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PerÐlhyh

O skopìc thc paroÔsac diplwmatik c ergasÐac eÐnai h melèth proseggistik¸n algo-
rÐjmwn kai proseggistik¸n sqhm�twn pou epilÔoun se poluwnumikì qrìno k�poiec
edikec peript¸seic tou NP-complete Probl matoc tou planìdiou pwlht  (Traveling
Salesman Problem, TSP). H ergasÐa xekin� me mia eisagwg  sth jewrÐa thc polu-
plokìthtac, th jewr� gr�fwn kai touc proseggistikoÔc algorÐjmouc. OrÐzetai sth
sunèqeia to prìblhma sth genik  tou morf  (general TSP), kai akoloujeÐ o orismìc
tou Metric TSP (MTSP), me parousÐash kai an�lush proseggistik¸n algorÐjmwn
pou to epilÔoun se poluwnumikì qrìno. AkoloujeÐ h perÐptwsh tou EukleÐdiou TSP
(Euclidean TSP), gia to opoÐo dÐnetai èna poluwnumikì proseggistikì sq ma (PTAS).
H teleutaÐa perÐptwsh pou melet�tai eÐnai to (1,2)-TSP, gia to opoÐo dÐnontai oi pio
shmantikoÐ proseggistikoÐ algìrijmoi, metaxÔ twn opoÐwn kai ènac polÔ prìsfatoc
(2005). H ergasÐa oloklhr¸netai me thn par�jesh k�poiwn shmantik¸n praktk¸n
efarmog¸n tou TSP.

Lèxeic kleidi�

Prìblhma tou Planìdiou Pwlht , TSP, poluplokìthta, proseggistikoÐ algìrijmoi,
proseggistik� sq mata, PTAS, FPTAS, Metric TSP, EukleÐdio TSP, (1,2)-TSP.



Abstract

The aim of this thesis is the research on approximation algorithms and approxima-
tion schemes, which solve in polynomial time some special cases of the NP-complete
Traveling Salesman Problem (TSP). The thesis begins with an introduction to com-
plexity theory, to graph theory and to approximation algorithms. Subsequently, the
general TSP is defined, followed by the definition of the Metric TSP (MTSP) with
the presentation of some approximation algorithms solving it. Next comes the Eu-
clidean TSP, for which a polynomial-time approximation scheme (PTAS) is given.
The last case which is studied is the (1,2)-TSP, for which the most important algo-
rithms are given; among them a very recent one. The thesis is completed with the
presentation of some important applications of the TSP.

Key words

Traveling Salesman Problem, TSP, complexity, approximation algorithms,
approximation schemes, PTAS, FPTAS, Metric TSP, Euclidea TSP, (1,2)-TSP.
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Chapter 1

INTRODUCTION TO THE
THEORY OF COMPLEXITY

From the beginning of their existence the human beings were trying to solve
various problems in order to make their life easier. The development of the science
of mathematics enabled people to proceed to the representation of the problems
in mathematical terms and the creation of suitable conditions for their efficient
solution.

Various algorithms were invented for the solution of these problems. But what
do we mean by the term algorithm? Although a strict definition for the algorithm
does not exist, we usually call ”algorithm” a finite set of rules which describe a
method for the solution of a specific problem. The method described is consisting
of a sequence of computational processes.

However, research is not limited to the mere representation of an algorithm solv-
ing a specific problem but proceeds to the study of the measurable properties which
characterize the efficiency of a computational method. Such measurable quanti-
ties are, for example, the computation time, the amount of memory space of the
computer and several others, which characterize the complexity of the algorithm.
Furthermore, the term complexity is used to characterize, beyond algorithms, the
problems themselves. Namely, the complexity of a problem is represented by the
complexity of the optimal algorithm which solves the specific problem.

Two aspects of the behavior of an algorithm can be studied; the average efficiency
(average-case analysis) and also the worst case (worst-case analysis), including all
possible instances of the specific problem which the algorithm solves.

An algorithm can be deterministic or non-deterministic. For the deterministic
algorithms the computation proposed is linear. For every computational iteration of

15



them there exists exactly one legal next iteration. Their computational procedure
proceeds step by step and is capable to stop for any possible input. Concerning the
non-deterministic algorithms, for every one of their computational iterations there
can exist many, one or none legal next computational iteration. The deterministic
algorithms constitute, therefore, a subcase of the corresponding non-deterministic.
The non-deterministic algorithms are consisting of two phases. In the first phase
they guess a sequence of computational iterations, whereas in the second phase,
under a clearly deterministic procedure, they check whether the result given by the
first phase constitutes a solution of the problem.

1.1 The cost of an algorithm

The cost of an algorithm depends on the input of the problem. It usually in-
creases with the increase of the size n of the input.

In most cases it is more practical to compute the order of the cost of an algorithm
than it’s exact value. What is interesting is its asymptotic behavior. In other words,
we are looking for the marginal trend of increase of the function which represents
the complexity of the algorithm while the size of the input is increased.

In the following we are going to define some symbols, which are used extensively
for the study and the analysis of algorithms which solve the Traveling Salesman
Problem (TSP).

Let f : N{0} → N{0} and g : N{0} → N{0}, where N are the natural numbers.
Then, we have the following notations:

O(g) = {f |∃c > 0,∃n0 : ∀n > n0 : f(n) ≤ cg(n)}

o(g) = {f |∀c > 0,∃n0 : ∀n > n0 : f(n) ≤ cg(n)}

Ω(g) = {f |∃c > 0,∃n0 : ∀n > n0 : f(n) ≥ cg(n)}

ω(g) = {f |∀c > 0,∃n0 : ∀n > n0 : f(n) ≥ cg(n)}

Θ(g) = {f |∃c1 > 0,∃c2 > 0∃n0 : ∀n > n0 : c1 ≤
f(n)
g(n)

≤ c2}

If g ∈ O(f), we usually write g(n) = O(f(n)) to denote that function g is of
order f .

A function g is of polynomial degree referred to n, when g ∈ O(poly) =
⋃

O(nk).
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The most basic criterion of whether an algorithm is efficient or not, is the time
cost it presents or, better, its time complexity. This is represented by a function
T (n). T (n) represents the number of steps that an algorithm makes, as a function
of the size of its input n.

1.2 Optimization problems and decision prob-

lems

The problems are divided in various categories depending on their characteristics.
We will refer here to two of the most basic categories, the optimization problems
and the decision problems.

In the optimization problems, we are searching for the solution which maximizes
or minimizes an objective function. For each instance of such a problem, there is a
set of feasible solutions F (x). For each solution s ∈ F (x) we correspond, by means
of an objective function c, a positive integer c(s) and we are looking for the specific
solution s which optimizes1 c(s). The Traveling Salesman Problem (TSP) is an
optimization problem and, more specifically, a minimization problem.

Another category of problems are the decision problems. In this category the
possible answers are two: yes and no. If we assume that all answers giving a ”yes”
belong to a set A, then these problems, for every input x, are taking the form :
”x ∈ A?”

Suppose that we have an optimization problem with input x and we are looking
for a feasible solution s which optimizes the objective function c(s). This problem,
like any optimization problem, can be transformed to the corresponding decision
problem: For input x, is there a feasible solution s for x such that c(s) is greater to n?
For minimization problems we examine whether c(s) < n, whereas for maximization
problems whether c(s) > n.

In general, it is particularly practical to transform problems of any category to
decision problems, as these can be studied very effectively by means of the formal
languages. If we take into account the fact that to introduce an instance of a problem
to a computational model, this must be coded into a finite set of symbols, then we
can understand why we want our problem to have a direct relation to the formal
languages. Let’s refer to some basic elements of them.

Suppose we have a finite set Σ of symbols. We define Σ∗ as the set of the
finite length strings consisting of symbols in Σ. If, for example, Σ = {0, 1}, then

1It makes it maximum or minimum, depending on whether we have maximization or
minimization problem
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Σ∗ = {ε, 1, 0, 10, 1001, 0111, .....}. Apparently Σ∗ has an infinite number of elements,
as there exist infinite combinations of symbols in Σ. We say that L is a language of
the alphabet2 Σ if L ⊆ Σ∗.

For every decision problem, there exist instances for which the answer is ”yes”
and others for which the answer is ”no”. Suppose that for a problem Π the ”yes”
instances belong to the set NΠ whereas the ”no” belong to OΠ. If a language L
consists of the strings, say x, which constitute codings of the problem for which the
answer is ”yes”, then this is defined as following:

L(Π, k) = {x ∈ Σ∗| x represents an instance I ∈ NΠ}

By k we denote the way of coding the problem. Depending on the coding se-
lected, we have a differentiation between NΠ and OΠ. A string x, therefore, belongs
to the language L if the instance of the decision problem Π, which is represented by
x by means of coding k, gives the answer ”yes”.

1.3 The classes P and NP

It has been stated above that a problem belongs to a complexity class depending
on the complexity of the optimal algorithm which solves it. We will refer here to two
very important classes of problems, P and NP. The problems belonging to class P
can be solved by means of efficient algorithms. On the other hand, the corresponding
class NP problems are considered as ”hard” problems and no efficient3 algorithms
have been determined yet to solve them. We will refer in more detail to these two
classes.

We call P (polynomial) the class of the problems which can be solved in polyno-
mial time by some deterministic algorithm.

It has been said that every algorithm is realized in some computation model.
The model to which we will be referring from now on is the Deterministic Turing
Machine (DTM) in which we assume that the deterministic algorithm of the above
definition is realized. A DTM program with an alphabet Σ accepts a string x, if it
stops in state of acceptance qN for x. An equivalent definition, therefore, for class
P is:

P = {L|∃ polynomial time DTM which accepts language L}

2We call alphabet a finite set of symbols like Σ.
3When we say efficient algorithms we mean polynomial time algorithms.
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Let’s clarify here that the time of a DTM for some n4 is defined as the maximum
time required for DTM to respond for any input string, let it be x, with length equal
to n. A DTM is called of polynomial time, if there exists a polynomial p such that
∀n ∈ Z+ : time (DTM) ≤ p(n).

We call NP (Non-deterministic Polynomial Time) the class of problems which
are solved in polynomial time by some non-deterministic algorithm.

If we recall the definition of non-deterministic algorithms, we can say that a
problem belongs to the NP class when, after ”guessing” a possible solution s for the
specific problem, a verification of this solution can be made in polynomial time.

An equivalent definition for NP class is:

NP = {L|∃ polynomial time NDTM which accepts the language L}

NDTM is a Non-deterministic Turing Machine. A NDTM selects each time the
shortest path leading to a state of acceptance for a specific input string, let it be x.

Which is however the relation between the classes P and NP? Apparently P
⊆ NP.We have said that the deterministic algorithm is a special case of the non-
deterministic. Thus, a problem which is solved in polynomial time by a deterministic
algorithm is also solved in polynomial time by a non-deterministic algorithm. What
is searched until now is whether the problems which are solved in polynomial time
by a NDTM can also be solved in polynomial time by a DTM. That is, if P ⊇ NP
and, subsequently, P = NP.

1.4 The concept of reduction

The problems belonging to classes P and NP are extremely numerous. Many
times the question arises which one among several problems is more complex or
whether one problem can be related to another. Answers to such questions are
given by the concept of reduction. Let’s see its exact definition:

We say that a problem B is polynomially reduced to a problem A and we denote
this by B � A, if there exists a transformation of polynomial time R, which, for
every x ∈ B, produces an equivalent R(x) ∈ A.By the word ”equivalent” we mean
that if the input x of problem B5 leads to the answer ”yes”, then an only then
the input R(x) of problem A leads also to an answer ”yes”. The same holds for a
negative answer.

4where n is the length of the input string
5We consider that both A and B are decision problems

19



In a few words, instead of solving the problem B for an input x, we can compute
R(x) and solve the problem A for input R(x). In both cases we find the same
solution.

1.5 NP-Hard and NP-Complete Problems

When a problem B is reduced to a problem A then we can say that A is at least
equally ”hard” to B. This holds because if an efficient algorithm is found for A, then,
automatically, B can also be solved efficiently. The more problems are reduced to a
problem, say A, the more ”hard” this problem is characterized.

NP-Hard are called the problems to which all problems belonging to class NP
are reduced. Namely:

If ∀Π′ ∈ NP holds Π′ � Π then Π is NP-Hard.

NP-Hard problems which belong to the class NP are called NP-Complete prob-
lems.

We consider from the above that NP-Hard and NP-Complete problems are char-
acterized by their extreme difficulty. For example, if an algorithm of polynomial
time is found which solves one of these problems, then all problems belonging to NP
class can be solved polynomially. It will have thus been proved that P = NP. The
Traveling Salesman Problem is one of the NP-Complete problems.
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Chapter 2

INTRODUCTION TO GRAPH
THEORY

In this chapter we will present some things about graph theory that are very
useful to the description of the Traveling Salesman Problem (TSP) and the algo-
rithms we will present about this problem and the special instances we will examine.
We will give in this chapter some very useful definitions and some algorithms about
graph theory.

2.1 Graphs

This section presents two kinds of graphs: directed and undirected. Certain
definitions in the literature differ from those given here, but for the most part, the
differences are slight. Section 2.3 shows how graphs can be represented in computer
memory.

A directed graph (or digraph) G is a pair (V,E), where V is a finite set
and E is a binary relation on V. The set V is called the vertex set of G, and its
elements are called vertices (singular: vertex). The set E is called the edge set of
G, and its elements are called edges. Figure 2.1(a) is a pictorial representation of a
directed graph on the vertex set {1,2,3,4,5,6}. Vertices are represented by circles in
the figure, and edges are represented by arrows. Note that self-loops (edges from
a vertex to itself) are possible.

In an undirected graph G = (V,E), the edge set E consists of unordered pairs
of vertices, rather than ordered pairs. That is, an edge is a set {u, v}, where u, v ∈ V
and u 6= v. By convention, we use the notation (u, v) for an edge, rather than the
set notation {u, v}, and (u, v) and (v, u) are considered to be the same edge. In an
undirected graph, self-loops are forbidden, and so every edge consists of exactly two
distinct vertices. Figure 2.1(b) is a pictorial representation of an undirected graph
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Figure 2.1: Directed and undirected graphs. (a) A directed
graph G = (V, E), where V = {1, 2, 3, 4, 5, 6} and E =
{(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)}. The edge (2, 2) is a
self loop. (b) An undirected graph G = (V, E), where V = {1, 2, 3, 4, 5, 6} and
E = {(1, 2), (1, 5), (2, 5), (3, 6)}. The vertex 4 is isolated. (c) The subgraph of
the graph in part (a) induced by the vertex set {1, 2, 3, 6}.

of the vertex set {1,2,3,4,5,6}.

Many definitions for directed and undirected graphs are the same, although
certain terms have slightly different meanings in the two contexts. If (u, v) is an
edge in a directed graph G = (V,E), we say that (u, v) is incident from or leaves
vertex u and is incident to or enters vertex v. For example, the edges leaving vertex
2 in Figure 2.1(a) are (2,2), (2,4) and (2,5). The edges entering vertex 2 are (1,2)
and (2,2). If (u, v) is an edge in an undirected graph G = (V,E), we say that (u, v)
is incident on vertices u and v. In Figure 2.1(b), the edges incident on vertex 2
are (1,2) and (2,5).

If (u, v) is an edge in a graph G = (V,E), we say that vertex v is adjacent to
the vertex u. When the graph is undirected, the adjacency relation is symmetric.
When the graph is directed, the adjacency relation is not necessarily symmetric. If
v is adjacent to u in a directed graph, we sometimes write u → v. In parts (a) and
(b) of Figure 2.1, vertex 2 is adjacent to vertex 1, since the edge (1,2) belongs to
both graphs. Vertex 1 is not adjacent to vertex 2 in Figure 2.1(a), since the edge
(2,1) does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident
on it. For example, vertex 2 in Figure 2.1(b) has degree 2. A vertex whose degree
is 0, such as vertex 4 in Figure 2.1(b), is isolated. In a directed graph, the out-
degree of a vertex is the number of edges leaving it, and the in-degree of a vertex
is the number of edges entering it. The degree of a vertex in a directed graph is its
in-degree plus its out-degree. Vertex 2 in figure 2.1(a) has in-degree 2, out-degree
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3, and degree 5.

A path of length k from a vertex u to a vertex u′ in a graph G = (V,E) is a
sequence 〈v0, v1, v2, ..., vk〉 of vertices such that u = v0, u′ = vk, and (vi−1, vi) ∈ E for
i = 1, 2, ..., k. The length of the path is the number of edges in the path. The path
contains the vertices v0, v1, ...., vk and the edges (v0, v1), (v1, v2), ......., (vk−1, vk).
(There is always a 0-length path from u to u.) If there is a path p from u to u′, we
say that u′ is reachable from u via p, which we sometimes write as u u′ if G is
directed. A path is simple if all vertices in the path are distinct. In Figure 2.1(a),
the path 〈2, 5, 4, 5〉 is not simple.

A subpath of path p = 〈v0, v1, ..., vk〉 is a contiguous subsequence of its vertices.
That is, for any 0 ≤ i ≤ j ≤ k, the subsequence of vertices 〈vi, vi+1, ..., vj〉 is a
subpath of p.

In a directed graph, a path 〈v0, v1, ...vk〉 forms a cycle if v0 = vk and the path
contains at least one edge. The cycle is simple if, in addition, v1, v2, ..., vk are
distinct. A self-loop is a cycle of length 1. Two paths 〈v0, v1, v2, ..., vk−1, v0〉 and
〈v′0, v′1, v′2, ..., v′k−1, v

′
0〉 form the same cycle if there exists an integer j such that

v′i = v(i+j)modk for i = 0, 1, ..., k − 1. In Figure 2.1(a), the path 〈1, 2, 4, 1〉 forms
the same cycle as the paths 〈2, 4, 1, 2〉 and 〈4, 1, 2, 4〉. This cycle is simple, but
the cycle 〈1, 2, 4, 5, 4, 1〉 is not. The cycle 〈2, 2〉 formed by the edge (2,2) is a self-
loop. A directed graph with no self-loops is simple. In an undirected graph, a path
〈v0, v1, ..., vk〉 forms a (simple) cycle if k ≥ 3, v0 = vk, and v1, v2, ..., vk are distinct.
For example, in Figure 2.1(b), the path 〈1, 2, 5, 1〉 is a cycle. A graph with no cycles
is acyclic.

