

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΤΗΣ ΚΥΠΡΟΥ ΣΤΟ PSS/SINCAL ΚΑΙ ΜΕΛΕΤΗ ΔΙΑΤΑΡΑΧΩΝ ΚΑΙ ΕΠΙΔΡΑΣΗΣ ΑΙΟΛΙΚΗΣ ΔΙΕΙΣΔΥΣΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΒΡΑΧΙΜΗΣ Γ. ΚΟΥΤΣΟΛΟΥΚΑΣ

Επιβλέποντες: Νικόλαος Δ. Χατζηαργυρίου, Καθηγητής Ε.Μ.Π Εμμανουήλ Βουμβουλάκης, Υποψήφιος διδάκτορας

Αθήνα 2007

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΤΗΣ ΚΥΠΡΟΥ ΣΤΟ PSS/SINCAL ΚΑΙ ΜΕΛΕΤΗ ΔΙΑΤΑΡΑΧΩΝ ΚΑΙ ΕΠΙΔΡΑΣΗΣ ΑΙΟΛΙΚΗΣ ΔΙΕΙΣΔΥΣΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΒΡΑΧΙΜΗΣ Γ. ΚΟΥΤΣΟΛΟΥΚΑΣ

Επιβλέποντες: Νικόλαος Δ. Χατζηαργυρίου, Καθηγητής Ε.Μ.Π Εμμανουήλ Βουμβουλάκης, Υποψήφιος διδάκτορας

.....

.....

Ν. Χατζηαργυρίου Καθηγητής Ε.Μ.Π

Αθήνα 2007

Βραχίμης Κουτσόλουκας

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Βραχίμης Κουτσόλουκας, 2007

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

ΠΕΡΙΛΗΨΗ

Σκοπός της παρούσας διπλωματικής εργασίας, είναι η μοντελοποίηση του Συστήματος Ηλεκτρικής Ενέργειας (ΣΗΕ) της Κύπρου στο λογισμικό πακέτο PSS/ SINCAL, η διεξαγωγή προσομοιώσεων για την αξιολόγηση του μοντέλου και η μελέτη διαφόρων σεναρίων που αφορούν την αιολική διείσδυση στο σύστημα.

Στο κεφάλαιο 1, γίνεται μια σύντομη περιγραφή του ΣΗΕ της Κύπρου. Εν συνεχεία στο κεφάλαιο 2, γίνεται μια αναφορά στο λογισμικό πακέτο PSS/ SINCAL και τη διαδικασία που ακολουθήθηκε για την κατάστρωση του μοντέλου. Παρουσιάζονται επίσης τα στοιχεία που χρησιμοποιήθηκαν για την μοντελοποίηση των γεννητριών, των ρυθμιστών στροφών και τάσης, των μετασχηματιστών, των γραμμών μεταφοράς, των πυκνωτών και των ανεμογεννητριών.

Το κεφάλαιο 3, αναφέρεται αρχικά στις ανανεώσιμες πηγές ενέργειας και τη δυνατότητα εκμετάλλευσης τους στην Κύπρο. Παρουσιάζεται η ηλιακή ενέργεια, η βιομάζα και η αιολική ενέργεια. Ακολούθως γίνεται μια τεχνική περιγραφή των ανεμογεννητριών και των επιπτώσεων που προκαλεί η σύνδεση τους στο δίκτυο.

Στο κεφάλαιο 4, παρουσιάζονται προσομοιώσεις που έγιναν με βάση την τρέχουσα κατάσταση του συστήματος. Προσομοιώθηκαν τέσσερις πραγματικές διαταραχές που προκλήθηκαν από την απώλεια κάποιας ηλεκτροπαραγωγού μονάδας. Σε κάθε προσομοίωση γίνεται αρχικά μια περιγραφή της διαταραχής, καθώς και της κατάστασης του δικτύου πριν από αυτήν. Στη συνέχεια παρουσιάζονται τα αποτελέσματα και γίνεται σύγκριση με αυτά των αντίστοιχων προσομοιώσεων που διενεργήθηκαν από την εταιρία ABB καθώς και αυτά που καταγράφηκαν από την Αρχή Ηλεκτρισμού Κύπρου (AHK).

Στο κεφάλαιο 5, παρουσιάζονται τα αποτελέσματα που προέκυψαν από προσομοιώσεις τη ροής φορτίου για τρία διαφορετικά επίπεδα φόρτισης του συστήματος, πριν και μετά τη διείσδυση αιολικής παραγωγής. Μελετάται επίσης η συμπεριφορά του συστήματος και ιδιαίτερα των αιολικών πάρκων σε περίπτωση βραχυκυκλώματος και καθορίζεται ενδεικτικά το όριο πτώσης τάσης για την αποσύνδεση των ανεμογεννητριών.

Τέλος στο κεφάλαιο 6, αναφέρονται τα βασικά συμπεράσματα που προκύπτουν από την παρούσα εργασία και αφορούν την αξιολόγηση του μοντέλου που καταστρώθηκε,

5

όπως προκύπτει από τα αποτελέσματα που λάβαμε κατά τις διάφορες προσομοιώσεις που πραγματοποιήσαμε.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αιολική Διείσδυση , Ανεμογεννήτριες , Μοντέλο Προσομοίωσης , PSS/SINCAL , Αρχή Ηλεκτρισμού Κύπρου , Συχνότητα , Τάση , Ενεργός και Άεργος Παραγωγή , Σύστημα Ηλεκτρικής Ενέργειας , Βραχυκύκλωμα.

ABSTRACT

The main purpose of this dissertation is to create a simulation model of the Electrical Energy System (EES) of Cyprus, based on the PSS/SINCAL software package, to conduct simulations for the evaluation of model and to study of various scripts that concerns the aeolian infiltration in the system.

Chapter 1, provides, a brief description of the Cypriot Electrical Energy System (EES). Chapter 2, contains a description of the PSS/SINCAL software package and the process that was followed for the planning out of model. Are presented also the elements that were used for the modeling of generators, regulators of voltage and frequency, transformers, lines of transport, capacitors and wind generators.

Chapter 3 gives initially a report for the renewable sources of energy and their possibility of exploitation in Cyprus. The solar energy, the biomass and the aeolian energy are presented, followed by a technical description of wind generators and the repercussions that their connection in the network causes.

In chapter 4, we present simulations that were made on the running situation of system. Four real disturbances that were caused by the loss of a generator unit were simulated. For each simulation there is initially a description of the disturbance, as well as for the situation of network before this. Then we present the results and we make comparisons between ours and those from simulations that were held by the company ABB as well as what was recorded by the Electricity Authority of Cyprus (EAC).

In chapter 5, we present the results from simulations of load flow for three different levels of system load, before and afterwards the infiltration of aeolian production. The behavior of system and the aeolian parks in case of short-circuit is also studied and is determined indicatively the limit of voltage fall for the detachment of wind generators.

Finally the chapter 6, contains the basic conclusions that result from the present work and concern the evaluation of model that was created, as it results from the various simulations that we made. **<u>KEY WORDS</u>**: Wind Penetration , Wind Generators , Simulation Model , PSS/SINCAL , Electricity Authority of Cyprus , Frequency , Voltage , Active and Reactive Power Generation , Electrical Energy System , Short Circuit.

HEPIEXOMENA

<u>ΚΕΦΑΛΑΙΟ1:ΤΟ ΣΥΣΤΗΜΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ</u> <u>ΣΤΗΝ ΚΥΠΡΟ</u>

1.1 Γενικά	12
1.2 Σύστημα Μεταφοράς	13
1.3 Σύστημα Διανομής	14

<u>ΚΕΦΑΛΑΙΟ 2 : ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΣΗΕ ΣΤΟ PSS</u> <u>Sincal</u>

2.1 Το λογισμικό PSS Sincal	16
2.2 Δημιουργία του μοντέλου	17
2.3 Περιγραφή των στοιχείων του ΣΗΕ	34
2.3.1 Γεννήτριες	34
2.3.2 Ρυθμιστές τάσης	36
2.3.3 Ρυθμιστές στροφών	41
2.3.4 Μετασχηματιστές	44
2.3.5 Γραμμές μεταφοράς	48
2.3.6 Πυκνωτές αντιστάθμισης	51
2.3.7 Ανεμογεννήτριες	52

<u>ΚΕΦΑΛΑΙΟ 3 : ΕΙΣΑΓΩΓΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ</u> <u>ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΣΗΕ ΤΗΣ ΚΥΠΡΟΥ</u>

3.	.1	Γ	'EV	ικά

3.2 Ηλιακή ενέργεια	54
3.3 Βιομάζα	54
3.4 Αιολική ενέργεια	55
3.4.1 Ανεμογεννήτριες	55
3.4.2 Σύνδεση ανεμογεννητριών στο δίκτυο	59

<u>ΚΕΦΑΛΑΙΟ 4 : ΠΡΟΣΟΜΟΙΩΣΗ ΤΡΕΧΟΥΣΑΣ</u> <u>ΛΕΙΤΟΥΡΓΙΚΗΣ ΚΑΤΑΣΤΑΣΗΣ ΣΗΕ</u>

4.1 Γενικά	69
4.2 Διαταραχή 1η	69
4.2.1 Περιγραφή	69
4.2.2 Παρουσίαση αποτελεσμάτων	73
4.3 Διαταραχή 2η	77
4.3.1 Περιγραφή	77
4.3.2 Παρουσίαση αποτελεσμάτων	81
4.4 Διαταραχή 3η	87
4.4.1 Περιγραφή	87
4.4.2 Παρουσίαση αποτελεσμάτων	91
4.5 Διαταραχή 4η	95
4.5.1 Περιγραφή	95
4.5.2 Παρουσίαση αποτελεσμάτων	99

<u>ΚΕΦΑΛΑΙΟ 5 : ΕΠΙΔΡΑΣΗ ΔΙΕΙΣΔΥΣΗΣ</u> <u>ΑΙΟΛΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΣΤΗ ΔΥΝΑΜΙΚΗ</u> <u>ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΣΗΕ</u>

5.2 Βασικό Σενάριο		104
5.2.1 Προσομοίωση χωρίς αιολική διείσδυση		106
5.2.2 Προσομοίωση με αιολική διείσδυση 150 MW		111
5.2.2.1 Μελέτη βραχυκυκλώματος		117
5.2.3 Προσομοίωση με αιολική διείσδυση 300 MW		129
5.2.3.1 Μελέτη βραχυκυκλώματος		135
5.3 Σενάριο χαμηλού φορτίου		147
5.3.1 Προσομοίωση χωρίς αιολική διείσδυση		149
5.3.2 Προσομοίωση με αιολική διείσδυση 150 MW		154
5.3.2.1 Μελέτη βραχυκυκλώματος		160
5.4 Σενάριο ψηλού φορτίου		172
5.4.1 Προσομοίωση χωρίς αιολική διείσδυση		174
5.4.2 Προσομοίωση με αιολική διείσδυση 300 MW		179
5.4.2.1 Μελέτη βραχυκυκλώματος		185
5.5 Ενδεικτικός καθορισμός ορίου πτώσης τάσης	για	197
αποσύνδεση αιολικών		-

ΚΕΦΑΛΑΙΟ 6 : ΣΥΜΠΕΡΑΣΜΑΤΑ

199

ΒΙΒΛΙΟΓΡΑΦΙΑ

201

<u>ΚΕΦΑΛΑΙΟ 1 : ΤΟ ΣΥΣΤΗΜΑ ΗΛΕΚΤΡΙΚΗΣ</u> <u>ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ</u>

1.1 Γενικά

Ο ηλεκτρισμός στην Κύπρο, έχει μια ιστορία πέραν των 100 χρόνων. Πρωτοεμφανίστηκε στις αρχές του 20ου αιώνα και συγκεκριμένα το 1903, με την εγκατάσταση από την τότε αποικιακή Αγγλική κυβέρνηση μιας ηλεκτρογεννήτριας για τις ανάγκες του Αρμοστίου στη Λευκωσία.

Ο πρώτος ηλεκτροπαραγωγός σταθμός κατασκευάστηκε στη Δεκέλεια και τέθηκε σε λειτουργία στις 2 Φεβρουαρίου 1953, τρεις μήνες μετά την ίδρυση της Αρχής Ηλεκτρισμού Κύπρου(AHK), με δυναμικότητα 84 MW.

Σήμερα , η ΑΗΚ διαθέτει τρεις Ηλεκτροπαραγωγούς Σταθμούς με συνολική εγκαταστημένη ισχύ 1105,5 MW ως πιο κάτω:

Σταθμός Βασιλικού	3	v	130	MW
21ασμος Βασιλικου	5	Λ	150	IVI VV
	Ατμ	ιοηλεκτ	τρικές Μα	ονάδες
Σταθμός Βασιλικού	1	Х	37,5	MW
	Αερ	ποστρό	βιλος	
Σταθμός Δεκέλειας	6	Х	60	MW
				-
	Ατμ	ιοηλεκτ	τρικές Μα	ονάδες
Σταθμός Μονής	Ατμ 6	ιοηλεκτ χ	τρικές Μα 28	ονάδες MW
Σταθμός Μονής	Ατμ 6 Ατμ	ιοηλεκτ χ ιοηλεκτ	τρικές Μα 28 τρικές Μα	ονάδες ΜW ονάδες
Σταθμός Μονής Σταθμός Μονής	Ατμ 6 Ατμ 4	ιοηλεκτ x ιοηλεκτ x	τρικές Μα 28 τρικές Μα 37,5	ονάδες ΜW ονάδες ΜW

Πίνακας 1.1 : Ηλεκτροπαραγωγοί σταθμοί (πηγή: ΑΗΚ)

Σταθμός Δεκέλειας: Ο Σταθμός αυτός βρίσκεται στη Νοτιοανατολική ακτή της Κύπρου. Ο Σταθμός Δεκέλειας αποτελείται από έξι (6) πετρελαϊκές μονάδες των 60

MW η κάθε μία με χρησιμοποιούμενο καύσιμο το μαζούτ. Η πρώτη μονάδα λειτούργησε το 1982, η δε τελευταία το 1993.

Σταθμός Μονής: Ο Σταθμός αυτός αποτελείται από (6) πετρελαϊκές μονάδες των 28 MW η κάθε μία με χρησιμοποιούμενο καύσιμο το μαζούτ και από τέσσερις (4) αεριοστρόβιλους των 37,5 MW με χρησιμοποιούμενο καύσιμο το ντίζελ. Οι δύο πρώτες μονάδες ατμού λειτούργησαν το 1966 και η τελευταία το 1976. Οι δύο αεριοστρόβιλοι προστέθηκαν στο σύστημα το 1992 και οι άλλοι δύο το 1995, και χρησιμοποιούνται κυρίως για αντιμετώπιση φορτίων αιχμής και για περιπτώσεις έκτακτης ανάγκης.

Σταθμός Βασιλικού: Ο Ηλεκτροπαραγωγός Σταθμός Βασιλικού αποτελεί το μεγαλύτερο έργο υποδομής που έγινε ποτέ στην Κύπρο. Ο Σταθμός είναι έργο ψηλής τεχνολογίας και αποτελείται από τρεις ατμοηλεκτρικές μονάδες παραγωγής ισχύος 130 MW η κάθε μία με χρησιμοποιούμενο καύσιμο το μαζούτ και ένα αεριοστρόβιλο ισχύος 37,5 MW με χρησιμοποιούμενο καύσιμο το ντίζελ . Το σύνολο της εγκατεστημένης ισχύος του Σταθμού ανέρχεται σήμερα σε 427,5 MW. Η επόμενη φάση του Ηλεκτροπαραγωγού Σταθμού Βασιλικού περιλαμβάνει μια μονάδα συνδυασμένου κύκλου μεταξύ 170 και 220 MW η οποία αναμένεται να τεθεί σε εμπορική λειτουργία πριν το τέλος του 2007. Τα πρώτα χρόνια της λειτουργίας της η μονάδα θα έχει ως καύσιμο το ντίζελ μέχρι την έλευση του υγροποιημένου φυσικού αερίου (LNG) στην Κύπρο οπότε και θα χρησιμοποιείται το φυσικό αέριο ως καύσιμο. Η έλευση του υγροποιημένου φυσικού αερίου αναμένεται να εγκατασταθούν στον Ηλεκτροπαραγωγό Σταθμό βασιλικού περίου αναμένεται το 2009.

1.2 Σύστημα Μεταφοράς

Το Σύστημα Μεταφοράς στην Κύπρο αποτελείται από γραμμές 66 kV και 132kV. Επίσης υπάρχουν γραμμές με κατασκευή 132 kV που λειτουργούν σε 66 kV και ένα μικρό κομμάτι κατασκευής 220 kV γραμμής που λειτουργεί σαν 132 kV. Στον πίνακα 1.2 παρουσιάζεται το σύνολο των εναέριων γραμμών του δικτύου, στον 1.3 τα

13

υπόγεια καλώδια και στον 1.4 οι μετασχηματιστές των υποσταθμών μεταφοράς. Όλα τα στοιχεία καταγράφηκαν στις 31.12.2004.

Περιγραφή	66 kV	132 kV	132 kV	220 kV
			(Λειτουργία	(Λειτουργία
			66 kV)	132 kV)
Μήκος	324,58	358,32	124,73	1,4
Πορείας (km)				

Πίνακας 1.2 : Εναέριες γραμμές (πηγή: ΑΗΚ)

Περιγραφή	66 kV	132 kV	132 kV
			(Λειτουργία 66 kV)
Μήκος Πορείας	1,68	50,34	3,71
(km)			

Πίνακας 1.3 : Υπόγεια καλώδια (πηγή: ΑΗΚ)

Περιγραφή	Αρ.	MVA
Ολικός Αριθμός	46	
Υποσταθμών Μεταφοράς		
Μετασχηματιστές 132/11	56	1744
kV		
Μετασχηματιστές 66/11	66	622,5
kV		
Μετασχηματιστές 132/66	12	585
kV		

Πίνακας 1.4 : Μετασχηματιστές υποσταθμών μεταφοράς (πηγή: AHK)

1.3 Σύστημα Διανομής

Το Δίκτυο Διανομής αποτελείται από γραμμές Μέσης Τάσης 11 kV και Χαμηλής Τάσης 415/240V. Στον πίνακα 1.5 φαίνεται το σύνολο των εναέριων γραμμών και των υπογείων καλωδίων του συστήματος διανομής, ενώ στον 1.6 οι μετασχηματιστές των υποσταθμών διανομής 11 kV/415V, στοιχεία καταγεγραμμένα στις 31.12.2004.

Περιγραφή	11 kV	415/240V
Εναέριες Γραμμές (km)	4 829,4	7 971,5
Υπόγεια Καλώδια (km)	2 167,7	1 888,2

Πίνακας 1.5 : Εναέριες γραμμές και υπόγεια καλώδια (πηγή: AHK)

Περιγραφή	Αρ.	MVA
Επίγειοι Μετασχηματιστές	3 702	1 917,11
Μετασχηματιστές επί	7537	663,8
πασσάλων		

Πίνακας 1.6 : Μετασχηματιστές υποσταθμών διανομής (πηγή: AHK)

Τέλος, παρατίθεται ο χάρτης του συστήματος:

Χάρτης 1.1 (πηγή: AHK)

ΚΕΦΑΛΑΙΟ 2 : ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΣΗΕ ΣΤΟ PSS Sincal

2.1 Το λογισμικό PSS Sincal

Η μοντελοποίηση του ΣΗΕ έγινε με το λογισμικό PSS Sincal της Siemens. Το πρόγραμμα αυτό είναι ένα υψηλής απόδοσης εργαλείο για την προσομοίωση και την αξιολόγηση ηλεκτρικών και άλλων δικτύων. Παρέχει τη δυνατότητα για υπολογισμούς με στατικές αλλά και δυναμικές μεθόδους. Είναι επίσης δυνατό να προσομοιωθούν γεγονότα στο πεδίο του χρόνου.

Μέσω του προγράμματος μπορούν να προσομοιώσουν πιθανά μελλοντικά σενάρια και να δοθούν πολύτιμες πληροφορίες και αποτελέσματα σε θέματα όπως η ανάλυση σφαλμάτων, η αρμονική απόκριση και η προστασία του συστήματος.

Ροή φορτίου: Μέσω των υπολογισμών της ροής φορτίου μπορούμε να μελετήσουμε τη συμπεριφορά των συστημάτων μεταφοράς και διανομής ηλεκτρικής ενέργειας. Ο χρήστης καθορίζει τη ροή ισχύος από τις γεννήτριες στους καταναλωτές μέσω των γραμμών μεταφοράς και των μετασχηματιστών.

Ο σκοπός των υπολογισμών αυτών είναι να καθοριστούν το ρεύμα και η τάση σε κάθε σημείο του δικτύου αλλά και η ισχύς, βασισμένα στα δεδομένα στοιχεία των γεννητριών και των φορτίων. Όσο αφορά τις γεννήτριες είναι απαραίτητο να οριστεί η τάση (χωρίς γωνιά) και η παραγωγή τους σε ενεργό ισχύ με εξαίρεση τους ζυγούς ταλάντωσης στους οποίους ορίζεται μόνο η τάση (συνήθως με γωνιά μηδέν) και στους οποίους είναι δυνατό να οριστεί τιμή ενεργού ισχύος αρνητική. Μπορούν επίσης να οριστούν γεννήτριες με δεδομένα την ενεργό και άεργο ισχύ τους. Τα φορτία ορίζονται από τις τιμές της ενεργού και άεργου ισχύος τους, οι οποίες μπορεί να είναι και αρνητικές, αλλά και ως σύνθετες αντιστάσεις.

Τα ενεργά στοιχεία δικτύων (όπως οι γεννήτριες και τα φορτία) αναπαριστώνται με τις πηγές τους ρεύματος και τάσης. Υποτίθεται ότι τα ρεύματα και οι τάσεις σε ένα δίκτυο προέρχονται από τις πηγές ρευμάτων και τάσης. Έτσι προκύπτει ένα σύστημα μη γραμμικών εξισώσεων το οποίο το πρόγραμμα επιλύει χρησιμοποιώντας επαναληπτικές μεθόδους(π.χ. Newton-Raphson).

Μελέτη βραχυκυκλωμάτων: Μέσω του προγράμματος μπορούμε να υπολογίσουμε τις τιμές του ρεύματος, της τάσης και της ισχύς σε κάθε σημείο του δικτύου σε περίπτωση μονοφασικού, διφασικού ή τριφασικού βραχυκυκλώματος σε κάποιο σημείο, αλλά και σε περιπτώσεις πολλαπλών σφαλμάτων.

Μελέτη ευστάθειας: Το πρόγραμμα επιτρέπει υπολογισμούς στο πεδίο του χρόνου, δίνοντας τη δυνατότητα για προσομοίωση διαφόρων σεναρίων διαταραχών και εξαγωγή συμπερασμάτων όσο αφορά την διακύμανση της τάσης και της συχνότητας του δικτύου.

2.2 Δημιουργία του μοντέλου

Η δημιουργία του μοντέλου βασίστηκε σε στοιχεία που προέκυψαν από προηγούμενες μελέτες των εργαστηρίων του Εθνικού Μετσόβιου Πολυτεχνείου που αφορούσαν το ΣΗΕ της Κύπρου και την Αρχή Ηλεκτρισμού. Ο χάρτης του δικτύου παρουσιάζεται παρακάτω:

Χάρτης 2.1 : Χάρτης δικτύου

Στο πρόγραμμα είχαμε τη δυνατότητα να προσομοιώσουμε δίκτυα στα οποία οι κόμβοι δεν ξεπερνούσαν τους 50. Έτσι δημιουργήσαμε ένα συνεπτυγμένο μοντέλο στο οποίο παρουσιάζεται το μεγαλύτερο μέρος του δικτύου.

