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Anayopeletol 1 aviiypagn, anobrixeuon xau dtavour| Tng mapovoag epyaoiog, €€
0hoXAhPOU 1} TUAUUTOS AUTHC, YL EUTOPIXG oxomd. Emtpénetarl 1 avatinwor,
arofrixevon xat Slovour i oxon6 Un xepdooxomixd, EXTOLdEUTIXNS 1) EEUVNTLXAC
@uong, und TNy TEoUTOhEGT) VoL AvAPERETAL 1) TNY T TEOEAEUOT)C XaL VoL dlaTneelTal To
Topdy uhvuua. Epwthuata mou agopoly T yehorn Tne epyactag yio xepdooxonixd
oxoTo6 TEENEL Vo aneuHlvovTol TPOC TOV GUYYEAUPEA.

Ou anddelg xal Ta GUUTERIOUATA TOU TEPLEYOVTAL GE QUTO TO €YYRAPO EXPEALOUY
Tov ouyypagéa xoL dev mpénel vo epunveulel 6Tl avtitpoownedouy TiC enlonueg
Béoeic Tou Efvixod Metodfiou ITohuteyvelou.



IIeptAndm

To avtixetyevo tng tapovoag dimhwuatixic epyaoiag elval n UEAETH xaTaoTd-
oewY oTI¢ onoleg ToAhol ypfioteg ahAnienidpoly uetall Toug, und TNy anoucia
xdmotag e€wTepLNS PUOULOTIXAC apY NS, UE LOVO YVOUOVA 0 xafévag To Tpoow-
Txd Tou dgeroc. Tétolec xataotdoelc elvon cuvniiouévec oe peydha, xaTave-
UNUEVA CLUCTAUATA Xol BIXTUN, UE YAEAXTNELOTIXOTERO ToEdSELYUd AUTH TOU
Internet. Ta cuotAuata autd, Tou yapaxtneilovtal and WLotehy GuUTERLPOES
XeNoTOY, anoteholy tapadootaxd aviixeluevo uehétng tng Ocwplag Haryvioy.
Y1 dimhwuatixr aut tapouctdlovue xdmoleg Baoxéc €vvoleg tng Oswplag
Moy vieov xal 0T GUVEYELL TEOYWEAUE OTN UEAETT TELOY LOVTEAWY TOU €Y 0LV
meotafel yi v avanapdotach Twv cuoTnUdTeY autdy. Ta uyovtéla autd
elval: TpdhTov, T0 8XTLo TaEdAANAWY axudy Tou tpwtoue eThinxe oto [KP99)]
xat axohovOninxe and ula oelpd and didec dnuoaoieloelg Tou etéhuoay Sudpopa
avolytéd mpoPBAfuata. Aeltepov, To UOVTEAO TwV TALYViwy ouupdenong, To
omolo éyel uehetnfel aveZdptnta and 1o mponyoluevo Uovtélo (tou amotehel
vroneplnTwon Tonyviou cuupdenong) xouu To onolo Utopel va yovtehonothioel
XATACTAOELS SpOoUOAOYNONS xlvnong uéoa oe dixTua YENoTOV 1 XATACTACELS
6mou oL yefHoTeg deousvouy Toug ToOEOUC Xdmowu cuothuatos. Téhog, To
Tplto pwovtélo elval éva uovtého anelpootic potc, mou €yel ueletnbel xuplwg
ané touc Roughgarden xau Tardos, w¢ n un-atouxy| eméxtoon Tmv oty viony
ovugoenonc. TI'a xdfe povtého nou uehetdue, e€etdlouue dYo Paoixd Béuata:
autd NS Umapdng xal TS UToAOYLoLWOTHTAC TV Leoppomidy Nash xau autd
TV QEAYUATOVY Yo To Tlunuo tne avapylag, Tou ouclacTixd TocoTIXoToLEl TIg
ATOAELES TTOU EYOVUE AOYW TNC LBLOTEAOUSC CUUTERLPORAS TWV YPNOTOVY.

Aé&eig xhedid: malyvia, tooppotia Nash, tlunua tne avapytog, dixtua, tdlote-
Mg dpouordynom, SEoUEUOT) TOPWY, WBLOTEATC CUUTERLQPOR, TalyVia GUUPOET-
ong, malyvio o€ dixTua ToEdAANAWY axudy, un-atouxd malyvia, tapddoo Tou
Braess



Abstract

This diploma thesis studies situations where many users interact, under the
absence of some central regulatory authority, each one aiming at the maxi-
mization of his own personal profit. These situations are common in large,
distributed networks and systems, with the Internet being an obvious ex-
ample. These systems, which are characterized by selfish user behavior, are
traditionally a field of study for Game Theory. In this thesis we present
some basic concepts of Game Theory and we then move on to presenting
three models that have been proposed for these systems. These models are:
first, the network of parallel links originally studied in [KP99], which was
followed by a series of papers resolving various open problems. Second, the
model of congestion games, which has been studied independently of the
previous model (which is in fact a subcase of congestion games) and which
models situations where users want to route traffic through a network or
want to allocate the resources of a system. Finally, our third model is the
non-atomic extension of congestion games, mostly studied by Roughgarden
and Tardos. For each model we discuss, we focus on 2 main questions: that of
the existence and tractability of equilibria, and that of the effective bounding
of the Price of Anarchy, which quantifies the inefficiency due to the selfish
behavior of the users (i.e. due to the lack of coordination).

Key words: games, Nash equilibrium, Price of Anarchy, networks, selfish
routing, resource allocation, selfish behavior, congestion games, games in
parallel links networks, non-atomic games, Braess’s paradox



Evyopiotieg

OhoxhpdvovTag TNV exToOVNoTN NS DMAOUATIXAC Hou epyactog ol uall ue
authY xaL Tov xUxho omouddy uou oto E.M.IL Oa #Afeha va euyapiotion
Oepud ula oewpd and avlpdroug mou ue Borbnoav xabéAn tn didpxelo Tng
Topelac Lou auThC.

Kotapydc tov xalnyntd xa emPBrAérnovia tne Simhwuatixfc x. Xtdbn Zdyo,
Tou HTay oL 0 dvipwrog Tou Uou UETESWOE TNV aydnn Tou Y T Oswpentixy
[Ihnpogopuxt|, ue Tig SLdaxTLXEC Tou xavoTNTES %ol Tov evioustacud tou. Tov
Mxtopa x.  ‘Apn Iayouptlh Yo Tic TOAES xul ONUAVTIXES TURATNEROELS
Tou %xatd TNV mopela cuyypaghc e Simhwuotxic. Tov xabnynth x. Hila
Koutoounid, ndve ot dnuooiedoeic tou omolou Baclotnxe ueydro uepog tng
Simhwuatixfc, o onolog Ty mdvta tpdhuuog va ue Bornbrioel ue 6,TL anopleg
elya, eved mopdhinia to avtiotolyo udbnud tou ue Boriinoe va anoxtion uia
G ontixry oto Béua tng Oewplog Haryviwy. Axdua, Tov entxovpo xabnynth
x. Xmpo Kovtoyudvvn, ulo oultkior Tou onolou, uou €3woe to €vaucud va
acyoAniod ue to Héua auto.

Oa Hfeha va euyapleTHow GAoug Toug PIAOUSC, GUUPOLTNTES XoL U, Tou elval
dimhat uou Ghar aUTd Ta yEdVLa YL Vo Ue oTnplZouy xol va ue cuufouiédouy
OTOTE TO €Y AVAYAT.

Tov pabnuatind vou, x. Xdpn, yio Ty aydnn mou uou €delle oTa Auxelaxd
UOU YpOVLAL, YLOL TOV €0MTO TOU UOU EVETVEUGE Yla To uafnuotixd ol yior Ty
EUTLOTOGUVT ToU elye TdvTa o Uéva.

Kot xuplwg ) untépa pou mou elvan mdvto dimha pov, yia v ue otnpilet xa
va ue Bonfd, v v aydnn e tny onola ue mepBEAAeL xaL Yo 6Aa boo ExEL
HAVEL YLOL UEVOL.
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Chapter 1

Ocowpla [Towyviwv: Bacuxeg €vvoleg

Y10 eloay Yo autd XePdAato Ho TapouCLECOUUE xATolES BAOIXES EVVOLES TNG
ahyoplBuixrc Bewplac maryviwyv. Apywxd Bo xdvouue ulo Lotopue avadpoun
xat O avagepholue cuvontind otic Baoixég évvoleg Tou xalintoviol Uéoa amd
™ Oewplo auty, xabde xat oToug didgopoug TUTOUC TaLY VWY TOU €YOouY XaTd
xatpoVg mpotalel. Xtn cuvéyewa Oo oploouue enlonua Tt elval éva malyvio, T
elval LooppoTia xal TS UEAETAUE TNV TOLOTNTE TNg xat Hor avapépouue xatodTLY
xdmota mapddola, To omolo Ho EaVooUVAVTACOUUE OTAU ETOUEVI XEQIAALA,
ULLS ol €YOLUY OTOTEAECEL TEOGT YLOL OEXETH Amd TNV €RELYNTLXT| DOUAELY
Tou mepthaufdvetar otn dimhwuatixy auth. Oo xheloouue To xeQdAALO AUTO
avagépovtag xdnota and ta Héuata mou drtovtal e Oewplag [Maryvioy xa
aroteloVy aviixelueva €peuvag yia TV xowvotnta g Oewpentixric IIinpogopt-

xC.

1.1 Tevuxd yia tn Ocwpla oy viewy

H Oewplo [Moryviwy avagépetal ouyvd wc évag xAdd0< TwV EQUEUOCUEVHDY
UaONUATIXAY Xal TV OLXOVOULX®Y, TOU TEQLYPAPEL XUTAGTAOELS OTLC OTOLES
moAlol malxteg Talpvouv ano@doelg Ue UGVO GXOTH VA UEYLOTOTOL|GOUV TO
TpooWTXd Touc dpeloc. XNy mapovca dimhwuatixy Bo acyolnfolue ue
Aeybuevn “un ouvepyotxr Oewpla tatyviwy” (non-coalitional game theory),
6mou 0 xdbe malxTng dpo AUTOVOUA XAl EYWLOTLXE YLOL TOV EAUTO TOu, dNAadH
dev umdpyouv cuvaoTiouol UETAZY TWV TUXTOV.

IIio ouyxexpéva ta malyvia Teootafoly vo LOVTIEAOTOLACOUY XATACTACELS
6mou adknhemdpolv Tohhd droua (ou malxtec Tou Toryviou) umd Tic e&ic
rpolnobéceLc:

o Ou nalxteg elvan €Eumvor und TNy €vvola 6TL, Ue deBOUEVES TIC XLVOELS
TOV AV TAUXTOY EEPOUY TAVTA TL TOUC GUUQEREL, XN xaL TL cuUpEpEL

11



12 CHAPTER 1. OESPIA ITAII'NIQN: BAYIKEY ENNOIEX

Toug dAhouc maixtec (to omolo otny TEdln onualver 4t unopolv va
EXTIULOOUY TIC XWVACELS TV -EEUTVLY- ouUTaXTdY Touc). Me Bdon tic
extunioets avtéc tallouy ophohoyiotixd (rationally) xat anogacilouy
TLC ETMOUEVES XLVAGELS TOUS oTpatnyxd (“reason strategically” [OR94))

o Ou nalxteg mEdTTOUY TAVTA TO XAAITEEO YL TOUC (BLOUC, ABLAQPOROVTIC
YLOL TLC GUVETIELES TNS ETLAOYTIC TOUC 0TO XOLVevix6 6Uvolo (elvar dnhady
eywlotég - selfish)

o Acev umdpyel xdmola XeVIpxt) oy’ Tou vo umopel vo xoteufiver Tic
ETLAOYEC TWVY TUUXTOY, dNAady| oL TalxTec dpouy auTdVOUL UE UOVO XELTH-
ELO TO CUUYEROV TOUC.

e Ou emhoyéc evée nalxtn ennpedlouy a) Ty eunuepla e xovwviac (so-
cial welfare) tnc onolag elvar uéhoc xat B) tic emAoyéc TwV uToholnwy
TALXTOV

Ané v napamdvew meptypaph yivetal cagéc 6t N Oewplo Haryviwy elvat

oe O¢on va meptypddel tolhéc xataotdoelc Tng xalnuepvic Lwnig xol xuplwg
Vo UOVTENOTIOLACEL GUGTAUOTO 0T ontola amouotdlel 1 xevtpuxy) dtayeloLon.
‘Eva tétolo oVotnua elvar xau to Awadixtuo: arotedeltal and exotoviddeg
YMddec ypriotes (tepuatixd ¥ efunnpetntéc) 6mou o xd&be évog dpa ue UbVo
xpLthpLo Ty elaytotoroinon tne dixrg Tou xabucTtépnong, ywelc va utdpyel
xdmolo xevtpwry apyy Siayelpiong 1 onola vo arooxorel otny eniteudn Tou
“xowvwvixol Béhtotov”. H egapuoyr mou Beloxel n Oswela Ioyvioy ot
uovtelonoinon tou Awdxtiou anoterel and udvVn TS avd AGYo ylo TNV
TERAOTIA TPOCOYT TOU €YEL TPOGEAXVUOEL TO AVTIXEIUEVO Ta TEAEUTAlO YPOVLAL.
Evdewctixéc mAnpogopiec unopel xaveic va Peet oto [Pap0l]
AopBdvovtag duwe unddy 6TL To AwadixTuo elvar éva ey vohoyxd xataoxel-
aopo TNe TeAeuTalog elxocaeTiog, eved 1 Ted TN avapopd ot Otwpla oty viony
yivetol to 1944 andé toug John von Neumann xoat Oskar Morgenstern, avtilou-
Bdvetar xovelc 6TL oL eQapuoYéc Tou xAddou auToU TEEmEL Vo eXTELVOVTOL
xaL mépo and autd. ‘Oviwe Bdn and v apyy) tou 70 1 Oewplo Maryviwy
Betixe eqapuoyy 6Ty avdiuoT Tng cuUTERLYPopdS TwV (AO®Y, 6TV eEEMXTIXN
Oewploa, oty mohitixr) emoTAUn xou N xoL xuplwe OTo OWovVoULXd Xal
otnv xowvwvioroyla. "Eyel yenowwonownfel udhiota eupéwe Yo T UEAETN TV
OALYOTIWOALOX MY OLXOVOULKDY, TOU TOAMTIXOU AYTAYWVLOUOU XAl YEVIXE XATACTY-
oewY OToL uTdpyel M arogdoewy, und TV tpolndbeor 6TL oL amodoels
TOU €VOC ATOUOL ECORTHOVTOL ATO TIC ATOPICELS TWY UTOAOITOV.

X BPhoypagia €youv mpotalel moARd eldn moaryviwy. Xtn ouvéyela Oa
avagepbolue emtypauuatind oTig Baoixéc Sla@opéc UETAEY TWY TO YVWOTOVY
XATNYOPLOY ToLYViwY.
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e Strategic Games vs Extensive Games. 'Eva otpatnyxd nalyvio
elvan €va povtého plag xatdotaong otny onola xdbe nalxtne anogoacilel
Tt Qo xdvel (molo evépyeta Do SahéEel) ula @opd xar dhol ol malxteg
amogaotlovy tautéypova (Snhadf étav o xdfe malxtne AauBdver tny
anbpaot tou Sev ZépetL TL €youy anogacioet ol unéhotnol taixtes). Mdohic
StaréZouv Ghot o talxteg xlvnor, amoTIUdTAL TO ATOTEAEOUN XaL O Xdbe
maixtng umopel va €yel ¥ Oyl ouu@épov vo aAAGEEL TNV ETLAOYT TOU.
Hopbha autd, 1 evdeyduevn alloyh e enthoyhic xdmotou naixtn (ue
6,TL QUTO OUVETAYETOL YO TLC EMLAOYEC TWV UTONOITWY TOLXTOV: T.Y.
dtadoyxd 6ol ot maixtec umopel va GElouv va aArdZouv TV emAOYT
ToUg) deV g eVOlaQépEL GTNY TERINTWOTN TWV GTRATNYIXMOY ToLYVIWY.
Avtifeta To Uovtého Twv extensive games pehetd axpBdc auth TNV
mhav] ahknhouylo yeyovotwy: xd0e malxtng umopel va emhéler Ty
xtvnon Tou oyt ubvo oto Eextvnua Tou Taryviou, ahAd Vo xdvel emAoYES
xal %00’ OAn T Sidpxela eEENETC Toul.

e Noncooperative vs Cooperative Games. H uévrn dapopd 86 elvor
/7 4 ’ ’ V4 4 ’ ’
6L ot ouvepYaTXd Taly vl Oewpolue dTL UTdEyoLY cuVAoTLoUOL UETAEY
TOV TAUXTOVY, dNAadT oL TalXTES SpOUY APEVHC UE OXOTO TO TRPOCWTLXO
6QENOC XA APETEPOU TO OPENOS TNE OUddac oTny omola avixouy. AZilel
va onuelwlel 6TL évag ouvaoTioudc de CUUTERLPERETAL GOV EVag TalXTNC.

e Games with Perfect and Imperfect Information. O naixteg evic
Ty viou unopel va E€pouy Tal TAVTaL 0 €Vag YL TLS XLVAOELS /ETAOYES TOU
dhhou, 1) xat OyL. Xe TOANES TePITT®OoELS Untopel udAloTa oL talxTeg va
unv Zépouv olte Ta Paoxd “YaEaxTNELOTIXE” TV GUUTAUXTOV TOUC,
OTwC Yo Tapddelyua To méco “alilel” yio XATOLOV GUUTALXTY) TOUS €va
ayabo, 1 moleg elvat oL oTpaTNYIXES TOU.

Extég and T mapandve PBaouxég xatnyopleg, €youue xar dudgopeg dhheg
umoxatnyopleg malyviwy, 6TKS Ta CLUUUETELXA Talyvia, ota ool GAoL oL
Taixteg €xouy TiC (dleg oTpaTNYXES Mo Ta {BLa x€pdN avd oTpaTNYIXY, TA ZEero-
sum molyvia, 6mou o xd0e maixtne xepdilel 6Tl ydvouy oL undhoinol, €Tol
©OoTe oL GLVOAMXES anolaféc va elval otabepéc x.a. EEZdAhou, avdloya ue Tic
XATAOTEGELS TTOU LOVTENOTOLEL €var Ty Vio, Adue Yo eEelxTixd talyvia (evo-
lutionary games), oy vidia o€ dixtua (network games), natyvidia cuupbenonc
(congestion games), selfish task allocation games x.a.

Lavtifeto ue ta otpatnyed modyvia Tou Sev éxouv Sudpxeta
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1.2 Nash Equilibrium xot Price of Anarchy

1.2.1 Oploudg Iouwyviou xon Iapadelyupota
Ac¢ mpoywprioouue TGRA 6TOV TUTIXG 0pLOUS EVOS TTOLYViOU.

Definition 1.2.1. ITaiyvio TOAGY ToLxTEOV:
Optlovue we matyvio ToARGY Toxtdy Ty tedda (N, (A;)ien, (Zi)ien) 6m0OU

i
’ 3 7 2 ’ ’ 7z
o N elval éva nenepaouévo® 6Uvoro (1o 6UVORO TV TUXTAOY).

e Ye x4be maixtn i € N avtiotouyolue to Un xevd oivoho A; (olvolo
Stabéoluwy otpatnydy yia xdfe naixtn).

o Y& xdbe nalxtn i € N aviiotoryolue ula oyéon npotiunone 2Z; enl tou
ouvorou A = X enA;. Yyéon npotiunong ent evég ouvohou A elvar uia
Suaduxt], mhipne (dnhadh x&be dVo otoryeia tou A oyetilovtar yetall
T0UC), avaxhaoTixt| xat UetaBatixh oyéon enl Touv A.

Yty mpdln, oL mapandve oyEcelc TpoTluncelc dlvovtal und Tn Uopyh
ouvapthoewy xépdouc (payoff functions) u; ¥ cuvapthoewv xbéotoug ¢; (cost
functions) ot onotec opilovtar wg e€hc: ¢, u; + Ay ... X Ay — Ri,i=1...n.
'Etot x&be naixtne avtiotouyel oe xdfe tuple otpatnyxdyv (ai,...,a,), 10
omolo mAéov Bo amoxalolue mROo@IN (YVACLWY) oTpatnywxdy, uio Twh 1
omola elval To x€pdoc Tou (x60ToS Tou) AV 6oL TaixTES TAlZoUY TS OTEATYIXES
Tou unayopevovtal and To meogih. Ilpogavdg €vag malxtng mpotiud éva
TEoQIA évavtt evic dAhou, av To x€pdoc(x6oT0g) Tou Yo To Tpopik auTé elvar
ueYaAUTeEPO (UtxpdTEROD).

Ac deuxpvicouye tdHpa Tov TE6TO UE Tov onolo matlouv oL TalxTeS: TO
avouevouevo etvat xdfe maixtng vo emiéyel ula otpatnyxr and 1o olvoho
oTpaTNYXGY Tou. O TpdToC auTdC ToLluatog, ov xat Stoatahntixd elvol Eexdba-
e0C, €YEL éval onuUavTIXG TEOPBAnua 6Twe Oo dovue otn cuvéyelo. Acg Solue
OUWS TILO TIELY XATOLY ToPAUdELYUATA TOLY VIWY 2 TOLX TGOV XL THS AUTH TopLoTY-
YOVTAL.

Example 1.2.2. Bach or Stravinsky

Yto mapddelypa autd unobétovue 6TL €youue éva Leuydpt, mou Béhel va Byet
€€w €va Beddu yua va axovoel éva xovoépto xhaoouxhic uovoxhic. O dvdpac
TpoTWd €va xovoepto Tou Bach evd n yuvaixoa mpotiud ula cuugwvia tou
Stravinsky. Kat ot 800 duwg npotiuoly vo uny mdve oto Béaua tng emhoyrig

Tpoc 1o tapdy unobétouue 61t e€etdlouye Tenepaouéva Tatyvia. e avtifetn nepintoon
10 N 3¢ ypewdleton va elvar nenepaouévo.
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ToUug, Tpoxeluévou va elvar uall ue to/tn 6Uvtpopsd Touc.
To mapandve cevdplo 1o ontixonotovue cuvhing Ue T Yprion Tou Topaxdte
mivaxa: Ou dVo naixtee (0 dvdpac oL 1 yuvaixa e80) emAéyYouy o UeV €vag

B S
B[21]00
S100(1,2

Table 1.1: Bach or Stravinsky

™ Ypauun tou mivaxa, o 8¢ dhhoc TN oTHAN.  Avdhoya Ue To cuVdUAOUS
Yeauung - othing €yovue to anotéleoua. EdG Ta duvatd anoteréouata
(tpogih otpatnyxdv) elvon 4 xau T %€pdn (ac To QaviaoToUUe oo UETPO
e euyoplotnong tou xdfe maixtn) mou avtioToLyoUy otov xabéva gatvovtol
ota xehd. Ipdro elvar to xépdoc tou maixtn ypauur (4vdpac) xat deltepo
10 %€pdoc tou maixtn oThANN (yYuvaixa). Hopatneote Tt 670 Matyvio autd to
oUVOAO OTRATNYWXGV Elval To Blo yia Toug 2 maixTec.

