
EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN

UPOLOGISTWN

Tomèac TeqnologÐac Plhroforik c kai Upologist¸n
Ergast rio LogismikoÔ

Autìmath AplopoÐhsh kai Anadiamìrfwsh

Programm�twn se Erlang

DIPLWMATIKH ERGASIA

tou

Ajan�siou I. AugerinoÔ

Epiblèpwn: KwnstantÐnoc F. Sag¸nac
Anaplhrwt c Kajhght c E.M.P.

Aj na, IoÔlioc 2009

EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI MH-
QANIKWN UPOLOGISTWN
Tomèac TeqnologÐac Plhroforik c kai Upologist¸n
Ergast rio LogismikoÔ

Autìmath AplopoÐhsh kai Anadiamìrfwsh

Programm�twn se Erlang

DIPLWMATIKH ERGASIA

tou

Ajan�siou I. AugerinoÔ

Epiblèpwn: KwnstantÐnoc F. Sag¸nac
Anaplhrwt c Kajhght c E.M.P.

EgkrÐjhke apì thn trimel exetastik epitrop thn 14η IoulÐou 2009.

..

KwnstantÐnoc Sag¸nac

Anaplhrwt c Kajhght c E.M.P.

..

Nikìlaoc PapaspÔrou

EpÐkouroc Kajhght c E.M.P.

..

Eust�jioc Z�qoc

Kajhght c E.M.P.

Aj na, IoÔlioc 2009

...................................
Ajan�sioc I. Augerinìc
DiplwmatoÔqoc Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P.

Copyright c© Ajan�sioc Augerinìc, 2009.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved.

ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex
olokl rou tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apo-
j keush kai dianom gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c fÔshc,
upì thn proôpìjesh na anafèretai h phg proèleushc kai na diathreÐtai to parìn
m numa. Erwt mata pou aforoÔn th qr sh thc ergasÐac gia kerdoskopikì skopì
prèpei na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun
ton suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic
tou EjnikoÔ Metsìbiou PoluteqneÐou.

PerÐlhyh

Sthn paroÔsa diplwmatik perigr�foume touc sqediastikoÔc stìqouc kai thn trèqou-
sa kat�stash tou tidier, enìc ergaleÐou logismikoÔ pou anadiamorf¸nei phgaÐo k¸di-
ka Erlang, k�nont�c ton kajarìtero, aploÔstero kai se pollèc peript¸seic kai pio
apodotikì. Se antÐjesh me �lla ergaleÐa anadiamìrfwshc, o tidier eÐnai pl rwc au-
tìmatoc kai anex�rthtoc apì �llec efarmogèc graf c k¸dika. To en lìgw ergaleÐo
parèqei mia eureÐa gk�ma metasqhmatism¸n, oi opoÐoi mporoÔn na epileqjoÔn mèsw
orism�twn apì thn gramm entol¸n kai na efarmostoÔn se èna sÔnolo arqeÐwn
kai olìklhrec efarmogèc me mÐa apl entol . Enallaktik�, oi qr stec mporoÔn na
qrhsimopoi soun to grafikì perib�llon pou parèqei o tidier ¸ste na epiblèpoun èna
proc èna touc metasqhmatismoÔc pou pragmatopoioÔntai ston k¸dik� touc kai na
epilègoun mìno autoÔc pou epijumoÔn. O tidier èqei dh qrhsimopoihjeÐ gia na ana-
diamorfwjoÔn di�forec efarmogèc tou Erlang/OTP kai èqei dokimasteÐ se pollèc
shmantikoÔ megèjouc efarmogèc Erlang anoiktoÔ k¸dika. Anafèroume tic empeirÐec
mac kai parousi�zoume eukairÐec gia na efarmostoÔn oi trèqontec metasqhmatismoÐ
tou tidier se up�rqonta k¸dika Erlang. Wc epakìloujo, se aut n thn diplwmati-
k perigr�fontai kai poiec praktikèc odhgoÔn se poiotikì k¸dika Erlang. Tèloc,
perigr�foume leptomer¸c thn automatopoihmènh mejodologÐa anadiamìrfwshc k¸di-
ka pou uposthrÐzoume kai èna sÔnolo metasqhmatism¸n pou eÐnai arket� genikoÐ
¸ste na mporoÔn na efarmostoÔn wc èqoun me mikrèc parallagèc se progr�mma-
ta grammèna se Haskell Clean kai Ðswc akìma kai se mh sunarthsiakèc gl¸ssec
programmatismoÔ.

Lèxeic Kleidi�

metasqhmatismìc progr�mmatoc, anadiamìrfwsh k¸dika, ekkaj�rish k¸dika,
aplopoÐhsh k¸dika, Erlang

Abstract

This thesis describes the design goals and current status of tidier, a software tool
that tidies Erlang source code, making it cleaner, simpler, and often also more
efficient. In contrast to other refactoring tools, tidier is completely automatic and
is not tied to any particular editor or IDE. Instead, tidier comes with a suite of
code transformations that can be selected by its user via command-line options and
applied in bulk on a set of modules or entire applications using a simple command.
Alternatively, users can use tidier’s GUI to inspect one by one the transformations
that will be performed on their code and manually select only those that they
fancy. We have used tidier to clean up various applications of Erlang/OTP and
have tested it on many open source Erlang code bases of significant size. We report
our experiences and show opportunities for tidier’s current set of transformations
on existing Erlang code out there. As a by-product, this thesis also documents
what we believe are good coding practices in Erlang. Last but not least, we
describe in detail the automatic code cleanup methodology we advocate and a set
of refactorings which are general enough to be applied, as is or with only small
modifications, to the source code of programs written in Haskell or Clean and
possibly even in non-functional languages.

Keywords

program transformation, refactoring, code cleanup, code simplification, Erlang

EuqaristÐec

Katarq�c ja jela na euqarist sw ton �njrwpo q�rh ston opoÐo up�rqei aut h
diplwmatik kai èqei aut n th morf . Me to suneqèc endiafèron tou, ton asteÐreu-
to enjousiasmì tou kai thn p�nta anoiqt tou pìrta proc touc foithtèc apoteleÐ
mia èmpneush gia mèna. ElpÐzw k�poia stigm na mpor¸ na prosfèrw kai eg¸ ìsa
prosfèreic stouc foithtèc sou. H sunergasÐa mac ton teleutaÐo qrìno tan mia
uperpolÔtimh empeirÐa gia mèna kai xèrw ìti ja mou leÐyei polÔ. 'Ena ter�stio euqa-
rist¸ ston kajhght , kajodhght kai fÐlo mou Kwst Sag¸na.

Ja jela epÐshc na euqarist sw touc kajhghtèc NÐko PapaspÔrou kai St�jh
Z�qo. 'Htan oi �njrwpoi pou me od ghsan sta pr¸ta b mat� mou ston q¸ro thc
plhroforik c kai apotèlesan ton lìgo pou apof�sisa na akolouj sw aut n thn
kateÔjunsh. Kajènac apì es�c apoteleÐ èna prìtupo gia mèna, ìqi mìno se epÐpedo
kajhght all� kai anjr¸pou. Jèsate ton p qu polÔ yhl�. Sac euqarist¸ gia ìla.

'Ena jermì euqarist¸ qrwst�w epÐshc se ìlouc touc sumfoithtèc kai fÐlouc
mou me touc opoÐouc pèrasa ìla aut� ta qrìnia. Sac euqarist¸ gia ìlec autèc tic
upèroqec stigmèc pou mou qarÐsate, k�nontac ta 5 qrìnia tou poluteqneÐou thn pio
upèroqh empeirÐa thc zw c mou. EÔqomai kai elpÐzw na mporèsoume na diathr soume
tic epafèc mac kai met� to poluteqneÐo.

Tèloc kai p�nw apì ìla, jèlw na euqarist sw thn oikogènei� mou. QwrÐc es�c
tÐpota apì ìla aut� den ja tan efiktì. Q�rh sthn diark sac st rixh, ag�ph,
bo jeia kai enj�rrunsh brÐskw to kour�gio na suneqÐsw. EÐste autì pou ja mou
leÐyei perissìtero apì thn fug mou proc to exwterikì. Den up�rqoun lìgia gia
na ekfrast¸. To mìno pou mpor¸ kai k�nw eÐnai na sac prosfèrw thn ag�ph mou.
Euqarist¸.

Jan�shc Augerinìc

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the thesis . 3

2 Preliminaries 5
2.1 Refactoring . 5
2.2 Erlang and Erlang/OTP . 6

3 Design 9
3.1 Tidier’s Design and Goals . 9

3.1.1 Main characteristics . 9
3.1.2 Transformation properties 10

4 Transformations 11
4.1 Simple transformations . 11

4.1.1 Modernizing guards and calls to old-fashioned functions . . 11
4.1.2 Eliminating explicit imports 12
4.1.3 Turning apply calls to remote calls 12
4.1.4 Turning funs to functions 13
4.1.5 Introducing min and max . 13
4.1.6 Code beautification . 15

4.2 Record transformations . 15
4.3 Transformations of common list operations 17

4.3.1 Transforming appends and subtracts 18
4.3.2 Eliminating lists:keysearch/3 18
4.3.3 Eliminating recursion . 20
4.3.4 Transforming maps to comprehensions 20
4.3.5 Transforming filters to comprehensions 21

4.4 List comprehension simplifications 22
4.4.1 Transforming a fun to a direct call 22
4.4.2 Inlining bodies of simple funs 22
4.4.3 Inlining simple boolean filtering funs 23

4.5 Transformations requiring type information 24

i

4.5.1 Transforming coercing to exact equalities and inequations . 24
4.5.2 Specializing the size function 25
4.5.3 Simplifying guard sequences 26

4.6 Transformations that eliminate redundancy 27
4.6.1 Avoid re-creation of existing tuples and lists 27
4.6.2 Temporary variable elimination 28

4.7 Simplifying control . 30
4.7.1 Straightening . 30
4.7.2 Simplifying expressions . 31

4.8 Simplifying list comprehensions even further 32
4.8.1 Inlining simple mapping funs 35
4.8.2 List comprehensions in conjunction with zip and unzip . . . 38

4.9 Transformations that reduce the complexity of programs 39

5 Experience 45
5.1 Tidier at Work . 45

5.1.1 Current experiences . 46
5.2 Effectiveness Across Applications 47
5.3 Conservatism of Refactorings . 51

6 Related Work 53
6.1 Related Work . 53

7 Conclusion and Acknowledgements 55
7.1 Concluding Remarks . 55
7.2 Acknowledgements . 56

References 57

A Tidier Reference Manual 61
A.1 Tidier . 61

A.1.1 Introduction . 61
A.1.2 Supported Transformations 61

A.2 Using Tidier from the command line 62
A.2.1 Options . 62

ii

List of Tables

5.1 Number of tidier’s transformations on various Erlang source code
bases. 50

5.2 Effectiveness of tidier’ refactorings requiring type info. 51

iii

List of Figures

2.1 An example Erlang program. 7

4.1 Illustration of refactorings that work hand in hand. 14
4.2 A guard simplification refactoring from the actual code of CouchDB

(src/mochiweb/mochiweb util.erl:422). 25
4.3 Another guard simplification refactoring from actual code of Er-

lang/OTP (lib/asn1/src/asn1rt per bin.erl:495). 26
4.4 An example of case straightening on actual code (from Erlang/OTP

R13B’s lib/kernel/src/erl boot server.erl:274). 30
4.5 Simplification of nested case expressions. 32
4.6 A case of multiple if simplifications. 33
4.7 Showing the refactorings step-by-step, as they are applied by tidier

to the code of lib/inviso/src/inviso tool sh.erl:1638 36
4.8 Tidier simplifying the code of Wrangler. 37
4.9 Code with two unnecessary calls to length/1 (from the code of

disco-0.2/master/src/disco server.erl:280). 40
4.10 Tidier simplifying the code of RefactorErl src/referl expression.erl. 41
4.11 Length simplification from R13’s lib/appmon/src/appmon web.erl:647 41

5.1 Tidier in action: simplifying the source code of a file from the inviso
application of Erlang/OTP R13B. 46

iv

Preface

This diploma thesis is the compilation and adaptation of two papers [2, 22] which
are about to appear in international conference proceedings. In compiling them
we have tried to remove the duplicated material, enrich various sections with more
detailed information and include some of our most recent work. Some familiarity
with functional programming and preferably Erlang is expected for chapter 4.

ii

Chapter 1

Introduction

1.1 Motivation

Writing code that is as clean and simple as possible is desirable but also difficult
to do in any language, declarative or not. The ability to achieve this is an acquired
skill that requires a lot of experience in writing programs in the language, studying
source code of others, having pretty good knowledge of the various alternatives
of expressing programming intentions using the constructs of the language, but
also having quite a lot of discipline when programming. To help programmers
write better code, most languages these days come with websites and books that
document good coding practices in the hope that programmers will read and follow
them. The programming language Erlang is no exception in this respect. Indeed,
both the www.erlang.org website and the various books on Erlang contain many
useful pieces of advice on how to write better programs. Still, at least judging
from some open source and commercial code we have laid our eyes upon, it seems
that some of this advice has never been read or, even if it has been, it has been
largely neglected by some programmers. Once again, Erlang is by no means the
only programming language where one can witness this phenomenon. On the
contrary, the situation regarding code quality is most probably worse in some
other languages, especially non-declarative ones.

Another reason that often contributes to having lots of code of sub-optimal
quality at any particular point in time is that most programming languages evolve.
For example, some of the language constructs that Erlang programmers can em-
ploy today (e.g., funs, binaries, comprehensions, etc.) result in better and more
succinct code than code which could be written using Erlang constructs of ten
years ago. Still, even nowadays, it is not uncommon to notice members of the
Erlang programming community write or post programs that use old-fashioned
language constructs or programs that could be written more elegantly in modern
Erlang. This, coupled with the fact that there is a lot of Erlang code out there that
has been written long ago and since then has not been revised or modernized, does

1

2 CHAPTER 1. INTRODUCTION

not help much in improving the code quality of Erlang applications or in having
code bases that teach best practices to language newcomers.

