
Βλασία Σ. Αναγνωστοπούλου

Εκμετάλλευση των multi-core επεξεργαστών
για αριθμητικούς κώδικες περιορισμένους από

μνήμη με χρήση τεχνικών prefetching

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Νεκτάριος Κοζύρης
Επικ. Καθηγητής Ε.Μ.Π.

Αθήνα, Οκτώβριος 2006

Βλασία Σ. Αναγνωστοπούλου

Εκμετάλλευση των multi-core επεξεργαστών
για αριθμητικούς κώδικες περιορισμένους από

μνήμη με χρήση τεχνικών prefetching

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Νεκτάριος Κοζύρης

Επικ. Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 25η Οκτωβρίου 2006.

Αθήνα, Οκτώβριος 2006

............................
Νεκτάριος Κοζύρης
Επικ. Καθηγητής Ε.Μ.Π.

............................
Νικόλαος Παπασπύρου
Λέκτορας Ε.Μ.Π.

............................
Κωνσταντίνος Σαγώνας
Αναπλ. Καθηγητής Ε.Μ.Π.

...................................

Βλασία Αναγνωστοπούλου

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Βλασία Σ. Αναγνωστοπούλου, 2006
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται
η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της
εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Ευχαριστίες

Η εργασία εκπόνηθηκε σε συνεργασία του τομέα Τεχνολογίας Πληροφορικής και
Υπολογιστών της σχολής Ηλεκτρολόγων Μηχ.και Μηχ. Η/Υ του Εθνικού Μετσόβιου
Πολυτεχνείου, με την έδρα Rechnertechnik und Rechnerorganisation/
Parallelrechnerarchitektur του τμήματος Πλροφορικής (Fakultät für Informatik) του
Τεχνικού Πανεπιστημίου του Μονάχου (Technische Universität München), στα πλαίσια του
προγράμματος Σωκράτης/Έρασμος στο οποίο συμμετείχα κατά το ακαδημαϊκό έτος 2005-
2006. Θα ήθελα λοιπόν να ευχαριστήσω τον υπεύθυνο καθηγητή για την έδρα
Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur Prof. Dr. Arndt Bode,
για την ανάθεση διπλωματικής στη συγκεκριμένη έδρα, και τον επιβλέποντα για τη
συγκεκριμένη διπλωματική Dr. Josef Weidendorfer, για την πολύτιμη καθοδήγηση και
ενθάρρυνση σε όλη τη διάρκειά εκπόνησης της εργασίας. Ακόμα, θα ήθελα να
ευχαριστήσω τον Επίκουρο Καθηγητή του Ε.Μ.Π. Νεκτάριο Κοζύρη για την υπσστήριξη
και βοήθεια από την πρώτη στιγμή της ενασχόλησής μου με τη συγκεκριμένη εργασία.
Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου και τα αδέρφια μου για την υποστήριξη
σε όλη τη διάρκεια των σπουδών μου.

Acknowledgements

This work was fulfilled in cooperation between the sector Information and Computer
Technology of the Electrical and Computer Engineering school of the National Technical
University of Athens and the chair Rechnertechnik und Rechnerorganisation/
Parallelrechnerarchitektur of the Department of Informatics of the Technical University of
Munich, as part of the exchange program Socrates/Erasmus in which I participated during
the academic year 2005-2006. I would like to thank therefore, the chairman of the
Rechnertechnik und Rechnerorganisation/ Parallelrechnerarchitektur Prof. Dr. Arndt Bode,
for assigning to me a thesis in this chair, and the supervisor of the thesis Dr. Josef
Weidendorfer, for the precious guide and motivation during the whole time of the making of
this thesis. Moreover, I would like to thank the Assistant Professor of the N.T.U.A.
Nektarios Koziris for the support and help from the very first moment of my occupation
with this thesis. Finally, I would like to thank my parents and my brother and sisters for the
support during the whole time of my studies.

Abstract

Numerical codes occur in almost all science and engineering disciplines; e.g., compu-tational
uid dynamics take e�ect on applications such as aeronautics, automotive,power generation, chemical and petrochemical process. They consist of small kernels,each carrying out a large number of Floating Point operations on proportionally big datasets. Moreover, such codes introduce signi�cant portion of iterations. If we suppose thatthe data sets resided entirely in the main memory and every time that data were neededfor computation were fetched from the main memory, then numerical codes would beconfounded to very poor execution times, because of the existing barrier for quickmemory accesses. Happily, memory hierarchy and optimizing techniques that can beapplied to numerical codes as well have existed since a long time, bringing the executiontimes of numerical codes up to satisfactory levels.From the existing optimization techniques, the technique of prefetching data could beproved as particularly bene�cial when speaking of numerical codes that act on large dataportions, especially if a multi-core processor would be utilized as a prefetch engine. Thepotential of improvement of the execution times from the utilization of this techniqueand the further investigation of such a possible gain comprise the subject of this Thesis.

5

Table of contentsTable of contents . 7List of �gures . 91 . 111.1 Motivation . 111.2 Structure . 132 . 152.1 CPU Designs for Enhancing Performance . 152.1.1 Instruction Level Parallelism . 162.1.2 Thread Level Parallelism . 172.2 Memory Organization for Greater Performance . 182.2.1 Memory Hierarchy . 182.2.2 Aspects of Caches . 202.3 Other Optimization Techniques . 212.3.1 Loop Optimizations . 222.3.2 Data Prefetch . 243 . 273.1 Implementation Schema . 273.2 Decisions over the Implementation Schema . 283.2.1 Loop-Blocking Optimization . 283.2.2 Prefetch Optimization . 293.2.3 In UNIX: Threads over Processes . 293.2.4 E�ective Scheduling for Multi-core Processors 303.2.5 Inter-thread Communication . 313.2.6 Schematic Depiction of the Inter-thread Communication 343.3 Implementation of the Prefetch Thread . 354 . 374.1 Addition and Multiplication Benchmarks . 384.1.1 Naive Code . 384.1.2 Code with blocked loops . 404.1.3 Code including the Prefetch Thread . 434.1.4 Prefetch Interleaved into the Code . 464.2 Jacobi Method Benchmark . 504.3 Computational Fluid Dynamics . 537

5 . 555.1 Addition Benchmark . 565.2 Multiplication Benchmark . 605.3 Jacobi Benchmark . 646 . 69Appendix A . 73Appendix B . 75

8 Table of contents

List of �guresCache and main memory hierarchy . 12Double-core's architecture . 12Architecture of the POWER4 double-core processor [11] . 18A typical memory hierarchy . 19Cache organizations . 21Access stride . 23Array access patterns with and without loop blocking . 24[13]: 1D Blocking Optimization . 28[13]: Prefetch Optimization . 29The Ping-Pong E�ect . 30Ring bu�er . 31Inter-thread Communication . 34Naive Addition Benchmark . 38Stride of Naive Matrix Multiplication . 40Loop-blocked Addition Benchmark . 41Loop-blocked Matrix Multiplication . 42Access Pattern of Loop-Blocked Matrix Multiplication . 42Loop-blocked with Thread Prefetch Addition Benchmark . 44Addition Benchmark with Interleaved Prefetch . 47Matrix Multiplication with Interleaved Prefetch . 49Loop-blocked Jacobi Benchmark . 53Array addition schema . 56On Yonah: For many iterations, the gain of the prefetch cannot be demonstrated 57On Yonah: Bandwidth as a function of the array size . 58On Woodcrest: Bandwidth as a function of the array size . 58Addition Benchmark: Prefetch (from thread and interleaved) impact on the bandwidth 59Matrix multiplication schema . 60On Yonah: Bandwidth as a function of the dimension X . 61On Woodcrest: Bandwidth as a function of the dimension X . 61Multiplication Benchmark: Prefetch (threaded and interleaved) impact 62On Yonah: Bandwidth as a function of size X when kblock=25 . 63On Yonah: E�ect of the size of kblock in the Performance Gain 63Jacobi Benchmark Schema . 64On Yonah: Bandwidth as a function of the size X . 65On Woodcrest: Bandwidth as a function of the size X . 65Bandwidth improvement of the naive code with loop blocking and prefetch 66Bandwidth decrement because of the inclusion of prefetch on the loop-blocked code 67
9

10 List of �gures

Chapter 1
Introduction

1.1 MotivationThe gap between CPU and memory speeds widens as processor speeds are increasingat a rate greater than the one of memory speeds [5]. What is more, this performance gapis estimated to continue increasing. Besides, there is a bandwidth problem with memory.Thus, there is a barrier to performance at memory. This barrier is a major obstacle tocomputer performance and even more to performance of numerical codes. It worsens theoverall execution time and generally holds us back from taking full advantage of thepotentials of current CPUs. It is clear that this memory barrier has to be overcome.Present day computers have a hierarchy of memory as a way of reducing this memorybarrier. The hierarchy of memory introduces small fast memory, that is termed cache, atthe top of the hierarchy closest to the CPU, getting larger and slower down the hier-archy, further away from the CPU. Usually there are two levels of caches included: afast, small, level 1 (L1) cache and a relatively slower, larger, level 2 (L2) cache. L2 cacheis faster than main memory access. Data that do not reside in L2 cache have to befetched from the main memory. Given that the cache is faster than the main memory inful�lling a CPU's memory requests, one clearly needs to maximaze the number of cachehits which are the accesses that can be satis�ed from the cache.11

When the data set to be computed of a numerical application is large such that it nolonger �ts in the cache, clearly the program is condemned to poor performance. There-fore, the code should be implemented in a cache aware manner, meaning that it shouldbe optimized so as to maximize the number of the accesses that can be satis�ed from theL2 cache. In this case, the cache hierarchy can be a good solution to the memory bar-rier.

Figure 1.1. Cache and main memory hierarchyNew generation computers and servers since a few years already adopt the multi-corearchitecture, by including multiple cores on a single chip. One core is only able to handleone executional stream at a time. In a multi-core chip where multiple cores exist, eachcore can process one executional stream at a time. A di�erence of a multi-core systemcomparing to a single core is then that the microprocessor can handle multiple execu-tional streams simultaneously and these executional streams can be handled indepen-dently to each other. Moreover, two cores might share some resources of the system; e.g.the L2 cache, the memory and the bus controller. We will exploit the case where twocores and therefore the tasks that are run on them share the same L2 cache, for the rea-sons explained below.

