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Abstract

Erlang is a general-purpose programming language designed at the Ericsson Computer
Science Laboratory. Erlang has extensive dynamic libraries in which a plethora of abstract
data types are defined. However, programming in Erlang suffers from the lack of opaque
types. Opaque types are especially necessary in a production environment since they
provide solid contractual guarantees. Due to heavy pattern matching operations though,
violations of the structure of abstract data types are a common occurrence. To address this
problem we used static type checking analysis to reliably detect and warn about opaque
type violations as well as a myriad of other type related errors. We believe that we have
in place a system that will prove helpful in the development of new applications as well
as in the maintenance and easier extension of existing code.
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Chapter 1

Introduction

Abstract data types (ADTs) are widely used in today’s programming environment. Most
programming languages have libraries that define common data structures, queues, trees,
stacks and dictionaries. Efficient and productive programming depends on using prede-
fined ADTs. Programs are built on top of abstract data types often defining new data
types on the way. Thus many layers of code are created. These layers rely on the code
below them to operate consistently.

There are many reasons why the underlying structure of an abstract data type may
change; using a different operating system, porting to a different architecture or opti-
mizing the code, just to name a few. This may have no effect on programs using the
ADTs if abstract principle is followed correctly and only the interface functions are used.
On the other hand it may prove catastrophic to programs that directly access the struc-
tures. Programs like that need to be refactored and recompiled which is unacceptable
in a competitive mission-critical environment. To reduce the chance of errors numerous
programming languages use opaque types, hiding the structure fields from clients and only
presenting an interface.

Erlang is not one of these programming languages. It is a dynamically typed functional
programming language with extensive pattern matching capabilities and supports concur-
rent programming. It has a large user base, including large companies that develop many
commercial applications. However, what Erlang doesn’t have, is an implementation of
opaque types. As it would be expected, an extensive module library with various abstract
data types is available. Nevertheless, all these data structures are exposed and accessible
from any application. Making matters worse, pattern matching on function heads and
case clauses is very commonly used in Erlang code. Programmers, often, because of ne-
glect or convenience, use pattern matching on ADTs. Practices like the above may lead
to perfectly functional code, but are vulnerable to code changes. This is a problem that
is further intensified by the module hot swapping system used in Erlang. Hot swapping is
used so code can be changed without stopping a system. Changing a data type in such a
system can crash a vital non-stop application if the data type is incorrectly accessed.

The following elementary example illustrates problems that might occur and the di-
rection we have taken to combat them.
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A simple queue library in Erlang v1:

-module(my_queue).
-export([new/0, add/2, dequeue/1, is_empty/1, length/1]).

-type my_queue() :: list().

-spec new() -> my_queue().
new() ->

[].

-spec add(term(), my_queue()) -> my_queue().
add(T,Q) ->

Q ++ [T].

-spec dequeue(my_queue()) -> {term(),my_queue()}.
dequeue([H|T]) ->

{H, T}.

-spec is_empty(my_queue()) -> boolean().
is_empty([]) ->

true;
is_empty([_]) ->

false.

-spec length(my_queue()) -> non_neg_integer().
length(Q)->

erlang:length(Q).

An application that uses the queue ADT:

-module(queue_use).
-export([do_it/0]).

do_it() ->
NewQueue = [],
Data = some_module:data(),
Queue = my_queue:add(Data, NewQueue).

The flaws in the above application are obvious. The programmer has associated the
queue abstract data type with the concrete type list. The initialization using a user
defined construct is a mistake that will not cause the program to crash but may lead to
the program becoming inoperable in the future. If we suppose that the author of the
queue code notices that the queue:length/2 function is being used frequently and it is
inefficient to traverse large queues every time the operation is requested; the decision is
made to store the size of the queue along side with the queued elements. Such a change
might look like this:

2



Queue abstract data type v2:

-module(my_queue).
-export([new/0, add/2, dequeue/1, is_empty/1, length/1]).

-type my_queue() :: {non_neg_integer(), list()}.

-spec new() -> my_queue().
new() ->

{0,[]}.

-spec add(term(), my_queue()) -> my_queue().
add(T,{S,Q}) ->

{S+1,Q ++ [T]}.

-spec dequeue(my_queue()) -> {term(), my_queue()}.
dequeue({S,[H|T]}) ->

{H,{S-1,T}}.

-spec is_empty(my_queue()) -> boolean().
is_empty({0,[]}) ->

true;
is_empty({_S,_Q}) ->

false.

-spec length(my_queue()) -> non_neg_integer().
length({S,_Q})->

S.

Succeeding the code revision, it is apparent that the queue use module will fail to ex-
ecute properly. Nonetheless, because Erlang is a dynamically typed language, compilation
of the module is still possible. Checks at compile time are minimal; the problems in this
case will only be revealed at runtime, although, there are examples with subtler changes
that even during execution, potential bugs may pass undetected.

To compensate for the lack of any systematic static checking, Dialyzer was created.
Dialyzer is a static analysis tool developed by Tobias Lindahl and Konstantinos Sagonas.
It uses type checking and dataflow analysis to identify software defects in Erlang programs.
The version of Dialyzer we started from only uses Erlang’s built-in types. Abstract data
types (dictionaries, trees, sets) were treated as structured entities made up from the basic
Erlang types and not as opaque “black boxes”. Ergo it was not possible for Dialyzer to
reveal abuses of the opaqueness of ADTs. Using dialyzer’s default type checking — before
the changes to the queue abstract data type — yields no warning since, structurally at
least, the types match. After the changes dialyzer is able to detect points where type
clashes will occur.
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Dialyzer without opaque type information (my queue v1):

Proceeding with analysis... done in 0m0.19s

Dialyzer without opaque type information (my queue v2):

Proceeding with analysis...
queue_use.erl:7:

The call my_queue:add(Data::term(),NewQueue::[])
will never return since the success typing is
(any(),{number(),[any()]}) -> {number(),[any(),...]}
and the contract is (any(),my_queue()) -> my_queue()

done in 0m0.17s

Discovering problems this manner is not ideal. Firstly, the situation could have been
averted before the data type change, if the opaqueness violations were detected. Secondly,
the warnings do not bring to the programmer’s attention that he is in fact dealing with
an opaqueness related issue. In response to these flaws we have modified Dialyzer and
expanded its capabilities so as to make detection of opaque type violations possible. Ad-
ditionally we defined several Erlang abstract data types as opaque and also allowed for
new modules to implement opaque types. The aim of our new analysis is to reveal opaque
type violations that might occur. Such violations are pattern matching and type checking
on opaque types, deconstruction of opaque ADTs and use of structured constructs in the
place of opaque types. In the following example we demonstrate how it is possible to
declare the queue ADT as an opaque type. The process is straightforward and especially
painless, if proper type contracts are already in place.

Queue opaque data type:

-opaque my_queue() :: {non_neg_integer(), list()}.

The only alteration that is needed in this example is the replacement of the “-type”
attribute with the “-opaque” attribute. The rest of the work is done by the contracts
that were in place beforehand. The implementation here is irrelevant; the code may
be altered, optimized and revised in any way. As long as the interface described above
remains constant, the analysis will work towards finding opaqueness violations. If we now
use Dialyzer with the help of the extra opaque information, we will receive warnings about
the abuses of the abstract data types even if the program is type correct and will not fail
during execution.
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Dialyzer with opaque type information (my queue v1):

Proceeding with analysis...
queue_use.erl:7:

The call my_queue:add(Data::any(),NewQueue::[])
does not have an opaque term of type
my_queue:my_queue() in position 2

done in 0m0.17s

Dialyzer with opaque type information (my queue v2):

Proceeding with analysis...
queue_use.erl:7:

The call my_queue:add(Data::any(),NewQueue::[])
does not have an opaque term of type
my_queue:my_queue() in position 2

done in 0m2.40s

Both the above analysis results are the same. This of course is our goal. The structure
of the queue abstract data type is made invisible. The warnings are identical because only
the interface is used for the analysis and the underlying structures are not exposed. In
contrast with the analysis made without the opaque declaration, the opaque violation flaws
are detectable, regardless of type correctness. Defects detected will not necessarily result in
runtime errors, however they will definitely constitute a breach of the abstract data type’s
interface. Furthermore, the warnings clearly state that an opaque type my queue:my queue
is expected at position 2 of the my queue:add/0 call, instead the variable NewQueue is used,
which has a list() type. Using the well defined warnings, the developer can easily locate
and mend the potential defect.

This brief prologue is meant to familiarize the reader with our work. The examples
only represent a trifle of the work done on the detection of opaque type violations. In
later chapters we present the complete extent of the defect detection capabilities as well
as the sortcomings of the analysis process. Also we talk about abstract and opaque data
types, Dialyzer, success typings and the results of our work.
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Chapter 2

Abstract Data Types

2.1 Definition

An abstract data type is a conceptual, non concrete category of objects sharing common
characteristics, in a form a computer can use [5]. An abstract data type is a data type,
whose operations are defined at a formal, logical level, without being restricted by opera-
tional details. This formal definition or specification becomes the sole interface for both
application developers and programmers who implement the abstract data type in a com-
puter language. The most used type in any computer language is, without a doubt, the
integer type. We can consider the type integer as an example of an abstract data type.
Integers may seem very concrete because we are accustomed to working with numbers.
However, we do not know how they are represented in a particular computer, how mathe-
matical operations are accomplished between two integers, or what their range might be.
All we know is what the syntax and operations (interface) of the language tell us.