For a long time now, my advisor, both due to an obsession with code cleanliness
and a desire to show new members of his team code with good coding practices
only, has been manually performing code cleanups in code bases of projects that he
has been involved in. (No doubt he is not the only programmer who has ever done
so.) Sooner or later, anybody involved in this practice is bound to notice that some
code improvements and modernizations are so simple and standardized that they
could be automated quite easily. This is especially true for code improvements
obtained by using more modern language constructs. In fact, in the syntax tools
application [3], the Erlang/OTP system has a module called erl tidy that can
be used from within Erlang to perform a limited set of these refactorings. We
have decided to use erl tidy as a starting point for our work but we have also
significantly modified and extended its capabilities in ways that we will shortly
describe.

Another set of code improvements that can be automated relatively easily
are those which are identical or very similar to transformations that optimizing
compilers perform. Some of these transformations, especially high-level ones de-
signed for functional languages, besides improving the running time of programs,
have the nice property that they make code smaller and less complicated. Such
source code is typically cleaner and easier to understand and maintain than long
spaghetti code. For this reason, we hold and advocate that it is worthwhile to
perform such transformations already at the source level, rather than (only) at the
level of the compiler’s intermediate code representation. Besides the benefits that
this has for source code readability, it also makes programs more portable as they
become less dependent on the compiler version which is used or even the language
implementation on which they will be compiled and executed.

Rather than continuing performing cleanups by hand, we have decided to create
a software tool, called tidier, that performs all the above and eases the cleanup and
code simplification of Erlang applications. This has allowed us to apply the tool
to code bases of significant size and fine-tune its functionality. As we will soon see,
tidier is completely automatic, flexible and very easy to use, and performs a suite
of code transformations ranging from very simple to quite sophisticated. Although
we expect that tidier will be used as an automatic code refactorer in most projects,
tidier can also be used only as an automatic detector of certain bad code smells
and let the user be in total control of the cleanup process.

Perhaps we should also point out that some of the transformations that tidier
performs actually increase the dependency on language versions (i.e., they require
the use of a rather recent Erlang/OTP release) and may not be suitable for ap-
plications that have requirements to be able to run in older releases. However,
rewriting old idioms that were once necessary due to a more simplistic language
implementation into concise and modern code is just as efficient (or better) and
makes applications more future safe as older language features often get removed

1.2. OUTLINE OF THE THESIS 3

as languages evolve.

1.2 Outline of the thesis

To make the thesis relatively self-contained, the next chapter briefly discusses
the idea of refactoring and overviews the Erlang language and the evolution of its
implementation. Chapter 3 presents the design characteristics and main properties
of tidier. It is followed by the main chapter of this thesis, Chapter 4, that describes
in detail the code transformations currently performed by the tool. In Chapter 5
we briefly mention how tidier can be used and report on our experiences from
using tidier in various applications of Erlang/OTP and in open source code bases.
Chapter 6 reviews related work and the thesis ends with some concluding remarks.
Appendix A contains a reference manual of the refactoring tool.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Refactoring

According to [8], refactoring is the process of changing a computer program’s
internal structure without modifying its external functional behavior or existing
functionality. The main purpose of refactoring is to make the software easier to
understand and modify. Although refactoring – as we know it today – is a relatively
new notion, it is becoming increasingly important in several fields and especially
software engineering. In extreme programming and other agile methodologies,
refactoring is an integral part of the software development cycle: developers first
write tests, then write code to make the tests pass, and finally refactor the code
to improve its internal consistency and clarity. Automatic unit testing helps to
preserve correctness of the refactored code. The refactoring research area is still
relatively young and unexplored and most of the related work 6.1 is very recent.

Why is refactoring important Refactorings can be used to improve several
important internal quality attributes of software, such as:

• software design and structure. In every software project of significant size it
very difficult or even impossible to finalize the design and structure from the
beginning. During the development and maintenance of the project, most
probably the structure will have to change quite a lot of times. However,
such unorganized changes may result in software structure of poor quality.
Frequent refactoring can help improving software design in an efficient and
controlled manner.

• code readability. Having code that is cluttered with redundancies and obfus-
cated expressions is something not uncommon among most programmers.
This is usually a result of software evolution (new features are added, bugs
are fixed etc) and can be also addressed with cautious refactoring.

5

6 CHAPTER 2. PRELIMINARIES

• maintainability. Performing refactorings to improve code readability and
design has as an immediate effect an improvement over code maintainability.
Having well-organized and simple, uncluttered code can help the developer
have a better understanding of the code and therefore perform maintenance
tasks (like bug-finding and bug-fixing) much faster.

• adhering to a specific programming paradigm. High level programming lan-
guages may provide a lot of ways to express the programmer’s intention.
Code refactoring can be employed to transform code segments from one
paradigm to another (when one of them is encouraged). Some of the refac-
torings that we will explore in this thesis belong to a variation of this cate-
gory.

• extensibility. Software extensibility can be significantly improved as a side-
effect of performing refactoring to improve the design and structure of soft-
ware (adding new features becomes much easier and faster).

• performance. Although refactorings can usually lead to a decrease in per-
formance (in favour of code design and readability), better-structured code
can be optimized much more effectively than poorly-designed software dur-
ing a performance optimization stage. Moreover, not all refactorings result
in a decrease in performance. Specifically, none of the refactorings that are
described in this thesis (and are applied by tidier) decreases performance.
Instead, many of the suggested refactorings can lead to better performance.

Let us now see the language which we will employ to apply our refactorings.

2.2 Erlang and Erlang/OTP

Erlang is a concurrency oriented, dynamically typed, strict functional program-
ming language. In Erlang, terms are either variables, simple terms, structured
terms, or function closures. Variables always begin with a capital letter or an
underscore. Simple terms include atoms, process identifiers, integers and floating
point numbers. Structured terms are lists (enclosed in brackets) and tuples (en-
closed in braces). Structured terms are constructed explicitly and deconstructed
using pattern matching. Pattern matching is also used to select function clauses
or different branches of case statements; the two forms are equivalent and choos-
ing between them is a matter of taste. The program on Figure 2.1 shows all the
above. It also shows how Erlang code is organized in modules, how the code
can contain calls to exported functions of some other module (the call to func-
tion math:sqrt/1 in our example), and how pattern matching is enriched by the
presence of flat guards such as type tests and arithmetic comparisons.

The Erlang language is rather small, but it has evolved from an even smaller
language which over the years has been enriched with new language constructs [1].

2.2. ERLANG AND ERLANG/OTP 7

-module(example).
-export([factorial/1, nth/1, area/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

nth(1, [H|_]) -> H;
nth(N, [H|T]) when is_integer(N), N > 1 ->

nth(N-1, T).

area(Shape) ->
case Shape of

{square, Side} when is_number(Side) ->
Side * Side;

{circle, Radius} ->
3.14 * Radius * Radius; %% well, almost

{triangle, A, B, C} ->
S = (A + B + C) / 2,
math:sqrt(S * (S-A) * (S-B) * (S-C))

end.

Figure 2.1: An example Erlang program.

For example, for some years now Erlang supports a notation for function closures
(known as funs in the Erlang lingo) when older Erlang versions only supported
apply. Similarly, modern Erlang comes with language constructs to perform pat-
tern matching directly on binaries and bit streams [9] when older Erlang required
a conversion of binaries to lists first. Modern Erlang comes with a notation for
records, which allows referring to tuple elements by name instead of by position.
Using record notation and some appropriate declaration, we could for example
write the first case clause of the area/1 function of our example program as
follows:

#square{side = Side} when is_number(Side) ->
Side * Side;

Over the years Erlang has also adopted various constructs from other programming
languages, most notably list comprehensions, which are a convenient shorthand for
a combination of map, filter and append on lists. For example, the following list
comprehension:

List = [{1,2.56}, {3.14,4}, some_atom, {5,6}],
[Y*(Y+1) || {X,Y} <- List, is_integer(X), X > 1].

will silently filter out the some atom element of the list and produce the list [42].
On the other hand, in non-filter expressions, the evaluation of list comprehensions

8 CHAPTER 2. PRELIMINARIES

might throw a run-time exception. For example, the list comprehension we just
showed would throw an exception if List also contained the term {7,eleven}.

The main implementation of the language is the Erlang/OTP (Open Telecom
Platform) system from Ericsson. At the time of this writing the most recent
Erlang/OTP version is R13B (release 13B). Besides libraries containing a large set
of built-in functions (BIFs) for the language, the Erlang/OTP system comes with
a number of ready-to-use components and design patterns (such as finite state
machines, generic servers, supervisors, etc.) providing a set of design principles
for developing fault-tolerant Erlang applications. Indeed, using the Erlang/OTP
system, a number of commercial and open-source applications have been written
over the years, making Erlang both one of the most industrially relevant declarative
languages and a language with a significant body of existing source code out there.

One problem with having lots of code is that undoubtedly there is also a
wide variation in code quality between different code bases; often even within the
code base of a single application. We have witnessed this phenomenon in many
Erlang code bases we have examined. While some projects adopt or even impose
rigorous coding standards, others follow a more relaxed attitude in what code
can join their code base. Some applications are quick to adopt newer language
constructs that make code cleaner and simpler, while other projects never modify
or modernize their code if it isn’t seriously broken. While the above observations
are by no means applicable only to Erlang — or to declarative languages in general
— we hold that they are particularly relevant for this type of languages because
declarative languages: 1) are often moving-targets and more willing to include
higher-level constructs in their definition, and 2) besides giving programmers the
opportunity to write cleaner and more succinct programs, they also often make
it easier for them to write less efficient code than what they would have written
in some low-level imperative language or in the declarative language given some
other, semantically equivalent, language construct. In this respect, writing good
code in a declarative language (and Erlang in particular) is actually more difficult
than in a language such as C.

However, declarative languages such as Erlang have one clear advantage com-
pared with lower-level, imperative languages. Because of their relatively clean
semantics, they are more suited to high-level, semantics-preserving transforma-
tions that can automatically detect and/or cleanup source code from certain old-
fashioned or less efficient ways of writing some program. To ease the modernization
and code improvement of Erlang applications we have developed tidier, an auto-
matic software refactoring tool whose design goals and current set of capabilities
we will describe in the following chapter.

Chapter 3

Design

3.1 Tidier’s Design and Goals

Before we describe in detail the code transformations that the current version
of tidier performs, we present the design characteristics and main properties of
the tool. In doing so, we also implicitly mention how tidier differs from other
refactoring tools for Erlang such as Wrangler [12] or RefactorErl [15].

3.1.1 Main characteristics

The main design characteristics of tidier are that it should be:

fully automatic: In particular tidier should provide a mode of operation where
it can be applied in bulk to a set of modules or entire applications without
requiring any interaction from its user.

reliable: This characteristic is very much related to the previous one. In a semi-
automatic refactoring tool, like Wrangler or RefactorErl, it is probably OK
to rely on the programmer to confirm and/or take full responsibility for
refactorings that might be unsafe in some, hopefully rare, circumstances. In
contrast, tidier, being fully automatic, cannot afford this luxury.

universal and easy to use: This means that tidier should not be tied to any
particular editor or integrated development environment (IDE). Particular
editors and IDEs, no matter how popular or widespread they may be within
a particular language community, always leave out a percentage of users
who, for their own reasons, choose some other editor or environment to do
their development.

flexible: The refactorings performed by tidier should be selectable by the user.
Also, if users want to, they should be allowed to conveniently inspect the

9

10 CHAPTER 3. DESIGN

result of the refactoring process and filter it and/or influence it according to
their desires.

fast : The tool should be fast enough so that in most applications it can become
part of the typical make cycle without imposing any noticeable overhead to
the process.

Needless to mention, tidier achieves all the above.

3.1.2 Transformation properties

Regarding the transformations performed by tidier, they should be:

semantics preserving : In particular, the transformations should faithfully re-
spect the operational semantics of Erlang. As we will soon see, in some cases
tidier could possibly perform better refactorings if it had accurate knowledge
about types of variables or the programmers’ intentions. Due to the dynamic
nature of Erlang and tidier being a fully automatic tool, such information is
often not available. In such cases, tidier should either not perform a refactor-
ing or perform a weaker one that is guaranteed to be semantics preserving.1

code improving : A transformation should be performed only if it improves the
code according to some criterion. Relevant criteria used by tidier are: (i)
the new code uses a more modern Erlang construct (e.g. one which is more
succinct or is not obsoleted and retained only for backwards compatibility);
(ii) the new code is shorter and more elegant; (iii) the new code has less
redundancy or (iv) the new code executes faster.

syntactically pleasing and natural : In particular, the transformations should
result in code which is as close as possible to what expert Erlang program-
mers would have written if they performed the same transformations by
hand. Among other things, this means that the transformed source code
should be naturally indented and, whenever possible, use variable and func-
tion names that accurately reflect the code from which they originated in-
stead of using artificial names such as Var 4711.

In addition, if possible, tidier should try to guess the intentions of programmers
but never try to outsmart them.

1As we will see, some of tidier’s refactorings might change the type of exception that
is raised by the code, e.g. from case clause to badmatch. However, we consider such
refactorings semantics preserving because they will never result in code that misses some
exception that would have been generated or in code that results in some exception being
thrown when the original code would not raise one. Also, note that the issue of not
preserving the exception behaviour of a program is not tidier-specific but also present in
the other refactoring tools for Erlang.

Chapter 4

Transformations

Let us now examine the transformations that tidier performs and the effect that
they have on some source code examples. In doing so, we also discuss aspects of
transformations that require extra care or make them tricky to implement. More-
over, most of the transformations that are not trivial contain a small paragraph
that briefly addresses some of the semantics-preserving details of the refactoring.

4.1 Simple transformations

We start by describing the simplest transformations. Some of these transfor-
mations (and some of Section 4.3) are also provided by the erl tidy module which
we used as a starting point for tidier. The refactorings described in this section
are quite simple and do not affect the operational semantics of the program being
transformed.

4.1.1 Modernizing guards and calls to old-fashioned
functions

For many years now, the Erlang/OTP system has been supporting two sets
of type checking functions, often used as guards: old-style (atom/1, binary/1,
integer/1, . . .) and new-style ones (is atom/1, is binary/1, is integer/1,
. . .). In addition, many commonly used library functions have changed and con-
tinue to change names between releases (e.g., dict:list to dict/1 is now called
dict:from list/1, unix:cmd/1 changed name to os:cmd/1 for political correct-
ness, the reserved word/1 function which used to be in io lib is now located in
the erl scan module, etc.). The modernizing function name refactoring modern-
izes the guard names and takes care of such function renaming issues. Occasion-
ally, this refactoring is aided by the eliminating imports refactoring which expands
-import directives and exposes the proper module name of function calls. In doing
so, it also eases the job of subsequent transformations.

