
ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ×ÍÅÉÏ
ÔÌÇÌÁ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ

ÕÐÏËÏÃÉÓÔÙÍ

ÔÏÌÅÁÓ ÔÅ×ÍÏËÏÃÉÁÓ ÐËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ ÕÐÏËÏÃÉÓÔÙÍ
ÅÑÃÁÓÔÇÑÉÏ ËÏÃÉÊÇÓ ÊÁÉ ÕÐÏËÏÃÉÓÌÙÍ (CORELAB)

ÐëÝãìáôá êáé ÅöáñìïãÝò óôï Êñõðôïóýóôçìá RSA

ÄÉÐËÙÌÁÔÉÊÇ ÅÑÃÁÓÉÁ

ôïõ

ÐÝôñïõ Á. Ìùë

ÅðéâëÝðùí: ÅõóôÜèéïò Ê. ÆÜ÷ïò
ÊáèçãçôÞò Å.Ì.Ð.

ÁèÞíá, Éïýëéïò 2006

2

3

ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ×ÍÅÉÏ
ÔÌÇÌÁ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ×ÁÍÉÊÙÍ
ÊÁÉ ÌÇ×ÁÍÉÊÙÍ ÕÐÏËÏÃÉÓÔÙÍ
ÔÏÌÅÁÓ ÔÅ×ÍÏËÏÃÉÁÓ ÐËÇÑÏÖÏÑÉÊÇÓ
ÊÁÉ ÕÐÏËÏÃÉÓÔÙÍ

ÐëÝãìáôá êáé ÅöáñìïãÝò óôï Êñõðôïóýóôçìá RSA

ÄÉÐËÙÌÁÔÉÊÇ ÅÑÃÁÓÉÁ

ôïõ

ÐÝôñïõ Á. Ìùë

ÅðéâëÝðùí: ÅõóôÜèéïò Ê. ÆÜ÷ïò
ÊáèçãçôÞò Å.Ì.Ð.

Åãêñßèçêå áðü ôçí ôñéìåëÞ åîåôáóôéêÞ åðéôñïðÞ ôçí 17ç Éïõëßïõ 2006

..
Å. ÆÜ÷ïò

ÊáèçãçôÞò Å.Ì.Ð.

..
Ô. ÓåëëÞò

ÊáèçãçôÞò Å.Ì.Ð.

..
Ö. ÁöñÜôç

ÊáèçãÞôñéá Å.Ì.Ð.

ÁèÞíá, Éïýëéïò 2006.

4

...................................
ÐÝôñïò Á. Ìùë
Çëåêôñïëüãïò Ìç÷áíéêüò êáé Ìç÷áíéêüò Õðïëïãéóôþí Å.Ì.Ð.

c© (2006) Åèíéêü Ìåôóüâéï Ðïëõôå÷íåßï. All rights reserved.

5

Ðåñßëçøç

Óêïðüò ôçò ðáñïýóáò äéðëùìáôéêÞò åñãáóßáò åßíáé ç ìåëÝôç áöåíüò ôçò ìáèç-
ìáôéêÞò èåùñßáò ôùí ðëåãìÜôùí êáé áöåôÝñïõ ôùí åöáñìïãþí áõôÞò ôçò èåùñßáò
óôï êñõðôïóýóôçìá RSA. Óôç âéâëéïãñáößá, ï üñïò "ðëÝãìá" ÷ñçóéìïðïéåßôáé ãéá
ôçí ðåñéãñáöÞ äýï áñêåôÜ äéáöïñåôéêþí ìáèçìáôéêþí äïìþí. Ç ðñþôç äïìÞ Ý÷åé
íá êÜíåé ìå ìåñéêþò äéáôåôáãìÝíá óýíïëá åíþ ç äåýôåñç ìå ðåñéïäéêÝò äéáôÜîåéò
óçìåßùí óôï ÷þñï. Óôçí åñãáóßá áõôÞ áó÷ïëïýìáóôå áðïêëåéóôéêÜ ìå ôç äåýôåñç
äïìÞ.

ÉóôïñéêÜ, ôá ðëÝãìáôá åìöáíßóôçêáí ôï 18ï áéþíá êáé ìåëåôÞèçêáí áðü ìáèç-
ìáôéêïýò üðùò ï Langrange êáé ï Gauss. Ôï 19ï áéþíá, óçìáíôéêÜ áðïôåëÝóìáôá
áðü ôïí Minkowski Ýäùóáí þèçóç óôç ÷ñÞóç ôçò èåùñßáò ôùí ðëåãìÜôùí óôç èåù-
ñßá êáé óôç ãåùìåôñßá ôùí áñéèìþí. Ìå ôçí áíÜðôõîç ôùí õðïëïãéóôþí, ç èåùñßá
ôùí ðëåãìÜôùí âñÞêå åöáñìïãÝò óå ðïëëÜ èåùñçôéêÜ ðåäßá, ìåôáîý ôùí ïðïßùí
ç ðáñáãïíôïðïßçóç ôùí áêÝñáéùí ðïëõùíýìùí, ï áêÝñáéïò ðñïãñáììáôéóìüò êáé
ç êñõðôïãñáößá äçìïóßïõ êëåéäéïý. ÅéäéêÜ óôçí êñõðôïãñáößá äçìïóßïõ êëåéäéïý,
ìå ôçí ïðïßá êáé èá áó÷ïëçèïýìå, ôá ðëÝãìáôá ÷ñçóéìïðïéÞèçêáí óôçí áíÜðôõîç
íÝùí êñõðôïóõóôçìÜôùí, óôç èåìåëßùóç êñõðôïãñáöéêþí ðñïôýðùí êáèþò êáé óôçí
êñõðôáíÜëõóç.

Ðñùôáñ÷éêüò óôü÷ïò êÜèå êñõðôïóõóôÞìáôïò åßíáé ç åîáóöÜëéóç ôçò ìåôÜäïóçò
ôçò ðëçñïöïñßáò áðü ôï íüìéìï áðïóôïëÝá óôïõò íüìéìïõò áðïäÝêôåò ÷ùñßò íá åßíáé
åöéêôÞ ç Üíôëçóç ìÝñïõò ôçò ðëçñïöïñßáò áðü êÜðïéá ôñßôç , ìç åîïõóéïäïôçìÝíç,
ïíôüôçôá. Óôá ðëáßóéá ôçò åñãáóßáò ìåëåôÜôáé áðïêëåéóôéêÜ ôï êñõðôïóýóôçìá
RSA, ßóùò ï ðéï äéáäåäïìÝíïò åêðñüóùðïò ôùí êñõðôïóõóôçìÜôùí äçìïóßïõ êëåé-
äéïý. Áðü ôï 1977 ïðüôå êáé ðñïôÜèçêå áðü ôïõò Rivest, Shamir êáé Adleman, ôï
RSA ÷ñçóéìïðïåßôáé êáôÜ êüñïí óå åöáñìïãÝò üðïõ ç áóöÜëåéá êáé ç ìõóôéêüôçôá
åßíáé èåìåëéþäïõò óçìáóßáò, üðùò óôçí áíôáëëáãÞ ìçíõìÜôùí ìÝóù çëåêôñïíéêïý
ôá÷õäñïìåßïõ, óôçí øçöéáêÞ õðïãñáöÞ åããñÜöùí êáé óôéò ðëçñùìÝò ìå ÷ñÞóç ðé-
óôùôéêþí êáñôþí. Ôá 30 ðåñßðïõ áõôÜ ÷ñüíéá ôçò ýðáñîçò ôïõ, ôï RSA Ý÷åé ìåëå-
ôçèåß åêôåíþò ôüóï ùò ðñïò ôéò äßáöïñåò ðáñáëëáãÝò ôïõ ðïõ Ý÷ïõí ðñïôáèåß, üóï
êáé ùò ðñïò ôçí áíôï÷Þ ôïõ óå åðéèÝóåéò.

Óôï ðñþôï êåöÜëáéï äßíïíôáé âáóéêïß ïñéóìïß êáé éäéüôçôåò ôùí ðëåãìÜôùí åíþ
óôï äåýôåñï ìåëåôÜôáé ç Ýííïéá ôçò áíáãùãÞò âÜóçò åíüò ðëÝãìáôïò ìå Ýìöáóç óôçí
LLL áíáãùãÞ êáé óôïí ïìþíõìï áëãüñéèìï. Óôï ôñßôï êåöÜëáéï ðáñïõóéÜæåôáé ç
åíóùìÜôùóç ôçò èåùñßáò ôùí ðëåãìÜôùí óôçí åðßëõóç ðïëõùíõìéêþí åîéóþóåùí.
Óôï ôÝôáñôï êåöÜëáéï äßíåôáé óõíïðôéêÞ ðáñïõóßáóç ôïõ êñõðôïóõóôÞìáôïò RSA
êáé ðáñïõóéÜæåôáé ìßá èåôéêÞ åöáñìïãÞ ôùí ðëåãìÜôùí óå áõôü. ÔÝëïò, óôï ðÝìðôï
êåöÜëáéï ðáñïõóéÜæïíôáé ïé óçìáíôéêüôåñåò ó÷åôéæüìåíåò ìå ðëÝãìáôá åðéèÝóåéò
åíáíôßïí ôïõ RSA êáé áíáëýåôáé ç áíôï÷Þ ôùí äéáöüñùí ðáñáìÝôñùí ôïõ êñõðôï-
óõôÞìáôïò óôéò åðéèÝóåéò áõôÝò.

ËÝîåéò ÊëåéäéÜ: ÐëÝãìá, ÁíáãùãÞ ÂÜóçò ÐëÝãìáôïò, Áëãüñéèìïò LLL, Êñõ-
ðôïóýóôçìá RSA, ÅðéèÝóåéò ìå ÐëÝãìáôá.

6

7

Abstract

The purpose of this diploma thesis is the study both of the mathematical back-
ground on lattice theory and of the corresponding applications to the RSA Cryp-
tosystem. In bibliography, there are two quite di�erent mathematical structures
that are usually called lattices. The �rst one has to do with partially ordered sets
while the other has to do with regular arrangements of points in space. In this
thesis we exclusively consider the second case.

Historically, lattices were investigated since the late 18th century by mathe-
maticians such as Lagrange and Gauss. In the 19th century, important results
due to Minkowski motivated the use of lattice theory in the theory and geometry
of numbers. The evolution of computer science in the 20th century led to lattice
applications in various theoretical areas such as factorization of integer polynomi-
als, integer programming and Public-Key Cryptography. In the latter area, lattice
theory has played a crucial role in the de�nition of new cryptosystems, in the study
of cryptographic primitives and in cryptanalysis.

The main goal of a cryptosystem is to guarantee the exchange of information
between the legitimate sender and the legitimate receivers, ensuring at the same
time, that any unauthorized party is unable to recover part of the information. In
the thesis in hand, we focus exclusively on RSA Cryptosystem, which is probably
the most wide-spread Public-Key Cryptosystem. Since its publication, in 1977,
RSA has been used in plenty of applications ranging from digital signatures to
electronic credit-card payment systems. After almost 30 years of existence, RSA
has been extensively analyzed for vulnerabilities by many researchers.

In the �rst chapter we give some basic background on lattices while, in the
second, we introduce the notion of lattice basis reduction with emphasis to LLL
reduction and the corresponding algorithm. The third chapter describes the use of
lattices in �nding small roots to polynomial equations. In the fourth chapter, we
present RSA and a positive lattice related application to it. Finally, in the �fth
chapter, we present an overview of the most representative lattice-based attacks
mounted against RSA since its publication.

Key Words: Lattice, Lattice Reduction, LLL Algorithm, RSA Cryptosystem,
lattice Attacks

8

Contents

1 Introduction to Lattices 13

1.1 Linear Algebra Preliminaries . 13
1.1.1 Notation . 13
1.1.2 Scalar Product . 13
1.1.3 Norm . 14
1.1.4 Orthogonal bases (Gram-Schmidt orthogonalization) 15
1.1.5 Useful Inequalities . 17

1.2 Basic De�nitions on Lattices . 18
1.3 Determinant . 24
1.4 Successive Minima . 25

1.4.1 De�nitions . 25
1.4.2 Minkowski's Convex Body Theorem 28
1.4.3 A Number Theoretic Application 32

2 Lattice Basis Reduction 35

2.1 Minkowski Reduction . 35
2.2 Two-Dimensional (Gauss) Reduction 36

2.2.1 De�nitions . 36
2.2.2 Correctness . 40
2.2.3 Running Time Analysis . 40

2.3 LLL Reduction . 42
2.3.1 De�nitions and Properties of LLL Reduction 42
2.3.2 LLL Algorithm . 46
2.3.3 Running Time Analysis . 48
2.3.4 Finding Solutions to the Simultaneous Diophantine Approx-

imation Problem . 52
2.3.5 LLL Applications . 53

3 Finding Small Roots to Polynomial Equations 55

3.1 Introduction . 55
3.2 Modular Polynomial Equations . 56

3.2.1 Univariate Case . 56
3.2.2 Extension to More than One Variables 68

10 CONTENTS

3.3 Integer Polynomial Equations . 71
3.3.1 Bivariate Case . 72
3.3.2 Multivariate Case . 79

4 A Positive Lattice Application to RSA 81

4.1 The RSA Cryptosystem . 82
4.2 Computing d⇔ Factoring . 85

4.2.1 Balanced primes p; q . 86
4.2.2 Unbalanced primes p; q . 90

5 Lattice-Based Attacks on RSA 91

5.1 Low Public Exponent Attacks . 92
5.1.1 Stereotyped Messages . 92
5.1.2 Hastad's Broadcast Attack 93
5.1.3 Random Padding to Messages 95

5.2 Lattice-Based Factoring Techniques 97
5.2.1 Factoring RSA-moduli N = pq by knowing half of the bits of p 98
5.2.2 Extension to moduli of the form N = prq 100

5.3 Low Private Exponent Attacks . 102
5.3.1 Wiener Attack . 102
5.3.2 Boneh & Durfee (BD) Small Inverse Attack 103
5.3.3 Bl�omer & May Low Private Exponent Attack (BM) 106
5.3.4 Small CRT-Exponent Attacks 107
5.3.5 Small Private Exponent Attacks to RSA Schemes with Mod-

uli N = prq . 115
5.4 Partial Key-Exposure Attacks . 118

5.4.1 Boneh-Durfee-Frankel Partial-Key Exposure Attacks (BDF) 119
5.4.2 Bl�omer-May Partial Key-Exposure Attacks 123
5.4.3 RSA-like Schemes with moduli N = prq 130

List of Algorithms

1 Gram-Schmidt Orthogonalization (GSO) 16
2 Gaussian Reduction (b1; b2) . 38
3 Generalized Gaussian Reduction (b1; b2) for Arbitrary Norm 39
4 LLL Reduction Algorithm . 46
5 RSA-Key Generation . 83
6 RSA Encryption . 83
7 RSA Decryption . 84
8 CRT Key Generation Process . 108
9 May's First Attack for small d using a modulus N = prq 117
10 May's Second Attack for small d using a modulus N = prq 118

12 LIST OF ALGORITHMS

Chapter 1

Introduction to Lattices

In this chapter we give the mathematical background on lattices. The chapter
mainly includes de�nitions about lattices, some very useful lattice properties and
some necessary theorems that will allow the reader to follow the material presented
in the next chapters.

1.1 Linear Algebra Preliminaries

Before we proceed to a formal de�nition of lattices and give some relevant
important theorems, we will summarize some notation necessary for the rest of the
analysis and some properties of mathematical structures we will use throughout
this thesis.

1.1.1 Notation

We summarize below some of the notation used:

• Let S be a set. Then Mm;n will denote the set of all m × n matrices with
entries from S.

• If M denotes a matrix, then MT will denote the transpose matrix of M .

• dae; bac will denote the ceiling (that is, the smallest integer not smaller
than a) and the oor (that is, the biggest integer not bigger than a) of
integer a respectively, while dac will denote the integer closest to a, namely
dac ≡ da− 0:5e.

1.1.2 Scalar Product

De�nition 1.1.1 (Scalar Product)
Let 〈·; ·〉 : Rn × Rn → R be a mapping with the following properties :
∀u; v; w ∈ Rn and � ∈ R :

14 Introduction to Lattices

1. 〈u+ w; v〉 = 〈u; v〉+ 〈w; v〉
〈�u; v〉 = �〈u; v〉
〈u; v + w〉 = 〈u; v〉+ 〈u;w〉
〈u; �v〉 = �〈u; v〉

2. 〈u; v〉 = 〈v; u〉 and

3. 〈u; u〉 > 0 for u 6= 0:

We call such a mapping scalar product. Properties 1, 2 and 3 imply that the
scalar product is bilinear , symmetric and positive de�nite respectively.

De�nition 1.1.2 (Standard Scalar Product)
The standard scalar product is de�ned as:

〈(u1; u2; :::; un)
T ; (v1; v2; :::; vn)

T 〉 :=
n∑
i=1

uivi (1.1)

and will be the scalar product used in most of the cases in this thesis.

1.1.3 Norm

Let F be any �eld. The vector space Fn is the set of all n-tuples ~x = (x1; x2; :::; xn)
where xi ∈ F are �eld elements. We are mainly interested in vector spaces over the
reals or over the rationals (F = R or F = Q):

De�nition 1.1.3 (Norm)
Let ‖ · ‖ : Rn → R be a mapping such that ∀u; v ∈ Rn and � ∈ R :

1. ‖�u‖ = |�| · ‖u‖ (positive homogeneous)

2. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality)

3. ‖u‖ > 0 for u 6= 0 (positive de�niteness)

We call such a mapping norm (or length) of vector u = (u1; u2; :::; un):

In general we de�ne lp norm as:

lp = ‖(u1; u2; :::; un)T ‖p := (
n∑
i=1

|ui|p)
1
p : (1.2)

More speci�cally for p = 1; p = 2 and p = ∞ and for the standard scalar product
notation we get:

l1 = ‖(u1; u2; :::; un)T ‖1 :=
∑n

i=1 |ui| (l1 norm)
l2 = ‖(u1; u2; :::; un)T ‖2 :=

√
〈u; u〉 := (

∑n
i=1 u

2
i)

1=2 (l2 norm)
l∞ = ‖(u1; u2; :::; un)T ‖∞ := maxi=1;2;:::;n |ui| (l∞norm)

1.1 Linear Algebra Preliminaries 15

These are the norms that we will deal with in this thesis. When we use the symbol
‖u‖ without an index, we will always imply l2 (Euclidean Norm) unless otherwise
stated.

Every norm ‖ · ‖ induces a distance function d(~x; ~y) = ‖~x − ~y‖. The distance
function induced by the Euclidean norm is the usual Euclidean distance.

Finally we say that two vectors are orthogonal (~x⊥~y) if 〈~x; ~y〉 = 0:

1.1.4 Orthogonal bases (Gram-Schmidt orthogonalization)

Gram-Schmidt orthogonalization is a fundamental procedure in linear alge-
bra.It transforms any set of n linear independent vectors into a set of n orthogonal
vectors by projecting each vector on the space orthogonal to the span of the pre-
vious vectors (or equivalently by removing from each vector the components that
belong to the vector spanned by the previous vectors). Figure 1.1 illustrates the
method for a 2-dimensional space.

Figure 1.1: Gram-Schmidt orthogonalization

De�nition 1.1.4 (Gram-Schmidt Ortogonalization)
Let b1; b2; :::; bn be a sequence of n linearly independent vectors.We de�ne their
Gram-Schmidt orthogonalization as the sequence b∗1; b

∗
2; :::; b

∗
n de�ned by:

b∗i = bi −
i−1∑
j=1

�i;jb
∗
j ; where �i;j =

〈bi; b∗j 〉
〈b∗j ; b∗j 〉

: (1.3)

In other words, b∗i is the component of bi that is orthogonal to b
∗
1; :::; b

∗
i−1.

Below (algorithm 1) we give the algorithm that performs the Gram-Schmidt
Orthogonalization.

Remark 1.1.5. From the above de�nition it is fairly easy to derive some useful
properties of Gram-Schmidt orthogonalization.

(a) It is trivial to verify that 〈b∗i ; b∗j 〉 = 0 for each i 6= j:

16 Introduction to Lattices

Algorithm 1: Gram-Schmidt Orthogonalization (GSO)

Input: Linearly Independent Vectors b1; b2; :::; bn ∈ Rn

Output: The Gram-Schmidt orthogonalization of b1; b2; :::; bn :
b∗1; b

∗
2; :::; b

∗
n and �i;j for 1 ≤ j < i ≤ n

begin
b∗1 ← b1;
for i← 2 to n do

b∗i ← bi;
for j ← 1 to i− 1 do

�i;j ←
〈bi;b∗j 〉
〈b∗j ;b∗j 〉

;

b∗i ← b∗i − �i;jb
∗
j ;

end

end
return b∗1; b

∗
2; :::; b

∗
n and �i;j for 1 ≤ j < i ≤ n:

end

(b) ∀1 ≤ i ≤ n; span(b1; b2; :::; bn) = span(b∗1; b
∗
2; :::; b

∗
n): This is actually a very

signi�cant property that will be frequently used throughout the rest of the
chapter.

(c) The order of the vectors b1; b2; :::; bn is important,that's why we consider
them as a sequence and not as a set.

(d) If we rewrite the equation for the orthogonal vectors in the form

bi = b∗i +
i−1∑
j=1

�i;jb
∗
j (1.4)

we can obtain a relation between the initial basis B = [b1; b2; :::; bn] and the
orthogonal one B∗ = [b∗1; b

∗
2; :::; b

∗
n] in the following matrix form:[

b1; b2; :::; bn
]

=
[
b∗1; b

∗
2; :::; b

∗
n

]
·
[
�i;j

]T
1≤i;j≤n (1.5)

or equivalently

[
b1; b2; :::; bn

]
=

[
b∗1; b

∗
2; :::; b

∗
n

]
·

1 �2;1 �3;1 · · · �n;1
0 1 �3;2 · · · �n;2
... 0 1

. . .
...

...
...

. . .
. . . �n;n−1

0 · · · · · · 0 1

 : (1.6)

1.1 Linear Algebra Preliminaries 17

1.1.5 Useful Inequalities

We �nish this section by presenting some useful inequalities in linear algebra.

1. Cauchy-Schwarz : Let V be a vector space where a standard scalar product
has been de�ned. Let u; v ∈ V be two vectors. Then

|〈u; v〉|2 ≤ 〈u; u〉 · 〈v; v〉:

The equality holds when u; v are linearly dependent.

Proof. The proof of the inequality is trivial if v = 0: Consider now the case
where v 6= 0: Then 〈v; v〉 > 0: In addition 〈x; x〉 ≥ 0 for any vector x ∈ V:
Thus 〈u− �v; u− �v〉 ≥ 0 for all � ∈ R: This gives

0 ≤ 〈u− �v; u− �v〉 = 〈u; u〉+ �2〈v; v〉 − 2�〈u; v〉

where we have used the properties of the scalar product. If we now choose

� =
〈u; v〉
〈v; v〉

the above inequality becomes

0 ≤ 〈u; u〉 − |〈u; v〉|
2

〈v; v〉
⇒ |〈u; v〉|2 ≤ 〈u; u〉 · 〈v; v〉:

The equality holds if u−�v = 0 that is when u; v are linearly dependent.

If we consider the standard scalar product and the euclidean norm (where
〈x; x〉 = ‖x‖2) the Cauchy-Schwarz inequality takes the following interesting
form

|〈u; v〉| ≤ ‖u‖ · ‖v‖:

2. Norm Inequalities : From the previous de�nitions of l1; l2; l∞ we get the
following obvious inequalities:

‖u‖2 ≤ ‖u‖1 ≤
√
n · ‖u‖2 (I1)

‖u‖∞ ≤ ‖u‖2 ≤
√
n · ‖u‖∞ (I2)

‖u‖∞ ≤ ‖u‖1 ≤ n · ‖u‖2 (I3)

These inequalities can easily be derived directly from the de�nition of the
norms, except from the second part of inequality (I1).For that one we need
Cauchy-Schwarz inequaility with u = (1; 1; :::; 1)T and v = (|u1|; |u2|; :::; |un|)T :

18 Introduction to Lattices

3. Hadamard Inequality : Let b1; b2; :::; bn ∈ Rn be the column vectors of
the matrix B ∈Mn;n(R): Then by Hadamard's inequality we have:

|detB| ≤
n∏
i=1

‖bi‖2: (1.7)

The equality holds when the vectors b1; b2; :::; bn are orthogonal.

Proof. Let B∗ be the corresponding Gram-Schmidt basis of B:We know that
det(B)2 = det(BTB): Let �̄ denote the matrix with entries [�i;j] where �i;j
are the Gram-Schmidt coe�cients. Then equation 1.5 says that

B = B∗�̄T :

Notice that �̄ is lower triangular with determinant 1: Thus we have

det(B)2 = det(BTB) = det(�̄ · (B∗)T ·B∗ · �̄T) = det((B∗)T ·B∗)

since det(�̄) = det(�̄T) = 1: The matrix (B∗)T · B∗ is an n× n matrix with
entries 〈b∗i ; b∗j 〉: Since 〈b∗i ; b∗j 〉 = 0 for i 6= j and 〈b∗i ; b∗i 〉 = ‖b∗i ‖2; (B∗)T ·B∗ is

a matrix with only diagonal entries ‖b∗i ‖2: Hence, its determinant is equal to
(
∏n

i=1 ‖b∗i ‖)2: The above observations leat to

|det(B)| =
√
det(BTB) =

√
det((B∗)T ·B∗) =

n∏
i=1

‖b∗i ‖:

In addition equation 1.4 along with the fact that b∗i ; b
∗
j are pairwise orthog-

onal give that

‖bi‖2 = ‖b∗i ‖2 +
i−1∑
j=1

�2
i;j‖b∗j‖2 ≥ ‖b∗i ‖2 ⇒ ‖bi‖ ≥ ‖b∗i ‖:

Thus

|det(B)| =
n∏
i=1

‖b∗i ‖ ≤
n∏
i=1

‖bi‖

which completes the proof.Obviously the equality holds whenever the initial
vectors bi are pairwise orthogonal. In that case the corresponding Gram-
Schmidt basis B∗ is identical to B:

1.2 Basic De�nitions on Lattices

We start by giving a formal de�nition of a lattice.

1.2 Basic De�nitions on Lattices 19

De�nition 1.2.1 (Lattice, Basis , Rank , Dimension)
Let B = {b1; b2; :::; bn} be a set of n linearly independent vectors in Rm. The
lattice generated by B is the set

L(B) = {
n∑
i=1

xi ·~bi : xi ∈ Z}: (1.8)

That is, the set of all integer linear combinations of the basis vectors.
The set B is called basis and we can compactly represent it as an m × n matrix
each column of whose is a basis vector:

B = [b1; b2; :::; bn]:

The rank of the lattice is de�ned as rank(L) := n while its dimension is de�ned
as dim(L) := m:

Remark 1.2.2. In this thesis we will mainly consider full-rank lattices, that is
lattices where n = m:

Remark 1.2.3. It is important to emphasize straight from the beginning the
di�erence between a lattice and a vector space.Compare the de�nition given above
to the vector space de�nition.

De�nition 1.2.4 (Vector Space)
Let B = {b1; b2; :::; bn} be a set of n linearly independent vectors in Rm. The
vector space generated by B is the set

span(B) = {
n∑
i=1

xi ·~bi : xi ∈ R} = {B · ~x : x ∈ Rn}:

That is, the set of all linear combinations of the basis vectors.

Apparently the di�erence lies to the coe�cients xi which are integers in the
case of a lattice instead of reals in the case of a vector space.

Remark 1.2.5. The de�nition of L(B) makes sense even if the vectors bi are not
linearly independent. However, in that case, L(B) is not necessarily a lattice. That
is, a (possibly) smaller set of linearly independent vectors B′ such that L(B′) =
L(B) does not necessarily exist. To see that consider the trivial case where
B = [1; a] with a being an irrational number. Then L(B) = {x + ya : x; y ∈ Z}.
Clearly B is not a set of linearly independent vectors. In addition L(B) is not
a lattice since there does not exist an l such that L(B) = l · Z because of the
irrationality of a. In the rest of the thesis the symbol L(B) or simply L will imply
a lattice unless otherwise mentioned.

We give now some trivial examples of two-dimesional lattices.

20 Introduction to Lattices

Example 1.2.6. Let us �rst consider a very simple example of a lattice in the
2-dimensional space. Let

b1 =
(

1
0

)
and b2 =

(
0
1

)
:

Apparently b1; b2 are linearly independent.The lattice generated by this two vectors
is Z2 (see �gure 1.2).

Figure 1.2: A basis of Z2

Remark 1.2.7. b1; b2 are not the only vectors that produce Z2. Consider, for
instance, the pair of vectors

b1 =
(

1
1

)
and b2 =

(
2
1

)
:

It is obvious that this pair generates exactly the same lattice (see �gure 1.3).
Actually, each lattice has in�netely many bases.However, not each pair of linearly

Figure 1.3: Another basis of Z2

independent vectors can produce a speci�c lattice. Consider for example the pair

b1 =
(

1
0

)
and b2 =

(
0
2

)
:

b1; b2 are clearly linearly independent but they cannot generate Z2 (see �gure
1.4).Indeed, they cannot produce the point (1,1), that is there is no integer pair

1.2 Basic De�nitions on Lattices 21

(x; y) such that

x ·~b1 + y · ~b2 =
(

1
1

)
:

.

Figure 1.4: Basis that cannot produce Z2

The previous examples raise the question whether a given set of vectors forms
a basis of a lattice or not. In the next few lines we will try to give an answer to
that question.

De�nition 1.2.8 (Fundamental Parallelepiped)
For any lattice basis B we de�ne

P(B) = {Bx|x ∈ Rn;∀i : 0 ≤ xi < 1}: (1.9)

Remark 1.2.9. Note that P(B) is half-open. This implies that the translates
P(B) + ~u (where ~u ∈ L(B)) form a partition of the whole space Rn.

Two examples of the fundamental parallelepiped are shown in �gures 1.2 and
1.3. It is obvious from those two examples that the fundamental parallelepiped
greatly depends on the speci�c basis of the lattice. The following theorem gives us
a criterion to test whether a given set of n linearly independent vectors b1; b2; :::; bn
form a basis of a given lattice L or not.

Theorem 1.2.10

Let L be a lattice of rank n and b1; b2; :::; bn ∈ L be n linearly independent lattice
vectors. Then b1; b2; :::; bn form a basis of L if and only if P(b1; b2; :::; bn)∩L = {0}:

Proof. (⇒) Let b1; b2; :::; bn form a basis of L. Then,by de�nition, L is the set of all
their linear integer combinations. In addition P(b1; b2; :::; bn) is, again by de�nition,
the set of linear combinations of b1; b2; :::; bn with coe�cients in [0; 1).Since the right
side of the interval is open, the only integer combination that belongs in P is the
one where xi = 0∀i and therefore the intersection of the two sets is clearly {0}:
(⇐) Assume now that P(b1; b2; :::; bn) ∩ L = {0}. Since b1; b2; :::; bn are linearly

22 Introduction to Lattices

independent, we can express any lattice vector x ∈ L as
∑

yibi for some yi ∈ R.
Let x′ =

∑
(yi − byic)bi. Then x′ ∈ L since by de�nition a lattice is closed under

addition and obviously x′ ∈ P(b1; b2; :::; bn) as (yi − byic) ∈ [0; 1). Thus, x′ = 0 by
our assumption which along with the linear independency of b1; b2; :::; bn gives that
yi = byic ∀yi ∈ R and therefore the arbitrary x ∈ L can be expressed as an integer
combination of b1; b2; :::; bn which implies that b1; b2; :::; bn form a basis of L:

Remark 1.2.11. A restatement of the above theorem would be "For all ~x ∈ Rn,
there exists a unique lattice point ~u ∈ L(B) such that ~x ∈ (P(B) + ~u)".

Despite the relatively simple condition of the above theorem, we cannot apply
it in a straightforward fashion. Instead, what we can actually do, is verify whether
two (di�erent) sets of linear independent vectors can produce the same lattice or
, expressed in another way, whether two bases B1; B2 are equivalent.We �rst give
some de�nitions.

De�nition 1.2.12 (Unimodular Matrix)
A matrix U ∈ Zn×n is called unimodular if detU = ±1.We will use GLn(Z) to
denote the group of integer n× n matrices with determinant ±1:

GLn(Z) := {U ∈Mn;n(Z)|detU = ±1}: (1.10)

Theorem 1.2.13

GLn(Z) is a group under matrix multiplication.

Proof. First, if U1; U2 ∈ GLn(Z); then U1 · U2 ∈ Zn×n and det(U1 · U2) = det(U1) ·
det(U2) = 1 which means that GLn is closed under matrix multiplication. In
addition the identity matrix is apparently unimodular. Moreover let U ∈ GLn(Z).
Then det(U)det(U−1) = 1 implies that det(U−1) = ±1 which, along with the
Cramer's rule, gives that the (i; j) entry in the U−1 matrix is:

(−1)i+j · det(Tij)
det(U)

= ±Uij

where Tij denotes the algebraic complement of each element of U (that is U with
the ith and jth column deleted). Thus, every entry of U−1 is an integer (since
Tij is an integer matrix and therefore its determinant is an integer) which gives
that U−1 ∈ GLn(Z): Finally the associativity holds since matrix multiplication is
associative.

Consider now the following elementary column operations:

1. Exchange of two columns.

2. Multiplication of a column by −1:

3. Addition of an integer multiple of one column to another.

1.2 Basic De�nitions on Lattices 23

It is not di�cult to show that each one of the above elementary operations can
be performed on a matrix by right-multiplication (or left-multiplication) with an
appropriately chosen unimodular matrix. We will show how this can be performed
in the case of Π2;2 matrices. The extension to Πn;n matrices is trivial.
Let

A =
[
a11 a12

a21 a22

]
Then it is not di�cult to verify that right multiplication of A with

E1 =
[
0 1
1 0

]
; E2 =

[
−1 0
0 1

]
and E3 =

[
1 k
0 1

]
;

performs respectively the 3 above elementary operations.
We now turn our attention to the condition two bases should satisfy in order to

be equivalent. Such a condition is given in the follwoing very important theorem.

Theorem 1.2.14 (Bases Equivalence)
Two bases B1; B2 ∈ Rm×n are equivalent if and only if B2 = B1U for some
unimodular matrix U .

Proof. (⇒) Assume �rst that B1; B2 are equivalent, that is they produce the same
lattice. Then, for each of the n columns of bi of B2, bi ∈ L(B1). This means that
each bi of B2 can be expressed as a linear integer combination of the column vectors
of B1 and therefore there exists U ∈ Zn×n such that B2 = B1U . Similarly, there
exists V ∈ Zn×n such that B1 = B2V which implies that B2 = B1U = B2V U .
Hence

BT
2 B2 = (V U)TBT

2 B2(V U)⇒ det(BT
2 B2) = (det(V U))2det(BT

2 B2)
⇒ det(U)det(V) = ±1

Since U; V are both integer matrices this means that det(U) = ±1:
(⇐) The hypothesis that B2 = B1U for some unimodular matrix U means that

each column of B2 is contained in L(B1) which impies that L(B2) ⊆ L(B1). In
addition,B1 = B2U

−1. But we have shown that U−1 is unimodular with integer
entries (GLn(Z) is a group under matrix multiplication).So L(B1) ⊆ L(B2) which
�nally gives L(B2) = L(B1):

Remark 1.2.15. As an immediate corollary, we obtain that B is a basis of Zn if
and only if it is unimodular.

Remark 1.2.16. Since elementary column operations can be performed by right
multiplication of the basis matrix by a unimodular matrix (we showed that earlier),
if we modify basis B = [b1; b2; :::; bn] by:

1. Reordering the columns.

24 Introduction to Lattices

2. Multiplying any number of columns by −1:

3. Adding integer multiples of some columns to others.

then the resulting matrix will still be a basis for the same lattice.

Interestingly, the inverse is true too.

