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Abstract 
 

The presented diploma thesis deals with interconnect reliability in VLSI systems from a 
system-level perspective. The dominant phenomena that are examined are Electro-
migration (EM) and Time-dependent Dielectric Breakdown (TDDB). The main goal of this 
work was the creation of a design flow that estimates the system’s lifetime (MTTF) because 
of timing failures caused by the gradual degradation of the electrical characteristics of 
interconnects. The presented flow is based on a pre-existing work that was developed at 
IMEC, Belgium. A main feature of the project is the use of actual temperature data for each 
individual region of the system, which are derived from application-specific simulations. This 
results in rather accurate lifetime estimations as both reliability-threatening phenomena 
examined are heavily dependent on temperature. Another improvement that increases the 
accuracy of the predictions is the estimation of the interconnets’ current density through 
Spice simulations. Other important features are the automation of the design flow as a tool 
as well as its compatibility with state-of-the-art EDA tools, such as the Cadence SoC 
Encounter Layout & Timing analysis system and the Synopsys front-end suite. 

 
Keywords: << SoC, Electro-migration, Time-dependent dielectric breakdown, reliability, EM, 
TDDB, soft failure, timing, HotSpot, SoC Encounter >> 
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1  

Introduction 

1.1 The importance of reliability 
 

The reliability of CMOS devices and interconnect structures has always been a 

great concern for their designers, as the desired lifetime of products should be 

guaranteed at the design and manufacturing phases, before entering the market. 

Reliable operation becomes even more important when human lives depend on the 

system.  

This is also the case for VLSI systems used in embedded devices, as several of 

their applications include potentially life-critical situations, such as in cars or 

airplanes, as well as in medical devices. But even if no lives depend on them, the 

products‟ reliable operation for the desired lifetime and under the desired operational 

specifications is critical for both the producer and the consumer.  

However, the trend of CMOS process scaling, which is likely to be continued 

towards sub-90nm technology nodes, reveals novel reliability phenomena, which 

affect the system‟s functionality either abruptly or progressively, leading to functional 

or parametric failures respectively. In this thesis, we focus on parametric or “soft” 

failures of two dominant interconnect reliability phenomena, namely of Electro-

migration and Time-Dependent Dielectric Breakdown, in a sub-micron technology 

context. However, the developed design flow presented in this work could estimate 
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the impact of other phenomena with progressive impact on a system‟s timing 

behavior, presented in the following section, as well.  

 

1.2 Reliability-threatening phenomena in general 
 

The most common and dominant reliability-threatening phenomena are the 

following: 

 

 Electro-migration (EM): EM is the transport of material caused by the gradual 

movement of the ions in a conductor due to the momentum transfer between 

conducting electrons and diffusing metal atoms. EM may progressively, and 

depending on the system‟s operation, lead to the destruction of the wire, as 

mass transfer caused by electrons eventually causes discontinuities in the 

wires by transporting also atoms of copper from the anode to the cathode, 

forming large voids at one end (anode) and extrusions at the other end 

(cathode). The underlying effect acts like a wear-out mechanism that affects 

the interconnects of digital and analog ICs and its impact gains in significance 

with CMOS technology scaling.  

 Time-Dependent Dielectric Breakdown (TDDB): TDDB is a progressive 

failure mechanism in device and interconnect structures where a capacitor is 

formed, leading to the gradual breakdown of the dielectric material as a result 

of long-time application of relatively low electric field (in contradiction to 

immediate breakdown, which is caused by strong electric field). The 

breakdown is caused by the gradual formation of conducting paths through the 

dielectric material eventually resulting in a short-circuit. 

 Hot Carrier Injection (HCI): HCI is the phenomenon in semiconductor 

electronic devices, where either an electron or a hole gains sufficient kinetic 

energy to overcome a potential barrier between different areas of the device 

and migrates from one area to another. The kinetic energy of microscopic 

particles is directly related to the temperature of the matter they constitute, so 

the higher the temperature, the higher the kinetic energy of the particles, hence 

the word hot. The injection of these high-energy carriers damages the 

dielectric material, gradually increasing its chance of failure. 

 Negative Bias Temperature Instability (NBTI): NBTI is a reliability issue of 

immediate concern in pMOS devices, stressed with negative gate voltages. 

NBTI manifests as an increase in the threshold voltage and consequent 

decrease in the drain current and transconductance, which can render a 

transistor useless. 

 

From a device-component view, reliability issues in VLSI circuits can be 

divided in two categories, namely device-related and interconnect-related. As the size 

and complexity of ICs increase, the number of wires for the interconnection of the 

transistors in an IC grows very rapidly. So, the high ratio of interconnects in 

conjunction with newer fabrication technologies, shifts the attention greatly towards 

interconnect reliability. Newer fabrication technologies shrink the dimensions of ICs 

in order to make them faster and cheaper, while they also introduce new materials, 

such as low-κ dielectrics, that make systems faster by reducing parasitic capacitances. 

However, these porous materials feature poorer electrical characteristics and are more 

vulnerable, thus making systems less reliable. 
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1.3 Motivation for studying interconnect reliability 
 

Reliability-aware design enables the location of vulnerable areas and 

components of the system and their re-design by certain criteria and techniques until 

the required specifications are met. As a result, ICs can function correctly for longer 

times and remain as unaffected as possible by random failures or fabrication defects. 

For most applications, the minimum target lifetime for individual transistors and 

interconnects is 10 years of continuous activity. 

However, standards are not present solely for reliability, but also for yield, 

fabrication cost, area, power, performance and other parameters. Usually, these 

factors are connected to each other and influence each other negatively. This makes 

the tradeoff decisions very crucial as achieving the desired delicate balance is very 

hard. For instance, a higher performance standard for the system could lead to the up-

scaling of supply voltage, which in turn leads to increased currents, temperature and 

other parameters which shorten the IC‟s lifetime. Likewise, if a lower performance 

standard is set, the lifetime of the IC will rise, leading to a more reliable system. 

Nevertheless, there is another reason because of which lower performance 

standards are likely to lead to increased reliability. This reason will be illustrated by 

an example. Newer fabrication technologies result in a transition from abrupt, hard 

failure mechanisms to gradual, soft failure mechanisms. Suppose there is an 

interconnect where EM starts to affect its internal structure by forming voids. At some 

point, a void in the wire is created because of the metal atom transfer. Electrical 

current still flows, but there is a significant rise in the wire‟s electrical resistance, 

resulting in increased delay for the interconnect.  

The same principle can be applied to an interconnect where TDDB occurs. 

Before the dielectric leakage current flowing through the conductive path becomes 

large enough to cause a short circuit, the transition time of the interconnect rises 

because of it. Now, this rise in delay might cause a tightly timed, low slack system to 

stop functioning correctly because the delay in some register-to-register paths might 

exceed the clock period. If the system‟s clock and in general the design‟s timing 

constraints allowed for a higher slack, this delay increment might not influence the 

system, unless a hard failure occurs due to high peak currents leading to hotspots or 

disrupting the structure of certain, vulnerable wires due to metal atom transfer 

because of extremely high current density. 

 

 

1.4 Choice and description of the examined phenomena 
 

In this work and tool flow only two reliability-threatening phenomena are 

examined, EM and TDDB as they have application in interconnect reliability and 

according to recent research these phenomena seem to dominate the reliability of 

newer technologies beyond the 90nm node. Actually, EM starts to gain in significance 

as manufacturing technology dimensions shrink – especially past the submicron node 

– as this raises the current density that greatly influences the intensity of the 

phenomenon. To be more precise, the scaling of a circuit‟s dimensions by a factor k, 

increases the power density proportionally to k and the current density increases by k
2
. 

TDDB also becomes increasingly important because of the reduction of the inter-layer 

distance between adjacent wires, due to CMOS technology scaling, which comes 
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together with the introduction of low-κ dielectric materials, leading to a rise in the 

inter-metal electric field and accelerating the breakdown process, as the porous nature 

of low-κ dielectrics leads to the easier establishment of conducting paths, thus making 

them more susceptible to TDDB. 
 

 

1.5 The goals and main idea of the presented flow 
 

The main goal of the presented work has been the incorporation of a realistic 

temperature profile in the calculation of the reliability models‟ parameters. This is 

important, because both phenomena presented above exhibit exponential dependence 

on temperature as the models presented in the next chapter show. Therefore, the use 

of imprecise temperature data can lead to either too optimistic or too pessimistic 

predictions regarding the lifetime of a system. In order to overcome this problem, a 

solution is proposed, involving the estimation of the temperature of each individual 

hierarchical unit on an architecture level, depending on its application-specific power 

consumption and its floorplan. This also introduces a further criterion for reliability-

critical region location, namely that of high temperature, because of its exponential 

effect on reliability phenomena. 

But still, the accurate estimation of temperature and consequently of the 

lifetime and degradation parameters of interconnects would not be of much 

significance, if there was no way to project the impact of these results on the system‟s 

timing. A methodology to interpret the quantitative effect of resistance rise in wires 

due to EM or leakage current rise in interconnects due to TDDB on system timing 

allows the exploitation of the results of predictive models in a tool, to assist 

reliability-aware design of systems. In other words, a methodology is presented in this 

work that allows the estimation of the degradation of a system‟s performance due to 

the gradual degradation of the electrical characteristics of its interconnects, caused by 

various reliability-threatening phenomena. Such a transition is important and has a lot 

of applications, some of which are mentioned below: 

 

 It enhances the understanding of the designer as far as reliability is concerned, 

providing him with more information regarding the gradual impact of time on 

his design, thus enabling him to make a more effective tradeoff between 

performance and reliability. 

 Through a set of incremental simulations over increasing time periods of 

circuit operation, the gradual reduction of the system‟s timing slack can be 

depicted in a diagram, giving a more detailed picture of the evolution of the 

phenomena, as the operating time progresses. 

 

The concept of moving from the electrical and process characteristics‟ 

degradation of wires to the estimation of the system‟s performance drift over time due 

to the progressive impact of such degradation on the design‟s timing is explained 

graphically in Figure 1.2, which is the timing diagram of the register-to-register paths 

of Figure 1.1. 
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Figure 1.1. Delay rise in the interconnect of Path 2. 

 

 
Figure 1.2. Impact of delay rise on system’s timing. 

If, as stated above, the system was loosely timed and left a larger slack, the 

delay rise in path 2 in the above example would not lead to the violation of the set 

timing constraint (clock period), as the output data of Path 2 would be produced 

before the beginning of the next clock cycle. Hence, the delay tolerance of a design 

due to the timing impact of such reliability phenomena is strongly dependent on its 

performance requirements. 

The transition described above is realized through an automated tool flow. 

This is based on state-of-the-art EDA tools such as the Cadence SoC Encounter 

physical implementation tool suite [22] and the Encounter Static Timing Analysis 

(Encounter Timing System-ETS) [19] engine. Standardized file formats such as the 

SPEF and the SDF are used as carriers of the effects of the reliability phenomena 

examined, as they include information that are important for the estimation of the 

system‟s timing. Therefore, either the SPEF or the SDF file of the target design 

should be read before any timing analysis, through which the design‟s performance is 

estimated. 

Hence, the computations of the EM model regarding the resistance rise of the 

affected wires should be incorporated into the design‟s parasitic information file, so 

that the timing impact of the underlying wear-out is evaluated.  In order to assess the 

impact of EM, the current density in each wire is first estimated. Next, the wires that 

are affected by EM are identified and using a model, their expected resistance rise 

over time is calculated. Finally, this resistance rise is incorporated in the design‟s 

SPEF file and the corresponding SDF file is also generated, based on the SPEF‟s 

parasitics, which are used for the required delay computations.   

On the other hand, in order to assess the impact of TDDB, adjacent wires are 

located and the leakage current through the dielectric is estimated by performing 

extrapolation from stress to operating conditions, based on look-up table libraries of 

inter-metal leakage. The corresponding delay increment because of this leakage is 
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computed by linear interpolation between the wire patterns of a constructed look-up 

table library and those extracted from the layout. The aforementioned library is 

constructed in order to estimate the delay increment of wires due to TDDB. Then, the 

increased delay of charging the wires of the examined interconnects is computed for 

each interconnect and it is incorporated into the design‟s SDF file. It should be noted 

that, the TDDB requires a different approach of annotating the induced delay 

compared to the EM, as there is no certain electrical characteristic directly affected 

and. So, the conducting paths through the dielectric are emulated by progressively 

increasing the delay of charging wires affected by TDDB, after a certain number of 

operating years. Although the most accurate method for the computation of the inter-

metal dielectric leakage is through Spice simulations using distributed RC models, 

this is a time-consuming solution. In order to overcome this obstacle, a Spice-based 

wire characterization library including the delay of adjacent wires due to TDDB is 

constructed instead and look-ups combined with interpolations are used to estimate 

the delay rise of the layout‟s real wire patterns. The computed delay increment for 

each wire of the examined net that belongs to a certain register-to-register path is 

annotated to the design‟s SDF file. 

The comparison of the timing analysis reports based on the initial SDF file and 

each one of the other two SDFs, namely after the EM and TDDB models‟ 

computation and annotation, will reveal the impact of each phenomenon on the 

system‟s timing, considering a certain number of operating years. Also, assuming that 

the two phenomena are independent, if the delay overhead due to TDDB is annotated 

on the SDF file produced after the annotation of the EM impact, the resulting SDF file 

will reflect the combined impact of both phenomena. In order to make the model 

predictions much more accurate, an application-based power and then temperature 

estimation is performed, before the core of the interconnect reliability flow is 

executed. 

The encapsulation of the design‟s temperature distribution across the layout 

comprises the main contribution of this work, as previous interconnect reliability 

frameworks [1][2] do not consider realistic temperature traces. However, apart from 

the temperature profiling, significant additions, corrections and improvements have 

been made to the initial framework of [1][2] during this thesis. These novel features, 

introduced by this work, are summarized in Table 1.1, shown below. 

 
Table 1.1. Feature comparison table between past and proposed version of the flow. 

Feature Proposed version Past version [1][2] 

Temperature-aware lifetime 

estimation   

Accurate current density 

calculation (through Spice)   

Accurate transition time 

computation (through EDA tool)   

Accurate look-up of TDDB-

induced delay   

Simultaneous analysis of multiple 

paths   

Automated tool   
Combined EM&TDDB timing 

impact estimation   
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1.6 The test platforms 
 

The reliability tool flow has been tested using several designs, which are the 

testbenches, from which the wires of nets in the examined register-to-register timing 

paths are extracted. In order to thoroughly test our approach, we used several 

place&route scenarios, so that their impact on the evolution of the underlying 

phenomena can be explored. These scenarios were applied to an embedded Multi-

processor System-on-Chip platform based on two LEON3 SPARC processors. The 

aforementioned design, implemented based on an Application-Specific Integrated 

Circuit (ASIC) flow with a 45nm standard-cell library, is large and complex enough 

and the implementing technology used is state-of-the-art, so that the impact of the 

examined interconnect wear-out mechanisms is significant enough. Especially the 

LEON3 design features buses with long wires, as well as computational-intensive 

ALUs, which may include timing paths with strict timing constraints and also long 

nets with wires susceptible to EM. 

 

 

1.7 Chapter outline 
 

An overview of the chapters that follow is presented in this section, which can 

act as a guide to the reader. In Chapter 2, the examined reliability-threatening 

phenomena, as well as their models, are described. Chapter 3 provides a generic, 

high-level description of the presented reliability analysis flow in the form of steps, so 

that the reader can develop a general understanding of the origin of the data required 

at each step in order to calculate the desired parameters. The 4
th

 Chapter elaborates 

further on the flow by getting a step closer to its implementation, describing the 

technical details of the individual scripts that comprise it. The physical designs 

(layouts) that were used as testbenches, together with the tools that generated them 

and their configuration details, are described in Chapter 5. In the first sections of 

Chapter 6 the produced experimental results and the conclusions derived from them 

are presented, whereas the next sections deal with the potential future extensions 

regarding the reliability analysis framework and attempt to provide solutions that 

could potentially mitigate the impact of the examined wear-out mechanisms. The 7
th

 

Chapter is the Appendix, where the code of the various developed scripts is listed, so 

that it is possible to delve deeper into the flow‟s implementation. 
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2  

Reliability-threatening phenomena & 

models 

2.1 Electro-migration 
 

Electro-migration (EM) is a physical phenomenon that may lead to major 

reliability problems regarding the structure and the electrical characteristics of copper-

based interconnects, which are used in most modern VLSI systems. However, EM in 

general occurs when electrical current flows through a metal conductor and causes 

some metal atoms to drift along the wire due to momentum transfer from the electrons 

(electron wind). The transport of atoms progressively leads to the formation of voids, 

specifically near one end of the wire (anode). Because of the gradual void formation, 

the internal structure of the affected wire is not coherent any longer, as areas of void 

intercept those of copper. As the current cannot pass through voids, it has to come 

along the copper wire‟s barrier, which causes a significant increase in the time 

required for the current to pass through. Consequently, the progressive formation of 

voids due to EM leads to a gradual resistance rise of the wire, which in turn inserts a 

delay overhead to the signal‟s propagation. In recent years, research towards EM was 
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focused mainly on the lines of the power and ground network, which may suffer from 

high voltage drop when the underlying phenomenon starts to develop.  

Regarding data signals, EM has started to gain in significance as the geometric 

dimensions of interconnects tend to shrink, following the trend of CMOS technology 

scaling down to the nanometer regime. Technology scaling reduces the width and 

thickness of metal interconnects and consequently their cross-section area, as well as 

the wire pitch and spacing, while the operating voltage saturates around 1V in state-

of-the-art deep sub-micron CMOS technologies. Therefore, the stressing of wires 

becomes more intense, as the current density tends to be increasing with scaling. 

Precisely, the scaling of a circuit‟s dimensions by a factor k, increases the power 

density proportionally to k and the current density increases by k
2
. The dominant 

mechanisms that cause a circuit to malfunction due to the momentum metal atoms 

drift, caused by EM, are the following: 

 

 The formation of voids along interconnects because of the displacement of 

material from some spots, leading to a resistance rise. 

 The formation of extrusions near the anode because of material accumulation 

there, leading to higher risk of adjacent wire shorting. 

 

The formation of a void usually starts from a spot of the wire, where some sort 

of defect in the crystal grid exists. The later results in higher collision rate between 

electrons and metal atoms and eventually to higher momentum transfer between them. 

At some point atoms detach from the grid and move. Then, because of the electrical 

forces that appear along the void in conjunction with the weakening of that spot‟s 

structure, the void begins to expand. Gradually, the void tends to occupy larger 

portions of the wire‟s width and height, reducing the conductor‟s cross-section at that 

spot.  

Such a phenomenon is located along a limited length of the wire, so the effect 

on its resistance is negligible. But at some time, the void fully occupies the cross- 

section of the wire. At that spot, the current is forced to flow through the diffusion 

barrier, which has much higher resistance than the metal conductor, due to its low 

conductivity and cross section. As a result, the wire resistance abruptly rises by 

several hundred Ohms (resistance step). Since then, strong electrical forces appear 

between the ends of the void which act as an anode and cathode respectively. 

Consequently, the void expands further along the length of the wire increasing the 

wire‟s resistance at an approximately linear rate (resistance slope). 

In the following graph, the stages of the resistance step and slope as EM 

progresses are demonstrated clearly: 
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Figure 2.1. Wire resistance change over time due to EM. 

While a void forms at some spot in the wire, detached metal atoms are carried 

away by electrical forces and accumulate near the anode, forming extrusions through 

their diffusion in the dielectric material that surrounds the wire. If an adjacent wire 

exists in a close distance to the first one, it is possible that a short circuit between 

these two wires is created. Even if the material transferred is not adequate to reach the 

adjacent wire, the decreased distance enhances the electric field locally, thus making 

the dielectric material breakdown easier. The following electronic microscope photos 

illustrate EM- induced voids and extrusions, respectively. 

 

 
 

Figure 2.2. EM-induced void above a via. 

 

 
 

Figure 2.3. EM-induced extrusion near an adjacent wire. 
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Figure 2.4. Progressive void formation in a wire over time, due to EM. 

Because of the thermal nature of the process of EM, temperature is a critical 

parameter for the underlying wear-out‟s development, influencing the evolution of the 

phenomenon exponentially, by both accelerating it and amplifying its results, as it will 

be shown in the mathematical formulation given below. The positive feedback loop 

observed in the figure below, demonstrates how the temperature dependence acts on 

the void‟s nucleation and expansion, consequently increasing the wire‟s resistance. 

 

 

 
 

Figure 2.5. Positive-feedback EM acceleration phenomenon. 

 

However, EM only occurs in wires whose length exceeds the Blech length, for 

a given value of current density. This sets the lower limit of length and density, below 

which a mechanical stress buildup causes a reversed migration process, which reduces 

or even compensates the effective material flow towards the anode. The upper limit of 

the critical product of current density and wire length has been determined to be 3700 

A/cm, by conducting extensive experiments. For a given density of current flowing 

though a wire, the Blech length can then be easily calculated by performing a single 

division. In conclusion, only wires which are longer than 
          

       
 are affected by EM. 

Additionally, wires conducting DC current are more susceptible to EM than 

those conducting AC current. In the case of the later, the bidirectional electron flow is 

considered to have healing effects, counterbalancing the mass transfer caused by EM. 

Due to the lack of experimental data and therefore of a model for AC current driven 
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EM, the equivalent DC current is estimated as the absolute difference of rise and fall 

current and a DC current driven EM model is used to calculate the results of EM. 

Due to the relatively high lifetime of interconnects despite the influence of 

EM, it is impractical to characterize EM under operating conditions as this would 

require year-long experiments. A semi-empirical mathematical equation, Black‟s 

equation, is commonly used instead to predict the lifetime of interconnects in VLSI 

circuits, based on experiments conducted under stress conditions of high temperature 

and voltage. The model‟s results can then be extrapolated to operating conditions to 

estimate the expected lifetime as common practice suggests. This method is widely 

accepted as it is known to provide accurate predictions. 

Black‟s equation estimates the mean time to failure (MTTF) of a wire, that is 

the time until the resistance step rise occurs, using experimental data as: 

 

           
 

  
  
  
             

 

, where A is a constant, n is the current density exponent factor (ranging between 1 

and 2, depending on the technology of implementation), Ea is the activation energy in 

Joule, depending on the metal of the conductor, J is the wire‟s current density, k is the 

Boltzmann constant and T is the temperature in Kelvin. The first three of the 

aforementioned parameters are derived from experimental data. The following graph 

displays Black‟s equation for a given set of these parameters: 

 
Figure 2.6. Graphical representation of Black’s equation. 

 

In order to extrapolate the lifetime to operating conditions the following 

statistical equation is used: 

 

                       
       
       

 
 

 
  
 
  

 
       

 
 

       
 
           

 

, where the indexes stress and normal are used to denote the conditions each variable 

refers to. Another equation is then used to estimate the wire‟s resistance rise rate after 

t50, as: 
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, where all symbols have the same meaning as before. Using the same statistical 

method to extrapolate to operating conditions, the following equation is obtained: 

                            
       
       

 

  
  
 
  

 
       

 
 

       
 
           

  

Finally, the resistance step, ΔR, is calculated as follows: 

 

    
  

          
  

  
    

  
          

  
    

  
          

                   

 

, where ρb is the resistivity of the diffusion barrier, tb is its thickness, W is the wire 

width, H is its thickness, ρm is the resistivity of the metal and Lvoid is the void‟s length, 

formed in the timing window at which the EM impact is examined.  

The above formula essentially calculates the difference of resistance when the current 

exclusively flows through the metal and when it is forced to flow through the 

diffusion barrier for the length of the void. The following figure explains how the 

resistance is obtained in each case by breaking the wire down to its metal, barrier and 

void and combining their individual resistances which are calculated as the quotient of 

the product of resistivity and length, divided by the cross-section. 

 

 
Figure 2.7. Void demonstration in a copper wire. 

 

 

2.2 Time-dependent Dielectric Breakdown 
 

The breakdown of the dielectric material refers to the destruction of the 

dielectric layer that insulates adjacent conductive areas from each other, preventing an 

unwanted short circuit. Such insulating layers are found in various parts of an IC, such 

as the gates of MOSFETs, between the plates of capacitors and between adjacent 

wires of the same metal layer. This last case, which is highly related to the Time-

Dependent Dielectric Breakdown (TDDB), namely the second interconnect wear-out 

we are focusing on in this thesis, has been gaining in significance lately, due to the 

scaling of interconnect dimensions, as the CMOS process technologies reach the 

deep-deep submicron era. This is mainly for two reasons: 
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 Low-k dielectric materials are used in order to decrease the parasitic 

capacitances of various circuit components and consequently improve both its 

performance and its power consumption. However, these materials have 

poorer electrical characteristics and break down sooner and under weaker 

electric fields. 

 The electric fields between adjacent wires are amplified as their distance - and 

therefore the thickness of the dielectric material - is reduced. As a result, 

electric fields between adjacent wires are nowadays approaching those 

encountered in the gates of transistors one or two decades ago. 

 

The Time-dependent Dielectric Breakdown (TDDB) occurs due to the gradual 

wear-out of all dielectric materials over time. Even those of high quality are 

threatened by TDDB over time. But this process of wear is accelerated by the 

presence of defects and imperfections in the dielectric material, as it will be explained 

below. The wear-out mechanism is divided in two stages in general: 

During the first stage of build-up, charges (holes) are trapped in weak spots of 

the dielectric where defects or imperfections exist, as leakage current flows through it. 

These rise in number over time, leading to the formation of high electric fields and 

high leakage current regions along the wire. This process continues for quite a long 

time (under normal conditions year-long), until a critical concentration of trapped 

charges is reached, which is when a transition to the next stage of runaway occurs. 

At the stage of runaway, the electric field, which is enhanced by the charge 

injection, exceeds the breakdown threshold in the weak spots of the dielectric 

material. Strong leakage currents flowing through those spots heat up the dielectric, 

which in turn leads to further increase of the current flow. This positive feedback loop 

eventually results in electrical and thermal runaway, eventually destroying the 

dielectric.  The runaway stage happens in a very short period of time. A region where 

a dielectric breakdown has occurred, resulting in high leakage current and possibly to 

a hotspot in the specific die location can be seen in the following figure. 

 

 
 

Figure 2.8. TDDB-induced leakage between adjacent wires of the same metal layer. 

 

The presence of defects and imperfections in low-quality porous dielectrics 

greatly reduces the time needed for transition from the build-up to the runaway stage.  

These defects actually have the effect of “thinning” down the dielectric where they 

are located, since they are occupying space that should be occupied by the 

dielectric. The effective electric field is higher in these thinned-out areas compared to 

defect-free areas for any given voltage. This is why it takes a lower voltage and 

shorter time to break down the dielectric at its defect points. 
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The TDDB leads to gradual increase of the leakage current until the dielectric 

breaks down as explained above. This leakage current increase can be divided in three 

stages that are demonstrated in the following diagram. 

 

 
Figure 2.9. Inter-metal leakage current versus time. 

