EONIKO METXOBIO [IOAYTEXNEIO
TMHMA HAEKTPOAOTON MHXANIKQN KAT MHXANIKON
YIHOAOTTETON

Touéac Teyvohoylag IThnpogopixric xal YroloyLotdv
Epyaothpio Aoywrig xaw Emotiung Yroloyiotéhy

Kwdwxonoinon Itbavotixdg EAEYEwwyY Anodeléewy

AIITAQMATIKH EPI'AYIA

TOU

Avdpéa I'. Tahdvn

EnfBAénmyv: Evotdbioc Zdyoc
Kobnyntic E.M.IL

Ab¥va, loviiog 2009

EONIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOI'QN MHXANIKQN
KAT MHXANIKON YITOAOTTIETON

Touéag Teyvohoyiag IIAnpogopixfic xal Yroloylotdy
Epyaothpio Aoyurc xal Emiotune Yrohoyiotdy

Kwdwxonoinon Ibavotixdg EAEYEwwY Anodeléewy

AIITAQMATIKH EPI'AYIA

TOU

Avdpéa I'. Tahkdvn

EnBrénmyv: Evotdhioc Zdyoc
Kobnyntic E.M.IL

EvyxplOnxe and v tpwuelt| e€etaotixy emtpons Ty 231 Tou loudiou 2009.

Evetdbiog Zdyog ‘Apne Hayouptlic Anuvtens Pwtdxng
Kabnyntic E.M.IL. Aéxtopag E.M.II. Aéxtopag E.M.II.

Ab#va, Tovrog 2009.

Avdpéag I'. Tardvng
Awmhouatovyos Hiextpohdyog Mnyavixds xar Mnyavixde Yrmohoyiotdyv
E.M.IL

Copyright ©Avdpéac I'. I'ardvne, 2009 Efvixé Metadpio Hohuteyvelo.
Me emgUraln navtog Suxanduatog. All rights reserved.

Arnayogetetal 1 aviiypagy, anofixevon xou dwvour g napoloag epyactag, €€
ohoxAfjpou 1| TUAUATOS aUTAC, Yio eunopxd oxomd. Emtpénetal n avatinwon,
arobrixevon xat Siavour Yo oxond un xepdooxomixd, exmadeutixic 1 epeuvnTixtc
@plong, uné TNy TEolndheam Vo AVAPERETAL 1) TNYT) TROEAELOTNE XL VO SLATNEELTAL TO
Tapdy uivuua. EpotAuata tou agopoldv 1 yefiorn tng epyactiog yio xepdooxonixnd
ox0To TEENEL VoL aneLBUVOVTaL TPOS TOV GUYYPAUGEA.

O andelc xaL Ta GUUTERAGUATA TOU TEPLEYOVTAL GE AUTO TO EYYPUPO EXPRElouv
Tov ouyypagéa xoL Sev meEneL va epunveubel 6TL avtinpoownelouy TiC enlonueg
Oéoeic Tou Efvixod Metadfiou Ilohuteyvelou.

Mepindm

Tr Sexaetio Tou 1990, anodelytnxe éva Hedenua eorpetinc onuactiog otn Bewpla
TohuTAOXOTNTAG. LUYXeXpUEV, UTdpyEL TeéTog xwdixomolinong Twv anodellewy
xoL eEAEYYou e opfdTNTdC Toug, Tétoltog Bate o enahnbeuthc va Swafdlel 3 ubvo
duaduxd Ynela tne anddeléne xat va anoxtd nbavotixt autonenolinomn yio Ty Loy d
™. Axbun, o véog autdg Tpoémog xwdixomoinong apxel va £xel U6VO TOALGVLULXS
ueyahitepo uéyelog and autd e apywic anddellng. Ou ectidoouue oe éva
My6tepa toyved anotéheoua, to onolo anoxakeitor to PCP Oedpnua (Hedpnua
MBavotixde EréyEuumy Anodellewv), ot onolec o enahnbeutiic ypnoudonotel
Aovoaplfuu tuyaudtnta xaw avalntd éva otabepd aplBud duadixdy dnplwy otny
anédelln.

H npdtn anddelln tou Bewpriuatog ouvdiooe nponyolueva anoTeAEoUATA TVE
oe dudpopeg ahyeBpwés teyvixég xat Alyo apydtepa o Hastad mapouciace tov
emaAnfeuth TV 3 Suadwdy Ynplwy tou avagépaue tponyovuévws. To 2005, n Irit
Dinur édwaoe pia auvduastixr anddelln tou fewpruatoc. O xlplog 6T6)0¢ auThg
e Simhouatixhc epyactog elvat 1 uehétn g anddellne tne Dinur. And autd
oxomd, Bu emxevipwholue aToug Touelc Tou amattovvTOL YLoL TNV XATAVONGT TNC
anddellng, uetald Twv omolwyv elval ol emextatixol ypdgol xuL 1 xwdixonolnon
xotd Hadamard.

AéZeLg xAeldLd

PCP Gedpnua, [ibavotxde EXéyEwuec Anodelec, Anédeln Dinur, Enextatixol
yedgol, Kwduxonoinon Hadamard.

Abstract

In the 19906s, a major theorem was proved in complexity theory. Namely, there
is a format of writing proofs and checking their validity, such that the verifier
reads only 3 bits of the proof to obtain probabilistic confidence in the validity
of the proof. Furthermore, the new format needs only to be polynomially longer
than the original proof. We will concentrate on a weaker result, stated as the
PCP theorem (standing for Probabilistically Checkable Proofs), in which the
verifier uses logarithmic randomness and queries a constant number of bits in
the proof.

The first proof of the theorem combined previous results on various alge-
braic techniques and later Hastad presented the 3 bit verifier mentioned earlier.
In 2005, Irit Dinur provided a combinatorial proof of the theorem. The main
purpose of this diploma thesis is to overview Dinur’s PCP construction. In this
perspective, we shall focus on the subjects that are essential to understand the
proof, amongst which are expander graphs and the Hadamard encoding.

Keywords

PCP theorem, Probabilistically Checkable Proofs, Dinur’s proof, Expanders,
Hadamard encoding.

Euvyoagiotieg

Auth 1 Sumhwuatixt| dev Ha uropoloe va elye mpayuatonownlel ywelc tn cuuBols
Tou X. Zdyou oe moAAd exnimeda. Qg xabnyntic ota mpomtuytaxd pabfuata Tng
oy ohfg, uou €dwae ta epebiouata vo acyornid ue Ty emoTiUn TOV LTOAOYLETAOV.
Q¢ enPrénoy tne Simhwuateic authg, Ue evldppuve xat wou édwae tn duvatdtnta
va acyornie ue éva mohd evdilagépov xal mohimhevpo Oéua. Téhog, éxave auth
N Simhwpoatxy epyacto ya eunetpla povadixt| épvovtag Ue oe enagy| Ue tArfog
avlpdrwy Tou popalduacte xoLvd epeuVNTIXE EVBLAPELOVTA.

O feha enlong va euyoplotiow ta dhha Vo UEAn TNg TeLENOVC EEETAOTIXTC
emtponfic, x. Ilayouvptln xou x. Pwtdxn, mov extég and diddoxoviéc Hou, ue
xabodhynoay ue g cLuUPouAéC Toug Yl TNV xaAUTERN SuvaTH TAPOUGLUGT NG
dimhwpatinrc epyaotag.

Evuyoapiotd enlong v epyaotnplaxt oudda tou Corelab yua to euydpioto xat
dnuLovpyed xAluo Tou Uou TEooEpepay XAl TN cuUUETOYY Toug oty dbehwon
ATEAELGDY TNG TaEOLGiaonS.

O¢hw TéhOC VO ELYAPLETAGW TOUS YOVELS Uou, Tou oe xdbe pdon tne Lwhc uou
ue otnellouv e Tov xahiTepo duvatéd TeEdTo.

Contents

Introduction

1.1 Origins of PCP Verifiers

1.2 The Class PCP

1.3 The PCP Theorem

1.4 Historyof Results.

1.5 This Dissertation
1.5.1 Knowledge assumed of the Reader

Expanders

2.1 Edge Expansion and Eigenvalues
2.2 Random Walks Lo
2.3 The Expander Mixing Lemma
2.4 Random Walks on Expanders

Existence of Expanders

3.1 A Probabilistic Argument
3.2 The Zig Zag Producto
3.3 Constructing Expanders via the Zig Zag Road
3.4 An Explicit Construction

Error Correction

4.1 Code Theory Basics

4.2 Hadamard Code
4.2.1 The Parameters of Hadamard Code

4.3 Local Testing o

4.4 LTA for Hadamard Encodings

4.5 Local Decodability

Dinur’s Proof of the PCP theorem

5.1 Constraint Satisfaction Problems
5.2 PCP theorem and Hardness of Approximation
5.3 The PCP theorem by Gap Amplification
5.4 Overview of the Gap Amplification Proof

11
11
12
14
15
16
16

19
19
26
28
30

33
33
34
38
39

43
43
45
46
47
47
50

10 CONTENTS

5.5 Preprocessing Step L o oo 99
5.5.1 Regularization 59

5.5.2 Expanderizing. oo 62

5.5.3 Combining the two Preprocessing Steps 64

56 Powering Step 65
5.6.1 The Original Construction 65

5.6.2 The Modified Version of Graph Powering 68

5.7 Proof Composition 7
5.7.1 Local Testing Revisited 79

5.8 Alphabet Reduction, 84
Bibliography 87
6 Appendix 91
6.1 Useful Inequalities 91

6.2 Rayleigh Quotient L. 92

Chapter 1

Introduction

1.1 Origins of PCP Verifiers

As it is widely believed, the class NP consists of problems for which there
is no efficient algorithm. NP can be defined as the class of languages for which
there exists a polytime deterministic verifier that can check membership proofs.
The verifier can be viewed as a polynomial time deterministic Turing machine
with oracle access to a string which encodes suitably the membership proof of
a given input. It is not hard to see that this notion of NP is equivalent to its
standard definition.

NP has played, and probably continue to play, a central role in complex-
ity theory, since it is inextricably related to the current views on what can be
computed efficiently. A journey through time can clearly convince us for this.

The theory of NP completeness due to Cook [Coo71], Levin and Karp [Kar72]
in the 70’s triggered instantaneously the interest of the computer science com-
munity on classifying problems according to their complexity. The results of this
research showed that NP was the perfect theory model to unify a wide array of
optimization problems arising in practice. The next question that immediately
arose was “Ok, I proved that 3SAT is not efficiently solvable. What should I do
with an instance of such a problem?”.

Such type of questions in combination with the work of algorithm designers
lead to the notion of approximation algorithms. That is, given an NP-complete
problem, is an approximation of its optimal solution feasible and if yes, up to
what degree. NP even provides the answer for some of these questions. But
things became much more intricate, since the new type of questions were not
that straightforward to answer. The classical reduction scheme seemed to reach
a bottleneck which was hard to surpass.

This was a good reason for a good many people to start looking toward
other classes of languages. Others started to introduce non-standard methods
of checking membership proofs in a quest of different characterizations of NP.

11

12 CHAPTER 1. INTRODUCTION

The landmark of these approaches is the Interactive Proof system introduced by
Goldwasser, Micali and Rackoff [GMRS&9] as well as the Arthur-Merlin games
introduced by Babai [Bab85]. The main ingredient of their works is a verifier
interacting with an all-powerful adversary, called the prover, aiming at convinc-
ing the verifier that a given input is in the language, even if this does not hold.
Soon enough, the classes of languages defined by these proof checking protocols
were proved to be equivalent.

The previous two protocols soon evolved into multi-prover interactive proof
systems (MIP) [BOGKWS8S8], where a single verifier interacts with multiple
provers to verify an assertion. The provers cannot communicate with each other.
Fortnow, Rompel and Sipser [FRS94], as part of understanding the complexity
of MIP, proved that MIP is the set of languages for which membership proofs can
be checked by a probabilistic polynomial time verifier that has random access
to the proof. Since such a verifier can check exponential-sized proofs, MIP is a
subset of the exponential analogue of NP, NEXPTIME.

In this context, the most important aspect of the previous work is the in-
troduction of PCP verifiers in a primal form, where the interactive proof system
was substituted by a single proof to be checked by a probabilistic verifier. From
this point on, the more restrictions imposed on the verifier the more spectacular
the results were. Imposing restrictions on the verifier was somewhat natural
in terms of measuring its efficiency, starting with the work of Babai, Fortnow,
Levin and Szegedy [Bab91], where the verifier was restricted in terms of its com-
putation time and the proof had specified length. Feige, Goldwasser, Lovasz,
Safra and Szegedy [FGLT91] were the first to point out that the number of the
queries into the proof, the randomness of the PCP verifier and the probability
that the verifier accepts a proof membership can be associated with the hardness
of approximating the MAX CLIQUE problem. Arora and Safra [AS92] explicitly
defined the class PCP stressing its dependence on two resources: the random
bits that the verifier uses and the number of queries that it is allowed to make
into the proof.

1.2 The Class PCP

Following the previous discussion, we present the formal definition of the
class PCP. Prior to that, we give the definitions of oracle access to a proof string
y and restricted verifiers.

Definition 1.1 (Oracle Access). An algorithm A, receiving as input x and a
proof string y, has oracle access to the string y, if it can access a specific index
within y with a cost of one step. This is denoted by AY(x).

Definition 1.2 (Restricted Verifiers). A verifier V is a (r, q)-restricted ver-
ifier for a language L if for input a string x, a proof string y and a random string

1.2. THE CLASS PCP 13

p of length at most r, V decides whether VY(z,p) =1 or 0 by querying at most
q bits in the proof.

Remark 1.1.
For our purposes, V will be non-adaptive, i.e. the queries into the proof depend

only on the input z and the random string p and not on the way that V' accesses
the random bits in p.

A classic figure illustrating the verifier follows below.

[pooly]

e

Verifier

| random string|

Definition 1.3 (The Class PCP). The class PCP4[r,q| is the set of lan-
guages L for which there exists a (r, q)-restricted polynomial-time verifier V and
a constant p such that:

1. [COMPLETENESS] : z € L = 3y, |y| < [|2|P; Prycfo,13 [VY(z,p) = 1] > c.

2. [SOUNDNESS| : x ¢ L = Vy, |y| < [z[P; Pryefo,1y-[VY(2,p) = 1] < s.

The important parameters of the above definition are r, ¢, ¢, s. From these four
parameters, the first two are of primary interest. In our scope of interest, ¢ will
be equal to 1, while s will be set to 1/2. Unless otherwise stated, PCP[r, ¢] will
denote the PCP class with the parameters ¢ and s mentioned. Note that ¢ =1
implies perfect completeness with its standard notion in logic. Moreover, the
soundness s is related to the number of queries allowed. The intuition behind this
is that the k times repetition of the verification process, reduces the soundness
parameter to s¥ but increases the query complexity to k - ¢ and the random bits
used to k - .

We will not study PCP models with different soundness and completeness
parameters. But the more general definition has lead to some sharp results which
we will refer to in the next section.

14 CHAPTER 1. INTRODUCTION

1.3 The PCP Theorem

Arora, Lund, Motwani, Sudan and Szegedy [ALM"92] proved the following ma-
jor theorem.

Theorem 1.4 (PCP Theorem).

NP = PCP[O(logn),O(1)]

The theorem is striking in the sense that we can gain probabilistic confidence
in the correctness of any NP membership proof by querying a constant number
of bits in it. This result is highly nontrivial and the original proof was rather
intricate too. Some of the techniques employed, to mention but a few, were the
arithmetization of 3SAT, low-degree polynomials over fields, low-degree testing,
sum-check protocols and Hadamard codes.

Note that proving the direction PCP[O(logn), O(1)] C NP is easy, as is captured
by the following lemma.

Lemma 1.5.
PCP[O(logn),0(1)] C NP

Proof Consider a verifier V for L € PCP[O(logn),O(1)] and suppose that we
are given an input = with |z| = n. Note that V uses clogn random bits and
k = O(1) bits. Thus, there are at most 2¢1°8™ = n¢ different runs of the verifier
on the input z. In each run V queries k bits into the proof. Thus, the proof
should not have length greater than O(1) - n® = O(n¢), which we assume to be
without loss of generality n? for some constant d.

Assign boolean variables vy, ...,y,qs for each of the proof’s positions. We
construct a boolean function for each of the runs of V' as follows.

e Fix a random string p € {0, 1}¢1°8",

e Assume the corresponding queries made by V' given the string p are
Yivs o5 Yig,

e Build a boolean function f,(y;,, ...,) which evaluates to 1, whenever
the assignment to the variables y;,,...,y;, makes the verifier to accept.

This can be accomplished by checking all the 28 = O(1) possible assign-
ments to y;,,...,¥; in constant time.

Thus we can construct in polynomial time n¢ functions f, which simulate each
of the runs of V' on input z. Clearly

o If x € L, there is a proof which satisfies all the functions.

1.4. HISTORY OF RESULTS 15

e If © ¢ L, every proof satisfies at most 1/2 of the functions.

It remains to observe that an assignment to the y;’s is an NP witness for x. m

The above proof has some interesting elements which are not obvious on first
sight. First of all, note that each f, is a boolean function on a constant number
of variables, and thus it can be formulated as a 3SAT formula with a constant
number of clauses (recall that k¥ = O(1)). Thus, given a verifier for an NP
language we can clearly build a 3SAT formula with polynomial number of clauses
on polynomial number of variables. Since at most 1/2 functions of the f, can
be satisfied, this can be used to prove that MAX-3SAT is hard to approximate.
A detailed proof of the above intuition can be found in [Aro94]. We will present
essentially the same argument from a different perspective in Chapter 5.