An undirected graph is connected if every pair of vertices is connected by a path.
The connected components of a graph are the equivalence classes of vertices under
the ”is reachable from” relation. The graph in Figure 2.1(b) has three connected
components: {1, 2, 5}, {3, 6} and {4}. Every vertex in {1, 2, 5} is reachable from
every other vertex in {1, 2, 5}. An undirected graph is connected if it has exactly one
connected component, that is, if every vertex is reachable from every other vertex.

A directed graph is strongly connected if every two vertices are reachable
from each other. The strongly connected components of a directed graph are
the equivalence classes of vertices under the ”are mutually reachable” relation. A
directed graph is strongly connected if it has only one strongly connected component.
The graph in Figure 2.1(a) has three strongly connected components: {1, 2, 4, 5},
{3} and {6}. All pairs of vertices in {1, 2, 4, 5} are mutually reachable. The vertices
{3, 6} do not form a strongly connected component, since vertex 6 cannot be reached
from vertex 3.
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Figure 2.2: (a) A pair of isomorphic graphs. The vertices of the top graph
are mapped to the vertices of the bottom graph by f(1) = u, f(2) = v, f(3) =
w, f(4) = x, f(5) = y, f(6) = z. (b) Two graphs that are not isomorphic,
since the top graph has a vertex of degree 4 and the bottom graph does not.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a
bijection f : V → V ′ such that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E′. In
other words, we can relabel the vertices of G to be vertices of G′, maintaining the
corresponding edges in G and G′. Figure 2.2(a) shows a pair of isomorphic graphs
G and G′ with respective vertex sets V = {1, 2, 3, 4, 5, 6} and V ′ = {u, v, w, x, y, z}.
The mapping from V to V ′ given by f(1) = u, f(2) = v, f(3) = w, f(4) = x,
f(5) = y, f(6) = z is the required bijective function. The graphs in Figure 2.2(b)
are not isomorphic. Although both graphs have 5 vertices and 7 edges, the top
graph has a vertex of degree 4 and the bottom graph has not.

We say that a graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. Given a set V ′ ⊆ V , the subgraph of G induced by V ′ is the graph
G′ = (V ′, E′), where

E′ = {(u, v) ∈ E : u, v ∈ V ′}.

The subgraph induced by the vertex set {1, 2, 3, 6} in Figure 2.1(a) appears in
Figure 2.1(c) and has the edge set {(1, 2), (2, 2), (6, 3)}.

Given an undirected graph G = (V,E), the directed version of G is the directed
graph G′ = (V,E′), where (u, v) ∈ E′ if and only if (u, v) ∈ E. That is, each
undirected edge (u, v) in G is replaced in the directed version by the two directed
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edges (u, v) and (v, u). Given a directed graph G = (V,E), the undirected version
of G is the undirected graph G′ = (V,E′), where (u, v) ∈ E′ if and only if u 6= v
and (u, v) ∈ E. That is, the undirected version contains the edges of G ”with
their directions removed” and with self-loops eliminated. (Since (u, v) and (v, u)
are the same edges in an undirected graph, the undirected version of a directed
graph contains it only once, even if the directed graph contains both edges (u, v)
and (v, u).) In a directed graph G = (V,E), a neighbor of a vertex u is any vertex
that is adjacent to u in the undirected version of G. That is, v is a neighbor of u
if u 6= v and either (u, v) ∈ E or (v, u) ∈ E. In an undirected graph, u and v are
neighbors if they are adjacent.

Several kinds of graphs are given special names. A complete graph is an
undirected graph in which every pair of vertices is adjacent. A bipartite graph
is an undirected graph G = (V,E) in which V can be partitioned into two sets V1

and V2 such that (u, v) ∈ E implies either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.
That is, all edges go between the two sets V1 and V2. An acyclic, undirected graph
is a forest, and a connected, acyclic, undirected graph is a (free) tree (see next
section). We often take the first letters of ”directed acyclic graph” and call such a
graph a dag.

Weighted graphs are graphs for which each edge has an associated weight,
typically given by a weight function w : E → R.

A cut (S, V − S) of an undirected graph G = (V,E) is a partition of V . Figure
2.3 illustrates this notion. We say that an edge (u, v) ∈ E crosses the cut (S, V −S)
if one of its endpoints is in S and the other is in V −S. We say that a cut respects
a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing
a cut if its weight is the minimum of any edge crossing the cut. There can be more
than one light edge crossing a cut in the case of ties. More generally, we say that
an edge is a light edge satisfying a given property if its weight is the minimum of
any edge satisfying the property.

An Euler tour of a connected graph G = (V,E) is a cycle that traverses each
edge of G exactly once, although it may visit a vertex more than once. It has been
proved that a graph has an Euler tour if and only if each vertex of the graph is of
even degree. A hamiltonian cycle of an undirected graph G = (V,E) is a simple
cycle that contains each vertex in V . A graph that contains a hamiltonian cycle is
said to be hamiltonian ; otherwise, it is nonhamiltonian.

There are two variants of graphs that we may occasionally encounter. A multi-
graph is like an undirected graph, but it can have both multiple edges between
vertices and self-loops. An hypergraph is like an undirected graph, but each hy-
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Figure 2.3: Two ways of viewing a cut (S, V −S) of a graph. (a) The vertices
in the set S are shown in black, and those in V − S are shown in white. The
edges crossing the cut are those connecting white vertices with black vertices.
The edge (d, c) is the unique light edge crossing the cut. A subset A of the
edges is shaded; note that the cut (S, V − S) respects A, since no edge of A
crosses the cut. (b) The same graph with the vertices in the set S on the left
and the vertices in the set V − S on the right. An edge crosses the cut if it
connects a vertex on the left with a vertex on the right.
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peredge, rather than connecting two vertices, connects an arbitrary subset of ver-
tices. Many algorithms written for ordinary directed and undirected graphs can be
adapted to run on these graphlike structures.

The contraction of an undirected graph G = (V,E) by an edge e = (u, v) is a
graph G′ = (V ′, E′), where V ′ = V − {u, v}

⋃
{x} and x is a new vertex. The set of

edges E′ is formed from E by deleting the edge (u, v) and, for each vertex w incident
to u or v, deleting whichever of (u, w) and (v, w) is in E and adding the new edge
(x,w).

2.2 Trees

As with graphs, there are many related, but slightly different, notions of trees.
This section presents definitions and mathematical properties of several kinds of
trees. Section 2.3 describes how trees can be represented in computer memory.

2.2.1 Free trees

As defined in the previous section (2.1), a free tree is a connected, acyclic,
undirected graph. We often omit the adjective ”free” when we say that a graph is
a tree. If an undirected graph is acyclic but possibly disconnected, it is a forest.
Many algorithms that work for trees also work for forests. Figure 2.4(a) shows a
free tree, and Figure 2.4(b) shows a forest. The forest in Figure 2.4(b) is not a tree
because it is not connected. The graph in Figure 2.4(c) is neither a tree nor a forest,
because it contains a cycle.
The following theorem captures many important facts about free trees.

Theorem 2.1 (Properties of free trees) Let G = (V,E) be an undirected
graph. The following statements are equivalent.

1. G is a free tree.

2. Any two vertices on G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting graph is
disconnected.

4. G is connected, and |E| = |V | − 1

5. G is acyclic, and |E| = |V | − 1

6. G is acyclic, but if any edge is added to E, the resulting graph consists a cycle.
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Proof (1) ⇒ (2) : Since a tree is connected, any two vertices in G are connected
by at least one simple path. Let u and v be vertices that are connected by two
distinct simple paths p1 and p2, as shown in Figure 2.5. Let w be the vertex at
which the paths first diverge; that is, w is the first vertex on both p1 and p2 whose
successor on p1 is x and whose successor on p2 is y, where x 6= y. Let z be the first
vertex at which the paths reconverge; that is, z is the first vertex following w on p1

that is also on p2. Let p′ be the subpath of p1 from w through x to z, and let p′′ be
the subpath of p2 from w through y to z. Paths p′ and p′′ share no vertices except
their endpoints. Thus, the path obtained by concatenating p′ and the reverse of p′′

is a cycle. This contradicts our assumption that G is a tree. Thus, if G is a tree,
there can be at most one simple path between two vertices.

(2) ⇒ (3) : If any two vertices in G are connected by a unique simple path, then
G is connected. Let (u, v) be any edge in E. This edge is a path from u to v, and
so it must be the unique path from u to v. If we remove (u, v) from G, there is no
path from u to v, and hence its removal disconnects G.

(3) ⇒ (4) : By assumption, the graph G is connected, and we know that |E| ≥
|V | − 1. We shall prove |E| ≤ |V | − 1 by induction. A connected graph with n = 1
or n = 2 vertices has n − 1 edges. Suppose that G has n ≥ 3 vertices and that all
graphs satisfying (3) with fewer than n vertices also satisfy |E| ≤ |V |−1. Removing
an arbitrary edge from G separates the graph into k ≥ 2 connected components
(actually k = 2). Each component satisfies (3), or else G would not satisfy (3).
Thus, by induction, the number of edges in all components combined is at most
|V | − k ≤ |V | − 2. Adding in the removed edge yields |E| ≤ |V | − 1.

(4) ⇒ (5) : Suppose that G is connected and that |E| = |V | − 1. We must show
that G is acyclic. Suppose that G has a cycle containing K vertices v1, v2, ..., vk,
and without loss of generality assume that this cycle is simple. Let Gk = (Vk, Ek)
be the subgraph of G consisting of the cycle. Note that |Vk| = |Ek| = k. If k < |V |,
there must be a vertex vk+1 ∈ V − Vk that is adjacent to some vertex vi ∈ Vk,
since G is connected. Define Gk+1 = (Vk+1, Ek+1) to be the subgraph of G with
Vk+1 = Vk

⋃
{vk+1} and Ek+1 = Ek

⋃
{(vi, vk+1)}. Note that |Vk+1| = |Ek+1| = k+1.

If k + 1 < |V |, we can continue, defining Gk+2 in the same manner, and so forth,
until we obtain Gn = (Vn, En), where n = |V |, Vn = V , and |En| = |Vn| = |V |. Since
Gn is a subgraph of G, we have En ⊆ E, and hence |E| ≥ |V |, which contradicts
the assumption that |E| = |V | − 1. Thus, G is acyclic.

(5) ⇒ (6) : Suppose that Gis acyclic and that |E| = |V | − 1. Let k be the
number of connected components of G. Each connected component is a free tree by
definition, and since (1) implies (5), the sum of all edges in all connected components
of G is |V | − k. Consequently, we must have k = 1, and G is in fact a tree. Since
(1) implies (2), any two vertices in G are connected by a unique simple path. Thus,
adding any edge to G creates a cycle.

(6) ⇒ (1) : Suppose that G is acyclic but that if any edge is added to E, a cycle
is created. We must show that G is connected. Let u and v be arbitrary vertices
in G. If u and v are not already adjacent, adding the edge (u, v) creates a cycle in
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Figure 2.4: (a) A free tree. (b) A forest. (c) A graph that contains a cycle
and is therefore neither a tree nor a forest.

Figure 2.5: A step in the proof of Theorem 2.1: if (1) G is a free tree, then
(2) any two vertices in G are connected by a unique simple path. Assume for
the sake of contradiction that vertices u and v are connected by two distinct
simple paths p1 and p2. These paths first diverge at vertex w, and they first
reconverge at vertex z. The path p′ concatenated with the reverse of the path
p′′ forms a cycle, which yields a contradiction.

which all edges but (u, v) belong to G. Thus, there is a path from u to v, and since
u and v were chosen arbitrarily, G is connected.

2.2.2 Rooted and ordered trees

A rooted tree is a free tree in which one of the vertices is distinguished from
the others. The distinguished vertex is called the root of the tree. We often refer
to a vertex of a rooted tree as a node1 of the tree. Figure 2.6(a) shows a rooted
tree on a set of 12 nodes with root 7.

1The term ”node” is often used in the graph theory literature as a synonym for ”vertex”.
We shall reserve the term ”node” to mean a vertex of a rooted tree.
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Consider a node x in a rooted tree T with root r. Any node y on the unique path
from r to x is called ancestor of x. If y is an ancestor of x, then x is a descendant
of y. (every node is both an ancestor and a descendant of itself). If y is an ancestor
of x and x 6= y, then y is a proper ancestor of x and x is a proper descendant
of y. The subtree rooted at x is the tree induced by descendants of x, rooted at
x. For example, the subtree rooted at node 8 in Figure 2.5(a) contains nodes 8, 6,
5, and 9.

If the last edge on the path from the root r of a tree t to a node x is (y, x), then
y is the parent of x, and x is a child of y. The root is the only node n T with
no parent. If two nodes have the same parent, they are siblings. A node with no
children is an external node or leaf. A nonleaf node is an internal node.

The number of children of a node x in a rooted tree T is called the degree of x.2

The length of the path from the root r to a node x is the depth of x in T . The
height of a node in a tree is the number of edges on the longest simple downward
path from the node to a leaf, and the height of a tree is the height of its root. The
height of a tree is also equal to the largest depth of any node in the tree.

An ordered tree is a rooted tree in which the children of each node are ordered.
That is, if a node has k children, then there is a first child, a second child, ....., and
a kth child. The two trees in Figure 2.6 are different when considered to be ordered
trees, but the same when considered to be just rooted trees.

2.2.3 Binary and positional trees

Binary trees are defined recursively. A binary tree T is a structure defined on
a finite set of nodes that either

• contains no nodes, or

• is composed of three disjoint sets of nodes: a root node, a binary tree called
its left subtree, and a binary tree called right subtree.

The binary tree that contains no nodes is called the empty tree or null tree,
sometimes denoted NIL. If the left subtree is nonempty, its root is called the left
child of the root of the entire tree. Likewise, the root of a nonnull right subtree is
the right child of the root of the entire tree. If a subtree is the null tree NIL, we

2The degree of a node depends on whether T is considered to be a rooted tree or a free
tree. The degree of a vertex in a free tree is, as in any undirected graph, the number of
adjacent vertices. In a rooted tree, however, the degree is the number of children-the parent
of a node does not count toward its degree.

30



Figure 2.6: Rooted and ordered trees. (a) A rooted tree with height 4. The tree
is drawn in a standard way: the root (node 7) is at the top, its children (nodes
with depth 1) are beneath it, their children (nodes with depth 2) are beneath
them, and so forth. If the tree is ordered, the relative left-to-right order of
the children of a node matters; otherwise it doesn’t. (b) Another rooted tree.
As a rooted tree, it is identical to the tree in (a), but as an ordered tree it is
different, since the children of node 3 appear in a different order.

say that the child is absent or missing. Figure 2.7(a) shows a binary tree.

A binary tree is not simply an ordered tree in which each node has degree at
most 2. For example, in a binary tree, if a node has just one child, the position of the
child-whether it is the left child or the right child- matters. In an ordered tree, there
is no distinguishing a sole child as being either left or right. Figure 2.7(b) shows a
binary tree that differs from the tree in Figure 2.7(a) because of the position of one
node. Considered as ordered trees, however, the two trees are identical.

The positioning information in a binary tree can be represented by the internal
nodes of an ordered tree, as shown in Figure 2.7(c). The idea is to replace each
missing child in the binary tree with a node having no children. These leaf nodes
are drawn as squares in the figure. The tree that results is a full binary tree:
each node is either a leaf or has degree exactly 2. There are no degree-1 nodes.
Consequently, the order of the children of a node preserves the position information.
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Figure 2.7: Binary trees. (a) A binary tree drawn in a standard way. The
left child of a node is drawn beneath the node and to the left. The right child
is drawn beneath and to the right. (b) A binary tree different from the one
in (a). In (a), the left child of node 7 is 5 and the right child is absent. In
(b), the left child of node 7 is absent and the right child is 5. As ordered trees,
these trees are the same, but as binary trees, they are distinct. (c) The binary
tree in (a) represented by the internal nodes of a full binary tree: an ordered
tree in which each internal node has degree 3. The leaves in the tree are shown
as squares.

Figure 2.8: A complete binary tree of height 3 with 8 leaves and 7 internal
nodes.

32



The posiioning information that distinguishes binary trees from ordered trees
can be extended to trees with more than 2 children per node. In a positional tree,
the children of a node are labeled with distinct positive integers. The ith child of a
node is absent if no child is labeled with integer i. A k-ary tree is a positional tree
in which for every node, all children with labels greater than k are missing. Thus,
a binary tree is a k-ary tree with k = 2.

A complete k-ary tree is a k-ary tree in which all leaves have the same depth
and all internal nodes have degree k. Figure 2.8 shows a complete binary tree of
height 3. How many leaves does a complete k-ary tree of height h have? The root
has k children at depth 1, each of which has k children at depth 2, etc. Thus, the
number of leaves at depth h is kh. Consequently, the height of a complete k-ary
tree with n leaves is logk n. The number of internal nodes of a complete k-ary tree
of height h is

1 + k + k2 + ......... + kh−1 =
h−1∑
i=0

ki =
kh − 1
k − 1

Thus, a complete binary tree has 2h−1 internal nodes.

2.2.4 Traversing a binary tree

There are three ways to traverse a tree:

• inorder: The key of the root of a subtree is printed between the values in its
left subtree and those in its right subtree.

• preorder: The root is printed before the values in either subtree.

• postorder: The root is printed after the values in its subtrees.

All these ways of traversing are working recursively.

For the tree in Figure 2.9, the sequences of the visiting nodes for each of the
three ways are the following:

• inorder: 4 2 5 1 6 3

• preorder: 1 2 4 5 3 6

• postorder: 4 5 2 6 3 1
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Figure 2.9: Tree Traversal

Figure 2.10: Two representations of an undirected graph. (a) An undirected
graph G having five vertices and seven edges. (b) An adjacency-list represen-
tation of G. (c) The adjacency-matrix representation of G.

2.3 Representation of graphs

There are two standard ways to represent a graph G = (V,E): as a collection of
adjacency lists or as an adjacency matrix. Either way is applicable to both di-
rected and undirected graphs. The adjacency-list representation is usually preferred,
because it provides a compact way to represent sparse graphs-those for which |E| is
much less than |V |2. Most of the graph algorithms which will be presented assume
that an input graph is represented in adjacency-list form. An adjacency-matrix
representation may be preferred, however, when the graph is dense-|E| is close to
|V |2-or when we need to be able to tell quickly if there is an edge connecting two
given vertices.

The adjacency-list representation of a graph G = (V,E) consists of an array
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Figure 2.11: Two representations of a directed graph. (a) A directed graph G
having six vertices and eight edges. (b) An adjacency-list representation of G.
(c) The adjacency-matrix representation of G.

