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Abstract

The last years is noticed a great progress of the optical communications. One of
the latest stages of this research is achieving an optical link with an aircraft. This
includes links of aircraft - aircraft, aircraft - satellite and aircraft - earth base.

Having optical links at the aircrafts, we will benefit the advantages of the laser
links. They propagate with a high speed, and in very long distances. They have very
high data rates, and they are very reliable. This means that optical links can be used
for secure information transmission.

In this diploma thesis we find a method to calculate the wavefront distortions of
a laser beam which starts or ends to propagate to a flying object (aircraft). So firstly
we find the flow field around the object, and then find define the method, that we
calculate the distortions.

This is the beginning of the research in this topic. We will start from the
simplest cases of the flying object shape and the flow around it. The object is a sphere
and is considered as the turret of the antenna. Inside the sphere, there is a concentric
circular antenna, creating a flat circular laser beam. Since we know the flow around
the sphere, we are able to calculate the properties of the fluid, which is air in our case.
After we calculate the aberration of the properties we can calculate the distortions of
the wavefront.

The results are valid for every conditions of the sphere. We refer to the size of
the sphere (turret), and also to the size of the aperture. They are presented for any
elevation angle of the beam, but as the sphere is symmetrical we do not consider the
angle of attack. We can see the effect of the speed of the sphere (or of the fluid) at the
distortions, and finally we have the case of a sphere in the atmosphere, so we can see
the effect of the different altitude. The method for the distortion calculation is a
general method, which we can apply in any case. So we present and compare all the
different kinds of flow, and not only around a sphere, as well as flow around other
shapes. We can observe how the properties value change and how these effect the
wavefront distortions.

We succeed to have the first idea of the impact of the flow field around a flying
object on a laser beam. We see how the boundary layers are created and how they can
affect the beam, and we set the base, for further research on this topic.

Key words

boundary layer, Navier - Stokes equations, Reynolds number, turbulence, laminar
flow, potential flow, laser beam propagation, wavefront distortions






Hepiinyn

Ta tehevtaio ypoOvia moapatnpeite omovdaios TPOOOOG OTIS ACVPUNTES OTTIKEC
AeTIKOW®ViES, ypnoipomoimvtag aktiveg laser. ‘Evag amd toug tehevtaiovg 6tdovg
G épevvag oe autdv Tov Topén givar m emitevén omtikng obvOEoNS QEPOCKAPOG,
elte pe xamowo GAAO 0epookdpog, €ite avAapeca oe €va aEPOCKAMPOG Kol €vol
dopLPOpPO, gite avipeso oe £va aepooKAPog Kot pia faorn ehéyyov mov BpiokeTor omn
m.

Méow g ontikng cLVOESNG, EKUETOAAEVOUAOTE OAOL TO TAEOVEKTNLOTO TMV
laser. O1 ToOtNnTEg S1ddoomg elvan TOAD VYNALG, evd pmopet va d1adidetan g TOAD
peydreg omootacelg. O puBuog d1ddoons sival TOAD VYNAOG, VD 01 GLVOECELS Eival
TOAD 0&OMIOTEG. AVTO OMUOIVEL TOG TETOEG GLUVOEGELS €lval OG(POANG, OOTE Vo
YPNOLOTONO0VV Yo LETASOCT OTOPPNTM®V TANPOPOPLAOV.

Ye aut T OWMAMUOTIKY gpyocio Oo HEAETGOLUE TNV TAPOUOPPOOT TNG
KUHOTOUHOPONG oG akTivag laser 1 omoila 4100i0€Tal ammd 1 TPOC TO OEPOCTKAPOC.
Avtd o to emtiyovpe opilovrag ™ péBodo mov Bo pmopécovpe Vo VTOAOYICOVE
avtv TV Topapdpewocn. H tedevtaio onuovpyeitor omd tnv aAhayn g pong Tov
aépa YOp® omd TO IMTAPEVO AVTIKEILLEVO.

Avt ™ otyun] PplokOUOcTE 0TO apyIKO OTdd10 NG £peuvag. Ba apyicovpe
OO TNV OTAOVCTEPN MEPIMTMOOTN UTTAUEVOD OVTIKEILEVOD, TO Omoio givol 1 opaipa.
OempPovUE U0 OPOKEVTIPT KUKAIKTY Kepaio 1 omoia 510didel évav eminedo KLUKAKO
woApo. I'vopilovtag v pon Tov aépo YOp® amd TO aVTIKEINEVO Bo UTOPEGOLLE VO
opicovpe Vv mapaudpemcn Tov moApov. Mo vo 1o katapépovps Bo mpémer vo
VTOAOYICOVHE TIC YUPUKTNPIOTIKEG 1010TNTEG TOV 0P (TLKVOTNTA, TiEon K.0.), T
SLOKOUAVOT TOV OTOI®MV EMPEPEL TIC OAAAYEC GTNV KLUUOTOUOPPT.

Ta amotedéouato avaeépovtol o€ KaOe mepintwon oceaipoc. Avtd onuoivel Tog
B epguvnoove TO, OMOTEAEGUOTO MG TTPOG TO MEYEDOC TNG SOUETPOL TNG CPAIPOS
OAAG Ko G TPOG TNV TOYVTNTA TNG. Qo LEAETNGOVLE TNV TAPAUOPPOCT MG TPOG TNV
yovia 61ddoong g axtivag. Puoikd A0y NG ovppetpiag g oeaipag dev Oa
AdPovpe vOYv TV yovio TPOCTTMOONG TOV CVIIKEWWEVOL G TTPOG Tov d&ova Tng
Kivnong. ®o LEAETAGOLLE TNV EMOPACT TOL VYOUETPOV, APO TNG ATUOGPUPAS, OTIG
WB10TNTEG TOV AéPa Kol TEAMKA 6TOV TOANS. TéXog Bo cuyKpivove Ta OmOTEAEGHOTA
LOG LE QUTE MTOUEVOV OVTIKEILEVOV LE SLOPOPETIKO oynpdtov (.y. airfoils).

g 0T TN SIMAGUOTIKY ETTVYYAVOLLE VA, KOTOAGPOVE TNV EXITTOGCN TN PONG
TOV 0£POL YOP® OO VO, ITTAUEVO OVTIKEINEVO, G [io d100100pevn aktiva, laser. 'Etot
Bo KaToPEpovEe VO ONULOVPYNCOVUE KOTOAANAEG KEPQIEC YLl VO EMITUYOVUE TNV
TPOGOOKMUEVT] EMKOIVOVICL.

A€Eerg Kh el

dwddoon axtvav laser, eEilcmoelc Navier — Stokes, TopopOPE®GN KLUATOLOPPTNG,
TOPOUOPO®CT KLUOTOUOPONG, aptBpudc Reynold
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Introduction

1.1 Purpose of the Thesis

The purpose of the thesis is to calculate the laser beam distortions, which are created
from the flow of an aircraft. The final goal of the thesis is to achieve an optical link
between an aircraft and another aircraft, a satellite or an earth-base.

1.2 Encouragement of the Thesis

Creating an optical link with, we can benefit all the advantages of the laser. As we
mentioned in the previous paragraph the goal is to achieve an optical link with an
aircraft. In most cases the aircraft will be UAV, which is guided from the earth. The
link can be either directly from the earth-base, or through a satellite. Of course we
have to take in mind the case that two aircrafts have direct communication.

With an optical link we will have faster, with higher bandwidth and more secured
communication, and the control time of the information will reduce. In this way we
improve the aircraft communication.

Now we are in the beginning of this research. In December of 2006 was the first
successful experiment, of an optical link between an airplane and a satellite. This was
the LOLA experiment from EADS - Astrium. Now, after we achieved the link, it is
very interesting to simulate and calculate the distortions of the beam, in order to
create reliable and useful links.

