,8	2,2	35,1	1,5	0,080		58	7,3	37,4	3,8	36,8	3,2	0,081
14	7,3	35,8	2,2	35,3	1,7	0,081	-	59	7,2	37,6	4,0	36,7	3,1	0,080
15	7,2	35,8	2,2	35,5	1,9	0,080	-	60	7,3	37,7	4,1	36,5	2,9	0,081
16	7,2	36,1	2,5	35,3	1,7	0,080	-	61	7,3	37,5	3,9	36,5	2,9	0,081
1/	7,2	36,1	2,5	35,6	2,0	0,080	-	62	7,3	37,5	3,9	36,8	3,2	0,081
18	7,2	30,5	2,9	35,0	2,0	0,080	-	63	7,2	37,7	4,1	30,5	2,9	0,080
19	7,2	30,3	2,1	35,9	2,3	0,080	-	64	7,2	37,3	3,7	30,7	3,1	0,080
20	7.2	36.5	2,7	36.0	2,5	0,000	-	60	7.2	37,5	3,7	36,7	3,1	0,000
21	7.2	36.6	2,9	36.1	2,4	0,000	-	67	7,3	37.6	4,0	36.5	2,9	0,001
22	7.2	36.7	3,0	36.1	2,5	0,000	-	68	7.2	37.0	3.8	36.7	2,9	0,000
23	7.3	36.8	3.2	36.3	2,5	0,000	-	69	7.2	37.4	3.8	36.8	32	0,000
25	7,3	37.0	3.4	36.1	2.5	0.081	-	70	7.2	37.4	3.8	36.7	3.1	0,000
26	7.2	37.0	34	36.1	2,5	0.080	-	71	7.2	37.7	4 1	36.5	2.9	0.080
27	7.3	37.1	3.5	36.2	2.6	0.081		72	7.2	37.5	3.9	36.5	2.9	0.080
28	7.3	37.1	3.5	36.1	2.5	0.081	-	73	7.2	37.4	3.8	36.5	2.9	0.080
29	7,2	37,2	3.6	36,4	2,8	0,080	-	74	7,2	37,5	3,9	36,5	2,9	0,080
30	7,3	37,1	3,5	36,2	2,6	0,081		75	7,2	37,5	3,9	36,5	2,9	0,080
31	7,3	37,1	3,5	36,5	2,9	0,081		76	7,3	37,5	3,9	36,3	2,7	0,081
32	7,3	37,1	3,5	36,6	3,0	0,081		77	7,2	37,4	3,8	36,5	2,9	0,080
33	7,3	37,2	3,6	36,5	2,9	0,081	_	78	7,2	37,6	4,0	36,3	2,7	0,080
34	7,3	37,4	3,8	36,3	2,7	0,081		79	7,3	37,5	3,9	36,4	2,8	0,081
35	7,2	37,2	3,6	36,8	3,2	0,080		80	7,2	37,3	3,7	36,7	3,1	0,080
36	7,3	37,4	3,8	36,5	2,9	0,081	_	81	7,2	37,3	3,7	36,6	3,0	0,080
37	7,3	37,5	3,9	36,5	2,9	0,081	_	82	7,2	37,5	3,9	36,4	2,8	0,080
38	7,2	37,4	3,8	36,5	2,9	0,080		83	7,2	37,4	3,8	36,5	2,9	0,080
39	7,3	37,3	3,7	36,7	3,1	0,081		84	7,2	37,4	3,8	36,2	2,6	0,080
40	7,3	37,4	3,8	36,8	3,2	0,081	╞	85	7,2	37,5	3,9	36,4	2,8	0,080
41	7,3	37,4	3,8	36,6	3,0	0,081	╞	86	7,2	37,4	3,8	36,3	2,7	0,080
42	7,3	37,4	3,8	36,7	3,1	0,081	╞	87	7,2	37,2	3,6	36,5	2,9	0,080
43	7,3	37,6	4,0	36,5	2,9	0,081	╞	88	7,2	37,2	3,6	36,5	2,9	0,080
44	7,3	37,5	3,9	36,6	3,0	0,081	╞	89	7,2	37,4	3,8	36,3	2,7	0,080
45	7,3	37,6	4,0	36,4	2,8	0,081	L	90	7,2	37,2	3,6	36,6	3,0	0,080

4.2 Αναλυτικές Μετρήσεις Συνδέσμου 2212021 Cu Ι

Δοι	κίμιο 221 2	2021_9	0 A _ 2	5 Nm _1	Γαρχ.=2	23,6 °C	Δοκί	μιο 221	2021 _	90 A _ 2	25 Nm _	_Ταρχ.=	23,6 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	7,2	37,2	3,6	36,5	2,9	0,080	136	7,3	37,1	3,5	36,5	2,9	0,081
92	7,2	37,4	3,8	36,2	2,6	0,080	137	7,2	37,4	3,8	36,2	2,6	0,080
93	7,2	37,3	3,7	36,5	2,9	0,080	138	7,3	37,4	3,8	36,1	2,5	0,081
94	7,2	37,4	3,8	36,1	2,5	0,080	139	7,3	37,4	3,8	36,2	2,6	0,081
95	7,2	37,4	3,8	36,1	2,5	0,080	140	7,3	37,4	3,8	36,5	2,9	0,081
96	7,2	37,1	3,5	36,4	2,8	0,080	141	7,3	37,4	3,8	36,2	2,6	0,081
97	7,2	37,4	3,8	36,1	2,5	0,080	142	7,3	37,4	3,8	36,6	3,0	0,081
98	7,2	37,1	3,5	36,5	2,9	0,080	143	7,2	37,4	3,8	36,5	2,9	0,080
99	7,2	37,4	3,8	36,1	2,5	0,080	144	7,2	37,4	3,8	36,2	2,6	0,080
100	7,1	37,2	3,6	36,4	2,8	0,079	145	7,2	37,4	3,8	36,6	3,0	0,080
101	7,2	37,4	3,8	36,3	2,7	0,080	146	7,2	37,3	3,7	36,5	2,9	0,080
102	7,2	37,4	3,8	36,3	2,7	0,080	147	7,3	37,4	3,8	36,3	2,7	0,081
103	7,2	37,1	3,5	36,5	2,9	0,080	148	7,3	37,4	3,8	36,1	2,5	0,081
104	7,1	37,2	3,0	30,5	2,9	0,079	149	7,3	37,4	3,8	30,5	2,9	0,081
105	7,2	37,2	3,0	30,3	2,1	0,000	150	7,3	37,4	৩,০ ২০	30,4	2,0	0,001
100	7.2	37,2	3,0	36.4	2,0	0,000	151	7,3	37,4	3,0 3,8	36.4	2,7	0,001
107	7.2	37.1	3,5	36.5	2,0	0,000	152	7,3	37.3	3,0	36.6	2,0	0,001
100	7.2	37.2	3.6	36.4	2,3	0,000	154	7,3	37.4	3.8	36.5	29	0.081
110	7.2	37.0	3.4	36.5	2,0	0.080	155	7.3	37.3	37	36.8	32	0.081
111	7.2	37.3	3.7	36.4	2.8	0.080	156	7.2	37.3	3.7	36.6	<u>3.0</u>	0.080
112	7.2	37.0	3.4	36.4	2.8	0.080	157	7.3	37.3	3.7	36.5	2.9	0.081
113	7,2	37,4	3,8	36,1	2,5	0,080	158	7,3	37,4	3,8	36,4	2,8	0,081
114	7,2	37,4	3,8	36,1	2,5	0,080	159	7,3	37,4	3,8	36,5	2,9	0,081
115	7,2	37,4	3,8	36,1	2,5	0,080	160	7,3	37,5	3,9	36,2	2,6	0,081
116	7,2	37,1	3,5	36,5	2,9	0,080	161	7,3	37,4	3,8	36,5	2,9	0,081
117	7,2	37,3	3,7	36,2	2,6	0,080	162	7,3	37,3	3,7	36,5	2,9	0,081
118	7,2	37,4	3,8	36,2	2,6	0,080	163	7,3	37,4	3,8	36,6	3,0	0,081
119	7,2	37,4	3,8	36,2	2,6	0,080	164	7,3	37,4	3,8	36,5	2,9	0,081
120	7,2	37,1	3,5	36,5	2,9	0,080	165	7,3	37,3	3,7	36,5	2,9	0,081
121	7,2	37,4	3,8	36,2	2,6	0,080	166	7,3	37,4	3,8	36,5	2,9	0,081
122	7,2	37,4	3,8	36,4	2,8	0,080	167	7,3	37,4	3,8	36,4	2,8	0,081
123	7,2	37,4	3,8	36,3	2,7	0,080	168	7,3	37,5	3,9	36,4	2,8	0,081
124	7,2	37,3	3,7	36,1	2,5	0,080	169	7,3	37,4	3,8	36,5	2,9	0,081
125	7,2	37,1	3,5	36,5	2,9	0,080	170	7,3	37,5	3,9	36,4	2,8	0,081
120	7,2	37,3	3,7	30,3	2,7	0,080	1/1	7,3	37,4	3,8	30,5	2,9	0,081
127	7,2	37,1	3,5	30,7	3, I 2 5	0,080	172	7,3	37,5	3,9	30,5	2,9	0,081
120	7,1	37,3	3,7	30,1	2,5	0,079	173	7,3	37,4	3,0	36,0	3,0	0,001
129	7.2	37.4	<u>,0</u> ১০	36.2	2,1	0,000	175	73	37.5	3,0 2 Q	36.4	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,001
130	7,3	37 1	3.5	36 6	2,0 3.0	0.081	176	73	37.4	3.8	36 5	2,0 2 Q	0.081
132	7,3	37.4	3.8	36.1	25	0.081	177	7.3	37.5	3.9	36.4	2,3	0.081
133	7.3	37.2	3.6	36.5	2,0	0.081	178	7.3	37.4	3.8	36.5	2,0	0.081
134	7.3	37.2	3.6	36.5	2.9	0.081	179	7.3	37.4	3.8	36.5	2.9	0.081
135	7,2	37,3	3,7	36,2	2,6	0,080	180	7,3	37,4	3,8	36,5	2,9	0,081