Adj of |V | lists, one for each vertex in V . For each u ∈ V , the adjacency list Adj [u]
contains all the vertices v such that there is an edge (u, v) ∈ E. That is, Adj [u]
consists of all the vertices adjacent to u in G. (Alternatively it may contain pointers
to these vertices.) The vertices in each adjacency list are typically stored in an
arbitrary order. Figure 2.10(b) is an adjacency-list representation of the undirected
graph in Figure 2.10(a). Similarly, Figure 2.11(b) is an adjacency-list representation
of the directed graph in Figure 2.11(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists in |E|,
since an edge of the form (u, v) is represented by having v appear in Adj [u]. If G is
an undirected graph, the sum of the lengths of all the adjacency lists is 2|E|, since
if (u, v) is an undirected edge, then u appears in v’s adjacency list and vice versa.
For both directed and undirected graphs, the adjacency-list representation has the
desirable property that the amount of memory it requires is Θ(V + E).

Adjacency lists can readily be adapted to represent weighted graphs. For
example, let G = (V,E) be a weighted graph with weight function w. The weight
w(u, v) of the edge (u, v) ∈ E is simply stored with vertex v in u’s adjacency list. The
adjacency-list representation is quite robust in that it can be modified to support
many other graph variants.

A potential disadvantage of the adjacency-list representation is that there is
no quicker way to determine if a given edge (u, v) is present in the graph than to
search for v in the adjacency list Adj [u]. This disadvantage can be remedied by an
adjacency-matrix representation of the graph, at the cost of using asymptotically
more memory.

For the adjacency-matrix representation of a graph G = (V,E), we assume
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that the vertices are numbered 1,2,.....,|V | in some arbitrary manner. Then the
adjacency-matrix representation of a graph G consists of a |V |×|V | matrix A = (aij

such that

aij =
{

1, if (i, j) ∈ E,
0, otherwise.

Figures 2.8(c) and 2.10(c) are the adjacency matrices of the undirected and directed
graphs in Figures 2.10(a) and 2.11(a), respectively. The adjacency matrix of a graph
requires Θ(V 2) memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Figure
2.10(c). We define the transpose of a matrix A = (aij) to be the matrix AT =
(aT

ij) given by aT
ij = aji. Since in an undirected graph, (u, v) and (v, u) represent

the same edge, the adjacency matrix A of an undirected graph is its own transpose:
A = AT . In some applications, it pays to store only the entries on and above the
diagonal of the adjacency matrix, thereby cutting the memory needed to store the
graph almost in half.

Like the adjacency-list representation of a graph, the adjacency-matrix repre-
sentation can be used for weighted graphs. For example, if G = (V,E) is a weighted
graph with edge-weight function w, the weight w(u, v) of the edge (u, v) ∈ E is
simply stored as the entry in row u and column v of the adjacency matrix. If an
edge does not exist, a NIL value can be stored as its corresponding matrix entry,
though for many problems it is convenient to use a value such as 0 or ∞.

Although the adjacency-list representation is asymptotically at least as efficient
as the adjacency-matrix representation, the simplicity of an adjacency matrix may
make it preferable when graphs are reasonably small. Moreover, if the graph is
unweighted, there is an additional advantage in storage for the adjacency-matrix
representation. Rather than using one word of computer memory for each matrix
entry, the adjacency matrix uses only one bit per entry.

2.4 Matching

Given an undirected graph G = (V,E), a matching is a subset of edges M ⊆ E
such that for all vertices v ∈ V , at most one edge of M is incident on v. We say
that a vertex v ∈ V is matched by matching M if some edge in M is incident on
v; otherwise, v is unmatched.

• A maximal matching is a matching that is not a proper subset of any other
matching.

• A maximum matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M ’, we have |M | ≥ |M |.
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Figure 2.12: A bipartite graph G = (V, E) with vertex partition V = L ∪ R.
(a) A matching with cardinality 2. (b) A maximum matching with cardinality
3.

• A perfect matching is a matching in which every vertex is matched.

Figure 2.12 illustrates the notion of a matching.

2.5 Minimum Spanning Tree

One of the most important problems in graph theory is the finding of the Mini-
mum Spanning Tree (MST) of a graph. In this problem, we are given an undirected
weighted graph and we try to find a tree whose edges belong to the edges of the
graph, such that the total weight of the tree (the sum of the weights of all his edges)
to be the minimum we can have.

We will now describe the problem in a formal language. We are given an undi-
rected graph G(V,E) and a matrix c|V |×|V |, which contains for each edge (u, v) ∈ E
the weight of the edge c[u, v] > 0. We have to find a tree T (V ′, E′) such that:

V ′ = V
E′ ⊆ E
Σ(u,v)∈E′c[u, v] = MINIMUM

We will present briefly two algorithms that solve this problem (finding the Minimum
Spanning Tree) in polynomial time.These are: Prim’s algorithm and Kruskal’s
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algorithm. Both algorithms are using the greedy strategy, that is, at each step,
they make the choice that is best at the moment. Such strategy is not generally guar-
anteed to find globally optimal solutions to problems. For the Minimum Spanning
Tree problem, however, it can be proved that the greedy strategies, which are used
in the algorithms we will present, do yield a spanning tree with minimum weight.

2.5.1 Prim’s Algorithm

Prim’s algorithm begins with the empty solution. In each step it chooses the
edge with the minimum weight from the remaining edges (the edges that have not
been selected in previous steps of the algorithm) so that the resulting subgraph re-
mains a tree (connected and acyclic graph). When there is a tie between the edges
of the minimum cost, it doesn’t matter which one of them we will select. The algo-
rithm stops when there is no edge to choose, so that the resulting graph remains a
tree. Then, we have as a result the Minimum Spanning Tree T (V ′, E′) of the given
graph G(V,E).
Figure 2.13 shows the execution of Prim’s algorithm in a given graph step-by-step.

2.5.2 Kruskal’s Algorithm

Like Prim’s algorithm, Kruskal’s algorithms begins also with the empty solution.
In each step it selects the edge with the minimum weight from the remaining edges
(the edges that have not been selected in previous steps of the algorithm) so there
are not cycles in the resulting subgraph. It doesn’t matter if there are two or more
connected components in the graph which results after each step, and this is the
difference with Prim’s algorithm. When there is a tie between the edges of the
minimum cost, it doesn’t matter which one of them we will select. The algorithm
stops when there is no edge to choose, so that the resulting graph has no cycles.
Then, we have as a result the Minimum Spanning Tree T (V ′, E′) of the given graph
G(V,E).
Figure 2.14 shows the execution of Kruskal’s algorithm in a given graph step-by-step.

Each of these algorithms (Prim’s and Kruskal’s) can easily be made to run in
time O(E lg V ) using ordinary binary heaps. By using Fibonacci heaps, Prim’s al-
gorithm can be sped up to run in time O(E + V lg V ), which is an improvement if
|V | is much smaller than |E|.

38



Figure 2.13: The execution of Prim’s algorithm on the graph from Figure 2.3.
The root vertex is a. Shaded edges are in the tree being grown, and the vertices
in the tree are shown in black. At each step of the algorithm, the vertices in the
tree determine a cut of the graph, and a light edge crossing the cut is added to
the tree. In the second step, for example, the algorithm has a choice af adding
either edge (b, c) or edge (a, h) to the tree since both are light edges crossing
the cut.
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Figure 2.14: The execution of Kruskal’s algorithm on the graph from Figure
2.3. Shaded edges belong to the forest A being grown. The edges are considered
by the algorithm in sorted order by weight. An arrow points to the edge under
consideration at each step of the algorithm. If the edge joins two distinct trees
in the forest, it is added to the forest, thereby merging the two trees.
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Chapter 3

INTRODUCTION TO
APPROXIMATION
ALGORITHMS

Many problems of practical significance are NP-complete but are too important
to abandon merely because obtaining an optimal solution is intractable. If a prob-
lem is NP-complete, we are unlikely to find a polynomial-time algorithm for solving
it exactly, but even so, there may be hope. There are at least three approaches to
getting around NP-completeness. First, if the actual inputs are small, an algorithm
with exponential running time may be perfectly satisfactory. Second, we may be
able to isolate important special cases that are solvable in polynomial time. Third,
it may still be possible to find near-optimal solutions in polynomial time (either in
the worst case or on average). In practice, near-optimality is often good enough.
An algorithm that returns near-optimal solutions is called approximation algo-
rithm. This book presents polynomial-time approximation algorithms for special
cases of the most difficult and most important and useful NP-complete problem, the
Traveling Salesman Problem (TSP).

3.1 Performance ratios for approximation al-

goritms

Suppose that we are working on an optimization problem in which each potential
solution has a positive cost, and we wish to find a near-optimal solution. Depending
on the problem, an optimal solution may be defined as one with maximum possible
cost or one with minimum possible cost; that is, the problem may be either a
maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio of ρ(n)
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if, for any input of size n, the cost C of the solution produced by the algorithm is
within a factor of ρ(n) of the cost C∗ of an optimal solution:

max(
C

C∗ ,
C∗

C
) ≤ ρ(n).

We also call an algorithm that achieves an approximation ratio of ρ(n) a ρ(n)-
approximation algorithm. The definitions of approximation ratio and of ρ(n)-
approximation algorithm apply for both minimization and maximization problems.
For a maximization problem, 0 < C ≤ C∗, and the ratio C∗/C gives the factor by
which the cost of an optimal solution is larger than the cost of the approximate
solution. Similarly, for a minimization problem, 0 < C∗ ≤ C, and the ratio C/C∗

gives the factor by which the cost of the approximate solution is larger than the
cost of an optimal solution. Since all solutions are assumed to have positive cost,
these ratios are always well defined. The approximation ratio of an approximation
algorithm is never less than 1, since C/C∗ < 1 implies C∗/C > 1. Therefore,
a 1-approximation algorithm1 produces an optimal solution, and an approximation
algorithm with a large approximation ratio may return a solution that is much worse
than optimal.

For many problems, polynomial-time approximation algorithms with small con-
stant approximation ratios have been developed, while for other problems, the best
known polynomial-time approximation algorithms have approximation ratios that
grow as functions of the input size n. An example of such a problem is the set-cover
problem.

3.2 Approximation Schemes (PTAS-FPTAS)

Some NP-complete problems allow polynomial-time approximation algorithms
that can achieve increasingly smaller approximation ratios by using more and more
computation time. That is, there is a trade-off between computation time and the
quality of the approximation. An example is the subset-sum problem. This situation
is important enough to deserve a name of its own.

An approximation scheme for an optimization problem is an approximation
algorithm that takes as input not only an instance of the problem, but also a value
ε > 0 such that for any fixed ε, the scheme is a (1+ ε)-approximation algorithm. We
say that an approximation scheme is a polynomial-time approximation scheme
(PTAS) if for any fixed ε > 0, the scheme runs in time polynomial in the size n of
its input instance.

1When the approximation ratio is independent of n, we will use the terms approximation
ratio of ρ and ρ-approximation algorithm, indicating no dependance on n.
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The running time of a polynomial-time approximation scheme can increase very
rapidly as ε decreases. For example, the running time of a polynomial-time approx-
imation scheme might be O(n2/ε). Ideally, if ε decreases by a constant factor, the
running time to achieve the desired approximation should not increase by more than
a constant factor. In other words, we would like the running time to be polynomial
in 1/ε as well as in n.

We say that an approximation scheme is fully polynomial-time approxima-
tion scheme (FPTAS) if it is an approximation scheme and its running time
is polynomial both in 1/ε and in the size n of the input instance. For example,
the scheme might have a running time of O((1/ε)2n3). With such a scheme, any
constant-factor decrease in ε can be achieved with a corresponding constant-factor
increase in the running time.

There are two ways of defining polynomial time approximation schemes, depend-
ing on whether the performance guarantee is absolute or holds only asymptotically
as the optimum value becomes large (tends to infinity). The first (which is the usual
one), called an absolute polynomial time approximation scheme, requires that for any
ε there be an algorithm producing solutions with cost SOL ≤ (1 + ε)OPT, where
OPT is the optimum value (for minimization problems; for maximization problems
the requirement is that SOL ≥ (1−ε)OPT). The other, called an asymptotic polyno-
mial time approximation scheme, requires just that SOL ≤ (1+ε)OPT +C, where C
is a constant (for minimization problems; for maximization problems the analogous
requirement is that SOL ≥ (1− ε)OPT −C).
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Chapter 4

THE TRAVELING
SALESMAN PROBLEM (TSP)

In this chapter, we will give a presentation of the the NP-complete problem
Traveling Salesman Problem (TSP), we will give an algorithm who solves the TSP
using dynamic programming (these algorithms will be exponential, since the problem
is NP-complete), and we will show that the TSP cannot be approximated, so we
cannot have a polynomial-time algorithm to solve it is P = NP .

4.1 Description of the Traveling Salesman Prob-

lem (TSP)

In the Traveling Salesman Problem (TSP), which is closely related to the
hamiltonian-cycle problem1, a salesman must visit n cities. Modeling the problem
as a complete graph with n vertices, we can say that the salesman wishes to make
a tour, or hamiltonian cycle, visiting each city exactly once and finishing at the city
he starts from. There is an integer cost c(i, j) to travel from city i to city j, and
the salesman wishes to make the tour whose total cost is minimum, where the total
cost is the sum of the individual costs along the edges of the tour. For example, in
Figure 4.1, a minimum-cost tour is 〈u, w, v, x, u〉, with cost 7. The formal language
for the corresponding decision problem is

TSP = {〈G, c, k〉 : G = (V,E) is a complete graph, c is a function from V ×V → Z,
k ∈ Z, and G has a traveling-salesman tour with cost at most k }.

As we said before, it has been proved that the Traveling Salesman Problem
(TSP) is NP-Complete.

1The hamiltonian-cycle problem says:”Does a graph G have a hamiltonian cycle?”. It
has been proved that the hamiltonian-cycle problem is NP-complete.
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Figure 4.1: An instance of the Traveling Salesman Problem. Shaded edges
represent a minimum-cost tour, with cost 7.

4.2 Using Dynamic Programming to solve the

Traveling Salesman Problem (TSP)

In this section we will show how we can solve the Traveling Salesman Problem
(TSP) using dynamic Programming.Before doing that, we will describe briefly the
basic ideas of dynamic programming.

Dynamic programming solves problems by combining the solutions to subprob-
lems. (”programming” in this context refers to a tabular method, not to writing
computer code). Dynamic Programming is applicable when the subproblems are
not independent, that is, when subproblems share subsubproblems. A dynamic-
programming algorithm solves every subproblem just once and then saves its an-
swer in a table, thereby avoiding the work of recomputing the answer every time the
subproblem is encountered.

Dynamic programming is typically applied to optimization problems. In such
problems there can be many possible solutions. Each solution has a value, and we
wish to find a solution with the optimal (minimum or maximum) value.2 We call
such a solution an optimal solution to the problem, as opposed to the optimal
solution, since there may be several solutions that achieve the optimal value.

The development of a dynamic-programming algorithm can be broken into a
sequence of four steps.

1. Characterize the structure of an optimal solution.

2As we have said, the TSP is an optimization problem
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2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1-3 form the basis of a dynamic-programming solution to the problem. Step 4
can be omitted if only the value of an optimal solution i required. When we do per-
form step 4, we sometimes maintain additional information during the computation
in step 3 to ease the construction of an optimal solution.

We will now present the algorithm for the TSP. We define g(i, S) to be the cost
of the shortest path from the node i to the node 1, which crosses all the nodes of S.
Then, we have:

g(1, V − {1}) = min
2≤k≤n

{cost[1, k] + g(k, V − {1, k})}

, and generally:
g(i, S) = min

j∈S
{cost[i, j] + g(j, S − {j})}

Also: g(i, ∅) = cost[i, 1].

Using this recursive function, we can step-by-step compute the shortest tour
which starts from the node 1 and finishes in the same node.

Example 4.1. Suppose we have a directed graph, when the array of costs between
his edges is the following:

C =


0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 0


We can see that if we compute g(1, {2, 3, 4}), the problem will have been solved.

We start to compute all the g for |V | = 0, |V | = 1, |V | = 2 and |V | = 3.

When |V | = 0 we have:
g(2, ∅) = Cost[2, 1] = 5
g(3, ∅) = Cost[3, 1] = 6
g(4, ∅) = Cost[4, 1] = 8

When |V | = 1 we have:
g(2, {3}) = Cost[2, 3] + g(3, ∅) = 9 + 6 = 15
g(2, {4}) = Cost[2, 4] + g(4, ∅) = 10 + 8 = 18
g(3, {2}) = Cost[3, 2] + g(2, ∅) = 13 + 5 = 18
g(3, {4}) = Cost[3, 4] + g(4, ∅) = 12 + 8 = 20
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Figure 4.2: Minimum cost tour.

g(4, {2}) = Cost[4, 2] + g(2, ∅) = 8 + 5 = 13
g(4, {3}) = Cost[4, 3] + g(3, ∅) = 9 + 6 = 15

When |V | = 2 we have:
g(2, {3, 4 ↙}) = min(Cost[2, 3] + g(3, {4}), Cost[2, 4] + g(4, {3})) = min(9 +

20, 10 + 15) = 25
g(3, {2, 4 ↙}) = min(Cost[3, 2] + g(2, {4}), Cost[3, 4] + g(4, {2})) = min(13 +

18, 12 + 13) = 25
g(4, {2 ↙, 3}) = min(Cost[4, 2] + g(2, {3}), Cost[4, 3] + g(3, {2})) = min(8 +

15, 9 + 18) = 23

Finally, when |V | = 3 we have:
g(1, {2 ↙, 3, 4}) = min(Cost[1, 2]+g(2, {3, 4}), Cost[1, 3]+g(3, {2, 4}), Cost[1, 4]+

g(4, {2, 3})) = min(10 + 25, 15 + 25, 20 + 23) = 35

The arrows (↙) show the node which is chosen in each case. So, in this graph,
beginning from the node 1 the pointer leads us to 2. From 2 we go to 4 and from
there it’s obligatory to go to 3, since it’s the only node we haven’t visited, and the
cycle closes in 1. Finally, the tour we ask for is: 1 → 2 → 4 → 3 and, of course, it
doesn’t matter which node we start from.