Στο συνεπτυγμένο αυτό μοντέλο τα κομμάτια του δικτύου τα οποία μπορούν να θεωρηθούν ανεξάρτητα αντιπροσωπεύονται από τη ροή φορτίου από και προς αυτά, παρουσιάζονται δηλαδή με τη μορφή απλού φορτίου. Για κάθε ένα από τα φορτία αυτά δημιουργήσαμε ένα επιμέρους μοντέλο στο οποίο παρουσιάζεται αναλυτικά η μορφή του κομματιού αυτού του δικτύου και μέσω ενός infeeder προσομοιώνουμε την τάση και την ισχύ του ζυγού μέσω του οποίου επικοινωνούν με το υπόλοιπο δίκτυο. Έτσι μπορούμε να μελετήσουμε και αυτά τα κομμάτια σαν να ήταν κανονικά στο κυρίως μοντέλο.

Επίσης για περαιτέρω εξοικονόμηση κόμβων οι γεννήτριες στους ηλεκτροπαραγωγούς σταθμούς μοντελοποιήθηκαν ως μία σε κάθε σταθμό, με εξαίρεση το Βασιλικό όπου ξεχωρίσαμε τους ατμοστρόβιλους από τον αεριοστρόβιλο (στη Μονή δεν αντιμετωπίσαμε παρόμοιο πρόβλημα καθώς οι αεριοστρόβιλοι συνδέονται σε διαφορετικό ζυγό).

Η μορφή του μοντέλου (πριν και μετά τη διείσδυση αιολικών) φαίνεται στα σχήματα 2.1 και 2.2.

Σχήμα 2.1 : Μορφή μοντέλου πριν τη διείσδυση αιολικών

Σχήμα 2.2 : Μορφή μοντέλου μετά τη διείσδυση αιολικών

Ακολούθως παρατίθενται τα σχήματα όλων των επιμέρους μοντέλων που προαναφέρθηκαν. Το όνομα του καθενός παραπέμπει στη θέση του στο κυρίως μοντέλο.

Σχήμα 2.3 : LOAD 3and4

Σχήμα 2.4 : LOAD 5

Σχήμα 2.5 : LOAD 6

Σχήμα 2.6 : LOAD 7

Σχήμα 2.7 : LOAD 8

Σχήμα 2.8 : LOAD 9

Σχήμα 2.9 : LOAD 10

Σχήμα 2.10 : LOAD 11

Σχήμα 2.11 : LOAD 12

Σχήμα 2.12 : LOAD 13

Σχήμα 2.13 : LOAD 14

Σχήμα 2.14 : LOAD 15

Σχήμα 2.15 : LOAD 16

Σχήμα 2.16 : LOAD 17

Σχήμα 2.17 : LOAD 18

Σχήμα 2.19 : LOAD 22

Σχήμα 2.20 : LOAD 23

Σχήμα 2.21 : LOAD 25

Σχήμα 2.22 : LOAD 28

Σχήμα 2.23 : LOAD 29

Σχήμα 2.24 : LOAD 30

Σχήμα 2.25 : LOAD 31

Σχήμα 2.26 : LOAD 32

Σχήμα 2.27 : LOAD 33

Σχήμα 2.28 : LOAD 34

Σχήμα 2.29 : LOAD 35

Σχήμα 2.30 : LOAD 36

Σχήμα 2.31 : LOAD 37

Σχήμα 2.32 : LOAD 38

Σχήμα 2.33 : LOAD 39

Σχήμα 2.34 : LOAD 40

Σχήμα 2.35 : LOAD 41

Σχήμα 2.36 : LOAD 42

Σχήμα 2.37 : LOAD 43

2.3 Περιγραφή των στοιχείων του ΣΗΕ

Στην παράγραφο αύτη παρουσιάζονται οι τιμές των παραμέτρων που απαιτούνται από το συγκεκριμένο πρόγραμμα για την μοντελοποίηση κάθε στοιχείου του δικτύου.

2.3.1 Γεννήτριες

Όλες οι γεννήτριες προσομοιώθηκαν με το μοντέλο Synchronous Machine του προγράμματος. Οι παράμετροι και τα χαρακτηριστικά τους παρουσιάζονται παρακάτω (η παραγωγή ενεργού και άεργου ισχύος θα παρουσιαστεί στην ανάλυση των διαφόρων σεναρίων αφού διαφέρει σε κάθε περίπτωση):

Sn	360 MVA	Pmin	30 MW
Vn	11 KV	Pmax	360 MW
R/X	0 p.u	Qmin	-216 MVAr
Xd''saturated	0.144 %	Qmax	270 MVAr
Xi	0.178 %		
Xd''	0.1905 p.u.	Xq''	0.1905 p.u.
Xd'	0.265 p.u.	Xq'	0.3 p.u.
Xd	1.84 p.u.	Xq	1.7 p.u.
Td'	7.6 s	Tq'	0.9 s
Td''	0.034 s	Tq''	0.059 s

Δεκέλεια (ζυγός παραγωγής)

Πίνακας 2.1 : Χαρακτηριστικά σταθμού Δεκέλειας

Βασιλικός-ατμοστρόβιλοι (ζυγός ταλάντωσης)

Sn	390 MVA	Pmin	60 MW
Vn	15,75 KV	Pmax	390 MW
R/X	0 p.u	Qmin	-234 MVAr
Xd''saturated	0.155 %	Qmax	240 MVAr

Xi	0.173 %		
Xd''	0.1595p.u.	Xq"	0.1595 p.u.
Xd'	0.202 p.u.	Xq'	0.329 p.u.
Xd	2,06 p.u.	Xq	1.92 p.u.
Td'	9 s	Tq'	1,0 s
Td''	0.057 s	Tq"	0.095 s

Πίνακας 2.2 : Χαρακτηριστικά σταθμού Βασιλικού (ατμοστρόβιλοι)

Sn	37,5 MVA	Pmin	0 MW
Vn	11 KV	Pmax	37,5 MW
R/X	0 p.u	Qmin	-22,5 MVAr
Xd''saturated	0.155 %	Qmax	22,5 MVAr
Xi	0.173 %		
Xd''	0.153 p.u.	Xq"	0.153 p.u.
Xd'	0.213 p.u.	Xq'	0.418 p.u.
Xd	2,22 p.u.	Xq	2,08 p.u.
Td'	5,43 s	Tq'	0,447 s
Td''	0.05 s	Tq"	0.05 s

Βασιλικός-αεριοστρόβιλος (ζυγός ταλάντωσης)

Πίνακας 2.3 : Χαρακτηριστικά σταθμού Βασιλικού (αεριοστρόβιλοι)

Μονή-ατμοστρόβιλοι (ζυγός παραγωγής)

Sn	168 MVA	Pmin	18 MW
Vn	11,8 KV	Pmax	168 MW
R/X	0 p.u	Qmin	-126 MVAr
Xd''saturated	0.145 %	Qmax	136 MVAr
Xi	0.17 %		
Xd''	0.14 p.u.	Xq''	0.14 p.u.
Xd'	0.192 p.u.	Xq'	0.215 p.u.

Xd	2,08 p.u.	Xq	1.8 p.u.
Td'	9 s	Tq'	3.9 s
Td''	0.0295 s	Tq''	0.029 s

Πίνακας 2.4 : Χαρακτηριστικά σταθμού Μονής (ατμοστρόβιλοι)

Μονή-αεριοστρόβιλος (ζυγός παραγωγής)

Sn	150 MVA	Pmin	0 MW
Vn	11,8 KV	Pmax	150 MW
R/X	0 p.u	Qmin	-72 MVAr
Xd''saturated	0.13 %	Qmax	92 MVAr
Xi	0.7 %		
Xd''	0.153 p.u.	Xq''	0.153 p.u.
Xd'	0.213 p.u.	Xq'	0.418 p.u.
Xd	2,2 p.u.	Xq	2,08 p.u.
Td'	5,43 s	Tq'	0,447 s
Td''	0.05 s	Tq''	0.05 s

Πίνακας 2.5 : Χαρακτηριστικά σταθμού Μονής (αεριοστρόβιλοι)

2.3.2 Ρυθμιστές τάσης

Ένας ρυθμιστής τάσεως μιας γεννήτριας, έχει σκοπό να διατηρεί σταθερή την τάση στους τερματικούς ζυγούς της γεννήτριας.

Αυτό γίνεται εφικτό με την κατάλληλη μεταβολή της τάσης του πεδίου διέγερσης , μέσω του συστήματος διεγέρσεως της γεννήτριας.

Η εντολή για την πιο πάνω ρύθμιση, δίνεται από τον αυτόματο ρυθμιστή τάσεως, ο οποίος συγκρίνει το μέτρο της τερματικής τάσεως με την τάση αναφοράς και αναπροσαρμόζει ανάλογα την παραγόμενη ηλεκτρεγερτική δύναμη της γεννήτριας. Για τη μοντελοποίηση τους χρησιμοποιήθηκαν οι ρυθμιστές EXDC2, EXAC1 και EXST1 από τη βιβλιοθήκη του προγράμματος.
ΕΧDC2 (ΜΟΝΗ-ΑΤΜΟΣΤΡΟΒΙΛΟΙ)

Rev. 1

Project Controller Library

Σχήμα 2.38 : Ρυθμιστής τάσης EXDC2

Description	Value	KA
KE	0	TA
ТЕ	0.45s	VR.
TF 1	1s	VR
E1 (x-value)	2.3	KF
SE1 (y-value)	0.1	TC
E2 (x-value)	3.1	TB
SE2 (y-value)	0.33	Filt

KA	45
ТА	0.06s
VR, max	1.12
VR, min	-0.9
KF	0.1
ТС	0s
TB	0s
Filter time constant	0s

Πίνακας 2.6 : Παράμετροι ρυθμιστή τάσης EXDC2

ΕΧΑC1 (ΜΟΝΗ-ΑΕΡΙΟΣΤΡΟΒΙΛΟΣ, ΒΑΣΙΛΙΚΟΣ ΑΕΡΙΟΣΤΡΟΒΙΛΟΣ, ΔΕΚΕΛΕΙΑ)

Σχήμα 2.39 : Ρυθμιστής τάσης ΕΧΑC1

Description	MONH	ΒΑΣΙΛΙΚΟΣ	ΔΕΚΕΛΕΙΑ	
XHD	1.63	1.63	1.63	
Filter time constant	0	0	0	
ТВ	0s	0s	0s	
TC	0s	0s	0s	
КА	400	400	400	
ТА	0.02s	0.02s	0.02s	
VR, max	8.03	8.03	8.03	
VR, min	-5.43	-5.43	-5.43	
TE	0.8s	0.8s	0.8s	
KF	0.03	0.03	0.03	
TF	1s	1s	1s	
КС	0.2	0.2	0.2	
KD	0.38	0.38	0.38	
KE	1	1	1	
E1 (x-value)	3.14	3.14	3.14	
SE1 (y-value)	0.03	0.03	0.03	
E2 (x-value)	4.18	4.18	4.18	
SE2 (y-value)	0.1	0.1	0.1	

Πίνακας 2.7 : Παράμετροι ρυθμιστή τάσης ΕΧΑC1

ΕΧST1 (ΒΑΣΙΛΙΚΟΣ)

Σχήμα 2.40 : Ρυθμιστής τάσης EXST1

Description	Value
KA	210
ТА	0.01s
VR, max	6.43
VR, min	-6
КС	0.04
KF	0
TF	1s
TC	1s

ТВ	1s
Filter time constant	0s
XHD	1.5
VI, min	-999
VI, max	999

Πίνακας 2.8 : Παράμετροι ρυθμιστή τάσης EXST1

2.3.3 Ρυθμιστές στροφών

Όταν μιλάμε για ρύθμιση στροφών ή αλλιώς για ρύθμιση συχνότητας σ'ένα σύστημα ηλεκτρικής ενέργειας, αναφερόμαστε στην συνεχή προσαρμογή της παραγόμενης ισχύος από τις γεννήτριες προς το φορτίο του συστήματος, ώστε η συχνότητα του να διατηρεί συνεχώς την κανονική της τιμή.

Σε αντίθετη περίπτωση, οι γεννήτριες δεν θα μπορούσαν να δεχθούν μια αύξηση φορτίου, αφού σε ενδεχόμενη αύξηση του φορτίου του συστήματος θα είχαμε επιβράδυνση των μηχανών και μείωση της συχνότητας στο σύστημα γενικά.

Όπως γίνεται αντιληπτό, αν μια γεννήτρια συνδέεται σ'ένα μεγάλο σύστημα, η ταχύτητα περιστροφής της είναι δεσμευμένη από την συχνότητα του συστήματος και ο ρυθμιστής στροφών στην ουσία ελέγχει την παραγόμενη ισχύ από την γεννήτρια.

Ο ρυθμιστής στροφών κάνει δύο είδους ρυθμίσεις:

α) Την πρωτεύουσα ρύθμιση , η οποία λαμβάνει χώρα όταν γίνει αντιληπτή οποιαδήποτε μεταβολή στην ταχύτητα περιστροφής της γεννήτριας από το φυγόκεντρο ρυθμιστή που είναι συνδεδεμένος με τον άξονα της. Αυτή η μεταβολή όπως αναφέραμε και προηγουμένως , μπορεί να συμβεί μετά από προσθαφαιρέσεις φορτίου στο σύστημα.

Ακολούθως δίνεται σήμα-εντολή για την μετακίνηση της δικλείδας του ατμοστροβίλου, ώστε να προσαρμοστεί η μηχανική ισχύς που παράγεται από το στρόβιλο , ανάλογα με τις ανάγκες του συστήματος για την κάλυψη του νέου φορτίου.

β) Την δευτερεύουσα ρύθμιση , η οποία λαμβάνει χώρα μετά το πέρας της πρωτεύουσας ρύθμισης. Εδώ μετριέται το σφάλμα συχνότητας του συστήματος μετά την πρωτεύουσα ρύθμιση , καθώς και τυχόν διαφορές στη διακινούμενη ισχύ των

41

εξωτερικών διασυνδέσεων και αποστέλλονται τα κατάλληλα σήματα στον μηχανισμό αλλαγής στροφών του ρυθμιστή, για την επαναφορά της συχνότητας στην κανονική της τιμή.

Για τη μοντελοποίηση χρησιμοποιήθηκαν τα μοντέλα TGOV1 και GAST για τους ατμοστρόβιλους και τους αεριοστρόβιλους αντίστοιχα.

SIEMENS AG PTD SE NC	Name of the controller, TGOV1
Date: 14.10.2004	Type of the controller. GOVERNOR
Rev: 1	
Project Controller Library	

Σχήμα 2.41 : Ρυθμιστής στροφών TGOV1

Description	MONH	ΒΑΣΙΛΙΚΟΣ	ΔΕΚΕΛΕΙΑ
Permanent Droop	0.08 p.u.	0.0531 p.u.	0.0625 p.u.
T1	0.4s	0.09s	0.39s
V, max	0.7467	0.7536	0.8
V, min	0	0	0

Τ2	0s	2.2s	0s
Т3	2.1s	7.9s	1.59s
Turbine damping coeff.	0	0	0

Πίνακας 2.9 : Παράμετροι ρυθμιστή στροφών TGOV1

GAST(αεριοστρόβιλοι):

SIEMENS AG PTD SE NC	Name of the controller: GAST
Date: 14.10.2004	Type of the controller. GOVERNOR
Rev: 1	
Project: Controller Library	

Σχήμα 2.42 : Ρυθμιστής στροφών GAST

Description	MONH	ΒΑΣΙΛΙΚΟΣ
R	0.0625	0.0632
T1	0.4s	0.4s
T2	0.1s	0.1s
Т3	3s	3s
L, max	0.85	0.85
KT	2	2
V, max	0.8	0.7916
V, min	0	0
Turbine damping coeff.	0	0

Πίνακας 2.10 : Παράμετροι ρυθμιστή στροφών GAST

2.3.4 Μετασχηματιστές

АПО	ΠΡΟΣ	Un1	Un2	Sn	uk %	Vfe	iO
		kv	kv	mva		kw	%
MARI3.2	MARI4	132	66	60	10.92	20.4	0.38
MARI3.1	MARI4	132	66	60	10.96	20.4	0.38
MONI4	MONI3	66	132	45	9.58	0	0.34
MONI4	MONI3	66	132	45	9.57	0	0.34
ATHALASSA3	ATHALASSA4	132	66	60	10.91	22.2	0.38
ATHALASSA3	ATHALASSA4	132	66	60	10.9	19.8	0.38
DHEKELEIA3	DHEKELEIA4	132	66	45	21.89	18.9	0.62
DHEKELEIA3	DHEKELEIA4	132	66	45	21.89	18.9	0.62
POLEMI3	POLEMI4	132	66	45	9.5	13.95	0.3
POLEMI3	POLEMI4	132	66	45	9.47	13.95	0.3
POLEMI3	POLEMI4	132	66	45	10.1	11.7	0.3
ANATOL3	ANATOL4	132	66	45	9.38	13.5	0.28
ANATOL3	ANATOL4	132	66	45	9.4	13.05	0.279
DHEKELEIA3	N88	142	11	450	15.87	39.875	0.29

N98	MONI4	11.8	66	150	9.99	39	0.48
N100	MONI3	11.8	142	255	12.4	49.125	0.36
N101	VASSILIKO3	15.75	142	420	15	61.05	0.19
VASSILIKO3	N103	142	11	45	13	0	0.4
SOTE3	SOTE5	132	11	20	25.19	14.2	0.72
SOTE3	SOTE5	132	11	20	25.27	14.2	0.72
PROT3	PROT5	132	11	20	25.18	14.4	0.72
PROT3	PROT5	132	11	20	25.17	14.2	0.72
LARNAKA3	LARNAKA5.1	132	11	20	24.85	11.2	1
LARNAKA3	LARNAKA5.1	132	11	20	24.92	11	1
LARNAKA3	LARNAKA5.2	132	11	20	24.54	11	1
INTAIR3.1	INTAIR5	132	11	20	24.83	11.4	1.02
INTAIR3.2	INTAIR5	132	11	20	24.83	11.4	1.02
FIZ3	FIZ5	132	11	10	14.64	7.7	1.13
FIZ3	FIZ5	132	11	10	14.7	7.7	1.12
DESAL4	DESAL5	66	11	10	14.8	6.6	0.91
AYNI4	AYNI5	66	11	5	7.29	4.6	0.53
AYNI4	AYNI5	66	11	5	7.28	4.6	0.53
DHEKELEIA4	DHEKELEIA5	66	11	7.5	7.53	15.75	0.71
DHEKELEIA4	DHEKELEIA5	66	11	7.5	7.53	16.5	0.72
DHEKELEIA4	DHEKELEIA5	66	11	7.5	7.53	16.5	0.72
TROULL4	TROULL5	66	11	2.5	6	5.92	0.6
TROULL4	TROULL5	66	11	2.5	6	5.92	0.6
ALAMBRA3	ALAMBRA5	132	11	10	15.93	9.4	0.8
ALAMBRA3	ALAMBRA5	132	11	10	15.96	9.6	0.8
ATHALASSA3	ATHALASSA5	132	11	20	24.83	11.4	1.02
ATHALASSA3	ATHALASSA5	132	11	20	25.22	14	0.72
DISOF3.1	DISOF5.1	132	11	20	20.9	17	0.63
DISOF3.2	DISOF5.1	132	11	20	20.8	17.4	0.63
DISOF3.2	DISOF5.2	132	11	20	21.07	22.6	0.8
STROVOLOS3	STROVOLO5.1	132	11	20	25.76	16.8	0.63
STROVOLOS3	STROVOLO5.2	132	11	20	25.76	16.8	0.63
STROVOLOS3	STROVOLO5.2	132	11	20	25.76	16.8	0.63

SEMINA3	SEMINA5.2	132	11	20	25.83	15.6	0.62
SEMINA3	SEMINA5.1	132	11	20	25.83	15.6	0.62
SEMINA3	SEMINA5.1	132	11	20	25.83	15.6	0.62
SOPAZ4	SOPAZ5	66	11	10	14.4	8.2	0.7
LATSIA4	LATSIA5.1	66	11	10.5	14.69	12.495	0.77
LATSIA4	LATSIA5.1	66	11	10.5	14.69	12.495	0.77
LATSIA4	LATSIA5.2	66	11	10	14.9	7.6	0.89
ERGATES4	ERGATES5	66	11	7.5	10	6.53	0.8
ERGATES4	ERGATES5	66	11	7.5	10	6.53	0.8
OROUNDA4	OROUNDA5	66	11	10.5	14.18	12.495	0.8
OROUNDA4	OROUNDA5	66	11	10.5	15.44	12.6	0.8
KOKK.4	KOKK.5	66	11	10	14.8	6.7	0.9
KOKK.4	KOKK.5	66	11	10	14.8	6.7	0.9
MARI4	MARI5	66	11	10	14.38	8.3	0.7
MARI4	MARI5	66	11	10	14.21	8.3	0.7
MARI4	MARI5	66	11	10	14.23	8.5	0.7
KOPHINOU3	KOPHINOU5	132	11	5	7.5	7.8	0.8
KOPHINOU3	KOPHINOU5	132	11	5	7.5	8	0.8
PYRGOS3	PYRGOS5	132	11	7.5	9	6.3	0.8
PYRGOS3	PYRGOS5	132	11	7.5	9	6.3	0.8
OLDPOW.3	OLDPOW.5.1	132	11	31.5	25.66	10.4	0.37
OLDPOW.3	OLDPOW.5.1	132	11	31.5	25.67	10.4	0.36
OLDPOW.3	OLDPOW.5.2	132	11	31.5	25.66	10.08	0.37
YERMAS3	YERMAS5	132	11	20	24.86	11.8	1
YERMAS3	YERMAS5	132	11	20	24.69	11.8	1
AYPHYLA3	AYPHYLA5	132	11	21	28.26	11.13	0.98
AYPHYLA3	AYPHYLA5	132	11	21	28.3	11.13	0.98
AYPHYLA3	AYPHYLA5	132	11	23	28.5	15.41	0.77
POLEM4	POLEM5	66	11	7.5	15.02	12.075	1.12
POLEM4	POLEM5	66	11	7.5	14.99	12.075	1.13
POLEM4	POLEM5	66	11	10.5	14.67	12.39	0.79
YPSONAS4	YPSONAS5	66	11	7.5	10.12	4.275	0.98
YPSONAS4	YPSONAS5	66	11	7.5	9.99	4.275	0.98

TRIMIK4	TRIMIK5	66	11	5	7.66	6.35	0.76
TRIMIK4	TRIMIK5	66	11	5	7.59	8.15	0.78
KARV4	KARV5	66	11	5	7.14	7	0.72
KARV4	KARV5	66	11	5	7.77	8	0.7
TEMPRIA4	TEMPRIA5	66	11	5	7.3	7.95	0.73
TEMPRIA4	TEMPRIA5	66	11	5	7.3	7.95	0.73
TEMPRIA4	TEMPRIA5	66	11	5	7.85	7.85	0.72
KOLOS4	KOLOS5	66	11	10.5	14.67	12.39	0.79
KOLOS4	KOLOS5	66	11	10.5	14.67	12.39	0.79
EPISK4	EPISK5	66	11	2.5	6.5	4.9	0.91
EPISK4	EPISK5	66	11	1.5	6.5	5.925	1.07
PISS4	PISS5	66	11	2.5	5.66	5.925	0.64
PISS4	PISS5	66	11	2.5	6.5	4.95	0.91
XEROP4	XEROP5.1	66	11	2.5	6	5.925	0.64
XEROP4	XEROP5.1	66	11	2.5	6	5.925	0.64
XEROP4	XEROP5.2	66	11	10	14.61	5.925	0.82
AKOURS4	AKOURS5	66	11	7.5	9.7	6.3	0.81
AKOURS4	AKOURS5	66	11	7.5	9.8	6.375	0.81
POLI4	POLI5	66	11	7.5	10.04	7.725	0.5
POLI4	POLI5	66	11	7.5	10.05	7.8	0.5
PAPHOS4	PAPHOS5	66	11	10.5	14.79	12.915	0.78
PAPHOS4	PAPHOS5	66	11	10.5	14.67	12.39	0.79
PAPHOS4	PAPHOS5	66	11	10	14.9	7.6	0.89
ANATOL3	ANATOL5	132	11	10	14.9	7.3	1.03
ANATOL3	ANATOL5	132	11	10	14.89	7.4	1.04

