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IIeptAndm

Yxondg tng napovoas dimhnuatixnc epyaotag elvar 1 yehétn agevoc tne woln-
uathg Bewplag TOV TAEYUATOY XaL AQETEQOU TV EQUEUOYOY auths Tne Bewplag
oto xpuntoctotnua RSA. Yt Bhoypagla, o bpog "mAéyua” yenoidonoteltal yio
™V mepLtypapt) do apxetd StapopeTixdy uabnuatixdy doudyv. H mpdtn dout, éyel
Vo XAVEL UE UEPIXGS dlaTeTayUEVa aUvola evéd 1 dedtepn ue meplodués Swatdéelg
oNUElLY 0TO YOPO. LNV pYaslor AUTH Aoy ONOYUNGTE ATOXAELGTIX Ue TN SeUTER
dou.

Iotopixd, Ta mAéypata eupaviotnxay o 182 awdva xor uekethinxay and uoln-
uatxolg 6mwe o Langrange xou o Gauss. To 192 awdva, onuaviixd aroterécuoto
ané tov Minkowski édwoav &non otn yefion e fewplac 1oy theyudtoy ot Hew-
olot xaL 6N vewpeTtplo TV aplBudy. Me tny avdntuln tev utohoyotdy, 1 Hewpla
TV TAeYUdTwY Perixe c@opuoyes oe mohhd Ocwpntixd nedla, uetald Twv onolwv
1) TOPUYOVIOTOINGY TOV aXEPALWY TOAUWVIUGY, O UXEQEULOC TROYQRUUUATIOUOS XAl
n xpuntoypagpia dnuoaiou xhewiov. Ewdwxd otnv xpuntoypagpia dnuociou xheldiov,
ue v omola xon Ba acyoknfolue, ta TAéyuata yenordonoiinxay oty avdnTudy
VE®Y XPUTTOOUGTNUATWY, 011 Deuehiworn xpuntoypapuxdy tpotinwy xabdg xat otny
xpUTTAVIAUGT.

Mpwtapyxdc a1dy0¢ xdfe xpunTOooUGTAUATOS Elval 1 EEXCPIALET TNG UETAdOGTNC
e TAneooplug and TO VOULUO ATOGTOMEN GTOUS VOULULOUS ATodEXTES Ywplc va elval
eQuTH 1) AVvTANoN Lépoug TG TAnpogopiag and xdmowr Telty , un e€oucLodoTnuévy,
ovtétnTa. Xto mhalow TN epyaolag UEAETATOL AMOXAELOTIXE TO XPURTOGUGTAU
RSA, {owg o mo 8ladedouévog eXnpbdomTog TV XPUNTOGUGTNUATOY dnuociou xhel-
dtov. Ané 1o 1977 ondte xon mpotdlnxe and toug Rivest, Shamir xar Adleman, to
RSA ypnowonoeltal xatd x6pov 6e e@apUoYés 6TOU 1 AGQIAELL XAl 1) LUOTIXOTHTA
elvon Oepehiddoug onuaciog, 6Twg oTNY AVTAANAYT UNYVUATWY UECK NAEXTEOVLXOY
Tayudpouelov, 6TV Ynelaxy uToYEAYY eYYRPAPWY XAl OTIS TATEWUES UE Yehion Ti-
oTTOY xaptody. Ta 30 neplnou autd yedvia tng Umaping tou, To RSA éyel uehe-
m0el exTevdc 1600 we Tpog Tig dlagopeg mapahhayég Tou Tou €youv mpotabel, 660
XAl OS TEOS THY avToy 1 Tou ot embéaelg.

Y10 npdto xedioro divovtal facixol oplouol xou WLOTNTES TOY TAEYUATOY EVO
070 deUTepo UeheTdTal 1) €VvoLa NG avaywYNg Bdong eveg TAéYUaTog UE EUQaoT) 6TNY
LLL avaywy?, xat 6tov oudyvuo akyéeluo. ¥to tplto xepdhoato nopovatdletal 1)
eVowUdTeon e fewplag TwV TAEYUdTWY 0TV eTAUGT) TOAUGYUULXGY EELOGBCEWY.
Y10 té€tapTo xepdhato dlvetal cuvonTixy| napouaiaoy Tou xpuntocusthuatog RSA
xau mapouotdleton wia OeTtin epapuoyr Twv TAeYUdToY o autd. Télog, oto néunto
xe@dhato mapouatdlovtal ou onuaviixdtepeg oyetloueves ue mAéyuata embéoelg
evavtiov Tou RSA xan avahletar 1 avioyh Ty Sla@dpwy TapauéTewy ToU XpunTo-
outhuatog otig embéoelg autéc.

AgZeig Khewdid: Iéyua, Avaywyr Bdone [Iiéyuatoc, Ahydbpbuoc LLL, Keu-
ntoolotnua RSA, Enbéoeic ue Miéyuato.






Abstract

The purpose of this diploma thesis is the study both of the mathematical back-
ground on lattice theory and of the corresponding applications to the RSA Cryp-
tosystem. In bibliography, there are two quite different mathematical structures
that are usually called lattices. The first one has to do with partially ordered sets
while the other has to do with regular arrangements of points in space. In this
thesis we exclusively consider the second case.

Historically, lattices were investigated since the late 18th century by mathe-
maticians such as Lagrange and Gauss. In the 19th century, important results
due to Minkowski motivated the use of lattice theory in the theory and geometry
of numbers. The evolution of computer science in the 20th century led to lattice
applications in various theoretical areas such as factorization of integer polynomi-
als, integer programming and Public-Key Cryptography. In the latter area, lattice
theory has played a crucial role in the definition of new cryptosystems, in the study
of cryptographic primitives and in cryptanalysis.

The main goal of a cryptosystem is to guarantee the exchange of information
between the legitimate sender and the legitimate receivers, ensuring at the same
time, that any unauthorized party is unable to recover part of the information. In
the thesis in hand, we focus exclusively on RSA Cryptosystem, which is probably
the most wide-spread Public-Key Cryptosystem. Since its publication, in 1977,
RSA has been used in plenty of applications ranging from digital signatures to
electronic credit-card payment systems. After almost 30 years of existence, RSA
has been extensively analyzed for vulnerabilities by many researchers.

In the first chapter we give some basic background on lattices while, in the
second, we introduce the notion of lattice basis reduction with emphasis to LLL
reduction and the corresponding algorithm. The third chapter describes the use of
lattices in finding small roots to polynomial equations. In the fourth chapter, we
present RSA and a positive lattice related application to it. Finally, in the fifth
chapter, we present an overview of the most representative lattice-based attacks
mounted against RSA since its publication.

Key Words: Lattice, Lattice Reduction, LLL Algorithm, RSA Cryptosystem,
lattice Attacks
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Chapter 1

Introduction to Lattices

In this chapter we give the mathematical background on lattices. The chapter
mainly includes definitions about lattices, some very useful lattice properties and
some necessary theorems that will allow the reader to follow the material presented
in the next chapters.

1.1 Linear Algebra Preliminaries

Before we proceed to a formal definition of lattices and give some relevant
important theorems, we will summarize some notation necessary for the rest of the
analysis and some properties of mathematical structures we will use throughout
this thesis.

1.1.1 Notation

We summarize below some of the notation used:

e Let S be a set. Then M, , will denote the set of all m x n matrices with
entries from S.

e If M denotes a matrix, then M7 will denote the transpose matrix of M.

e [a], |a] will denote the ceiling (that is, the smallest integer not smaller
than a) and the floor (that is, the biggest integer not bigger than a) of
integer a respectively, while [a]| will denote the integer closest to a, namely
[a] = [a—0.5].

1.1.2 Scalar Product

Definition 1.1.1 (Scalar Product )
Let (-,-) : R™ x R®™ — R be a mapping with the following properties :
Yu,v,w € R” and A € R:
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L w,0) = (u,0) + (w,0)
(A, v) = Au,v)
(u, v +w) = (u,v) + (u, w)
(u, \v) = XMu,v)

2. (u,v) = (v,u) and

3. (u,u) >0 for u #0.

We call such a mapping scalar product. Properties 1, 2 and 3 imply that the
scalar product is bilinear , symmetric and positive definite respectively.

Definition 1.1.2 (Standard Scalar Product)
The standard scalar product is defined as:

n
T T
<(U17 U2, .-y U’n) ) (Ula V2 -y Un) > = Z U4 (11)
i=1
and will be the scalar product used in most of the cases in this thesis.

1.1.3 Norm

Let IF be any field. The vector space F™ is the set of all n-tuples ¥ = (1, z2, ..., Tp)
where x; € [F are field elements. We are mainly interested in vector spaces over the
reals or over the rationals (F = RorF = Q).

Definition 1.1.3 (Norm)

Let |- || : R®™ — R be a mapping such that Vu,v € R” and A € R:
L. || Aul] = |A] - [|ul] (positive homogeneous)
2. |lu+ vl < |lu| + ||v] (triangle inequality)

3. JJul]] >0 for u #0 (positive definiteness)

We call such a mapping norm (or length) of vector u = (uy,ug, ..., uy).

In general we define /, norm as:

" 1
by = || (w1, vz, ooy 1)l = O JualP) . (1.2)
i=1

More specifically for p = 1,p = 2 and p = oo and for the standard scalar product
notation we get:

L= H(u17u27 "'7un)TH1 = Z?:l |UZ‘ (ll norm)

by = | (u, uz, ooy un)” |2 = V/{uyu) = (20 uf)? - (lznorm)

loo = ||(u1, ug, ...,un)THoo = max;—12,..n | (lsonorm)
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These are the norms that we will deal with in this thesis. When we use the symbol
|lu|| without an index, we will always imply I3 (Euclidean Norm) unless otherwise
stated.

Every norm || - || induces a distance function d(Z, ) = ||Z — ¢/||. The distance
function induced by the Euclidean norm is the usual Euclidean distance.

Finally we say that two vectors are orthogonal (ZL%) if (Z,7) = 0.

1.1.4 Orthogonal bases (Gram-Schmidt orthogonalization)

Gram-Schmidt orthogonalization is a fundamental procedure in linear alge-
bra.lt transforms any set of n linear independent vectors into a set of n orthogonal
vectors by projecting each vector on the space orthogonal to the span of the pre-
vious vectors (or equivalently by removing from each vector the components that
belong to the vector spanned by the previous vectors). Figure 1.1 illustrates the
method for a 2-dimensional space.

X X X X
X :52 X r b2 X
% I/" ] X‘BI = bl %
X x X X

Figure 1.1: Gram-Schmidt orthogonalization

Definition 1.1.4 (Gram-Schmidt Ortogonalization)
Let b1, b9, ...,b, be a sequence of n linearly independent vectors.We define their
Gram-Schmidt orthogonalization as the sequence b7, b5, ..., by, defined by:

. i—1 . <b“b;<>
by =b; — Zﬂi,jb]‘a where 1; j = ) (1.3)
j=1 VAR

In other words, b; is the component of b; that is orthogonal to b7, ...,b;_;.

Below (algorithm 1) we give the algorithm that performs the Gram-Schmidt
Orthogonalization.

Remark 1.1.5. From the above definition it is fairly easy to derive some useful
properties of Gram-Schmidt orthogonalization.

(a) It is trivial to verify that (b}, b7) = 0 for each i # j.
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Algorithm 1: Gram-Schmidt Orthogonalization (GSO)

Input: Linearly Independent Vectors by, bs, ..., b, € R"

Output: The Gram-Schmidt orthogonalization of by, b, ..., b, :

b1, b5,...,0; and p,; for 1 <j <i<n

begin

by < by;
for i — 2 ton do
by «— by;
for j«—1toi—1do

Mg (b b7y
* * *
b — bf — /v‘z}jbj 3
end
end

return b7,05,...,b; and p;; for 1 < j <i <n.

end

(b)

* Lok

V1 < i < n, span(bi,bs,...,by) = span(bj, s, ..., by). This is actually a very
significant property that will be frequently used throughout the rest of the
chapter.

The order of the vectors by, bs,...,b, is important,that’s why we consider
them as a sequence and not as a set.

(d) If we rewrite the equation for the orthogonal vectors in the form

i—1

b = b + Z,um‘b; (1.4)
j=1

we can obtain a relation between the initial basis B = [by, be, ..., by] and the

orthogonal one B* = [b], b3, ...,b"] in the following matrix form:
(b1, b, ] = [b1,05, 03] - [mig] (15)
1,92,..,Un 1925 -9 Un Mz,j 1<ij<n -

or equivalently

(1 poa w31 0 pma

0 1 pz2 -+ pa2
[b1,b2, ..., bn] = [bF,05,....0%] - [© 0 1 . : ) (1.6)

Hn,n—1

0 - 0 1
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1.1.5 Useful Inequalities

We finish this section by presenting some useful inequalities in linear algebra.

1. Cauchy-Schwarz : Let V' be a vector space where a standard scalar product
has been defined. Let u,v € V be two vectors. Then

[, 0)* < (u,u) - (v, ).

The equality holds when w, v are linearly dependent.

Proof. The proof of the inequality is trivial if v = 0. Consider now the case
where v # 0. Then (v,v) > 0. In addition (z,z) > 0 for any vector z € V.
Thus (u — Av,u — Av) > 0 for all A € R. This gives

0 < (u—Av,u— M) = (u,u) + \(v,v) — 2\(u,v)

where we have used the properties of the scalar product. If we now choose

the above inequality becomes

[{u, v)|?

(v,0)

0 < (u,u) — $|<u,v>|2§<u,u>-<v,v>.

The equality holds if u — Av = 0 that is when w, v are linearly dependent. [

If we consider the standard scalar product and the euclidean norm (where
(z,7) = ||z|?) the Cauchy-Schwarz inequality takes the following interesting
form

[{w, 0)| < lul] - [lv]]-

2. Norm Inequalities : From the previous definitions of {1,[s, [, we get the
following obvious inequalities:

lulla < flully < v/n - full2 (I1)
[ulloo < flullz < v/n - Jlullo (12)
[ulloo < flully < n- llulls (I3)

These inequalities can easily be derived directly from the definition of the
norms, except from the second part of inequality (I1).For that one we need
Cauchy-Schwarz inequaility with v = (1,1,..., )T and v = (Ju1], [ual, ..., |[un|)T -
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3. Hadamard Inequality : Let b1,b9,...,b, € R" be the column vectors of

the matrix B € M, ,(R). Then by Hadamard’s inequality we have:
n
detB| < T lIbsll2- (1.7)
i=1
The equality holds when the vectors b1, bs, ..., b, are orthogonal.
Proof. Let B* be the corresponding Gram-Schmidt basis of B. We know that

det(B)? = det(BT B). Let ji denote the matrix with entries [y; j] where p;
are the Gram-Schmidt coefficients. Then equation 1.5 says that

B =B*il.
Notice that j is lower triangular with determinant 1. Thus we have
det(B)? = det(B'B) = det(ji - (B*)T - B* - p1) = det((B*)T - B*)

since det(fi) = det(u') = 1. The matrix (B*)? - B* is an n x n matrix with
entries (b, 7). Since (b7, b7) = 0 for i # j and (b, b}) = 16212, (B*)T - B* is
a matrix with only diagonal entries ||b}]|?. Hence, its determinant is equal to

(IT%, 167 11)?. The above observations leat to

(det(B)| = \/det(BTB) = \/det((B*) - B*) = [[ 1]l
=1

In addition equation 1.4 along with the fact that b, b7 are pairwise orthog-
onal give that

i—1
1Bill* = 110717 + D aa s 1051% = 11651 = [1Ball > 1155]]-
=1

Thus
n n
det(B)| = [T Io5 1 < [T el
i=1 i=1

which completes the proof.Obviously the equality holds whenever the initial
vectors b; are pairwise orthogonal. In that case the corresponding Gram-
Schmidt basis B* is identical to B. O

1.2 Basic Definitions on Lattices

We start by giving a formal definition of a lattice.
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Definition 1.2.1 (Lattice, Basis , Rank , Dimension)
Let B = {b1,b2,...,b,} be a set of n linearly independent vectors in R™. The
lattice generated by B is the set

L(B) = {zn: zi-by 1y € L) (1.8)
=1

That is, the set of all integer linear combinations of the basis vectors.
The set B is called basis and we can compactly represent it as an m X n matrix
each column of whose is a basis vector:

B = [b1, by, ..., bn).

The rank of the lattice is defined as rank(L) := n while its dimension is defined
as dim(L) :=m.

Remark 1.2.2. In this thesis we will mainly consider full-rank lattices, that is
lattices where n = m.

Remark 1.2.3. It is important to emphasize straight from the beginning the
difference between a lattice and a vector space.Compare the definition given above
to the vector space definition.

Definition 1.2.4 (Vector Space)
Let B = {b1,ba,...,bp} be a set of n linearly independent vectors in R™. The
vector space generated by B is the set

n
span(B) = {Z:L'ZEZ c, € R}={B-Z:2ecR"}.
i=1

That is, the set of all linear combinations of the basis vectors.

Apparently the difference lies to the coefficients x; which are integers in the
case of a lattice instead of reals in the case of a vector space.

Remark 1.2.5. The definition of £(B) makes sense even if the vectors b; are not
linearly independent. However, in that case, £(B) is not necessarily a lattice. That
is, a (possibly) smaller set of linearly independent vectors B’ such that L(B’) =
L(B) does not necessarily exist. To see that consider the trivial case where
B = [1, a] with a being an irrational number. Then £(B) = {z +ya : z,y € Z}.
Clearly B is not a set of linearly independent vectors. In addition £(B) is not
a lattice since there does not exist an [ such that £(B) = [ - Z because of the
irrationality of a. In the rest of the thesis the symbol £(B) or simply £ will imply
a lattice unless otherwise mentioned.

We give now some trivial examples of two-dimesional lattices.
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Example 1.2.6. Let us first consider a very simple example of a lattice in the

2-dimensional space. Let
1 0
b1 = <0> and bQ = <1> .

Apparently b1, by are linearly independent.The lattice generated by this two vectors
is 72 (see figure 1.2).

Yodynm > % %

X X X X X X

Figure 1.2: A basis of Z2

Remark 1.2.7. by, by are not the only vectors that produce Z?. Consider, for
instance, the pair of vectors

o () - )

It is obvious that this pair generates exactly the same lattice (see figure 1.3).
Actually, each lattice has infinetely many bases.However, not each pair of linearly

Figure 1.3: Another basis of Z>
independent vectors can produce a specific lattice. Consider for example the pair

o ) - )

by, by are clearly linearly independent but they cannot generate Z2 (see figure
1.4).Indeed, they cannot produce the point (1,1), that is there is no integer pair
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(x,y) such that

(0,2)
X X ¥ X
X X X X X
X X X X
(0,0) (1,0

X X X X X X

Figure 1.4: Basis that cannot produce Z?

The previous examples raise the question whether a given set of vectors forms
a basis of a lattice or not. In the next few lines we will try to give an answer to
that question.

Definition 1.2.8 (Fundamental Parallelepiped)
For any lattice basis B we define

P(B)={Bz|lr e R"Vi:0<=x; <1}. (1.9)

Remark 1.2.9. Note that P(B) is half-open. This implies that the translates
P(B) + 4 (where @ € L(B)) form a partition of the whole space R™.

Two examples of the fundamental parallelepiped are shown in figures 1.2 and
1.3. It is obvious from those two examples that the fundamental parallelepiped
greatly depends on the specific basis of the lattice. The following theorem gives us
a criterion to test whether a given set of n linearly independent vectors by, bs, ..., by
form a basis of a given lattice £ or not.

Theorem 1.2.10
Let L be a lattice of rank n and by,bs,....b, € L be n linearly independent lattice
vectors. Then by, ba, ..., by, form a basis of L if and only if P(b1,ba, ...,by,)NL = {0}.

Proof. (=) Let by, ba, ..., b, form a basis of L. Then,by definition, £ is the set of all
their linear integer combinations. In addition P(by, b, ..., by) is, again by definition,
the set of linear combinations of by, ba, ..., b, with coeficients in [0, 1).Since the right
side of the interval is open, the only integer combination that belongs in P is the
one where z; = 0Vi and therefore the intersection of the two sets is clearly {0}.

(<) Assume now that P(b1,ba,...,b,) N L = {0}. Since by, bo, ..., b, are linearly
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independent, we can express any lattice vector x € L as ) y;b; for some y; € R.
Let 2/ = > (y; — |yi])bi- Then 2’ € L since by definition a lattice is closed under
addition and obviously 2’ € P(by,bs, ...,b,) as (y; — |yi]) € [0,1). Thus, ' =0 by
our assumption which along with the linear independency of by, bs, ..., b, gives that
y; = |yi] Vy; € R and therefore the arbitrary x € £ can be expressed as an integer
combination of by, bs, ..., b, which implies that by, bo, ..., b, form a basis of L. [

Remark 1.2.11. A restatement of the above theorem would be ”For all ¥ € R™,
there exists a unique lattice point @ € £(B) such that & € (P(B) + u)”.

Despite the relatively simple condition of the above theorem, we cannot apply
it in a straightforward fashion. Instead, what we can actually do, is verify whether
two (different) sets of linear independent vectors can produce the same lattice or
, expressed in another way, whether two bases By, By are equivalent.We first give
some definitions.

Definition 1.2.12 (Unimodular Matrix)
A matrix U € Z™*" is called unimodular if detU = +1.We will use GL,(Z) to
denote the group of integer n x n matrices with determinant +1.

GLy(Z) := {U € My (Z)|detU = £1}. (1.10)

Theorem 1.2.13
GL,(Z) is a group under matriz multiplication.

Proof. First, if Uy, Uy € GLy(Z), then Uy - Uy € Z™™ and det(Uy - Uy) = det(Uy) -
det(Us) = 1 which means that GL, is closed under matrix multiplication. In
addition the identity matrix is apparently unimodular. Moreover let U € GL,(Z).
Then det(U)det(U~') = 1 implies that det(U~') = 41 which, along with the
Cramer’s rule, gives that the (i, j) entry in the U~ matrix is:

(=1)™7 - det(T3;)
det(U)

= U,

where T;; denotes the algebraic complement of each element of U (that is U with
the ith and jth column deleted). Thus, every entry of U~ ! is an integer (since
T;; is an integer matrix and therefore its determinant is an integer) which gives
that U~! € GL,(Z). Finally the associativity holds since matrix multiplication is
associative. O

Consider now the following elementary column operations:
1. Exchange of two columns.
2. Multiplication of a column by —1.

3. Addition of an integer multiple of one column to another.
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It 1s not difficult to show that each one of the above elementary operations can
be performed on a matrix by right-multiplication (or left-multiplication) with an
appropriately chosen unimodular matrix. We will show how this can be performed
in the case of Ilz 2 matrices. The extension to II, ;, matrices is trivial.

Let

[a11 a1z
A=
@21 a22

Then it is not difficult to verify that right multiplication of A with

—1 0 1 k
:|, E’Q—-O 1:| andEg—{O 1:|,

0 1
10

=

performs respectively the 3 above elementary operations.
We now turn our attention to the condition two bases should satisfy in order to
be equivalent. Such a condition is given in the follwoing very important theorem.

Theorem 1.2.14 (Bases Equivalence)
Two bases By, By € R™*™ gre equivalent if and only if By = B1U for some
unimodular matriz U.

Proof. (=) Assume first that By, By are equivalent, that is they produce the same
lattice. Then, for each of the n columns of b; of Ba, b; € £(B1). This means that
each b; of By can be expressed as a linear integer combination of the column vectors
of By and therefore there exists U € Z™*™ such that By = B1U. Similarly, there
exists V' € Z™ ™ such that By = BsV which implies that By = B1U = BV U.
Hence

BIBy = (VU)IBEYBy(VU) = det(BI By) = (det(VU))?det(BE By)
= det(U)det(V) = £1

Since U,V are both integer matrices this means that det(U) = £1.

(«<=) The hypothesis that By = B1U for some unimodular matrix U means that
each column of Bj is contained in £(Bp) which impies that £(B2) C £(B;1). In
addition,B; = BsU~!. But we have shown that U~! is unimodular with integer
entries (GLy(Z) is a group under matrix multiplication).So £(B1) C £(B2) which
finally gives £(B2) = L(By). O

Remark 1.2.15. As an immediate corollary, we obtain that B is a basis of Z" if
and only if it is unimodular.

Remark 1.2.16. Since elementary column operations can be performed by right
multiplication of the basis matrix by a unimodular matrix (we showed that earlier),
if we modify basis B = [b1, bo, ..., by] by:

1. Reordering the columns.
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2. Multiplying any number of columns by —1.

3. Adding integer multiples of some columns to others.

then the resulting matrix will still be a basis for the same lattice.
Interestingly, the inverse is true too.

Theorem 1.2.17

Two bases are equivalent if and only if one can be obtained from the other by the
follounng elementary operations on the columns:

1. b; < b; + kb; for some k € Z
2. bj < b;
3. b, — —b;

1.3 Determinant

We now give the definition of a very important characteristic of a lattice, namely
its determinant.

Definition 1.3.1 (Determinant)
The determinant det(L) of a lattice L£(b1, b, ...,b,) C R™ is generally defined as

[NIE

det(L) = (det[(bi, bj)]1<i,j<n)?. (1.11)

Remark 1.3.2. This is the general definition. In this general case we form an
n x n matrix D with D;; = (b;,bj), where (b;,b;) denotes the scalar product of
vectors b;, b; in the general case (see subsection 1.1.2). If we restrict our definition
to the case of standard scalar product then the determinant is defined in a more
compact form as follows:

detL = \/det(BTB).

In this thesis we will always imply the standard scalar product when talking about
the determinant. More interestingly, in the case where m = n (full rank lattices),
B is a square matrix and det(L) = |detB|. The latter definition will be used almost
exclusively throughout this thesis.

An alternative definition of the determinant in the standard scalar product case
is the following:

Definition 1.3.3
The determinant of the a lattice £ is defined as the n-dimensional volume of the
fundamental parallelepided associated to B:

det(L(B)) = vol(P(B)).



1.4 Successive Minima 25

The following theorem shows that the determinant of a lattice is well-defined,
that is, it is independent of the choice of the basis B. We can therefore write either
det(B) or det(L) and mean the exact same thing.

Theorem 1.3.4
The determinant of a lattice is independent of the choice of the basis by, bo, ..., by €
R™,

Proof. Let By, Bo be two bases of lattice £. Theorem 1.2.14 states that there is a
unimodular matrix U such that By = B1U.Thus

det £ = \/det(BY By) = \/det(UT BT BiU) = \/det (BT B)
which completes the proof. O

As an immediate result of the above theorem and theorem 1.2.14 we get the
following corollary for the standard notion of scalar product.

Corollary 1.3.5. If two bases By, By € R™*” are equivalent then |det(Bs) =
|det(B1)|. The opposite is not necessarily true.

1.4 Successive Minima

After presenting most of the important properties of a lattice, we proceed now
by defining and studying another very important characteristic of a lattice, namely
its shortest vector. By the definition of a lattice, it is obvious that 0 € £ for every
lattice (we just have to consider a linear combination of b;s with the null vector).
Thus 0 is always excluded from our discussion.

1.4.1 Definitions

Definition 1.4.1 (Shortest Vector)

Let || - || be an arbitrary norm. The shortest vector of the lattice is defined as
the non-zero vector @ € £ such that its norm is minimal. Expressed in a different
way, the shortest vector is a vector @ € £(B)\{0} such that ||| < || for any
W e L(B)\{0}.

The corresponding problem is known as the Shortest Vector problem (SVP)
and is one of the most famous problems related to lattices. We will use the notation
SV P, to denote the shortest vector problem with respect to I, norm.

Remark 1.4.2. It is important to note here that the solution to the SVP depends
on the underlying norm. Consider for example the lattice generated by the vectors

o (}) e )
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Then clearly [0,2]7 is a shortest vector (not the single one however) with respect
to I but not with respect to Iy or . For the latter norms a shortest vector is
[1, 1] which is shorter than [0, 2] .

We now generalize the above definition.

Definition 1.4.3 (Successive Minima Aj, A2, ..., \p)
Let || - || be an arbitrary norm. For every lattice £ C R™ of rank n the successive
minima A1, Ag, ..., A, with respect to the norm || - || are defined as

There are i lineary independent
Xi(L) :=inf { r>0]| vectors ¢1,c2,...,¢; € L fori=1,2,...,n
with |lc;|| <7 for j=1,2,...,i
(1.12)

The above definition (visualized in fig 1.5) is due to Minkowski. From the

Figure 1.5: Successive Minima in a 2-dimensional lattice

definition given it is obvious that:
A< A <L <y

In addition it is not difficult to derive the following upper bound for the successive
minima:
For any lattice basis b1, b, ...,b, and for ¢ =1,2,...;n

max HbJH > )\z'-

j=1,2,..n
If the above inequality didn’t hold then the linearly independent vectors by, bo, ..., b,
of the basis would form (not necessarily in the same order) a better set of successive
minima which yields a contradiction. The following theorem gives a very useful

lower bound on the length of the shortest nonzero vector in a lattice. We consider
the Euclidean Norm.
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Theorem 1.4.4
Let B be a basis of a lattice of rank n and B* its Gram-Schmidt orthogonalization.
Then

M(L(B)) > min b7 > 0.
1=1,2,...,n

Proof. Note first that b7 are not (necessarily) lattice vectors.It suffices to show
that the above inequality holds for every lattice vector. Since B forms a basis,
every nonzero lattice vector § can be written as ¥ = BT where Z # 0. Let now
j € {1,2,...,n} be the maximum index such that 2; # 0 (the requirement # # 0
guarantees the existence of such a maximum). Then

|(Bz, b)) szbz,b;\—ww;,bp Enl

The second equality is obtained by the expression 1.4 from which it is obvious
that (b;,b7) = 0 for all i < j and (b;,bF) = (b}, 7).
In addition, Cauchy-Schwarz inequality implies that [(Bz,b7)| < [|Bz||-[|b7[| which

finally yields

(B, b))

[Bz|| > —
1651

= |ajll[b3 1l = (5] = min|b7]-

Since every vector of the lattice is at least ”as long” as min||b}||, obviously the
above inequality also holds for the vector v which achieves the norm A\; and which,
by definition, is a lattice vector. O

We now give a formal proof that the norm A; is always achieved by some lattice
vector.