In each step k we compute the g(i, S) for n− 1 different i. All n− 2 remaining
elements (apart from (1, j)) are combined over |S| = k, that is, there are

(
n−2

k

)
possible combinations (different values than g). So, the space required is:

Space = (n− 1)
∑n−2

k=0

(
n−2

k

)
= (n− 1)(1 + 1)n−2 = (n− 1)2n−2
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So, the space complexity is O(n2n). The time complexity is also exponential,
since the problem is NP-complete and the algorithm is not effective.

4.3 Inapproximability of the Traveling Sales-

man Problem (TSP)

As we referred many times in the previous pages of this book, the Traveling
Salesman Problem (TSP) is NP-complete, so there is no algorithm which solves this
problem in polynomial time. It would be good if we could find an approximation
algorithm for the TSP, this is, an algorithm that would return near-optimal solution
of the problem. The bad news is that not only the TSP is NP-Complete, but it also
cannot be approximated by any algorithm unless P = NP .

Theorem 4.1 (Inapproximability of the TSP) If P 6= NP , then for any
constant ρ ≥ 1, there is no polynomial-time approximation algorithm with approxi-
mation ratio ρ for the general Traveling Salesman Problem.

Proof The proof is by contradiction. Suppose to the contrary that for some
number ρ ≥ 1, there is a polynomial-time approximation algorithm A with approx-
imation ratio ρ. Without loss of generality, we assume that ρ is an integer, by
rounding it up if necessary. We shall then show how to use A to solve instances
of the hamiltonian-cycle problem in polynomial time. Since the hamiltonian-cycle
problem is NP-complete, solving it in polynomial time implies that P = NP .3

Let G = (V,E) be an instance of the hamiltonian-cycle problem. We wish to
determine efficiently whether G contains a hamiltonian cycle by making use of the
hypothesized approximation algorithm A. We turn G into an instance of the Trav-
eling Salesman Problem as follows. Let G′ = (V,E′) be the complete graph on V ;
that is,

E′ = {(u, v) : u, v ∈ V and u 6= v}.

Assign an integer cost to each edge in E′ as follows:

c(u, v) =
{

1, if (u, v) ∈ E,
ρ|V |+ 1, otherwise.

Representations of G′ and c can be created from a representation of G in time
polynomial in |V | and |E|.

3Due to a theorem, if any NP-complete problem is polynomial-time solvable, then P =
NP . Equivalently, if any problem in NP is not polynomial-time solvable, then no NP-
complete problem is polynomial-time solvable.
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Now, consider the Traveling Salesman Problem in the graph G′ with cost func-
tion c. If the original graph G has a hamiltonian cycle H, then the cost function c
assigns to each edge of H a cost of 1, and so the graph G′ contains a tour of cost
|V |. On the other hand, if G does not contain a hamiltonian cycle, then any tour
of G′ must use some edge not in E. But any tour that uses an edge not in E has a
cost of at least

(ρ|V |+ 1) + (|V | − 1) = ρ|V |+ |V | > ρ|V |.

Because edges not in G are so costly, there is a gap of at least ρ|V | between the cost
of a tour that is a hamiltonian cycle in G (cost |V |) and the cost of any other tour
(cost at least ρ|V |+ |V |).

What happens if we apply the approximation algorithm A to the Traveling
Salesman Problem in the graph G′ with cost function c? Because A is guaranteed
to return a tour of cost no more than ρ times the cost of an optimal tour, if G
contains a hamiltonian cycle, then A must return it. If G has no hamiltonian cycle,
then A returns a tour of cost more than ρ|V |. Therefore, we can use A to solve the
hamiltonian-cycle problem in polynomial time.4

4The proof of Theorem 4.1 is an example of a general technique for proving that a problem
cannot be approximated well. Suppose that given a NP-hard problem X, we can produce
in polynomial time a minimization problem Y such that ”yes” instances of X correspond to
instances of Y with value at most k (for some k), but that ”no” instances of X correspond
to instances of Y with value greater than ρk. Then we have shown that, unless P = NP ,
there is no polynomial-time ρ-approximation algorithm for problem Y .
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Chapter 5

THE METRIC TRAVELING
SALESMAN PROBLEM
(MTSP)

In the previous chapter we presented the (general) Traveling Salesman Problem
(TSP) and we proved that this problem, which is NP-complete, cannot be approxi-
mated. The good news is that, although the general TSP cannot be approximated,
there are some special cases of the TSP, for which we can find approximation al-
gorithms which solve them. In this chapter we will present one of these special
cases, the Metric Traveling Salesman Problem (MTSP), giving some approximation
algorithms for this problem.

5.1 Presentation of the Metric Traveling Sales-

man Problem (MTSP)

In the Traveling Salesman Problem, we are given a complete undirected graph
G = (V,E) that has a nonnegative integer cost c(u, v) associated with each edge
(u, v) ∈ E, and we must find a hamiltonian cycle (a tour) of G with minimum cost.
As an extension of our notation, let c(A) denote the total cost of the edges in the
subset A ⊆ E:

c(A) =
∑

(u,v)∈A c(u, v).

In many practical situation, it is always cheapest to go directly from a place
u to a place w; going by way of any intermediate stop v can’t be less expensive.
Putting it another way, cutting out an intermediate stop never increases the cost.
We formalize this notion by saying that the cost function c satisfies the triangle
inequality if for all vertices u, v, w ∈ V ,
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c(u, w) ≤ c(u, v) + c(v, w).

The triangle inequality is a natural one, and in many applications it is automat-
ically satisfied. For example, if the vertices of the graph are points in the plane and
the cost of the traveling between two vertices is the ordinary euclidean distance be-
tween them, then the triangle inequality is satisfied. (There are many cost functions
other than the euclidean distance that satisfy the triangle inequality.)

The Traveling Salesman Problem (TSP) in a graph G = (V,E) where the cost
function c of his edges satisfies the triangle inequality, is called Metric Traveling
Salesman Problem (MTSP). The MTSP cannot be solved by an exact algorithm in
polynomial time, but can be approximated. In the next sections of this chapter we
will give various approximation algorithms for the MTSP, with different approxima-
tion ratios.

5.2 A 2-approximation algorithm for the Met-

ric Traveling Salesman Problem (MTSP)

We are given a full undirected graph G = (V,E) and his cost function c which
satisfies the triangle inequality. We need to find the optimal tour in this graph. We
will first compute a structure- a minimum spanning tree (MST)- whose weight is
a lower bound on the length of an optimal traveling salesman tour. We will then
use the minimum spanning tree to create a tour whose cost is no more than twice
that of the minimum spanning tree’s weight, as long as the cost function satisfies
the triangle inequality. The following algorithm implements this approach:

2-Approx-MTSP-Tour

1. select a vertex r ∈ V [G] to be a ”root” vertex

2. compute a minimum spanning tree T for G from root r using Prim’s algorithm

3. let L be the list of vertices visited in a preorder tree walk of T

4. return the hamiltonian cycle H that visits the vertices in the order L

Recall from section 2.2.4 that a preorder tree walk recursively visits every vertex
in the tree, listing a vertex when it is first encountered, before any of its children
are visited.

Figure 5.1 illustrates the operation of 2-Approx-MTSP-Tour. Part (a) of the
figure shows the given set of vertices, and part (b) shows the minimum spanning
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Figure 5.1: The operation of 2-Approx-MTSP-Tour. (a) The given set of
points, which lie on vertices of an integer grid. For example, f is one unit
to the right and two units up from h. The ordinary euclidean distance is
used as the cost function between two points. (b) A minimum spanning tree
(MST) T of these points, as computed by Prim’s Algorithm. Vertex a is the
root vertex. The vertices happen to be labeled in such a way that they are
added to the main tree by Prim’s Algorithm in alphabetical order. (c) A walk
of T , starting at a. A full walk of the tree visits the vertices in the order
a, b, c, b, h, b, a, d, e, f, e, g, e, d, a. A preorder walk of T lists a vertex just when
it is first encountered, as indicated by the dot next to each vertex, yielding the
ordering a, b, c, h, d, e, f, g. (d) A tour of the vertices obtained by visiting the
vertices in the order given by the preorder walk. This is the tour H returned by
2-Approx-MTSP-Tour. Its total cost is approximately 19.074. (e) An optimal
tour H∗ for the given set of vertices. Its total cost is approximately 14.715.
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tree T grown from root vertex a by Prim’s algorithm. Part (c) shows how the vertices
are visited by a preorder walk of T , and part (d) displays the corresponding tour,
which is the tour returned by 2-Approx-MTSP-Tour. Part (e) displays an optimal
tour, which is about 23 percent shorter.

Even with a simple implementation of Prim’s algorithm, the running time of 2-
Approx-MTSP-Tour is Θ(V 2). We now show that if the cost function for an instance
of the Traveling Salesman Problem satisfies the triangle equality, that is, if we have
an instance of the Metric Traveling Salesman Problem, then 2-Approx-MTSP-Tour
returns a tour whose cost is not more than twice the cost of an optimal tour. In
other words, we show that the algorithm we presented above is 2-approximation.

Theorem 5.1 2-Approx-MTSP-Tour is a polynomial-time 2-approximation al-
gorithm for the Traveling Salesman Problem with the triangle inequality (Metric
TSP).

Proof We have already shown that 2-Approx-MTSP-Tour runs in polynomial
time.

Let H∗ denote an optimal tour for the given set of vertices. Since we obtain a
spanning tree by deleting any edge from a tour, the weight of the minimum spanning
tree T is a lower bound on the cost of an optimal tour, that is,

c(T ) ≤ c(H∗). (5.1)

A full walk of T lists the vertices when they are first visited and also whenever
they are returned to after a visit to a subtree. Let us call this walk W . The full
walk of our example gives the order

a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.

Since the full walk traverses every edge of T exactly twice, we have (extending
our definition of the cost c in the natural manner to handle multisets of edges)

c(W ) = 2c(T ). (5.2)

Equations (5.1) and (5.2) imply that

c(W ) ≤ 2c(H∗), (5.3)

and so the cost of W is within a factor of 2 of the cost of an optimal tour.

Unfortunately, W is generally not a tour, since it visits some vertices more than
once. By the triangle inequality, however, we can delete a visit to any vertex from
W and the cost does not increase. (If a vertex v is deleted from W between visits to
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u to w, the resulting ordering specifies going directly from u to w.) By repeatedly
applying this operation, we can remove from W all but the first visit to each vertex.
In our example, this leaves the ordering

a, b, c, h, d, e, f, g.

This ordering is the same as that obtained by a preorder walk of the tree T . Let
H be the cycle corresponding to this preorder walk. It is a hamiltonian cycle,
since every vertex is visited exactly once, and in fact it is the cycle computed by
2-Approx-MTSP-Tour. Since H is obtained by deleting vertices from the full walk
W , we have

c(H) ≤ c(W ). (5.4)

Combining inequalities (5.3) and (5.4) shows that c(H) ≤ 2c(H∗), which com-
pletes the proof.

The algorithm presented in this section is not the only 2-approximation algo-
rithm for the MTSP. In the next section, we will present another approximation
algorithm with approximation ratio 2 for the MTSP.

5.3 2-Approximation algorithm for the Met-

ric Traveling Salesman Problem (MTSP)

using closest-point heuristic

In this section we will present another approximation algorithm for the MTSP,
and we will prove that this algorithm returns a tour whose total cost is not more
than twice the cost of an optimal tour, that is, the approximation ratio of this algo-
rithm equals 2. This algorithm is based on a closest-point heuristic, and for this
reason we will give it the name: closest-point algorithm.

Closest-point algorithm

1. select a trivial cycle consisting of a single arbitrarily chosen vertex

2. repeat

3. identify the vertex u that is not on the cycle but whose distance to any vertex
on the cycle is minimum. Suppose that the vertex on the cycle that is nearest
u is vertex v

4. Extend the cycle to include u by inserting u just after v

5. until all vertices are on the cycle
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6. return the cycle

We will now prove that this algorithm is 2-approximation algorithm for the
MTSP.

Theorem 5.2 Closest-point algorithm is a polynomial-time 2-approximation al-
gorithm for the Traveling Salesman Problem with the triangle inequality (Metric
TSP).

Proof Let T be the tour produced by the closest-point algorithm, node ui be the
point added at the step i by the algorithm and let vi be the point on cycle closest
to ui when ui added. We can view the procedure as:

(i) Original cycle: ....., v′, vi, v′′, ....
(ii) Adding u: ....., v′, vi, u, vi, v′′, ....
(iii) Removing the duplicate node: ...., v′, vi, u, v′′, ....

The cycle resulting from (iii) is what is constructed by the algorithm. From the
triangle inequality, the cost of (iii) is no larger than the cost of (ii). Thus, the cost
incurred by adding ui to the tour is at most 2c(v, ui), so the total cost of the tour
created by the algorithm satisfies c(T ) ≤ 2

∑
i c(ui, vi).

In Prim’s algorithm, nodes and edges are added in the exact same sequence as in
the closest-point algorithm. Thus, the cost of the Minimum Spanning Tree (MST)
produced by Prim’s algorithm is

∑
i c(ui, vi) and c(T ) ≤ 2

∑
i c(ui, vi) ≤ 2c(MST ).1

As we said in the previous section, the weight of the MST is a lower bound of the
cost of an optimal tour, that is c(MST ) ≤ c(OPT ).2

Thus, we have shown that:

c(T ) ≤ 2c(MST ) ≤ 2c(OPT )

and we are done.

In spite of the nice approximation ratio provided by Theorems 5.1 and 5.2, 2-
Approx-MTSP-Tour and Closest-point algorithm are not the best practical
choices for this problem. There are other approximation algorithms that typically
perform much better in practice.

1c(MST ) is the total cost of the Minimum Spanning Tree (MST)
2c(OPT ) is the total cost of the optimal tour
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5.4 Improving the factor to 3/2

We have seen till now two algorithms (2-Approx-MTSP-Tour and Closest-point
algorithm), which both have an approximation ratio 2. As we said in the final
words of the previous section, there are also approximation ratio with much better
approximation ratios for this problem. From the known algorithms for the MTSP,
this with the best ratio is Christofides’ algorithm. In this section we will present
this algorithm, and we will prove that he is 3/2-approximation.

Christofides’ algorithm

1. Find an MST of G, say T

2. Compute a minimum cost perfect matching, M , on the set of odd-degree
vertices of T . Add M to T and obtain an Eulerian graph.

3. Find an Euler tour, T , of this graph.

4. Output the tour that visits vertices of G in order of their first appearance in
T . Let C be this tour.

Interestingly, the proof of this algorithm is based on a second lower bound on
the optimal solution.3.

Lemma 5.1 Let V ′ ⊆ V , such that |V ′| is even, and let M be a minimum cost
perfect matching on V ′. Then, c(M) ≤ c(OPT )/2.

Proof Consider an optimal TSP tour of G, say τ . Let τ ′ be the tour on V ′

obtained by visiting the vertices of G in order of their first appearance in τ . By the
triangle inequality, c(τ ′) ≤ c(τ). Now, τ ′ is the union of two perfect matchings on
V ′, each consisting of alternate edges of τ ′. Thus, the cheaper of these matchings
has cost ≤ c(τ ′)/2 ≤ c(OPT )/2. Hence the optimal matching also has cost at most
c(OPT )/2.

Theorem 5.3 Christofides’ algorithm achieves an approximation guarantee of
3/2 for Metric Traveling Salesman Problem (MTSP).

Proof The cost of the Euler tour is

c(T ) ≤ c(T ) + c(M) ≤ c(OPT ) +
1
2
c(OPT ) =

3
2
c(OPT )

3The first lower bound of the cost of the optimal tour we have given is the weight of the
minimum spanning tree
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where the second inequality follows by using the two lower bounds on the cost of
the optimal solution. Using the triangle inequality, c(C) ≤ c(T ), and the theorem
follows.

Christofides’ algorithm is the one with the best approximation ratio for the
MTSP between the algorithms we know today. Finding a better approximation
algorithm for Metric TSP is currently one of the outstanding open problems in this
area. Many researchers have conjectured that an approximation factor of 4/3 may
be achievable.

A very important point about the Metric TSP is that Arora, Lund, Motwani,
Sudan and Szegedy have proved [2] that Metric TSP is one of the problems that
there is no PTAS to solve them. In the next chapter, however, we will give a special
case of the metric TSP (euclidean TSP) for which there is a PTAS, and we will
describe this PTAS.
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Chapter 6

THE EUCLIDEAN
TRAVELING SALESMAN
PROBLEM

In the previous chapter we presented a special case of the Traveling Salesman
Problem, the Metric Traveling Salesman Problem (MTSP). We saw that the MTSP
can be approximated, and we described various approximation algorithms, of which
the best has approximation ratio 3/2. In this chapter we will present another case
of TSP, the Euclidean TSP, and we will give a PTAS for this special case. The
central idea of the PTAS we will give is to define a ”coarse solution”, depending on
the error parameter ε, and to find it using dynamic programming. A feature is that
we do not know a deterministic way of specifying the coarse solution - it is specified
probabilistically.

6.1 Description of the Euclidean Traveling Sales-

man Problem

Euclidean TSP is an instance of the Metric TSP where the cities which must be
visited by the salesman are points in Rd, and the distance between two cities is the
Euclidean distance between these cities.The description of the problem in a formal
language follows.

For fixed d, given n points in Rd, the problem is to find the minimum length tour
of the n points. The distance between any two points x and y is defined to be the
Euclidean distance between them, i.e., (

∑d
i=1(xi − yi)2)1/2.
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6.2 Description of the algorithm

We will give the algorithm for points in the plane, i.e., d = 2. The extension to
arbitrary d is straightforward.

Define the bounding box of the instance to be the smallest axis-parallel square
that contains all n points. Via a simple perturbation of the instance, we may assume
that the length of this square, L, is 4n2 and that there is a unit grid defined on the
square such that each point lies on a gridpoint. Further, assume without loss of
generality that n is a power of 2, and let L = 2k, k = 2 + 2 log2 n.

The basic dissection of the bounding box is a recursive partitioning into smaller
squares. Thus, the L× L square is divided into four L/2× L/2 squares, and so on.
It will be convenient to view this dissection as a 4-ary tree, T , whose root is the
bounding box. The four children of the root are the four L/2×L/2 squares, and so
on. The nodes of T are assigned levels. The root is at level 0, its children at level 1,
and so on. The squares represented by nodes get levels accordingly. Thus, squares
at level i have dimensions L/2i × L/2i. The dissection is continued until we obtain
unit squares. Clearly, T has depth k = O(log n). By a useful square we mean a
square represented by a node in T .

