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Abstract

In safety-critical and high-reliability concurrent systems, software development and

maintenance require great effort. This effort could be significantly reduced if concurrency

defects, among other software errors, were identified through automatic tools such as pro-

gram analyzers and compile-time checkers. We therefore address the problem of finding

some commonly occurring kinds of race conditions in Erlang programs using static anal-

ysis. Our analysis is completely automatic, fast and scalable, and avoids false alarms by

taking language characteristics into account. We have integrated our analysis in a pub-

licly available, commonly used tool for detecting software defects in Erlang programs and

evaluate its effectiveness and performance on a suite of widely used industrial and open

source programs of considerable size. The number of previously unknown race conditions

that we have detected in them is significant.

Categories and Subject Descriptors

• D.1.3 [Programming Techniques]: Concurrent Programming

• D.2.5 [Software Engineering ]: Testing and Debugging – Diagnostics

• D.3.2 [Programming Languages]: Language Classifications – Concurrent, distributed,

and parallel languages

General Terms

Algorithms, Design, Languages, Measurement, Performance

Keywords

static race detection, concurrent languages, Erlang
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Chapter 1

Introduction

1.1 Statement of the Problem

1.1.1 “There ain’t no such thing as a free lunch” 1

In recent years, an interesting phenomenon, known as “Andy giveth, and Bill taketh

away”, has indicated the need for software development to make a turn toward concur-

rency [30]. No matter how fast processors become, software always has its way to eat up

the extra speed, either by finding a lot more to do or by doing it inefficiently enough. After

all, we cannot expect processor speed to keep growing exponentially forever. It seems that

this “free ride” era, when programmers could lay back and wait for Moore’s law to take

effect, has given the nod to its successor and a whole new ball game has begun!

1.1.2 No Pain, No Gain: Concurrency Problems

Concurrency is fundamental in computer programming, both as a method to better

structure programs and as a means to speed up their execution. Nowadays concurrent pro-

gramming is also becoming a necessity in order to take advantage of multi-core machines

which are ubiquitous. The only catch is that concurrent programming is harder and more

error-prone than its sequential counterpart. We have all heard and sometimes even ex-

perienced horror stories of memory violations, race conditions, shared-memory corruption

and the like, when programming with multiple execution threads.

More specifically, the typical problems with concurrency can be outlined as follows:

• Race condition: A strange interleaving of processes has an unintended effect.

• Deadlock : Two or more processes stop and wait for each other.

• Livelock : Two or more processes keep executing without making any progress.

These problems are usually heisenbugs [28] – they can alter their behaviour or completely

disappear when one tries to isolate them – since they go hand in hand with the order of

execution of the processes involved.

1R. A. Heinlein, The Moon Is a Harsh Mistress

1



2 Chapter 1. Introduction

These entirely new difficulties/bugs have a few characteristics:

• They are more likely to strike on today’s multicore processors where the process

interleavings can become quite complex.

• The nondeterminism of concurrency makes the task of tracking them down a noto-

riously difficult one. We just never know when the last bug has been removed.

• Even experienced programmers sometimes have a hard time reasoning about the

correctness of concurrent code. It is rather challenging to conceptualize all the

possible interleavings of processes when looking at a piece of even straight-line code.

• They are very hard to reproduce since a program may be working just fine under

most interleavings.

1.1.3 Erlang Is Not Immune

To make concurrent programming simpler and more natural for some tasks, differ-

ent programming languages support different concurrency models. Some of them totally

avoid some hazards associated with concurrent execution. One such language is Erlang,

a language whose concurrency model is based on user-level processes that communicate

using asynchronous message passing [2]. Erlang considerably simplifies the programming

of some tasks and has been proven very suitable for some kinds of highly-concurrent appli-

cations; however, it does not avoid all problems associated with concurrent execution. In

particular, the language currently provides no atomicity construct and its implementation

in the Erlang/OTP system allows for many kinds of race conditions in programs, i.e.,

situations where one execution thread accesses some data value while some other thread

tries to update this value [17]. In fact, there is documented evidence that race conditions

are a serious problem when developing and troubleshooting large Erlang applications in

industry [9].

1.2 Overview of the Solution

To ameliorate the situation and by building upon successful prior work on detecting

software defects on the sequential part of Erlang [19, 25], we have embarked on a project

aiming to detect concurrency errors in Erlang programs using static analysis. In this thesis

we take a very important first step in that direction by presenting an effective analysis

that detects race conditions in Erlang. So far, analyses for race detection have been

developed for languages that support concurrency using lock-based synchronization and

their techniques rely heavily on the presence of locking statements in programs. Besides

tailoring the analysis to the characteristics of concurrency in Erlang, the main challenges

for our work have been to develop an analysis that: 1) is completely automatic and requires

no guidance from its user; 2) strikes a proper balance between soundness and precision;
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3) is fast and scalable and thus able to handle large and possibly open programs; and 4)

integrates smoothly with the existing defect detection analyses of the underlying tool. As

we will see, we have achieved these goals.

The contributions of this thesis are as follows:

• It documents the most important kinds of data races in Erlang programs;

• it presents an effective and scalable analysis that detects these races, and

• it demostrates the effectiveness of the analysis by running it against a suite of widely

used industrial and open source applications of significant size and reports on the

number of race conditions that were detected.

The next chapter overviews the Erlang language and the defect detection tool which is

the vehicle for our work. Chapter 3 describes what data races are in Erlang, followed by

Chapter 4 which presents in detail the analysis we use to detect them. The effectiveness

and performance of our analysis is evaluated in Chapter 5 and the thesis ends by reviewing

related work and some final remarks.
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Chapter 2

Preliminaries

2.1 Erlang and Erlang/OTP

Erlang is a strict, dynamically typed functional programming language with support

for concurrency, communication, distribution, fault-tolerance, on-the-fly code reloading,

automatic memory management and support for multiple platforms [3]. The number of

areas where Erlang is actively used is increasing. However, its primary application area

is still in large-scale embedded control systems developed by the telecom industry. The

main implementation of the language, the Erlang/OTP (Open Telecom Platform) system

from Ericsson, has been open source since 1998 and has been used quite successfully

both by Ericsson and by other companies around the world to develop software for large

commercial applications. Nowadays, applications written in the language are significant

both in number and in code size making Erlang one of the most industrially relevant

declarative languages.

2.1.1 Sequential Erlang

Every file of Erlang code is a module. Declarations within the file name the module

after the file and declare which functions may be exported – called from other modules.

Comments begin with the percent sign (%) and run to the end of the line.

In Erlang, terms are either variables, simple terms, structured terms, or function clo-

sures. Variables are single-assignment and always begin with a capital letter or an under-

score. Simple terms include atoms, process identifiers, integers and floating point numbers.

Structured terms are lists (enclosed in brackets) and tuples (enclosed in braces). Struc-

tured terms are constructed explicitly and deconstructed using pattern matching. Pattern

matching is also used to select function clauses or different branches of case statements;

the two forms are equivalent and choosing between them is a matter of taste. Figure 2.1

shows all the above. It also shows how Erlang code is organized in modules, how the

code can contain calls to exported functions of some other module (the call to function

math:sqrt/1 in our example), how distinct functions may have the same name as long as

they have different arities (factorial/1 and factorial/2) and how pattern matching is

5



6 Chapter 2. Preliminaries

enriched by the presence of flat guards such as type tests and arithmetic comparisons.

example.erl

� �

-module(example).