Lemma 1.4.5. Let § = min; ||b]] and @, % € £ be two lattice vectors. Then
||ii — @|| < B implies that @ = .

Proof. Let us assume for contradiction that @ # @w.Then 4 — & is a nonzero lattice
vector which, by theorem 1.4.4, means that ||@ — @] > 3. Obviously this leads to
a contradiction. O

Theorem 1.4.6
The Shortest Vector Problem (SVP) is well defined, in that there always exists a
vector of minimal length which belongs to the lattice.

Proof. In order to prove the above theorem, we resort to the definition of the first
minimum A;. By definition

M = inf{|1 @] : @ € L(B)\{0}}.
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So there exists a sequence u; € L such that
Tim [ = A
Let assume wlog that u; lies within a ball with center at 0 and radius 2\;:
ui € B(0,2x1) = {7 : [|7]] < 2M\i}.

The compactness of B(0,2\;) implies the existence of a convergent subsequence

{w;} C {a;} such that lim;_, ||@;|| = ||| for some vector . In addition
[@f]| = lim [Ja]| = lim ([ = Ax.
71— 00 71— 00

Recall that @; belong to the lattice (just as @; do) and it only remains to prove
that « is a lattice vector too. For that we need to observe that

lim ||w; — | =0
1—00

which by the definition of lim means that for ”sufficiently” large ¢ we have that
|| — @] < /2. The triangle inequality now gives (for ”sufficiently” large 1, )
— — — — — - 6
1 = | < [y = @) + || — ]| < 25 = B
We now invoke the previous lemma to conclude that «; = w}. This proves that for
"sufficiently” large ¢ the vectors wj; are identical and equal to their limit « which
therefore belongs to the lattice. O

The successive minima A; depend on the underlying norm too.We can derive
inequalities for the successive minima and for each of the known norms directly
from the inequalities 11.For example, the norms [y, [, are related with the following
inequality:

Aoo(L) < Ai2(L) < Vn-Apeo(L).

1.4.2 Minkowski’s Convex Body Theorem

We will now concentrate our efforts on finding upper bounds on the length of
the shortest vector in a lattice. We start by stating and prooving a very important
theorem (Minkowski’s Convex Body Theorem ).In the next chapter we present
efficient (polynomial) algorithms to obtain vectors that approximate the shortest
vectors in a lattice.

We first prove the following lemma (due to Blichfeldt).

Lemma 1.4.7 (Blichfeldt Lemma). Let S C R™ be a set and £(B) a full
dimensional lattice (m = n) with base B. If
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e vol(S) > det(B) or
e v0ol(S) = det(B) and S is compact
then there exist 71, 75 € S (with Z] # 23) such that zi — 75 € L(B).

Proof. We give the proof for the first case where vol(S) > det(B).Using a compact-
ness argument, we can similarly prove the case where S is compact and vol(S) =
det(B).

If B is the basis of £ then as Z ranges over the whole lattice, the sets Z+P(B) :=
{Z + W|w € P(B)} form a partition of R”. We now define the following sets

Sz =SN(Z+P(B)) where ¥ € L(B).

Since the sets Z + P(B) form a R™ partition and (1 + P(B)) N (2 + P(B)) =0
for 1 # 3 it is clear that the above sets form a partition of S, that is they are
pairwise disjoint and

= U s

TeL(B)

In addition
vol(S) = Z vol (Sz).

TEL(B)

We define the transtated sets Sz — % = (S — &) N P(B). (by Sz we mean the
set S’ of all points 2z’ where 2/ = z —  for all points z € S). It is obvious that
vol(Sz) = vol(Sz — ). Thus

det(B) = wol(P(B)) <wol(S) = > wol(Sz) = > wol(Sz— ).

ZeL(B) ZeL(B)

The facts that Sz — 2@ € P(B) and vol(P(B)) < X zcp(p) vol(Sz — &) imply that
the sets Sz — ¥ are not mutually dlSJOlnt for all lattice vectors #. That means
that there exist ¥, € L(B) with & # jj such that (Sz — ) N (Sy — ) # 0. Let
7€ (Sz — %) N (Sy — y). Then by definition of Sz — 2 and Sy — ¥ the vectors

8y

I

+
+

[\')l Hl
Il

<y

belong to Sz and Sy respectively which in turn are subsets of S. Then
H—z==r—ye€ L(B)
and the proof is complete. O

We are now ready to prove Minkowski’s Convex body theorem after we give
the following definitions.
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Definition 1.4.8 (Symmetric Set)
We say that a set S is symmetric (or more precisely centrally symmetric or null-
symmetric) if for every z € §, —x € S is true as well.

Definition 1.4.9 (Convex Set)
A set S is said to be convez if for any x,y € S and any t € [0,1] we have that
tr+(1—t)yes.

Theorem 1.4.10 (Minkowski’s Convex Body Theorem)
Let S CR™ be a convex symmetric set and L(B) a full dimensional lattice (m =n)
with base B. If

o vol(S) > 2™det(B) or
o vol(S) = 2"det(B) and S is compact

then S contains a nonzero lattice point.

Proof. We again give the proof for the first case. For the other case we just have
to incorporate a compactness argument.

Let S’ = 1S = {z[2z € S}. Then obviously vol(S") = 2 ™wol(S) > det(L) by
hypothesis. By lemma 1.4.7 there exist two (distinct) points z1, 2z € S’ such that
z1 — 29 € L is a nonzero lattice point. We will now prove that z; — 29 belongs to S.
Notice that by definition of S’ both 221,225 belong to S and so does —22z5 because
S is symmetric. Finally the fact that S is convex, implies that §(221) + 3(—222) =
z1 — z2 belongs to S and this completes the proof. O

Remark 1.4.11. The fact that S is symmetric implies that zo — 21 is also nonzero
and belongs to S. We can then restate Minkowski’s Convex Body Theorem as
follows:

Theorem 1.4.12

Let L CR™ be a full dimensional lattice and S C R™ a convezx, symmetric, compact
set with vol(S) > 2"det(L). Then |S N L| > 3, that is, S contains at least two
nonzero vectors +i € L.

The following corollary demonstartes the relation between the above theorem
and bounding the length of the shortest vector in a lattice.

Corollary 1.4.13. For all full dimensional lattices £(B), there exists a lattice
point x € L(B)\{0} such that

|2l < /det(L). (1.13)

Proof. Consider the set S defined as

S={7:||T]|e < V/det(L)}.
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Apparently, S is symmetric and convex and in addition vol(S) = 2"det(L). Minkowski’s
Theorem then guarantees that there exists a vector ¥ € L(B) such that

[Tlloc < ¥/ det(L).
O
Below we summarize the previous results giving two very important inequalities
for the norms ls, o, of the shortest vector of a lattice. The second inequality is
an immediate result of the first and the inequalities I11.We claim that for all full

dimensional lattices (n = m) there exist lattice points (not necessarily identical)
x,y # 0 such that

|z]ls < ¥/det(L) and (SVIL)
lylla < v/n ¥/det(L). (SVI2)

Actually the last inequality is strict. In order to prove this, we first need the
following lemma.

Lemma 1.4.14. The volume of an n-dimensional ball of radius r is

2r )

Voo

Proof. 1t is easy to see that each ball of radius r contains a cube of side length %
Thus

vol (B(0,7)) > (

{2 € R"|Vi, || < %} c B(0,7)

which means that vol(B(0,r)) > vol(cube) = (2—\/%)" O

Theorem 1.4.15
For any full rank lattice L of rank n

A (L) < Vn(det(L))n.

Proof. Consider the (open) ball B(0, A1(£)) which by definition contains no nonzero
lattice points. Then theorem 1.4.10 and lemma 1.4.14 imply that

<2>\1(ﬁ)
NG

Thus A\ (£) < /n(det(L))w. O

) < wol (B0, Ay (L)) < 2" - det(L).

The above inequality interestingly holds even if the lattice is not full rank
(n < m). In order to prove that we only have to reduce the case n < m to the
case where n = m. In this thesis however, we will only use full rank lattices so the
properties established are sufficient for the reader to follow the material presented
in the next chapters.
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Remark 1.4.16. Theorem 1.3.4 says that the determinant of a lattice is inde-
pendent of the specific basis we use to produce it. Thus, in all the above theorems
and definitions when we wrote det(L) or det(B) we meant the exact same thing.
This should not cause any confusion to the reader.

Remark 1.4.17. It is important to note here that the results presented above for
the shortest vectors in a lattice with respect to norms ||-||2 and ||-||o0, only guarantee
the existence of such short vectors and do not provide any efficient algorithm to
actually construct them. In the next chapter we present an algorithm that can
produce short vectors efficiently. These vectors, however, satisfy inequalities that
are weaker than those already presented.

1.4.3 A Number Theoretic Application

We finish this chapter by presenting a number theoretic application of Minkowski’s
Convex Body Theorem. The following example, though trivial, illustrates how one
can use lattices and their properties in order to prove theorems related to number
theory.

Theorem 1.4.18
For every prime p = 1 (mod 4), there exist a,b € 7 such that p = a® + b2,

Proof. By hypothesis, p = 1 (mod 4) = 4/p — 1. Thus % = 2k, k € Z which

means that (—1)% = 1(modp) and so -1 is a quadratic residue modulo p. Let ¢
such that i> = —1 (modp). Then

p/i* + 1. (1.14)

o

Then Minkowski’s Theorem (theorem 1.4.15) says that SV Py < v/2-+/det(B) or
equivalently there exists an integer vector Z = [z1,x2]” such that

Consider now the lattice basis

|BZ|2 < V2 \/det(B) = | BZ|2 < 2 - det(B) = 2p.
If we expand the term ||BZ||3 we get
IBE|)3 = af + (ix1 + pxa)®.

Let a = x1 and b = ixy + pry. Clearly (a,b) # (0,0) (otherwise 1 = x5 = 0).
This, combined with the previous inequality, gives that

0<a®+0b*<2p. (1.15)
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We also have that
x% + (i1 —|—p:132)2 = x% + iQx% —}—pQZE% + 2ix1pro = p(px% + 2izq1xe) + x%(zZ +1)

where p divides the first term as well as the second because of condition 1.14.
Thus a? + b = kp for some k € Z which along with 1.15 finally gives

a’+b*=p.
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Chapter 2

Lattice Basis Reduction

Consider the lattices produced by the following bases:

3 2 1 0
Bl_[l?, 9] and B2—|:0 1].

The above bases are equivalent, that is they produce the exact same lattice (in
particular Z2). Indeed one can produce By by multiplying By with the unimodular

13 2 ) 119 =2
U—Lg 9] with U —{_13 3}

matrix

However it seems that Bs is a more "elegant” description of the lattice. This is
both because Bs consists of smaller vectors and because it makes clear that Z2 is
the lattice produced.

The above example leads to the observation that some bases are ”better” than
other bases of the same lattice. What we mean by ”better” greatly depends on the
actual application. In applications where lattices are used, we are mostly interested
in bases made up of short vectors. We define the ”better” basis by the more formal
definition reduced. Consequently, lattice basis reduction is the process in which a
reduced basis is found from a given basis. In this section we give various notions
for reduction along with the algorithms that produce them.

All notions entail finding ”sufficiently short” vectors of a lattice. Since we
cannot find the shortest vector efficiently in the general case (n-dimensional lattice)
we are searching for alternative algorithms that efficiently produce vectors that
7adequately” approximate the shortest vector. The most popular such algorithm
is LLL presented and extensively analyzed in section 2.3.

2.1 Minkowski Reduction

One of the first notions of reduction of a lattice basis was Minkowsk: Reduc-
tion.Recall that by definition 1.4.3 the i-th minimum of £, \;(£), is defined as
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the length of the shortest vector that is linearly independent from the ¢ — 1 vectors
that give the previous minima. Unfortunately, a set of ¢ vectors giving the first
¢ minima cannot always be extended to form a basis of £ for dimensions greater
than 2. Instead, Minkowski Reduction requires a somewhat weaker condition.

Definition 2.1.1 (Minkowski Reduction )
Let £ be a lattice with basis B = [b1,be,...,b,]. We say that B is Minkowski
Reduced if the following properties hold:

e by is a shortest vector in £ and, inductively,

e b; is a shortest vector independent from b1, ..., b;_1 such that by, bs, ..., b; can
be extended to form a basis of L.

Remark 2.1.2. The above reduction yields bases the vectors of which (and espe-
cially b; which is by definition a shorter vector in £) enjoy important properties.
Such kind of reduction has found application in the theory and geometry of num-
bers. However it has little computational worth since there is no known efficient
(polynomial) algorithm that computes such a basis. While Minkowski Reduction
can be used to prove some (existence) theorems in theory and geometry of numbers,
it is not used in Cryptography where computational cost is a major concern. In
the sections to come we present reduction algorithms that yield a weaker reduction
but are computationally efficient.

2.2 Two-Dimensional (Gauss) Reduction

While there is no efficient algorithm that computes the shortest vectors in
an n-dimensional lattice, for small fixed dimensions we can find polynomial-time
algorithms that locate short vectors.

We study below the two-dimensional case and analyze a polynomial algorithm
that given an arbitrary basis of a lattice, produces a reduced basis made up of
the shortest vectors of the same lattice. This algorithm is a slight variation of
an algorithm known as Gauss Reduction Algorithm and is quite similar to the
Euclidean algorithm for the great common divisor. Before we present the algorithm
and its analysis, we first give some definitions and theorems.

2.2.1 Definitions

Definition 2.2.1 (Reduced Basis)
Let [b1, b2] be a basis of a lattice. We say that this basis is reduced if

[1b1]], o2l < [[br + b2, [[br — baf| (2.1)

A geometrical interpretation of the above definition is that both sides of the
fundamental parallelipiped associated to the basis are shorter than its diagonals.
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Remark 2.2.2. Swapping (if needed) vectors bl, b2 to satisfy ||b1|| < ||b2|| or chang-
ing the sign of vector by in order to achieve ||by — ba|| < ||b1 + ba||, the condition of
the above definition can be rewritten in the following form:

lb1ll < (1B < (163 — bal| < (161 + B3|
Before we proceed, we need the following lemma.

Lemma 2.2.3. Let &, 7 + ¢, Z + r§ be three vectors in a line and r € [1,+00).
Then if [|Z]| < [|Z+ ]| then |7 + ]| < ||+ r7].

Proof. Define s = 1 € (0,1]. Then
T+y=(1—3)Z+s(Z+ry)
and by the triangle inequality we have
12+l < (X =T+ sl|Z 4+ 77l < (1 = )7+ 7l + s[|7 + rg]l.

The second inequality is dictated by the hypothesis ||Z]| < ||Z + ¢]||. We conclude
that

17+ < A =9)|Z+ ) +sllZ+rgl| = sl|Z+7]| < sllZ+rgl] = [T+ Gl < [Z+rg].
O

We now establish the equivalence between the basis vectors of a two-dimensional
reduced basis and the successive minima of a lattice.

Theorem 2.2.4
Let [b1,by] be the basis of a lattice. Then |[bi]| = A1 and ||bz2]| = A2 if and only if
11l < [[b2l] < [[bx 4 bal], [1b1 — ba]l.

Proof. (=) Let [|b1]| = Ay and ||by]| = Ap. Then by definition b; is the shortest
vector in the lattice. So obviously b1l < Ilball, 11 + ball, [|b1 — bgH In addition
suppose that [|by + b2|| < ||b2]|. Then the linear independence of by, by + by would
imply that Ay < b1 + ba|| < ||bal which yields a contradiction. Thus |61 + ba|| >
||b2]|. A similar argument works for b — by and this completes this direction of the
proof.

(<) Let now ||by|| < ||ba]] < ||b1 + b2, [|b1 — b2||. In order to show that ||b1]| = A;
and ||ba|| = Ao, it suffices to show that for every r, s € Z

1. [|by]| < |Irby + sba| for (r,s) # (0,0) and

2. ||ba]| < |[rby + sba for s # 0 (the case s = 0 is excluded since by, by are
linearly independent).

We consider 3 cases:
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(a) r=0: Then s # 0 and ||by|| < [|b2]] < ||sb2|| = ||rb1 + sba]-
(b) s =0: Then r # 0 and ||by|| < ||rb1 = ||rb1 + sba].
(¢) 7,5 # 0: Assume wlog that r > s > 0.Then

by + sby

oI =< Irby + sba|].

O
[l b2 + ;bl|| = |

We now apply lemma 2.2.3 to the vectors b_é, b_é —|—b_i and b_é + gb_i where g >1
to get
- - - - r - - -
b2l < f1b1 + bal| < [[b2 + ~bal| < [Irbs + sbo.

All the other cases for r, s can be proved in a similar fashion.

This completes our proof that the vectors of a reduced basis of a two-dimensional
lattice are the shortest possible. O

We give below (algorithm 2) the initial algorithm for the Iy norm known as
Gauss Reduction Algorithm and then present an analyze the extension of Gauss
Algorithm due to Kaib and Schnorr that works for arbitrary norms. The general-

Algorithm 2: Gaussian Reduction (by, bs)
Input: A basis B = [by, bs).
Output: A Gaussian reduced Basis B’ = [b], b}].

begin
repeat
if ([|b1] > [b2]]) then
swap 01, ba;
end

g (br, b2) /16 |1
by < by — [p]by;
(where [a] = |a+ 0.5])
until ([jb] < [l])
output (b1, bs)
end

ized lattice algorithm presented in algorithm 3 works with well ordered bases until
a reduced basis is found. Then theorem 2.2.4 guarantees that we have found the
shortest vectors in the lattice.

Definition 2.2.5 (Well Ordered Basis)
A basis [by, bo] is said to be well ordered if

[B1]] < [lox = bal| < [|b2]l- (2.2)
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Remark 2.2.6. The above definition immediately implies that
11l < [1B1 = ball < [B2]] < [[B1 + Bl (2.3)

We can see that if we apply lemma 2.2.3 to vectors b_é — b_i, b_é and b_i + b_é which
are on the same line.

Below (algorithm 3) we provide the generalized Gauss Reduction for arbitrary
norms. In the above algorithm we can always assume that the input basis [b1, bo] is

Algorithm 3: Generalized Gaussian Reduction (b, ) for Arbitrary
Norm

Input: A well-ordered basis B = [by, bs].

Output: A Reduced Basis B’ = [b], b)].

(The algorithm works for any norm)

begin

while (||ba]| > ||b1 — b2]|) do
1.1 by « by — uby, g € Z chosen so that ||by — ubq|| is

minimized ;
1.2 if (Hbl + sz < Hb1 — b2H> then
by < —bo;
end
1.3 exchange b, b5 ;
end
output Reduced Basis (b, bs)

end

well ordered (if not reduced). That is a reasonable assumption since we can always
produce a well ordered basis by swapping bl, by or replacing by by by — by or by + by
accordingly.

Remark 2.2.7. The generalized Gauss Reduction Algorithm expects a well-ordered
basis. We claim that each time the algorithm enters the while loop, the current
basis is well-ordered.

This is indeed the case at the beginning of the algorithm as we mentioned earlier.
If the algorithm enters the loop again it means that it has failed to produce a
reduced basis at the last step (Step 1.3) of the previous while loop. The basis
computed at that step is

b, = +(by — pby) and b, = by
which means that

1 = 05[] = [ + (b2 — pbr) = bl = [b2 = (= )b = [Ibg — pbr || = [|b3]]-
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The last inequality is true because the value p computed by the algorithm in
step 1.1 renders the minimal ||by — ub1|| over all integer values of . Similarly
16f + B|| > ||b1]|. Finally ||b} — b5 < ||b2]| otherwise the basis would be reduced.
We have therefore proved that the basis given as input in the beginning of each
while loop is well ordered.

In the following lines we will prove the correctness of the above algorithm and
analyze its performance.

2.2.2 Correctness

In order to prove the correctness we have to show both that the algorithm
performs the required task when it terminates (that is, it produces a reduced basis)
and that it actually terminates.

We proved in the previous remark that each time the algorithm enters the
while loop the basis is well ordered. So the termination of the algorithm would
mean that the while condition [|b — ba|| < ||b2]| is not true. This means that ||bg|| <
I|by —ba|| < [|b1 +b2||. The last inequality holds because of step 1.2 of the algorithm.
This means that the basis [b},b;] is reduced upon termination. In addition, the
algorithm only performs elementary column operations which means that the basis
produced by the algorithm is indeed equivalent to the initial basis.

As far as termination is concerned, recall that at the end of step 1.3 (and while
the basis is not yet reduced) we have Hb_’£|| < ||b_’éH = ||b1]|. As the value of ||b1]|
gets smaller at every iteration of the algorithm, we can see (using a compactness
argument) that it will at some point reach its minimum. At this point the algorithm
terminates.

2.2.3 Running Time Analysis

The following analysis shows that the algorithm is polynomial in its input size.
This means that its running time is logarithmic in the lenght of the initial basis
vectors.

Clearly the operations performed by the algorithm in each iteration are polyno-
mial in the input size. Thus, it only remains to show that the number of iterations
is polynomial too. Let k be the total number of iterations. We will prove that &
is polynomially bounded by the size of the input of the algorithm, or, otherwise
stated, that k is bounded by p(log ||b1||) where p is a polynomial.

For that suppose that in the beggining of the algorithm by = uy, and by = Ug 11
At the end of the k-th iteration we get the reduced basis ul, 2. We will focus on the
successive values of by in each step. @; will denote by in the (k — i+ 1)-th iteration.
As the algorithm runs we get the sequence (ug, ..., u3,11) (in chronological order).
We need the following lemma.

Lemma 2.2.8. Vi > 1, ||| < 3|luit1]|-
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Proof. Consider the sequence (u;”1,u;,ui11). For simplicity’s sake we will use
instead the vectors (7,7, 7).Both [Z, 4] and [, 2] are well ordered.Let s = +1. We
know by the analysis above that & = s(Z — ug) which gives (multiply both sides
with s) 7= sZ + pg. We consider the following cases.

(a) (u = 0 or g = 1).Not possible. Both would imply that [¢, Z] is not well
ordered. The first condition would give ||Z]| = ||Z|| < ||#]| , while the second
would lead to ||Z — ¢/|| = [|Z]| < [|7/]|-

(b) (s =—1,up=2). Then ||Z—7| = || — &+ ]| < ||7]|, which also contradicts
the fact that [¢, Z] is well ordered.

(s = —1,pp >2).Weknow that || 7] = [|=F+ugll = pll7l =171 = pllgl-llll =
(w =Dl = 21141, = 7]l < 51121]-
(

s=1p>2) [125=Z| < |7+ 7= < 7]l + 7]l = 2[|7]]. We now apply
lemma 2.2.3 to the vectors 2y — %, 2y, 24 + Z and we get

12411 < 112 + ]|

Since [Z, 4] is well ordered, we know that ||Z|| < ||7 + #|| and consequently
(again by lemma 2.2.3)

17+ ] <1124+ Z|| < ||ng + 2]

We then have
121 = lpg + Z|| > 124 + Z|| > 2|4]|-

This completes the proof as we have covered all possible cases. ]

We are now ready to establish the main theorem for the running time of the
Generalized Gauss Algorithm.

Theorem 2.2.9
Vi> 1, @] > 2 . (2.4)

Proof. Trivial. We use induction and the previous lemma. O

Corollary 2.2.10. The number of iterations of the Generalized Gauss Algorithm
is bounded by logs ||b1]|.

Proof. By the previous theorem we have ||b|| = |[uij|| > 25~1|1||. If we take the
logarithm (with respect to 2) of both sides we get the desired bound. O

Remark 2.2.11. We just mention here that the above algorithm has been gen-
eralized by Nguyen and Stelhe to lattices of any dimension. However, this greedy
algorithm is optimal (that is, it produces vectors b; such that b; = X\;(£) for each
i =1,2,...,m) only for lattices of dimension m < 4.
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2.3 LLL Reduction

In section 2.2 we presented an algorithm that finds in polynomial time a
reduced basis for a two-dimensional lattice. This reduced basis consisted of vectors
[b1,b3] such that [|b1]] = A1 and [|ba]] = A2. We also mentioned that there are
similar algorithms that efficiently find a reduced basis in lattices with dimension
3 and 4. We want to generalize the previous procedures for arbitrary dimensions.
However, up to now, there is no known algorithmn that finds the shortest vector
in a n-dimensional lattice. In this section we will concentrate our attention to a
very famous approximation algorithm, LLL algorithm, named after its inventors
(Lenstra, Lenstra, Lovasz) which does not necessarily find the shortest vector in a
lattice, but computes a lattice vector that is provably at most ¢(n) times the length
of the shortest vector, where ¢(n) is a function of the lattice dimension n.

We divide this section in five subsections. In subsection 2.3.1 we introduce a
new notion for basis reduction (LLL Reduction) and prove some properties that
the vectors of such a basis satisfy. In subsection 2.3.2 we provide an algorithm that
actually computes an LLL: Reduced Basis and prove its correctness. In subsection
2.3.3 we analyze the running time of the new algorithm and prove that it runs
in polynomial time. Next (subsection 2.3.4) we present how one can use LLL in
order to find a solution to the Simultaneous Diophantine Approximation Problem.
Finally in subsection 2.3.5 we quote some other applications of the new algorithm.

2.3.1 Definitions and Properties of LLL Reduction

We first define projection operations ; from R™ onto 3, Rb_;'f:
n(E5E) L
(%) = b7 (2.5)

The operator 7; will help us define a new notion for basis reduction.The definition
of m; operator implies that when we apply m; to a vector £ € R™ we get only
the components of Z that are perpendicular to the space spanned by b7, ...,b7_; or

equivalently, only the components of Z that live in the space spanned by b_f, ey b}z.
We can now define LLL Reduction as follows:

Definition 2.3.1 (LLL Reduced Basis)
A basis B = [b1,ba, ..., b,] € R™*™ is said to be LLL Reduced with parameter §
(3 <40 <1)if:

L fpagl < % Vi > j where p; j denote the Gram-Schmidt coefficients.
2. for any pair of consecutive vectors b_; , biil we have that

8l (B)|* < Il (Bi)|? (2.6)
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or expressed in another way

3105117 < 11671 + v b1 (2.7)

Remark 2.3.2. To see that the two expressions of the second condition are equiv-
alent, one should just recall the Gram-Scmidt Orthogonalization Procedure (and
more specifically equation 1.4).This, along with the fact that (b;,07) =0 Vi #j
and that operator m; contains only the components of b_;, bijrl that are perpendicular

to b7, ..., b;‘il, yield the above equivalence.

Remark 2.3.3. Let us now take a more thorough look at the two conditions.
The first one guarantees that the basis produced is Length Reduced which means
that the final vectors are "as close as possible” to the vectors Gram-Schmidt Or-
thogonalization produces. This will be further clarified when we present the LLL
algorithm. The second condition guarantees that at the end of the algorithm , the
vector b_i of the reduced basis will be ”small enough” to approximate the shortest
vector of the lattice.

Remark 2.3.4. In the above definition if we let § = 1 then the two conditions
simply say that we require that the 2-dimensional basis m;([b;, b;+1]) is reduced.

The above notion for basis reduction may seem a little weird at first glance.
However, an LLL Reduced basis enjoys some very important properties and has
found a vast number of applications in various fields. More sinificantly, as we shall
see in the next subsection, there exists a polynomial time algorithm that, given an
arbitrary basis of dimension n, can produce an equivalent LLL Reduced Basis.

The following theorem gives an approximation factor for the shortest vector in
an LLL Reduced Basis with parameter §.

Theorem 2.3.5
Let by,ba,....b, € R™ be an LLL Reduced Basis with parameter §. Then

leal| < ( )AL, (2.8)

V-1
Proof. For all : =1,2,...n we have
OIBE 1% < 1650y + payri - b2
= 65 I + Nl - F )1
= 16511 + |pisrl? - 16712
S

This finally gives
1. - -
(6 = PIFFI? < 51 (29)
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In addition, by induction we have that
2012 Licy 2
167117 = (& = )" lIogll”.

But b?{ = b, and we have already shown that for any basis b_i,b_é, ...,b_,;, A(L) >
min [|67[|. So for the i that yields the min ||b¥||

— ]_ 1—i —;k 1 l1—n —
oafl < (6 = )= 1167l < (6= 2) o
1 1-n 2 n—

< (00— Z) 2 AM(L) = (\/ﬁ) (L)

O]

Remark 2.3.6. The paremeter 4 can be any real number in the interval (i, 1]
as mentioned in the original LLL paper [24].However , the typical value used in
almost every application is 6 = %. We will exclusively use this value from now on,

in all the applications presented in following chapters.

Below we give a set of useful inequalities derived from the LLL reduction defi-
nition. We mention that the following inequalities (obtained for the specific value
0= %) are possibly the most valuable result of the LLL Reduction for the needs
of this thesis. These inequalities (and especially the last one) will be frequently
invoked throughout the following chapters and therefore it is important for the
reader to fully understand them.

