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Ðåñßëçøç
Ôï áíôéêåßìåíï ôçò ðáñïýóáò äéðëùìáôéêÞò åñãáóßáò åßíáé ç ìåëÝôç êáôáóôÜ-
óåùí óôéò ïðïßåò ðïëëïß ÷ñÞóôåò áëëçëåðéäñïýí ìåôáîý ôïõò, õðü ôçí áðïõóßá
êÜðïéáò åîùôåñéêÞò ñõèìéóôéêÞò áñ÷Þò, ìå ìüíï ãíþìïíá ï êáèÝíáò ôï ðñïóù-
ðéêü ôïõ üöåëïò. ÔÝôïéåò êáôáóôÜóåéò åßíáé óõíçèéóìÝíåò óå ìåãÜëá, êáôáíå-
ìçìÝíá óõóôÞìáôá êáé äßêôõá, ìå ÷áñáêôçñéóôéêüôåñï ðáñÜäåéãìá áõôü ôïõ
Internet. Ôá óõóôÞìáôá áõôÜ, ðïõ ÷áñáêôçñßæïíôáé áðü éäéïôåëÞ óõìðåñéöïñÜ
÷ñçóôþí, áðïôåëïýí ðáñáäïóéáêÜ áíôéêåßìåíï ìåëÝôçò ôçò Èåùñßáò Ðáéãíßùí.
Óôç äéðëùìáôéêÞ áõôÞ ðáñïõóéÜæïõìå êÜðïéåò âáóéêÝò Ýííïéåò ôçò Èåùñßáò
Ðáéãíßùí êáé óôç óõíÝ÷åéá ðñï÷ùñÜìå óôç ìåëÝôç ôñéþí ìïíôÝëùí ðïõ Ý÷ïõí
ðñïôáèåß ãéá ôçí áíáðáñÜóôáóç ôùí óõóôçìÜôùí áõôþí. Ôá ìïíôÝëá áõôÜ
åßíáé: ðñþôïí, ôï äßêôõï ðáñÜëëçëùí áêìþí ðïõ ðñùôïìåëåôÞèçêå óôï [KP99]
êáé áêïëïõèÞèçêå áðü ìßá óåéñÜ áðü Üëëåò äçìïóéåýóåéò ðïõ åðÝëõóáí äéÜöïñá
áíïé÷ôÜ ðñïâëÞìáôá. Äåýôåñïí, ôï ìïíôÝëï ôùí ðáéãíßùí óõìöüñçóçò, ôï
ïðïßï Ý÷åé ìåëåôçèåß áíåîÜñôçôá áðü ôï ðñïçãïýìåíï ìïíôÝëï (ðïõ áðïôåëåß
õðïðåñßðôùóç ðáéãíßïõ óõìöüñçóçò) êáé ôï ïðïßï ìðïñåß íá ìïíôåëïðïéÞóåé
êáôáóôÜóåéò äñïìïëüãçóçò êßíçóçò ìÝóá óå äßêôõá ÷ñçóôþí Þ êáôáóôÜóåéò
üðïõ ïé ÷ñÞóôåò äåóìåýïõí ôïõò ðüñïõò êÜðïéïõ óõóôÞìáôïò. ÔÝëïò, ôï
ôñßôï ìïíôÝëï åßíáé Ýíá ìïíôÝëï áðåéñïóôÞò ñïÞò, ðïõ Ý÷åé ìåëåôçèåß êõñßùò
áðü ôïõò Roughgarden êáé Tardos, ùò ç ìç-áôïìéêÞ åðÝêôáóç ôùí ðáéãíßùí
óõìöüñçóçò. Ãéá êÜèå ìïíôÝëï ðïõ ìåëåôÜìå, åîåôÜæïõìå äýï âáóéêÜ èÝìáôá:
áõôü ôçò ýðáñîçò êáé ôçò õðïëïãéóéìüôçôáò ôùí éóïññïðéþí Nash êáé áõôü
ôùí öñáãìÜôùí ãéá ôï ôßìçìá ôçò áíáñ÷ßáò, ðïõ ïõóéáóôéêÜ ðïóïôéêïðïéåß ôéò
áðþëåéåò ðïõ Ý÷ïõìå ëüãù ôçò éäéïôåëïýò óõìðåñéöïñÜò ôùí ÷ñçóôþí.

ËÝîåéò êëåéäéÜ: ðáßãíéá, éóïññïðßá Nash, ôßìçìá ôçò áíáñ÷ßáò, äßêôõá, éäéïôå-
ëÞò äñïìïëüãçóç, äÝóìåõóç ðüñùí, éäéïôåëÞò óõìðåñéöïñÜ, ðáßãíéá óõìöüñç-
óçò, ðáßãíéá óå äßêôõá ðáñÜëëçëùí áêìþí, ìç-áôïìéêÜ ðáßãíéá, ðáñÜäïîï ôïõ
Braess
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Abstract
This diploma thesis studies situations where many users interact, under the
absence of some central regulatory authority, each one aiming at the maxi-
mization of his own personal pro�t. These situations are common in large,
distributed networks and systems, with the Internet being an obvious ex-
ample. These systems, which are characterized by sel�sh user behavior, are
traditionally a �eld of study for Game Theory. In this thesis we present
some basic concepts of Game Theory and we then move on to presenting
three models that have been proposed for these systems. These models are:
�rst, the network of parallel links originally studied in [KP99], which was
followed by a series of papers resolving various open problems. Second, the
model of congestion games, which has been studied independently of the
previous model (which is in fact a subcase of congestion games) and which
models situations where users want to route tra�c through a network or
want to allocate the resources of a system. Finally, our third model is the
non-atomic extension of congestion games, mostly studied by Roughgarden
and Tardos. For each model we discuss, we focus on 2 main questions: that of
the existence and tractability of equilibria, and that of the e�ective bounding
of the Price of Anarchy, which quanti�es the ine�ciency due to the sel�sh
behavior of the users (i.e. due to the lack of coordination).

Key words: games, Nash equilibrium, Price of Anarchy, networks, sel�sh
routing, resource allocation, sel�sh behavior, congestion games, games in
parallel links networks, non-atomic games, Braess's paradox
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Åõ÷áñéóôßåò
Ïëïêëñþíïíôáò ôçí åêðüíçóç ôçò äéðëùìáôéêÞò ìïõ åñãáóßáò êáé ìáæß ìå
áõôÞí êáé ôïí êýêëï óðïõäþí ìïõ óôï Å.Ì.Ð. èá Þèåëá íá åõ÷áñéóôÞóù
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ðïñåßáò ìïõ áõôÞò.
Êáôáñ÷Üò ôïí êáèçãçôÞ êáé åðéâëÝðïíôá ôçò äéðëùìáôéêÞò ê. ÓôÜèç ÆÜ÷ï,
ðïõ Þôáí êáé ï Üíèñùðïò ðïõ ìïõ ìåôÝäùóå ôçí áãÜðç ôïõ ãéá ôç ÈåùñçôéêÞ
ÐëçñïöïñéêÞ, ìå ôéò äéäáêôéêÝò ôïõ éêáíüôçôåò êáé ôïí åíèïõóéáóìü ôïõ. Ôïí
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ÊïõôóïõðéÜ, ðÜíù óå äçìïóéåýóåéò ôïõ ïðïßïõ âáóßóôçêå ìåãÜëï ìÝñïò ôçò
äéðëùìáôéêÞò, ï ïðïßïò Þôáí ðÜíôá ðñüèõìïò íá ìå âïçèÞóåé ìå ü,ôé áðïñßåò
åß÷á, åíþ ðáñÜëëçëá ôï áíôßóôïé÷ï ìÜèçìÜ ôïõ ìå âïÞèçóå íá áðïêôÞóù ìßá
Üëëç ïðôéêÞ óôï èÝìá ôçò Èåùñßáò Ðáéãíßùí. Áêüìá, ôïí åðßêïõñï êáèçãçôÞ
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äßðëá ìïõ üëá áõôÜ ôá ÷ñüíéá ãéá íá ìå óôçñßîïõí êáé íá ìå óõìâïõëÝøïõí
üðïôå ôï Ý÷ù áíÜãêç.
Ôïí ìáèçìáôéêü ìïõ, ê. ×Üñç, ãéá ôçí áãÜðç ðïõ ìïõ Ýäåéîå óôá ëõêåéáêÜ
ìïõ ÷ñüíéá, ãéá ôïí Ýñùôá ðïõ ìïõ åíÝðíåõóå ãéá ôá ìáèçìáôéêÜ êáé ãéá ôçí
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Êáé êõñßùò ôç ìçôÝñá ìïõ ðïõ åßíáé ðÜíôá äßðëá ìïõ, ãéá íá ìå óôçñßæåé êáé
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Chapter 1

Èåùñßá Ðáéãíßùí: ÂáóéêÝò Ýííïéåò

Óôï åéóáãùãéêü áõôü êåöÜëáéï èá ðáñïõóéÜóïõìå êÜðïéåò âáóéêÝò Ýííïéåò ôçò
áëãïñéèìéêÞò èåùñßáò ðáéãíßùí. Áñ÷éêÜ èá êÜíïõìå ìßá éóôïñéêÞ áíáäñïìÞ
êáé èá áíáöåñèïýìå óõíïðôéêÜ óôéò âáóéêÝò Ýííïéåò ðïõ êáëýðôïíôáé ìÝóá áðü
ôç èåùñßá áõôÞ, êáèþò êáé óôïõò äéÜöïñïõò ôýðïõò ðáéãíßùí ðïõ Ý÷ïõí êáôÜ
êáéñïýò ðñïôáèåß. Óôç óõíÝ÷åéá èá ïñßóïõìå åðßóçìá ôé åßíáé Ýíá ðáßãíéï, ôé
åßíáé éóïññïðßá êáé ðþò ìåëåôÜìå ôçí ðïéüôçôÜ ôçò êáé èá áíáöÝñïõìå êáôüðéí
êÜðïéá ðáñÜäïîá, ôá ïðïßá èá îáíáóõíáíôÞóïõìå óôá åðüìåíá êåöÜëáéá,
ìéáò êáé Ý÷ïõí áðïôåëÝóåé ôñïöÞ ãéá áñêåôÞ áðü ôçí åñåõíçôéêÞ äïõëåéÜ
ðïõ ðåñéëáìâÜíåôáé óôç äéðëùìáôéêÞ áõôÞ. Èá êëåßóïõìå ôï êåöÜëáéï áõôü
áíáöÝñïíôáò êÜðïéá áðü ôá èÝìáôá ðïõ Üðôïíôáé ôçò Èåùñßáò Ðáéãíßùí êáé
áðïôåëïýí áíôéêåßìåíá Ýñåõíáò ãéá ôçí êïéíüôçôá ôçò ÈåùñçôéêÞò Ðëçñïöïñé-
êÞò.

1.1 ÃåíéêÜ ãéá ôç Èåùñßá Ðáéãíßùí
Ç Èåùñßá Ðáéãíßùí áíáöÝñåôáé óõ÷íÜ ùò Ýíáò êëÜäïò ôùí åöáñìïóìÝíùí
ìáèçìáôéêþí êáé ôùí ïéêïíïìéêþí, ðïõ ðåñéãñÜöåé êáôáóôÜóåéò óôéò ïðïßåò
ðïëëïß ðáßêôåò ðáßñíïõí áðïöÜóåéò ìå ìüíï óêïðü íá ìåãéóôïðïéÞóïõí ôï
ðñïóùðéêü ôïõò üöåëïò. Óôçí ðáñïýóá äéðëùìáôéêÞ èá áó÷ïëçèïýìå ìå ôç
ëåãüìåíç \ìç óõíåñãáôéêÞ èåùñßá ðáéãíßùí" (non-coalitional game theory),
üðïõ ï êÜèå ðáßêôçò äñá áõôüíïìá êáé åãùéóôéêÜ ãéá ôïí åáõôü ôïõ, äçëáäÞ
äåí õðÜñ÷ïõí óõíáóðéóìïß ìåôáîý ôùí ðáéêôþí.
Ðéï óõãêåêñéìÝíá ôá ðáßãíéá ðñïóðáèïýí íá ìïíôåëïðïéÞóïõí êáôáóôÜóåéò
üðïõ áëëçëåðéäñïýí ðïëëÜ Üôïìá (ïé ðáßêôåò ôïõ ðáéãíßïõ) õðü ôéò åîÞò
ðñïûðïèÝóåéò:

• Ïé ðáßêôåò åßíáé Ýîõðíïé õðü ôçí Ýííïéá üôé, ìå äåäïìÝíåò ôéò êéíÞóåéò
ôùí Üëëùí ðáéêôþí îÝñïõí ðÜíôá ôé ôïõò óõìöÝñåé, êáèþò êáé ôé óõìöÝñåé
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ôïõò Üëëïõò ðáßêôåò (ôï ïðïßï óôçí ðñÜîç óçìáßíåé üôé ìðïñïýí íá
åêôéìÞóïõí ôéò êéíÞóåéò ôùí -Ýîõðíùí- óõìðáéêôþí ôïõò). Ìå âÜóç ôéò
åêôéìÞóåéò áõôÝò ðáßæïõí ïñèïëïãéóôéêÜ (rationally) êáé áðïöáóßæïõí
ôéò åðüìåíåò êéíÞóåéò ôïõò óôñáôçãéêÜ (\reason strategically" [OR94])

• Oé ðáßêôåò ðñÜôôïõí ðÜíôá ôï êáëýôåñï ãéá ôïõò ßäéïõò, áäéáöïñþíôáò
ãéá ôéò óõíÝðåéåò ôçò åðéëïãÞò ôïõò óôï êïéíùíéêü óýíïëï (åßíáé äçëáäÞ
åãùéóôÝò - sel�sh)

• Äåí õðÜñ÷åé êÜðïéá êåíôñéêÞ áñ÷Þ ðïõ íá ìðïñåß íá êáôåõèýíåé ôéò
åðéëïãÝò ôùí ðáéêôþí, äçëáäÞ ïé ðáßêôåò äñïõí áõôüíïìá ìå ìüíï êñéôÞ-
ñéï ôï óõìöÝñïí ôïõò.

• Ïé åðéëïãÝò åíüò ðáßêôç åðçñåÜæïõí á) ôçí åõçìåñßá ôçò êïéíùíßáò (so-
cial welfare) ôçò ïðïßáò åßíáé ìÝëïò êáé â) ôéò åðéëïãÝò ôùí õðïëïßðùí
ðáéêôþí

Áðü ôçí ðáñáðÜíù ðåñéãñáöÞ ãßíåôáé óáöÝò üôé ç Èåùñßá Ðáéãíßùí åßíáé
óå èÝóç íá ðåñéãñÜøåé ðïëëÝò êáôáóôÜóåéò ôçò êáèçìåñéíÞò æùÞò êáé êõñßùò
íá ìïíôåëïðïéÞóåé óõóôÞìáôá óôá ïðïßá áðïõóéÜæåé ç êåíôñéêÞ äéá÷åßñéóç.
¸íá ôÝôïéï óýóôçìá åßíáé êáé ôï Äéáäßêôõï: áðïôåëåßôáé áðü åêáôïíôÜäåò
÷éëéÜäåò ÷ñÞóôåò (ôåñìáôéêÜ Þ åîõðçñåôçôÝò) üðïõ ï êÜèå Ýíáò äñá ìå ìüíï
êñéôÞñéï ôçí åëá÷éóôïðïßçóç ôçò äéêÞò ôïõ êáèõóôÝñçóçò, ÷ùñßò íá õðÜñ÷åé
êÜðïéá êåíôñéêÞ áñ÷Þ äéá÷åßñéóçò ç ïðïßá íá áðïóêïðåß óôçí åðßôåõîç ôïõ
\êïéíùíéêïý âÝëôéóôïõ". Ç åöáñìïãÞ ðïõ âñßóêåé ç Èåùñßá Ðáéãíßùí óôç
ìïíôåëïðïßçóç ôïõ Äéáäéêôýïõ áðïôåëåß áðü ìüíç ôçò éêáíü ëüãï ãéá ôçí
ôåñÜóôéá ðñïóï÷Þ ðïõ Ý÷åé ðñïóåëêýóåé ôï áíôéêåßìåíï ôá ôåëåõôáßá ÷ñüíéá.
ÅíäåéêôéêÝò ðëçñïöïñßåò ìðïñåß êáíåßò íá âñåé óôï [Pap01]
ËáìâÜíïíôáò üìùò õðüøéí üôé ôï Äéáäßêôõï åßíáé Ýíá ôå÷íïëïãéêü êáôáóêåý-
áóìá ôçò ôåëåõôáßáò åéêïóáåôßáò, åíþ ç ðñþôç áíáöïñÜ óôç Èåùñßá Ðáéãíßùí
ãßíåôáé ôï 1944 áðü ôïõò John von Neumann êáé Oskar Morgenstern, áíôéëáì-
âÜíåôáé êáíåßò üôé ïé åöáñìïãÝò ôïõ êëÜäïõ áõôïý ðñÝðåé íá åêôåßíïíôáé
êáé ðÝñá áðü áõôü. ¼íôùò Þäç áðü ôçí áñ÷Þ ôïõ '70 ç Èåùñßá Ðáéãíßùí
âñÞêå åöáñìïãÞ óôçí áíÜëõóç ôçò óõìðåñéöïñÜò ôùí æþùí, óôçí åîåëéêôéêÞ
èåùñßá, óôçí ðïëéôéêÞ åðéóôÞìç êáé çèéêÞ êáé êõñßùò óôá ïéêïíïìéêÜ êáé
óôçí êïéíùíéïëïãßá. ¸÷åé ÷ñçóéìïðïéçèåß ìÜëéóôá åõñÝùò ãéá ôç ìåëÝôç ôùí
ïëéãïðùëéáêþí ïéêïíïìéþí, ôïõ ðïëéôéêïý áíôáãùíéóìïý êáé ãåíéêÜ êáôáóôÜ-
óåùí üðïõ õðÜñ÷åé ëÞøç áðïöÜóåùí, õðü ôçí ðñïûðüèåóç üôé ïé áðïöÜóåéò
ôïõ åíüò áôüìïõ åîáñôþíôáé áðü ôéò áðïöÜóåéò ôùí õðïëïßðùí.

Óôç âéâëéïãñáößá Ý÷ïõí ðñïôáèåß ðïëëÜ åßäç ðáéãíßùí. Óôç óõíÝ÷åéá èá
áíáöåñèïýìå åðéãñáììáôéêÜ óôéò âáóéêÝò äéáöïñÝò ìåôáîý ôùí ðéï ãíùóôþí
êáôçãïñéþí ðáéãíßùí.
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• Strategic Games vs Extensive Games. ¸íá óôñáôçãéêü ðáßãíéï
åßíáé Ýíá ìïíôÝëï ìßáò êáôÜóôáóçò óôçí ïðïßá êÜèå ðáßêôçò áðïöáóßæåé
ôé èá êÜíåé (ðïéá åíÝñãåéá èá äéáëÝîåé) ìßá öïñÜ êáé üëïé ïé ðáßêôåò
áðïöáóßæïõí ôáõôü÷ñïíá (äçëáäÞ üôáí ï êÜèå ðáßêôçò ëáìâÜíåé ôçí
áðüöáóÞ ôïõ äåí îÝñåé ôé Ý÷ïõí áðïöáóßóåé ïé õðüëïéðïé ðáßêôåò). Ìüëéò
äéáëÝîïõí üëïé ïé ðáßêôåò êßíçóç, áðïôéìÜôáé ôï áðïôÝëåóìá êáé ï êÜèå
ðáßêôçò ìðïñåß íá Ý÷åé Þ ü÷é óõìöÝñïí íá áëëÜîåé ôçí åðéëïãÞ ôïõ.
Ðáñüëá áõôÜ, ç åíäå÷üìåíç áëëáãÞ ôçò åðéëïãÞò êÜðïéïõ ðáßêôç (ìå
ü,ôé áõôü óõíåðÜãåôáé ãéá ôéò åðéëïãÝò ôùí õðïëïßðùí ðáéêôþí: ð.÷.
äéáäï÷éêÜ üëïé ïé ðáßêôåò ìðïñåß íá èÝëïõí íá áëëÜîïõí ôçí åðéëïãÞ
ôïõò) äåí ìáò åíäéáöÝñåé óôçí ðåñßðôùóç ôùí óôñáôçãéêþí ðáéãíßùí.
Áíôßèåôá ôï ìïíôÝëï ôùí extensive games ìåëåôÜ áêñéâþò áõôÞ ôçí
ðéèáíÞ áëëçëïõ÷ßá ãåãïíüôùí: êÜèå ðáßêôçò ìðïñåß íá åðéëÝîåé ôçí
êßíçóÞ ôïõ ü÷é ìüíï óôï îåêßíçìá ôïõ ðáéãíßïõ, áëëÜ íá êÜíåé åðéëïãÝò
êáé êáè' üëç ôç äéÜñêåéá åîÝëéîÞò ôïõ1.

• Noncooperative vs Cooperative Games. Ç ìüíç äéáöïñÜ åäþ åßíáé
üôé óôá óõíåñãáôéêÜ ðáßãíéá èåùñïýìå üôé õðÜñ÷ïõí óõíáóðéóìïß ìåôáîý
ôùí ðáéêôþí, äçëáäÞ ïé ðáßêôåò äñïõí áöåíüò ìå óêïðü ôï ðñïóùðéêü
üöåëïò êáé áöåôÝñïõ ôï üöåëïò ôçò ïìÜäáò óôçí ïðïßá áíÞêïõí. Áîßæåé
íá óçìåéùèåß üôé Ýíáò óõíáóðéóìüò äå óõìðåñéöÝñåôáé óáí Ýíáò ðáßêôçò.

• Games with Perfect and Imperfect Information. Ïé ðáßêôåò åíüò
ðáéãíßïõ ìðïñåß íá îÝñïõí ôá ðÜíôá ï Ýíáò ãéá ôéò êéíÞóåéò/åðéëïãÝò ôïõ
Üëëïõ, Þ êáé ü÷é. Óå ðïëëÝò ðåñéðôþóåéò ìðïñåß ìÜëéóôá ïé ðáßêôåò íá
ìçí îÝñïõí ïýôå ôá âáóéêÜ \÷áñáêôçñéóôéêÜ" ôùí óõìðáéêôþí ôïõò,
üðùò ãéá ðáñÜäåéãìá ôï ðüóï \áîßæåé" ãéá êÜðïéïí óõìðáßêôç ôïõò Ýíá
áãáèü, Þ ðïéåò åßíáé ïé óôñáôçãéêÝò ôïõ.

Åêôüò áðü ôéò ðáñáðÜíù âáóéêÝò êáôçãïñßåò, Ý÷ïõìå êáé äéÜöïñåò Üëëåò
õðïêáôçãïñßåò ðáéãíßùí, üðùò ôá óõììåôñéêÜ ðáßãíéá, óôá ïðïßá üëïé ïé
ðáßêôåò Ý÷ïõí ôéò ßäéåò óôñáôçãéêÝò êáé ôá ßäéá êÝñäç áíÜ óôñáôçãéêÞ, ôá zero-
sum ðáßãíéá, üðïõ ï êÜèå ðáßêôçò êåñäßæåé üôé ÷Üíïõí ïé õðüëïéðïé, Ýôóé
þóôå ïé óõíïëéêÝò áðïëáâÝò íá åßíáé óôáèåñÝò ê.á. ÅîÜëëïõ, áíÜëïãá ìå ôéò
êáôáóôÜóåéò ðïõ ìïíôåëïðïéåß Ýíá ðáßãíéï, ìéëÜìå ãéá åîåëéêôéêÜ ðáßãíéá (evo-
lutionary games), ðáé÷íßäéá óå äßêôõá (network games), ðáé÷íßäéá óõìöüñçóçò
(congestion games), sel�sh task allocation games ê.á.

1áíôßèåôá ìå ôá óôñáôçãéêÜ ðáßãíéá ðïõ äåí Ý÷ïõí äéÜñêåéá
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1.2 Nash Equilibrium êáé Price of Anarchy

1.2.1 Ïñéóìüò Ðáéãíßïõ êáé Ðáñáäåßãìáôá
Áò ðñï÷ùñÞóïõìå ôþñá óôïí ôõðéêü ïñéóìü åíüò ðáéãíßïõ.

De�nition 1.2.1. Ðáßãíéï ðïëëþí ðáéêôþí:
Ïñßæïõìå ùò ðáßãíéï ðïëëþí ðáéêôþí ôçí ôñéÜäá (N; (Ái)i∈N ; (%i)i∈N) üðïõ

• N åßíáé Ýíá ðåðåñáóìÝíï2 óýíïëï (ôï óýíïëï ôùí ðáéêôþí).

• Óå êÜèå ðáßêôç i ∈ N áíôéóôïé÷ïýìå ôï ìç êåíü óýíïëï Ái (óýíïëï
äéáèÝóéìùí óôñáôçãéêþí ãéá êÜèå ðáßêôç).

• Óå êÜèå ðáßêôç i ∈ N áíôéóôïé÷ïýìå ìßá ó÷Ýóç ðñïôßìçóçò %i åðß ôïõ
óõíüëïõ Á = ×j∈NAj. Ó÷Ýóç ðñïôßìçóçò åðß åíüò óõíüëïõ A åßíáé ìßá
äõáäéêÞ, ðëÞñçò (äçëáäÞ êÜèå äýï óôïé÷åßá ôïõ A ó÷åôßæïíôáé ìåôáîý
ôïõò), áíáêëáóôéêÞ êáé ìåôáâáôéêÞ ó÷Ýóç åðß ôïõ A.

Óôçí ðñÜîç, ïé ðáñáðÜíù ó÷Ýóåéò ðñïôßìçóåéò äßíïíôáé õðü ôç ìïñöÞ
óõíáñôÞóåùí êÝñäïõò (payo� functions) ui Þ óõíáñôÞóåùí êüóôïõò ci (cost
functions) ïé ïðïßåò ïñßæïíôáé ùò åîÞò: ci; ui : A1× : : :×An → R∗+; i = 1 : : : n.
¸ôóé êÜèå ðáßêôçò áíôéóôïé÷åß óå êÜèå tuple óôñáôçãéêþí (a1; : : : ; an), ôï
ïðïßï ðëÝïí èá áðïêáëïýìå ðñïößë (ãíÞóéùí) óôñáôçãéêþí, ìßá ôéìÞ ç
ïðïßá åßíáé ôï êÝñäïò ôïõ (êüóôïò ôïõ) áí üëïé ðáßêôåò ðáßîïõí ôéò óôñáôçãéêÝò
ðïõ õðáãïñåýïíôáé áðü ôï ðñïößë. Ðñïöáíþò Ýíáò ðáßêôçò ðñïôéìÜ Ýíá
ðñïößë Ýíáíôé åíüò Üëëïõ, áí ôï êÝñäïò(êüóôïò) ôïõ ãéá ôï ðñïößë áõôü åßíáé
ìåãáëýôåñï (ìéêñüôåñï).

Áò äéåõêñéíßóïõìå ôþñá ôïí ôñüðï ìå ôïí ïðïßï ðáßæïõí ïé ðáßêôåò: ôï
áíáìåíüìåíï åßíáé êÜèå ðáßêôçò íá åðéëÝãåé ìßá óôñáôçãéêÞ áðü ôï óýíïëï
óôñáôçãéêþí ôïõ. Ï ôñüðïò áõôüò ðáéîßìáôïò, áí êáé äéáéóèçôéêÜ åßíáé îåêÜèá-
ñïò, Ý÷åé Ýíá óçìáíôéêü ðñüâëçìá üðùò èá äïýìå óôç óõíÝ÷åéá. Áò äïýìå
üìùò ðéï ðñéí êÜðïéá ðáñáäåßãìáôá ðáéãíßùí 2 ðáéêôþí êáé ðþò áõôÜ ðáñéóôÜ-
íïíôáé.