-export([factorial/1, factorial/2, nth/2, area/1]).

factorial(0) -> 1;

factorial(N) -> N * factorial(N - 1).

factorial(0, Acc) -> Acc;

factorial(N, Acc) -> factorial(N - 1, N * Acc).

nth(1, [H|_]) -> H;

nth(N, [_H|T]) when is_integer(N), N > 1 ->

nth(N - 1, T).

area(Shape) ->

case Shape of

{square, Side} when is_number(Side) ->

Side * Side;

{circle, Radius} ->

3.14 * Radius * Radius; %% well , almost

{triangle , A, B, C} ->

S = (A + B + C) / 2,

math:sqrt(S * (S - A) * (S - B) * (S - C))

end.
� �

Figure 2.1: A sequential Erlang program used as example

The Erlang language is rather small, but it has evolved from an even smaller language

which over the years has been enriched with new language constructs [1]. For instance,

for some years now Erlang supports a notation for function closures (known as funs in

the Erlang lingo) when older Erlang versions only supported apply. Similarly, modern

Erlang comes with language constructs to perform pattern matching directly on binaries

and bit streams [14] when older Erlang required a conversion of binaries to lists first.

Current Erlang comes with a notation for records as well, which allows referring to tuple

elements by name instead of positions. Employing record notation and some appropriate

declaration, we could then write the first case clause of the area/1 function of our example

program as follows:
� �

#square{side = Side} when is_number(Side) ->

Side * Side;
� �

Over the years, Erlang has also adopted various constructs from other programming lan-

guages, most notably list comprehensions, which are a convenient shorthand for a combi-
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nation of the map, filter and append functions on lists. List comprehension generators

also serve as filter expressions. For example, the following list comprehension:

� �

List = [{1, 2.56}, {3.14, 4}, some_atom , {5, 6}],

[Y * (Y + 1) || {X, Y} <- List , is_integer(X), X > 1].
� �

will silently filter out the some atom, {1, 2.56} and {3.14, 4} elements of the list and

will produce the list [42]. On the other hand, in non-filter expressions, the evaluation of

list comprehensions might throw a runtime exception since Erlang is dynamically typed.

For example, the list comprehension we just showed would throw an exception if List

also contained the term {7, eleven}.

2.1.2 Concurrent Erlang

Erlang’s main strength is that it has been built from the ground up to support con-

currency. In fact, its concurrency model differs from most other programming languages

out there. Processes in Erlang are extremely light-weight (lighter than OS threads), their

number in typical applications is quite large and their allocated memory starts very small

(currently, 233 bytes) and can vary dynamically. Erlang’s concurrency primitives spawn, !

(send) and receive allow a process to spawn new processes and communicate with others

through asynchronous message passing. Any data can be sent as a message and processes

may be located on any machine. Each process has a mailbox, essentially a message queue,

where each message sent to the process will arrive. Message selection from the mailbox

occurs through pattern matching. To support robust systems, a process can register to

receive a message if another one terminates. Erlang also provides mechanisms for allowing

a process to timeout while waiting for messages and a try/catch-style exception mecha-

nism for error handling. There is no process-noticeable shared memory and distribution

is almost invisible in Erlang.

Note that Erlang processes differ from both OS processes and OS threads: An OS

process usually has a separate address space implemented in hardware resulting in the

need of TLB flushes and the like, while OS threads usually communicate through shared

memory. Finally, OS processes and threads are often implemented in such a way that they

can be executed in parallel.

In Erlang, on the other hand, the scheduling of processes is primarily the responsibility

of the runtime system of the language. In the single-threaded version of the runtime

system, there is a single scheduler which picks up processes from a single ready queue. The

selected process gets assigned a number of reductions to execute. Each time the process

does a function call, a reduction is consumed. A process gets suspended when the number

of remaining reductions reaches zero, or when the process tries to execute a receive

statement and there are no matching messages in its mailbox, or when it gets stuck waiting

for I/O. In the multi-threaded version of the system, which nowadays is more common

and the default on multi-core architectures, there are multiple schedulers (typically one
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for each core) each having its own ready queue. On top of that, the runtime system of

Erlang/OTP R13B (the version released on March 2009) also employs a redistribution

scheme based on work stealing when some scheduler’s run queue becomes empty. A side-

effect of all this is that the multi-threaded version of Erlang/OTP makes many more

process interleavings possible and more likely to occur than in earlier versions. Indeed, in

some applications written long ago, concurrency bugs that have laid hidden for a number

of years have been recently exposed.

Let’s take a look at concurrent Erlang by introducing a small example, illustrated in

Figure 2.2 [12], in which we create two processes that practice at “ping pong”.
� �

-module( ping_pong).

-export([start/0]).

ping(0) ->

pong ! finished ,

io:format("Ping finished~n", []);

ping(N) ->

pong ! {ping , self()},

receive

pong ->

io:format("Ping received pong~n", [])

end ,

ping(N-1).

pong() ->

receive

finished ->

io:format("Pong finished~n", []);

{ping , Ping_PID} ->

io:format("Pong received ping~n", []),

Ping_PID ! pong ,

pong()

end.

start() ->

register(pong , spawn(fun pong/0)),

spawn(fun () -> ping(3) end).
� �

Figure 2.2: A concurrent Erlang program used as example
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The output of this example program is:

> ping pong:start().

<0.38.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Ping finished

Pong finished

The start/0 function spawns the pong process and gives it the name pong:

� �

register(pong , spawn(fun pong/0))
� �

It then creates the ping process and returns its process identifier, or pid, which uniquely

identifies the process (<0.38.0>). Pong is now waiting for messages. If the atom finished

is received, pong writes Pong finished to the output and as it has nothing more to do,

it terminates. If it receives a message of the form:

� �

{ping , Ping_PID}
� �

it writes Pong received ping to the output and sends the atom pong to the ping process:

� �

Ping_PID ! pong
� �

After sending this message to ping, pong calls function pong again and has to wait for

another message. At the same time, ping ’s second clause sends a message to pong which

contains its process identifier:

� �

pong ! {ping , self()}
� �

and waits for a reply:

� �

receive

pong ->

io:format("Ping received pong~n", [])

end
� �
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As soon as this reply arrives, it writes Ping received pong to the output and calls

function ping again:

� �

ping(N-1)
� �

The argument of function ping is consecutively decremented until it becomes zero. When

this occurs, its first clause will be executed:

� �

ping(0) ->

pong ! finished ,

io:format("Ping finished~n", []);
� �

The atom finished is sent to pong, causing it to terminate, and Ping finished is written

to the output. Ping then itself terminates as it has nothing left to do.