Theorem 2.3.7
Let by,bs, ..., b, be an LLL reduced basis for a lattice L € R™ and by ,by ,...,b, the
corresponding Gram-Schmidt vectors. Then we have:

612 < 27 B2 forl<j<i<n, (LLL1)
||b2|| < 2%1(5), (LLL2)
n
det(L H 5] < 257 - det (L), (LLL3)
I161] < 2T - det(L)w. (LLL4)

Proof. (LLL1) By inequality 2.9 of the previous proof, if we replace ¢ by 3/4 and
use induction we have that

65117 < 27707 1.
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This inequality along with equation 1.4 gives

1—1
16i 1% = G112 + > w2, 16112
j=1
1—1
<||b*||2+z Z277vE)1?
7=1
1, . 3
= (1+ 52 =2) I [&
<21 |16 |2

which means that . ‘ . ‘ .
(127 e 171 b A 1
e can derive that one immediately by theorem 2.3.5 11 we replace 0 wit
LLL2) W derive th i diately by th 2.3.5if lace ¢ with
3/4.
(LLL3) Recall that [|6¥]| < [|6;]]. In addition,by definition det(L(B)) = vol(P(B))

we know that " "
det(L) =TT Ioi 1 < T lIil
i=1 i=1

which proves the first part of (LLL3). For the second part we use the fact that
16;]] < 2(i_1)/2\|b*~<||. Thus

Hllb | <H2(’ R H HHb*II 2=/

nn 1) n(n 1)
= H 1671 -2 - det(L).

(LLL4) By (LLL1)
o1 <272 - [|b7]]-
Thus

[T6il < T 200721168 = 25 - det ()
=1 =1

= |by]| < 2" - det(L)n.
O
Remark 2.3.8. All the above inequalities hold for arbitrary parameter ¢§ if we
replace 2 with .

Corollary 2.3.9. Let £ € Z" be a lattice (notice that we require that £ € Z"
and not R™). Then, the LLL algorithm outputs a reduced basis {b1, bo, ..., b, } such
that

- n(n—1)
b1 < 277D . det(L)7= T for i=1,2,..,n. (2.10)
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2.3.2 LLL Algorithm

The LLL Algorithm is given below (algorithm 4). During the execution of
the algorithm we have to compute the vectors b7,03,...,b;. We do so by using the
Gram-Schmidt Orthogonalization Algorithm (algorithm 1).

Algorithm 4: LLL Reduction Algorithm

Input: Lattice basis b;, b;, v b; e 7",
Output: A §-LLL-Reduced Basis for £(B).
Start: compute b_"{, b_”g, o b%
Reduction Step :
for : =2 ton do

for j =17—1 downto 1 do

bz' — bz — CZ'J'Z)J' where Ci,j = [%J,
end
end
Swap Step:
if there is i such that 5||b3‘|\2 > ||b;il + g1, b_;"||2 then
bi > bit1;
goto Start
end

return b, bs, ..., b,

Remark 2.3.10. The above algorithm is almost the same with Gram-Schmidt
Orthogonalization Algorithm (algorithm 1). Their difference lies in the fact that
in the above algorithm we round the coefficients p; ; (denoted in the algorithm by
¢;,j in order to avoid confussion) to the closest integer. Since the new base B’ is
obtained by the initial B by a sequence of elementary column operations, B, B are
clearly bases of the same lattice.

Let us now take a deeper look in the above algorithm that will allow as to prove
its correctness.
Reduction step: This step takes care of the first property of an LLL reduced
basis. Throughout this step the Gram-Schmidt basis b_'f, b_é, . b_,"; does not change
(since we only perform column operations of the form b; < b; 4 ab; which do not
affect the Gram-Schmidt basis) and we therefore do not have to recompute the
Gram-Schmidt vectors. The invariant of the outer loop in that step is that in the
ith iteration, the projection of b; on b_;"f for any (j < i) is at most %Hb_]’:” It is very
important to note that the inner loop goes from ¢ — 1 down to 1.

To make the above more clear we give below an instance of the current basis B
during the execution of the algorithm (the example was taken from [33]). Consider
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the ¢th iteration of the outer loop and the value j = 2 for the inner loop. The
matrix B at this point looks like:

B3] < %ﬂbTH < 5Bl * *
0 o3l < %U@H * *
0 13| < g5 *

< %Hf?—ﬂ\ *
0 117l *
0 16341+

Notice that the first property holds for all columns coresponding to 7 < ¢. In
addition, at this point (execution where still j = 2) the property holds for the ith
column for all elements that belong to rows with index greater than 2. The reader
here is asked to justify the necessity of counting 5 from ¢ — 1 downto 1 and not the
other way.

Swap Step:This step takes care of the second property of an LLL-Reduced basis.
If the algorithm terminates then the algorithm guarantees that the second property
is satisfied.

The following lemma proves the correctness of the LLL algorithm.

Lemma 2.3.11 (LLL Correctness). If the LLL algorithm described above ter-
minates, then its output is a J-LLL-Reduced Basis for the lattice spanned by the
input basis by, bo, ..., by,.

Proof. To prove the above lemma , we have to prove that both properties of the
LLL-Reduction definition are satisfied upon the algorithm’s termination and that
the basis produced is equivalent to the initial basis in that they both produce the
same lattice. The satisfaction of the second property is enforced by the swap step
of the algorithm. In addition the output basis is equivalent to the input basis since
the algorithm only performs elementary column operations (notice that in every
elementary operation of the form b; < b; +ab;, a € Z).It only remains to show that
the first property is also satisfied upon termination. Recall first that throughout
the reduction step the Gram-Schmidt basis remains unchanged. Consider now
the ith iteration of the outer loop and the jth iteration of the inner loop (where
i > 7). Then immediately after this iteration we have

(b — cijbj,b%) (b, b%) (b, by (b, bT) 1

il = | = | = [ o <

In the above expression the first equality follows from the definition of the reduction

step while the last inequality follows from the fact that (b;,b}) = (b},b7) (Recall

equation 1.4 to see that). O
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2.3.3 Running Time Analysis

For the running time analysis of the LLL Algorithm we divide our proof that
LLL Algorithm runs in polynomial time into two steps. In the first step we prove
that the number of iterations is polynomially bounded by the input size, while in
the second step we prove that the running time of each iteration is polynomially
bounded too.

We start by proving that the number of iterations is polynomially bounded. In
the following analysis for simplicity’s sake we write b; instead of bz to indicate the
basis vectors.

Lemma 2.3.12. For every integer basis B € Z™*" we have that det(L(B))? € Z.

Proof. In the standard scalar product det(£)? = det(B? B) which is clearly an
integer since B € Z™m*". O

We can therefore associate the following integer to the basis B.

Definition 2.3.13
D = [Ty det(L(b1, b2, -, bk))* = (TTe—y 105111155 - - - [1511)>-

We also define M = maz{n,log(max; ||b;||)}. This is a lower bound on the
input size.We will now show that D decreases at least by a factor of § at each
iteration.

Lemma 2.3.14. The number of iterations in the LLL Algorithm is polynomial in
M.

Proof. We have already mentioned that during the reduction step the vectors
b7, b5, ..., by remain unchanged and so does D.

Consider now a swap step. Assume that the swap was performed between b;
and b; 11 and let D, D’ be the integers associated to the basis B before and after
the swap respectively. Then we have

D . HZ:l det(ﬁ(bl,bg,...,b 2

_ 0)

D' [l det(L(b), b, ..., .))?
)
)

([T det(L by, ey b)) - (det(L (b, oy b0))?) - (T det( L1, - b1))?)
(TG det (£(0h, - V))P) - (et (£, b)) - ([ det(£ 0 b))

_ det(L(by, -, ;)

= det(L(V,, ., b))

The last equality can be justified as follows:

if k < 4 then obviously b; = b for [ = 1,2,...,k as the first i — 1 vectors remain
unchanged after the swap. So obviously det(L(b1, ..., bg))? = det(L(b}, ..., b))

If k> i then L(by,...,b;) contains exactly the same vectors as L(b], ..., b}). Both
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lattices contain b;, b;+1 in a different order but this does not affect their determinant
so obviously again det(L(b1, ..., b))% = det(L(b, ..., b}.))>.
In addition

i
det(L(by,...,b:)) = [ Iv3]
j=1

while

i
det(L(by, ... b) = [T 195711
j=1

Recall now that b; = b; for 1 = 1,2, ...,4 — 1 and by Gram-Schmidt process b;* =7
for[=1,2,...,i — 1. On the other hand

i—1 i—1
" / /% *
b = — > pir by =Dbig1 — Y prig1,b]
Jj=1 Jj=1

1
=bip1 = ) i1y} + pivcrb} = bl + pigrby.
j=1

Thus
D det(Lby,.... b))% TLi—i 0511

D' det(L(b), ..., bl))? H§:1 b2
_ g 1671 1

16717 = TF s + o1t~ 8
The last inequality is dictated by the swap condition. If it didn’t hold then there
would be no swap. Suppose that the initial value of D is D and that the algorithm
terminates after m iterations (the fact that the integer D decreases at each step
while remaining integer, guarantees the termination of the algorithm). The above
inequality gives (D) denotes the value of D after the ith itearation)

1 1 1
— (1) —_\m (m) —\m
D> <DV = D> (2)"D"™ > (5)

since D is a nonzero integer. Thus

1
(g)m <D=m< log%D.

Now in order to bound D we recall that ||b]]] < ||b;]|. This gives

D = [Tzl 10z)* < TT(leallliba] - - 16e])? < ma[Jog 2.
k=1 k=1

This finally gives
m < log1 D < log max (|65 +Y) = n(n + 1) log1 max ||b;]| < n(n +1)M
? 4 [

which completes the proof as M is a lower bound for the input size. O
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We still need to show that that each iteration also takes polynomial time.
Apparently the number of arithmetic operations performed at each iteration is
polynomial. Thus, it only remains to show that the numbers involved in the
computations can be represented using a polynomial number of bits. We denote
Di = det([,(bl, bz, veey bz))2 = det(Bi)2.Thus

n
D=
k=

D;.
1

We first prove the following lemma.
Lemma 2.3.15. The following statements are true for the LLL algorithm:

(a) The Gram-Schmidt vectors b7, b3..., b} can be computed in polynomial time
in M.
(b) Db € Z".
(c) [[bf|| <D for every i =1,2,...,n.
Proof. (a)Consider the equation 1.4. By induction b — b; € span(by, ba, ..., bi—1).
We can therefore write b; = b; + Z;;ll a;b; for some a1, as,...,a;—1. We will now
show that we can compute the coefficients a; in polynomial time. Recall that

by € span(by, b3, ..., b)) which implies that (b],b;) = 0 for every [ =1,2,...,4—1.This
gives:

1—1
<b2k, bl> = <bi + Z ajbj, bl> = <bi, bl> “+ a1 <b1, bl> + a2<b2, bl> + ...+ ai_1<bi_1, bl> =0
Jj=1

If we now consider all the vectors b;, I = 1,2,...,¢ — 1, we obtain the following
system of ¢ — 1 linear equations in ¢ — 1 variables:

ai(bi,b1) + az(ba,b1) + ... + a;—1(bi—1,b1) = —(bs, b1)
a1<bl,l)2> + a2<b2,b2> + ...+ al‘_1<bi_1,bg> = —<bi, bg)

ai(bi,bi—1) + az(ba, bi—1) + ... + aj—1(bi—1,bi—1) = —(b;, bi_1).

We can now find the coefficients ay, a9, ..., a;—1 in polynomial time by solving the
above system using Cramer’s rule.We can then compute the vectors b; through the
equation b = b; + Z;;ll a;b;.

(b) The solution for each a; can be written in the following form:

det(some integer matrix) acZ ac

(b1,01)  --- (bi—1,b1) N detB \B;_1  Di_1 '

aj =

det

(b1,bi—1) -+ (bi—1,bi—1)
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This combined with the fact that b7 = b; + 23;11 a;b; clearly implies that D;_1b} €
Z" and since D; 1 divides D by definition, we finally get that Db} € Z".
(c) By definition D; = (H;;ll ||b;kH2) -||6%|1>. Thus

D;
;1° = == <D H D*= ||t <D
[T 1165117 =1

where the first inequality follows from the fact that Db} € Z" and thus ||D; - b7||? >
L= e < D7 -

In order to complete the running time analysis we still need to show that the
vectors b; do not grow too large during the execution of LLL algorithm.Notice that
during the reduction step, vectors b; do change so we need to prove an upper bound
on their norm. This is proved in the following lemma.

Lemma 2.3.16. All vectors b; appearing during an iteration can be represented
using poly(M) bits.

Proof. Equation 1.4 says that b; = b + Zj 1/%

(b7,b5) = 0 for each i # j . Thus

405 In addition, |u; ;| < $ and

7—1
* * n
HbiH2 = [|b; ||2 =+ E M?,j”ijQ <D? + 1172 < nD?.
Jj=1

Remember now that by hypothesis, in the beggining of the algorithm b; € Z" for
each ¢ and that we only perform elementary integer column operations. Thus b;’s
remain integer throughout the algorithm.Since their norm is bounded too, then
they can be represented with poly(M) bits.In addition

(i, b3) il - 18] 4] 151
lcijl =[5l € — = + 1=t +1 < 1 < 2D|jbj].
’ (b3, 0%) 167112 Al 1/D

(We have used Cauchy-Schwartz Inequality for the first inequality.) Using the
above we finally obtain:

1b; — ci,jbj S HbiH + el 110;l
(L4 2D|1b5{[) 14|
_( +2D\FD)Hsz
< (4nD)?|bi|

which is obviously representable in poly(M) bits. O

The following theorem recapitulates the facts that we have proved so far.
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Theorem 2.3.17 (LLL Running Time)
The running time of the LLL Algorithm is polynomaial in its input size.

Proof. The proof is immediate by inspection of the algorithm 4 and the lemmas
2.3.14, 2.3.15 and 2.3.16. O

2.3.4 Finding Solutions to the Simultaneous Diophantine
Approximation Problem

In order to give a first flavor of LLL applications, we demonstrate below a use of
the LLL algorithm in finding a solution to the Simultaneous Diophantine Approx-
imation Problem (SDAP). This was one of the first applications of LLL algorithm
presented in the LLL paper (see [24] for more details). The following approach is
followed (in a similar fashion) in a large number of applications throughout the
rest of the thesis. The SDAP as defined in [19] is the following:

Definition 2.3.18 (Simultaneous Diophantine Approximation Problem)
Given a1,a2,...,anp € Q,e > 0 € Q,Q > 0, find integers p1,p2, ..., pn and ¢ such
that 0 < ¢ < @ and

Dy

q

<

a; < i=1,2,..,n.

€
q
Theorem 2.3.19

There exists a polynomial time algorithm that, given a positive integer n and ra-
tional numbers a1, az, ..., an, € satisfying 0 < e < 1, finds integers p1,p2, ..., Pn, q for
which

lpi —qa;| <e for 1<i<n,
1< g <onlntD/den,

Proof. Consider the lattice £ of rank n+ 1 spanned by the columns of the following
(n+1) x (n + 1)-matrix

1 0 —aq
1 0 —al
B = N .o :
00 --- 1 —an
00 --- 0 9—n(n+1)/4 n+1

Then theorem 2.3.7 says that that there exists a polynomial-time algorithm which
finds a reduced basis b1, ba, ..., b1 for £ such that

n+l1—1

byl < 2" - det(L) 7 = e.
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In addition b; € £ that is there exists a vector & = (p1,p2, ..., Pn, q)} with integer
components such that

by = B¥ = (p1 — qa1,p2 — qaz, ..., Py — qan, q - 2_”(”+1)/46n+1)T_

Thus ||b1]] < € implies that

lpi —qa;| <e for 1<i<n,
|q| < 2n(ntD/4en :

In addition , the requirement e < 1 implies that g # 0 (otherwise ||b|| > min; |p1| >
1). In addition we can replace (if needed) by with —b; to obtain ¢ > 0. O

2.3.5 LLL Applications

The LLL Algorithm also has plenty of applications in various fields of computer
science. We briefly give a description of some of them here. In the following chap-
ters we will present in detail some of the LLL applications related to cryptography.

1.

Factoring Polynomials over the Integers or the rational numbers. This was
the initial use of the LLL algorithm in paper [24].

. Finding the minimal polynomial (with integer coefficients) of an algebraic

number given to a good enough approximation. For instance, the minimal
integer polynomial, a root of whose approximates ”sufficiently” the number
1.7321, is 2% — 3.

. Integer Programming. While this problem is NP-Complete in its general

setting, one can use LLL to obtain a polynomial time solution to an Integer
Programming Problem with a fixed number of variables.

. Approximation of the Closest Vector Problem,that is the Problem of finding

the lattice point that is closest to a given point (which does not necessarily
belong to the lattice).

. Many applications both in Cryptanalysis and in establishing Cryptographic

Primitives. The next chapters of the thesis are devoted to that kind of
applications.
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Chapter 3

Finding Small Roots to
Polynomial Equations

3.1 Introduction

In the previous two chapters, we presented the basic definitons and properties
of lattices. We also introduced the notion for reduced basis and presented in detail
LLL algorithm, a polynomial time algorithm that produces basis vectors which
approximate the shortest vectors in a lattice. Some of these results will be used
throughout this chapter.

We summarize some of the important results concerning LLL in the following
theorem for convenience. We also restate the results obtained by Minkowski’s
Convex Body Theorem.

Theorem 3.1.1 (LLL Results)

Let [b_i,b_é, ...,b_,;] be a basis for the lattice L € R"™ and b_i*,b_é*,...,b;;* the corre-

sponding Gram-Schmidt vectors. Then LLL algorithm produces in polynomial time
=

an equivalent reduced basis [b_i/, b;/, <.y by | the vectors of which satisfy the following
mequalities:

16712 < 21831 forl<j<i<n, (LLL1)

157 < 2" A (L) (LLL2)

det(L) < [T 1611 < 2" - det (L) (LLL3)
1=1

167 || < 25 - det(L)w (LLL4)

If in addition £ € Z™ ( and not generally R™), then the LLL algorithm outputs a
reduced basis [b_i/,b_é/, ...,b_,;l] such that

N n(n—1)
||b|| < 24—+ -cle7t(£)n—1i+1 for i=1,2 .. n. (3.1)
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Theorem 3.1.2 (Convex Body Theorem and its Results )
Consider o full dimensional lattice (n =m). Then:

SV Py < /det(L) and (SVI1)
SV Py < v/ ¥/det(L) (SVI2)

where SV P; denotes the Shortest Vector in the lattice with respect to norm l;. We
emphasize that the above theorem is existensial in that it only proves the existence
but not a way to find such a vector.

In the current chapter we present some recently proposed applications of lat-
tices in finding small roots to polynomial equations. In particular, in section 3.2
we present how one can use lattice theory to solve modular polynomial equations.
We present in detail the corresponding technique for univariate modular equations
and outline the extension to more than one variables. In section 3.3 we describe a
lattice-based approach for finding small roots to polynomial equations over the in-
tegers (and not only modulo a number). We mainly focus on the bivariate case and
give the underlying ideas for extending the approach to multivariate polynomials.

While this chapter does not include any pure cryptographic applications, it
provides some very useful theorems that will make the analysis of the following
two chapters much easier to follow. Of course, the results presented here are of
independent interest and can be applied in other fields as well.

3.2 Modular Polynomial Equations

In this section we present some methods for finding small roots to modular
polynomial equations.We emphasize here that we are only interested in integer
roots. Such methods have found a large number of applications in Cryptography.
Some of these applications will be presented in detail in the next two chapters.

3.2.1 Univariate Case

We first set the goal of this subsection. Let N be some large integer of unknown
factorization and f € Z[x] be a polynomial of degree d. Consider also the following
univariate modular equation:

f(@) = agz® + ag_13" ' + ..+ 12 + ag = 0 (mod N). (3.2)

In general there is no known efficient algorithm that finds integer roots of the
above equation. However, Coppersmith [10, 11, 12] introduced an efficient method
for finding small integer solutions using the LLL algorithm.

To illustrate a simple example of how such an approach can work, consider the

case where we want to find a root to the following modular equation f(z) = 2% —c =
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0(mod N) x,¢ > 0. Assume now that we are given the additional information
that there exists a solution x( such that xo < N i. That would imply that

f(x0) = 0(mod N), and | f(z0)| = |(0)” —¢| < N.

The above two conditions give that f(z¢) = 0 over Z and thus we can recover zg
using an ordinary root finding algorithm. Note that we are searching for x¢ € Z so
the recovery of such a zg is not hard.

We would like now to generalize the above technique for arbitrary polynomials
and improve the bounds on the solutions we can recover. The following analysis
presents the various advancements in a chronological order. It is important for the
reader to understand the steps followed till the final results as well as the basic
underlying ideas since variants of this technique will be used in solving multivariate
modular equations and in finding small roots to multivariate integer equations. We
will therefore provide a detailed presentation of the technique. We first give some
notation and definitions.

Notation and Definitions

Let f(z) := >, a;z* be univariate polynomial with coefficients in a; € Z. All
terms ' with nonzero coefficients are called monomials. We will frequently rep-
resent a polynomial with the respective vector of its coefficients. For example the
polynomial p(x) = 323 + 22 + 20 will be represented by the vector p = (20, 2,0, 3).
This notation will prove to be very useful in the next sections. Finally we define
the norm of a polynomial f as the Euclidean norm of its coefficient vector:

712 =" a?.

Definition 3.2.1 (Root Equivalent polynomials )

Consider two polynomials f,g. We say that f is a root container of ¢ if each
root of ¢ is also a root of f. When the roots are considered modulo NV, we say that
f is a root container of g modulo N.

In the following analysis, the notation || - || will always imply the Euclidean
norm, that is || - [|2. In case we want to use another norm, we will explicitly do so
by putting the respective index to the norm notation.

Key Ideas
Suppose that we are given a polynomial
flx) = agr® + ag_12 7 + ..+ a1z + ag
and we are asked to find a solution to the unimodular equation

f(z) =0(mod N).
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Since there are no known techniques for this general case, there is not much to do.
However, if we somehow knew that |f(z)| < N for all z such that |z| < X for a
certain bound X, we could easily find roots zy by simply solving f(xg) = 0 over
Z using a standard root finding algorithm.This seems too simple to be efficient.
Indeed, there are two major drawbacks of this technique:

1. How can we actually know that such a bound X exists and how can we
estimate the value of this bound? More importantly, how can we check the
inequation |f(x)| < N for an arbitrary polynomial f(z) and define the bound
X for which this inequality holds ?

2. How possible is the satisfaction of the above inequality and even if it is
satisfied for a bound X is that bound ”large” enough to recover a significant
percentage of the solutions?

We will now try to handle both inconveniences.

1. Instead of searching for a bound X such that |f(z¢)| < N for every modular
solution xg with |zo| < X, we can use a stricter condition. Suppose for exam-
ple that we can find a bound X such that Z?:o | fizh| < N. This condition
is stricter in that it is satisfied by at most all the polynomials that satisfy
the initial condition |f(zo)| < N for all zg such that |z9| < X. Indeed, the
condition Z?ZO |fizh] < N implies that

d d
[f@o)l =1 fiwhl <D Ifiah| < N
1=1 1=0

where the first inequality stems from the extended triangle inequality.
But ch'lzo |fizh| < N is still difficult to test. We can further replace it with
the even stricter condition

: N
| fizg| < i1 forall : =0,1,...,d.
This can in turn be replaced by the stricter condition

i N
or;lfgd'fixo‘ Sat1
For the need of this thesis we will mainly use the euclidean norm. The follow-
ing theorem gives a sufficient condition the euclidean norm of the coefficient
vector || f(zX)]| should satisfy in order to make the transformation of a mod-
ular equation to an analogous (in terms of ”small solutions”) equation over
the integers possible.

Lemma 3.2.2 (Howgrave-Graham for Univariate Polynomials). Let
h(x) € Z[z] be a univariate polynomial with at most w monomials. Suppose
in addition that h satisfies the following two conditions:
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(a) h(zg) = 0(mod N) where |zy| < X and
(b) [[A(zX)[| < N/v/w.
Then h(z¢) = 0 holds over the integers.
Proof.
. 4 Tl .
— el < ) — . 7‘ XZ
(o) !;hzwo! < zi:\hzfﬂo ZZ: Ihil | 5

< Y X < Valh@@X)]| < N.
3

The last but one inequality is a direct use of Cauchy-Schwarz inequality. O

The above lemma gives a condition that may not be that tight (there may
be polynomials A that do not satisfy the conditions of the lemma, but still
satsify |h(zo)| < N) but it is easily testable and will thus be used in the rest
of the analysis.

2. As far as the second inconvenience is concerned, it is clear that in order to ap-
ply the above lemma we have to find a bound X such that || f(zX)|| < N/y/w.
But how ”large” such a bound can be? Can we do anything to push the bound
X to values that are sufficiently large? The answer, interestingly, is " YES”.
The key idea is that instead of trying to find solutions to the polynomial f,
we can construct new polynomials g which are root containers of f and in
addition, satisfy ||g(zX)|| < N/y/w for bounds X that are significantly larger
than the bounds obtained by the corresponding condition for f. In the fol-
lowing paragraph we present gradually the construction of such polynomials
and prove the bounds achieved for each construction.

Early Constructions

For the rest of the analysis we will assume wlog that f is monic, that is the
coefficient of ¢ is 1. We can always transform f to such a form by multiplying
it with f;l mod N (if (fg, N) # 1 then we have found a non trivial factor of N
which significantly simplifies things). In addition, the basis vectors of a lattice will
occasionally be thought as row vectors instead of column vectors. Since we are
only interested in the determinant of the lattice used , this modification does not
affect the subsequent analysis at all.

In order to construct a polynomial g that is a root container of f, we first consider
the following set of polynomials:

Z, ={N,Nz,Nz?, .. Nz¢7! f(x)}.

It is important to notice here that any integer combination of these polynomials has
at least all the roots of f modulo N. That is, if zg satisfies f(zo) = 0 modulo N,
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then g(z¢) = 0 modulo N for every g that is a linear combination of the polynomials
in Z;. Hence, it suffices to find an integer combination of those polynomials that
satisfies property (b) in lemma 3.2.2. Here is the point where lattices and LLL
algorithm come to the play. Consider the following lattice whose columns are the
coefficient vectors of the polynomials in 2.

‘N 0 0 fo
0 XN - 0 Xfi
Li=1]0 o0 :

Xd-1p Xd—lfd_l

: : ]
[0 0 X d (d+1)x(d+1)

Notice that the ith row i = 0, 1, ..., d corresponds to the coefficient of z* multiplied
by X'.Indeed, consider an arbitrary integer linear combination ¢ = [cg, ¢1, ..., cd]T
of the column vectors of the above matrix. Then we have that

N 0 fo

0 XN X f1
L1C=cg - Ol 4+¢,-] 0 + ... tcq :

: 3 X fq

0 0 Xd

= [C()N +cafo,c1 XN +¢egfr1 X, .., CdXd]T.
The last vector corresponds to the coefficient vector of the polynomial
h(z) = (coN + cqfo) + (AN + cqfi)x + ... + cqr?.

Clearly h is a root container of f modulo N. The order of the column vectors in
matrix £; is chosen in such a way so that the resulting matrix is upper triangular.
We will now use the results of LLL algorithm to determine the upper bound for
X. By theorem 3.1.1 we can find in polynomial time a vector b € £; such that

]| < 27 - det(L1).

But this vector is,by construction of the lattice, the coefficient vector of a polyno-
mial h(zX). Using the above inequality we know that LLL returns a vector the
corresponding polynomial of which satisfies:

d+1-1

h(zX)|| < 257 - det(Ly) T,

In order to apply lemma 3.2.2 on h(x) and recover xy such that h(xzg) = 0 over
the integers, we need to solve

N
d+1

[z X)] <
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with respect to X. Combining the above two inequalities, a sufficient condition is

N
Vd+1

In order to proceed we now need to compute the determinant of £;. This compu-
tation is straightforward since £y is upper triangular and thus the determinant is

simply the product of the diagonal elements of £;. It is not difficult to see that
d(d+1)

det(L1) = N?X 2 which finally gives that

9 det (L) <

d N 2
21 . (NIX 2 1 <L = X < k()N a@+D
( )T <~ = X < k()
where k(d) is a small enough constant that depends only on d.

Let us summarize what we have achieved so far. We have proved that given
a univariate modular equation f(z) = 0(mod N) we can find in polynomial time

all the roots z such that f(zo) = 0(mod N) and |zo| < k(d)N 7@ The method
described above illustrates the basic underlying idea.

The question now is ”Can we do any better?” that is can we obtain a larger
bound for X7?The answer is yes and the main idea lies in the lattice that pro-
duces the root container polynomials. To see that consider the extended set of
polynomials

Zy={N,Nz,Nz? .. Nz¢'} U{f(x),xf(x), Lzt (2)).

Notice that for any integer combination g of these polynomials, the roots of g
contain all the roots of f. Consider now the lattice whose columns are the coefficient
vectors of the above polynomials.

(N 0 0 0 fo 0 e 0 i
0 XN . : Xfo :
: 0 0 : : 0
r Xd-1pn Xd_lfd—l Xd—lfo
2 =
0 x4 Xfq
Xd+1 :
: : .. .. .. . X2d_2fd—1
0 0 - . 0 0 0 X2d71

I 4 (2d)x (2d)

Using arguments exactly similar to those used for the basis matrix £ the sufficient
condition in order to apply lemma 3.2.2 becomes

2d

25T . det(L2)2 <

S
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2d(2d—1)

where det(Ls) = NX ™~ 2 . It is not difficult to see that the above condition
gives

X < |(d)Nz—T

where here again [(d) is a ”small” enough constant that depends only on d. The
column vectors added to £; to form £, have resulted to a significantly larger bound
X for the range of small solutions we can find.

Remark 3.2.3. It is important to note here that the polynomials h(x) constructed
in either case as a linear combination of the polynomials in Z in order to apply
lemma 3.2.2, may have more roots in Z than f(z) modulo N. However the
construction guarantees that if f(x) has a ”small” root ¢ modulo N, then this is
certainly a root over all the integers for h(z). The inverse is not always true. In
order to determine the "small” roots of the modular equation f(x) = 0(mod N),
we first have to solve the equation h(z) = 0 over the integers and then check which
of those roots also satify f(z) = 0(mod N).

