
ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ×ÍÅÉÏ
ÔÌÇÌÁ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ

ÕÐÏËÏÃÉÓÔÙÍ

ÔïìÝáò Ôå÷íïëïãßáò ÐëçñïöïñéêÞò êáé Õðïëïãéóôþí
ÅñãáóôÞñéï ËïãéêÞò êáé ÅðéóôÞìçò Õðïëïãéóôþí

Êùäéêïðïßçóç Ðéèáíïôéêþò ÅëÝãîéìùí Áðïäåßîåùí

ÄÉÐËÙÌÁÔÉÊÇ ÅÑÃÁÓÉÁ

ôïõ

ÁíäñÝá Ã. ÃáëÜíç

ÅðéâëÝðùí: ÅõóôÜèéïò ÆÜ÷ïò
ÊáèçãçôÞò Å.Ì.Ð.

ÁèÞíá, Éïýëéïò 2009

ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ×ÍÅÉÏ
ÔÌÇÌÁ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ×ÁÍÉÊÙÍ
ÊÁÉ ÌÇ×ÁÍÉÊÙÍ ÕÐÏËÏÃÉÓÔÙÍ
ÔïìÝáò Ôå÷íïëïãßáò ÐëçñïöïñéêÞò êáé Õðïëïãéóôþí
ÅñãáóôÞñéï ËïãéêÞò êáé ÅðéóôÞìçò Õðïëïãéóôþí

Êùäéêïðïßçóç Ðéèáíïôéêþò ÅëÝãîéìùí Áðïäåßîåùí

ÄÉÐËÙÌÁÔÉÊÇ ÅÑÃÁÓÉÁ

ôïõ

ÁíäñÝá Ã. ÃáëÜíç

ÅðéâëÝðùí: ÅõóôÜèéïò ÆÜ÷ïò
ÊáèçãçôÞò Å.Ì.Ð.

Åãêñßèçêå áðü ôçí ôñéìåëÞ åîåôáóôéêÞ åðéôñïðÞ ôçí 23ç ôïõ Éïõëßïõ 2009.

..
ÅõóôÜèéïò ÆÜ÷ïò
ÊáèçãçôÞò Å.Ì.Ð.

..
¢ñçò ÐáãïõñôæÞò
ËÝêôïñáò Å.Ì.Ð.

..
ÄçìÞôñçò ÖùôÜêçò
ËÝêôïñáò Å.Ì.Ð.

ÁèÞíá, Éïýëéïò 2009.

...................................
ÁíäñÝáò Ã. ÃáëÜíçò
Äéðëùìáôïý÷ïò Çëåêôñïëüãïò Ìç÷áíéêüò êáé Ìç÷áíéêüò Õðïëïãéóôþí
Å.Ì.Ð.

Copyright c©ÁíäñÝáò Ã. ÃáëÜíçò, 2009 Åèíéêü Ìåôóüâéï Ðïëõôå÷íåßï.
Ìå åðéöýëáîç ðáíôüò äéêáéþìáôïò. All rights reserved.

Áðáãïñåýåôáé ç áíôéãñáöÞ, áðïèÞêåõóç êáé äéáíïìÞ ôçò ðáñïýóáò åñãáóßáò, åî
ïëïêëÞñïõ Þ ôìÞìáôïò áõôÞò, ãéá åìðïñéêü óêïðü. ÅðéôñÝðåôáé ç áíáôýðùóç,
áðïèÞêåõóç êáé äéáíïìÞ ãéá óêïðü ìç êåñäïóêïðéêü, åêðáéäåõôéêÞò Þ åñåõíçôéêÞò
öýóçò, õðü ôçí ðñïûðüèåóç íá áíáöÝñåôáé ç ðçãÞ ðñïÝëåõóçò êáé íá äéáôçñåßôáé ôï
ðáñüí ìÞíõìá. ÅñùôÞìáôá ðïõ áöïñïýí ôç ÷ñÞóç ôçò åñãáóßáò ãéá êåñäïóêïðéêü
óêïðü ðñÝðåé íá áðåõèýíïíôáé ðñïò ôïí óõããñáöÝá.

Ïé áðüøåéò êáé ôá óõìðåñÜóìáôá ðïõ ðåñéÝ÷ïíôáé óå áõôü ôï Ýããñáöï åêöñÜæïõí
ôïí óõããñáöÝá êáé äåí ðñÝðåé íá åñìçíåõèåß üôé áíôéðñïóùðåýïõí ôéò åðßóçìåò
èÝóåéò ôïõ Åèíéêïý Ìåôóüâéïõ Ðïëõôå÷íåßïõ.

Ðåñßëçøç

Ôç äåêáåôßá ôïõ 1990, áðïäåß÷ôçêå Ýíá èåþñçìá åîáéñåôéêÞò óçìáóßáò óôç èåùñßá
ðïëõðëïêüôçôáò. ÓõãêåêñéìÝíá, õðÜñ÷åé ôñüðïò êùäéêïðïßçóçò ôùí áðïäåßîåùí
êáé åëÝã÷ïõ ôçò ïñèüôçôÜò ôïõò, ôÝôïéïò þóôå ï åðáëçèåõôÞò íá äéáâÜæåé 3 ìüíï
äõáäéêÜ øçößá ôçò áðüäåéîçò êáé íá áðïêôÜ ðéèáíïôéêÞ áõôïðåðïßèçóç ãéá ôçí éó÷ý
ôçò. Áêüìç, ï íÝïò áõôüò ôñüðïò êùäéêïðïßçóçò áñêåß íá Ý÷åé ìüíï ðïëõùíõìéêÜ
ìåãáëýôåñï ìÝãåèïò áðü áõôü ôçò áñ÷éêÞò áðüäåéîçò. Èá åóôéÜóïõìå óå Ýíá
ëéãüôåñá éó÷õñü áðïôÝëåóìá, ôï ïðïßï áðïêáëåßôáé ôï PCP èåþñçìá (èåþñçìá
Ðéèáíïôéêþò ÅëÝãîéìùí Áðïäåßîåùí), óôéò ïðïßåò ï åðáëçèåõôÞò ÷ñçóéìïðïéåß
ëïãáñéèìéêÞ ôõ÷áéüôçôá êáé áíáæçôÜ Ýíá óôáèåñü áñéèìü äõáäéêþí øçößùí óôçí
áðüäåéîç.

Ç ðñþôç áðüäåéîç toõ èåùñÞìáôïò óõíäýáóå ðñïçãïýìåíá áðïôåëÝóìáôá ðÜíù
óå äéÜöïñåò áëãåâñéêÝò ôå÷íéêÝò êáé ëßãï áñãüôåñá ï H�astad ðáñïõóßáóå ôïí
åðáëçèåõôÞ ôùí 3 äõáäéêþí øçößùí ðïõ áíáöÝñáìå ðñïçãïõìÝíùò. Ôï 2005, ç Irit
Dinur Ýäùóå ìéá óõíäõáóôéêÞ áðüäåéîç ôïõ èåùñÞìáôïò. Ï êýñéïò óôü÷ïò áõôÞò
ôçò äéðëùìáôéêÞò åñãáóßáò åßíáé ç ìåëÝôç ôçò áðüäåéîçò ôçò Dinur. Áðü áõôÞ ôç
óêïðéÜ, èá åðéêåíôñùèïýìå óôïõò ôïìåßò ðïõ áðáéôïýíôáé ãéá ôçí êáôáíüçóç ôçò
áðüäåéîçò, ìåôáîý ôùí ïðïßùí åßíáé ïé åðåêôáôéêïß ãñÜöïé êáé ç êùäéêïðïßçóç
êáôÜ Hadamard.

ËÝîåéò êëåéäéÜ

PCP èåþñçìá, Ðéèáíïôéêþò ÅëÝãîéìåò Áðïäåßîåéò, Áðüäåéîç Dinur, Eðåêôáôéêïß
ãñÜöïé, Kùäéêïðïßçóç Hadamard.

Abstract

In the 1990�s, a major theorem was proved in complexity theory. Namely, there
is a format of writing proofs and checking their validity, such that the veri�er
reads only 3 bits of the proof to obtain probabilistic con�dence in the validity
of the proof. Furthermore, the new format needs only to be polynomially longer
than the original proof. We will concentrate on a weaker result, stated as the
PCP theorem (standing for Probabilistically Checkable Proofs), in which the
veri�er uses logarithmic randomness and queries a constant number of bits in
the proof.

The �rst proof of the theorem combined previous results on various alge-
braic techniques and later H�astad presented the 3 bit veri�er mentioned earlier.
In 2005, Irit Dinur provided a combinatorial proof of the theorem. The main
purpose of this diploma thesis is to overview Dinur's PCP construction. In this
perspective, we shall focus on the subjects that are essential to understand the
proof, amongst which are expander graphs and the Hadamard encoding.

Keywords

PCP theorem, Probabilistically Checkable Proofs, Dinur's proof, Expanders,
Hadamard encoding.

Åõ÷áñéóôßåò

ÁõôÞ ç äéðëùìáôéêÞ äåí èá ìðïñïýóå íá åß÷å ðñáãìáôïðïéçèåß ÷ùñßò ôç óõìâïëÞ
ôïõ ê. ÆÜ÷ïõ óå ðïëëÜ åðßðåäá. Ùò êáèçãçôÞò óôá ðñïðôõ÷éáêÜ ìáèÞìáôá ôçò
ó÷ïëÞò, ìïõ Ýäùóå ôá åñåèßóìáôá íá áó÷ïëçèþ ìå ôçí åðéóôÞìç ôùí õðïëïãéóôþí.
Ùò åðéâëÝðùí ôçò äéðëùìáôéêÞò áõôÞò, ìå åíèÜññõíå êáé ìïõ Ýäùóå ôç äõíáôüôçôá
íá áó÷ïëçèþ ìå Ýíá ðïëý åíäéáöÝñïí êáé ðïëýðëåõñï èÝìá. ÔÝëïò, Ýêáíå áõôÞ
ôç äéðëùìáôéêÞ åñãáóßá ìéá åìðåéñßá ìïíáäéêÞ öÝñíïíôáò ìå óå åðáöÞ ìå ðëÞèïò
áíèñþðùí ðïõ ìïéñáæüìáóôå êïéíÜ åñåõíçôéêÜ åíäéáöÝñïíôá.

Èá Þèåëá åðßóçò íá åõ÷áñéóôÞóù ôá Üëëá äýï ìÝëç ôçò ôñéìåëïýò åîåôáóôéêÞò
åðéôñïðÞò, ê. ÐáãïõñôæÞ êáé ê. ÖùôÜêç, ðïõ åêôüò áðü äéäÜóêïíôÝò ìïõ, ìå
êáèïäÞãçóáí ìå ôéò óõìâïõëÝò ôïõò ãéá ôçí êáëýôåñç äõíáôÞ ðáñïõóßáóç ôçò
äéðëùìáôéêÞò åñãáóßáò.

Åõ÷áñéóôþ åðßóçò ôçí åñãáóôçñéáêÞ ïìÜäá ôïõ Corelab ãéá ôï åõ÷Üñéóôï êáé
äçìéïõñãéêü êëßìá ðïõ ìïõ ðñïóÝöåñáí êáé ôç óõììåôï÷Þ ôïõò óôç äéüñèùóç
áôåëåéþí ôçò ðáñïõóßáóçò.

ÈÝëù ôÝëïò íá åõ÷áñéóôÞóù ôïõò ãïíåßò ìïõ, ðïõ óå êÜèå öÜóç ôçò æùÞò ìïõ
ìå óôçñßæïõí ìå ôïí êáëýôåñï äõíáôü ôñüðï.

8

Contents

1 Introduction 11
1.1 Origins of PCP Veri�ers . 11
1.2 The Class PCP . 12
1.3 The PCP Theorem . 14
1.4 History of Results . 15
1.5 This Dissertation . 16

1.5.1 Knowledge assumed of the Reader 16

2 Expanders 19
2.1 Edge Expansion and Eigenvalues 19
2.2 Random Walks . 26
2.3 The Expander Mixing Lemma . 28
2.4 Random Walks on Expanders . 30

3 Existence of Expanders 33
3.1 A Probabilistic Argument . 33
3.2 The Zig Zag Product . 34
3.3 Constructing Expanders via the Zig Zag Road 38
3.4 An Explicit Construction . 39

4 Error Correction 43
4.1 Code Theory Basics . 43
4.2 Hadamard Code . 45

4.2.1 The Parameters of Hadamard Code 46
4.3 Local Testing . 47
4.4 LTA for Hadamard Encodings . 47
4.5 Local Decodability . 50

5 Dinur's Proof of the PCP theorem 53
5.1 Constraint Satisfaction Problems 53
5.2 PCP theorem and Hardness of Approximation 55
5.3 The PCP theorem by Gap Ampli�cation 57
5.4 Overview of the Gap Ampli�cation Proof 58

9

10 CONTENTS

5.5 Preprocessing Step . 59
5.5.1 Regularization . 59
5.5.2 Expanderizing . 62
5.5.3 Combining the two Preprocessing Steps 64

5.6 Powering Step . 65
5.6.1 The Original Construction 65
5.6.2 The Modi�ed Version of Graph Powering 68

5.7 Proof Composition . 77
5.7.1 Local Testing Revisited 79

5.8 Alphabet Reduction . 84

Bibliography 87

6 Appendix 91
6.1 Useful Inequalities . 91
6.2 Rayleigh Quotient . 92

Chapter 1

Introduction

1.1 Origins of PCP Veri�ers

As it is widely believed, the class NP consists of problems for which there
is no e�cient algorithm. NP can be de�ned as the class of languages for which
there exists a polytime deterministic veri�er that can check membership proofs.
The veri�er can be viewed as a polynomial time deterministic Turing machine
with oracle access to a string which encodes suitably the membership proof of
a given input. It is not hard to see that this notion of NP is equivalent to its
standard de�nition.

NP has played, and probably continue to play, a central role in complex-
ity theory, since it is inextricably related to the current views on what can be
computed e�ciently. A journey through time can clearly convince us for this.

The theory of NP completeness due to Cook [Coo71], Levin and Karp [Kar72]
in the 70's triggered instantaneously the interest of the computer science com-
munity on classifying problems according to their complexity. The results of this
research showed that NP was the perfect theory model to unify a wide array of
optimization problems arising in practice. The next question that immediately
arose was \Ok, I proved that 3SAT is not e�ciently solvable. What should I do
with an instance of such a problem?".

Such type of questions in combination with the work of algorithm designers
lead to the notion of approximation algorithms. That is, given an NP-complete
problem, is an approximation of its optimal solution feasible and if yes, up to
what degree. NP even provides the answer for some of these questions. But
things became much more intricate, since the new type of questions were not
that straightforward to answer. The classical reduction scheme seemed to reach
a bottleneck which was hard to surpass.

This was a good reason for a good many people to start looking toward
other classes of languages. Others started to introduce non-standard methods
of checking membership proofs in a quest of di�erent characterizations of NP.

11

12 CHAPTER 1. INTRODUCTION

The landmark of these approaches is the Interactive Proof system introduced by
Goldwasser, Micali and Racko� [GMR89] as well as the Arthur-Merlin games
introduced by Babai [Bab85]. The main ingredient of their works is a veri�er
interacting with an all-powerful adversary, called the prover, aiming at convinc-
ing the veri�er that a given input is in the language, even if this does not hold.
Soon enough, the classes of languages de�ned by these proof checking protocols
were proved to be equivalent.

The previous two protocols soon evolved into multi-prover interactive proof
systems (MIP) [BOGKW88], where a single veri�er interacts with multiple
provers to verify an assertion. The provers cannot communicate with each other.
Fortnow, Rompel and Sipser [FRS94], as part of understanding the complexity
of MIP, proved that MIP is the set of languages for which membership proofs can
be checked by a probabilistic polynomial time veri�er that has random access
to the proof. Since such a veri�er can check exponential-sized proofs, MIP is a
subset of the exponential analogue of NP, NEXPTIME.

In this context, the most important aspect of the previous work is the in-
troduction of PCP veri�ers in a primal form, where the interactive proof system
was substituted by a single proof to be checked by a probabilistic veri�er. From
this point on, the more restrictions imposed on the veri�er the more spectacular
the results were. Imposing restrictions on the veri�er was somewhat natural
in terms of measuring its e�ciency, starting with the work of Babai, Fortnow,
Levin and Szegedy [Bab91], where the veri�er was restricted in terms of its com-
putation time and the proof had speci�ed length. Feige, Goldwasser, Lovasz,
Safra and Szegedy [FGL+91] were the �rst to point out that the number of the
queries into the proof, the randomness of the PCP veri�er and the probability
that the veri�er accepts a proof membership can be associated with the hardness
of approximating the MAX CLIQUE problem. Arora and Safra [AS92] explicitly
de�ned the class PCP stressing its dependence on two resources: the random
bits that the veri�er uses and the number of queries that it is allowed to make
into the proof.

1.2 The Class PCP

Following the previous discussion, we present the formal de�nition of the
class PCP. Prior to that, we give the de�nitions of oracle access to a proof string
y and restricted veri�ers.

De�nition 1.1 (Oracle Access). An algorithm A, receiving as input x and a

proof string y, has oracle access to the string y, if it can access a speci�c index

within y with a cost of one step. This is denoted by Ay(x).

De�nition 1.2 (Restricted Veri�ers). A veri�er V is a (r; q)-restricted ver-

i�er for a language L if for input a string x, a proof string y and a random string

1.2. THE CLASS PCP 13

� of length at most r, V decides whether V y(x; �) = 1 or 0 by querying at most

q bits in the proof.

Remark 1.1.
For our purposes, V will be non-adaptive, i.e. the queries into the proof depend
only on the input x and the random string � and not on the way that V accesses
the random bits in �.

A classic �gure illustrating the veri�er follows below.

De�nition 1.3 (The Class PCP). The class PCPc;s[r; q] is the set of lan-

guages L for which there exists a (r; q)-restricted polynomial-time veri�er V and

a constant p such that:

1. [Completeness] : x ∈ L ⇒ ∃y; |y| ≤ |x|p;Pr�∈{0;1}r [V y(x; �) = 1] ≥ c:

2. [Soundness] : x =∈ L ⇒ ∀y; |y| ≤ |x|p;Pr�∈{0;1}r [V y(x; �) = 1] ≤ s:

The important parameters of the above de�nition are r; q; c; s. From these four
parameters, the �rst two are of primary interest. In our scope of interest, c will
be equal to 1, while s will be set to 1=2. Unless otherwise stated, PCP[r; q] will
denote the PCP class with the parameters c and s mentioned. Note that c = 1
implies perfect completeness with its standard notion in logic. Moreover, the
soundness s is related to the number of queries allowed. The intuition behind this
is that the k times repetition of the veri�cation process, reduces the soundness
parameter to sk but increases the query complexity to k · q and the random bits
used to k · r.

We will not study PCP models with di�erent soundness and completeness
parameters. But the more general de�nition has lead to some sharp results which
we will refer to in the next section.

14 CHAPTER 1. INTRODUCTION

1.3 The PCP Theorem

Arora, Lund, Motwani, Sudan and Szegedy [ALM+92] proved the following ma-
jor theorem.

Theorem 1.4 (PCP Theorem).

NP = PCP[O(log n); O(1)]

The theorem is striking in the sense that we can gain probabilistic con�dence
in the correctness of any NP membership proof by querying a constant number
of bits in it. This result is highly nontrivial and the original proof was rather
intricate too. Some of the techniques employed, to mention but a few, were the
arithmetization of 3SAT, low-degree polynomials over �elds, low-degree testing,
sum-check protocols and Hadamard codes.

Note that proving the direction PCP[O(log n); O(1)] ⊆ NP is easy, as is captured
by the following lemma.

Lemma 1.5.
PCP[O(log n); O(1)] ⊆ NP

Proof Consider a veri�er V for L ∈ PCP[O(log n); O(1)] and suppose that we
are given an input x with |x| = n. Note that V uses c log n random bits and
k = O(1) bits. Thus, there are at most 2c logn = nc di�erent runs of the veri�er
on the input x. In each run V queries k bits into the proof. Thus, the proof
should not have length greater than O(1) · nc = O(nc), which we assume to be
without loss of generality nd for some constant d.