Figure 1.2. Double-core's architecture

12

As long as a code can be divided in autonomous executional streams, an approach asfor the utilization of a second core is to use the core in order to run each executionalstream on a seperate core in parallel and therefore improve the CPU speed. Such anapproach however, would not improve the memory speed at all. On the other hand, byimproving the CPU speed, it would contribute in the ampli�cation of the gap betweenCPU and memory speeds. In another approach, the code is not divided in executionalstreams, but remains as a single stream of instructions. A new task is introduced to runon the second core. This task shall be responsible for fetching from the main memoryinto the cache data that are to be utilized by the main code (data prefetch). Therefore,at the time of execution, the code will not have to fetch the data that reside in the cachealready and therefore, the memory latency could be reduced. Since numerical codes acton large data sets, a fact that memorywise introduces great memory latency, it is clearfrom the above that there can be a potential for signi�cant gain for such codes with theemployment of the second approach. Moreover, this is the reason why in this thesis weexperiment on multicore machines that by two share a common L2 cache, because wewant to realize the above approach.We implement three benchmark applications in order to measure such a possible per-formance gain. As far as the �rst benchmark is concerned, it is an application that goesthrough the elements of an array multiple times performing the summing operation. Thesecond benchmark is an implementation of the matrix multiplication procedure. Lastly,as third benchmark application we implement the Jacobi method. We will compare theperformance of the above benchmarks for a naive implementation, for an implementationwhere the blocking technique is included, for an implementation the prefetch of data bya second core is introduced and for an implementation where prefetch instructions areinterleaved within the main code.
1.2 StructureThis thesis follows the following structure; in the �rst chapter we discuss the basicconcepts for enhancing the performance of the CPU and the memory. In the secondchapter we explain the schemas that we utilized in order to implement the the bench-marks, while we defend our choice over each particular schema. In the third chapter weexplain exactly how the benchmarks work and we present the codes of the di�erent ver-sions for each benchmark. Afterwards comes the results chapter, where we give thegraphical interpretation of the measurements that we conducted. In the �fth and lastchapter we present our conlusions.

1.2 Structure 13

Chapter 2

Concepts for Enhancing Performance

Numerical schemes over the past years have focused on iterative methods [1]. Suchschemes are characterized by computational kernels based on loop nests, applyingFloating Operations operations on large data sets. Therefore, there is a growing demandfor continiously enhancing CPU computational power/capabilities. Throughout the pastyears there have been many methodologies for the design of CPUs and the memorysystem introduced. In this chapter, we will discuss bene�cial concerning the performancemethodologies that we have used in our benchmarks for the deployment of the CPU, andafterwards aspects of the optimal organization of the memory.2.1 CPU Designs for Enhancing Performance
15

Attempts to achieve better performance have resulted in a variety of design method-ologies that cause the CPU to behave less serial and more in parallel. When referring toparallelism in CPUs, two terms are generally used to classify these design techniques;instruction level parallelism and thread level parallelism. We explain both in the fol-lowing subsections.
2.1.1 Instruction Level ParallelismInstruction Level Parallelism (ILP) seeks to increase the rate at which instructionsare executed within a CPU. One of the simplest methods to accomplish increased paral-lelism is to begin the �rst steps of instruction fetching and decoding before the priorinstruction �nishes executing. This is the simplest form of Pipelining, a technique that isutilized in almost all modern general-purpose CPUs. Pipelining allows more than oneinstruction to be executed at any given time by breaking down the execution pathwayinto discrete stages. This separation can be compared to an assembly line, in which aninstruction is made more complete at each stage until it exits the execution pipeline andis retired.Pipelining does, however, introduce the possibility for a situation where the result ofthe previous operation is needed to complete the next operation; a condition oftentermed data dependency con
ict. To cope with this, additional care must be taken tocheck for these sorts of conditions and delay a portion of the instruction pipeline if thisoccurs. Naturally, accomplishing this requires additional circuitry. A pipelined processorcan become very nearly scalar, inhibited only by pipeline stalls (an instruction spendingmore than one clock cycle in a stage).Designs that are said to be superscalar include a long instruction pipeline and mul-tiple identical execution units. In a superscalar pipeline, multiple instructions are readand passed to a dispatcher, which decides whether or not the instructions can be exe-cuted in parallel (simultaneously). If so they are dispatched to available execution units,resulting in the ability for several instructions to be executed simultaneously. In general,the more instructions a superscalar CPU is able to dispatch simultaneously to waitingexecution units, the more instructions will be completed in a given cycle.Most of the di�culty in the design of a superscalar CPU architecture lies in creatingan e�ective dispatcher. The dispatcher needs to be able to quickly and correctly deter-mine whether instructions can be executed in parallel, as well as dispatch them in such away as to keep as many execution units busy as possible. This requires that the instruc-tion pipeline is �lled as often as possible and gives rise to the need in superscalar archi-tectures for signi�cant amounts of CPU cache. It also makes hazard-avoiding techniqueslike branch prediction, speculative execution, and out-of-order execution crucial to main-taining high levels of performance. By attempting to predict which branch a conditionalinstruction will take (branch prediction), the CPU can minimize the number of timesthat the entire pipeline must wait until a conditional instruction is completed. Specula-

16

tive execution often provides modest performance increases by executing portions of codethat may or may not be needed after a conditional operation completes. Out-of-orderexecution somewhat rearranges the order in which instructions are executed to reducedelays due to data dependencies.Both simple pipelining and superscalar design increase a CPU's ILP by allowing asingle processor to complete execution of instructions at rates surpassing one InstructionPer Cycle (IPC) (according to the Best-case scenario). Most modern CPU designs aresuperscalar, and nearly all general purpose CPUs designed in the last decade are super-scalar.In later years some of the emphasis in designing high-ILP computers has been movedout of the CPU's hardware and into its software interface. A set of instructions that areissued in a given clock cycle as one large instruction with multiple operations is termedas Very Long Instruction Word (VLIW) and the respective strategy causes some ILP tobecome implied directly by the software, reducing the amount of work the CPU mustperform to boost ILP and thereby reducing the design's complexity.
2.1.2 Thread Level ParallelismThe other commonly used strategy to increase parallelism of CPUs is to include theability to run multiple threads at the same time, named Thread Level Parallelism (TLP)strategy. A thread is de�ned as an independent stream of instructions that can be sched-uled to run as such by the operating system. In the context of single processor design,the two main methodologies used to accomplish TLP are chip-level multiprocessing andsimultaneous multithreading. While using very di�erent means, both techniques accom-plish the same goal: increasing the number of threads that the CPU(s) can run in par-allel.Simultaneous multithreading (SMT) is a topic out of the scope of this thesis and forthis reason it is not going to be discussed here. In the case of chip-level multiprocessing(CMP), also known as Multicore, multiple processor cores are included, each executingone thread independently. A multi-core microprocessor is one which combines two ormore independent processors into a single package, often a single integrated circuit. Mul-tiple processor cores typically share a common second level cache (L2) and interconnect,while they may share a common third level cache (L3) as well. An architectural schemaof a typical double-core processor can be seen in the picture below.The sharing of cache(s) among the cores is of particular importance for this thesis;having the ability to handle a second thread running independently and simultaneouslyfrom the main, we are going to have this thread utilized by the main thread, in order toget support in the ``costly" task of having to retrieve from the main memory the hugeamount of data that typically underlie in numerical applications.

2.1 CPU Designs for Enhancing Performance 17

Figure 2.1. Architecture of the POWER4 double-core processor [11]
2.2 Memory Organization for Greater PerformanceThe impact of the constantly increasing gap between main memory performance andtheoretically available CPU performance on the execution speed of an application isreferred to as the memory wall. This is interpreted as the relatively low CPU to mainmemory bandwidth as well as the high latency of main memory accesses. Present daycomputers adopt a hierarchy of memory as a way of reducing this memory barrier andproviding a reasonable amount of fast memory that programmers desire. Moreover, oncethe code respects the underlying hierarchical memory architecture, e�cient executioncan be expected [1]. This event is particularly utile for numerical applications thatdemand fast execution times. We will describe the hierarchical design of memory in thefollowing section.2.2.1 Memory HierarchyThe foundation stone of the memory hierarchy is the cache. The cache is a small, fastmemory which stores copies of the data from the most frequently used main memorylocations. Because of their limited size, caches can only hold copies of recently used data

18

or code. Typically, when new data is loaded into the cache, other data has to bereplaced. Caches improve performance only if data which has already been loaded isreused before being replaced. The reason why caches can substantially reduce programexecution time is the principle of locality of references [2]. Locality can be subdividedinto temporal locality and spatial locality. A sequence of references exhibits temporallocality if recently accessed data will be accessed again in the near future. A sequence ofreferences exposes spatial locality if data located close together in address space tends tobe referenced within a short period of time. The code optimization techniques we willdiscuss in the following Chapters aim at enhancing both temporal and spatial locality.The hierarchy of memory consists of small fast memory at the top of the hierarchywhich is closest to the processor, getting larger and slower down the hierarchy furtheraway from the processor. There is a small and very fast memory sitting on top of thehierarchy which is usually integrated within the processor chip to provide data with lowlatency and high bandwidth; i.e., the CPU registers. The memory components which arelocated between the processor core and the main memory are called caches. They areintended to contain copies of memory blocks to speed accesses to frequently needed data.The �rst level or L1 is integrated within the processor core itself (on-chip) and there-fore, it is very fast. The L1 is often split into two separate parts; one for keeping data,the other for keeping instrcutions. The size of on-chip L1 cache is bounded to verysmall sizes, so as the signals from a very fast CPU do not to take too long. The nextlevel of cache, called L2 or secondary cache, can reside inside or outside the core (o�-chip). Typically, L2 caches provide data with lower bandwidth and higher access latencythan L1 caches. In case that L2 is on-chip, a level three or L3 cache, typically o�-chip,can be added. The size of this cache is signi�cantly larger than the size of L2 cache andthe bandwidth lower than the one of L2. The next lower level of the memory hierarchyis the main memory which is large but also comparably low. External memory such ashard disk drives or remote memory components in a distributed computing environmentrepresent the lower end of any common hierarchical memory design.