Theorem 1.2.17

Two bases are equivalent if and only if one can be obtained from the other by the
following elementary operations on the columns:

1. bi ← bi + kbj for some k ∈ Z

2. bi ↔ bj

3. bi ← −bi

1.3 Determinant

We now give the de�nition of a very important characteristic of a lattice, namely
its determinant.

De�nition 1.3.1 (Determinant)
The determinant det(L) of a lattice L(b1; b2; :::; bn) ⊆ Rm is generally de�ned as
:

det(L) = (det[〈bi; bj〉]1≤i;j≤n)
1
2 : (1.11)

Remark 1.3.2. This is the general de�nition. In this general case we form an
n × n matrix D with Dij = 〈bi; bj〉, where 〈bi; bj〉 denotes the scalar product of
vectors bi; bj in the general case (see subsection 1.1.2). If we restrict our de�nition
to the case of standard scalar product then the determinant is de�ned in a more
compact form as follows:

detL =
√
det(BTB):

In this thesis we will always imply the standard scalar product when talking about
the determinant. More interestingly, in the case where m = n (full rank lattices),
B is a square matrix and det(L) = |detB|. The latter de�nition will be used almost
exclusively throughout this thesis.

An alternative de�nition of the determinant in the standard scalar product case
is the following:

De�nition 1.3.3

The determinant of the a lattice L is de�ned as the n-dimensional volume of the
fundamental parallelepided associated to B:

det(L(B)) = vol(P(B)):

1.4 Successive Minima 25

The following theorem shows that the determinant of a lattice is well-de�ned,
that is, it is independent of the choice of the basis B: We can therefore write either
det(B) or det(L) and mean the exact same thing.

Theorem 1.3.4

The determinant of a lattice is independent of the choice of the basis b1; b2; :::; bn ∈
Rm:

Proof. Let B1; B2 be two bases of lattice L. Theorem 1.2.14 states that there is a
unimodular matrix U such that B2 = B1U .Thus

detL =
√
det(BT

2 B2) =
√
det(UTBT

1 B1U) =
√
det(BT

1 B1)

which completes the proof.

As an immediate result of the above theorem and theorem 1.2.14 we get the
following corollary for the standard notion of scalar product.

Corollary 1.3.5. If two bases B1; B2 ∈ Rm×n are equivalent then |det(B2) =
|det(B1)|: The opposite is not necessarily true.

1.4 Successive Minima

After presenting most of the important properties of a lattice, we proceed now
by de�ning and studying another very important characteristic of a lattice, namely
its shortest vector. By the de�nition of a lattice, it is obvious that ~0 ∈ L for every
lattice (we just have to consider a linear combination of bis with the null vector).
Thus ~0 is always excluded from our discussion.

1.4.1 De�nitions

De�nition 1.4.1 (Shortest Vector)
Let ‖ · ‖ be an arbitrary norm. The shortest vector of the lattice is de�ned as
the non-zero vector ~u ∈ L such that its norm is minimal. Expressed in a di�erent
way, the shortest vector is a vector ~u ∈ L(B)\{~0} such that ‖~u‖ ≤ ‖~w‖ for any
~w ∈ L(B)\{~0}:

The corresponding problem is known as the Shortest Vector problem (SVP)
and is one of the most famous problems related to lattices. We will use the notation
SV Pp to denote the shortest vector problem with respect to lp norm.

Remark 1.4.2. It is important to note here that the solution to the SVP depends
on the underlying norm. Consider for example the lattice generated by the vectors

b1 =
(

1
1

)
and b2 =

(
0
2

)
:

26 Introduction to Lattices

Then clearly [0; 2]T is a shortest vector (not the single one however) with respect
to l1 but not with respect to l2 or l∞. For the latter norms a shortest vector is
[1; 1]T which is shorter than [0; 2]T :

We now generalize the above de�nition.

De�nition 1.4.3 (Successive Minima �1; �2; :::; �n)
Let ‖ · ‖ be an arbitrary norm. For every lattice L ⊆ Rm of rank n the successive
minima �1; �2; :::; �n with respect to the norm ‖ · ‖ are de�ned as

�i(L) := inf

There are i lineary independent

r > 0 vectors c1; c2; :::; ci ∈ L
with ‖cj‖ ≤ r for j = 1; 2; :::; i

 for i = 1; 2; :::; n

(1.12)

The above de�nition (visualized in �g 1.5) is due to Minkowski. From the

Figure 1.5: Successive Minima in a 2-dimensional lattice

de�nition given it is obvious that:

�1 ≤ �2 ≤ ::: ≤ �n:

In addition it is not di�cult to derive the following upper bound for the successive
minima:
For any lattice basis b1; b2; :::; bn and for i = 1; 2; :::; n

max
j=1;2;:::;n

‖bj‖ ≥ �i:

If the above inequality didn't hold then the linearly independent vectors b1; b2; :::; bn
of the basis would form (not necessarily in the same order) a better set of successive
minima which yields a contradiction. The following theorem gives a very useful
lower bound on the length of the shortest nonzero vector in a lattice. We consider
the Euclidean Norm.

1.4 Successive Minima 27

Theorem 1.4.4

Let B be a basis of a lattice of rank n and B∗ its Gram-Schmidt orthogonalization.
Then

�1(L(B)) ≥ min
i=1;2;:::;n

‖b∗i ‖ > 0:

Proof. Note �rst that b∗i are not (necessarily) lattice vectors.It su�ces to show
that the above inequality holds for every lattice vector. Since B forms a basis,
every nonzero lattice vector ~y can be written as ~y = B~x where ~x 6= ~0. Let now
j ∈ {1; 2; :::; n} be the maximum index such that xj 6= 0 (the requirement ~x 6= ~0
guarantees the existence of such a maximum). Then

|〈Bx; b∗j 〉| = |〈
j∑

i=1

xibi; b
∗
j 〉| = |xj |〈b∗j ; b∗j 〉 = |xj |‖b∗j‖2

The second equality is obtained by the expression 1.4 from which it is obvious
that 〈bi; b∗j 〉 = 0 for all i < j and 〈bj ; b∗j 〉 = 〈b∗j ; b∗j 〉.
In addition, Cauchy-Schwarz inequality implies that |〈Bx; b∗j 〉| ≤ ‖Bx‖ ·‖b∗j‖ which
�nally yields

‖Bx‖ ≥
|〈Bx; b∗j 〉|
‖b∗j‖

= |xj |‖b∗j‖ ≥ ‖b∗j‖ ≥ min‖b∗i ‖:

Since every vector of the lattice is at least "as long" as min‖b∗i ‖, obviously the
above inequality also holds for the vector u which achieves the norm �1 and which,
by de�nition, is a lattice vector.

We now give a formal proof that the norm �1 is always achieved by some lattice
vector.

Lemma 1.4.5. Let � = mini ‖b∗i ‖ and ~u; ~w ∈ L be two lattice vectors. Then
‖~u− ~w‖ < � implies that ~u = ~w:

Proof. Let us assume for contradiction that ~u 6= ~w.Then ~u− ~w is a nonzero lattice
vector which, by theorem 1.4.4, means that ‖~u− ~w‖ ≥ �. Obviously this leads to
a contradiction.

Theorem 1.4.6

The Shortest Vector Problem (SVP) is well de�ned, in that there always exists a
vector of minimal length which belongs to the lattice.

Proof. In order to prove the above theorem, we resort to the de�nition of the �rst
minimum �1. By de�nition

�1 = inf{‖~u‖ : ~u ∈ L(B)\{~0}}:

28 Introduction to Lattices

So there exists a sequence ~ui ∈ L such that

lim
i→∞
‖~ui‖ = �1:

Let assume wlog that ui lies within a ball with center at ~0 and radius 2�1:

~ui ∈ B(0; 2�1) = {~y : ‖~y‖ ≤ 2�1}:

The compactness of B(0; 2�1) implies the existence of a convergent subsequence
{ ~wi} ⊆ {~ui} such that limi→∞ ‖ ~wi‖ = ‖~w‖ for some vector ~w. In addition

‖~w‖ = lim
i→∞
‖ ~wi‖ = lim

i→∞
‖~ui‖ = �1:

Recall that ~wi belong to the lattice (just as ~ui do) and it only remains to prove
that ~w is a lattice vector too. For that we need to observe that

lim
i→∞
‖ ~wi − ~w‖ = 0

which by the de�nition of lim means that for "su�ciently" large i we have that
‖ ~wi − ~w‖ < �=2. The triangle inequality now gives (for "su�ciently" large i; j)

‖ ~wi − ~wj‖ ≤ ‖ ~wi − ~w‖+ ‖~w − ~wj‖ < 2
�

2
= �:

We now invoke the previous lemma to conclude that ~wi = ~wj . This proves that for
"su�ciently" large i the vectors ~wi are identical and equal to their limit ~w which
therefore belongs to the lattice.

The successive minima �i depend on the underlying norm too.We can derive
inequalities for the successive minima and for each of the known norms directly
from the inequalities I1.For example, the norms l2; l∞ are related with the following
inequality:

�1;∞(L) ≤ �1;2(L) ≤
√
n · �1;∞(L):

1.4.2 Minkowski's Convex Body Theorem

We will now concentrate our e�orts on �nding upper bounds on the length of
the shortest vector in a lattice. We start by stating and prooving a very important
theorem (Minkowski's Convex Body Theorem).In the next chapter we present
e�cient (polynomial) algorithms to obtain vectors that approximate the shortest
vectors in a lattice.
We �rst prove the following lemma (due to Blichfeldt).

Lemma 1.4.7 (Blichfeldt Lemma). Let S ⊆ Rm be a set and L(B) a full
dimensional lattice (m = n) with base B. If

1.4 Successive Minima 29

• vol(S) > det(B) or

• vol(S) = det(B) and S is compact

then there exist ~z1; ~z2 ∈ S (with ~z1 6= ~z2) such that ~z1 − ~z2 ∈ L(B):

Proof. We give the proof for the �rst case where vol(S) > det(B).Using a compact-
ness argument, we can similarly prove the case where S is compact and vol(S) =
det(B):

If B is the basis of L then as ~x ranges over the whole lattice, the sets ~x+P(B) :=
{~x+ ~w|~w ∈ P(B)} form a partition of Rn. We now de�ne the following sets

S~x = S ∩ (~x+ P(B)) where ~x ∈ L(B):

Since the sets ~x + P(B) form a Rn partition and (~x1 + P(B)) ∩ (~x2 + P(B)) = ∅
for ~x1 6= ~x2 it is clear that the above sets form a partition of S, that is they are
pairwise disjoint and

S =
⋃

~x∈L(B)

S~x:

In addition
vol(S) =

∑
~x∈L(B)

vol(S~x):

We de�ne the transtated sets S~x − ~x = (S − ~x) ∩ P(B). (by S~x we mean the
set S′ of all points z′ where z′ = z − ~x for all points z ∈ S). It is obvious that
vol(S~x) = vol(S~x − ~x). Thus

det(B) = vol(P(B)) < vol(S) =
∑

~x∈L(B)

vol(S~x) =
∑

~x∈L(B)

vol(S~x − ~x):

The facts that S~x − ~x ⊆ P(B) and vol(P(B)) <
∑

~x∈L(B) vol(S~x − ~x) imply that
the sets S~x − ~x are not mutually disjoint for all lattice vectors ~x. That means
that there exist ~x; ~y ∈ L(B) with ~x 6= ~y such that (S~x − ~x) ∩ (S~y − ~y) 6= ∅. Let
~z ∈ (S~x − ~x) ∩ (S~y − ~y). Then by de�nition of S~x − ~x and S~y − ~y the vectors

~z1 = ~z + ~x

~z2 = ~z + ~y

belong to S~x and S~y respectively which in turn are subsets of S. Then

~z1 − ~z2 = ~x− ~y ∈ L(B)

and the proof is complete.

We are now ready to prove Minkowski's Convex body theorem after we give
the following de�nitions.

30 Introduction to Lattices

De�nition 1.4.8 (Symmetric Set)
We say that a set S is symmetric (or more precisely centrally symmetric or null-
symmetric) if for every x ∈ S, −x ∈ S is true as well.

De�nition 1.4.9 (Convex Set)
A set S is said to be convex if for any x; y ∈ S and any t ∈ [0; 1] we have that
tx+ (1− t)y ∈ S.

Theorem 1.4.10 (Minkowski's Convex Body Theorem)
Let S ⊆ Rn be a convex symmetric set and L(B) a full dimensional lattice (m = n)
with base B. If

• vol(S) > 2ndet(B) or

• vol(S) = 2ndet(B) and S is compact

then S contains a nonzero lattice point.

Proof. We again give the proof for the �rst case. For the other case we just have
to incorporate a compactness argument.
Let S′ = 1

2S = {x|2x ∈ S}. Then obviously vol(S′) = 2−nvol(S) > det(L) by
hypothesis. By lemma 1.4.7 there exist two (distinct) points z1; z2 ∈ S′ such that
z1− z2 ∈ L is a nonzero lattice point. We will now prove that z1− z2 belongs to S.
Notice that by de�nition of S′ both 2z1; 2z2 belong to S and so does −2z2 because
S is symmetric. Finally the fact that S is convex, implies that 1

2(2z1)+ 1
2(−2z2) =

z1 − z2 belongs to S and this completes the proof.

Remark 1.4.11. The fact that S is symmetric implies that z2− z1 is also nonzero
and belongs to S. We can then restate Minkowski's Convex Body Theorem as
follows:

Theorem 1.4.12

Let L ⊆ Rn be a full dimensional lattice and S ⊆ Rn a convex, symmetric, compact
set with vol(S) ≥ 2ndet(L). Then |S ∩ L| ≥ 3, that is, S contains at least two
nonzero vectors ±~u ∈ L:

The following corollary demonstartes the relation between the above theorem
and bounding the length of the shortest vector in a lattice.

Corollary 1.4.13. For all full dimensional lattices L(B); there exists a lattice
point x ∈ L(B)\{0} such that

‖x‖∞ ≤ n
√
det(L): (1.13)

Proof. Consider the set S de�ned as

S = {~x : ‖~x‖∞ ≤ n
√
det(L)}:

1.4 Successive Minima 31

Apparently, S is symmetric and convex and in addition vol(S) = 2ndet(L). Minkowski's
Theorem then guarantees that there exists a vector ~v ∈ L(B) such that

‖~v‖∞ ≤ n
√
det(L):

Below we summarize the previous results giving two very important inequalities
for the norms l2; l∞ of the shortest vector of a lattice. The second inequality is
an immediate result of the �rst and the inequalities I1.We claim that for all full
dimensional lattices (n = m) there exist lattice points (not necessarily identical)
x; y 6= 0 such that

‖x‖∞ ≤ n
√
det(L) and (SVI1)

‖y‖2 ≤
√
n n

√
det(L): (SVI2)

Actually the last inequality is strict. In order to prove this, we �rst need the
following lemma.

Lemma 1.4.14. The volume of an n-dimensional ball of radius r is

vol(B(0; r)) > (
2r√
n

)n:

Proof. It is easy to see that each ball of radius r contains a cube of side length 2r√
n
:

Thus
{x ∈ Rn|∀i; |xi| <

r√
n
} ⊂ B(0; r)

which means that vol(B(0; r)) > vol(cube) = (2r√
n
)n:

Theorem 1.4.15

For any full rank lattice L of rank n

�1(L) <
√
n(det(L))

1
n :

Proof. Consider the (open) ball B(0; �1(L)) which by de�nition contains no nonzero
lattice points. Then theorem 1.4.10 and lemma 1.4.14 imply that

(
2�1(L)√

n
)n < vol(B(0; �1(L))) ≤ 2n · det(L):

Thus �1(L) <
√
n(det(L))

1
n :

The above inequality interestingly holds even if the lattice is not full rank
(n < m). In order to prove that we only have to reduce the case n < m to the
case where n = m. In this thesis however, we will only use full rank lattices so the
properties established are su�cient for the reader to follow the material presented
in the next chapters.

32 Introduction to Lattices

Remark 1.4.16. Theorem 1.3.4 says that the determinant of a lattice is inde-
pendent of the speci�c basis we use to produce it. Thus, in all the above theorems
and de�nitions when we wrote det(L) or det(B) we meant the exact same thing.
This should not cause any confusion to the reader.

Remark 1.4.17. It is important to note here that the results presented above for
the shortest vectors in a lattice with respect to norms ‖·‖2 and ‖·‖∞; only guarantee
the existence of such short vectors and do not provide any e�cient algorithm to
actually construct them. In the next chapter we present an algorithm that can
produce short vectors e�ciently. These vectors, however, satisfy inequalities that
are weaker than those already presented.

1.4.3 A Number Theoretic Application

We �nish this chapter by presenting a number theoretic application of Minkowski's
Convex Body Theorem. The following example, though trivial, illustrates how one
can use lattices and their properties in order to prove theorems related to number
theory.

Theorem 1.4.18

For every prime p ≡ 1 (mod 4), there exist a; b ∈ Z such that p = a2 + b2:

Proof. By hypothesis, p ≡ 1 (mod 4) ⇒ 4=p − 1. Thus p−1
2 = 2k ; k ∈ Z which

means that (−1)
p−1
2 ≡ 1 (mod p) and so -1 is a quadratic residue modulo p. Let i

such that i2 ≡ −1 (mod p). Then

p=i2 + 1: (1.14)

Consider now the lattice basis [
1 0
i p

]
:

Then Minkowski's Theorem (theorem 1.4.15) says that SV P2 <
√

2 ·
√
det(B) or

equivalently there exists an integer vector ~x = [x1; x2]T such that

‖B~x‖2 <
√

2 ·
√
det(B)⇒ ‖B~x‖22 < 2 · det(B) = 2p:

If we expand the term ‖B~x‖22 we get

‖B~x‖22 = x2
1 + (ix1 + px2)2:

Let a = x1 and b = ix1 + px2. Clearly (a; b) 6= (0; 0) (otherwise x1 = x2 = 0).
This, combined with the previous inequality, gives that

0 < a2 + b2 < 2p: (1.15)

1.4 Successive Minima 33

We also have that

x2
1 + (ix1 + px2)2 = x2

1 + i2x2
1 + p2x2

2 + 2ix1px2 = p(px2
2 + 2ix1x2) + x2

1(i
2 + 1)

where p divides the �rst term as well as the second because of condition 1.14.
Thus a2 + b2 = kp for some k ∈ Z which along with 1.15 �nally gives

a2 + b2 = p:

34 Introduction to Lattices

Chapter 2

Lattice Basis Reduction

Consider the lattices produced by the following bases:

B1 =
[

3 2
13 9

]
and B2 =

[
1 0
0 1

]
:

The above bases are equivalent, that is they produce the exact same lattice (in
particular Z2). Indeed one can produce B1 by multiplying B2 with the unimodular
matrix

U =
[

3 2
13 9

]
with U−1 =

[
9 −2
−13 3

]
:

However it seems that B2 is a more "elegant" description of the lattice. This is
both because B2 consists of smaller vectors and because it makes clear that Z2 is
the lattice produced.

The above example leads to the observation that some bases are "better" than
other bases of the same lattice. What we mean by "better" greatly depends on the
actual application. In applications where lattices are used, we are mostly interested
in bases made up of short vectors. We de�ne the "better" basis by the more formal
de�nition reduced. Consequently, lattice basis reduction is the process in which a
reduced basis is found from a given basis. In this section we give various notions
for reduction along with the algorithms that produce them.

All notions entail �nding "su�ciently short" vectors of a lattice. Since we
cannot �nd the shortest vector e�ciently in the general case (n-dimensional lattice)
we are searching for alternative algorithms that e�ciently produce vectors that
"adequately" approximate the shortest vector. The most popular such algorithm
is LLL presented and extensively analyzed in section 2.3.

2.1 Minkowski Reduction

One of the �rst notions of reduction of a lattice basis was Minkowski Reduc-
tion.Recall that by de�nition 1.4.3 the i-th minimum of L; �i(L), is de�ned as

36 Lattice Basis Reduction

the length of the shortest vector that is linearly independent from the i− 1 vectors
that give the previous minima. Unfortunately, a set of i vectors giving the �rst
i minima cannot always be extended to form a basis of L for dimensions greater
than 2. Instead, Minkowski Reduction requires a somewhat weaker condition.

De�nition 2.1.1 (Minkowski Reduction)
Let L be a lattice with basis B = [b1; b2; :::; bn]. We say that B is Minkowski
Reduced if the following properties hold:

• b1 is a shortest vector in L and, inductively,

• bi is a shortest vector independent from b1; :::; bi−1 such that b1; b2; :::; bi can
be extended to form a basis of L:

Remark 2.1.2. The above reduction yields bases the vectors of which (and espe-
cially b1 which is by de�nition a shorter vector in L) enjoy important properties.
Such kind of reduction has found application in the theory and geometry of num-
bers. However it has little computational worth since there is no known e�cient
(polynomial) algorithm that computes such a basis. While Minkowski Reduction
can be used to prove some (existence) theorems in theory and geometry of numbers,
it is not used in Cryptography where computational cost is a major concern. In
the sections to come we present reduction algorithms that yield a weaker reduction
but are computationally e�cient.

2.2 Two-Dimensional (Gauss) Reduction

While there is no e�cient algorithm that computes the shortest vectors in
an n-dimensional lattice, for small �xed dimensions we can �nd polynomial-time
algorithms that locate short vectors.

We study below the two-dimensional case and analyze a polynomial algorithm
that given an arbitrary basis of a lattice, produces a reduced basis made up of
the shortest vectors of the same lattice. This algorithm is a slight variation of
an algorithm known as Gauss Reduction Algorithm and is quite similar to the
Euclidean algorithm for the great common divisor. Before we present the algorithm
and its analysis, we �rst give some de�nitions and theorems.

2.2.1 De�nitions

De�nition 2.2.1 (Reduced Basis)
Let [~b1; ~b2] be a basis of a lattice. We say that this basis is reduced if

‖~b1‖; ‖~b2‖ ≤ ‖~b1 + ~b2‖; ‖~b1 − ~b2‖: (2.1)

A geometrical interpretation of the above de�nition is that both sides of the
fundamental parallelipiped associated to the basis are shorter than its diagonals.

2.2 Two-Dimensional (Gauss) Reduction 37

Remark 2.2.2. Swapping (if needed) vectors ~b1; ~b2 to satisfy ‖~b1‖ ≤ ‖~b2‖ or chang-
ing the sign of vector ~b2 in order to achieve ‖~b1 − ~b2‖ ≤ ‖~b1 + ~b2‖, the condition of
the above de�nition can be rewritten in the following form:

‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 − ~b2‖ ≤ ‖~b1 + ~b2‖:

Before we proceed, we need the following lemma.

Lemma 2.2.3. Let ~x; ~x + ~y; ~x + r~y be three vectors in a line and r ∈ [1;+∞).
Then if ‖~x‖ ≤ ‖~x+ ~y‖ then ‖~x+ ~y‖ ≤ ‖~x+ r~y‖.

Proof. De�ne s = 1
r ∈ (0; 1]. Then

~x+ ~y = (1− s)~x+ s(~x+ r~y)

and by the triangle inequality we have

‖~x+ ~y‖ ≤ (1− s)‖~x‖+ s‖~x+ r~y‖ ≤ (1− s)‖~x+ ~y‖+ s‖~x+ r~y‖:

The second inequality is dictated by the hypothesis ‖~x‖ ≤ ‖~x + ~y‖. We conclude
that

‖~x+~y‖ ≤ (1−s)‖~x+~y‖+s‖~x+r~y‖ ⇒ s‖~x+~y‖ ≤ s‖~x+r~y‖ ⇒ ‖~x+~y‖ ≤ ‖~x+r~y‖:

We now establish the equivalence between the basis vectors of a two-dimensional
reduced basis and the successive minima of a lattice.

Theorem 2.2.4

Let [~b1; ~b2] be the basis of a lattice. Then ‖~b1‖ = �1 and ‖~b2‖ = �2 if and only if
‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 + ~b2‖; ‖~b1 − ~b2‖:

Proof. (⇒) Let ‖~b1‖ = �1 and ‖~b2‖ = �2. Then by de�nition ~b1 is the shortest
vector in the lattice. So obviously ‖~b1‖ ≤ ‖~b2‖; ‖~b1 + ~b2‖; ‖~b1 − ~b2‖: In addition
suppose that ‖~b1 + ~b2‖ < ‖~b2‖. Then the linear independence of ~b1; ~b1 + ~b2 would
imply that �2 ≤ ‖~b1 + ~b2‖ < ‖~b2‖ which yields a contradiction. Thus ‖~b1 + ~b2‖ ≥
‖~b2‖. A similar argument works for ~b1− ~b2 and this completes this direction of the
proof.
(⇐) Let now ‖~b1‖ ≤ ‖~b2‖ ≤ ‖~b1 + ~b2‖; ‖~b1 − ~b2‖. In order to show that ‖~b1‖ = �1

and ‖~b2‖ = �2, it su�ces to show that for every r; s ∈ Z

1. ‖~b1‖ ≤ ‖r~b1 + s~b2‖ for (r; s) 6= (0; 0) and

2. ‖~b2‖ ≤ ‖r~b1 + s~b2‖ for s 6= 0 (the case s = 0 is excluded since ~b1; ~b2 are
linearly independent).

We consider 3 cases:

38 Lattice Basis Reduction

(a) r = 0: Then s 6= 0 and ‖~b1‖ ≤ ‖~b2‖ ≤ ‖s~b2‖ = ‖r~b1 + s~b2‖:

(b) s = 0: Then r 6= 0 and ‖~b1‖ ≤ ‖r~b1‖ = ‖r~b1 + s~b2‖:

(c) r; s 6= 0: Assume wlog that r ≥ s ≥ 0.Then

‖~b2 +
r

s
~b1‖ = ‖r

~b1 + s~b2
s

‖ ≤ ‖r~b1 + s~b2‖:

We now apply lemma 2.2.3 to the vectors ~b2; ~b2+ ~b1 and ~b2+ r
s
~b1 where

r
s ≥ 1

to get

‖~b2‖ ≤ ‖~b1 + ~b2‖ ≤ ‖~b2 +
r

s
~b1‖ ≤ ‖r~b1 + s~b2‖:

All the other cases for r; s can be proved in a similar fashion.

This completes our proof that the vectors of a reduced basis of a two-dimensional
lattice are the shortest possible.

We give below (algorithm 2) the initial algorithm for the l2 norm known as
Gauss Reduction Algorithm and then present an analyze the extension of Gauss
Algorithm due to Kaib and Schnorr that works for arbitrary norms. The general-

Algorithm 2: Gaussian Reduction (b1; b2)

Input: A basis B = [b1; b2]:
Output: A Gaussian reduced Basis B′ = [b′1; b

′
2]:

begin
repeat

if (‖b1‖ > ‖b2‖) then
swap b1; b2;

end
�← 〈b1; b2〉=‖b1‖2;
b2 ← b2 − d�cb1;
(where dac = ba + 0:5c)

until (‖b1‖ < ‖b2‖) ;
output (b1; b2)

end

ized lattice algorithm presented in algorithm 3 works with well ordered bases until
a reduced basis is found. Then theorem 2.2.4 guarantees that we have found the
shortest vectors in the lattice.

De�nition 2.2.5 (Well Ordered Basis)
A basis [~b1; ~b2] is said to be well ordered if

‖~b1‖ ≤ ‖~b1 − ~b2‖ < ‖~b2‖: (2.2)

2.2 Two-Dimensional (Gauss) Reduction 39

Remark 2.2.6. The above de�nition immediately implies that

‖~b1‖ ≤ ‖~b1 − ~b2‖ < ‖~b2‖ ≤ ‖~b1 + ~b2‖: (2.3)

We can see that if we apply lemma 2.2.3 to vectors ~b2 − ~b1; ~b2 and ~b1 + ~b2 which
are on the same line.

Below (algorithm 3) we provide the generalized Gauss Reduction for arbitrary
norms. In the above algorithm we can always assume that the input basis [~b1; ~b2] is

Algorithm 3: Generalized Gaussian Reduction (b1; b2) for Arbitrary
Norm
Input: A well-ordered basis B = [b1; b2]:
Output: A Reduced Basis B′ = [b′1; b

′
2]:

(The algorithm works for any norm)
begin

while (‖b2‖ > ‖b1 − b2‖) do
1.1 b2 ← b2 − �b1; � ∈ Z chosen so that ‖b2 − �b1‖ is
minimized ;
1.2 if (‖b1 + b2‖ < ‖b1 − b2‖) then

b2 ← −b2;
end
1.3 exchange b1; b2 ;

end
output Reduced Basis (b1; b2)

end

well ordered (if not reduced). That is a reasonable assumption since we can always
produce a well ordered basis by swapping ~b1; ~b2 or replacing ~b2 by ~b1− ~b2 or ~b1 + ~b2
accordingly.

Remark 2.2.7. The generalized Gauss Reduction Algorithm expects a well-ordered
basis. We claim that each time the algorithm enters the while loop, the current
basis is well-ordered.
This is indeed the case at the beginning of the algorithm as we mentioned earlier.
If the algorithm enters the loop again it means that it has failed to produce a
reduced basis at the last step (Step 1.3) of the previous while loop. The basis
computed at that step is

~b′1 = ±(~b2 − �~b1) and ~b′2 = ~b1

which means that

‖~b′1 − ~b′2‖ = ‖ ± (~b2 − �~b1)− ~b1‖ = ‖~b2 − (�± 1)~b1‖ ≥ ‖~b2 − �~b1‖ = ‖~b′1‖:

40 Lattice Basis Reduction

The last inequality is true because the value � computed by the algorithm in
step 1.1 renders the minimal ‖~b2 − �~b1‖ over all integer values of �. Similarly

‖~b′1 + ~b′2‖ ≥ ‖~b1‖. Finally ‖~b′1 − ~b′2‖ ≤ ‖~b2‖ otherwise the basis would be reduced.
We have therefore proved that the basis given as input in the beginning of each
while loop is well ordered.

In the following lines we will prove the correctness of the above algorithm and
analyze its performance.

2.2.2 Correctness

In order to prove the correctness we have to show both that the algorithm
performs the required task when it terminates (that is, it produces a reduced basis)
and that it actually terminates.

We proved in the previous remark that each time the algorithm enters the
while loop the basis is well ordered. So the termination of the algorithm would
mean that the while condition ‖~b1− ~b2‖ < ‖~b2‖ is not true.This means that ‖~b2‖ ≤
‖~b1− ~b2‖ ≤ ‖~b1+ ~b2‖. The last inequality holds because of step 1.2 of the algorithm.
This means that the basis [~b1; ~b2] is reduced upon termination. In addition, the
algorithm only performs elementary column operations which means that the basis
produced by the algorithm is indeed equivalent to the initial basis.

As far as termination is concerned, recall that at the end of step 1.3 (and while

the basis is not yet reduced) we have ‖~b′1‖ ≤ ‖~b′2‖ = ‖~b1‖. As the value of ‖~b1‖
gets smaller at every iteration of the algorithm, we can see (using a compactness
argument) that it will at some point reach its minimum. At this point the algorithm
terminates.

2.2.3 Running Time Analysis

The following analysis shows that the algorithm is polynomial in its input size.
This means that its running time is logarithmic in the lenght of the initial basis
vectors.

Clearly the operations performed by the algorithm in each iteration are polyno-
mial in the input size. Thus, it only remains to show that the number of iterations
is polynomial too. Let k be the total number of iterations. We will prove that k
is polynomially bounded by the size of the input of the algorithm, or, otherwise
stated, that k is bounded by p(log ‖~b1‖) where p is a polynomial.

For that suppose that in the beggining of the algorithm ~b1 = ~uk and ~b2 = ~uk+1.
At the end of the k-th iteration we get the reduced basis ~u1; ~u2. We will focus on the
successive values of ~b1 in each step. ~ui will denote ~b1 in the (k− i+1)-th iteration.
As the algorithm runs we get the sequence (~uk; :::; ~u2; ~u1) (in chronological order).
We need the following lemma.

Lemma 2.2.8. ∀i > 1 ; ‖~ui‖ ≤ 1
2‖ ~ui+1‖:

2.2 Two-Dimensional (Gauss) Reduction 41

Proof. Consider the sequence (~ui−1; ~ui; ~ui+1). For simplicity's sake we will use
instead the vectors (~x; ~y; ~z).Both [~x; ~y] and [~y; ~z] are well ordered.Let s = ±1. We
know by the analysis above that ~x = s(~z − �~y) which gives (multiply both sides
with s) ~z = s~x+ �~y. We consider the following cases.

(a) (� = 0 or � = 1).Not possible. Both would imply that [~y; ~z] is not well
ordered. The �rst condition would give ‖~z‖ = ‖~x‖ < ‖~y‖ , while the second
would lead to ‖~z − ~y‖ = ‖~x‖ < ‖~y‖.

(b) (s = −1; � = 2). Then ‖~z − ~y‖ = ‖ − ~x + ~y‖ < ‖~y‖, which also contradicts
the fact that [~y; ~z] is well ordered.

(c) (s = −1; � > 2).We know that ‖~z‖ = ‖−~x+�~y‖ ≥ �‖~y‖−‖~x‖ ≥ �‖~y‖−‖~y‖ =
(�− 1)‖~y‖ ≥ 2‖~y‖, ⇒ ‖~y‖ ≤ 1

2‖~z‖.

(d) (s = 1; � ≥ 2). ‖2~y−~x‖ ≤ ‖~y‖+‖~y−~x‖ ≤ ‖~y‖+‖~y‖ = 2‖~y‖. We now apply
lemma 2.2.3 to the vectors 2~y − ~x; 2~y; 2~y + ~x and we get

‖2~y‖ ≤ ‖2~y + ~x‖:

Since [~x; ~y] is well ordered, we know that ‖~x‖ < ‖~y + ~x‖ and consequently
(again by lemma 2.2.3)

‖~y + ~x‖ < ‖2~y + ~x‖ ≤ ‖�~y + ~x‖:

We then have
‖~z‖ = ‖�~y + ~x‖ ≥ ‖2~y + ~x‖ ≥ 2‖~y‖:

This completes the proof as we have covered all possible cases.

We are now ready to establish the main theorem for the running time of the
Generalized Gauss Algorithm.

Theorem 2.2.9

∀i > 1 ; ‖~ui‖ ≥ 2i−1‖ ~u1‖: (2.4)

Proof. Trivial.We use induction and the previous lemma.

Corollary 2.2.10. The number of iterations of the Generalized Gauss Algorithm
is bounded by log2 ‖~b1‖.

Proof. By the previous theorem we have ‖~b1‖ = ‖ ~uk‖ ≥ 2k−1‖ ~u1‖. If we take the
logarithm (with respect to 2) of both sides we get the desired bound.

Remark 2.2.11. We just mention here that the above algorithm has been gen-
eralized by Nguyen and Stelhe to lattices of any dimension. However, this greedy
algorithm is optimal (that is, it produces vectors bi such that bi = �i(L) for each
i = 1; 2; :::;m) only for lattices of dimension m ≤ 4.

42 Lattice Basis Reduction

2.3 LLL Reduction

In section 2.2 we presented an algorithm that �nds in polynomial time a
reduced basis for a two-dimensional lattice. This reduced basis consisted of vectors
[~b1; ~b2] such that ‖~b1‖ = �1 and ‖~b2‖ = �2. We also mentioned that there are
similar algorithms that e�ciently �nd a reduced basis in lattices with dimension
3 and 4. We want to generalize the previous procedures for arbitrary dimensions.
However, up to now, there is no known algorithm that �nds the shortest vector
in a n-dimensional lattice. In this section we will concentrate our attention to a
very famous approximation algorithm, LLL algorithm, named after its inventors
(Lenstra, Lenstra, Lovasz) which does not necessarily �nd the shortest vector in a
lattice, but computes a lattice vector that is provably at most c(n) times the length
of the shortest vector, where c(n) is a function of the lattice dimension n:

We divide this section in �ve subsections. In subsection 2.3.1 we introduce a
new notion for basis reduction (LLL Reduction) and prove some properties that
the vectors of such a basis satisfy. In subsection 2.3.2 we provide an algorithm that
actually computes an LLL Reduced Basis and prove its correctness. In subsection
2.3.3 we analyze the running time of the new algorithm and prove that it runs
in polynomial time. Next (subsection 2.3.4) we present how one can use LLL in
order to �nd a solution to the Simultaneous Diophantine Approximation Problem.
Finally in subsection 2.3.5 we quote some other applications of the new algorithm.