1.3 Synopsis of the Thesis

The thesis is divided in two parts. In the beginning we have an introduction in the
Fluid Dynamics and in the conditions of the air. The second part refers to the method
we use to evaluate the wavefront distortions. Firstly we have to describe the kind of
flow around the object. Then we present the method. This method can be used for any
kind of flow.

Chapter 1: In chapter one, we have an introduction of the thesis. We analyze the
purpose of the thesis and present its goals.



Chapter 2: In the second chapter we have an introduction with fluid dynamics. This
is the science which deals with the fluids, which is the medium of the propagating
beam. We see the different types of flow, the boundary layers and then the Navier-
Stokes equations and all the equations that describe the flow we have.

Chapter 3: The third chapter describes the fluid we have, which is the air. We see the
influence of the beam wavelength and the air density at the performance of the beam.
Then we see how the density changes along the height and how it is related to the
other air properties.

Chapter 4: In the forth chapter we develop the method to calculate the distortions.
We start from the first case. We consider the turret as a sphere and inside there is a
concentric antenna. We calculate the wavefront fluctuations with the mean tilt of the
wavefront, with the Zernike polynomials and with the RMS value. The fluctuations
are function of the elevation angle of the beam, of the ratio of the aperture and the
turret diameters and of the free-stream properties.

Chapter 5: The last chapter is the conclusion of the thesis. There are presented the
general results of the thesis, and we refer to the future research on this topic, which
will be very interesting.
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Fluid Dynamics

2.1 Introduction

In the thesis we will research the influence of the medium on a laser beam. The
medium is a fluid. So we have to know the performance of the fluid, around the
moving object. If we find out which type of flow it is, we can use the equations that
are valid for this type of flow, and evaluate the properties of the fluid. In this chapter
we will have an introduction in fluid dynamics, which is the science which studies the
fluids and the flow inside them.

2.2 Newtonian Fluids

A Newtonian fluid is a fluid which has continues flow, independent from the forces
acting on it. The stress and the rate of strain curve of the fluid are linear. A fluid is
described Newtonian or non-Newtonian from the viscosity. For Newtonian fluids we
have the following equation:

T=u—, 2.1

where 7 1is the shear stress exerted by the fluid, # is the absolute dynamic fluid
viscosity and du/dx is the velocity gradient perpendicular to the direction of shear.

Newtonian fluids have constant viscosity. If the viscosity is very high, the previous
equation is not valid, and the fluid is considered as non-Newtonian. In the thesis we
consider only Newtonian fluids.

2.3 Navier — Stokes equations

The Navier - Stokes equations describe the flow inside a fluid. They exist since the
early 19" century after Claude-Luis Navier and George Gabriel Stokes. Until now
they are not well understood, and this is one of the biggest mathematics problems
today. These equations are relationships between velocity, pressure, density,
temperature and the viscosity. They are extension of the Euler equations, which do



not include the viscosity. There are many forms of these equations, but the most
general is the following equation:

p%:—Vp+V-T+f, (2.2)

where p is the density, Vp is a pressure gradient, V-7 represents the shear forces
and f represents all the other forces (ex. gravity).

DU . ) ..
7 1s the convective derivative:
t

DU _oU

= -4 (U-V)U,
Dt ot +( )

(2.3)

where ¢ is the time and U is the velocity.

For the velocity we have:

U=u+v+w (2.4)

2.4 Reynolds number

The Reynolds number is the ratio of inertial forces to viscous forces on the object
inside a fluid.

_Inertialforces_p-Uz/Lc_p-U-LC_U-LC @5)

Re = >
Viscous forces — u-U / L Y7, 1%

where p is the density of the fluid (kg/m®), U is the fluid velocity (m/s), L. is a
characteristic length (m), & is the absolute dynamic fluid viscosity (Paxs), and v is
the kinematic fluid viscosity (m%/s), wherev = ulp.

Reynolds number shows us the amplitude of the effect of each kind of forces at the
movement of the fluid. The bigger this number is, the stronger effects are at the fluid
properties. The Reynolds number increases as the speed of the object increase, or if
the dimensions (the characteristic length) grow. Reynolds number is also depended on
the kind of the fluid, and its viscosity (ex. water has 15 times smaller viscosity than
the air [1]). This is the value that characterizes a flow in many ways.



2.5 Types of Flow

Since we know the type of the flow, we can find the equations that are valid in this
flow, and calculate the unknown properties of the fluid. Then we will be able to find
the distortions of the propagating beam inside the fluid. Here are presented some
categories of different types of flow.

2.5.1 Laminar or Turbulent Flow

Laminar flow is described from parallel streamlines, with no disruption between
them. It complies with linear equations. There is high momentum diffusion, and low
momentum convection. The equations of laminar flow are simplifications of the
Navier-Stokes equations.

On the other hand there is the turbulent flow, where we have chaotic, stochastic
property changes, low momentum diffusion and high momentum convection. It is
difficult to set clear layers in turbulent flow, as there is no way to define their borders,
because of the random changes. It is believed that the Navier — Stokes equations are
valid for turbulent flows, but it is not proved yet.

The value that describes weather a flow is laminar or turbulent is the Reynolds
number. The critical number where there is transition from one type to the other
depends on the shape of the flying object, its velocity and the angle of attack.

2.5.2 Steady or Unsteady flow

The steady flow is a flow that does not change along the time. This means that if an
observer looks at the flow in two different moments he will see the same flow. It can
be described from the equation:

%t =0 (2.6)

After it turns from steady to unsteady, it is still laminar, but when the Reynolds
number is so high, it turns from unsteady, laminar, to turbulent (of course it is still
unsteady but we neglect to mention).



2.5.3 Compressible or Incompressible Flow

Compressibility is the measure that shows how much is the volume change caused by
the pressure. Since the volume varies, we have different density. In other words if the
pressure distortions, because of the flight, can bring changes at the density, we have a
compressible flow. If the changes at the density are not significant we consider the
flow incompressible.

A flow is described compressible or not from the velocity of the flying object. More
specifically, if the Mach number is more than 0.3 we have compressible flow, else the

flow is incompressible.

For the compressible problems we can use the Navier — Stokes equations. For an
incompressible flow, there are the incompressible Navier — Stokes equations, where:

VT = VU (2.7)

whence Eq.2.2 equals to
Yol E+U-VU =—Vp+uVU+f (2.8)
and since the density in incompressible flow is constant, with the continuity equation
[2] the previous equation (Eq.2.8) turns to the simple form:
V-U=0 (2.9)
As far as the compressible regime, we do not account it unity. For flows with Mach
number less than 8, we use the general form of the equations. But for flows with

Mach number more than 8, the perfect gas law is not valid, and so the whole flow is
different, since the fluid is not ideal anymore.

2.5.4 Viscous or Inviscid flow

Another flow separation is between viscous and inviscid flow. It is the viscosity that
separates the two types of flow. When we observe effect from the viscosity we have
viscous flow. But when the inertial are much bigger than the viscous one (Re>>1), we
consider zero vorticity and Navier Stokes equations are simplified to the Euler
equations.

Vorticity (a)) shows the ‘rotation’ of the fluid. Vorticity is defined as:

©=VxU (2.10)



A flow with zero vorticity is called irrotational. For the vorticity field we have:

Da)_

w-VU 2.11
D1 (2.11)

2.5.5 Stokes Flow

When the inertial forces are very small in comparison to the viscous one and so the
Reynolds number is low (Re<<1) we can simplify the Navier — Stoke equations to the
equation of creeping motion [2]:

Vp=uVU, (2.12)

2.5.6 Potential Flow

In irrotational motion we have that, for an in

w=VxU=0. (2.13)
For the steady flow Eq.2.11 turns to:
Do _ hvu-o. (2.14)
Dt

So we have irrotational flow, since the velocity cannot be zero. We introduce the
potential velocity, (¢):

U =grad (¢) (2.15)
So we have from Eq.2.13 that:
V¢=0. (2.16)

This shows that potential velocity obeys the Laplace equation.