Πίνακας 2.11 : Παράμετροι μετασχηματιστών

2.3.5 Γραμμές μεταφοράς

АПО	ΠΡΟΣ	Un	r (ohm)	x (ohm)	c (nf)
		(KV)			
OLDPOW3	POLEMI3	132	0.277	0.8573	1156.029
YERMAS3	POLEMI3	132	1.8679	6.3598	149.801
YERMAS3	OLDPOW3	132	0.2265	0.7004	945.211
MONI3	YERMAS3	132	1.4497	4.938	116.187
AYPHYLA3	POLEMI3	132	1.3225	4.5024	105.957
MONI3	AYPHYLA3	132	2.2738	7.7415	182.319
MONI3	PYRGOS3	132	1.6326	5.5617	8.038
MONI3	PYRGOS3	132	1.6326	5.5617	8.038
KOPHINOU3	PYRGOS3	132	43.881	44.6403	54.0747
MARI3.1	KOPHINOU3	132	25.436	25.291	32.1525
W9G31	KOPHINOU3	132	0.499	1.6981	28.9007
W9G31	KOPHINOU3	132	0.499	1.6797	28.9007
VASSILIKO3	W9G31	132	1.2057	4.3799	86.666
VASSILIKO3	W9G31	132	1.2043	4.5541	86.666
MARI3.2	VASSILIKO3	132	0.3241	1.2197	28.133
MARI3.1	VASSILIKO3	132	0.3241	1.2197	28.133
VASSILIKO3	MONI3	132	1.1953	4.5006	103.034
VASSILIKO3	MONI3	132	1.1953	4.5006	103.034
VASSILIKO3	W29G31	132	1.0789	3.6829	86.666
VASSILIKO3	W29G31	132	1.0789	3.6829	86.666
W29G31	W30G31	132	0.4795	1.6368	38.5099
W29G31	W30G31	132	0.4795	1.6368	38.5099
ALAMBRA3	W30G31	132	1.0789	3.6829	86.666
ALAMBRA3	W30G31	132	1.0789	3.6829	86.666
OROUNDA4	ERGATES4	66	2.0116	6.5127	153.455
LATSIA4	ERGATES4	66	2.474	8.011	188.53
KOKKIN4	OROUNDA4	66	2.0739	6.9892	163.686
ATHALASSA4	LATSIA4	66	0.9104	2.9481	68.689
ATHALASSA4	KOKKIN4	66	2.841	9.4726	222.14

W15G31	ALAMBRA3	132	1.079	3.6829	86.666
W15G31	ALAMBRA3	132	1.079	3.6829	86.666
ALAMBRA3	ATHALASSA3	132	1.925	6.233	146.879
ALAMBRA3	ATHALASSA3	132	1.925	6.233	146.879
FIZ3	W15G31	132	1.814	6.78	156.013
FIZ3	W15G31	132	1.814	6.78	156.013
FIZ3	W15G31	132	0.959	3.274	77.056
FIZ3	W15G31	132	0.959	3.274	77.056
LARNAKA3	FIZ3	132	2.047	7.49	173.185
DHEKELEIA3	FIZ3	132	3.182	11.35	263.797
DHEKELEIA3	LARNAKA3	132	2.14	7.28	171.36
DHEKELEIA3	ATHALASSA3	132	1.61172	11.2123	667.79
DHEKELEIA4	TROUL4	66	4.49	4.6	89.15
TROUL4	ATHALASSA4	66	10.505	10.798	202.178
VASSILIKO3	POLEMI3	132	3.7566	12.869	302.526
VASSILIKO3	POLEMI3	132	3.7566	12.869	302.526
POLEMI4	YPSONAS4	66	0.81065	3.0522	70.1509
POLEMI4	YPSONAS4	66	0.81065	3.0522	70.1509
YPSONAS4	TRIMIKL4	66	6.235	6.409	119.84
TRIMIKL4	KARVOUNAS4	66	5.0098	5.1501	94.996
KARVOUNAS4	TEMP4	66	6.8799	6.9923	132.994
KOLOS4	EPISK4	66	2.7086	2.7547	54.0747
POLEMI4	KOLOS4	66	0.6007	2.2621	51.1517
POLEMI4	EPISK4	66	2.7086	2.7547	54.075
EPISK4	PISS4	66	6.1363	6.2404	119.841
PISS4	XEROP4	66	8.3801	8.5299	166.608
XEROP4	PAPHOS4	66	5.53996	5.6401	108.149
ANATOL4	PAPHOS4	66	0.6477	2.2063	51.1517
ANATOL4	PAPHOS4	66	0.6477	2.2063	51.1517
PAPHOS4	AKOURS4	66	5.8423	8.9877	188.531
W8G41	AKOURS4	66	0.02997	0.10232	38.583
W8G41	ANATOL4	66	0.41957	1.4288	539.285
W11G31	ANATOL3	132	0.5095	1.7392	654.888

W11G31	ANATOL3	132	0.5095	1.7392	624.051
W11G31	POLEMI3	132	0.98899	3.3761	624.051
POLEMI3	W11G31	132	0.98899	3.3761	1271.34
DHEKELEIA3	ATHALASSA3	132	1.61172	11.2123	667.79
OROUNDA4	TEMP4	66	4.167	10.781	241.702
DHEKELEIA3	SOTE3	132	2.25	8.475	194.373
SOTE3	PROT3	132	2.88	10.8447	248.451
DHEKELEIA3	ATHIE3	132	1.678	5.729	134.82
DHEKELEIA3	ATHIE3	132	1.678	5.729	156.01
ATHIE3	W26G31	132	0.599	2.046	48.16
W26G31	W26	132	1.7e-005	0.000174	0
FIZ3	INTAIR3.1	132	0.277	0.857	1156.029
FIZ3	INTAIR3.2	132	0.277	0.857	1156.029
FIZ3	W2G31	132	0.697	2.531	48.156
FIZ3	W2G31	132	0.697	2.514	48.156
W2G31	W2	132	0.0181	0.678	0
W2G31	W5G31	132	0.839	2.685	67.41
W5G31	W28	132	0.000174	0.00174	0
DHEKELEIA5	W24	11	1.3e-005	4.6e-005	0
DHEKELEIA4	DESAL4	66	0.1329	0.227	327.371
DHEKELEIA4	AYNI4	66	1.7255	5.7565	147.61
DHEKELEIA4	AYNI4	66	1.7255	5.7565	147.61
W15G31	W27	132	0.0181	0.0678	0
ATHALASSA3	DISOF3.1	132	0.749	1.887	2527.99
ATHALASSA3	DISOF3.2	132	0.749	1.76	2498.4
ATHALASSA3	STROVOLOS3	132	0.606	2.2	1214.5
ATHALASSA3	STROVOLOS3	132	0.606	2.2	1214.5
STROVOLOS3	SEMINA3	132	0.286	0.453	1320.8
STROVOLOS3	SEMINA3	132	0.286	0.453	1320.8
ATHALASSA4	SOPAZ4	66	1.484	1.492	29.23
W30G31	W30	132	0.019	0.066	0
W29G31	W29	132	0.019	0.066	0
MARI5	W1	11	0	0	0

W9G31	W9	132	0.018	0.068	0
W9G31	W10	132	0.0017	0.0017	0
PYRGOS5	W5	11	0.021	0.071	0
PYRGOS5	W3	11	0.01	0.034	0
PYRGOS3	W22G31	132	1.08	3.68	86.67
W22G31	W12G31	132	0.48	1.64	38.51
W11G31	W11	132	0.019	0.068	0
AKOURS4	W23G41	66	0.45	1.69	624.05
AKOURS4	POLI4	66	9.93	13.14	268.91

Πίνακας 2.12 : Παράμετροι γραμμών μεταφοράς

2.3.6 Πυκνωτές αντιστάθμισης

Ζυγός που συνδέονται	Πλήθος	MVAr ανά πυκνωτή
ANATOL51	1	2.5
STROVO52	3	2.5
SEMINA51	3	2.5
OROUND51	3	2.5
LARNAK51	3	2.5
SOTERA51	2	2.5
PROTAR51	2	2.5
POLEMI51	3	2.5
KOLOSS51	2	2.5
AYPHYL51	3	2.5
YERMAS51	3	2.5

Πίνακας 2.	13 : Па	ράμετροι	πυκνωτών	αντιστάθμισης

2.3.7 Ανεμογεννήτριες

Οι ανεμογεννήτριες προσομοιώθηκαν με το μοντέλο Asynchronous Machine και με τύπο ροής φορτίου DFIG. Η παραγωγή τους σε ενεργό και άεργο ισχύ διαφέρει σε κάθε σενάριο και θα αναφερθεί στην αντίστοιχη ανάλυση.

<u>ΚΕΦΑΛΑΙΟ 3 : ΕΙΣΑΓΩΓΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ</u> ΣΤΟ ΣΗΕ ΤΗΣ ΚΥΠΡΟΥ

3.1 Γενικά

Η Κύπρος είναι νησί του οποίου η ενεργειακή παραγωγή εξαρτάται σχεδόν αποκλειστικά από τα εισαγόμενα καύσιμα. Ο τομέας της ηλεκτρικής παραγωγής του είναι περισσότερο από 90% εξαρτώμενος από το πετρέλαιο ενώ τα υπόλοιπα 9% καλύπτονται από τις εισαγωγές του άνθρακα (4.5%) και από την ηλιακή ενέργεια (4,5%). Αξίζει να σημειωθεί ότι γύρω στο 62% των εσόδων του κράτους από εξαγωγές δαπανάται για την αγορά πετρελαίου. Παρά το γεγονός ότι η Κύπρος είναι μια από τις πρώτες χώρες στον κόσμο στη χρησιμοποίηση των ηλιακών θερμοσιφώνων, τίποτα ουσιαστικό δεν έχει γίνει για να εξασφαλιστεί περαιτέρω η εισαγωγή των ανανεώσιμων πηγών ενέργειας (ΑΠΕ).

Έχοντας υπόψη ότι η ζήτηση ηλεκτρικής ενέργειας αναμένεται να διπλασιαστεί την επόμενη δεκαετία, η ανάγκη για παραγωγή από ΑΠΕ γίνεται ακόμη πιο επιτακτική. Οι ανανεώσιμες μορφές ενέργειας, ως γηγενείς πηγές ενέργειας, μπορούν να διαδραματίσουν έναν σημαντικό ρόλο στη μείωση του επιπέδου ενεργειακών εισαγωγών, με όλες τις θετικές επιπτώσεις στην ισορροπία του εμπορίου και την ασφάλεια του ανεφοδιασμού.

Δεν πρέπει ακόμη να ξεχνάμε τις περιβαλλοντολογικές επιπτώσεις, λόγω των εκπομπών αερίων του θερμοκηπίου από τις συμβατικές μονάδες παραγωγής. Η μετεωρολογική υπηρεσία της Κύπρου έχει συντάξει στατιστικές (μερικές που χρονολογούνται από 1896) που επιβεβαιώνουν τις αλλαγές στο κλίμα παγκοσμίως... Κατά τη διάρκεια του τελευταίου αιώνα έχει υπάρξει μια συνολική αύξηση 0,5 °C στη θερμοκρασία στο νησί και μια μείωση 12% στις βροχοπτώσεις, που καθιστά τις μεγάλες περιόδους ξηρασίας πιο συχνές.

Η παραγωγή ηλεκτρικής ενέργειας είναι υπεύθυνη για το 44% των συνολικών εκπομπών CO2. Από αυτό και μόνο το στοιχείο γίνεται αντιληπτό το μέγεθος της συμβολής που μπορεί να έχει η εισαγωγή των ΑΠΕ, στην προσπάθεια που γίνεται για την μείωση των εκπομπών ρύπων. Επιπρόσθετα η Κύπρος ως πλήρες μέλος της Ευρωπαϊκής Ένωσης οφείλει να εναρμονιστεί με την κοινοτική οδηγία που καλεί όλα τα κράτη μέλη να καλύπτουν το 12% της συνολικής παραγωγής από ΑΠΕ.

Στην Κύπρο οι εναλλακτικές μορφές ενέργειας που είναι διαθέσιμες, αλλά και των οποίων η αξιοποίηση είναι οικονομικά συμφέρουσα, είναι η αιολική, η ηλιακή και η βιομάζα. Στην παρούσα διπλωματική εργασία θα μελετηθούν σενάρια διείσδυσης αιολικής ενέργειας στο σύστημα, αξίζει όμως να γίνει μια συνοπτική αναφορά και στις άλλες δυο μορφές.

3.2 Ηλιακή ενέργεια

Όλα τα μέρη της Κύπρου απολαμβάνουν ένα πολύ ήπιο κλίμα με πολλές ηλιόλουστες ημέρες. Στα κεντρικά και ανατολικά πεδινά ο μέσος αριθμός ωρών της ηλιοφάνειας για ολόκληρο το έτος είναι 75% του χρόνου που ο ήλιος είναι επάνω από τον ορίζοντα. Κατά τη διάρκεια των έξι θερινών μηνών υπάρχει ένας μέσος όρος 11,5 ωρών ηλιοφάνειας ανά ημέρα ενώ το χειμώνα αυτό μειώνεται σε 5,5 ώρες τους πιο νεφελώδεις μήνες, το Δεκέμβριο και τον Ιανουάριο. Ακόμη και στα υψηλά βουνά, οι πιο νεφελώδεις χειμωνιάτικοι μήνες έχουν έναν μέσο όρο σχεδόν 4 ώρες ηλιοφάνειας ανά ημέρα και τον Ιούλιο ο αριθμός φθάνει σε 11 ώρες. Η καθημερινή ηλιακή ακτινοβολία ποικίλλει από περίπου 2,3 kWh/m² τους πιο νεφελώδεις μήνες που 7,2 kWh/m² τον Ιούλιο . Η ανά μία ώρα την άμεση ηλιακή ακτινοβολία στην Κύπρο ποικίλλει από 250 έως 700 Wh/m².

Σήμερα η εκμετάλλευση της ηλιακής ενέργειας περιορίζεται στη χρήση των ηλιακών θερμοσίφωνων, σε αρκετά μεγάλο όμως βαθμό συγκριτικά με άλλες χώρες της Ευρωπαϊκής Ένωσης. Τα υψηλά όμως ποσά ηλιοφάνειας του νησιού ανάγκασαν τις αρχές να στραφούν προς την εκμετάλλευση της μορφής αυτής ενέργειας για παραγωγή ηλεκτρικής και μέσω επιχορηγήσεων προσπαθούν να προσελκύσουν μικρούς και μεγάλους επενδυτές. Έτσι η χρήση φωτοβολταϊκών αναμένεται να παρουσιάσει σημαντική αύξηση τα επόμενα χρόνια.

3.3 Βιομάζα

Η βιομάζα είναι ένας επικρατών πόρος αφού περιλαμβάνει εκτός από την ξύλινη βιομάζα και τα υπολείμματα της βιομηχανίας ξυλείας, τα γεωργικά υπολείμματα, τα λιπάσματα καθώς επίσης και το οργανικού μέρος των δημοτικών στερεών αποβλήτων. Η ενέργεια από τη βιομάζα είναι ευπροσάρμοστη δεδομένου ότι μπορεί να παραγάγει την ηλεκτρική ενέργεια και τη θερμότητα. Σύμφωνα με έρευνες, η μετατροπή των δημοτικών αποβλήτων σε θερμότητα για τη χρήση στην ηλεκτρική παραγωγή θα ανερχόταν σε συνολικά 3.2X109 MJ, ένα ενεργειακό ποσό ισοδύναμο με το 8,5% της συνολικής ενέργειας που παράγεται από τις εισαγωγές του ακατέργαστου πετρελαίου που χρησιμοποιούνται στην ηλεκτρική παραγωγή. Προκύπτει έτσι μια ακόμα μορφή ενέργειας που θα μπορούσε να κατέχει σημαντικά ποσοστά στη συνολική παραγωγή.

3.4 Αιολική ενέργεια

Στην ανατολική μεσογειακή περιοχή γενικά, οι άνεμοι είναι συνήθως δυτικοί ή νοτιοδυτικοί το χειμώνα και βορειοδυτικοί ή βόρειοι το καλοκαίρι. Συνήθως είναι μέτριας ταχύτητας και σπάνια φθάνουν στα επίπεδα θύελλας. Στο νησί της Κύπρου, οι άνεμοι είναι αρκετά μεταβλητοί στην κατεύθυνση, ενώ αρκετά προβλήματα προκύπτουν στην προσπάθεια προσδιορισμού της κατεύθυνσης και της ταχύτητας του αέρα, λόγω κυρίως της μορφολογίας του νησιού.

Το καθεστώς αέρα της Κύπρου επηρεάζεται από τρεις σημαντικούς παράγοντες: (α) τους ανατολικά κινούμενους κυκλώνες που περνούν από το νησί, την επίδραση του σιβηρικού αντικυκλώνα καθώς επίσης και την επέκταση του ινδικού μουσώνα μέχρι την Κύπρο το καλοκαίρι (β) τις μεγάλες διαφορές θερμοκρασίας μεταξύ της θάλασσας και του εδάφους και, (γ) τα βουνά, όπου αναπτύσσονται τα τοπικά συστήματα αέρα. Αν και η δυνατότητα υψηλού αέρα δεν είναι χαρακτηριστική στην Κύπρο, διάφορες περιοχές παρουσιάζονται να έχουν τις ετήσιες μέσες ταχύτητες αέρα μεγαλύτερες από 5 m/s στο ύψος 10 μ. Αυτές οι θέσεις βρίσκονται στη νότια παράκτια ζώνη του νησιού και σε μερικές εκτεθειμένες θέσεις στα βουνά. Αυτές οι περιοχές φαίνονται να είναι πολύ ελπιδοφόρες για την εγκατάσταση αιολικών πάρκων.

Ακολουθεί μια αναλυτική περιγραφή των ανεμογεννητριών καθώς και αναφορά στη σύνδεσή τους στο δίκτυο.

3.4.1 Ανεμογεννήτριες

Η λειτουργία μιας ανεμογεννήτριας για την παραγωγή ηλεκτρικής ενέργειας, έχει ως βάση την αρχή της ενεργειακής μετατροπής .Αν υποθέσουμε ένα φανταστικό σύστημα με μια είσοδο και μια έξοδο, τότε σχηματικά αυτό που γίνεται κατά την

λειτουργία μιας ανεμογεννήτριας, μπορεί να παρασταθεί όπως φαίνεται στο σχήμα 3.1.

Σχήμα 3.1 : Λειτουργία ανεμογεννήτριας

Μπορεί ως ιδέα η λειτουργία των ανεμογεννητριών να είναι απλή στη σύλληψη, όμως οι ανεμογεννήτριες δεν παύουν να είναι μηχανές τελευταίας τεχνολογίας, οι οποίες χρόνο με το χρόνο βελτιώνονται κατασκευαστικά, για να αποδίδουν καλύτερα. Στις μέρες μας υπάρχουν πολλά είδη ανεμογεννητριών, οι οποίες κατατάσσονται σε δύο βασικές κατηγορίες : 1)Αυτές του οριζοντίου άξονα, των οποίων ο δρομέας είναι τύπου έλικα και βρίσκεται συνεχώς παράλληλος με την κατεύθυνση του ανέμου και του εδάφους και 2) αυτές του κατακόρυφου άξονα, ο οποίος παραμένει σταθερός και είναι κάθετος προς την επιφάνεια του εδάφους.

Η απόδοση μιας ανεμογεννήτριας εξαρτάται από το μέγεθος της και την ταχύτητα του ανέμου. Οι ανεμογεννήτριες οριζοντίου άξονα υπερέχουν σε ενεργειακή απόδοση αυτών του κατακόρυφου άξονα, αφού εγκαθίστανται σε μεγαλύτερο ύψος και διαθέτουν σύστημα προσανατολισμού το οποίο τις στρέφει ανάλογα με την φορά του ανέμου. Αυτός είναι και ο λόγος που σήμερα έχουν επικρατήσει οι ανεμογεννήτριες οριζοντίου άξονα. Οι τυπικές διαστάσεις μιας τέτοιας ανεμογεννήτριας, που έχει δυναμικότητα 500 kW, έχουν ως εξής : Διάμετρος δρομέα, 40 μέτρα και ύψος 40-50 μέτρα, ενώ γι' αυτήν των 3 MW, οι διαστάσεις είναι 80 και 80–100 μέτρα αντίστοιχα.

Σχήμα 3.2 : Ανεμογεννήτρια οριζοντίου άξονα

Μια τυπική ανεμογεννήτρια οριζοντίου άξονα (σχήμα 3.2) , αποτελείται από τα εξής μέρη :

Το δρομέα, που αποτελείται από δύο ή τρία πτερύγια από ενισχυμένο πολυεστέρα.
Τα πτερύγια προσδένονται πάνω σε μια πλήμνη είτε σταθερά, είτε με τη δυνατότητα να περιστρέφονται γύρω από το διαμήκη άξονα τους μεταβάλλοντας το βήμα..

2) Το σύστημα μετάδοσης της κίνησης, αποτελούμενο από τον κύριο άξονα, τα έδρανα του και το κιβώτιο πολλαπλασιασμού στροφών, το οποίο προσαρμόζει την ταχύτητα περιστροφής του δρομέα στη σύγχρονη ταχύτητα της ηλεκτρογεννήτριας. Η ταχύτητα περιστροφής παραμένει σταθερή κατά την κανονική λειτουργία της μηχανής.

3) Την ηλεκτρική γεννήτρια, σύγχρονη ή επαγωγική με 4 ή 6 πόλους, η οποία συνδέεται με την έξοδο του πολλαπλασιαστή, μέσω ενός ελαστικού ή υδραυλικού συνδέσμου και μετατρέπει τη μηχανική ενέργεια σε ηλεκτρική ενώ βρίσκεται συνήθως πάνω στον πύργο της ανεμογεννήτριας. Υπάρχει και το σύστημα πέδης το οποίο είναι ένα συνηθισμένο δισκόφρενο που τοποθετείται στον κύριο άξονα ή στον άξονα της γεννήτριας.

4) Το σύστημα προσανατολισμού, που αναγκάζει συνεχώς τον άξονα περιστροφής του δρομέα, να βρίσκεται παράλληλα με τη διεύθυνση του ανέμου

5) Τον πύργο, ο οποίος στηρίζει όλη την παραπάνω ηλεκτρομηχανολογική εγκατάσταση. Ο πύργος είναι συνήθως σωληνωτός ή δικτυωτός και σπανίως από οπλισμένο σκυρόδεμα.

6) Τον ηλεκτρονικό πίνακα και τον πίνακα ελέγχου, οι οποίοι είναι τοποθετημένοι στη βάση του πύργου. Το σύστημα ελέγχου παρακολουθεί, συντονίζει και ελέγχει όλες τις λειτουργίες της ανεμογεννήτριας, φροντίζοντας για την απρόσκοπτη λειτουργία της.

Συνοπτικά κατά την λειτουργία της ανεμογεννήτριας, έχουμε περιστροφή των πτερυγίων της καθώς φυσάει και μετάδοση της κίνησης αυτής στον άξονα περιστροφής, ο οποίος, χάρη σε ένα σύστημα προσανατολισμού, βρίσκεται πάντα παράλληλα προς την κατεύθυνση του ανέμου.