Assign boolean variables y1; : : : ; ynd for each of the proof's positions. We
construct a boolean function for each of the runs of V as follows.

• Fix a random string � ∈ {0; 1}c logn.

• Assume the corresponding queries made by V given the string � are
yi1 ; : : : ; yik .

• Build a boolean function f�(yi1 ; : : : ; yik) which evaluates to 1, whenever
the assignment to the variables yi1 ; : : : ; yik makes the veri�er to accept.
This can be accomplished by checking all the 2k = O(1) possible assign-
ments to yi1 ; : : : ; yik in constant time.

Thus we can construct in polynomial time nc functions f� which simulate each
of the runs of V on input x. Clearly

• If x ∈ L, there is a proof which satis�es all the functions.

1.4. HISTORY OF RESULTS 15

• If x =∈ L, every proof satis�es at most 1/2 of the functions.

It remains to observe that an assignment to the yi's is an NP witness for x.

The above proof has some interesting elements which are not obvious on �rst
sight. First of all, note that each f� is a boolean function on a constant number
of variables, and thus it can be formulated as a 3SAT formula with a constant
number of clauses (recall that k = O(1)). Thus, given a veri�er for an NP
language we can clearly build a 3SAT formula with polynomial number of clauses
on polynomial number of variables. Since at most 1/2 functions of the f� can
be satis�ed, this can be used to prove that MAX-3SAT is hard to approximate.
A detailed proof of the above intuition can be found in [Aro94]. We will present
essentially the same argument from a di�erent perspective in Chapter 5.

What is important to stress though is that, viewing the NP as the PCP
veri�er of Theorem 1.4 can lead in a straightforward manner to hardness of
approximation results, which justi�es the signi�cance of the theorem.

1.4 History of Results

The story of the results that �nally lead to the PCP theorem is a long one.
We present a short overview over the sequence of such results.

Phase 1. The �rst non-trivial result was due to Babai, Fortnow and Lund
[BFL90] who showed that NEXPTIME = PCP[poly(n); poly(n)]. Note that
the PCP veri�er queries the proof into polynomially many places, whereas the
NEXPTIME veri�er would look the whole exponential-sized proof.

Babai, Fortnow, Levin and Szegedy [Bab91] scaled this result down to NP,
thus proving NP ⊆ PCP[poly log n,poly log n]. Note that the randomness intro-
duced in the PCP model, reduced the query complexity of the standard veri�ers
for these classes by a polylogarithmic factor. This was unexpected at the time.
Still, these PCPs did not provide any new characterizations of NP since the
containments were not equalities.

Phase 2. In phase 2, exact characterizations of NP were proved including the
PCP theorem itself. The �rst such characterization was provided by Arora and
Safra [AS92], namely NP = PCP[O(log n); o(log n)]. Their work was innova-
tive in many aspects, the most important of which was the proof composition
technique, a technique that is prevalent to subsequent PCP constructions.

It was in 1992 that Arora, Lund, Motwani, Sudan and Szegedy [ALM+92]
in a joint work proved the PCP theorem. The fact that query complexity was
independent of the proof size astonished the whole computer science community.

16 CHAPTER 1. INTRODUCTION

Phase 3. Research in this period examined the tightness of the parameters
appearing in the PCP theorem. It was already known that any PCP for an NP-
complete language should have query complexity at least 3. In fact, most works
conjectured that PCP1;s[O(log n); 3] should belong in P for some s > 1=2. John
H�astad [H�as97] settled these conjectures in a hard-cut manner proving that

NP = PCP1−�; 1
2
[O(log n); 3]

for any � > 0. Note that H�astad's PCP did not have perfect completeness but
this was �xed in [GLST98], where NP = PCP1; 1

2
+�[O(log n); 3] was proved for

any � > 0. Karlo� and Zwick [KZ97] established the optimality of H�astad's
result, by proving that P = PCP1; 1

2
[O(log n); 3].

1.5 This Dissertation

The proof of the PCP theorem by Arora, Lund, Motwani, Sudan and Szegedy
[ALM+92] was mainly algebraic, making extensive use of polynomial �elds. This
made the proof inaccessible to many computer scientists who were not that eager
to follow the thorough PCP construction. This was the only \
aw" in the PCP
theorem, for the astonishing theorem it was and the simple description it had,
its proof was rather discouraging to go through. It is important that the reader
should not get the wrong idea: the initial proof of the PCP theorem was startling
by itself, using global techniques which can be applied to many �elds.

In 2005, Irit Dinur [Din05], inspired by Reingold's work [Rei04] on L= SL,
presented a less sophisticated proof providing a combinatorial argument for the
NP-hardness of approximating a constraint satisfaction problem on graphs. This
proof, while still applying the idea of proof composition, di�ered radically in
grasp using an ampli�cation scheme for the fraction of unsatis�ed constraints,
in contrast to previous approaches which preserved unsatis�ability in su�ciently
big levels. The new proof has an immediate combinatorial essence which was
absent in other PCP constructions.

In this diploma thesis, we study thoroughly Dinur's proof (chapter 5). To
accomplish this goal, we study expander graphs and their properties to get a
higher understanding of Dinur's construction (chapters 2 and 3). Moreover,
we will go through some classical results in coding theory (chapter 4), so as
to successfully follow the proof composition scheme. We will not pursue the
applications to hardness of approximations. The interested reader may �nd
such results in [Aro94], [Vaz01].

1.5.1 Knowledge assumed of the Reader

This diploma thesis is written in a self-contained manner so that the reader
does not need to have high-level knowledge on any topic. Still, an elementary

1.5. THIS DISSERTATION 17

background on linear Algebra will presumably be useful for chapters 2 and 3, and
familiarity with probability theory will certainly be handful at the gap ampli�ca-
tion proof. As far as complexity theory is concerned, we assume that the reader
is acquainted with the standard notions of NP and polynomial time reductions.
For an introduction to these, see [Pap94].

18 CHAPTER 1. INTRODUCTION

Chapter 2

Expanders

Expander graphs are a special class of graphs originating from the �eld of
algebraic graph theory. Roughly speaking, an expander is a sparse graph in which
the neighborhood of any set of vertices S is proportional to the size of S. As we
shall see, this structural property of expanders has many useful extensions and
together with the existence of constant degree expanders with high expansion,
has lead to various beautiful and unexpected results. The proof of the PCP
theorem by Dinur is heavily dependent on expanders and thus, it is more than
important to study them in their own context.

2.1 Edge Expansion and Eigenvalues

Before we proceed into the formal de�nition of the edge expansion property,
we will �rst introduce some notation. Assume that we have an undirected graph
G = (V;E) and two disjoint subsets A, B of V . We denote by E(A;B) the set of
edges with one endpoint in A and the other in B, i.e. the edges which separate
A from B.

De�nition 2.1 (Edge expansion). Let G = (V;E) a graph. The edge expan-

sion of G, denoted by h(G) is de�ned as

h(G) := min
S ⊂ V

|S| ≤ |V |=2

|E(S; V − S)|
|S|

Note that the edge expansion property is a lower bound on the number of edges
across cuts (normalized by the size of the sets involved). Other de�nitions of
edge expansion are possible, as in [MR95] but most of them can be proved to be
equivalent.

De�nition 2.2 (Expander graph). A graph G = (V;E) is a (n; d; c) expander
if |V | = n, G is d-regular and h(G) ≥ c.

19

20 CHAPTER 2. EXPANDERS

The adjacency matrix of a graph G = (V;E) is a |V | × |V | matrix A in
which the (u; v) element is equal to 1 i� (u; v) ∈ E. For simplicity, we will
denote by Auv the (u; v) element of A. Observe that for an undirected graph,
A is symmetric. In what follows, A will be the adjacency matrix of a d-regular
undirected graph G and n = |V | the number of vertices in G. Note that the
column as well as the row sums are all equal to d since the graph is d-regular.

Since A is a symmetric real matrix, it has n eigenvalues. Denote them by
�1; : : : ; �n. From now on, we will consider them in descending order

�1 ≥ �2 ≥ : : : ≥ �n

Even if the eigenvalues are not necessarily distinct, there exist n corresponding
eigenvectors e1; : : : ; en which form an orthonormal basis of Rn.

The following theorem sheds some light on the connection between the eigen-
values of the adjacency matrix and basic graph properties.

Theorem 2.3. For a d-regular (multi)graph G = (V;E) with adjacency matrix

A whose eigenvalues are �1 ≥ �2 ≥ : : : ≥ �n

1. �1 = d.

2. �n ≥ −d.

3. G is connected i� �1 > �2.

4. Suppose that G is connected. Then G is bipartite i� �n = −�1.
Proof Consider an eigenvalue � of A. Let x an eigenvector corresponding to �.
Denote by xv the largest entry in x. We can clearly assume that x has a positive
entry (otherwise we may consider −x). Thus xv > 0. Note that

(Ax)v = � · xv ⇒
∑

(u;v)∈E
Auvxu = � · xv

and by the selection of xv

d · xv ≥
∑

(u;v)∈E
Auvxu = �xv ⇒ (d− �)xv ≥ 0 (2.1)

and consequently d ≥ �. Considering the smallest entry in x, one can prove in
a similar fashion that � ≥ −d. Thus for every 1 ≤ i ≤ n we have that

|�i| ≤ d

Since the graph is d-regular we immediately obtain that

A






1
...
1




 = d ·






1
...
1






2.1. EDGE EXPANSION AND EIGENVALUES 21

and consequently �1 = d.

Let's return to (2.1). It is straightforward to see that equality holds i�
(u; v) ∈ E implies xu = xv. Thus if G is connected then the space of eigenvectors
such that Ax = d · x has dimension 1 and consequently the eigenvalue d is of
multiplicity 1.

Suppose now that �1 > �2 and G has wlog 2 components. Let V1 and V2 the
sets of vertices in each component respectively and de�ne the indicator vectors
x1;x2

(x1)v =

{
1; if v ∈ V1
0; otherwise

and similarly for x2. Then clearly Ax1 = d · x1 and Ax2 = d · x2. Since x1
and x2 are independent, we have that the the space of eigenvectors such that
Ax = dx has dimension 2, and thus d has multiplicity 2 which is a contradiction
to our assumption.

Finally, we prove 4. If G is bipartite then there exist V1; V2 ⊂ V such that
E ⊆ (V1 × V2) and V1 ∪ V2 = V . De�ne x such that

(x)v =

{
1; if v ∈ V1
−1; otherwise

Clearly Ax = −d · x and since |�| ≤ d for each eigenvalue, it must be the case
that �n = −d.

For the converse, let x the eigenvector corresponding to −d and note that
for each vertex v ∈ V we have that

∑

(u;v)∈E
Auvxu = −d · xv ⇒

∣
∣
∣
∣
∣
∣

∑

(u;v)∈E
Auvxu

∣
∣
∣
∣
∣
∣

= d · |xv| ⇒
∑

(u;v)∈E
Auv|xu| ≥ d · |xv|:

Summing over all v ∈ V we obtain that each inequality must in fact be an
equality. Consequently, if we denote by Nv the neighbors of vertex v, then it
must be the case that either xu > 0 for all u ∈ Nv or xu < 0 for all u ∈ Nv.
Now, de�ne V1 the set of vertices for which xv > 0 and V2 the set of vertices
for which xv < 0 (note that xv=0 for some vertex v would imply that G is not
connected). It should be clear by the previous observation that there can be no
edge inside V1 or V2.

For our purposes the eigenvalue with the second largest magnitude has the
most interesting properties. Namely, we will denote by �(G) = max{|�2|; |�n|}.
For simplicity, when the graph G is �xed, we will use � instead of �(G).

22 CHAPTER 2. EXPANDERS

Next, we shall introduce some linear algebra notation. Consider two vectors
u;v ∈ Rn. Then, the inner product of u;v is de�ned as

uTv =

n∑

i=1

uivi

where uT denotes the transpose vector of u. The vector u is orthogonal to v,
denoted by u⊥v, i� uTv = 0. The Euclidean norm of the vector u is equal to

‖u‖ :=
√
uTu =

(
n∑

i=1

u2i

)1=2

whereas the l1-norm is equal to

‖u‖1 :=
n∑

i=1

|ui|

Recall the Cauchy-Schwartz inequality uTv ≤ ‖u‖ · ‖v‖.
The next theorem, will become handy in the proof of the main result in this

section. A proof of the theorem can be found in Appendix.

Theorem 2.4 (Rayleigh Quotient). LetA a symmetric real matrix with eigen-

values �1 ≥ �2 ≥ : : : ≥ �n and eigenvectors e1; e2; : : : ; en respectively. Then

1. �1 = max
x ∈ R

n

xTAx

‖x‖2 .

2. For 1 < i < n, �i = max
x ∈ R

n

x⊥e1; : : : ; ei−1

xTAx

‖x‖2 .

We are now ready to proceed to the main result, which relates the spectral
gap d− �(G) of a graph G with its edge expansion h(G).

Theorem 2.5 (Cheeger's Inequality). For a d-regular graph G = (V;E), the
following inequality holds

h(G)2

2d
≤ d− �(G) ≤ 2h(G): (2.2)

Proof We begin by proving the right part of the inequality. LetA the adjacency

2.1. EDGE EXPANSION AND EIGENVALUES 23

matrix of G and recall that by Rayleigh's quotient,

�(G) = max
x⊥e1

xTAx

xTx

= max
x⊥e1

∑

u;v Auvxuxv

xTx

= max
x⊥e1

∑

u;v Auv(x
2
u + x2v)−

∑

u;v Auv(xu − xv)
2

2xTx

= max
x⊥e1

2dxTx−
∑

u;v Auv(xu − xv)
2

2xTx

= d−max
x⊥e1

∑

u;v Auv(xu − xv)
2

2xTx

Thus, we obtain the more convenient form for our purposes

d− � = max
x⊥e1

∑

u;v Auv(xu − xv)
2

2xTx
(2.3)

Note that e1 is actually the vector 1n = (1; : : : ; 1)T multiplied by a scale factor
of 1=

√
n (so as to have euclidean norm equal to 1). To see this, observe that by

the regularity of G,
A1n = d1n

which means that 1n is actually the vector corresponding to �1 = d, i.e. e1.
Thus, the maximum in (2.3) is actually over the zero-sum vectors x. Our task
is to present such a vector x, which renders the right part of (2.3) larger than
2h(G).

For this purpose, consider a set S ⊂ V with |S| ≤ |V |=2 such that h(G) =
|E(S; V − S)|

|S| . Construct vector x as follows:

xv =

{
|V | − |S|; if v ∈ S
−|S|; otherwise

Clearly the components of x add up to zero.
To make computations easier to follow, suppose that n = |V | and s = |S|

and |E(S; V − S)| = e. Note that e = s · h(G) by the de�nition of S. It is
straightforward to see that

xTx =
∑

u∈V
x2u = s(n− s)2 + (n− s)s2 = ns(n− s) (2.4)

and, since xu − xv = 0 if u; v belong to the same partition of the cut de�ned by
the set of edges |E(S; V − S)|,
∑

u;v

Auv(xu − xv)
2 = 2|E(S; V − S)|(|V | − |S|+ |S|)2 = 2n2e = 2h(G)n2s (2.5)

24 CHAPTER 2. EXPANDERS

Using (2.4), (2.5) and recalling that s ≤ n=2, (2.3) becomes

d− � ≤ n · h(G)

n− s
≤ 2h(G)

which is exactly the right part of (2.2).

For the left part of the inequality, consider a vector x ∈ Rn equal to the
eigenvector e2 and assume that at most n=2 of its entries are positive (otherwise
we can work with −e2). Introduce vector y ∈ Rn such that

yv = max{xv; 0}:

Note that Ay ≥ �y component-wise. To see that this is the case, observe that
yv ≥ 0 and yv ≥ xv for each v so that

(Ay)u =
∑

v

Auvyv ≥
{ ∑

v Auvxv = �xu = �yu; if xu ≥ 0
0 = �yu; if xu < 0

It follows from the above property that

yTAy ≥ �yTy

In order to get the expression d− �, we rewrite yTAy as

yTAy =
∑

(u;v)

Auvyuyv

= −1

2

∑

u;v

Auv(yu − yv)
2 +

1

2

∑

u;v

Auv(y
2
u + y2v)

= −1

2

∑

u;v

Auv(yu − yv)
2 + dyTy

so that

d− � ≥
∑

u;v Auv(yu − yv)
2

2yTy
(2.6)

Using Cauchy Schwarz inequality twice we can further write
∑

u;v

Auv(yu − yv)
2
∑

u;v

2Auv(y
2
u + y2v)

︸ ︷︷ ︸

4dyTy

≥
∑

u;v

Auv(yu − yv)
2
∑

u;v

Auv(yu + yv)
2

≥
(
∑

u;v

Auv

∣
∣y2u − y2v

∣
∣

)2

Thus, (2.6) becomes

d− � ≥ 1

2d

(∑

u;v Auv

∣
∣y2u − y2v

∣
∣

2yTy

)2

(2.7)

2.1. EDGE EXPANSION AND EIGENVALUES 25

Since the right hand side of (2.7) is symmetric, without loss of generality we
may assume that yv are in descending order, i.e. y1 ≥ : : : ≥ yn and consider t
to be the largest index such that yt > 0. Recall that t ≤ n=2. We can now get
rid of the absolute values in the sum

∑

u;v

Auv

∣
∣y2u − y2v

∣
∣ = 2

t∑

i=1

n∑

j=i

Aij(y
2
i − y2j)

= 2
t∑

i=1

n∑

j=i

j−1
∑

r=i

Aij(y
2
r − y2r+1)

= 2

t∑

r=1

r∑

i=1

n∑

j=r+1

Aij(y
2
r − y2r+1)

= 2
t∑

r=1

(y2r − y2r+1)
∑

i≤r

∑

j>r

Aij (2.8)

where the second step used the telescoping series y2r−y2r+1 and the third a change
of summation. Considering the sets Sr = {v1; : : : ; vr} for each 1 ≤ r ≤ t, it is
straightforward to see that

∑

i≤r

∑

j>r

Aij = |E(Sr; V − Sr)|

and (2.8) yields

∑

u;v

Auv|y2u − y2v | = 2

t∑

r=1

|E(Sr; V − Sr)|(y2r − y2r+1)

≥ 2
t∑

r=1

h(G)|Sr|(y2r − y2r+1)

= 2h(G)
t∑

r=1

r(y2r − y2r+1)

= 2h(G)
t∑

r=1

(ry2r − (r − 1)y2r)

= 2h(G)

t∑

r=1

y2r

= 2h(G)yTy

Using the last inequality and (2.7), the desired result follows.

Remark 2.1.
The argument of the proof for the left part of Cheeger's inequality can easily be

modi�ed to present a cut of edge expansion at most
√

2d(d− �).

26 CHAPTER 2. EXPANDERS

Remark 2.2.
Cheeger 's inequality bounds h(G) so that

d− �

2
≤ h(G) ≤

√

2d(d− �):

Computing h(G) exactly is coNP hard. An intuition for this is that it su�ces
to present a set S which makes h(G) < c. Cheeger's inequality is extremely
useful because the expansion of most explicitly constructed families of expander
graphs is proved by bounding the spectral gap �rst. Alon [Alo86] was the �rst
to state this equivalence between edge expansion and spectral gap, though he
worked with vertex expansion.

2.2 Random Walks

Random walks on expanders are particularly interesting due to their property
that they are rapidly mixing: starting at any vertex, after a few steps, there is
almost equal probability of being in any vertex.

More formally, consider a d-regular graph G = (V;E) with n vertices and
adjacency matrixA and let {Xi}∞i=1 be a sequence of random variables such that
Xi ∈ V .

The sequence {Xi}∞i=0 is a Markov chain if for every sequence of vertices
{vi}∞i=0 the following memoryless property holds for each i ≥ 0:

Pr[Xi+1 = vi+1|Xi = vi; : : : ; X1 = v1] = Pr[Xi+1 = vi+1|Xi = vi]

In other words, Xi is a Markov chain i� the next step of the walk depends
only on its current state and not on the steps taken so far to arrive at the
current state. It follows that a Markov chain is determined by the parameters
Tuv = Pr[Xi+1 = u|Xi = v] and it is natural to call the matrix T the probability

transition matrix.