Figure 2.2. A typical memory hierarchy

2.2 Memory Organization for Greater Performance 19

2.2.2 Aspects of CachesFor the reference to the hierarchy of memory to be complete, we will have at thispoint to brie
y report aspects such as the organization and the replacement policies ofcaches.Data within the cache are stored in (cache) lines. Caches have a certain organizationwhich describes in what way the lines are organized within the cache. Direct mapped isa simple and e�cient organization [3]. The memory address of the incoming cache linecontrols which cache location is going to be used. In a direct mapped organization, thereplacement policy is built-in because cache line replacement is controlled by thememory address. In many cases this design works well, but, because the candidate loca-tion is controlled by the memory address and not the usage, this policy has the potentialdownside of replacing a cache line that still contains information needed shortly after-wards. Any line with the same address modulo the cache size, will map onto the samecache location.The fully associative cache design solves the potential problem of thrashing with adirect-mapped cache. The replacement policy is no longer a function of the memoryaddress, but considers usage instead. With this design, typically the oldest cache line isevicted from the cache. This policy is called least recently used (see below as well). Thedownside of a fully associative design is cost, as additional logic is required to trackusage of lines. The larger the cache, the higher the cost. Therefore, it is di�cult to scalethis technology to very large (data) caches. Luckily, a good alternative exists.A set-associative cache design uses several direct-mapped caches. Each cache is oftenreferred to as a set. On an incoming request, the cache controller decides which set theline will go into. Within the set, a direct-mapped scheme is used to allocate a slot in thecache. The name re
ects the number of direct-mapped caches. For example, in a 2-wayset associative design two direct mapped caches are used.When the cache wishes to access a datum, it �rst checks the cache. The situationwhen the datum is found in the cache is known as a cache hit. The alternative situation,when the cache is consulted and found not to contain a desired datum, is known as acache miss.Since the cache has limited storage, it may have to eject some other entry in order tomake room when a cache miss occurs. The heuristic used to select the entry to eject isknown as the replacement policy. One popular replacement policy, the least recentlyused (LRU) policy, replaces the least recently used entry, respecting this way the tem-poral locality. More e�cient caches compute the frequency of utilization against the sizeof the stored contents, as well as the latencies and throughputs for both the cache andthe memory. Other replacement strategies are the least frequently used (LFU) and the�rst in, �rst out (FIFO). The LFU refers to the replacement of the datum in the cachewhich has least frequenlty been used, while the latter stands for the replacement of thedatum which has been residing in the cache for the longest time. Another approach isthe random replacement policy. Eventually, the optimal replacement strategy replacesthe datum which will not be accessed for the longest time. It can be possible to imple-ment this strategy in a real cache since it requires information about future cache refer-ences, yet, the strategy is only of theoretical value [4] .

20

When a datum is written to the cache, it must at some point be written to thememory as well. The timing of this write is controlled by what is known as the writepolicy. In a write-through cache, every write to the cache causes a write to the memory.Alternatively, in a write-back cache, writes are not immediately mirrored to the store.Instead, the cache tracks which of its locations have been written over. The data inthese locations is written back to the memory when that data is evicted from the cache.For this reason, a miss in a write-back cache will often require two memory accesses toservice: one to retrieve the needed datum, and one to write replaced data from the cacheto the store.

Figure 2.3. Cache organizations
2.3 Other Optimization TechniquesIn order to reduce the memory barrier, the cache residence of memory of accessesshould be improved. There are several techniques that are used in order to achieve thisgoal. For the scope of this thesis, we will focus on three basic loop optimizations and thedata prefetch. A loop optimization acts on the statements which make up a loop, such asa for loop. Loop optimizations can have a signi�cant impact for numerical codes,because as we have already pointed out that such codes spend a large percentage of theirtime within (computational) loops. On the other hand, with data prefetch data is movedinto the cache prior to usage. Taking into account the largeness of the data sets under-

2.3 Other Optimization Techniques 21

lying in numerical applications, data prefetch can have a signi�cant bene�t in the execu-tion times of these applications. We will refer with more detail to both of these tech-niques in the following sections.2.3.1 Loop OptimizationsA lot of compiler analysis and optimization techniques have been developed so as tomake the execution of loops faster, since loop transformations play an important role inimproving cache performance and in the e�ective use of parallel processing capabilities.We will focus on three common loop transformations which we will later apply to thesynthetic benchmarks developed for this thesis; i.e. loop interchange, loop blocking andloop fusion.Loop interchange is a technique in which the nesting of loops are interchanged sothat access of data from memory is in order that they are stored. One major purpose ofloop interchange is to improve the cache performance for accessing array elements.Cache misses occur if the contiguously accessed array elements within the loop comefrom a di�erent cache line; loop interchange can help prevent this. For example, in thecode fragment:for j = 1 to n dofor i = 1 to n dosum += a[i, j] ;end forend forTable 2.1.loop interchange would result in:for i = 1 to n dofor j = 1 to n dosum+ = a[i, j] ;end forend forTable 2.2.The bene�t of this method is that when taking into account the programming lan-guage, it improves the stride. An array with stride 1 has elements which are contiguousin memory. Such strides are generally more e�cient than non-unit stride arrays, due tothe e�ects of caches. However, the programming language makes a di�erence. In the Cprogramming language, the array elements from the same row are stored consecutively,namely in row-major order. On the other hand, FORTRAN programs store array ele-ments from the same column together, called column-major. Thus the order of two loopsin the �rst example is suitable for C program while the second example is better forFORTRAN.

22

Figure 2.4. Access strideLoop blocking is a technique that improves the temporal locality of data. Instead ofoperating on entire rows or columns of a matrix which may be too big to �t in the cache,blocked algorithms operate on sub-matrices or, data blocks. Then, the data that is beingfetched into the cache can be used repeatedly before being swapped out. In the syntheticbenchmarks, we will actually combine this technique with data prefetch. The followingcode fragment:for i = 1 to n dofor j = 1 to n doa[i, j] = b[i, j] ;end forend forTable 2.3.after the loops are blocked becomes:for ii = 1 to n by B dofor jj = 1 to n by B dofor i = ii to min(ii + B - 1, n) dofor j = jj to min(jj + B - 1, n) doa[i, j] = b[i, j] ;end forend forend forend for Table 2.4.

2.3 Other Optimization Techniques 23

Figure 2.5. Array access patterns with and without loop blockingLoop fusion is a another method to improve the temporal locality. When the samedata is used in a task during seperate sections of code, it is better to bring them close tothe same sections in the code. Then the data that is being fetched into the cache can beused repeatedly before being swapped out. The following code:for i=1 to n doa[i]5 1 ;end forfor i=1 to n dob[i]5 2 ;end forTable 2.5.when the loops are fused will be transformed as:for i=1 to n doa[i]5 1 ;b[i]5 2 ;end forTable 2.6.
2.3.2 Data Prefetch

24

Prefetching is fetching data into cache before the processor actually needs it. Hope-fully, it is then available by the time the processor needs it. Even if it has not arrivedyet, it will help in reducing the processor stall time [5]. Therefore, thanks to prefetch,the memory latency can be hidden to a certain extent. Prefetching can be accomplishedwith compiler
ags, via programmer intervention, or by hardware [6]. Software-basedprefetching requires a special processor instruction which can be used by the compiler orprogrammer to issue the load from main memory. Having cache-lines longer than oneword is an example of hardware-based prefetching: data brought into cache is accompa-nied by surrounding data; if the data exhibits spatial locality, then the surrounding datahas usefully been prefetched. One of the main di�culties with prefetching is its lack ofportability due to high machine dependence. Although long cache-lines support suc-cessful prefetching when the data exhibits spatial locality, long cache-lines also tend toincrease con
ict misses due to associativity problems. Also, support from the program-ming languages for application programmers to e�ectively use the hardware prefetchinstruction is limited or non-existent [7]. Thus prefetching, though bene�cial, has itsshare of concerns.To hide the latency, the processor must perform su�cient other activities to allowtime for the actual prefetching to occur. These activities may not be present in theapplication, or there are not enough other resources (for example, registers) availablewhile the prefetch operation is in progress. Despite these potential drawbacks, prefetch isa powerful technique to improve application performance, and is worth considering aspart of tuning the performance of an application [13].

2.3 Other Optimization Techniques 25

Chapter 3

Implementation Infrastructure
3.1 Implementation SchemaFetching data from main memory generally costs a lot. When speaking of numericalapplications which utilize large data sets, data have to be fetched from the main memorycontinuously during execution, as typically the proportion of these data sets signi�cantlyexceeds the capacity of the cache. Therefore, in this thesis we consider the prefetchingtechnique as a means of reducing the latency, by avoiding or reducing the time that theprocessor is waiting for data to arrive in the registers. There are many methodologies toimplement the prefetching technique, normally depending on the architecture of the com-puter.Since numerical applications order millions of millions Floating Operations persecond (teraFLOPS), a trade-o� in the use of the CPU for running a prefetching taskwould do more harm than good. It is obvious that for the prefetching to be bene�cial,the lattest must not burden the calculations. A numerical application can be realized asa thread running on one core (which from now on will be referred to as main thread),while another thread running on another core will be considered for prefetching to theL2 cache the data needed during the calculations of the main thread. The latter will bereferenced to as prefetch thread. Moreover, since the two cores share a common Level 227

cache, the latency could be reduced from CPU-memory levels to CPU-cache levels. Inthe following, we will discuss important aspects of the above schema.3.2 Decisions over the Implementation SchemaThe basic aspects of the implementation schema are the loop-blocking optimization,the prefetch optimization, the employment of threads instead of processes, the e�ecticescheduling in the case of multicore systems with more than two cores and the use of aring bu�er in the common address space of the two threads. We will discuss each aspectin detail in its respective subsection.3.2.1 Loop-Blocking OptimizationIn the benchmarks used in this thesis, prefetch will be software implemented as athread (prefetch thread). This thread expects to be noti�ed by the main thread in orderto initiate the movement of data from memory towards the processor. In order to furtheranalyze the implementation of the prefetch, we introduce a trivial computational schemathat will be included in our benchmarks as well.Let's assume an iterative loop that sums up the elements of an array. In order to beable to talk about prefetch, we have to apply the loop-blocking technique �rst (see �gurebelow [13]). When the size of the array is larger than the size of the cache, data have tobe fetched from main memory during the iterations of the whole array, resulting in mainmemory bandwidth. With the loop-blocking method, once the subarrays of data aresmaller than the cache size, only the �rst time that the data are requested, will they befetched from the memory. During all other iterations, the data will reside already in thecache. The bigger the number of iterations, the more the bandwidth will tend to cachebandwidth. The following �gure, taken from [13], illutrates the above:

Figure 3.1. [13]: 1D Blocking Optimization

28

3.2.2 Prefetch OptimizationIf we add prefetch to the schema, we avert the latencies of the �rst data subarrayfetch from memory for all the subarrays except for the �rst one (see �gure [13]). In itera-tive numerical codes that act on large data sets, this optimization can be very bene�cial.