H nopoamdvew ontixomoinon elvor Todd cuvniiouévn yia tny Teplntwon Tov
TULY VWY 2 Tty %ol UTopel Vo aVaRapaoTAoEL Xal THY TeplnTwor 6Tou o
xdfe malxtng €yel mapandve and 2 GTEATNYLXECS.

Example 1.2.3. Y10 Seltepo mapddetyua, Yvwotd w¢ matching pennies, o
x40 maixtng €yel dVo otpatnywée xou dtadéyel pio. Av xou ov 8o malxteg
emAéZouy TNV Bt otpatnyn) xepdilel o malxtng ypauur, adluidg xepdilel
o nalxtng othiAn.  To mayvidt autd aviotolyel oty xatdotaon émou ol
dVo maixteg elvar évac embetinde (malxtng oThAN) xaL EVac TEPUATOPUAUXAS
(mabxtne ypouun) xat o entfetinde etoludletal va exteréoet éva mévaltu. Ot
emAoYEC ToU €youv oL 2 TalxTeg elvon xowvég: 8e€ld 1) aploTepd, ToU onuUalveL
eXTELEOT) TOU TéVOATU 011 Selid/apLotepy| theupd ot extivaln delld/aplotepd
avtioTolya.

O avtiotolyog nivaxag Tdpa elval:

R | L
RI1-1[-11
L1111

Table 1.2: Mathcing pennies

To maiyvio autd elvar zero-sum, dnhadr 6t xepdilel o évag maixtng To
YaveL o dhhoc.
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Example 1.2.4. To tedeutalo (xat mo didonuo iowg) napdderyua elvar to
Abnuuoa tov Puiaxiouévey (Prisoners’ Dilemma) to onolo héel to e&hc:
€youue 2 UmomToug Yio Ul XAOTH ol TOUC avVaXplVOUUE OTO AGTUVOULXO
iU, ot YoeLoTd xeAd. Ou actuvoulxol Toug dlvouv 2 emhoyéc: elte va
uthioouv 1 va owwnoouv. Ernlong Aéve otov xobéva 6t ov autdc ULhrioet
xaL 0 ouvetalpdc Tou owwrroel Ha Tov agrcouv ekebepo xou Tov dAho Oa
Tov Bdhouv gulaxh yio 4 yedvia. Av de pkrfioel xavévag toTe Aoyw EMheldng
otolyelwy Ba toug Bdhouy 1 ypdvo gulaxr tov xabéva evd av uLhioouy xat
oL 2 Ba Toug Bdhouv 3 yedvia Qulaxy| Tov xabéva.

O avtiotolyog mivaxag elval:

Confess | Shh...
Confess 3,3 0,4
Shh... 4,0 1,1

Table 1.3: Prisoners’ Dilemma

[apatnenote 6Tl 6T oLYXEXPLUEVT TeplTTWAT oL aptBuot de Selyvouv xépdog
NN Lolopdolet

1.2.2 Ioopepornieg oe Ilalyvia

Ac¢ mpoywprioovue tdpa vo oploouue ula amodexTy| €vvola LoopPoTlac Yia Ta
matyvia.  AwoOnmixd nepuévouue 6t éva Tpoglh otpatnYXGY, dnhadh éva
cVvolo and emhoyég, ula v xdbe malxtn, Oo elvar Leopponio av dlot elva
euyaplotnuévol. Ag¢ unobécouue 6Tl Tpdyuatt dlol elval euyapLoTnUéVoL UE
Y emAoyh Toug xou 6Tl de B Ty dAhalay, 6,TL xat av Exavay oL UTOAOLTOL
ovunaixteg Toug. Auth elvan 1 évvolo tou Dominant Equilibrium mou optletat
w¢ e&he.

Definition 1.2.5. Opiloupe wc Dominant Equilibrium (DE) éva npogik

oTEATNYXOV (a1, . . ., ay) TETOLO GOTE Yoo x8Be malxTn i
/ /
cilay,...,ap) <c¢lay,...,a,)
v xdfe dGAho mpopik otpatnyxdy (df, ..., a)).

[pogavie o DE elvar ula modd woyuer (xat emtBuunth) évvola toopporiog
XL AVTLOTOLYEL OE €Val OALXG ENAYLOTO TwV CUVARTHOEWY x6aTouC. To Sucdpe-
oto elvan 6TL Ta TtepLocdtepa Tatyvia 8¢ drabfétouy DE . "Etor avayxalbuacte
va ouuPiBactolye ue plo mo achevi| évvola, autrh tou Nash Equilibrium, rmou
oplotnxe and tov John Nash to 1951 oo [Nas5l].

3elvor edxolo vo del xavelc 6Tt xavéva and Ta mpoavapephévia Talyvia dev éxer DE
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Definition 1.2.6. Opilouue wc yvioio (pure) Nash Equilbrium (PNE) éva
TEOQIA oTpaTNYXOY (a1, . . ., ay) TETOLO GoTE Yo x40e maixty i:

ci(ar, ... ay) < cilay,...,a;,...a,)
v xdfe G otpatnyy ;.

Me dhha Adyia, To NE elvan pla xatdotaon oand tnyv onolo xavele malxtng
dev €yel ouuépov va @UYeL, Ue dedouévo 6Tl xai oL umblownol malxteg Oa
dlatnenoouy TIg UTdpyovoes oTpatnyxés Toug. Eivar evxolo va xataddfBel
xavelc 6L To NE avtiotolyel oe Tomxd eAdyloto 1wV ouvapTRoE®Y XOGTOUC
xa anotehel ulor TOAY hoywry évvola Loopporiac. AANE To To onuavTixd Yl
ulo toopporta elvar va e€aogaiicouue Ty UnapZn e oe xdfe naiyvio (xdtu
10 omolo dev xatagépaue otny tepintwon tou DE). Av npocéZouue Oa dolue
6t oto Hapdderyua 1.2.2 ta mpogik (B,S) xau (S,B) elvar xau 1o 2 PNE, evéd
avtiotorya oto Ioapddetypa 1.2.4 to npogih (Confess,Confess) elvar PNE.
Avtifeta o TTapdderyua 1.2.3 de Sdiabéter PNE. Auté elvar anoyonreutixd.
Avotuyde duwe elval Yeyovog 6Tt undpyouy malyvia tou de Stafétouy PNE.
[Tpoxewévou va e€acparicovue xabolxr Unapln LoopEoTlag, TEETEL VoL XAVOU-
ue éva axduo friva: vo emitpédouue otoug Taixteg vo tatlouv ue mihavotnteg.
Auté mpaxtixd onualvel 6TL o xdbe maixtng dev emAéyel mAov ula oTpaTNYLXY
am6d TO GUYOLO TWY OTEATNYIXGV Tou, ahAd anodidel oe dheg ulo mbavotnta
oo [0, 1].

"Etou apyxd opllovue to olvoio

AA) ={z €0, 1M 2 =1}

2

. To z elvar ula xatavour mbavétnTag tédvew ota otovyela xdbe ouvélou A; xou
t0 A(A;) elvan 10 0vvoho Ghwy TV duvatdy Tétolwy xatavoudy. Opllouue
oTN GUVEYELY TO PEWXTO TPoglh GTpatnYxdv p = (p',...,p"), 6mou Vi €
N,p; € A(A;). Oewpdvtac 6Tl €youue oploel T ouVaPTHoELS XE€pdoug Yo
%40e malxtn optlouue we ¢, (p) To avauevéuevo (expected) xboToC Yo TOV
malxTn 7, av TeEAd emAéCel TN oTpaTN YK o xol e BESOUEVO OTL OL uTHAOLTOL
raixteg mallouy ue Bdon to uewtd mpogih p. 'Etol napatnpolue dtL tAéoyv
oL maixteg dev anogacilouve ue Bdon 1o TEOXUTTOV X60TOC Ao TS ENLAOYES
TV UTOAOITOY T T®OY, ahhd ue BAon To EXTUOUEVO XOGTOG.

Definition 1.2.7. Q¢ (uewxté) Nash equilibrium opilouue évo pewxtd mpoih
OTEATNYXGY P TETOLO OOTE:

Vi€ N,Va, 8 € A;, pi, > 0= c\(p) < cs(p)

omou o exBétng dnhdvel Tov TalxTn oL 0 Selxtng TN oTEATNYLXY.
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Me dhha Aoy, oto (uewtd) NE o xdfe maixtne nailer pe un undevixd
mhavéTnTa, UOVO TIC OTRATNYIXES AUTEC TOU EAAYLOTOTOLOUY TO XOGTOS TOU.
Me ) yevixevon auty), o Nash xoatdgepe va anodelel To e€nc:

Theorem 1.2.8. Oedpnua Nash: Ye xdbe nenepacuévo nalyvio noAidv
Tty undpyet Eva UeXTo mpoplA otpatnyxy to omolo elvar Nash equilib-
Tium.

[apatneriote tdhpa, 6T, Ue Bdon Tov napandve optoud, to NE tou Iapa-
delyuarog 1.2.3 elvar to pewtd npopih ((1/2,1/2),(1/2,1/2)). To rapandve
Oedpnua elvar ToA) onuoavtixd yiati elvan to npdto fedpnua mou eCaopaiilet
Vv Unapén xdnolou eldoug woopporiag oe xdfe matyvio. Ilapdlo autd elva
évo Un xataoxevaotixd fedpnua. Autd onuaivel 61l 1 anddellr tou de uog
UTAYOPEVEL XATOLOY TPOTO YLl VoL xataoxevdoovue éva NE. Yuyxexpluéva o
Nash yenowwonoinoe otny anddellr| Tou teyvixéc and fix-point theorems. 'Eva
tétolo Bedpnua elvat to e&rc:

Theorem 1.2.9. Brouwer’s Fixpoint Theorem: Eotw f: S — S ula
ouveyfic ouvdptnon and éva un xevd, ouurayéct xar xuptd olvoro S C R"
otoy eautd tov. Tote n [ éyel oralepd onuelo, Sniady vndpyet x € S tétoto
dote T = f(T).

H wéa tng anddelng tou Oewpruatog 1.2.8 elvar, dofévtog evie mavyviou,
Vo XoTaoxeLdoeL xavels uto cuvdpTnomn 1 omola va ixavornotlel Tig tpottobéaelg
Tou Oewpfiuatoc 1.2.9° xou vo emdéyeton fix-point. H ouvdptnon meénel vo
elvol €10l xataoxevaouév, Gote To fix-point authc va avtiotolyel oe NE tou
matyviou. H xataoxeur tne ocuvdptnong uditota dev elval Waltepa SUoxoAN.
'Etou eCaogaiilouue tnv Unapén tou NE, yoplc duwng va éyovue mhnpogopla
YL TNV XATAOXEVT| TOV.
Hpogavde éva and ta mpdta Oéuata Tou ATAGYOANCE TNV XOLVOTNTO TNQ
Oswentixrc IIAnpogopuic elval autd tou uroloyiouol evog NE. Mdiwota
70N and to 1964 undpyer o ahyéptbuoc Lemke-Howson (évac simplex-like
alybptfuoc) v elpeorn evoc NE oe bimatrix games. Do mohhd ypdvia
exaldtay 6Tl 0T YeWdTERT TEpinTwon 0 ahybplbuog autdg amaitel exBeTind
apthud Prudtwy, x4t duwe Tou udhic Tpdopata anodelyOnxe 6TL Loylel, ave-
Edptnta and to onuelo exxlynong, axdua xau yio oty vidta vixne-fittog [SvS04].
Xowplc va urolue o€ TOMEC AeNTOUEPELEC OYETXA UE TOV UTohoYLoud Tou NE
o€ Tolyvia TOAGY ToxTdY, Ha topoucidoouue v TapddeLryud Tou dlaco@nvi-
(el T0 OXENTXS TOW ond TOV UTOAOYLOUO:

Example 1.2.10. Ocwpolue ntalyvio 610 onolo avtioTtolyel o topaxdtw mtiv-
axog.  Koatapyde e€etdlovue xatd méoov undpyer PNE. Ilapatneolue 6t

13nhadh xhewotd non ppayUévo
Sapyxd o Nash ypnotuorotnoe o fix-point theorem tou Kakutani
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by | bo
a1 | 3,0 1,1
as | 1,3 | 2,0

Table 1.4: Players’ payoffs: an example

undpyouv 4 Sduvatol cuvduaouol and pure otpatnyixés, dnAadh 4 urnodrpla
PNE, ta e&fc: (a1, 1), (a1, b2), (az, b1), (az, b2). Enlone napatnpolue tic e€hc
oyéoelg Petaly twv payoffs twv nupamdvew yviolwy Tpogih otpaTnyXdy:

UB(ab bl) < UB(UH, 52)

uA(al,b2) < uA(GQ,bQ)
ug(az, by) < ug(asz,br)
UA(az,bl) < UA(01,b1)

OTOU 0L GUVIPTAHCELS U, Up 0pLLOVTAL GTOUSC TUPAXATL TLVOXES.

[apatneotue dnhadr 6Tt yia xdfe Suvatd Teolh oTEATNYIXOY TOUALYLOTOV
évac malxtng €yel ouugépov vo alldZel T otpatnyxr tou. To anotélecua
elva évag xUxhog oto Ypdpo ue x6uPoug Ta BUVATE TEOGIA GTEATNYLXOV
xal axuég T uetofdoeig petald mpoglk, 6mou uévo évag maixtng ahhdlel
otpatny. O xUxhog autdg elvat evdextixdg tne un Unoping PNE.

Hpoywedue tdpa oTov UToLoYLoUs eViS (Uewxtol) NE. 'Eotw p n mbavétn-
To Ue TNy omola 0 maixtne A eméyel T oTpatnYXh a1 (TedTN Ypouun) xo
q n mbavétnta pe v onola o Talxtne B emhéyel ) otpatnyx] by (mpdtn
othin). Ou mbavotntee yio ta ag xou by elvar 1 —p xaw 1 —¢q avtiotoya. Tote
€Y OUUE:
Av o A nai&et a 1o extuduevo xépdog tou elvaw: 3-g+1-(1—¢) =2-¢+ 1.
Av 0 A naiZet as to exTuduevo xépdoc tou elvaw: 1-¢+2- (1 —¢q) = —q+2.
Av o B naiel by to exnuduevo xépdog tou elvaw: 0-p+3-(1—p) = —3-p+3.
Av o B raiZet by 10 extiuduevo x€pdog tov elvat: 1-p+0- (1 —p) =p.

Kdfe naixtng anodider tic mbavotnreg p xou ¢ ue Pdon ta exTiudUeEva
x€pdn. 'Etol €youue Tic TapaxdTe TUIES Yo To p XAl ¢ ovd TEPINTWOoN Xt avd
pEelbZan

[ tov A, mpoxewévou va uny emfuuel va addd&el otpatnyxn npénel:

Av2.-g+1>—qg+2<q¢>1/3t6tep=1 (1)
Av2.g+1<—q+2&q¢<1/3t6tep=0. (2)
Av2.g+1=—q+2<q¢=1/3t6te amhd 0 < p < 1. (3)
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Avtiotouya v tov B:

Av =3 p+3>pep<3/dtéieqg=1 (4)
Av =3 -p+3<p&p>3/416te q¢=0. (5)
Av -3 -p+3=p&p=3/4t6teanhd 0 < ¢ < L. (6)

[Tapatneolue 6Tt av emAEE0VUE xETOLW pure GTEATNYLXT| YLoL XATOLOY ond
Toug dUo Taixtec odNyovuaoTE o dtomo, UEow Ty ayéoewy (1), (2), (4) xou
(5). T mopddetypa éotw 6t 0 A mailler a; ue p = 1. Téte Moyw e (5) o
B npénet va nailet by, dnhadi éxoupe ¢ = 0. 'Ouwc té1e Moyw e (2), o A
mpénel va €xel p = 0, dtono. Me napduola cuALOYLOTIXT anoxAelovToL OAEC OL
YVHOLEC OTRUTNYLXES.

'Etov xatahfyouue otic oyéoeic (3) xav (6). Ilpdyuatn yio ¢ = 1/3 xau
p = 3/4, ot (3) xou (6) wavorololvTar aUPITEPES XAl TO AVTLOTOLYO UEXTO
Tpo@ih otpatnyxdy elvar NE.

H nopandve uéhodoc unopel va cuotnuatonownbel, dote vo e&dyouue ula
oelpd and e€lodoelc Ut Uop@r) complementarities 6nwg Aéyovta, Tic onoleg
uetd Oa mpoomafrfcovue vo emhdoouue. Ta Ty enihvon tov eliodoeny
unopolue eite va Soulédouue eavtAnTixd, Tdvw 6To 6UVORO OAWY TWV SUVATOY
supports tou nowyviou®, ¥ va ypnotponotficouue Tov ahydpiuo Lemke-Howson.
Ye %d0e meplntwon duwe unopel va ypetaotolue exfetixd aplhud Brudtwy, wg
TPOS TOV 0pliUd TOY TUXTOY XAl TOV OTEATYIXOY.

Egboov xabdec gaivetar, yio to tpdBinua tne xataoxeuiic/ebpeonc NE dev
undpyet anodotixde (rohuwvuuxdc) akydetbuog, Ou Béhaue vo detZouue 6L To
TeOBANUa elvat Gvtwe dvoxoho (Wavixd N'P-complete). To npdBrnua duoc ue
v eVpeon NE, elvon dti E€pouue dtL umdpyel -dpa dev unopel va aroderybel 6Tt
elvaw N'P-complete, utag xou o mpbBAnua andgpoorc divel andvinon “undpyet”
TETPLUEVA, Y WPl OUWS 1) AOBELET VoL TAPEYEL £VOY ahYOpLOUO XU TOOXEUNC TOU.
YuvdudlovTag Ta Tapandve unopolue va tovue 6Tl To TeoBAnU eVpECTS EVOS
NE éyev “inefficient proof of existence”, x4t mou 1o tonofetel oty xAdon
PPAD [Pap0l],[Pap94]. Ioapbdha autd uéypt mpboputa dev Aoy Yvwotd
xatd Téo0oV To TEOPANU autd NTay TAHEES Yo TNV xhdorn auth.  Telwd
otc dnuootevoerc [DGPO5] xar [DP05] anodelyfnxe 6t to mpdPinua elvor
PPAD-complete axduo xon yior tabyvia 4 xaw 3 mouxtdy avtiotouya, xot Wohg
népot anodeiyfnxe oto [CDO6] 61t to Blo toylerl xat ylo TV TepinTLoN TWV
2 mouxtdv. To yeyovée autd, emPBefordver ) dwalobnon mou elyaue, 6Tl TO
6PN evpeone NE elvar udhhov’ dvoxolo.

brepLoobtepec hemtouépeteg yia T supports oto 20 Keodharo tne Simhouatinhc
"1 axpiPic oyéong tng PPAD e v NP dev elvon yvwoth
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Y10 onueto autéd alilel va onuetwdel 6t xhdon PPAD elvar utosivoro
e x\&one TFNP,  onola tepthapBével dha ta tpoPifuata evpeone (“NP-
search problems”) yio ta onolo duwe Zépouue 6Tl undpyel Ador. Mia dAkn
vroxhdon tne T FNP elvon n PLS, tny onola Ha Eavadodue oto Kegdharo 3.

‘Eva dAo onuovtixd epdtnuo Tou TeoxUnTel GUECA AT TNV TULATAVE
oulAtnom xou éyel enlong amoteléoel onuavtixé medlo epeuvdy, elvar autd
e Unapéng mpooeyyloTxdy ahyoplBuwy yia tny edpeon evoc NE. I'evixd o
onuavTixd elvar 6Tl o¢ THpa dev UTdEYEL XUVEVA TOAUGYUULXOU YEOVOU Oy U
tpocéyytone yia e-ApproxNE? yia x80e (otabepd) €. Tapdha autd yia xébe €,
amodevieton oto [LMMO3] 67t undpyouy e-ApproxNE ue O(log(m + n)/e?)
mfavéc oTpatnyXéc avd malxtn, x4t To onolo unovvoel utoexfeTind ypdvo
vrnoloytopol. Eniong oto [CDT06] arodetxvietar 6t extoc av PPAD C P,
dev undpyet ahybpliuoc evpeonc e-ApproxNE ue tohunhoxétnta poly(n,1/e)
v xdbe e = n "W 10 omolo onuaiver 611 pdhlov dev undpyer FPTAS. TToks

TeboQATA anoTEAEOUATA TAVW oTo Oéun Twv mpoceyyloTxdy NE undpyouy
ota [KPS06] xar [DMPO6].

Télog va tovicouue 6tL, Tapdro mou To TEOBANUA elpeong evog NE dev
elvar N'P-complete, 1o mpéBhnua andgoaornc e Unoping TEPLOGOTERPWY TOU
evoc NE oe éva natyvio elvar: [CS03]. To (dio toylel yio to npbBinua ebpeong
6wy twv NE evic naryviou (ta omola uropel va elvar exfetind tolhd), xafog
xaL yua To mpéfBinua edpeonc tou NE ue 1o uéyioto cuvohxd payoff.

Kietvovtag to xepdhato yia ta equilibria va mapatnericovue 6t xdbe DE
elvar NE, oy del dnhady) ula oyéon eyxheiouol avdueoa ota 2 eldr) Loopponiag.
Mia o yevixy| évvola toopporiac (mou neptéyel ta NE) elvar auth tou Corre-
lated Equilibrium.