Some common ADTs, which have proved useful in a great variety of applications, are:

Container Map Priority queue Stack
Deque Multimap Queue String
List Multiset Set Tree

2.2 Purpose

Abstract data types and their implementation are not ends in themselves. The blind
(over)use of abstract data types does not guarantiee the success of a project. Rather,
abstract data types are some of the basic tools for building correct, efficient, modifiable,
reusable software.

Correct When using abstract data types, the work is broken in smaller, more manageable
fragments. Reduction of the complexity leads in a reduction of flaws and common
mistakes.

Efficient Abstract data types reduce bloating of code and increase productivity.

Modifiable Each abstract data type can be modified and optimized indepedently, with-
out effecting the rest of the software project.
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Reusable Reusability is the primary function of abstract data types. An abstract data
type has to be implemented only once, but can be used many times by different
applications.

2.3 Abstraction

Software engineering involves the development and application of careful methodologies for
the writing of software. One of the most important principles in accomplishing this is the
use of abstraction. Abstraction allows us to organize the complexity of a task by focusing
on the logical properties of data and action, rather than on the implementation details.
Two kinds of abstraction are of interest to computer scientists: procedural abstraction
and data abstraction. Procedural abstraction is the separation of the logical properties of
an action from the implementation details. Data abstraction is the separation of logical
properties of data from the details of how the data are represented. Clearly, procedural
abstraction and data abstraction are closely related: the operations within an abstract data
type are procedural abstractions. An abstract data type encompasses both procedural and
data abstraction; the set of operations are defined for any data type that might make up
the set of values.

2.4 Specification of Abstract Data Types

When a person is implementing an algorithm on another’s data structures, misunderstand-
ings can occur, much time and money can be lost. Software engineering tries to keep this
sort of problem from occurring by formulating ways to precisely define both procedural
and data abstractions. These definitions (called interface specifications) describe the effect
of these abstractions on the external environment. There are two common techniques for
writing formal specifications: axiomatic (or algebraic) specifications and abstract models.

2.4.1 Axiomatic (Algebraic) Specification

The specification of an abstract data type can be described as a triple {D,F,A}. The
set D contains the domains and ranges involved in the data types. F , the second set in
the triple, contains the names of the allowable operations. A , the last set of the triple,
contains the axions or rules that describe the semantics (the meaning) of the operations.
The first part of the axiomatic specification for the stack data type is given below:

structure Stack(of ItemType))
interface Create -> Stack

Push(Stack,ItemType) -> Stack
Pop(Stack) -> Stack
Top(Stack) -> ItemType
IsEmpty(Stack) -> Boolean

end

D = {Stack, ItemType, Boolean}
F = {Create, Push, Pop, Top, IsEmpty}

8



The interface section (sometimes called the declaration section) lists the functions,
their domains, and their ranges. There is no indication of what the functions do. The
meaning of the functions is given in axioms.

Axiomatic specifications define the behavior of an abstract data type by giving axioms
that relate these functions to one another. There are two types of functions: those that
build, construct, or modify instances of the data type (called constructors) and those that
provide some information about objects of the data type (called observers).

The axioms form the third set of the triple in the definition of an abstract data type.
The axioms for the observer functions are written in terms of the constructor functions.
The constructors that remove an item from the structure are defined in terms of con-
structors that add an item to the structure. The constructor functions that create new
structures or put an item on the structure are not explicitly defined. The axiom for the
stack example is given below.

axioms for all S in Stack, i in ItemType let
IsEmpty(Create) = True
IsEmpty(Push(S,i)) = False
Top(Create) = Error
Top(Push(S,i)) = i
Pop(Create) = Error
Pop(Push(S,i)) = S

end

In our work we have used just the first part of the axiomatic specification (the interface
section). We only need the domains involved and the domains and ranges of the interface
functions. Axioms are difficult to produce for complex abstract data types and our analysis
would not benefit from the axioms, as the information of what a function actually does,
is not relevant in type checking process.

2.4.2 Abstract Model

Abstract models use the operations of another abstract data type to describe the seman-
tics of the abstract data type being defined. The underlying model can be a well defined
mathematical model or one that has been defined axiomatically. A different notation usu-
ally used to express the axioms in this technique. The operations are defined as procedure
or function headings, with the axioms stated as preconditions and postconditions for the
procedure or function. Preconditions define what the procedure or function can assume on
entry. Postconditions define what is true on exit from the procedure or function. For the
stack example, the non-indexed, unsorted list is used as the underlying model to define
the abstract data type.

The properties of a stack are defined here in terms of lists. This in no way implies that
the stack is implemented as a list, only that the behavior of the stack is defined in terms
of the behavior of a list.

9



Notation: S a stack
S′ the stack S prior to the current operation
i element of the stack

(i) list with i as its only item
() empty list
// concatenation operator
⊥ undefined

Operations:

Create(VAR S:Stack)
Pre: True
Post: S = ()

Push(VAR S:Stack; i:ItemType)
Pre: S′ 6=⊥
Post: S = (i)//S′

Pop(VAR S:Stack; VAR i:ItemType)
Pre: (S′ 6=⊥) AND NOT (S′ = ())
Post: S′ = (i)//S

IsEmpty(VAR S:Stack):Boolean
Pre: S′ 6=⊥)
Post: IsEmpty = (S = ())

Figure 2.1: Abstract Model Definition for the Stack ADT

2.5 Visibility and Access (Opaque Types)

All types and variables defined and/or declared in an interface section of a module are
visible to the programs using the module. A transparent data type, as they are called,
is both visible and accessible. It is visible because the user can read the structure in
the module listing, and it is accessible because the user can access parts of that type.
An opaque data type is a data type whose name is listed in the interface section of a
module, but whose actual type is defined in the implementation section of the module
(as in Modula-2). A private data type is a data type defined in the interface section

10



of a module, but marked as being private (as in Ada). The users of opaque or private
data types can declare variables of that type, but cannot access parts of them. Variables
declared to be opaque or private can be passed as parameters and assigned to one another,
but cannot be accessed in any other way.

Definition 1 Transparent Types Data types whose description is visible. Component
variables of that type can be accessed directly by the user.

Definition 2 Opaque Types Data types whose name only is visible. Access to parts of
opaque types must be through operations defined in the interface section that defines the
type name.

Definition 3 Private Types Data types whose description is visible, but access to vari-
ables of the type must be through the operations defined in the interface module.

Opaque and private data types are language features that can be used with modules
to provide true encapsulation. The user can declare variables of opaque or private types
but cannot access them except through the interface provided.

2.6 Opaque Type Implementations

Abstract data types are essential in high level programming languages. The opaqueness of
ADTs has been addressed in many of them and in others, like Erlang, it has been left on
the programmers good intentions. In this section, we present how some languages employ
opaque types in their operation.

2.6.1 Java, C++, C#

In object oriented languages, such as Java and C++, opaque types play a fundamental
role, even though they do not appear as types, but rather as classes. Opaque types are
actually objects that utilize information hiding. When defining a class, concrete data fields
can be annotated as private; if an access attempt is made on a private field, the compiler
will detect the violation and terminate the compilation. In fact, it is possible to hide
some data fields and have others visible. On the other hand, functions that are needed to
manipulate the data are defined as public and make up the interface that is presented to
clients. Thus, opaque data types can be created encapsulated in a class, along with the
necessary interface.

11



Opaque types example in Java:

private class Stack<Item> {
private Node first;
private class Node{

private Item item;
private Node next;

}
public void push(Item item) {...}
public Item pop() {...}

}

2.6.2 C, Ada

C, Ada and C++ can implement opaque types by opaque pointers. Opaque pointers are
nothing more than ordinary pointers, directed to a record or data type of unspecified type.
If the language is strongly typed, programs and procedures that have no other information
about an opaque pointer of type T, can still declare variables, arrays, and record fields
of type T, assign values of that type, and compare those values for equality. However,
they will not be able to de-reference such a pointer, and can only change the object’s
content, by calling some procedure that has the missing information [4]. The pointer
to implementation idiom, as it is called, serves a dual purpose: not only does it hide
the implementation details, but also, by hiding the details, recompilations of client code
-because of changes in the declaration of the opaque types’ structure- are made redundant.

Opaque pointer example in C:

/* stack.h */
typedef struct stack *stack_handle;
stack_handle create();
void push(stack_handle handle, int item);
int pop(stack_handle);

/* stack.c */
#include "stack.h"
struct node {

int item;
node *next;

};
struct stack {

node *first;
};
stack_handle create() {...}
void push(stack_handle, int item) {...}
int pop(stack_handle) {...}

12



Bear in mind that stack.h is meant to be distributed with the compiled library stack.so
and not the source file stack.c. Thus, we have made the compiler unaware of the struc-
ture of the type stack; but pointers to the structure can still be used with the matching
functions.

2.6.3 Haskell

Haskell utilizes its module system and new type declarations to hide type implementation
details [10]. It is possible to allow types, in the export list, but not their constructors.
In this manner, the internal structure of abstract data types remains outside the scope of
the client code. The only way to build or take apart the ADTs outside of the module,
is by using the various abstract operations. The ability to have user-defined constructors
-opposed to only primitive constructors, which are in the scope of any application-, is what
makes Haskell’s opaque types maintain their opaqueness.