Figure 3.2. [13]: Prefetch Optimization
3.2.3 In UNIX: Threads over ProcessesWe mentioned that responsible for the prefetch of data in our benchmarks will be aprefetching thread. We will use the UNIX implementation of threads, which is calledPOSIX threads or Pthreads and adhere to the IEEE POSIX 1003.1c standard. In thissection, we defend this choice over other implementation options.Technically, a thread is de�ned as an independent stream of instructions that can bescheduled to run as such by the operating system [14]. A process in UNIX is created bythe operating system, and requires a fair amount of overhead. On the other hand, athread in the UNIX environment exists within a process, while it has its own indepen-dent
ow of control. It duplicates only the essential resources it needs to be indepen-dently schedulable. A thread is referred to as ``lightweight process" because most of theoverhead has already been accomplished through the creation of its process [14]. We canconclude therefore, that for the creation of a new task, in this case the prefetch task, athread will cause less overhead than a process will.

3.2 Decisions over the Implementation Schema 29

Moreover, managing threads requires fewer system resources than managing pro-cesses. All threads within a process share the same address space, a property that we areusing for the communication between the main and the prefetch thread in order to coor-dinate the
ow of the prefetch. We are going to discuss thoroughly over this thema in afollowing section of this chapter. Inter-thread communication is more e�cient and inmany cases, easier to use than inter-process communication [14]. An utilization of sharedmemory among processes is more di�cult to set up than among threads. From theabove, it is obvious that thread management is easier, and most importanly more timee�cient than process management.3.2.4 E�ective Scheduling for Multi-core ProcessorsIn multi-core processors arises the issue of scheduling multiple threads or processeson multiple processors in a valid, but also time e�cient manner. We will discuss overtwo known scheduling methods for resolving such situations; the gang scheduling algo-rithm and the processor a�nity.Gang scheduling is a scheduling algorithm that schedules related threads or processesto run simultaneously on di�erent processors. Usually these will be threads all belongingto the same process, but they may also be from di�erent processes. Gang scheduling isused so that if two threads or processes communicate with each other, they will all beready to communicate at the same time. If they were not gang-scheduled, then one couldwait to send or receive a message to another while it is sleeping, and vice-versa.The ability to bind one or more processes to one or more processors is called CPUa�nity. This feature, that has been long provided by operating systems such as Win-dows NT, has been lately included in the UNIX/Linux operating system as well [15].The �rst bene�t of CPU a�nity is optimizing cache performance. Multiprocessingcomputers go through a lot of trouble to keep the processor caches valid. Data can bekept in only one processor's shared cache at a time. Otherwise, the processor's cachemay grow out of synchonization, leading to the question, who has the data that is themost up-to-date copy of the main memory. Consequently, whenever a processor adds aline of data to its local cache, when a write occurs, all the other processors in the systemalso caching it must invalidate that data. This invalidation is costly. But the realproblem comes into play when processes bounce between processors (e�ect known as thePing-Pong E�ect, see �gure below); they constantly cause cache invalidations, and thedata they want is never in the cache when they need it. Thus, cache miss rates growvery large. CPU a�nity protects against this and improves cache performance [15].
Figure 3.3. The Ping-Pong E�ect

30

A second bene�t of CPU a�nity is a corollary to the �rst. If multiple threads areaccessing the same data, it might make sense to bind them all to the same processor.Doing so guarantees that the threads do not contend over data and cause cache misses[15], property of high importance for multi-core processors with shared caches.Commonly, in a dual-processor system, the specialized application is bound to oneprocessor, and all other processes are bound to the other processor. This ensures thatthe specialized application receives the full attention of the processor [15]. In our case,this event ensures that the main thread will be run on one processor, while theprefetching thread will be run on a second processor. This way the independent andsimultaneous execution of the two threads is guaranteed.3.2.5 Inter-thread CommunicationWe mentioned before that the communication between the main and the prefetchingthread will take place within their common address space. This is the fastest way inorder to have two threads communicating, as other communicating methods such as theutilization of UNIX signals or the use of semaphores require the tra�cing through theoperating system and thus, they introduce a time overhead. For this reason, we willde�ne in the common address space a ring bu�er. A ring or circular bu�er is a methodof using memory, the features of which will be mentioned later in this section.

Figure 3.4. Ring bu�erThe schema of the inter-thread communication that we used is explained in the fol-lowing; the prefetch thread checks the ring bu�er continuously for prefetch requests. Themain thread will put a prefetch request in the ring bu�er whenever it desires that aspeci�c block of data must be retrieved from memory and at that moment the prefetchthread will extract and execute the request. Since we run the main and the prefetchthreads on di�erent cores, according to what we have demonstrated so far, the responseof the prefetch thread to the ``discovery" of a prefetch request in the ring bu�er has tobe spontaneous.

3.2 Decisions over the Implementation Schema 31

Since the data storage for the bu�er should be large enough to hold as much data asthe data source will produce while the user of the data is either working with the data oris otherwise not reading it, in our case a bu�er able to hold one unit of data should beenough. However, because we want to be completely sure that the main thread will notwaste a moment waiting for the prefetch thread to extract the prefetch request, wede�ne a bu�er of 10 units. Each unit of the bu�er will have the size of a prefetchrequest, that from now on will be referred to as command.We will discuss the �elds that each command should consist of. Appart from theprefetch command, we want to de�ne a command that will be able to kill the prefetchthread, intended to be used after all blocks have been prefetched. Therefore, because wewant to have two types of commands, we include a �eld to indicate the type of the com-mand (as integer variable). A prefetch command has to know the address of the �rstdatum that is supposed to prefetch and moreover, since our benchmarks intend toexamine schemes used in numerical applications, we will de�ne a pointer to double asour starting-address �eld. Last but not least, we must include the length of the desiredblock to be prefetched, for the prefetch thread to know when to stop retrieving datafrom memory.struct command fint type ;double *�rstAddress ;int length ;gTable 3.1. Structure of a command (inC)For access to the ring bu�er by the two threads, we will introduce a writing and areading pointer. The two pointers indicate where in memory the next data should beread or written. Each time data is read, the read pointer moves forward, going back tothe beginning after reading the last thing in the bu�er. Each time data is written, thewrite pointer moves forward, going back to the beginning after writing to the last posi-tion in the bu�er.If the read and write pointers point to the same spot in the bu�er, that might meanthat there is no data in the bu�er (nothing has yet been written to the spot we nextwant to read from) or that the bu�er is full (the next place we want to write already hasin it data we have not yet read). As a way to make the distinction, we maintain a sepa-rate indication of whether there is data in the bu�er, the number of elements in thebu�er (number of commands).struct commonAddressSpace fint readPointer, writePointer ;int numberofCommands ;struct command ringBu�er[10] ;gTable 3.2. Structure of the ring bu�er (in C)

32

Putting it all together, the writing of a command in the ring bu�er will be imple-mented according to the code fragment of the following table:if (numberofCommands< 10) fringBu�er[writePointer] = command ;writePointer = (writePointer+1)%10 ; //...modulo10 ;++numberofCommands ;g Table 3.3. Writing a command in the ring bu�er (in C)The prefetch command will be formatted as:void WritePrefetchCommand (double *�rstAddress , int length) f/* de�ne a new command */struct command anewCommand ;/* set the type of the command to ``prefetch" type and *//* assign the argument values to the respective �elds of the command */anewCommand.type = ``prefetch type" ;anewCommand.�rstAddress = �rstAddress ;anewCommand.lengt = length ;/*write the command to the ring bu�er *//* code from Table 1.3. here */g Table 3.4. Structure of a prefetch commandOn the other hand, the command intended to kill the prefetch thread will have theform: void WriteKillCommand () fstruct command anewCommand ;/* set the type of the command to ``kill prefetch thread" type */anewCommand.type = ``kill prefetch thread type" ;/* the �lling of the rest of the �elds is not required *//*write the command to the ring bu�er *//* code from Table 1.3. here */g Table 3.5. Structure of command to kill the prefetch thead

3.2 Decisions over the Implementation Schema 33

3.2.6 Schematic Depiction of the Inter-thread Communica-tion

Figure 3.5. Inter-thread CommunicationIn the �rst �gure the ring bu�er is empty, i.e. no command has been written in thebu�er yet. Moving to the following �gure (Figure 1.5.ii), the main thread decides toprefetch a block of data from the memory or just kill the prefetch thread. Therefore, itcreates an appropriate command and this command writes to the ring bu�er either viathe void WritePrefetchCommand (double *�rstAddress , int length) function, or viathe WriteKillCommand() command, respectively. Both functions move the write pointerto the next position of the bu�er, while they increase the
ag of the number of com-mands in the ring bu�er (see code in Table 1.3, Figure 1.5.iii). The command is detectedimmediately, since the number of commands is now changed and the prefetch thread hasbeen checking on this variable continuously. The reaction of the prefetch thread is todirectly retrieve the command (Figure 1.5.iv). In the last �gure (Figure 1.5.v), the readpointer is moved to the next position of the ring bu�er and the retrieved command canbe now overwritten.

34

3.3 Implementation of the Prefetch ThreadIn order to have the whole inter-thread communication issue completely demon-strated, we give the code for the prefetch thread. At this point we have to mention thatthe same code is used in all the benchmarks, therefore, it is independent from the imple-mentation of the main thread. The code for the prefetch thread is maintened in aseperate �le that could be imported by future applications as well.while (1) fif (numberofCommands) f--numberofCommands ;retrievedCommand = ringBu�er[readPointer] ;readPointer = (readPointer+1)%10 ;switch (type) fcase ``prefetch type": f�rstAddress = retrievedCommand.�rstAddress ;lastAddress = �rstAddress + length ;for (i=�rstAddress ; i<lastAddress ; i+=8)dummySum += *i ;break ;gcase ``kill prefetch thread type": fpthread-exit(NULL) ;break ;gggg Table 3.6. Prefetch Thread CodeIt is obvious from the combination of the while-if condition that the prefetch threadwill constantly check whether the number of commands is increased, event that meansthat a command has been written to the ring bu�er. First action taken in case a com-mand has been indeed written to the ring bu�er is to reduce by one the number of com-mands, so that the main thread is be able to write another command, with simultaneousshifting of the read pointer by one position. Within the switch loop there takes place theactual reading of the command; at �rst is the type of the command retrieved in orderthat the correct case body is choosen. In case the command is ``prefetch type", then thecontents of the data contained in the addresses between the address of the �rst datum ofthe block to the last datum by 8, are summed up in a dummy variable. The reason whydata are prefetched 8 by 8 doubles (or 64 by 64 byte) is that data are fetched frommemory in lines and the double-core processor that we have used doing our experimentshas 64 byte cache line size.