11

12 CHAPTER 4. TRANSFORMATIONS

This set of refactorings is pretty straightforward for a software tool that under-
stands Erlang syntax, but quite tedious for programmers and very difficult, if not
impossible, to perform with a global search and replace or with a simple sed-like
script that does not understand what is a guard position in Erlang. Consider the
following Erlang code which, although artificial and of really poor code quality,
is syntactically valid. It is probably not immediately obvious to the human eye
where the guard is.

-module(where_is_the_integer_guard).
-export([obfuscated_integer_test/1]).

obfuscated_integer_test(X) ->
integer(X) =:= integer.

integer(X) when (X =:= infinity);
integer(X) -> integer;
integer(_) -> not_an_integer.

In contrast, for an automated refactoring tool like tidier, which understands Erlang
syntax, the modernization of guards is a simple and straightforward task.

4.1.2 Eliminating explicit imports

This transformation eliminates all import statements and rewrites all calls to
explicitly imported functions as remote calls. It is illustrated below:

-import(m1, [foo/1]).
-import(m2, [bar/2]).

t(X) ->
case foo(X) of
...

bar(A, B),
...

=⇒

t(X) ->
case m1:foo(X) of
...
m2:bar(A, B),

...

Admittedly, to a large extent the eliminating imports refactoring is a matter of
taste. Its primary goal is not to make the code shorter but to improve its read-
ability and understandability by making clear to the eye which calls are calls to
module-local functions and which are remote calls. In addition, in large code bases,
it becomes easier to find (e.g. using tools like Unix’s grep) all calls to a specific
m:f function of interest. Of course, it is possible to do the above even in files with
explicit imports, but it is often more difficult.

4.1.3 Turning apply calls to remote calls

Another simple but also very useful transformation is the apply elimination.
Whenever the last argument of either apply/2 or apply/3 is a list whose elements

4.1. SIMPLE TRANSFORMATIONS 13

are statically known, the apply can be rewritten as a remote function call. For
example, the call apply(M,F,[A1,A2]) can be rewritten as M:F(A1,A2). This
refactoring both reduces the code size and improves code readability and under-
standability. In addition, using remote function calls instead of apply may allow
other program analysis tools recognize function calls that they would not be able
to recognize in the apply format. So this refactoring may result in more accurate
analyses.

4.1.4 Turning funs to functions

Lambda lifting or closure conversion [10] is the process of eliminating free vari-
ables from local function definitions from a computer program. The elimination of
free variables allows the compiler to hoist local definitions out of their surrounding
contexts into a fixed set of top-level functions with an extra parameter replacing
each local variable. By eliminating the need for run-time access-links, this may re-
duce the run-time cost of handling implicit scope. Many functional programming
language implementations use lambda lifting during compilation. This compiler
optimization served as an inspiration for this refactoring which transforms fun ex-
pressions to local functions and changes the point where the fun expression was
applied to a function call. For the reader that is familiar with object-oriented pro-
gramming languages this transformation is actually quite similar to the well-known
extract method refactoring [8].

In order to perform this refactoring, tidier locates all fun expressions in a func-
tion clause and replaces them with local function calls. After the function analysis,
tidier generates definitions for the local functions that correspond to the replaced
fun expressions. These local functions take their name out of the function from
which they were extracted extended by a suitable numerical suffix. Occasionally,
the newly introduced local functions may have different arities than their corre-
sponding initial fun expressions. This is due to the fact that the fun expression
may be using variables that are available within the scope of the source function
and therefore have to be passed to the extracted functions.

As an example, Figure 4.1 shows the effect of these two refactorings and of in-
line function on a very simple module. The reader should notice that even though
these refactorings are very simple on their own, their synergy effects considerably
simplify the code. This is not something which is restricted to the refactorings of
this section; instead, it is a general phenomenon. As we will see in the following
sections, many of the most advanced refactorings benefit or are triggered by the
simple refactorings of this section.

4.1.5 Introducing min and max

In a programming language that is still under development and constantly
evolves it is very common for newly introduced library functions to allow a simpler

14 CHAPTER 4. TRANSFORMATIONS

-module(example).
-export([t/1]).

t(A) ->
fun (X) ->
m:foo(X)

end(A).

apply
⇐=

elimination

-module(example).
-export([t/1]).

t(A) ->
apply(fun (X) ->

m:foo(X)
end, [A]).

lambda ⇓ lifting

-module(example).
-export([t/1]).

t(A) -> t_1(A).

t_1(X) -> m:foo(X).

inline
=⇒

function

-module(example).
-export([t/1]).

t(A) -> m:foo(A).

Figure 4.1: Illustration of refactorings that work hand in hand.

and more succinct way of expressing the programmer’s intention. Erlang could be
no exception and in this section we will present an automatic refactoring that
employs the newly introduced library functions erlang:min/2 and erlang:max/2
in order to simplify existing code.

Although Erlang has always supported a total order among terms there was
no min or max function (the aforementioned library functions have only just been
introduced). As a result, there is a huge number of erlang modules that contain
a local min or max function. Moreover, the absence of these functions has clut-
tered many pieces of code with expressions of the form (this is actual code from
Erlang/OTP R13B’s otp/hipe/util/hipe dot.erl:145):

calc_dim([$\\, $n|T], H, TmpW, MaxW) ->
if TmpW > MaxW -> calc_dim(T, H+1, 0, TmpW);

true -> calc_dim(T, H+1, 0, MaxW)
end

By employing the min-max refactoring, tidier will immediately transform the above
to:

calc_dim([$\\, $n|T], H, TmpW, MaxW) ->
calc_dim(T, H+1, 0, erlang:max(TmpW, MaxW))

Although this is a rather trivial refactoring, we present it here to show how tidier
cannot only be used to modify existing code, but also to easily introduce new
functions that can make the code simpler and of better quality.

4.2. RECORD TRANSFORMATIONS 15

4.1.6 Code beautification

Tidier, due to its automatic nature can also be used to save the programmer’s
precious time by performing all sorts of tedious tasks. As an example we will
present a transformation that was suggested to us by a programmer that was tired
of performing manually this refactoring to his code. Having lists of characters in
clause patterns can be quite frequent in certain applications. However these lists
of characters can be expressed much more elegantly by using strings instead. An
example of the refactoring that will be performed by tidier is illustrated bellow
(the example is fictitious):

foo(Str) ->
case Str of
"" -> ok;
[$b, $a, $r | T] -> foo(T)

end.

⇓

foo(Str) ->
case Str of
"" -> ok;
"bar" ++ T -> foo(T)

end.

Although the refactoring is in itself trivial, the reader might agree that the
new code is better looking and that the transformation is very tiresome to perform
manually. Enhancing tidier with such a refactoring is a matter of minutes, while
partially performing this transformation by hand might actually take more time.
Moreover, adding such a refactoring to an automatic tool has one more advantage.
From now on we have the ability to apply this transformation to any code (newer,
older or of others) instantly, avoiding the time-consuming search-and-transform.

4.2 Record transformations

The initial purpose of this refactoring, which is available in tidier but not in
erl tidy, was to eliminate uses of is record/[2,3] guards which are somewhat
superfluous in modern Erlang. Indeed, in most Erlang programs these guards are
not really needed except in cases where they are used in a disjunction to test for
different alternatives where at least one of them checks that a term is a record as
e.g. in:

foo(T) when is_atom(T); is_record(T, rec) ->
...

16 CHAPTER 4. TRANSFORMATIONS

With time more transformations were added to that of eliminating is record
guards and nowadays we use the name record transformations to describe a whole
bunch of simple refactorings involving records that tidier performs. We will il-
lustrate them step-by-step using a real code example from Erlang/OTP R13B’s
lib/ssl/src/ssl prim.erl:121 (slightly simplified). The initial code fragment
is the following:

process(St, Pid) when is_record(St, st),
St#st.status =:= open,
is_pid(Pid) ->

inet_tcp:controlling_process(St#st.proxysock, Pid).

As we can see the variable St of the function clause is an #st{} record. Tidier will
detect this fact and will apply the record guard to matching refactoring, which will
substitute the is record/2 guard with an explicit record matching. The use of a
matching instead of a guard is to some extent a matter of taste. However, as we
shall soon see, this change can enable further refactorings. The clause after this
refactoring becomes:

process(#st{} = St, Pid) when St#st.status =:= open,
is_pid(Pid) ->

inet_tcp:controlling_process(St#st.proxysock, Pid).

The code is already shorter but this is only the beginning. In the clause body there
are two record field accesses (for fields named status and proxysock). These ac-
cesses can be eliminated by introducing fresh variables, using appropriate names,
and use a record expression in the clause head to initialize them by pattern match-
ing. Then the record accesses can be replaced by the new variables. After these
transformations, the St variable is no longer needed and it can also be eliminated.
After applying tidier’s record field access elimination refactoring, the clause be-
comes:

process(#st{status = Status, proxysock = Proxysock}, Pid)
when Status =:= open, is_pid(Pid) ->
inet_tcp:controlling_process(Proxysock, Pid).

The code can be shortened even more. The newly introduced variable Status is
only used in an exact equality guard. Therefore this variable can be eliminated and
the exact equality test can be replaced by pattern matching. After tidier applies
its equality guard to pattern matching refactoring, the final form of the code is the
one shown below:

process(#st{status = open, proxysock = Proxysock}, Pid)
when is_pid(Pid) ->
inet_tcp:controlling_process(Proxysock, Pid).

How names for fresh variables are chosen Tidier often needs to create
fresh variables and give them names. For example, we saw that tidier created

4.3. TRANSFORMATIONS OF COMMON LIST OPERATIONS 17

variables for the record fields and gave them names which are based on the names
of these fields. Actually, this is tidier’s second choice. Before generating names
for the fresh variables, tidier searches the clause in order to check whether the
programmer has already given names to the values of these record fields (usually
via matchings). For example, in a clause like the following:

vn(Peer) when is_record(Peer, peer) ->
MyPid = Peer#peer.pid,
MyPort = Peer#peer.port,
{MyPid, MyPort}.

the programmer has indicated that the names MyPid and MyPort are suitable for
the pid and port fields respectively. Thus, tidier will transform this clause to:

vn(#peer{pid = MyPid, port = MyPort}) ->
{MyPid, MyPort}.

Whenever none of the above two options are possible for some record field (i.e.,
there is no user-supplied name for it and the name of the field is already used for
some other variable in the clause), tidier will generate a fresh name that is formed
by the field name followed by an appropriate integer (e.g., Port42).

Experience In the above examples we have demonstrated the result of the
records transformations on short pieces of code. On large segments of code, the
changes are often more extensive and radical. Large code segments may contain
multiple record guards or record variables, which tidier handles simultaneously,
and may have much more record field accesses, which are often identical in differ-
ent branches. In our experience, their elimination results in more succinct, better
organized, and more readable code. Finally, we also should note that any of the
refactorings of the records transformations can jump start the process. For exam-
ple, if in our first example the programmer had manually replaced the is record/2
guard with a pattern matching, tidier would still have been able to apply the other
refactorings, resulting in the same final code.

Semantic equivalence All the aforementioned record transformations have
no effect on the operational semantics of the program.

4.3 Transformations of common list opera-

tions

List processing is very common in functional programs and Erlang programs are
no exception. It is therefore natural for tidier to pay special effort to simplifying
uses of some commonly employed functions of the lists module of the Erlang
standard library.

18 CHAPTER 4. TRANSFORMATIONS

4.3.1 Transforming appends and subtracts

The lists:append/2 and lists:subtract/2 functions have convenient short-
hands, which are also binary operators. This refactoring is trivial and its purpose
is to make the source code more succinct. This is illustrated below.

...
case lists:append(L1, L2) of
...
L = lists:subtract(L3, [a]),

...

=⇒

...
case L1 ++ L2 of
...
L = L3 -- [a],

...

4.3.2 Eliminating lists:keysearch/3

As the Erlang language and its implementation evolve, some library functions
become obsolete. These functions typically get replaced by some other function
with similar functionality. Occasionally a new function which is cleaner and/or
more efficient than the old one is added in the library and recommended as their
replacement.

As a rather recent such example, we discuss in detail the case of the commonly
used library function lists:keysearch/3. This function returns either a pair of
the form {value,Tuple} or the atom false. Throughout the years, it was re-
peatedly noticed by various Erlang programmers that Tuple is a tuple, a whole
tuple and nothing but a tuple, so wrapping it in another tuple in order to distin-
guish it from the atom false is completely unnecessary. As a result, Erlang/OTP
R13 introduced the library function lists:keyfind/3 which has the functionality
of lists:keysearch/3 but instead returns either Tuple or false. Notice that
a simple function renaming refactoring and removing the value wrapper do not
suffice in this case. To see this, consider the following excerpt from the code of
Erlang/OTP R13B’s lib/stdlib/src/supervisor.erl:800:

case lists:keysearch(Child#child.name, Pos, Res) of
{value, _} -> {duplicate_child, Child#child.name};
_ -> check_startspec(T, [Child|Res])

end

To preserve the semantics, this code should be changed to:

case lists:keyfind(Child#child.name, Pos, Res) of
false -> check_startspec(T, [Child|Res]);
_ -> {duplicate_child, Child#child.name}

end

and indeed this is the transformation that tidier used to perform based on type
information about the return values of the two functions (the use of the past tense
will be explained later in this section). Moreover, notice that there are calls to
lists:keysearch/3 that cannot be changed to lists:keyfind/3. One of them,
where the matching is used as an assertion, is shown below:

4.3. TRANSFORMATIONS OF COMMON LIST OPERATIONS 19

...
{value, _} = lists:keysearch(delete, 1, Query),
...

However, a couple of observations allowed us to fine-tune this refactoring and
add one more useful transformation. After getting feedback from Erlang devel-
opers it became apparent that not everyone will find this transformation useful.
The reason for that was the fact that many developers want their applications to
be backwards compatible with earlier releases of Erlang/OTP and therefore were
not keen to upgrade their code. Moreover, we observed that cases like the above,
where the transformation is not immediate or cannot be performed, occurred very
frequently in code. However, one can easily observe that in both examples the
lists:keysearch/3 function is used to check if a specific element is a member
of a list. The Erlang lists module provides an easier and simpler way to per-
form such a check, the lists:keymember/3 function. So the elimination of the
lists:keysearch/3 uses was split in two transformations: (i) one that simplified
the search to a member-check and (ii) one that replaced lists:keysearch/3 with
lists:keyfind/3. They are activated by different flags so that a user can perform
the lists:keymember/3 transformation and at the same time retain backwards
compatibility.