Δο	κίμιο 2212	2021 _1	00 A _ :	25 Nm _	_Τ _{αρχ.} =3	82,2 °C	Δοκί	ίμιο 221	2021 _	100 A _	_25 Nm	_ Τ_{αρχ.}=	32,2 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	8,2	32,5	0,3	32,5	0,3	0,082	46	8,1	38,7	6,5	37,4	5,2	0,081
2	8,2	33,0	0,8	32,9	0,7	0,082	47	8,1	38,6	6,4	37,6	5,4	0,081
3	8,1	33,2	1,0	33,3	1,1	0,081	48	8,1	38,7	6,5	37,3	5,1	0,081
4	8,1	33,6	1,4	33,4	1,2	0,081	49	8,0	38,6	6,4	37,7	5,5	0,080
5	8,1	34,0	1,8	33,6	1,4	0,081	50	8,0	38,5	6,3	37,6	5,4	0,080
6	8,0	34,3	2,1	33,8	1,6	0,080	51	8,0	38,7	6,5	37,7	5,5	0,080
7	8,0	34,5	2,3	34,2	2,0	0,080	52	8,1	38,7	6,5	37,6	5,4	0,081
8	8,0	34,9	2,7	34,4	2,2	0,080	53	8,0	38,7	6,5	37,5	5,3	0,080
9	8,0	35,0	2,8	34,7	2,5	0,080	54	8,0	38,7	6,5	37,4	5,2	0,080
10	8,1	35,3	3,1	34,9	2,7	0,081	55	8,0	38,6	6,4	37,7	5,5	0,080
11	8,0	35,4	3,2	35,3	3,1	0,080	56	8,0	38,8	6,6	37,6	5,4	0,080
12	8,1	35,7	3,5	35,5	3,3	0,081	57	8,0	38,6	6,4	37,6	5,4	0,080
13	8,0	36,0	3,8	35,4	3,2	0,080	58	8,0	38,7	6,5	37,5	5,3	0,080
14	8,0	36,2	4,0	35,6	3,4	0,080	59	8,0	38,7	6,5	37,4	5,2	0,080
15	8,0	36,4	4,2	35,8	3,6	0,080	60	8,0	38,7	6,5	37,4	5,2	0,080
16	8,1	36,4	4,2	36,1	3,9	0,081	61	8,0	38,6	6,4	37,4	5,2	0,080
1/	8,1	36,7	4,5	36,1	3,9	0,081	62	8,0	38,7	6,5	37,8	5,6	0,080
18	8,1	37,0	4,8	36,3	4,1	0,081	63	8,0	38,6	6,4	37,6	5,4	0,080
19	8,1	36,9	4,7	36,4	4,2	0,081	64	8,1	38,7	6,5	37,4	5,2	0,081
20	0,0	37,2	5,0	30,3	4,1	0,000	60	0,0	30,0 20 6	0,4	37,7	5,5	0,000
21	0,0 8 1	37,3	5.2	36.8	4,5	0,000	67	8.0	38.6	6.4	37,5	5,5	0,000
22	8.0	37.6	5.4	36.6	4,0	0,001	68	8.0	38.6	6.4	37.4	5.4	0,000
24	8.0	37.7	55	36.5	43	0,000	69	8.0	38.6	64	37.6	54	0,000
25	8,0	37.6	5.4	36.8	4.6	0.080	70	8.0	38.6	6.4	37.7	5.5	0.080
26	8.0	37.8	5.6	36.8	4.6	0.080	71	8.0	38.6	6.4	37.5	5.3	0.080
27	8,0	37,8	5,6	36,9	4,7	0,080	72	8,0	38,6	6,4	37,8	5,6	0,080
28	8,1	37,8	5,6	37,2	5,0	0,081	73	8,0	38,6	6,4	37,7	5,5	0,080
29	8,0	37,9	5,7	37,2	5,0	0,080	74	8,0	38,8	6,6	37,4	5,2	0,080
30	8,0	37,9	5,7	37,3	5,1	0,080	75	8,0	38,8	6,6	37,5	5,3	0,080
31	8,0	38,2	6,0	37,0	4,8	0,080	76	8,0	38,6	6,4	37,7	5,5	0,080
32	8,0	38,2	6,0	37,4	5,2	0,080	77	7,9	38,7	6,5	37,4	5,2	0,079
33	8,0	38,2	6,0	37,2	5,0	0,080	78	8,0	38,6	6,4	37,7	5,5	0,080
34	8,0	38,2	6,0	37,5	5,3	0,080	79	8,0	38,8	6,6	37,5	5,3	0,080
35	8,1	38,4	6,2	37,2	5,0	0,081	80	8,0	38,6	6,4	37,8	5,6	0,080
36	8,1	38,4	6,2	37,4	5,2	0,081	81	8,0	38,6	6,4	37,8	5,6	0,080
37	8,0	38,2	6,0	37,3	5,1	0,080	82	8,0	38,7	6,5	37,6	5,4	0,080
38	8,1	38,3	6,1	37,2	5,0	0,081	83	8,0	38,7	6,5	37,4	5,2	0,080
39	8,1	38,3	6,1	37,3	5,1	0,081	84	8,0	38,8	6,6	37,4	5,2	0,080
40	8,1	38,5	6,3	37,2	5,0	0,081	85	8,0	38,6	6,4	37,8	5,6	0,080
41	8,0	38,6	6,4	37,3	5,1	0,080	86	8,0	38,6	6,4	37,5	5,3	0,080
42	8,1	38,6	6,4	37,3	5,1	0,081	87	7,9	38,6	6,4	37,7	5,5	0,079
43	8,1	38,6	6,4	37,2	5,0	0,081	88	8,0	38,6	6,4	37,4	5,2	0,080
44	8,1	38,4	6,2	37,5	5,3	0,081	89	7,9	38,6	6,4	37,6	5,4	0,079
45	8,1	38,6	6,4	37,3	5,1	0,081	90	7,9	38,8	6,6	37,6	5,4	0,079

Δο	κίμιο 2212	2021 _1	00 A _ :	25 Nm _	_Τ _{αρχ.} =3	82,2 °C	Δοκ	ίμιο 221	2021 _	100 A _	25 Nm	_Τ _{αρχ.} =	32,2 °C
α/α	ΔV [mV]	θ1 [°C]	∆θ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	∆θ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	8,0	38,8	6,6	37,4	5,2	0,080	136	8,1	38,9	6,7	37,7	5,5	0,081
92	7,9	38,7	6,5	37,4	5,2	0,079	137	8,0	38,9	6,7	37,5	5,3	0,080
93	8,0	38,6	6,4	37,4	5,2	0,080	138	8,1	38,7	6,5	37,5	5,3	0,081
94	8,0	38,6	6,4	37,7	5,5	0,080	139	8,1	38,7	6,5	37,4	5,2	0,081
95	8,0	38,7	6,5	37,4	5,2	0,080	140	8,1	38,9	6,7	37,4	5,2	0,081
96	8,0	38,6	6,4	37,7	5,5	0,080	141	8,1	38,7	6,5	37,7	5,5	0,081
97	8,0	38,6	6,4	37,7	5,5	0,080	142	8,1	38,7	6,5	37,8	5,6	0,081
98	8,0	38,6	6,4	37,5	5,3	0,080	143	8,1	38,7	6,5	37,6	5,4	0,081
99	8,0	38,6	6,4	37,6	5,4	0,080	144	8,1	38,7	6,5	37,7	5,5	0,081
100	8,0	38,7	6,5	37,5	5,3	0,080	145	8,0	38,8	6,6	37,4	5,2	0,080
101	8,0	38,6	6,4	37,7	5,5	0,080	146	8,1	38,6	6,4	37,7	5,5	0,081
102	8,0	38,6	6,4	37,6	5,4	0,080	14/	8,1	38,7	6,5	37,4	5,2	0,081
103	8,0	38,5	6,3	37,7	5,5	0,080	148	8,1	38,7	6,5	37,4	5,2	0,081
104	8,0	38,6	6,4	37,8	5,6	0,080	149	8,1	38,6	6,4	37,5	5,3	0,081
105	8,0	38,7	0,5	37,8	5,0	0,080	150	8, I 0 1	38,7	0,5	37,4	5,2	0,081
100	0,0	30,9	0,7	37,7	5,5	0,000	151	0, I 9 1	39.6	6,0	37,4	5.2	0,001
107	8.0	38.6	6.4	37,0	5,4	0,080	152	0, I 8 1	38.7	6.5	37,5	5,3	0,001
100	8.0	38.6	6.4	37.8	5,0	0,000	153	8.1	38.7	6.5	37,4	5.1	0,001
110	8.0	38.8	66	37.6	5.4	0,000	155	8.1	38.6	6.4	37.6	5.4	0.081
111	8.0	38.7	6.5	37.7	5.5	0.080	156	8.1	38.5	6.3	37.5	5.3	0.081
112	8.0	38.9	6.7	37.6	54	0.080	157	81	38.7	6.5	37.2	5.0	0.081
113	8.2	38.7	6.5	37.6	5.4	0.082	158	8.1	38.6	6.4	37.3	5.1	0.081
114	8,2	38,9	6,7	37.6	5,4	0,082	159	8,1	38,6	6,4	37,6	5,4	0,081
115	8,1	38,9	6,7	37,5	5,3	0,081	160	8,1	38,6	6,4	37,1	4,9	0,081
116	8,1	38,8	6,6	38,0	5,8	0,081	161	8,1	38,4	6,2	37,4	5,2	0,081
117	8,1	38,9	6,7	37,9	5,7	0,081	162	8,2	38,4	6,2	37,5	5,3	0,082
118	8,1	38,6	6,4	37,8	5,6	0,081	163	8,1	38,5	6,3	37,4	5,2	0,081
119	8,1	38,7	6,5	37,8	5,6	0,081	164	8,2	38,6	6,4	37,2	5,0	0,082
120	8,1	38,8	6,6	37,8	5,6	0,081	165	8,2	38,4	6,2	37,4	5,2	0,082
121	8,1	38,9	6,7	37,4	5,2	0,081	166	8,2	38,4	6,2	37,4	5,2	0,082
122	8,1	38,9	6,7	37,7	5,5	0,081	167	8,2	38,5	6,3	37,3	5,1	0,082
123	8,1	38,8	6,6	38,0	5,8	0,081	168	8,2	38,4	6,2	37,3	5,1	0,082
124	8,1	38,9	6,7	37,7	5,5	0,081	169	8,2	38,3	6,1	37,4	5,2	0,082
125	8,1	38,9	6,7	37,6	5,4	0,081	170	8,2	38,5	6,3	37,3	5,1	0,082
126	8,1	38,8	6,6	37,8	5,6	0,081	171	8,2	38,3	6,1	37,4	5,2	0,082
127	8,1	38,8	6,6	37,6	5,4	0,081	172	8,2	38,6	6,4	37,1	4,9	0,082
128	8,1	38,8	6,6	37,8	5,6	0,081	173	8,2	38,5	6,3	37,2	5,0	0,082
129	8,0	38,8	6,6	37,8	5,6	0,080	174	8,2	38,3	6,1	37,4	5,2	0,082
130	8,1	38,8	6,6	37,6	5,4	0,081	175	8,2	38,3	6,1	37,4	5,2	0,082
131	8,1	38,9	6,7	31,1	5,5	0,081	176	8,2	38,5	6,3	31,3	5,1	0,082
132	8,0	<u> </u>	6,5	37,9	5,1	0,080	1//	8,2	38,6	6,4	3/,1	4,9	0,082
133	8,0	30,9	0,1	37,0	5,4	0,080	1/8	Ø,∠	<u></u>	0,2	31,4	5,Z	0,082
134	0,1	30,1 20.0	0,0 6 0	31,0 277	5,0 5,5	0,001	1/9	ŏ,∠ ♀つ	38,4 20.4	0,Z	31,3	5,1	0,082
135	ð, l	J9,0	0,ŏ	J/,/	ວ,ວ	U,U8 I	100	0,Z	ა0,4	0,∠	z, ic	0,C	U,Uð2