1.2.3 To Price of Anarchy

Ac Buunfoiue tdpa to Hapdderyuo 1.2.4. Elyoue xatarrlel 6Tt 10 ué6vo NE
yLo to mapddetyua autd elval to (Confess,Confess). To doymuo edd elvar 6t ou
ToxTeES UEVOLY EVYapLoTHUEVOL (LoOPPOTIOUY) YLa EVa TPOIA GTEATNYLXMOY TOU
Toug avayxdlel va mhve 3 ypdvia guiaxt, eved a urnopolcav va yAThoouy
ue 1 uévo yedvo. To mapdderyua autd xatadewcviel ulo and Tig UeYAAES
aduVOULES TNC AUTOVOUNS XaL EYWLOTIXNAS CUUTERLPORAS OE TETOLL GUOTAUNTAL:
otL Onhadt|, umopel to TeEAXd amotéhecua vo anéyel and To Péhtioto. To

83nhadt) evée “equilibrium” émou xavévag taixtng Sev umopel va xepdloet Tapandve and
g aA&lovtag oTpaTnyLXY
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tiunua g avapylac (price of anarchy - PoA) uog Sivet axpiBdc autd to Aoyo
uetal tou yetpdtepou duvatol anoterécuatoc (NE) tou mowyvidiod xat tou
BélTioTtou, To omolo duws dev avtiotolyel xat’ avdyxn oe NE. To gpdtnua
Tou xalovuaoTte va araviioouue elval av 1o PoA umopel va gpayfel yia Ta
oLYXEXPLIEVA Talyvia Tou eZeTdlouyE.

A¢ mpoywpricouue dune oTov TUTXS optoud. Apyixd Bewpolue uio avtixel-
uevixt| ouvdptnon C : Ay x... x A, — R 1 onola aviiotouyel oe xdbe mpogin
oTRATNYXGY, dnAadn oe xdfe urtodripio anotéreoua Tou oLy viou évay aptbud,
TOU OVTLOTOLYEL 6TO XOGTOC TOU ANOTEAECUATOS Yol TNV xowvovia. 'Etol fa
AéUE 6TL M oUVAETNON AUTH avanaploTd To xowvwvixd xdotog (social cost - SC)
Tou Tatyviou. Xuvniiouévec emthoyéc Yo T C elvat oL cUVOETHCELC Max; ¢;
xoL Y. ;. Puod éyouv xatd xawpolc tpotabel xat dhhec cuvapThoeL.
Auté nou Béhouue euelc TdHpa elval Vo ouYXELlVOUUE TO XOGTOC TOU YELPOTEPOU
duvatol NE, dnhad tou NE ue to yeyalitepo duvatd xdéotog, ue 10 x66T0¢
e Béhtiotne hone (éotw OPT), n onola, va Eavatovicouue, dev elvan avdyxn
vo avtiotouyet oe NE?. Exondc tdpa elvan va Bpodue o Moyo twv dYo napandve
ueyeldv, ondte opllouye:

Definition 1.2.11. Q¢ Price of Anarchy evéc natyviou opilouue to Adyo:

PoA = max SC(P)
peNE OPT
Y10 onuelo autd mpémel va xdvouue ula axdua enelrynon. Iopatnpodue
61t oto PoA unohoyilouue to SC (mou elvat xdmolo avtixeluevixr ouvdptnon)
yia xdmota tpogih otpatnyxdy mou elvar NE. Tu yivetal duwe 6tay ol maixteg
natlouy e pewtéc otpatnyxéc (6nwe ouuPaivel ouvifwe); H ntpogavic and-
vInon elval 6Tl YEVXEUOUUE T1) GUVAQRTNGY XOLVWVIXOU XOOTOUG, HOOTE TAEOV
VoL OIS ETLOTEEQEL TO eXTLUOUEVO (estimated) xowvwvixd xbotoc, ue Bdon Tic
mhavoTnTeg TV dlapdpwy TaxXTOY Yia xdbe oTpaTnYLX.
Me 10 PoA fa aoyolnfolue extetouéva ota endueva xepdiota. ' éva tpdto
rapddetyua dette to 1.3.1.
To pévo mouv alilel va onuewbel elvar 6T, Tépa and Tov TaEATAVL OpLoUO,
€y ouv Tpotabel xaL dAlot tétotoL AoyoL, 6twc to PPoA (pure price of anarchy)
Tou utohoyiletal Tdve 6to olvolo twv PNE (Bh. Kewdhato 3), xabdc xat to
price of stability, ©§ optimistic price of anarchy, To onolo Oewpel To Adyo Tou
xahUtepou NE npog tn Béhtiotn Mon xat Bonid to oyedlacty| Tou cuatiuaTtoc,
ULag oL TEPLYPAPEL TIC EAAYLOTES BUVATEC AMWAELES OE OYEOY UE TO BEATLOTO
6tav ot taixteg elvar oe NE (ue dAha Moyia oe noto NE Géhovue va “Bdhouue”

90uté mpaxTind orualvel Tt av aghRoouue Toug Talxteg va Tatfouv ubvol Toug, ywelc

xdmoto xevtpx| apyr, moté dev mpdxettar vo xotaAfEouv a1 BéhtioTtn Adon
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TOUg T TES).

To PoA opiotnxe oto [KP99], t0o onolo uehetdue oto 20 Kegdhato, xat’
avaloylo Tou approximation ratio (otoug tpoceyyloTixols alyoplBuoug) xou
Tou competitive ratio (otouc online adyopifuoug).

1.3 Mepwed napddola tng Oewplog Iaryviwy

Y10 pépog autd o mapouctdoouue 3 Tapadelyuato TOU 68 TEATY AVAYVWOT)
unopel vo pag Ea@vdoouy xal anoTeEA0UY XohG EQUATARLO YLOL TNV EQEUVITLXY
doukeld Tou TaEoVOLALETAL OTA ETOUEVA XEQPAANLY TNS SLTAWUATIXC.

Example 1.3.1. Selfish Task Allocation

Ac fBewprioouue 6L éyovue 4 epyalduevouc/naixtec Tou o xdbe évac Hélel
va Teélel éva mpdypauua tpocouolwone oe évay urnoloyloth. Ot didpxeleg
TWV TPOYPAUUATOY Tpocouoiwong elval 1, 2, 3 xat 4 Aentd avtioTtolya oL To
Yeageto diabétel 2 unoloyiotég, ou omolol egapudélouy round-robin ypovodpo-
uoréynon ot diepyaoiec Tou Teéyouv. Autd mpaxTixd onuaivel 6TL Tapayw-
coUv ex TepLtpomhc Alyo ypdvo oe dAeg Tic Slepyaoieg Tou elval QopTOUEVES
og auUTOUC, £T0L MOTE, TEAXA, OAEC OL SLEPYAOLES VO TEAELDYOUY TAUTOYPOVA.
Or epyalduevol anogactilouy udvol Toug Ge ToLoV UTOAOYLOTY Toug Bo Tpé€ouy
TO TEOYPAUUE TOUC, UE UOVO XELTARLO VO TEAELOGOUY OGO TO duVATH vwpeltepa.

Y10 yfua 1.1 gatvovral 800 SUVATES XATAVOUES TWY EPYACLOY GE UTONOYL-
otéc. Ilapatnpodue 6Tl xaL 6T dVo meptntdoels 6Aol oL epyalduevol elval
ELYOPLOTNUEVOL %ol XaVelg dev medxelTol va aAAdEel utoloyloTh, dnhady| o
emhoyéc Toug avtiotolyolv o NE. Xty apiotepr xatavour, xdbe maixtng
TEETEL VAL TEPLUEVEL D AETTA.

A¢ eotidoouue Tdpa ot dedid xatavour Ty epyaoldy oe unyavés. Ilopa-
Teolue OTL xaL oe auTh TNV TEpinTwor xavévag maixtng 8ev €yel xdmolo
ouupépoy Vo alEZel urohoyiloth (axdua xar o malxtng 2, agol oe xdfe

1 2 3 4 1 2 3 4

O O

Figure 1.1: 2 NE o¢e Selfish Task Allocation instance
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nepintwon Oa mepyéver 6 Aentd). 'Etou xou auth ) xatdotaon aviotouyel
oe NE, 6nov duwe xdnotor naixtec nepiuévouy 6 Aentd (Bewpd dnhadh cav
XOLVWYIXG x60TOC TO max).

Me ddha Aoy, oto mapddetypo autd BAérnouue OTL €va malyvio umopel va
emdéyetan 2 NE Stagpopetixtic notdtnrac to xabéva (Sapopetind PoA). Buyxe-
XELWEVAL, TapaTNE®OVTaC OTL 1 BEATIoTN avdBeon e avtiotolyel oto TtpdhTo NE,
unopoVue va etahnbedoouue 6t o 2 NE éyouv PoA 1 xau 6/5 aviiotouya.

clx) =1

-

of o
. ~

cix)=x

Figure 1.2: Pigou’s Example

Example 1.3.2. Pigou’s Network

Ac¢ Bewprioouue topa éva dixtuo dtwe autd tou Lyhuoatog 1.2. Ado axuég
oLYBEouY Toug xoUPoug s xat t. Ot xéuPol autol unopel vo avtiotolyoly 6Toug
TEPUATIXOUC XOUfoug xdmolwou dixtlou, oTo onolo Oéhouue va ueTagépouue
xdmolo tocéTNTa Thnpogoptag. Kdbe ulo and tig axuée €yel uia ouvdptnon
x60toug c(-), 1 omola meptypdper v xabuotépnon v Touc YEROTEC TOU
YENOWOTOLOUY TNV axut| auTy| Ylo vo hetagpépouy Ta dedouéva toug. H mdvew
axyur| éyel otabepr) xabuotépnon c(x) = 1, dnhady dev ennpedleton and to
popTlo TNG, EVE 1) XxdTw axur éxel xabuotépnon c(x) = x, dnhadh n xabuotépn-
ol e auZdvetor Ue to poptio g (6nwe o nepluévaue). Iopatneriote 6ty
%xdTw axun elvat To yeryoen and TNy Tévew av xoL U6vo av 11 SLappéel ALy OTeQO
ané ulo yovado dedouévwy.

Ac unoBéocouue howmdy 6Tl €youue 1 uovdda Sedouévwy mpog Uetapopd
xoL OTL 1) Lovada auth elval cuveyng, dNAady| UTopPOUUE Vo TN OTAGOUUE OTWS
emtBuuovue. H 13éa elvar 6t €youue éva ueydio aplud yenotdy tou 6iol pall
Srayetpllovtal Tn oLYXEXPUIEVT LOVAdA SESOUEVLY, EAEYYOVTAC O Xabévag éva
uxpd (auehntéo) xouudtt authc. Av o xdbe ypriotne dtahéyel aveldptnra éva
UOVOTATL Yo vou OpOUOAOYAGEL TN pOY| TOU, TEPLUEVOUUE OTL OAOL OL YPNOTES
(ométe xav 6hn 1 xivnon) o SiahéZouv TRV xdTw axur, Tou dev elvol ToTé
YeeoTERN amd TNV AV Yl pory uéyet 1. Avtibeta, umopel vo elvor xat
xahUtepn), av xdmolol ypnoteg elval apxetd agehelc Bote vo emAéZouy TNy
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Tavew axutr. "'Etot, fewpdvtag étu ou maixteg natlovy eywiotixd, nepluévouue
oA 1 pot) va Spoporoynlel ue ula povdda xabuotépnonc.
Ac unobéoouue Tdpa 6TL undpyel ula xevTELxt apy Y| Tou uropel va pubuioet Ty
xivnon. Av n apyn auth avayxdoel Toug UooUg TAXTES VA YENOULOTOLNGOLY
NV TaVw axur, TOTE 1 UeY pon Tou Spouoloyeltal and Tdvw, el Tl xafuoté-
onon 1 (dnhadh to dlo pe mpv) evd n pot| mou dpuoloyeltan and xdtw,
éxer tHpa xabuotépnon 1/2. 'Etor 1o péoo xbéotoc thpa yivetaw 3/4 and
1 mou Yrav mpwv. Iapatneriote BéPata, 6TL oL malxteg Tng Mdvw axurc dev
elval euyaplotnuévol xar Béhouv va xatéBouv oty xdtw axur, dnhadh 7
xatdotaon outh dev aviotolyel oe NE. To napddetyuo autéd emPBelaidvet
Eavd 6TL 1) EYWLOTLXY) CUUTERLPOPA 0dNYel 6 amoTeAEéoUNT TOU UTOAElTOVTAL
Tou Pértiotou. Ev mpoxewwéve to PoA anodewvieton 6t elvar 4/3 (wag xou
t0 napandve NE elvar xou 1o povadixd yia to matyvio autd).

To mapandvew @avéuevo unopel va o&uvbel, av emitpédovue un yeouuxéc

cx)=1

' \/Q
N /k_-
\\RH .z //
(‘(; - x_ P

Figure 1.3: A nonlinear variant of Pigou’s Example

ouvapThoelc xafuoTtépnonc. Luyxexpluéva utobéote dTL €youue To Lyrua 1.3
6mou N xdTw axut éxel ouvdptnon xabuotépnone ¢(x) = 2P Y p yeydro. Kot’
avahoyia ue tnv mponyoluevy teplntwor, oto NE 6lol ol maixteg emAéyouy
™Y ®4Tw axur ue ouvokixd xdotog 1. Aviifeta, oto BéhtioTo, dpouoroyolue
evar Uxpd uepog € > 0 tng pofg amd TNy TIVe axuY|, UE ATOTEAECUN TO UECO
x6070¢ Vo téoel 010 € + (1 — €)? + 1 10 onolo telvel 610 0 xabdg € — 0 o
p — oo. 'Etol tdpa to PoA telvel xau autd oo dnelpo, o udhiota 6Twe To
p/Inp

Y10 30 Kegdhato Oo Sovue 611 tar dixtuo Tou mopadelyuatog, amoteholyv
%xotd xdnolov Teomo xabohxd “xaxd” moapadelypota yia to malyvio outo,
UG TNV €VVoLaL OTL YLo XG0E ETULTRENOUEVO GUVORO GUVAPTACE®Y XOGTOUS, TO
xeLp6tepo PoA mpoxdntel and éva 3ixtuo autol Tou timou. Oa dolue dniadt,
TOS unopolue va yenowonolfjoouue o Pigou’s Networks yio va @pdZouue
anoteheouatixd to PoA.

Example 1.3.3. Braess’s Paradox
Yuveyllouue 070 (8L0 Tvetua Ue To TpoNYoUUEVO Tapddetyua, dniadn Bewpolue
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(a) Initial network (b) Augmented network

Figure 1.4: Braess’s Paradox

ouveyt| pony 1 wovddac. Oewpelote Thpa T0 dixTuo 4 XOUBwY Tou Xyfuatog
1.4(a). Yndpyouv 2 Zéva povorndtua and 10 s oto t, 10 xdfe éva ue xbéoTOC
1+ 2z, 6mou x elvar T0 goptio g axurc. Enedn to ddo uovomdtio elvar
Tavouolotuna, 1 xivnor Oa uopactel ot uéon xaw xdbe povordT Bo ueTapépet
1/2 potj. 'Etot otny nepintwon auti, n uéon xabuotépnon Ha elvar 3/2.
Yrobéote tdhpa, 6tL, oe ula mpoondfelo vo Bedtiddoouvue TNy anddoon Tou
dutou, mpoohétouue ula Told ypryoen axuy (ue c(z) = 0) uetald Ty
x6uPBwy v xow w (EyAua 1.4(b)). Ildc Ha avtdpdoouy ot lotelelc yproTeg;
[apatneodue 6tL 1 mponyoluevn dpouohdynor tavel va anotelel Théov NE.
‘Ovieg 10 Uovondtl s — v — w — t dev elval TOTE YelpdTEPO and Ta 2 apyLxd
uovordTia, Yo Uéypl 1 wovada potic xau elvat xahitepo av xdrolog yenotng
emhéZel (yald) xdmoto and ta apyxd uovondtia. Me to oxenuxd autd,
TepLuévouue dhoug Toug Wiotelelc yprotes vo emhéEouy To VEO UOVOTATL, UE
anotéleouo OAn 1 pony THpa Vo €yel uéon xabuotépnon 2. 'Etol o xdoTog
/ xabuotépnon e porc audifinxe xoutd éva tapdyovta 4/3, otny npoondferd
uac va BEATLOGOVUE TNV ToldTHTa Tou Sixtdou!

Y10 30 Kegdhato Oo Sovue mdc unopolue vo yevixeloouue To mopddolo
autd oty TEpinTwor ueydhwy SxTiwy, Ue Tpochixn TOAGY axudy xol Ho
arodel&ouue €va ppdyua, e€apT®dUeVo antd Tov aplhud Tnv xOuBwy, xabde xat
N oTevy| oyéon Tou TapadoZou autol ue To PoA.

1.4 Ocewpntxr IIAnpogopixr| xal Ocwpla Iaryviwy
Yy AdyoplBuixt Oewplo oty vioy, étwe Ayetat o xhddog Tne Oewpntixic
ITAnpogopixtic Tou aoyoheltal ue T Oswpla Haryviwy, To ueyaiitepo xouudtt
NG EPELVIS APOPE TA U CLUVERYATLXY, OTEATNYLXA Talyvia, TAREoUC TAnpopo-

olag, yoplc autd va onuaiver 6TL dev undpyet Epeuval oL Yior dARES xaThYOpleS.

Ye 6,TL apopd To eld0g TNC EPELVIC TIOL TEAYUATOTOLELTOL OTOV TOUEN AUTO,
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uepxd amd ta Paoxd epwthuata mou €xel xAnbel vo aravifoel  OswpenTixd
[Iinpogopuxt| elval to e

o Emdéyetar éva ouyxexpwévo nalyvio PNE, 1 xdroto dhho eldog woop-
potiac Tou omolou 1 Unapdn dev elvat tetplupévn (6nwe Ty Tou peLxToU
NE)

e Av urndpyel ooppotia (onotoudhnote eldouc), Técog ypbvoc anatteltol
v v Bpebel; AvtioTolya méoog ypbdvog anatteltal yloo Ty UREST) TNG
xahUtepng 1) tne yewpdtepng woopponiag; IIécoc ypdvog anouteltar yia
NV eVpeoT) xdnolg Loopponiag Tou TANEol XATOLES TEOBLAY PUPES;

o Av 1 elpeon ulog toopporiog elval SVoxoArn, ndéco dVoxoho elval va
Beebel ula mpooeyyiotint| wooppornia, dnhadr ula xatdotaon and Tnv
omola xavelg dev xepdilel “moAl” av @Uyel;

o 11600 xaxy unopel va elvar ulo leoppomio; Mrogel va gpayOel Lxavorounti-
x4 10 PoA evdc mawyviou; Avtiotolya, néco xalr uropel vo elvan uia
tooppotia (PoS), dnhadh av umhpye ula xevtpw apyr| mou Ho unaybpeue
NV opporia aut, T6c0o Hu ydvaue oe oyéorn ue To BéATIoTO;

o Ay éva malyvio dev emd€yetol XaAéC LOOPEOTIES, TL UTOPOVUE VO XEVOUUE
vl va Tig Pedtidooupe (coordination mechanisms);

o No oyedidoouue unyaviouolg yia To Stauolpacud ayaddy xal yio dnuo-
npaotec (auction and mechanism design).

Kdmota ané to napandve epwtiuate éyouy uehetnlel yevixd yio ta (otportn-
Ywxd) malyvia (my mohumhoxdtnta elpeonc NE), evd dhha éyouv vomua (xou
éxouv uehetnfel) ubvo v ouyxexpluévec xatnyoplec Taryviwy, 6nwe m.y. To
network games, 1§ ta congestion games (yapaxtnplotxd to PoA 1 to network
design).

[apatneodue 6Tt uTdpyouy epwTAUNTA doulxd, Tou oyetilovTal Ue TNV UTapdn
1) U1 LOOPEOTILMY, EPWTAUATI TOU APOREOUY TNV XATACKELY] ATOBOTIXOY AAYO-
olfuwv yLo Tov uToloyLous Looppomtdy (1 TNV anddelln 6tL dev undpyouyv) xat
EPWTHUATA TOU APopOVY T1) oyedlacn “YaAdY” maryviov.

‘Otay €youvue éva véo tpdBAnua tou povtehonoteltol ue 1 Oewpla Haryviwy,
Tdom elvat vo tpooraboldue TedhTo Vo anayTACOUUE oTo Soulxd - ahyopLOuxd
Intiuota Tou agopoly To TEOBANUL, UeTd va ueletdue To PoA xou téhog
va. mpoonafolue va avartilouue unyoaviopols mou to Pehtidvouv. T Ta
TpofAuata tou Ba avantuyBoly oTa endueva xe@diato TS SITAWUATIXAC, EYEL
yiver TOAAY) €peuva oyeTXY| UE OAA TA TOEATEVW EPWTAATO. TNV Tapolod
SLTAUATIXT Aoy O0AOUUAOTE WC ETL TO TAELGTOV UE TNV aVAAUCT TOY ToLY VimY
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autdv (equilibria, PoA) xau éyt 1660 ue ) oyediaot| touc (network design,
coordination mechanisms).



Part 1

The atomic case
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Chapter 2

The Koutsoupias-Papadimitriou
model

We begin our analysis of the atomic case of selfish routing with the model
introduced by Koutsoupias and Papadimitriou in their paper [KP99], which
we shall henceforth call the KP-model. The reasons for picking this model
at the beginning are numerous. First of all they are historical: the paper
in which this model was introduced was one of the first to consider the
game-theoretic aspect of routing traffic through a congested network and
had a great impact on the research community. It was followed by a lot
of papers, some of which (such as [MS01], [KMS03], [CV02], [FKK'02])
resolved open problems related to the KP-model (existence and uniqueness of
a FMNE, existence of a PNE, tight PoA bounds), while some other ([FKS04],
[FKS05]) include highly non-trivial generalizations of this model which we
shall encounter in the next chapters of this thesis. Apart from giving some
food for thought to a lot of researchers, the [KP99] paper had another major
contribution in algorithmic game theory: it quantified for the first time the
cost of the lack of coordination among the players, by introducing the notion
of the coordination ratio, which is the now known under the name “Price
of Anarchy”. In this chapter we discuss the model and present the proofs
as they appear in [KP99], but we also enhance them with some of [MS01]’s
results, since this paper resolves a lot of open problems and proves some
conjectures posed in [KP99]. We then cite [KMSO03] and [CV02] for some
results on the PoA.

31
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2.1 The Model

One of the characteristics of KP-model that make it so appealing is its sim-
plicity: it consists of a network of m parallel links between a source and a
destination node. These links can be seen as parallel unrelated machines (eg
servers) that route traffic independently from the source to the destination.
Apart from the machines there are n players (or agents) that want to route
a specific amount of traffic through the network. A good analogy is to think
of the players as tasks that need to be scheduled on those machines'. Each
such task has a different execution time (the traffic of player ¢) that we shall
denote by w;. Of course the longer a task lasts, the bigger the latency for
all other tasks scheduled on the same machine. Equivalently if the traffic on
one link of our network is heavy, it normally produces a bigger delay. We
say then that traffic determines delay and that the delay suffered by each
agent on a link equals the total amount of traffic routed through this link
(this of course is a simplification - more complex cost functions have also
been studied). We have implicitly made the assumption that every link has
the same speed (or as we use to say the same capacity). However we are also
going to study the problem for links with different capacities s/.