 

During the first stage, the leakage current increases because of the 

accumulation of trapped charges. During the second stage, it decreases at a rate that 

depends on the quality of the dielectric material as new electron trapping spots are 

created. Finally, during the third stage, the leakage current increases at a logarithmic 

rate before the final breakdown that leads to short circuit. At that point, a conducting 

path connecting the anode and the cathode has formed. The evolution of such a path is 

shown in the following figure, which explains the idea behind the statistical 

percolation model that is used to estimate various parameters of the phenomenon of 

TDDB: 

 

 
Figure 2.10. TDDB evolution stages. 

 

The circles represent charge-trapping defects. The creation of such defects 

begins from the sparse trapping of positive charges (holes) that don‟t form any 
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conducting path which is a temporary situation (A). At some point in time, a path 

consisting of both permanent (green circles) and temporary (orange circle) defects 

may be formed (B). A defect that has trapped a hole can then either return to its initial 

state by losing the charge (A) or become permanent with the “connection” of the hole 

with an electron (C). When the leakage current rises significantly, the path (C) can be 

expanded (D) in combination with the elevated temperature, resulting in the 

breakdown of the dielectric material. 

Under operating conditions encountered in a typical IC, TDDB takes a very 

long time to fully develop (possibly even decades), so the indicated method of study 

is through accelerated testing under stress conditions of high temperature and high 

voltage. The data collected from such experiments can stretch over a period of several 

days or up to a month. These are then extrapolated using empirical and statistical 

models to the desired time period and normal conditions. 

The most widely used models are two. The first and more well-known is the 

E-model, which is based on the electric field in order to interpret the phenomenon 

[11]. The second, namely the 1/E-model, assumes that the dielectric breakdown 

process is driven by the leakage current [11]. In more detail: 

 

 In the electrochemical E-model, the cause of low-field (<10 MV/cm) high 

temperature TDDB is due to field-enhanced thermal bond-breakage. In this 

model, the field serves to stretch molecular bonds thus making them weaker 

and more susceptible to breakage by standard Boltzmann (thermal) processes. 

Since the field reduces the activation energy required to break a bond, the 

degradation rate is expected to increase exponentially with field. Failure 

occurs when a localized density of broken bonds (or percolation sites) 

becomes sufficiently high to cause a conductive path to form from anode to 

cathode. 

 The 1/E-model for TDDB (even at low fields) postulates that TDDB is due to 

current flow through the dielectric due to Fowler-Nordheim (F-N) conduction. 

Electrons, which are F-N injected from the cathode, may cause damage to the 

dielectric due to impact ionization as the electrons are accelerated through the 

dielectric. Also, when these accelerated electrons finally reach the anode, hot 

holes may be produced which can tunnel back into the dielectric causing 

damage (hot-hole anode-injection model). Since both the electrons from the 

cathode and the hot-holes from the anode are the result of F-N conduction, 

then the MTTF is expected to show an exponential dependence on the 

reciprocal of the electric field, 1/E. 

 

Despite all the research that has been and is still being conducted on TDDB, 

there is no definitive consensus on the physical mechanism underlying the 

phenomenon. So both models are used depending on how well they fit the 

experimental data obtained using different dielectric materials, electric fields and 

temperatures.  

In the case of interconnects, however, where the dielectric materials are still a 

few micrometers thick, their dielectric constant is low and the electric field is 

moderate in intensity, the E-model seems to provide a closer fit to experimental data 

and therefore it is preferred. The extrapolation proposed in this case is exponentially 

proportional to the electric field and results in an almost linear rise in the leakage 

current until the dielectric breakdown. Once again, the temperature plays a very 

important role in the evolution of TDDB. 
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3  

Design flow methodology 

3.1 Basic concepts 
 

The presented design flow extracts the target interconnects from the design in 

order to estimate the system‟s lifetime due to timing violations, caused possibly by the 

gradual degradation of the electrical characteristics of interconnects. As target 

interconnects, we define those belonging to register-to-register timing paths, the 

timing of which is evaluated before and after the studied wear-out mechanisms‟ 

impact annotation. An important feature is the flow‟s expandability to other 

reliability-threatening phenomena besides EM and TDDB, by just incorporating the 

appropriate model calculations, following the existing generic flow‟s steps. These 

steps include, first of all, the retrieval of layout-specific interconnect data, required for 

the model‟s computations, and the temperature profile estimation for the given IC. 

The temperature is calculated for each unit of the design‟s floorplan, while the wire 

information for the target interconnects is derived from the Cadence SoC Encounter 

Database Access (DBAccess) command set [21]. 

As a result, the presented generic flow can be adopted to estimate the impact 

of any relevant interconnect wear-out mechanism that may progressively lead to the 

system‟s parametric (e.g. timing) failure over time. However, in this thesis, we have 

focused on EM and TDDB, not only because of the expected impact of the 

aforementioned phenomena on the interconnect delay (see Section 1.4), but also 
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because of the presence of a pre-existing estimation framework [1][2], which 

evaluates the system‟s performance degradation due to these phenomena. Therefore, 

our intention was to make a step towards the improvement of the initial interconnect 

reliability toolflow, by considering a more realistic temperature distribution across the 

target design‟s layout in order to increase the accuracy of its predictions.  

Regarding the flow‟s steps for EM, the proposed methodology, which has 

been strongly based on the initial framework, extracts the wires from each 

interconnect that belongs to the selected timing paths and updates its resistance, only 

if the examined wire is longer than the Blech length. Then, the updated wire 

resistances are annotated to the SPEF file of the design, which is input, together with 

the post-layout netlist, to the static timing analyzer, in order to evaluate the impact of 

EM on the design‟s performance. 

A similar approach is followed for TDDB, as far as the wire extraction and the 

final performance evaluation are concerned. Regarding the core of the model, due to 

the lack of consensus on a formula for Inter-Metal Dielectric leakage current, the 

proposed flow, as well as its initial version [1][2], rely on the extrapolation of leakage 

current measurements from stress to operating conditions. The delay overhead 

introduced to the affected wires is computed in two steps. First of all, a look-up table 

library, relating the leakage current of several wire patterns to the corresponding delay 

overhead, is constructed. This library includes wire patterns covering a wide range of 

length, spacing and leakage current values, interpolation between which, is performed 

to estimate the actual delay overhead of each wire. The total delay for a specific 

interconnect is calculated as the weighted mean of its wires‟ delays and it is annotated 

to the SDF file, which is used as input to the static timing analyzer in order to evaluate 

the impact of the studied phenomenon on the design‟s performance. 

The incorporation of an accurate temperature profile comprises the main 

contribution of the presented thesis, as it improves the accuracy of the timing drift 

evaluation. However, there are several other features, which differentiate the proposed 

work from the previous analysis framework [1][2], by contributing to the accurate 

estimation of current density for EM through Spice simulations, as well as to the 

wires‟ delay computation for TDDB through improved interpolations. Moreover, our 

toolflow is not limited to the analysis of the interconnects of the single most timing-

critical path, as experimental results have shown that initially sub-critical paths may 

become critical after the annotation of the wear-out mechanisms‟ additional delay [3]. 

Hence, the new version of the framework is able to analyze as many paths as the 

designer selects concurrently, and to annotate and evaluate the total impact of the 

examined phenomena on the interconnects of the examined paths. An overview of the 

aforementioned novel features is illustrated in Figure 3.1, where we provide a holistic 

view of the proposed reliability framework, by depicting the individual steps required 

to evaluate the impact of EM and TDDB on a design‟s timing. 
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Figure 3.1. The proposed interconnect reliability framework for EM and TDDB. 

 

The comparison of Figures 3.1 and 3.2 clearly reveals several improvements. 

First of all, the current density estimation performed in the initial flow of Figure 3.2 is 

quite approximate, as Spice simulations are not involved at all and the tree structure 

of the interconnect is ignored. Namely, the current of every wire is assumed to be 

equal to the total current flowing through the net it belongs to. However, this 

approach, greatly overestimates the current density, which leads to unrealistic results 

regarding the intensity of EM. Additionally, the boxes of multiple path selection and 

temperature estimation are missing, whereas in our flow, they comprise two of the 

main introduced features. Especially the temperature estimation is the most significant 

feature not included in the early stage of this estimation framework, which has been 

mainly focused on capturing the system‟s performance drift, rather than guaranteeing 

the accuracy of the results in such a detailed granularity. Moreover, the calculation of 

the TDDB-induced delay overhead used to be based on a rather “poor”, layout-

unaware, delay look-up library, in contradiction to our approach, which takes the 

characteristics of the examined layout into account. Nevertheless, the initial 

framework introduced an innovative approach into the field of reliability-aware 

design, as it was the first work that attempted to link the degradation of the electrical 

characteristics of interconnects to the design‟s performance drift over time. 
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Figure 3.2. The initial reliability analysis framework presented in [1] and [2]. 

 

Regarding the required tools for the analysis described above, both flows are 

based on industrial EDA suites, which aid in the extraction of the layout-specific 

information and in the static timing analysis of the design. A slight differentiation 

exists regarding the temperature profiling, which is based on an open-source academic 

platform, as it is described in the next section. 

 

 

3.2 Temperature estimation 
 

The temperature for each unit is derived from the HotSpot tool, provided as an 

open-source temperature estimation framework, developed by the University of 

Virginia. The input is just the floorplan of all the design‟s units, the number of which 

can vary depending on the design‟s hierarchy levels and the desired granularity, as 

well as the power consumption for each of them. The result is the individual 

temperature estimation for each unit, which is strongly dependent on the power 

consumption‟s accuracy. 

Based on the obtained temperature profile, the proposed flow, which is generic 

enough, can be used to analyze any path that is given as input, allowing the use of any 

path selection algorithm or method considered as appropriate, depending on specific 

parameters and criteria. The selection of specific paths may focus, for instance, on 

specific regions of the design that are suspected to be susceptible to the studied 
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interconnect reliability problems, or on any set of architectural, temperature-aware or 

physical implementation criteria. 

In perspective, the design flow consists of discrete steps in order to calculate 

all required data and we will elaborate on these steps further below. First of all, the 

temperature for each individual floorplan unit needs to be determined, through 

HotSpot. This requires the presence of: 

 

 The design‟s floorplan, which designates the exact placing of each unit on the 

chip and can be directly exported from the design itself through the Cadence 

SoC Encounter place-and-route tool, using specific commands.  

 The estimated power dissipation for each unit, which can be derived either by 

assuming certain switching activity information for the design‟s inputs, or by 

simulating the post-layout netlist of the design, based on a specific application. 

In this thesis, we performed the experiments by applying both practices, but 

the latter has been preferred, even though it is more time-consuming, because 

of its accuracy on the power profile‟s estimation. 

 

 

 
 

Figure 3.3. Temperature estimation flow. 
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3.3 EM flow 
 

Once the temperature of each hierarchical unit is extracted, the necessary 

calculations, in order to obtain the results for the EM impact estimation can be 

performed. The EM flow consists of the following steps: 

 

 Cell, pin and net extraction: The cells, pins and nets involved in the selected 

register-to-register critical paths are extracted from the timing analysis results. 

 

 Output transition time calculation: The output pin rise and fall transition times 

can be retrieved through static timing analysis from within SoC Encounter 

using a DBAccess command. Alternatively, and in order to cross-check the 

command‟s results, the output transition time can be calculated through a 

lookup in the timing table for the specific cell in the standard-cell library, 

because it depends on the input pin transition time, the standard-cell driving 

strength and the output pin load capacitance. The library‟s format is assumed 

to conform to the Synopsys Liberty format‟s specifications, according to 

which the output transition time look-up is carried out using the input pin 

transition time, as a row index, and the output pin load capacitance, as a 

column index. Each input pin‟s transition time obviously equals the transition 

time of the output pin that drives that specific input pin and thus can be 

recursively calculated using the method described here. The output pin load 

capacitance is obtained using a relative Encounter DBAccess command. 

 

 Current density calculation: The most accurate way to estimate the individual 

current of each wire of a net is through a Spice simulation. But in order to 

perform a Spice simulation of a charge and discharge cycle of a net, three 

components need to be modeled: 

 

o First of all, the wires of the net themselves. Their Spice netlist is generated 

from the corresponding net‟s SPEF distributed RC netlist. 

o Second, the input pins that the net is connecting the output pin with. These 

are modeled as capacitors, whose value is also derived from the SPEF file. 

o Finally, the output pin that drives the net. This has been modeled as a 

voltage source with specific parameters that closely resemble the behavior 

of an output pin of the system. Specifically, the voltage low level has been 

set to ground, the high level to Vdd and the rise and fall delays have been 

set to the rise and fall transition times that have been calculated through 

the extraction script for the specified output pin respectively. 

 

The simulation of the above Spice netlist is performed and the average 

value of the rise and fall current flowing through each wire is estimated. The 

equivalent current is then calculated as their absolute difference and used in 

order to estimate the evolution of EM through its model. The above procedure 

is repeated for every net that is part of the examined critical paths. 

An approximation formula for current density has also been used to cross-

check the results of the above procedure. This formula is 
       

            
 where Vop 
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is the operating voltage, Cnet is the total net capacitance, A is the cross section 

area of the net‟s wire that is driven by a specific standard-cell‟s output pin, 

and ttransition is the transition time of the net. The output pin‟s load capacitance 

and the output net dimensions for the determination of its cross-section area 

are obtained using the respective Encounter DBAccess commands. The output 

transition times for the calculation of the rise and fall current density are 

known from the previous step. A great disadvantage of the above formula is its 

reduced accuracy due to ignoring the tree structure of the interconnect and 

thus the distribution of the current to each branch. 

 

 EM parameters estimation: After having calculated the rise and fall current 

density as described above, the average current density is calculated as their 

absolute difference as the EM model is for DC current. The parameters t50, 

Rslope, ΔR and lcritical, that quantify the impact of EM, are then calculated using 

the EM model described in the previous chapter and they are written along 

with the net‟s name to an intermediate file, which includes all the information 

regarding the wires of the examined path‟s nets which are affected by EM in 

the timing window of the desired system‟s lifetime. We will elaborate further 

on the generation, the structure and the context of this file, namely 

deltaR.report, in the next chapter. The computed EM parameters are needed 

later in the flow to update the elevated wire resistance values in the SPEF file 

of the design, in order to take the effect of EM into account while estimating 

the system‟s performance drift over time. 

 

 SPEF annotation: Depending on the operation time period that is desired to be 

simulated, the total resistance increase for each net wire is calculated as the 

sum of the resistance step and the resistance slope multiplied by the number of 

years since t50. It must be noted that all the aforementioned steps of this flow 

are performed for nets that belong to certain register-to-register paths of the 

target design. Then, using the net‟s name, its parasitic resistances are located 

in the SPEF file. It must be noted that only those wires longer than the critical 

length for the specified net must be updated. This is ensured by updating only 

the wires of each net with resistance values higher than the product of the 

critical length by the average resistance per length value. 

 

 Estimation of EM impact on system’s timing: A new timing analysis using the 

annotated SPEF file will reveal the impact of EM on the timing of the system 

and will indicate possible timing violations due to the EM-induced 

interconnect resistance rise. 
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Figure 3.4. The temperature-aware EM flow. 

 

 

3.4 TDDB flow 
 

In this section of the flow, the interconnects that run parallel to each other, 

posing increased TDDB induced risk are identified and the impact of the leakage 

current between them on the system‟s timing is estimated. The TDDB flow consists of 

the following steps: 

 

 Detection of adjacent wires: TDDB only takes place in wires that are close 

enough to each other. So, a filtering of all adjacent wires of each wire of a net 

must be carried out in order to identify them. The maximum distance can be 

altered, depending on the fabrication technology used. The wires that are 

discovered are written to a report with their positions and relative distances, 

which are exploited later in the tool flow. We will elaborate further on the 

generation, the structure and the context of this file, namely wire.report, in the 

next chapter. 
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 Estimation of the TDDB-induced leakage current: Using the adjacent wire 

data gathered before, a calculation of the leakage current by extrapolation of 

lab measurements under stress conditions to operating conditions is performed 

as described in the corresponding TDDB model, shown in Chapter 2. 

 

 Estimation of the delay change due to TDDB-induced leakage current: The 

only way to obtain an accurate estimation of the impact of the TDDB-induced 

leakage current on the system‟s timing is a set of SPICE simulations to 

generate a pre-characterized library of representative layout patterns combined 

with a range of leakage currents. For the rest of the tool flow, on-the-fly 

simulations using real and accurate wire patterns would be too time 

consuming and not worth the extra timing overhead for each separate design, 

so another approach was preferred instead. This involved the generation of a 

LUT containing permutations of all possible TDDB-influencing values within 

certain ranges which are expected to be encountered throughout the design, 

along with their corresponding delay change ratios. The generation is 

performed based on a distributed RC model of the wire, with representative 

values of resistance R and capacitance C, as well as leakage current sources, 

all uniformly scattered across the overlapping section of the wire.  

The constructed LUT library contains key values of the wire‟s length, the 

adjacent wire (overlapping) length, the relative position of the wires, the 

leakage current and finally, the distance from each other. This LUT needs to 

be constructed only once for each CMOS technology of implementation. 

Afterwards, the delay change ratio of real wires is estimated using 

interpolation, so the overhead added is very limited. The characteristics of real 

wires are read from the report mentioned earlier. Hence, through a look-up 

table search, followed by an interpolation, if needed, the delay overhead for a 

specific wire is estimated. 

The following figure provides an insight into how the TDDB delay ratio of a 

net‟s wire depends on the wire‟s length and also on the adjacent wire‟s 

distance, when all other parameters (e.g. temperature) are kept constant. 
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Figure 3.5. Delay impact on a wire due to TDDB, depending on wire length and distance. 

 

 SDF annotation: The last step is to update the interconnect delays of the SDF 

file. Using the interconnect output and input pin, the initial delays are located 

and read. The total delay change ratio of each interconnect is calculated as the 

weighted mean (based on lengths) of the delay change ratio of its individual 

wires. Then the delay of that interconnect in the SDF file is incremented by 

the total delay change ratio. 

 

 Estimation of TDDB impact on system’s timing: A new timing analysis using 

the annotated SDF file will reveal the impact of TDDB on the timing of the 

system and will indicate possible timing violations due to the TDDB induced 

leakage current increase which leads to transition delay increase. 
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Figure 3.6. The TDDB flow with the temperature profile’s annotation from HotSpot. 

 

3.5 Combined impact methodology 
 

In the presented thesis, the studied reliability wear-outs, namely EM and 

TDDB, were considered as independent phenomena and consequently, the developed 

estimation framework captures the timing impact of each one of them without 

considering any inter-dependence between them. However, EM can affect the inter-

metal distance of affected wires, as the void formation leads to extrusions of copper 

wires‟ segments at the cathode end. Hence, in such a case, the spacing between the 

extruded wire and its adjacent one on the same metal layer is locally reduced and the 

corresponding electric field is enhanced. It is noted that wire extrusions due to EM 

may occur only when current densities are significantly high and the specific wire is 

stressed for a long time, which is not a typical case in operating conditions. However, 

high peak currents in computational-intensive parts of designs such as processors or 

arithmetic units with high fan-out logic cells may include wires that could be 

candidate to suffer from extrusions, especially as the technology scaling shrinks the 

interconnect dimensions. As a result, the development of a methodology that could 
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incrementally capture the combined impact of EM and TDDB gains in significance, 

as does the need for a model to estimate the location of possible wire extrusions. 

From a purely technical point of view, the estimation of the combined impact 

of both reliability wear-outs on the target design‟s timing is based on a technique that 

uses an intermediate step after the annotation of the updated resistances due to EM 

into the design‟s SPEF file. This step involves the generation of an updated SDF file 

of the design through a static timing analysis, based on the annotated SPEF file that 

includes the impact of EM. In this way, the produced SDF file includes the impact of 

EM and it can be used as input to the TDDB analysis flow.  The execution of the 

TDDB flow‟s steps leads to the generation of the final SDF file, including the total 

delay shifting because of both EM and TDDB. The combined impact is evaluated by 

the final static timing analysis for the examined design‟s paths. 

In either the separate or the combined version of the proposed framework, the 

analysis of the steps required to evaluate the timing impact of the studied reliability 

phenomena is viewed from a rather abstract point of view, as it is presented in this 

chapter. However, in the next chapter, we elaborate further on the detailed 

implementation of the aforementioned design flow steps, describing each part of our 

tool flow in detail, including the DBAccess commands used for the layout extraction 

and the way each step interacts with the industrial EDA tools. Also, a view on the 

Encounter DBAccess layout extraction tools is provided, along with the analysis of 

the scripts used for the proposed flows‟ implementation. 
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4  

Design flow implementation & 

Automation 

4.1 Flow implementation tools and components 
 

This paragraph covers the implementation details of the design flow including 

mainly the technical section, such as the tools used and the scripts written to realize 

each of the EM and TDDB flow steps. 

 

4.1.1 Temperature estimation (HotSpot) 

 

The units‟ temperature estimation is done with the help of an academic tool 

named HotSpot that is developed, maintained and distributed by the University of 

Virginia. HotSpot is an accurate and fast thermal model suitable for use in 

architectural studies. The actual tool is based on an equivalent circuit of thermal 

resistances and capacitances that correspond to micro-architectural blocks and 

essential aspects of the thermal package. The model has been validated using finite 

element simulation. 
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HotSpot has a simple set of interfaces and hence can be integrated with most 

power-performance simulators. The main advantage of HotSpot is that it is 

compatible with the kinds of power and performance models used in the computer-

architecture community, requiring no detailed design or synthesis description. 

HotSpot makes it possible to study thermal evolution over long periods of real, full-

length applications. 

HotSpot requires a configuration file which contains various fabrication and 

packaging dependent parameters such as the chip and spreader thickness. Other than 

that, being generic, it only requires two input files, which contain the units‟ placement 

on the chip and each unit‟s power consumption respectively. These can be produced 

by any tool or method the user prefers. 

In this case, the floorplan data is exported from the Cadence SoC Encounter 

tool using the saveFPlan command followed by the name of the floorplan (.fp) file, 

which is read by a conversion script and printed to a new .flp file format. That filters 

out the lines starting with “Guide:” which contain each unit‟s coordinates, namely 

bottom-left-x, bottom-left-y, upper-right-x, upper-right-y. The new format requires 

each unit‟s width and height, as well as the bottom-left-x and bottom-left-y 

coordinates. 

As for the power consumption profile, an application-specific post-layout 

simulation is performed using the Mentor Graphics ModelSim tool, the activity .vcd 

file is read by Synopsys PrimeTime PX, which reports the power of each unit to a 

power-report file. An addition of the leakage and dynamic power, which equals the 

total power, is performed by a script for each individual unit and the result is written 

to a new file in the HotSpot‟s power trace format. 

HotSpot takes the compatibility-converted versions of the above power trace 

and floorplan files as inputs and generates the corresponding transient temperatures 

onto a temperature trace file. There is also an option to output the final steady-state 

temperatures onto a file. This is useful, as the steady-state temperatures of the first 

thermal simulation‟s iteration can be used to perform a second simulation for 

improved accuracy. After the completion of the initial thermal simulation, the 

temperature file does contain a thermal trace, but the initial temperatures that were 

used to generate it were default constant values. These might not be representative if 

the simulation is not long enough to warm up both the chip and the package. 

However, the steady state temperatures are a good estimation of what the correct set 

of initial temperatures are.  So, the steady state temperatures produced by the initial 

run can be used as the set of initial, starting-point temperatures for one final run, a 

strategy producing more accurate results. 

It should be noted that HotSpot has been designed with high performance 

systems‟ thermal simulation in mind, so in order to simulate the lack of a heatsink in 

embedded systems, the thickness of the heat spreader and the heatsink in the 

configuration file has been reduced to a few tens of micrometers, as the developers of 

HotSpot advised. These settings made the impact of both the heat spreader and the 

heatsink on the heat transfer path negligible. Lower values are not used, as they could 

lead to numerical errors. Also, special care has been taken to ensure that all 

simulations are long enough, so that the system has reached its steady state 

temperature, otherwise the extracted temperature traces for each floorplan unit might 

be underestimated. 
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4.1.2 Path extraction and formatting 

 

The register-to-register path extraction can be done by any preferred or 

appropriate method. Special paths can be investigated in some cases, where specific 

regions of a design are suspected to be particularly weak in terms of reliability and 

lifetime. Some criteria to locate such regions are proposed in the concluding 

paragraph of Chapter 6. 

In the experiments performed in the context of this work, the most timing-

critical paths are considered as the most likely to suffer from a timing violation due to 

the impact of EM or TDDB on their interconnects, as the least deterioration of their 

characteristics may be fatal, because of the small slack available. An initial static 

timing analysis of the design using the Cadence Encounter Timing System produces a 

report containing these paths. The steps required include reading the design‟s 

synthesized Verilog netlist (read_verilog <verilog filename>), the loading of the 

necessary standard-cell technology libraries (read_lib <library filenames>), the 

creation of a clock for the design (create_clock <clk pin name> -name <clk name> -

period <clk period>) and then, the extraction of the report including the timing of 

paths with the least slack (report_timing –machine_readable –nworst <amount of 

paths>), which is dumped to a file in a format that is easy to parse. 

The file including the report for the most timing-critical paths is then 

converted using a Tcl script, so that the produced file contains only the needed 

information of each path. This information includes the driving cell and the 

corresponding output pin, the net connecting the two cells and the driven cell, along 

with its input pin driven by the net, given in the following format:  

 

net input-pin(net start) output-pin(net end) 

net input-pin(net start) output-pin(net end) 

... 

 

Example: 

 

A sample line demonstrating the format described above follows. 

 

core0/leon3core0/mctrl0/n221 core0/leon3core0/mctrl0/U399/A1 core0/leon3core0/ 

mctrl0/r_reg_BUSW__0_/QN 

 

This format allows the file to be both easily parsed and comprehended by humans, so 

that the process can be supervised, error-checked and custom paths can be easily 

added. Based on the parsing of this file, we derive the path‟s nets and we therefore 

extract all the wires of each net, by following the steps described in the next section. 

 

 

4.1.3 Layout geometric data extraction using Encounter DBAccess 

 

Cadence DBAccess is a command set which allows direct access to the 

internal database of the SoC Encounter hierarchical RTL-to-GDSII physical 

implementation solution. It is intended for highly experienced designers who are 

proficient in the use of SoC Encounter. As the whole SoC Encounter user interaction 

shell, this command set is also based on the Tcl programming language. The 
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commands offered allow the designer to access and set layout specific data. As a 

result, quite complex scripts can be executed from within SoC Encounter, allowing 

layout-specific calculations to be carried out. The objects present in DBAccess as well 

as the commands that help the transition from one object to another (object relations) 

are displayed in Figure 4.1. Cadence DBAccess has been used to implement the core 

of the tool flow presented in this work. For instance, all of the layout‟s data such as 

nets‟ wires and adjacent wires, as well as other data such as cell-net timing, have been 

extracted using DBAccess. In order to create a work that is as complete as possible, 

the most useful commands are presented below together with their syntax and a short 

description of their function. 

 

dbInstCellName <cell instance pointer> 

 Arguments: A pointer to a cell instance in the design. 