Δοι	κίμιο 2 2	12021	_120 A	_ 25 Nr	n _Τ _{αρχ.}	=31 °C		Δок	ίμιο 22	12021	_120 A	_ 25 Nr	n _Τ _{αρχ.}	=31 °C
α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α	ι/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	9.5	31.5	0.5	31,7	0,7	0.079		46	9.5	40,7	9,7	39.5	8.5	0,079
2	9,4	31,9	0,9	32,2	1,2	0,078	4	47	9,6	41,1	10,1	39,5	8,5	0,080
3	9,4	32,5	1,5	32,4	1,4	0,078		48	9,6	41,1	10,1	39,7	8,7	0,080
4	9,3	32,9	1,9	32,8	1,8	0,078	4	49	9,7	41,1	10,1	39,7	8,7	0,081
5	9,4	33,3	2,3	33,5	2,5	0,078		50	9,7	41,1	10,1	39,8	8,8	0,081
6	9,5	34,0	3,0	33,6	2,6	0,079		51	9,7	41,2	10,2	39,7	8,7	0,081
7	9,5	34,2	3,2	34,1	3,1	0,079		52	9,7	41,3	10,3	39,4	8,4	0,081
8	9,5	34,8	3,8	34,3	3,3	0,079		53	9,7	41,3	10,3	39,4	8,4	0,081
9	9,5	35,1	4,1	34,5	3,5	0,079		54	9,7	41,2	10,2	39,5	8,5	0,081
10	9,4	35,4	4,4	35,0	4,0	0,078	4	55	9,8	41,2	10,2	40,0	9,0	0,082
11	9,5	36,0	5,0	35,3	4,3	0,079		56	9,8	41,3	10,3	40,0	9,0	0,082
12	9,5	36,1	5,1	35,5	4,5	0,079		57	9,8	41,3	10,3	40,0	9,0	0,082
13	9,5	36,5	5,5	36,0	5,0	0,079		58	9,8	41,2	10,2	40,2	9,2	0,082
14	9,5	36,7	5,7	36,2	5,2	0,079		59 00	9,8	41,4	10,4	39,7	8,7	0,082
15	9,5	37,0	6,0	36,5	5,5	0,079		60 61	9,8	41,4	10,4	40,2	9,2	0,082
16	9,5	37,3	6,3	36,5	5,5	0,079		61 60	9,8	41,5	10,5	39,9	8,9	0,082
1/	9,4	37,5	6,5	36,6	5,6	0,078		62 62	9,8	41,4	10,4	39,9	8,9	0,082
18	9,5	37,9	6,9	37,1	6,1	0,079		63 C4	9,8	41,4	10,4	40,1	9,1	0,082
19	9,5	37,9	0,9 7.2	37,3	0,3	0,079		04 65	9,8	41,5	10,5	39,9	8,9 0 0	0,082
20	9,5	<u>30,2</u>	7.2	37,3	0,3 6 7	0,079		65 66	9,7	41,3	10,3	39,9	0,9	0,001
21	9,5	38.7	7,3	37.6	6.6	0,079		67	9,0 0,8	41,0	10,0	40,0	9,0 8 7	0,002
23	9,5	38.7	77	37.9	6.9	0.079		68	9.8	41.4	10,5	40.0	9.0	0.082
24	9.5	39.0	8.0	37.9	6.9	0.079		69	9.8	41.5	10,4	40.2	9,0	0.082
25	9.6	39.0	8,0	38.0	7 0	0.080		70	9.8	41.5	10,5	40.4	9.4	0.082
26	9.5	39.1	8.1	38.1	7.1	0.079		71	9.8	41.3	10.3	40.0	9.0	0.082
27	9,6	39,4	8,4	38,6	7,6	0,080		72	9,8	41,5	10,5	40,3	9,3	0,082
28	9,6	39,4	8,4	38,5	7,5	0,080		73	9,8	41,4	10,4	40,3	9,3	0,082
29	9,5	39,6	8,6	38,6	7,6	0,079		74	9,8	41,5	10,5	40,3	9,3	0,082
30	9,5	39,8	8,8	38,5	7,5	0,079		75	9,8	41,6	10,6	40,2	9,2	0,082
31	9,5	39,9	8,9	38,6	7,6	0,079		76	9,8	41,7	10,7	40,0	9,0	0,082
32	9,5	39,9	8,9	38,5	7,5	0,079		77	9,7	41,7	10,7	40,0	9,0	0,081
33	9,5	39,8	8,8	38,6	7,6	0,079		78	9,6	41,5	10,5	40,1	9,1	0,080
34	9,5	40,1	9,1	38,6	7,6	0,079		79	9,6	41,4	10,4	39,9	8,9	0,080
35	9,7	40,0	9,0	39,0	8,0	0,081	1	80	9,6	41,4	10,4	40,0	9,0	0,080
36	9,7	40,0	9,0	39,0	8,0	0,081	1	81	9,6	41,5	10,5	40,1	9,1	0,080
37	9,7	40,3	9,3	38,9	7,9	0,081		82	9,6	41,5	10,5	39,9	8,9	0,080
38	9,8	40,3	9,3	39,3	8,3	0,082		83	9,6	41,5	10,5	39,8	8,8	0,080
39	9,7	40,3	9,3	38,9	7,9	0,081		84	9,6	41,3	10,3	39,9	8,9	0,080
40	9,8	40,5	9,5	39,0	8,0	0,082		85	9,6	41,5	10,5	40,0	9,0	0,080
41	9,7	40,7	9,7	39,4	8,4	0,081		86	9,6	41,4	10,4	40,2	9,2	0,080
42	9,7	40,8	9,8	39,3	8,3	0,081		87 00	9,7	41,5	10,5	40,0	9,0	0,081
43	9,7	40,7	9,7	39,6	8,6	0,081		88	9,7	41,6	10,6	40,1	9,1	0,081
44	9,7	40,7	9,7	39,8	8,8	0,081		89 00	9,6	41,5	10,5	40,2	9,2	0,080
45	9,5	41,0	10,0	39,5	8,5	0,079		90	9,6	41,4	10,4	40,1	9,1	0,080

Δοκ	κίμιο 2 2	12021	_120 A	_ 25 Nn	n _Τ _{αρχ.}	=31 °C		Δοι	κίμιο 2 2	12021 ₋	_120 A	_ 25 Nr	n _Τ _{αρχ.}	=31 °C
α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	Ì	α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	9,7	41,6	10,6	40,1	9,1	0,081	ľ	136	9,7	41,7	10,7	39,9	8,9	0,081
92	9,7	41,5	10,5	39,9	8,9	0,081		137	9,7	41,6	10,6	39,8	8,8	0,081
93	9,7	41,5	10,5	40,2	9,2	0,081	-	138	9,7	41,4	10,4	40,3	9,3	0,081
94	9,7	41,5	10,5	40,2	9,2	0,081		139	9,7	41,6	10,6	40,0	9,0	0,081
95	9,7	41,6	10,6	40,1	9,1	0,081	-	140	9,7	41,4	10,4	40,0	9,0	0,081
96	9,7	41,5	10,5	40,3	9,3	0,081		141	9,7	41,6	10,6	39,8	8,8	0,081
97	9,7	41,5	10,5	40,1	9,1	0,081		142	9,7	41,5	10,5	39,7	8,7	0,081
98	9,7	41,5	10,5	40,3	9,3	0,081	-	143	9,7	41,6	10,6	40,2	9,2	0,081
99	9,7	41,5	10,5	40,0	9,0	0,081		144	9,7	41,5	10,5	40,0	9,0	0,081
100	9,7	41,5	10,5	40,4	9,4	0,081	-	145	9,7	41,5	10,5	39,9	8,9	0,081
101	9,7	41,5	10,5	40,3	9,3	0,081	-	146	9,7	41,4	10,4	40,1	9,1	0,081
102	9,7	41,5	10,5	40,3	9,3	0,081		147	9,7	41,6	10,6	40,3	9,3	0,081
103	9,8	41,6	10,6	39,9	8,9	0,082	-	148	9,7	41,5	10,5	39,9	8,9	0,081
104	9,7	41,4	10,4	40,2	9,2	0,081	-	149	9,7	41,4	10,4	40,0	9,0	0,081
105	9,7	41,4	10,4	40,0	9,0	0,081		150	9,7	41,5	10,5	40,1	9,1	0,081
100	9,7	41,0	10,6	40,3	9,3	0,081	-	151	9,7	41,4	10,4	40,3	9,3	0,081
107	9,7	41,5	10,5	40,0	9,0	0,001	-	152	9,7	41,3	10,5	40,0	9,0	0,001
100	9,7	41,5	10,5	40,3	9,3	0,001		155	9,7	41,3	10,3	30.0	0,9 8 0	0,001
110	9,7	41,4	10,4	40,1	9,1	0,001	-	154	9,7	<u>41,4</u>	10,4	<u> </u>	9,9	0,001
111	9.6	41.5	10,5	40.2	9.2	0.080		156	97	41.6	10,4	39.8	8.8	0.081
112	9.7	41 7	10,0	40.1	9,2 9,1	0.081	-	157	9.8	41.5	10,5	40.1	9.1	0.082
113	9.6	41.5	10,1	40.3	9.3	0.080	-	158	9.7	41.4	10,0	40.3	9.3	0.081
114	9,6	41,6	10,6	40,4	9,4	0,080	-	159	9,6	41,5	10,5	39,8	8,8	0,080
115	9,6	41,6	10,6	40,3	9,3	0,080	-	160	9,6	41,5	10,5	39,7	8,7	0,080
116	9,6	41,6	10,6	40,3	9,3	0,080	-	161	9,6	41,5	10,5	39,7	8,7	0,080
117	9,6	41,6	10,6	40,3	9,3	0,080		162	9,6	41,5	10,5	39,7	8,7	0,080
118	9,7	41,6	10,6	40,3	9,3	0,081	-	163	9,7	41,3	10,3	39,9	8,9	0,081
119	9,6	41,7	10,7	40,0	9,0	0,080	-	164	9,7	41,4	10,4	39,8	8,8	0,081
120	9,7	41,6	10,6	40,4	9,4	0,081	-	165	9,6	41,5	10,5	39,7	8,7	0,080
121	9,7	41,5	10,5	40,2	9,2	0,081	-	166	9,7	41,4	10,4	39,9	8,9	0,081
122	9,6	41,6	10,6	39,9	8,9	0,080		167	9,7	41,4	10,4	39,9	8,9	0,081
123	9,6	41,6	10,6	39,9	8,9	0,080	-	168	9,6	41,5	10,5	39,9	8,9	0,080
124	9,6	41,5	10,5	40,0	9,0	0,080	-	169	9,7	41,4	10,4	40,1	9,1	0,081
125	9,6	41,7	10,7	40,2	9,2	0,080	-	170	9,7	41,5	10,5	39,7	8,7	0,081
126	9,6	41,7	10,7	40,1	9,1	0,080	-	1/1	9,7	41,5	10,5	39,6	8,6	0,081
127	9,6	41,5	10,5	39,9	8,9	0,080	-	1/2	9,7	41,3	10,3	39,9	8,9	0,081
128	9,6	41,5	10,5	40,1	9,1	0,080	-	1/3	9,7	41,4	10,4	39,7	8,7	0,081
129	9,0	41,5	10,5	39,9	0,9 0,0	0,080		174	9,0	41,5 111	10,5	39,1 30.7	0,1	0,080
130	9,0 0,6	41,0 /1 5	10,0	40,0 ⊿∩ 1	9,0	0,080		1/5	9,0 0,6	41,4 11 5	10,4	39,1 30 6	0,1 8 6	0,080
122	9,0	41,0	10,5	40,1 40.2	ອ, I ດ າ	0,000	-	177	9,0	41,0 /1 2	10,5	39,0 40 1	0,0	0,000
132	9,0	ر با ⊿16	10,0	+∪,∠ 30.0	୬,८ ହୁର	0,000		179	9,0	ر با 1 1	10,3	40,1 20.0	ଅ, I ହ ପ	0,000
133	9,0 Q 7	<u>41,0</u>	10,0	<u> </u>	0,9 Q A	0,000		170	9,7	41,4 <u>41</u> 5	10,4	30.0	0,9 8 0	0,001
135	9.7	41.5	10.5	40.1	9.1	0.081		180	9.7	41.5	10.5	39.8	8.8	0.081