Stack ADT in Haskell:

module Stack (Stack, new, push, pop) where

newtype Stack a = StackConst [a]

new :: Stack a
new = StackConst []

push :: Stack a -> a -> Stack a
push (StackConst s) element = StackConst (element:s)

pop :: Stack a -> (a, Stack a)
pop (StackConst (element:s)) = (element, StackConst s)

2.6.4 Standard ML

SML uses structures to collect relative definitions under a common name space, much like
a module. However this doesn’t help with making abstract data types opaque. In order to
achieve this, SML requires for an abstract description to be provided. These abstract de-
scriptions come in the shape of signatures. Signatures are essentially type masks that hide
the real typings of the structure’s members and replace them with specified type signatures
[6]. Types defined in signatures can be declared without a representation; therefore SML
considers them to be unique and not aliases of other types. As a consequence, applications
that try to construct or de-construct such types, are met with type errors, because only
members of the ADT are designated as capable to manipulate them.
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Stack Structure and Signature in ML:

signature STACK
sig

type ’a stack
val empty : ’a stack
val push : ’a * ’a stack -> ’a stack
val pop : ’a stack -> ’a

end

structure Stack
struct

type ’a stack = ’a list
val empty = []
val push = op ::
fun pop (tos :: rest) = tos

end :> STACK

14



Chapter 3

The Erlang language

Erlang is a strict, dynamically typed functional programming language, with support for
concurrency, communication, distribution and fault-tolerance. The language relies on au-
tomatic memory management. Erlang’s primary design goal was to ease the programming
of soft real-time control systems commonly developed by the telecommunications (telecom)
industry. Erlang’s basic data types are atoms, numbers (floats and arbitrary precision in-
tegers), and process identifiers; compound data types are lists and tuples. A notation for
objects (records in the Erlang lingo) is supported, but the underlying implementation of
records is the same as tuples. To allow efficient implementation of telecommunication pro-
tocols, Erlang nowadays also includes a binary data type (a vector of byte-sized data) and
a notation to perform pattern matching on binaries. There are no destructive assignments
of variables or mutable data structures. Functions are defined as ordered sets of guarded
clauses, and clause selection is done by pattern matching. In Erlang, clause guards either
succeed or silently fail, even if these guards are calls to builtins, which would otherwise
raise an exception, if used in a non-guard context. Although there is a good reason for this
behavior, this is a language feature which often makes clauses unreachable in a way that
goes unnoticed by the programmer. Erlang also provides a catch/throw-style exception
mechanism, which is often used to protect applications from possible runtime exceptions.
Alternatively, concurrent programs can employ so called supervisors which are processes
that monitor other processes and are responsible for taking some appropriate clean-up
action after a software failure.

Erlang/OTP is the standard implementation of the language. It combines Erlang with
the Open Telecom Platform (OTP) middleware. The resulting product, Erlang/OTP,
is a library with standard components for telecommunications applications (an ASN.1
compiler, the Mnesia distributed database, servers, state machines, process monitors, tools
for load balancing, etc.), standard interfaces such as CORBA and XML, and a variety of
communication protocols (e.g., HTTP, FTP, SMTP, etc.)

The number of areas where Erlang is actively used is increasing. However, its pri-
mary application area is still in large-scale embedded control systems, developed by the
telecom industry. The Erlang/OTP system has so far been used quite successfully, both
by Ericsson and by other companies around the world (e.g., T-Mobile, Nortel Networks,
etc.), to develop software for large (several hundred thousand lines of code) commercial
applications. These telecom products range from high-availability ATM servers, ADSL
delivery systems, next-generation call centers, Internet servers, and other such networking
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equipment. Their software has often been developed by large programming teams and
is nowadays deployed in systems which are currently in operation. Since these systems
are expected to be robust and of high availability, a significant part of the development
effort has been spent in their (automated) testing. On the other hand, more often than
not, teams which are currently responsible for a particular product do not consist of the
original program developers. This and the fact that the code size is large, often make
bug-hunting and software maintenance quite costly endeavors. Tools that aid this process
are of course welcome.
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Chapter 4

Dialyzer

The work on detecting opaque type violations is solely based on dialyzer and comes as
an expansion to its functionality. Dialyzer is a lightweight static analyzer for Erlang
programs. It was developed to fill a gap in the development process. No tools were
available to improve the reliability of applications; testing, no matter how extensive, cannot
reveal all bugs, especially those hiding outside the major code paths. Furthermore, the
Erlang compiler performs only trivial type checks. Dialyzer uses static analysis to identify
discrepancies, such as type errors, unreachable or redundant code and unsafe machine
bytecode. It has been used to reveal bugs in many commercial applications, consisting of
millions lines of code, bugs that have gone undetected in years of operation and testing.

Dialyzer’s ability to analyze Erlang code fast, reconstruct type information, and per-
form dataflow analysis, has spawned great interest to harness its potential. Such projects
include TyPer. An automatic type annotator for Erlang code, expansions for detecting
data races and, of course, our project, detection of opaque type violations.

A good knowledge of Dialyzer is necessary as we get in more technical territory. Next
we try to explain some fundamental concepts in Dialyzer’s operation.

4.1 Success Typings

Dialyzer employes success typings to help with the type annotating of Erlang functions.
The following information on success typings has been attained from the paper “Practical
Type Inference Based on Success Typings” by Tobias Lindahl and Konstantinos Sagonas
[9]. Please refer to it for a more in depth and complete presentation.

4.1.1 Subtyping systems and the need for subtyping in Erlang

Subtyping systems amount to a broader domain than systems based on Hindley-Milner
type inference do. Attempts to tailor a static type system on dynamically typed languages
have been made with limited success. Because of the way Erlang is written, a type system
for Erlang needs to be based on (unrestricted) subtyping. For example, consider the
following Erlang function from the Erlang/OTP
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send(Pg, Mess) when is_atom(Pg) ->
global:send(Pg, {send, self(), Mess});

send(Pg, Mess) when is_pid(Pg) ->
Pg ! {send, self(), Mess}.

This is a function with two arguments, Pg and Mess, consisting of two guarded clauses.
The first clause handles the case when the Pg argument is an atom, the second clause
when Pg is a process identifier (an Erlang pid). When Pg is an atom, it denotes a globally
registered process and the library function global:send/2 is used. When it is a pid,
the Erlang built-in send function (denoted ’ !’) is used to send the message (a 3-tuple).
Typing this function is not possible with a constructor-based type system such as Hindley-
Milner. The first argument needs to be described by unique constructors, one for the
atom and another for the pid primitive type. This function would need to be rewritten
to explicitly match these constructors, instead of performing type checks using guards. In
short, imposing a Hindley-Milner type system on Erlang requires modifications to existing
code and amounts to starting to program in a different language, not in Erlang as we
currently know it. Given that it is a language with existing applications often consisting
of more than one million lines of code, this is not a viable option. Subtyping is the answer
to this problem. By adopting a subtyping system that allows for disjoint union types, we
can characterize the first argument as a union of the atom and pid types. This indicates
that the function can be called with any subtype of the union, that is with any specific
atom or pid. In such a scheme, the second argument can then have the type which denotes
the set of all terms i.e. the any() type.

4.1.2 Basic idea behind success typings

Success typings are not meant for proving type safety — this is already provided by the
underlying implementation — nor are they meant for removing dynamic type tests. Their
purpose is to capture the biggest set of terms for which it can be deduced that type clashes
will definitely occur. A function’s success typing is the compliment of this set of terms.
A success typing is a type signature that over-approximates the set of types for which the
function can evaluate to a value. The domain of the signature includes all possible values
that the function could accept as parameters, and its range includes all possible return
values for this domain. If the arguments of a function call are in the function domain, the
call might succeed, but if they are not, the call will definitely fail. This unusual property
gives dialyzer the unique characteristic of not providing false positives, meaning that errors
discovered by dialyzer are sure to also cause runtime errors.

4.1.3 Examples

foo(Int) when is_integer(Int) ->
Int + 1;

foo(List) when is_list(List) ->
erlang:length(List) + 1;

The success typing for the function foo is

( integer() | list() ) -> integer()
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This simple example demonstrates how the argument is either an integer or a list ; any
other argument will certainly lead to failure. The function always returns an integer. More
interesting is a case with varied return types.

foo2(Int) when is_integer(Int) ->
Int + 1;

foo2(List) when is_list(List) ->
list_to_atom(List);

The success typing for the function foo2 is

( integer() | list() ) -> (integer() | atom())

In this function the argument is, again, either an integer or a list, the return type is the
union of the integer and atom types. Note that the success typing does not track the
dependencies between the input and output types. On the other hand, the information
maintained is enough to conclude that, if any other type is requested from the function,
an error will manifest.

foo3(Int1, Int2) when is_integer(Int1) and is_integer(Int2) ->
Int1 + Int2;

foo3(List) when is_list(List1) and is_list(List2)->
list_to_atom(List1 ++ List2);

The success typing for the function foo3 is

((integer() | list()), (integer() | list())) -> (integer() | atom())

In the preceding paradigm the success typing has overestimated the use of the function.
For example the call foo3(17, [l,i,s,t]). will never evaluate to a value and will cause the
thowing on an exception. Indeed, success typings have their sortcomings. But they will
never fail to catch a use of a function or produce an invalid type.

4.1.4 Constraint Generation

Success typings are inferred in two steps. Constraints are generated by traversing the
code bottom-up and using derivative rules for guards, pattern matching, case clauses etc.
Then, the constraints are solved and the solution constitutes the success typing. Figure
4.1 shows the rules for constraints generation. The rules do not cover the entire Core
Erlang.1 Rules for the trycatch and receive language constructs are omitted, they
can be handled with minor variations as case expressions. Also there is no rule for the
sequence operators, they can be treated as let expressions, where the variable is never
used. A represents an environment with bindings of variables of the form: {..., x 7→ τx, ...}
and C represents nested conjunctions and disjunctions of subtype constraints of the form:
C ::= (T1 ⊆ T2)|(C1 ∧ ... ∧ Cn)|(C1 ∨ ... ∨ Cn) Equality constraints, T1 = T2, are used
as shorthands for (T1 ⊆ T2) ∧ (T2 ⊆ T1). The judgment A ` e : τ, C should be read as
“given the environment A the expression e has type Sol(τ) whenever Sol is a solution to
the constraints in C”.