A random walk on a d-regular graph G is de�ned as the Markov Chain with
transition matrix ~A = 1

dA. Note that each entry in ~A is between 0 and 1 and
each row and column has sum equal to 1. Thus, in each transition step of the
random walk and assuming that the present state is a vertex u, we pick as the
next state one of the neighbors u of v according to ~A, and repeat the transition
step from u. For each step of the random walk, we may use a probability vector

p ∈ Rn such that the probability that the random walk is currently in vertex v
is equal to the v-th component of p. Thus, for every probability vector p, pv ≥ 0
and

∑

v pv = 1. We denote the probability vector with the uniform distribution
1
n1 by u.

It is pretty straightforward to see that the eigenvalues of ~A are related to

2.2. RANDOM WALKS 27

the eigenvalues of A by a 1=d scaling factor, namely

�̃i =
1

d
�i;

whereas the (orthonormal) eigenvectors ei remain the same. Note that �̃1 = 1
and u = 1√

n
e1.

Lemma 2.6. If at the i-th stage of a random walk the probability distribution

on the vertices is p, then at the (i + 1)-th stage, the probability distribution is
~Ap.

Proof It su�ces to show that Pr[Xi+1 = u] = (~Ap)u. But this is true since

Pr[Xi+1 = u] =
∑

v

Pr[Xi+1 = u|Xi = v] Pr[Xi = v] =
∑

v

Auvpv = (~Ap)u

Thus, if we start the random walk according to an initial distribution p on the
set of vertices, the probability distribution after t steps is simply ~Atp. Note that
since u is the eigenvector corresponding to the eigenvalue 1 of ~A, ~Au = u and
consequently a random walk which begins from a uniform distribution remains
at a uniform distribution.

The following theorem shows that any random walk beginning from an ar-
bitrary probability distribution p converges to the uniform distribution at an
exponential rate.

Theorem 2.7. For any probability vector p and any t ≥ 0,
∥
∥
∥~Atp− u

∥
∥
∥
2
≤ �̃t.

Proof We induct on t. Set v = p − u. For t = 0 the theorem states that
‖v|2 ≤ 1. To prove this, note that

∑

v pv =
∑

v u = 0 and therefore
∑

v vv = 0.
It follows that vTu = 0 and consequently v is orthogonal to u. Since p = u+v,
vTp = vTv. Using the Cauchy Schwarz inequality,

‖v‖2 ‖p‖2 ≥ (vTp)2 = ‖v‖22

yielding ‖p‖2 ≥ ‖v‖2 (a more laconic way to obtain this inequality would be
to use the orthogonality of u;v and Pythagoras theorem for the hypotenuse p).
Since 0 ≤ pv ≤ 1 we �nally have that

‖v‖2 ≤ ‖p‖2 =
(
∑

v

p2v

)1=2

≤
(
∑

v

pv

)1=2

= 1

which proves the base case of the induction.
Assuming the claim true for t and noting that ~Atp = ~At(u+ v) = u+ ~Atv,

the induction hypothesis implies
∥
∥
∥~Atv

∥
∥
∥
2
≤ �̃t. We would like to prove that

∥
∥
∥~At+1v

∥
∥
∥
2
≤ �̃

∥
∥
∥~Atv

∥
∥
∥
2
from which the induction step clearly follows.

28 CHAPTER 2. EXPANDERS

As we saw above v⊥u and therefore v is a linear combination of the eigen-
vectors e2; : : : ; en of ~A. Consequently, there exist constants ci such that v =
∑n

i=2 ciei. Therefore,
∥
∥
∥~At+1v

∥
∥
∥
1
=
∥
∥
∥~At(~Av)

∥
∥
∥
2

=

∥
∥
∥
∥
∥

~At
n∑

i=2

ci ~Aei

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

~At
n∑

i=2

ci�iei

∥
∥
∥
∥
∥
2

≤ �̃

∥
∥
∥
∥
∥

~At
n∑

i=2

ciei

∥
∥
∥
∥
∥
2

= �̃
∥
∥
∥~Atv

∥
∥
∥
2

and the theorem follows.

Remark 2.3.
Suppose that we are given a regular connected graph G. The above theorem

implies that the deviation from the uniform distribution after t = c(1− �̃)−1 lnn
steps will be

∥
∥
∥~Atp− u

∥
∥
∥
2
≤ �̃t =

(

1− 1

(1− �̃)−1

)c(1−�̃)−1 lnn

≤ e−c lnn =
1

nc
:

Thus, after O
(

1
1−�̃

log n
)

steps, the random walk will be inverse polynomially

close to the uniform distribution.

The interested reader is referenced to the excellent survey on random walks by
Lov�asz [Lov93].

2.3 The Expander Mixing Lemma

Up to this point, we have focused our conversation on regular graphs which
satisfy �̃ < 1. If we further impose � to be close to 0, i.e. � ≤ � for some � > 0,
one can get nice unexpected properties on such graph families. The following
lemma, proved by Alon and Chung [AC88] illustrates one of those properties.

Lemma 2.8 (Expander Mixing Lemma). Let G be a d-regular graph with n
vertices and second largest eigenvalue in absolute value �̃ and S; T two disjoint

subsets of its vertices. Then
∣
∣
∣
∣
|E(S; T)| − d

|S||T |
n

∣
∣
∣
∣
≤ �̃ · d ·

√

|S||T | ≤ 1

2
�̃ · d · n

2.3. THE EXPANDER MIXING LEMMA 29

Proof Consider the indicator vector for S, denoted by 1S , having a one in
exactly those positions v for which v ∈ S. De�ne similarly 1T . Let ~A denote
the normalized adjacency matrix of G.

We write 1S as a linear combination of the eigenvectors ei of ~A, namely

1S =
n∑

i=1

ciei = c1e1 + s

where s =
∑n

i=2 ciei. In a similar fashion, write 1T as c′1e1 + t. Note that
c1 = eT1 1S = |S|=√n and likewise, c′1 = |T |=√n. Observing that |E(S; T)| =
1TS (d

~A)1T we have

E(S; T) = 1TS (d~A)1T

= d(c1e1 + s)T ~A(c′1e1 + t)

= d(c1c
′
1e
T
1
~Ae1 + c1e

T
1
~At+ c′1s

T ~Ae1 + sT ~At)

Each of the terms eT1 ~At; s
T ~Ae1 is equal to 0, since, for instance, ~At is a linear

combination of e2; : : : ; en and e1 is orthonormal to each one of them. Thus

|E(S; T)| = d(c1c
′
1e
T
1
~Ae1 + sT ~At)

= d

(|S||T |
n

+ sT ~At

)

Thus it su�ces to prove that
∣
∣
∣sT ~At

∣
∣
∣ ≤ �̃ ·

√

|S||T |

Using once again the Cauchy Schwarz inequality,
∣
∣
∣sT ~At

∣
∣
∣ =

∥
∥
∥sT ~At

∥
∥
∥ ≤

∥
∥sT

∥
∥

∥
∥
∥~At

∥
∥
∥ (2.9)

It is easy to see that ‖~At‖ =
∥
∥
∥
∑n

i=2 ci�̃iei

∥
∥
∥ ≤ �̃‖t‖. Moreover ‖1S‖ ≥ s, because

1S is the hypotenuse of the orthogonal triangle formed by the vectors s and c1e1.
Similarly, ‖1T ‖ ≥ t. (2.9) yields the desired inequality:

∣
∣
∣sT ~At

∣
∣
∣ ≤ � ‖1S‖ ‖1T ‖ = �

√

|S||T |

Remark 2.4.
Identifying the term d|S||T |=n as the expected number of edges from S to T , we
can see that the expander mixing lemma bounds the deviation from the behavior
of a random graph. Indeed, a subset S of a random d-regular graph has d|S|
edges with at least one endpoint in |S|. The probability of such an edge to have
the other point in T is exactly |T |=n.

In a good expander, the second largest eigenvalue in absolute value � is
low and consequently the number of edges between two subsets of vertices is
approximately what it would be in a random d-regular graph.

30 CHAPTER 2. EXPANDERS

There is a partial converse to the expander mixing lemma stating that for a
d-regular graph, � is essentially (up to a log d factor), the best constant that can
occur in the expander mixing lemma. Namely:

Theorem 2.9 ([BL06]). Let G be a d−regular graph with n vertices. If for all

S; T ⊂ V the inequality

∣
∣
∣
∣
|E(S; T)| − d

|S||T |
n

∣
∣
∣
∣
≤ � · d ·

√

|S||T |

holds for some �xed � > 0 then

� = O

(

�

(

1 + log
d

�

))

2.4 Random Walks on Expanders

In this section we prove a really useful lemma which illustrates the power
of expanders. In fact, this lemma will be used in chapter 5 to show that the
correlation of two paths in an expander is low.

Lemma 2.10. Let G = (V;E) be a d-regular graph with �̃(G) ≤ �̃ < 1 and let

F ⊂ E. Let u0; : : : ; uk be a random walk in G where the starting point u0 is

chosen by picking a random edge in F and then a random endpoint of the edge.

Then the probability that (uk−1; uk) is in F is at most

|F |
|E| + �̃k−1

Proof Let ~A denote as usual the normalized transition matrix ofG. Denote by
dF (v) the number of edges in F incident to vertex v. Then the vector describing
the initial distribution u0 can easily be seen that it can be described be a vector
x whose v-th component is equal to dF (v)

2|F | .
It must also be clear by now that the distribution of any ut in the path is

given by ~Atx. Speci�cally, the distribution of uk−1 is y = ~Ak−1x. Moreover, if
the walk is at vertex v after k − 1 steps, then the probability that the last step
will be along an edge in F is dF (v)

d . Thus

Pr[(uk−1; uk) ∈ F] =
∑

v∈V
yv
dF (v)

d
=
∑

v∈V
yv

2|F |xv
d

=
2|F |
d

∑

v∈V
yvxv

=
2|F |
d

xTy =
2|F |
d

xT ~Ak−1x (2.10)

2.4. RANDOM WALKS ON EXPANDERS 31

We now write x as a linear combination of the eigenvectors of ~A, namely

x =
n∑

i=1

ciei = c1e1 + x′

where x′ =
∑n

i=2 ciei. Then

xT ~Ak−1x = (c1e1 + x)T ~Ak−1(c1e1 + x′)

= c21e
T
1
~Ak−1e1 + 2c1e

T
1
~Ak−1x′ + x′T ~Ak−1x′

and observing that ~Ax′ is a linear combination of e2; : : : ; en we obtain that
eT1 ~A

k−1x′ = 0 and thus

xT ~Ak−1x = c21e
T
1
~Ak−1e1 + x′T ~Ak−1x′

Note that eT1 ~A
k−1e1 = eT1 e1 = 1, whereas x′T ~Ak−1x′ ≤ �kx′Tx′ from Rayleigh's

quotient. In addition, ‖x′T‖ ≤ ‖xT‖ due to Pythagoras' inequality and

c1 = xTe1 =
1√
n

∑

v

(
dF (v)

2|F |

)

=
1√
n

It follows that

xT ~Ak−1x ≤ 1

n
+ �kxTx

But we can see that

xTx =
∑

v

(
dF (v)

2|F |

)2

≤ max
v

dF (v)

2|F | ·
∑

v

dF (v)

2|F | = max
v

dF (v)

2|F | ≤ d

2|F |

(2.10) transforms into

Pr[(uk−1; uk) ∈ F] =
2|F |
d

(
1

n
+ �̃k

d

2|F |

)

=
|F |
|E| + �̃k

32 CHAPTER 2. EXPANDERS

Chapter 3

Existence of Expanders

We have studied quite extensively expander graphs and their properties. But
so far we have not proved their existence. In this chapter, we address this topic
which has been of special research interest the last years since the need for
explicit expander construction emerged in several applications. The interested
reader can �nd more information about advances on this �eld in [LW03].

3.1 A Probabilistic Argument

Indeed, as a �rst result we prove ([Pin73]) that a random regular graph is
an expander with high probability.

Theorem 3.1. For any even d ≥ 3 there exists a family of d-regular expander

graphs.

Proof We will use the probabilistic method to prove that there exists � > 0
such that for every n > 0, if we pick a random d-regular graph G, then with
positive probability h(G) > �.

Consider a perfect matching on dn vertices.

1. Randomly partition these vertices into n sets V1; : : : ; Vn each of size d.

2. Merge the vertices in each Vi to a single vertex i without eliminating any
edge.

We have obtained a d-regular (multi)graph G with n vertices {1; : : : ; n}. Pick
an S such that |S| ≤ n=2. We want to bound the edges that go out of S, thus
it su�ces to provide an upper bound the number of edges inside S. Wlog label
the vertices in S as {1; : : : ; |S|}.

Denote by P|S| the event that the number of edges inside |S| is at least |S|(d=2−
�). This means that V1 ∪ : : : V|S| includes |S|(d=2− �) edges. Thus, we seek the

33

34 CHAPTER 3. EXISTENCE OF EXPANDERS

probability of picking |S|(d=2 − �) edges in a random selection of |S|d vertices
from the original graph. This is equivalent to picking a set X of vertices such
that |X| = d|S| using the following random process.

• Pick |S|(d=2− �) edges and assign their endpoints in X.

• Pick the rest 2�|S| vertices in X from the rest n− 2|S|(d=2− �) vertices.

Thus the desired probability is bounded above by
(

dn=2

|S|(d=2− �)

)(
n− 2|S|(d=2− �)

2�|S|

)

(
dn

d|S|

)

The probability that at least one of the P|S| occurs (for |S| = 1; : : : ; n=2) is hence
at most

n=2
∑

|S|=1

(
dn=2

|S|(d=2− �)

)(
n− 2|S|(d=2− �)

2�|S|

)

(
dn

d|S|

) < 1

for su�ciently small �. Consequently, there exists a graph G on n vertices such
that none of the P|S| occurs. Clearly, for this graph G it holds that

h(G) = min
S⊂V

|S|≤|V |=2

E(S; V − S)

|S| ≥ �

which proves the claim.

Remark 3.1.
We could clearly pick either d even or n even. We chose d since we are interested
in proving the existence of a d-regular n-vertex for a constant d and every n ∈ N.

Thus existence of expander graphs has come easier than one would probably
expect. Still, constructing expander graphs explicitly is far from easy. In the
next sections we provide such constructions.

3.2 The Zig Zag Product

Reingold [Rei04] in his proof of L = SL, introduced an interesting technique
to produce expander graphs. His work was the �rst incentive for Dinur for
proving the PCP theorem by gap ampli�cation. Below we present the zig zag
method.

De�nition 3.2. Let G = (V;E) an n-vertex, D-regular undirected multigraph

and H = (V ′; E′) a D-vertex, d-regular undirected (multi)graph. The zig-zag

product of the two graphs, denoted by G z©H, is de�ned as follows.

3.2. THE ZIG ZAG PRODUCT 35

• Replace each vertex of G with a copy of H, which will be called a cloud.

For v ∈ V , j ∈ V ′, we denote by (v; j) the j-th vertex in the cloud of v.
Denote by [v] the set of vertices in v's cloud.

• (u; i) and (v; j) are connected by an edge in G z©H if (v; j) can be reached

from (u; i) by taking a step in the �rst cloud, then a step between the

clouds and then a step in the second cloud. More formally, ((u; i); (v; j)) ∈
E(G z©H) if there exist k; l such that:

{ (i; k) ∈ E′.

{ v is the k-th neighbor of u in G

{ u is the l-th neighbor of v in G.

{ (l; j) ∈ E′.

Remark 3.2.
Clearly G z©H is a nD-vertex graph. The graph is d2-regular, since from each
vertex in G z©H we can choose by d ways the �rst step within the cloud. Once
the �rst step is chosen, the second is uniquely de�ned since each edge in G is
associated with exactly two vertices inG z©H. The third step can again be pulled
out with d ways, giving a total of d2 neighbors.

Before proving the main result of this section, let us describe in a neat way the
normalized adjacency matrix ofG z©H. Denote by ~AH the normalized adjacency
matrix of H.

Introduce the (nD × nD) matrix A such that

A[(u; i); (v; j)] =

{
1; v is the i-th neighbor of u, u is the j-th neighbor of v
0; otherwise

Note that A is a permutation matrix, i.e. in every row and column there is
exactly one non-zero element. Next, introduce the (nD × nD) bock matrix B:

B =











~AH 0 0 : : : 0

0 ~AH 0 : : : 0

0 0 ~AH
. . . 0

...
. . .

. . .
. . .

...

0 0 0 : : : ~AH











where B has n copies of ~AH . Note that both B is a symmetric matrix. It is
easy to verify that the normalized adjacency matrix ofG z©H is equal to BAB.

Theorem 3.3. If G is a D-regular graph on n vertices and H is a d-regular
graph on D vertices, then

�̃ (G z©H) ≤ �̃(G) + �̃(H) + (�̃(H))2

36 CHAPTER 3. EXISTENCE OF EXPANDERS

Proof Let ~M denote the normalized adjacency matrix of G z©H and consider
the matrices A;B mentioned earlier, so that

~M = BAB

Since G z©H is a regular graph, from the Rayleigh quotient (see Appendix) we
have that

�̃ (G z©H) = max
x⊥1nD;‖x‖=1

∣
∣xTBABx

∣
∣ (3.1)

In order to correlate �̃ (G z©H) with �̃(G) and �̃(H), we need to split the vector
in such a way that we will be able to use the respective Rayleigh quotients for
G and H. As such, we split the vector x in the above equation into two vectors
x|| and x⊥ such that

x||(u; i) =
1

D

∑

j∈[u]
x(u; j)

x⊥ = x− x||

Observe that if x⊥1nD then x||⊥1nD too, since the sum of the entries in x|| is

the same as that of x. Denote by x
[v]
⊥ the D × 1 vector which is the restriction

of x⊥ onto the cloud [v]. Then, since x⊥ = x−x|| and by the way x|| is de�ned,

for each v it holds that x
[v]
⊥ is perpendicular to 1D and since B is block diagonal

we have that

∣
∣xT⊥Bx⊥

∣
∣ =

∣
∣
∣
∣
∣
∣

∑

v

∑

j∈[v]

(

x
[v]
⊥

)T
~AHx

[v]
⊥

∣
∣
∣
∣
∣
∣

≤
∑

v

∑

j∈[v]

∣
∣
∣
∣
�̃(H)

∥
∥
∥x

[v]
⊥

∥
∥
∥

2
∣
∣
∣
∣

≤ �̃(H)‖x⊥‖2

In a similar fashion, de�ne x
[v]
|| the nD × 1 vector which is the restriction of x||

onto the vertices of the cloud [v]. Then

Bx|| =
∑

v

~AHx
[v]
|| =

∑

v

�̃1(H)x
[v]
|| =

∑

v

x
[v]
|| = x|| (3.2)

and

xT⊥x
[v]
|| =

∑

v

xT⊥x
[v]
|| =

∑

v

∑

j∈[v]




1

D

∑

j∈[u]
x(u; j)



xT⊥1D = 0:

Thus x⊥⊥x|| and Pythagoras' theorem yields

‖x||‖ ≤ ‖x‖ = 1

‖x⊥‖ ≤ ‖x‖ = 1:

3.2. THE ZIG ZAG PRODUCT 37

The expression to be maximized in the right part of (3.1) transforms into

∣
∣xTBABx

∣
∣ =

∣
∣(x|| + x⊥)

TBAB(x|| + x⊥)
∣
∣

=
∣
∣
∣xT||BABx|| + xT||BABx⊥ + xT⊥BABx|| + xT⊥BABx⊥

∣
∣
∣

≤
∣
∣
∣xT||BABx||

∣
∣
∣+ 2

∣
∣
∣xT||BABx⊥

∣
∣
∣+
∣
∣xT⊥BABx⊥

∣
∣ (3.3)

We analyze each term in (3.3) separately.