 Result: The cell (master) name for the specified cell in the standard cell 

library. 

 

dbHeadMicronPerDBU 

 Arguments: - 

 Result: The microns that one database unit (DBU) equals to. 

 

dbForEachNetWire <net pointer> <wire pointer variable> <processing loop 

body> 

 Arguments: A pointer to a net, a variable that will hold the pointer to the 

current wire of the net for each iteration, the command block that will be 

executed for each wire of the net. 

 Result: The processing loop is executed for every wire of the specified net. 

 

dbGetLayerByZ <Z layer> 

 Arguments: An integer, representing the metal layer index (0, 1, 2, …). 

 Result: The address of the specified layer. 

 

dbGetNetByName <net name> 

 Arguments: The name of a net. 

 Result: The address of the net with the specified name. 

 

dbGetNetTotCap <net pointer> 

 Arguments: A pointer to a net. 

 Result: The total net capacitance of the specified net, including the cell pins 

that constitute its terminals. 

 

dbHeadOhmPerDBU 

 Arguments: - 

 Result: The Ohms that one database unit (DBU) equals to. 

 

dbHeadPicoFPerDBU 

 Arguments: - 

 Result: The pico Farads that one database unit (DBU) equals to. 
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dbHeadPicoSecPerDBU 

 Arguments: - 

 Result: The pico seconds that one database unit (DBU) equals to. 

 
dbWireLen <wire pointer> 

 Arguments: A pointer to a wire in the design. 

 Result: The length of the specified wire in DBU. 

 

dbWireZ <wire pointer> 

 Arguments: A pointer to a wire in the design. 

 Result: The metal layer index for the specified wire (0, 1, 2, …). 

 

dbLayerThickness <Z layer address> 

 Arguments: The address of a Z layer in the design (this can be retrieved 

through the dbGetLayerByZ command). 

 Result: The thickness of the specified Z layer in DBU. 

 

dbWireBox <wire pointer> 

 Arguments: A pointer to a wire in the design. 

 Result: The box of the specified wire. This box is defined by the coordinates 

of the lower-left and the upper-right corners of the rectangle that encloses the 

specified wire. The coordinates are returned in this order: 

lower-left-x (llx) lower-left-y (lly) upper-right-x (urx) upper-right-y (ury) 

and are in DBU. 

 

dbWireDir <wire pointer> 

 Arguments: A pointer to a wire in the design. 

 Result: The direction/orientation of the specified wire. There are four possible 

values, namely dbcWireN, dbcWireS, dbcWireE and dbcWireW. Obviously, 

the first two values indicate a vertical orientation and the remaining two a 

horizontal orientation. 

 

dbNetLenX <net address> 

 Arguments: The address of a net in the design. 

 Result: The total length of all the wires of the specified net that run 

horizontally. 

 

Obviously, this command can be used to calculate the total length of a net. 

 

dbNetLenY <net address> 

 Arguments: The address of a net in the design. 

 Result: The total length of all the wires of the specified net that run vertically. 

 

Obviously, this command can be used to calculate the total length of a net. 
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dbGetTermByName <cell instance pointer> <cell pin name> 

 Arguments: A pointer to a cell instance in the design and the name of a pin of 

that cell. 

 Result: The address of the terminal specified by the cell instance and pin 

name. 

 

dbTermTranTime <terminal address> 

 Arguments: The address of a terminal in the design (this can be retrieved 

through the dbGetTermByName command). 

 Result: The transition times of the specified terminal in this order: 

rise time   fall time 

and in DBU.  

 

A timing analysis through the delayCal command in required, prior to the execution 

of this command. 

 

 
Figure 4.1: DBAccess objects and commands relating them. 

 

Another SoC Encounter command that is very important for the TDDB 

processing of the flow, will be listed here despite not being part of the DBAccess 

command set:  
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findNetsInBox <llx> <lly> <urx> <ury> 

 Arguments: Four coordinates in microns that define a box as described above, 

through its lower left and upper right corner coordinates. 

 Result: A list containing the addresses of all nets that have wires intersecting 

within the specified sector of the bounding box. 

 

4.1.4 Rise & fall transition time estimation 

 

The rise and fall transition times of a cell‟s output pin that drives a net can be 

computed using two different methods, both of which have been implemented in 

order to cross-check the validity of their results. A description of each method is 

provided below. 

The following EDA-tool-oriented method is preferred, as it makes use of only 

a DBAccess command, namely dbTermTranTime. Its output is calculated through 

static timing analysis using detailed parasitic data. As a result, it is rather accurate and 

quick in terms of execution time compared to the following method. 

The alternative method presented below that was initially used in the EM 

flow, assumes that the designs used as testbenches are composed of standard-cells, 

whose characteristics are documented in a CMOS standard-cell technology library, 

provided in a Synopsys Liberty format file (.lib). Among their characteristics, which 

depend on the CMOS standard-cell library used, are their transition times and power 

consumption, as well as the capacitance of each one of their pins. A detailed 

description of the specific timing data format is provided below, as it has been used to 

estimate the rise and fall times of each cell‟s output. 

At the beginning of the library general information such as units and operating 

conditions, such as voltage and temperature are given. Further below some templates 

are found. These define the type and values of each parameter in the timing look-up 

tables. Sometimes these templates are organized in this section in groups and some 

others, individual templates can be defined inside the section of each standard cell. 

The most common parameters used are the cell‟s input transition time 

(input_net_transition) and its output capacitance (total_output_net_capacitance). A 

vector of the values of each parameter for which an output transition time has been 

recorded is provided in the template. A template sample from the 45nm library used is 

the following: 

    
rise_transition (delay_template_7x7_0) { 

  variable_1 : input_net_transition; 

  variable_2 : total_output_net_capacitance; 

  index_1 ("0.0033, 0.0068, 0.0137, 0.0276, 0.0554, 0.1109, 0.2219"); 

  index_2 ("0.00045, 0.00183, 0.00459, 0.01012, 0.02117, 0.04326, 0.08746"); 

} 

 

In the above template sample, delay_template_7x7_0 is a code that identifies the type 

of the template. In this case, the code indicates the amount of values contained in the 

template. The first variable is marked as variable_1 and it represents the input 

transition time, while the index_1 vector contains the corresponding values. 

According to the Liberty specification, as described in [10], the first variable 

determines the row of the look-up table that contains timing data for the specific 

parameter value. The second variable, respectively, is marked as variable_2 and it 

represents the output capacitance, while the index_2 vector contains the 
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corresponding values. According to the Liberty specification, the second variable 

determines the column of the lookup table that contains timing data for the specific 

parameter value. 

            So, by knowing the values of both parameters for a specific cell in a circuit, its 

output transition times can be calculated by reading the corresponding value from the 

look-up table. These lookup tables are located in the timing section of each cell. As 

expected, there is a different table depending on the input pin whose state changes and 

on whether the state changes from high to low (fall) or from low to high (rise). This 

happens because the transition time of the output pin depends on the cell‟s 

implementation both on logic level and on physical level. The timing section of a 

specific input pin of a specific cell follows: 

 
timing () { 

  related_pin : "B1"; 

  timing_sense : negative_unate; 

  rise_transition (delay_template_7x7_0) { 

  index_1 ("0.0033, 0.0068, 0.0137, 0.0276, 0.0554, 0.1109, 0.2219"); 

  index_2 ("0.00045, 0.00183, 0.00459, 0.01012, 0.02117, 0.04326, 0.08746"); 

  values ( \ 

    "0.02502, 0.03424, 0.05257, 0.08929, 0.1626, 0.3079, 0.5993", \ 

    "0.02501, 0.03418, 0.05259, 0.08922, 0.1625, 0.3083, 0.5995", \ 

    "0.02506, 0.03424, 0.05256, 0.08929, 0.1621, 0.3083, 0.5995", \ 

    "0.02519, 0.03421, 0.05264, 0.08935, 0.1624, 0.3084, 0.5995", \ 

    "0.02977, 0.0373, 0.05336, 0.08917, 0.1624, 0.3083, 0.5998", \ 

    "0.04069, 0.04852, 0.06371, 0.09363, 0.1624, 0.3082, 0.5997", \ 

    "0.06026, 0.06957, 0.0864, 0.1169, 0.1751, 0.309, 0.5998" \ 

    ); 

  } 

  fall_transition (delay_template_7x7_0) { 

  index_1 ("0.0033, 0.0068, 0.0137, 0.0276, 0.0554, 0.1109, 0.2219"); 

  index_2 ("0.00045, 0.00183, 0.00459, 0.01012, 0.02117, 0.04326, 0.08746"); 

  values ( \ 

    "0.01842, 0.02387, 0.03475, 0.05651, 0.09953, 0.1852, 0.3569", \ 

    "0.01841, 0.02389, 0.03477, 0.05652, 0.09953, 0.1854, 0.3566", \ 

    "0.0183, 0.02375, 0.03474, 0.05643, 0.0995, 0.1852, 0.3569", \ 

    "0.0196, 0.02428, 0.03461, 0.05643, 0.09949, 0.1853, 0.3565", \ 

    "0.0266, 0.03099, 0.03909, 0.05729, 0.09956, 0.1854, 0.3565", \ 

    "0.03829, 0.04391, 0.05384, 0.07081, 0.1036, 0.1854, 0.3565", \ 

    "0.05738, 0.06504, 0.07784, 0.09905, 0.1339, 0.1976, 0.3567" \ 

    ); 

  } 

} 

 

 

The timing header indicates the beginning of the timing data section. Directly below, 

the input pin whose state changes is noted together with its logic polarity and the two 

lookup tables, one for output rise transition time and one for output fall transition 

time. It should be noted, that the transition time is defined as the time interval 

between the moment a waveform reaches 10% of its total transition and the moment it 

reaches 90% of it. This time interval is displayed in the next figure. 
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Figure 4.2. Transition (rise) time, counted from the 10% to the 90% of the final value. 

The timing section also contains two more lookup tables which are not visible in the 

above sample which are named cell_rise and cell_fall. These contain the timing data 

for the cell‟s delay, which is the time interval from the moment the input reaches 50% 

of its total transition until the output reaches 50% of its transition. 

             The calculation method for the output transition time of the above cell is 

demonstrated below with a simple example, where the transition time of the input pin 

B1 is assumed to be 0.0276 ns and the cell‟s output capacitance is assumed to be 

equal to 0.00183 pF. These values correspond to the 4
th

 entry of the index_1 vector, so 

the 4
th

 row of the lookup table is selected, and to the 2
nd

 entry of the index_2 vector, 

so the 2
nd

 column of the lookup table is selected. The value selected in the lookup 

table equals to the output rise transition time and is 0.03421 ns.  

             In the case where the exact values of the circuit‟s input transition time and 

output capacitance are not present in the template‟s indexes, linear interpolation 

between the closest values should be performed, in order to estimate the output 

transition time. 

 

4.1.5 Prerequisite files generation 

 

In order to proceed with all the necessary flow calculations and steps, certain 

information distributed in several files is required to be generated before the 

beginning of the flow‟s execution, including the computations within the models and 

the annotation of the model‟s impact on interconnects, in terms of increased resistance 

(EM) or delay overhead (TDDB). The tools which generate each of the output files of 

the proposed flow are displayed in Figure 4.3.  
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Figure 4.3. Prerequisite files generation. 

 

4.2 EM flow 
 

This paragraph covers the implementation details of the EM flow including 

the technical details and intermediate computations and steps that help reach to the 

final results. The EM flow‟s steps will be analyzed next in order of execution. This 

flow consists of three discrete scripts, the extraction script, the current computation 

script and the update script, plus one final step to convert impact on electrical 

characteristics degradation to system timing. 

 

4.2.1 EM extraction script 

 

This script is written in Tcl and is called from the SoC Encounter‟s 

environment, using the source <script filename> command after loading the design to 

be analyzed for reliability issues. This allows the script to retrieve layout-specific data 

from the Encounter database using a subset of DBAccess commands. 

 

Inputs: 

 

 Standard-cell and possibly memory technology libraries, if applicable.  

 Hierarchical units‟ temperature trace file 

 Encounter design file (.enc) 

 Critical paths file 

 

Outputs:  

 

The deltaR.report file, which contains the data that quantify the impact of EM 

on the system in terms of interconnect resistance increase over time, namely: 
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 t50: the time period required for the formation of a void that fully occupies the 

cross section of an interconnect. 

 EM resistance step: the abrupt interconnect resistance increase after the t50 

time period because of the current flow through the diffusion barrier. 

 EM resistance slope: the gradual interconnect resistance increase after the t50 

time period because of the expansion of the void along the length of the 

specific interconnect. 

 Blech length: the minimal length for which EM occurs in a specific 

interconnect according to its current density 

 

The above set of parameters is calculated and reported for each net contained in the 

critical paths along with its name and the number of wires exceeding that net‟s Blech 

length. 

 

Critical path cell, pin & net extraction:  

 

Each critical path consists of a set of output pin, net, input pin tuples. The 

script starts from the first output pin which should belong to a register and then 

processes each tuple after the other extracting the output cell and pin, the net code and 

the cell input. In each iteration of the script‟s main loop, the following data are 

needed: 

 

 The cell and its corresponding output pin that drives the current net. 

 The cell‟s input pin, with which the previous tuple‟s net is terminated. 

 The current net‟s hierarchical name. 

 

These are extracted by parsing the corresponding tuple data. The pin names 

and net codes are in the last hierarchy level, whereas the cell instance codes are in the 

level just before that. Encounter DBAccess is used to identify the cell name from the 

cell instance code through the dbInstCellName <cell instance code> command.  

 

Temperature estimation: 

 

By parsing the net‟s hierarchical name and cutting off the net‟s code (e.g. 

n341), the unit to which the net belongs can be determined. Then, the temperature of 

that unit can be retrieved from the temperature trace file produced by HotSpot and can 

be set as the current temperature to increase the accuracy of the calculations to be 

executed. 

 

Output transition time calculation:  

 

The timing data of the cell and its pins that were determined previously, are 

located in the standard cell library file with successive searches for the keywords: 

cell(<cell name>), timing() and related_pin : “<input pin name>”;. Then the 

required rise and fall transition timing data are read from the rise_transition and 

fall_transition sections. Each one contains the template indexes under index_1(…) 

and index_2(…) and the output transition time lookup table under values() {…}. The 

command dbGetNetTotCap <net code> returns the total output capacitance, whose 
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closest match in the index_2 vector specifies the correct look-up table column. The 

input transition time equals to the output transition time of the path‟s previous net and 

its closest match in the index_1 vector specifies the correct look-up table row. The 

LUT value designated by the above row and column indexes, or the interpolation of 

the closest matches, is this output‟s transition time. This process is repeated twice, in 

order to calculate both the rise and fall transition time of the output. 

 

Current density computation:  

 

The extraction script that runs from within SoC Encounter creates a file named 

nets.txt. This contains a list of the nets of all the critical paths examined together with 

each net‟s rise time, fall time and temperature. This file is used by the spef2spice.tcl 

script that is written in Tcl in order to generate the Spice netlist of each net, based on 

the information from the SPEF and the nets.txt files. 

Once a net and its parameters are read from the nets.txt file, the generation of 

its Spice netlist consists of 3 steps: 

 

 Wires‟ netlist: The generation of the distributed RC Spice netlist from the net‟s 

netlist found in the SPEF file. The generation of the netlist starts with the 

retrieval of the net‟s code from the name map of the SPEF file through its 

name. Then, the corresponding D_NET section is located and for every 

capacitance in the CAP section and every resistance in the RES section, a 

capacitance and a resistance are inserted in the Spice netlist respectively. In 

the CAP section, the 2
nd

 argument of a line is the SPEF node code between 

which and the ground the capacitance should be connected, whereas the 3
rd

 

argument is the value of the capacitance. In the RES section, the 2
nd

 and 3
rd

 

arguments are the SPEF node codes between which the resistance should be 

connected, whereas the 4
th

 argument is the value of the resistance.  

The concept for the creation of the correct nodes for the Spice netlist is based 

on a node map. Every time a new SPEF node is encountered, it gets assigned a 

number, which defines its Spice netlist node‟s code and it is stored in the node 

map. If it is encountered again in the SPEF netlist, the node‟s code is retrieved 

from the node map and it is used again, thus leading to a consistent netlist. The 

Spice netlist syntax of either a resistor or a capacitor is the following: 

 

R/C<resistance/capacitance number> <node1> <node2> <value> 

 

 Input pins: The input pins of various cells that are connected to the specified 

net, are found in the CONN section of the net in the SPEF file. In the CONN 

section, the 2
nd

 argument is the SPEF node code, the 3
rd

 argument is either I 

(input pin) or O (output pin) and can be used to distinguish them and the pin‟s 

capacitance value is contained in the 8
th

 argument [24]. The node map is used 

in this step as well in order to end up with a consistent Spice netlist. 
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 Output pin: The output pin that drives the net is found in the CONN section 

and can be easily identified from the O (output pin) keyword as described 

above. The Spice netlist command for a voltage source is the following: 

V<voltage source number> <node1> <node2> PULSE (Vlow Vhigh 

initial_delay rise_time fall_time pulse_width period) 

, where Vlow is the ground, Vhigh is the Vdd voltage, initial_delay is the delay 

before the first pulse edge occurs, rise_time and fall_time are the pulse rise 

and fall times respectively, pulse_width is the width of the pulse and period is 

the pulse period. The rise and fall times are the estimated rise and fall times 

for the specified output pin and the node2 always is the ground in this case. 

 

Also, in order to measure and report the current flowing through each wire which is 

represented by a resistor, the following commands must be inserted for every resistor: 

 

.MEASURE TRAN rise_start<resistor number> WHEN V(<node1>)=0.1*<Vdd> 

CROSS=1 PRINT=0 

.MEASURE TRAN rise_stop<resistor number> WHEN V(<node1>)=0.9*<Vdd> 

CROSS=1 PRINT=0 

.MEASURE TRAN fall_start<resistor number> WHEN V(<node1>)=0.9*<Vdd> 

CROSS=2 PRINT=0 

.MEASURE TRAN fall_stop<resistor number> WHEN V(<node1>)=0.1*<Vdd> 

CROSS=2 PRINT=0 

.MEASURE TRAN I_RISE_R<resistor number> AVG I(R<resistor number>) 

FROM=rise_start<resistor number> TO=rise_stop<resistor number> PRINT=0 

.MEASURE TRAN I_FALL_R<resistor number> AVG I(R<resistor number>) 

FROM= fall_start<resistor number> TO= fall_stop<resistor number> PRINT=0 

.MEASURE I_EM_R<resistor number> PARAM=`abs(I_RISE_R<resistor number> 

+I_FALL_R<resistor number>)` 

 

Only the last measurement, which corresponds to the equivalent EM current, 

is reported, while the PRINT=0 option prevents the others from being printed in the 

report. The first four commands are used to find out the time when a terminal node of 

the examined resistor reaches 10% and 90% of its rise or fall transition voltage 

respectively. These measurements are used to designate the rise and fall transitions, 

during which the current must be measured. Figure 4.4 displays a sample waveform 

that demonstrates the need for individual rise and fall transition time detection for 

each resistor individually due to propagation delay along the interconnect. The 

voltage of the output pin is displayed in green color, the voltage of a random node 

along the interconnect is displayed in blue and the current through the resistor 

corresponding to the wire of that node is displayed in red. 
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Figure 4.4. Waveform demonstrating the delay shifting of a resistor node’s transition, 

compared to the transition of the voltage source. 

 

It is clearly visible that the transition time (10%-90% charge/discharge) of a random 

wire along the interconnect is different from that of the output pin, as well as it is also 

shifted in time, in comparison to the time instant the output pin is completely charged 

or discharged. As a result, the identification of the exact transition interval for each 

resistor individually is critical for the accurate measurement of each wire‟s current. 

The next two commands are used to measure the average current during each one of 

these time intervals (rise and fall transition). The last command computes the 

equivalent EM current of each wire as the absolute difference of the rise and fall 

currents. This is read from the spice report during the next step of the spef2spice.tcl 

script and it is used to calculate the EM parameters through the respective model‟s 

functions. 

In order to locate the wires that are longer than the Blech length and 

consequently suffer from EM, both the current and the length of a wire are required. 

The current of each wire is calculated through the Spice simulation as described 

above, so only the length of the wire that corresponds to each resistor in the SPEF file 

needs to be calculated. This can be done through its resistance value and the 

assumption of an approximate resistance per length value that is library and 

technology dependent. The quotient of these two values gives the approximate length 

of each wire. 

 

 

Example: 

 

The following example demonstrates the spice netlist complete with its .MEASURE 

commands, as it is generated by the script for a certain net contained in a SPEF file. 

The rise and fall times of the output pin that drives the net are assumed to be 20ps and 

15ps respectively, as calculated from the extraction script running from within SoC 

Encounter. 
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Net‟s entry in SPEF file: 

 
*D_NET *39250 0.00032406 

 

*CONN 

*I *97074:ZN O *C 24 413 *L 0 *D AOI32D1BWP 

*I *97072:A2 I *C 20 412 *L 0.000523 *D OAI31D0BWP 

 

*CAP 

1 *97074:ZN 0.00010262 

2 *39250:4 0.00011102 

3 *39250:3 4.883e-05 

4 *39250:2 4.479e-05 

5 *97072:A2 1.68e-05 

 

*RES 

1 *97072:A2 *39250:2 6.7 

2 *39250:2 *39250:3 2.78 

3 *39250:3 *39250:4 6.7 

4 *39250:4 *97074:ZN 14.168 

*END 

 

 

Generated Spice netlist: 

 
.OPTIONS LIST NODE POST 

.OP 

VIN 1 0 PULSE (0 0.9 0 20e-12 15e-12 10000e-12 20000e-12) 

C_i3 2 0 5.23e-16 

C1 1 0 1.0262e-16 

C2 3 0 1.1102e-16 

C3 4 0 4.883e-17 

C4 5 0 4.479e-17 

C5 2 0 1.68e-17 

R1 2 5 6.7 

.MEASURE TRAN risestart_r1 WHEN V(2)=0.09 CROSS=1 PRINT=0 

.MEASURE TRAN risestop_r1 WHEN V(2)=0.81 CROSS=1 PRINT=0 

.MEASURE TRAN fallstart_r1 WHEN V(2)=0.81 CROSS=2 PRINT=0 

.MEASURE TRAN fallstop_r1 WHEN V(2)=0.09 CROSS=2 PRINT=0 

.MEASURE TRAN I_RISE_R1 AVG I(R1) FROM=risestart_r1 TO=risestop_r1 PRINT=0 

.MEASURE TRAN I_FALL_R1 AVG I(R1) FROM=fallstart_r1 TO=fallstop_r1 PRINT=0 

.MEASURE I_EM_R1 PARAM=`abs(I_RISE_R1+I_FALL_R1)` 

R2 5 4 2.78 

.MEASURE TRAN risestart_r2 WHEN V(5)=0.09 CROSS=1 PRINT=0 

.MEASURE TRAN risestop_r2 WHEN V(5)=0.81 CROSS=1 PRINT=0 

.MEASURE TRAN fallstart_r2 WHEN V(5)=0.81 CROSS=2 PRINT=0 

.MEASURE TRAN fallstop_r2 WHEN V(5)=0.09 CROSS=2 PRINT=0 

.MEASURE TRAN I_RISE_R2 AVG I(R2) FROM=risestart_r2 TO=risestop_r2 PRINT=0 

.MEASURE TRAN I_FALL_R2 AVG I(R2) FROM=fallstart_r2 TO=fallstop_r2 PRINT=0 

.MEASURE I_EM_R2 PARAM=`abs(I_RISE_R2+I_FALL_R2)` 

R3 4 3 6.7 

.MEASURE TRAN risestart_r3 WHEN V(4)=0.09 CROSS=1 PRINT=0 

.MEASURE TRAN risestop_r3 WHEN V(4)=0.81 CROSS=1 PRINT=0 

.MEASURE TRAN fallstart_r3 WHEN V(4)=0.81 CROSS=2 PRINT=0 

.MEASURE TRAN fallstop_r3 WHEN V(4)=0.09 CROSS=2 PRINT=0 

.MEASURE TRAN I_RISE_R3 AVG I(R3) FROM=risestart_r3 TO=risestop_r3 PRINT=0 

.MEASURE TRAN I_FALL_R3 AVG I(R3) FROM=fallstart_r3 TO=fallstop_r3 PRINT=0 

.MEASURE I_EM_R3 PARAM=`abs(I_RISE_R3+I_FALL_R3)` 

R4 3 1 14.168 

.MEASURE TRAN risestart_r4 WHEN V(3)=0.09 CROSS=1 PRINT=0 

.MEASURE TRAN risestop_r4 WHEN V(3)=0.81 CROSS=1 PRINT=0 

.MEASURE TRAN fallstart_r4 WHEN V(3)=0.81 CROSS=2 PRINT=0 

.MEASURE TRAN fallstop_r4 WHEN V(3)=0.09 CROSS=2 PRINT=0 

.MEASURE TRAN I_RISE_R4 AVG I(R4) FROM=risestart_r4 TO=risestop_r4 PRINT=0 

.MEASURE TRAN I_FALL_R4 AVG I(R4) FROM=fallstart_r4 TO=fallstop_r4 PRINT=0 

.MEASURE I_EM_R4 PARAM=`abs(I_RISE_R4+I_FALL_R4)` 

.TRAN 1P 20000e-12 

.END 
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The above method is the one that is actually used in the flow as it is much 

more accurate, but for completeness‟s sake, the alternative method, according to 

which the rise and fall current density is calculated using the following formula is 

documented as well: 

 
       

            
           

 

In the above equation, Vop is the operating voltage, known from the standard-cell 

library for one of the characterized design corner of voltage and temperature, Cnet is 

the output net‟s total capacitance that was retrieved at the previous step and ttransition is 

the output transition time, calculated as it has been previously mentioned. Also, A is 

the interconnect‟s cross section, that equals the product of its thickness and its width, 

both derived from the standard-cell library‟s geometrical dimensions files (Library 

Exchange Format – LEF).  

The thickness depends on the metal layer of the wire, so the result is 

calculated through a set of DBAccess calls. At first, the metal layer‟s number is 

retrieved using the dbWireZ <wire pointer> command. Then, this number is passed 

as an argument to the dbGetLayerByZ command which returns the layer‟s address, 

which in turn is used as an argument to the dbGetLayerThickness command. This 

command gives the layer‟s thickness in database units that are converted to 

micrometers by a multiplication with the result of the dbHeadMicronPerDBU 

command. 

The width is calculated from the wire‟s wirebox data, which consists of the 

upper-right and bottom-left corners‟ coordinates on the chip and is retrievable from 

the Encounter database with the dbWireBox <wire pointer> command. The result of 

the dbWireDir <wire pointer> command is used to distinguish the length from the 

width. If its result is dbcWireE or dbcWireW, the wire‟s direction is horizontal and the 

difference between the y-coordinates equals the width, whereas if its result is 

dbcWireN or dbcWireS, the wire‟s direction is vertical and the difference between the 

x-coordinates equals the width. Again, the result is in DBU and must be converted to 

um as above. 