Now to sum things up, the KP-model consists of:

e m (unrelated) parallel links: [m] =1,...,m.
e 1 (selfish) players: [n| =1,... n.

e n amounts of traffic w;,i = 1,...n, one for each player. We assume
that wy, > ... > w,.

e m capacities-speeds, s7,j = 1,...m, one for each link. We assume that
st<...<sm,

Now let us see things from an agent’s point of view. Since the players are
selfish their aim is to minimize their delay, while routing their whole amount
of traffic from the destination to the source. In order to route their traffic
they can either pick one of the m links, or they can assign to each link j a non-
negative number that indicates the probability of picking it. We denote these
probabilities for player i by p! -in general we shall use subscripts for agents
and superscripts for links. The two cases above obviously evoke the notions
of PNE and NE respectively. In the present thesis we shall mostly consider
the mixed strategies case, for which there are very interesting results. Some
information on the existence of a PNE can be found in the next chapter.

Lthe problem is also known under the name “selfish task allocation”
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So the set of pure strategies for agent ¢ is {1,...,m} and a mized strategy is
a distribution on this set. Let (ji,...,J,) € {1,...,m}™ be a combination of
pure strategies, one pure strategy for each agent, called the pure strategies
profile; then its cost for agent i, denoted by C%(jy,...,j,) is:

Lji + Z Wi

Jk=Ji

if we take all link capacities to be equal to unit. This cost gives us the finish
time of the link j; chosen by i, if its initial load is a task of length L’i. That
means that the link will be available after L/ time units. Then starts a
round-robin way of task processing, in which each task receives a very small
amount of processing time and then it gives its place to the next one, until
they all finish (practically at the same time). This is the so called standard
model. There exists also another model, the batch model, which we will not
consider in this thesis. For more information see [KP99].

2.2 Nash Equilibria

2.2.1 Definitions

We shall now attempt to characterize the Nash Equilibria in the standard
model of the game, where all link capacities are unit. We define the expected
traffic or ezpected load M7 on link j to be:

M =1+ plu (2.1)

It is also obvious that the cost as defined above is not useful for the case
of a mixed strategies profile. What we need here is the estimated finish time
or estimated cost for each player when he assigns his traffic to link j. That
is, each player knows the mixed strategy profile of every other player and
tries to choose one link that will minimize his latency. The problem is that
he can only make estimations about other players’ behavior based on their
probability distribution. The resulting finish time ¢ then is:

dl=wi+ LI+ plw, =M+ (1 - pl)w, (2:2)
it

The mixed strategies profile of each player, that is the probabilities pg
define a NE if no player has an incentive to deviate and pick another link.
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Thus, agent ¢ will assign nonzero probabilities only to links j that minimize
cl. We will denote this minimum by

¢; = min ¢}
j

and we call the set of links S; = {j : p/ > 0} the support of agent i. We also
define the indicator variable S/ that takes value 1 when p} > 0.

In order to become more formal we shall henceforth represent mixed strate-
gies profiles by an n x m probability matrix P. Now it is easy to see that we
can fully characterize a mixed strategies profile P that is a NE, based solely
on the supports Sij . More precisely we have the following proposition:

Proposition 2.2.1. Take a Nash Equilibrium P. Then for every link j € [m)]
and every agent i € [n],

subject to the following constraints:
(1) for all j: M7 = L7 + ZS?(Mj + w; — ¢;)

(2) for all i: ZSZJ(MJ +wi — ¢) = w;

To see that the above proposition holds notice that (2.3) is equivalent
to (2.2), where we have replaced ¢] by ¢;, so that (2.3) holds only for the
links of minimum latency, for which p! > 0 The constraints (1) and (2) are
equivalent to (1.1) and to the fact that the probabilities of agent i must sum
up to 1 respectively. Here we once again take into account only the links
for which pf > 0(< S/ > 0). One should also notice that if we fix the nm
supports S? then we have n + m constraints and n + m unknowns and this
set of constraints should then have a unique solution. If the resulting prob-
abilities are in the interval (0,1], then the above equations define a unique
equilibrium with supports S;.

As we clearly stated back in chapter 1, there are now a couple of very nat-
ural questions that one may ask. They have to do with the general structure
of the resulting equilibria: since the existence of a NE is trivial thanks to
[Nas51], we focus our interest on the PNE. We also care about the unique-
ness of equilibria and about the computational complexity of finding
one. We are therefore interested in finding closed form expressions for the
above probabilities p!. In fact notice that a NE is fully defined only by the
supports S/ (since in a NE S} =1 < ¢/ = ¢;). One way for finding a NE
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would be then to try all possible values for all Szj and solve the resulting
system in polynomial time. The problem here is that we need to examine
2" different supports and hence this method is in general exponential in n
and m. But can we do better?

2.2.2 The Fully Mixed Nash Equilibrium

The first paper to follow [KP99] was [MSO01] in which the first existence and
uniqueness result for equilibria was presented. We shall give here a brief
sketch of the proof method. Though not really difficult, the proof has a lot
of technical details which we shall omit here in favor of space.

The model considered in [MSO01] differs from the one we considered up to
now in some points. We summarize them right below:

e It considers the initial load L’ of each link j to be equal to zero. That
is no restriction at all for the standard model though, since initial loads
can be considered as jobs of m additional agents. In fact from now on
we implicitly consider all L’ equal to zero.

e It considers only a special case of mixed Nash equilibria, called fully
mixed Nash equilibria. In the FMNE each user assigns his traffic on
every link with positive probability (S = 1,Vj € [m],i € [n]) and his
support is [m]. Although a more restricted type of NE, the FMNE
deserves our attention because it allows us to solve the equations of
Proposition 2.2.1, hence providing us with a closed and remarkably in-
sightful type for the probabilities pg of all agents. One final remark
on those types yields the required existence (which now is not trivial)
and uniqueness result for a FMNE. Moreover it is easy to intuitively
understand that a FMNE favors collisions of users across the links, thus
increasing the maximum latency, the (not yet formally defined) Social
Cost and the Coordination Ratio, in which we are particularly inter-
ested. This characteristic alone makes FMNE a NE worth studying.

e It considers links of arbitrary capacities. Since we are also going to
consider this kind of links when we try to bound the PoA, it is a good
idea to give the analogous of Proposition 2.2.1 for links of arbitrary
capacities:

Proposition 2.2.2. Take a Nash Equilibrium P. Then for every link j € [m)]
and every agent i € [n],

Pl = (M +w; — '¢;) w; (2.4)
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subject to the following constraints:

(1) for all j: M7 = L’ +ZS§(MJ' +w; — s¢;)

(2) for all i Y SH(M? + w; — s¢;) = wy

and

cs = mine] = min(M + (1 = p)uws) /5 (2.5)
Finally let us define a solo link as a link j € [m] such that >, S/ = 1. Clearly
that means that a solo link is traversed by only one user. A link that is not
solo is a non-solo link. By a simple rearrangement of terms in constraint (1)
of Proposition 2.2.2 we can prove the following:

Lemma 2.2.3. Tuke any Nash Equilibrium P. Then, for any non-solo link
j € m), R
—ZSgwi + SJZSgCi
SER

It is easy to see that j being a non-solo link is necessary, in order for the
denominator to be unequal zero. The key point now is that in a FMNE by
definition there are no solo links at all, and hence this lemma, applies to all
j € [m]. We are now going to use this fact in order to provide a series of other
propositions that will finally yield the desired result. The first proposition
in this series follows right away:

M =

Proposition 2.2.4. Tuke any Nash Equilibrium P. Let S C [m] denote the
set of solo links. Then, for any user i € |n],

a(d stﬂ‘—ZW o) - ; (%ng}gj_l J)

—n(ER 1= =) (S <) s

J
k#1i Jj¢s Z S jes

Although it looks scary, the above type is actually not that hard to prove:
the basic trick here is to derive two separate expressions for » jes Sg MJ. The
first one follows directly from constraint (2) of Proposition 2.2.2 and the sec-
ond one follows using the expressions for the estimated traffic M7 derived in
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Lemma 2.2.3. Equating those two expressions yields the above equation.

We now focus on the fully mixed case. Since there are no solo links in
the fully mixed case, S = ) and the term Zjes SgMj is eliminated. We
then set S = 1,Vj € [m],i € [n] in the above equation, rearrange the terms
and solve the resulting linear system to obtain that (c1,...,¢,) is a linear
transformation of (wy, ..., w,):

Lemma 2.2.5. Consider any fully mized Nash Equilibrium P. Then:

m 1 ... 1
“ | 1 om ... 1 e
YL
Cn 1 1 ... m Wn

We can now substitute the above expressions into the expressions for the
expected traffics (Lemma 2.2.3) to obtain that (M?*,..., M™) is also a linear
transformation of (wy, ..., w,):

(MY, .., M™) =T(w,...,w,) (2.6)

(The exact type is omitted here, see [MS01])

A closer look at type (2.4), Lemma 2.2.5 and type (2.6) points out to the
fact that we can finally write down a formula for the probabilities p! that
depends only on the known quantities w; and s?. Indeed by replacing the
type of Lemma 2.2.5 and type (2.6) in (2.4) we get:

Lemma 2.2.6. Consider any Nash Equilibrium P, in the fully mized case.
Then for all users i € [n] and links j € [m],

(- E) e e

But do the quantities p/ in (2.7) indeed represent probabilities? For them
to do so, it must be that (1), for each user i € [n], >, pj = 1 and that, (2) for

each link [ € [m], 0 < pf < 1. Since the quantities were specifically derived
for the case of fully mixed strategies, condition (2) should more accurately be
stated as (2'): for each link I € [m], 0 < p/ < 1. A straightforward calculation
verifies that conditions (1) and (2’) may or may not hold, depending on the
particular values of w; and s’. Hence, we obtain an inexistence result for
FMNE:
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Corollary 2.2.7. Assume that there exist a user i € [n] and a link j € [m)]

such that 4 > '
ms’ Wi s’
1 ) (1 Lk ) 0,1
( >, s (n — Dw; +lel ¢ (0,1)
Then there exists no FMNE.

We continue to show that the necessary condition determined in Corollary
2.2.7 is also sufficient, in the case of fully mixed strategies:

Theorem 2.2.8. Assume that for all users i € [n| and links j € [m],
ms’ > wy s
1— 1— == 0,1
( lel>< (n—l)wi>+zlsle(’ )

Then in the fully mized case the above expression defines the probabilities p{,
which all together form a FMNE P.

Proof. The assumption implies that for all users i € [n] and links j € [m],
0 < p} < 1. Thus, by definition of FMNE, we need to show that for any user
i and link j, ¢; = ¢]. So fix any user ¢ and link j. Then,

CZ: %Tmiw (by definition)
=Y 4 Zk#piwk
=Y+ S% Zk;,gi((l — %) (1 — (%f'lguw’“;) + Zsljsl>wk (by replacing p{c)
=% 4L (1 _ ms ) Zk#<1 - (%k’lgljuf;)wk + 3 > T D koti W
= T slj <1 — ) Zk;ﬁz Wk
—ﬁ(l - gf;)m Dok W D gt we T ﬁ > hoti W
— %4 L (1 ) Y i
3 (1= 225 S wen = 1) + 52y Sy
:1:_]+SL]< —ms])Zk#W (1_m5]>zk,wk,+2812k#wk
=5 -1(1- g,sj Juit s T

1 ms’

= szz S Wit lel Zk;ﬁiwk

1
= S ST 2k
= st (i + S )

=¢ (using Lemma 2.2.5)
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Corollary 2.2.7 and Theorem 2.2.8 together establish the following:

Theorem 2.2.9. (Existence and Uniqueness of FMNE) Consider the
fully mized case. Then, for all users i € [n] and links j € [m],

(-0 ) r s o

if and only if there exists a Nash Equilibrium, which must be unique and has
an associated probability matriz P = [p]], where

= (1 ) (- ) e 0

, for each user i € [n] and link j € [m].

The above expressions for the probabilities pz enjoy, as functions of the
link capacities s/ and the player traffics w;, a particularly insightful form.

Their first term is the product of two factors: the first one 1 — gsil depends
!
>

solely on link capacities, while the second one 1 — (T—% depends solely on

user traffics. Their second term zsjsl also depends solely on link capacities.
l

The first factor in the first term vanishes if we take all link capacities to be
equal to each other; thus, we conclude that, in the case of uniform capacities,
the FMNE P is independent of the user traffics w;. A corresponding elimina-
tion is lacking for the case where the user traffics are all equal to each other
(identical traffics), since the second factor of the first term does not vanish.
That means that FMNE do depend on link capacities, even in the case of
identical traffics. This subtle difference manifests an inherent asymmetry
between link capacities and user traffics, as parameters that define a FMNE.

One interesting final remark is that Theorem 2.2.8 implies that for the
fully mixed case, NE can be checked for existence and evaluated (if it exists)
in time ©(nm), which is polynomial and not exponential as in the general
case.

2.2.3 The Generalized Fully Mixed Nash Equilibrium

Having completed the study of the FMNE a very natural question arises.
Why do we care in a so restricted form of equilibria? In fact one could say
that the FMNE is really the exact opposite of a PNE, in the sense that in
the former we want each player to spread his probability distribution over all
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links, whereas in the latter we want him to choose only one of them. Since
the PNE is what we (and economics) really care about, why bother with
the FMNE? The answer here is obvious: the FMNE provided us with the
first closed form expression for p!, with a uniqueness result, with some PoA
bounds (as we shall see in the next section) and above all it resulted in the
definition of another (more general) form of equilibria, which has even more
interesting properties. This is the Generalized Fully Mixed Nash Equilibria
(GFMNE) which was defined in [FKK*02] as follows:

Definition 2.2.10. A mixed strategy profile P is generalized fully mized if
there exists a subset Links C [m], such that for each pair of a player i € [n]
and link j € [m], S/ =1 < j € Links. If P is also a NE, we call it the
GFMNE.

From the above definition it is obvious that the FMNE is the special case of
GFMNE if Links = [m)].

The reason we choose a more general form of equilibria is that the GFMNE
always exists and in fact there is a nice polynomial time algorithm that com-
putes this equilibrium, thus placing the problem of finding a NE in P.

Before presenting the algorithm we need the following Lemma that follows
the discussion in the last section (see Theorem 2.2.8):

Lemma 2.2.11. Consider the case of FMNE under the model of arbitrary
capacities and assume that all the traffics are identical. Define the normalized
capacity si of link j to be s = s7/>", 5. Then for all links j € [m], s7 €
(=2 Y if and only if there exists a FMNE, which must be unique.

m+n—17 m+n—1

Although Lemma 2.2.11 determines a collection of 2m necessary and suf-
ficient conditions for a FMNE, the fact that all normalized capacities sum up
to 1 implies that eacthair reduces to one condition (say the one establishing
the lower bound for s7). Furthermore all m conditions hold, if the one for
min; s’ holds. Thus the above lemma provides us with a way to determine
the existence of a FMNE (and thus of a NE) in ©(m) time, by finding the
minimum s’ and checking whether s/ > —_——
With the aid from the above lemma we get:

Theorem 2.2.12. Assume that all traffics are identical. Then the problem
of finding a NE (GFMNE) by computing its supports is in P.

Proof. We present an algorithm A, that computes a GFMNE:
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0. Sort the capacities of the links in non-increasing order: s! > ... > s™
and compute all normalized capacities. Take the set Links = [m].

1. Take the minimum capacity link and check the condition stated in
Lemma 2.2.11. If the condition is true then we have found a GFMNE
for Links and we stop. Else we go to step 2.

2. We drop the slowest link m’ (link with minimum capacity) and we
repeat step 1 with Links < Links\{m'}.

The above algorithm studies all generalized fully mixed strategy profiles
where the set Links consists each time of the m’,1 < m’ < m fastest links.
Hence to establish correctness for Ayf,n. we need to show that at least one
of those generalized fully mixed strategy profiles is a GFMNE. We argue
inductively on m:

e if m = 1 then it is trivial to see that the only NE is for all players to
assign their traffic on the unique link

e let our assumption hold for m = k. Then for k£ + 1 we have: if for the
slowest link the condition of Lemma 2.2.11 holds then we are done. If
not, then the algorithm removes this link and we are left with % links.
But then, by inductive hypothesis, there must be a GFMNE for the
set of those k fastest links. A close look now at the definition of the
GFMNE and the fact that every subset of [k] is also a subset of [k + 1]
as well, yields the result

Finally let us check the running time of the algorithm. In the preprocess-
ing step we make a sorting which takes ©(m logm) time and the computation
of the normalized capacities which takes ©(m) time. Then steps 1 and 2 re-
quire constant time since they only involve two comparisons in order to check
the validity of the conditions for a NE. Since these steps are executed at most
m times the total running time of the algorithm is ©(mlogm). O

The above theorem gives a partial (for the case of identical traffics) answer
to the complexity problem of computing a NE. In order to do so we had to
define two new more restricted forms of equilibria, the GFMNE -which always
exists- and the FMNE -which does not always exist. Apart from providing
us with a powerful tool to study the complexity of finding a NE, the FMNE
gave rise to a very interesting conjecture. As we have stated in the beginning
of section 2.2, the structure of FMNE is such that it favors collisions of
users across the links, hence increasing the social cost. So Fotakis et. al.
conjectured in [FKK*02] the following:
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Conjecture 2.2.13. Consider the case of identical traffics and arbitrary link
capacities. Then for any instance such that a FMNE F exists and for any
associated NE P, SC(P) < SC(F), where by SC we denote the social cost.

Although the SC will be formally defined in the next section, the above
conjecture is easy to understand: it says that among all possible NE for an in-
stance of the problem, the worst one -in terms of social benefit- is the FMNE.

The above has been nicely handled in [GLMT03], whose results provide
substantial evidence for Conjecture 2.2.13 and a complete proof for the case
of PNE. A special case was also handled in [FKK*02] where the following
result appears:

Proposition 2.2.14. Consider the model of uniform capacities and assume
n = 2. Then the worst NE is the FMNE.

A careful case analysis on the supports of the two players and of the
structure of NE can indeed yield the above result. Furthermore [FKKT02]
showed that the social cost of a FMNE is within a constant factor from the
worst case social cost.

2.2.4 The Pure Nash Equilibrium

We now study the case where each player has a pure strategy, he picks namely
one link to route his traffic. This case is very important because of the
applications of the notion of PNE.

We shall present the work of [FKKT02] on the subject. We start with an
existence result:

Theorem 2.2.15. In the KP-model there exists at least one PNE.

Proof. Consider the universe of pure strategy profiles. Each such profile
induces a sorted expected latency vector M = (M?!,..., M™), such that
(M' > ... > M™) (rearrangement of links is necessary). Of all the possible
vectors M consider the lexicographically minimum, say Mg. We claim that
this vector corresponds to a pure strategy profile Py that is a PNE. Assume
that it does not: then there exists one player ¢, who has picked link j and
who has incentive to deviate to link k, namely

d > e M4 (1 - phw > MF + (1 — pPw, (2.8)

where we considered unit capacities wlog. Since we have pure strategy pro-
files, p/ = 1 and p¥ = 0. Hence equation (2.8) results in:

M7 > MF +w; > M* (2.9)
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Now let us construct from Pq the new pure strategy profile P/’B which differs
from Pg only in links 5 and k, i.e. player ¢ has moved from j to k. Then it is
obvious that the expected latency of j decreases and the one of k increases.
Let Mg denote the induced sorted expected latency vector (note that the in-
dices of the sorted elements ill\this vector are not necessgr\ily ordered 1,...,m,
like in Mg). We have that MJ = M7 —w; < M7 and M* = M* + w; < M’
(from (2.9)). Now since My is sorted in non-increasing order and M7 > M¥,
it follows that ]\{J\ precedes M kin Mg. But Mg differs from M, only in
the positions of M7 and M*, which are both smaller than M7 and they will
follow it in Mg. So the ﬁrit\j ele/rn\ents of My stay the same as in Mg. The
j-th entry may be either M7 or M* or some other element of My, following
M/ (i.e. smaller than M7). In any case the resulting sorted expected latency
vector K/I\O, has its first j — 1 entries equal to the ones of My and the j-th
entry smaller. Then My is lexicographically smaller than Mg, which is a
contradiction.

Of course this proof can be easily generalized in the case of arbitrary speeds.
O

Although the proof of Theorem 2.2.15 is based on an algorithmic proce-
dure, the algorithm implied is inefficient in the following sense: since each
player can pick among m strategies the total number of pure strategy profiles
is m™, i.e. exponential. However we can do better as the following theorem
states.

Theorem 2.2.16. In the KP-model, the problem of finding a PNE by com-
puting its supports is in P.

Proof. The algorithm A,,,. we present is a typical greedy algorithm: it con-
siders all the player weights to be sorted wy > ... > w,, and it allows player 1
(the heavier player) to pick his link first, in such a way that his own latency
is minimized. Then goes player 2 and so on. The key idea is to settle the
heavier players first. Player ¢ then picks his link according to the choices of
the previous (heavier) players. It is obvious that the running time of the algo-
rithm is O(nlogn) (due to the sorting) and that in the end of the algorithm
each player will have assigned his traffic to one link with unit probability.
It suffices to show that the final pure strategy profile is indeed a PNE. We
argue inductively on the number of iterations 7 of the main loop of A,,,.. We
show that the system is in PNE after each such iteration.

1. If 4 = 1 then trivially we have a PNE.



44

CHAPTER 2. THE KOUTSOUPIAS-PAPADIMITRIOU MODEL

2. Let the inductive hypothesis hold for 7 = k. In iteration k£ + 1 user

k + 1 picks a link 7 such that for all links :

L7+ wypq < L' 4wy

cigcé<:> <

)

(2.10)

s st

where by L7 we denote the load of link j until this iteration (which is
not estimated but well known!). Now let us prove that there is no user
with an incentive to deviate. User k£ + 1 has no such incentive since he
picked his link last. For the sake of contradiction we assume that there
exists a player p < k which has an incentive to deviate after the move
of player k + 1. In order for this to happen, player k + 1 must route
his traffic on the same link as player p, or else the load of player’s p
link will remain the same and the load of some other link will increase,
causing p no incentive to deviate. Now since p has routed his traffic on
link 7 and he wants to deviate there must exist a link y such that

Lj +wk+1 > Ly —I—wp

- . (2.11)
But we have w, > wy1 which yields
y y
sY sY
Combining inequalities (2.11) and (2.12) we get
L Ly
+ Whtl + Wi41 (2.13)
57 sY
which contradicts (2.10).
O

Finally the following theorem can be proved via reduction from BIN

PACKING (see e.g. [Pap]).