The term
∣
∣xT⊥BABx⊥

∣
∣. Applying Cauchy Schwarz inequality

∣
∣xT⊥BABx⊥

∣
∣ ≤

∥
∥ATBTx⊥

∥
∥ · ‖Bx⊥‖

and noting that
∥
∥ATBTx⊥

∥
∥ = ‖Bx⊥‖ since A is a permutation matrix and B

is symmetric,
∣
∣xT⊥BABx⊥

∣
∣ ≤ ‖Bx⊥‖2

It remains to observe that that ‖Bx⊥‖2 =
∣
∣xT⊥B

2x⊥
∣
∣ ≤ (�̃(H))2‖x⊥‖2, hence

∣
∣xT⊥BABx⊥

∣
∣ ≤ (�̃(H))2: (3.4)

The term
∣
∣
∣xT||BABx⊥

∣
∣
∣. Using (3.2) and the Cauchy Schwarz inequality, we

have that

∣
∣
∣xT||BABx⊥

∣
∣
∣ =

∣
∣
∣xT||ABx⊥

∣
∣
∣

≤
∥
∥ATx||

∥
∥ · ‖Bx⊥‖

=
∥
∥x||

∥
∥ · ‖Bx⊥‖

≤ �̃(H) ·
∥
∥x||

∥
∥ · ‖x⊥‖

Using the inequality a2 + b2 ≥ 2ab we have that

∣
∣
∣xT||BABx⊥

∣
∣
∣ ≤ 1

2
�̃(H) ·

(∥
∥x||

∥
∥2 + ‖x⊥‖2

)

=
1

2
�̃(H) · ‖x‖2 = 1

2
�̃(H): (3.5)

The term
∣
∣
∣xT||BABx||

∣
∣
∣. De�ne y ∈ Rn such that

y(u) =
1

D

∑

j∈[u]
x(u; i)

38 CHAPTER 3. EXISTENCE OF EXPANDERS

Note that y⊥1n and that for each j ∈ [u] it holds that y(u) = x||(u). Thus
‖x||‖2 = D‖y‖2. Using (3.2), we obtain

∣
∣
∣xT||BABx||

∣
∣
∣ =

∣
∣
∣xT||Ax||

∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

u′=(u;i);v′=(v;j)

x||(u
′)A(u′; v′)x||(v

′)

∣
∣
∣
∣
∣
∣

= D ·
∣
∣
∣
∣
∣

∑

u;v

y(u)~AGx||(v)

∣
∣
∣
∣
∣

= D ·
∣
∣
∣yT ~AGy

∣
∣
∣

= D · �̃(G)‖y‖2

and noting that ‖y‖2 = 1

D
‖x‖2 ≤ 1

D
, we obtain

∣
∣
∣xT||BABx||

∣
∣
∣ ≤ �̃(G): (3.6)

Plugging (3.4),(3.5),(3.6) into (3.3), the result follows.

3.3 Constructing Expanders via the Zig Zag

Road

In this section, we construct explicitly a family of expander graphs using the
zig zag method. To apply the method we need an expander to start with. This
is provided by the following important theorem, which we prove in section 3.4.

Theorem 3.4. Let p ∈ N a prime. For every t ≤ p there is an explicit con-

struction of a p2-regular graph Gp;t on pt+1 vertices such that �̃(Gp;t) ≤ t
p .

Applying Theorem 3.4 with p = 37 and t = 7 yields a graph H such that:

1. H has 378 vertices.

2. H is 372-regular.

3. �̃(H) ≤ 7
37 <

1
5 .

Theorem 3.5. There is a constant d such that for every k ≥ 0 there exists an

(d4(k+1); d2; �̃)-expander with �̃ ≤ 1

2
.

3.4. AN EXPLICIT CONSTRUCTION 39

Proof The expander graph is constructed inductively.

Set G0 = H2, where H is the graph described earlier in this section. Note
that H is a (d4; d; 15) expander, where d = 372 = 1369. Trivially, G0 is a d2-
regular on d4 vertices and

�̃(G0) = �̃(H) <
1

25
<

1

2

De�ne Gk = G2
k−1 z©H for each k ≥ 1. We claim that the desired family is Gk.

The proof is by induction on k. Assume that the property holds for k, then

Gk is a (d4(k+1); d2; �̃)-expander such that �̃(Gk) ≤
1

2
.

Note thatG2
k is a d

4 regular graph so that the zig zag operation is well de�ned.
Moreover, the number of vertices in the graph Gk+1 are d4(k+1) · d4 = d4(k+2).
Finally, the zig zag method guarantees that

�̃(Gk+1) ≤ �̃(G2
k) + �̃(H) + (�̃(H))2 <

1

4
+

1

5
+

1

25
<

1

2

3.4 An Explicit Construction

In this section we provide a proof for Theorem 3.4. The proof is essentially the
same as the one presented in [Rei04].

Proof (Theorem 3.4) We �rst describe the graph G(p; t). To simplify nota-
tion, let F = Fp. The vertices of Gp;t are de�ned to be V = Ft+1. The set
of neighbors of a vertex v = (v0; : : : ; vt+1) is the set of vertices {(v0 + b; v1 +
ab; : : : ; vt + atb)|a; b ∈ F}. Clearly, the graph Gp;t is p

2-regular on pt+1 vertices.

Next, we will prove that �̃(Gp;t) ≤ t
p . We �rst construct a set of |V | orthonormal

eigenvectors. To de�ne the eigenvectors denote by! the p-th root of unity. Then,
by de�nition

1 + ! + : : :+ !p−1 = 0

and !p = 1. Note also that
p−1
∑

k=0

!kj = 0 (3.7)

for any j ∈ {1; : : : ; p − 1} since the function f(k) = kj for any j such that
gcd(j; p) = 1 is a bijection in F.

The set of eigenvectors is de�ned as follows.

��(v) = !
∑t

j=1 �jvj for each �; v ∈ Ft+1

40 CHAPTER 3. EXISTENCE OF EXPANDERS

Note that �a(b1) ·�a(b2) = �a(b1+ b2) and �a1(b) ·�a2(b) = �a1+a2(b). Moreover
if z∗ denotes the complex conjugate of z, !p = 1 implies that �∗

a(b) = �−a(b).

We next prove that �a⊥�b whenever a 6= b. Namely,

〈�∗
�; ��〉 =

∑

v∈Ft+1

�∗
�(v)��(v)

=
∑

v∈Ft+1

�−�(v)��(v)

=
∑

v∈Ft+1

��−�(v)

=
∑

v∈Ft+1

!
∑

j(�j−�j)vj

Observe that the last sum is the result if we write out the product

∏

j

∑

vj

!(�j−�j)vj ;

and noting that �j 6= �j for at least one index j, one of the factors in the last
equation is 0, thus proving the claim.

Let ~A be the normalized adjacency matrix of Gp;t. We prove that each �� is an
eigenvector of ~A.

~A��(v) =
∑

c∈Ft+1

~A(v; c)��(c)

=
1

p2

∑

a;b

��(v + (b; ab; : : : ; atb))

=
1

p2

∑

a;b

��(v)��((b; ab; : : : ; a
tb))

=
��(v)

p2

∑

a;b

��((b; ab; : : : ; a
tb))

and consequently the eigenvalue corresponding to �� is

�̃� =
1

p2

∑

a;b

��((b; ab; : : : ; a
tb))

Thus, it su�ces to prove that |�̃�| ≤
t

p
for every � ∈ Ft+1.

3.4. AN EXPLICIT CONSTRUCTION 41

Assuming that � = (�0; : : : ; �t), we obtain

|�̃�| =

∣
∣
∣
∣
∣
∣

1

p2

∑

a;b

��((b; ab; : : : ; a
tb))

∣
∣
∣
∣
∣
∣

=
1

p2

∣
∣
∣
∣
∣
∣

∑

a;b

!�0b+�1ab+:::+�tatb

∣
∣
∣
∣
∣
∣

Denoting by P�(x) the degree t polynomial �0 + �1t+ : : :+ �tx
t, we have that

�̃� =
1

p2

∣
∣
∣
∣
∣
∣

∑

a;b

!b·P�(a)

∣
∣
∣
∣
∣
∣

=
1

p2





∣
∣
∣
∣
∣
∣

∑

a:P�(a)=0

∑

b

!b·P�(a)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

a:P�(a) 6=0

∑

b

!b·P�(a)

∣
∣
∣
∣
∣
∣





Observe that each sub sum in the sum

∑

a:P�(a) 6=0

∑

b

!b·P�(a)

is equal to 0 by property (3.7), while each sub sum in the sum

∑

a:P�(a)=0

∑

b

!b·P�(a)

evaluates to p. Since P� can have at most t roots, we �nally obtain that

|�̃�| ≤
t

p

The above proof would work for any p a power of prime, as pointed out in [Rei04].
This leads to the following corollary which is vital for the Dinur's proof.

Corollary 3.6.
There exist d0 ∈ N and h0 > 0, such that there is a polynomial-time constructible
family {Xn}n∈N of d0-regular graphs Xn on n vertices with h(Xn) ≥ h0.

Proof (Dinur05) By Theorem 3.4 and the previous remark we can get ex-
panders on 2k vertices for any k. If 2k < n < 2k+1 then we can merge 2k+1 − n
vertices in X2k+1 and make the resulting graph regular by adding arbitrary edges
to the non-merged vertices. Edge expansion is maintained up to a constant fac-
tor, thus the resulting graph is an expander.

42 CHAPTER 3. EXISTENCE OF EXPANDERS

Chapter 4

Error Correction

The proof composition scheme is highly related to coding theory. In this
respect, it is essential to study some of its aspects.

4.1 Code Theory Basics

De�nition 4.1. Given an alphabet Σ and two integers k; n > 0, a code is a

function C : Σk → Σn.

Suppose that we are given a word a in Σk and a code C as in the de�nition.
Then a is a source word, whereas C(a) is a code word.

Any code should have the following properties.

1. The code is decodable, i.e. given a code word we can easily �nd the source
of it. This implies that the code must be one-to-one and thus n ≥ k.

2. The code is error correcting, i.e. if a code word is changed to some ex-
tent, we can still track the source word. This implies that two di�erent
codewords should di�er as much as possible.

Instead of working with alphabets on letters, we consider only alphabets on
a binary alphabet, i.e. Σ = {0; 1}. In order for such codes to be error correcting,
it should be clear that two di�erent codewords should di�er in at least 3 places.
To see this, if there exist codewords which di�er in just one bit, then changing
that bit would result into a legal codeword. Moreover, if there exist codewords
which di�er in exactly two places, then changing one of the two bits would not
allow us to be sure which of the two code words was the initial code word.

The above observation leads naturally to our �rst example of a code.

Example 4.1.1.
Denote the binary string a1 : : : ak by a. Then C(a) = a1a1a1a2 : : : an−1ananan.

43

44 CHAPTER 4. ERROR CORRECTION

C is clearly a function from {0; 1}k into {0; 1}3k. Clearly two distinct code-
words di�er in at least 3 places. This code can easily correct any single error. On
the other hand, correcting two errors in a code word is clearly out of reach for
this code. We could possibly increase the number of times each bit is duplicated
so as to correct more errors, but this would clearly increase the length of a code
word.

The above example indicates the importance of a code to be e�cient and
leads naturally to the notion of informatio ratio.

De�nition 4.2. The information ratio of a code is the fraction k=n.

Clearly the information ratio should be as large as possible.
But we would also like to have a measure of the error correcting capabilities

of the code. For this purpose, let us de�ne the weight of a code word and the
Hamming distance between two code words.

De�nition 4.3. For x ∈ {0; 1}r, the weight of x, denoted by wt(x), is the num-

ber of bits of x which are equal to 1, i.e. wt(x) = |{1 ≤ i ≤ r : xi = 1}|.

De�nition 4.4. For x; y ∈ {0; 1}r, the Hamming distance between x; y, denoted
by dist(x; y) is the number of bits in which x; y di�er, i.e. dist(x; y) = |{1 ≤ i ≤
r : xi 6= yi}|.

We are now ready to de�ne codes more explicitly.

De�nition 4.5. An (n; k; d)Σ-code is a code C : Σk → Σn such that

d = min
x 6=y

dist(C(x); C(y)):

The parameter d is the code distance. For an (n; k; d)-code C, the rate of C is

de�ned as r = k=n and the relative distance of C is de�ned as � = d=n.

Thus the repetition code we saw earlier is a (3k; k; 3)-code with rate r = 1=3 and
relative distance � = 1=k. Generalizing the 3 bit idea for a single error correcting
code, it is easy to see that in order to be able to correct t bits a necessary and
su�cient condition is that 2t < d.

Moreover, it seems natural that to be able to correct many errors, the code
word length should be su�ciently large. This intuition is a�rmed by the fol-
lowing theorem, which demonstrates a trade o� between r and �. Before stating
the theorem we introduce the ball around a word.

De�nition 4.6. For a word x ∈ {0; 1}r, the ball of radius t around x is de�ned

as B(x; t) = {z ∈ {0; 1}r : dist(x; z) ≤ t}:

We proceed into stating the bound mentioned earlier.

4.2. HADAMARD CODE 45

Theorem 4.7 (Hamming Bound). For an (n; k; d){0;1}-code we have

r +H

(
�

2

)

≤ 1;

where H(p) denotes the entropy function H(p) = p log2

(
1
p

)

+(1− p) log
(

1
1−p

)

:

Proof Consider the ball with radius d=2 around a code word x, B(x; bd2c). This
ball should be disjoint from any other ballB(y; bd2c) since otherwise, the two code
words would have distance < d. Thus, for each source word the corresponding
balls are disjoint which means that

2k ·
∣
∣
∣
∣
B

(

x;
d

2

)∣
∣
∣
∣
≤ 2n (4.1)

But

|B(x; z)| =
(
n

0

)

+

(
n

1

)

+ : : :+

(
n

z

)

≈ 2n·H(z
n
)

Using the above approximation and taking logarithms in (4.1) we obtain

k + n ·H
(

d

2n

)

≤ n ⇐⇒ r +H

(
�

2

)

≤ 1

4.2 Hadamard Code

We next de�ne the Hadamard code.

De�nition 4.8. A Hadamard code is a function H : {0; 1}k → {0; 1}2k such

that, if a ∈ {0; 1}k then for every � ∈ {0; 1}k with binary the �-th component of

H[a] is equal to

H(a)[�] =< a; � >=
k−1∑

i=0

ai�i mod 2

where ai; �i denote the bits of a; � respectively.

It is easy to see that a Hadamard code is a linear code in the sense that for
a; b ∈ {0; 1}k,

H(a)⊕H(b) = H(a⊕ b)

In the above equation ⊕ represents the bitwise xor operation. Alternatively, ⊕
can be thought of

(a1; : : : ; an)⊕ (b1; : : : ; bn) = (a1 + b1; : : : ; an + bn)

46 CHAPTER 4. ERROR CORRECTION

where addition in the right part of the above equation is the usual addition in
the Boolean �eld.

A di�erent way to look at the Hadamard code is in terms of linear functions,
i.e. H[a] is the list of all possible outcomes of the linear function

H[a](x) =
∑

i

aixi

where again all operations are on the Boolean �eld.

Example 4.2.1.
Suppose a = 101. The Hadamard code of a is shown in the following table.

xi H[a](xi)

000 0
001 1
010 0
011 1
100 1
101 0
110 1
111 0

4.2.1 The Parameters of Hadamard Code

The rate of a Hadamard code is logarithmic since r = k
2k
.

We would like to calculate the distance between two Hadamard code words.
This is equivalent to calculating the minimum weight ofH(a)−H(b) for a; b ∈
{0; 1}k; a 6= b. Since the code is linear, it su�ces to �nd the minimum weight of
H(a) where a has at least one nonzero bit.

Denote by aj the �rst such non-zero bit and by ej = 2j−1 the word in {0; 1}k
with exactly one non-zero element in the j-th position. Then, for every number
0 ≤ � ≤ 2k − 1, using the linearity property, it holds that

< a; � >=< a; ej > + < a; � + ej >=< a; � + ej > +1 6=< a; � + ej >

Consequently, there is a bijection between the nonzero elements of H(a) to its
zero elements. Thus wt(H(a)) = 2k−1 and the relative distance of a Hadamard
code is equal to

� =
2k−1

2k
=

1

2

4.3. LOCAL TESTING 47

4.3 Local Testing

Suppose that we are given a set P ⊂ {0; 1}n, which we call a property. In
this section we will get some insight into deciding whether a x ∈ {0; 1}n belongs
in P without looking at all bits of x. It should be clear that this question is
interconnected with our ability to generate e�ective codes.

More formally, let us de�ne local testing algorithms.

De�nition 4.9 (Local Testing Algorithms). Given a property P , a non de-

terministic polynomial algorithm A is a (q; �)-Local Testing Algorithm (LTA) for

P if for every x ∈ {0; 1}n, A computes indices (i1; : : : ; iq) ∈ {1; : : : ; n} and ac-

cording to a Boolean predicate Φ : {0; 1}q → {0; 1} outputs Φ(xi1 ; : : : ; xiq). A

LTA has the following attributes:

• x ∈ P ⇒ Pr[A(x) = 1] = 1.

• x =∈ P ⇒ Pr[A(x) = 0] ≥ � · dist(x; P).

Remark 4.1.
From now on, dist(x; P) will denote the minimum fraction of bits needed to be
changed in x so as to have property P.

We have intentionally left obscure the number of random bits a LTA uses. This is
because it is not necessary all of the indices (i1; : : : ; iq) to be randomly selected,
since some indices might occur as a function on an already picked subset of the
indices. Covering this possibility would lead to a much more complex de�nition,
which for our purposes, is unnecessary since we are far more interested in the
queries that an LTA makes than its randomness properties. At practice, we will
examine LTAs for which q = O(1). Hence, the random bits used in any case will
be O(log n).

4.4 LTA for Hadamard Encodings

Blum, Ruby and Rubinfeld [BLR90] were the �rst to provide a local testing
algorithm for Hadamard codes. The test is vital in both proofs of the PCP
theorem. A stronger version was later proved by Bellare, Coppersmith, H�astad,
Kiwi and Sudan [BCH+95].

Denote by H to be the set of words in the Hadamard code, i.e.

H =
{

w ∈ {0; 1}2l
∣
∣
∣∃a∀x

(

x ∈ {0; 1}l; w(x) =< a; x >
)}

and consider the following algorithm.

48 CHAPTER 4. ERROR CORRECTION

Algorithm A (LTA for Hadamard Codes).
Test whether a given string is a legal Hadamard Code.

Input: A string w ∈ {0; 1}2l
.

Procedure:

Choose a random x ∈ {0; 1}l.
Choose a random y ∈ {0; 1}l.

Output:

Answer yes if w(x)⊕ w(y) = w(x⊕ y).

Theorem 4.10. Algorithm A satis�es:

1. If w ∈ P then Prx;y[A(w) = 1] = 1.

2. If dist(w;P) = � > 0 then Prx;y[A(w) = 0] ≥ min

(
�

2
;
2

9

)

.

Proof ([BLR90]) We have already proved 1 in section , so we proceed into
proving 2. Consider ŵ de�ned as

ŵ(x) = arg max
a∈{0;1}

Pr
y
[w(x)⊕ w(x⊕ y) = a]

Set Px = Pr
y
[ŵ(x) = w(y)⊕ w(x⊕ y)]. By de�nition of ŵ, we have that

Px ≥ 1

2
for all x:

We prove next that

Pr
x;y

[A(w) = 0] ≥ 1

2
· dist(w; ŵ) (4.2)

Set B =
{
x ∈ {0; 1}l : Pry[w(x) 6= w(y)⊕ w(x⊕ y)] > 1

2

}
. If x =∈ B then ŵ(x)

is assigned the value w(x) and consequently Prx[w(x) = ŵ(x)|x =∈ B] = 0. Thus

dist(w; ŵ) = Pr
x
[w(x) = ŵ(x)|x ∈ B] Pr

x
[x ∈ B] ≤ Pr

x
[x ∈ B] (4.3)

If x ∈ B then Algorithm A rejects by de�nition with probability greater than 1
2

and therefore, using Bayes formula,

Pr
x;y

[A(w) = 0] ≥ Pr
y
[A(w) = 0|x ∈ B] Pr

x
[x ∈ B] =

1

2
· Pr

x
[x ∈ B] (4.4)

4.4. LTA FOR HADAMARD ENCODINGS 49

Combining (4.3) and (4.4), we obtain (4.2). Notice that it remains to prove that

Pr
x;y

[A[w] = 0] <
2

9
⇒ ŵ ∈ H;

since then it must be the case that dist(w; ŵ) ≥ �.

