

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τοµέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Computational Considerations of Voting Rules
(Παιγνιοθεωρητική Ανάλυση συστηµάτων Ψηφοφορίας)

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος, Π. Αγγελής

Επιβλέπων : Ευστάθιος Ζάχος

Καθηγητής

Αθήνα, Μάρτιος 2010

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τοµέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Computational Considerations of Voting Rules

(Παιγνιοθεωρητική Ανάλυση συστημάτων Ψηφοφορίας)

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος Π. Αγγελής

Επιβλέπων : Ευστάθιος Ζάχος

 Καθηγητής

Εγκρίθηκε από την τριµελή εξεταστική επιτροπή την 23η Μαρτίου 2010.

............................
Ευστάθιος Ζάχος
Καθηγητής

............................
∆ηµήτρης Φωτάκης
Λεκτορας

............................
Άρης Παγουρτζής
Επίκουρος Καθηγητής

Αθήνα, Μάρτιος 2010

...................................
Γεώργιος Π . Αγγελής Γεώργιος Π . Αγγελής

∆ιπλωµατούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. ∆ιπλωµατούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Γεώργιος Π . Αγγελής Copyright © Γεώργιος Π . Αγγελής

Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ ολοκλήρου ή
τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανοµή για
σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται
η πηγή προέλευσης και να διατηρείται το παρόν µήνυµα. Ερωτήµατα που αφορούν τη χρήση της
εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ ολοκλήρου ή
τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανοµή για
σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται
η πηγή προέλευσης και να διατηρείται το παρόν µήνυµα. Ερωτήµατα που αφορούν τη χρήση της
εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συµπεράσµατα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερµηνευθεί ότι αντιπροσωπεύουν τις επίσηµες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Οι απόψεις και τα συµπεράσµατα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερµηνευθεί ότι αντιπροσωπεύουν τις επίσηµες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Abstract

In this thesis we are examining various results in the field of Voting seen as a subfield of

mechanism design. The fact that Voting lies on the interface of computer science, operations

research and political science seems of particular interest to us. In the introduction a general

description of the field of mechanism design and game theory is given. Next is considered the

traditional track of study, i.e. the direction of research before computational considerations

were introduced. We stress out the importance of the Gibbart-Satterthwaite theorem on

the field of Social Choice also in the sense that it gave rise to a new direction of research:

studying Social Choice with computational terms. The main focus of the thesis is put on this

direction of research. Tasks such as winner determination, manipulation, bribery and control

of different voting rules are examined from this point of view. We present results concerning

algorithmic issues, worst-case computational complexity analysis and see what steps have

been taken towards the average-case complexity analysis, which was really the researchers’

desired measure of analysis from the beginning. The focus is put heavily on the problem of

manipulation.

We hope that this thesis will serve as a starting point for other people who want to study

the field.

ii

Acknowledgements

I would like to deeply thank my three teachers and members of the committee Prof. S.

Zachos, Prof. D. Fotakis and Prof. A. Pagourtzis. I feel very lucky I had the chance to be

taught by them; I feel they have influenced me in a very positive way not only academically

but also on a personal level. Particularly I want to thank the two supervisors of this thesis,

Prof. S. Zachos and Prof. D. Fotakis for their guidance and their persistence in helping me

make this thesis better. I express my thanks to all of the members of the Computation and

Reasoning Laboratory (CoreLab) for their help, for their constructive observations during the

preliminary presentations, and for putting the bar high: Andreas, Andreas, Eleni, Georgia,

Manos, Paris, Thanasis, Vangelis, Vasilis. Finally I want to thank my friends and family for

their support; particularly Haris for his gruelling proof-reading of part of the text.

Georgios Angelis, Athens, March 2010

Contents

1 Introduction 1

1.1 A brief Introduction to Game Theory . 4

1.1.1 Basic Definitions . 4

1.1.2 Solution Concepts . 4

1.2 Mechanism Design . 7

1.2.1 Basic Definitions . 7

1.2.2 An Example . 8

1.2.3 Some more Definitions . 11

1.2.4 Direct-Revelation, Incentive compatibility and The Revelation Principle 13

1.2.5 Vickrey-Clarke-Groves (VCG) Mechanisms 15

1.3 Laying the Electoral Setting . 17

2 Voting Schemes: The (Traditional) Social Choice Perspective 19

2.1 Some important voting rules . 19

2.1.1 The Plurality Rule . 20

2.1.2 The Condorcet Criterion . 21

2.1.3 The Borda Count Rule . 21

2.1.4 Approval-Veto Voting . 22

2.1.5 A Unified perception of Scoring Protocols 23

2.1.6 The Dodgson rule . 23

2.1.7 The Copeland rule . 24

2.1.8 The Young rule . 25

2.2 Social Choice Theory Criteria . 25

2.3 Arrow’s Theorem (Paradox) . 26

2.4 The Gibbart Satterthwaite Theorem . 27

3 Voting Schemes: The Computational Perspective 31

3.1 A Brief Overview of Complexity Classes . 33

iii

iv CONTENTS

3.2 Winner Determination . 34

3.2.1 The General Case . 34

3.2.2 Hardness when Candidates or Voters are Bounded 36

3.2.3 Approximating the Dodgson score . 38

3.2.4 A heuristic for finding the Dodgson-winner 38

3.3 Manipulation & Bribery . 45

3.3.1 Plurality- Manipulation and Bribery in various Settings 47

3.3.2 Bounds on the number of Candidates that Guarantee Hardness 53

3.3.3 Three Dichotomy Results on Manipulation & Bribery 54

3.3.4 Game Theoretic Considerations of Manipulation 56

3.4 Control . 57

3.5 Universal voting protocol tweaks to make manipulation hard 63

3.6 Making Control hard by combining existing voting protocols 66

3.7 Steps towards average-case complexity analysis of manipulation 67

3.7.1 How the size of the manipulators’ set affects manipulability of the voting

procedure . 67

3.7.2 A quantitative version of the Gibbart-Satterthwaite Theorem 69

4 Conclusion 71

Chapter 1

Introduction

Mechanism Design is traditionally considered a subfield of economic theory but as we will

see it can have applications in a number of scenarios. It is rather unique within economics

in having an engineering perspective. It is interested in designing economic mechanisms, just

like computer scientists are interested in designing algorithms, protocols, or systems. It is

best to view the goals of the designed mechanisms in the very abstract terms of social choice.

A social choice is simply an aggregation of the preferences of the different participants towards

a single joint decision, which is optimal in some sense. In other words we can - and it helps

to do so - view each mechanism design problem as a distributed optimization problem, where

the constrains are the preferences of the participants and are distributed in the sense that

they are private.

C

 A

B

C

f(A, B, C, C)

Social Choice aggregates various preferences

Central to Mechanism Design is a game-theoretic approach. By this we mean that mech-

anism design attempts implementing desired social choices in a strategic setting assuming

that the different members of society each act rationally in a game theoretic sense, meaning

that they are self-interested. Such strategic design is necessary since, as we said, usually the

1

2 CHAPTER 1. INTRODUCTION

preferences of the participants are private.

In the sections to come, we will define formally what we mean by implementing and give

thorough explanations about the game-theoretic notions implicated in Mechanism design. For

now we would just like to stress out the fact that the goal of mechanism design is captured

through the notion of social choice and that we use game theory to analyse the interaction

of the various participants in the mechanism. We can express the above mentioned with an

equation:

Mechanism Design = Social Choice + Game Theory

The notion of social choice that captures the essence of mechanism design is quite general

and it can in fact be seen as a generalisation of a multitude of scenarios in economics, political

science, or of course technical settings, such as networks. Here are some classic examples:

Elections: In political elections each voter has his own preferences between the different

candidates, and the outcome of the elections is a single social choice. The voting system

used is the mechanism that gives the outcome of the election.

Markets: Classical economic theory usually assumes the existence and functioning of a “per-

fect market.” In reality, of course, we have only interactions between people, governed

by some protocols. Each participant in such an interaction has his own preferences, but

the outcome is a single social choice: the reallocation of goods and money.

Auctions: Generally speaking, the more buyers and sellers there are in a market, the more

the situation becomes close to the perfect market scenario. An extreme opposite case

is where there is only a single seller which is a case of an auction. The auction rules

define the social choice: the identity of the winner.

Governments Policy: Governments routinely have to make decisions that affect a multi-

tude of people in different ways: Should a certain bridge be built? How much pollution

should we allow? How should we regulate some sector? Clearly each citizen has a

different set of preferences but a single social choice is made by the government.

Networks: When running in an environment with multiple owners of resources or requests,

the algorithm(protocol) must take into account the different preferences of the different

owners. The algorithm should function well assuming strategic selfish behaviour of each

participant. Thus we desire a Mechanism Design approach for a multitude of algorithmic

challenges such as routing, task scheduling etc. Maybe the most interesting example

of such a setting is the Internet, in which the various agents - users and devices - are

self-interested, with private preferences and goals.

3

In this section we only roughly sketched the field of mechanism design. In the sections

to come we give formal definitions, and explain things further. Here is an outline of our

Introduction. Section 1.1 introduces fundamental notions of game theory and gives two

important solution concepts: Nash equilibrium and Dominant-strategy equilibrium. Section

1.2 introduces mechanism design: we define what is a utility function, what is a mechanism,

what is a social choice function, what we mean when we say that a mechanism implements

a social choice function and we see all that in an example. Furthermore, we present some

very important and classic results in the field such as the revelation principle and the VCG

mechanisms. In section 1.3, we move to voting methods, and lay the general electoral setting.

4 CHAPTER 1. INTRODUCTION

1.1 A brief Introduction to Game Theory

1.1.1 Basic Definitions

Game theory is a method to study a system of agents in conditions of strategic interaction.

In game theory we model agents as rational and intelligent. An agent is rational, when he is

self-interested, i.e. his objective is to maximize his own payoff. An agent is intelligent, if he

knows all that we - as analysts of the game - know and if he can make all the inferences that

we can make [?].

The games we will be talking about are known as one-shot simultaneous games. We say

that a game consists of a set of n players, {1, 2, ..., n}. To play the game each player i will

choose a way of playing. The fundamental concept of agent choice in game theory is expressed

as a strategy. To play the game, each player i selects a strategy si from a set of strategies

Si he has available. The choice of strategy of each player will depend on his preferences;

informally, each player has some kind of preferences which will determine which strategy he

will chose to play. We will introduce a more formal way of perceiving the preferences of each

player in the next section; for now this intuitive way will do.

We name pure strategies all the available choices an agent can make. A player may

not choose a single strategy, but a probability distribution over her available strategies and

therefore play each (pure) strategy with the given probability. In this case we talk about

mixed strategies. Therefore the strategy si of each player may be either a pure strategy or a

mixed strategy. It can be easily seen that the concept of mixed strategy is a generalization

of pure strategy.

We use the notation s = (s1, ..., sI) for the strategy vector(strategy profile) of all the agents,

or equivalently s = (si, s−i), where s−i = (s1, ..si−1, si+1, ..., sI), i.e the strategy vector of every

agent except agent i.

The vector of strategies s selected by all players determines the outcome of the game. To

specify the game we need to assign to each player a preference ordering over these different

outcomes. The simplest way to do this is by assigning, for each player, a value to each

outcome. This value may be perceived as the pay off of the player. In other words this value

is a measure of the happiness of the player for the outcome: the greater the value, the greater

the happiness of the player. Hence, we define a function u(s) : S → R. This function is called

a utility function; we will define it more formally in the next section.

1.1.2 Solution Concepts

A number of solution concepts to compute the outcome of a game are defined, each of

which makes different assumptions about the information available to agents and methods

1.1. A BRIEF INTRODUCTION TO GAME THEORY 5

used by agents to select their strategies. The most intuitive solution concept in game theory

is the notion of Nash equilibrium, which states that in equilibrium every agent will select a

utility-maximizing strategy, given the strategies of every other agent.

Definition 1 (Nash equilibrium(NE)). A strategy vector s is said to be a Nash equilibrium

if for all players i and each alternative strategy s′i, we have that

ui(si, s−i) ≥ ui(s′i, s−i)

In words, no player i can change his chosen strategy from si to s′i and thereby improve his

payoff, assuming that all other players stick to their strategies. Observe that such a solution

is self-enforcing in the sense that once the players are playing such a solution, it is in every

player’s best interest to stick to his strategy.

The following distinction is made: If we consider pure strategies, we are talking about

a pure Nash Equilibrium. If we consider mixed strategies we are talking about mixed Nash

Equilibrium.

John F. Nash proved in 1951 that NE exists for mixed strategies in all games that have a

finite set of strategies and players. Maybe it is this universality property under such lenient

conditions and the intuitiveness of the NE that has made it the most widely accepted solution

concept of the field.

It has however some serious shortcomings. For a NE to be played(in one-shot games),

rather stringent conditions about the available information to the players must hold. Aumann

and Bradenburger [?] have shown that those conditions are not as stringent as one might have

expected(roughly everything to be common knowledge 1) but still the necessary conditions

for a NE to be played are much stronger than those of our next solution concept, dominant-

strategy equilibrium. Furthermore, NE gets rather problematic as a solution concept in the

event of multiple equilibria, a case that is often seen in practical applications, in the sense that

even under the previous conditions the players do not know which equilibrium to coordinate

on. Finally, another very serious drawback, that was pretty much overseen until recently,

is the computational cost that each player must undergo, in order to solve game-theoretic

problems so that she can choose her optimal(best response) strategy [?].

A stronger solution concept than NE is a Dominant strategy equilibrium. In dominant

strategy equilibrium, each agent has the same best(utility-maximizing) strategy to play, in-

dependent of the strategies played by all other agents.

Definition 2 (Dominant strategy equilibrium). The strategy si is called a dominant strategy
1A piece of information is Common knowledge when everyone knows it and everyone knows that everyone

knows it and... ad infinitum.

6 CHAPTER 1. INTRODUCTION

if it (weakly) maximizes the agent’s utility for all possible strategies of other agents:

ui(si, s−i) ≥ ui(s′i, s−i) ∀s′i ∈ Σi and ∀s−i ∈ Σ−i

If all agents have a dominant strategy, these form a Dominant strategy equilibrium.

It is important to notice that a dominant strategy solution may not give an optimal payoff

to any of the players. Also, it is easily verifiable that a dominant strategy equilibrium is also a

Nash equilibrium. A very classic example of game that has a Dominant strategy equilibrium

that does not bring the best output for either of the two players is the prisoners dilemma.

In the following matrix the numbers represent the cost incurred on each player, expressed in

years of jail he/she will get as a result of each pair of strategies played.

 The prisoners Dilemma

P1

P2 Confess Silent

Confess

Silent
5

1

4

4

2

2

1

5

Having a single dominant strategy for each player is an extremely stringent requirement

for a game and very few games satisfy it. On the other hand, it is a very robust solution

concept, because it makes no assumptions about the information available to agents about

each other, and does not require an agent to believe that other agents will behave rationally

in order to select his/her own optimal strategy. In this sense it is also very desirable from a

computational complexity point of view, since it doesn’t require any computations to be done

about the game theoretic reasoning which will give the best response strategy of each player.

Looking ahead to mechanism design, we wish to design mechanisms which provide agents

with a dominant strategy and also lead to a desirable outcome(the outcome is optimal accord-

ing to some criterion). In mechanism design the dominant strategy equilibrium is much more

desired than Nash equilibrium. The reason is that NE makes much stronger assumptions

about the knowledge that must be available to the agents, that it is unrealistic to assume

that they will indeed have such knowledge in the distributed setting of a mechanism. More

precisely, for a player to realise she has a dominant strategy she only needs to know her own

1.2. MECHANISM DESIGN 7

payoffs for each possible strategy vector. For a NE to be played she has to know the payoffs of

all players for each strategy vector and further conditions must hold about what each player

knows that the rest of the players know [?]. Thus we have established another drawback of

NE: it is of no use in the field of mechanism design.

In this thesis we restrict ourselves in the use of dominant-strategy equilibrium.

1.2 Mechanism Design

1.2.1 Basic Definitions

Let us introduce the idea of the type of an agent, which is our way of modelling the

preferences of an agent over different outcomes of a game. Let θi ∈ Θi denote the type of

agent i, from a set of possible types Θi. It is generally useful to think of θi as an ordering of

the different possible outcomes. For example, if we have I possible outcomes, the preference

of an agent could be o1 Â o2 Â ... Â oI , where oi Â oj means that outcome i is (weakly)

preferred to j by the agent. Therefore the type of an agent defines a complete, transitive,

reflexive binary relation on the set of all outcomes.

Definition 3 (Utility function). An agent’s preferences over outcomes o ∈ O, for a set O of

outcomes, can be quantified in terms of a utility function that is parametrized on the type.

Let u(o, θi) denote the utility of agent i for outcome o ∈ O given type θi. Agent i prefers

outcome o1 over o2 when u(o1, θi) > u(o2, θi). Intuitively we say that the utility is the measure

of hapiness of the agent.

The ultimate goal in mechanism design is expressed by a social choice function, which

selects the optimal (in some sense) outcome given agent types.

Definition 4 (Social Choice function). Social choice function

f : Θ1 ××ΘI → O chooses an outcome f(θ) ∈ O, given the types θ = (θ1, ...θI).

Definition 5 (Mechanism). A mechanism M = (Σ1, ...,ΣI , g(s)) defines the set of strategies

Σi available to each agent, and an outcome rule

g : Σ1 × ... × ΣI → O, such that g(s) is the outcome given out by the mechanism when the

players choose to play the strategy profile s = (s1, ..., sI).

In words, a mechanism defines the strategies available to each player and the method used

to select the final outcome based on the strategies each agent plays. We will soon see an

example.

8 CHAPTER 1. INTRODUCTION

Game theory is used to analyze the outcome of a mechanism. Given mechanism M with

outcome function g(s), we say that a mechanism implements social choice function f(θ), if

the outcome computed with equilibrium agent strategies is a solution to the social choice

function for all possible agent preferences.

Definition 6 (Social Choice function implementation). Mechanism M = (Σ1, ...,ΣI , g(s))

implements social choice function f(θ) if g(s∗1(θ1), ..., s∗I(θI)) = f(θ), ∀θ, where strategy profile

(s∗1(θ1), ..., s∗I(θI)) is an equilibrium solution to the game induced by M.

It is interesting to observe that the above definition doesn’t assume a concrete equilibrium

notion, it may be Nash, Bayesian-Nash, dominant strategy or any other concept. Our desire

is generally for as strong a solution concept as possible.

Putting together what we have mentioned so far, the mechanism design problem is to

design a mechanism - a set of possible agent strategies and an outcome rule - to implement

a social choice function with desirable properties, in as strong a solution concept as possible;

dominant is the most preferred solution concept because it makes less assumptions about

agents.