Though concurrency using message passing avoids some kinds of concurrency errors,

Erlang is not immune to races. For example, if we had implemented a server-client mes-

saging framework to read and increment a counter, as shown in Figure 2.3, we would be

just as exposed to races as a shared-state implementation that forgot to take locks. It is

obvious that some of the clients in the example may want to update the counter at the

same time. In this case, they will send get counter messages to the server and wait for its

reply. The server will respond with the current counter value and immediately following

this response, the clients on hold update the counter to the same new value since their

read and write operations are not conducted atomically. A serious race condition has just

happened.

2.1.3 Erlang/OTP

The main implementation of the language is the Erlang/OTP (Open Telecom Plat-

form) system by Ericsson. At the time of this writing, the most recent Erlang/OTP system

is R13B01 (release 13B01). Besides libraries containing a large set of built-in functions

(BIFs) for the language, the Erlang/OTP system comes with a number of ready-to-use

components and design patterns – known as behaviours – (such as finite state machines,

generic servers, supervisors, etc.), providing a set of design principles for developing fault-

tolerant Erlang applications. Indeed, a fair number of commercial and/or open-source

applications have been written over the years using the Erlang/OTP system and mak-

ing Erlang both one of the most industrially relevant declarative languages as well as a

language with a significant body of existing code out there.

2.2 Dialyzer: A Brief Overview

Since 2007 the Erlang/OTP distribution includes a static analysis tool, called dialyzer [19,

25], for finding discrepancies (i.e., type errors, software defects such as exception-raising
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� �

%% BAD - race -prone implementation - do not use - BAD

-module(bad_counter).

-export([server /0]).

server () ->

Self = self(),

spawn(fun () -> client(Self) end),

spawn(fun () -> client(Self) end),

spawn(fun () -> client(Self) end),

loop(0).

loop(N) ->

io:format("N = ~w~n", [N]),

receive

{get_counter , Pid} ->

Pid ! N,

loop(N);

{set_counter , C} ->

loop(C)

end.

client(Server) ->

Server ! {get_counter , self()},

receive

N ->

Server ! {set_counter , N+1} %% BAD: race!

end ,

client(Server).
� �

Figure 2.3: A race-prone Erlang program used as example

code, hidden failures, unsatisfiable conditions, redundancies such as unreachable code,

etc.) in single Erlang modules or entire applications. Dialyzer1 is totally automatic,

extremely easy to use and particularly successful in identifying software defects which

may be hidden in Erlang code, especially in program paths which are not exercised by

testing [26]. In fact, since its release, dialyzer has been applied to a significantly large

number of programs consisting of several thousand lines of code from real-world telecom

applications, and has been surprisingly effective in locating discrepancies in heavily used,

well-tested code.

Dialyzer can analyze programs without having to alter their source in any way. The

analysis does not even need access to the source, since its starting point is debug-compiled

virtual machine bytecode. However, if the source code is indeed available, it can provide

1DIscrepancy AnaLYZer for ERlang; www.it.uu.se/research/group/hipe/dialyzer.
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the analysis with additional information and perhaps benefit from various kinds of user

annotations. The internal language of the analysis to which bytecode and source code are

translated, is Core Erlang [7], the official core language for Erlang and the language used

internally in the bytecode compiler. Since Core Erlang is on a level close enough to the

original source, where it is nearly smooth to reason about the programmer’s intentions,

it provides dialyzer with the means to produce precise and self-explanatory warning

messages. This is because Core Erlang introduces a let construct which makes the binding

occurrence and scope of all variables explicit and helps in retaining line numbers as well as

deriving, in a very accurate way, information about the possible values used as arguments

to functions that are local to a module.

Dialyzer must have its ways to extract some limited form of implicit type information

from Erlang code in order to statically find definite type clashes and report them to the

user in the form of warnings. Experience with dialyzer and its current uses show that

it is a sure-fire tool in inferring various forms of non-trivial type information for Erlang

programs in a completely automatic and scalable way. This was made viable by dialyzer’s

soft type system, a limited form of type checking that has been developed using success

typings [20, 16]. Soft typing will not reject any program, but will instead inform the

user that the program has some provable type errors. Unlike most soft typing systems

that have previously been proposed, success typings 2 allow for compositional, bottom-up

type inference which appears to scale well in practice. Moreover, by taking control-flow

into account and exploiting properties of the language, such as its module system, success

typings can be refined 3 and become accurate and precise.

The details of dialyzer’s analyses are beyond the scope of this thesis – we refer the

interested reader to the relevant publications [19, 20] – but notable characteristics of its

core analysis are:

• Dialyzer is a sound defect detector – though of course not guaranteed to find all

errors – in the sense that it does not report any false positives.

• Currently, dialyzer is a push-button technology and completely automatic. In par-

ticular, it accepts Erlang code “as is” and does not require any annotations from

the user, it is very easy to customize and supports various modes of operation (GUI

vs. command-line, module-local vs. application-global analysis, using analyses of

different power, focusing on certain types of discrepancies only, etc.).

• Its basic analysis is typically quite fast, making dialyzer an integrated component

of Erlang development.

The core analysis is supported by various components for creating and manipulating func-

tion call graphs for a higher-order language (which also requires escape analysis), taking

2If the arguments of an application are in the function domain, the application might succeed, but if

they are not, the application will definitely fail.
3A refined success typing is also a success typing but the domain has been constrained and thus, the

range can possibly be constrained as well.
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control-flow into account, efficiently representing sets of values and computing fixpoints,

etc. Nowadays, dialyzer is used extensively in the Erlang programming community and

is often integrated in the build environment of many applications.4 However, we note that

dialyzer’s analysis was restricted to detecting defects in the sequential part of Erlang

when we started our work. Before we see how we extended its analysis to also detect races,

let us first make more precise what exactly race conditions are in Erlang.

4A survey of tools for developing and testing Erlang programs [22], published in the fall of 2008, showed

that dialyzer is by a wide margin the software tool which is the most widely known (70%) and used (47%)

by Erlang developers.



14 Chapter 2. Preliminaries



Chapter 3

Race Conditions in Erlang

Näıvely, one may think that race conditions are impossible in Erlang. After all, the

language is often advertized as supporting a shared nothing concurrency model [2, 18].

A Google search on the term might even convince some readers that this is indeed the

case. For example, the Wikipedia article on concurrent computing currently mentions that

“Erlang uses asynchronous message passing with nothing shared”1. If nothing is shared

between processes, how can there be race conditions? In reality, the “nothing shared”

slogan is an oversimplification: both of the language’s copying semantics, which e.g. allows

for a shared memory implementation of processes, and of its actual implementation by

Ericsson. While it is indeed the case that the Erlang language does not provide any

constructs for processes to create and modify shared memory, applications written in

Erlang/OTP often employ (and rely upon) built-in features, such as message passing and

term storage, which allow processes to share data, make decisions based on the values of

this data and destructively update them.

This is exactly what leads to data races in programs and the definition of race condi-

tions we adopt in this thesis: “a race occurs when two threads (or processes) can access

(read or write) a data variable simultaneously, and at least one of the two accesses is a

write” [15]. Intuitively, we think of race conditions occurring when a process reads some

variable and then decides to take some action based on the value of that variable. If it

is possible for another process to succeed in changing the value stored on that variable in

between the read and the action in such a way that the action about to be taken is no

longer appropriate, then we say that our program has experienced a race condition.