Theorem 2.2.17. Finding the supports for the best and the worst PNE are
both N'P-hard problems in the KP-model.

2.3 Studying the Price of Anarchy

After having sufficiently studied the structure of equilibria we move on to
studying their quality. In order to do so we will first define some measures of
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the efficiency of an equilibrium, such as the Social Cost SC and we will then
examine separately the cases of 2 and m links. The reasons for doing so, are
mostly historical. We will follow the structure of [KP99] for both cases and
we will then present the answers of [KMS03] and [CV02] to some questions
about the case of m links, originally posed in [KP99].

2.3.1 Definitions

In our effort to quantify the inefficiency of equilibria, we need a quantity,
or more precisely an objective function, that is indicative of the quality of
a selfish outcome in a network of parallel links. One such quantity can be
defined as the maximum latency that is observed on a network link. Another
(commonly used) idea would be to consider as an objective function the
sum of all delays on the network links. In our case we choose for the max
criterion, so the objective function C(ji, ..., j,),with (j1,...,J,) € [m]" can
be formalized as follows:

C(j1,---Jn) :maxw (2.14)
jE[m] st
This way we have a well-defined optimization problem, in which we wish to
minimize C(j1,...,J,). That is we wish to find the social optimum (hence-
forth denoted by OPT), which is the minimum value of the maximum latency
over all links j € [m], among all pure strategies profiles. That is:

Definition 2.3.1 (The Optimum).

OPT= min C(j,...,jn)= min maxzk:j’“—.:jwk (2.15)
(1 5ewesdn E[mMI™ (J15ewesdn ) ElmI™ jE[m] 57

Equation (2.15) gives us the best possible outcome of a network with m
parallel links, which we could achieve, were there a central authority that
could force all agents to make the right choice for the social welfare. Unfor-
tunately our users are selfish (which means that they are only interested in
maximizing their own profit) and we can afford no central authority. The
reason for not even considering the case of an authority is the exact same
reason that favors distributed computations against centralized ones: every
form of central control in a network is bound to have a negative impact on
the network’s speed.
Taking into account then that OPT is hard to reach with selfish agents
present, what is the estimated social cost (henceforth denoted by SC) that is
associated to a distribution over [m] for each player (namely to a probability
matrix P)?
The answer is:
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Definition 2.3.2 (The Social Cost).
— 3 N ii Zk;jk:j Wy,
SC(P) = ECG i)l = > ([[plmax =522) - (2.16)

S
(jla"wjn)e[m}n

Remark 2.3.3. A more usual notation for the social cost and the optimum
include the weight vector w = (wq,...,w,): SC(w,P) and OPT(w), since
both quantities depend on it. Here we use a simpler notation and we skip w.

Remark 2.3.4. We notice that the above definition considers the social cost
to be the expected maximum cost and not the maximum expected cost
(max; M7). But are those two quantities essentially different? The answer
is affirmative. In fact max; M7 < SC or even max; M7 << SC. Indeed let
us consider a network with m links and just one player with weight w. Then
the SC (expectation of the maximum load) is w, whereas the M7 = w/m
for all links j. If the number of links gets very big M7 tends to zero and
SC remains w. On the other hand if we allow only pure strategies, i.e. force
each player to pick one link, it is easy to verify then that max; M7 = SC.
However in the general case the inequality holds and therefore it is preferable
to define the SC as the expected maximum cost.

We are now ready to define the coordination ratio or as it is commonly
known, the Price of Anarchy (denoted by PoA):

Definition 2.3.5 (The Price of Anarchy or Coordination Ratio).

sC(p)
PoA =
o T pnks OPT

(2.17)

Namely the PoA is a size (greater ore equal than one) that tells us how
bad a selfish outcome can actually be. In order to do so, it computes the
SC for every NE of the game, finds the cost of the worst NE (see the sup
in 2.17) and compares it to the OPT of the game. The bigger the PoA, the
larger a possible deviation from the optimum solution.

By now it must be clear that it is of crucial importance to ensure an upper
bound on the PoA. This would mean that the selfish outcome of a game can-
not be too far away from the optimum solution, and thus it cannot be too bad.

More on the Social Cost

Having formally defined the SC the following question arises: how effective

can the computation of the SC be in an instance of the game? The answer
follows and it was provided by [FKK*02]:
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Theorem 2.3.6. Given an instance of the problem and a NE P we want
to compute its social cost. This problem is $P-complete when restricted to
mized equilibria.

Proof. We will prove the theorem through a reduction from the following
problem: given a set of integer weights J = {ws....,w,} and an integer
C > ;2& count the number of subsets of J with total weight at most C'. This
problem corresponds to counting the number of solutions of a KNAPSACK
instance, which is a §P-complete problem (see e.g. [Pap]). The way to do
the reduction is to define n Bernoulli random variables Y; taking the values
w; and 0 with probability 1/2 each: these probabilities denote whether w;
is considered to be a member of a subset of J or no. Consider now the
sum Y = .Y, of those variables. Estimating the probability Pr[Y < C]
is equivalent to finding the fraction (and hence the number) of subsets of .J
that have a total weight at most C'. Thus the computation of Pr[Y < C] is
fP-complete. We next show that there is a way to compute Pr[Y < (], if
we know the SC of a given (mixed) NE, for an instance of our game.

So let us now consider an instance of the problem with n + 1 agents and 3
links, denoted by 0, 1 and 2. Let agent 0 have a weight C' > ¥ and each of
the rest n players have weights w;. It easy to confirm that if player 0 picks link
0 with pJ = 1 and each other player picks the remaining two links with equal
probability (p; = p? = 1/2) then this mixed strategy profile corresponds to a
NE. Let us now consider the random variables Y; to indicate the weight each
player ¢ assigns to one of the two remaining links 1 and 2, say wlog 1. Indeed
with probability 1/2 player 7 assigns link 1 a weight w; and with probability
1/2 he assigns no weight at all (Y; = 0). But then the total weight assigned
to link 1 is Y. Now notice that it is not possible for the loads of both links 1
and 2 to be more than C' (or else their sum would exceed ) . w;). Hence the
only possibilities are the following: either both loads on 1 and 2 are at most
C, or only one of them exceeds C' (caution- we have to separate subcases
here: either 1 or 2 exceeds C'). Finally, it is obvious that the maximum load
on a link will be at least C. The above discussion gives the intuition behind
SCy =C+23Y 5 . Pr[Y > B]. Now let us consider the instance where
player 0 has a traffic of C'+ 1. Then SCy = C+1+23 % ., Pr[Y > BJ.
Some algebra and we result in 2Pr[Y > C 4+ 1] = 1 4+ SC; — SC,. Hence
Prly <Cl=1-Pr[Y > C + 1] = 45€1=5C O

Finally it is quite easy to prove the following:

Theorem 2.3.7. For the model of uniform capacities, there exists a fully
polynomial, randomized approximation scheme to compute the SC.
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Proof. The idea is to pick a random variable that can be easily sampled
(i.e. in polynomial time) and which gives a good approximation of the SC.
This random variable is taken to be the maximum latency over all links. We
repeat N times (where N must be shown to be polynomial) the following
experiment: we assign each user to a link of his support according to the
given probability matrix P. For each experiment ¢ we find the maximum
latency (say L;). The output of the algorithm is the mean % Since SC is
the estimation of the maximum latency over all links, by the Strong Law of

Large Numbers it follows that ‘ETL — SC(P)| < eSC(P), for any constant

€ > 0 provided that N > %(H. In the next section we shall prove that
SC(P) = O(=%™ )OPT. Since OPT < Y, w; we have that SC(P) =

log logm

O(loz’izm) >_; w; and hence it suffices to take N = %O(log)igm) > w;. So for
a polynomial number of samplings we get a fully polynomial approximation
algorithm with constant ratio. [

2.3.2 The case of 2 links

Before moving on to giving the actual bounds for the PoA, we first give a
few bounds on OPT which will later come handy. First of all we note that
computing OPT is an NP-complete problem, as can be easily proved through
a reduction from the partition problem. However for the purposes of upper
bounding PoA here, it suffices to use two simple approximations of it:

OPT > max{w;, Z w;/m} = max{w;, Z M7 /m} (2.18)

J

We remind the reader that we assume wy; > ... > w,. For the time being we
consider links of unit capacities (as we can see from (2.18)). It is then easy
to intuitively understand the above inequality: OPT > w; since the traffic
of each player ¢, must be somehow routed through the network, thus causing
a delay of at least w; (depending on whether it will be routed on a solo-link
or not). On the other hand it is easy to see that for every pure strategies
profile (ji1,...,j,) we have that ), w; is exactly the sum of the loads of all
links j € [m], which is less than m times the maximum load C(j1, ..., ).
Thus >, w; < mC(ji, ..., jn). As this holds for all pure strategies profiles it
follows that OPT > ). w;/m. The equality in (2.18) follows from type (2.1).

We now move on and immediately give a result that lower bounds the PoA:

Theorem 2.3.8. The coordination ratio for 2 links is at least 3/2.
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Proof. The proof of the theorem is trivial. Consider a game with only two
agents, each with unit traffic. We have wy = wy = 1. It is easy to check that

P=(1)3 1)

is a NE. The expected maximum traffic then is SC(P) = 3/2, whereas the
optimum is OPT = 1 and can be achieved by allocating each job to its own
link with unit probability. The above discussion provides us with an instance
of the problem and with a NE P, for which SOCISE,) = % This implies that the
PoA (as a supremum) must be at least this big. Consequently PoA > 3/2 O

Remark 2.3.9. The above proving method works in general when trying to
lower bound the PoA. That is, since the PoA is defined as a supremum over

all equilibria, it suffices to give an instance of the problem and an equilibrium

P, with %ST) = z to show that PoA > x.

The proof for a matching upper bound is much more technical. Although
the corresponding proof of [KMS03] for the case of m links (that we are going
to present in the next section) also covers the problem for the case of 2 links,
we present here the proof of [KP99], since it helps us gain great insight to
the problem.

In order to move on with the proof we must define two new types of
probabilities. First we define the contribution probability: the contribution
probability ¢; is equal to the probability that player ¢ routes his traffic on the
link of maximum load (if there are more than one maximum load links, we
consider the lexicographically first, say). Clearly then we have SC =) . gjw;,
since in the we have defined as cost the maximum of all link loads and the
above expression gives the estimation of this size. We also define the collision
probability t;; as the probability of agent 7 and k routing their traffic on the
same link.

The observation that both agents : and £ can contribute to the social cost
only if they collide leads to inequality 2.19:

1 > PriX;=1VX;=1]
= P[ i =1+ Pr(Xy =1 - PriX;=1AX; =1]
> PriX; = 1]+ Pr{X, = 1] — ty
= ¢+ <1+t

(2.19)

where X; is a random variable indicating the link choice of player 7.
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The reason for defining the collision probability is that it has a very useful
property, stated below. This property also holds for any number of links.

Lemma 2.3.10. The collision probabilities of a NE of n agents and m links

satisfy
E tipwy = ¢; — W
ki

Proof. Observe first that ¢;, = Zj p{pi;, as a union of m independent possi-
bilities. Therefore

th’kwk = Z(Z%Pi)wk ZP] Zpkwk pr(M] - pjw;)

ki ki g j ki

where the second equality follows from a summation rearrangement and the
third one follows from type (2.1) (considering LY = 0). From type (2.3) we
can use pZ w; = M7 +w; —c;. Although this result only holds if link j belongs
to the support of player ¢ (p; > 0), when p] = 0 there is no problem in
substituting plw; with any term, since the product will always be zero. We
then get

thkwk—sz — (M7 + w; — ¢;)) sz ¢ — W;) = ¢; — W

k#i
[

Before proving the theorem we provide one more bound (which also holds
for any number of agents and links). We have

¢;= min; cZ
< c because: m min;c; <37 c]
= 0 2, (M7 + (1 = plyw) see (2. )

_ Z]‘ M7 + m—Z]- Pi‘
o m

m

ZM

W;
+ B probabilities sum up to 1

_ ZI i m_lw. see (2.1)

m m ¢

w; 1
L g 2 oL (2.20)
m

Theorem 2.3.11. The coordination ratio for any number of players and
m=2 links is at most 3/2.

Proof. Inequality (2.19) ¢; + qx < 1 + t;; implies:
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D oni(@i + ) wr< Dy (1+ i )wy
= Zk# wg + Zk;&i Wtk

= > Wk — wi + ¢ — w; see Lemma 2.3.10
<> wp —wi + Zg“’"’ + % —w; see (2.20)
= %Zk W — %wi

= %Zk;éz Wk

Thus we have Zkz;éi(% + qp)wy, < 3 Zkﬁ wy which can be written:
Dok GWE — QWi + 3 Wy — qiw; < %Zk# Wy =
> W < 2q;w; — ¢ Yy W+ 5 > w — Sw; =

Dok Gwi < (% — i) > _pwi + (25 — %)wz
But we have already noticed that SC = . gw;, so:

3

3
SC < (5 — i) Xk:wk + (2g; — §)wz

Recall now type (2.18):

OPT > max{w;, Z w;/2}

Assume that for some agent 7, g; > %, then (2¢; — %) > 0, implying (2¢; —
%)wi < (2¢; — 2)OPT. Of course % — ¢; > 0, since ¢; is a probability.

Then: SC < (2 — ¢;)20PT + (2¢; — 2)OPT = 3OPT.

Otherwise if Vig; < %, then SC = ). qw; < %ZZ w; < %2OPT = gOPT.
So in every case we have SC < %OPT which implies that for every equilib-

rium P, S(%i) < % = PoA < 3/2, O

We also have to consider the case of links of arbitrary capacities. This
case was studied in [KP99] where a lower bound of ¢ = 1.618 (the golden
ratio) was derived. The authors conjectured that Theorem 2.3.11 can be
appropriately generalized to the case of links of different speeds. Indeed in
2002 Czumaj and Vocking proved that there is a tight upper bound for the
general case of m links with arbitrary capacities. We are going to present
these results in the forthcoming section.

2.3.3 The case of m links

In this section we consider the case of m links. This case was partially stud-
ied in [KP99], which provides us with a lower bound of Q(logm/loglogm)
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and the conjecture that this lower bound is tight. This was indeed the case
as it was proved independently by [KMS03] and [CV02]. The latter paper
also contains the proof for the general case of m links with arbitrary capac-
ities. Here we will present the work of [KP99] for the lower bound of the
PoA, as well as some upper bounds provided in this paper. Although these
bounds are not tight, they consist a proving method which is certainly worth
reviewing because of the interesting mathematics it employs (mainly Prob-
ability Theory and especially the Azuma-Hoeffding bound, which has been
also used by a lot of recent papers on this subject). After providing these
results we sketch the proof of the tight lower bound conjecture for the case
of uniform capacities and give the result for the case of arbitrary capacities
without a proof. In this point we mention that before the final answer to this
conjecture, a partial answer that involved FMNE was provided by [MS01] for
both the cases of uniform and arbitrary capacities. In fact [MSO01] confirmed
the conjecture for the case of FMNE.

The tight lower bound and some first upper bounds

Theorem 2.3.12. The coordination ratio for m identical links is
Q(logm/ loglogm).

Proof. Consider the case where there are m agents, each with an amount of
traffic equal to unit: w; = 1. Again OPT = 1 and it can be achieved by
allocating each job to its own link with unit probability. Also the uniform
m X m probability matrix

is a NE. But then we have a problem that is identical to the problem of
throwing m balls into m bins and asking for the expected maximum number
of balls in a bin. This problem is well studied and the answer is known to be
O(logm/loglogm). Since we have provided an instance of the problem with
SC(P) _

Bpr = O(logm/loglogm) it must be that PoA = Q(logm/loglogm). O

Conjecture 2.3.13. The above lower bound is tight.
Theorem 2.3.11 shows that the conjecture holds for m = 2. In the next

part we will give the proof of the conjecture provided by Koutsoupias et. al.
in [KMS03] for the case of uniform speed links. We will also sketch the (more
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general) proof provided by [CV02] for the case of general speed links. For
now we present a weaker upper bound of the PoA provided by [KP99]. But
first we need the following result:

Theorem 2.3.14. For m uniform speed links, the expected load M7 of any
link is at most (2 —1/m)OPT.

Proof. The proof is trivial. Observe that

Mi<¢ see (2.2)
< ZTW + =Ly, see (2.20)
< 20PT + “1OPT = see (2.18)
= (2—1/m)OPT
[

We now prove an upper bound for the case of m identical links.

Theorem 2.3.15. The coordination ratio of any number of agents and m

identical links is at most T = 3+ V4dmInm.

Proof. Our main tool for this proof is the Azuma-Hoeffding inequality? which
gives a concentration result for the values of martingales® that have bounded
differences. By using this inequality we will show that the probability that
the maximum load of a given link j exceeds (T'— 1)OPT is at most 1/m?.
Then, using the union bound we argue that the probability that there exists
one link j € [m], whose maximum load exceeds (7" — 1)OPT, is at most
m x 1/m?* = 1/m. So the probability that the maximum load on all links
does not exceed (T'— 1)OPT is at least 1 — 1/m.

The above discussion implies that the expected maximum load on any net-
work link (i.e. the SC) is bounded by (7'— 1)OPT with probability 1 —1/m
and by mOPT? with probability 1 — (1 — 1/m) = 1/m. Hence

SC< (1 — 1/m)(T — 1)OPT + 1/m(mOPT)
= (I' —1)OPT — 1/m(T — 1)OPT + OPT
— TOPT — 1/m(T — 1)OPT

2Suppose X;,i = 1,2,... is a martingale and |X; 11 — X¢| < ¢;. Then for all positive
integers n and all positive reals x, Pr[X, — X > z] < exp{—zfiécg}

3In probability theory, a martingale is a stochastic process (i.é.,za sequence of random
variables) such that the expected value of an observation at time ¢ + 1, given all the
observations up to time ¢, is equal to the observation at time ¢,namely E[X;11|X;] = X;.

*Notice that the maximum possible load is ), w;, which is less than m OPT (2.18)
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<TOPT
= PoA<T

So it suffices to show that indeed the probability that the load of a given link j
exceeds (T'—1)OPT is less than 1/m?. Let X; be a random variable denoting
the contribution of agent i to the load of link j. Clearly Pr[X; = w;] = p! and
Pr[X; = 0] = 1 —p!. The random variables X1, ..., X,, are independent. We
are interested in upper bounding the probability Pr{)> . X; > (T'— 1)OPT].
In order to do so we intend to use the Azuma-Hoeffding inequality (unfor-
tunately the good concentration bounds of sums of binomial variables are of
no use here). However before applying the Azuma-Hoeffding inequality we
must “fix” our random variables, so that they form a martingale satisfying
the inequalities necessary conditions (| X1 — X¢| < ¢;). Therefore we de-
fine the new random variables Y; = X1 + ... 4+ X} + pye1 + ... + ptn, where
by p; we denote E[X;]. It is easy to verify that E[Y;1]Y;] = Y;: note that
Yip1 = Yi+ Xy —puqa; since p1; = E[X;] the result follows. Observe now that
Vi1 =Yl = [Xer1 —pua| = [Xer1 —pligwia| < wys, since Xpy1 € {wygq, 0}
We then apply the Azuma-Hoeffding inequality which yields:

2

X
PrlY, =Y, >z] < eXp{_2Ei w?}
Note that
Y, = ZXi
and that
=Y =Y ElX]= ZX = M’ < (2—1/m)OPT < 20PT

where we used Theorem 2.3.14. The probability we want to estimate is:
>.X; > (T-1)0PT &Y, > (I'-1)O0PT = (I —3)0OPT + 20PT =
Y, > (T-3)0PT+Y,<Y,—Y,>(T—-3)OPT. Let x = (T — 3)OPT.
Then:

ZX > (T —1)OPT] < Pr[Y, — Yo > z] < exp{—

Finally it is not hard to establish that
(1): >, w? < mwi, assuming wy > ... w, and
(2): >, w? > 1/m(>, wi)?* = m(>; wi/m)?, from Cauchy-Schwarz
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Hence (1), (2)= m(}_, w;/m)* <>, wi < muwi
= > w? < max{mw?,m(>, w;/m)*} < mOPT?
using (2.18).

Thus, the probability that the load of link j exceeds (T'— 1)OPT is at most

(T — 3)°0PT?

(T — 3)>’0PT?
exp{— 9 Zz wig } <exp{—

2mOPT?

(T —3)?

2m

}

} = exp{-

For T = 3 + V4mInm, this probability becomes 1/m? and the proof is
complete. l

The corresponding upper bound and the case of arbitrary speeds

In this section we are going to sketch the proof for the corresponding upper
bound in the case of uniform speeds, as it appears in [KMS03]. This paper
introduces a powerful technique called “ball fusion”, which is essentially an
extension of the classical “balls in bins” problem, when we consider balls of
arbitrary weights and arbitrary probabilities of a ball choosing a bin. This
technique also applies to the case of arbitrary link speeds, or even for gen-
eral latency functions. However it cannot yield a result for the game we are
studying, due to a series of other implications. The final answer for the case
of arbitrary link capacities was given by [CV02], which attempts a complete
different, quite more technical, approach to the problem. This attempt re-
sults in the same upper bound for the coordination ratio of the uniform case.

Koutstoupias, Mavronicolas and Spirakis in [KMS03] focus their attention
on the class of mixed strategies, in which the expected latency M7 through
each link is at most a constant multiple of OPT. These mixed strategies
profiles are called approzimate equilibria and it is easy to see that for the
game we are studying, all NE belong to this class, since M7 < 20PT (see
Theorem 2.3.14). Of course the inverse does not hold, that is, there exist ap-
proximate equilibria that are not NE. The reason for considering this more
general class of equilibria is that the following bounds hold in an obvious way:

from type (2.18): max; w; < OPT }
from definition of approx. equal: max; M’ < 20PT

max{max w;, max M’} < 20PT (2.21)
i J

So it suffices to show the following:
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Theorem 2.3.16.