The problem of designing a mechanism to implement a social choice function is far from

trivial. As we have mentioned above, each agent is self-interested (rational), which means

that her mere goal is to maximize her utility; therefore she may act strategically, trying to

manipulate the mechanism if she thinks this will improve her utility(and since we assume she

is intelligent, she can find such a manipulative technique if one exists). For example, in a

mechanism where the strategy of each agent is to report her preference, she may lie about

it. The problem is that when many agents act in this way, the outcome may be far from the

optimal we desired. It is therefore the task of the mechanism to guarantee that the agents

have good reason to act in a way that does not jeopardize the good function of the mechanism,

in essence to act according to their true preferences and not strategically.

Let us see all that we have mentioned so far in this section in a rather illuminating example.

1.2.2 An Example

Alice and Bob are brother and sister. As every usual brother and sister they quarrel from

time to time. There are two states of the world: Alice started it (the quarrel) or Bob started

it. Depending on who started the fight, they both have an inner sense of justice which yields a

different ordering on the punishments they may receive from their parents, ranging from what

each of them perceives as the most lenient punishment to the most harsh. Although only one

of them starts the fight, they will both receive the same punishment because of quarrelling

1.2. MECHANISM DESIGN 9

(and annoying the parents who are watching TV).

video games

 Alice Bob Alice Bob

pocket money
no

 apologise to
 each other

no
 going out

 going out

no

video games

 apologise to
 each other

 apologise to
 each other

 apologise to
 each other

 Alice started it

 no

no

 no

no

no

 no no

 Bob started it

no

Alice’s & Bob’s Preference orders

no
video games

pocket money

pocket money

 going out

 going out

video games

pocket money

In our already introduced terminology, the set of possible types for both Alice and Bob

is ΘAlice = ΘBob = {Alice started it, Bob started it}. Their parents want to give them a

relatively just punishment, meaning that no child will perceive it as extremely harsh for the

situation. Of course each kid may try to get away with what he/she perceives as the most

lenient punishment, if this is allowed. This requirement for reasonable justice is the optimality

desideratum we see in every mechanism design setting; both kids however take interest only

in getting away with the most lenient punishment and do not share their parents’ efforts for

reasonable justice (in our terminology, they are rational). Let as assume that the parents feel

reasonable justice has been restored if they end up with the most lenient punishment that is

not placed more than one place apart in the preference orders of both children, no matter

which state they are in.

According to the above table, the social choice function the parents would use, is

f(Alice started it) = no going out, and f(Bob started it) = no video games. The crucial point

here is that the parents, who are to restore justice do not know the state of the world, or

who started the fight. Of course the kids both know who started it but this is not necessarily

helpful to the parents; kids tend to lie about things like that. If the parents knew it, things

would be easy for the optimal punishment to be chosen. However they do not know that.

What can they do? A first approach would be to simply ask the children who started

the fight. Experience has shown that this approach is not very helpful and let us see how

game theory verifies this fact. Actually “just asking” constitutes a - naive - mechanism. The

strategies provided to each child is to report their type and the outcome rule is the follow-

ing: if both kids agree on who started the fight, the optimal (most just punishment) can be

imposed. However if the kids disagree, then the parents have no choice but to flip a coin

between the two punishments (of course we could say that in this latter case no punishment

is imposed but then the children could get away with no punishment, which would make our

10 CHAPTER 1. INTRODUCTION

whole discussion pointless). We must note however that Alice has incentive to report that Bob

started it in both cases since she prefers no video games to no going out in both cases. This

way if Bob also reports Bob started it she will receive a better punishment with a probability

of 1, if Bob reports Alice started it she has increased her probability of getting a preferred

punishment from 0 to 0.5. For the same reason Bob has incentive to claim that Alice started

it no matter what the truth is. Hence, the dominant strategy of both children lead them

disagreeing and the parents end up choosing the punishment randomly, which does not sound

a very just system.

Let us see how the justice system of the parents can get much better by designing a slightly

more complex mechanism.

no going out

Bob

Alice

Top

Left Right

no pocket money

A more complex Mechanism

Bottom

appologise to each other no video games

The parents have the children participate in the above game. Each kid has to choose be-

tween two strategies. Alice chooses between “Top”,“Bottom” and simultaneously Bob chooses

between “Left”, “Right”; the outcome of those choices (the outcome rule) is given in the corre-

sponding entry of the matrix. Let us observe that, in the case “Alice started it”, Bob is better

off choosing “Left” regardless of what Alice does: if she plays “Top”, then “Left” leads to

“appologise to each other” as the outcome (Bobs preferred outcome), whereas “Right” gives

rise to “no video games”. If she plays “Bottom”, then “no going out”(which Bob prefers) is

the consequence of playing “Left”, while “Right” leads to “no pocket money”. That is, “Left”

is the dominant strategy for Bob in state “Alice started it”. In the state Alice started it Alice

too has a dominant strategy: “Bottom”. If he plays “Left” she prefers “no going out” to

“appologise to each other”, if he plays “Right” she prefers “no pocket money” to “no video

games”. Therefore, in the state Alice started it (“Bottom”, “Left”) is the (unique) Dominant

NE. Furthermore, and this is the critical point, the resulting outcome, “no going out”, is

optimal in this state. Analogously we can reason that the unique dominant Nash equilibrium

in the state “Bob started it” is (“Top”,“Right”) and this again results in the optimal result;

“no video games”.

We have seen that in either state, the mechanism we proposed achieves the optimal out-

1.2. MECHANISM DESIGN 11

come even though (i) the mechanism designers (the parents) do not know the actual state,

and (ii) Alice and Bob are not interested in the goal of the parents for justice; they only want

to have the most lenient punishment they can for themselves. More precisely, because the

(dominant) Nash equilibrium outcomes of the proposed mechanism coincide with the optimal

outcomes in each state (each type), we say that the mechanism implements the (parents’)

social choice rule.

1.2.3 Some more Definitions

Definition 7 (Pareto optimality). A function is said to be pareto optimal, if it gives outcomes,

for which no alternative outcome is strictly preferred from at least one agent, and weakly

preferred from all other agents.

In other words, in a pareto optimal solution, no agent can be made happier, without making

at least another agent less happy. A typical example of a non-pareto-optimal outcome is the

dominant solution in the prisoners dilemma, since if they both switched to “Silent” they

would both decrease their cost. Actually the state (“Silent”,“Silent”) is pareto optimal.

 The prisoners Dilemma

P1

P2 Confess Silent

Confess

Silent
5

1

4

4

2

2

1

5

Utility functions may have arbitrary form(as long as they meet some very trivial restric-

tions): they may be linear, exponential etc. A form that has some very desirable properties

for our purposes is the quasi-linear form.

Definition 8 (Quasi-linear preferences). A quasi-linear utility function for agent i with type

θi, is of the form:

ui(o, θi) = vi(x, θi)− pi,

where x is some choice made as a result of the outcome o, pi is a payment made by the agent

to the system, vi is the value the agent assigns to x(the agent’s valuation function)

12 CHAPTER 1. INTRODUCTION

What is important to note is that, with quasi-linear agent preferences we can separate the

outcome of a social choice function into a choice x(θ) ∈ K and a payment pi(θ) made by each

agent i:

f(θ) = (x(θ), p1(θ), ..., pI(θ))

Respectively, the outcome rule, g(s), in a mechanism with quasi-linear agent preferences,

is decomposed into a choice rule, k(s) ∈ K, that selects a choice from the choice set given

strategy profile s, and a payment rule ti(s) that selects a payment for agent i based on strategy

profile s.

We define this more formally since we will use it in the well known VCG mechanisms.

Definition 9 (quasi-linear Mechanism). A quasi-linear mechanism M = (Σ1, ...,ΣI , k(s),

t1(s), ..., tI(s)) defines: the set of strategies Σi available to each agent; a choice rule k :

Σ1× ...×ΣI → K, such that k(s) is the choice implemented for strategy profile s = (s1, ...sI);

and transfer rules ti : Σ1 × ...×ΣI → R , one for each agent i, to compute the payment ti(s)

made by agent i

Typical examples of quasi-linear mechanisms are auctions. In an auction the outcome has

two components: a choice x, which is the agent who wins the auction, and the payments pi

each agent has to make to the auctioneer (usually only the winner pays a non-zero amount).

Furthermore, the valuation function is some positive value if she wins and 0 if she doesn’t.The

utility she receives is vi − pi, therefore quasi-linear.

Social Choice functions have properties that may be desired in various contexts. One basic,

is (allocative) efficiency. We say that an outcome is efficient, when it maximizes the total

value over all agents:

Definition 10 (Social Choice function Efficiency). Social choice function f(θ) = (x(θ), p(θ))

is (allocatively) efficient if for all preferences θ

I∑

i=1

vi(x(θ), θi) ≥
I∑

i=1

vi(x′, θi) ∀x′ ∈ K

Therefore (allocative) efficiency captures what we vaguely say as “social good”: a function

is allocative efficient when the society as a whole receives the maximum utility possible.

In general, we say that a mechanism has a property P, if it implements a social choice

function with property P.

1.2. MECHANISM DESIGN 13

1.2.4 Direct-Revelation, Incentive compatibility and The Revelation Prin-

ciple

Informally, a direct-revelation mechanism is a mechanism in which the only actions (strate-

gies) available to agents are to make direct claims about their preferences to the mechanism.

In other words, in a direct-revelation mechanism the strategy of agent i is to report some

type θ̂i = si(θi), based on its actual preferences θi. Actually the “naive” mechanism of our

example was a direct-revelation mechanism. When the strategy chosen is the true type θi we

say that the strategy is truth revealing.

Definition 11 (Direct-revelation mechanism). A direct-revelation mechanism M = (Θ1, ...,ΘI ,

g(s)) restricts the strategy set Σi = Θi for all i, and has outcome rule g : Θ1 × ...×ΘI → O,

which selects an outcome g(θ̂) based on reported preferences θ̂ = (θ̂1, ..., θ̂I).

Definition 12 (Incentive-compatible Mechanism). An incentive-compatible mechanism, is a

direct-revelation mechanism in which agents report truthful information about their prefer-

ences in equilibrium, i.e. the equilibrium strategy profile s∗ = (s∗1, ..., s
∗
I) is every agent to

report his true preferences to the mechanism.

Incentive compatibility is a very important notion. It captures the essence of designing a

mechanism, which is to overcome the self-interest of the agents. In an incentive-compatible

mechanism each agent will choose to reveal his private information truthfully, rather than

reporting any possible lie, since truthfulness will give him higher (in the weak sense) utility.

Intuitively, in an incentive compatible mechanism what we do is that we align each player’s

self-interest with our desire to know his true preferences, or in other words that we internalize

the goal of the mechanism in the self-interest of each player.

Definition 13 (Strategy proofness). A mechanism is strategy proof, if it is incentive com-

patible and the equilibrium we arrive at is a dominant-strategy equilibrium.

A strategy proof mechanism implements a dominant-strategy equilibrium which, as we

saw in the previous section, as a solution concept has very desirable properties, both game-

theoreticaly and computationally. Therefore strategy-proofness is a very disirable property

of a mechanism.

A well celebrated result in mechanism design is the Revelation Principle, which has proven

to be a powerful theoretic tool. We first give its formal definition and then consider its

importance and implications.

14 CHAPTER 1. INTRODUCTION

We give the version of the Revelation Principle for dominant strategy equilibria (although

it has been extended for Bayesian-Nash equilibria too).

Theorem 1 (Revelation Principle). Suppose there exists a mechanism M that implements

the social-choice function f(·) in dominant strategies. Then - no matter how complex this

mechanism is - there exists a direct-revelation mechanism M ′ that truthfully implements f(·)
in dominant strategies; the new mechanism is a strategy-proof mechanism.

Proof. If M = (Σ1, ...,ΣI , g(·)) implements f(·) in dominant strategies, then for the equilib-

rium strategies s∗(·) = (s∗1(·), ..., s∗I(·)) it holds that g(s∗)(θ) = f(θ) for all θ. Since s∗ is the

dominant equilibrium strategy vector it holds by definition that for all i and θi ∈ Θi

ui(g(s∗(θi), s−i), θi) ≥ ui(g(ŝi, s−i), θi), ∀ŝi ∈ Σi,∀s−i ∈ Σ−i.

Substituting s∗−i(θ−i) for s−i and s∗i (θ̂i) for ŝi we get:

ui(g(s∗(θi), s∗−i(θ−i)), θi) ≥ ui(g(s∗i (θ̂i), s∗−i(θ−i)), θi), ∀θ̂i ∈ Θi, ∀θ−i ∈ Θ−i.

Finally, since g(s∗(θ)) = f(θ), for all θ, we have:

ui(f(θi, θ−i), θi) ≥ ui(f(θ̂i, θ−i), θi), ∀θ̂i ∈ Θi,∀θ−i ∈ Θ−i.

This is precisely the condition that suggests that when the outcome rule g′ of the mechanism

M ′ is equal to the social choice function f(·) the vector of types θ = (θ1, ..., θI) is a dominant

strategy equilibrium. On top of that since, trivially, the outcome of the mechanism coincides

with the outcome of the social choice function in equilibrium, we have proven that social

choice function f is truthfully implementable in dominant strategies by a direct revelation

(strategy proof) mechanism.

The above theorem can be proven for quasi-linear utility functions too, proving that there

exists a mechanism for which also the payments of the players is the same with the original

mechanism.

In words, the Revelation Principle states that any mechanism can be transformed into

an equivalent incentive-compatible direct-revelation mechanism that implements the same

social-choice function! We must note here, that the Revelation Principle only guarantees the

existence of such a mechanism. It doesn’t say anything about how to construct it, or how

complex this mechanism may be. The only thing that we know is that if an indirect-revelation

and/or non-truthful mechanism solves a distributed optimization problem, then we would also

expect a direct-revelation truthful implementation of the problem.

However as we said earlier, the Revelation Principle is a powerful theoretic tool and has

1.2. MECHANISM DESIGN 15

therefore some really important implications for the field of mechanism design. It actually

suggests something very striking: in order to identify which social choice functions are im-

plementable in dominant strategies, we need only identify those functions f(·) for which

truth-revelation is a dominant strategy for agents in a direct-revelation mechanism with out-

come rule g(·) = f(·). In other words, when considering dominant strategies, it is possible to

restrict our attention to truth-revealing direct-revelation mechanisms.

Except for restricting the field that we have to search, the Revelation Principle gives also

some guidance on what is or is not possible; particularly the two following points hold:

• Suppose that the only direct, incentive compatible mechanisms with useful properties

P1, P2 and P3 are in the class of mechanisms M . It follows that any mechanism m

with properties P1, P2 and P3 must be outcome equivalent to a direct mechanism in

M , in the sense that m must implement the same outcome as a mechanism in this class

for all possible agent types.

• Suppose that no direct, incentive compatible mechanism has properties P1, P2 and P3.

It follows that there can be no mechanism (direct or otherwise) with properties P1, P2

and P3 .

1.2.5 Vickrey-Clarke-Groves (VCG) Mechanisms

In their significant papers, Vickrey [?], Clarke [?] and Groves [?], proposed the Vickrey-

Clarke-Groves family of mechanisms for problems in which agents have quasi-linear prefer-

ences. The VCG mechanisms are allocatively-efficient - maximizing the sum of agents utili-

ties - and strategy-proof - direct-revelation, incentive compatible, dominant-strategy-solution

mechanisms. They are one of the most classic possibility results in the whole field of mecha-

nism design.

In fact it has been proven by [?] that:

Theorem 2 (VCG uniquiness). The VCG mechanisms are the only allocatively-efficient

and strategy-proof mechanisms for agents with quasi-linear preferences and general valuation

functions, among all direct-revelation mechanisms.

Putting in practice what we mentioned in the end of the previous section, by the revelation

principle we know that any kind of mechanism(e.g. no matter how complex it may be) that

achieves allocative-efficiency in dominant-strategy implementation must implement a VCG

outcome.

16 CHAPTER 1. INTRODUCTION

Definition 14. VCG mechanisms are direct-revelation quasi-linear mechanisms. That infor-

mally means that the strategy of each agent is to report a type θ̂i and the utility function

of each player is quasi-linear (for formal definitions of these notions see section 1.2.3). So to

define the mechanism we have to give the choice rule, k(θ̂) and the payment rule, ti(θ̂).

Given reported types θ̂ = (θ̂1, ...θ̂I) the choice rule is:

k∗(θ̂) = arg max
k∈K

∑

i

vi(k, θ̂i)

Choice k∗ is the selection that maximizes the total reported value over all agents.

Every agent pays to the mechanism what the payment rule tells him to pay, i.e pi = ti.

The payment rule is defined as:

ti(θ̂) = hi(ˆθ−i)−
∑

j 6=i

vj(k∗, θ̂j)

hi : Θi → R is an arbitrary function. This freedom in selecting h(·) leads to the description

of VCG as a family or class of mechanisms. We will come back to h(·) in a while.

Our claim is that VCG mechanisms are allocative efficient and strategy proof.

Allocative efficiency is self-explanatory by the way we defined the choice rule k∗.

We will give an intuitive explanation of strategy proofness. The key idea lies in the term

−∑
j 6=i vj(k∗, θ̂j), which means that each player is paid an amount equal to the sum of

the values of all other players. When this term is added to his own value vi(k∗, θ̂i), the

sum becomes exactly the total social welfare of k∗. Thus this mechanism aligns all players’

incentives with the social goal of maximizing social welfare, which is exactly archived by telling

the truth.

Now we come back to the first term of the payment rule hi(θ−i). This term has no

strategic implications for player i since it does not depend, in any way, on what he says, and

thus from player i’s point of view it is just a constant. Of course, the choice of hi does change

significantly how much money is paid and in which direction, but we will not explore this

further. We will only mention that a classic choice for hi is what is known as the Clark pivot

payment.

Since in this thesis we are primarily concerned with the computational aspects of the

problems we discuss, we want to note that computing the outcome of a VCG mechanism

is NP -hard in general. The most interesting (or discouraging) part however is not this. A

1.3. LAYING THE ELECTORAL SETTING 17

common way to circumvent computational intractability in computer science is to resort to

approximation. The interesting (or discouraging) part is that in VCG mechanisms approx-

imation and incentive compatibility do not mix [?]. In other words it is proven that if we

resort to approximation the agents loose their incentive to act truthfully!

1.3 Laying the Electoral Setting

In general a voting system2 provides a framework for aggregating voters’ preferences, in a

way that the outcome is “optimal” in some sense (we will see what this optimality demand

may be).