What is important to stress though is that, viewing the NP as the PCP
verifier of Theorem 1.4 can lead in a straightforward manner to hardness of
approximation results, which justifies the significance of the theorem.

1.4 History of Results

The story of the results that finally lead to the PCP theorem is a long one.
We present a short overview over the sequence of such results.

Phase 1. The first non-trivial result was due to Babai, Fortnow and Lund
[BFLI0] who showed that NEXPTIME = PCPpoly(n),poly(n)]. Note that
the PCP verifier queries the proof into polynomially many places, whereas the
NEXPTIME verifier would look the whole exponential-sized proof.

Babai, Fortnow, Levin and Szegedy [Bab91] scaled this result down to NP,
thus proving NP C PCP|poly logn,poly logn]. Note that the randomness intro-
duced in the PCP model, reduced the query complexity of the standard verifiers
for these classes by a polylogarithmic factor. This was unexpected at the time.
Still, these PCPs did not provide any new characterizations of NP since the
containments were not equalities.

Phase 2. In phase 2, exact characterizations of NP were proved including the
PCP theorem itself. The first such characterization was provided by Arora and
Safra [AS92], namely NP = PCP[O(logn),o(logn)]. Their work was innova-
tive in many aspects, the most important of which was the proof composition
technique, a technique that is prevalent to subsequent PCP constructions.

It was in 1992 that Arora, Lund, Motwani, Sudan and Szegedy [ALM'92]
in a joint work proved the PCP theorem. The fact that query complexity was
independent of the proof size astonished the whole computer science community.

16 CHAPTER 1. INTRODUCTION

Phase 3. Research in this period examined the tightness of the parameters
appearing in the PCP theorem. It was already known that any PCP for an NP-
complete language should have query complexity at least 3. In fact, most works
conjectured that PCP; 4[O(logn), 3] should belong in P for some s > 1/2. John
Hastad [Has97] settled these conjectures in a hard-cut manner proving that

NP = PCPI—G,% [O(logn), 3]

for any € > 0. Note that Hastad’s PCP did not have perfect completeness but
this was fixed in [GLST98], where NP = PCP, 1, [O(logn),3] was proved for
72

any € > 0. Karloff and Zwick [KZ97] established the optimality of Hastad’s
result, by proving that P = PCP, 1[O(logn), 3].
2

1.5 This Dissertation

The proof of the PCP theorem by Arora, Lund, Motwani, Sudan and Szegedy
[ALM192] was mainly algebraic, making extensive use of polynomial fields. This
made the proof inaccessible to many computer scientists who were not that eager
to follow the thorough PCP construction. This was the only “flaw” in the PCP
theorem, for the astonishing theorem it was and the simple description it had,
its proof was rather discouraging to go through. It is important that the reader
should not get the wrong idea: the initial proof of the PCP theorem was startling
by itself, using global techniques which can be applied to many fields.

In 2005, Irit Dinur [Din05], inspired by Reingold’s work [Rei04] on L = SL,
presented a less sophisticated proof providing a combinatorial argument for the
NP-hardness of approximating a constraint satisfaction problem on graphs. This
proof, while still applying the idea of proof composition, differed radically in
grasp using an amplification scheme for the fraction of unsatisfied constraints,
in contrast to previous approaches which preserved unsatisfiability in sufficiently
big levels. The new proof has an immediate combinatorial essence which was
absent in other PCP constructions.

In this diploma thesis, we study thoroughly Dinur’s proof (chapter 5). To
accomplish this goal, we study expander graphs and their properties to get a
higher understanding of Dinur’s construction (chapters 2 and 3). Moreover,
we will go through some classical results in coding theory (chapter 4), so as
to successfully follow the proof composition scheme. We will not pursue the
applications to hardness of approximations. The interested reader may find
such results in [Aro94], [Vaz01].

1.5.1 Knowledge assumed of the Reader

This diploma thesis is written in a self-contained manner so that the reader
does not need to have high-level knowledge on any topic. Still, an elementary

1.5. THIS DISSERTATION 17

background on linear Algebra will presumably be useful for chapters 2 and 3, and
familiarity with probability theory will certainly be handful at the gap amplifica-
tion proof. As far as complexity theory is concerned, we assume that the reader
is acquainted with the standard notions of NP and polynomial time reductions.
For an introduction to these, see [Pap94].

18

CHAPTER 1.

INTRODUCTION

Chapter 2

Expanders

Expander graphs are a special class of graphs originating from the field of
algebraic graph theory. Roughly speaking, an expander is a sparse graph in which
the neighborhood of any set of vertices S is proportional to the size of S. As we
shall see, this structural property of expanders has many useful extensions and
together with the existence of constant degree expanders with high expansion,
has lead to various beautiful and unexpected results. The proof of the PCP
theorem by Dinur is heavily dependent on expanders and thus, it is more than
important to study them in their own context.

2.1 Edge Expansion and Eigenvalues

Before we proceed into the formal definition of the edge expansion property,
we will first introduce some notation. Assume that we have an undirected graph
G = (V, E) and two disjoint subsets A, B of V. We denote by E(A, B) the set of
edges with one endpoint in A and the other in B, i.e. the edges which separate
A from B.

Definition 2.1 (Edge expansion). Let G = (V| E) a graph. The edge expan-
sion of G, denoted by h(G) is defined as

|E(S,V —95)]

h(G) = min
(G) 5]

ScV
S| <[V]/2
Note that the edge expansion property is a lower bound on the number of edges
across cuts (normalized by the size of the sets involved). Other definitions of

edge expansion are possible, as in [MR95] but most of them can be proved to be
equivalent.

Definition 2.2 (Expander graph). A graph G = (V, E) is a (n,d, ¢) expander
if V| =n, G is d-regular and h(G) > c.

19

20 CHAPTER 2. EXPANDERS

The adjacency matrix of a graph G = (V,E) is a |[V| x |V| matrix A in
which the (u,v) element is equal to 1 iff (u,v) € E. For simplicity, we will
denote by Ay, the (u,v) element of A. Observe that for an undirected graph,
A is symmetric. In what follows, A will be the adjacency matrix of a d-regular
undirected graph G and n = |V the number of vertices in G. Note that the
column as well as the row sums are all equal to d since the graph is d-regular.

Since A is a symmetric real matrix, it has n eigenvalues. Denote them by
A1, ..., Ap. From now on, we will consider them in descending order

A= 2\

Even if the eigenvalues are not necessarily distinct, there exist n corresponding
eigenvectors ey, ..., e, which form an orthonormal basis of R".

The following theorem sheds some light on the connection between the eigen-
values of the adjacency matrix and basic graph properties.

Theorem 2.3. For a d-regular (multi)graph G = (V, E) with adjacency matriz
A whose eigenvalues are Ay > Xo > ... > A\

1. \y =d.
2. Ap > —d.
3. G is connected iff \y > Ao.

4. Suppose that G is connected. Then G 1is bipartite iff A, = —A1.

Proof Consider an eigenvalue A of A. Let x an eigenvector corresponding to A.
Denote by z, the largest entry in x. We can clearly assume that x has a positive
entry (otherwise we may consider —x). Thus x, > 0. Note that

(AX)y = X -2y = Z AppTu = X - Ty
(u,w)EE
and by the selection of x,
d-zy > Z AypTy = Aty = (d— Ny >0 (2.1)
(uw)EE

and consequently d > \. Considering the smallest entry in x, one can prove in
a similar fashion that A > —d. Thus for every 1 < i < n we have that

Al < d

Since the graph is d-regular we immediately obtain that

1 1
Al:|=d

2.1. EDGE EXPANSION AND EIGENVALUES 21

and consequently A\; = d.

Let’s return to (2.1). It is straightforward to see that equality holds iff
(u,v) € E implies z,, = x,. Thus if G is connected then the space of eigenvectors
such that Ax = d - x has dimension 1 and consequently the eigenvalue d is of
multiplicity 1.

Suppose now that A\; > Ao and G has wlog 2 components. Let V7 and V5 the
sets of vertices in each component respectively and define the indicator vectors
X1,X2

(X1)y = 1, ifveW
Vv =70, otherwise

and similarly for xo. Then clearly Ax; = d - x; and Axy = d - Xo. Since X3
and xo are independent, we have that the the space of eigenvectors such that
Ax = dx has dimension 2, and thus d has multiplicity 2 which is a contradiction
to our assumption.

Finally, we prove 4. If G is bipartite then there exist Vi, Vo C V such that
E C (V3 x V) and V3 UVy = V. Define x such that

(X) . 1, ifveW
Y| —1, otherwise

Clearly Ax = —d - x and since |A\| < d for each eigenvalue, it must be the case
that A, = —d.

For the converse, let x the eigenvector corresponding to —d and note that
for each vertex v € V' we have that

Z Aty = —d -z, = Z Appy| = d - |zy| = Z Ayplzy] = d - |y

(u,w)EE (u,0)EE (u,0)EE

Summing over all v € V we obtain that each inequality must in fact be an
equality. Consequently, if we denote by N, the neighbors of vertex v, then it
must be the case that either x,, > 0 for all u € N, or z,, < 0 for all u € N,,.
Now, define V; the set of vertices for which z, > 0 and V5 the set of vertices
for which z, < 0 (note that z,=0 for some vertex v would imply that G is not
connected). It should be clear by the previous observation that there can be no
edge inside Vj or V. n

For our purposes the eigenvalue with the second largest magnitude has the
most interesting properties. Namely, we will denote by A(G) = max{|Az2|, [An|}.
For simplicity, when the graph G is fixed, we will use \ instead of A(G).

22 CHAPTER 2. EXPANDERS

Next, we shall introduce some linear algebra notation. Consider two vectors
u,v € R”. Then, the inner product of u,v is defined as

n
uTv: E U4
=1

where u' denotes the transpose vector of u. The vector u is orthogonal to v,
denoted by u_Lv, iff u'v = 0. The Euclidean norm of the vector u is equal to

n 1/2
Jul = VaTu = <Z u)
1=1

whereas the [1-norm is equal to

n
lafls:=) Jusl
i=1

Recall the Cauchy-Schwartz inequality u'v < ||ul| - [|v]|.
The next theorem, will become handy in the proof of the main result in this
section. A proof of the theorem can be found in Appendix.

Theorem 2.4 (Rayleigh Quotient). Let A a symmetric real matriz with eigen-
values Ay > Xo > ... > A\, and eigenvectors €1, e, ..., e, respectively. Then

TA
1. \{ = max %
x e R* [

T
X Ax
2. Forl<i<n, \; = max -3 -
xeR" x|
XJ_el,...,ei_l

We are now ready to proceed to the main result, which relates the spectral
gap d — A\(G) of a graph G with its edge expansion h(G).

Theorem 2.5 (Cheeger’s Inequality). For a d-regular graph G = (V, E), the
following inequality holds

d— \G) < 2h(G). (2.2)

IN

Proof We begin by proving the right part of the inequality. Let A the adjacency

2.1. EDGE EXPANSION AND EIGENVALUES 23

matrix of G and recall that by Rayleigh’s quotient,

T
x Ax
M) = e
Zu,v AypTy Ty
—max —m————
xleq XTX
— max ZU,U AUU (x’lZL + x?}) - ZU,U Auv (xu - x'l})Q
o xleq 2XTX
— max 2dx"x — > Aun (@0 — y)?
xleq 2XTX
= d — max Z“’U Aun (2 = 20)*
xleq 2XTX

Thus, we obtain the more convenient form for our purposes

Ao (T4 — T0)?
df)\:maxzu’v w(®y v)

xleq 2XTX

(2.3)

Note that e is actually the vector 1,, = (1,..., 1)T multiplied by a scale factor
of 1/4/n (so as to have euclidean norm equal to 1). To see this, observe that by
the regularity of G,

Al, =d1,

which means that 1,, is actually the vector corresponding to A\ = d, i.e. ey.
Thus, the maximum in (2.3) is actually over the zero-sum vectors x. Our task
is to present such a vector x, which renders the right part of (2.3) larger than
2h(QG).
For this purpose, consider a set S C V with |S| < |V|/2 such that h(G) =
|E(S,V —9)|
|51

. Construct vector x as follows:
o — V|—|S], ifvesS
v —|S|, otherwise
Clearly the components of x add up to zero.
To make computations easier to follow, suppose that n = |V| and s = |9]|

and |E(S,V — S)| = e. Note that e = s- h(G) by the definition of S. It is
straightforward to see that

x'x = Z 22 = s(n—s)% 4+ (n — s)s® = ns(n — s) (2.4)
ueV
and, since z, — =, = 0 if u, v belong to the same partition of the cut defined by

the set of edges |E(S,V — 9)|,
D Ay — m0)? = 2|E(S,V = 9)|([V] = [S| +|S])* = 2ne = 2h(G)n’s (2.5)
U,

24 CHAPTER 2. EXPANDERS

Using (2.4), (2.5) and recalling that s < n/2, (2.3) becomes
n - h(G)

n—s

d—X<

< 2(Q)

which is exactly the right part of (2.2).

For the left part of the inequality, consider a vector x € R™ equal to the
eigenvector e and assume that at most n/2 of its entries are positive (otherwise
we can work with —eg). Introduce vector y € R™ such that

Yy = max{z,, 0}.

Note that Ay > Ay component-wise. To see that this is the case, observe that
Yy > 0 and y, > x, for each v so that

Z ATy = ATy = Ny, if 24 >0
= > v
It follows from the above property that

y Ay > \yly

In order to get the expression d — \, we rewrite yL Ay as

yTAy = Z Auvyuyv

(uv)

1 1
= _5 ZAuv(yu - yv)2 + 5 ZAuv(yz + 912;)

u,v

1
= =53 Aol — o) + dyy

so that)
Zu,v Auv (yu - yv)

2yty
Using Cauchy Schwarz inequality twice we can further write

Z Auv(yu - yv)2 Z QAUU(?JZ + yg) > Z Auv(yu - yv)2 Z Auv(yu + yv)2

u,v u,v U,V

d—X> (2.6)

4dy Ty

2
> (ZAw 52 r)
U,

Thus, (2.6) becomes

2
1 ZuvAuU ’yg _yg}
d—\> — : 2.7

_2d< 2y Ty (27)

2.1. EDGE EXPANSION AND EIGENVALUES 25

Since the right hand side of (2.7) is symmetric, without loss of generality we
may assume that y, are in descending order, i.e. y; > ... > y, and consider ¢
to be the largest index such that y; > 0. Recall that ¢ < n/2. We can now get
rid of the absolute values in the sum

ZAuv‘yu yv‘_QZZAZ] _yj

lel
n j—1

—2222142] _yz—&-l)

=1 j=i r=t

t r n
2222 Z Aij(yp = yie1)

r=1 i=1 j=r+1

t
=2> (W —yr) YD Ay (2.8)
r=1

1<r j>r

where the second step used the telescoping series 32 —yZ 1 and the third a change
of summation. Considering the sets S, = {v1,...,v,} for each 1 <r <, it is
straightforward to see that

ZZAU = |E(S,V = S;)|
i<r j>r
and (2.8) yields

t
D Awlys —val =2 |ES,V = S)(y7 = yisa)

U, r=1

> QZh)SrI(y y1%+1)

t

=21(G) > r(yF —yl)
r=1
t

=21(G) Y (ry? — (r — 1)y})
r=1
t
G)>
r=1
= 20(G)y'y
Using the last inequality and (2.7), the desired result follows. m

Remark 2.1.
The argument of the proof for the left part of Cheeger’s inequality can easily be

modified to present a cut of edge expansion at most \/2d(d — X).

26 CHAPTER 2. EXPANDERS

Remark 2.2.
Cheeger ’s inequality bounds h(G) so that

% < h(G) < /2d(d = N).

Computing h(G) exactly is coNP hard. An intuition for this is that it suffices
to present a set S which makes h(G) < ¢. Cheeger’s inequality is extremely
useful because the expansion of most explicitly constructed families of expander
graphs is proved by bounding the spectral gap first. Alon [Alo86] was the first
to state this equivalence between edge expansion and spectral gap, though he
worked with vertex expansion.

2.2 Random Walks

Random walks on expanders are particularly interesting due to their property
that they are rapidly mizing: starting at any vertex, after a few steps, there is
almost equal probability of being in any vertex.

More formally, consider a d-regular graph G = (V, E) with n vertices and
adjacency matrix A and let {X;}9°, be a sequence of random variables such that
X, eV.

The sequence {X;}?°, is a Markov chain if for every sequence of vertices
{vi}32, the following memoryless property holds for each i > 0:

Pr[Xit1 = vi41| X = vy ..., X1 = v1] = Pr[Xip1 = 01| X5 = vj]

In other words, X; is a Markov chain iff the next step of the walk depends
only on its current state and not on the steps taken so far to arrive at the
current state. It follows that a Markov chain is determined by the parameters
Ty = Pr[X;41 = u|X; = v] and it is natural to call the matrix T' the probability
transition matrix.