2.6 Boundary Layers

As the object moves inside a fluid, the molecules of the fluid which are next to the
surface of the object stick on the surface. Those molecules collide with the molecules
next to them, and this procedure slow down the flow. As the distance of the molecules
from the surface increases, this effect (collisions) is less. So a thin layer on the surface
of the object is created, where the velocity of the fluid starts from zero (0) on the
surface of the object and increases until it is equal to the 99% of the free-stream
velocity, where is the end of the layer [1]. This layer, since it is next to the surface of
the object, is called boundary layer.

Glenn
Boundary Layer Research
Laminar Turbulent
| |
| Velocity I Velocity
e — P
: Free Stream :
— —
| |
i—b —p
| [ ! >
l—b I/"_‘"
I Boundary Layer i 4

——
Surface of Object

Velocity is zero at the surface (no - slip)
Figure 2.1 Image of a laminar and a turbulent boundary layer [3].

The flow inside a boundary layer can be laminar, turbulent or both. This depends on
the velocity, on the angle of attack and on the shape of the object.

The procedure that a laminar boundary layer turns to turbulent boundary layer is
called boundary layer transition and the point of the change is denominated as the
transition point. As speed increases, the transition point moves forward (at the front
edge of the object), and the same happens when the angle of attack increases. But the
transition is not a simple procedure. There are 6 stages from laminar to turbulent flow.
The transition point is between the 5™ and 6" stage. [1, 3].

steady laminar flow

unsteady Tollmien-Schlichting waves

three-dimensional waves and vortex formation ( A -structures)
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formation of turbulent spots
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Figure 2.2 Boundary layer transition, from laminar (1) to
turbulent (6) flow, on a flat plate, with zero incidence [1]

2.7 Shock Waves

As a flying object accelerates from the subsonic regime to the supersonic one,
develops the shock waves, around the object. The field of the shock wave, and how it
is created, is depended on the shape of the object, on its velocity (Mach number), and
on the angle of attack. The changes at the properties of the fluid are very large, and
they are presented at the next equations.

For the angle of the shock wave we have [3]:

[ )My
COt(HV)_{Z(MZ;sinz(H)—I

)—lJtan(ﬁ). (2.17)

For the properties of the fluid, before and after the shockwave, we have for the
velocity:

_ 2.2
Misin® (0-0,) = /) Mosin (0)+2 2.18)
2yM ;sin (9)—(}/—1)




for the pressure:

p_2rM;sin®(0)-(y-1)

, (2.19)
Po y+1
for the temperature:
ﬁ _ [2}/M025in2 (9) —(}/ —1)][(y—1)1l4§sin2 (6?) + 2] (2.20)
T, [(y+1) M sin(0)]
and for the density:
P (7 +1)M;sin’ (0) 2.21)

gy (7-1)M3sin®(0)+2

As far as the tracking error, we have from the Snell law, and the Gladstone - Dale
equation [4]:

() =sin( ) =sin( )| £ 22| 02)

where p, p, are the densities, and G is the Gladstone-Dale constant., and S is the

elevation angle and g, the angle of incidence.

S Apparent

Real Target 3 X Target f Shock Wave

B (Shock elevation Angle)

8, (Vehicle Semivertex Angle)
) X-Axis

Imager

~
Zone D s Zone1

Figure 2.3 We can see a shock wave. Behind it is the free-stream area (Zone 0) and after it,
up to the object, is the shock wave area (Zone 1). We can also observe the boresight effects,
which are caused by the shock wave. [4]



2.8 Streamline

Streamline is the path that follows a massless objects moving inside the flow. The
direction of the velocity is tangent to the curve of the streamline. We can use the
Bernoulli equation to relate the velocity and the pressure, along the streamline.

Along the streamline we have:

o b _d (2.23)
u v w

or
u-dy—-v-de=v-dz—w-dy=w-dx—-u-dz=0. (2.24)

where u, v, w are the coefficients of the velocity (U).

0.8

0.6

Xx/R

Figure 2.4 Streamlines over a sphere



2.9 Useful Relationships

Here will be presented some equations of thermodynamics and fluid dynamics that
will be used in the following research.

2.9.1 Ideal Gas Law

This law defines the ideal fluids. It is the combination of the ‘Boyle’ and ‘Charles and
Gay-Lussac’ laws for fluids [3]:

pV=nRT (2.25)

where p is the pressure (pa), 7 is the volume the gas occupies (m’), # is the moles of
gas (mol), R, is the gas constant ( R,=8.31432 J / (mol -K ) ), and 7 the temperature

K),

or including the density:
p=p-RT, (2.26)

where R is the specific gas constant, which is equal to R = R, /Moll , where Moll is

the molecular mass.

For dry air, which will be the medium that we use, the molecule mass is 28.964
kg/mol so the specific gas constant is 287.05 J/(kg-K) [5].

The gas constant, R, is equal to the difference between the heat capacity (c) at
constant pressure and constant volume of the fluid:

R, =c, —c,. (2.27)

g p v

The ratio of the heat capacity at constant pressure and constant volume is called
adiabatic index:

y=—. (2.28)

The adiabatic index is dimensionless and for the air we assume it is equal with 1.4.



2.9.2 Adiabatic Law

Adiabatic process is a thermodynamic process where there is no transferred heat from
or to the fluid, in which the process is done, to or from the moving object.

The relationship that describes the adiabatic law is:
p-V’ =const., (2.29)
where V' is the volume, and y is the adiabatic index.

Since the mass is also constant, we have:

ﬁ =const.. (2.30)

2.9.3 Bernoulli’s Principle and the Bernoulli equation

The Bernoulli’s principle says that, in an ideal fluid (ideal gas law is valid), when the
velocity increases, the pressure decrease, if there is no heat (energy) transfer. It has a
lot of applications, and the most famous is the flight of the airplanes. This principle
comes from the Bernoulli equation:

p+%pV2 =P, =const. , (2.31)

where p is the pressure, p is the density, V is the velocity,
Or
Static pressure + dynamic pressure = total pressure (2.32)

where p is the static pressure, (1/2) pV? is the dynamic pressure and P; is the total

pressure, which is constant for ideal fluids.

2.9.4 Pressure Coefficient

The fluid performance around the flying object will be studied from the variation of
the fluid properties, but more easily from the pressure. Pressure will be expressed



through the dimensionless pressure coefficient, C,, which shows the aberrance of the
pressure around the object from the free stream pressure(p—p, ). It is defined as:

P~ Py
C=1 . (2.33)
) .U?
2 o0
From [6] we have:
M:—§£1U2 ﬁﬁj:{l((]z —Ui)+a£} :l(U; —U2)+a£’. (2.34)
0. 2 o 2 or | 2 ot

For steady flows, from Eq.2.6 exists: 0®/dt =0, so the pressure coefficient equals to:

P—Ds, l U? —U? 2
C = Aw_z( . )zl—(ij, (2.35)

r 1 2 - 2
—.U? U

1
2 2 "

where U is the velocity in one point and U is the free-stream velocity.

2.9.5 Other Equations of Fluid Dynamics

The definition of the velocity of the air « is:

2 _4p

a = , 2.36
) (2.36)
From the adiabatic law we have:
at =L (2.37)
P
or from the ideal gas law, speed of the air depends only on the temperature:
a=+yRT, (2.38)

where ¢ is the temperature in K, y is dimensionless, R isin J/ (kng ) and so
(@) is in my/s.