Remark 3.2.4. The above methods also give answer to the following purely math-
ematic question:how many roots modulo N can a polynomial of degree d have in
the range = € {—X,...,0, ..., X }7 Since the number of roots of h over the integers
is at least as large as the number of ”small” roots of f modulo /V and A has at most
d integer roots (where d is the degree of the polynomial k), the above methods give
an upper bound on the number of ”small” roots of f modulo N.Our first approach
(where we used only polynomials from the set Z; ) says that there are at most d

2
integer roots zg such that |zo| < ¢;(d) N 4@+0) while the second approach (where we
used polynomials from the set Z5 ) says that there are at most 2d — 1 integer roots

zo (notice that 2d is the dimension of lattice L£o) such that |zg| < CQ(d)Nz‘i%l.

Coppersmith’s Contribution

In this paragraph we discuss further improvements to the exponent of the bound
X. The main advancement over the previous results came in 1996, when Copper-
smith [10, 9] increased the bound to N Q. Coppersmith managed to prove a larger
bound by incorporating the following two key ideas:

1. He further enriched the set of polynomials Z increasing at the same time the
dimension of the lattice that produces polynomials g that are root containers
of f. In particular, he used the following set of polynomials:

Zy = {N" 71 f(2)2i0 <i< d,0 < j <h}.

2. He considered linear integer combinations of the above vectors modulo N#~1
instead of modulo /N. Notice that the construction of Zj, is such that for any
z with f(z) = 0(mod N), any integer combination g of these polynomials
satisfies g(x) = 0(mod N"~1).
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Remark 3.2.5. The analysis presented above does not exactly follow the Cop-
persmith’s initial presentation [10, 9].Initially , Coppersmith was working with an
unnatural space and thus his presentation was difficult both to follow and to be
transfered to practical implementations. Coppersmith did not express the condi-
tions that lead to the bound X in terms of polynomial arithmetic. The convenient
formulation presented in this section and followed in the rest of this thesis is due to
Howgrave-Graham [23] who revisited and simplified the analysis of Coppersmith’s
method in 1997. In fact, all current uses of Coppersmith’s univariate modular
method use Howgrave-Graham’s approach.In this thesis we will refer to Copper-
smith by keeping in mind that we actually use Howgrave-Graham’s approach which
is based on Coppersmith’s underlying idea.

We will now prove Coppersmith’s main result for univariate polynomial mod-
ular equations. In fact, we will present a generalization of Coppersmith’s theorem
given by May [28] in 2004 as well as the detailed proof (found in [26] (p.34-37) or
in the full version of [28]). We first need the following lemma.

Lemma 3.2.6 (Generalized Howgrave-Graham for Univariate Modular
Polynomials). Let f(z) € Z[z]| be a univariate polynomial with at most w mono-
mials.Further let m be a positive integer. Suppose that

1. f(zo) = 0(modb™) where |zg| < X

2. ||f (X)) < V.

Then f(zo) = 0 holds over the integers.

Proof. The proof is completely analogous to the proof of lemma 3.2.2 and is
therefore omitted. O

Theorem 3.2.7 (Coppersmith Generalized Theorem for Univariate Mod-
ular Equations)

Let N be an integer of unknown factorization, which has a divisor b > NB. Fur-
thermore, let f(x) be a univariate, monic polynomial of degree 6. Then we can find
all solutions o for the equation f(x) = 0(modb) with

182
|II}0| S §N 5 €
in time polynomial in (log N, 6, %)

2
Proof. We first define the bound X := %N G We apply Coppersmith’s approach
as presented above. We first need to build the lattice. We fix a number m such

that
(5]
m2>maxrs —, < (-

50 s (3.3)
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We then choose the set Z of polynomials that will form the basis of our lattice.
We include the following polynomials in Z

N™ aN™ Z2N™ o gfTINm
Nm—lf :L‘Nm_lf ZL’QNm_lf $5_1Nm_1f
Nm72f2 mefoQ x2Nm72f2 . x(ilemefQ
.]mefl :%,mefl :%,2me71 Q‘%,élefmfll

The above polynomials are dm in total with increasing degrees (from 0 to dm —1).
We also include the following polynomials

fm7 xf’m7 fom7 T xtilem-

t is a parameter to be optimized as a function of m. We write the above polynomials
in the following more compact form.

gij(x) = xjNifm_i(x) fori=0,...m—1,7=0,...,0 — 1
hi(z) = 2" f™(z) fori=0,...,t—1.

We now construct the lattice £ the rows of which are the coefficient vectors of
gij(xX) and h;(zX). Note first that, unlike the previous constructions, the co-

efficient vectors form the rows of the lattice instead of the columns. ThlS should
not cause any confusion since we are only interested in the determinant of the lat-

tice as we have already mentioned. (A description using columns would not affect
the method at all. The basis of the matrix would be the transpose matrix of the
matrix given below.We use rows only to be accordant with the established bibli-
ography).Second,by a simple inspection of the polynomials, it is easy to observe
that we can order the polynomials g; ;(¢X) and h;(2X) in strictly increasing order
of their degrees k. Hence we can write the basis B of the lattice £ as a lower
triangular matrix. The dimension of the lattice will be w = dm + t. The basis B
can be then written as the following (w x w) matrix.

N™
N™X
NmXS—l

? ? ? ? NXxOm=3

? ? ? ? NXxOdm—i+1

? ? ? ? Nxsm—1

? ? ? ? ? ? ? ? xom

? ? ? ? ? ? ? ? xdm+1

? ? ? ? ? ? ? . ?  xom+t—1

Notice that the above matrix is lower triangular. This means that all its entries
l;j such that j > 4 are zero. An element /;; such that j < ¢ may or may not be
zero. We have used the symbol ”7” to denote a possibly nonzero entry whose value
doesn’t affect the calculation of the determinant.
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The determinant of the above matrix can now be easily calculated by multi-
plying all the diagonal entries. We then have

det(,C) _ N%(Sm(m—&-l)X%w(w—l)

We will now optimize the value ¢{. This will also optimize the value w = dm + ¢,
that is the dimension of the lattice basis. Remember our initial goal. We want to
construct a lattice such that the following inequation is satisfied for a bound X

that is as large as possible.
m

b
1/ (X)) < NS

A sufficient condition for the above inequation is as we have already seen
1 @X)]| < 257 det (L)% < 2 = det(c) < T o= 2t572
< = e =z

The above inequality can be further simplified if we neglect the terms that only
depend on w. This is not a groundless simplification as b > N? and N is very large
(in the order of 21990) whereas the lattice dimension w is negligible compared to N
(in the order of 100). So we can write the above condition as det(L) < b™¥. Suppose
now that we add at the end of the above matrix a new row vector corresponding
to a polynomial h;(z).This increases the dimension of the matrix by 1 and the
determinant by a factor of X*'~1 (notice that the vectors corresponding to h;(z)
only add X terms to the determinant and that the the diagonal element of the last
row will by construction be X'~ where ' is the new dimension of the lattice.).
Consider now the condition det(£) < b™“. It is not difficult to see that if the
contribution to the determinant of the element added to the lattice is less than
b then this condition will yield a bound X that is larger than the respective
bound for a smaller dimension w. This observation gives as a condition for the
optimization of . As long as the diagonal elements of the matrix corresponding to
the polynomials h;(z), i = 0,1,...,¢ — 1 do not grow larger than b™, then we can
benefit by increasing the bound X. Observe that X0 < X0+l <« < Xom+t—1
This leads us to the following sufficient condition for the dimension of the lattice.

Xl < pm,

2
Since by hypothesis X“~! < NGFE=9@=1 and b > NP this condition is satisfied
for the choice

w< —m.

Thus the best value for w would be w = Fm.
According to 3.3 we can choose m as the maximum of{g—:, %} . This gives the

following bound for the lattice dimension w.

w —mam{ﬁﬁ}.
€
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Remark 3.2.8. Notice that the lattice dimension is polynomial in % In addition,
the bit-size of the entries in B can be bounded by

(0 +m)logN < (6 + w)logN
which means that LLL operates on basis B in time polynomial in logN, J and %

In the rest of the proof we show that LLL finds a vector which is sufficiently
short and yields a sufficiently large bound X. In order to bound X by applying
Lemma 3.2.6 we use the inequality

m

1 @X)|| < 25T det(£)s < 2-.
w

Plugging in the value of the determinant and taking int consideration that b > N7
the above inequality becomes

dm(m+1) w—1 w—1 1
T X'z <271 w INPT o

1 1 28m _ dm(m+1)
X <2 3w eI Ne-1 w1

1 logw
Now notice that for w > 7w «-1 = 2_731 > 27%. Therefore the above condition

simplifies to
2B8m _ dm(m+1)

X < le—l ww—1) |
2

2

We have chosen X = %N % =¢. Hence it only remains to show that
32 _ 26m dm(m +1)
— —€ — .
) Tw-1 ww-1)

But we know that
26m  om(m+1) >w—1 <25m _5m(m—|—1)>

w—1 ww-1) ~ w w—1  ww-1)
28m  om2(1+1L1) 2 g2 1, p?
= — m- —9- — ) > — —

w w? 2(5 5(1+m)_5 ‘

where the in the last equality we have used that w = %m and the last inequality

holds because of the choice of m , m > g—j we have made in 3.3. He have proved
the bound. The fact that we can find all solutions xg such that |zg] < X in
time polynomial in (log N, d, %) is an immediate result of remark 3.2.8 and the
polynomial running time of LLL. O

Below we give two results that stem immediately from the previous theorem.
We choose to state them here in order to highlight their importance. The second
result is the initial result presented by Coppersmith [10] and is therefore stated as
a theorem.
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Corollary 3.2.9. Let N be an integer of unknown factorization, which has a
divisor b > N#. Furthermore, let f(x) be a univariate, monic polynomial of degree
0 and cy be a function that is upper-bounded by a polynomial in log N. Then we
can find all solutions zg for the equation f(z) = 0(modb) with

ﬂQ
‘CL‘()’ < C]\]]VT
in time polynomial in (log N, ¢).

Proof. We apply theorem 3.2.7 with parameter choice € = @.The bound X for
the absolute value of the solutions will then be:

2 2 2 2
EN%_loglN — EN%N_IOQN — EN’BT 11 — EN%
2 2 2 Noen 4
since —4— = % In addition, theorem 3.2.7 says that we can find all the solutions
Nlog N

xo such that |z| < X in time polynomial in (log N,d,1). For e = @ this means

that we can find all the solutions z( in time polynomial in (log N,d). In order to
2

find all roots that are the size at most ¢y /N ¢ in absolute value, we divide the
. 82 8% . . . 82

interval [—cyN 5 ,cy N 5 | into 4cy subintervals of size %NT centered at some z;.
Then in order to find all the roots in the above interval, we just have to apply the
method described in theorem 3.2.7 to the polynomials f(z — z;) and output the
roots in each subinterval. O

Theorem 3.2.10 (Coppersmith Theorem for Univariate Modular Equa-
tions)

Let N be an integer of unknown factorization. Furthermore, let f(x) be a uni-
variate, monic polynomial of degree 6. Then we can find all solutions xg for the
equation f(x) = 0(mod N) with

lwo| < N
in time polynomial in (log N, ¢).

Proof. Immediate application of corollary 3.2.9 where ¢y =1 and b= N. O

Remark 3.2.11. A 9uestion that arises naturally is: Can we improve the asymp-
totic bound X = Nd?In [12] Coppersmith tries to give an answer. Let N = ¢3
where ¢ is a prime and consider p(z) = 23 + Dgz? + E¢’r with D, E € Z.If
is any multiple of ¢, then clearly p(xzg) = 0(mod N). Suppose now that we can
achieve a bound X = N3+¢. Then the number of ”small” roots is given by the
inequation

o] < X = |kq| < N3N® = gN® = |k| < N°

which gives exponentially many solutions (2N€). We cannot hope to find these solu-
tions using the above lattice techniques since we would need lattices of exponential
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dimension in order to construct polynomials A that would have exponentially many
solutions (remember that h has at least as many roots over Z as f modulo N and
that the number of integer roots of h is bounded by its degree which is equal
to the dimension of the lattice that produces h). This observation gives cause for
pessimism to our attempt to further improve the bound X using lattice techniques.

3.2.2 Extension to More than One Variables

A very natural question is whether one can extend Coppersmith’s technique to
the case of multivariate modular polynomial equations. More formally let f(Z) =
f(x1,zo,...,2) € Zlxy,...,xt] be a multivariate polynomial in k variables with
integer coefficients. We are interested in finding solutions ¥ = (y1,...,yx) to the
following modular equation

F@) = flar,m2,mp) = D iy, 0@ 2 =0 (mod N). (3.4)

$15ee0lk

In principle there is no problem in applying Coppersmith’s technique from the
previous section. That is, we can construct from f(zy,zo,...,25) a polynomial
h(z1, 2, ..., 1) with the same "small” roots over the integers and not just modulo
N. The following lemma due to Howgrave-Graham,is a direct generalization of
lemma 3.2.2 to the multivariate case and states explicitly the conditions for the
upper bounds X7, Xo, ..., X}, under which we can achieve the transformation of the
modular equation to an equation over the integers.

Lemma 3.2.12 (Howgrave-Graham for Multivariate Integer Polynomi-
als). Let f(z1,...,xx) € Z]x1,...,x%] be a polynomial in k variables with at most w
monomials and let m be a positive integer. Suppose in addition that:

1. f(z1,...,xk) = 0(mod N™) where |z;| < X;, i=1,...,k

2. If (@1 X, s 2 Xp) | < 2

Then f(x1,...,2x) = 0 holds over the integers.

Proof. The proof is completely analogous to the proof of lemma 3.2.2 and is
therefore omitted. ]

Again here the goal is to find the maximum bounds X1, X, ..., X} so that all
solutions ¥ = (x1,...,x) such that f(z1,...,xx) = 0(mod N™) with |z;| < X; can
be efficiently found.

Everything seems to work in a completely similar way to the univariate case.
The difference here lies to the fact that even if we manage to construct a polynomial
h(z1, ..., ) with a small root over the integers, we still have to extract the integer
roots of h(z1, ..., z).In contrast to the univariate case, there cannot be a polynomial
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algorithm that solves the above problem for the general multivariate case. To see
that, consider the following example

flz,y) =x+ay, acZ.

This polynomial has infinitely many integer solutions and thus we cannot recover
them in polynomial time. In contrast, if f is univariate, the fundamental theorem
of algebra says that the number of its integer solutions is bounded by its degree.

The key idea in order to overpass this problem is the following:
Take the first k coefficient vectors returned by LLL Algorithm that correspond to
k polynomials instead of considering only the first vector. Then we can solve the
system of k£ polynomials and compute their common roots.

Unfortunately,as we will later explain , this approach does not always lead to
the recovery of the common roots.

Below,we describe in brief the method for the multivariate case and state the
conditions under which we can recover the small roots for the equation f(zy, ..., zx) =
0(mod N™).Our presentation follows the presentation in [22].

Constructing the Lattice and Obtaining the Conditions

Let m and d be positive integers. We define the polynomials:

le,---,Vk,j(f) = f7"1,~~-77‘k,j(x17 7xk) € Z[l‘l, '~~7xk}

Frivig (£) = NI gk (f(Z)) (3.5)

where 0 < 5 < m and r; > 0 for ¢« = 1,...,k are integers.Notice that by con-
struction,if ¢ is a solution of f(Z) = 0(mod N) then ¥ is a root of f . ., (%)
modulo N™ for all valid 57 and r;. Moreover, for any fixed j, the polynomials of
the form 3.5 with different (rq,...,7;) values are linearly independent. So we can
construct a lattice £ of dimension w and basis matrix B whose row vectors will be
the coefficient vectors of the above polynomials. Thus each row of £ will be of the
form

fm,...,rk,j(xley ceey kak)

If we choose the values (71, ..., 7%, j) in a "convenient” way then we can construct a
low triangular basis matrix B which greatly simplifies the computation of the lattice
determinant. Which choice is convenient depends on the particular structure of the
polynomial f(z1,...,zg).

After constructing the lattice £, we run the LLL Algorithm with input the
basis B and consider k linearly independent vectors in £ returned by LLL. These
vectors correspond to k linearly independent polynomials p;(#) and by theorem
3.1.1 they satisfy

lps(x1 X1, ..., 2 Xg)|| < c(i,w)det(ﬁ)w—liH, fori=1,..k
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where ¢(i,w) is a function that depends only on 7 and w. We now need a condition
in order to detemine the bounds X;, 1 = 1,2, ..., k. A sufficient condition in order
to be able to apply lemma 3.2.12 on each of the above polynomials is the following

m

k(1 X1, ooy 2 X) || < ek, w)det(L) o= < Nt (3.6)

Notice here that the fact that ||p;(z1X1, ..., 2x Xg)|| < c(’i,w)det(ﬁ)w*#w1 along with
the fact that the terms c(7,w) are negligible compared to the term N o= implies
that ||p;(21X1, ..., 2 Xk) || < c(k:,w)det(ﬁ)w%“l is true whenever ||pg (z1X1, ..., 2 Xg)|| <
c(k,w)det(,ﬁ)w—éfw1 and hence condition 3.6 is indeed sufficient. The bounds X;
can be calculated more easily if we ignore the terms y/w and c¢(k,w) (which are

negligible compared to alet(ﬁ)w—}H1 and N™) in condition 3.6.

Recovering the Roots

After determining the bounds X; via condition 3.6, we end up with k polyno-
mials p;, i =1,...,k some of the roots of which are equal to the "small” (by small
we mean the roots such that |z;| < X; for the bounds X; derived from 3.6) roots
of f(x1,...,xk) = 0(mod N™).

In order to recover the tuples (z1,x2, ..., xx) which correspond to small solutions
(|z;] < X;) of the initial multivariate modular equation, we have to solve the system
of k£ non-linear equations in k variables.So far this method seems to work according
to the univariate case. The major (theoretical) drawback of this approach is that
there is no known method to solve the above non-linear system.

We noted before that the polynomials that correspond to the coefficient vectors
returned by LLL are linearly independent. Unfortunately this condition is not
sufficient to guarantee that we can recover the common roots (z1,...,2x) of the
system of k£ equations, since the equations are non linear. Here, apart from linear
indpendence, we need algebraic independence. This means that there should be no
pair of polynomials (p;,p;) such that p;(z1,...,2x) = s(z1, ..., vx)pj (21, ..., z) for
an integer polynomial s(z1, ..., zx). In cases where the polynomials are algebraically
independent we can recover the common solutions (z1, 2, ..., zx) using resultant
computations. Below we describe the procedure in brief.

Let p1,...,pr be k polynomials in the variables 1, ..., x;. We first compute the
k — 1 resultants

g1 = r€sg, (p1,P2), 92 = €S2, (P2,P3), - - -, Gh—1 = T€Se, (Pk—1,Pk)

which are (k — 1)-variate polynomials in the variables zg, ..., zx. The elimination
of variable z leads to a system of k — 1 non-linear equations in k — 1 variables.
If none of the resultants g1, g2, ..., g1 1s the zero polynomial, we can keep on by
eliminating xs:

hl = TESgy (g17 92)7 h2 = TESgy (927 g3)7 B hk*? =Te€Sy, (gk?727 gk*l)'
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We can proceed in this way as long as all the resultants in each step are nonzero
polynomials. At the last step we will have eliminated all but the last variable zy.
This means that the last resultant is a univariate polynomial in zj and can be
therefore be solved using standard root finding algorithms.

We summarize Coppersmith’s method for multivariate modular polynomial
equations:

e We first construct k different k-variate polynomials py,po, ..., pr with some
common small roots.This construction as described above, is analogous to
the univariate case.

e We then try to extract the common roots using resultant computations.

e If a resultant produced during the above step equals the zero polynomial,
then the procedure fails.Otherwise we find the roots z; of the last resultant
and by backsolving for all possible roots obtained so far, we finally get all
possible k-tuples (z1, ..., ) that are the roots of the initial system of k& non-
linear equations. We then have to check each of these tuples and accept only
those that satsify f(z1,...,zr) = 0(mod N™).

Remark 3.2.13. The negative aspects of Cppersmith’s method for solving multi-
variate modular equations should by no means be overemphasized. Although the
above method is heuristic rather than provable, it has found a large number of appli-
cations in Crytpography.The experiments carried out so far by various researchers
show that the resultant computations are in many situations a very useful method
in order to extract roots of multivariate polynomials over the integers. We will
demonstrate the use of the above method in a concrete cryptanalytic application
later in the thesis.

Remark 3.2.14. This method will be frequently refered to as the resultant heuris-
tic. The fact that the resultant heuristic is very useful in practice enables us to fre-
quently make the assumption that the heuristic always works and therefore state
the consequent results as theorems. However this assumption, when made, will be
explicitly stated as such throughout this thesis.

In light of this remark, it would be very interesting if we could find explicit
conditions under which Coppersmith’s method for the multivariate case succeeds
to find small roots. Till now, no such conditions are known and therefore the
problem of finding a provable method that leads to explicit conditions remains
open.

3.3 Integer Polynomial Equations

In the previous section we presented a method for finding small roots to modu-
lar equations.More specifically,we were given a polynomial f(Z) = f(z1,z2, ..., Zg)
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where k € Z such that £ > 1 and a modulus /N and we were interested in finding
small root-vectors 2 € Z* such that f(27p) = 0(mod N).

In this section we are interested in small roots over the integers and not modulo
N. We are given a polynomial f(Z) = f(z1, ..., zx) with integer coefficients and we
are searching for small root-vectors, that is vectors £y € Z* such that f(2p) = 0
.Using a standard root finding algorithm, we can find all integers roots (and not
only the small ones) in the univariate case. However no such algorithm is known
for the case where k > 2. Instead, we can find small integer roots of multivariate
polynomials using lattice reduction techniques similar to the ones presented in the
previous section. Here we present in detail a method for finding small roots to
bivariate integer equations. The bivariate case is of great importance since many
problems in cryptography can be reduced to the problem of finding a small solution
to a bivariate integer equation.At the end of this subsection we sketch in brief the
extension of the bivariate method to the k-variate case where k > 3.

3.3.1 Bivariate Case

In 1996, Coppersmith [9, 11] proposed a method for finding small roots to bi-
variate integer polynomials. This method was based on lattice reduction techniques
too, but his approach (as in the univariate case) was difficult to understand. In
2004, Coron [14] presented a simpler approach to Coppersmith’s method. This
simplification is analogous to the simplification brought by Howgrave-Graham to
Coppersmith’s method for finding small roots to univariate modular equations.Here
we will state both Coppersmith’s and Coron’s result (which is slightly weaker) and
present the proof according to Coron’s approach.

Let us first introduce the problem a little more formally. Consider the following
polynomial in two variables with integer coefficients:

pla,y) = pij- o'y
i’j

We are interested in finding all the integer pairs (xg,yo) such that p(zo,y0) = 0. In
general there is no efficient algorithm that finds such pairs. However, Coppersmith
[9] show that one can efficiently find small root pairs of the equation p(z,y) = 0.
More specifically Coppersmith proves the following theorem.

Theorem 3.3.1 (Coppersmith’s Theorem for Bivariate Integer Equations)
Let p(x,y) be an irreducible ' polynomial in two variables over Z, of mazimum
degree 0 in each variable separately. Let X, Y be upper bounds on the desired integer

In general, a polynomial is said to be irreducible if it cannot be factorized into the
product of two polynomials of lesser degree.

For bivariate polynomials, a bivariate polynomial f(z,y) with integer coefficients is
irreducible if there are no integer (bivariate) polynomials fi(z,y), f2(z,y) with f1(z,y) # 1

and fo(z,y) # 1 such that f(z,y) := fi(z,y) - fa(z,y).
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solution (g, yo).Let W be the absolute value of the largest entry in the coefficient
vector of p(xX,yY)that is W = max; j |p;;|XY7. If XY < W%} then in time
polynomial in logW and 2° we can find all integer pairs (xo, o) such that p(zg, yo) =
0, |zo] <X and |yo| <Y.

Coppersmith’s proof for the above case is quite difficult to understand. What
makes his analysis harder, is the fact that the lattices used throughout the analysis
are not full rank , fact that greatly complicates the calculation of the determinant
and the derivation of the upper bounds on the roots.

As we mentioned, Coron [14] presented a simpler approach for finding small
roots to bivariate integer polynomials. Coron uses full rank lattices that admit a
triangular basis. His approach enjoys two major advantages:

e The conditions that yield the bounds X,Y on the solutions can be easily
derived independently of the specific shape of the polynomial p and

o [t is straightforward to heuristically extend this approach to more than two
variables.

However, Coron’s approach brings slightly weaker results than Coppegsmith’s, since
polynomial time execution is guaranteed only for the case XY < W35~ ¢ for a fixed
e > 0 which is apparently a weaker condition. We first illustrate Coron’s method
with an example (also found in [14]).

Method illustration

Consider the polynomial
p(z,y) =a+br+cy+dey, a,d#0.

Assume that p(z,y) is irreducible and has a small root (x,yo) which we want

to recover.We are interested in pairs (zg,yp) such that |xg] < X and |yo| <

Y for some bounds X,Y that we will soon determine. W is defined as W =
maz{|al, [b| X, [cY,[d|XY}. Finally, as usual.for the polynomial h(z,y) = 3, ; hijxty! we
define

(e, )17 = kil and [h(z, y)lls = ma g
irj ’

This implies that an equivalent definition for W is
W = |p(zX, yY)| - (3.7)
We now fix a number n such that:

W<n<2-W and gecd(n,a)=1. (3.8)
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Consider also the polynomials:

qoo(x,y) = ap(z,y)modn =1+ bz + y + d'zy
q10(z,y) = nz, qo1(v,y) = ny and qu1(z,y) = nzy.

It is important to notice that ¢;;(zo,yo) = 0 (modn) for each of the above ¢;;.This
means that each linear integer combination of the above polynomials yields a poly-
nomial h that is a root container of p modulo n. Consider the lattice £ generated by
all linear integer combination of the coefficient vectors of the above polynomials. A
basis B for the lattice is obviously the following (here again the coefficient vectors
form the rows of B).
1 VX Y dXY
nX
B= nY
nXY

We would like to find a short linear combination of the above polynomials in order
to be able to apply lemma 3.2.12 for the special case where k = 2.Applying LLL
Algorithm with input basis B, theorem 3.1.1 guarantees an ouput B’ such that
|b1]| < 24det(B)1. Here, it is trivial to see that det(B) = n3X2Y2. Thus LLL
returns a polynomial h such that

N[

Ih(zX,yY)| < 2101 (XY)2 < 201(XY)2  and h(zo,yo) = 0 (modn). (3.9)

1
Suppose now that XY < %. This along with the above inequality means that
n
Ih(zX,yY)]| < 5 <W = p(zX, yY) o < [lp(zX, yY ). (3.10)

Notice first that by the construction of the lattice £, h is of the same shape
as p which means that all its monomials have one of the forms ¢, cx,cy or cry
where ¢ is an integer coefficient (not the same for each monomial).In addition p
was assumed irreducible. This means that A is a multiple of p only if there exist an
integer ¢ such that h(x,y) = tp(x,y). But inequality 3.10 overrules this possibility
too since it would imply that ||h(zX,yY)| = |t|||lp(zX,yY)| > |[p(zX,yY)| which
yields a contradiction.Finally notice that the conditions ||h(zX,yY)|| < § and
h(zo,yo0) = 0 (modn) imply that h(zo,yo) = 0 over the integers.

Let us now summarize the above observations. We have ended up with two
polynomials h,p that are provably algebraically independent and that have the
same small integer roots. We can therefore compute the nonzero resultant

Q(x) = resy(h(z,y),p(z,y))
and recover a root xg such that Q(zp) = 0 using any standard root finding algo-
rithm. A root yo can then be recovered by solving p(zo,y) = 0. If XY < mf—j then
XY < % since W < n. Thus we have showed that if XY < VIV—G% then one can find
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in polynomial time in log W all integer pairs (xg, yo) such that p(zo,yo) = 0, |zo| <
X and |yo| < Y.

Of course , the bound is weaker than the bound given in theorem 3.3.1 and
it has been proved only for a specific shape for p. Coron [14] has improved the
bound to the desired value by adding more multiples of p(z,y) and increasing the
dimension of the lattice.

Proving the Main Theorem

For his proof Coron first proves some useful lemmas.

Lemma 3.3.2. Let a(z,y), b(x,y) be two nonzero polynomials over Z of maximum
degree d separately in = and y, such that b(z,y) is a multiple of a(z,y) in Z[z,y].
Then

8l = 27 ol

Proof. Mignotte [31] proved that if f(z) and g(z) are two nonzero polynomials
over the integers such that deg f < k and f divides ¢ in Z[x] then

lgll =27 - [1fllo-

Let f(x) = a(z, %), Then it is not difficult to see that deg f < (d+1)? and that
f(z),a(z,y) have the same set of nonzero coefficient which implies that || f|lcc =
llal|oo-Similarly if we define g(z) = b(z,z%1) then [|g|| = ||b]. In addition by
construction of f(z),g(x) and by hypothesis, we get that f(x) divides g(x) in
Z[z].If we now apply Mignotte’s result the we prove the desired inequality. O

Lemma 3.3.3. Let a(x,y) and b(z,y) satisfy the same conditions as in lemma
3.3.2. Assume in addition that a(0,0) # 0 and b(z,y) is divisible by a nonzero
integer r such that ged(r,a(0,0)) = 1. Then b(x,y)is divisible by r - a(x,y) and

18] > 27 @D L r] - la] oo

Proof. Since b(z,y) is a multiple of a(z,y), there exists a polynomial ¢(x,y) such
that b(x,y) = q(z,y)a(x,y).We will show that r divides ¢(z,y). Suppose on the
contrary that r does not divide ¢(z,y) and consider the smallest (lexicographically)
pair (4, ) such that the coefficient ¢;; of the term x'y? is not divisible by . Then we
have that b;; = g;; - a(0,0) modr where b;; is the coefficient of 2'y’ (notice that the
other terms that contribute to the coefficient b;; are of the form gga(;_g)(j—;) where
the pair (k,[) is assumed smaller than (4,7) in lexicographic order and therefore
r/qx).Since a(0,0) is assumed invertible modulo r and r divides by hypothesis
every b;; this implies that ¢;; = 0 (mod r) which yields a contradiction.This means
that r divides ¢(z,y) and thus r - a(x,y) divides b(z,y). Finally the inequality is a
direct application of lemma 3.3.2 and the fact that |7 - allec = |7| - [|@]|00- O

Coron proves the following (slightly weaker) theorem
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Theorem 3.3.4

Let p(x,y) be an irreducible polynomial in two variables over Z, of mazimum degree
0 in each wvariable separately. Let X,Y be upper bounds on the desired integer
solution (xo,yo).Let W = max; j |p; ;| X Y. If for some € > 0

XY < W, (3.11)

then in time polynomial in (logW,2%) one can find all integer pairs (xo,yo) such
that p(zo,y0) = 0, |zo| < X and |yo| < Y.