2.3.1 De�nitions and Properties of LLL Reduction

We �rst de�ne projection operations �i from Rm onto
∑

j≥i R~b∗j :

�i(~x) =
n∑

j=1

〈~x; ~b∗j 〉
〈~b∗j ; ~b∗j 〉

~b∗j : (2.5)

The operator �i will help us de�ne a new notion for basis reduction.The de�nition
of �i operator implies that when we apply �i to a vector ~x ∈ Rm we get only
the components of ~x that are perpendicular to the space spanned by ~b∗1; :::;

~b∗i−1 or

equivalently, only the components of ~x that live in the space spanned by ~b∗i ; :::;
~b∗n.

We can now de�ne LLL Reduction as follows:

De�nition 2.3.1 (LLL Reduced Basis)
A basis B = [~b1; ~b2; :::; ~bn] ∈ Rm×n is said to be LLL Reduced with parameter �
(1
4 < � ≤ 1) if:

1. |�i;j | ≤ 1
2 ∀i > j where �i;j denote the Gram-Schmidt coe�cients.

2. for any pair of consecutive vectors ~bi; ~bi+1 we have that

�‖�i(~bi)‖2 ≤ ‖�i(~bi+1)‖2 (2.6)

2.3 LLL Reduction 43

or expressed in another way

�‖~b∗i ‖
2 ≤ ‖ ~b∗i+1 + �i+1;i · ~b∗i ‖

2: (2.7)

Remark 2.3.2. To see that the two expressions of the second condition are equiv-
alent, one should just recall the Gram-Scmidt Orthogonalization Procedure (and
more speci�cally equation 1.4).This, along with the fact that 〈~b∗i ; ~b∗j 〉 = 0 ∀i 6= j

and that operator �i contains only the components of ~bi; ~bi+1 that are perpendicular
to ~b∗1; :::;

~b∗i−1; yield the above equivalence.

Remark 2.3.3. Let us now take a more thorough look at the two conditions.
The �rst one guarantees that the basis produced is Length Reduced which means
that the �nal vectors are "as close as possible" to the vectors Gram-Schmidt Or-
thogonalization produces. This will be further clari�ed when we present the LLL
algorithm. The second condition guarantees that at the end of the algorithm , the
vector ~b1 of the reduced basis will be "small enough" to approximate the shortest
vector of the lattice.

Remark 2.3.4. In the above de�nition if we let � = 1 then the two conditions
simply say that we require that the 2-dimensional basis �i([~bi; ~bi+1]) is reduced.

The above notion for basis reduction may seem a little weird at �rst glance.
However, an LLL Reduced basis enjoys some very important properties and has
found a vast number of applications in various �elds. More sini�cantly, as we shall
see in the next subsection, there exists a polynomial time algorithm that, given an
arbitrary basis of dimension n; can produce an equivalent LLL Reduced Basis.

The following theorem gives an approximation factor for the shortest vector in
an LLL Reduced Basis with parameter �.

Theorem 2.3.5

Let ~b1; ~b2; :::; ~bn ∈ Rn be an LLL Reduced Basis with parameter �. Then

‖~b1‖ ≤ (
2√

4� − 1
)n−1�1(L): (2.8)

Proof. For all i = 1; 2; :::n we have

�‖~b∗i ‖
2 ≤ ‖ ~b∗i+1 + �i+1;i · ~b∗i ‖

2

= ‖ ~b∗i+1‖
2 + ‖�i+1;i · ~b∗i ‖

2

= ‖ ~b∗i+1‖
2 + |�i+1;i|2 · ‖~b∗i ‖

2

≤ ‖ ~b∗i+1‖
2 +

1
4
‖~b∗i ‖

2:

This �nally gives

(� − 1
4
)‖~b∗i ‖

2 ≤ ‖ ~b∗i+1‖
2: (2.9)

44 Lattice Basis Reduction

In addition, by induction we have that

‖~b∗i ‖
2 ≥ (� − 1

4
)i−1‖~b∗1‖

2:

But ~b∗1 = ~b1 and we have already shown that for any basis ~b1; ~b2; :::; ~bn, �1(L) ≥
mini ‖~b∗i ‖. So for the i that yields the min ‖~b∗i ‖

‖~b1‖ ≤ (� − 1
4
)

1−i
2 ‖~b∗i ‖ ≤ (� − 1

4
)

1−n
2 ‖~b∗i ‖

≤ (� − 1
4
)

1−n
2 �1(L) = (

2√
4� − 1

)n−1�1(L):

Remark 2.3.6. The paremeter � can be any real number in the interval (1
4 ; 1]

as mentioned in the original LLL paper [24].However , the typical value used in
almost every application is � = 3

4 . We will exclusively use this value from now on,
in all the applications presented in following chapters.

Below we give a set of useful inequalities derived from the LLL reduction de�-
nition. We mention that the following inequalities (obtained for the speci�c value
� = 3

4) are possibly the most valuable result of the LLL Reduction for the needs
of this thesis. These inequalities (and especially the last one) will be frequently
invoked throughout the following chapters and therefore it is important for the
reader to fully understand them.

Theorem 2.3.7

Let ~b1; ~b2; :::; ~bn be an LLL reduced basis for a lattice L ∈ Rn and ~b1
∗
; ~b2

∗
; :::; ~bn

∗
the

corresponding Gram-Schmidt vectors.Then we have:

‖~bj‖2 ≤ 2i−1 · ‖~b∗i ‖
2 for 1 ≤ j ≤ i ≤ n; (LLL1)

‖~b1‖ ≤ 2
n−1

2 �1(L); (LLL2)

det(L) ≤
n∏
i=1

‖~bi‖ ≤ 2
n(n−1)

4 · det(L); (LLL3)

‖~b1‖ ≤ 2
n−1

4 · det(L)
1
n : (LLL4)

Proof. (LLL1) By inequality 2.9 of the previous proof, if we replace � by 3=4 and
use induction we have that

‖~b∗j‖
2 ≤ 2i−j‖~b∗i ‖

2:

2.3 LLL Reduction 45

This inequality along with equation 1.4 gives

‖~bi‖2 = ‖~b∗i ‖
2 +

i−1∑
j=1

�2
i;j‖~b∗j‖

2

≤ ‖~b∗i ‖
2 +

i−1∑
j=1

1
4
2i−j‖~b∗i ‖

2

= (1 +
1
4
(2i − 2)) · ‖~b∗i ‖

2

≤ 2i−1 · ‖~b∗i ‖
2

which means that
‖~bj‖2 ≤ 2j−1 · ‖~b∗j‖

2 ≤ 2i−1 · ‖~b∗i ‖
2:

(LLL2) We can derive that one immediately by theorem 2.3.5 if we replace � with
3=4:
(LLL3) Recall that ‖~b∗i ‖ ≤ ‖~bi‖. In addition,by de�nition det(L(B)) = vol(P(B))
we know that

det(L) =
n∏
i=1

‖~b∗i ‖ ≤
n∏
i=1

‖~bi‖

which proves the �rst part of (LLL3). For the second part we use the fact that
‖~bi‖ ≤ 2(i−1)=2‖~b∗i ‖: Thus

n∏
i=1

‖~bi‖ ≤
n∏
i=1

2(i−1)=2‖~b∗i ‖ =
n∏
i=1

‖~b∗i ‖ · 2
Pn

i=1(i−1)=2

=
n∏
i=1

‖~b∗i ‖ · 2
n(n−1)

4 = 2
n(n−1)

4 · det(L):

(LLL4) By (LLL1)

‖~b1‖ ≤ 2
i−1
2 · ‖~b∗i ‖:

Thus
n∏
i=1

‖~b1‖ ≤
n∏
i=1

2(i−1)=2‖~b∗i ‖ = 2
n(n−1)

4 · det(L)

⇒ ‖~b1‖ ≤ 2
n−1

4 · det(L)
1
n :

Remark 2.3.8. All the above inequalities hold for arbitrary parameter � if we
replace 2 with 4

4�−1 .

Corollary 2.3.9. Let L ∈ Zn be a lattice (notice that we require that L ∈ Zn

and not Rn). Then, the LLL algorithm outputs a reduced basis {~b1; ~b2; :::; ~bn} such
that

‖~bi‖ ≤ 2
n(n−1)

4(n−i+1) · det(L)
1

n−i+1 for i = 1; 2; :::; n: (2.10)

46 Lattice Basis Reduction

2.3.2 LLL Algorithm

The LLL Algorithm is given below (algorithm 4). During the execution of
the algorithm we have to compute the vectors ~b∗1;

~b∗2; :::;
~b∗i . We do so by using the

Gram-Schmidt Orthogonalization Algorithm (algorithm 1).

Algorithm 4: LLL Reduction Algorithm

Input: Lattice basis ~b1; ~b2; :::; ~bn ∈ Zn:
Output: A �-LLL-Reduced Basis for L(B):

Start: compute ~b∗1;
~b∗2; :::;

~b∗n
Reduction Step :
for i = 2 to n do

for j = i− 1 downto 1 do

bi ← bi − ci;jbj where ci;j = d 〈bi;b
∗
j 〉

〈b∗j ;b∗j 〉
c;

end

end
Swap Step:
if there is i such that �‖~b∗i ‖2 > ‖ ~b∗i+1 + �i+1;i · ~b∗i ‖2 then

~bi ↔ ~bi+1;
goto Start

end

return ~b1; ~b2; :::; ~bn

Remark 2.3.10. The above algorithm is almost the same with Gram-Schmidt
Orthogonalization Algorithm (algorithm 1). Their di�erence lies in the fact that
in the above algorithm we round the coe�cients �i;j (denoted in the algorithm by
ci;j in order to avoid confussion) to the closest integer. Since the new base B′ is
obtained by the initial B by a sequence of elementary column operations, B;B′ are
clearly bases of the same lattice.

Let us now take a deeper look in the above algorithm that will allow as to prove
its correctness.
Reduction step: This step takes care of the �rst property of an LLL reduced
basis. Throughout this step the Gram-Schmidt basis ~b∗1;

~b∗2; :::;
~b∗n does not change

(since we only perform column operations of the form bi ← bi + abj which do not
a�ect the Gram-Schmidt basis) and we therefore do not have to recompute the
Gram-Schmidt vectors. The invariant of the outer loop in that step is that in the
ith iteration, the projection of ~bi on ~b∗j for any (j < i) is at most 1

2‖~b
∗
j‖. It is very

important to note that the inner loop goes from i− 1 down to 1.
To make the above more clear we give below an instance of the current basis B

during the execution of the algorithm (the example was taken from [33]). Consider

2.3 LLL Reduction 47

the ith iteration of the outer loop and the value j = 2 for the inner loop. The
matrix B at this point looks like:

‖~b∗1‖ ≤ 1
2‖~b

∗
1‖ ≤ 1

2‖~b
∗
1‖ · · · ∗ ∗ · · ·

0 ‖~b∗2‖ ≤ 1
2‖~b

∗
2‖ · · · ∗ ∗ · · ·

0 ‖~b∗3‖ · · · ≤ 1
2‖~b

∗
3‖ ∗ · · ·

...
. . .

...

≤ 1
2‖ ~b∗i−1‖ ∗

0 · · · ‖~b∗i ‖ ∗ · · ·
0 ‖ ~bi+1∗‖ · · ·

...
...

. . .

:

Notice that the �rst property holds for all columns coresponding to j < i. In
addition, at this point (execution where still j = 2) the property holds for the ith
column for all elements that belong to rows with index greater than 2. The reader
here is asked to justify the necessity of counting j from i− 1 downto 1 and not the
other way.
Swap Step:This step takes care of the second property of an LLL-Reduced basis.
If the algorithm terminates then the algorithm guarantees that the second property
is satis�ed.

The following lemma proves the correctness of the LLL algorithm.

Lemma 2.3.11 (LLL Correctness). If the LLL algorithm described above ter-
minates, then its output is a �-LLL-Reduced Basis for the lattice spanned by the
input basis ~b1; ~b2; :::; ~bn:

Proof. To prove the above lemma , we have to prove that both properties of the
LLL-Reduction de�nition are satis�ed upon the algorithm's termination and that
the basis produced is equivalent to the initial basis in that they both produce the
same lattice. The satisfaction of the second property is enforced by the swap step
of the algorithm. In addition the output basis is equivalent to the input basis since
the algorithm only performs elementary column operations (notice that in every
elementary operation of the form bi ← bi+abj , a ∈ Z).It only remains to show that
the �rst property is also satis�ed upon termination. Recall �rst that throughout
the reduction step the Gram-Schmidt basis remains unchanged. Consider now
the ith iteration of the outer loop and the jth iteration of the inner loop (where
i > j).Then immediately after this iteration we have

|�i;j | = |
〈bi − ci;jbj ; b

∗
j 〉

〈b∗j ; b∗j 〉
| = |

〈bi; b∗j 〉
〈b∗j ; b∗j 〉

− d
〈bi; b∗j 〉
〈b∗j ; b∗j 〉

c ·
〈bj ; b∗j 〉
〈b∗j ; b∗j 〉

| ≤ 1
2
:

In the above expression the �rst equality follows from the de�nition of the reduction
step while the last inequality follows from the fact that 〈bj ; b∗j 〉 = 〈b∗j ; b∗j 〉 (Recall
equation 1.4 to see that).

48 Lattice Basis Reduction

2.3.3 Running Time Analysis

For the running time analysis of the LLL Algorithm we divide our proof that
LLL Algorithm runs in polynomial time into two steps. In the �rst step we prove
that the number of iterations is polynomially bounded by the input size, while in
the second step we prove that the running time of each iteration is polynomially
bounded too.

We start by proving that the number of iterations is polynomially bounded. In
the following analysis for simplicity's sake we write bi instead of ~bi to indicate the
basis vectors.

Lemma 2.3.12. For every integer basis B ∈ Zm×n we have that det(L(B))2 ∈ Z.

Proof. In the standard scalar product det(L)2 = det(BTB) which is clearly an
integer since B ∈ Zm×n:

We can therefore associate the following integer to the basis B:

De�nition 2.3.13

D =
∏n

k=1 det(L(b1; b2; :::; bk))2 = (
∏n

k=1 ‖b∗1‖‖b∗2‖ · · · ‖b∗k‖)2:

We also de�ne M = max{n; log(maxi ‖bi‖)}. This is a lower bound on the
input size.We will now show that D decreases at least by a factor of � at each
iteration.

Lemma 2.3.14. The number of iterations in the LLL Algorithm is polynomial in
M:

Proof. We have already mentioned that during the reduction step the vectors
b∗1; b

∗
2; :::; b

∗
n remain unchanged and so does D.

Consider now a swap step. Assume that the swap was performed between bi
and bi+1 and let D;D′ be the integers associated to the basis B before and after
the swap respectively.Then we have

D
D′

=
∏n

k=1 det(L(b1; b2; :::; bk))2∏n
k=1 det(L(b′1; b

′
2; :::; b

′
k))

2

=
(
∏i−1

k=1 det(L(b1; :::; bk))2) · (det(L(b1; :::; bi))2) · (
∏n

k=i+1 det(L(b1; :::; bk))2)

(
∏i−1

k=1 det(L(b′1; :::; b
′
k))

2) · (det(L(b′1; :::; b
′
i))2) · (

∏n
k=i+1 det(L(b′1; :::; b

′
k))

2)

=
det(L(b1; :::; bi))2

det(L(b′1; :::; b
′
i))2

:

The last equality can be justi�ed as follows:
if k < i then obviously b′l = bl for l = 1; 2; :::; k as the �rst i − 1 vectors remain
unchanged after the swap. So obviously det(L(b1; :::; bk))2 = det(L(b′1; :::; b

′
k))

2.
If k > i then L(b1; :::; bk) contains exactly the same vectors as L(b′1; :::; b

′
k). Both

2.3 LLL Reduction 49

lattices contain bi; bi+1 in a di�erent order but this does not a�ect their determinant
so obviously again det(L(b1; :::; bk))2 = det(L(b′1; :::; b

′
k))

2:
In addition

det(L(b1; :::; bi)) =
i∏

j=1

‖b∗j‖

while

det(L(b′1; :::; b
′
i)) =

i∏
j=1

‖b′∗j ‖:

Recall now that b′l = bl for l = 1; 2; :::; i− 1 and by Gram-Schmidt process b
′∗
l = b∗l

for l = 1; 2; :::; i− 1. On the other hand

b
′∗
i = b′i −

i−1∑
j=1

�i′;jb
′∗
j = bi+1 −

i−1∑
j=1

�i+1;jb
∗
j

= bi+1 −
i∑

j=1

�i+1;jb
∗
j + �i+1;ib

∗
i = b∗i+1 + �i+1;ib

∗
i :

Thus

D
D′

=
det(L(b1; :::; bi))2

det(L(b′1; :::; b
′
i))2

=

∏i
j=1 ‖b∗j‖2∏i
j=1 ‖b′∗j ‖2

=
‖b∗i ‖2

‖b′∗i ‖2
=

‖b∗i ‖2

‖b∗i+1 + �i+1;ib∗i ‖2
>

1
�
:

The last inequality is dictated by the swap condition. If it didn't hold then there
would be no swap. Suppose that the initial value of D is D and that the algorithm
terminates after m iterations (the fact that the integer D decreases at each step
while remaining integer, guarantees the termination of the algorithm). The above
inequality gives (D(i) denotes the value of D after the ith itearation)

D >
1
�
D(1) ⇒ D > (

1
�
)mD(m) > (

1
�
)m

since D is a nonzero integer. Thus

(
1
�
)m < D ⇒ m < log 1

�
D:

Now in order to bound D we recall that ‖b∗i ‖ ≤ ‖bi‖. This gives

D =
n∏

k=1

(‖b∗1‖‖b∗2‖ · · · ‖b∗k‖)2 ≤
n∏

k=1

(‖b1‖‖b2‖ · · · ‖bk‖)2 ≤ max
i
‖bi‖n(n+1):

This �nally gives

m < log 1
�
D ≤ log 1

�
max
i
‖bi‖n(n+1) = n(n+ 1) log 1

�
max
i
‖bi‖ ≤ n(n+ 1)M

which completes the proof as M is a lower bound for the input size.

50 Lattice Basis Reduction

We still need to show that that each iteration also takes polynomial time.
Apparently the number of arithmetic operations performed at each iteration is
polynomial. Thus, it only remains to show that the numbers involved in the
computations can be represented using a polynomial number of bits. We denote
Di = det(L(b1; b2; :::; bi))2 = det(Bi)2.Thus

D =
n∏

k=1

Di:

We �rst prove the following lemma.

Lemma 2.3.15. The following statements are true for the LLL algorithm:

(a) The Gram-Schmidt vectors b∗1; b
∗
2:::; b

∗
n can be computed in polynomial time

in M:

(b) Db∗i ∈ Zn:

(c) ‖b∗i ‖ ≤ D for every i = 1; 2; :::; n:

Proof. (a)Consider the equation 1.4. By induction b∗i − bi ∈ span(b1; b2; :::; bi−1).
We can therefore write b∗i = bi +

∑i−1
j=1 ajbj for some a1; a2; :::; ai−1. We will now

show that we can compute the coe�cients ai in polynomial time. Recall that
bl ∈ span(b∗1; b

∗
2; :::; b

∗
l) which implies that 〈b∗i ; bl〉 = 0 for every l = 1; 2; :::; i−1.This

gives:

〈b∗i ; bl〉 = 〈bi +
i−1∑
j=1

ajbj ; bl〉 = 〈bi; bl〉+ a1〈b1; bl〉+ a2〈b2; bl〉+ :::+ ai−1〈bi−1; bl〉 = 0

If we now consider all the vectors bl; l = 1; 2; :::; i − 1, we obtain the following
system of i− 1 linear equations in i− 1 variables:

a1〈b1; b1〉+ a2〈b2; b1〉+ :::+ ai−1〈bi−1; b1〉 = −〈bi; b1〉
a1〈b1; b2〉+ a2〈b2; b2〉+ :::+ ai−1〈bi−1; b2〉 = −〈bi; b2〉

...
a1〈b1; bi−1〉+ a2〈b2; bi−1〉+ :::+ ai−1〈bi−1; bi−1〉 = −〈bi; bi−1〉:

We can now �nd the coe�cients a1; a2; :::; ai−1 in polynomial time by solving the
above system using Cramer's rule.We can then compute the vectors b∗i through the
equation b∗i = bi +

∑i−1
j=1 ajbj :

(b) The solution for each aj can be written in the following form:

aj =
det(some integer matrix)

det

〈b1; b1〉 · · · 〈bi−1; b1〉

...
. . .

...
...

. . .
...

〈b1; bi−1〉 · · · 〈bi−1; bi−1〉

=

� ∈ Z
detBT

i−1Bi−1
=

� ∈ Z
Di−1

:

2.3 LLL Reduction 51

This combined with the fact that b∗i = bi+
∑i−1

j=1 ajbj clearly implies that Di−1b
∗
i ∈

Zn and since Di−1 divides D by de�nition, we �nally get that Db∗i ∈ Zn:
(c) By de�nition Di = (

∏i−1
j=1 ‖b∗j‖2) · ‖b∗i ‖2. Thus

‖b∗i ‖2 =
Di∏i−1

j=1 ‖b∗j‖2
≤ Di ·

i−1∏
j=1

D2
j ≤ D2 ⇒ ‖b∗i ‖ ≤ D

where the �rst inequality follows from the fact that Db∗i ∈ Zn and thus ‖Di · b∗i ‖2 ≥
1⇒ 1

‖b∗i ‖2
≤ D2

i .

In order to complete the running time analysis we still need to show that the
vectors bi do not grow too large during the execution of LLL algorithm.Notice that
during the reduction step, vectors bi do change so we need to prove an upper bound
on their norm. This is proved in the following lemma.

Lemma 2.3.16. All vectors bi appearing during an iteration can be represented
using poly(M) bits.

Proof. Equation 1.4 says that bi = b∗i +
∑i−1

j=1 �i;jb
∗
j . In addition, |�i;j | ≤ 1

2 and
〈b∗i ; b∗j 〉 = 0 for each i 6= j . Thus

‖bi‖2 = ‖b∗i ‖2 +
i−1∑
j=1

�2
i;j‖b∗j‖2 ≤ D2 +

n

4
D2 ≤ nD2:

Remember now that by hypothesis, in the beggining of the algorithm bi ∈ Zn for
each i and that we only perform elementary integer column operations. Thus bi's
remain integer throughout the algorithm.Since their norm is bounded too, then
they can be represented with poly(M) bits.In addition

|ci;j | = |d
〈bi; b∗j 〉
〈b∗j ; b∗j 〉

c| ≤
‖bi‖ · ‖b∗j‖
‖b∗j‖2

+ 1 =
‖bi‖
‖b∗j‖

+ 1 ≤ ‖bi‖
1=D

+ 1 ≤ 2D‖bi‖:

(We have used Cauchy-Schwartz Inequality for the �rst inequality.) Using the
above we �nally obtain:

‖bi − ci;jbj‖ ≤ ‖bi‖+ |ci;j |‖bj‖
≤ (1 + 2D‖bj‖)‖bi‖
≤ (1 + 2D

√
nD)‖bi‖

≤ (4nD)2‖bi‖

which is obviously representable in poly(M) bits.

The following theorem recapitulates the facts that we have proved so far.

52 Lattice Basis Reduction

Theorem 2.3.17 (LLL Running Time)
The running time of the LLL Algorithm is polynomial in its input size.

Proof. The proof is immediate by inspection of the algorithm 4 and the lemmas
2.3.14, 2.3.15 and 2.3.16.

2.3.4 Finding Solutions to the Simultaneous Diophantine

Approximation Problem

In order to give a �rst avor of LLL applications, we demonstrate below a use of
the LLL algorithm in �nding a solution to the Simultaneous Diophantine Approx-
imation Problem (SDAP). This was one of the �rst applications of LLL algorithm
presented in the LLL paper (see [24] for more details). The following approach is
followed (in a similar fashion) in a large number of applications throughout the
rest of the thesis. The SDAP as de�ned in [19] is the following:

De�nition 2.3.18 (Simultaneous Diophantine Approximation Problem)
Given a1; a2; :::; an ∈ Q; � > 0 ∈ Q; Q > 0, �nd integers p1; p2; :::; pn and q such
that 0 < q ≤ Q and ∣∣∣∣ai − pi

q

∣∣∣∣ ≤ �

q
i = 1; 2; :::; n:

Theorem 2.3.19

There exists a polynomial time algorithm that, given a positive integer n and ra-
tional numbers a1; a2; :::; an; � satisfying 0 < � < 1, �nds integers p1; p2; :::; pn; q for
which

|pi − qai| ≤ � for 1 ≤ i ≤ n;

1 ≤ q ≤ 2n(n+1)=4�−n:

Proof. Consider the lattice L of rank n+1 spanned by the columns of the following
(n+ 1)× (n+ 1)-matrix

B =

1 0 · · · 0 −a1

0 1 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −an
0 0 · · · 0 2−n(n+1)=4�n+1

 :

Then theorem 2.3.7 says that that there exists a polynomial-time algorithm which
�nds a reduced basis b1; b2; :::; bn+1 for L such that

‖b1‖ ≤ 2
n+1−1

4 · det(L)
1

n+1 = �:

2.3 LLL Reduction 53

In addition b1 ∈ L that is there exists a vector ~x = (p1; p2; :::; pn; q)T with integer
components such that

b1 = B~x = (p1 − qa1; p2 − qa2; :::; pn − qan; q · 2−n(n+1)=4�n+1)T :

Thus ‖b1‖ ≤ � implies that

|pi − qai| ≤ � for 1 ≤ i ≤ n;

|q| ≤ 2n(n+1)=4�−n
:

In addition , the requirement � < 1 implies that q 6= 0 (otherwise ‖b‖ ≥ mini |p1| ≥
1). In addition we can replace (if needed) b1 with −b1 to obtain q > 0.

2.3.5 LLL Applications

The LLL Algorithm also has plenty of applications in various �elds of computer
science. We briey give a description of some of them here. In the following chap-
ters we will present in detail some of the LLL applications related to cryptography.

1. Factoring Polynomials over the Integers or the rational numbers. This was
the initial use of the LLL algorithm in paper [24].

2. Finding the minimal polynomial (with integer coe�cients) of an algebraic
number given to a good enough approximation. For instance, the minimal
integer polynomial, a root of whose approximates "su�ciently" the number
1:7321; is x2 − 3.

3. Integer Programming. While this problem is NP-Complete in its general
setting, one can use LLL to obtain a polynomial time solution to an Integer
Programming Problem with a �xed number of variables.

4. Approximation of the Closest Vector Problem,that is the Problem of �nding
the lattice point that is closest to a given point (which does not necessarily
belong to the lattice).

5. Many applications both in Cryptanalysis and in establishing Cryptographic
Primitives. The next chapters of the thesis are devoted to that kind of
applications.

54 Lattice Basis Reduction

Chapter 3

Finding Small Roots to

Polynomial Equations

3.1 Introduction

In the previous two chapters, we presented the basic de�nitons and properties
of lattices. We also introduced the notion for reduced basis and presented in detail
LLL algorithm, a polynomial time algorithm that produces basis vectors which
approximate the shortest vectors in a lattice. Some of these results will be used
throughout this chapter.

We summarize some of the important results concerning LLL in the following
theorem for convenience. We also restate the results obtained by Minkowski's
Convex Body Theorem.

Theorem 3.1.1 (LLL Results)

Let [~b1; ~b2; :::; ~bn] be a basis for the lattice L ∈ Rn and ~b1
∗
; ~b2

∗
; :::; ~bn

∗
the corre-

sponding Gram-Schmidt vectors.Then LLL algorithm produces in polynomial time

an equivalent reduced basis [~b1
′
; ~b2

′
; :::; ~bn

′
] the vectors of which satisfy the following

inequalities:

‖~bj
′
‖2 ≤ 2i−1 · ‖~b∗1‖

2 for 1 ≤ j ≤ i ≤ n; (LLL1)

‖~b1
′
‖ ≤ 2

n−1
2 �1(L) (LLL2)

det(L) ≤
n∏
i=1

‖~bi
′
‖ ≤ 2

n(n−1)
4 · det(L) (LLL3)

‖~b1
′
‖ ≤ 2

n−1
4 · det(L)

1
n (LLL4)

If in addition L ∈ Zn (and not generally Rn), then the LLL algorithm outputs a

reduced basis [~b1
′
; ~b2

′
; :::; ~bn

′
] such that

‖~bi‖ ≤ 2
n(n−1)

4(n−i+1) · det(L)
1

n−i+1 for i = 1; 2; :::; n: (3.1)

56 Finding Small Roots to Polynomial Equations

Theorem 3.1.2 (Convex Body Theorem and its Results)
Consider a full dimensional lattice (n = m). Then:

SV P∞ ≤ n
√
det(L) and (SVI1)

SV P2 <
√
n n

√
det(L) (SVI2)

where SV Pi denotes the Shortest Vector in the lattice with respect to norm li. We
emphasize that the above theorem is existensial in that it only proves the existence
but not a way to �nd such a vector.

In the current chapter we present some recently proposed applications of lat-
tices in �nding small roots to polynomial equations. In particular, in section 3.2
we present how one can use lattice theory to solve modular polynomial equations.
We present in detail the corresponding technique for univariate modular equations
and outline the extension to more than one variables. In section 3.3 we describe a
lattice-based approach for �nding small roots to polynomial equations over the in-
tegers (and not only modulo a number). We mainly focus on the bivariate case and
give the underlying ideas for extending the approach to multivariate polynomials.

While this chapter does not include any pure cryptographic applications, it
provides some very useful theorems that will make the analysis of the following
two chapters much easier to follow. Of course, the results presented here are of
independent interest and can be applied in other �elds as well.

3.2 Modular Polynomial Equations

In this section we present some methods for �nding small roots to modular
polynomial equations.We emphasize here that we are only interested in integer
roots. Such methods have found a large number of applications in Cryptography.
Some of these applications will be presented in detail in the next two chapters.

3.2.1 Univariate Case

We �rst set the goal of this subsection. Let N be some large integer of unknown
factorization and f ∈ Z[x] be a polynomial of degree d. Consider also the following
univariate modular equation:

f(x) = adx
d + ad−1x

d−1 + :::+ a1x+ a0 ≡ 0 (modN): (3.2)

In general there is no known e�cient algorithm that �nds integer roots of the
above equation. However, Coppersmith [10, 11, 12] introduced an e�cient method
for �nding small integer solutions using the LLL algorithm.

To illustrate a simple example of how such an approach can work, consider the
case where we want to �nd a root to the following modular equation f(x) = xd−c ≡

3.2 Modular Polynomial Equations 57

0 (modN) x; c ≥ 0. Assume now that we are given the additional information

that there exists a solution x0 such that x0 ≤ N
1
d : That would imply that

f(x0) ≡ 0 (modN); and |f(x0)| = |(x0)d − c| < N:

The above two conditions give that f(x0) = 0 over Z and thus we can recover x0

using an ordinary root �nding algorithm. Note that we are searching for x0 ∈ Z so
the recovery of such a x0 is not hard.

We would like now to generalize the above technique for arbitrary polynomials
and improve the bounds on the solutions we can recover. The following analysis
presents the various advancements in a chronological order. It is important for the
reader to understand the steps followed till the �nal results as well as the basic
underlying ideas since variants of this technique will be used in solving multivariate
modular equations and in �nding small roots to multivariate integer equations. We
will therefore provide a detailed presentation of the technique. We �rst give some
notation and de�nitions.

Notation and De�nitions

Let f(x) :=
∑

i aix
i be univariate polynomial with coe�cients in ai ∈ Z. All

terms xi with nonzero coe�cients are called monomials. We will frequently rep-
resent a polynomial with the respective vector of its coe�cients. For example the
polynomial p(x) = 3x3 + 2x+ 20 will be represented by the vector p = (20; 2; 0; 3).
This notation will prove to be very useful in the next sections. Finally we de�ne
the norm of a polynomial f as the Euclidean norm of its coe�cient vector:

‖f‖2 :=
∑
i

a2
i :

De�nition 3.2.1 (Root Equivalent polynomials)
Consider two polynomials f; g. We say that f is a root container of g if each
root of g is also a root of f . When the roots are considered modulo N , we say that
f is a root container of g modulo N:

In the following analysis, the notation ‖ · ‖ will always imply the Euclidean
norm, that is ‖ · ‖2. In case we want to use another norm, we will explicitly do so
by putting the respective index to the norm notation.

Key Ideas

Suppose that we are given a polynomial

f(x) = adx
d + ad−1x

d−1 + :::+ a1x+ a0

and we are asked to �nd a solution to the unimodular equation

f(x) ≡ 0 (modN):

58 Finding Small Roots to Polynomial Equations

Since there are no known techniques for this general case, there is not much to do.
However, if we somehow knew that |f(x)| < N for all x such that |x| ≤ X for a
certain bound X; we could easily �nd roots x0 by simply solving f(x0) = 0 over
Z using a standard root �nding algorithm.This seems too simple to be e�cient.
Indeed, there are two major drawbacks of this technique:

1. How can we actually know that such a bound X exists and how can we
estimate the value of this bound? More importantly, how can we check the
inequation |f(x)| < N for an arbitrary polynomial f(x) and de�ne the bound
X for which this inequality holds ?

2. How possible is the satisfaction of the above inequality and even if it is
satis�ed for a bound X is that bound "large" enough to recover a signi�cant
percentage of the solutions?

We will now try to handle both inconveniences.

1. Instead of searching for a bound X such that |f(x0)| < N for every modular
solution x0 with |x0| ≤ X; we can use a stricter condition. Suppose for exam-
ple that we can �nd a bound X such that

∑d
i=0 |fixi0| < N: This condition

is stricter in that it is satis�ed by at most all the polynomials that satisfy
the initial condition |f(x0)| < N for all x0 such that |x0| ≤ X. Indeed, the
condition

∑d
i=0 |fixi0| < N implies that

|f(x0)| = |
d∑

i=1

fix
i
0| ≤

d∑
i=0

|fixi0| < N

where the �rst inequality stems from the extended triangle inequality.
But

∑d
i=0 |fixi0| < N is still di�cult to test. We can further replace it with

the even stricter condition

|fixi0| <
N

d+ 1
for all i = 0; 1; :::; d:

This can in turn be replaced by the stricter condition

max
0≤i≤d

|fixi0| <
N

d+ 1
:

For the need of this thesis we will mainly use the euclidean norm. The follow-
ing theorem gives a su�cient condition the euclidean norm of the coe�cient
vector ‖f(xX)‖ should satisfy in order to make the transformation of a mod-
ular equation to an analogous (in terms of "small solutions") equation over
the integers possible.

Lemma 3.2.2 (Howgrave-Graham for Univariate Polynomials). Let
h(x) ∈ Z[x] be a univariate polynomial with at most ! monomials. Suppose
in addition that h satis�es the following two conditions:

3.2 Modular Polynomial Equations 59

(a) h(x0) ≡ 0(modN) where |x0| < X and

(b) ‖h(xX)‖ ≤ N=
√
!:

Then h(x0) = 0 holds over the integers.

Proof.

|h(x0)| = |
∑
i

hix
i
0| ≤

∑
i

|hixi0| =
∑
i

|hi|
∣∣∣x0

X

∣∣∣iXi

≤
∑
i

|hi|Xi ≤
√
!‖h(xX)‖ < N:

The last but one inequality is a direct use of Cauchy-Schwarz inequality.

The above lemma gives a condition that may not be that tight (there may
be polynomials h that do not satisfy the conditions of the lemma, but still
satsify |h(x0)| < N) but it is easily testable and will thus be used in the rest
of the analysis.

2. As far as the second inconvenience is concerned, it is clear that in order to ap-
ply the above lemma we have to �nd a boundX such that ‖f(xX)‖ ≤ N=

√
!.

