
EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN UPOLOGISTWN

Tomèac TeqnologÐac Plhroforik c kai Upologist¸n
Ergast rio Logik c kai Epist mhc Upologist¸n CoReLab

EpikoinwnÐa ènac proc ìlouc kai ìloi proc ìlouc se

DÐktua Radioekpomp c

DIPLWMATIKH ERGASIA

tou

Par�sqou E. Koutr

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c E.M.P.

Aj na, IoÔlioc 2009

EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI MHQANI-
KWN UPOLOGISTWN
Tomèac TeqnologÐac Plhroforik c kai Upologist¸n
Ergast rio Logik c kai Epist mhc Upologist¸n CoReLab

EpikoinwnÐa ènac proc ìlouc kai ìloi proc ìlouc se

DÐktua Radioekpomp c

DIPLWMATIKH ERGASIA

tou

Par�sqou E. Koutr

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c E.M.P.

EgkrÐjhke apì thn trimel exetastik epitrop thn 22η IoulÐou 2009.

..

Eust�jioc Z�qoc

Kajhght c E.M.P.

..

'Arhc Pagourtz c

Lèktorac E.M.P.

..

Dhm trioc Fwt�khc

Lèktorac E.M.P.

Aj na, IoÔlioc 2009

...................................
Par�sqoc E. Koutr c
DiplwmatoÔqoc Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P.

Copyright c© Par�sqoc Koutr c, 2009.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved.

ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex olo-
kl rou tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai
dianom gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c fÔshc, upì thn proôpìje-
sh na anafèretai h phg proèleushc kai na diathreÐtai to parìn m numa. Erwt mata pou
aforoÔn th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na apeujÔnontai proc ton
suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton
suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou EjnikoÔ
Metsìbiou PoluteqneÐou.

PerÐlhyh

Skopìc thc diplwmatik c aut c eÐnai h jewrhtik melèth enìc montèlou epikoinwnÐac pou o-
nom�zetai dÐktuo radioekpomp c. Se èna tètoio dÐktuo, jewroÔme ìti to m numa pou metadÐdei
ènac kìmboc lamb�netai apì ìlouc touc geitonikoÔc kìmbouc. Se perÐptwsh, ìmwc, pou dÔo
 perissìteroi geitonikoÐ kìmboi metadÐdoun tautìqrona, sumbaÐnei sÔgkroush kai to m numa
den ft�nei ston proorismì tou. To qarakthristikì autì prosdÐdei sto montèlo twn diktÔwn
radioekpomp c mia epiplèon duskolÐa se sÔgkrish me �lla montèla epikoinwnÐac. EpÐshc,
jewroÔme ìti h epikoinwnÐa pragmatopoieÐtai se sugkekrimènec qronikèc stigmèc. Me b�sh
autì to montèlo, exet�zoume dÔo basikèc diergasÐec: thn epikoinwnÐa ènac proc ìlouc, ìpou
to m numa pou brÐsketai se èna sugkekrimèno kìmbo prèpei na dianemhjeÐ se ìlouc touc
kìmbouc tou diktÔou, kai thn epikoinwnÐa ìloi proc ìlouc, ìpou o k�je kìmboc diajètei èna
m numa kai k�je m numa prèpei na ft�sei se ìlouc touc kìmbouc. Ja melet soume di�forec
parallagèc tou probl matoc autoÔ, an�loga me paramètrouc ìpwc th gn¸sh twn kìmbwn
gia thn topologÐa tou diktÔou, thn Ôparxh mhqanismoÔ entopismoÔ sugkroÔsewn, thn topo-
logÐa tou diktÔou, ton trìpo pou oi kìmboi energopoioÔntai kai th qr sh tuqaiìthtac. Gia
k�je parallag , ja parousi�soume prwtìkolla pou sunant same sth bibliografÐa, kaj¸c
kai apotelèsmata gia k�tw fr�gmata sthn epÐdosh twn algorÐjmwn. Tèloc, ja melet sou-
me èna sunduastikì majhmatikì ergaleÐo pou qrhsimopoieÐtai se prwtìkolla sta dÐktua
radioekpomp c, touc selectors.

Abstract

The purpose of this diploma thesis is the theoretic study of the communication model of
a radio network. In a radio network, once a node transmits, all the neighboring nodes
receive the message; however, in the case that two or more neighbors of a node trans-
mit simultaneously, a collision occurs and the message is lost. This characteristic makes
communication a much more demanding task compared to other communication mod-
els. We also make the assumption that the communication is performed in synchronous
rounds. Under this model, we study two basic communication tasks: broadcasting, where
a message initially held by a source node has to be disseminated to all other nodes in the
network and gossiping, where each node holds a distinct message and each message has
to be distributed to all other nodes. We consider several variants of the problem, which
depend on parameters such as the accessibility of knowledge about the network topology,
the availability of collision detection mechanisms, the wake-up model, the topology of the
network and the use of randomization. For each variant, we present protocols that have
been proposed in the literature, as well as lower bounds and impossibility results. Finally,
we study a combinatorial tool essential for protocols in radio networks, the selectors.

Keywords

radio network, broadcasting, gossiping, ad-hoc network, selector, selective family,
collision, fault-tolerance, geometric network, randomization

EuqaristÐec

Me thn olokl rwsh thc ekpìnhshc thc diplwmatik c mou ergasÐac, ja jela na apeu-
jÔnw tic euqaristÐec mou se ìlouc touc anjr¸pouc pou me bo jhsan kai me sunìdeyan aut�
ta pènte qrìnia twn spoud¸n mou sto PoluteqneÐo.

Katarq�c, ston kajhght k. E. Z�qo, pou apì to pr¸to ex�mhno spoud¸n mou sth
sqol , mou èdwse trof gia skèyh kai me ¸jhse sto na agap sw th Jewrhtik Plhroforik
kai na asqolhj¸ se megalÔtero b�joc mazÐ thc. Sto lèktora k. A. Pagourtz , pou mou
èdwse to ènausma gia to jèma thc diplwmatik c aut c ergasÐac kai sth sunèqeia me bo jhse
kajìlh th di�rkei� thc. Sto lèktora k. D. Fwt�kh gia to endiafèron pou èdeixe kai tic
qr simec sumboulèc kai parathr seic tou. EpÐshc, ja jela na euqarist sw ton k. N.
PapaspÔrou kai k. K. Sag¸na, pou se ìla ta qrìnia twn spoud¸n mou, up rxan kaloÐ
d�skaloi gia mèna.

Akìma, euqarist¸ apì thn kardi� mou touc fÐlouc-sumfoithtèc mou gia tic wraÐec stig-
mèc pou z same ìla aut� ta qrìnia, thn ìmorfh sunergasÐa kai ta epoikodomhtik� xenÔqtia
mac, kaj¸c kai gia ìla ekeÐna ta koin� pou per�same mazÐ kai ja jum�mai èntona apì ta
qrìnia twn spoud¸n mou.

Tèloc, ja jela na pw èna meg�lo euqarist¸ sthn oikogènei� mou kai idiaÐtera stouc
goneÐc mou gia thn st rix touc kai tic polÔtimec sumboulèc pou mou prosèferan mèqri
s mera.

Contents

1 The model 1

1.1 Introduction . 1

1.2 Graph Models . 2

1.3 Communication Scenarios . 4

1.4 Communication Tasks . 5

2 Selectors 7

2.1 Introduction . 7

2.2 Existence of selectors with small size . 9

2.3 Explicit construction of selectors . 11

3 Broadcasting 13

3.1 Centralized Broadcasting . 13

3.1.1 Finding the shortest broadcasting scheme is NP -hard 15

3.1.2 Lower bounds and inapproximability results for broadcasting 17

3.1.3 A first approach to centralized broadcasting 18

3.1.4 Broadcasting through clusterizing 19

3.1.5 Faster broadcasting . 24

3.1.6 Recent results in centralized broadcasting 28

3.2 Distributed Deterministic Broadcasting . 30

3.2.1 Broadcasting with acknowledgement 31

3.2.2 Lower bounds . 33

3.2.3 Symmetric Radio Networks . 37

3.2.4 A quadratic broadcasting algorithm 41

3.2.5 The first subquadratic broadcasting algorithms 42

3.2.6 A broadcasting algorithm with running time O(n3/2) 45

3.2.7 Broadcasting in time dependent on ∆ 49

i

3.2.8 An almost optimal broadcasting algorithm 50
3.2.9 Recent improvements on broadcasting time 52

3.3 Randomized Broadcasting . 55
3.3.1 A lower bound for randomized broadcasting 56
3.3.2 Randomized algorithms for broadcasting 59

3.4 Broadcasting in Geometric Radio Networks 64
3.5 Fault-Tolerant Broadcasting . 67

4 Gossiping 71

4.1 Deterministic Distributed Gossiping . 71
4.1.1 A subquadratic algorithm for gossiping 72
4.1.2 A faster gossiping algorithm . 74
4.1.3 Gossiping with Bounded Messages 76

4.2 Gossiping with Polynomially Large Labels 77
4.3 Randomized Gossiping . 80
4.4 Centralized Gossiping . 84

ii

List of Figures

1.1 A multi-access channel . 1

1.2 A node of a radio network transmits only in specific time-slots. 2

1.3 Successful transmission and collision. 3

3.1 The development of centralized broadcasting. 15

3.2 The reduction from an instance of 3xc to the corresponding instance of
2-Min-Broadcast. 16

3.3 A graph of the family used for the Ω(log2 n) lower bound. 17

3.4 A wave front. XF is the set of the potential transmitters, whereas YF is the
set of the potential transmitters. 18

3.5 An example of a clusters’ graph, along with the messengers, representatives
and chosen representatives. We have also noted the ranks for each cluster. . 22

3.6 The application of the three interleaved tasks Broadcast-Through, Broadcast-
All, Group-To-Group on a clusters’ graph. 23

3.7 The first stage of constructing a GST for an arbitrary graph. 25

3.8 The second stage of constructing a GST for an arbitrary graph. 27

3.9 The figure shows the distinction between fast and slow transmission edges
in a gathering spanning tree. 28

3.10 Development of broadcasting algorithms for the deterministic distributed
setting. 32

3.11 The graph CDn . 34

3.12 The graph GΠ with size n and eccentricity D. 36

3.13 A graphical representation of Round-Robin 42

3.14 A geometric interpretation of the notion of the line. 47

3.15 The analysis for the case B of the proof. Node w (red color) is the only
node transmitting from the set F of active nodes. The nodes of Yi remain
silent. The rest of the uninformed nodes are not yet awakened and thus
do not transmit. In the end, w transmits, no collision happens and thus v
receives the message. 52

iii

3.16 A graph of the family Dm . 58
3.17 A graph of the family Fn,D . 58
3.18 A geometric radio network (GRN). 65
3.19 Nodes placed on a square grid. Each node has transmission range r. 69

4.1 Expansion of the graph representation during the execution of algorithm
CollateAndBroadcast . 75

4.2 The graph constructed to prove the lower bound of Ω(n2) for gossiping with
unit size messages. 85

4.3 The minimal covering sets Ci (i = 1, 2) for the BFS layers of a graph. . . . 86

iv

List of Algorithms

1 WEB . 19
2 Check-Collision (i,j) . 26
3 Gathering-Spanning-Tree (TPGT) . 26
4 Echo(w,A) . 40
5 Binary-Select (u,m) . 41
6 Simple-Sequencing . 42
7 Segment (m) . 44
8 Selective-Broadcasting . 44
9 Single-Prime . 48
10 Broad-A(n,∆) . 49
11 Selector-Broadcast . 51
12 ObliviousBroadcast(M) . 53
13 Decay (k,m) . 59
14 Broadcast (∆, N) . 60
15 Linear-Broadcast (n, J) . 62
16 Optimal-Broadcast (n, JD) . 63
17 FindMax() . 73
18 DoGossip . 73
19 CollateAndBroadcast(r) . 74
20 GossipLL . 78
21 Disperse(k) . 79
22 GossipPS . 79
23 RandGossip(ε) . 81
24 DecayingBroadcastv(n) . 82
25 RandLtdBroadcastv(n, k) . 83
26 RandGossip2(ε) . 83
27 CentralizedGossiping . 86

v

Chapter 1

The model

1.1 Introduction

Over the years, many communication models have been proposed for different kind
of physical networks. Each model focuses on a different combination of characteristics of
the network we are interested in. The network model we study here is not the common
network with point-to-point channels, but a network that uses multi-access channels for
the communication (fig. 1.1). A multi-access channel has two fundamental characteristics:
it can can be accessed by many nodes and a signal reaches all the nodes connected to the
channel only in the case it is the only signal occupying the channel at that time. If two or
more signals are transmitted through the same channel simultaneously, a collision occurs
and none of the signals is delivered, as the collision creates noise. This characteristic
consists the motivation behind the model of the radio network, which is the theme of this
thesis.

multi−access channel

Figure 1.1: A multi-access channel

A radio network is a collection of devices that can either transmit or receive messages.
We will refer to these devices as nodes. Each node can reach only a subset of the other

1

2 CHAPTER 1. THE MODEL

nodes, depending on the power of its transmitter and on the topological characteristics
of the area where the network is located. For example, obstacles such as walls, buildings
or natural objects can prevent a node which would otherwise be in the proximity of the
node transmitting to receive. When every node of the network can reach any other node,
we refer to the network as a single-hop radio network. Else, we have a multi-hop radio
network. In such a network, communication between nodes that are not within reach is
performed by consecutive transmissions.

timeline

t 2t 3t 4t 5t ...0

Figure 1.2: A node of a radio network transmits only in specific time-slots.

A radio network is commonly modeled as a graph, where a node corresponds to a
node of the network and an edge (u, v) exists when node u can reach node v. We call v a
neighbor of node u. Communication in radio networks is structured in synchronous rounds,
i.e. a node can only transmit in specific time-slots (figure 1.2). In every round, each node
acts either as a transmitter or as a receiver. When a node u acts as a transmitter, the
message transmitted is sent to every neighboring node of u. On the contrary, a node v
acting as a receiver collects a message if and only if exactly one of its neighbors transmits
a message at the same round. If two or more neighbors of v transmit at the same round,
then a collision occurs at v and the message does not reach v. Both cases are depicted in
figure 1.3.

The above characteristics of communication in radio networks consist the main diffi-
culty in designing algorithms that perform communication tasks. One might think at first
that transmitting simultaneously a message to all the neighbors means more efficient com-
munication, however, the collisions that may occur slow down the communication speed.
Consider a node with many neighbors; the neighboring nodes must be synchronized so
that only one of them transmits. This inherent difficulty of the model makes the design of
fast communication algorithms in radio networks more demanding than in most network
models.

1.2 Graph Models

As we have mentioned before, a radio network is modeled as a graph. We will mostly
deal with directed graphs, which is the most general model. Nevertheless, we will of-
ten consider more restricted network topologies, where more efficient algorithms can be
designed. Generally, we have the following categories:

1.2. GRAPH MODELS 3

(a) Transmission without collision: the
message reaches all neighboring nodes.

(b) Transmission with collision: the node with
two neighboring nodes acting as transmitters
hears only noise.

Figure 1.3: Successful transmission and collision.

Symmetric Graphs. A logical assumption we can make for the underlying graph is
that it is symmetric. Specifically, a node u can reach some other node v if and only
if v can reach u. A symmetric graph can be thought as an undirected graph, so from
now on these two models will be considered identical.

Geometric Graphs. Geometric graphs (GRN) describe a very natural structure of
a network. Each node is represented by a point in the plane and is assigned a
transmission range. A node can reach only the nodes within its own range. In this
model, we can consider two subcategories: each node has its own range or the ranges
are uniform.

Special Topologies. We will also deal with specific graph topologies, such as lines,
hexagonal or square grids and rings.

Let us also introduce some important parameters of the underlying graph, which affect
the performance of the algorithms for any communication task.

n : The number of nodes in the graph (or size of the graph).

D : If we have specified some central (or source) node, D denotes the eccentricity of that
node, i.e. the maximum distance from the node to any other node of the graph.
Otherwise, D denotes the maximum eccentricity of the graph.

∆ : The maximum in-degree (number of in-neighbors) of the graph.

4 CHAPTER 1. THE MODEL

1.3 Communication Scenarios

Although the communication in radio networks has some fundamental properties, we
can make various assumptions about the characteristics of the communication process.
These assumptions lead to different models and affect the design and efficiency of the
algorithms. We will present here the basic choices one has to make in order to specify a
communication scenario.

Centralized / Distributed. A basic distinction for networks is whether there is some
centralized control or the network is distributed. In the setting of radio networks, a
centralized algorithm means that the nodes have complete knowledge of the topol-
ogy of the network. Thus, any algorithm can exploit information about the topology
of the underlying graph. However, centralized control is not always a realistic as-
sumption, in view of the dynamical nature of modern networks: topologies can be
frequently changing, nodes might be removed or added to the network. In such
cases, the model of ad-hoc radio networks, where each node is aware only of its own
ID (and possibly the number of nodes), is more suitable. Another logical assump-
tion we could make is that the nodes are only aware of their local neighborhood and
not the whole network.

Randomization / Determinism. It is also crucial to decide whether we can use ran-
domization in our algorithms. Randomization, in contrary to determinism, does
not guarantee that the communication task will be always completed, but performs
the task with high probability. However, randomized algorithms perform faster and
are easily implemented in a distributed setting. Specifically in the setting of radio
networks, randomization has proved to be very powerful.

Adaptiveness / Obliviousness. Another feature that affects communication is adap-
tiveness. We call an algorithm adaptive when a node decides for the next trans-
mission based on its previous history, i.e. the messages it has so far received. On
the other hand, oblivious algorithms schedule the transmissions in a predefined
way. Clearly, an adaptive algorithm exploits information gathered from neighboring
nodes in order to transmit in a more efficient way. On the other hand, an oblivious
algorithm is in most cases quite simple and easily implementable.

Collision Detection. When a collision happens, noise is created and no message is
delivered. Nevertheless, we can distinguish two cases. In the first case, where we
assume collision detection, the noise created from the collision is different from the
background noise and, as a result, the node can distinguish a collision from an
absence of transmission. In the second case, the two events are indistinguishable.
We will mostly deal with the second case, which consists the more harsh model.

Fault tolerance. Assuming that a network functions without any faults is not a realistic
assumption, as failures are frequent nowadays. Thus, we should consider the fact
that during the execution of the algorithm, a component of the network may stop

1.4. COMMUNICATION TASKS 5

functioning or start behaving maliciously. Fault tolerant algorithms guarantee that
the communication task will be completed for every fault-free node. Failures can
be of various types: loss of messages, Byzantine failures (a node may transmit an
arbitrary message), node failures.

1.4 Communication Tasks

We will study the two fundamental communication tasks of any network, broadcasting
and gossiping.

Broadcasting (or one-to-all communication) is the task of communicating a message
from a source node to all the nodes of the radio network. Clearly, broadcasting
can help to transfer some information over the whole network or even be used as a
subroutine for more complex communication tasks.

Gossiping (or all-to-all communication) assumes that each node has a distinct message
and the goal is to disseminate all messages to all the nodes.

Another communication task that has been studied in the setting of radio networks
is leader election, where the nodes must agree on some node of the network as the leader.
There has also been considered a generalization of the gossiping problem, the multicast
problem, where the goal is to exchange messages within a specific set of nodes of the
network. Finally, another problem which has recently received attention is the wake-up
problem, where the task consists of waking up a collection of processors connected by a
multihop ad hoc radio network with no access to a global clock.

6 CHAPTER 1. THE MODEL

Chapter 2

Selectors

2.1 Introduction

A basic combinatorial tool used extensively in algorithms for broadcasting and gos-
siping in ad-hoc radio networks are selectors. A selector is a notion that generalizes a
wide group of several combinatorial tools, such as k-selectors, k-selective families, strongly
selective families, superimposed codes and cover-free families. These tools have not only
applications to broadcasting and gossiping protocols for ad-hoc radio networks, but also
to other areas, such as deterministic conflict resolution in multiple-access channels, de-
terministic algorithms for group testing and other communication tasks concerning radio
networks (the wake-up problem, leader election, local clock synchronization). In addition,
many special cases of selectors have been motivated by purely combinatorial interests.
Since selectors play a crucial role in distributed algorithms for radio networks, this section
will be devoted to a presentation of the theory behind. An interesting survey for selectors
can be found in [16].

The key concept behind selectors is selection by intersection. By this, we mean that
we distinguish a single element of a set as the only common element between this set and
some other set. In other terms, given a subset X ⊆ U of a finite domain U , an element
z ∈ X is selected by a set Y ⊆ U when |Y ∩X| = {z}. We equivalently say that Y hits X
at z.

The next step is to examine the way we can parametrize the selection properties of
such structures. The first thing we consider is the size n of the finite domain U from where
we choose the elements. Then, we are interested in the size of the subsets we want to hit.
We can impose a restriction on this size and consider only subsets of size less than some
parameter k. This leads us to the definition of a k-selective family by Chlebus et al. [15].

Definition 2.1.1. A family S = {S1, . . . , St} of subsets of a set U is k-selective for
U if for any nonempty X ⊆ U such that |X| ≤ k, there exists a set Si ∈ S, such that
|X ∩ Si| = 1.

7

8 CHAPTER 2. SELECTORS

If the size n of the universe U is not clear from the context, we can use instead the
term (n, k)-selective family. Another important category of selectors is the k-selector,
which was introduced by Chrobak, Gasieniec and Rytter [18]. The basic difference is that
we want to find some set X that not only hits some given set, but also avoids some other
set, i.e. has no common elements with it. We thus have the following definition.

Definition 2.1.2. Let k, n(k ≤ n) be positive integers. A family S of subsets of [n] =
{1, 2, . . . , n} is called a k-selector (or (n, k)-selector) if for any two disjoint sets X,Y ⊆
[n] with k/2 ≤ |X| ≤ k and |Y | ≤ k, there exists a set S ∈ S such that :

• |S ∩X| = 1 (S hits X)

• |S ∩ Y | = 0 (S avoids Y)

Now, we can think even further and ask for selectors that guarantee the selection of
more than one element from a given set. Clearly, this consists a stronger combinatorial
property. Following this thought, Clementi, Monti and Silvestri [23] introduced the notion
of strongly k-selective families.

Definition 2.1.3. Let k, n(k ≤ n) be positive integers. A family S of subsets of [n] =
{1, 2, . . . , n} is called a strongly k-selective family (or strongly (n, k)-selective family)
if for any nonempty set X ⊆ [n] with |X| ≤ k and for every element z ∈ X, there exists a
set S ∈ S such that |S ∩X| = {z}.

The above combinatorial structures have some differences, but the concept behind
is basically the same. Consequently, it is logical to ask whether there exists a general
combinatorial structure which contains these notions. The answer is affirmative, as De
Bonis, Gasieniec and Vaccaro [6] introduced the generalized notion of a (n, k, r)-selector.

Definition 2.1.4. Let n, k, r be positive integers so that r ≤ k ≤ n. Let S be a family
of subsets of [n] = {1, 2, . . . , n}. We say that S is an (n, k, r)-selector if, for each set
X ⊆ [n] of size |X| = k, there are at least r elements in X that can be selected from X by
sets in S.

We can now state the first definitions presented in terms of (n, k, r)-selectors.

• (n, k)-selective families are (n, k, 1)-selectors.

• (n, k)-selectors correspond to (n, 2k, 3k/2)-selectors.

• strongly (n, k)-selective families are (n, k, k)-selectors.

Another extension of the notion of a k-selective family was presented in [42], where
the authors defined linearly k-selective families. This combinatorial object can be viewed
as a notion that lies between the selective and strongly selective families.

2.2. EXISTENCE OF SELECTORS WITH SMALL SIZE 9

Definition 2.1.5. A family S of subsets of n = {1, 2, . . . , n} is linearly k-selective for
a positive integer k , if for any nonempty subset X ⊆ [n] such that |X| ≤ k, there is a set
Y ∈ S that hits X on more than half of the elements in X.

The advantage of linearly k-selective families is that, whereas they have a stronger
combinatorial property compared to k-selectors, we can use k-selectors in order to obtain
linearly k-selective families of asymptotically the same size.

Finally, we should also mention another selector with even stronger properties, the
path selector, which was introduced in [45] and was used for gossiping.

2.2 Existence of selectors with small size

The task of constructing any selector that satisfies all the above properties is quite
simple. For example, consider the family consisting only of singletons, i.e. the family
{{1}, {2}, . . . , {n}}. Clearly, this family hits any subset of [n] on all the elements. However,
the size of this family is n, whereas we would like to use selectors with as small size as
possible. The question is whether we can construct selectors of small size, or even prove
their existence. In this section, we will deal with the latter question.

The basic tool for proving the existence of small selectors is the probabilistic method.
The probabilistic method is based on the following idea: we define a carefully chosen
probability distribution over the combinatorial object and then prove that the probability
that this object satisfies the desired properties is positive. Thus, there must be some
instance of the combinatorial structure that holds the properties we want.

As far as k-selective families is concerned, Komlós and Greenberg [49] showed that
there exist k-selective families of size O(k log(n/k)). Clementi, Monti and Silvestri [22]
showed that any k-selective family must have size Ω(n log(n/k)). Thus, a k-selective family
of size O(k log(n/k)) is optimal. The proof of the lower bound is based on the properties
of another combinatorial tool, intersection-free families.

As for k-selectors, Chrobak et al. [18] showed with a simple probabilistic argument
that there exist k-selectors of size O(k log n). We will present the proof of this, in order
to show how the probabilistic method is used.

Lemma 2.2.1. For any positive integers k, n with k ≤ n, there exists a k-selector with
size O(k log n).