In this respect, it is easily understood that the nature of errors caused by race condi-

tions can by very subtle – races do not often crash the system; they manifest themselves

as corrupt or wrong memory contents instead, and make debugging extremely frustrating.

As a result, race detection tools are valuable both to programmers, by offering them a

helping hand in needy times, and to concurrent programs, by increasing their reliability.

In the context of Erlang programs, use of certain Erlang/OTP built-ins leads to data

races between processes. Let’s first see the simplest of them.

1http://en.wikipedia.org/wiki/Concurrent_computing (September 2009).
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3.1 Data Races in the Process Registry

In Erlang, each created process has a unique identifier (known as its “pid”), which is

dynamically assigned to the process upon its creation. To send a message to a process one

must know its pid. Besides addressing a process by using its pid, there is also a mechanism,

called the process registry, which acts as a node-local name server, for registering a process

under a certain name so that messages can be sent to this process using that name.

Names of processes are currently restricted to atoms. The virtual machine of Erlang/OTP

provides built-ins:

register(Name,Pid) which adds a table entry associating a certain Pid with a given

Name and generates a run-time exception if the Name already appears in the registry,

registered() which returns the list of names of all registered processes, and

whereis(Name) which returns the pid associated with Name or the special value undefined

if no process is currently registered under the given Name.

The registry holds only live processes; processes that finish their execution or crash (e.g.,

due to some uncaught exception) get automatically unregistered.

Many programs manipulating the process registry are written in a defensive program-

ming style similar to the code shown in Figure 3.1.
� �

proc_reg(Name) ->

...

case whereis(Name) of

undefined ->

Pid = spawn (...),

register(Name ,Pid);

Pid -> % already

ok % registered

end ,

...
� �

Figure 3.1: A function manipulating the process registry which contains a race condition

This code contains a race condition if executed concurrently by two or more processes.

Figure 3.2 shows an interleaving of the concurrent execution of two processes running the

code of the proc reg function. This interleaving will result in a runtime exception at the

point when P2 will attempt to register the process with pid Pid2 under a name which has

already been inserted in the process registry by process P1. As a result of this exception,

P2 will crash.

That process P2 will crash is bad alright, but this is not the only problem of this code.

Another problem here is that any action that P2 has taken between the whereis and
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P1 P2

proc_reg(gazonk)

. . . proc_reg(gazonk)

whereis(gazonk)

. . .

Pid1 = spawn(...)

whereis(gazonk)

register(gazonk,Pid1)

Pid2 = spawn(...)

register(gazonk,Pid2)

Figure 3.2: An interleaving of two processes running the code of the proc reg function

register calls that affects the state needs to be undone. In our example execution Pid2

is now a ghost process. In more involved examples, many more actions affecting the state

may occur in between these two calls.

The real problem with the program of Figure 3.1 is that the code between the whereis

and the register calls needs to execute atomically but Erlang currently lacks a construct

that allows programmers to express this intention. Not only there is no construct like

atomic in Erlang, but there is also nothing that can be conveniently used as a mutex

to protect blocks containing sequences of built-in function calls. In the single-threaded

implementation of Erlang/OTP, the probability of a process exhausting its reductions

somewhere between the whereis and register calls is really low, especially if the two

calls are so close to each other as in our example, so the race condition is there alright but

the actual race is quite unlikely to occur in practice. Not so in the multi-threaded version

of Erlang/OTP which nowadays is more or less ubiquitous. Similar problems exist in code

that uses a call to the registered built-in to make a decision whether to register some

process under a name or not, although such code is considerably less common.

3.2 Data Races in the Erlang Term Storage

The second category of data races are races related to the Erlang Term Storage

(ETS) facility of Erlang/OTP. This facility provides the ability to store very large quan-

tities of data, organized as a set of dynamic tables in memory, and to have effectively

constant time access to this data. Each ETS table is created by a process using the

ets:new(Name,Options) built-in and is given a Name which then can be used to refer to

this table (in addition to the table identifier, “tid”, which is the return of the ets:new/2

built-in). Access rights can also be specified for the table by declaring it (in Options) as

private, protected, or public. Any process can read from or write to tables that are
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public. Reading and writing happens primarily with the built-ins:2

ets:lookup(Table,Key) which returns a list of objects currently associated with the

given Key in the Table (which is a name or a tid), and

ets:insert(Table,Object) which inserts an Object (a tuple with its first position des-

ignated as a key) to a given Table.

The program of Figure 3.3 shows a made up example of Erlang code which contains

an ETS-related race condition. Note that function ets inc has a race condition only if

the ETS table, which is created outside this function, is designated as public.
� �

run() ->

Tab = ets:new(some_tab_name ,[public]),

Inc = compute_inc(),

Fun = fun () -> ets_inc(Tab ,Inc) end ,

spawn_some_processes(Fun).

ets_inc(Tab ,Inc) ->

case ets:lookup(Tab ,some_key) of

[] ->

ets:insert(Tab ,{some_key ,Inc});

[{some_key ,OldValue}] ->

NewValue = OldValue + Inc ,

ets:insert(Tab ,{some_key ,NewValue})

end.
� �

Figure 3.3: Program containing a race condition related to ETS

3.3 Data Races in the Mnesia Database

The last category of race conditions we examine are those related to mnesia [21],

the distributed Database Management System of Erlang/OTP. Being a database sys-

tem, mnesia actually contains constructs for enclosing series of table manipulation opera-

tions into atomic transactions and there is support to automatically deal with data races

which are part of a transaction. However, for performance reasons, mnesia also provides

a whole bunch of dirty operations – among them mnesia:dirty read(Table,Key) and

mnesia:dirty write(Table,Record) – which, as their name suggests, perform database

reads and writes without any guarantees that they will not cause data races when exe-

cuted concurrently. Despite the warning in their name, these dirty operations are used

2The ets module contains more built-ins for reading from and updating ETS tables, e.g.,

ets:lookup element(Table,Key,Pos) and ets:insert new(Table,Object), but we do not describe them

here as their treatment is similar to lookup and insert.
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more often than they really need to in applications. Figure 3.4 shows a function from the

code of the snmp application of Erlang/OTP R13B01.
� �

-export([table_func/2]).

table_func(...) ->

create_time_stamp_table (), ...

create_time_stamp_table() ->

Props = [{type ,set}, ...],

create_table(time_stamp ,Props ,ram_copies ,false),

NRef =

case mnesia:dirty_read(time_stamp ,ref_count) of

[] -> 1;

[# time_stamp{data = Ref}] -> Ref + 1

end ,

mnesia:dirty_write(# time_stamp{data = NRef}).
� �

Figure 3.4: Program containing a race condition related to mnesia

Having presented the most commonly occurring race conditions in Erlang, which also

happen to be the categories of race conditions that our tool currently detects, let us now

present the static analysis that we use to detect them.
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Chapter 4

Architecture and Implementation

4.1 Desiderata

Before we describe the core of our analysis, we enumerate the goals and requirements

we set for its implementation before we embarked on it:

• Our method should be sound : it should aim to maximize the number of reported

race conditions, but should not generate any false positives meaning that it should

not warn for race conditions that are impossible to occur.