But how "large" such a bound can be? Can we do anything to push the bound
X to values that are su�ciently large? The answer, interestingly, is "YES".
The key idea is that instead of trying to �nd solutions to the polynomial f ,
we can construct new polynomials g which are root containers of f and in
addition, satisfy ‖g(xX)‖ ≤ N=

√
! for bounds X that are signi�cantly larger

than the bounds obtained by the corresponding condition for f: In the fol-
lowing paragraph we present gradually the construction of such polynomials
and prove the bounds achieved for each construction.

Early Constructions

For the rest of the analysis we will assume wlog that f is monic, that is the
coe�cient of xd is 1. We can always transform f to such a form by multiplying
it with f−1

d mod N (if (fd; N) 6= 1 then we have found a non trivial factor of N
which signi�cantly simpli�es things). In addition, the basis vectors of a lattice will
occasionally be thought as row vectors instead of column vectors. Since we are
only interested in the determinant of the lattice used , this modi�cation does not
a�ect the subsequent analysis at all.
In order to construct a polynomial g that is a root container of f; we �rst consider
the following set of polynomials:

Z1 = {N;Nx;Nx2; :::; Nxd−1; f(x)}:

It is important to notice here that any integer combination of these polynomials has
at least all the roots of f modulo N . That is, if x0 satis�es f(x0) ≡ 0 modulo N;

60 Finding Small Roots to Polynomial Equations

then g(x0) ≡ 0 moduloN for every g that is a linear combination of the polynomials
in Z1: Hence, it su�ces to �nd an integer combination of those polynomials that
satis�es property (b) in lemma 3.2.2. Here is the point where lattices and LLL
algorithm come to the play. Consider the following lattice whose columns are the
coe�cient vectors of the polynomials in Z1.

L1 =

N 0 · · · 0 f0

0 XN
. . . 0 Xf1

0 0
. . .

. . .
...

...
...

. . . Xd−1N Xd−1fd−1

0 · · · · · · 0 Xd

(d+1)×(d+1)

:

Notice that the ith row i = 0; 1; :::; d corresponds to the coe�cient of xi multiplied
by Xi.Indeed, consider an arbitrary integer linear combination ~c = [c0; c1; :::; cd]T

of the column vectors of the above matrix.Then we have that

L1~c = c0 ·

N
0
0
...
0

 + c1 ·

0

XN
0
...
0

 + :::+ cd ·

f0

Xf1
...

Xd−1fd−1

Xd

= [c0N + cdf0; c1XN + cdf1X; :::; cdX

d]T :

The last vector corresponds to the coe�cient vector of the polynomial

h(x) = (c0N + cdf0) + (c1N + cdf1)x+ :::+ cdx
d:

Clearly h is a root container of f modulo N: The order of the column vectors in
matrix L1 is chosen in such a way so that the resulting matrix is upper triangular.
We will now use the results of LLL algorithm to determine the upper bound for
X. By theorem 3.1.1 we can �nd in polynomial time a vector b ∈ L1 such that

‖b‖ ≤ 2
n−1

4 · det(L1)
1
n :

But this vector is,by construction of the lattice, the coe�cient vector of a polyno-
mial h(xX): Using the above inequality we know that LLL returns a vector the
corresponding polynomial of which satis�es:

‖h(xX)‖ ≤ 2
d+1−1

4 · det(L1)
1

d+1 :

In order to apply lemma 3.2.2 on h(x) and recover x0 such that h(x0) = 0 over
the integers, we need to solve

‖h(xX)‖ ≤ N√
d+ 1

3.2 Modular Polynomial Equations 61

with respect to X: Combining the above two inequalities, a su�cient condition is

2
d+1−1

4 · det(L1)
1

d+1 <
N√
d+ 1

:

In order to proceed we now need to compute the determinant of L1. This compu-
tation is straightforward since L1 is upper triangular and thus the determinant is
simply the product of the diagonal elements of L1. It is not di�cult to see that

det(L1) = NdX
d(d+1)

2 which �nally gives that

2
d
4 · (NdX

d(d+1)
2)

1
d+1 <

N√
d+ 1

⇒ X ≤ k(d)N
2

d(d+1)

where k(d) is a small enough constant that depends only on d.
Let us summarize what we have achieved so far. We have proved that given

a univariate modular equation f(x) ≡ 0(modN) we can �nd in polynomial time

all the roots x0 such that f(x0) ≡ 0(modN) and |x0| ≤ k(d)N
2

d(d+1) .The method
described above illustrates the basic underlying idea.

The question now is "Can we do any better?",that is can we obtain a larger
bound for X?The answer is yes and the main idea lies in the lattice that pro-
duces the root container polynomials. To see that consider the extended set of
polynomials

Z2 = {N;Nx;Nx2; :::; Nxd−1}
⋃
{f(x); xf(x); :::; xd−1f(x)}:

Notice that for any integer combination g of these polynomials, the roots of g
contain all the roots of f . Consider now the lattice whose columns are the coe�cient
vectors of the above polynomials.

L2 =

N 0 0 0 f0 0 · · · 0

0 XN
. . .

...
... Xf0

. . .
...

... 0
. . . 0

...
...

. . . 0
...

...
. . . Xd−1N Xd−1fd−1

...
... Xd−1f0

...
...

. . . 0 Xd Xdfd−1
...

...
...

...
. . .

. . .
. . . Xd+1 . . .

...
...

...
. . .

. . .
. . .

. . .
. . . X2d−2fd−1

0 0 · · · · · · 0 0 0 X2d−1

(2d)×(2d)

Using arguments exactly similar to those used for the basis matrix L1 the su�cient
condition in order to apply lemma 3.2.2 becomes

2
2d−1

4 · det(L2)
1
2d <

N√
2d
:

62 Finding Small Roots to Polynomial Equations

where det(L2) = NdX
2d(2d−1)

2 . It is not di�cult to see that the above condition
gives

X ≤ l(d)N
1

2d−1

where here again l(d) is a "small" enough constant that depends only on d. The
column vectors added to L1 to form L2 have resulted to a signi�cantly larger bound
X for the range of small solutions we can �nd.

Remark 3.2.3. It is important to note here that the polynomials h(x) constructed
in either case as a linear combination of the polynomials in Z in order to apply
lemma 3.2.2, may have more roots in Z than f(x) modulo N . However the
construction guarantees that if f(x) has a "small" root x0 modulo N , then this is
certainly a root over all the integers for h(x). The inverse is not always true. In
order to determine the "small" roots of the modular equation f(x) ≡ 0(modN),
we �rst have to solve the equation h(x) = 0 over the integers and then check which
of those roots also satify f(x) ≡ 0(modN).

Remark 3.2.4. The above methods also give answer to the following purely math-
ematic question:how many roots modulo N can a polynomial of degree d have in
the range x ∈ {−X; :::; 0; :::; X}? Since the number of roots of h over the integers
is at least as large as the number of "small" roots of f modulo N and h has at most
d integer roots (where d is the degree of the polynomial h), the above methods give
an upper bound on the number of "small" roots of f modulo N .Our �rst approach
(where we used only polynomials from the set Z1) says that there are at most d

integer roots x0 such that |x0| < c1(d)N
2

d(d+1) while the second approach (where we
used polynomials from the set Z2) says that there are at most 2d− 1 integer roots

x0 (notice that 2d is the dimension of lattice L2) such that |x0| < c2(d)N
1

2d−1 .

Coppersmith's Contribution

In this paragraph we discuss further improvements to the exponent of the bound
X. The main advancement over the previous results came in 1996, when Copper-
smith [10, 9] increased the bound to N

1
d . Coppersmith managed to prove a larger

bound by incorporating the following two key ideas:

1. He further enriched the set of polynomials Z increasing at the same time the
dimension of the lattice that produces polynomials g that are root containers
of f . In particular, he used the following set of polynomials:

Zh = {Nh−j−1f(x)jxi|0 ≤ i < d; 0 ≤ j < h}:

2. He considered linear integer combinations of the above vectors modulo Nh−1

instead of modulo N . Notice that the construction of Zh is such that for any
x with f(x) ≡ 0(modN); any integer combination g of these polynomials
satis�es g(x) ≡ 0(modNh−1).

3.2 Modular Polynomial Equations 63

Remark 3.2.5. The analysis presented above does not exactly follow the Cop-
persmith's initial presentation [10, 9].Initially , Coppersmith was working with an
unnatural space and thus his presentation was di�cult both to follow and to be
transfered to practical implementations. Coppersmith did not express the condi-
tions that lead to the bound X in terms of polynomial arithmetic. The convenient
formulation presented in this section and followed in the rest of this thesis is due to
Howgrave-Graham [23] who revisited and simpli�ed the analysis of Coppersmith's
method in 1997. In fact, all current uses of Coppersmith's univariate modular
method use Howgrave-Graham's approach.In this thesis we will refer to Copper-
smith by keeping in mind that we actually use Howgrave-Graham's approach which
is based on Coppersmith's underlying idea.

We will now prove Coppersmith's main result for univariate polynomial mod-
ular equations. In fact, we will present a generalization of Coppersmith's theorem
given by May [28] in 2004 as well as the detailed proof (found in [26] (p.34-37) or
in the full version of [28]). We �rst need the following lemma.

Lemma 3.2.6 (Generalized Howgrave-Graham for Univariate Modular

Polynomials). Let f(x) ∈ Z[x] be a univariate polynomial with at most ! mono-
mials.Further let m be a positive integer. Suppose that

1. f(x0) ≡ 0(mod bm) where |x0| < X

2. ‖f(xX)‖ ≤ bm√
!
:

Then f(x0) = 0 holds over the integers.

Proof. The proof is completely analogous to the proof of lemma 3.2.2 and is
therefore omitted.

Theorem 3.2.7 (Coppersmith Generalized Theorem for Univariate Mod-

ular Equations)
Let N be an integer of unknown factorization, which has a divisor b ≥ N�. Fur-
thermore, let f(x) be a univariate, monic polynomial of degree �. Then we can �nd
all solutions x0 for the equation f(x) ≡ 0(mod b) with

|x0| ≤
1
2
N

�2

�
−�

in time polynomial in (logN; �; 1
�):

Proof. We �rst de�ne the bound X := 1
2N

�2

�
−�. We apply Coppersmith's approach

as presented above. We �rst need to build the lattice. We �x a number m such
that

m ≥ max

{
�2

��
;
7�
�

}
: (3.3)

64 Finding Small Roots to Polynomial Equations

We then choose the set Z of polynomials that will form the basis of our lattice.
We include the following polynomials in Z

Nm; xNm; x2Nm; · · · x�−1Nm;
Nm−1f; xNm−1f; x2Nm−1f; · · · x�−1Nm−1f;
Nm−2f2; xNm−2f2; x2Nm−2f2; · · · x�−1Nm−2f2;
...

...
...

. . .
...

Nfm−1; xNfm−1; x2Nfm−1; · · · x�−1Nfm−1:

The above polynomials are �m in total with increasing degrees (from 0 to �m− 1).
We also include the following polynomials

fm; xfm; x2fm; · · · ; xt−1Nfm:

t is a parameter to be optimized as a function ofm. We write the above polynomials
in the following more compact form.

gi;j(x) = xjN ifm−i(x) for i = 0; :::;m− 1; j = 0; :::; � − 1
hi(x) = xifm(x) for i = 0; :::; t− 1:

We now construct the lattice L the rows of which are the coe�cient vectors of
gi;j(xX) and hi(xX). Note �rst that, unlike the previous constructions, the co-
e�cient vectors form the rows of the lattice instead of the columns.This should
not cause any confusion since we are only interested in the determinant of the lat-
tice as we have already mentioned. (A description using columns would not a�ect
the method at all. The basis of the matrix would be the transpose matrix of the
matrix given below.We use rows only to be accordant with the established bibli-
ography).Second,by a simple inspection of the polynomials, it is easy to observe
that we can order the polynomials gi;j(xX) and hi(xX) in strictly increasing order
of their degrees k. Hence we can write the basis B of the lattice L as a lower
triangular matrix. The dimension of the lattice will be ! = �m + t. The basis B
can be then written as the following (! × !) matrix.
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Nm

NmX

.
.
.

NmX�−1

.
.
.

.
.
.

.
.
.

.
.
.

? ? ? · · · ? NX�m−�

? ? ? · · · ? NX�m−�+1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

? ? ? · · · ? NX�m−1

? ? ? ? ? ? ? · · · ? X�m

? ? ? ? ? ? ? · · · ? X�m+1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

? ? ? ? ? ? ? · · · ? X�m+t−1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Notice that the above matrix is lower triangular. This means that all its entries
lij such that j > i are zero. An element lij such that j < i may or may not be
zero. We have used the symbol "?" to denote a possibly nonzero entry whose value
doesn't a�ect the calculation of the determinant.

3.2 Modular Polynomial Equations 65

The determinant of the above matrix can now be easily calculated by multi-
plying all the diagonal entries. We then have

det(L) = N
1
2
�m(m+1)X

1
2
!(!−1)

We will now optimize the value t. This will also optimize the value ! = �m + t;
that is the dimension of the lattice basis. Remember our initial goal. We want to
construct a lattice such that the following inequation is satis�ed for a bound X
that is as large as possible.

‖f(xX)‖ ≤ bm√
!
:

A su�cient condition for the above inequation is as we have already seen

‖f(xX)‖ ≤ 2
!−1

4 det(L)
1
! ≤ bm√

!
⇒ det(L) ≤ bm!

!
!
2

2−
!(!−1)

4 :

The above inequality can be further simpli�ed if we neglect the terms that only
depend on !. This is not a groundless simpli�cation as b ≥ N� and N is very large
(in the order of 21000) whereas the lattice dimension ! is negligible compared to N
(in the order of 100). So we can write the above condition as det(L) < bm!. Suppose
now that we add at the end of the above matrix a new row vector corresponding
to a polynomial hi(x).This increases the dimension of the matrix by 1 and the
determinant by a factor of X!′−1 (notice that the vectors corresponding to hi(x)
only add X terms to the determinant and that the the diagonal element of the last
row will by construction be X!′−1 where !′ is the new dimension of the lattice.).
Consider now the condition det(L) < bm!. It is not di�cult to see that if the
contribution to the determinant of the element added to the lattice is less than
bm then this condition will yield a bound X that is larger than the respective
bound for a smaller dimension !. This observation gives as a condition for the
optimization of t. As long as the diagonal elements of the matrix corresponding to
the polynomials hi(x), i = 0; 1; :::; t − 1 do not grow larger than bm, then we can
bene�t by increasing the bound X. Observe that X�m < X�m+1 < ::: < X�m+t−1.
This leads us to the following su�cient condition for the dimension of the lattice.

X!−1 < bm:

Since by hypothesis X!−1 < N (�
2

�
−�)(!−1) and b ≥ N� , this condition is satis�ed

for the choice

! ≤ �

�
m:

Thus the best value for ! would be ! = �
�m:

According to 3.3 we can choose m as the maximum of
{
�2

�� ;
7�
�

}
: This gives the

following bound for the lattice dimension !.

! = max

{
�

�
; 7

}
:

66 Finding Small Roots to Polynomial Equations

Remark 3.2.8. Notice that the lattice dimension is polynomial in 1
� . In addition,

the bit-size of the entries in B can be bounded by

(� +m)logN ≤ (� + !)logN

which means that LLL operates on basis B in time polynomial in logN; � and 1
� .

In the rest of the proof we show that LLL �nds a vector which is su�ciently
short and yields a su�ciently large bound X. In order to bound X by applying
Lemma 3.2.6 we use the inequality

‖f(xX)‖ ≤ 2
!−1

4 det(L)
1
! ≤ bm√

!
:

Plugging in the value of the determinant and taking int consideration that b ≥ N�

the above inequality becomes

N
�m(m+1)

2! X
!−1

2 ≤ 2−
!−1

4 !−
1
2N�m ⇒

X ≤ 2−
1
2!−

1
!−1N

2�m
!−1

− �m(m+1)
!(!−1) :

Now notice that for ! ≥ 7,!−
1

!−1 = 2−
log!
!−1 ≥ 2−

1
2 . Therefore the above condition

simpli�es to

X ≤ 1
2
N

2�m
!−1

− �m(m+1)
!(!−1) :

We have chosen X = 1
2N

�2

�
−�. Hence it only remains to show that

�2

�
− � ≤ 2�m

! − 1
− �m(m+ 1)

!(! − 1)
:

But we know that

2�m
! − 1

− �m(m+ 1)
!(! − 1)

≥ ! − 1
!

(
2�m
! − 1

− �m(m+ 1)
!(! − 1)

)
=

2�m
!
−
�m2(1 + 1

m)
!2

= 2
�2

�
− �2

�
(1 +

1
m

) ≥ �2

�
− �

where the in the last equality we have used that ! = �
�m and the last inequality

holds because of the choice of m , m ≥ �2

�� we have made in 3.3. He have proved
the bound. The fact that we can �nd all solutions x0 such that |x0| ≤ X in
time polynomial in (logN; �; 1

�) is an immediate result of remark 3.2.8 and the
polynomial running time of LLL.

Below we give two results that stem immediately from the previous theorem.
We choose to state them here in order to highlight their importance. The second
result is the initial result presented by Coppersmith [10] and is therefore stated as
a theorem.

3.2 Modular Polynomial Equations 67

Corollary 3.2.9. Let N be an integer of unknown factorization, which has a
divisor b ≥ N� . Furthermore, let f(x) be a univariate, monic polynomial of degree
� and cN be a function that is upper-bounded by a polynomial in logN . Then we
can �nd all solutions x0 for the equation f(x) ≡ 0(mod b) with

|x0| ≤ cNN
�2

�

in time polynomial in (logN; �):

Proof. We apply theorem 3.2.7 with parameter choice � = 1
logN .The bound X for

the absolute value of the solutions will then be:

1
2
N

�2

�
− 1

logN =
1
2
N

�2

� N
− 1

logN =
1
2
N

�2

�
1

N
1

logN

=
1
4
N

�2

�

since 1

N
1

logN
= 1

2 . In addition, theorem 3.2.7 says that we can �nd all the solutions

x0 such that |x0| < X in time polynomial in (logN; �; 1
�). For � = 1

logN this means
that we can �nd all the solutions x0 in time polynomial in (logN; �). In order to

�nd all roots that are the size at most cNN
�2

� in absolute value, we divide the

interval [−cNN
�2

� ; cNN
�2

�] into 4cN subintervals of size 1
2N

�2

� centered at some xi.
Then in order to �nd all the roots in the above interval, we just have to apply the
method described in theorem 3.2.7 to the polynomials f(x − xi) and output the
roots in each subinterval.

Theorem 3.2.10 (Coppersmith Theorem for Univariate Modular Equa-

tions)
Let N be an integer of unknown factorization. Furthermore, let f(x) be a uni-
variate, monic polynomial of degree �. Then we can �nd all solutions x0 for the
equation f(x) ≡ 0(modN) with

|x0| ≤ N
1
�

in time polynomial in (logN; �):

Proof. Immediate application of corollary 3.2.9 where cN = 1 and b = N:

Remark 3.2.11. A question that arises naturally is: Can we improve the asymp-
totic bound X = N

1
d ?In [12] Coppersmith tries to give an answer. Let N = q3

where q is a prime and consider p(x) = x3 + Dqx2 + Eq2x with D;E ∈ Z.If x0

is any multiple of q, then clearly p(x0) ≡ 0(modN). Suppose now that we can

achieve a bound X = N
1
3
+�. Then the number of "small" roots is given by the

inequation

|x0| < X ⇒ |kq| < N
1
3N � = qN � ⇒ |k| < N �

which gives exponentially many solutions (2N �). We cannot hope to �nd these solu-
tions using the above lattice techniques since we would need lattices of exponential

68 Finding Small Roots to Polynomial Equations

dimension in order to construct polynomials h that would have exponentially many
solutions (remember that h has at least as many roots over Z as f modulo N and
that the number of integer roots of h is bounded by its degree which is equal
to the dimension of the lattice that produces h). This observation gives cause for
pessimism to our attempt to further improve the bound X using lattice techniques.

3.2.2 Extension to More than One Variables

A very natural question is whether one can extend Coppersmith's technique to
the case of multivariate modular polynomial equations. More formally let f(~x) =
f(x1; x2; :::; xk) ∈ Z[x1; :::; xk] be a multivariate polynomial in k variables with
integer coe�cients. We are interested in �nding solutions ~y = (y1; :::; yk) to the
following modular equation

f(~x) = f(x1; x2; :::; xk) =
∑

i1;:::;ik

ai1;:::;akx
i1
1 :::x

ik
k ≡ 0 (modN): (3.4)

In principle there is no problem in applying Coppersmith's technique from the
previous section. That is, we can construct from f(x1; x2; :::; xk) a polynomial
h(x1; x2; :::; xk) with the same "small" roots over the integers and not just modulo
N . The following lemma due to Howgrave-Graham,is a direct generalization of
lemma 3.2.2 to the multivariate case and states explicitly the conditions for the
upper bounds X1; X2; :::; Xk under which we can achieve the transformation of the
modular equation to an equation over the integers.

Lemma 3.2.12 (Howgrave-Graham for Multivariate Integer Polynomi-

als). Let f(x1; :::; xk) ∈ Z[x1; :::; xk] be a polynomial in k variables with at most !
monomials and let m be a positive integer. Suppose in addition that:

1. f(x1; :::; xk) ≡ 0(modNm) where |xi| < Xi; i = 1; :::; k

2. ‖f(x1X1; :::; xkXk)‖ ≤ Nm
√
!
:

Then f(x1; :::; xk) = 0 holds over the integers.

Proof. The proof is completely analogous to the proof of lemma 3.2.2 and is
therefore omitted.

Again here the goal is to �nd the maximum bounds X1; X2; :::; Xk so that all
solutions ~x = (x1; :::; xk) such that f(x1; :::; xk) ≡ 0(modNm) with |xi| < Xi can
be e�ciently found.

Everything seems to work in a completely similar way to the univariate case.
The di�erence here lies to the fact that even if we manage to construct a polynomial
h(x1; :::; xk) with a small root over the integers, we still have to extract the integer
roots of h(x1; :::; xk).In contrast to the univariate case, there cannot be a polynomial

3.2 Modular Polynomial Equations 69

algorithm that solves the above problem for the general multivariate case. To see
that, consider the following example

f(x; y) = x+ ay; a ∈ Z:

This polynomial has in�nitely many integer solutions and thus we cannot recover
them in polynomial time. In contrast, if f is univariate, the fundamental theorem
of algebra says that the number of its integer solutions is bounded by its degree.

The key idea in order to overpass this problem is the following:
Take the �rst k coe�cient vectors returned by LLL Algorithm that correspond to
k polynomials instead of considering only the �rst vector. Then we can solve the
system of k polynomials and compute their common roots.

Unfortunately,as we will later explain , this approach does not always lead to
the recovery of the common roots.

Below,we describe in brief the method for the multivariate case and state the
conditions under which we can recover the small roots for the equation f(x1; :::; xk) ≡
0(modNm).Our presentation follows the presentation in [22].

Constructing the Lattice and Obtaining the Conditions

Let m and d be positive integers. We de�ne the polynomials:

fr1;:::;rk;j(~x) = fr1;:::;rk;j(x1; :::; xk) ∈ Z[x1; :::; xk]

by
fr1;:::;rk;j(~x) = Nm−jxr11 · · ·x

rk
k (f(~x))j (3.5)

where 0 ≤ j ≤ m and ri ≥ 0 for i = 1; :::; k are integers.Notice that by con-
struction,if ~y is a solution of f(~x) ≡ 0(modN) then ~y is a root of fr1;:::;rk;j(~x)
modulo Nm for all valid j and ri. Moreover, for any �xed j, the polynomials of
the form 3.5 with di�erent (r1; :::; rk) values are linearly independent. So we can
construct a lattice L of dimension ! and basis matrix B whose row vectors will be
the coe�cient vectors of the above polynomials. Thus each row of L will be of the
form

fr1;:::;rk;j(x1X1; :::; xkXk):

If we choose the values (r1; :::; rk; j) in a "convenient" way then we can construct a
low triangular basis matrix B which greatly simpli�es the computation of the lattice
determinant. Which choice is convenient depends on the particular structure of the
polynomial f(x1; :::; xk).

After constructing the lattice L, we run the LLL Algorithm with input the
basis B and consider k linearly independent vectors in L returned by LLL. These
vectors correspond to k linearly independent polynomials pi(~x) and by theorem
3.1.1 they satisfy

‖pi(x1X1; :::; xkXk)‖ ≤ c(i; !)det(L)
1

!−i+1 ; for i = 1; :::; k

70 Finding Small Roots to Polynomial Equations

where c(i; !) is a function that depends only on i and !. We now need a condition
in order to detemine the bounds Xi; i = 1; 2; :::; k. A su�cient condition in order
to be able to apply lemma 3.2.12 on each of the above polynomials is the following

‖pk(x1X1; :::; xkXk)‖ ≤ c(k; !)det(L)
1

!−k+1 ≤ Nm

√
!
: (3.6)

Notice here that the fact that ‖pi(x1X1; :::; xkXk)‖ ≤ c(i; !)det(L)
1

!−i+1 along with

the fact that the terms c(i; !) are negligible compared to the term N
1

!−i+1 implies

that ‖pi(x1X1; :::; xkXk)‖ ≤ c(k; !)det(L)
1

!−k+1 is true whenever ‖pk(x1X1; :::; xkXk)‖ ≤
c(k; !)det(L)

1
!−k+1 and hence condition 3.6 is indeed su�cient. The bounds Xi

can be calculated more easily if we ignore the terms
√
! and c(k; !) (which are

negligible compared to det(L)
1

!−k+1 and Nm) in condition 3.6.

Recovering the Roots

After determining the bounds Xi via condition 3.6, we end up with k polyno-
mials pi; i = 1; :::; k some of the roots of which are equal to the "small" (by small
we mean the roots such that |xi| < Xi for the bounds Xi derived from 3.6) roots
of f(x1; :::; xk) ≡ 0(modNm).

In order to recover the tuples (x1; x2; :::; xk) which correspond to small solutions
(|xi| < Xi) of the initial multivariate modular equation, we have to solve the system
of k non-linear equations in k variables.So far this method seems to work according
to the univariate case. The major (theoretical) drawback of this approach is that
there is no known method to solve the above non-linear system.

We noted before that the polynomials that correspond to the coe�cient vectors
returned by LLL are linearly independent. Unfortunately this condition is not
su�cient to guarantee that we can recover the common roots (x1; :::; xk) of the
system of k equations, since the equations are non linear. Here, apart from linear
indpendence, we need algebraic independence. This means that there should be no
pair of polynomials (pi; pj) such that pi(x1; :::; xk) = s(x1; :::; xk)pj(x1; :::; xk) for
an integer polynomial s(x1; :::; xk): In cases where the polynomials are algebraically
independent we can recover the common solutions (x1; x2; :::; xk) using resultant
computations. Below we describe the procedure in brief.

Let p1; :::; pk be k polynomials in the variables x1; :::; xk. We �rst compute the
k − 1 resultants

g1 = resx1(p1; p2); g2 = resx1(p2; p3); : : : ; gk−1 = resx1(pk−1; pk)

which are (k − 1)-variate polynomials in the variables x2; :::; xk. The elimination
of variable x1 leads to a system of k − 1 non-linear equations in k − 1 variables.
If none of the resultants g1; g2; :::; gk−1 is the zero polynomial, we can keep on by
eliminating x2:

h1 = resx2(g1; g2); h2 = resx2(g2; g3); :::; hk−2 = resx2(gk−2; gk−1):

3.3 Integer Polynomial Equations 71

We can proceed in this way as long as all the resultants in each step are nonzero
polynomials. At the last step we will have eliminated all but the last variable xk.
This means that the last resultant is a univariate polynomial in xk and can be
therefore be solved using standard root �nding algorithms.

We summarize Coppersmith's method for multivariate modular polynomial
equations:

• We �rst construct k di�erent k-variate polynomials p1; p2; :::; pk with some
common small roots.This construction as described above, is analogous to
the univariate case.

• We then try to extract the common roots using resultant computations.

• If a resultant produced during the above step equals the zero polynomial,
then the procedure fails.Otherwise we �nd the roots xk of the last resultant
and by backsolving for all possible roots obtained so far, we �nally get all
possible k-tuples (x1; :::; xk) that are the roots of the initial system of k non-
linear equations. We then have to check each of these tuples and accept only
those that satsify f(x1; :::; xk) ≡ 0(modNm):

Remark 3.2.13. The negative aspects of Cppersmith's method for solving multi-
variate modular equations should by no means be overemphasized. Although the
above method is heuristic rather than provable, it has found a large number of appli-
cations in Crytpography.The experiments carried out so far by various researchers
show that the resultant computations are in many situations a very useful method
in order to extract roots of multivariate polynomials over the integers. We will
demonstrate the use of the above method in a concrete cryptanalytic application
later in the thesis.

Remark 3.2.14. This method will be frequently refered to as the resultant heuris-
tic.The fact that the resultant heuristic is very useful in practice enables us to fre-
quently make the assumption that the heuristic always works and therefore state
the consequent results as theorems. However this assumption, when made, will be
explicitly stated as such throughout this thesis.

In light of this remark, it would be very interesting if we could �nd explicit
conditions under which Coppersmith's method for the multivariate case succeeds
to �nd small roots. Till now, no such conditions are known and therefore the
problem of �nding a provable method that leads to explicit conditions remains
open.

3.3 Integer Polynomial Equations

In the previous section we presented a method for �nding small roots to modu-
lar equations.More speci�cally,we were given a polynomial f(~x) = f(x1; x2; :::; xk)

72 Finding Small Roots to Polynomial Equations

where k ∈ Z such that k ≥ 1 and a modulus N and we were interested in �nding
small root-vectors ~x0 ∈ Zk such that f(~x0) ≡ 0(modN).

In this section we are interested in small roots over the integers and not modulo
N . We are given a polynomial f(~x) = f(x1; :::; xk) with integer coe�cients and we
are searching for small root-vectors, that is vectors ~x0 ∈ Zk such that f(~x0) = 0
.Using a standard root �nding algorithm, we can �nd all integers roots (and not
only the small ones) in the univariate case. However no such algorithm is known
for the case where k ≥ 2. Instead, we can �nd small integer roots of multivariate
polynomials using lattice reduction techniques similar to the ones presented in the
previous section. Here we present in detail a method for �nding small roots to
bivariate integer equations. The bivariate case is of great importance since many
problems in cryptography can be reduced to the problem of �nding a small solution
to a bivariate integer equation.At the end of this subsection we sketch in brief the
extension of the bivariate method to the k-variate case where k ≥ 3.

3.3.1 Bivariate Case

In 1996, Coppersmith [9, 11] proposed a method for �nding small roots to bi-
variate integer polynomials. This method was based on lattice reduction techniques
too, but his approach (as in the univariate case) was di�cult to understand. In
2004, Coron [14] presented a simpler approach to Coppersmith's method. This
simpli�cation is analogous to the simpli�cation brought by Howgrave-Graham to
Coppersmith's method for �nding small roots to univariate modular equations.Here
we will state both Coppersmith's and Coron's result (which is slightly weaker) and
present the proof according to Coron's approach.

Let us �rst introduce the problem a little more formally. Consider the following
polynomial in two variables with integer coe�cients:

p(x; y) =
∑
i;j

pi;j · xiyj :

We are interested in �nding all the integer pairs (x0; y0) such that p(x0; y0) = 0. In
general there is no e�cient algorithm that �nds such pairs. However, Coppersmith
[9] show that one can e�ciently �nd small root pairs of the equation p(x; y) = 0.
More speci�cally Coppersmith proves the following theorem.

Theorem 3.3.1 (Coppersmith's Theorem for Bivariate Integer Equations)
Let p(x; y) be an irreducible 1 polynomial in two variables over Z, of maximum
degree � in each variable separately. Let X,Y be upper bounds on the desired integer

1In general, a polynomial is said to be irreducible if it cannot be factorized into the
product of two polynomials of lesser degree.
For bivariate polynomials, a bivariate polynomial f(x; y) with integer coe�cients is

irreducible if there are no integer (bivariate) polynomials f1(x; y); f2(x; y) with f1(x; y) 6= 1
and f2(x; y) 6= 1 such that f(x; y) := f1(x; y) · f2(x; y):

3.3 Integer Polynomial Equations 73

solution (x0; y0).Let W be the absolute value of the largest entry in the coe�cient

vector of p(xX,yY),that is W = maxi;j |pi;j |XiY j. If XY ≤ W
2
3� , then in time

polynomial in logW and 2� we can �nd all integer pairs (x0; y0) such that p(x0; y0) =
0; |x0| ≤ X and |y0| ≤ Y .

Coppersmith's proof for the above case is quite di�cult to understand. What
makes his analysis harder, is the fact that the lattices used throughout the analysis
are not full rank , fact that greatly complicates the calculation of the determinant
and the derivation of the upper bounds on the roots.

As we mentioned, Coron [14] presented a simpler approach for �nding small
roots to bivariate integer polynomials. Coron uses full rank lattices that admit a
triangular basis. His approach enjoys two major advantages:

• The conditions that yield the bounds X;Y on the solutions can be easily
derived independently of the speci�c shape of the polynomial p and

• It is straightforward to heuristically extend this approach to more than two
variables.

However, Coron's approach brings slightly weaker results than Coppersmith's, since
polynomial time execution is guaranteed only for the case XY ≤W

2
3�
−� for a �xed

� > 0 which is apparently a weaker condition. We �rst illustrate Coron's method
with an example (also found in [14]).

Method illustration

Consider the polynomial

p(x; y) = a+ bx+ cy + dxy; a; d 6= 0:

Assume that p(x; y) is irreducible and has a small root (x0; y0) which we want
to recover.We are interested in pairs (x0; y0) such that |x0| < X and |y0| <
Y for some bounds X;Y that we will soon determine. W is de�ned as W =
max{|a|; |b|X; |c|Y; |d|XY }. Finally, as usual,for the polynomial h(x; y) =

∑
i;j hijx

iyj ,we
de�ne

‖h(x; y)‖2 :=
∑
i;j

|hij |2 and ‖h(x; y)‖∞ := max
i;j
|hij |:

This implies that an equivalent de�nition for W is

W = ‖p(xX; yY)‖∞: (3.7)

We now �x a number n such that:

W ≤ n < 2 ·W and gcd(n; a) = 1: (3.8)

74 Finding Small Roots to Polynomial Equations

Consider also the polynomials:

q00(x; y) = a−1p(x; y)modn = 1 + b′x+ c′y + d′xy
q10(x; y) = nx; q01(x; y) = ny and q11(x; y) = nxy:

It is important to notice that qij(x0; y0) = 0 (modn) for each of the above qij .This
means that each linear integer combination of the above polynomials yields a poly-
nomial h that is a root container of p modulo n: Consider the lattice L generated by
all linear integer combination of the coe�cient vectors of the above polynomials. A
basis B for the lattice is obviously the following (here again the coe�cient vectors
form the rows of B).

B =

1 b′X c′Y d′XY

nX
nY

nXY

 :

We would like to �nd a short linear combination of the above polynomials in order
to be able to apply lemma 3.2.12 for the special case where k = 2.Applying LLL
Algorithm with input basis B, theorem 3.1.1 guarantees an ouput B′ such that
‖b1‖ ≤ 2

3
4 det(B)

1
4 . Here, it is trivial to see that det(B) = n3X2Y 2. Thus LLL

returns a polynomial h such that

‖h(xX; yY)‖ ≤ 2
3
4n

3
4 (XY)

1
2 < 2n

3
4 (XY)

1
2 and h(x0; y0) = 0 (modn): (3.9)

Suppose now that XY < n
1
2

16 . This along with the above inequality means that

‖h(xX; yY)‖ < n

2
< W = ‖p(xX; yY)‖∞ ≤ ‖p(xX; yY)‖: (3.10)

Notice �rst that by the construction of the lattice L, h is of the same shape
as p which means that all its monomials have one of the forms c; cx; cy or cxy
where c is an integer coe�cient (not the same for each monomial).In addition p
was assumed irreducible.This means that h is a multiple of p only if there exist an
integer t such that h(x; y) = tp(x; y). But inequality 3.10 overrules this possibility
too since it would imply that ‖h(xX; yY)‖ = |t|‖p(xX; yY)‖ ≥ ‖p(xX; yY)‖ which
yields a contradiction.Finally notice that the conditions ‖h(xX; yY)‖ < n

2 and
h(x0; y0) = 0 (modn) imply that h(x0; y0) = 0 over the integers.