The general electoral setting that we consider consists of:

• A set of m alternatives C(candidates)

• A set of n voters V

• A set L of linear orders on C. Every member of L is a transitive, complete and strict

(antisymmetric and irreflexive) order on C. We denote as a Âi b the case where a is

(strictly) preferred to b by agent i.

• A subset W of C, who are the winners

• A voting method E that dictates the rules of the procedure

We note the outcome of a voting procedure with a set of candidates C and a set of voters V

under voting method E as E(V, C)

Definition 15 (Voting Scheme). A voting scheme is a mechanism whose strategies and

outcome rule are defined by the voting procedure.

The applications of voting are innumerable. Societies use elections to select their leaders,

establish their laws, and decide their policies. However, practical applications of elections are

not restricted to people and politics. Parallel algorithms start by electing leaders, multiagent

systems sometimes use voting for the purpose of planning, web search engines can aggregate

results using techniques based on elections.

In the web for example, one may consider web pages as voting on other pages by linking to
2In the literature, the terms “voting system”, “voting schemes”, “voting rules”, “voting methods”, “voting

procedures” are often used interchangeably. Here we make a slight distinction but we, too, will use them

interchangeably when there is no confusion.

18 CHAPTER 1. INTRODUCTION

them (an idea used in Google’s PageRank algorithm), or may consider humans to be voting on

pages at a site by the time they spend on each. Dwork et al. [?] address the general problem of

aggregating various rankings in one, which is quite similar to voting. They suggest designing

a meta search engine that treats other search engines as voters who provide their ranking on

the web pages (candidates) or performing multi-criteria searches by aggregating the results

of more single-criteria searches.

We note that such vast range of applications implies that the voting setting may vary

greatly from one case to another. For example in the political election case the voters are

infinite compared to the candidates while in the web search framework this relation is reversed.

Therefore the ratio of voters to candidates may differ a lot from case to case.

Furthermore, we note that many voting scenarios make just as much sense when each

voter has a different voting power. For example, U.S. presidential elections are in some sense

weighted (different states have different voting powers in the Electoral College). When agents

vote in partisan groups (e.g. in parliament) the weights may correspond to the power of the

group (all members of a group are expected to vote identically, so we may model each group

as one voter with a corresponding weight). Shareholders in a company have votes weighted

by the number of shares they own. Search engines in the above example could be weighted

by their trustworthiness. Thus, weighted voting as well, makes sense in many settings and

indeed many of the results we will come across refer to weighted voting.

Lastly we would like to stress the fact that “voting” is a nice intuitive way of perceiving

the hole field of social choice theory; every social choice decision can be perceived as a voting

procedure. We have already said that the goal of social choice is to aggregate different

preferences in a joint decision which is optimal in some sense. This can be seen as a voting

procedure, where the different preferences are aggregated in a joint decision, the winner of

the election. Therefore although from now on we will primarily be referring to voting, one

can keep in mind that what we say applies to all social choice theory.

Having already talked about mechanism design and strategy-proofness we want to establish

what our ideal goal would be: to design a voting rule (or prove that one of the existing

satisfies this property) which provides as a dominant strategy to each agent to report his true

preference order about the candidates. We will soon see a very important theorem has been

proven, which roughly states that only trivial voting rules can have this property! But more

on this later.

Chapter 2

Voting Schemes: The (Traditional)

Social Choice Perspective

In voting theory we say that the outcome of the procedure must be “optimal” in some

sense; we want to proclaim winner “the most desired candidate”. We will soon see that this

desire for optimization is not that easily captured by the various voting systems and various

problems may come up. We begin here with a prominent such problem, known as “condorcet’s

paradox”.

Let us consider three voters v1, v2, v3 and three candidates a, b, c. The preferences of the

voters are the following:

v1: a Â b Â c

v2: b Â c Â a

v3: c Â a Â b

The joint choice of the majority of the candidates is a Â b Â c Â a, which is clearly in-

consistent. In words, for any candidate that is proclaimed winner, there will be a majority of

voters who would want to change the chosen outcome.

The importance of the condorcet paradox is the following: Rational individual preferences

can yield irrational aggregated preferences in terms of majority!

2.1 Some important voting rules

Let us present some of the most widely known voting procedures. Maybe the first thing

that comes to a person’s mind when she hears the term “voting” is the plurality rule. It is one

of the most easy to apply and widely used voting systems around the world, for centuries.

19

20CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

2.1.1 The Plurality Rule

The procedure of the plurality rule is very easy: each candidate gets a vote for each time

she is placed at the top of a voter’s preference order; the candidate who receives the most

votes is proclaimed the winner. A small variation of the plurality rule is the majority rule.

The procedure is the same only the winner has to receive more than 50% of the votes. If

this is not accomplished in the first round, a second round is held only between the top two

candidates of the first round.

The thing now is that, when there are only two candidates, plurality rule (which is equiv-

alent to majority rule) captures fully the notion of the “most desired candidate”. Between

two candidates the one that is preferred by most voters is unequivocally the “best choice”.

However it is very common that the plurality rule is considered the best way of choosing the

winner in the case that there are more than two candidates. In such cases however, although

common sense may say that plurality or majority means wide acceptance, problems may

appear. The source of these problems is rather intuitively explained: in both plurality and

majority rules only the top candidate of each voter is taken into consideration; the rest of his

preference order is ignored.

Let us now see an example of such problems of the plurality and majority rules. Suppose

there are 4 candidates (x,y,z,w) and 100 voters. In the next figure we see four different pref-

erence orders and the number of voters that has each.

20 voters: z Â x Â y Â w

24 voters: y Â z Â x Â w

26 voters: x Â z Â y Â w

30 voters: w Â z Â x Â y

According to the plurality rule, the winner of the election is w.

What is the problem with this choice?

First of all, w is only preferred by a minority, a 30% of all voters. Therefore the winner is the

optimal choice of only a minority of the voters. More precisely, the rest think w is the worst

possible choice. Plurality rule however proclaims him the winner.

Second, observe that w would lose in terms of majority by all other candidates if we

held a head-to-head comparison of each pair of candidates. Citing the words of Marquis de

Condorcet, “The apparent will of the plurality may in fact be the complete opposite of their

will”.

One might think that the majority rule would give a more rational outcome since it requires

that the winner has a more than 50% acceptance. Applying the majority rule, candidate x

2.1. SOME IMPORTANT VOTING RULES 21

would win in the second round. However this outcome again seems unfair, since 74% of the

voters prefer candidate z to candidate x. In the majority rule, some irrationality seems to

slip in because of the second round.

Therefore, up to now we have established that the apparent “fairness” of the plurality and

majority rules as “capturing the will of the majority” can be quite misleading. As we already

said, the main reason for such problems is that both these rules take into account only the

top preference of each voter and ignores the rest.

2.1.2 The Condorcet Criterion

These problems are known for more than four centuries now. In the late 1700s two influen-

tial personalities of the french intelligentsia were occupied with them and each proposed his

own solution to the inconsistencies of the plurality and majority rules. Those two were Marie

Jean Antoine Nicolas de Caritat, marquis de Condorcet (philosopher, mathematician, and

political scientist) and Jean-Charles, chevalier de Borda (mathematician, physicist, political

scientist, and sailor).

Marquis de Condorcet claimed that the most natural property that a voting rule should

satisfy is the Condorcet Criterion. According to the Condorcet Criterion a winner of an

election is the one who would beat all other candidates in head-to-head elections in terms of

majority. In other words, if there is a winner who is preferred to all other candidates by the

majority of voters, he is the Condorcet Winner. This property is indeed a very intuitive way

of identifying the “most wanted candidate”. In our above example, candidate z is a condorcet

winner (note that z is not proclaimed winner by neither the plurality nor the majority rule).

The problem is that there are circumstances where no Condorcet winner exists. This fact was

noted by Marquis de Condorcet himself in his important paper of 1785 [?]. A typical example

is “Condorcet’s paradox” we saw earlier; whenever such preference circles exist there is no

condorcet winner.

Although a condorcet winner may not always exist, it is considered a notion of funda-

mental importance in voting systems, capturing “fairness” when it is met, or “un-fairness”

when it is violated by the outcome of the election. The Condorcet rule is the voting rule that

proclaims winner the condorcet winner when one exists while the winner remains unidentified

when no condorcet winner exists.

2.1.3 The Borda Count Rule

The other important researcher of the field that we mentioned is Jean-Charles, chevalier de

Borda. He proposed (somewhere between 1781 and 1784) another voting method, known as

22CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

Borda score. Suppose there are m candidates. Each voter assigns to each of the m candidates

an integer score in the range [0, m− 1]. The scores assigned are summed for each candidate,

and the one with the highest score wins. The Borda-count rule tackles indeed the drawback

of the plurality and majority rules of ignoring all preferences except the top. However, rather

peculiar things can happen with the Borda count rule, and Condorcet himself was strongly

opposed to it.

Let us see an example demonstrating a problem of the Borda-count rule; the Borda rule

does not respect the condorcet winner even when one exists. The following table shows the

preferences of 7 voters and the corresponding borda scores of each of the 4 candidates.

v1: z Â x Â y Â w

v2: y Â x Â w Â z

v3: x Â y Â z Â w

v4: x Â y Â z Â w

v5: y Â z Â w Â x

v6: y Â z Â w Â x

v7: w Â x Â y Â z

According to these preference orderings the Borda score of each candidate is:

w : 6

x : 12

y : 15

z : 9

According to the Borda count rule candidate y is the winner. However candidate x is

a Condorcet winner. Therefore, Borda count rule, like plurality and majority rules do not

respect the Condercet Winner when one exists.

2.1.4 Approval-Veto Voting

In approval voting each voter gives his approval to a number of candidates. He does not

rank the candidates, he only divides them to approved and disapproved. A variation is k-

approval voting where each voter gives his approval for exactly k candidates. Let us note that

1-approval voting is equivalent to plurality voting. Veto voting is the opposite of approval

voting, each voter approves all candidates except one.

2.1. SOME IMPORTANT VOTING RULES 23

2.1.5 A Unified perception of Scoring Protocols

It will be of great use for our discussion to see almost all of the voting rules we have

mentioned as members of a class (family) of rules, the scoring rules [?]. Namely a scoring

rule (for m-candidate elections) is defined by a scoring vector a = (a1, a2, ..., am), satisfying

a1 ≥ a2 ≥ ... ≥ am. Each voter is represented by a voting list and the ith candidate in a given

voters list gains ai points from this voter. Each candidate’s point total is the sum of all the

points she gets. Whoever gets the highest sum is a winner.

This way, plurality rule is defined by vectors of the form (), (1), (1, 0), (1, 0, 0),...., de-

pending on the number of candidates m.

k-approval voting is defined by scoring vectors of the type (
k︷ ︸︸ ︷

1, 1, ..., 1,

m−k︷ ︸︸ ︷
0,, 0).

Veto voting is based on scoring vectors of the form (),(0),(1, 0),(1, 1, 0,),...

We have already discussed the notion of Condorcet winner and the fact that it does not

exist always. Because however it is of such fundamental importance in voting, there have

been proposed various voting rules which provide a fair compromise: when a condorcet winner

exists they proclaim him the unique winner of the election, when none exists they proclaim

winner(s) those who are closest to being a condorcet winner; such voting rules are sort of

approximating the condorcet winner. Such systems are, Dodgson Rule, Copeland rule, Young

rule, and Kemeny rule among others. Each rule assumes a different notion of proximity to

the condorcet winner. We will see the 3 first.

2.1.6 The Dodgson rule

The Dodgson rule was proposed by the 19th century mathematician Charles L. Dodgson,

better known as Lewis Carol, the pen-name with which he wrote his children books. In Dodg-

son’s rule, each candidate c1 is assigned a score, denoted by dscore(c). dscore(c) equals the

smallest number of sequential exchanges (called “switches” henceforward) of adjacent can-

didates in the voters’ preference lists that suffices to make c a Condorcet winner. Whoever

has the lowest Dodgson score wins in Dodgson’s system. When a Condorcet winner exists,

he or she is the unique candidate with Dodgson score zero and thus is the unique Dodgson

winner. We should note that in the case there is no Condorcet winner, Dodgson winners

are not necessarily unique; however, at least one Dodgson winner always exists in Dodgson

elections. In our formerly stated “Condorcet’s paradox”, all three a, b, c are winners under

the Dodgson rule.

Let us give an example presented by BTT in [?] to better understand how we calculate

1when we want to refer to a distinguished candidate in this thesis, we usually name him c

24CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

the dodgson score of each candidate.

We have 4 candidates a, b, c, d and three voters with the following preference orders:

v1 : a Â d Â b Â c

v2 : b Â c Â a Â d

v3 : c Â a Â d Â b

The Dodgson score of a is 1, since switching c and a in the preferences of v3 is suf-

ficient to make a the Condorcet winner, and no fewer switches will do so. Similarly, the

Dodgson score of b is 2, since at least 2 switches are necessary to beat both a and d, and this

can be accomplished by switching b to the top of the preference order of v1. The Dodgson

score of c is 1, since c can be made to defeat b by a single switch within the preference order

of v2 to become a Condorcet winner. Finally, the Dodgson score of d is 3 since 2 switches are

required to defeat a (for voters v1,and v2 or v3), and an additional switch is required for d to

defeat c(for voters v2 or v3). Thus a and c tie for Dodgson winner of this election.

2.1.7 The Copeland rule

As with dodgson rule, in this protocol every candidate c is associated with a score, Copeland

Score, which we will note cscore(c). For every two distinct candidates, i, j we have C(i, j) =

+1, if i beats j in their pairwise election in terms of majority, C(i, j) = −1, if j beats i in

their pairwise election in terms of majority, and C(i, j) = 0, in the remaining case. cscore

is calculated for each candidate c, as cscore(c) =
∑

c′ 6=c C(c, c′). The candidate with the

highest cscore wins. It is easy to verify that when a condorcet winner exists, he will have

the highest cscore since by definition he is the only one who beats all other candidates in

pairwise election.

This definition is for the case that all voters are of the same weight. In case of weights

there is a slight difference: cscore(c) equals again
∑

c′ 6=c C(c, c′) only now majority does not

suffice to show the winner of the pairwise elections. Therefore C(i, j) = 1 if the sum of weights

of the voters who prefer i to j is greater than the sum of weights of voters who prefer j to

i. Analogously C(i, j) = −1 if the sum of weights of the voters who prefer j to i equals that

of weights of voters who prefer i to j and C(i, j) = 0 if the sum of weights of the voters who

prefer i to j equals that of voters who prefer j to i.

2.2. SOCIAL CHOICE THEORY CRITERIA 25

2.1.8 The Young rule

As with the two previous rules, in this protocol every candidate c is associated with a score.

This score is the maximum subset of voters whose preferences can be taken into consideration,

so that c is proclaimed condorcet winner. The candidates with the maximum such score are

proclaimed winners. There is a nice way to perceive the young rule. We are facing an

optimization problem which is to find the “best” candidate, i.e. the condorcet winner. The

constrains are the preference orders of the candidates. When a condorcet winner exists, he is

the unique winner, the optimal outcome that satisfies all constrains. If no condorcet winner

exists, the problem is infeasible. In this case, the young rule examines which constrains have

to be deleted in order to make the problem feasible. Winners under the young rule are those

for whom the minimum number of constrains have to be deleted.

2.2 Social Choice Theory Criteria

The traditional track followed in voting rules was to examine whether the various vot-

ing rules satisfied certain properties, known as rationality criteria, that seemed only natural

desiderata. We will see three of them.

Pareto optimality criterion, unanimity criterion or collective rationality criterion: if every

voter prefers candidate x to y, then y is not chosen. The pareto optimality criterion seems a

natural demand and non-compliance with it shows some collective irrationality of the voting

rule.

All of the voting rules we examine are known to be compatible with the pareto optimality

criterion: Copeland, Dodgson, Condorcet, Plurality, Approval, and Borda [?].

The next criterion is the Weak Axiom of Revealed Preference(WARP). In our already in-

troduced notation suppose we have a subset of the candidates C ′ ⊂ C. We say that a voting

rule E satisfies WARP if, when C ′⋂E(V,C) 6= ∅, then C ′⋂ E(V, C) = E(V, C ′).

From our voting rules only Condorcet, and Approval are known to be compatible with

WARP [?]. Nurmi claims in [?] that also Plurality satisfies WARP, but this is not true, which

is what Bartholdi et.al. and Hemmaspaandra et. al. correctly claim. Let us see the following

example:

1 voter: x Â w Â y Â (z)

2 voters: (z) Â x Â w Â y

3 voters: y Â w Â (z) Â x

The parenthesis mean that C = {x, y, w, z} while C ′ = {x, y, w}. It is easily seen that

26CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

E(V, C ′) = {x, y} while E(V, C) = {y} 6= E(V, C ′)
⋂

C ′.

For our purposes we define a slightly different version of WARP, unique-WARP which

says that a unique winner among a set of candidates remains a unique winner among each

subset of candidates that include him/her.

Our third criterion is path-independence. If we have that C = C1
⋃

C2, then a voting rule

is said to be path-independent if it satisfies that: E(V, C) = E(V,E(V, C1)
⋃

C2). In words,

path-independence means that the outcome of the election is not affected by any partitioning

of the candidates.

Nurmi claims that only approval voting satisfies path-independence.

2.3 Arrow’s Theorem (Paradox)

For historical reasons and because of its striking importance, we present here a classic result

of social choice theory known as Arrow’s theorem or Arrow’s paradox. Economist Kenneth

Arrow (co-recipient of the 1972 nobel prize) proved in 1950 that there is no voting rule (So-

cial Choice function) 2 over a set of 3 or more candidates that satisfies all 3 of the next very

natural properties for all instances:

unanimity: If every voter prefers candidate x over y, then y is not elected as winner.

independence of irrelevant alternatives(IIA): If candidate x is proclaimed winner un-

der the voting rule and the relevant position of x and y remains unchanged in the pref-

erences of all voters, although the place of some other candidate z may change upwards

or downwards, then y can not be proclaimed winner (although z may be proclaimed

winner).

non-dictatorship: There is no voter whose first choice is always selected no matter what

the other voters vote for.

What does Arrow’s theorem mean?

We have already seen that the optimality desideratum of voting is not that easily captured

by the various voting rules and outcomes that seem not at all optimal when examined in

retrospect may come up. However we expect that all voting rules must be “fair” in a sense.

That means that there are some very natural properties that we expect them to have. Arrow’s

theorem clashes our hopes for fairness too: it states that there is no fair voting system, in the

2Actually Arrow stated the theorem for the slightly different notion of Social Welfare Functions but it can

be stated for SCF as well

2.4. THE GIBBART SATTERTHWAITE THEOREM 27

sense that for each voting system there will exist some instances that such “fairness criteria”

are violated. Un-fairness is intrinsic in all voting systems!