• All race conditions detected by the tool should be reported to the user in the form

of precise warnings. No great ability should be required for their understanding.

• The tool should request no effort or guidance from its user. In particular, the user

should not be required to do changes to existing code like providing unsafe operation

information, specifying which processes may be interleaved and which must run

atomically or writing other such annotations. Instead, the tool should be completely

automated and able to analyze large, concurrent Erlang applications on its own.

• The analysis should be fast and scalable so as to constitute a consistent and smoothly

integrated component of dialyzer.

4.2 The Analysis

No doubt the reader has noticed that all the examples of race conditions we presented

in the previous chapter have some characteristics in common. They all involve a built-in

that reads a data item, some decision is then taken based on the value which was read, and

execution continues with a built-in performing a write operation of the same data item

on either some (Figure 3.1) or on all execution paths (Figure 3.3) following the read. Of

course, that our examples follow this pattern is not a coincidence. After all, this pattern

reflects the definition of race conditions we gave in the beginning of Chapter 3. However,

one should not conclude that detecting this small code pattern is all that our analysis needs

21
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to do. In the programs we want to handle, the built-ins performing the reads and writes

may be spatially far apart, they may be hidden in the code of higher-order functions, or

even be located in different modules. In short, race detection in Erlang requires control-

flow analysis. Also, the race detection needs to be able to reason about data-flow : if at

some program point the analysis locates a call to say whereis(N) and from that point on

control reaches a program point where a call to register(M,Pid) appears, the analysis

has to determine whether N and M can possibly refer to the same process name or not. If

they can, we have detected a possible race condition; otherwise, there is none. Finally, to

avoid a large number of false alarms, the analysis has to take language characteristics into

account. For example, the fact that in Erlang only escaping functions (i.e., functions that

are exported from a module or function closures returned as results) can be used in some

spawn.

Conceptually, the analysis has three distinct phases: an initial phase that scans the

code to collect information needed by the subsequent phases, a phase where all code points

with possible race conditions are identified as suspects, and a phase where suspects that

are clearly innocent are filtered out. For efficiency reasons, the actual implementation

blurs the lines separating these phases and also employs some optimizations. Let’s see all

these in detail.

4.2.1 Collecting Information for the Analysis

We have integrated our analysis in dialyzer because many of the components that it

relies upon were already available or could be easily extended to provide the information

that the analysis needs. The analysis starts by the user specifying a set of directories/files

to be analyzed. Rather than operating directly on Erlang source, all of dialyzer’s passes

operate at the level of Core Erlang [7], the language also used internally by the Erlang

compiler. Core Erlang significantly eases analysis and optimization by removing all syn-

tactic sugar and by introducing a let construct which makes the binding occurrence and

scope of all variables explicit.

As the source code is translated to Core Erlang, dialyzer constructs the control-flow

graph (CFG) of each function or function closure and then uses a simplified version of

the escape analysis of Carlsson et al. [8] to determine closures that escape their defining

function. For example, for the code of Figure 3.3 the escape analysis will determine

that function run defines a function closure that escapes this function as it is used as

an argument to function spawn some processes, which presumably uses this argument

in some spawn. Given this information, dialyzer also constructs the inter-modular call

graph of all functions and closures, so that subsequent analyses can use this information to

speed up their fixpoint computations. For the example in the same figure, the call graph

will contain three nodes for functions whose definitions appear in the code (functions run,

ets inc, and the closure) and an edge from the node of the function closure to that of

ets inc.



4.2. The Analysis 23

Besides control-flow, the analysis also needs data-flow information and more specifi-

cally it needs information whether variables can possibly refer to the same data item or

not. Without race detection this information is not explicitly maintained by dialyzer, so

we added a sharing/alias analysis component that computes and maintains this informa-

tion. The precision of this analysis is often helped by the fact that dialyzer computes

type information at a very fine-grained level. For example, different atoms a1, . . . , an are

represented as different singleton types in the type domain and their union a1| . . . |an is

mapped to the supertype atom() only when the size of the union exceeds a relatively high

limit [20]. We will see how this information is used by the race analysis in Section 4.2.3.

4.2.2 Determining Code Points with Possible Race Conditions

The second phase of the analysis collects pairs of program points possibly involved

in a race condition. These pairs are of the form 〈P1, P2〉 where P1 is a program point

containing a read built-in (e.g., whereis, ets:lookup, . . . ) and P2 is a program point

containing a write built-in (e.g., register, ets:insert, . . . ) and such that there is a

control-flow path from P1 to P2.

In order to collect these pairs, we need to inspect every possible execution path of the

program. To this end, we find the root nodes in the inter-modular call graph and start by

traversing their CFGs using depth-first search. This depth-first search starts by identifying

program points containing a read built-in and then tries to find a program point “deeper”

in the graph containing a write built-in. In case a call to some other function is encountered

and this function is statically known, the traversal continues by examining its CFG. The

case of unknown higher-order calls, as in the code of Figure 4.1 where the Fun(N) call is

a call to some unknown closure, requires special care: for soundness, the search needs to

continue the traversal starting from all root nodes corresponding to a function of arity one.

The analysis continues until every path is traversed. Loops also require special attention.

A pre-processing step detects cycles in the call graph and checks whether a write built-in is

followed by a read built-in in some path in that cycle. Eventually, this exhaustive traversal

creates the complete set of pairs of program points where race conditions are possible.
� �

foo(Fun ,N,M) ->

...

case whereis(N) of

undefined ->

...,

Fun(M);

Pid -> ...

end ,

...
� �

Figure 4.1: Example of an unknown higher-order call
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4.2.3 Filtering False Alarms

There are two main problems in what we have just described. There is an obvious per-

formance problem related to the search being exhaustive and there is a precision problem

in that the candidate set of race conditions may contain many false alarms. We deal with

the latter problem in this section.

We can filter out the majority of false alarms by taking variable sharing, type infor-

mation, and the characteristics of the race conditions we aim to detect into account. For

example, for the case of function foo above consider the set of functions that Fun can pos-

sibly refer to which directly or indirectly lead to a call to register. The set of possible

race conditions will consist of pairs 〈Pw, Pri
〉 where Pw denotes the program point corre-

sponding to the whereis call in foo and Pri
denotes the program points corresponding

to the register calls. For simplicity, let us assume that in all these register calls their

first argument is a term which shares with M (i.e., it is M or a variable which is an alias

of M). Finally let AN and AM denote the set of atoms that type analysis has determined

as possible values for N and M respectively. If AN ∩ AM = ∅ then all these race conditions

are clearly false alarms and can be filtered out. Note that what we have just described

is actually the complicated case where the call leading to the write built-in is a call to

some unknown function. In most cases, function calls are to known functions which makes

the filtering process much simpler. Similarly, there are many cases where AN or AM are

singleton sets, which also simplifies the process. Similar filtering criteria, regarding the

name of the table, are applied to race conditions related to ETS and mnesia. In addi-

tion, ETS-related possible data races which do not involve a public table or that involve

objects associated with different keys are also filtered out in this analysis phase.