Example 1.2.2. Bach or Stravinsky
Óôï ðáñÜäåéãìá áõôü õðïèÝôïõìå üôé Ý÷ïõìå Ýíá æåõãÜñé, ðïõ èÝëåé íá âãåé
Ýîù Ýíá âñÜäõ ãéá íá áêïýóåé Ýíá êïíóÝñôï êëáóóéêÞò ìïõóéêÞò. Ï Üíäñáò
ðñïôéìÜ Ýíá êïíóÝñôï ôïõ Bach åíþ ç ãõíáßêá ðñïôéìÜ ìßá óõìöùíßá ôïõ
Stravinsky. Êáé ïé äýï üìùò ðñïôéìïýí íá ìçí ðÜíå óôï èÝáìá ôçò åðéëïãÞò

2Ðñïò ôï ðáñüí õðïèÝôïõìå üôé åîåôÜæïõìå ðåðåñáóìÝíá ðáßãíéá. Óå áíôßèåôç ðåñßðôùóç
ôï N äå ÷ñåéÜæåôáé íá åßíáé ðåðåñáóìÝíï.



1.2. NASH EQUILIBRIUM ÊÁÉ PRICE OF ANARCHY 15

ôïõò, ðñïêåéìÝíïõ íá åßíáé ìáæß ìå ôï/ôç óýíôñïöü ôïõò.
Ôï ðáñáðÜíù óåíÜñéï ôï ïðôéêïðïéïýìå óõíÞèùò ìå ôç ÷ñÞóç ôïõ ðáñáêÜôù
ðßíáêá: Ïé äýï ðáßêôåò (ï Üíäñáò êáé ç ãõíáßêá åäþ) åðéëÝãïõí ï ìåí Ýíáò

Â S
Â 2,1 0,0
S 0,0 1,2

Table 1.1: Bach or Stravinsky

ôç ãñáììÞ ôïõ ðßíáêá, ï äå Üëëïò ôç óôÞëç. ÁíÜëïãá ìå ôï óõíäõáóìü
ãñáììÞò - óôÞëçò Ý÷ïõìå ôï áðïôÝëåóìá. Åäþ ôá äõíáôÜ áðïôåëÝóìáôá
(ðñïößë óôñáôçãéêþí) åßíáé 4 êáé ôá êÝñäç (áò ôï öáíôáóôïýìå óá ìÝôñï
ôçò åõ÷áñßóôçóçò ôïõ êÜèå ðáßêôç) ðïõ áíôéóôïé÷ïýí óôïí êáèÝíá öáßíïíôáé
óôá êåëéÜ. Ðñþôï åßíáé ôï êÝñäïò ôïõ ðáßêôç ãñáììÞ (Üíäñáò) êáé äåýôåñï
ôï êÝñäïò ôïõ ðáßêôç óôÞëç (ãõíáßêá). ÐáñáôçñÞóôå üôé óôï ðáßãíéï áõôü ôï
óýíïëï óôñáôçãéêþí åßíáé ôï ßäéï ãéá ôïõò 2 ðáßêôåò.

H ðáñáðÜíù ïðôéêïðïßçóç åßíáé ðïëý óõíçèéóìÝíç ãéá ôçí ðåñßðôùóç ôùí
ðáéãíßùí 2 ðáéêôþí êáé ìðïñåß íá áíáðáñáóôÞóåé êáé ôçí ðåñßðôùóç üðïõ ï
êÜèå ðáßêôçò Ý÷åé ðáñáðÜíù áðü 2 óôñáôçãéêÝò.

Example 1.2.3. Óôï äåýôåñï ðáñÜäåéãìá, ãíùóôü ùò matching pennies, ï
êÜèå ðáßêôçò Ý÷åé äýï óôñáôçãéêÝò êáé äéáëÝãåé ìßá. Áí êáé ïé äýï ðáßêôåò
åðéëÝîïõí ôçí ßäéá óôñáôçãéêÞ êåñäßæåé ï ðáßêôçò ãñáììÞ, áëëéþò êåñäßæåé
ï ðáßêôçò óôÞëç. Ôï ðáé÷íßäé áõôü áíôéóôïé÷åß óôçí êáôÜóôáóç üðïõ ïé
äýï ðáßêôåò åßíáé Ýíáò åðéèåôéêüò (ðáßêôçò óôÞëç) êáé Ýíáò ôåñìáôïöýëáêáò
(ðáßêôçò ãñáììÞ) êáé ï åðéèåôéêüò åôïéìÜæåôáé íá åêôåëÝóåé Ýíá ðÝíáëôõ. Ïé
åðéëïãÝò ðïõ Ý÷ïõí ïé 2 ðáßêôåò åßíáé êïéíÝò: äåîéÜ Þ áñéóôåñÜ, ðïõ óçìáßíåé
åêôÝëåóç ôïõ ðÝíáëôõ óôç äåîéÜ/áñéóôåñÞ ðëåõñÜ êáé åêôßíáîç äåîéÜ/áñéóôåñÜ
áíôßóôïé÷á.
Ï áíôßóôïé÷ïò ðßíáêáò ôþñá åßíáé:

R L
R 1,-1 -1,1
L -1,1 1,-1

Table 1.2: Mathcing pennies

Ôï ðáßãíéï áõôü åßíáé zero-sum, äçëáäÞ üôé êåñäßæåé ï Ýíáò ðáßêôçò ôï
÷Üíåé ï Üëëïò.
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Example 1.2.4. To ôåëåõôáßï (êáé ðéï äéÜóçìï ßóùò) ðáñÜäåéãìá åßíáé ôï
Äßëçììá ôùí ÖõëáêéóìÝíùí (Prisoners' Dilemma) ôï ïðïßï ëÝåé ôï åîÞò:
Ý÷ïõìå 2 ýðïðôïõò ãéá ìßá êëïðÞ êáé ôïõò áíáêñßíïõìå óôï áóôõíïìéêü
ôìÞìá, óå ÷ùñéóôÜ êåëéÜ. Ïé áóôõíïìéêïß ôïõò äßíïõí 2 åðéëïãÝò: åßôå íá
ìéëÞóïõí Þ íá óéùðÞóïõí. Åðßóçò ëÝíå óôïí êáèÝíá üôé áí áõôüò ìéëÞóåé
êáé ï óõíåôáßñüò ôïõ óéùðÞóåé èá ôïí áöÞóïõí åëåýèåñï êáé ôïí Üëëï èá
ôïí âÜëïõí öõëáêÞ ãéá 4 ÷ñüíéá. Áí äå ìéëÞóåé êáíÝíáò ôüôå ëüãù Ýëëåéøçò
óôïé÷åßùí èá ôïõò âÜëïõí 1 ÷ñüíï öõëáêÞ ôïí êáèÝíá åíþ áí ìéëÞóïõí êáé
ïé 2 èá ôïõò âÜëïõí 3 ÷ñüíéá öõëáêÞ ôïí êáèÝíá.
Ï áíôßóôïé÷ïò ðßíáêáò åßíáé:

Confess Shh:::
Confess 3,3 0,4
Shh::: 4,0 1,1

Table 1.3: Prisoners' Dilemma

ÐáñáôçñÞóôå üôé óôç óõãêåêñéìÝíç ðåñßðôùóç ïé áñéèìïß äå äåß÷íïõí êÝñäïò
áëëÜ êüóôïò.

1.2.2 Éóïññïðßåò óå Ðáßãíéá
Áò ðñï÷ùñÞóïõìå ôþñá íá ïñßóïõìå ìßá áðïäåêôÞ Ýííïéá éóïññïðßáò ãéá ôá
ðáßãíéá. ÄéáéóèçôéêÜ ðåñéìÝíïõìå üôé Ýíá ðñïößë óôñáôçãéêþí, äçëáäÞ Ýíá
óýíïëï áðü åðéëïãÝò, ìßá ãéá êÜèå ðáßêôç, èá åßíáé éóïññïðßá áí üëïé åßíáé
åõ÷áñéóôçìÝíïé. Áò õðïèÝóïõìå üôé ðñÜãìáôé üëïé åßíáé åõ÷áñéóôçìÝíïé ìå
ôçí åðéëïãÞ ôïõò êáé üôé äå èá ôçí Üëëáæáí, ü,ôé êáé áí Ýêáíáí ïé õðüëïéðïé
óõìðáßêôåò ôïõò. ÁõôÞ åßíáé ç Ýííïéá ôïõ Dominant Equilibrium ðïõ ïñßæåôáé
ùò åîÞò.

De�nition 1.2.5. Ïñßæïõìå ùò Dominant Equilibrium (DE) Ýíá ðñïößë
óôñáôçãéêþí (a1; : : : ; an) ôÝôïéï þóôå ãéá êÜèå ðáßêôç i:

ci(a1; : : : ; an) ≤ ci(a′1; : : : ; a
′
n)

ãéá êÜèå Üëëï ðñïößë óôñáôçãéêþí (a′1; : : : ; a′n).

Ðñïöáíþò ôï DE åßíáé ìßá ðïëý éó÷õñÞ (êáé åðéèõìçôÞ) Ýííïéá éóïññïðßáò
êáé áíôéóôïé÷åß óå Ýíá ïëéêü åëÜ÷éóôï ôùí óõíáñôÞóåùí êüóôïõò. Ôï äõóÜñå-
óôï åßíáé üôé ôá ðåñéóóüôåñá ðáßãíéá äå äéáèÝôïõí DE 3. ¸ôóé áíáãêáæüìáóôå
íá óõìâéâáóôïýìå ìå ìßá ðéï áóèåíÞ Ýííïéá, áõôÞ ôïõ Nash Equilibrium, ðïõ
ïñßóôçêå áðü ôïí John Nash ôï 1951 óôï [Nas51].

3åßíáé åýêïëï íá äåé êáíåßò üôé êáíÝíá áðü ôá ðñïáíáöåñèÝíôá ðáßãíéá äåí Ý÷åé DE
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De�nition 1.2.6. Ïñßæïõìå ùò ãíÞóéï (pure) Nash Equilbrium (PNE) Ýíá
ðñïößë óôñáôçãéêþí (a1; : : : ; an) ôÝôïéï þóôå ãéá êÜèå ðáßêôç i:

ci(a1; : : : ; an) ≤ ci(a1; : : : ; a′i; : : : an)

ãéá êÜèå Üëëç óôñáôçãéêÞ a′i.

Ìå Üëëá ëüãéá, ôï ÍÅ åßíáé ìßá êáôÜóôáóç áðü ôçí ïðïßá êáíåßò ðáßêôçò
äåí Ý÷åé óõìöÝñïí íá öýãåé, ìå äåäïìÝíï üôé êáé ïé õðüëïéðïé ðáßêôåò èá
äéáôçñÞóïõí ôéò õðÜñ÷ïõóåò óôñáôçãéêÝò ôïõò. Åßíáé åýêïëï íá êáôáëÜâåé
êáíåßò üôé ôï ÍÅ áíôéóôïé÷åß óå ôïðéêü åëÜ÷éóôï ôùí óõíáñôÞóåùí êüóôïõò
êáé áðïôåëåß ìßá ðïëý ëïãéêÞ Ýííïéá éóïññïðßáò. ÁëëÜ ôï ðéï óçìáíôéêü ãéá
ìßá éóïññïðßá åßíáé íá åîáóöáëßóïõìå ôçí ýðáñîÞ ôçò óå êÜèå ðáßãíéï (êÜôé
ôï ïðïßï äåí êáôáöÝñáìå óôçí ðåñßðôùóç ôïõ DE). Áí ðñïóÝîïõìå èá äïýìå
üôé óôo ÐáñÜäåéãìá 1.2.2 ôá ðñïößë (B,S) êáé (S,B) åßíáé êáé ôá 2 ÑÍÅ, åíþ
áíôßóôïé÷á óôï ÐáñÜäåéãìá 1.2.4 ôï ðñïößë (Confess,Confess) åßíáé ÑÍÅ.
Áíôßèåôá ôï ÐáñÜäåéãìá 1.2.3 äå äéáèÝôåé ÑÍÅ. Áõôü åßíáé áðïãïçôåõôéêü.
Äõóôõ÷þò üìùò åßíáé ãåãïíüò üôé õðÜñ÷ïõí ðáßãíéá ðïõ äå äéáèÝôïõí ÑÍÅ.
ÐñïêåéìÝíïõ íá åîáóöáëßóïõìå êáèïëéêÞ ýðáñîç éóïññïðßáò, ðñÝðåé íá êÜíïõ-
ìå Ýíá áêüìá âÞìá: íá åðéôñÝøïõìå óôïõò ðáßêôåò íá ðáßæïõí ìå ðéèáíüôçôåò.
Áõôü ðñáêôéêÜ óçìáßíåé üôé ï êÜèå ðáßêôçò äåí åðéëÝãåé ðëÝïí ìßá óôñáôçãéêÞ
áðü ôï óýíïëï ôùí óôñáôçãéêþí ôïõ, áëëÜ áðïäßäåé óå üëåò ìßá ðéèáíüôçôá
óôï [0; 1].
¸ôóé áñ÷éêÜ ïñßæïõìå ôï óýíïëï

∆(Ai) ≡ {z ∈ [0; 1]|Ai| :
∑
i

zi = 1}

. To z åßíáé ìßá êáôáíïìÞ ðéèáíüôçôáò ðÜíù óôá óôïé÷åßá êÜèå óõíüëïõ Ái êáé
ôï ∆(Ai) åßíáé ôï óýíïëï üëùí ôùí äõíáôþí ôÝôïéùí êáôáíïìþí. Ïñßæïõìå
óôç óõíÝ÷åéá ôï ìåéêôü ðñïößë óôñáôçãéêþí p = (p1; : : : ; pn), üðïõ ∀i ∈
N; pi ∈ ∆(Ai). Èåùñþíôáò üôé Ý÷ïõìå ïñßóåé ôéò óõíáñôÞóåéò êÝñäïõò ãéá
êÜèå ðáßêôç ïñßæïõìå ùò ci�(p) ôï áíáìåíüìåíï (expected) êüóôïò ãéá ôïí
ðáßêôç i, áí ôåëéêÜ åðéëÝîåé ôç óôñáôçãéêÞ � êáé ìå äåäïìÝíï üôé ïé õðüëïéðïé
ðáßêôåò ðáßæïõí ìå âÜóç ôï ìåéêôü ðñïößë p. ¸ôóé ðáñáôçñïýìå üôé ðëÝïí
ïé ðáßêôåò äåí áðïöáóßæïõíå ìå âÜóç ôï ðñïêýðôïí êüóôïò áðü ôéò åðéëïãÝò
ôùí õðïëïßðùí ðáéêôþí, áëëÜ ìå âÜóç ôï åêôéìþìåíï êüóôïò.

De�nition 1.2.7. Ùò (ìåéêôü) Nash equilibrium ïñßæïõìå Ýíá ìåéêôü ðñïößë
óôñáôçãéêþí p ôÝôïéï þóôå:

∀i ∈ N; ∀�; � ∈ Ai; pi� > 0 ⇒ ci�(p) ≤ ci�(p)

üðïõ ï åêèÝôçò äçëþíåé ôïí ðáßêôç êáé ï äåßêôçò ôç óôñáôçãéêÞ.
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Ìå Üëëá ëüãéá, óôï (ìåéêôü) ÍÅ ï êÜèå ðáßêôçò ðáßæåé ìå ìç ìçäåíéêÞ
ðéèáíüôçôá, ìüíï ôéò óôñáôçãéêÝò áõôÝò ðïõ åëá÷éóôïðïéïýí ôï êüóôïò ôïõ.
Ìå ôç ãåíßêåõóç áõôÞ, ï Íash êáôÜöåñå íá áðïäåßîåé ôï åîÞò:

Theorem 1.2.8. Èåþñçìá Nash: Óå êÜèå ðåðåñáóìÝíï ðáßãíéï ðïëëþí
ðáéêôþí õðÜñ÷åé Ýíá ìåéêôü ðñïößë óôñáôçãéêþí ôï ïðïßï åßíáé Nash equilib-
rium.

ÐáñáôçñÞóôå ôþñá, üôé, ìå âÜóç ôïí ðáñáðÜíù ïñéóìü, ôï ÍÅ ôïõ Ðáñá-
äåßãìáôïò 1.2.3 åßíáé ôï ìåéêôü ðñïößë ((1=2; 1=2); (1=2; 1=2)). To ðáñáðÜíù
èåþñçìá åßíáé ðïëý óçìáíôéêü ãéáôß åßíáé ôï ðñþôï èåþñçìá ðïõ åîáóöáëßæåé
ôçí ýðáñîç êÜðïéïõ åßäïõò éóïññïðßáò óå êÜèå ðáßãíéï. Ðáñüëá áõôÜ åßíáé
Ýíá ìç êáôáóêåõáóôéêü èåþñçìá. Áõôü óçìáßíåé üôé ç áðüäåéîÞ ôïõ äå ìáò
õðáãïñåýåé êÜðïéïí ôñüðï ãéá íá êáôáóêåõÜóïõìå Ýíá ÍÅ. ÓõãêåêñéìÝíá ï
Íash ÷ñçóéìïðïßçóå óôçí áðüäåéîÞ ôïõ ôå÷íéêÝò áðü �x-point theorems. ¸íá
ôÝôïéï èåþñçìá åßíáé ôï åîÞò:

Theorem 1.2.9. Brouwer's Fixpoint Theorem: ¸óôù f : S → S ìßá
óõíå÷Þò óõíÜñôçóç áðü Ýíá ìç êåíü, óõìðáãÝò4 êáé êõñôü óýíïëï S ⊆ Rn
óôïí åáõôü ôïõ. Ôüôå ç f Ý÷åé óôáèåñü óçìåßï, äçëáäÞ õðÜñ÷åé x̃ ∈ S ôÝôïéï
þóôå x̃ = f(x̃).

H éäÝá ôçò áðüäåéîçò ôïõ ÈåùñÞìáôïò 1.2.8 åßíáé, äïèÝíôïò åíüò ðáéãíßïõ,
íá êáôáóêåõÜóåé êáíåßò ìßá óõíÜñôçóç ç ïðïßá íá éêáíïðïéåß ôéò ðñïûðïèÝóåéò
ôïõ ÈåùñÞìáôïò 1.2.95 êáé íá åðéäÝ÷åôáé �x-point. Ç óõíÜñôçóç ðñÝðåé íá
åßíáé Ýôóé êáôáóêåõáóìÝíç, þóôå ôï �x-point áõôÞò íá áíôéóôïé÷åß óå ÍÅ ôïõ
ðáéãíßïõ. Ç êáôáóêåõÞ ôçò óõíÜñôçóçò ìÜëéóôá äåí åßíáé éäáßôåñá äýóêïëç.
¸ôóé åîáóöáëßæïõìå ôçí ýðáñîç ôïõ ÍÅ, ÷ùñßò üìùò íá Ý÷ïõìå ðëçñïöïñßá
ãéá ôçí êáôáóêåõÞ ôïõ.
Ðñïöáíþò Ýíá áðü ôá ðñþôá èÝìáôá ðïõ áðáó÷üëçóå ôçí êïéíüôçôá ôçò
ÈåùñçôéêÞò ÐëçñïöïñéêÞò åßíáé áõôü ôïõ õðïëïãéóìïý åíüò ÍÅ. ÌÜëéóôá
Þäç áðü ôï 1964 õðÜñ÷åé ï áëãüñéèìïò Lemke-Howson (Ýíáò simplex-like
áëãüñéèìïò) ãéá åýñåóç åíüò ÍÅ óå bimatrix games. Ãéá ðïëëÜ ÷ñüíéá
åéêáæüôáí üôé óôç ÷åéñüôåñç ðåñßðôùóç ï áëãüñéèìïò áõôüò áðáéôåß åêèåôéêü
áñéèìü âçìÜôùí, êÜôé üìùò ðïõ ìüëéò ðñüóöáôá áðïäåß÷èçêå üôé éó÷ýåé, áíå-
îÜñôçôá áðü ôï óçìåßï åêêßíçóçò, áêüìá êáé ãéá ðáé÷íßäéá íßêçò-Þôôáò [SvS04].
×ùñßò íá ìðïýìå óå ðïëëÝò ëåðôïìÝñåéåò ó÷åôéêÜ ìå ôïí õðïëïãéóìü ôïõ ÍÅ
óå ðáßãíéá ðïëëþí ðáéêôþí, èá ðáñïõóéÜóïõìå Ýíá ðáñÜäåéãìá ðïõ äéáóáöçíß-
æåé ôï óêåðôéêü ðßóù áðü ôïí õðïëïãéóìü:

Example 1.2.10. Èåùñïýìå ðáßãíéï óôï ïðïßï áíôéóôïé÷åß ï ðáñáêÜôù ðßí-
áêáò. Êáôáñ÷Üò åîåôÜæïõìå êáôÜ ðüóïí õðÜñ÷åé PNE. Ðáñáôçñïýìå üôé

4äçëáäÞ êëåéóôü êáé öñáãìÝíï
5áñ÷éêÜ ï Nash ÷ñçóéìïðïßçóå ôï �x-point theorem ôïõ Kakutani
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b1 b2
a1 3,0 1,1
a2 1,3 2,0

Table 1.4: Players' payo�s: an example

õðÜñ÷ïõí 4 äõíáôïß óõíäõáóìïß áðü pure óôñáôçãéêÝò, äçëáäÞ 4 õðïøÞöéá
PNE, ôá åîÞò: (a1; b1); (a1; b2); (a2; b1); (a2; b2). Åðßóçò ðáñáôçñïýìå ôéò åîÞò
ó÷Ýóåéò ìåôáîý ôùí payo�s ôùí ðáñáðÜíù ãíÞóéùí ðñïößë óôñáôçãéêþí:

uB(a1; b1) < uB(a1; b2)

uA(a1; b2) < uA(a2; b2)

uB(a2; b2) < uB(a2; b1)

uA(a2; b1) < uA(a1; b1)

üðïõ ïé óõíáñôÞóåéò uA; uB ïñßæïíôáé óôïõò ðáñáêÜôù ðßíáêåò.
Ðáñáôçñïýìå äçëáäÞ üôé ãéá êÜèå äõíáôü ðñïößë óôñáôçãéêþí ôïõëÜ÷éóôïí

Ýíáò ðáßêôçò Ý÷åé óõìöÝñïí íá áëëÜîåé ôç óôñáôçãéêÞ ôïõ. Ôï áðïôÝëåóìá
åßíáé Ýíáò êýêëïò óôï ãñÜöï ìå êüìâïõò ôá äõíáôÜ ðñïößë óôñáôçãéêþí
êáé áêìÝò ôéò ìåôáâÜóåéò ìåôáîý ðñïößë, üðïõ ìüíï Ýíáò ðáßêôçò áëëÜæåé
óôñáôçãéêÞ. Ï êýêëïò áõôüò åßíáé åíäåéêôéêüò ôçò ìç ýðáñîçò PNE.

Ðñï÷ùñÜìå ôþñá óôïí õðïëïãéóìü åíüò (ìåéêôïý) NE. ¸óôù p ç ðéèáíüôç-
ôá ìå ôçí ïðïßá ï ðáßêôçò Á åðéëÝãåé ôç óôñáôçãéêÞ a1 (ðñþôç ãñáììÞ) êáé
q ç ðéèáíüôçôá ìå ôçí ïðïßá ï ðáßêôçò B åðéëÝãåé ôç óôñáôçãéêÞ b1 (ðñþôç
óôÞëç). Ïé ðéèáíüôçôåò ãéá ôá a2 êáé b2 åßíáé 1−p êáé 1− q áíôßóôïé÷á. Ôüôå
Ý÷ïõìå:
Áí ï Á ðáßîåé a1 ôï åêôéìþìåíï êÝñäïò ôïõ åßíáé: 3 · q+ 1 · (1− q) = 2 · q+ 1.
Áí ï Á ðáßîåé a2 ôï åêôéìþìåíï êÝñäïò ôïõ åßíáé: 1 · q + 2 · (1− q) = −q + 2.
Áí ï B ðáßîåé b1 ôï åêôéìþìåíï êÝñäïò ôïõ åßíáé: 0 ·p+3 · (1−p) = −3 ·p+3.
Áí ï B ðáßîåé b2 ôï åêôéìþìåíï êÝñäïò ôïõ åßíáé: 1 · p+ 0 · (1− p) = p.

ÊÜèå ðáßêôçò áðïäßäåé ôéò ðéèáíüôçôåò p êáé q ìå âÜóç ôá åêôéìþìåíá
êÝñäç. ¸ôóé Ý÷ïõìå ôéò ðáñáêÜôù ôéìÝò ãéá ôá p êáé q áíÜ ðåñßðôùóç êáé áíÜ
ðáßêôç:

Ãéá ôïí Á, ðñïêåéìÝíïõ íá ìçí åðéèõìåß íá áëëÜîåé óôñáôçãéêÞ ðñÝðåé:
Áí 2 · q + 1 > −q + 2 ⇔ q > 1=3 ôüôå p = 1. (1)
Áí 2 · q + 1 < −q + 2 ⇔ q < 1=3 ôüôå p = 0. (2)
Áí 2 · q + 1 = −q + 2 ⇔ q = 1=3 ôüôå áðëÜ 0 < p < 1. (3)
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Áíôßóôïé÷á ãéá ôïí Â:
Áí −3 · p+ 3 > p⇔ p < 3=4 ôüôå q = 1. (4)
Áí −3 · p+ 3 < p⇔ p > 3=4 ôüôå q = 0. (5)
Áí −3 · p+ 3 = p⇔ p = 3=4 ôüôå áðëÜ 0 < q < 1. (6)

Ðáñáôçñïýìå üôé áí åðéëÝîïõìå êÜðïéá pure óôñáôçãéêÞ ãéá êÜðïéïí áðü
ôïõò äýï ðáßêôåò ïäçãïýìáóôå óå Üôïðï, ìÝóù ôùí ó÷Ýóåùí (1), (2), (4) êáé
(5). Ãéá ðáñÜäåéãìá Ýóôù üôé ï Á ðáßæåé a1 ìå p = 1. Ôüôå ëüãù ôçò (5) ï
Â ðñÝðåé íá ðáßîåé b2, äçëáäÞ Ý÷ïõìå q = 0. ¼ìùò ôüôå ëüãù ôçò (2), ï Á
ðñÝðåé íá Ý÷åé p = 0, Üôïðï. Ìå ðáñüìïéá óõëëïãéóôéêÞ áðïêëåßïíôáé üëåò ïé
ãíÞóéåò óôñáôçãéêÝò.
¸ôóé êáôáëÞãïõìå óôéò ó÷Ýóåéò (3) êáé (6). ÐñÜãìáôé ãéá q = 1=3 êáé
p = 3=4, ïé (3) êáé (6) éêáíïðïéïýíôáé áìöüôåñåò êáé ôï áíôßóôïé÷ï ìåéêôü
ðñïößë óôñáôçãéêþí åßíáé NE.

Ç ðáñáðÜíù ìÝèïäïò ìðïñåß íá óõóôçìáôïðïéçèåß, þóôå íá åîÜãïõìå ìßá
óåéñÜ áðü åîéóþóåéò õðü ìïñöÞ complementarities üðùò ëÝãïíôáé, ôéò ïðïßåò
ìåôÜ èá ðñïóðáèÞóïõìå íá åðéëýóïõìå. Ãéá ôçí åðßëõóç ôùí åîéóþóåùí
ìðïñïýìå åßôå íá äïõëÝøïõìå åîáíôëçôéêÜ, ðÜíù óôï óýíïëï üëùí ôùí äõíáôþí
supports ôïõ ðáéãíßïõ6, Þ íá ÷ñçóéìïðïéÞóïõìå ôïí áëãüñéèìï Lemke-Howson.
Óå êÜèå ðåñßðôùóç üìùò ìðïñåß íá ÷ñåéáóôïýìå åêèåôéêü áñéèìü âçìÜôùí, ùò
ðñïò ôïí áñéèìü ôùí ðáéêôþí êáé ôùí óôñáôçãéêþí.