1Core Erlang is the intermediate language that all Erlang programs are translated to by the Erlang/OTP
compiler.
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{A ∩ {x 7→ τ} ` x : τ, ∅
[VAR]

A ` e1 : τ1, C1...en : τn, Cn

A ` c(e1, ..., en) : c(τ1, ..., τn), C1 ∧ ... ∧ Cn
[STRUCT]

A ` e1 : τ1, C1 A ∪ {x 7→ τ1} ` e : τ2, C2

A ` let x = e1in e2 : τ2, C1 ∧ C2
[LET]

A ∪ {xi 7→ τi} ` f1 : τ
′
1, C1...fn : τ

′
n, Cn e : τ, C

A ` letrec x1 = f1, ..., xn = fn in e : τ, C1 ∧ ... ∧ Cn ∧ C

∧(τ
′
1 = τ1) ∧ ... ∧ (τ

′
1 = τ1)

[LETREC]

A ∪ {x1 7→ τ1, ..., xn 7→ τn ` e : τe, C
A ` fun(x1, ..., xn)→ e : τ, (τ = ((τ1, .., τn)→ τewhen C))

[ABS]

A ` e1 : τ1, C1...A ` en : τn, Cn

A ` (e1(e2, ..., en) : β, (τ1 = (α2, ..., αn)→ α) ∧ (β ⊆ α)
∧(τ2 ⊆ α2) ∧ ... ∧ (τn ⊆ αn) ∧ C1 ∧ ... ∧ Cn

[APP]

A ` p : τ, Cp A ` g : true, Cg

A ` p when g : τ, Cp ∧ Cg
[PAT]

A ` e : τ, Ce

A ∪ {u 7→ τu | u ∈ Var(p1)} ` p1 : α1, C
p
1 , b1 : β1, C

b
1

...

A ∪ {u 7→ τu | u ∈ Var(pn)} ` pn : αn, C
p
n, bn : βn, C

b
n

A ` case e of p1 → b1; ...pn → bn end : β,Ce ∧ (C1 ∨ ... ∨ Cn)

where C1 = ((β = βi) ∧ (τi = αi) ∧ Cp
i ∧ C

b
i )

[CASE]

Figure 4.1: Derivation Rules

The VAR, STRUCT and LET rules are standard. Constants can be typed by the STRUCT
rule by viewing primitive types as nullary constructors. The ABS rule binds the constraints
from the function body to its type, but exports no constraints. In this way the type of a
function can be influenced by outer constraints on the free variables, but the constraints
from the function body cannot affect the types of the free variables outside the function
body. A letrec statement binds a number of function declarations to recursion variables.
The scope of the recursion variables includes both the function declarations and the body
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of the letrec statement. The LETREC rule assigns fresh type variables to the recursion
variables and then adds equality constraints on the function types and the types of the
recursion variables. The PAT rule slightly abuses notation. The guards in a pattern can be
expressed as a conjunction of simple type constraints on variables such as is integer(X),
is atom(X), etc. and by using equality constraints on variables. The translation of these
into constraints on types and type variables is straightforward and omitted for brevity. The
rule states that the guard must evaluate to true under the translated constraints, which
is equivalent to stating that the constraints must have a solution. In case expressions, it
is enough that one clause can be taken in order for the whole expression to have a success
typing. This is captured by introducing a disjunction of constraints in the CASE rule. Each
disjunction contains the constraints that need to be satisfied for the corresponding clause
to contribute to the success typing. Intuitively, if a clause is taken at runtime, the type of
each incoming argument and the corresponding pattern must be equal, and the constraints
from the clause guard must be satisfied. The type of the whole case expression equals the
type of the clause body. Finally, note that the APP rule is quite unorthodox. In traditional
subtyping systems the type of an application is downwards bounded by the type of the
functions range. This ensures that all possible return values are handled, possibly by
inserting narrowers to make it a smaller type.

4.1.5 Constraint Solving

The second and final stage of infering a success typing, is solving the constraints generated
in the first step. According to the derivation rules, disjuctions are only produced by the
CASE rule. The constraints are kept in general form and not transformed into disjuctive
general form. Such a transformation would cause the number of constraints to explode
in the presence of several case expressions. Lets assume that Sol is the mapping from
type expressions and type variables to concrete types. Concrete types include all type
expressions with the exception of constraints and type variables. Sol is the solution to
constraint set C (Sol |= C) if:

Sol |= T1 ⊆ T2 ⇐⇒ none() ⊂ Sol(T1) ⊆ Sol(T2)
Sol |= C1 ∧ C2 ⇐⇒ Sol |= C1, Sol |= C2

Sol |= C1 ∨ C2⇐⇒

{
Sol1 |= C1, Sol2 |= C2

Sol = Sol1 t Sol2

where Sol1 t Sol2 denotes the point-wise least upper bound of the solutions. In words:
a solution satisfies a subtype constraint if the mapping satisfies the subtype constraint
and neither of its constituents is none(). A solution of a conjunction of constraints must
satisfy all conjunctive parts and a solution to a disjunction of constraints is the point-wise
least upper bound of the solutions of all disjuncts. Furthermore, if a constraint set has
no solution, it can be assigned the solution ⊥ which represents a solution that maps all
type expressions to none(). Note that ⊥t Sol = Sol. So, as long as the set of constraints
from one clause in a case expression has a solution, other than ⊥, the constraints from the
whole case expression also have a solution other than ⊥.

The constraint solver is written in Erlang. Type constraints are generated and solved
at the granularity of a single function according to the algorithm in Figure 4.2. The basic
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solve(⊥, ) = ⊥

solve(Sol, α ⊆ β) =


Sol when Sol(α) ⊆ Sol(β)
Sol[α 7→ T ] when Sol(α) u Sol(β) 6= none()
Sol[α 7→ T ] when Sol(α) u Sol(β) = none()

solve(Sol, Conj) =

{
Sol when solve conj(solve(Sol, Conj)) = Sol

solve(Sol′, Conj) when solve conj(solve(Sol′, Conj)) 6= Sol

solve(Sol,Disj) =

{⊔
Sol′ when Sol′ 6= ∅
⊥ when Sol′ = ∅

where

{
Sol′ = {S | S ∈ PS, S 6= ⊥}
PS = {solve(Sol, C) | C ∈ Disj}

solve conj(⊥, ) = ⊥
solve conj(Sol, C1 ∧ ... ∧ Cn) = solveconj(solve conj(Sol, C1), C2 ∧ ... ∧ Cn)
solve conj(Sol, C) = solve(Sol, C)

Figure 4.2: Algorithm for solving constraints

idea is to iteratively solve all constraints in a conjunction until either a fixpoint is reached
or the algorithm encounters some type clash and fails by assigning the type none() to
a type expression. The starting point for Sol is a mapping where all type expressions
are mapped to any(), with the exception of the types of all recursion variables that are
mapped to none().

4.2 Dataflow Analysis

Annotation of the functions with success typing is supersided by the dataflow analysis.
The dataflow analysis is a top-down traversal of the Core Erlang code. It serves two
purposes: detecting discrepancies in the code and refining of the success typings.

4.2.1 Detection of type clashes

The dataflow pass incorporates the inferred function signatures and uses them to warn
about program points, where type clashes can occur. As a result of the ”type signature“
pass, all possible return values and arguments of call points are known. Types of explicit
type constructions are also easy to compute. With the above type information, Dialyzer
is in a position to detect the precise location and the specific nature of type clashes. For
example, comparing the success typing of a function, with the actual arguments used in
calling it, can reveal if the call is going to fail.
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foo(List) -> List ++ "\n".

goo() -> foo(hello).

The success typings of the functions are:

foo(list()) -> list()

goo() -> none().

Dialyzer produces the warning:

The call mod:foo(’hello’) will never return since it differs
in argument position 1 from the success typing arguments: ([any()])

The allowed argument type for foo/1 is only the list() type because of the texttt++
operator. It is being called with an atom argument by goo/0 and it will definitely fail to
execute. Note that the return type for goo/0 is none(). This is after all normal, there are
no disjunctions in the functions and the call foo(hello) will not return.

hoo(X) when is_atom(X) ->
case X of

zong -> ok;
gazong -> norm;
{error,_} -> error

end

Dialyzer produces the warning:

The pattern {’error’, _} can never match the type atom()

In this instance hoo/1 will not fail to execute but contains unreachable code. The
dataflow analysis deduces that X is of type atom() because of the is atom guard. Without
a doubt, the case {error, } can not conceivably match with X.

In general, the dataflow pass can reveal the following defects:

• Ill typed function arguments.

• Unused functions.

• Functions that will never return or will terminate with explicit exceptions.

• Type tests that can never succeed.

• Guard tests that can never succeed.

• Invalid binary constructions.

• Patterns that will never match.

• Patterns that are completely covered by previous patterns.

• Invalid or overlapping contracts.
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4.2.2 Refined success typings

Inference of the typings is done without any user input. As a result, dialyzer can be used
immediately, on any piece of Erlang code, without any modifications. Commonly, success
typings, due to their nature, can become overly general; this might appear weak and
compromising the power of the analysis. However, this is not the case, thanks to refined
success typings. Very helpful to this cause is Erlang’s module system; all functions must
be defined in modules and only a few functions are exported for use from other modules.
This means that all the call locations of non-exported functions are known and limited
inside the modules. Detection of the call locations leads to the identification of all possible
argument types, which in turn leads to smaller, more precise typings —- these are referred
to as refined success typings.

