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Abstract 
 
 
 The last years is noticed a great progress of the optical communications. One of 
the latest stages of this research is achieving an optical link with an aircraft. This 
includes links of aircraft - aircraft, aircraft - satellite and aircraft - earth base. 

Having optical links at the aircrafts, we will benefit the advantages of the laser 
links. They propagate with a high speed, and in very long distances. They have very 
high data rates, and they are very reliable. This means that optical links can be used 
for secure information transmission. 
 In this diploma thesis we find a method to calculate the wavefront distortions of 
a laser beam which starts or ends to propagate to a flying object (aircraft). So firstly 
we find the flow field around the object, and then find define the method, that we 
calculate the distortions. 
 This is the beginning of the research in this topic. We will start from the 
simplest cases of the flying object shape and the flow around it. The object is a sphere 
and is considered as the turret of the antenna. Inside the sphere, there is a concentric 
circular antenna, creating a flat circular laser beam. Since we know the flow around 
the sphere, we are able to calculate the properties of the fluid, which is air in our case. 
After we calculate the aberration of the properties we can calculate the distortions of 
the wavefront. 
 The results are valid for every conditions of the sphere. We refer to the size of 
the sphere (turret), and also to the size of the aperture. They are presented for any 
elevation angle of the beam, but as the sphere is symmetrical we do not consider the 
angle of attack. We can see the effect of the speed of the sphere (or of the fluid) at the 
distortions, and finally we have the case of a sphere in the atmosphere, so we can see 
the effect of the different altitude. The method for the distortion calculation is a 
general method, which we can apply in any case. So we present and compare all the 
different kinds of flow, and not only around a sphere, as well as flow around other 
shapes. We can observe how the properties value change and how these effect the 
wavefront distortions.  
 We succeed to have the first idea of the impact of the flow field around a flying 
object on a laser beam. We see how the boundary layers are created and how they can 
affect the beam, and we set the base, for further research on this topic. 
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boundary layer, Navier - Stokes equations, Reynolds number, turbulence, laminar 
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Περίληψη  
 
 
 
 Τα τελευταία χρόνια παρατηρείτε σπουδαία πρόοδος στις ασύρµατες οπτικές 
τηλεπικοινωνίες, χρησιµοποιώντας ακτίνες laser. Ένας από τους τελευταίους στόχους 
της έρευνας σε αυτόν τον τοµέα είναι η επίτευξη οπτικής σύνδεσης αεροσκάφους, 
είτε µε κάποιο άλλο αεροσκάφος, είτε ανάµεσα σε ένα αεροσκάφος και ένα 
δορυφόρο, είτε ανάµεσα σε ένα αεροσκάφος και µία βάση ελέγχου που βρίσκεται στη 
γη. 
 Μέσω της οπτικής σύνδεσης, εκµεταλλευόµαστε όλα τα πλεονεκτήµατα των 
laser. Οι ταχύτητες διάδοσης είναι πολύ υψηλές, ενώ µπορεί να διαδίδεται σε πολύ 
µεγάλες αποστάσεις. Ο ρυθµός διάδοσης είναι πολύ υψηλός, ενώ οι συνδέσεις είναι 
πολύ αξιόπιστες. Αυτό σηµαίνει πως τέτοιες συνδέσεις είναι ασφαλής, ώστε να 
χρησιµοποιηθούν για µετάδοση απόρρητων πληροφοριών. 
 Σε αυτή τη διπλωµατική εργασία θα µελετήσουµε την παραµόρφωση της 
κυµατοµορφής µιας ακτίνας laser η οποία διαδίδεται από ή προς το αεροσκάφος. 
Αυτό θα το επιτύχουµε ορίζοντας τη µέθοδο που θα µπορέσουµε να υπολογίσουµε 
αυτήν την παραµόρφωση. Η τελευταία δηµιουργείται από την αλλαγή της ροής του 
αέρα γύρω από το ιπτάµενο αντικείµενο. 
 Αυτή τη στιγµή βρισκόµαστε στο αρχικό στάδιο της έρευνας. Θα αρχίσουµε 
από την απλούστερη περίπτωση ιπτάµενου αντικειµένου, το οποίο είναι η σφαίρα. 
Θεωρούµε µια οµόκεντρη κυκλική κεραία η οποία διαδίδει έναν επίπεδο κυκλικό 
παλµό. Γνωρίζοντας την ροή του αέρα γύρω από το αντικείµενο θα µπορέσουµε να 
ορίσουµε την παραµόρφωση του παλµού. Για να το καταφέρουµε θα πρέπει να 
υπολογίσουµε τις χαρακτηριστικές ιδιότητες του αέρα (πυκνότητα, πίεση κ.α.), η 
διακύµανση των οποίων επιφέρει τις αλλαγές στην κυµατοµορφή. 
 Τα αποτελέσµατα αναφέρονται σε κάθε περίπτωση σφαίρας. Αυτό σηµαίνει πως 
θα ερευνήσουµε τα αποτελέσµατα ως προς το µέγεθος της διαµέτρου της σφαίρας 
αλλά και ως προς την ταχύτητά της. Θα µελετήσουµε την παραµόρφωση ως προς την 
γωνία διάδοσης της ακτίνας. Φυσικά λόγω της συµµετρίας της σφαίρας δεν θα 
λάβουµε υπόψιν την γωνία πρόσπτωσης του αντικειµένου ως προς τον άξονα της 
κίνησης. Θα µελετήσουµε την επίδραση του υψόµετρου, άρα της ατµόσφαιρας, στις 
ιδιότητες του αέρα και τελικά στον παλµό. Τέλος θα συγκρίνουµε τα αποτελέσµατά 
µας µε αυτά ιπταµένων αντικειµένων µε διαφορετικό σχηµάτων (π.χ. airfoils). 
 Σε αυτή τη διπλωµατική επιτυγχάνουµε να καταλάβουµε την επίπτωση της ροής 
του αέρα γύρω από ένα ιπτάµενο αντικείµενο, σε µια διαδιδόµενη ακτίνα laser. Έτσι 
θα καταφέρουµε να δηµιουργήσουµε κατάλληλες κεραίες για να επιτύχουµε την 
προσδοκώµενη επικοινωνία. 
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1 
 
Introduction 
 
 
 
1.1 Purpose of the Thesis 
 
 
The purpose of the thesis is to calculate the laser beam distortions, which are created 
from the flow of an aircraft. The final goal of the thesis is to achieve an optical link 
between an aircraft and another aircraft, a satellite or an earth-base. 
 
 
 
1.2 Encouragement of the Thesis 
 
 
Creating an optical link with, we can benefit all the advantages of the laser. As we 
mentioned in the previous paragraph the goal is to achieve an optical link with an 
aircraft. In most cases the aircraft will be UAV, which is guided from the earth. The 
link can be either directly from the earth-base, or through a satellite. Of course we 
have to take in mind the case that two aircrafts have direct communication.  
 
With an optical link we will have faster, with higher bandwidth and more secured 
communication, and the control time of the information will reduce. In this way we 
improve the aircraft communication. 
 
Now we are in the beginning of this research. In December of 2006 was the first 
successful experiment, of an optical link between an airplane and a satellite. This was 
the LOLA experiment from EADS - Astrium. Now, after we achieved the link, it is 
very interesting to simulate and calculate the distortions of the beam, in order to 
create reliable and useful links.  
 
 
 
1.3 Synopsis of the Thesis 
 
 
The thesis is divided in two parts. In the beginning we have an introduction in the 
Fluid Dynamics and in the conditions of the air. The second part refers to the method 
we use to evaluate the wavefront distortions. Firstly we have to describe the kind of 
flow around the object. Then we present the method. This method can be used for any 
kind of flow.  
 
Chapter 1: In chapter one, we have an introduction of the thesis. We analyze the 
purpose of the thesis and present its goals. 
 



Chapter 2: In the second chapter we have an introduction with fluid dynamics. This 
is the science which deals with the fluids, which is the medium of the propagating 
beam. We see the different types of flow, the boundary layers and then the Navier-
Stokes equations and all the equations that describe the flow we have. 
 
Chapter 3: The third chapter describes the fluid we have, which is the air. We see the 
influence of the beam wavelength and the air density at the performance of the beam. 
Then we see how the density changes along the height and how it is related to the 
other air properties. 
 