Åöüóïí êáèþò öáßíåôáé, ãéá ôï ðñüâëçìá ôçò êáôáóêåõÞò/åýñåóçò ÍÅ äåí
õðÜñ÷åé áðïäïôéêüò (ðïëõùíõìéêüò) áëãüñéèìïò, èá èÝëáìå íá äåßîïõìå üôé ôï
ðñüâëçìá åßíáé üíôùò äýóêïëï (éäáíéêÜNP-complete). Ôï ðñüâëçìá üìùò ìå
ôçí åýñåóç ÍÅ, åßíáé üôé îÝñïõìå üôé õðÜñ÷åé -Üñá äåí ìðïñåß íá áðïäåé÷èåß üôé
åßíáé NP-complete, ìéáò êáé ôï ðñüâëçìá áðüöáóçò äßíåé áðÜíôçóç \õðÜñ÷åé"
ôåôñéìÝíá, ÷ùñßò üìùò ç áðüäåéîç íá ðáñÝ÷åé Ýíáí áëãüñéèìï êáôáóêåõÞò ôïõ.
ÓõíäõÜæïíôáò ôá ðáñáðÜíù ìðïñïýìå íá ðïýìå üôé ôï ðñüâëçìá åýñåóçò åíüò
ÍÅ Ý÷åé \ine�cient proof of existence", êÜôé ðïõ ôï ôïðïèåôåß óôçí êëÜóç
PPAD [Pap01],[Pap94]. Ðáñüëá áõôÜ ìÝ÷ñé ðñüóöáôá äåí Þôáí ãíùóôü
êáôÜ ðüóïí ôï ðñüâëçìá áõôü Þôáí ðëÞñåò ãéá ôçí êëÜóç áõôÞ. ÔåëéêÜ
óôéò äçìïóéåýóåéò [DGP05] êáé [DP05] áðïäåß÷èçêå üôé ôï ðñüâëçìá åßíáé
PPAD-complete áêüìá êáé ãéá ðáßãíéá 4 êáé 3 ðáéêôþí áíôßóôïé÷á, êáé ìüëéò
ðÝñóé áðïäåß÷èçêå óôï [CD06] üôé ôï ßäéï éó÷ýåé êáé ãéá ôçí ðåñßðôùóç ôùí
2 ðáéêôþí. To ãåãïíüò áõôü, åðéâåâáéþíåé ôç äéáßóèçóç ðïõ åß÷áìå, üôé ôï
ðñüâëçìá åýñåóçò ÍÅ åßíáé ìÜëëïí7 äýóêïëï.

6ðåñéóóüôåñåò ëåðôïìÝñåéåò ãéá ôá supports óôï 2ï ÊåöÜëáéï ôçò äéðëùìáôéêÞò
7ç áêñéâÞò ó÷Ýóçò ôçò PPAD ìå ôçí NP äåí åßíáé ãíùóôÞ



1.2. NASH EQUILIBRIUM ÊÁÉ PRICE OF ANARCHY 21

Óôï óçìåßï áõôü áîßæåé íá óçìåéùèåß üôé ç êëÜóç PPAD åßíáé õðïóýíïëï
ôçò êëÜóçò T FNP , ç ïðïßá ðåñéëáìâÜíåé üëá ôá ðñïâëÞìáôá åýñåóçò (\NP-
search problems") ãéá ôá ïðïßá üìùò îÝñïõìå üôé õðÜñ÷åé ëýóç. Ìßá Üëëç
õðïêëÜóç ôçò T FNP åßíáé ç PLS, ôçí ïðïßá èá îáíáäïýìå óôï ÊåöÜëáéï 3.

¸íá Üëëï óçìáíôéêü åñþôçìá ðïõ ðñïêýðôåé Üìåóá áðü ôçí ðáñáðÜíù
óõæÞôçóç êáé Ý÷åé åðßóçò áðïôåëÝóåé óçìáíôéêü ðåäßï åñåõíþí, åßíáé áõôü
ôçò ýðáñîçò ðñïóåããéóôéêþí áëãïñßèìùí ãéá ôçí åýñåóç åíüò ÍÅ. ÃåíéêÜ ôï
óçìáíôéêü åßíáé üôé ùò ôþñá äåí õðÜñ÷åé êáíÝíá ðïëõùíõìéêïý ÷ñüíïõ ó÷Þìá
ðñïóÝããéóçò ãéá å-ÁpproxNE8 ãéá êÜèå (óôáèåñü) å. Ðáñüëá áõôÜ ãéá êÜèå å,
áðïäåéêíýåôáé óôï [LMM03] üôé õðÜñ÷ïõí å-ApproxNE ìå O(log(m+ n)=å2)
ðéèáíÝò óôñáôçãéêÝò áíÜ ðáßêôç, êÜôé ôï ïðïßï õðïííïåß õðïåêèåôéêü ÷ñüíï
õðïëïãéóìïý. Åðßóçò óôï [CDT06] áðïäåéêíýåôáé üôé åêôüò áí PPAD ⊆ P ,
äåí õðÜñ÷åé áëãüñéèìïò åýñåóçò å-ApproxNE ìå ðïëõðëïêüôçôá poly(n; 1=å)
ãéá êÜèå å = n−Θ(1), ôï ïðïßï óçìáßíåé üôé ìÜëëïí äåí õðÜñ÷åé FPTAS. Ðïëý
ðñüóöáôá áðïôåëÝóìáôá ðÜíù óôï èÝìá ôùí ðñïóåããéóôéêþí ÍÅ õðÜñ÷ïõí
óôá [KPS06] êáé [DMP06].

ÔÝëïò íá ôïíßóïõìå üôé, ðáñüëï ðïõ ôï ðñüâëçìá åýñåóçò åíüò ÍÅ äåí
åßíáé NP-complete, ôï ðñüâëçìá áðüöáóçò ôçò ýðáñîçò ðåñéóóïôÝñùí ôïõ
åíüò ÍÅ óå Ýíá ðáßãíéï åßíáé: [CS03]. Ôï ßäéï éó÷ýåé ãéá ôï ðñüâëçìá åýñåóçò
üëùí ôùí ÍÅ åíüò ðáéãíßïõ (ôá ïðïßá ìðïñåß íá åßíáé åêèåôéêÜ ðïëëÜ), êáèþò
êáé ãéá ôï ðñüâëçìá åýñåóçò ôïõ ÍÅ ìå ôï ìÝãéóôï óõíïëéêü payo�.

Êëåßíïíôáò ôï êåöÜëáéï ãéá ôá equilibria íá ðáñáôçñÞóïõìå üôé êÜèå DE
åßíáé ÍÅ, éó÷ýåé äçëáäÞ ìßá ó÷Ýóç åãêëåéóìïý áíÜìåóá óôá 2 åßäç éóïññïðßáò.
Ìßá ðéï ãåíéêÞ Ýííïéá éóïññïðßáò (ðïõ ðåñéÝ÷åé ôá ÍÅ) åßíáé áõôÞ ôïõ Corre-
lated Equilibrium.

1.2.3 Ôï Price of Anarchy

Áò èõìçèïýìå ôþñá ôï ÐáñÜäåéãìá 1.2.4. Åß÷áìå êáôáëÞîåé üôé ôï ìüíï ÍÅ
ãéá ôï ðáñÜäåéãìá áõôü åßíáé ôï (Confess,Confess). Ôï Üó÷çìï åäþ åßíáé üôé ïé
ðáßêôåò ìÝíïõí åõ÷áñéóôçìÝíïé (éóïññïðïýí) ãéá Ýíá ðñïößë óôñáôçãéêþí ðïõ
ôïõò áíáãêÜæåé íá ðÜíå 3 ÷ñüíéá öõëáêÞ, åíþ èá ìðïñïýóáí íá ãëéôþóïõí
ìå 1 ìüíï ÷ñüíï. Ôï ðáñÜäåéãìá áõôü êáôáäåéêíýåé ìßá áðü ôéò ìåãÜëåò
áäõíáìßåò ôçò áõôüíïìçò êáé åãùéóôéêÞò óõìðåñéöïñÜò óå ôÝôïéá óõóôÞìáôá:
üôé äçëáäÞ, ìðïñåß ôï ôåëéêü áðïôÝëåóìá íá áðÝ÷åé áðü ôï âÝëôéóôï. Ôï

8äçëáäÞ åíüò \equilibrium" üðïõ êáíÝíáò ðáßêôçò äåí ìðïñåß íá êåñäßóåé ðáñáðÜíù áðü
å áëëÜæïíôáò óôñáôçãéêÞ
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ôßìçìá ôçò áíáñ÷ßáò (price of anarchy - PoA) ìáò äßíåé áêñéâþò áõôü ôï ëüãï
ìåôáîý ôïõ ÷åéñüôåñïõ äõíáôïý áðïôåëÝóìáôïò (ÍÅ) ôïõ ðáé÷íéäéïý êáé ôïõ
âÝëôéóôïõ, ôï ïðïßï üìùò äåí áíôéóôïé÷åß êáô' áíÜãêç óå ÍÅ. Ôï åñþôçìá
ðïõ êáëïýìáóôå íá áðáíôÞóïõìå åßíáé áí ôï ÑïÁ ìðïñåß íá öñá÷èåß ãéá ôá
óõãêåêñéìÝíá ðáßãíéá ðïõ åîåôÜæïõìå.

Áò ðñï÷ùñÞóïõìå üìùò óôïí ôõðéêü ïñéóìü. Áñ÷éêÜ èåùñïýìå ìßá áíôéêåé-
ìåíéêÞ óõíÜñôçóç C : A1× : : :×An → R∗+ ç ïðïßá áíôéóôïé÷åß óå êÜèå ðñïößë
óôñáôçãéêþí, äçëáäÞ óå êÜèå õðïøÞöéï áðïôÝëåóìá ôïõ ðáéãíßïõ Ýíáí áñéèìü,
ðïõ áíôéóôïé÷åß óôï êüóôïò ôïõ áðïôåëÝóìáôïò ãéá ôçí êïéíùíßá. ¸ôóé èá
ëÝìå üôé ç óõíÜñôçóç áõôÞ áíáðáñéóôÜ ôï êïéíùíéêü êüóôïò (social cost - SC)
ôïõ ðáéãíßïõ. ÓõíçèéóìÝíåò åðéëïãÝò ãéá ôç C åßíáé ïé óõíáñôÞóåéò maxi ci
êáé

∑
i ci. ÖõóéêÜ Ý÷ïõí êáôÜ êáéñïýò ðñïôáèåß êáé Üëëåò óõíáñôÞóåéò.

Áõôü ðïõ èÝëïõìå åìåßò ôþñá åßíáé íá óõãêñßíïõìå ôï êüóôïò ôïõ ÷åéñüôåñïõ
äõíáôïý ÍÅ, äçëáäÞ ôïõ ÍÅ ìå ôï ìåãáëýôåñï äõíáôü êüóôïò, ìå ôï êüóôïò
ôçò âÝëôéóôçò ëýóçò (Ýóôù OPT), ç ïðïßá, íá îáíáôïíßóïõìå, äåí åßíáé áíÜãêç
íá áíôéóôïé÷åß óå ÍÅ9. Óêïðüò ôþñá åßíáé íá âñïýìå ôï ëüãï ôùí äýï ðáñáðÜíù
ìåãåèþí, ïðüôå ïñßæïõìå:

De�nition 1.2.11. Ùò Price of Anarchy åíüò ðáéãíßïõ ïñßæïõìå ôï ëüãï:

PoA = max
P∈NE

SC(P )

OPT

Óôï óçìåßï áõôü ðñÝðåé íá êÜíïõìå ìßá áêüìá åðåîÞãçóç. Ðáñáôçñïýìå
üôé óôï ÑïÁ õðïëïãßæïõìå ôï SC (ðïõ åßíáé êÜðïéá áíôéêåéìåíéêÞ óõíÜñôçóç)
ãéá êÜðïéá ðñïößë óôñáôçãéêþí ðïõ åßíáé ÍÅ. Ôé ãßíåôáé üìùò üôáí ïé ðáßêôåò
ðáßæïõí ìå ìåéêôÝò óôñáôçãéêÝò (üðùò óõìâáßíåé óõíÞèùò); Ç ðñïöáíÞò áðÜ-
íôçóç åßíáé üôé ãåíéêåýïõìå ôç óõíÜñôçóç êïéíùíéêïý êüóôïõò, þóôå ðëÝïí
íá ìáò åðéóôñÝöåé ôï åêôéìþìåíï (estimated) êïéíùíéêü êüóôïò, ìå âÜóç ôéò
ðéèáíüôçôåò ôùí äéáöüñùí ðáéêôþí ãéá êÜèå óôñáôçãéêÞ.
Ìå ôï ÑïÁ èá áó÷ïëçèïýìå åêôåôáìÝíá óôá åðüìåíá êåöÜëáéá. Ãéá Ýíá ðñþôï
ðáñÜäåéãìá äåßôå ôï 1.3.1.
Ôï ìüíï ðïõ áîßæåé íá óçìåéùèåß åßíáé üôé, ðÝñá áðü ôïí ðáñáðÜíù ïñéóìü,
Ý÷ïõí ðñïôáèåß êáé Üëëïé ôÝôïéïé ëüãïé, üðùò ôï PPoA (pure price of anarchy)
ðïõ õðïëïãßæåôáé ðÜíù óôï óýíïëï ôùí ÑÍÅ (âë. ÊåöÜëáéï 3), êáèþò êáé ôï
price of stability, Þ optimistic price of anarchy, ôï ïðïßï èåùñåß ôï ëüãï ôïõ
êáëýôåñïõ ÍÅ ðñïò ôç âÝëôéóôç ëýóç êáé âïçèÜ ôï ó÷åäéáóôÞ ôïõ óõóôÞìáôïò,
ìéáò êáé ðåñéãñÜöåé ôéò åëÜ÷éóôåò äõíáôÝò áðþëåéåò óå ó÷Ýóç ìå ôï âÝëôéóôï
üôáí ïé ðáßêôåò åßíáé óå ÍÅ (ìå Üëëá ëüãéá óå ðïéï ÍÅ èÝëïõìå íá \âÜëïõìå"

9áõôü ðñáêôéêÜ óçìáßíåé üôé áí áöÞóïõìå ôïõò ðáßêôåò íá ðáßîïõí ìüíïé ôïõò, ÷ùñßò
êÜðïéá êåíôñéêÞ áñ÷Þ, ðïôÝ äåí ðñüêåéôáé íá êáôáëÞîïõí óôç âÝëôéóôç ëýóç
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ôïõò ðáßêôåò).
Ôï PoA ïñßóôçêå óôï [KP99], ôï ïðïßï ìåëåôÜìå óôï 2ï ÊåöÜëáéï, êáô'
áíáëïãßá ôïõ approximation ratio (óôïõò ðñïóåããéóôéêïýò áëãïñßèìïõò) êáé
ôïõ competitive ratio (óôïõò online áëãïñßèìïõò).

1.3 ÌåñéêÜ ðáñÜäïîá ôçò Èåùñßáò Ðáéãíßùí
Óôï ìÝñïò áõôü èá ðáñïõóéÜóïõìå 3 ðáñáäåßãìáôá ðïõ óå ðñþôç áíÜãíùóç
ìðïñåß íá ìáò îáöíéÜóïõí êáé áðïôåëïýí êáëü åöáëôÞñéï ãéá ôçí åñåõíçôéêÞ
äïõëåéÜ ðïõ ðáñïõóéÜæåôáé óôá åðüìåíá êåöÜëáéá ôçò äéðëùìáôéêÞò.

Example 1.3.1. Sel�sh Task Allocation
Áò èåùñÞóïõìå üôé Ý÷ïõìå 4 åñãáæüìåíïõò/ðáßêôåò ðïõ ï êÜèå Ýíáò èÝëåé
íá ôñÝîåé Ýíá ðñüãñáììá ðñïóïìïßùóçò óå Ýíáí õðïëïãéóôÞ. Ïé äéÜñêåéåò
ôùí ðñïãñáììÜôùí ðñïóïìïßùóçò åßíáé 1, 2, 3 êáé 4 ëåðôÜ áíôßóôïé÷á êáé ôï
ãñáöåßï äéáèÝôåé 2 õðïëïãéóôÝò, ïé ïðïßïé åöáñìüæïõí round-robin ÷ñïíïäñï-
ìïëüãçóç óôéò äéåñãáóßåò ðïõ ôñÝ÷ïõí. Áõôü ðñáêôéêÜ óçìáßíåé üôé ðáñá÷ù-
ñïýí åê ðåñéôñïðÞò ëßãï ÷ñüíï óå üëåò ôéò äéåñãáóßåò ðïõ åßíáé öïñôùìÝíåò
óå áõôïýò, Ýôóé þóôå, ôåëéêÜ, üëåò ïé äéåñãáóßåò íá ôåëåéþíïõí ôáõôü÷ñïíá.
Ïé åñãáæüìåíïé áðïöáóßæïõí ìüíïé ôïõò óå ðïéïí õðïëïãéóôÞ ôïõò èá ôñÝîïõí
ôï ðñüãñáììÜ ôïõò, ìå ìüíï êñéôÞñéï íá ôåëåéþóïõí üóï ôï äõíáôü íùñßôåñá.

Óôï Ó÷Þìá 1.1 öáßíïíôáé äýï äõíáôÝò êáôáíïìÝò ôùí åñãáóéþí óå õðïëïãé-
óôÝò. Ðáñáôçñïýìå üôé êáé óôéò äýï ðåñéðôþóåéò üëïé ïé åñãáæüìåíïé åßíáé
åõ÷áñéóôçìÝíïé êáé êáíåßò äåí ðñüêåéôáé íá áëëÜîåé õðïëïãéóôÞ, äçëáäÞ ïé
åðéëïãÝò ôïõò áíôéóôïé÷ïýí óå ÍÅ. Óôçí áñéóôåñÞ êáôáíïìÞ êÜèå ðáßêôçò
ðñÝðåé íá ðåñéìÝíåé 5 ëåðôÜ.
Áò åóôéÜóïõìå ôþñá óôç äåîéÜ êáôáíïìÞ ôùí åñãáóéþí óå ìç÷áíÝò. Ðáñá-
ôçñïýìå üôé êáé óå áõôÞ ôçí ðåñßðôùóç êáíÝíáò ðáßêôçò äåí Ý÷åé êÜðïéï
óõìöÝñïí íá áëëÜîåé õðïëïãéóôÞ (áêüìá êáé ï ðáßêôçò 2, áöïý óå êÜèå

1 2 3 4 1 2 3 4

Figure 1.1: 2 ÍÅ óå Sel�sh Task Allocation instance
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ðåñßðôùóç èá ðåñéìÝíåé 6 ëåðôÜ). ¸ôóé êáé áõôÞ ç êáôÜóôáóç áíôéóôïé÷åß
óå ÍÅ, üðïõ üìùò êÜðïéïé ðáßêôåò ðåñéìÝíïõí 6 ëåðôÜ (èåùñþ äçëáäÞ óáí
êïéíùíéêü êüóôïò ôï max).
Ìå Üëëá ëüãéá, óôï ðáñÜäåéãìá áõôü âëÝðïõìå üôé Ýíá ðáßãíéï ìðïñåß íá
åðéäÝ÷åôáé 2 ÍÅ äéáöïñåôéêÞò ðïéüôçôáò ôï êáèÝíá (äéáöïñåôéêü ÑïÁ). Óõãêå-
êñéìÝíá, ðáñáôçñþíôáò üôé ç âÝëôéóôç áíÜèåóç åäþ áíôéóôïé÷åß óôï ðñþôï ÍÅ,
ìðïñïýìå íá åðáëçèåýóïõìå üôé ôá 2 ÍÅ Ý÷ïõí ÑïÁ 1 êáé 6/5 áíôßóôïé÷á.

Figure 1.2: Pigou's Example

Example 1.3.2. Pigou's Network
Áò èåùñÞóïõìå ôþñá Ýíá äßêôõï üðùò áõôü ôïõ Ó÷Þìáôïò 1.2. Äýï áêìÝò
óõíäÝïõí ôïõò êüìâïõò s êáé t. Ïé êüìâïé áõôïß ìðïñåß íá áíôéóôïé÷ïýí óôïõò
ôåñìáôéêïýò êüìâïõò êÜðïéïõ äéêôýïõ, óôï ïðïßï èÝëïõìå íá ìåôáöÝñïõìå
êÜðïéá ðïóüôçôá ðëçñïöïñßáò. ÊÜèå ìßá áðü ôéò áêìÝò Ý÷åé ìßá óõíÜñôçóç
êüóôïõò c(·), ç ïðïßá ðåñéãñÜöåé ôçí êáèõóôÝñçóç ãéá ôïõò ÷ñÞóôåò ðïõ
÷ñçóéìïðïéïýí ôçí áêìÞ áõôÞ ãéá íá ìåôáöÝñïõí ôá äåäïìÝíá ôïõò. Ç ðÜíù
áêìÞ Ý÷åé óôáèåñÞ êáèõóôÝñçóç c(x) = 1, äçëáäÞ äåí åðçñåÜæåôáé áðü ôï
öïñôßï ôçò, åíþ ç êÜôù áêìÞ Ý÷åé êáèõóôÝñçóç c(x) = x, äçëáäÞ ç êáèõóôÝñç-
óÞ ôçò áõîÜíåôáé ìå ôï öïñôßï ôçò (üðùò èá ðåñéìÝíáìå). ÐáñáôçñÞóôå üôé ç
êÜôù áêìÞ åßíáé ðéï ãñÞãïñç áðü ôçí ðÜíù áí êáé ìüíï áí ôç äéáññÝåé ëéãüôåñï
áðü ìßá ìïíÜäá äåäïìÝíùí.

Áò õðïèÝóïõìå ëïéðüí üôé Ý÷ïõìå 1 ìïíÜäá äåäïìÝíùí ðñïò ìåôáöïñÜ
êáé üôé ç ìïíÜäá áõôÞ åßíáé óõíå÷Þò, äçëáäÞ ìðïñïýìå íá ôç óðÜóïõìå üðùò
åðéèõìïýìå. Ç éäÝá åßíáé üôé Ý÷ïõìå Ýíá ìåãÜëï áñéèìü ÷ñçóôþí ðïõ üëïé ìáæß
äéá÷åéñßæïíôáé ôç óõãêåêñéìÝíç ìïíÜäá äåäïìÝíùí, åëÝã÷ïíôáò ï êáèÝíáò Ýíá
ìéêñü (áìåëçôÝï) êïììÜôé áõôÞò. Áí ï êÜèå ÷ñÞóôçò äéáëÝãåé áíåîÜñôçôá Ýíá
ìïíïðÜôé ãéá íá äñïìïëïãÞóåé ôç ñïÞ ôïõ, ðåñéìÝíïõìå üôé üëïé ïé ÷ñÞóôåò
(ïðüôå êáé üëç ç êßíçóç) èá äéáëÝîïõí ôçí êÜôù áêìÞ, ðïõ äåí åßíáé ðïôÝ
÷åéñüôåñç áðü ôçí ðÜíù ãéá ñïÞ ìÝ÷ñé 1. Áíôßèåôá, ìðïñåß íá åßíáé êáé
êáëýôåñç, áí êÜðïéïé ÷ñÞóôåò åßíáé áñêåôÜ áöåëåßò þóôå íá åðéëÝîïõí ôçí
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ðÜíù áêìÞ. ¸ôóé, èåùñþíôáò üôé ïé ðáßêôåò ðáßæïõí åãùéóôéêÜ, ðåñéìÝíïõìå
üëç ç ñïÞ íá äñïìïëïãçèåß ìå ìßá ìïíÜäá êáèõóôÝñçóçò.
Áò õðïèÝóïõìå ôþñá üôé õðÜñ÷åé ìßá êåíôñéêÞ áñ÷Þ ðïõ ìðïñåß íá ñõèìßóåé ôçí
êßíçóç. Áí ç áñ÷Þ áõôÞ áíáãêÜóåé ôïõò ìéóïýò ðáßêôåò íá ÷ñçóéìïðïéÞóïõí
ôçí ðÜíù áêìÞ, ôüôå ç ìåí ñïÞ ðïõ äñïìïëïãåßôáé áðü ðÜíù, Ý÷åé ðÜëé êáèõóôÝ-
ñçóç 1 (äçëáäÞ ôï ßäéï ìå ðñéí) åíþ ç ñïÞ ðïõ äñìïëïãåßôáé áðü êÜôù,
Ý÷åé ôþñá êáèõóôÝñçóç 1/2. ¸ôóé ôï ìÝóï êüóôïò ôþñá ãßíåôáé 3/4 áðü
1 ðïõ Þôáí ðñéí. ÐáñáôçñÞóôå âÝâáéá, üôé ïé ðáßêôåò ôçò ðÜíù áêìÞò äåí
åßíáé åõ÷áñéóôçìÝíïé êáé èÝëïõí íá êáôÝâïõí óôçí êÜôù áêìÞ, äçëáäÞ ç
êáôÜóôáóç áõôÞ äåí áíôéóôïé÷åß óå ÍÅ. Ôï ðáñÜäåéãìá áõôü åðéâåâáéþíåé
îáíÜ üôé ç åãùéóôéêÞ óõìðåñéöïñÜ ïäçãåß óå áðïôåëÝóìáôá ðïõ õðïëåßðïíôáé
ôïõ âÝëôéóôïõ. Åí ðñïêåéìÝíù ôï ÑïÁ áðïäåéêíýåôáé üôé åßíáé 4/3 (ìéáò êáé
ôï ðáñáðÜíù ÍÅ åßíáé êáé ôï ìïíáäéêü ãéá ôï ðáßãíéï áõôü).

Ôï ðáñáðÜíù öáéíüìåíï ìðïñåß íá ïîõíèåß, áí åðéôñÝøïõìå ìç ãñáììéêÝò

Figure 1.3: A nonlinear variant of Pigou's Example

óõíáñôÞóåéò êáèõóôÝñçóçò. ÓõãêåêñéìÝíá õðïèÝóôå üôé Ý÷ïõìå ôï Ó÷Þìá 1.3
üðïõ ç êÜôù áêìÞ Ý÷åé óõíÜñôçóç êáèõóôÝñçóçò c(x) = xp ãéá p ìåãÜëï. Êáô'
áíáëïãßá ìå ôçí ðñïçãïýìåíç ðåñßðôùóç, óôï ÍÅ üëïé ïé ðáßêôåò åðéëÝãïõí
ôçí êÜôù áêìÞ ìå óõíïëéêü êüóôïò 1. Áíôßèåôá, óôï âÝëôéóôï, äñïìïëïãïýìå
Ýíá ìéêñü ìÝñïò � > 0 ôçò ñïÞò áðü ôçí ðÜíù áêìÞ, ìå áðïôÝëåóìá ôï ìÝóï
êüóôïò íá ðÝóåé óôï � + (1 − �)p + 1 ôï ïðïßï ôåßíåé óôï 0 êáèþò � → 0 êáé
p→∞. ¸ôóé ôþñá ôï ÑïÁ ôåßíåé êáé áõôü óôï Üðåéñï, êáé ìÜëéóôá üðùò ôï
p= ln p
Óôï 3ï ÊåöÜëáéï èá äïýìå üôé ôá äßêôõá ôïõ ðáñáäåßãìáôïò, áðïôåëïýí
êáôÜ êÜðïéïí ôñüðï êáèïëéêÜ \êáêÜ" ðáñáäåßãìáôá ãéá ôï ðáßãíéï áõôü,
õðü ôçí Ýííïéá üôé ãéá êÜèå åðéôñåðþìåíï óýíïëï óõíáñôÞóåùí êüóôïõò, ôï
÷åéñüôåñï ÑïÁ ðñïêýðôåé áðü Ýíá äßêôõï áõôïý ôïõ ôýðïõ. Èá äïýìå äçëáäÞ,
ðþò ìðïñïýìå íá ÷ñçóéìïðïéÞóïõìå ôá Pigou's Networks ãéá íá öñÜîïõìå
áðïôåëåóìáôéêÜ ôï ÑïÁ.