Hence, assume that Prx;y[A[w] = 0] < 2
9 . We �rst prove that

Px ≥ 2

3
for all x:

Choose y1 and y2 independently and let

P ′
x = Pr

y1;y2
[w(y1)⊕ w(x⊕ y1) = w(y2)⊕ w(x⊕ y2)]

Considering the case where both expressions equal ŵ(x) or 1− ŵ(x), we obtain
that

P ′
x = P 2

x + (1− Px)
2 (4.5)

Moreover P ′
x can also be written as

P ′
x = Pr

y1;y2
[w(y1)⊕ w(x⊕ y2) = w(y2)⊕ w(x⊕ y1)]

Observe that both x+y1; x+y2 are randomly distributed on {0; 1}l and therefore,
by assumption,

Pr
y1;y2

[w(y1)⊕ w(x⊕ y2) = w(x⊕ y1 ⊕ y2)
︸ ︷︷ ︸

E1

] > 1− 2

9

Pr
y1;y2

[w(y2)⊕ w(x⊕ y1) = w(x⊕ y1 ⊕ y2)
︸ ︷︷ ︸

E2

] > 1− 2

9

Thus

P ′
x Pr
y1;y2

[E1 ∩ E2] = Pr
y1;y2

[E1] + Pr
y1;y2

[E2]− Pr
y1;y2

[E1 ∪ E2] > 2− 4

9
− 1 =

5

9
(4.6)

Since x2 + (1− x)2 is increasing for x ≥ 1
2 , (4.5) and (4.6) give

P 2
x + (1− Px)

2 >
5

9
=⇒ Px >

2

3

We are now ready to prove that ŵ ∈ H, i.e.

∀x∀z ∈ {0; 1}l : ŵ(x)⊕ ŵ(z) = ŵ(x⊕ z)

50 CHAPTER 4. ERROR CORRECTION

Note that

Px = Pr
y
[ŵ(x) = w(y)⊕ w(x⊕ y)] >

2

3

Pz = Pr
y
[ŵ(z) = w(y)⊕ w(z ⊕ y)] >

2

3

Px⊕z = Pr
y
[ŵ(x⊕ z) = w(y ⊕ z)⊕ w(x⊕ z ⊕ y ⊕ z

︸ ︷︷ ︸

x⊕z

)] >
2

3

where the last equation follows by observing that y⊕z has the same distribution
as y. The three equations above tell us that there must be a y satisfying all of
the in bracket expressions (otherwise the union of the above probabilities would
be ≤ 1).

The result now comes for free, since using this common y, we have that

ŵ(x)⊕ŵ(y) = w(y)⊕w(x⊕y)⊕w(y)⊕w(y⊕z) = w(x⊕y)⊕w(y⊕z) = ŵ(x⊕z)

Remark 4.2.
Since the Hadamard code can be thought as the encoding of a linear function,
we will often refer to Algorithm A as a linearity testing algorithm.

4.5 Local Decodability

Hadamard codes are not only locally testable but also locally decodable. A
Locally decodable code, in a similar fashion with locally testable codes, are codes
such that we can �nd with high probability a speci�c bit of the source word of
an input codeword without reading all the bits in the latter. We will study the
notion of locally decodability in terms of Hadamard codes.

Theorem 4.11 (Local Decodability of Hadamard code).

Let H = {H(a)|a ∈ {0; 1}l} and w ∈ {0; 1}2l
such that dist(w;H) ≤ �. Let

z ∈ H such that dist(w; z) ≤ � and suppose that an index x ∈ {0; 1}l be given.

Then we can �nd a bit b such that

Pr[b = z(x)] ≥ 1− 2�

We �rst give the algorithm and then analyze its correctness.

4.5. LOCAL DECODABILITY 51

Algorithm B.
Given w ∈ {0; 1}2l

: dist(w;P) ≤ � and x ∈ {0; 1}l �nd b such that Pr[b =
z(x)] ≥ 1− 2�.

Input: A string w ∈ {0; 1}2l
.

An index x ∈ {0; 1}l.

Procedure:

Choose a random y ∈ {0; 1}l.

Output:

Return b = w(y)⊕ w(x⊕ y).

Let Ey = Pry[w(y) = z(y)] and similarly Ex⊕y = Pry[w(x ⊕ y) = z(x ⊕ y)].
Since y and x⊕ y follow the same distribution, by our assumptions we have that

Ey ≥ 1− � and Ex⊕y ≥ 1− �

Since z is a legal Hadamard codeword we have that

Pr
y
[b = z(x)] ≥ Ey · Ex⊕y ≥ (1− �)2 ≥ 1− 2�

and the claim follows.

Remark 4.3.
Algorithms such as Algorithm B which are capable of returning with high prob-
ability a legal Hadamard bit and, as an extension, a legal Hadamard codeword
are often referred to as Self Correcting algorithms. The result presented above
is a special case of the test appearing in [AS92], [ALM+92] for decoding degree
d polynomials.

52 CHAPTER 4. ERROR CORRECTION

Chapter 5

Dinur's Proof of the PCP

theorem

In this chapter, we present a step-by-step proof of the PCP theorem. Unless
stated otherwise, we follow [Din05].

5.1 Constraint Satisfaction Problems

In this section we de�ne constraint satisfaction problems. Consider a �nite
set of symbols Σ called the alphabet and V = {v1; : : : ; vn} a set of variables.

De�nition 5.1 (Constraint). A q-ary constraint is a tuple (i1; : : : ; iq; �) such
that ij ∈ [n] and � : Σq → {0; 1}. A constraint (i1; : : : ; iq; �) is satis�ed by an

assignment a : V → Σ i� �(a(vi1); : : : ; a(viq)) = 1.

De�nition 5.2 (Constraint Satisfaction Problems). Given as input an al-

phabet Σ, a set of variables V = {v1; : : : ; vn}, and a set of q-ary constraints

C = {c1; : : : ; cm}, denote by CSP[q;Σ] the problem of �nding an assignment

a : V → Σ which satis�es all of the constraints.

Numerous known problems can be formulated easily as constraint satisfaction
problems.

Example 5.1.1 (3SAT as a CSP).
Consider a 3SAT formula �1 ∧ �2 ∧ : : : ∧ �m over a set of boolean variables
V = {x1; : : : ; xn}, where each �i is of the form x′k ∨ x′l ∨ x′m (x′k is either xk or
¬xk). Then a CSP equivalent to this formula can be constructed as follows.

• Σ = {0; 1}.

• V = {x1; : : : ; xn}.

53

54 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

• (i; j; k; �) is a constraint i� there exists �i such that �i ≡ x′k ∨x′l ∨x′m and
�(a; b; c) = a ∨ b ∨ c.

Example 5.1.2 (3COL as a CSP).
Consider the decision problem of whether a graphG = (V;E) is 3-colorable, i.e.
whether there exists an assignment a : V → {1; 2; 3} such that if (u; v) ∈ E then
a(u) 6= a(v). A CSP instance for this problem can be constructed as follows.

• Σ = {1; 2; 3}.

• V = {v1; : : : ; vn}.

• (i; j; �) is a constraint i� (vi; vj) ∈ E and � : {1; 2; 3}2 → {0; 1} such that
�(a; b) = 1 if and only if a 6= b.

Following the 3COL formulation as a CSP, we observe that CSP instances with
q = 2 can be better perceived in terms of graphs.

De�nition 5.3 (Constraint Graph Problems). A constraint graph satisfac-

tion problem is an instance G = 〈(V;E);Σ; C〉 such that (V;E) is a graph, the

alphabet Σ is a �nite set and C : E → {� : Σ× Σ → {0; 1}}.

The notion of maximum satis�ability problems naturally leads to introducing
the satisfaction value of a CSP. Namely, we denote by SATa(C) the fraction of
constraints in C satis�ed by the assignment a.

De�nition 5.4 (Max-CSP). Given as input an alphabet Σ, a set of variables

V = {v1; : : : ; vn}, and a set of q-ary constraints C = {c1; : : : ; cm}, denote as

Max-CSP[q;Σ] the problem of �nding an assignment a : V → Σ which maximizes

the fraction of satis�ed constraints. De�ne the sat value of C as

SAT(C) = max
a:V→Σ

Pr
i∈1;:::;m

[a satis�es constraint ci]

In other words, the SAT value of a CSP is the fraction of constraints satis�ed

by an optimal assignment. Finally, de�ne the unsatisfaction value of C as

Unsat(C) = 1− SAT(C);

standing for the minimum fraction of constraints which are left unsatis�ed by an

optimal assignment.

Clearly, the examples demonstrated previously provide reductions from Max-
3SAT to Max-CSP[q = 3; |Σ| = 2] and from Max-3COL to Max-CSP[q = 2; |Σ| =
3]. Thus the corresponding instances of Max-CSP are NP-Hard problems.

5.2. PCP THEOREM AND HARDNESS OF APPROXIMATION 55

5.2 PCP theorem and Hardness of Approxi-

mation

We next introduce the gap version of CSP.

De�nition 5.5 (Gap-CSP). Given as input an alphabet Σ, a set of variables

V = {v1; : : : ; vn}, and a set of q-ary constraints C = {c1; : : : ; cm}and 0 < s < 1,
Gap-CSPs[q;Σ] is the problem of deciding between the following two possibilities:

• SAT(C) = 1.

• SAT(C) ≤ s.

The next theorem will reduce the PCP theorem to proving a hardness of ap-
proximation result.

Theorem 5.6. The following claims are equivalent.

1. NP ⊆ PCP[O(log n); O(1)].

2. There exist constants q, 0 < s < 1, and |Σ| such that Gap - CSPs[q;Σ] is
NP-hard.

Proof
(1) =⇒ (2)

Assuming that NP ⊆ PCP[O(log n); O(1)], for any NP language there is a
[O(log n); O(1)]-veri�er. Consider such a veri�er V for 3COL which uses c log n
random bits and k = O(1) queries into the proof. We will reduce 3COL to an
instance of gap− CSPs[q;Σ] for an appropriate selection of s; q;Σ. Then, any
L ∈ NP has a reduction to gap− CSPs[q;Σ] since 3COL is NP-hard.

The main idea of the proof is to build a constraint for each of the possible
runs of the veri�er, thus simulating its function.

• V reads the input graph G, reads the random binary string � of length
r = O(log n) and computes the indices {i1; : : : ; iq} which will query into
the proof y. Then according to the values {y[i1]; : : : ; y[ik]} it outputs
whether it accepts or not.

• Clearly, the possible random strings are 2O(log n) = nc and consequently
the number of distinct queries into the proof is at most k ·nc = O(nc) = nd

(c; d constants). We introduce variables y1; : : : ; ynd for each of the possible
distinct queries.

• For each random string � simulate all the 2k = O(1) possible assignments
to y[i1]; : : : ; y[ik] and construct a boolean predicate � which evaluates to 1
if and only if the veri�er accepts. Thus, build a constraint (i1; i2; : : : ; ik; �).
Consider the set of all such constraints.

56 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Denote by CG the above instance of CSP. If the graph G is 3-colorable then
there exists a proof y such that the veri�er accepts and consequently the CSP
in the above construction satis�es SAT(CG) = 1. On the other hand, if G is not
3-colorable, then for every proof y the veri�er accepts with probability < 1=2
and thus SAT(CG) ≤ 1=2.

It follows that Gap-CSP1=2[q = k; |Σ| = 2] is NP-hard.

(2) =⇒ (1)

(2) states that for any L ∈ NP , it is possible to map any instance x of the
language L to an instance Cx of gap-CSPs[q;Σ].

We build a PCP veri�er for L as follows: given an instance x map it to Cx

and then for a potential assignment a, pick one of Cx's constraints at random
and accept if that constraint is satis�ed by a. Otherwise, reject.

More formally, consider an instance of an NP-hard language, say 3COL.
Then, it su�ces to prove that 3COL has a PCP veri�er since any other language
in NP can be mapped polynomially into an instance of 3COL.

Given an input x for 3COL and a proof y, the veri�er V for 3COL works as
follows.

1. Use the polynomial reduction to gap-CSPs[q;Σ] to get an instance Cx. Cx

is polynomially related to the size of the input x. Denote bym the number
of constraints in Cx. If |x| = n then m = poly(n).

2. V uses a random binary string � of length dlogme to pick a random con-
straint in Cx, say cj = (i1; : : : ; iq; �). Note that logm = O(log n).

3. V queries the bits corresponding to y[i1]; : : : ; y[iq] and then outputs ac-
cording to �(y[i1]; : : : ; y[iq]). Note that each of the y[ij] is encoded by
log |Σ| = O(1) bits, since |Σ| is constant.

From the above construction, V is a [O(log n); O(1)]-veri�er. Moreover it runs
in polynomial time. Next, we prove its soundness and correctness.

• If x ∈ L then SAT(Cx) = 1, so there is a proof y such that the veri�er
always accepts (the encoding of the optimal assignment).

• If x =∈ L then SAT(Cx) ≤ s, thus for every proof y

Pr
�∈{0;1}O(logn)

[V y(x; �) = 1] ≤ s:

If s > 1=2, in order to enhance the soundness parameter, repeat steps 2, 3
⌈
logs

1
2

⌉
times. Since s is a constant, a constant number of repetitions is required

and consequently the veri�er still uses O(log n) random bits and O(1) queries
into the proof.

5.3. THE PCP THEOREM BY GAP AMPLIFICATION 57

Remark 5.1.
It is important to stress the importance of having constant values for s; q; |Σ|.
The reader should go through the proof of Theorem 5.6 again and clarify this
before proceeding into the next sections.

5.3 The PCP theorem by Gap Ampli�cation

In the previous section we proved that the PCP theorem is equivalent to
proving the following theorem.

Theorem 5.7 (Gap-CSP Hardness). There exist constants q, 0 < s < 1,
and |Σ| such that Gap - CSPs[q;Σ] is NP-hard.

We will restrict ourselves to constraint graph problems. As we saw in section 1.1
there is a trivial reduction which transforms an instanceG = (V;E) of 3COL to
a constraint graph CG. Note that:

• G is 3-colorable if Unsat(CG) = 0.

• G is not 3-colorable if Unsat(CG) ≥
1

|E| .

The latter claim just states that at least one edge constraint should be left
unsatis�able. Observe that, ideally, if the term 1

|E| was a constant the Gap-CSP
hardness would come for free. Our goal will be to amplify the above gap to a
constant
. The following theorem is vital toward this objective.

Theorem 5.8 (Gap Ampli�cation). There exists Σ0 such that for all Σ there

exist constants c and 0 <
 < 1 and a polynomial reduction which given a

constraint graph G = 〈(V;E);Σ; C〉 outputs G′ = 〈(V ′; E′);Σ0; C′〉 such that

1. |V ′|+ |E′| ≤ c(|V |+ |E|).

2. [Completeness] : Unsat(G) = 0 ⇒ Unsat(G′) = 0.

3. [Soundness] : Unsat(G) > 0 ⇒ Unsat(G′) ≥ min{
; 2 ·Unsat(G)}.

Assuming the Gap Ampli�cation theorem to be true, one can prove that Gap-
CSP
 [q = 2;Σ0] is NP-hard.

Theorem 5.9. Let G = (V;E) denote some graph. There exists a polynomial

reduction from 3COL to Gap-CSP
 [q = 2;Σ0] which maps G into a constraint

graph G′ such that:

• [Completeness] : G ∈ 3COL ⇒ Unsat(G′) = 0.

• [Soundness] : G =∈ 3COL ⇒ Unsat(G′) ≥
.

58 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Remark 5.2.
Note that the constants
 and Σ0 appearing in the theorem are the ones guar-
anteed by the Gap Ampli�cation theorem.

Proof To see this, take the reduction from 3COL to the constraint graph in-
stance CG = 〈(V;E);Σ; C〉 which we presented earlier. Apply Gap Ampli�cation
k = log |E| + 1 times to obtain a sequence of constraint graphs G1; G2; : : : ; Gk.
We claim that the constraint graph Gk = 〈(Vk; Ek);Σ; Ck〉 is an instance of
Gap-CSP
 [q = 2;Σ0].

• |Vk|+ |Ek| ≤ ck(|V |+ |E|). This shows that Gk is only polynomially bigger
than the original constraint graph since ck = clog |E|+1 = O(|E|log c).

• Unsat(G) = 0 ⇒ Unsat(Gk) = 0, since Gap Ampli�cation preserves
completeness.

• Unsat(G) > 0 ⇒ Unsat(Gk) ≥
. To see this, recall that if the ini-
tial graph is not satis�able then Unsat(G) ≥ 1

|E| . If Unsat(Gi) ≥
2 ·Unsat(Gi−1) for each i ≤ k then

Unsat(Gk) ≥ 2k ·Unsat(G) = 2k · 1

|E| > |E| · 1

E
= 1;

which is absurd. Thus, for some index i less than k, it must be the case
that Unsat(Gi) ≥
 which proves that Unsat(Gk) ≥
.

It should be clear that Theorem 5.7 follows in a straighforward manner from
Theorem 5.9.

In the rest of this chapter, we will concentrate on proving the Gap Ampli�-
cation theorem.

5.4 Overview of the Gap Ampli�cation Proof

The Gap Ampli�cation theorem will follow in 3 steps.

1. In the �rst step, we transform the constraint graph G = 〈(V;E);Σ; C〉
into another one G′ such that the underlying graph of this new instance is
an expander. Alphabet Σ remains the same and the unsatisfaction level
decreases by a constant. Despite this, the new graph has much better
combinatorial properties. This step can be called as the preprocessing
step since its main goal is to beautify the graph.

2. In the second step, which is the main gap ampli�cation procedure, G′ is
transformed into G′′ such that the gap ampli�es by an arbitrary constant
t. This would be enough if the alphabet of G′′ remained invariant. Un-
fortunately, the alphabet increases exponentially on the constant t, which
leads to the third step.

5.5. PREPROCESSING STEP 59

3. Proof Composition. In this step, the alphabet becomes constant and the
unsatisfaction level decreases only by a constant.

As we shall see, the constants by which the unsatisfaction level decreases in steps
1 and 3 are well de�ned and thus can easily be compensated from step 2.

5.5 Preprocessing Step

The preprocessing step consists of two substeps.

1. In the �rst substep, we transform the graph into a d-regular one for some
constant d.

2. In the second substep, we transform the d-regular graph into an expander.

5.5.1 Regularization

The main result that we use is that there is an (n; d; h0)-expander family
for some constants d, h0 for each n ∈ N, as established in Corollary 3.6. The
construction follows.

De�nition 5.10. Let G = 〈(V;E);Σ; C〉 be a constraint graph. The constraint

graph G′ = PREP1(G) = 〈(V ′; E′);Σ; C′〉 is constructed as follows.

• Vertices in V ′: for each vertex v ∈ V introduce degG(v) nodes in V ′,
representing each of the edges incident to v. Denote these set of new

variables as [v]. To picture this better, each vertex v in G is replaced by

a smaller graph on degG(v) vertices. We will refer to such a set as v's
cloud. De�ne V ′ =

⋃

v∈G[v].

• Edges in E′: we will have two sets of edges, EG and Ec. The set EG

denotes edges among clouds and will be in one-to-one correspondence with

edges of G, while the set Ec denotes edges within clouds.

1. EG: Consider the cloud of [v] nodes of a vertex v in G. Then each

of the new nodes is adjacent to one edge of the initial graph G. In

other words, suppose that ui ∈ [u] and vj ∈ [v]. Then (ui; vj) ∈ E1

i� v is the i-th neighbor of u in G and u is the j-th neighbor of v.
The set EG is the union of all such edges between any two clouds.

2. Ec: Consider the cloud of a vertex v. Then among the [deg(v)]
nodes add edges such that the induced subgraph of these nodes is a

(degG(v); d; c)-expander. Note that such an expander exists. Ec is

the union of all such edges within any cloud.