So the refactoring that will be suggested by tidier for the first of the above
examples is shown below:

case lists:keymember(Child#child.name, Pos, Res) of
true -> {duplicate_child, Child#child.name}
false -> check_startspec(T, [Child|Res]);

end

The lists:keymember/3 function also allows us to transform the aforemen-
tioned assertion example which now becomes:

...
true = lists:keymember(delete, 1, Query),
...

Semantic equivalence The careful reader will notice that this transformation
is only possible when the matching expression does not represent the value of
another parent expression (for example the return value of a function). If this
was not the case, the above transformation would change the value of the parent
expression (from {’value’, tuple()} to ’true’) and therefore would not be
semantics preserving.

This transformation came as a result of a 3-minute related talk with Erlang
developers. We expect that a public release of the tool will result in a long wish-list
and perhaps many more refactorings.
This particular transformation involving lists:keysearch/3 is just one member
of a wider set of similar function modernizations that are currently performed by

20 CHAPTER 4. TRANSFORMATIONS

tidier. Their purpose is to assist programmers with software maintenance and up-
grades. Judging from the number of obsolete function warnings we have witnessed
remaining unchanged across different releases, both in Erlang/OTP and elsewhere,
it seems that in practice updating deprecated functions is a very tedious task for
Erlang programmers to perform manually.

4.3.3 Eliminating recursion

It must have become obvious by now that Erlang offers a variety of ways to
express the programmer’s intention. Finding the easiest and simplest way is never
an easy task. Using recursion to perform list processing is an everyday routine
for programmers that use functional languages. However, because of this habit
programmers might miss opportunities to write a simpler and more elegant version
of their code.

The eliminating recursion refactoring aims at the simplification of boolean
functions that perform list processing by using the library functions lists:any/2
and lists:all/2 instead of recursion. In order to perform this transformation,
tidier detects functions that emulate the lists:[all,any]/2 function and replaces
the body of these functions with a call to lists:[all,any]/2. This is currently
one of the few complete function refactorings that are performed by tidier. We
demonstrate the transformation by using an example from Erlang/OTP R13B’s
lib/ic/src/ic pragma.erl:1225 (slightly modified) :

is_decimal_str([]) -> true;
is_decimal_str([F | Rest]) ->

case is_decimal_char(F) of
true -> is_decimal_str(Rest);
false -> false

end.

⇓

is_decimal_str(Fs) -> lists:all(fun is_decimal_char/1, Fs).

4.3.4 Transforming maps to comprehensions

The lists:map/2 function is one of the most frequently used library functions
in Erlang. It applies a function to all elements of a list and returns the list with
the function’s results.

For a number of years now, Erlang has been enhanced with a very powerful and
expressive construct, called list comprehension, that provides all functionality of a
lists:map/2 and even more. Besides being more powerful, list comprehensions are
typically more succinct than maps and arguably also more modern. The list map
to comprehension refactoring performs the automatic conversion of a lists:map/2
call to a list comprehension. To perform the actual transformation, tidier intro-
duces a fresh variable in order to create the list generator and applies the function
to that variable. Let’s see the refactoring on an example:

4.3. TRANSFORMATIONS OF COMMON LIST OPERATIONS 21

mp(L) ->
lists:map(fun ({X, Y}) -> X + Y;

(X) when is_integer(X) -> 2 * X
end, L).

The semantically equivalent code using a list comprehension is:

mp(L) ->
[fun ({X, Y}) -> X + Y;

(X) when is_integer(X) -> 2 * X
end(V) || V <- L].

Although more succinct, very few Erlang programmers, if any, would consider the
above code an improvement over the original as far as readability is concerned.
The situation gets better by tidier automatically applying the fun to function (aka
lambda lifting) refactoring we have discussed in Section 4.1.4 and also shown in
Figure 4.1. Doing so results in the following code:

mp(L) -> [mp_1(V) || V <- L].

mp_1({X, Y}) -> X + Y;
mp_1(X) when is_integer(X) -> 2 * X.

which Erlang programmers would most probably find more to their liking. In fact,
this is the code that the auto list comp option of the erl tidy module would also
generate.

4.3.5 Transforming filters to comprehensions

This refactoring is very similar to the previous one and transforms occurrences
of lists:filter/2 to a semantically equivalent list comprehension. Tidier per-
forms this transformation by applying the filtering function to the newly intro-
duced generator variable and places this call as a filter test immediately after the
generator. An example of the list filter to comprehension refactoring followed by
a fun to function refactoring is shown below:

flt(L) ->
lists:filter(fun ({X, Y}) -> true;

(X) -> is_atom(X)
end, L).

⇓
flt(L) ->

[V || V <- L, fun ({X, Y}) -> true;
(X) -> is_atom(X)

end(V)].

⇓

22 CHAPTER 4. TRANSFORMATIONS

flt(L) -> [V || V <- L, flt_1(V)].

flt_1({X, Y}) -> true;
flt_1(X) -> is_atom(X).

Once again, the above transformation is quite simple and is also performed by the
erl tidy module of Erlang/OTP.

4.4 List comprehension simplifications

Although the list map/filter to comprehension refactorings followed by an im-
mediate fun to function refactoring results in good looking code we noticed that
even better looking code could be generated, especially in certain very commonly
occurring cases. We therefore introduced and implemented in tidier the list compre-
hension simplifications refactorings, which describes a family of simple refactorings
that can be applied either to list comprehensions which already exist in the code
or to those created after applying the list map/filter to comprehension refactorings
of the previous section. Let us examine these refactorings.

4.4.1 Transforming a fun to a direct call

This is a very simple refactoring that can be applied when the function of
the comprehension is just a fun name/arity combination (possibly also module-
qualified). In this case tidier transforms the fun application to a direct call. The
following example illustrates this refactoring on a lists:map/2 call which exists
in the code of Erlang/OTP R13B’s lib/kernel/src/inet parse.erl:654.

lists:map(fun dig_to_hex/1, lists:reverse(R))

⇓

[dig_to_hex(V) || V <- lists:reverse(R)]

4.4.2 Inlining bodies of simple funs

Whenever the fun definition is simple, the resulting comprehension is not what
an expert Erlang programmer would write when transforming the call to map
or filter by hand. In the context of list comprehension simplifications, tidier
considers a fun definition simple whenever: 1) the fun’s argument is a single fresh
variable, and 2) the fun’s body is either a single call or a boolean expression (for
the case of transforming a call to lists:filter/2 only). In such cases, the fun’s
body can be inlined in the appropriate place.

We show two examples that illustrate this refactoring. First a case of trans-
forming a call to lists:map/2:

4.4. LIST COMPREHENSION SIMPLIFICATIONS 23

lists:map(fun (X) -> X + 42 end, L)

⇓

[X + 42 || X <- L]

and also a case of transforming a call to lists:filter/2:

lists:filter(fun (X) ->
is_integer(X) andalso X > 0

end, L)

⇓

[X || X <- L, is_integer(X), X > 0]

Notice that for preserving the semantics of list comprehensions in Erlang, tidier
has to restrict itself to funs whose argument is a variable. For example, without
precise information about the types of the list elements it is not permitted to
perform the following list map to comprehension refactoring:

lists:map(fun ({X, Y}) -> X + Y end, L)

6⇓

[X + Y || {X, Y} <- L]

because the former code will raise an exception if the list contains some element
other than a pair, while the latter will simply filter out this element. Similar
constraints hold also for transforming lists:filter/2, even though, as we will
see below, we can often do better in this case.

4.4.3 Inlining simple boolean filtering funs

The most commonly occurring fun used in a lists:filter/2 is a fun consisting
of two clauses. The first clause, which is usually the true branch, has a specific
clause head pattern and possibly also a set of guards (either in the clause head
or in the body) specifying which list elements to keep. The second is a match-all
clause to filter out all other elements.

For such list filtering funs, tidier’s refactoring uses the head pattern as a filter
expression in the list comprehension generator, and the guards (if any) as further
filters after the generator. We illustrate this refactoring with a code fragment from
Erlang/OTP R13B’s lib/appmon/src/appmon dg.erl:69:

24 CHAPTER 4. TRANSFORMATIONS

efilter(Es) ->
lists:filter(fun ({_V1, _V2, primary}) -> true;

(_E) -> false
end, Es).

⇓

efilter(Es) ->
[E || E = {_V1, _V2, primary} <- Es].

and with a clause from lib/asn1/src/asn1ct.erl:2436 (but with the actual
function name abbreviated):

gff(_, Name, L) when is_atom(Name); is_list(Name) ->
lists:filter(fun ({N,_,_}) when N == Name -> true;

(_) -> false
end, L);

⇓

gff(_, Name, L) when is_atom(Name); is_list(Name) ->
[T || T = {N, _, _} <- L, N == Name];

In both cases, we have taken the liberty to also use the static structure reuse
refactoring we are going to present in Section 4.6.

Semantic equivalence The false branch of the fun expression has to be a
match-all clause, so that the fun expression can be equivalent to the filtering effect
of the list comprehension generator.

4.5 Transformations requiring type informa-

tion

Some refactorings require or benefit from type information. We describe those
that tidier currently implements.

4.5.1 Transforming coercing to exact equalities and in-
equations

In the beginning, the Erlang Creator was of the opinion that the only reason-
able numbers were arbitrary precision integers and consequently one equality (==)
and one inequation (/=) symbol were sufficient for comparing between different
numbers. At a later point, it was realized that some programming tasks occasion-
ally also need to manipulate floating point numbers and consequently Erlang was
enriched by them. Most probably, because C programmers were accustomed to ==

4.5. TRANSFORMATIONS REQUIRING TYPE INFORMATION 25

foo(Rec, Fields, Key) when is_tuple(Rec), is_list(Fields),
size(Rec)-1 =:= length(Fields) ->

lists:zip([Key|Fields], tuple_to_list(Rec)).

⇓

foo(Rec, Fields, Key)
when tuple_size(Rec)-1 =:= length(Fields) ->
lists:zip([Key|Fields], tuple_to_list(Rec)).

Figure 4.2: A guard simplification refactoring from the actual code of
CouchDB (src/mochiweb/mochiweb util.erl:422).

having coercing semantics for numbers, comparison operators for exact equality
(=:=) and inequation (=/=) were added to the language. These operators perform
matching between numbers. Up to this point all is fine. The problem is that in 99%
of all numeric comparisons, Erlang programmers want matching semantics but use
the coercing equality and inequation operators instead, probably unaware of the
distinction between them or its consequences for readability of their programs by
others.

Semantic equivalence Tidier employs local type analysis to find opportuni-
ties for transforming coercing equalities and inequations with an integer to their
matching counterparts. The compared have to be both integers in order for the
transformation to be semantics-preserving. The analysis, although conservative,
is often quite effective. The transformation itself is trivial. A conservative type
analysis is the key element for semantics-preservation in all the refactorings that
are performed by tidier and depend on type information.

4.5.2 Specializing the size function

Till quite recently, there was only one way to find the size of a tuple or a binary:
by employing the overloaded function size/1, which could also be used as a guard.
Consequently, many programs have been written using this function. Erlang/OTP
R12 introduced two specializations of this function: tuple size/1 which works
with tuples only and byte size/1 which works with bitstrings (binaries are just a
special case of bitstrings). These functions are preferable because they express in
a better way the intention of the programmer, provide more information to static
analysis tools such as Dialyzer [14], and are slightly more efficient than size/1.
Unfortunately, manual conversion of existing programs is both tedious and error
prone. Tidier comes to the rescue here: it employs local type inference to determine
the type of size’s argument and specializes the call appropriately. At least in

26 CHAPTER 4. TRANSFORMATIONS

decode_octets(<<0:1,Len:7,Bin/binary>>, C, Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(reverse([Value|Acc])),
case C of
Int when is_integer(Int), size(BinOctets) == Int ->
{BinOctets,Bin2};

...

⇓

decode_octets(<<0:1,Len:7,Bin/binary>>, C, Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(reverse([Value|Acc])),
case C of
Int when byte_size(BinOctets) =:= Int ->
{BinOctets,Bin2};

...

Figure 4.3: Another guard simplification refactoring from actual code of
Erlang/OTP (lib/asn1/src/asn1rt per bin.erl:495).

the code of Erlang/OTP, we have seen only few cases where the inference is not
strong enough to automatically perform this specialization. These cases are left
for manual refactoring.

4.5.3 Simplifying guard sequences

This refactoring started because we noticed that, especially with size/1 being
overloaded, it was quite common for tidier to come across code that looks as follows:

foo(T) when is_tuple(T), size(T) > 2 -> ...

The size specialization refactoring of the previous paragraph will transform this
code to:

foo(T) when is_tuple(T), tuple_size(T) > 2 -> ...

and it is pretty easy to notice now that the is tuple/1 guard is semantically not
needed anymore, because the tuple size/1 guard does not succeed for anything
but tuples. Consequently the code can be simplified to the following:

foo(T) when tuple_size(T) > 2 -> ...

Once this refactoring was in place, we decided to extend it to simplify other guard
sequences that Erlang programmers occasionally write most probably unaware
that they are unnecessarily cluttering their code with tests which are implied by
others.

4.6. TRANSFORMATIONS THAT ELIMINATE REDUNDANCY 27

Two examples Figure 4.2 shows one interesting such case from the code of
CouchDB. The first two guards are unnecessary as they are implied by the third
once the size/1 guard has been specialized.

Similarly, Figure 4.3 shows a case from the code of the asn1 application of Er-
lang/OTP R13B. Given built-in knowledge that the return type of size functions
is integer, the guard sequence can be simplified.1

Semantic equivalence Since the redundant guards have to be in conjunction
with the guards that imply their usage, the transformation is always semantics-
preserving.

4.6 Transformations that eliminate redundancy

As the astute reader has no doubt noticed from the examples of the previous
section, there is a fine line between code simplification refactorings and transfor-
mations that an optimizing compiler performs. Tidier further explores this idea
and offers some refactorings that are partly inspired by compiler optimizations.

4.6.1 Avoid re-creation of existing tuples and lists

In Erlang identical tuples or lists created in different points of a clause, where
one point dominates the other, can be assigned to variables and subsequently
become shared, thereby avoiding their unnecessary re-creation. This refactoring,
called static structure reuse, is illustrated below:

t({X, [3, Y]}) ->
case m:foo(X) of
true ->
[3, Y];

false ->
{X, [3, Y]}

end.