Example 1.3.3. Braess's Paradox
Óõíå÷ßæïõìå óôï ßäéï ðíåýìá ìå ôï ðñïçãïýìåíï ðáñÜäåéãìá, äçëáäÞ èåùñïýìå



26 CHAPTER 1. ÈÅÙÑÉÁ ÐÁÉÃÍÉÙÍ: ÂÁÓÉÊÅÓ ÅÍÍÏÉÅÓ

Figure 1.4: Braess's Paradox

óõíå÷Þ ñïÞ 1 ìïíÜäáò. Èåùñåßóôå ôþñá ôï äßêôõï 4 êüìâùí ôïõ Ó÷Þìáôïò
1.4(a). ÕðÜñ÷ïõí 2 îÝíá ìïíïðÜôéá áðü ôï s óôï t, ôï êÜèå Ýíá ìå êüóôïò
1 + x, üðïõ x åßíáé ôï öïñôßï ôçò áêìÞò. ÅðåéäÞ ôá äýï ìïíïðÜôéá åßíáé
ðáíïìïéüôõðá, ç êßíçóç èá ìïéñáóôåß óôç ìÝóç êáé êÜèå ìïíïðÜôé èá ìåôáöÝñåé
1/2 ñïÞ. ¸ôóé óôçí ðåñßðôùóç áõôÞ, ç ìÝóç êáèõóôÝñçóç èá åßíáé 3/2.
ÕðïèÝóôå ôþñá, üôé, óå ìßá ðñïóðÜèåéá íá âåëôéþóïõìå ôçí áðüäïóç ôïõ
äéêôýïõ, ðñïóèÝôïõìå ìßá ðïëý ãñÞãïñç áêìÞ (ìå c(x) = 0) ìåôáîý ôùí
êüìâùí v êáé w (Ó÷Þìá 1.4(b)). Ðþò èá áíôéäñÜóïõí ïé éäéïôåëåßò ÷ñÞóôåò;
Ðáñáôçñïýìå üôé ç ðñïçãïýìåíç äñïìïëüãçóç ðáýåé íá áðïôåëåß ðëÝïí ÍÅ.
¼íôùò ôï ìïíïðÜôé s→ v → w → t äåí åßíáé ðïôÝ ÷åéñüôåñï áðü ôá 2 áñ÷éêÜ
ìïíïðÜôéá, ãéá ìÝ÷ñé 1 ìïíÜäá ñïÞò êáé åßíáé êáëýôåñï áí êÜðïéïò ÷ñÞóôçò
åðéëÝîåé (÷áæÜ) êÜðïéï áðü ôá áñ÷éêÜ ìïíïðÜôéá. Ìå ôï óêåðôéêü áõôü,
ðåñéìÝíïõìå üëïõò ôïõò éäéïôåëåßò ÷ñÞóôåò íá åðéëÝîïõí ôï íÝï ìïíïðÜôé, ìå
áðïôÝëåóìá üëç ç ñïÞ ôþñá íá Ý÷åé ìÝóç êáèõóôÝñçóç 2. ¸ôóé ôï êüóôïò
/ êáèõóôÝñçóç ôçò ñïÞò áõîÞèçêå êáôÜ Ýíá ðáñÜãïíôá 4/3, óôçí ðñïóðÜèåéÜ
ìáò íá âåëôéþóïõìå ôçí ðïéüôçôá ôïõ äéêôýïõ!
Óôï 3ï ÊåöÜëáéï èá äïýìå ðþò ìðïñïýìå íá ãåíéêåýóïõìå ôï ðáñÜäïîï
áõôü óôçí ðåñßðôùóç ìåãÜëùí äéêôýùí, ìå ðñïóèÞêç ðïëëþí áêìþí êáé èá
áðïäåßîïõìå Ýíá öñÜãìá, åîáñôþìåíï áðü ôïí áñéèìü ôùí êüìâùí, êáèþò êáé
ôç óôåíÞ ó÷Ýóç ôïõ ðáñáäüîïõ áõôïý ìå ôï ÑïÁ.

1.4 ÈåùñçôéêÞ ÐëçñïöïñéêÞ êáé Èåùñßá Ðáéãíßùí

Óôçí ÁëãïñéèìéêÞ Èåùñßá Ðáéãíßùí, üðùò ëÝãåôáé ï êëÜäïò ôçò ÈåùñçôéêÞò
ÐëçñïöïñéêÞò ðïõ áó÷ïëåßôáé ìå ôç Èåùñßá Ðáéãíßùí, ôï ìåãáëýôåñï êïììÜôé
ôçò Ýñåõíáò áöïñÜ ôá ìç óõíåñãáôéêÜ, óôñáôçãéêÜ ðáßãíéá, ðëÞñïõò ðëçñïöï-
ñßáò, ÷ùñßò áõôü íá óçìáßíåé üôé äåí õðÜñ÷åé Ýñåõíá êáé ãéá Üëëåò êáôçãïñßåò.

Óå ü,ôé áöïñÜ ôï åßäïò ôçò Ýñåõíáò ðïõ ðñáãìáôïðïéåßôáé óôïí ôïìÝá áõôü,
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ìåñéêÜ áðü ôá âáóéêÜ åñùôÞìáôá ðïõ Ý÷åé êëçèåß íá áðáíôÞóåé ç ÈåùñçôéêÞ
ÐëçñïöïñéêÞ åßíáé ôá åîÞò:

• ÅðéäÝ÷åôáé Ýíá óõãêåêñéìÝíï ðáßãíéï ÑÍÅ, Þ êÜðïéï Üëëï åßäïò éóïñ-
ñïðßáò ôïõ ïðïßïõ ç ýðáñîç äåí åßíáé ôåôñéììÝíç (üðùò ð÷ ôïõ ìåéêôïý
ÍÅ)

• Áí õðÜñ÷åé éóïññïðßá (ïðïéïõäÞðïôå åßäïõò), ðüóïò ÷ñüíïò áðáéôåßôáé
ãéá íá âñåèåß; Áíôßóôïé÷á ðüóïò ÷ñüíïò áðáéôåßôáé ãéá ôçí åýñåóç ôçò
êáëýôåñçò Þ ôçò ÷åéñüôåñçò éóïññïðßáò; Ðüóïò ÷ñüíïò áðáéôåßôáé ãéá
ôçí åýñåóç êÜðïéáò éóïññïðßáò ðïõ ðëçñïß êÜðïéåò ðñïäéáãñáöÝò;

• Áí ç åýñåóç ìßáò éóïññïðßáò åßíáé äýóêïëç, ðüóï äýóêïëï åßíáé íá
âñåèåß ìßá ðñïóåããéóôéêÞ éóïññïðßá, äçëáäÞ ìßá êáôÜóôáóç áðü ôçí
ïðïßá êáíåßò äåí êåñäßæåé \ðïëý" áí öýãåé;

• Ðüóï êáêÞ ìðïñåß íá åßíáé ìßá éóïññïðßá; Ìðïñåß íá öñá÷èåß éêáíïðïéçôé-
êÜ ôï PoA åíüò ðáéãíßïõ; Áíôßóôïé÷á, ðüóï êáëÞ ìðïñåß íá åßíáé ìßá
éóïññïðßá (PoS), äçëáäÞ áí õðÞñ÷å ìßá êåíôñéêÞ áñ÷Þ ðïõ èá õðáãüñåõå
ôçí éóïññïðßá áõôÞ, ðüóï èá ÷Üíáìå óå ó÷Ýóç ìå ôï âÝëôéóôï;

• Áí Ýíá ðáßãíéï äåí åðéäÝ÷åôáé êáëÝò éóïññïðßåò, ôé ìðïñïýìå íá êÜíïõìå
ãéá íá ôéò âåëôéþóïõìå (coordination mechanisms);

• Íá ó÷åäéÜóïõìå ìç÷áíéóìïýò ãéá ôï äéáìïéñáóìü áãáèþí êáé ãéá äçìï-
ðñáóßåò (auction and mechanism design).

ÊÜðïéá áðü ôá ðáñáðÜíù åñùôÞìáôá Ý÷ïõí ìåëåôçèåß ãåíéêÜ ãéá ôá (óôñáôç-
ãéêÜ) ðáßãíéá (ð÷ ðïëõðëïêüôçôá åýñåóçò ÍÅ), åíþ Üëëá Ý÷ïõí íüçìá (êáé
Ý÷ïõí ìåëåôçèåß) ìüíï ãéá óõãêåêñéìÝíåò êáôçãïñßåò ðáéãíßùí, üðùò ð.÷. ôá
network games, Þ ôá congestion games (÷áñáêôçñéóôéêÜ ôï PoA Þ ôï network
design).
Ðáñáôçñïýìå üôé õðÜñ÷ïõí åñùôÞìáôá äïìéêÜ, ðïõ ó÷åôßæïíôáé ìå ôçí ýðáñîç
Þ ìç éóïññïðéþí, åñùôÞìáôá ðïõ áöïñïýí ôçí êáôáóêåõÞ áðïäïôéêþí áëãï-
ñßèìùí ãéá ôïí õðïëïãéóìü éóïññïðéþí (Þ ôçí áðüäåéîç üôé äåí õðÜñ÷ïõí) êáé
åñùôÞìáôá ðïõ áöïñïýí ôç ó÷åäßáóç \êáëþí" ðáéãíßùí.
¼ôáí Ý÷ïõìå Ýíá íÝï ðñüâëçìá ðïõ ìïíôåëïðïéåßôáé ìå ôç Èåùñßá Ðáéãíßùí, ç
ôÜóç åßíáé íá ðñïóðáèïýìå ðñþôá íá áðáíôÞóïõìå óôá äïìéêÜ - áëãïñéèìéêÜ
æçôÞìáôá ðïõ áöïñïýí ôï ðñüâëçìá, ìåôÜ íá ìåëåôÜìå ôï PoA êáé ôÝëïò
íá ðñïóðáèïýìå íá áíáðôýîïõìå ìç÷áíéóìïýò ðïõ ôï âåëôéþíïõí. Ãéá ôá
ðñïâëÞìáôá ðïõ èá áíáðôõ÷èïýí óôá åðüìåíá êåöÜëáéá ôçò äéðëùìáôéêÞò, Ý÷åé
ãßíåé ðïëëÞ Ýñåõíá ó÷åôéêÞ ìå üëá ôá ðáñáðÜíù åñùôÞìáôá. Óôçí ðáñïýóá
äéðëùìáôéêÞ áó÷ïëïýìáóôå ùò åðß ôï ðëåßóôïí ìå ôçí áíÜëõóç ôùí ðáéãíßùí
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áõôþí (equilibria, PoA) êáé ü÷é ôüóï ìå ôç ó÷åäßáóÞ ôïõò (network design,
coordination mechanisms).



Part I

The atomic case
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Chapter 2

The Koutsoupias-Papadimitriou
model

We begin our analysis of the atomic case of sel�sh routing with the model
introduced by Koutsoupias and Papadimitriou in their paper [KP99], which
we shall henceforth call the KP-model. The reasons for picking this model
at the beginning are numerous. First of all they are historical: the paper
in which this model was introduced was one of the �rst to consider the
game-theoretic aspect of routing tra�c through a congested network and
had a great impact on the research community. It was followed by a lot
of papers, some of which (such as [MS01], [KMS03], [CV02], [FKK+02])
resolved open problems related to the KP-model (existence and uniqueness of
a FMNE, existence of a PNE, tight PoA bounds), while some other ([FKS04],
[FKS05]) include highly non-trivial generalizations of this model which we
shall encounter in the next chapters of this thesis. Apart from giving some
food for thought to a lot of researchers, the [KP99] paper had another major
contribution in algorithmic game theory: it quanti�ed for the �rst time the
cost of the lack of coordination among the players, by introducing the notion
of the coordination ratio, which is the now known under the name \Price
of Anarchy". In this chapter we discuss the model and present the proofs
as they appear in [KP99], but we also enhance them with some of [MS01]'s
results, since this paper resolves a lot of open problems and proves some
conjectures posed in [KP99]. We then cite [KMS03] and [CV02] for some
results on the PoA.

31
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2.1 The Model
One of the characteristics of KP-model that make it so appealing is its sim-
plicity: it consists of a network of m parallel links between a source and a
destination node. These links can be seen as parallel unrelated machines (eg
servers) that route tra�c independently from the source to the destination.
Apart from the machines there are n players (or agents) that want to route
a speci�c amount of tra�c through the network. A good analogy is to think
of the players as tasks that need to be scheduled on those machines1. Each
such task has a di�erent execution time (the tra�c of player i) that we shall
denote by wi. Of course the longer a task lasts, the bigger the latency for
all other tasks scheduled on the same machine. Equivalently if the tra�c on
one link of our network is heavy, it normally produces a bigger delay. We
say then that tra�c determines delay and that the delay su�ered by each
agent on a link equals the total amount of tra�c routed through this link
(this of course is a simpli�cation - more complex cost functions have also
been studied). We have implicitly made the assumption that every link has
the same speed (or as we use to say the same capacity). However we are also
going to study the problem for links with di�erent capacities sj.

Now to sum things up, the KP-model consists of:

• m (unrelated) parallel links: [m] = 1; : : : ;m.

• n (sel�sh) players: [n] = 1; : : : ; n.

• n amounts of tra�c wi; i = 1; : : : n, one for each player. We assume
that w1 ≥ : : : ≥ wn.

• m capacities-speeds, sj; j = 1; : : :m, one for each link. We assume that
s1 ≤ : : : ≤ sm.

Now let us see things from an agent's point of view. Since the players are
sel�sh their aim is to minimize their delay, while routing their whole amount
of tra�c from the destination to the source. In order to route their tra�c
they can either pick one of the m links, or they can assign to each link j a non-
negative number that indicates the probability of picking it. We denote these
probabilities for player i by pji -in general we shall use subscripts for agents
and superscripts for links. The two cases above obviously evoke the notions
of PNE and NE respectively. In the present thesis we shall mostly consider
the mixed strategies case, for which there are very interesting results. Some
information on the existence of a PNE can be found in the next chapter.

1the problem is also known under the name \sel�sh task allocation"
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So the set of pure strategies for agent i is {1; : : : ;m} and a mixed strategy is
a distribution on this set. Let (j1; : : : ; jn) ∈ {1; : : : ;m}n be a combination of
pure strategies, one pure strategy for each agent, called the pure strategies
pro�le; then its cost for agent i, denoted by Ci(j1; : : : ; jn) is:

Lji +
∑
jk=ji

wk

if we take all link capacities to be equal to unit. This cost gives us the �nish
time of the link ji chosen by i, if its initial load is a task of length Lji . That
means that the link will be available after Lji time units. Then starts a
round-robin way of task processing, in which each task receives a very small
amount of processing time and then it gives its place to the next one, until
they all �nish (practically at the same time). This is the so called standard
model. There exists also another model, the batch model, which we will not
consider in this thesis. For more information see [KP99].

2.2 Nash Equilibria

2.2.1 De�nitions

We shall now attempt to characterize the Nash Equilibria in the standard
model of the game, where all link capacities are unit. We de�ne the expected
tra�c or expected load M j on link j to be:

M j = Lj +
∑
i

pjiwi (2.1)

It is also obvious that the cost as de�ned above is not useful for the case
of a mixed strategies pro�le. What we need here is the estimated �nish time
or estimated cost for each player when he assigns his tra�c to link j. That
is, each player knows the mixed strategy pro�le of every other player and
tries to choose one link that will minimize his latency. The problem is that
he can only make estimations about other players' behavior based on their
probability distribution. The resulting �nish time cji then is:

cji = wi + Lj +
∑

i6=t
pjtwt = M j + (1− pji )wi (2.2)

The mixed strategies pro�le of each player, that is the probabilities pji
de�ne a NE if no player has an incentive to deviate and pick another link.
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Thus, agent i will assign nonzero probabilities only to links j that minimize
cji . We will denote this minimum by

ci = min
j
cji

and we call the set of links Si = {j : pji > 0} the support of agent i. We also
de�ne the indicator variable Sji that takes value 1 when pji > 0.
In order to become more formal we shall henceforth represent mixed strate-
gies pro�les by an n×m probability matrix P. Now it is easy to see that we
can fully characterize a mixed strategies pro�le P that is a NE, based solely
on the supports Sji . More precisely we have the following proposition:

Proposition 2.2.1. Take a Nash Equilibrium P. Then for every link j ∈ [m]
and every agent i ∈ [n],

pji = (M j + wi − ci)=wi (2.3)

subject to the following constraints:
(1) for all j: M j = Lj +

∑
i

Sji (M
j + wi − ci)

(2) for all i:
∑
i

Sji (M
j + wi − ci) = wi

To see that the above proposition holds notice that (2.3) is equivalent
to (2.2), where we have replaced cji by ci, so that (2.3) holds only for the
links of minimum latency, for which pji > 0 The constraints (1) and (2) are
equivalent to (1.1) and to the fact that the probabilities of agent i must sum
up to 1 respectively. Here we once again take into account only the links
for which pji > 0(⇔ Sji > 0). One should also notice that if we �x the nm
supports Sji then we have n +m constraints and n +m unknowns and this
set of constraints should then have a unique solution. If the resulting prob-
abilities are in the interval (0,1], then the above equations de�ne a unique
equilibrium with supports Sji .

As we clearly stated back in chapter 1, there are now a couple of very nat-
ural questions that one may ask. They have to do with the general structure
of the resulting equilibria: since the existence of a NE is trivial thanks to
[Nas51], we focus our interest on the PNE. We also care about the unique-
ness of equilibria and about the computational complexity of �nding
one. We are therefore interested in �nding closed form expressions for the
above probabilities pji . In fact notice that a NE is fully de�ned only by the
supports Sji (since in a NE Sji = 1 ⇔ cji = ci). One way for �nding a NE
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would be then to try all possible values for all Sji and solve the resulting
system in polynomial time. The problem here is that we need to examine
2nm di�erent supports and hence this method is in general exponential in n
and m. But can we do better?

2.2.2 The Fully Mixed Nash Equilibrium
The �rst paper to follow [KP99] was [MS01] in which the �rst existence and
uniqueness result for equilibria was presented. We shall give here a brief
sketch of the proof method. Though not really di�cult, the proof has a lot
of technical details which we shall omit here in favor of space.
The model considered in [MS01] di�ers from the one we considered up to
now in some points. We summarize them right below:

• It considers the initial load Lj of each link j to be equal to zero. That
is no restriction at all for the standard model though, since initial loads
can be considered as jobs of m additional agents. In fact from now on
we implicitly consider all Lj equal to zero.

• It considers only a special case of mixed Nash equilibria, called fully
mixed Nash equilibria. In the FMNE each user assigns his tra�c on
every link with positive probability (Sji = 1; ∀j ∈ [m]; i ∈ [n]) and his
support is [m]. Although a more restricted type of NE, the FMNE
deserves our attention because it allows us to solve the equations of
Proposition 2.2.1, hence providing us with a closed and remarkably in-
sightful type for the probabilities pji of all agents. One �nal remark
on those types yields the required existence (which now is not trivial)
and uniqueness result for a FMNE. Moreover it is easy to intuitively
understand that a FMNE favors collisions of users across the links, thus
increasing the maximum latency, the (not yet formally de�ned) Social
Cost and the Coordination Ratio, in which we are particularly inter-
ested. This characteristic alone makes FMNE a NE worth studying.

• It considers links of arbitrary capacities. Since we are also going to
consider this kind of links when we try to bound the PoA, it is a good
idea to give the analogous of Proposition 2.2.1 for links of arbitrary
capacities:

Proposition 2.2.2. Take a Nash Equilibrium P. Then for every link j ∈ [m]
and every agent i ∈ [n],

pji = (M j + wi − sjci)=wi (2.4)
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subject to the following constraints:
(1) for all j: M j = Lj +

∑
i

Sji (M
j + wi − sjci)

(2) for all i:
∑
i

Sji (M
j + wi − sjci) = wi

and
ci = min

j
cji = min

j
(M j + (1− pji )wi)=s

j (2.5)

Finally let us de�ne a solo link as a link j ∈ [m] such that
∑

i S
j
i = 1. Clearly

that means that a solo link is traversed by only one user. A link that is not
solo is a non-solo link. By a simple rearrangement of terms in constraint (1)
of Proposition 2.2.2 we can prove the following:

Lemma 2.2.3. Take any Nash Equilibrium P. Then, for any non-solo link
j ∈ [m],

M j =

−
∑
i

Sjiwi + sj
∑
i

Sji ci
∑
i

Sji − 1

It is easy to see that j being a non-solo link is necessary, in order for the
denominator to be unequal zero. The key point now is that in a FMNE by
de�nition there are no solo links at all, and hence this lemma applies to all
j ∈ [m]. We are now going to use this fact in order to provide a series of other
propositions that will �nally yield the desired result. The �rst proposition
in this series follows right away:

Proposition 2.2.4. Take any Nash Equilibrium P. Let S ⊆ [m] denote the
set of solo links. Then, for any user i ∈ [n],

ci
(∑

j

Sji s
j −

∑

j =∈S

Sji∑

k

Sjk − 1
sj

)
−

∑

k 6=i
ck

(∑

j =∈S

Sji S
j
k∑

k

Sjk − 1
sj

)

= wi
(∑

j

Sji − 1−
∑

j =∈S

Sji∑

k

Sjk − 1

)
−

∑

k 6=i
wk

(∑

j =∈S

Sji S
j
k∑

k

Sjk − 1

)
+

∑
j∈S

SjiM
j

Although it looks scary, the above type is actually not that hard to prove:
the basic trick here is to derive two separate expressions for

∑
j∈S S

j
iM j. The

�rst one follows directly from constraint (2) of Proposition 2.2.2 and the sec-
ond one follows using the expressions for the estimated tra�c M j derived in
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Lemma 2.2.3. Equating those two expressions yields the above equation.

We now focus on the fully mixed case. Since there are no solo links in
the fully mixed case, S = ∅ and the term

∑
j∈S S

j
iM j is eliminated. We

then set Sji = 1; ∀j ∈ [m]; i ∈ [n] in the above equation, rearrange the terms
and solve the resulting linear system to obtain that (c1; : : : ; cn) is a linear
transformation of (w1; : : : ; wn):

Lemma 2.2.5. Consider any fully mixed Nash Equilibrium P. Then:




c1
...
cn


 =

1∑
j sj




m 1 : : : 1
1 m : : : 1
...

... . . . ...
1 1 : : : m







w1
...
wn




We can now substitute the above expressions into the expressions for the
expected tra�cs (Lemma 2.2.3) to obtain that (M1; : : : ;Mm) is also a linear
transformation of (w1; : : : ; wn):

(M1; : : : ;Mm) = T (w1; : : : ; wn) (2.6)

(The exact type is omitted here, see [MS01])
A closer look at type (2.4), Lemma 2.2.5 and type (2.6) points out to the

fact that we can �nally write down a formula for the probabilities pji that
depends only on the known quantities wi and sj. Indeed by replacing the
type of Lemma 2.2.5 and type (2.6) in (2.4) we get:

Lemma 2.2.6. Consider any Nash Equilibrium P, in the fully mixed case.
Then for all users i ∈ [n] and links j ∈ [m],

pji =
(
1− msj∑

l sl
)(

1−
∑

k wk
(n− 1)wi

)
+

sj∑
l sl

(2.7)

But do the quantities pji in (2.7) indeed represent probabilities? For them
to do so, it must be that (1), for each user i ∈ [n],

∑
j p

j
i = 1 and that, (2) for

each link l ∈ [m], 0 ≤ pji ≤ 1. Since the quantities were speci�cally derived
for the case of fully mixed strategies, condition (2) should more accurately be
stated as (2′): for each link l ∈ [m], 0 < pji < 1. A straightforward calculation
veri�es that conditions (1) and (2′) may or may not hold, depending on the
particular values of wi and sj. Hence, we obtain an inexistence result for
FMNE:
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Corollary 2.2.7. Assume that there exist a user i ∈ [n] and a link j ∈ [m]
such that (

1− msj∑
l sl

)(
1−

∑
k wk

(n− 1)wi

)
+

sj∑
l sl

=∈ (0; 1)

Then there exists no FMNE.

We continue to show that the necessary condition determined in Corollary
2.2.7 is also su�cient, in the case of fully mixed strategies:

Theorem 2.2.8. Assume that for all users i ∈ [n] and links j ∈ [m],
(
1− msj∑

l sl
)(

1−
∑

k wk
(n− 1)wi

)
+

sj∑
l sl

∈ (0; 1)

Then in the fully mixed case the above expression de�nes the probabilities pji ,
which all together form a FMNE P.

Proof. The assumption implies that for all users i ∈ [n] and links j ∈ [m],
0 < pji < 1. Thus, by de�nition of FMNE, we need to show that for any user
i and link j, ci = cji . So �x any user i and link j. Then,

cji=
wi+

P
k 6=i p

j
kwk

sj (by de�nition)
= wi

sj + 1
sj

∑
k 6=i p

j
kwk

= wi
sj + 1

sj
∑

k 6=i
((

1− msjP
l sl

)(
1−

P
k′ wk′

(n−1)wk

)
+ sjP

l sl

)
wk (by replacing pjk)

= wi
sj + 1

sj

(
1− msjP

l sl

) ∑
k 6=i

(
1−

P
k′ wk′

(n−1)wk

)
wk + 1

sj
sjP
l sl

∑
k 6=iwk

=wi
sj + 1

sj

(
1− msjP

l sl

) ∑
k 6=iwk

− 1
sj

(
1− msjP

l sl

)
1

n−1

∑
k′ wk′

∑
k 6=i

wk
wk

+ 1P
l sl

∑
k 6=iwk

= wi
sj + 1

sj

(
1− msjP

l sl

) ∑
k 6=iwk

− 1
sj

(
1− msjP

l sl

)
1

n−1

∑
k′ wk′(n− 1) + 1P

l sl
∑

k 6=iwk

= wi
sj + 1

sj

(
1− msjP

l sl

) ∑
k 6=iwk − 1

sj

(
1− msjP

l sl

) ∑
k′ wk′ +

1P
l sl

∑
k 6=iwk

= wi
sj − 1

sj

(
1− msjP

l sl

)
wi + 1P

l sl
∑

k 6=iwk

= 1
sj

msjP
l sl
wi + 1P

l sl
∑

k 6=iwk
= mP

l sl
wi + 1P

l sl
∑

k 6=iwk

= 1P
l sl

(
mwi +

∑
k 6=iwk

)

= ci (using Lemma 2.2.5)
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Corollary 2.2.7 and Theorem 2.2.8 together establish the following:

Theorem 2.2.9. (Existence and Uniqueness of FMNE) Consider the
fully mixed case. Then, for all users i ∈ [n] and links j ∈ [m],

(
1− msj∑

l sl
)(

1−
∑

k wk
(n− 1)wi

)
+

sj∑
l sl

∈ (0; 1)

if and only if there exists a Nash Equilibrium, which must be unique and has
an associated probability matrix P = [pji ], where

pji =
(
1− msj∑

l sl
)(

1−
∑

k wk
(n− 1)wi

)
+

sj∑
l sl

∈ (0; 1)

, for each user i ∈ [n] and link j ∈ [m].

The above expressions for the probabilities pji enjoy, as functions of the
link capacities sj and the player tra�cs wi, a particularly insightful form.
Their �rst term is the product of two factors: the �rst one 1− msjP

l sl
depends

solely on link capacities, while the second one 1−
P
k wk

(n−1)wi
depends solely on

user tra�cs. Their second term sjP
l sl

also depends solely on link capacities.
The �rst factor in the �rst term vanishes if we take all link capacities to be
equal to each other; thus, we conclude that, in the case of uniform capacities,
the FMNE P is independent of the user tra�cs wi. A corresponding elimina-
tion is lacking for the case where the user tra�cs are all equal to each other
(identical tra�cs), since the second factor of the �rst term does not vanish.
That means that FMNE do depend on link capacities, even in the case of
identical tra�cs. This subtle di�erence manifests an inherent asymmetry
between link capacities and user tra�cs, as parameters that de�ne a FMNE.

One interesting �nal remark is that Theorem 2.2.8 implies that for the
fully mixed case, NE can be checked for existence and evaluated (if it exists)
in time Θ(nm), which is polynomial and not exponential as in the general
case.