Proof. We consider the case where pog # 0 and ged(pgo, XY) = 1. Coron in [14,
Appendix A] provides an approach that obviates the need of these assumptions.

We will again try to convert the integer equation to a bivariate modular equa-
tion and then obtain a new bivariate polynomial A that is algebraically independent
to p and has the same small roots over the integers. Using resultant computations,
we will then recover the common roots.For this;select an integer £ > 0 and let
w = (6 +k+1)?, w will be the dimension of the lattice constructed. Generate an
integer u such that \/w-27%-W < u < 2W and ged(poo, u) = 1. Let n = u- (XY)*.
This implies that ged(pog,n) = 1 and

Vw279 (XYW <n <2 (XY)F- W (3.12)
We define the polynomials ¢(z,y) as follows:

q(x,y) = pog - pla,y) modn =1+ > ayz'y’.
(i.4)£(0,0)

Define now the polynomials

rif XEY R =ig(n,y)  if0<i,j <k
%‘j(x,y)z{ i e ) )

r'y'n if (i,7) € [0,d + k]°\ [0, k]
Notice that for all (i,5) € [0,6 + k]* we have that g;;j(zo,40) = Omodn and
(XY)*/g;j(zX,yY). This means that if h(z,y) is a linear integer combination
of the polynomials g;;(x,y) then h(zo,y0) = Omodn and (XY)*/h(zX,yY). In
addition , by construction, h(x,y) has maximum degree é + k independently in z
and y and thus it is the sum of at most w monomials. We will now search for a
polynomial A(z,y) such that the coefficients of h(zX,yY") are small enough.This
would enable us to convert the modular equation h(z,y) = 0modn to an equation
over the integers by applying lemma 3.2.12. The condition we need in order to

apply the above lemma is
n

Vw
In addition small coefficients of ||h(z X, yY")|| would possibly mean that h(zX,yY")
is not a multiple of p(zX,yY’) which in turn implies that h(z,y) is not a multiple

Ih(zX,yY)| < (3.13)
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of p(z,y) and thus their resultant is nonzero. Let us now derive the condition
for the latter case. Suppose that h(zX,yY") is a multiple of p(zX,yY") and define
r = (XY)k. Since (XY)*/h(zX,yY), ged((XY)* poo) = 1 and pgy # 0 we can
apply lemma 3.3.3 where a(z,y) = p(zX,yY) and b(z,y) = h(xX,yY) and get

h(zX,yY)| > 27 OHHD* (XY )k W

where, as usually, W = |[p(zX,yY)||co. Thus the inversion of the above inequality
is sufficient to ensure that h(zX,yY’) is not a multiple of p(zX,yY"). Notice that
(6 + k +1)? = w which finally gives the second condition

|h(zX,yY)| < 27¢ - (XY)F - W (3.14)

We are searching for a polynomial h(z,y) that satisfies both conditions. This
requirement is reduced to the satsifaction of inequality 3.14 since this inequality
ensures the satisfaction of the inequality 3.13 too (this is obvious by inequality
3.12).

I)n order to find the polynomial h(z,y) we form the lattice £ spanned by the
polynomials ¢;;(xX,yY). Since ¢;;(x,y) have maximum degree § 4 k separately
in z,y, the polynomials obtained as linear combinations of ¢;;(zX,yY") have at
most (6 + k + 1)2 = w coefficients.Moreover there are (6 + k + 1)?> = w in total
polynomials ¢;;(z,y). This gives a full rank lattice of dimension w. If we arrange
these polynomials ”conveniently”, we can form a triangular basis matrix B of

L.Below we give such a formation for the parameter values d = k=1 .
1 x Yy Ty z? xzy y2 wy2 :czy2
XYq | XY  a10X2Y ap1XY? a;1X2Y?2
zYq XY a01 XY? | a10X?Y  a11X2Y?
Xyq XY a10X?Y @01 XY?2  a11X2%Y?
zyq XY a10X2%Y a1 XY?  a11X2Y2
z°n X2n
12yn X2Yn
y2n YZ2n
zy2n XY32n
wzyzn X2y 2p

A simple but tedious calculation shows that

S+k)(6+k+1)2+k(k+1)2
(6+k)(0+ +;) +k(k+1) n6(5+2k+2).

det(L) = (XY) (3.15)

Using LLL and theorem 3.1.1 we can find in time polynomial in (logW,w) a
nonzero polynomial h(z,y) such that

h(zX,yY)|| < 25T - det(L)s . (3.16)

In order for a polynomial h(x,y) to satisfy conditions 3.13 and 3.14 a sufficient
condition is

2°T . det(L)w <27 (XY)F . W (3.17)

Plugging in the specific value of each term, we find that inequality 3.17 is satisfied
when:

XY < 27 Pwe (3.18)
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where

_ 2(k +1)2
‘T (0+Kk)(S+k+1)2—k(k+1)2 (3.19)

6—9 (F+k+ D)1+ (5+k+1)2 (3.20)
4 (O+R)(S+E+1)2—k(k+1)2 ‘
For 6 > 1 and k > 0 we have that

2 2 Ak?
>2 % and B< 4136
e AT

If we take & = |1/e|, the above inequalities along with 3.18 give the following
condition for XY , .
XY < Wi €. 2752 13 (3.21)

We have therefore managed to construct a polynomial h(x,1y) which possesses the
two following properties:

(a) h(zo,yo) = 0 over the integers for all the pairs (zo,y0) such that |zo| <
4
X, |yo| <Y where XY < W35 .2 52 13 and

(b) it is not a multiple of the irreducible polynomial p(z,y).

This means that the resultant

Q(x) = resy(h(x,y),p(x,y))

is a nonzero polynomial such that Q(xzg) = 0. We can therefore recover a root
xo using any standard root finding algorithm. A root gy can then be recovered
by solving p(xzg,y) = 0. It is important to note here that the above algorithm
for finding small roots to bivariate integer polynomials runs in time polynomial in
(log W, 6, 1).

If we exhaustively search the high order $+ 136 bits of xg and apply the above
algorithm for each possible value, then we take the bounds given by 3.11.For a
fixed € the running time of the algorithm is polynomial in (log W, 2°). O

As the theorem states, the condition 3.11 is sufficient for the case where p(zx,y)
has maximum degree ¢ separately in = and y. Coron [14] also gives a theorem for
the case where p(z,y) has a total degree ¢ in = and y.

Theorem 3.3.5
Let p(z,y) be an irreducible polynomial in two variables over Z, of total degree §

in both variables x and y. Let X, Y be upper bounds on the desired integer solution
(zo,y0)-Let W = max; j |p; ;| X*Y7. If for some € >0

XY < Wi, (3.22)

then in time polynomial in (logW,2%) one can find all integer pairs (xo,yo) such
that p(zo,y0) = 0, |zo| < X and |yo| < Y.
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Proof. The proof is analogous to the proof of theorem 3.3.4. More details can be
found in [14, Appendix BJ. O

3.3.2 Multivariate Case

The above method can be extended to integer polynomial equations with more
than two variables much like the univariate modular equation method was extended
to handle modular equations with more than one variables. Of course, the extension
is heuristic only. In this subsection we will briefly outline the method.

Let p(x1,...,x;) € Z[x1,...,x;] be a polynomial in [ variables with degree § in
each variable. Our goal is to find all the integer solutions ¢ of p(x1, ..., 2;) = 0 such
that |y;| < X; for ¢ = 1,...,l.As in the bivariate case, we construct an integer n
such that (X1X5--- X;)¥/n for some integer k¥ > 0 and a polynomial ¢(z1, ..., ;)
such that ¢(y1,...,4) = 0 mod n and ¢(0,...,0) = 1. We then consider the lattice
L generated by all linear integer combinations of the polynomials

xyt - -x;’Xff’"l . -Xlk*”q(xle, o Xy) for 0<rq, .., <k
and the polynomials
(c1 X)) (X)) - for (11, ...,1) € [0,8 + k]'\[0, k]".

If the ranges X7, ..., X are small enough, then by using LLL, we can find polynomial
hi(x1,...,x;) such that hy(y1, ..., y;) = 0 over Z and hy(z1, ..., x;) is not a multiple of
p(z1,...,2;). However, this is not enough for the case where | > 3 as the 2 polyno-
mials Ay, p are not enough to recover the pairs (y1, ..., y;). We need at least { polyno-
mials.Hence, apart from hi(x1,...,2;) we also need to consider all the polynomials
that correspond to the smallest [ — 1 elements returned by LLL.For small enough
bounds X7, ..., X; we can obtain [ — 1 polynomials hy(z1, ..., 2;), .., hy—1(z1, .., 27)
which satisfy the following conditions:

1. hi(y1,..., ) = 0fori=1,2,....1—1.The conditions for the bounds Xj, ..., X
are obtained by applying lemma 3.2.12 to all polynomials h;(z1 X1, ..., 2;X)).
But the norms of these polynomials can be bounded by theorem 3.1.1 (in-

equality 3.1). The combination of these two theorems gives sufficient con-
ditions for the bounds Xy, ..., X|.

2. hi(x1,...,x;) is not a multiple of p(x1,...,x;) where ¢ = 1,2,....1 — 1.The
ranges X7, ..., X; that satisfy this condition are dictated by a generalization
of lemma 3.3.3.

After finding the polynomials hy(z1, ..., z7), ..., hy—1(x1, ..., ;) we use resultant com-
putations between the [ polynomials p(z1, ..., ), h1(x1, ..., x7), ..., by—1 (21, ..., 27) in
order to obtain a polynomial f(z) such that f(y;) = 0. The l-tuples (y1, ..., y;) are
then recovered by backsolving. The major drawbach of this method is that the
algebraic independence of each pair h;(z1,...,2;),p(21,...,27) for i = 1,...,1 — 1
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does not mean that h;(z1,...,2;), hj(x1,...,2;) are algebraically independent too
and thus the method does not guarantee that all the resultant computations will
lead to nonzero polynomials. This makes the method heuristic only.



Chapter 4

A Positive Lattice Application to
RSA

In 1976, Whitfield Diffie and Martin Hellman [17] introduced the idea of Public-
Key Cryprography. In their paper, Diffie and Hellman proposed the use of
different keys for encryption and decryption and introduced the notion of trapdoor
one-way functions. A trapdoor one-way function is a function that can be computed
efficiently but for which there is no efficient algorithm that inverts the function
without the knowledge of a certain trapdoor. Diffie and Hellman only presented
the properties such a function should possess and did not provide any specific
example of such a function.

One year later, in 1977, Ronald Rivest ,Adi Shamir and Leonard Adleman in
their famous paper ”A method for Obtaining Digital Signatures and Public-Key
Cryptosystems” [34] presented the well-known RSA Cryptosystem which consists
the first implementation of a trapdoor one-way function in Public-Key Cryptogra-
phy.Since then , RSA has become probably the most commonly used Cryptosystem
in applications where providing privacy and ensuring authenticity of digital data
are crucial. Some typical RSA applications include ensuring secure remote login
sessions, privacy and authenticity of email and electronic credit-card payment sys-
tems robustness.

The rest of the thesis is exclusively devoted to the RSA Cryptosystem. In
particular, we study applications that are related to lattice methods. We will use
the knowledge acquired in previous chapters to illustrate lattice-based approaches
to RSA-related problems. Throughout this and the next chapter, we will frequently
invoke results presented in the previous chapters and especially those which concern
solving modular or integer polynomial equations. It is therefore important for the
reader to fully understand the preceding material before proceeding to this chapter.

We begin this chapter by presenting an introduction to Cryptosystems and
a formal definition of RSA (section 4.1). In section 4.2 we describe a recently
discovered positive application of lattices to RSA. More specifically, we present a
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lattice-based method that establishes the deterministic polynomial time equiva-
lence between computing the RSA secret exponent d and factoring RSA modulus
N.

4.1 The RSA Cryptosystem

Before presenting RSA | we first give a formal definition of the term Cryp-
tosystem as defined in [37]. The following definition applies both to private-key
(symmetric) and to public-key (assymetric) Cryptosystems.

Definition 4.1.1 (Cryptosystem)
A cryptosystem is a five-tuple (P,C, K, E, D), where the following conditions are
satisfied:

1. P is a finite set of possible plaintexts.
2. C is a finite set of possible ciphertexts.
3. K, the keyspace, is a finite set of possible keys.

4. For each K € K, there is an encryption rule ex € £, and a corresponding
decryption rule dg € D.Each ex : P — C and dig : C — P are functions
such that di (ex(z)) = x for every plaintext element = € P.

In symmetric Cryptosytems, the key for encryption and decryption is the
same.In contrast,in public-key (assymetric) encryption systems, each entity A (usu-
ally referred to as Alice in bibliography) has a public key e and a corresponding
private key d.In secure cryptosystems, the task of computing d given e is computa-
tionally infeasible. The public key defines an encryption transformation E., while
the private key defines the associated decryption transformation Dy. An entity B
(usually referred to as Bob), wishing to send a message m to A obtains an au-
thentic copy of A’s public key e, uses the encryption transformation to produce a
ciphertext ¢ = E.(m) and transmits ¢ to A. To decrypt ¢, A applies the decryption
transformation to obtain the original message m = Dy(c).

The main objective of public-key encryption is to provide privacy and confiden-
tiality. The public key e need not be kept secret whereas the private key d is known
only to the legitimate entity. The main advantage of public key Cryptosystems
over symmetric Cryptosystems is that providing authentic public keys is generally
easier than distributing secret keys securely. However, Public-Key cryptosystems
are typically substantially slower than the symmetric ones. That’s why public-key
encryption is most commonly used in practice for the transmission of keys subse-
quently used for bulk data encryption by symmetric algorithms.

Below we describe the RSA Cryptosystem, the most widely used public-key
Cryptosystem. In algorithm 5 we present the generation of the parameters (keys)
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of RSA Cryptosystem while in algorithms 6 and 7, we present the encryption and
decryption process respectively.

Algorithm 5: RSA-Key Generation

Input: The bitsize of the modulus N.

Output: A public key (N, e) and a private key d.

begin
Step 1.Generate two large random and distinct primes p and ¢ of
about the same bitsize.
Step 2.Compute N =p-gand ¢(N)=(p—1) (¢ —1).
Step 3.Select a random integer e, 1 < e < ¢(N) such that
ged(e, o(N)) = 1.
Step 4.Use the extended Euclidean algorithm to compute the
unique integer d, 1 < d < ¢(N), such that e -d =1 (mod ¢(N)).
Step 5. A’s public key is (N, e); His private key is d.

end

The integers e and d in RSA Key Generation are called the encryption exponent
and the decryption exponent respectively while N is called the modulus.

Remark 4.1.2. In the above algorithm we have restricted the values of e, d to
the interval [1, ¢(N)]. We just mention that this is the typical values for the keys
e, d produced by the key generation process. However, each entity A can choose
e,d > ¢(N) and the encryption and decryption processes work as well provided
that e - d =1 (mod ¢(N)).

Algorithm 6: RSA Encryption

Input: Public Key (N, e) and plaintext m.

Output: Ciphertext ¢ corresponding to plaintext m.

begin
B (the sender) should do the following:
Step 1.0btain A’s authentic public key (N, e).
Step 2.Represent the message he wants to send as an integer m in
the interval [0, N — 1].
Step 3. Compute ¢ = m® (mod N).

Step 4.Send the ciphertext ¢ to A.
end

Remark 4.1.3. This is the initial definition of the RSA Cryptosystem. Since the
introduction of RSA, several variants have been presented. This variants differ
from the original RSA-Scheme in that the values of some parameters are slightly
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Algorithm 7: RSA Decryption
Input: Private Key d and ciphertext c.
Output: Plaintext m corresponding to ciphertext c.
begin
A (the receiver) should do the following:

Step 1.Use the private key d to recover m = ¢ mod N.
end

changed or in that there are some additional assumptions regarding these para-
meters. Throughout this chapter we will consider some of these variants. However,
whenever we refer to RSA we will mean the Scheme and notation presented above
unless otherwise stated.

In RSA Cryptosystem, the trapdoor one-way function is the function m — m¢
(mod N). Indeed, the above function can be easily computed but (as far as we know)
cannot be efficiently inverted without the knowledge of the trapdoor d. However,
if one knows the decryption exponent d, then one can recover the plaintext m as
follows:

Since e-d = 1 (mod ¢(IN)), there exists an integer k such that ed = 1+k¢(N).Consider
the following two cases:

(a) ged(m,p) = 1. Then by Fermat’s little theorem
mP~t =1 (modp).

If we raise both sides of this congruence to the power k(¢ — 1) and then
multiply both sides by m we get

m! TR0 = 1y (modp) = m® = m (modp).

(b) ged(m,p) = p. Then m!tE@-D=1 = m (modp) holds trivially as both
sides are equivalent 0 mod p. Thus again m® = m (modp).

Using the same arguments we can prove that
m® = m (mod gq).

Finally the fact that p,q are distinct primes (which means that ged(p,q) = 1),
along with the Chinese Remainder Theorem, yield that

m® =m (mod N).

and hence

¢ = (m®)? =m (mod N).
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4.2 Computing d < Factoring

In this section we present a positive application of lattices to the RSA Cryp-
tosystem. By the term ”"positive” we mean an appplication that establishes the
security of one RSA parameter. In particular, we present a result due to May [27]
that establishes the deterministic polynomial time equivalence between computing
the RSA secret key and Factoring.

While a successful attack against a cryptosystem is sufficient to prove that the
cryptosystem is not secure, any number of unsuccessful attacks does not suffice to
prove that the cryptosystem is in fact secure. How can we then establish that a
cryptosystem is secure? In public-Key Cryptography, where the encryption process
is based on an one-way function that is hard to invert, security could be established
if we could prove the polynomial time equivalence between the problem of recov-
ering the plaintext m from the ciphertext ¢ without the knowledge of the trapdoor
and a well-known hard problem P, believed to be computationally intractable.

It is not hard to see that RSA is directly related to the problem of factoring
the modulus /N which is considered to be hard. Indeed, once we recover p, g, we
can compute ¢(N) = (p — 1)(¢ — 1) and consequently decrypt any ciphertext ¢ by
computing the unique d € [0, ¢(N)] such that ed =1 (mod ¢(V)). Thus, we could
probably establish the security of RSA by proving that recovering the plaintext
m from the ciphertext ¢ = m® (mod N) and the public key, is polynomially time
equivalent to factoring the modulus N. This is a very important open problem in
Public-Key Cryptography.

Alternatively we can content ourselves with proving that recovering some secret
information about RSA is equivalent to factoring. For example computing the
value ¢(N) is equivalent to factoring the modulus NV, since we can both compute
#(N) = (p—1)(g — 1) if we know p, ¢ and the factorization of N if we know the
value ¢(IV) by solving the system

N=p-q
p(N)=N—-(p+q) +1

In 2004, May [27] proved that computing the RSA secret key d is deterministic
polynomial time equivalent to factoring. This result establishes the satisfaction
of a very fundamental requirement for a Public-Key Cryptosystem, namely the
hardness of recovering the secret key from the public key. Indeed, the above result
implies that an efficient ! algorithm that recovers the secret key d from the public
key e can be transformed to an efficient algorithm that factors N. This renders
the existence of efficient algorithms that recover d impossible, provided that there
is no efficient algorithm that factors V.

However, the above result does not provide any security for the public-key
cryptosystem itself since there might be other ways to break the system without

!By the word efficient we usually mean algorithms that run in time polynomial in their
input size.
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computing the secret key d.

Previous Results. The problem of the polynomial time equivalence between
computing d and factoring has been well studied in the past. Two of the most
interesting previous results are:

e Existence of probabilistic polynomial time reduction between the above prob-
lems. A proof can be found in [37, pages 197-200] and in several other sources.

e Deterministic Polynomial Time equivalence under the Extended Riemann
Hypothesis (ERH). The equivalence is directly established if we assume the
validity of the ERH and a result based on a paper by Miller [32].

The presentation is separated into two parts. We first present May’s result
for balanced p, ¢ and then a recent generalization due to Coron and May [15] for
unbalanced p, q.

4.2.1 Balanced primes p,q

In his initial paper [27], May proved the equivalence between computing d and
factoring N under the following two assumptions:

(a) ed < N? and
(b) p,q are of the same bitsize.
Assume wlog that p < ¢q. Then the second assumption implies that
p< N2 < g<2p<2NY?

which gives the following inequalities

p+q<3NY? and (4.1)
¢(N):N+1—(p+q)>g. (4.2)

The last inequality is directly derived from p + ¢ < 3N/2 < % (for N > 36).
In order to illustrate the underlying idea,we 3furst give May’s proof for a slightly
weaker theorem, where we assume that ed < Nz2.

Theorem 4.2.1
Let N = pq be the RSA-modulus, where p and g are of the same bitsize. Suppose
we know wntegers e,d such that ed > 1 and

ed = 1(mod $(N)), ed < N3,

Then N can be factored in time polynomial in its bitsize.
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Proof. In the proof we use the following notation:
e [k]:ceiling of k.
® Zy ) Ring of the invertible integers mod d(N).
In addition the relation ed =1 (mod ¢(N)) gives that
ed = k¢(N) + 1 for some k € N.

We will now show how to compute k efficiently. We know that k& = e%‘;. We define
k= e%\,—_l which is obviously an underestimation for k, that is & > [k]. In addition

we have that

— e

ed—1 ed—1_ N(ed—1)—(N—-p—qg+1)(ed—1)

EES T N T SN
_(ed=1)(p+q—1)
SN

By inequalities 4.1 and 4.2 we get that p+¢—1 < 3N'/2 and v < -2 .Hence,

SN
(ed=1)p+g-1)
P(N)N

k—Fk= < 6NT32(ed — 1). (4.3)

Since by hypothesis ed < N3 we get that k — E<6=Fk—[k] <6.

This means that we only have to try [k] 4+ for ¢ = 0, ..., 5 to find the right k. For
the right value of k, p, ¢ can be recovered by the solution of the system

N=p-q
N—|—1——6dk_1:p—|—q.

Obviously, in order to determine the correct value of k, we only need elementary
arithmetic operations on integers of size log N. The running time of the algorithm
is apparently O(log? N') which concludes the proof. O

In order to extend the above result to the case where ed < N2, May uses Cop-
persmith’s result for finding small solutions to bivariate integer equations presented
in the previous chapter. Here we restate the theorem for convenience.

Theorem 4.2.2 (Coppersmith’s Theorem for Bivariate Integer Equations)
Let f(z,y) be an irreducible polynomial in two variables over Z, of mazimum degree
0 in each wvariable separately. Let X,Y be upper bounds on the desired integer
solution (rg,vyo).Let W be the absolute value of the largest entry in the coefficient
vector of f(xzX,yY),that is W = max; j | fi ;| X'Y7. If

XY < W3

then in time polynomial in log W and 2° we can find all integer pairs (xo,1y0) such
that f(zo,y0) = 0, |zo] < X and |yo| < Y.
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May’s main result is given by the following theorem

Theorem 4.2.3
Let N = pq be the RSA-modulus, where p and g are of the same bitsize. Suppose
we know wntegers e, d with ed > 1 and

ed = 1(mod ¢(N)), ed < N2
Then N can be factored in time polynomial in its bitsize.
Proof. We again begin with the equation
ed=k-¢(N)+ 1 for some k € N. (4.4)
We define again k = edT_l which underestimates k. Using inequality 4.3 from

the proof of the previous theorem we obtain

k—k<6N 2(ed—1) < 6Nz.
Apparently,the previous method cannot work since we would have to search for
an exponentially to the bitsize of N number of possible values for k. May uses an
alternative approach.
Let us denote # = k — [k]. Then [k] is an approximation of the right value for
k up to the additive error z. In addition inequality 4.1 gives

N—¢(N)=p+q—1<3N2

This means that ¢(N) lies in the interval [N — 3N 3N ]. We divide the above
interval into 6 subintervals of length %N% with centers NV — %NUQ fori=1,...,6.
For the correct ¢ we have

2t -1
—— N (V)| <

=

N

1
N — -
| 4

Let g = (2"4_1N%] for the right 7. Then

N —g—d(N)| < {N2 415 6(N) =N —g—y

for some unknown y with |y| < %N% + 1. If we replace k and ¢(N) in equation 4.4
we get

ed—1—([k]+z)(N—-—g—y)=0. (4.5)

We define now the bivariate integer polynomial :

flay) =wy— (N —glo+[kly - [k](N —g) +ed — 1.
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Notice that f is exactly the reordering of the left side of equation 4.5.By construc-
tion, we know that (zo,y0) = (k — [k],p +¢q — 1 — g) is a root of f(z,y) over the
integers.

We will use theorem 4.2.2 to show that the root (zo,yop) can be recovered in
polynomial time. Let X = 6N2 and Y = 1N241. Then |zo| < X and |yo| < Y. Let
W denote the I norm of the coefficient vector of f(zX,yY"). Then by inspection
of the polynomial f we know that

2 — 1]\[%}) .GN2

4
— 6N —end . 2]

W>({N-g)X=(N-]

for sufficiently large N. Thus
1,1 1 3 1
<2N <3N = (3N2)3 <

All the inequalities are true for large V.

By Coppersmith’s theorem we can find the root (zg,yp) in time polynomial
in the bitsize of W and finally recover the factorization of N by the root yg =
p+qg—1—g.

In order to bound the running time of the above algorithm with respect to /V,
notice that a simple inspection of the polynomial f(z,y) gives that W < NX =
6N3/2. Since Coppersmith’s approach gives results in time polynomial in log W and
W is polynomially bounded by N, the running time of the algorithm is polynomial
in log N too. This completes the proof. O

Remark 4.2.4. Both1 previous results can be easily generalized for the case where
p + q < poly(logN)Nz. Indeed

(a) For the case where ed < N 3 we only have to examine the values [k +1, for
i=0,1,...,[2poly(logN)]| — 1 (polynomially bounded by the bitsize of N.)

(b) For the case where ed < N? we just have to divide the interval [N —

poly(logN)N%,N] into [2poly(logN)]| subintervals and run the algorithm
for each subinterval.

Remark 4.2.5. The above results can be summarized to the following interesting
(from the cryptographic point of view) result.

Theorem 4.2.6
Let N = pq be the RSA-modulus, where p and q are of the same bitsize. Furthermore
let e € Z;(N) be an RSA public exponent. Suppose we have an algorithm that
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on input (N, e) outputs in deterministic polynomial time the RSA secret exponent
de ZZ(N) satisfying
ed = 1(mod ¢(N)).

Then N can be factored in deterministic polynomial time.

Notice that in the ordinary case (algorithm 5),in fact e,d € Zz;( Ny This
strengthens the power of the result proved by May. Of course, as stated in re-
mark 4.1.2, the encryption and decryption processes work even if e, d ¢ Z;( N

4.2.2 Unbalanced primes p,q

Shortly after May’s initial paper, Coron and May [15] revisited the above prob-
lem.They provided an alternative proof for theorem 4.2.3 using a variant of Cop-
persmith’s technique for finding small solutions to univariate modular equations
(instead of bivariate integer equations).

Interestingly, Coron and May [15] proved that the equivalence between factoring
and computing the secret key d is still valid even if the requirement that p, g are
balanced is removed. In fact, they proved that factoring N given (e, d) becomes
easier when the prime factors are unbalanced.Their technique is similar to the
technique introduced by Durfee and Nguyen [18] in which two separate variables
x and y are used for the primes p and ¢ respectively and each occurence of z -y is
replaced by V.

More specifically,they proved the following theorem.

Theorem 4.2.7

Let f and 0 < § < % be real values, such that 266(1 — §) < 1.Let N = pq, where
p,q are primes such that p < N° and ¢ < 2N'° Let e, d be such that e-d = 1 mod
$(N), and 0 < e-d < NB. Then given (N,e,d) one can recover the factorization
of N wn deterministic polynomaial time.

Remark 4.2.8. The factorization of N is easier when p, ¢ are unbalanced in that
th? condition for the product e - d becomes weaker.Consider for example that p <
N1i. Plugging the value § = % in the inequality 280(1 — §) < 1 yields f < %.
This means that the proof of equivalence between C(S)mputing d and factoring N
can now tolerate values of the product e - d up to N3 (instead of N2). Of course
letting ¢ = % (balanced p, q) we get the same result as in the previous subsection
(e-d < N?).



Chapter 5

Lattice-Based Attacks on RSA

Since its initial publication, the RSA Cryptosystem has been analyzed for vul-
nerabilities by many researchers. However, none of the attempted attacks has
proven devastating. The attacks mostly illustrate the dangers of improper use
of RSA. Boneh [4] presents a thorough overview of the most successful attacks
mounted against RSA the first twently years after its publication.

The development of lattice theory and the invention of LLL algorithm has
motivated a number of lattice attacks on RSA Cryptosystem. In this section we
will only consider attacks on RSA that are related to lattice methods and present
the underlying ideas.