A random walk on a d-regular graph G is defined as the Markov Chain with
transition matrix A = éA. Note that each entry in A is between 0 and 1 and
each row and column has sum equal to 1. Thus, in each transition step of the
random walk and assuming that the present state is a vertex u, we pick as the
next state one of the neighbors u of v according to A, and repeat the transition
step from u. For each step of the random walk, we may use a probability vector
p € R” such that the probability that the random walk is currently in vertex v
is equal to the v-th component of p. Thus, for every probability vector p, p, > 0
and), p, = 1. We denote the probability vector with the uniform distribution
11 by u.

n

It is pretty straightforward to see that the eigenvalues of A are related to

2.2. RANDOM WALKS 27

the eigenvalues of A by a 1/d scaling factor, namely

-1
A7; = EAM

whereas the (orthonormal) eigenvectors e; remain the same. Note that A\; = 1
1

and u = Jnel

Lemma 2.6. If at the i-th stage of a random walk the probability distribution
on the vertices is p, then at the (i + 1)-th stage, the probability distribution is
Ap.

Proof It suffices to show that Pr[X;;1 = u] = (Ap),. But this is true since

Pr[X;11 = u] ZPr it1 = u|X; = v] Pr[X ZAwpv =)u [

Thus, if we start the random walk according to an initial distribution p on the
set of vertices, the probability distribution after ¢ steps is simply At Note that
since u is the eigenvector corresponding to the eigenvalue 1 of A, Au = u and
consequently a random walk which begins from a uniform distribution remains
at a uniform distribution.

The following theorem shows that any random walk beginning from an ar-
bitrary probability distribution p converges to the uniform distribution at an
exponential rate.

'p — uH < AL
2

Proof We induct on . Set v = p —u. For ¢ = 0 the theorem states that
|v], < 1. To prove this, note that >, p, = >, u = 0 and therefore) v, = 0.
It follows that v u = 0 and consequently v is orthogonal to u. Since p = u+v,
vI'p = vI'v. Using the Cauchy Schwarz inequality,

2
Ivlly Iplly = (v P)* = [IvIl2

yielding ||p|ly > ||v||, (a more laconic way to obtain this inequality would be
to use the orthogonality of u, v and Pythagoras theorem for the hypotenuse p).
Since 0 < p, < 1 we finally have that

1/2 1/2
vl < lIpll, = (Zzﬁ) < (va) ~1

which proves the base case of the induction. _ _ _
Assuming the claim true for ¢ and noting that A’p = Af(u+v) = u+ Alv,

the induction hypothesis implies HAtVH2 < A'. We would like to prove that

HAHIVH2 <A HAtVH2 from which the induction step clearly follows.

28 CHAPTER 2. EXPANDERS

As we saw above v_1u and therefore v is a linear combination of the eigen-
vectors es, ... e, of A. Consequently, there exist constants ¢; such that v =
Y oiiq cie;. Therefore,

41|, = 4w

1 2

n
= At E ciAei
1=2

n

At Z CiAZ’eZ'

1=2

n

At Z C;€;

i=2
Ath

2

and the theorem follows. [
Remark 2.3.

Suppose that we are given a regular connected graph G. The above theorem

implies that the deviation from the uniform distribution aftert = ¢(1—X)"!1lnn
steps will be

1 c(1-X)"1lnn 1
HAtp—uH <N=(1-—"%— <ecln— —
27 (1—X)"1 - ne
Thus, after O <1i5\ log n) steps, the random walk will be inverse polynomially

close to the uniform distribution.

The interested reader is referenced to the excellent survey on random walks by
Lovész [Lov93].

2.3 The Expander Mixing Lemma

Up to this point, we have focused our conversation on regular graphs which
satisfy A < 1. If we further impose A to be close to 0, i.e. A < e for some € > 0,
one can get nice unexpected properties on such graph families. The following
lemma, proved by Alon and Chung [ACS88] illustrates one of those properties.

Lemma 2.8 (Expander Mixing Lemma). Let G be a d-regular graph with n
vertices and second largest eigenvalue in absolute value A and S, T two disjoint
subsets of its vertices. Then

B, -2 < 5. 4. /ST < %X-d.n
n

2.3. THE EXPANDER MIXING LEMMA 29

Proof Consider the indicator vector for S, denoted by 1g, having a one in
exactly those positions v for which v € §. Define similarly 17. Let A denote
the normalized adjacency matrix of G.

We write 1g as a linear combination of the eigenvectors e; of A, namely

n
1g = E c;,e; =cie1 +8
i=1

where s = 2?22 c;€;. In a similar fashion, write 1 as cje; + t. Note that
¢1 = eflg = |S|//n and likewise, ¢; = |T'|/y/n. Observing that |E(S,T)| =
13(dA)1y we have
E(S,T)=1%(dA)17

= d(6161 + S)TA(Cllel + t)

=d(cicieT Ae; + creT At + ¢fsTAe; +sTAt)
Each of the terms elTAt, sTAe, is equal to 0, since, for instance, At is a linear
combination of es, ..., e, and e; is orthonormal to each one of them. Thus

|E(S,T)| = d(ci1cdyel Ae; +sTAt)
T -
_d<5|‘+§AQ

n
Thus it suffices to prove that

‘STAt‘ <X IS|[T]
Using once again the Cauchy Schwarz inequality,

[sTAt] = ||s"A¢| < |57 | At (2.9)

It is easy to see that ||At| = HZLZ Ci:\ieiH < Al|t]|. Moreover || 15| > s, because
1g is the hypotenuse of the orthogonal triangle formed by the vectorss and ce;.
Similarly, ||17|| > t. (2.9) yields the desired inequality:

STAt| < ALl [Lr]) = A/ISIT] "

Remark 2.4.
Identifying the term d|S||T"|/n as the expected number of edges from S to T', we
can see that the expander mixing lemma bounds the deviation from the behavior
of a random graph. Indeed, a subset S of a random d-regular graph has d|S]|
edges with at least one endpoint in |S|. The probability of such an edge to have
the other point in T is exactly |T'|/n.

In a good expander, the second largest eigenvalue in absolute value A is
low and consequently the number of edges between two subsets of vertices is
approximately what it would be in a random d-regular graph.

30 CHAPTER 2. EXPANDERS

There is a partial converse to the expander mixing lemma stating that for a
d-regular graph, \ is essentially (up to a logd factor), the best constant that can
occur in the expander mixing lemma. Namely:

Theorem 2.9 ([BLO06]). Let G be a d—regular graph with n vertices. If for all
S, T CV the inequality

||T
’]EST all |‘<9 d-/|S||T]

holds for some fizxed 6 > 0 then
A=0 <9 <1+logg>>

2.4 Random Walks on Expanders

In this section we prove a really useful lemma which illustrates the power
of expanders. In fact, this lemma will be used in chapter 5 to show that the
correlation of two paths in an expander is low.

Lemma 2.10. Let G = (V, E) be a d-regular graph with A(G) < XA < 1 and let
F C E. Let ug,...,ug be a random walk in G where the starting point ug is
chosen by picking a random edge in F and then a random endpoint of the edge.
Then the probability that (ug_1,ug) is in F is at most

Fl | 55
A
|E|

Proof Let A denote as usual the normalized transition matrix of G. Denote by
dp(v) the number of edges in F' incident to vertex v. Then the vector describing
the initial distribution ug can easily be seen that it can be described be a vector
X whose v-th component is equal to df‘g}‘).

It must also be clear by now that the distribution of any u; in the path is
given by A'x. Specifically, the distribution of uy_; is y = A¥~'x. Moreover, if
the walk is at vertex v after k — 1 steps, then the probability that the last step
will be along an edge in F is F(U) . Thus

dp(v 2|F|x, 2|F
Pri(ugr,ug) € F) = 3o 20 = 57, 2002

veV veV veV
2|F 2|F ~

2.4. RANDOM WALKS ON EXPANDERS 31

We now write x as a linear combination of the eigenvectors of A, namely

X = E cie; =cre] +x
i=1

where x' =" , ¢;e;. Then
XTAk_IX = (Clel + X)TAk_l(Clel + X/)
=ceTA M te; + 2cieTAFIx + x'TAF1X
and observing that Ax' is a linear combination of es,...,e, we obtain that
el AF~1x/ = 0 and thus

xTAR1x = 2eT Ak le; + x'TAF~1x/

Note that elTAk_lel = ele; = 1, whereas x'TAF1x" < \bx'Tx! from Rayleigh’s
quotient. In addition, ||x"|| < [|xT| due to Pythagoras’ inequality and

e fz<2|F\> 7

It follows that

~ 1
xTAk—1x < -+ NexT'x
n

But we can see that

dp(v)\? dr(v) dp(v) dr(v) d
— < 1m . = 1m < —
* " (2|F| > v 2[F| 4= 2|F]| v 2[F| — 2|F]|

(2.10) transforms into

2Q0F| (1~ d Fl .
Prl(usr,ug) € F] = 201 <n N Akwr) _ {E; 5k)

32

CHAPTER 2. EXPANDERS

Chapter 3

Existence of Expanders

We have studied quite extensively expander graphs and their properties. But
so far we have not proved their existence. In this chapter, we address this topic
which has been of special research interest the last years since the need for
explicit expander construction emerged in several applications. The interested
reader can find more information about advances on this field in [LWO03].

3.1 A Probabilistic Argument

Indeed, as a first result we prove ([Pin73]) that a random regular graph is
an expander with high probability.

Theorem 3.1. For any even d > 3 there exists a family of d-regular expander
graphs.

Proof We will use the probabilistic method to prove that there exists ¢ > 0
such that for every n > 0, if we pick a random d-regular graph G, then with
positive probability h(G) > e.

Consider a perfect matching on dn vertices.
1. Randomly partition these vertices into n sets Vi, ..., V; each of size d.

2. Merge the vertices in each V; to a single vertex ¢+ without eliminating any
edge.

We have obtained a d-regular (multi)graph G with n vertices {1,...,n}. Pick
an S such that |S| < n/2. We want to bound the edges that go out of S, thus
it suffices to provide an upper bound the number of edges inside S. Wlog label
the vertices in S as {1,...,|S]}.

Denote by P g the event that the number of edges inside |S| is at least |S[(d/2—
€). This means that V1 U... Vg includes |S[(d/2 — ¢€) edges. Thus, we seek the

33

34 CHAPTER 3. EXISTENCE OF EXPANDERS

probability of picking |S|(d/2 — €) edges in a random selection of |S|d vertices
from the original graph. This is equivalent to picking a set X of vertices such
that |X| = d|S| using the following random process.

e Pick [S|(d/2 — €) edges and assign their endpoints in X.
e Pick the rest 2¢|S| vertices in X from the rest n — 2|S|(d/2 — €) vertices.

Thus the desired probability is bounded above by

dn/2 n —2|S|(d/2 —¢)
|S](d/2 — ¢) 2¢| S|
dn
d|S|
The probability that at least one of the P|g| occurs (for [S| = 1,...,n/2) is hence
at most
) dn/2 n—2|S|(d/2 —e)
5~ AIsl(a/2—9 245
dn
1S|=1
(as)

for sufficiently small e. Consequently, there exists a graph G on n vertices such
that none of the Pjg| occurs. Clearly, for this graph G it holds that

<1

. EBE(S,V-=205)
G)= m >
@) Sov |S] ‘
IS|<[V]/2

which proves the claim. [

Remark 3.1.
We could clearly pick either d even or n even. We chose d since we are interested
in proving the existence of a d-regular n-vertex for a constant d and every n € N.

Thus existence of expander graphs has come easier than one would probably
expect. Still, constructing expander graphs explicitly is far from easy. In the
next sections we provide such constructions.

3.2 The Zig Zag Product

Reingold [Rei04] in his proof of L = SL, introduced an interesting technique
to produce expander graphs. His work was the first incentive for Dinur for
proving the PCP theorem by gap amplification. Below we present the zig zag
method.

Definition 3.2. Let G = (V, E) an n-vertex, D-regular undirected multigraph
and H = (V') E') a D-vertex, d-reqular undirected (multi)graph. The zig-zag
product of the two graphs, denoted by G@H, is defined as follows.

3.2. THE ZIG ZAG PRODUCT 35

o Replace each vertex of G with a copy of H, which will be called a cloud.
Forv eV, je V' we denote by (v,j) the j-th vertex in the cloud of v.
Denote by [v] the set of vertices in v’s cloud.

e (u,i) and (v,j) are connected by an edge in G@H if (v,j) can be reached
from (u,i) by taking a step in the first cloud, then a step between the
clouds and then a step in the second cloud. More formally, ((u,i), (v,7)) €
E(G@H) if there exist k,l such that:

- (i,k) e E'.
— v 1s the k-th neighbor of u in G
u s the I-th neighbor of v in G.
- (l,j) e E.
Remark 3.2.
Clearly G@H is a nD-vertex graph. The graph is d?-regular, since from each
vertex in G@H we can choose by d ways the first step within the cloud. Once
the first step is chosen, the second is uniquely defined since each edge in G is

associated with exactly two vertices in G@ H. The third step can again be pulled
out with d ways, giving a total of d? neighbors.

Before proving the main result of this section, let us describe in a neat way the
normalized adjacency matrix of G@ H. Denote by A the normalized adjacency
matrix of H.

Introduce the (nD x nD) matrix A such that

. . 1, w is the i-th neighbor of u, u is the j-th neighbor of v
Al 0] ={ § e

Note that A is a permutation matrix, i.e. in every row and column there is
exactly one non-zero element. Next, introduce the (nD x nD) bock matrix B:

Ay 0 0 0

0 Ay 0 0

B=| 0 0 Ay 0
L0 0 o0 ... Ay |

where B has n copies of Ajy. Note that both B is a symmetric matrix. It is
easy to verify that the normalized adjacency matrix of G@H is equal to BAB.

Theorem 3.3. If G is a D-regular graph on n vertices and H s a d-regular
graph on D vertices, then

MNG@DH) < XMG) + AH) + (A(H))?

36 CHAPTER 3. EXISTENCE OF EXPANDERS

Proof Let M denote the normalized adjacency matrix of G@H and consider
the matrices A, B mentioned earlier, so that

M = BAB

Since G@H is a regular graph, from the Rayleigh quotient (see Appendix) we
have that

MG@H)= max |x"BABx| (3.1)
x L1, p, %[=1

In order to correlate A (G@H) with A(GQ) and A\(H), we need to split the vector
in such a way that we will be able to use the respective Rayleigh quotients for
G and H. As such, we split the vector x in the above equation into two vectors
X|| and x| such that

x| (1) = % S x(u,)

Jj€lu]
X|] =X — XH
Observe that if x11,p then x| L1,p too, since the sum of the entries in x| is

the same as that of x. Denote by X[f] the D x 1 vector which is the restriction
of x, onto the cloud [v]. Then, since x| =x — x| and by the way x| is defined,

for each v it holds that x[f] is perpendicular to 1p and since B is block diagonal
we have that

xTBx.| =Y Z ()" Apxl?
< Z Z ’ H]|

[v]

In a similar fashion, define X, the n.D X 1 vector which is the restriction of x|,
onto the vertices of the cloud [v] Then

<ol — [v] _
and
XLXH ZXLXM Z Z Z u,7) | x{1p = 0.
LIS) JE[u]
Thus x| 1x) and Pythagoras’ theorem yields

[yl < [l =1
Ll < flx]l = 1.

3.2. THE ZIG ZAG PRODUCT 37

The expression to be maximized in the right part of (3.1) transforms into
‘XTBABX‘ = |(X|| + XJ_)TBAB(XH =+ XJ_)‘
— [x[BABx) + x[BABx, + xIBABx; + x[BABx, |
< ‘XﬁBABXH‘ +2 ‘XﬁBABXL‘ + |XJT_BABXL} (3.3)
We analyze each term in (3.3) separately.
The term ‘XEBABX J_‘. Applying Cauchy Schwarz inequality
|xIBABx | < ||[ATBTx, |- |Bx.|

and noting that [[ATBTx || = |Bx_|| since A is a permutation matrix and B
is symmetric,
xTBABx | < |Bx/|?

It remains to observe that that |[Bx, ||? = [xTB2x | < (A(H))?||x 1 ||?, hence

xIBABx, | < (MH))?. (3.4)

The term ’XﬁBABXL‘. Using (3.2) and the Cauchy Schwarz inequality, we
have that

’xﬁBABXL’ = ’XﬁABXJ_‘
< [|ATx) || - IBx.|
= ||| - B]
< AH) - || - x|

Using the inequality a? + b? > 2ab we have that

<TBABx. | < JAH) - (|pll” + I ?) = SAH) - I = JA(H). (35)

The term ‘XﬁBABXH‘. Define y € R™ such that

38 CHAPTER 3. EXISTENCE OF EXPANDERS

Note that y 11, and that for each j € [u] it holds that y(u) = x)(u). Thus
x> = D|ly||*. Using (3.2), we obtain

’XﬁBABXH‘ = ’XﬁAXH‘

= Z x| (u) A (u',v")x) (v')

w'=(ui) v’ =(v,j)

ZY u)Agx; (v

=D]yTAcy(

=D-

=D - NGyl
. o Lo 1 :
and noting that ||y||* = BHXH < o e obtain

[xTBABx)| < A(G). (3.6)

Plugging (3.4),(3.5),(3.6) into (3.3), the result follows. L]

3.3 Constructing Expanders via the Zig Zag
Road

In this section, we construct explicitly a family of expander graphs using the
zig zag method. To apply the method we need an expander to start with. This
is provided by the following important theorem, which we prove in section 3.4.