2.2.3 The Generalized Fully Mixed Nash Equilibrium
Having completed the study of the FMNE a very natural question arises.
Why do we care in a so restricted form of equilibria? In fact one could say
that the FMNE is really the exact opposite of a PNE, in the sense that in
the former we want each player to spread his probability distribution over all
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links, whereas in the latter we want him to choose only one of them. Since
the PNE is what we (and economics) really care about, why bother with
the FMNE? The answer here is obvious: the FMNE provided us with the
�rst closed form expression for pji , with a uniqueness result, with some PoA
bounds (as we shall see in the next section) and above all it resulted in the
de�nition of another (more general) form of equilibria, which has even more
interesting properties. This is the Generalized Fully Mixed Nash Equilibria
(GFMNE) which was de�ned in [FKK+02] as follows:

De�nition 2.2.10. A mixed strategy pro�le P is generalized fully mixed if
there exists a subset Links ⊆ [m], such that for each pair of a player i ∈ [n]
and link j ∈ [m], Sji = 1 ⇔ j ∈ Links. If P is also a NE, we call it the
GFMNE.

From the above de�nition it is obvious that the FMNE is the special case of
GFMNE if Links = [m].

The reason we choose a more general form of equilibria is that the GFMNE
always exists and in fact there is a nice polynomial time algorithm that com-
putes this equilibrium, thus placing the problem of �nding a NE in P .

Before presenting the algorithm we need the following Lemma that follows
the discussion in the last section (see Theorem 2.2.8):

Lemma 2.2.11. Consider the case of FMNE under the model of arbitrary
capacities and assume that all the tra�cs are identical. De�ne the normalized
capacity s̃j of link j to be s̃j = sj=

∑
l s
l. Then for all links j ∈ [m], s̃j ∈

( 1
m+n−1

; n
m+n−1

) if and only if there exists a FMNE, which must be unique.

Although Lemma 2.2.11 determines a collection of 2m necessary and suf-
�cient conditions for a FMNE, the fact that all normalized capacities sum up
to 1 implies that each pair reduces to one condition (say the one establishing
the lower bound for s̃j). Furthermore all m conditions hold, if the one for
minj sj holds. Thus the above lemma provides us with a way to determine
the existence of a FMNE (and thus of a NE) in Θ(m) time, by �nding the
minimum sj and checking whether s̃j > 1

m+n−1
.

With the aid from the above lemma we get:

Theorem 2.2.12. Assume that all tra�cs are identical. Then the problem
of �nding a NE (GFMNE) by computing its supports is in P.

Proof. We present an algorithm Agfmne that computes a GFMNE:
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0. Sort the capacities of the links in non-increasing order: s1 ≥ : : : ≥ sm
and compute all normalized capacities. Take the set Links = [m].

1. Take the minimum capacity link and check the condition stated in
Lemma 2.2.11. If the condition is true then we have found a GFMNE
for Links and we stop. Else we go to step 2.

2. We drop the slowest link m′ (link with minimum capacity) and we
repeat step 1 with Links ← Links\{m′}.

The above algorithm studies all generalized fully mixed strategy pro�les
where the set Links consists each time of the m′; 1 ≤ m′ ≤ m fastest links.
Hence to establish correctness for Agfmne we need to show that at least one
of those generalized fully mixed strategy pro�les is a GFMNE. We argue
inductively on m:

• if m = 1 then it is trivial to see that the only NE is for all players to
assign their tra�c on the unique link

• let our assumption hold for m = k. Then for k + 1 we have: if for the
slowest link the condition of Lemma 2.2.11 holds then we are done. If
not, then the algorithm removes this link and we are left with k links.
But then, by inductive hypothesis, there must be a GFMNE for the
set of those k fastest links. A close look now at the de�nition of the
GFMNE and the fact that every subset of [k] is also a subset of [k+ 1]
as well, yields the result

Finally let us check the running time of the algorithm. In the preprocess-
ing step we make a sorting which takes Θ(m logm) time and the computation
of the normalized capacities which takes Θ(m) time. Then steps 1 and 2 re-
quire constant time since they only involve two comparisons in order to check
the validity of the conditions for a NE. Since these steps are executed at most
m times the total running time of the algorithm is Θ(m logm).

The above theorem gives a partial (for the case of identical tra�cs) answer
to the complexity problem of computing a NE. In order to do so we had to
de�ne two new more restricted forms of equilibria, the GFMNE -which always
exists- and the FMNE -which does not always exist. Apart from providing
us with a powerful tool to study the complexity of �nding a NE, the FMNE
gave rise to a very interesting conjecture. As we have stated in the beginning
of section 2.2, the structure of FMNE is such that it favors collisions of
users across the links, hence increasing the social cost. So Fotakis et. al.
conjectured in [FKK+02] the following:



42 CHAPTER 2. THE KOUTSOUPIAS-PAPADIMITRIOU MODEL

Conjecture 2.2.13. Consider the case of identical tra�cs and arbitrary link
capacities. Then for any instance such that a FMNE F exists and for any
associated NE P, SC(P) ≤ SC(F), where by SC we denote the social cost.

Although the SC will be formally de�ned in the next section, the above
conjecture is easy to understand: it says that among all possible NE for an in-
stance of the problem, the worst one -in terms of social bene�t- is the FMNE.

The above has been nicely handled in [GLM+03], whose results provide
substantial evidence for Conjecture 2.2.13 and a complete proof for the case
of PNE. A special case was also handled in [FKK+02] where the following
result appears:

Proposition 2.2.14. Consider the model of uniform capacities and assume
n = 2. Then the worst NE is the FMNE.

A careful case analysis on the supports of the two players and of the
structure of NE can indeed yield the above result. Furthermore [FKK+02]
showed that the social cost of a FMNE is within a constant factor from the
worst case social cost.

2.2.4 The Pure Nash Equilibrium
We now study the case where each player has a pure strategy, he picks namely
one link to route his tra�c. This case is very important because of the
applications of the notion of PNE.
We shall present the work of [FKK+02] on the subject. We start with an
existence result:

Theorem 2.2.15. In the KP-model there exists at least one PNE.

Proof. Consider the universe of pure strategy pro�les. Each such pro�le
induces a sorted expected latency vector M = (M1; : : : ;Mm), such that
(M1 ≥ : : : ≥ Mm) (rearrangement of links is necessary). Of all the possible
vectors M consider the lexicographically minimum, say M0. We claim that
this vector corresponds to a pure strategy pro�le P0 that is a PNE. Assume
that it does not: then there exists one player i, who has picked link j and
who has incentive to deviate to link k, namely

cji > cki ⇔(2:2) M j + (1− pji )wi > Mk + (1− pki )wi (2.8)

where we considered unit capacities wlog. Since we have pure strategy pro-
�les, pji = 1 and pki = 0. Hence equation (2.8) results in:

M j > Mk + wi > Mk (2.9)
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Now let us construct from P0 the new pure strategy pro�le P̂0 which di�ers
from P0 only in links j and k, i.e. player i has moved from j to k. Then it is
obvious that the expected latency of j decreases and the one of k increases.
Let M̂0 denote the induced sorted expected latency vector (note that the in-
dices of the sorted elements in this vector are not necessarily ordered 1,. . . ,m,
like in M0). We have that M̂ j = M j − wi < M j and M̂k = Mk + wi < M j

(from (2.9)). Now since M0 is sorted in non-increasing order and M j > Mk,
it follows that M j precedes Mk in M0. But M̂0 di�ers from M0 only in
the positions of M̂ j and M̂k, which are both smaller than M j and they will
follow it in M̂0. So the �rst j elements of M̂0 stay the same as in M0. The
j-th entry may be either M̂ j or M̂k or some other element of M0, following
M j (i.e. smaller than M j). In any case the resulting sorted expected latency
vector M̂0, has its �rst j − 1 entries equal to the ones of M0 and the j-th
entry smaller. Then M̂0 is lexicographically smaller than M0, which is a
contradiction.
Of course this proof can be easily generalized in the case of arbitrary speeds.

Although the proof of Theorem 2.2.15 is based on an algorithmic proce-
dure, the algorithm implied is ine�cient in the following sense: since each
player can pick among m strategies the total number of pure strategy pro�les
is mn, i.e. exponential. However we can do better as the following theorem
states.

Theorem 2.2.16. In the KP-model, the problem of �nding a PNE by com-
puting its supports is in P.

Proof. The algorithm Apure we present is a typical greedy algorithm: it con-
siders all the player weights to be sorted w1 ≥ : : : ≥ wn and it allows player 1
(the heavier player) to pick his link �rst, in such a way that his own latency
is minimized. Then goes player 2 and so on. The key idea is to settle the
heavier players �rst. Player i then picks his link according to the choices of
the previous (heavier) players. It is obvious that the running time of the algo-
rithm is Θ(n log n) (due to the sorting) and that in the end of the algorithm
each player will have assigned his tra�c to one link with unit probability.
It su�ces to show that the �nal pure strategy pro�le is indeed a PNE. We
argue inductively on the number of iterations i of the main loop of Apure. We
show that the system is in PNE after each such iteration.

1. If i = 1 then trivially we have a PNE.
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2. Let the inductive hypothesis hold for i = k. In iteration k + 1 user
k + 1 picks a link j such that for all links l:

cji ≤ cli ⇔
Lj + wk+1

sj
≤ Ll + wk+1

sl
(2.10)

where by Lj we denote the load of link j until this iteration (which is
not estimated but well known!). Now let us prove that there is no user
with an incentive to deviate. User k+ 1 has no such incentive since he
picked his link last. For the sake of contradiction we assume that there
exists a player p ≤ k which has an incentive to deviate after the move
of player k + 1. In order for this to happen, player k + 1 must route
his tra�c on the same link as player p, or else the load of player's p
link will remain the same and the load of some other link will increase,
causing p no incentive to deviate. Now since p has routed his tra�c on
link j and he wants to deviate there must exist a link y such that

Lj + wk+1

sj
>
Ly + wp
sy

(2.11)

But we have wp ≥ wk+1 which yields

Ly + wp
sy

≥ Ly + wk+1

sy
(2.12)

Combining inequalities (2.11) and (2.12) we get

Lj + wk+1

sj
>
Ly + wk+1

sy
(2.13)

which contradicts (2.10).

Finally the following theorem can be proved via reduction from BIN
PACKING (see e.g. [Pap]).

Theorem 2.2.17. Finding the supports for the best and the worst PNE are
both NP-hard problems in the KP-model.

2.3 Studying the Price of Anarchy
After having su�ciently studied the structure of equilibria we move on to
studying their quality. In order to do so we will �rst de�ne some measures of
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the e�ciency of an equilibrium, such as the Social Cost SC and we will then
examine separately the cases of 2 and m links. The reasons for doing so, are
mostly historical. We will follow the structure of [KP99] for both cases and
we will then present the answers of [KMS03] and [CV02] to some questions
about the case of m links, originally posed in [KP99].

2.3.1 De�nitions
In our e�ort to quantify the ine�ciency of equilibria, we need a quantity,
or more precisely an objective function, that is indicative of the quality of
a sel�sh outcome in a network of parallel links. One such quantity can be
de�ned as the maximum latency that is observed on a network link. Another
(commonly used) idea would be to consider as an objective function the
sum of all delays on the network links. In our case we choose for the max
criterion, so the objective function C(j1; : : : ; jn),with (j1; : : : ; jn) ∈ [m]n can
be formalized as follows:

C(j1; : : : ; jn) = max
j∈[m]

∑
k:jk=j wk
sj

(2.14)

This way we have a well-de�ned optimization problem, in which we wish to
minimize C(j1; : : : ; jn). That is we wish to �nd the social optimum (hence-
forth denoted by OPT), which is the minimum value of the maximum latency
over all links j ∈ [m], among all pure strategies pro�les. That is:

De�nition 2.3.1 (The Optimum).

OPT = min
(j1;:::;jn)∈[m]n

C(j1; : : : ; jn) = min
(j1;:::;jn)∈[m]n

max
j∈[m]

∑
k:jk=j wk
sj

(2.15)

Equation (2.15) gives us the best possible outcome of a network with m
parallel links, which we could achieve, were there a central authority that
could force all agents to make the right choice for the social welfare. Unfor-
tunately our users are sel�sh (which means that they are only interested in
maximizing their own pro�t) and we can a�ord no central authority. The
reason for not even considering the case of an authority is the exact same
reason that favors distributed computations against centralized ones: every
form of central control in a network is bound to have a negative impact on
the network's speed.
Taking into account then that OPT is hard to reach with sel�sh agents
present, what is the estimated social cost (henceforth denoted by SC) that is
associated to a distribution over [m] for each player (namely to a probability
matrix P)?
The answer is:
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De�nition 2.3.2 (The Social Cost).

SC(P) = E[C(j1; : : : ; jn)] =
∑

(j1;:::;jn)∈[m]n

(∏
i

pjii max
j∈[m]

∑
k:jk=j wk
sj

)
(2.16)

Remark 2.3.3. A more usual notation for the social cost and the optimum
include the weight vector w = (w1; : : : ; wn): SC(w;P) and OPT(w), since
both quantities depend on it. Here we use a simpler notation and we skip w.
Remark 2.3.4. We notice that the above de�nition considers the social cost
to be the expected maximum cost and not the maximum expected cost
(maxjM j). But are those two quantities essentially di�erent? The answer
is a�rmative. In fact maxjM j ≤ SC or even maxjM j << SC. Indeed let
us consider a network with m links and just one player with weight w. Then
the SC (expectation of the maximum load) is w, whereas the M j = w=m
for all links j. If the number of links gets very big M j tends to zero and
SC remains w. On the other hand if we allow only pure strategies, i.e. force
each player to pick one link, it is easy to verify then that maxjM j = SC.
However in the general case the inequality holds and therefore it is preferable
to de�ne the SC as the expected maximum cost.

We are now ready to de�ne the coordination ratio or as it is commonly
known, the Price of Anarchy (denoted by PoA):

De�nition 2.3.5 (The Price of Anarchy or Coordination Ratio).

PoA = sup
P isNE

SC(P)

OPT
(2.17)

Namely the PoA is a size (greater ore equal than one) that tells us how
bad a sel�sh outcome can actually be. In order to do so, it computes the
SC for every NE of the game, �nds the cost of the worst NE (see the sup
in 2.17) and compares it to the OPT of the game. The bigger the PoA, the
larger a possible deviation from the optimum solution.
By now it must be clear that it is of crucial importance to ensure an upper
bound on the PoA. This would mean that the sel�sh outcome of a game can-
not be too far away from the optimum solution, and thus it cannot be too bad.

More on the Social Cost

Having formally de�ned the SC the following question arises: how e�ective
can the computation of the SC be in an instance of the game? The answer
follows and it was provided by [FKK+02]:
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Theorem 2.3.6. Given an instance of the problem and a NE P we want
to compute its social cost. This problem is ]P-complete when restricted to
mixed equilibria.

Proof. We will prove the theorem through a reduction from the following
problem: given a set of integer weights J = {w1: : : : ; wn} and an integer
C ≥

P
i wi
2

count the number of subsets of J with total weight at most C. This
problem corresponds to counting the number of solutions of a KNAPSACK
instance, which is a ]P-complete problem (see e.g. [Pap]). The way to do
the reduction is to de�ne n Bernoulli random variables Yi taking the values
wi and 0 with probability 1/2 each: these probabilities denote whether wi
is considered to be a member of a subset of J or no. Consider now the
sum Y =

∑
i Yi of those variables. Estimating the probability Pr[Y ≤ C]

is equivalent to �nding the fraction (and hence the number) of subsets of J
that have a total weight at most C. Thus the computation of Pr[Y ≤ C] is
]P-complete. We next show that there is a way to compute Pr[Y ≤ C], if
we know the SC of a given (mixed) NE, for an instance of our game.
So let us now consider an instance of the problem with n + 1 agents and 3
links, denoted by 0, 1 and 2. Let agent 0 have a weight C ≥

P
i wi
2

and each of
the rest n players have weights wi. It easy to con�rm that if player 0 picks link
0 with p0

0 = 1 and each other player picks the remaining two links with equal
probability (p1

i = p2
i = 1=2) then this mixed strategy pro�le corresponds to a

NE. Let us now consider the random variables Yi to indicate the weight each
player i assigns to one of the two remaining links 1 and 2, say wlog 1. Indeed
with probability 1=2 player i assigns link 1 a weight wi and with probability
1=2 he assigns no weight at all (Yi = 0). But then the total weight assigned
to link 1 is Y . Now notice that it is not possible for the loads of both links 1
and 2 to be more than C (or else their sum would exceed

∑
iwi). Hence the

only possibilities are the following: either both loads on 1 and 2 are at most
C, or only one of them exceeds C (caution- we have to separate subcases
here: either 1 or 2 exceeds C). Finally, it is obvious that the maximum load
on a link will be at least C. The above discussion gives the intuition behind
SC1 = C + 2

∑∞
B=C+1 Pr[Y ≥ B]. Now let us consider the instance where

player 0 has a tra�c of C + 1. Then SC2 = C + 1 + 2
∑∞

B=C+2 Pr[Y ≥ B].
Some algebra and we result in 2Pr[Y ≥ C + 1] = 1 + SC1 − SC2. Hence
Pr[Y ≤ C] = 1− Pr[Y ≥ C + 1] = 1+SC1−SC2

2
.

Finally it is quite easy to prove the following:

Theorem 2.3.7. For the model of uniform capacities, there exists a fully
polynomial, randomized approximation scheme to compute the SC.
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Proof. The idea is to pick a random variable that can be easily sampled
(i.e. in polynomial time) and which gives a good approximation of the SC.
This random variable is taken to be the maximum latency over all links. We
repeat N times (where N must be shown to be polynomial) the following
experiment: we assign each user to a link of his support according to the
given probability matrix P. For each experiment i we �nd the maximum
latency (say Li). The output of the algorithm is the mean

P
i Li
N . Since SC is

the estimation of the maximum latency over all links, by the Strong Law of
Large Numbers it follows that

∣∣∣
P
i Li
N − SC(P)

∣∣∣ ≤ �SC(P), for any constant

� > 0 provided that N ≥ SC(P)
� . In the next section we shall prove that

SC(P) = O( logm
log logm)OPT. Since OPT ≤ ∑

iwi we have that SC(P) =

O( logm
log logm)

∑
iwi and hence it su�ces to take N = 1

�O( logm
log logm)

∑
iwi. So for

a polynomial number of samplings we get a fully polynomial approximation
algorithm with constant ratio.

2.3.2 The case of 2 links

Before moving on to giving the actual bounds for the PoA, we �rst give a
few bounds on OPT which will later come handy. First of all we note that
computing OPT is an NP-complete problem, as can be easily proved through
a reduction from the partition problem. However for the purposes of upper
bounding PoA here, it su�ces to use two simple approximations of it:

OPT ≥ max{w1;
∑
i

wi=m} = max{wi;
∑
j

M j=m} (2.18)

We remind the reader that we assume w1 ≥ : : : ≥ wn. For the time being we
consider links of unit capacities (as we can see from (2.18)). It is then easy
to intuitively understand the above inequality: OPT ≥ wi since the tra�c
of each player i, must be somehow routed through the network, thus causing
a delay of at least wi (depending on whether it will be routed on a solo-link
or not). On the other hand it is easy to see that for every pure strategies
pro�le (j1; : : : ; jn) we have that

∑
iwi is exactly the sum of the loads of all

links j ∈ [m], which is less than m times the maximum load C(j1; : : : ; jn).
Thus

∑
iwi ≤ mC(j1; : : : ; jn). As this holds for all pure strategies pro�les it

follows that OPT ≥ ∑
iwi=m. The equality in (2.18) follows from type (2.1).

We now move on and immediately give a result that lower bounds the PoA:

Theorem 2.3.8. The coordination ratio for 2 links is at least 3/2.
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Proof. The proof of the theorem is trivial. Consider a game with only two
agents, each with unit tra�c. We have w1 = w2 = 1. It is easy to check that

P =
( 1=2 1=2

1=2 1=2

)

is a NE. The expected maximum tra�c then is SC(P) = 3=2, whereas the
optimum is OPT = 1 and can be achieved by allocating each job to its own
link with unit probability. The above discussion provides us with an instance
of the problem and with a NE P, for which SC(P)

OPT = 3
2
. This implies that the

PoA (as a supremum) must be at least this big. Consequently PoA ≥ 3=2

Remark 2.3.9. The above proving method works in general when trying to
lower bound the PoA. That is, since the PoA is de�ned as a supremum over
all equilibria, it su�ces to give an instance of the problem and an equilibrium
P, with SC(P)

OPT = x to show that PoA ≥ x.
The proof for a matching upper bound is much more technical. Although

the corresponding proof of [KMS03] for the case of m links (that we are going
to present in the next section) also covers the problem for the case of 2 links,
we present here the proof of [KP99], since it helps us gain great insight to
the problem.

In order to move on with the proof we must de�ne two new types of
probabilities. First we de�ne the contribution probability: the contribution
probability qi is equal to the probability that player i routes his tra�c on the
link of maximum load (if there are more than one maximum load links, we
consider the lexicographically �rst, say). Clearly then we have SC =

∑
i qiwi,

since in the we have de�ned as cost the maximum of all link loads and the
above expression gives the estimation of this size. We also de�ne the collision
probability tik as the probability of agent i and k routing their tra�c on the
same link.
The observation that both agents i and k can contribute to the social cost
only if they collide leads to inequality 2.19:

1 ≥ Pr[Xi = 1 ∨Xk = 1]

= Pr[Xi = 1] + Pr[Xk = 1]− Pr[Xi = 1 ∧Xk = 1]

≥ Pr[Xi = 1] + Pr[Xk = 1]− tik
⇒ qi + qk ≤ 1 + tik

(2.19)

where Xi is a random variable indicating the link choice of player i.
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The reason for de�ning the collision probability is that it has a very useful
property, stated below. This property also holds for any number of links.

Lemma 2.3.10. The collision probabilities of a NE of n agents and m links
satisfy ∑

k 6=i
tikwk = ci − wi

Proof. Observe �rst that tik =
∑

j p
j
ip
j
k, as a union of m independent possi-

bilities. Therefore
∑

k 6=i
tikwk =

∑

k 6=i

(∑
j

pjip
j
k

)
wk =

∑
j

pji
∑

k 6=i
pjkwk =

∑
j

pji (M
j − pjiwi)

where the second equality follows from a summation rearrangement and the
third one follows from type (2.1) (considering Lj = 0). From type (2.3) we
can use pjiwi = M j +wi− ci. Although this result only holds if link j belongs
to the support of player i (pji > 0), when pji = 0 there is no problem in
substituting pjiwi with any term, since the product will always be zero. We
then get

∑

k 6=i
tikwk =

∑
j

pji (M
j − (M j + wi − ci)) =

∑
j

pji (ci − wi) = ci − wi

Before proving the theorem we provide one more bound (which also holds
for any number of agents and links). We have

ci= minj cji
≤ 1

m

∑
j c

j
i because: mminj cji ≤

∑
j c

j
i

= 1
m

∑
j(M

j + (1− pji )wi) see (2.2)

=
P
jM

j

m +
m−Pj p

j
i

m wi

=
P
jM

j

m + m−1
m wi probabilities sum up to 1

=
P
i wi
m + m−1

m wi see (2.1)

⇒ ci ≤
∑

iwi
m

+
m− 1

m
wi (2.20)

Theorem 2.3.11. The coordination ratio for any number of players and
m=2 links is at most 3/2.

Proof. Inequality (2.19) qi + qk ≤ 1 + tik implies:
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∑
k 6=i(qi + qk)wk≤

∑
k 6=i(1 + tik)wk

=
∑

k 6=iwk +
∑

k 6=iwktik
=

∑
k wk − wi + ci − wi see Lemma 2.3.10

≤ ∑
k wk − wi +

P
k wk
2

+ wi
2
− wi see (2.20)

= 3
2

∑
k wk − 3

2
wi

= 3
2

∑
k 6=iwk

Thus we have
∑

k 6=i(qi + qk)wk ≤ 3
2

∑
k 6=iwk which can be written:∑

k qiwk − qiwi +
∑

k qkwk − qiwi ≤ 3
2

∑
k 6=iwk ⇒∑

k qkwk ≤ 2qiwi − qi
∑

k wk + 3
2

∑
k wk − 3

2
wi ⇒∑

k qkwk ≤ (3
2
− qi)

∑
k wk + (2qi − 3

2
)wi

But we have already noticed that SC =
∑

i qiwi, so:

SC ≤ (
3

2
− qi)

∑

k

wk + (2qi − 3

2
)wi

Recall now type (2.18):

OPT ≥ max{wi;
∑
i

wi=2}

Assume that for some agent i, qi ≥ 3
4
, then (2qi − 3

2
) ≥ 0, implying (2qi −

3
2
)wi ≤ (2qi − 3

2
)OPT. Of course 3

2
− qi ≥ 0, since qi is a probability.

Then: SC ≤ (3
2
− qi)2OPT + (2qi − 3

2
)OPT = 3

2
OPT.

Otherwise if ∀i qi ≤ 3
4
, then SC =

∑
i qiwi ≤ 3

4

∑
iwi ≤ 3

4
2OPT = 3

2
OPT:

So in every case we have SC ≤ 3
2
OPT which implies that for every equilib-

rium P, SC(P)
OPT ≤ 3

2
⇒ PoA ≤ 3=2,

We also have to consider the case of links of arbitrary capacities. This
case was studied in [KP99] where a lower bound of � = 1:618 (the golden
ratio) was derived. The authors conjectured that Theorem 2.3.11 can be
appropriately generalized to the case of links of di�erent speeds. Indeed in
2002 Czumaj and V�ocking proved that there is a tight upper bound for the
general case of m links with arbitrary capacities. We are going to present
these results in the forthcoming section.

2.3.3 The case of m links
In this section we consider the case of m links. This case was partially stud-
ied in [KP99], which provides us with a lower bound of Ω(logm= log logm)
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and the conjecture that this lower bound is tight. This was indeed the case
as it was proved independently by [KMS03] and [CV02]. The latter paper
also contains the proof for the general case of m links with arbitrary capac-
ities. Here we will present the work of [KP99] for the lower bound of the
PoA, as well as some upper bounds provided in this paper. Although these
bounds are not tight, they consist a proving method which is certainly worth
reviewing because of the interesting mathematics it employs (mainly Prob-
ability Theory and especially the Azuma-Hoe�ding bound, which has been
also used by a lot of recent papers on this subject). After providing these
results we sketch the proof of the tight lower bound conjecture for the case
of uniform capacities and give the result for the case of arbitrary capacities
without a proof. In this point we mention that before the �nal answer to this
conjecture, a partial answer that involved FMNE was provided by [MS01] for
both the cases of uniform and arbitrary capacities. In fact [MS01] con�rmed
the conjecture for the case of FMNE.

The tight lower bound and some �rst upper bounds

Theorem 2.3.12. The coordination ratio for m identical links is

Ω(logm= log logm):

Proof. Consider the case where there are m agents, each with an amount of
tra�c equal to unit: wi = 1. Again OPT = 1 and it can be achieved by
allocating each job to its own link with unit probability. Also the uniform
m×m probability matrix

P =




1=m : : : 1=m
... . . . ...

1=m : : : 1=m




is a NE. But then we have a problem that is identical to the problem of
throwing m balls into m bins and asking for the expected maximum number
of balls in a bin. This problem is well studied and the answer is known to be
Θ(logm= log logm). Since we have provided an instance of the problem with
SC(P)
OPT = Θ(logm= log logm) it must be that PoA = Ω(logm= log logm).

Conjecture 2.3.13. The above lower bound is tight.

Theorem 2.3.11 shows that the conjecture holds for m = 2. In the next
part we will give the proof of the conjecture provided by Koutsoupias et. al.
in [KMS03] for the case of uniform speed links. We will also sketch the (more
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general) proof provided by [CV02] for the case of general speed links. For
now we present a weaker upper bound of the PoA provided by [KP99]. But
�rst we need the following result:

Theorem 2.3.14. For m uniform speed links, the expected load M j of any
link is at most (2− 1=m)OPT.