Chapter 4: In the forth chapter we develop the method to calculate the distortions. 
We start from the first case. We consider the turret as a sphere and inside there is a 
concentric antenna. We calculate the wavefront fluctuations with the mean tilt of the 
wavefront, with the Zernike polynomials and with the RMS value. The fluctuations 
are function of the elevation angle of the beam, of the ratio of the aperture and the 
turret diameters and of the free-stream properties. 
 
Chapter 5: The last chapter is the conclusion of the thesis. There are presented the 
general results of the thesis, and we refer to the future research on this topic, which 
will be very interesting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

Fluid Dynamics 
 

2.1 Introduction 
 
 
In the thesis we will research the influence of the medium on a laser beam. The 
medium is a fluid. So we have to know the performance of the fluid, around the 
moving object. If we find out which type of flow it is, we can use the equations that 
are valid for this type of flow, and evaluate the properties of the fluid. In this chapter 
we will have an introduction in fluid dynamics, which is the science which studies the 
fluids and the flow inside them. 
 
 

2.2 Newtonian Fluids 
 
 
A Newtonian fluid is a fluid which has continues flow, independent from the forces 
acting on it. The stress and the rate of strain curve of the fluid are linear. A fluid is 
described Newtonian or non-Newtonian from the viscosity. For Newtonian fluids we 
have the following equation: 
 

 du
dx

τ µ= ,    (2.1)   

 
where τ  is the shear stress exerted by the fluid, µ is the absolute dynamic fluid 
viscosity and du dx  is the velocity gradient perpendicular to the direction of shear. 
 
Newtonian fluids have constant viscosity. If the viscosity is very high, the previous 
equation is not valid, and the fluid is considered as non-Newtonian. In the thesis we 
consider only Newtonian fluids. 
 
 
2.3 Navier – Stokes equations 
 
 
The Navier - Stokes equations describe the flow inside a fluid. They exist since the 
early 19th century after Claude-Luis Navier and George Gabriel Stokes. Until now 
they are not well understood, and this is one of the biggest mathematics problems 
today. These equations are relationships between velocity, pressure, density, 
temperature and the viscosity. They are extension of the Euler equations, which do 



not include the viscosity. There are many forms of these equations, but the most 
general is the following equation: 
 

 
DU p T f
Dt

ρ = −∇ + ∇ ⋅ + ,                                           (2.2) 

 
where ρ  is the density, p∇  is a pressure gradient, T∇ ⋅  represents the shear forces 
and f  represents all the other forces (ex. gravity).  
 
DU
Dt

 is the convective derivative:  

 

                                                                     ( )DU U U U
Dt t

∂
= + ⋅∇

∂
,                                                  

(2.3) 

 
where t is the time and U is the velocity. 
 
For the velocity we have: 
 
 U u v w= + +

ur r r ur
 (2.4) 

 
2.4 Reynolds number 
 
 
The Reynolds number is the ratio of inertial forces to viscous forces on the object 
inside a fluid. 
 

     
2

2

 
 

c c c

c

U L U L U LInertial forcesRe
Viscous forces U L

ρ ρ
µ µ ν

⋅ ⋅ ⋅ ⋅
= = = =

⋅
,       (2.5)  

 
where ρ  is the density of the fluid (kg/m3), U is the fluid velocity (m/s), Lc is a 
characteristic length (m), µ  is the absolute dynamic fluid viscosity ( Pa s× ), and ν  is 
the kinematic fluid viscosity (m2/s), whereν µ ρ= . 
 
Reynolds number shows us the amplitude of the effect of each kind of forces at the 
movement of the fluid. The bigger this number is, the stronger effects are at the fluid 
properties. The Reynolds number increases as the speed of the object increase, or if 
the dimensions (the characteristic length) grow. Reynolds number is also depended on 
the kind of the fluid, and its viscosity (ex. water has 15 times smaller viscosity than 
the air [1]). This is the value that characterizes a flow in many ways. 



 

2.5 Types of Flow 
 
 
Since we know the type of the flow, we can find the equations that are valid in this 
flow, and calculate the unknown properties of the fluid. Then we will be able to find 
the distortions of the propagating beam inside the fluid. Here are presented some 
categories of different types of flow. 
 
 
 
2.5.1 Laminar or Turbulent Flow 
 
 
Laminar flow is described from parallel streamlines, with no disruption between 
them. It complies with linear equations. There is high momentum diffusion, and low 
momentum convection. The equations of laminar flow are simplifications of the 
Navier-Stokes equations. 
 
On the other hand there is the turbulent flow, where we have chaotic, stochastic 
property changes, low momentum diffusion and high momentum convection. It is 
difficult to set clear layers in turbulent flow, as there is no way to define their borders, 
because of the random changes. It is believed that the Navier – Stokes equations are 
valid for turbulent flows, but it is not proved yet. 
 
The value that describes weather a flow is laminar or turbulent is the Reynolds 
number. The critical number where there is transition from one type to the other 
depends on the shape of the flying object, its velocity and the angle of attack. 
 
 
2.5.2 Steady or Unsteady flow 
 
 
The steady flow is a flow that does not change along the time. This means that if an 
observer looks at the flow in two different moments he will see the same flow. It can 
be described from the equation: 
 
 0t

∂ =∂   (2.6) 

 
After it turns from steady to unsteady, it is still laminar, but when the Reynolds 
number is so high, it turns from unsteady, laminar, to turbulent (of course it is still 
unsteady but we neglect to mention).  
 
 
 
 
 



2.5.3 Compressible or Incompressible Flow 
 
 
Compressibility is the measure that shows how much is the volume change caused by 
the pressure. Since the volume varies, we have different density. In other words if the 
pressure distortions, because of the flight, can bring changes at the density, we have a 
compressible flow. If the changes at the density are not significant we consider the 
flow incompressible. 
 
A flow is described compressible or not from the velocity of the flying object. More 
specifically, if the Mach number is more than 0.3 we have compressible flow, else the 
flow is incompressible. 
 
For the compressible problems we can use the Navier – Stokes equations. For an 
incompressible flow, there are the incompressible Navier – Stokes equations, where: 
 
 2T Uµ∇ = ∇                                                 (2.7) 
 
whence Eq.2.2 equals to 
 

 2V U U p U f
t

ρ µ∂ + ⋅∇ = −∇ + ∇ + ∂ 
                           (2.8) 

 
and since the density in incompressible flow is constant, with the continuity equation 
[2] the previous equation (Eq.2.8) turns to the simple form: 
 
 0U∇ ⋅ =                                                   (2.9) 
 
As far as the compressible regime, we do not account it unity. For flows with Mach 
number less than 8, we use the general form of the equations. But for flows with 
Mach number more than 8, the perfect gas law is not valid, and so the whole flow is 
different, since the fluid is not ideal anymore. 
 
 
 
2.5.4 Viscous or Inviscid flow 
 
 
Another flow separation is between viscous and inviscid flow. It is the viscosity that 
separates the two types of flow. When we observe effect from the viscosity we have 
viscous flow. But when the inertial are much bigger than the viscous one (Re>>1), we 
consider zero vorticity and Navier Stokes equations are simplified to the Euler 
equations. 
 
Vorticity ( )ω  shows the ‘rotation’ of the fluid. Vorticity is defined as: 
 
 Uω = ∇×   (2.10)  
 



A flow with zero vorticity is called irrotational. For the vorticity field we have: 
 

 D U
Dt
ω ω= ⋅∇   (2.11) 

 
 
 
2.5.5 Stokes Flow 
 
 
When the inertial forces are very small in comparison to the viscous one and so the 
Reynolds number is low (Re<<1) we can simplify the Navier – Stoke equations to the 
equation of creeping motion [2]: 
 
 p Uµ∇ = ∇ ,                                           (2.12) 
 
 
 
2.5.6 Potential Flow 
 
 
In irrotational motion we have that, for an in 
 
 0Uω = ∇× = .  (2.13) 
 
For the steady flow Eq.2.11 turns to: 
 

 0D U
Dt
ω ω= ⋅∇ = . (2.14) 

 
So we have irrotational flow, since the velocity cannot be zero. We introduce the 
potential velocity, ( )φ : 
 
 ( )U grad φ=  (2.15) 
 
So we have from Eq.2.13 that:  
 
 2 0φ∇ = . (2.16) 
 
This shows that potential velocity obeys the Laplace equation. 
 
 
 
 
 
 
 



2.6 Boundary Layers 
 
 
As the object moves inside a fluid, the molecules of the fluid which are next to the 
surface of the object stick on the surface. Those molecules collide with the molecules 
next to them, and this procedure slow down the flow. As the distance of the molecules 
from the surface increases, this effect (collisions) is less. So a thin layer on the surface 
of the object is created, where the velocity of the fluid starts from zero (0) on the 
surface of the object and increases until it is equal to the 99% of the free-stream 
velocity, where is the end of the layer [1]. This layer, since it is next to the surface of 
the object, is called boundary layer. 
 