Let us demonstrate Arrow’s theorem by giving an example for the plurality rule, which is

clearly not a dictatorship:

- plurality satisfies unanimity (trivial to verify)

- plurality violates IIA. Let us take the following instance:

v1: x Â y Â z

v2: z Â y Â x

v3: y Â z Â x

v4: x Â y Â z

Under plurality rule x is proclaimed winner

But if voters v2, v4 change their votes in the following way (note that the relevant posi-

tions of x and y remain unchanged),

v2: y Â z Â x

v4: z Â x Â y

while v1, v3 remain unchanged:

Now y is proclaimed winner!

2.4 The Gibbart Satterthwaite Theorem

Now it is time to state the very important Gibbard-Satterthwaite theorem. Although it can

be stated in the general context of mechanisms in a natural way (actually Gibbard himself

gives such a more general statement in his paper) we present it for voting rules because this

is our main interest in this thesis.

We remind that a Voting scheme is strategy-proof if no agent can ever benefit from lying,

no matter what other agents have reported as their preferences. To put it in our familiar

game-theoretic context, truth-telling is a dominant strategy for every agent. If a voting

scheme is not strategy proof, we say it is manipulable.

We say that a voting scheme satisfies non-imposition if it does not preclude beforehand

28CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

any candidate from the outcome. In other words, the voting rule (social choice function) that

determines the outcome must be onto the set of candidates.

In 1973 Gibbard in his seminal paper [?] and Satterthwaite [?] in his PhD thesis proved

independently one of the most well known impossibility results in the field of mechanism

design.

Theorem 3 (Gibbard-Satterthwaite impossibility Theorem on Voting Schemes). Every vot-

ing scheme which satisfies non-imposition, over a set of at least three candidates, is either

dictatorial or manipulable (i.e. not strategy proof).

The Gibbard-Satterthwaite theorem states that only “trivial” in a sense voting schemes

are strategy proof. Triviality can be of two types. When there are only two candidates all

“reasonable” voting rules are equivalent to the plurality rule, therefore it is a trivial case. If

a voting rule is a dictatorship, it is trivial in the sense that it is not much of a voting rule,

since it does not take into consideration the preferences of any of the voters but one.

Since the theorem was stated in 1973 many different proofs have been given. Here we

prefer to take a more informal approach showing which parts of the theorem can be intuitively

perceived.

• If there are only 2 candidates → there is no possible lie that will not harm the actually

preferred candidate of each voter. So the scheme is strategy proof

• What changes when there are more than 2 candidates? → “good” lies exist. For

example:

5 voters: a Â b Â c

4 voters: b Â a Â c

2 voters: c Â b Â a

Under let’s say the plurality rule, candidate a is the winner. The 2 candidates that

have c as their top choice may be tempted, since their top choice will not become a winner

anyhow and the candidate that will become winner is their worst choice, to report a false

preference order b Â c Â a in order to make candidate b win, which is a better outcome than

having a win. Therefore they have an incentive to lie, i.e. to manipulate the election.

Now, we note that only the one direction of the theorem is difficult to prove:

2.4. THE GIBBART SATTERTHWAITE THEOREM 29

• If the voting rule is a dictatorship (the identity of the dictator is not known to the

voters) → it is strategy proof: this direction is easy. Each voter has incentive to vote

truthfully in case he/she is the dictator; the voting rule is indeed strategy proof.

• If there are more than 2 candidates and the voting rule is strategy proof → the voting

rule is dictatorial: this direction is more difficult to prove.

We just note, in order to be precise, that the Gibbard-Satterthwaite theorem supposed

that the voting scheme is single-valued, i.e. there is always exactly one winner. However it

was generalized in 2000 by Duggan & Schwartz [?] for the case that the winner set is some

subset(possibly empty) of the candidate set and indeed in the following sections we will mostly

assume this generalized result.

The Gibbard-Satterthwaite theorem has great implications. Actually it clashed any hope

of our “ultimate goal” being realized, designing a voting system that would “force”every voter

to vote according to her true preferences in all situations! We have to be careful though. The

Gibbard-Satterthwaite theorem is stated “in a sufficiently rich environment”. This means

that it makes no assumptions about the setting of the problem, for example about the form

of the preferences of the agents. Although the fact that it is so general gives the theorem its

striking importance, it gives us at the same time one way to circumvent it: by restricting the

setting we are studying.

The thought of how to circumvent Gibbard-Satterthwaite impossibility theorem plays a

rather central role in the whole field of mechanism design. For now we would like to enumerate

some of the already known “paths” taken in order to do this in the literature:

• Restrict the structure of agents’ preferences

• Use a weaker equilibrium concept

• Design mechanisms where finding a beneficial manipulation is computationally hard

• Use Randomization

Actually we have already seen one case of the first type: the VCG mechanisms. VCG mech-

anisms are as we saw strategy-proof (and non-dictatorial). We achieved that by introducing

money, which is equivalent to studying a restricted field of the preferences (utilities) of each

agent by assuming that they are quasi-linear.

A word of note about this “first path”. There is no way for a designer of a mechanism to

impose a type of preference on the agents, for example quasi-linear preferences. The results

30CHAPTER 2. VOTING SCHEMES: THE (TRADITIONAL) SOCIAL CHOICE PERSPECTIVE

we have for restricted preferences state that when the setting of the problem justifies our as-

sumption that preferences are modelled as a special type of function, for example quasi-linear

functions, then our results can take place, e.g. VCG mechanisms.

The core of this thesis examines results that have to do with the third “path”, “the path

less taken”.

Chapter 3

Voting Schemes: The

Computational Perspective

Until the end of the 1980’s the research in the field of voting rules focused on proving

that voting procedures satisfied or not various criteria, which were in essence mathematical

properties of the social choice function. It was Bartholdi et. al with a series of seminal papers

that gave the research of the field a new direction. As they put it in [?], a natural refinement

of the classic work in social choice, which until then had dealt with the distinction between

the possible and the impossible, is a distinction between the tractable and the intractable.

First of all, it is only natural to want to know that the winner of an election can be

computed in a “reasonable” time. Second, since the Gibbart-Satterthwaite theorem states

that manipulation is inherent in voting in a way, it would be quite comforting to know that

computing a proper lie is computationally intractable. These were their (and our) incentives

to examine the various voting methods from a computational hardness point of view. We

note that the idea of having a voting protocol that is hard to manipulate is quite similar to

the cryptographic setting, where computational complexity is desirable (contrary to most of

the rest of the field of Computer Science).

The known results in this direction, which we will present, argue that Computational

Complexity is another aspect, apart from the traditional we presented in the previous sec-

tion, one should consider when judging the various voting rules.

It is quite logical to say that a central goal of the computational study of elections, is

to have natural, attractive voting systems whose winner-evaluation problems are computa-

tionally simple but nonetheless are hard to manipulate. In this section we study important

known results concerning complexity issues of the following three directions:

• Winner Determination

31

32 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

• Manipulation & Bribery

• Control

We will define explicitly each of the previous notions in the sections to come but let’s give

an informal description of them: manipulation is to report false preferences in order to get

a favourable outcome; bribery is what we all know: someone tries to buy-out some voters in

order to get a favourable outcome; control is maybe not self-explanatory like bribery but it

is quite easy to understand: suppose a chair oversees the voting procedure; we are concerned

whether he/she can apply the procedure in such a way, so as to have a favourable outcome.

In manipulation people “play” against the rules. In control the chair plays along with the

rules but he/she may still have the power to twist the outcome to his/her favour.

A word of note here is in order.

(1) we restrict ourselves to deterministic voting schemes, although randomized have also been

proposed

(2) the results we present make the assumption of complete knowledge of the manipulators,

i.e. they know the preferences of all non-manipulator voters. This assumption is quite natu-

ral:

(2a) it is worst-case assumption, meaning that hardness under this assumption implies

hardness under incomplete information; easiness results are weakened under this assumption

but our main goal is to prove that systems are hard to manipulate

(2b) the results measure in this way only the inherent complexity of manipulation rather

than any potential complexity introduced by the model of uncertainty.

Finally, we would like to stress out that “the literature on the complexity of election

systems is a bit schizophrenic” [?]. Some areas of this literature - such as most of the work on

the complexity of winner determination problems - focus on the issue of whether a particular

candidate is (or can be made to be) a winner (possibly among others). Other areas of the

literature on the complexity of election systems - such as most of the work on the complexity

of control problems - focus on the issue of whether a particular candidate is (or can be made

to be) the unique winner. In the literature on manipulation one finds multiple examples of

focus on winners and of focus on unique winners, as well as cases where the manipulators

is a subset of the voters or only a unique voter. Furthermore, some areas of this literature

take the number of candidates as unbounded (it can get arbitrarily large depending on the

setting), while others consider such an assumption unrealistic and assume that the number

of candidates is a small constant.

Such differences in the assumptions probably underline the fact that as we said in the

3.1. A BRIEF OVERVIEW OF COMPLEXITY CLASSES 33

introduction, elections have so many applications that the setting can vary largely.

We will try to stress out the assumptions made in each case so that there is no confusion.

Before we begin let us give a brief overview of the complexity classes we will come across

in this section.

3.1 A Brief Overview of Complexity Classes

Decision problems may belong to the following classes:

• P (Polynomial): The class of decision problems solvable in polynomial time (in terms

of the size of the input). In Computer Science we say that the problems in this class

are tractable, meaning that they are efficiently solved.

It is known however that in some cases efficiency may be more of theoretic importance

than any practical; for example, if we have that the time needed to solve a problem

is n1000 (where n is the size of the input) the problem is technically in P but even for

small inputs it will take impractically long to give an answer. Actually we will see such

a case in this thesis.

• NP (Nondeterministic-Polynomial): The set of problems for which, if the answer is

“yes”, there exists a proof of this fact that can be verified in polynomial time. An

extremely important subset of problems in NP are the NP -complete problems (actually

every class has a subset of problems that are complete for the class). A problem is NP -

complete if every other problem in NP can reduce to it in polynomial time.

• Θp
2 There have been a number of definitions for this class of problems that have proven

to be equivalent. A first definition is given by S. Zachos and C. Papadimitriou in 1983

[?]: The class of decision problems solvable in polynomial time, that can make O(log n)

queries to an NP oracle (where n is the length of the input). Another equivalent

definition is given by L. Hemaspaandra in 1989: the class of decision problems solvable

in polynomial time that can make polynomially many (as to the size of the input)

non-adaptive queries to an NP oracle (parallel access to NP) [?].

All problems in P are in NP and all problems in NP are in Θp
2, i.e

P ⊆ NP ⊆ Θp
2.

34 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Let us give an explanation of why these relations hold:

If a problem is in P we can solve it in polynomial time without a proof, so if we are given

a proof we can solve it in polynomial time simply by ignoring the proof, and so the problem

is also in NP . If a problem is in NP, then we can solve it by asking a single question to the

oracle, so it is also in Θp
2.

It is commonly believed that there are problems that are in Θp
2 that are not in NP , and

problems in NP that are not in P , although this has never been proven!

3.2 Winner Determination

3.2.1 The General Case

Perhaps the most essential question when talking about any voting rule, is whether a given

candidate is proclaimed a winner. Let us formalize this in our familiar decision-problem way:

Name: E - Winner

Input: Set of candidates C, one distinguished candidate c, a set of preference orders V on C

Question: Is c a winner under voting scheme E ?

First of all let us note that the above decision problem (first formulated by BTT), cap-

tures the complexity of the corresponding winner determination problem; in other words the

problem of actually finding the winner of an election E is at least as hard as answering the

E-winner decision problem. So if the E-winner decision problem is hard, the general winner

determination problem is hard as well. What if it is easy? Then the general winner determi-

nation problem can be harder only by a factor of the number of the candidates .

In most voting schemes in use only polynomial time is required to answer the E-winner

problem. For example, to solve Plurality Winner requires only O(|V |+ |C|) work to count the

first-place votes and identify whether c is (one of) the candidate(s) with the most. Actually

we can state the following easy to prove theorem:

Theorem 1. The Winner problem for all scoring protocols is in P .

Proof. One must go through the |C| positions of the scoring vector for each of the |V | voters, in

order to calculate the score of each candidate. Then he finds the winner(s), with the maximum

score and checks whether c is the winner (one of them). This requires O(|C| · |V |+ |C|) steps.

It is therefore polynomial both on the number of the candidates and on the number of the

voters.

3.2. WINNER DETERMINATION 35

This result seems only natural since each voting system in practical use is expected to have

a winner determination rule that is efficiently computed. The next result however, proven by

Bartholdi, Tovey and Trick (from now on BTT for simplicity) [?] in 1987 may take someone

by surprise:

Theorem 2. Dodgson Winner is NP-hard

It is interesting to note here that C. Dodgson gave a description of who is considered a

winner under the Dodgson rule, but gave no algorithm to compute one. Probably he would

not anticipate that his method, although explicitly described, could be proven “inpractical”.

The above result underlines the reasonable choice of analysing voting rules by a computational

perspective.

We give a sketch of the proof. BTT first define two decision problems.

Name: Dodgson Score

Input: Set of candidates C, one distinguished candidate c, a set of preference orders V on

C, a positive integer k

Question: Is the dodgson score of candidate c less than or equal to k ?

Name: Dodgson ranking

Input: Set of candidates C, two distinguished candidates c, c′ a set of preference orders V

on C

Question: Did c defeat c′ in the election ?

The proof of the theorem is based on two lemmas. The first lemma claims that Dodgson

score is NP-complete and the second that Dodgson ranking is NP-hard. The proof for both

lemmas is a reduction from the NP-complete Exact Cover by 3 sets problem. Then, the two

lemmas are combined to get the theorem.

We see that BTT gave only a lower bound of the complexity of the problem. Ten years

later, in 1997, Hemaspaandra E., Hemaspaandra L. and Rothe managed to strengthen the

hardness result to a completeness result. Namely they raised the lower bound and gave a

matching upper bound of the hardness of the problem, yielding a completeness result.

Theorem 3. Dodgson Winner is Θp
2 − complete

36 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

To prove that Dodgson winner is in Θp
2 (give the upper-bound) is quite easy. Given an

instance (C, V, c), we can ask the NP oracle Dodgson Score polynomially many questions

in parallel about all candidates. If c has the minimum score, c is the Dodgson winner.

Otherwise not. However to prove that the problem is Θp
2−hard is far more complex. First of

all, as in BTT the assumption of unbounded number of candidates is made for the reduction.

The reduction made from the NP-complete problem 3-dimensional-matching(3DM) has some

properties that allow a Θp
2 − hardness tool of Wagner [?] to be used. The proof is omitted.

Θp
2-completeness suggests that the relevant problem is far from being efficiently solvable,

and completeness for this higher level of the polynomial hierarchy speaks more powerfully

than would completeness for NP.

The drawback of having a voting scheme for which the winner determination problem is

computationally intractable, could not be put better than BTT in [?] about the Dodgson

rule:

We think that Lewis Carroll1 would have appreciated the idea that a candidate’s mandate

might have expired before it was ever recognized.

So, since the determination of the winner in the Dodgson rule is intractable, is there any

interest in studying it? Yes! First of all, one of the reasons the Dodgson rule is so interesting

to study for computer scientists, is that it is one of the simplest and most naturally perceived

examples of a Θp
2-complete problem. Until Hemaspaandra et.al. proved their result, all Θp

2-

complete problems were artificial, while the Dodgson-winner problem is very natural. As we

know any complete problem of a class is indicative of its complexity (therefore we have a

strong theoretical interest in this practical problem) Furthermore, we will see in the following

sections that the Dodgson winner problem falls in P for special cases, i.e. when the number

of candidates or voters is bounded in advance, and we will present a heuristic that claims

that the Dodgson winner problem is efficiently solved “quite frequently”.

3.2.2 Hardness when Candidates or Voters are Bounded

Interestingly enough, BTT note, that when we bound in advance either the number of

voters or the number of candidates, the problem of Dodgson Winner falls into P . However

for very large |V | or |C| the constants may be so big that being in P is more of a technicality

than having any practical use.

When the number of voters is bounded in advance then for each instance of the problem

there are only |C||V | possible places of candidate c, which is a constant since |V | is bounded.

Each of these |C||V | possible places implies a number of “switches” which is easy to compute.

Therefore, we compute all these implied “switches” and the Dodgson score of c is the minimum
1pen name of Charles L. Dodgson

3.2. WINNER DETERMINATION 37

of such “switches”. This procedure is technically in P but it is clearly inefficient.

When the number of candidates is bounded by a constant, we can calculate the Dodgson

score in polynomial time. How? We form the problem as an integer program with a fixed

number of variables. Lenstra [?] proved that Integer programming though NP-complete for

the general case, is in P, when the number of variables is fixed. Let us see the ILP we are

talking about.

Index by i the |C!| types of preference orders found among the voters, and let Ni(constant)

be the number of voters of type i. Let xij(variable) be the number of voters with preferences

of type i for which candidate c will be moved upwards by j positions. Let eijk(constant) be

1 if the result of moving candidate c by j positions upward in a preference order of type i is

that c gains an additional vote against candidate k, and 0 otherwise. Let dk(constant) be the

minimum number of votes that c must gain against k to defeat him in a pairwise election. If

c already defeats k, then dk = 0. Then the Dodgson score of c is the value of the following

integer linear program.

min
∑

ij

j · xij s.t.

∑

j

xij = Ni (i→ different preference order types)

∑

ij

eijk · xij ≥ def(k) (k → candidates)

xij ≥ 0, integer (j → upward pushes)

The objective is to minimize the number of switches, i.e the cost function will give the

dodgson score. The first set of constraints restricts the numbers and types of preferences to

those actually present among the voters. The second set of constrains guarantees that enough

“switches” occur in order to make c a condorcet winner.

The number of different types of voters (preference orders) is no greater than |C|!, and

the number of different positions in any preference order is |C|. Consequently there are no

more than |C| · |C|! variables xij and no more than |C| + |C|! non-trivial constraints. So,

for a constant number of candidates |C|, the problem is in P , although the constants that

are hidden by the asymptotic notation may be huge . By running this program for every

candidate(|C| times), we calculate the dodgson score of each candidate and then find the

winner(s).

We note that only xij are variables of the program; the rest are parameters (constants)

38 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

that are determined before we run the program, having available the preferences of the voters.

In order to agree that this solution is indeed in P one must verify (it is not difficult) that

these pre-computations can be performed in polynomial time.