Δοκ	ίμιο 100	01010 _	35 A _	25 Nm	_Τ _{αρχ.} =:	30,8 °C	Δοκ	ίμιο 10	01010 _	_35 A _	25 Nm	_Τ _{αρχ.} =:	80,8 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	∆V [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	37,7	30,8	0,0	31,8	1,0	1,077	46	38,4	33,7	2,9	34,6	3,8	1,097
2	38,0	31,1	0,3	31,8	1,0	1,086	47	38,4	33,8	3,0	34,9	4,1	1,097
3	38,4	31,2	0,4	32,1	1,3	1,097	48	38,3	34,0	3,2	34,8	4,0	1,094
4	38,6	31,1	0,3	32,3	1,5	1,103	49	38,6	34,0	3,2	34,8	4,0	1,103
5	38,2	31,1	0,3	32,4	1,6	1,091	50	38,7	34,0	3,2	34,5	3,7	1,106
6	38,2	31,3	0,5	32,4	1,6	1,091	51	38,8	33,9	3,1	34,9	4,1	1,109
7	38,1	31,3	0,5	32,7	1,9	1,089	52	38,8	33,9	3,1	34,9	4,1	1,109
8	37,8	31,4	0,6	32,8	2,0	1,080	53	38,7	34,0	3,2	35,0	4,2	1,106
9	37,9	31,6	0,8	32,9	2,1	1,083	54	38,8	34,0	3,2	34,9	4,1	1,109
10	37,7	31,6	0,8	32,8	2,0	1,077	55	38,7	34,1	3,3	34,8	4,0	1,106
11	37,9	31,6	0,8	33,0	2,2	1,083	56	38,8	34,0	3,2	35,0	4,2	1,109
12	37,9	31,9	1,1	32,8	2,0	1,083	57	38,8	34,2	3,4	34,9	4,1	1,109
13	38,9	31,8	1,0	33,2	2,4	1,111	58	38,8	34,1	3,3	35,0	4,2	1,109
14	38,6	32,0	1,2	33,2	2,4	1,103	59	38,6	34,2	3,4	34,9	4,1	1,103
15	38,5	32,1	1,3	32,9	2,1	1,100	60	38,6	34,1	3,3	35,0	4,2	1,103
16	38,6	32,2	1,4	33,4	2,6	1,103	61	38,6	34,1	3,3	35,1	4,3	1,103
17	38,5	32,3	1,5	33,2	2,4	1,100	62	38,6	34,1	3,3	35,1	4,3	1,103
18	38,6	32,4	1,6	33,3	2,5	1,103	63	38,6	34,1	3,3	35,0	4,2	1,103
19	38,6	32,4	1,6	33,4	2,6	1,103	64	38,6	34,1	3,3	35,1	4,3	1,103
20	38,4	32,4	1,6	33,6	2,8	1,097	65	38,7	34,3	3,5	34,9	4,1	1,106
21	38,4	32,5	1,7	33,5	2,7	1,097	66	39,0	34,1	3,3	35,0	4,2	1,114
22	38,4	32,5	1,7	33,7	2,9	1,097	67	39,3	34,2	3,4	35,2	4,4	1,123
23	38,1	32,6	1,8	33,6	2,8	1,089	68	39,3	34,4	3,6	34,9	4,1	1,123
24	38,1	32,6	1,8	33,9	3,1	1,089	69	39,3	34,3	3,5	34,9	4,1	1,123
25	38,5	32,9	2,1	33,6	2,8	1,100	70	39,2	34,2	3,4	34,9	4,1	1,120
26	38,5	32,8	2,0	33,7	2,9	1,100	71	39,3	34,4	3,6	34,8	4,0	1,123
27	38,1	32,9	2,1	34,1	3,3	1,089	72	39,3	34,2	3,4	34,9	4,1	1,123
28	38,6	33,0	2,2	33,8	3,0	1,103	73	38,9	34,2	3,4	35,0	4,2	1,111
29	38,6	33,0	2,2	34,1	3,3	1,103	74	39,2	34,3	3,5	34,7	3,9	1,120
30	38,6	33,2	2,4	33,9	3,1	1,103	75	39,1	34,2	3,4	34,8	4,0	1,117
31	38,6	33,2	2,4	34,1	3,3	1,103	/6	39,1	34,2	3,4	34,8	4,0	1,117
32	38,6	33,3	2,5	34,2	3,4	1,103	70	39,2	34,1	3,3	34,8	4,0	1,120
33	38,6	33,4	2,6	34,1	3,3	1,103	/8	39,1	34,0	3,2	34,9	4,1	1,117
34	38,4	33,∠ 22.4	2,4	34,5	3,7	1,097	/9	39,0	34, I 24 1	3,3	34,0	3,8	1,114
20	20,3	22 5	2,0	34,4 24 1	3,0	1,094	00	39,0	34, I 24 1	3,3	34,7	3,9	1,114
27	30,5 20 4	33,5	2,1	34, I 24 4	3,3	1,100	01	39,0	34, I 24 1	3,3	34,7	3,9	1,114
20	38.4	33.5	2,7	34,4	3,0	1,097	92	38.8	34,1	3,3	34,5	3,7	1,111
30 20	30,4 32 3	33.5	∠,1 27	34,4	3,0	1,097	00 81	38.0	34,0	3,2	34,0 34 Q	3,0 ⊿ ∩	1 111
<u> </u>	38.3	33,5	2,1	34.3 34.3	3,7	1,094	95	30.3	34.0	3,2	34.5	37	1 117
40	38.2	33.6	∠,૭ 2 ହ	34 6	3,5 3 A	1,094	20	30.0	37.8	3,2	34.7	3,7	1 11/
41	38.2	33.0	2,0 2 8	34 G	3,0 3 Q	1 001	87	38.0	33,0 33 8	3,0	34 R	3,3	1 111
42	<u>38</u> 2	33.7	2,0 2 Q	34 5	3,0	1 001	88	38.0	34 1	3,0	34 3	35	1 111
40	38.2	33.7	2,3	34 5	37	1 0.91	89	38 9	34.0	3.2	34.4	3.6	1 111
44	38 3	33.7	2,3	34 7	30	1 004	90	38.0	33.0	3.1	34.6	3.8	1 111
45	38,3	33,7	2,9	34,7	3,9	1,094	90	38,9	33,9	3,1	34,6	3,8	1,111

4.3 Αναλυτικές Μετρήσεις Συνδέσμου 1001010 St/tZn III

Δοκ	íµıo 10(01010 _	35 A _	25 Nm	_Τ _{αρχ.} =:	30,8 °C	Δοι	cíµıo 10	01010 _	35 A _	25 Nm	_Τ _{αρχ.} =:	30,8 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	∆V [mV]	θ1 [°C]	∆θ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	38,9	33,8	3,0	34,6	3,8	1,111	136	38,6	33,0	2,2	33,8	3,0	1,103
92	38,8	33,8	3,0	34,7	3,9	1,109	137	38,6	32,9	2,1	33,9	3,1	1,103
93	38,9	33,8	3,0	34,6	3,8	1,111	138	38,6	33,2	2,4	33,6	2,8	1,103
94	38,8	33,9	3,1	34,5	3,7	1,109	139	38,5	33,1	2,3	33,6	2,8	1,100
95	38,7	33,9	3,1	34,2	3,4	1,106	140	38,6	33,2	2,4	33,6	2,8	1,103
96	38,7	33,9	3,1	34,3	3,5	1,106	141	38,6	33,1	2,3	33,8	3,0	1,103
97	38,7	33,9	3,1	34,2	3,4	1,106	142	38,6	33,1	2,3	33,6	2,8	1,103
98	39,0	33,6	2,8	34,5	3,7	1,114	143	38,7	33,0	2,2	33,9	3,1	1,106
99	39,1	33,9	3,1	34,3	3,5	1,117	144	38,7	32,9	2,1	33,7	2,9	1,106
100	39,2	33,7	2,9	34,5	3,7	1,120	145	38,7	32,9	2,1	33,9	3,1	1,106
101	39,2	33,6	2,8	34,4	3,6	1,120	146	38,5	33,1	2,3	33,8	3,0	1,100
102	39,1	33,7	2,9	34,4	3,6	1,117	147	38,5	33,0	2,2	34,2	3,4	1,100
103	39,2	33,8	3,0	34,2	3,4	1,120	148	38,4	33,1	2,3	34,0	3,2	1,097
104	39,2	33,6	2,8	34,3	3,5	1,120	149	38,4	33,1	2,3	34,1	3,3	1,097
105	39,2	33,6	2,8	34,3	3,5	1,120	150	38,3	33,0	2,2	34,4	3,6	1,094
100	39,8	33,0	2,8	34,4	3,0	1,137	151	38,4	33,1	2,3	34,1	3,3	1,097
107	39,9	33,0	2,0	34,5	3,1 2,4	1,140	152	20,4	32,9	2,1	34,4	3,0	1,097
100	40, I 30 5	33.6	2,9	34,2	3,4 3,8	1,140	153	38.4	32.0	2,4	34,1	3,5	1,100
105	38.6	33.6	2,0	34,0	3,0 3 3	1,129	154	38.4	32,9	2,1	34,5	3,5	1,097
111	38.4	33.6	2,0	34.3	3,5	1,103	156	38.4	33.0	2,3	34.3	3.5	1,037
112	38.4	33.6	2,0	34.4	3.6	1,007	157	38.5	32.9	2,2	34.2	3.4	1 100
113	38.4	33.6	2.8	34.3	3.5	1,007	158	38.5	33.0	2.2	34.1	3.3	1,100
114	38.4	33.7	2.9	34.1	3.3	1,097	159	38.6	33.0	2.2	34.2	3.4	1,103
115	38,2	33,6	2,8	34,4	3,6	1,091	160	38,7	32,9	2,1	34,2	3,4	1,106
116	38,3	33,6	2,8	34,1	3,3	1,094	161	38,6	32,9	2,1	34,2	3,4	1,103
117	38,3	33,6	2,8	34,1	3,3	1,094	162	38,6	32,9	2,1	34,2	3,4	1,103
118	38,2	33,4	2,6	34,3	3,5	1,091	163	38,6	33,1	2,3	34,0	3,2	1,103
119	38,1	33,6	2,8	34,1	3,3	1,089	164	38,5	32,9	2,1	34,2	3,4	1,100
120	38,1	33,6	2,8	34,0	3,2	1,089	165	38,5	33,0	2,2	34,1	3,3	1,100
121	38,2	33,4	2,6	34,3	3,5	1,091	166	38,5	32,8	2,0	34,2	3,4	1,100
122	38,1	33,5	2,7	33,9	3,1	1,089	167	38,5	32,9	2,1	34,0	3,2	1,100
123	38,2	33,2	2,4	34,2	3,4	1,091	168	38,6	33,0	2,2	33,9	3,1	1,103
124	38,2	33,3	2,5	33,9	3,1	1,091	169	38,6	32,8	2,0	34,3	3,5	1,103
125	38,4	33,2	2,4	34,1	3,3	1,097	170	38,6	32,9	2,1	34,2	3,4	1,103
126	38,5	33,4	2,6	33,8	3,0	1,100	171	38,6	32,8	2,0	34,3	3,5	1,103
127	38,5	33,3	2,5	33,8	3,0	1,100	172	38,5	32,9	2,1	33,9	3,1	1,100
128	38,5	33,2	2,4	34,1	3,3	1,100	1/3	38,5	32,8	2,0	34,0	3,2	1,100
129	38,5	33,2	2,4	34,1	3,3	1,100	1/4	38,6	32,8	2,0	34,2	3,4	1,103
130	30,4	<u>ა</u> კ,∠	2,4	34,1	3,3	1,097	1/5	30,0	33,0	2,2	33,9	3,1	1,103
131	30,5	<u>აა,∠</u>	2,4	33,9 33 G	3, I 2 0	1,100	1/6	30,0 200	১∠,9 ৫০.০	2,1	240	3, I 2 2 2	1,109
122	30,0	<u></u> 32.2	2,4 2.4	33,0 33,6	∠,ð 2 9	1,103	1//	30,0 32.0	ა∠,Ծ ვე ი	∠,U 2 1	34,0	 ১,∠	1,109
133	38.6	<u> </u>	∠, 4 23	33,0	2,0 3.0	1 103	170	38.7	32,9	2,1	3/1 1	3,5	1 106
135	38.6	33.0	2,3	34.0	3.2	1 103	180	38.0	33.0	2,1	34.1	33	1 111
133	50,0	JJ,U	∠,∠	J4,U	∠,د	1,103	100	30,9	55,0	∠,∠	J4, I	۵,۵	1,111