Theorem 3.4. Let p € N a prime. For every t < p there is an explicit con-
struction of a p*-reqular graph Gpi on ptt1 wertices such that AMGpy) < ;7.

Applying Theorem 3.4 with p = 37 and ¢ = 7 yields a graph H such that:
1. H has 37% vertices.
2. H is 37?-regular.

3. A(H) < 5 <

=

Theorem 3.5. There is a constant d such that for every k > 0 there exists an
~ - 1
(d* D) @2 X)-expander with X < 3

3.4. AN EXPLICIT CONSTRUCTION 39

Proof The expander graph is constructed inductively.

Set Gy = H?, where H is the graph described earlier in this section. Note
that H is a (d%,d, %) expander, where d = 37% = 1369. Trivially, Gy is a d*
regular on d* vertices and

Define G, = G%_I@H for each £ > 1. We claim that the desired family is Gy.

The proof is by induction on k. Assume that the property holds for k, then

~ ~ 1

Gy, is a (d***D d% \)-expander such that M\(Gy) < 7
Note that G,% is a d* regular graph so that the zig zag operation is well defined.

Moreover, the number of vertices in the graph Gjyq are d**+1) . g4 = g4(k+2),
Finally, the zig zag method guarantees that

/>_: i
=
AN
I
+
|
+
|
A

AMGri1) < MG2) + X(H) + (

3.4 An Explicit Construction

In this section we provide a proof for Theorem 3.4. The proof is essentially the
same as the one presented in [Rei04].

Proof (Theorem 3.4) We first describe the graph G(p,t). To simplify nota-
tion, let F = F,. The vertices of G, are defined to be V = F*1. The set
of neighbors of a vertex v = (vg,...,v11) is the set of vertices {(vg + b,v1 +

ab,...,v; + a'b)|a,b € F}. Clearly, the graph G, is p*>-regular on p'*t1 vertices.

Next, we will prove that A(G¢) < %. We first construct a set of |V'| orthonormal
eigenvectors. To define the eigenvectors denote by w the p-th root of unity. Then,
by definition

I4w+...+wP =0

and w? = 1. Note also that)
—
> Wk =0 (3.7)
k=0

for any j € {1,...,p — 1} since the function f(k) = kj for any j such that
ged(j,p) = 1 is a bijection in F.

The set of eigenvectors is defined as follows.

.
Xa(v) = w=i=1%"% for each a,v € Fi*!

40 CHAPTER 3. EXISTENCE OF EXPANDERS

Note that xa(b1) - Xa(b2) = xa(b1 +b2) and Xa, (b) - Xas(0) = Xay+a2(b). Moreover
if z* denotes the complex conjugate of z, wP = 1 implies that x}(b) = x_q(b).

We next prove that x,Lx, whenever a # b. Namely,

axs) = Y xa()xs)

veFt+1

= 3 a)xs)

veFt+1

= Z X,B—a(v)

veFt+!
- Z w2 Bi—aj)v;

veFt+1

Observe that the last sum is the result if we write out the product

H Zw(b’j—a]—)v;—,
v

and noting that «; # f; for at least one index 7, one of the factors in the last
equation is 0, thus proving the claim.

Let A be the normalized adjacency matrix of G . We prove that each y, is an
eigenvector of A.

Avaw) = 3 AW e)xalo)

ceFt+1

1
= sza(v + (b, ab, . . .,a'b))

a,b

_ plQZXa(v)Xa((b, ab, ..., a'b))
a,b

= Xa(;’) S Xal(b,ab, ..., a'b))

p a,b
and consequently the eigenvalue corresponding to x, is

<1
Ao = ?ZXQ((b, ab, . ..,a'b))
a,b

. < t
Thus, it suffices to prove that [A,| < — for every a € FtH1.
p

3.4. AN EXPLICIT CONSTRUCTION 41

Assuming that o = («ap, ..., a;), we obtain

< 1
Aa| = = > Xa((b,ab, ..., a'b))
ab

o i § :waob-i-alab—&-...-i—atatb
52

p
ab

Denoting by P,(x) the degree ¢ polynomial ag + a1t + ... + ayz!, we have that

_ 1 b-Pa(a)

= w

pz(%;

A VRS PP S

p a:Py(a)=0 b a:Pa(a)#0 b

Observe that each sub sum in the sum
> Y
a:Pn(a)#0 b
is equal to 0 by property (3.7), while each sub sum in the sum
DI
a:Py(a)=0 b

evaluates to p. Since P, can have at most ¢ roots, we finally obtain that

Mol <

SR

The above proof would work for any p a power of prime, as pointed out in [Rei04].
This leads to the following corollary which is vital for the Dinur’s proof.

Corollary 3.6.
There exist dg € N and hg > 0, such that there is a polynomial-time constructible
family {X,, }nen of do-regular graphs X, on n vertices with h(Xy) > ho.

Proof (Dinur05) By Theorem 3.4 and the previous remark we can get ex-
panders on 2% vertices for any k. If 28 < n < 251 then we can merge 281 —n
vertices in Xor+1 and make the resulting graph regular by adding arbitrary edges
to the non-merged vertices. Edge expansion is maintained up to a constant fac-
tor, thus the resulting graph is an expander. [

42

CHAPTER 3. EXISTENCE OF EXPANDERS

Chapter 4

Error Correction

The proof composition scheme is highly related to coding theory. In this
respect, it is essential to study some of its aspects.

4.1 Code Theory Basics

Definition 4.1. Given an alphabet 3 and two integers k,n > 0, a code is a
function C : XF — %",

Suppose that we are given a word a in ¥* and a code C as in the definition.
Then a is a source word, whereas C(a) is a code word.
Any code should have the following properties.

1. The code is decodable, i.e. given a code word we can easily find the source
of it. This implies that the code must be one-to-one and thusn > k.

2. The code is error correcting, i.e. if a code word is changed to some ex-
tent, we can still track the source word. This implies that two different
codewords should differ as much as possible.

Instead of working with alphabets on letters, we consider only alphabets on
a binary alphabet, i.e. ¥ = {0,1}. In order for such codes to be error correcting,
it should be clear that two different codewords should differ in at least 3 places.
To see this, if there exist codewords which differ in just one bit, then changing
that bit would result into a legal codeword. Moreover, if there exist codewords
which differ in exactly two places, then changing one of the two bits would not
allow us to be sure which of the two code words was the initial code word.

The above observation leads naturally to our first example of a code.

Example 4.1.1.
Denote the binary string aj ... a, by a. Then C(a) = ajai1a1a2 .. . ap—10,0na0y.

43

44 CHAPTER 4. ERROR CORRECTION

C is clearly a function from {0, 1}* into {0, 1}3*. Clearly two distinct code-
words differ in at least 3 places. This code can easily correct any single error. On
the other hand, correcting two errors in a code word is clearly out of reach for
this code. We could possibly increase the number of times each bit is duplicated
S0 as to correct more errors, but this would clearly increase the length of a code
word.

The above example indicates the importance of a code to be efficient and
leads naturally to the notion of informatio ratio.

Definition 4.2. The information ratio of a code is the fraction k/n.

Clearly the information ratio should be as large as possible.

But we would also like to have a measure of the error correcting capabilities
of the code. For this purpose, let us define the weight of a code word and the
Hamming distance between two code words.

Definition 4.3. For z € {0,1}", the weight of x, denoted by wt(z), is the num-
ber of bits of x which are equal to 1, i.e. wt(x) = {1 <i<r: z; =1}|.

Definition 4.4. For x,y € {0,1}", the Hamming distance between x,y, denoted
by dist(x,y) is the number of bits in which x,y differ, i.e. dist(z,y) =|{1 <i <
row # Yt

We are now ready to define codes more explicitly.
Definition 4.5. An (n,k,d)s-code is a code C : ¥¥ — " such that

d = mindist(C(z), C(y)).
TFy
The parameter d is the code distance. For an (n,k,d)-code C, the rate of C 1is
defined as v = k/n and the relative distance of C is defined as § = d/n.

Thus the repetition code we saw earlier is a (3k, k, 3)-code with rate » = 1/3 and
relative distance § = 1/k. Generalizing the 3 bit idea for a single error correcting
code, it is easy to see that in order to be able to correct ¢ bits a necessary and
sufficient condition is that 2t < d.

Moreover, it seems natural that to be able to correct many errors, the code
word length should be sufficiently large. This intuition is affirmed by the fol-
lowing theorem, which demonstrates a trade off between r and §. Before stating
the theorem we introduce the ball around a word.

Definition 4.6. For a word x € {0,1}", the ball of radius t around = is defined
as B(xz,t) ={z € {0,1}" : dist(z, z) < t}.

We proceed into stating the bound mentioned earlier.

4.2. HADAMARD CODE 45

Theorem 4.7 (Hamming Bound). For an (n,k,d),1}-code we have

)
H|-)<1
r+ <2> < L,
where H(p) denotes the entropy function H(p) = plog, (%) +(1—p)log (ﬁ) :

Proof Consider the ball with radius d/2 around a code word z, B(z, |4]). This
ball should be disjoint from any other ball B(y, {%J) since otherwise, the two code
words would have distance < d. Thus, for each source word the corresponding
balls are disjoint which means that

2k .

B (x g)‘ <" (4.1)

B2 = (1) + (7) +or (1) w2

Using the above approximation and taking logarithms in (4.1) we obtain

But

k:+n-H<d><n<:>T+H<6><1 n
2n 2

4.2 Hadamard Code

We next define the Hadamard code.

Definition 4.8. A Hadamard code is a function H : {0,1}¥ — {0,1}2k such
that, if a € {0,1}% then for every B € {0, 1}* with binary the B-th component of
Hia] is equal to

k—1

H(a)[f] =< a,p >= Zazﬂi mod 2

=0
where a;, B; denote the bits of a, B respectively.

It is easy to see that a Hadamard code is a linear code in the sense that for
a,b€{0,1}%,
H(a)® H(b) =H(a®b)

In the above equation @ represents the bitwise xor operation. Alternatively, &
can be thought of

(@s- - n) @ (B ba) = (a1 + b, .., g + by)

46 CHAPTER 4. ERROR CORRECTION

where addition in the right part of the above equation is the usual addition in
the Boolean field.

A different way to look at the Hadamard code is in terms of linear functions,
i.e. Hla] is the list of all possible outcomes of the linear function

Hlal(z) = Z a;T;

where again all operations are on the Boolean field.

Example 4.2.1.
Suppose a = 101. The Hadamard code of a is shown in the following table.

T
000
001
010
011
100
101
110
111

o
=5
—

8
N

Ol O = =OoOl=O

4.2.1 The Parameters of Hadamard Code

L3

The rate of a Hadamard code is logarithmic since r = J%.

[\

We would like to calculate the distance between two Hadamard code words.
This is equivalent to calculating the minimum weight of H(a) — H(b) for a,b €
{0,1}*,a # b. Since the code is linear, it suffices to find the minimum weight of
H(a) where a has at least one nonzero bit.

Denote by a; the first such non-zero bit and by e; = 2/~! the word in {0, 1}*
with exactly one non-zero element in the j-th position. Then, for every number
0 < B < 2% — 1, using the linearity property, it holds that

<a,f>=<a,e;j>+<a,f+e >=<a,B+e >+1l#<a,f+e; >
Consequently, there is a bijection between the nonzero elements of H(a) to its

zero elements. Thus wt(H(a)) = 2¥~! and the relative distance of a Hadamard
code is equal to

4.3. LOCAL TESTING 47

4.3 Local Testing

Suppose that we are given a set P C {0,1}", which we call a property. In
this section we will get some insight into deciding whether az € {0,1}" belongs
in P without looking at all bits of x. It should be clear that this question is
interconnected with our ability to generate effective codes.

More formally, let us define local testing algorithms.

Definition 4.9 (Local Testing Algorithms). Given a property P, a non de-
terministic polynomial algorithm A is a (q, €)-Local Testing Algorithm (LTA) for
P if for every x € {0,1}", A computes indices (i1,...,i4) € {1,...,n} and ac-
cording to a Boolean predicate ® : {0,1}9 — {0,1} outputs ®(xi,..., 7). A
LTA has the following attributes:

e r € P=Pr[A(z)=1]=1.
o © ¢ P = Pr[A(z) = 0] > e-dist(z, P).

Remark 4.1.
From now on, dist(x, P) will denote the minimum fraction of bits needed to be
changed in x so as to have property P.

We have intentionally left obscure the number of random bits a LTA uses. This is
because it is not necessary all of the indices (i1, ..., ;) to be randomly selected,
since some indices might occur as a function on an already picked subset of the
indices. Covering this possibility would lead to a much more complex definition,
which for our purposes, is unnecessary since we are far more interested in the
queries that an LTA makes than its randomness properties. At practice, we will
examine LTAs for which ¢ = O(1). Hence, the random bits used in any case will
be O(logn).

4.4 LTA for Hadamard Encodings

Blum, Ruby and Rubinfeld [BLR90] were the first to provide a local testing
algorithm for Hadamard codes. The test is vital in both proofs of the PCP

theorem. A stronger version was later proved by Bellare, Coppersmith, Hastad,
Kiwi and Sudan [BCH"95].

Denote by H to be the set of words in the Hadamard code, i.e.

H= {w e {0,1}%

JaVz (:p € {0,1}, w(z) =< a,z >) }

and counsider the following algorithm.

48 CHAPTER 4. ERROR CORRECTION

Algorithm A (LTA for Hadamard Codes).

Test whether a given string is a legal Hadamard Code.
Input: A string w € {0,1}2",

Procedure:
Choose a random z € {0, 1},

Choose a random y € {0, 1}

Output:
Answer yes if w(z) @ w(y) = w(x ®y).

Theorem 4.10. Algorithm A satisfies:
1. If w € P then Pryy[A(w) =1] = 1.

2. If dist(w, P) = 0 > 0 then Pryy[A(w) = 0] > min (g, 3)

Proof ([BLR90]) We have already proved 1 in section , so we proceed into
proving 2. Consider w defined as

w(r) = arg max Pr{w(z) ® w(x ®y) = a]
ac{0,1} ¥

Set P, = Pr[w(z) = w(y) ® w(x & y)]. By definition of w, we have that
y

P, > % for all z.
We prove next that
1
Pr[A(w) = 0] > 3 dist(w, w) (4.2)
I?y

Set B = {z € {0,1}' : Pry[w(z) # w(y) ® w(z y)

] >3}. If ¢ B then ()
is assigned the value w(x) and consequently Pry[w(z)

=w(z)|x ¢ B] =0. Thus
dist(w, w) = }:Cr[w(a:) =w(z)|r € B] P;r[x € B] < Pr[z € B] (4.3)

If x € B then Algorithm A rejects by definition with probability greater than %
and therefore, using Bayes formula,

E;[A(w) =0] > P;r[A(w) = 0|z € B] P:Cr[x € B] = % P:Cr[m € B| (4.4)

4.4. LTA FOR HADAMARD ENCODINGS 49

Combining (4.3) and (4.4), we obtain (4.2). Notice that it remains to prove that
2 ~
PriAfw] =0] < - = w € H,
T,y 9

since then it must be the case that dist(w,w) > §.
Hence, assume that Pr, [A[w] = 0] < 3. We first prove that

P, > — for all z.

[SURIN)

Choose y; and y2 independently and let
Py = Prw(y) ®w(z®y:) = w(yp) ®w@ o y)]

Considering the case where both expressions equal w(x) or 1 —w(x), we obtain
that

P, = P2+ (1 - P,)? (4.5)

Moreover P, can also be written as
Py = Pr[w(y) @ w(z @ y2) = wlyz) @ w(z & y1)]

Observe that both 4y, 2+ are randomly distributed on {0, 1} and therefore,
by assumption,

2
Pr [w(y1) @w(z y2) =w(r ©y1 @ y2)] > 1— =
Y1,Y2 9

Eq

9
Pr [w(y2) Dw(x @ y1) =w@ Dy @ y2)] > 1 — =
Y1,Y2 9

Es

Thus

4
P; Pr [El N EQ] = Pr [El] + Pr [EQ] — Pr [El U EQ] >2— § —1= (46)

)
Y1,y2 Y1,4y2 Y1,Yy2 Y1,Y2 §
Since % 4 (1 — z)? is increasing for z > , (4.5) and (4.6) give

5 2

We are now ready to prove that w € H, i.e.

VaVz € {0,1} : w(x) @ w(z) = w(z ® 2)

50 CHAPTER 4. ERROR CORRECTION

Note that

() = w(y) ©w(z dy)] >

S

P, =Pr|
y

WIN ol b

(2) = w(y) ®w(z ®y)] >

S

P, = Pr|
y

2
S— 3
TPhz

Pw@z:E;r[zi)(x@z):w(y@z)@w(x@z@y®z)] >

where the last equation follows by observing that y ® z has the same distribution
as y. The three equations above tell us that there must be a y satisfying all of
the in bracket expressions (otherwise the union of the above probabilities would
be <1).

The result now comes for free, since using this common y, we have that

w(x)dw(y) = w(y)Bw(zdy)Bw(y)Bw(ydz) = w(zdy)dw(ydz) = W (rdz) =

Remark 4.2.
Since the Hadamard code can be thought as the encoding of a linear function,
we will often refer to Algorithm A as a linearity testing algorithm.

4.5 Local Decodability

Hadamard codes are not only locally testable but also locally decodable. A
Locally decodable code, in a similar fashion with locally testable codes, are codes
such that we can find with high probability a specific bit of the source word of
an input codeword without reading all the bits in the latter. We will study the
notion of locally decodability in terms of Hadamard codes.