3.3 Implementation of the Prefetch Thread 35

Moreover, for the data to be retrieved it is not enough that we load a variable withtheir value and later overwrite this variable, as this action will be removed by the com-piler optimization as useless for the program. This is the reason why we �nally sum upthe contents of the data in a variable and indeed a global one; because we do want thatthis action actually takes place and it is not removed by the compiler.
36

Chapter 4
Synthetic Benchmarks

Most of the CFD codes on the market today feature a powerful algebraic solver basedon multigrid methods. Multigrid methods in numerical analysis are a group of iterativealgorithms for solving di�erential equations using a hierarchy of discretizations. Multi-grid methods are among the most attractive algorithms for the solution of large sparsesystems of equations that arise in the solution of elliptic partial di�erential equations [5].They can be among the fastest solution techniques known today and as expected, theperformance of CFD codes based on such methods could also be signi�cantly improved.For the scope of this thesis, we develop three synthetic benchmarks. Two areintended to perform basic operations encountered in real iterative solvers, like solversbased on multigrid methods; i.e. addition and multiplication. They consist of small com-putational kernels operating on large 1D or 2D arrays, which are structures typicallyused in iterative solvers. The actual codes of real iterative solvers can be very complex,while the benchmarks simulate basic operations from iterative solvers but are relativelysimple. Therefore, with these benchmarks we are comfortably allowed to investigate apotential gain of the the prefetch technique on a multicore system, while we could(approximately) scale this gain for real applications as well. The third benchmark is animplementation of a real iterative method, the Jacobi method and hence, a potentialperformance gain can be valued directly. All three benchmarks are thoroughly explainedgiven their codes and in �gures, in the three following sections. In the last section wediscuss generally over the applications of CFD.37

4.1 Addition and Multiplication BenchmarksThe �rst benchmark is a program that iteratively sums up the elements of a largearray of doubles. The iterative summation of a large portion of elements is the founda-tion stone of every typical numerical code. For example, let us consider the red-blackGauss-Seidel as a smoother in the multigrid method. The standard Gauss-Seidel repeat-edly performs one complete sweep through the grid from bottom to top updating all thered nodes and then performs another complete sweep updating all the black nodes. Ared node can be updated for the ith time by getting the mean average of its neighbouringblacks that have been updated for the (i � 1)th time; a black can be updated for the ithtime by getting the mean average value of its neighbouring reds that have been updatedfor the (i� 1)th time [5].If we consider thus, that the updating of a single node for a single a moment requiresfour addition operations, the volume of the nodes and the iterativeness of the procedure,it is clear that a huge number of additions will take place at a full execution of theGauss-Seidel. Therefore, it makes sense that we develop as �rst benchmark, a programthat repeatedly adds the elements of a large array of data. In the following, we will givethe code in stages, at each stage having optimized the code for the extraction of moreperformance.4.1.1 Naive CodeIn the naive implementation of the addition benchmark, the elements of a 1D arrayof doubles are summed iteratively, as illustrated in the Table below.for iter=1 to ITERATIONS dofor i=1 to SIZE dosum+=a[i] ;end forend for Table 4.1.

Figure 4.1. Naive Addition Benchmark

38

In the naive implementation of the second benchmark, two 2D arrays are multipliedin a simple way; i.e. the �rst row of the multiplicand array is consecutively multipliedwith the columns of the multiplier array, the second row is multiplied with the columnsof the multiplier array etc. The code is given below:double a[M;N], b[M;K], c[K;N] ;for i=1 to M dofor j=1 to N dofor k=1 to K doa[i; j]5 b[i; k] � c[k; j] ;end forend forend for Table 4.2.We mentioned before that the smallest block of data moved in and out of a cache isa cache-line. A cache-line holds data that is stored contiguously in memory. Typically,when a datum is to be retrieved from the memory, the hardware fetches the whole lineinto the cache. Although many hardware systems prefetch the neighbouring cacheline(s)when a particular cache-line is fetched as well [5], for this thesis we will accept that onlya single cache-line is fetched. Thus, it is advantageous to lay contiguously in memory thedata that we are going to use in succession, because then an improvement of the spatiallocality will be ensured. For this reason, we are going to map all the 2D matrices into1D memory addresses, as illustrated below:double �a, � b, � c ;/* space assignment with malloc */for i=1 to M dofor j=1 to N dofor k=1 to K doa[i �N + j]5 b[i�K + k] � c[k �N + j] ;end forend forend for Table 4.3.To further improve performance, the programmer can lay the data in memoryaccording to the access pattern, technique known as data laying. Then, when a cache-line is brought into the cache, it also e�ectively prefetches the data that is to be neededin the near future. If elements in a data block are laid by access, spatial locality isimproved. In this case, since we use k as innermost loop and the program is written inC language where array elements are stored in row-major order, the access stride for

4.1 Addition and Multiplication Benchmarks 39

array b will be 1, while the access stride for array c will be equal to the cache-line size(that is 64), as illustrated in the following �gure:

Figure 4.2. Stride of Naive Matrix MultiplicationClearly, while array b is accessed in an optimal way, as far as exploiting the hard-ware cache-line prefetch is concerned, the way array c is accessed is not bene�ting at allfrom the hardware prefetch. In case that array c is large such as not to �t in the cache,then the access pattern of array c will ``cost" a lot at the execution of the code. We aregoing to change the access pattern of array c so as to bene�t from the hardware cache-line prefetch, without spoiling the stride of array b in the following section.
4.1.2 Code with blocked loopsAssuming that the array is too large to �t in the cache, the data of the lower part ofthe array are no longer in the cache when the elements of the upper part of the array aresummed up, because they been replaced by the latter. Hence, the data must be reloadedfrom the slower main memory into the cache again. In this process newly accessed ele-ments replace the elements of the upper part of the array in the cache, and as a conse-quence they have to be loaded from the main memory once more at the time of theirnext update. The performance degrades further when the array size increases. This per-formance bottleneck at memory is also seen in most other scienti�c applications [5].In general, the cost of
oating point operations is rapidly decreasing. Moving data iswhat makes computing expensive. Although there are di�erent ways of organizing on-chip and o�-chip memory, programmers will have to learn that reasonable performanceof a system could only be expected with programs being aware of the reduced perfor-

40

mance of the o�-chip memory access [5]. In the following, we attempt to avert this bot-tleneck by employing loop optimizations and the prefetch optimization mentioned in theprevious chapter.Wherever the loop-blocking technique is included, the code operates on a submatrixcalled data block, in contrast with the operation on a whole matrix that may too big too�t into the cache. As discussed in the above section, such case is responsible for amemory performance bottleneck. In this version of the benchmarks, instead of operatingon the entire array iteratively, the code operates iteratively on subarrays (array blocks)that are able to �t into the cache. Therefore, each data subarray is thoroughly usedbefore it is evicted from the cache. From memory's point of view and in comparison tothe naive case, operating on small subarrays means that each subarray is fetched fromthe main memory once and then thoroughly used while it resides in the cache, while inthe naive case, a portion of data has to be fetched to the cache as many times as theiterations. The respective code for the addition benchmark is given in the table:for ii=1 to SIZE by ablockfor iter=1 to ITERATIONSfor i=1 to min(ii+ablock , SIZE)sum +=a[i] ;end forend forend for Table 4.4.

Figure 4.3. Loop-blocked Addition BenchmarkAs for the multiplication benchmark, we introduce the division of the M and Kdimensions into blocks of iblock and kblock sizes in respect. This potential is the onlyfeasible according to the loop-blocking technique, as our purpose is to have index j as

4.1 Addition and Multiplication Benchmarks 41

innnermost loop, so as to change the ``bad" stride of array c to unit stride. The respec-tive code is:for ii=1 to M by iblock dofor kk=1 to K by kblock dofor i= ii to min(ii+iblock , M) dofor k=kk to min(kk+kblock , K) dofor j=1 to N doa[i�N + j]5 b[i �K + k] � c[k �N + j] ;end forend forend forend forend for Table 4.5.Figure 4.4. Loop-blocked Matrix MultiplicationIndeed the stride of array c will be changed to unit stride, while the stride of array bwill be di�erent than before but still the elements will be accessed in a column-majorway, which is the most e�cient way to access data from C programs that are stored con-secutively in memory. There follows the illustration of the stride for the loop-blockedimplementation of the matrix multiplication benchmark:

Figure 4.5. Access Pattern of Loop-Blocked Matrix Multiplication

42

4.1.3 Code including the Prefetch ThreadIn this implementation we try to hide the latency caused by the fetching of an arrayblock from the main memory. For this purpose we are going to use a prefetch threadhandled by a second code. We already demonstrated that when two cores are available,a thread created by a process will be binded to the other core from the one that itself isrun. Considering the main code as a process bound to one core, a prefetch thread cre-ated by this process will then be bound to the second core. Therefore, when a multicoremachine is used, there is no burden in the main procedure by the handling of a prefetchthread.The idea is that the prefetch thread fetches each time the future array block to beused into the cache, so that the main process (or main thread) at the time of execution�nds this block in the cache and therefore, does not need to fetch it itself from the mainmemory. Only the �rst array block is fetched from the main memory by the main pro-cess itself. Moreover, the more the subarrays, the higher the bene�t from the prefetch.The code for the addition benchmark can be illustrated as:for ii=1 to SIZE by ablockbeginif ii <SIZE-ablockprefetch from a[ii+ablock] to a[ii+2*ablock] ;end iffor iter=1 to ITERATIONSfor i=1 to min(ii+ablock , SIZE)sum+=a[i] ;end forend forend beginend for Table 4.6.

4.1 Addition and Multiplication Benchmarks 43

Figure 4.6. Loop-blocked with Thread Prefetch Addition BenchmarkOn the other hand, the code for the matrix multiplication benchmark will be:for ii=1 to M by iblock dofor kk=1 to K by kblock dobeginif kk <K � kblockprefetch from c[N � (kk+kblock)] to c[N � (kk+2 � kblock)] ;else if kk =K � kbclock and ii <M � iblockprefetch from c[0] to c[N � kblock] ;end ifend iffor i= ii to min(ii+iblock , M) dofor k=kk to min(kk+kblock , K) dofor j=1 to N doa[i �N + j]5 b[i �K + k] � c[k �N + j] ;end forend forend forend beginend forend for Table 4.7.