Δок	ίμιο 10	01010 _	40 A _	25 Nm	_Τ _{αρχ.} =:	34,1 °C	Δок	íµıo 10	01010 _	40 A _	25 Nm	_Τ _{αρχ.} =:	34,1 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	51,4	34,1	0,0	35,8	1,7	1,285	46	51,9	37,8	3,7	39,4	5,3	1,298
2	51,6	34,5	0,4	35,9	1,8	1,290	47	51,9	38,0	3,9	39,3	5,2	1,298
3	51,7	34,6	0,5	36,1	2,0	1,293	48	51,8	38,0	3,9	39,3	5,2	1,295
4	51,6	34,6	0,5	36,2	2,1	1,290	49	51,7	37,9	3,8	39,4	5,3	1,293
5	51,4	34,8	0,7	36,4	2,3	1,285	50	51,7	38,1	4,0	39,4	5,3	1,293
6	51,4	35,0	0,9	36,6	2,5	1,285	51	51,9	38,1	4,0	39,5	5,4	1,298
7	51,5	35,2	1,1	36,8	2,7	1,288	52	51,9	38,1	4,0	39,4	5,3	1,298
8	51,4	35,2	1,1	36,8	2,7	1,285	53	51,9	38,1	4,0	39,5	5,4	1,298
9	51,4	35,4	1,3	37,0	2,9	1,285	54	51,8	38,2	4,1	39,5	5,4	1,295
10	51,3	35,4	1,3	37,3	3,2	1,283	55	51,7	38,2	4,1	39,5	5,4	1,293
11	51,4	35,6	1,5	37,2	3,1	1,285	56	51,6	38,1	4,0	39,5	5,4	1,290
12	51,3	35,7	1,6	37,4	3,3	1,283	57	51,7	38,2	4,1	39,5	5,4	1,293
13	51,5	35,9	1,8	37,5	3,4	1,288	58	51,6	38,2	4,1	39,4	5,3	1,290
14	51,4	35,9	1,8	37,6	3,5	1,285	59	51,6	38,0	3,9	39,5	5,4	1,290
15	51,3	36,1	2,0	31,1	3,6	1,283	60	51,5	38,2	4,1	39,5	5,4	1,288
10	51,3	30,1	2,0	37,8	3,7	1,283	62	51,4	38,2	4,1	39,5	5,4	1,285
17	50,9	30,2	2,1	37,9	3,0	1,273	62	51,9	30,3 20.2	4,2	39,5 20 F	5,4 5.4	1,290
10	51,3	36.3	2,2	30,0	3,9	1,203	64	51,0	30,3 30,3	4,2	39,5	5,4 5.4	1,295
20	51.4	36.4	2,2	38.2	3,9 / 1	1,200	65	51.9	38.2	4,1	39,5	5,4	1,290
20	51,0	36.5	2,5	38.2	4,1	1,230	66	51.9	38.3	4,1	39,0	5,5	1,290
22	51.4	36.7	2,4	38.3	4.2	1,200	67	51.9	38.3	4.2	39.5	5.4	1 298
23	51 4	36.9	2.8	38.2	4 1	1,200	68	51.8	38.2	4 1	39.6	5.5	1,200
24	51 4	36.8	2,0	38.2	4 1	1,200	69	51.9	38.2	4 1	39.5	54	1,200
25	51.5	36.9	2.8	38.5	4.4	1.288	70	52.0	38.2	4.1	39.5	5.4	1.300
26	51.4	37.0	2.9	38.6	4.5	1.285	71	52.0	38.3	4.2	39.7	5.6	1.300
27	51,5	37,0	2,9	38,6	4,5	1,288	72	52,2	38,3	4,2	39,6	5,5	1,305
28	51,2	37,1	3,0	38,6	4,5	1,280	73	52,1	38,3	4,2	39,7	5,6	1,303
29	51,7	37,2	3,1	38,6	4,5	1,293	74	52,1	38,4	4,3	39,8	5,7	1,303
30	51,6	37,4	3,3	38,7	4,6	1,290	75	52,1	38,5	4,4	39,7	5,6	1,303
31	51,7	37,4	3,3	38,8	4,7	1,293	76	52,1	38,4	4,3	39,7	5,6	1,303
32	51,7	37,4	3,3	38,8	4,7	1,293	77	52,2	38,5	4,4	39,7	5,6	1,305
33	51,7	37,4	3,3	38,8	4,7	1,293	78	51,9	38,4	4,3	39,7	5,6	1,298
34	51,7	37,4	3,3	38,9	4,8	1,293	79	52,0	38,4	4,3	39,9	5,8	1,300
35	51,7	37,4	3,3	38,9	4,8	1,293	80	52,1	38,4	4,3	39,7	5,6	1,303
36	51,3	37,5	3,4	38,9	4,8	1,283	81	52,1	38,4	4,3	39,7	5,6	1,303
37	51,5	37,6	3,5	38,9	4,8	1,288	82	52,2	38,5	4,4	39,7	5,6	1,305
38	51,5	37,6	3,5	39,0	4,9	1,288	83	53,8	38,6	4,5	39,9	5,8	1,345
39	51,5	37,8	3,7	39,0	4,9	1,288	84	53,4	38,6	4,5	39,8	5,7	1,335
40	51,3	37,7	3,6	39,0	4,9	1,283	85	52,9	38,5	4,4	39,6	5,5	1,323
41	51,3	37,8	3,7	39,0	4,9	1,283	86	52,5	38,4	4,3	39,6	5,5	1,313
42	51,2	37,8	3,7	39,1	5,0	1,280	87	52,5	38,3	4,2	39,6	5,5	1,313
43	51,1	37,8	3,7	39,2	5,1	1,278	88	52,3	38,3	4,2	39,6	5,5	1,308
44	51,1	38,0	3,9	39,2	5,1	1,278	89	52,3	38,3	4,2	39,5	5,4	1,308
45	51,1	37,9	3,8	39,1	5,0	1,278	90	52,4	38,2	4,1	39,5	5,4	1,310

Δοκ	íµıo 10(01010 _	40 A _	25 Nm	_Τ _{αρχ.} =:	34,1 °C	Δc	κίμιο 10	01010 _	40 A _	25 Nm	_Τ _{αρχ.} =:	34,1 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/0	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	52,3	38,2	4,1	39,5	5,4	1,308	136	51,9	37,9	3,8	39,0	4,9	1,298
92	51,9	38,2	4,1	39,5	5,4	1,298	137	52,0	38,0	3,9	39,0	4,9	1,300
93	51,9	38,4	4,3	39,5	5,4	1,298	138	52,1	37,8	3,7	38,9	4,8	1,303
94	51,8	38,3	4,2	39,5	5,4	1,295	139	52,0	37,8	3,7	38,8	4,7	1,300
95	51,8	38,2	4,1	39,5	5,4	1,295	140	52,1	37,9	3,8	38,8	4,7	1,303
96	51,8	38,2	4,1	39,4	5,3	1,295	141	52,0	37,8	3,7	38,8	4,7	1,300
97	52,0	38,2	4,1	39,5	5,4	1,300	142	52,2	37,8	3,7	38,9	4,8	1,305
98	52,0	38,2	4,1	39,5	5,4	1,300	143	52,1	37,8	3,7	38,8	4,7	1,303
99	51,9	38,3	4,2	39,5	5,4	1,298	144	52,2	37,6	3,5	38,8	4,7	1,305
100	51,9	38,2	4,1	39,5	5,4	1,298	145	52,0	37,8	3,7	38,8	4,7	1,300
101	51,8	38,3	4,2	39,5	5,4	1,295	146	52,1	37,8	3,7	38,8	4,7	1,303
102	51,9	38,2	4,1	39,4	5,3	1,298	147	52,0	37,7	3,6	38,8	4,7	1,300
103	51,8	38,4	4,3	39,5	5,4	1,295	148	51,9	37,8	3,7	38,9	4,8	1,298
104	51,7	38,2	4,1	39,5	5,4	1,293	149	52,0	37,8	3,7	38,8	4,7	1,300
105	51,6	38,4	4,3	39,4	5,3	1,290	150	51,9	37,7	3,6	38,7	4,6	1,298
106	51,7	38,2	4,1	39,4	5,3	1,293	151	52,0	37,7	3,6	38,7	4,6	1,300
107	51,7	38,3	4,2	39,5	5,4	1,293	152	52,1	37,8	3,7	38,8	4,7	1,303
108	51,5	38,4	4,3	39,4	5,3	1,288	153	52,1	37,8	3,7	38,8	4,7	1,303
109	51,0 51,1	38,2 20 2	4,1	39,4	5,3	1,290	154	52,0	31,1	3,0	39,0	4,9	1,300
110	51.7	38.2	4,1	30.5	5,4	1,270	150	52,1	37,0	3,7	30,9	4,0	1,303
112	51.2	38.1	4,1	39,5	53	1,200	150	52,1	37,0	3,5	30,0	4,7	1,303
113	51.2	38.2	-,0 - <u>4</u> 1	39.4	5.3	1 280	158	52,2	37.8	3.7	39.0	49	1,303
114	51 1	38.2	4 1	39.3	5.2	1,200	159	52.2	37.8	3.7	38.9	4.8	1,000
115	51.5	38.2	4 1	39.5	5.4	1,278	160	52.2	37.8	3.7	38.9	4.8	1,000
116	51.4	38.2	4.1	39.3	5.2	1.285	161	52.2	37.8	3.7	39.0	4.9	1.305
117	51,5	38,1	4,0	39,3	5.2	1,288	162	52,3	37,8	3,7	39,0	4,9	1,308
118	51,3	38,0	3,9	39,2	5,1	1,283	163	52,4	37,8	3,7	39,1	5,0	1,310
119	51,3	38,2	4,1	39,4	5,3	1,283	164	52,4	38,0	3,9	39,0	4,9	1,310
120	51,3	37,9	3,8	39,2	5,1	1,283	165	52,4	38,0	3,9	39,0	4,9	1,310
121	51,7	38,1	4,0	39,0	4,9	1,293	166	52,5	38,0	3,9	39,1	5,0	1,313
122	51,8	38,0	3,9	39,3	5,2	1,295	167	52,6	37,9	3,8	39,1	5,0	1,315
123	51,7	37,9	3,8	39,0	4,9	1,293	168	52,6	37,8	3,7	39,2	5,1	1,315
124	52,2	37,8	3,7	39,0	4,9	1,305	169	52,6	37,9	3,8	39,2	5,1	1,315
125	52,4	38,0	3,9	39,0	4,9	1,310	170	52,6	37,9	3,8	39,1	5,0	1,315
126	52,4	38,0	3,9	39,2	5,1	1,310	171	52,6	37,9	3,8	39,2	5,1	1,315
127	52,5	37,9	3,8	39,0	4,9	1,313	172	52,6	38,1	4,0	39,1	5,0	1,315
128	52,5	37,9	3,8	39,0	4,9	1,313	173	52,6	38,1	4,0	39,0	4,9	1,315
129	52,4	38,1	4,0	39,1	5,0	1,310	174	52,6	38,1	4,0	39,1	5,0	1,315
130	52,4	38,0	3,9	39,0	4,9	1,310	175	52,2	38,0	3,9	39,1	5,0	1,305
131	52,6	37,8	3,7	39,0	4,9	1,315	176	52,2	38,1	4,0	39,1	5,0	1,305
132	52,1	38,0	3,9	39,0	4,9	1,303	177	52,2	37,9	3,8	39,3	5,2	1,305
133	52,0	37,8	3,7	39,0	4,9	1,300	178	52,4	38,0	3,9	39,0	4,9	1,310
134	52,1	37,9	3,8	39,0	4,9	1,303	179	52,5	37,8	3,7	39,1	5,0	1,313
135	52,1	37,8	3,7	38,9	4,8	1,303	180	52,8	38,0	3,9	39,0	4,9	1,320