It is important to note that none of the attacks described below reveals any flaw
to the RSA Cryptosystem. Despite the large number of attacks addressed to RSA,
none of them has managed to break RSA in its general setting. All of the attacks
described here utilize certain flaws induced by insecure choises of the parameters
rather than inherent flaws of the Cryptosystem itself. In particular, we will study
the following insecure choises of parameters that are susceptible to lattice attacks.

(a) Section 5.1: Low public exponent e.

(b) Section 5.2: Exposure of a fraction of the most (or less) significant bits of
one of the primes p or q.

(c) Section 5.3: Low private exponent d.

(d) Section 5.4: Partial exposure of the private exponent d.

In all cases, we assume that the communication channel between entities A and
B is insecure, that is an eavesdropper E (usually referred to as Eve) has access to
the full ciphertext ¢ transmitted through the channel. Otherwise, he would not be
able to obtain the plaintext m even if he knew the private exponent d. The aim
of a secure public-key Cryptosystem is to make the recovery of m infeasible even
if the ciphertext ¢ is competely known.
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5.1 Low Public Exponent Attacks

In many practical applications, the encryption process is performed by some
limited device, such as a smart card. In such cases, raising a plaintext m to a
high power might be costly in terms of power consumption or time. In an attempt
to simplify the encryption process, one might be tempted to use a small public
exponent e. A typical value for the exponent is ¢ = 3, which means that the
encryption process only involves raising a number to the power 3, which can be
trivially done using two multiplications.In this section we argue that the use of
small exponents can induce serious threats to RSA’s security.

The attacks described below take advantage of the fact that the public exponent
e used for encryption is relatively small. Unlike the attacks described in the next
sections, the attacks described here can only be used to recover a given plaintext
and do not expose the private key.

5.1.1 Stereotyped Messages

Consider the following scenario:
The eavesdropper does not know the full plaintext message m but knows a part of
it. That is m = M + x where M is known and thus it suffices to recover z in order
to fully recover the initial message. For a realistic perspective suppose that the
director of a large bank renews the secret key (subsequently used for symmetric
encryption) every day and sends it to the branches of the bank.The daily message
looks like ” Good morning to everyone. Today’s secret key is ...”. Of course the
director is clever enough to encrypt the above message before sending it. Suppose
that the Cryptosystem used for the encryption of the above message is RSA. Then
the eavesdropper is confronted with the following challenge:

Given a ciphertext ¢ = (M + z)¢ (mod N) recover the unknown part z of the
plaintext.

In the general setting (where the secret exponent e is arbitrary) E cannot do
much. However, in the specific case we are talking about, e is small. In order to
recover z, E forms the following polynomial

fl@)=(M +x)*—c=0(modN).

Now recall Coppersmith’s main result for univariate modular polynomial equations
proved in the previous chapter.

Theorem 5.1.1 (Coppersmith Theorem for Univariate Modular Equa-
tions)

Let N be an integer of unknown factorization. Furthermore, let f(x) be a uni-
variate, monic polynomial of degree 0. Then we can find all solutions xo for the
equation f(x) = 0(mod N) with

’1'0’ < N%
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in time polynomial in (log N, 9).

This means that E can recover z efficiently as long as x| < N <. But this
condition may be easily satisfied in practice when RSA is used with small exponent
e (for instance with the frequently used choice ¢ = 3). Indeed, notice that the
encryption process described in algorithm 6 implies that the integer m = M + x
that corresponds to the initial message is an integer in the range [0, N — 1].This

means that © =m — M < N — M is likely to satisfy |z| < Nc.

Remark 5.1.2. The above scenario , where e is small, is in fact rather realistic
in practice where symmetric cryptosystems often need keys of length at most 80
bits (this length corresponds to the length of x in the modular equation).Thus
if e = 3 and the known part M of the message is more than 160 bits (20 8-bit
ASCII characters), an eavesdropper can efficiently recover x using Coppersmith’s
technique for univariate modular equations.

Remark 5.1.3. It is not difficult to observe that a similar result holds in the case
where the unknown part z is somewhere in the middle of the message. For instance
assume that the initial message is of the form m = M + x2¥ + M’ where z begins
at the k + 1% least significant bit. Then the polynomial the roots of whose need
to be recovered is f(z) = (M + x2% + M’)® — c. Theorem 5.1.1 cannot be directly
applied because f is not monic. However since N is odd, gcd(2¥¢, N) = 1 and thus
the polynomial 27%¢ f(z) mod N exists and is monic. We can then apply 5.1.1 to
27k¢ f(x) mod N and recover .

5.1.2 Hastad’s Broadcast Attack

Suppose now that a sender wants to send a message m to a number of parties
Py, P, ..., P;. Each party P; has its own RSA public key (N;,e;). Assume that
m < min; V;. In order to send m to all parties, the sender encrypts m and sends
m® (mod N;) to each party P;. We illustrate below how an eavesdropper E can
recover the initial message m given the k ciphertexts ¢;. For simplicity we assume
that e; = 3 and that the recepients are 3 (k = 3).The extension to larger e; (and
corresponding larger k) is then straightforward.

Suppose that E obtains c1, ¢z, c3 where

g =m? mod N1, c¢o = m> mod No, c3 = m? mod Ns.

We assume that ged(N;, N;) = 1 for i # j. Otherwise a nontrivial divisor of N;
can be found and then recovering m is easy. Thus we can apply CRT ' and find a
¢ such that ¢’ = m3 (mod N1 NoN3).CRT along with the condition ged(N;, Nj) =1
guarantees that ¢ is unique mod N1NoN3. In addition since m < min{Ny, Na, N3}
we have that m? < Ny NyN3. This gives that m3 = ¢ over the integers and E can

LChinese Remainder Theorem
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then recover m by simply computing the real cube root (and not the modular cube
root) of ¢'.

It is not difficult to see that a similar attack can work for all small (common)
public exponents e and k parties as long as k > e.

It seems that we can avoid the above attack by never sending the same message
to more than one person. For instance, consider the following solution: Fach
person, as part of his public key, has some unique id.Instead of encrypting m the
sender encrypts m + 2% - id where k is the length of the message m in bits and id
is the id of the recipient. In this way, the sender never sends the same message to
more than one persons.

Hastad [21] showed that the above padding is also insecure. In fact, he intro-
duced a much more general attack. Assume that the public key of each recipient is
of the form (N, ¢g) where g is some polynomial in m. The encryption of a message
is given by g(m)mod N. For example in the case above g(m) = (m + 2%id)>. The
following theorem is a stronger version of Hastad’s original result.

Theorem 5.1.4 (Hastad)

Let Ny, No, ..., N be pairwise relatively prime integers and let Ny = ming Nj.
Let g; € Zn,[x] be k polynomials of mazimum degree d. Suppose that there exists
a unique m < Npin such that gi(m) = ¢; (mod N;) for all i = 1,2....;k. Then, if
k > d, one can efficiently find m given (N, gi,ci)¥_,.

Proof. Define h; = g; — ¢; for 1 <17 < k. We are then looking for m such that
hi(m) = 0(mod N;) for i = 1,2,....k. Assume wlog 2 that all h; are monic. If
not we can multiply the polynomials with the inverse mod N; of their leading
coefficients in order to make them monic.(If there is no such inverse then we can
again factor N; and things get easier anyway). In addition we can multiply (if
necessary) each polynomial h; by 27 to make them all have degree d.

We now use the CRT to combine the polynomials h; into a single polynomial
h. In particular,we define

k

h(z) = Tihi(z) (mod N)
i=1

where N = NNy --- N and
. JlmodN; ifi=j
" l0mod N ifi#j

can be obtained using CRT to the above linear system of modular equations.
The polynomial i as defined above has the following properties:

1. It has degree d as the sum of polynomials of degree d.

2without loss of generality
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2. It is monic since its z¢ coefficient is 1 modulo any N;. For that notice
that Zle T; = 1(mod N;) and by applying CRT we get that Ele T, =
1 (mod N).

3. h(m) =0 (modN).

Remember here that m < min; V; and d < k& which means that

k
1
mdgmk<HNi:N:>m<NE.
1=1

This means that we can construct a polynomial h of degree d such that h(m) =

0(mod N) and m < N i. We can now apply theorem 5.1.1 in order to efficiently
find m. This completes the proof. O

Remark 5.1.5. Hastad’s original theorem is weaker than the one stated above.
Hastad required @ rather than d polynomials.The initial proof given by Hastad
is similar to the proof given by Coppersmith for univariate modular equations.
However, in contrast to Coppersmith, Hastad does not use powers of polynomials

g grater than 1 which leads to smaller lattices and consequently weaker bounds.

Remark 5.1.6. Despite the various attacks, low public exponent RSA is still
considered secure when used carefully. The current wisdom says that one should
use a moderate public exponent, let’s say e = 216 + 1 and pad the message with
some random bits.

5.1.3 Random Padding to Messages

The following analysis illustrates an alternative low public exponent attack. In
this setting, there is only one recepient but more than one (related) messages sent
to him by the sender. The attack described below was first motivated by a result
due to Franklin and Reiter [20]. More specifcally, here we describe only a simple
instance of their attack in order to illustrate the underlying idea.

Consider that the sender sends two encrypted messages. The plaintexts are m
and m’ and the corresponding ciphertexts ¢ and ¢’ respectively. Suppose now that
the above two messages m,m’ satisfy a known affine relation

m =m+t

where t is known. We will show that an eavesdropper E can recover the message m
(and thus m’ too) if he is given the ciphertexts ¢, ¢’.Indeed, the following modular
equations hold

m3 (mod N)
B=m3+3m?t +3mt2 +¢> (mod N)

/

. O



96 Lattice-Based Attacks on RSA

Then it is not difficult to see that m is given by
m =t(c +2c —t3)(c — ¢+ 2t3)71 (mod N)
where (¢ — ¢+ 2t3)~! denotes the inverse of (¢ — ¢ + 2t*) modulo N.

Remark 5.1.7. Notice that the case where the two messages are of the form
m1 =m +r1 and me = m + ro where 71,79 are known is completely equivalent as
we can express mg in terms of mq as follows: mo = mq + ¢ where t := ro — 1.

Remark 5.1.8. In their original paper, Franklin and Reiter [20] proved a slightly
more genaral result. In the instance they presented, there are again two messages
m1 and me which are related by the more general affine relation

mo = amq + 3

where «, 8 are known parameters. The public exponent is again e = 3 and the
messages required in order for an eavesdropper to be able to recover my,mo are
k = 2.0f course both messages are encrypted with the same public key pair (IV, e).

In 1996 , Coppersmith , Franklin, Patarin and Reiter [13] generalized the above
attack. The attacks they present, enable the recovery of plaintext messages from
their ciphertexts and a known polynomial relationship among the messages, pro-
vided that the ciphertexts were created using the same RSA public key with low
encryption exponent. That is, they presented a technique which can recover the
initial k£ plaintexts in the general case where the relation between them is a polyno-
mial of degree § and not a linear relation as in the initial presentation by Franklin
and Reiter. In addition, they showed how to handle cases where e is still small but
does not necessarily equal 3. All the details for the above generalization can be
found in [13].

The attacks presented by Franklin and Reiter and by Coppersmith, Franklin,
Patarin and Reiter seem a little artificial in that they presume that the eavesdrop-
per knows the affine relation among the messages. In addition, the assumption
that the messages sent by the sender are related is a little nebulous.

Let us return to the initial setting where m’ = m + ¢ and e = 3.A natural
question to ask is what happens when ¢ is not known. Coppersmith [10] showed
that we can still recover m as long as t is short enough. The above attack is of
great practical importance since someone could hope to remove the flaws described
previously by subjecting each message to random padding before encrypting it with
RSA.This technique was proven insufficient by Coppersmith for all cases where the
padding was short compared to the modulus N.

Assume for example that the sender shifts the initial message M by k bits before
sending it and adds a random k-bit quantity T" to get the corresponding plaintext
m. Suppose then that the same message is encrypted twice, but with different
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random padding 77 = T +t. This corresponds to a plaintext m’ = m + ¢.Then the
two ciphertexts ¢, ¢ are given by

c=m? (2EM +T)3 (mod N)
d=m"? (KM + T2 = (m+1)3 (modN).

Nl
" (51)
A straightforward but tedious computation shows that if we eliminate m by taking
the resultant of the polynomials m® — ¢ and (m + t)® — ¢/ we get

resm(m? —c, (m+1)% —¢) =
=19+ (3¢ = 3)t° + (3¢* + 21ed + 3¢t + (¢ — ¢)? = 0 (mod N).

This means that by equation 5.1 we can construct a univariate polynomial in ¢ of
degree 9 (mod N). We can now recover ¢ ( and consequently m using the methods
described above) using Coppersmith’s technique for univariate modular equations
(theorem 5.1.1) as long as [t| < N's. This means that if the message is subject to
random padding of length less than 1/9 the length of N, and then encrypted with
an exponent e = 3, multiple encryptions of the same message will reveal it.

Remark 5.1.9. Notice that the same attack can work just as well if the padding
goes in the high order bits or even in the middle. In that case we only have to divide
each ciphertext by the appropriate power of 2, in order to divide each plaintext by
another power of 2, to move the random padding to the low order bits.

5.2 Lattice-Based Factoring Techniques

In this section we consider attacks where an eavesdropper E tries to break
RSA by factoring the modulus N. Notice first that once the eavesdropper manages
to factor N, he can then decrypt any message.Indeed, once the primes p,q are
known, E can compute ¢(NV) and then find the unique secret exponent d € [1, ¢(N)]
such that ed = 1 (mod$(N)). Using d he can decrypt any ciphertext ¢ just like
the legitimate receiver. We first present lattice-based factoring techniques for the
original RSA-Scheme where the modulus is of the form N = pq. Afterwards, we
present the extension of these techniques to recently proposed RSA variants where
N =7p"q.

It is important to note here that the attacks for both cases of modulus N are
much stronger than the low public exponent attacks presented in section 5.1 in
that we can decrypt any message once we manage to factor the modulus N. In the
previous section, the decryption of a message m did not reveal anything for another
message m/’. If subsequent messages were selected with care by the sender, then the
eavesdropper would not be able to recover the plaintexts. However, in the attacks
described below, the communication between the sender and the legitimate receiver
is completely broken once the modulus /N is factored. In order to re-establish a
secure communication between him and the sender, the receiver has to choose a
new pair of keys (N, e) and d.
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5.2.1 Factoring RSA-moduli N = pg by knowing half of
the bits of p

Unlike the previous section, the attacker in current scenarios may get parts of
one of the factors p, ¢ instead of parts of the message m.We will present a method
which enables us to factor the modulus NV in time polynomial in its bitsize provided
that we know half of the bits of p and p, ¢ are of the same bitsize.In his initial proof
, Coppersmith [11] used his results for finding small solutions to bivariate integer
equations. More specifically, Coppersmith proved the following theorem (the proof
can be found in [11].)

Theorem 5.2.1 (Coppersmith, Factoring N with high bits known)
Let N = p-q where p,q primes. Then given the high-order (% logy N) bits of p, one
can factor N in time polynomial in its bitsize.

Here we present Coppersmith’s results in a slightly more general form than
the original. This generalization will simplify the subsequent analysis. Here we
assumne wlog that p > ¢.For simplicity, we state again the Coppersmith’s generalized
theorem for solving univariate modular equations proved in a previous chapter.

Theorem 5.2.2 (Coppersmith Generalized Theorem for Univariate Mod-
ular Equations)

Let N be an integer of unknown factorization, which has a divisor b > NP. Further-
more, let f(x) be a uniwariate, monic polynomial of degree 6 and cy be a function
that is upper-bounded by a polynomaial in log N. Then we can find all solutions xg
for the equation f(x) = 0(modb) with

BQ

|zo| < enN'&

in time polynomial in (log N, §).
We can now prove the following theorem.

Theorem 5.2.3
Let N = kp with p > q. Furthermore, let k be an (unknown) integer that is not a
multiple of q. Suppose that we know an approximation p of kp such that

Ikp — p| < 2N
Then we can find the factorization of N in time polynomaial in log N.

Proof. Define first the polynomial

fp(x) =1z +p,
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where the index p denotes that we are interested in finding roots of the above
polynomial modulo p. Obviously ¢ = kp — p is a root of f,(2) mod p. In addition,
the above 1polynomial has degree § = 1 and we know that a lower bound for p
is p > N2 gince we have assumed that p > ¢.We can then apply 5.2.2 with
b=p, 0= %, 0 =1 and ¢y = 2 and get the root zg in time polynomial in log N.
But the knowledge of xg,p yield kp. Since by assumption k is not a multiple of ¢,
the computation of ged(V, kp) yields p and thus the factorization of V. O

Notice that the above theorem implies theorem 5.2.1 when p, g are of the same
bitsize. To see that, recall that the fact that p, ¢ are roughly of the same size implies
that p ~ V2. This means that p has approximately § bits where n = log, N is the
bitsize of the modulus N. Suppose now that we know the (in) most significant
bits of p. This means that we know half of the most significant bits of p. If we
write p = po27 + « then po represents half of the most significant bits of p and
2 < 27 . This means that we know pg such that

[p—po2f| = |z < 2% = N7,

Theorem 5.2.3 with k = 1,5 = po27 then says that p can be recovered in polyno-
mial time in log, N.

Remark 5.2.4. Coppersmith in theorem 5.2.1 does not require that p,q are of
the same bitsize. We can extend the approach used above in order to tolerate un-
balanced p, ¢ as follows:Suppose that p > N? and that its bitsize is approximately
8 +-n where § > % Then we can prove thorem 5.2.3 in a completely analogous way
where the bound now becomes

lkp — p| < N ~ pP.

This means that we can factor N if we know a fraction of 1 — § of the most
significant bits of p or, since the bitsize of p is 5-n, it suffices to know the (1—3)5n
most significant bits of p. But for 3 < 8 < 1, (1 — )4 is a decreasing function of 8
with a local maximum % for § = %2 . This means that the method described above
is even more efficient when p, ¢ are unbalanced.

Modifying theorem 5.2.3, we can obtain a similar result for the case where we
know the less (instead of the most) significant bits of p.

Theorem 5.2.5
Let N = pq where p,q are of the same bitsize with p > q. Suppose we know py and
M satisfying

po=pmodM and M > N,

Then one can find the factorization of N in time polynomial in log N.
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Proof. Define the univariate polynomial

fp(z) == 2xM + po.
Since po = pmod M, the term zo = 252° is an integer.In addition z¢ is a root of
fp(z) modulo p since f,(z¢) = p. Let M1 be the inverse of M modulo N. (If such
an inverse does not exist then ged(M, V) yields the factorization of N.)Compute
now the polynomial
fola) = M~ f,(z) mod N

which is monic and has the same root xg modulo p. Since p, q are of the

same bitsize, we have
g<VN<p<2VN
which along with the fact that M > N T gives that

_ p—po
M

P —Do
M

70| = < 2N,

By theorem 5.2.2 with parameter values § = %,5 =1 and ey = 2, 2o (and
consequently p) can be found in time polynomial in log N which completes the
proof. O

Remark 5.2.6. The connection between the above theorem and factoring with
half of the LSB of p known is obvious if we let M = 27, where n = log, N the
bitsize of N.Then,since p, g are of the same bitsize which means that the bitsize of
p is approximately 7, po represents half of the LSB of p.

Remark 5.2.7. Analogous to the cases of half of the LSBs or MSBs of p is the
case where we know an amount of half of the bits for any intermidiate consecutive
bits.

5.2.2 Extension to moduli of the form N = p"q

The main advantage of the method presented previously is that it can be ex-
tended to the case where the modulus is of the form N = p"¢.The latter form of
the modulus NV has appeared in recently proposed Cryptographic Schemes. In such
schemes the RSA decryption process can be performed significantly faster than in
the typical case where N = pq.

In this subsection, we will study in brief the extension of the approach followed
in the previous subsection to N = p"q for the case where p, ¢ are of the same bitsize.
In that case, for the same bitsize of IV, p, ¢ have smaller bitsize than the usual case
which means that the performance is improved.

In 1999, Boneh , Durfee and Howgrave-Graham [7] showed that schemes with
moduli N = p"g are more susceptible to attacks that leak bits of p than the
original RSA-Scheme. Their result generalizes theorem 5.2.3 to moduli of the
form N = p"q. We present below a more general form of the theorem proved by
Boneh, Durfee and Howgrave-Graham.
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Theorem 5.2.8 (BDH,Factoring N = p"q with high bits known)

Let N = p"q, where r is a known constant and p, q are of the same bitsize. Let k be
an (unknown) integer that is not a multiple of p"~'q. Suppose we know an integer
p such that

[kp — p| < NT=7.

Then N can be factored in time polynomaial in its bitsize.
Proof. We again define the univariate monic polynomial
for () := (z +p)".

Consider now the integer xg = kp — p. Then by hypothesis |zg| < NGH?Z. In
addition, fyr(zo) = (kp)” = 0(modp”) which means that zg is a root of fyr(z)
modulo p".
The degree of f,r(x) is 6 = r. In addition, since p, ¢ are of the same bitsize, we
know that p > ¢ which gives that p’ ! = % > LN. This implies that
1 r

1 .
TS (ZN)T > N,
P (2) 5

Define now 3 := 17 — logN' Then

82 r 4 1 2 _r 1 _r
INT =2N0+)? "rlog? N (rHDlogN > 9N (r+1)2 log N — N (r+1)?
where the last equality is true since the logarithm base is 2 and thus NV BN — 2.
This means that theorem 5.2.2 with parameters § := 17 — @,5 =r,ey =2
and b = p" is applicable and thus we can find zg in polynomial time.

It only remains to prove that zg = kp — p yields the factorization of N. By
xo we directly obtain kp which is not a multiple of N (since k is not a multiple of
p"~'q). This means that gcd(N, kp) is either of the form p’ or of the form gp’ for
some integers i < r,j < r. The first case can yield p if we guess i (notice that the
number of guesses required is polynomially bounded by the bitsize of V) and then
compute the ith root of p’. The second case can be reduced to the first case since
% = 9"~ and p can be recovered by guessing r — j. This completes the proof. [J
Remark 5.2.9. The implications of the above theorem are rather intereseting.
Consider the case where k£ = 1. Since p, ¢ are assumed to have the same bitsize, N
is of size roughly p"+!. This means that the condition of the previous theorem is
equivalent to

p—p| < pTo.
This means that a fraction of ﬁ of the bits of p are sufficient to factor /N.Notice

that if » = 1 we obtain the result proved in the previous subsection.If N has 1000
bits, we need 250 bits of p (which has roughly 500 bits) if » = 1 while only 111
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bits of p (whose bitsize is roughly 333) are sufficient to factor N in the case where
r = 2. The warning is clear. The larger the exponent r, the more susceptible
RSA-Schemes with modulus N = p"q are to such type of attacks. Boneh, Durfee
and Howgrave-Graham [7] showed that if p, ¢ have the same bitsize and r = elogp
for a fixed constant e > 0, then we can factor the modulus N = p”¢q in polynomial
time without any information about the bits of p.

5.3 Low Private Exponent Attacks

A serious drawback of RSA is its efficiency. A normal RSA decryption/signature
generation requires time O (log d log? N ). Selecting a small value for the secret expo-
nent d can significantly increase the speed for the normal RSA decryption/signature
processes. However, recent attacks against RSA, show that secret private exponents
should be handled with care as they may threaten RSA’s security.

In this section we present some attacks mounted against RSA instances with
small secret exponents d. The attacks are somehow presented in a chronological
order. Apart from attacks against the common RSA scheme, we also discuss attacks
against RSA variants (for instance RSA schemes with modulus N = p"¢) or against
schemes where the decryption process uses two small values (dp, dy) 3 related to d.

Here,like in section 5.2, the attacks for both cases of modulus N are much
stronger than the low public exponent attacks presented in section 5.1. All of the
attacks described below manage to factor N and totally expose the RSA Cryp-
tosystem. In order to re-establish a secure communication between him and the
possible senders, the legitimate receiver has to choose a new pair of keys (N, e) and
d.

5.3.1 Wiener Attack

The first result showing that using small secret exponent can pose serious
threats to RSA’s security is due to Wiener [38]. In his paper, Wiener showed
that a value of d less than %N T leads to a polynomial time attack on the RSA
cryptosystem. More specifically, Wiener’s results are summarized in the following
theorem.

Theorem 5.3.1 (Wiener)
Let N = pq with ¢ <p < 2p. Let d < %Ni. Given (N, e) with ed =1 mod ¢(N),
then an eavesdropper can efficiently recover d.

His attack was based on continued fractions and did not use lattice techniques,
that’s why we just mention his contribution here. More specifically, he showed
that d is the denominator of some convergent of the continued fraction expansion

3This values are known as CRT exponents.
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of a number. The efficiency of Wiener’s attack can be enervated if a large public
exponent e is used. As the public exponent e gets larger the attack becomes less
effective and cannot work at all if e > Nz2.

5.3.2 Boneh & Durfee (BD) Small Inverse Attack

In 1999, Boneh and Durfee [5] presented the first substantial improvement
over Wiener’s bound. Their attack can (heuristically) recover the primes p, ¢ in
polynomial time provided that d < N®292_ Their result is heuristic since it is
based on Coppersmith’s technique for finding small solutions to bivariate modular
polynomial equations. However, their attack seems to work very well in practice.
Below we present the main ideas of their approach.

Consider the normal RSA Scheme where p,q are balanced and assume for
simplicity that ged(p — 1,¢ — 1) = 2 (similar analysis can be followed for the
more general case).The keys e, d then satisfy e -d = 1 mod @’ where always
#(N) =N —p — g+ 1. This implies that there exists an integer k such that

N+1
ed+k (At _PEIY g (5.2)
2 2
Setting s = —2%% and A = Y- we get

k(A4 s) =1 (mode).

Let e = N® be of the same order of magnitude as N (and therefore « is close to
1).Boneh and Durfee actually show that values of o much smaller than 1 lead to
even stronger results.Suppose now that d satisfies d < N°. The goal is to push §
for which the factorization of IV can be performed in polynomial time, to values as
large as possible. Equation 5.2 imply that

2de < B;JB 361+6;1

|k‘<¢(N)* N )

where for the second inequality we have used that % > % and for the last that

e=N*= N = eé_
Furthermore, since p, g are balanced, we know that p, ¢ < 2v/ N which gives
|s| < INZ = e

If we take o &~ 1 and ignore the small constants (which are negligible compared
to the other terms appearing in the above inequalities) we end up with the following
problem

Definition 5.3.2 (Small Inverse Problem (SIP))
Given a polynomial f(z,y) = z(A+y) — 1, find (xo, yo) satisfying

f(wo,90) = 0 (mode) where |zo| < ¢’ and [yo| < ¢*°.
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Prooving the case d < N2

By construction, we know that (k, s) is a small solution of the f(z,y) = z(A+
y) — 1 = 0 (mode) satisfying |k| < €’ and |s| < e*®. Thus, if we manage to solve
the SIP for this instance, we will get s = —]% and consequently the factorization
of N. The goal from now on is to recover the values of ¢ for which the roots (xg,yo)
with |zg| < €2, |yo| < %% can be recovered in polynomial time.Of course, we would
like to prove that this modular equation is efficiently solvable for values of ¢ that
are as large as possible.

Boneh and Durfee first transform the modular equation into an equation over
the integers using Howgrave-Graham’s Lemma for the bivariate case. We restate
the bivariate version of the lemma for convenience.

Lemma 5.3.3 (Howgrave-Graham for Bivariate Integer Polynomials). Let
h(z,y) € Z[z,y] be a polynomial in 2 variables with at most w monomials and let
m be a positive integer. Suppose in addition that

1. h(zo,y0) = 0(mode™) where |zg| < X and |yo| < Y, and

2. [|h(zX,yY)|| < .

Then h(zo,yo) = 0 holds over the integers.

Next, for a given positive integer m they define the polynomials

gix(z,y) == 2 fF(x,y)emF (x-shift polynomials)
hjk(z,y) =y 5 (z,y)em " (y-shift polynomials)

Notice that (zg,yp) is a root of all these polynomials modulo ¢™. In order to
find a low-norm integer linear combination of the polynomials g;;(zX,yY") and
hik(xX,yY) and then apply lemma 5.3.3, Boneh and Durfee build a lattice
spanned by the coefficient vectors of the polynomials g; » and hj for certain pa-
rameters ¢, j and k. For each £ = 0,1,...,m they use the x-shifts g; ;(zX,yY") for
i=0,1,...,m — k. Additionally, they use the y-shifts h; (¢ X,yY) for j =0,1,...,t
for some parameter ¢ to be optimized later. A convenient ordering of the coefficient

vectors renders a lower triangular matrix.

Let Lpp denote the lattice constructed by Boneh and Durfee and Bgp the
corresponding basis.We will use the notation Bpp(m,t) in order to show that the
dimension and the entries of the basis depend on the parameters m,¢. To illustrate
the lattice construction, we give below the matrix Bpp(2,1) where the coefficient
vectors form the rows of the basis.

. 12 T Ty z?2 mzy :c2y2 Y zyz aczyS
€ €
ze? e X
fe —e eAX eXY
z2e? e2Xx?
Bep(2,1) = zfe —eX eAX? eX2Y (5.3)
f2 1 | —2AX  —2XY | A2X2? 24X2%y x2y?
y62 2y
yfe eAXY —eY  eXY?
yf? —2AXY A2X2%y  24x32y? Y —2XYv? XxZ2yS8
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Running LLL algorithm we can obtain two short vectors b1, by which by inequality
3.1 satisfy

w 1
o1]], [[b2| < 22 det(Lpp)=—T

where w is the dimension of the lattice constructed.Thus a sufficient condition in

order to apply lemma 5.3.3 is

em

Q%Qlet(ﬁBD)ﬁ < —.