Η κινητική ενέργεια του άξονα περιστροφής, μετατρέπεται από μια γεννήτρια σε ηλεκτρική ενέργεια, η οποία στη συνέχεια με κατάλληλη σύνδεση, διοχετεύεται στο δίκτυο. Σε αυτό το σημείο, θα πρέπει να αναφέρουμε πως η σχέση που συνδέει την ταχύτητα του ανέμου, με την αεροδυναμική ισχύ του δρομέα, είναι η πιο κάτω:

$$P_{\alpha\varepsilon\rho} = \frac{1}{2}.\rho.Cp(\lambda).A.Vw^3$$

όπου Α: η διατομή των πτερυγίων (δρομέα), ρ: η πυκνότητα του αέρα και Cp: ο αεροδυναμικός συντελεστής, με το λ να εξαρτάται από την ακτίνα και την ταχύτητα περιστροφής των πτερυγίων, από τον εξής τύπο:

$$\lambda_{opt} = \frac{\omega_{R,opt}.R}{Vw}$$

Η ταχύτητα περιστροφής του δρομέα , δίνεται από την σχέση:

$$\omega r = (1-s).\omega s = (1-s).\frac{2.\pi.fe}{p/2}$$

η οποία ισχύει στις ανεμογεννήτριες επαγωγής. Αν θέσουμε ότι η ολίσθηση s ισούται με μηδέν, τότε η πιο πάνω σχέση ισχύει και για τις σύγχρονες ανεμογεννήτριες. Υπάρχει επίσης το ενδεχόμενο χρήσης πολλών ανεμογεννητριών μαζί (συστοιχιών), οι οποίες αποτελούν τα λεγόμενα αιολικά πάρκα, που επιτρέπουν τη μαζική εκμετάλλευση της αιολικής ενέργειας και τη διοχέτευση του συνόλου της παραγόμενης ενέργειας στο ηλεκτρικό σύστημα. Σε αυτήν την περίπτωση, ο τύπος της αεροδυναμικής ισχύος θα πολλαπλασιαστεί, ανάλογα με τον αριθμό των ανεμογεννητριών που υπάρχουν στο αιολικό πάρκο.

3.4.2 Σύνδεση ανεμογεννητριών στο δίκτυο

Στην ενότητα αυτή, θα γίνει μια παρουσίαση για το πώς συνδέεται η αιολική παραγωγή στο δίκτυο διανομής, καθώς επίσης και καταγραφή των ορισμών και βασικών εννοιών, που πρέπει να λαμβάνονται υπόψη κατά την διασύνδεση των αιολικών πάρκων στο σύστημα.

Αρχίζοντας την ανάλυση μας, πρέπει να αναφέρουμε ότι οι ανεμογεννήτριες είναι συνήθως ασύγχρονες γεννήτριες , αυτοδιεγειρόμενες στην περίπτωση της απομονωμένης λειτουργίας και με διορθωτή συντελεστή ισχύος στην περίπτωση της συνδεδεμένης λειτουργίας με το δίκτυο.

Κατά την αυτόνομη λειτουργία, η απαιτούμενη άεργος ισχύς για τη διέγερση των ασύγχρονων γεννητριών, παρέχεται είτε από πυκνωτές που συνδέονται στους ακροδέκτες της γεννήτριας, είτε από άλλα στοιχεία του απομονωμένου τμήματος του δικτύου (π.χ. χωρητικότητες καλωδίων).

Κατά την συνδεδεμένη λειτουργία , η αντίστοιχη απαιτούμενη άεργος ισχύς , παρέχεται επίσης από πυκνωτές που συνδέονται στους ακροδέκτες της γεννήτριας , προκειμένου να αυξηθεί ο επαγωγικός συντελεστής ισχύος της γεννήτριας και άρα να μειωθεί η απορρόφηση άεργου ισχύος από το δίκτυο.

Όταν μιλάμε για συνδεδεμένη λειτουργία της ανεμογεννήτριας στο δίκτυο , δεν μπορούμε παρά να αναφερθούμε στους βασικούς ορισμούς του ΣΣΔ και ΣΚΣ.

Το Σημείο Σύνδεσης στο Δίκτυο (ΣΣΔ)

Είναι το σημείο του δικτύου MT ή XT, όπου συνδέονται οι εγκαταστάσεις του παραγωγού και βρίσκεται πάντοτε στην έξοδο των εγκαταστάσεων αυτών. Στο ΣΣΔ εγκαθίσταται η διάταξη μέτρησης της ενέργειας, την οποία απορροφούν οι αιολικές εγκαταστάσεις από το δίκτυο. Η ενέργεια που αποδίδει ο παραγωγός στο δίκτυο και αυτή που απορροφά από το δίκτυο ως καταναλωτής, μεταφέρεται πάντοτε μέσω του ΣΣΔ.

Το Σημείο Κοινής Σύνδεσης (ΣΚΣ)

Είναι το πλησιέστερο σημείο του δικτύου προς τις εγκαταστάσεις του παραγωγού, στο οποίο συνδέεται (ή μπορεί να συνδεθεί μελλοντικά), άλλος καταναλωτής ή

59

παραγωγός. Το ΣΚΣ , αποτελεί το σημείο αναφοράς , για τον προσδιορισμό των επιπτώσεων στο δίκτυο , οι οποίες προκαλούνται από τις εγκαταστάσεις αιολικής παραγωγής.

Τα ΣΣΔ και ΣΚΣ μπορεί να ταυτίζονται, αλλά μπορεί και να είναι διαφορετικά, όπως π.χ. στην περίπτωση παραγωγών οι οποίοι συνδέονται μέσω αποκλειστικής γραμμής.

ΣΣΔ και ΣΚΣ για μια τυπική περίπτωση σύνδεσης παραγωγού στο δίκτυο ΜΤ.

Σχήμα 3.3

Παρατηρώντας το σχήμα 3.3, θα πρέπει να τονιστεί ότι το σημείο που γίνεται ο διαχωρισμός των αρμοδιοτήτων και ευθύνης μεταξύ της αρχής παροχής ηλεκτρικής ενέργειας και του παραγωγού, είναι συνήθως οι ακροδέκτες των Μ/Σ εντάσεως προς την πλευρά του παραγωγού. Το στοιχείο εκείνο που επιτρέπει τη ζεύξη ή απομόνωση

των εγκαταστάσεων παραγωγής από το δίκτυο, είναι ο Αυτόματος Διακόπτης Διασύνδεσης (ΑΔΔ) ή αλλιώς ΑΔΣ. Η λειτουργία του ΑΔΔ ελέγχεται συνήθως από ηλεκτρονόμους προστασίας.

Ενδεικτική εγκατάσταση παραγωγής με ανεμογεννήτριες.

Σχήμα 3.4

Καθώς παρατηρούμε το σχήμα 3.4, γίνεται αντιληπτός ο διαχωρισμός τριών σημαντικών εννοιών, οι οποίες θα μας βοηθήσουν στην ανάλυση που ακολουθεί.

Η πρώτη έννοια , είναι αυτή της Εγκατάστασης Παραγωγής.

Πρόκειται για ένα τμήμα εγκατάστασης, στο οποίο υπάρχουν μία ή περισσότερες μονάδες γεννητριών για παραγωγή ηλεκτρικής ενέργειας, συμπεριλαμβανομένων και όλων των απαιτουμένων για τη λειτουργία τους, ηλεκτρικών διατάξεων και

συσκευών. Μια εγκατάσταση, είναι δυνατό να αποτελείται αποκλειστικά, από μια εγκατάσταση παραγωγής ή να περιλαμβάνει και φορτία.

Η δεύτερη έννοια που μπορούμε να διακρίνουμε, είναι αυτή της Μοναδιαίας εγκατάστασης.

Πρόκειται για το τμήμα της εγκατάστασης παραγωγής που περιλαμβάνει μία μονάδα γεννήτριας, μαζί με όλες τις ηλεκτρικές διατάξεις και συσκευές που απαιτούνται για την λειτουργία της. Όριο της μοναδιαίας εγκατάστασης, είναι το σημείο στο οποίο είναι συνδεδεμένη με άλλη μοναδιαία εγκατάσταση ή με την υπόλοιπη εγκατάσταση ή με το δημόσιο δίκτυο.

Τέλος, θα αναφερθούμε και στην έννοια της Μονάδας Γεννήτριας, η οποία αποτελεί το τμήμα μιας μοναδιαίας εγκατάστασης το οποίο παράγει ενέργεια, συμπεριλαμβανομένου και του μετατροπέα ισχύος, χωρίς όμως ενδεχόμενους πυκνωτές αντιστάθμισης άεργου ισχύος, μμετασχηματιστή προσαρμογής στην τάση του δικτύου και εξοπλισμό ζεύξης. Συνήθως η μονάδα γεννήτριας συμβολίζεται με το αγγλικό γράμμα G.

Ακολούθως, κρίνεται σκόπιμο να παρουσιαστούν, τα σημαντικότερα ονομαστικά μεγέθη, που περιγράφουν την λειτουργία των πιο πάνω εγκαταστάσεων:

1) Ονομαστικά μεγέθη Μονάδας Γεννήτριας

Ονομαστική ενεργός ισχύς P_{nG} είναι η ενεργός ισχύς που προσδιορίζεται από τον κατασκευαστή της γεννήτριας για ονομαστικές συνθήκες λειτουργίας (τάση, συχνότητα κλπ).

Ονομαστική άεργος ισχύς Q_{nG} είναι η άεργος ισχύς που προσδιορίζεται από τον κατασκευαστή της γεννήτριας για ονομαστικές συνθήκες λειτουργίας.

Ομοίως ορίζεται και η ονομαστική φαινόμενη ισχύς της μονάδας γεννήτριας S_{nG} , η ονομαστική ένταση, I_{nG} και ο ονομαστικός συντελεστής ισχύος εξόδου, λ_{nG} . Ισχύει:

$$\lambda_{nG} = \frac{P_{nG}}{S_{nG}}$$
, $S_{nG} = \sqrt{P_{nG}^2 + G_{nG}^2}$, $I_{nG} = \frac{S_{nG}}{\sqrt{3}.U_{nG}}$, όπου U_{nG} η ονομαστική τάση

της γεννήτριας.

2) Ονομαστικά μεγέθη Μοναδιαίας Εγκατάστασης

Ονομαστική ενεργός ισχύς P_{nE} : είναι η ενεργός ισχύς εξόδου που δίνεται από τον κατασκευαστή για ονομαστικές συνθήκες λειτουργίας (π.χ. ονομαστική ταχύτητα ανέμου για αιολικές εγκαταστάσεις).

Ονομαστική άεργος ισχύς Q_{nE} : είναι η άεργος ισχύς εξόδου που δίνεται από τον κατασκευαστή για ονομαστικές συνθήκες λειτουργίας.

Ομοίως ορίζεται και η ονομαστική φαινόμενη ισχύς της Μοναδιαίας Εγκατάστασης S_{nE} , η ονομαστική ένταση, I_{nE} και ο ονομαστικός συντελεστής ισχύος εξόδου, λ_{nE} , με σχέσεις ανάλογες με την περίπτωση της μονάδας γεννήτριας.

Η ονομαστική ενεργός ισχύς μοναδιαίας εγκατάστασης, γενικά συμπίπτει με την ονομαστική ισχύ της αντίστοιχης μονάδας γεννήτριας ($P_{nE} = P_{nG}$). Αντίθετα, οι ονομαστικές τιμές της άεργου και φαινόμενης ισχύος, του συντελεστή ισχύος και του ρεύματος μιας μοναδιαίας εγκατάστασης, μπορεί να μην είναι ίσες προς τις αντίστοιχες της μοναδιαίας γεννήτριας. Π.χ. η ονομαστική άεργος ισχύς μιας μοναδιαίας εγκατάστασης Α/Γ (με γεν. επαγωγής απ' ευθείας συνδεδεμένη στο δίκτυο), διαφέρει από αυτή της μοναδιαίας γεννήτριας, λόγω της ύπαρξης πυκνωτών αντιστάθμισης.

3) Ονομαστικά μεγέθη Εγκατάστασης Παραγωγής

Η ονομαστική ενεργός-άεργος ισχύς μιας εγκατάστασης παραγωγής, ισούται με το άθροισμα των ονομαστικών ενεργών-άεργων ισχύων, όλων των επιμέρους μοναδιαίων εγκαταστάσεων:

$$P_{nA} = \sum_{i=1}^{N} P_{nE,i}$$
, $Q_{nA} = \sum_{i=1}^{N} Q_{nE,i}$

Η ονομαστική φαινόμενη ισχύς, ένταση και συντελεστής ισχύος, προκύπτουν με σχέσεις ανάλογες με την περίπτωση της μονάδας γεννήτριας.

Στην περίπτωση της Εγκατάστασης Παραγωγής , σημαντικό ρόλο έχει και η φασική γωνία του ρεύματος εγκατάστασης , που δίνεται από τον τύπο:. $\phi_A = \arctan(\frac{-Q_A}{P_A})$

Με την τελευταία σχέση, έχουμε καλύψει την αναφορά μας στα ονομαστικά μεγέθη που αφορούν τον παραγωγό και το μόνο που μας μένει, είναι η αναφορά στα σημαντικότερα μεγέθη που αφορούν το δίκτυο.

Ας αρχίσουμε λοιπόν από την ονομαστική τάση του δικτύου , $U_{\scriptscriptstyle n}$.

Συνεχίζουμε με την ισχύ βραχυκυκλώσεως του δικτύου, S_k . Αυτή η ισχύς αφορά το ΣΚΣ (ή το ΣΣΔ) και λαμβάνεται υπόψη στον υπολογισμό των επιπτώσεων, από τη σύνδεση των εγκαταστάσεων παραγωγής στο δίκτυο. Ο τύπος της ισχύος βραχυκύκλωσης έχει ως εξής: $S_k = \frac{U_n^2}{Z_k}$, όπου $Z_k = R_k + jX_k$ (η σύνθετη αντίσταση βραχυκυκλώσεως του δικτύου στο ΣΚΣ).

Η φασική γωνία της προαναφερόμενης αντίστασης , ονομάζεται γωνία σύνθετης αντίστασης βραχυκυκλώσεως του δικτύου , ψ_k και υπολογίζεται με τον τύπο:

$$\psi_k = \arctan(\frac{X_k}{R_k}).$$

Ένα άλλο χαρακτηριστικό του δικτύου, είναι οι μεταβολές της τάσης που συμβαίνουν στους ζυγούς του, γεγονός αλληλένδετο με την διείσδυση νέων μονάδων στο σύστημα. Αυτές οι μεταβολές χωρίζονται σε δύο κατηγορίες:

1) Στις αργές μεταβολές της τάσης

Πρόκειται για μεταβολές της τάσης στην μόνιμη κατάσταση, οι οποίες εκφράζονται από μέσες τιμές 10 min της τάσης και μπορεί να οφείλονται σε αντίστοιχες διακυμάνσεις της ισχύος εξόδου των εγκαταστάσεων παραγωγής ή σε μεταβολές του φορτίου του δικτύου. Συχνά χρησιμοποιείται ο όρος της εκατοστιαίας μεταβολής της τάσης, ε(%), η οποία εκφράζει τη μεταβολή της τάσης ανηγμένη επί της ονομαστικής

táshc tou diktúou kai dínetai apó thn exúc scésh: $\varepsilon(\%)=100\,.\frac{\Delta U}{U_{_{n}}}$.

Εάν ΔU είναι η προκαλούμενη πτώση ή ανύψωση της τάσης επί της σύνθετης αντίστασης βραχυκυκλώσεως του δικτύου εξαιτίας του ρεύματος των εγκαταστάσεων, τότε πρέπει να χρησιμοποιείται η ονομαστική φασική τάση και άρα η πτώση τάσης θα περιγράφεται από την σχέση:

$$\varepsilon(\%) = 100 \cdot \frac{\Delta U}{U_n / \sqrt{3}}$$

2) Στις ταχείες μεταβολές της τάσης

Πρόκειται για οποιεσδήποτε γρήγορες μεταβολές της RMS τιμής της τάσης, οι οποίες συμβαίνουν σε χρονικά διαστήματα μεταξύ ενός κύκλου έως και αρκετών δευτερολέπτων. Αυτές οι μεταβολές πάντως, δεν υπερβαίνουν σε διάρκεια το όριο των 10 min, το οποίο ισχύει στις αργές μεταβολές. Οι ταχείες μεταβολές συμβαίνουν λόγω χειρισμών στις εγκαταστάσεις παραγωγής (ζεύξη-απόζευξη, αλλαγή γεννητριών κλπ.) ή και εξαιτίας της μμεταβλητότητας της ισχύος εξόδου των εγκαταστάσεων. Στο διάγραμμα που ακολουθεί, βλέπουμε την τυπική μορφή μιας ταχείας μεταβολής της τάσης, η οποία χαρακτηρίζεται από τη μέγιστη μεταβολή, $\Delta U_{\rm max}$ και τη μεταβολή μόνιμης κατάστασης της τάσης τροφοδότησης, ΔU_c :

Τυπική μορφή ταχείας μεταβολής της τάσης.

Διάγραμμα 3.1

Βάσει των μεταβολών τάσης , ΔU_{max} και ΔU_C , μπορούμε να ορίσουμε και τις αντίστοιχες σχετικές μεταβολές, ανηγμένες στην ονομαστική τάση του δικτύου , U_n ,

ως ακολούθως:
$$d_{\text{max}}$$
 (%) = 100. $\frac{\Delta U_{\text{max}}}{U_n}$ και d_C (%) = 100. $\frac{\Delta U_C}{U_n}$

Στις δύο προαναφερόμενες σχέσεις, μπορούν σε αρκετές περιπτώσεις να χρησιμοποιηθούν και οι ακόλουθοι δύο συντελεστές, για τον υπολογισμό των βυθίσεων της τάσης : α) ο συντελεστής μεταβολής της τάσης, $k_U(\psi_{\kappa})$,

που πρόκειται για αδιάστατο μέγεθος, χαρακτηριστικό της εγκατάστασης, το οποίο σε συνδυασμό με την ονομαστική της ισχύ και την ισχύ και γωνία βραχυκυκλώσεως του δικτύου στο ΣΚΣ, επιτρέπει την εκτίμηση του μεγίστου πλάτους των

προκαλουμένων μεταβολών της τάσης στο ΣΚΣ, εξαιτίας χειρισμών (συνήθως ζεύξεων) στις εγκαταστάσεις και β) ο συντελεστής μεγίστου ρεύματος ζεύξης, $k_{i\max}$, που επιτρέπει σε συνδυασμό με την ονομαστική ισχύ της εγκατάστασης και την ισχύ βραχυκυκλώσεως του δικτύου, την προσεγγιστική εκτίμηση της μέγιστης αναμενόμενης μεταβολής της τάσης του ΣΚΣ εξαιτίας χειρισμών ζεύξης και ο οποίος χρησιμοποιείται όταν δεν είναι διαθέσιμη η τιμή του συντελεστή μεταβολής της τάσης, $k_{U}(\psi_{\kappa})$.

Η τιμή του $k_{i\max}$, δίνεται από την σχέση : $k_{i\max} = \frac{I_{ekk}}{I_n}$.

Τελειώνοντας την ανάλυση μας για τα χαρακτηριστικά του δικτύου, απομένει να κάνουμε αναφορά σε δύο αρκετά σημαντικά φαινόμενα, που διαδραματίζονται κατά την λειτουργία του.

Το φαινόμενο Flicker

Με τον όρο flicker ορίζουμε την διακύμανση στην φωτεινότητα των λαμπτήρων (τρεμόπαιγμα φωτός), εξαιτίας των αντίστοιχων διακυμάνσεων της τάσης τροφοδοσίας τους. Η λειτουργία των εγκαταστάσεων παραγωγής (και κυρίως όταν πρόκειται για αιολικά πάρκα), προκαλεί μεταβολές της τάσης στο ΣΚΣ, καθώς και σε άλλα σημεία του συστήματος, οι οποίες μπορούν να προκαλέσουν οπτική παρενόχληση δηλ. φαινόμενο flicker, σε καταναλωτές που είναι συνδεδεμένοι σε διάφορα μέρη του δικτύου. Μέτρο του προκαλούμενου από τις διακυμάνσεις της τάσης flicker, είναι οι δείκτες flicker βραχείας διάρκειας, P_{st} , και μακράς διάρκειας P_{tt} . Ο δείκτης flicker βραχείας διάρκειας, P_{st} , αποτελεί μέτρο της προκαλούμενης οπτικής διαταραχής λόγω flicker, για χρονικό διάστημα παρατήρησης 10 λεπτών .Η τιμή του δείκτη P_{st} είναι ευθέως ανάλογη του πλάτους των μεταβολών τάσης και εξαρτάται επίσης από τη μορφή των μεταβολών και τη συχνότητα επανάληψής τους. Το φαινόμενο του flicker είναι διακριτό οπτικά και συνάμα ενοχλητικό, αν ισχύει για το δείκτη βραχείας διάρκειας ότι: $P_{st} \ge 1$.

Ο δείκτης flicker μακράς διάρκειας, P_{lt} , αποτελεί μέτρο της προκαλούμενης οπτικής διαταραχής λόγω flicker, για χρονικό διάστημα παρατήρησης 120 λεπτών. Η τιμή του δείκτη P_{lt} διαμορφώνεται σύμφωνα με τη σχέση:

 $P_{lt} = \sqrt[3]{\frac{1}{12}\sum_{i=1}^{12} (P_{st,i})^3}$, όπου οι τιμές των P_{st} είναι οι τιμές των δώδεκα δεκαλέπτων

Στην περίπτωση όπου το P_{st} είναι σταθερό, με τις επιμέρους του τιμές ίσες μεταξύ τους στο διάστημα παρατήρησης των 120 λεπτών, τότε ισχύει ότι $P_{tt} = P_{st} = c(\psi_{\kappa}, V_a) \cdot \frac{S_n}{S_k}$. Αυτή η σχέση, ισχύει για τις εκπομπές flicker που

προκαλούνται κατά την κανονική λειτουργία μιας ανεμογεννήτριας.

Ο όρος $c(\psi_{\kappa}, V_a)$, ονομάζεται συντελεστής flicker κανονικής λειτουργίας και πρόκειται για αδιάστατο μέγεθος, χαρακτηριστικό της εγκατάστασης, το οποίο σε συνδυασμό με την ονομαστική της ισχύ και την ισχύ και γωνία βραχυκυκλώσεως του δικτύου στο ΣΚΣ, επιτρέπει την εκτίμηση των αναμενόμενων εκπομπών flicker κατά την κανονική λειτουργία της εγκατάστασης. Στην περίπτωση αιολικών εγκαταστάσεων, πρέπει επιπλέον να δίνεται και ως συνάρτηση της μέσης ετήσιας ταχύτητας ανέμου, V_a , στη θέση εγκατάστασης.

Αν τώρα πρόκειται να μελετήσουμε την συνολική εκπομπή flicker ενός αιολικού πάρκου με Ν ανεμογεννήτριες, τότε στην περίπτωση αυτή και σε συνθήκες κανονικής λειτουργίας του πάρκου , ισχύει η σχέση:

$$P_{lt,total} = P_{st,total} = \sqrt{N} P_{st} = \frac{1}{S_k} \sqrt{\sum_{i=1}^{N} (c_i(\psi_{\kappa}, V_a)S_{n,i})^2}$$

του διαστήματος παρατήρησης των 120 λεπτών.

Αντίστοιχα, μελετώντας το φαινόμενο flicker στην περίπτωση χειρισμών στις εγκαταστάσεις, ισχύουν για την περίπτωση της μιας ανεμογεννήτριας, οι εξής σχέσεις:

$$\begin{split} P_{st} = &18.N_{10}^{0,31} \textit{Kf}(\psi_{\kappa}).\frac{S_n}{S_k} \quad \text{kai} \quad P_{lt} = &8.N_{120}^{0,31} \textit{Kf}(\psi_{\kappa}).\frac{S_n}{S_k} \quad \text{, evó στην περίπτωση} \\ \\ \text{aiolikoú} \quad \pi \acute{a} \rho \text{kou} \quad \mu e \quad \text{N} \quad \text{anemore} \text{anemore} \text{st}, \quad \text{isclusing} \quad \eta \quad \text{sclusing} \quad \text{isclusing} \quad \text{isclus$$

Ο όρος $Kf(\psi_{\kappa})$, ονομάζεται συντελεστής flicker χειρισμών και πρόκειται για αδιάστατο μέγεθος, χαρακτηριστικό της εγκατάστασης, το οποίο σε συνδυασμό με την ονομαστική της ισχύ, την ισχύ και γωνία βραχυκυκλώσεως στο ΣΚΣ και τη μέγιστη αναμενόμενη συχνότητα χειρισμών, επιτρέπει την εκτίμηση των εκπομπών flicker εξαιτίας χειρισμών στις εγκαταστάσεις.