Proof. The proof is trivial. Observe that

M j≤ ci see (2.2)
≤

P
i wi
m + m−1

m wi see (2.20)
≤ 2OPT + m−1

m OPT = see (2.18)
= (2− 1=m)OPT

We now prove an upper bound for the case of m identical links.

Theorem 2.3.15. The coordination ratio of any number of agents and m
identical links is at most T = 3 +

√
4m lnm.

Proof. Our main tool for this proof is the Azuma-Hoe�ding inequality2 which
gives a concentration result for the values of martingales3 that have bounded
di�erences. By using this inequality we will show that the probability that
the maximum load of a given link j exceeds (T − 1)OPT is at most 1=m2.
Then, using the union bound we argue that the probability that there exists
one link j ∈ [m], whose maximum load exceeds (T − 1)OPT, is at most
m × 1=m2 = 1=m. So the probability that the maximum load on all links
does not exceed (T − 1)OPT is at least 1− 1=m.
The above discussion implies that the expected maximum load on any net-
work link (i.e. the SC) is bounded by (T −1)OPT with probability 1−1=m
and by mOPT4 with probability 1− (1− 1=m) = 1=m. Hence

SC≤ (1− 1=m)(T − 1)OPT + 1=m(mOPT)

= (T − 1)OPT− 1=m(T − 1)OPT + OPT
= TOPT− 1=m(T − 1)OPT

2Suppose Xi; i = 1; 2; : : : is a martingale and |Xt+1 − Xt| < ct. Then for all positive
integers n and all positive reals x, Pr[Xn −X0 ≥ x] ≤ exp{− x2

2
P
i c

2
i
}

3In probability theory, a martingale is a stochastic process (i.e., a sequence of random
variables) such that the expected value of an observation at time t + 1, given all the
observations up to time t, is equal to the observation at time t,namely E[Xt+1|Xt] = Xt.

4Notice that the maximum possible load is
∑
i wi, which is less than m OPT (2.18)
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≤ TOPT
⇒ PoA ≤ T

So it su�ces to show that indeed the probability that the load of a given link j
exceeds (T−1)OPT is less than 1=m2. Let Xi be a random variable denoting
the contribution of agent i to the load of link j. Clearly Pr[Xi = wi] = pji and
Pr[Xi = 0] = 1−pji . The random variables X1; : : : ; Xn are independent. We
are interested in upper bounding the probability Pr[

∑
iXi > (T − 1)OPT].

In order to do so we intend to use the Azuma-Hoe�ding inequality (unfor-
tunately the good concentration bounds of sums of binomial variables are of
no use here). However before applying the Azuma-Hoe�ding inequality we
must \�x" our random variables, so that they form a martingale satisfying
the inequalities necessary conditions (|Xt+1 − Xt| < ct). Therefore we de-
�ne the new random variables Yt = X1 + : : : + Xt + �t+1 + : : : + �n, where
by �i we denote E[Xi]. It is easy to verify that E[Yt+1|Yt] = Yt: note that
Yt+1 = Yt+Xt+1−�t+1; since �i = E[Xi] the result follows. Observe now that
|Yt+1−Yt| = |Xt+1−�t+1| = |Xt+1−pjt+1wt+1| ≤ wt+1, since Xt+1 ∈ {wt+1; 0}.
We then apply the Azuma-Hoe�ding inequality which yields:

Pr[Yn − Y0 ≥ x] ≤ exp{− x2

2
∑

iw2
i
}

Note that
Yn =

∑
i

Xi

and that

Y0 =
∑
i

�i =
∑
i

E[Xi] = E[
∑
i

Xi] = M j ≤ (2− 1=m)OPT ≤ 2OPT

where we used Theorem 2.3.14. The probability we want to estimate is:∑
iXi ≥ (T − 1)OPT ⇔ Yn ≥ (T − 1)OPT = (T − 3)OPT + 2OPT ⇒

Yn ≥ (T − 3)OPT + Y0 ⇔ Yn − Y0 ≥ (T − 3)OPT. Let x = (T − 3)OPT.
Then:

Pr[
∑
i

Xi > (T − 1)OPT] ≤ Pr[Yn − Y0 ≥ x] ≤ exp{− x2

2
∑

iw2
i
}

Finally it is not hard to establish that
(1):

∑
iw

2
i ≤ mw2

1, assuming w1 ≥ : : : wn and
(2):

∑
iw

2
i ≥ 1=m(

∑
iwi)

2 = m(
∑

iwi=m)2, from Cauchy-Schwarz
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Hence (1); (2)⇒ m(
∑

iwi=m)2 ≤ ∑
iw

2
i ≤ mw2

1

⇒ ∑
iw

2
i ≤ max{mw2

1;m(
∑

iwi=m)2} ≤ mOPT2

using (2.18).

Thus, the probability that the load of link j exceeds (T − 1)OPT is at most

exp{−(T − 3)2OPT2

2
∑

iw2
i

} ≤ exp{−(T − 3)2OPT2

2mOPT2 } = exp{−(T − 3)2

2m
}

For T = 3 +
√

4m lnm, this probability becomes 1=m2 and the proof is
complete.

The corresponding upper bound and the case of arbitrary speeds

In this section we are going to sketch the proof for the corresponding upper
bound in the case of uniform speeds, as it appears in [KMS03]. This paper
introduces a powerful technique called \ball fusion", which is essentially an
extension of the classical \balls in bins" problem, when we consider balls of
arbitrary weights and arbitrary probabilities of a ball choosing a bin. This
technique also applies to the case of arbitrary link speeds, or even for gen-
eral latency functions. However it cannot yield a result for the game we are
studying, due to a series of other implications. The �nal answer for the case
of arbitrary link capacities was given by [CV02], which attempts a complete
di�erent, quite more technical, approach to the problem. This attempt re-
sults in the same upper bound for the coordination ratio of the uniform case.

Koutstoupias, Mavronicolas and Spirakis in [KMS03] focus their attention
on the class of mixed strategies, in which the expected latency M j through
each link is at most a constant multiple of OPT. These mixed strategies
pro�les are called approximate equilibria and it is easy to see that for the
game we are studying, all NE belong to this class, since M j ≤ 2OPT (see
Theorem 2.3.14). Of course the inverse does not hold, that is, there exist ap-
proximate equilibria that are not NE. The reason for considering this more
general class of equilibria is that the following bounds hold in an obvious way:

from type (2.18): maxiwi ≤ OPT
from de�nition of approx. equal: maxjM j ≤ 2OPT

}
⇒

max{max
i
wi;max

j
M j} ≤ 2OPT (2.21)

So it su�ces to show the following:
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Theorem 2.3.16.

∀P : SC(P) = O(
logm

log logm
) max{max

i
wi;max

j
M j}

because then: SC(P) = O( logm
log logm)OPT ⇒ PoA = O( logm

log logm)

The analysis to prove that SC(P) ≤ O( logm
log logm) max{maxiwi;maxjM j}

consists of two major steps. In the �rst step (the ball fusion) we reduce the
case of arbitrary weights to the case of almost equal weights (that is, where
all weights are within a factor of 2 from each other). The method to achieve
that is to \fuse" the two (currently) smallest balls5 together to form a new,
larger ball with weight equal to the sum of weights of the other 2, only if the
resulting weight does not exceed the 2 maxiwi in the original game. When
we cannot fuse any more balls we stop. For every pair of balls that we fuse,
we assign to the new ball a probability in a way that the M j is preserved
(notice that M j is really important for this proof, since it will eventually up-
per bound the social cost). We then show that the social cost of the resulting
game is no less than the social cost of the original game.

The next step now is to upper bound the social cost for the case of iden-
tical weights. The social cost for this case is even worse (i.e. bigger) than the
one in the case of almost equal weights (but at most twice this worse). The
social cost for the case of identical weights is upper bounded by use of prob-
abilistic arguments: they use techniques for estimating tails and Cherno�
bounds [Che52] to show that the social cost of the identical weights case is at
most O( logm

log logm) of the maximum expected latency maxjM j. That together
with (2.21) establishes the result.

A few more words about ball fusion: In each step of the ball fusion we re-
place two balls with their sum and assign to it a probability such that all M j

remain the same. Although all the expected tra�cs remain the same (and so
does the maximum expected tra�c maxjM j) the same does not hold for the
expected maximum tra�c, namely the SC. Indeed, since we now deal with
bigger weights, we expect the SC to either increase or remain the same. This
is indicative of the subtle di�erence between the terms \expected maximum
tra�c" and \maximum expected tra�c" (the second one is always smaller
then �rst one - see also Remark 2.3.4). In fact this di�erence is an important
tool in the proof of [CV02].

5We often use the terms \balls" instead of \users" and \bins" instead of \links".
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Now, in order to prove the claim that the social cost is indeed bigger in
the case of almost equal weights Koutsoupias et. al. use an inductive argu-
ment on the number of balls and �rst show that the SC grows up after one
fusion, if we limit ourselves in the pure strategies pro�les. If we repeat this
until no more balls can be fused (without exceeding the initial 2 maxiwi)
we create a new set of weights which are all in the interval [h=2; h], where
h = 2 maxiwi. Indeed, if there was a weight less than h=2 then it could be
fused with the original ball of maximum weight h=2. This new set's SC is
proved to be no less than the SC of the original set. If we now keep the
possibilities for the new set of balls the same and increase all weights to h
(so that they have identical weights) then the SC will be even bigger (but at
most twice this big, since we are at most doubling the weights).

The next step is to prove Theorem 2.3.16. The intuition behind this
theorem is that the SC is maximized if all balls fall into one bin (namely if
we have a big maxjM j) or if there exists a particularly heavy ball (namely if
we have a big maxiwi). So we can upper bound SC using those two terms.
The results of ball fusion allow us to focus only on the case of identical
weights (since it upper bounds the SC of the arbitrary weights case) and
even consider all the weights to be 1. In fact we can prove the following
Lemma, using probabilistic arguments that are commonly used in the theory
of random allocations.

Lemma 2.3.17.

∀P : SC(P) ≤ (
2e logm
log logm

+ 1) max{1;max
j
M j}

Obviously if the identical weights are not set to unit but to maxiwi the
above lemma implies Theorem 2.3.16.

Finally we give the following theorem for the case of arbitrary link capac-
ities without a proof:

Theorem 2.3.18. [CV02] The PoA for a parallel link network with arbitrary
link capacities is Θ( logm

log log logm).
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Chapter 3

Congestion Games

In this Chapter we focus on congestion games, which are the natural general-
ization of the network of parallel links of Chapter 2. In fact congestion games
have been studied long before the actual KP-model was considered in 1999,
mostly as a form of a class of games, called \potential games". However, the
interest on these games grew up at the late 90's along with the upcoming
trend of algorithmic game theory.
In this thesis we discuss the main types of congestion games, their rela-
tionship with potential games, we highlight the fact that they always admit
a PNE, we present some interesting results concerning its tractability and
ofcourse we study their Price of Anarchy.

3.1 De�nitions
We start o� by giving the intuition behind congestion games. We can imag-
ine a congestion game either as a situation, where we want to route tra�c
through a network -which in contrast with KP-model, consists of arbitrary
many links and nodes, in arbitrary topology-, or as a situation, where we
have some resources and some players, who want to use these resources. In
either case, the resources (network edges resp.) have cost functions (i.e. la-
tency functions), which are non-decreasing. Hence, the more players pick
this resource (equiv. the more tra�c is routed through this link) the bigger
the delay for all the players who choose it.
Formally a congestion game consists of:

• a set of resources E (possibly network edges)

• a set of players N

• the resource delays de

59
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and for each player i

• an action set Ai ⊆ 2E

• a weight (tra�c demand) wi

Using all of the above we can de�ne a weighted congestion game, i.e. where
the players have di�erent weights. Henceforth however, when we refer to con-
gestion games, we shall implicitly assume that all players have unit weights.
The reason for that is that the majority of results that we are going to present
here, refer to unweighted congestion games.
Some more useful notation concerns the way players act and the outcomes
of their choices:

• let A = (a1; : : : ; an); ai ∈ Ai be a pro�le of pure strategies

• let Pe(A) be the set of players picking resource e in pro�le A

• let ne(A) be the number of players picking resource e in pro�le A.
Obviously ne(A) = |Pe(A)|

• de�ne the load of resource e with respect to pro�le A to be Le(A) =∑
i∈Pe(A)wi. For unweighted games this is simply Le(A) = ne(A)

• �nally de�ne the cost of each player to be ci(A) =
∑

e∈Ai L(e),for the
strategy pro�le A = (a1; : : : ; ai; : : : ; an)

It is easy to extend the notion of mixed strategies in the case of conges-
tion games. However we are not going to do that. The reason for that is
that, as we shall soon see, the congestion games always possess PNE, so we
won't need to concentrate on the mixed case. The truth is that there has
been recent research on the case of mixed equilibria as well, which is mainly
due to the fact that -for most cases of congestion games- the PNE cannot be
easily computed. In this thesis we shall brie
y present some of the results
concerning the mixed PoA.

Congestion games are usually separated into many categories based on
various criteria. The main types of congestion games are the following:

• Symmetric vs Asymmetric congestion games: in the symmetric
congestion games, all players have the same action set and the same
weights, i.e. they are indistinguishable.
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• Network vs General congestion games: in network congestion games,
we consider the resources to be the edges of a directed graph, each
player has a sink and a source vertex (the commodities: (si; ti)) and
the action sets for each player are si − ti paths.

• Single vs multi-commodity (network) games. In single-commodity
network games there is only one commodity s− t for all players.

3.2 Equilibria

In this section we shall discuss the main characteristics of congestion games
equilibria. We point out a theorem that guarantees their existence and then
we investigate their tractability. We brie
y present some results on weighted
congestion games too.

3.2.1 Existence of Equilibria

We shall prove the existence of equilibria for a more general type of games,
called potential games and we shall then show that every (unweighted)
congestion game is in fact a potential game, or, as we say, admits an exact
potential.
Let us �rst de�ne the exact potential:

De�nition 3.2.1. A function Φ : E → R is an exact potential for game G
i�

∀i ∈ N; ∀a′i ∈ Ai;∀A : ci(A)− ci(A−i; a′i) = Φ(A)− Φ(A−i; a′i);

where (A−i; a′i) is the standard notation in Game Theory for the strategy
pro�le that results from A by replacing its i-th entry with a′i.

The crucial observation is the following:

Proposition 3.2.2. Every game that admits an exact potential possesses a
PNE.

Proof. We can start from an arbitrary pure strategy pro�le A, and at each
step one player reduces its cost. That means, that at each step, Φ is reduced
identically. Since Φ can accept a �nite amount of values, it will eventually
reach a local minimum. At this point, no player can achieve any improve-
ment, and we reach a PNE.



62 CHAPTER 3. CONGESTION GAMES

Hence we have a well de�ned class of games, the potential games, which all
have the important property of possessing a PNE. Already from 1973 Rosen-
thal had proved the following theorem, which states that every congestion
game is an exact potential game.

Theorem 3.2.3. [Ros73]
Every unweighted congestion game admits an exact potential.

Proof. Let Φ(A) =
∑

e∈E
∑ne(A)

k=1 de(k), a′i ∈ A\ai and A′ = (A−i; a′i). Then
we have:

Φ(A)− Φ(A′) =
∑
e∈E

ne(A)∑

k=1

de(k)−
∑
e∈E

ne(A′)∑

k=1

de(k)

=
∑

e∈∪ia′i\ai



ne(A)+1∑

k=1

de(k)−
ne(A)∑

k=1

de(k)




+
∑

e∈∪iai\a′i



ne(A)−1∑

k=1

de(k)−
ne(A)∑

k=1

de(k)




=
∑

e∈a′i\ai
de(ne(A) + 1)−

∑

e∈ai\a′i

de(ne(A))

=
∑

e∈a′i

de(ne(A′))−
∑
e∈ai

de(ne(A))

= ci(A′)− ci(A)

where we exploit the fact that ∀e ∈ E\(ai ∪ a′i) and ∀e ∈ ai ∩ a′i the load
of those resources remains the same in A and A′. Additionally ∀e ∈ a′i\ai;
ne(A′) = ne(A) + 1 and ∀e ∈ ai\a′i; ne(A′) = ne(A)− 1.

So a natural question now is, what other games can be proven to have
PNE by use of potential functions? Monderer and Shapley [MS96] have
provided an early and devastating answer: only for (inconsequential gener-
alizations of) congestion games can we have an exact potential functions, or
as they stated:

Proposition 3.2.4. [MS96] Every �nite exact potential game is isomorphic
to an unweighted congestion game.

However there exist games (e.g. the party a�liation game de�ned in
[FPT04]), where the Nash dynamics converges, i.e. there exists a PNE, and
the game is no congestion game. Indeed in this case we cannot �nd an exact



3.2. EQUILIBRIA 63

potential, but we can �nd an ordinal potential (or general potential function),
for which we do not require that the di�erences are identical, but just that
they have the same sign. The ordinal potential remains a su�cient condition
for the existence of PNE. Moreover, in [FPT04] they show that, under the
relaxed de�nition of potential, the class of potential games is much richer,
essentially encompassing all of the class PLS1: every problem in PLS corre-
sponds to a game that admits an ordinal potential (and therefore possesses
a PNE).

3.2.2 Computing a PNE in various congestion games

We move on now to discuss the complexity of �nding a PNE. Our source for
this section is [FPT04]. We shall give 1 positive result and 3 negative results:

• for the case of symmetric2 network congestion games the problem of
�nding a PNE is in P

• for the case of

{ asymmetric network congestion games

{ general symmetric congestion games

{ general asymmetric congestion games

the problem of �nding a PNE is PLS-complete

The positive result is easy to understand and prove as follows:

Theorem 3.2.5. There is a polynomial time algorithm for computing PNE
in symmetric network congestion games.

Proof. The algorithm computes the minimum of the potential function Φ.
In order to do that we reduce our problem to the problem of �nding the
min-cost 
ow in a network, which can be solved in polynomial time. The
reduction is simple and can be performed in polynomial time: for each edge
in the original network construct n edges (n = the number of players in the
original network) all with capacity 1 and with costs de(1); de(2); : : : ; de(n).
It is easy to see that the cost of every 
ow corresponds to the value of Φ
for the corresponding strategy pro�le, since it is integral (easy to prove) and
since the parallel edges get �lled from lower cost to higher cost (due to the
min-cost). Hence a min-cost 
ow corresponds to a minimum of Φ.
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Figure 3.1: Complexity Hierarchy of Search Problems

To understand why the latter 3 results are negative, we need to discuss
some things about complexity classes and the so-called ine�cient proofs of
existence. This discussion can be found in [Pap94], where the hierarchy of
Figure 3.1 is presented. This hierarchy is used to describe search problems
(and not decision problems), i.e. problems where we want to �nd a solution
(and not just whether it exists or not). Actually Papadimitriou focused
on the semantic class T FNP which (informally) is the class of all search
problems which are guaranteed to have a solution, but where the solution
seems hard to be found. In order for this to happen, we need some sort of
non-constructive proof, that guarantees the solution, but does not provide
us with an e�cient algorithm for tracking it. This kind of proofs have been
categorized based on the sort of argument one uses and the classes depicted
in Figure 3.1 correspond exactly to those arguments.
Namely

• the class PLS (Polynomial Local Search) is based on \every �nite
directed acyclic graph has a sink". Other known complete problems
for this class are POSNAE3FLIP and CIRCUITFLIP

• the class PPP (Polynomial Pigeonhole Principle) is based on \pigeon-
hole principle"

1which we shall see in a while
2symmetric here also implies a single-commodity network
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• the class PPA (Polynomial Parity Argument) is based on \all graphs
of max degree 2 have an even number of leaves". A known problem
for this class is \given one Hamilton Path in a graph with odd degrees,
�nd a second one" (existence is guaranteed)

• the class PPAD (Polynomial Parity Argument Directed) is the same
as PPA, only now the graph is directed and we are searching for a
source or a sink. Known complete problems for this class are 2NE,
Brower's and Kakutani's �x-point theorems, 3D-SPERNER

• the class PPADS (Polynomial Parity Argument Directed Sink) is the
same as PPAD, only now we are searching for a sink

We note that the problem of �nding a NE in general 2-or-more player games
(2NE) is complete for PPAD, as is the problem of �nding a PNE for the
above mentioned types of congestion games complete for PLS. This happens
because in both cases, the existence of the equilibrium is guaranteed by an
\ine�cient proof".

Let us discuss now PLS a bit more since this is the class that we are
going to use. PLS was independently de�ned in [JPY88] in order to describe
problems where we need to \�nd some local optimum in a reasonable search
space". Its ingredients are:

• a problem with a search space, i.e. a set of feasible solutions which has
a neighborhood structure

• a poly-time algorithm s(x) which, given an instance x, computes an
initial (arbitrary) solution

• a poly-time cost function c(x,s) that given an instance x and a solution
s, it computes its cost

• a poly-time neighbor function g(x,s) that given an instance x and a
solution s, either returns an other one in its neighborhood with lower
cost, or \none" if none exist

It must be obvious that, using the above features, we can always �nd a local
minimum, starting at some arbitrary solution and moving towards a better
one at each step. Ofcourse the local minimum most probably will not be
a global minimum, but in the case of PNE, a local minimum is all we are
looking for (cf. the local minimum interpretation of NE as opposed to the
global minimum interpretation of DE). So, why is PLS-completeness a bad
thing? The answer lies in thy number of steps of such a naive \gradient
descent" method. It can be proven that
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• �nding a local optimum reachable from a speci�c state is PSPACE-
complete

• there are instances with states exponentially far from any local opti-
mum

We are now ready to discuss the reductions for the three latter cases of
congestion games. In order to prove those cases PLS-complete we need a new
kind of reduction, the PLS-reduction, whose aim is to map the neighboring
structures and the local minima of one instance to those of another, and an
initial PLS-complete problem: the POSNAE3FLIP.

De�nition 3.2.6. POSNAE3FLIP[SY91]
Given a boolean formula in CNF, with all its clauses containing 3 positive
literals, �nd a truth assignment s.t. by 
ipping the value of just one variable,
we cannot reduce the total weight of \bad" clauses: clauses that have all
variables equal to 1 or 0.
Example: for (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x2∨x5)∧(x3∨x4∨x5), with
clause weights 10, 10, 10, 2 respectively, one solution is (x1; x2; x3; x4; x5) =
(1; 1; 0; 0; 0) of cost 2 and another solution is (x1; x2; x3; x4; x5) = (1; 0; 1; 0; 0)
of cost 0. However getting from one solution to another would require two
bit
ips, which is why the solutions are not neighbors, and are hence both of
them local minima.

Theorem 3.2.7. For the case of

1. general asymmetric congestion games

2. general symmetric congestion games

3. asymmetric network congestion games

the problem of �nding a PNE is PLS-complete

Proof. 1. Reduction from POSNAE3FLIP: Each variable x of the for-
mula corresponds to a player of the game. For each clause create
two resources ec e′c. The strategy set of player i contains two ac-
tions/subsets of resources: Ai = {{ec|x appears in clause c}; {{e′c|x
appears in clause c}}. Depending on the value of the corresponding
variable, each player picks either the �rst or the second set of resources.
From the above de�nition of strategy sets it is obvious that no resource
can be played by more than 3 players. The resource delays are de�ned
de(0) = de(1) = de(2) = 0 and de(3) = w, where w is the weight of
the corresponding clause. It is now easy to check that every PNE of
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the game corresponds to a solution of POSNAE3FLIP: player i does
not want to change his strategy (i.e. 
ip his value) because he cannot
have a smaller cost; but the cost is determined only by resources with 3
players on them (all 0 or all 1), which correspond to \bad" clauses. So
since this holds for all players, we have that the sum of costs of \bad"
clauses cannot be improved by a deviation, i.e. a bit
ip.

2. Reduction from the asymmetric case: We augment the network of the
�rst case by adding n additional resources e1; : : : ; en, which have zero
delay if they are picked by just one player and in�nite delay in any other
case: de(1) = 0 and de(k) = M otherwise, where M a su�ciently large
number. The new, common action set is A =

⋃
i{s∪{ei}|s ∈ Ai}. The

idea is that, since the new resources have very large costs if picked by
two or more players, at PNE we expect each player to pick a di�erent ei.
Indeed, if for example 2 players are crowded in an ei, then there exists
(at least) one ej which is free and hence the players have a pro�table
deviation. So at NE every resource is picked by exactly one player. But
then, thanks to the de�nition of A, we can identify the \anonymous"
players of the symmetric case according to the strategy set Ai they
use and match them with the corresponding players of the asymmetric
case. Hence a PNE of the symmetric case is mapped to a PNE of the
asymmetric case.

3. Reduction from WITNESSED XPNAE3FLIP: for the case of asymmet-
ric network congestion games, the reduction is very complex. A �rst
idea would be to follow the construction of the general asymmetric case,
but take care to add some extra edges, so each variable-player traverses
either all ec edges, or all e′c edges. The di�culty is to prevent a player
from taking a path that doesn't correspond to a consistent assignment.
In fact for a dense instance of POS-NAE-3SAT, this appears unavoid-
able. Then, in [FPT04] they notice that the original reduction for
POSNAE3FLIP in [SY91] produces a very structured, sparse instance
of POSNAE3FLIP. So, what they do is tweak the formulae produced by
the [SY91] reduction and then carefully arrange the network so \non-
canonical" paths are never a good choice. The resulting reduction has
39 variable types and 124 clause types and is omitted.

3.2.3 Some results on weighted congestion games
This section contains some results concerning equilibria in weighted conges-
tion games. The sources for this section are [FKS04], [FKS05] and [Mil96].
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For the model we discussed thus far we �rst present two negative results:

Theorem 3.2.8. [FKS04] There exist weighted single-commodity (network)
congestion games with resource delays that are linear or 2-wise linear3 func-
tions of the loads, for which there is no PNE.

Theorem 3.2.9. [FKS04] There exist weighted single-commodity (network)
congestion games which are not exact potential games, even with resource
delays identical to their loads.

and then two positive results:

Theorem 3.2.10. [FKS04] For any weighted l-layered4 network congestion
game with resource delays identical to their loads, at least one PNE exists
and can be computed in pseudo-polynomial time.

Theorem 3.2.11. [FKS05] For any weighted multi-commodity network con-
gestion game with linear resource delays, at least one PNE exists and can be
computed in pseudo-polynomial time.

Finally we shall brie
y discuss an alternative model which was proposed
by Milchtaich back in 1996. In his model, Milchtaich considered resource
delay functions which are not universal, but player-speci�c, i.e. they are of
the form die, for all resources e and players i. In order to simplify the model,
he made two crucial assumptions:

1. each player may choose only one resource from a pool E of resources
(shared to all the players) for his service (this is exactly the KP-model
of parallel links: [KP99]).

2. the incurred delay is monotonically non-decreasing with the number of
players selecting it. Although they do not always admit a potential,
these games always possess a PNE.

Two very important results for this model are the following:

Theorem 3.2.12. [Mil96] Every unweighted congestion game on parallel
links with player-speci�c resource delays possesses a PNE.

Proposition 3.2.13. [Mil96] For 3-players, 3-actions weighted congestion
games with player-speci�c resource delays, there exist instances with no PNE.

3i.e. the maximum of two linear functions
4a network where every (simple) directed s-t path has length exactly l and each node

lies on a directed s-t path
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3.3 Studying the Price of Anarchy
In this section we present some results about the PoA of congestion games.
Driven by the fact that PNE always exist, Christodoulou and Koutsoupias
proved in [CK05] a series of tight bounds for the pure PoA of (many types of)
congestion games. Earlier Fotakis et. al.[FKS04] had proved some results on
the mixed PoA which extended the results of the KP-model (using essentially
the same techniques). We shall discuss some of these results here.

3.3.1 The Pure Price of Anarchy
In [CK05] the writers present some tight bounds for various types of conges-
tion games. In order to reach these results they:

• handle general congestion games (both symmetric and asymmetric).
They do not explicitly discuss network congestion games, although
some of their results apply to this case as well.