Let us now summarize the above observations. We have ended up with two
polynomials h; p that are provably algebraically independent and that have the
same small integer roots. We can therefore compute the nonzero resultant

Q(x) = resy(h(x; y); p(x; y))

and recover a root x0 such that Q(x0) = 0 using any standard root �nding algo-

rithm. A root y0 can then be recovered by solving p(x0; y) = 0. If XY < W
1
2

16 then

XY < n
1
2

16 since W ≤ n. Thus we have showed that if XY < W
1
2

16 then one can �nd

3.3 Integer Polynomial Equations 75

in polynomial time in logW all integer pairs (x0; y0) such that p(x0; y0) = 0; |x0| ≤
X and |y0| ≤ Y .

Of course , the bound is weaker than the bound given in theorem 3.3.1 and
it has been proved only for a speci�c shape for p. Coron [14] has improved the
bound to the desired value by adding more multiples of p(x; y) and increasing the
dimension of the lattice.

Proving the Main Theorem

For his proof Coron �rst proves some useful lemmas.

Lemma 3.3.2. Let a(x; y); b(x; y) be two nonzero polynomials over Z of maximum
degree d separately in x and y, such that b(x; y) is a multiple of a(x; y) in Z[x; y].
Then

‖b‖ ≥ 2−(d+1)2 · ‖a‖∞

Proof. Mignotte [31] proved that if f(x) and g(x) are two nonzero polynomials
over the integers such that deg f ≤ k and f divides g in Z[x] then

‖g‖ ≥ 2−k · ‖f‖∞:

Let f(x) = a(x; xd+1). Then it is not di�cult to see that deg f ≤ (d+1)2 and that
f(x); a(x; y) have the same set of nonzero coe�cient which implies that ‖f‖∞ =
‖a‖∞.Similarly if we de�ne g(x) = b(x; xd+1),then ‖g‖ = ‖b‖. In addition by
construction of f(x); g(x) and by hypothesis, we get that f(x) divides g(x) in
Z[x]:If we now apply Mignotte's result the we prove the desired inequality.

Lemma 3.3.3. Let a(x; y) and b(x; y) satisfy the same conditions as in lemma
3.3.2. Assume in addition that a(0; 0) 6= 0 and b(x; y) is divisible by a nonzero
integer r such that gcd(r; a(0; 0)) = 1. Then b(x; y)is divisible by r · a(x; y) and

‖b‖ ≥ 2−(d+1)2 · |r| · ‖a‖∞:

Proof. Since b(x; y) is a multiple of a(x; y), there exists a polynomial q(x; y) such
that b(x; y) = q(x; y)a(x; y).We will show that r divides q(x; y). Suppose on the
contrary that r does not divide q(x; y) and consider the smallest (lexicographically)
pair (i; j) such that the coe�cient qij of the term xiyj is not divisible by r. Then we
have that bij = qij ·a(0; 0)mod r where bij is the coe�cient of xiyj (notice that the
other terms that contribute to the coe�cient bij are of the form qkla(i−k)(j−l) where
the pair (k; l) is assumed smaller than (i; j) in lexicographic order and therefore
r=qkl).Since a(0; 0) is assumed invertible modulo r and r divides by hypothesis
every bij this implies that qij ≡ 0 (mod r) which yields a contradiction.This means
that r divides q(x; y) and thus r · a(x; y) divides b(x; y). Finally the inequality is a
direct application of lemma 3.3.2 and the fact that ‖r · a‖∞ = |r| · ‖a‖∞:

Coron proves the following (slightly weaker) theorem

76 Finding Small Roots to Polynomial Equations

Theorem 3.3.4

Let p(x; y) be an irreducible polynomial in two variables over Z, of maximum degree
� in each variable separately. Let X,Y be upper bounds on the desired integer
solution (x0; y0).Let W = maxi;j |pi;j |XiY j. If for some � > 0

XY ≤W
2
3�
−�; (3.11)

then in time polynomial in (logW; 2�) one can �nd all integer pairs (x0; y0) such
that p(x0; y0) = 0; |x0| ≤ X and |y0| ≤ Y .

Proof. We consider the case where p00 6= 0 and gcd(p00; XY) = 1. Coron in [14,
Appendix A] provides an approach that obviates the need of these assumptions.

We will again try to convert the integer equation to a bivariate modular equa-
tion and then obtain a new bivariate polynomial h that is algebraically independent
to p and has the same small roots over the integers. Using resultant computations,
we will then recover the common roots.For this,select an integer k ≥ 0 and let
! = (� + k + 1)2, ! will be the dimension of the lattice constructed. Generate an
integer u such that

√
! ·2−! ·W ≤ u < 2W and gcd(p00; u) = 1. Let n = u ·(XY)k.

This implies that gcd(p00; n) = 1 and

√
! · 2−! · (XY)k ·W ≤ n < 2 · (XY)k ·W: (3.12)

We de�ne the polynomials q(x; y) as follows:

q(x; y) = p−1
00 · p(x; y) modn = 1 +

∑
(i;j) 6=(0;0)

aijx
iyj :

De�ne now the polynomials

qij(x; y) =

{
xiyjXk−iY k−jq(x; y) if 0 ≤ i; j ≤ k

xiyjn if (i; j) ∈ [0; � + k]2\[0; k]2

Notice that for all (i; j) ∈ [0; � + k]2 we have that qij(x0; y0) = 0modn and
(XY)k=qij(xX; yY). This means that if h(x; y) is a linear integer combination
of the polynomials qij(x; y) then h(x0; y0) = 0modn and (XY)k=h(xX; yY). In
addition , by construction, h(x; y) has maximum degree � + k independently in x
and y and thus it is the sum of at most ! monomials. We will now search for a
polynomial h(x; y) such that the coe�cients of h(xX; yY) are small enough.This
would enable us to convert the modular equation h(x; y) = 0modn to an equation
over the integers by applying lemma 3.2.12. The condition we need in order to
apply the above lemma is

‖h(xX; yY)‖ < n√
!
: (3.13)

In addition small coe�cients of ‖h(xX; yY)‖ would possibly mean that h(xX; yY)
is not a multiple of p(xX; yY) which in turn implies that h(x; y) is not a multiple

3.3 Integer Polynomial Equations 77

of p(x; y) and thus their resultant is nonzero. Let us now derive the condition
for the latter case. Suppose that h(xX; yY) is a multiple of p(xX; yY) and de�ne
r = (XY)k. Since (XY)k=h(xX; yY), gcd((XY)k; p00) = 1 and p00 6= 0 we can
apply lemma 3.3.3 where a(x; y) = p(xX; yY) and b(x; y) = h(xX; yY) and get

‖h(xX; yY)‖ ≥ 2−(�+k+1)2 · (XY)k ·W

where, as usually, W = ‖p(xX; yY)‖∞. Thus the inversion of the above inequality
is su�cient to ensure that h(xX; yY) is not a multiple of p(xX; yY). Notice that
(� + k + 1)2 = ! which �nally gives the second condition

‖h(xX; yY)‖ < 2−! · (XY)k ·W (3.14)

We are searching for a polynomial h(x; y) that satis�es both conditions. This
requirement is reduced to the satsifaction of inequality 3.14 since this inequality
ensures the satisfaction of the inequality 3.13 too (this is obvious by inequality
3.12).

In order to �nd the polynomial h(x; y) we form the lattice L spanned by the
polynomials qij(xX; yY). Since qij(x; y) have maximum degree � + k separately
in x; y; the polynomials obtained as linear combinations of qij(xX; yY) have at
most (� + k + 1)2 = ! coe�cients.Moreover there are (� + k + 1)2 = ! in total
polynomials qij(x; y). This gives a full rank lattice of dimension !. If we arrange
these polynomials "conveniently", we can form a triangular basis matrix B of
L.Below we give such a formation for the parameter values � = k = 1 .

1 x y xy x2 x2y y2 xy2 x2y2

XY q XY a10X
2Y a01XY 2 a11X

2Y 2

xY q XY a01XY 2 a10X
2Y a11X

2Y 2

Xyq XY a10X
2Y a01XY 2 a11X

2Y 2

xyq XY a10X
2Y a01XY 2 a11X

2Y 2

x2n X2n

x2yn X2Y n

y2n Y 2n

xy2n XY 2n

x2y2n X2Y 2n

A simple but tedious calculation shows that

det(L) = (XY)
(�+k)(�+k+1)2+k(k+1)2

2 n�(�+2k+2): (3.15)

Using LLL and theorem 3.1.1 we can �nd in time polynomial in (logW;!) a
nonzero polynomial h(x; y) such that

‖h(xX; yY)‖ ≤ 2
!−1

4 · det(L)
1
! : (3.16)

In order for a polynomial h(x; y) to satisfy conditions 3.13 and 3.14 a su�cient
condition is

2
!−1

4 · det(L)
1
! < 2−! · (XY)k ·W (3.17)

Plugging in the speci�c value of each term, we �nd that inequality 3.17 is satis�ed
when:

XY < 2−�W� (3.18)

78 Finding Small Roots to Polynomial Equations

where

� =
2(k + 1)2

(� + k)(� + k + 1)2 − k(k + 1)2
(3.19)

� =
10
4
· (� + k + 1)4 + (� + k + 1)2

(� + k)(� + k + 1)2 − k(k + 1)2
: (3.20)

For � ≥ 1 and k ≥ 0 we have that

� ≥ 2
3�
− 2

3 · (k + 1)
and � ≤ 4k2

�
+ 13 · �:

If we take k = b1=�c, the above inequalities along with 3.18 give the following
condition for XY

XY < W
2
3�
−� · 2−

4
�·�2

−13�: (3.21)

We have therefore managed to construct a polynomial h(x; y) which possesses the
two following properties:

(a) h(x0; y0) = 0 over the integers for all the pairs (x0; y0) such that |x0| <
X; |y0| < Y where XY < W

2
3�
−� · 2−

4
�·�2

−13� and

(b) it is not a multiple of the irreducible polynomial p(x; y):

This means that the resultant

Q(x) = resy(h(x; y); p(x; y))

is a nonzero polynomial such that Q(x0) = 0. We can therefore recover a root
x0 using any standard root �nding algorithm. A root y0 can then be recovered
by solving p(x0; y) = 0. It is important to note here that the above algorithm
for �nding small roots to bivariate integer polynomials runs in time polynomial in
(logW; �; 1

�).
If we exhaustively search the high order 4

�·�2 +13� bits of x0 and apply the above
algorithm for each possible value, then we take the bounds given by 3.11.For a
�xed � the running time of the algorithm is polynomial in (logW; 2�).

As the theorem states, the condition 3.11 is su�cient for the case where p(x; y)
has maximum degree � separately in x and y. Coron [14] also gives a theorem for
the case where p(x; y) has a total degree � in x and y.

Theorem 3.3.5

Let p(x; y) be an irreducible polynomial in two variables over Z, of total degree �
in both variables x and y. Let X,Y be upper bounds on the desired integer solution
(x0; y0).Let W = maxi;j |pi;j |XiY j. If for some � > 0

XY ≤W
1
�
−�; (3.22)

then in time polynomial in (logW; 2�) one can �nd all integer pairs (x0; y0) such
that p(x0; y0) = 0; |x0| ≤ X and |y0| ≤ Y .

3.3 Integer Polynomial Equations 79

Proof. The proof is analogous to the proof of theorem 3.3.4. More details can be
found in [14, Appendix B].

3.3.2 Multivariate Case

The above method can be extended to integer polynomial equations with more
than two variables much like the univariate modular equation method was extended
to handle modular equations with more than one variables. Of course, the extension
is heuristic only. In this subsection we will briey outline the method.

Let p(x1; :::; xl) ∈ Z[x1; :::; xl] be a polynomial in l variables with degree � in
each variable. Our goal is to �nd all the integer solutions ~y of p(x1; :::; xl) = 0 such
that |yi| < Xi for i = 1; :::; l:As in the bivariate case, we construct an integer n
such that (X1X2 · · ·Xl)k=n for some integer k ≥ 0 and a polynomial q(x1; :::; xl)
such that q(y1; :::; yl) = 0 mod n and q(0; :::; 0) = 1. We then consider the lattice
L generated by all linear integer combinations of the polynomials

xr11 · · ·x
rl
l X

k−r1
1 · · ·Xk−rl

l q(x1X1; :::; xlXl) for 0 ≤ r1; :::; rl ≤ k

and the polynomials

(x1X1)r1 · · · (xlXl)rl · n for (r1; :::; rl) ∈ [0; � + k]l\[0; k]l:

If the rangesX1; :::; Xl are small enough, then by using LLL, we can �nd polynomial
h1(x1; :::; xl) such that h1(y1; :::; yl) = 0 over Z and h1(x1; :::; xl) is not a multiple of
p(x1; :::; xl). However, this is not enough for the case where l ≥ 3 as the 2 polyno-
mials h1; p are not enough to recover the pairs (y1; :::; yl). We need at least l polyno-
mials.Hence, apart from h1(x1; :::; xl) we also need to consider all the polynomials
that correspond to the smallest l − 1 elements returned by LLL.For small enough
bounds X1; :::; Xl we can obtain l − 1 polynomials h1(x1; :::; xl); :::; hl−1(x1; :::; xl)
which satisfy the following conditions:

1. hi(y1; :::; yl) = 0 for i = 1; 2; :::; l−1.The conditions for the bounds X1; :::; Xl

are obtained by applying lemma 3.2.12 to all polynomials hi(x1X1; :::; xlXl).
But the norms of these polynomials can be bounded by theorem 3.1.1 (in-
equality 3.1). The combination of these two theorems gives su�cient con-
ditions for the bounds X1; :::; Xl.

2. hi(x1; :::; xl) is not a multiple of p(x1; :::; xl) where i = 1; 2; :::; l − 1.The
ranges X1; :::; Xl that satisfy this condition are dictated by a generalization
of lemma 3.3.3.

After �nding the polynomials h1(x1; :::; xl); :::; hl−1(x1; :::; xl) we use resultant com-
putations between the l polynomials p(x1; :::; xl); h1(x1; :::; xl); :::; hl−1(x1; :::; xl) in
order to obtain a polynomial f(x) such that f(y1) = 0. The l-tuples (y1; :::; yl) are
then recovered by backsolving. The major drawbach of this method is that the
algebraic independence of each pair hi(x1; :::; xl); p(x1; :::; xl) for i = 1; :::; l − 1

80 Finding Small Roots to Polynomial Equations

does not mean that hi(x1; :::; xl); hj(x1; :::; xl) are algebraically independent too
and thus the method does not guarantee that all the resultant computations will
lead to nonzero polynomials. This makes the method heuristic only.

Chapter 4

A Positive Lattice Application to

RSA

In 1976,Whit�eld Di�e and Martin Hellman [17] introduced the idea of Public-
Key Cryprography. In their paper, Di�e and Hellman proposed the use of
di�erent keys for encryption and decryption and introduced the notion of trapdoor
one-way functions. A trapdoor one-way function is a function that can be computed
e�ciently but for which there is no e�cient algorithm that inverts the function
without the knowledge of a certain trapdoor. Di�e and Hellman only presented
the properties such a function should possess and did not provide any speci�c
example of such a function.

One year later, in 1977, Ronald Rivest ,Adi Shamir and Leonard Adleman in
their famous paper "A method for Obtaining Digital Signatures and Public-Key
Cryptosystems" [34] presented the well-known RSA Cryptosystem which consists
the �rst implementation of a trapdoor one-way function in Public-Key Cryptogra-
phy.Since then , RSA has become probably the most commonly used Cryptosystem
in applications where providing privacy and ensuring authenticity of digital data
are crucial. Some typical RSA applications include ensuring secure remote login
sessions, privacy and authenticity of email and electronic credit-card payment sys-
tems robustness.

The rest of the thesis is exclusively devoted to the RSA Cryptosystem. In
particular, we study applications that are related to lattice methods. We will use
the knowledge acquired in previous chapters to illustrate lattice-based approaches
to RSA-related problems. Throughout this and the next chapter, we will frequently
invoke results presented in the previous chapters and especially those which concern
solving modular or integer polynomial equations. It is therefore important for the
reader to fully understand the preceding material before proceeding to this chapter.

We begin this chapter by presenting an introduction to Cryptosystems and
a formal de�nition of RSA (section 4.1). In section 4.2 we describe a recently
discovered positive application of lattices to RSA. More speci�cally, we present a

82 A Positive Lattice Application to RSA

lattice-based method that establishes the deterministic polynomial time equiva-
lence between computing the RSA secret exponent d and factoring RSA modulus
N:

4.1 The RSA Cryptosystem

Before presenting RSA , we �rst give a formal de�nition of the term Cryp-
tosystem as de�ned in [37]. The following de�nition applies both to private-key
(symmetric) and to public-key (assymetric) Cryptosystems.

De�nition 4.1.1 (Cryptosystem)
A cryptosystem is a �ve-tuple (P; C;K; E ;D); where the following conditions are
satis�ed:

1. P is a �nite set of possible plaintexts.

2. C is a �nite set of possible ciphertexts.

3. K, the keyspace, is a �nite set of possible keys.

4. For each K ∈ K, there is an encryption rule eK ∈ E ; and a corresponding
decryption rule dK ∈ D:Each eK : P → C and dK : C → P are functions
such that dK(eK(x)) = x for every plaintext element x ∈ P:

In symmetric Cryptosytems, the key for encryption and decryption is the
same.In contrast,in public-key (assymetric) encryption systems, each entity A (usu-
ally referred to as Alice in bibliography) has a public key e and a corresponding
private key d.In secure cryptosystems, the task of computing d given e is computa-
tionally infeasible. The public key de�nes an encryption transformation Ee, while
the private key de�nes the associated decryption transformation Dd. An entity B
(usually referred to as Bob), wishing to send a message m to A obtains an au-
thentic copy of A's public key e, uses the encryption transformation to produce a
ciphertext c = Ee(m) and transmits c to A. To decrypt c, A applies the decryption
transformation to obtain the original message m = Dd(c).

The main objective of public-key encryption is to provide privacy and con�den-
tiality.The public key e need not be kept secret whereas the private key d is known
only to the legitimate entity. The main advantage of public key Cryptosystems
over symmetric Cryptosystems is that providing authentic public keys is generally
easier than distributing secret keys securely. However, Public-Key cryptosystems
are typically substantially slower than the symmetric ones.That's why public-key
encryption is most commonly used in practice for the transmission of keys subse-
quently used for bulk data encryption by symmetric algorithms.

Below we describe the RSA Cryptosystem, the most widely used public-key
Cryptosystem. In algorithm 5 we present the generation of the parameters (keys)

4.1 The RSA Cryptosystem 83

of RSA Cryptosystem while in algorithms 6 and 7, we present the encryption and
decryption process respectively.

Algorithm 5: RSA-Key Generation

Input: The bitsize of the modulus N:
Output: A public key (N; e) and a private key d:
begin

Step 1.Generate two large random and distinct primes p and q of
about the same bitsize.
Step 2.Compute N = p · q and �(N) = (p− 1) · (q − 1):
Step 3.Select a random integer e; 1 < e < �(N) such that
gcd(e; �(N)) = 1:
Step 4.Use the extended Euclidean algorithm to compute the
unique integer d; 1 < d < �(N); such that e · d ≡ 1 (mod�(N)):
Step 5. A's public key is (N; e); His private key is d.

end

The integers e and d in RSA Key Generation are called the encryption exponent
and the decryption exponent respectively while N is called the modulus.

Remark 4.1.2. In the above algorithm we have restricted the values of e; d to
the interval [1; �(N)]: We just mention that this is the typical values for the keys
e; d produced by the key generation process. However, each entity A can choose
e; d > �(N) and the encryption and decryption processes work as well provided
that e · d ≡ 1 (mod�(N)):

Algorithm 6: RSA Encryption

Input: Public Key (N; e) and plaintext m:
Output: Ciphertext c corresponding to plaintext m:
begin

B (the sender) should do the following:
Step 1.Obtain A's authentic public key (N; e):
Step 2.Represent the message he wants to send as an integer m in
the interval [0; N − 1]:
Step 3. Compute c = me (modN):
Step 4.Send the ciphertext c to A.

end

Remark 4.1.3. This is the initial de�nition of the RSA Cryptosystem. Since the
introduction of RSA, several variants have been presented. This variants di�er
from the original RSA-Scheme in that the values of some parameters are slightly

84 A Positive Lattice Application to RSA

Algorithm 7: RSA Decryption

Input: Private Key d and ciphertext c:
Output: Plaintext m corresponding to ciphertext c:
begin

A (the receiver) should do the following:
Step 1.Use the private key d to recover m = cdmodN:

end

changed or in that there are some additional assumptions regarding these para-
meters.Throughout this chapter we will consider some of these variants. However,
whenever we refer to RSA we will mean the Scheme and notation presented above
unless otherwise stated.

In RSA Cryptosystem, the trapdoor one-way function is the function m→ me

(modN): Indeed, the above function can be easily computed but (as far as we know)
cannot be e�ciently inverted without the knowledge of the trapdoor d. However,
if one knows the decryption exponent d; then one can recover the plaintext m as
follows:
Since e·d ≡ 1 (mod�(N)), there exists an integer k such that ed = 1+k�(N).Consider
the following two cases:

(a) gcd(m; p) = 1. Then by Fermat's little theorem

mp−1 ≡ 1 (mod p):

If we raise both sides of this congruence to the power k(q − 1) and then
multiply both sides by m we get

m1+k(p−1)(q−1) ≡ m (mod p)⇒ med ≡ m (mod p):

(b) gcd(m; p) = p. Then m1+k(p−1)(q−1) ≡ m (mod p) holds trivially as both
sides are equivalent 0 mod p. Thus again med ≡ m (mod p).

Using the same arguments we can prove that

med ≡ m (mod q):

Finally the fact that p; q are distinct primes (which means that gcd(p; q) = 1),
along with the Chinese Remainder Theorem, yield that

med ≡ m (modN):

and hence

cd ≡ (me)d ≡ m (modN):

4.2 Computing d⇔ Factoring 85

4.2 Computing d⇔ Factoring

In this section we present a positive application of lattices to the RSA Cryp-
tosystem. By the term "positive" we mean an appplication that establishes the
security of one RSA parameter. In particular, we present a result due to May [27]
that establishes the deterministic polynomial time equivalence between computing
the RSA secret key and Factoring.

While a successful attack against a cryptosystem is su�cient to prove that the
cryptosystem is not secure, any number of unsuccessful attacks does not su�ce to
prove that the cryptosystem is in fact secure. How can we then establish that a
cryptosystem is secure? In public-Key Cryptography, where the encryption process
is based on an one-way function that is hard to invert, security could be established
if we could prove the polynomial time equivalence between the problem of recov-
ering the plaintext m from the ciphertext c without the knowledge of the trapdoor
and a well-known hard problem P , believed to be computationally intractable.

It is not hard to see that RSA is directly related to the problem of factoring
the modulus N which is considered to be hard. Indeed, once we recover p; q; we
can compute �(N) = (p− 1)(q − 1) and consequently decrypt any ciphertext c by
computing the unique d ∈ [0; �(N)] such that ed ≡ 1 (mod �(N)). Thus, we could
probably establish the security of RSA by proving that recovering the plaintext
m from the ciphertext c = me (modN) and the public key, is polynomially time
equivalent to factoring the modulus N . This is a very important open problem in
Public-Key Cryptography.

Alternatively we can content ourselves with proving that recovering some secret
information about RSA is equivalent to factoring. For example computing the
value �(N) is equivalent to factoring the modulus N , since we can both compute
�(N) = (p − 1)(q − 1) if we know p; q and the factorization of N if we know the
value �(N) by solving the system

N = p · q
�(N) = N − (p+ q) + 1:

In 2004, May [27] proved that computing the RSA secret key d is deterministic
polynomial time equivalent to factoring. This result establishes the satisfaction
of a very fundamental requirement for a Public-Key Cryptosystem, namely the
hardness of recovering the secret key from the public key. Indeed, the above result
implies that an e�cient 1 algorithm that recovers the secret key d from the public
key e can be transformed to an e�cient algorithm that factors N . This renders
the existence of e�cient algorithms that recover d impossible, provided that there
is no e�cient algorithm that factors N .

However, the above result does not provide any security for the public-key
cryptosystem itself since there might be other ways to break the system without

1By the word e�cient we usually mean algorithms that run in time polynomial in their
input size.

86 A Positive Lattice Application to RSA

computing the secret key d.

Previous Results. The problem of the polynomial time equivalence between
computing d and factoring has been well studied in the past. Two of the most
interesting previous results are:

• Existence of probabilistic polynomial time reduction between the above prob-
lems. A proof can be found in [37, pages 197-200] and in several other sources.

• Deterministic Polynomial Time equivalence under the Extended Riemann
Hypothesis (ERH). The equivalence is directly established if we assume the
validity of the ERH and a result based on a paper by Miller [32].

The presentation is separated into two parts. We �rst present May's result
for balanced p; q and then a recent generalization due to Coron and May [15] for
unbalanced p; q.

4.2.1 Balanced primes p; q

In his initial paper [27], May proved the equivalence between computing d and
factoring N under the following two assumptions:

(a) ed ≤ N2 and

(b) p; q are of the same bitsize.

Assume wlog that p < q. Then the second assumption implies that

p < N1=2 < q < 2p < 2N1=2

which gives the following inequalities

p+ q < 3N1=2 and (4.1)

�(N) = N + 1− (p+ q) >
N

2
: (4.2)

The last inequality is directly derived from p+ q < 3N1=2 ≤ N
2 (for N ≥ 36).

In order to illustrate the underlying idea,we �rst give May's proof for a slightly
weaker theorem, where we assume that ed ≤ N

3
2 :

Theorem 4.2.1

Let N = pq be the RSA-modulus, where p and q are of the same bitsize. Suppose
we know integers e; d such that ed > 1 and

ed ≡ 1(mod�(N)); ed ≤ N
3
2 :

Then N can be factored in time polynomial in its bitsize.

4.2 Computing d⇔ Factoring 87

Proof. In the proof we use the following notation:

• dke:ceiling of k.

• Z∗�(N): Ring of the invertible integers mod �(N).

In addition the relation ed ≡ 1 (mod �(N)) gives that

ed = k�(N) + 1 for some k ∈ N:

We will now show how to compute k e�ciently. We know that k = ed−1
�(N) . We de�ne

k̄ = ed−1
N which is obviously an underestimation for k, that is k ≥ dk̄e. In addition

we have that

k − k̄ =
ed− 1
�(N)

− ed− 1
N

=
N(ed− 1)− (N − p− q + 1)(ed− 1)

�(N)N

=
(ed− 1)(p+ q − 1)

�(N)N
:

By inequalities 4.1 and 4.2 we get that p+ q−1 < 3N1=2 and 1
�(N)N ≤

2
N2 .Hence,

k − k̄ =
(ed− 1)(p+ q − 1)

�(N)N
< 6N−3=2(ed− 1): (4.3)

Since by hypothesis ed ≤ N
3
2 we get that k − k̄ < 6⇒ k − dk̄e < 6.

This means that we only have to try dk̄e+ i for i = 0; :::; 5 to �nd the right k. For
the right value of k, p; q can be recovered by the solution of the system

N = p · q
N + 1− ed−1

k = p+ q:

Obviously, in order to determine the correct value of k, we only need elementary
arithmetic operations on integers of size logN: The running time of the algorithm
is apparently O(log2 N) which concludes the proof.

In order to extend the above result to the case where ed ≤ N2, May uses Cop-
persmith's result for �nding small solutions to bivariate integer equations presented
in the previous chapter. Here we restate the theorem for convenience.

Theorem 4.2.2 (Coppersmith's Theorem for Bivariate Integer Equations)
Let f(x; y) be an irreducible polynomial in two variables over Z, of maximum degree
� in each variable separately. Let X,Y be upper bounds on the desired integer
solution (x0; y0).Let W be the absolute value of the largest entry in the coe�cient
vector of f(xX; yY),that is W = maxi;j |fi;j |XiY j. If

XY ≤W
2
3�

then in time polynomial in logW and 2� we can �nd all integer pairs (x0; y0) such
that f(x0; y0) = 0; |x0| ≤ X and |y0| ≤ Y .

88 A Positive Lattice Application to RSA

May's main result is given by the following theorem

Theorem 4.2.3

Let N = pq be the RSA-modulus, where p and q are of the same bitsize. Suppose
we know integers e; d with ed > 1 and

ed ≡ 1(mod�(N)); ed ≤ N2:

Then N can be factored in time polynomial in its bitsize.

Proof. We again begin with the equation

ed = k · �(N) + 1 for some k ∈ N: (4.4)

We de�ne again k̄ = ed−1
N which underestimates k. Using inequality 4.3 from

the proof of the previous theorem we obtain

k − k̄ < 6N− 3
2 (ed− 1) < 6N

1
2 :

Apparently,the previous method cannot work since we would have to search for
an exponentially to the bitsize of N number of possible values for k: May uses an
alternative approach.

Let us denote x = k−dk̄e: Then dk̄e is an approximation of the right value for
k up to the additive error x: In addition inequality 4.1 gives

N − �(N) = p+ q − 1 < 3N1=2:

This means that �(N) lies in the interval [N − 3N
1
2 ; N]. We divide the above

interval into 6 subintervals of length 1
2N

1
2 with centers N− 2i−1

4 N1=2 for i = 1; :::; 6:
For the correct i we have

|N − 2i− 1
4

N
1
2 − �(N)| ≤ 1

4
N

1
2 :

Let g = d2i−1
4 N

1
2 e for the right i. Then

|N − g − �(N)| < 1
4
N1=2 + 1⇒ �(N) = N − g − y

for some unknown y with |y| < 1
4N

1
2 +1: If we replace k and �(N) in equation 4.4

we get

ed− 1− (dk̄e+ x)(N − g − y) = 0: (4.5)

We de�ne now the bivariate integer polynomial :

f(x; y) = xy − (N − g)x+ dk̄ey − dk̄e(N − g) + ed− 1:

4.2 Computing d⇔ Factoring 89

Notice that f is exactly the reordering of the left side of equation 4.5.By construc-
tion, we know that (x0; y0) = (k − dk̄e; p + q − 1 − g) is a root of f(x; y) over the
integers.

We will use theorem 4.2.2 to show that the root (x0; y0) can be recovered in

polynomial time. LetX = 6N
1
2 and Y = 1

4N
1
2 +1: Then |x0| ≤ X and |y0| ≤ Y: Let

W denote the l∞ norm of the coe�cient vector of f(xX; yY): Then by inspection
of the polynomial f we know that

W ≥ (N − g)X = (N − d2i− 1
4

N
1
2 e) · 6N

1
2

= 6N
3
2 − 6N

1
2 · d2i− 1

4
N

1
2 e > 3N

3
2

for su�ciently large N: Thus

XY = 6N
1
2 (

1
4
N

1
2 + 1) =

3
2
N + 6N

1
2 <

< 2N < 3
2
3N = (3N

3
2)

2
3 < W

2
3 = W

2
3� :

All the inequalities are true for large N .

By Coppersmith's theorem we can �nd the root (x0; y0) in time polynomial
in the bitsize of W and �nally recover the factorization of N by the root y0 =
p+ q − 1− g.

In order to bound the running time of the above algorithm with respect to N ,
notice that a simple inspection of the polynomial f(x; y) gives that W ≤ NX =
6N3=2: Since Coppersmith's approach gives results in time polynomial in logW and
W is polynomially bounded by N , the running time of the algorithm is polynomial
in logN too. This completes the proof.

Remark 4.2.4. Both previous results can be easily generalized for the case where
p+ q ≤ poly(logN)N

1
2 : Indeed

(a) For the case where ed ≤ N
3
2 we only have to examine the values dk̄e+ i, for

i = 0; 1; :::; d2poly(logN)e − 1 (polynomially bounded by the bitsize of N:)

(b) For the case where ed ≤ N2 we just have to divide the interval [N −
poly(logN)N

1
2 ; N] into d2poly(logN)e subintervals and run the algorithm

for each subinterval.

Remark 4.2.5. The above results can be summarized to the following interesting
(from the cryptographic point of view) result.

Theorem 4.2.6

Let N = pq be the RSA-modulus, where p and q are of the same bitsize. Furthermore
let e ∈ Z∗�(N) be an RSA public exponent. Suppose we have an algorithm that

90 A Positive Lattice Application to RSA

on input (N; e) outputs in deterministic polynomial time the RSA secret exponent
d ∈ Z∗�(N) satisfying

ed = 1(mod�(N)):

Then N can be factored in deterministic polynomial time.

Notice that in the ordinary case (algorithm 5),in fact e; d ∈ Z∗�(N): This
strengthens the power of the result proved by May. Of course, as stated in re-
mark 4.1.2, the encryption and decryption processes work even if e; d =∈ Z∗�(N):

4.2.2 Unbalanced primes p; q

Shortly after May's initial paper, Coron and May [15] revisited the above prob-
lem.They provided an alternative proof for theorem 4.2.3 using a variant of Cop-
persmith's technique for �nding small solutions to univariate modular equations
(instead of bivariate integer equations).

Interestingly, Coron and May [15] proved that the equivalence between factoring
and computing the secret key d is still valid even if the requirement that p; q are
balanced is removed. In fact, they proved that factoring N given (e; d) becomes
easier when the prime factors are unbalanced.Their technique is similar to the
technique introduced by Durfee and Nguyen [18] in which two separate variables
x and y are used for the primes p and q respectively and each occurence of x · y is
replaced by N:

More speci�cally,they proved the following theorem.

Theorem 4.2.7

Let � and 0 < � ≤ 1
2 be real values, such that 2��(1 − �) ≤ 1.Let N = pq, where

p; q are primes such that p < N � and q < 2N1−�:Let e; d be such that e · d ≡ 1 mod
�(N), and 0 < e · d ≤ N� : Then given (N; e; d) one can recover the factorization
of N in deterministic polynomial time.

Remark 4.2.8. The factorization of N is easier when p; q are unbalanced in that
the condition for the product e · d becomes weaker.Consider for example that p <
N

1
4 : Plugging the value � = 1

4 in the inequality 2��(1 − �) ≤ 1 yields � ≤ 8
3 :

This means that the proof of equivalence between computing d and factoring N
can now tolerate values of the product e · d up to N

8
3 (instead of N2). Of course

letting � = 1
2 (balanced p; q) we get the same result as in the previous subsection

(e · d ≤ N2).

Chapter 5

Lattice-Based Attacks on RSA

Since its initial publication, the RSA Cryptosystem has been analyzed for vul-
nerabilities by many researchers. However, none of the attempted attacks has
proven devastating. The attacks mostly illustrate the dangers of improper use
of RSA. Boneh [4] presents a thorough overview of the most successful attacks
mounted against RSA the �rst twently years after its publication.

The development of lattice theory and the invention of LLL algorithm has
motivated a number of lattice attacks on RSA Cryptosystem. In this section we
will only consider attacks on RSA that are related to lattice methods and present
the underlying ideas.

It is important to note that none of the attacks described below reveals any aw
to the RSA Cryptosystem. Despite the large number of attacks addressed to RSA,
none of them has managed to break RSA in its general setting. All of the attacks
described here utilize certain aws induced by insecure choises of the parameters
rather than inherent aws of the Cryptosystem itself. In particular, we will study
the following insecure choises of parameters that are susceptible to lattice attacks.

(a) Section 5.1: Low public exponent e.

(b) Section 5.2: Exposure of a fraction of the most (or less) signi�cant bits of
one of the primes p or q.

(c) Section 5.3: Low private exponent d.

(d) Section 5.4: Partial exposure of the private exponent d.