Mach number is the ratio of the velocity of one object, U, to the speed of sound of the
air at that point:

M = g (2.39)
a
So from Eq.2.37 and Eq.3.39 , Mach number equals to:
2
=LY (2.40)
yp
whence the pressure coefficient equals to:
C, = P=Pn __ P~ Ps ‘ (2.41)
Po g2 Voyg2p
2 2
From the Bernoulli equation we have [7]:
P st L (2.42)
y=lp 2 7=1p,
From the previous equation and the adiabatic law, we have:
P 1 =
— -1
—‘:(H}/—szy . (2.43)
p 2

For two points A, B with the previous equation we have the pressure ratio for those
points:

V4
17 1+—7/_1M§ &
Py Ps _ 2

2 = 1 . (2.44)
Ps / /4 2
p, 1+ 5 M

Ifweset M ,=M and M, =M and we loose the equation for M, we have

= , (2.45)

since from the pressure coefficient:



£=1+%Micp. (2.46)

Ps

From the adiabatic law and the pressure ratio (Eq.2.44) we have the density ratio:
1

y-1

Pa_ (& (2.47)

J/y 1+72_1M§
P Ps

1+}/2_1Mj



3

Air and Air conditions

3.1 Introduction

In this chapter we examine the characteristics of the air, where the simulation is done.
The fluid property, which determines the fluctuations of the beam wavefront, is the

refractive index. Let n(x, y,z) the refractive index in the 3-dimensional space. The

optical path length, noted OPL, is related to the refractive index by
v
OPL(x,y,z)an(x,y,z)dy. 3.1
0

So we have to calculate the variation of the refractive index around the flying object.
In order to achieve that, we have to know the composition of the air, and the causes
that can change the refractive index.

3.2 Refractive Index

The refractive index n of a medium is defined as the ratio of the velocity of one
electromagnetic wave in vacuum ¢, to the velocity of the wave in this medium c:

n=—. (3.2)

It is related with the density and so with the other properties of the medium, through
the Gladstone — Dale relationship [8]:

g1 (3.3)
Yo,

Or n=1+p-G, (3.4

where G is the Gladstone — Dale constant and p is the density of the medium.



If we adapt the mean values to the Eq. 3.4 we have u, =1+ u, -G, where u are the

p—u, are the fluctuating values for the

n—u, and p'

mean values, and since 7'

refractive index and the density, we have the relationship [4]:

(3.5)

In Figure 3.1 is presented the wavelength dependence of the Gladstone — Dale

constant, according to the equation (A in microns) [9]:

(3.6)

JXIO_4

2

85076
A

2.192539+ 0.017

Gladstone - Dale constant over wavelength

G(4)

0.27

0.21

10"
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Figure 3.1 the Gladstone-Dale constant over the wavelength

It is obvious from Eq.3.3 that for a specific wavelength we have a constant ratio
between the density and the aberrance of refractive index from one, for two different

points of the medium:

(3.7)



That shows us that if we know the density ratio between two points (Eq.2.47), and the
refractive index in one of them (it can be at the free-stream area), we can calculate the
refractive index at the other point. So we have to define the free-stream properties. Of
course the fluid that we consider is dry air.

3.3 Models for Conditions of the Air at the Free-stream Area

Dry Air is considered an ideal fluid, so we can calculate of the density through the
perfect gas law:

p=p-RT , (3.8)

In our research we will use three standard conditions for the value of temperature and
pressure of the air.

The velocity will be expressed trough the Mach number. From the previous chapter
(Eq.2.38) we have seen that the value of the speed of the air is related only to the
temperature. So we can also calculate the value of the Mach number for each model
that we will use.

3.3.1 Standard Temperature and Pressure

The first air properties model is the Standard Temperature and Pressure (STP). The
values for the two variables are constant and equal with 1 bar (10° Pa) for the pressure
and 273.15 K (0 °C) for the temperature. In this case we can calculate the density

from Eq.3.10 which equals with p,,, =1.2754 kg/m3 [3]. From Eq.2.38 we have for
the speed of the air equals to 331.31.

According to the Figure 3.1 we can find the refractive index at STP for wavelengths
from 0.2 until 10 pm.



refractive index over wavelength at STP
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Figure 3.2 the refractive index over the wavelength for standard temperature and pressure.

3.3.2 ISA Model

The second model we will use for the free-stream properties is the model of

published in 1975, presented at Table 3.1

and Figures 3.3 — 3.5. This is a model of how the temperature, the pressure and the

density of Earth's atmosphere change over the altitude. Since we know the properties

International Standard Atmosphere (ISA),

of the air along the altitude, we can calculate, for a specific height and wavelength,
the refractive index. This model is similar to other standard atmospheric models, such
as the “International Civil Aviation Organization” (ICAO) model, or the “US

Standard Atmosphere”, 1976 [10].



Layer Level Name Geopotential Height (km) Temperature (K) | Pressure (pa)
1 Troposphere 0 288.15 101325
2 Tropopause 11 216.65 22632
3 Stratosphere 20 216.65 5474.9
4 Stratosphere 32 228.65 868.02
5 Stratopause 47 270.65 110.91
6 Mesosphere 51 270.65 66.939
7 Mesosphere 71 214.65 3.9564
8 Mesopause 84.852 186.95 0.3734

Table 3.1 the values of the ISA-model.

3.3.3 Barometric Formula

We have seen at the previous paragraph how the properties of the air change along the
height. But with this method we have values only for 8 different heights. There is
another method, named Barometric Formula, where using the previous model, the
properties change also inside the areas of the given heights.

Geopotential Temperature Lapse Density (ka/m>
b Height (km) Temperature (K) | Pressure (pa) Rate (K/m) ens_lty( _g/m )
-T- -p- P
—hy- Ly -
0 0 288.15 101325 -0.0065 1.225
1 11 216.65 22632 0 0.36391
2 20 216.65 5474.9 0.001 0.08803
3 32 228.65 868.02 0.0028 0.01322
4 a7 270.65 110.91 0 0.00143
5 51 270.65 66.939 -0.0028 0.00086
6 71 214.65 3.9564 -0.002 0.000064
Table 3.2 the values for the Barometric Formula
The equations of the formula are the following:
For the pressure, when L, # O:
&M
7;7 R-L,
P=D (3.9)

and when L, = 0:




P =D, exp g M-(h=h) (3.10)
For the density, the equations are similar. When L, # 0:
8o-M
7’;7 R-L,
= _ , 3.11
p pb|:Tl;+Lb'(h—hb):| ( )
and when L, = 0:
go-M-(h—h,)
=p, -exp| —————~|. 3.12
P =P, p{ R T (3.12)

We can calculate also the temperature, from the perfect gas law. Then from Eq.2.38
we are able to find the value of the speed of the air (1 Mach) along the height.

The next Figures (3.3 - 3.5) depict these two models. We observe that the barometric
formula is more specific than the atmospheric model, and we will use this formula for
our calculations. We are interested in heights until 30 km, since after that height
flying is impossible.

temperature over height (ISA model)
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Figure 3.3 presents the temperature over the height according to the
atmosphere model of ISA (1976).
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Figure 3.4 presents the pressure over the height
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Figure 3.5 presents the density over the height



3.4 Refractive Index over Height

We have seen that the refractive index is related to the height through the density. In
this paragraph we will find the relation of the refractive index and the height, with
three different methods. In the first two we will use the Barometric Formula, and in
the third one there is a direct dependence of the refractive index on the height.