Proof. We use the probabilistic method. Fix some integer t and denote by Si (0 ≤ i ≤ t−1)
a random set obtained by including each element of [n] independently with probability
1/(k + 1). Let S = {S0, . . . , St−1} be the family that we obtain.

10 CHAPTER 2. SELECTORS

Now, consider any two disjoint sets X,Y , where |X| = x, |Y | = y and k/2 ≤ x ≤
k, y ≤ k. Then, we can calculate the probability that Si hits X and avoids Y .

Pr[Si hits X and avoids Y] =x · 1
k + 1

(
1− 1

k + 1

)x−1(
1− 1

k + 1

)y
=
x

w

(
1− 1

k + 1

)x+y

≥1
2

(
1− 1

k + 1

)2(k+1)

≥1/32

(2.1)

The first inequality comes from the bounds on the size of X and Y , whereas the second
occurs as the expression is minimized for k = 1. Thus, the probability that any set Si of
the family neither hits X nor avoids Y is (31/32)t. In order to estimate the probability
that the random family S is not a k-selector, we have to sum over all possible pair of sets
X and Y .

Pr[S is not a k-selector] ≤
k∑

x=k/2

(
n

x

) k∑
y=0

(
n

y

)
(31/32)t (2.2)

After some simple calculations and by setting t = (4/ log(32/31))k log n + 1, we get
that Pr[S is not a k-selector] < 1 and thus, some S will be a k-selector.

Now, let us turn our attention to strongly k-selective families. First, Dyachkov and
Rykov [28] showed that there exist strongly k-selective families of size O(k2 log n). A much
simpler proof of this upper bound is provided in [36], where the author uses extensively
the notion of r-cover-free families.

As for the lower bound on strongly k-selective families, we have a lower bound of
Ω(min{n, k2 log n/ log k}) on their size. The n factor comes from the simple observation
that the family consisting of all singletons is a strongly k-selective family for any k ≤ n.
This lower bound was first approached by Dyachkov and Rykov [29], which proved a weaker
form of the bound, namely an Ω(nk2/ log k) lower bound. The bound was strengthened
by Chaudhuri and Radhakrishnan in [9] to Ω(k2 lnn/ ln k) for k ≤ n1/3. However, the
constant involved was pretty large (specifically 100) and was later improved to 16 by
Clementi et al. [23].

We should also mention proofs of existence for the general (n, k, r)-selectors. De Bonis,
Gasieniec and Vaccaro [6] proved that there exist (n, k, r)-selectors of sizeO(k2

k−r+1 log(n/k)).
Notice that this bound means that there exist k-selectors of size O(k log(n/k)), which is
proved to be optimal. In the same paper, the authors also showed a complicated lower
bound of Ω(min{n, (r−1)2

k−r+1
log(n/(k−r+1))

log((r−1)/(k−r+1))}) on the size of (n, k, r)-selectors. This bound

was simplified in [16] to form an Ω(min{n, k2

k−r+1
log(n/k)

log(k/(k−r+1))}) lower bound.

2.3. EXPLICIT CONSTRUCTION OF SELECTORS 11

2.3 Explicit construction of selectors

The previous section referred to the probabilistic proof of existence of selectors with
small size. However, this implies that the use of such a selector in a broadcasting or
gossiping protocol leads to a non-constructive algorithm. Thus, in this section we will
deal with the explicit construction of different kids of selectors.

After introducing the notion of k-selective families, Chlebus et al. [15] provided the
construction of a 2dm/6e-selective family of size O(25m/6). For the construction of such a
family, the authors used the notion of deterministic sample. Let [n] = {1, 2, . . . , n} and
denote by Pr(n) the family of all subsets of [n] with size r. Then,

Definition 2.3.1. A deterministic sample is a member of the set

DetSamples(r,m) = {(D,α) : D ∈ Pr(m), α ∈ {0, 1}r}

Definition 2.3.2. Let (D,α) ∈ DetSamples(r,m). STRINGS(D,α) is defined as the
set of all binary strings s such that |s| = m and ∀i, i ∈ D : si = αi.

Let us provide an example for better understanding of the deterministic samples. As-
sume thatm = 4 and r = 2. Then, [m] = {1, 2, 3, 4}. Next, consider a deterministic sample
of DetSamples(2, 4), the pair ({1, 3}, < 0100 >). It is clear that A = STRINGS({1, 3}, <
0110 >) consists of all strings of length 4 that have their first bit equal to 0 and the third
equal to 1. Thus, only bits 2 and 4 can be chosen freely and as a result A consists of
22 = 4 strings.

A = {< 0010 >,< 0011 >,< 0110 >,< 0111 >}
The crucial point about deterministic samples is that we can use them for the con-

struction of k-selective families. Indeed,

Lemma 2.3.3. The family F = {STRINGS(D,α) : (D,α) ∈ DetSamples(r,m) is a
2r-selective family for the set {0, 1}m.

Proof. Consider the set X : |X| ≤ 2r and r ≥ 1 with binary strings of length m. We
will show how we can construct a deterministic sample (D,α) ∈ F with the property
|STRINGS(D,α) ∩X| = 1.

Initially, let X ′ = X, D = ∅ and α = ε. We then seek the smallest index i such
that two binary strings in X ′ differ in the ith bit (denote it with w). Consider now the
sets Xi = {s ∈ {0, 1}m : sw = i} for i ∈ {0, 1}. Clearly, Xi 6= ∅ and X0 ∩ X1 = ∅. Let
k ∈ {0, 1} such that |Xk| ≤ |X1−k|. Considering that |Xk|+ |X1−k| = |X ′|, we have that
0 < |Xk| ≤ |X ′|/2. Next, let X ′ = Xk, D = D ∪ {w} and α = α· < k >.

We repeat the above procedure until X ′ has just one element (if α is not long enough,
we pad it to reach length m). Since in every repetition we halve the initial set, the number
of repetitions needed is log 2r = r. By construction, |STRINGS(D,α) ∩X| = 1.

12 CHAPTER 2. SELECTORS

The question now is what is the size of the selective family F . By simple combinatorial
arguments, it is easy to show that

Lemma 2.3.4. |DetSamples(dm/6e,m)| = O(25m/6).

By using now the standard mapping {0, 1}m → [2m] and the above lemmas, we can
construct a 2dm/6e-selective family of size O(25m/6), which we denote by Fm.

De Marco and Pelc [62] managed to construct a smaller selective family. The authors
used a different combinatorial tool, a ∆-disjunct family.

Definition 2.3.5. A family C of subsets of [n] is called ∆-disjunct if for every choice of
C0, C1, . . . , C∆ ∈ C,

C0 *
∆⋃
i=1

Ci.

Theorem 2.3.6. For any integer n > ∆, there exists a ∆-disjunct family of n subsets of
[t], where t = O(∆2 log n).

The theorem guarantees the existence of ∆-disjunct families. The initial proof was
based on the probabilistic method and thus there was no explicit way of constructing such
a family. However, a way to construct this family was later found. Based on theorem 2.3.6
and the properties of ∆-disjunct families, we are now in position to construct a ∆-selective
family.

Lemma 2.3.7. For any positive integers n > ∆, there exists a ∆-selective family of
subsets of [n] of size O(∆2 log n).

A construction of even smaller k-selective families was provided by Clementi et al.
in [21]. The authors proposed an algorithm that constructs a k-selective family of size
O(min{n, k log k log(n/k)}). Clearly, this is only a log k factor away from the optimal size
of k-selective families. The approach they used was to prove the existence of such a family
probabilistically and then use derandomization.

Constructive algorithms have also been proposed for strongly k-selective families and
k-selectors. Kautz and Singleton in [48], using superimposed codes, showed how to con-
struct a (n, k, k)-selector of size O(min{n, k2 log2 n}). Indyk [47] constructed k-selectors
of size O(min{n, k · polylog(n)}). The construction was based on a category of bipartite
graphs called dispersers. Thus, we can construct k-selectors of size only a polylog(n) factor
larger than the optimal size. Finally, Chlebus and Kowalski [16] provided a construction
for a generalized (n, k, r)-selector of size O(min{n, k2

k−r+1 · polylog(n)})

Chapter 3

Broadcasting

Broadcasting is probably the most fundamental task in a network. The problem
assumes that a specific node, called the source, holds some information which has to
distributed to all the nodes of the network. We will refer to this piece of information as
the message and we will denote it by m. Clearly, we are interested in communicating the
message to nodes reachable from the source and thus we will assume that the graph has
one connected component.

Broadcasting is the most well-studied problem in the setting of radio networks. The
study of algorithms for broadcasting in radio networks has started from the seminal paper
of Chlamtac and Kutten [12] and continues until today, as many questions remain open.

In this chapter, we will focus on three basic models of broadcasting: centralized broad-
casting, deterministic distributed broadcasting and deterministic randomized broadcasting.
For each model, we will first provide a brief description and then we will present broad-
casting protocols, lower bounds, as well as examine some other variants. Finally, we will
briefly present the research in fault-tolerant broadcasting and geometric radio networks.

3.1 Centralized Broadcasting

In this section we will consider broadcasting in radio networks with known topology,
which means that the algorithms presented use complete information about the network
topology. Such broadcasting algorithms are called centralized algorithms. This type of
communication algorithms is useful in radio networks where the topology is reasonably
stable. We also need the assumption that the topology of the network does not change
during the execution of the algorithm.

Let us provide some more details on how a centralized broadcasting algorithm works.
We assume that each node of the graph has a copy of the network graph and also knows
its own label. The labels are distinct integers, which we assume to be consecutive naturals
starting from 0 (the label of the source). We are interested in constructing a broadcasting

13

14 CHAPTER 3. BROADCASTING

scheme for the given network. A broadcasting scheme is a sequence of transmission sets
(i.e. the set of nodes that transmit in each round), which, when applied to the network,
guarantees that the message will reach all the nodes. Even though the scheme is executed
in a distributed way, since each node has the same copy of the network, the scheme can
be viewed as being designed centrally. Thus, we can consider the centralized algorithm as
an algorithm with input the network graph and the source and output sets of nodes that
transmit in each consecutive round (i.e. a broadcasting scheme).

The length of the broadcasting scheme is the number of rounds necessary for the
scheme to inform every node of the network with the source message. The length may
depend on two parameters, the size of the network n and the eccentricity D, which the
largest distance from the source to a node in the graph. It is also important to distinguish
between the running time of the algorithm that produces the broadcasting scheme and the
length of the broadcasting scheme. We want to find an algorithm that runs in polynomial
time and outputs the shortest scheme possible for a given network.

However, one may ask whether it is possible to find the optimal broadcasting scheme.
Unfortunately, it has been proved in a seminal paper by Chlamtac and Kutten [12] that
the problem of finding a shortest schedule for a given network is NP -hard. This hardness
result, as it usually happens, has lead the research to follow two directions: to find global
bounds on broadcasting time, which are bounds dependent only on parameters of the
network, or to examine how well we can approximate of the optimal broadcasting time.

The first broadcasting algorithm that initiated the study of global bounds was pre-
sented in [10] and produced a broadcast schedule of length O(D log2(n/D)). The next
broadcasting algorithms tried to separate the D and log n terms in the upper bound. In
[38], Gaber and Mansour presented a randomized scheme with expected length O(D +
log5 n). The probabilistic algorithm can be slightly modified to produce a deterministic
broadcast scheme of length O(D+ log6 n). This result was further improved in [32], where
the authors produced a randomized broadcast schedule with expected length D+O(log4 n)
and a deterministic scheme with lengthD+O(log5 n). In [44], the authors provided an even
better randomized algorithm which produced a scheme with expected length D+O(log2 n)
and a corresponding deterministic scheme of length D +O(log3 n).

However, since there existed a lower bound of D + Ω(log2 n) on the length of any
broadcasting scheme, a gap still remained on the time complexity of centralized broad-
casting. While the gap has not yet been closed, further progress has been made. In
[20], the authors presented a broadcasting algorithm with schedule length D+O(log3 n

log logn),
whereas in [52], Kowalski and Pelc came up with an algorithm that produces a scheme of
length O(D+ log2 n). A diagram presenting the development of algorithms for centralized
broadcasting can be seen in figure 3.1.

As far as approximating the optimal broadcasting scheme is concerned, we have mostly
negative results presented by Elkin and Kortsarz in [30] and later in [31].

3.1. CENTRALIZED BROADCASTING 15

Express-Broadast [Kowalski, Pel '07℄

O(D log2(n/D))

O(D + log6 n)

D +O(log5 n)

D +O(log3 n)

[Gaber, Mansour '95℄

Wave-Expansion [Chlamta '87℄

[Elkin, Kortsarz '03℄

[Gasienie et al. '05℄

O(D + log2 3n
log log n

)
[Cialese, Manne, Xin '06℄

D +O(log2 n)

Figure 3.1: The development of centralized broadcasting.

3.1.1 Finding the shortest broadcasting scheme is NP -hard

In [12], Chlamtac and Kutten showed that the problem of computing the shortest
broadcasting scheme for an arbitrary graph is NP -hard. The authors managed to reduce
the 3xc problem, which is NP -complete, to the decision problem of finding a broadcasting
schedule with length less than a given number. Let us first provide a definition of the 3xc
problem.

Definition 3.1.1. (Exact-Cover) Given a collection C of subsets of a set U , find a
subcollection C∗ ⊆ C such that each element in U is contained in exactly one subset of C∗.

The 3xc problem is the restriction of Exact-Cover to instances where the subsets
of C are only sets of three members. We note that 3xc is a decision problem, i.e. we have
to answer whether there is some subcollection of C that satisfies the properties stated. We
want to reduce 3xc to the following problem, which is clearly a more restricted version of
the problem of finding the optimal scheme.

Definition 3.1.2. (2-Min-Broadcast) Given an undirected network G = (V,E) and a
node s ∈ V as the source, find whether there is a broadcasting scheme of length equal or
less than 2.

Let us now provide the detailed reduction from 3xc to 2-Min-Broadcast. Given
an instance of 3xc, we construct the network G = (V,E) in the following way. The set of

16 CHAPTER 3. BROADCASTING

nodes V includes the source s, a node c for each c ∈ C and a node u for every u ∈ U . The
set of edges consists of edges connecting the source to every node c and of edges connecting
a node c with a node u when u ∈ c. A schematic example of the reduction is depicted in
figure 3.3.

c

5

s

1 2 3 4

ba

c = {2, 4, 5}
b = {3, 4, 5}
a = {1, 2, 3}

C = {a, b, c}
U = {1, 2, 3, 4, 5}

Figure 3.2: The reduction from an instance of 3xc to the corresponding instance of
2-Min-Broadcast.

Now, let us consider a solution of the 3xc problem. Then, the broadcasting can be
performed in two rounds. In the first round, the source s transmits the message and every
node c ∈ C receives the message. In the second round, only the nodes c participating in
the optimal solution C∗ transmit. As each node u is a member of exactly one subset of
C∗, the message will reach all the nodes u ∈ U and thus we have obtained a broadcasting
schedule of length 2.

In the opposite direction, consider a solution to the 2-Min-Broadcast problem and
denote by CB the set of nodes of C that make a transmission. Clearly, since the message
will have reached all the nodes u ∈ U by round 2, the union of the sets c ∈ CB covers all
the elements of C. Furthermore, every node u ∈ U is matched with exactly one set c, as in
any other case a collision would occur in round 2 of the broadcasting (note that the first
round is dedicated to the transmission of the source).

Consequently, there is a polynomial-time reduction from 3xc to 2-Min-Broadcast
and so the problem 2-Min-Broadcast is NP -complete (it is easy to see that a solution
can be verified efficiently). The following theorem is then obtained.

Theorem 3.1.3. The problem of finding the optimal broadcasting schedule for an arbitrary
radio network is NP -hard.

An interesting point is that the problem remains NP -hard even when we ask for a
broadcasting schedule that minimizes the average time, over all nodes, needed to complete
broadcasting. Moreover, the theorem implies that we need to look for algorithms that
compute schedules which approximate the optimal solution. We will discuss in the next
section how well can we approximate the optimal schedule.

3.1. CENTRALIZED BROADCASTING 17

3.1.2 Lower bounds and inapproximability results for broad-
casting

We first have to note that the eccentricity D is a trivial lower bound for the broad-
casting time. Furthermore, Alon et al. proved in [1] that there exists a family of n-node
networks of eccentricity 2 for which any broadcasting schedule requires Ω(log2n) rounds.
This bound holds even when we assume that the nodes have full knowledge of the topology
of the network or even when we consider randomized communication. The authors used
the probabilistic method to prove the existence of such a family of networks, so the family
has not yet been constructed explicitly. By combining those two bounds, we obtain a
lower bound of D + Ω(log2 n) for the broadcasting time.

layer 2

source

layer 1

Figure 3.3: A graph of the family used for the Ω(log2 n) lower bound.

However, we should note a subtle difference about these two bounds. The factor D is
a lower bound in the sense that it holds for every graph of eccentricity D. On the other
hand, the Ω(log2 n) bound holds for a specific category of graphs with small eccentricity
and not for every such graph. It is also important to note that the lower bound we have is
weaker than a Ω(D+ log2 n) bound, as the factor of D is equal to 1. That means that we
are mostly interested in algorithms with complexity time that separates D from the log n
factor. As we have already mentioned, most algorithms follow this motivation.

The concept of approximating the optimal broadcasting scheme for some graph G
with length opt(G) lays in a different direction of research. This time, we want to find
an algorithm that produces an efficient scheme in relation with the best one and not by
examining the universal bounds we have found. That means that the length of the approx-
imating scheme will not depend on the parameters n and D, but on opt(G). Nevertheless,
approximating opt(G) in a satisfactory way seems to be pretty difficult.

First, Elkin and Kortsarz [30] showed that approximating the optimal broadcasting

18 CHAPTER 3. BROADCASTING

time for an arbitrary n-node network by a multiplicative factor of o(log n) is impossible,
unless NP ⊆ BPTIME(nO(log logn)). Later, the same authors proved in [31] that, under
the same assumption, there exists a constant c such that there is no polynomial time
algorithm which produces, for every n-node graph G, a broadcasting schedule of length
at most opt(G) + c log2 n. Note here that the second inapproximability result has a c ·
log2 n additive approximation ratio, whereas in the first result the approximation factor of
o(log n) is multiplicative. The existence of inapproximability results for both multiplicative
and additive ratios shows the hardness of approximating the optimal broadcasting scheme
within a satisfying factor.

3.1.3 A first approach to centralized broadcasting

The first to provide an algorithm for centralized broadcasting were Chlamtac and
Weinstein [10]. The algorithm Wave-Expansion-Broadcast (WEB) they introduced
runs in polynomial time and produces a broadcast scheme of length O(D log2(n/D)). We
use the term wave expansion to describe the idea behind the algorithm, as the progress of
broadcasting can be viewed as a wave front carrying the message and advancing from the
source node to the farthest node.

source

black: informed nodes

white: uninformed nodes

XF
YF

Figure 3.4: A wave front. XF is the set of the potential transmitters, whereas YF is
the set of the potential transmitters.

Let us describe the wave front in a more formal way. At each round of the algorithm,
denote by X the set of informed nodes and by Y the set of the uninformed nodes. The
front of this round is the set F = {(x, y) : x ∈ X, y ∈ Y, x neighbor of y}. We also
define the set of potential transmitters XF = {x ∈ X,∃y ∈ Y : (x, y) ∈ F} and the set
of potential receivers YF = {y ∈ Y, ∃x ∈ X : (x, y) ∈ F}. Moreover, let us define the
spokesmen set S ⊆ XF as the set of nodes from XF that transmit in the next round.
For any spokesmen set S, denote by RS ⊆ YF the set of nodes from YF that receive the

3.1. CENTRALIZED BROADCASTING 19

message when the nodes from S transmit. The crucial step is to find a polynomial-time
algorithm that constructs a set S at each round such that RS is relatively large. This
way, we ensure that at each round a large enough number of nodes from the next level
receive the message and thus progress is made. The authors provided such an algorithm
(Spokesmen-Election) and proved the following lemma.

Lemma 3.1.4. For each round, the algorithm Spokesmen-Election computes in poly-
nomial time a spokesmen set S such that |RS | > |YF |/ ln |XF |.

The above lemma states that we can find a set S such that at least a fraction 1/ ln |XF |
of the nodes that can potentially receive the message at that round will actually be in-
formed. Before we describe the algorithm WEB, we provide a useful definition.

Definition 3.1.5. A BFS level (layer) consists of all the nodes with the same distance
from the source. We denote the BFS level j by Lj = {v : dist(source, v) = j}.

Algorithm 1: WEB

The algorithm consists of D phases, which we call superwaves. Each
superwave executes a procedure CW, which consists of a number of rounds
called waves. The ith superwave is responsible to transfer the message from
the nodes of layer Li−1 to all the nodes of layer Li. Thus, in the beginning of
the superwave, XF = Li−1 and YF = Li. In consecutive waves, we apply
Spokesmen-Election to obtain a spokesmen set S, which we use for
transmissions. We then remove from YF the nodes that received the message
and apply the algorithm for the new front. The waves continue until YF is
empty, after which the next superwave i+ 1 begins.

Since the algorithm Spokesmen-Election finds a set S such that |RS | > |YF |/ ln |XF |,
we can see that the ith superwave has no more than (ln |Li−1| · ln |Li|) rounds. The
first superwave needs only one round, and thus the total length of the scheme will be
1 +

∑D
i=2 ln |Li−1| · ln |Li|. The length will be maximized when the levels are of equal size.

As a result, we conclude that algorithm WEB has running time O(D log2(n/D)).

3.1.4 Broadcasting through clusterizing

We will here present the first important result for centralized broadcasting, which was
presented by Gaber and Mansour [38]. The authors described an algorithm that produces
a randomized broadcasting scheme of expected length O(D + log5 n). The basic idea
behind the algorithm is that we want the message to reach fast the distant parts of the
graph, after which we can easily inform the remaining nodes. The algorithm uses the idea
of network partition: the graph is first partitioned into groups (or super-levels), where each
group consist of consecutive BFS levels and each group is then partitioned into clusters,

20 CHAPTER 3. BROADCASTING

which we construct carefully so that they hold specific properties. The scheme then tries
to pass the message as fast as possible from cluster to cluster and in parallel inform all
the nodes within each cluster. A crucial point is to ensure that a large enough number
of clusters can be active at the same time without causing collisions. Let us now provide
some more details on the broadcasting algorithm.

We first distinguish the nodes according to their distance from the source. We can
now divide the graph to groups, where group Gi is the set of nodes Gi = {v : v ∈
Lj , (i − 1) · D/x + 1 ≤ j ≤ i · D/x} (x is a parameter which is specified accordingly to
optimize the running time). Clearly, each group consists of D/x consecutive BFS levels.
We can now proceed in constructing the clusters for each group. The goal of the clusters
is to receive the message from the lowest level of the group and quickly transmit it to the
highest level. Thus, we should guarantee that each cluster has at least one node at the
lowest level and that the union of the clusters can cover the whole group. Furthermore, we
ask that the message can reach all the nodes of the cluster in a relatively small time, thus
we require that the clusters have small diameter. Finally, we want to broadcast in parallel
through clusters of the same color and thus accelerate the broadcasting. As a result, we
ask that the clusters can be colored by as few as possible number of colors.

The construction of the clusters can be divided into two stages. In the first stage, we
define sets for each group Gi, where each set corresponds to a node at the lowest level
of the group. The sets are constructed in a way that guarantees that each node at the
highest level has an ancestor at the lowest level, such that the shortest path between them
belongs to the set. More formally, for each node u in the lowest level of group Gi we define
the set Siu = {v : v ∈ Lj , dist(u, v) = j − ((i− 1)D/x+ 1), (i− 1)D/x+ 1 < j ≤ i ·D/x}.

The sets defined are not enough to guarantee that the broadcasting can be performed
in parallel efficiently, as we cannot calculate the degree of overlapping between the sets.
Thus, we have to build clusters by merging the sets. We first have to define what we mean
by coloring of the clusters.

Definition 3.1.6. A coloring of the clusters C1, . . . , Cm is as assignment of a color to
each cluster, such that there is no edge connecting clusters with the same color.

We will omit here the details of the cluster construction and we will only state the
basic theorem.

Theorem 3.1.7. Given the sets Si1, . . . , S
i
m, we can construct clusters Ci1, . . . , C

i
k with the

following properties:

1. Each cluster is the union of some sets.

2. Each set participates in at least one cluster.

3. The diameter of each cluster is O(D/x · log n).

4. There is a coloring of the clusters with O(log n) colors.

3.1. CENTRALIZED BROADCASTING 21

5. The clusters can be constructed in polynomial time.

The next step is to construct the clusters’ graph, which is obtained by mapping each
cluster to a node and introducing an edge between two nodes if in the graph there is some
edge that connects nodes from the corresponding clusters or if they share a common node.
On the clusters’ graph, we then build a directed spanning tree of depth x, where each
edge is directed from a cluster of lower level to a cluster of higher level. Each node assigns
a high priority to one of its sons and a low priority to the others. The message moves
quickly to nodes with high priority, thus we assign the priorities in such a way that every
path form the source to some cluster contains few nodes with low priority. That way, the
message reaches the most distant area of the graph in O(D) time.

More specifically, each cluster chooses a unique cluster from the preceding group from
which the message will be received, which we call the sender. The procedure of picking
a sender is applied to the clusters of each group, starting from the last group up to the
first group G1. Each cluster of group i knows all the clusters of the next level that have
chosen it as a sender, as well as the representatives nodes chosen from the highest level of
Gi. The procedure consists of the following stages:

1. The cluster Cij calculates its own rank according to the rank of its sons (the ranking
procedure is described in subsection 3.1.5).