In all cases, we assume that the communication channel between entities A and
B is insecure, that is an eavesdropper E (usually referred to as Eve) has access to
the full ciphertext c transmitted through the channel. Otherwise, he would not be
able to obtain the plaintext m even if he knew the private exponent d. The aim
of a secure public-key Cryptosystem is to make the recovery of m infeasible even
if the ciphertext c is competely known.

92 Lattice-Based Attacks on RSA

5.1 Low Public Exponent Attacks

In many practical applications, the encryption process is performed by some
limited device, such as a smart card. In such cases, raising a plaintext m to a
high power might be costly in terms of power consumption or time. In an attempt
to simplify the encryption process, one might be tempted to use a small public
exponent e. A typical value for the exponent is e = 3; which means that the
encryption process only involves raising a number to the power 3, which can be
trivially done using two multiplications.In this section we argue that the use of
small exponents can induce serious threats to RSA's security.

The attacks described below take advantage of the fact that the public exponent
e used for encryption is relatively small. Unlike the attacks described in the next
sections, the attacks described here can only be used to recover a given plaintext
and do not expose the private key.

5.1.1 Stereotyped Messages

Consider the following scenario:
The eavesdropper does not know the full plaintext message m but knows a part of
it. That is m = M + x where M is known and thus it su�ces to recover x in order
to fully recover the initial message. For a realistic perspective suppose that the
director of a large bank renews the secret key (subsequently used for symmetric
encryption) every day and sends it to the branches of the bank.The daily message
looks like " Good morning to everyone. Today's secret key is ...". Of course the
director is clever enough to encrypt the above message before sending it. Suppose
that the Cryptosystem used for the encryption of the above message is RSA. Then
the eavesdropper is confronted with the following challenge:

Given a ciphertext c ≡ (M + x)e (modN) recover the unknown part x of the
plaintext.

In the general setting (where the secret exponent e is arbitrary) E cannot do
much. However, in the speci�c case we are talking about, e is small. In order to
recover x, E forms the following polynomial

f(x) = (M + x)e − c ≡ 0 (modN):

Now recall Coppersmith's main result for univariate modular polynomial equations
proved in the previous chapter.

Theorem 5.1.1 (Coppersmith Theorem for Univariate Modular Equa-

tions)
Let N be an integer of unknown factorization. Furthermore, let f(x) be a uni-
variate, monic polynomial of degree �. Then we can �nd all solutions x0 for the
equation f(x) ≡ 0(modN) with

|x0| ≤ N
1
�

5.1 Low Public Exponent Attacks 93

in time polynomial in (logN; �):

This means that E can recover x e�ciently as long as |x| < N
1
e . But this

condition may be easily satis�ed in practice when RSA is used with small exponent
e (for instance with the frequently used choice e = 3). Indeed, notice that the
encryption process described in algorithm 6 implies that the integer m = M + x
that corresponds to the initial message is an integer in the range [0; N − 1].This
means that x = m−M < N −M is likely to satisfy |x| < N

1
e .

Remark 5.1.2. The above scenario , where e is small, is in fact rather realistic
in practice where symmetric cryptosystems often need keys of length at most 80
bits (this length corresponds to the length of x in the modular equation).Thus
if e = 3 and the known part M of the message is more than 160 bits (20 8-bit
ASCII characters), an eavesdropper can e�ciently recover x using Coppersmith's
technique for univariate modular equations.

Remark 5.1.3. It is not di�cult to observe that a similar result holds in the case
where the unknown part x is somewhere in the middle of the message. For instance
assume that the initial message is of the form m = M + x2k +M ′ where x begins
at the k + 1st least signi�cant bit. Then the polynomial the roots of whose need
to be recovered is f(x) = (M + x2k +M ′)e − c. Theorem 5.1.1 cannot be directly
applied because f is not monic. However since N is odd, gcd(2ke; N) = 1 and thus
the polynomial 2−kef(x) mod N exists and is monic. We can then apply 5.1.1 to
2−kef(x) mod N and recover x.

5.1.2 Hastad's Broadcast Attack

Suppose now that a sender wants to send a message m to a number of parties
P1; P2; :::; Pk. Each party Pi has its own RSA public key (Ni; ei). Assume that
m < miniNi. In order to send m to all parties, the sender encrypts m and sends
mei (modNi) to each party Pi. We illustrate below how an eavesdropper E can
recover the initial message m given the k ciphertexts ci. For simplicity we assume
that ei = 3 and that the recepients are 3 (k = 3).The extension to larger ei (and
corresponding larger k) is then straightforward.

Suppose that E obtains c1; c2; c3 where

c1 = m3 modN1; c2 = m3 modN2; c3 = m3 modN3:

We assume that gcd(Ni; Nj) = 1 for i 6= j. Otherwise a nontrivial divisor of Ni

can be found and then recovering m is easy. Thus we can apply CRT 1 and �nd a
c′ such that c′ ≡ m3 (modN1N2N3).CRT along with the condition gcd(Ni; Nj) = 1
guarantees that c′ is unique mod N1N2N3. In addition since m < min{N1; N2; N3}
we have that m3 < N1N2N3. This gives that m

3 = c′ over the integers and E can

1Chinese Remainder Theorem

94 Lattice-Based Attacks on RSA

then recover m by simply computing the real cube root (and not the modular cube
root) of c′.

It is not di�cult to see that a similar attack can work for all small (common)
public exponents e and k parties as long as k ≥ e.

It seems that we can avoid the above attack by never sending the same message
to more than one person. For instance, consider the following solution: Each
person, as part of his public key, has some unique id.Instead of encrypting m the
sender encrypts m + 2k · id where k is the length of the message m in bits and id
is the id of the recipient. In this way, the sender never sends the same message to
more than one persons.

Hastad [21] showed that the above padding is also insecure. In fact, he intro-
duced a much more general attack. Assume that the public key of each recipient is
of the form (N; g) where g is some polynomial in m. The encryption of a message
is given by g(m)modN . For example in the case above g(m) = (m+ 2kid)3. The
following theorem is a stronger version of Hastad's original result.

Theorem 5.1.4 (Hastad)
Let N1; N2; :::; Nk be pairwise relatively prime integers and let Nmin = miniNi.
Let gi ∈ ZNi

[x] be k polynomials of maximum degree d. Suppose that there exists
a unique m < Nmin such that gi(m) = ci (modNi) for all i = 1; 2:::; k. Then, if
k ≥ d, one can e�ciently �nd m given (Ni; gi; ci)ki=1:

Proof. De�ne hi = gi − ci for 1 ≤ i ≤ k. We are then looking for m such that
hi(m) = 0 (modNi) for i = 1; 2; :::; k. Assume wlog 2 that all hi are monic. If
not we can multiply the polynomials with the inverse mod Ni of their leading
coe�cients in order to make them monic.(If there is no such inverse then we can
again factor Ni and things get easier anyway). In addition we can multiply (if
necessary) each polynomial hi by x

j to make them all have degree d.
We now use the CRT to combine the polynomials hi into a single polynomial

h. In particular,we de�ne

h(x) =
k∑
i=1

Tihi(x) (modN)

where N = N1N2 · · ·Nk and

Ti =

{
1modNj if i = j

0modNj if i 6= j

can be obtained using CRT to the above linear system of modular equations.
The polynomial h as de�ned above has the following properties:

1. It has degree d as the sum of polynomials of degree d:

2without loss of generality

5.1 Low Public Exponent Attacks 95

2. It is monic since its xd coe�cient is 1 modulo any Ni. For that notice
that

∑k
i=1 Ti = 1 (modNi) and by applying CRT we get that

∑k
i=1 Ti =

1 (modN):

3. h(m) ≡ 0 (modN):

Remember here that m < miniNi and d ≤ k which means that

md ≤ mk <
k∏
i=1

Ni = N ⇒ m < N
1
d :

This means that we can construct a polynomial h of degree d such that h(m) ≡
0 (modN) and m < N

1
d . We can now apply theorem 5.1.1 in order to e�ciently

�nd m. This completes the proof.

Remark 5.1.5. Hastad's original theorem is weaker than the one stated above.
Hastad required d(d+1)

2 rather than d polynomials.The initial proof given by Hastad
is similar to the proof given by Coppersmith for univariate modular equations.
However, in contrast to Coppersmith, Hastad does not use powers of polynomials
g grater than 1 which leads to smaller lattices and consequently weaker bounds.

Remark 5.1.6. Despite the various attacks, low public exponent RSA is still
considered secure when used carefully. The current wisdom says that one should
use a moderate public exponent, let's say e = 216 + 1 and pad the message with
some random bits.

5.1.3 Random Padding to Messages

The following analysis illustrates an alternative low public exponent attack. In
this setting, there is only one recepient but more than one (related) messages sent
to him by the sender. The attack described below was �rst motivated by a result
due to Franklin and Reiter [20]. More specifcally, here we describe only a simple
instance of their attack in order to illustrate the underlying idea.

Consider that the sender sends two encrypted messages. The plaintexts are m
and m′ and the corresponding ciphertexts c and c′ respectively. Suppose now that
the above two messages m;m′ satisfy a known a�ne relation

m′ = m+ t

where t is known. We will show that an eavesdropper E can recover the message m
(and thus m′ too) if he is given the ciphertexts c; c′.Indeed, the following modular
equations hold

c ≡ m3 (modN)
c′ ≡ m′3 ≡ m3 + 3m2t+ 3mt2 + t3 (modN)

96 Lattice-Based Attacks on RSA

Then it is not di�cult to see that m is given by

m = t(c′ + 2c− t3)(c′ − c+ 2t3)−1 (modN)

where (c′ − c+ 2t3)−1 denotes the inverse of (c′ − c+ 2t3) modulo N .

Remark 5.1.7. Notice that the case where the two messages are of the form
m1 = m+ r1 and m2 = m+ r2 where r1; r2 are known is completely equivalent as
we can express m2 in terms of m1 as follows: m2 = m1 + t where t := r2 − r1.

Remark 5.1.8. In their original paper, Franklin and Reiter [20] proved a slightly
more genaral result. In the instance they presented, there are again two messages
m1 and m2 which are related by the more general a�ne relation

m2 = �m1 + �

where �; � are known parameters. The public exponent is again e = 3 and the
messages required in order for an eavesdropper to be able to recover m1;m2 are
k = 2.Of course both messages are encrypted with the same public key pair (N; e).

In 1996 , Coppersmith , Franklin, Patarin and Reiter [13] generalized the above
attack. The attacks they present, enable the recovery of plaintext messages from
their ciphertexts and a known polynomial relationship among the messages, pro-
vided that the ciphertexts were created using the same RSA public key with low
encryption exponent. That is, they presented a technique which can recover the
initial k plaintexts in the general case where the relation between them is a polyno-
mial of degree � and not a linear relation as in the initial presentation by Franklin
and Reiter. In addition, they showed how to handle cases where e is still small but
does not necessarily equal 3. All the details for the above generalization can be
found in [13].

The attacks presented by Franklin and Reiter and by Coppersmith, Franklin,
Patarin and Reiter seem a little arti�cial in that they presume that the eavesdrop-
per knows the a�ne relation among the messages. In addition, the assumption
that the messages sent by the sender are related is a little nebulous.

Let us return to the initial setting where m′ = m + t and e = 3.A natural
question to ask is what happens when t is not known. Coppersmith [10] showed
that we can still recover m as long as t is short enough. The above attack is of
great practical importance since someone could hope to remove the aws described
previously by subjecting each message to random padding before encrypting it with
RSA.This technique was proven insu�cient by Coppersmith for all cases where the
padding was short compared to the modulus N .

Assume for example that the sender shifts the initial messageM by k bits before
sending it and adds a random k-bit quantity T to get the corresponding plaintext
m. Suppose then that the same message is encrypted twice, but with di�erent

5.2 Lattice-Based Factoring Techniques 97

random padding T ′ = T + t. This corresponds to a plaintext m′ = m+ t.Then the
two ciphertexts c; c′ are given by

c ≡ m3 ≡ (2kM + T)3 (modN)
c′ ≡ m′3 ≡ (2kM + T ′)3 ≡ (m+ t)3 (modN):

(5.1)

A straightforward but tedious computation shows that if we eliminate m by taking
the resultant of the polynomials m3 − c and (m+ t)3 − c′ we get

resm(m3 − c; (m+ t)3 − c′) =
= t9 + (3c− 3c′)t6 + (3c2 + 21cc′ + 3c′2)t3 + (c− c′)3 ≡ 0 (modN):

This means that by equation 5.1 we can construct a univariate polynomial in t of
degree 9 (mod N). We can now recover t (and consequently m using the methods
described above) using Coppersmith's technique for univariate modular equations

(theorem 5.1.1) as long as |t| < N
1
9 : This means that if the message is subject to

random padding of length less than 1=9 the length of N , and then encrypted with
an exponent e = 3, multiple encryptions of the same message will reveal it.

Remark 5.1.9. Notice that the same attack can work just as well if the padding
goes in the high order bits or even in the middle. In that case we only have to divide
each ciphertext by the appropriate power of 2, in order to divide each plaintext by
another power of 2, to move the random padding to the low order bits.

5.2 Lattice-Based Factoring Techniques

In this section we consider attacks where an eavesdropper E tries to break
RSA by factoring the modulus N: Notice �rst that once the eavesdropper manages
to factor N , he can then decrypt any message.Indeed, once the primes p; q are
known, E can compute �(N) and then �nd the unique secret exponent d ∈ [1; �(N)]
such that ed ≡ 1 (mod�(N)). Using d he can decrypt any ciphertext c just like
the legitimate receiver. We �rst present lattice-based factoring techniques for the
original RSA-Scheme where the modulus is of the form N = pq: Afterwards, we
present the extension of these techniques to recently proposed RSA variants where
N = prq.

It is important to note here that the attacks for both cases of modulus N are
much stronger than the low public exponent attacks presented in section 5.1 in
that we can decrypt any message once we manage to factor the modulus N . In the
previous section, the decryption of a messagem did not reveal anything for another
message m′. If subsequent messages were selected with care by the sender, then the
eavesdropper would not be able to recover the plaintexts. However, in the attacks
described below, the communication between the sender and the legitimate receiver
is completely broken once the modulus N is factored. In order to re-establish a
secure communication between him and the sender, the receiver has to choose a
new pair of keys (N; e) and d.

98 Lattice-Based Attacks on RSA

5.2.1 Factoring RSA-moduli N = pq by knowing half of

the bits of p

Unlike the previous section, the attacker in current scenarios may get parts of
one of the factors p; q instead of parts of the message m.We will present a method
which enables us to factor the modulus N in time polynomial in its bitsize provided
that we know half of the bits of p and p; q are of the same bitsize.In his initial proof
, Coppersmith [11] used his results for �nding small solutions to bivariate integer
equations. More speci�cally, Coppersmith proved the following theorem (the proof
can be found in [11].)

Theorem 5.2.1 (Coppersmith, Factoring N with high bits known)
Let N = p · q where p; q primes. Then given the high-order (1

4 log2 N) bits of p, one
can factor N in time polynomial in its bitsize.

Here we present Coppersmith's results in a slightly more general form than
the original. This generalization will simplify the subsequent analysis. Here we
assume wlog that p > q:For simplicity, we state again the Coppersmith's generalized
theorem for solving univariate modular equations proved in a previous chapter.

Theorem 5.2.2 (Coppersmith Generalized Theorem for Univariate Mod-

ular Equations)
Let N be an integer of unknown factorization, which has a divisor b ≥ N�. Further-
more, let f(x) be a univariate, monic polynomial of degree � and cN be a function
that is upper-bounded by a polynomial in logN . Then we can �nd all solutions x0

for the equation f(x) ≡ 0(mod b) with

|x0| ≤ cNN
�2

�

in time polynomial in (logN; �):

We can now prove the following theorem.

Theorem 5.2.3

Let N = kp with p > q. Furthermore, let k be an (unknown) integer that is not a
multiple of q. Suppose that we know an approximation p̃ of kp such that

|kp− p̃| ≤ 2N
1
4 :

Then we can �nd the factorization of N in time polynomial in logN:

Proof. De�ne �rst the polynomial

fp(x) := x+ p̃;

5.2 Lattice-Based Factoring Techniques 99

where the index p denotes that we are interested in �nding roots of the above
polynomial modulo p. Obviously x0 = kp− p̃ is a root of fp(x) mod p: In addition,
the above polynomial has degree � = 1 and we know that a lower bound for p
is p ≥ N

1
2 since we have assumed that p > q.We can then apply 5.2.2 with

b = p; � = 1
2 ; � = 1 and cN = 2 and get the root x0 in time polynomial in logN .

But the knowledge of x0; p̃ yield kp. Since by assumption k is not a multiple of q,
the computation of gcd(N; kp) yields p and thus the factorization of N:

Notice that the above theorem implies theorem 5.2.1 when p; q are of the same
bitsize. To see that, recall that the fact that p; q are roughly of the same size implies
that p ≈ N

1
2 : This means that p has approximately n

2 bits where n = log2 N is the
bitsize of the modulus N . Suppose now that we know the (1

4n) most signi�cant
bits of p. This means that we know half of the most signi�cant bits of p. If we
write p = p02

n
4 + x then p0 represents half of the most signi�cant bits of p and

x ≤ 2
n
4 . This means that we know p0 such that

|p− p02
n
4 | = |x| ≤ 2

n
4 = N

1
4 :

Theorem 5.2.3 with k = 1; p̃ = p02
n
4 then says that p can be recovered in polyno-

mial time in log2 N .

Remark 5.2.4. Coppersmith in theorem 5.2.1 does not require that p; q are of
the same bitsize. We can extend the approach used above in order to tolerate un-
balanced p; q as follows:Suppose that p ≥ N� and that its bitsize is approximately
� ·n where � ≥ 1

2 . Then we can prove thorem 5.2.3 in a completely analogous way
where the bound now becomes

|kp− p̃| ≤ N�2 ≈ p� :

This means that we can factor N if we know a fraction of 1 − � of the most
signi�cant bits of p or, since the bitsize of p is � ·n, it su�ces to know the (1−�)�n
most signi�cant bits of p. But for 1

2 ≤ � < 1, (1−�)� is a decreasing function of �
with a local maximum 1

4 for � = 1
2 . This means that the method described above

is even more e�cient when p; q are unbalanced.

Modifying theorem 5.2.3, we can obtain a similar result for the case where we
know the less (instead of the most) signi�cant bits of p.

Theorem 5.2.5

Let N = pq where p; q are of the same bitsize with p > q. Suppose we know p0 and
M satisfying

p0 = pmodM and M ≥ N
1
4 :

Then one can �nd the factorization of N in time polynomial in logN:

100 Lattice-Based Attacks on RSA

Proof. De�ne the univariate polynomial

fp(x) := xM + p0:

Since p0 = pmodM , the term x0 = p−p0
M is an integer.In addition x0 is a root of

fp(x) modulo p since fp(x0) = p. LetM−1 be the inverse ofM modulo N . (If such
an inverse does not exist then gcd(M;N) yields the factorization of N .)Compute
now the polynomial

f ′p(x) := M−1fp(x)modN

which is monic and has the same root x0 = p−p0
M modulo p. Since p; q are of the

same bitsize, we have
q <
√
N < p < 2

√
N

which along with the fact that M ≥ N
1
4 gives that

|x0| =
p− p0

M
≤ 2N

1
4 :

By theorem 5.2.2 with parameter values � = 1
2 ; � = 1 and cN = 2, x0 (and

consequently p) can be found in time polynomial in logN which completes the
proof.

Remark 5.2.6. The connection between the above theorem and factoring with
half of the LSB of p known is obvious if we let M = 2

n
4 , where n = log2 N the

bitsize of N .Then,since p; q are of the same bitsize which means that the bitsize of
p is approximately n

2 , p0 represents half of the LSB of p.

Remark 5.2.7. Analogous to the cases of half of the LSBs or MSBs of p is the
case where we know an amount of half of the bits for any intermidiate consecutive
bits.

5.2.2 Extension to moduli of the form N = prq

The main advantage of the method presented previously is that it can be ex-
tended to the case where the modulus is of the form N = prq.The latter form of
the modulus N has appeared in recently proposed Cryptographic Schemes. In such
schemes the RSA decryption process can be performed signi�cantly faster than in
the typical case where N = pq:

In this subsection, we will study in brief the extension of the approach followed
in the previous subsection to N = prq for the case where p; q are of the same bitsize.
In that case, for the same bitsize of N , p; q have smaller bitsize than the usual case
which means that the performance is improved.

In 1999, Boneh , Durfee and Howgrave-Graham [7] showed that schemes with
moduli N = prq are more susceptible to attacks that leak bits of p than the
original RSA-Scheme. Their result generalizes theorem 5.2.3 to moduli of the
form N = prq. We present below a more general form of the theorem proved by
Boneh, Durfee and Howgrave-Graham.

5.2 Lattice-Based Factoring Techniques 101

Theorem 5.2.8 (BDH,Factoring N = prq with high bits known)
Let N = prq, where r is a known constant and p; q are of the same bitsize. Let k be
an (unknown) integer that is not a multiple of pr−1q. Suppose we know an integer
p̃ such that

|kp− p̃| ≤ N
r

(r+1)2 :

Then N can be factored in time polynomial in its bitsize.

Proof. We again de�ne the univariate monic polynomial

fpr(x) := (x+ p̃)r:

Consider now the integer x0 = kp − p̃. Then by hypothesis |x0| ≤ N
r

(r+1)2 . In
addition, fpr(x0) = (kp)r ≡ 0 (mod pr) which means that x0 is a root of fpr(x)
modulo pr.

The degree of fpr(x) is � = r. In addition, since p; q are of the same bitsize, we

know that p > 1
2q which gives that pr+1 = Np

q > 1
2N: This implies that

pr > (
1
2
N)

r
r+1 >

1
2
N

r
r+1 :

De�ne now � := r
r+1 −

1
logN . Then

2N
�2

� = 2N
r

(r+1)2
+ 1
r log2 N

− 2
(r+1) logN ≥ 2N

r

(r+1)2
− 1

logN = N
r

(r+1)2

where the last equality is true since the logarithm base is 2 and thus N
1

logN = 2.
This means that theorem 5.2.2 with parameters � := r

r+1 −
1

logN ; � = r; cN = 2
and b = pr is applicable and thus we can �nd x0 in polynomial time.

It only remains to prove that x0 = kp − p̃ yields the factorization of N . By
x0 we directly obtain kp which is not a multiple of N (since k is not a multiple of
pr−1q). This means that gcd(N; kp) is either of the form pi or of the form qpj for
some integers i ≤ r; j < r: The �rst case can yield p if we guess i (notice that the
number of guesses required is polynomially bounded by the bitsize of N) and then
compute the ith root of pi. The second case can be reduced to the �rst case since
N
qpj

= pr−j and p can be recovered by guessing r− j: This completes the proof.

Remark 5.2.9. The implications of the above theorem are rather intereseting.
Consider the case where k = 1. Since p; q are assumed to have the same bitsize, N
is of size roughly pr+1. This means that the condition of the previous theorem is
equivalent to

|p− p̃| ≤ p
r

(r+1) :

This means that a fraction of 1
r+1 of the bits of p are su�cient to factor N .Notice

that if r = 1 we obtain the result proved in the previous subsection.If N has 1000
bits, we need 250 bits of p (which has roughly 500 bits) if r = 1 while only 111

102 Lattice-Based Attacks on RSA

bits of p (whose bitsize is roughly 333) are su�cient to factor N in the case where
r = 2. The warning is clear. The larger the exponent r; the more susceptible
RSA-Schemes with modulus N = prq are to such type of attacks. Boneh, Durfee
and Howgrave-Graham [7] showed that if p; q have the same bitsize and r = � log p
for a �xed constant � > 0, then we can factor the modulus N = prq in polynomial
time without any information about the bits of p:

5.3 Low Private Exponent Attacks

A serious drawback of RSA is its e�ciency. A normal RSA decryption/signature
generation requires time Θ(log d log2 N): Selecting a small value for the secret expo-
nent d can signi�cantly increase the speed for the normal RSA decryption/signature
processes. However, recent attacks against RSA, show that secret private exponents
should be handled with care as they may threaten RSA's security.

In this section we present some attacks mounted against RSA instances with
small secret exponents d: The attacks are somehow presented in a chronological
order. Apart from attacks against the common RSA scheme, we also discuss attacks
against RSA variants (for instance RSA schemes with modulus N = prq) or against
schemes where the decryption process uses two small values (dp; dq) 3 related to d:

Here,like in section 5.2, the attacks for both cases of modulus N are much
stronger than the low public exponent attacks presented in section 5.1. All of the
attacks described below manage to factor N and totally expose the RSA Cryp-
tosystem. In order to re-establish a secure communication between him and the
possible senders, the legitimate receiver has to choose a new pair of keys (N; e) and
d.

5.3.1 Wiener Attack

The �rst result showing that using small secret exponent can pose serious
threats to RSA's security is due to Wiener [38]. In his paper, Wiener showed

that a value of d less than 1
3N

1
4 leads to a polynomial time attack on the RSA

cryptosystem. More speci�cally, Wiener's results are summarized in the following
theorem.

Theorem 5.3.1 (Wiener)

Let N = pq with q < p < 2p: Let d < 1
3N

1
4 : Given (N; e) with ed ≡ 1 mod �(N),

then an eavesdropper can e�ciently recover d:

His attack was based on continued fractions and did not use lattice techniques,
that's why we just mention his contribution here. More speci�cally, he showed
that d is the denominator of some convergent of the continued fraction expansion

3This values are known as CRT exponents.

5.3 Low Private Exponent Attacks 103

of a number. The e�ciency of Wiener's attack can be enervated if a large public
exponent e is used. As the public exponent e gets larger the attack becomes less
e�ective and cannot work at all if e > N

3
2 :

5.3.2 Boneh & Durfee (BD) Small Inverse Attack

In 1999, Boneh and Durfee [5] presented the �rst substantial improvement
over Wiener's bound. Their attack can (heuristically) recover the primes p; q in
polynomial time provided that d ≤ N0:292: Their result is heuristic since it is
based on Coppersmith's technique for �nding small solutions to bivariate modular
polynomial equations. However, their attack seems to work very well in practice.
Below we present the main ideas of their approach.

Consider the normal RSA Scheme where p; q are balanced and assume for
simplicity that gcd(p − 1; q − 1) = 2 (similar analysis can be followed for the

more general case).The keys e; d then satisfy e · d ≡ 1 mod �(N)
2 , where always

�(N) = N − p− q + 1: This implies that there exists an integer k such that

ed+ k

(
N + 1

2
− p+ q

2

)
= 1: (5.2)

Setting s = −p+q
2 and A = N+1

2 we get

k(A+ s) ≡ 1 (mod e):

Let e = N� be of the same order of magnitude as N (and therefore � is close to
1).Boneh and Durfee actually show that values of � much smaller than 1 lead to
even stronger results.Suppose now that d satis�es d < N �. The goal is to push �
for which the factorization of N can be performed in polynomial time, to values as
large as possible. Equation 5.2 imply that

|k| < 2de
�(N)

≤ 3de
N

< 3e1+
�−1
�

where for the second inequality we have used that �(N)
N > 2

3 and for the last that

e = N� ⇒ N = e
1
� :

Furthermore, since p; q are balanced, we know that p; q < 2
√
N which gives

|s| < 2N
1
2 = 2e

1
2� :

If we take � ≈ 1 and ignore the small constants (which are negligible compared
to the other terms appearing in the above inequalities) we end up with the following
problem

De�nition 5.3.2 (Small Inverse Problem (SIP))
Given a polynomial f(x; y) = x(A+ y)− 1, �nd (x0; y0) satisfying

f(x0; y0) ≡ 0 (mod e) where |x0| < e� and |y0| < e0:5:

104 Lattice-Based Attacks on RSA

Prooving the case d < N0:284

By construction, we know that (k; s) is a small solution of the f(x; y) = x(A+
y) − 1 ≡ 0 (mod e) satisfying |k| < e� and |s| < e0:5: Thus, if we manage to solve
the SIP for this instance, we will get s = −p+q

2 and consequently the factorization
of N: The goal from now on is to recover the values of � for which the roots (x0; y0)
with |x0| < e�; |y0| < e0:5 can be recovered in polynomial time.Of course, we would
like to prove that this modular equation is e�ciently solvable for values of � that
are as large as possible.

Boneh and Durfee �rst transform the modular equation into an equation over
the integers using Howgrave-Graham's Lemma for the bivariate case. We restate
the bivariate version of the lemma for convenience.

Lemma 5.3.3 (Howgrave-Graham for Bivariate Integer Polynomials). Let
h(x; y) ∈ Z[x; y] be a polynomial in 2 variables with at most ! monomials and let
m be a positive integer. Suppose in addition that

1. h(x0; y0) ≡ 0(mod em) where |x0| < X and |y0| < Y; and

2. ‖h(xX; yY)‖ ≤ em√
!
:

Then h(x0; y0) = 0 holds over the integers.

Next, for a given positive integer m they de�ne the polynomials

gi;k(x; y) := xifk(x; y)em−k (x-shift polynomials)

hj;k(x; y) := yjfk(x; y)em−k (y-shift polynomials)

Notice that (x0; y0) is a root of all these polynomials modulo em: In order to
�nd a low-norm integer linear combination of the polynomials gi;k(xX; yY) and
hj;k(xX; yY) and then apply lemma 5.3.3, Boneh and Durfee build a lattice
spanned by the coe�cient vectors of the polynomials gi;k and hj;k for certain pa-
rameters i; j and k: For each k = 0; 1; :::;m they use the x-shifts gi;k(xX; yY) for
i = 0; 1; :::;m− k: Additionally, they use the y-shifts hj;k(xX; yY) for j = 0; 1; :::; t
for some parameter t to be optimized later. A convenient ordering of the coe�cient
vectors renders a lower triangular matrix.

Let LBD denote the lattice constructed by Boneh and Durfee and BBD the
corresponding basis.We will use the notation BBD(m; t) in order to show that the
dimension and the entries of the basis depend on the parameters m; t: To illustrate
the lattice construction, we give below the matrix BBD(2; 1) where the coe�cient
vectors form the rows of the basis.

BBD(2; 1) =

0
BBBBBBBBBBBBBBBB@

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe −e eAX eXY

x2e2 e2X2

xfe −eX eAX2 eX2Y

f2 1 −2AX −2XY A2X2 2AX2Y X2Y 2

ye2 e2Y

yfe eAXY −eY eXY 2

yf2 −2AXY A2X2Y 2AX2Y 2 Y −2XY 2 X2Y 3

1
CCCCCCCCCCCCCCCCA

(5.3)

5.3 Low Private Exponent Attacks 105

Running LLL algorithm we can obtain two short vectors b1; b2 which by inequality
3.1 satisfy

‖b1‖; ‖b2‖ ≤ 2
w
2 det(LBD)

1
w−1

where w is the dimension of the lattice constructed.Thus a su�cient condition in
order to apply lemma 5.3.3 is

2
w
2 det(LBD)

1
w−1 ≤ em√

w
:

Some tedious computations show that the determinant and the dimension of the
lattice LBD have the following values respectively

det(LBD) = e
5+4�
12

m3+ 3+2�
4

tm2+mt2

4
+o(m3);

w = m2

2 + tm+ o(m2):

Optimizing with respect to t and ignoring low degree terms gives the condition

−12�2 + 28� − 7 < 0⇒ � <
7
6
− 1

3

√
7 ≈ 0:284:

This means that if � < 0:284 or, equivalently d < N0:284; one can �nd in time
polynomial in logN the factorization of N and consequently break RSA.

Remark 5.3.4. A precise calculation of the determinant (including low degree
terms) along with a detailed proof for the bound on � can be found in [5, Appendix
A]. As m (and consequently the dimension of the lattice) grows larger, � converges

to the value 7
6 −

√
7

3 ≈ 0:2874:

Remark 5.3.5. Constructing exactly the same lattice for an arbitrary � (and
not necessarily 1), Boneh and Durfee [5, Section 6] prove that the condition for
� becomes � < 7

6 −
1
3

√
1 + 6�: This means that the above attack becomes even

stronger if � < 1: For instance if e ≈ N
1
2 the attack can tolerate values of � up to

1
2 :

Improving the bound to d < N0:292

Boneh and Durfee further improve the bound for � (for the case � ≈ 1) by
considering a sublattice of LBD. They remove some of the rows of the corre-
sponding basis matrix BBD that contribute more to the volume of the lattice than
others and look for small elements in the new sublattice.Computations become
quite complicated since the removal of certain rows renders a non-square matrix,
the determinant of whose cannot be trivially calculated. They introduce the new
concept of geometrically progressive matrices and �nally prove that the bound can
be pushed to � = 1 − 1√

2
≈ 0:292: The details of their proof can be found in [5,

Section 5].

106 Lattice-Based Attacks on RSA

The bound 0:292 is up to now the best known bound for cryptanalysis of low
secret exponent RSA. However, the attack only works under the assumption that
the polynomials returned by LLL are algebraically independent. This makes the
method heuristic. In practice, nevertheless, no failure of the method is known for
su�ciently large �:

We just mention here that if one takes t = 0 (that is only x-shifts) one is
supposed to get a bound � = 0:25 which reproduces Wiener's result. However,
Bl�omer an May [2] observed that the method of Boneh and Durfee always fails
when using only x-shifts.

Remark 5.3.6. In contrast to Wiener's attack which is completely inapplicable
for e > N

3
2 , the attack introduced by Boneh and Durfee becomes completely

ine�cient for values of e larger than N1:875: To see that, recall that for arbitrary
� the condition for � is � < 7

6 −
1
3

√
1 + 6�: As � grows larger, the bound for �

approaches 0, value which is �nally reached for � = 15
8 :

Remark 5.3.7. The approach used assumed that p; q are balanced.In [5, Section
7], Boneh and Durfee also consider the case where p < q and p < N� where � ≤ 1

2 :
Using a similar (heuristic) technique with the three unknows k; p; q and replacing
every occurence of pq by N , they prove that the more unbalanced the primes p; q
are, the more e�ective the low private exponent attacks become.

5.3.3 Bl�omer &May Low Private Exponent Attack (BM)

In 2001, Bl�omer and May [2] revisited the attack mounted by Boneh and Dur-
fee.Their analysis yields a bound � = 0:290: While this bound is not better than
� = 0:292 achieved by Boneh and Durfee, the approach presented by Bl�omer and
May is signi�cantly simpler.

They begin their analysis by choosing parameters m and t and then construct
exactly the same lattice LBD as Boneh and Durfee (before the removal of the rows)
with corresponding basis BBD(m; t). Next they remove certain rows of BBD to take
an intermediate matrix B̄: Let L̄ be the lattice spanned by B̄:Unlike Boneh and
Durfee, they go on by removing an equal number of columns in order to obtain
a square matrix. Details on the construction can be found in [2, Section 4]. As
an example, the following matrix corresponds to matrix 5.3 after the removal of
certain rows and columns. We denote the �nal (eliminated) matrix constructed by
Bl�omer and May as BBM and the corresponding lattice LBM

BBM (2; 1) =

x xy x2 x2y x2y2 x2y3

xe2 e2X
fe eAX eXY

x2e2 e2X2

xfe −eX eAX2 eX2Y
f2 −2AX −2XY A2X2 2AX2Y X2Y 2

yf2 −2AXY A2X2Y 2AX2Y 2 X2Y 3

5.3 Low Private Exponent Attacks 107

The row vectors of the the matrix BBM are no longer the coe�cient vectors of
the polynomials gi;k(xX; yY) and hj;k(xX; yY) since we have also removed some
columns from the initial basis matrix BBD (notice that the basis constructed by
Boneh and Durfee does not su�er from the same drawback since we have only
removed rows and not columns).However in order to aplly lemma 5.3.3, it is
necessary to ensure that the integer linear combination of bivariate polynomials
evaluates to zero modulo em at the point (k; s):Bl�omer and May show how to
associate the rows of BBM matrix with the polynomials gi;k and hj;k: This means
that they show how to reconstruct a vector ū ∈ L̄ by a vector u ∈ LBM :

More signi�cantly, they prove that short vectors u ∈ LBM lead to short recon-
struction vectors ū ∈ L̄. Expressed in a di�erent way, the size of small vectors
found in the eliminated lattice LBM by LLL are the same size as those found in
the original lattice L̄ up to a small correction term. A complete substantiation of
the above claims can be found in [2, Section 4].