1
VP : SC(P) = O(—=2™"

m) max{mzax w;, Tax M7}

because then: SC(P) = O(~2™_)OPT = PoA = O(—2™ )

log log m log log m

The analysis to prove that SC(P) < O(log’ig”m) max{max; w;, max; M7}
consists of two major steps. In the first step (the ball fusion) we reduce the
case of arbitrary weights to the case of almost equal weights (that is, where
all weights are within a factor of 2 from each other). The method to achieve
that is to “fuse” the two (currently) smallest balls® together to form a new,
larger ball with weight equal to the sum of weights of the other 2, only if the
resulting weight does not exceed the 2max; w; in the original game. When
we cannot fuse any more balls we stop. For every pair of balls that we fuse,
we assign to the new ball a probability in a way that the M7 is preserved
(notice that M7 is really important for this proof, since it will eventually up-
per bound the social cost). We then show that the social cost of the resulting
game is no less than the social cost of the original game.

The next step now is to upper bound the social cost for the case of iden-
tical weights. The social cost for this case is even worse (i.e. bigger) than the
one in the case of almost equal weights (but at most twice this worse). The
social cost for the case of identical weights is upper bounded by use of prob-
abilistic arguments: they use techniques for estimating tails and Chernoff
bounds [Cheb2] to show that the social cost of the identical weights case is at
most O(lolgof%) of the maximum expected latency max; M7. That together

with (2.21) establishes the result.

A few more words about ball fusion: In each step of the ball fusion we re-
place two balls with their sum and assign to it a probability such that all M7
remain the same. Although all the expected traffics remain the same (and so
does the maximum expected traffic max; M7) the same does not hold for the
expected maximum traffic, namely the SC. Indeed, since we now deal with
bigger weights, we expect the SC to either increase or remain the same. This
is indicative of the subtle difference between the terms “expected maximum
traffic” and “maximum expected traffic” (the second one is always smaller
then first one - see also Remark 2.3.4). In fact this difference is an important
tool in the proof of [CV02].

5We often use the terms “balls” instead of “users” and “bins” instead of “links”.
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Now, in order to prove the claim that the social cost is indeed bigger in
the case of almost equal weights Koutsoupias et. al. use an inductive argu-
ment on the number of balls and first show that the SC grows up after one
fusion, if we limit ourselves in the pure strategies profiles. If we repeat this
until no more balls can be fused (without exceeding the initial 2 max; w;)
we create a new set of weights which are all in the interval [h/2, h|, where
h = 2max; w;. Indeed, if there was a weight less than h/2 then it could be
fused with the original ball of maximum weight h/2. This new set’s SC is
proved to be no less than the SC of the original set. If we now keep the
possibilities for the new set of balls the same and increase all weights to h
(so that they have identical weights) then the SC will be even bigger (but at
most twice this big, since we are at most doubling the weights).

The next step is to prove Theorem 2.3.16. The intuition behind this
theorem is that the SC is maximized if all balls fall into one bin (namely if
we have a big max; M) or if there exists a particularly heavy ball (namely if
we have a big max; w;). So we can upper bound SC using those two terms.
The results of ball fusion allow us to focus only on the case of identical
weights (since it upper bounds the SC of the arbitrary weights case) and
even consider all the weights to be 1. In fact we can prove the following
Lemma, using probabilistic arguments that are commonly used in the theory
of random allocations.

Lemma 2.3.17.

2¢1
VP : SC(P) < (28"

IN

(

——— 41 1 M?
loglog m + 1) max{ , max }

Obviously if the identical weights are not set to unit but to max; w; the
above lemma implies Theorem 2.3.16.

Finally we give the following theorem for the case of arbitrary link capac-
ities without a proof:

Theorem 2.3.18. [CV02] The PoA for a parallel link network with arbitrary

link capacities is @(bgﬁ%).
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Chapter 3

Congestion Games

In this Chapter we focus on congestion games, which are the natural general-
ization of the network of parallel links of Chapter 2. In fact congestion games
have been studied long before the actual KP-model was considered in 1999,
mostly as a form of a class of games, called “potential games”. However, the
interest on these games grew up at the late 90’s along with the upcoming
trend of algorithmic game theory.

In this thesis we discuss the main types of congestion games, their rela-
tionship with potential games, we highlight the fact that they always admit
a PNE, we present some interesting results concerning its tractability and
ofcourse we study their Price of Anarchy.

3.1 Definitions

We start off by giving the intuition behind congestion games. We can imag-
ine a congestion game either as a situation, where we want to route traffic
through a network -which in contrast with KP-model, consists of arbitrary
many links and nodes, in arbitrary topology-, or as a situation, where we
have some resources and some players, who want to use these resources. In
either case, the resources (network edges resp.) have cost functions (i.e. la-
tency functions), which are non-decreasing. Hence, the more players pick
this resource (equiv. the more traffic is routed through this link) the bigger
the delay for all the players who choose it.

Formally a congestion game consists of:

e a set of resources E (possibly network edges)
e a set of players N

e the resource delays d,

29
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and for each player ¢
e an action set A; C 2¥
o a weight (traffic demand) w;

Using all of the above we can define a weighted congestion game, i.e. where
the players have different weights. Henceforth however, when we refer to con-
gestion games, we shall implicitly assume that all players have unit weights.
The reason for that is that the majority of results that we are going to present
here, refer to unweighted congestion games.

Some more useful notation concerns the way players act and the outcomes
of their choices:

o let A= (ay,...,a,),a; € A; be a profile of pure strategies

let P.(A) be the set of players picking resource e in profile A

let n.(A) be the number of players picking resource e in profile A.
Obviously n.(A) = |P.(A)]

define the load of resource e with respect to profile A to be L.(A) =
Y icp,(4) Wi- For unweighted games this is simply Le(A4) = ne(A)

finally define the cost of each player to be ¢;(A) = >, L(e)for the
strategy profile A = (a1, ...,a;,...,a,)

It is easy to extend the notion of mixed strategies in the case of conges-
tion games. However we are not going to do that. The reason for that is
that, as we shall soon see, the congestion games always possess PNE, so we
won’t need to concentrate on the mixed case. The truth is that there has
been recent research on the case of mixed equilibria as well, which is mainly
due to the fact that -for most cases of congestion games- the PNE cannot be
easily computed. In this thesis we shall briefly present some of the results
concerning the mixed PoA.

Congestion games are usually separated into many categories based on
various criteria. The main types of congestion games are the following:

e Symmetric vs Asymmetric congestion games: in the symmetric
congestion games, all players have the same action set and the same
weights, i.e. they are indistinguishable.
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e Network vs General congestion games: in network congestion games,
we consider the resources to be the edges of a directed graph, each
player has a sink and a source vertex (the commodities: (s;,¢;)) and
the action sets for each player are s; — t; paths.

e Single vs multi-commodity (network) games. In single-commodity
network games there is only one commodity s — ¢ for all players.

3.2 Equilibria

In this section we shall discuss the main characteristics of congestion games
equilibria. We point out a theorem that guarantees their existence and then
we investigate their tractability. We briefly present some results on weighted
congestion games to0o0.

3.2.1 Existence of Equilibria

We shall prove the existence of equilibria for a more general type of games,
called potential games and we shall then show that every (unweighted)
congestion game is in fact a potential game, or, as we say, admits an exact
potential.

Let us first define the exact potential:

Definition 3.2.1. A function ® : £ — R is an exact potential for game G
iff

Vi € N,Va, € A;,VA : ¢;(A) — c;(A7" a}) = ®(A) — ®(A™, a)),

» »

where (A%, a}) is the standard notation in Game Theory for the strategy

»

profile that results from A by replacing its i-th entry with a!.
The crucial observation is the following:

Proposition 3.2.2. Fvery game that admits an exact potential possesses a
PNE.

Proof. We can start from an arbitrary pure strategy profile A, and at each
step one player reduces its cost. That means, that at each step, ® is reduced
identically. Since ® can accept a finite amount of values, it will eventually
reach a local minimum. At this point, no player can achieve any improve-
ment, and we reach a PNE. O
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Hence we have a well defined class of games, the potential games, which all
have the important property of possessing a PNE. Already from 1973 Rosen-
thal had proved the following theorem, which states that every congestion
game is an exact potential game.

Theorem 3.2.3. [Ros73]
FEvery unweighted congestion game admits an exact potential.

Proof. Let ®(A) =3 ) 4, (k), a) € A\g; and A’ = (A%, a}). Then
we have:

ne(A) ne(A’)
Q(A) = B(A) = Y N de(k) =D > de(k)
eclk k=1 eckE k=1
ne(A)+1 ne(A)
= Z de(k> - Z de(k)
ecU;al\a; k=1 k=1
'ne(A)fl ne(A)
+ Z de(k) - Z de(k)
ecU;a;\a k=1 k=1
= Z de(ne(A) +1) — Z de(ne(A))
ecal\a; eca;\a}
= Zde(ne<A/)) - Zde<ne(A))
ecal eca;

= Ci(A/> — CZ(A)

where we exploit the fact that Ve € E\(a; Ua}) and Ve € a; N a; the load

of those resources remains the same in A and A’. Additionally Ve € a}\a;,
ne(A’) = n.(A) + 1 and Ve € a;\a}, n.(A") = n.(A) — 1. O

So a natural question now is, what other games can be proven to have
PNE by use of potential functions? Monderer and Shapley [MS96] have
provided an early and devastating answer: only for (inconsequential gener-
alizations of) congestion games can we have an exact potential functions, or
as they stated:

Proposition 3.2.4. [MS96] Every finite exact potential game is isomorphic
to an unweighted congestion game.

However there exist games (e.g. the party affiliation game defined in
[FPT04]), where the Nash dynamics converges, i.e. there exists a PNE, and
the game is no congestion game. Indeed in this case we cannot find an exact
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potential, but we can find an ordinal potential (or general potential function),
for which we do not require that the differences are identical, but just that
they have the same sign. The ordinal potential remains a sufficient condition
for the existence of PNE. Moreover, in [FPT04] they show that, under the
relaxed definition of potential, the class of potential games is much richer,
essentially encompassing all of the class PLS!: every problem in PLS corre-
sponds to a game that admits an ordinal potential (and therefore possesses
a PNE).

3.2.2 Computing a PNE in various congestion games

We move on now to discuss the complexity of finding a PNE. Our source for
this section is [FPT04]. We shall give 1 positive result and 3 negative results:

e for the case of symmetric? network congestion games the problem of
finding a PNE is in P

e for the case of

— asymmetric network congestion games
— general symmetric congestion games

— general asymmetric congestion games
the problem of finding a PNE is PLS-complete
The positive result is easy to understand and prove as follows:

Theorem 3.2.5. There is a polynomaial time algorithm for computing PNE
in symmetric network congestion games.

Proof. The algorithm computes the minimum of the potential function .
In order to do that we reduce our problem to the problem of finding the
min-cost flow in a network, which can be solved in polynomial time. The
reduction is simple and can be performed in polynomial time: for each edge
in the original network construct n edges (n = the number of players in the
original network) all with capacity 1 and with costs d.(1),d.(2),...,d.(n).
It is easy to see that the cost of every flow corresponds to the value of ®
for the corresponding strategy profile, since it is integral (easy to prove) and
since the parallel edges get filled from lower cost to higher cost (due to the
min-cost). Hence a min-cost flow corresponds to a minimum of ®. O]
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Figure 3.1: Complexity Hierarchy of Search Problems

To understand why the latter 3 results are negative, we need to discuss
some things about complexity classes and the so-called inefficient proofs of
existence. This discussion can be found in [Pap94], where the hierarchy of
Figure 3.1 is presented. This hierarchy is used to describe search problems
(and not decision problems), i.e. problems where we want to find a solution
(and not just whether it exists or not). Actually Papadimitriou focused
on the semantic class 7FNP which (informally) is the class of all search
problems which are guaranteed to have a solution, but where the solution
seems hard to be found. In order for this to happen, we need some sort of
non-constructive proof, that guarantees the solution, but does not provide
us with an efficient algorithm for tracking it. This kind of proofs have been
categorized based on the sort of argument one uses and the classes depicted
in Figure 3.1 correspond exactly to those arguments.

Namely

e the class PLS (Polynomial Local Search) is based on “every finite

directed acyclic graph has a sink”. Other known complete problems
for this class are POSNAE3FLIP and CIRCUITFLIP

e the class PPP (Polynomial Pigeonhole Principle) is based on “pigeon-
hole principle”

Lwhich we shall see in a while
Zsymmetric here also implies a single-commodity network
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e the class PPA (Polynomial Parity Argument) is based on “all graphs
of max degree 2 have an even number of leaves”. A known problem
for this class is “given one Hamilton Path in a graph with odd degrees,
find a second one” (existence is guaranteed)

e the class PPAD (Polynomial Parity Argument Directed) is the same
as PPA, only now the graph is directed and we are searching for a

source or a sink. Known complete problems for this class are 2NE,
Brower’s and Kakutani’s fix-point theorems, 3D-SPERNER

e the class PPADS (Polynomial Parity Argument Directed Sink) is the
same as PPAD, only now we are searching for a sink

We note that the problem of finding a NE in general 2-or-more player games
(2NE) is complete for PPAD, as is the problem of finding a PNE for the
above mentioned types of congestion games complete for PLS. This happens
because in both cases, the existence of the equilibrium is guaranteed by an
“inefficient proof”.

Let us discuss now PLS a bit more since this is the class that we are
going to use. PLS was independently defined in [JPY88] in order to describe
problems where we need to “find some local optimum in a reasonable search
space”. Its ingredients are:

e a problem with a search space, i.e. a set of feasible solutions which has
a neighborhood structure

e a poly-time algorithm s(x) which, given an instance x, computes an
initial (arbitrary) solution

e a poly-time cost function c(x,s) that given an instance x and a solution
s, it computes its cost

e a poly-time neighbor function g(x,s) that given an instance x and a
solution s, either returns an other one in its neighborhood with lower
cost, or “none” if none exist

It must be obvious that, using the above features, we can always find a local
minimum, starting at some arbitrary solution and moving towards a better
one at each step. Ofcourse the local minimum most probably will not be
a global minimum, but in the case of PNE, a local minimum is all we are
looking for (cf. the local minimum interpretation of NE as opposed to the
global minimum interpretation of DE). So, why is PLS-completeness a bad
thing? The answer lies in thy number of steps of such a naive “gradient
descent” method. It can be proven that
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e finding a local optimum reachable from a specific state is PSPACE-
complete

e there are instances with states exponentially far from any local opti-
mum

We are now ready to discuss the reductions for the three latter cases of
congestion games. In order to prove those cases PLS-complete we need a new
kind of reduction, the PLS-reduction, whose aim is to map the neighboring
structures and the local minima of one instance to those of another, and an
initial PLS-complete problem: the POSNAE3FLIP.

Definition 3.2.6. POSNAE3FLIP[SY91]

Given a boolean formula in CNF, with all its clauses containing 3 positive
literals, find a truth assignment s.t. by flipping the value of just one variable,
we cannot reduce the total weight of “bad” clauses: clauses that have all
variables equal to 1 or 0.

Example: for (x1VaeVag)A(z1VeaVaey) A(xyVasVas)A(rsVeyVes), with
clause weights 10, 10, 10, 2 respectively, one solution is (1, xe, 3, T4, x5) =
(1,1,0,0,0) of cost 2 and another solution is (x1, x2, x3, 24, x5) = (1,0,1,0,0)
of cost 0. However getting from one solution to another would require two
bitflips, which is why the solutions are not neighbors, and are hence both of
them local minima.

Theorem 3.2.7. For the case of
1. general asymmetric congestion games
2. general symmetric congestion games

3. asymmetric network congestion games
the problem of finding a PNE is PLS-complete

Proof. 1. Reduction from POSNAE3FLIP: Each variable x of the for-

mula corresponds to a player of the game. For each clause create
two resources e. e.. The strategy set of player i contains two ac-
tions/subsets of resources: A; = {{e.|x appears in clause c}, {{e.|x
appears in clause c}}. Depending on the value of the corresponding
variable, each player picks either the first or the second set of resources.
From the above definition of strategy sets it is obvious that no resource
can be played by more than 3 players. The resource delays are defined
d.(0) = d.(1) = d.(2) = 0 and d.(3) = w, where w is the weight of
the corresponding clause. It is now easy to check that every PNE of
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the game corresponds to a solution of POSNAE3FLIP: player i does
not want to change his strategy (i.e. flip his value) because he cannot
have a smaller cost; but the cost is determined only by resources with 3
players on them (all 0 or all 1), which correspond to “bad” clauses. So
since this holds for all players, we have that the sum of costs of “bad”
clauses cannot be improved by a deviation, i.e. a bitflip.

2. Reduction from the asymmetric case: We augment the network of the
first case by adding n additional resources ey, ...,e,, which have zero
delay if they are picked by just one player and infinite delay in any other
case: d.(1) = 0 and d.(k) = M otherwise, where M a sufficiently large
number. The new, common action set is A = J,{sU{e; }|s € A;}. The
idea is that, since the new resources have very large costs if picked by
two or more players, at PNE we expect each player to pick a different e;.
Indeed, if for example 2 players are crowded in an e;, then there exists
(at least) one e; which is free and hence the players have a profitable
deviation. So at NE every resource is picked by exactly one player. But
then, thanks to the definition of A, we can identify the “anonymous”
players of the symmetric case according to the strategy set A; they
use and match them with the corresponding players of the asymmetric
case. Hence a PNE of the symmetric case is mapped to a PNE of the
asymmetric case.

3. Reduction from WITNESSED XPNAE3FLIP: for the case of asymmet-
ric network congestion games, the reduction is very complex. A first
idea would be to follow the construction of the general asymmetric case,
but take care to add some extra edges, so each variable-player traverses
either all e, edges, or all e/, edges. The difficulty is to prevent a player
from taking a path that doesn’t correspond to a consistent assignment.
In fact for a dense instance of POS-NAE-3SAT, this appears unavoid-
able. Then, in [FPTO04] they notice that the original reduction for
POSNAE3FLIP in [SY91] produces a very structured, sparse instance
of POSNAE3FLIP. So, what they do is tweak the formulae produced by
the [SY91] reduction and then carefully arrange the network so “non-
canonical” paths are never a good choice. The resulting reduction has
39 variable types and 124 clause types and is omitted.

m

3.2.3 Some results on weighted congestion games

This section contains some results concerning equilibria in weighted conges-
tion games. The sources for this section are [FKS04], [FKS05] and [Mil96].
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For the model we discussed thus far we first present two negative results:

Theorem 3.2.8. [FKS0/] There exist weighted single-commodity (network)
congestion games with resource delays that are linear or 2-wise linear® func-
tions of the loads, for which there is no PNE.

Theorem 3.2.9. [FKS0/] There exist weighted single-commodity (network)
congestion games which are not exact potential games, even with resource
delays identical to their loads.

and then two positive results:

Theorem 3.2.10. [FKS0/] For any weighted l-layered* network congestion
game with resource delays identical to their loads, at least one PNE exists
and can be computed in pseudo-polynomial time.

Theorem 3.2.11. [FKS05] For any weighted multi-commodity network con-
gestion game with linear resource delays, at least one PNFE exists and can be
computed in pseudo-polynomial time.

Finally we shall briefly discuss an alternative model which was proposed
by Milchtaich back in 1996. In his model, Milchtaich considered resource
delay functions which are not universal, but player-specific, i.e. they are of
the form d., for all resources e and players 4. In order to simplify the model,
he made two crucial assumptions:

1. each player may choose only one resource from a pool E of resources
(shared to all the players) for his service (this is exactly the KP-model
of parallel links: [KP99]).

2. the incurred delay is monotonically non-decreasing with the number of
players selecting it. Although they do not always admit a potential,
these games always possess a PNE.

Two very important results for this model are the following:

Theorem 3.2.12. [Mil96] Every unweighted congestion game on parallel
links with player-specific resource delays possesses a PNE.

Proposition 3.2.13. [Mil96] For 3-players, 3-actions weighted congestion
games with player-specific resource delays, there exist instances with no PNE.

3i.e. the maximum of two linear functions
“a network where every (simple) directed s-t path has length exactly [ and each node
lies on a directed s-t path
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3.3 Studying the Price of Anarchy

In this section we present some results about the PoA of congestion games.
Driven by the fact that PNE always exist, Christodoulou and Koutsoupias
proved in [CKO05] a series of tight bounds for the pure PoA of (many types of)
congestion games. Earlier Fotakis et. al.[FKS04] had proved some results on
the mixed PoA which extended the results of the KP-model (using essentially
the same techniques). We shall discuss some of these results here.

3.3.1 The Pure Price of Anarchy

In [CKO05] the writers present some tight bounds for various types of conges-
tion games. In order to reach these results they:

e handle general congestion games (both symmetric and asymmetric).
They do not explicitly discuss network congestion games, although
some of their results apply to this case as well.

e concentrate on the PPoA only. However some results extend to the
case of mixed PoA as well.

e consider latency functions of the form: d.(z) = x. This case extends
immediately to the more general case of linear latency functions d.(z) =
ax+0b and the results can be generalized for bounded degree polynomials
as well.

e consider both MAX and SUM as objective functions for the SC.

The results of [CK05] are summarized in the following Table:

SUM | MAX
Symmetric | 5/2 5/2
Asymmetric | 5/2 | ©(y/n)

Table 3.1: Main results of [CKO05]

In this thesis we shall only present the proof for the asymmetric case,
when we consider the average cost (i.e. SUM). The proof methodology for
the other cases is similar.

Theorem 3.3.1. Lower bound

There are linear congestion games with 3 or more players with pure price of
anarchy (PPoA) for the average social cost (SUM) equal to 5/2.
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Proof. We will construct a congestion game for N > 3 players and |E| = 2N
facilities with PoA = 5/2.

We divide the set F into two subsets F1 = {hy,...,h,} and Es = {g1,..., 9.}
each of N facilities. We define the strategy set of player ¢ to be A; =
{{hi, 9}, {9gi+1, hi—1, hix1}}. The optimal allocation is for each player to se-
lect the first strategy while the worst-case PNE is for each player to select the
second strategy. It is not hard to verify that this is indeed a PNE and that
each player has cost 5: resource g;.1 is picked by only one player, whereas
resources h;_1, h;11 are picked by exactly two players. Since at the optimal
allocation the cost of each player is 2 (each resource is picked by exactly one
player), we have PPoA = 5/2. O

Before proving the upper bound we need the following Lemma which can be
proved by induction.

Lemma 3.3.2. For every pair of nonnegative integers «, [3, it holds

1 bt
1)< =5%2+ 242
a(f+1) < LA
Theorem 3.3.3. Upper bound
For linear congestion games, the pure price of anarchy (PPoA) of the average
social cost (SUM) is at most 5/2.