B

Some tedious computations show that the determinant and the dimension of the
lattice Lpp have the following values respectively
mt2
det(Lpp) = e T m’+HEitm+2=+o(m?)

?

w = m72+tm+0(m2).

Optimizing with respect to ¢ and ignoring low degree terms gives the condition
9 7 1
—126% +280 —7T< 0= < 6—§\f7%0.284.

This means that if § < 0.284 or, equivalently d < N%?* one can find in time
polynomial in log N the factorization of N and consequently break RSA.

Remark 5.3.4. A precise calculation of the determinant (including low degree
terms) along with a detailed proof for the bound on § can be found in [5, Appendix
A]. As m (and consequently the dimension of the lattice) grows larger, § converges

to the value % — g ~ 0.2874.

Remark 5.3.5. Constructing exactly the same lattice for an arbitrary « (and
not necessarily 1), Boneh and Durfee [5, Section 6] prove that the condition for

0 becomes § < % — %\/1 + 6. This means that the above attack becomes even

stronger if « < 1. For instance if e & N 3 the attack can tolerate values of § up to
1

3+

Improving the bound to d < N2

Boneh and Durfee further improve the bound for § (for the case o ~ 1) by
considering a sublattice of Lgp. They remove some of the rows of the corre-
sponding basis matrix Bpp that contribute more to the volume of the lattice than
others and look for small elements in the new sublattice.Computations become
quite complicated since the removal of certain rows renders a non-square matrix,
the determinant of whose cannot be trivially calculated. They introduce the new
concept of geometrically progressive matrices and finally prove that the bound can
be pushed to § = 1 — L~ 0.292. The details of their proof can be found in [5,

V2
Section 5].
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The bound 0.292 is up to now the best known bound for cryptanalysis of low
secret exponent RSA. However, the attack only works under the assumption that
the polynomials returned by LLL are algebraically independent. This makes the
method heuristic. In practice, nevertheless, no failure of the method is known for
sufficiently large 6.

We just mention here that if one takes ¢t = 0 (that is only x-shifts) one is
supposed to get a bound = 0.25 which reproduces Wiener’s result. However,
Blémer an May [2] observed that the method of Boneh and Durfee always fails
when using only x-shifts.

Remark 5.33.6. In contrast to Wiener’s attack which is completely inapplicable
for e > N2, the attack introduced by Boneh and Durfee becomes completely
inefficient for values of e larger than N'¥7. To see that, recall that for arbitrary
a the condition for § is § < % — é\/l + 6. As « glrg)ws larger, the bound for §

approaches 0, value which is finally reached for o = 2.

Remark 5.3.7. The approach used assumed that p, ¢ are balanced.In [5, Section
7], Boneh and Durfee also consider the case where p < g and p < N? where 8 < %
Using a similar (heuristic) technique with the three unknows k,p, ¢ and replacing
every occurence of pg by N, they prove that the more unbalanced the primes p, ¢
are, the more effective the low private exponent attacks become.

5.3.3 Blomer & May Low Private Exponent Attack (BM)

In 2001, Blémer and May [2] revisited the attack mounted by Boneh and Dur-
fee. Their analysis yields a bound ¢ = 0.290. While this bound is not better than
0 = 0.292 achieved by Boneh and Durfee, the approach presented by Blémer and
May is significantly simpler.

They begin their analysis by choosing parameters m and ¢ and then construct
exactly the same lattice Lpp as Boneh and Durfee (before the removal of the rows)
with corresponding basis Bgp(m,t). Next they remove certain rows of Bgp to take
an intermediate matrix B. Let £ be the lattice spanned by B.Unlike Boneh and
Durfee, they go on by removing an equal number of columns in order to obtain
a square matrix. Details on the construction can be found in [2, Section 4]. As
an example, the following matrix corresponds to matrix 5.3 after the removal of
certain rows and columns. We denote the final (eliminated) matrix constructed by
Blémer and May as By and the corresponding lattice Lpas

z zy 72 22y z2y? 223
ze’ e’ X
fe | eAX eXY
BBM<2; 1) = l‘2€2 62X2
zfe | —eX eAX? eX?Y
f?2 | —2AX —2XY | A2X? 24X?%Y X?%Y?

yf? | —2AXY AZX2Y 2AX?Y? | X?%Y3
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The row vectors of the the matrix Bpys are no longer the coefficient vectors of
the polynomials g; (X, yY) and hj;(2X,yY") since we have also removed some
columns from the initial basis matrix Bpp (notice that the basis constructed by
Boneh and Durfee does not suffer from the same drawback since we have only
removed rows and not columns).However in order to aplly lemma 5.3.3, it is
necessary to ensure that the integer linear combination of bivariate polynomials
evaluates to zero modulo ¢™ at the point (k,s).Blomer and May show how to
associate the rows of Bpj; matrix with the polynomials g; ; and h;;. This means
that they show how to reconstruct a vector @ € £ by a vector u € L.

More significantly, they prove that short vectors u € Lpas lead to short recon-
struction vectors @ € L. Expressed in a different way, the size of small vectors
found in the eliminated lattice Lgps by LLL are the same size as those found in
the original lattice £ up to a small correction term. A complete substantiation of
the above claims can be found in [2, Section 4].

Remark 5.3.8. Although it yields a weaker bound than Boneh and Durfee method,
the new approach followed by Blomer and May has some noteworthy advantages:

(a) It leads to simple proofs since one deals with square matrices which signifi-
cantly simplifies detrminant calculations.

(b) Tt reduces the lattice dimension as a function of m and ¢ which implies that
one can get closer to the theoretical bound.

(c¢) It makes use of structural properties of the underlying polynomials which
makes possible its extension to other lattice constructions using these poly-
nomials.

5.3.4 Small CRT-Exponent Attacks

An alternative way in order to speed up RSA decryption/signature process
without using a small private exponent d, is to use the Chinese Remander Theorem
(CRT). Suppose that one chooses d such that both d, = d (mod p—1) and d, = d
(mod ‘12;1) are small. From now on we will call such an exponent d small CRT-
exponent .One can then decrypt a ciphertext c fast if one computes m;, = c® (mod
p) and m,; = c¢% (mod ¢) and then combine the results using CRT to obtain the
unique m € Zy such that m? = ¢ (mod N). The attacks described in the previous
subsections do not work in general since d is likely to be large even though dp, d, are
small.For the general case (where p, g are arbitrary) there is no known polynomial
time algorithm that breaks RSA if dy, d, are small. The best algorithm up to now
is exponential in the bitsize of N (O(min(y/dp, \/dg))).

In 2002, May [25] gave a polynomial time algorithm for a low CRT-Exponent
Attack for the case where the primes p, ¢ are unbalanced. In his paper, May presents
two methods for attacking small CRT-exponent RSA. The first method is provable

-5 . . -
and works as long as ¢ < N 5% ~ NO382 while the second one is heuritic but
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can tolerate larger values of d modulo p — 1. Before presenting the main ideas of
the aformentioned methods, we first formalize the CRT key generation procedure
(algorithm 8) and the goal of the CRT-exponent attacks.

Algorithm 8: CRT Key Generation Process

Input: Public Key (N, e) and plaintext m.

Output: Ciphertext ¢ corresponding to plaintext m.

begin
Step 1: Fix the bitsize n of the modulus N and two positive
parameters (3,0 such that g < % and § < 1.
Step 2 (Modulus): Choose (randomly) primes p, ¢ with
approximate bitsize (1 — 3)n, fn respectively such that
ged(p — 1, qg—l) = 1 and compute the modulus N = pq. Repeat step
2 if ¢ > NP.
Step 3 (d,,d,): Choose d, € Z,_; such that d, < N° and
d, € Z% arbitrarily.
Step 4 (CRT): Compute the unique d mod @ such that d = d,
(mod p — 1) and d = d, (mod %1).
Step 5 (Public Exponent):Compute the inverse e of d in Zw.

Step 6 : Publish the pair (V,e).
end

Remark 5.3.9. Notice that the requirement ged(p — 1, q;—l) = 1 in step 2 is
necessary for the existence of the unique d mod %N) computed using the CRT in
step 4.

The question answered by the two methods presented below is the following:” Up
to which values of the parameters § and 0 can one find the factorization of N
efficiently given the public key pair (N, e)?”

Remark 5.3.10. Notice that the decryption and signature generation processes
can be performed efficiently if the parameters are chosen according to the CRT
Key Generation Algorithm and 3,4 are small. Indeed, ¢ (mod p) and ¢% (mod
q) can easily be computed since d, and ¢ are small. We can then compute ¢ (mod
N) using the CRT.

First method

According to the CRT Key generation algorithm 8 we know that

ed, =1 (modp —1).
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Hence, there exists k£ € Z such that
edy +k(p—1)=1=edy, — (k+1)=—kp, over Z. (5.4)

Consider now the polynomial f,(z,y) = ex —y which by construction (see
equation 5.4) has a root (zg,y0) = (dp, k + 1) modulo p. In order to apply Cop-
persmith’s results, we have to bound the values of the root pair (dp,k + 1). By
assumption d, < N 9 In addition,

ed,

k+1| =
k+1 P

-1
< <q2 d, < NP0

ed, —p
-1

where the last but one inequality holds since e < @.If we let X = N and
Y = NPt we have ended up with the bivariate modular equation fp =0(modp)
for which we are searcing small solutions (xg, yo) such that |zo| < X and |yo| < Y.In
order to transform the modular equation to an equation over the integers, May
uses lemma 5.3.3. In order to find a polynomial f(z,y) with a sufficiently short
corresponding coefficient vector, he first uses a two-dimensional lattice whose rows
are the coefficient vectors of the polynomials fo(zX,yY) and f,(zX,yY) where
fo(z,y) = Nz.For each root pair (zg,yo) of fp, every linear integer combination of
this two polynomials obviously yields a polynomial f such that f(xo,yo) = 0 mod
p. The basis of the lattice is the following

By = []ev))(( —Y] '
May first proves the following two lemmas.
Lemma 5.3.11. Let X = N° and Y = N7 with
38420 <1—logy4.
Then the lattice £, generated by B, has a smallest vector u such that |Jul| < %.

Proof. The condition of the theorem is equivalent to the following

N272[3

35+25§1_10gN4:>1+5+25§2—25—10gN4:>N1+5+2‘5g -

By Minkowski’s theorem (theorem 3.1.2), £, contains a vector u such that

lul| < V2\/det(L,) = V2VNXY = V2N1+20+6 <

N2-28 2
S 2 < gzi
V= Ve = 2

where in the last inequality we have used that p > N1=# since ¢ < N¥. ]
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Notice that since the lattice is two-dimensional, a lattice reduction algorithm
in fact returns such a short vector u and does not just approximate it. This means
that we can find a vector u such that ||ul < % in polynomial time as long as

38+ 25 < 1—logy4. May proved that such a vector w can directly lead to the
factorization of N.

Lemma 5.3.12. Let u = (cg,¢1)B, be a shortest vector in £, with [lul| < %.
Then (|CO|7 ‘Cl|> = (|k‘7qdp)

Proof. u = ¢o(NX,0) + ¢1(eX,—Y) is the coefficient vector of the polynomial
f(zX,yY) where

f(@,y) = coNz + c1(ex — y).

Since by construction f(zX,yY) < % and |dy| < N%, |k + 1] < NP we know
that (zo,y0) = (dp, k+1) is a root over the integers (by lemma 5.3.3 with w = 2).

This along with equation 5.4 gives
coNdy = —ci(ed, — (k+ 1)) = c1kp = coqdy = c1k.

Assume that ¢ does not divide k. This means that ged(gdy, k) = ged(dy, k) = 1
where the last equality is obvious by 5.4.

By equality cogd, = c1k, k divides cogd, but is coprime with gd, which gives
co = ak for an integer a. Thus ¢; = aqd,. But since u is the smallest vector in £,
it follows that |a| = 1 which completes the proof. O

May then uses lemmas 5.3.11 and 5.3.12 to prove the following theorem.

Theorem 5.3.13
Let (N,e) be the RSA public key pair with N = pq and d the secret exponent. If
g < Nﬂ,dp < N? and

30 +25 <1—1logy4,

then N can be factored in time O(log? N).

Proof. Construct the lattice basis B, and run Gauss reduction algorithm to find
u = (co,c1) - Bp. Compute ged(N,c1) = ¢. The total running time for Gauss
reduction and computation of the greatest common divisor is O(log? N). O

Remark 5.3.14. In lemma 5.3.12 we assumed that ¢ does not divide k. May
proves that if ¢ divides k then the results of the analysis are even stronger. This
implies that the small CRT-exponent attack described above works for a larger
range of values #,4. In particular, May proves the following theorem. The proof
can be found in [25, Theorem 6].
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Theorem 5.3.15
Let (N,e) be the RSA public key pair with N = pq and d the secret exponent. If
q < Nﬁ,dp < N? and

k=gqr , [+20<1-logy4,
then N can be factored in time O(log? N).

The inequality in theorem 5.3.13 implies that the above method works only if
B < % May [25] extends this bound to the value § < % ~ 0.382 by enriching
the lattice that produces the small coefficient vector. In particular, May considers
the following x-shift polynomials

Gy (2,y) = N™erOm=Dgi 1 (3 y)

for the same f, as in the previous approach. Now the root pair (zg,y0) of f, =
0modp is the root of every linear integer combination of polynomials gy, ; ; modulo
p™ and not only modulo p. Let E;, denote the new lattice produced by the basis
B, whose rows are the coefficient vectors of the polynomials gy, ; j(2X, yY).

In order to construct the lattice, one have to choose two integers n (the dimen-
sion of the lattice) and m which is a function of n to be optimized. In order to
to transform the modular equation to an equation over the integers, May applies
again lemma 5.3.3 with w = n. Following argumentation similar to the previous
analysis, May invokes LLL algorithm to prove the following lemma. The details of
the proof can be found in [25, lemma 7].

Lemma 5.3.16. For every fixed € > 0, there are parameters n, Ny such that for
every N > Ny the following holds: Let X = 2 N% and YV = 2L NFH with

36—p24+20<1—c

Then using the LLL algorithm, we can find a vector u € E;, with norm smaller

m . .
than pﬁ, where m is a function of n.

We have thus ended up with a single bivariate polynomial f(z,y). In order to
recover the roots (g, 0), May proves the following lemma (details to be found in
[25, lemma 8]).

Lemma 5.3.17. Let X = 2 N° Y = ZHNFH and f,(2,y) = ex — y be a
polynomial with root (zg,%0) modulo p that satisfies |zo| < N?,|yo| < NPT, Let
u be a vector in £,(n) such that [[ul| < pﬁ, where u is the coefficient vector of

a polynomial f(zX,yY ). Then the polynomial p(z,y) = yoxr — zoy € Z[z,y| must
divide f(z,y). We can then factor f over Z[z,y] and consequently find p.

Combining lemmas 5.3.16 and 5.3.17 we get the following result:
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Theorem 5.3.18
Let (N,e) be the RSA public key pair with N = pq and d the secret exponent. If
g < Nﬁ,dp < N? and

33— 62+25<1—¢

where € > 0 arbitrary small for N suitably large, then N can be factored in time
polynomaal in log N.

Remark 5.3.19. It is important to note that both approaches of the first method
are provable in that they do not rely on algebraic independence of two polyno-
mials returned by LLL. Indeed, notice that the roots are recovered using a single
polynomial which means that the method entails no resultant computations.

Second method

In his second method, May uses two polynomials with short coefficient vectors
in order to recover (zg,yp). Thus, in contrast to the first one, the second method
is heuristic since it is based on Coppersmith’s technique for finding small solutions
to bivariate modular polynomial equations.

May begins by rearranging the equation ed, + k(p — 1) = 1 to get

(k+1)(p—1)—p=—edy = (k+1)(N —q) — N = —eqd,.
This leads to the problem of finding small roots to the bivariate modular polynomial

fe(y,2) =y(N —2) = N

with a known root (yo,20) = (k + 1,¢) modulo e. Define the bounds ¥ = NA+9
and Z = N” so that |yo| <Y, |20| < Z. For the construction of the corresponding
lattice, May fixes a positive integer parameter m and considers the y- and z-shifted
polynomials

9ij(y,2) = ™Y fi(y, 2) and
hij(y,z) = €™ "2 fo(y, 2)

which all have the common root (z¢, y9) modulo ™. In order to apply lemma 5.3.3,
May looks for two short vectors in the lattice spanned by the coefficient vectors of
9i;(yY,2Z) and h; ;(yY, 2Z) for certain values of ¢ and j. The condition for /3,4
under which condition 2 of lemma 5.3.3 is satisfied, is given in the following lemma.

Lemma 5.3.20. For every fixed constant € > 0, there exist m, Ny such that for
every N > Nj the following holds: Let Y = N#+% and Z = N? with

B VEB T Fi<1-x (5:5)

where ¢ is arbitrary small for N suitably large.Then using the LLL algorithm, we

can find two vectors uy, us € £ such that |lug]], ||ua|| < ———.
dim(L)
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This means that if condition 5.5 holds, we can find two polynomials hq(y, 2)
and ha(y, z) which have the root (yo,20) = (k + 1,q) over the integers. Using
resultant computations we can recover all roots zyp and therefore ¢ which yields
the factorization of N. Of course, the method’s success relies on the assumption
that the resultant resy(hi(y,2), h2(y, %)) is a non zero polynomial, which makes
the method clearly heuristic.

Recent Small CRT-exponent Attacks

In 2006 , Bleichenbacher and May [1] extended May’s second method and man-
aged to improve the bound to ¢ < N%4%® (recall that the first two methods de-
scribed previously yielded bounds ¢ < N%382 and ¢ < N937 respectively).Their
extension uses again Coppersmith’s technique for finding small solutions to multi-
variate modular polynomial equations and is therefore heuristic.

Bleichenbacher and May use again the polynomial f(z,y) = (N —y) + N
as in the second method (to be more precise, in his second method,May used the
polynomial f(z,y) = (N —y) — N which is equivalent to f(z,y) = z(N —y)+ N if
we replace k+1 with —(k+1)).In order to improve the bounds, they make additional
use of the fact that the root (z¢, ¢) mod e they are searching for, contains the prime
factor ¢. Consequently, they introduce a new variable z for the prime factor p and
an additional equation yz = N.

The general approach is the same as in the second method above, that is,
Bleichenbacher and May construct a lattice £ with basis B and use LLL to get

two sufficiently short vectors uy,us such that ||uyl], |us| < ———
dim(L)

be able to apply lemma 5.3.3. Since we have introduced a third variable z,these
two vectors are the coefficient vectors of two trivariate polynomials fi(zX,yY, 22)
and fo(xX,yY,27Z) which by lemma 5.3.3 both have the root (xg,q,p) over the
integers. Once these two trivariate polynomials are obtained, we can eliminate z
by setting z = % and then multiplying both f1, fo with a suitable power of y to get

in order to

two integer polynomials fi, fo in the two variables z,y. We can then recover the
small root pairs (zg,yo) (and consequently (zg,q)) using resultant computations.
This method will finally give ¢ provided that the resultant res;(f1(z,v), f2(z,v))
is not the zero polynomial.This assumption makes the method heuristic but still
very powerful in practice.

The challenge is to construct the lattice in such a way that the short vectors
returned by LLL are short enough to yield improved bounds for X, Y, Z.Having
LLL in mind, this goal reduces to constructing a lattice with a determinant as
small as possible.To that end, Bleichenbacher and May incorporate the following
two ideas:

(a) They first multiply the polynomial f(z,y) = (N —y)+ N by the monomial
z® for some parameter s that has to be optimized. This leads to the following
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collection of trivariate (instead of the initial bivariate f(z,y)) polynomials

955,y 2) = 2° - gi(x,y) = "2l 20 filw,y) and
h’;,j(x7 Y, Z) =2z hi,j(x7 y) = em_zyjzsfé(m7 y)
where for g; ;(,y,2), i = 0,..,m;j = 0,...,m — i and for h;;(z,y,2),
1=0,....,m;5 =1,...,t. Notice that every monomial xiyj j > s in the initial
collection of polynomials with coefficient a;; is transformed into a mono-
mial 2%y/~% with coefficient a; ;N? in the new collection. Similarly if j < s
the monomial 2% is transformed into the monomial z°2*~7 with new coeffi-
cient a; ;N7. This implies that the coefficient vectors of 9 ;(xX,yY,2Z) and
h;,j (zX,yY,zZ) contain less powers of ¥ which decreases the determinant
of the lattice spanned by these vectors. Nevertheless, the determinant is
increased because now the coeflicient vectors also include powers of Z since
we have added the third variable z. The goal is to optimize this trade-off
by choosing a value for the parameter s that will minimize the value of the
determinant.

(b) The resulting lattice basis built from the coefficient vectors of polynomials
9; ;(xX,yY,2Z) and hj ;(zX,yY,2Z) is lower triangular. This means that
every polynomial in the new collection contributes to the determinant of the
matrix with just one coefficient (the coefficient of the diagonal entry). If
that coefficient has a factor N7, we can eliminate this factor by multiplying
the polynomial with the inverse of N7 mod e.Eliminating powers of N in the
diagonal entries keeps the lattice determinant as small as possible.

The incorporation of these two ideas in the construction of the lattice,along with
a suitable choice of the parameter s, yield the following sufficient condition for the
bounds X, Y, Z. The proof can be found in [1, lemma 4, appendix A].

Lemma 5.3.21. Let € > 0, = 7m and s = om.Let N and m be sufficiently large

and
23Ty 1H3(r—0)(147—0) 7302 - 1+37—¢ (5.6)

Then on input B, LLL algorithm will output two vectors that are shorter than
e'fTL

dim(L)

This means that under the condition 5.6, LLL returns in polynomial time, two
vectors ug, us the corresponding polynomials of which satisfy condition 2 of lemma
5.3.3.

In order to obtain the final condition among 3,6 and o where d, < N 0q <
NB and e = N, one has to express X,Y and Z in terms of 3,6 and « and
plug these values in the condition of lemma 5.3.21. Some straightforward but
tedious computations lead to the following theorem.A detailed proof can be found
in [1, theorem 5].We emphasize here that the following result is based on the
assumption that the emerging resultants are nonzero polynomials and is therefore
only conventionally characterized as theorem.
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Theorem 5.3.22

Let € > 0 and N be sufficinetly large. Let N = pq be an RSA-modulus with ¢ < NP
and p < 2N'=B. Moreover, let e = N® be an RSA-public exponent satisfying ed, =
1 (modp — 1) for some d, = N° with

6 <

< é(s — 28— 8% — /1203 — 12082 + 432 — 583 + %) — .

Then N can be factored in polynomial time.

Comparison of the methods

Let us summarize the small CRT-exponent attacks presented above. Recall
that the parameters ¢, 3 are used to bound, in terms of IV, the values d, and ¢
respectively (d, < N° g < N#).Intable 5.1 below we present the various conditions
for d, under which N can be factored in polynomial time. In all methods ¢ is
bounded by N¥.

Method Reference Condition Comment
15t Method [25] d, < N%_e Provable
2nd Method [25] d, < N1-5(8+/3+6%)— Heuristic

Recent Results 1] d, < N'3(3-28-F"—\/1208-12a52+48>=5%+5%) ¢ | oupistic

Table 5.1: Review of small CRT-exponent attacks

5.3.5 Small Private Exponent Attacks to RSA Schemes
with Moduli N = p'q

In 2004, May [28] presented two low private exponent attacks against RSA-like
schemes with modulus N = p"q. We will again assume that p,q are of the same
bitsize as we did in section 5.2 where we presented factoring attacks against such
schemes. May in these two attacks makes direct use of the theorems 5.2.2 and
5.2.8 presented in section 5.2.

First Attack

May’s first attack is based on theorem 5.2.8 and can be summarized in the
following result:

Theorem 5.3.23
Let N = p'q, where v > 2 is a known constant and p,q are primes of the same
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bitsize. Let (e,d) € 7Z x Z;(N) be the public-key/secret-key pair satisfying ed =
1 (mod ¢(N)). Suppose that
d< NG+

Then N can be factored in polynomial time.

Proof. Since N = p"q, ¢(N) = p"~*(p—1)(¢ — 1). This means that there exists an
integer k such that
ed—1=Fkp" 'p—1)(qg—1). (5.7)

Let E be the inverse of e modulo N (if such an inverse does not exist then ged(E, N)
is a non trivial factor of N and we can find p, ¢ using the same arguments as in
proof of theorem 5.2.8).Then Fe = 1+ ¢N for some ¢ € N. If we multiply 5.7
with F we get

dcN+1)—E=E-kp" '(p-1)(¢g—1) =
d—E = (Ekp"*(p—1)(g— 1) — cp 'qd)p.

This means that E is a multiple of p up to an additive error d < N ¢+1*, We define
t=Fkp"2(p—1)(¢— 1) — cp" 1qd and we consider the next two possible cases:

1. p"~1q divides t. Then p"~'q divides Fkp"2(p — 1)(¢ — 1) (the second term
of t is obviously a multiple of p"~'q). This means that pq divides Ek(p —
1)(¢ — 1). Since by assumption ged(F, N) = 1 this means that pg divides
kE(p—1)(¢g—1) that is k(p—1)(¢—1) = ¢pq. Then 5.7 becomes ed—1 =N
which, in combination with eF — 1 = ¢N, gives that E = d (mod N). Since
I d < N this implies that d = E over the integers. But the knowledge of
d suffices to factor N (there is a well known probabilistic polynomial time
algorithm that computes p,¢ on input d and in the previous chapter we
presented a detreministic polynomial time algorithm that performs the same
computation).

2. p"~1q does not divide t. Then we can directly apply theorem 5.2.8 where ¢
plays the role of k& and recover the factorization of V.

O

Algorithm 9 summarizes the steps that yield the factorization of N.

Second Attack

For his second attack, May follows a slightly different approach using Copper-
smith’s Generalized theorem for univariate modular equations (theorem 5.2.2).His
attack can be summarized in the following theorem.
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Algorithm 9: May’s First Attack for small d using a modulus N = pq

Input: (N,e) where N = p"q and ed = 1 (mod ¢(N)) for some

d< N2,
Output: The factors p,q of N.
1. Compute E = e~ ! modN. If the computation of F fails, ouptut p, g
and EXIT.
2.Run algorithm of theorem 5.2.8 on input E. If the algorithm
outputs p,q¢ EXIT.
3.Set d = E and run a (probabilistic or deterministic) factorization
algorithm on input (N, e, d).

Theorem 5.3.24

Let N = p'q, where v > 2 is a known constant and p,q are primes of the same
bitsize. Let (e,d) € Z X Z(’;(N) be the public-key/secret-key pair satisfying ed =
1 (mod ¢(N)). Suppose that

d< N (5507
Then N can be factored in polynomial time.
Proof. We begin again with equation
ed—1=kp"Yp—-1)(g—1), forsome k€ Z.

Let E = e~! (mod N). Then again Ee = 1+ ¢N for some ¢ € N. If we multiply the
equation ed — 1 = kp"~!(p — 1)(¢ — 1), with F and rearrange its terms we will get

d—E = (Bk(p—1)(g— 1) — cdpg)p”".

Define the polynomial f,—1 = x — E which has the root xg = d modulo p'~1 In
addition, since p, ¢ are of the same bitsize, we know that p > %q.This gives

T
r1 pq_lN
— =-N=
2 2
1

We would like to be able to recover zg = d in polynomial time. We will apply
theorem 5.2.2 to f,»—1 =z — F in order to show that d can in fact be computed in
polynomial time.The degree of f,-—1 is 6 = 1. Let 8 = % — @. We know that

r—1
p"~!is a divisor of N such that p"~! > %Nm = NB_In order to apply theorem

. . 82
5.2.2 and recover d it remains to show that d < ¢y N ¢ for a constant cy. If we
choose ¢y = 4 then we have

2(r—1) 1 r—1

2 — T,
ANG = aNGT - meen Py > NG Tmy = NG > g
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Thus we can recover d in polynomial time in log N and then use a (deterministic
or probabilistic) polynomial time algorithm to obtain the factorization of N.This
completes the proof of the theorem. O

Algorithm 10 gives a compact description of the attack.

Algorithm 10: May’s Second Attack for small d using a modulus
N =pq
Input: (N,e) where N = p"q and ed = 1 (mod ¢p(N)) for some
d < NG=)*,
Output: The factors p, ¢ of N.
1. Compute £ = e~! modN. If the computation of E fails, ouptut p, q
and EXIT.
2.Apply the algorithm of theorem 5.2.2 on input
N, fpr=2—-F,f=""— bglN and cy = 4.This gives the value of d.
3.Run a (probabilistic or deterministic) factorization algorithm on
input (V, e, d).

The bounds in theorems 5.3.23 and 5.3.24 imply that the first attack is more
efficient if » = 2 while the second one yields better results for all integer values
r>3.

Remark 5.3.25. It is important to note here that in contrast to Wiener and
Boneh & Durfee attacks, which required e < ¢(N) and were completely inefficient
for e > N1 and e > N1875 respectively, none of the attacks presented above can
be counteracted by choosing a larger public exponent e. Intuitively, this difference
stems from the fact that all previous attacks required the computation of £ in equa-
tion ed — 1 = k¢(N). In order to find k, one had to bound it first and consequently
bound e. On the contrary, May’s attacks do not require the computation of k£ and
thus both k£ and e can be arbitrarily large. Instead, they take advantage of the fact
that » > 2 and thus ¢(/N) and N share some common divisors.

Remark 5.3.26. Another interesting feature of the new attacks is that they can
trivially be extended to partial key exposure attacks for d with known most sig-
nificant bits (MSBs).Actually, it makes no difference to the attacker whether the
most significant bits of d are zero (which impies that d is small) or known. On the
contrary, Wiener and Boneh & Durfee attacks do not work when the MSBs of d
are non-zero but known.