Next, let us define levels for horizontal and vertical lines that accomplish
the basic dissection (these are all the lines of the grid defined on the bounding box).
The two lines that divide the bounding box into four squares have level 1. In general,
the 2i lines that divide the level i− 1 squares into level i squares each have level i.
Therefore a line of level i forms the edge of useful squares at levels i, i + 1, ... , i.e.,
the largest useful square on it has dimensions L/2i × L/2i.

Each line will have a special set of points called portals. The coarse solution
we will be seeking is allowed to cross a line only at a portal. The portals on each
line are equidistant points. On a line of level i, these points are L/(2im) apart,
where the parameter m is fixed to be a power of 2 in the range [k/ε, 2k/ε]. Clearly,
m = O(log n/ε). Since the largest useful square on a level i line has dimensions
L/2i × L/2i, each useful square has a total of at most 4m portals on its four sides
and corners. We have chosen m to be a power of 2 so that a portal in a lower level
square is a portal for all higher level squares it lies in.

We will say that a tour τ is well behaved with respect to the basic dissection and
has limited crossings if it is well behaved with respect to the basic dissection, and
furthermore, it visits each portal at most twice.
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Figure 6.1: Bounding box

Lemma 6.1 Let tour τ be well behaved with respect to the basic dissection. Then,
there must be a tour that is well behaved with limited crossings, whose length is at
most that of τ .

Proof The basic reason is that removing self-intersections by ”short-cutting” can
only result in a shorter tour, since Euclidean distance satisfies the triangle inequality.
If τ uses a portal on line l more than twice, we can keep ”short-cutting” on the two
sides of l until the portal is used at most twice. If this introduces additional self-
intersections, they can also be removed.

Lemma 6.2 The optimal well behaved tour with respect to the basic dissection,
having limited crossings, can be computed in time 2O(m) = nO(1/ε).

Proof We will build a table, using dynamic programming, that contains, for each
useful square, the cost of each valid visit. We will sketch the main ideas of this.

Let τ be the optimal tour we wish to find. Clearly, the total number of times
τ can enter and exit a useful square, S, is at most 8m. The part of τ inside S
is simply a set of at most 4m paths, each entering and exiting S at portals, and
together covering all the points inside the square. Furthermore, the paths must be
internally non-self-intersecting, i.e., two paths can intersect only at their entrance
or exit points. This means that the pairing of entrance and exit points of the paths
must form a balanced arrangement of parentheses.

Let us call such a listing of portals, together with their pairing as entrance and
exit points, a valid visit.
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Figure 6.2: Valid and invalid pairing

The number of useful squares is clearly poly(n). Let us first show that the
number of valid visits in a useful square is at most nO(1/ε), thereby showing that
the number of entries in the table is bounded by nO(1/ε).

Consider a useful square S. Each of its portals is used 0, 1, or 2 times, a total
of 34m = nO(1/ε) possibilities. Of these, retain only those possibilities that involve
an even number of portal usages. Consider one such possibility, and suppose that it
uses 2r portals. Next, we need to consider all possible pairings of these portals that
form a balanced arrangement of parentheses. The number of such arrangements is
the rth Catalan number, and is bounded by 22r = nO(1/ε). Hence, the total number
of valid visits in S is bounded by nO(1/ε)

For each entry in the table, we need to compute the optimal length of this valid
visit. The table is built up the decomposition tree, starting at its leaves. Consider
a valid visit V in a square S. Let S be a level i square. We have already fixed the
entrances and exits on the boundary of S. Square S has four children at level i + 1,
which have four sides internal to S, with a total of a most 4m more portals. Each
of these portals is used 0, 1, or 2 times, giving rise again to nO(1/ε) possibilities.
Consider one such possibility, and consider all its portal usages together with portal
usages of a valid visit V . Obtain all possible valid pairings of these portals that
are consistent with those of visit V . Again, using Catalan numbers, their number
is bounded by nO(1/ε). Each such pairing will give rise to valid visits in the four
squares. The cost of the optimal way of executing these valid visits in the four
squares has already been computed. We compute their sum. The smallest of these
sums is the optimal way of executing visit V in square S.

6.3 Proof of correctness

For the proof of correctness, it suffices to show that there is a well behaved tour
with respect to the basic dissection whose length is bounded by (1 + ε)c(OPT ). It
turns out that this is not always the case. Instead, we will construct a larger family
of dissections and will show that, for any placement of the n points, at least half
these dissections have short well behaved tours with limited crossings. So, picking
a random dissection from this set suffices.
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Figure 6.3: Shifted bounding box

Let us define L2 different dissections of the bounding box, which are shifts of the
basic dissection. Given integers a, b with 0 ≤ a, b ≤ L, the (a, b)-shifted dissection
is obtained by moving each vertical line from its original location x to (a + x) mod
L, and moving each horizontal line from its original location y to (b + y) mod L.
Thus, the middle lines of the shifted dissection are located at (a + L/2) mod L and
(b + L/2) mod L, respectively.

The entire bounding box is thought of as being ”wrapped around”. Useful
squares that extend beyond L in their x or y coordinates will thus be thought of as
”wrapped around”, and will still be thought of as a single square. Of course, the
positions of the given n points remain unchanged; only the dissection is shifted.

Let π be the optimal tour, and N(π) be the total number of times π crosses
horizontal and vertical grid lines. If π uses a point at the intersection of two grid
lines, then we will count it as two crossings. It can be proved the following:

Lemma 6.3 N(π) ≤ 2 · c(OPT )
Following is the central fact leading to the PTAS.

Theorem 6.1 Pick a and b uniformly at random from [0, L). Then, the expected
increase in cost in making π well behaved with respect to the (a, b)-shifted dissection
is bounded by 2ε · c(OPT ).
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Proof Given any dissection, consider the process of making π well behaved with
respect to it. This involves replacing a segment of π that does not cross a line
l at a portal by two segments so that the crossing is at the closest portal on l.
The corresponding increase in the length of the tour is bounded by the interportal
distance on line l.

Consider the expected increase in length due to one of the crossings of tour π
with a line. Let l be this line. l will be a level i line in the randomly picked dissec-
tion with probability 2i/L. If l is a level i line, then the interportal distance on it is
L/(2im). Thus, the expected increase in the length of the tour due to this crossing
is at most∑

i
L

2im
2i

L = k
m ≤ ε,

where we have used the fact that m lies in [k/ε, 2k/ε]. The theorem follows by
summing over all N(π) crossings and using Lemma 6.3.

Remark 6.1 The ideas leading up to Theorem 6.1 can be summarized as follows.
Since lower level lines have bigger useful squares incident at them, we had to place
portals on them further apart to ensure that any useful square had at most 4m
portals on it (thereby ensuring that dynamic programming could be carried out in
polynomial time). But this enabled us to construct instances for which there was
no short well behaved tour with respect to the basic dissection. On the other hand,
there are fewer lines having lower levels.

Now, using Markov’s inequality we get:

Corollary 6.1 Pick a and b uniformly at random from [0, L). Then, the proba-
bility that there is a well behaved tour of length at most 1+4ε ·c(OPT ) with respect
to the (a, b)-shifted dissection is greater or equal to 1/2.

Notice that Lemma 6.1 holds in the setting of an (a, b)-shifted dissection as well.
The PTAS is now straightforward. Simply pick a random dissection, and find an
optimal well behaved tour with limited crossings with respect to this dissection using
the dynamic programming procedure of Lemma 6.2. Notice that the same procedure
holds even for a shifted dissection. The algorithm can be derandomized by trying
all possible shifts and outputting the shortest tour obtained. Thus, we get:

Theorem 6.2 There is a PTAS for the Euclidean TSP problem in R2.
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Chapter 7

THE TRAVELING
SALESMAN PROBLEM WITH
DISTANCES ONE AND TWO
((1,2)-TSP. A
7/6-APPROXIMATION
ALGORITHM.

We have seen till now some very interesting special cases of the Traveling Sales-
man Problem. We saw firstly the Metric TSP, including some very important ap-
proximation algorithms for it. The best approximation ratio for this problem is 3/2.
Then, we examined a special case of it, the Euclidean TSP, giving the most impor-
tant algorithm (PTAS) we know about this problem. In this chapter we will present
a special case of the Euclidean TSP, the (1,2)-TSP and will give a polynomial-time
approximation algorithm with worst case ratio 7/6. In this special case of TSP, all
distances of the graph are either one or two. We will also show that this special case
of the Traveling Salesman Problem is MAX SNP-hard (we will determine what does
it mean), and therefore it is unlikely that it has a polynomial-time approximation
scheme.

7.1 Introduction. Description of the (1,2)-TSP.

As we have said, we will study an interesting further case of the Traveling Sales-
man Problem, namely the one in which the matrix is symmetric and the entries
are either one or two. Since a ≤ b + c for all a, b, c ∈ {1, 2}, such instances of the
Traveling Salesman Problem satisfy the triangle inequality. This special case of the
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TSP can be considered as a generalization of the Hamiltonian Cycle problem, since
we are asking for the tour of the nodes of the graph that contains the fewest possi-
ble nonedges (2 entries). It follows immediately that the problem is NP-complete.
In fact, it is this version of the Traveling Salesman Problem that was shown NP-
complete in the original reduction by Karp [25], and since then in every textbook
on the subject.

In this chapter we will show that this special case of the Traveling Salesman
Problem can be approximated in polynomial time by a ratio of 7/6. In the ap-
proximation algorithm we will present, we use the well-known technique of subtour
patching : We start from the optimum 2-matching (subgraph with all degrees equal
to 2, but not necessarily connected), and patch the cycles of the 2-matching together
to form a tour. Two cycles can be ”patched” together by picking one edge in each,
deleting these two edges, and connecting the four endpoints in any one of the other
two ways (Figure 7.1).

For example, the following simple algorithm achieves a ratio of 4
3 : We start with

the optimum 2-matching, which contains at most n/3 cycles.1 Consider any two
cycles (Figure 7.1). We can always patch them together with an increase of 2 in
the cost (see Figure 7.1). However, if there is any edge of weight 2 in one of the
cycles, the cost is increased by at most 1, since we can choose to replace two edges,
with total weight at least 3, with two more edges of total weight at most 4. So,
we start with the cycles of the optimum 2-matching, and patch them together, one
after the other. The first time, patching two cycles may cost 2 but, since an edge
of weight 2 is now present, from now on it is going to cost at most 1 per patching
(more precisely, at most 2, and each patching with cost 2 is either the first, or is
preceded immediately by a patching of cost at most zero). Since at most n/3 − 1
patchings are needed, the cost of the tour finally created is at most the cost of the
optimum 2-matching plus n/3, at most 4

3 times the optimum tour.

In what follows, we use a more complex argument to develop a polynomial al-
gorithm with worst case ratio of 11

9 . The basic idea is to patch the cycles in an
order specified by the solution of yet another matching problem. We also show that,
if we combine this idea with a polynomial-time algorithm for finding the optimal
triangle-free 2-matching of a graph [22], the bound becomes 7

6 .

1because each cycle has at least three nodes.
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Figure 7.1: Simple Patching Heuristic

7.2 The approximation algorithm

We are given an n × n symmetric distance matrix dij , with entries 1 and 2.
Matrix dij defines a graph Gd = (V,E), where V = {1, 2, ..., n}, and [i, j] ∈ E if
and only if dij = 1. We are asked to find the cyclic permutation π that minimizes∑n

i=1 di,π(i).

We first describe the algorithm and argument for the special case in which Gd

has a Hamiltonian cycle (i.e., the optimal cost is n). We first find an optimal 2-
matching of d, that is to say, the shortest possible subgraph of degree 2. This can be
done in time O(n2.5) [35].Naturally, since Gd has a Hamiltonian cycle, the optimal 2-
matching has weight n. It has a set C of connected components (cycles); in general,
|C| > 1 (otherwise we are done).

We form a bipartite graph B with node sets C and V , and with an edge from
component c to node v if v does not belong to c and there is an edge [u, v] in E
going from a node u of cycle c to v.

Lemma 7.1 There is a matching in B covering all cycles in C.

Proof Consider the Hamiltonian cycle, (v1, v2, ..., vn), and match cycle c with the
first node vi not in c, for which vi−1 is in c.

Consider now the directed graph F = (C,A) with (c, c′) ∈ A whenever c is matched
according to Lemma 7.1 with node v of c′. Obviously, F has out-degree 1, that is
to say, it is a function. We need the following lemma about functions.

Lemma 7.2 Any function F has a spanning subgraph consisting of node-disjoint
in-trees2 of depth 1 and paths of length 2.

Proof A weak connected component of F is a cycle, with certain in-trees converg-
ing into it. We shall consider each weak component separately. We start with a leaf

2An in-tree is an oriented tree in which a single vertex is reachable from every other one.
Likewise, an arborescence, or out-tree or branching, is an oriented tree in which all vertices
are reachable from a single vertex
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Figure 7.2: The Three Cases

l that has a maximum distance from a node in the cycle. We consider l’s successor
s. If s is not on the cycle, we define an in-tree by s and all of its immediate predeces-
sors (also leaves). We remove this tree, and repeat. We end up with the cycle, plus
certain immediate predecessors of nodes in the cycle. Notice that, for the nodes of
the cycle that have predecessors outside the cycle, we have a choice whether or not
to include in its in-tree the predecessor on the cycle. Well, we do whatever leaves
an even number, possibly zero, of nodes between this node and the previous such
node in the cycle. These even-length paths are trivially decomposable into paths
of length 1 (which are indeed in-trees of height 1). This leaves us with the case in
which there is no node outside the cycle. This cycle can be easily decomposed into
paths of length 1 and a single path of length 2 (notice that F has no self-loops).

With every arc (c, c′) of the directed graph F we can associate an undirected
edge (v, v′) of the graph Gd where v is a node of the cycle c and v′ is the node of
c′ to which c is matched. Note that any two arcs of F with the same head c′ are
associated with edges of Gd that are incident with distinct nodes of the cycle c′.
However, if c′ is the head of one arc and the tail of another arc of F , then the edges
of Gd associated with these two arcs may be incident to the same node of c′.

The approximation algorithm we present proceeds as follows: We decompose the
directed graph F as in Lemma 7.2, and then we look at the resulting components.
We first consider the in-trees of height 1. They consist of a cycle c (the root)
together with other cycles c1, ...., cm, and, for i = 1, ...,m, there is an edge of Gd

from a node of ci to node vi of c, where vi 6= vj for i 6= j. We go around the cycle c
in clockwise order starting from any node that is not a vi if there is such a node, or
from an arbitrary node otherwise. If we encounter two adjacent vi’s, we merge the
corresponding ci’s with c as shown in Figure 7.2(a). If the clockwise next node to vi,
call it v, is not a vj , or if vi is the last unexamined node in the clockwise traversal,
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then we merge ci with c as shown in Figure 7.2(b).

Finally, consider a path of length 2 in the decomposition of F . It corresponds
to three cycles of Gd connected as in the left part of Figure 7.2(c). Note that the
two indicated nodes x, y of the middle cycle may coincide because the middle cycle
is the head of one arc and the tail of the other arc of length-2 path of F , and thus,
this is not a special case of Figure 7.2(a). In this case we merge the corresponding
cycles as in Figure 7.2(c). Notice that, by now, all cycles have edges of length 2 (if
the edges added in Figure 7.2 are of length 1, we simply increase their length to 2,
which cannot decrease the length of the tour constructed) and can thus be merged
together at no extra cost.

Lemma 7.3 The tour produced by the algorithm is of length at most 11
9 n.

Proof The cost of the tour produced is n (the cost of the 2-matching) plus the
cost of all mergings of cycles according to Figure 7.2. We shall show that each of the
mergings of Figure 7.2 cost at most 2

9 per node involved. This certainly holds in the
case of paths of length 2 (Figure 7.2(c)), in which at least nine nodes are involved
(at least three for each of the three cycles), and an extra cost of 2 is incurred. For
in-trees, we charge the merging of Figure 7.2(a) to the vertices of the two nonroot
cycles, which are at least 6, and thus the cost is 1

6 per vertex. For Figure 7.2(b), we
charge the nodes of the nonroot cycle plus the corresponding vj and the next node
v of the root cycle, and thus the cost is 1

5 per node. It is clear that n node of the
graph is charged in two mergings, and thus the bound is established.

We next deal with the case in which the optimum cost is bigger than n. Again,
we start with the optimum 2-matching. In fact, we pick a 2-matching which (a) has
at most one cycle with a length-two edge (all other cycles are called pure), and (b)
there is no length-two edge on the nonpure cycle incident upon a length-one edge of
the graph going to another cycle. If either condition is violated, then we can merge
two cycles at no added cost to obtain a 2-matching with fewer cycles, and this must
end.

We now form the bipartite graph B as before, only restricting the left-hand side
to the pure cycles, and find the maximum matching (since we do assume a Hamilton
cycle, this matching may not be perfect with respect to the pure cycles). As before,
let F = (C,A) be the directed graph with (c, c′) ∈ A whenever c is matched to a
node of c’. Now F is only a partial function; i.e., some nodes (namely, the nonpure
cycle and the unmatched pure cycles) have out-degree 0.

From F we can form as in Lemma 7.2 a spanning subgraph F ’ whose nontrivial
components are in-trees of depth 1 and paths of length 2; F ’ may have also some
trivial components (isolated nodes) which are unmatched pure cycles or the nonpure
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cycle of the 2-matching. We merge the cycles in the nontrivial components of F ’
as before, then we merge the remaining pure cycles that are isolated at a cost of 1
each, and finally the nonpure cycle, if it is isolated, at no cost.

Suppose that the optimum 2-matching has k edges of weight 2; obviously, the
2-matching has cost n + k, and the optimum traveling salesman tour has cost at
least that. Fix an optimum tour v1, v2, ..., vn, v1, let U be the set of nodes vi such
that the edge [vi, vi+1] has length 2, and let c2 be the number of pre cycles that
contain a node from U . Clearly, the optimum tour has cost at least n+c2. Let r2 be
the number of pure cycles that are isolated in F ’, and let n2 be the total number of
nodes in these cycles. Since these r2 pure cycles are unmatched, and one can easily
obtain from the optimum tour a matching of B with at most c2 unmatched cycles,
it follows that c2 ≥ r2.

The cost for merging the cycles in the nontrivial components of F ’ is 2
9 per node

charged. We claim that the number of charged nodes is at most n − n2 − k. To
see this, observe that even if the nonpure cycle is in a nontrivial component of F ’,
it is the root of such a component, and every node of the nonpure cycle that is
charged is preceded by a length-one edge, because of property (b) above. Therefore,
at least k nodes of the nonpure cycle are not charged. Thus, the total cost of the
tour constructed by the algorithm is now

cost ≤ n + k +
2
9
(n− n2 − k) + r2.