2. The cluster chooses a single node from the representatives as the chosen represen-
tative according to the ranking procedure.

3. The cluster chooses a node from the lowest level as the messenger. The messenger
is essentially the node which receives the message from a cluster of the preceding
group and forwards it directly to the chosen representative.

4. The cluster picks its representative, which is a node from the preceding group that
propagates the message to the messenger.

A characteristic example of a clusters’ graph is depicted in figure 3.6. We are now
in position to describe the full broadcasting schedule. The broadcasting starts from the
single cluster of the group G1 which contains the source. The message is then forwarded
from clusters in Gi to clusters in Gi+1, along the edges from the representative nodes of
Gi to the messenger nodes of Gi+1. Within a cluster, the message is transmitted in two
ways. We use a fast way to push quickly the message from the messenger to the chosen
representative and a slow way to send the message to all the nodes of the cluster. We
need a fast transmission within the cluster, so that we can guarantee that the message will
reach all the messengers of the clusters in a relatively short time. This way, the message
will be forwarded to the most distant parts of the graph, even when some nodes of lower
levels are still uninformed.

These tasks are performed in an interleaved way, so that no collisions occur. More
specifically, when the messenger receives the message from a cluster of a preceding group,
each cluster initiates three parallel tasks:

22 CHAPTER 3. BROADCASTING

super−level 0

source

R
CR

R
CR

M

M M

M

 CR
R

M

super−level 1

M

rank = 2

rank = 1

rank = 1

rank = 1
rank = 1rank = 1

rank = 2

super−level 2

Figure 3.5: An example of a clusters’ graph, along with the messengers, represen-
tatives and chosen representatives. We have also noted the ranks for each cluster.

Broadcast-Through: The message is passed along the path from the messenger to the
chosen representative (the path is always within the cluster). Assume that the
cluster has some color j. When the messenger gets the message, we wait until the
first round r ≡ 3j(mod 3 ·d2 log ne). We then start to broadcast the message along
the path, where each node transmits upon receiving the message.

Broadcast-All: The message is broadcasted to all the nodes of the cluster. In order
to accomplish this, we use the randomized algorithm from [2], which has expected
running time O(D log n+ log2 n). That means that there exists some schedule with
execution time K · (D log n+ log2 n) for some constant K. Thus, we wait until some
round r ≡ 0(mod K ·D/x · log2 n) and we then apply the schedule. The schedule
needs K · D/x · log2 n rounds so that all nodes (the representatives included) are
informed.

Group-to-Group: We wait until the message reaches a representative and then until the
first round r ≡ 0(mod Kdlog2 ne). Then, all the representatives apply the random-
ized algorithm used for Broadcast-All. After O(log2 n) rounds, the messengers

3.1. CENTRALIZED BROADCASTING 23

of the next group will have received the message.

source

R
CR

R
CR

M

M M

M

 CR
R

M

super−level 1

M

rank = 2

rank = 1

rank = 1

rank = 1
rank = 1rank = 1

rank = 2

super−level 2

super−level 0

Broadast-All

Broadast-Through

Group-To-Group

Figure 3.6: The application of the three interleaved tasks Broadcast-Through,
Broadcast-All, Group-To-Group on a clusters’ graph.

Our last concern is how to apply the three tasks in parallel without any collisions.
The solution is to use time division and use a different clock for each task. Broadcast-
through transmits only at rounds r ≡ 0(mod 3), Broadcast-All when r ≡ 1(
mod 3) and Group-to-Group when r ≡ 2(mod 3). By interleaving the tasks in such
a way, we ensure that each task completes without interrupting the other two tasks. The
analysis of the algorithm leads to the following theorem.

Theorem 3.1.8. There exists a randomized polynomial time algorithm that for any graph
G computes a schedule of length O(D + log5 n).

Elkin and Kortsarz in [32], based on the algorithm of the previous subsection, managed
to construct a scheme that improved the broadcasting time to O(D+ log4 n). Specifically,
the algorithm completes broadcast in time D +O(

√
D log2 n). The idea is similar to the

algorithm of Gaber and Mansour [38]. The authors partition the graph into superlevels,
which are then further partitioned. However, the superlevels are not disjoint, as they

24 CHAPTER 3. BROADCASTING

may overlap. That consists an important difference between the two algorithm and al-
lows the broadcasting to be performed more efficiently (the additive term is improved
from O(log5 n) to O(log4 n)). The procedures used for the broadcasting scheme are ba-
sically the same, but are not interleaved using time division. Instead, the algorithm is
designed carefully such that, even though we use the same clock, no collision occurs be-
tween the different tasks. Although that does not change the time complexity, it manages
to remove any positive constant from the factor D and thus obtain a complexity of the
form D + O(polylog(n)) (and not of O(D + polylog(n))). For further information about
the algorithm, [32] provides a detailed description of the partition and the broadcasting
schedule.

3.1.5 Faster broadcasting

Gasieniec et al. [44] presented an efficient deterministic algorithm that computes a
radio schedule of length D +O(log3 n). They also proposed a randomized algorithm that
computes a schedule of length D+O(log2 n) with high probability. The algorithm is based
on the notion of the gathering spanning tree. Thus, we need to describe how to construct
such a spanning tree for an arbitrary graph. We will first need to introduce the simpler
notion of the rank of a tree, as describe in [24].

Definition 3.1.9. Consider an arbitrary tree T . We define that each leaf v has rank(v) =
1. Consider a node w which is not a leaf and its children r1, . . . , rm. Define rmax = maxi ri.
If w has a unique child with rank equal to rmax, then rank(w) = rmax. Else, rank(w) =
rmax + 1.

An important lemma about the rank of a tree is stated below.

Lemma 3.1.10. The maximum rank of a node of a tree of size n is bounded by dlog ne.

Definition 3.1.11. We define the following sets:

• rank sets Ri = {v, rank(v) = i} where 1 ≤ i ≤ dlog ne.
• fast transmission sets F ki = {v, v ∈ lk ∩Ri and parent(v) ∈ Ri}.
• slow transmission sets Ski = {v, v ∈ lk ∩Ri and parent(v) ∈ Rj , j > i}.

One would ask why the above definitions are useful for the broadcasting. The key
point is that a fast transmission set holds an important property. During round i, all
nodes in set F ki (for any k = 1, . . . , D) can transmit simultaneously and the messages will
reach their parents without any collisions. However, our goal is to adopt the above ideas
for general graphs and thus the concept of a gathering spanning tree (GST) is introduced.

Definition 3.1.12. In an arbitrary graph G, a GST is a BFS spanning tree TG of G with
the following properties:

3.1. CENTRALIZED BROADCASTING 25

1. The root of TG is the source node.

2. TG is ranked.

3. All nodes in F ki of TG can transmit their message to their parents at the same round
i without any collision and for any 1 ≤ idlog ne, 1 ≤ k ≤ D.

source

(a) The initial graph.

1 1 1

1 11

1 1 1

1111

1111

1 1 1 1 1 1

3

3

2 2 2

2

2

22

2

2 2

12

(b) The pre-gathering spanning tree.

Figure 3.7: The first stage of constructing a GST for an arbitrary graph.

Thus, a GST ensures that the key property of ”fast transmission” holds even for
general graphs. Furthermore, we can construct a GST for any graph G in polynomial time.
The algorithm consists of two stages. In the first stage, we build an arbitrary ranked BFS
spanning tree TPGT of the graph rooted in the source, which is called a pre-gathering-tree
(see figure 3.7). It is clear that TPGT may violate the last property of a gathering spanning
tree, as some transmissions of the fast transmission set may cause collisions. Consequently,
we need to locate the pairs of nodes causing the collisions and then rearrange the edges
between consecutive levels of TPGT . For the detection of potential collisions, we use the
procedure Check-Collision, which takes as a parameter a fast transmission set and
returns a pair of node that causes some collision, else NULL. The detailed algorithm that
produces a gathering spanning tree from a pre-gathering-tree is presented in figure 3.

An example of the construction of a GST from a pre-gathering spanning tree can be
seen in figure 3.8. Once we have constructed the GST of the graph, we can describe the
algorithm for the broadcasting. The algorithm uses the fast and slow transmission sets of
the GST (see figure 3.9) However, we note that the construction of the GST deals with
the case that the messages pass from the node to their parents, whereas in broadcasting

26 CHAPTER 3. BROADCASTING

Procedure Check-Collision(i,j)

if ∃u, v ∈ F i
j and (u, parent(v)) ∈ E then

return (u, v)
else

return NULL
end

Procedure Gathering-Spanning-Tree(TPGT)

for i := D downto 1 do
for j := rmax downto 1 do

while Check-Collision(i,j) 6= NULL do
rank(parent(v)) = j + 1 ;
remove the nodes u, v from F i

j and add them to Sij ;
remove from TPGT the edge (u, parent(u)) ;
add to TPGT the edge (u, parent(v)) ;
update the ranks of the nodes at the top BFS layers ;
recompute the fast and slow transmission sets ;

end

end

end

we want the message to propagate in the opposite direction. Considering that the graph
is undirected, we can reverse the direction of the transmissions within the same stage
(i.e. the transmissions between nodes of the same rank go from parent(v) to v) and thus
guarantee that no collisions happen during a fast transmission. The broadcasting schedule
uses a different mechanism for the slow and the fast transmissions.

Fast Transmissions: Consider a node v of rank j on BFS layer li which has a child w
of the same rank at the next BFS layer. Then, v transmits in round r ≡ i + 6j(
mod 6rmax).

Slow Transmissions: The message has to be transmitted from node u to some node
of lower rank at the next BFS layer. We use then the transmission procedure CW
proposed by Chlamtac [10]. This procedure can move the message from one partition
of a bipartite graph (BFS layer li) to the other partition (the next level li+1) in time
O(log2 n). We run the procedure periodically at every BFS layer of the GST, but
we perform transmissions for layer i only at rounds r ≡ i+ 3(mod 6).

Let us now proceed to the analysis of the algorithm. First, we note that the time
division between the fast and slow transmissions ensures that no collisions occur between
nodes from different BFS layers (two layers transmitting simultaneously have distance at

3.1. CENTRALIZED BROADCASTING 27

1 1 1

1 11

1 1 1

1111

1111

1 1 1 1 1 1

3

3

2 2

2

2

2

2

2 2

12

2

2

(a) The pre-gathering spanning tree.
The nodes in red belong to the fast
transmission sets, but collisions may
occur. The dashed lines show the
edges that lead to the collisions.

4

1 1 1

1 11

1 1 1

1111

1111

1 1 1 1 1 1

3

2

2

2

2 2

1

2

3

3

3

3

3

(b) The final gathering spanning tree
after modifying edges and rankings.

Figure 3.8: The second stage of constructing a GST for an arbitrary graph.

least 3) and that the two procedures do not interact. Now, consider an arbitrary leaf a of
the GST and the unique shortest path p(a) from the source to the leaf. The message may
not follow this path to reach the leaf a, but we focus our attention to the progress of the
message along this path. We can think of the path p(a) as a path consisting of segments
pFi (a) of fast transmission edges (edges where the end nodes are of the same rank) and of
segments pSi (a), where each pSi (a) is an edge (u,w), u is at some BFS layer lk, w is in lk+1

and rank(u) > rank(w). Such edges will be called slow transmission edges. Now, we can
view the traversing of the path as alternating between segments of fast transmission and
slow transmission edges, thus:

p(a) =< pF1 (a), pS1 (a), . . . pFm(a), pSm(a) >

Note that a fast transmission segment can be null. When the message reaches the
first node of a fast segment, it may have to wait at most 6rmax = O(log n) rounds before
transmitting, but then the message propagates through the fast segment without any
further delays. On the other hand, when the message has reached a node u such that the
next edge (u,w) is a slow transmission edge, we may have to wait until the next execution
of the procedure CW for that layer. Even in this case, the next execution guarantees
that the message will move forward and consequently, the time needed will be at most
O(log2 n).

28 CHAPTER 3. BROADCASTING

a fast segment

1 1

1 11

1 1 1

1111

1111

1 1 1 1 1 1

3

2

2

2

2 2

1

2

3

3

3

3

3

1

4

slow transmission edge
fast transmission edge

Figure 3.9: The figure shows the distinction between fast and slow transmission
edges in a gathering spanning tree.

Let us sum up the time required for the message to traverse the path. Denote by
Di the length of the fast segment pFi . Then, for the fast transmissions we need time
O(log n)+D1 + . . .+O(log n)+Drmax ≤ D+O(log2 n). The slow transmissions need time
rmax · O(log2 n) = O(log3 n). As a result, the total length of the broadcasting is bounded
by D +O(log3 n).

Theorem 3.1.13. There exists a polynomial time algorithm that constructs a broadcasting
schedule of length D +O(log3 n) for any arbitrary graph of size n and eccentricity D.

We can now proceed one step ahead and replace the deterministic procedure CW
with the randomized procedure RCW. Procedure RCW works for dlog ne rounds for each
BFS layer and is repeated in a periodic manner like CW. When RCW begins, only the
informed nodes of the layer participate. In round i, 1 ≤ i ≤ dlog ne, each node participating
transmits randomly and uniformly with probability 1/2i. It can be proved that RCW
guarantees that the message reaches every node of the graph with high probability. Thus,
we obtain the following theorem.

Theorem 3.1.14. There exists a randomized algorithm that for any network of size n
and eccentricity D completes broadcasting with high probability in time D +O(log2 n).

3.1.6 Recent results in centralized broadcasting

Recently, Kowalski and Pelc [52] presented a deterministic polynomial-time algorithm
that produces a broadcasting scheme of length O(D+ log2 n) for any undirected graph of

3.1. CENTRALIZED BROADCASTING 29

size n and eccentricity D. In view of the inapproximability results by Elkin and Kortsatz,
the length is asymptotically optimal. We will not present the algorithm with full details,
but we will only describe the main outline and some of the basic ideas involved.

The authors first provide an algorithm (Fast-Deterministic-Broadcast) that
produces a broadcast scheme of length O(D log n + log2 n). Next, they combine Fast-
Deterministic-Broadcast along with the notion of the gathering spanning tree (GST)
to construct an algorithm (Express-Broadcast) that produces a scheme this time with
length O(D + log2 n).

The algorithm Fast-Deterministic-Broadcast is divided into phases. For phase
k, we define a partition Sk,j (j ≤ D) of the set

⋃
j>1 Lj . The set Sk,j contains all the nodes

u, such that the last informed node on any shortest path from the source to u belongs
to level Lj . Furthermore, we denote by Rk,j the set of the informed nodes of Lj which
are witnesses for the nodes in Sk,j . Phase k is responsible for moving nodes from set Sk,j
to set Sk+1,j+1. Equivalently, for a node v ∈ Sk,j , we must inform at least one of its
predecessors in level Lj+1. Since it would be time consuming to move all the nodes from
Sk,j , our goal is to move only a fraction of them. Specifically, we repeatedly use algorithm
Spokesmen-Election from [10] with input the bipartite graph constructed from sets
Rk,j and Sk,j . The spokesmen set produced is then used for transmissions. The algorithm
is repeated 2 log n times, so that we can ensure that at least half nodes will move to set
Sk+1,j+1.

It can be proved that O(D+log n) phases are enough to complete broadcasting. Since
each phase lasts O(log n) rounds, the running time of Fast-Deterministic-Broadcast
(FDB) is O(D log n + log2 n). In order to further decrease the length of the scheme,
we have to use Fast-Deterministic-Broadcast in parallel with a gathering spanning
tree. Through the slow transmission edges we use algorithm FDB, whereas through a fast
transmission segment the message can be forwarded fast without any collisions.

Specifically, the authors managed to construct a graph G′ from G, where the fast
transmission segments of the GST correspond to single nodes in G′. Graph G′ now has
diameter at most O(D/ log n+log n) and thus algorithm FDB produces a scheme of length
O(D+log2 n). Now, the produced scheme has to be modified to get a scheme for graph G,
but since the fast transmission edges are easily dealt with, the length of the final scheme
does not increase. Thus, we obtain the following theorem.

Theorem 3.1.15. Algorithm Express-Broadcast runs in polynomial time and pro-
duces a broadcasting scheme of length O(D + log2 n).

As we have already mentioned, Express-Broadcast is asympotically optimal. How-
ever, the schemes for the previous sections are of the form D+polylog(n), i.e. the constant
factor for D is exactly 1. Thus, the question whether we can obtain a scheme of length
D + O(log2 n) remains open. Furthermore, it would be interesting to find an algorithm
that produces a scheme of length O(opt(G) log n).

Finally, in [20], the authors provided an algorithm that outputs a schedule of D +
O(log3 n

log logn) time. For large enough D, the schedule performs even better than the sched-

30 CHAPTER 3. BROADCASTING

ule of [52]. The authors based their algorithm on the notions of tree ranking and the
gathering spanning tree. However, they proposed the stronger notion of super-ranking
and respectively the super-gathering spanning tree (SGST), which extend the previously
defined notions and hold more useful properties. The SGST can be constructed in poly-
nomial time from a simple GST and then can be used in order to perform broadcasting
more efficiently.

3.2 Distributed Deterministic Broadcasting

Assuming that the topology of a network is known to the nodes is not always realistic.
The decentralized nature of modern networks, in combination with the fact that a network
might not always be stable or could be dynamically changing, can make impossible to
implement a centralized scheduling scheme. As a result, we need a model where every
node holds as little information as possible about the network.

We will study the model where, at the initial situation, the knowledge of each node
is limited to its own unique identifier. The nodes are not aware of their neighbors and, as
a result, every distributed algorithm is not able to exploit these information. One could
also argue that the distinct label each node holds are unnecessary, however, deterministic
broadcasting is impossible to be completed if the radio network is anonymous (randomized
broadcasting, on the other hand, is feasible). However, we will often provide the nodes
with information such as the size of the network n or the eccentricity D.

Furthermore, we should make an important observation on how we measure the exe-
cution time of a broadcasting protocol in the setting of ad-hoc radio networks. We assume
that the processing time of each node is insignificant compared to the time needed for the
transmission of a message (equivalently, the duration of a time-slot). Thus, the execution
or running time of a distributed protocol is actually the number of rounds necessary for
the protocol to complete its task. We should compare this with the running time of a
centralized algorithm, which referred to the processing time the nodes needed.

Before we provide a brief description of the research in deterministic distributed broad-
casting, we should note an important variant of the communication model we consider.
The standard model assumes that a node starts its transmission schedule after it receives
the source message for the first time. Namely, the clock of a node (apart from the source)
starts in the round when the node first receives the source message. We call this the con-
ditional wake-up model. Alternatively, one may consider the spontaneous wake-up model,
where all nodes are assumed to start their clocks when the source transmits for the first
time. This means that the nodes may start transmitting before receiving the source mes-
sage, which could be used for pre-processing and gathering of information. We will also
refer to these two models as broadcasting without and with spontaneous transmissions
respectively.

The first to deal with deterministic broadcasting in the setting of ad hoc networks was
Chlamtac and Farago in [11]. The authors constructed an algorithm that completes broad-

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 31

casting in time O(D ∆2

log2 ∆
log2 n). Later, an algorithm working in time O(D∆ loglog ∆ n)

was constructed in [4]. Another interesting approach to the problem was by Clementi et
al. [23], which provided a protocol with running time O(D∆ loga(n/∆)) for a > 2 (if the
nodes know n, a decreases to 2 and further to 1 if ∆ is also known). However, the above
algorithms perform well only when ∆ is relatively small, as otherwise the execution time
is more than quadratic to n.

The first subquadratic algorithm was presented in [13] and completed broadcasting
in O(n11/6) time. In the same paper, the authors presented a simple quadratic algorithm.
After that publication, the bound was further improved in a very short time. First,
De Marco and Pelc [62] improved the execution time and showed how broadcasting can
be achieved in time O(n5/3(log n)1/3). Peleg also provided an unpublished algorithm
with running complexity O(n3/2

√
log n). In [15], Chlebus et al. proposed an even faster

broadcasting algorithm with execution timeO(n3/2). Next, a considerably faster algorithm
was proposed in [18], completing broadcasting in time O(n log2 n).

In 2003, Kowalski and Pelc [54] presented a broadcasting algorithm with execution
time O(n log n logD), where D is the eccentricity of the radio network. This bound is
clearly an improvement over the bound obtained by Gaseniec et. al in [18], as the eccen-
tricity is at the worst case O(n). The execution time was even further improved in [25] to
O(n log2D). However, the two last algorithms do not improve the worst case running time
when D = Ω(n). Very recently, in 2008, De Marco [61] constructed a broadcasting algo-
rithm with execution time O(n log n log logn), which is the best deterministic distributed
algorithm we have so far. We have to note here that all algorithms with broadcasting times
less than O(n log2 n) are non-constructive, as they all use families of sets whose existence
has been proven, but no efficient algorithm has been presented to produce them. Indyk
[47] gave a constructive algorithm with running time O(n logO(1) n). An interesting review
on broadcasting in radio networks was recently presented by Peleg [67]. We can also see
a schematic representation of the development of distributed broadcasting algorithms for
radio networks in figure 3.10.

As far as the lower bound is concerned, first Bruschi and Del Pinto [8] proved a
bound of Ω(D log n). The bound was further improved to Ω(n logD) by Clementi et al.
[23]. These two lower bounds are for networks for arbitrary diameter D. If we restrict
to networks with constant diameter, first Bar-Yehuda, Goldreich and Itai [2] claimed a
linear lower bound on the broadcasting time. Nevertheless, the bound was proved to be
incorrect (in fact it holds for a more pessimistic model of radio networks) by Kowalski and
Pelc [55]. In the same paper, the authors proved a lower bound Ω(4

√
n) on graphs with

diameter 4, which was improved to Ω(
√
n) in [7].

3.2.1 Broadcasting with acknowledgement

An important thing we should first consider is acknowledged radio broadcasting (ARB).
In simple radio broadcasting, the goal is to disseminate the message from the source to all
the nodes of the network. In ARB, however, the goal is not only to achieve broadcasting,

32 CHAPTER 3. BROADCASTING

[De Maro '08℄

[Peleg, manusript℄

O(n2)

O(n11/6)

O(n5/3(log n)1/3)

O(n3/2
√

log n)

O(n3/2)

O(n log2 n)

O(n log n log D)

O(n log2 D)

O(n log n log log n)

Seletive-Broadasting [Chlebus et al. '00℄

Simple-Sequening [Chlebus et al. '00℄

[De Maro, Pel '01℄

Single-Prime [Chlebus et al. '00℄

[Kowalski, Pel '03℄

Oblivious-Broadast [Czumaj, Rytter '03℄

Seletor-Broadast [Chrobak, Gasienie, Rytter '00℄

Figure 3.10: Development of broadcasting algorithms for the deterministic dis-
tributed setting.

but also to ensure that the source is informed about it. The motivation behind ARB is
that we may need to know exactly when broadcasting ends, in order to be able to perform
some other task afterwards.

Let us provide a more formal definition of acknowledged broadcasting. We say that
an algorithm accomplishes ARB in t rounds, if all the nodes know the message and after
round t, no more messages are transmitted and the source knows that all the nodes know
the message. We should note here that when the source is informed about ARB, it easy
to execute one more broadcast in order to let all the nodes know that the broadcasting is
complete.

Clearly, ARB is a more difficult task than radio broadcasting. In fact, Gasieniec et
al. [13] proved that ARB is infeasible in the standard distributed model without collision
detection, even when we consider symmetric graphs. The model they examined assumes

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 33

that each node knows only its own label and they even allowed spontaneous transmissions.
On the other hand, assuming collision detection, the authors provided a broadcasting
algorithm with time complexity O(nD), for arbitrary strongly connected networks.

Nevertheless, it was proved that the impossibility of acknowledged broadcasting is
caused by the singleton network (containing only the source), as any algorithm is not
capable of distinguishing that the source is alone. Specifically, Uchida, Chen and Wada
[72] showed that if n ≥ 2, we can construct algorithms that perform ARB in linear time
for symmetric networks and in O(n4/3 log10/3 n) rounds for strongly connected graphs.

The above results were further improved by Fusco and Pelc [37]. The authors pre-
sented an algorithm that performs ARB in the model with collision detection, work-
ing in time O(min{n log2D,n log n log logn}) for strongly connected networks. In the
model without collision detection, they constructed a similar algorithm working in time
O(n log n log log n) for strongly connected networks of size greater than 2.

3.2.2 Lower bounds

Before we turn our attention to algorithms for distributed deterministic broadcasting,
we will first present some lower bounds on broadcasting obtained so far. First, we will
examine the Ω(D log n) lower bound proved by Bruschi and Del Pinto [8]. The model
the authors assume is the standard distributed model, where the nodes know only their
label and also the parameters n and D. They also assume that we have no spontaneous
transmissions. Moreover, the bound holds even when we consider undirected graphs.

We will construct a class of radio networks C and prove the lower bound on networks
that belong to the class. A member CDn (D ≤ n/2) of class C is a layered network with
D + 1 layers. The first layer (layer 0) contains only the source node. Then, each of
the layers 1, 2, . . . , D − 1 contains exactly h = bn/Dc nodes. The last layer D contains
the remaining nodes. Now, let us describe the edges between the nodes. The source is
connected with all nodes of layer 1. All the nodes of layer i (2 ≤ i ≤ D) are connected
to two distinct nodes < pi−1, qi−1 > of layer i− 1. We should also note that there are no
edges between nodes of the same layer. An example of such a graph is depicted in figure
3.11.