Theorem 4.11 (Local Decodability of Hadamard code).

Let H = {H(a)|a € {0,1}} and w € {0,1}% such that dist(w, H) < e. Let
z € H such that dist(w,z) < ¢ and suppose that an index x € {0,1} be given.
Then we can find a bit b such that

Prjb = z(z)] > 1 —2¢

We first give the algorithm and then analyze its correctness.

4.5. LOCAL DECODABILITY o1

Algorithm B.
Given w € {0,1}2" : dist(w, P) < € and = € {0,1} find b such that Pr[b =
z(z)] > 1 —2e.
Input: A string w € {0,1}2",
An index = € {0, 1}%.

Procedure:

Choose a random y € {0, 1}.

Output:
Return b = w(y) & w(z & y).

Let Ey = Pryfw(y) = z(y)] and similarly Eyq, = Pryfw(z ® y) = z(z ® y)].
Since y and x &y follow the same distribution, by our assumptions we have that

E,>1—¢cand Eygy >1—¢
Since z is a legal Hadamard codeword we have that

Pr[b = 2(2)] > Ey - Eyay > (1 —€)? > 1 —2¢
Y

and the claim follows.

Remark 4.3.
Algorithms such as Algorithm B which are capable of returning with high prob-
ability a legal Hadamard bit and, as an extension, a legal Hadamard codeword
are often referred to as Self Correcting algorithms. The result presented above
is a special case of the test appearing in [AS92], [ALM"92] for decoding degree
d polynomials.

52

CHAPTER 4. ERROR CORRECTION

Chapter 5

Dinur’s Proof of the PCP
theorem

In this chapter, we present a step-by-step proof of the PCP theorem. Unless
stated otherwise, we follow [Din05].

5.1 Constraint Satisfaction Problems

In this section we define constraint satisfaction problems. Consider a finite
set of symbols ¥ called the alphabet and V' = {v1,...,v,} a set of variables.

Definition 5.1 (Constraint). A g-ary constraint is a tuple (i1, ..., 14, ¢) such
that i; € [n] and ¢ : ¥4 — {0,1}. A constraint (i1, ...,1iq,¢) is satisfied by an
assignment a : V — X iff p(a(vyy), ..., a(vy,)) = 1.

Definition 5.2 (Constraint Satisfaction Problems). Given as input an al-
phabet X, a set of variables V. = {v1,...,v,}, and a set of q-ary constraints
C = {c1,...,cn}, denote by CSPlq,X] the problem of finding an assignment
a:V — X which satisfies all of the constraints.

Numerous known problems can be formulated easily as constraint satisfaction
problems.

Example 5.1.1 (3SAT as a CSP).

Consider a 3SAT formula ¢1 A g2 A ... A ¢y, over a set of boolean variables
V ={z1,...,2,}, where each ¢; is of the form z} \V z] V z;, (), is either zj or
—zg). Then a CSP equivalent to this formula can be constructed as follows.

e X ={0,1}.

L] V:{ml,...,xn}.

93

54 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

o (i,j,k,¢) is a constraint iff there exists ¢; such that ¢; =z}, V «] V 2}, and
¢(a,b,c) =aVb\Ve.

Example 5.1.2 (3COL as a CSP).

Consider the decision problem of whether a graph G = (V, E) is 3-colorable, i.e.
whether there exists an assignment a : V' — {1, 2, 3} such that if (u,v) € E then
a(u) # a(v). A CSP instance for this problem can be constructed as follows.

o ¥ =1{1,2,3).
o V={vy,...,un}.

e (i,j,) is a constraint iff (v;,v;) € E and ¢ : {1,2,3}*> — {0,1} such that
¢(a,b) =1 if and only if a # b.

Following the 3COL formulation as a CSP, we observe that CSP instances with
q = 2 can be better perceived in terms of graphs.

Definition 5.3 (Constraint Graph Problems). A constraint graph satisfac-
tion problem is an instance G = ((V, E),%,C) such that (V, E) is a graph, the
alphabet ¥ is a finite set and C: E — {¢ : X x ¥ — {0,1}}.

The notion of maximum satisfiability problems naturally leads to introducing
the satisfaction value of a CSP. Namely, we denote by SAT,(C) the fraction of
constraints in C satisfied by the assignment a.

Definition 5.4 (Max-CSP). Given as input an alphabet 3, a set of variables
V = {v1,...,vn}, and a set of q-ary constraints C = {ci1,...,cm}, denote as
Maz-CSPlq, Y] the problem of finding an assignment a : V — X which mazimizes
the fraction of satisfied constraints. Define the sat value of C as

SAT(C) = max Pr [a satisfies constraint c;]
a:V—=Xiel,...,m

In other words, the SAT wvalue of a CSP s the fraction of constraints satisfied
by an optimal assignment. Finally, define the unsatisfaction value of C as

UNSAT(C) =1 — SAT(C),

standing for the minimum fraction of constraints which are left unsatisfied by an
optimal assignment.

Clearly, the examples demonstrated previously provide reductions from Max-
3SAT to Max-CSP[q = 3, |¥| = 2] and from Max-3COL to Max-CSP[¢ = 2, |X| =
3]. Thus the corresponding instances of Max-CSP are NP-Hard problems.

5.2. PCP THEOREM AND HARDNESS OF APPROXIMATION 55

5.2 PCP theorem and Hardness of Approxi-
mation

We next introduce the gap version of CSP.

Definition 5.5 (Gap-CSP). Given as input an alphabet 3, a set of variables
V =A{v1,...,un}, and a set of q-ary constraints C = {c1,...,cptand 0 < s < 1,
Gap-CSPs[q, Y] is the problem of deciding between the following two possibilities:

o SAT(C) =1.
o SAT(C) < s.

The next theorem will reduce the PCP theorem to proving a hardness of ap-
proximation result.

Theorem 5.6. The following claims are equivalent.
1. NP C PCP[O(logn),O(1)].

2. There exist constants q, 0 < s < 1, and |X| such that Gap - CSPs[q,] is
NP-hard.

Proof
(1) = (2)

Assuming that NP C PCP[O(logn), O(1)], for any NP language there is a
[O(logn),O(1)]-verifier. Consider such a verifier V' for 3COL which uses clogn
random bits and £ = O(1) queries into the proof. We will reduce 3COL to an
instance of gap — CSP,[q, X] for an appropriate selection of s,q,>. Then, any
L € NP has a reduction to gap — CSP,[g¢, X] since 3COL is NP-hard.

The main idea of the proof is to build a constraint for each of the possible
runs of the verifier, thus simulating its function.

e V reads the input graph G, reads the random binary string p of length
r = O(logn) and computes the indices {i1,...,%,} which will query into
the proof y. Then according to the values {y[i1],...,y[ix]} it outputs
whether it accepts or not.

e Clearly, the possible random strings are 29 (logn) = n® and consequently
the number of distinct queries into the proof is at most k-n¢ = O(n¢) = n¢
(¢, d constants). We introduce variables yi, ..., y,a for each of the possible
distinct queries.

e For each random string p simulate all the 2¥ = O(1) possible assignments
to y[i1], . .., y[ix] and construct a boolean predicate ¢ which evaluates to 1
if and only if the verifier accepts. Thus, build a constraint (i1, 79, . . . , ig,).
Consider the set of all such constraints.

56 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Denote by Cg the above instance of CSP. If the graph G is 3-colorable then
there exists a proof y such that the verifier accepts and consequently the CSP
in the above construction satisfies SAT(Cg) = 1. On the other hand, if G is not
3-colorable, then for every proof y the verifier accepts with probability < 1/2
and thus SAT(Cg) < 1/2.

It follows that Gap-CSPy /5[q = k, || = 2] is NP-hard.
(2) = (1)

(2) states that for any L € NP, it is possible to map any instance z of the
language L to an instance C, of gap-CSP;[q, 3.

We build a PCP verifier for L as follows: given an instance x map it to C
and then for a potential assignment a, pick one of C}’s constraints at random
and accept if that constraint is satisfied by a. Otherwise, reject.

More formally, consider an instance of an NP-hard language, say 3COL.
Then, it suffices to prove that 3COL has a PCP verifier since any other language
in NP can be mapped polynomially into an instance of 3COL.

Given an input x for 3COL and a proof y, the verifier V for 3COL works as
follows.

1. Use the polynomial reduction to gap-CSPs[q, X] to get an instance C. Cy
is polynomially related to the size of the input . Denote by m the number
of constraints in Cy. If || = n then m = poly(n).

2. V uses a random binary string p of length [logm| to pick a random con-
straint in Cy, say ¢; = (i1,...,1q,¢). Note that logm = O(logn).

3. V queries the bits corresponding to yli1],...,y[is] and then outputs ac-
cording to ¢(yli1],...,ylig]). Note that each of the y[i;] is encoded by
log |X| = O(1) bits, since |X| is constant.

From the above construction, V' is a [O(logn), O(1)]-verifier. Moreover it runs
in polynomial time. Next, we prove its soundness and correctness.

e If z € L then SAT(C,) = 1, so there is a proof y such that the verifier
always accepts (the encoding of the optimal assignment).

e If # ¢ L then SAT(C,) < s, thus for every proof y

Pr V¥(z,p) = 1] < s.
pe{0,1}0<logn)[(z,p) =1] <

If s > 1/2, in order to enhance the soundness parameter, repeat steps 2, 3
[logs %] times. Since s is a constant, a constant number of repetitions is required
and consequently the verifier still uses O(logn) random bits and O(1) queries
into the proof. [

5.3. THE PCP THEOREM BY GAP AMPLIFICATION o7

Remark 5.1.

It is important to stress the importance of having constant values for s, ¢, |X|.
The reader should go through the proof of Theorem 5.6 again and clarify this
before proceeding into the next sections.

5.3 The PCP theorem by Gap Amplification

In the previous section we proved that the PCP theorem is equivalent to
proving the following theorem.

Theorem 5.7 (Gap-CSP Hardness). There ezist constants ¢, 0 < s < 1,
and |X| such that Gap - CSPs[q, %] is NP-hard.

We will restrict ourselves to constraint graph problems. As we saw in section 1.1
there is a trivial reduction which transforms an instance G = (V, £') of 3COL to
a constraint graph Cg. Note that:

e G is 3-colorable if UNSAT(C¢) = 0.

1
e (G is not 3-colorable if UNSAT(Cg) > —:

|E|
The latter claim just states that at least one edge constraint should be left
unsatisfiable. Observe that, ideally, if the term % was a constant the Gap-CSP

hardness would come for free. Our goal will be to amplify the above gap to a
constant . The following theorem is vital toward this objective.

Theorem 5.8 (Gap Amplification). There exists g such that for all X there
exist constants ¢ and 0 < v < 1 and a polynomial reduction which given a
constraint graph G = ((V, E), %, C) outputs G' = (V',E"), X0,C’) such that

1 V| +|E| < (V] + |E]).
2. [COMPLETENESS] : UNSAT(G) = 0 = UNsSAT(G') = 0.
3. [SOUNDNESS] : UNSAT(G) > 0 = UNSAT(G’) > min{~, 2 - UNSAT(G)}.

Assuming the Gap Amplification theorem to be true, one can prove that Gap-
CSP,[q = 2, %] is NP-hard.

Theorem 5.9. Let G = (V, E) denote some graph. There exists a polynomial
reduction from 3COL to Gap-CSPy[q = 2,3] which maps G into a constraint
graph G’ such that:

e [COMPLETENESS| : G € 3COL = UNsAT(G') = 0.

e [SOUNDNESS] : G ¢ 3COL = UNSAT(G') > ~.

58 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Remark 5.2.
Note that the constants v and ¥ appearing in the theorem are the ones guar-
anteed by the Gap Amplification theorem.

Proof To see this, take the reduction from 3COL to the constraint graph in-
stance C = ((V, E), ¥, C) which we presented earlier. Apply Gap Amplification
k =log|E|+ 1 times to obtain a sequence of constraint graphs G1,Ga,...,G.
We claim that the constraint graph Gy = ((Vi, Ex), %, Cg) is an instance of
Gap-CSPy[g = 2, %]

o |Vi|+|Ex| < F(JV|+|E|). This shows that G} is only polynomially bigger
than the original constraint graph since ¢* = ¢8I+ = O(|E|l°8¢),

e UNSAT(G) = 0 = UNSAT(Gg) = 0, since Gap Amplification preserves
completeness.

e UNSAT(G) > 0 = UNSAT(Gg) > v. To see this, recall that if the ini-
tial graph is not satisfiable then UNSAT(G) > ﬁ If UNSAT(G;) >
2 - UNSAT(G;—1) for each i < k then

1 1
UNSAT(G) > 2% - Unsar(G) =28 - — > |B|- = =1,
|E] E
which is absurd. Thus, for some index ¢ less than k, it must be the case
that UNSAT(G;) > v which proves that UNSAT(Gy) > 7.]

It should be clear that Theorem 5.7 follows in a straighforward manner from
Theorem 5.9.

In the rest of this chapter, we will concentrate on proving the Gap Amplifi-
cation theorem.

5.4 Overview of the Gap Amplification Proof

The Gap Amplification theorem will follow in 3 steps.

1. In the first step, we transform the constraint graph G = ((V, E),%,C)
into another one G’ such that the underlying graph of this new instance is
an expander. Alphabet X remains the same and the unsatisfaction level
decreases by a constant. Despite this, the new graph has much better
combinatorial properties. This step can be called as the preprocessing
step since its main goal is to beautify the graph.

2. In the second step, which is the main gap amplification procedure, G’ is
transformed into G” such that the gap amplifies by an arbitrary constant
t. This would be enough if the alphabet of G” remained invariant. Un-
fortunately, the alphabet increases exponentially on the constant ¢, which
leads to the third step.

5.5. PREPROCESSING STEP 59

3. Proof Composition. In this step, the alphabet becomes constant and the
unsatisfaction level decreases only by a constant.

As we shall see, the constants by which the unsatisfaction level decreases in steps
1 and 3 are well defined and thus can easily be compensated from step 2.

5.5 Preprocessing Step
The preprocessing step consists of two substeps.

1. In the first substep, we transform the graph into a d-regular one for some
constant d.

2. In the second substep, we transform the d-regular graph into an expander.

5.5.1 Regularization

The main result that we use is that there is an (n,d, hp)-expander family
for some constants d, hg for each n € N, as established in Corollary 3.6. The
construction follows.

Definition 5.10. Let G = ((V,E),X,C) be a constraint graph. The constraint
graph G' = PREP1(G) = ((V', E'),X,C’) is constructed as follows.

o Vertices in V': for each vertex v € V introduce dege(v) nodes in V',
representing each of the edges incident to v. Denote these set of new
variables as [v]. To picture this better, each vertex v in G is replaced by
a smaller graph on degq(v) vertices. We will refer to such a set as v’s

cloud. Define V' = J,cqv]-

e FEdges in E': we will have two sets of edges, E¢ and E.. The set Eg
denotes edges among clouds and will be in one-to-one correspondence with
edges of G, while the set E. denotes edges within clouds.

1. Eq: Consider the cloud of [v] nodes of a vertex v in G. Then each
of the new nodes is adjacent to one edge of the initial graph G. In
other words, suppose that u; € [u] and v; € [v]. Then (u;,v;) € Eq
iff v is the i-th neighbor of u in G and u s the j-th neighbor of v.
The set Eq is the union of all such edges between any two clouds.

2. E.: Consider the cloud of a vertex v. Then among the [deg(v)]
nodes add edges such that the induced subgraph of these nodes is a
(dege(v),d, ¢)-expander. Note that such an expander exists. E. is
the union of all such edges within any cloud.

60 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

e (Constraints: each edge in Eq will preserve its original constraint in G,
while every edge in E. will try to enforce an identical assignment. Thus,

/ [1, ifa=b
C'(e € Ec)(a,b) = { 0, otherwise

An example of the new constraint graph is illustrated in the following figure,
where instead of a d-regular expander, we use a (2-regular) cycle.

It should be clear that PREP{(G) is a (d+1)-regular graph, where d is a constant.
The main theorem we prove for the above construction follows.

Theorem 5.11. Let G = ((V, E),%,C) be a constraint graph. The reduction
G — G' = PreP1(G) = ((V', E'),%,C’) is such that

1. [V'|+ |E'| < c(|V]+ |E|) for some constant c.

2. UNSAT(G) - f1 < UNSAT(G’) < UNSAT(G) for a constant 0 < 1 < 1.

5.5. PREPROCESSING STEP 61

Remark 5.3.

Note that the second property implies that the unsatisfaction level of G’ decreases
only by a constant when G is not satisfiable, while if G is satisfiable then G’ is
too.

Proof First of all, note that [V'| = > degg(v) = 2|E| and |E'| = (d + 1)|E)|
and since d is a constant, 1 follows.

Next, we prove that UNSAT(G) > UNSAT(G’). To see this, denoting by
g : V — X the optimal assignment in G, we construct an assignment for G’ such
that all vertices in a cloud [v] are assigned the value g(v). Then, it clearly holds
that

UNSAT(G') < UNSAT,(G') = UNSAT‘;J;/C':) | E|

< UNSAT(G)
which is what we wanted to prove.

Next, we prove that UNSAT(G) - f1 < UNSAT(G’) for some constant 1. This
is quite more complicated. Note that constructing an assignment in G’ from an
assignment in GG will not help since this proves the reverse inequality. Thus, we
need to construct an assignment in G from an assignment in G'.