=⇒

t({X, [3, _Y] = L} = T) ->
case m:foo(X) of
true ->
L;

false ->
T

end.

This is exactly what tidier would do in this case. The notion of identity that
tidier uses to identify opportunities for this refactoring is syntactic identity : i.e.,
two structures are considered identical if they have exactly the same statically
known sub-terms, including the same variable names, in all their corresponding
positions. Note however that these sub-terms cannot contain function calls (or
macros) because these calls may invoke side-effects.

The main advantages of this refactoring are that it typically makes the source
code shorter and its execution more efficient both in time and in space. Indeed,
many Erlang programmers who are aware of its benefits perform this refactoring

1Actually, a global type analysis would discover that the is integer/1 guard is com-
pletely redundant in the code of Figure 4.3.

28 CHAPTER 4. TRANSFORMATIONS

by hand on their programs.2 However, it is often quite difficult for the human
eye to spot all opportunities for structure reuse in programs, especially those that
are not immediately obvious. For example we have noticed that, even in code
of performance conscious programmers, the following case of deconstructing and
constructing the same term typically remains untransformed:

[{A, B, C, D} || {A, B, C, D} <- List]

The static structure reuse refactoring of tidier transforms the above to:

[T || T = {_A, _B, _C, _D} <- List]

which is both shorter and will execute more efficiently, both in time and in space.
(The BEAM bytecode compiler currently does not perform this optimization and
will create copies of the tuples for the list comprehension’s result.)

On the other hand, a problem with this refactoring is that if performed aggres-
sively, as an optimizing compiler performing common subexpression elimination
would do it, it results in code which is quite unnatural and, in all probability,
would not be something performed also by a human programmer. This is espe-
cially true for lists and we illustrate it by the following example:

t([X, Y, Z]) ->
case m:foo(X) of
true ->
[Z];

false ->
[Y, Z]

end.

6⇒

t([X | [Y | [Z] = L1] = L2]) ->
case m:foo(X) of
true ->
L1;

false ->
L2

end.

Since only few programmers would consider the code on the right an improvement
over the one on the left as far as code readability is concerned, tidier does not
perform such refactorings. In particular, the static structure reuse refactoring
treats lists as atomic objects and never breaks them into smaller parts.

Semantic equivalence The structures that are assigned to a variable and
reused have to be side-effect free. Moreover, due to the fact that tidier performs
the transformations on source code containing macros (the preprocessor is not
invoked), the structures must not contain or be within a macro context.

4.6.2 Temporary variable elimination

This is another refactoring inspired from compiler optimizations, namely from
copy propagation. Temporarily storing an intermediate result in a variable to be

2The inclusion on the list of refactorings performed by tidier of the structure reuse
refactoring was a suggestion to us by Kenneth Lundin.

4.6. TRANSFORMATIONS THAT ELIMINATE REDUNDANCY 29

used in the immediately following expression is actually commonplace in almost
all programming languages. Tidier, by performing this refactoring, eliminates the
temporary variable and replaces it with its value. This transformation, combined
with the straightening refactoring of the previous paragraph can lead to significant
simplifications. For example, consider the following fragment from the develop-
ment version of Ejabberd’s source code (file src/ejabberd c2s.erl:1951, with
one variable renamed so that the code fits here):

get_statustag(P) ->
case xml:get_path_s(P, [{elem, "status"}, cdata]) of
ShowTag -> ShowTag

end.

by straightening the case expression and eliminating the temporary variable the
code will be transformed by tidier to:

get_statustag(P) ->
xml:get_path_s(P, [{elem, "status"}, cdata]).

However, if tidier applied this refactoring aggressively, we would end up with
code ’simplifications’ that would look completely unnatural and most probably
would never be performed by a programmer. An example of unwanted behaviour
from this refactoring is illustrated below:

get_results(BitStr) ->
Tokens = get_tokens(BitStr),
ServerInfo = get_server_info(Tokens),
process_data(ServerInfo).

6⇓

get_results(BitStr) ->
process_data(get_server_info(get_tokens(BitStr))).

Since only few Erlang programmers would consider the resulting code an improve-
ment over the original one as far as code readability is concerned, tidier does not
perform such refactorings.

Instead, tidier performs the temporary variable elimination refactoring when:

• The variable that was used to store the temporary result is eventually used
to return the result of a clause (as in the first example we saw).

• It is determined that such a refactoring can lead to further and more radical
refactorings later on (such as the ones we will present in Section 4.8). In
this case, to ensure that such refactorings are possible after the transforma-
tion, tidier has to perform a speculative analysis about the result of further
refactorings after this transformation.

30 CHAPTER 4. TRANSFORMATIONS

...
case Reply of
{ok, Socket} ->

{ok, {IP, _Port}} = inet:peername(Socket),
true = member_address(IP, which_slaves()),
PS = erl_prim_loader:prim_init(),
boot_loop(Socket, PS)

end.

⇓
...
{ok, Socket} = Reply,
{ok, {IP, _Port}} = inet:peername(Socket),
true = member_address(IP, which_slaves()),
PS = erl_prim_loader:prim_init(),
boot_loop(Socket, PS).

Figure 4.4: An example of case straightening on actual code (from Er-
lang/OTP R13B’s lib/kernel/src/erl boot server.erl:274).

4.7 Simplifying control

Refactorings under this category involve cases and ifs and come in two
flavours: straightening statements and simplifying (matching or logical) expres-
sions.

4.7.1 Straightening

Sometimes, perhaps due to code evolution, control statements can end up
having only one alternative and this refactoring straightens their code. This is
illustrated in Figure 4.4. It is clear that the code becomes smaller and actually in
this case it is also more uniform in style. The only side-effect, albeit a relatively
innocent one, is that this code might raise a badmatch rather than a case clause
exception if Reply is not an ok-tagged pair.

Sometimes, the source code has clear signs that the control flow of the case
statement is intentional as in the code shown below:

case mod:has_property(X) of
true -> handle(X)
%% all other cases not handled yet
%% false -> ...
%% unknown -> ...

end,

Since tidier cannot read comments (or the minds of programmers!), as a rather

4.7. SIMPLIFYING CONTROL 31

ad hoc heuristic, it will never perform straightening on code that has a comment
inside a case statement.

Semantic equivalence This transformation is not strictly semantics-preserving.
A case clause exception in the initial code will become a bad match exception in
the refactored one. However, no exception will be silenced or missed by using this
transformation. Therefore, according to the design goals we have set for tidier 3,
we accept this refactoring as semantics-preserving. What is more, we should men-
tion that, when the result of the case expression is assigned to a term, in order
for the transformation to be correct, the straightened case expression has to be
placed within a block expression and (if possible) to be flattened.

4.7.2 Simplifying expressions

The case expression in Erlang is a powerful construct, but occasionally some
case expressions clutter the code unnecessarily. The following is an example from
the source code of Erlang/OTP R13B’s lib/kernel/src/group.erl:368.

case get_value(binary, Opts, case get(read_mode) of
binary -> true;
_ -> false

end) of
true -> ...

Tidier simplifies the above code to:

case get_value(binary, Opts, get(read_mode) =:= binary) of
true -> ...

As another, rather interesting example of unnecessary code cluttering, we show the
refactoring of code from Erlang/OTP R13B’s lib/xmerl/src/xmerl ucs.erl:549.
(The function name and one variable name are shorter so that the example fits
here.)

t_charset(Fun, In) ->
case lists:all(Fun, In) of
true ->
true;

_ ->
false

end.

⇒ t_charset(Fun, In) ->
lists:all(Fun, In).

Such refactorings are aided by tidier having knowledge about the return type of
commonly employed functions; e.g., that the return value of lists:all/2 is ei-
ther true or false. Similar cases, involving the lists:member/2 function, occur
in the code of lib/inviso/src/inviso tool lib.erl:342 and in the code of
lib/inviso/src/inviso tool.erl:2125.

32 CHAPTER 4. TRANSFORMATIONS

is_pure_op(N, A) ->
case is_bool_op(N, A) of

true -> true;
false ->

case is_comp_op(N, A) of
true -> true;
false -> is_type_test(N, A)

end
end.

⇓

is_pure_op(N, A) ->
is_bool_op(N, A) orelse is_comp_op(N, A)

orelse is_type_test(N, A).

Figure 4.5: Simplification of nested case expressions.

Switching on true and false is very common and this programming id-
iom often clutters the code unnecessarily. The clause on Figure 4.5 is from
lib/hipe/cerl/cerl to icode.erl:2370 and is simplified as shown in the fig-
ure.

Naturally, such simplifications are not restricted to case expressions, but
are also applicable to ifs. The following example was taken from real code
(lib/percept/src/egd render.erl:313).

if
Yp =:= Y -> true;
true -> false

end

=⇒ Yp =:= Y

As another example, Figure 4.6 shows a significant simplification of Erlang Web’s
wparts-1.2.1/src/wtype time.erl:177. In this case the code will be simplified
further by tidier when the is between/3 guard Erlang Enhancement Proposal [20]
is accepted and by unfolding the lists:all/2 call as shown in the second trans-
formation of the same figure. This last step is not done yet. Many other similar
expression simplifications are currently automatically performed by tidier. We will
see in the next section how such simplifications come in handy in creating better
looking list comprehensions.

4.8 Simplifying list comprehensions even fur-

ther

Having the ability to simplify expressions allows us to do more effective trans-
formations of maps and filters to list comprehensions. For example, consider the

4.8. SIMPLIFYING LIST COMPREHENSIONS EVEN FURTHER 33

is_valid_time({H1, H2, H3}) ->
Hour = if (H1 >= 0) and (H1 < 24) -> true;

true -> false
end,

Minute = if (H2 >= 0) and (H2 < 60) -> true;
true -> false

end,
Sec = if (H3 >= 0) and (H3 < 60) -> true;

true -> false
end,

lists:all(fun(X) -> X == true end,
[Hour, Minute, Sec]).

⇓

is_valid_time({H1, H2, H3}) ->
Hour = (H1 >= 0) and (H1 < 24),
Minute = (H2 >= 0) and (H2 < 60),
Sec = (H3 >= 0) and (H3 < 60),
lists:all(fun (X) -> X == true end,

[Hour, Minute, Sec]).

...
⇓

is_valid_time({H1, H2, H3}) ->
Hour = is_between(H1, 0, 23),
Minute = is_between(H2, 0, 59),
Sec = is_between(H3, 0, 59),
Hour andalso Minute andalso Sec.

Figure 4.6: A case of multiple if simplifications.

following code:

lf(X, List) ->
lists:filter(fun (Y) ->

if
X =:= Y -> true;
true -> false

end
end,
List).

By combining the refactorings we have shown, the code can be simplified to:

lf(X, List) ->
[Y || Y <- List, X =:= Y].

34 CHAPTER 4. TRANSFORMATIONS

While the above example is fictitious, it does not differ much from actual
Erlang code that tidier has identified as simplifiable. For example, the code of
lib/kernel/src/pg2.erl:280 in Erlang/OTP R13B reads:

lists:filter(fun(Pid) when node(Pid) =:= Node -> false;
(_) -> true

end,
Pids)

Tidier automatically transforms the above code to:

[Pid || Pid <- Pids, node(Pid) =/= Node]

Similarly, the code of src/web/ejabberd http bind.erl:956 from Ejabberd 2.0.1
reads:

lists:filter(fun (I) ->
case I of
{xmlelement, _, _, _} -> true;
_ -> false

end
end,
Els)

and is automatically transformed by tidier to:

[I || I = {xmlelement, _, _, _} <- Els]

It appears that the above pattern is quite commonly employed for lists:filter/2.
For example, the code of lib/percept/src/percept db.erl:394 which in Er-
lang/OTP R13B reads:

lists:filter(fun (Element) ->
case Element of
{_, _, _} -> true;
_ -> false

end
end,
ATs ++ STs ++ ITs)

is automatically transformed by tidier to:

[Element || Element = {_, _, _} <- ATs ++ STs ++ ITs]

Once this functionality was in place, it whetted our appetite for more. Unfor-
tunately, to do considerably more requires information from a global type analysis.
Writing such an analysis and hooking tidier to it is currently future work. How-
ever, we noticed that in some cases even a simple function-local type analysis can
provide sufficient information for what we wanted to do.

4.8. SIMPLIFYING LIST COMPREHENSIONS EVEN FURTHER 35

4.8.1 Inlining simple mapping funs

In Section 4.4.2 we introduced a refactoring that allows us to inline simple
functions in list comprehensions and in 4.4.3 we explored a way to widen the
field of filtering functions that could be inlined. However, something was missing.
Mapping funs could also receive special treatment by tidier. The inlining simple
mapping funs refactoring addresses single-clause mapping funs that do not have a
match-all clause pattern.

In order to perform such a transformation, tidier has to ensure that every
element of the generator-list will always match the clause pattern and therefore
no function-clause exception can occur. Tidier handles this issue by performing a
local type analysis, that guarantees that the generated patterns will always match
the clause pattern3. A global type information analysis could certainly help tidier
identify many more opportunities for such a refactoring (this is currently future
work). However, it seems that even a simple local type analysis allows tidier to
locate quite a lot of cases where this refactoring can be applied.

Tidier completes the transformation by merging the clause and generator pat-
terns into a new generator pattern, and finally inlining the clause body into the
list comprehension.

This refactoring can be especially effective when combined with previous trans-
formations and the code being transformed has calls to lists:map/2 and lists:filter/2
nested within each other. As we will see, in some cases tidier is able to effectively
perform deforestation [25] at the level of source code. Some of the cases we found
in real code are interesting and worth the effort. Let’s see some examples.

In figure 4.8.1 we show hand in hand the transformations that are automat-
ically performed by tidier in a real code example (the code fragment is from Er-
lang/OTP R13B’s lib/inviso/src/inviso tool sh.erl:1638). The combina-
tion of the various tidier refactorings leads to significant code simplifications and
improvements.

The transformation is correct since the lists:filter/2 call provides sufficient
type information, namely that the intermediate list will consist of triples only,
which guarantees that the lists:map/2 call will not throw an exception.