4.2.4 Some Optimizations

Although we have described the computing and filtering phases of the analysis as being

distinct, our implementation blurs this distinction, thereby avoiding the exhaustive search

and speeding up the analysis. In addition, we also employ the following optimizations:

Control-flow graph and call graph minimization. The CFGs that dialyzer con-

structs by default contain the complete Core Erlang code of functions. This makes sense

as most of its analyses, including the type and sharing analyses, need this information.

However, note that the path traversal procedure of Section 4.2.2 requires only part of this

information. For example, in the program illustrated in Figure 3.4, both the Props vari-

able assignment and the list construction on the same line, as well as the complete code

of the case statement are irrelevant for determining the candidate set of race conditions.

Our analysis takes advantage of this by a pre-processing step that removes all this code

from the CFGs and by recursively removing CFGs of leaf functions that do not contain

any calls to the built-ins we search for. In the same spirit, CFGs of functions that are not

reachable from some escaping function (i.e., from a root node of the traversal) are also
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removed.

Avoiding repeated traversals and benefiting from temporal locality. After the

call graph is minimized as described above, the depth-first CFG traversal starts from some

root. The traversal of all paths from this root often encounters a split in the CFG (e.g., a

point where a case statement begins) which is followed by a CFG join (the point where the

case statement ends). All the “straight-line code” which lies between the join point and

the next split, including any straight-line code in CFGs of functions called there, does not

need to be repeatedly traversed if it is found to contain no built-ins during the traversal

of its first depth-first search path. This optimization effectively prunes common sub-paths

by condensing them to a single program point. Another optimization is to collect, during

the construction of the CFGs of functions, the set of program points containing read and

write built-ins that result in race conditions and perform a search focussed around these

points, effectively exploiting the fact that in most programs pairs of program points that

are involved in race conditions are temporally close to each other (i.e., not necessarily in

the same function but only a small number of function calls apart).

Making unknown function calls less unknown. When we described how unknown

higher-order calls like Fun(N) are handled, we made the pessimistic assumption that Fun

can refer to any function with arity one. This is correct but way too conservative. By

taking into account information about the type of N and of the return value of the function,

the set of these functions can be reduced, often significantly so. Even though in Erlang

there is no guarantee that calls will respect the type discipline, calls that do not do so will

result in a crash which is a defect that dialyzer will report to its user anyway, albeit in

another defect category. The user can correct this first and re-run the analysis.

Clearly, the implementation of these optimization ideas has a heavy impact on the

effectiveness and performance of our method. Let us therefore evaluate it on a suite of

large, widely used Erlang applications.
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Chapter 5

Experimental Evaluation

5.1 Dialyzer in Action

5.1.1 Using Dialyzer from its Graphical User Interface

Figure 5.1 shows dialyzer’s GUI in action. In fact, the snapshot depicts dialyzer

detecting the possible race conditions in ct master.erl, a module of the common test

application of Erlang/OTP R13B01.

In the “File” window, there is a listing of the current directory and we can either

click our way to the directories or modules we want to “dialyze” or type the correct path

in the entry. We can mark the directories or modules for discrepancy analysis and click

“Add”. In other words, we can add .beam and .erl-files directly, or indirectly, by adding

directories that contain these kinds of files. However, we can only add one type of files to

be analyzed, which is specified by the current analysis mode controlled in the top-middle

part of the main window under “Analysis Options” – we cannot mix .beam and .erl-files.

Under the “Warnings” pull-down menu, there are buttons that control which discrep-

ancies are reported to the user in the “Warnings” window. By clicking on these buttons,

one can enable/disable a whole class of warnings – race condition detection being one of

them.

Once we have chosen the modules or directories for the analysis, we can click on the

“Run” button to start the analysis. If, for some reason, we want to stop the analysis while

it is running, we can push the “Stop” button. In every case, the information from the

analysis will be displayed in the “Log” and “Warnings” windows as shown in Figure 5.1.

27



28 Chapter 5. Experimental Evaluation

Figure 5.1: Dialyzer’s GUI version

5.1.2 Using Dialyzer from the Command Line

There is also a command line version of dialyzer for automated use. Below follows a

brief description of the tool options that are most relevant to this thesis.

Usage:

dialyzer [-Wpossible races] [--src] [-c applications] [-r applications]

Options:

-c applications (or --command-line applications)

Use dialyzer from the command line (no GUI) to detect defects

in the specified applications (directories or .erl or .beam files).

-r applications

Same as -c only that directories are searched recursively for

subdirectories containing .erl or .beam files (depending on the

type of analysis).

--src

Override the default, which is to analyze .beam files, and

analyze starting from Erlang source code instead.
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The exit status of the command line version is:

0 - No problems were encountered during the analysis and no

warnings were emitted.

1 - Problems were encountered during the analysis.

2 - No problems were encountered, but warnings were emitted.

Figure 5.2 shows dialyzer’s command line version in action.

Figure 5.2: Dialyzer’s command line version

5.1.3 Using Dialyzer from Erlang

Naturally, dialyzer can also be used directly from an Erlang shell like any other

Erlang application.

5.2 Measurements

The analysis we described in the previous chapter has been implemented and incorpo-

rated in the development version of dialyzer. We have paid special attention to integrate

it smoothly with the existing analyses, reuse as much of the underlying infrastructure as

possible, and fine-tune the race detection so that it incurs relatively little additional over-

head to dialyzer’s default mode of use. The main module of the race analysis is about
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2,200 lines of Erlang code and the user can turn on race detection either via a GUI button

or a command-line option.

We have measured the effectiveness and performance of the analysis by applying it

on a corpus of Erlang code of significant size: more than a million lines of code. In this

thesis we restrict our attention to the Erlang/OTP libraries described below. Needless to

mention that Erlang/OTP libraries are heavily used in Erlang programs.

asn1 Provides support for Abstract Syntax Notation One

common test A portable framework for automatic testing

gs A Graphics System used to write platform independent user interfaces

hipe The native code compiler of Erlang (HIgh Performance Erlang)

kernel Functionality necessary to run the Erlang system itself

mnesia A heavy duty real-time distributed database

otp mibs SNMP management information base for Erlang/OTP nodes

percept A concurrency profiler tool

runtime tools Runtime tools, tools to include in a production system

snmp Simple Network Management Protocol (SNMP) support including a Management

Information Base compiler and tools for creating SNMP agents

stdlib The Erlang standard libraries

tv An Erlang Term Store (ETS) and mnesia graphical Table Visualizer

Table 5.1 shows the lines of code (LOC) of each application, the number of race condi-

tions detected (total and categorized as being related to the process registry, to ETS or to

mnesia), and the elapsed wall clock time (in minutes) and memory requirements (in MB)

for running dialyzer without and with the race condition detection on these programs.

The performance evaluation was conducted on a machine with a dual processor1 Intel

Pentium 2GHz CPU with 3GB of RAM, running Linux.

5.3 Performance Analysis

We will now attempt to evaluate the performance of our race detection method in

terms of the measurements shown in Table 5.1.

Regarding the total memory use, our analysis, when invoked, requires an amount of

space that depends on the application we want to “dialyze”. This is a direct consequence

1However, most of dialyzer’s analyses, including the race detection, use only one core.