• concentrate on the PPoA only. However some results extend to the
case of mixed PoA as well.

• consider latency functions of the form: de(x) = x. This case extends
immediately to the more general case of linear latency functions de(x) =
ax+b and the results can be generalized for bounded degree polynomials
as well.

• consider both MAX and SUM as objective functions for the SC.

The results of [CK05] are summarized in the following Table:

SUM MAX
Symmetric 5/2 5/2

Asymmetric 5/2 Θ(
√
n)

Table 3.1: Main results of [CK05]

In this thesis we shall only present the proof for the asymmetric case,
when we consider the average cost (i.e. SUM). The proof methodology for
the other cases is similar.

Theorem 3.3.1. Lower bound
There are linear congestion games with 3 or more players with pure price of
anarchy (PPoA) for the average social cost (SUM) equal to 5=2.
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Proof. We will construct a congestion game for N ≥ 3 players and |E| = 2N
facilities with PoA = 5=2.
We divide the set E into two subsets E1 = {h1; : : : ; hn} and E2 = {g1; : : : ; gn}
each of N facilities. We de�ne the strategy set of player i to be Ai =
{{hi; gi}; {gi+1; hi−1; hi+1}}. The optimal allocation is for each player to se-
lect the �rst strategy while the worst-case PNE is for each player to select the
second strategy. It is not hard to verify that this is indeed a PNE and that
each player has cost 5: resource gi+1 is picked by only one player, whereas
resources hi−1; hi+1 are picked by exactly two players. Since at the optimal
allocation the cost of each player is 2 (each resource is picked by exactly one
player), we have PPoA = 5=2.

Before proving the upper bound we need the following Lemma which can be
proved by induction.

Lemma 3.3.2. For every pair of nonnegative integers �; �, it holds

�(� + 1) ≤ 1

3
�2 +

5

3
�2

Theorem 3.3.3. Upper bound
For linear congestion games, the pure price of anarchy (PPoA) of the average
social cost (SUM) is at most 5=2.

Proof. Let A be a pro�le that is a PNE and P an arbitrary (possibly optimal)
pro�le. The cost of player i at PNE is ci(A) =

∑
e∈Ai ne(A).

We want to bound the social cost, which we take to be the sum of the cost
of the players:

SUM(A) =
∑
i

ci(A) =
∑
e∈E

n2
e(A)

(as follows by a simple reversal of the sums), with respect to the optimal cost

SUM(P ) =
∑
i

ci(P ) =
∑
e∈E

n2
e(P ):

At PNE, the cost of player i should not decrease when the player switches
to strategy Pi:

ci(A) =
∑
e∈Ai

ne(A) ≤
∑
e∈Pi

ne(A−i; Pi) ≤
∑
e∈Pi

(ne(A) + 1)

If we sum over all players i, we can bound the social cost as

SUM(A) =
∑
i

ci(A) ≤
∑
i

∑
e∈Pi

(ne(A) + 1) =
∑
e∈E

ne(P )(ne(A) + 1)
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With the help of Lemma 3.3.2, by setting � = ne(P ), � = ne(A) and summing
for all i, the last expression is at most 1

3
ne(A)2 + 5

3
ne(P )2 = 1

3
SUM(A) +

5
3
SUM(P ), from which the result follows.

3.3.2 The Mixed Price of Anarchy
We end this chapter with some results on the mixed PoA. Although we have
not formally de�ned the mixed case of congestion game, the generalization
should be obvious.
Some interesting work on the mixed PoA can be found in [FKS04], which we
shall brie
y discuss here. In this paper, Fotakis et. al. focus their interest on
weighted l-layered network congestion games where the resource delays are
identical to their loads. This case consists a highly non-trivial generaliza-
tion of the well-known KP-model. The main reason why they focus on this
speci�c category of resource delays is that there exist instances of (even un-
weighted) congestion games on layered networks that have unbounded price
of anarchy even if we only allow linear resource delays. In fact the writers
modi�ed an example given in [RT02] where the price of anarchy is indeed
unbounded (see Figure 3.2). This instance can be easily converted into an
l-layered network. The resource delay functions used are either constant, or
M/M/1-like delay functions. However, we can have equally bad results even
with linear resource delay functions. Hence in [FKS04] they focus on resource
delays equal to their loads and prove the following interesting theorem.

Figure 3.2: An example with unbounded PoA

Theorem 3.3.4. [FKS04] The PoA of any weighted, l-layered network con-
gestion game with resource delays equal to their loads is Θ(logm= log logm)

In another paper they also proved:

Theorem 3.3.5. [FKS05] The PoA of any unweighted, single-commodity
network congestion game with resource delays de(x) = ae · x; ae ≥ 0, is
O(logm= log logm)
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Remark 3.3.6. One could say that, since we are basically interested in PNE,
which, in the case of congestion games, always exist and since we have a very
good, tight bound for the PPoA, why should we even consider the mixed
PoA? One answer here would be that it does not su�ce to know that a PNE
exists, one must also be capable of �nding it in reasonable time. Since this
is not possible for some types of congestion games, we should look at the big
picture as well. Another answer should be that the [CK05] paper succeeded
the [FKS04] paper.

Remark 3.3.7. By the discussion about congestion games so far, the signif-
icance of allowing distinguishable players (i.e. players with di�erent action
sets, or with di�erent tra�c demands, or both) must be now obvious. We
saw, how allowing the players to have distinct weights may lead to games with
no PNE or with large PoA. Finally, the last two theorems and the familiar
result of Θ(logm= log logm) seem to point out to some kind of \equivalence"
between games with unit-demand players on arbitrary networks with delays
equal to their loads and games with players of varying demands on layered
networks.
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Chapter 4

Sel�sh routing

Having extensively considered the atomic case of sel�sh routing1, we move
on to consider the case where we have an in�nite number of players (the non-
atomic case). The basic idea is the same as in multicommodity networks of
Chapter 3: we have a network with some source-sink pairs and an arbitrarily
large number of players that wish to route their tra�c through the network,
in a way that minimizes their personal delay. Although, at a �rst glance,
the study of arbitrarily large populations seems demanding, it allows us to
use methods from continuous mathematics, thus increasing our analytical
tractability. In this chapter we are mostly going to focus on the ine�ciency
of the equilibria induced on such games. In order to quantify this ine�ciency
we use once again the PoA and Braess ratio, a new measure introduced for
this model; we shall also see the importance of the two motivating examples
(paradoxes) of Chapter 1. Most of the results presented in this thesis come
from the work of Tim Roughgarden and �Eva Tardos. However the model
considered has a long history in the transportation science literature and has
also been widely studied by the computer networking community.

4.1 The model
Back in Chapter 1 we de�ned a game as a triple consisting of the set of
players, the set of strategies for each player and the set of payo� (or cost)
functions for each player. In the atomic case that we have studied so far the
set of players was a �nite set. From now on we are going to consider the case
of in�nitely many players, in order to model arbitrarily large populations.
We could follow the de�nitions in Chapter 1 and try to de�ne a payo� per

1The term \sel�sh routing" was actually used to denote the non-atomic case. The
atomic-case games are more often called \congestion games" or \resource allocation games"
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strategy pro�le. However this would make most de�nitions pretty hard to
understand and di�cult to handle. Hence, we trust our intuition and make
the following remark: we only care what fraction of population picks each
strategy. So we will try to model only this. The question now is, what are
the ingredients that we need to describe the game, when we only focus on
the former fraction? We list them right below:

1. a �nite number of player types

2. the population sizes, one for each player type

3. some �nite strategy sets, one fore each player type

4. for each fraction of population using each strategy a cost per strategy

Now let us explain what we mean with the above (how they are inter-
preted in a network game) and why they su�ce to describe our game. To
understand the following the reader must keep in mind that we now approach
the game from the network's point of view, as opposed to the player's point
of view that we have used so far.

Ingredient 1: Remember the multicommodity games introduced in Chap-
ter 3, where each player had an action set consisting of paths between a
unique origin-destination pair of nodes (si; ti), called commodities. In sel�sh
routing each player wants to route some tra�c from some origin nodes to
some destination nodes, so the problem is essentially the same. The di�er-
ence is that now we have in�nitely many players. The idea is to separate
the in�nitely many players in a �nite number of player types, based on the
commodity of each player's action set. Namely if our network consists of
n commodities (s1; t1); : : : (sk; tk) then we have k player types, with type i
wishing to route some tra�c from si to ti.

Ingredient 2: In weighted multicommodity games, we allowed each
player to have a weight, which represented the amount of tra�c he wanted
to route on the network from si to ti. Here, instead of assigning each player a
separate weight, we focus only on the total amount of tra�c routed through
the network for each player type (i.e. for each commodity).

Ingredients 3 & 4: Finally the �nite strategy sets that correspond to
each player type can be easily interpreted in the various (si; ti) paths. We
then de�ne the cost of each edge and use it to derive a proper cost function
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for the fraction of population picking each strategy ((si; ti) path).

Before moving on to the formal de�nitions let us summarize some more
di�erences between this model and the KP-model introduced in Chapter 2.
Most of those di�erences will become apparent as we move through this
Chapter.

KP-model sel�sh routing model

atomic non-atomic
we consider both NE and PNE we only consider PNE
social cost de�ned as max cost social cost de�ned as average cost

only parallel link networks general multicommodity networks
linear cost functions nonlinear cost functions as well

Table 4.1: Main di�erences of KP-model and sel�sh routing

De�nitions

So a sel�sh routing game formally consists of a multicommodity network 
ow
described by a directed graph G = (V;E), with vertex set V and edge set
E and a set (s1; t1); : : : (sk; tk) of source-sink vertex pairs, the commodities.
Parallel edges are allowed and a vertex can participate in more than one
commodities.

We use Pi 6= 0 to denote the set of simple (si; ti)-paths and P to denote
their union: P =

⋃
iPi. Let r be a nonnegative vector indexed by the

commodities, that denotes the tra�c rates, i.e. the total amount of tra�c
to be routed between one source-sink pair. A 
ow f in G is a nonnegative
vector indexed by P . Then fP denotes the amount of tra�c (fraction of
total tra�c between si and ti) that chooses path P to navigate from si to ti.
Obviously for any feasible 
ow f the following must hold:

∑
P∈Pi

fP = ri (4.1)

A 
ow f induces a 
ow on edges {fe}e∈E, where fe =
∑

P∈P:e∈P fP and
it denotes the total amount of 
ow that uses edge e.

To model the negative consequences of congestion we give each edge e
of G a nonnegative, continuous, nondecreasing cost function ce(fe), which
denotes the travel time (cost) incurred by all tra�c traversing edge e, given



78 CHAPTER 4. SELFISH ROUTING

the 
ow fe. As we shall see, the above properties of the cost function are
very important to prove existence and uniqueness of equilibrium. Finally we
de�ne the overall cost of a path P to be cP (f) =

∑
e∈P ce(fe).

Now we can formally de�ne a sel�sh routing game as a triple (G; r; c),
where G is a multicommodity network, r is a vector of tra�c rates and c is
a set of cost functions. We call (G; r; c) an instance.

Equilibria

It is now obvious that in the non-atomic model we replace the pure (or
mixed) strategy pro�le, which sketches the choices of each player, with the

ow f . Hence f now denotes the sel�sh outcome of such a network and we
will try to de�ne the notion of an equilibrium using f . Keep in mind that an
equilibrium is a collection of choices (one for each player), where no player
has an incentive to change his choice: in our model this implies that for every
type of player (i.e. for all commodities (si; ti)) all corresponding players pick
a strategy (i.e. an (si; ti)-path P ) that minimizes the incurred cost cP . This
leads to the following de�nition of Wardrop equilibrium (�rst formulated by
Wardrop for road tra�c), a notion of equilibrium that is equivalent to the
one of Nash 
ows.

De�nition 4.1.1. Let f be a feasible 
ow for the instance (G; r; c). The

ow f is a Wardrop equilibrium if, for every commodity i ∈ {1; : : : ; k} and
every pair of paths P; P̃ ∈ Pi of (si; ti) paths with fP > 0,

cP (f) ≤ c eP (f)

In other words a 
ow f that is a Wardrop equilibrium (WE) is a 
ow that
routes all tra�c on the paths of minimum cost, among all other (si; ti)-paths.
It is straightforward that all paths of a given commodity used by a Wardrop
equilibrium must have equal costs, in order to avoid defections. Hence the
corollary:

Corollary 4.1.2. All paths P ∈ Pi of a given commodity i used by a 
ow f
that is a WE, must have equal costs. We shall denote this by cPi(f).

Remark 4.1.3. The above de�nition implies that each player deterministically
picks one path to route his tra�c. The case of mixed strategy pro�le for this
model is not considered, since we can prove all kinds of interesting results
for a pure pro�le, which is what we are after all really interested in.
Remark 4.1.4. In De�nition 4.1.1 we are implicitly assuming that each player
controls a negligible portion of the overall tra�c and thus his choice has no
e�ect on the network congestion. That is also the meaning of de�ning 
ows:
a 
ow consists of an arbitrarily large number of negligible player tra�cs.
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The two fundamental questions of existence and uniqueness of equilibrium
have been resolved from the 50's by Beckmann, McGuire and Winsten, who
have formulated the following proposition:

Proposition 4.1.5. Let (G; r; c) be an instance of a sel�sh routing game:

1. The instance (G; r; c) admits at least one WE.

2. If f and f̃ are WE for (G; r; c), then ce(fe) = ce(f̃e) for every edge e.

The proof of the above proposition is remarkably simple. The key idea is
to show that WE of the above instance, are exactly the 
ows that minimize
the following potential function:

Φ(f) =
∑
e∈E

∫ fe

0

ce(x)dx (4.2)

over all feasible 
ows. Since cost functions are continuous and the space of all

ows is compact, Weierstrass's Theorem implies the existence of a minimum
and thus of a WE. Now since ce are taken to be nondecreasing and since
ce is essentially the derivative of Φ, Φ must be convex. But for a continu-
ous, convex function every local minimum is also global, which implies that
the values of the cost functions ce at all minima (i.e. at all WE) are the same.2

Before moving on to de�ning the PoA, let us see a very useful Lemma,
that we shall use later to upper bound the PoA.

Lemma 4.1.6. A 
ow f feasible for (G; r; c) is a WE i�
∑
e∈E

ce(fe)fe ≤
∑
e∈E

ce(fe)f ∗e (4.3)

for all feasible 
ows f ∗.

Proof. We shall �rst prove that the following inequality:
∑
P∈P

cP (f)fP ≤
∑
P∈P

cP (f)f ∗P

where f ∗ is a feasible 
ow for (G; r; c) holds i� f is a WE. The proof is simple:

2This does not imply that all 
ows that are WE are identical, but only that they induce
identical edge costs. Nonetheless this su�ces, as we shall see.



80 CHAPTER 4. SELFISH ROUTING

∑
P∈P

cP (f)fP=
∑

P∈P:fP>0

cP (f)fP

=
k∑
i=1

∑

P∈Pi:fP>0

cP (f)fP (split paths into commodities)

=
k∑
i=1

cPi(f)
∑

P∈Pi:fP>0

fP (see Corollary 4.1.2)

=
k∑
i=1

cPi(f)ri (see (4.1))

=
k∑
i=1

cPi(f)
∑
P∈Pi

f ∗P (see (4.1))

=
k∑
i=1

∑
P∈Pi

cPi(f)f ∗P

≤
k∑
i=1

∑
P∈Pi

cP (f)f ∗P (from De�nition 4.1.1)

=
∑
P∈P

cP (f)f ∗P

Now notice that:
∑
P∈P

cP (f)fP=
∑
P∈P

∑
e∈P

ce(fe)fP (de�nition of cP (f))

=
∑
e∈P

∑
P∈P:e∈P

ce(fe)fP (rearrangement of summations)

=
∑
e∈P

ce(fe)
∑

P∈P:e∈P
fP (de�nition of fe)

=
∑
e∈P

ce(fe)fe

Likewise we can prove that
∑
P∈P

cP (f)f ∗P =
∑
e∈P

ce(fe)f ∗e . Combining these

with the above inequality yields the result.

The Price of Anarchy

We conclude the discussion about the model with the de�nition of the PoA.
To de�ne this we need an objective function that represents the e�ciency
loss of the system. Unlike KP-model, where we considered a cost function
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that corresponded to the maximum latency among all links, here we shall
focus on the average cost induced by a 
ow f , henceforth denoted by C(f):

C(f) =
∑
P∈P

cP (f)fP =
∑
e∈E

ce(fe)fe (4.4)

The �rst equality in 4.4 is a de�nition and the second one follows from the
same reversal of sums as in Lemma 4.1.2. The fact that we do not consider
mixed strategy pro�les, simpli�es the expression for the social cost, in the
sense that we do not need to compute the estimation of the cost function:
SC here is merely C(f). Also we de�ne the optimal 
ow f ∗ for (G; r; c) to be
the 
ow that minimizes C(f) among all feasible 
ows f . The corresponding
value C(f ∗) is OPT. Once again Weierstrass's theorem implies the existence
of an optimal 
ow f ∗.
Remark 4.1.7. Notice here that for an optimal 
ow f ∗ the following must hold
for all feasible 
ows f : C(f ∗) ≤ C(f) ⇔ ∑

e∈E ce(f
∗
e )f ∗e ≤

∑
e∈E ce(fe)fe.

Comparing this relationship with the one of Lemma 4.1.2 for WE, we see
that they look quite the same. This similarity implies that a WE cannot be
much worse than the optimal 
ow, or equivalently that the PoA can be well
bounded. We could end up at the same result by noticing that a WE is a
minimizer of a potential function and remembering the discussion in Chapter
3 about potential functions.

De�nition 4.1.8. The Price of Anarchy �(G; r; c) of an instance (G; r; c) is:

�(G; r; c) =
C(f)

C(f ∗)

where f is a WE and f ∗ is an optimal 
ow for (G; r; c). The PoA �(I) of a
non-empty set I of instances is sup(G;r;c)∈I �(G; r; c).

We immediately notice a di�erence with De�nition 2.3.5: there is no sup
in front of the fraction. The reason for that is Proposition 4.1.5, which implies
that all WE have equal cost. Thus the PoA is the same, no matter which
WE we consider. In the special case of a zero cost 
ow, where all WE have
zero cost, we de�ne the PoA to be unit (in order to have �(G; r; c) ≥ 1 for
all instances (G; r; c)).

4.2 Bounding the Price of Anarchy
In this section we shall provide a lower bound for the PoA of sel�sh routing
and a corresponding upper bound, for a variety of cost functions. In the fol-
lowing analysis Pigou's example plays a crucial role, so we repeat the basic
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results right below and we present a nonlinear variant as well.

We have a single-commodity network where the source vertex s and the
sink vertex t are connected through two disjoint edges, one with cost function
c(x) = 1 and the other with c(x) = x. Say we want to route one unit of tra�c.
As we discussed in Chapter 1, there is only one reasonable choice for rational
players and that is to route all tra�c on the lower edge. We can easily ver-
ify that this 
ow is a WE. We also discussed that if somehow we convinced
half the players to route their tra�c on the upper edge, then all the players
would be better o�, in the sense that the delay for half the players would be
1/2 instead of 1. In terms of C, we can say that in the �rst case we have
C(f) = 1·0+1·1 = 1 and in the second case C(f ∗) = 1·1=2+1=2·1=2 = 3=4.
It is trivial to show that the 
ow f ∗ is an optimal 
ow for this network3. and
that, as a result, the PoA is 4/3.

We can show that the PoA of the Pigou example can be arbitrarily large
if we allow nonlinear cost functions. Indeed set the cost of the lower link to
c(x) = xp, which is highly nonlinear if p is su�ciently large. Once again, for
a unit tra�c, all users choose the lower link, inducing a WE of total cost 1.
If on the other hand, the optimal 
ow f ∗ is to route a small � fraction of the
total tra�c on the upper link; then the cost is C(f ∗) = �+ (1− �)p+1, which
(for �→ 0) approaches 0 as p tends to in�nity. This means that the PoA for
this instance tends to in�nity with p.

The above observations generate a series of other questions: can the PoA
be arbitrarily large if the cost functions are \not too nonlinear"? Is the PoA
in general larger in bigger, more complicated networks or in networks with
more commodities? The answer to all these questions is negative. In fact
Pigou's example provides a universal \bad case" for sel�sh routing, in the
sense that it bounds the PoA for a corresponding set of cost functions. The
proof of this claim is the objective of this section.

The Pigou Bound

The above discussion implies that the PoA of a sel�sh routing instance de-
pends, at the very least, on the set of allowable cost functions C. We there-
fore aim for a (lower) bound that is parametrized by C. Common sets of cost
functions are the constant cost functions, linear functions, polynomials and

3set x the 
ow of the upper link, 1 − x the 
ow for the lower link, write down C(x)
and compute x such that C ′(x) = 0
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queueing delay functions.

The idea here is, that for every set C, Pigou-like examples should provide
a natural lower bound for the PoA of every set I of instances (G; r; c), where
G is of a special form and c ∈ C. So we are going to de�ne a bound �(C),
which we shall call the Pigou bound, in order to show that �(I) ≥ �(C) for
this appropriate set I.

The only assumption we need to make about C for now is that it contains
all constant functions. So choose a cost function c2 ∈ C at random and a
tra�c rate r. Then assume that c1 is a function everywhere equal to c2(r).
Because of the former assumption we have c1 ∈ C. Now consider the usual
single-commodity, two-node, two links network of the Pigou example, where
we assign the upper and lower edge cost functions c1 and c2 respectively and
where the tra�c rate is r. As usual the lower edge is never worse o� than the
upper edge and thus routing all tra�c on this edge yields a WE of cost c2(r)r.
The optimum cost can be formalized as follows: min

0≤x≤r
(xc2(x) + (r− x)c2(r))

and the PoA is then:

max
0≤x≤r

rc2(r)
xc2(x) + (r − x)c2(r)

With a closer look at the denominator we can see that the fraction reaches
its max value for x ≤ r. So the PoA can be written:

max
x;r≥0

rc2(r)
xc2(x) + (r − x)c2(r)

Consider now the set I to be the set of single-commodity instances with a
two-node, two link network and cost functions in C. Obviously the above
Pigou-like network belongs to I. By the de�nition of �(I) as a supremum
over all instances in I, it follows that the above PoA is also a lower bound
for �(I). To get a better lower bound, we choose the cost functions in the
worst possible way, i.e. in a way that maximizes the above PoA, and we get
the Pigou bound:

De�nition 4.2.1. Let C be a nonempty set of cost functions. The Pigou
bound �(C) is

�(C) = sup
c∈C

sup
x;r≥0

rc2(r)
xc2(x) + (r − x)c2(r)

(4.5)

We assume that 0/0=1.
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From the discussion above and the de�nition of Pigou bound the next
Proposition follows immediately.

Proposition 4.2.2. Let C be a set of cost functions that includes all constant
functions, and let I denote the set of single-commodity instances with a two-
node, two link network and cost functions in C. Then

�(I) ≥ �(C)

It must be by now quite clear that �nding an arbitrary lower bound for
the PoA of a set of instances I is not really hard: actually the PoA of any
instance (G; r; c) ∈ I lower bounds �(I). The question is whether the lower
bound is tight enough. To prove that for the Pigou bound we must provide
a corresponding upper bound. Before that we summarize some interesting
results for some very useful cases of cost functions.

C �(C) References

{ax+ b : a; b ≥ 0}4 4/3 [RT02],
[Rou02]

concave cost functions 4/3 [CSM04]
polynomials5 with nonnegative
coe�cients and degree at most p

[1− p · (p+ 1−(p+1)=p)]−1 [Rou02]

(nondecreasing) polynomials with
arbitrary coe�cients and degree
at most p

? -

set of M/M/1 delay functions
with queue service rate u ≥ umin
and tra�c rate r ≤ Rmax < umin

1
2

(
1 +

√
umin

umin−Rmax

)
[Rou02]

Table 4.2: The Pigou bound for some important sets of cost functions

Remark 4.2.3. Although Proposition 4.1.2 assumes that C contains all con-
stant functions it can be proved for more general set of constant functions as
well.

We shall now prove an upper bound on the PoA. We �rst state the fol-
lowing Proposition which follows immediately from De�nition 4.2.1.

Lemma 4.2.4. Let C be a set of cost functions and �(C) the corresponding
Pigou bound. For c ∈ C and x; r ≥ 0,

x · c(x) ≥ r · c(r)
�(C)

+ (x− r)c(r)
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We now use the above Lemma and inequality (4.3) to prove the optimal-
ity of the Pigou bound. We should note here that the following theorem has
undergone several iterations and modi�cations over the years. It was �rst
proved for the special case of linear cost functions by Roughgarden and Tar-
dos [RT02] and it was extended step by step ([Rou02]). Some of the proofs
in the bibliography are fairly complex. The key idea is to use inequality (4.3)
in order to simplify the proof. Here we follow the proof given by Correa,
Schulz and Stier Moses in [CSM04].

Theorem 4.2.5. Let C be a set of cost functions and �(C) the corresponding
Pigou bound. If (G; r; c) is an instance with c ∈ C, then

�(G; r; c) ≤ �(C)

Proof. Let f ∗ and f be an optimal 
ow and a WE respectively, for an instance
(G; r; c) with c ∈ C, then

C(f ∗)=
∑
e∈E

ce(f ∗e )f
∗
e

≥ 1
�(C)

∑
e∈E

ce(fe)fe +
∑
e∈E

(f ∗e − fe)ce(fe) from Lemma 4.2.4

≥ C(f)
�(C) (4.3) implies

∑
e∈E

(f ∗e − fe)ce(fe) ≥ 0

The above theorem implies that the lower bounds of Table 4.2 are the best
possible, namely the PoA of each case is exactly �(C). Another interesting
remark is that the worst-possible PoA for a set of instances occurs in the
very simple Pigou-like networks. Hence we assume that the complexity of
the allowable network topologies has nothing to do with the ine�ciency of
the resulting equilibria. In fact the PoA is independent of the number of
commodities as well and depends only on the set of allowable cost functions.

4.3 Bounding Braess 's Paradox
In this section we focus on Braess's paradox (see Example 1.3.3). We have
already discussed how startling and unintuitive this result is. In this section
we will try to quantify Braess's paradox, by de�ning the Braess ratio, and
we shall study the problem in more general networks. Before studying the
problem at large, it is useful to verify that for the original instance, the 
ows
proposed in Example 1.3.3, are indeed WE and that their corresponding costs
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C(f) are indeed 3/2 and 2.

Example 1.3.3 shows that adding to a network a new edge can increase
the incurred cost, no matter how \fast" this edge is. Equivalently removing
an edge from an existing network with linear cost functions can decrease its
cost by a factor of 4/3. The question is, can the cost be decreased by a larger
factor

• in larger networks,

• or with multicommodity topologies,

• or with arbitrary cost functions,

• or when multiple edge removal is allowed?

4.3.1 Enlarging the Paradox

In this section we shall show that the severity of Braess's Paradox depends
on all of the above factors. More precisely we shall show that it can be
arbitrarily severe in large single-commodity network, only if nonlinear cost
functions and multiple edge removal are allowed.
We measure the severity of Braess's Paradox with the Braess ratio de�ned
below. The Braess ratio indicates the maximum factor by which the cost of
a WE can decrease from a network to one of its subnetworks.

De�nition 4.3.1. The Braess ratio �(G; r; c) of a single-commodity instance
(G; r; c) is

�(G; r; c) = max
H⊆G

C(f)

C(fH)
(4.6)

where H ranges over subnetworks of G that contain an s− t path, and f and
fH denote WE for (G; r; c) and (H; r; c) respectively.

Remark 4.3.2. For now we limit our discussion on single-commodity net-
works. Later we shall discuss multiple ways to extend the above de�nition
to multicommodity networks.