Δοκ	íµıo 10(01010 _	45 A _	25 Nm	_Τ _{αρχ.} =:	32,9 °C	Δοκ	κίμιο 10	01010 _	45 A _	25 Nm	_Τ _{αρχ.} =:	32,9 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	52,4	32,9	0,0	34,1	1,2	1,164	46	52,2	36,6	3,7	37,8	4,9	1,160
2	52,3	32,9	0,0	34,3	1,4	1,162	47	52,2	36,7	3,8	37,8	4,9	1,160
3	51,8	33,2	0,3	34,9	2,0	1,151	48	52,3	36,6	3,7	37,8	4,9	1,162
4	51,7	33,4	0,5	34,9	2,0	1,149	49	52,5	36,6	3,7	37,9	5,0	1,167
5	52,1	33,5	0,6	35,2	2,3	1,158	50	52,3	36,7	3,8	38,0	5,1	1,162
6	52,0	33,6	0,7	35,2	2,3	1,156	51	52,3	36,7	3,8	38,1	5,2	1,162
7	51,5	33,8	0,9	35,3	2,4	1,144	52	52,3	36,8	3,9	38,2	5,3	1,162
8	52,2	34,1	1,2	35,7	2,8	1,160	53	52,3	36,9	4,0	37,8	4,9	1,162
9	52,5	34,2	1,3	35,7	2,8	1,167	54	52,3	36,7	3,8	37,8	4,9	1,162
10	53,0	34,3	1,4	35,8	2,9	1,178	55	52,3	36,9	4,0	37,9	5,0	1,162
11	53,1	34,5	1,6	36,3	3,4	1,180	56	52,3	36,9	4,0	38,0	5,1	1,162
12	53,0	34,5	1,6	36,1	3,2	1,178	57	52,3	36,8	3,9	38,0	5,1	1,162
13	52,9	34,7	1,8	36,1	3,2	1,176	58	52,2	36,8	3,9	37,9	5,0	1,160
14	53,1	34,5	1,6	36,1	3,2	1,180	59	52,2	36,9	4,0	38,2	5,3	1,160
15	53,2	34,9	2,0	36,5	3,6	1,182	60	52,2	36,8	3,9	37,9	5,0	1,160
16	52,1	35,0	2,1	36,6	3,7	1,158	61	52,3	36,8	3,9	38,0	5,1	1,162
17	52,7	35,1	2,2	36,6	3,7	1,1/1	62	52,3	37,0	4,1	37,9	5,0	1,162
18	52,6	35,3	2,4	36,8	3,9	1,169	63	52,3	36,9	4,0	38,0	5,1	1,162
19	52,1	35,3	2,4	36,9	4,0	1,158	64	52,2	37,0	4,1	37,9	5,0	1,160
20	52,1	35,4	2,5	37,0	4,1	1,158	65	52,2	36,9	4,0	37,9	5,0	1,160
21	51,8	35,4	2,5	37,0	4,1	1,151	66	52,1	36,8	3,9	37,9	5,0	1,158
22	51,9	35,0	2,7	37,2	4,3	1,153	60	52,1	30,9	4,0	37,9	5,0	1,158
23	52,1	35,0	2,1	37,0	4,1	1,100	60	52,2	37,0	4,1	30,0	5,1	1,100
24	52,2	35.6	2,0	37,1	4,2	1,100	70	52,0	36.0	4,1	37.0	5,2	1,150
26	51 7	35.8	2,7	37.2	4,2	1 140	70	52.7	37.0	4,0	38.0	5,0	1,150
27	52.2	35.9	2,5	37.3	4,0	1,140	72	51.8	37.0	4,1	38.0	5 1	1,100
28	52.2	35.9	3.0	37.3	44	1,100	73	52.2	36.9	4.0	38.0	5.1	1 160
29	52.2	35.8	2.9	37.3	4.4	1,160	74	52.0	37.0	4.1	37.9	5.0	1,156
30	52.2	36.0	3.1	37.5	4.6	1,160	75	51.9	37.0	4.1	37.8	4.9	1,153
31	52.3	36.1	3.2	37.5	4.6	1.162	76	52.0	37.0	4.1	38.1	5.2	1,156
32	52,3	36,1	3,2	37,5	4,6	1,162	77	52,0	37,0	4,1	38.0	5,1	1,156
33	52,1	36,1	3,2	37,4	4,5	1,158	78	52,0	37,0	4,1	37,9	5,0	1,156
34	52,3	36,2	3,3	37,6	4,7	1,162	79	52,6	37,0	4,1	38,2	5,3	1,169
35	52,3	36,1	3,2	37,4	4,5	1,162	80	52,4	37,0	4,1	38,0	5,1	1,164
36	52,3	36,2	3,3	37,6	4,7	1,162	81	52,3	37,0	4,1	38,2	5,3	1,162
37	52,3	36,3	3,4	37,5	4,6	1,162	82	52,5	37,0	4,1	38,1	5,2	1,167
38	52,3	36,3	3,4	37,7	4,8	1,162	83	52,7	37,0	4,1	38,1	5,2	1,171
39	52,3	36,3	3,4	37,6	4,7	1,162	84	53,9	37,0	4,1	38,2	5,3	1,198
40	52,2	36,2	3,3	37,4	4,5	1,160	85	53,6	37,0	4,1	38,5	5,6	1,191
41	52,3	36,5	3,6	37,8	4,9	1,162	86	53,1	37,0	4,1	38,1	5,2	1,180
42	52,3	36,5	3,6	37,8	4,9	1,162	87	52,7	37,0	4,1	38,2	5,3	1,171
43	52,3	36,5	3,6	37,8	4,9	1,162	88	52,3	37,0	4,1	38,1	5,2	1,162
44	52,2	36,4	3,5	37,9	5,0	1,160	89	52,1	37,1	4,2	38,2	5,3	1,158
45	52,2	36,3	3,4	37,8	4,9	1,160	90	52,1	37,1	4,2	38,2	5,3	1,158

Δοκίμιο 1001010 _45 A _ 25 Nm _T _{αρχ.} =32,9 °C							Δα	οκίμιο 10	01010 _	45 A _	25 Nm	_Τ _{αρχ.} =:	32,9 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
91	52,0	37,0	4,1	38,2	5,3	1,156	130	5 52,0	37,0	4,1	38,0	5,1	1,156
92	52,1	37,0	4,1	38,2	5,3	1,158	137	52,2	37,0	4,1	38,1	5,2	1,160
93	52,1	37,0	4,1	38,3	5,4	1,158	138	3 52,0	37,0	4,1	38,1	5,2	1,156
94	52,1	37,1	4,2	38,2	5,3	1,158	139	52,1	37,0	4,1	38,0	5,1	1,158
95	52,1	37,0	4,1	38,2	5,3	1,158	140	52,1	37,1	4,2	38,2	5,3	1,158
96	52,1	37,1	4,2	38,2	5,3	1,158	14 ⁻	l 52,0	37,0	4,1	37,9	5,0	1,156
97	51,9	37,1	4,2	38,2	5,3	1,153	142	2 51,9	37,0	4,1	38,1	5,2	1,153
98	52,0	37,0	4,1	38,4	5,5	1,156	14:	3 51,9	37,0	4,1	38,1	5,2	1,153
99	51,9	37,0	4,1	38,2	5,3	1,153	144	1 51,9	37,0	4,1	38,1	5,2	1,153
100	51,9	37,0	4,1	38,2	5,3	1,153	14	5 52,0	37,0	4,1	38,2	5,3	1,156
101	51,9	37,1	4,2	38,2	5,3	1,153	140	5 52,0	37,0	4,1	38,4	5,5	1,156
102	51,8	37,1	4,2	38,2	5,3	1,151	147	52,0	36,7	3,8	37,8	4,9	1,156
103	51,9	37,0	4,1	38,2	5,3	1,153	148	3 51,9	36,7	3,8	37,8	4,9	1,153
104	51,9	37,0	4,1	38,2	5,3	1,153	149	9 51,9	36,6	3,7	37,8	4,9	1,153
105	51,9	37,0	4,1	38,2	5,3	1,153	150	52,3	37,0	4,1	38,5	5,6	1,162
106	51,8	37,0	4,1	38,1	5,Z	1,151	15	1 52,2 52,6	37,1	4,2	38,3	5,4	1,160
107	51,9	27 1	4,2	30, I	5,∠ 5,2	1,100	154	2 52,0 52,6	37,0	4,1	30,4 20 2	5,5	1,109
100	51.0	37,1	4,2	30,2	5,3	1,101	15.	52,0 52,0	37,1	4,2	30,2 29 1	5,3	1,109
109	51.8	37,0	4,1	38.2	5,3	1,101	154	52,0 52,6	37,0	4,1	30,1	5.2	1,109
111	51.7	37.0		38.0	5,5	1 149	150	52,0	37.0	4,1	38.1	5.2	1,103
112	51.8	37.0	4,1	38.2	5.3	1 151	15	5 2,0	37.0	4,1	38.1	5.2	1,100
113	52.3	37.0	4.1	38.2	5.3	1,162	158	52.6	37.0	4.1	38.1	5.2	1,169
114	52.2	36.5	3.6	37.4	4.5	1.160	159	52.6	37.1	4.2	38.1	5.2	1.169
115	52,1	37,1	4,2	38,1	5.2	1,158	160) 52,6	37,0	4,1	38.2	5,3	1,169
116	52,2	37,0	4,1	38,3	5,4	1,160	16 ⁻	l 52,5	37,0	4,1	38,2	5,3	1,167
117	52,2	37,0	4,1	38,0	5,1	1,160	162	2 52,6	37,0	4,1	38,1	5,2	1,169
118	52,2	37,0	4,1	38,2	5,3	1,160	163	3 52,5	37,0	4,1	38,0	5,1	1,167
119	52,2	37,0	4,1	38,5	5,6	1,160	164	52,3	37,0	4,1	38,2	5,3	1,162
120	52,2	37,0	4,1	38,2	5,3	1,160	16	52,8	37,0	4,1	38,2	5,3	1,173
121	52,2	37,1	4,2	38,2	5,3	1,160	160	52,7	37,0	4,1	38,2	5,3	1,171
122	52,2	37,1	4,2	38,4	5,5	1,160	167	52,9	37,1	4,2	38,2	5,3	1,176
123	52,2	37,0	4,1	38,2	5,3	1,160	168	3 52,8	37,0	4,1	38,2	5,3	1,173
124	52,2	37,0	4,1	38,2	5,3	1,160	169	52,8	37,0	4,1	38,0	5,1	1,173
125	52,1	37,0	4,1	38,2	5,3	1,158	170) 52,7	37,0	4,1	38,1	5,2	1,171
126	52,1	37,0	4,1	37,9	5,0	1,158	17	52,7	36,9	4,0	38,1	5,2	1,171
127	52,1	37,0	4,1	38,2	5,3	1,158	172	2 52,8	37,0	4,1	38,1	5,2	1,173
128	52,1	37,1	4,2	38,2	5,3	1,158	17:	52,6	37,0	4,1	38,1	5,2	1,169
129	52,1	37,0	4,1	38,1	5,2	1,158	174	1,5 500	37,0	4,1	38,2	5,3	1,144
130	5∠,U	37,1	4,2	38,2	5,3 E 1	1,150		52,3	31,1	4,2	38,4	5,5	1,162
131	51,0 51 0	37,0	4, I	30,U	0, I ⊿ 0	1,101	1/0	5 53,2	37,1	4,2	30, I	5,Z	1,102
132	51,0 51.7	37,0	4,1	37,0 200	4,9 ೯ 2	1,101	1/1	54,U	37,1	4,Z	30,∠ 29.4	5,3	1,200
124	51,7	37.1	4,∠ ⁄ 1	30,2	5,5 5 1	1,149	170	5 54,0 5 54 1	37,1	4,∠ ∕⁄ 2	30,4	5,5	1,200
135	52,2	37,0	4,1	38,0	5,1	1,160	18) 54,1	37,1	4,2	38,3	5,3	1,202