However, since r2 ≤ n2/3, c2,

cost ≤ 11
9

n +
7
9
k +

1
3
c2 ≤

11
9

max{n + c2, n + k},

which is at most 11
9 times the optimum traveling salesman tour. We have shown the

following

Theorem 7.1 We can find a tour of length no worse than 11
9 times the optimum

in O(n2.5) time.

We can improve on this bound by using a powerful result due to Hartvigsen
[24]. He developed a polynomial-time algorithm for finding the optimum 2-matching
which contains no triangles. Running the algorithm we presented starting from the
optimum triangle-free 2-matching, the previous calculation becomes

Theorem 7.2 We can find a tour of length no worse than 7
6 times the optimum

in polynomial time.
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Notice that there are two worst-case types of instances for our algorithm: The
one in which the bipartite matching results in a set of cycles of length 3, where all
nodes are themselves cycles of length four; and the one in which we have k cycles of
length 4 arranged around a cycle of length 2k.

7.3 Lower bound

Is there a limit to how close to 1 we can get by polynomial-time approximation
algorithms (assuming that P 6= NP ), or is it the case that any ratio can be achieved?
We show next that the Traveling Salesman Problem with distances 1 and 2 ((1,2)-
TSP) is MAX SNP-hard [38]. This implies that, if such an approximation scheme
existed, then one would exist for a wide class of optimization problems, including
several variants of maximum satisfiability, node cover, independent set in bounded-
degree graphs, etc. Due to the PCP theorem, there is no PTAS for the maximum
satisfiability problem (assuming that P 6= NP ), so there is no PTAS for any of the
problems that belong to the MAX SNP class, including the TSP (and the (1,2)-
TSP).

MAX SNP is the class of maximization problems that can be expresses as

max
S⊆V r

|{x : φ(x, S, G)}|

where G ⊆ V r is a given relation (typically a graph, r = 2), S is the optimal relation
sought, and φ is a first-order formula involving the relations G, S and the first-order
variables x. For example, the maximum satisfiability problem with 3-clauses (or
2-clauses), the independent set3 and node cover problem for bounced degree graphs,
the max-cut problems, and others, are in MAX SNP.

Furthermore, all these problems turns out to be MAX SNP-complete. Consider
two optimization (maximization or minimization) problems A and B. We say that
A L-reduces (for linearly reduces) to B if there are two polynomial-time algorithms
f and g and constants α, β > 0 such that:

1. Given any instance a of A, f produces an instance b of B, such that the cost
of the optimum of b, opt(b), is at most αopt(a); and furthermore

2. Given any (feasible) solution y of b, g can produce in polynomial time a
solution x of a such that |cost(x)− opt(a)| ≤ β|cost(y)− opt(b)|.

The basic facts about L-reductions are these: First, they are indeed reductions
(property (2) says that we can find the optimum of A given the optimum of B).

3An independent set of a graph G = (V,E) is a subset V ′ ⊆ V of vertices such that each
edge in E is incident on at most one vertex in V ’. The independent set problem is to find
a maximum-size independent set in G
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Figure 7.3: The Exclusive OR (XOR) Device

Second, the composition of L-reductions is an L-reduction. Third, if A L-reduces
to B and there is a polynomial-time approximation algorithm for B achieving a
ratio of 1 + ε, then there is a polynomial-time approximation algorithm for A with
ratio 1 + αβε. In view of this, we can think that MAX SNP also contains certain
minimization problems: Those that are L-reducible to a problem in MAX SNP.

A problem in MAX SNP is MAX SNP-complete if all problems in MAX SNP
L-reduce to it. As usual, if this condition is met but the problem is not known to be
in MAX SNP (such a problem is the Travelling Salesman Problem with distances 1
and 2), it is called MAX SNP-hard. It follows from the above that if a MAX SNP-
hard problem had a polynomial-time approximation scheme, then every problem in
MAX SNP would had one. As we mentioned above, there is no polynomial-time
approximation scheme for any of these problems.

We show the following theorem:

Theorem 7.3 The Traveling Salesman Problem with distances 1 and 2 is MAX
SNP-hard.

Proof We shall L-reduce 3SAT with at most four occurrences of each literal (a
problem known to be MAX SNP-complete [38]) to the (1,2)-Traveling Salesman
Problem. We are given a formula with n variables x1, ...., xn and m clauses with
three literals each C1, ..., Cm, such that each variable appears a most four times pos-
itively and at most four times negatively. We are asked to find the truth assignment
which maximizes the number of clauses satisfied.

Given such a formula, we shall construct an instance of the Traveling Salesman
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Problem with all distances either one or two. In fact, we shall exploit the connection
between the (1,2)-TSP and the Hamilton cycle problem and, instead of an instance
of the (1,2)-TSP, we shall construct a graph G. The Traveling Salesman Problem
instance will be implied if we consider all edges as having length one, and all nonedges
as two. The construction is based on several specialized devices.

One basic device is the exclusive-or shown in Figure 7.3(a) (from [37]). If the
graph is to have a Hamilton circuit, and there are n connections of the nodes in the
device to other parts of the graph, except of the four endpoints, then this graph
behaves as if two edges 1-1’ and 2-2’ are constrained so that exactly one of them is
traversed by the Hamilton circuit. The two possible traversals of this subgraph by
a Hamilton circuit are shown in Figures 7.3(a) and 7.3(b).

We shall sometimes think of an exclusive-or subgraph as two edges connected by
an extrinsic device (Figure 7.3(c)). We can arrange exclusive-or’s in series by, say,
identifying the lower-right edge of one with the lower-left edge of the next (Figure
7.3(d)); we think of this as two consecutive edges connected by exclusive-or with
two other ones. We use a lot in the next device.

For each variable we have the device shown in Figure 7.4. It consists of two
paths, presenting alternative traversals, which capture the choice of truth value for
the variable. Each of these paths is an arrangement of 29 exclusive-ors. In particular,
there are five ”batteries” of five edges each on each path (a total of 50 edges). Each
of these 25 edges of one path is connected b exclusive-ors with one of the 25 edges
of the other path, so that for each battery on one path and each battery on the
other there is an exclusive-or connection between two edges of these batteries. The
precise order is not important.

In any portion of a Hamilton path from 1 to 2, one of these two paths will be
traversed, and this corresponds to the two possible truth values for the variable.
Between any two consecutive batteries on one path, say the one corresponding to
xi = true, there is an additional edge. Thus, there are four such edges on the path,
which correspond to the four occurrence of the literal xi (similarly for xi = false
and xi). These four edges are called occurrence edges.

For each clause we have the triangle device shown in Figure 7.5. Each edge
corresponds to the occurrence of a literal in this clause, and it is connected by an
exclusive-or to an occurrence edge of the device for the variable which corresponds
to that occurrence.
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Figure 7.4: The Variable Device

Figure 7.5: The Clause Device
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Figure 7.6: The Overall Graph

As for the overall graph, it is a set of n variable devices connected in series,
and a set of m clause devices connected so that all 3m nodes of the m triangles are
pairwise connected among themselves, and are also connected to the first and last
nodes of the variable part (Figure 7.6).

It has been showed that graph G has a Hamilton circuit if and only if the formula
is satisfiable. In particular, the clause device is such that, if all three literals are false
by the choices at the variable devices, then all three edges of the triangle will be
traversed, and thus a ”short circuit” will be closed, contradicting Hamiltonicity. But
here our interest lies in the more involved optimization problem: we must show that
the construction is an L-reduction. Condition (1) of the definition of L-reduction
is immediate. The optimum of the satisfiability problem is Θ(m) = Θ(n), and the
optimum of the Traveling Salesman Problem is at most c(m+n), for some c < 1000.

For condition (2), we should first notice that any tour of this instance of the
Traveling Salesman Problem uses certain edges and perhaps certain nonedges of
G. Since all nonedges have identical cost 2, we can identify a tour with its parts
that are paths of G. That is, certain nodes of the graph, called the endpoints, are
traversed by the tour through an edge of length one and an edge of length two (there
may also be certain double endpoints, nodes that are traversed through two edges of
length two; these endpoints will count as two endpoins each). Thus, a tour has cost
N +dE/2e, where N is the number of cities and E is the number of endpoints. Now,
given a tour with E endpoints, we shall show how to exhibit a truth assignment with
at most E clauses unsatisfied; and vice versa. This would establish condition (2) for
L-reduction.

Suppose that we are given a truth assignment that satisfies all but k of the
clauses. We can construct a tour with either k + 1 or k endpoints (depending on
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whether k is odd or even) as follows: The variable devices are traversed in the way
suggested by the assignment. The tour then traverses triangles corresponding to
the satisfied clauses, and then the unsatisfied ones. In the latter part, an endpoint
is introduced at each unsatisfied clause, and perhaps an extra one to complete the
tour.

Conversely, suppose that we are given a tour with E endpoints. We shall show
that we can assume that this tour has a certain structure that makes it very similar
to the tour constructed above (otherwise, we can produce a better tour).

First, we can assume that all exclusive-or graphs are traversed either in the
intended way (Figure 7.3), plus in three more ways (Figure 7.7) and their symmetric
counterparts. We show this by a case analysis, based on the number of boundary
edges (the four edges connecting the exclusive-or subgraph with the rest of the
graph.) If no boundary edge is traversed, then the optimal traversal of the nodes
of the subgraph s obviously as in Figure 7.7(a); there are two endpoints within
the subgraph. If one boundary edge is traversed, then it is suboptimal to exit
the subgraph before we traverse all its nodes, and thus Figure 7.7(b) results. If
two boundary edges are traversed, suppose first that they are both lower boundary
edges. Then it is suboptimal to traverse the subgraph in any other way than the ones
shown in Figure 7.3. Finally, suppose one of them is a lower boundary edge, and
the other is an upper one. Then, at least two endpoints exist within the subgraph
(one for each boundary edge traversed), and we may replace this traversal with the
one in Figure 7.7(b) at no extra cost.

If all four boundary edges are traversed, then again there are at least two end-
points in the subgraph, and we can replace this traversal at no extra cost by the
traversal of Figure 7.3(a) or 7.3(b). Finally, suppose that three boundary edges are
traversed. It is impossible to achieve anything better than Figure 7.7(b), since at
least one endpoint must occur. However, if the two lower boundary edges are not
connected as in Figure 7.7(c), then we can transform this into a traversal in Figure
7.3 by omitting the upper left boundary edge, and adding the horizontal edge next
to it.

Hence, we can assume that each exclusive-or of G is traversed according to
one of these four traversals (Figure 7.3, Figures 7.7(a), 7.7(b) and 7.7(c)). It is
useful for following the arguments below to consider each exclusive-or as an extrinsic
mechanism that connects two ”edges” of G (the upper edge and the lower edge in
Figure 7.3(c)). If an exclusive-or is traversed as in Figure 7.3(a) we shall say that
the upper edge is traversed, and the lower edge is untraversed. In Figure 7.7(a) we
say that both edges are untraversed. In Figure 7.7(b) the upper edge is untraversed,
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Figure 7.7: Semi (a) and Sesqui- (b) Traversal

and the lower edge is semitraversed. Finally, in Figure 7.7(c) we say that the lower
edge is sesquitraversed, and the upper edge semitraversed.

Next, we shall show that we can assume that all devices corresponding to vari-
ables are traversed in a way consistent with a truth assignment. The difficulty in
showing this is the following: Suppose that these devices are traversed so that all
eight occurrence edges are traversed. This may have the effect of making the vari-
able both true and false, and thus saving up to four endpoints at clauses that are
otherwise unsatisfied. We shall have to show that more than four extra endpoints
must be introduced elsewhere in the variable subgraph, so that such traversals can
be ruled out. The batteries of exclusive-or’s are our way of ensuring this.

Consider an occurrence of a literal. We assign to it a truth value of true, false,
or expensive. An occurrence is expensive if either the occurrence edge corresponding
to it is semitraversed, or an edge in the battery preceding it is semitraversed. Oth-
erwise, it is true if it is traversed or sesquitraversed, and false if it is untraversed.
Notice that expensive occurrences cost us one endpoint each.

We claim that there are no two contradicting literals x and x that are both true.
In proof, suppose they were. Then all exclusive-or edges on the batteries preceding
them are either traversed or sesquitraversed. However, two of these edges are, by
our construction, connected by an exclusive-or, and hence this exclusive-or has both
edges traversed or sesquitraversed, which is absurd.

Now consider the occurrence edges corresponding to a clause. If they are false
or expensive, there is at least an endpoint that can be attributed exclusively to the
clause: If at least one is expensive, the endpoint is the one of the semitraversal of the
occurrence edge or at the battery before; if they are all false, then one of the edges
of the triangle must be semitraversed, otherwise a short cycle would be created.
Hence, the truth assignment that makes a literal true if there is a true occurrence
in the above sense (and makes an arbitrary decision if no occurrence of the literal
or its negation is true) satisfies all but at most E of the clauses.
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Figure 7.8: The Modified Clause Device

The graph G of length-one edges in the above construction has unbounded de-
gree. A simple modification of the reduction can be used to show that the problem
is hard even if the graph has bounded degree, a fact which is useful for further
reductions [13].

Corollary 7.1 The Traveling Salesman Problem with distances 1 and 2 is MAX
SNP-hard even if restricted to instances where the graph formed by the length-one
edges has bounded degree.

Proof We sketch the modifications in the construction for a bound of six on the
degree. With a little more care the bound can be reduced to four. Let F be a for-
mula in 3CNF with clauses C1, ..., Cm where each literal occurs at most four times.
Let F ’ be the formula that contains two copies Ci, Ci’ of each clause of F . Starting
from F ’, we use the same variable device as in the previous construction, except
that of course now the number of occurrences has doubled, so the device is doubled
accordingly. For the clause device we use the graph shown in Figure 7.8. The two
triangles of heavy edges correspond to the two clauses Ci, Ci’ and their edges are
connected with exclusive-or gadgets to the corresponding occurrence edges in the
variable devices. The variable devices are connected in series as before, followed by
the clause devices which are also connected in series, i.e., u1 is identified with the
last node of the last variable device, and ui for i > 1 is identified with vi−1. Finally,
we have node s connected only to the first node of the first variable device, and
another node t connected only to vm.

If the optimum truth assignment leaves k clauses of F unsatisfied (thus, 2k
clauses of F ’), then as in the proof of Theorem 7.3, every tour must have at least
2k+2 endpoints: the nodes s, t, and one other endpoint for every unsatisfied clause of
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F ’. Conversely, we can construct such a tour by connecting the following k+1 paths.
One path starts at s, traverses the variable devices according to the optimal truth
assignment, goes through all the ui and vi nodes traversing the satisfied clauses,
and terminates at node t. For every unsatisfied clause Ci of F , there is a path that
traverses all the (other) nodes in the corresponding clause device; the two endpoints
of this path are a node in the triangle of Ci and a node in the triangle of Ci’.

It follows from the above constructions that the usual variants of the TSP prob-
lem are also MAX SNP-hard: find the shortest Hamilton path (instead of tour),
find the best path when in addition we have specified a start node or an end node
or both.

As we have already said in section 3.2, there are two ways of defining polynomial
time approximation schemes depending on whether the performance guarantee is ab-
solute or holds only asymptotically as the optimum value becomes large (absolute
polynomial time approximation scheme and asymptotic polynomial time approxi-
mation scheme). Theorem 7.3 implies that the Traveling Salesman Problem with
distances one and two most likely does not have a scheme of the first kind. We show
now that, under conditions satisfied by our problem the two kinds of approximation
schemes coincide.

Theorem 7.4 Let A be an optimization problem. Suppose that for any constant
k there is a polynomial algorithm (with the polynomial arbitrarily depending on k)
for finding an optimum solution for instances of A with optimum value at most k.
Then A has an absolute polynomial time approximation scheme if and only if it has
an asymptotic polynomial time approximation scheme.

Proof Clearly, if A has an absolute scheme then it has also an asymptotic one.
Suppose that A has an asymptotic scheme with constant C. The absolute scheme
is this: Given ε, first run the algorithm that tests whether the optimal value is at
most 2C/ε (a constant). If successful, we have the optimum. Otherwise, we run the
asymptotic scheme with approximation ratio ε/2. If A is a minimization problem,
then

SOL ≤ (1 +
ε

2
)OPT + C ≤ (1 + ε)OPT

because OPT ≥ 2C/ε. Similarly, if A is a maximization problem, then

SOL ≥ (1− ε

2
)OPT − C ≤ (1− ε)OPT.

As a corollary, for the Traveling Salesman Problem with distances one and two,
either there is no asymptotic scheme, or there is an absolute one(an unlikely event
by Theorem 7.3). The same result is true (with similar proof) if we allow in the
definition of an asymptotic scheme the additive term to be any function, possibly
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depending on ε, that grows as little-oh of OPT, instead of just being a constant
C, i.e., if, for example in the case of minimization problems, we require only that
SOL ≤ (1 + ε)OPT + fε(OPT ), where fε(n)/n goes to 0 as n goes to infinity.
The distinction between absolute and asymptotic schemes is meaningful only for
problems such as graph coloring ore bin packing, whose restriction to constant cost
is difficult.

So, it has now been proved that (1,2)-TSP has not an approximation scheme.

Another fact we have to say here is that the currently best known explicit inap-
proximability bound for (1,2)-TSP is 741/740 [20].
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Chapter 8

A RECENT
8/7-APPROXIMATION
ALGORITHM FOR (1,2)-TSP

In the previous chapter we presented the Traveling Salesman Problem with dis-
tances one and two ((1,2)-TSP), and we gave a very interesting approximation al-
gorithm, which approximates the problem by a ratio of 7/6. We also showed that
we cannot have a PTAS for this problem. Finally, we said that the currently best
known explicit inapproximability bound for (1,2)-TSP is 741/740. In this chapter,
we will present another approximation algorithm, which is very recent (introduced
in 2005) and improves the approximation ratio of the problem to 8/7.

8.1 Introduction

We formulate now our main theorem:

Theorem 8.1 There exists a polynomial time approximation algorithm for the
(1,2)-TSP with approximation ratio 8/7.

The formulation of the main algorithm of Theorem 8.1 (Section 8.3) and its
analysis is contained in the subsequent sections of the chapter.