Remark 5.3.8. Although it yields a weaker bound than Boneh and Durfee method,
the new approach followed by Bl�omer and May has some noteworthy advantages:

(a) It leads to simple proofs since one deals with square matrices which signi�-
cantly simpli�es detrminant calculations.

(b) It reduces the lattice dimension as a function of m and t which implies that
one can get closer to the theoretical bound.

(c) It makes use of structural properties of the underlying polynomials which
makes possible its extension to other lattice constructions using these poly-
nomials.

5.3.4 Small CRT-Exponent Attacks

An alternative way in order to speed up RSA decryption/signature process
without using a small private exponent d, is to use the Chinese Remander Theorem
(CRT). Suppose that one chooses d such that both dp ≡ d (mod p− 1) and dq ≡ d
(mod q−1

2) are small. From now on we will call such an exponent d small CRT-
exponent .One can then decrypt a ciphertext c fast if one computes mp ≡ cdp (mod
p) and mq ≡ cdq (mod q) and then combine the results using CRT to obtain the
unique m ∈ ZN such that md ≡ c (mod N). The attacks described in the previous
subsections do not work in general since d is likely to be large even though dp; dq are
small.For the general case (where p; q are arbitrary) there is no known polynomial
time algorithm that breaks RSA if dp; dq are small.The best algorithm up to now
is exponential in the bitsize of N (O(min(

√
dp;

√
dq))).

In 2002, May [25] gave a polynomial time algorithm for a low CRT-Exponent
Attack for the case where the primes p; q are unbalanced. In his paper, May presents
two methods for attacking small CRT-exponent RSA. The �rst method is provable

and works as long as q < N
3−

√
5

2 ≈ N0:382 while the second one is heuritic but

108 Lattice-Based Attacks on RSA

can tolerate larger values of d modulo p − 1: Before presenting the main ideas of
the aformentioned methods, we �rst formalize the CRT key generation procedure
(algorithm 8) and the goal of the CRT-exponent attacks.

Algorithm 8: CRT Key Generation Process

Input: Public Key (N; e) and plaintext m:
Output: Ciphertext c corresponding to plaintext m:
begin

Step 1: Fix the bitsize n of the modulus N and two positive
parameters �; � such that � ≤ 1

2
and � ≤ 1:

Step 2 (Modulus): Choose (randomly) primes p; q with
approximate bitsize (1− �)n; �n respectively such that
gcd(p− 1; q−1

2
) = 1 and compute the modulus N = pq: Repeat step

2 if q ≥ N�:
Step 3 (dp; dq): Choose dp ∈ Zp−1 such that dp ≤ N � and
dq ∈ Z q−1

2
arbitrarily.

Step 4 (CRT): Compute the unique d mod �(N)
2

such that d ≡ dp
(mod p− 1) and d ≡ dq (mod q−1

2
).

Step 5 (Public Exponent):Compute the inverse e of d in Z�(N)
2

:

Step 6 : Publish the pair (N; e):
end

Remark 5.3.9. Notice that the requirement gcd(p − 1; q−1
2) = 1 in step 2 is

necessary for the existence of the unique d mod �(N)
2 computed using the CRT in

step 4.

The question answered by the two methods presented below is the following:"Up
to which values of the parameters � and � can one �nd the factorization of N
e�ciently given the public key pair (N; e)?"

Remark 5.3.10. Notice that the decryption and signature generation processes
can be performed e�ciently if the parameters are chosen according to the CRT
Key Generation Algorithm and �; � are small. Indeed, cdp (mod p) and cdq (mod
q) can easily be computed since dp and q are small. We can then compute cd (mod
N) using the CRT.

First method

According to the CRT Key generation algorithm 8 we know that

edp ≡ 1 (mod p− 1):

5.3 Low Private Exponent Attacks 109

Hence, there exists k ∈ Z such that

edp + k(p− 1) = 1⇒ edp − (k + 1) = −kp; over Z: (5.4)

Consider now the polynomial fp(x; y) = ex − y which by construction (see
equation 5.4) has a root (x0; y0) = (dp; k + 1) modulo p: In order to apply Cop-
persmith's results, we have to bound the values of the root pair (dp; k + 1): By
assumption dp ≤ N �: In addition,

|k + 1| =
∣∣∣∣edp − p

p− 1

∣∣∣∣ < edp
p− 1

<
q − 1

2
dp < N�+�

where the last but one inequality holds since e < �(N)
2 :If we let X = N � and

Y = N�+�; we have ended up with the bivariate modular equation fp ≡ 0 (mod p)
for which we are searcing small solutions (x0; y0) such that |x0| ≤ X and |y0| ≤ Y:In
order to transform the modular equation to an equation over the integers, May
uses lemma 5.3.3. In order to �nd a polynomial f(x; y) with a su�ciently short
corresponding coe�cient vector, he �rst uses a two-dimensional lattice whose rows
are the coe�cient vectors of the polynomials f0(xX; yY) and fp(xX; yY) where
f0(x; y) = Nx.For each root pair (x0; y0) of fp, every linear integer combination of
this two polynomials obviously yields a polynomial f such that f(x0; y0) ≡ 0 mod
p: The basis of the lattice is the following

Bp =
[
NX
eX −Y

]
:

May �rst proves the following two lemmas.

Lemma 5.3.11. Let X = N � and Y = N�+� with

3� + 2� ≤ 1− logN 4:

Then the lattice Lp generated by Bp has a smallest vector u such that ‖u‖ ≤ p√
2
:

Proof. The condition of the theorem is equivalent to the following

3� + 2� ≤ 1− logN 4⇒ 1 + � + 2� ≤ 2− 2� − logN 4⇒ N1+�+2� ≤ N2−2�

4
:

By Minkowski's theorem (theorem 3.1.2), Lp contains a vector u such that

‖u‖ <
√

2
√
det(Lp) =

√
2
√
NXY =

√
2N1+2�+� ≤

≤
√

2
N2−2�

4
<

√
p2

2
=

p√
2

where in the last inequality we have used that p > N1−� since q < N� :

110 Lattice-Based Attacks on RSA

Notice that since the lattice is two-dimensional, a lattice reduction algorithm
in fact returns such a short vector u and does not just approximate it. This means
that we can �nd a vector u such that ‖u‖ < p√

2
in polynomial time as long as

3� + 2� ≤ 1 − logN 4: May proved that such a vector u can directly lead to the
factorization of N:

Lemma 5.3.12. Let u = (c0; c1)Bp be a shortest vector in Lp with ‖u‖ < p√
2
:

Then (|c0|; |c1|) = (|k|; qdp):

Proof. u = c0(NX; 0) + c1(eX;−Y) is the coe�cient vector of the polynomial
f(xX; yY) where

f(x; y) = c0Nx+ c1(ex− y):

Since by construction f(xX; yY) < p√
2
and |dp| < N �; |k + 1| < N�+�; we know

that (x0; y0) = (dp; k+ 1) is a root over the integers (by lemma 5.3.3 with ! = 2).
This along with equation 5.4 gives

c0Ndp = −c1(edp − (k + 1)) = c1kp⇒ c0qdp = c1k:

Assume that q does not divide k:This means that gcd(qdp; k) = gcd(dp; k) = 1
where the last equality is obvious by 5.4.

By equality c0qdp = c1k, k divides c0qdp but is coprime with qdp which gives
c0 = ak for an integer a: Thus c1 = aqdp: But since u is the smallest vector in Lp
it follows that |a| = 1 which completes the proof.

May then uses lemmas 5.3.11 and 5.3.12 to prove the following theorem.

Theorem 5.3.13

Let (N; e) be the RSA public key pair with N = pq and d the secret exponent. If
q < N� ; dp ≤ N � and

3� + 2� ≤ 1− logN 4;

then N can be factored in time O(log2 N):

Proof. Construct the lattice basis Bp and run Gauss reduction algorithm to �nd
u = (c0; c1) · Bp: Compute gcd(N; c1) = q: The total running time for Gauss
reduction and computation of the greatest common divisor is O(log2 N):

Remark 5.3.14. In lemma 5.3.12 we assumed that q does not divide k: May
proves that if q divides k then the results of the analysis are even stronger. This
implies that the small CRT-exponent attack described above works for a larger
range of values �; �: In particular, May proves the following theorem. The proof
can be found in [25, Theorem 6].

5.3 Low Private Exponent Attacks 111

Theorem 5.3.15

Let (N; e) be the RSA public key pair with N = pq and d the secret exponent. If
q < N� ; dp ≤ N � and

k = qr ; � + 2� ≤ 1− logN 4;

then N can be factored in time O(log2 N):

The inequality in theorem 5.3.13 implies that the above method works only if

� < 1
3 : May [25] extends this bound to the value � < 3−

√
5

2 ≈ 0:382 by enriching
the lattice that produces the small coe�cient vector. In particular, May considers
the following x-shift polynomials

gm;i;j(x; y) = Nmax(0;m−j)xif jp (x; y)

for the same fp as in the previous approach. Now the root pair (x0; y0) of fp ≡
0mod p is the root of every linear integer combination of polynomials gm;i;j modulo
pm and not only modulo p: Let L′p denote the new lattice produced by the basis
B′
p whose rows are the coe�cient vectors of the polynomials gm;i;j(xX; yY):
In order to construct the lattice, one have to choose two integers n (the dimen-

sion of the lattice) and m which is a function of n to be optimized. In order to
to transform the modular equation to an equation over the integers, May applies
again lemma 5.3.3 with ! = n: Following argumentation similar to the previous
analysis, May invokes LLL algorithm to prove the following lemma. The details of
the proof can be found in [25, lemma 7].

Lemma 5.3.16. For every �xed � > 0; there are parameters n;N0 such that for
every N ≥ N0 the following holds: Let X = n+1

2 N � and Y = n+1
2 N�+� with

3� − �2 + 2� ≤ 1− �:

Then using the LLL algorithm, we can �nd a vector u ∈ L′p with norm smaller

than pm√
n
; where m is a function of n:

We have thus ended up with a single bivariate polynomial f(x; y): In order to
recover the roots (x0; y0), May proves the following lemma (details to be found in
[25, lemma 8]).

Lemma 5.3.17. Let X = n+1
2 N �, Y = n+1

2 N�+� and fp(x; y) = ex − y be a
polynomial with root (x0; y0) modulo p that satis�es |x0| ≤ N �; |y0| ≤ N�+�: Let
u be a vector in L′p(n) such that ‖u‖ ≤ pm√

n
; where u is the coe�cient vector of

a polynomial f(xX; yY): Then the polynomial p(x; y) = y0x− x0y ∈ Z[x; y] must
divide f(x; y): We can then factor f over Z[x; y] and consequently �nd p:

Combining lemmas 5.3.16 and 5.3.17 we get the following result:

112 Lattice-Based Attacks on RSA

Theorem 5.3.18

Let (N; e) be the RSA public key pair with N = pq and d the secret exponent. If
q < N� ; dp ≤ N � and

3� − �2 + 2� ≤ 1− �;

where � > 0 arbitrary small for N suitably large, then N can be factored in time
polynomial in logN:

Remark 5.3.19. It is important to note that both approaches of the �rst method
are provable in that they do not rely on algebraic independence of two polyno-
mials returned by LLL. Indeed, notice that the roots are recovered using a single
polynomial which means that the method entails no resultant computations.

Second method

In his second method, May uses two polynomials with short coe�cient vectors
in order to recover (x0; y0): Thus, in contrast to the �rst one, the second method
is heuristic since it is based on Coppersmith's technique for �nding small solutions
to bivariate modular polynomial equations.

May begins by rearranging the equation edp + k(p− 1) = 1 to get

(k + 1)(p− 1)− p = −edp ⇒ (k + 1)(N − q)−N = −eqdp:

This leads to the problem of �nding small roots to the bivariate modular polynomial

fe(y; z) = y(N − z)−N

with a known root (y0; z0) = (k + 1; q) modulo e: De�ne the bounds Y = N�+�

and Z = N� so that |y0| ≤ Y; |z0| ≤ Z: For the construction of the corresponding
lattice, May �xes a positive integer parameter m and considers the y- and z-shifted
polynomials

gi;j(y; z) = em−iyjf ie(y; z) and

hi;j(y; z) = em−izjf ie(y; z)

which all have the common root (x0; y0) modulo em: In order to apply lemma 5.3.3,
May looks for two short vectors in the lattice spanned by the coe�cient vectors of
gi;j(yY; zZ) and hi;j(yY; zZ) for certain values of i and j: The condition for �; �
under which condition 2 of lemma 5.3.3 is satis�ed, is given in the following lemma.

Lemma 5.3.20. For every �xed constant � > 0; there exist m;N0 such that for
every N ≥ N0 the following holds: Let Y = N�+� and Z = N� with

2
3
(� +

√
3� + �2) + � ≤ 1− �; (5.5)

where � is arbitrary small for N suitably large.Then using the LLL algorithm, we
can �nd two vectors u1; u2 ∈ L such that ‖u1‖; ‖u2‖ ≤ em√

dim(L)
:

5.3 Low Private Exponent Attacks 113

This means that if condition 5.5 holds, we can �nd two polynomials h1(y; z)
and h2(y; z) which have the root (y0; z0) = (k + 1; q) over the integers. Using
resultant computations we can recover all roots z0 and therefore q which yields
the factorization of N: Of course, the method's success relies on the assumption
that the resultant resy(h1(y; z); h2(y; z)) is a non zero polynomial, which makes
the method clearly heuristic.

Recent Small CRT-exponent Attacks

In 2006 , Bleichenbacher and May [1] extended May's second method and man-
aged to improve the bound to q < N0:468 (recall that the �rst two methods de-
scribed previously yielded bounds q < N0:382 and q < N0:375 respectively).Their
extension uses again Coppersmith's technique for �nding small solutions to multi-
variate modular polynomial equations and is therefore heuristic.

Bleichenbacher and May use again the polynomial f(x; y) = x(N − y) + N
as in the second method (to be more precise, in his second method,May used the
polynomial f(x; y) = x(N−y)−N which is equivalent to f(x; y) = x(N−y)+N if
we replace k+1 with−(k+1)).In order to improve the bounds, they make additional
use of the fact that the root (x0; q) mod e they are searching for, contains the prime
factor q: Consequently, they introduce a new variable z for the prime factor p and
an additional equation yz = N:

The general approach is the same as in the second method above, that is,
Bleichenbacher and May construct a lattice L with basis B and use LLL to get
two su�ciently short vectors u1; u2 such that ‖u1‖; ‖u2‖ ≤ em√

dim(L)
in order to

be able to apply lemma 5.3.3. Since we have introduced a third variable z;these
two vectors are the coe�cient vectors of two trivariate polynomials f1(xX; yY; zZ)
and f2(xX; yY; zZ) which by lemma 5.3.3 both have the root (x0; q; p) over the
integers. Once these two trivariate polynomials are obtained, we can eliminate z
by setting z = N

y and then multiplying both f1; f2 with a suitable power of y to get

two integer polynomials f̄1; f̄2 in the two variables x; y: We can then recover the
small root pairs (x0; y0) (and consequently (x0; q)) using resultant computations.
This method will �nally give q provided that the resultant resx(f̄1(x; y); f̄2(x; y))
is not the zero polynomial.This assumption makes the method heuristic but still
very powerful in practice.

The challenge is to construct the lattice in such a way that the short vectors
returned by LLL are short enough to yield improved bounds for X;Y; Z:Having
LLL in mind, this goal reduces to constructing a lattice with a determinant as
small as possible.To that end, Bleichenbacher and May incorporate the following
two ideas:

(a) They �rst multiply the polynomial f(x; y) = x(N − y)+N by the monomial
zs for some parameter s that has to be optimized. This leads to the following

114 Lattice-Based Attacks on RSA

collection of trivariate (instead of the initial bivariate f(x; y)) polynomials

g′i;j(x; y; z) = zs · gi;j(x; y) = em−ixjzsf ie(x; y) and

h′i;j(x; y; z) = zs · hi;j(x; y) = em−iyjzsf ie(x; y):

where for g′i;j(x; y; z); i = 0; :::;m; j = 0; :::;m − i and for h′i;j(x; y; z);
i = 0; :::;m; j = 1; :::; t: Notice that every monomial xiyj j ≥ s in the initial
collection of polynomials with coe�cient ai;j is transformed into a mono-
mial xiyj−s with coe�cient ai;jN

s in the new collection. Similarly if j < s
the monomial xiyj is transformed into the monomial xizs−j with new coe�-
cient ai;jN

j : This implies that the coe�cient vectors of g′i;j(xX; yY; zZ) and
h′i;j(xX; yY; zZ) contain less powers of Y which decreases the determinant
of the lattice spanned by these vectors. Nevertheless, the determinant is
increased because now the coe�cient vectors also include powers of Z since
we have added the third variable z: The goal is to optimize this trade-o�
by choosing a value for the parameter s that will minimize the value of the
determinant.

(b) The resulting lattice basis built from the coe�cient vectors of polynomials
g′i;j(xX; yY; zZ) and h′i;j(xX; yY; zZ) is lower triangular. This means that
every polynomial in the new collection contributes to the determinant of the
matrix with just one coe�cient (the coe�cient of the diagonal entry). If
that coe�cient has a factor N j , we can eliminate this factor by multiplying
the polynomial with the inverse of N j mod e:Eliminating powers of N in the
diagonal entries keeps the lattice determinant as small as possible.

The incorporation of these two ideas in the construction of the lattice,along with
a suitable choice of the parameter s, yield the following su�cient condition for the
bounds X;Y; Z: The proof can be found in [1, lemma 4, appendix A].

Lemma 5.3.21. Let � > 0; t = �m and s = �m:Let N and m be su�ciently large
and

X2+3�Y 1+3(�−�)(1+�−�)Z3�2 ≤ e1+3�−�: (5.6)

Then on input B; LLL algorithm will output two vectors that are shorter than
em√
dim(L)

:

This means that under the condition 5.6, LLL returns in polynomial time, two
vectors u1; u2 the corresponding polynomials of which satisfy condition 2 of lemma
5.3.3.

In order to obtain the �nal condition among �; � and � where dp ≤ N �; q ≤
N� and e = N�; one has to express X;Y and Z in terms of �; � and � and
plug these values in the condition of lemma 5.3.21. Some straightforward but
tedious computations lead to the following theorem.A detailed proof can be found
in [1, theorem 5].We emphasize here that the following result is based on the
assumption that the emerging resultants are nonzero polynomials and is therefore
only conventionally characterized as theorem.

5.3 Low Private Exponent Attacks 115

Theorem 5.3.22

Let � > 0 and N be su�cinetly large. Let N = pq be an RSA-modulus with q ≤ N�

and p ≤ 2N1−� : Moreover, let e = N� be an RSA-public exponent satisfying edp ≡
1 (mod p− 1) for some dp = N � with

� ≤ 1
3
(3− 2� − �2 −

√
12�� − 12��2 + 4�2 − 5�3 + �4)− �:

Then N can be factored in polynomial time.

Comparison of the methods

Let us summarize the small CRT-exponent attacks presented above. Recall
that the parameters �; � are used to bound, in terms of N , the values dp and q
respectively (dp ≤ N �; q ≤ N�).In table 5.1 below we present the various conditions
for dp under which N can be factored in polynomial time. In all methods q is
bounded by N� :

Method Reference Condition Comment

1st Method [25] dp ≤ N
1−3�+�2

2
−� Provable

2nd Method [25] dp ≤ N1− 2
3
(�+
√

3�+�2)−� Heuristic

Recent Results [1] dp ≤ N
1
3
(3−2�−�2−

√
12��−12��2+4�2−5�3+�4)−� Heuristic

Table 5.1: Review of small CRT-exponent attacks

5.3.5 Small Private Exponent Attacks to RSA Schemes

with Moduli N = prq

In 2004, May [28] presented two low private exponent attacks against RSA-like
schemes with modulus N = prq: We will again assume that p; q are of the same
bitsize as we did in section 5.2 where we presented factoring attacks against such
schemes. May in these two attacks makes direct use of the theorems 5.2.2 and
5.2.8 presented in section 5.2.

First Attack

May's �rst attack is based on theorem 5.2.8 and can be summarized in the
following result:

Theorem 5.3.23

Let N = prq; where r ≥ 2 is a known constant and p; q are primes of the same

116 Lattice-Based Attacks on RSA

bitsize. Let (e; d) ∈ Z × Z∗�(N) be the public-key/secret-key pair satisfying ed ≡
1 (mod�(N)): Suppose that

d ≤ N
r

(r+1)2 :

Then N can be factored in polynomial time.

Proof. Since N = prq; �(N) = pr−1(p− 1)(q− 1): This means that there exists an
integer k such that

ed− 1 = kpr−1(p− 1)(q − 1): (5.7)

Let E be the inverse of emoduloN (if such an inverse does not exist then gcd(E;N)
is a non trivial factor of N and we can �nd p; q using the same arguments as in
proof of theorem 5.2.8).Then Ee = 1 + cN for some c ∈ N: If we multiply 5.7
with E we get

d(cN + 1)− E = E · kpr−1(p− 1)(q − 1)⇒
d− E = (Ekpr−2(p− 1)(q − 1)− cpr−1qd)p:

This means that E is a multiple of p up to an additive error d ≤ N
r

(r+1)2 :We de�ne
t = Ekpr−2(p− 1)(q − 1)− cpr−1qd and we consider the next two possible cases:

1. pr−1q divides t: Then pr−1q divides Ekpr−2(p − 1)(q − 1) (the second term
of t is obviously a multiple of pr−1q). This means that pq divides Ek(p −
1)(q − 1): Since by assumption gcd(E;N) = 1 this means that pq divides
k(p−1)(q−1) that is k(p−1)(q−1) = c′pq: Then 5.7 becomes ed−1 = c′N
which, in combination with eE − 1 = cN , gives that E ≡ d (modN): Since
E; d < N this implies that d = E over the integers. But the knowledge of
d su�ces to factor N (there is a well known probabilistic polynomial time
algorithm that computes p; q on input d and in the previous chapter we
presented a detreministic polynomial time algorithm that performs the same
computation).

2. pr−1q does not divide t: Then we can directly apply theorem 5.2.8 where t
plays the role of k and recover the factorization of N:

Algorithm 9 summarizes the steps that yield the factorization of N:

Second Attack

For his second attack, May follows a slightly di�erent approach using Copper-
smith's Generalized theorem for univariate modular equations (theorem 5.2.2).His
attack can be summarized in the following theorem.

5.3 Low Private Exponent Attacks 117

Algorithm 9: May's First Attack for small d using a modulus N = prq

Input: (N; e) where N = prq and ed ≡ 1 (mod�(N)) for some

d ≤ N
r

(r+1)2 :
Output: The factors p; q of N:
1. Compute E = e−1 modN: If the computation of E fails, ouptut p; q
and EXIT.
2.Run algorithm of theorem 5.2.8 on input E: If the algorithm
outputs p; q EXIT.
3.Set d = E and run a (probabilistic or deterministic) factorization
algorithm on input (N; e; d):

Theorem 5.3.24

Let N = prq; where r ≥ 2 is a known constant and p; q are primes of the same
bitsize. Let (e; d) ∈ Z × Z∗�(N) be the public-key/secret-key pair satisfying ed ≡
1 (mod�(N)): Suppose that

d ≤ N (r−1
r+1

)2 :

Then N can be factored in polynomial time.

Proof. We begin again with equation

ed− 1 = kpr−1(p− 1)(q − 1); for some k ∈ Z:

Let E = e−1 (modN): Then again Ee = 1 + cN for some c ∈ N: If we multiply the
equation ed− 1 = kpr−1(p− 1)(q − 1); with E and rearrange its terms we will get

d− E = (Ek(p− 1)(q − 1)− cdpq)pr−1:

De�ne the polynomial fpr−1 = x − E which has the root x0 = d modulo pr−1: In
addition, since p; q are of the same bitsize, we know that p ≥ 1

2q:This gives

pr+1 = prp ≥ prq

2
=

1
2
N ⇒

pr−1 ≥ (
1
2
N)

r−1
r+1 ≥ 1

2
N

r−1
r+1 :

We would like to be able to recover x0 = d in polynomial time. We will apply
theorem 5.2.2 to fpr−1 = x−E in order to show that d can in fact be computed in
polynomial time.The degree of fpr−1 is � = 1: Let � = r−1

r+1 −
1

logN : We know that

pr−1 is a divisor of N such that pr−1 ≥ 1
2N

r−1
r+1 = N� : In order to apply theorem

5.2.2 and recover d it remains to show that d ≤ cNN
�2

� for a constant cN : If we
choose cN = 4 then we have

4N
�2

� = 4N (r−1
r+1

)2− 2(r−1)
(r+1) logN

+ 1
log2 N ≥ 4N (r−1

r+1
)2− 2

logN = N (r−1
r+1

)2 ≥ d:

118 Lattice-Based Attacks on RSA

Thus we can recover d in polynomial time in logN and then use a (deterministic
or probabilistic) polynomial time algorithm to obtain the factorization of N:This
completes the proof of the theorem.

Algorithm 10 gives a compact description of the attack.

Algorithm 10: May's Second Attack for small d using a modulus
N = prq

Input: (N; e) where N = prq and ed ≡ 1 (mod�(N)) for some

d ≤ N (r−1
r+1

)2 :
Output: The factors p; q of N:
1. Compute E = e−1 modN: If the computation of E fails, ouptut p; q
and EXIT.
2.Apply the algorithm of theorem 5.2.2 on input
N; fpr−1 = x− E; � = r−1

r+1
− 1

logN
and cN = 4:This gives the value of d:

3.Run a (probabilistic or deterministic) factorization algorithm on
input (N; e; d):

The bounds in theorems 5.3.23 and 5.3.24 imply that the �rst attack is more
e�cient if r = 2 while the second one yields better results for all integer values
r ≥ 3:

Remark 5.3.25. It is important to note here that in contrast to Wiener and
Boneh & Durfee attacks, which required e < �(N) and were completely ine�cient
for e > N1:5 and e > N1:875 respectively, none of the attacks presented above can
be counteracted by choosing a larger public exponent e: Intuitively, this di�erence
stems from the fact that all previous attacks required the computation of k in equa-
tion ed−1 = k�(N): In order to �nd k; one had to bound it �rst and consequently
bound e: On the contrary, May's attacks do not require the computation of k and
thus both k and e can be arbitrarily large. Instead, they take advantage of the fact
that r ≥ 2 and thus �(N) and N share some common divisors.

Remark 5.3.26. Another interesting feature of the new attacks is that they can
trivially be extended to partial key exposure attacks for d with known most sig-
ni�cant bits (MSBs).Actually, it makes no di�erence to the attacker whether the
most signi�cant bits of d are zero (which impies that d is small) or known. On the
contrary, Wiener and Boneh & Durfee attacks do not work when the MSBs of d
are non-zero but known.

5.4 Partial Key-Exposure Attacks

In the previous section we examined attacks where the private key d was small.
In this section we study the case where the value of d is arbitrary but we know a

5.4 Partial Key-Exposure Attacks 119

fraction of its bits. The major question we will try to answer is how many bits of d
does an eavesdropper need in order to reconstruct all of d and thus break RSA. All
the attacks described below are equally strong to the attacks described in sections
5.2 and 5.3 in that once an attack succeeds, the RSA is fully broken and the
legitimate sender have to choose a new tuple (N; e; d) in order to re-establish a
secure communication.

To give a practical perspective of the attacks in question, consider a computer
system in which an RSA private key is stored. An intruder may attempt to attack
the system in a variety of ways in order to obtain the private key. In many scenar-
ios, an attacker using a side-channel attack,4 either succeeds to obtain the most
signi�cant bits (MSBs) or least signi�cant bits (LSBs) of d in consecutive order.
Once a certain fraction of the bits is revealed, the attacker can e�ciently compute
all of d:

5.4.1 Boneh-Durfee-Frankel Partial-Key Exposure At-

tacks (BDF)

In 1998, Boneh,Durfee and Frankel [6] presented some partial key-exposure
attacks on RSA.Their results include attacks where either some of the MSBs or
LSBs of d are known and determine the conditions under which the knowledge of a
fraction of consecutive bits of d is su�cient to fully recover d: Below we present in
brief their results along with the main underlying ideas. In the following analysis
we assume that p; q are balanced. However, similar results hold if p; q are not of
the same bitsize.

Low Public Exponent

The �rst attack by Boneh ,Durfee and Frankel requires the knowledge of a
quarter of the LSBs of private key d and is e�cient only if the public exponent e
is polynomially bounded by the bitsize of N: The starting point for the analysis is
again the equation

ed− k�(N) = ed− k(N − s+ 1) = 1 (5.8)

where s = p + q and k ∈ N: We know that d < �(N) which implies that k < e:
Since p; q are assumed of the same bitsize, we have

4 <

√
N

2
< q < p < 2

√
N:

4attack that is based on information gained from the physical implementation of a
cryptosystem, rather than theoretical weaknesses in the algorithms . Timing information,
power consumption, electromagnetic emanations or even sound can provide an extra source
of information which can be exploited to break the system.

120 Lattice-Based Attacks on RSA

In addition s = p + q < 3
√
N and thus �(N) = N − s + 1 > N − 3

√
N > N

2 : The
main result of BDF for low public exponent partial key-exposure attacks can be
summarized in the following theorem.

Theorem 5.4.1 (LSBs)
Let N = pq be an n-bit RSA modulus. Let 1 ≤ e; d ≤ �(N) satisfy ed ≡
1 (mod�(N)): if N ≡ 3(mod 4) and e ≤ 2

n
4
−3; then there exists an algorithm that,

given the n
4 least signi�cant bits of d; computes all of d in time polynomial in n

and e log e:

Proof Sketch. The knowledge of the n
4 least signi�cant bits of d implies that we

know some d0 such that d0 ≡ d (mod 2
n
4): Reducing 5.8 modulo 2

n
4 yields

ed0 ≡ 1 + k(N − s+ 1) (mod 2
n
4):

If we replace q by N
p and set x = p; we get the following univariate (quadratic)

modular equation

ed0 ≡ 1 + k(N − x− N

x
+ 1) (mod 2

n
4) (5.9)

kx2 + (ed0 − k(N + 1)− 1)x+ kN ≡ 0 (mod 2
n
4) (5.10)

which has root x0 = p modulo 2
n
4 : Notice that if we could recover all the solutions

x0 of equation 5.10, then one of them would satisfy x0 ≡ p (mod 2
n
4). We could

then use theorem 5.2.5 to fully recover p and consequently N:
It only remains to descibe an algorithm that e�ciently (with complexity O(n3))

�nds solutions to 5.10 and, in addition, bound the total number of solutions as
k ranges in {1; :::; e}: We exhaustively examine all positive integers k ≤ e: BDF
transform 5.10 into a form for which there is an e�cient algorithm that computes
its roots.The details can be found in [16, Section 3 & appendix A].

In addition, they show that for each k′ in the range {1; :::; e} if k′ is of the form
k′ = 2t

′
km where m is odd, then the number of roots of 5.10 for the candidate k′

is upper bounded by 22+t′k : This means that an odd candidate k′ can contribute
to the total number of solutions with at most 4, a k′ = 4l + 2 with at most 8
etc. Thus, as k′ ranges over {1; :::; e}; Θ(e log2 e) solutions will be tested before the
correct value of k is found.

The running time of the above approach is bounded by the number of solutions
(Θ(e log2 e)), the running time of algorithm in theorem 5.2.5 (which is polynomial
in n) and the running time of the algorithm that �nds the roots of 5.10 (O(n3))
and is therefore polynomial.

Remark 5.4.2. Notice that the running time of the attack is heavily based on
the value of the exponent e. The attack is polynomial in n (bitsize of N) only if
e is polynomially bounded by n: That's why the attack is considered e�cient only
in the case where an exhaustive search in the range {1; :::; e} is computationally
feasible.

5.4 Partial Key-Exposure Attacks 121

Remark 5.4.3. The requirement N ≡ 3(mod 4) should not be ignored. When N ≡
3(mod 4); the above attack provably terminates in polynomial time and achieves
the full recovery of d when n

4 of its LSBs are known. Notice that the condition
N ≡ 3(mod 4) is equivalent to p 6≡ q(mod 4): Expressed in another way, p− q = 2r
where r is odd. In the general case where p − q = 2�r (with r odd), in 2004,
Steinfeld and Zheng [36] showed that the above attack is e�cent only when the
number of known LSBs is at least n

4 + �:

Medium Public Exponent

Boneh, Durfee and Frankel extended their approach to public exponents with
values in the interval [N

1
4 ; N

1
2] when some of the MSBs (instead of LSBs) of d are

known. They begin again with the equation 5.8 where s = p + q: The unknown
variables are three (d; k and s). Unlike the previous case, k cannot be recovered
by exhaustive search since it is an arbitrary element in the set {1; :::; e} whose
size is exponential in the bitsize of N: However they show that given su�ciently
many MSBs of d and provided that e <

√
N , one can e�ciently compute k up to

a constant additive error. They �rst prove the following lemmas.

Lemma 5.4.4. Suppose that we are given a d0 such that :

(i) |e(d− d0)| < c1N; and

(ii) ed0 < c2N
3
2 :

Then the unique k satisfying ed−k�(N) = 1 is an integer in the range [k̃−∆; k̃+∆]
where k̃ = ed0−1

N and ∆ = 8c2 + 2c1:

Proof.

|k̃ − k| = |k − k̃| =
∣∣∣∣ed− 1
�(N)

− ed0 − 1
N

∣∣∣∣ =
∣∣∣∣ed− 1
�(N)

+
ed0 − 1
�(N)

− ed0 − 1
�(N)

− ed0 − 1
N

∣∣∣∣
=

∣∣∣∣(ed0 − 1)(
1

�(N)
− 1
N

) +
e(d− d0)
�(N)

∣∣∣∣ < c2N
3
2 (
N − �(N)
�(N)N

) + c1
N

�(N)

< c2
4N2

�(N)N
+ 2c1 < 8c2 + 2c1:

since N − �(N) < 3
√
N < 4

√
N and �(N) > N

2 : This means that k is an integer

in the range [k̃ −∆; k̃ + ∆] and the proof is complete.

Lemma 5.4.5. Let N = pq be an n-bit RSA modulus and 1 ≤ e; d ≤ �(N) satisfy
ed ≡ 1 (mod�(N)): In addition, let t be an integer in the range {0; :::; n2 }: Suppose
that 2t < e < 2t+1 and that we know the t most signi�cant bits of d: Then we can
e�ciently compute the unique k satisfying 5.8 up to a constant additive error.

122 Lattice-Based Attacks on RSA

Proof. Since we know the t most signi�cant bits of d, we know an integer d0 such
that |d− d0| < 2n−t: This means that d0 satis�es |e(d− d0)| < e2n−t < 2t+1+n−t =
2 · 2n < 2N: In addition d0 < N which means that ed0 < 2N

3
2 : Thus we can apply

lemma 5.4.4 with c1 = c2 = 2 and search for k in the interval [k̃−∆; k̃+∆] where
∆ = 20:

Lemma 5.4.5 implies that we can recover the exact value of k by an exhaustive
search and thus reduce the number of unknown variables in 5.8. By taking the
above equation modulo e; we can further remove d and solve to �nd s′ = s (mod e).
The main result of Boneh,Durfee and Frankel for MSBs known can be summarized
in the following theorem.