Because the available EM model only supports DC current, the equivalent DC 

current density is estimated as the absolute difference of the rise and fall current 

densities that is                        . 

 

 

EM parameters calculation:  

 

The first parameter that needs to be estimated is the Blech length, whose 

formula is 
          

       
 . If the length of the current wire is less than the Blech length, it is 

ignored because no EM occurs there. The rest of the EM model‟s parameters are 

calculated and reported to deltaR.report only for wires with lengths greater than that 

critical value. A counter is used to keep track of the number of each net‟s wires that 

are longer than the Blech length. 
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Example: 

 

An example of the deltaR.report file‟s structure for one reported net is shown below: 

 
################################################################################## 

Net:            core0/leon3core0/ahbctrl0/n395          Temperature(C): 98.39 

R   Blech_length(um)  t50(years)  R_slope(Ohm/year)  R_jump(Ohm)  J(A/um2) 

56  16.4968152866     6.1991291   44.7638580112      491.507710   0.02242 

98  9.98898071625     3.3952828   73.9275726026      491.507710   0.03704 

################################################################################## 

 

All the above steps, performed within the EM extraction script, are summarized in 

Figure 4.4, where their sequence towards the end results can be seen more clearly. 

 

 

 
 

Figure 4.5. EM extraction script steps and results. 

 
 

4.2.2 SPEF update script 

 

This script is written in Perl and is responsible for the incorporation of the 

impact of EM to the design, so that it can be quantified by a timing analysis. This is 

achieved through the annotation of the parasitic resistances of interconnects in the 

SPEF file, according to predictions based on the EM model. 
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Inputs: 

 

 The initial SPEF file, which does not include any wear-out impact yet. 

 The deltaR.report 

 

Outputs:  

 

An updated SPEF file which includes the impact of EM on the resistance of the 

critical paths‟ interconnects after the desired amount of years of operation. After 

reading the parameters of a net from deltaR.report, the first action is to check if its t50 

is exceeds the simulated time period. If it is, its wires must be updated through the 

following procedure: 

 

Net lookup:  

 

The nets that contain wires exceeding the Blech length and thus needing 

resistance update are read from deltaR.report. Their names are then looked up in the 

SPEF‟s name table which maps each name to a short code, so that the SPEF file is 

both easier readable and smaller in size. 

 

Location of the net’s wires parasitic resistances:  

 

The parasitic resistances of each net‟s wires are located in a specific section of 

the SPEF file. In order to locate it, first *D_NET <net code> is searched for and then 

*RES. What follows are connections between RC distributed model nodes, together 

with each one‟s resistance value. 

 

Detection and update of critical wires:  

 

Wires that are longer than the Blech length can be detected from their 

resistance, because it is greater than the product of the Blech length and the average 

resistance per length value. This value is derived from the technology library as a 

mean value of all metal layers. When a wire with a resistance value that is greater 

than critical is encountered, its resistance is increased by the sum of: 

 

 The wire resistance‟s step, ΔR. 

 The resistance‟s slope, multiplied by the time difference between t50 and the 

end of the simulated time period. 

 

The above steps must be repeated for every wire of the net until the *END keyword, 

that designates the end of the net‟s parasitic data, is read. 

Once the process is completed for every net in deltaR.report, the impact of 

EM on the interconnect resistances of the critical paths‟ wires are imprinted in the 

new SPEF file. 
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4.2.3 EM impact on system’s timing 

 

The impact of EM can be estimated by a new timing analysis based on the 

annotated SPEF file using the Cadence Encounter Timing System (ETS). The steps in 

order to do this include reading the design‟s synthesized verilog netlist (read_verilog 

<verilog filename>), loading the necessary libraries (read_lib <library filenames>), 

creating a clock for the design (create_clock <clk pin name> -name <clk name> -

period <clk period>). Then, in order to have timing reports that are uniformly 

produced and their comparison can give more accurate relative results on timing 

difference, a SDF file is generated based on the SPEF file. So, the SPEF file is read 

(read_spef <spef filename>), all delays are calculated through the delayCal method 

of Encounter‟s timing analysis engine and the SDF file is generated (write_sdf –

precision <significant digits> <sdf filename>).  Then, a report of the paths with the 

least timing slack (report_timing –machine_readable –nworst <amount of paths>) is 

produced, in order to compare it with the initial one and determine the delay shifting 

of the design‟s performance due to EM, after a certain amount of operating years.  

 

 

4.3 TDDB flow 
 

This paragraph covers the implementation details of the TDDB flow including 

the technical details and intermediate computations and steps that help reach to the 

final results. The TDDB flow‟s steps will be analyzed next, in order of execution. 

This flow consists of two discrete scripts, the extraction script and the update script as 

well as a one-time step to generate a lookup table, matching the leakage current to 

interconnect delay change. 

 

4.3.1 TDDB extraction script 

 

This script is written in Tcl and is called from within the SoC Encounter‟s 

environment, using the source <script filename> command, after loading the design 

to be analyzed. This allows the script to retrieve the layout-specific interconnect 

information from the Encounter database using DBAccess commands. The inputs and 

the outputs of the script performing the wire stack‟s extraction from the layout are 

summarized below: 

 

Inputs: 

 

 Standard-cell library 

 SoC Encounter‟s design file (.enc) 

 Critical paths file 

 

Outputs:  

 

The wire.report, which is the file containing all nets that are part of the critical paths 

examined, together with each net‟s wires and all adjacent wires of each of them. Each 

wire‟s coordinates, metal layer and geometrical characteristics as well as each 
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adjacent wire‟s relative location (start and end coordinates and distance from the main 

wire) are reported. 

 

Detection of potentially adjacent wires: 

 

The goal is an initial retrieval of all wires that are near a wire that belongs to a 

net of one of the critical paths that are examined. The nets are available after parsing 

each line of the critical paths file, whereas the iteration over each wire is achieved 

with the dbForEachNetWire <net pointer> DBAccess command. For each one of 

these main wires, another DBAccess command is then used to get an initial list of all 

wires with x and y coordinates that place them near the main wire. The coordinates of 

a box that defines the maximum distance for a wire to be considered to be nearby 

must be determined first. Of course, the distance is technology-dependent. The 

command mentioned earlier is findNetsInBox <box llx> <box lly> <box urx> <box 

ury> and it returns the required list. 

 

Filtering of really adjacent wires and classification: 

 

The problem is that the nets returned by the above command are not 

necessarily adjacent, in the way that is needed for TDDB. There are several reasons 

for this: 

 

 Only specific wires of these nets are actually within the given box. 

 The two adjacent wires must run in parallel to each other with the same 

orientation and they must also overlap. 

 The wires need to be on the same metal layer. 

 

The following figure shows the main wire, the box that defines the maximum 

distance of its neighbors and some of the nets‟ wires that would be returned by the 

findNetsInBox command. 

 

 
 

Figure 4.6. Adjacent wires - possible locations and filtering. 

For informational purposes it is mentioned here, that a wire‟s metal layer can 

be determined through the dbWireZ <wire pointer> command and its orientation can 

be determined with the help of the dbWireDir <wire pointer> command. 

After the filtering of all wires of all nets that are candidates using the above criteria, 

the wires need to be classified according to their relative position to the main wire in 

order to be reported. This is done by comparing the main wire‟s coordinates with the 
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adjacent wire‟s coordinates. The four cases of adjacent wire overlapping are shown 

below: 

 

 
 

Figure 4.7. Possible locations of inter-metal adjacent wires. 

Also, by using the orientation and the coordinates, we can find out if a wire is 

above, below, left or right of the main wire, as well as its distance from the main wire 

and the overlap length. All of these parameters, together with some other, describe the 

wires that are susceptible to TDDB and thus are reported to the wire.report, in order 

to be used later in the flow to estimate the evolution of TDDB over time. 

 

Example: 

 

An example of the structure of wire.report for one reported net is shown below: 

 
############################## Wire detailed report ############################## 

################################################################################## 

Net:  core0/leon3core0/leon3s0_1/p0/iu0/n5750 

Input pin: core0/leon3core0/leon3s0_1/p0/iu0/r_reg_X__DATA__0__5_/D 

Output pin: core0/leon3core0/leon3s0_1/p0/iu0/U450/ZN 

Total Capacitance(pf): 0.00263318 

Total Length(um): 9.545 

------------------------------------------------------------------ 

Wire: 0x22dcf6f0 Layer metal2 

Direction: dbcWireN 

Length: 1.4 um Thickness 0.14 um Width 0.0700000000002 um 

Location: (1516.935, 1228.745) (1517.005, 1230.215) (Unit: um) 

Via: VIA12_1cut_V 

****** left ****** 

Unit: um 

Start End Distance Wire 

1197.665 1267.875 0.0699999999999 0x230b0834 

------------------------------------------------------------------ 

Wire: 0x22dcf738 Layer metal3 

Direction: dbcWireE 

Length: 7.42 um Thickness 0.14 um Width 0.0699999999999 um 

Location: (1516.935, 1230.145) (1524.425, 1230.215) (Unit: um) 

Via: VIA23_1cut 

****** above ****** 

Unit: um 

Start End Distance Wire 

1524.215 1525.685 0.21 0x22e19530 

1478.855 1766.765 0.35 0x229d1dbc 

1473.115 1546.825 0.0700000000002 0x229c95cc 

****** below ****** 

Unit: um 

Start End Distance Wire 

1508.255 1519.945 0.0699999999999 0x22bc6b88 

1523.515 1531.145 0.0699999999999 0x22ae4bb4 

1523.375 1526.525 0.21 0x22eaa270 
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4.3.2 TDDB delay library 

 

This step is not executed every time in the flow, but only once for each 

technology node. The delay library that it generates is used instead in every run 

to accelerate the execution of the flow. 

 

Supposing that it is known, that TDDB occurs between two adjacent wires, a 

way must be found to estimate the delay that the TDDB-induced leakage current 

inserts to the system. An accurate prediction can only be done by a Spice simulation 

using a RC model. The required simulations could be executed on-the-fly using real 

wire patterns that are extracted from the design. This would provide maximum 

accuracy but the execution-delay overhead it would introduce in the flow, presents a 

serious problem. So, another approach was chosen instead. This included the 

generation of a delay library only once for each technology, that would estimate the 

delay based on characteristic cases that cover all possible wire patterns. 

 

Simulation script generation: 

The simulations whose results are needed to be included in the library are 

automatically generated through a Perl script. The script needs some technology 

parameters as inputs. These are the thickness of the metal layers, the dielectric 

constant of the dielectric material and the average resistance and capacitance per unit 

length. A RC-equivalent of each wire pattern case to be simulated is generated as 

follows. Ten stages are used for the RC model. The wire pattern parameters are: 

 

 The wire‟s length. 

 The adjacent wire‟s overlapping length. 

 The offset that defines the relative position of the two wires. Only cases where 

the lengths and offset result in overlap are examined. 

 The distance between the two wires. 

 The leakage current between the two wires. 

 

The resistance and capacitance are calculated as wire length multiplied by the 

average resistance or capacitance per unit length respectively and are distributed 

evenly across the RC model. An extra capacitance, existing because of the capacitor 

formed by the surfaces of the two wires, is distributed evenly across the part of the 

wire that overlaps with the adjacent one according to the offset and the overlap length 

values. This extra capacitance is calculated as follows: 

 

       
                     

        
           

 

Along the overlapping region, current sources are also evenly distributed and their 

total value equals the leakage current between the two wires. At the end of the wire, a 

capacitance which represents the load is added. Each simulation‟s transient report is 

written to a separate file, while a shell script executes the simulations in HSPICE [20]. 
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Example: 

 

An example of a RC model for a specific wire pattern is shown in the following figure 

 

 

 
Figure 4.8. Inter-metal leakage current RC model. 

In the above figure, V is the voltage applied to the start of the wire, R1, R2 and R3 are 

the distributed resistance values of the wire sections in each region, C1, C2 and C3 

are the distributed capacitance values of the wire sections in each region (C2 also 

contains the inter-metal adjacent wire capacitance), I is the distributed leakage current 

value and C is the driven load capacitance. 

 

Library generation script:  

 

After the completion of the simulations, the results are read and the delay 

change library that matches each set of (wire length, adjacent wire overlap length, 

offset, leakage current, distance) values to the TDDB-induced delay change ratio is 

generated. First, the delay when there is no leakage current is read for each set of 

values to be used later as reference. Next, for the rest of the sets that differ only in the 

leakage current value, the delay change ratio is calculated and is written to the library 

along with the set‟s values. The above steps are repeated in a Perl script for all 

simulations, until all value sets are covered in the library. 

 

Example: 

 

An example of a part of the TDDB delay library showing the increase of the delay 

change ratio with the increase of the leakage current in a specific wire pattern, 

follows: 

 
Length(um) Length(neighbor um) start_point(um) Leakage(uA) distance(um): 

delay_change_ratio 

200 30 0 0 0.06 : 0 

200 30 0 0.25 0.06 : 0.000819672131147554 

200 30 0 0.5 0.06 : 0.000819672131147554 

200 30 0 0.75 0.06 : 0.00163934426229511 

200 30 0 1 0.06 : 0.00163934426229511 

200 30 0 2.5 0.06 : 0.00409836065573777 

200 30 0 5 0.06 : 0.00737704918032785 

200 30 0 10 0.06 : 0.0147540983606558 

200 30 0 15 0.06 : 0.0221311475409837 

200 30 0 20 0.06 : 0.0295081967213116 

200 30 0 25 0.06 : 0.0368852459016394 

200 30 0 30 0.06 : 0.0442622950819673 

200 30 0 40 0.06 : 0.059016393442623 

200 30 0 50 0.06 : 0.0737704918032787 

 
Using the TDDB delay library, the delay change ratio of a wire pair with given 

geometrical characteristics and leakage current value, can be looked up both easily 

Pre-overlap region Overlap region Post-overlap region 
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and quickly. Interpolation is used to estimate the delay change ratio for intermediate 

wire patterns. 

 

4.3.3 SDF update script 

 

This script is written in Matlab mainly because of the integrated look-up 

function in multidimensional lookup tables that it offers. It is responsible for the 

estimation and incorporation of the impact of TDDB to the design, so that it can be 

quantified by a timing analysis. This is achieved through the annotation of the delays 

of interconnects in the SDF file, according to predictions based on the TDDB model. 

 

Inputs: 

 

 The initial SDF file of the target design. 

 The temperature trace file of the hierarchical floorplan units. 

 The wire.report file 

 The TDDB delay library 

 TDDB leakage measurement files under stress conditions 

 

Outputs:  

 

An updated SDF file, which includes the impact of TDDB on the delay of the 

examined paths‟ interconnects due to inter-metal dielectric leakage current, after the 

desired amount of years of operation. 

 

Leakage current estimation:  

 

The leakage current is estimated as it was described in the TDDB model 

section, by performing extrapolation of the experimental data, gathered under stress 

conditions, to operating conditions, while considering a much longer operation time. 

First, the experimental data of leakage current increase over time is read and entered 

in a single look-up table in the corresponding positions, according to the temperature 

and voltage under which the respective experiment was conducted. Next, these are 

used to estimate the actual leakage current after the given time period by performing a 

linear extrapolation as described previously. For added accuracy, the temperature that 

is used, is the one of the specific unit, read from the temperature trace file after 

parsing the net‟s hierarchical name in order to determine the corresponding unit. 

Finally, as the leakage current is directly proportional to the surface of the wires that 

are adjacent, the result of the extrapolation is divided by the cross section of the 

experimental wire and multiplied by the cross section of the actual wire. 

 

Wire delay change ratio estimation: 

 

Now, that all required values for a lookup in the TDDB delay library are 

known and especially the leakage current that is derived from extrapolation and is not 

included in wire.report, as all of the other wire pattern parameters, a look-up can be 

performed. The result is of course the delay change ratio of a single wire, which 

belongs to the specific interconnect. 
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Interconnect delay change estimation: 

 

The delay of a wire can be assumed - without significant error - to be 

proportional to its length, considering a wire delay model similar to the Elmore delay 

approach [33]. Thus, in order to estimate the delay change ratio of an interconnect 

from the delay change ratios of its wires, a weighted average value is calculated. The 

weight factor for each wire is the fraction of its length to the total interconnect‟s 

length. Once the delay change ratio for an interconnect is known, the input and output 

pin that define it are read from the wire.report and the interconnect is looked up in the 

SDF file. When found, the rise and fall transition times are read, increased by the 

delay change ratio that was calculated above and then written back to the SDF file. 

Once the above steps have been executed for every interconnect included in 

the wire.report, the SDF file contains the delays that the path‟s interconnects will 

have, after sustaining TDDB for the specified period of time. If the SDF file, that has 

already been updated, contained also the impact of EM on the system‟s timing, then 

the total timing impact of both EM and TDDB on the examined paths of the design 

would have been incorporated into the final SDF file. 

The steps leading from the wires‟ geometrical characteristics contained in the 

wire.report, towards the estimation and annotation of the TDDB impact to the SDF 

file are displayed graphically in Figure 4.8, to provide an overview of the steps‟ 

sequence followed. 

 

 

 
 

Figure 4.9. Inter-metal leakage current extrapolation, delay estimation and impact’s 

annotation. 
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4.3.4 TDDB impact on system’s timing 

 

The impact of TDDB can be estimated by a new static timing analysis, based 

on the annotated SDF file and through the Cadence ETS timing engine. The steps 

required for the final timing impact‟s evaluation in order to do this include the reading 

the design‟s synthesized Verilog netlist (read_verilog <verilog filename>), the 

loading of the necessary standard-cell libraries (read_lib <library filenames>) and the 

definition of/creating a clock for the design (create_clock <clk pin name> -name <clk 

name> -period <clk period>). Then the updated SDF file with the new point-to-point 

delays in the examined path is read (read_sdf <sdf filename>) and a report of the 

paths with the least slack (report_timing –machine_readable –nworst <amount of 

paths>) is produced, in order to compare it with the initial and determine the timing 

impact of TDDB on the design.  

It should be noted that if the post-EM SDF file is used as the initial SDF file in 

the TDDB impact estimation process and it is already annotated before the TDDB 

delay overhead‟s computation, the updated final SDF file would contain the combined 

impact of both reliability phenomena. 

 

4.4 Automation of the flow 

4.4.1 Summary of flow steps and of implementing scripts 

 

To summarize, the reliability analysis flow, excluding the TDDB delay library 

generation process which is simple and only needs to be done once for every new 

fabrication technology used, is comprised of the following scripts: 

 

 format_paths.tcl 

It converts the format of the paths reported by the timing analysis or any other 

path selection method or tool to a format that the scripts that implement the 

flow can process. 

 extraction_temp_multipath.tcl 

It implements the core of the flow which extracts all useful information 

regarding EM and TDDB from the layout and stores them to deltaR.report and 

wire.report respectively. 

 spef_update.pl: 

It incorporates the impact of EM which is found in deltaR.report to the SPEF 

file of the design, so that a new timing analysis can reveal the impact on the 

design‟s timing. 

 sdf_update.m: 

It estimates the impact of TDDB on system‟s timing through the wire.report 

and the TDDB delay library and updates the SDF file with the new 

interconnect delays, so that a new timing analysis can evaluate the impact on 

the system‟s performance over time. 

 

In order to execute the whole flow automatically, the user should first produce 

the TDDB delay library. Because it is a one-time process and only utilizes two short 

scripts and a simple configuration file for the technology parameters, no automation 

script has been created for that. But apart from that, because of the complexity of the 
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flow, its execution has been automated for any design that uses compatible EDA tools 

and requires only the presence of the corresponding TDDB delay library, an activity 

file of the design (.vcd or .saif) and the SoC Encounter (.enc) file that contains the 

design with the placement and routing information. Any other file required for the 

execution of the proposed reliability flow is automatically generated from the two 

Unix shell scripts, which are the basis of the automated tool flow. 

 

4.4.2 Temperature estimation script 

 

The first script is called temp_flow.sh and it only needs to be executed every 

time the user wants to estimate the temperature of the hierarchical units of a new 

design or update the temperatures of the current design based on power results 

produced by a different application. 

In order to make the full automation of this process possible, two additional scripts 

needed to be written, in order to convert floorplan and power data in formats 

compatible with the tools which will take this information as inputs. The functionality 

of these scripts is analyzed below: 

 

 floorplan_converter.tcl 

This script is used to convert the floorplan derived from SoC Encounter to the 

format that is required by HotSpot. This involves the parsing of the floorplan 

file (.fp) to detect all lines beginning with “Guide:”, which contain the 

hierarchical units of the design. Then the llx, lly and urx, ury coordinates that 

are read must be converted from micrometers to meters and to a llx, lly and 

width, height format and finally written to a .flp file. 

 

 power_analysis.tcl 

This is used to convert the power data derived from SoC Encounter with the 

help of an application generated activity file to the format that is required by 

HotSpot. This involves parsing the power report to detect all lines beginning 

with “average power”, which contain the power consumption for each 

hierarchical unit in the design. Then the power needs to be converted from 

whatever units it is to Watts and written together with the unit name to a 

power trace file compatible with HotSpot. 

 

After the above clarifications, the steps followed in the automated temperature 

estimation script can be explained: 

 

Floorplan file generation: 

After restoring the design in the SoC Encounter environment, the saveFPlan 

<floorplan file name> command is executed and then the floorplan_converter.tcl 

script is called to convert it to the format required by HotSpot. 

 

Power trace file generation: 

After restoring the design in the SoC Encounter environment, the extraction of 

the parasitic resistances and capacitances of the design is performed using the 

extractRC command. Then, the probePower <hierarchical units> command is used 

to define which hierarchical units‟ power needs to be calculated. The space separated 
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hierarchical units‟ names are retrieved from the .fp file generated by SoC Encounter 

earlier through the following awk program: 
 
`awk '{if ($1=="Guide:") printf("%s ",$2)}' <floorplan file name>` 

  

Then, a power analysis is performed using the command updatePower -vcd <vcd 

filename> -vcdTop <vcd top design name> -noRailAnalysis -report <power report 

filename> VDD. Finally, the power_analysis.tcl script is called to convert the power 

trace file to the format required by HotSpot. 
 

Temperature trace file generation: 
The temperature of each hierarchical unit is estimated by providing HotSpot 

with the correct floorplan and power trace files. A second execution with the steady-

state temperatures of the first execution is required, as a second iteration ensures a 

more accurate temperature estimation for each unit.  

 

The shell commands contained in the script to call HotSpot are the following: 
 
./hotspot -c hotspot.config -f <floorplan filename> -p <power trace 

filename> -o unit_temps.ttrace -steady_file <steady temperatures  

filename> 

 

cp <steady temperatures filename> <initial temperatures filename> 

 

./hotspot -c hotspot.config -init <initial temperatures filename> -f 

<floorplan filename> -p <power trace filename> -o unit_temps.ttrace 

 

 

4.4.3 Flow configuration file 

 

At this point and before continuing with the second Unix shell script that 

executes the core of the flow and needs to be executed every time a new path needs to 

be analyzed or a change in the design has been made, in order to estimate the impact 

of EM and TDDB on system timing, a configuration file that contains all the 

environment variables that are used by the Unix shell scripts throughout the tool flow 

needs to be presented. This configuration file contains both filenames and required 

information that are design-specific and need to be set for every new design. The 

name of the configuration file is flow_conf.sh and it is imported using the source 

command at the beginning of the two Unix shell scripts of the flow, in order to set the 

environment variables to the values corresponding to the current design. The variables 

that the configuration shell script contains are listed and explained below. 

 

 design_name 

This is the name of the design to be analyzed. The user can provide any name, 

as this name is only used as a prefix to many intermediate files that are 

invisible to the user. 

 

 wire_report 

This is the name of the wire.report file that is generated by the extraction 

script and contains all the adjacent wires for TDDB. The filename should not 
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be changed by inexperienced users of the tool flow, as if it is, it also needs to 

be changed in the extraction and SDF update scripts. 

 

 deltaR_report 

This is the name of the deltaR.report file that is generated by the extraction 

script and contains all the data for the wires in which EM occurs. The filename 

should not be changed by inexperienced users of the tool flow, as if it is, it 

also needs to be changed in the extraction and SPEF update scripts. 

 

 initial_timing 

The name of the file containing the initial timing analysis in order to compare 

it with subsequent timing analyses, in order to observe how the degradation of 

the system over time has affected its timing and how timing criticality is 

shifted from some paths to others, because of uneven wear. 

 

 em_timing 

The name of the file that includes the timing analysis report, extracted after the 

annotation of the updated resistances due to EM to the design. 

 

 tddb_timing 

The name of the file in which the timing reports after the annotation of the 

TDDB delay‟s impact to the design. 

 

 critical_path 

This is the name of the critical_paths.txt file that contains the critical paths 

that will be analyzed by the flow for reliability issues. The filename should not 

be changed by inexperienced users of the tool flow, as if it is, it also needs to 

be changed in the extraction and format paths scripts. 

 

 initial_spef 

The filename of the initial SPEF file of the design. 

 

 em_spef 

The filename of the annotated SPEF file that contains the updated resistances, 

which represent the impact of EM on the examined path‟s interconnects. 

 

 initial_sdf 

The filename of the initial SDF file of the design. 

 

 em_sdf 

The filename of the SDF file that contains the impact of EM on the delay of 

the interconnects that belong to the investigated critical paths. 

 

 tddb_sdf 

The filename of the SDF file that contains the combined impact of EM and 

TDDB on the delay of the interconnects that are part of the examined critical 

paths. 
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 libs 

This variable holds the space separated filenames of all libraries that are used 

within the design. These include the standard-cell library used, as well as any 

additional libraries, such as these of memories or of other components. 

 

 verilog 

The filename of the design‟s post-layout Verilog netlist. 

 

 top_module 

The name of the top module of the design, as it is used in SoC Encounter. 

 

 sdc 

The .sdc file, containing any design constraints that are needed during the 

post-layout static timing analysis. 

 

 enc_dat 

The filename of the SoC Encounter design file, including all the information 

about the design‟s placement, clock tree and routing (.enc.dat). 

 

 library 

The name of the standard-cell library. 

 

 vcd 

The filename of the .vcd file containing the application-specific switching 

activity of the design. 

 

 vcdtop 

The name of the top module of the design, as it is written in the .vcd file. 

 

 clk_name 

The name of the clock‟s input pin in the design. 

 

 clk_period 
The desired clock period at which the design should operate, thereby 

comprising its main performance constraint. 

 

 paths 

The number of the most timing-critical paths to be generated by the timing 

analysis engine of the Encounter‟s timing system. The interconnects of these 

paths will be later extracted, in order to estimate the impact of EM and TDDB 

on their delay and consequently on the timing of the specific paths, in which 

the underlying interconnects belong. The user can experiment with the number 

of paths to be examined, depending on the tradeoff of searching for the paths 

with the maximum possible timing impact due to EM or TDDB (or both), 

versus the execution time, which increases with the number of paths tested.  
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4.4.4 Flow core script 

 

The description of the second Unix shell script that executes the core of the 

flow and needs to be executed every time a new path needs to be analyzed or a change 

in the design has been made, in order to estimate the impact of EM and TDDB on the 

system‟s timing, is demonstrated in this section. The steps followed will be described 

in a high level for the most part, as the majority of the command sequences required 

for the generation of a SPEF or an SDF have already been covered previously. 