A similar case where deforestation can also be performed also occurs in the
code of Wrangler (src/refac rename fun.erl:344):

3Specifically, tidier checks once more the syntactic equality of the generator and clause
patterns

36 CHAPTER 4. TRANSFORMATIONS

get_all_tracing_nodes_rtstates(RTStates) ->
lists:map(fun ({N,_,_}) -> N end,

lists:filter(fun ({_,{tracing,_},_}) -> true;
(_) -> false

end,
RTStates)).

lists:filter/2 to ⇓ list comprehension

get_all_tracing_nodes_rtstates(RTStates) ->
lists:map(fun ({N,_,_}) -> N end,

[X || X <- RTStates,
fun ({_,{tracing,_},_}) -> true;

(_) -> false
end(X)]).

inlining ⇓ filtering fun

get_all_tracing_nodes_rtstates(RTStates) ->
lists:map(fun ({N,_,_}) -> N end,

[X || X = {_,{tracing,_},_} <- RTStates]).

lists:map/2 to ⇓ list comprehension

get_all_tracing_nodes_rtstates(RTStates) ->
[fun ({N,_,_}) -> N end(V) ||

V <- [X || X = {_,{tracing,_},_} <- RTStates]].

performing ⇓ deforestation

get_all_tracing_nodes_rtstates(RTStates) ->
[fun ({N,_,_}) -> N end(X) ||

X = {_,{tracing,_},_} <- RTStates].

inlining ⇓ mapping fun

get_all_tracing_nodes_rtstates(RTStates) ->
[N || {N,{tracing,_},_} <- RTStates].

Figure 4.7: Showing the refactorings step-by-step, as they are applied by
tidier to the code of lib/inviso/src/inviso tool sh.erl:1638

4.8. SIMPLIFYING LIST COMPREHENSIONS EVEN FURTHER 37

Figure 4.8: Tidier simplifying the code of Wrangler.

lists:map(fun ({_, X}) -> X end,
lists:filter(fun (X) ->

case X of
{atom, _X} -> true;
_ -> false

end
end,
R))

Tidier automatically transforms this code to:

[X || {atom, X} <- R]

In both cases, the code is not only considerably more readable but also more effi-
cient as the input list is traversed only once and no intermediate list is constructed.
In figure 4.8 we can see tidier performing the aforementioned transformation

Semantic equivalence In order for the deforestation to be semantics-preserving,
the mapping and filtering funs must be side-effect free. Furthermore, we should
mention that this transformation is also not strictly semantics-preserving. Al-
though no exceptions will be missed or silenced, performing this refactoring might
change the sequence in which the exceptions will occur.

38 CHAPTER 4. TRANSFORMATIONS

4.8.2 List comprehensions in conjunction with zip and
unzip

One case that is currently treated specially by tidier is when the list that
will become the generator of a list comprehension is a list produced by a call to
lists:zip/2, which produces a list of pairs from two lists. The following example
is also from the code of Wrangler (src/refac annotate pid.erl:274):

lists:map(fun ({A, P}) -> F(A, P) end,
lists:zip(Args, ParSig))

Having built-in type information about the result of lists:zip/2 being a list of
pairs, allows tidier to currently transform the above code to the following:

[F(A, P) || {A, P} <- lists:zip(Args, ParSig)]

However, our plan is that if the comprehension multigenerators Erlang Enhance-
ment Proposal (EEP-19 [19]) is accepted and implemented in Erlang/OTP, tidier
will transform the above case to:

[F(A, P) || A <- Args && P <- ParSig]

thereby avoiding the construction of the intermediate list.
Since the case of lists:zip/2 was treated specially, it felt natural that tidier

should also pay some attention to lists:unzip/1. The following is an interesting
example of a significant simplification of actual code that tidier currently performs
(from Nokia’s tuulos-disco-0.1/master/src/event server.erl:123):

event_filter(Key, EvLst) ->
Fun = fun ({K, _}) when K == Key ->

true;
(_) ->

false
end,

{_, R} = lists:unzip(lists:filter(Fun, EvLst)),
R.

Tidier simplifies the above code to:

event_filter(Key, EvLst) ->
[V || {K, V} <- EvLst, K == Key].

thereby completely eliminating the construction of the list of pairs, and its decon-
struction by the lists:unzip/1 call.

4.9. TRANSFORMATIONS THAT REDUCE THE COMPLEXITY OF PROGRAMS39

4.9 Transformations that reduce the complex-

ity of programs

One of the blessings of high-level languages such as Erlang is that they allow
programmers to write code for certain programming tasks with extreme ease. Un-
fortunately, this blessing occasionally turns into a curse: programmers with similar
ease can also write code using a language construct that has the wrong complexity
for the task.

Perhaps the most common demonstration of this phenomenon is unnecessarily
using the length/1 built-in function as a test. While this is something we have
witnessed functional programming novices do also in other functional languages
(e.g., in ML), the situation is more acute in Erlang because Erlang allows length/1
to also be used as a guard. While most other guards in Erlang have a constant
cost and are relatively cheap to use, the cost of length/1 is proportional to the
size of its argument. Erlang programmers sometimes write code which gives the
impression that they are totally ignorant of this fact.

Consider the following real code excerpt which is taken from Erlang/OTP
R13B’s lib/xmerl/src/xmerl validate.erl:542:

star(_Rule,XML,_,_WSa,Tree,_S) when length(XML) =:= 0 ->
{[Tree],[]};

star(Rule,XMLs,Rules,WSaction,Tree,S) ->
... % recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction,Tree++WS++[Tree1],S)

end.

The use of length/1 to check whether a list is empty is totally unnecessary; tidier
will detect this and transform this code to:

star(_Rule,[],_,_WSa,Tree,_S) ->
{[Tree],[]};

star(Rule,XMLs,Rules,WSaction,Tree,S) ->
... % recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction,Tree++WS++[Tree1],S)

end.

thereby changing the complexity of this function from quadratic to linear.
The above is not a singularity. Tidier has discovered plenty of Erlang pro-

grams which use length to check whether a list is empty. Occasionally some
programs are not satisfied with traversing just one list to check if it is empty but
traverse even more, as in the code excerpt in Figure 4.9. Tidier will automatically
transform the two length/1 guards to exact equalities with the empty list (e.g.,
AllowedNodes =:= []). Note that this transformation is safe to do because the
two lists:filter/2 calls which produce these lists supply tidier with enough in-
formation that the two lists will be proper and therefore the guards will not fail
due to throwing some exception.

40 CHAPTER 4. TRANSFORMATIONS

choose_node({PrefNode, TaskBlackNodes}) ->
...
% ..and choose the ones that are not 100% busy.
AvailableNodes = lists:filter(fun({Node, _Load}) ->

...
end, AllNodes),

AllowedNodes = lists:filter(fun({Node, _Load}) ->
...

end, AvailableNodes),
if length(AvailableNodes) == 0 -> busy;

length(AllowedNodes) == 0 ->
{all_bad, length(TaskNodes), length(AllNodes)};

true ->
% Pick the node with the lowest load.
[{Node, _}|_] = lists:keysort(2, AllowedNodes),
Node

end;
...

Figure 4.9: Code with two unnecessary calls to length/1 (from the code of
disco-0.2/master/src/disco server.erl:280).

Tidier has also located a clause with three unnecessary calls to length/1 next
to each other. The code is from the latest released version of RefactorErl. Its
refactoring is shown in Figure 4.10. Neither we nor tidier understand the comment
in Hungarian, but we are pretty sure that the whole case statement can be written
more simply as:

SideEffs =/= [] orelse UnKnown =/= []
orelse DirtyFunc =/= []

thereby saving five lines of code (eight if one also includes the comments) and also
avoiding the unnecessary tuple construction and deconstruction.

Once this refactoring was in place, we observed that we could eliminate even
more uses of length (especially when they were used to check whether a list has
a small number of elements) by using a matching. What is more, we could now
introduce variables for the elements of the matched list and use them to extinguish
calls to hd/1 and lists:nth/2 that traversed the matched list. There were actual
cases where the initial list variable was not even needed (as we can witness in
figure 4.11).

Similar cases also exist which check whether a list contains just one or more that
one elements (e.g., length(L) > 1). Whenever relatively easy to do, tidier trans-
forms them as in the case shown below (from the code of lib/ssl/src/ssl server.erl:1139)
where tidier has transformed the if expression to a case expression and eliminated
the call to hd/1 as part of the transformation.

4.9. TRANSFORMATIONS THAT REDUCE THE COMPLEXITY OF PROGRAMS41

Figure 4.10: Tidier simplifying the code of RefactorErl
src/referl expression.erl.

process_body(Args) when length(Args) == 2 ->
Pid = element(2, lists:nth(1, Args)),
Node = element(2, lists:nth(2, Args)),
"<BODY BGCOLOR=\"#FFFFFF\">" ++ m:foo(Pid, Node) ++ "</BODY>".

⇓

process_body([Args1, Args2]) ->
Pid = element(2, Args1),
Node = element(2, Args2),
"<BODY BGCOLOR=\"#FFFFFF\">" ++ m:foo(Pid, Node) ++ "</BODY>".

Figure 4.11: Length simplification from R13’s
lib/appmon/src/appmon web.erl:647

decode_msg(<<_, Bin/binary>>, Format) ->
Dec = ssl_server:dec(Format, Bin),
if length(Dec) == 1 -> hd(Dec);

true -> list_to_tuple(Dec)
end.

⇓

decode_msg(<<_, Bin/binary>>, Format) ->
Dec = ssl_server:dec(Format, Bin),
case Dec of
[Dec1] -> Dec1;
_ -> list_to_tuple(Dec)

end.

42 CHAPTER 4. TRANSFORMATIONS

In some other cases though, the code also contains other guard checks which
complicate the transformation. For example, consider function splice/1 from the
source code of ErlIDE (located in file org.erlide.core/erl/pprint/erlide pperl.erl:171):

splice(L) ->
Res = splice(L, [], []),
case (length(Res) == 1) and is_list(hd(Res)) of
true -> no;
_ -> {yes, Res}

end.

Tidier will transform immediately the above code excerpt to the following:

splice(L) ->
Res = splice(L, [], []),
case Res of
[Res1] when is_list(Res1) -> no;
_ -> {yes, Res}

end.

Very recently we have added one more functionality to our length removal refac-
torings. After reviewing a lot of code, we discovered a very common idiom among
Erlang programs: a large percentage of the occurrences of lists:duplicate/2
were used in conjunction with an application of length/1 to another list in order
to calculate the length of the duplicated list. However, the call to length/1 is com-
pletely unnecessary since it can be avoided by using a list comprehension. We use
the following example from Erlang/OTP R13B’s lib/compiler/src/cerl clauses.erl:335
to illustrate the refactoring:

...
Es = lists:duplicate(length(Ps), any),
...

⇓

...
Es = [any || _ <- Ps],
...

The refactored version is not only shorter and simpler in terms of source code
size and quality; but also probably executes faster since it there is no need to
calculate the length of the list and the duplicated list is created in one traversal.

We intend to enhance tidier with more refactorings that detect programming
idioms with wrong complexity for the task and improve programs in similar ways.

4.9. TRANSFORMATIONS THAT REDUCE THE COMPLEXITY OF PROGRAMS43

Semantic equivalence Although these refactorings are quite simple, one should
be once more very careful with the removal of length/1. In order for the trans-
formation to be semantics-preserving (and not to miss any exceptions) tidier has
to make certain that no exceptions will occur while applying length/1 to its ar-
gument. There are two ways for tidier to verify this: (i) if the application of
length/1 is in guard context or (ii) if the argument can be proven to be a list via
type analysis.

We have seen enough examples of transformations performed by tidier. We
stress again that all these refactorings are performed in a completely automatic
way by tidier. Let us now briefly see how tidier can be used.

44 CHAPTER 4. TRANSFORMATIONS

Chapter 5

Experience

5.1 Tidier at Work

For those not faint at heart, the simplest way to use tidier on some Erlang file
is via the command:

> tidier myfile.erl

If all goes well, this command will automatically refactor the source code of
myfile.erl and overwrite the contents of the file with the resulting source code.
Multiple source files can also be given. Alternatively, the user can tidy a whole set
of applications by a command of the form:

> tidier dir1 ... dirN

which will tidy all *.erl files under these directories. Both of these commands
will apply the default set of transformations on all files. If only some of the
transformations are desired, the user can select them via appropriate command-
line options. For example, one can issue the command:

> tidier --comprehensions --size myfile.erl

to only transform uses of lists:map/2 and lists:filter/2 to list comprehen-
sions and uses of size/1 to tuple size/1 or byte size/1. We refer the reader
to tidier’s manual for the complete set of command-line options.

A very handy option is the option that will cause tidier to just print on the
standard output the list of transformations that would be performed on these
files, together with their lines, without performing them. Alternatively the user
can use the -g (or --gui) option to invoke tidier’s GUI and perform refactoring
interactively. We expect that novice tidier users will probably prefer this mode of
using tidier, at least initially.

Let us examine tidier’s GUI. Figure 5.1 shows tidier in action. In fact, the snap-
shot depicts tidier refactoring a file from the inviso application of Erlang/OTP R13B.

45

46 CHAPTER 5. EXPERIENCE

Figure 5.1: Tidier in action: simplifying the source code of a file from the
inviso application of Erlang/OTP R13B.

Tidier has identified some code as a candidate for simplification and shows the fi-
nal version of this code to its user. What the snapshot does not show is that that
the simplification involves three different refactorings and that tidier has previously
shown all these refactorings, one after the other, to its user. At the point when the
snapshot is taken, Tidier’s GUI shows the old code (on the left) and the new code
(on the right); the code parts that differ between the two versions are coloured
appropriately (with red color the old excerpt of the code and with green the new).
At this point, the user can either press the “Use suggested version” button to
accept tidier’s transformation or the “Keep original version” button to bypass it.
In either case, tidier will continue with the next refactoring or exit if this is the
last one.

As a side comment, at some point during tidier’s development we were thinking
of giving the user the possibility to edit the code on the right (i.e., allowing the user
to fine-tune tidier’s refactorings), but we have given up on this idea as it requires
dealing with too many issues which are peripheral to the main goals of tidier (e.g.,
how should tidier continue if the user inputs code which is syntactically erroneous,
should there be an “undo” option, etc.). The user can and should better use an
editor for such purposes.