3.4.1 Method A

From Eq.3.4 we observe that, since we know the density for each height, we are able
to find the refractive index, along the altitude, for one specific wavelength (from the
Gladstone-Dale equation). We can use Figure 3.5 in order to find the density over the
altitude.

3.4.2 Method B

Another way to calculate the refractive index is with the following equation [11]:
_ 6 -3 2\ P
n=1+77.6x10"°(1+7.52x107 x 4 )-?, (3.13)

where A the optical wavelength in pm, p is the pressure in millibars (mbar), and T is
the temperature in Kelvin.

Here we will use the values the barometric formula. We have to notice, that from the
ideal gas law, Eq.3.8, we have that p/T = p-R.

3.4.3 Method C

The last equation between the refractive index and the altitude is [12]:

—y/
n=1+n,-e’'" (3.14)

where n is the refractive index, y is the height in meters, H a scale height with value
7400m, and n, the differential refractive index, which depends on the wavelength (in

meters):



n,=2.879-10"+2.165-10"- 17 (3.15)

All three methods are presented in Figure 3.6, in order to compare them. The
calculations have been for the wavelength: A =1550nm .

X 10—4 refractive index over height
3 I \ ‘ ‘ :
| | | ; —— method A
y | | ; method B
. : | : --- method C

height [km]

4

x 10
Figure 3.6 shows the refractive index along the height, for every height, that is
able to fly (< 30 km). The three lines are for A =1550nm , so we can compare
the results of the three methods.

From the three different methods we will use the first one (method A), since it is not a
formula, but it comes from the definitions of the variables we use.






4

Flow around a Sphere

4.1 Introduction

In this chapter we will investigate the wavefront of a laser beam. We assume there is a
spherical flying object, which we consider as the turret. In the turret will be a
concentric circular aperture. The flow is steady, laminar, and incompressible. The
Reynolds number is very small we have potential flow. For this case we will find the
velocity field around a sphere. Then we can calculate the pressure coefficient, and for
certain free-stream conditions the pressure. From the pressure, we can calculate the
density and then at the refractive index through the Gladstone — Dale relationship,
creating the OPD. From OPD we calculate the Zernike coefficients, which describe
the wavefront and the OPD;,s. From OPD we also calculate the phase error, and then
the boresight error (Figure 4.1). The mean boresight error is the mean tilt of the
wavefront.

In order to calculate the final distortions, we have to mind several properties
(pressure, density, refractive index), whose values are depended from many other
variables such as the ratio between the diameters of the aperture and the turret, the
velocity of the sphere (Mach number), as well as the elevation angle of the beam, and
the height that the sphere is (§ 2.3.2). Since the flying object is a sphere, the angle of
attack of the turret is always the same. In the following pages there are calculations
for

Different diameter ratio between the turret and the aperture
Different elevation angle

Different mach number

Different altitude

Finally we have to know the wavelength of the beam. For optical communication, the
typical values of the wavelength are 800, 1064, 1550 nm. In the results of the
simulation we will compare of the results for wavelengths of 800nm and 1550nm. The
results of a beam at 1064nm will be in the area of the results of the other two
wavelengths (Figures 4.10 & 4.11).

wavelength (nm) refractive index
800 1.0002831
1064 1.0002816
1550 1.0002805

Table 4.1 The refractive index of air at STP
for three standard wavelengths of laser
beams
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Figure 4.1 Diagram of the method for the calculation of the wavefront fluctuations
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4.2 Flow around a sphere

In this thesis we will investigate the flow around a sphere. We know that this flow is
very similar to the flow around a cylinder. In Figure 4.2 we can see the different
stages, from laminar to the turbulent flow around a cylinder. We will describe the first
case of the flow.

The flow is described as steady, laminar, incompressible. Since the flow is
incompressible the velocity must be below 0.3 Mach. But the Reynolds number is
very small (Re — 0). We set the critical Reynolds number that we have this flow to
0.2 []. From Eq.2.5 we know that the Reynolds number is proportional to the velocity
of the object as well as to the characteristic length. For a sphere the characteristic
length is its radius. In Figures 4.3, 4.4 we can see which should be the diameter of the
sphere over different velocities, in order to have this kind of flow. We see that the
diameter is very small.

laminar, unsteady wake

_ iRe = 40
laminar, steady wake 1

O e—085T D-BreT —
- -
o S)

S N

laminar, steady wake

laminar, steady withought wake
10 1 1 1 1

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

velocity [m/s]

Figure 4.3 Velocity (m/s) over diameter of a sphere for
several Reynolds numbers and kinds of flow
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Figure 4.4 Velocity (Mach number) over diameter of a sphere for
several Reynolds numbers and kinds of flow

4.3 Steady, Laminar, Incompressible Flow around a Sphere

From §2.2 we have that the potential velocity obeys the Laplace equation:
Vg=0 4.1)
Solving this equation for a sphere (3 coordinates) we get:
¢p=U, (1+f—j]x, (4.2)

where R is the radius of the sphere, and r the distance of one point from the centre of
the sphere, x is the x-coordinate.

Since for the potential velocity we have, Eq.2.15: U = grad (¢) , we can find the three
coordinates of the velocity (u, v, w) at the Cartesian coordinate system (x,y ,z).

(&) (&)
:%:U . 1+l R R

6x © 2 , 5 5 (43)
®




()
o 3 R)\ R
== —— U .
oy P ( P ]5 , (4.4)
R
)
o¢ 3 R)\ R
= — U —_Z  ~ 7
w oz 5 Ve ( P )5 , (4.5)
R
So we calculate the pressure coefficient (Eq.2.35):
U 2 2 2 2
u 1% w
p (]OO (]OO UOO (]OO (46)

With the following equations we can have the pressure coefficient around the sphere,
at three dimensions. Because of the symmetry over y- and z- axis, wesetz=0=>w =
0, and we have a two dimensional Figure which is a section crossing from the centre
of the sphere. Because of the symmetry every centre-crossing section, rotating on the
x-axis has the same conFiguration (Figure 4.5).

We have to notice that there is no influence on the pressure coefficient, from the
velocity of the object (Mach number) as well as the radius of the turret. It depends
only at the ratio of the distance of one point from the centre of the sphere to the radius
of the sphere (1/R). At Figure 4.6 we can see the pressure coefficient on the surface of
the sphere.

Knowing the pressure coefficient in one point, we can find there the Mach number, as
well as the density ratio.

The Mach number and the density ratio in that point equals with (Eq.2.45, Eq.2.47):

) 1+L_1‘Mm2
Y 2 L, @.7)
-1 =
Y 2 7
(1+2-M00 ij
e
1+L_1M 2 |
P 2 ”

(4.8)
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Figure 4.5 The pressure coefficient around a flying sphere in a 2-D diagram.
There is symmetry over y- and z- axis (y = z), so here z=0.

Cp at the surface of a sphere

1

0.5

-1

elevation angle

Figure 4.6 The pressure coefficient on the surface of a sphere. It is
independent from the radius of the sphere, as well as the Mach number:

C, =1-(9/4)sin’(0).
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Figure 4.7 Pressure around a flying sphere (R = 1) in Pascal, for free stream Mach number =
0.3 and free stream pressure = 10° pa (STP).
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Figure 4.8 Mach number around a flying sphere, with free
stream Mach number = 0.3.
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Figure 4.9 Density around a flying sphere. Free stream density is
Pp =1.2754 kg/m* (§2.3.1).

4.4 Optical Length of Centre Crossing Paths

Knowing the density ratio (4.8) and the free-stream air properties we can find the
refractive index (3.7) at any point, and after the OPL and the OPD (3.1).