44

Table 4.8. Loop-blocked with Prefetch Thread Matrix Multiplication

4.1 Addition and Multiplication Benchmarks 45

4.1.4 Prefetch Interleaved into the CodeIn this section we introduce prefetch embedded in the code. There is neither going tobe a second thread to do data prefetch anymore, nor a second core. The idea isto ``plant" in the main process or thread prefetch instructions. Then, at the time that ablock is calculated, the data that constitute the next block stored in memory, the blockthat will be brought up afterwards (we have already discussed how we store our data inthe memory in a consecutive way, so as to improve the spatial locality) are prefetchedinto the cache. Naturally, this type of prefetching causes an overhead in the main prcess.In order to keep low this overhead, we take advantage of the cache-line hardwareprefetch (when a datum is to be fetched to the cache, the whole line that it belongs isfetched as well) and prefetch a datum or array element every 64 byte, which is the cache-line size. Then, the overhead should be a lot less (around 8 times less, if the arrays con-sist of doubles, like in our case) comparing to the overhead that would be caused in casewe prefetched all the data of the consecutive block. Moreover, the smaller the chunk ofdata that we prefetch each time that we come along a prefetch instruction in the code,the less the overhead, as this would mean more overlap for the main process. Last butnot least, the prefetch instructions should be ``planted" in the code in a sparse way,again so that the main process is not often distracted by the prefetch instructions andtherefore, the overhead is not too high.We present the code for the Addition Benchmark that includes embedded prefetchinstructions. In this benchmark, at the time that a block is summed up repeatedly theretake place ablock � ITERATIONS operations. Moreover, since each block (subarray) is ofsize ablock and we explained in the above that we only need to prefetch a double every64 byte or 8 doubles, it is enough that we prefetch in total ablock (doubles)8(doubles) or (if we sim-plify the doubles) ablock8 doubles. Therefore, in the Addition Benchmark, a double mustbe prefetched every ablock � ITERATIONSablock8 or by simplifying the ablock, ITERATIONS � 8.Preftstep is the rate at which we should prefetch a double, namely the result ITERA-

46

TIONS � 8. Moreover, we de�ne a count variable that will be used as a counter forcounting the summing operations that intermediate between two operations at which weprefetch a fraction of data . Last but not least, the prefetched doubles are stored into adummy variable, which is de�ned as a global one, or else it is removed by the optimiza-tion of the compiler as useless. In this case, no prefetching would take place.prefstep = ITER.*8 ;for(ii=0 ; ii<X ; ii+=ablock) fo�set= 0 ;for(iter=0 ; iter< ITER. ; iter++) fmini= min(ii+ablock, X) ;for (i=ii ; i<mini ; i+=prefstep) fif (ii<X-ablock)dummySum= *(a+ii+ablock+o�set) ;for (count=i ; count< i+prefstep ; count++)doubleSum += a[i] ;ggg Table 4.9.

Figure 4.7. Addition Benchmark with Interleaved Prefetch

4.1 Addition and Multiplication Benchmarks 47

We give the interleaved code for the Matrix Multiplication Benchmark. First of all,for every multiplication between blocks we have iblock � kblock �N operations or iblock �kblock operations including N operations each. The second notation holds if we considerthat each element of an iblock � kblock block of array b is multiplied with a whole row ofarray c. Since one row of array c contains N elements, the total number of operationswill be iblock � kblock � N . On the other hand, the number of doubles that we have toprefetch, taking into account the fact that we only need to prefetch a double every 64byte or 8 doubles, is kblock � N / 8. If we make the simpli�cations, we notice that wehave to prefetch N / (iblock � 8) doubles every time an element of an iblock � kblock ismultiplied with a row of array c.Besides the o�set that will go over the data of the data block to be prefetched 8 by 8(doubles), we de�ne the sublineO�set that will be our
ag of how many doubles toprefetch at every moment. Therefore, we are going to prefetch data as long as the o�setof the prefetched data is smaller than this sublineO�set.for (ii=0 ; ii<M ; ii+=iblock)for (kk=0 ; kk<K ; kk+=kblock) fo�set = 0 ;sublineO�set = (N/iblock) ;for (i=ii ; i<min(ii+iblock, M) ; i++)for (k=kk ; k<min(kk+kblock, K) ; k++) fif (kk<K-kblock) fdummySum += *(c+N*(kk+kblock)+o�set) ;o�set += 8 ;while(o�set<= sublineO�set) fdummySum += *(c+N*(kk+kblock)+o�set) ;o�set += 8 ;gsublineO�set += (N/iblock) ;gelse if (kk==K-kblock && ii<M-iblock) fdummySum += *c ;o�set += 8 ;while (o�set<=sublineO�set) fdummySum += *(c+o�set) ;o�set += 8 ;gsublineO�set += (N/iblock) ;gfor (j=0 ; j<N ; j++)a[i*N + j] += b[i*K + k]*c[k*N + j] ;gg Table 4.10.

48

Figure 4.8. Matrix Multiplication with Interleaved Prefetch

4.1 Addition and Multiplication Benchmarks 49

4.2 Jacobi Method BenchmarkThe jacobi method is used in real iterative solvers, therefore it is important that weinvestigate a potential gain arising from the use of the loop-optimization techniques andthe prefetch optimization on the respective benchmark. In this benchmark, we use twomatrices, one containing the initial values that will be used for the updating of thevalues of the other matrix. Typically, a matrix in the jacobi method is updated two,three or four times. In this benchmark we will update a matrix three times.We present the code in C; array b will be the array with the initialized values andtherefore the one that will be only once updated, while array a will be the array with thenon-initialized values that will be twice updated. Both matrices naturally share the samedimensions, that is N for the row-major order dimension and M for the column-majororder dimension.Moreover, in this benchmark we introduce 1D blocking. Both matrices will bedivided in respect to their row-major order dimension in iblocks. The reason for thischoice arises from the fact that the innermost loop is the one with j as index, thereforethe stride is already unit (optimal for C programs). Each time we will fetch to the cacheblocks of size iblock*M, size that we will have to make sure that it is smaller than thesize of the cache. Then these blocks will be repeatedly used for the �rst relaxation of therespective iblock of array a, the �rst relaxation of the respective iblock of array b andthe second relaxation of the iblock of array a. In case that we include the prefetchthread as well (see if(use-prefetch) condition loop), then the latency of each �rst fetch ofa block from the memory will be skipped, as the block will have already been fetchedinto the cache by the prefetch thead. This property has to do with the fact that theprefetch thread when run on a second core, which is our case, adds no overhead to theprocess or main thread that it came from.

50

/* relax for the �rst time the �rst two rows of matrix a */for (i=1 ; i< 3 ; i++)for (j=1 ; j<M-1 ; j++)relax(a[i �M + j]) ;/* relax for the �rst time the two rows after the �rst two rows of matrix a *//* relax for the �rst time the �rst two rows of matrix b */for (i=3 ; i< 5 ; i++)for (j=1 ; j<M-1 ; j++) frelax(a[i �M + j]) ;relax(b[((i� 2) �M + j]) ;g/* relax for the �rst time the two rows after the �rst four rows of matrix a *//* relax for the �rst time the two rows after the �rst two rows of matrix b *//* relax for the second time the �rst two rows of matrix a */counter= 1 ;for (ii=-1 ; ii<N-1 ; ii+=iblock) fendo�block= counter*iblock-1 ;counter++ ;if (use-prefetch)if (ii<N-ibclok-1)prefetch from b[M � (ii+iblock � 1)] to b[M � (ii+2 � iblock � 1)] ;for (i=ii ; i<min(endo�block, N) ; i++) f/* the �rst four rows have already been once or twice relaxed */if (i>=5)for (j=1 ; j<M-1 ; j++) frelax(a[i �M + j]) ;relax(b[((i� 2) �M + j]) ;relax(a[((i� 4) �M + j]) ;ggg/* relax for the �rst time the two last rows of array b *//* relax for the second time the four last rows of array a */i=N-2 ;for (j=1 ; j<M-1 ; j++) frelax(b[((i� 1) �M + j]) ;relax(b[i �M + j]) ;gfor (j=1 ; j<M-1 ; j++) frelax(a[((i� 3) �M + j]) ;relax(a[((i� 2) �M + j]) ;relax(a[((i� 1) �M + j]) ;relax(a[i �M + j]) ;g Table 4.11.

4.2 Jacobi Method Benchmark 51

// case relax(a[...])f a[i �M + j] = 0.25*(b[(i� 1) �M + j]+b[(i+1) �M + j]+b[i �M +(j � 1)]+b[i �M +(j � 1)]) ;break ;g// case relax(b[...])f b[i �M + j] = 0.25*(a[(i� 1) �M + j]+a[(i+1) �M + j]+a[i �M +(j � 1)]+a[i �M +(j+1)]) ;break ;g Table 4.12. relax(...)

52

Figure 4.9. Loop-blocked Jacobi Benchmark
4.3 Computational Fluid DynamicsThe methologies in CPU design, memory organization, as well as the other optimiza-tion techniques have a signi�cant impact on the performance of computational
uid

4.3 Computational Fluid Dynamics 53

dynamics applications. The reason why will be explained in the last paragraph.Computational
uid dynamics (CFD) is a computer modelling technique that cansimulate the
ow of liquids, gases and particles, reactions, heat transfer and other phe-nomena [8]. From its origins as a tool primarily for use in heat transfer, usage of compu-tational
uid dynamics has spread to a wide range of other �elds, such as aerodynamicsand hydrodynamics, plasma instability studies in fusion, bio
uid mechanics, speciesstudies in quantum chemistry, geophysics, atmospheric
ows, and so on. Marine scien-tists and other non-aeronautical researchers have shared the frustrations of turbulencemodelling, accurately simulating transient phenomena fundamental to viscous
ows, oreven the inadequacies of background meshes to resolve the intricacies of small-scalee�ects [9].Moreover, CFD o�ers a number of signi�cant advantages, including cost e�ectiveness,risk reduction and safety. As far as the cost e�ectiveness is concerned, CFD allowstesting of a large number of variables without modifying existing plants. Secondly, CFDcan predict performance at any scale, thereby minimising the risk inherent in designinglarge-scale plants and reducing the number of pilot stages required to scale-up. Last butnot least, CFD is particularly useful in simulating conditions where it is not possible totake detailed measurements [8].CFD uses numerical methods and algorithms to solve and analyze problems thatinvolve
uid
ows. It is one of the most important applications areas for high-perfor-mance computing [10]. The idea of high-performance computing is based on the factthat the process of solving a problem usually can be divided into smaller tasks, whichmay be carried out simultaneously with some coordination. As we mentioned before, inmulticore systems each core allows the indepedent handling of a thread. In iterative ver-sions of CFD applications that implement numerical methods, the computational kernelsunder speci�c circumstances can be considered as independent tasks. Therefore when aCFD application is able of being properly split up, it's performance on a multi-coresystem can be signi�cantly improved.