-module(test).
-export([foo/1]).

add1(X) -> X+1.

foo(X) when is_integer(X) -> add1(X);
foo(X) -> Y = round(X), add1(Y).

This example showcases how refinement of success typing works. If both foo/1 and add1/1
were exported the typings would be:

add1(number()) -> number().
foo(number()) -> number().

If the add1/1 function is not exported, then dialyzer knows that it is only being
called by foo/1. Exclusively integer() arguments are used on add1/1. Using this new
information, the success typings can be recalculated with extra constraints. The result is:

add1(integer()) -> integer().
foo(number()) -> integer().

Observe that refinement does not effect only the annotation of add1/1. The “smaller”
success typing induces a smaller success typing for foo also.

4.3 Contracts

Refining of success typing can also be performed by programmers via contracts or “specs”
for functions. Contracts are Haskell-like type definitions, that are commonly used to
capture the programmers’ intent and can be used to assist the analysis and help refine
exported functions.

swap({X,Y}) -> {Y,X}.

This function, for instance, is placing no restriction on its variables. It has a success
typing of:
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swap({any(),any()}) -> {any(),any()}.

If the textttswap function is bound for use solely with an atom() and number() tuple,
that fact can be declared in a contract.

-spec swap({atom(),number()}) -> {number(), atom()}.
swap({X,Y}) -> {Y,X}.

The use of the contract allows the success typings to represent more closely the true
goals of a function. As a result the analysis is strengthened. Furthermore contracts are
a useful way of assuring that a function is indeed doing what it was intended to. If
a contract is not satisfied, Dialyzer indicates that a function is not conforming to its
predefined purpose.

-spec check(number()) -> {’ok’|’error’, number()}.
check(X) ->

case X > 34 of
true -> ok;
false -> error

end.

Invalid type specification for function module:check/1.
The success typing is (_) -> ’error’ | ’ok’

Check/1 is described by the contract as a function that will return a tuple, the imple-
mentation however differs. Either the contract or the function is incorrect. Nonetheless,
the use of the contract will reveal to the developer an inconsistency in his/her logic.

4.4 Strongly Connected Components

Inference of the success typings doesn’t happen in a per function basis as one might
imagine, instead one strongly connected component of the callgraph is analyzed each
time. Strongly connected components or SCCs consist of functions that call each other
recursively, making it possible to reach any function in the component and then return
to the starting point. This is a common occurrence in Erlang, even between functions
of different modules. Nonetheless, these functions must be analyzed as a single entity in
order to get the best possible success typing. It’s also worth noting that SCCs that belong
in disconnected callgraphs can be analyzed in parallel, making Dialyzer a strong candidate
for a concurrent implementation; this work is already underway. One place where SCCs
usually appear is in servers that loop perpetually and handle messages.
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loop/1 and do something/1 form a SCC

loop(Pid) ->
receive

{Pid, Msg} -> do_something(Msg)
end.

do_something(Msg) ->
Pid = module:getPid(Msg),
....
loop(Pid).

4.5 Persistent Lookup Table

Although dialyzer is fairly fast most applications use large parts of Erlang’s libraries.
Analyzing static code every time would make dialyzer cumbersome and counterproductive.
To speed up analysis runs, a number of fixed modules that remain unaltered can be defined,
analyzed and stored on a persistent lookup table (PLT). The PLT is stored in the users
home directory and contains type information for commonly used library modules, thus
speeding up the analysis manyfold.

4.6 Dialyzer Operation Summary

Understanding of the inner workings of dialyzer was paramount in this endeavor. All the
analysis steps had to be identified and altered to accommodate opaque types, without
disturbing the normal operation of the program. This is a brief rundown of these steps.

1. First, the modules to be analyzed are specified by the user; and type and contract
information is extracted from them.

2. The static callgraph is created.

3. Strongly connected components are identified and stored topographically in a code-
server.

4. The SCCs are analyzed bottom-up using constraint based analysis; the success typ-
ings are created.

5. The SCCs are subjected to a top-down dataflow analysis. At this point discrepancies
are identified and marked. The signatures of the internal functions are also refined.

6. If no refinements have been made to the signatures we have reached a fixpoint.
Otherwise, the analysis is repeated from step 4 until a fixpoint is reached.
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Chapter 5

Dialyzer Modifications

5.1 Institution of Opaque Types in Dialyzer

As it was mentioned earlier, for the purpose of detecting opaque violations we utilized
Dialyzer. For Dialyzer to be able to perform type checking on opaque types, they had to
be introduced in the type system. All the type information and type interactions, which
are used by Dialyzer, exist in the erl types module. Opaque types are defined there as
a new primitive type, without any subtyping relations with the rest of the Erlang types,
much like Erlang’s identifier types (ports, references and pids). Figure 5.1 depicts the
types used in Dialyzer. During the analysis, opaque types are embodied by records with
4 fields.

• The name of the module the opaque type is defined in.

• The name of the opaque type.

• A list of arguments that can be used in the future to implement polymorphic opaque
types.

• The internal representation of the types.

-record(opaque, {
mod :: module(),
name :: atom(),
args = [],
struct :: erl_type()}).

Multiple opaque types are grouped together in an ordered set, but no attempt is made
to join them further, as is done on number ranges or tuples of the same arity.

With the representation finalized, a plethora of helper functions was implemented,
setters, getters and pretty printers. The most important operation though is, by far,
the one that defines the interaction of opaque types with the rest of the Erlang types.
This behavior is determined mainly by the function t inf, which is used to calculate
the intersection of two given type arguments. Searching for a subtype, it’s abundantly
clear that any comparison between an opaque type and any other type must yield none();
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Figure 5.1: Type lattice

meaning that the types are foreign and it is not possible for them to have any association.
Then again, we must consider the possibility that an opaque type is used in the module
it has been defined in. In this case, the comparison must be allowed for the analysis to
yield correct results. Hence, in such an occurrence, the internal representation is used
to determine the subtyping relation and the opaque type is always considered to be the
infimum, so it can get cascaded to the success typings. To achieve this split behavior we
introduced an extra argument that makes the function aware of the behavior required.

t_inf(integer(), float()) = none()
t_inf(number(), float()) = float()
%% -opaque queue() :: list(any())
%% inside the queue module
t_inf(queue(), list(any())) = queue()
t_inf(queue(), list(atom()) = queue()
%% outside the queue module
t_inf(queue(), list()) = none()

The above example illustrates the behaviour of t inf in different scenarios. The fourth
example demostrates how the actual infimum can be overwritten inside an opaque module
by the opaque type. This, as stated previously, is done to preserve the opaqueness of the
exported signatures. It is possible that this action might compromise the type checking
by returning the more general types and not the true infimum. As a result, we urge
programmers, when defining opaque types, to provide detailed typings and, if possible, to
define opaque types as typed records, which are easily recognizable in the analysis and
their type cannot be overestimated.
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Another important function is t sup; its purpose is to determine the union of two
types. In contrast with t inf, here we have been more lenient. We have allowed type
unions which contain opaque types. This is something that is not normally permitted, but
it was deemed necessary to suit Erlang’s dynamic nature.

5.2 Opaque Type Declarations

Dialyzer uses type declaration to alias complex structured types to simple type names.

-type TYPE_NAME :: TYPE_STRUCTURE.

In order to have explicit opaque type declaration, we modified erl lint, the Erlang code
parser, so that it will recognize the following construct:

-opaque TYPE_NAME :: TYPE_STRUCTURE.

We have already defined the following Erlang standard library types as builtin opaque
types:

Array()

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as
needed. A default value is used for entries that have not been explicitly set.

Arrays uses zero based indexing. This is a deliberate design choice and differs from
other Erlang datastructures, e.g. tuples

-record(array, {size :: non_neg_integer(),
max :: non_neg_integer(),
default,
elements
}).

-opaque array() :: #array{}.

Dict()

Dict implements a Key - Value dictionary. The representation of a dictionary is not
defined.

-record(dict,
{size=0 :: non_neg_integer(),
n=?seg_size :: non_neg_integer(),
maxn=?seg_size :: non_neg_integer(),
bso=?seg_size div 2 :: non_neg_integer(),
exp_size=?exp_size :: non_neg_integer(),
con_size=?con_size :: non_neg_integer(),
empty :: tuple(),
segs :: tuple()
}).

-opaque dict() :: #dict{}.
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Digraph()

The digraph module implements a version of labeled directed graphs. What makes the
graphs implemented here non-proper directed graphs is that multiple edges between ver-
tices are allowed. However, the customary definition of directed graphs will be used in the
text that follows.

A directed graph (or just “digraph”) is a pair (V,E) of a finite set V of vertices and a
finite set E of directed edges (or just “edges”). The set of edges E is a subset of V × V
(the Cartesian product of V with itself). In this module, V is allowed to be empty; the
so obtained unique digraph is called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

-record(dict,
-record(digraph, {vtab = notable :: ets:tab(),

etab = notable :: ets:tab(),
ntab = notable :: ets:tab(),
cyclic = true :: boolean()}).

-opaque digraph() :: #digraph{}.

Gb set()

An implementation of ordered sets using General Balanced Trees. This can be much more
efficient than using ordered lists, for larger sets, but depends on the application.

-type gb_set_node() :: ’nil’ | {term(), _, _}.
-opaque gb_set() :: {non_neg_integer(), gb_set_node()}.