Our goal is to prove that for an arbitrary protocol Π and parameters n and D ≤ n/2,
there exists a network CDn where Π needs Ω(D log n) rounds to complete broadcasting.
First, we should note that the absence of spontaneous transmissions and the topology of
the network imply that broadcasting performs in a layer-to-layer way. That means that
once a node of layer i first receives a message, all the other nodes of layer i also receive
the message at that round for the first time. Thus, the total amount of rounds needed to
complete broadcast is the sum of the number of rounds needed to transfer a message from
layer i to layer i + 1. We will first deal with the forwarding of a message from one layer
to the next and show a lower bound on that.

The first step is to show a basic lemma.

34 CHAPTER 3. BROADCASTING

layer Dlayer 1 layer 2 layer 3

source

...
q1

p1

q2

p2

Figure 3.11: The graph CD
n .

Lemma 3.2.1. Let S ⊆ {1, 2, . . . , n} with |S| = N ≥ 2 and a transmission schedule
T = {T1, . . . , Tt}, where t ≤ log(N/2). Then, we can find two elements x, y ∈ S such that:
∀j, 1 ≤ j ≤ t, |{x, y} ∩ Tj | 6= 1.

The idea behind the proof of the lemma is the following. Consider the first transmis-
sion set T1. Notice that S ∩ T1 is the set of nodes of S that transmit, whereas S ∩ T̄1 is
the nodes of S that do not transmit. Clearly, |S ∩ T1|+ |S ∩ T̄1| = N and thus the largest
of those sets (let it be S1) is larger or equal to N/2. Furthermore, as long as |S1| ≥ 2,
that means that S1 contains two elements u, v such that neither of them or both of them
belong to T1. We have thus constructed a set that holds the desired property and is at
least half the size of N . We can continue the process with the next transmission sets, each
time halving the set to S2, S3, Clearly, since we have at most log(N/2) transmission
sets, the last set that occurs has size at least 2 and thus we can get two elements that
satisfy the property.

Now, we can use the lemma to prove a lower bound on the number of rounds necessary
to forward a message between two consecutive layers. Consider the last layer of CDn that
have received the message and let Si−1 be the set of the labels of the nodes in layers
0, . . . , i − 1. We will make the stronger assumption that each node receives, along with
the message, the whole history of the network. Thus, each node knows exactly Si−1. We
will show that it is always possible to find an assignment of labels φ for pi, qi such that
φ(pi), φ(qi) ∈ S = {{1, . . . , n} − Si−1} and more than log((n − (i − 1)h)/2) rounds are
required to forward a message to layer i+ 1.

Notice that the protocol Π must guess the labels of pi, qi from the set S. We also
know that |S| = n − (i − i)h. By using the above lemma, for any schedule T of length
t ≤ log((n− (i−1)h)/2), we can always find a pair of labels x, y such that no transmission
is successful for that schedule. Let φ(pi) = x and φ(qi) = y be the assignment we need.
Thus, by using this assignment, more than log((n − (i − 1)h)/2) rounds are needed to

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 35

forward the message to the next layer.

The next step is to extend the lower bound from two consecutive layers to all the
layers of CDn . We can repeatedly use the assignment above to delay the forwarding of the
message log((n− (i− 1)h)/2) in layer i. Thus, we obtain a lower bound t, where

t >

D−1∑
i=1

log
(
n− (i− 1)h

2

)
= Ω(n logD)

after some calculations. We have thus proved the lower bound. We should note that the
the general idea of the proof is described and some details are omitted.

Another lower bound for undirected networks is a Ω(n logn
log(n/D)) bound presented in

[53] by Kowalski and Pelc. The authors assume some given broadcasting algorithm and
then construct a network on which it works slowly, by combining families of sets used for
jamming potential messages and the notion of selective families. The network constructed
from this procedure is not the typical complete layered network frequently used to prove
lower bounds.

As far as broadcasting in directed graphs is concerned, the Ω(n logn
log(n/D)) bound still

holds. However, Clementi et al. [23] provided another lower bound of Ω(n logD). It is
also proved in [53] that the bound does not hold for the undirected version of the class
of graphs considered, as we can construct a broadcasting algorithm which works in time
O(n+D log n) for all undirected complete layered n-node networks. The theorem proved
in [23] is the following.

Theorem 3.2.2. For any distributed protocol Π and any value of n and D ≤ n/6, there
exists a graph GΠ with size n and maximum eccentricity D, such that Π performs broad-
casting in Ω(n logD) rounds. The lower bound also holds when the nodes know n.

Proof. The graph GΠ is a layered n-node graph with D+1 layers. The first layer (layer 0)
contains only the source node. The layers 1, . . . , D− 1 contain each no more than bn/2Dc
nodes and the last layer D contains all the remaining nodes. Edges exist from all nodes
of layer i to all nodes of layer i+ 1. Schematically, the graph is represented in figure 3.12.

Our goal is to find an assignment of labels for all nodes in such a way that any protocol
Π requires Ω((n/D) logD) rounds to transfer a message between two consecutive layers.
In order to perform this assignment, we use selective families. Specifically, we use the
lemma which states that, if 2 ≤ D ≤ n/6, any (dn/2e, bn/2Dc)-selective family has size
at least T = bc(n/D) logDc, where c is some constant. This will help us prove that it is
possible to find a label assignment to layers 0, . . . , j such that Π does not reach layer j
before the round with number j ·T . Thus, the last layer will not be informed before round
cD · (n/D) logD = c · n logD.

We will show this claim inductively. Clearly, it holds trivially for j = 0. Assume that
we have found a satisfying assignment for layers up to j and we want to find the assignment
for layer j + 1. Let R be the set of labels not already assigned to layers 0, . . . , j. Notice

36 CHAPTER 3. BROADCASTING

layer Dlayer 1 layer 2 layer 3

source

...

Figure 3.12: The graph GΠ with size n and eccentricity D.

that |R| ≥ dn/2e. Also, note that the behavior of the protocol Π is independent of whether
we assign to layer j + 1 the whole R or some subset L. Thus, define

Ft = {v ∈ R|v transmits in round j · T + t}

Now, we can construct the family F = {F1, . . . , FT−1}. Since |F| < T , F is not a
(dn/2e, bn/2Dc)-selective family. Consequently, there exists some set L ⊂ R such that
|L| ≤ bn/2Dc and L is not hit by any set of F in any round t : jT + 1 ≤ t ≤ (j + 1)T − 1.
Choosing the set L as the assignment for layer j + 1, the claim is proved.

Now, let us turn our attention to broadcasting in graphs with constant eccentricity.
We assume that the nodes know not only their labels, but also the labels of their neighbors
(thus having a form of local knowledge). In [2], Bar-Yehuda et al. constructed a family of
graphs with size n and diameter 3 and claimed that any broadcasting algorithm requires
Ω(n) rounds to complete the task on one of these graphs. Moreover, the claim was further
strengthened in [46], where a lower bound of (n−1) rounds was proved for the same family
of graphs as in [2]. However, the claim was proved to be wrong in [55] by Kowalski and
Pelc, where the authors showed how to broadcast in logarithmic time in all the graphs from
[2]. The linear lower bound actually holds for a more pessimistic model of communication
in radio networks.

The subtle difference between the two models lays in the way we handle collision
detection. The standard model (where the claim was proved to be incorrect) assumes that
a node cannot distinguish a round with no transmission from a round where a collision
occurs, whereas a collision is always distinguishable from a successful transmission. The
more pessimistic model assumes that when a collision occurs at node u, the effect can be
either the same as if no neighbor of u transmitted or the same as if any single neighbor of u
transmitted, the choice of which is left to the adversary. This model has also a very natural
interpretation: in the case of a collision, noise indistinguishable from the background noise

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 37

may be produced or some of the messages transmitted may prevail and reach its target.
As it seems, the standard model is a weaker model, since the nodes may be able to exploit
the information of the absence of incoming messages.

Kowalski and Pelc in the same paper ([55]) and under the same assumption constructed
a class of graphs of eccentricity 4, such that every broadcasting algorithm requires Ω(n1/4)
rounds on one of these graphs. The lower bound was further improved by Brito et al.
[7] to Ω(

√
n). The authors showed that for every deterministic broadcasting protocol,

there exists a network with D = 2 which requires at least Ω(
√
n) rounds to complete

broadcasting. For networks with arbitrary eccentricity, the lower bound can be extended
to Ω(

√
nD) rounds. The approach followed by the authors lays in a different direction

compared to previous approaches. The key idea is to quantify the amount of connectivity
information concerning the topology of the network that the source can learn in a number
of rounds. By obtaining a bound on the amount of such information, the authors managed
to significantly improve the lower bound.

3.2.3 Symmetric Radio Networks

We consider here a restricted family of radio networks, where we assume that the
underlying graph is symmetric (or equivalently undirected). Naturally, all algorithms de-
signed for a directed radio network can be directly applied to an undirected radio network.
As a result, our main focus here will be algorithms for broadcasting that can only be ap-
plied to undirected networks and obtain a faster execution time. For an undirected radio
network, we exploit the fact that a node can be informed about the labels of the neighbor-
ing nodes (whereas in the directed model that is not necessarily true) and thus increase
efficiency. The opposite holds for the lower bounds: a lower bound for a symmetric ra-
dio network consists a lower bound for arbitrary radio networks as well, whereas a lower
bound obtained for general radio networks is not necessarily valid for the weaker model of
undirected radio networks.

In undirected radio networks, we have the advantage that information about the
network may travel in any direction. Thus, an important distinction is to consider oblivious
and adaptive algorithms. As we have already mentioned, in oblivious algorithms, the
decision of whether a node transmits at a given round depends only on the label of the node
and the number of the round. On the other hand, in adaptive algorithms, the decision of
whether a node transmits at a given round also depends on previously obtained messages.
Another way to look at the difference between the two models is that in an oblivious
algorithm all the actions of a node can be scheduled from the beginning, whereas an
adaptive algorithm decides the actions of each node based on information obtained during
the execution of the algorithm. An interesting study and comparison of both models was
presented by Kowalski and Pelc in [56].

This section concentrates on adaptive deterministic algorithms. A linear-time algo-
rithm (Explore-and-Expand) was first proposed in [13] . However, the authors assume
that spontaneous transmission is allowed. This means that all nodes start the execution

38 CHAPTER 3. BROADCASTING

of the protocol simultaneously and a node can transmit without having received a mes-
sage from the source node. This capability allows a preprocessing stage where the nodes
exchange information before obtaining the source message and thus gain knowledge about
the neighboring nodes.

The idea of the algorithm is pretty simple and is basically a distributed version of a
depth-first search algorithm (DFS). However, the algorithm is not straightforward, as the
size of the network n is assumed unknown to the nodes and thus it is not that simple for
one node to learn its neighbors. The algorithm consists of several phases and each phase
can be divided into 3 stages. Before we present the algorithm in detail, we need some
definitions.

Lk : the set of nodes with labels 1, ..., 2k.

Gk : the connected component of the network containing the source and induced by Lk.
If the label of the source is more than 2k, Gk is the empty graph.

Tk : a spanning tree of Gk which is constructed in phase k.

Ck : an Eulerian cycle of Tk which is constructed in phase k.

k − tag : Nodes of Ck are labeled with consecutive positive integers, which are called
k-tags.

Let us describe now in detail the stages of Explore-and-Expand at phase k.

STAGE A Stage A consists of 2k−1 rounds, which are numbered 2k−1+1, . . . , 2k−1+2k−1.
In round with number k, only the node with label k sends a message containing its
label.

STAGE B Rounds are numbered 1, . . . , 2k. Nodes in Ck−1 that have received a message
at stage A or earlier at stage B are called active. An active node sends a simple
contact message in every round of stage B that corresponds to its k-tag.

STAGE C Stage C starts only when the source becomes active. Due to the previous
stages, every node v knows its neighboring nodes Nv in Gk. Thus, it is possible to
send a token to travel Gk in a DFS manner, while constructing Ck and assigning
to the nodes of Ck with the appropriate k-tags. Initially, the source sends a mes-
sage containing the token and a counter c set to 1. Node v executes the following
procedure:

• Initialization : Qv = Nv

• Message with <visit> : Node v removes from Qv the neighbor that sent
the message

• Message with counter c :

Qv = ∅ :

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 39

– vk−tag = c+ 1.
– Node v sends the message < label(v), visited>

– Node v sends the message <token, c+1, label(w)> (w is the node
from which v got the token)

Qv 6= ∅ :
– vk−tag = c+ 1.
– Node v sends the message < label(v), visited>

– Node v sends the message <token, c+1, label(w)> (w is the node
in Qv with the smallest label)

It can be proved that after phase k every node in Gk knows the source message. It
remains to calculate how large k must be so that the message can reach all the nodes
and that after phase k no messages are sent. Let k : 2k−1 < n ≤ 2k. Then, Gk is in
fact the whole network and thus all nodes have received the message. Furthermore, since
Gr = Gr+1, r ≥ k, no node will transmit in stage A and B, and, as a result, no node will
transmit in stage C. Considering the above, the algorithm stops after

k∑
i=1

(2i−1 + 2i + 2i+1) =
k∑
i=1

7 · 2i−1 = 7(2k − 1) = 14n− 1 = O(n) rounds

Theorem 3.2.3. Explore-and-Expand succeeds broadcasting in time O(n).

As mentioned, the above algorithm assumes that a node can transmit spontaneously.
Under this assumption, the algorithm is optimal, as proved in [56] by Kowalski and Pelc.
To be more specific, the authors proved the following theorem for undirected networks:

Theorem 3.2.4. For every integer n and every broadcasting algorithm there exists a
network G with at most 2n+ 1 nodes and diameter D = 4, such that the broadcasting time
is Ω(n).

Nevertheless, if we assume the harsher model with conditional wake-up, the fastest
broadcasting algorithm was proposed by Kowalski and Pelc in [53] and completes broad-
casting in O(n log n) rounds. Before we describe the algorithm Select-and-Send, we
first need to introduce two basic procedures. Let us assume that a node v knows a set of
neighboring nodes A and a neighboring node u /∈ A. Procedure Echo decides whether set
A consists of 0, 1 or more nodes.

An important observation is that if |A| = 1, then node v will also know the label of
the single node of set A. Let us assume now that a node v knows a neighbor u and that
node v needs to select a node from a set S of its neighbors (u /∈ S). Furthermore, we
assume that v knows that some nodes in set S have labels at most m (m = 2k). The
procedure Binary-Selection can then be used to determine a single neighbor of set S
in only O(logm) rounds.

40 CHAPTER 3. BROADCASTING

Procedure Echo(w,A)

(1) Every node in A transmits its label ;
(2) Every node in A ∩ u transmits its label ;
switch messages received do

case v receives a message in step 1 and not in 2
|A| = 1

case v receives a message in step 2 and not in step 1
|A| = 0

case v receives no message
|A| > 1

end

The main algorithm Select-and-Send can be described now in full detail. We define
with parent(v) the node from which node v gets the token for the first time. Furthermore,
when the token is at node v, S denotes the set of the neighboring nodes of v that have
not been visited by the token.

Initial procedure : The source sends a message with the information that the neigh-
boring node with label i should transmit in round 2i. The source then waits for
the first incoming message in round 2j (j is the smallest label of the neighboring
nodes) and after that sends a message in round 2j+1 in order to stop the procedure.
Finally, the source sends the token to the node with label j.

Main procedure : (The token is at node v.) Initially, v sends the source message (all
the neighbors receive it and wake up). Next, we distinguish two cases:

v 6= source : Echo(parent(v), S)

v = source : Echo(j, S)

According to the result of Echo the following happens:

|S| = 0 and v 6= source : v sends the token to parent(v) and stops.

|S| = 0 and v = source : v stops.

|S| = 1 : v sends the token to the single node of S.

|S| > 1 : v If v 6= source node v executes Echo(parent(v),S ∩ {1, . . . , 2k}) (else
Echo(j,S∩{1, . . . , 2k}) for k = 1, . . . and until S∩{1, 2, . . . , 2k} is not empty.
Then, v executes Binary-Selection(parent(v), S∩{1, . . . 2k}) and sends the
token to the unique node that the procedure Binary-Selection chose.

It is clear that the initial procedure of algorithm Select-and-Send takes only O(n)
rounds. Furthermore, we notice that during the main procedure of the algorithm, the

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 41

Procedure Binary-Select(u,m)

R := {1, . . . ,m/2} ;
while true do

(Let R = {x, . . . y}) ;
Node v transmits range R ;
Echo(v, R ∩ S) ;
switch |R ∩ S| do

case 1
Node v selects the single neighbor from R ∩ S ;
break

case 0
R := {y + 1, . . . , y + (y − x+ 1)/2}

case > 1
R := {x, . . . , (y + x− 1)/2}

end

end

procedure Echo is called O(log n) times from each node and thus Echo will be executed
O(n log n) times. As a result, the algorithm needs O(n log n) rounds to terminate. The
following theorem is straightforward.

Theorem 3.2.5. Algorithm Select-and-Send performs broadcasting in an arbitrary
undirected network in time O(n log n).

3.2.4 A quadratic broadcasting algorithm

Chlebus et al. [13] were the first to propose a quite simple broadcasting protocol that
completes broadcasting in time O(n2). The algorithm Simple-Sequencing works in a
Round-Robin fashion. The algorithm is constructed so that at each round only one node
transmits a message. Assuming that the size of the network n is known to the nodes, the
implementation of the idea is pretty straightforward. The algorithm consists of n stages
and each stage will have n rounds. In each stage, the node with label i transmits the
message at round i of the stage. It is clear that the above procedure guarantees that the
message will reach all nodes and that the running time is n2. Nevertheless, if we assume
no knowledge of the size n, things get more complicated. The final algorithm consists of
phases, where phase k consists of 2k segments and each segment of 2k rounds. Algorithm
6 describes the execution of a phase. Note that phase k is basically an execution of 2k

Round-Robin procedures, restricted to nodes with label at most 2k.

Algorithm Simple-Sequencing uses the doubling technique, i.e. the algorithm tests
different values for the size of the network n by making exponential jumps. It is clear that

42 CHAPTER 3. BROADCASTING

n

node transmitting

1

2

3

4

5

...

Figure 3.13: A graphical representation of Round-Robin

Algorithm 6: Simple-Sequencing

Node v with label i waits to receive the message ;
Assume that the message is received in round r ;
v transmits at the first round r′ (r′ > r) whose number in its segment is i.

each phase k lasts 4k rounds. Let us now assume that 2l−1 ≤ n < 2l. We can easily note
that some node v that has distance d from the source node receives the message at the
latest at segment d of phase l (that can happen when the label of node v is > 2l−1 or the
label of a node that the message must reach before node v is > 2l−1). Thus, after phase l,
all nodes have received the message and have transmitted once. Consequently, every node
will stop transmitting after phase l. The total running time will thus be

l∑
i=0

4k = O(4l) = O(4logn) = O(n2). (3.1)

By the above equation, we have the following theorem:

Theorem 3.2.6. Algorithm Simple-Sequencing performs broadcasting in any network
of size n in time O(n2).

3.2.5 The first subquadratic broadcasting algorithms

The question arising is whether we can improve the time complexity of Simple-
Sequencing. The answer was given by Chlebus et al. in [13], where the authors proposed
an algorithm with broadcasting in time O(n11/6), thus lowering for the first time the upper
bound under quadratic time.

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 43

The algorithm is based on the notion of selective families, an essential tool in the field
of radio networks. We have presented selective families in chapter 2; however, we have
not mentioned the intuition behind the application of selective families to radio networks.
The main difficulty in the setting of radio networks is the fact that collisions may occur
when two nodes transmit simultaneously. Now, let us consider the set F of active nodes
(i.e. nodes that have received the message). We would like to ensure that F will expand
after some rounds of the algorithm, however this task is not simple as the nodes know
nothing about the topology of the network. Nevertheless, if we could design a schedule
that guarantees that after a number of rounds only one node of F transmits, that would
mean that the message would reach some uninformed node without collision and thus F
will grow larger. A selective family is a combinatorial tool that guarantees exactly the
aforementioned condition.

The sets from a k-selective family F can be used as transmissions. We can map each
round of a broadcasting algorithm to a specific set from F and then say that a node
transmits in that round only when its label belongs to this specific set. Thus, two things
should be designed by an algorithm that uses selective families. First, we need to find an
appropriate mapping that ensures that broadcasting succeeds. We may need to consider
a number of selective families for that case. Second, we need to construct such a selective
family (or prove the existence of it). An important thing to keep in mind is that we are
interested in small selective families, as these will lead to better execution times.

Under the setting of selective families, the algorithm Simple-Sequencing can be
viewed as an algorithm that uses a simple selective family that consists of the singleton
sets of {1, 2, . . . , n} and thus has size Ω(n). In order to lower the upper bound, we need
to construct a smaller selective family with less than Ω(n) sets. For this, we will use
the selective family Fm we introduced in section 2.2. Let fm = |Fm| and km = 2dm/6e.
Moreover, assume an enumeration for Fm, Fm = {F1, F2, . . . , Ffm}. We are now in position
to describe the algorithm Selective-Broadcasting in full detail.

We define three different states for the nodes during the algorithm.

• dormant / uninformed : The node has not yet received the message

• frontier / active : The node has received the message, but has still uninformed
neighbors.

• passive / switched-off : The node has received the message, all its neighbors are
informed and it has stopped transmitting.

Let us also define that a node v is called m-node when there exists a directed path
from the source to v such that all nodes of the path (the source and v also) have labels
≤ 2m. The algorithm is heavily based on the procedure Segment, which is described in
detail.

Lemma 3.2.7. After phase m of the algorithm Selective-Broadcasting, all m-nodes
are switched off.

44 CHAPTER 3. BROADCASTING

Procedure Segment(m)

HEAD :
for round i = 1 to km · fm do

An active node with label k transmits when k ∈ Fi mod fm

end
TAIL :
for round i = 1 to 2m do

An active node v with label k transmits at round k ;
Node v becomes switched-off

end

Algorithm 8: Selective-Broadcasting

for phase i = 1 to ... do
call Segment(i) d2i/kie consecutive times

end

Proof. The proof is with induction to m. For m = 0, all 0-nodes are switched-off, since
either the label of the source is larger than 1 and hence the set of 0− nodes is empty, or
else the source has label 1, so it transmits and then becomes switched-off.

Let us assume now that the lemma holds for 0 ≤ m′ ≤ m − 1. That implies that
all (m− 1)-nodes are switched off when phase m starts. We concentrate our attention in
some call S of procedure Segment. Denote by nm the number of m-nodes still active
or uninformed. We will prove that the number of the active nodes at the beginning of
the tail of S is ≥ min(km, nm). If that holds, these active nodes will become switched-off
during the tail of S. Since we have at most 2m m-nodes, d2m/kme calls of the procedure
Segment will be enough to get all nodes switched-off.

Let us prove now our hypothesis. We distinguish two cases. In the first case, the
number of the active nodes at the beginning of the head of S is ≥ km. This also holds
at the end of the head of S and thus is straightforward. Otherwise, we will show that
each window of fm consecutive rounds increases by 1 the number of active m-nodes (until
there exist no uninformed m-nodes). This implies directly that after km windows, we will
have at least min(km, nm) active nodes. Denote by A the set of active m-nodes that are
adjacent to uninformed m-nodes at the beginning of a fixed window. Clearly, |A| ≤ km.
The case A = ∅ is trivial, as it implies that no uninformed nodes are left, thus |A| > 0.
We can now apply the property of a k-selective family and note that at some round r of
the window, a node v ∈ A will be the sole transmitter. Fix an uninformed neighbor w of
v. There are three subcases,

• w became active before round r: Then, we have one more active m-node.

• w is uninformed before round r and no other node transmits at round r : w becomes

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 45

active in round r

• w is uninformed before round r, but never gets the message because some other
node w′ transmits at the same time : Then, w′ /∈ A and thus became active at some
previous round of the window.

Thus, in each case the number of active nodes increases and the proof is concluded.

Theorem 3.2.8. In any network of size n, algorithm Selective-Broadcasting com-
pletes broadcasting in time O(n11/6).

Proof. Let m∗ : 2m
∗−1 < n ≤ 2m

∗
. By lemma 3.2.7, after phase m∗, all nodes will become

switched-off and no transmission will take place. Furthermore, we note that phase m
needs (kmfm + 2m) · d2m/kme rounds. The selective family we used has km = O(2m/6)
and fm = O(25m/6). Substituting, we get that each phase needs O(211m/6) rounds and
by adding for phases 0, 1, . . . ,m∗, we get that the algorithm needs O(211m∗/6) rounds or
O(n11/6) rounds (since n = O(2m

∗
)).

An important thing here is that algorithm Selective-Broadcasting can use any
k-selective family. That implies that if we can find a smaller selective family, then the
algorithm will run faster. Specifically, theorem 3.2.8 can be generalized as follows:

Theorem 3.2.9. Let m∗ : 2m
∗−1 < n ≤ 2m

∗
and consider a km-selective family Fm of

[2m] with size fm. In any network of size n, broadcasting can be performed in time

m∗∑
m=1

(kmfm + 2m) · d2m/kme. (3.2)

De Marco and Pelc [62] used such a smaller selective family, namely the (∆, n)-selective
family of size O(∆2 log n) presented in section 2.3. Assuming that ∆ = (2m/m)1/3 and
n = 2m, we can construct a ∆-selective family of size O(22m/3 ·m1/3). We can now apply
theorem 3.2.9 with km = ∆ = (2m/m)1/3 and fm = O(22m/3 ·m1/3). After some simple
calculations, we can deduce the following theorem:

Theorem 3.2.10. In any network of size n, radio broadcasting can be completed in time
O(n5/3 log1/3 n).