Οι όροι $N_{10}^{0,31}$ και $N_{120}^{0,31}$, αναφέρονται στον μέγιστο αριθμό χειρισμών, που συμβαίνουν στο 10λεπτο και 120λεπτο αντίστοιχα.

Το φαινόμενο εκπομπής αρμονικών

Είναι το φαινόμενο παραμόρφωσης της τάσης σε μέρη του δικτύου, που επιφέρει παρενόχληση στην λειτουργία συσκευών, όπως π.χ. φορτίων ή άλλων στοιχείων, λόγω της εκπομπής αρμονικών, κυρίως από τις εγκαταστάσεις παραγωγής, αλλά και από λοιπές εγκαταστάσεις που συνδέονται στο δίκτυο.

Ο έλεγχος των εκπομπών αρμονικών, απαιτείται γενικά όταν ο προς σύνδεση εξοπλισμός, διαθέτει διατάξεις ηλεκτρονικών ισχύος (όπως συμβαίνει στις ανεμογεννήτριες μεταβλητών στροφών, στα φωτοβολταϊκά και άλλες διατάξεις οι οποίες περιλαμβάνουν μετατροπείς ισχύος). Στην περίπτωση της απ' ευθείας σύνδεσης συμβατικών γεννητριών (σύγχρονων ή ασύγχρονων), χωρίς την παρεμβολή μετατροπέων ισχύος, δεν αναμένονται προβλήματα εκπομπών αρμονικών, εφόσον η τάση διατηρείται εντός των προβλεπόμενων ορίων.

<u>ΚΕΦΑΛΑΙΟ 4 : ΠΡΟΣΟΜΟΙΩΣΗ ΤΡΕΧΟΥΣΑΣ ΛΕΙΤΟΥΡΓΙΚΗΣ</u> <u>ΚΑΤΑΣΤΑΣΗΣ ΣΗΕ</u>

4.1 Γενικά

Στο κεφάλαιο αυτό παρουσιάζονται τέσσερις πραγματικές διαταραχές που συνέβησαν το 2006 και οφείλονταν σε απώλεια κάποιας ηλεκτροπαραγωγού μονάδας. Τα στοιχεία για τις διαταραχές αυτές λήφθηκαν από αντίστοιχη μελέτη της εταιρίας ABB για λογαριασμό της Αρχής Ηλεκτρισμού Κύπρου. Οι διαταραχές που θα παρουσιαστούν είναι οι ακόλουθες:

- Απώλεια του ατμοστρόβιλου #5 στη Δεκέλεια στις 10:05 πμ την 26^η Οκτωβρίου
- 2. Απώλεια του ατμοστρόβιλου #3 στον Βασιλικό στις 4:25 μ
μ την 16^{η} Μαρτίου
- Απώλεια του ατμοστρόβιλου #3 στον Βασιλικό στις 3:35 μμ την 31^η Οκτωβρίου
- 4. Απώλεια του ατμοστρόβιλου #1 στον Βασιλικό στις 11:55 π
μ την 14^η Ιουνίου

4.2 Διαταραχή 1^{η}

4.2.1 Περιγραφή

Η διαταραχή αυτή οφειλόταν στην απώλεια ενός ατμοστρόβιλου στη Δεκέλεια. Η απώλεια προκλήθηκε από την κατάρρευση του ανεμιστήρα της αντλίας νερού λόγω ενός λανθασμένου σήματος για ψηλή θερμοκρασία λαδιού. Η απώλεια της μονάδας έγινε 5-6 δευτερόλεπτα μετά τη λήψη του σήματος και η παραγωγή της μειώθηκε από 52,5 MW που ήταν σε μηδέν. Στην παρούσα προσομοίωση η αποσύνδεση της μονάδας γίνεται ακαριαία στο 1 δευτερόλεπτο. Στους πίνακες 4.1 και 4.2 παρουσιάζονται η παραγωγή του κάθε σταθμού (533.74 MW συνολικά) και τα φορτία στους ζυγούς (524 MW), ένα λεπτό πριν τη διαταραχή.

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	230,15
Δεκέλεια	208,4

Μονή (ατμοστρόβιλοι)	42.69
Βασιλικός (αεριοστρόβιλος)	0
Μονή (αεριοστρόβιλοι)	0
Δεκέλεια (απώλεια)	52,5

Πίνακας 4.1 : Παραγωγή κάθε σταθμού πριν τη διαταραχή

Node	P [MW]	Q [MVAr]
DHEKELEIA3	9.58	6.23
DHEKELEIA3	23.04	7.09
DHEKELEIA3	0.00	-1.60
LARNAKA3	33.26	12.85
FIZ3	13.44	-10.21
DHEKELEIA4	18.13	8.37
W15G31	0.00	0.00
TROUL4	1.98	0.43
ALAMBRA3	8.15	6.30
ATHALASSA3	145.62	41.19
ATHALASSA4	8.47	5.13
LATSIA4	14.52	7.53
ERGATES4	4.79	2.30
KOKKIN4	5.67	4.17
OROUNDA4	6.79	-1.02
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	6.75	3.33
MARI4	20.43	7.75
W9G31	0.00	0.00
KOPHINOU3	4.12	5.65
PYRGOS3	4.28	2.24
PYRGOS3	8.63	4.77

MONI4	2.38	1.58
MONI3	1.66	0.92
AYPHYLA3	26.42	10.13
YERMAS3	23.24	9.16
OLDPOW3	24.87	14.47
POLEMI4	19.86	5.23
W11G31	0.00	0.00
YPSONAS4	5.33	3.10
TRIMIKL4	5.30	2.63
KARVOUNAS4	4.85	3.59
TEMP4	4.51	2.94
KOLOS4	7.56	0.18
EPISK4	2.01	1.12
PISS4	1.83	1.21
XEROP4	3.82	2.30
AKOURS4	14.70	6.18
PAPHOS4	31.98	20.04
ANATOL3	6.04	-0.18

Πίνακας 4.2 : Φορτία ζυγών πριν τη διαταραχή

Στο σχήμα 4.1 φαίνονται οι τάσεις και οι ισχύεις στους ζυγούς του συστήματος ένα λεπτό πριν τη διαταραχή.

Σχήμα 4.1 : Τάσεις και ισχύεις ζυγών πριν τη διαταραχή
4.2.2 Παρουσίαση αποτελεσμάτων

Όπως προαναφέραμε, κατά την προσομοίωση, η απώλεια της μονάδας έγινε ακαριαία 1 δευτερόλεπτο μετά την έναρξη της. Στο διάγραμμα 4.1 παρουσιάζεται η παραγωγή ενεργού ισχύος της συγκεκριμένης μονάδας συναρτήσει του χρόνου και στο διάγραμμα 4.2 τα αντίστοιχα μεγέθη όπως καταγράφηκαν από την ΑΗΚ τη στιγμή της διαταραχής.

Διάγραμμα 4.1 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (μοντέλο)

Διάγραμμα 4.2 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (AHK)

Στα διαγράμματα 4.3, 4.4 και 4.5 παρουσιάζεται η παραγωγή ενεργού ισχύος συναρτήσει του χρόνου, για τις υπόλοιπες μονάδες της Δεκέλειας, τους

ατμοστρόβιλους του Βασιλικού και της Μονής αντίστοιχα. Όλες οι μονάδες φαίνονται να ανταποκρίνονται άμεσα στη κάλυψη της χαμένης παραγωγής. Συγκρίνοντας τα αποτελέσματα αυτά με τη συνολική παραγωγή όπως καταγράφηκε από την AHK (διάγραμμα 4.6), παρατηρούμε ότι στην προσομοίωση απουσιάζει η απότομη πτώση που έγινε στα 0.6 δευτερόλεπτα (510 MW), αλλά στα 10 δευτερόλεπτα οπότε και σταθεροποιείται η παραγωγή, έχουμε ικανοποιητικά αποτελέσματα. Η διαφορά αυτή μπορεί να οφείλεται στον τρόπο με τον οποίο προσομοιώθηκε η απώλεια της μονάδας, αφού στις πραγματικές συνθήκες, όπως αναφέρεται και παραπάνω, η αποσύνδεση δεν ήταν άμεση. Άλλος παράγοντας που μπορεί να επηρέασε είναι ο τρόπος σύνδεσης των γεννητριών στο μοντέλο και η αναπόφευκτη διαφορά των παραμέτρων τους από τις πραγματικές, καθώς και οι διαφορές μεταξύ των ρυθμιστών που χρησιμοποιήσαμε και των πραγματικών.

Διάγραμμα 4.3 : Παραγωγή ενεργού ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.4 : Παραγωγή ενεργού ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.5 : Παραγωγή ενεργού ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.6 : Συνολική παραγωγή ενεργού ισχύος (AHK)

Όσον αφορά τη συχνότητα, η διακύμανση της συναρτήσει του χρόνου παρουσιάζεται στο διάγραμμα 4.7 όπως προέκυψε κατά την προσομοίωση και στο διάγραμμα 4.8 όπως μετρήθηκε από την ΑΗΚ. Στο διάγραμμα 4.7 φαίνεται η απόκλισή της από τα 50Hz εκφρασμένη σε mHz. Παρατηρούμε ότι στην προσομοίωση η συχνότητα πέφτει μέχρι περίπου τα 49.45 Hz ενώ στην πραγματικότητα έπεσε μέχρι και τα 49,3 Hz. Αυτό μπορεί να αποδοθεί στην διαφορά των παραμέτρων των γεννητριών, όπως αναφέρθηκε παραπάνω.

Διάγραμμα 4.7 : Διακύμανση συχνότητας (μοντέλο)

Διάγραμμα 4.8 : Διακύμανση συχνότητας (AHK)

Τέλος παρατίθεται η παραγωγή άεργου ισχύος από την μονάδα όπου παρουσιάστηκε η διαταραχή, τις υπόλοιπες μονάδες της Δεκέλειας, τους ατμοστροβίλους του Βασιλικού και της Μονής, στα διαγράμματα 4.9, 4.10, 4.11 και 4.12 αντίστοιχα.

Διάγραμμα 4.9 : Παραγωγή άεργου ισχύος από την απολεσθείσα μονάδα

Διάγραμμα 4.10 : Παραγωγή άεργου ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.11 : Παραγωγή άεργου ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.12 : Παραγωγή άεργου ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

4.3 Διαταραχή 2^{η}

4.3.1 Περιγραφή

Η διαταραχή αυτή οφειλόταν στην απώλεια ενός ατμοστρόβιλου στο Βασιλικό, ενώ για την αιτία που την προκάλεσε δεν υπάρχουν στοιχειά. Η παραγωγή του ήταν 123

MW ένα λεπτό πριν την αποσύνδεση. Στους πίνακες 4.3 και 4.4 παρουσιάζονται η παραγωγή του κάθε σταθμού (529.46 MW συνολικά) και τα φορτία στους ζυγούς (520 MW συνολικά), ένα λεπτό πριν τη διαταραχή.

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	167.37
Δεκέλεια	183.58
Μονή (ατμοστρόβιλοι)	37,9
Βασιλικός (αεριοστρόβιλος)	4,05
Μονή (αεριοστρόβιλοι)	13,56
Βασιλικός (απώλεια)	123

Πίνακας 4.3 : Παραγωγή κάθε σταθμού πριν τη διαταραχή

Node	P [MW]	Q [MVAr]
DHEKELEIA3	9.50	6.07
DHEKELEIA3	22.87	6.90
DHEKELEIA3	0.00	-1.56
LARNAKA3	33.01	12.51
FIZ3	13.33	-9.94
DHEKELEIA4	17.99	8.15
W15G31	0.00	0.00
TROUL4	1.97	0.42
ALAMBRA3	8.08	6.14
ATHALASSA3	144.51	40.11
ATHALASSA4	8.40	5.00
LATSIA4	14.41	7.33
ERGATES4	4.75	2.24
KOKKIN4	5.62	4.06
OROUNDA4	6.73	-0.99
W30G31	0.00	0.00

W29G31	0.00	0.00
VASSILIKO3	6.69	3.24
MARI4	20.28	7.55
W9G31	0.00	0.00
KOPHINOU3	4.08	5.50
PYRGOS3	4.25	2.18
PYRGOS3	8.56	4.64
MONI4	2.36	1.53
MONI3	1.65	0.89
AYPHYLA3	26.21	9.86
YERMAS3	23.06	8.92
OLDPOW3	24.68	14.09
POLEMI4	19.71	5.09
W11G31	0.00	0.00
YPSONAS4	5.28	3.02
TRIMIKL4	5.26	2.56
KARVOUNAS4	4.81	3.50
TEMP4	4.48	2.87
KOLOS4	7.50	0.17
EPISK4	2.00	1.09
PISS4	1.82	1.18
XEROP4	3.79	2.24
AKOURS4	14.58	6.02
PAPHOS4	31.74	19.52
ANATOL3	5.99	-0.18

Πίνακας 4.4 : Φορτία ζυγών πριν τη διαταραχή

Στο σχήμα 4.2 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις στους ζυγούς ένα λεπτό πριν τη διαταραχή.

Σχήμα 4.2 : Τάσεις και ισχύεις ζυγών πριν τη διαταραχή

4.3.2 Παρουσίαση αποτελεσμάτων

Στο διάγραμμα 4.13 παρουσιάζεται η παραγωγή ενεργού ισχύος από τη μονάδα του Βασιλικού στην οποία είχαμε το σφάλμα, ενώ η αντίστοιχη παραγωγή όπως καταγράφηκε από την ΑΗΚ φαίνεται στο διάγραμμα 4.14. Όπως παρατηρούμε η αποσύνδεση της μονάδας στο μοντέλο έγινε ακαριαία στο 1 δευτερόλεπτο, ενώ στην πραγματικότητα η παραγωγή της μειώθηκε σταδιακά, μέχρι την αποσύνδεση που έγινε περί τα 3,5 δευτερόλεπτα, διαφορά που θα επηρεάσει τη μορφή των αποτελεσμάτων.

Διάγραμμα 4.14 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (AHK)

Στα διαγράμματα 4.15 μέχρι 4.19 παρατίθενται οι παραγωγές ενεργού ισχύος κατά σειρά, της Δεκέλειας, των υπολοίπων ατμοστροβίλων στον Βασιλικό, του αεριοστρόβιλου στο Βασιλικό, των ατμοστροβίλων και αεριοστρόβιλων της Μονής. Στο διάγραμμα 4.20 παρουσιάζεται η συνολική παραγωγή, όπως καταγράφηκε από την ΑΗΚ (μαύρο) αλλά και όπως προέκυψε από τις προσομοιώσεις της ABB (μπλε). Παρατηρούμε ότι η απώλεια ενεργού ισχύος στην προσομοίωση καλύπτεται άμεσα από τις υπόλοιπες μονάδες. Στην καταγραφή της ΑΗΚ φαίνεται να υπήρξε απόρριψη φορτίου, αν και δεν υπάρχουν πληροφορίες γι'αυτό. Σημειώνεται επίσης ότι δεν υπήρχαν στοιχεία από την ΑΗΚ για την παραγωγή του αεριοστρόβιλου στο Βασιλικό πριν τη διαταραχή και χρησιμοποιήθηκαν αυτά που τέθηκαν από την ABB.

Διάγραμμα 4.15 : Παραγωγή ενεργού ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.16 : Παραγωγή ενεργού ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.17 : Παραγωγή ενεργού ισχύος από τον σταθμό του Βασιλικού (αεριοστρόβιλος)

Διάγραμμα 4.18 : Παραγωγή ενεργού ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.19 : Παραγωγή ενεργού ισχύος από τον σταθμό της Μονής (αεριοστρόβιλοι)

Διάγραμμα 4.20 : Συνολική παραγωγή ενεργού ισχύος (AHK και ABB)

Στο διάγραμμα 4.21 παρουσιάζεται η απόκλιση της συχνότητας όπως προέκυψε κατά την προσομοίωση, εκφρασμένη σε mHz και στο 4.22 όπως καταγράφηκε από την AHK. Παρατηρώντας τα αποτελέσματα βλέπουμε ότι η συχνότητα πέφτει μέχρι τα 49.3Hz στο μοντέλο, ενώ σύμφωνα με την AHK έπεσε μέχρι και 49,16Hz περίπου. Σημειώνεται επίσης ότι η συχνότητα του συστήματος πριν τη διαταραχή δίνεται από την AHK 49,98Hz ενώ στο μοντέλο τέθηκε ίση με 50Hz. Η απόρριψη φορτίου αν και δεν προσομοιώθηκε, δεν επηρεάζει το αποτέλεσμα αφού υπήρχε η δυνατότητα για άμεση αναπλήρωση της απολεσθείσας παραγωγής.

Διάγραμμα 4.21 : Διακύμανση συχνότητας (μοντέλο)

Διάγραμμα 4.22 : Διακύμανση συχνότητας (AHK)

Τέλος στα διαγράμματα 4.23 έως 4.28 παρατίθενται οι παραγωγές άεργου ισχύος κατά σειρά από την μονάδα του Βασιλικού που παρατηρήθηκε η αποσύνδεση, τη Δεκέλεια, τους ατμοστρόβιλους του Βασιλικού, τον αεριοστρόβιλο του Βασιλικού και τους ατμοστρόβιλους και τους αεριοστρόβιλους της Μονής.

Διάγραμμα 4.23 : Παραγωγή άεργου ισχύος από την απολεσθείσα μονάδα

Διάγραμμα 4.24 : Παραγωγή άεργου ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.25 : Παραγωγή άεργου ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.26 : Παραγωγή άεργου ισχύος από τον σταθμό του Βασιλικού (αεριοστρόβιλος)

Διάγραμμα 4.27 : Παραγωγή άεργου ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.28 : Παραγωγή άεργου ισχύος από τον σταθμό της Μονής (αεριοστρόβιλοι)

4.4 Διαταραχή 3^η

4.4.1 Περιγραφή

Η διαταραχή αυτή οφειλόταν στην απώλεια ενός ατμοστρόβιλου στο Βασιλικό, ενώ ούτε σε αυτή την περίπτωση υπάρχουν στοιχεία για την αιτία που την προκάλεσε. Η παραγωγή της ήταν 105 MW πριν το σφάλμα και 1,35 δευτερόλεπτα μετά έπεσε στα 5 MW. Στη συνέχεια κυμάνθηκε στιγμιαία στην περιοχή από 0-30 MW προτού μηδενιστεί. Στους πίνακες 4.5 και 4.6 παρουσιάζονται η παραγωγή του κάθε σταθμού (513.37 MW συνολικά) και τα φορτία στους ζυγούς (503 MW), πριν τη διαταραχή.

Σταθμός	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	189,66
Δεκέλεια	200,2
Μονή (ατμοστρόβιλοι)	18,51
Βασιλικός (αεριοστρόβιλος)	0
Μονή (αεριοστρόβιλοι)	0
Βασιλικός (απώλεια)	105

Πίνακας 4.5 : Παραγωγή κάθε σταθμού πριν τη διαταραχή

Node	P [MW]	Q [MVAr]
DHEKELEIA3	9.19	5.87
DHEKELEIA3	22.12	6.67
DHEKELEIA3	0.00	-1.51
LARNAKA3	31.93	12.10
FIZ3	12.90	-9.62
DHEKELEIA4	17.40	7.89
W15G31	0.00	0.00
TROUL4	1.91	0.40
ALAMBRA3	7.82	5.94
ATHALASSA3	139.78	38.80
ATHALASSA4	8.13	4.83
LATSIA4	13.94	7.09
ERGATES4	4.60	2.16
KOKKIN4	5.44	3.93
OROUNDA4	6.51	-0.96
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	6.48	3.14
MARI4	19.61	7.30
W9G31	0.00	0.00
KOPHINOU3	3.95	5.32
PYRGOS3	4.11	2.11
PYRGOS3	8.28	4.49
MONI4	2.29	1.48
MONI3	1.60	0.86
AYPHYLA3	25.36	9.54
YERMAS3	22.31	8.63
OLDPOW3	23.88	13.63
POLEMI4	19.07	4.92

W11G31	0.00	0.00
YPSONAS4	5.11	2.92
TRIMIKL4	5.09	2.48
KARVOUNAS4	4.65	3.38
TEMP4	4.33	2.77
KOLOS4	7.25	0.17
EPISK4	1.93	1.06
PISS4	1.76	1.14
XEROP4	3.67	2.17
AKOURS4	14.11	5.82
PAPHOS4	30.70	18.88
ANATOL3	5.80	-0.17

Πίνακας 4.6 : Φορτία ζυγών πριν τη διαταραχή

Στο σχήμα 4.3 παρουσιάζονται οι τάσεις και οι ισχύεις των ζυγών πριν τη διαταραχή

Σχήμα 4.3 : Τάσεις και ισχύεις ζυγών πριν τη διαταραχή

4.4.2 Παρουσίαση αποτελεσμάτων

Στο διάγραμμα 4.29 παρουσιάζεται η παραγωγή της μονάδας του Βασιλικού που αποσυνδέθηκε όπως προέκυψε κατά την προσομοίωση και στο 4.30 όπως δόθηκε από την AHK (μαύρο) και την ABB (μπλε). Όπως και στις προηγούμενες περιπτώσεις, εύκολα παρατηρείται η διαφορά στον τρόπο που η μονάδα αποσυνδέεται από το σύστημα, διαφορά που επηρεάζει τη μορφή των αποτελεσμάτων όσο αφορά την ανταπόκριση των γεννητριών.

Διάγραμμα 4.29 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (μοντέλο)

Διάγραμμα 4.30 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (AHK και ABB)

Στα διαγράμματα 4.31 μέχρι 4.33 παρατίθενται οι παραγωγές ενεργού ισχύος κατά σειρά, της Δεκέλειας, των ατμοστροβίλων της Μονής και των υπολοίπων

ατμοστροβίλων στον Βασιλικό. Στο διάγραμμα 4.34 παρουσιάζεται η συνολική παραγωγή, όπως καταγράφηκε από την ΑΗΚ (μαύρο) αλλά και όπως προέκυψε από τις προσομοιώσεις της ABB (μπλε). Η παραγωγή της μονάδας που αποσυνδέθηκε αναπληρώνεται άμεσα από τις υπόλοιπες κατά την προσομοίωση, ενώ σύμφωνα με την ΑΗΚ υπήρξε απόρριψη φορτίου.

Διάγραμμα 4.31 : Παραγωγή ενεργού ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.32 : Παραγωγή ενεργού ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.33 : Παραγωγή ενεργού ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.34 : Συνολική παραγωγή ενεργού ισχύος (AHK και ABB)

Στο διάγραμμα 4.35 παρουσιάζεται η απόκλιση της συχνότητας όπως προέκυψε κατά την προσομοίωση, εκφρασμένη σε mHz και στο 4.36 όπως καταγράφηκε από την AHK (μαύρο) και την ABB(μπλε). Βλέπουμε ότι η συχνότητα πέφτει μέχρι τα 49.07Hz στο μοντέλο, ενώ σύμφωνα με την AHK έπεσε μέχρι και 48,93Hz περίπου. Παρατηρούμε ότι η μη απόρριψη φορτίου δεν επηρεάζει αφού υπήρχε η δυνατότητα η απώλεια να καλυφθεί από τις υπόλοιπες μονάδες.

Διάγραμμα 4.35 : Διακύμανση συχνότητας (μοντέλο)

Διάγραμμα 4.36 : Διακύμανση συχνότητας (AHK και ABB)

Στα διαγράμματα 4.37-4.40 φαίνονται οι παραγωγές άεργου ισχύος της μονάδας που αποσυνδέθηκε, της Δεκέλειας, της Μονής και του Βασιλικού κατά σειρά.

Διάγραμμα 4.37 : Παραγωγή άεργου ισχύος από την απολεσθείσα μονάδα

Διάγραμμα 4.38 : Παραγωγή άεργου ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.39 : Παραγωγή άεργου ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.40 : Παραγωγή άεργου ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

4.5 Διαταραχή 4^{η}

4.5.1 Περιγραφή

Η διαταραχή αυτή οφειλόταν στην απώλεια ενός άλλου ατμοστρόβιλου στο Βασιλικό. Η παραγωγή του ήταν 120,15 MW πριν το σφάλμα και μηδενίστηκε σταδιακά. Στους πίνακες 4.7 και 4.8 παρουσιάζονται η παραγωγή του κάθε σταθμού (637.5 MW συνολικά) και τα φορτία στους ζυγούς (625 MW), πριν τη διαταραχή.