 

 
Figure 2.1   Image of a laminar and a turbulent boundary layer [3]. 

 
The flow inside a boundary layer can be laminar, turbulent or both. This depends on 
the velocity, on the angle of attack and on the shape of the object.  
 
The procedure that a laminar boundary layer turns to turbulent boundary layer is 
called boundary layer transition and the point of the change is denominated as the 
transition point. As speed increases, the transition point moves forward (at the front 
edge of the object), and the same happens when the angle of attack increases. But the 
transition is not a simple procedure. There are 6 stages from laminar to turbulent flow. 
The transition point is between the 5th and 6th stage. [1, 3]. 
 
 

1. steady laminar flow 
2. unsteady Tollmien-Schlichting waves 
3. three-dimensional waves and vortex formation ( Λ -structures) 
4. vortex decay 
5. formation of turbulent spots 
6. fully turbulent flow 



 

 
Figure 2.2   Boundary layer transition, from laminar (1) to 
turbulent (6) flow, on a flat plate, with zero incidence [1] 

 
 
 
2.7 Shock Waves 
 
 
As a flying object accelerates from the subsonic regime to the supersonic one, 
develops the shock waves, around the object. The field of the shock wave, and how it 
is created, is depended on the shape of the object, on its velocity (Mach number), and 
on the angle of attack. The changes at the properties of the fluid are very large, and 
they are presented at the next equations.  
 
For the angle of the shock wave we have [3]: 
 

                                        ( ) ( )
( )( ) ( )

2
0

2 2
0

1
cot 1 tan

2 sin 1
M

Mν

γ
θ θ

θ

 +
 = −
 − 

.                    (2.17) 

 
For the properties of the fluid, before and after the shockwave, we have for the 
velocity: 
 

                                         ( ) ( ) ( )
( ) ( )

2 2
02 2

1 2 2
0

1 sin 2
sin

2 sin 1
M

M
Mν

γ θ
θ θ

γ θ γ
− +

− =
− −

,                    (2.18) 

 
 
 



for the pressure: 
 

 ( ) ( )2 2
01

0

2 sin 1
1

Mp
p

γ θ γ
γ

− −
=

+
,                                   (2.19) 

 
for the temperature: 
 

                                
( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
0 01

2
0 0

2 sin 1 1 sin 2

1 sin

M MT
T M

γ θ γ γ θ

γ θ

   − − − +   =
+  

            (2.20) 

and for the density: 
 

                                                        ( ) ( )
( ) ( )

2 2
01

2 2
0 0

1 sin
1 sin 2

M
M

γ θρ
ρ γ θ

+
=

− +
.                            (2.21) 

 
As far as the tracking error, we have from the Snell law, and the Gladstone - Dale 
equation [4]: 
 

 ( ) ( ) ( )0 0
1 0 0

1 1

1sin sin sin
1

n G
n G

ρβ β β
ρ

 +
= =  + 

,                    (2.22) 

 
where 0,ρ ρ  are the densities, and G is the Gladstone-Dale constant., and β  is the 
elevation angle and  0β   the angle of incidence. 
 

Figure 2.3   We can see a shock wave. Behind it is the free-stream area (Zone 0) and after it, 
up to the object, is the shock wave area (Zone 1). We can also observe the boresight effects, 
which are caused by the shock wave. [4] 
 
 



2.8 Streamline 
 
 
Streamline is the path that follows a massless objects moving inside the flow. The 
direction of the velocity is tangent to the curve of the streamline. We can use the 
Bernoulli equation to relate the velocity and the pressure, along the streamline. 
 
Along the streamline we have: 
 

 dx dy dz
u v w

= = ,              (2.23) 

 
or  
 
 0u dy v dx v dz w dy w dx u dz⋅ − ⋅ = ⋅ − ⋅ = ⋅ − ⋅ = .                  (2.24) 
 
where u, v, w are the coefficients of the velocity (U). 
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Figure 2.4   Streamlines over a sphere 

 
 
 
 
 



2.9 Useful Relationships 
 
 
Here will be presented some equations of thermodynamics and fluid dynamics that 
will be used in the following research. 
 
 
2.9.1 Ideal Gas Law 
 
 
This law defines the ideal fluids. It is the combination of the ‘Boyle’ and ‘Charles and 
Gay-Lussac’ laws for fluids [3]: 
 
 p V n R T⋅ = ⋅ ⋅  (2.25) 
 
where p is the pressure (pa), V is the volume the gas occupies (m3), n is the moles of 
gas (mol), Rg is the gas constant ( )( )8.31432  gR J mol K= ⋅ , and T the temperature 
(K),  
 
or including the density: 
 
 p R Tρ= ⋅ ⋅ ,   (2.26) 
 
where R  is the specific gas constant, which is equal to gR R Moll= , where Moll is 
the molecular mass. 
 
For dry air, which will be the medium that we use, the molecule mass is 28.964 
kg/mol  so the specific gas constant is ( )287.05 J kg K⋅  [5]. 
 
The gas constant, Rg, is equal to the difference between the heat capacity (c) at 
constant pressure and constant volume of the fluid: 
 

 g p vR c c= − .    (2.27) 
 
The ratio of the heat capacity at constant pressure and constant volume is called 
adiabatic index: 
 

 
p

v

c
c

γ = . (2.28) 

 
The adiabatic index is dimensionless and for the air we assume it is equal with 1.4. 
 
 
 
 



2.9.2 Adiabatic Law 
 
 
Adiabatic process is a thermodynamic process where there is no transferred heat from 
or to the fluid, in which the process is done, to or from the moving object. 
 
The relationship that describes the adiabatic law is: 
 
                                                           .p V constγ⋅ = ,                                             (2.29) 
 
where V is the volume, and γ  is the adiabatic index. 
 
Since the mass is also constant, we have: 
 

                                                             .p constγρ
= .                                               (2.30) 

 
 
 
2.9.3 Bernoulli’s Principle and the Bernoulli equation 
 
 
The Bernoulli’s principle says that, in an ideal fluid (ideal gas law is valid), when the 
velocity increases, the pressure decrease, if there is no heat (energy) transfer. It has a 
lot of applications, and the most famous is the flight of the airplanes. This principle 
comes from the Bernoulli equation: 
 

 21 .
2 tp V P constρ+ = =  ,                                     (2.31) 

 
where p is the pressure, ρ  is the density, V is the velocity, 
 
Or 
 
 static pressure + dynamic pressure = total pressure  (2.32) 
 
where p is the static pressure, ( ) 21 2 Vρ  is the dynamic pressure and Pt is the total 
pressure, which is constant for ideal fluids. 
 
 
2.9.4 Pressure Coefficient 
 
 
The fluid performance around the flying object will be studied from the variation of 
the fluid properties, but more easily from the pressure. Pressure will be expressed 



through the dimensionless pressure coefficient, Cp, which shows the aberrance of the 
pressure around the object from the free stream pressure ( )p p∞− . It is defined as: 
 

 
21

2

p
p pC

Uρ

∞

∞

−
=

⋅
.                                          (2.33) 

 
From [6] we have: 
 
 

  ( ) ( )2 2 2 2 21 1 1
2 2 2

p p U U U U U
t t t

δ
ρ

∞
∞ ∞

∞

− ∂Φ ∂Φ ∂Φ   = − + = − − + = − +   ∂ ∂ ∂   
. (2.34) 

 
For steady flows, from Eq.2.6 exists: 0t∂Φ ∂ = , so the pressure coefficient equals to: 
 

                                      
( )2 2 2

2 2

1
2 11 1

2 2

p

p p U U UC
UU U

ρ
∞

∞
∞

∞
∞ ∞

− −  
= = = −  
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,        (2.35) 

 
where U is the velocity in one point and U∞  is the free-stream velocity.  
 
 
 
2.9.5 Other Equations of Fluid Dynamics 
 
 
The definition of the velocity of the air α  is: 
 

 2 dp
d

α
ρ

= ,                                (2.36) 

 
From the adiabatic law we have: 
 

 2 pγα
ρ
⋅

= ,                                             (2.37) 

 
or from the ideal gas law, speed of the air depends only on the temperature: 
 
                                                             R Tα γ= ⋅ ⋅ ,  (2.38) 
 
where ϑ  is the temperature in K, γ  is dimensionless, R  is in ( )/J kg K×  and so 

( )α  is in m/s. 
 