3.2.6 A broadcasting algorithm with running time O(n3/2)

In [15], Chlebus et al. proposed several broadcasting algorithms that improved the best
known upper bound of O(n5/3 log1/3 n). The first algorithm performed broadcasting in
time O(n1.77291), the second further improved the running time to O(n3/2

√
log n). Finally,

the third algorithm (Single-Prime) the authors proposed has running time only O(n3/2).
In this section, we will only present the last algorithm with more details.

46 CHAPTER 3. BROADCASTING

The idea behind the algorithm does not differ from previous ideas: we want to design
a schedule in such a way that it guarantees that there will be rounds where only one node
transmits. This time, the construction of the schedule is based on properties of prime
numbers. Let us denote by p the smallest prime number that is greater or equal to b√nc,
where n is the size of the network. Assuming that each node has a unique laebl from
[0, . . . , p2 − 1], we can introduce the following mapping from i ∈ [0, . . . , p2 − 1] to a tuple:

i −→< i div p, i mod p > (3.3)

We call this tuple the coordinates of i. The set {0, . . . , p − 1} forms a field Fp, since
the arithmetic is modulo the prime p. We introduce the basic definition of a line.

Definition 3.2.11. Let a, b, c ∈ Fp and a > 0 or b > 0. A line L(a, b, c) is a set of nodes
whose coordinates < x, y > satisfy the following equation in Fp:

a · x+ b · y = c (3.4)

The definition of a line can lead us to some very interesting properties that will come
handy afterwards.

Lemma 3.2.12. The following properties hold:

1. Each line has size p.

2. The total number of lines is p(p+ 1).

3. There are exactly p− 1 lines disjoint with a given one. Two disjoint lines have the
same direction.

4. Each node belongs to p+ 1 lines.

5. Two lines of different directions have exactly one common node.

6. For any two different nodes, there is exactly one line that contains both of them.

The properties seem to have a lot in common with the properties of lines in the
euclidean plane. The above properties are based to number theory, however they can
also be viewed as geometric properties by mapping each node to a certain point on the
euclidean plane. Then, a line as defined here would correspond to a geometric line on the
plane. Figure 3.14 depicts the geometric intuition behind the aforementioned properties.

The idea behind the algorithm Single-Prime is to map each round to a specific line
(or singleton), such that a node transmits in that round only if its coordinates belong to
the line (or its label to the singleton). The use of lines and singletons is interleaved, so
that we can use the advantages of both structures.

The following lemma is necessary in order to analyze the algorithm Single-Prime.

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 47

v3

v2

x

y

0

1

2

p− 1

p− 10 1 2

L1 : L(1, 0, 4)
L2 : L(p− 1, 1, 3)

L3 : L(p− 1, 1, 2)

Figure 3.14: A geometric interpretation of the notion of the line.

Lemma 3.2.13. Let F be a set of nodes and |F | ≤ p/2. For each node v ∈ F during
each consecutive 2|F | stages, there are at least |F | rounds, each round in a different stage,
during which v is the only node from F that transmits.

Proof. Since in each stage the lines used are disjoint, node v belongs to exactly one line
of each stage. Let T1, T2, . . . , T2|F | be these lines. Clearly, each line appears at most
once in 2|F | consecutive stages and thus these lines have pairwise at most one common
node (if they had two common nodes, it would be the same line). Consequently, the sets
T1 − {v}, T2 − {v}, . . . , T2|F | − {v} are disjoint. By the pigeonhole principle, this implies
that at most |F |−1 of them include elements of F . Thus, at least 2|F |−(|F |−1) = |F |+1
sets have no elements of F .

Before we move to the proof of the basic lemma, let us first introduce an important
term. Each time a node changes its status according to the following transitions:

• uninformed → active.

• active → passive.

48 CHAPTER 3. BROADCASTING

Algorithm 9: Single-Prime

• In even-numbered rounds, singletons are used. During each consecutive p2

even rounds, each singleton is used exactly once, and thus each node
transmits exactly once.

• In odd-numbered rounds, lines are used. During each consecutive p(p+ 1)
odd rounds, each line is used exactly once. Furthermore, lines of the same
direction are used in consecutive odd rounds. We define a stage as 2(p+ 1)
consecutive rounds where we use only lines of the same direction.

we say that progress has been made. Each transition contributes a unit to the measure of
progress. When progress reaches (2n−1) broadcasting is complete (notice that the source
node is from the beginning active).

We can now prove the basic lemma, which gives as a lower bound to the amortized
progress of the algorithm Single-Prime.

Lemma 3.2.14. Let F be the set of active nodes at the beginning of stage s and assume
that |F | ≤ p/2. Then, the average progress per stage from stage s to stage s+ 2|F | − 1 is
Ω(1).

Proof. Let us consider the 2|F | consecutive stages T = {s, s+ 1, . . . , s+ 2|F | − 1}. If each
of the nodes in F transmits during T as the only active node, then we make progress at
least |F | and thus the average progress per stage is at least 1/2. Assume now that some
node v in F never transmits as the only active node. However, by lemma 3.2.13, there
are at least |F | rounds where v transmits as the only node in F . Thus, some node v′ 6= v
transmits simultaneously with v. Each line is uses at most once in T , so any two nodes
transmits at most once during T . Consequently, if v transmits along with other nodes
during |F | stages, then these nodes are distinct. The latter implies that at least F nodes
became active since the beginning of T and so we achieve again an average progress of at
least 1/2.

The above lemma guarantees progress when the set of active nodes is ≤ p/2. When the
active nodes are more than p/2, the round-robin ensures that we make enough progress.
Thus, the two interleaved algorithms complement each other and putting them together,
we can achieve the O(n1/2) running time.

Theorem 3.2.15. The algorithm Single-Prime completes broadcasting in time O(n1/2).

Proof. We have to calculate the time needed to make progress 2n−1. If at some stage the
number of active nodes k is less than p/2, by lemma 3.2.14, we have a constant average
progress per stage over the next 2k stages and thus the average progress per round is

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 49

Ω(1/p) = Ω(n−1/2). If now the number of active nodes is greater than p/2, the round-
robin algorithm guarantees progress p/2 = Ω(n−1/2) over the next O(n) rounds, and thus
again average progress per round Ω(

√
(n)/n) = Ω(n−1/2). This implies that we need

O(n/n−1/2) = O(n3/2) rounds to complete broadcasting.

3.2.7 Broadcasting in time dependent on ∆

Clementi et al. [23] proposed a new broadcast technique that yields broadcasting
protocols with execution time that does not contain the parameter n as linear factor,
but instead contains the parameters D and ∆. Specifically, the authors obtained a
O(D∆ log(n/∆) log1+a n) running time, for any positive constant a. The key concept
of the algorithm is the use of selective families. More precisely, we use (n,∆)-selective
families.

In order to provide the intuition behind the use of selective families, let us first describe
a naive algorithm, which we will then modify to obtain the final algorithm. Consider a
radio network with size n and maximum in-degree ∆ and let F = {F1, . . . , Fm} be a
(n,∆)-selective family. We now apply the selective family in the usual way, i.e. a node
with label x transmits at round i of and only if x ∈ Fi. This single application of the
selective family (which requires m rounds) guarantees that for each set of d ≤ ∆ nodes, at
some round only one of the nodes of the set transmits. As a result, at least one uninformed
node will be informed. Clearly, by repeating the above procedure n times, all the nodes of
the network will receive the message. Thus, we have achieved broadcasting in time n|F|.

As we have seen, there exist (n,∆)-selective families with size O(∆ log(n/∆)). Thus,
we can assume that |F| = O(∆ log(n/∆)). The next step is to show how the above naive
algorithm can be modified to perform more efficiently. We will first present an algorithm
Broad-A(n,∆) that works with the assumption that n and ∆ are known to the nodes
and then we will remove this assumption.

Algorithm 10: Broad-A(n,∆)

At the first round, the source transmits and then becomes non-active. Then,
the algorithm performs consecutive identical stages. At round j of stage i,
node v transmits only if the following two conditions hold:

• the label of v belongs to Fj.

• v received the message for the first time at stage i− 1, i.e. the previous stage.

After transmitting, node v becomes switched-off and stops transmitting.

The following theorem holds for the running time of algorithm Broad-A.

Theorem 3.2.16. For any network with size n, eccentricity D and maximum in-degree
∆, algorithm Broad-A(n,∆) performs broadcasting in time O(D∆ log(n/∆))

50 CHAPTER 3. BROADCASTING

Proof. As we have mentioned above, |F| = O(∆ log(n/∆)) and thus each stage lasts
O(∆ log(n/∆)) rounds. Thus, it is enough to prove that we need D − 1 stages. More
precisely, we will show that a node v receives the message at stage i if and only if v is at
distance i+ 1 from the source. We will use induction. For i = 0, the claim holds trivially.
Assume now that all nodes at distance i have received the message for the first time at
stage i− 1. Consider some node w at distance i+ 1 from the source. Node w has at least
one in-neighbor at distance i, which will be informed. Furthermore, following the second
condition necessary for a node to transmit, only nodes at distance i transmit at stage i.
Denote by S the set of in-neighbors of w at distance i − 1. Clearly, |S| ≤ ∆ and thus,
by the selectivity property of the family F , at some round of stage i only one node of S
transmits and w gets the message.

Next, we drop the assumption that ∆ is known to the nodes and assume only knowl-
edge of n. We use the doubling technique in order to perform broadcasting. The new
algorithm Broad-A(n) runs a sequence of stages, where each stage has dlog ne rounds.
In round r of stage s, each node runs round s of Broad-A(n, 2r). Thus, the algorithm
tries in a way to search for the apprpriate value of the parameter ∆. The next theorem is
naturally obtained.

Theorem 3.2.17. For any network with size n, eccentricity D and maximum in-degree
∆, algorithm Broad-A(n) performs broadcasting in time O(D∆ log(n/∆) log n)

The last step is to remove the assumption that the nodes know n. The final algorithm
basically consists of executions of Broad-A(2l) for l = 1, 2, However, since a simple
dovetailing technique results in unsatisfying performance, the authors proposed a more
sophisticated dovetailing procedure that adds only a factor of O(loga n), for a > 1. Thus,
we obtain the following result for the final algorithm Broad-Aa.

Theorem 3.2.18. For any positive constant a, algorithm Broad-Aa performs broad-
casting in time O(D∆ log(n/∆) log1+a n) in any network with size n, eccentricity D and
maximum in-degree ∆.

3.2.8 An almost optimal broadcasting algorithm

In [18], Chrobak et al. proved an upper bound of O(n log2 n) for radio broadcasting,
which is only a logarithmic factor away from the lower bound. The authors, however,
proved only the existence of an algorithm with this running time and thus there is no
explicit construction of the algorithm.

The authors used k-selectors for the broadcasting algorithm. The intuition behind
the use of selectors is that we want to have a guarantee that there will be a round where
only one active node transmits, but we also want to ensure that the transmission will not
be blocked by nodes that have recently become active. As we have mentioned in chapter
2, for each n and positive integer w ≤ n, we can prove the existence of w-selectors S with
size O(w log n).

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 51

For each i ∈ {0, . . . log n}, define by Si = {Si,0, Si,1, . . . , Smi−1} a 2i-selector with size
mi = O(2i log n). The algorithm Selector-Broadcast is described below.

Algorithm 11: Selector-Broadcast

for stage s = 1 to ... do
for round i = 1 to log n+ 1 do

All active nodes with label l and l ∈ Si,s mod mi
transmit

end

end

Theorem 3.2.19. The algorithm Selector-Broadcast completes broadcasting in time
O(n log2 n).

Proof. The proof of the running time of the algorithm is pretty similar to the proof in [15]
for the algorithm Single-Prime. We will use amortized analysis and prove that for every
stage s, there is some stage s′ > s, such that the average progress per stage is Ω(1/ log n).
Each stage has O(log n) rounds and the total progress needed to complete broadcast is
2n − 1. Thus, we conclude then that the total rounds needed are O(n/(1/ log2 n)) =
O(n log2 n).

Assume that F is the set of active nodes at the beginning of stage s. Let i : 2i−1 ≤
|F | ≤ 2i. Furthermore, let us denote by Yi the set of nodes that first received the message
in some of the stages s, s+ 1, . . . , s+mi − 1. We can distinguish two cases:

Case A : There is some i such that |Yi| ≥ 2i. Then, after mi stages the progress is
|Yi| ≥ 2i and thus the average progress for each stage is Ω(2i/mi) = Ω(1/ log n).

Case B : For every i, we have that |Yi| ≤ 2i. Let us now consider some node v that has
not yet received the message at the beginning of stage s and that has some active
neighbor. Denote by X the set of its active neighbors at the beginning of stage s
and assume some i : 2i−1 ≤ |X| ≤ 2i. Clearly, it also holds that |Yi| ≤ 2i. Then,
by the definition of a selector, there exists some set Si,r ∈ Si such that the set Si,r
hits X and avoids Yi. By the construction of the algorithm, that set will be the
transmission set in one of the stages s, . . . , s+mi − 1.

In the round where the set Si,r is used the following happen:

• |Si,r ∩X| = 1 and thus exactly one neighbor of v transmits.

• |Si,r ∩ Yi| = 0 and thus no node from Yi transmits.

• The rest of the passive nodes remain passive during the stages s, . . . , s+mi−1
and so do not transmit.

52 CHAPTER 3. BROADCASTING

Figure 3.15 shows schematically the analysis stated. The above implies that only
one active neighbor of v transmits and thus v receives the message. Consequently,
all the nodes in F receive the message before stage s + mf − 1 and the average
progress will again be Ω(1/ log n).

inner nodes

nodes
uninformed

frontier

F

v

Yi

X w

Figure 3.15: The analysis for the case B of the proof. Node w (red color) is the only
node transmitting from the set F of active nodes. The nodes of Yi remain silent.
The rest of the uninformed nodes are not yet awakened and thus do not transmit.
In the end, w transmits, no collision happens and thus v receives the message.

3.2.9 Recent improvements on broadcasting time

In [54], Kowalski and Pelc constructed an algorithm that completed broadcasting in
time O(n log n logD) for n-size networks of eccentricity D. The algorithm improves the
bound for broadcasting for radio networks that have eccentricity polylogarithmic in n.
Nevertheless, the authors assumed that the nodes know a linear bound on the size of
the network. If we assume that the size is unknown, the algorithm can be modified and
succeed broadcasting with running time O(n log n log logn logD). The algorithm is again
non-constructive, as the authors proved only the existence of a combinatorial tool that
the nodes used during the broadcasting. The combinatorial tool used is a random boolean
matrix, which is used as a transmission set. The analysis is quite complicated and will
not be presented here (for more details see [54]).

Instead, we will present an algorithm presented by Czumaj and Rytter [25], which
further improves the running time of broadcasting to O(n log2D). Their approach is
based on a combination of infinite selecting sequences and selectors. First, we will need to
introduce some necessary definitions.

Definition 3.2.20. Consider an infinite sequence J from the set {0, 1, . . . , logD}.
• sparseness(J , k) is the minimal distance between two positions in J containing k.

3.2. DISTRIBUTED DETERMINISTIC BROADCASTING 53

• density(J , k) is the smallest integer l, such that in every subsequence of J of l
consecutive elements, k appears at least once.

Upon the above measures, we can define two properties of an infinite sequence J .

Definition 3.2.21. Consider an infinite sequence J from the set {0, 1, . . . , logD}.

D-sparseness: sparseness(J , k) = Ω(2k), for each 0 ≤ k ≤ logD.

D-density: density(J , k) = O(2k), for each 0 ≤ k ≤ logD.

We want to construct a sequence J that satisfies both the properties of D-sparseness
and D-density. Luckily, such a sequence can be constructed in a simple way. We define
first a finite sequence J of length 2D− 1 with the property that for any i, 1 ≤ i ≤ 2D− 1

Ji = k ⇔ (i mod 2k+1) = 2k

The infinite sequence J occurs by repeating the sequence J . It is easy to see that J
satisfies both properties. For better understanding, let us provide an example of such a
sequence for D = 8.

J =< 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0|0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, . . . >

As far as selectors is concerned, we will need a j-selector F of size O(j log(n/j)),
the existence of which has been proved via the probabilistic method. Denote by F j =
{F j1 ,F j2 , . . . ,F jsj} a 2j-selector of size sj = O(2j log(n/2j)), where 0 ≤ j ≤ log n. We can
now describe the algorithm ObliviousBroadcast in full detail.

Algorithm 12: ObliviousBroadcast(M)

for t = 1 to M do
k = Jt ;
(Phase number t of rank k)
for j = 1 to log(2kn/D) do

apply the selector F j
end

end

We should notice that algorithm ObliviousBroadcast is oblivious, i.e. each node
knows from the beginning the sequence of transmissions. Let us now proceed to the
analysis. The analysis concentrates on a single path P from the source to an arbitrary
node and we will calculate the value of M , such that all nodes of the path receive the
message. We consider the layers of the path P =< v0, v1, . . . , vl >, where each layer LP (i)
is the set of all the in-neighbors of vi which are not in-neighbors for any node vj : j > i.
We call a layer leading when it is the highest ranking layer with an active node. We first
prove the following lemma.

54 CHAPTER 3. BROADCASTING

Lemma 3.2.22. If |LP (i)| ≤ 2k · (n/D) and LP (i) is leading, after a phase of rank k,
LP (i) is no longer leading.

Proof. The proof is based on the properties of a selector. Denote by sub − phase(k, j)
the part of a phase of rank k where the selector F j is applied. Also, denote by X the
set of nodes of LP (i) that are active at the beginning of subphase(k, j) and by Y the set
of nodes of LP (i) that will be activated during the sub-phase. Let an integer j, where
2j−1 < |X| < 2j . We distinguish two cases:

• If |Y | ≤ 2j , the properties of a 2j-selector guarantee that only a single node of X
transmits, thus LP (i) will no more be the leading layer after the sub-phase.

• If |Y | > 2j , that means that the number of active nodes doubles after the sub-phase.
Since that cannot happen in every sub-phase (due to the constraint on the size of
the layer), at some sub-phase the layer LP (i) will stop leading.

Let us now try to estimate the phases when layer LP (i) is leading. Due to the above
lemma and the D-density property of J , layer LP (i) is leading for O(|LP (i)|(D/n) +
1) phases. Summing up, the number of phases in order to reach the last layer will be
O(
∑l

i=1 |LP (i)|(D/n) + 1) = O(D). Thus, we have proved the following lemma.

Lemma 3.2.23. There exists a constant c such that if M ≥ cD, ObliviousBroadcast(M)
completes broadcasting.

We are now in position to prove the main theorem. At first, we can easily show that
a phase with rank k requires O(2k · (n/D) · logD) rounds. Using the above lemma and
the D-sparseness of sequence J , notice that we run O(D/2k) phases of rank k. Now, by
adding the time needed for all ranks, we have that the total number of rounds is

O
(

logD∑
k=0

(2k · (n/D)) · logD) · (D/2k)
)

= O
(

logD∑
k=0

n logD

)
= O(n log2D)

Thus, the following theorem is proved.

Theorem 3.2.24. ObliviousBroadcast completes broadcasting in an arbitrary network
of size n and eccentricity D in O(n log2D) rounds.

ObliviousBroadcast performs the same as Selector-Broadcast from [18] in
the worst case. Very recently, De Marco [61] presented a deterministic algorithm that
performs broadcasting in O(n log n log logn) time, which clearly consists an improvement
in any case. The algorithm is only a factor of log log n from the upper bound for distributed

3.3. RANDOMIZED BROADCASTING 55

deterministic broadcasting. It also assumes that the nodes are only aware if their own label.
In this section we will only provide the outline and the ideas behind the algorithm.

The algorithm is non-constructive, as all the nodes of the network use during the exe-
cution a combinatorial object whose existence is proved through the probabilistic method.
The combinatorial object used is called a transmission schedule. The transmission sched-
ule is a matrix T , whose entries Ti,j are subsets of {1, 2, . . . , n}. Each entry of the matrix
then corresponds to a transmission set used in the algorithm. The columns of T corre-
spond to time slots, which means that some node v transmits at round j if and only if
v ∈ Ti,j for some i.

Now, each node starts from the first row of a column k, where k is the round when it
first receives the message. Then, it moves to the second row and the procedure continues in
that way. A property of the matrix is that the number of the elements of the transmission
sets decreases as the row number increases. Thus, a node starts transmitting with high
frequency when receiving a message and by the time decreases the transmission rate. The
demanding part is to construct such a matrix with properties that ensure the upper bound
on the time complexity.

3.3 Randomized Broadcasting

Randomization has proved to be a very effective tool in the setting of radio networks,
particularly when it comes to distributed broadcasting protocols. The use of randomiza-
tion helps us overcome the fact that the nodes know nothing about the topology of the
network and that coordination between the nodes proves to be very difficult and expen-
sive. In fact, randomized protocols can in some cases perform broadcasting exponentially
faster than deterministic protocols, which shows how powerful randomization can be.

Let us first state a few things about the setting of the broadcasting algorithms that
will be presented in this section. We assume the classical ad-hoc radio network, where
the nodes know only their own label (sometimes even that assumption can be removed).
It is also important to note that we do not have to distinguish between directed and
undirected radio networks, as most randomized algorithms can be deployed to both cases
without many modifications.

First, let us examine the lower bounds that have been stated for randomized algo-
rithms. As we have seen in a previous section, Alon et al. [1] has shown that there exists
a family of networks of size n and eccentricity 2 for which any broadcasting algorithm
requires at least Ω(log2 n) rounds to complete broadcasting. This bound holds not only
for deterministic, but also for randomized protocols. Kushilevitz and Mansour [58] also
proved that any randomized algorithm has expected running time Ω(D log(n/D)), where
D is the eccentricity of the network. By combining the two lower bounds, we come up
with a Ω(D log(n/D) + log2 n) lower bound for randomized broadcasting.

The first randomized algorithm for broadcasting was proposed by Bar-Yehuda et al. in
[2] and is almost optimal, with expected execution time O(D log n+log2 n). This algorithm

56 CHAPTER 3. BROADCASTING

is optimal when D ≤ n1−ε, but when D is close to n, the algorithm requires O(n log n)
time and thus is a logarithmic factor above the lower bound. In [53], Kowalski and Pelc
improved the upper bound by presenting an algorithm that performs broadcasting in
expected time O(D log(n/D) + log2 n). Around the same time, Czumaj and Rytter in [25]
provided independently another randomized algorithm that also performed broadcasting
in expected time O(D log(n/D) + log2 n) with high probability.

3.3.1 A lower bound for randomized broadcasting

Kushilevitz and Mansour [58] were the first to prove a Ω(D log(n/D)) lower bound
for the expected running time of a randomized algorithm. The authors proved that, for
any Las Vegas algorithm (i.e. the error probability is zero) and any parameters n and
D, we can construct an ordering of the n nodes in a network of eccentricity D, such that
the expected number of rounds used by the algorithm is Ω(D log(n/D)). The authors
distinguished two different cases of distributed randomized algorithms:

uniform algorithm : All nodes run exactly the same program.

non-uniform algorithm : Each node has a different program.

It is clear that the uniform case is simpler to analyze. Therefore, the authors first deal
with the uniform case. They consider a family of networks Cn with n+ 1 nodes, which is
composed of a clique of size n and a source node connected to t, t ≤ n of the nodes in the
clique. For any broadcasting protocol Π, let us denote by E

[
TΠ
t

]
the expected number

of rounds until the first successful round (i.e. a round where exactly one of the t nodes
transmits). The following lemma can be proved.

Lemma 3.3.1. Denote by Et the expectation when t is chosen uniformly from the set
{20, 21, . . . 2blognc}. Then,

Et
[
E
[
TΠ
t

]]
= Ω(log n)

For the proof of the main result, they consider a family of networks Gn,D. Let l = n/D
and assume for simplicity that l is a power of 2. A network in Gn,D is a complete layered
network consisting of D+ 2 layers. The first layer contains the source node, while each of
the next D layers consists of li = 2ti nodes, where ti is chosen uniformly and independently
for each layer in the range 1, . . . , log l. The last layer contains all the other nodes. As for
the connections between the nodes, each node in layer i is connected to all nodes in layers
i− 1 and i+ 1.

The important thing about that construction is that the broadcasting progresses in a
layer-by-layer fashion. When a node in layer i receives the message, all the other nodes
of layer i will receive the message at the same round. This means that nodes of the same
layer will share the same history and transmit with the same probability distribution.
Thus, lemma 3.3.1 can be directly deployed. Using this idea, the theorem can now be
derived.

3.3. RANDOMIZED BROADCASTING 57

Theorem 3.3.2. For any uniform broadcast protocol, for every number of nodes n and
eccentricity D, there exists a network in which the expected time to complete broadcasting
is Ω(D log(n/D)).

As for the non-uniform case, it can be reduced to the uniform case and, as a result,
theorem 3.3.2 also holds for the non-uniform case. The above theorem can also be extended
to include protocols that err with a small probability (Monte Carlo algorithms).

Apart from Kushilevitz and Mansour, Liu and Prabhakaran [59] also proposed a proof
for the lower bound, using a different construction. More specifically, they proved the
following theorem:

Theorem 3.3.3. For any Monte Carlo broadcasting algorithm, there is a network with
n nodes and eccentricity D, in which the algorithm has Ω(D log(n/D)) expected running
time.

The authors used the Yao’s minimax principle to reduce the task of proving a ran-
domized lower bound to that of proving a deterministic lower bound. We describe Yao’s
minimax principle, as described in [63].