Given an assignment ¢’ : V! — X in G’, define g(v) for a vertex v € G to be
the majority value in v’s cloud, i.e.

v) =arg max ¢ (u
o) =arg_max (0

To aid the analysis below, consider U, U’ the set of edges left unsatisfied by g
in G and ¢’ in G’ correspondingly. Moreover, for a vertex v denote by Sho
the nodes in v’s cloud which are assigned to 0 € ¥ and do not agree with the
majority decision, i.e.

S — {u € [deg(v)] : g/ (w) = 0, 7 # 9(0)}

Denote by S’ = J, 5, SIh and § = |,y SPL
Let us consider an edge e = (u,v) € U. We will denote by e’ = (u;,v;) the
corresponding edge in E’. Then there are two possibilities.

e Either ¢’ is unsatisfied in H too.

e Either ¢’ is satisfied in H and at least one of u;,v; disagree with the
majority assignment.

Thus
U] < [U'| +18]. (5.1)

62 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Note that UNSAT,(G) = % and UNSAT(G") = Igi" Therefore, if |U'| >

|U|/2 it follows rather easily that

_ Ul Unsaty(G)
O |E| T 2(d+1D)|E| T 2d+1) T 2(d+1)

UNSATy (G') - UNSAT(G)
and consequently the same holds for the optimal assignment ¢'.

Consider now the case |U’| < |U|/2. From (5.1) it follows that |S| > |U|/2.
Note that S’ contains at most deg(v)/2 vertices since g is the majority as-
signment. Since each cloud is an expander with edge expansion h each S [v].0
has (within the cloud) at least h - | S| edges going out of it. These edges are
clearly unsatisfied. Being wary not to count twice the same edge, summing over
all ¢ € ¥ and all clouds we get a bound on U’, namely

noo 1 wle| _ ho h
U2 530> ko [sth7] = Dis| = U]
veV oeX
Thus
U/’ h0|U‘ ho - UNSAT (G) ho
USA/G’:’— = 9> - UnsaT(G
NSATy (G) = 151 2 T+ DB Hd+1) 2 aan) U@
and the same holds for the optimal assignment in G’.
We can therefore derive that
) 1 ho
B < "< =
UNSAT(G) - 1 < UNSAT(G") < UNSAT(G), f1 m1n{2(d+ 1) 1+ 1)} (]

Concluding, the PREP; step turned the original graph G into a d-regular graph,
decreasing the unsatisfaction value only by a constant (3.

5.5.2 Expanderizing

The second step will turn the output of the PREP; step into an expander.
Again, the main result that we use is Corollary 3.6, that there is an (n, d, hg)-
expander family for some constants d, hg for each n € N.

Definition 5.12. Let G = ((V, E),%,C) be a d-reqular constraint graph. The
constraint graph G' = PrREP2(G) = (V' E'),2,C’) is constructed as follows.

o V' =V.

e FEdges in E': consider a d'-regular expander graph X = (V,Ex). Then
E' = F U Ex, where multiple edges between two vertices are allowed.

e (Constraints: each edge in E preserves its original constraint i G, while
every edge i Ex has null constraints, i.e. it 1s satisfied by any assignment
to its endpoints.

5.5. PREPROCESSING STEP 63

Remark 5.4.
G’ is (d + d')-regular.

The next theorem illustrates the properties of the above construction.

Theorem 5.13. Let G = ((V,E),%,C) be a constraint graph. The reduction
G — G' = PrEPi(G) = (V' E'),2,C’) is such that

1AG) <A+ d.
2. V' +|E'| < c(|V]+ |E]|) for some constant c.

3. UNSAT(G) - B2 < UNSAT(G') < UNSAT(G) for some constant 0 < B2 < 1.

Proof Note that |E'| = M, therefore the new graph is only bigger by a
constant since both d, d’ are constants.

It should be obvious that UNSAT(G’) < UNSAT(G) since the optimal assign-
ment for G clearly satisfies the same number of edges in G’ and leaves a smallest
fraction of the constraints unsatisfied since G’ has additional trivial constraints.

The same argument works pretty much for bounding UNSAT(G’). Namely,
suppose that ¢’ : V/ — ¥ an assignment in G’ which satisfies S edges of E’, then
clearly S C F and S is exactly the set of vertices left unsatisfied by ¢’ in G’.
Thus

s 29 d 25 d
NS (@) = p S G ayw T dxd av - dva At (@)

which clearly leads to

UNSAT(G') >

d
i d,UNSAT(G)

and therefore
o d
Cd+d

Thus, it is left to prove that A(G') < A\ + d. Note that on a intuitive level, G’
will certainly be an expander since adding edges to an expander clearly cannot
reduce the edge expansion property.

UNSAT(G) - B2 < UNSAT(G') < UNSAT(G), B2

Formally, denote by A/, A, Ax the adjacency matrices of G/, G, X respec-
tively. Then, it is clear that Aq = Ag + Ax and recall that by the Rayleigh

64 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

quotient we have that

MG) = max ‘XTAGWX
[[x]=1,x 11

= max ‘XT(Ag-f—Ax)X‘

xl=LxL1
< max ‘XTAgx‘ + max ‘XTAXX|
lIx][=1,xL1 llx||=1,xL1
= AG) + \X)
and the claim follows. m

Summarizing the second step, we have succeeded in turning the graph into an
expander.

5.5.3 Combining the two Preprocessing Steps

Let H be the output graph if we apply the two transformations in chain,
namely

G — PREP;(G) — PREP2(PREP{(G)) = H.
Combining Theorem 5.11 and Theorem 5.13, we derive that
UNSAT(G) - f182 < UNSAT(H) < UNSAT(G),

where 31, f2 are constants. We may finalize the preprocessing step with the
following theorem.

Theorem 5.14. Let G = ((V,E),%,C) be a constraint graph. Then the con-
straint graph

H = PreP2(PREP1(G)) = (V', E'), %, (")
is such that
1. (V' E") is (d+ d' + 1)-regular for some constants d, d'.
2. X(H) < XA+d for some constant A < d'.
3. |\V'|+|E'| < c(|V]+ |E|) for some constant c.

4. UNSAT(G) - 8 < UNSAT(G’) < UNSAT(G) for some constant 0 < § < 1.

5.6. POWERING STEP 65

5.6 Powering Step

5.6.1 The Original Construction

In this step we amplify the unsatisfation value of the input graph G by an
arbitrary constant. We will follow the work in [Jut06], which is an improvement
to the initial Dinur’s construction. Before presenting the final construction, we
will first discuss the construction in [Din05], which makes the final one a little
easier to perceive.

Definition 5.15. Let G = ((V,E),X,C) be a d-regular constraint graph, and let
t € N be an arbitrary constant. Define Gt = ((V,E'),X,C') to be the following
constraint graph:

o The set of vertices remains the same.

o The set of edges E' is defined as follows: (u,v) belongs in E' if there is a
walk of length t from u to v. Note that multiple edges are allowed between
distinct vertices, as well as self loops. Thus, if A denotes the adjacency
matriz of (V, E), the adjacency matriz of (V, E') is Al.

o Y = xd+d'ttd" Ag g first intuition for the selection of X', note that
a symbol of X' encodes appropriately the assignment of all vertices in G
reachable from a vertex, in a walk of length at most t. Such a possible
encoding could be the d-adic tree which starts at a vertex u and visits in
a breadth first search manner all the nodes reachable in at mostt steps.
Note that the number of nodes in this d-adic tree is d° +d* + ...+ d" and
recording each possible assignment a : V — 3 with a single symbol requires
an alphabet of size |S|?"+e +-td"

o Constraints: Denote by B(v,t) the set of vertices which are at distance at
most t from v. Clearly B(v,t) coincides with the set of vertices appearing
in the d-adic tree described above and |B(v,t)| < d°+d'+. . .+dt. Consider
an edge e = (u,v) € E' and 01,09 € ¥ such that

o1: B(u,t) = ¥ and 02 : B(v,t) - X

The constraint on an edge e = (u,v) is satisfied iff
— For every w € B(u,t) N B(v,t) it holds that 01(w) = o2(w). Then,
clearly there is o : By U By — ¥ such that o|g, = 01 and o|p, = 02.
— Every edge in (u,v) € EN(B1UBy) x (B1UB3) is satisfied from the

assignment o.

First we convince ourselves that the constraint graph G* is bigger than G by just
a constant factor. To see this, note that

66 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

1. The set of vertices is invariant.
dt
2. The graph G! is d'-regular since G is d-regular. Thus |E’| = |V|§ Note
that both d and t are constants, the former due to the preprocessing step
and the latter due to our assumptions.

Moreover, the alphabet has increased a great deal, but since both 3, d and ¢ are
constants its cardinality is still a constant. Likewise, the set of constraints C’ is
much more complex, but since it grows only on constants (X, d and t) it can be
constructed in linear time on the size of the input.

Remark 5.5.

Recall that the gap amplification lemma in the proof of Gap — CSP hardness
was applied several times depending on the size of the input graph. Thus, if
not for the correcting the alphabet step, on different inputs we would end up in
different instances of Gap — CSP which would be a significant problem.

Up to now, we are assured that the size of the new graph is satisfying our require-
ments. The next and even more important question is why this transformation
amplifies the UNSAT value of the original graph.

To gain some insight into this subject, we consider first the rather obvious
solution to amplifying the probability of picking an unsatisfied edge in G by an
arbitrary assignment. Note that when UNSAT(G) = 0, it must also be the case
that UNSAT(G?) = 0 since, given as input a satisfying assignment for G, we can
clearly construct step by step a satisfying assignment for G".

Assume that UNSAT(G) > 0. Then, given an arbitrary assignment a in G,
the probability that a random edge will be unsatisfied is at least UNSAT(G). To
amplify this probability, we could clearly pick ¢t random edges which would result
in a probability of magnitude

1 — (1 — UNSAT(G))! ~ t - UNSAT(G)

The black point of this solution is that in order to build the corresponding
constraint graph we would one way or another be obliged to build | E|* constraints
for each multiset of £ edges which implies a non-linear transformation.

Instead, as we have already pointed out, walks of length ¢ pass around this
output size problem easily. Moreover, picking a random walk of length ¢ in G
is the same as picking a random edge in G!. And even more significantly, the
edges corresponding to a random walk of length ¢ in an expander graph is in a
manner (which will be clear later) as if we picked the edges at random.

The previous intuition is more accurately (but still in a non rigorous manner)
presented in the following proof skeleton:

e First consider an assignment A for G based on an assignment a for G.
Since the construction is based on the assignment h, consistency of A

5.6.

POWERING STEP 67

on mutual neighbors is guaranteed. Consequently, the only way for an
edge (u,v) € G to be unsatisfied is that an edge between two vertices in
B(u,t)UB(v,t) is unsatisfied in G. Hence, the probability of an unsatisfied
edge in G is greater than the probability that a random walk of length ¢
in G will contain an unsatisfied edge. Since G is an expander, the latter
probability is roughly ¢ - ¢ - UNSAT(G) for some constant ¢. This however
is less than half of the road to the proof since the point is to assure that
any assignment to G keeps the unsatisfaction level of G* sufficiently above
than that of G.

Let us consider the optimal assignment H for G*. Constructing an assign-
ment h for G such that

UNSATH(GY) > ¢+t - UNSAT,(G)

would clearly prove the desired claim since UNSAT 7 (G?) = UNSAT(G) and
UNSAT,(G) > UNSAT(G).

In the original construction of Dinur, the assignment h is defined as follows.

h(u) = arg max Pr[H (v)y = o|(u,v) € E']
S
This means that u is assigned the majority opinion on all of its neighbors
in G'. In the following section this assignment will be constructed in a
much more peculiar way.

Consider now an unsatisfied edge (u,v) of G. We would like to bound
from below the probability that a random walk o length ¢ in G contains
this edge and that this specific edge is unsatisfied by H. Clearly this
probability is greater than the probability that a random walk if length ¢
in G, which is resembled by an edge (v, v;) in GY,

1. contains this edge and,

2. H(vg)y = h(u) and H(vy), = h(v), i.e. vp and v; assignments agree
on u, v with the majority assignments in G".

The former constraint can easily be surpassed by taking a walk of length ¢
starting at u, ending up in a vertex vg, and taking a walk of length ¢t —1—1
starting at v, ending up in a vertex v;. Then clearly the resulting walk is
of length ¢ between vy and vy.

The latter constraint is the one making things difficult. For the majority
assignment h defined above (which is the one Irit Dinur used in her proof)
it can be proved that

UNSATx(GY) > ¢ -Vt - UNSAT(G)

68 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

For the rather more complicated h that we will define afterwards (and the
one that we will analyze), the square root in the term /¢ will disappear.
The main idea of this improvement is that A will be defined in such a
way that for the paths described earlier the probability that the second
requirement is satisfied is constant and independent of ¢. Thus, adding
over all the ¢ possible values of 7 the desired bound will come for free.

5.6.2 The Modified Version of Graph Powering

Preliminaries: The distribution L and J

Assume for the rest of this section that ¢ € N is divisible by 8 and consider
the intervals
t t t t t t
To=|—,=|, Tyu=|—,-|,Ts=|—=, =
2 [2’2}’ * {4’4]’8 [8’8]

Definition 5.16. The random distribution L is defined by the following random
process.

1. Choose a random integer i € Ty.
2. Choose a random integer j € Ty.

3. Returnl =1+ 7.

Clearly [takes values in T5. We prove that for each [€ T5, the following
lemma holds.

41—
Lemma 5.17. Pr(l) = =——— for each | € Ts.
T
Proof Clearly the number of pairs (i,) such that 4,5 € Ty is
' 2
> = (2 + 1) (5.2)

and each pair occurs with equal probability.
The pairs (i, 7) such that i, j € Ty and i = [— j are the ones that

t t t t
——<l-j<-el--<j<l+- 5.3
A (5:3)
Ifl >0thenl+ < >*%andl—*% > —L Thus, since Pr[j > £] =0, (5.3) is

equivalent to

5.6. POWERING STEP 69

Likewise, if [<0 (5.3) is equivalent to

LA j<l+ !
4 =7~ 4
Note that the above equations just describe the fact that j is in [l — ﬁ,l + ﬂ NTy.
By the way the above inequalities were constructed, each value of j corresponds
to a unique valid value of i = [— j. Moreover, the number of such j’s is in both
cases
t
2
each occurring with equal probability. Combining (5.2) and (5.4), we obtain that
for each [€ Ty

+1- 1, (5.4)

t
L1y
£ (3+1)

Remark 5.6.
Note that the most probable value of [€ T5 under the distribution L is clearly
0 and more generally, the closer [is to 0 the bigger the probability Prz(1).

The edges of G* are peculiar to define. In the construction we described in
section these were t-length walks. In this construction the length of the walk will
be defined by means of the distribution L and the distribution J which follows.

Consider the set W* of all walks in G. Clearly the set W* has infinite
cardinality.

Definition 5.18 (Distribution J). Define the distribution J on W* x Ty by
the following random process.

1. Choose l € Ty according to L distribution.

2. Choose a random walk w on G of length t + 1.

t

t
3. Choose a random s € [l — E’H— 1

] T,
4. Return (w,s).

The following lemma illustrates that the distribution J can be obtained in
a more explicit way.

Lemma 5.19 (Edges). There exists a multiset W such that
o W = O(|E|). Recall that E is the set of the edges in the original graph G.

o The next distribution s identical to J :

70 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

1. Choose a random w € W uniformly.

t t
2. Setl = |w|—t and choose a random s € [l - 1’l+ 4] NTy.

3. Return (w, s).

Proof Denote by W; the walks of length ¢ in G. Since the walks defined by

J are of length between % and %, the walks that W’ includes must coincide

with the union W%, ce oy Wy ..., W3, Thus, the only thing that we need to care

2
about is to pick the multiplicity of the each walk accordingly so that the random
process defined in the lemma is identical to the random process which generates

J.

But this can be done rather easily since there are % + 1 — |I| possible values
for the s that A picks (s satisfies the same inequalities as j in the proof of
Lemma 5.17). Thus W is the multiset defined by the union of the sets

3t

2
w=Jwu...uw,

=1t t .

T2 gHl-|i—t]

Notice that [is actually the quantity ¢ — . In other words, the above equation
says that if w € W;, W’ contains % + 1 —|i — t| copies of w.

It is easy to see that [W| = O(|E|). Namely, |W;| = |V|- %t and since d and
t are constants (recall that d is the regularity of the expander G) and each W;
has at most % copies into W. [

The next lemma provides a different way to look at the distribution 7.

Lemma 5.20 (Distribution J). Let i € T3. The following distribution B; is
identical to J :

1. Choose (u,v) € E.
2. Choose ji1,j2 € Ty independently.
3. Pick a walk of length % + 1+ j1 starting from u. Let
(UO""’U§+i+j1 = u)
denote the resulting walk.
4. Pick a walk of length % — 1 — 1+ jo starting from v. Let
(v= CINTIUNTR s Vbt ji4jo)

denote the resulting walk.