5.4 Partial Key-Exposure Attacks

In the previous section we examined attacks where the private key d was small.
In this section we study the case where the value of d is arbitrary but we know a
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fraction of its bits. The major question we will try to answer is how many bits of d
does an eavesdropper need in order to reconstruct all of d and thus break RSA. All
the attacks described below are equally strong to the attacks described in sections
5.2 and 5.3 in that once an attack succeeds, the RSA is fully broken and the
legitimate sender have to choose a new tuple (N, e, d) in order to re-establish a
secure communication.

To give a practical perspective of the attacks in question, consider a computer
system in which an RSA private key is stored. An intruder may attempt to attack
the system in a variety of ways in order to obtain the private key. In many scenar-
ios, an attacker using a side-channel attack,* either succeeds to obtain the most
significant bits (MSBs) or least significant bits (LSBs) of d in consecutive order.
Once a certain fraction of the bits is revealed, the attacker can efficiently compute
all of d.

5.4.1 Boneh-Durfee-Frankel Partial-Key Exposure At-
tacks (BDF)

In 1998, Boneh,Durfee and Frankel [6] presented some partial key-exposure
attacks on RSA.Their results include attacks where either some of the MSBs or
LSBs of d are known and determine the conditions under which the knowledge of a
fraction of consecutive bits of d is sufficient to fully recover d. Below we present in
brief their results along with the main underlying ideas. In the following analysis
we assume that p, g are balanced. However, similar results hold if p, ¢ are not of
the same bitsize.

Low Public Exponent

The first attack by Boneh ,Durfee and Frankel requires the knowledge of a
quarter of the LSBs of private key d and is efficient only if the public exponent e
is polynomially bounded by the bitsize of V. The starting point for the analysis is
again the equation

ed—k¢p(N)=ed—k(N—-s+1)=1 (5.8)

where s = p+ ¢ and k € N. We know that d < ¢(N) which implies that k& < e.
Since p, ¢ are assumed of the same bitsize, we have

N
4<\2F<q<p<2\/N.

4attack that is based on information gained from the physical implementation of a
cryptosystem, rather than theoretical weaknesses in the algorithms . Timing information,
power consumption, electromagnetic emanations or even sound can provide an extra source
of information which can be exploited to break the system.
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In addition s = p+ ¢ < 3v/N and thus ¢(N) =N —s+1> N —3VN > §. The
main result of BDF for low public exponent partial key-exposure attacks can be
summarized in the following theorem.

Theorem 5.4.1 (LSBs)

Let N = pq be an n-bit RSA modulus. Let 1 < e,d < ¢(N) satisfy ed =
1 (mod ¢p(N)). if N = 3(mod4) and e < 253, then there exists an algorithm that,
gwen the 7§ least significant bits of d, computes all of d in time polynomial in n
and elog e.

Proof Sketch. The knowledge of the 7 least significant bits of d implies that we
know some dg such that do = d (mod27). Reducing 5.8 modulo 27 yields

edy =1+ k(N — 5+ 1) (mod 27).

If we replace ¢ by % and set © = p, we get the following univariate (quadratic)
modular equation

N n
edg=1+k(N -z — ;+1)(m0d21) (5.9)
kz? + (edo — k(N 4+ 1) — 1)z + kN = 0 (mod 27) (5.10)

which has root zog = p modulo 27 . Notice that if we could recover all the solutions
o of equation 5.10, then one of them would satisfy =g = p (mod 27). We could
then use theorem 5.2.5 to fully recover p and consequently N.

It only remains to descibe an algorithm that efficiently (with complexity O(n?))
finds solutions to 5.10 and, in addition, bound the total number of solutions as
k ranges in {1,...,e}. We exhaustively examine all positive integers k£ < e. BDF
transform 5.10 into a form for which there is an efficient algorithm that computes
its roots.The details can be found in [16, Section 3 & appendix A].

In addition, they show that for each £’ in the range {1, ..., e} if £’ is of the form
k' = 2%m where m is odd, then the number of roots of 5.10 for the candidate &’
is upper bounded by 22+, This means that an odd candidate k' can contribute
to the total number of solutions with at most 4, a k' = 41 + 2 with at most 8
etc. Thus, as K’ ranges over {1, ..., e}, O(elog, e) solutions will be tested before the
correct value of k is found.

The running time of the above approach is bounded by the number of solutions
(©(elogy €)), the running time of algorithm in theorem 5.2.5 (which is polynomial
in n) and the running time of the algorithm that finds the roots of 5.10 (O(n?))
and is therefore polynomial. O

Remark 5.4.2. Notice that the running time of the attack is heavily based on
the value of the exponent e. The attack is polynomial in n (bitsize of N) only if
e is polynomially bounded by n. That’s why the attack is considered efficient only
in the case where an exhaustive search in the range {1,...,e} is computationally
feasible.
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Remark 5.4.3. The requirement N = 3(mod 4) should not be ignored. When N =
3(mod4), the above attack provably terminates in polynomial time and achieves
the full recovery of d when % of its LSBs are known. Notice that the condition
N = 3(mod4) is equivalent to p # q(mod4). Expressed in another way, p — ¢ = 2r
where 7 is odd. In the general case where p — ¢ = 2% (with r odd), in 2004,
Steinfeld and Zheng [36] showed that the above attack is efficent only when the

number of known LSBs is at least 7 + a.

Medium Public Exponent

Boneh, Durfee and Frankel extended their approach to public exponents with
values in the interval [N%, N%] when some of the MSBs (instead of LSBs) of d are
known. They begin again with the equation 5.8 where s = p + ¢. The unknown
variables are three (d,k and s). Unlike the previous case, k cannot be recovered
by exhaustive search since it is an arbitrary element in the set {1,...,e} whose
size is exponential in the bitsize of N. However they show that given sufficiently
many MSBs of d and provided that e < v/N, one can efficiently compute k up to
a constant additive error. They first prove the following lemmas.

Lemma 5.4.4. Suppose that we are given a dy such that :
(i) le(d —dp)| < e N, and

(ii) edy < CQN%.
Then the unique k satisfying ed—k¢(N) = 11is an integer in the range [k—A k+A]
where k = ¢~ and A = 8¢y + 2.

Proof.
];_k:k_]%:ed—l_edo—l‘:ed—l edo—1 edg—1 edy—1
N KOV o) TN T N TN
- i 1, e(d—do) s N —¢(N) N
=[G W g | <V Sy g
2
< C2W + 2c¢1 < 8ca + 2¢y.

since N — ¢(N) < 3V/N < 4V/N and ¢(N) > . This means that k is an integer
in the range [k — A,k + A] and the proof is complete. O

Lemma 5.4.5. Let N = pq be an n-bit RSA modulus and 1 < e, d < ¢(NV) satisfy
ed = 1(mod ¢(N)). In addition, let ¢ be an integer in the range {0, ..., 5 }. Suppose
that 2! < e < 2! and that we know the ¢ most significant bits of d. Then we can
efficiently compute the unique k satisfying 5.8 up to a constant additive error.



122 Lattice-Based Attacks on RSA

Proof. Since we know the t most significant bits of d, we know an integer dp such
that |d — do| < 2"7%. This means that dy satisfies |e(d — do)] < et < QiHlAn—t

22" < 2N. In addition dy < N which means that edy < 9N3. Thus we can apply
lemma 5.4.4 with ¢; = ¢y = 2 and search for k in the interval [k — A, k + A] where
A = 20. O]

Lemma 5.4.5 implies that we can recover the exact value of k by an exhaustive
search and thus reduce the number of unknown variables in 5.8. By taking the
above equation modulo e, we can further remove d and solve to find s’ = s (mod e).
The main result of Boneh,Durfee and Frankel for MSBs known can be summarized
in the following theorem.

Theorem 5.4.6
Let N = pq be ann-bit RSA modulus and 1 < e,d < ¢(N) satisfy ed = 1 (mod ¢(N)).

(a) Suppose that e is a prime in the range {2, ..., 21} with T <t < %.Given
the t most significant bits of d we can factor N wn time polynomial in n.

(b) In general, suppose that e € {2t ... 271} 4s the product of at most r known
distinct primes with § <t < 5.Given the t most significant bits of d we can
factor N in time polynomial in n and 2".

Proof Sketch. The assumptions of the theorem satisfy lemma 5.4.5 which means
that we can search for k in constant size range. In order to get the factorization of
N, for each candidate k¥’ € {k — A, ...,k + A} we do the following:

1. Compute s/ = N +1+k ! (mode). Notice that if we consider equation 5.8
modulo e, for a candidate &’ we get

ed—K(N—-s+1)=1=kK(N—-s+1)+1=0(mode)
> =s=N+1+k " (mode).

In addition equation 5.8 implies that ged(k, e) = 1 which means that we can
remove every k' such that ged(k,e) # 1 from the candidate list.

2. Compute a root p’ mod e for x in the quadratic equation
22 — sz + N =0(mode). (5.11)

Since s’ = s (mode) then one of the solutions p’ of 5.11 will satisfy p’ = p
mod e.

3. Once we have found a p’ such that p’ = p mod e with e > 21 = Ni, we can
apply theorem 5.2.5 to fully recover p.

The execution of steps 1 and 3 are quite straightforward. It only remains to show
how one can extract the roots of equation 5.11 efficiently.
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(a) If e is a prime there are well known (probabilistic) polynomial time algo-
rithms that find the corresponding roots.

(b) If e is a composite with r distinct prime factors py, ..., pr,then we can solve
the corresponding quadratic equations for each prime factor p; and combine
the solutions with Chinese Remainder Theorem to get the overall solutions.
Thus, the running time of the algorithm depends on the number of the
solutions of the quadratic equation. Since e has r distinct prime factors,
there are at most 2" solutions to consider. That’s why the running time of
the attack is polynommial in n and 2".

O

Interestingly, Boneh, Durfee and Frankel [16] prove that the full recovery of
d is possible even if the factorization of e is not known.However, their results are
weaker than in the case where the factorization of e is known.In particular they
prove the following theorem , the proof of which can be found in [16, Section 4.2].

Theorem 5.4.7

Let N = pq be ann-bit RSA modulus and 1 < e,d < ¢(N) satisfy ed = 1 (mod $(N)).
Lett be an integer in the range {0, ..., 5 }. Suppose e is in the range {2t ... 21 and
k > e-e for some € > 0. Then there is an algorithm with running time polynomial
m n,% that given the n —t MSBs of d finds all of d.

5.4.2 Blomer-May Partial Key-Exposure Attacks

In 2003, Blomer and May [3] presented some new partial key exposure attacks
on RSA. Their results improve the bounds proved by Boneh, Durfee and Frankel.
Apart from attacks with known most or least significant bits of d, they also present
attacks with known MSBs or LSBs of CRT-exponent d,. Below, we summarize
the main results of Blomer and May and outline the underlying ideas of their
proofs. The analysis presented assumes that p, q are of the same bitsize.

MSBs Known

Unlike Boneh, Durfee and Frankel who used the method for finding p, ¢ when
some of the bits of p are known, Blomer and May make direct use of Copper-
smith’s method for finding small solutions to modular multivariate equations. Con-
sequently, Blomer and May manage to improve the bounds by relaxing the require-
ment that k£ in equation 5.8 is known exactly. Thils requirement restricted the
method’s usability to public exponents e with e < N2.

Their main result for known MSBs is given in the following theorem. We note
again here that since the method is heuristic, the theorem’s validity depends on
the non-occurence of zero-polynomials throughout the resultant computations.
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Theorem 5.4.8

For every € > 0 there exists an integer Ny such that for every N > Ny the following
holds:

Let (N, e) be an RSA public key, where e = N is in the range [N%, N@] Given
an approximation d of d with

d— d’ < N%(S*Qaf\/36a2+l2afl5)fe’
one can factor N in time polynomial in log N.

Proof Sketch. Blomer and May do not try to fully determine £ in the equation

ed — k¢(N) = 1. Instead, they use k= ﬁ\"]lj& as an approximation of k. Let § =

1(5 —2a — V3602 + 12a — 15) — €. Then

~ ed—1 ed—1
k—k|= —
| | d(N) N+1

_|(ed =1)(N +1) — (ed = )N +1 - (p +q))
PN)(N +1)

(p+q)(ed — 1)
P(N)(N +1)

e(d—d)
P(N)

e

* =50

< (N? 43N~ 2d)

where we have used the fact that p + ¢ < 3V N since p,q are balanced. Thus
(p+4q)(ed—1) -7

@) < 3N},

We consider the following two cases:

1. The term N° dominates Nféci. Then

~ _ )
Ik — k| < —S(N° + 3N "29) < ANTe < gNota-l

~ ¢(N) (N
since ¢(IN) > & But the conditions § = 2(5— 20— V3602 + 12a — 15) — €
and o > % give that § + ¢ — 1 < 0. That is we can easily determine k from

k. If we determine k then we can compute p+ ¢ =N —1—11 + k7! mod e. On
the other hand, e > Nz and therefore (since p+¢ < 3N2) we can find p+ ¢
over the integers and not only modulo e.

~—

2. The term N_%ci dominates N°. Then
L _4deN“3d _4N°Tid
~ ¢(N) p(N) ~

Let dg = d — d and kg = k — k. Then reformulating 5.8 we get

e(d+do) — 1 = (k + ko)d(N)
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or equivalently
edo+ (k+ko)(p+q—1)+ed—1= (k+ ko)N. (5.12)

The above equation motivates the definition of the following trivariate poly-
nomial.

fN(xayaz) :6x+(/~€—|—y)z+eci—1

with a root (xo,yo0,20) = (do,ko,p + ¢ — 1) modulo N. If we define X =
N9 Y = 4N°"2 and Z = 3N2 then we have that lzo] < X, |yo] <Y and
|z0| < Z.

Following the typical approach for multivariate modular equations, Blomer
and May define the following polynomials

0<1<m
Gijk(T,y,2) = 2T 7R EN ]T\'}fi(m,y, z) for<0<j<i,and
0<k<j
0<1<m
hiji(e,y,2) = xjykNifﬁ_i(m,y, z) forq0<j<i,and
1<k<t

for a value ¢ to be optimized.Notice that all these polynomials contain all
of the roots of fy modulo N™. Next, they construct a lattice £ the rows of
which correspond to the coeflicient vectors of the polynomials g; ; (X, yY, 22)
and h; (X, yY, 2Z). In order to derive the condition for X,Y and Z, they
apply Howgrave-Graham’s lemma for the trivariate case (natural extension
of lemma 5.3.3 to three variables). The computation of the determinant and
the optimization with respect to ¢ gives the following lemma (the proof can
be found in [3, Lemma 8, p.11]).

Lemma 5.4.9. Let X = N%.Y = N3 and Z = N'2. Then, using the LLL
algorithm, one can find three linearly independent vectors in £ with norm

smaller than —~—— provided that ¢ < %(5 — 20 — /3602 + 12a — 15).
dim(L)

The above lemma implies that the condition of the theorem ensures that
we can find in polynomial time three polynomials hq(z,y, 2), ho(z,y, 2z) and
hs(z,y, z) with the common root (zg, yo, 20). In order to recover the factor-
ization of N, we just have to find zg = p+ ¢ — 1. To that end, we take the re-
sultants g1 = resy(hi, ha), g2 = res;(hi, hg) which are bivariate polynomials
in y, z. In order to eliminate y as well we take the resultant ¢’ = resy(g1, g2).
If none of the ¢, g1, g2 is the zero polynomial, then we can extract the root
zo and consequently factor V.

This completes the proof. O
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LSBs Known

Blémer and May also presented two methods for known LSBs. In their first
method, they present an attack that works for all but a negligible fraction of the
public exponent e < N2. Their approach makes use of the linear independence of
two sufficiently short vectors in the lattice and does not use Coppersmith’s heuristic
technique. This, interestingly, leads to a rigorous method. In particular, they prove
the following theorem.

Theorem 5.4.10

Let N be an RSA modulus and let 0 < a,e < % For all but a O(%)—fmction of the
public exponent e in the interval [3, N%| the following holds: Let d be the private
exponent. Given do, M satisfying d = dg mod M with

Netate < M < aNOtate
Then N can be factored in polynomial time.

Proof Sketch. Let d = diM + dy where d; is unknown. If we replace d in equation
5.8 and reorder the terms we get the following equation

ed1M+k(p+q—1)—1+ed0:kN. (5.13)
which in turn motivates the definition of the polynomial
In(z,y) = eMz +y + edy

with a root (z9,yo) = (d1,k(p+ g — 1) — 1) modulo N. In addition

ed —1 ed o
B S <esN

This implies that k(p+ g — 1) — 1 < N®- 3Nz = 3N2+® Moreover,

d—dy N N
< <

N_ N yiae
M M ~— nitote '

dy =

Thus, we can set the bounds X = N372€ and Y = 3N27%. In order to recover
(zo,Yyo), Blomer and May again use Howgrave-Graham’s lemma for the bivariate
case (lemma 5.3.3) and transform the modular equation to an equation over the
integers. For that, they use the auxiliary polynomials NV and Nz and construct
the following 3-dimensional lattice £ with basis

N
B=|0 NX
edy eMX Y
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Again, the goal is to find two small linearly independent vectors (ag, a1, a2)B and
(bo, b1, b2) B both having norm smaller than % Since the lattice is three dimen-
sional, we can in fact compute two shortest linearly independent vectors in poly-
nomial time. It only remains to show that £ contains indeed two such vectors. To
that end, they prove (the proof can be found in [3, lemma 10,p.14]) the following
lemma.

Lemma 5.4.11. Given N, a,¢ as defined in theorem 5.4.10. Then for a%l but
O(N*) choices of e in the interval [3, N] the following holds: Let X = Nz27%"¢
and Y = 3N27¢. Then the lattice £ contains two linearly independent vectors
: N
with norm less than Net
Once we find these two vectors @ = (ag, a1, az) and b= (bo, b1, b2), we have the
following equations over the integers

aoN + a1 Nz + az fn(z0,90) = 0,
boN + bi Nz + bafn(z0,y0) = 0.

Blomer and May go on to solve the above system without using resultant compu-
tations. Since fy(zo,yo) = kN, the above equations can be written as

a1xo + a2k = —ao,

bixo + bok = —by. (5.14)

An important observation is that the linear independence of @, b along with 5.14
,implies the linear independence of (a1, az2), (b1, b2) (suppose in contrast that (a1, as)
A(b1,b2) for some A € R, then equations 5.14 would give that ag = Aby which con-
tradicts the hypothesis that &, b are lineraly independent). Thus, we can determine
(o, k) as the unique solution of the linear system 5.14.Then we can compute ¥
by the relation yg = kN — eMxo — edy and finally get the factorization of N from
the relation p4+q¢—1= yok—ﬂ. This completes the proof.Note that the above result
is rigorous since it does not use resultant computations. O

In their second method, they generalize the 3-dimensional approach to multi-
dimensional 1271ttice8. They manage to improve the bound for the public exponent
up to e < Ns. However, unlike their first method which is provable, this one is
based on Coppersmith’s multivariate approach and is therefore heuristic. Their
main result can be summarized in the following theorem

Theorem 5.4.12

For every e > 0 there exists No such that for every N > Ng the following holds:
Let (N, e) be an RSA public key with e = N* < N, Let d be the private exponent.
Then given do, M satisfying d = dy (mod M) with

1,1
1+1iV/1+6a+
M > N&"s <

one can factor N in polynomial time.
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Proof Sketch. Starting again with equation 5.8 and plugging in the value d =
di M + dy we get
k(N —=(p+q—1)) —edo+1=eMd. (5.15)

This motivates the definition of the polynomial
feri(y,2) = y(N — 2) —edg + 1

with the root (yo,20) = (k,p + ¢ — 1) modulo eM. As in the previous theorem, we

set the bounds Y = N and Z = 3N2 such that |zo| < X, |yo| < Y. Next, Blomer
and May define the polynomials

0<i<m,and
0<7<41,
0<1¢<m, and
1<y <t

9i5(y,2) =y (eM) f  (y, z)  for
hij(y,z) = 2 (eM) fi (y,z)  for

for some integers m and ¢ (to be optimized later). They go on by constructing a
lattice £L(M) with basis B(m) consisting of the coefficient vectors of the polynomials
9i,; (WY, 2Z) and h; ;(yY, 2Z). Obviously, all the integer linear combinations of g, ;
and h; ; have the root (yo, z9) modulo (eM)™ which means that the first condition
of lemma 5.3.3 is satisfied. For the satisfaction of the second condition, Blomer
and May [3, lemma 12, p. 16] prove the following lemma.

Lemma 5.4.13. Let e, M be as defined in theorem 5.4.12. Suppose that ¥ = N¢

and Z = 3N 2. Then LLL algorithm finds at least two vectors in £(M) with norm
(eM)™

smaller than —————.
dim(L(M))

Thus the condition of theorem 5.4.12 guarantees that one can find in polyno-
mial time two polynomials f1(y, 2) and fa2(y, z) with a root (yo,20) = (k,p+q—1)
over the integers and consequently recover the factorization of N using resultant
computations. Of course, the attack is heuristic. O

Known MSBs/LSBs and CRT-Exponents

Blomer and May extended their approach to fast RSA variants where the values
d, = d(modp—1) and d; = d (mod ¢ — 1) are used in decryption process instead of
d. The attacks presented make use of a result due to Howgrave-Graham alccording
to which an approximation of kp for some unknown k with error bound N7 suffices
to factor N. The attacks are provable since they do not rely on the assumption of
non zero resultants. Their results for both LSBs and MSBs known are presented
in the following theorem.

Theorem 5.4.14
Let (N,e) be an RSA pair with N = pg,e = N® and secret exponent d. Let, in
addition, d,, = d (modp — 1).
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(a) Given do, M such that e = N® € [1,poly(log N)], dy = d, (mod M) and
M > Ni, or

(b) Given d~p such that « € [0, ﬂ and |dy, — cip| < Ni*%
then N can be factored in time polynomial in log N.

Proof. By definition of the RSA variant, we know that ed, — 1 = k(p — 1) for some
k € N. In addition,since d, <p —1, k = w;”%ll <e= N¢“.

. The above

=

(a) If we write d, = di1M + dp then we have d; < dﬁp < < 2N

equation can then be rewritten as follows:

P
M

edy+k—1=kp—eMd.

If ged(eM, N) # 1 then we obtain the factorization of N directly. Otherwise
let E be the inverse of eM modulo N. Then E-eM = 1+c¢N for some ¢ € N.
Multiplying the above equation with E we get

E(edy+k—1) = (Ek — cqdi)p — di.

Suppose we know the value of k. Then we ha\{e an approximation of a multiple
of p up to an additive error dy with d; < 2N 1. In addition ¢ divides EFk —cqdy
if and only if ¢ divides Ek. Since ged(E, N) = ged(eM, N) = 1 this condition
reduces to the condition ¢ divides k. But if e < ¢ then ¢ cannot divide & (recall
that k£ < e). Thus we can apply theorem 5.2.3 and recover p as soon as we
have found the right k. It only remains to show how to find k. This can be
achieved by a brute force search in the interval [1, e). Then for each value of
k we run the algorithm of theorem 5.2.3 and for the right value we get the
factorization of IN. By hypothesis the size of e is polynomially bounded by
log N which makes the whole attack work in time polynomial in log N. This
completes the first part of the proof.

(b) Since p,q are balanced and k£ < N% where o < %, g cannot divide k. The
equation ed, — 1 = k(p — 1) gives kp = ed, — 1 + k. Define p = ed — 1. Then

15— kol = led— 1 — (edy — 1+ k)| = le(d— dy) — K
<eld—dy|+|k| < N® Ni~%+ N < 2N7.

We can then apply theorem 5.2.3 to factor N.

This completes the proof. O
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5.4.3 RSA-like Schemes with moduli N = p'q

In 2004, May [28] presented some partial key-exposure attacks to RSA Schemes
with moduli N = p"¢. These attacks stem directly from the respective low private
exponent attacks presented in subsection 5.3.5 . May shows that in such schemes
it makes no difference whether the MSBs of d are zero or known to the attacker.
Consequently, unlike the partial key-exposure attacks against the original RSA
scheme, these attacks work for public exponents e of arbitrary size.

MSBs Known

The attacks for MSBs known are directly derived from theorems 5.3.23 and
5.3.24. We summarize May’s results in the following theorem.

Theorem 5.4.15
Let N = p"q, where v > 2 is a known constant and p,q are primes of the same
bitsize. Let (e,d) € Z x Z;(N) be the public-key/secret-key pair satisfying ed =

1 (mod ¢(N)). Given d such that
d—d| < N2, or |d—d < NG,

one can factor N in (probabilistic) polynomial time.

Proof. For both conditions we begin with equation ed — 1 = k¢ (V).
1. (|d—d| < N2 ). Then we know that
e(d—d)+ed—1=kp" Yp—1)(g—1)

for some k € N. Multiplying the above equation with £ = e~! modulo N
(eE =1+ ¢N for some ¢ € N)we get

(d—d)+E(ed—1) = (Ekp" 2(p—1)(g— 1) —cp" 'q(d—d))p  (5.16)

which means that E(ed— 1) is a multiple of p up to an additive error \(d—ci)\ <

N @+1?  Using completely similar argumentation as in the proof of theorem
5.3.23 May proves that E(ed — 1) yields the factorization of N.

r—

2. (Jd—d| < N(T+i)2). Then if we rewrite 5.16 in a slightly different way, we
get

(d—d)+ E(ed—1) = (Ek(p — 1)(q — 1) — epg(d — d))p"".
May, then defines the polynomial f,r-1(z) = z + E(ed — 1) which has a

small root xg = d — J, |zo| < N(%)z modulo p"~!. The rest of the proof is
identical to the proof of theorem 5.3.24 where the polynomial in question is
fpr—1(z) =2+ E(ed — 1) instead of f1(x) =2 — E.

This completes the proof. O
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LSBs Known

In a similar way, May proves the following results for known LSBs of the private
exponent d when the modulus is of the form N = p"q.

Theorem 5.4.16

Let N = p"q, where v > 2 s a known constant and p,q are primes of the same
bitsize. Let (e,d) € 7Z x Ziy(y be the public-key/secret-key pair satisfying ed =
1 (mod ¢(N)). Given do, M with d = dy mod M and

__r _ _4r
M > N1 t+1D? - or M > NG+D?

one can factor N in (probabilistic) polynomial time.

Proof. We start by writing d as d = diM + dp.

- oz :
1. (M > N ~@?).In that case d; = 5% < < N@+D? The equation

17
ed —1 = k¢(N) can then be written as

ediM +edy —1=Fkp"'(p—1)(g—1), for some k € N.

If we multiply the above equation with £ = (eM)™! mod N (eME = 1+¢cN
for some ¢ € N) we get

dy + E(edo — 1) = (Ekp" *(p — 1)(¢ — 1) — cp" ' qd)p. (5.17)

which means that E(edyp — 1) is a multiple of p up to an additive error
|di| < N +1% . The rest of the proof follows the proof of theorem 5.3.23

__4r __4r r—1
2. (M > N'"T02). Now dy < & < N7 = NG7” The equation 5.17
can be rewritten as

dy + E(edy — 1) = (Ek(p — 1)(g — 1) — epgd1)p’ .

This motivates the definition of the polynomial f,r-1(z) = = + E(edy — 1)

which has a small root zg = dy, |zo| < NGFD? modulo p" L. The rest of the
proof goes on like the proof of theorem 5.3.24.

This completes the proof. O

LSBs/MSBs Known and CRT-Exponents

May also presents partial key-exposure attacks for RSA-like Schemes with mod-
uli N = p"q when the values d, = d (mod p — 1) and dy = d (mod ¢ — 1) are used
in the decryption process instead of d itself. These attacks, which are in a way a
generalization of the attacks by Blomer and May [3] (presented in 5.4.2), work
efficiently for small public exponent e and for known both MSBs and LSBs. The
following theorem summarizes the results of May’s attack.
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Theorem 5.4.17
Let N = p"q, where v > 1 is a known constant and p,q are primes of the same
bitsize. Let e be the public key and let dy, satisfy ed, =1 (modp —1).

1
1. Given dy and M such that dy = d,, (mod M ) with M > 2N ¢+9? and provided
that e 1s polynomially bounded by log N, or

2. Given d such that |d, — d| < NG? ™ and provided that o = logy(e) €
[07 ﬁL

then N can be factored in time polynomial in log N.

Proof. The equation ed, = 1 (mod p — 1) implies that
edp — 1 =k(p — 1) for some k € Z.

In addition, since d, < p — 1 the above equation gives that & < e. Finally, since

1
p, q are assumed balanced, we know that p < 2N~+1,

1 T
1. Let us write d, = di M +do with d; = 2% < 2 < 2N NGiD? | We
oN (r+1)2

rewrite the above equation as follows:
ediM +edy+k —1=kp.

We compute E = (eM)™!, that is EeM = 14 ¢N for some ¢ € N. Thus the
above equation becomes

dy+ E(edy +k — 1) = (Ek — cp"Lqdy)p.

Since k is unknown, we first do a brute force search for & in the interval [1, e).
For each possible value of k we run the algorithm of theorem 5.2.8 to recover
the factorization of N. Notice that the conditions of theorem 5.2.8 are satified
since the additive error dy satisfies |di| < NC¢+D? and p"~lq = Q(Nr%)
cannot divide £ < e which is polynomially bounded by log N. In addition
the number of values k to be tested is polynomial in log N which makes the
whole attack polynomial in log V.

2. The equation ed, — 1 = k(p — 1) gives kp = edy, + k — 1. Thus
lerr| =[kp — ed| = |e(dy — d) + k — 1| < |e(d), — d)| + |k — 1]
< NGH2 ™. N 4 N® < 2N T2,

Thus ed is a multiple of p up to an additive error lerr| < 2N @+1% In

addition, £ < e < N+D? which means that & cannot be a multiple of
p" g = Q(NT). We can then apply theorem 5.2.8 to factor N.

This completes the proof. O
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