Theorem 3.3.4 (Yao’s Minimax Principle). Let Π a problem with a finite set I of
input instances and a finite set of deterministic algorithms A. Let C(I, A) be the running
time of algorithm A in input I. For a probability distribution p over I and q over A,
let Ip denote a random input chosen according to p and Aq a random algorithm chosen
according to q. Then, for all distributions p and q

min
A∈A

E[C(Ip, A)] ≤ max
I∈I

E[C(I, Aq)]

This theorem suggests that the expected running time for the fastest deterministic
algorithm on a random input is a lower bound for the expected running time of the
optimal Las Vegas algorithm for the problem. Thus, instead of providing directly a lower
bound for randomized algorithms, we can choose an appropriate probability distribution
p and prove a bound for the expected running time of deterministic algorithms on Ip.

However, the above theorem is stated for Las Vegas algorithms, whereas we are inter-
ested in Monte Carlo algorithms with error probability ε ∈ [0, 1/2]. We denote now with
Cε(I, A) the running time of algorithm A that errs with probability ε on input I. Then,
we get an analogous proposition to Yao’s minimax theorem.

Proposition 3.3.5. For all distributions p and q and any ε ∈ [0, 1/2] :

1
2

min
A∈A

E[C2ε(Ip, A)] ≤ max
I∈I

E[Cε(I, Aq)]

We prove the lower bound for a family Fn,D of networks with Θ(n) nodes and Θ(D)
eccentricity, which we construct explicitly. First, let us define another family of networks
Dm. A network of the family Dm consists of a source, a destination and m intermediate

58 CHAPTER 3. BROADCASTING

...

source

intermediate

target

...

Figure 3.16: A graph of the family Dm

source

G1 G2

. . .

GD

Figure 3.17: A graph of the family Fn,D

nodes. The source is connected with all the intermediate nodes, whereas only some of the
intermediate nodes are connected with the destination (see figure 3.16). A network of the
family Fn,D consists of D layers Gi, where each layer is a network Dbn/Dc (see figure 3.17).

It can be proved that there exists a probability distribution P over Dm, such that
the probability for the destination to get the message in any one deterministic step is
O(1/ logm). Now, let us consider a deterministic broadcasting algorithm for Dm that
errs with probability 1 − p, where p = Ω(1). Let tmin be the smallest number so that
for a fraction p/2 of the inputs, the algorithm completes broadcasting in ≤ tmin steps.
Then, for ≥ p/2 of the fraction, the algorithm needs at least tmin steps (p ≤ 1). That
means that the expected running time is at least p/2 · tmin. However, tmin must be tmin =
Ω(1/(1/ logm)p/2) = Ω(logm) and thus the expected running time will also be Ω(logm).

Next, we need to extend this result to the family Fn,D. The probability distribution
for Fn,D, P∗ occurs by independently choosing the probability distribution for each layer
Gi. Intuitively, as we have D layers and by linearity of expectation, we get an expected
running time of D · Ω(logm) = Ω(D log(n/D)). We will not present here the technical
issues that need to be addressed in order to formally prove the above.

We have now proven that any deterministic algorithm with error probability 1−Ω(1)
has over P∗ expected running time Ω(D log(n/D)). By applying Yao’s minimax theorem,
we conclude that the lower bound for randomized algorithms that err with probability

3.3. RANDOMIZED BROADCASTING 59

1
2 − Ω(1). However, we can make the error probability arbitrarily small by running the
algorithm a constant number of times and thus the lower bound has been established.
Last, let us note that the lower bound also holds for undirected radio networks, under the
assumption that no spontaneous transmissions are permitted.

3.3.2 Randomized algorithms for broadcasting

The first randomized algorithm for broadcasting in radio networks was presented by
Bar-Yehuda et al. [2] and manages to complete broadcasting in almost optimal running
time. The algorithm is based on a very simple procedure (Decay), which uses random-
ization in order to resolve the conflicts that may appear when many neighboring nodes
transmit at the same round. The basic difficulty in radio networks is that coordination
between neighboring nodes is necessary to avoid conflicts and that coordination is highly
inefficient in a distributed setting. Randomization can help us overcome this difficulty.

The idea behind the procedure Decay is the following. Suppose that a group of nodes
wishes to transmit a message to the same target node. It is clear that the message will
be received only if exactly one node transmits the message at a given round. Thus, after
transmitting a message, each node stops transmitting with probability 0.5 (flips a fair
coin). As a result, after each round, approximately half nodes continue transmitting.

Procedure Decay(k,m)

i := 0 ;
repeat

transmit message m ;
flip coin ;
i+ + ;

until coin = head or i > k ;

Before we describe the algorithm in full detail, we provide an important lemma con-
cerning the procedure Decay.

Lemma 3.3.6. Let v be a node of the network G. Also, let d (d ≥ 2) neighbors of v
that start the execution of procedure Decay(k,m) at round 0. Denote with Pr[k, d] the
probability that v receives message m by round k. Then

1. limk→∞ Pr[k, d] ≥ 2/3

2. k ≥ 2dlog de ⇒ Pr[k, d] > 1/2

The lemma can be proved using elementary probabilistic arguments and thus the
proof will be omitted. Procedure Decay is the basis of the main algorithm Broadcast,
however we can not use it straightforward. The number of the neighbors in not known to
the nodes and thus we must use an upper bound on the possible neighbors ∆ (where ∆ is

60 CHAPTER 3. BROADCASTING

the maximum indegree of a node). We must also ensure that each node starts procedure
Decay at the exact same round and executes the procedure enough times for the message
to have a high probability to reach every node of the network. Finally, we assume that the
nodes are not aware of the actual size of the network, but only of a linear upper bound
N. Each process executes the procedure Broadcast, but for the algorithm to begin we
also need that the source node to transmit message m.

Procedure Broadcast(∆, N)

k := 2dlog ∆e ;
wait until receiving message m ;
for 2dlog(N/ε)e times do

while round mod k <> 0 do wait ;
Decay (k,m) ;

end

Let us now provide some analysis of the above algorithm. First, let M(ε) =
√

log(n/ε)
and T (ε) = 2D+5M(ε) max(

√
D,M(ε)). Let us also assume that the main loop of Broad-

cast runs infinitely and let Tv be the random variable denoting the round when node v
receives message m. Also, let Tf = maxv Tv. It is clear that Tf is a random variable
denoting the round when the last node receives a message. The following lemma holds.

Lemma 3.3.7. For all 0 < ε ≤ 1

1. Pr[Tv > 2dlog ∆e · T (ε)] < ε/n

2. Pr[Tf ≤ 2dlog ∆e · T (ε)] > 1− ε

Proof. Let Di be the length of a shortest path from the nodes that have already received
m at phase i to the node v (a phase is 2dlog ∆e consecutive rounds). For the first phase,
it is clear that D0 ≤ D. Next, we will try to bound the probability Pr[DT (ε) > 0], which
is in fact the probability that that node v has not received the message by phase T (ε) (i.e.
round 2dlog ∆e · T (ε))

Pr[DT (ε) > 0] = Pr[
T (ε)−1∑
i=0

(Di −Di+1) < D0] ≤ Pr[
T (ε)−1∑
i=0

(Di −Di+1) < D]

Let Xi = Di −Di+1 a random variable with 0-1 values. Then, by lemma 3.3.6,

Pr[Xi = 1] = Pr[(Di −Di+1) = 1] ≥ Pr[(Di −Di+1) = 1|Di > 0] ≥ 1/2

Thus,

E[
T (ε)−1∑
i=0

Xi] ≥ T (ε)/2

3.3. RANDOMIZED BROADCASTING 61

Pr[DT (ε) > 0] ≤ Pr[
T (ε)−1∑
i=0

Xi < D] = Pr[
T (ε)−1∑
i=0

Xi < (1− (1− 2D
T (ε)

))
T (ε)

2
]

We can now deploy the Chernoff bound and the probability will be bounded by (here some
calculations are omitted)

exp

[
−(1− 2D

T (ε)
)2T (ε)

4

]
≤ 2−M

2
= ε/n

The second part of the lemma now easily follows from the first part, as

Pr[Tf ≤ 2dlog ∆e · T (ε)] = Pr[∀v : Tv ≤ 2dlog ∆e · T (ε)] =

1− Pr[∃v : Tv > 2dlog ∆e · T (ε)] ≥ 1−
∑
v

Pr[Tv > 2dlog ∆e · T (ε)] >

1−
∑
v

ε/n = 1− ε

By using lemma 3.3.7, the authors proved the main result.

Theorem 3.3.8. With probability ≥ 1−2ε, all nodes receive message m by round 2dlog ∆e·
T (ε). Furthermore, with probability ≥ 1−2ε, all nodes terminate the execution of Broad-
cast by round 2dlog ∆e · (T (ε) + dlog(N/ε)e)

We can simplify the complex expression dlog ∆e · (T (ε) + dlog(N/ε)e) to deduce that
algorithm Broadcast performs broadcasting with high probability and time complexity
O(D log n + log2 n). This algorithm may not be optimal, however it is quite simple and
computationally inexpensive. It demands no topological knowledge of the network (a node
is not necessary to know its own label), but the nodes should know a priori an upper bound
on the size of the network N, as well as the parameter ∆. Furthermore, the algorithm can
be deployed without any changes to both directed and undirected radio networks.

The gap between the lower and the upper bound for randomized broadcasting was
closed by Czumaj and Rytter [25] and independently by Kowalski and Pelc [53].

Czumaj and Rytter used selecting sequences, which in randomized algorithms de-
termine the probability with which all active nodes (i.e. nodes that have received the
message) will transmit the message at a given round. By carefully designing the selecting
sequences, the authors constructed a randomized algorithm that performs broadcasting
in O(n) running time with high probability and another randomized algorithm that com-
pletes broadcasting in O(D log(n/D) + log2 n) with high probability in networks with
eccentricity D.

Both algorithms are very similar and their only difference is the choice of the selecting
sequence. For the linear time broadcasting, we define the sequence α, where

αk =

2−(k+1) 1 ≤ k ≤ dlog log ne,

1
2 logn dlog log ne < k ≤ log n,

1−∑logn
i=1 αi k = 0.

(3.5)

62 CHAPTER 3. BROADCASTING

We can then construct a randomized selecting sequence J = {J1, J2, . . . }, such that
Pr[Ji = k] = αk. The sequence will be given as input to the algorithm (or it can be
constructed by the source node and then transmitted along with the message).

Algorithm 15: Linear-Broadcast (n, J)

for r = 1 to T do
for each active node v do

node v transmits with probability 2−Jr

end

end

We can see that the selecting sequence is constructed so that the probability that all
nodes in one round transmit with probability 2−k decreases exponentially as k grows, but,
for larger values of k, the probability cannot decrease more that a constant. For algorithm
Linear-Broadcast, the following theorem can be proved:

Theorem 3.3.9. For any radio network of size n and T = Ω(n), algorithm Linear-
Boradcast completes broadcasting with probability at least 1− 1/n.

The complexity of the algorithm is optimal (as there is a Ω(n) lower bound for
broadcasting when D is not bounded). However, when the eccentricity of the network
is bounded, by choosing a different selecting sequence, we can perform broadcasting
much faster in time O(D log(n/D) + log2 n) with high probability. Let us first define
λ = log(n/D) and the sequence α′ (similar to α),

α′k =

1

2λ 1 ≤ k ≤ λ
1

2λ · 2−(k−λ) λ < k ≤ λ+ dlog logne, k ≤ log n,
1

2λ · 1
logn λ+ dlog logne < k ≤ log n,

1−∑logn
i=1 αi k = 0.

(3.6)

We can see that the above distribution does not only depend on the size n, but also
on the eccentricity of the network D. The sequences α and α are only different when
k ≤ λ, i.e. for small enough values of k. Now, based on the sequence α′, we can define the
randomized sequence JD = {JD1 , JD2 , . . . }, such that Pr[JDi = k] = α′i. The algorithm
Optimal-Broadcast is quite similar to the algorithm Linear-Broadcast.

Theorem 3.3.10. For any radio network of size n, eccentricity D = Ω(log3 n) and
T = Ω(D log(n/D)), the algorithm Optimal-Broadcast performs broadcasting with
probability at least 1− 1/n.

The proof of the running times for algorithms Linear-Broadcast and Optimal-
Broadcast follows the same logic. The key idea behind the analysis is to consider a

3.3. RANDOMIZED BROADCASTING 63

Algorithm 16: Optimal-Broadcast (n, J D)

for r = 1 to T do
for each active node v do

node v transmits with probability 2−J
D
r

end

end

single path from the source node to an arbitrary node of the network and prove that the
end node will have received the message with high probability after the expected time.
Let P = {v0, v1, . . . , vl} be such a path. We then consider the layers of the path P , where
each layer LP (i) is the set of all the in-neighbors of vi which are not in-neighbors for any
node vj : j > i. For the algorithm Linear-Broadcast, direct analysis of the time when
the message reaches each layer can lead us to the bound.

As for the algorithm Optimal-Broadcast, we have to analyze separately small
layers (layers where |LP (i)| ≤ n/D) and large layers (where |LP (i)| > n/D). We can then
show that for each small layer the expected number of rounds needed is O(log(n/D)),
and since there are D layers maximum, the total number of rounds can be shown to be
O(D log(n/D)). As far as large layers are concerned, it can be proved that for each large
layer LP (i) we need expected time O(|LP (i)| · (D/n) · log(n/D)). Thus, for all large layers
we need

∑l
i=1O(|LP (i)| · (D/n) · log(n/D)) = O(D log(n/D)) expected number of rounds

with high probability. By combining the above results, the expected running time can be
easily deduced.

Kowalski and Pelc [53] provided an optimal randomized algorithm for broadcasting
right after Czumaj and Rytter. The idea behind their algorithm is quite different com-
pared to the algorithm of the latter. We assume that the nodes have labels from the set
{0, 1, . . . , r}, where r is linear to n. We also assume that the nodes know only their own
label and the parameter r.

The algorithm works in O(D) stages and each stage consists of two phases. The first
phase consists of log(r/D) rounds, where in round i of each stage each node transmits
with probability 1/2i. This ensures that every node with at most r/D active neighbors
will receive the message with high probability. The nodes with more than r/D active
neighbors are more problematic to deal with and have to been taken care of in the second
phase. The second phase consists of only one round, where the probability with each the
nodes transmit are carefully chosen so that after k of the neighboring nodes are active
(k > r/D), the node will receive the message with high probability after O(r log r/k)
stages. The construction of the probabilities for the second phase is quite complex (see
[54] for more details). Moreover, the complicated part of the algorithm analysis is to prove
that the algorithm needs only O(D) stages to complete the broadcasting to the nodes with
more than r/D active neighbors.

The novelty of the algorithm lays to the last step of each stage, which allows us to

64 CHAPTER 3. BROADCASTING

reduce the rounds involved in each stage. This last step ensures that, while the number
of rounds is reduced, the remaining uninformed nodes will eventually be informed with
high probability and thus broadcasting will be completed. The above algorithm cannot
be used straightforward, as it assumes that D is known and that r and D are powers of
2. As a result, the complete algorithm occurs by using the doubling technique, i.e. we test
different values for D by making exponential jumps. Another important point is that the
algorithm can be deployed to directed networks as well.

3.4 Broadcasting in Geometric Radio Networks

The classical model of radio networks assumes that the reachability graph can be
arbitrary, in the sense that any configuration of edges is allowed. In this section, we will
deal with a more natural model of radio networks, where we assume that the nodes are
placed at points of the euclidean plane and each node is represented by its coordinates. The
underlying graph connecting the nodes is no more arbitrary but instead the transmission
range of a node v is a region R(v) around node v. A node u can receive messages from v if
and only if it belongs to the region R(v). Clearly, the transmission region depends on the
power of the node-transmitter, as well as on topographic characteristics of the surrounding
region.

Nevertheless, allowing any transmission region is a very general model. We restrict
our attention to the case when nodes that can be reached from some node v are nodes
belonging to a disk of radius r centered at v, and the parameter r, which is called the range
of v, depends on the power of the transmitter located at v. The reachability graph that
corresponds to such radio networks is called a geometric radio network (GRN). A node
v with range r is connected to some node u at this graph if and only if their euclidean
distance is at most r. An example of a GRN can be seen in figure 3.18. We can further
restrict our model even assume that all disks have radius 1. The resulting reachability
graph is called a unit disk graph (UDG).

Since such models of radio networks are a restricted version of the classical model of
radio networks, our goal is to construct more efficient broadcasting algorithms which focus
on the geometric properties of the models we study. However, the problem of finding the
shortest broadcasting scheme (which is NP -hard for an arbitrary radio network) remains
NP -hard even when restricted to geometric radio networks. This was proved by Sen
and Huson [71]. The intuition behind their reduction was to state the optimal broadcast
schedule construction problem in terms of coloring the nodes of a geometric graph. In the
same paper, the authors also proposed an algorithm with running time O(n log n) that
constructs an optimal broadcast schedule when the nodes are situated on a straight line.
Broadcasting in networks where the nodes are placed randomly on a straight line was also
studied in [68].

In [27], Diks et al. considered broadcasting with restricted amount of knowledge. They
assumed that each node knows only its position, its transmission range and the maximum

3.4. BROADCASTING IN GEOMETRIC RADIO NETWORKS 65

(a) The nodes on the euclidean plane along with their
transmission ranges.

(b) The reachability graph.

Figure 3.18: A geometric radio network (GRN).

transmission range R. The scenario they studied was when nodes are situated at integer
points on the line. They first proved a lower bound of Ω(D+ log2R

log logR) on the broadcasting
time of any deterministic protocol. They then provided two algorithms which completed
broadcasting in time O(D + log2R) and O(D log2R

log logR). Thus, the gap between the upper
and the lower bound exists only when D = O(log2R). An interesting point here is that
the broadcasting time seems to grow when the largest transmission grows, a fact that
seems paradoxical. However, as the authors also note, the growth of R likely leads to the
decrease of D. Finally, the authors studied the case when the nodes do not know their
own transmission range, where they showed that any broadcasting protocol must use time
Ω(R) for a family of networks with D = 2.

All the above approaches deal with special families of geometric radio networks. We
will now deal with deterministic distributed broadcasting in arbitrary geometric radio
networks. An interesting approach was proposed in [26] by Dessmark and Pelc, where
the authors tried to study how the knowledge of the surrounding area of a node affects
the efficiency of broadcasting. They modeled the notion of the restricted knowledge of
topology by introducing the knowledge radius. When we assume a knowledge radius s,
we mean that every node of the network knows the position, range and label of all nodes
which are at distance at most s from its own. Their model also assumes that the set of
available ranges is known to all nodes and that spontaneous transmissions are allowed.

First, the authors considered the case when the knowledge radius is large enough to
exists the largest of all ranges or when it exceeds the maximum distance between any two
nodes. Notice that in this case the model is closer to centralized broadcasting. The authors
proved that we can perform broadcasting in time O(D), which is clearly optimal. Then,

66 CHAPTER 3. BROADCASTING

they examined the opposite case when s = 0, i.e. each node knows its label, position and
range. They showed that we can construct an algorithm that broadcasts in time O(n).
Let us point here that an algorithm that broadcasts in time O(n) was also proposed in
arbitrary graphs ([13]), but the algorithm only works for symmetric networks.

Another interesting point the authors proved is that distributed broadcasting is more
efficient on geometric graphs not because the topology is more restricted, but because the
nodes know something additional to their own labels and range: their position on the
plane. The latter parameter is used extensively by broadcasting algorithms on geometric
radio networks. They particularly showed that there exists a family of geometric graphs
where broadcasting needs time Ω(n log n) when the nodes do not know their own position.

Finally, the authors showed that when restricted to symmetric geometric networks,
we can broadcast even faster. Specifically, assuming the presence of collision detection
and knowledge radius s = 0, they managed to construct an algorithm that broadcasts in
time O(D + log n) and furthermore showed that the time is asymptotically optimal. The
result holds even with the absence of collision detection, however s must be positive.

In [39], Gasieniec et al. tried a different approach to the problem of broadcasting in
geometric radio networks. They examined a simple model where each node of the GRN
has range 0 or 1 and then a model where the available ranges belong to [rmin, . . . , rmax].
However, their model assumes complete knowledge of the network topology.

An interesting question here is to study whether distributed deterministic broadcast-
ing can be performed more efficiently when we restrict our attention to UDG networks,
i.e. geometric graphs where all nodes have range equal to 1. This question was examined
thoroughly in [34] and later in [35]. The authors constructed algorithms for broadcast-
ing with time complexity that depends not only on the eccentricity D, but also on the
granularity of the network g. The granularity g is the inverse of the minimum euclidean
distance between any two nodes of the network. Thus, we can view the granularity as a
parameter that measures the spacing of the graph.

The authors assumed the classical distributed model where each node knows only its
position and the parameter g and no spontaneous transmissions are allowed. In [34], they
provided an algorithm that completes broadcasting in time O(Dg). A matching lower
bound was then presented in [35]. One may attempt to compare this result to the O(n)
algorithm for general geometric networks. In this context, it should be noted that the
total number of nodes in a network of eccentricity D and granularity g may be at most
Ω(D2g2) or as small as D. Hence, the algorithm of [26] is generally slower than the O(Dg)
algorithm.

In [34], the authors also studied the same model, but this time with spontaneous
wake-up. They provided two algorithms for broadcasting, the one working in time O(D+
log2 g) and the other in time O(D log g). The choice of the faster algorithm depends
on the values of the parameters D and g. Thus, broadcasting can be completed in time
O(min{D log g,D+log2 g}). Moreover, the authors showed that this time is asymptotically
optimal. Clearly, this establishes a gap between broadcasting with or without spontaneous
wake-up.

3.5. FAULT-TOLERANT BROADCASTING 67

Finally, in [33] Elsässer et al. followed a totally different direction on studying geo-
metric radio networks. They considered broadcasting in random geometric graphs, where
n nodes are placed uniformly at random in [0,

√
n]2 and the transmission radii of the nodes

vary according to a power law distribution. In particular, a node is assigned a transmission
radius larger than some value r with probability proportional to r1−α, where α ∈ (1, 3) is
some fixed constant. The authors provided algorithms for two variations of the probabil-
ity distribution function and showed that radio networks with low average transmission
radius can be designed, where broadcasting is performed exponentially faster than in the
case when all nodes have equal transmission ranges.

3.5 Fault-Tolerant Broadcasting

We have studied so far radio networks under the assumption that no failures occur
during the execution of an algorithm. Nevertheless, due to the growth of the network size,
networks become more vulnerable to component failures. These failures may be either
link or even node failures. Thus, designing algorithms that take into consideration the
possibility of failures and accomplish the communication task (in our case broadcasting)
even when failures occur is becoming more and more important. We call such algorithms
fault-tolerant algorithms. Pelc in [65] presents a detailed survey on fault-tolerant algo-
rithms designed for broadcasting in communication networks. Furthermore, for a more
detailed presentation of fault-tolerant protocols on communication networks, see [60].

There have been many different approaches to how we model a failure in a network.
In the setting of the radio networks, we are interested only in node failures. However, we
have two different types of node failures:

Crash Faults : The faulty node does not receive or transmit any messages. However,
faulty nodes are not allowed to alter transmitted messages.

Byzantine Faults : The model where we consider a Byzantine fault is a worst-case
model. Faulty components behave arbitrarily, i.e. they not only stop transmitting
or receiving, but they can also alter the context of a message or even the broadcasting
schedule. Clearly, such a behavior is not very common; nevertheless, it can model
the case of someone trying to destroy the communication process. Furthermore,
since Byzantine faults represent a worst-case scenario, algorithms that work well in
this context work also well under any fault scenario.

Another crucial characteristic of a network with possible faults is the distribution of
the faults. It is natural to impose a limit on the number of faults that may occur, since
otherwise communication may be impossible. We will examine two fault models, along
with some small modifications.

The Bounded Model : We assume an upper bound on the number of nodes of any
neighborhood that may fail. The source is always fault-free. The goal is to ensure
that the message reaches all fault-free nodes.

68 CHAPTER 3. BROADCASTING

The Probabilistic Model : We assume that faults occur randomly and independently
of each other, with some specified probability distribution. Since we adopt this
scenario, the best we can guarantee is broadcasting with high probability. Thus, we
want to construct almost-safe algorithms, where broadcasting completes successfully
with probability at least 1− 1/n, for sufficiently large n.

The first to study fault-tolerant protocols in radio networks were Pagani and Rossi
[64]. The authors considered only transient faults, i.e. non-permanent faults. Moreover,
the fault-tolerant protocol they presented tolerates even disconnections and network parti-
tions, with the assumption that they are eventually repaired. This model is more suitable
for the description of mobility or communication failure over wireless links.

Kranakis, Krizanc and Pelc [57] first examined broadcasting with permanent node
failures, i.e. the fault status of a node does not change during broadcasting. Furthermore,
they assumed that the location of the faulty nodes is unknown, and thus we consider
the worst-case scenario. One more thing we should take into consideration is that the
configuration of faults may be such that disconnects the network. In this case, broadcasting
is completed when the message reaches all fault-free nodes of the connected component
containing the source.

The authors presented fault-tolerant protocols for two configurations of the network
graph, where the nodes are situated at integer points on a line or at integer grid points of a
square (or hexagonal) mesh and have equal transmission ranges. They also distinguished
the protocols to adaptive and non-adaptive. In the case of non-adaptive algorithms, in
the presence of at most t faults, they showed that fault-tolerant broadcasting completes
in time O(D + t), while showing a lower bound of Ω(D + t). Thus, we have an optimal
algorithm for non-adaptive fault-tolerant broadcasting. In the case of adaptive algorithms,
they presented an optimal algorithm that works in time O(D + log(min{R, t})), where R
is the transmission range of the nodes.