First of all, a cleanup of all files from the previous execution of the flow is 

performed, as some information are appended to files for code simplicity‟s sake 

instead of creating a new file and that would mix up data from different iterations of 

the flow. 

The existence of each of the remaining files, such as the initial SPEF file, is 

checked through the –s <filename> Unix command, so that certain files are only 

created during the first run, thus saving time from any subsequent executions. The 

same command is used after each step, to ensure that every necessary file has been 

created and it is not empty. If a file has not been created at the point it should, the 

execution of the tool flow is interrupted and a diagnostic error message is displayed. 

Thus, the detailed steps included in the Unix shell scripts are described as follows: 

 

 Generation of the initial SPEF file through SoC Encounter, if it does not exist. 

 Generation of the synthesized Verilog netlist file through SoC Encounter, if it 

does not exist. 

 Generation of the initial SDF file through the Encounter Timing System, if it 

does not exist. 

 Generation of the initial timing report containing the specified number of most 

timing critical paths through the Encounter Timing System. 

 Format conversion of the critical paths using the format_path.tcl script. 

 Extraction of the EM and TDDB related data and storage in deltaR.report and 

wire.report respectively, through the extraction_temp_multipath.tcl script, 

running from within SoC Encounter‟s environment. 

 Annotation of the SPEF file with the elevated wire resistance caused by EM, 

using the spef_update.tcl script. 

 Generation of the SDF file with the EM impact through the Encounter Timing 

System, after loading the updated SPEF file. 

 Generation of the EM timing report containing the specified number of most 

timing-critical paths through the Encounter Timing System, after loading the 

SDF file including the EM impact‟s annotation. 

 Calculation of the delay overhead for each interconnect in the examined 

timing path, due to TDDB, and annotation of the EM-aware SDF file with the 

new, increased delays, through a Matlab script. 

 Generation of the timing report after having annotated the delay impact of 

TDDB, containing the specified number of most timing critical paths through 

the Encounter Timing System after loading the SDF file with the delay 

overhead due to TDDB, in order to estimate the combined effect of both 

reliability wear-out on the system‟s performance over time and, of course, for 

the desired lifetime. 
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Consequently, given the necessary prerequisite files for the execution of the 

flow, the user can then use a variety of numbers for the critical paths to be examined, 

as well as different switching activity profiles derived from the post-layout netlist‟s 

simulation, thereby giving an alternative .vcd file. The next section provides an 

insight into the approximate execution time of the tool flow. 

 

4.5 Execution time of the flow 
 

A tool is only useful, as long as it can deliver its results in a reasonable 

amount of time. Therefore, attempts have been made to keep the execution time of our 

tool flow fast. These attempts include, but are not limited to the use of pre-built look-

up table libraries, instead of performing on-the-fly simulations and calculations, 

wherever possible. The following table lists some sample times required for the 

execution of each one of the core components of the framework for the 50 most 

timing-critical paths of the target design, some of which share a number of 

interconnects. It must be noted that the non-dedicated, multi-user host machine was 

operating under heavy load at the time these measurements were taken. 

 
Table 4.1. Approximate execution time of the flow’s core components for 50 paths. 

Framework component 
Approximate execution time 

(in minutes) 

Extraction of net transition times for the EM 

(Encounter DBAccess, Tcl script) 
< 1 

Extraction of adjacent wires for the TDDB 

(Encounter DBAccess, Tcl script) 
17 

Current density and EM parameters calculation 

(including Spice simulations in HSPICE) 
11 

SPEF annotation 

(Perl script) 
< 1 

TDDB model calculations and SDF annotation 

(Matlab) 
14 

 

The time required for the static timing analyses before and after the examined 

phenomenon‟s impact annotation is not listed here, as these tasks are “outside” of the 

framework‟s core and also depend on the specific static timing analysis engine used. 

The total measured time for the execution of the framework considering the 50 most 

timing-critical paths, using the Leon3-based MP-SoC layout with timing-driven 

placement, was approximately 50 minutes, including the initial parasitic extraction, 

the static timing analyses and the generation of the prerequisite SPEF, SDF and 

Verilog files of the design. Consequently, the execution time of the framework can be 

roughly estimated at about 1 minute per path, which is a reasonable amount of time, 

considering the overhead of the on-the-fly Spice simulations and of the prerequisite 

files generation. 
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5  

Design platforms and implementation 

flows 

5.1 Digital implementation flow of design platforms 
 

In the two previous chapters, we elaborated in detail on the proposed 

interconnect reliability flow, by presenting the motivation for the deployment of this 

work, as well as the discrete steps of the timing estimation framework regarding the 

two studied reliability wear-out mechanisms. We also analyzed the technical aspects 

of the design flow‟s implementation, considering the existence of a standard-cell 

based design, which is used as the platform for the extraction of the target 

interconnects and the annotation of the EM and TDDB impact on the affected wires. 

 In this chapter, we will elaborate further on the implementation of the designs 

used as testbenches for the conduction of the experiments during the development of 

the presented thesis. These designs are generated based on an RTL-to-GDSII flow, 

which is a top-down methodology for the implementation of physical designs, starting 

from behavioral or structural descriptions of digital systems at the register-transfer 

level (RTL), written into a certain HDL language, either Verilog or VHDL. The 

underlying design flow is a standard in the Application-Specific Integrated Circuit 
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(ASIC) Electronic Design Automation (EDA) industry, as it enables the ASIC 

designers to work at any level of abstraction to implement their designs at a certain 

design layer, while allowing them to export the produced design of the current layer 

to other EDA tools, and work at lower or higher abstraction layers. Hence, apart from 

a top-down execution of the flow, which starts from an RTL description and finishes 

with a physical design, exported as a GDSII layout database, there are several other 

formats available, so that the designers can work either in a top-down or in a bottom-

up manner.  

Later in this chapter, we will present the design flow followed for the 

generation of the layouts used in the conducted experiments. During this thesis, our 

main design platform was a Multi-Processor design, based on the Leon3 SPARC [32] 

core, which was included in the package of the Gaisler Research toolsuite [23]. The 

motivation for the selection of the Leon3-based platform was focused on several 

advantages, among which we can distinguish the configurability and the flexibility of 

the design‟s description, based on parameters and packages that permitted the usage 

of different kinds of components and peripherals, thereby giving the designer 

adequate control over the complexity of the system. 

Moreover, Gaisler‟s toolsuite also provided support regarding the 

programmability of the system, by including the required software for the 

development of applications and the proper interfaces for their simulation in either the 

RTL or in the post-layout design layer. Additionally, the underlying platform was 

free-of-charge and there was significant experience regarding the VHDL code and the 

software tools, as well as background from another thesis working on this platform. 

However, in the conducted experiments, we have also included smaller, but of also 

significant complexity ASIC designs, which have been used as alternative platforms 

in order either to enrich the current thesis from the aspect of quantity of results, or to 

conduct experiments on smaller designs in order to evaluate the proposed flow in 

different design classes and therefore to acquire a more holistic view regarding the 

flow and the assumptions that came along with its implementation.  

In the following section, we will present the RTL-to-GDSII ASIC design flow, 

used for the generation of the Leon3-based physical designs, by describing the most 

important steps at the synthesis and place-and-route design layer. Apart from the 

implementation steps themselves, the next section also sheds light on the different 

timing, power and area formats of the ASIC libraries used at the synthesis and place-

and-route stages, as the standard-cell and memory library formats are coming along 

with the layer of design abstraction, concerning the detail and the accuracy of the 

information. Moreover, in the same section, we will present the static timing analysis 

and power estimation tools mentioned in the two previous chapters, as well as the 

various options that the used EDA tools provide to the designer, during the 

implementation of such complex designs. Finally, in the remaining sections, we will 

present the flow‟s steps for the development of the applications used for power 

analysis, as well as a way of performing functional simulation of either the RTL or of 

the post-layout netlists of Leon3-based MP-SoCs. 

 

5.2 Synthesis and Physical Implementation flow 
 

In this section, we will elaborate on the analysis and the implementation 

strategy followed for the transformation of an RTL description to a physical design, 

comprised by cells of a characterized standard-cell library, in three different design 
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corners, namely typical, fast and slow. The standard-cell libraries form the basis of the 

ASIC design flow, as they provide the primitive components a synthesis tool is based 

on, in order to transform a design written in VHDL or Verilog, to generate an 

intermediate gate-level circuit or netlist, which is the equivalent term in the ASIC 

industry, and to map this netlist, which is initially composed of technology-

independent gates, to the technology-aware cells of the incorporated library. 

Usually, these libraries comprise of common, typical cells, like inverters, 

NAND and NOR gates, multiplexers and tri-state buffers, which are the necessary 

combinational cells, while they should also include at least one D flip-flop cell and a 

latch, for synchronous and asynchronous design styles. It must be noted that in our 

designs, as well as in most common RTL-to-GDSII flows, the logic cells are 

implemented based on the CMOS design style and they follow certain rules regarding 

their boundaries and their internal structure, as well as their geometry.  

In perspective, most of the state-of-the-art standard-cell libraries do not 

include logic cells of bi-directional inputs such as transmission gates or separate 

PMOS or NMOS transistors, as long as the characterization of these cells requires 

analog rather than digital simulations, while the verification of the design‟s operation 

cannot be fulfilled in the context of a totally digital standard-cell toolflow. Moreover, 

the geometric dimensions of the cells and especially their height should be the same, 

so that the place-and-route process is facilitated, as the core area is divided into rows 

where the cells are to be placed.  

Based on the technological constraints imposed by the available standard-cell 

library, the designers are likely to select the proper implementation strategy, 

depending on the design‟s complexity and the performance constraints that their 

design should achieve, after the physical implementation‟s completion. As 

optimizations at higher design layers like gate-level synthesis are likely to show 

greater impact that their post-layout counterparts, the synthesis process is a critical 

design stage, at which the designer should select both libraries and strategy of 

implementation, in order to achieve the desirable performance in terms of delay, area 

and power. In the following sub-section, we present the synthesis steps followed for 

the implementation of the Leon3-based MP-SoC design, while an overview of both 

Gaisler‟s RTL design platform and the Synopsys Design Compiler [35] synthesis tool 

is presented.  

 

5.2.1 The Leon3 design platform 

 

In general, the synthesis of such a complex design like the MP-SoC Leon3-

based platform used in the presented thesis requires decent knowledge of the target 

design‟s components and consequently, of the possibilities offered by its 

configurability and flexibility. These are the two main advantages of Gaisler‟s Leon3 

distribution, along with the fact that the VHDL code is available through the Internet 

and can be downloaded from Gaisler‟s website [23]. Another significant advantage of 

the specific RTL code is that the designer can configure the number and also the sort 

of the components included into the system as masters or slaves (peripherals), as well 

as their functionality by either setting or unsetting specific parameter values included 

in a certain configuration package, or even through a graphical user interface. For 

example, the internal functionality of the Leon3 processor‟s pipeline can be 

configured depending on selections that deal with the implementation of the 

Arithmetic and Logic Unit, by selecting to add or not, multipliers, dividers or floating-
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point operation modules. Apart from the Leon3 processor itself and the number of 

cores that may be used in the design, we can also configure the functionality of the 

AMBA bus controllers, which are also provided by Gaisler‟s suite, as well as the 

peripherals of the target system and the interface of the design to the external 

memory. A schematic diagram that illustrates all of the aforementioned components 

and their connectivity with each other is provided in the next figure, which 

demonstrates the way the Leon3 processor core of a single-core system is attached to 

the AMBA system bus, along with the other components that may operate either as 

masters (e.g. the Memory and the Interrupt request controller), or as slaves (e.g. 

peripherals like Universal Asynchronous Receiver Transmitter or General-Purpose 

I/O modules). The processor cores, along with the Memory and the interrupt request 

controllers, are connected to the high – performance bus, namely the AHB, while the 

peripherals communicate with the masters as slaves through the APB bus and the 

AHB-to-APB bridge. For an MP-SoC system with two or more cores attached to the 

AHB, the presented diagram changes slightly, by adding one or more additional boxes 

labeled as “Leon3 Processor” on the AHB Controller. We will elaborate further in the 

next paragraph on the configuration of such a Leon3-based system, as the way of 

selecting important design parameters like the number of cores used, the size and the 

sets of the internal data and instruction caches or the peripherals to be used, comprise  

the basis for the development and the implementation of the target system, as the 

parameters of the config.vhd package control both the usage and the functionality of 

the processor and also of the supplementary modules of the design.  

 
Figure 5.1.A Leon3-based SoC with the core and peripherals on the AMBA bus. 

 

  In perspective, the aforementioned package, through which the designer can 

configure the components included into the target RTL design, contains all the critical 

parameters regarding the processor‟s configuration, the internal data and instruction 

caches, the memory controllers available and also the functionality of the AMBA bus, 

either for the high performance modules (Advanced High-Performance Bus – AHB) 

or for the attached peripherals of the system. The configuration of the system can be 

performed through the use of a graphical user interface executed through automated 

Make scripts, provided in Gaisler‟s toolsuite, along with the RTL code. 
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The makefiles along with the VHDL files of the top hierarchical modules, the 

testbenches and other scripts, which correspond to either the synthesis or the 

simulation stages, and on which we will elaborate further below, are all together 

included into the specific folder that corresponds to the implementation platform of 

the Leon3-based MP-SoC design. This platform may be either a FPGA architecture of 

various vendors, like Xilinx or Alterra, or a standard-cell library, which is suitable for 

an ASIC RTL-to-GDSII flow. Hence, depending on the platform and based on the 

provided makefiles, the configuration of the design‟s parameters, considering either a 

FPGA architecture or an ASIC standard-cell library as the implementation‟s platform, 

is performed through the following command: 

 

$  make xconfig 

 

The execution of the specific command requires the installation of the GNU 

Make program first. Hence, after the „xconfig‟ part of the makefile has started to be 

executed, an option pane with various tabs and corresponding design options is 

prompted, as it can be seen in the following screenshot. 

 

 
Figure 5.2.The GUI for the configuration of the Leon3 MP-SoC platform. 

In Figure 5.2, each of the illustrated buttons correspond to options that the 

designer should take into consideration, in order to configure the design with the 

desired parameters and characteristics. It can be seen that there are options regarding 

the Leon3 processor core‟s configuration, as it is shown in Figure 5.3, where also the 

size of the internal data and instruction caches can be selected, according to Figure 

5.4. Moreover, the designer can control the functionality of the AMBA bus, while 

also choosing to add or not specific peripheral components. Diverse selections are 

also offered regarding the synthesis strategy, as well as the phase-locked loops that 

may be possibly used for the generation of clocks with higher or lower frequencies. 

Finally, after having selected the desired options, depending on the application, the 

designer can store this configuration to config.vhd, which will be used for the 

elaboration of the design during the RTL simulation and the synthesis stage. The 

values of the system‟s options set through this GUI are also dumped to config.vhd 

along with their selected values and they are used in most of the design‟s VHDL files 

as generic parameters, making the RTL code configurable and thereby offering great 

flexibility to the designer. 
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Figure 5.3.The option pane for the configuration of Leon3 processor. 

 

 
Figure 5.4.The Leon3 Data and Instruction cache configuration screenshot. 
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The detailed analysis of all the available Makefiles included into Gaisler‟s  

suit and of their functionality, as well as the analytic description of the dominant 

Gaisler‟s components, provided in parameterized VHDL code and used in our 

designs,  can be found in the respective documents of Gaisler‟s Intellectual Property 

(IP) design library, namely GRLIB [32]. However, a decent presentation and analysis 

of Gaisler‟s bundle, from both the aspects of designs and of software support tools, 

can also be found in a relevant diploma thesis [27], dedicated to the deployment and 

the exploration of the underlying suite, as well as to the implementation of Leon3 

MP-SoC designs into both FPGA and ASIC platforms. 

 

5.2.2 Synthesis of the Leon3 MP-SoC platform 

 

Based on Gaisler‟s toolflow presented in the previous sub-section, the scripts 

and supplementary files dedicated to the ASIC synthesis and simulation of the Leon3-

based MP-SoC design‟s version are included into the corresponding design platform‟s 

folder, named as leon3-asic by Gaisler. Hence, in the specified folder, Gaisler 

provides, apart from the VHDL files of the Leon3 MP-SoC design and of the I/O 

pads, another Makefile, through which the designer can generate the scripts required 

for the synthesis. The command that produces the synthesis scripts is, similarly to the 

previous one for the system‟s configuration, make scripts and generates the required 

gate-level synthesis scripts, depending on the target ASIC implementation technology 

included into Gaisler‟s bundle.  

The makefile‟s execution produces scripts for a wide variety of synthesis 

tools, in order to cover the wide variety of EDA toolchains used by designers working 

with Gaisler‟s Leon3 distribution. Also, the range of the included technology libraries 

is quite extensive, starting from libraries of 180nm up to 65nm, which was the state-

of-the-art technology node two years ago. In this thesis, we have used the TSMC 

45nm CMOS standard-cell library, as it is based on a technology node of the deep-

deep submicron regime and therefore, it is suitable for the exploration of the impact 

that EM and TDDB may have on the interconnects of such complex designs as our 

MP-SoC platform. 

Among the synthesis scripts generated by the make scripts command, we 

decided to use those corresponding to the UMC 180nm technology library and we 

adapted them to our technology libraries. It must be noted that the selection of the 

specific category of synthesis scripts was not dependent on any specific criteria and 

therefore, we could have also used the ones generated for the 90nm or the 65nm 

technology libraries, without loss of generality.  

The generated synthesis scripts were divided into several parts, depending on 

the consecutive steps that should be followed, in order to transform the RTL code into 

a technology-dependent gate-level netlist. Hence, there is a main script, namely 

rhumc.tcl, which includes the scripts that perform the technology library definition 

(setup_rhumc.tcl), the VHDL compilation of the design‟s components (compile.dc 

and leon3mp_dc.tcl), the declaration of the timing constraints (timing.tcl) and the final 

commands that perform the synthesis of the design, extract the report and generate the 

netlist in design formats compatible to the Synopsys Design Compiler and the SoC 

Encounter (rhumc.tcl).  

The first one of the aforementioned scripts that is executed is the 

setup_rhumc.tcl, which includes the commands for the definition of the standard-cell 

libraries, as well as of the macro cells, which correspond to the SRAM memory 
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libraries we used to implement the data and instruction caches of Leon3. The Design 

Compiler requires these libraries to be provided in the Synopsys database (.db) format 

and the corresponding standard-cell and SRAM $library.db files have been generated 

from the Synopsys Library Compiler [29] tool, based on the following commands. 

 

$ lc_shell  

$ read_lib library_name.lib 

$ write_lib library_name –format db –output library_name.db 

 

The first command invokes the Library Compiler tool and the user enters its 

shell. With the read_lib command, we input the technology library‟s information 

written in the Synopsys Liberty format and finally, we dump it into the corresponding 

.db file, while keeping the library‟s name, defined on the top of the .lib file, 

unchanged. After the generation of the required .db files, the libraries used in the 

synthesis process are declared, based on the setup_rhumc.tcl script, as follows: 

 

set search_path [concat $search_path [list $designs_path $libraries_path]] 

set target_library {$standard_cell_library_name.db $memory_library.db} 

set synthetic_library {dw01.sldb dw02.sldb dw03.sldb dw04.sldb 

dw_foundation.sldb} 

set link_library [list $standard_cell_library_name.db $memory_library.db *] 

 

In these commands, given to the Design Compiler, we define the paths where 

the VHDL files of the design are located ($designs_path), as well as the directory to 

look for the standard-cell library and the memory libraries ($libraries_path). The set 

target_library command defines the libraries that should be used in the synthesis, 

while the set link_library is necessary to be defined while linking the design with the 

target libraries, during the synthesis process.  

Also, the linking libraries are necessary to be defined when reading an already 

synthesized design, which includes logic cells and macros of a certain technology 

library, into Design Compiler‟s environment. In perspective, when a design is 

synthesized and we want to modify its netlist or to extract the timing, area and power 

reports as a standalone process, we should read it through the available formats, 

namely Verilog, VHDL or DDC, (Database Design Compiler format) and then link it 

through the link command, so that the timing, area and power characteristics of the 

involved technology libraries are incorporated. 

Finally, we also define the usage of Synopsys DesignWare IP libraries, which 

include components of parameterized size and complexity, in order to efficiently 

implement operations like additions (dw01.sldb), multiplications (dw02.sldb) and 

other Digital Signal Processing operations (dw_foundation.sldb). These components 

have been used for the high-performance and low-area implementation of arithmetic 

operations located into the Leon3 processor‟s integer unit, as well as in other 

components of the MP-SoC designs. 

Regarding the generation of the SRAM memory .db libraries, we have been 

based on the .lib files of an educational technology library of CMOS 90nm, provided 

by Synopsys Armenia (SAED 90nm) [30], and on a TSMC design kit, as this was the 

only available SRAM cell library close to the 45nm technology node. Hence, we 

transformed the technological characteristics regarding the process corner names, the 

operating voltage and the timing characteristics of the SAED .lib SRAM cell files and 

adapted them to the ones defined into the corresponding TSMC 45nm .lib. This 
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conversion was required in order to avoid problems in static timing analysis at both 

the synthesis and the physical implementation stages, as the operating voltage and the 

rise and fall time thresholds were different in the 90nm SAED standard-cell library 

(e.g. different “trip point” warning messages in Design Compiler occur when cells are 

inconsistent in terms of timing parameters or operating voltage). However, significant 

problems also arised in the usage and the instantiation of the specific memory 

library‟s SRAM cells, as the address and data vectors of the input and output ports 

were not properly defined. Hence, we modified the declaration of input and output 

ports in the .lib files of the target SRAM cells, based on the Synopsys Liberty 

format‟s specifications [31]. A more detailed view of the SRAM cell .lib files is 

available in the Appendix. 

The proper library setup and definition is perhaps the most critical issue in 

ASIC synthesis and in general, in any design abstraction layer of the RTL-to-GDSII 

flow and this is the reason of emphasizing on this part of the text in the previous two 

paragraphs. After the completion of this stage, the synthesis flow, according to the 

structure of Gaisler‟s scripts and also of any other design‟s case study, continues with 

the VHDL compilation of the designs in the Leon3‟s hierarchy. The corresponding 

scripts are the compile.dc, in which the Design Compiler‟s PRESTO tool checks the 

correctness of the VHDL components included in the design‟s hierarchy, and the 

leon3mp_dc.tcl, which performs the same task for the top hierarchical components, 

namely the Leon3 MP-SoC design and the I/O pads used.  

In compile.dc, each one of the IP components that correspond to a specific IP 

library, the name of which is determined by Gaisler, are compiled, by defining the 

corresponding library of the same name in Design Compiler. The top hierarchical 

modules are compiled through the execution of the leon3mp_dc.tcl script, as 

mentioned above, under the default design library of Design Compiler (work). The 

compilation of the VHDL modules is performed by using the analyze command, as 

follows. 

 

$ define_design_lib $current_design_lib 

$ analyze –format VHDL –library $current_design_lib $module.vhd 

 

With the define_design_lib command, we define a working library in Design 

Compiler, under which all the corresponding modules should be compiled. Therefore, 

the produced synthesis files for these modules will be placed into the folder named 

$current_design_lib in the working directory from which the scripts are executed. The 

analyze command compiles the $module.vhd file under the $current_design_lib 

design library, defined previously. This process has been followed for all the designs 

included in the GRLIB IP library, as they could potentially be used in the target 

design. The components of GRLIB included in the synthesis process are determined 

by the system‟s parameters configured via the GUI of the make xconfig command. 

The values of these parameters are also included in the config.vhd package, compiled 

under the library work in the leon3mp_dc.tcl script. 

The final step in leon3mp_dc.tcl is the transformation of the RTL netlist of the 

top design, namely of leon3mp, from the RTL description to logic gates of an abstract 

technology library, named as GTECH in Design Compiler. At this step, the checking 

of the VHDL modules is completed successfully and we have stepped into the main 

process of the top-down synthesis flow, which is the generation of a circuit composed 

of logic gates of a specific technology, which is defined in the setup_rhumc.tcl script. 

This process is performed by the Design Compiler in two stages. First, the RTL 
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representation of the target module, namely leon3mp, is transformed to logic gates 

which do not correspond to a specific CMOS technology, so as to produce an 

intermediate representation of gates, which would be later mapped to those of the 

target standard-cell and SRAM technology libraries. These gates do not include any 

timing, area or power information and this is the reason that Synopsys uses the name 

GTECH for this library. This step is performed by the elaborate command, as 

follows: 

 

$ elaborate $top_design 

 

In our case, the top_design was the leon3mp module, namely the top 

hierarchical component of our design. 

After the completion of the design‟s elaborate process, the next stage deals 

with the setting of constraints imposed by the user and bowl under the timing, area 

and power bounds, in between which the design should operate. In the Design 

Compiler, the setting of timing constraints is the most critical task, as this is the 

constraint of the highest importance for the synthesis. Consequently, the designer 

should define the clocks of the design and their periods, so that the register-to-register 

paths are constrained by the corresponding clock. Also, the in-to-register and the 

register-to-out paths are affected by such constraints, not only in terms of setup time 

boundary, which is considered during the synthesis, but also of hold time, which can 

be monitored at the post-layout timing analysis. Also, in-to-out paths can be 

constrained by the set_max_delay command, which is provided below, along with a 

clock definition. These two are the core timing constraints used in the corresponding 

Gaisler‟s script, namely timing.tcl, according to the following syntax. 

 

$ create_clock “$clock_name” –name $clock_name –period $clock_period 

$ set_max_delay $max_output_delay –from $inputs –to $outputs 

 

Regarding the operating condition constraints, the design was synthesized at 

the typical process “corner” of the TSMC 45nm library, where the operating voltage 

was set to 0.9V and the temperature to 25
o
C. Also, we let the tool decide about the 

proper wire load model of the standard-cell library that should be used in the internal 

parts of the modules and across the design boundaries, by setting the 

set_auto_wire_load_selection variable to true. The rest of the constraints included in 

the timing.tcl and concerning the ungrouping of specific modules in the design‟s 

hierarchy were set as inactive in our synthesis approach, as the original Gaisler‟s 

script followed a strategy of ungrouping small hierarchies in the design, thereby 

corrupting some of the produced design‟s hierarchical levels. Provided that the 

generated post-synthesis netlist will be used as input to Cadence SoC Encounter to 

construct the design‟s floorplan, which will be used by HotSpot for the thermal 

simulations, we should keep all the designs‟ hierarchical levels, as these existed 

before the gate-level synthesis stage. The main reason for the maintenance of the 

design‟s hierarchy is that the generated floorplan guide affects the thermal profiling in 

HotSpot. Consequently, hierarchical units of the lowest possible hierarchical level and 

therefore of more detailed granularity could possibly aid in the extraction of more 

accurate thermal analysis results by the thermal simulation tool. Hence, we excluded 

all the ungroup commands from the timing.tcl script, as it can be seen in the 

corresponding section of the Appendix.  
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The setting of the design‟s constraints is the last step before the compile 

command, which performs the synthesis of the design using the standard-cell and 

SRAM components included into the libraries defined in setup_rhumc.tcl. Therefore, 

the design‟s netlist, which was, until now, kept in an intermediate form, in logic gates 

of an abstract technology, is now transformed into a new, technology-aware netlist, 

which, at the end, will comprise only of components that correspond to a CMOS 

technology library. Regarding the synthesis strategy, we followed a top-down 

approach, where the target design (leon3mp) and its subdesigns are read from the 

Design Compiler in one step and any optimizations across the design‟s hierarchy are 

performed on-the-fly. This implies that sub-designs are not synthesized in a 

standalone manner and read afterwards, but the whole design is loaded at once and 

any optimizations of the sub-designs are performed during the synthesis‟s iterations, 

depending also on the degree of optimization that the designer selects. Alternative, 

bottom-up synthesis approaches could be also applied in such a complex design, but 

this exploration is out of the scope of the presented thesis. 