3.2.3 Approximating the Dodgson score

Up to now we have said that computing the Dodgson score is generally NP -complete. We

tried to find a way out of this inefficiency by loosing in terms of generality, i.e. bounding the

number of candidates or voters beforehand. But even in these cases we can see that being in

P is more of a technicality, than meaning efficiency. A next step to circumvent intractability

is as usually approximation. Caragiannis et. al. [?] propose a slightly different formation of

the problem as ILP, that yields an algorithm (using a randomized rounding technique similar

to the one used for Set Cover [?]) that gives a Θ(log |C|) approximation of the Dodgson score

with high probability (> 1/2). The ILP they use is the same with the one given by BTT only

varied to make the variables binary:

min
∑

ij

j · xij s.t.

∑

j

xij = 1 (i→ voters)

∑

ij

eijk · xij ≥ def(k) (k → candidates)

xij ∈ {0, 1} (j → upward pushes)

3.2.4 A heuristic for finding the Dodgson-winner

In the previous section we said that the dodgson winner can be found in polynomyal time

when the number of candidates or voters is bounded. We also mentioned there is an efficient

algorithm that gives a good approximation of the Dodgson score. Is there anything better

that can be expected? In 2009 L. Hemaspaandra and C. Homan [?] gave a heuristic which,

when the number of voters is much greater than the number of candidates - even polynomi-

ally greater, but more than quadratic - a simple greedy algorithm very “frequently” finds the

Dodgson winners in such a way that it “knows” that it has found them, and furthermore,

the algorithm never incorrectly declares a non-winner to be a winner. Of course what “fre-

quently” means has to be further explained. We just want to warn the reader - so that not

too high expectations are raised - that “frequently” refers to the fraction of the instances that

the algorithm finds a solution and not to any kind of randomized algorithm!

In this section we give the algorithm as it was given by the authors, we explain it and

3.2. WINNER DETERMINATION 39

present the guarantees of correctness that it gives.

For two candidates c, d we denote c <v d if in vote v d is preferred to c. If the two are

also adjacent, we denote it c ≺v d.

The first algorithm we present is a heuristic for the Dodgson Score decision problem which

as we have already said is NP -complete. The second is for the Dodgson Winner decision prob-

lem which is Θp
2-complete.

One of the most interesting properties the algorithms that we present have is that they are

“self-knowingly” correct. This can be defined formally but it suffices to say that an algorithm

is “self-knowingly” correct, if whenever it claims it has found the correct solution and it is

sure about it, the solution is indeed correct.

40 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

GreedyScore(C,V,c)

1 ¤ C is the set of candidates

2 ¤ V is the list of votes

3 ¤ c ∈ C whose dodgson score the algorithm tries to compute.

4 for c ∈ C\{c}
5 do Deficit[d] ← 0

6 Swaps[d] ← 0

7 ¤ We just initialized the counter variables. Deficit[d] shows

8 ¤ the number of votes by which d beats c in their pairwise contests.

9 ¤ Swaps[d] counts the number of votes for which c ≺ d

10 for each vote v ∈ V

11 do i← 1

12 while v[i] 6= c ¤ for d <v c

13 do d← v[i]

14 Deficit[d] ← Deficit[d]−1

15 i← i + 1

16 if i < length(v) ¤ v[i] = c

17 then d← v[i + 1]

18 Swaps[d] ← Swaps[d]+1

19 for i← i + 1 to length(v) ¤ for c <v d

20 do d← v[i]

21 Deficit[d] ← Deficit[d]+1

22 confidence ← “definitely”

23 ¤ Calculate the score of c

24 score ← 0

25 for each d ∈ C\{c}
26 do if Deficit[d] ≥ 0

27 then score ← score + bDeficit[d]/2c+ 1

28 if Deficit[d] ≥ 2· Swaps[d]

29 then confidence ← “maybe”

30 score ← score+1

31 return (score, confidence)

The part that maybe needs some further explanation is where the score of the candidate

is being calculated in lines 24 - 31. If we have some positive deficit for a candidate d,

then bDeficit[d]/2c + 1 swaps between c and d, if such exist, are necessary and sufficient

3.2. WINNER DETERMINATION 41

to make c beat d(we will prove this more formally right next, for now let us take it for

granted). The point is that if such swaps exist - this is the case Deficit[d]< 2 ·Swaps[d] - our

algorithm calculates the score correctly, and knows it has done so (outputs “definitely”). If

however not so many swaps, i.e. votes where d is adjacent to c, exist (the case Deficit[d]≥
2·Swaps[d]), the algorithm computes a score that is a lower bound of the actual dodgson score

of candidate c and outputs it declaring uncertainty. Since the algorithm is a heuristic and

not an approximation algorithm the error in this case may be arbitrarily large but that is not

the problem, since a heuristic is no approximation algorithm to give a guaranteed maximum

error.

The next algorithm decides whether c is a winner of a dodgson election by giving again a

degree of certainty.

GreedyWinner(C, V, c)

1 ¤ C is the set of candidates

2 ¤ V is the list of votes

3 ¤ c ∈ C. We wish to check whether c is a Dodgson winner in election (C, V).

4 (cscore,confidence) ← GreedyWinner(C, V, c)

5 winner ← “yes”

6 for all candidates d ∈ C\{c}
7 do (dscore,dcon) ← GreedyWinner(C, V, d)

8 if dscore < cscore

9 then winner ← “no”

10 if dcon = “maybe”

11 then confidence ← “maybe”

12 return (winner,confidence)

Both algorithms run in polynomial time. The total number of line-executions in a run of

GreedyScore is clearly O(|V | · |C|), and for GreedyWinner is, including the line executions

within the subroutine calls, O(|V | · |C|2).
We already said that the authors claim the heuristic is “self-knowingly” correct. What

they mean by that is that, when their heuristic gives an answer accompanied by “definitely”,

it can be proven that the answer is indeed correct.

Theorem 4. Both GreedyScore and GreedyWinner are self-knowingly corect algorithms

Proof. Suppose that GreedyScore, on input (C, V, c), returns “definitely” as the second com-

ponent of its output. Then, as it is clear from lines 24 - 31 every candidate d ∈ C\{c} for

which Deficit[d] ≥ 0 must also have Deficit[d] < 2·Swaps[d]. In this case, the algorithm sets

42 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

its score to score =
∑

d∈C\{c}:Deficit[d]≥0 bDeficit[d]/2c+ 1. For this value of score to actually

be the Dodgson score of c, we must show (a) that we can by performing “score” swaps turn c

into the Condorcet winner of election (C, V) and (b) that by performing fewer than “score”

swaps we cannot make c a Condorcet winner. Both claims depend on the following observa-

tion: Let v be a vote having some candidate d such that c ≺d. Then swapping c and d would

decrease by two(!) the difference between “the number of votes where c is preferred to d” and

“the number of votes where d is preferred c”(Deficit[d] of our algorithm). Also, c’s standing

against any candidate other than d would not be affected by this swap. So, regarding the

number of swaps needed to make c beat some d ∈ C\{c}, let |Vd| be the set of votes in V in

which c ≺ d. If Deficit[d] is, by line 26 nonnegative (if Deficit[d] is negative then c already

beats d and the number of swaps needed is trivially 0), and if |Vd|bDeficit[d]/2c + 1, then

we can make c beat d by choosing exactly bDeficit[d]/2c+ 1 votes in |Vd| and swapping the

positions of c and d in these votes. But Swaps[d] is precisely |Vd| and since we are in case

Deficit[d] < 2·Swaps[d], Swaps[d] is at least bDeficit[d]/2c + 1. Thus, by summing over all

such d ∈ C\{c}, “score” is enough swaps to make c a Condorcet winner, and we have satisfied

(a). To see (b), suppose that it is possible to make c a Condorcet winner with fewer than
∑

d∈C\{c}:Deficit[d]≥0 bDeficit[d]/2c+ 1 swaps. Then for some d ∈ C\{c} such that Deficit[d]

geq0 it must hold that at most bDeficit[d]/2c of these swaps are applied to c’s standing

against d. But then, since as noted above one swap changes the deficit between c and d by

exactly two, we do not have enough swaps to make c beat d. So we have proven that when

GreedyScore returns “definitely” as the second component of its output, that score is the op-

timal number of swaps needed to make c a Condorcet winner. Therefore it is “self-knowingly”

correct.

It can then easily be argued that GreedyWinner correctly checks whether c is a Dodg-

son winner if every call it makes to GreedyScore correctly calculates the Dodgson score.

GreedyWinner then returns “definitely” exactly if each call it makes to GreedyScore returns

“definitely”. Therefore it is too “self-knowingly” correct.

What we have proven already is that the algorithm GreedyScore (the same holds for

GreedyWinner) computes the dodgson score of c correctly when there are enough votes with

c adjacent to each candidate it loses from, so that these swaps can make c a condorcet winner.

In other words when there are enough votes of the form ... ≺ c ≺ d ≺ ..., ∀d ∈ C\{c} then

the algorithm works fine. When however there exists even one candidate d for which most

of the votes are in the form ... ≺ c ≺ ... ≺ d ≺ ... then the algorithm cannot answer with

certainty. The thing is that Homan and Hemaspaandra prove that as the ratio of voters to

candidates gets higher, the probability to get an unwanted instance goes asymptotically to 0

3.2. WINNER DETERMINATION 43

as the number of candidates increases, assuming that we consider all (m!)n elections with m

candidates and n voters equally probable to come up. Let us see how.

The main result of Homan and Hemaspaandra is the following:

Theorem 5.

• For each (election, candidate) pair it holds that if GreedyWinner outputs “definitely”

as its second output component, then its first output component correctly answers the

question, “Is the input candidate a Dodgson winner of the input election?”

• For each m,n ∈ N, when a Dodgson election E selected uniformly at random from all

Dodgson elections having m candidates and n votes (i.e., all (m!)n Dodgson elections

having m candidates and n votes have the same likelihood of being selected) then the

probability, that the election has one or more candidates c such that GreedyWinner

on input (E, c) outputs “maybe” as its second output component, is less than 2(m2 −
m)e

−n
8m2 .

The first part of the theorem was proven in Theorem 4. The second part has a rather

interesting proving procedure therefore we present it here.

We will need a theorem that gives some variant of Chernoff Bounds.

Theorem 6 (Alon & Spencer 2000). Let X1...Xn be mutually independent random variables.

If there exists some p ∈ [0, 1] such that, for each i ∈ {1, ..., n},

Pr(Xi = 1− p) = p and

Pr(Xi = −p) = 1− p

then for all a ∈ R where a > 0 it holds that Pr(
∑n

i=1 Xi > a) < e−2a2/n.

Next we prove a lemma that we will need.

Lemma 7.

1. Pr(|i ∈ {1, ..., n} : c <vi d| > 2mn+n
4m) < e

−n
8m2

2. Pr(|i ∈ {1, ..., n} : c ≺vi d| > 3n
4m) < e

−n
8m2

Proof. 1. For each i ∈ {1, ..., n} define Xi as

Xi =

1/2, ifc <vi d

−1/2 otherwise

44 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Then |i ∈ {1, ..., n} : c <vi d| > 2mn+n
4m iff

∑n
i=1 Xi > 1

2(2mn+n
4m)− 1

2(n− 2mn+n
4m).

We first note that 1
2(2mn+n

4m) − 1
2(n − 2mn+n

4m) = n
4m . The crucial point here is to note that

c <vi d holds for half the votes of all possible m! a voter i may adopt. So if we let Xi follow

the uniform distribution Pr(c <vi d) = 1/2 or equivalently Pr(Xi = 1 − 1/2) = 1/2, and

Pr(Xi = −1/2) = 1− 1/2. Therefore, setting a = n
4m and p = 1

2 in Theorem 6 we prove the

first part of the lemma.

The proof of the second part is pretty much analogous.

2. For each i ∈ {1, ..., n} define Xi as

Xi =

1/m− 1, ifc ≺vi d

1/m otherwise

Then |i ∈ {1, ..., n} : c ≺vi d| < 3n
4m iff

∑n
i=1 Xi > 1

m(n− 3n
4m) + (1

m − 1)(3n
4m).

We note that 1
m(n− 3n

4m)+ (1
m − 1)(3n

4m) = n
4m . The crucial point is again to note that c ≺vi d

holds for exactly m of the votes of all possible m! a voter i may adopt. So if we let Xi follow

the uniform distribution Pr(c ≺vi d) = 1/m or equivalently Pr(Xi = 1/m − 1) = 1/m, and

Pr(Xi = 1/m) = 1− 1/m. Therefore, setting a = n
4m and p = 1− 1

m in Theorem 6 we prove

the second part of the lemma.

We are now ready to prove the second part of the main theorem, Theorem 5.

The proof is broken down in 3 sub-results.

1. Let V satisfy |V | = n. For each c ∈ C, if for all d ∈ C\{c} it holds that |i ∈
{1, ..., n} : c <vi d| ≤ 2mn+n

4m and |i ∈ {1, ..., n} : c ≺vi d| ≥ 3n
4m then GreedyScore(C, V, c) =

(Score(C, V, c), definitely).

Proof. 2mn+n
4m = n

2 + n
4m , so if |i ∈ {1, ..., n} : c <vi d| ≤ 2mn+n

4m then either c already beats d or

if not then the defection of more than n/4m votes from preferring-d-to-c to preferring-c-to-d

would (if such votes exist) ensure that c beats d. If now, |i ∈ {1, ..., n} : c ≺vi d| ≥ 3n
4m then

(excluding as invalid all cases where at least one of n or m equals zero) |i ∈ {1, ..., n} : c ≺vi

d| ≥ n
4m and so GreedyScore will be able to make enough swaps (in fact, and this is critically

important in light of the GreedyScore algorithm, there is a sequence of swaps such that any

vote has at most one swap operation concerning c and d performed on it) so that c beats

d.

3.3. MANIPULATION & BRIBERY 45

2. For each c, d ∈ C such that c 6= d, Pr(|i ∈ {1, ..., n} : c <vi d| > 2mn+n
4m ∨ |i ∈

{1, ..., n} : c ≺vi d| < 3n
4m). The probability is taken over drawing uniformly at random an m-

candidate, n-voter Dodgson election V = (v1, ..., vn) (i.e., all (m!)n Dodgson elections having

m candidates and n voters have the same likelihood of being chosen).

Proof. This follows from applying the union bound to the above Lemma 7.

3. This is the final result:

Pr((∃c ∈ C)[GreedyWinner(C, V, c) 6= (DodgsonWinner(C, V, c), definitely)])) < 2(m2 −
m)e

−n
8m2 , where the probability is taken over drawing uniformly at random an m-candidate,

n-voter Dodgson election V = (v1, ..., vn).

Proof. It follows from 1. and by applying 2. and the union bound to

Pr(
∨

c,d∈C∧c 6=d

((|i ∈ {1, ..., n} : c <vi d| > 2mn+n
4m) ∨ (|i ∈ {1, ..., n} : c ≺vi d| < 3n

4m))),

where |(c, d) : c, d ∈ C ∧ c 6= d| = m2 −m.

Now some observations about the heuristic we just presented. Although the guarantees

provided by the heuristic are very satisfactory we must keep in mind two things. First of

all the assumption that all (m!)n instances of the problem have equal probability to come

up certainly requires further explanation! In real situations this may be far from the case;

for example in political elections this is definitely not the case. For the analysis to be of any

practical importance reasons must be given that justify the assumption. Second, although the

guarantees of the heuristic may be very satisfactory theoretically, and the algorithm never

proclaims a winner falsely, heuristics are by definition unreliable, in the sense that some

instances are lost cases. In other words in some cases we will only get an unsure answer and

this is the best the algorithm can give us; it is no randomized algorithm which if we run many

times we increase the probability of a correct answer. We can imagine that in a political

election for example, this may be a problem.

3.3 Manipulation & Bribery

We have already talked about strategic voting and manipulable voting schemes. Here we

will treat all this in a more formal way. When talking of manipulation, we suppose that

among the voters exists a manipulative group, a subset of voters who strategically change

their preference lists in order to influence the election’s outcome in their favour. Let us see

an example of what exactly manipulation means in practice.

46 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Our voting system is the plurality rule. We have three candidates, a, b, and c, and eleven

voters, whose preferences are the following:

5 voters: a > b > c

4 voters: b > a > c

2 voter : c > b > a.

Under the plurality rule, candidate a is proclaimed winner since he receives the most

votes; 5, against 4 and 2 that candidates b and c receive respectively. However the 2 voters

whao have c as they first choice may look for a compromise: since they see that given the

votes of the rest of the voters their preferred candidate will not win, and if they vote truthfully

their worst option - a - will be elected, they may be tempted to report b > c > a as their

preference order and thus have candidate b win which is their second to best choice.

It is interesting to point out that such way of voting captures the problem of “lost vote”

to small parties we see in the political elections. Many voters realize that their small party

has no chance to be elected in the government and compromise by voting for one of the two

leading parties. In other words it seems that the plurality rule leads to a two-leading-parties

political setting, something verified by our experience.

There are two main variations of manipulation that are considered in the literature of vot-

ing rules; constructive, where the objective is to make a distinguished candidate one of the

(possibly many) winners, and destructive where the objective is to preclude a distinguished

candidate from winning. In this section the attention is focused on the constructive scenario,

because this is the pervasive direction of research (to our knowledge only Conitzer, Sandholm

and Lang in [?] have studied the destructive case). From now on when the type of manipu-

lation is not mentioned explicitly, the constructive case is implied.

The problem of (constructive) manipulation is formulated as a decision problem in the

following way:

Name: E-manipulation

Input: A set C of candidates, a set N of non-manipulative voters, a set M of manipulative

voters with N
⋂

M = ∅ (N
⋃

M = V), and a distinguished candidate c ∈ C.

Question: Is there a way to set the preference lists of the voters in M such that, under

election system E, c is a winner of the election?

A variation of the above problem is to also have different weights for voters both in N and

M ; this is the E-weighted-manipulation problem. We note that although in the beginning,

3.3. MANIPULATION & BRIBERY 47

for example in the work of Bartholdi et.al, weights weren’t taken in consideration, most later

work, for example Hemaspaandra et. al., Conitzer et. al., incorporated weights. The reason

is that (1) without weights manipulation is easy in most cases, as we shall see in section 3.3.3,

and (2) because, as we have already mentioned, in many real-world elections, voters are in

fact weighted.

Bribery is a very similar setting to manipulation, only that in this case the manipulative

group is not known beforehand; in algorithmic terms, the manipulative group is not part of

the input. We suppose that an outside agent, who has a finite budget, wants to determine

which voters to bribe, so that they will change their preferences, in order to influence the

outcome in a desired way. In manipulation the manipulative group is fixed; in bribery it is

to be found.

The problem of bribery is formulated as a decision problem in the following way:

Name: E-bribery

Input: A set C of candidates, a set V of voters, a distinguished candidate c ∈ C, and a

nonnegative integer k.

Question: Is it possible to change the preference lists of at most k voters such that, under

election system E, c is a winner of the election?