5.6. POWERING STEP 71

5. Return w = (vg, ..., Vt4j1+jo) and s = ji.

Proof First identify j; + jo with [of Definition 5.18, since j; + j2 ~ L by
definition. Moreover, since

R (L R iy
4 4 =0~ 4 4
it follows that j; € [l — %, [+ ﬂ Notice also that each inequality above may
hold as equality for an appropriate choice of jo. Therefore j; is uniformly dis-
tributed on [l . ﬁ,l + ﬂ NTy and consequently s is equivalently defined to Def-
inition 5.18. Thus we are left to prove that the way the (¢ 4+ [)-walk @w was
generated is equivalent to picking it uniformly from all the (¢ +1)- length walks.
But this can easily be verified by a counting argument, keeping in mind that the
graph G is regular. Namely,

e Step 1 has V|- d/2 choices.
e Step 2 has d5+F0 choices.
e Step 3 has d5~1=1432 choices.

Thus, given ji,jo there are |V|d*+!/2 possible choices for the walk w, which
means that the above procedure is equivalent to picking @ from all the possible
|V|d+! /2 walks of length ¢ + 1. n

The Final Construction

The final construction is almost the same as the one in Definition 5.15 with
the difference that the set of edges is defined differently. We rewrite the whole
definition for easy reference. If the reader shall get the feeling that some parts
of the final construction described in this section are too laconic, it is highly
recommended to go through the extended version of Definition 5.15.

Definition 5.21. Let G = ((V, E),%,C) be a d-reqular constraint graph, and let
t € N be an arbitrary constant. Define Gt = ((V,E'),X,C’) to be the following
constraint graph:

o The set of vertices remains the same.

e The set of edges E' is defined as follows: Let W the multiset of random
walks established in Lemma 5.19. There are exactly k parallel edges (u,v)
in E' iff the number of walks in W between u and v equals k. Note that
multiple edges are allowed between distinct vertices, as well as self loops.

0 1 t
o 3/ — yd'+d +..+d

72 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

o Constraints: Consider an edge e = (u,v) € E' and 01,09 € ¥/ such that
o1: B(u,t) - ¥ and 02 : B(v,t) > X

The constraint on an edge e = (u,v) is satisfied iff

— For every w € B(u,t) N B(v,t) it holds that o1(w) = o2(w). Then,
clearly there is o : By U By — ¥ such that o|g, = 01 and o|p, = 03.

— Every edge in (u,v) € EN(By1UDBsg) x (By U Bs) is satisfied from the
assignment o.

Lemma 5.19 guarantees that the above construction keeps the size of G*
linearly bigger than that of the input graph G. The arguments presented for
the original construction of Definition 5.15 apply here too, so that G* can be
computed in linear time. Furthermore, if UNSAT(G) = 0 then UNSAT(G?) = 0.
Hence, in order to complete the correctness of the final constructions, it remains
to prove the following theorem.

Theorem 5.22 (Gap Amplification). There exist constants ¢ and v depen-
dent on d and |X| such that

UNSAT(G) > 0 = UNSAT(G?) > min{y, c-t - UNSAT(G)}

Let H : V — ¥’ the optimal assignment for G*. We construct the assignment
h:V — X for G as follows:

1. Choose integer k in [% — %, % + é] uniformly.

2. For u € V, choose a walk of length k in G. Denote by v the end vertex of
this walk.
3. h(u) = arg max Pr[H (v)y = o|(u,v) € E]
S

Thus, the majority opinion on u is modified in comparison to the one presented
in the original construction as it takes into consideration only the opinion of
vertices close enough to w.

Denoting by U, U’ the sets of edges left unsatisfied by h and H respectively,
our aim is to prove that

U]

UNSAT(G?) = 2l >c-t- ;EU: =c-t- UNSATL(G) > ¢ -t - UNSAT(G)

Definition 5.23. For each i € Ty, denote by J;(w,s) the following event on
W x T4 N

5.6. POWERING STEP 73

~

. weW. Thus w = (vo,...,v44;) for somel € Ty.

do

s € [l — ﬁ,l—i— ﬂ NTy. Let u = Vigstt and v = Citstitl- Note that u,v
are successive vertices in the walk w and consequently (u,v) € E.

3. H(vg)y = h(u).
4. H(vii)o = h(v).
5. (u,v) €U.

Notice that the first two conditions are immediately satisfied by any pair (w,s) €
W x Ty by definition.

Vo
~— — — —e.
e
~ 1 v
v — — -6
H(VO)I.I. H(Vtﬂ)v Y

~
Viilte

If J;(w,s) occurs for some i then clearly (vo,vsy;) € U'. Define an indicator
variable z;(w, s) such that

24(i0, 5) = 1, iff J;(w,s) occurs
S0, otherwise

and

We claim that the following lemma holds.
Lemma 5.24. There exists constants 7y, c such that

_ . \U}
Pr |[N(w,s) >0 >min<~v,c-t-+—
P IN(@s) > 0z min (-0

Assuming the validity of Lemma 5.24, Theorem 5.22 follows.

Proof (Gap Amplification) It is easy to see that UNSAT(G?) is bounded from
below by Pry ¢)~7[N(w, s) > 0]. Namely, when ranging over all (w, s) N (w, s) >
0 is the event of J;(w, s) occur

UNSAT(GY) > Pr [N(w,s)>0]>c-t- Ul =c-t- UNSAT,(G) "
(117,8)’\4‘_7 |E’

74 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

To prove Lemma 5.24 we use the inequality Pr[Y > 0] > (Eg}g)f (see Appendix

for a proof), namely

[N(w,s)>0] >

P A A A 5.5
(i)~ E7[N?] (5:5)

Proposition 5.25 (Expected Value).

1 U]
E7[N] ZZEJ[JCi] > Wt@

Proposition 5.26 (Second Moment). If A = \(G) then
2 2
t t| |UF ¢t 1 U
E7[N?] < 3max E7[zi], (> o, o ——e
J[]— {2@: j[][4 4 |E|2 2 1_1X ‘E|

Using Proposition 5.25 and Proposition 5.26, Lemma 5.24 follows from (5.5).

Proof (Expected Value) We first prove that

1
EAg]> — . =21
7= G g

(5.6)
By the definition of event J; and using Lemma 5.20, we have that
]}r[mi > 0] = Pr[(u,v) € U] -I}r H(vg)y = h(u)|u = Vipsit |-
:]i;r H(vi11)o = h(v)|v = Yits+Li+1
= Prf(u,v) € U] - Pr[H(vo)u = h(u)|(u,v)]
P [H (vesji42)0 = h(w)|(w,0)] (5.7)
Let us consider Pry [H(vg)y = h(u)|(u,v)]. Define on the distribution J the
event
AT T) R 2 s TS
Then, using Bayes formula, we have that
PriH (vo)y = h(u)|(u,v)] = Pr[P;] - PrH (vo)y = h(u)[;]
J J J
Note that i + j; + & is uniformly distributed on [i + £ — £,i + £ +], thus

t
Lyl 1
4 >

5.6. POWERING STEP 75

Moreover, by the definition of A and since there are at most |%| symbols in the
alphabet, it follows that

Pr[H () = h(u)|Py] > 5

Therefore
Pr[H (vo)u = h(u)[(u, v)] > 5=

and in a similar fashion
1
Pr(H (w1)0 =)|, 0)] > g

Thus, equation (5.7) yields

1 U]
Prlz;, >0 > — - —
e > 0> 45e g
and trivially
U]
E . LN
7l > 35 17

Finally, linearity of expectation shows that

1 [t 1 U]

Es[N] =Y Egle (241) B e

7Nl < il > g5 <4+> B~ 1652 R
1€Ty

Proof (Second Moment) Notice that

EsIN =Bz | (Y wi || =Es| Y mz|= Y Eglwl

i€Ts (4,7)ETs x Ts (1,§)€Te x Ts

Instead of calculating the probability that J;(w, s) occurs, we relax our require-
ments and seek only for walks in G which contain an edge in U. This relaxation
is in our interests, since we are trying to bound N (w, s) from above.

To be more specific, for each ¢ € Ty, denote by J/(w, s) the following event
on W x Ty:

o W= (vg,...,v4) With u = Vtits and v = Vb yiger
o (u,v)eU.
and define the indicator variable

(5, 5) = 1, iff J/(w,s) occurs
Y3 =00, otherwise

76 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Clearly, if J;(w, s) occurs then J/(w, s) occurs too, and consequently

z;(w, s) < y;(w, s)

Noting that y? = y; and 27 = x;, (5.8) yields

EgIN*| <) Eglzl+ > Eglyy) (5.9)
1€y (i,j)ETgXTg
i#]

A simple calculating argument, as the one presented in the proof of Lemma 5.20,
can easily establish that

U|
and therefore,
t |U|
E T=(22+71).=! .1
> " Eglui (4+) | (5.10)

€Ty

Next, we calculate the terms E 7[y;y;] appearing in (5.9). Using Bayes formula

Elysy;] = P}r[yz'yj > 0]

= ZPrj[ylyj > 0|l,8] - Pr [las]
€Ty
(l,S) $€T4
=Y Pr((vi,vi41) € U A (vj,0541) € UlL,s] - Pr [l
(l,S) SETi
=D _Pr((vj,vj41) € UlL,) Pr[(vi, vis1) € Ull, s, (v, 0j41) €U~ Pr (L,
(1,8) =
U
= |’E: Y " Pr(vs, vip1) € UL, s, (v5,v541) € U] - Lr 1, 5]
(l,S) $€T4

Again, using the fact that G is d-regular, it can easily be proved that the distri-
bution of the edge (vj,v;i4+1) on a random walk conditioned on (v;,v;11) is the
same as the distribution defined by the following random process D.

1. Choose a random edge in U and pick a random endpoint of the edge, say
V-

2. Take a random walk of length (i —j+1) in G and let (v;—j, v;—j+1) denote
the last step.

Thus Pr [(v;, vi41) € UJl, s, (vj,vj41) € U] does not depend on [, s and since

leJg [l,s] =
€
(175) S€T24

5.7. PROOF COMPOSITION 7

it suffices to find an upper bound for Pr [(v;, vi+1) € U|(vj,vj41) € U]. But this
has already been treated in section 2.4. Using the bound for an (i —j + 1)-length

walk, we obtain
vl (U]
Blis] < g1 {ay +
and consequently

U U
> Eglyyl<2) ’I (lE}+/\z]>

(4,§)ETs xTs (i,)€Te xTg
i#] i>j
U 2 Ul . .
(i7j)€T8XT8 (i,j)GTgXTg
i>] i>j
2 2

t t| |U| \U| t~
< - - R 2 AZ

= [(4) T3l ER e L

IN

L2 I) R S L4
4 41 |E2 2 1-X |E|

AN
4 4

< 3max {ZEJ[%], [(i)Q vl

)

Finally (5.9) gives

w2 ¢ 1 U
. 5+ 5 _ .21
E2 2 1-)\ |E|
o ¢ 1 Ul
|E]? 2 1-X |E|

Ez[N?] < Z Eglzi] +

5.7 Proof Composition

So far, we have managed to turn the initial input constraint graph G to
another one whose unsatisfaction value can be selected to be arbitrary bigger
than UNSAT(G). The only drawback of this reduction is the increase on the
alphabet, which is undesirable since the reduction will be applied log |E| + 1
times resulting in ¥ depending on the input.

In this step, we correct the alphabet via proof composition, a powerful tech-
nique which was first introduced by Arora and Safra.

The idea of proof composition is an elegant argument but getting the gist
of it, due to the many technical details, is hard. Before presenting it in its full
form, we will try to demonstrate in an abstract form the various aspects of its
application.

Let’s see how a PCP verifier V would work in G*. Since an edge by our so far
reduction is unsatisfied with good probability for our scope of interest, it would

78 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

pick a random edge and query into the proof the assignment to its endpoints
and then check whether the chosen edge is satisfied or not. This, as we have
already pointed out, would not work generally since gap amplification is applied
several times and hence a polynomial number of bits would be required to check
a constraint. Despite this, G'’s alphabet has constant size and each constraint
is on two variables.

Suppose now that we have a reduction P from any NP language to a con-
straint graph satisfaction problem which keeps the alphabet low but creates a
super-polynomial number of constraints. Seeing each constraint of G* as an in-
dividual NP statement which we want to check if it is satisfiable, we could cast
the constraint V chooses into P and ask for a proof that it is satisfiable. P
given as input one of our constraints would definitely create a large number of
constraints but since each constraint of G is of constant size the output would
be of constant size too. Hence, we could create a constraint graph G; for each
edge in G* and ask for a proof which will satisfy every G;. Clearly the alphabet
is by now corrected.

Does this suffice? The answer is no. The reason is that a proof of the
satisfiability of a single constraint does not guarantee by any means that a single
assignment can satisfy all of the constraints (think the analogue of clauses and
a 3SAT formula). Hence, we should glue together all these G;’s and generate
appropriate constraints in such a way that consistency is secured.

Having studied the intuition behind proof composition, we are now ready to
state the main result of this section.

Theorem 5.27 (Proof Composition). There exist constants ¢ > 1, 0 < € <
1 such that for every constraint graph G = ((V, E),X,C) there ezists a constant
¢y, such that a constraint system C' of q-ary constraints on a binary alphabet can
be constructed such that:

o [C'| <es(lV+I[E)).
e UNSAT(G) = 0 = UNSAT(C') = 0.

e UNSAT(G) > 0 = UNSAT(C') > € - UNSAT(G).

The transformation of the constraint system C’ into a constraint graph problem
(binary constraints) can be accomplished easily. Namely:

e Consider an alphabet ¥’ such that all possible assignments to a constraint
of C' can be encoded with a single 0 € ¥/. Clearly, |¥'| = 2.

e For each constraint in C’ introduce a node.

e (u,v) € E' iff the corresponding constraints in C’ share at least one vari-
able.

5.7. PROOF COMPOSITION 79

e (u,v) € E' is satisfied iff the assignments to u, v are consistent on their
common variables.

Since ¢ is constant and |C'| = O(|V| + |E]), it should be clear that the output
constraint graph is linearly bigger than the size of the input graph.

A sketch of the proof of Theorem 5.27 follows:

1. Replace each variable v with a set of Boolean variables [v] and expect a
proper encoding from an assignment to v to an assignment to [v].

2. We construct constraints such that:

e For every v € V the constraints check whether an assignment to [v]
roughly encodes an assignment to v.

e For every (u,v) € E the constraints check whether the assignments
to [u], [v] roughly encode a satisfying assignment for (u,v).

5.7.1 Local Testing Revisited

In this subsection, we prove three lemmata which will be handy in prov-
ing Theorem 5.27. The reader not interested in technical details, though not
ecouraged to do so, may omit the proofs of these lemmata and jump to the next
subsection.

Recall that in section 4.5, we saw that Hadamard code is locally decodable.
We repeat the algorithm for easy reference.

Algorithm 1 (LinTest).

Input: A string w € {0,1}?",

Procedure:
Choose a random z € {0, 1}
Choose a random y € {0, 1}.

Output:
LinTest(w) = 1 iff w(z) @ w(y) = w(z & y).

We are ready to state the first lemma.

80 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Lemma 5.28. There exists LY € N and an encoding H : ¥ — {O,l}Ll2 such
that the property P = {H(a)|a € ¥} has an LTA A;, and the encoding H has
relative distance at least 1/3.

Proof Take H to be the Hadamard code. Then H has, as we have already seen
in section 4.4, relative distance of 1/2 and LinTest is a (3, 1)-LTA for H.ard
code. Then H has, as we have already seen, relative distance of 1/2 and LinTest
is a (3, 1)-LTA for H. S

The next lemma is an extension of Lemma 5.28.

Lemma 5.29. For every ® : ¥ x ¥ — {0,1} there exists Ly € N and an
encoding Hy : © x ¥ € {0,1}22 such that the property Po = {Hep(a,b)|®(a,b) =
1} has an LTA As, and the encoding He have relative distance at least 1/3.

Remark 5.7.

Note that Lemma 5.29 is a generalization of Lemma 5.28, since the latter follows
from the former by letting ®(a,b) = 1 for each a,b. Namely, Lemma 5.29 allows
to check whether an assignment to a constraint satisfies it.

Recall that in section , we saw that Hadamard code is locally decodable. We
repeat the algorithm for easy reference.

Algorithm 2 (SelfCorr).
Input: A string w € {0,1}2"
An index = € {0,1}\.

Procedure:

Choose a random y € {0, 1}\.

Output:
Return SelfCorr”(z) = w(y) ® w(z & y).

Proof (Lemma 5.29) First of all, we construct a family of quadratic functions
which simulate the boolean predicate ®. The most intuitive way to construct
this function is using its boolean circuit Cg.

Suppose X are the input variables of the circuit Cs. We add a variable for
each of the internal wires in Cg, and denote these variables by Y. Each gate
in Uy can now be described by a quadratic equation in its input and output
variables. Namely,

5.7. PROOF COMPOSITION 81

e NOT: z1 +20—1=0.
e AND: z129 — 23 = 0.
o OR: 21 + 29 — 2129 — 23 = 0.

Thus, for every gate in Cp assign an equation f; = 0 for i = {1,...,m}, where
m denotes the number of gates. Note that m depends only on the size of |3|.
To be more specific since each symbol in ¥ can be encoded by log|¥| binary
variables, | X| < |X|. Thus, each ® can be written in conjunctive normal form
using at most 2! clauses in disjunctive normal form and splitting each clause
into 2-input gates shows that m < O(|2[2”). Since ¥ is of constant size, m is
a constant.