Remark 4.3.3. Notice that De�nition 4.3.1 allows multiple edge removal, since
we examine the cost for all subnetworks of G. So we could say that multiple
edge removal is always possible. The question is whether it increases the
Braess ratio or not: we shall soon see it does.
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It is also easy to verify that the Braess ratio in Example 1.3.3 is 4/3. We
claim that no larger Braess ratio is possible in single-commodity networks
with linear cost functions. This fact is a consequence of the following (much
stronger) connection between the PoA and the Braess ratio.

Proposition 4.3.4. If (G; r; c) is a single-commodity instance, then

�(G; r; c) ≤ �(G; r; c)

Proof. For every subgraph H of G, a WE fH is a feasible 
ow for (G; r; c)
as well. Hence C(fH) ≥ C(f ∗), where by f ∗ we denote the optimum 
ow
for (G; r; c). Also we have �(G; r; c) ≥ C(f)

C(f∗) for every WE f of (G; r; c).
Combining these inequalities we have C(fH) ≥ C(f)

�(G;r;c) , which yields the
desired result.

Now Proposition 4.3.4 implies that any single-commodity network with
linear cost functions, has Braess ratio that is at most 4/3. Since we have a
corresponding lower bound, 4/3 is tight. We shall give a construction which
indicates that this upper bound is also tight (up to constant factors) for other
cost functions as well.

Figure 4.1: The Braess Graphs for k=2 and k=3

Theorem 4.3.5. For every n ≥ 2, there is a single-commodity instance
(G; r; c) with n vertices and

�(G; r; c) ≥
⌊n

2

⌋

Proof. We shall prove the theorem for n even. The case of odd n reduces to
this case, by simply adding an isolated node in the network. Wlog we can
also assume that n is at least 4. So, write n = 2k + 2 for k ≥ 1.
We de�ne the kth Braess graph Bk as follows:
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Figure 4.2: The WE for G and H

• we have 2k + 2 nodes, V k = {s; v1; : : : vk; w1; : : : wk; t}

• and the edge set Ek is the union of the sets

{ {(s; vi); (vi; wi); (wi; t) : 1 ≤ i ≤ k}
{ {(vi; wi−1) : 2 ≤ i ≤ k} and

{ {(v1; t) ∪ (s; wk)}

The Braess graphs for k = 2; 3 are depicted in Figure 4.1 Note that B1 is the
graph in the original Braess's Paradox (Example 1.3.3). We now separate
the edges in types and de�ne the costs for each such type:

• edges of the form (vi; wi) are type A edges and have cost cke(x) = 0

• edges of the form (vi; wi−1); (s; wk); (v1; t)) are type B edges and have
cost cke(x) = 1

• for each i ∈ {1; : : : ; k} edges of the form (s; vk−i+1); (wi; t) are type C
edges and have a continuous nondecreasing cost function cke(x) with
cke(k=(k + 1)) = 0 and cke(1) = i.

Furthermore let us denote by

• Pi the path s→ vi → wi → t for i ∈ {1; : : : ; k}

• Q1 the path s→ v1 → t

• Qi the path s→ vi → wi−1 → t for i ∈ {1; : : : ; k}

• Qk+1 the path s→ wk → t
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Now consider the instance (Bk; k; ck) where the cost functions are de�ned
as above. Note that routing one unit of 
ow on each of P1; : : : ; Pk yields a
WE in which all tra�c incurs cost k + 1 (Figure 4.2(a)).
On the other hand, if H is the subgraph obtained from Bk by deleting the
k type A edges, then routing k=(k+ 1) units of 
ow on each of Q1; : : : ; Qk+1

yields a WE fH for (H; k; ck), in which all tra�c incurs only one unit of cost
(Figure 4.2(b)).Thus

�(G; r; c) ≥ C(f)=C(fH) = k + 1 = n=2

Remark 4.3.6. Although it is not so obvious we can use similar arguments
as in Theorem 4.3.5 to adapt to scenarios where arbitrary cost functions are
not allowed. Then we could show that this lower bound for the Braess ratio
matches the upper bound that follows from Proposition 4.3.4 and Theorem
4.2.5. For more information see [Rou01].

Proposition 4.3.4 and Theorem 4.3.5 also imply that, in order to exhibit
a family of instances with arbitrarily large Braess ratio, we need to have
cost functions drawn from a su�ciently rich set (e.g. polynomials with un-
bounded degree). However this alone is not enough. In order to achieve a
large Braess ratio, we also need larger, more complicated networks6. The
following theorem implies exactly that.

Theorem 4.3.7. If (G; r; c) is a single-commodity instance with n vertices,
then

�(G; r; c) ≤
⌊n

2

⌋

This Theorem shows that, among single-commodity networks, the Braess
ratio is maximized by the networks in the proof of Theorem 4.3.5. In order
to prove this Theorem, we need another, stronger result, which we present
here, without its (quite technical) proof. For more information see [LRT04].

Theorem 4.3.8. Let (G; r; c) be a single-commodity instance, H a subgraph
of G, and f , f̃ WE for (G; r; c) and (H; r; c) respectively. Let S denote the
edges in G but not H (namely, the edges we remove). If every undirected
matching of S\{s; t}, where {s; t} are the source, and destination nodes,
contains at most k edges, then

C(f) ≤ (k + 1)C(f̃)

6notice the di�erence with the PoA, where we only cared about the cost functions
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Theorem 4.3.8 implies Theorem 4.3.7 as well as an upper bound on the
severity of Braess's Paradox, parametrized by the number of edges removed.
Let us �rst prove Theorem 4.3.7:

Proof. Since there are only n − 2 vertices of G, apart from s and t, every
matching of G has at most b(n − 2)=2c = bn=2c − 1 edges. So does every
matching of G\H. The result follows from Theorem 4.3.8 for k = bn=2c −
1.

Corollary 4.3.9. Removing k edges from a single-commodity network de-
creases the cost of a WE by at most a factor of k + 1

Corollary 4.3.9 implies that the only way to achieve arbitrarily large
Braess ratios is to allow an unlimited number of edge removals. In fact
the bound of the Corollary is matched by the construction of Theorem 4.3.5,
so it is tight.

Multicommodity networks

We now extend the notion of Braess ratio for multicommodity networks. We
could use here De�nition 4.3.1 as well, but although Proposition 4.3.4 still
holds and we have a tight bound for the case of linear latency functions, no
corresponding bounds are possible for networks with arbitrary cost functions.
In fact, even in two-commodity, three-node networks, removing a single edge
can decrease the cost of a WE by an arbitrarily large factor.
Hence we de�ne the Braess ratio for multicommodity networks as follows.

De�nition 4.3.10. The Braess ratio �(G; r; c) of a multicommodity instance
(G; r; c) is

�(G; r; c) = max
H⊆G

k
min
i=1

di(G; r; c)
di(H; r; c)

(4.7)

where di(G; r; c) denotes the common cost incurred by all tra�c of commodity
i in a WE for (G; r; c) and H ranges over subnetworks of G that contain an
si − ti path.

Thus the Braess ratio of a multicommodity network instance is large only
if removing some set of edges decreases the cost incurred by the tra�c of
every commodity.
It has been shown in [LRTW05] that the upper bound of Theorem 4.3.7 does
not carry on to multicommodity networks. In fact it can grow exponentially
with the networks size, even in two-commodity networks:

Theorem 4.3.11. There is a family of two-commodity networks {(Gn; rn; cn)}∞n=1

s. t. Gn has O(n) vertices and edges and �(Gn; rn; cn) = 2Ω(n) as n→∞:
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On the other hand we have that the Braess ratio is at most exponential
in the networks size, due to the following theorem

Theorem 4.3.12. There is a constant c > 0 such that for every k; n ≥ 1 and
every instance (G; r; c) with k commodities and n vertices, �(G; r; c) ≤ 2ckn.

Theorems 4.3.11 and 4.3.12 together do not establish a tight bound, be-
cause the upper bound seems to depend on the number of commodities k.
Whether it really depends or not, is still an open question.

4.3.2 Detecting Braess's Paradox is hard
Braess's paradox suggests a natural algorithmic question: given a network,
is it su�ering from the paradox? If so, which edges should be removed to
recover the best-possible WE?
This question turns out to be extremely di�cult (NP-hard) to answer, even
for single-commodity networks with linear cost functions. In order to prove
that, let us formulate the problem as an optimization problem:

De�nition 4.3.13. LINEAR NETWORK DESIGN: Given a single-commodi-
ty instance with linear cost functions, �nd a subnetwork H that minimizes
the cost of a WE of the instance (H; r; c), for H ranging over all subnetworks
of G (H ⊆ G).

A trivial algorithm to solve LINEAR NETWORK DESIGN, would be
to enumerate all subgraphs of G, compute the WE of each one and pick
the best solution. Although computing a WE is easy, the subgraphs of G
can be exponentially many and the running time of the algorithm would be
prohibitive.
So, instead of looking for an algorithm that �nds the exact solution, we
shall seek for a 
-approximation algorithm, i.e. an algorithm that returns
a solution worst than the optimal, but less than 
 times as costly as the
optimal: OPT ≤ x ≤ 
 ·OPT . We want 
 as close to 1 as possible.
Note that even the trivial algorithm that returns the entire networks as a
solution can be viewed as an approximation algorithm. In fact, since the
Braess ratio in single-commodity networks with linear cost functions is at
most 4/3 (Proposition 4.3.4) the trivial algorithm is a 4/3-approximation
algorithm for LINEAR NETWORK DESIGN.
Our goal is to design more a clever algorithm, with a better approximation
ratio. However, none exist, unless P = NP .

Theorem 4.3.14. For every � > 0, there is no (4=3 − �)-approximation
algorithm for LINEAR NETWORK DESIGN (assuming P 6= NP).



92 CHAPTER 4. SELFISH ROUTING

Figure 4.3: The reduction from 2DDP to LINEAR NETWORK DESIGN

Proof. We present a polynomial-time \gap" reduction from theNP-complete
problem 2 DIRECTED DISJOINT PATHS (2DDP): given a directed graph
G = (V;E) and distinct vertices s1; s2; t1; t2 ∈ V , are there si − ti paths Pi
for i = 1; 2, such that P1 and P2 are vertex disjoint? We shall show how a
(4=3− �)-approximation algorithm can be used to distinguish between \yes"
and \no" instances of 2DDP.
First of all, given an instance I of 2DDP with G = (V;E) we shall construct
an instance of sel�sh routing in polynomial time. In order to do that we
augment the vertex set V by an additional source s and sink t and we include
in the edge set E the directed edges (s; s1); (s; s2); (t1; t); (t2; t) (see Figure
4.3). We de�ne the cost functions on the edges of E to be c(x) = 0, on
the edges (s; s1); (t2; t) to be c(x) = 1 and on the edges (s; s2); (t1; t) to be
c(x) = x. The new graph is G′ and we have thus constructed the instance
(G′; 1; c) of sel�sh routing in polynomial time.
We want to show that the following statements are true:

• if I is a \yes" instance of 2DDP, then G′ admits a subnetwork H such
that the WE for (H; 1; c) has cost 3/2: this means that the optimum
solution has cost at most 3/2. Hence the solution returned by the
approximation algorithm, which is at most (4=3−�) times the optimum
solution, is at most (4=3− �) · 3=2 < 2.

• if I is a \no" instance of 2DDP, then for every subnetwork H of G′ the
WE for (H; 1; c) has cost at least 27. Since this holds for every sub-
network H, it must hold for the optimum one as well, so the optimum
solution is at least 2, hence the solution returned by the approximation
algorithm has cost at least 2 as well.

If we can prove the above properties of our construction, we can use the
approximation algorithm for LINEAR NETWORK DESIGN to solve 2DDP

7notice the resemblance to the costs of the original Braess's paradox
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in polynomial time as follows: we run our approximation algorithm and if
the returned solution is < 2 then the corresponding instance of 2DDP is a
\yes" instance, otherwise it is a \no" instance.
So we are left with the task of proving that the above statements are true.
Consider the case of a \yes" 2DDP instance: there exist vertex-disjoint s1−t1
and s2 − t2 paths P1 and P2 respectively. Obtain H by deleting all edges in
G not contained in some Pi. This operation does not ruin P1, P2 and assures
that they are the only two si − ti paths in H. It is then easy to verify that
H admits a WE of cost 3/2, by routing half the tra�c on each path Pi.
Now consider the case of a \no" 2DDP instance and take an arbitrary sub-
graph H of G′, possessing a s− t path, wlog. We have to study two cases:

• if the corresponding 2DDP instance has si− ti paths for both i = 1 and
2, then it must be the case that these paths share a common vertex,
which implies that if H has two s−t paths containing s1−t1 and s2−t2
paths, then it also has an s− t path containing a s2− t1 path. Since we
have only one unit of 
ow, this path is always cheaper, (remember the
original Braess Paradox) and the WE is for all the 
ow to be routed
on this path, incurring a cost of 2. If H does not have two s− t paths,
but just one, then the WE is to route all tra�c on this path and has a
cost of 2 as well.

• if the corresponding 2DDP problem has a si− ti path for precisely one
i ∈ {1; 2}, then the s− t path of H may contain a si − ti path for just
one i and/or a s1− t2 path. In either case the WE is to route the whole
tra�c on one path, incurring a cost of 2.

The above result implies that there is no way to distinguish between a
sel�sh routing instance that does not su�er from the Braess paradox and
one that has a Braess ratio of 4/3, i.e. the worst possible Braess ratio for
single-commodity instances with linear cost functions. Equivalently we can
say that detecting Braess's paradox is NP-hard.
The above result can be extended to the case of more general networks.
For example, let GENERAL NETWORK DESIGN be the analogous opti-
mization problem for single-commodity networks with arbitrary cost func-
tions. Theorem 4.3.7 implies that the trivial algorithm here yields a bn=2c-
approximation result. As is the case with linear cost functions, we can prove
the following inapproximability result, using the concept of Braess graphs.
The full proof is omitted here. For more details on the hardness of network
design, see [Rou01].
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Theorem 4.3.15. Assuming P 6= NP, for every � > 0, there is no (bn=2c−
�)-approximation algorithm for GENERAL NETWORK DESIGN.

4.4 Reducing the Ine�ciency of Equilibria
Back in section 4.2 we studied the PoA of sel�sh routing and we derived
some tight bounds for it, depending on the type of cost functions in the
network. In this section we present some widely used techniques for reducing
the ine�ciency of equilibria, i.e. for reducing the PoA. Apart from forcing
optimal routing, which usually does not correspond to a 
ow at WE, there
are three other popular techniques: increasing the capacity of the network,
routing a small amount of tra�c centrally (known as Stackelberg routing)
and in
uencing tra�c with edge taxes.

4.4.1 Capacity augmentation
We shall demonstrate this technique using an example:

Example 4.4.1. Consider the nonlinear variant of Pigou's example (see
Example 1.3.2). Remember that with one unit of tra�c, the WE routes all
tra�c on the lower edge, incurring 1 unit of cost, while the optimal 
ow
routes � units of 
ow on the upper edge and the rest 1− � units on the lower
edge, incurring 0 cost. Now consider the case, where we want to route 2 units
of tra�c through the network. Now the optimal 
ow is to route 1 + � units
of 
ow on the upper edge and the rest 1 − � units on the lower edge. The
cost of the optimal routing is now 2, as p→∞.

Example 4.4.1 implies a more general result: for every amount of tra�c
r, the optimal 
ow feasible for twice the original tra�c (i.e. for 2r) has cost
at least equal to the cost of the WE for the original tra�c (i.e. for r). In fact
this result holds for all feasible 
ows of tra�c 2r, as the following theorem
states.

Theorem 4.4.2. If f is a WE for (G; r; c) and f ∗ is feasible for (G; 2r; c),
then

C(f) ≤ C(f ∗)

For details on the proof see [RT02].
Example 4.4.1 is a tight example which shows that the above bound is

the best possible, i.e. there exist feasible 
ows f ∗ s. t. C(f) = C(f ∗). In
fact the equality holds for the optimal feasible 
ow of (G; 2r; c).

In order for the title \capacity augmentation" to make sense, we need to
rewrite Theorem 4.4.2 in the following equivalent form.
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Corollary 4.4.3. Let (G; r; c) be an instance and de�ne the modi�ed cost
function c̃e by c̃e(x) = ce(x=2)=2 for each edge e. Let f̃ be a WE for (G; r; c̃)
with cost C̃(f̃), and f ∗ a feasible 
ow for (G; r; c) with cost C(f ∗). Then
C̃(f̃) ≤ C(f ∗).

Now notice that Corollary 4.4.3 takes a particularly nice form in the case
of cost functions which represent M/M/1 delay functions. Then we have
ce(x) = 1=(ue − x) and c̃e(x) = 1=2(ue − x=2) = 1=(2ue − x). So in this
case, we have the following advice: in order to outperform optimal routing,
just double the capacity of every edge. In fact Theorem 4.4.2 says that by
improving our links we can have even better results, than trying to route all
tra�c centrally (i.e. by telling all players what to do).

4.4.2 Stackelberg routing
The next technique is named after Stackelberg games, where there exist one
leader and a lot of followers and the leader determines with his actions, the
course of actions of the other players. Here the leader is some central author-
ity routing a fraction 
 ∈ [0; 1] of the total amount of tra�c, as he pleases,
and the followers are the rest players of the network, which make their choices
sel�shly as usual. The main di�erence here between the central authority and
the players is that the central authority controls a non-negligible portion of
the total tra�c and cannot be therefore considered as one more player in the
network.8. Let us now describe the Stackelberg routing technique via two
examples.

Example 4.4.4. Consider the nonlinear variant of Pigou's example in Figure
1.3 Suppose we are granted to route a 
 ∈ [0; 1] portion of the tra�c as we
wish, knowing that the rest 1− 
 fraction is routed sel�shly by the players.
We call a routing of the centrally controlled tra�c a Stackelberg strategy. It
is easy to see, that for every Stackelberg strategy, the rest 1 − 
 portion of
the tra�c is routed through the lower edge, which is never worse than the
upper edge. However, if we choose as a Stackelberg strategy, to route some
of our own tra�c 
 on the upper edge, we reduce the total cost. The reason
for that, is that we mimic the routing of the tra�c in the optimal 
ow: we
choose to route our tra�c on the link that no rational player prefers, i.e. on
the slower link. For 
 su�ciently small (
 → 0 as p → ∞) we can induce a

ow of 0 cost, i.e. exactly the optimal 
ow.

The next example shows that Stackelberg routing has nonetheless its
limitations.

8this problem occurs because of the non-atomic nature of sel�sh routing
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Example 4.4.5. Suppose we modify Example 4.4.4 by replacing the cost
function of the lower edge by the cost function c(x) = xp=(1 − 
)p. Now,
supposing we route 
 of the total tra�c on the upper edge, the average cost
is 
 · 1 + (1−
)p

(1−
)p · (1 − 
) = 
 + 1 − 
 = 1. Hence, no matter how we route
the centrally controlled tra�c, the lower edge will be fully congested and the
average cost will be 1. On the other hand, the optimal 
ow routes 
+ � units
of 
ow on the upper edge and the rest on the lower edge and its average cost
is (
 + �) · 1 + (1−
−�)p

(1−
)p · (1− 
) → 
 as �→ 0 and p→∞.

We now present a theorem that bounds the worst case ratio between
the cost of the best 
ow possible with Stackelberg strategy and that of the
optimal 
ow. Example 4.4.5 shows that this ratio can grow to get arbitrarily
close to 1=
 even in two-node, two link networks. The corresponding upper
bound follows from the following Theorem (the proof is in [Rou04]).

Theorem 4.4.6. For every instance (G; r; c) with a network of parallel
links, and every 
 ∈ (0; 1], there is a Stackelberg strategy that routes 
r units
of tra�c and yields a 
ow with cost at most 1=
 times the cost of an optimal

ow.

Theorem 4.4.6 provides a smooth trade-o� between optimal 
ows and
WE, as a function of the fraction of the centrally controlled tra�c. When

 = 0, no tra�c is centrally controlled and we are dealing with WE, which
(in the case of arbitrary cost functions) can cost arbitrarily more than the
optimal 
ow (unbounded PoA). On the other hand, if 
 = 1 then we can
route all tra�c centrally and achieve the optimal 
ow.

Proposition 4.4.7. The optimization problem of computing an optimal Stack-
elberg strategy is NP-hard([Rou04]), though it can be approximated in poly-
nomial time([KM02]).

Theorem 4.4.6 applies only to networks of parallel links. The question of
whether or not such a result holds for general single-commodity networks is
open. Partial results have been derived however for a wide class of networks,
including series-parallel networks and the Braess graphs.

4.4.3 Pricing network edges

One �nal, very natural approach to reduce congestion and thus the PoA, is
to impose taxes on the edges. This subject has been extensively studied in
the literature. Pigou originally suggested the marginal cost taxes. The basic
idea is to charge each network user on each edge for the additional cost its
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presence causes for the other users of the edge9. So let us denote by �e the
tax of edge e. Then we have the sel�sh routing instance (G; r; c + t), where
at WE all tra�c tries to minimize the incurred sum of edge latencies and
taxes.
More formally, the principle of the marginal cost taxes asserts that for a 
ow
f feasible for an instance (G; r; c), the tax �e is �e = fe · c′e(fe), where c′e is
the derivative of ce. It is easy to see that c′e is the increase of the edge's cost,
due to one user (who controls a negligible portion of the tra�c) and fe is the
total amount of tra�c that su�ers from this increase. So all tra�c fe (i.e.
all users that consist this tra�c) are charged an additional tax �e.
What is really important is that these taxes can in fact eliminate all of the
ine�ciency of the equilibria, as the following theorem states.

Theorem 4.4.8. Let (G; r; c) be an instance with di�erentiable cost func-
tions, admitting an optimal 
ow f ∗. Let �e = f ∗e · c′e(f ∗e ) denote the marginal
cost tax for edge e with respect f ∗. Then f ∗ is a WE for (G; r; c+ �).

In other words, by imposing taxes on a sel�sh routing instance, we make
an optimal 
ow be a WE.
The basic drawbacks of this method, are the universal handling of taxes and
costs, as if they were the same thing, and the fact that the taxes can in some
cases become too big (when the derivative is large), that they no longer
consist a reasonable control measure for congestion.

9notice the resemblance with the idea of the VCG mechanisms



98 CHAPTER 4. SELFISH ROUTING



Bibliography

[CD06] Xi Chen and Xiaotie Deng. Settling the complexity of two-player
nash equilibrium. In FOCS, pages 261{272, 2006.

[CDT06] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Computing nash
equilibria: Approximation and smoothed complexity. In FOCS,
pages 603{612, 2006.

[Che52] H. Cherno�. A measure of asymptotic e�ciency for tests of a
hypothesis based on a sum of observations. Ann. Math. Statist.,
23:493{507, 1952.

[CK05] George Christodoulou and Elias Koutsoupias. The price of anar-
chy of �nite congestion games. In STOC, pages 67{73, 2005.

[CS03] Vincent Conitzer and Tuomas Sandholm. Complexity results
about nash equilibria. In IJCAI, pages 765{771, 2003.

[CSM04] Jos�e R. Correa, Andreas S. Schulz, and Nicol�as E. Stier Moses.
Sel�sh routing in capacitated networks. Math. Oper. Res.,
29(4):961{976, 2004.

[CV02] Artur Czumaj and Berthold V�ocking. Tight bounds for worst-
case equilibria. In SODA, pages 413{420, 2002.

[DGP05] Konstantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. The complexity of computing a nash equilibrium.
Electronic Colloquium on Computational Complexity (ECCC),
(115), 2005.

[DMP06] Constantinos Daskalakis, Aranyak Mehta, and Christos H. Pa-
padimitriou. A note on approximate nash equilibria. In WINE,
pages 297{306, 2006.

99



100 BIBLIOGRAPHY

[DP05] Konstantinos Daskalakis and Christos H. Papadimitriou. Three-
player games are hard. Electronic Colloquium on Computational
Complexity (ECCC), (139), 2005.

[FKK+02] Dimitris Fotakis, Spyros C. Kontogiannis, Elias Koutsoupias,
Marios Mavronicolas, and Paul G. Spirakis. The structure and
complexity of nash equilibria for a sel�sh routing game. In
ICALP, pages 123{134, 2002.

[FKS04] Dimitris Fotakis, Spyros C. Kontogiannis, and Paul G. Spirakis.
Sel�sh unsplittable 
ows. In ICALP, pages 593{605, 2004.

[FKS05] Dimitris Fotakis, Spyros C. Kontogiannis, and Paul G. Spirakis.
Symmetry in network congestion games: Pure equilibria and an-
archy cost. In WAOA, pages 161{175, 2005.

[FPT04] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar.
The complexity of pure nash equilibria. In STOC, pages 604{612,
2004.

[GLM+03] Martin Gairing, Thomas L�ucking, Marios Mavronicolas,
Burkhard Monien, and Paul G. Spirakis. Extreme nash equi-
libria. In ICTCS, pages 1{20, 2003.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yan-
nakakis. On generating all maximal independent sets. Inf. Pro-
cess. Lett., 27(3):119{123, 1988.

[KM02] V. S. Anil Kumar and Madhav V. Marathe. Improved results
for stackelberg scheduling strategies. In ICALP, pages 776{787,
2002.

[KMS03] Elias Koutsoupias, Marios Mavronicolas, and Paul G. Spirakis.
Approximate equilibria and ball fusion. Theory Comput. Syst.,
36(6):683{693, 2003.

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equi-
libria. Lecture Notes in Computer Science, 1563:404{413, 1999.

[KPS06] Spyros C. Kontogiannis, Panagiota N. Panagopoulou, and
Paul G. Spirakis. Polynomial algorithms for approximating nash
equilibria of bimatrix games. In WINE, pages 286{296, 2006.



BIBLIOGRAPHY 101

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta.
Playing large games using simple strategies. In ACM Confer-
ence on Electronic Commerce, pages 36{41, 2003.

[LRT04] Henry Lin, Tim Roughgarden, and �Eva Tardos. A stronger bound
on braess's paradox. In SODA, pages 340{341, 2004.

[LRTW05] Henry Lin, Tim Roughgarden, �Eva Tardos, and Asher Walkover.
Braess's paradox, �bonacci numbers, and exponential inapprox-
imability. In ICALP, pages 497{512, 2005.

[Mil96] Igal Milchtaich. Congestion games with player-speci�c payo�
functions. Games and Economic Behavior, 13(1):111{124, March
1996.

[MS96] D. Monderer and L.S. Shapley. Potential games. Games and
Economic Behavior, 14:124{143, 1996.

[MS01] Marios Mavronicolas and Paul G. Spirakis. The price of sel�sh
routing. In STOC, pages 510{519, 2001.

[Nas51] J.F. Nash. Non cooperative games. Annals of Mathematics,
54:286{295, 1951.

[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, 1994.

[Pap] C. H. Papadimitriou. Computational Complexity.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity ar-
gument and other ine�cient proofs of existence. J. Comput. Syst.
Sci., 48(3):498{532, 1994.

[Pap01] Christos H. Papadimitriou. Algorithms, games, and the internet.
In STOC, pages 749{753, 2001.

[Ros73] R.W. Rosenthal. A class of games possessing pure-strategy nash
equilibria. International Journal of Game Theory, 2:65{67, 1973.

[Rou01] Tim Roughgarden. Designing networks for sel�sh users is hard.
In FOCS, pages 472{481, 2001.

[Rou02] Tim Roughgarden. The price of anarchy is independent of the
network topology. In STOC, pages 428{437, 2002.



102 BIBLIOGRAPHY

[Rou04] Tim Roughgarden. Stackelberg scheduling strategies. SIAM J.
Comput., 33(2):332{350, 2004.

[RT02] Tim Roughgarden and �Eva Tardos. How bad is sel�sh routing?
J. ACM, 49(2):236{259, 2002.

[SvS04] Rahul Savani and Bernhard von Stengel. Exponentially many
steps for �nding a nash equilibrium in a bimatrix game. In FOCS,
pages 258{267, 2004.

[SY91] Alejandro A. Sch�a�er and Mihalis Yannakakis. Simple local
search problems that are hard to solve. SIAM J. Comput.,
20(1):56{87, 1991.