Proof. Let A be a profile that is a PNE and P an arbitrary (possibly optimal)
profile. The cost of player i at PNE is ¢;(A) = >, 4 n.(A).

We want to bound the social cost, which we take to be the sum of the cost
of the players:

SUM(A) =) ci(4) =) _ni(4)

2 eclb
(as follows by a simple reversal of the sums), with respect to the optimal cost

SUM(P) =Y c(P) =Y n2(P).

7 eckE

At PNE, the cost of player 7 should not decrease when the player switches
to strategy P;:

G(A) = 3 () < 3 ne(A7 P) < 3 (nefA) + 1)
e€A; ech; ecP;

If we sum over all players i, we can bound the social cost as

SUM(A) =3 e(4) < 323 (n(4) + 1) = 3 e (P)(ne(4) + 1)

[ i ec€h; eck
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With the help of Lemma 3.3.2, by setting oo = n.(P), 8 = n.(A) and summing
for all 7, the last expression is at most in.(A)* + ne( )2 = 1SUM(A) +
2SUM (P), from which the result follows. O

3.3.2 The Mixed Price of Anarchy

We end this chapter with some results on the mixed PoA. Although we have
not formally defined the mixed case of congestion game, the generalization
should be obvious.

Some interesting work on the mixed PoA can be found in [FKS04], which we
shall briefly discuss here. In this paper, Fotakis et. al. focus their interest on
weighted l-layered network congestion games where the resource delays are
identical to their loads. This case consists a highly non-trivial generaliza-
tion of the well-known KP-model. The main reason why they focus on this
specific category of resource delays is that there exist instances of (even un-
weighted) congestion games on layered networks that have unbounded price
of anarchy even if we only allow linear resource delays. In fact the writers
modified an example given in [RT02] where the price of anarchy is indeed
unbounded (see Figure 3.2). This instance can be easily converted into an
l-layered network. The resource delay functions used are either constant, or
M/M/1-like delay functions. However, we can have equally bad results even
with linear resource delay functions. Hence in [FKS04] they focus on resource
delays equal to their loads and prove the following interesting theorem.

N

(N4

Figure 3.2: An example with unbounded PoA

Theorem 3.3.4. [FKS0/] The PoA of any weighted, I-layered network con-
gestion game with resource delays equal to their loads is ©(logm/loglogm)

In another paper they also proved:

Theorem 3.3.5. [FKS05] The PoA of any unweighted, single-commodity
network congestion game with resource delays do.(x) = ae - x,a, > 0, is
O(log m/loglogm)
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Remark 3.3.6. One could say that, since we are basically interested in PNE,
which, in the case of congestion games, always exist and since we have a very
good, tight bound for the PPoA, why should we even consider the mixed
PoA? One answer here would be that it does not suffice to know that a PNE
exists, one must also be capable of finding it in reasonable time. Since this
is not possible for some types of congestion games, we should look at the big
picture as well. Another answer should be that the [CKO05] paper succeeded
the [FKS04] paper.

Remark 3.3.7. By the discussion about congestion games so far, the signif-
icance of allowing distinguishable players (i.e. players with different action
sets, or with different traffic demands, or both) must be now obvious. We
saw, how allowing the players to have distinct weights may lead to games with
no PNE or with large PoA. Finally, the last two theorems and the familiar
result of ©(logm/loglogm) seem to point out to some kind of “equivalence”
between games with unit-demand players on arbitrary networks with delays
equal to their loads and games with players of varying demands on layered
networks.
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Chapter 4

Selfish routing

Having extensively considered the atomic case of selfish routing!, we move
on to consider the case where we have an infinite number of players (the non-
atomic case). The basic idea is the same as in multicommodity networks of
Chapter 3: we have a network with some source-sink pairs and an arbitrarily
large number of players that wish to route their traffic through the network,
in a way that minimizes their personal delay. Although, at a first glance,
the study of arbitrarily large populations seems demanding, it allows us to
use methods from continuous mathematics, thus increasing our analytical
tractability. In this chapter we are mostly going to focus on the inefficiency
of the equilibria induced on such games. In order to quantify this inefficiency
we use once again the PoA and Braess ratio, a new measure introduced for
this model; we shall also see the importance of the two motivating examples
(paradoxes) of Chapter 1. Most of the results presented in this thesis come
from the work of Tim Roughgarden and Eva Tardos. However the model
considered has a long history in the transportation science literature and has
also been widely studied by the computer networking community.

4.1 The model

Back in Chapter 1 we defined a game as a triple consisting of the set of
players, the set of strategies for each player and the set of payoff (or cost)
functions for each player. In the atomic case that we have studied so far the
set of players was a finite set. From now on we are going to consider the case
of infinitely many players, in order to model arbitrarily large populations.
We could follow the definitions in Chapter 1 and try to define a payoff per

'The term “selfish routing” was actually used to denote the non-atomic case. The
atomic-case games are more often called “congestion games” or “resource allocation games”

75
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strategy profile. However this would make most definitions pretty hard to
understand and difficult to handle. Hence, we trust our intuition and make
the following remark: we only care what fraction of population picks each
strategy. So we will try to model only this. The question now is, what are
the ingredients that we need to describe the game, when we only focus on
the former fraction? We list them right below:

1. a finite number of player types
2. the population sizes, one for each player type
3. some finite strategy sets, one fore each player type

4. for each fraction of population using each strategy a cost per strategy

Now let us explain what we mean with the above (how they are inter-
preted in a network game) and why they suffice to describe our game. To
understand the following the reader must keep in mind that we now approach
the game from the network’s point of view, as opposed to the player’s point
of view that we have used so far.

Ingredient 1: Remember the multicommodity games introduced in Chap-
ter 3, where each player had an action set consisting of paths between a
unique origin-destination pair of nodes (s;,¢;), called commodities. In selfish
routing each player wants to route some traffic from some origin nodes to
some destination nodes, so the problem is essentially the same. The differ-
ence is that now we have infinitely many players. The idea is to separate
the infinitely many players in a finite number of player types, based on the
commodity of each player’s action set. Namely if our network consists of
n commodities (s1,%1),...(Sk, k) then we have k player types, with type i
wishing to route some traffic from s; to t;.

Ingredient 2: In weighted multicommodity games, we allowed each
player to have a weight, which represented the amount of traffic he wanted
to route on the network from s; to ¢;. Here, instead of assigning each player a
separate weight, we focus only on the total amount of traffic routed through
the network for each player type (i.e. for each commodity).

Ingredients 3 & 4: Finally the finite strategy sets that correspond to
each player type can be easily interpreted in the various (s;,t;) paths. We
then define the cost of each edge and use it to derive a proper cost function
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for the fraction of population picking each strategy ((s;,t;) path).

Before moving on to the formal definitions let us summarize some more
differences between this model and the KP-model introduced in Chapter 2.
Most of those differences will become apparent as we move through this
Chapter.

KP-model selfish routing model
atomic non-atomic
we consider both NE and PNE we only consider PNE
social cost defined as max cost | social cost defined as average cost
only parallel link networks general multicommodity networks
linear cost functions nonlinear cost functions as well

Table 4.1: Main differences of KP-model and selfish routing

Definitions

So a selfish routing game formally consists of a multicommodity network flow
described by a directed graph G = (V, E), with vertex set V" and edge set
E and a set (sq,t1),...(sk,tg) of source-sink vertex pairs, the commodities.
Parallel edges are allowed and a vertex can participate in more than one
commodities.

We use P; # 0 to denote the set of simple (s;, t;)-paths and P to denote
their union: P = [J,P;. Let r be a nonnegative vector indexed by the
commodities, that denotes the traffic rates, i.e. the total amount of traffic
to be routed between one source-sink pair. A flow f in G is a nonnegative
vector indexed by P. Then fp denotes the amount of traffic (fraction of
total traffic between s; and t;) that chooses path P to navigate from s; to ;.
Obviously for any feasible flow f the following must hold:

Z fp=r; (4.1)

PeP;

A flow f induces a flow on edges { fe}ecr, where fo = > pep..cp fr and
it denotes the total amount of flow that uses edge e.

To model the negative consequences of congestion we give each edge e
of G a nonnegative, continuous, nondecreasing cost function c.(f.), which
denotes the travel time (cost) incurred by all traffic traversing edge e, given
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the flow f.. As we shall see, the above properties of the cost function are
very important to prove existence and uniqueness of equilibrium. Finally we
define the overall cost of a path P to be cp(f) = > cp ce(fe).

Now we can formally define a selfish routing game as a triple (G,r,¢),
where GG is a multicommodity network, r is a vector of traffic rates and ¢ is
a set of cost functions. We call (G, r,c) an instance.

Equilibria

It is now obvious that in the non-atomic model we replace the pure (or
mixed) strategy profile, which sketches the choices of each player, with the
flow f. Hence f now denotes the selfish outcome of such a network and we
will try to define the notion of an equilibrium using f. Keep in mind that an
equilibrium is a collection of choices (one for each player), where no player
has an incentive to change his choice: in our model this implies that for every
type of player (i.e. for all commodities (s;,%;)) all corresponding players pick
a strategy (i.e. an (s;,t;)-path P) that minimizes the incurred cost c¢p. This
leads to the following definition of Wardrop equilibrium (first formulated by
Wardrop for road traffic), a notion of equilibrium that is equivalent to the
one of Nash flows.

Definition 4.1.1. Let f be a feasible flow for the instance (G,r,¢). The
flow f is a Wardrop equilibrium if, for every commodity 7 € {1,...,k} and
every pair of paths P, P € P; of (s;,t;) paths with fp > 0,

cp(f) < ep(f)

In other words a flow f that is a Wardrop equilibrium (WE) is a flow that
routes all traffic on the paths of minimum cost, among all other (s;, ¢;)-paths.
It is straightforward that all paths of a given commodity used by a Wardrop
equilibrium must have equal costs, in order to avoid defections. Hence the
corollary:

Corollary 4.1.2. All paths P € P; of a given commodity © used by a flow f
that is a WE, must have equal costs. We shall denote this by cp,(f).

Remark 4.1.3. The above definition implies that each player deterministically
picks one path to route his traffic. The case of mixed strategy profile for this
model is not considered, since we can prove all kinds of interesting results
for a pure profile, which is what we are after all really interested in.

Remark 4.1.4. In Definition 4.1.1 we are implicitly assuming that each player
controls a negligible portion of the overall traffic and thus his choice has no
effect on the network congestion. That is also the meaning of defining flows:
a flow consists of an arbitrarily large number of negligible player traffics.
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The two fundamental questions of existence and uniqueness of equilibrium
have been resolved from the 50’s by Beckmann, McGuire and Winsten, who
have formulated the following proposition:

Proposition 4.1.5. Let (G,r,c) be an instance of a selfish routing game:

1. The instance (G,r,c) admits at least one WE.
2. If f and f are WE for (G,r,c), then c.(f.) = ce(ﬁ) for every edge e.

The proof of the above proposition is remarkably simple. The key idea is
to show that WE of the above instance, are exactly the flows that minimize
the following potential function:

fe
o) =% [ atos (12

over all feasible flows. Since cost functions are continuous and the space of all
flows is compact, Weierstrass’s Theorem implies the existence of a minimum
and thus of a WE. Now since c. are taken to be nondecreasing and since
c. is essentially the derivative of ®, ® must be convex. But for a continu-
ous, convex function every local minimum is also global, which implies that
the values of the cost functions ¢, at all minima (i.e. at all WE) are the same.?

Before moving on to defining the PoA, let us see a very useful Lemma,
that we shall use later to upper bound the PoA.

Lemma 4.1.6. A flow [ feasible for (G,r,c) is a WE iff

S fe < S alff: (4.3)

eck eck

for all feasible flows f*.

Proof. We shall first prove that the following inequality:

e <Y er(Nfp

Pep Pep

where f* is a feasible flow for (G, r, ¢) holds iff f is a WE. The proof is simple:

2This does not imply that all lows that are WE are identical, but only that they induce
identical edge costs. Nonetheless this suffices, as we shall see.
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Now notice that:

S er(Nfr=>_ > clfo)fr
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(split paths into commodities)

(see Corollary 4.1.2)

(see (4.1))

(see (4.1))

(from Definition 4.1.1)

(definition of c¢p(f))
(rearrangement of summations)

(definition of f,)

Likewise we can prove that Z cp(f)fp = Zce(fe)f:. Combining these

pPeP

ecP

with the above inequality yields the result. O]

The Price of Anarchy

We conclude the discussion about the model with the definition of the PoA.
To define this we need an objective function that represents the efficiency
loss of the system. Unlike KP-model, where we considered a cost function
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that corresponded to the maximum latency among all links, here we shall
focus on the average cost induced by a flow f, henceforth denoted by C'(f):

C(f) =Y cr(f)fp=>_cclfe)fe (4.4)
pPeP eck

The first equality in 4.4 is a definition and the second one follows from the
same reversal of sums as in Lemma 4.1.2. The fact that we do not consider
mixed strategy profiles, simplifies the expression for the social cost, in the
sense that we do not need to compute the estimation of the cost function:
SC here is merely C(f). Also we define the optimal flow f* for (G,r,c) to be
the flow that minimizes C'(f) among all feasible flows f. The corresponding
value C'(f*) is OPT. Once again Weierstrass’s theorem implies the existence

of an optimal flow f*.

Remark 4.1.7. Notice here that for an optimal flow f* the following must hold
for all feasible flows f: C(f*) < C(f) & Y ocpCe(fi)fi < Y pep ce(fe)fe.
Comparing this relationship with the one of Lemma 4.1.2 for WE, we see
that they look quite the same. This similarity implies that a WE cannot be
much worse than the optimal flow, or equivalently that the PoA can be well
bounded. We could end up at the same result by noticing that a WE is a
minimizer of a potential function and remembering the discussion in Chapter
3 about potential functions.

Definition 4.1.8. The Price of Anarchy p(G,r, ¢) of an instance (G, r,c) is:
(/)
p(G,r,c) = "
G =5

where f is a WE and f* is an optimal flow for (G, r,¢). The PoA p(Z) of a
non-empty set Z of instances is sup(g ;. ez (G, 7, ¢).

We immediately notice a difference with Definition 2.3.5: there is no sup
in front of the fraction. The reason for that is Proposition 4.1.5, which implies
that all WE have equal cost. Thus the PoA is the same, no matter which
WE we consider. In the special case of a zero cost flow, where all WE have
zero cost, we define the PoA to be unit (in order to have p(G,r,¢) > 1 for
all instances (G, r,c)).

4.2 Bounding the Price of Anarchy

In this section we shall provide a lower bound for the PoA of selfish routing
and a corresponding upper bound, for a variety of cost functions. In the fol-
lowing analysis Pigou’s example plays a crucial role, so we repeat the basic
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results right below and we present a nonlinear variant as well.

We have a single-commodity network where the source vertex s and the
sink vertex ¢ are connected through two disjoint edges, one with cost function
¢(x) = 1 and the other with ¢(x) = z. Say we want to route one unit of traffic.
As we discussed in Chapter 1, there is only one reasonable choice for rational
players and that is to route all traffic on the lower edge. We can easily ver-
ify that this flow is a WE. We also discussed that if somehow we convinced
half the players to route their traffic on the upper edge, then all the players
would be better off, in the sense that the delay for half the players would be
1/2 instead of 1. In terms of C, we can say that in the first case we have
C(f) =1-0+1-1=1and in the second case C'(f*) =1-1/2+1/2-1/2 = 3/4.
It is trivial to show that the flow f* is an optimal flow for this network®. and
that, as a result, the PoA is 4/3.

We can show that the PoA of the Pigou example can be arbitrarily large
if we allow nonlinear cost functions. Indeed set the cost of the lower link to
c(x) = 2P, which is highly nonlinear if p is sufficiently large. Once again, for
a unit traffic, all users choose the lower link, inducing a WE of total cost 1.
If on the other hand, the optimal flow f* is to route a small € fraction of the
total traffic on the upper link; then the cost is C(f*) = € + (1 — €)?*!, which
(for € — 0) approaches 0 as p tends to infinity. This means that the PoA for
this instance tends to infinity with p.

The above observations generate a series of other questions: can the PoA
be arbitrarily large if the cost functions are “not too nonlinear”? Is the PoA
in general larger in bigger, more complicated networks or in networks with
more commodities? The answer to all these questions is negative. In fact
Pigou’s example provides a universal “bad case” for selfish routing, in the
sense that it bounds the PoA for a corresponding set of cost functions. The
proof of this claim is the objective of this section.

The Pigou Bound

The above discussion implies that the PoA of a selfish routing instance de-
pends, at the very least, on the set of allowable cost functions C. We there-
fore aim for a (lower) bound that is parametrized by C. Common sets of cost
functions are the constant cost functions, linear functions, polynomials and

3set x the flow of the upper link, 1 — z the flow for the lower link, write down C(z)
and compute x such that C'(z) =0
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queueing delay functions.

The idea here is, that for every set C, Pigou-like examples should provide
a natural lower bound for the PoA of every set Z of instances (G, r, ¢), where
G is of a special form and ¢ € C. So we are going to define a bound «(C),
which we shall call the Pigou bound, in order to show that p(Z) > a(C) for
this appropriate set Z.

The only assumption we need to make about C for now is that it contains
all constant functions. So choose a cost function ¢; € C at random and a
traffic rate r. Then assume that ¢; is a function everywhere equal to ca(r).
Because of the former assumption we have ¢; € C. Now consider the usual
single-commodity, two-node, two links network of the Pigou example, where
we assign the upper and lower edge cost functions ¢; and ¢y respectively and
where the traffic rate is 7. As usual the lower edge is never worse off than the
upper edge and thus routing all traffic on this edge yields a WE of cost co(r)r.
The optimum cost can be formalized as follows: Orélggr(x@(x) + (r—x)ca(r))

and the PoA is then:

max res(r)
0<a<r xca(x) + (1 — x)co(r)

With a closer look at the denominator we can see that the fraction reaches
its max value for z < r. So the PoA can be written:

max T‘CZ(T)
z,r>0 JSCQ(LL’) + (7' - ;L‘)Cg(?“)

Consider now the set Z to be the set of single-commodity instances with a
two-node, two link network and cost functions in C. Obviously the above
Pigou-like network belongs to Z. By the definition of p(Z) as a supremum
over all instances in Z, it follows that the above PoA is also a lower bound
for p(Z). To get a better lower bound, we choose the cost functions in the
worst possible way, i.e. in a way that maximizes the above PoA, and we get
the Pigou bound:

Definition 4.2.1. Let C be a nonempty set of cost functions. The Pigou
bound «(C) is

res(r)
C f—
a(C) =sup sup e~ T)ealr)

(4.5)

We assume that 0/0=L.
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From the discussion above and the definition of Pigou bound the next
Proposition follows immediately.

Proposition 4.2.2. Let C be a set of cost functions that includes all constant
functions, and let T denote the set of single-commodity instances with a two-
node, two link network and cost functions in C. Then

p(Z) > a(C)

It must be by now quite clear that finding an arbitrary lower bound for
the PoA of a set of instances Z is not really hard: actually the PoA of any
instance (G, r,¢) € Z lower bounds p(Z). The question is whether the lower
bound is tight enough. To prove that for the Pigou bound we must provide
a corresponding upper bound. Before that we summarize some interesting
results for some very useful cases of cost functions.

C a(C) References
{az +b:a,b>0}" 4/3 [RT02],
[Rou02]
concave cost functions 4/3 [CSMO04]
[

polynomials® with nonnegative | [1 —p- (p 4+ 1-®FD/P)]=1 [ [Rou02]
coefficients and degree at most p
(nondecreasing) polynomials with ? -
arbitrary coefficients and degree

at most p

set of M/M/1 delay functions %(1—1—,/%) [Rou02]

with queue service rate u > Upyip
and traffic rate r < R0 < Umin

Table 4.2: The Pigou bound for some important sets of cost functions

Remark 4.2.3. Although Proposition 4.1.2 assumes that C contains all con-
stant functions it can be proved for more general set of constant functions as
well.

We shall now prove an upper bound on the PoA. We first state the fol-
lowing Proposition which follows immediately from Definition 4.2.1.

Lemma 4.2.4. Let C be a set of cost functions and «(C) the corresponding
Pigou bound. For ¢ € C and x,r > 0,

ﬂ
o

—
=

~—

x-c(r) >
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We now use the above Lemma and inequality (4.3) to prove the optimal-
ity of the Pigou bound. We should note here that the following theorem has
undergone several iterations and modifications over the years. It was first
proved for the special case of linear cost functions by Roughgarden and Tar-
dos [RT02] and it was extended step by step ([Rou02]). Some of the proofs
in the bibliography are fairly complex. The key idea is to use inequality (4.3)
in order to simplify the proof. Here we follow the proof given by Correa,
Schulz and Stier Moses in [CSMO04].

Theorem 4.2.5. Let C be a set of cost functions and a(C) the corresponding
Pigou bound. If (G,r,c) is an instance with ¢ € C, then

p(G,r,c) < a(C)

Proof. Let f* and f be an optimal flow and a WE respectively, for an instance
(G, r,c) with ¢ € C, then

C(f)=> e f)f:

eEE

> — Z Ce(fe)fe + Z e)Ce(fe) from Lemma 4.2.4

eckE eck

c
> L (4.3) implies Z fe)ce(fe) >

\_/\_/

]

The above theorem implies that the lower bounds of Table 4.2 are the best
possible, namely the PoA of each case is exactly a(C). Another interesting
remark is that the worst-possible PoA for a set of instances occurs in the
very simple Pigou-like networks. Hence we assume that the complexity of
the allowable network topologies has nothing to do with the inefficiency of
the resulting equilibria. In fact the PoA is independent of the number of
commodities as well and depends only on the set of allowable cost functions.

4.3 Bounding Braess ’s Paradox

In this section we focus on Braess’s paradox (see Example 1.3.3). We have
already discussed how startling and unintuitive this result is. In this section
we will try to quantify Braess’s paradox, by defining the Braess ratio, and
we shall study the problem in more general networks. Before studying the
problem at large, it is useful to verify that for the original instance, the flows
proposed in Example 1.3.3, are indeed WE and that their corresponding costs
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C(f) are indeed 3/2 and 2.

Example 1.3.3 shows that adding to a network a new edge can increase
the incurred cost, no matter how “fast” this edge is. Equivalently removing
an edge from an existing network with linear cost functions can decrease its
cost by a factor of 4/3. The question is, can the cost be decreased by a larger
factor

e in larger networks,
e or with multicommodity topologies,
e or with arbitrary cost functions,

e or when multiple edge removal is allowed?