Gb tree()

An efficient implementation of General Balanced Trees. These have no storage overhead
compared to unbalaced binary trees, and their performance is in general better than AVL
trees.

-type gb_tree_node() :: ’nil’ | {_, _, _, _}.
-opaque gb_tree() :: {non_neg_integer(), gb_tree_node()}.

Queue()

This module implements (double ended) FIFO queues in an efficient manner. The data
representing a queue as used by this module should be regarded as opaque by other
modules. Any code assuming knowledge of the format is running on thin ice.

-opaque queue() :: {list(), list()}.
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Set()

Sets are collections of elements with no duplicate elements. The representation of a set is
not defined.

-record(set,
{size=0 :: non_neg_integer(),
n=?seg_size :: non_neg_integer(),
maxn=?seg_size :: pos_integer(),
bso=?seg_size div 2 :: non_neg_integer(),
exp_size=?exp_size :: non_neg_integer(),
con_size=?con_size :: non_neg_integer(),
empty :: seg(),
segs :: segs()
}).

-opaque set() :: #set{}.

Timer()

This module provides useful functions related to time. Unless otherwise stated, time is
always measured in milliseconds. All timer functions return immediately, regardless of
work carried out by another process.

-opaque tref() :: any().

5.3 Opaque Type Assignment

Of course, declaring an opaque type doesn’t mean anything without the means to identify
where the type is used. For that purpose we use contracts. Contracts specify the type of
the arguments and also the range of a function. The programmer is required to provide
contracts for all the exported functions in the form of the following statement:

-spec FUN_NAME(ARG_TYPE_1,...,ARG_TYPE_N) -> RET_TYPE.

Figure 5.2 illustrates exemplary contracts for a hypothetical point ADT. Suffice to say we
expect the programmer to provide the correct opaque type information. The only check
we can make is that the structured type we get from the structured type analysis matches
the internal representation of the opaque type.

The first approach that was used to apply the contracts’ opaque type information on
the functions, was to wait after the analysis had produced the type signature, meaning
that the exact type information of the function has been deduced. This methodology
was straightforward and worked for most simple cases, but that was not successful when
we came across strongly connected components. SCCs consist of functions that call each
other recursively; as means to get the correct type information, they need to be analyzed
together as one unit. Therefore, it is necessary to also apply the contracts during the
dataflow analysis of a function. More specifically the opaque information is applied at the
call points of each function.
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-module(point).
-export([new/2, rotate/2, getCoordinates/1]).

-opaque point() :: {float(), float()}.

%% The specs indicate which arguments and return values
%% should be treated as opaque. This knowledge is crucial.
%% Specs can also be located directly above their corresponding funtions
-spec new(float(), float()) -> point().
-spec rotate(point(), float()) -> point().
-spec getCoordinates(point()) -> {float(), float()}.
-spec azimuth(float(),float()) -> float().

new(X, Y) ->
R = math:sqrt(X*X+Y*Y),
A = azimuth(X,Y),
{R, A}.

rotate({R,A}, Rad) -> {R,A + Rad}.

getCoordinates({R,A}) ->
X = R*math:cos(A),
Y = R*math:sin(A),
{X,Y}.

azimuth(X,Y) ->
math:atan(Y/X).

Figure 5.2: Example Declaration of a Point opaque type in Erlang

In addition to using contract specifications to denote opaqueness, we wanted a method
that could deduce the opaqueness of a type automatically, without requiring any program-
mer input, other than the opaque type declaration. In that direction, if an opaque type
is declared with an internal representation that has a unique constructor — such as a
record or a specific atom — during the analysis, this constructor is intercepted and the
result is altered from a structured type to an opaque type instead. This allows us to have
opaque modules that do not require from the programmer to provide signatures for all the
exported functions. Such a module is dict.erl, which uses a record (dict) for the internal
representation. We can rewrite the point module example (Figure 5.2) and use a record
as a data structure (Figure 5.3). The opaqueness of the module will be deduced only by
the declaration of the point opaque type.

In Dialyzer the point type is completely opaque. The inferred signatures shown in
Figure 5.4 are identical to the contracts that we manually defined in Figure 5.2. That
goes to show how effective and painless the recognition of opaque types is, if explicit
constructors are used to represent them.
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-module(point).
-export([new/2, rotate/2, getCoordinates/1]).

-record(point,
{radius = 0 :: number(),
azimuth = 0 :: number()
}).

%% Opaque type declaration
-opaque point() :: #point{}.

%% No need for contracts in this version.
%% The #point{} record costructor is tracked
%% through the application and is marked as opaque.

new(X, Y) ->
R = math:sqrt(X*X+Y*Y),
A = azimuth(X,Y),
#point{radius = R, azimuth = A}.

rotate(Point = #point{azimuth = A}, Rad) ->
Point#point{azimuth = A+Rad}.

getCoordinates(#point{radius = R, azimuth = A}) ->
X = R*math:cos(A),
Y = R*math:sin(A),
{X,Y}.

azimuth(X,Y) ->
math:atan(Y/X).

Figure 5.3: Example of the automatic opaque type detection

-spec new(number(),number()) -> point:point().
-spec rotate(point:point(),number()) -> point:point().
-spec getCoordinates(point:point()) -> {float(),float()}.
-spec azimuth(number(),number()) -> float().

Figure 5.4: Type signatures for the point module

5.4 Remote Types

Until now we have focused mainly on modules that define and implement opaque types.
Slowly we will move outside the modules, were the structure of the types is no longer in
scope. When an opaque type is used, the program shouldn’t have access to the opaque
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type’s internal representation. The type can be used as an argument or as a return value,
as long as the interface functions are not circumvented. The need is created to use opaque
types in contracts outside their native module. For instance, the function newline/0 needs
such a contract.

-module(line).
%% Hypothetical Contract:
%% -spec newline() -> {point(),point()}
newline() ->

A = point:new(0,0),
B = point:new(1,1),
{A,B}.

The contract that is commented out in the example is not valid unless we define the point()
type inside the line module. Designating the structure of an opaque type in every module
that it is used, is not only ineffective but also contradicts the type’s opaque nature. To
solve this problem we implemented remote types. The ground work for remote types was
already in place but it was never completed. A remote type uses first the module name
and then the type name to describe a certain type. Dialyzer then refers to the designated
module for the type definition, instead of looking in the current module. By adopting
remote types we can rewrite newline/0 with a proper contract.

-module(line).

-spec newline() -> {point:point(), point:point()}
newline() ->

A = point:new(0,0),
B = point:new(1,1),
{A,B}.

With the use of remote types specific precautions have to be taken. For example, we
check that the referred modules and types actually exist. And most importantly we make
sure that types do not create definition cycles which could put Dialyzer in an infinite type
inference loop.

5.5 Detection of Violations

After the deduction of the type signatures with the help of opaque constraints, the dataflow
analysis takes place. Using the inferred typings we are able to detect several opaqueness
breaches. The dataflow pass recognizes irregularities; locations where opaque types come
in contact with structured types in an erroneous manner. We process these abnormalities
and produce a warning that describes the situation and can be easily comprehended. The
defects Dialyzer can detect are listed in the next section.

5.5.1 Violation Categories

Use of an opaque type where a structured type is expected. The success typing
of a function may indicate that it receives only structured arguments of some kind. If an
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opaque type argument is used instead, it will be treated by the function as if it was of the
type indicated in the type signature; thus ignoring the argument’s opaque attribute and
violating its opaqueness.

Use of a structured type where an opaque type is expected.

These defects refer to structured types being used with the interface functions of opaque
types.

Inspecting the type of an opaque type via a type test. Type tests are builtin
Erlang functions. Type tests have (any()) -> boolean(). signatures which means they
accept any type of argument. Even by their name we can deduce that they are type
inspecting functions. Therefore, opaque types must be excluded as possible arguments.
The type tests we check for are the following:

is atom/1 is boolean/1 is port/1

is binary/1 is bitstring/1 is reference/1

is float/1 is function/1 is tuple/1

is integer/1 is list/1

is number/1 is pid/1

Running a guard test on an opaque type. Guard tests are used to control the
program flow based on the structure of their argument. In fact, guards use the same type
tests mentioned above, as well as boolean and term comparison expressions. Thus, guard
tests on opaque types are warned against by Dialyzer, for the same reasons.

Equality and inequality tests. Equality and inequality tests between opaque and
structured types also constitute opaque type violations.

Matching of opaque types against patterns. Patterns are used for controlling the
program flow based on the type structure and for deconstructing types. Both uses are
improper when used on opaque types.

5.5.2 Violation detection examples

Consider the opaque type my queue:

-module(my_queue).
-export([new/0, add/2]).
-opaque my_queue() :: list().

-spec new() -> my_queue().
new() -> [].

-spec add(term(), my_queue()) -> my_queue().
add(E, Q) -> Q ++ [E].
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The concrete type used is a list and we have defined two interface functions for this
example.

When comparing a function’s success typing with the actual arguments used in its
call locations, we recognize three types of errors. The first one is calling a function that
expects a structured type as an argument with an opaque type argument. The second
is using a structured type in the place of an opaque argument. Finally the last errors
detected in this fashion are type tests on opaque types; type tests by default expect any
argument, therefore violations are not caught by previous checks. Special care is taken to
warn when the structure of opaque types is probed by type tests. These three different
cases are demonstrated below.

• wrong1() ->
length(my_queue:new()).

The erlang:length function is used to count the elements of a list and has a success
typing:

length([any]) -> non_neg_integer().