Observe that the f;’s are quadratic functions but when the variables are as-
signed Boolean values, each of them is Boolean. Clearly, if Cgy by an assignment
a: X — {0,1} to its input variables, it can be extended to a unique assignment
a': XUY — {0,1} such that each f; is satisfiable. Thus, satisfying E(a,b) is
equivalent to satisfying the family {f}" .

Denoting by Z = X UY checking f; could be simplified by asking not for an
assignment to z; but also the terms z;z,.

More formally, if n = |Z| we denote by z ® z the string, which for clarity we
represent as a vector,

2@ 2= [2121, 2122, « + s 2120, 2221, 2222, + + ZnZn—1, ZnZn)-

Note that n < 2m = O(1), so the size of z ® z is again a constant (n? = O(1)).
Moreover, observe that each f; is linear with respect to z ® z.

We will use the Hadamard encoding of z ® z. The size of the Hadamard
encoding of z ® z is again a constant (though of order]2\2222‘2‘). Thus the final
encoding for an assignment a to the boolean variables X is of the form

Hy=a—d — H(d ®d)

Clearly the Hadamard encoding of z ® z still has relative distance 1/3. Thus we

would be pleased if for some constants ¢, € we found (g, €)-LTA for H(z ® z).
Note that 212 = z; thus the terms z;z; with ¢ = j are linear with respect to z.

Denote by zji, the string which consists of the assignments to z2~2 . Below follows

7’L2 . .
an algorithm to test whether a w € {0,1}?" is a legal Hadamard encoding of a
word z ® z. We study its correctness right afterward.

82 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Algorithm 3 (QdTest).

Input:
A string w € {0, 1}2n2.
Procedure:
Choose a random «a € {0,1}".
Choose a random £ € {0, 1}".

Output:
QdTest(w) = 1iff SelfCorr"'»(«)-SelfCorr*“i» (3) = SelfCorr®” (a® 3)

o If w € P then there is a z such that w = H(z ® z). Clearly wyjy, = H(z).
Thus

SelfCorrin(a) = > a;z
=1
n
SelfCorr" (8) = _ 8;2;
j=1

SelfCorr“t»(a @) = Y Y aifjziz

i=1 j=1
It should be clear now SelfCorr*i»(a)-SelfCorr*'i»(3) = SelfCorr"” (a®
B) and consequently QdTest(w) = 1.

e If dist(w, P) > 0 then denote by z the word such that

diSt(H($), wlin) >4

and similarly y for w. Define the matrices M, My such that (M;);; =
x(1) - 2(j) and (Ma);; = y(4, 7). By hypothesis, we have that My # M>.
Each of the self correcting algorithms give the right answer for the re-

spective Hadamard word with probability 1 — 2§ and thus the output step
checks with probability at least (1 — 24)% > 1 — 6§ that

> a(ia(i)a@)BG) =D yli,)a(i)B() = o TMiB = aTMyfB =
(] J
o (M, — My)B=0

5.7. PROOF COMPOSITION 83

Since M; # M, this happens with probability at most 3/4 for a random
choice of «, 5. The easiest way to see this is to note that v = (M; — Ma2)f
is nonzero with probability at least 1/2 and in this case oy is nonzero
with probability 1/2. Thus the overall acceptance probability in this case
is bounded above by % + 66 which proves the soundness of QdTest.

Using QdTest we can finally construct an LTA for Py = (Hg(a,b)|®(a,b) = 1).

Algorithm 4.

Input:
An assingment w € {0, 1}2n2.
Procedure:
1. Use QdTest(w) to check that w is a legal Hadamard code.
2. Choose a random a € {0,1}™ and set fo(2) = > a;fi(2).
Output:
1. If SelfCorr”(f,) = 1 then return 0.

2. Denote by z; the output of Cy. Return SelfCorr”(0...010...0),
where the 1 is in the n(k — 1) + k position (the bit corresponding to

Remark 5.8.

If we write out fo(2) it will be of the form) z;z; where the sum is over a set
of pairs (4,) which are defined by those f;(z) such that a; # 0. Thus fu(2) is a
linear function on z ® z and thus step 1 in the output level is well-defined.

The key fact about f,(z) is captured by the following lemma.
Lemma 5.30.
1. If fi(2) = 0 for all i then Pry[fa(2) = 0] =1 for any a € {0,1}™.
2. If fi(z) # 0 for some i then Pro[fa(2) # 0] = 3 for any a € {0,1}™.

Proof The first part of the lemma should be obvious. For the second part,
consider the Hadamard encoding of the string f = [fi(2),..., fm(2)]. We have
seen in section that if f is not the all zero string, then exactly half of the entries
in H(f) are equal to 0. But this is exactly the probability we seek. n

84 CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

Completeness of Algorithm 4

If w € Py then there exists w = H(z ® z) and z is a satisfying assignment
for Cp. Consequently, the procedure step 1 clearly succeeds. Note that for each
i €{1,...,m} fi(z) = 0 and consequently SelfCorr"(f,) = 0. Finally, z;, =1
and the last self correction will return the right value of z,% with probability 1.

Soundness of Algorithm 4

Suppose that dist(w, Pp) = 9.
e Step 1 in the procedure fails with probability ©(0).

e If 2 is not an encoding of a feasible computation in Cy, then {f;(2)} is a
non-zero Boolean vector, and then Pry[fa(z) = 1] = 1.

e Step 1 in the output gives the right value with probability 1 — 24.
e Step 2 in the output gives the right value with probability 1 — 24.]

Thus soundness is guaranteed too.

The next lemma is an extension of both Lemma 5.28, Lemma 5.29.

Lemma 5.31. For every ® : ¥ x X — {0, 1} there exist LY, LY € N and encod-
ings H : ¥ € {0,1}:7 and Hp : & x ¥ € {0,1}22 such that the property Pp =
{(H(a),Hg(a,b))|a,b € X, P(a,b) =1} U{(H(b), Hp(a,b))|a,b € X, P(a,b) =1}
has an LTA As, and the encodings H, Hg have relative distance at least 1/3.

Proof In Lemma 5.29 we used Hp = H(z ® z) where z was an extension of the
binary representation of (a,b). Thus, we can add in Algorithm 4 to locally test
the linear part of z ® z which encodes (a, b) using LTA A; from Lemma 5.28. m

5.8 Alphabet Reduction

We are now ready to prove Theorem 5.27. We first describe the reduction
and then prove its correctness. Assume without loss of generality that LY, LY
provided by Lemma 5.28 and Lemma 5.29 are equal, since we can we can use a
repetition of the encodings to obtain equality. Moreover, for the reductions, we
will use the LTA’s Ay, Ay, A3 of the lemmata.

Let G = ((V,E),X,C. Then the constraint system (V' Xy = {0,1},(’) is
constructed as follows.

5.8. ALPHABET REDUCTION 85

Variables. For every v € V define L binary variables [v]. For every e =
(u,v) € E define L} binary variables [e]. Define

V' = Uypev|[v] U Uecrl€]

Constraints. Consider first the following LTA A:

Algorithm 5.
LTA A
Input:

e An assignment H : V' — {0,1}.
Procedure:

e Choose a random e = (v1,v2) € E. Test the restriction of a to e using
LTA A,.

e Choose a random v € {vj,v2}. Test the restriction of a to v using
LTA A;.

Output:

e Test the restriction of a to [v] U [e] using LTA Ajz. If any of the above
tests fails output 0. Otherwise 1.

Note that A reads a constant number of variables, since each of the LTA’s
does so. Denote this number by q. Moreover, A needs log |E| bits to choose an
edge, 1 bit to choose v plus the bits that each of A1, A2, A3 needs to run. We
have seen that the last number depends only on X, thus we may assume that it
is a constant ry. Thus, A needs log |E| + a + ry bits to run.

It should be clear now that the constraints will simulate the different runnings
of A. This can be done in linear time by computing for each p € {0, 1}!08 [Fl+a+rs
a predicate @, for those assignments which cause A to accept (note that there
are O(|E|) different possible such strings p and 29 = O(1) needed to be checked
for each p). Define C’ to be

C = {(I)p|P c {07 1}log\E|+a+rz}

We have already seen that both V'’ C' are ’just’ a constant bigger than the
input. To complete the proof of Theorem 5.27, we need to prove the completeness
and soundness of the final construction.

86

1. Tf Pr[As(w) = 0
2. If Pr[Ay(w) = 0]

CHAPTER 5. DINUR’S PROOF OF THE PCP THEOREM

e Completeness is once again easy, since each of the LTA’s that A uses has
perfect completeness.

Suppose that UNSAT(G) > 0 and let H : V/ — {0,1} the optimal assign-
ment for G. Define the assignment h : V' — ¥ for G such that h(u) to be
the value in ¥ whose encoding H (a(v)) is the closest to the restriction of
A to [v].

Consider an edge e = (v1,v2) € E, whose constraint ¢ is not satisfied by
a, and denote by w the restriction of H to [e]. Denote by e the soundness
parameter of A,. We distinct two cases:

]

then A fails with probability at least €/6.

& then Joy, 09 € ¥ such that ®(o1,02) =1 and

(=]}

>
<

PI‘[AQ (w) = 0]

dist(w, Hp) <
€

<

=

Since the assignment h does not satisfy ®, then it cannot be the case
that both o1 = h(v1) and o9 = h(vz) hold. Note that we peek the
wrong assigned v € {v1,v2} with probability at least 1/2. Denote
the restriction of A to [v] U [e] by w'.

We will prove that Pr[A3(w) = 0] > 55. Note that it suffices to
prove that w’ has at least 1/12 distance from the property tested by
As. Indeed, since the encoding H has relative distance at least 1/3,
H(a(v)) must be changed in at least L} /6 bits to encode the correct
o € ¥. But since LY and L3 are equal (recall the argument in the
beginning of the section) w is half the length of w’ and consequently
w’ must be changed in at least L3Z/12 so as to be a proper encoding
that will be accepted by As. Hence, w’ has at least 1/12 distance

from the property tested by As.

In both cases, UNSATy (C) = Pr[A = 0] > 5 UNSAT,(G) > 5 UNSAT(G).

Thus, Theorem 5.27 holds and alphabet correction was successfully accom-

plished.

Bibliography

[ACSS]

[ALM*92]

[Alo86]

[Aro94]

[AS92]

[Bab85]

[Bab91]

[BCH'95]

[BFL90]

[BLOG6]

[BLR90]

Noga Alon and Fan R. K. Chung. Explicit construction of lin-
ear sized tolerant networks. Discrete Mathematics, 72(1-3):15-19,
1988.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof verification and hardness of approxima-
tion problems. In FOCS, pages 1423, 1992.

Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83—
96, 1986.

Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of
Approzimation Problems. CS Division, UC Berkeley, 1994.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs;
a new characterization of np. In FOCS, pages 2-13, 1992.

Laszlé Babai. Trading group theory for randomness. In STOC,
pages 421-429, 1985.

Proceedings of the Twenty Third Annual ACM Symposium on The-
ory of Computing, 6-8 May 1991, New Orleans, Louisiana, USA.
ACM, 1991.

Mihir Bellare, Don Coppersmith, Johan Hastad, Marcos A. Kiwi,
and Madhu Sudan. Linearity testing in characteristic two. In
FOCS, pages 432-441, 1995.

Lészl6 Babai, Lance Fortnow, and Carsten Lund. Nondetermin-
istic exponential time has two-prover interactive protocols. In
FOCS, pages 1625, 1990.

Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly
optimal spectral gap*. Combinatorica, 26(5):495-519, 2006.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. In
STOC, pages 73-83, 1990.

87

88

BIBLIOGRAPHY

[BOGKWS88|] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigder-

[CooT1]

[Din05]

[FGL*91]

[FRS94]

[GLSTOS]

[GMRS9]

[Has97]

[Jut06]

[Kar72]

[KZ97]

[Lov93]

[LW03]

[MR95]

son. Multi-prover interactive proofs: How to remove intractability
assumptions. In STOC, pages 113-131, 1988.

Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151-158, 1971.

Irit Dinur. The pcp theorem by gap amplification. Electronic
Colloquium on Computational Complezity (ECCC), (046), 2005.

Uriel Feige, Shafi Goldwasser, Laszl6 Lovasz, Shmuel Safra, and
Mario Szegedy. Approximating clique is almost np-complete (pre-
liminary version). In FOCS, pages 2-12, 1991.

Lance Fortnow, John Rompel, and Michael Sipser. On the
power of multi-prover interactive protocols. Theor. Comput. Sci.,
134(2):545-557, 1994.

Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca
Trevisan. A tight characterization of np with 3 query pcps. Elec-
tronic Colloguium on Computational Complexity (ECCC), 5(34),
1998.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM J. Comput.,
18(1):186-208, 1989.

Johan Hastad. Some optimal inapproximability results. Electronic
Collogquium on Computational Complezity (ECCC), 4(37), 1997.

Charanjit S. Jutla. A simple biased distribution for dinur’s con-
struction. Electronic Colloquium on Computational Complexity

(ECCC), 13(121), 2006.

Richard M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of Computer
Computations, pages 85-103. Plenum Press, 1972.

Howard J. Karloff and Uri Zwick. A 7/8-approximation algorithm
for MAX 3SAT? In FOCS, pages 406-415, 1997.

Laszl6 Lovasz. Random walks on graphs: A survey, 1993.

N. Linial and A. Wigderson. Expander graphs and their applica-
tions. http://www.math.ias.edu/ boaz/ExpanderCourse, 2003.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

BIBLIOGRAPHY 89

[Pap94]

[Pin73]

[Rei04]

[Vaz01]

Christos Papadimitriou. Computational Complezity. Addison—
Wesley, 1994.

M. Pinsker. On the complexity of a concentrator. In Proceedings
of the 7th International Teletraffic Conferenc, pages 318/1-318/4,
1973.

Omer Reingold. Undirected st-connectivity in log-space. Elec-
tronic Colloguium on Computational Complexity (ECCC), (094),
2004.

Vijay V. Vazirani. Approzimation Algorithms. Springer-Verlag,
2001.

90

BIBLIOGRAPHY

Chapter 6

Appendix

6.1 Useful Inequalities

Theorem 6.1 (The Cauchy-Schwarz Inequality). Let a;,b; € R for 1 <
1 <n. Then

(a1hy 4 ... 4+ apby)? < (a3 + ...+ a2) (b3 + ... +b2)
In vector form the inequality can be written as x'y < ||x|| - ||y||.

Proof Consider the polynomial

P(z) = (a1z + b)* + ... + (anz + b)? (6.1)
= (@ +... +a2)z® +2(arby + ...+ anbp)z + (b3 4 ...+ b2)

Clearly P(z) is nonnegative for every z € R, thus it can have at most one real
root. Since P(x) is a degree 2 polynomial this translates into A < 0. Hence

A
—=(arb1 + ... Fapby)? — (@3 + ...+)i+ ... +02) <0

4

and the inequality follows.

Equality occurs if the squares in (6.1) can be set simultaneously to zero which
is possible iff
ay Qp,
_ W -

a—.-- bn

Theorem 6.2 (Chebyshev’s Inequality). Let X be a random wvariable with
expected value j1 and variance 0. Then for any real number k > 0,

1
Pr[[X — p| = ko) <

91

92 CHAPTER 6. APPENDIX

Proof Define | |
1, X —pl>ko
9(w) = { 0, otherwise

(X — p)?
Note that 0 < g(z) < k . Then
o
X —p)? 1
PrIX — il > ko) = Blg(@)] < B[S = L m((x —)
ko ko
The desired inequality follows since
E(X — p)?] = E[X? - 2uX + %] = E[X?] — pi? = 0 "

Theorem 6.3. Let X be a random variable which assumes nonnegative values.
Then

Pr[X > 0] > (ELY))”

Proof Define

oL HX>0
g\ = 0, otherwise

Then using Cauchy-Schwarz inequality we have that

E[X] =E[X - g(X)] < VE[X?] - VE[g(X)?]

The inequality follows since E[g(X)?] = Pr[X > 0].]

6.2 Rayleigh Quotient

Theorem 6.4 (Rayleigh Quotient). Let A be a symmetric real matriz with

etgenvalues Ay > Ao > ... > A\, and eigenvectors e1,€a,. .., e, respectively.
Then
T
x"Ax
1. Al = max 72
x e R"]
T
. x"Ax
2. Forl<i<n, \; = max -3
xeR" [
X_Lel, R |

Proof Let x € R™. Since e;, 1 <4 < n form an orthonormal basis in R", x can
be uniquely represented as a linear combination of them. Namely, let

n
X = E C;€;
=1

6.2. RAYLEIGH QUOTIENT 93

for some scalars ¢;. Then
n n
x> = ciel > cje;
i=1 j=1
= Z CiCje;Fej'

1<i,j<n

Recalling that e;fej =1iff i = j, we obtain

n
x> =7 e
1=1

Similarly, using that Ae; = \e;,
n n
x'Ax = (Z ciez-T> Z cjAe;
i=1 j=1
n n
= (Z cie;r> ch)\jej
i=1 j=1

= E CiCjAje;Fej

1<ij<n
n
E 2
= C; >\Z
=1

Assuming that x_Le; for some 1 < i < n, we get that x'e; = 0, which translates
into ¢; = 0. Thus,

3
3

x"Ax =
max = <

]:
xeR* [o Z":

XJ_el,...,ei_l c;
j=i j=i
It is trivial to see that equality can be obtained by letting ¢; > 0 iff 7 = 7. Hence,
the second part of the theorem follows. With slight modifications to the above
argument we can clearly prove the first part also. [