Let us now turn our attention to Byzantine faults. The first analysis of reliable broad-
casting in radio networks for the case of Byzantine adversaries was provided by Koo [50].
The author examined protocols only for the case where the nodes are situated on a square
grid and have equal transmission ranges r. However, since a Byzantine adversary can be-
have in an arbitrary manner, there is no restriction on the behavior and thus a corrupted
node may keep sending noise in order to prevent any communication within its radius.
In order to avoid this scenario, we have to assume some restriction to the communication
process: we fix a schedule where the nodes send messages in turns. Consequently, a cor-
rupted node may transmit only when its turn comes. More over, a faulty node cannot
spoof the address of some fault-free node. Finally, instead of bounding the number of
faulty nodes overall the network, the author considered a bound on the number of faulty
nodes within the range of a fault-free node (we denote this by t).

Under the above assumptions, Koo proposed a simple algorithm that performs reliable
broadcasting when there are at most t = 1

4r(r +
√
r/2 + 1)− 3 (roughly a 1/4π fraction)

faulty nodes within the radius of any fault-free node. The basic idea of the protocol is that
nodes wait until they hear the same message from t+ 1 neighbors before they accept it as

3.5. FAULT-TOLERANT BROADCASTING 69

r

Figure 3.19: Nodes placed on a square grid. Each node has transmission range r.

the correct message. Then, they broadcast the correct message just once. This protocol
guarantees that no fault-free node ever accepts a wrong message. On the other hand, we
can also prove that secure broadcasting is impossible when t ≥ d1

2r(2r + 1)e (roughly a
1/π fraction). Thus, a small gap between the achievability and impossibility bound still
remains. Both bounds hold when we consider an L2 metric, however, similar results are
obtained for the L1 and L∞ metrics.

Bhandari and Vaidya [5] closed the gap for the case of the L∞ metric and showed
that secure broadcasting is possible if and only if t < 1

2r(2r + 1). Furthermore, they also
studied reliable protocols assuming crash failures instead of Byzantine failures.

In [51], the authors removed some of the assumptions made in [50] and [5] and allowed
each faulty node to cause a (known) bounded number of collisions and spoof the addresses
of other nodes in the network. In this harder model, they showed that the maximum
tolerable t (number of faulty nodes within a radius of a faulty-free node) is equal to the
maximum tolerable t when collisions and address spoofing are not allowed. As a result,
by causing collisions and spoofing addresses an adversary may be able to decrease the
efficiency of broadcasting, but the task remains feasible.

Finally, Pelc and Peleg [66] studied fault-tolerant broadcasting in radio networks under
a probabilistic failure model. At each step, the transmitter of each node may fail with
fixed constant probability p < 1, and failures are independent. They authors showed that,
assuming node-omission failures, almost-safe broadcasting is feasible for any p < 1. For the
case of malicious failures, almost-safe broadcasting is possible if and only if p < (1−p)∆+1.
As far as the time complexity of broadcasting is concerned, we can prove that almost-safe
broadcasting in timeO(opt+log n) is impossible for some graphs, whereas we can construct
an almost-safe protocol with execution time O(opt · log n) for any graph and for both types
of failures.

70 CHAPTER 3. BROADCASTING

Chapter 4

Gossiping

Gossiping consists a basic communication task in modern communication networks.
Gossiping corresponds to the everyday task where each individual holds a distinct piece of
information and wants to inform all the other individuals about it. In the setting of a radio
network, we assume that each node of the network possesses a unique message and the goal
is to distribute the message of every node to all the nodes in the network. Clearly, in order
to ensure the feasibility of gossiping, the underlying graph must be strongly connected, i.e
for any pair of nodes u, v, there exists a path from u to v. Gossiping is also commonly
referred as all-to-all communication.

The study of gossiping in radio networks began much later compared to the task of
broadcasting. The same variants of the communication model we examined for broadcast-
ing are also considered for gossiping. Consequently, we distinguish the gossiping protocols
to randomized or deterministic, centralized or distributed, oblivious or adaptive. One more
distinction we find in the literature and concerns only gossiping is whether we assume an
upper bound on the size of the messages transmitted. This distinction is not necessary
for broadcasting, since we have only one message that needs to be disseminated to all the
nodes of the network. In gossiping, however, it would be more efficient if we allowed the
possibility to combine many messages collected from a node in a single message, which we
transmit in a single round.

Before we move to the description of gossiping algorithms in the several communication
settings, let us note that, whereas gossiping at first glance seems to be more difficult than
broadcasting, there are many communication scenarios (such as distributed deterministic
gossiping) where we have no clue whether this fact holds. Non-trivial lower bounds for
gossiping have been proved only in the case of bounded-size messages.

4.1 Deterministic Distributed Gossiping

In this section, our main focus will be the study of gossiping in distributed radio
networks. The model was thoroughly presented in the previous chapter, so let us just

71

72 CHAPTER 4. GOSSIPING

remind that we assume that the nodes are only aware of their own label and possibly the
size n, the maximum eccentricity D, or the maximum in-degree ∆ of the network.

The main research direction in deterministic gossiping assumes that the messages
transmitted can be of arbitrary size. That means that any gossiping protocol can encap-
sulate many messages in one message and transmit them in just one round. A trivial
algorithm that performs gossiping is the classical Round-Robin-based algorithm which
was used for the broadcasting task and can be slightly modified in order to perform gossip-
ing as well. Thus, we easily obtain a trivial upper bound of O(n2) time for deterministic
gossiping in ad-hoc radio networks.

The first to propose a non-trivial algorithm for gossiping in ad hoc radio networks
were Chrobak, Gasieniec and Rytter [18]. Their algorithm was the first subquadratic
gossiping algorithm, having running time O(n3/2 log2 n). Another interesting approach to
distributed gossiping was by Clementi et al. [23], where the authors proposed a gossiping
algorithm running in time O(D∆2 log3 n). Gasieniec and Lingas [40] provided another al-
gorithm with running timeO(nD1/2 log3 n). The latter algorithm performs gossiping faster
than the algorithm from [18] for networks of maximum eccentricity D = O(na), a < 1.
The last results imply that graphs with large maximum eccentricity D consist a bottleneck
for deterministic distributed gossiping. Xu in [73] fine-tuned the algorithm from [40] to
produce a gossiping algorithm with running time O(n3/2).

We should also mention the work of Ravishankar and Singh, who presented distributed
gossiping algorithms for networks with nodes placed randomly on a line [69] and on a ring
[70]. Another interesting line of research is to apply a limit on the size of messages trans-
mitted ([3],[22],[17]). Last, Chlebus et al. [14] studied oblivious algorithms for gossiping
in ad-hoc radio networks and showed upper and lower bounds for the time needed for
gossiping.

4.1.1 A subquadratic algorithm for gossiping

Chrobak et al. [18] were the first to construct a subquadratic algorithm for gossip-
ing. The algorithm DoGossip is based on the observation that gossiping is not just the
composition ofn simultaneous broadcasts. Instead, a node may wait until it collects more
than one message and encapsulate the messages in a single message before transmitting.
Since we use broadcasting as a subroutine for gossiping, we assume from now on that we
have an algorithm Broadcast which completes broadcasting in time B(n).

First, let us describe a basic procedure which we will later deploy. Assume that every
node v holds an integer value rv, where 0 ≤ rv ≤ n. The procedure FindMax succeeds
in electing a single node v which holds the maximum integer, i.e. all the nodes have to
agree about which node holds the largest value. FindMax uses binary search in order to
specify the node with the largest integer.

Procedure FindMax only finds the largest value among the nodes of the network.
However, we also want to pinpoint which node holds this largest value. For that, we apply

4.1. DETERMINISTIC DISTRIBUTED GOSSIPING 73

Procedure FindMax
a = 0 ;
b = n ;
repeat

c = d(a+ b)/2e ;
Foreach node v such that rv ∈ [c, b] run Broadcast sending the message
[c, b] ;
wait B(n) rounds ;
if the message is received then

a = c
else

b = c− 1
end

until a = b ;
return a ;

again binary search, but this time we set the values as follows: r′v = v if node v holds
rmax, else we set r′v = 0.

We can now present the algorithm DoGossip (algorithm 18). We denote by S(v) the
set of all distinct messages that node v holds. Whenever node v transmits, the whole set
S(v) is transmitted encapsulated in a single message. Furthermore, when a new message
is received, it is added to S(v).

Algorithm 18: DoGossip

Run
√
B(n) log n of RoundRobin ;

repeat
Run Find-Max to find the node vmax with the largest set S(v) ;
Use Broadcast to transfer S(vmax) to all the nodes ;
For every node v, remove from S(v) the messages from S(vmax) ;

until maxv |S(v)| = 0 ;
return a ;

Let us now provide some analysis for the running time of the algorithm DoGossip.
The first part of the algorithm needs O(n

√
B(n) log n) time. Let a =

√
B(n) log n/n and

also assume that at the beginning of any iteration of the main loop we have m distinct
messages. The consecutive executions of the RoundRobin procedure will have distributed
each message to at least a·n nodes and thus we have at least a·n·m copies of the messages.
Consequently, maxv |Kv| ≥ a ·m. Now, at the end of the iteration, the number of distinct
messages will be at most (1 − a) ·m. Since at the beginning of the algorithm we have n
distinct messages, after i iterations, the number of messages left will be (1 − a)i · n. We
thus need O(1/a · log n) = O(n/

√
B(n)) iterations of the main loop in order to exhaust all

74 CHAPTER 4. GOSSIPING

messages. Each iteration needs B(n) · log n rounds and so the second part of the algorithm
also has running time O(n

√
B(n) log n). The theorem follows.

Theorem 4.1.1. Algorithm DoGossip completes gossiping in time O(n
√
B(n) log n),

where B(n) is the running time of the broadcasting algorithm used.

If we use the broadcasting algorithm of [18], which completes broadcasting in time
O(n log2 n), we come up with a time complexity O(n3/2 log2 n). There has been proposed
an even faster broadcasting algorithm in [61], however the running time remains Õ(n3/2).

4.1.2 A faster gossiping algorithm

Algorithm DoGossip does not collect any information about the topology of the
network in order to increase the efficiency of gossiping. We present here an algorithm
proposed by Gasieniec and Lingas [40], which is strongly adaptive and exploits information
about the neighborhood of nodes in order to gather more efficiently messages from the
nodes of the network.

The algorithm initially assumes that every node knows the maximum eccentricity of
the network D. However, we can drop this assumption by using the standard doubling
technique we used for broadcasting, without altering the asymptotic running time of the al-
gorithm. The detailed algorithm CollateAndBroadcast is presented below (algorithm
19).

Algorithm 19: CollateAndBroadcast(r)

Run RoundRobin r times ;
Choose a node λ by using the procedure FindMax ;
for i = 1, . . . , dD/re do

(a) Store information gathered from node λ in a graph representation
Gir(λ) covering all nodes within in-radius ir from λ. Gir(λ) is a union of
paths directed from the nodes to node λ, which we construct to start from
different start points. Root the tree Gir(λ) from node λ and fix a
post-order for the nodes of Gir(λ) ;
(b) Use Broadcast to transfer the information from step (a) to all nodes
in the network ;
(c) Every node v in Gir(λ) transmits according to the post-order its
neighborhood of radius r Nv(r), as well as the information received so far.
Thus, node λ collects information from the (i+ 1)r-neighborhood of λ ;

end

Figure 4.1 depicts schematically the expansion of the graph representation Gir after
the execution of one iteration. Let us analyze the time complexity of algorithm Collate-
AndBroadcast. First, we set parameter r equal to d√De. Clearly, the execution of the

4.1. DETERMINISTIC DISTRIBUTED GOSSIPING 75

STEP i

r

(a) The graph representation Gir

after step i

STEP i+1

(b) The graph representation G(i+1)r af-
ter step i+ 1

Figure 4.1: Expansion of the graph representation during the execution of algorithm
CollateAndBroadcast

RoundRobin procedure r times needs O(
√
D · n) rounds. The selection of the central

node λ takes O(B(n) log n) time, where B(n) is the running time of Broadcast. The
last stage of the algorithm is executed O(

√
D) times. Since step (c) can be executed in

linear time to n, the most expensive step of the last stage is the execution of Broadcast.
Thus, the last stage lasts O(

√
D ·B(n)) rounds. By summing up the running times of each

stage, we conclude that the total running time of the algorithm CollateAndBroadcast
is O(

√
D · B(n)). In view of the fact that broadcasting can be performed in O(n log2 n)

time, we have proved the following theorem holds.

Theorem 4.1.2. The algorithm CollateAndBroadcast performs gossiping in any
radio network of size n and maximum eccentricity D in Õ(

√
D · n) time.

Notice that by setting r =
√
D ·log n, we would achieve an even better time complexity

of O(
√
Dn log n). However, we would have to make the assumption that the nodes know

the size of the network n, an assumption which would like to avoid.
Clearly, CollateAndBroadcast outperforms DoGossip when D = O(na), for any

constant a < 1. We should state here that the authors also provided an alternative version
of the algorithm which performs gossiping in time O(D∆3/2 log3 n).

Xu [73] proposed an improvement over algorithm CollateAndBroadcast and man-
aged to drop the running time of gossiping to O(n3/2). The idea of Xu was to collect infor-
mation not only about the in-paths of the central node, but also from the out-paths. This
way, we can perform the broadcasting function of step (b) in algorithm CollateAnd-
Broadcast in just linear time, without using the procedure Broadcast. Specifically,

76 CHAPTER 4. GOSSIPING

we will construct a graph representation of the out-neighborhood of the graph similar to
graph Gir which we call G+

ir. G+
ir is a directed tree, where all edges are directed from

the central node to the leaves, and spans over all nodes within an in-radius of ir. The
information about the topology of G+

ir will be distributed to all nodes along with Gir.
However, in order for each node to know a path from the central node λ to itself, we
have to run procedure Broadcast before the initiation of the algorithm. The rest of the
algorithm remains the same as algorithm CollateAndBroadcast and thus the analysis
that follows is quite similar. Consequently, we obtain the following theorem.

Theorem 4.1.3. Gossiping in arbitrary graphs of size n and maximum eccentricity D can
be completed in time O(B(n)+

√
D ·n), where B(n) is the time complexity of broadcasting.

Since the eccentricity D of the graph is at most n, theorem implies that gossiping can
be performed in time O(n3/2). The algorithm of Xu is the currently fastest deterministic
gossiping algorithm for ad-hoc radio networks.

4.1.3 Gossiping with Bounded Messages

In this section we will briefly present gossiping under the assumption that we impose an
upper bound on the size of messages transmitted. First, Bar-Yehuda et al. [3] considered
gossiping in radio networks where the size of the messages is limited to O(log n) bits. They
proposed a randomized distributed algorithm that performs multi-broadcasting (broadcast-
ing of k > 1 distinct messages originated from k nodes) in time O((D + k) log ∆ log n).
Thus, we obtain an O(n log n log ∆) randomized gossiping algorithm.

Clementi et al. [22] also examined gossiping when we assume messages of size at most
O(log n). They provided lower bounds for both randomized and deterministic distributed
gossiping under this assumption. Furthermore, they proposed a gossiping algorithm that
is based on strongly selective families and runs in time O(n∆2 log3 n).

Christersson, Gasieniec and Lingas [17] assumed a more general bound on the message
size. Specifically, they express this upper bound in terms of an integer function b(n), where
n is the number of nodes in the network. That means that we can transmit a combined
message that contains at most b(n) unit messages. We call this restriction of the gossiping
problem b(n)-gossiping.

The authors initially study directed networks and show that we can perform determin-
istically

√
n-gossiping in an arbitrary graph in time Õ(n3/2). The algorithm (

√
n-Gossip)

is quite similar to the algorithm DoGossip from [18]. Next, they show how to transform√
n-Gossip to an algorithm that performs b(n)-gossiping for 0 ≤ b(n) ≤ √n and runs in
Õ(n2/b(n)) time. These upper bounds are tight up to a polylogarithmic factor, since we
can easily prove that b(n)-gossiping needs at least Ω(n2/b(n)) rounds. This means that,
in order to achieve gossiping faster than Õ(n3/2), the size of the combined messages must
exceed

√
n.

As far as gossiping in undirected graphs is concerned, the authors proposed faster
algorithms. Specifically, they proved that even 1-gossiping can be done deterministically

4.2. GOSSIPING WITH POLYNOMIALLY LARGE LABELS 77

in time Õ(n3/2). If we use randomization, the time for 1-gossiping is decreased to Õ(n).
Finally, they showed that O(nt)-gossiping can be performed in O(n2−t) rounds.

4.2 Gossiping with Polynomially Large Labels

The algorithms presented in the above section assume that the node labels are integers
and the largest value is linear to the size of the network n. Equivalently, each node chooses
a label from the set {1, 2, . . . , c ·n} for some constant c. A very interesting model of radio
networks occurs when we consider polynomially large node labels. Our goal is to construct
gossiping algorithms with time complexity that depends only on the size n and not on
the largest label N (however, it is acceptable if N is used in a logarithm). The gossiping
algorithms presented so far can not be modified so as to satisfy this property. Thus,
we have to introduce new gossiping algorithms, which manage to avoid the expensive N
factor. Gossiping in this context was first studied by Gasieniec, Pagourtzis and Potapov
[41], where gossiping was performed in Õ(n5/3) time. In the journal version [42], the
running complexity was improved to Õ(n3/2). The faster known gossiping algorithm was
proposed by Gasieniec, Radzik and Xin [45] and has running time Õ(n4/3).

Let us first introduce some terms necessary in order to describe the gossiping algo-
rithms of this section. We define a message to be secure if it has been transfered to all the
nodes of the network, otherwise we say that the message is insecure. A dormant node is
a node whose original message is secure. An active node is a node which is not dormant.
We also define an active path to be a simple path such that all nodes of the path but the
last one are active.

Both of the algorithms of this section use the principle of quasi-gossiping. A procedure
that completes quasi-gossiping guarantees that, upon its completion, every active message
has been communicated to at least one dormant node. Full gossiping can be achieved if
we execute a quasi-gossiping procedure and then repeat the transmissions in exactly the
same order they occurred during quasi-gossiping.

We will first describe the gossiping algorithm GossipLL by Gasieniec et al. [42].
The algorithm uses for broadcasting the algorithm DoGossip from [18], which completes
broadcasting in time O(n log n logN). Let us denote this algorithm by Broadcast. The
algorithm consists of four stages and heavily depends on the use of different kinds of
selectors. We should also note that the use of RoundRobin is avoided, as the factor
N will then appear in the time complexity. The optimal value of parameter k will be
determined later.

Let us provide some analysis and insight on the algorithm GossipLL. The purpose
of stage 1 is to ensure that, by completion, each node of the network has fewer than k
active neighbors. Since the most expensive part of stage 1 is the selection of a central
node, which costs O(n log2N log n), (the linear selective family is of size O(n logN)) and
the iterations will be at most 2n/k, we conclude that the running time of stage 1 is
O((n2 log2N log n)/k).

78 CHAPTER 4. GOSSIPING

Algorithm 20: GossipLL

Stage 1: We execute an iterative procedure. At first, all the active nodes run a
linearly k-selective family. Due to the properties of such a family, if a node
has at least k active neighbors, it will collect at least k/2 insecure messages.
We then choose a node λ among the nodes with at least k/2 insecure
messages. If no such node exists, stage 1 terminates. Node λ starts
Broadcast to distribute all its messages to all the nodes of the network.

Stage 2: At the beginning of stage 2, we run a strongly k-selective family k
times. We then repeatedly choose a central node λ with at least k insecure
messages and run Broadcast with λ as the source. The iterations stop
when every node has less than k insecure messages.

Stage 3: We run again a strongly k-selective family k times.

Stage 4: During this stage, every node repeats exactly the sequence of its
transmissions from stages 1 and 2.

The goal of stage 2 is to break long active paths into active paths of length less than
k. This way, we reduce the maximum distance from an active node to a dormant node.
The second stage runs for O(k3 logN + (n2 log2N log n)/k) rounds (a strongly k-selective
family has size O(k2 logN)).

After stage 3, if there was some dormant node at the beginning of stage 3, each
insecure message reaches a dormant node and thus quasi-gossiping succeeds. Else, by
the end of stage 3, full gossiping is complete. Clearly, stage 3 runs in time O(k3 logN).
Now, if at the beginning of stage 4 only quasi-gossiping is complete, the repetition of the
transmissions from the first two stages guarantees that all messages will reach all nodes.
Thus, the algorithm completes gossiping in time O(k3 logN + (n2 log2N log n)/k). The
optimal running time is achieved when k = n1/2(logN log n)1/4 and thus we obtain the
following theorem.

Theorem 4.2.1. GossipLL completes gossiping in an arbitrary radio network with large
labels in time O(n3/2 log7/4N log3/4 n).

An interesting thing we should note here is that GossipLL can be modified to com-
plete gossiping in undirected radio networks in substantially less time, namely only in
O(n log2N log2 n) time.

The gossiping algorithm by Gasieniec, Radzik and Xin [45] is quite similar to Gos-
sipLL and depends on the use of a different selector, the path selector. The path selector
has a very important property, which is described by the following lemma.

4.2. GOSSIPING WITH POLYNOMIALLY LARGE LABELS 79

Lemma 4.2.2. Consider a directed simple path P =< v0, . . . , vm >, where the neighbor-
hood of the path is smaller or equal to k. An application of a path selector SN,k succeeds
in that all the nodes of the path deliver their messages to the endpoint vm .

We will also need a procedure Disperse, which is responsible for the distribution of
large enough combined messages to all the nodes of the network. The detailed algorithm
is presented below.

Procedure Disperse(k)

while a node with ≥ k active messages exists do
select such a node λ ;
run Broadcast with λ as source ;

end

Algorithm 22: GossipPS

(Stage 1):
q = n ;
while q ≥ k do

apply a (N, q, q/4)-selector ;
Disperse(q/4) ;
q = q/2 ;

end
(Stage 2):
for 1 to dlog ke+ 1 do

apply a path selector SN,k ;
Disperse(k/2) ;

end
(Stage 3):
repeat transmissions from stages 1 and 2 in the same order ;

Clearly, the analysis is similar to the corresponding analysis of GossipLL. After stage
1, we can prove that every node has less than k active neighbors. We can show that r
executions of procedure Disperse(k) need O((n/k+r)n log3 n) rounds, thus stage 1 needs
O(n2/k log3 n) rounds. The second stage reduces the size of neighborhoods of active paths
(by neighborhood of a path we mean the union of the neighbors of every node of the path).
Specifically, the use of path selectors guarantees that at the beginning of the last iteration
of stage 2, the size of the neighborhood of each active path is less than k. The last
application of the path selector will either complete quasi-gossiping or even full gossiping.
The running time of stage 2 is O((n/k+log k)n log3 n) for Disperse and O(k2 log3 n log k)
for the path selector (a path selector Sn,k has size O(k2 log3 n)). Stage 3 is needed for
the case of quasi-gossiping, where the repetition of the transmissions ensures that full

80 CHAPTER 4. GOSSIPING

gossiping completes. By summing up the time for each stage and by choosing the optimal
value for k, we can show that algorithm GossipPS runs in time O(n4/3 log10/3 n).

Theorem 4.2.3. GossipPS completes gossiping in an arbitrary radio network with large
labels in time O(n4/3 log10/3 n).

We observe that the two algorithms do not differ much, but for the use of a more
specialized and more expensive selector. Basically, the authors replaced the repeated use
of broadcasting with the use of a modified selector which guaranteed stronger properties
for the progress of gossiping. This way, quasi-gossiping performs more efficiently.

4.3 Randomized Gossiping

In this section, we will study algorithms for gossiping in radio networks that use
randomization. The first randomized algorithm for gossiping was proposed by Chrobak,
Gasieniec and Rytter [19] and completed gossiping in O(n log4 n) time. The running time
was improved to O(n log3 n) by Liu and Prabhakaran [59]. The currently fastest known
gossiping algorithm in ad hoc radio networks is by Czumaj and Rytter [25] and runs in
time O(n log2 n).

Let us first present the gossiping algorithm of Chrobak et al. [19] in full detail.
The algorithm is based on two key ideas. The first one is to use a faster broadcasting
procedure LtdBroadcast (limited broadcast), which succeeds in transmitting a message
from a node to at least k nodes of the network, instead of a relatively more expensive full
broadcast. Clearly, LtdBroadcast will be used as a basic component for the algorithm.
However, we must use a small number of limited broadcasts and we must guarantee that
every message will participate in such a broadcasting. In order to achieve these goals,
the algorithm implements a randomized procedure, which we call Distributed Coupon
Collection (DistCouponColl).

LtdBroadcastv(k) is based on the broadcasting algorithm Selector-Broadcast
[18], which has a running time of O(n log2 n). Here, we modify the algorithm in order
to perform limited broadcasting in time O(k log2 n). The main difference is that we limit
the rounds executed to γk log2 n for some constant γ. Furthermore, we may assume that,
at the beginning of the procedure, other nodes apart from the source may be active, in
which case they behave as if they have already received the message. We can prove the
following lemma.

Lemma 4.3.1. Assuming that initially exactly one node u is active and that the procedure
LtdBroadcastv(k) is executed simultaneously by all nodes, after the procedure stops, at
least k nodes will receive the message from u.