5.3. Performance Analysis 31

Table 5.1: Dialyzer’s race detection performance on Erlang/OTP applications

Number of Races Time (mins) Space (MB)

Application LOC Total ProcR ETS Mnesia w/o race w race w/o race w race

asn1 38,965 2 2 - - 3:30 4:04 182 282

common test 15,573 1 1 - - 0:22 0:22 74 78

gs 15,819 2 2 - - 1:00 2:01 111 170

hipe 95,652 0 - - - 3:03 3:06 183 333

kernel 36,618 6 4 - 2 1:00 1:05 86 130

mnesia 24,730 0 - - - 0:56 3:23 87 157

otp mibs 196 2 - - 2 0:00 0:00 32 33

percept 4,457 3 3 - - 0:11 0:11 40 43

runtime tools 8,277 2 2 - - 0:28 0:28 62 71

snmp 52,071 6 - 3 3 1:54 2:00 141 192

stdlib 72,297 1 1 - - 6:23 6:45 189 310

tv 20,050 1 1 - - 0:13 0:13 71 72

of the fact that the analysis needs to examine both control and data-flow information

about an application in order to be able to detect any race conditions. As one might

expect, larger applications usually have more control and data-flow information and thus,

the memory use for these applications is greater.

Considering the total execution time, the “dialyzing” of applications is practically

unaffected by the extra overhead of collecting information for the analysis. However, the

execution time naturally increases when our analysis identifies more than a few program

points containing a read built-in in the depth-first search of the CFGs. This is because

for each one of these read built-ins our method tries to find a program point “deeper”

in the graph containing a write built-in even if this generally involves repeated traversals

of the same paths. The execution time also depends on the number and length of these

paths as well as on the number of function or closure calls encountered in them. At this

point, it is reminded that when the search finds a statically known function or closure call,

the traversal continues by examining its CFG. In case of an unknown call, the depth-first

search continues the traversal starting from all root nodes corresponding to a function of

the same arity and type information about the argument and return values. Consequently,

the larger the number of function or closure calls, the larger the size of the graph that

needs to be investigated for write built-ins. Table 5.2 shows the measurements that were

conducted to confirm the exact causes of the execution time diversity observed in the

previous section – we measured the number of read built-ins identified in the depth-first

search, the number of function or closure calls between the read and write built-ins in the

graph and the race analysis space overhead compared to the default indicating the size of

the CFGs.

For example, although the read built-ins in the snmp application are many more than



32 Chapter 5. Experimental Evaluation

Table 5.2: Dialyzer’s execution time affecting factors

Time (mins)

Read Function or Space

Application Built-Ins Closure Calls Overhead (MB) w/o race w race

asn1 15 6,264 100 3:30 4:04

common test 13 1,705 4 0:22 0:22

gs 28 4,623 59 1:00 2:01

hipe 1 11 150 3:03 3:06

kernel 132 1,433 44 1:00 1:05

mnesia 85 16,041 70 0:56 3:23

otp mibs 5 48 1 0:00 0:00

percept 17 203 3 0:11 0:11

runtime tools 12 234 9 0:28 0:28

snmp 136 11,150 51 1:54 2:00

stdlib 60 2,929 121 6:23 6:45

tv 2 436 1 0:13 0:13

in the mnesia application, the race analysis execution time is much closer to the default.

This is because the CFGs that are traversed are smaller in the snmp application and

there are less function or closure calls to be investigated.

Overall, given that context-independent control-flow analysis is cubic in the worst case,

the tool performs quite satisfactorily, with the exception of a few outliers, leaving very

little reason not to use it regularly when developing Erlang programs.

5.4 Current Experiences

As it is probably obvious by now, during its development, our race detection anal-

ysis has been repeatedly tested. Most notably, it has been applied to all Erlang/OTP

applications, the largest of which consists of about 200,000 lines of Erlang code. In the

pursuit of experiences from benchmarks besides the Erlang/OTP system, we have also

applied dialyzer on various other open source and often widely used applications written

in Erlang:

CouchDB A distributed, fault-tolerant and schema-free document-oriented database via

a RESTful HTTP/JSON API

ejabberd A distributed, fault-tolerant Jabber server

Erlang Web A framework for applications based on HTTP protocols

Scalaris A scalable, transactional, distributed key-value store



5.4. Current Experiences 33

Yaws An HTTP, high-performance 1.1 web server, particularly well-suited for dynamic-

content web applications

For these applications we used the code from their public repositories at the end of August

2009. Table 5.3 illustrates our measurements.

Table 5.3: Dialyzer’s race detection performance on open source applications

Number of Races Time (mins) Space (MB)

Application LOC Total ProcR ETS Mnesia w/o race w race w/o race w race

CouchDB 22,611 0 - - - 0:47 0:53 115 187

ejabberd 72,788 6 1 4 1 0:39 0:40 113 142

Erlang Web 22,229 7 - 7 - 0:33 0:35 115 122

Scalaris 38,770 0 - - - 1:13 1:20 179 278

Yaws 37,270 3 3 - - 1:33 1:39 167 245

Notice that the number of race conditions is significant, especially considering that our

technique currently tracks only some specific categories of possible data races in Erlang.

Also, in most cases, data race detection adds only a small overhead, both in time and in

space, to dialyzer’s default analysis.

A more detailed experience report on using dialyzer on open source projects is beyond

the scope of this thesis, however, it suffices to say that when a code defect is as frustrating

to detect as race conditions are, a tool that is able to automatically track them down

should be extremely useful.



34 Chapter 5. Experimental Evaluation



Chapter 6

Related Work

In this chapter, we discuss related work, including dynamic and static race detection

techniques [6, 23] as well as race detection in Erlang.

6.1 Dynamic Race Detection

State-of-the-art race detection tools are primarily dynamic. Although dynamic race

detectors are inherently unsound and associated with a serious memory and performance

overhead when used on very large applications, they have the big advantage that they

require no user interaction since they discover all they need to know from the execution.

Of course, these tools are limited only to the runtime execution paths that occur during

testing. They can be broadly classified into happens-before-based, lockset-based and hybrid.

Happens-before-based dynamic race detectors rely on a partial ordering of all events

of all threads in a concurrent execution such that any violation of this ordering is taken

for a race condition. Every thread has a vector clock – a timestamp that increases as

synchronization events occur – of its own and vector clocks of other threads. For instance,

when a synchronization event occurs, all the threads involved have to update and exchange

their vector clocks. Shared data also has vector clocks so that it may keep track of the last

time it was accessed by each thread. After all these vector clocks, a simple property must

hold for a concurrent execution to be race free: when a thread speedy performs a read

operation on shared data, speedy ’s vector clocks for all other threads that have previously

accessed the data must be less than or equal to the corresponding data vector clocks.

The key drawbacks of this technique are that it is difficult to implement efficiently and,

although it produces no false positives, it produces many false negatives.