60 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

• Constraints: each edge in EG will preserve its original constraint in G,

while every edge in Ec will try to enforce an identical assignment. Thus,

C′(e ∈ Ec)(a; b) =

{
1; if a = b
0; otherwise

An example of the new constraint graph is illustrated in the following �gure,
where instead of a d-regular expander, we use a (2-regular) cycle.

It should be clear thatPrep1(G) is a (d+1)-regular graph, where d is a constant.
The main theorem we prove for the above construction follows.

Theorem 5.11. Let G = 〈(V;E);Σ; C〉 be a constraint graph. The reduction

G → G′ = Prep1(G) = 〈(V ′; E′);Σ; C′〉 is such that

1. |V ′|+ |E′| ≤ c(|V |+ |E|) for some constant c.

2. Unsat(G) · �1 ≤ Unsat(G′) ≤ Unsat(G) for a constant 0 < �1 < 1.

5.5. PREPROCESSING STEP 61

Remark 5.3.
Note that the second property implies that the unsatisfaction level ofG′ decreases
only by a constant when G is not satis�able, while if G is satis�able then G′ is
too.

Proof First of all, note that |V ′| =
∑

v degG(v) = 2|E| and |E′| = (d + 1)|E|
and since d is a constant, 1 follows.

Next, we prove that Unsat(G) ≥ Unsat(G′). To see this, denoting by
g : V → Σ the optimal assignment in G, we construct an assignment for G′ such
that all vertices in a cloud [v] are assigned the value g(v). Then, it clearly holds
that

Unsat(G′) ≤ Unsatg′(G
′) =

Unsatg(G) · |E|
|E′| ≤ Unsat(G)

which is what we wanted to prove.

Next, we prove that Unsat(G) ·�1 ≤ Unsat(G′) for some constant �1. This
is quite more complicated. Note that constructing an assignment inG′ from an
assignment in G will not help since this proves the reverse inequality. Thus, we
need to construct an assignment in G from an assignment in G′.

Given an assignment g′ : V ′ → Σ in G′, de�ne g(v) for a vertex v ∈ G to be
the majority value in v's cloud, i.e.

g(v) = arg max
u∈[deg(v)]

g′(u)

To aid the analysis below, consider U;U ′ the set of edges left unsatis�ed by g
in G and g′ in G′ correspondingly. Moreover, for a vertex v denote by S[v];�

the nodes in v's cloud which are assigned to � ∈ Σ and do not agree with the
majority decision, i.e.

S[v];� = {u ∈ [deg(v)] : g′(u) = �; � 6= g(v)}

Denote by S[v] =
⋃

�∈Σ S
[v];� and S =

⋃

v∈V S[v].

Let us consider an edge e = (u; v) ∈ U . We will denote by e′ = (ui; vj) the
corresponding edge in E′. Then there are two possibilities.

• Either e′ is unsatis�ed in H too.

• Either e′ is satis�ed in H and at least one of ui; vj disagree with the
majority assignment.

Thus

|U | ≤ |U ′|+ |S|: (5.1)

62 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Note that Unsatg(G) = |U |
|E| and Unsatg′(G

′) = |U ′|
|E′| . Therefore, if |U ′| >

|U |=2 it follows rather easily that

Unsatg′(G
′) =

|U ′|
|E′| ≥

|U |
2(d+ 1)|E| =

Unsatg(G)

2(d+ 1)
≥ 1

2(d+ 1)
·Unsat(G)

and consequently the same holds for the optimal assignment g′.
Consider now the case |U ′| ≤ |U |=2. From (5.1) it follows that |S| ≥ |U |=2.

Note that S[v];� contains at most deg(v)=2 vertices since g is the majority as-
signment. Since each cloud is an expander with edge expansion h each S[v];�

has (within the cloud) at least h · |S[v];�| edges going out of it. These edges are
clearly unsatis�ed. Being wary not to count twice the same edge, summing over
all � ∈ Σ and all clouds we get a bound on U ′, namely

|U ′| ≥ 1

2

∑

v∈V

∑

�∈Σ
h0 ·

∣
∣
∣S[v];�

∣
∣
∣ =

h0
2
|S| ≥ h

4
|U |

Thus

Unsatg′(G
′) =

|U ′|
|E′| ≥

h0|U |
4(d+ 1)|E| =

h0 ·Unsatg(G)

4(d+ 1)
≥ h0

4(d+ 1)
·Unsat(G)

and the same holds for the optimal assignment in G′.
We can therefore derive that

Unsat(G) · �1 ≤ Unsat(G′) ≤ Unsat(G); �1 = min

{
1

2(d+ 1)
;

h0
4(d+ 1)

}

Concluding, the Prep1 step turned the original graph G into a d-regular graph,
decreasing the unsatisfaction value only by a constant �1.

5.5.2 Expanderizing

The second step will turn the output of the Prep1 step into an expander.
Again, the main result that we use is Corollary 3.6, that there is an (n; d; h0)-
expander family for some constants d, h0 for each n ∈ N.

De�nition 5.12. Let G = 〈(V;E);Σ; C〉 be a d-regular constraint graph. The

constraint graph G′ = Prep2(G) = 〈(V ′; E′);Σ; C′〉 is constructed as follows.

• V ′ = V .

• Edges in E′: consider a d′-regular expander graph X = (V;EX). Then

E′ = E ∪ EX , where multiple edges between two vertices are allowed.

• Constraints: each edge in E preserves its original constraint in G, while

every edge in EX has null constraints, i.e. it is satis�ed by any assignment

to its endpoints.

5.5. PREPROCESSING STEP 63

Remark 5.4.
G′ is (d+ d′)-regular.

The next theorem illustrates the properties of the above construction.

Theorem 5.13. Let G = 〈(V;E);Σ; C〉 be a constraint graph. The reduction

G → G′ = Prep1(G) = 〈(V ′; E′);Σ; C′〉 is such that

1. �(G′) < �+ d.

2. |V ′|+ |E′| ≤ c(|V |+ |E|) for some constant c.

3. Unsat(G) · �2 ≤ Unsat(G′) ≤ Unsat(G) for some constant 0 < �2 < 1.

Proof Note that |E′| = (d+d′)|V |
2 , therefore the new graph is only bigger by a

constant since both d; d′ are constants.

It should be obvious that Unsat(G′) ≤ Unsat(G) since the optimal assign-
ment for G clearly satis�es the same number of edges inG′ and leaves a smallest
fraction of the constraints unsatis�ed sinceG′ has additional trivial constraints.

The same argument works pretty much for bounding Unsat(G′). Namely,
suppose that g′ : V ′ → Σ an assignment in G′ which satis�es S edges of E′, then
clearly S ⊂ E and S is exactly the set of vertices left unsatis�ed by g′ in G′.
Thus

Unsatg′(G
′) =

|S|
|E| =

2|S|
(d+ d′)V

=
d

d+ d′
· 2|S|
dV

=
d

d+ d′
Unsatg′(G);

which clearly leads to

Unsat(G′) ≥ d

d+ d′
Unsat(G)

and therefore

Unsat(G) · �2 ≤ Unsat(G′) ≤ Unsat(G); �2 =
d

d+ d′
:

Thus, it is left to prove that �(G′) < � + d. Note that on a intuitive level, G′

will certainly be an expander since adding edges to an expander clearly cannot
reduce the edge expansion property.

Formally, denote byAG′ ;AG;AX the adjacency matrices ofG′; G;X respec-
tively. Then, it is clear that AG′ = AG +AX and recall that by the Rayleigh

64 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

quotient we have that

�(G′) = max
‖x‖=1;x⊥1

∣
∣xTAG′x

∣
∣

= max
‖x‖=1;x⊥1

∣
∣xT (AG +AX)x

∣
∣

≤ max
‖x‖=1;x⊥1

∣
∣xTAGx

∣
∣+ max

‖x‖=1;x⊥1

∣
∣xTAXx

∣
∣

= �(G) + �(X)

and the claim follows.

Summarizing the second step, we have succeeded in turning the graph into an
expander.

5.5.3 Combining the two Preprocessing Steps

Let H be the output graph if we apply the two transformations in chain,
namely

G → Prep1(G) → Prep2(Prep1(G)) = H:

Combining Theorem 5.11 and Theorem 5.13, we derive that

Unsat(G) · �1�2 ≤ Unsat(H) ≤ Unsat(G);

where �1; �2 are constants. We may �nalize the preprocessing step with the
following theorem.

Theorem 5.14. Let G = 〈(V;E);Σ; C〉 be a constraint graph. Then the con-

straint graph

H = Prep2(Prep1(G)) = 〈(V ′; E′);Σ; C′〉

is such that

1. (V ′; E′) is (d+ d′ + 1)-regular for some constants d; d′.

2. �(H) < �+ d for some constant � < d′.

3. |V ′|+ |E′| ≤ c(|V |+ |E|) for some constant c.

4. Unsat(G) · � ≤ Unsat(G′) ≤ Unsat(G) for some constant 0 < � < 1.

5.6. POWERING STEP 65

5.6 Powering Step

5.6.1 The Original Construction

In this step we amplify the unsatisfation value of the input graph G by an
arbitrary constant. We will follow the work in [Jut06], which is an improvement
to the initial Dinur's construction. Before presenting the �nal construction, we
will �rst discuss the construction in [Din05], which makes the �nal one a little
easier to perceive.

De�nition 5.15. Let G = 〈(V;E);Σ; C〉 be a d-regular constraint graph, and let

t ∈ N be an arbitrary constant. De�ne Gt = 〈(V;E′);Σ′; C′〉 to be the following

constraint graph:

• The set of vertices remains the same.

• The set of edges E′ is de�ned as follows: (u; v) belongs in E′ if there is a

walk of length t from u to v. Note that multiple edges are allowed between

distinct vertices, as well as self loops. Thus, if A denotes the adjacency

matrix of (V;E), the adjacency matrix of (V;E′) is At.

• Σ′ = Σd0+d1+:::+dt. As a �rst intuition for the selection of Σ′, note that

a symbol of Σ′ encodes appropriately the assignment of all vertices in G
reachable from a vertex, in a walk of length at most t. Such a possible

encoding could be the d-adic tree which starts at a vertex u and visits in

a breadth �rst search manner all the nodes reachable in at most t steps.

Note that the number of nodes in this d-adic tree is d0 + d1 + : : :+ dt and
recording each possible assignment a : V → Σ with a single symbol requires

an alphabet of size |Σ|d0+d1+:::+dt.

• Constraints: Denote by B(v; t) the set of vertices which are at distance at

most t from v. Clearly B(v; t) coincides with the set of vertices appearing

in the d-adic tree described above and |B(v; t)| ≤ d0+d1+: : :+dt. Consider
an edge e = (u; v) ∈ E′ and �1; �2 ∈ Σ′ such that

�1 : B(u; t) → Σ and �2 : B(v; t) → Σ

The constraint on an edge e = (u; v) is satis�ed i�

{ For every w ∈ B(u; t) ∩ B(v; t) it holds that �1(w) = �2(w). Then,

clearly there is � : B1 ∪B2 → Σ such that �|B1 = �1 and �|B2 = �2.

{ Every edge in (u; v) ∈ E ∩ (B1 ∪B2)× (B1 ∪B2) is satis�ed from the

assignment �.

First we convince ourselves that the constraint graphGt is bigger than G by just
a constant factor. To see this, note that

66 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

1. The set of vertices is invariant.

2. The graph Gt is dt-regular since G is d-regular. Thus |E′| = |V |d
t

2
. Note

that both d and t are constants, the former due to the preprocessing step
and the latter due to our assumptions.

Moreover, the alphabet has increased a great deal, but since bothΣ, d and t are
constants its cardinality is still a constant. Likewise, the set of constraints C′ is
much more complex, but since it grows only on constants (Σ, d and t) it can be
constructed in linear time on the size of the input.

Remark 5.5.
Recall that the gap ampli�cation lemma in the proof of Gap− CSP hardness
was applied several times depending on the size of the input graph. Thus, if
not for the correcting the alphabet step, on di�erent inputs we would end up in
di�erent instances of Gap− CSP which would be a signi�cant problem.

Up to now, we are assured that the size of the new graph is satisfying our require-
ments. The next and even more important question is why this transformation
ampli�es the Unsat value of the original graph.

To gain some insight into this subject, we consider �rst the rather obvious
solution to amplifying the probability of picking an unsatis�ed edge inG by an
arbitrary assignment. Note that when Unsat(G) = 0, it must also be the case
that Unsat(Gt) = 0 since, given as input a satisfying assignment for G, we can
clearly construct step by step a satisfying assignment forGt.

Assume that Unsat(G) > 0. Then, given an arbitrary assignment a in G,
the probability that a random edge will be unsatis�ed is at leastUnsat(G). To
amplify this probability, we could clearly pick t random edges which would result
in a probability of magnitude

1− (1−Unsat(G))t ≈ t ·Unsat(G)

The black point of this solution is that in order to build the corresponding
constraint graph we would one way or another be obliged to build |E|t constraints
for each multiset of t edges which implies a non-linear transformation.

Instead, as we have already pointed out, walks of length t pass around this
output size problem easily. Moreover, picking a random walk of length t in G
is the same as picking a random edge in Gt. And even more signi�cantly, the
edges corresponding to a random walk of length t in an expander graph is in a
manner (which will be clear later) as if we picked the edges at random.

The previous intuition is more accurately (but still in a non rigorous manner)
presented in the following proof skeleton:

• First consider an assignment A for Gt based on an assignment a for G.
Since the construction is based on the assignment h, consistency of A

5.6. POWERING STEP 67

on mutual neighbors is guaranteed. Consequently, the only way for an
edge (u; v) ∈ Gt to be unsatis�ed is that an edge between two vertices in
B(u; t)∪B(v; t) is unsatis�ed inG. Hence, the probability of an unsatis�ed
edge in G is greater than the probability that a random walk of length t
in G will contain an unsatis�ed edge. Since G is an expander, the latter
probability is roughly c · t ·Unsat(G) for some constant c. This however
is less than half of the road to the proof since the point is to assure that
any assignment toGt keeps the unsatisfaction level ofGt su�ciently above
than that of G.

• Let us consider the optimal assignmentH for Gt. Constructing an assign-
ment h for G such that

UnsatH(Gt) ≥ c · t ·Unsath(G)

would clearly prove the desired claim sinceUnsatH(Gt) = Unsat(G) and
Unsath(G) ≥ Unsat(G).

In the original construction of Dinur, the assignmenth is de�ned as follows.

h(u) = argmax
�∈Σ

Pr[H(v)u = �|(u; v) ∈ E′]

This means that u is assigned the majority opinion on all of its neighbors
in Gt. In the following section this assignment will be constructed in a
much more peculiar way.

Consider now an unsatis�ed edge (u; v) of G. We would like to bound
from below the probability that a random walk o length t in G contains
this edge and that this speci�c edge is unsatis�ed by H. Clearly this
probability is greater than the probability that a random walk if length t
in G, which is resembled by an edge (v0; vt) in Gt,

1. contains this edge and,

2. H(v0)u = h(u) and H(vt)v = h(v), i.e. v0 and vt assignments agree
on u, v with the majority assignments in Gt.

The former constraint can easily be surpassed by taking a walk of length i
starting at u, ending up in a vertex v0, and taking a walk of length t−1− i
starting at v, ending up in a vertex vt. Then clearly the resulting walk is
of length t between v0 and vt.

The latter constraint is the one making things di�cult. For the majority
assignment h de�ned above (which is the one Irit Dinur used in her proof)
it can be proved that

UnsatH(Gt) ≥ c ·
√
t ·Unsath(G)

68 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

For the rather more complicated h that we will de�ne afterwards (and the
one that we will analyze), the square root in the term

√
t will disappear.

The main idea of this improvement is that h will be de�ned in such a
way that for the paths described earlier the probability that the second
requirement is satis�ed is constant and independent of i. Thus, adding
over all the t possible values of i the desired bound will come for free.

5.6.2 The Modi�ed Version of Graph Powering

Preliminaries: The distribution L and J

Assume for the rest of this section that t ∈ N is divisible by 8 and consider
the intervals

T2 =

[

− t

2
;
t

2

]

; T4 =

[

− t

4
;
t

4

]

; T8 =

[

− t

8
;
t

8

]

De�nition 5.16. The random distribution L is de�ned by the following random

process.

1. Choose a random integer i ∈ T4.

2. Choose a random integer j ∈ T4.

3. Return l = i+ j.

Clearly l takes values in T2. We prove that for each l ∈ T2, the following
lemma holds.

Lemma 5.17. Pr
L
(l) =

t
2 + 1− |l|
(

t
2 + 1

)2 for each l ∈ T2.

Proof Clearly the number of pairs (i; j) such that i; j ∈ T4 is

|T4|2 =
(
t

2
+ 1

)2

(5.2)

and each pair occurs with equal probability.
The pairs (i; j) such that i; j ∈ T4 and i = l − j are the ones that

− t

4
≤ l − j ≤ t

4
⇔ l − t

4
≤ j ≤ l +

t

4
(5.3)

If l ≥ 0 then l + t
4 ≥ t

4 and l − t
4 ≥ − t

4 . Thus, since Pr[j > t
4] = 0, (5.3) is

equivalent to

l − t

4
≤ j ≤ t

4

5.6. POWERING STEP 69

Likewise, if l ≤ 0 (5.3) is equivalent to

− t

4
≤ j ≤ l +

t

4

Note that the above equations just describe the fact that j is in
[
l − t

4 ; l +
t
4

]
∩T4.

By the way the above inequalities were constructed, each value of j corresponds
to a unique valid value of i = l− j. Moreover, the number of such j's is in both
cases

t

2
+ 1− |l|; (5.4)

each occurring with equal probability. Combining (5.2) and (5.4), we obtain that
for each l ∈ T2

Pr
L
(l) =

t
2 + 1− |l|
(

t
2 + 1

)2

Remark 5.6.
Note that the most probable value of l ∈ T2 under the distribution L is clearly
0 and more generally, the closer l is to 0 the bigger the probability PrL(l).

The edges of Gt are peculiar to de�ne. In the construction we described in
section these were t-length walks. In this construction the length of the walk will
be de�ned by means of the distribution L and the distribution J which follows.

Consider the set W ∗ of all walks in G. Clearly the set W ∗ has in�nite
cardinality.

De�nition 5.18 (Distribution J). De�ne the distribution J on W ∗ × T4 by

the following random process.

1. Choose l ∈ T2 according to L distribution.

2. Choose a random walk w̄ on G of length t+ l.

3. Choose a random s ∈
[

l − t

4
; l +

t

4

]

∩ T4.

4. Return (w̄; s).

The following lemma illustrates that the distribution J can be obtained in
a more explicit way.

Lemma 5.19 (Edges). There exists a multiset W such that

• W = O(|E|). Recall that E is the set of the edges in the original graph G.

• The next distribution is identical to J :

70 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

1. Choose a random w̄ ∈ W uniformly.

2. Set l = |w̄| − t and choose a random s ∈
[

l − t

4
; l +

t

4

]

∩ T4.

3. Return (w̄; s).

Proof Denote by Wi the walks of length i in G. Since the walks de�ned by
J are of length between t

2 and 3t
2 , the walks that W ′ includes must coincide

with the union W t
2
; : : : ;Wt; : : : ;W 3t

2
. Thus, the only thing that we need to care

about is to pick the multiplicity of the each walk accordingly so that the random
process de�ned in the lemma is identical to the random process which generates
J .

But this can be done rather easily since there are t
2 + 1− |l| possible values

for the s that A picks (s satis�es the same inequalities as j in the proof of
Lemma 5.17). Thus W is the multiset de�ned by the union of the sets

W =

3t
2⋃

i= t
2

Wi ∪ : : : ∪Wi
︸ ︷︷ ︸

t
2
+1−|i−t|

Notice that l is actually the quantity i − t. In other words, the above equation
says that if w̄ ∈ Wi, W

′ contains t
2 + 1− |i− t| copies of w̄.

It is easy to see that |W | = O(|E|). Namely, |Wi| = |V | · dt

2 and since d and
t are constants (recall that d is the regularity of the expander G) and each Wi

has at most t
2 copies into W .