Let us now turn our attention to the problem DistCouponColl. We can describe
the problem as follows. We think the set of nodes V as a set of bins and the set of messages
M as a set of coupons. Denote by Mv the set of messages in node v. Furthermore, assume

4.3. RANDOMIZED GOSSIPING 81

that each message has at least k copies, i.e. belongs to at least k nodes. The procedure
(DCC) is quite simple: at each round, we open each bin with probability 1/n. We then
distinguish two cases:

• Exactly one bin v is opened: All messages in Mv are collected.

• No bin or more that two bins are opened: We collect no message.

The question that occurs now is how many rounds do we need in order to collect all
messages (coupons) with high probability. The following lemma answers this question.

Lemma 4.3.2. Assume that we have n bins and n coupons and that each coupon has at
least k copies, each copy belonging to a different bin. Let δ a constant, where 0 < δ <
1. Then after s rounds of DCC (s = (4n/k) ln(n/δ)), all coupons will be collected with
probability 1− δ.

Proof. Let us assume that n ≥ 2 (the case n = 1 is trivial). Denote by Xm,j the fact that
coupon m is collected in round j. Then, for any m and k we have:

Pr[Xm,j] ≥ k

n

(
1− 1

n

)n−1

≥ k

n

(
1− 1

n

)n
≥ k

4n
.

Thus, the probability that message m is not collected in s rounds is:

Pr[m not collected] ≤ n
(

1− k

4n

)s
≤ ne− sk

4n ≤ δ.

The algorithm RandGossip is a combination of DistCoupColl and LetBroad-
cast and is presented below.

Algorithm 23: RandGossip(ε)

δ = ε/ log n ;
for i = 0 to log n− 1 do

s = (4n/2i) ln(n/δ) ;
for si times do

Each node v gets active with probability 1/n ;
Each node v executes LtdBroadcastv(2

i+1) ;
end

end

Let us now provide the analysis of the algorithm RandGossip(ε). Clearly, the running
time can be easily shown to be O(n log3 n log(n/ε)). Consider now the beginning of the

82 CHAPTER 4. GOSSIPING

first iteration (i = 0), where each message is contained in its starting node. The algorithm
tries to maintain the invariant that after the ith iteration, each message is in at least 2i+1

nodes. If we manage to keep the invariant true until the last iteration, then gossiping
will be completed successfully. Thus, we turn our attention to computing the probability
that the invariant fails. Since each iteration is basically an execution of procedure DCC s
times, the probability that the invariant fails, assuming that it has not failed so far, is at
most δ. Summing up, the probability of failure is at most log n · δ = ε.

Notice that RandGossip is a Monte Carlo algorithm, whereas we would most be
interested in a Las Vegas algorithm. To obtain such an algorithm, we modify the algorithm
the following way. We first run RandGossip (1/n), which has running time O(n log4 n).
If the algorithm fails, we inform all the nodes using some broadcasting procedure and
then we execute a simple RoundRobin with running time O(n2). Thus, the expected
running time of the modified algorithm is O(1/n(n2) + (1 − 1/n)n log4 n) = O(n log4 n).
Consequently, we have proved the following theorem.

Theorem 4.3.3. There exists a Las Vegas algorithm that completes gossiping in any radio
network of size n with expected running time O(n log4 n).

Algorithm RandGossip was improved by Liu and Prabhakaran [59] to run in time
O(n log3 n). The algorithm runs in two phases. The first phase consists of log n execu-
tions of RoundRobin. After this, each message has at least log n copies in the network,
which is necessary for the next phase to have a good success probability. The second
phase is exactly like RandGossip with the exception that the deterministic procedure
LtdBroadcast is replaced by the randomized procedure RandLtdBroadcast. The
use of more randomization allows the algorithm to perform faster and drop the running
time by a logarithmic factor.

RandLtdBroadcast uses a randomized procedure DecayingBroadcast(n), which
guarantees that a message is transmitted to a new node with constant probability. In other
words, the procedure ensures that we have some progress in broadcasting with some con-
stant probability. Procedure DecayingBroadcast runs in parallel for every node and
is displayed in detail below.

Algorithm 24: DecayingBroadcastv(n)

for i = 1 to log n+ 1 do
Node v transmits with probability 1/2i−1

end

We are now in position to describe the randomized procedure RandLtdBroadcast,
which again runs in parallel for all nodes. Each node v holds a label active(v), which is
initially set to false.

By choosing an appropriate constant c, we can prove the following lemma about
RandLtdBroadcast.

4.3. RANDOMIZED GOSSIPING 83

Algorithm 25: RandLtdBroadcastv(n, k)

for i = 1 to c · k do
if active(v) then

DecayingBroadcastv(n)
else

if message received then
active(v) = true

end

end

end

Lemma 4.3.4. If exactly one node v is initially active, RandLtdBroadcast(n, k) suc-
ceeds in broadcasting the message of v to at least k nodes in time O(k log n) with probability
at least 1− e−αK (α can be arbitrarily large).

Algorithm 26: RandGossip2(ε)

execute RoundRobin log n times ;
δ = ε/ log n ;
for i = 0 to log n− 1 do

s = (4n/2i) ln(n/δ) ;
for si times do

Each node v gets active with probability 1/n ;
Each node v executes RandLtdBroadcastv(n, 2

i) ;
end

end

It is quite simple to show that the running time of the randomized gossiping algorithm
is O(n log2 n log(n/ε)). The analysis for the probability of error is similar to the analysis
of RandGossip. The only difference is that we use another randomized procedure, Ran-
dLtdBroadcast, and we have to found the probability of error there as well. By using
lemma 4.3.4 and the fact that the execution of RoundRobin ensures that the number
of copies is large enough, we can prove that RandLtdBroadcast has error probability
o(1) and thus is dominated by the error probability of DistCoupColl. The algorithm
can now be modified to a Las Vegas algorithm using the same idea as before and thus we
have the following improvement of theorem 4.3.6.

Theorem 4.3.5. There exists a Las Vegas algorithm that completes gossiping in any radio
network of size n with expected running time O(n log3 n).

Finally, Czumaj and Rytter [25] managed to further improve algorithm RandGossip
and succeed running time of O(n log2 n). The algorithm is based on both of the two

84 CHAPTER 4. GOSSIPING

previous algorithms. The authors increased the executions of RoundRobin at the initial
steps toO(log2 n) times and also replaced procedure LtdBroadcast with the randomized
procedure Linear-Broadcast used for broadcasting, which is modified to run O(k)
rounds in order to perform limited broadcasting. The analysis of the error probabilities
follows the same idea as the previous algorithms, thus we omit the detailed proof. The
improvements applied to RandGossip lead to the following result.

Theorem 4.3.6. There exists a Las Vegas algorithm that completes gossiping in any radio
network of size n with expected running time O(n log2 n).

The last algorithm is the currently faster randomized gossiping algorithm. However,
we do not know any non-trivial lower bound for randomized gossiping and thus the opti-
mality of the last result is not guaranteed.

4.4 Centralized Gossiping

The main line of research for gossiping in radio networks assumes ad-hoc radio net-
works. Centralized gossiping was first examined by Gasieniec and Potapov [43]. The
authors studied the case when only messages of unit size may be transmitted, i.e. a node
cannot combine more than one message to a single transmission. This is clearly a more
realistic assumption, especially when considering networks with a large number of nodes.

In this model, the authors first prove that gossiping in directed graphs requires Ω(n2)
time. They construct a simple network graph G, which is a directed line of nodes
v0, . . . , vn−1 extended by all edges of the form vj → vi : 0 ≤ i < j ≤ n− 1 (see figure 4.2).
Clearly, during any successful transmission, a message can move by one position closer to
the end of the line. Moreover, at any round only one node may transmit, since otherwise
the reverse edges may cause a collision. Thus, the message from node v0 needs n − 1
rounds to reach the end node and generally node vk needs n−k−1 rounds. Consequently,
the total number of rounds needed will be at least

∑n−1
k=0(n− k − 1) = Ω(n2).

They then turn their attention to gossiping in undirected graphs, where they propose
several optimal and near-optimal algorithms working in linear time for various standard
network topologies, such as rings, lines, stars and trees. As far as gossiping in general
directed graphs is concerned, they showed how to perform gossiping in time O(n log2 n)
and proved a lower bound of Ω(n log n).

Gasieniec et al. [44] presented the first work to deal with centralized gossiping with
arbitrarily large messages. They first show how to perform gossiping in any undirected
radio network of size n in at most n rounds. The algorithm CentralizedGossiping
consists of three parts: gathering, gossiping, broadcasting. The key idea is to first collect
all messages to some connected subgraph of radius 1 (gathering). Then, a simple gossiping
algorithm informs all the nodes of the subgraph about all the messages (gossiping). Finally,
by reversing the order and direction of the transmissions used in the gathering stage,

4.4. CENTRALIZED GOSSIPING 85

...

vn−1

v0 v1 v2

v3

Figure 4.2: The graph constructed to prove the lower bound of Ω(n2) for gossiping
with unit size messages.

the messages collected in the subgraph are distributed to all the nodes of the network
(broadcasting).

The main difficulty of the algorithm is how to perform the gathering stage, i.e. to
collect all messages in a subgraph with radius 1. For that, we use the 2-vertex reduction
principle. Before we explain this principle in detail, let us introduce some necessary
definitions. Let us assume that we have an undirected graph G with radius k, where k is
the smallest integer for which there exists at least one node, such that its distance from
all other nodes in the network is less or equal to k. We also choose some node c with
this property, which we call a central node. Moreover, consider the classical partition of
the graph in BFS layers with c as the root, where we denote the layer of depth i by Li
(0 ≤ i ≤ k).

Definition 4.4.1. A minimal covering set Ci is a subset of Li, such that every node in
Li+1 is connected to some node v ∈ Ci and by removing v, this property is not preserved.

Definition 4.4.2. The nodes v, v′, w, w′ of a graph G = (V,E) satisfy the reduction
property if and only if:

• (v, v′), (w,w′) ∈ E
• (v, w′), (w, v′) /∈ E
• The removal of v and w along with their adjacent edges does not disconnect G.

We can now state the 2-vertex reduction principle.

Theorem 4.4.3. In any undirected graph G with radius r > 1, we can find four distinct
nodes v, v′, w, w′ that satisfy the reduction property.

86 CHAPTER 4. GOSSIPING

c L0

L1

L2

L3

C2

C1

Figure 4.3: The minimal covering sets Ci (i = 1, 2) for the BFS layers of a graph.

The importance of the above theorem is that we can find four distinct nodes such that
the two of them are able to transmit their messages to the other two at the same round
without any collisions. Furthermore, by removing the two transmitters, the graph remains
connected. We are now in position to describe CentralizedGossiping in full detail.

Algorithm 27: CentralizedGossiping

/* Gathering stage */
while radius > 1 do

In Parallel
Select four nodes v, v′, w, w′ that satisfy the reduction property ;
v and w transmit at the same round ;
”remove” v and w, along with adjacent edges ;

end
/* Gossiping stage */
Consider a node c of the remaining graph G′;
foreach node v ∈ G′ do

v transmits ;
end
c transmits ;
/* Broadcasting stage */
Perform the transmissions of the gathering stage in the reverse order and
direction ;

Let us now provide some analysis for the algorithm CentralizedGossiping. The
correctness of the gossiping algorithm is quite straightforward. Thus, let us concentrate on
the time complexity of the algorithm. After each reduction round in the gathering stage,
two nodes are removed from the graph. Thus, when the radius of the graph becomes equal
1 and assuming we need j rounds, the size of the remaining subgraph is exactly n − 2j.

4.4. CENTRALIZED GOSSIPING 87

Next, the gossiping stage needs n − 2j − 1 rounds so that each of the neighboring nodes
sends the collected messages to c and one more round for c to disseminate all the messages
to the other nodes. Finally, the broadcasting stage needs j more rounds to complete the
gossiping, since we reverse the sequence and direction of the transmissions in the first
stage. Summing up, algorithm CentralizedBroadcasting needs at most n rounds to
complete gossiping.

Theorem 4.4.4. Gossiping can be performed in any radio network of size n in at most n
rounds.

The authors also prove a lower bound of blog(n− 1)c+ 2 rounds for gossiping. They
show that there exists a topology where the upper and the lower bound match, i.e. gos-
siping can be performed in time blog(n− 1)c+ 2. The lower bound is also nearly matched
for tree topologies. Finally, the authors provide algorithms with running times dependent
not on the size n, but on the parameters D and ∆ of the network.

88 CHAPTER 4. GOSSIPING

Bibliography

[1] Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A lower bound for
radio broadcast. J. Comput. Syst. Sci., 43(2):290–298, 1991.

[2] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of
broadcast in radio networks: An exponential gap between determinism and random-
ization. In PODC, pages 98–108, 1987.

[3] Reuven Bar-Yehuda and Amos Israeli. Multiple communication in multi-hop radio
networks. In PODC, pages 329–338, 1989.

[4] Stefano Basagni, Imrich Chlamtac, and Danilo Bruschi. A mobility-transparent de-
terministic broadcast mechanism for ad hoc networks. IEEE/ACM Trans. Netw.,
7(6):799–807, 1999.

[5] Vartika Bhandari and Nitin H. Vaidya. On reliable broadcast in a radio network. In
PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles
of distributed computing, pages 138–147, New York, NY, USA, 2005. ACM.

[6] Annalisa De Bonis, Leszek Gasieniec, and Ugo Vaccaro. Generalized framework for
selectors with applications in optimal group testing. In ICALP, pages 81–96, 2003.

[7] Carlos Brito, Eli Gafni, and Shailesh Vaya. An information theoretic lower bound for
broadcasting in radio networks. In STACS, pages 534–546, 2004.

[8] Danilo Bruschi and Massimiliano Del Pinto. Lower bounds for the broadcast problem
in mobile radio networks. Distributed Computing, 10(3):129–135, 1997.

[9] Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit
complexity. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 30–36, New York, NY, USA, 1996. ACM.

[10] I. Chlamtac. The wave expansion approach to broadcasting in multihop radio net-
works. Communications, IEEE Transactions on, 39(3):426–433, Mar 1991.

[11] Imrich Chlamtac and András Faragó. Making transmission schedules immune to
topology changes in multi-hop packet radio networks. IEEE/ACM Trans. Netw.,
2(1):23–29, 1994.

89

90 BIBLIOGRAPHY

[12] Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks—problem
analysis and protocol design. Communications, IEEE Transactions on, 33(12):1240–
1246, Dec 1985.

[13] Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech
Rytter. Deterministic broadcasting in unknown radio networks. In SODA, pages
861–870, 2000.

[14] Bogdan S. Chlebus, Leszek Gasieniec, Andrzej Lingas, and Aris T. Pagourtzis. Obliv-
ious gossiping in ad-hoc radio networks. In DIALM ’01: Proceedings of the 5th in-
ternational workshop on Discrete algorithms and methods for mobile computing and
communications, pages 44–51, New York, NY, USA, 2001. ACM.

[15] Bogdan S. Chlebus, Leszek Gasieniec, Anna Östlin, and John Michael Robson. De-
terministic radio broadcasting. In ICALP, pages 717–728, 2000.

[16] Bogdan S. Chlebus and Dariusz R. Kowalski. Almost optimal explicit selectors. In
FCT, pages 270–280, 2005.

[17] Malin Christersson, Leszek Gasieniec, and Andrzej Lingas. Gossiping with bounded
size messages in ad hoc radio networks. In ICALP, pages 377–389, 2002.

[18] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. Fast broadcasting and gos-
siping in radio networks. In FOCS, pages 575–581, 2000.

[19] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. A randomized algorithm
for gossiping in radio networks. In COCOON, pages 483–492, 2001.

[20] Ferdinando Cicalese, Fredrik Manne, and Qin Xin. Faster centralized communication
in radio networks. In ISAAC, pages 339–348, 2006.

[21] Andrea E. F. Clementi, Pierluigi Crescenzi, Angelo Monti, Paolo Penna, and Riccardo
Silvestri. On computing ad-hoc selective families. In RANDOM-APPROX, pages
211–222, 2001.

[22] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed multi-
broadcast in unknown radio networks. In PODC ’01: Proceedings of the twentieth
annual ACM symposium on Principles of distributed computing, pages 255–264, New
York, NY, USA, 2001. ACM.

[23] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast
in radio networks of unknown topology. Theor. Comput. Sci., 302(1-3):337–364, 2003.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

BIBLIOGRAPHY 91

[25] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in radio networks with
unknown topology. In FOCS, pages 492–501, 2003.

[26] Anders Dessmark and Andrzej Pelc. Broadcasting in geometric radio networks. J.
Discrete Algorithms, 5(1):187–201, 2007.

[27] Krzysztof Diks, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. The impact
of information on broadcasting time in linear radio networks. Theor. Comput. Sci.,
287(2):449–471, 2002.

[28] A.G. Dyachkov and V.V. Rykov. Bounds on the length of disjunctive codes. Problemy
Peredachi Informatsii, 18(3):7–13, 1982.

[29] A.G. Dyachkov and V.V. Rykov. A survey of superimposed code theory. Problems
of Control and Information Theory, 12:229–244, 1983.

[30] Michael Elkin and Guy Kortsarz. Logarithmic inapproximability of the radio broad-
cast problem. J. Algorithms, 52(1):8–25, 2004.

[31] Michael Elkin and Guy Kortsarz. Polylogarithmic additive inapproximability of the
radio broadcast problem. SIAM J. Discret. Math., 19(4):881–899, 2005.

[32] Michael Elkin and Guy Kortsarz. An improved algorithm for radio broadcast. ACM
Trans. Algorithms, 3(1):8, 2007.

[33] Robert Elsässer, Leszek Gasieniec, and Thomas Sauerwald. On radio broadcasting
in random geometric graphs. In DISC, pages 212–226, 2008.

[34] Yuval Emek, Leszek Gasieniec, Erez Kantor, Andrzej Pelc, David Peleg, and Chang
Su. Broadcasting in udg radio networks with unknown topology. In PODC, pages
195–204, 2007.

[35] Yuval Emek, Erez Kantor, and David Peleg and. On the effect of the deployment
setting on broadcasting in euclidean radio networks. unpublished manuscript, 2007.

[36] Zoltán Füredi. On r-cover-free families. J. Comb. Theory Ser. A, 73(1):172–173,
1996.

[37] Emanuele G. Fusco and Andrzej Pelc. Acknowledged broadcasting in ad hoc radio
networks. Inf. Process. Lett., 109(2):136–141, 2008.

[38] Iris Gaber and Yishay Mansour. Centralized broadcast in multihop radio networks.
J. Algorithms, 46(1):1–20, 2003.

[39] Leszek Gasieniec, Dariusz R. Kowalski, Andrzej Lingas, and Martin Wahlen. Efficient
broadcasting in known geometric radio networks with non-uniform ranges. In DISC,
pages 274–288, 2008.

92 BIBLIOGRAPHY

[40] Leszek Gasieniec and Andrzej Lingas. On adaptive deterministic gossiping in ad hoc
radio networks. In SODA, pages 689–690, 2002.

[41] Leszek Gasieniec, Aris Pagourtzis, and Igor Potapov. Deterministic communication
in radio networks with large labels. In ESA, pages 512–524, 2002.

[42] Leszek Gasieniec, Aris Pagourtzis, Igor Potapov, and Tomasz Radzik. Deterministic
communication in radio networks with large labels. Algorithmica, 47(1):97–117, 2007.

[43] Leszek Gasieniec and Igor Potapov. Gossiping with unit messages in known radio
networks. In IFIP TCS, pages 193–205, 2002.

[44] Leszek Gasieniec, Igor Potapov, and Qin Xin. Time efficient centralized gossiping in
radio networks. Theor. Comput. Sci., 383(1):45–58, 2007.

[45] Leszek Gasieniec, Tomasz Radzik, and Qin Xin. Faster deterministic gossiping in
directed ad hoc radio networks. In SWAT, pages 397–407, 2004.

[46] F. K. Hwang. The time complexity of deterministic broadcast radio networks. Discrete
Appl. Math., 60(1-3):219–222, 1995.

[47] Piotr Indyk. Explicit constructions of selectors and related combinatorial structures,
with applications. In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 697–704, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics.

[48] W.H. Kautz and R.R.C. Singleton. Nonrandom binary superimposed codes. IEEE
Transactions on Information Theory, 10:363–377, 1964.

[49] János Komlós and Albert G. Greenberg. An asymptotically fast nonadaptive al-
gorithm for conflict resolution in multiple-access channels. IEEE Transactions on
Information Theory, 31(2):302–, 1985.

[50] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine adversarial behav-
ior. In PODC, pages 275–282, 2004.

[51] Chiu-Yuen Koo, Vartika Bhandari, Jonathan Katz, and Nitin H. Vaidya. Reliable
broadcast in radio networks: the bounded collision case. In PODC, pages 258–264,
2006.

[52] Dariusz Kowalski and Andrzej Pelc. Optimal deterministic broadcasting in known
topology radio networks. Distributed Computing, 19(3):185–195, January 2007.

[53] Dariusz R. Kowalski and Andrzej Pelc. Broadcasting in undirected ad hoc radio
networks. In PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 73–82, New York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 93

[54] Dariusz R. Kowalski and Andrzej Pelc. Faster deterministic broadcasting in ad hoc
radio networks. In STACS ’03: Proceedings of the 20th Annual Symposium on The-
oretical Aspects of Computer Science, pages 109–120, London, UK, 2003. Springer-
Verlag.

[55] Dariusz R. Kowalski and Andrzej Pelc. Time of deterministic broadcasting in radio
networks with local knowledge. SIAM J. Comput., 33(4):870–891, 2004.

[56] Dariusz R. Kowalski and Andrzej Pelc. Time complexity of radio broadcasting: adap-
tiveness vs. obliviousness and randomization vs. determinism. Theor. Comput. Sci.,
333(3):355–371, 2005.

[57] Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Fault-tolerant broadcasting
in radio networks. J. Algorithms, 39(1):47–67, 2001.

[58] Eyal Kushilevitz and Yishay Mansour. An ω(d log(n/d)) lower bound for broadcast
in radio networks. SIAM J. Comput., 27(3):702–712, 1998.

[59] Ding Liu and Manoj Prabhakaran. On randomized broadcasting and gossiping in
radio networks. In COCOON, pages 340–349, 2002.

[60] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[61] Gianluca De Marco. Distributed broadcast in unknown radio networks. In SODA,
pages 208–217, 2008.

[62] Gianluca De Marco and Andrzej Pelc. Faster broadcasting in unknown radio net-
works. Inf. Process. Lett., 79(2):53–56, 2001.

[63] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. In The Computer
Science and Engineering Handbook, pages 141–161. 1997.

[64] Elena Pagani and Gian Paolo Rossi. Reliable broadcast in mobile multihop packet
networks. In MobiCom ’97: Proceedings of the 3rd annual ACM/IEEE international
conference on Mobile computing and networking, pages 34–42, New York, NY, USA,
1997. ACM.

[65] Andrzej Pelc. Fault-tolerant broadcasting and gossiping in communication networks.
Networks, 28(3):143–156, 1996.

[66] Andrzej Pelc and David Peleg. Feasibility and complexity of broadcasting with ran-
dom transmission failures. In PODC ’05: Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed computing, pages 334–341, New York,
NY, USA, 2005. ACM.

[67] David Peleg. Time-efficient broadcasting in radio networks. In DISC, pages 3–4,
2007.

94 BIBLIOGRAPHY

[68] Krishnamurthi Ravishankar and Suresh Singh. Broadcasting on [0,l]. In Proceedings
of the international workshop on Broadcasting and gossiping 1990, pages 299–319,
New York, NY, USA, 1994. Elsevier North-Holland, Inc.

[69] Krishnamurthi Ravishankar and Suresh Singh. Asymptotically optimal gossiping in
radio networks. Discrete Appl. Math., 61(1):61–82, 1995.

[70] Krishnamurthi Ravishankar and Suresh Singh. Gossiping on a ring with radios. vol-
ume 6, pages 115–126. World Scientific Publishing, Singapore, 1996.

[71] Arunabha Sen and Mark L. Huson. A new model for scheduling packet radio networks.
Wireless Networks, 3(1):71–82, 1997.

[72] Jiro Uchida, Wei Chen, and Koichi Wada. Acknowledged broadcasting and gossiping
in ad hoc radio networks. Theor. Comput. Sci., 377(1-3):43–54, 2007.

[73] Ying Xu. An O(n1.5) deterministic gossiping algorithm for radio networks. Algorith-
mica, 36(1):93–96, 2003.

	The model
	Introduction
	Graph Models
	Communication Scenarios
	Communication Tasks

	Selectors
	Introduction
	Existence of selectors with small size
	Explicit construction of selectors

	Broadcasting
	Centralized Broadcasting
	Finding the shortest broadcasting scheme is NP-hard
	Lower bounds and inapproximability results for broadcasting
	A first approach to centralized broadcasting
	Broadcasting through clusterizing
	Faster broadcasting
	Recent results in centralized broadcasting

	Distributed Deterministic Broadcasting
	Broadcasting with acknowledgement
	Lower bounds
	Symmetric Radio Networks
	A quadratic broadcasting algorithm
	The first subquadratic broadcasting algorithms
	A broadcasting algorithm with running time O(n3/2)
	Broadcasting in time dependent on
	An almost optimal broadcasting algorithm
	Recent improvements on broadcasting time

	Randomized Broadcasting
	A lower bound for randomized broadcasting
	Randomized algorithms for broadcasting

	Broadcasting in Geometric Radio Networks
	Fault-Tolerant Broadcasting

	Gossiping
	Deterministic Distributed Gossiping
	A subquadratic algorithm for gossiping
	A faster gossiping algorithm
	Gossiping with Bounded Messages

	Gossiping with Polynomially Large Labels
	Randomized Gossiping
	Centralized Gossiping