5.1.1 Current experiences

As it is probably obvious by now, during its development, tidier has been repeat-
edly applied to large code bases; most notably to the source code of Erlang/OTP,
currently consisting of about 1,200,000 lines of Erlang code. As a side comment,
on a relatively recent desktop, tidier is able to virtually refactor all this code (i.e.,

5.2. EFFECTIVENESS ACROSS APPLICATIONS 47

just detect and print out the list of transformations that would be performed on
these files) in about two and a half minutes. On those Erlang/OTP libraries that
we are directly involved in their development or have permission to change them,
tidier’s suggestions have been adopted. Moreover, on those libraries that our group
is responsible for, tidier is now part of the tools used for their development and is
run periodically over their code.

We have also applied tidier on various open source and often widely used appli-
cations written in Erlang (Apache CouchDB, ejabberd, Erlang Web, RefactorErl,
Scalaris, Wings, Wrangler, Yaws, etc.), totalling about 300,000 lines of Erlang
code. A detailed experience report on using tidier on them follows in the next
section. It suffices to say that there are plenty of opportunities for modernizing
Erlang code out there, eliminating various bad code smells, automatically cleaning
up source code of applications and simplifying it. Overall, given the ease of use of
tidier, we see few reasons not to try it out and adopt most of its suggestions.

5.2 Effectiveness Across Applications

We have applied tidier to a considerable corpus of Erlang programs both in
order to ensure that our tool can gracefully handle most Erlang code out there
and in order to test its effectiveness. In this section we report our experiences and
the number of opportunities for code cleanups detected by tidier on the code of the
following open source projects:1

Erlang/OTP This system needs no introduction. We just mention that we report
results on the source code of R13B totalling about 1,240,000 lines of Erlang
code. Many of its applications under lib (e.g., hipe, dialyzer, typer,
stdlib, kernel, compiler, edoc, and syntax tools) had already been fully
or partially cleaned up by tidier. Consequently, the number of opportunities
for cleanups would have been even higher if such cleanups had not already
taken place.

Apache CouchDB is a distributed, fault-tolerant and schema-free document-oriented
database accessible via a RESTful HTTP/JSON API [4]. The CouchDB
distribution contains ibrowse and mochiweb as components. We used re-
lease 0.9.0 which contains about 20,500 lines of Erlang code.

Disco is an implementation of the Map/Reduce framework for distributed com-
puting [5]. We used version 0.2 of Disco. Its core is written in Erlang and
consists of about 2,500 lines of code.

1Throughout its development, we have also applied tidier to its own source code but,
since we have been performing the cleanups which tidier were suggesting eagerly, we cannot
include tidier in the measurements.

48 CHAPTER 5. EXPERIENCE

Ejabberd is a Jabber/XMPP instant messaging server that allows two or more
people to communicate and collaborate in real-time based on typed text [6].
We used the development version of ejabberd from the public SVN repository
of the project (revision 2074) consisting of about 55,000 lines of Erlang code.

Erlang Web is an open source framework for applications based on HTTP proto-
cols [7]. Erlang Web supports both inets and yaws webservers. The source
of Erlang Web (version 1.3) is about 10,000 lines of code.

RefactorErl is an refactoring tool that supports the semi-automatic refactoring of
Erlang programs [15]. We used the latest release of RefactorErl (version 0.6).
Its code base consists of about 24,000 lines of code.

Scalaris is a scalable, transactional, distributed key-value store which can be used
for building scalable Web 2.0 services [23]. We used the development ver-
sion of scalaris from the public SVN repository of the project (revision 278)
consisting of about 35,000 lines of Erlang code. This includes the contrib
directory of scalaris where the source code of Yaws [27] is also included as a
component.

Wings 3D is a subdivision modeler for three-dimensional objects [26]. We used
the development version of wings from the public SVN repository of the
project (revision 608) consisting of about 112,000 lines of Erlang code. This
includes its contrib directory.

Wrangler is a refactoring tool that supports the semi-automatic interactive refac-
toring of Erlang programs [12] within emacs or erlIDE, the Erlang plugin
for Eclipse. We used the development version of Wrangler from the public
SVN repository of the project (revision 678) consisting of about 42,000 lines
of Erlang code.

For all projects with SVN repositories the revisions we mention correspond to the
most recent revision on the 12th of May 2009.

The number of opportunities for tidier’s transformations on these code bases is
shown on Table 5.1. From these numbers alone, it should be obvious that detect-
ing, let alone actually performing, all these refactorings manually is an extremely
strenuous and possibly also error-prone activity. Tidier, even if employed only as a
detector of bad code smells, is worth the effort of typing its name on the command
line.

Naturally, the number of opportunities for refactorings that tidier recognizes
depends on two parameters: size and programming style of a project’s code. As
expected, the number of refactoring opportunities on the Erlang/OTP system is
much bigger in absolute terms than on all the other code bases combined. This is
probably due to the size of the code base and probably also due to the fact that
some applications of Erlang/OTP were developed by many different programmers,
often Erlang old-timers, over a period of years. But we can also notice that it’s

5.2. EFFECTIVENESS ACROSS APPLICATIONS 49

not only code size that matters. The table also shows smaller code bases offering
more opportunities for refactoring than code bases of bigger size.

What Table 5.1 does not show is tidier’s effectiveness. For some columns of
the table (e.g., new guards, record matches) tidier’s effectiveness is 100% by con-
struction, meaning that tidier will detect all opportunities for these refactorings
and perform them if requested to do so. For some other columns of the table (e.g.,
lists:keysearch/3, map and filter to list comprehension, structure reuse, case
simplify) tidier can detect all opportunities for these refactorings but might not per-
form them based on heuristics which try to guess the intentions of programmers
or take aesthetic aspects of code into account. For some refactorings, especially
those for which type information is required, tidier’s effectiveness is currently not
as good as we would want it to be. (We will come back to this point in the next
section.)

Table 5.2 contains numbers and percentages of numeric comparisons with ==
and /= that are transformed to their exact counterparts and numbers and percent-
ages of calls to size/1 that get transformed to byte size/1 or tuple size/1. As
can be seen, tidier’s current analysis is pretty effective in detecting opportunities
of transforming calls to size/1 but quite ineffective when it comes to detecting
opportunities for transforming coercing equalities and inequations. A global type
analysis would definitely improve the situation in this case. (However, bear in
mind that achieving 100% on all programs is impossible since there are uses of
==/2 or size/1 that cannot be transformed to something else, even if tidier were
guided by an oracle.)

50 CHAPTER 5. EXPERIENCE

li
n
es

of
co

d
e

ne
w

gu
ar

ds ex
ac

tnu
m

er
ic

eq
ua

lit
y

li
st

s:
ke

ys
ea

rc
h/

3

re
co

rd
m

at
ch

es

re
co

rd
ac

ce
ss

es

si
ze

sim
pl

ify
in

g
gu

ar
ds

st
ru

ct
ur

e
re

us
e

st
ra

ig
ht

en
+

ca
se

sim
pl

ify

ma
p

to
co

m
pr

eh
en

sio
n

fi
lt

er
to

co
m

pr
eh

en
sio

n

de
fo

re
st

at
io

ns

zi
p

+
un

zi
p

le
ng

th

E
rl
an

g/
O

T
P

1,
24

0,
00

0
29

11
68

75
1

18
05

21
68

48
7

36
14

67
77

56
4

11
5

4
12

C
ou

ch
D

B
20

,5
00

22
9

8
6

27
31

2
88

3
38

1

D
is
co

2,
50

0
11

2
12

2
9

14
11

5
1

2

E
ja

bb
er

d
55

,0
00

2
78

18
26

6
70

11
13

4
40

2

E
rl
an

g
W

eb
10

,0
00

7
11

37
1

12
1

1
15

6
35

7
1

2

R
ef

ac
to

rE
rl

24
,0

00
11

3
8

54
1

39
7

3
7

S
ca

la
ri
s

35
,0

00
2

6
6

22
39

22
3

W
in

gs
3D

11
2,

00
0

10
13

45
1

24
26

16
6

11
25

10

W
ra

ng
le

r
42

,0
00

6
28

14
1

1
1

11
0

7
23

6
47

5
14

2

T
ab

le
5.

1:
N

u
m

b
er

of
ti
di

er
’s

tr
an

sf
or

m
at

io
n
s

on
va

ri
ou

s
E

rl
an

g
so

u
rc

e
co

d
e

b
as

es
.

5.3. CONSERVATISM OF REFACTORINGS 51

exact num. eq. size

Erlang/OTP 68 / 577 = 12% 487 / 645 = 75%

CouchDB 9 / 15 = 60% 31 / 64 = 48%

Disco 2 / 11 = 18% 9 / 9 = 100%

Ejabberd 6 / 11 = 55%

Erlang Web 11 / 15 = 73% 1 / 1 = 100%

RefactorErl 11 / 35 = 31%

Scalaris 5 / 6 = 83%

Wings 3D 13 / 46 = 28%

Wrangler 28 / 54 = 52% 1 / 1 = 100%

Table 5.2: Effectiveness of tidier’ refactorings requiring type info.

5.3 Conservatism of Refactorings

Despite the significant number of refactorings that tidier performs on existing
code bases, we stress again that tidier is currently ultra conservative and careful
to respect the operational semantics of Erlang. In particular, tidier will never miss
an exception that programs may generate, whether deliberately or not.

To understand the exact consequences of this, we show a case from the code of
lib/edoc/src/otpsgml layout.erl:148 from Erlang/OTP R13B. The code on
that line reads:

Functions = [E || E <- get_content(functions, Es)],

Although to a human reader it is pretty clear that this code is totally redundant
and the result of sloppy code evolution from similar code (actually from the code
of lib/edoc/src/edoc layout.erl), tidier cannot simplify this code to:

Functions = get_content(functions, Es),

because this transformation will shut off an exception in case function get content/2
returns something other than a proper list. To do this transformation, type infor-
mation about the result of get content/2 is required. Currently, tidier is guided
only by a function-local type analysis. Extending this analysis to the module level
is future work.

Type information can also come in very handy in rewriting calls to lists:map/2
and lists:filter/2 to more succinct list comprehensions. Without type infor-
mation, tidier performs the following transformation:

52 CHAPTER 5. EXPERIENCE

foo(Ps) -> lists:map(fun ({X,Y}) -> X + Y end, Ps).

⇓

foo(Ps) -> [foo_1(P) || P <- Ps].

foo_1({X,Y}) -> X + Y.

and cannot inline the body of the auxiliary function and generate the following
code:

foo(Ps) -> [X + Y || {X,Y} <- Ps].

because this better refactoring requires definite knowledge that Ps is a list of pairs.
Similar issues exist for refactorings involving lists:filter/2. Despite being con-
servative, tidier is pretty effective. In the code of Erlang/OTP R13B, out of the
679 refactorings of lists:map/2 and lists:filter/2 to list comprehensions a
bit more than half of them (347) actually use the inlined translation.

We mentioned that tidier currently performs deforestation for combinations of
map and filter. A similar deforestation of map+map combinations, namely the
transformation:

L1 = lists:map(fun (X) -> m1:foo(X) end, L0),
L2 = lists:map(fun (X) -> m2:bar(X) end, L1)

6⇓

L2 = [m2:bar(m1:foo(X)) || X <- L0]

as also shown in the arrow is not performed by tidier because this requires an
analysis which determines that functions m1:foo/1 and m2:bar/1 are side-effect
free. Again, hooking tidier to such an analysis is future work.

Chapter 6

Related Work

6.1 Related Work

Software refactoring [8], the process of restructuring an existing body of pro-
gram code in order to alter its internal structure and improve its readability and
maintainability without changing its external behaviour, is by now an established
and well-researched technique in many programming languages. Especially in
object-oriented languages, refactoring is supported by a number of tools such as
editors, IDEs, and refactoring browsers; see the survey by Mens and Tourwé [17]
and the references therein.

In the context of declarative languages, although program transformation is
a well-researched area by now, explicit tool support for refactoring programs at
the level of source code is less common. Besides tidier, notable exceptions of semi-
automatic code refactoring tools are the HaRe tool for Haskell [13], the ViPReSS
tool for Prolog [24], and the RefactorErl and Wrangler tools for Erlang. The last
two tools we review in more detail below.

RefactorErl is an Erlang refactoring tool, developed by researchers at the Eötvös
Loránd University in Budapest, Hungary, that aims to assist Erlang programmers
perform semi-automatic refactoring of their code. The tool follows a disciplined
approach to refactoring and works by creating a formal semantical graph model
from Erlang source code and storing this graph in a relational database. This
graph can be modified on the syntax tree level and the source code is reproducible
from there. The RefactorErl tool comes with a user interface provided as an Emacs
minor mode to help programmers perform a predefined set of refactoring transfor-
mations. Some of these refactorings are very simple (e.g., rename a variable or a
record). Some other refactorings are more sophisticated and can for example be
used to change uses of tuples to records in some module [16] or refactor the module
structure of an existing application by using code clustering techniques [15]. How-
ever, it is unclear to what extent the more sophisticated refactorings are available

53

54 CHAPTER 6. RELATED WORK

in the public release of RefactorErl at the time of this writing.

Wrangler is a more mature Erlang refactoring tool, developed by Huiqing Li and
Simon Thompson at the University of Kent, U.K. The tool supports the interactive
refactoring of Erlang programs under both Emacs and ErlIDE (the Erlang plug-
in for Eclipse), and is publicly available under an open source licence. Wrangler
supports various semi-automatic data and process refactorings [12] and quite re-
cently has also been enhanced with the ability to detect and remove duplicated
code [11]. All these refactorings are initiated and controlled by the programmer.
According to a published survey of Erlang tools [18] conducted in the spring of
2008, Wrangler was moderately well-known in the Erlang community (33%) but
not used much (5%), although the situation may of course have changed by now.

Compared with these refactoring tools for Erlang, tidier differs significantly both
in the kind of refactorings that it performs but, more importantly, also in design
philosophy. In its primary mode of operation, tidier is fully automatic and requires
no interaction from its user. As such, tidier needs to provide strong guarantees
of preservation of semantic equivalence between the original and transformed pro-
gram and cannot afford to leave this responsibility on the programmer. On the
other hand, this means that tidier’s refactorings are more limited in scope (cur-
rently, they are mostly clause-local) than those of RefactorErl or Wrangler which
can perform module-scope or even application-wide refactorings. Still, we think
that some of tidier’s refactorings are very interesting.

Perhaps surprisingly, with the exception of the ReSharper [21] add-in to Visual
Studio, we were not able to locate any other fully automatic code cleanup tools
in any high-level language.1 We hope that tidier will pave the way for more fully
automatic code simplification and cleanup tools in Erlang and other languages.