In other words it expects a list argument. Calling it with an opaque type will not
cause any runtime errors, but is a clear violation of the opaqueness of the queue
abstract data type. Dialyzer will warn us with the message below:

The call erlang:length(my_queue:my_queue())
contains an opaque term in position 1
when a structured term of type [any()] is expected

• wrong2() ->
my_queue:add(’element’, []).

In this example we have the opposite case: the programmer has tried to use the
interface to add an element to the list, but has used a structured type (empty list)
to initialize the queue. There is no guarantee about the representation of the queue,
thus construction of opaque types outside the ADT module can lead to problems.
This is the warning we are presented with:

The call my_queue:add(’element’,[]) does not have
an opaque term of type my_queue:my_queue() in position 2

• wrong3() ->
is_list(my_queue:new()).

Before the introduction of opaque types, type tests were allowed on any type. This
has changed and type tests are permitted only on structured types.

The type test is_list(my_queue:my_queue())
breaks the opaqueness of the term my_queue:my_queue()
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Similar to the type test violations are the guard violations. In the current erlang version,
only erlang’s builtin functions can be used as guards. All the builtin functions are intended
for testing structured types, therefore guard tests on opaque types are warned against.

• wrong4() ->
case (my_queue:new()) of

X when is_list(X) -> ’something’
end.

Guard test is_list(X::my_queue:my_queue())
breaks the opaqueness of its argument

Another possible erroneous behavior that Dialyzer was modified to detect is equality and
inequality tests. Such tests must be permitted among opaque types of the same kind, but
should raise warnings when comparing opaque with structured types.

• ok() ->
A = my_queue:new(),
B = my_queue:new(),
A =:= B.

The above is acceptable behavior since both A and B are of the same type. On the
other hand the following are incorrect.

• wrong5() ->
[] =:= my_queue:new().

Attempt to test for equality between a term of
opaque type my_queue:my_queue() and a term of type []

• wrong6()->
Queue = my_queue:new(),
Queue1 = my_queue:add(’element’, Queue),
case Queue1 =/= [] of

true -> ok;
false -> weird

end.

Attempt to test for inequality between a term of type []
and a term of opaque type my_queue:my_queue()

The last warning that Dialyzer can give on opaque types is about improper pattern match-
ing attempts. This is a very common occurrence since pattern matching is widely used in
erlang programs.

37



• wrong7(X) ->
ADT = my_queue_adt:add(’buddy’,X),
case ADT of

[’buddy’|_] -> module:buddy(ADT);
ADT -> module:stranger(ADT)

end.

The attempt to match a term of type my_queue:my_queue()
against the pattern [’buddy’ | _] breaks the opaqueness of the term

The developer uses pattern matching to pick at the head of the queue and see if his buddy is
first in line. This pattern tries to directly match with the opaque type. Patterns however
can get more complicated with multiple nested structures, which might not all match
directly to an opaque type. In order to identify if the pattern does not match because
of an opaque type or because it is just incorrect, we perform an exhaustive comparison
between pattern and matching type. Thus we can pinpoint exactly why the pattern
matching has failed. Here is an example:

• wrong8() ->
ADT = my_queue:new(),
Pattern = {ok,{adt, ADT}},
case Pattern of

{ok,{adt, []}} -> ’empty’
{ok,{Queue}} -> Queue;

end.

In the first clause the programmer incorrectly tries to match the queue abstract data
type against an empty list to discern if it is empty. He is warned by Dialyzer that the
opaqueness of the term is compromised.

The attempt to match a term of type {’ok’,{’adt’,my_queue:my_queue()}}
against the pattern {’ok’, {’adt’, []}} breaks the opaqueness of my_queue:my_queue()

In the second case clause it seems that the programmer has forgotten that he is expecting
an {adt, Queue} pattern. He just uses the variable Queue assuming that it will bind with
the queue abstract data type. This is not of course an opaque type violation but rather an
error that will prohibit the pattern from matching. Therefore the warning is of a different
nature.

The pattern {’ok’, Queue} can never match the type
{’ok’,{’adt’,my_queue:my_queue()}}

5.5.3 Deficiencies

The analysis employed is sound for defect detection, meaning that it produces no false
positives but it does not guarantiee that all opaque violations can be unearthed. Our
efforts are not focused at systematically proving or disproving opaque type violations,
but rather at detecting as many as possible, using success typings and dataflow analysis.
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There are still obvious violations that we fail to catch. Such a violation is the use of
opaque arguments in certain type inspecting functions. Type inspecting is a function that
uses type checks, guards and pattern matching on its arguments.

foo(X) when is_atom(X) -> ’atom’;
foo({_,_}) -> ’tuple2’.

goo(X) -> {shazam, X, X}.

foo/1 is a structure inspecting function where as goo/1 is not. foo’s success typing is:

foo(atom()|{any(),any()}) -> ’atom’ | ’tuple2’.

Signatures such as this do not pose a problem. By comparing the signature with the
function’s argument type we can ascertain the validity of the argument. Unfortunately,
clear success typings as the above are not always the case. The structure inspecting
attribute is not always reflected on the success typing. For example, by adding an extra
clause to foo/1 we can dramatically change the type signature and throw off the analysis.

foo(X) when is_atom(X) -> ’atom’;
foo({_,_}) -> ’tuple2’;
foo(_) -> ’error’.

The success typing now changes to:

foo(any()) -> ’atom’ | ’tuple2’ | ’error’.

The signature suggests that any argument is acceptable by the function — which is of
course true in Erlang’s scope but not in the scope of our analysis. The any() type masks
potential violations which can go undetected. We are planning to extend the analysis and
keep information about structure inspecting functions, in order to overcome this problem.
Dialyzer is always expanding, we are improving its functionality continuously in the hope
of making the analysis stronger and detecting even more software defects.
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Chapter 6

Operation Walkthrough

Having explained Dialyzer’s operation and the modifications made, we will demostrate
how all the steps tie together using an example for our test suite.

6.1 The Opaque Data Type Module

The process starts with a module. The module rec adt implements the abstract data
type rec. The rec ADT is used to store an atom and an integer, the data structured
utilized to do this is a record with two fields. For each field we have a setter and a getter
interface function.

-module(rec_adt).

-export([new/0, get_a/1, get_b/1, set_a/2, set_b/2]).

-record(rec, {a :: atom(), b = 0 :: integer()}).

new() -> #rec{a = gazonk, b = 42}.

get_a(#rec{a = A}) -> A.

get_b(#rec{b = B}) -> B.

set_a(R, A) -> R#rec{a = A}.

set_b(R, B) -> R#rec{b = B}.

If we wish to analyze the rec adt as an opaque type implementing module, then we
have to declare the #rec record as an opaque type and provide signatures for the interface
functions. Note that in this example, it is not necessary to present contracts for the
functions; Dialyzer can automatically ascertain the opaqueness of a term by detecting the
record constructor. However, it is always better to use contracts on functions, even for
documentation and clarification purposes only. The opaque rec adt module will look like
this:
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-module(rec_adt).

-export([new/0, get_a/1, get_b/1, set_a/2, set_b/2]).

-record(rec, {a :: atom(), b = 0 :: integer()}).

-opaque rec() :: #rec{}.

-spec new() -> rec().
new() -> #rec{a = gazonk, b = 42}.

-spec get_a(rec()) -> atom().
get_a(#rec{a = A}) -> A.

-spec get_b(rec()) -> integer().
get_b(#rec{b = B}) -> B.

-spec set_a(rec(), atom()) -> rec().
set_a(R, A) -> R#rec{a = A}.

-spec set_b(rec(), integer()) -> rec().
set_b(R, B) -> R#rec{b = B}.

6.2 The Module To Be Analyzed for Violations

Besides the rec adt module, another module is needed, a module that employes the rec()
opaque type and in which opaque type violations may be present. For this purpose we
define the rec use module:

-module(rec_use).

ok1() ->
rec_adt:set_a(rec_adt:new(), foo).

ok2() ->
R1 = rec_adt:new(),
B1 = rec_adt:get_b(R1),
R2 = rec_adt:set_b(R1, 42),
B2 = rec_adt:get_b(R2),
B1 =:= B2.

wrong1() ->
case rec_adt:new() of

{rec, _, 42} -> weird1;
R when tuple_size(R) =:= 3 -> weird2

end.
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wrong2() ->
R = list_to_tuple([rec, a, 42]),
rec_adt:get_a(R).

6.3 Analysis Preprocessing

The analysis is invoked from the command line:

dialyzer -c rec_adt.erl rec_use.erl

The Erlang source code is compiled in to Erlang Core code. The core code is traversed;
type, opaque type, record, and contract information is extracted and stored for later use.
Then a callgraph is created to determine the direction of the analysis. In our example the
callgraph looks something like Figure 6.1.

Figure 6.1: Callgraph

6.4 Success Typing Inference

The graph is acyclic, that means that we have no strongly connected components to worry
about. The program flows from the rec adt towards rec use. Thus the analysis must
start from the rec adt functions, when their success typings are inferred, the rec use
functions can then be analyzed, using the previously inferred signatures.

The constraints are generated for the rec adt functions and then they are solved to
produce success typings. Normally we would get success typings with structures types like
the following:
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-spec new() -> #rec{a::’gazonk’,b::42}.
-spec get_a(#rec{}) -> atom().
-spec get_b(#rec{}) -> integer().
-spec set_a(#rec{},atom()) -> #rec{}.
-spec set_b(#rec{},integer()) -> #rec{}.

The typings produced now are different. The opaque declarations act as extra con-
straint and cause the success typings of the rec() abstract data type functions to reflect
their opaque characteristics.