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	230.13
Δεκέλεια	245.8
Μονή (ατμοστρόβιλοι)	41,42
Βασιλικός (αεριοστρόβιλος)	0

Μονή (αεριοστρόβιλοι)	0
Βασιλικός (απώλεια)	120.15

Πίνακας 4.7 : Παραγωγή κάθε σταθμού πριν τη διαταραχή

Node	P [MW]	Q [MVAr]
DHEKELEIA3	11.42	7.29
DHEKELEIA3	27.49	8.29
DHEKELEIA3	0.00	-1.88
LARNAKA3	39.67	15.04
FIZ3	16.03	-11.95
DHEKELEIA4	21.62	9.80
W15G31	0.00	0.00
TROUL4	2.37	0.50
ALAMBRA3	9.72	7.38
ATHALASSA3	173.69	48.21
ATHALASSA4	10.10	6.01
LATSIA4	17.32	8.81
ERGATES4	5.71	2.69
KOKKIN4	6.76	4.88
OROUNDA4	8.09	-1.19
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	8.05	3.90
MARI4	24.37	9.07
W9G31	0.00	0.00
KOPHINOU3	4.91	6.62
PYRGOS3	5.11	2.62
PYRGOS3	10.29	5.58
MONI4	2.84	1.84
MONI3	1.99	1.07

AYPHYLA3	31.51	11.85
YERMAS3	27.72	10.72
OLDPOW3	29.67	16.94
POLEMI4	23.69	6.12
W11G31	0.00	0.00
YPSONAS4	6.35	3.63
TRIMIKL4	6.32	3.08
KARVOUNAS4	5.78	4.20
TEMP4	5.38	3.45
KOLOS4	9.01	0.21
EPISK4	2.40	1.31
PISS4	2.19	1.42
XEROP4	4.56	2.69
AKOURS4	17.53	7.24
PAPHOS4	38.15	23.46
ANATOL3	7.20	-0.22

Πίνακας 4.8 : Φορτία ζυγών πριν τη διαταραχή

Οι τάσεις και οι ισχύεις των ζυγών, πριν τη διαταραχή φαίνονται στο σχήμα 4.4 που ακολουθεί.

Σχήμα 4.4 : Τάσεις και ισχύεις ζυγών πριν τη διαταραχή

4.5.2 Παρουσίαση αποτελεσμάτων

Στο διάγραμμα 4.41 παρουσιάζεται η παραγωγή ενεργού ισχύος από την μονάδα που αποσυνδέεται σύμφωνα με την προσομοίωση και στο 4.42 όπως καταγράφηκε από την AHK (μαύρο) και προσομοιώθηκε από την ABB (μπλε).

Διάγραμμα 4.41 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (μοντέλο)

Διάγραμμα 4.42 : Παραγωγή ενεργού ισχύος από την απολεσθείσα μονάδα (AHK και ABB)

Στα διαγράμματα 4.43-4.45 παρατίθενται οι παραγωγές ενεργού ισχύος των υπόλοιπων μονάδων του Βασιλικού, της Δεκέλειας και της Μονής κατά σειρά. Στο 4.46 παρουσιάζεται η συνολική παραγωγή κατά τη διαταραχή, από την AHK και την ABB. Παρατηρώντας τα διαγράμματα βλέπουμε ότι σύμφωνα με την AHK έγινε απόρριψη φορτίου, κάτι που δεν συμπεριλαμβάνεται στη δική μας προσομοίωση.

Διάγραμμα 4.43 : Παραγωγή ενεργού ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

Διάγραμμα 4.44 : Παραγωγή ενεργού ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.45 : Παραγωγή ενεργού ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.46 : Συνολική παραγωγή ενεργού ισχύος (AHK και ABB)

Παρατηρώντας τη διακύμανση της συχνότητας στα διαγράμματα 4.47 (προσομοίωση) και 4.48 (AHK και προσομοίωση ABB) που ακολουθούν παρατηρούμε ότι κατά την προσομοίωση μας έχουμε συνεχόμενη βύθιση, ενώ στο διάγραμμα 4.48 φαίνεται να παίρνει μια ελάχιστη τιμή και εν συνεχεία να επανέρχεται. Αυτό οφείλεται στην μη απόρριψη φορτίου κατά την δικιά μας προσομοίωση, με αποτέλεσμα η ζήτηση να αγγίζει τα όρια της δυνατότητας παραγωγής. Θα μπορούσε να αποφευχθεί, αν είχαμε μεγαλύτερη στρεφόμενη εφεδρεία.

Διάγραμμα 4.47 : Διακύμανση συχνότητας (μοντέλο)

Διάγραμμα 4.48 : Διακύμανση συχνότητας (AHK και ABB)

Τέλος παρουσιάζονται οι παραγωγές άεργου ισχύος του Βασιλικού (απώλεια), της Δεκέλειας, της Μονής και των υπολοίπων μονάδων του Βασιλικού, στα διαγράμματα 4.49, 4.50, 4.51, και 4.52 αντίστοιχα.

Διάγραμμα 4.49 : Παραγωγή άεργου ισχύος από την απολεσθείσα μονάδα

Διάγραμμα 4.50 : Παραγωγή άεργου ισχύος από τον σταθμό της Δεκέλειας

Διάγραμμα 4.51 : Παραγωγή άεργου ισχύος από τον σταθμό της Μονής (ατμοστρόβιλοι)

Διάγραμμα 4.52 : Παραγωγή άεργου ισχύος από τον σταθμό του Βασιλικού (ατμοστρόβιλοι)

<u>ΚΕΦΑΛΑΙΟ 5 : ΕΠΙΔΡΑΣΗ ΔΙΕΙΣΔΥΣΗΣ ΑΙΟΛΙΚΗΣ</u> <u>ΠΑΡΑΓΩΓΗΣ ΣΤΗ ΔΥΝΑΜΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΣΗΕ</u>

5.1 Γενικά

Στο παρόν κεφάλαιο θα παρουσιαστούν τα διάφορα σενάρια που εξετάσαμε, με βάση το μοντέλο του ΣΗΕ που περιγράφεται σε προηγούμενο κεφάλαιο, καθώς και η συμπεριφορά των αιολικών πάρκων σε περίπτωση βραχυκυκλώματος (διάρκειας 200 ms) στο ζυγό ATHALASSA3, για κάθε σενάριο. Αρχικά παρουσιάζεται ένα βασικό σενάριο στο οποίο το δίκτυο έχει μέσο φορτίο (664,184MW) και γίνονται προσομοιώσεις πριν και μετά τη διείσδυση αιολικής παραγωγής. Αντίστοιχα γίνονται προσομοιώσεις και για χαμηλό (400 MW) και για υψηλό φορτίο (1000 MW).

Κατά την κατάστρωση των σεναρίων η εισαγωγή των ηλεκτροπαραγωγών σταθμών γινόταν με την ακόλουθη σειρά:

- 1. Βασιλικός (ατμοστρόβιλοι)
- 2. Δεκέλεια
- 3. Μονή (ατμοστρόβιλοι)
- 4. Βασιλικός (αεριοστρόβιλος)
- 5. Μονή (αεριοστρόβιλοι)

Η εισαγωγή νέου σταθμού γινόταν όταν συμπληρωνόταν το 92% της μέγιστης δυνατότητας παραγωγής του προηγούμενου, ενώ αρχικά εισέρχονταν όλες οι μονάδες με παραγωγή την ελάχιστη τους.

5.2 Βασικό σενάριο

Το φορτίο (664,184MW) κατανέμεται στους ζυγούς όπως παρουσιάζεται στον πίνακα 5.1.

Node	P [MW]	Q [MVAr]
DHEKELEIA3	12.14	7.75
DHEKELEIA3	29.21	8.81
DHEKELEIA3	0.00	-1.99
LARNAKA3	42.16	15.98

FIZ3	17.03	-12.70
DHEKELEIA4	22.97	10.41
W15G31	0.00	0.00
TROUL4	2.52	0.53
ALAMBRA3	10.33	7.84
ATHALASSA3	184.58	51.23
ATHALASSA4	10.73	6.38
LATSIA4	18.40	9.37
ERGATES4	6.07	2.86
KOKKIN4	7.18	5.19
OROUNDA4	8.60	-1.27
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	8.55	4.14
MARI4	25.90	9.64
W9G31	0.00	0.00
KOPHINOU3	5.22	7.03
PYRGOS3	5.43	2.78
PYRGOS3	10.93	5.93
MONI4	3.02	1.96
MONI3	2.11	1.14
AYPHYLA3	33.48	12.60
YERMAS3	29.46	11.39
OLDPOW3	31.53	18.00
POLEMI4	25.18	6.50
W11G31	0.00	0.00
YPSONAS4	6.75	3.86
TRIMIKL4	6.72	3.27
KARVOUNAS4	6.14	4.47
TEMP4	5.72	3.66
KOLOS4	9.58	0.22
EPISK4	2.55	1.40

PISS4	2.32	1.51
XEROP4	4.84	2.86
AKOURS4	18.63	7.69
PAPHOS4	40.54	24.93
ANATOL3	7.66	-0.23

Πίνακας 5.1 : Κατανομή φορτίου στους ζυγούς

5.2.1 Προσομοίωση χωρίς αιολική διείσδυση

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς (759.895 MW) είχε ως ακολούθως:

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	265,2
Δεκέλεια	244,8
Μονή (ατμοστρόβιλοι)	142,8
Βασιλικός (αεριοστρόβιλος)	25,5
Μονή (αεριοστρόβιλοι)	81,6

Πίνακας 5.2 : Παραγωγή σε κάθε σταθμό

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.3

Node	U/Un [%]
OLDPOW3	103.11
YERMAS3	103.24
POLEMI3	103.05
AYPHYLA3	103.34
PYRGOS3	104.61
KOPHINOU3	104.78
W9G31	104.83

MARI4	103.97
MARI3.2	104.86
MARI3.1	104.86
MONI4	102.08
MONI3	104.79
W30G31	104.05
W29G31	104.32
VASSILIKO3	104.92
OROUNDA4	96.44
ERGATES4	96.82
KOKKIN4	97.12
LATSIA4	98.15
ATHALASSA4	99.68
ALAMBRA3	103.45
W15G31	103.63
FIZ3	103.72
LARNAKA3	103.50
ATHALASSA3	102.29
DHEKELEIA3	104.39
DHEKELEIA4	101.31
TROUL4	100.62
POLEMI4	101.42
YPSONAS4	100.83
TRIMIKL4	97.24
KARVOUNAS4	95.55
TEMP4	94.99
KOLOS4	101.10
EPISK4	100.79
PISS4	99.17
XEROP4	97.68
PAPHOS4	97.68
ANATOL4	98.62

AKOURS4	98.11
W8G41	98.15
ANATOL3	102.36
W11G31	102.62
N88	100.84
N98	108.22
N100	108.09
N101	100.86
N103	100.84

Πίνακας 5.3 : Τάσεις ζυγών

Στο σχήμα 5.1 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό:

Σχήμα 5.1 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.4 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3429.55	15.00	39.64
YERMAS3	3452.16	15.10	40.01
POLEMI3	3564.61	15.59	41.46
AYPHYLA3	2765.18	12.09	31.20
PYRGOS3	3162.49	13.83	35.91
KOPHINOU3	3329.33	14.56	37.36
W9G31	3780.40	16.53	43.90
MARI4	999.04	8.74	24.72
MARI3.2	4524.76	19.79	55.70
MARI3.1	4565.34	19.97	55.97
MONI4	2512.76	21.98	62.33
MONI3	5639.22	24.67	69.96
W30G31	4426.58	19.36	52.93
W29G31	4785.38	20.93	58.16
VASSILIKO3	6350.03	27.77	78.79
OROUNDA4	455.09	3.98	9.09
ERGATES4	444.03	3.88	9.16
KOKKIN4	464.23	4.06	9.66
LATSIA4	684.09	5.98	15.11
ATHALASSA4	1067.36	9.34	25.79
ALAMBRA3	3996.76	17.48	47.33
W15G31	3362.63	14.71	38.87
FIZ3	3186.77	13.94	36.71
LARNAKA3	2364.68	10.34	26.66
ATHALASSA3	3284.16	14.36	38.81
DHEKELEIA3	4273.16	18.69	53.00
DHEKELEIA4	575.66	5.04	13.02
TROUL4	517.20	4.52	9.42

POLEMI4	1201.17	10.51	29.51
YPSONAS4	904.84	7.92	20.79
TRIMIKL4	453.20	3.96	7.78
KARVOUNAS4	362.27	3.17	6.13
TEMP4	336.62	2.94	5.99
KOLOS4	850.43	7.44	18.74
EPISK4	853.27	7.46	16.66
PISS4	484.08	4.23	8.05
XEROP4	480.68	4.20	8.28
PAPHOS4	718.93	6.29	16.34
ANATOL4	810.50	7.09	19.41
AKOURS4	658.72	5.76	15.07
W8G41	666.00	5.83	15.28
ANATOL3	2403.62	10.51	26.57
W11G31	2699.65	11.81	30.23
N88	171357.09	8993.91	40899.22
N98	73984.87	3883.20	16420.01
N100	80370.79	4218.37	17780.23
N101	171444.06	6284.65	28100.37
N103	16830.13	883.35	3995.81

Πίνακας 5.4 : Ισχύς και ρεύμα βραχυκύκλωσης

5.2.2 Προσομοίωση με αιολική διείσδυση 150 MW

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς καθώς και η αιολική παραγωγή (759.895 MW) παρουσιάζονται στους πίνακες 5.5 και 5.6 αντίστοιχα

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	265,2
Δεκέλεια	244,8
Μονή (ατμοστρόβιλοι)	99
Βασιλικός (αεριοστρόβιλος)	0

Μονή (αεριοστρόβιλοι)	0

Πίνακας 5.5 : Παραγωγή σε κάθε σταθμό

Σταθμός	<u>Παραγωγή Ρ (MW)</u>
MARI4	4.62
FIZ3	13.28
PYRGOS3	3.7
PYRGOS3	3.85
W9G31	19.64
W9G31	15.59
W11G31	23.1
DHEKELEIA4	3.85
DHEKELEIA3	9.24
W15G31	16.17
FIZ3	11.55
W29G31	9.24
W30G31	16.17

Πίνακας 5.6 : Παραγωγή σε κάθε αιολικό πάρκο

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.7

Node	U/Un [%]
OLDPOW3	102.97
YERMAS3	103.10
POLEMI3	102.91
AYPHYLA3	103.19
PYRGOS3	104.42
KOPHINOU3	104.67
W9G31	104.71

MARI4	103.72
MARI3.2	104.69
MARI3.1	104.68
MONI4	104.32
MONI3	104.62
W30G31	104.00
W29G31	104.23
VASSILIKO3	104.75
OROUNDA4	96.50
ERGATES4	96.85
KOKKIN4	97.15
LATSIA4	98.15
ATHALASSA4	99.68
ALAMBRA3	103.45
W15G31	103.66
FIZ3	103.76
LARNAKA3	103.53
ATHALASSA3	102.31
DHEKELEIA3	104.41
DHEKELEIA4	101.44
TROUL4	100.70
POLEMI4	101.24
YPSONAS4	100.64
TRIMIKL4	97.17
KARVOUNAS4	95.57
TEMP4	95.13
KOLOS4	100.92
EPISK4	100.60
PISS4	99.00
XEROP4	97.54
PAPHOS4	97.56
ANATOL4	98.50

AKOURS4	97.98
W8G41	98.02
ANATOL3	102.24
W11G31	102.50
N88	100.84
N98	111.88
N100	108.09
N101	100.85
N103	97.35

Πίνακας 5.7 : Τάσεις ζυγών

Στο σχήμα 5.2 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.2 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.8 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3665.40	16.03	41.85
YERMAS3	3659.81	16.01	41.84
POLEMI3	3864.07	16.90	44.47
AYPHYLA3	2862.25	12.52	31.89
PYRGOS3	3222.54	14.09	36.24
KOPHINOU3	3703.29	16.20	41.37
W9G31	4290.11	18.76	49.70
MARI4	1064.21	9.31	26.74
MARI3.2	4785.27	20.93	57.73
MARI3.1	4840.15	21.17	58.07
MONI4	883.10	7.73	21.89
MONI3	5626.18	24.61	70.57
W30G31	5101.87	22.31	60.49
W29G31	5419.38	23.70	65.07
VASSILIKO3	6861.72	30.01	86.34
OROUNDA4	460.64	4.03	9.17
ERGATES4	449.66	3.93	9.24
KOKKIN4	470.45	4.12	9.75
LATSIA4	698.80	6.11	15.34
ATHALASSA4	1105.35	9.67	26.52
ALAMBRA3	4675.48	20.45	55.08
W15G31	4042.71	17.68	46.94
FIZ3	3839.57	16.79	44.54
LARNAKA3	2586.51	11.31	28.98
ATHALASSA3	3657.48	16.00	42.75
DHEKELEIA3	4776.11	20.89	59.95
DHEKELEIA4	627.79	5.49	14.52
TROUL4	542.61	4.75	9.85

POLEMI4	1234.45	10.80	30.24
YPSONAS4	923.18	8.08	21.14
TRIMIKL4	457.01	4.00	7.82
KARVOUNAS4	364.71	3.19	6.16
TEMP4	339.04	2.97	6.02
KOLOS4	866.95	7.58	19.03
EPISK4	869.71	7.61	16.90
PISS4	489.66	4.28	8.12
XEROP4	487.75	4.27	8.37
PAPHOS4	738.26	6.46	16.79
ANATOL4	835.55	7.31	20.07
AKOURS4	675.14	5.91	15.47
W8G41	682.79	5.97	15.68
ANATOL3	2653.81	11.61	29.26
W11G31	3020.83	13.21	33.79
N88	171582.15	9005.73	40936.06
N98	502.53	26.38	74.69
N100	80373.44	4218.51	17781.64
N101	171551.29	6288.58	28113.39
N103	374.38	19.65	55.61

Πίνακας 5.8 : Ισχύς και ρεύμα βραχυκύκλωσης

5.2.2.1 Μελέτη βραχυκυκλώματος

Αρχικά παρουσιάζεται η διακύμανση της συχνότητας του δικτύου κατά το βραχυκύκλωμα, σε μορφή απόκλισης από την αρχική (50 Hz), στο διάγραμμα 5.1, και εν συνεχεία η συμπεριφορά των ηλεκτροπαραγωγών μονάδων, όσο αφορά την παραγωγή ενεργού και άεργου ισχύος. Σημειώνεται ότι το βραχυκύκλωμα εκδηλώθηκε στο 1s.

Διάγραμμα 5.1 : Διακύμανση συχνότητας

<u>Δεκέλεια</u>

Διάγραμμα 5.2 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.3 : Παραγωγή άεργου ισχύος

Μονή (ατμοστρόβιλοι)

Διάγραμμα 5.4 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.5 : Παραγωγή άεργου ισχύος

Βασιλικός (ατμοστρόβιλοι)

Διάγραμμα 5.6 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.7 : Παραγωγή άεργου ισχύος

Στον πίνακα 5.9 που ακολουθεί παρουσιάζονται οι μέγιστες πτώσεις τάσης που παρουσιάστηκαν σε κάθε ζυγό, κατά φθίνουσα σειρά. Στην τελευταία στήλη φαίνεται το άθροισμα της παραγωγής των πάρκων εκείνων των οποίων η πτώση τάσης είναι μεγαλύτερη από αυτή του ζυγού στον οποίο αναγράφεται το άθροισμα. Θα αναφερθούμε περαιτέρω στα αθροίσματα αυτά στην παράγραφο 5.5.

ΑΠΕ	ΖΥΓΟΣ	ΤΑΣΗ (%)	P (MW)	Άθροισμα
				(MW)
W3	PYRGOS3	50	3.7	
W5	PYRGOS3	50	3.85	142,45
W1	MARI4	45	4.62	
W10	W9G31	45	15.59	
W11	W11G31	45	23.1	
W9	W9G31	45	19.64	79,5
W29	W29G31	35	9.24	70,26
W30	W30G31	30	16.17	54,09
W2	FIZ3	20	13.28	
W24	DHEKELEIA4	20	3.85	
W27	W15G31	20	16.17	
W28	FIZ3	20	11.55	9,24
W26	DHEKELEIA3	19	9.24	

Πίνακας 5.9 : Μέγιστες πτώσεις τάσης και παραγωγή στους ζυγούς που συνδέονται αιολικά

Παρακάτω παρουσιάζονται οι διακυμάνσεις της τάσης στους ζυγούς που συνδέονται τα αιολικά πάρκα και της παραγωγής ενεργού ισχύος από αυτά. Όπως παρατηρούμε και από τον παραπάνω πίνακα 5.9, η μεγαλύτερη πτώση είναι στο ζυγό DHEKELEIA3 όπου η τάση πέφτει μέχρι και 19%. Όσο αφορά την ισχύ παρατηρούμε ότι σε όλα τα πάρκα μηδενίζεται τη στιγμή της εκδήλωσης του βραχυκυκλώματος και επανέρχεται άμεσα με τη λήξη του.