The lockset algorithm was originally implemented in the Eraser tool [27] and relies on

the common lock-based synchronization discipline: in a concurrent execution, all shared

data should be accessed under lock and key. Every shared variable has a candidate set

of protection locks. When a thread tries to access a shared variable, the algorithm de-

termines the intersection of all the locks held by the thread with the candidate set of the

shared variable. Consequently, if at any point this intersection turns out to be empty, the

35
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algorithm signals a possible race condition. The primary problem with lockset-based race

detection is that it produces many false positives either when synchronization mechanisms

other than locks are employed or when the programmer knows that at a certain program

point there is no way that a shared variable can be accessed by more than one threads,

hence leaves it unprotected. Another problem with the technique is that, as any dynamic

analysis, it cannot avoid false negatives.

Since combining the happens-before-based and the lockset-based race detection was

first proposed [10], several hybrid algorithms have emerged that benefit from both ap-

proaches without exhibiting the disadvantages of either. Two popular hybrid implementa-

tions are MultiRace [24] and RaceTrack [31]. Both tools managed to bring their analyses

up to a more practical level than the existing dynamic tools of the time. For instance,

existing tools monitored the shared memory at the granularity of an object, rather than

a word, with means to avoid vastly increasing their time and space overhead. However,

locks may naturally be used on object fields as well, resulting in numerous false positives.

Consequently, once an object becomes a race suspect, RaceTrack and MultiRace dynami-

cally reduce the memory granularity and proceed with the analysis. An equally important

engineering choice that these tools made was the phased enforcement of the lockset and

happens-before analyses: the cheaper lockset algorithm is applied first and the validity

of the potential race conditions it detects is then verified by the happens-before analysis,

increasing both the precision and the synchronization discipline expressiveness of these

hybrid dynamic race detectors.

6.2 Static Race Detection

Static race detectors employ either flow-insensitive analyses based on types, or flow-

sensitive static versions of the lockset algorithm, or are based on model checking.

Type-based systems specify the synchronization discipline by means of types; namely,

a program that type-checks is race free. In these systems, race condition prevention relies

on the idea that shared data must be protected with a lock, ergo by integrating the

lock into the shared data type, we can ensure that any subsequent appearances of that

data are confined only in code that acquired the particular lock. For files and classes to be

compilation independent, type systems also use function effects clauses that suggest which

locks must be acquired by any caller of a function. Although these systems impose no

performance penalty and are by natural means familiar to the programmer, they tend to

limit the expressiveness and precision of their programming languages; race free programs

that may obviate the need for locking either because their thread interleavings are known

in advance or because their shared data is being initialized before the threading begins,

are not allowed. Besides, a fair number of annotations is required, thus making their use

for large applications quite unlikely despite their scalability.

Soundness, precision and the amount of annotations required seem to be correlative

dimensions of comparison for the flow-sensitive tools. For instance, a high precision anal-
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ysis would certainly have to sacrifice either its soundness or a possibly small number of

annotations. Furthermore, these analyses tend to be both expressive when the program-

mer knowledge is hard-coded in the form of annotations as well as scalable since they are

usually aimed for industrial use. Two static versions of the lockset algorithm we are aware

of for C are Warlock [29] and RacerX [11]. Warlock does not trace paths through loops

or recursive functions while RacerX pushes the envelope by using heuristics, statistical

analysis and ranking to produce a high quality set of concurrency bugs.

Model checking is a simple, yet powerful, technique. Broadly speaking, it performs

some sort of simulation of the application by exploring all possible execution paths for all

possible data in order to detect any undesirable behaviours. Examining all possible thread

interleavings and for each interleaving every possible control and data-flow is the näıve

way to extend model checking to concurrent applications. Undoubtedly, we are talking

exponential; this algorithm could soon bring about a combinatorial explosion even for

small applications. In short, model checking must find ways to ally with pruning and fight

against time.

Other static race detection approaches include language-based ones such as nesC [13]

for C and Guava [5] for Java.

Table 6.1 presents a comparison and overview of the race detection techniques discussed

so far in this chapter.

Table 6.1: Rough characterizations of different race detection techniques

Technique Annotation Expressiveness Scalability Soundness Precision

Type-based system High Low High Yes Low

Dynamic race detection None Medium Medium No Medium

Model checking None High Varies Yes High

Flow-sensitive analysis Varies Medium High Varies Varies

6.3 Race Detection in Erlang

QuickCheck [4] is an Erlang property-based testing tool. QuickCheck users write prop-

erties that should hold and test their running code against them. The tool uses controllable

random test case generation combined with automated test case simplification for a more

painless error diagnosis. Very recently, QuickCheck came with an extension to unit test

Erlang programs for race conditions. A concurrent test case passes successfully, if there

exists some ordering of the test’s function calls for which the user specification still holds.

In case the test fails, PULSE may help out in tracing what really happened. PULSE is a

ProTest User Level Scheduler for Erlang that randomly schedules the test case processes

and records a detailed trace. This method is only semi-automatic as it relies on the user

to specify, using a special QuickCheck module (eqc par statem) that models a parallel

state machine, the properties for which to test for possible atomicity violations. As a case
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study, the method was applied to a small (200-line) Erlang program detecting two race

conditions.

While we prefer our method because it is completely automatic and more scalable, the

two methods are actually complementary to each other. Dialyzer cannot detect one of

the two race conditions in that program because this race depends on the semantics of the

operations which are supplied by the user (in the form of properties that should hold).

The other race condition could be detected by dialyzer if its analysis were enhanced

with information about the behaviour of the gen server module of Erlang/OTP. More

generally, it is clear that in both tools the more the information which is supplied to them

about which operations and built-ins can cause atomicity violations, the more the race

conditions that they can detect. But a fundamental difference between them is that in our

tool this responsibility lies in the hands of the tool implementor while in QuickCheck’s

case in the programmer’s.

With the exception of QuickCheck, we are not aware of any other concurrency error

detector in Erlang. We hope to see more research and tool development in this direction.



Chapter 7

Concluding Remarks

In this thesis, we characterized the kinds of data races that Erlang programs can exhibit

and presented an effective static analysis technique that detects them. By implementing

this analysis in a publicly available and commonly used tool for detecting software defects

in Erlang programs not only were we able to measure its effectiveness and performance

by applying it to several large applications, but we also contribute in a concrete way to

raising the awareness of the Erlang programming community on these issues and helping

programmers fix the corresponding bugs. Data races are subtle and notoriously difficult

for programmers to avoid and reason about, independently of language. In Erlang there

are fewer potential race conditions and they are less likely to occur during testing, which

unfortunately also makes it less likely that programmers will be paying special attention

to watch out for them when programming. Despite the restricted nature of data races

in Erlang, our experimental results have shown that the number of race conditions is not

negligible even in widely used applications. Tools to detect them definitely have their

place in the developer’s tool suite.

Various additions to dialyzer’s functionality are already planned. We intend to extend

our race analysis for the tool to become capable of detecting more of the shifty concurrency

errors that may push a programmer over the edge. Enriching dialyzer’s specification

language [16] for programmers to specify which code fragments are intended to be atomic

is another thought on the table since many concurrency errors are manifested as atomicity

violations. In every case, our research will continue to be based on the feedback that we

seek from experienced Erlang users and large, concurrent Erlang applications.
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