4.3.1 Enlarging the Paradox

In this section we shall show that the severity of Braess’s Paradox depends
on all of the above factors. More precisely we shall show that it can be
arbitrarily severe in large single-commodity network, only if nonlinear cost
functions and multiple edge removal are allowed.

We measure the severity of Braess’s Paradox with the Braess ratio defined
below. The Braess ratio indicates the maximum factor by which the cost of
a WE can decrease from a network to one of its subnetworks.

Definition 4.3.1. The Braess ratio 5(G, r, ¢) of a single-commodity instance
(G,r,c) is

B(G,r,¢) = max cf)

s iy (4.6)

where H ranges over subnetworks of G that contain an s —¢ path, and f and
fH denote WE for (G, r,c) and (H,r,c) respectively.

Remark 4.3.2. For now we limit our discussion on single-commodity net-
works. Later we shall discuss multiple ways to extend the above definition
to multicommodity networks.

Remark 4.3.3. Notice that Definition 4.3.1 allows multiple edge removal, since
we examine the cost for all subnetworks of G. So we could say that multiple
edge removal is always possible. The question is whether it increases the
Braess ratio or not: we shall soon see it does.
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It is also easy to verify that the Braess ratio in Example 1.3.3 is 4/3. We
claim that no larger Braess ratio is possible in single-commodity networks
with linear cost functions. This fact is a consequence of the following (much
stronger) connection between the PoA and the Braess ratio.

Proposition 4.3.4. If (G, r,c) is a single-commodity instance, then
B(G,r,c) < p(G,r.c)

Proof. For every subgraph H of G, a WE f! is a feasible flow for (G,r,¢)
as well. Hence C(f) > C(f*), where by f* we denote the optimum flow

for (G,r,c). Also we have p(G,r,c) > g((ff*)) for every WE [ of (G,r,c).
Combining these inequalities we have C(f#) > p(CG(i )C), which yields the
desired result. O

Now Proposition 4.3.4 implies that any single-commodity network with
linear cost functions, has Braess ratio that is at most 4/3. Since we have a
corresponding lower bound, 4/3 is tight. We shall give a construction which
indicates that this upper bound is also tight (up to constant factors) for other
cost functions as well.

(a) B?

Figure 4.1: The Braess Graphs for k=2 and k=3

Theorem 4.3.5. For ecvery n > 2, there is a single-commodity instance
(G, r,c) with n vertices and

B(G, ) = | 7

Proof. We shall prove the theorem for n even. The case of odd n reduces to
this case, by simply adding an isolated node in the network. Wlog we can
also assume that n is at least 4. So, write n = 2k + 2 for k > 1.

We define the kth Braess graph B* as follows:
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(a) Wardrop equilibrium in (B®,3,¢%) (b) Wardrop equilibrium in the optimal sub-
graph

Figure 4.2: The WE for G and H
e we have 2k + 2 nodes, V¥ = {s,v1,... v, w1, ... wy,t}
e and the edge set E¥ is the union of the sets

= {(sv), (viywy), (wi 1)+ 1 < i <k}
— {(vi,wi—1) : 2 <0 < k} and

= {(v1,8) U (s, w) }

The Braess graphs for k = 2, 3 are depicted in Figure 4.1 Note that B is the
graph in the original Braess’s Paradox (Example 1.3.3). We now separate
the edges in types and define the costs for each such type:

e edges of the form (v;, w;) are type A edges and have cost cf(z) =0

e edges of the form (v;, w;_1), (s, wy), (v1,t)) are type B edges and have
cost cf(x) =1

e for each i € {1,...,k} edges of the form (s,vg_;11), (w;, t) are type C
edges and have a continuous nondecreasing cost function c¢f(x) with
*(k/(k+1)) =0 and c*(1) = .

Furthermore let us denote by
e P, the path s — v; — w; — t fori e {1,... k}
e (), the path s - vy — ¢
e (); the path s — v; > w;_; — tfori e {1,... k}

® Qi1 the path s — wy — ¢
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Now consider the instance (B*, k, ¢*) where the cost functions are defined
as above. Note that routing one unit of flow on each of Py,..., P, yields a
WE in which all traffic incurs cost k£ + 1 (Figure 4.2(a)).
On the other hand, if H is the subgraph obtained from B* by deleting the
k type A edges, then routing k/(k + 1) units of flow on each of Q1, ..., Qr11
yields a WE f# for (H, k,c*), in which all traffic incurs only one unit of cost
(Figure 4.2(b)).Thus

B(G,re) > C(f)/C(f")=k+1=n/2
O

Remark 4.3.6. Although it is not so obvious we can use similar arguments
as in Theorem 4.3.5 to adapt to scenarios where arbitrary cost functions are
not allowed. Then we could show that this lower bound for the Braess ratio
matches the upper bound that follows from Proposition 4.3.4 and Theorem
4.2.5. For more information see [Rou01].

Proposition 4.3.4 and Theorem 4.3.5 also imply that, in order to exhibit
a family of instances with arbitrarily large Braess ratio, we need to have
cost functions drawn from a sufficiently rich set (e.g. polynomials with un-
bounded degree). However this alone is not enough. In order to achieve a
large Braess ratio, we also need larger, more complicated networks®. The
following theorem implies exactly that.

Theorem 4.3.7. If (G,r,c) is a single-commodity instance with n vertices,
then

B(G,r,c) < LgJ

This Theorem shows that, among single-commodity networks, the Braess
ratio is maximized by the networks in the proof of Theorem 4.3.5. In order
to prove this Theorem, we need another, stronger result, which we present
here, without its (quite technical) proof. For more information see [LRT04].

Theorem 4.3.8. Let (G,r,c) be a single-commodity instance, H a subgraph
of G, and f, f WE for (G,r,c) and (H,r, c) respectively. Let S denote the
edges in G but not H (namely, the edges we remove). If every undirected
matching of S\{s,t}, where {s,t} are the source, and destination nodes,
contains at most k edges, then

C(f) < (k+1)C(f)

Snotice the difference with the PoA, where we only cared about the cost functions
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Theorem 4.3.8 implies Theorem 4.3.7 as well as an upper bound on the
severity of Braess’s Paradox, parametrized by the number of edges removed.
Let us first prove Theorem 4.3.7:

Proof. Since there are only n — 2 vertices of GG, apart from s and ¢, every
matching of G has at most |(n —2)/2] = [n/2] — 1 edges. So does every
matching of G\ H. The result follows from Theorem 4.3.8 for k = [n/2] —
1. O

Corollary 4.3.9. Removing k edges from a single-commodity network de-
creases the cost of a WE by at most a factor of k + 1

Corollary 4.3.9 implies that the only way to achieve arbitrarily large
Braess ratios is to allow an unlimited number of edge removals. In fact
the bound of the Corollary is matched by the construction of Theorem 4.3.5,
so it is tight.

Multicommodity networks

We now extend the notion of Braess ratio for multicommodity networks. We
could use here Definition 4.3.1 as well, but although Proposition 4.3.4 still
holds and we have a tight bound for the case of linear latency functions, no
corresponding bounds are possible for networks with arbitrary cost functions.
In fact, even in two-commodity, three-node networks, removing a single edge
can decrease the cost of a WE by an arbitrarily large factor.

Hence we define the Braess ratio for multicommodity networks as follows.

Definition 4.3.10. The Braess ratio 5(G, r, ¢) of a multicommodity instance
(G,r,c) is

k dz(Ga T, C)
B(G,r,¢) = maxmin 4(H.r.0)
where d;(G, r, ¢) denotes the common cost incurred by all traffic of commodity
i in a WE for (G, r,¢) and H ranges over subnetworks of G that contain an

s; — t; path.

(4.7)

Thus the Braess ratio of a multicommodity network instance is large only
if removing some set of edges decreases the cost incurred by the traffic of
every commodity.

It has been shown in [LRTWO5] that the upper bound of Theorem 4.3.7 does
not carry on to multicommodity networks. In fact it can grow exponentially
with the networks size, even in two-commodity networks:

Theorem 4.3.11. There is a family of two-commodity networks {(G",r", ")},
s. t. G has O(n) vertices and edges and B(G", 7", c") = 24" a5 n — oo.
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On the other hand we have that the Braess ratio is at most exponential
in the networks size, due to the following theorem

Theorem 4.3.12. There is a constant ¢ > 0 such that for every k,n > 1 and
every instance (G, r,c) with k commodities and n vertices, 3(G,r,c) < 2%,

Theorems 4.3.11 and 4.3.12 together do not establish a tight bound, be-
cause the upper bound seems to depend on the number of commodities k.
Whether it really depends or not, is still an open question.

4.3.2 Detecting Braess’s Paradox is hard

Braess’s paradox suggests a natural algorithmic question: given a network,
is it suffering from the paradox? If so, which edges should be removed to
recover the best-possible WE?

This question turns out to be extremely difficult (AMP-hard) to answer, even
for single-commodity networks with linear cost functions. In order to prove
that, let us formulate the problem as an optimization problem:

Definition 4.3.13. LINEAR NETWORK DESIGN: Given a single-commodi-
ty instance with linear cost functions, find a subnetwork H that minimizes

the cost of a WE of the instance (H, r, ¢), for H ranging over all subnetworks
of G (HC G).

A trivial algorithm to solve LINEAR NETWORK DESIGN, would be
to enumerate all subgraphs of G, compute the WE of each one and pick
the best solution. Although computing a WE is easy, the subgraphs of GG
can be exponentially many and the running time of the algorithm would be
prohibitive.

So, instead of looking for an algorithm that finds the exact solution, we
shall seek for a y-approximation algorithm, i.e. an algorithm that returns
a solution worst than the optimal, but less than 7 times as costly as the
optimal: OPT < x < v-0OPT. We want v as close to 1 as possible.

Note that even the trivial algorithm that returns the entire networks as a
solution can be viewed as an approximation algorithm. In fact, since the
Braess ratio in single-commodity networks with linear cost functions is at
most 4/3 (Proposition 4.3.4) the trivial algorithm is a 4/3-approximation
algorithm for LINEAR NETWORK DESIGN.

Our goal is to design more a clever algorithm, with a better approximation
ratio. However, none exist, unless P = NP.

Theorem 4.3.14. For every € > 0, there is no (4/3 — €)-approzimation
algorithm for LINEAR NETWORK DESIGN (assuming P # NP).
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Figure 4.3: The reduction from 2DDP to LINEAR NETWORK DESIGN

Proof. We present a polynomial-time “gap” reduction from the N'P-complete
problem 2 DIRECTED DISJOINT PATHS (2DDP): given a directed graph
G = (V, E) and distinct vertices si, $o,11,t2 € V, are there s; — t; paths P,
for 1 = 1,2, such that P, and P, are vertex disjoint? We shall show how a
(4/3 — €)-approximation algorithm can be used to distinguish between “yes”
and “no” instances of 2DDP.

First of all, given an instance Z of 2DDP with G = (V, E) we shall construct
an instance of selfish routing in polynomial time. In order to do that we
augment the vertex set V' by an additional source s and sink ¢ and we include
in the edge set E the directed edges (s, s1), (s,s2), (t1,t), (t2,t) (see Figure
4.3). We define the cost functions on the edges of E to be ¢(z) = 0, on
the edges (s, s1), (t2,t) to be ¢(x) = 1 and on the edges (s, s2), (t1,t) to be
c(r) = z. The new graph is G’ and we have thus constructed the instance
(G', 1, ¢) of selfish routing in polynomial time.

We want to show that the following statements are true:

e if 7 is a “yes” instance of 2DDP, then G’ admits a subnetwork H such
that the WE for (H,1,c) has cost 3/2: this means that the optimum
solution has cost at most 3/2. Hence the solution returned by the
approximation algorithm, which is at most (4/3 —¢) times the optimum
solution, is at most (4/3 —¢) - 3/2 < 2.

e if 7 is a “no” instance of 2DDP, then for every subnetwork H of G’ the
WE for (H,1,c¢) has cost at least 27. Since this holds for every sub-
network H, it must hold for the optimum one as well, so the optimum
solution is at least 2, hence the solution returned by the approximation
algorithm has cost at least 2 as well.

If we can prove the above properties of our construction, we can use the
approximation algorithm for LINEAR NETWORK DESIGN to solve 2DDP

"notice the resemblance to the costs of the original Braess’s paradox
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in polynomial time as follows: we run our approximation algorithm and if
the returned solution is < 2 then the corresponding instance of 2DDP is a
“yes” instance, otherwise it is a “no” instance.

So we are left with the task of proving that the above statements are true.
Consider the case of a “yes” 2DDP instance: there exist vertex-disjoint s; —t;
and sy — 1o paths P; and P, respectively. Obtain H by deleting all edges in
GG not contained in some P;. This operation does not ruin Py, P, and assures
that they are the only two s; — t; paths in H. It is then easy to verify that
H admits a WE of cost 3/2, by routing half the traffic on each path P;.
Now consider the case of a “no” 2DDP instance and take an arbitrary sub-
graph H of G’, possessing a s — t path, wlog. We have to study two cases:

e if the corresponding 2DDP instance has s; —t; paths for both ¢ = 1 and
2, then it must be the case that these paths share a common vertex,
which implies that if H has two s —t paths containing s; —t; and s — 12
paths, then it also has an s —¢ path containing a s, —¢; path. Since we
have only one unit of flow, this path is always cheaper, (remember the
original Braess Paradox) and the WE is for all the flow to be routed
on this path, incurring a cost of 2. If H does not have two s — ¢ paths,
but just one, then the WE is to route all traffic on this path and has a
cost of 2 as well.

e if the corresponding 2DDP problem has a s; — t; path for precisely one
i € {1,2}, then the s — ¢t path of H may contain a s; — t; path for just
one i and/or a s; —ty path. In either case the WE is to route the whole
traffic on one path, incurring a cost of 2.

O

The above result implies that there is no way to distinguish between a

selfish routing instance that does not suffer from the Braess paradox and
one that has a Braess ratio of 4/3, i.e. the worst possible Braess ratio for
single-commodity instances with linear cost functions. Equivalently we can
say that detecting Braess’s paradox is N'P-hard.
The above result can be extended to the case of more general networks.
For example, let GENERAL NETWORK DESIGN be the analogous opti-
mization problem for single-commodity networks with arbitrary cost func-
tions. Theorem 4.3.7 implies that the trivial algorithm here yields a |[n/2]-
approximation result. As is the case with linear cost functions, we can prove
the following inapproximability result, using the concept of Braess graphs.
The full proof is omitted here. For more details on the hardness of network
design, see [Rou01].
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Theorem 4.3.15. Assuming P # NP, for every e > 0, there is no (|n/2] —
€ )-approzimation algorithm for GENERAL NETWORK DESIGN.

4.4 Reducing the Inefficiency of Equilibria

Back in section 4.2 we studied the PoA of selfish routing and we derived
some tight bounds for it, depending on the type of cost functions in the
network. In this section we present some widely used techniques for reducing
the inefficiency of equilibria, i.e. for reducing the PoA. Apart from forcing
optimal routing, which usually does not correspond to a flow at WE, there
are three other popular techniques: increasing the capacity of the network,
routing a small amount of traffic centrally (known as Stackelberg routing)
and influencing traffic with edge taxes.

4.4.1 Capacity augmentation

We shall demonstrate this technique using an example:

Example 4.4.1. Consider the nonlinear variant of Pigou’s example (see
Example 1.3.2). Remember that with one unit of traffic, the WE routes all
traffic on the lower edge, incurring 1 unit of cost, while the optimal flow
routes € units of flow on the upper edge and the rest 1 — e units on the lower
edge, incurring 0 cost. Now consider the case, where we want to route 2 units
of traffic through the network. Now the optimal flow is to route 1 + € units
of flow on the upper edge and the rest 1 — € units on the lower edge. The
cost of the optimal routing is now 2, as p — oo.

Example 4.4.1 implies a more general result: for every amount of traffic
r, the optimal flow feasible for twice the original traffic (i.e. for 2r) has cost
at least equal to the cost of the WE for the original traffic (i.e. for r). In fact
this result holds for all feasible flows of traffic 2r, as the following theorem
states.

Theorem 4.4.2. If f is a WE for (G,r,c) and f* is feasible for (G,2r, c),
then
C(f) <C(f)

For details on the proof see [RT02].

Example 4.4.1 is a tight example which shows that the above bound is
the best possible, i.e. there exist feasible flows f*s. t. C(f) = C(f*). In
fact the equality holds for the optimal feasible flow of (G, 2r,c).

In order for the title “capacity augmentation” to make sense, we need to
rewrite Theorem 4.4.2 in the following equivalent form.
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Corollary 4.4.3. Let (G,r,c) be an instance and define the modified cost
function ¢, by ¢.(x) = c.(x/2)/2 for each edge e. Let f be a WE for (G,r,¢)
with cost C(f), and f* a feasible flow for (G,r,c) with cost C(f*). Then

C(f) <C(f).

Now notice that Corollary 4.4.3 takes a particularly nice form in the case
of cost functions which represent M/M/1 delay functions. Then we have
ce(r) = 1/(ue — z) and ¢.(z) = 1/2(u, — 2/2) = 1/(2u, — x). So in this
case, we have the following advice: in order to outperform optimal routing,
just double the capacity of every edge. In fact Theorem 4.4.2 says that by
improving our links we can have even better results, than trying to route all
traffic centrally (i.e. by telling all players what to do).

4.4.2 Stackelberg routing

The next technique is named after Stackelberg games, where there exist one
leader and a lot of followers and the leader determines with his actions, the
course of actions of the other players. Here the leader is some central author-
ity routing a fraction vy € [0, 1] of the total amount of traffic, as he pleases,
and the followers are the rest players of the network, which make their choices
selfishly as usual. The main difference here between the central authority and
the players is that the central authority controls a non-negligible portion of
the total traffic and cannot be therefore considered as one more player in the
network.®. Let us now describe the Stackelberg routing technique via two
examples.

Example 4.4.4. Consider the nonlinear variant of Pigou’s example in Figure
1.3 Suppose we are granted to route a v € [0, 1] portion of the traffic as we
wish, knowing that the rest 1 — v fraction is routed selfishly by the players.
We call a routing of the centrally controlled traffic a Stackelberg strategy. It
is easy to see, that for every Stackelberg strategy, the rest 1 — v portion of
the traffic is routed through the lower edge, which is never worse than the
upper edge. However, if we choose as a Stackelberg strategy, to route some
of our own traffic v on the upper edge, we reduce the total cost. The reason
for that, is that we mimic the routing of the traffic in the optimal flow: we
choose to route our traffic on the link that no rational player prefers, i.e. on
the slower link. For v sufficiently small (y — 0 as p — 00) we can induce a
flow of 0 cost, i.e. exactly the optimal flow.

The next example shows that Stackelberg routing has nonetheless its
limitations.

8this problem occurs because of the non-atomic nature of selfish routing
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Example 4.4.5. Suppose we modify Example 4.4.4 by replacing the cost
function of the lower edge by the cost function ¢(xz) = /(1 — v)?. Now,
supposing we route v of the total traffic on the upper edge, the average cost
isy-1+ ﬁjgi -(1=7v) =v94+1—~ = 1. Hence, no matter how we route
the centrally controlled traffic, the lower edge will be fully congested and the
average cost will be 1. On the other hand, the optimal flow routes v+ € units
of flow on the upper edge and the rest on the lower edge and its average cost

is (7"‘6)'1‘1‘(1(;:)2)}7'(1—7)—>7ase—>0andp—>oo.

We now present a theorem that bounds the worst case ratio between
the cost of the best flow possible with Stackelberg strategy and that of the
optimal flow. Example 4.4.5 shows that this ratio can grow to get arbitrarily
close to 1/7 even in two-node, two link networks. The corresponding upper
bound follows from the following Theorem (the proof is in [Rou04]).

Theorem 4.4.6. For every instance (G,r,c) with a network of parallel
links, and every v € (0, 1], there is a Stackelberq strategy that routes yr units
of traffic and yields a flow with cost at most 1/~ times the cost of an optimal

flow.

Theorem 4.4.6 provides a smooth trade-off between optimal flows and
WE, as a function of the fraction of the centrally controlled traffic. When
v = 0, no traffic is centrally controlled and we are dealing with WE, which
(in the case of arbitrary cost functions) can cost arbitrarily more than the
optimal flow (unbounded PoA). On the other hand, if ¥ = 1 then we can
route all traffic centrally and achieve the optimal flow.

Proposition 4.4.7. The optimization problem of computing an optimal Stack-
elberg strategy is N'P-hard([Rou0/]), though it can be approzimated in poly-
nomial time([KM02]).

Theorem 4.4.6 applies only to networks of parallel links. The question of
whether or not such a result holds for general single-commodity networks is
open. Partial results have been derived however for a wide class of networks,
including series-parallel networks and the Braess graphs.

4.4.3 Pricing network edges

One final, very natural approach to reduce congestion and thus the PoA, is
to impose taxes on the edges. This subject has been extensively studied in
the literature. Pigou originally suggested the marginal cost tazes. The basic
idea is to charge each network user on each edge for the additional cost its
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presence causes for the other users of the edge®. So let us denote by 7, the
tax of edge e. Then we have the selfish routing instance (G,r,c + t), where
at WE all traffic tries to minimize the incurred sum of edge latencies and
taxes.

More formally, the principle of the marginal cost taxes asserts that for a flow
[ feasible for an instance (G,r,c¢), the tax 7, is 7, = f. - c,(fe), where ¢, is
the derivative of c.. It is easy to see that ¢, is the increase of the edge’s cost,
due to one user (who controls a negligible portion of the traffic) and f, is the
total amount of traffic that suffers from this increase. So all traffic f. (i.e.
all users that consist this traffic) are charged an additional tax 7.

What is really important is that these taxes can in fact eliminate all of the
inefficiency of the equilibria, as the following theorem states.

Theorem 4.4.8. Let (G,r,c) be an instance with differentiable cost func-

* /

tions, admitting an optimal flow f*. Let T, = fr-c.(fF) denote the marginal

cost tax for edge e with respect f*. Then f* is a WE for (G,r,c+ ).

In other words, by imposing taxes on a selfish routing instance, we make
an optimal flow be a WE.
The basic drawbacks of this method, are the universal handling of taxes and
costs, as if they were the same thing, and the fact that the taxes can in some
cases become too big (when the derivative is large), that they no longer
consist a reasonable control measure for congestion.

9n0tice the resemblance with the idea of the VCG mechanisms
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