An intuitive way to think of k is to think that it is the maximum number of voters that

the manipulator can bribe with his fixed budget.

E-bribery has also some variations. In E-weighted-bribery each voter has a weight, in E-

$-bribery each voter has a price tag, so here k is the budget in monetary units. If the voters

have both price tags and weights then we have the case of E-weighted-$-bribery.

3.3.1 Plurality- Manipulation and Bribery in various Settings

Let us again begin with the plurality rule which is probably the most common voting rule.

First we recall that plurality-rule election with m voters is described by the scoring vector

(1,
m−1︷ ︸︸ ︷

0, ..., 0). BTT in [?] state the following theorem:

Theorem 8. Plurality-manipulation and plurality-weighted-manipulation are both in P .

The proof is quite straightforward: all the manipulators vote for their desired candidate c,

and c is either proclaimed a winner, or the manipulators can not influence the result.

48 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

BTT weren’t concerned with the bribery problem but Faliszewski, Hemaspaandra and

Hemaspaandra were and in [?] they give the following theorem:

Theorem 9. Plurality-bribery is in P .

Proof. A (polynomial time) greedy algorithm works for plurality-bribery: we keep bribing

the voters of a current winner to vote for c, until c is a winner or we have already bribed k

voters (we have run out of budget).

However this simple and natural approach doesn’t work when we make the setting slightly

more complex, i.e for either the plurality-weighted-bribery or the plurality-$-bribery. In the

$ (weighted) case it is not always clear whether one should first bribe the cheapest (heaviest)

voter of some current winner or just the globally cheapest (heaviest) voter who does not yet

vote for c. In the latter case we get an extra vote for c, with the minimum cost (we get the

greatest additional vote weight for c) but in the former case we gain a vote (some vote weight)

for c while simultaneously potentially decreasing the total votes (vote weight) that c needs in

order to become a winner. (We say “potentially decrease” since if there are multiple winners

then the total votes c needs to win won’t change immediately. But if we keep on bribing the

voters of current winners, this decrease will occur eventually.) Let us consider the following

example which demonstrates why the simple greedy approach fails for plurality-$-bribery. We

have candidates a, b, and c and five voters with the following prices: 2 of them 1$, 2 of them

2$, and 1 3$. Both voters with price 1$ have a as their top candidate, and all the others have

b as their top candidate. Thus a receives 2 votes, c receives no votes, and b is the winner with

3 votes (see Figure). If we proceed greedily, first bribing the two (globally) cheapest voters -

voters preferring a - then c still loses to b, with 3 to 2 votes. In order for c to win one voter

of b must be bribed and the total cost will then be 4$. Can we do better? Yes. If we bribe

one 1$ voter preferring a and one 2$ voter preferring b then c wins (in tie with b, but still)

having spent 3$, and actually this is the best we can do.

(b)Greedy bribery of cost 4$

$

a cb

2

4

 6

$

a cb

2

4

 6

$

a cb

2

4

 6

(a) Initial State (c) Optimal bribery of cost 3$

3.3. MANIPULATION & BRIBERY 49

We have therefore established that plurality-$-bribery requires “more” than a simple greedy

algorithm. The same is true for plurality-weighted-bribery. How much “more”? Not much:

Faliszewski, Hemaspaandra, and Hemaspaandra [?] (from now on FHH) obtained polynomial-

time algorithms for both plurality-weighted-bribery and plurality-$-bribery proving the fol-

lowing theorem:

Theorem 10. Plurality-weighted-bribery and plurality-$-bribery are both in P .

Proof. We give the proof-idea for the case of plurality-$-bribery, which is quite interesting,

avoiding the special details. The idea is very similar for Plurality-weighted-bribery.

Assume that c will be capable of getting at least r votes , where r is some number to be

specified later. If this is to make c a winner, we need to make sure that everyone else gets at

most r votes. The algorithm is the following:

1) We choose greedily the cheapest voters of candidates that defeat c and bribe those voters

to vote for c until those candidates have no more than r votes.

2) We make sure that c gets at least r votes by bribing the cheapest of the remaining voters.

3) If during this process c ever becomes a winner without exceeding the budget then we know

that bribery is possible. Otherwise not.

The question is how do we pick the value of r. Simple: we don’t! We just run this procedure

for all |V | possible values, and accept if it succeeds for at least one of them.

Let us see how our algorithm works for our previous example, with a budget of 3$.

r=1

1) we bribe one voter of b of price 2$. Then we try to bribe the other one too but run out of

budget.

r=2

1) we bribe one voter of candidate b of price 2$.

2) we bribe one voter of candidate a of price 1$.

3) c is a winner!

Now, although both problems are in P , when we combine them to make the setting a bit

more complicated we jump to NP -completeness! In other words, neither prices, nor weights

alone make the problem hard enough. Only when they are combined, the problem becomes

NP-hard.

50 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Theorem 11. Plurality-weighted-$-bribery is NP -complete (even for two candidates)

Proof. The proof is as usually based on reduction. The reduction is from the known to be

NP -complete problem PARTITION

Name:PARTITION

Input:A set of n non-negative integers s1, ..., sn summing to 2M

Question:Is there a subset of these integers that sums to M?

First we prove that plurality-weighted-$bribery is in NP: Given (suppose we can guess

one) a correct subset of the voters to bribe and test in polynomial time whether such a bribe

both makes our designated candidate a winner and does not exceed the budget. It remains

to show that the problem is NP-hard. To show NP-hardness, we will construct a reduction

from PARTITION. Let s1, ..., sn be a set of nonnegative integers and let
∑n

i=1 si = 2M . Our

goal is to design an election E = (C, V, c, k) in which c can become a winner by bribery of

cost at most k if and only if there is a set A ⊆ 1, ..., n such that
∑

i∈A si = M . We define the

election to have two candidates, c and c′, and exactly n voters, v1, ..., vn, with each vi having

both weight and price equal to si. All voters originally prefer c′ to c. The budget k is set to

M . The claim is that c can become a winner if and only if s1, ..., sn can be partitioned into

two equal-sum groups. Let us assume that there is a set A ⊆ 1, ..., n such that
∑

i∈A si = M .

This means that for each i ∈ A we can bribe vi to vote for c and get for c a total vote weight

of M . This makes c a winner. On the other hand, assume that c can be made a winner by

bribes of total cost at most k = M . The weight of each voter is equal to his or her price and

so c can obtain at most vote weight k = M . In fact, c must obtain exactly vote weight M ,

since from our setup it is clear that if c gains strictly less than vote weight M then c′ will

be the unique winner. This means that there is a way of picking some voters whose weights

sum up to exactly M , and thus the set s1, ..., sn can be partitioned into two subsets that

each sum up to M . The reduction can be carried out in polynomial time and so the proof is

complete.

We know that NP -hardness is a worse-case analysis of the problem. This means that in

the worse case it is hard to solve the problem. This of course means that there may still be

instances that the problem is easy to be solved (∈ P). FHH proved that we know in advance

some instances of the plurality-weighted-$-bribery problem for which it is easy to manipulate

plurality voting.

We mentioned in the above paragraphs that for the plurality election system we need to

accumulate enough complexity in our setting in order to make manipulation computationally

3.3. MANIPULATION & BRIBERY 51

hard (∈ NP). More precisely, by removing either price-tags or weights of voters we jump

back to P . FHH make it even more interesting by proving in [?] that, when either the prices

or the weights are represented in unary, the respective problem jumps back in P . Informally

put, if either the weights or the prices are fairly small numbers the problem slips into P .

The natural question that rises is why does the unary encoding of the prices or the

weights even matter? The reasoning is quite analogous to the known discrete Knapsack

problem. When for example weights (the same for prices) are encoded in unary, then there

are only linearly many different total weights of subsets of voters; this allows some dynamic

programming technique to be applied.

FHH [?] investigate also another interesting variation of the bribery setting, negative-

bribery. They note that the setting of bribery considered so far, where people are bribed

to vote for c, is quite natural but it also may have real-world downsides: the more people are

bribed, the more likely it may be that the malicious attempts will be detected and will work

against c. To minimize the chances of that happening we might instead bribe voters to vote

not for c but for some other candidate(s), who already lose against c. This way c does not

get extra votes but might be able to take away enough from the most popular candidates to

become a winner. In this context they prove the following theorem:

Theorem 12. Plurality-negative-$-bribery is in P , but plurality-weighted-negative-bribery

is NP − complete.

Let us first see how plurality-negative-$-bribery is in P and then what makes plurality-

weighted-negative-bribery more difficult.

Proof. FHH give in [?] a polynomial-time algorithm for plurality-negative-$bribery. Suppose

we have a voting instance, where we want to make candidate c win and have a budget of k

(say in $) to use for bribes . We need to make c a winner by taking votes away from popular

candidates and distributing them among the less popular ones. (Note that as we are doing in

the whole context of bribery and manipulation we say “a winner”, i.e. we are addressing the

non-unique case. However, it is clear that a similar approach works for the unique case). We

partition the set of all voters into three sets: candidates that defeat c, from whom votes need

to be taken away, candidates that are defeated by c, to whom we can give extra votes, and

candidates that have the same score as c. We note as score(c) the number of votes candidate

c has received.

52 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Cabove = {c′|c′ ∈ C, score(c′) > score(c)}
Cbelow = {c′|c′ ∈ C, score(c′) < score(c)}
Cequal = {c′|c′ ∈ C, score(c′) = score(c)}

Since all candidates have the same weight (weight 1) in plurality-negative-$bribery, it is not

hard to argue that in order to have a successful negative bribery, there is no reason to bribe

voters into or out of Cequal or to bribe voters to move within their own “group”, e.g., bribing a

voter to shift from one Cbelow candidate to another. To make sure that c becomes a winner, for

each candidate c′ ∈ Cabove we need to bribe as many of her voters as are needed to reduce her

score to at most score(c). Thus, altogether, we need to bribe
∑

c′∈Cabove
(score(c′)− score(c))

voters. The number of votes that a candidate c′′ ∈ Cbelow can accept without preventing

c from winning is
∑

c′′∈Cbelow
(score(c) − score(c′′)) . Thus, it is not hard to see that the

necessary condition for a negative bribery to be possible is

∑

c′∈Cabove

(score(c′)− score(c)) ≤
∑

c′′∈Cbelow

(score(c)− score(c′′))

If the above inequality does not hold then we immediately reject. Otherwise, it remains

to check whether the cost of our negative bribery is within our budget: For every candidate

c′ ∈ Cabove let pc′ be the price of bribing all of her score(c′)− score(c) cheapest voters. If it

holds that
∑

c′∈Cabove
pc′ ≤ k then we accept, as the negative bribery is possible. Otherwise

we reject.

Clearly, the algorithm works in polynomial time. The correctness follows from the fact that

we need to make all candidates in Cabove have score at most score(c) and for each c′ ∈ Cabove,

pc′ is the lowest possible cost of achieving that. The inequality we gave guarantees that the

votes taken from candidates in Cabove can be re-distributed among those in Cbelow without

preventing c from winning.

Hence plurality-negative-$-bribery is in P

What makes though plurality-negative-weighted-bribery more difficult? In plurality-negative-

weighted-bribery, because of the different weights of the voters, we cannot assume that the

only re-distributions that make sense are between candidates of Cabove and Cbelow. To see

this let us consider the following case: candidate Big has scoreBig = 12, having the votes of

one weight-10 voter and one weight-2 voter; candidate c has scorec = 10 with the vote of one

weight-10 voter; candidate Eq has scoreEq = 10 with the votes of ten weight-1 voters; finally

candidates Small, Small2 have scoreSmall = scoreSmall2 = 9 with the vote of one weight-9

3.3. MANIPULATION & BRIBERY 53

voter each. The limit on the number of bribes is 3. Cabove = {Big}, Cequal = {c, Eq}, and

Cbelow = {Small, Small2}. The only way to have a successful negative bribery is by moving

from Big to Eq the weight-2 voter, and then by moving one weight-1 voter to each of Small

and Small2 from Eq. More intuitively, the candidates in the Cequal set may have to be used

as intermediates for larger weights to be “broken down” to smaller ones. The proof given by

FHH is a reduction from PARTITION but we omit it.

We have already said that manipulation and bribery are closely related problems, so it

would be interesting to have some formal connection between them. Indeed FHH prove that

each manipulation problem is polynomially reducible to its analogous $-bribery problem.

More formally put, we have the following theorem:

Theorem 13. Let M be some manipulation problem and let B be the analogous $-bribery

problem (for the same election system). It holds that M ≤p B.

This result is quite notable in the sense that it states that the $-bribery problem complexity

is an upper bound for the respective manipulation problem, or that the $-bribery problem is

at least as difficult as the respective manipulation problem. This is not the case generally for

the (simple) bribery problem and actually in [?] it is proven that there exists a voting rule

for which manipulation is in NP , while bribery is in P .

3.3.2 Bounds on the number of Candidates that Guarantee Hardness

BTT gave a new direction of research for voting rules, i.e. exploring them from a com-

putational complexity point of view. In these first results on computational hardness of

manipulation, the reductions were based on the assumption that the number of candidates

can be arbitrarily large. Although this can in fact make sense in some settings (when can-

didates are web pages on the internet for example), in many settings with most notable the

political elections setting, this assumption looses relevance with reality, since the number of

candidates is usually a small number. Hence, if algorithms that are exponential only in the

number of candidates (and only slightly so) exist, they may be practical in such cases. In

order to tackle this problem Conitzer, Sandholm, and Lang (CSL from now on for simplic-

ity) in [?] proved their intractability results even for a small number of candidates. The two

following results are found in this paper.

Theorem 14. Manipulation is in P for the Copeland rule, when the number of candidates

is ≤ 3.

54 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

The proof (which we omit) proceeds by showing that for each case of the possible relations

of weights of manipulators and non-manipulators there is a simple way for the manipulators

to determine how to make their desired candidate win by voting all identically or to conclude

that no such manipulation exists.

Theorem 15. For the Copeland protocol, manipulation is NP -complete when the number

of candidates is ≥ 4

Proof. Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary

PARTITION instance to the following constructive-manipulation instance. There are 4 can-

didates, a, b, c and p. In the non-manipulators set there are 2S + 2 voters voting (p, a, b, c),

2S + 2 voting (c, p, b, a), S + 1 voting (a, b, c, p), and S + 1 voting (b, a, c, p). In the ma-

nipulators, for every si there is a voter of weight si .We show the instances are equivalent.

First, every pairwise election is already determined without the manipulators , except for the

one between a and b. p defeats a and b; a and b each defeat c; c defeats p. Particularly,

C(p, a) = 2S + 2 = C(p, b) , C(p, c) = −2S − 2, C(a, c) = 2S + 2 = C(b, c), C(a, b) = 0.

Therefore, score(p) = +1, score(a) = score(b) = 0, score(c) = −1. If there is a winner in the

pairwise election between a and b, after the votes of the manipulators, that winner will tie

with p. So p wins the Copeland election, if and only if a and b tie in their pairwise election.

But, after the votes of the non-manipulators, a and b are tied. Thus, votes of the manipula-

tors maintain this tie if and only if the combined weight of manipulator votes preferring a to

b is the same as the combined weight of votes preferring b to a. This can happen if and only

if there is a partition.

3.3.3 Three Dichotomy Results on Manipulation & Bribery

A rather interesting direction of research has been proposed by Faliszewski, E. Hemaspaan-

dra and L. Hemaspaandra. That is, to manage to classify voting rules in families with similar

characteristics; they refer to such results as “dichotomy results”. The explicit reference of

the importance of having such results was first made by FHH in [?]. In [?] they put it very

nicely: “The ultimate goal of the project is to move from simply analysing individual election

systems to finding the source of the complexity of elections”. In other words the ultimate

goal is to find a simple rule that tells which election systems are computationally simple and

which are computationally hard with respect to whichever one of the core questions: winner

determination, manipulation, bribery, and control.

We present the following dichotomy results:

Theorem 16 (Dichotomy Result 1). For each voting protocol, for which winner-determination

is in P , a-manipulation is in P.

3.3. MANIPULATION & BRIBERY 55

Proof. When there are no weights, for each of the m! orderings there are between 0 and n

manipulators who can choose this ordering. By evaluating all of the possibilities, which are

O((n + 1)m!), we can answer the manipulation problem.

The key to this approach is that the voters are un-weighted, so the only thing that matters

is the number of voters who choose each preference. Of course as we can see in the proof, this

theorem holds assuming the number of candidates is bounded by a constant.

As a corollary of the above we have that:

Corollary 1. For each scoring vector a, a-manipulation is in P.

Theorem 17 (Dichotomy Result 2). Let a = (a1, ..., am) be a scoring vector. If a2 = ... = am

then a-weighted-manipulation is in P . In all other cases, this problem is NP -complete.2

It is interesting to note that the above theorem gives the plurality rule a special place

among scoring protocols, being the only one for which the a-weighted-manipulation problem

is efficiently solved.

Corollary 2. Let a = (a1, ..., am) be a scoring vector. If a1 = ... = am then a-weighted-

$bribery is in P. In all other cases, this problem is NP-complete. 3

The above corollary is a good example of something broadly known about reductions.

When problem A reduces polynomially to a problem B, namely A ≤p B, this means that B

is at least as hard as A, i.e. it may be of the same or greater hardness. Here for example

we have theorem 13 and at the same time a-weighted manipulation is in P for the case of

a2 = ... = am, while a-weighted-$bribery is in NP for the same case. This is not at all a

contradiction.

Theorem 18 (Dichotomy Result 3). Let a = (a1, ..., am) be a scoring vector. If a2 = ... = am

then a-weighted-bribery is in P . In all other cases, this problem is NP -complete.

The above theorem again gives the plurality rule a special place among scoring protocols,

being the only one for which the a-weighted-bribery problem is efficiently solved. It is in-

terestin that as FHH note, this theorem replaces the word “manipulation” with the word

“bribery” in theorem 17. However its proof is a far from a trivial transformation.

2To be precise this Theorem was independently found in all three of [?], [?], and [?], with slight differences

in wording or generality.
3This corollary is proven combining theorems 11, 13, and 17

56 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

3.3.4 Game Theoretic Considerations of Manipulation

We end the section on manipulation & bribery by mentioning some extremely interesting

observations made in [?]. We have defined the problem of E-(constractive)-manipulation

which roughly is: given a candidate c, can we make him/her a winner? Conitzer, Sandholm,

and Lang however note that, what is considered to be a successful manipulation, is not

uniquely defined. For example, one may consider a manipulation successful if it causes some

candidate to win that is preferred (gives higher utility) by each one of the manipulators to

the candidate who would win if the manipulators voted truthfully. Another may consider a

manipulation successful if it causes some candidate to win that gives a higher sum of utilities

to the manipulators than the candidate who would win if the manipulators voted truthfully

and so on. So does it make any sense that we defined our decision problem in such a way?