Theorem 5.4.6

Let N = pq be an n-bit RSA modulus and 1 ≤ e; d ≤ �(N) satisfy ed ≡ 1 (mod�(N)):

(a) Suppose that e is a prime in the range {2t; :::; 2t+1} with n
4 ≤ t ≤ n

2 :Given
the t most signi�cant bits of d we can factor N in time polynomial in n:

(b) In general, suppose that e ∈ {2t; :::; 2t+1} is the product of at most r known
distinct primes with n

4 ≤ t ≤ n
2 :Given the t most signi�cant bits of d we can

factor N in time polynomial in n and 2r:

Proof Sketch. The assumptions of the theorem satisfy lemma 5.4.5 which means
that we can search for k in constant size range. In order to get the factorization of
N; for each candidate k′ ∈ {k̃ −∆; :::; k̃ + ∆} we do the following:

1. Compute s′ ≡ N + 1 + k
′−1 (mod e): Notice that if we consider equation 5.8

modulo e; for a candidate k′ we get

ed− k′(N − s+ 1) = 1⇒ k′(N − s+ 1) + 1 ≡ 0 (mod e)

⇒ s′ ≡ s ≡ N + 1 + k
′−1 (mod e):

In addition equation 5.8 implies that gcd(k; e) = 1 which means that we can
remove every k′ such that gcd(k; e) 6= 1 from the candidate list.

2. Compute a root p′ mod e for x in the quadratic equation

x2 − s′x+N ≡ 0 (mod e): (5.11)

Since s′ ≡ s (mod e) then one of the solutions p′ of 5.11 will satisfy p′ ≡ p
mod e:

3. Once we have found a p′ such that p′ ≡ p mod e with e ≥ 2
n
4 = N

1
4 ; we can

apply theorem 5.2.5 to fully recover p:

The execution of steps 1 and 3 are quite straightforward. It only remains to show
how one can extract the roots of equation 5.11 e�ciently.

5.4 Partial Key-Exposure Attacks 123

(a) If e is a prime there are well known (probabilistic) polynomial time algo-
rithms that �nd the corresponding roots.

(b) If e is a composite with r distinct prime factors p1; :::; pr,then we can solve
the corresponding quadratic equations for each prime factor pi and combine
the solutions with Chinese Remainder Theorem to get the overall solutions.
Thus, the running time of the algorithm depends on the number of the
solutions of the quadratic equation. Since e has r distinct prime factors,
there are at most 2r solutions to consider. That's why the running time of
the attack is polynommial in n and 2r:

Interestingly, Boneh, Durfee and Frankel [16] prove that the full recovery of
d is possible even if the factorization of e is not known.However, their results are
weaker than in the case where the factorization of e is known.In particular they
prove the following theorem , the proof of which can be found in [16, Section 4.2].

Theorem 5.4.7

Let N = pq be an n-bit RSA modulus and 1 ≤ e; d ≤ �(N) satisfy ed ≡ 1 (mod�(N)):
Let t be an integer in the range {0; :::; n2 }: Suppose e is in the range {2t; :::; 2t+1} and
k > � · e for some � > 0: Then there is an algorithm with running time polynomial
in n; 1

� that given the n− t MSBs of d �nds all of d:

5.4.2 Bl�omer-May Partial Key-Exposure Attacks

In 2003, Bl�omer and May [3] presented some new partial key exposure attacks
on RSA. Their results improve the bounds proved by Boneh, Durfee and Frankel.
Apart from attacks with known most or least signi�cant bits of d; they also present
attacks with known MSBs or LSBs of CRT-exponent dp: Below, we summarize
the main results of Bl�omer and May and outline the underlying ideas of their
proofs.The analysis presented assumes that p; q are of the same bitsize.

MSBs Known

Unlike Boneh, Durfee and Frankel who used the method for �nding p; q when
some of the bits of p are known, Bl�omer and May make direct use of Copper-
smith's method for �nding small solutions to modular multivariate equations. Con-
sequently, Bl�omer and May manage to improve the bounds by relaxing the require-
ment that k in equation 5.8 is known exactly. This requirement restricted the
method's usability to public exponents e with e ≤ N

1
2 :

Their main result for known MSBs is given in the following theorem. We note
again here that since the method is heuristic, the theorem's validity depends on
the non-occurence of zero-polynomials throughout the resultant computations.

124 Lattice-Based Attacks on RSA

Theorem 5.4.8

For every � > 0 there exists an integer N0 such that for every N > N0 the following
holds:
Let (N; e) be an RSA public key, where e = N� is in the range [N

1
2 ; N

√
6−1
2]: Given

an approximation d̃ of d with

|d− d̃| ≤ N
1
8
(5−2�−

√
36�2+12�−15)−�;

one can factor N in time polynomial in logN:

Proof Sketch. Bl�omer and May do not try to fully determine k in the equation

ed − k�(N) = 1: Instead, they use k̃ = ed̃−1
N+1 as an approximation of k: Let � =

1
8(5− 2�−

√
36�2 + 12�− 15)− �: Then

|k − k̃| =

∣∣∣∣∣ed− 1
�(N)

− ed̃− 1
N + 1

∣∣∣∣∣
=

∣∣∣∣∣(ed− 1)(N + 1)− (ed̃− 1)(N + 1− (p+ q))
�(N)(N + 1)

∣∣∣∣∣
≤

∣∣∣∣∣e(d− d̃)
�(N)

∣∣∣∣∣ +

∣∣∣∣∣(p+ q)(ed̃− 1)
�(N)(N + 1)

∣∣∣∣∣ ≤ e

�(N)
(N � + 3N− 1

2 d̃)

where we have used the fact that p + q < 3
√
N since p; q are balanced. Thus

(p+q)(ed̃−1)
N+1 ≤ 3N− 1

2 ed̃:
We consider the following two cases:

1. The term N � dominates N− 1
2 d̃: Then

|k − k̃| ≤ e

�(N)
(N � + 3N− 1

2
d̃) ≤ 4N �e

�(N)
≤ 8N �+�−1

since �(N) ≥ N
2 : But the conditions � = 1

8(5− 2�−
√

36�2 + 12�− 15)− �
and � ≥ 1

2 give that � + a − 1 ≤ 0: That is we can easily determine k from

k̃: If we determine k then we can compute p + q = N + 1 + k−1 mod e: On
the other hand, e ≥ N

1
2 and therefore (since p+ q ≤ 3N

1
2) we can �nd p+ q

over the integers and not only modulo e:

2. The term N− 1
2 d̃ dominates N �: Then

|k − k̃| ≤ 4eN− 1
2 d̃

�(N)
=

4N�− 1
2 d̃

�(N)
≤ 4N�− 1

2 :

Let d0 = d− d̃ and k0 = k − k̃: Then reformulating 5.8 we get

e(d̃+ d0)− 1 = (k̃ + k0)�(N)

5.4 Partial Key-Exposure Attacks 125

or equivalently

ed0 + (k̃ + k0)(p+ q − 1) + ed̃− 1 = (k̃ + k0)N: (5.12)

The above equation motivates the de�nition of the following trivariate poly-
nomial.

fN (x; y; z) = ex+ (k̃ + y)z + ed̃− 1

with a root (x0; y0; z0) = (d0; k0; p + q − 1) modulo N: If we de�ne X =
N �; Y = 4N�− 1

2 and Z = 3N
1
2 then we have that |x0| ≤ X; |y0| ≤ Y and

|z0| ≤ Z:
Following the typical approach for multivariate modular equations, Bl�omer
and May de�ne the following polynomials

gi;j;k(x; y; z) = xj−kzkN ifm−iN (x; y; z) for

0 ≤ i ≤ m

0 ≤ j ≤ i; and

0 ≤ k ≤ j

hi;j;k(x; y; z) = xjykN ifm−iN (x; y; z) for

0 ≤ i ≤ m

0 ≤ j ≤ i; and

1 ≤ k ≤ t

for a value t to be optimized.Notice that all these polynomials contain all
of the roots of fN modulo Nm: Next, they construct a lattice L the rows of
which correspond to the coe�cient vectors of the polynomials gi;j;k(xX; yY; zZ)
and hi;j;k(xX; yY; zZ): In order to derive the condition for X;Y and Z; they
apply Howgrave-Graham's lemma for the trivariate case (natural extension
of lemma 5.3.3 to three variables). The computation of the determinant and
the optimization with respect to t gives the following lemma (the proof can
be found in [3, Lemma 8, p.11]).

Lemma 5.4.9. Let X = N �; Y = N�− 1
2 and Z = N

1
2 : Then, using the LLL

algorithm, one can �nd three linearly independent vectors in L with norm
smaller than Nm√

dim(L)
provided that � ≤ 1

8(5− 2�−
√

36�2 + 12�− 15):

The above lemma implies that the condition of the theorem ensures that
we can �nd in polynomial time three polynomials h1(x; y; z), h2(x; y; z) and
h3(x; y; z) with the common root (x0; y0; z0): In order to recover the factor-
ization of N; we just have to �nd z0 = p+ q−1: To that end, we take the re-
sultants g1 = resx(h1; h2); g2 = resx(h1; h3) which are bivariate polynomials
in y; z: In order to eliminate y as well we take the resultant g′ = resy(g1; g2):
If none of the g′; g1; g2 is the zero polynomial, then we can extract the root
z0 and consequently factor N:

This completes the proof.

126 Lattice-Based Attacks on RSA

LSBs Known

Bl�omer and May also presented two methods for known LSBs. In their �rst
method, they present an attack that works for all but a negligible fraction of the
public exponent e < N

1
2 : Their approach makes use of the linear independence of

two su�ciently short vectors in the lattice and does not use Coppersmith's heuristic
technique. This, interestingly, leads to a rigorous method. In particular, they prove
the following theorem.

Theorem 5.4.10

Let N be an RSA modulus and let 0 < �; � < 1
2 : For all but a O(1

N�)-fraction of the
public exponent e in the interval [3; N�] the following holds: Let d be the private
exponent. Given d0;M satisfying d = d0 mod M with

N�+ 1
2
+� ≤M ≤ 2N�+ 1

2
+�:

Then N can be factored in polynomial time.

Proof Sketch. Let d = d1M + d0 where d1 is unknown. If we replace d in equation
5.8 and reorder the terms we get the following equation

ed1M + k(p+ q − 1)− 1 + ed0 = kN: (5.13)

which in turn motivates the de�nition of the polynomial

fN (x; y) = eMx+ y + ed0

with a root (x0; y0) = (d1; k(p+ q − 1)− 1) modulo N: In addition

k =
ed− 1
�(N)

<
ed

�(N)
< e ≤ N�:

This implies that k(p+ q − 1)− 1 < N� · 3N
1
2 = 3N

1
2
+�:Moreover,

d1 =
d− d0

M
<

N

M
≤ N

N
1
2
+�+�

= N
1
2
−�−�:

Thus, we can set the bounds X = N
1
2
−�−� and Y = 3N

1
2
+�: In order to recover

(x0; y0); Bl�omer and May again use Howgrave-Graham's lemma for the bivariate
case (lemma 5.3.3) and transform the modular equation to an equation over the
integers. For that, they use the auxiliary polynomials N and Nx and construct
the following 3-dimensional lattice L with basis

B =

 N
0 NX
ed0 eMX Y

 :

5.4 Partial Key-Exposure Attacks 127

Again, the goal is to �nd two small linearly independent vectors (a0; a1; a2)B and
(b0; b1; b2)B both having norm smaller than N√

3
: Since the lattice is three dimen-

sional, we can in fact compute two shortest linearly independent vectors in poly-
nomial time. It only remains to show that L contains indeed two such vectors. To
that end, they prove (the proof can be found in [3, lemma 10,p.14]) the following
lemma.

Lemma 5.4.11. Given N;�; � as de�ned in theorem 5.4.10. Then for all but
O(N�−�) choices of e in the interval [3; N�] the following holds: Let X = N

1
2
−�−�

and Y = 3N
1
2
+�: Then the lattice L contains two linearly independent vectors

with norm less than N√
3
:

Once we �nd these two vectors ~a = (a0; a1; a2) and ~b = (b0; b1; b2); we have the
following equations over the integers

a0N + a1Nx0 + a2fN (x0; y0) = 0;
b0N + b1Nx0 + b2fN (x0; y0) = 0:

Bl�omer and May go on to solve the above system without using resultant compu-
tations. Since fN (x0; y0) = kN; the above equations can be written as

a1x0 + a2k = −a0;
b1x0 + b2k = −b0:

(5.14)

An important observation is that the linear independence of ~a;~b along with 5.14
,implies the linear independence of (a1; a2); (b1; b2) (suppose in contrast that (a1; a2) =
�(b1; b2) for some � ∈ R; then equations 5.14 would give that a0 = �b0 which con-
tradicts the hypothesis that ~a;~b are lineraly independent). Thus, we can determine
(x0; k) as the unique solution of the linear system 5.14.Then we can compute y0

by the relation y0 = kN − eMx0 − ed0 and �nally get the factorization of N from
the relation p+ q − 1 = y0+1

k : This completes the proof.Note that the above result
is rigorous since it does not use resultant computations.

In their second method, they generalize the 3-dimensional approach to multi-
dimensional lattices. They manage to improve the bound for the public exponent
up to e < N

7
8 : However, unlike their �rst method which is provable, this one is

based on Coppersmith's multivariate approach and is therefore heuristic. Their
main result can be summarized in the following theorem

Theorem 5.4.12

For every � > 0 there exists N0 such that for every N ≥ N0 the following holds:
Let (N; e) be an RSA public key with e = N� ≤ N

7
8 : Let d be the private exponent.

Then given d0;M satisfying d ≡ d0 (modM) with

M ≥ N
1
6
+ 1

3

√
1+6�+�;

one can factor N in polynomial time.

128 Lattice-Based Attacks on RSA

Proof Sketch. Starting again with equation 5.8 and plugging in the value d =
d1M + d0 we get

k(N − (p+ q − 1))− ed0 + 1 = eMd1: (5.15)

This motivates the de�nition of the polynomial

feM (y; z) = y(N − z)− ed0 + 1

with the root (y0; z0) = (k; p+ q − 1) modulo eM: As in the previous theorem, we

set the bounds Y = N� and Z = 3N
1
2 such that |x0| ≤ X; |y0| ≤ Y: Next, Bl�omer

and May de�ne the polynomials

gi;j(y; z) = yj(eM)ifm−ieM (y; z) for

{
0 ≤ i ≤ m; and

0 ≤ j ≤ i;

hi;j(y; z) = zj(eM)ifm−ieM (y; z) for

{
0 ≤ i ≤ m; and

1 ≤ j ≤ t

for some integers m and t (to be optimized later). They go on by constructing a
lattice L(M) with basisB(m) consisting of the coe�cient vectors of the polynomials
gi;j(yY; zZ) and hi;j(yY; zZ): Obviously, all the integer linear combinations of gi;j
and hi;j have the root (y0; z0) modulo (eM)m which means that the �rst condition
of lemma 5.3.3 is satis�ed. For the satisfaction of the second condition, Bl�omer
and May [3, lemma 12, p. 16] prove the following lemma.

Lemma 5.4.13. Let e;M be as de�ned in theorem 5.4.12. Suppose that Y = N�

and Z = 3N
1
2 : Then LLL algorithm �nds at least two vectors in L(M) with norm

smaller than (eM)m√
dim(L(M))

:

Thus the condition of theorem 5.4.12 guarantees that one can �nd in polyno-
mial time two polynomials f1(y; z) and f2(y; z) with a root (y0; z0) = (k; p+ q− 1)
over the integers and consequently recover the factorization of N using resultant
computations. Of course, the attack is heuristic.

Known MSBs/LSBs and CRT-Exponents

Bl�omer and May extended their approach to fast RSA variants where the values
dp = d (mod p−1) and dq = d (mod q−1) are used in decryption process instead of
d: The attacks presented make use of a result due to Howgrave-Graham according
to which an approximation of kp for some unknown k with error bound N

1
4 su�ces

to factor N: The attacks are provable since they do not rely on the assumption of
non zero resultants. Their results for both LSBs and MSBs known are presented
in the following theorem.

Theorem 5.4.14

Let (N; e) be an RSA pair with N = pq; e = N� and secret exponent d: Let, in
addition, dp = d (mod p− 1):

5.4 Partial Key-Exposure Attacks 129

(a) Given d0;M such that e = N� ∈ [1; poly(logN)], d0 = dp (modM) and

M ≥ N
1
4 ; or

(b) Given d̃p such that � ∈ [0; 1
4] and |dp − d̃p| < N

1
4
−�;

then N can be factored in time polynomial in logN:

Proof. By de�nition of the RSA variant, we know that edp− 1 = k(p− 1) for some
k ∈ N: In addition,since dp < p− 1; k = edp−1

p−1 < e = N�:

(a) If we write dp = d1M + d0 then we have d1 <
dp
M < p

M ≤ 2N
1
4 : The above

equation can then be rewritten as follows:

ed0 + k − 1 = kp− eMd1:

If gcd(eM;N) 6= 1 then we obtain the factorization of N directly. Otherwise
let E be the inverse of eM modulo N: Then E ·eM = 1+cN for some c ∈ N:
Multiplying the above equation with E we get

E(ed0 + k − 1) = (Ek − cqd1)p− d1:

Suppose we know the value of k: Then we have an approximation of a multiple
of p up to an additive error d1 with d1 < 2N

1
4 : In addition q divides Ek−cqd1

if and only if q divides Ek: Since gcd(E;N) = gcd(eM;N) = 1 this condition
reduces to the condition q divides k: But if e < q then q cannot divide k (recall
that k < e). Thus we can apply theorem 5.2.3 and recover p as soon as we
have found the right k: It only remains to show how to �nd k: This can be
achieved by a brute force search in the interval [1; e): Then for each value of
k we run the algorithm of theorem 5.2.3 and for the right value we get the
factorization of N: By hypothesis the size of e is polynomially bounded by
logN which makes the whole attack work in time polynomial in logN: This
completes the �rst part of the proof.

(b) Since p; q are balanced and k < N� where � ≤ 1
4 ; q cannot divide k: The

equation edp − 1 = k(p− 1) gives kp = edp − 1 + k: De�ne p̃ = ed̃− 1: Then

|p̃− kp| = |ed̃− 1− (edp − 1 + k)| = |e(d̃− dp)− k|

≤ e|d̃− dp|+ |k| ≤ N� ·N
1
4
−� +N� ≤ 2N

1
4 :

We can then apply theorem 5.2.3 to factor N:

This completes the proof.

130 Lattice-Based Attacks on RSA

5.4.3 RSA-like Schemes with moduli N = prq

In 2004, May [28] presented some partial key-exposure attacks to RSA Schemes
with moduli N = prq: These attacks stem directly from the respective low private
exponent attacks presented in subsection 5.3.5 . May shows that in such schemes
it makes no di�erence whether the MSBs of d are zero or known to the attacker.
Consequently, unlike the partial key-exposure attacks against the original RSA
scheme, these attacks work for public exponents e of arbitrary size.

MSBs Known

The attacks for MSBs known are directly derived from theorems 5.3.23 and
5.3.24. We summarize May's results in the following theorem.

Theorem 5.4.15

Let N = prq; where r ≥ 2 is a known constant and p; q are primes of the same
bitsize. Let (e; d) ∈ Z × Z∗�(N) be the public-key/secret-key pair satisfying ed ≡
1 (mod�(N)): Given d̃ such that

|d− d̃| ≤ N
r

(r+1)2 ; or |d− d̃| ≤ N (r−1
r+1

)2 ;

one can factor N in (probabilistic) polynomial time.

Proof. For both conditions we begin with equation ed− 1 = k�(N):

1. (|d− d̃| ≤ N
r

(r+1)2). Then we know that

e(d− d̃) + ed̃− 1 = kpr−1(p− 1)(q − 1)

for some k ∈ N: Multiplying the above equation with E = e−1 modulo N
(eE = 1 + cN for some c ∈ N)we get

(d− d̃) + E(ed̃− 1) = (Ekpr−2(p− 1)(q − 1)− cpr−1q(d− d̃))p (5.16)

which means that E(ed̃−1) is a multiple of p up to an additive error |(d−d̃)| ≤
N

r

(r+1)2 : Using completely similar argumentation as in the proof of theorem
5.3.23 May proves that E(ed̃− 1) yields the factorization of N:

2. (|d − d̃| ≤ N (r−1
r+1

)2). Then if we rewrite 5.16 in a slightly di�erent way, we
get

(d− d̃) + E(ed̃− 1) = (Ek(p− 1)(q − 1)− cpq(d− d̃))pr−1:

May, then de�nes the polynomial fpr−1(x) = x + E(ed̃ − 1) which has a

small root x0 = d − d̃; |x0| < N (r−1
r+1

)2 modulo pr−1: The rest of the proof is
identical to the proof of theorem 5.3.24 where the polynomial in question is
fpr−1(x) = x+ E(ed̃− 1) instead of fpr−1(x) = x− E:

This completes the proof.

5.4 Partial Key-Exposure Attacks 131

LSBs Known

In a similar way, May proves the following results for known LSBs of the private
exponent d when the modulus is of the form N = prq:

Theorem 5.4.16

Let N = prq; where r ≥ 2 is a known constant and p; q are primes of the same
bitsize. Let (e; d) ∈ Z × Z∗�(N) be the public-key/secret-key pair satisfying ed ≡
1 (mod�(N)): Given d0;M with d = d0 mod M and

M ≥ N
1− r

(r+1)2 ; or M ≥ N
4r

(r+1)2

one can factor N in (probabilistic) polynomial time.

Proof. We start by writing d as d = d1M + d0:

1. (M ≥ N
1− r

(r+1)2).In that case d1 = d−d0
M < N

M ≤ N
r

(r+1)2 : The equation
ed− 1 = k�(N) can then be written as

ed1M + ed0 − 1 = kpr−1(p− 1)(q − 1); for some k ∈ N:

If we multiply the above equation with E = (eM)−1 mod N (eME = 1+cN
for some c ∈ N) we get

d1 + E(ed0 − 1) = (Ekpr−2(p− 1)(q − 1)− cpr−1qd1)p: (5.17)

which means that E(ed0 − 1) is a multiple of p up to an additive error

|d1| ≤ N
r

(r+1)2 : The rest of the proof follows the proof of theorem 5.3.23

2. (M ≥ N
1− 4r

(r+1)2). Now d1 <
N
M ≤ N

1− 4r
(r+1)2 = N (r−1

r+1
)2 The equation 5.17

can be rewritten as

d1 + E(ed0 − 1) = (Ek(p− 1)(q − 1)− cpqd1)pr−1:

This motivates the de�nition of the polynomial fpr−1(x) = x + E(ed0 − 1)

which has a small root x0 = d1; |x0| < N (r−1
r+1

)2 modulo pr−1: The rest of the
proof goes on like the proof of theorem 5.3.24.

This completes the proof.

LSBs/MSBs Known and CRT-Exponents

May also presents partial key-exposure attacks for RSA-like Schemes with mod-
uli N = prq when the values dp = d (mod p− 1) and dq = d (mod q − 1) are used
in the decryption process instead of d itself.These attacks, which are in a way a
generalization of the attacks by Bl�omer and May [3] (presented in 5.4.2), work
e�ciently for small public exponent e and for known both MSBs and LSBs. The
following theorem summarizes the results of May's attack.

132 Lattice-Based Attacks on RSA

Theorem 5.4.17

Let N = prq; where r ≥ 1 is a known constant and p; q are primes of the same
bitsize. Let e be the public key and let dp satisfy edp ≡ 1 (mod p− 1).

1. Given d0 andM such that d0 ≡ dp (modM) withM ≥ 2N
1

(r+1)2 and provided
that e is polynomially bounded by logN; or

2. Given d̃ such that |dp − d̃| ≤ N
r

(r+1)2
−�

and provided that � = logN (e) ∈
[0; r

(r+1)2
];

then N can be factored in time polynomial in logN:

Proof. The equation edp ≡ 1 (mod p− 1) implies that

edp − 1 = k(p− 1) for some k ∈ Z:

In addition, since dp < p − 1 the above equation gives that k < e: Finally, since

p; q are assumed balanced, we know that p ≤ 2N
1

r+1 :

1. Let us write dp = d1M +d0 with d1 = dp−d0

M < p
M ≤

2N
1

r+1

2N
1

(r+1)2
= N

r

(r+1)2 : We

rewrite the above equation as follows:

ed1M + ed0 + k − 1 = kp:

We compute E = (eM)−1, that is EeM = 1 + cN for some c ∈ N: Thus the
above equation becomes

d1 + E(ed0 + k − 1) = (Ek − cpr−1qd1)p:

Since k is unknown, we �rst do a brute force search for k in the interval [1; e):
For each possible value of k we run the algorithm of theorem 5.2.8 to recover
the factorization ofN: Notice that the conditions of theorem 5.2.8 are sati�ed
since the additive error d1 satis�es |d1| < N

r

(r+1)2 and pr−1q = Ω(N
r

r+1)
cannot divide k < e which is polynomially bounded by logN: In addition
the number of values k to be tested is polynomial in logN which makes the
whole attack polynomial in logN:

2. The equation edp − 1 = k(p− 1) gives kp = edp + k − 1: Thus

|err| =|kp− ed̃| = |e(dp − d̃) + k − 1| ≤ |e(dp − d̃)|+ |k − 1|

≤ N
r

(r+1)2
−� ·N� +N� ≤ 2N

r

(r+1)2 :

Thus ed̃ is a multiple of p up to an additive error |err| ≤ 2N
r

(r+1)2 : In

addition, k < e < N
r

(r+1)2 which means that k cannot be a multiple of
pr−1q = Ω(N

r
r+1): We can then apply theorem 5.2.8 to factor N:

This completes the proof.

Index

Adleman
Leonard, 81

applications, 81
attack

Bl�omer & May, 106
Boneh & Durfee, 103
CRT-Exponent, 107
low private exponent, 102
low public exponent, 92
small inverse, 103
small secret exponent N = prq, 115
Wiener, 102

attacks, 91

basis, 19
basis

well ordered, 38
bilinear, 14
Bleichenbacher

Daniel, 113
Blichfeldt

lemma, 28
Bl�omer

Johannes, 106, 123
Boneh

Dan, 100, 119

communication channel, 91
convex set, 30
Coppersmith, 56, 62, 63, 72, 89, 98, 112
Coppersmith

Don, 96
method, 63
theorem, 67, 92

Coron, 72
Coron

Jean-Sebastien, 86
Cryptography

Public-Key, 81
cryptosystem, 82
Cryptosystems

public-key, 82
symmetric, 82

Di�e
Whit�eld, 81

dimension, 19
Durfee

Glenn, 100, 119

eavesdropper, 91, 92
extended Riemann hypothesis, 86

factoring techniques, 97
Frankel

Yair, 119
Franklin

Matthew, 96
fundamental parallelepiped, 21

Gauss reduction, 36
Gram-Schmidt orthogonalization, 15

Hastad, 93
Hastad

broadcast attack, 93
Hellman

Martin, 81
Howgrave-Graham, 58, 63, 72
Howgrave-Graham

Nick, 100

inequality, 17

134 INDEX

inequality
Cauchy-Schwartz, 17
Hadamard, 18
norm, 17

integer equations , 71
bivariate , 72
multivariate, 79

lattice, 13
lattice

basis reduction, 35
determinant of, 24
shortest vector, 25
successive minima, 26

LLL
algorithm, 46
applications, 53
correctness, 47
running time analysis, 48
reduced basis, 42
reduction, 42

LLL algorithm, 35, 55, 105, 107

matrix, 13
matrix

unimodular, 22
May, 63
May

Alexander, 85, 86, 88, 106, 112, 115,
123

Miller
Gary, 86

Minkowski, 109
Minkowski

Convex Body Theorem, 28, 56
reduction, 35, 36

modular equations, 56
modular equations

multivariate, 68
univariate, 56

norm, 14
norm

of a polynomial, 57

one-way function, 81

polynomial
root equivalent, 57

polynomial equations, 55
private key, 82
public key, 82

random padding, 95
rank, 19
reduced basis, 36
reduction

LLL, 42
Minkowski, 36

resultant, 70
Rivest

Ronald, 81
RSA, 81, 82, 91

scalar product
de�nition, 13
properties, 13
standard, 14

set
convex, 30
symmetric, 30

Shamir
Adi, 81

Simultaneous Diophantine Approximation
Problem, 52

small CRT-exponent, 107
stereotyped message, 92
successive minima, 25
symmetric, 14
symmetric set, 30

trapdoor, 81

vector space, 19

Wiener, 102

Bibliography

[1] Daniel Bleichenbacher and Alexander May. "New Attacks on RSA with Small
Secret CRT-Exponents". In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes
in Computer Science, pages 1{13. Springer, 2006.

[2] Johannes Bl�omer and Alexander May. "Low Secret Exponent RSA Revisited".
In Silverman [35], pages 4{19.

[3] Johannes Bl�omer and Alexander May. "New Partial Key Exposure Attacks
on RSA". In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 27{43. Springer, 2003.

[4] Dan Boneh. "Twenty years of attacks on the RSA cryptosystem". "Notices
of the American Mathematical Society (AMS)", 46(2):203{213, 1999.

[5] Dan Boneh and Glenn Durfee. "Cryptanalysis of RSA with Private Key Less

than 0.292". In EUROCRYPT, pages 1{11, 1999.

[6] Dan Boneh, Glenn Durfee, and Yair Frankel. "An Attack on RSA Given a
Small Fraction of the Private Key Bits". In Kazuo Ohta and Dingyi Pei,
editors, ASIACRYPT, volume 1514 of Lecture Notes in Computer Science,
pages 25{34. Springer, 1998.

[7] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. "Factoring N = prq
for Large r". In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 326{337. Springer, 1999.

[8] Matthew Cary. "Lattice Basis Reduction, Algorithms and Applications". Feb-
ruary 2002.

[9] Don Coppersmith. "Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known". In EUROCRYPT, pages 178{189, 1996.

[10] Don Coppersmith. "Finding a Small Root of a Univariate Modular Equation".
In EUROCRYPT, pages 155{165, 1996.

[11] Don Coppersmith. "Small Solutions to Polynomial Equations, and Low Ex-
ponent RSA Vulnerabilities". J. Cryptology, 10(4):233{260, 1997.

136 BIBLIOGRAPHY

[12] Don Coppersmith. "Finding Small Solutions to Small Degree Polynomials".
In Silverman [35], pages 20{31.

[13] Don Coppersmith, Matthew K. Franklin, Jacques Patarin, and Michael K.
Reiter. "Low-Exponent RSA with Related Messages". In EUROCRYPT,
pages 1{9, 1996.

[14] Jean-S�ebastien Coron. "Finding Small Roots of Bivariate Integer Polyno-
mial Equations Revisited". In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages
492{505. Springer, 2004.

[15] Jean-Sebastien Coron and Alexander May. "Deterministic Polynomial Time
Equivalence of Computing the RSA Secret Key and Factoring". Cryptology
ePrint Archive, Report 2004/208, 2004. http://eprint.iacr.org/.

[16] Yair Frankel Dan Boneh, Glenn Durfee. Exposing an rsa private key given a
small fraction of its bits.

[17] Whit�eld Di�e and Martin Hellman. "new directions in cryptogra-
phy". IEEE Transactions on Information Theory, 22:644{654, 1976. URL:
http://cr.yp.to/bib/entries.html#1976/diffie.

[18] Glenn Durfee and Phong Q. Nguyen. "Cryptanalysis of the RSA Schemes with
Short Secret Exponent from Asiacrypt '99". In Tatsuaki Okamoto, editor,
ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 14{
29. Springer, 2000.

[19] Cynthia Dwork. "Lattices and Their Applications to Cryptography". Lecture
Notes, Stanford University, June 1998.

[20] Matthew K. Franklin and Michael K. Reiter. "A Linear Protocol Failure for
RSA with Exponent Three". Presented in rump session, Crypto 95, but not
in the proceedings.

[21] Johan Hastad. "Solving simultaneous modular equations of low de-
gree". SIAM Journal on Computing, 17:336{341, 1988. URL:
http://www.nada.kth.se/ johanh/papers.html.

[22] Jason Hinek. "Lattices Attacks in Cryptography: A Partial Overview". School
of Computer Science, University of Waterloo, Canada, October 2004.

[23] Nick Howgrave-Graham. "Finding Small Roots of Univariate Modular Equa-
tions Revisited". In Michael Darnell, editor, IMA Int. Conf., volume 1355 of
Lecture Notes in Computer Science, pages 131{142. Springer, 1997.

[24] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. "Factoring polynomials
with rational coe�cients". 261:515{534, 1982.

http://eprint.iacr.org/

BIBLIOGRAPHY 137

[25] Alexander May. "Cryptanalysis of Unbalanced RSA with Small CRT-
Exponent". In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 242{256. Springer, 2002.

[26] Alexander May. "New RSA Vulnerabilities Using lattice Reduction Meth-
ods". PhD thesis, University of Paderborn, http://www.informatik.tu-
darmstadt.de/KP/alex.html, October 2003.

[27] Alexander May. "Computing the RSA Secret Key Is Deterministic Polynomial
Time Equivalent to Factoring". In CRYPTO, pages 213{219, 2004.

[28] Alexander May. "Secret Exponent Attacks on RSA-type Schemes with Moduli
N= prq". In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public
Key Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
218{230. Springer, 2004.

[29] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. "Handbook
of Applied Cryptography". CRC Press, Inc., Boca Raton, FL, USA, 1996.

[30] Danielle Micciancio. "Lattices in Cryptography and Cryptanalysis". Lecture
Series, University of California, San Diego, Fall 2001.

[31] Maurice Mignotte. "An inequality about factors of polynomials". In Mathe-
matics of Computation, volume 28.

[32] Gary L. Miller. "Riemann's Hypothesis and tests for primality". In STOC
'75: Proceedings of seventh annual ACM symposium on Theory of computing,
pages 234{239, New York, NY, USA, 1975. ACM Press.

[33] Oded Regev. "Lattices in Computer Science". Lecture Series, Tel Aviv Uni-
versity, Fall 2004.

[34] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. "A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems". Commun. ACM,
21(2):120{126, 1978.

[35] Joseph H. Silverman, editor. Cryptography and Lattices, International Confer-
ence, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers,
volume 2146 of Lecture Notes in Computer Science. Springer, 2001.

[36] Ron Steinfeld and Yuliang Zheng. On the security of rsa with primes sharing
least-signi�cant bits. Appl. Algebra Eng. Commun. Comput., 15(3-4):179{200,
2004.

[37] Douglas Stinson. "Cryptography: Theory and Practice,Second Edition". CRC
Press, Inc., Boca Raton, FL, USA, 2002.

[38] Michael J. Wiener. "Cryptanalysis of short RSA secret exponents". IEEE
Transactions on Information Theory, 36(3):553{558, 1990.

	Introduction to Lattices
	Linear Algebra Preliminaries
	Notation
	Scalar Product
	Norm
	Orthogonal bases (Gram-Schmidt orthogonalization)
	Useful Inequalities

	Basic Definitions on Lattices
	Determinant
	Successive Minima
	Definitions
	Minkowski's Convex Body Theorem
	A Number Theoretic Application

	Lattice Basis Reduction
	Minkowski Reduction
	Two-Dimensional (Gauss) Reduction
	Definitions
	Correctness
	Running Time Analysis

	LLL Reduction
	Definitions and Properties of LLL Reduction
	LLL Algorithm
	Running Time Analysis
	Finding Solutions to the Simultaneous Diophantine Approximation Problem
	LLL Applications

	Finding Small Roots to Polynomial Equations
	Introduction
	Modular Polynomial Equations
	Univariate Case
	Extension to More than One Variables

	Integer Polynomial Equations
	Bivariate Case
	Multivariate Case

	A Positive Lattice Application to RSA
	The RSA Cryptosystem
	Computing d Factoring
	Balanced primes p,q
	Unbalanced primes p,q

	Lattice-Based Attacks on RSA
	Low Public Exponent Attacks
	Stereotyped Messages
	Hastad's Broadcast Attack
	Random Padding to Messages

	Lattice-Based Factoring Techniques
	Factoring RSA-moduli N=pq by knowing half of the bits of p
	Extension to moduli of the form N=prq

	Low Private Exponent Attacks
	Wiener Attack
	Boneh & Durfee (BD) Small Inverse Attack
	Blömer & May Low Private Exponent Attack (BM)
	Small CRT-Exponent Attacks
	Small Private Exponent Attacks to RSA Schemes with Moduli N=prq

	Partial Key-Exposure Attacks
	Boneh-Durfee-Frankel Partial-Key Exposure Attacks (BDF)
	Blömer-May Partial Key-Exposure Attacks
	RSA-like Schemes with moduli N=prq