Mach number is the ratio of the velocity of one object, U, to the speed of sound of the 
air at that point: 
 

 UM
α

= .          (2.39) 

 
So from Eq.2.37  and Eq.3.39 , Mach number equals to:  
 

   
2

2 UM
p

ρ
γ

= ,                                        (2.40) 

 
whence the pressure coefficient equals to: 
 

 
22

22

p
p p p pC

M pUρ γ
∞ ∞

∞
∞ ∞∞

− −
= =

⋅ ⋅⋅
.           (2.41) 

 
From the Bernoulli equation we have [7]: 
 

 2

0

1
1 2 1

p PU constγ γ
γ ρ γ ρ

+ = =
− −

.           (2.42) 

 
From the previous equation and the adiabatic law, we have: 
 

                                                        
1211

2
tP M

p

γ
γγ −− = + 

 
.                                   (2.43) 

 
For two points A, B with the previous equation we have the pressure ratio for those 
points: 
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If we set AM M=  and BM M∞=  and we loose the equation for M, we have 
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since from the pressure coefficient: 
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p
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∞
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= + .                     (2.46) 

 
From the adiabatic law and the pressure ratio (Eq.2.44) we have the density ratio: 

                                               

1
121

2

11
2

11
2

B
A A

B B
A

Mp
p M

γ
γ

γ
ρ

γρ

−− +  
= =    −   +

 

                  (2.47) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 
Air and Air conditions 
 
 
3.1 Introduction 
 
 
In this chapter we examine the characteristics of the air, where the simulation is done. 
The fluid property, which determines the fluctuations of the beam wavefront, is the 
refractive index. Let ( ), ,n x y z  the refractive index in the 3-dimensional space. The 
optical path length, noted OPL, is related to the refractive index by 
 

   ( ) ( )
0

, , , ,
y

OPL x y z n x y z dy= ∫ .                                   (3.1) 

 
So we have to calculate the variation of the refractive index around the flying object. 
In order to achieve that, we have to know the composition of the air, and the causes 
that can change the refractive index. 
 
 
 
3.2 Refractive Index 
 
 
The refractive index n of a medium is defined as the ratio of the velocity of one 
electromagnetic wave in vacuum c0  to the velocity of the wave in this medium c: 
 

 0cn
c

= .                                                     (3.2) 

 
It is related with the density and so with the other properties of the medium, through 
the Gladstone – Dale relationship [8]: 
 

 1nG
ρ
−

= ,  (3.3) 

 
Or 1n Gρ= + ⋅ ,    (3.4) 
 
where G is the Gladstone – Dale constant and ρ  is the density of the medium. 
 



If we adapt the mean values to the Eq. 3.4 we have 1n Gρµ µ= + ⋅ , where µ  are the 
mean values, and since ' nn n µ= −  and ' ρρ ρ µ= −  are the fluctuating values for the 
refractive index and the density, we have the relationship [4]: 
 

   ´ ´n G ρ= ⋅ .  (3.5) 
 

In Figure 3.1 is presented the wavelength dependence of the Gladstone – Dale 
constant, according to the equation ( λ  in microns) [9]:  
 

( ) 2
40.017850762.192539 10G λ

λ
− 

= + ×  
 

                                 (3.6) 
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Figure 3.1   the Gladstone-Dale constant over the wavelength 
 
It is obvious from Eq.3.3 that for a specific wavelength we have a constant ratio 
between the density and the aberrance of refractive index from one, for two different 
points of the medium: 
 

1
1

A A

B B

n
n

ρ
ρ

−
=

− .                                 (3.7) 

 



That shows us that if we know the density ratio between two points (Eq.2.47), and the 
refractive index in one of them (it can be at the free-stream area), we can calculate the 
refractive index at the other point. So we have to define the free-stream properties. Of 
course the fluid that we consider is dry air. 
 
 
 
3.3 Models for Conditions of the Air at the Free-stream Area 
 
 
 
Dry Air is considered an ideal fluid, so we can calculate of the density through the 
perfect gas law: 
 

p R Tρ= ⋅ ⋅   ,                                                     (3.8) 
 
In our research we will use three standard conditions for the value of temperature and 
pressure of the air.  
 
The velocity will be expressed trough the Mach number. From the previous chapter 
(Eq.2.38) we have seen that the value of the speed of the air is related only to the 
temperature. So we can also calculate the value of the Mach number for each model 
that we will use. 
 
 
 
3.3.1 Standard Temperature and Pressure 
 
 
The first air properties model is the Standard Temperature and Pressure (STP). The 
values for the two variables are constant and equal with 1 bar (105 Pa) for the pressure 
and 273.15 K (0 °C) for the temperature. In this case we can calculate the density 
from Eq.3.10 which equals with 31.2754 STP kg mρ =   [3]. From Eq.2.38 we have for 
the speed of the air equals to 331.31.                                         

 
According to the Figure 3.1 we can find the refractive index at STP for wavelengths 
from 0.2 until 10 µm. 
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Figure 3.2   the refractive index over the wavelength for standard temperature and pressure. 
 
 
 
3.3.2 ISA Model 
 
 
The second model we will use for the free-stream properties is the model of 
International Standard Atmosphere (ISA), published in 1975, presented at Table 3.1 
and Figures 3.3 – 3.5. This is a model of how the temperature, the pressure and the 
density of Earth's atmosphere change over the altitude. Since we know the properties 
of the air along the altitude, we can calculate, for a specific height and wavelength, 
the refractive index. This model is similar to other standard atmospheric models, such 
as the “International Civil Aviation Organization” (ICAO) model, or the “US 
Standard Atmosphere”, 1976 [10]. 
 
 
 
 
 
 
 
 

 



Layer Level Name Geopotential Height (km) Temperature (K) Pressure (pa) 

1 Troposphere 0 288.15 101325 
2 Tropopause 11 216.65 22632 
3 Stratosphere 20 216.65 5474.9 
4 Stratosphere 32 228.65 868.02 
5 Stratopause 47 270.65 110.91 
6 Mesosphere 51 270.65 66.939 
7 Mesosphere 71 214.65 3.9564 
8 Mesopause 84.852 186.95 0.3734 

 
Table 3.1   the values of the ISA-model. 

 
 
 
3.3.3 Barometric Formula 
 
 
We have seen at the previous paragraph how the properties of the air change along the 
height. But with this method we have values only for 8 different heights. There is 
another method, named Barometric Formula, where using the previous model, the 
properties change also inside the areas of the given heights. 

 

b 
Geopotential 
Height (km) 

-hb- 

Temperature (K) 
-T- 

Pressure (pa) 
-p- 

Temperature Lapse 
Rate (K/m) 

- Lb - 

Density (kg/m3) 
- ρ  - 

0 0 288.15 101325 -0.0065 1.225 
1 11 216.65 22632 0 0.36391 
2 20 216.65 5474.9 0.001 0.08803 
3 32 228.65 868.02 0.0028 0.01322 
4 47 270.65 110.91 0 0.00143 
5 51 270.65 66.939 -0.0028 0.00086 
6 71 214.65 3.9564 -0.002 0.000064 

 
Table 3.2   the values for the Barometric Formula 

 
The equations of the formula are the following: 
 
For the pressure, when Lb ≠ 0: 
 

 ( )

0

b

g M
R L

b
b

b b b

Tp p
T L h h

⋅
⋅ 

=  + ⋅ − 
  (3.9) 

 
and when Lb = 0: 
 
 



 
( )0exp b

b
b

g M h h
p p

R T
⋅ ⋅ − 

= ⋅  ⋅ 
. (3.10) 

 
For the density, the equations are similar. When Lb ≠ 0: 
 

 
( )

0

b

g M
R L

b
b

b b b

T
T L h h

ρ ρ

⋅
⋅ 

=  + ⋅ − 
, (3.11) 

 
and when Lb = 0: 
 
 

 ( )0exp b
b

b

g M h h
R T

ρ ρ
⋅ ⋅ − 

= ⋅  ⋅ 
. (3.12) 

 
We can calculate also the temperature, from the perfect gas law. Then from Eq.2.38 
we are able to find the value of the speed of the air (1 Mach) along the height. 
 
The next Figures (3.3 - 3.5) depict these two models. We observe that the barometric 
formula is more specific than the atmospheric model, and we will use this formula for 
our calculations. We are interested in heights until 30 km, since after that height 
flying is impossible. 
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Figure 3.3  presents the temperature over the height according to the 
atmosphere model of ISA (1976). 