Conitzer, Sandholm, and Lang answer affirmatively! E-manipulation can be seen game-

theoretically as the case, where a candidate, say c, gives utility 1 to each of the manipulators,

while every other candidate gives them a utility of 0. This way, no matter which notion of

manipulation we adopt, the only sensible goal for the manipulators game-theoretically is what

we have examined: to make c win.

Having said that, Conitzer, Sandholm and Lang note the following:

• Hardness results for our manipulation decision problem imply hardness of manipulation

under any game theoretic notion of manipulation, since E-manipulation is a special case

of every manipulation notion we may adopt4.

• Easiness results for E-manipulation transfer as well to any game-theoretic notion of

manipulation we may adopt. We can solve the problem of successful manipulation by

simply determining, for each candidate in a subset of possible winners, whether that

candidate can be made to win, and whether his winning is a successful manipulation.

So the complexity exceeds that of E-manipulation by at most a constant factor.

In essence, what they claim is that, as with winner determination, the way we defined our

manipulation decision problem captures the complexity of the whole manipulation problem.

By “capture” we mean exactly that the easiness and hardness results of the decision problem

hold for the manipulation problem no matter what notion of manipulation we adopt.

4Actually the same is true for the destructive manipulation decision problem. It can be seen game-

theoretically as the case, where a candidate, say c, gives utility 0 to each of the manipulators, while every other

candidate gives them a utility of 1. This way, the only sensible goal for the manipulators game-theoretically is

to preclude c from winning. Hence, E-destructive-manipulation is a special case of every manipulation notion

we may adopt

3.4. CONTROL 57

Another very interesting note they make which may come quite as a surprise is that de-

structive manipulation is related to some extent with the winner determination problem!

Particularly, it is related to the complexity of determining whether enough votes have been

elicited to determine the outcome of the election; enough votes have been elicited if we can

find that there is no way to make the conjectured winner not win by casting the yet unknown

votes.

3.4 Control

When5 an advertisement for candidate c appears on television, it may be simultaneously

trying to get voters who most favour d to switch to c, and to get people who already most

prefer c but weren’t planning on voting to make the effort to go and vote. The first case can

be described as a real-world instance of the manipulation problem we discussed earlier. What

about the second case? Well, it can be seen as an instance of a somewhat different setting,

named control of the voting system. The advertisement tries to add voters to the election

In abstract terms manipulation and bribery are both cases where only the voters’ prefer-

ences change; the structural properties of the election are not changed. Structural changes,

refer to such actions as adding candidates, deleting candidates, adding voters, deleting voters,

partitioning candidates, and partitioning voters. The term Control is used to describe issues

related to influencing an election’s outcome by exploiting its structure.

It is rather intuitive to perceive the setting of control in the following way: suppose a

chairperson supervises the election and is responsible to guarantee that the procedure is fol-

lowed. The problem of control is whether he/she puts in practise the rules of the election

in such a way that a more desirable outcome is given. For example the voting protocol may

instruct that the candidates are first divided in two groups and a final vote is taken after a

first elimination procedure. The chair may find such a division so that a preferable candidate

is proclaimed winner in the end. Most importantly the chair will have a preferable outcome

doing a legal move! In manipulation or bribery the manipulators perform an “illegitimate”

move by trying to change the way they vote, by acting contrary to what the voting procedure

instructs. In control the setting is different because the chair may be able to “manipulate” the

procedure to his/her interest and still doing nothing “illegal”, just by exploiting the structural

defects of the voting protocol, just by exploiting a procedural matter.

The question put forward in the setting of control is whether the structure of the voting

procedure allows, makes it difficult or makes it impossible for the chair to exploit it in order

to have a preferable outcome.

5The example is given by FHH in [?]

58 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Before we move forward, we note that research in the setting of control, focuses in the

case of the unique winner, contrary to the setting of manipulation & bribery.

As with manipulation and bribery there are two variations of control; the consructive

and the destructive case. There is only some slight difference here. The constructive case is

whether a candidate can be made the unique winner, while the destructive case is whether

he can be either a non-winner or a non-unique winner. Especially this last case needs some

attention because it is maybe counter-intuitive: being “just” one of the winners is not con-

sidered a desired outcome here. Most results for the constructive case were presented by

Bartholdi, Tovey, Trick(BTT) in [?] in the beginning of 1990’s, while for the destructive case,

by HHR in [?] much later in 2005.

It is important to note that we assume that the chair knows beforehand the (true) votes

that the voters will cast. This is a “worst case assumption” (or “best case assumption for the

chair”) which means that even under this favourable setting, the chair may still find it com-

putationally hard to pull a successful control. Such an assumption strengthens our hardness

results but makes weaker our easiness results. This is fine, since our main goal is to prove the

hardness to control a voting system and not the easiness. (we had made the same assumption

for the case of manipulation).

The voting procedures examined are Plurality rule, Condorcet rule and Approval rule.

There are a number of results proven in [?] or [?]. We do not think there is much point

to simply reproduce all the proofs here or even state the results one after the other, so the

approach we follow is the following: we define all the problems as decision problems and we

discuss mainly what is the real-world incentive behind the problems and the implications the

results may have. We will give some of the proofs but mainly we focus on the results per se,

which we will see in a condensed table form towards the end of the section.

Definition 1. A voting system is said to be immune to control in a given model of control if

the model regards constructive control and it is never possible for the chair by using his/her

allowed model of control to change a given candidate from being not a unique winner to

being the unique winner, or the model regards destructive control and it is never possible for

the chair by using his/her allowed model of control to change a given candidate from being

the unique winner to not being a unique winner. This means that the voting rule has some

structural property that resists to that type of control. If a system is not immune to a type

of control, it is said to be susceptible to that type of control. A voting system is said to be

(computationally) vulnerable to control if it is susceptible to control and the corresponding

language problem is computationally easy (i.e., solvable in polynomial time).6 A voting

system is said to be resistant to control if it is susceptible to control but the corresponding
6HHR examine also the case of a certifiably-vulnerable system, when one can even produce in polynomial

3.4. CONTROL 59

language problem is computationally hard (i.e., NP-complete)

BTT didn’t study what happens when ties occur during the (possible) subelections (before

the final election) when partitioning candidates or voters. HHR however studied two rather

natural tie-handling procedures ties-eliminate(TE) and ties-promote(TP)

Definition 2. Ties-eliminate(TE) means that, all candidates who tie in the subelection

are eliminated from the final election. Ties-promote(TP) means that all candidates who

tie for winner move forward (TP).

Note that these models do not apply to Condorcet voting, under which when a winner

exists s/he is unique; so the TE/TP distinction is made only for plurality and approval voting.

Name: Control by adding Candidates

Input:A set C of qualified candidates and a distinguished candidate c ∈ C, a set B of possible

spoiler candidates, and a set V of voters with preferences over C
⋃

B.

Question(constructive): Is there a choice of candidates from B whose entry into the elec-

tion would assure c is the unique winner?

Question(destructive): Is there a choice of candidates from B whose entry into the election

would assure that c is not the unique candidate?

Name: Control by deleting Candidates

Input: A set C of candidates, a distinguished candidate c ∈ C, a set V of voters, and a

positive integer K ≤| C |.
Question:(constructive) Are there K or fewer candidates (except for c)whose disqualifica-

tion would assure the (unique) election of c?

Question:(destructive) Are there K or fewer candidates (except for c)whose disqualifica-

tion would assure that c is not the unique winner?

The problem of control by adding or deleting candidates has a very clear real-world in-

centive. For example in national elections, there are many cases in which small parties decide

to run as candidates for power or not short before the elections. If control by adding or

deleting candidates is an easy problem, such small parties may decide (be instructed) to run

as voters or not depending on whether this serves the goals of the controller, that may be

another party to be proclaimed a winner. A, concrete real-world example is during the last

time the actual action of the chair to execute control in the ”best” way (namely, by adding or deleting the

smallest number of candidates or voters for add/delete problems.

60 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

presidential elections in USA, where Hillary Clinton “was deleted” as a candidate.

Name: Control by Partitioning Candidates

Input: A set C of candidates, a distinguished candidate c ∈ C, and a set V of voters.

Question:(constructive) Is there a partition of the candidates into C1, C2 (C1
⋃

C2 = C

and C1
⋂

C2 = ∅) so that c is the unique winner in sequential elections? (That is, c =

E(V, E(V, C1)
⋃

C2).7)

Question:(destructive) Is there a partition of the candidates into C1, C2 (C1
⋃

C2 = C and

C1
⋂

C2 = ∅) so that c is not the unique winner in sequential elections?

Name: Control by Run-off partitioning Candidates

Input: A set C of candidates, a distinguished candidate c ∈ C, and a set V of voters.

Question:(constructive) Is there a partition of the candidates into C1, C2 (C1
⋃

C2 = C

and C1
⋂

C2 = ∅) so that c = E(V,E(V, C1)
⋃

E(V, C2).(c is the unique winner of the elec-

tion in which those candidates surviving subelections (V, C1), (V, C2) have a run-off election

between them over voter set V).

Question:(destructive) Is there a partition of the candidates into C1, C2 (C1
⋃

C2 = C and

C1
⋂

C2 = ∅) so that c is not the unique winner of the election in which those candidates

surviving subelections (V, C1), (V, C2) have a run-off election between them over voter set V .

The cases of partitioning Candidates are maybe the only scenarios we see that do not

seem to have a very clear real world incentive. It is interesting to note that constructive con-

trol by partition of candidates8 is equivalent to the path-independence criterion we discussed

in section 2.2. This means that a voting rule is immune to constructive control via Candi-

date partition iff it complies with the path-independence criterion. Indeed the only protocol

immune to this type of control is the approval protocol in the TP model.

Now let us turn our attention to the cases of control where the chair makes moves con-

cerning the voters, not the candidates.

Name: Control by adding Voters

Input: A set C of candidates and a distinguished candidate c ∈ C; a set V of registered

voters and an additional set V ′ of voters who are unregistered but could still register in time

for the election; a positive integer K ≤| V ′ |.
Question:(constructive) Are there K voters from V ′ whose registration would assure that

7We note as E(V, C) an election under some voting rule, with a set of voters V and a set of candidates C
8under the TP model

3.4. CONTROL 61

c is the unique winner?

Question:(destructive) Are there K voters from V ′ whose registration would assure that

c is not the unique winner?

Name: Control by deleting Voters

Input: A set C of candidates and a distinguished candidate c ∈ C; a set V of registered

voters; a positive integer K ≤| V ′ |.
Question: Are there K or fewer voters whose disenfranchisement would assure that c is the

unique winner?

Question: Are there K or fewer voters whose disenfranchisement would assure that c is not

the unique winner?

The case of control via adding/deleting voters has a clear real world incentive. The

laws about who has the right to vote are changeable. So if the party with the majority of

members in the parliament believes it can make a special group to vote for it, for example a

minority, it may pass a law that gives those people the right to vote, i.e. add candidates to

the procedure.

Name: Control by partitioning Voters

Input: A set C of candidates and a distinguished candidate c ∈ C; a set V of voters.

Question:(constructive) Is there a partition of the voters into V1, V2 (V1
⋃

V2 = V and

V1
⋂

V2 = ∅)so that c = E(V, E(V 1, C)
⋃

E(V 2, C)) (hierarchical elections assure the unique

victory of c)?

Question:(destructive) Is there a partition of the voters into V1, V2 (V1
⋃

V2 = V and

V1
⋂

V2 = ∅)so that hierarchical elections assure the non-unique victory of c?

Again the case of control via partitioning voters is very commonly seen in the real world.

Dividing the voters in voting peripheries is such a case. The dominant party may try to

redistribute the voters in voting peripheries. Its goal may be to make sure that (for example

based on historical data of the voters of each place) it has enough supporters to hold the seat

of as many peripheries as possible, but not so many supporters as to “waste” their votes by

winning with too much support.

We summarize the results related to control in the following table, provided by HHR in

order to demonstrate that there is no voting rule that resists to all types of control!

62 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

Plurality Condorcet Approval

control by construct. destruct. construct. destruct. construct. destruct.

adding-candidates R R I V I V

deleting-candidates R R V I V I

partition- TE: R TE: R V I TE: V TE: I

of-candidates TP: R TP: R TP: I TP: I

run-off-partition- TE: R TE: R V I TE: V TE: I

of-candidates TP: R TP: R TP: I TP: I

adding-voters V V R V R V

deleting-voters V V R V R V

partition- TE: V TE: V R V TE: R TE: V

of-voters TP: R TP: R TP: R TP: V

Key: I = immune, R = Resistant, V = vulnerable, TE = ties eliminate, TP = ties-promote

Resistance results are proven as usually by some reduction from a known NP -complete

problem. Vulnerability results by giving an algorithm. We discuss here only the immunity

results since we have not seen such result before.

Immunity of a voting system against some type of control means it has some struc-

tural/inherent property that makes it impossible to exploit it. Immunity results stem from

the mathematical properties of the Social Choice Function, it is therefore only natural that

immunity results are closely related to the rationality criteria we gave in section 2.2.

It stems directly from the definition of (unique) WARP that each voting rule that satisfies

it, is immune to constructive control by adding candidates. It is self-proving to claim that each

voting procedure that satisfies (unique) WARP is also immune to destructive control by delet-

ing, partitioning, or partitioning with run-off candidates. Furthermore, path-independence

is equivalent to constructive control by partition (and very closely related to constructive

control by partition and run-off) under the TP rule. That is how we get all of our immunity

results of the above table.

Until now we have presented results that study the complexity of manipulation, bribery

and control of various existing voting protocols. It is apparent that no known protocol exists

that resists to all cases of manipulation, bribery, and control. Even protocols that seem to

resist to some type(s) may be vulnerable to some other type(s). So the natural “next step” to

take in research is whether there is something we can do to close these loopholes that every

protocol has. In the next two sections we present results in this very interesting direction:

how to make existing voting protocols hard to manipulate or control.

3.5. UNIVERSAL VOTING PROTOCOL TWEAKS TO MAKE MANIPULATION HARD63

3.5 Universal voting protocol tweaks to make manipulation

hard

This section is named after the paper of Conitzer and Sandholm [?]. In this paper the

authors present a uniform method to modify existing voting protocols in order to make

(constructive) manipulation of the modified protocol computationally hard. This modification

is simply to add a pre-round. The way the pre-round is organised yields different complexities

of the manipulation problem.

Given a protocol E, the new protocol obtained by adding a pre-round to it proceeds as

follows:

• The candidates are paired. If there is an odd number of candidates, one candidate gets

a “bye” (= an immediate ticket to the next round).

• In each pairing of two candidates, the candidate losing the pairwise election(in terms of

majority) between the two is eliminated. A candidate with a “bye” is never eliminated.

• On the remaining candidates, E is executed to produce a winner. For this, the implicit

votes over the remaining candidates are used. (For example, if a voter voted a Â b Â
c Â d Â e, and b and c were eliminated, the voters implicit vote is a Â d Â e.)

According to how the schedule of the pre-round (who faces whom) is determined, different

complexities of the tweaked protocol may be achieved. There are three cases:

• the schedule is decided deterministically before the votes are collected

• the schedule is decided randomly after the votes are collected

• the schedule is decided while the votes are been collected (the two procedures are inter-

leaved)

The complexities of constructive manipulation that are achieved with each of these pre-

rounds are NP , #P , and PSPACE respectively. Therefore we can say that, as we make

the schedule procedure of the pre-round more sophisticated, the problem of manipulation

becomes computationally more complex.

In this section we will present the first case, of deciding the schedule deterministically.

Having already discussed the issue of control of the voting procedure of the chair who puts it

in practise, we might have concerns that the design of the schedule might allow the possibility

of control. In the first case, the chair has no knowledge of the voters’ votes , since the schedule

is decided before the votes are elicited. So in this case there is no problem of control. In the

64 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

second case however, since the votes are known, the procedure must be based on a random

process, since the chair may be corrupt and want to control the procedure. However, in this

second case we end up with an equivalent problem: it may be difficult to check that the chair

used indeed (enough) randomness. This problem (among others) is tackled by Lipmaa and

Elkind in [?], who even in this case make the schedule deterministic, extracting the needed

randomness by the votes and not by the chair.

Finally a word of note about the results we present. Conitzer and Sandholm prove their

hardness results under the assumption that the number of candidates is unbounded, that

there is only one manipulator (rather than a coalition) and that all voters have equal weight.

The first assumption is not desired but they couldn’ t do without it. The other two however

constitute a special case of the general setting where there is a group of manipulators and

voters have weights. Therefore hardness results for this special case imply hardness for the

general case.

We said we present the NP -hardness proof of the case of adding a deterministic pre-

round which is announced before the votes are elicited. The way they prove their result is

the following:

• They give a sufficient condition under which adding a pre-round will make the “tweaked”

protocol NP-Hard. This sufficient condition is a reduction from SAT that satisfies some

constraints.

• They then prove that if such a reduction can be constructed, a pre-round can be added

in such a way, so as the manipulator pulls-off a successful manipulation if and only if

a feasible solution to the SAT problem is found. Therefore, constructive manipulation

is NP-hard.

• The last step is to prove that certain voting protocols indeed satisfy the sufficient con-

dition, i.e. a reduction from SAT which satisfies certain constraints can be constructed.

Theorem 19 (The sufficient condition). Given a voting protocol E, suppose that it is possible,

for any Boolean formula φ in conjunctive normal form (i.e., a SAT instance), to construct in

polynomial time a set of votes over a candidate set containing at least {p}⋃
CL, CL = {cl :

l ∈ L}, where L = {⋃{+v,−v} : ∀v ∈ V }, where V is the set of variables occurring in φ, with

the following properties:

Property 1a If we remove, for each v ∈ V , one of c+v or c−v, p would win an election under

protocol E against the remaining candidates if and only if for every clause k ∈ K

(where K is the set of clauses in φ), there is some l ∈ L such that cl has not been

removed, and l occurs in k. This should hold even if a single arbitrary vote is added.

3.5. UNIVERSAL VOTING PROTOCOL TWEAKS TO MAKE MANIPULATION HARD65

Property 1b For any v ∈ V , c+v and c−v are tied in their pairwise election after these

votes.

Then it can be proven that constructive-manipulation after adding a deterministic pre-round

is NP-hard(and NP-complete if E is deterministic and can be executed in polynomial time).

Proof. Let the candidate set be the set of all candidates occurring in the votes constructed

from φ (the “original candidates”), plus one dummy candidate for each of the original candi-

dates besides those in CL. To each of the constructed votes, add all the dummy candidates

at the bottom; let the resulting set of votes be the set of the non-manipulators votes. A single

manipulators vote is yet to be added. Let the schedule for the pre-round be as follows: for

each v, c+v and c−v face each other in the preround; and every other original candidate faces

(and, because of the dummy candidates position in the votes, defeats) a dummy candidate.