-spec new() -> rec().
-spec get_a(rec()) -> atom().
-spec get_b(rec()) -> integer().
-spec set_a(rec(),atom()) -> rec().
-spec set_b(rec(),integer()) -> rec().

6.5 Dataflow Analysis

The next step is the inference of the rec use functions’ success typings. These signatures
are not important in the context of this example. The ensuing dataflow analysis is the
step that concerns us. Dataflow analysis of the rec adt module does not reveal any
errors nor does it generate any refinements for the module’s functions. The critical part
of the process is the dataflow analysis of the rec use module. Examination of the ok1/0
and ok2/0 uncover no type clashes. Three clashes are detected in total in the next two
functions, wrong1/0 and wrong2/0.

wrong1/0 While traversing the case clause we find that the result of rec adt:new()
is matched against the pattern {rec, , 42}. The success typing we calculated earlier
shows that the function returns an opaque type. Comparing the opaque type with the
pattern we conclude that this is a breach of rec()’s opaqueness. In the next case clause
we also detect an inconsistency; R is assigned the opaque type rec() and then a type test,
is tuple(), is used on R. This is also marked as an opaque type violation.

wrong2/0 Here the variable R is bound to the tuple() by the builtin list to tuple/1
function. Later R is used on the rec adt:get a/1 function as an argument. From the type
signature analysis we are aware that get a/1 expects an opaque argument. Therefore we
conclude that this call is abusing rec()’s abstract data type interface.

Note that this program does not actually have type clashes that will cause it to fail.
This is the case because, in reality, Erlang does not have an implementation for opaque
types. All the abnormalities detected are programming errors; opaque type violations that
could have negative impact in the future.

No refinements were made during the dataflow pass. Thus, there is no need to repeat
the analysis; we have reached a fixpoint. If refinements had been made, the success typing
analysis would be repeated to produce “better” typings and the dataflow analysis would
search for more errors. This cycle would continue until a fixpoint was achieved. With the

44



completion of the dataflow analysis the process comes to an end. Dialyzer terminates and
prints out the warning it has gathered.

rec_use.erl:17:
The attempt to match a term of type rec_adt:rec() against
the pattern {’rec’, _, 42} breaks the opaqueness of the term

rec_use.erl:18:
Guard test tuple_size(R::rec_adt:rec())
breaks the opaqueness of its argument

rec_use.erl:23:
The call rec_adt:get_a(R::tuple()) does not have an opaque
term of type rec_adt:rec() in position 1
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Chapter 7

Results

Dialyzer is a valuable tool that can aid in the development and testing of Erlang applica-
tions. Expanding Dialyzer’s analysis with the ability to detect opaque type violations is
not a novelty upgrade. Opaque type violations are a real problem that can cost time and
money. We can define new opaque types at will using Erlang’s module system and we are
able to reliably detect many types of opaque violations through the marriage of success
typings and dataflow analysis.

When we set out to test our work we did not expect to find errors in the thouroughly
tested and maintained Erlang library. However, after only defining a few opaque types
(array(), dict(), digraph(), gb set(), gb tree(), queue(), set(), tref()) we located several
defects related to opaque type violations. Most violations where tied to the gb set module.
Specifically, use of the is list/1 guard on gb sets was the most common mistake but also
the confusion of the interface between gb set() and gb trees() as well as pattern matching
on the queue() abstract data type raised several warnings. With the introduction of more
opaque types and the adaptation of opaque types by Dialyzer’s considerable user base, the
benefits will become even more apparent.

The project is not by any reasonable margin flawless. We have no proof that all opaque
violations will be detected. As a matter of fact we are aware of cases where obvious defects
go unchecked. Also the warnings we produce although they are well founded and correct,
do not always reflect critical situations, the way originally Dialyzer did. This at first might
seem strange to the user accustomed to previous Dialyzer versions, but we believe that
familiarization is a matter of understanding the concept of our work and the importance of
opaque types even in an environment such as Erlang, where opaque types are not actually
a part of the language.

Opaque types have slowly started to show up in new applications; we are already
receiving feedback and bug reports. We hope that opaque type specifications will be used
in new applications, since no drawbacks are introduced. Our work compliments Dialyzer
operation unintrusivley. Thanks to the extensive Erlang library we were able to test the
changes in a very large code base. A large number of bugs was eliminated and the analysis
now has a very stable behavior. As a matter of fact, while debugging Dialyzer, we even
discovered underlying Dialyzer issues.

Dialyzer is a exciting sophisticated project. Working on the program and making a
useful contribution has been most fullfiling. In the future we plan to maintain the code
and improve on it. There is a lot of work to be done in ironing out the code and optimizing
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certain aspects of the analysis, as well as adding the capacity for detection of structure
inspecting functions.
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Chapter 8

More Examples

Example with the array() builtin opaque data type

-module(array_use).

-export([ok1/0, wrong1/0, wrong2/0]).

ok1() ->
array:set(17, gazonk, array:new()).

wrong1() ->
{array, _, _, undefined, _} = array:new(42).

wrong2() ->
case is_tuple(array:new(42)) of

true -> structure_is_exposed;
false -> cannot_possibly_be

end.

Analysis Results

array_use.erl:12: The type test is_tuple(array())
breaks the opaqueness of the term array()

array_use.erl:9: The attempt to match a term of type array()
against the pattern {’array’, _, _, ’undefined’, _}
breaks the opaqueness of the term

Example with the dict() builtin opaque data type

-module(dict_use).

-export([ok1/0, ok2/0, ok3/0, ok4/0, ok5/0]).
-export([middle/0]).
-export([w1/0, w2/0, w3/0, w4/1, w5/0, w6/0, w7/0, w8/1]).
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-define(DICT, dict).

%%--------------------------------------------------------
%% Cases that are OK
%%--------------------------------------------------------

ok1() ->
dict:new().

ok2() ->
case dict:new() of X -> X end.

ok3() ->
Dict1 = dict:new(),
Dict2 = dict:new(),
Dict1 =:= Dict2.

ok4() ->
dict:fetch(foo, dict:new()).

% ok5 is OK since some_mod:new/0 might
% be returning a dict()
ok5() ->
dict:fetch(foo, some_mod:new()).

middle() ->
{w1(), w2()}.

%%-------------------------------------------------------
%% Cases that are problematic w.r.t. opaqueness of types
%%-------------------------------------------------------

w1() ->
gazonk = dict:new().

w2() ->
case dict:new() of

[] -> nil;
42 -> weird

end.

w3() ->
try dict:new() of

[] -> nil;
42 -> weird
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catch
_:_ -> exception

end.

w4(Dict) when is_list(Dict) ->
Dict =:= dict:new();

w4(Dict) when is_atom(Dict) ->
Dict =/= dict:new().

w5() ->
case dict:new() of

D when length(D) =/= 42 -> weird;
D when is_atom(D) -> weirder;
D when is_list(D) -> gazonk

end.

w6() ->
is_list(dict:new()).

w7() ->
dict:fetch(foo, [1,2,3]).

w8(Fun) ->
dict:merge(Fun, 42, [1,2]).

Analysis Results

dict_use.erl:38:
The attempt to match a term of type dict() against
the pattern ’gazonk’ breaks the opaqueness of the term

dict_use.erl:42:
The attempt to match a term of type dict() against
the pattern [] breaks the opaqueness of the term

dict_use.erl:43:
The attempt to match a term of type dict() against the
pattern 42 breaks the opaqueness of the term

dict_use.erl:48:
The attempt to match a term of type dict() against the
pattern [] breaks the opaqueness of the term

dict_use.erl:49:
The attempt to match a term of type dict() against the
pattern 42 breaks the opaqueness of the term

dict_use.erl:55:
Attempt to test for equality between a term of type
maybe_improper_list() and a term of opaque type dict()
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dict_use.erl:57:
Attempt to test for inequality between a term of
type atom() and a term of opaque type dict()

dict_use.erl:61:
Guard test length(D::dict()) breaks
the opaqueness of its argument

dict_use.erl:62:
Guard test is_atom(D::dict()) breaks
the opaqueness of its argument

dict_use.erl:63:
Guard test is_list(D::dict()) breaks
the opaqueness of its argument

dict_use.erl:67:
The type test is_list(dict()) breaks
the opaqueness of the term dict()

dict_use.erl:70:
The call dict:fetch(’foo’,[1 | 2 | 3,...]) does not
have an opaque term of type dict() in position 2

dict_use.erl:73:
The call dict:merge(Fun::any(),42,[1 | 2,...]) does
not have opaque terms in positions 2 and 3

Example with the tref() ”timer“ builtin opaque data type

%%---------------------------------------------------------
%% A test case with:
%% - a genuine matching error
%% - a violation of the opaqueness of timer:tref()
%% - a subtle violation of the opaqueness of timer:tref()
%%---------------------------------------------------------

-module(timer_use).
-export([wrong/0]).

-spec wrong() -> error.

wrong() ->
case timer:kill_after(42, self()) of

gazonk -> weird;
{ok, 42} -> weirder;
{Tag, gazonk} when Tag =/= error -> weirdest;
{error, _} -> error

end.

Analysis Results
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timer_use.erl:16:
The pattern ’gazonk’ can never match the type
{’error’,_} | {’ok’,tref()}

timer_use.erl:17:
The attempt to match a term of type {’ok’,tref()}
against the pattern {’ok’, 42} breaks the opaqueness
of tref()

timer_use.erl:18:
The attempt to match a term of type
{’error’,_} | {’ok’,tref()} against the pattern
{Tag, ’gazonk’} breaks the opaqueness of tref()
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