0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

70

80

90

pressure [pa]

he
ig
ht
 [k
m
]

ISA model
Barometric Formula

 
Figure 3.4  presents the pressure over the height 
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Figure 3.5  presents the density over the height 
 
 
 
 
 
 



3.4 Refractive Index over Height 
 
 
We have seen that the refractive index is related to the height through the density. In 
this paragraph we will find the relation of the refractive index and the height, with 
three different methods. In the first two we will use the Barometric Formula, and in 
the third one there is a direct dependence of the refractive index on the height.  
 
 
3.4.1 Method A 
 
 
From Eq.3.4 we observe that, since we know the density for each height, we are able 
to find the refractive index, along the altitude, for one specific wavelength (from the 
Gladstone-Dale equation). We can use Figure 3.5 in order to find the density over the 
altitude. 
 
 
 
3.4.2 Method B 
 
 
Another way to calculate the refractive index is with the following equation [11]: 
 

  ( )6 3 21 77.6 10 1 7.52 10 pn
T

λ− − −= + × ⋅ + × × ⋅ ,  (3.13) 

 
where λ  the optical wavelength in µm, p is the pressure in millibars (mbar), and T is 
the temperature in Kelvin. 
 
Here we will use the values the barometric formula. We have to notice, that from the 
ideal gas law, Eq.3.8, we have that p T Rρ= ⋅ . 
 
 
 
3.4.3 Method C 
 
 
The last equation between the refractive index and the altitude is [12]: 
 

/1 y H
dn n e−= + ⋅ ,  (3.14) 

 
where n is the refractive index, y is the height in meters, H a scale height with value 
7400m, and dn  the differential refractive index, which depends on the wavelength (in 
meters): 
 



 4 18 22.879 10 2.165 10dn λ− − −= ⋅ + ⋅ ⋅ .  (3.15) 
 
All three methods are presented in Figure 3.6, in order to compare them. The 
calculations have been for the wavelength: 1550nmλ = . 
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Figure 3.6   shows the refractive index along the height, for every height, that is 
able to fly (< 30 km). The three lines are for 1550nmλ = , so we can compare 
the results of the three methods. 

 
 
From the three different methods we will use the first one (method A), since it is not a 
formula, but it comes from the definitions of the variables we use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 
Flow around a Sphere 
 
4.1 Introduction 
 
In this chapter we will investigate the wavefront of a laser beam. We assume there is a 
spherical flying object, which we consider as the turret. In the turret will be a 
concentric circular aperture. The flow is steady, laminar, and incompressible. The 
Reynolds number is very small we have potential flow. For this case we will find the 
velocity field around a sphere. Then we can calculate the pressure coefficient, and for 
certain free-stream conditions the pressure. From the pressure, we can calculate the 
density and then at the refractive index through the Gladstone – Dale relationship, 
creating the OPD. From OPD we calculate the Zernike coefficients, which describe 
the wavefront and the OPDrms. From OPD we also calculate the phase error, and then 
the boresight error (Figure 4.1). The mean boresight error is the mean tilt of the 
wavefront. 
 
In order to calculate the final distortions, we have to mind several properties 
(pressure, density, refractive index), whose values are depended from many other 
variables such as the ratio between the diameters of the aperture and the turret, the 
velocity of the sphere (Mach number), as well as the elevation angle of the beam, and 
the height that the sphere is (§ 2.3.2). Since the flying object is a sphere, the angle of 
attack of the turret is always the same. In the following pages there are calculations 
for 
 

• Different diameter ratio between the turret and the aperture 
• Different elevation angle 
• Different mach number 
• Different altitude 

 
Finally we have to know the wavelength of the beam. For optical communication, the 
typical values of the wavelength are 800, 1064, 1550 nm. In the results of the 
simulation we will compare of the results for wavelengths of 800nm and 1550nm. The 
results of a beam at 1064nm will be in the area of the results of the other two 
wavelengths (Figures 4.10 & 4.11).  
 

wavelength (nm) refractive index 

800 1.0002831 
1064 1.0002816 
1550 1.0002805 

Table 4.1  The refractive index of air at STP 
for three standard wavelengths of laser 
beams 



 
Figure 4.1 Diagram of the method for the calculation of the wavefront fluctuations 
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Figure 4.2  Types of flow around a cylinder. The flow around a cylinder is very similar to the 
flow around a sphere [1]. 
 
 
 
 



4.2 Flow around a sphere 
 
 
In this thesis we will investigate the flow around a sphere. We know that this flow is 
very similar to the flow around a cylinder. In Figure 4.2 we can see the different 
stages, from laminar to the turbulent flow around a cylinder. We will describe the first 
case of the flow. 
 
The flow is described as steady, laminar, incompressible. Since the flow is 
incompressible the velocity must be below 0.3 Mach. But the Reynolds number is 
very small (Re → 0). We set the critical Reynolds number that we have this flow to 
0.2 []. From Eq.2.5 we know that the Reynolds number is proportional to the velocity 
of the object as well as to the characteristic length. For a sphere the characteristic 
length is its radius. In Figures 4.3, 4.4 we can see which should be the diameter of the 
sphere over different velocities, in order to have this kind of flow. We see that the 
diameter is very small.  
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Figure 4.3 Velocity (m/s) over diameter of a sphere for 
several Reynolds numbers and kinds of flow 
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Figure 4.4 Velocity (Mach number) over diameter of a sphere for 
several Reynolds numbers and kinds of flow 

 
 
4.3 Steady, Laminar, Incompressible Flow around a Sphere 
 
 
From §2.2 we have that the potential velocity obeys the Laplace equation: 
 

 2 0φ∇ =  (4.1) 

 
Solving this equation for a sphere (3 coordinates) we get: 
 

     
3

31 RU x
r

φ ∞

 
= + 

 
,              (4.2) 

 
where R is the radius of the sphere, and r the distance of one point from the centre of 
the sphere, x is the x-coordinate. 
 
Since for the potential velocity we have, Eq.2.15: ( )U grad φ= , we can find the three 
coordinates of the velocity (u, v, w) at the Cartesian coordinate system (x ,y ,z). 
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So we calculate the pressure coefficient (Eq.2.35): 
 

2 2 2 2

1 1p
U u v wC
U U U U∞ ∞ ∞ ∞

        
 = − = − + +       
         

                             (4.6) 

 
With the following equations we can have the pressure coefficient around the sphere, 
at three dimensions. Because of the symmetry over y- and z- axis, we set z = 0 => w = 
0, and we have a two dimensional Figure which is a section crossing from the centre 
of the sphere. Because of the symmetry every centre-crossing section, rotating on the 
x-axis has the same conFiguration (Figure 4.5). 
 
We have to notice that there is no influence on the pressure coefficient, from the 
velocity of the object (Mach number) as well as the radius of the turret. It depends 
only at the ratio of the distance of one point from the centre of the sphere to the radius 
of the sphere (r/R). At Figure 4.6 we can see the pressure coefficient on the surface of 
the sphere. 
 
Knowing the pressure coefficient in one point, we can find there the Mach number, as 
well as the density ratio. 
 
The Mach number and the density ratio in that point equals with (Eq.2.45, Eq.2.47): 
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Figure 4.5  The pressure coefficient around a flying sphere in a 2-D diagram. 
There is symmetry over y- and z- axis (y ≡ z), so here z = 0. 
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Figure 4.6  The pressure coefficient on the surface of a sphere. It is 
independent from the radius of the sphere, as well as the Mach number: 

( ) ( )21 9 4 sinpC θ= − . 
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Figure 4.7  Pressure around a flying sphere (R = 1) in Pascal, for free stream Mach number = 

0.3 and free stream pressure = 105 pa (STP). 
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Figure 4.8 Mach number around a flying sphere, with free 
stream Mach number = 0.3. 
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Figure 4.9  Density around a flying sphere. Free stream density is 

31.2754 STP kg mρ =  (§2.3.1). 

 
4.4 Optical Length of Centre Crossing Paths 
 
 
Knowing the density ratio (4.8) and the free-stream air properties we can find the 
refractive index (3.7) at any point, and after the OPL and the OPD (3.1).  
 