We present in this chapter a new method of so-called small step improve-
ments on the sets of path covers, and the auxiliary notions of justifications, consis-
tency and a color alternating path. This method has also other algorithmic appli-
cations.
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8.2 The Equivalent Statement

We can represent an instance of (1,2)-TSP as a graph G in which nodes are
points of the metric and edges are pairs of points in distance 1. Suppose that G has
n nodes and we can find a path cover with k paths (these paths have to be simple
and node-disjoint). Then, these paths have n − k edges and we can connect them
into a tour, with steps from a path end to a path beginning having cost 2; thus
the cost of this tour is n + k. Thus, our problem is to minimize k. Moreover, if an
optimum solution has cost n + k∗, and our goal is to approximate it within factor
8
7 , it suffices to find a path cover with no more than 1

7n + 8
7k∗ paths.

8.3 Small Step Improvement Algorithm

We will investigate the following approach. We maintain a tentative solution
that is represented as edge set A (A stands for algorithm’s solution), A is a 2-
matching (i.e. no more than two edges of A are incident to any given node) that
defines, say, kA paths and cycles with mA nodes in the cycles. We can alter this
solution using an edge set C (C stands for change) into a new solution A⊕C (here
⊕ is the symmetric difference). We say that C improves A if

1. A⊕ C is a 2-matching,

2. either kA⊕C < kA or

3. kA⊕C = kA and mA⊕C > mA.

Suppose that for a certain constant K the following holds true:

(F) either kA ≤ 1
7n + 8

7k∗, or there exists a C that improves A and |C| ≤ K.

Then we can use the following algorithm:

K-IMPROV Algorithm

• start with A = ∅

• while you can find C of size at most K that improves A replace A with A⊕C.

Clearly, we cannot perform n improvements of kind (2) because we would get
zero as the number of paths and cycles. We also cannot perform n improvements
of kind (3) without an improvement of kind (2) because we would get more than n
nodes in the cycles. Hence we cannot perform n2 improvements. Each search for an
improvement takes a polynomial time (where the polynomial depends on K) and
when it fails, we terminate and A is a satisfactory solution.

Obviously, K-IMPROV Algorithm runs time O(nK + 4). In the remaining part
of the chapter we will prove (F) for K = 21.
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8.4 Alternating paths

8.4.1 Definitions

To analyze the algorithm, we introduce the notions of the auxiliary graph G,
paths, cycles, possible initial edges and nodes, consistency of initial nodes, APs and
justification points.

In the analysis of Small Improvement Algorithm we fix an optimum solution, a
2-Matching B such that kB = k∗ (B stands for the best). Using B define graph G
which has all the same nodes as G. Let D be the set of edges that have both ends
in the same cycle of A. G has edge set A

⋃
B−D which we divide into three colors,

white color A−B −D, black color B −A−D and gray color A
⋂

B −D.

An alternating path, AP for short, is a path that starts and ends with a black
edge and in which black and white edges alternate. At some point we will relax this
notion by allowing to substitute white edges with gray ones.

For A-objects we define initial nodes. A node is initial if we allow it to be the
first or last node of an AP and it is owned by an A-object. For an A-path, the initial
nodes are the endpoints. For an A-cycle C we designate a pair of initial nodes such
that C has a Hamiltonian path with these nodes as the endpoints, and this path
can be extended with two black edges to another two nodes. We will show that such
node pairs can be found in A-cycles with fewer than 8 nodes.

In this proof we will use the notion of justification points. If B consists of k∗

paths, the optimum cost is n+k∗ and A is good enough if it has cost at most 8
7(n+k∗),

i.e. it consists of at most 1
7n + 8

7k∗ A-objects. We create n + 8k∗ justification points
and to prove that solution A is good enough each A-object has to collect 8 points.
A node that is incident to 2− a edges of B has 1 + 4a points (the sum of these a’s
equals 2k∗). A path starts with the justification points of its endpoints ad a cycle
starts with the justifications of all its nodes. The remaining points will be collected
by APs; an AP gives the collected points to the A-objects that contain its initial
nodes. After we ”break” certain APs, they may contain only one initial node and
thus deliver the collected points to only one A-object.

Typically, an A-path has two endpoints and each of them is an initial node of
an AP that should give it 21

2 points. Similarly, a typical cycle has 4 + a nodes, it
has two initial nodes of APs that should give it (3− a)/2 points.

There can be several deviations from the typical case. An A-object can have
fewer than two initial nodes; in such a case it collects more justifications from the
nodes it contains. If an A-object is an A-singleton, then each initial edge should
give it 3 points. If a cycle has more than 6 nodes, it will own no initial nodes. A
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node incident to only 1 edge of B has 4 additional points and we omit easy special
cases provided by such nodes.

8.4.2 Very Small Improvements

In some situations we have small improvements that insert only one edge. We
will discuss this cases, and in further analysis we may assume that they do not occur.

A black edge e that connects two initial nodes is one such case. If e connects
initial nodes from two different A-objects, inserting e merges these two objects into
one; when we merge an A-cycle we have to remove one of its edges. If e connects
initial nodes of a single A-object, this must be an A-path and inserting e converts
that path into a cycle.

An edge e that connects an A-singleton with another A-object is another such
case, except when A connect an A singleton with a midpoint of an A-path with
exactly 3 nodes. Otherwise we have an improvement of kind (4).

Now suppose that we do not have a very small improvement and we have an
AP, say R, that starts at u, and {u} is an A-singleton. Then for an A-path (v, w, x)
and some y, path R starts with (u, w, v, y). When we consider R as a possible part
of an improvement, we have an option of using an ”abbreviated” version that starts
with (v, y); on one hand we will ”forget” that R starts at an A-singleton and thus
needs to collect an extra 1

2 point; one the other, we will forget that R collected 1
2

point at node w.

8.4.3 Examples with APs

An alternating path by itself can define an improvement. The AP at the left of
Figure 8.1 consists of 4 black edges and 3 white ones. If we apply its set of edges
as a change, we will get 4 paths (shown underneath) where before we had 5. What
happened is that the AP changed the number of solution edges that are incident
to path ends from 1 to 2, ad it did not change this number for intermediate nodes.
Therefore we decreased the number of path ends by 2, hence the number of paths
by 2. If the ends of the AP belong to cycles, the situation is similar; in the second
example in Figure 8.1 the number of path ends does not change but we have one
less cycle, and therefore fewer objects.

An interesting special case (see Figure 8.2 right) occurs when AP starts and ends
at the same cycle. Then we obtain an improvement if the first and the last nodes
of this AP are the initial nodes of the cycle; because these nodes are consistent, we
can include the traversal of this cycle in the improved solution.

84



Figure 8.1: Example of AP

Figure 8.2: Interesting special case: AP starts and ends at the same cycle

Finally, an AP may fail to provide an improvement if it creates cycles. Even
if the number of path ends decreases by two the number of paths and cycles may
increase if we create two new cycles in the process. In the example at the left of
Figure 8.2 we started with 4 paths and we changed them into 3 paths and 2 cycles.

8.4.4 Initial Edges of Cycles

Let C is a cycle of A with at most 7 nodes with |C| justification points (i.e. with
all nodes adjacent to two edges of B).

Let Ĉ be the set of nodes of C and K̂ ⊂ Ĉ be the set of nodes incident to black
edges. In this subsection we show that certain two nodes of K̂ are consistent in the
sense that they are endpoints of a Hamiltonian path of Ĉ.

If |K̂| = 2, then K̂ is a consistent pair because the set of edges of B that are
contained in C forms a single path. Hence we assume that K̂ ≥ 3.

Suppose that two nodes of K̂, u and v, are adjacent on the cycle C, ten u
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Figure 8.3: Two different S-arcs

and v are consistent because we can form a path by removing edge {u, v} from C.
Therefore we can assume that nodes of K̂ are not adjacent on C, hence |K̂| ≤ |Ĉ|/2;
this means that |K̂| = 3 and |Ĉ| = 6.

Because K̂ has 3 nodes, B covers Ĉ with two paths, one of these paths has 1 node
and no edges, the other has 5 nodes and 4 edges, hence 2 edges of B are contained
in Ĉ − K̂. Without loss of generality C is a cycle (u0, ..., u5), K̂ = {u0, u2, u4} and
{u1, u3} ∈ B; thus we can traverse Ĉ with (u0, u5, u4, u3, u1, u2).

8.4.5 APs with Deficit-General Method

According to our rules, an AP, say AR, collects 1
2 point for every of its nodes

except endpoints of paths and cycle nodes; the reason we do not a priori collect
more is that each of these nodes may belong to two different APs.

We will use several methods, we break APs that traverse through a cycle created
by R; if one of the broken APs, say P, in short, we can merge this cycle with the
A-object that owns the initial point of P, if P is long, it does not need to collect
points from its edge in the cycle, and we can transfer this point to R.

8.4.6 Avoiding Bad Cases

S-arcs-Avoiding Them or Finding Extra Points for Them

Arcs, the black edges contained in paths, are potentially troublesome because
they make it possible for a short AP to create more cycles as they allow to obtain a
cycle from a single A-path fragment and one black edge (the arc). In this case, this
arc is preceded and followed by a white edge directed away from it - or by a path
endpoint. We will call it S-arc, for S(hort cycle making) arc. The number of nodes
on the path fragments that connects the endpoints of an arc will be called the length
of this arc.
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We will avoid the creation of S-arcs by making decisions about the decomposition
of black and white edges into a set of APs. When we will not be able to make such
a decision, we will be able to endow such S-arcs with gray edges that will provide
them with extra points.

To apply these techniques we consider a chain of arcs, say Q, which is a path
formed by arcs that are contained in an A-path, say P. For the sake of uniformity,
we extend P in both direction with a single phony white edge. We will make decisions
how to connect the elements of a chain with the adjacent white edges when we are
forming APs. Connecting an arc to a phony white edge implicitly designates it to
be an initial edge of its AP.

The decisions about the decomposition within a chain are dependent: a node
u incident to two arcs of Q, say a0 and a1, is also incident tov two white edges of
P, say e0 and e1. The decision at u may connect a0 with e0 and a1 with e1, or,
alternatively, it may connect a0 with e1 and a1 with e0.

We first pick an arc a0 of Q as the ”least priority”; next, we assure that no other
arc in Q is an S-arc. We start from any end of Q and proceed toward a. Initially
we make an arbitrary decision at the endpoint of Q. Inductively, we consider the
endpoint of arc a 6= a0 for which we made decision at its other end; if the latter
decision connected a with a white edge directed away from it, at the other and we
connect a with a white edge directed inward, otherwise we make an arbitrary choice.

Good case (1). An arc a in chain Q is directly hit from an endpoint of an A-path,
i.e. a node inside arc a is connected by a black edge with this endpoint. We
give a the least priority and we have no adverse consequences. If we want to
create an improvement using an AP that contains S-arc a, then we increase
the number of objects by creating a cycle, but then we decrease it back by
inserting the edge of the direct hit, and removing an adjacent edge from the
cycle.

Good case (2). An endpoint of Q, adjacent to its first arc a, is adjacent to a white
edge b directed inward a; we can leave a as the ”least priority” and the final
decision connecting a with b will assure that it is not an S-arc.

Good case (3). A node u is adjacent to two arcs of Q and two white edges, po-
sitioned as shown in Figure 8.4. We can give a0 the ”least priority”, and the
decision at u will connect a0 with e0 and a1 with e1 which assures that neither
becomes an S-arc.

Good case (4). Q consists of one arc only, a, of length 4, and a becomes an S-
arc, i.e. a is adjacent to two gray edges that are inside it; we must have
the configuration as shown in Figure 8.5. We have two APs, one with the
sequence of edges b0, e0, a, e2, b3 and another with sequence b1, e1, b2. We can
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Figure 8.4: Good case 3

Figure 8.5: Good case 4

alter the connections to have sequences b0, e0, a, g1, b2 and b1, g0, a, e2, b3, and
each of these two APs can get 21

2 points.

Good case (5). Q contains two consecutive arcs that differ in length by exactly
2, so we have a situation from Figure 8.6. We can give b0 the least priority
because it is in a similar situation to a direct hit. In particular, in an AP we
can replace the edge sequence e0, b0, e1 with a ”detour” e0, b1, e2.

Consequently, if Q consists of only one arc a and we make it an S-arc then a
has length at least 5 and is adjacent to two gray edges inside it.

Good case (6). Q contains two consecutive arcs, say b0 and b1, where b1 is adjacent
to an end of path P and b0 is not - imagine that in Figure 8.6 edge e2 is the
first edge of P. Then we can give the lowest priority to b0, because b1 delivers
a direct hit to b0 in case the latter becomes an S-arc.

Good case (7). Q contains an arc b adjacent to an endpoint of P, as shown in
Figure 8.7. If we do not have case (2), edge g is gray and edge e0 is white.
Suppose that e1, the other edge of P that is adjacent to g, is white. We will
use a similar method to case (4). We have two APs, one starts with edge
sequence b, e0, b0, the other has a fragment b1, e1, b2. We replace them by con-
necting b with b1 (rather than b0), edge sequence b, g, b1, as well as connecting

Figure 8.6: Good case 5
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Figure 8.7: Good case 7

b0 with b2, edge sequence b0, e0, b, e1, b2. Both of these new APs use edge b,
but the former removes g from P and collects 1 point, and the latter removes
e0 and e1 and collects 2 points.

The chains which do not fall into either of the seven good cases are troublesome.
They may form a superchain connected with gray edges. If such a chain contains an
endpoint of P, we say that it is terminal. Note that a troublesome terminal chain
cannot be connected into a superchain with others, because it provides neighboring
chains with direct hits.

A terminal troublesome chain contains only arcs adjacent to the endpoint, say u,
because we cannot apply the methods of cases (3) and (6), and because (2) and (7)
are not applicable, and the other end(s) of its arc(s) are adjacent to a pair of gray
edges. Thus if this chain consists of one arc, the AP starting at this edge collects
21

2 points from 3 gray edges, and this arc has length at least 5; and if this chains
consists of two arcs, it can collect points from 4 gray edges and the longer arc has
length a least 7, the AP starting at the longer arc collects 4 points.

A nonterminal troublesome chain may have one arc only, in this case it is an arc
of length 5 or more and is adjacent to two gray edges, both directed inward. We
can pick any of these gray edges to provide an extra point to this arc.

A nonterminal troublesome chain with more than one arc is adjacent to two gray
edges at its endpoints. Let us decide that we will collect an extra point from one
of them. We will give the least priority to an arc of length at least 6 that contains
this gray edge in its interior. Say that the arc adjacent to this gray edge is the first.
If the first arc has length 6 or more, we can choose it (to give the least priority). If
the first arc has length below 6, we follow the chain until we have the first length
increase of more than 1, or from 5 to 6. Observe that after length increase of 1, we
cannot finish the chain, and after length increase of 2, we can apply the method of
case (5), so after the first larger increase we must have length at least 3 + 3 = 6.

As we follow the chain, we visit nodes, starting from the two nodes of the initial
gray edge, and we cannot return to a visited node, as black and gray edges cannot
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Figure 8.8: Avoiding terminal short cycles

form a short cycle. If we increase the arc length by 1 we increase the span of the
visited nodes without introducing a new hole, and if we decrease the arc length, we
fill a hole. If we start with an arc of length 3, we do not have a hole so we cannot
decrease arc length before the first large increase. If we start with an arc of length
4, we have a single hole, so we can decrease the arc length once, but this cannot be
the end of the chain, ad we cannot start with a decrease (this would make an arc of
length 2, which is not an arc), so if we avoid length 6 we have length sequence 4, 5,
4, and then only increases. If we start with length 5, the first decrease cannot be 1,
that closes the black/gray cycle, it cannot be 2, case (5), and it cannot be (3) - no
arcs of length 2, so we start with an increase.

Avoiding Terminal Short Cycles

Let R be an AP starting at an endpoint of an A-path, say P. We wish to avoid
a situation when the first 4 edges of R - two black and two white- define a change
that creates a cycle, say C. If C consists of one fragment of an A-path, it contains an
S-arc and receive extra point(s), and this we accept. If C consists of two fragments,
they need to be flanked on 4 sides; one flank can be provided by the beginning node
of R, but three flanks would have to be provided by white edges, so one white edge
is used twice, hence R starts as shown in Figure 8.8 with edges b0, e0, b1, e3. In this
case we treat the triple of edges b0e0, b1 as if it was a single arc, and we apply the
methods of the previous section.

If e2 is a white edge, we change R to follow e2 rather than e3; if that conflicts
S-arc avoidance at that node, the other black edge at this node is an arc that is
hit either by b0 or by b0, e0, b1. If e2 is a gray edge, we give its points to R and
we consider e1 (if e2 connects b1 with b0, we define e1 as the edge on P adjacent
to e0). The reason why e2 and e1 can be considered in this fashion is that we can
”reconfigure” P in such a way that e2 (or e1) becomes its initial edge; we replace
the pair of APs - R and the AP that contains e1 with: an AP that uses b2 and e3,
thus merging some object with one part of P and creating a cycle from the initial

90



part, and follows with (quite arbitrarily chosen) black edge that is incident to that
cycle; the second AP makes reconfiguration that makes e2 the new initial edge and
follows with the black edge incident to the new endnode.

If both e2 and e1 are gray, R gets 2 extra points.

8.4.7 APs with Deficit-Cycle to Cycle

An AP, say R, that connects two cycles should collect 11
2 + 11

2 = 3 points.
Consider the cases when R does not form an improvement.

In that case R creates a cycle, so it creates c path fragments and uses b S-arcs
where c + b ≥ 2. In turn, a path fragments must have 2a flanks where they are
separated from their paths, and these flanks have to be created by white edges of R;
at least two white edges create one flank, and no white edge creates more than 2,
so we need at least c + 1 white edges, hence R collects at least c + 1 + b ≥ 3 points.

8.4.8 APs with Deficit-Large Cycle to Path Endpoint

In this section we consider an AP, say R, that connects a path P and a cycle
C′ of length 6 and which does not define an improvement. It should collect at least
21

2 + 1
2 = 3 points.

If R creates two cycles, we can show that R collects at least 4 points. Two
cycles require b S-arcs and c separated path fragments where b+ c ≥ 4. To separate
c path fragments we need to create 2c fragment endpoints; only one fragment end
can be created by the endpoint of P, and the rest, 2c − 1 of them, requires a ≥ c
white edges, hence R collects a + b ≥ 4 points.