In general, the Design Compiler provides two options for compiling a design 

into cells of a certain technology. The first one is the default compile command, in 

which extra optimizations regarding the efficiency of technology mapping or the 

cross-hierarchy optimizations are by default set at a medium level or disabled 

respectively. In the compile_ultra command, these flags are by default enabled by the 

tool, so that the maximum complexity reduction and timing improvements are 

achieved.  

Each one of these options has its pros and cons, depending on the design. 

However, in datapath optimization and especially in non-programmable ASIC 

designs, it is more appropriate to use the compile_ultra strategy, in order to achieve 

the maximum performance in terms of timing and area. On the other hand, a more 

conservative approach should be followed when synthesizing designs including 

processors, as the merging of registers and signals compile_ultra possibly performs, 

could lead to errors that may affect the proper post-synthesis functional simulation of 

the design.  

In our approach, we synthesized the design using the compile command and 

under a clock period constraint of 2ns, while the in-to-out paths where constrained at 

1.9ns, so as to be compatible with the delay of register-to-register paths, considering 

the setup time‟s impact. After the successful completion of the synthesis, we exported 

the design into the Synopsys Database format (.ddc) and also into a Verilog netlist 

(.sv), which was then provided to the Cadence SoC Encounter for the place-and-route 

stage, along with the set of the technology library file required and the timing 

constraints, which were dumped into an .sdc file, also needed in the physical 

implementation process. The corresponding commands used for the design‟s 

exportation and also for the constraint file‟s generation can be found near the bottom 

of the rhumc.tcl script, placed in the Appendix.   

  

5.2.3 Physical Implementation of the Leon3 MP-SoC design 

5.2.3.1 Design import and Floorplanning 

 

In a typical RTL-to-GDSII flow, the physical implementation stage includes 

the steps of floorplanning, placement, clock-tree synthesis and routing of the imported 

gate-level netlist, resulting into the design‟s layout, the database of which is then 
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imported in our framework and used for the extraction of the target interconnects. 

Each of the aforementioned separate physical implementation steps impacts the 

following ones in the design flow and holistically, the generation of the final physical 

design (layout). Therefore, each of these steps is of high importance, especially when 

the imported design is complex and contains SRAM cells and other macros in 

addition to the standard-cells. 

In this section, we will elaborate on the flow of the placement and routing of a 

standard-cell based gate-level netlist of high complexity, like the Leon3 MP-SoC 

design produced from the synthesis process described previously. Our design, which 

includes two Leon3 processor cores and whose gate complexity is about 30K gates, 

contains one instruction and one data cache of 8K per processor, while it can also 

contain I/O pads, depending on the technology library of the implementation. It is 

noted that in the config.vhd package, through which the designer can determine the 

critical system‟s parameters as it has already been mentioned, we did not select any 

technology of implementation for the I/O pads, as there were no timing, power and 

physical information files available in the TSMC 45nm library distribution. Hence, in 

our design, the I/O pads were implemented by tri-state and typical buffers of our 

library, by selecting cells of high fanout to drive the input and output pins.  

However, the complexity of the design was not reduced by absorbing the 

existence of I/O pads, as the remaining parts of the design required a careful floorplan 

of the hierarchical modules, so that the design‟s performance is kept at a reasonable 

level, while the congestion of cells during placement and routing is maintained low, in 

order to avoid problems during both the global and detail routing of cells. Moreover, 

we also came against the challenge of adjusting the pin shapes and dimensions in the 

.lef files of the SAED 90nm SRAM cell library, so that no design rule violations occur 

during the routing. This problem was solved by reducing the width of input and 

output pins in the .lef files of the SRAM cells, considering the minimum width of 

metal layers in the corresponding .lef of the TSMC 45nm library. By such an 

approach, we wanted to guarantee that no design rule violations could occur, leading 

to open nets of the memory cells and of the standard-cells that are connected to the 

caches. In the presented design, we used five SRAM macro cells, namely the 

SRAM32x128, SRAM32x1024, SRAM32x64 and SRAM8x128, all migrated from 

the SAED 90nm library to the 45nm used in the context of this work.  

Among those, the SRAM32x1024 memory cells were used to implement the 

8K instruction and data caches of each processor core, while the SRAM32x128 and 

SRAM8x128 cells were used for the instruction trace buffer and for the processor‟s 

register file. Also, the SRAM32x64 blocks were used to map the memory blocks of 

the Debug Support Unit and the SRAM32x16 for the Memory Management Unit‟s 

internal memory. It must be noted that we did not perform any scaling on the overall 

size of the memory blocks or on any other geometric dimension internally, apart from 

the input and output pins, which were responsible for the connection of the memories 

with the standard-cells.  

Regarding the placement of memories onto the core area, this was a difficult 

task, as we had to experiment with the trade-off of performance and congestion. In 

perspective, the data and instruction caches were interfacing with the Leon3‟s integer 

unit, which comprises the processor‟s pipeline. Also, the Memory Management Unit 

and the data and instruction cache controllers interface directly with the caches as 

well. 

Consequently, the distance of the hierarchical units of the Leon3 core in the 

floorplan had to be adjusted, so that there was enough space left for the violation-free 
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placement and routing of the logic cells surrounding the SRAMs that implement the 

caches. Moreover, the integer unit, which comprises the Leon3 pipeline, is placed 

near the memory management unit and to the register file, so that the interconnect 

delay is minimized in between these components. However, as the technology of 

implementation is at 45nm, such an approach has been followed in every part of the 

design‟s floorplan as a general strategy, as the interconnect delay tends to increase 

dramatically with technology scaling and overwhelm the delay of logic gates in 

technology nodes below 45nm, depending on the design. The aforementioned 

hierarchical placement strategy is depicted in the floorplan of the following figure.  

 

 
Figure 5.5. The 2.32x1.85 mm2 Leon3 MP-SoC design’s floorplan with two cores. 

The screenshot of Figure 5.5 demonstrates the floorplan of the design with the 

two Leon3 processors‟ integer and memory management units (iu0 and c0mmu 

respectively), which are surrounded by the data and instruction caches on the top of 

the core area and also by the caches storing the data and instruction tag bits. The 

register file and the instruction trace buffer memories are placed below the integer 

unit. It can be seen that the hierarchical units of the two processors are placed by 

following the same floorplanning strategy, illustrated above. The Debug Support unit 

(core0/leon3core0/dsu0) of the system is placed in the left bottom corner of the core 

area and is comprised by four SRAM32x64 caches, while the AMBA AHB and APB 

controllers and the design‟s peripherals are placed near the bottom right corner, next 

to the DSU unit.  

In the picture of Figure 5.5, the green-colored blocks represent the SRAM 

cells, while the purple boxes enclosing them are the hierarchical units of the design, 

which also contain standard-cells, apart from the memory macros. The floorplan‟s 

implementation has been performed manually from within the SoC Encounter‟s suite, 
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by using its graphical interface and moving or expanding the blocks, so that they are 

placed in the desired location. For such purposes, we have used the Encounter‟s 

moving and expanding buttons of the graphical user interface, as the location of units 

was not decided a priori. However, we could have realized the floorplan by using the 

respective commands of DBAccess to automate the placement of macro blocks and 

hierarchical units, once we had decided on the left bottom and right top coordinates of 

the blocks. 

Regarding the floorplan‟s details affecting the next tasks, namely placement 

and routing, we have selected the hierarchical units to be of type “Guide”, instead of 

“Fence”, so that the standard-cells may not remain enclosed between at the 

boundaries of the hierarchical unit during the detailed placement. The type of each 

hierarchical unit in the floorplan can be set by double-clicking on a specific unit, so 

that the window with the properties of that unit appears and the user can select among 

the different floorplan types, in the “Constraint Type” option list. In this window, the 

designer can also set other relevant floorplan parameters, like the unit‟s width and 

height, its orientation and location on the core area, by adjusting the (x, y) coordinates 

of the left bottom and the right top points of the unit‟s rectangular box. In our 

implementation approach, the “Guide” option is selected so that Encounter‟s placer is 

not limited by such a constraint, when the designer decides to perform a timing-driven 

or a congestion-driven placement, which are scenarios explored in this thesis. The 

details on the available standard-cell placement strategies of SoC Encounter are 

analytically discussed in the following sub-section, along with our physical design 

approaches at this stage. 

 

5.2.3.2 Standard-cell placement 

 

The standard-cell placement is the most significant design stage of the 

physical implementation flow, as it takes the global placement of hierarchical 

modules and macro blocks as input and places the logic cells in the core area, so that 

each component has a legal location on the die. By the term “legal”, we refer to the 

coordinates of a standard-cell or macro block after performing a detailed placement 

on the design. It must be noted that in RTL-to-GDSII flows, the core area on which 

the design must be placed is divided into rows of standard height, the value of which 

is determined by the technology library‟s LEF file, which contains the width and the 

height of standard-cells, as well as its physical dimensions, regarding the existing 

metal layers and internal pins. 

All the standard-cells should have the same height, so that they can fit into the 

core area‟s rows. The row-based organization of the layout‟s area bowls under the 

issue of routing the power and ground signals (Special routing) of standard-cells and 

their connection to the core‟s Vdd and Gnd rings. Hence, as the cells internally have 

their power and ground metal lines on the top and bottom respectively, they should be 

placed within a specific row, so that the Special router of Encounter connects their 

Vdd/Gnd pins to the core ring, by using a single long metal line for each power signal 

across the entire layout, from one end to the other. In order to achieve a legal 

placement, all cells should be placed on a specific layout row without overlapping 

with each other or with macro blocks, while their locations should be on the 

manufacturing grid. The manufacturing grid is a virtual mesh of horizontal and 

vertical lines that Encounter uses in order to properly place and route the design, 

following the design rules of the specific technology used. The horizontal and vertical 
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spacing of these lines is defined in the technology library‟s LEF file and determines 

the spacing of the manufacturing grid, the resolution of which depends on the physical 

dimensions of the library. Therefore, for a typical 180nm CMOS technology, this 

value is 0.05um, while for the 45nm TSMC, it is reduced to 0.005um. Consequently, 

the designers should be careful when manually placing the macro cells or performing 

standard-cell placement, as non-legal module locations could lead to increased 

runtime in routing or to areas that cannot be routed, due to off-grid placement.  

However, these are not the only constraints a designer should worry about 

when attempting to place complex designs with numerous macro blocks, such as our 

Leon3-based case study. Placement can impact routing and consequently the design‟s 

closure in numerous ways, as the connections of pins are bounded by technological 

constraints listed in the LEF file of the technology library and resulting into over-

congested areas, while routing the design. Hence, congestion-aware placement should 

be employed, while not underestimating the design specs, which depend on the timing 

constraints. Therefore, the designer has to decide from a variety of placement 

scenarios, depending on the core area‟s size, the designs‟ complexity and the 

performance constraints. In this section, we will present how we performed both the 

timing-driven and the congestion-driven placement approach on the Leon3 MP-SoC 

design using the Encounter‟s QPlace placer [34], while taking the placement 

legalization and the timing constraints into account. 

From the graphical user interface of Encounter, placement is performed by 

selecting from the menu Place->Standard-cells. Then, the option pane that appears 

provides choice of either a detailed placement (default) or a low-quality one (Run 

placement in Floorplan mode). Details on the placement‟s process can be fine-tuned 

by clicking on the button “Mode”, which opens a window with more granular 

placement options, shown below. 

 

 
Figure 5.6. Placement options of Encounter’s Qplace placement tool. 
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In Figure 5.6, the placement tool of Encounter provides options regarding 

several issues affecting detailed placement of the design. In our approach, we have 

focused on performance and congestion as the two parameters that may guide 

placement either in conjunction with each other, or separately. For the purposes of the 

interconnect reliability framework‟s evaluation under different placement scenarios, 

we decided to implement the placement either in timing-driven or in a congestion-

driven mode. 

For the timing-driven approach, we selected the corresponding checkbox as 

shown in Figure 5.6, where it is already selected. At the same time, the designer 

should load the timing constraints, by selecting from the Encounter‟s menu the tab 

“Timing->Load Timing Constraint” and inserting the .sdc file with the clock period 

and the input-to-output timing constraints, generated by the Design Compiler at the 

synthesis step. For a post-synthesis optimization, the designer should also select the 

“Include In-Place Optimization” option, appearing when clicking on the “Place-

>Standard-cells” button of the menu. This window is also shown here.  

 

 
Figure 5.7. The general option pane of placement modes in Encounter. 

In the above figure, timing-driven placement should be accompanied by the 

In-Place optimization, in order to achieve a larger timing slack before the clock-tree 

synthesis and the routing steps that follow. On the other hand, when selecting a fully 

congestion-aware placement approach, post-place optimization refers to congestion 

avoidance and it can also be included in the options. The congestion effort of the 

placer is determined as “High” for a congestion-aware placement strategy (or as 

“Medium”, for a rather typical effort), by clicking the corresponding option, as it can 

be seen in Figure 5.6. By clicking the “Ok” button of Figure 5.7, the user can launch 

the placer and proceed to the clock-tree synthesis step, after achieving a legal 

placement. 

 

5.2.3.3 Clock-tree synthesis 

 

The construction of the clock-tree is usually performed before the routing of 

the signal nets and deals with the design and implementation of the H-tree of clock 

buffers that drive the clock signals to the whole chip, wherever flip-flops are placed. 

Hence, placement is compulsory before the clock-tree synthesis and routing. In this 

thesis, our focus was not on the clock tree network and consequently, we will not 

explore any special strategies regarding the synthesis of the design‟s clock-tree. 
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Nevertheless, a properly synthesized clock tree is likely to eliminate any problems 

that could occur in the timing of register-to-register paths because of excessive clock 

latency, so it is necessary not to introduce any delay overhead in the design‟s initial 

timing due to clock-tree malfunctions.  

Due to the aforementioned reasons, we selected all the available CMOS 

inverters and buffers from the TSMC 45nm standard-cell library, as well as the 

existing clock-tree buffers, specialized for the H-tree construction, and we let 

Encounter allocate the proper ones, based on the timing constraints of the design. This 

task is performed by selecting “Clock->Design Clock->Gen. Spec” from Encounter‟s 

menu tab, which opens a window with the available library‟s buffers. We used all the 

available buffers except for those with the prefix “DEL”, which are cells of merged 

consecutive buffers, and those with the prefix “G”, which are mainly used for a post-

layout optimization purposes (ECO flow). The selection of inverters and buffers is 

dumped into a text file that we named Clock.ctstch (the default name, which of course 

can be changed by the user), that is then used by Encounter to guide the clock-tree 

synthesis. The main window containing the clock-tree synthesis options is shown 

below. 

 

 
Figure 5.8. The clock-tree synthesis main window in SoC Encounter. 

By clicking on the “Mode” button shown in Figure 5.8, the designer can 

further elaborate on the diverse clock-tree synthesis strategies, regarding the metal 

layer of mapping the clock-tree root, the resizing or not of the clock-tree buffers while 

performing the clock-tree optimization, as well as the tool that will perform the clock-

tree routing, if it is desired at this level. If not, the clock-tree buffers can be kept in the 

design and their interconnection with the remaining circuit will be performed together 

with that of the signal nets at the routing stage, where the Nanoroute tool is employed 

to finalize the physical design‟s implementation. Although the clock-tree synthesis 

finishes with a trial routing of all the designs‟ nets, namely both of the clock-tree and 

of the signal nets, this router (TrialRoute) does not take all the technology constraints 

into account during the pin connections, neither does it report all the possible design 

rule violations, regarding spacing, samenet and shorts. Therefore, the flow continues 

by performing the final routing of the design‟s nets, in order to end up with a better 
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quality layout and consequently results of higher accuracy in terms of timing, due to 

the rerouting of nets and the construction of different wires by Nanoroute. The design 

is also optimized in terms of area, due to the possible resizing of cells while 

performing post-routing timing optimizations on the design. 

 

5.2.3.4 Routing 

 

Instead of the clock-tree synthesis step, the routing stage presents the designer 

with the opportunity to select between different physical implementation scenarios 

regarding either timing or congestion. In perspective, routing in general deals with the 

interconnection of data signals in VLSI circuits and mainly with the selection of metal 

layers that should be used to connect pins of standard-cells and macros. It is a 

problem of high complexity, depending on the number of pins that have to be 

connected with each other and also on the available metal layers, which depend on the 

standard-cell library used. The complexity of most academic and industrial routing 

algorithms, based on which state-of-the-art tools have been developed, classify them 

among the NP-hard problems and consequently, complex, MP-SoC designs require 

great runtimes to be successfully routed. 

 At the same time, the successful completion of routing depends on the 

available die size, as well as on the congestion of the design, regulated during the 

placement. Therefore, over-congested designs may lead to a significant degradation of 

the routing process, as the router cannot perform the layer assignment in the 

congested areas. Moreover, misaligned pins, which are not on the manufacturing grid, 

may cause problems. Therefore, it is necessary that the standard-cell library files are 

properly setup and the previous steps of the physical implementation flow avoid the 

threat of congestion and the problems that origin from such a bad management of the 

die‟s area. The worst impact of congestion is the incomplete routing in the areas 

where no more wires can come through due to high cell and wire density.  

 Therefore, the congestion-avoidance scenario is a standard and well-known 

practice that designers should always follow, in order not to face the aforementioned 

problems. However, there are practices that manage the layout‟s area, in combination 

with a more “aggressive” approach, which also considers the performance constraints 

imposed on the various paths of the design. A timing-driven routing strategy is 

different from a more conservative, congestion-aware approach, as it usually assigns 

the wider metal layers, which are near the top of the metal stack, to the timing-critical 

paths of the design, avoiding detours where possible. The remaining metal layers are 

used for the less critical parts of the design. This policy should mitigate the impact of 

the EM, as the usage of top metal layers, which are wider, leads to a decrease in the 

current density. However, the harder the timing constraints, the more the router 

optimizes the netlist by upsizing the logic cells used and therefore, a trade-off is 

developed. Hence, in very strict timing constraints, relatively shorter wires may suffer 

from high current densities due to the large fanout of driving cells used to achieve the 

target performance, whereas in the congestion-aware scenario, longer wires are not 

that susceptible due to coarser placement, as the design is not pushed in terms of 

timing. 

 On the other hand, dependencies between routing implementation scenarios 

and interconnect reliability wear-out mechanisms are also suspected to exist while 

considering the impact of wires‟ congestion on TDDB. In perspective, in densely 

routed areas of the layout, which are produced when following a timing-driven 
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placement and routing strategy, the spacing between wires tends to be reduced, as 

each routing bin (e.g. rectangular block granule of the core area used at the global and 

detailed routing for the congestion metric‟s definition) contains more wires coming 

through its boundaries. Hence, specific wires may have greater probability of showing 

a timing degradation due to TDDB, because of the increased number of adjacent wires 

and the reduced spacing. Similarly, a sparse placement and routing strategy should 

lead to designs where the inter-metal wire spacing is larger and therefore the impact 

of TDDB is not as significant within the desired system‟s lifetime. However, all of the 

above are just assumptions that comprise our motivation to perform a more extended 

exploration and will be confirmed or refuted by the corresponding results, based on a 

wide range of designs, before they can be considered accurate and appropriate as 

reliability-aware implementation strategies. 

 In this thesis, we considered five place-and-route implementation scenarios in 

order to explore the impact that different physical implementation strategies could 

have on parametric interconnect reliability wear-out phenomena like EM and TDDB. 

In perspective, we initially implemented the design by selecting a medium congestion 

effort in both placement and routing, while we did not enable the timing-driven option 

in placement. Also, routing was of medium effort regarding performance. This design 

was considered to be a neutral one, as a strategy of medium effort was followed in 

both physical implementation stages. In order to set the routing strategy‟s options in 

SoC Encounter‟s Nanoroute, the designer should select the option “Route-

>NanoRoute -> Route” from Encounter‟s menu and the window with the main 

options, shown in the next figure, should appear. 

 

 
Figure 5.9. The Nanoroute’s main window with the most important options. 
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In Figure 5.9, it is visible that the designer can determine most of the critical 

routing options, like the granularity of routing (“Global Route” and “Detail Route”), 

as well as the fixing of antenna process violations, the congestion and the timing 

optimization effort and also Signal Integrity and Lithography features. At the bottom 

of the pane, the number of threads executing the routing process can also be adjusted, 

as the designer can choose to map the application to more than one CPU, if these exist 

on the host where Nanoroute is running.  

From the aforementioned options, we have focused on timing and congestion, 

as these parameters are the critical ones for the implementation of our routing 

scenarios. Hence, by clicking on the “Mode” button, another window, where each of 

the separate Nanoroute features can be configured, appears.  

Regarding the dependence between timing and congestion aware optimization, 

we configured the slide bar of the next figure to be either on the right end, for a full 

timing-driven routing, or on the left end, to perform a totally congestion-driven 

routing. Considering a rather normal timing and congestion effort, the slide bar should 

be placed in the middle (Effort 5), as it is shown below. The timing engine of the SoC 

Encounter, CTE (Common Timing Engine) is enabled for the post-routing timing 

analysis. Through the other illustrated panes (Route, DFM, Antenna, AdvDRC and 

Misc), the designer can configure parameters like the metal layers that should be used 

for routing, as well as DRC and Antenna process violation issues. 

 

 
Figure 5.10. The timing and congestion optimization slide bar of Nanoroute. 

In our case study, we have selected the slide bar to be at the medium effort for 

the normal place-and-route design, as well as for the layouts of timing-driven and 
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congestion-driven placement respectively. For the exclusively performance-optimized 

routing, the slide bar was set to Effort 10, which is the maximum, whereas Effort 0 

corresponds to the completely congestion-optimized physical design. After the 

violation-free completion of the routing‟s design rule check, the layout is almost fully 

constructed and after the filler cell insertion, which is required to cover the white 

space of the core area, the design is almost finalized. Its final view is similar to the 

one illustrated in Figure 5.11, where the design‟s placement is timing-driven and the 

routing effort is the standard one. 

 

 
Figure 5.11. The design’s layout with timing-driven placement and normal routing. 

Therefore, the next step is the post-layout static timing analysis from within 

the Encounter‟s environment, by selecting “Timing->Analyze Timing-> Post-

Layout”. The reports provide the timing information about the longest path delay in 

all types of paths and of course in the register-to-register paths, constrained by the 

desired operating clock period, set by the user in the .sdc constraints file. If the 

desired performance is not achieved, Nanoroute is able to perform incremental post-

routing optimization iterations in order to fix the setup and hold timing violations. 

This task is performed through the menu of Encounter‟s suite, by following the steps 

“Timing->Optimize->Post-Route”, and selecting either setup or hold type violation 

fixing, as well as the optimization of fanout and capacitance of nets in the design. 

After the completion of each post-route optimization step, Encounter repeats the static 

timing analysis to report the new, possibly reduced longest path delay of the target 

design. 

When the desired performance constraint is met or if the delay saturates at a 

certain value after a number of post-route optimization iterations, the layout is 
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finalized and can then be exported to different formats, while the design can be saved 

as an .enc file, which is the format of the Encounter‟s designs. In our flow, we 

exported the design into the Verilog format by selecting “Design->Save->Netlist” 

from the menu and the verilog netlist‟s name can be given in the appearing window. 

The design is saved as an .enc file by selecting “Design->Save Design As->SoCE”. 

The Verilog netlist should be exported, so that it can be used as input in the 

PrimeTime PX power analysis tool for the power estimation process, as well as in the 

Cadence ETS timing analysis engine. 

Regarding the aforementioned tools, PrimeTime PX is used for power 

analysis, which is performed by reading the design‟s post-layout Verilog netlist and 

the .vcd file containing the design‟s activity, obtained from ModelSim, using the 

command read_vcd as follows.  

 

$ read_vcd –strip_path $testbench/$top_design $top_design_activity.vcd  

$ update_power  

 

In the read_vcd command, the strip_path flag defines the hierarchy level of the target 

design in the testbench used for the simulation. The $top_design_activity.vcd file is 

the .vcd containing the activity of all the signals of the target design. The signal nets 

are written with the hierarchical names having the “$testbench/” as prefix, as the top 

design is instantiated into the testbench and therefore it is one hierarchical level 

below. The power analysis is performed through the $update_power command. 

Apart from the power analysis, which is a necessary input to HotSpot, the 

timing reports are equally important, as they reveal the initial and the final timing 

slack. These are derived from the ETS, which is the timing analysis engine of SoC 

Encounter. Unlike PrimeTime PX, which requires the used standard-cell libraries to 

be listed in the .synopsys_pt.setup, the Design Compiler requires to read them from 

the .synopsys_dc.setup. The library definition is rather simple in the ETS and requires 

the .lib files of the standard-cell and macro (SRAM) libraries to be read. The design is 

read in its Verilog format, along with the parasitic delay information, provided either 

from the design‟s SPEF or its SDF file. The Tcl script template that implements all 

the aforementioned tasks is provided in the Appendix, named as ets.tcl. The 

corresponding script of PrimeTime PX, named as leon3mp_px.tcl is also included. 

The above steps complete the physical implementation flow, as the layout is 

now constructed and its relative design formats can be used for extracting the design‟s 

timing and power. It must be noted that the current section is not a complete and 

detailed guide for neither the SoC Encounter, nor the Design Compiler or any other 

tools. A detailed description of the features of the tools used in our flow is provided in 

the related .pdf documents referenced in the corresponding section. Among these 

documents, we provide the Mentor Graphics ModelSim user‟s guide, as a reference 

for the RTL and the post-layout simulation of VHDL-based or standard-cell-based 

designs, which is summarized in the next section. 

 

 

5.3 Simulation and Software tools 

 

The extraction of the design‟s power profile and the thermal simulation in 

HotSpot require the a priori knowledge of the switching activity of the signal nets of 

the layout‟s netlist, while a certain application is being executed by either both or by a 
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single of the two Leon3 processors of our MP-SoC system. For the switching activity 

extraction, the design‟s post-layout Verilog netlist must be simulated and the values 

of all the signals can be dumped into the design‟s Value Change Dump file (.vcd), so 

that the power analysis tool can compute both the dynamic and the static power for 

the simulated time interval. 