We have the same turret as before, with radius R. The calculated path starts at a radial 
distance R, and ends at a radial distance 10L R= × , from the centre of the turret. It 
ends there because we observe that after this radius, there is almost no difference at 
the value of OPL. The wavelength of the beam is 1550nm. The fluid is air at STP and 
the free-stream Mach number is 0.3. At Figure 4.10 we have the diagram of the factor 
of OPL for angles from 0° until 180°, since there is symmetry for the angles from 
180° to 360°. In order to observe the fluctuation of OPL, we normalize it, at Figure 
4.11, and have the factor of OPD (Optical Path Difference), which is defined as 
 
 minOPD OPL OPL= − . (4.9)  
 
The factor of OPL and OPD is the ratio of the optical path and the radius of the sphere 
and equals to: 
 

 OPfactor
R

= . (4.10) 

 
Both pictures depict that there is symmetry, with symmetry-axes at 90°, where is also 
the minimum of the OPL. At the angles 0°, 180° is the peak. 
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Figure 4.10  factor of OPL for a sphere, with radius R, Mach 
number is M = 0.3 and air is at STP, for beams of 800nm and 
1550nm. 
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Figure 4.11  The factor of OPD for a sphere, with radius R, 
Mach number is M = 0.3 and air is at STP, for beams of 
800nm and 1550nm 

 
 
We compare the OPD of the wavelengths of 800 nm and 1550 nm. The difference 
between them is: 800 15501.009OPD OPD= × , so the difference between them is very 
small. From now on, we will present the results of beam with wavelength 1550 nm, 
with refractive index (at STP) 1.0002805. 
 



4.5 Optical Path Difference over for a Circular Aperture 
 
 
We have the same conditions as before. The flying turret is sphere, but now inside the 
turret there is a circular aperture. The aperture and the turret are concentric. The 
diameter ratio, which is the ratio of the diameters of the aperture and the turret, will 
fluctuate as well as the elevation angle and the free-stream Mach number. The 
researching area is again for radius from R until 10xR and the fluid is air. The 
wavelength of the beam is 1550nm. 

 
Figure 4.12   This is the propagating beam from a circular aperture in the three coordinates. 
We can see the boresight axis, and the elevation angle of the axis. 
 
At the next Figures we can see the fluctuation of the wavefront for four different 
elevation angles, diameter ratio 1/6, Mach number 0.3 and air at STP. We see that the 
OPD is smaller at the angles 0° and 90° than the other two angles. 
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Figure 4.13  OPD at 0° 
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Figure 4.14  OPD at 30° 
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Figure 4.15  OPD at 60° 
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Figure 4.16  OPD at 90° 

4.6 Boresight Error 
 
Since we know the wavefront configuration, ( ),OPD x y , we are able to calculate the 

boresight error, ( )a ,x y , through the wavefront phase error, ( ),e x y :  [13]. 
 

( ) ( )0, ,e x y k OPD x y= ⋅ ,                                        (4.11) 
 
where K0 is the wave number, and then:                          
 

                            ( ) ( ) ( )a , , ,
( , ) 2 ( , )

x y x y e x y
x y x y

λφ
π

∂ ∂
= − = − ⋅

∂ ∂
                     (4.12) 

 
We will integrate for both dimensions (x,y), Figure 4.17, of the wavefront and the 
results are in the next Figures (4.18 – 4.29), two for each elevation angle, one for each 
dimension that we integrate. 

 
 
Figure 4.17  The geometry of the wavefront. In order to find the phase error of the wavefront, 
we have to integrate over the two dimensions (x,y). 
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Figure 4.18 Beam aberration over x axis at 0° 

beam angle fluctuation [rad] on y-axis at 0°
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Figure 4.19 Beam aberration over y axis at 0° 

aperture

a
pe
rtu
re

beam angle fluctuation [rad] on x-axis at 30°

 

 

5 10 15 20 25 30

5

10

15

20

25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10-6

 
Figure 4.20 Beam aberration over x axis at 30° 

beam angle fluctuation [rad] on y-axis at 30°
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            Figure 4.21 Beam aberration over y axis at 30° 
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Figure 4.22 Beam aberration over x axis at 45° 

beam angle fluctuation [rad] on y-axis at 45°
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Figure 4.23 Beam aberration over y axis at 45° 
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Figure 4.24 Beam aberration over x axis at 60° 

beam angle fluctuation [rad] on y-axis at 60°
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Figure 4.25 Beam aberration over y axis at 60° 
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Figure 4.26 Beam aberration over x axis at 80° 

beam angle fluctuation [rad] on y-axis at 80°
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Figure 4.27 Beam aberration over y axis at 80° 
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Figure 4.28 Beam aberration over x axis at 90° 

beam angle fluctuation [rad] on y-axis at 90°
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Figure 4.29 Beam aberration over y axis at 90° 

 
 
 
 



4.7 Mean Wavefront Tilt 
 
 
Knowing the boresight error, we are able to calculate the mean wavefront tilt 
 

1a a
n

i
i nn =

= ∑                                                   (4.13) 

 
We calculate the mean tilt adding the two coordinates: 
 

                                                ( ) ( )2 2
a a ax y= + .                                         (4.14) 

 
 
 
4.7.1 Mean Wavefront Tilt over Elevation Angle 
 
 
For the same elevation angles, with diameter ratio 1 / 6, and mach number 0.3, we can 
see the mean tilt of the wavefront (also for the x, y coordinates) at Table 4.1.  
 
We see that the mean tilt over the x-axis equals for every elevation angle with 0. This 
means that there is symmetry over the x- axis (of the wavefront), but it happens only 
in this case of the spherical turret. So the mean tilt equals with the mean tilt over the 
y-axis of the wavefront. 
 
 
 
 

elevation angle mean angle on  
x- axis (µrad) 

mean angle on  
y- axis (µrad) 

mean angle 
(µrad) 

0° 0 0 0 
30° 0 9.7494 9.7494 
45° 0 11.315 11.315 
60° 0 9.8498 9.8498 
80° 0 3.9081 3.9081 
90° 0 0 0 

 
Table 4.2  Mean wavefront tilt for several elevation angles 

 
 
In Figure 4.30 there is a diagram of the mean wavefront tilt over the elevation angle. 
This diagram shows the mean wavefront tilt, for elevation angles at the area [0°, 90°].  
 
We observe that the worse case – peak of the mean tilt - is for the angle at 45°, with 
value 11.315 µrad (table 4.1). At the angles 0° and 90° there is minimum of the mean 



angle, 0 rad, although there are fluctuations. This means that there is a strong 
influence from the tilt angle at the mean angle of the wavefront.  
 
In the next Figure, 4.31, we have the mean wavefront tilt over the elevation angle, for 
several diameter ratios. As we can see, that there is not big influence on the mean tilt, 
from the diameter ratio. 
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Figure 4.30  Wavefront tilt over elevation angle. d/D = 1/6, M=0.3, STP  
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Figure 4.31  Wavefront tilt over elevation angle for several diameter ratios. 

 d/D = 1/6, M=0.3, STP 



4.7.2 Mean Wavefront Tilt over Diameter Ratio 
 
 
We investigate the mean angle of the wavefront over the aperture diameter. For the 
mean angle at elevation angle of 45°, we have the diagram at Figure 4.32. 
 
We see that the fluctuation of the mean angle for ~0.5 µrad, which is small. We also 
observe that the biggest mean angle is when ratio is small, and is smaller when the 
diameter of the aperture is almost the same with the diameter of the turret. 
 
In the next Figure, 4.33, we have the mean angle over the diameter ratio, for several 
elevation angles. We can compare this picture for diameter ratio 1/6, with the Figure 
4.30 (from the previous paragraph), as well as do the same for the pair of Figures 4.31 
and 4.32, since all of them are for the same mach number, 0.3, and air is at STP. 
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Figure 4.32  Presents the mean wavefront tilt over the diameter ratio, at 45°, M=0.3 and 
STP. 
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   Figure 4.33  Mean wavefront tilt over diameter ratio, for several elevation angles, M=0.3, 
STP. 
 
 
4.7.3 Mean Wavefront Tilt over Velocity 
 
 
At the next Figures we will test the mean wavefront tilt over the velocity (mach 
number) of the flying object. Since at a compressible flow (M < 8) the perfect gas law 
is valid, we will have upper velocity limit this value. At STP conditions 1 Mach 
number equals to 331.31 m/s (Eq.2.38). 
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Figure 4.34  Mean wavefront tilt over Mach number, at 45°, d/D = 1/6, STP 

 
 
We see that the influence of the velocity is very strong, as the Mach number is 
increasing.  
In Figure 4.50 we see the influence of the velocity for several elevation angles, and 
we observe that for the higher Mach number is, the bigger tilt we have. 
 