Now we can assume that R creates exactly one cycle, say C. The reasoning from
the cycle-to-cycle case does not apply only if C is created from fragments of A-paths
and one of the endpoints of these fragments is the initial point of R, say u, that is
an endpoint of P. If R does not collect 3 points, it has at most 2 white edges and
C is a terminal cycle as we discussed in case (7) of subsection 8.4.6. As we showed
there, we can choose a decomposition of white and black edges into APs so that
either a terminal cycle is avoided, or it receives additional 2 points from a gray edge
(both points are needed if C is created with an S-arc).

8.4.9 APs with Deficit-Small Cycle to Path Endpoint

In this section we consider an AP, say R, that connects a path P and a cycle C0

of length 4 or 5; R should collect 21
2 + 11

2 = 4 points (or 31
2 points if C0 has length
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Figure 8.9: AP with three white edges

Figure 8.10: AP with three edges different than the previous

5). If R creates two cycles, we have a situation already discussed in the previous
subsection.

Suppose that R creates only one cycle C; we would have an improvement if C
contains more than 5 nodes.

Suppose that C is created with an S-arc and that it has exactly 5 nodes; imagine
that (u2, u5) in Figure 8.9 is a black arc; note that at both ends of C we have gray
edges. If the left of these edges is adjacent to another possibly troublesome chain of
arcs (besides the arc that defines C), the first arc of this chain is directly hit by edge
(u7, u6) and thus that it does not need an extra point. If the right of these edges
is adjacent to another possibly troublesome chain of arcs, then the first arc of this
chain is hit by (u7, u6, u5, u2). Therefore R can collect points from both of these
gray edges, and thus it has 4 points.

If R contains three white edges, we must have a configuration of Figure 8.9 or
Figure 8.10 with R = (u0, ..., u7).

We will break every AP, say Q, containing an edge of C; we claim that there
will be enough points for all these APs plus one point for R.

Suppose that we have broken Q into Q0 and Q0 by removing an edge e that
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belongs to C. We consider Qi as a possible improvement for A⊕R.

If Qi starts at an A-cycle and it is not an improvement, Qi must create a cycle
from a fragment(s) of an A-path, and that requires at least two white edges; in that
case Qi collects at least 1

2 point more than needed for that A-cycle. There is one
exception: Qi may start at C0 that in solution A ⊕ R is en ending portion of a
path and we may have an arc that was not an arc in solution A; then Qi may have
exactly one white edge and it still creates a cycle. However, this case describes an
improvement, as the new cycle must have more nodes than C0.

If Qi starts at an A path and it is not an improvement, Qi must create a cycle
from a fragment(s) of an A path, and this requires collecting at least 3 points; if Qi

creates a cycle with 2 points, it has at most 2 white edges, so this is a terminal cycle
that gets another 2 points. Again, Qi has a surplus of 1

2 point. An exception occurs
if Qi has at most two white edges and it uses an arc that was not an arc in solution
A, i.e. when Qi creates a cycle from a single fragment of a path that contains edge
(u6, u7).

If there exists two such exceptions, such Qi and Qj form an improvement in
conjunction with R. The reason is that both exceptional AP fragments create a
cycle from a single path fragment that contains a particular edge; it follows that
one of these fragments must have an endpoint inside the cycle created by Qi. Now,
applying R as a change replaces cycle C0 with C and creates a ”composite” path
with edge (u6, u7); applying Qi fuses C with a path but creates a cycle that contains
(u6, u7) edge; now the initial portion of Qj , with at most one white edge, reaches
the latter cycle, so it must be an improvement.

Note that a exception Qi must have at least one white edge.

Now we can perform the balance of points. If we break Q and one of the paths
is an exception, ne branch of Q has a surplus of 1

2 , the second branch has a deficit
of 11

2 , and we have also the white edge that was removed from Q; as a result we
have neither a deficit nor a surplus. If none of the paths is an exception, we have
a surplus of 2 points. Finally, if we had a gray edge, we have 1 point to collect.
Note that the interior of C has a least two edges, so at least one of them brings the
surplus.

The difference between the case of Figure 8.9 and the case of Figure 8.10 is the
following: One of the nodes of C is an endpoint of an A-path, so we cannot collect 1

2
point from that node - this A-path already collected both halfs; as a result we can
be 1

2 point short. This requires that everything is tight: C0 has 4 nodes only, the
interior of C has only two edges, one is gray,so we break only one AP, say Q, and
one of the created branches, say Q0, starts at a pat endpoint, creates a cycle and
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Figure 8.11: AP with two cycles where none of the cycles is a terminal one.

has one white edge only.

This means thatQ0 starts at an endpoint of a new path joined with edge (u2, u3),
uses a new arc - that surely is not an arc in solution A - and that its 4th node is
u0, u1, u4 or u5. If it is u0, Q0 forms an AP between two endpoints of A-path,
with one white edge only - surely an improvement. If it is u5, we extend Q0 with
(u5, u6, u7) and we get anAP from an A-path to an A-cycle with two white edges and
no arc - again an improvement. If it is u4, we extend Q0 with (u4, u3, u2, u1, u0) and
we get an AP between two A-path endpoints with no S-arc, and 3 white edges that
are located on two A-paths, in the next subsection we will see that it has to be an
improvement. The case of u1 is similar: we extend Q0 with (u1, u5, u4, u3, u2, u1, u0).

8.4.10 APs with Deficit-Path Endpoint to Path End-
point

An AP that connects two path endpoints should collect 5 points or form a small
improvement. Otherwise, we have an AP, say R, that creates at least 2 cycles and
collects at most 4 points.

If R creates c cycles, they must contain 2c−a fragments of A-paths and a S-arcs.
To separate the fragments of A-paths from their paths we need to create 2(2c− a)
flanks, and at most 2 of them can be the path endpoints, so at least 2(2c − a − 1)
of them is created by white edges, which requires at least 2c− a− 1 white edges.

Suppose that R creates 3 cycles. Then it collects at least 2 × 3 − 1 = 5 points
from white edges and S-arcs.

Suppose that R creates 2 cycles and it collects only 3 points. Then, none of the
cycles is a terminal one, and we have a configuration from Figure 8.11, or a similar
one, with 2 white edges and one S-arc. We can collect the extra point using the AP
breaking method from the previous subsection.

Note that R converted an A-path, say P, into a pair of cycles. Suppose that
there exists an AP that starts at another A-path and extends to P, and that it
collects less than 3 points before reaching P. Then, this AP fragment does not
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create a new cycle but it merges one of the cycles that replaced P with another
A-path; as a result we have the same number of objects as before the change, but
we have more nodes in cycles, an improvement. Now we can assume that such an
AP collects at least 3 points, so it has 1

2 point surplus before reaching P.

Suppose that there exists an AP that starts at an A-cycle and extends to P and
it collects less than 2 points before reaching P, this AP decreases the number of
objects in solution A⊕R; if there are such APs reaching each of the two new cycles
that cover P, we have an improvement. Now we can assume that one of the new
cycles, say C, is not reached by any such AP.

We can break all APs that contain an edge of C and collect points from its gray
edges. In the worst case, C is the ”outer” cycle, and it has only 2 edges on P, one of
them gray; we collect surplus of two partial APs, 1 point, and the points from the
edges themselves that were not allocated already to P, 2nd point.

The configuration of Figure 8.11 was based on an assumption that every white
edge provides two endpoints for the path fragments of the cycles created by R. In
every other case R collects at least 4 points, and we can use the techniques of the
last two subsections to collect another one.

Now suppose that R creates 2 cycles and collects only 4 points. We can repeat
the above arguments and collect points from one of the cycles created by R, say C,
that is nt reached by a partial AP with a deficit - that extends from an A-cycle.
However, one R has a ”spare” black edge that merges two fragments of A-paths into
a new path, and as a result new arcs and new terminal cycles may exist. Thus we
experience the same problems as in the previous subsection. As a result, we need a
more detailed analysis for the case when C contains only one white edge, only one
gray edge, and it contains a endpoint of an A-path.

In a case analysis we can omit the case when R includes an S-arc, because it is
treated identically to the case when R creates a cycle like the inner cycle in Figure
8.11. Therefore we will assume that R contains exactly 4 white edges, creates
4 path fragments combined into 2 cycles hence it creates 8 fragment flanks, and
either there are 3 white edges that create two flanks each, 1 white edge creating 1
flank, and 1 flank is created by a common endpoint of R and an A-path, hence or
4 path fragments are contiguous as in Figure 10.11, or there are 2 white edges that
create two flanks each, 2 white edges creating 1 flank each and 2 flanks are created
by endpoints of R.

In the first case, it is as if we added to Figure 10.11 a part of Figure 10.9 that
is to the left of u5. Suppose that edge incident to the beginning of R is white,then
we are breaking Q that contains that edge. Let Q0 be the branch starting at the
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beginning of R, we can show that it should have a surplus of 11
2 point. Observe

that Q0 can be used as a complete AP, and suppose that it does not create an
improvement. If Q0 connects to another endpoint of an A-path, it can collect only 3
points only if it is exactly as in Figure 8.11, so it converts an A-path int two cycles.
However, edge (u7, u6) delivers a direct hit to one of these cycles, so combined with
Q0 it does not change the number of objects but it creates one new cycle. If Q)0
connects to an A-cycle and has at most 2 white edges, then it creates a terminal
cycle and gets at least 3 points. Thus we got the extra point that we need.

If that edge is gray, we break Q that contains the rightmost edge of Figure 8.11,
in the position of (u3, u5) of Figure 8.9. Suppose that the exception Q0 comes to u5,
we can extend it to u3 and then to the beginning of R, and this is a complete AP
with 2 white edges, an improvement. Suppose that Q0 comes to u3; we view it as a
change to solution A⊕R; from the outer cycle w remove (u3, u5), we add back edge
(u5, u6) and we remove (u6, u7). As a result, we merge C with the cycle created by
Q0, and the net change is one more cycle.

We skip the case analysis for the second case because it involves the same ideas.

8.4.11 Largest Improvement

The largest improvement that this analysis needs occurs when we have an AP,
say R, that connects two ends of A-paths, collects 4 points and creates 5 cycles with
”good arcs”, where the arcs are good because they have ”direct hits” from other
path ends; using 4 such hits we merge 4 of the resulting cycles and thus we get an
improvement; R has 4 white edges and 5 blacks, and each ”hit” merges two cycles
by inserting an edge and removing two, for the total of 5 + 4 + 4(2 + 1) = 21 edges.
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Chapter 9

SUMMARY OF THE
PRESENTED ALGORITHMS

We will now summarize the algorithms we presented in this book.

First of all, we presented a dynamic algorithm, which solves the general Traveling
Salesman Problem. This algorithm is exact, but the time complexity is exponential,
as well as the space complexity. We also proved that there cannot be an approxi-
mation algorithm for the general TSP.

After this, we presented the case of the Metric Traveling Salesman Problem
(MTSP) with the most interesting approximation algorithms for it. We showed two
algorithms with approximation ratio 2, 2-Approx-MTSP-Tour and Closest-Point
Algorithm, and we also gave Christofides’ Algorithm, whose approximation ratio
equals 3/2. Christofides’ Algorithm is the one with the best approximation ratio for
the MTSP between the algorithms we know today.

Then, we showed the special case of the Euclidian Traveling Salesman Problem.
For this case, we presented the most important PTAS, which solves it.

The last case which was examined was the (1, 2)-TSP. Firstly, we presented three
similar approximation algorithms for this problem. Their approximation ratios are
4/3, 11/9 and 7/6 respectively. Then, we presented a very recent algorithm (2005),
which improves the approximation ratio to 8/7. We also showed that (1, 2)-TSP
is MAX-SNP-Hard, so there is no PTAS for it, and it was mentioned that the best
known explicit inapproximability bound for this case of the TSP is 741/740.

In the following table (Table 9.1) we summarize all the algorithms presented.
The first column (problem) refers to the case of the TSP which is solved by the
algorithm. The second column (name) incudes te name of the algorithm which was
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problem name approximation ratio

general TSP dynamic algorithm -
metric TSP 2-Approx-MTSP-Tour 2
metric TSP Closest-point algorithm 2
metric TSP Christofides’ algorithm 3/2

euclidean TSP PTAS 1 + ε
(1, 2)-TSP 4/3-approx 4/3
(1, 2)-TSP 11/9-approx 11/9
(1, 2)-TSP 7/6-approx 7/6
(1, 2)-TSP 8/7-approx 8/7

Table 9.1: Summary of the presented algorithms

used in this book. In the third column there is the approximation ratio of the
algorithm, if applicable.

In the next and final chapter of this book, we present the most important appli-
cations of the Traveling Salesman Problem.
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Chapter 10

APPLICATION OF THE
TRAVELING SALESMAN
PROBLEM

Much of the work on the TSP is not motivated by direct applications, but rather
by the fact that the TSP provides an ideal platform for the study of general methods
that can be applied to a wide range of discrete optimization problems. This is not
to say, however, that the TSP does not find applications in many fields. Indeed, the
numerous direct applications of the TSP bring life to the research area and help to
direct future work.

The TSP naturally arises as a subproblem in many transportation and logistics
applications, for example the problem of arranging bus routes to pick up the children
in a school district. This bus application is of important historical significance to
the TSP, since it provided motivation for Merrill Flood, one of the pioneers of
TSP research in the 1940s. A second TSP application from the 1940s involved
the transportation of farming equipment from one location to another to test soil,
leading to mathematical studies in Bengal by P.C. Mahalanobis and in Iowa by
R.J. Jessen. More recent applications involve the scheduling of service calls at cable
firms, the delivery of meals to homebound persons, the scheduling of stacker cranes
in warehouses, the routing of trucks for parcel post pickup, and a host of others.

Although transportation applications are the most natural settings for the TSP,
the simplicity of the model has led to many interesting applications in other areas.
A classic example is the scheduling of a machine to drill holes in a circuit board or
other object. In this case the holes to be drilled are the cities, and the cost of travel
is the time it takes to move the drill head from one hole to the next. The technology
for drilling varies from one industry to another, but whenever the travel time of the
drilling device is a significant portion of the overall manufacturing process then the
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TSP can play a role in reducing costs.

To provide the reader a sample of some current applications of the TSP, we
provide on the following pages of this chapter a list of some of the applied (and
not-so-applied, but still fun) work that has involved modules from the Concorde1

TSP library.

10.1 Genome Sequencing

Researchers at the National Institute of Health have used Concorde’s TSP solver to
construct radiation hybrid maps as part of their ongoing work in genome sequencing.
The TSP provides a way to integrate local maps into a single radiation hybrid map
for a genome; the cities are the local maps and the cost of travel is a measure of the
likelihood that one local map immediately follows another. A report of the work is
given in [1].

This application of the TSP has been adopted by a group in France developing
a map of the mouse genome. The mouse work is described in [52].

10.2 Starlight Interferometer Program

1Concorde is a computer code for the symmetric traveling salesman problem (TSP) and
some related network optimization problems. It has been developed in Georgia Institute of
Technology and it has been used in many significant applications of the Traveling Salesman
Problem. The code is written in the ANSI C programming language.
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A team of engineers at Hernandez Engineering in Houston and at Brigham Young
University have experimented with using Chained Lin-Kerninghan to optimize the
sequence of celestial objects to be imaged in a proposed NASA Starlight space inter-
ferometer program. The goal of the study is to minimize the use of fuel in targeting
and imaging maneuvers for the pair of satellites involved in the mission (the cities in
the TSP are the celestial objects to be imaged, and the cost of travel is the amount
of fuel needed to reposition the two satellites from one image to the next). A report
of the work is given in [7].

10.3 Scan Chain Optimization

A semi-conductor manufacturer has used Concorde’s implementation of the Chained
Lin-Kernighan heuristic in experiments to optimize scan chains in integrated circuits.
Scan chains are routes included on a chip for testing purposes and it is useful to
minimize their length for both timing and power reasons.

10.4 DNA Universal Strings

A group at AT&T used Concorde to compute DNA sequences in a genetic engi-
neering research project. In the application, a collection of DNA strings, each of
length k, were embedded in one universal string (that is, each of the target strings
is contained as a substring in the universal string), with the goal of minimizing the
length of the universal string. The cities of the TSP are the target strings, and the
cost of travel is k minus the maximum overlap of the corresponding strings.
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10.5 Whizzkids ’96 Vehicle Routing

A modified version of Concorde was used to solve the Whizzkids’96 vehicle rout-
ing problem, demonstrating that the winning solution in the 1996 competition was
in fact optimal. The problem consists of finding the best collection of routes for 4
newsboys to deliver papers to their 120 customers. The team of David Applegate,
William Cook, Sanjeeb Dash, and Andre Rohe received a 5,000 Gulden prize for
their solution in February 2001 from the information technology firm CMG.

10.6 A Tour Through MLB Ballparks

A baseball fan found the optimal route to visit all 30 Major League Baseball parks
using Concorde’s solver. The map above is a link to an interesting site devoted to
current and past ballparks.

10.7 Coin Collection

An old application of the TSP is to schedule the collection of coins from payphones
throughout a given region. A modified version of Concorde’s Chained Lin-Kernighan
heuristic was used to solve a variety of coin collection problems. The modifications
were needed to handle 1-way streets and other features of city-travel that make the
assumption that the cost of travel from x to y is the same as from y to x unrealistic
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in this scenario.

10.8 Touring Airports

Concorde is currently being incorporated into the Worldwide Airport Path Finder
web site to find shortest routes through selections of airports in the world. The au-
thor of the site writes that users of the path-finding tools are equally split between
real pilots and those using flight simulators.

10.9 USA Trip

The travel itinerary for an executive of a non-profit organization was computed
using Concorde’s TSP solver. The trip involved a chartered aircraft to visit cities in
the 48 continental states plus Washington, D.C. (Commercial flights were used to
visit Alaska and Hawaii.) It would have been nice if the problem was the same as
that solved in 1954 by Dantzig, Fulkerson, and Johnson, but different cities were in-
volved in this application (and somewhat different travel costs, since flight distances
do not agree with driving distances). The data for the instance was collected by
Peter Winker of Lucent Bell Laboratories.

10.10 Designing Sonet Rings
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An early version of Concorde’s tour finding procedures was used in a tool for de-
signing fiber optical networks at Bell Communications Research (now Telcordia).
The TSP aspect of the problem arises in the routing of sonet rings, which provide
communications links through a set of sites organized in a ring. The ring structure
provides a backup mechanism in case of a link failure, since traffic can be rerouted
in the opposite direction on the ring.

10.11 Power Cables

Modules from Concorde were used to locate cables to deliver power to electronic
devices associated with fiber optic connections to homes. Some general aspects of
this problem area are discussed in [44].
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