We have the same turret as before, with radius R. The calculated path starts at a radial
distance R, and ends at a radial distance L =10x R, from the centre of the turret. It
ends there because we observe that after this radius, there is almost no difference at
the value of OPL. The wavelength of the beam is 1550nm. The fluid is air at STP and
the free-stream Mach number is 0.3. At Figure 4.10 we have the diagram of the factor
of OPL for angles from 0° until 180°, since there is symmetry for the angles from
180° to 360°. In order to observe the fluctuation of OPL, we normalize it, at Figure
4.11, and have the factor of OPD (Optical Path Difference), which is defined as

OPD =OPL—-OPL_ . (4.9)

The factor of OPL and OPD is the ratio of the optical path and the radius of the sphere
and equals to:

factor = % . (4.10)

Both pictures depict that there is symmetry, with symmetry-axes at 90°, where is also
the minimum of the OPL. At the angles 0°, 180° is the peak.
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Figure 4.11 The factor of OPD for a sphere, with radius R,

Mach number is M = 0.3 and air is at STP, for beams of

800nm and 1550nm

We compare the OPD of the wavelengths of 800 nm and 1550 nm. The difference
between them is: OPD,,, =1.009x OPD,,,,, so the difference between them is very

small. From now on, we will present the results of beam with wavelength 1550 nm,
with refractive index (at STP) 1.0002805.

550
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4.5 Optical Path Difference over for a Circular Aperture

We have the same conditions as before. The flying turret is sphere, but now inside the
turret there is a circular aperture. The aperture and the turret are concentric. The
diameter ratio, which is the ratio of the diameters of the aperture and the turret, will
fluctuate as well as the elevation angle and the free-stream Mach number. The
researching area is again for radius from R until 10xR and the fluid is air. The
wavelength of the beam is 1550nm.

A

Y

Figure 4.12 This is the propagating beam from a circular aperture in the three coordinates.
We can see the boresight axis, and the elevation angle of the axis.

At the next Figures we can see the fluctuation of the wavefront for four different
elevation angles, diameter ratio 1/6, Mach number 0.3 and air at STP. We see that the
OPD is smaller at the angles 0° and 90° than the other two angles.

Optical Path Difference [m] at 0° Optical Path Difference [m] at 30° x 10°

10 15 20 25 30 5 10 15 20 25 30

aperture resolution aperture resolution

Figure 4.13 OPD at 0° Figure 4.14 OPD at 30°
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Optical Path Difference [m] at 60° X 10'6 Optical Path Difference [m] at 90°

10 15 20 25 30 5 10 15 20 25 30
aperture resolution aperture resolution
Figure 4.15 OPD at 60° Figure 4.16 OPD at 90°
4.6 Boresight Error

Since we know the wavefront configuration, OPD(x, y), we are able to calculate the

boresight error, a(x, y), through the wavefront phase error, e(x,y): [13].
e(x,y)sz'OPD(x,y), (4.11)

where K, is the wave number, and then:

p(x.y)=—-—"

) 27 ) e(x,y) 4.12)

a(x,y)=-

We will integrate for both dimensions (x,y), Figure 4.17, of the wavefront and the
results are in the next Figures (4.18 — 4.29), two for each elevation angle, one for each
dimension that we integrate.

%- Xis

{moving direction)

wareiront

y- axis

Figure 4.17 The geometry of the wavefront. In order to find the phase error of the wavefront,
we have to integrate over the two dimensions (x,)).




beam angle fluctuation [rad] on y-axis at 0°

beam angle fluctuation [rad] on x-axis at 0°

!

apenure
. : : o . . .
Figure 4.18 Beam aberration over x axis at 0 Figure 4.19 Beam aberration over y axis at 0°
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Figure 4.20 Beam aberration over x axis at 30° Figure 4.21 Beam aberration over y axis at 30°
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Figure 4.22 Beam aberration over x axis at 45° Figure 4.23 Beam aberration over y axis at 45°
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Figure 4.26 Beam aberration over x axis at 80°
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Figure 4.29 Beam aberration over y axis at 90°
Figure 4.28 Beam aberration over x axis at 90°



4.7 Mean Wavefront Tilt

Knowing the boresight error, we are able to calculate the mean wavefront tilt

— 1 &
a=;za,~ (4.13)

We calculate the mean tilt adding the two coordinates:

a=y(a) +(x) . 14

4.7.1 Mean Wavefront Tilt over Elevation Angle

For the same elevation angles, with diameter ratio 1 / 6, and mach number 0.3, we can
see the mean tilt of the wavefront (also for the x, y coordinates) at Table 4.1.

We see that the mean tilt over the x-axis equals for every elevation angle with 0. This
means that there is symmetry over the x- axis (of the wavefront), but it happens only
in this case of the spherical turret. So the mean tilt equals with the mean tilt over the
y-axis of the wavefront.

elevation angle mean angle on mean angle on mean angle
x- axis (urad) y- axis (urad) (urad)
0° 0 0 0
30° 0 9.7494 9.7494
45° 0 11.315 11.315
60° 0 9.8498 9.8498
80° 0 3.9081 3.9081

Table 4.2 Mean wavefront tilt for several elevation angles
In Figure 4.30 there is a diagram of the mean wavefront tilt over the elevation angle.
This diagram shows the mean wavefront tilt, for elevation angles at the area [0°, 90°].

We observe that the worse case — peak of the mean tilt - is for the angle at 45°, with
value 11.315 prad (table 4.1). At the angles 0° and 90° there is minimum of the mean
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Figure 4.30 Wavefront tilt over elevation angle. d/D

In the next Figure, 4.31, we have the mean wavefront tilt over the elevation angle, for
12

several diameter ratios. As we can see, that there is not big influence on the mean tilt,

angle, 0 rad, although there are fluctuations. This means that there is a strong
from the diameter ratio.

influence from the tilt angle at the mean angle of the wavefront.
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Figure 4.31 Wavefront tilt over elevation angle for several diameter ratios.



4.7.2 Mean Wavefront Tilt over Diameter Ratio

We investigate the mean angle of the wavefront over the aperture diameter. For the
mean angle at elevation angle of 45°, we have the diagram at Figure 4.32.

We see that the fluctuation of the mean angle for ~0.5 urad, which is small. We also
observe that the biggest mean angle is when ratio is small, and is smaller when the
diameter of the aperture is almost the same with the diameter of the turret.

In the next Figure, 4.33, we have the mean angle over the diameter ratio, for several
elevation angles. We can compare this picture for diameter ratio 1/6, with the Figure
4.30 (from the previous paragraph), as well as do the same for the pair of Figures 4.31
and 4.32, since all of them are for the same mach number, 0.3, and air is at STP.

wavefront tilt over elevation angle

1"

10.9

S VPO S B

10.8

10.7

10.6
0

0.1 0.2 03 04 05 06 07 08 09 1
diameter ratio (d /D)

Figure 4.32 Presents the mean wavefront tilt over the diameter ratio, at 45°, M=0.3 and
STP.



mean wavefront tilt over the diameter ratio, for several elevation angles
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Figure 4.33 Mean wavefront tilt over diameter ratio, for several elevation angles, M=0.3,
STP.

4.7.3 Mean Wavefront Tilt over Velocity

At the next Figures we will test the mean wavefront tilt over the velocity (mach
number) of the flying object. Since at a compressible flow (M < 8) the perfect gas law
is valid, we will have upper velocity limit this value. At STP conditions 1 Mach
number equals to 331.31 m/s (Eq.2.38).



mean wavefront tilt over velocity (Mach number)
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Figure 4.34 Mean wavefront tilt over Mach number, at 45°, d/D = 1/6, STP

We see that the influence of the velocity is very strong, as the Mach number is
increasing.

In Figure 4.50 we see the influence of the velocity for several elevation angles, and
we observe that for the higher Mach number is, the bigger tilt we have.