Δοκίμιο 1001010 _50 Α _ 25 Nm _T _{αρχ.} =33,5 °C							Δοκίμιο 1001010 _50 Α _ 25 Nm _Τ _{αρχ.} =33,5 °C						33,5 °C
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]
1	60,1	33,5	0,0	35,3	1,8	1,202	46	61,7	40,0	6,5	40,3	6,8	1,234
2	60,2	33,7	0,2	35,7	2,2	1,204	47	61,7	40,2	6,7	40,1	6,6	1,234
3	60,2	34,1	0,6	35,8	2,3	1,204	48	61,7	40,2	6,7	40,1	6,6	1,234
4	60,2	34,4	0,9	36,1	2,6	1,204	49	61,7	40,3	6,8	40,3	6,8	1,234
5	60,3	34,5	1,0	36,2	2,7	1,206	50	61,8	40,3	6,8	40,3	6,8	1,236
6	60,4	35,0	1,5	36,5	3,0	1,208	51	61,8	40,3	6,8	40,4	6,9	1,236
7	60,4	35,0	1,5	36,6	3,1	1,208	52	61,8	40,3	6,8	40,4	6,9	1,236
8	60,4	35,4	1,9	36,8	3,3	1,208	53	61,8	40,4	6,9	40,4	6,9	1,236
9	60,5	35,4	1,9	37,0	3,5	1,210	54	61,7	40,3	6,8	40,4	6,9	1,234
10	60,5	35,9	2,4	37,2	3,7	1,210	55	61,7	40,3	6,8	40,3	6,8	1,234
11	60,6	36,2	2,7	37,4	3,9	1,212	56	61,7	40,4	6,9	40,4	6,9	1,234
12	60,6	36,3	2,8	37,6	4,1	1,212	57	61,6	40,5	7,0	40,4	6,9	1,232
13	60,6	36,5	3,0	37,7	4,2	1,212	58	61,7	40,5	7,0	40,4	6,9	1,234
14	60,6	36,7	3,2	37,8	4,3	1,212	59	61,6	40,7	7,2	40,5	7,0	1,232
15	60,6	37,0	3,5	37,9	4,4	1,212	60	61,5	40,6	7,1	40,7	7,2	1,230
10	60,7	37,1	3,6	38,2	4,7	1,214	61	61,6	40,6	7,1	40,4	6,9	1,232
17	60,8	37,4	3,9	38,3	4,8	1,210	62	61,0	40,6	7,1	40,5	7,0	1,232
10	00,0 60,9	37,4	3,9	30,4 20 E	4,9	1,210	03	61,5	40,6	7,1	40,4	0,9	1,230
20	60 8	37,0	4,1	39,5	5,0	1,210	65	61.6	40,7	7.2	40,5	7,0	1,232
20	60 Q	37.0	4,3	38.7	5,1	1,210	66	61 7	40,7	7.2	40,4	0,9	1,232
21	60 Q	38.1	4,4	38.0	5,2	1,210	67	61.6	40,7	7.2	40,0	7,1	1,234
23	61.0	38.3	4.8	39.0	5.5	1 220	68	61.7	40.7	7.2	40.6	7 1	1 234
24	61.0	38.2	4 7	38.7	5.2	1,220	69	61 7	40.7	7.2	40.5	7.0	1,201
25	61.0	38.6	5.1	39.0	5.5	1.220	70	61.7	40.7	7.2	40.6	7.1	1.234
26	61.0	38.6	5.1	39.1	5.6	1.220	71	61.7	40.6	7.1	40.5	7.0	1.234
27	61.1	38.7	5.2	39.2	5.7	1.222	72	61.7	40.7	7.2	40.6	7.1	1.234
28	61,1	38,8	5,3	39,3	5,8	1,222	73	61,8	40,6	7,1	40,4	6,9	1,236
29	61,2	38,8	5,3	39,4	5,9	1,224	74	61,7	40,6	7,1	40,4	6,9	1,234
30	61,2	39,0	5,5	39,3	5,8	1,224	75	61,8	40,7	7,2	40,6	7,1	1,236
31	61,1	39,3	5,8	39,5	6,0	1,222	76	61,6	40,7	7,2	40,6	7,1	1,232
32	61,2	39,2	5,7	39,7	6,2	1,224	77	61,9	40,7	7,2	40,7	7,2	1,238
33	61,2	39,5	6,0	39,7	6,2	1,224	78	61,9	40,7	7,2	40,7	7,2	1,238
34	61,2	39,5	6,0	39,9	6,4	1,224	79	62,0	40,8	7,3	40,6	7,1	1,240
35	61,2	39,4	5,9	39,8	6,3	1,224	80	62,0	40,7	7,2	40,7	7,2	1,240
36	61,2	39,6	6,1	39,9	6,4	1,224	81	62,0	40,7	7,2	40,7	7,2	1,240
37	61,2	39,5	6,0	39,8	6,3	1,224	82	62,1	40,8	7,3	40,7	7,2	1,242
38	61,1	39,8	6,3	39,9	6,4	1,222	83	62,0	40,8	7,3	40,6	7,1	1,240
39	61,1	39,8	6,3	39,9	6,4	1,222	84	61,9	40,9	7,4	40,7	7,2	1,238
40	61,2	39,8	6,3	39,9	6,4	1,224	85	61,8	40,7	7,2	40,7	7,2	1,236
41	61,2	39,9	6,4	40,0	6,5	1,224	86	61,9	40,9	7,4	40,7	7,2	1,238
42	61,2	40,0	6,5	40,0	6,5	1,224	87	61,9	40,9	7,4	40,8	7,3	1,238
43	61,3	39,9	6,4	40,1	6,6	1,226	88	61,8	40,8	7,3	40,7	7,2	1,236
44	61,2	40,0	6,5	40,0	6,5	1,224	89	61,8	40,7	7,2	40,7	7,2	1,236
45	61,3	40,0	6,5	40,2	6,7	1,226	90	61,9	40,8	7,3	40,7	7,2	1,238

Δοκίμιο 1001010 _50 A _ 25 Nm _T _{αρχ.} =33,5 °C							Δοι	κίμιο 10	01010 _	50 A _	25 Nm	_Τ _{αρχ.} =:	33,5 °C	
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	
91	61,8	40,7	7,2	40,7	7,2	1,236	136	61,6	40,8	7,3	40,7	7,2	1,232	
92	61,8	40,7	7,2	40,7	7,2	1,236	137	61,4	40,9	7,4	40,6	7,1	1,228	
93	61,9	40,9	7,4	40,8	7,3	1,238	138	61,4	40,7	7,2	40,7	7,2	1,228	
94	61,9	40,7	7,2	40,6	7,1	1,238	139	61,4	40,9	7,4	40,7	7,2	1,228	
95	61,9	40,8	7,3	40,7	7,2	1,238	140	61,1	40,8	7,3	40,7	7,2	1,222	
96	61,9	40,9	7,4	40,7	7,2	1,238	141	61,3	40,7	7,2	40,7	7,2	1,226	
97	61,7	40,9	7,4	40,7	7,2	1,234	142	61,1	40,8	7,3	40,7	7,2	1,222	
98	61,8	40,9	7,4	40,7	7,2	1,236	143	62,0	40,8	7,3	40,4	6,9	1,240	
99	61,8	40,9	7,4	40,6	7,1	1,236	144	61,7	40,7	7,2	40,6	7,1	1,234	
100	61,8	40,7	7,2	40,7	7,2	1,236	145	61,5	40,9	7,4	40,7	7,2	1,230	
101	61,8	40,9	7,4	40,6	7,1	1,236	146	61,3	40,9	7,4	40,7	7,2	1,226	
102	61,7	40,8	7,3	40,7	7,2	1,234	147	61,6	40,7	7,2	40,7	7,2	1,232	
103	61,8	40,8	7,3	40,5	7,0	1,236	148	61,6	40,9	7,4	40,7	7,2	1,232	
104	61,6	40,9	7,4	40,7	7,2	1,232	149	61,6	40,7	7,2	40,7	7,2	1,232	
105	61,7	40,8	7,3	40,8	7,3	1,234	150	61,6	40,8	7,3	40,7	7,2	1,232	
106	61,8	40,8	7,3	40,7	7,2	1,236	151	61,4	40,9	7,4	40,7	7,2	1,228	
107	61,8	40,8	7,3	40,8	7,3	1,236	152	61,5	41,0	7,5	40,7	7,2	1,230	
108	61,8	40,9	7,4	40,7	7,2	1,236	153	61,6	40,9	7,4	40,7	7,2	1,232	
109	61,7	40,9	7,4	40,7	7,2	1,234	154	63,0	40,7	7,2	40,7	7,2	1,260	
110	61.7	40,7	7,2	40,0	7,1	1,204	155	62.7	40,9	7,4	40,7	7,2	1,204	
112	61 7	41,0	7,5	40,0	7,3	1,234	150	62.7	40,0	7,3	40,0	7,3	1,204	
112	61.7	40,8	7,3	40,7	7.2	1,234	157	62.8	41,0	7,5	40,7	7.2	1,254	
114	61 7	40,7 40 Q	74	40,7	7.2	1 234	150	62.8	40,0	7,3	40,7	7.2	1,250	
115	61 7	40,5 40 9	74	40,7	7.2	1 234	160	62,8	40,0	74	40,7	7.2	1,256	
116	61.8	40,9	74	40,7	7.2	1,204	161	62.5	41.0	7.5	40.8	7.3	1,200	
117	61.6	40.9	7.4	40.8	7.3	1,232	162	61.9	40.8	7.3	40.4	6.9	1,238	
118	61.6	40.8	7.3	40.7	7.2	1.232	163	62.0	40.8	7.3	40.8	7.3	1.240	
119	61,6	40,8	7,3	40,7	7,2	1,232	164	61,9	41,0	7,5	40,7	7,2	1,238	
120	61,6	40,8	7,3	40,7	7,2	1,232	165	62,0	40,9	7,4	40,8	7,3	1,240	
121	61,6	40,8	7,3	40,8	7,3	1,232	166	62,0	40,9	7,4	40,7	7,2	1,240	
122	61,7	40,9	7,4	40,7	7,2	1,234	167	61,9	40,9	7,4	40,7	7,2	1,238	
123	61,6	40,9	7,4	40,7	7,2	1,232	168	61,9	40,8	7,3	40,7	7,2	1,238	
124	61,7	40,8	7,3	40,7	7,2	1,234	169	62,0	41,1	7,6	40,8	7,3	1,240	
125	61,5	40,9	7,4	40,7	7,2	1,230	170	61,9	41,0	7,5	40,7	7,2	1,238	
126	61,5	40,8	7,3	40,7	7,2	1,230	171	62,0	40,8	7,3	40,7	7,2	1,240	
127	61,5	40,7	7,2	40,7	7,2	1,230	172	61,9	41,1	7,6	40,7	7,2	1,238	
128	61,4	40,8	7,3	40,7	7,2	1,228	173	61,9	41,1	7,6	40,7	7,2	1,238	
129	61,4	40,8	7,3	40,7	7,2	1,228	174	62,0	41,0	7,5	40,9	7,4	1,240	
130	61,3	41,0	7,5	40,7	7,2	1,226	175	61,9	41,0	7,5	40,8	7,3	1,238	
131	61,2	40,8	7,3	40,7	7,2	1,224	176	61,9	40,9	7,4	40,7	7,2	1,238	
132	61,1	41,0	7,5	40,7	7,2	1,222	177	61,9	41,1	7,6	40,7	7,2	1,238	
133	61,7	40,7	7,2	40,6	7,1	1,234	178	62,0	41,0	7,5	40,5	7,0	1,240	
134	61,8	40,9	7,4	40,7	7,2	1,236	179	62,0	40,9	7,4	40,7	7,2	1,240	
135	61,7	41,0	7,5	40,8	7,3	1,234	180	61,9	41,0	7,5	40,8	7,3	1,238	
Δοκίμιο 1001010 _90 Α _ 25 Nm _Τ _{αρχ.} =35,4 °C							Δοκίμιο 1001010 _90 A _ 25 Nm _T _{αρχ.} =35,4 °C							
---	--------------	------------	-------------	------------	-------------	-----------	---	------------	------------	---------------	------------	-------------	-----------	--
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	
1	85.6	35.9	0.5	36,4	1.0	0,951	46	90,2	53.6	18,2	52,4	17,0	1,002	
2	85,5	36,6	1,2	37,6	2,2	0,950	47	90,1	53,8	18,4	52,7	17,3	1,001	
3	85,6	37,4	2,0	38,6	3,2	0,951	48	90,3	53,8	18,4	52,3	16,9	1,003	
4	85,8	38,2	2,8	39,1	3,7	0,953	49	90,6	53,9	18,5	52,5	17,1	1,007	
5	86,6	38,9	3,5	40,4	5,0	0,962	50	90,6	54,0	18,6	53,2	17,8	1,007	
6	86,7	39,7	4,3	41,0	5,6	0,963	51	90,5	54,0	18,6	52,9	17,5	1,006	
7	86,8	40,4	5,0	42,1	6,7	0,964	52	90,4	54,0	18,6	52,8	17,4	1,004	
8	87,2	41,0	5,6	42,7	7,3	0,969	53	91,4	54,0	18,6	52,9	17,5	1,016	
9	87,4	42,0	6,6	43,3	7,9	0,971	54	91,7	54,3	18,9	53,1	17,7	1,019	
10	87,5	42,6	7,2	43,8	8,4	0,972	55	91,5	54,0	18,6	53,4	18,0	1,017	
11	87,5	43,3	7,9	44,2	8,8	0,972	56	91,4	54,1	18,7	53,2	17,8	1,016	
12	87,8	44,0	8,6	45,0	9,6	0,976	57	91,6	54,1	18,7	53,4	18,0	1,018	
13	87,8	44,4	9,0	45,5	10,1	0,976	58	91,4	54,3	18,9	53,6	18,2	1,016	
14	87,8	45,2	9,8	45,5	10,1	0,976	59	91,7	54,4	19,0	53,5	18,1	1,019	
15	87,6	45,7	10,3	46,2	10,8	0,973	60	91,5	54,4	19,0	53,6	18,2	1,017	
16	88,5	46,0	10,6	46,9	11,5	0,983	61	91,6	54,5	19,1	52,7	17,3	1,018	
17	88,8	46,3	10,9	47,0	11,6	0,987	62	91,6	54,5	19,1	52,7	17,3	1,018	
18	89,1	46,5	11,1	47,6	12,2	0,990	63	91,7	54,4	19,0	53,2	17,8	1,019	
19	88,9	47,3	11,9	47,8	12,4	0,988	64	92,1	54,4	19,0	53,2	17,8	1,023	
20	88,9	47,7	12,3	48,2	12,8	0,988	65	92,3	54,4	19,0	53,2	17,8	1,026	
21	88,9	47,8	12,4	48,6	13,2	0,988	66	92,4	54,3	18,9	53,4	18,0	1,027	
22	88,9	48,5	13,1	48,7	13,3	0,988	67	92,3	54,5	19,1	53,3	17,9	1,026	
23	89,5	48,3	12,9	49,3	13,9	0,994	00	92,3	54,5	19,1	52,8	17,4	1,020	
24	09,0 00,6	40,0	12.6	49,4	14,0	0,994	09	92,0	54,4	19,0	53,0	17,0	1,029	
25	09,0 90.7	49,0	1/ 2	49,0	14,4	0,990	70	92,5	54,2	10,0	52,9	17,5	1,020	
20	09,7	49,7	14,3	50,2	14,0	1 000	72	92,4	54,5	10,9	52.0	17.5	1,027	
28	90,0 80 7	49,7	14,3	50,2	14,0	0 007	72	92,5	54,4	19,0	52,9	17,5	1,020	
20	90.1	49.8	14,5	50,2	15.2	1 001	74	92,5	54.4	19,0	53.5	18.1	1,020	
30	90.2	50.2	14.8	50.7	15.3	1,001	75	92.7	54 4	19.0	53.2	17.8	1,001	
31	90.0	50.7	15.3	50.5	15.1	1,002	76	92.7	54.4	19.0	54.0	18.6	1,000	
32	90.0	51.1	15.7	51.0	15.6	1.000	77	92.7	54.6	19.2	53.1	17.7	1.030	
33	89.7	51.6	16.2	51.0	15.6	0.997	78	93.0	54.5	19.1	53.3	17.9	1.033	
34	90.5	51.5	16.1	51.0	15.6	1.006	79	92.8	54.4	19.0	53.2	17.8	1.031	
35	90,5	51,7	16,3	51,2	15,8	1,006	80	92,8	54,4	19,0	52,9	17,5	1,031	
36	90,6	51,9	16,5	51,7	16,3	1,007	81	93,0	54,2	18,8	52,9	17,5	1,033	
37	90,4	51,9	16,5	51,9	16,5	1,004	82	93,0	54,4	19,0	53,2	17,8	1,033	
38	90,2	51,9	16,5	51,9	16,5	1,002	83	93,2	54,5	19,1	53,1	17,7	1,036	
39	90,4	52,4	17,0	52,4	17,0	1,004	84	93,2	54,5	19,1	53,1	17,7	1,036	
40	90,5	53,0	17,6	52,2	16,8	1,006	85	92,5	54,6	19,2	53,2	17,8	1,028	
41	90,7	53,1	17,7	52,5	17,1	1,008	86	92,5	54,5	19,1	53,1	17,7	1,028	
42	91,3	53,3	17,9	52,7	17,3	1,014	87	92,4	54,5	19,1	52,9	17,5	1,027	
43	91,5	53,5	18,1	52,9	17,5	1,017	88	92,9	54,4	19 <u>,</u> 0	52,9	17,5	1,032	
44	93,0	53,6	18,2	52,7	17,3	1,033	89	92,5	54,5	19,1	53,0	17,6	1,028	
45	91,0	53,6	18,2	52,7	17,3	1,011	90	92,5	54,4	19,0	52,7	17,3	1,028	