<u>W1-Mari 4</u>

Διάγραμμα 5.8 : Διακύμανση τάσης

- AY250: Pmom

Διάγραμμα 5.9 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W10-W9G31</u>

Διάγραμμα 5.10 : Διακύμανση τάσης

Διάγραμμα 5.11 : Διακύμανση παραγωγής ενεργού ισχύος

Διάγραμμα 5.12 : Διακύμανση τάσης

Διάγραμμα 5.13 : Διακύμανση παραγωγής ενεργού ισχύος

W2-FIZ3

Διάγραμμα 5.14 : Διακύμανση τάσης

Διάγραμμα 5.15 : Διακύμανση παραγωγής ενεργού ισχύος

W24-DHEKELEIA4

Διάγραμμα 5.16 : Διακύμανση τάσης

Διάγραμμα 5.17 : Διακύμανση παραγωγής ενεργού ισχύος

W26-DHEKELEIA3

Διάγραμμα 5.18 : Διακύμανση τάσης

Διάγραμμα 5.19 : Διακύμανση παραγωγής ενεργού ισχύος

W27-W15G31

Διάγραμμα 5.20 : Διακύμανση τάσης

- AY259: Pmom

Διάγραμμα 5.21 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W28-FIZ3</u>

Διάγραμμα 5.22 : Διακύμανση τάσης

Διάγραμμα 5.23 : Διακύμανση παραγωγής ενεργού ισχύος

W29-W29G31

Διάγραμμα 5.24 : Διακύμανση τάσης

Διάγραμμα 5.25 : Διακύμανση παραγωγής ενεργού ισχύος

W3-PYRGOS3

Διάγραμμα 5.26 : Διακύμανση τάσης

Διάγραμμα 5.27 : Διακύμανση παραγωγής ενεργού ισχύος

W30-W30G31

Διάγραμμα 5.28 : Διακύμανση τάσης

Διάγραμμα 5.29 : Διακύμανση παραγωγής ενεργού ισχύος

W5-PYRGOS3

Διάγραμμα 5.30 : Διακύμανση τάσης

- AY253: Pmom

Διάγραμμα 5.31 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W9-W9G31</u>

Διάγραμμα 5.32 : Διακύμανση τάσης

Διάγραμμα 5.33 : Διακύμανση παραγωγής ενεργού ισχύος

5.2.3 Προσομοίωση με αιολική διείσδυση 300 MW

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς καθώς και η αιολική παραγωγή (759.895 MW) παρουσιάζονται στους πίνακες 5.10 και 5.11 αντίστοιχα

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	265,2
Δεκέλεια	176,7
Μονή (ατμοστρόβιλοι)	18
Βασιλικός (αεριοστρόβιλος)	0
Μονή (αεριοστρόβιλοι)	0

Πίνακας 5.10 : Παραγωγή σε κάθε σταθμό

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
MARI4	9.24
FIZ3	26.57
PYRGOS3	7.39
PYRGOS3	7.7
W9G31	39.28
W9G31	31.18
W11G31	46.2
DHEKELEIA4	7.7
DHEKELEIA3	18.48
W15G31	32.34
FIZ3	23.1
W29G31	18.48
W30G31	32.34

Πίνακας 5.11 : Παραγωγή σε κάθε αιολικό πάρκο

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.12

Node	U/Un [%]
OLDPOW3	102.61
YERMAS3	102.74
POLEMI3	102.57
AYPHYLA3	102.82
PYRGOS3	104.00
KOPHINOU3	104.43
W9G31	104.45
MARI4	103.34
MARI3.2	104.39
MARI3.1	104.38

MONI4	103.91
MONI3	104.20
W30G31	103.71
W29G31	103.94
VASSILIKO3	104.45
OROUNDA4	96.08
ERGATES4	96.43
KOKKIN4	96.74
LATSIA4	97.75
ATHALASSA4	99.28
ALAMBRA3	103.15
W15G31	103.38
FIZ3	103.49
LARNAKA3	103.24
ATHALASSA3	101.95
DHEKELEIA3	104.10
DHEKELEIA4	101.02
TROUL4	100.29
POLEMI4	100.89
YPSONAS4	100.29
TRIMIKL4	96.78
KARVOUNAS4	95.15
TEMP4	94.69
KOLOS4	100.56
EPISK4	100.25
PISS4	98.66
XEROP4	97.20
PAPHOS4	97.23
ANATOL4	98.17
AKOURS4	97.66
W8G41	97.69
ANATOL3	101.91

W11G31	102.18
N88	100.84
N98	111.44
N100	108.10
N101	100.85
N103	97.07

Πίνακας 5.12 : Τάσεις ζυγών

Στο σχήμα 5.3 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.3 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.13 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3665.40	16.03	41.85
YERMAS3	3659.81	16.01	41.84
POLEMI3	3864.07	16.90	44.47
AYPHYLA3	2862.25	12.52	31.89
PYRGOS3	3222.54	14.09	36.24
KOPHINOU3	3703.29	16.20	41.37
W9G31	4290.11	18.76	49.70
MARI4	1064.21	9.31	26.74
MARI3.2	4785.27	20.93	57.73
MARI3.1	4840.15	21.17	58.07
MONI4	883.10	7.73	21.89
MONI3	5626.18	24.61	70.57
W30G31	5101.87	22.31	60.49
W29G31	5419.38	23.70	65.07
VASSILIKO3	6861.72	30.01	86.34
OROUNDA4	460.64	4.03	9.17
ERGATES4	449.66	3.93	9.24
KOKKIN4	470.45	4.12	9.75
LATSIA4	698.80	6.11	15.34
ATHALASSA4	1105.35	9.67	26.52
ALAMBRA3	4675.48	20.45	55.08
W15G31	4042.71	17.68	46.94
FIZ3	3839.57	16.79	44.54
LARNAKA3	2586.51	11.31	28.98
ATHALASSA3	3657.48	16.00	42.75
DHEKELEIA3	4776.11	20.89	59.95
DHEKELEIA4	627.79	5.49	14.52
TROUL4	542.61	4.75	9.85

POLEMI4	1234.45	10.80	30.24
YPSONAS4	923.18	8.08	21.14
TRIMIKL4	457.01	4.00	7.82
KARVOUNAS4	364.71	3.19	6.16
TEMP4	339.04	2.97	6.02
KOLOS4	866.95	7.58	19.03
EPISK4	869.71	7.61	16.90
PISS4	489.66	4.28	8.12
XEROP4	487.75	4.27	8.37
PAPHOS4	738.26	6.46	16.79
ANATOL4	835.55	7.31	20.07
AKOURS4	675.14	5.91	15.47
W8G41	682.79	5.97	15.68
ANATOL3	2653.81	11.61	29.26
W11G31	3020.83	13.21	33.79
N88	171582.15	9005.73	40936.06
N98	502.53	26.38	74.69
N100	80373.44	4218.51	17781.64
N101	171551.29	6288.58	28113.39
N103	374.38	19.65	55.61

Πίνακας 5.13 : Ισχύς και ρεύμα βραχυκύκλωσης

5.2.3.1 Μελέτη βραχυκυκλώματος

Αρχικά παρουσιάζεται η διακύμανση της συχνότητας του δικτύου κατά το βραχυκύκλωμα, σε μορφή απόκλισης από την αρχική (50 Hz), στο διάγραμμα 5.34, και εν συνεχεία η συμπεριφορά των ηλεκτροπαραγωγών μονάδων, όσο αφορά την παραγωγή ενεργού και άεργου ισχύος. Σημειώνεται ότι το βραχυκύκλωμα εκδηλώθηκε στο 1s.

Διάγραμμα 5.34 : Διακύμανση συχνότητας

Διάγραμμα 5.35 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.36 : Παραγωγή άεργου ισχύος

Μονή (ατμοστρόβιλοι)

Διάγραμμα 5.37 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.38 : Παραγωγή άεργου ισχύος

Βασιλικός (ατμοστρόβιλοι)

Διάγραμμα 5.39 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.40 : Παραγωγή άεργου ισχύος

Παρακάτω παρουσιάζονται οι διακυμάνσεις της τάσης στους ζυγούς που συνδέονται τα αιολικά πάρκα και της παραγωγής ενεργού ισχύος από αυτά. Παρατηρούμε την ίδια συμπεριφορά με το σενάριο των 150 MW, όσο αφορά την ισχύ, και τις ίδιες πτώσεις όσο αφορά τις τάσεις. Στον πίνακα 5.14 φαίνονται οι ελάχιστες τιμές που πήρε η τάση σε κάθε ζυγό και οι ισχύεις όπως αναλύθηκε παραπάνω.

ΑΠΕ	ΖΥΓΟΣ	ΤΑΣΗ (%)	P (MW)	Άθροισμα
				(MW)
W3	PYRGOS3	50	7.4	
W5	PYRGOS3	50	7.7	284,9
W1	MARI4	45	9.24	
W10	W9G31	45	31.18	
W11	W11G31	45	46.2	
W9	W9G31	45	39.28	159
W29	W29G31	35	18.48	140,52
W30	W30G31	30	32.34	108,18
W2	FIZ3	20	26.56	
W24	DHEKELEIA4	20	7.7	
W27	W15G31	20	32.34	
W28	FIZ3	20	23.1	18,48
W26	DHEKELEIA3	19	18.48	

Πίνακας 5.14 : Μέγιστες πτώσεις τάσης και παραγωγή στους ζυγούς που συνδέονται αιολικά

<u>W1-Mari 4</u>

Διάγραμμα 5.41 : Διακύμανση τάσης

Διάγραμμα 5.42 : Διακύμανση παραγωγής ενεργού ισχύος

W10-W9G31

Διάγραμμα 5.43 : Διακύμανση τάσης

Διάγραμμα 5.44 : Διακύμανση παραγωγής ενεργού ισχύος

W11-W11G31

Διάγραμμα 5.45 : Διακύμανση τάσης

Διάγραμμα 5.46 : Διακύμανση παραγωγής ενεργού ισχύος

W2-FIZ3

Διάγραμμα 5.47 : Διακύμανση τάσης

Διάγραμμα 5.48 : Διακύμανση παραγωγής ενεργού ισχύος

W24-DHEKELEIA4

Διάγραμμα 5.49 : Διακύμανση τάσης

Διάγραμμα 5.50 : Διακύμανση παραγωγής ενεργού ισχύος

W26-DHEKELEIA3

Διάγραμμα 5.51 : Διακύμανση τάσης

Διάγραμμα 5.52 : Διακύμανση παραγωγής ενεργού ισχύος

W27-W15G31

Διάγραμμα 5.53 : Διακύμανση τάσης

Διάγραμμα 5.54 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W28-FIZ3</u>

Διάγραμμα 5.55 : Διακύμανση τάσης

Διάγραμμα 5.56 : Διακύμανση παραγωγής ενεργού ισχύος

W29-W29G31

Διάγραμμα 5.57 : Διακύμανση τάσης

Διάγραμμα 5.58 : Διακύμανση παραγωγής ενεργού ισχύος
W3-PYRGOS3

Διάγραμμα 5.59 : Διακύμανση τάσης

Διάγραμμα 5.60 : Διακύμανση παραγωγής ενεργού ισχύος

W30-W30G31

Διάγραμμα 5.61 : Διακύμανση τάσης

Διάγραμμα 5.62 : Διακύμανση παραγωγής ενεργού ισχύος

W5-PYRGOS3

Διάγραμμα 5.63 : Διακύμανση τάσης

Διάγραμμα 5.64 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W9-W9G31</u>

Διάγραμμα 5.65 : Διακύμανση τάσης

Διάγραμμα 5.66 : Διακύμανση παραγωγής ενεργού ισχύος

5.3 Σενάριο χαμηλού φορτίου

Το φορτίο (400 MW) κατανέμεται στους ζυγούς όπως παρουσιάζεται στον πίνακα 5.15

Node	P [MW]	Q [MVAr]
DHEKELEIA3	7.31	4.67
DHEKELEIA3	17.59	5.31
DHEKELEIA3	0.00	-1.20
LARNAKA3	25.39	9.62
FIZ3	10.26	-7.65
DHEKELEIA4	13.84	6.27
W15G31	0.00	0.00

TROUL4	1.52	0.32
ALAMBRA3	6.22	4.72
ATHALASSA3	111.16	30.85
ATHALASSA4	6.46	3.84
LATSIA4	11.08	5.64
ERGATES4	3.66	1.72
KOKKIN4	4.33	3.13
OROUNDA4	5.18	-0.76
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	5.15	2.49
MARI4	15.60	5.81
W9G31	0.00	0.00
KOPHINOU3	3.14	4.23
PYRGOS3	3.27	1.67
PYRGOS3	6.58	3.57
MONI4	1.82	1.18
MONI3	1.27	0.69
AYPHYLA3	20.16	7.59
YERMAS3	17.74	6.86
OLDPOW3	18.99	10.84
POLEMI4	15.16	3.92
W11G31	0.00	0.00
YPSONAS4	4.07	2.32
TRIMIKL4	4.05	1.97
KARVOUNAS4	3.70	2.69
TEMP4	3.44	2.21
KOLOS4	5.77	0.13
EPISK4	1.54	0.84
PISS4	1.40	0.91
XEROP4	2.92	1.72
AKOURS4	11.22	4.63

PAPHOS4	24.42	15.01
ANATOL3	4.61	-0.14

Πίνακας 5.15 : Κατανομή φορτίου στους ζυγούς

5.3.1 Προσομοίωση χωρίς αιολική διείσδυση

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς (400 MW) είχε ως ακολούθως:

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	352
Δεκέλεια	30
Μονή (ατμοστρόβιλοι)	18
Βασιλικός (αεριοστρόβιλος)	0
Μονή (αεριοστρόβιλοι)	0

Πίνακας 5.16 : Παραγωγή σε κάθε σταθμό

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.17

Node	U/Un [%]
OLDPOW3	106.24
YERMAS3	106.30
POLEMI3	106.23
AYPHYLA3	106.29
PYRGOS3	106.81
KOPHINOU3	107.07
W9G31	107.09
MARI4	106.56
MARI3.2	107.09
MARI3.1	107.09
MONI4	106.72

MONI3	106.94
W30G31	106.33
W29G31	106.57
VASSILIKO3	107.13
OROUNDA4	101.80
ERGATES4	102.01
KOKKIN4	102.18
LATSIA4	102.72
ATHALASSA4	103.58
ALAMBRA3	105.80
W15G31	105.85
FIZ3	105.87
LARNAKA3	105.63
ATHALASSA3	104.94
DHEKELEIA3	106.02
DHEKELEIA4	104.02
TROUL4	103.78
POLEMI4	105.42
YPSONAS4	105.09
TRIMIKL4	102.81
KARVOUNAS4	101.65
TEMP4	101.04
KOLOS4	105.24
EPISK4	105.07
PISS4	104.19
XEROP4	103.38
PAPHOS4	103.39
ANATOL4	103.92
AKOURS4	103.64
W8G41	103.66
ANATOL3	105.92
W11G31	106.05

N88	100.87
N98	114.45
N100	108.15
N101	100.87
N103	99.56

Πίνακας 5.17 : Τάσεις ζυγών

Στο σχήμα 5.4 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.4 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.18 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3147.89	13.77	36.69
YERMAS3	3163.39	13.84	36.96
POLEMI3	3265.65	14.28	38.30
AYPHYLA3	2572.89	11.25	29.26
PYRGOS3	2894.47	12.66	33.10
KOPHINOU3	3106.54	13.59	35.26
W9G31	3495.48	15.29	41.04
MARI4	978.11	8.56	24.20
MARI3.2	4124.08	18.04	51.12
MARI3.1	4157.75	18.19	51.41
MONI4	860.67	7.53	21.29
MONI3	4828.44	21.12	59.91
W30G31	4154.99	18.17	50.25
W29G31	4430.92	19.38	54.44
VASSILIKO3	5586.55	24.43	69.33
OROUNDA4	453.07	3.96	9.07
ERGATES4	442.24	3.87	9.13
KOKKIN4	462.30	4.04	9.64
LATSIA4	680.23	5.95	15.05
ATHALASSA4	1058.16	9.26	25.65
ALAMBRA3	3830.85	16.76	45.86
W15G31	3262.68	14.27	38.06
FIZ3	3105.93	13.58	36.08
LARNAKA3	2333.46	10.21	26.46
ATHALASSA3	3201.58	14.00	38.19
DHEKELEIA3	4203.64	18.39	52.14
DHEKELEIA4	574.16	5.02	13.01
TROUL4	515.94	4.51	9.41

POLEMI4	1166.91	10.21	28.69
YPSONAS4	885.87	7.75	20.39
TRIMIKL4	449.53	3.93	7.74
KARVOUNAS4	360.32	3.15	6.11
TEMP4	335.25	2.93	5.98
KOLOS4	833.21	7.29	18.40
EPISK4	836.28	7.32	16.40
PISS4	478.96	4.19	7.99
XEROP4	475.40	4.16	8.21
PAPHOS4	706.04	6.18	16.07
ANATOL4	794.09	6.95	19.04
AKOURS4	647.86	5.67	14.85
W8G41	654.90	5.73	15.05
ANATOL3	2264.65	9.91	25.24
W11G31	2525.27	11.05	28.52
N88	171320.99	8992.02	40893.86
N98	494.10	25.93	73.35
N100	80254.07	4212.25	17762.77
N101	171255.61	6277.74	28080.89
N103	370.39	19.44	54.99

Πίνακας 5.18 : Ισχύς και ρεύμα βραχυκύκλωσης

5.3.2 Προσομοίωση με αιολική διείσδυση 150 MW

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς καθώς και η αιολική παραγωγή (400 MW) παρουσιάζονται στους πίνακες 5.19 και 5.20 αντίστοιχα

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	202
Δεκέλεια	30
Μονή (ατμοστρόβιλοι)	18
Βασιλικός (αεριοστρόβιλος)	0

Μονή (αεριοστρόβιλοι)	0

Πίνακας 5.19 : Παραγωγή σε κάθε σταθμό

Σταθμός	<u>Παραγωγή Ρ (MW)</u>
MARI4	4.62
FIZ3	13.28
PYRGOS3	3.7
PYRGOS3	3.85
W9G31	19.64
W9G31	15.59
W11G31	23.1
DHEKELEIA4	3.85
DHEKELEIA3	9.24
W15G31	16.17
FIZ3	11.55
W29G31	9.24
W30G31	16.17

Πίνακας 5.20 : Παραγωγή σε κάθε αιολικό πάρκο

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.21

Node	U/Un [%]
OLDPOW3	106.08
YERMAS3	106.14
POLEMI3	106.07
AYPHYLA3	106.13
PYRGOS3	106.65
KOPHINOU3	106.89
W9G31	106.90
MARI4	106.26

MARI3.2	106.87
MARI3.1	106.87
MONI4	106.55
MONI3	106.77
W30G31	106.26
W29G31	106.46
VASSILIKO3	106.91
OROUNDA4	101.83
ERGATES4	102.02
KOKKIN4	102.19
LATSIA4	102.72
ATHALASSA4	103.56
ALAMBRA3	105.80
W15G31	105.88
FIZ3	105.91
LARNAKA3	105.67
ATHALASSA3	104.97
DHEKELEIA3	106.04
DHEKELEIA4	104.14
TROUL4	103.85
POLEMI4	105.22
YPSONAS4	104.90
TRIMIKL4	102.70
KARVOUNAS4	101.61
TEMP4	101.11
KOLOS4	105.05
EPISK4	104.88
PISS4	104.01
XEROP4	103.22
PAPHOS4	103.25
ANATOL4	103.78
AKOURS4	103.50

W8G41	103.52
ANATOL3	105.78
W11G31	105.91
N88	100.87
N98	114.27
N100	108.15
N101	100.88
N103	99.35

Πίνακας 5.21 : Τάσεις ζυγών

Στο σχήμα 5.5 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.5 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.22 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3665.40	16.03	41.85
YERMAS3	3659.81	16.01	41.84
POLEMI3	3864.07	16.90	44.47
AYPHYLA3	2862.25	12.52	31.89
PYRGOS3	3222.54	14.09	36.24
KOPHINOU3	3703.29	16.20	41.37
W9G31	4290.11	18.76	49.70
MARI4	1064.21	9.31	26.74
MARI3.2	4785.27	20.93	57.73
MARI3.1	4840.15	21.17	58.07
MONI4	883.10	7.73	21.89
MONI3	5626.18	24.61	70.57
W30G31	5101.87	22.31	60.49
W29G31	5419.38	23.70	65.07
VASSILIKO3	6861.72	30.01	86.34
OROUNDA4	460.64	4.03	9.17
ERGATES4	449.66	3.93	9.24
KOKKIN4	470.45	4.12	9.75
LATSIA4	698.80	6.11	15.34
ATHALASSA4	1105.35	9.67	26.52
ALAMBRA3	4675.48	20.45	55.08
W15G31	4042.71	17.68	46.94
FIZ3	3839.57	16.79	44.54
LARNAKA3	2586.51	11.31	28.98
ATHALASSA3	3657.48	16.00	42.75
DHEKELEIA3	4776.11	20.89	59.95
DHEKELEIA4	627.79	5.49	14.52
TROUL4	542.61	4.75	9.85

POLEMI4	1234.45	10.80	30.24
YPSONAS4	923.18	8.08	21.14
TRIMIKL4	457.01	4.00	7.82
KARVOUNAS4	364.71	3.19	6.16
TEMP4	339.04	2.97	6.02
KOLOS4	866.95	7.58	19.03
EPISK4	869.71	7.61	16.90
PISS4	489.66	4.28	8.12
XEROP4	487.75	4.27	8.37
PAPHOS4	738.26	6.46	16.79
ANATOL4	835.55	7.31	20.07
AKOURS4	675.14	5.91	15.47
W8G41	682.79	5.97	15.68
ANATOL3	2653.81	11.61	29.26
W11G31	3020.83	13.21	33.79
N88	171582.15	9005.73	40936.06
N98	502.53	26.38	74.69
N100	80373.44	4218.51	17781.64
N101	171551.29	6288.58	28113.39
N103	374.38	19.65	55.61

Πίνακας 5.22 : Ισχύς και ρεύμα βραχυκύκλωσης

5.3.2.1 Μελέτη βραχυκυκλώματος

Αρχικά παρουσιάζεται η διακύμανση της συχνότητας του δικτύου κατά το βραχυκύκλωμα, σε μορφή απόκλισης από την αρχική (50 Hz), στο διάγραμμα 5.67, και εν συνεχεία η συμπεριφορά των ηλεκτροπαραγωγών μονάδων, όσο αφορά την παραγωγή ενεργού και άεργου ισχύος. Το βραχυκύκλωμα εκδηλώθηκε στο 1s και είχε διάρκεια 200ms.

Διάγραμμα 5.67 : Διακύμανση συχνότητας

<u>Δεκέλεια</u>

Διάγραμμα 5.68 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.69 : Παραγωγή άεργου ισχύος

Μονή (ατμοστρόβιλοι)

Διάγραμμα 5.70 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.71 : Παραγωγή άεργου ισχύος

Βασιλικός (ατμοστρόβιλοι)

Διάγραμμα 5.72 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.73 : Παραγωγή άεργου ισχύος

Παρακάτω παρουσιάζονται οι διακυμάνσεις της τάσης στους ζυγούς που συνδέονται τα αιολικά πάρκα και της παραγωγής ενεργού ισχύος από αυτά. Παρατηρούμε την ίδια συμπεριφορά με τα προηγούμενα σενάρια, όσο αφορά την ισχύ, και τις ίδιες πτώσεις όσο αφορά τις τάσεις. Στον πίνακα 5.23 φαίνονται οι ελάχιστες τιμές που πήρε η τάση σε κάθε ζυγό και οι ισχύεις όπως αναλύθηκε παραπάνω..