Thus, the set of candidates that make it through the pre-round consists of, for each v ∈ V ,

one of c+v and c−v; and all the other original candidates. The manipulators vote will decide

the winner of every c+v and c−v match-up, because by property 1b, all these pairwise elections

are currently tied. Moreover, it is easy to see that the manipulator can decide the winner of

each of these match-ups independently of how it decides the winners of the other match-ups.

Thus, we can think of this as the manipulator giving the variables truth-values: v is set to

true if c+v survives, and to false if c−v survives. By property 1a it then follows that p wins

if and only if the manipulators assignment satisfies all the clauses, i.e. is a solution to the

SAT instance. Hence there is a successful constructive manipulation if and only if there is a

solution to the SAT instance, and it follows that constructive manipulation in by adding a

deterministic pre-round is NP-hard. (It is also in NP if P is deterministic and can be executed

in polynomial time, because in this case, given a vote for the manipulator, it can be verified

in polynomial time whether this vote makes p win).

As we said the next step is to prove that a certain voting procedure satisfies the sufficient

condition. Conitzer and Sandholm provide proofs for Plurality, Borda, Maximin, and STV

rules. We only give the proof to the Plurality rule.

Theorem 20. Plurality rule satisfies the sufficient condition of Theorem 19

Proof. Given the formula φ, let the candidate set be the minimally required candidates

{p}⋃
CL}, plus a set of candidates corresponding to the set of clauses K of φ, CK = {ck : k ∈

K}.(CL, CK are the “original candidates” we mentioned earlier). Then, let the set of votes

be as follows: 4|K| + 2 votes ranking the candidates p Â CL Â CK ; for each k ∈ K, 4|K|
votes ranking the candidates ck Â {ccl ∈ CK : cl 6= k} Â CL Â p; and for each k ∈ K, 4 votes

66 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

ranking the candidates 4{cl ∈ CL : l ∈ k} Â ck ∈ {cl ∈ CL : l 6= k} Â {ccl ∈ CK : cl 6=}g Â p.

Additionally, we require that these votes are such that after counting them, for each v ∈ V

, c+v and c−v are tied in their pairwise election, so that property 1b is satisfied. (This is

possible because the total number of votes is even, and the majority of the votes do not

yet have any restrictions on the order of the CL!). Hence, property 1b is satisfied by such a

reduction. We now show property 1a is satisfied. We first observe that regardless of which

of the candidates corresponding to literals are removed, p will get 4|K|+ 2 votes. Now,if for

each k ∈ K, at least one candidate cl with l ∈ k remains, then each of the ck will get precisely

4|K| votes. Because each remaining cl can get at most 4|K| votes as well, p will win (if part).

on the other hand, if for some k ∈ K, all the candidates cl with l ∈ L, l ∈ k are removed,

then ck will get at least 4|K|+ 4 votes and p will not win (only-if part). In both cases there

is a margin of at least 2, so a single additional vote will not change this. Thus, property 1a

is satisfied.

3.6 Making Control hard by combining existing voting proto-

cols

The same direction of research with the one by Conitzer and Sandholm presented previously

follows the paper of E. Hemaspaandra, L. Hemaspaandra, J. Rothe [?], only this time for the

setting of control. In abstract terms what they do is put together existing voting rules in such

a way, so that the resulting voting rule inherits all of their strengths. Namely the resulting,

hybrid protocol, is resistant or even in some cases immune to various types of control if at

least one of the protocols combined has this property. Furthermore, the winner is still easily

determined if winner determination is easy for all voting protocols that are combined. We can

therefore say that the hybrid protocol maintains the simplicity of the multiple voting protocols

it combines while at the same time it inherits their resistance (or even immunity in some

cases) to control.

Particularly HHR showed that combining Plurality and Condorcet rules the hybrid proto-

col that is produced resists to all types of constructive manipulation. Because of non-existence

of voting protocols that combined would give resistance to all types of destructive manipula-

tion, they built some artificial voting rules that in combination achieve this.

Although we are not getting in the details of their proving procedures (which are quite

intricate we can say) we would like to stress out the importance of their result. Up until now

the field of voting rules was dominated by impossibility results. Arrow’s theorem (paradox) is

about the inherent unfairness of all voting rules and Gibbard-Satterthwaite theorem is about

the inherent manipulability of all voting rules. This result by HHR is one of the few possibility

3.7. STEPS TOWARDS AVERAGE-CASE COMPLEXITY ANALYSIS OF MANIPULATION67

results in the field, stating that control can always be made computationally intractable (at

least in terms of worse-case complexity)!

3.7 Steps towards average-case complexity analysis of manip-

ulation

In this section we focus on the setting of manipulation where as we have already seen

computational complexity is desired. Until now we have presented results that examine voting

rules using the traditional complexity measure in computer science, worst-case complexity.

Although many results have proven that various manipulation contexts are computationally

hard in the worst-case, all scientists stated their justified concerns as to whether worse-case

analysis of manipulation makes even sense. Proving that manipulation in a particular context

is hard in the worst case, although demonstrating some measure of resistance to manipulation,

it - by no means - preclude it. Therefore we now turn our attention to what seems to be the

current direction of research, i.e. what happens “on average”. If it is allowed to us we would

comment that researchers have been settling until now with worst-case complexity analysis

because they could not produce results for the average-case. But the average-case was their

desired way of analysis right from the beginning. That is why all results concerning worst case

complexity were presented with the concern that worst-case complexity was not a sufficient

guarantee of hardness.

3.7.1 How the size of the manipulators’ set affects manipulability of the

voting procedure

Let us think of national elections, as a typical case of voting. It would be absurd to think

that if only a single voter acted strategically she could have any impact on the outcome. So

it seems more appropriate to study the case where the set of manipulators consists of more

than one voters. The question now is “how many more makes sense?”. If there are too few

they may still be powerless to make any difference on the outcome; if there are too many

(almost as many as the truthful voters), then the problem may be trivial in the sense that the

manipulators can always affect the outcome. Such questions are studied by A. D. Procaccia

and J. S. Rosenschein in [?] for the case of scoring protocols. We will omit the proof details

although they are not very hard to follow. First let us introduce some notation:

• |M | → the number of manipulators

• |N | → the number of non-manipulators

68 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

• Di → non-manipulator’s vi distribution over all the |C|! possible votes

• Si,k → the random variable induced by the distribution Di, which gives the score given

to candidate k by voter vi

When the manipulators cannot affect the instance of the problem, we say that this instance

is closed.

The first case that is studied is what happens when the fraction of manipulators is “small”.

In quantitative terms we consider “small” to be the case where |M | = o(
√
|N |).

Theorem 21. In the case the fraction of manipulators is “small”, under two rather lenient

conditions it can be proven that with overwhelming probability (probability converging to 1

as number of voters grows) the instance is closed.

The two conditions are:

• Di being independently distributed

• for all vi, ck, cl there exists d > 0 such that V ar[Si,k − Si,l] > d

Why are these conditions lenient? The first condition implies that the non-manipulative

voters vote independently. This is a quite natural condition since each voter has his own/independent

preferences. The second implies that there is no voter for whom two candidates have always

the same difference in scores. This second condition is a condition of a “minimum randomness

requirement” in the votes and is therefore too quite natural to hold for any distribution that

makes sense.

Therefore, they proved that when the fraction of manipulators is “small”, under each dis-

tribution that satisfies two quite natural conditions, the manipulators are most of the times

powerless to do anything to affect the outcome of the election.

The authors consider also the case when the fraction of manipulators is “large”, or better

when it is “large” but not “too large”. In quantitative terms this case is when it holds that

|M | = ω(
√
|N |) but at the same time |M | = o(|N |). In this case The results are not that

strong but they are interesting.

Theorem 22. Under two conditions, when the fraction of manipulators is “large”, then any

candidate can be made to win with overwhelming probability iff he belongs to the set of

candidates with maximal expected score (denoted as C’).

The problem is that this time one condition is not that lenient. The two conditions are:

3.7. STEPS TOWARDS AVERAGE-CASE COMPLEXITY ANALYSIS OF MANIPULATION69

• Di being independently distributed

• Di being identically distributed

It is easy to agree that the second condition is too stringent to hold in a real setting.

It is interesting to make the following note for the case of a large fraction of candidates:

• If |C ′| = 1 then the probability of drawing a closed instance converges to 1 as the

number of voters grows.

• If |C ′| ≥ 2, then the probability of drawing an open instance converges to 1 as the

number of voters grows.

In the first case, the only voter that belongs in |C ′| will most probably be proclaimed winner

and the manipulators will be unable to change the outcome, since in order for someone to be

proclaimed winner he must be in |C ′| and the only such candidate is (with overwhelming prob-

ability) already the winner. In the second case the manipulators have (with overwhelmingly

high probability) enough power to choose between the members of |C ′|.

So Procaccia and Rossenschein proved that under some conditions about the distributions

of the voters’ votes they can determine a big fraction of the manipulation problem, just

by examining the ratio between manipulators and non-manipulators. They therefore argue

that their results strongly point toward the direction that the manipulation problem can be

easily decided on average, or equivalently that the existance of voting rules that are hard to

manipulate on average is quite improbable.

3.7.2 A quantitative version of the Gibbart-Satterthwaite Theorem

We have already discussed extensively the Gibbard-Satterthwaite theorem and its impor-

tance. We believe (and hope) we have made clear that the Gibbard-Satterthwaite theorem is of

tremendous importance for the whole field. Therefore we find it only natural to conclude with

a recent result, which is characterized as the quantitative version of the Gibbard-Satterthwaite

theorem.

The theorem we present is found in a very interesting technical report by E. Friedgut,

G. Kalai and N. Nisan [?] published on April 2008. We present its gist omitting the (quite

extensive) proof. First let us give some definitions.

Definition 3 (manipulation power). The manipulation power of voter i on a social choice

function(voting rule) f denoted Mi(f), is the probability that x′i is a profitable manipulation

of f by voter i at profile x1...xn, where x1...xn and x′i are chosen uniformly at random from

70 CHAPTER 3. VOTING SCHEMES: THE COMPUTATIONAL PERSPECTIVE

all the |C|! choices. By profitable we mean ofcourse that x′i yields an outcome of higher utility

for voter i than reporting his true preference order, xi

Another interesting new element of the paper is that they quantify the distance of a social

choice function from a dictatorship. Particularly:

Definition 4. Given a function f and a dictatorship g from a probability space X to a set

Y we denote the distance between f and g as

∆(f, g) = Prx∈X [f(x) 6= g(x)]

If G is the family of dictatorships we define ∆(f, g) = ming∈G ∆(f, g).

In our setting X will always be endowed with the uniform probability, so the distance

between two functions is nothing else than the proportion of inputs on which the functions

disagree.

Definition 5 (neutral SCF). A social choice function is neutral if the names of the candi-

dates “do not matter”; formally, if f commutes with permutations of the candidate set, i.e.

f(σ(x1), ..., σ(xn)) = σ(f(x1, ..., xn)

Now we can present the main result:

Theorem 23. There exists a constant C > 0 such that for every ε > 0, if f is a neutral

social choice function among 3 alternatives for |V | voters that is ε-far from dictatorship, then:
∑|V |

i=1 Mi(f) ≥ Cε

The above theorem immediately implies that there exists one voter, the one who has the

maximum manipulation power, for whom maxi Mi(f) ≥ Ω(1/
√
|V |). This means that there

exists a voter with non-negligible manipulation power.

The striking importance of this theorem is stated as follows:

Even a randomly attempted manipulation has a non-negligible probability of being profitable.

Therefore, the computational hardness of manipulation is trivial in the average case!

The theorem is quite striking but there are 2 remaining open problems:

• The theorem is stated only for the special case of three candidates and has to be gen-

eralized

• Compared to the Gibbard-Satterthwaite theorem which only requires the non-imposition

property, this theorem requires the neutrality property of the SCF which is more strong

a requirement (neutrality implies non-imposition).

Chapter 4

Conclusion

In this thesis we tried to present primarily some of the most important results in the field

of Computational Social Choice. We showed how the problem of Voting can be seen as a

problem of mechanism design. We stressed out the importance of the Gibbart-Satterthwaite

theorem on the field of Social Choice Theory and that it gave rise to a new direction of

research: studying social choice in computational terms. We studied the problems of winner

determination, control, bribery and manipulation in various flavours, focusing heavily on

the problem of manipulation. We presented results concerning algorithmic issues, worst-case

computational complexity and saw what steps have been taken towards the average-case

complexity analysis, which was really the researchers’ desired measure of analysis from the

beginning.

We believe that in this thesis we have presented enough results to argue that computational

aspects of voting do matter. We hope that this thesis will serve as a starting point for other

people who want to study the field.

71

72 CHAPTER 4. CONCLUSION

Bibliography

[1] Robert J. Aumann and Adam Brandenburger. Epistemic conditions for nash equilibrium.

Econometrica, 63(5):1161–80, 1995.

[2] J.J. Bartholdi, C.A. Tovey, and M.A. Trick. The computational difficulty of manipulating

an election. Social Choice and Welfare, pages 392–412, 1988.

[3] J.J. Bartholdi, C.A. Tovey, and M.A. Trick. Voting schemes for which it can be difficult

to tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

[4] J.J. Bartholdi, C.A. Tovey, and M.A. Trick. How hard is it to control en election?

Technical report, 1990.

[5] Ioannis Caragiannis, Jason A. Covey, Michal Feldman, Christopher M. Homan, Christos

Kaklamanis, Nikos Karanikolas, Ariel D. Procaccia, and Jeffrey S. Rosenschein. On the

approximability of dodgson and young elections. In SODA ’09: Proceedings of the twenti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1058–1067, Philadel-

phia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[6] Edward H. Clarke. Multipart pricing of public goods. Public Choice, 11(1), September

1971.

[7] Vincent Conitzer and Tuomas Sandholm. Universal voting protocol tweaks to make ma-

nipulation hard. In IJCAI’03: Proceedings of the 18th international joint conference on

Artificial intelligence, pages 781–788, San Francisco, CA, USA, 2003. Morgan Kaufmann

Publishers Inc.

[8] Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When are elections with few

candidates hard to manipulate? J. ACM, 54(3):14, 2007.

[9] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-

plexity of computing a nash equilibrium. In STOC ’06: Proceedings of the thirty-eighth

73

74 BIBLIOGRAPHY

annual ACM symposium on Theory of computing, pages 71–78, New York, NY, USA,

2006. ACM.

[10] Marquis de Condorcet. Essai sur l’application de l’analyse a la probabilite des decisions

rendues a la pluralite des voix. Facsimile reprint of original published in Paris, 1972, by

the Imprimerie Royale, 1785.

[11] John Duggan and Thomas Schwartz. Strategic manipulability without resoluteness or

shared beliefs: Gibbard-satterthwaite generalized. Social Choice and Welfare, 17(1):85–

93, 2000.

[12] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods

for the web. In WWW ’01: Proceedings of the 10th international conference on World

Wide Web, pages 613–622, New York, NY, USA, 2001. ACM.

[13] Edith Elkind, , Edith Elkind, and Helger Lipmaa. Small coalitions cannot manipulate

voting. In The Commonwealth of Dominica, pages 285–297. Springer-Verlag, 2005.

[14] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How hard is

bribery in elections? CoRR, abs/cs/0608081, 2006.

[15] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. A

richer understanding of the complexity of election systems. CoRR, abs/cs/0609112,

2006.

[16] Ehud Friedgut, Gil Kalai, and Noam Nisan. Elections can be manipulated often. Dis-

cussion paper series, Center for Rationality and Interactive Decision Theory, Hebrew

University, Jerusalem, 2008.

[17] Allan Gibbard. Manipulation of voting schemes: A general result. Econometrica,

41(4):587–601, July 1973.

[18] Jerry Green and Jean-Jacques Laffont. Characterization of satisfactory mechanisms for

the revelation of preferences for public goods. Econometrica, 45(2):427–38, March 1977.

[19] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[20] L. A. Hemachandra. The strong exponential hierarchy collapses. In STOC ’87: Proceed-

ings of the nineteenth annual ACM symposium on Theory of computing, pages 110–122,

New York, NY, USA, 1987. ACM.

[21] Edith Hemaspaandra and Lane A. Hemaspaandra. Dichotomy for voting systems. CoRR,

abs/cs/0504075, 2005.

BIBLIOGRAPHY 75

[22] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Hybrid elections broaden

complexity-theoretic resistance to control. CoRR, abs/cs/0608057, 2006.

[23] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Anyone but him: The

complexity of precluding an alternative. Artif. Intell., 171(5-6):255–285, 2007.

[24] Christopher M. Homan and Lane A. Hemaspaandra. Guarantees for the success frequency

of an algorithm for finding dodgson-election winners. Journal of Heuristics, 15(4):403–

423, 2009.

[25] Ehud Kalai. Game theory: Analysis of conflict : By roger b. myerson, harvard univ.

press, cambridge, ma, 1991. 568 pp. Games and Economic Behavior, 3(3):387–391,

August 1991.

[26] H.W.jun. Lenstra. Integer programming with a fixed number of variables. Math. Oper.

Res., 8:538–548, 1983.

[27] Hannu Nurmi. Voting procedures: A summary analysis. British Journal of Political

Science, 1983.

[28] Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of

being truthful. In FOCS, pages 250–259. IEEE Computer Society, 2008.

[29] Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting. In

Proceedings of the 6th GI-Conference on Theoretical Computer Science, pages 269–276,

London, UK, 1982. Springer-Verlag.

[30] Ariel D. Procaccia and Jeffrey S. Rosenschein. Average-case tractability of manipulation

in voting via the fraction of manipulators. In AAMAS ’07: Proceedings of the 6th

international joint conference on Autonomous agents and multiagent systems, pages 1–1,

New York, NY, USA, 2007. ACM.

[31] Ariel D. Procaccia and Jeffrey S. Rosenschein. Junta distributions and the average-case

complexity of manipulating elections. J. Artif. Intell. Res. (JAIR), 28:157–181, 2007.

[32] Mark Allen Satterthwaite. The existence of strategy-proof voting procedures: A topic in

social choice theory. Phd thesis.

[33] V. Vazirani. Approximation algorithms. pages 120–122. Springer-Verlag, 2001.

[34] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The

Journal of Finance, 16(1):8–37, 1961.

76 BIBLIOGRAPHY

[35] Klaus W. Wagner. More complicated questions about maxima and minima, and some

closures of np. Theor. Comput. Sci., 51:53–80, 1987.