1There are of course plenty of tools that automatically indent source code of many
languages or automatically cleanup and/or validate HTML pages.

Chapter 7

Conclusion and
Acknowledgements

7.1 Concluding Remarks

This paper described opportunities for automatically modernizing Erlang ap-
plications, cleaning them up, eliminating certain bad smells from their code, and
occasionally also improving their performance. A subset of the refactorings that
were described are general enough to be applied as is or with minor changes in
other functional programming languages. In addition, we presented concrete ex-
amples of code improvements and our experiences from using tidier on code bases
of significant size.

As mentioned, tidier is completely automatic as a refactorer but with equal ease
can be used as a detector of opportunities for code cleanups and simplifications.
We strongly believe that the ease of use of our tool makes tidier attractive to use
in any Erlang project, if not as an automatic refactorer, at least as a detector of
bad code smells in the code. Alternatively, tidier’s GUI can be used in existing
Erlang code bases to illustrate to programmers excerpts of existing code that could
be written more simply or elegantly. In this respect, our paper is interesting to
its community not only as a tool description paper but also as a catalog of good
coding practices, some of which are publicly documented for the first time.

We stress that the paper described the architecture and current status of our
tool. Various additions to tidier’s functionality are already planned; their priority
might change based on feedback that we may receive from users of our tool after
its first public release.

Tools that aid software development, such as code refactorers, have their place
in all languages, but it appears that higher-level languages such as Erlang are
particularly suited for making the cleanup process fully or mostly automatic. We
intend to explore this issue more.

55

56 CHAPTER 7. CONCLUSION AND ACKNOWLEDGEMENTS

7.2 Acknowledgements

Although by now there are relatively few remains of erl tidy’s original code
in the source code of tidier, the erl tidy module of the syntax tools library has
served both as inspiration and as a very good starting point for the development of
tidier. We thank its author, Richard Carlsson, both for releasing his code and for
the comments and suggestions that he sent us. We also thank Björn Gustavsson,
and Kenneth Lundin for supportive comments and suggestions for refactorings.
Finally we would like to thank Dan Gudmundsson: without the use of his wx
application, the user interface of tidier would have taken longer to write and would
probably look less aesthetically pleasing.

Last but not least, we thank all developers of projects mentioned in this paper
for publicly releasing their code as open source and giving us plenty of opportunities
to find nice examples for our paper.

Bibliography

[1] J. Armstrong. A history of Erlang. In HOPL III: Proceedings of the third
ACM SIGPLAN Conference on History of Programming Languages, pages
6–1–6–26, New York, NY, USA, 2007. ACM.

[2] T. Avgerinos and K. Sagonas. Cleaning up Erlang code is a dirty job but
somebody’s gotta do it. In Proceedings of the Eighth ACM SIGPLAN Erlang
Workshop, New York, NY, USA, Sept. 2009. ACM.

[3] R. Carlsson. Syntax tools reference manual, version 1.6, Apr. 2009. http:
//www.erlang.org/doc/apps/syntax_tools/.

[4] The CouchDB project, 2009. http://couchdb.apache.org/.

[5] Disco: Massive data, minimal code (version 0.2), Apr. 2009. http://
discoproject.org/.

[6] Ejabberd community site: The Erlang Jabber/XMPP daemon, 2009. http:
//www.ejabberd.im/.

[7] Erlang Web, May 2009. http://www.erlang-web.org/.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, Reading, Mas-
sachusetts, 2001.

[9] P. Gustafsson and K. Sagonas. Bit-level binaries and generalized compre-
hensions in Erlang. In Proceedings of the Fourth ACM SIGPLAN Erlang
Workshop, pages 1–8, New York, NY, USA, Sept. 2005. ACM.

[10] T. Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Functional Programming Languages and Computer Architecture,
pages 190–203. Springer-Verlag, 1985.

[11] H. Li and S. Thompson. Clone detection and removal for Erlang/OTP within
a refactoring environment. In Proceedings of the ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation, pages
169–177, New York, NY, USA, Jan. 2009. ACM.

57

http://www.erlang.org/doc/apps/syntax_tools/
http://www.erlang.org/doc/apps/syntax_tools/
http://couchdb.apache.org/
http://discoproject.org/
http://discoproject.org/
http://www.ejabberd.im/
http://www.ejabberd.im/
http://www.erlang-web.org/

58 BIBLIOGRAPHY

[12] H. Li, S. Thompson, G. Orösz, and M. Tóth. Refactoring with Wrangler,
updated: Data and process refactorings, and integration with Eclipse. In
Proceedings of the 7th ACM SIGPLAN Workshop on Erlang, pages 61–72,
New York, NY, USA, Sept. 2008. ACM.

[13] H. Li, S. Thompson, and C. Reinke. Tool support for refactoring functional
programs. In Proceedings of the ACM SIGPLAN Workshop on Haskell, pages
27–38, New York, NY, USA, Aug. 2003. ACM.

[14] T. Lindahl and K. Sagonas. Detecting software defects in telecom applica-
tions through lightweight static analysis: A war story. In C. Wei-Ngan, editor,
Programming Languages and Systems: Proceedings of the Second Asian Sym-
posium (APLAS’04), volume 3302 of LNCS, pages 91–106. Springer, Nov.
2004.

[15] L. Lövei, Cs. Hoch, H. Köllő, T. Nagy, A. Nagyné-Vı́g, D. Horpácsi, R. Kitlei,
and R. Király. Refactoring module structure. In Proceedings of the 7th ACM
SIGPLAN Workshop on Erlang, pages 83–89, New York, NY, USA, Sept.
2008. ACM.

[16] L. Lövei, Z. Horváth, T. Kozsik, and R. Király. Introducing records by refac-
toring. In Proceedings of the 6th ACM SIGPLAN Workshop Erlang, pages
18–28, New York, NY, USA, Sept. 2007. ACM.

[17] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, Feb. 2004.

[18] T. Nagy and A. Nagyné-Vı́g. Erlang testing and tools survey. In Proceedings
of the 7th ACM SIGPLAN Workshop on Erlang, pages 21–28, New York, NY,
USA, Sept. 2008. ACM.

[19] R. A. O’Keefe. Erlang Enhancement Proposal: Comprehension multigenera-
tors, Aug. 2008. http://www.erlang.org/eeps/eep-0019.html.

[20] R. A. O’Keefe. Erlang Enhancement Proposal: is between/3, July 2008.
http://www.erlang.org/eeps/eep-0016.html.

[21] ReSharper 4.5. http://www.jetbrains.com/resharper/.

[22] K. Sagonas and T. Avgerinos. Automatic refactoring of Erlang programs.
In Proceedings of the Eleventh International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, New York, NY, USA,
Sept. 2009. ACM.

[23] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable transactional
P2P key/value store. In Proceedings of the 7th ACM SIGPLAN Workshop on
Erlang, pages 41–48, New York, NY, USA, Sept. 2008. ACM.

http://www.erlang.org/eeps/eep-0019.html
http://www.erlang.org/eeps/eep-0016.html
http://www.jetbrains.com/resharper/

BIBLIOGRAPHY 59

[24] A. Serebrenik, T. Schrijvers, and B. Demoen. Improving Prolog programs:
Refactoring for Prolog. Theory and Practice of Logic Programming, 8(2):201–
215, Mar. 2008.

[25] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theo-
retical Comput. Sci., 73(2):231–248, 1990.

[26] Wings 3D, 2009. http://www.wings3d.com/.

[27] Yaws: Yet another web server, 2009. http://yaws.hyber.org/.

http://www.wings3d.com/
http://yaws.hyber.org/

60 BIBLIOGRAPHY

Appendix A

Tidier Reference Manual

Tidier is a static analysis software refactoring tool that can automatically per-
form transformations that improve the quality of Erlang programs.

A.1 Tidier

A.1.1 Introduction

Tidier is a static analysis software refactoring tool that can automatically per-
form transformations that improve the quality of Erlang programs. To do so, it
implements a suite of bad code smell detectors (that e.g. find uses of obsolete
language constructs, unnecessarily long and complicated expressions, obfuscated
ways of expressing the programmers’ intention, etc.) and rewrites these code pieces
with semantically equivalent, simpler and more modern language expressions.

Tidier was implemented in order to help the programmer track down potential
problems in his code, acting as an automatic software refactoring tool. However,
Tidier has an option which does not allow the modification of the source code of
the actual files. This option is very handy and allows tidier to be used as a bad
code smell detector. The user can also handle tidier from the GUI interface in both
modes (refactorer and bad code smell detector). By enabling the GUI interface,
the programmer can see the refactorings that are suggested or performed by Tidier
and interactively accept or reject the transformations. For a complete list of the
supported options and their uses see A.2.1.

A.1.2 Supported Transformations

Tidier can suggest a variety of source code transformations. These transfor-
mations are listed and described in detail in chapter 4.

61

62 APPENDIX A. TIDIER REFERENCE MANUAL

A.2 Using Tidier from the command line

Tidier can be used through the command line via the tidier c-frontend that
has been built for automated use. In the following section we will present a list of
the supported flags and the transformations that are activated by each one.

A.2.1 Options

The following information regarding the usage and options of Tidier can be
obtained by writing ’tidier --help’ in a standard shell.

Usage

tidier [--help] [--version] [--gui] [--no-transform]
[--all] [--any] [--apply] [--boolean] [--case-simplify] [--catch]
[--comprehensions] [--exact] [--experimental] [--fun-expressions]
[--guards] [--imports] [--intermediate] [--lists] [--records]
[--patterns] [--r13] [--size] [--straighten] [--structs]
[--quiet] [--verbose] file* |dir*2

Main switches

--gui (or -g) (requires the presence of wxWidgets) opens a GUI interface to show
the code transformations and allow changes to them by the programmer

--no-transform when specified, no changes will be applied to the input files

Transformation options

--all Performs (almost) all the transformations mentioned below.

--any Simplifies boolean recursive functions that process lists by employing ‘lists:any/2’
and ‘lists:all/2’ (4.3.3).

--apply Changes uses of ‘apply/2’ and ‘apply/3’ to direct function calls (4.1.3).

--boolean Simplifies boolean expressions (4.7.2).

--case-simplify Finds opportunities to simplify case and if expressions with boolean
clauses (4.7.2). Might also employ ‘erlang:min/2’ and ‘erlang:max/2’ (4.1.5).

0The ’*’ denotes that multiple occurrences of these options are possible

A.2. USING TIDIER FROM THE COMMAND LINE 63

--comprehensions Finds opportunities for using list comprehensions instead of
calling ‘lists:map/2’ and ‘lists:filter/2’. In addition, it simplifies list compre-
hensions and performs deforestation whenever possible (4.3, 4.4 and 4.8).

--exact Transforms coercing to exact arithmetic equalities and inequations (4.5.1).

--experimental unnecessary calls to ‘length/1’ (usually used as guards) will be
rewritten using simpler but equivalent expressions (4.9).

--fun-expressions Transforms fun epressions to local function calls (lambda lift-
ing - 4.1.4).

--guards Finds opportunities for transforming old style guards (e.g. atom(X)) to
new style guards (is atom(X)) and for simplifying guard expressions (4.1.1).

--imports All import statements will be removed and calls to imported functions
will be expanded to explicit remote calls (4.1.2).

--intermediate Performs temporary variable elimination if this leads to signifi-
cant simplifications (4.6.2).

--lists Calls to ‘lists:append/2’ and ‘lists:subtract/2’ will be rewritten using the
‘++’ and ‘--’ operators and calls to ‘lists:keysearch/3’ will be rewritten
(whenever possible) as calls to ‘lists:keymember/3’ (4.3)

--records Finds opportunities for transforming is record/1 guards to pattern match-
ing in function clauses and case statements and for moving record accesses
to the place where the record is deconstructed (4.2).

--patterns Converts patterns that contain lists of characters to strings (4.1.6).

--r13 Replaces occurrences of lists:keysearch/3 with ‘lists:keyfind/3’. It is usually
a good idea to activate this flag in conjunction with ’--lists’. Should be used
with Erlang/OTP R13 or higher (4.3).

--size Changes calls to ‘size/1’ to ‘tuple size/1’ or ‘byte size/1’; in doing so, it
also eliminates unnecessary uses of ‘is tuple/1’ or ‘is binary/1’ (4.5.2 and
4.5.3).

--straighten Finds opportunities to simplify case expressions with a single alter-
native clause and create straight-line code (4.7.1).

--structs Finds opportunities to reuse already created structures instead of re-
constructing them (4.6.1).

64 APPENDIX A. TIDIER REFERENCE MANUAL

Miscellaneous

--quiet information messages and warning messages will be suppressed

--verbose progress messages will be output while the program is running

--help (or -h) prints this message and exits

--version (or -v) prints the version number and exits

	Introduction
	Motivation
	Outline of the thesis

	Preliminaries
	Refactoring
	Erlang and Erlang/OTP

	Design
	Tidier's Design and Goals
	Main characteristics
	Transformation properties

	Transformations
	Simple transformations
	Modernizing guards and calls to old-fashioned functions
	Eliminating explicit imports
	Turning apply calls to remote calls
	Turning funs to functions
	Introducing min and max
	Code beautification

	Record transformations
	Transformations of common list operations
	Transforming appends and subtracts
	Eliminating lists:keysearch/3
	Eliminating recursion
	Transforming maps to comprehensions
	Transforming filters to comprehensions

	List comprehension simplifications
	Transforming a fun to a direct call
	Inlining bodies of simple funs
	Inlining simple boolean filtering funs

	Transformations requiring type information
	Transforming coercing to exact equalities and inequations
	Specializing the size function
	Simplifying guard sequences

	Transformations that eliminate redundancy
	Avoid re-creation of existing tuples and lists
	Temporary variable elimination

	Simplifying control
	Straightening
	Simplifying expressions

	Simplifying list comprehensions even further
	Inlining simple mapping funs
	List comprehensions in conjunction with zip and unzip

	Transformations that reduce the complexity of programs

	Experience
	Tidier at Work
	Current experiences

	Effectiveness Across Applications
	Conservatism of Refactorings

	Related Work
	Related Work

	Conclusion and Acknowledgements
	Concluding Remarks
	Acknowledgements

	References
	Tidier Reference Manual
	Tidier
	Introduction
	Supported Transformations

	Using Tidier from the command line
	Options