ΑΠΕ	ΖΥΓΟΣ	ΤΑΣΗ (%)	P (MW)	Άθροισμα
				(MW)
W3	PYRGOS3	50	3.7	
W5	PYRGOS3	50	3.85	142,45
W1	MARI4	45	4.62	
W10	W9G31	45	15.59	
W11	W11G31	45	23.1	
W9	W9G31	45	19.64	79,5
W29	W29G31	35	9.24	70,26
W30	W30G31	30	16.17	54,09
W2	FIZ3	20	13.28	
W24	DHEKELEIA4	20	3.85	
W27	W15G31	20	16.17	
W28	FIZ3	20	11.55	9,24
W26	DHEKELEIA3	19	9.24	

Πίνακας 5.23 : Μέγιστες πτώσεις τάσης και παραγωγή στους ζυγούς που συνδέονται αιολικά

<u>W1-Mari 4</u>

Διάγραμμα 5.74 : Διακύμανση τάσης

Διάγραμμα 5.75 : Διακύμανση παραγωγής ενεργού ισχύος

W10-W9G31

Διάγραμμα 5.77 : Διακύμανση παραγωγής ενεργού ισχύος

W11-W11G31

Διάγραμμα 5.78 : Διακύμανση τάσης

Διάγραμμα 5.79 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W2-FIZ3</u>

Διάγραμμα 5.80 : Διακύμανση τάσης

Διάγραμμα 5.81 : Διακύμανση παραγωγής ενεργού ισχύος

W24-DHEKELEIA4

Διάγραμμα 5.82 : Διακύμανση τάσης

Διάγραμμα 5.83 : Διακύμανση παραγωγής ενεργού ισχύος

W26-DHEKELEIA3

Διάγραμμα 5.84 : Διακύμανση τάσης

Διάγραμμα 5.85 : Διακύμανση παραγωγής ενεργού ισχύος

W27-W15G31

Διάγραμμα 5.86 : Διακύμανση τάσης

Διάγραμμα 5.87 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W28-FIZ3</u>

Διάγραμμα 5.88 : Διακύμανση τάσης

Διάγραμμα 5.89 : Διακύμανση παραγωγής ενεργού ισχύος

W29-W29G31

Διάγραμμα 5.90 : Διακύμανση τάσης

Διάγραμμα 5.91 : Διακύμανση παραγωγής ενεργού ισχύος

W3-PYRGOS3

Διάγραμμα 5.92 : Διακύμανση τάσης

Διάγραμμα 5.93 : Διακύμανση παραγωγής ενεργού ισχύος

W30-W30G31

Διάγραμμα 5.94 : Διακύμανση τάσης

Διάγραμμα 5.95 : Διακύμανση παραγωγής ενεργού ισχύος

W5-PYRGOS3

Διάγραμμα 5.96 : Διακύμανση τάσης

- AY253: Pmom

Διάγραμμα 5.97 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W9-W9G31</u>

Διάγραμμα 5.98 : Διακύμανση τάσης

Διάγραμμα 5.99 : Διακύμανση παραγωγής ενεργού ισχύος

5.4 Σενάριο ψηλού φορτίου

Το φορτίο (1000 MW) κατανέμεται στους ζυγούς όπως παρουσιάζεται στον πίνακα 5.24

Node	P [MW]	Q [MVAr]
DHEKELEIA3	18.28	11.67
DHEKELEIA3	43.98	13.27
DHEKELEIA3	0.00	-3.00
LARNAKA3	63.48	24.06
FIZ3	25.64	-19.12
DHEKELEIA4	34.59	15.68
W15G31	0.00	0.00

TROUL4	3.79	0.80
ALAMBRA3	15.55	11.80
ATHALASSA3	277.90	77.13
ATHALASSA4	16.16	9.61
LATSIA4	27.71	14.10
ERGATES4	9.14	4.30
KOKKIN4	10.81	7.81
OROUNDA4	12.95	-1.91
W30G31	0.00	0.00
W29G31	0.00	0.00
VASSILIKO3	12.87	6.23
MARI4	39.00	14.52
W9G31	0.00	0.00
KOPHINOU3	7.85	10.58
PYRGOS3	8.18	4.19
PYRGOS3	16.46	8.93
MONI4	4.55	2.95
MONI3	3.18	1.72
AYPHYLA3	50.41	18.96
YERMAS3	44.35	17.15
OLDPOW3	47.47	27.10
POLEMI4	37.91	9.79
W11G31	0.00	0.00
YPSONAS4	10.16	5.80
TRIMIKL4	10.12	4.93
KARVOUNAS4	9.25	6.73
TEMP4	8.61	5.51
KOLOS4	14.42	0.33
EPISK4	3.84	2.10
PISS4	3.50	2.27
XEROP4	7.29	4.30
AKOURS4	28.05	11.58

PAPHOS4	61.04	37.54
ANATOL3	11.53	-0.34

Πίνακας 5.24 : Κατανομή φορτίου στους ζυγούς

5.4.1 Προσομοίωση χωρίς αιολική διείσδυση

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς (1000 MW) είχε ως ακολούθως:

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	358,8
Δεκέλεια	331,2
Μονή (ατμοστρόβιλοι)	165,6
Βασιλικός (αεριοστρόβιλος)	34,5
Μονή (αεριοστρόβιλοι)	109,9

Πίνακας 5.25 : Παραγωγή σε κάθε σταθμό

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.26

Node	U/Un [%]
OLDPOW3	98.59
YERMAS3	98.85
POLEMI3	98.46
AYPHYLA3	99.10
PYRGOS3	101.45
KOPHINOU3	101.74
W9G31	101.80
MARI4	100.46
MARI3.2	101.86
MARI3.1	101.85

MONI4	100.61
MONI3	101.75
W30G31	100.33
W29G31	100.82
VASSILIKO3	101.95
OROUNDA4	87.13
ERGATES4	87.82
KOKKIN4	88.33
LATSIA4	90.16
ATHALASSA4	92.75
ALAMBRA3	99.27
W15G31	99.54
FIZ3	99.70
LARNAKA3	99.39
ATHALASSA3	97.32
DHEKELEIA3	100.86
DHEKELEIA4	97.99
TROUL4	96.08
POLEMI4	95.53
YPSONAS4	94.52
TRIMIKL4	88.43
KARVOUNAS4	85.56
TEMP4	84.63
KOLOS4	94.99
EPISK4	94.45
PISS4	91.69
XEROP4	89.13
PAPHOS4	89.09
ANATOL4	90.65
AKOURS4	89.79
W8G41	89.85
ANATOL3	97.16

W11G31	97.63
N88	100.79
N98	108.09
N100	108.03
N101	100.81
N103	100.79

Πίνακας 5.26 : Τάσεις ζυγών

Στο σχήμα 5.6 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.6 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.27 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3429.66	15.00	39.64
YERMAS3	3452.27	15.10	40.01
POLEMI3	3564.74	15.59	41.46
AYPHYLA3	2765.24	12.09	31.19
PYRGOS3	3162.55	13.83	35.91
KOPHINOU3	3329.43	14.56	37.36
W9G31	3780.54	16.54	43.90
MARI4	999.05	8.74	24.72
MARI3.2	4524.98	19.79	55.70
MARI3.1	4565.57	19.97	55.97
MONI4	2512.77	21.98	62.34
MONI3	5639.44	24.67	69.96
W30G31	4427.25	19.36	52.93
W29G31	4785.98	20.93	58.15
VASSILIKO3	6350.51	27.78	78.80
OROUNDA4	456.14	3.99	9.08
ERGATES4	445.17	3.89	9.14
KOKKIN4	465.51	4.07	9.64
LATSIA4	687.43	6.01	15.04
ATHALASSA4	1076.95	9.42	25.59
ALAMBRA3	3997.67	17.49	47.33
W15G31	3362.88	14.71	38.87
FIZ3	3186.86	13.94	36.71
LARNAKA3	2364.67	10.34	26.66
ATHALASSA3	3286.64	14.38	38.82
DHEKELEIA3	4273.86	18.69	53.01
DHEKELEIA4	842.63	7.37	20.47
TROUL4	612.75	5.36	10.90

POLEMI4	1201.16	10.51	29.50
YPSONAS4	904.82	7.92	20.78
TRIMIKL4	453.25	3.96	7.78
KARVOUNAS4	362.39	3.17	6.13
TEMP4	336.94	2.95	5.99
KOLOS4	850.41	7.44	18.73
EPISK4	853.25	7.46	16.66
PISS4	484.07	4.23	8.05
XEROP4	480.67	4.20	8.28
PAPHOS4	718.93	6.29	16.34
ANATOL4	810.51	7.09	19.41
AKOURS4	658.72	5.76	15.07
W8G41	666.00	5.83	15.28
ANATOL3	2403.66	10.51	26.57
W11G31	2699.71	11.81	30.23
N88	171357.51	8993.94	40899.28
N98	73984.88	3883.20	16420.01
N100	80370.83	4218.37	17780.23
N101	171444.18	6284.66	28100.38
N103	16830.13	883.35	3995.81

Πίνακας 5.27 : Ισχύς και ρεύμα βραχυκύκλωσης

5.4.2 Προσομοίωση με αιολική διείσδυση 300 MW

Η παραγωγή από τους ηλεκτροπαραγωγούς σταθμούς καθώς και η αιολική παραγωγή (1000 MW) παρουσιάζονται στους πίνακες 5.28 και 5.29 αντίστοιχα

<u>Σταθμός</u>	<u>Παραγωγή Ρ (MW)</u>
Βασιλικός (ατμοστρόβιλοι)	358,8
Δεκέλεια	323,2
Μονή (ατμοστρόβιλοι)	18

Βασιλικός (αεριοστρόβιλος)	0
Μονή (αεριοστρόβιλοι)	0

Πίνακας 5.28 : Παραγωγή σε κάθε ζυγό

Σταθμός	<u>Παραγωγή Ρ (MW)</u>
MARI4	9.24
FIZ3	26.57
PYRGOS3	7.39
PYRGOS3	7.7
W9G31	39.28
W9G31	31.18
W11G31	46.2
DHEKELEIA4	7.7
DHEKELEIA3	18.48
W15G31	32.34
FIZ3	23.1
W29G31	18.48
W30G31	32.34

Πίνακας 5.29 : Παραγωγή σε κάθε αιολικό πάρκο

Κατά την μελέτη της ροής φορτίου είχαμε, όσο αφορά την επί τοις εκατό τάση στους ζυγούς, τα αποτελέσματα που παρουσιάζονται στον πίνακα 5.30

Node	U/Un [%]
OLDPOW3	97.43
YERMAS3	97.67
POLEMI3	97.31
AYPHYLA3	97.91
PYRGOS3	100.13
KOPHINOU3	100.85
W9G31	100.89
------------	--------
MARI4	99.28
MARI3.2	100.85
MARI3.1	100.84
MONI4	100.05
MONI3	100.46
W30G31	99.67
W29G31	100.07
VASSILIKO3	100.94
OROUNDA4	86.54
ERGATES4	87.21
KOKKIN4	87.73
LATSIA4	89.55
ATHALASSA4	92.16
ALAMBRA3	98.76
W15G31	99.13
FIZ3	99.32
LARNAKA3	99.05
ATHALASSA3	96.86
DHEKELEIA3	100.54
DHEKELEIA4	95.35
TROUL4	94.05
POLEMI4	94.30
YPSONAS4	93.28
TRIMIKL4	87.42
KARVOUNAS4	84.73
TEMP4	84.05
KOLOS4	93.75
EPISK4	93.21
PISS4	90.43
XEROP4	87.86
PAPHOS4	87.84

ANATOL4	89.42
AKOURS4	88.55
W8G41	88.61
ANATOL3	96.04
W11G31	96.51
N88	100.79
N98	107.30
N100	108.02
N101	100.80
N103	93.80

Πίνακας 5.30 : Τάσεις ζυγών

Στο σχήμα 5.7 που ακολουθεί φαίνονται οι τάσεις και οι ισχύεις σε κάθε ζυγό

Σχήμα 5.7 : Τάσεις και ισχύεις ζυγών

Κατά τη μελέτη βραχυκύκλωσης πήραμε τα αποτελέσματα του πίνακα 5.31 για την ισχύ και τα ρεύματα βραχυκύκλωσης.

Node	Sa [MVA]	Ia [kA]	ip [kA]
OLDPOW3	3665.40	16.03	41.85
YERMAS3	3659.81	16.01	41.84
POLEMI3	3864.07	16.90	44.47
AYPHYLA3	2862.25	12.52	31.89
PYRGOS3	3222.54	14.09	36.24
KOPHINOU3	3703.29	16.20	41.37
W9G31	4290.11	18.76	49.70
MARI4	1064.21	9.31	26.74
MARI3.2	4785.27	20.93	57.73
MARI3.1	4840.15	21.17	58.07
MONI4	883.10	7.73	21.89
MONI3	5626.18	24.61	70.57
W30G31	5101.87	22.31	60.49
W29G31	5419.38	23.70	65.07
VASSILIKO3	6861.72	30.01	86.34
OROUNDA4	460.64	4.03	9.17
ERGATES4	449.66	3.93	9.24
KOKKIN4	470.45	4.12	9.75
LATSIA4	698.80	6.11	15.34
ATHALASSA4	1105.35	9.67	26.52
ALAMBRA3	4675.48	20.45	55.08
W15G31	4042.71	17.68	46.94
FIZ3	3839.57	16.79	44.54
LARNAKA3	2586.51	11.31	28.98
ATHALASSA3	3657.48	16.00	42.75
DHEKELEIA3	4776.11	20.89	59.95
DHEKELEIA4	627.79	5.49	14.52
TROUL4	542.61	4.75	9.85

POLEMI4	1234.45	10.80	30.24
YPSONAS4	923.18	8.08	21.14
TRIMIKL4	457.01	4.00	7.82
KARVOUNAS4	364.71	3.19	6.16
TEMP4	339.04	2.97	6.02
KOLOS4	866.95	7.58	19.03
EPISK4	869.71	7.61	16.90
PISS4	489.66	4.28	8.12
XEROP4	487.75	4.27	8.37
PAPHOS4	738.26	6.46	16.79
ANATOL4	835.55	7.31	20.07
AKOURS4	675.14	5.91	15.47
W8G41	682.79	5.97	15.68
ANATOL3	2653.81	11.61	29.26
W11G31	3020.83	13.21	33.79
N88	171582.15	9005.73	40936.06
N98	502.53	26.38	74.69
N100	80373.44	4218.51	17781.64
N101	171551.29	6288.58	28113.39
N103	374.38	19.65	55.61

Πίνακας 5.31 : Ισχύς και ρεύμα βραχυκύκλωσης

5.4.2.1 Μελέτη βραχυκυκλώματος

Αρχικά παρουσιάζεται η διακύμανση της συχνότητας του δικτύου κατά το βραχυκύκλωμα, σε μορφή απόκλισης από την αρχική (50 Hz), στο διάγραμμα 5.100, και εν συνεχεία η συμπεριφορά των ηλεκτροπαραγωγών μονάδων, όσο αφορά την παραγωγή ενεργού και άεργου ισχύος. Σημειώνεται ότι το βραχυκύκλωμα εκδηλώθηκε στο 1s. Παρατηρούμε ότι έχουμε συνεχή βύθιση της συχνότητας, γεγονός που δείχνει ότι προκαλείται αστάθεια του συστήματος. Αυτό μπορεί να αποδοθεί στο υψηλό για τα δεδομένα του συστήματος φορτίο.

Διάγραμμα 5.100 : Διακύμανση συχνότητας

<u>Δεκέλεια</u>

Διάγραμμα 5.101 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.102 : Παραγωγή άεργου ισχύος

Μονή (ατμοστρόβιλοι)

Διάγραμμα 5.103 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.104 : Παραγωγή άεργου ισχύος

Βασιλικός (ατμοστρόβιλοι)

Διάγραμμα 5.105 : Παραγωγή ενεργού ισχύος

Διάγραμμα 5.106 : Παραγωγή άεργου ισχύος

Στον πίνακα 5.32 φαίνονται οι ελάχιστες τιμές που πήρε η τάση σε κάθε ζυγό, και οι ισχύεις.

ΑΠΕ	ΖΥΓΟΣ	ΤΑΣΗ (%)	P (MW)	Άθροισμα
				(MW)
W3	PYRGOS3	50	7.4	
W5	PYRGOS3	50	7.7	284,9
W1	MARI4	45	9.24	
W10	W9G31	45	31.18	
W11	W11G31	45	46.2	
W9	W9G31	45	39.28	159
W29	W29G31	35	18.48	140,52
W30	W30G31	30	32.34	108,18
W2	FIZ3	20	26.56	
W24	DHEKELEIA4	20	7.7	
W27	W15G31	20	32.34	
W28	FIZ3	20	23.1	18,48
W26	DHEKELEIA3	19	18.48	

Πίνακας 5.32 : Μέγιστες πτώσεις τάσης και παραγωγή στους ζυγούς που συνδέονται αιολικά

Παρακάτω παρουσιάζονται οι διακυμάνσεις της τάσης στους ζυγούς που συνδέονται τα αιολικά πάρκα και της παραγωγής ενεργού ισχύος από αυτά. Παρατηρούμε την ίδια συμπεριφορά με τα υπόλοιπα σενάρια, αν και όπως είδαμε παραπάνω η συχνότητα του δικτύου είχε διαφορετική συμπεριφορά.

<u>W1-Mari 4</u>

Διάγραμμα 5.107 : Διακύμανση τάσης

- AY250: Pmom

Διάγραμμα 5.108 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W10- W9G31</u>

Διάγραμμα 5.109 : Διακύμανση τάσης

Διάγραμμα 5.110 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W11-W11G31</u>

Διάγραμμα 5.111 : Διακύμανση τάσης

Διάγραμμα 5.112 : Διακύμανση παραγωγής ενεργού ισχύος

W2-FIZ3

Διάγραμμα 5.113 : Διακύμανση τάσης

Διάγραμμα 5.114 : Διακύμανση παραγωγής ενεργού ισχύος

W24-DHEKELEIA4

Διάγραμμα 5.115 : Διακύμανση τάσης

Διάγραμμα 5.116 : Διακύμανση παραγωγής ενεργού ισχύος

W26-DHEKELEIA3

Διάγραμμα 5.117 : Διακύμανση τάσης

Διάγραμμα 5.118 : Διακύμανση παραγωγής ενεργού ισχύος

W27-W15G31

Διάγραμμα 5.119 : Διακύμανση τάσης

Διάγραμμα 5.120 : Διακύμανση παραγωγής ενεργού ισχύος

<u>W28-FIZ3</u>

Διάγραμμα 5.121 : Διακύμανση τάσης

Διάγραμμα 5.122 : Διακύμανση παραγωγής ενεργού ισχύος

Διάγραμμα 5.123 : Διακύμανση τάσης

Διάγραμμα 5.124 : Διακύμανση παραγωγής ενεργού ισχύος

W3-PYRGOS3

Διάγραμμα 5.125 : Διακύμανση τάσης

Διάγραμμα 5.126 : Διακύμανση παραγωγής ενεργού ισχύος

Διάγραμμα 5.127 : Διακύμανση τάσης

Διάγραμμα 5.128 : Διακύμανση παραγωγής ενεργού ισχύος

W5-PYRGOS3

Διάγραμμα 5.129 : Διακύμανση τάσης

Διάγραμμα 5.130 : Διακύμανση παραγωγής ενεργού ισχύος

W9-W9G31

Διάγραμμα 5.131 : Διακύμανση τάσης

Διάγραμμα 5.132 : Διακύμανση παραγωγής ενεργού ισχύος

5.5 Ενδεικτικός καθορισμός ορίου πτώσης τάσης για αποσύνδεση αιολικών

Οι ανεμογεννήτριες των αιολικών πάρκων έχουν τη δυνατότητα αδιάλειπτης λειτουργίας υπό χαμηλή τάση (Low Voltage Ride Through, LVRT). Το ζήτημα που προκύπτει είναι μέχρι ποια τιμή τάσης οι ανεμογεννήτριες των αιολικών πάρκων θα πρέπει να λειτουργούν αδιαλείπτως προκειμένου να μην προκληθεί σβέση του συστήματος (black-out). Προϋπόθεση για τον καθορισμό της τιμής αυτής αποτελεί η ανάγκη η απώλεια παραγωγής να μπορεί να καλυφθεί. Στην περίπτωση μας θέλουμε η απώλεια να μην υπερβαίνει την ικανότητα παραγωγής ενός από τους ατμοστρόβιλους του Βασιλικού (130MW*92%=119,6 MW). Τέτοια πτώση τάσης μπορεί να προκληθεί σε περίπτωση βραχυκυκλώματος, την οποία εξετάσαμε παραπάνω. Έτσι παρατηρώντας τον πίνακα 4.32 (που αναφέρεται στο πιο ακραίο σενάριο, με το ψηλότερο δηλαδή φορτίο) διαπιστώνουμε ότι αν θέσουμε την στάθμη αυτή στο 31% η απώλεια θα είναι 108,18 MW (για 300 MW αιολική διείσδυση), οπότε τηρείται η προϋπόθεση.

ΚΕΦΑΛΑΙΟ 6 : ΣΥΜΠΕΡΑΣΜΑΤΑ

Έχοντας υπόψη όλα τα αποτελέσματα που προέκυψαν κατά τις διάφορες προσομοιώσεις που πραγματοποιήθηκαν, μπορούμε να πούμε ότι το μοντέλο του ΣΗΕ της Κύπρου που καταστρώσαμε μπορεί να θεωρηθεί ένα αρκετά αξιόπιστο εργαλείο.

Από τις μελέτες ροής φορτίου, είδαμε ότι οι τάσεις στους ζυγούς του συστήματος διατηρούνταν σε λογικά πλαίσια, αναλόγως της φόρτισης του. Είδαμε επίσης ότι η διείσδυση της αιολικής παραγωγής δεν είχε κάποια αρνητική επίπτωση στη λειτουργία του συστήματος.

Κατά τις μελέτες βραχυκυκλώματος είχαμε τα αναμενόμενα αποτελέσματα όσο αφορά την συμπεριφορά των γεννητριών και των αιολικών πάρκων καθώς και της συχνότητας του δικτύου. Από τα αποτελέσματα αυτά μπορέσαμε να καθορίσουμε ενδεικτικά το όριο της πτώσης τάσης, μέχρι το οποίο οι ανεμογεννήτριες πρέπει να παραμένουν συνδεδεμένες στο δίκτυο.

Η προσομοίωση των τεσσάρων πραγματικών διαταραχών, μας έδωσε τη δυνατότητα να συγκρίνουμε τα αποτελέσματα μας με αυτά που καταγράφηκαν από την ΑΗΚ στις πραγματικές συνθήκες, καθώς και με τα αποτελέσματα που παρουσιάζονται σε μελέτη της εταιρίας ABB και αφορά προσομοιώσεις για τις τέσσερις αυτές διαταραχές σε ένα αντίστοιχο μοντέλο του ΣΗΕ της Κύπρου. Η συμπεριφορά του μοντέλου μας κρίνεται αρκετά ικανοποιητική, αφού και στις τέσσερις περιπτώσεις τα αποτελέσματα που καταγράψαμε δεν διέφεραν σημαντικά από αυτά της ΑΗΚ και της ABB.

Παρόλα αυτά όμως θα μπορούσαμε να επιτύχουμε καλύτερα αποτελέσματα. Το μεγαλύτερο πρόβλημα που αντιμετωπίσαμε κατά τη μοντελοποίηση ήταν το όριο των πενήντα κόμβων που είχαμε για προσομοιώσεις. Έτσι αναγκαστήκαμε να αποκόψουμε αρκετά κομμάτια του δικτύου από το μοντέλο, αναπαριστώντας τα ως απλά φορτία, έχοντας υπόψη τη ροή από και προς αυτά.

Το σημαντικότερο μειονέκτημα προέκυψε από την ανάγκη για μοντελοποίηση των γεννητριών ως μία ανά είδος (ατμοστρόβιλοι, αεριοστρόβιλοι) σε κάθε ηλεκτροπαραγωγό σταθμό, ως μέτρο για την αναγκαία εξοικονόμηση κόμβων. Αυτό είχε ως αποτέλεσμα οι τιμές των παραμέτρων των γεννητριών να μην ανταποκρίνονται ακριβώς στην πραγματικότητα, αφού γεννήτριες με διαφορετικά δεδομένα παραστάθηκαν ως μία. Επιπρόσθετα κατά τις πραγματικές διαταραχές που

199

εξετάσαμε, δεν είχαμε τη δυνατότητα να συγκρίνουμε μία προς μία τη συμπεριφορά των γεννητριών, αφού τα αποτελέσματα των ΑΗΚ και ΑΒΒ αφορούσαν σε κάθε γεννήτρια χωριστά, ενώ τα δικά μας ήταν ανά ηλεκτροπαραγωγό σταθμό.

Τέλος μία ακόμη διαφορά με τα πραγματικά στοιχεία υπήρξαν και οι ρυθμιστές τάσης και στροφών των γεννητριών. Οι ρυθμιστές που χρησιμοποιήσαμε πάρθηκαν αυτούσιοι από τις βιβλιοθήκες του προγράμματος και διαφέρουν από αυτούς που χρησιμοποιούνται από την AHK.

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- 1. Αρχή Ηλεκτρισμού Κύπρου, <u>http://www.eac.com.cy</u>
- 2. Διαχειριστής Συστήματος Μεταφοράς Κύπρου , <u>http://www.dsm.org.cy</u>
- 3. Ιδρυμα Ενέργειας Κύπρου, CIE, <u>http://www.cie.org.cy</u>
- 4. "Cyprus energy system and the use of renewable energy sources" C. Koroneos,
- P. Fokaidis, N. Moussiopoulos, 2005
- 5. Siemens-Sincal, www.siemens-sincal.com

6. "Stability Model for Cyprus Transmission System - Model Development and Benchmarking ", report by A.B.B, 2007

- 7. "Σύνδεση Εγκαταστάσεων Παραγωγής στα Δίκτυα Διανομής ", Σταύρος
- Αθ. Παπαθανασίου, 2003

"Διαμόρφωση του Ηλεκτρικού Συστήματος των Ανεμογεννητριών", Σταύρος
Αθ. Παπαθανασίου, 2003

9. " Παραγωγή Ηλεκτρικής Ενέργειας από Ανανεώσιμες Πηγές ", Μιχ. Π. Παπαδόπουλος, 1997, Εκδόσεις Ε.Μ.Π

 "Ανάλυση Συστήματος Ηλεκτρικής Ενέργειας – Μόνιμη Κατάσταση Λειτουργίας " Β.Κ. Παπαδιά, 1985, Εκδόσεις Ε.Μ.Π.

 "Ανάλυση Συστήματος Ηλεκτρικής Ενέργειας – Ασύμμετρες και Μεταβατικές Καταστάσεις " Β.Κ. Παπαδιά , 1985, Εκδόσεις Ε.Μ.Π.