In this work, we have used Mentor Graphics ModelSim [25] for the post-

layout, as well as for the RTL simulation of the Leon3-based MP-SoC design. As the 

RTL code is used only for the functional verification of the design before its 

implementation, we will not elaborate any further on this stage of simulating the 

design, as the obtained .vcd cannot be used for the post-layout netlist‟s power 

analysis. Hence, in this section, we will address the steps for performing a post-layout 

simulation of the design‟s Verilog netlist together with the VHDL files of the external 

Programmable ROM (Prom), SRAM and SDRAM components provided by Gaisler.  

The testbench used in the simulations is also in VHDL and it instantiates the 

target design, along with the Prom and either the SRAM or the SDRAM, depending 

on the corresponding parameter values on the config.vhd package, defined in the 

respective section that was previously presented. The simulation is performed in 

interactive mode, after compiling the standard-cell library Verilog simulation models, 

composing the design‟s netlist, using the following command.  

 

$ vlog $top_design.v –v $standard_cell_library.v  

 

The above command first compiles the standard-cell library‟s Verilog 

simulation models, and then the $top_design.v, which is the post-layout netlist of the 

Leon3-based MP-SoC design. The external memory files and the packages required 

for the debugging messages to be displayed are compiled next through the vcom 

command, used to compile VHDL files in ModelSim. It is noted that during these 

experiments, we were obliged to follow a mixed-language simulation approach, as the 

external memories were written in VHDL. ModelSim‟s simulator is invoked through 

the vsim command, which is used as shown in the Appendix, where the whole script, 

named run_leon3mp_vlog, is presented. During the simulations, the waveforms of the 

main input and output signals, as well as of internal nets of the design, were created 

on-the-fly, in order to monitor the simulation‟s progress. A screenshot of the 

waveforms produced during a post-layout simulation in ModelSim is shown in Figure 

5.12. 

As far as the simulation is concerned, there were two problems that we had to 

overcome in order to obtain a functional post-layout Verilog netlist operating at a 

clock frequency close to the maximum of 200MHz, which corresponds to a clock 

period of 5ns. 



102 

 

 
Figure 5.12. A simulation waveform sample of the design in ModelSim. 

The selection of such an operating frequency for the simulation was necessary, in 

order to obtain a realistic figure for the design‟s power dissipation, as it would be 

otherwise underestimated. Therefore, we had to modify the simulation models of the 

external Prom and SRAM memory provided by Gaisler, so that their response time is 

less than 5ns, specifically 4ns in our experiments. The simulation‟s duration was set 

to approximately 50ms in ModelSim, corresponding to about an hour of simulation 

time. This was the threshold beyond which the size of the .vcd file would become 

extremely large, introducing problems to its use in PrimeTime PX to perform the 

power analysis. 

The design‟s operation begins by reading the contents of the Prom, which start 

at the address 0x00000000 and include the necessary commands that initialize the 

Leon3 processors and various system registers. Among those, we can distinguish the 

processor‟s Status and the Interrupt Request register, as well as others, which regulate 

the functionality of the Memory controller‟s module. A detailed description of the 

commands contained in the Prom is included in the corresponding assembly file, 

provided by Gaisler along with the RTL code‟s files. After the execution of the 

initialization commands, the Prom‟s code performs a jump operation to the SRAM‟s 

address, so that the execution of the user‟s application can start. The application 

should be loaded into the SRAM, which is mapped to the address 0x40000000, while 

the SDRAM itself, which is not used in the simulations as external memory, starts at 

0x60000000. Both the application and the Prom‟s contents are loaded into SRECORD 

files (.srec), written into a format that resembles the hexadecimal. In the performed 

simulations, which include an application initializing the system with the two 

processors, and a matrix multiplication, the Prom‟s .srec file used, was the one 

included in Gaisler‟s suite. 

The .srec files of the aforementioned applications have been generated 

through the Leon3 BCC cross-compiler, provided among the other Gaisler‟s software 

support tools, by using the proper commands, explained analytically in the BCC‟s 

compiler user guide [26], as well as in the referenced diploma thesis [27]. For the 

generation of the .srec files, it is required to produce the executable of the application 

from the cross-compilation of the BCC, before using the sparc-elf-objcopy command, 
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which converts the generated .exe into a .srec file. The produced .srec file is then 

given as a parameter to the testbench and its contents are read by Gaisler‟s behavioral 

external Prom, SRAM and SDRAM components. Consequently, the designer has to 

change only the name of the .srec file that corresponds to the application to be 

executed, in order to extract an alternate switching activity from a different 

application and therefore, new power and temperature profiles for the analyzed 

design‟s layout.  

The presentation of the post-layout simulation tools and of the software 

support for the generation of the simulated applications concludes this chapter, which 

was dedicated to the EDA design flow for both the implementation of the layouts and 

for the verification of their functionality. In this chapter of the thesis, we attempted to 

introduce the different physical implementation scenarios of the Leon3 design that 

were implemented and used as testbenches. Meanwhile, we also attempted to explain 

our motivation for the selection of these specific place-and-route scenarios, by trying 

to justify the anticipated impact of congestion-driven and timing-driven placement 

and routing on EM and TDDB. The next chapter presents the results obtained from 

our interconnect reliability framework using the previously described layouts of the 

Leon3 MP-SoC system, and evaluates which of the explored place-and-route 

approaches should be prefferred for the mitigation of the EM and/or TDDB. The 

evaluation of the prominent physical implementation strategies is followed by 

possible extensions and improvements on the proposed reliability analysis flow, as 

well as by solutions that may mitigate the problems induced by the two studied 

interconnect wear-out mechanisms. 
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6  

Experimental results & conclusions 

6.1 Experimental results 
 

Experiments were conducted on five flavors of the Leon3 MP-SoC platform 

presented in the previous chapter, produced using a variety of placement and routing 

strategies. To be precise, the five designs, each named after its placement and routing 

strategy, are the following: 

 

 Timing driven placement & timing driven routing (TP-TR) 

 Timing driven placement & neutral routing (TP-NR) 

 Neutral placement & neutral routing (NP-NR) 

 Congestion driven placement & neutral routing (CP-NR) 

 Congestion driven placement & congestion driven routing (CP-CR) 

 

Their results were then analyzed in order to discover any trends and determine 

the design strategies that minimize the impact of each reliability-threatening 

phenomenon. Additionally, an exploration was conducted to determine the thermal 

conditions under which each phenomenon‟s impact started to affect the system early 

in its lifetime. The three thermal scenarios tested are presented below: 

 



106 

 

 Standard environmental conditions with the ambient temperature at 45
o
C, 

absence of heatspreader and heatsink. 

 Constant and uniform temperature of all hierarchical units at 100
o
C. 

 Military environmental conditions with the ambient temperature at 85
o
C, 

absence of heatspreader and heatsink. 

 

The power profile of the design, used to estimate the temperature of each 

hierarchical unit in HotSpot, was extracted from a post-layout simulation at a 

frequency close to the maximum achievable for each design. The thermal simulations 

resulted in a mean temperature of 67.97
o
C under the standard thermal conditions and 

of 102.97
o
C under the military thermal conditions. Moreover, the highest 

temperatures of all versions of the design were consistently observed in the cache 

memories and in the Memory Management Units (MMUs) of both processor cores, 

which indicates the presence of hotspots at these specific areas of the design. 

 

6.1.1 EM results 

 

The EM flow was executed for all five designs and under all three thermal 

scenarios described above, and the parameters that quantify the impact of the 

phenomenon are summarized in the tables below. All experiments were conducted 

using both current estimation methods presented in Chapter 3 and further elaborated 

in Chapter 4. The results derived from the more accurate method, which is based on 

Spice simulations, are denoted by Ispice, whereas the results derived from the 

approximate method through the analytical formula, are denoted by Inet. 

The tables can be divided in groups of three. The first table of each group lists 

all EM parameters for a specific physical implementation scenario of the design, 

whereas the other two tables only show those parameters that change due to the 

different thermal conditions. So, the first table records the minimum Blech length, the 

number of wires that are shorter than the Blech length, the minimum t50, the 

maximum EM resistance slope and the maximum current density that was calculated 

for the examined paths. The other two tables only show the minimum t50 and the 

maximum EM slope resistance, as the rest of the parameters are unaffected by 

temperature. 

The results reveal certain trends on both the placement and routing strategy 

and on the temperature, regarding the EM. The impact of the phenomenon appears to 

be smaller in the timing-driven designs in contrast to the congestion-driven ones. This 

is justified as the former strategy leads to shorter wires in order to minimize the 

propagation delay, whereas the later leads to longer wires as it performs detours in 

order to decrease the congestion of the design, resulting in more wires being in excess 

of the Blech length. In addition to that, while performing a timing-driven routing, 

Nanoroute is likely to perform a layer assignment favoring the usage of higher metal 

layers, as they are wider and therefore have less resistance, leading to reduced 

interconnect delay. The usage of wider metal layers in the timing-driven approach, 

compared to the congestion-aware, reduces the impact of EM on the corresponding 

wires, as the current density is reduced. 
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Table 6.1. NP-NR, standard thermal conditions. 

Iwire 

estimation 

Blech length 

(min) (um) 

# wires > Blech 

length 
t50 (min) (years) 

EM slope (max) 

(Ohms/year) 

max current 

density (A/um2) 

Inet 4.60899424708 396 (in 14 nets) 16.46607558 13.058981204 0.0802778177114 

Ispice 28.9616613419 9 (in 9 nets) 144.954540306 2.18529108558 0.0127755102041 

 

 

Table 6.2. NP-NR, 100
o
C constant and uniform. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.18872489664 180.891451094 

Ispice 10.7880294778 28.7872870135 

 

 

Table 6.3. NP-NR, military thermal conditions. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 0.952917020983 225.654665379 

Ispice 8.60708917216 36.8031349983 

 

 

Table 6.4. CP-NR, standard thermal conditions. 

Iwire estimation 
Blech length 

(min) (um) 

# wires > Blech 

length 

t50 (min) 

(years) 

EM slope 

(max) 

(Ohms/year) 

max current 

density (A/um2) 

Inet 5.89985269566 380 (in 12 nets) 22.1448176016 10.2017410174 0.0627134301628 

Ispice 26.8393782383 11 (in 10 nets) 157.144463704 1.94640662026 0.0137857142857 

 

 

Table 6.5. CP-NR, 100
o
C constant and uniform. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.598686699 141.313300593 

Ispice 9.84647766899 31.0635980473 

 

 

Table 6.6. CP-NR, military thermal conditions. 

 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.281554522 176.282546058 

Ispice 8.86140780057 34.5167530234 
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Table 6.7. CP-CR, standard thermal conditions. 

Iwire estimation 
Blech length 

(min) (um) 

# wires > Blech 

length 

t50 (min) 

(years) 

EM slope 

(max) 

(Ohms/year) 

max current 

density (A/um2) 

Inet 5.98325789221 382 (in 13 nets) 22.5210156338 10.0595311662 0.061839219814 

Ispice 26.8393782383 10 (in 9 nets) 157.144463704 1.94640662026 0.0137857142857 

 

 

Table 6.8. CP-CR, 100
o
C constant and uniform. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.6258453237 139.343426684 

Ispice 9.84647766899 31.0635980473 

 

 

Table 6.9. CP-CR, military thermal conditions. 

 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.30332567848 173.825209158 

Ispice 8.86140780057 34.5167530234 

 

The results reveal a larger number of wires being in excess of the Blech length 

in the congestion-driven designs, as a result of the wires being longer on average. 

Despite the fact that less EM-susceptible wires are found in the timing-driven designs, 

as they are usually shorter and thus less likely to exceed the Blech length, they tend to 

develop EM earlier. This happens because the timing-driven designs are pushed 

harder in order to minimize the delays and satisfy the desired performance constraint, 

possibly leading to the up-sizing of cells with large fanout. The use of wider 

transistors at the outputs of these cells enables them to reduce the charge and 

discharge times of their loads by providing higher currents. 

As a result, the wires that exceed the Blech length despite being relatively 

short, tend to develop EM considerably earlier, because they are driven by standard-

cells of high driving strength, compared to those of the congestion-driven case study. 

However, the number of wires over the Blech length in the congestion-driven designs 

is larger, as the standard-cells are scattered relatively uniformly across the area of the 

chip and therefore longer wires are needed to connect them, in comparison to the 

timing-driven designs. Thus, in the specific case study of the presented Leon3-based 

MP-SoC platform, the congestion-driven place&route strategy is likely to produce 

physical designs whose interconnects are more seriously affected by EM, compared to 

the timing-driven strategy. This is revealed by the results through the number of wires 

with t50 smaller than the target lifetime, instead of through the final timing analysis 

reports, as the number of affected wires is inadequate for any measurable performance 

drift to be observed. 
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Table 6.10. TP-NR, standard thermal conditions. 

Iwire estimation 
Blech length 

(min) (um) 

# wires > Blech 

length 

t50 (min) 

(years) 

EM slope 

(max) 

(Ohms/year) 

max current 

density (A/um2) 

Inet 4.7051875472 110 (in 7 nets) 16.8793233164 2.7920021547 0.0786366103983 

Ispice 35.6538839725 1 (in 1 net) 165.189464365 1.959824545 0.0103775510204 

 
 

Table 6.11. TP-NR, 100
o
C constant and uniform. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 1.21855822701 177.193289125 

Ispice 13.8446562031 23.3839224383 

 

 

Table 6.12. TP-NR, military thermal conditions. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 0.976832300612 221.041360015 

Ispice 9.80859548853 33.0059861492 

 
 

Moreover, the results highlight the important role that temperature plays, as 

EM is exponentially dependent on it. Hardly any wires have a t50 that is less than 10 

years in standard thermal conditions. But as the temperature rises (100
o
C constant and 

uniform, and even higher under the military thermal conditions), the phenomenon 

seems to be significantly accelerated and amplified, as the same wires now start to 

develop EM-induced voids before completing 10 years of operation. Even a relatively 

small temperature difference of 5-10
o
C, such as those observed between the 100

o
C 

and the military thermal conditions experiments, is able to sink the t50 by a significant 

number of years. 
 

 
Table 6.13. TP-TR, standard thermal conditions. 

Iwire estimation 
Blech length 

(min) (um) 

# wires > Blech 

length 

t50 (min) 

(years) 

EM slope 

(max) 

(Ohms/year) 

max current 

density (A/um2) 

Inet 2.95370462525 177 (in 7 nets) 9.65390855993 20.3773826021 0.125266418598 

Ispice 16.4146672703 5 (in 4 nets) 85.0795302106 3.2583632715 0.0225408163265 

 

 

Table 6.14. TP-TR, 100
o
C constant and uniform. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 0.696938465956 282.265074954 

Ispice 5.45798653697 50.7916270071 
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Table 6.15. TP-TR, military thermal conditions. 

Iwire estimation t50 (min) (years) EM slope (max) (Ohms/year) 

Inet 0.55868647882 352.11410297 

Ispice 4.81781969086 57.5405544796 

 
 

Despite finding EM-susceptible wires that present problems before 10 years of 

operation, the static timing analysis shows that they have negligible impact on the 

system‟s timing or even no impact at all. This happens because the problematic wires 

that are on the same register-to-register path are very few and therefore, the total 

resistance rise due to EM is not enough to intoduce any measurable delay overhead. 

The existence of more such wires in interconnects that belong to the same path, would 

cause a significant total resistance and consequently delay rise. This calls for either a 

type of design that features longer wires, or a high performance design that would 

present both high current densities and thus small Blech lengths, classifying more 

wires as susceptible to EM, and high power dissipation and thus high temperature that 

would cause the discovered wires to develop problems early in the system‟s lifetime. 

 In conclusion, EM is favored by congestion-driven placement and routing in 

designs, whereas timing-driven placement and routing mitigate its impact. 

Furthermore, the impact of the underlying wear-out becomes significant enough only 

when the die‟s temperature reaches a relatively high level, as t50 and Rslope are 

exponentially dependent on temperature. Consequently, the gradual impact of EM on 

the performance of digital systems should rather be considered in high performance, 

“energy-hungry” designs that operate in higher frequencies, than in low-power 

embedded platforms like the Leon3 design used in these experiments. 
 
 

6.1.2 TDDB results 

 

The TDDB flow was executed for all five designs and under all three thermal 

scenarios described above, and the effect of the phenomenon on the system‟s timing 

over time is summarized in the tables below. Each table contains the latest arrival 

time of data in the most timing-critical path of the design after a certain number of 

operating years, as well as the available slack in the parentheses. A negative slack 

means that the delay is so large that it causes certain data not to arrive within the same 

clock cycle, which suggests a timing violation. The presented data are recorded at the 

beginning of the system‟s lifetime and after 1, 3, 5, 8 and 10 years of operating time 

respectively. This enables us to predict the time period in the system‟s lifetime, when 

a timing violation is first introduced and at the same time the required performance 

tradeoff in order to prolong the system‟s lifetime by a certain amount of time. If, for 

instance, a timing violation of x ns is detected between the first 5 and 8 years of 

operation, an increase in the clock period by x ns will extend the system‟s lifetime to 

8 years. The delay overhead due to the impact of the TDDB-induced inter-metal 

leakage current is calculated as the difference in arrival times estimated by the static 

timing analyses performed using the pre- and post-annotated versions of the SDF file. 

This delay evaluation metric was chosen, because it provides a clear view on the 

actual timing deterioration of the system, as it is revealed in the graphs that follow 

each set of result tables. 
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It must be noted that the remark “Wire charge failure” appears in two tables. 

This means that the leakage current due to the TDDB is so strong in one or more 

interconnects, that the driving cell is unable to charge them. The inability to charge a 

wire leads to a permanent failure in the system, as it renders one or more particular 

interconnects useless.  The code of that wire in SoC Encounter, which is retrievable 

through the proper DBAccess command, described in Chapter 4, is reported by our 

script, enabling us to identify it. 

The results reveal certain trends on both the placement and the routing 

strategy, as well as on the temperature, regarding the evolution of TDDB. The impact 

of the phenomenon appears to be smaller in the congestion-driven designs in contrast 

to their timing-driven counterparts. This can be explained as the former strategy leads 

to longer wires, as it performs detours in order to decrease the congestion of the 

design, whereas the later leads to shorter wires in order to minimize the propagation 

delay. As a result, the impact of the TDDB on the timing of the system is smaller in 

the congestion-driven designs, which contain fewer adjacent wires in close distance, 

than the timing-driven designs, in which both cells and wires are stacked close to each 

other in order to reduce the interconnects‟ delays. But this undermines the reliability 

of the system as the TDDB-induced delay overhead is enhanced in congested areas, 

according to the experimental results. Furthermore, high temperature accelerates the 

evolution and amplifies the impact of the TDDB, increasing the delay overhead that it 

introduces to the system, but the phenomenon has significant impact even at relatively 

low temperatures. However, the fact that the extrapolation of the inter-metal leakage 

measurements from accelerated to operating conditions may introduce a percentage of 

uncertainty in the accuracy of the results, should be kept in mind. 

 

 
Table 6.16. CP-NR, standard thermal conditions. 

Operating time  
Delay due to TDDB only 

(ns)  

delay change due to TDDB 

(ps)  

Initial 6.273 (0.719) 0 

1 year  6.353 (0.639)  80  

3 years  6.514 (0.478)  241  

5 years  6.675 (0.317)  402  

8 years  6.916 (0.075)  644  

10 years  7.079 (-0.088)  807  
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Table 6.17. TP-NR, standard thermal conditions. 

Operating time  
Delay due to TDDB only 

(ns)  

delay change due to TDDB 

(ns)  

Initial 3.687 (0.27) 0 

1 year  3.787 (0.17)  100  

3 years  3.984 (-0.027)  297  

5 years  4.196 (-0.239)  509  

8 years  4.552 (-0.595)  865  

10 years  4.852 (-0.901)  1171  

 

 
Table 6.18. NP-NR, standard thermal conditions. 

Operating time  
Delay due to TDDB only 

(ns)  

delay change due to TDDB 

(ns)  

Initial 4.53 (0.064) 0 

1 year  4.585 (0.009)  55  

3 years  4.715 (-0.121)  185  

5 years  4.866 (-0.271)  335  

8 years  5.146 (-0.551)  615  

10 years  5.406 (-0.811)  875  

 

 

Table 6.19. CP-CR, standard thermal conditions. 

Operating time  
Delay due to TDDB only 

(ns)  

delay change due to TDDB 

(ns)  

Initial 4.665 (0.555) 0 

1 year  4.739 (0.48)  75  

3 years  4.886 (0.334)  221  

5 years  5.036 (0.184)  371  

8 years  5.266 (-0.046)  601  

10 years  5.420 (-0.201)  756  
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Table 6.20. TP-TR, standard thermal conditions. 

Operating time  
Delay due to TDDB only 

(ns)  

delay change due to TDDB 

(ns)  

Initial 3.264 (0.303) 0 

1 year  3.346 (0.221)  82  

3 years  3.515 (0.052)  251  

5 years  3.687 (-0.121)  424  

8 years  3.976 (-0.409)  712  

10 years  4.205 (-0.638)  941  

 

 

 
      Figure 6.1. Progressive impact of TDDB on timing (standard thermal conditions). 

  

The results clearly and consistently classify the impact of the TDDB on the 

timing-driven designs as larger than on the congestion-driven counterparts, under all 

explored thermal scenarios. This is justified by the different placement styles. In the 

case of the timing-driven approach, cells are placed close to each other, which 

minimizes the delays, but at the same time increases the congestion of the layout‟s 

bins, in specific areas. In the case of congestion-driven placement, the density of cells 

located into the bins is more balanced in order to avoid design-rule violations and 

crosstalk while routing the design. Hence, timing-driven placement increases the 

probability of wires having more adjacent wires and also in closer distance (spacing), 

compared to the congestion-driven approach. Therefore, designers should be aware of 

this trade-off, in order to evaluate the pros and cons of each placement strategy and 

balance performance and congestion. 

The routing style, namely timing-driven, congestion-driven or neutral, may be 

the cause of rather contradicting results for TDDB in the timing-driven design, 
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compared to its congestion-driven or neutral counterpart. The fact that timing-driven 

routing reduces the impact of the underlying phenomenon could be due to a different 

layer assignment by Nanoroute, favoring the usage of higher metal layers as they are 

wider and therefore have less resistance, which results in reduced interconnect delay. 

But at the same time, this change in layer assignment actually reduces congestion, as 

formerly adjacent wires could be moved to different metal layers, which eliminates 

their impact. Consequently, cell placement is not the only factor affecting the impact 

of TDDB, as routing may change the distribution of wires in metal layers, depending 

on the timing constraints and the chip‟s size. 

These conclusions, as well as those extracted from the experiments evaluating 

EM, should be cross-checked by performing experiments on several testbenches, of 

different logic styles and implementations, in order to ensure their global validity. In 

order to accomplish that, complex designs like MP-SoC platforms with processors 

interconnected through cross-bars or Networks-on-Chip should be examined. The 

proposed framework should focus on their interconnection backbone and explore 

alternative implementation strategies, favoring either performance or congestion, in 

order to draw secure conclusions about a reliability-aware placement-and-routing 

strategy. These conclusions could then be back-annotated to higher levels of design 

abstraction, to aid in the construction of a reliability-aware design flow, by taking 

advantage of the known interdependence between performance and reliability. This 

feedback could be used to provide a range of implementation strategies, possibly 

given as Pareto curves between performance and reliability, which concurrently 

satisfy various design constraints, while also diminishing the threats of system-level 

timing failures due to EM or TDDB and therefore guaranteeing the desired system‟s 

lifetime. 

 

 
Table 6.21. CP-NR, 100

o
C constant and uniform. 

 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 6.273 (0.719) 0 

1 year 6.364 (0.627) 92 

3 years 6.548 (0.444) 275 

5 years 6.732 (0.260) 459 

8 years 7.009 (-0.017) 736 

10 years 7.213 (-0.221) 940 
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Table 6.22. TP-NR, 100
o
C constant and uniform. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ns) 

Initial 3.687 (0.27) 0 

1 year 3.801 (0.156) 114 

3 years 4.027 (-0.070) 340 

5 years 4.276 (-0.319) 589 

8 years 4.709 (-0.758) 1028 

10 years 5.157 (-1.207) 1477 

 

 

Table 6.23. NP-NR, 100
o
C constant and uniform. 

 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ns) 

Initial 4.53 (0.064) 0 

1 year 4.593 (0.001) 63 

3 years 4.746 (-0.152) 216 

5 years 4.925 (-0.331) 395 

8 years 5.285 (-0.690) 754 

10 years 5.813 (-1.219) 1283 

 

 

Table 6.24. CP-CR, 100
o
C constant and uniform. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ns) 

Initial 4.665 (0.555) 0 

1 year 4.750 (0.470) 85 

3 years 4.917 (0.302) 253 

5 years 5.090 (0.129) 426 

8 years 5.354 (-0.134) 689 

10 years 5.533 (-0.313) 868 
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Table 6.25. TP-TR, 100
o
C constant and uniform. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ns) 

Initial 3.264 (0.303) 0 

1 year 3.358 (0.209) 94 

3 years 3.551 (0.015) 288 

5 years 3.751 (-0.184) 487 

8 years 4.103 (-0.537) 840 

10 years 4.390 (-0.824) 1127 (Wire charge failure) 

 

 

 

 
Figure 6.2. Progressive impact of TDDB on timing (100

o
C constant and uniform). 

 

 The effect of temperature on the underlying phenomenon is definite as well, 

namely rise of temperature leads to rise in TDDB‟s impact on timing. This relation is 

also confirmed by the following 3D plot produced using data from the TDDB model: 
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Figure 6.3. Delay impact on a wire due to TDDB, depending on temperature and 

operation time. 
 

 

Table 6.26. CP-NR, military thermal conditions. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 6.273 (0.719) 0 

1 year 6.365 (0.626) 93 

3 years 6.551 (0.441) 278 

5 years 6.737 (0.254) 465 

8 years 7.017 (-0.026) 745 

10 years 7.226 (-0.234) 953 

 

 

Table 6.27. TP-NR, military thermal conditions. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 3.687 (0.27) 0 

1 year 3.802 (0.155) 115 

3 years 4.031 (-0.074) 344 

5 years 4.284 (-0.326) 596 

8 years 4.725 (-0.775) 1045 

10 years 5.193 (-1.243) 1513 

 



118 

 

Table 6.28. NP-NR, military thermal conditions. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 4.53 (0.064) 0 

1 year 4.594 (0.001) 63 

3 years 4.749 (-0.155) 219 

5 years 4.931 (-0.336) 400 

8 years 5.298 (-0.703) 767 

10 years 5.868 (-1.273) 1337 

 

 

Table 6.29. CP-CR, military thermal conditions. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 4.665 (0.555) 0 

1 year 4.751 (0.469) 86 

3 years 4.920 (0.299) 256 

5 years 5.095 (0.124) 431 

8 years 5.362 (-0.142) 697 

10 years 5.543 (-0.324) 879 

 

 

Table 6.30. TP-TR, military thermal conditions. 