As far as the influence of the diameter ratio, from Fig 4.36 we see that is not very 
strong (as it is expected). After M = 2 there are remarkable changes, but since then 
there is almost no difference. 
 

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0

20

40

60

80

100

120
mean wavefront tilt over velocity (Mach number)

Mach number

m
ea
n 
w
av
ef
ro
nt
 ti
lt 
[µ
ra
d
]

0°
30°
45°
80°

elevation angles 

 
Figure 4.35 Mean tilt over Mach number, for several elevation angles, d/D = 1/6, STP 
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Figure 4.36 Mean tilt over Mach number for several diameter ratios, at 45°, STP 
 
 
4.7.4 Mean Wavefront Tilt over Height 
 
 
In §3.4 we estimated the refractive index over the altitude with three different 
methods. These results will we use here so that we can find the effect of the 
atmosphere, over the altitude, on a laser beam. This means that we have different free 
stream refractive index (up to here we had STP conditions, and refractive index equals 
with 1.0002805, for wavelength 1550 nm), which changes the refractive index around 
the sphere. 
 
For further research, it is interesting to consider the type of the flying object we are 
going to use, the height that is going, usually, to fly and observe the mean angle at this 
particular height. 
 
 
In Figure 4.37 we present the mean tilt of the wavefront over the height, calculated 
with Method A (§ 3.4.1) and the barometric formula (3.3.3). The elevation angle is 
45o, the diameter ratio is 1/6 and the mach number is always 0.3. We have to take in 
mind that the value of the Mach number changes along the atmosphere. 
 
 
In the next Figure, 4.38, we have the mean tilt over the height, for several elevation 
angles. We can observe the differences between the different elevation angles. This 
was expected from the previous results we have seen. 



 
 

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12
mean beam angle fluctuation over height

height [km]

m
ea
n 
w
av
ef
ro
nt
 ti
lt 
 [
µr
ad
]

 
Figure 4.37 The mean tilt over the height, for several elevation angles, with method A. 

elevation angle at 45°, d/D = 1/6 , M=0.3. 
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Figure 4.38 The mean tilt over the height, for several elevation angles, with method A, for 

several elevation angles, d/D = 1/6 , M=0.3 and at STP 
 



4.8 Zernike polynomials 
 
 
An analytical measure used to characterize the fluctuation of the wavelength, are the 
Zernike polynomials. The 16 first Zernike polynomial functions (Z) are given at 
Figure 4.39. There are even and odd polynomials, which are defined, the even ones: 
 

( ) ( ) ( ), cosm m

n n mZ Rρ ϕ ρ ϕ=                                                                           (4.15) 
 
and the odd ones: 
 
 ( ) ( ) ( ), sinm m

n n mZ Rρ ϕ ρ ϕ− = ,                          (4.16) 
 
where m and n are nonnegative integers with n≥m, φ is the azimuthal angle in radians, 
and ρ is the normalized radial distance.  
 
The radial polynomials m

nR  are defined as  
 

( ) ( ) ( )
( )( ) ( )( )

( ) / 2
2

0

1 !
! / 2 ! / 2 !

kn m
m n k
n

k

n k
k n m k n m kR ρ ρ

−
−

=

− −
=

+ − − −∑                                 (4.17) 

 
for n-m even and  0 for n-m odd. 
 

 
 

Figure 4.39 The equations and the names for the 16 first Zernike Polynomials [14] 
 
 
 
 
 
 
 



The equation for the wavefront ( )φ  as a function of the Zernike Polynomials is  
 

( )
1

, ,
N

j j
j

x y z A Zφ
=

= ∑                                          (4.18) 

 
where Aj is the Zernike coefficient, defined as:  
 

( ) ( )
2

0 0

, ,
R

j j jA r Z r r dr d
π

φ θ θ θ= ⋅ ⋅ ⋅ ⋅∫ ∫ .                         (4.19) 

 
The Zernike coefficients show us the effect of the corresponding Zernike polynomial 
at the wavefront. 
 
The first six Zernike polynomials are presented at Figures 4.40 – 4.45. At the next six 
Figures (Figures 4.46 – 4.51) are presented the variation of the 6 first coefficients 
(each one for the corresponding polynomial) for elevation angles from 0° to 90°. We 
observe that the 1st coefficient (piston) does not have any consequences at the 
wavefront fluctuations, since it is flat. Comparing the familiar polynomials (tilt, 
astigmatism) we see that there is bigger tilt over the x-axis than the y-axis, but the 
astigmatism is more over the y-axis than the x-axis. We also have focus or defocus 
problem (when the coefficient is positive or negative). But we have to be careful, that 
this is not the mean tilt of the wavefront, which will be presented in the next 
paragraphs. At Figures 4.52 – 4.58 are we can see the effect of each coefficient for 6 
elevation angles, (0°, 30°, 45°, 60°, 80°, 90°). 
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Figure 4.40 the 1st Zernike polynomial: Piston 

2th zernike coefficient
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Figure 4.41 the 2nd Zernike polynomial: Tilt on x-axis 
3th zernike coefficient
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Figure 4.42 the 3rd Zernike polynomial: 

Tilt on y-axis 

4th zernike coefficient
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Figure 4.43 the 4th Zernike polynomial: 
Focus 

5th zernike coefficient
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Figure 4.44 the 5th Zernike polynomial: 

Astigmatism on x-axis 

6th zernike coefficient
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Figure 4.45 the 6th Zernike polynomial: 

Astigmatism on y-axis 
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Figure 4.46 the first 6 Zernike polynomials at 
0° 
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Figure 4.47 the first 6 Zernike polynomials at 
30° 
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Figure 4.48 the first 6 Zernike polynomials at 
45° 
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Figure 4.49 the first 6 Zernike polynomials at 
60° 
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Figure 4.50 the first 6 Zernike polynomials at 
80° 
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Figure 4.51 the first 6 Zernike polynomials at 
90° 
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Figure 4.52 the 1st Zernike polynomial: Piston, 
over elevation angle. d/D = 1/6, M=0.3, STP 
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Figure 4.53 the 2nd Zernike polynomial: Tilt on 
x-axis, over elevation angle. d/D = 1/6, M=0.3, 
STP 
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Figure 4.54 the 3rd Zernike polynomial: 

Tilt on y-axis, over elevation angle. d/D = 1/6, 
M=0.3, STP 
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Figure 4.55 the 4th Zernike polynomial: 

Focus, over elevation angle. d/D = 1/6, M=0.3, 
STP 
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Figure 4.56 the 5th Zernike polynomial: 

Astigmatism on x-axis, over elevation angle. 
d/D = 1/6, M=0.3, STP 
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Figure 4.57 the 6th Zernike polynomial: 

Astigmatism on y-axis, over elevation angle. 
d/D = 1/6, M=0.3, STP 
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Figure 4.58 the 1st Zernike polynomial: 
Piston, over diameter ratio. Elevation angle is 
45°, M=0.3, STP 
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Figure 4.59 the 2nd Zernike polynomial: Tilt 
on x-axis, over diameter ratio. Elevation angle 
is 45°, M=0.3, STP 
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Figure 4.60 the 3rd Zernike polynomial: 

Tilt on y-axis, over diameter ratio. Elevation 
angle is 45°, M=0.3, STP 
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Figure 4.61 the 4th Zernike polynomial: 

Focus, over diameter ratio. Elevation angle is 
45°, M=0.3, STP 
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Figure 4.62 the 5th Zernike polynomial: 

Astigmatism on x-axis, over diameter ratio. 
Elevation angle is 45°, M=0.3, STP 
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Figure 4.63 the 6th Zernike polynomial: 

Astigmatism on y-axis, over diameter ratio. 
Elevation angle is 45°, M=0.3, STP 
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Figure 4.64 the 1st Zernike polynomial: 
Piston, over velocity. Elevation angle is 45°, 
d/D = 1/6, STP 
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Figure 4.65 the 2nd Zernike polynomial: Tilt 
on x-axis, over velocity. Elevation angle is 
45°, d/D = 1/6, STP 
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Figure 4.66 the 3rd Zernike polynomial: 

Tilt on y-axis, over velocity. Elevation angle is 
45°, d/D = 1/6, STP 
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Figure 4.67 the 4th Zernike polynomial: 

Focus, over velocity. Elevation angle is 45°, 
d/D = 1/6, STP 
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Figure 4.68 the 5th Zernike polynomial: 

Astigmatism on x-axis, over velocity. 
Elevation angle is 45°, d/D = 1/6, STP 
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Figure 4.69 the 6th Zernike polynomial: 