As far as the influence of the diameter ratio, from Fig 4.36 we see that is not very
strong (as it is expected). After M = 2 there are remarkable changes, but since then
there is almost no difference.

mean wavefront tilt over velocity (Mach number)
120

i i i i i i

| | | | | |

| | | | | |

| | I | | |

levati I

100~ 4 - -~ -~ - o e -
| | |
| | |
| | |
| | |
I | I

| |

| |

| |

1 1
0 — ] I ] ] ]
0.1 012 014 0.16 0.18 0.2 022 024 026 0.28
Mach number

Figure 4.35 Mean tilt over Mach number, for several elevation angles, d/D = 1/6, STP
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Figure 4.36 Mean tilt over Mach number for several diameter ratios, at 45°, STP

4.7.4 Mean Wavefront Tilt over Height

In §3.4 we estimated the refractive index over the altitude with three different
methods. These results will we use here so that we can find the effect of the
atmosphere, over the altitude, on a laser beam. This means that we have different free
stream refractive index (up to here we had STP conditions, and refractive index equals
with 1.0002805, for wavelength 1550 nm), which changes the refractive index around
the sphere.

For further research, it is interesting to consider the type of the flying object we are
going to use, the height that is going, usually, to fly and observe the mean angle at this
particular height.

In Figure 4.37 we present the mean tilt of the wavefront over the height, calculated
with Method A (§ 3.4.1) and the barometric formula (3.3.3). The elevation angle is
450, the diameter ratio is 1/6 and the mach number is always 0.3. We have to take in
mind that the value of the Mach number changes along the atmosphere.

In the next Figure, 4.38, we have the mean tilt over the height, for several elevation
angles. We can observe the differences between the different elevation angles. This
was expected from the previous results we have seen.



mean beam angle fluctuation over height

—O(§-T T OO0 2 OO0 &

40

35

30

height [km]
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4.8 Zernike polynomials

An analytical measure used to characterize the fluctuation of the wavelength, are the
Zernike polynomials. The 16 first Zernike polynomial functions (Z) are given at
Figure 4.39. There are even and odd polynomials, which are defined, the even ones:

Z.(p.9)=R. (p)cos(mp) (4.15)

and the odd ones:

Z. (p.¢)= R, (p)sin(mp), (4.16)

where m and n are nonnegative integers with n>m, ¢ is the azimuthal angle in radians,
and p is the normalized radial distance.

The radial polynomials R are defined as

n=m)/2 (—l)k (n—k)! - 1
& ((nrmyr2=k)((n-myr2—x)"" 17

R'(p)=

for n-m even and 0 for n-m odd.

z0 =1; Piston or Bias

zl = pCos[e]; Tiltx

z2 = p Sin[e]; Tilty

z3=-1 +2,¢32; Power

z4 = p° Cos[2 8] ; Astigx

z5 = p” sin[2 @] ; Astigy

zh =p(—2+392)603[9]; Coma X

z7 =p (-2 +3 p%) Sin[8]; Comay

z8=1-6 92 +6 p*; Primary Spherical

z9 = p° Cos [3el; Trefoil x

z10 = o° 5in[3 0] ; Trefoily

z11 = p° (-3+4 92) Cos[2@]; Secondary Astigmatism x
z12 = p2 (-3+4 92) sin[2 8] ; Secondary Astigmatismy
213 =p (3 -12 ;}2 +10 p‘lj Cos[8]; Secondary Coma x

z14 =p (3-12p° +10 %) sin[e]; Secondary Coma y

z15 =-1+12 pz - 30 .f_-,s‘1 + 20 p'ﬁ; Secondary Spherical

Figure 4.39 The equations and the names for the 16 first Zernike Polynomials [14]



The equation for the wavefront (¢) as a function of the Zernike Polynomials is

N
#(x,y.2)=D AZ, (4.18)
=

where 4; is the Zernike coefficient, defined as:

2z

R
Aj:I,M'(”ae)'Zj(”»H)""d”‘dH. (4.19)
00

The Zernike coefficients show us the effect of the corresponding Zernike polynomial
at the wavefront.

The first six Zernike polynomials are presented at Figures 4.40 — 4.45. At the next six
Figures (Figures 4.46 — 4.51) are presented the variation of the 6 first coefficients
(each one for the corresponding polynomial) for elevation angles from 0° to 90°. We
observe that the 1% coefficient (piston) does not have any consequences at the
wavefront fluctuations, since it is flat. Comparing the familiar polynomials (tilt,
astigmatism) we see that there is bigger tilt over the x-axis than the y-axis, but the
astigmatism is more over the y-axis than the x-axis. We also have focus or defocus
problem (when the coefficient is positive or negative). But we have to be careful, that
this is not the mean tilt of the wavefront, which will be presented in the next
paragraphs. At Figures 4.52 — 4.58 are we can see the effect of each coefficient for 6
elevation angles, (0°, 30°, 45°, 60°, 80°, 90°).
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Figure 4.40 the 1" Zernike polynomial: Piston Figure 4.41 the 2™ Zernike polynomial: Tilt on x-axis
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Figure 4.45 the 6™ Zernike polynomial:
Astigmatism on y-axis
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Figure 4.44 the 5™ Zernike polynomial:
Astigmatism on x-axis
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Figure 4.48 the first 6 Zernike polynomials at
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Figure 4.50 the first 6 Zernike polynomials at
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Figure 4.47 the first 6 Zernike polynomials at
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Figure 4.49 the first 6 Zernike polynomials at
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Figure 4.51 the first 6 Zernike polynomials at
90°
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Figure 4.52 the 1™ Zernike polynomial: Piston,
over elevation angle. d/D = 1/6, M=0.3, STP
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Figure 4.54 the 3" Zernike polynomial:
Tilt on y-axis, over elevation angle. d/D = 1/6,
M=0.3, STP
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Figure 4.56 the 5™ Zernike polynomial:
Astigmatism on x-axis, over elevation angle.
d/D =1/6, M=0.3, STP
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Figure 4.53 the 2™ Zernike polynomial: Tilt on

x-axis, over elevation angle. d/D = 1/6, M=0.3,
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Figure 4.55 the 4™ Zernike polynomial:
Focus, over elevation angle. d/D = 1/6, M=0.3,
STP
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Figure 4.57 the 6™ Zernike polynomial:
Astigmatism on y-axis, over elevation angle.
d/D = 1/6, M=0.3, STP
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Figure 4.58 the 1" Zernike polynomial:
Piston, over diameter ratio. Elevation angle is
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Figure 4.60 the 3" Zernike polynomial:
Tilt on y-axis, over diameter ratio. Elevation
angle is 45°, M=0.3, STP
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Figure 4.62 the 5" Zernike polynomial:
Astigmatism on x-axis, over diameter ratio.
Elevation angle is 45°, M=0.3, STP
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Figure 4.59 the 2™ Zernike polynomial: Tilt
on x-axis, over diameter ratio. Elevation angle
is 45°, M=0.3, STP
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Figure 4.61 the 4™ Zernike polynomial:
Focus, over diameter ratio. Elevation angle is
45°, M=0.3, STP
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Figure 4.63 the 6™ Zernike polynomial:
Astigmatism on y-axis, over diameter ratio.
Elevation angle is 45°, M=0.3, STP
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Figure 4.64 the 1" Zernike polynomial:
Piston, over velocity. Elevation angle is 45°,
d/D =1/6, STP
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Figure 4.66 the 3" Zernike polynomial:
Tilt on y-axis, over velocity. Elevation angle is
45°,d/D =1/6, STP
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Figure 4.68 the 5™ Zernike polynomial:
Astigmatism on x-axis, over velocity.
Elevation angle is 45°, d/D = 1/6, STP
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Figure 4.65 the 2™ Zernike polynomial: Tilt
on x-axis, over velocity. Elevation angle is
45°,d/D = 1/6, STP
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Figure 4.67 the 4™ Zernike polynomial:
Focus, over velocity. Elevation angle is 45°,
d/D = 1/6, STP
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Figure 4.69 the 6™ Zernike polynomial:
Astigmatism on y-axis, over velocity.
Elevation angle is 45°, d/D = 1/6, STP
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Figure 4.70 the 1" Zernike polynomial:
Piston, over height. Elevation angle is 45°,
d/D =1/6, M=0.3
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Figure 4.72 the 3" Zernike polynomial:
Tilt on y-axis, over height. Elevation angle is
45°,d/D = 1/6, M=0.3
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Figure 4.74 the 5™ Zernike polynomial:

Astigmatism on x-axis, over height. Elevation
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Figure 4.71 the 2™ Zernike polynomial: Tilt

on x-axis, over height. Elevation angle is 45°,
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Figure 4.73 the 4™ Zernike polynomial:
Focus, over height. Elevation angle is 45°, d/D
=1/6, M=0.3
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Figure 4.75 the 6™ Zernike polynomial:
Astigmatism on y-axis, over height. Elevation
angle is 45°, d/D = 1/6, M=0.3



4.9 Root Mean Square OPD

Another variable we can research to define the wavefront fluctuations is the
difference-Root Mean Square (RMS) of the wavefront, defined as:

OPD,, = % \/ | (OPD2 —oPD’ ) dx-dy . (4.20)

where S is the surface of the aperture.

At the next Figure, 4.76, we can observe the OPD,,, over the elevation angle. In
Figure 4.73 we have a diagram for the OPD,,; over the diameter ratio and we see that

the influence is very strong, something that was expected. The next two Figures (4.74,
4.75) depict the OPD,,,, over the velocity, and over the height.
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Figure 4.76 The OPD,,, over the elevation angle. Diameter ratio is 1/6, M = 0.3 and air at
STP
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Figure 4.78 The OPD,,,, over the velocity. Elevation angle is 45°, diameter ratio 1/6 and air

at STP.
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Figure 4.79 The OPD,,,, over the height. Elevation angle is 45°, diameter ratio 1/6 and M
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Conclusion

5.1 Results

In this thesis we have seen the distortions of the flow-field on a laser beam. We have
firstly defined one case of flow around the turret, described the flow with equations
and then applied a method to describe the wavefront distortions of the beam.

We see that the flow around the sphere is symmetrical (pressure and velocity). This is
because we assume potential flow. This case leads us to the d’Alembert’s Paradox -
Jean Le Rond d'Alembert (1717-1783). The paradox says that on an object moving in
a potential field there is no drag. But experiments showed other results.

The answer was given almost 200 years later, in 1904, from Ludwig Prandtl, who
introduced the boundary layer theory. This theory says that the drag is created from
the boundary layers (§ 2.6), created on the surface of the object. The equations that we
have used (and d’Alembert used) are not able to “understand” the boundary layers at
this kind of flow. As we have seen at Figures 4.3, 4.4 these kind of flow is limited,
since the diameter of the sphere should be very small in order to have steady,
incompressible flow (Re<40).

Although, we get the first idea, how the flow impacts the laser beam from or to the
object. If we find the other types of flow, and calculate the velocity around an object,
then we can apply this method on a laser beam and calculate the distortions due to this
flow.

We can see how each parameter effects the distortions. The parameters are the
elevation angle, the diameter of the aperture (the diameter of the turret for a sphere
has no influence at the flow, but only in the case of a sphere — but of course is has
consequences at the value of the Reynolds number), and as well as the free-stream
velocity and the height that the object is. For this reason we usually consider the
worse cases (e.g. elevation angle = 45°, M = 0.3).

Changing the previous parameters, we have bigger Reynolds numbers, where there is
separation of the boundary layers, so there is weak (Figure 4.1). As far as the flow is
laminar, experimental results show that the flow is very similar, up to the separation
point. The same happens for other turret geometries such as hemispheres. These fields
(different conditions and different shape) are going to be the next researching steps in
this topic (Figures 4.80 - 4.81).
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Figure 5.1 The pressure coefficient after measurements by O. Flashboard around a sphere for
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Figure 5.2 The pressure coefficient after measurements and CFD-results (Computational
Fluid Dynamics) over the elevation angle.[15]



5.2 Further Research

As we mentioned in the previous paragraph, there is a lot of things to research more in
this topic. Firstly we have to focus on other turret shapes, such as hemisphere,
thinking a hemisphere turret. The turret will be on an aircraft. So we have to research
the shapes of the aircrafts and their wings. They are mostly described from the
airfoils. The final goal is to simulate the flow field around an aircraft with a turret on
it. In this case we will have the “real - shape” simulation. Then we can decide where
is the best place on the aircraft to put the turret, with an antenna inside.

After the different shapes we can study different flows, in different flow conditions.
This leads to the increase of the Reynolds number, and from laminar to turbulent
flow. It would be very interesting to study all the types of flow, which include also
boundary layers, and end up to the turbulent flow (Figure 4.2). The last one is a great
challenge for all the mathematicians and physicists, since the description and the
understanding of the turbulent flow is one of the biggest mathematic problems these
days. If we reach this level, we can simulate the “real - condition” flow.

Adding these two branches of the research, we will have the “real” simulation of a
flying aircraft. Then if we apply our method for the laser beam distortions we will
know the impact of the boundary layer on the laser beam propagation.

We see that in this field of research there is not only CFD. For this reason we can also
study on the method that calculates the distortions. We have already showed one, but
we can always improve this method and find new ways to describe the wavefront
distortions.






Symbols

Symbol Nomenclature Units (SI)
a boresight error rad
A Zernike coefficient -
b height stage m
c speed of light m/s
Cp heat capacity at constant pressure kg
Gp pressure coefficient -
Cy heat capacity at constant volume kg
d diameter of the aperture m
D diameter of the sphere m
e phase error -
f forces N
G Gladstone-Dale constant -
h geopotential height m
ko wave number m’!
L. characteristic length m
Ly temperature lapse rate k/m
L distance of research m
M mach number -
Moll molecule mass kg
n refractive index -
ng differential refractive index -
OPD optical path difference m
OPL optical path length m
p pressure pascal
Py total pressure pascal
Rias gas constant J/(mol x k)
R radius of the sphere m
r length of the beam m
R special gas constant J/(kg x k)
“ radial polynomial -
Re Reynolds number -
T temperature K, °C
t time S
U velocity m/s
u velocity coordinate over x- axis m/s




Symbol Nomenclature Units
v velocity coordinate over y- axis m/s
\Y volume m’
w velocity coordinate over z- axis m/s
X X- axis -

y y- axis -

z Z- axis -

Z; Zernike polynomial -

o speed of air m/s
Y adiabatic index -

0 elevation angle ©

A wavelength m
1) viscosity pascal x s
p density kg/m’
T shear stress pascal
[0) velocity field m/s
®

vorticity




Abbreviations

CFD

DLR

EADS

ICAO

ISA

LOLA

NASA

NTUA

OPD

OPL

RMS

STP

UAV

Computational Fluid Dynamics

Deutsches Zentrum fur Luft- und Raumfahrt
European Aeronautic Defence and Space Company
International Civil Aviation Organization
International Standard Atmosphere

Liaison Optique Laser Aeroportee

National Aeronautics and Space Administration
National Technical University of Athens
Optical Path Difference

Optical Path Length

Root Mean Square (see: OPDgrys)

Standard Temperature and Pressure

Unman Aircraft Vehicle
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