Δοκίμιο 1001010 _90 A _ 25 Nm _T _{αρχ.} =35,4 °C							Δοκίμιο 1001010 _90 Α _ 25 Nm _Τ _{αρχ.} =35,4 °C							
α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	α/α	ΔV [mV]	θ1 [°C]	Δθ1 [°C]	θ2 [°C]	Δθ2 [°C]	R [mΩ]	
91	92,6	54,4	19,0	52,8	17,4	1,029	136	95,7	54,4	19,0	52,9	17,5	1,063	
92	92,6	54,4	19,0	53,0	17,6	1,029	137	95,9	54,4	19,0	52,8	17,4	1,066	
93	92,7	54,4	19,0	52,9	17,5	1,030	138	96,1	54,3	18,9	53,2	17,8	1,068	
94	92,8	54,4	19,0	52,9	17,5	1,031	139	96,1	54,3	18,9	52,8	17,4	1,068	
95	92,8	54,5	19,1	52,6	17,2	1,031	140	96,2	54,4	19,0	53,0	17,6	1,069	
96	92,7	54,5	19,1	52,7	17,3	1,030	141	96,2	54,3	18,9	52,9	17,5	1,069	
97	92,8	54,5	19,1	52,7	17,3	1,031	142	96,2	54,4	19,0	53,1	17,7	1,069	
98	93,0	54,4	19,0	53,0	17,6	1,033	143	96,2	54,4	19,0	52,9	17,5	1,069	
99	92,9	54,4	19,0	52,8	17,4	1,032	144	96,3	54,5	19,1	53,0	17,6	1,070	
100	93,2	54,4	19,0	52,8	17,4	1,036	145	96,3	54,5	19,1	52,8	17,4	1,070	
101	93,2	54,4	19,0	52,7	17,3	1,036	146	96,4	54,6	19,2	52,7	17,3	1,071	
102	93,4	54,4	19,0	52,7	17,3	1,038	147	96,8	54,5	19,1	52,9	17,5	1,076	
103	93,6	54,4	19,0	52,5	17,1	1,040	148	96,1	54,5	19,1	53,2	17,8	1,068	
104	93,4	54,3	18,9	53,0	17,6	1,038	149	95,9	54,7	19,3	53,1	17,7	1,066	
105	93,7	54,4	19,0	53,2	17,8	1,041	150	96,0	54,4	19,0	53,2	17,8	1,067	
106	93,7	54,3	18,9	52,8	17,4	1,041	151	96,1	54,6	19,2	52,9	17,5	1,068	
107	93,6	54,5	19,1	52,7	17,3	1,040	152	96,2	54,7	19,3	53,2	17,8	1,069	
108	93,6	54,4	19,0	52,7	17,3	1,040	153	96,3	54,6	19,2	53,1	17,7	1,070	
109	93,8	54,4	19,0	53,0	17,6	1,042	154	96,1	54,5	19,1	52,7	17,3	1,068	
110	93,7	54,4	19,0	52,7	17,3	1,041	155	96,1	54,6	19,2	52,8	17,4	1,068	
111	93,7	54,4	19,0	52,7	17,3	1,041	156	96,5	54,5	19,1	53,0	17,6	1,072	
112	93,7	54,4	19,0	52,5	17,1	1,041	15/	96,4	54,6	19,2	52,9	17,5	1,071	
113	93,8	54,4	19,0	52,7	17,3	1,042	158	96,4	54,7	19,3	52,9	17,5	1,071	
114	93,8	54,2	10,0	52,4	17,0	1,042	159	96,5	54,0	19,2	53,0	17,0	1,072	
115	93,7	54, I	10,7	52,5	17,1	1,041	160	90,0	54,7	19,3	53,0	17,0	1,073	
110	94,0	53.9	10,0	52,4	17,0	1,044	162	90,0	54,5	19,1	53.2	17,0	1,073	
112	9 4 ,1 04 2	53.7	18.3	52,0	17,4	1,040	163	90,0	54,4	19,0	53.7	18.3	1,073	
110	94.3	53.8	18.4	52.5	17,3	1,047	164	96,8	54.6	19,1	53.6	18.2	1,072	
120	94.0 94.4	53.8	18.4	52,0	17.3	1,040	165	97.1	54,0 54,7	19.3	52.8	17.4	1,070	
121	94 2	53.7	18.3	52 7	17,3	1,047	166	97.4	54 4	19.0	53.1	17,4	1,070	
122	94.5	53.7	18,3	52.7	17.3	1,050	167	97.1	54.4	19.0	52.9	17.5	1,002	
123	94.5	53.7	18.3	53.4	18.0	1,050	168	97.5	54.5	19,1	53.0	17.6	1.083	
124	94.7	53.9	18.5	52.9	17.5	1.052	169	97.3	54.4	19.0	53.2	17.8	1.081	
125	94.7	53.9	18.5	52.7	17.3	1.052	170	97.7	54.4	19.0	53.2	17.8	1.086	
126	95,2	54,0	18,6	53,1	17,7	1,058	171	97,6	54,5	19,1	53.3	17,9	1,084	
127	95,2	54,2	18,8	52,7	17,3	1,058	172	97,5	54,6	19,2	53,4	18,0	1,083	
128	95,2	54,3	18,9	52,5	17,1	1,058	173	97,5	54,6	19,2	53,2	17,8	1,083	
129	95,3	54,2	18,8	53,0	17,6	1,059	174	97,7	54,5	19,1	53,1	17,7	1,086	
130	95,4	54,4	19,0	52,7	17,3	1,060	175	97,8	54,4	19,0	53,2	17,8	1,087	
131	95,4	54,3	18,9	52,6	17,2	1,060	176	98,0	54,7	19,3	53,4	18,0	1,089	
132	95,6	54,3	<u>1</u> 8,9	53,0	17,6	1,062	177	97,3	54,8	19,4	54,0	18,6	1,081	
133	95,4	54,4	<u>1</u> 9,0	52,7	17,3	1,060	178	97,4	54,8	19,4	53,0	17,6	1,082	
134	95,4	54,2	18,8	53,2	17,8	1,060	179	97,4	54,8	19,4	53,3	17,9	1,082	
135	95,6	54,3	18,9	53,0	17,6	1,062	180	97,6	54,7	19,3	52,9	17,5	1,084	

5 Βιβλιογραφία

[1] CENELEC. EN50164.1 "Lightning Protection Components (LPC) Part 1: Requirements for connection components", 1999.

[2] Αικατερίνη Πολυκράτη: "Συμπεριφορά στατικών ηλεκτρικών συνδέσμων υπό ταχέως μεταβαλλόμενες ηλεκτρικές καταπονήσεις", Διδακτορική διατριβή, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π., 2005

[3] Π.Δ. Μπούρκας, Κ.Γ. Καραγιαννόπουλος: "Μετρήσεις σε βιομηχανικές διατάζεις και υλικά", Εκδόσεις Ε.Μ.Π., 2004

[4] Κυριάκος Ν. Βασιλάκης: "Διερεύνηση της επίδρασης της ροπής σύσφιζης στην αξιοπιστία των στατικών ηλεκτρικών συνδέσμων", Διπλωματική εργασία, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π. ,2005

[5] Κωνσταντινίδης Γεώργιος : "Μετρήσεις λυόμενων συνδέσμων σε κυκλώματα γειώσεων", Διπλωματική εργασία, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π. ,2005

[6] Karagiannopoulos C.G., Bourkas P.D., Dervos C.T.: "Measurements on contacts of no-load switches, using different currents and clamping spring force values" Pro.Int.Applied Modeling and Simulations, Lugano, p.94-97 (1990)

[7] Κοντός Δημήτριος: "Προστασία κτισμάτων & κατασκευών με την αρχή κλωβού Faraday και ακίδα Franklin", Εκδόσεις ΕΛΕΜΚΟ, 1987

[8] A.Polykrati, M. Paisios, K. Karagiannopoulos, P. Bourkas : "Model for temperature, estimation of electric couplings suffering heavy lightning currents", IEE Proc. – Gener. Trasm. Distrib., Vol. 151, No. 1, Jan 2004 [9] Ι. Α. Σταθόπουλος: "Προστασία τεχνικών εγκαταστάσεων έναντι υπερτάσεων", Εκδόσεις Συμεών

[10] Ι. Α. Σταθόπουλος: "Υψηλές τάσεις Ι ", Εκδόσεις Συμεών

[11] R. Holm: "Electric Contacts, Theory and Applications", Εκδόσεις Springer

[12] Ψωμόπουλος Κων/νος: "Μη γραμμικά φαινόμενα σε μονωτές και επαφές διακοπτών υψηλών τάσεων / ψηφιακών μετατροπέων", Διδακτορική διατριβή, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π

[13] Ηλίας Α. Σαββινίδης: "Επίδραση ροπής σύσφιζης στην αξιοπιστία μόνιμων ηλεκτρικών συνδέσμων κυκλωμάτων γειώσεων", Διπλωματική εργασία, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π.

[14] A.D. Polykrati, N.E. Koungelis, M.P. Paisios, P.T. Tsarabaris, P.D. Bourkas: "Evaluation of the reliability of electrical screw couplings of lightning protection systems", Int.Conference on Power and Energy Systems (EuroPES) Rhodes, Greece, 28-30 June, 2004