The next lemma provides a di�erent way to look at the distribution J .

Lemma 5.20 (Distribution J). Let i ∈ T8. The following distribution Bi is

identical to J :

1. Choose (u; v) ∈ E.

2. Choose j1; j2 ∈ T4 independently.

3. Pick a walk of length t
2 + i+ j1 starting from u. Let

(v0; : : : ; v t
2
+i+j1

= u)

denote the resulting walk.

4. Pick a walk of length t
2 − i− 1 + j2 starting from v. Let

(v = v t
2
+i+j1+1; : : : ; vt+j1+j2)

denote the resulting walk.

5.6. POWERING STEP 71

5. Return w̄ = (v0; : : : ; vt+j1+j2) and s = j1.

Proof First identify j1 + j2 with l of De�nition 5.18, since j1 + j2 ∼ L by
de�nition. Moreover, since

l − t

4
= j1 + j2 −

t

4
≤ j1 ≤ j1 + j2 +

t

4
= l +

t

4

it follows that j1 ∈
[
l − t

4 ; l +
t
4

]
. Notice also that each inequality above may

hold as equality for an appropriate choice of j2. Therefore j1 is uniformly dis-
tributed on

[
l − t

4 ; l +
t
4

]
∩T4 and consequently s is equivalently de�ned to Def-

inition 5.18. Thus we are left to prove that the way the (t + l)-walk w̄ was
generated is equivalent to picking it uniformly from all the (t+ l)- length walks.
But this can easily be veri�ed by a counting argument, keeping in mind that the
graph G is regular. Namely,

• Step 1 has |V | · d=2 choices.

• Step 2 has d
t
2
+i+j1 choices.

• Step 3 has d
t
2
−i−1+j2 choices.

Thus, given j1; j2 there are |V |dt+l=2 possible choices for the walk w̄, which
means that the above procedure is equivalent to picking w̄ from all the possible
|V |dt+l=2 walks of length t+ l.

The Final Construction

The �nal construction is almost the same as the one in De�nition 5.15 with
the di�erence that the set of edges is de�ned di�erently. We rewrite the whole
de�nition for easy reference. If the reader shall get the feeling that some parts
of the �nal construction described in this section are too laconic, it is highly
recommended to go through the extended version of De�nition 5.15.

De�nition 5.21. Let G = 〈(V;E);Σ; C〉 be a d-regular constraint graph, and let

t ∈ N be an arbitrary constant. De�ne Gt = 〈(V;E′);Σ′; C′〉 to be the following

constraint graph:

• The set of vertices remains the same.

• The set of edges E′ is de�ned as follows: Let W the multiset of random

walks established in Lemma 5.19. There are exactly k parallel edges (u; v)
in E′ i� the number of walks in W between u and v equals k. Note that

multiple edges are allowed between distinct vertices, as well as self loops.

• Σ′ = Σd0+d1+:::+dt
.

72 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

• Constraints: Consider an edge e = (u; v) ∈ E′ and �1; �2 ∈ Σ′ such that

�1 : B(u; t) → Σ and �2 : B(v; t) → Σ

The constraint on an edge e = (u; v) is satis�ed i�

{ For every w ∈ B(u; t) ∩ B(v; t) it holds that �1(w) = �2(w). Then,

clearly there is � : B1 ∪B2 → Σ such that �|B1 = �1 and �|B2 = �2.

{ Every edge in (u; v) ∈ E ∩ (B1 ∪B2)× (B1 ∪B2) is satis�ed from the

assignment �.

Lemma 5.19 guarantees that the above construction keeps the size of Gt

linearly bigger than that of the input graph G. The arguments presented for
the original construction of De�nition 5.15 apply here too, so that Gt can be
computed in linear time. Furthermore, if Unsat(G) = 0 then Unsat(Gt) = 0.
Hence, in order to complete the correctness of the �nal constructions, it remains
to prove the following theorem.

Theorem 5.22 (Gap Ampli�cation). There exist constants c and
 depen-

dent on d and |Σ| such that

Unsat(G) > 0 ⇒ Unsat(Gt) ≥ min{
; c · t ·Unsat(G)}

Let H : V → Σ′ the optimal assignment forGt. We construct the assignment
h : V → Σ for G as follows:

1. Choose integer k in
[
t
2 − t

8 ;
t
2 + t

8

]
uniformly.

2. For u ∈ V , choose a walk of length k in G. Denote by v the end vertex of
this walk.

3. h(u) = argmax
�∈Σ

Pr[H(v)u = �|(u; v) ∈ E′]

Thus, the majority opinion on u is modi�ed in comparison to the one presented
in the original construction as it takes into consideration only the opinion of
vertices close enough to u.

Denoting by U , U ′ the sets of edges left unsatis�ed by h and H respectively,
our aim is to prove that

Unsat(Gt) =
|U ′|
|E′| ≥ c · t · |U |

|E| = c · t ·Unsath(G) ≥ c · t ·Unsat(G)

De�nition 5.23. For each i ∈ T8, denote by Ji(w̄; s) the following event on

W × T4 :

5.6. POWERING STEP 73

1. w̄ ∈ W . Thus w̄ = (v0; : : : ; vt+l) for some l ∈ T2.

2. s ∈
[
l − t

4 ; l +
t
4

]
∩ T4. Let u = vi+s+ t

2
and v = ci+s+ t

2
+1. Note that u; v

are successive vertices in the walk w̄ and consequently (u; v) ∈ E.

3. H(v0)u = h(u).

4. H(vt+l)v = h(v).

5. (u; v) ∈ U .

Notice that the �rst two conditions are immediately satis�ed by any pair (w̄; s) ∈
W × T4 by de�nition.

If Ji(w̄; s) occurs for some i then clearly (v0; vt+l) ∈ U ′. De�ne an indicator
variable xi(w̄; s) such that

xi(w̄; s) =

{
1; i� Ji(w̄; s) occurs
0; otherwise

and
N(w̄; s) =

∑

i∈T8

xi(w̄; s)

We claim that the following lemma holds.

Lemma 5.24. There exists constants
; c such that

Pr
(w̄;s)∼J

[N(w̄; s) > 0] ≥ min

{

; c · t · |U |
|E|

}

Assuming the validity of Lemma 5.24, Theorem 5.22 follows.

Proof (Gap Ampli�cation) It is easy to see thatUnsat(Gt) is bounded from
below by Pr(w̄;s)∼J [N(w̄; s) > 0]. Namely, when ranging over all (w̄; s)N(w̄; s) >
0 is the event of Ji(w̄; s) occur

Unsat(Gt) ≥ Pr
(w̄;s)∼J

[N(w̄; s) > 0] ≥ c · t · |U |
|E| = c · t ·Unsath(G)

74 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

To prove Lemma 5.24 we use the inequality Pr[Y > 0] ≥ (E[Y])2

E[Y 2]
(see Appendix

for a proof), namely

Pr
(w̄;s)∼J

[N(w̄; s) > 0] ≥ (EJ [N])2

EJ [N2]
(5.5)

Proposition 5.25 (Expected Value).

EJ [N] ≥
∑

i

EJ [xi] ≥
1

16|Σ|2 · t · |U |
|E|

Proposition 5.26 (Second Moment). If �̃ = �̃(G) then

EJ [N
2] ≤ 3max

{
∑

i

EJ [xi];

[(
t

4

)2

+
t

4

]

· |U |2
|E|2 ;

t

2
· 1

1− �̃
· |U |
|E|

}

Using Proposition 5.25 and Proposition 5.26, Lemma 5.24 follows from (5.5).

Proof (Expected Value) We �rst prove that

EJ [xi] ≥
1

16|Σ|2 · |U |
|E| (5.6)

By the de�nition of event Ji and using Lemma 5.20, we have that

Pr
J
[xi > 0] = Pr[(u; v) ∈ U] · Pr

J

[

H(v0)u = h(u)|u = vi+s+ t
2

]

·

· Pr
J

[

H(vt+l)v = h(v)|v = vi+s+ t
2
+1

]

= Pr[(u; v) ∈ U] · Pr
J

[H(v0)u = h(u)|(u; v)] ·

· Pr
J

[H(vt+j1+j2)v = h(v)|(u; v)] (5.7)

Let us consider PrJ [H(v0)u = h(u)|(u; v)]. De�ne on the distribution J the
event

Pj1 =

{(

i+ j1 +
t

2

)

∈
[
t

2
− t

8
;
t

2
+

t

8

]}

Then, using Bayes formula, we have that

Pr
J

[H(v0)u = h(u)|(u; v)] ≥ Pr
J

[Pj1] · PrJ [H(v0)u = h(u)|Pj1]

Note that i+ j1 +
t
2 is uniformly distributed on

[
i+ t

2 − t
4 ; i+

t
2 + t

4

]
, thus

Pr
J

[Pj1] =
t
4 + 1
t
2 + 1

>
1

2

5.6. POWERING STEP 75

Moreover, by the de�nition of h and since there are at most |Σ| symbols in the
alphabet, it follows that

Pr
J

[H(v0)u = h(u)|Pj1] ≥
1

|Σ|
Therefore

Pr
J

[H(v0)u = h(u)|(u; v)] > 1

2|Σ|
and in a similar fashion

Pr
J

[H(vt+j1+j2)v = h(v)|(u; v)] > 1

2|Σ| :

Thus, equation (5.7) yields

Pr
J
[xi > 0] >

1

4|Σ|2 · |U |
|E|

and trivially

EJ [xi] >
1

4|Σ|2 · |U |
|E|

Finally, linearity of expectation shows that

EJ [N] =
∑

i∈T8

EJ [xi] >
1

4|Σ|2 ·
(
t

4
+ 1

)

· |U |
|E| >

1

16|Σ|2 · t · |U |
|E|

Proof (Second Moment) Notice that

EJ [N
2] = EJ








∑

i∈T8

xi







 = EJ




∑

(i;j)∈T8×T8

xixj



 =
∑

(i;j)∈T8×T8

EJ [xixj]

(5.8)
Instead of calculating the probability that Ji(w̄; s) occurs, we relax our require-
ments and seek only for walks in G which contain an edge in U . This relaxation
is in our interests, since we are trying to bound N(w̄; s) from above.

To be more speci�c, for each i ∈ T8, denote by J ′
i(w̄; s) the following event

on W × T4:

• w̄ = (v0; : : : ; vt+l) with u = v t
2
+i+s and v = v t

2
+i+s+1.

• (u; v) ∈ U .

and de�ne the indicator variable

yi(w̄; s) =

{
1; i� J ′

i(w̄; s) occurs
0; otherwise

76 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Clearly, if Ji(w̄; s) occurs then J ′
i(w̄; s) occurs too, and consequently

xi(w̄; s) ≤ yi(w̄; s)

Noting that y2i = yi and x2i = xi, (5.8) yields

EJ [N
2] ≤

∑

i∈T8

EJ [xi] +
∑

(i;j)∈T8×T8

i 6=j

EJ [yiyj] (5.9)

A simple calculating argument, as the one presented in the proof of Lemma 5.20,
can easily establish that

EJ [yi] = Pr
J
[yi > 0] =

|U |
|E|

and therefore,
∑

i∈T8

EJ [yi] =

(
t

4
+ 1

)

· |U |
|E| (5.10)

Next, we calculate the terms EJ [yiyj] appearing in (5.9). Using Bayes formula

E[yiyj] = Pr
J
[yiyj > 0]

=
∑

(l;s)

PrJ [yiyj > 0|l; s] · Pr
l∈T2
s∈T4

[l; s]

=
∑

(l;s)

Pr [(vi; vi+1) ∈ U ∧ (vj ; vj+1) ∈ U |l; s] · Pr
l∈T2
s∈T4

[l; s]

=
∑

(l;s)

Pr [(vj ; vj+1) ∈ U |l; s] · Pr [(vi; vi+1) ∈ U |l; s; (vj ; vj+1) ∈ U] · Pr
l∈T2
s∈T4

[l; s]

=
|U |
|E| ·

∑

(l;s)

Pr [(vi; vi+1) ∈ U |l; s; (vj ; vj+1) ∈ U] · Pr
l∈T2
s∈T4

[l; s]

Again, using the fact that G is d-regular, it can easily be proved that the distri-
bution of the edge (vi; vi+1) on a random walk conditioned on (vj ; vj+1) is the
same as the distribution de�ned by the following random processD.

1. Choose a random edge in U and pick a random endpoint of the edge, say
v0.

2. Take a random walk of length (i− j+1) in G and let (vi−j ; vi−j+1) denote
the last step.

Thus Pr [(vi; vi+1) ∈ U |l; s; (vj ; vj+1) ∈ U] does not depend on l; s and since

∑

(l;s)

Pr
l∈T2
s∈T4

[l; s] = 1

5.7. PROOF COMPOSITION 77

it su�ces to �nd an upper bound for Pr [(vi; vi+1) ∈ U |(vj ; vj+1) ∈ U]. But this
has already been treated in section 2.4. Using the bound for an (i−j+1)-length
walk, we obtain

E[yiyj] ≤
|U |
|E| ·

(|U |
|E| + �̃i−j

)

and consequently

∑

(i;j)∈T8×T8

i 6=j

EJ [yiyj] ≤ 2
∑

(i;j)∈T8×T8
i>j

|U |
|E| ·

(|U |
|E| + �̃i−j

)

≤ 2
∑

(i;j)∈T8×T8
i>j

|U |2
|E|2 + 2

∑

(i;j)∈T8×T8
i>j

|U |
|E| · �̃

i−j

≤
[(

t

4

)2

+
t

4

]

· |U |2
|E|2 + 2

|U |
|E|

∑

i

t

4
�̃i

≤
[(

t

4

)2

+
t

4

]

· |U |2
|E|2 +

t

2
· 1

1− �̃
· |U |
|E|

Finally (5.9) gives

EJ [N
2] ≤

∑

i

EJ [xi] +

[(
t

4

)2

+
t

4

]

· |U |2
|E|2 +

t

2
· 1

1− �̃
· |U |
|E|

≤ 3max

{
∑

i

EJ [xi];

[(
t

4

)2

+
t

4

]

· |U |2
|E|2 ;

t

2
· 1

1− �̃
· |U |
|E|

}

5.7 Proof Composition

So far, we have managed to turn the initial input constraint graph G to
another one whose unsatisfaction value can be selected to be arbitrary bigger
than Unsat(G). The only drawback of this reduction is the increase on the
alphabet, which is undesirable since the reduction will be applied log |E| + 1
times resulting in Σ depending on the input.

In this step, we correct the alphabet via proof composition, a powerful tech-
nique which was �rst introduced by Arora and Safra.

The idea of proof composition is an elegant argument but getting the gist
of it, due to the many technical details, is hard. Before presenting it in its full
form, we will try to demonstrate in an abstract form the various aspects of its
application.

Let's see how a PCP veri�er V would work in Gt. Since an edge by our so far
reduction is unsatis�ed with good probability for our scope of interest, it would

78 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

pick a random edge and query into the proof the assignment to its endpoints
and then check whether the chosen edge is satis�ed or not. This, as we have
already pointed out, would not work generally since gap ampli�cation is applied
several times and hence a polynomial number of bits would be required to check
a constraint. Despite this, Gt's alphabet has constant size and each constraint
is on two variables.

Suppose now that we have a reduction P from any NP language to a con-
straint graph satisfaction problem which keeps the alphabet low but creates a
super-polynomial number of constraints. Seeing each constraint ofGt as an in-
dividual NP statement which we want to check if it is satis�able, we could cast
the constraint V chooses into P and ask for a proof that it is satis�able. P
given as input one of our constraints would de�nitely create a large number of
constraints but since each constraint of Gt is of constant size the output would
be of constant size too. Hence, we could create a constraint graph Gi for each
edge in Gt and ask for a proof which will satisfy every Gi. Clearly the alphabet
is by now corrected.

Does this su�ce? The answer is no. The reason is that a proof of the
satis�ability of a single constraint does not guarantee by any means that a single
assignment can satisfy all of the constraints (think the analogue of clauses and
a 3SAT formula). Hence, we should glue together all these Gi's and generate
appropriate constraints in such a way that consistency is secured.

Having studied the intuition behind proof composition, we are now ready to
state the main result of this section.

Theorem 5.27 (Proof Composition). There exist constants q > 1, 0 < � <
1 such that for every constraint graph G = 〈(V;E);Σ; C〉 there exists a constant

cΣ such that a constraint system C′ of q-ary constraints on a binary alphabet can

be constructed such that:

• |C′| ≤ cΣ(|V |+ |E|).

• Unsat(G) = 0 ⇒ Unsat(C′) = 0.

• Unsat(G) > 0 ⇒ Unsat(C′) ≥ � ·Unsat(G).

The transformation of the constraint system C′ into a constraint graph problem
(binary constraints) can be accomplished easily. Namely:

• Consider an alphabet Σ′ such that all possible assignments to a constraint
of C′ can be encoded with a single � ∈ Σ′. Clearly, |Σ′| = 2q.

• For each constraint in C′ introduce a node.

• (u; v) ∈ E′ i� the corresponding constraints in C′ share at least one vari-
able.

5.7. PROOF COMPOSITION 79

• (u; v) ∈ E′ is satis�ed i� the assignments to u, v are consistent on their
common variables.

Since q is constant and |C′| = O(|V | + |E|), it should be clear that the output
constraint graph is linearly bigger than the size of the input graph.

A sketch of the proof of Theorem 5.27 follows:

1. Replace each variable v with a set of Boolean variables [v] and expect a
proper encoding from an assignment to v to an assignment to [v].

2. We construct constraints such that:

• For every v ∈ V the constraints check whether an assignment to [v]
roughly encodes an assignment to v.

• For every (u; v) ∈ E the constraints check whether the assignments
to [u]; [v] roughly encode a satisfying assignment for (u; v).

5.7.1 Local Testing Revisited

In this subsection, we prove three lemmata which will be handy in prov-
ing Theorem 5.27. The reader not interested in technical details, though not
ecouraged to do so, may omit the proofs of these lemmata and jump to the next
subsection.

Recall that in section 4.5, we saw that Hadamard code is locally decodable.
We repeat the algorithm for easy reference.

Algorithm 1 (LinTest).

Input: A string w ∈ {0; 1}2l
.

Procedure:

Choose a random x ∈ {0; 1}l.

Choose a random y ∈ {0; 1}l.

Output:

LinTest(w) = 1 i� w(x)⊕ w(y) = w(x⊕ y).

We are ready to state the �rst lemma.

80 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Lemma 5.28. There exists LΣ
1 ∈ N and an encoding H : Σ → {0; 1}LΣ

1 such

that the property P = {H(a)|a ∈ Σ} has an LTA A1, and the encoding H has

relative distance at least 1=3.

Proof Take H to be the Hadamard code. ThenH has, as we have already seen
in section 4.4, relative distance of 1=2 and LinTest is a (3; 15)-LTA for H.ard
code. ThenH has, as we have already seen, relative distance of 1=2 and LinTest
is a (3; 15)-LTA for H.

The next lemma is an extension of Lemma 5.28.

Lemma 5.29. For every Φ : Σ × Σ → {0; 1} there exists LΣ
2 ∈ N and an

encoding HΦ : Σ×Σ ∈ {0; 1}LΣ
2 such that the property PΦ = {HΦ(a; b)|Φ(a; b) =

1} has an LTA A2, and the encoding HΦ have relative distance at least 1=3.

Remark 5.7.
Note that Lemma 5.29 is a generalization of Lemma 5.28, since the latter follows
from the former by letting Φ(a; b) = 1 for each a; b. Namely, Lemma 5.29 allows
to check whether an assignment to a constraint satis�es it.

Recall that in section , we saw that Hadamard code is locally decodable. We
repeat the algorithm for easy reference.

Algorithm 2 (SelfCorr).

Input: A string w ∈ {0; 1}2l
.

An index x ∈ {0; 1}l.

Procedure:

Choose a random y ∈ {0; 1}l.

Output:

Return SelfCorrw(x) = w(y)⊕ w(x⊕ y).

Proof (Lemma 5.29) First of all, we construct a family of quadratic functions
which simulate the boolean predicate Φ. The most intuitive way to construct
this function is using its boolean circuit CΦ.