54

Chapter 5

Results

In order to test the benchmarks, we used two machines: the Core Duo processor(nicknamed Yonah) and the Core 2 Duo processor (nicknamed Woodcrest) by Intel. Inthe appendix we provide the characteristics of each processor. Each time we measuredone proportion against the bandwidth of the benchmark on a speci�c machine. Sincethe benchmarks have more than one proportions that could be alternated, each time wealterated one proportion, while kept the others on a �xed value. As for the bandwidth ofthe benchmarks, this is actually the bandwidth to the register �le of the CPU, i.e. L1 toRegisters, as this is the only available bandwidth to the benchmarks.
55

5.1 Addition BenchmarkIn the addition benchmark there are three variable proportions (parameters in thecode); the size of the array, the size of the block that we will use in order to ``divide" thearray for the loop-blocking technique and the number of the times that the process willbe repeated, i.e. the number of iterations. As long as the size of the array is smallerthan the size of the cache, which implies that the array can �t completely into the cache,we expect to get the maximum bandwidth of the benchmark. In the �gure below, wepresent the schema of this benchmark:
Figure 5.1. Array addition schemaMoreover, the bandwidth, while the array size does not exceed the size of the cache,should be same, both when no prefetch is included and when we introduce the prefetchthread. Since the prefetch thread runs on a second core simultaneously and indepen-dently from the main thread, we expect that it is not going to cause any overhead to themain process/thread. The only overhead that the prefetch thread can cause is at thetime of its creation or killing by the process that created the prefetch thread on the �rstplace. However, this overhead does not a�ect our measurements, since we only measurethe execution time of the computational loops of the benchmarks and not the overallexecution time of the program.In all our measurements over the addition benchmark, we are going to �x the numberof iterations to the smallest possible; i.e. two iterations. We do this, because this is thebest way to demonstrate a possible performance gain from prefetch. We discussed howprefetch contributes to avoiding the memory latency each time a data block (from the

56

loop-blocking technique) has to be fetched from memory. With prefetch, every blockresides in the cache before it is executed, as the prefetch thread has it fetched alreadyfrom the time that the previous block was executed. Since for the calculation of thebandwidth the execution time of all the iterations is used, if the number of the iterationsis large, then the execution time measured when prefetch is included will tend to theexecution time measured as if prefetch was not included.Even if the calculations are repeated 5 times, the performance gain of the prefetchwill not be able to be demonstrated this way, as illustrated in the �gure below. Thebandwidths will have similar values when prefetch is included and when it is not.

Figure 5.2. On Yonah: For many iterations, the gain of the prefetch cannot be demonstratedOn the other hand, the size of the block for the blocking does not draw any signi�-cant impact on the measurements, as long as it's size remains smaller than the size ofthe cache of course. Therefore the block size is going to be �xed on one value during allmeasurements, that is 5000 byte *8 doubles =40000 byte or 40 KB.In the measurements that we conducted with the addition benchmark, we measuredthe bandwidth against the proportion X. X is the number of doubles in the array andfrom this proportion we can easily calculate the size of the array in byte; the latter isX*8 byte, while the bandwidth is calculated in GB/s. The size of the block is �xed to 40KB, which is smaller than the size of the L2 cache (2MB for the Yonah and 4MB for theWoodcrest). The number of iterations is restricted to 2, as discussed above. The �rstgraph illustrated below corresponds to the Yonah processor, while the second graph illus-trated to the Woodcrest.

5.1 Addition Benchmark 57

Figure 5.3. On Yonah: Bandwidth as a function of the array size

Figure 5.4. On Woodcrest: Bandwidth as a function of the array sizeFirst of all, we are able to mark out the maximum bandwidth of the addition bench-mark for each of the machines. As expected, in the �rst two measures the array can still�t into the cache, as its size is 80 KB and 800 KB respectively, numbers smaller thanthe 2 MB or 4MB which is the size of the cache in the Yonah and Woodcrest respec-

58

tively. Therefore, the corresponding bandwidth must be the maximum for both of themeasures for the particular benchmark. On both machines this is true for the case thatprefetch is not included. Then, for the three following measures, where the size of thearray begins to exceed the size of the cache from 8 MB that is on the 3rd measure to 800MB on the 5th, the bandwidth drops around 0,28 MB for the Yonah processor and 2,3MB for the Woodcrest when prefetch is not included. This drop can be partially associ-ated with the fetching of the blocks at the �rst time a block is to be calculated from thememory. It is clear that if prefetch is included, a greater drop in the bandwidth isavoided; the bandwidth drops by only 1,2 MB for the Woodcrest and by only 0,22 MBfor the Yonah processor. The situation is di�erent though, when the prefetch is inter-leaved into the code and not done by the prefetch thread, as in the previous case. In thiscase on the Yonah the bandwidth is improved even more than the improvement that isbrought by the prefetch thread, therefore the drop is smaller than in the previous case.On the other hand, on Woodcrest interleaved prefetch results in a bandwidth worse thaneven the naive case and therefore, we notice a big drop in the measured values of thebandwidth.In the graph below we demonstrate the gain in performance from prefetch by theprefetch thread and by prefetch interleaved in the code in percentages on both theYonah and the Woodcrest processors.

Figure 5.5. Addition Benchmark: Prefetch (from thread and interleaved) impact on the bandwidth

5.1 Addition Benchmark 59

In the above graph, the maximum gain for the Woodcrest processor from threadprefetch can be as high as 26,2% (3rd measure). On the other hand, the maximum gainfor the Yonah processor can be 5,9% (3rd measure as well) the most. This trend standsin the two other measurements as well: the gain from the Woodcrest processor drops to23,1% in the worst case, while the gain from the Yonah to 2,2% in the last measure.However, when prefetch is interleaved into the code, bene�t is only accomplished on theYonah processor around 10%. On the Woodcrest, interleaved prefetch can decrease thebandwidth as much as 30%.A remark that one can make is that there appear big di�erences among the resultsproduced from the two processors. It looks like architectural di�erences between the twoprocessors a�ect the measurements at a great extent.5.2 Multiplication BenchmarkIn the multiplication benchmark there are three variable proportions as well (parame-ters in the code); the size of the block because of the blocking in the row major orderdimension which will be called iblock, the size of the block because of the blocking in thecolumn major order dimension which will be called kblock and the three dimensions ofthe arrays. However, for this benchmark, we consider in all cases that the dimensionsequal to each other, therefore it is enough that we de�ne only one variable to describethe dimension proportion: X. In order to visualize the proportions, we introduce the fol-lowing schema:

Figure 5.6. Matrix multiplication schemaAs a �rst benchmark, we will measure the bandwidth in GB/s of the benchmark inrelation to the size X. The kblock size will be �xed to 10 rows for the multiplier arrayand 10 columns for the multiplicand array, while the iblock size will be �xed to 2 rows

60

for the multiplicand array. We will take measurements for a starting X dimension of 200,which can be translated to array size of 200 * 200 * 8 byte = 320 KB, up to 1450 bytewhich means 1450 * 1450 * 8 byte = 16,82 MB. We will �rst present the results from theYonah processor and then from the Woodcrest.

Figure 5.7. On Yonah: Bandwidth as a function of the dimension X

Figure 5.8. On Woodcrest: Bandwidth as a function of the dimension X

5.2 Multiplication Benchmark 61

As long as the dimension X is smaller than 500 for the Yonah and 700 for the Wood-crest (respective array sizes will be 500*500*8 byte = 1,62 MB and 700*700*8 byte =3,92 MB) the bandwidth will be maximum, as the array can still �t entirely in the cache.Afterwards, we notice that for the Yonah processor the bandwidth remains at maximumlevel if prefetch is included, while it drops around 3 GB when the prefetch is notemployed. A similar behavior appears on the Woodcrest. The bandwidth after the crit-ical size is passed drops around 1 GB when prefetch is included, but 2 GB when prefetchis not included. Then the gain from Yonah can rise for this benchmark as much as26,82%, while the gain from Woodcrest does not exceed a percentage of 5,4. As for theinterleaved prefetch, on Yonah this case results in a drop of the bandwidth to values aslow as the values from the naive case. The percentage of drop can be as low as 20%.Even worse, on Woodcrest the bandwidth drops to values lower than the naive casevalues or around -16-17% comparing to the loop blocked version. A comparison of thepercentages of the gains on the two machines is illustrated in the �gure below:

Figure 5.9. Multiplication Benchmark: Prefetch (threaded and interleaved) impactAnother interesting point arises from the relation between the size kblock and thegain percentage. This point can be illustrated in the following graphs. We �rst presentthe graph that depicts the bandwidth against the size X when the value of the sizekblock is increased from 10 to 25 (rows for the multiplier matrix or columns for the mul-tiplicand matrix).

62

Figure 5.10. On Yonah: Bandwidth as a function of size X when kblock=25

Figure 5.11. On Yonah: E�ect of the size of kblock in the Performance GainIn the last �gure we notice that there is a signi�cant drop in performance when thesize kblock is switched from 10 to 25 or from 10*8=80 byte to 25*8=200 byte. Then, forlarge array sizes, the gain from Yonah drops to 18,6% in the best case, while as long asthe dimension X decreases the gain tends almost to zero. A possible explanation for this

5.2 Multiplication Benchmark 63

can be the following. The more the size of kblock is increased the more doubles have tobe fetched from memory by the prefetch. This way it could be likely that not all doublesare fetched to the cache, when the calculation of a new data set has begun. Therefore,the gain of the actual prefetch is too little to be demonstrated in the above �gure, incase that kblock equals to 25.5.3 Jacobi BenchmarkThe code for the jacobi benchmark has three parameters; the dimension of thecolumn-major order M, the dimension of the row-major order N and the size iblock thatis the size of the blocking on the row-major order dimension. There follows the visualiza-tion of this schema:

Figure 5.12. Jacobi Benchmark SchemaAs in the previous benchmarks, we will measure the bandwidth in GB/s of thebenchmark code on each machine against proportion X. X is dimension M (column-major order) , while dimension N (row-major order) is de�ned as 100 times greater thandimension N. We prefer this de�nition, because of the following assumption; the noderelaxation is done row by row, while iblock is the number of rows. In our measurements,the important proportion is the iblock, because this is the proportion that actually hasan e�ect on the measurements. Increasing the number of columns makes no di�erence.Since there is a limit to the extent that an array can be outgrowth (too large arraydimensions result in memory allocating error), we prefer to increase the row-major orderdimension than the column-major order dimension. This is the reason why we de�nedimension N as 100 times greater as dimension M.We will take three measurements with this benchmark on each machine; we will mea-sure the bandwidth of the naive code version, the bandwidth of the code with blockedloops and the bandwidth of the code with blocked loops including a prefetch thread, allagainst the size X. The results are illustrated in the �gures below.