Astigmatism on y-axis, over velocity. 
Elevation angle is 45°, d/D = 1/6, STP 
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Figure 4.70 the 1st Zernike polynomial: 
Piston, over height. Elevation angle is 45°, 
d/D = 1/6, M=0.3 
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Figure 4.71 the 2nd Zernike polynomial: Tilt 
on x-axis, over height. Elevation angle is 45°, 
d/D = 1/6, M=0.3 
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Figure 4.72 the 3rd Zernike polynomial: 

Tilt on y-axis, over height. Elevation angle is 
45°, d/D = 1/6, M=0.3 
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Figure 4.73 the 4th Zernike polynomial: 

Focus, over height. Elevation angle is 45°, d/D 
= 1/6, M=0.3 
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Figure 4.74 the 5th Zernike polynomial: 

Astigmatism on x-axis, over height. Elevation 
angle is 45°, d/D = 1/6, M=0.3 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
x 10-9

ze
rn
ik
e 
co
ef
fic
ie
nt

height [km]  
Figure 4.75 the 6th Zernike polynomial: 

Astigmatism on y-axis, over height. Elevation 
angle is 45°, d/D = 1/6, M=0.3 

 
 
 
 
 
 
 
 



4.9 Root Mean Square OPD 
 
 
 
Another variable we can research to define the wavefront fluctuations is the 
difference-Root Mean Square (RMS) of the wavefront, defined as: 
 

( )221
RMSOPD OPD OPD dx dy

S
= − ⋅∫ ,                  (4.20) 

 
where S is the surface of the aperture. 
 
At the next Figure, 4.76, we can observe the RMSOPD  over the elevation angle. In 
Figure 4.73 we have a diagram for the RMSOPD  over the diameter ratio and we see that 
the influence is very strong, something that was expected. The next two Figures (4.74, 
4.75) depict the RMSOPD  over the velocity, and over the height. 
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Figure 4.76 The RMSOPD over the elevation angle. Diameter ratio is 1/6, M = 0.3 and air at 

STP 
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Figure 4.77 The RMSOPD over the diameter ratio of the aperture and the turret. Elevation 

angle is 45°, M = 0.3 and air at STP. 
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Figure 4.78 The RMSOPD over the velocity. Elevation angle is 45°, diameter ratio 1/6 and air 

at STP. 
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Figure 4.79 The RMSOPD over the height. Elevation angle is 45°, diameter ratio 1/6 and M = 

0.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 
 
Conclusion 
 
 
5.1 Results 
 
 
In this thesis we have seen the distortions of the flow-field on a laser beam. We have 
firstly defined one case of flow around the turret, described the flow with equations 
and then applied a method to describe the wavefront distortions of the beam. 
 
We see that the flow around the sphere is symmetrical (pressure and velocity). This is 
because we assume potential flow. This case leads us to the d’Alembert’s Paradox - 
Jean Le Rond d'Alembert (1717-1783). The paradox says that on an object moving in 
a potential field there is no drag. But experiments showed other results.  
 
The answer was given almost 200 years later, in 1904, from Ludwig Prandtl, who 
introduced the boundary layer theory. This theory says that the drag is created from 
the boundary layers (§ 2.6), created on the surface of the object. The equations that we 
have used (and d’Alembert used) are not able to “understand” the boundary layers at 
this kind of flow. As we have seen at Figures 4.3, 4.4 these kind of flow is limited, 
since the diameter of the sphere should be very small in order to have steady, 
incompressible flow (Re<40).  
 
Although, we get the first idea, how the flow impacts the laser beam from or to the 
object. If we find the other types of flow, and calculate the velocity around an object, 
then we can apply this method on a laser beam and calculate the distortions due to this 
flow.  
 
We can see how each parameter effects the distortions. The parameters are the 
elevation angle, the diameter of the aperture (the diameter of the turret for a sphere 
has no influence at the flow, but only in the case of a sphere – but of course is has 
consequences at the value of the Reynolds number), and as well as the free-stream 
velocity and the height that the object is. For this reason we usually consider the 
worse cases (e.g. elevation angle = 45o, M = 0.3).  
 
Changing the previous parameters, we have bigger Reynolds numbers, where there is 
separation of the boundary layers, so there is weak (Figure 4.1). As far as the flow is 
laminar, experimental results show that the flow is very similar, up to the separation 
point. The same happens for other turret geometries such as hemispheres. These fields 
(different conditions and different shape) are going to be the next researching steps in 
this topic (Figures 4.80 - 4.81). 
 
 
 



 
 

 
Figure 5.1 The pressure coefficient after measurements by O. Flashboard around a sphere for 
several Reynolds number. We have to mention that the values of the Reynolds numbers 
(except the case that Re → 0) are very high: 162000 and 435000 (turbulent flow). [1] 

 
Figure 5.2 The pressure coefficient after measurements and CFD-results (Computational 
Fluid Dynamics) over the elevation angle.[15] 
 
 
 



5.2 Further Research 
 
 
As we mentioned in the previous paragraph, there is a lot of things to research more in 
this topic. Firstly we have to focus on other turret shapes, such as hemisphere, 
thinking a hemisphere turret. The turret will be on an aircraft. So we have to research 
the shapes of the aircrafts and their wings. They are mostly described from the 
airfoils. The final goal is to simulate the flow field around an aircraft with a turret on 
it. In this case we will have the “real - shape” simulation. Then we can decide where 
is the best place on the aircraft to put the turret, with an antenna inside. 
 
After the different shapes we can study different flows, in different flow conditions. 
This leads to the increase of the Reynolds number, and from laminar to turbulent 
flow. It would be very interesting to study all the types of flow, which include also 
boundary layers, and end up to the turbulent flow (Figure 4.2). The last one is a great 
challenge for all the mathematicians and physicists, since the description and the 
understanding of the turbulent flow is one of the biggest mathematic problems these 
days. If we reach this level, we can simulate the “real - condition” flow. 
 
Adding these two branches of the research, we will have the “real” simulation of a 
flying aircraft. Then if we apply our method for the laser beam distortions we will 
know the impact of the boundary layer on the laser beam propagation. 
 
We see that in this field of research there is not only CFD. For this reason we can also 
study on the method that calculates the distortions. We have already showed one, but 
we can always improve this method and find new ways to describe the wavefront 
distortions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



Symbols 
 
 

Symbol Nomenclature Units (SI) 

a boresight error rad 
Aj Zernike coefficient - 
b height stage m 
c speed of light m/s 
cp heat capacity at constant pressure kg 
Cp pressure coefficient - 
cv heat capacity at constant volume kg 
d diameter of the aperture m 
D diameter of the sphere m 
e phase error - 
f forces N 
G Gladstone-Dale constant - 
h geopotential height m 
ko wave number m-1 
Lc characteristic length m 
Lb temperature lapse rate  k/m 
L distance of research m 
M mach number - 

Moll molecule mass kg 
n refractive index - 
nd differential refractive index - 

OPD optical path difference m 
OPL optical path length m 

p pressure pascal 
Pt total pressure pascal 

Rgas gas constant J/(mol x k) 
R radius of the sphere m 
r length of the beam m 
R  special gas constant J/(kg x k) 

m
nR  radial polynomial - 

Re Reynolds number - 
T temperature K, oC 
t time s 
U velocity m/s 
u velocity coordinate over x- axis m/s 

 
 
 
 
 



Symbol Nomenclature Units 
v velocity coordinate over y- axis m/s 
V volume m3 
w velocity coordinate over z- axis m/s 
x x- axis - 
y y- axis - 
z z- axis - 
Zj Zernike polynomial - 
α speed of air m/s 
γ adiabatic index - 
θ elevation angle o 

λ wavelength m 
µ viscosity pascal x s 
ρ density kg/m3 
τ shear stress pascal 
φ velocity field m/s2 
ω vorticity - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abbreviations 
 
 
CFD Computational Fluid Dynamics 
 
DLR Deutsches Zentrum fur Luft- und Raumfahrt 
 
EADS  European Aeronautic Defence and Space Company 
 
ICAO International Civil Aviation Organization 
 
ISA International Standard Atmosphere 
 
LOLA Liaison Optique Laser Aeroportee 
 
NASA National Aeronautics and Space Administration 
 
NTUA National Technical University of Athens 
 
OPD Optical Path Difference 
 
OPL Optical Path Length 
 
RMS Root Mean Square (see: OPDRMS) 
 
STP Standard Temperature and Pressure 
 
UAV Unman Aircraft Vehicle 
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