Suppose X are the input variables of the circuit CΦ. We add a variable for
each of the internal wires in CΦ, and denote these variables by Y . Each gate
in C� can now be described by a quadratic equation in its input and output
variables. Namely,

5.7. PROOF COMPOSITION 81

• NOT: z1 + z2 − 1 = 0.

• AND: z1z2 − z3 = 0.

• OR: z1 + z2 − z1z2 − z3 = 0.

Thus, for every gate in CΦ assign an equation fi = 0 for i = {1; : : : ;m}, where
m denotes the number of gates. Note that m depends only on the size of |Σ|.
To be more speci�c since each symbol in Σ can be encoded by log |Σ| binary
variables, |X| ≤ |Σ|. Thus, each Φ can be written in conjunctive normal form
using at most 2|Σ| clauses in disjunctive normal form and splitting each clause
into 2-input gates shows that m ≤ O(|Σ|2|Σ|). Since Σ is of constant size, m is
a constant.

Observe that the fi's are quadratic functions but when the variables are as-
signed Boolean values, each of them is Boolean. Clearly, ifCΦ by an assignment
a : X → {0; 1} to its input variables, it can be extended to a unique assignment
a′ : X ∪ Y → {0; 1} such that each fi is satis�able. Thus, satisfying E(a; b) is
equivalent to satisfying the family {f}mi=1.

Denoting by Z = X ∪ Y checking fi could be simpli�ed by asking not for an
assignment to zj but also the terms zjzk.

More formally, if n = |Z| we denote by z ⊗ z the string, which for clarity we
represent as a vector,

z ⊗ z = [z1z1; z1z2; : : : ; z1zn; z2z1; z2z2; : : : ; znzn−1; znzn]:

Note that n ≤ 2m = O(1), so the size of z ⊗ z is again a constant (n2 = O(1)).
Moreover, observe that each fi is linear with respect to z ⊗ z.

We will use the Hadamard encoding of z ⊗ z. The size of the Hadamard
encoding of z⊗z is again a constant (though of order |Σ|2222|Σ|

!). Thus the �nal
encoding for an assignment a to the boolean variables X is of the form

H� = a → a′ → H(a′ ⊗ a′)

Clearly the Hadamard encoding of z⊗ z still has relative distance 1/3. Thus we
would be pleased if for some constants q, � we found (q; �)-LTA for H(z ⊗ z).

Note that z2i = zi thus the terms zizj with i = j are linear with respect to z.
Denote by zlin the string which consists of the assignments to z2i . Below follows

an algorithm to test whether a w ∈ {0; 1}2n
2

is a legal Hadamard encoding of a
word z ⊗ z. We study its correctness right afterward.

82 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Algorithm 3 (QdTest).

Input:

A string w ∈ {0; 1}2n
2

.

Procedure:

Choose a random � ∈ {0; 1}n.
Choose a random � ∈ {0; 1}n.

Output:

QdTest(w) = 1 i� SelfCorrwlin(�)·SelfCorrwlin(�) = SelfCorrw(�⊗�)

• If w ∈ P then there is a z such that w = H(z ⊗ z). Clearly wlin = H(z).
Thus

SelfCorrwlin(�) =
n∑

i=1

�izi

SelfCorrwlin(�) =
n∑

j=1

�jzj

SelfCorrwlin(�⊗ �) =
n∑

i=1

n∑

j=1

�i�jzizj

It should be clear now SelfCorrwlin(�)·SelfCorrwlin(�) = SelfCorrw(�⊗
�) and consequently QdTest(w) = 1.

• If dist(w;P) ≥ � then denote by x the word such that

dist(H(x); wlin) ≥ �

and similarly y for w. De�ne the matrices M1;M2 such that (M1)ij =
x(i) · x(j) and (M2)ij = y(i; j). By hypothesis, we have that M1 6= M2.

Each of the self correcting algorithms give the right answer for the re-
spective Hadamard word with probability 1−2� and thus the output step
checks with probability at least (1− 2�)3 ≥ 1− 6� that

∑

i;j

x(i)x(j)�(i)�(j) =
∑

i;j

y(i; j)�(i)�(j) ⇒ �TM1� = �TM2� ⇒

�T(M1 −M2)� = 0

5.7. PROOF COMPOSITION 83

Since M1 6= M2, this happens with probability at most 3=4 for a random
choice of �; �. The easiest way to see this is to note that
 = (M1−M2)�
is nonzero with probability at least 1/2 and in this case �T
 is nonzero
with probability 1/2. Thus the overall acceptance probability in this case
is bounded above by 3

4 + 6� which proves the soundness of QdTest.

Using QdTest we can �nally construct an LTA for PΦ = (HΦ(a; b)|Φ(a; b) = 1).

Algorithm 4.

Input:

An assingment w ∈ {0; 1}2n
2

.

Procedure:

1. Use QdTest(w) to check that w is a legal Hadamard code.

2. Choose a random � ∈ {0; 1}m and set f�(z) =
∑

�ifi(z).

Output:

1. If SelfCorrw(f�) = 1 then return 0.

2. Denote by zk the output of CΦ. Return SelfCorrw(0 : : : 010 : : : 0),
where the 1 is in the n(k − 1) + k position (the bit corresponding to
z2k).

Remark 5.8.
If we write out f�(z) it will be of the form

∑
zizj where the sum is over a set

of pairs (i; j) which are de�ned by those fi(z) such that �i 6= 0. Thus f�(z) is a
linear function on z ⊗ z and thus step 1 in the output level is well-de�ned.

The key fact about f�(z) is captured by the following lemma.

Lemma 5.30.

1. If fi(z) = 0 for all i then Pr�[f�(z) = 0] = 1 for any � ∈ {0; 1}m.

2. If fi(z) 6= 0 for some i then Pr�[f�(z) 6= 0] = 1
2 for any � ∈ {0; 1}m.

Proof The �rst part of the lemma should be obvious. For the second part,
consider the Hadamard encoding of the string f = [f1(z); : : : ; fm(z)]. We have
seen in section that if f is not the all zero string, then exactly half of the entries
in H(f) are equal to 0. But this is exactly the probability we seek.

84 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

Completeness of Algorithm 4

If w ∈ PΦ then there exists w = H(z ⊗ z) and z is a satisfying assignment
for CΦ. Consequently, the procedure step 1 clearly succeeds. Note that for each
i ∈ {1; : : : ;m} fi(z) = 0 and consequently SelfCorrw(f�) = 0. Finally, zk = 1
and the last self correction will return the right value of z2k with probability 1.

Soundness of Algorithm 4

Suppose that dist(w;PΦ) = �.

• Step 1 in the procedure fails with probability Θ(�).

• If z is not an encoding of a feasible computation in C�, then {fi(z)} is a
non-zero Boolean vector, and then Pr�[f�(z) = 1] = 1

2 .

• Step 1 in the output gives the right value with probability 1− 2�.

• Step 2 in the output gives the right value with probability 1− 2�.

Thus soundness is guaranteed too.

The next lemma is an extension of both Lemma 5.28, Lemma 5.29.

Lemma 5.31. For every Φ : Σ×Σ → {0; 1} there exist LΣ
1 ; L

Σ
2 ∈ N and encod-

ings H : Σ ∈ {0; 1}LΣ
1 and HΦ : Σ × Σ ∈ {0; 1}LΣ

2 such that the property PΦ =
{(H(a); HΦ(a; b))|a; b ∈ Σ;Φ(a; b) = 1} ∪ {(H(b); HΦ(a; b))|a; b ∈ Σ;Φ(a; b) = 1}
has an LTA A3, and the encodings H;HΦ have relative distance at least 1=3.

Proof In Lemma 5.29 we used HΦ = H(z⊗ z) where z was an extension of the
binary representation of (a; b). Thus, we can add in Algorithm 4 to locally test
the linear part of z ⊗ z which encodes (a; b) using LTA A1 from Lemma 5.28.

5.8 Alphabet Reduction

We are now ready to prove Theorem 5.27. We �rst describe the reduction
and then prove its correctness. Assume without loss of generality that LΣ

1 ; L
Σ
2

provided by Lemma 5.28 and Lemma 5.29 are equal, since we can we can use a
repetition of the encodings to obtain equality. Moreover, for the reductions, we
will use the LTA's A1; A2; A3 of the lemmata.

Let G = 〈(V;E);Σ; C. Then the constraint system 〈V ′;Σ0 = {0; 1}; C′〉 is
constructed as follows.

5.8. ALPHABET REDUCTION 85

Variables. For every v ∈ V de�ne LΣ
1 binary variables [v]. For every e =

(u; v) ∈ E de�ne LΣ
2 binary variables [e]. De�ne

V ′ = ∪v∈V [v]
⋃

∪e∈E [e]

Constraints. Consider �rst the following LTA A:

Algorithm 5.
LTA A
Input:

• An assignment H : V ′ → {0; 1}.

Procedure:

• Choose a random e = (v1; v2) ∈ E. Test the restriction of a to e using
LTA A2.

• Choose a random v ∈ {v1; v2}. Test the restriction of a to v using
LTA A1.

Output:

• Test the restriction of a to [v] ∪ [e] using LTA A3. If any of the above
tests fails output 0. Otherwise 1.

Note that A reads a constant number of variables, since each of the LTA's
does so. Denote this number by q. Moreover, A needs log |E| bits to choose an
edge, 1 bit to choose v plus the bits that each of A1; A2; A3 needs to run. We
have seen that the last number depends only on Σ, thus we may assume that it
is a constant rΣ. Thus, A needs log |E|+ a+ rΣ bits to run.

It should be clear now that the constraints will simulate the di�erent runnings
of A. This can be done in linear time by computing for each � ∈ {0; 1}log |E|+a+rΣ

a predicate Φ� for those assignments which cause A to accept (note that there
are O(|E|) di�erent possible such strings � and 2q = O(1) needed to be checked
for each �). De�ne C′ to be

C′ =
{

Φ�|� ∈ {0; 1}log |E|+a+rΣ
}

We have already seen that both V ′; C′ are 'just' a constant bigger than the
input. To complete the proof of Theorem 5.27, we need to prove the completeness
and soundness of the �nal construction.

86 CHAPTER 5. DINUR'S PROOF OF THE PCP THEOREM

• Completeness is once again easy, since each of the LTA's that A uses has
perfect completeness.

• Suppose that Unsat(G) > 0 and let H : V ′ → {0; 1} the optimal assign-
ment for G. De�ne the assignment h : V → Σ for G such that h(u) to be
the value in Σ whose encoding H(a(v)) is the closest to the restriction of
A to [v].

Consider an edge e = (v1; v2) ∈ E, whose constraint Φ is not satis�ed by
a, and denote by w the restriction of H to [e]. Denote by � the soundness
parameter of A2. We distinct two cases:

1. If Pr[A2(w) = 0] ≥ �
6 then A fails with probability at least �=6.

2. If Pr[A2(w) = 0] ≤ �
6 then ∃�1; �2 ∈ Σ such that Φ(�1; �2) = 1 and

dist(w;HΦ) ≤
Pr[A2(w) = 0]

�
≤ 1

6
:

Since the assignment h does not satisfy Φ, then it cannot be the case
that both �1 = h(v1) and �2 = h(v2) hold. Note that we peek the
wrong assigned v ∈ {v1; v2} with probability at least 1=2. Denote
the restriction of A to [v] ∪ [e] by w′.

We will prove that Pr[A3(w) = 0] ≥ �
12 . Note that it su�ces to

prove that w′ has at least 1=12 distance from the property tested by
A3. Indeed, since the encoding H has relative distance at least 1/3,
H(a(v)) must be changed in at least LΣ

1 =6 bits to encode the correct
� ∈ Σ. But since LΣ

1 and LΣ
2 are equal (recall the argument in the

beginning of the section) w is half the length of w′ and consequently
w′ must be changed in at least LΣ

3 =12 so as to be a proper encoding
that will be accepted by A3. Hence, w′ has at least 1=12 distance
from the property tested by A3.

In both cases, UnsatH(C′) = Pr[A = 0] ≥ 1
12Unsath(G) ≥ 1

12Unsat(G).

Thus, Theorem 5.27 holds and alphabet correction was successfully accom-
plished.

Bibliography

[AC88] Noga Alon and Fan R. K. Chung. Explicit construction of lin-
ear sized tolerant networks. Discrete Mathematics, 72(1-3):15{19,
1988.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof veri�cation and hardness of approxima-
tion problems. In FOCS, pages 14{23, 1992.

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83{
96, 1986.

[Aro94] Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of

Approximation Problems. CS Division, UC Berkeley, 1994.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs;
a new characterization of np. In FOCS, pages 2{13, 1992.

[Bab85] L�aszl�o Babai. Trading group theory for randomness. In STOC,
pages 421{429, 1985.

[Bab91] Proceedings of the Twenty Third Annual ACM Symposium on The-

ory of Computing, 6-8 May 1991, New Orleans, Louisiana, USA.
ACM, 1991.

[BCH+95] Mihir Bellare, Don Coppersmith, Johan H�astad, Marcos A. Kiwi,
and Madhu Sudan. Linearity testing in characteristic two. In
FOCS, pages 432{441, 1995.

[BFL90] L�aszl�o Babai, Lance Fortnow, and Carsten Lund. Nondetermin-
istic exponential time has two-prover interactive protocols. In
FOCS, pages 16{25, 1990.

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly
optimal spectral gap*. Combinatorica, 26(5):495{519, 2006.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. In
STOC, pages 73{83, 1990.

87

88 BIBLIOGRAPHY

[BOGKW88] Michael Ben-Or, Sha� Goldwasser, Joe Kilian, and Avi Wigder-
son. Multi-prover interactive proofs: How to remove intractability
assumptions. In STOC, pages 113{131, 1988.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151{158, 1971.

[Din05] Irit Dinur. The pcp theorem by gap ampli�cation. Electronic

Colloquium on Computational Complexity (ECCC), (046), 2005.

[FGL+91] Uriel Feige, Sha� Goldwasser, L�aszl�o Lov�asz, Shmuel Safra, and
Mario Szegedy. Approximating clique is almost np-complete (pre-
liminary version). In FOCS, pages 2{12, 1991.

[FRS94] Lance Fortnow, John Rompel, and Michael Sipser. On the
power of multi-prover interactive protocols. Theor. Comput. Sci.,
134(2):545{557, 1994.

[GLST98] Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca
Trevisan. A tight characterization of np with 3 query pcps. Elec-
tronic Colloquium on Computational Complexity (ECCC), 5(34),
1998.

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowl-
edge complexity of interactive proof systems. SIAM J. Comput.,
18(1):186{208, 1989.

[H�as97] Johan H�astad. Some optimal inapproximability results. Electronic
Colloquium on Computational Complexity (ECCC), 4(37), 1997.

[Jut06] Charanjit S. Jutla. A simple biased distribution for dinur's con-
struction. Electronic Colloquium on Computational Complexity

(ECCC), 13(121), 2006.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of Computer

Computations, pages 85{103. Plenum Press, 1972.

[KZ97] Howard J. Karlo� and Uri Zwick. A 7/8-approximation algorithm
for MAX 3SAT? In FOCS, pages 406{415, 1997.

[Lov93] L�aszl�o Lov�asz. Random walks on graphs: A survey, 1993.

[LW03] N. Linial and A. Wigderson. Expander graphs and their applica-
tions. http://www.math.ias.edu/ boaz/ExpanderCourse, 2003.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-

rithms. Cambridge University Press, 1995.

BIBLIOGRAPHY 89

[Pap94] Christos Papadimitriou. Computational Complexity. Addison{
Wesley, 1994.

[Pin73] M. Pinsker. On the complexity of a concentrator. In Proceedings

of the 7th International Teletra�c Conferenc, pages 318/1{318/4,
1973.

[Rei04] Omer Reingold. Undirected st-connectivity in log-space. Elec-

tronic Colloquium on Computational Complexity (ECCC), (094),
2004.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag,
2001.

90 BIBLIOGRAPHY

Chapter 6

Appendix

6.1 Useful Inequalities

Theorem 6.1 (The Cauchy-Schwarz Inequality). Let ai; bi ∈ R for 1 ≤
i ≤ n. Then

(a1b1 + : : :+ anbn)
2 ≤ (a21 + : : :+ a2n)(b

2
1 + : : :+ b2n)

In vector form the inequality can be written as xTy ≤ ‖x‖ · ‖y‖.

Proof Consider the polynomial

P (x) = (a1x+ b1)
2 + : : :+ (anx+ b)2 (6.1)

= (a21 + : : :+ a2n)x
2 + 2(a1b1 + : : :+ anbn)x+ (b21 + : : :+ b2n)

Clearly P (x) is nonnegative for every x ∈ R, thus it can have at most one real
root. Since P (x) is a degree 2 polynomial this translates into ∆ ≤ 0. Hence

∆

4
= (a1b1 + : : :+ anbn)

2 − (a21 + : : :+ a2n)(b
2
1 + : : :+ b2n) ≤ 0

and the inequality follows.

Equality occurs if the squares in (6.1) can be set simultaneously to zero which
is possible i�

a1
b1

= : : : =
an
bn

Theorem 6.2 (Chebyshev's Inequality). Let X be a random variable with

expected value � and variance �2. Then for any real number k > 0,

Pr[|X − �| ≥ k�) ≤ 1

k2

91

92 CHAPTER 6. APPENDIX

Proof De�ne

g(x) =

{
1; if |X − �| ≥ k�
0; otherwise

Note that 0 ≤ g(x) ≤ (X − �)2

k�
. Then

Pr[|X − �| ≥ k�) = E[g(x)] ≤ E[
(X − �)2

k�
] =

1

k2�2
E[(X − �)2]

The desired inequality follows since

E[(X − �)2] = E[X2 − 2�X + �2] = E[X2]− �2 = �2

Theorem 6.3. Let X be a random variable which assumes nonnegative values.

Then

Pr[X > 0] ≥ (E[X])2

E[X2]

Proof De�ne

g(x) =

{
1; if X > 0
0; otherwise

Then using Cauchy-Schwarz inequality we have that

E[X] = E[X · g(X)] ≤
√

E[X2] ·
√

E[g(X)2]

The inequality follows since E[g(X)2] = Pr[X > 0].

6.2 Rayleigh Quotient

Theorem 6.4 (Rayleigh Quotient). Let A be a symmetric real matrix with

eigenvalues �1 ≥ �2 ≥ : : : ≥ �n and eigenvectors e1; e2; : : : ; en respectively.

Then

1. �1 = max
x ∈ R

n

xTAx

‖x‖2 .

2. For 1 < i < n, �i = max
x ∈ R

n

x⊥e1; : : : ; ei−1

xTAx

‖x‖2 .

Proof Let x ∈ Rn. Since ei, 1 ≤ i ≤ n form an orthonormal basis in Rn, x can
be uniquely represented as a linear combination of them. Namely, let

x =
n∑

i=1

ciei

6.2. RAYLEIGH QUOTIENT 93

for some scalars ci. Then

‖x‖2 =
n∑

i=1

cie
T
i

n∑

j=1

cjej

=
∑

1≤i;j≤n

cicje
T
i ej

Recalling that eTi ej = 1 i� i = j, we obtain

‖x‖2 =
n∑

i=1

c2i

Similarly, using that Aej = �ej ,

xTAx =

(
n∑

i=1

cie
T
i

)



n∑

j=1

cjAej





=

(
n∑

i=1

cie
T
i

)



n∑

j=1

cj�jej





=
∑

1≤i;j≤n

cicj�je
T
i ej

=
n∑

i=1

c2i�i

Assuming that x⊥ei for some 1 ≤ i ≤ n, we get that xTei = 0, which translates
into ci = 0. Thus,

max
x ∈ R

n

x⊥e1; : : : ; ei−1

xTAx

‖x‖2 =

n∑

j=i

c2j�j

n∑

j=i

c2i

≤
�i

n∑

j=i

c2j

n∑

j=i

c2i

= �2
i

It is trivial to see that equality can be obtained by letting cj > 0 i� j = i. Hence,
the second part of the theorem follows. With slight modi�cations to the above
argument we can clearly prove the �rst part also.