64

Figure 5.13. On Yonah: Bandwidth as a function of the size X

Figure 5.14. On Woodcrest: Bandwidth as a function of the size X

5.3 Jacobi Benchmark 65

We notice that for both processors the bandwidth of the naive benchmark is reallylow; around 3,44 GB/s for Woodcrest and 3 GB/s for Yonah. Moreover, we notice thatwhen the loops are blocked, the bandwidth increases a lot; the bandwidth on Yonah risesto 7 GB/s for array sizes smaller than 350*35000*8= 98 MB, while it drops to valuesaround 6GB/s when the array size is greater than 98 MB. Moreover, it goes up to 8,8GB/s for array sizes between 100*10000*8= 8MB and 300*30000*8= 72 MB on Wood-crest, while it drops to values around 8 GB/s for array sizes larger than 72 MB. Wenotice that for both machines and for the whole range of values, there is an increase ofmore than 100% of the bandwidth. In particular, the values of the bandwidth canincrease from 94% to 136% comparing to the values of the naive implementation forYonah and from 127% to 156% on the Woodcrest.As for the case that the prefetch thread is included, we notice that the bandwidth isaround 6 GB/s on Yonah for array sizes smaller than 98 MB, while for larger sizes it
uctuates around 5,5 GB/s. On the other hand, on Woodcrest, except for the case thatthe size of the array equals to 8 MB, the bandwidth
uctuates around 4 GB/s. In thiscase the gain from the implementation including prefetch
uctuates from 82% to 105%on Yonah and from 17% to 26% on Woodcrest. For both of the cores therefore, thebandwidth is greatly improved. The gains are illustrated in the �gure below.

Figure 5.15. Bandwidth improvement of the naive code with loop blocking and prefetchHowever, if we compare the values of the bandwidth when the loops are blocked tothe values of the bandwidth when the loops are blocked and the prefetch is included, wenotice a drop. In numbers, the bandwidth for the case when prefetch is included com-paring to the loop-blocked version where prefetch is not included drops averagely 15% onYonah, while it can drop as much as 54% on the Woodcrest.

66

Figure 5.16. Bandwidth decrement because of the inclusion of prefetch on the loop-blocked codeTherefore, we can conclude that while the jacobi benchmark for array sizes such asnot to �t in the cache can double or more the bandwidth when the loops are blocked, itdrops the bandwidth when prefetch is included. The di�erence in the percentages ofdrop of the bandwidth between the measurements taken on the two cores leads us in theassumption of a possible connection of this phenomenon to an architectural di�erencebetween the cores. Apparently, this di�erence is responsible for the more than 50% dropof the bandwidth on the Woodcrest.

5.3 Jacobi Benchmark 67

Chapter 6

Conclusion

Numerical codes ``su�er" greatly from the increasing gap between CPU power andmemory power. Indeed, since they typically perform on large data sets, actions must betaken so as to hide the memory latency caused by the above gap. Such actions includeoptimization techniques such as the data layout optimization, loop-optimizations andprefetching. In this thesis, we particularly looked for a potential bene�t from realizingthe prefetch optimization with the double-core processors Core Duo (Yonah) and Core 2Duo (Woodcrest) utilized as prefetching engines. Our motivation was the shift that takesplace in our times to include multiple cores on a single chip rather than one core, shiftthat at least for the near future seems like a one-way road.69

In order to investigate a potential gain from the utilization of the two double-coremachines as prefetch devices, we checked three benchmarks on these machines; twobenchmarks that consist of basic operations encountered in numerical codes such asaddition and (matrix) multiplication, while as third benchmark we implemented andchecked the jacobi method, which can be utilized as a smoother in the multigrid method,one of the fastest iterative solvers nowadays. The measures were compared against naiveimplementations of the benchmarks, implementations where only the loop-blocking tech-nique was applied, implementations where the loop-blocking technique with the inclusionof a prefetch thread was adopted or prefetch instructions were interleaved into the maincode of the benchmark. The results varied according to the machine on which a bench-mark was tested, the di�erent assignement of values to the program parameters and ofcourse the optimization or the combination of the optimization techniques used.Then, for the addition and the Multiplication benchmarks, with prefetch on Yonahthe bandwidth was improved as much as 27% (maximum) and between 20-25% onaverage, while the same benchmark run on Woodcrest brought an average improvementin the bandwidth of around 4- 5%. The inteleaved version of the prefetching caused adecrement in the bandwidth on both processors. On the other hand, the Addition bench-mark run on the Yonah processor introduced an increment in the bandwidth of around2-5%, while the respective increment when the benchmark was run on the Woodcrestwas up to 26%. The interleaved version of the prefetch of this benchmark showed a sig-ni�cant improvement in the bandwidth when it was run on Yonah; around 10% incre-ment. On the Woodcrest the bandwidth decreased as much as 30%. As for the Jacobibenchmark, a notable improvement by the prefetch in the bandwidth was accomplished(for this benchmark only thread prefetch was implemented) but only when comparedagainst the naive implementation of the benchmark; the percentage of improvement
uc-tuated between 80-100% for the Yonah and around 20% for the Woodcrest. When thebandwidth was compared with the respective values for the case that alone the loopblocking technique was applied (without prefetching), there was a decrement of around15% on Yonah and of around 50% on Woodcrest.From the above results, there seems to be a strong connection between the e�ect ofthe prefetch, whether this is from a prefetch thread running on a second core or inter-leaved in the code, and the architecture of the double-core. Then this is the reason whythe two cores exhibit so di�erent e�ects from the prefetching; the benchmark that intro-duced an approximate 25% improvement on Yonah, introduced an approximate 5%improvement on Woodcrest, while the numbers were swapped for the other benchmark.The di�erence of the cache sizes between the cores or the di�erence of the clock ratesmight be aspects that in
uence the performance, although such thing was not any clearfrom the measurements that we performed. Moreover, the Jacobi benchmark introduceda decrement in the bandwidth on both cores, fact that leads us to consider that theremight be a common reason to cause this decrement. One could ``blame" the overhead ofthe prefetch instructions over particular codes like the code in the Jacobi benchmark,while such overhead was not observed in the other benchmarks (there was an incrementin bandwidth in all cases). Last but not least, an optimal con�guration of the parame-ters of the program could be vital for observing potential gain of the prefetch. Forexample, when the block size or the number of iterations were given particular values, noimprovement from the prefetch was observed at all.

70

To conclude, there are many aspects to be considered in case someone would like tofurther exploit prefetching techniques on multi-core machines; the e�ect that the archi-tecture and the properties of the processor might possibly introduce, the e�ect of theimplementation infrastructure for the prefetch schema and the optimal con�guration ofthe parameters of the code.Since the introduction of multi-core processors is here to stay at least for the nextfew years, the results of this thesis demonstrated that it could be indeed worth forsomeone to draw his/her attention to the further investigation of prefetching techniqueson multi-core processors, either from the hardware's point of view or from the software's.Moreover, the proven performance potential for numerical codes from prefetching tech-niques, taking into account the expansion of the latter into a vast spectrum of engi-neering applications, can comprise a good means of justi�cation for his/her choice.

71

Appendix A
Processors used in the Experiments

Core Duo (Yonah) Core 2 Duo (Woodcrest)Code name atbode84 atbode140Clock rate 2,16 GHz 2,6 GHzL1 cache 32 KB 32 KBL2 cache 2 MB 4 MB

73

Appendix B
References

[1] Markus Kowarschik. Data Locality Optimizations for Iterative Numerical Algo-rithms and Cellular Automata on Hierarchical Memory Architectures, PhD thesis,Lehrstuhl fuer Informatik 10 (Systemsimulation), Institut fuer Informatik, UniversitaetErlangen-Nuernberg, Erlangen, Germany, July 2004[2] J.L. Hennessy and D.A. Patterson. Computer Architecture: A QuantitativeApproach. Morgan Kaufmann Publisher, Inc., San Francisco, California, USA, 3. edi-tion, 2003.[3] Ruud van der Pas, Memory Hierarchy in Cache-Based Systems,http://www.sun.com/blueprints[4] Markus Kowarschik and Christian Weiss. An Overview of Cache OptimizationTechniques and Cache-Aware Numerical Algorithms. Proceedings of the GI-DagstuhlForschungseminar: Algorithms for Memory Hierarchies, Lecture Notes in Computer Sci-ence (LNCS), Vol. 2625, Springer.[5] Malik Silva. Cache Aware Data Laying for the Gauss-Seidel Smoother, ETNAKent State University 75

[6] S.P.Vanderwiel and D.J.Lilja, Data Prefetch Mechanisms, in ACM ComputingSurveys, Vol.32, No.2, June 2000.[7] Malik Silva, Application Programmer Directed Data Prefetching , Master's Thesis,York University, Toronto, Canada, July 2001.[8] Web-page of CSIRO (Commonwealth Scienti�c and Industrial Research Organisa-tion), http://www.csiro.au/csiro/content/standard/pscq,,.html[9] Web-page of the 13th Annual Conference of Computational Fluid Dynamics,http://www.cfd2005.org/[10] Horst D.Simon, Parallel Computational Fluid Dynamics Implementations andResults, Article in the MIT Press, 1992, http://mitpress.mit.edu/cat-alog/item/default.asp?ttype=2&tid=8165[11] Dr. G. Wellein, Dr. F. Brechtefeld, F. Deserno, G. Hager. Architektur und Per-formance - Charakteristik moderner HPC Bausteine, HPC Services, Regionales Rechen-zentrum Erlangen (RRZE)[12] Ulrich Ruede, Markus Kowarschik, Arndt Bode, Josef Weidendorfer. Perfor-mance Prediction, Analysis, and Optimization of Numerical Methods on Cache-BasedComputer Architectures, Half-day Tutorial at ISCA 2004, Munich, Germany[13] Josef Weidendorfer, Carsten Trinitis. Cache Optimization for Iterative NumericalCodes Aware of Hardware Prefetching, International Conference on Applied ParallelComputing (PARA'04), Copenhagen, Denmark, June 2004.[14] Blaise Barney. POSIX Threads Programming, overview of threads programmingand the POSIX threads API, www.llnl.gov/computing/tutorials/pthreads/ [15] RobertLove. CPU A�nity, Article in Linux Journal, 01-07-2003, http://www.lin-uxjournal.com/article/6799[16] Alan Zeichick. Driving in the Fast Lane: What Multi-Core Computing Means forProgrammers, Part I, Article on AMD Portal, August 16, 2005,http://www.devx.com/amd/Article/29117[17] Nick Wyman. How Multigrid Solver Acceleration Works, Article on CFD Revier,November 30, 2001, http://www.cfdreview.com/article.pl?sid=01/11/28/2217256

76