Operating time 
Delay due to TDDB only 

(ns) 

delay change due to TDDB 

(ps) 

Initial 3.264 (0.303) 0 

1 year 3.359 (0.208) 95 

3 years 3.555 (0.012) 291 

5 years 3.757 (-0.190) 493 

8 years 4.115 (-0.549) 852 

10 years 4.408 (-0.842) 1145 (Wire charge failure) 
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Figure 6.4. Progressive impact of TDDB on timing (military thermal conditions). 

 

In conclusion, timing-driven placement and routing enhance the evolution of 

TDDB and lead to greater impact on the design‟s performance, whereas congestion-

driven placement and routing mitigate its impact and thus considerably extend the 

system‟s lifetime. Furthermore, high temperature amplifies and accelerates the 

design‟s performance degradation due to the underlying wear-out mechanism, 

although significant impact is observed even at relatively lower temperatures. 
 
 

6.2 Conclusions, hints for future extensions and proposed 

solutions 

6.2.1 Conclusions 

 

The result of this work is an automated, extensible and customizable 

interconnect reliability analysis framework that is compatible with state-of-the-art 

industrial and academic EDA tools. As a consequence, its features may prove to be 

useful for designers and engineers working on the reliability field, as it enables the 

accurate estimation of the progressive impact that interconnect reliability wear-out 

mechanisms have on a design‟s timing and can predict whether and for how long the 

system will function correctly under the target performance specifications. Improved 

accuracy could be achieved through the use of more accurate models for the examined 

wear-outs, perhaps in conjunction with extended sets of experimental results under 

stress conditions, mainly regarding TDDB, in order to reduce the error that is 

introduced by their extrapolation. 

Furthermore, the experiments we conducted in the context of this work to 

compare the effect different placement and routing strategies have on the two 

examined wear-outs, namely EM and TDDB, lead to interesting conclusions. 
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Specifically, on one hand, the TDDB seems to be mitigated by congestion-driven 

placement and routing, as this strategy reduces the design components‟ congestion, 

resulting in less adjacent wires. However, on the other hand, the EM seems to be 

favored by congestion-driven placement and routing, because longer wires are 

generated on average and more of them exceed the Blech length. Nevertheless, the 

intensity of the EM heavily depends on the specific design and implementation 

technology, which suggests that this conclusion on the EM, which is only based on 

the current results, could be potentially overthrown under different circumstances. 

 One case, where the impact of the EM is anticipated to be greater, is that of a 

high-performance design as a test platform, instead of the currently used Leon3-based 

design. This shift would cause higher temperatures to be achieved even at standard 

thermal conditions, which would significantly amplify the underlying phenomenon‟s 

intensity, as the results presented in the previous section indicate. Simultaneously, the 

current density would increase in order for the tighter target timing constraints to 

become satisfied, which would further amplify the phenomenon. A potential 

candidate for the required shift to high performance computing designs is the 

OpenSparc microprocessor [28] platform. 

 Another case, in which we could expect a potentially greater impact from EM, 

is the migration from the 45nm node to the new state-of-the-art, such as the 32nm and 

very soon the 22nm [16]. As we argued in the introduction of this thesis, the scaling 

of manufacturing technology enhances the significance of progressive wear-out 

phenomena and consequently the resistance rise of wires due to EM. This can be 

justified by the fact that the current density increases with the technology scaling, 

because dimensions keep shrinking, whereas the supply voltage saturates. Hence, EM 

is expected to demonstrate a more aggressive impact on a design‟s interconnects, 

leading to greater delay degradation in the affected wires. The aforementioned 

allegation is confirmed by the following experiment, which is based on appropriate 

scaling to a 32nm technology. The scaling performed on both the transition times of 

cells and on the physical dimensions of wires has been strongly based on the 

assumptions shown in [9]. Even if the referenced paper is addressing scaling for 

technology nodes not in the deep-deep submicron regime, we selected this approach 

in order to obtain a rough estimation of the trend of current density and also of EM-

related parameters, while moving from the 45nm to the 32nm node. Regarding the 

implementation of this experiment, the characteristics of some interconnects and cells 

were manually scaled in order to estimate the results the EM flow would produce for 

a 32nm technology and these are directly juxtaposed to the corresponding results in 

our 45nm technology below: 

 

45nm: 

 
################################################################################## 

Net:            core0/leon3core0/leon3s0_1/p0/c0mmu/dcache0/FE_OFN80_n3802              

Temperature(C): 104.65 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

11 37.7826404085     10.5154865958  31.1463568411      345.708101423 0.00979285714286 

################################################################################## 

Net:            core0/leon3core0/ahbctrl0/n395          Temperature(C): 98.39 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

56 32.8739800544     14.1799040352  22.4633918955      345.708101423 0.0112551020408 

################################################################################## 

Net:            core0/leon3core0/leon3s0_1/p0/iu0/FE_OFCN12273_n2439            

Temperature(C): 101.41 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

13 40.7369958432     14.6205119727  22.741200493       345.708101423 0.00908265306122 

################################################################################## 
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32nm: 

 
################################################################################## 

Net:            core0/leon3core0/leon3s0_1/p0/c0mmu/dcache0/FE_OFN80_n3802              

Temperature(C): 104.65 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

9  35.66791265       9.81322691786  32.9930044438      676.282285274 0.0103734693878 

11 20.6939847049     5.10612634485  56.8663607971      676.282285274 0.0178795918367 

################################################################################## 

Net:            core0/leon3core0/ahbctrl0/n395          Temperature(C): 98.39 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

56 16.4968152866     6.19912910104  44.7638580112      676.282285274 0.0224285714286 

98 9.98898071625     3.39528282494  73.9275726026      676.282285274 0.0370408163265 

################################################################################## 

Net:            core0/leon3core0/leon3s0_1/p0/iu0/FE_OFCN12273_n2439            

Temperature(C): 101.41 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

13 21.5090758097     6.79394274518  43.0705716112      676.282285274 0.0172020408163 

16 15.0831946755     4.43780061499  61.4198921304      676.282285274 0.0245306122449 

################################################################################## 

Net:            core0/leon3core0/ahbso_0__HRDATA__10_           Temperature(C): 102.97 

R  Blech_length(um)  t50(years)     R_slope(Ohm/year)  R_jump(Ohm)   J(A/um2) 

11 19.7645263273     5.46753255779  52.6216028321      676.282285274 0.0187204081633 

################################################################################## 

 

 

The observed impact seems to be significantly larger in the 32nm technology in 

comparison to the 45nm node. The number of EM-affected wires seems to 

approximately double, as more wires are classified as longer than the Blech length. 

These belong to interconnects that already presented milder problems in the 45nm 

technology and others that previously had no EM-related problems at all. The current 

density appears to approximately double as well, which in part leads to the above 

deterioration. The t50 sinks significantly, shifting the time instant that the resistance 

step occurs to before 10 years of operation, while the reduction of the Cu interconnect 

barrier‟s thickness almost doubles its value. The combination of a greater number of 

wires, a smaller t50 and a higher resistance rise, because of both Rjump and Rslope, 

increases the impact of the underlying phenomenon to a level that is highly likely to 

considerably affect the examined system‟s timing. 

 From a holistic point of view, the framework presented in this thesis is a 

useful as well as extensible tool for the estimation of the lifetime of VLSI systems and 

has lead to interesting conclusions regarding the mitigation of the impact of EM and 

TDDB. Some of them have also been presented in a paper that has been submitted to 

the 2010 PATMOS Workshop and has been accepted for oral presentation in the 

Workshop‟s Proceedings [36]. In the next section, we elaborate on the possible 

enhancements and extensions that should be considered regarding the proposed 

analysis framework presented in this work, in order to either improve the efficiency of 

the algorithms applied to the investigation of the impact of the EM and TDDB on a 

design. Then, closing this chapter, we also attempt to take a step towards the possible 

design- and run-time solutions that may mitigate the impact of the studied 

phenomena. 

 

6.2.2 Future extensions of the analysis framework 

 

The accuracy and usefulness of our interconnect reliability estimation 

framework could increase in several ways. In perspective, this section is dedicated to 

the presentation of possible future improvements, which are summarized in the 

following bullets: 
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 The development and incorporation of more advanced interconnect wear-out 

mechanism models would improve the accuracy of the performed predictions. 

Three highly recommended model-related improvements are the following: 

o The replacement of the currently used DC-mode EM model with a 

pulsed-DC-mode or even better, with an AC-mode EM model. 

o The incorporation of a model for the estimation of EM-induced 

problems in vias. 

o The expansion of the library of TDDB-induced leakage current 

measurements to cover a longer period of time, in order to reduce the 

error introduced during their extrapolation to operating conditions and 

time. 

 

 The development and implementation of advanced path-selection algorithms 

that would target at the most vulnerable interconnects, which are both tightly 

timed and likely to suffer from EM or TDDB the most. Currently, a trivial 

selection of a number of paths with the least timing slack is performed, as 

these theoretically have a higher probability of introducing a timing violation. 

However, there is always the possibility that initially less timing-critical paths 

contain interconnects that particularly favor EM and/or TDDB, which renders 

them candidates for suffering from a significant delay degradation, because of 

the progressive wear-out impact. Consequently, non-timing critical, relaxed 

timing paths may become timing-critical after the annotation of the delay 

degradation on the affected interconnects, due to EM and TDDB. Hence, the 

classification of paths in terms of timing criticality may change, considering 

the delay impact that the studied wear-out mechanisms may have on the 

design‟s interconnects within the desired system‟s lifetime [3]. Some ideas on 

potential criteria to guide path selection algorithms, are the following: 

 

o High temperature has been shown to enhance both examined wear-out 

mechanisms. As a result, high temperature regions of the design, also 

known as “hotspots”, should be considered. 

o Regarding EM, regions of any design which naturally feature 

particularly long wires, are good candidates for selection and analysis 

by our reliability framework. An example of such a region is a 

system‟s bus controller, which contains nets that drive several 

standard-cell input pins and in general any high-fanout interconnect. 

o Regarding TDDB, regions with high congestion such as bus controllers 

or timing-critical parts of a processor‟s pipeline like the ALU, should 

be considered for investigation. 

 

 

6.2.3 Proposed solutions to mitigate the reliability problems 

 

The prediction of potential reliability problems and the estimation of the 

system‟s lifetime due to any of them are certainly important. But there are cases, 

where the predicted lifetime is unacceptable and needs to be extended, which calls for 

novel solutions that could mitigate the foreseen problems. Concluding this work, we 

are going to propose some potential solutions, which can be divided in two categories, 

design-time and run-time. 
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 Design-time solutions: 

 

o The insertion of buffers, in order to achieve the segmentation of 

long wires, will reduce the length of those wires below the Blech 

length, thus avoiding EM. However, there is a certain penalty in 

area, power and performance due to the buffer insertion in signal 

nets and consequently, the various constraints of the design should 

be taken into consideration. 

o The down-sizing of the driving cells of EM-affected wires, if their 

timing constraints allow it, will decrease the current density of the 

driven interconnects and help reduce the impact of EM on the 

respective wires. 

o The EM- and TDDB-aware metal layer assignment will mitigate 

the problem by altering the routing of susceptible wires. This is 

achieved in the case of EM through the reduction of the current 

density by moving susceptible wires to higher metal layers and in 

the case of TDDB by moving adjacent wires to different layers. 

 

 Run-time solutions: 

 

o As temperature is a key factor in the evolution of EM and TDDB, 

thermal monitoring could be performed on the design‟s units and 

the hottest units could be relieved. This could be achieved through 

either task scheduling, or dynamic voltage scaling. Regarding task 

scheduling, the target is the load balancing between the processes 

assigned to two or more processor cores, in order to maintain their 

temperature at reasonable levels. Another example is the reduction 

of the supply voltage of the respective component sacrificing a part 

of its performance, in conjunction with an appropriate decrease in 

the operating frequency. 

o The TDDB-induced leakage current leads to a potentially 

noticeable increase in the dissipated power of the affected regions 

of the design. So, if the power dissipation is monitored and an 

increase is detected, run-time mechanisms could be triggered to 

mitigate the phenomenon. One potential solution could be the 

voltage scaling of the respective component, which would reduce 

the intensity of the electric field and thus decelerate the dielectric 

breakdown, accompanied by an appropriate reduction in the 

operating frequency. 

 

Finally, we would like to point out the need for the development of cost-

effective techniques that alleviate these progressive wear-out phenomena, as their 

impact will probably keep gaining in significance with the advent of the sub-45nm 

deep-submicron technology nodes. 
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7  

Appendix 

 

The various scripts and configuration or parameter files that comprise the presented 

reliability analysis framework are cited below, so that the reader can delve deeper into 

its implementation details and enlighten any potentially dark spots that the description 

provided in Chapter 4 left. 
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library_para_new: 

 

This file contains the EM parameters derived from EM experimental results. 

 
############# stress condition ############# 

current_density 40 mA/um2 

temperature 300 degree 

slope 0.05 ohm/s 

activation_energy 0.9 ev 

n_t50 1.2 

t50_current_density 2 mA/um2 

t50_stress 50 hours 

############# operation condition ############# 

voltage 0.9 v 

temperature 100 degree 

 

 
 

step1_sp_generation.pl: 

 

This script generates the Spice netlists for the simulations, whose results are used to 

build the TDDB LUT library. 

 
#!/usr/local/bin/perl 

 

# script to generate the .sp file for TDDB simulation 

# updated, to generate the RC tree netlist 

 

############### PARAMETERS 45nm  ############################# 

$stages=10; 

$Thickness=0.14e-6;  # m 

$epsilo=8.85e-12;  # SI 

$dielectric_constant=2.3; 

$cap_load=3e-15; 

$R_per_length=4;  # ohm/um 

$C_per_length=0.13e-15;  # F/um 

 

 

##################### reading lib_input ##################### 

open(mylib, "./lib_input"); 

 

# Get the interconnect min,max length and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@length_index = split(/ /,$data[1]); 

 

# Get the offset min length and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@offset_index = split(/ /,$data[1]); 

 

# Get the leakage current min,max value and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@leakage_index = split(/ /,$data[1]); 

 

# Get the distance min value and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@distance_index = split(/ /,$data[1]); 

 

close (mylib); 

 

 

########### Write simulations file ########### 

open(spice_sim, ">./spice_sim"); 
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print(spice_sim "#!/bin/bash\n"); 

 

print (spice_sim "cd source\n"); 

 

# Loop so that every valid combination of parameters gets calculated 

# i: wire length , n: neighbour length , s: offset , d: distance , l: leakage current 

for ($i=0; $i<scalar(@length_index); $i++) { 

 

    for ($n=0; ($n<scalar(@length_index) && $length_index[$n]<=$length_index[$i]) ; 

$n++) { 

 

 for ($s=0 ; ($s<scalar(@offset_index) && $length_index[$i] >= 

$length_index[$n]+$offset_index[$s]); $s++) { 

 

     for ($d=0; $d < scalar(@distance_index); $d++) { 

      

  for ($l=0; $l < scalar(@leakage_index); $l++) { 

 

   # Wire-ground capacitance and the value of each stage of it 

   $cap_ground = $C_per_length*$length_index[$i]; 

   $cap_ground_seg = $cap_ground/($stages-1); 

    

   # Adjacent wire capacitance 

  

 $cap_neighbour=$Thickness*$length_index[$n]*$epsilo*$dielectric_constant/$dista

nce_index[$d]; 

    

 

   # Write the spice netlist file 

  

 $temp="l".$length_index[$i]."n".$length_index[$n]."s".$offset_index[$s]."i".$le

akage_index[$l]."d".$distance_index[$d]; 

   open(spice_file, ">./source/$temp.sp");   

   print (spice_sim "hspice ./$temp.sp\n"); 

 

   # Calculate R1 R2 R3,which are the various stage resistances 

along the wire (pre-offset,adjacent,rest) 

   $R1=$offset_index[$s]*$R_per_length;         

   $R2=$length_index[$n]*$R_per_length; 

   $R3=$R_per_length*$length_index[$i]-$R1-$R2; 

    

   # Calculate the number of stages for each part of the wire 

   $R1_stages=int($R1/($R1+$R2+$R3)*$stages); 

   $R3_stages=int($R3/($R1+$R2+$R3)*$stages);  

   $R2_stages=$stages-$R1_stages-$R3_stages; 

 

   $stage_counter=1; 

 

   print(spice_file " .OPTIONS LIST NODE POST\n.OP\nVIN 1 0 PULSE 

(0 1 0.1N 0.2N 0.2N 2.1N 5N)\n"); 

 

   # R1 stages 

   if ($R1_stages>0) { 

    $R_seg=$R1/$R1_stages; 

    $cap_seg=$cap_ground_seg; 

    for ($x=0;$x<$R1_stages; $x++) { 

        print(spice_file "R$stage_counter $stage_counter 

",$stage_counter+1," $R_seg\n"); 

        print(spice_file "C$stage_counter 

",$stage_counter+1," 0 $cap_seg\n");        

        $stage_counter++; 

    } 

   } 

 

   # R2 stages 

   if ($R2_stages>0) { 

    $R_seg=$R2/$R2_stages; 

    $leakage=$leakage_index[$l]*1e-6; 

    $leakage_seg=$leakage/$R2_stages; 

    $cap_seg=$cap_ground_seg+$cap_neighbour/$R2_stages; 

    for ($x=0;$x<$R2_stages; $x++) {  

        print(spice_file "R$stage_counter $stage_counter 

",$stage_counter+1," $R_seg\n"); 

        print(spice_file "Ileakage$stage_counter 

",$stage_counter+1," 0  $leakage_seg\n"); 

        if ($stage_counter<$stages) { 
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         print(spice_file "C$stage_counter 

",$stage_counter+1," 0 $cap_seg\n"); 

        }       

        $stage_counter++; 

    } 

   } 

 

   # R3 stages 

   if ($R3_stages>0) { 

    $R_seg=$R3/$R3_stages; 

    $cap_seg=$cap_ground_seg; 

    for ($x=0;$x<$R3_stages; $x++) { 

        print(spice_file "R$stage_counter $stage_counter 

",$stage_counter+1," $R_seg\n"); 

        if ($stage_counter<$stages) {       

         print(spice_file "C$stage_counter 

",$stage_counter+1," 0 $cap_seg\n"); 

        }        

        $stage_counter++; 

    } 

   } 

    

   #Add the load capacitance to the spice netlist 

   print(spice_file "C_load  $stage_counter 0 $cap_load\n"); 

 

   print(spice_file ".option post\n.TRAN 0.01N 15N\n.PRINT TRAN 

V(1) V($stage_counter)\n.MEASURE TRAN tdelay_rise TRIG V(1) VAL=0.9 TD=0.01n RISE=1\n+                         

TARG V($stage_counter) VAL=0.9          RISE=1\n.MEASURE TRAN tdelay_fall TRIG V(1) 

VAL=0.1 TD=0.01n FALL=1\n+                         TARG V($stage_counter) VAL=0.1          

FALL=1\n.END"); 

 

   close (spice_file); 

  } 

     } 

 } 

    } 

} 

 

 

print (spice_sim "cd ..\n"); 

close (spice_sim); 

 

 

step3_reading_mt0.pl: 

 

This script builds the TDDB LUT library. 

 
#!/usr/local/bin/perl 

 

# script to read the .mt0 file to generate the Look UP Table 

 

##################### reading lib_input ##################### 

open(mylib, "./lib_input"); 

 

# Get the interconnect min,max length and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@length_index = split(/ /,$data[1]); 

 

# Get the offset min length and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@offset_index = split(/ /,$data[1]); 

 

# Get the leakage current min,max value and the steps 

$stream = <mylib>; 

chomp($stream); 

@data = split(/:/,$stream); 

@leakage_index = split(/ /,$data[1]); 

 

# Get the distance min value and the steps 

$stream = <mylib>; 
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chomp($stream); 

@data = split(/:/,$stream); 

@distance_index = split(/ /,$data[1]); 

 

close (mylib); 

 

# Write spice simulations results to create the lookup table 

 

open (TDDB_LUT, ">./TDDB_LUT.lib"); 

 

print (TDDB_LUT "Length(um) Length(neighbour um) start_point(um) Leakage(uA) 

distance(um): delay_change_ratio\n"); 

 

# i: wire length , n: neighbour length , s: offset , d: distance , l: leakage current 

for ($i=0; $i<scalar(@length_index); $i++) { 

 

    for ($n=0; ($n<scalar(@length_index) && $length_index[$n]<=$length_index[$i]) ; 

$n++) { 

 

 for ($s=0 ; ($s<scalar(@offset_index) && $length_index[$i] >= 

$length_index[$n]+$offset_index[$s]); $s++) { 

 

     for ($d=0; $d < scalar(@distance_index); $d++) { 

      

  for ($l=0; $l < scalar(@leakage_index); $l++) { 

 

      

$temp="l".$length_index[$i]."n".$length_index[$n]."s".$offset_index[$s]."i".$leakage_i

ndex[$l]."d".$distance_index[$d]; 

       

      # Calculate the delay time change ratio 

      open (mt0_file, "./source/$temp.mt0"); 

      $stream = <mt0_file>;       

      $stream = <mt0_file>;        

      $stream = <mt0_file>;  

      $stream = <mt0_file>; 

      # Trim leading and trailing white spaces 

      for ($stream) { 

       s/^\s+//; 

       s/\s+$//; 

      } 

      @data = split(/ /,$stream); 

      # If there is no leakage,set delay time as reference 

      if ($leakage_index[$l]==0) { 

   $reference_delay=$data[0]; 

   $delay_change=0; 

      } else { 

   $delay_change=($data[0]-$reference_delay)/$reference_delay; 

   if ($delay_change==-1) { 

    $delay_change=-999999999; 

   } 

      } 

      close (mt0_file); 

       

      print (TDDB_LUT "$length_index[$i] $length_index[$n] 

$offset_index[$s] $leakage_index[$l] $distance_index[$d] : $delay_change\n"); 

  } 

     } 

 } 

    } 

} 

 

close (TDDB_LUT); 

 

 

lib_input: 

 

This file contains the parameters for the wire patterns to be included in the TDDB 

LUT library. 

 
Length(um):10 20 30 40 50 75 100 150 200 300 400 500 600 700 800 900 1000 

Offset(um):0 10 20 30 40 50 75 100 150 200 300 400 500 600 700 800 900 

Leakage(uA):0 0.25 0.5 0.75 1 2.5 5 10 15 20 25 30 40 50 60 70 80 90 100 125 150 

Distance(um):0.06 0.25 0.5 
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format_path.tcl: 

 

This script converts the critical paths from the format of the ETS timing report to that 

of the extraction script. 

 
if { $argc<1 } { 

 puts "Usage: tclsh format_path.tcl initial_timing" 

 exit 

} 

 

set sfile [open "./[lindex $argv 0]" r] 

set dfile [open "./critical_paths.txt" w] 

 

while { true } { 

     

    # Search for the pin at the end of the critical path 

    gets $sfile line 

    while {![eof $sfile] && [string range [string trim $line] 0 4]!="ENDPT"} { 

        gets $sfile line 

    } 

     

    if {[eof $sfile]}  break 

     

    puts $dfile "Net\tInput pin(net end)\tOutput pin(net start)" 

     

    set line [split $line "{}"] 

    set end "" 

    if {[lindex $line 1]!=""} { 

        set end "[lindex $line 1]/" 

    } 

    set end "$end[lindex $line 3]" 

     

    # Search for the start of the critical path 

    while {![eof $sfile] && [string trim $line]!="DATA_PATH"} { 

        gets $sfile line 

    } 

     

    gets $sfile line 

     

    # Initialize the process by reading the first output pin and the first net 

    gets $sfile line 

    set line [split $line "{}"] 

    set from "[lindex $line 1]/[lindex $line 7]" 

    gets $sfile line 

    set line [split $line "{}"] 

    set net [lindex $line 11] 

    gets $sfile line 

     

    # Continue processing "net to from" lines until the end of the path is reached 

    while {![eof $sfile] && [string trim $line]!="END_DATA_PATH"} { 

        while {[string range [string trim $line] 0 3]!="INST"} { 

            gets $sfile line 

        } 

        set line [split $line "{}"] 

        set to "[lindex $line 1]/[lindex $line 3]" 

        puts $dfile "$net $to $from" 

        set from "[lindex $line 1]/[lindex $line 7]" 

        while {[string range [string trim $line] 0 2]!="NET"} { 

            gets $sfile line 

        } 

        set line [split $line "{}"] 

        set net [lindex $line 11] 

        gets $sfile line 

    } 

     

    # Add the "net to from" line with the end of the critical path 

    puts $dfile "$net $end $from" 

 

} 

 

close $sfile 

close $dfile 

 

puts 1 
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floorplan_converter.tcl: 

 

This script converts the floorplan coordinates from the format of the SoC Encounter 

to that of HotSpot. 

 
if { $argc<1 } { 

 puts "Usage: tclsh floorplan_converter.tcl design_name" 

 exit 

} 

 

set design_name [lindex $argv 0] 

 

set fpfile [open "./$design_name.fp" r] 

set flpfile [open "~/designs/rel_script/HotSpot-4.2/$design_name.flp" w] 

 

puts $flpfile "# Line Format: <unit-name>\t<width>\t<height>\t<left-x>\t<bottom-y>" 

puts $flpfile "# all dimensions are in meters" 

puts $flpfile "# comment lines begin with a '#'" 

puts $flpfile "# comments and empty lines are ignored" 

 

gets $fpfile line 

 

while {1} { 

    while {![eof $fpfile] && [string range $line 0 5]!="Guide:"} { 

        gets $fpfile line 

    } 

    if {[eof $fpfile]} { break } 

    set data [split $line " "] 

    set unit [lindex $data 1] 

    set llx [format "%.8f" [expr {[lindex $data 2]*1e-6}]] 

    set lly [format "%.8f" [expr {[lindex $data 3]*1e-6}]] 

    set urx [format "%.8f" [expr {[lindex $data 4]*1e-6}]] 

    set ury [format "%.8f" [expr {[lindex $data 5]*1e-6}]] 

    set width [format "%.8f" [expr {$urx-$llx}]] 

    set height [format "%.8f" [expr {$ury-$lly}]] 

    puts $flpfile "$unit\t$width\t$height\t$llx\t$lly" 

    gets $fpfile line 

} 

 

close $fpfile 

close $flpfile 

 

puts 1 

 

 

power_converter.tcl: 

 

This script converts the power consumption data from the format of the PrimeTimePX 

to that of HotSpot. 

 
# Power converter from PrimeTimePX to HotSpot 

 

if { $argc<1 } { 

 puts "Usage: tclsh power_converter.tcl design_name" 

 exit 

} 

 

set design_name [lindex $argv 0] 

 

set unitsf [open "~/designs/rel_script/HotSpot-4.2/$design_name.flp" r] 

gets $unitsf line 

set design_units [list] 

while {![eof $unitsf]} { 

    if {$line!="" && [string range $line 0 0]!="#"} { 

        lappend design_units [lindex [split $line "\t"] 0] 

    } 

    gets $unitsf line 

} 

close $unitsf 

 

set unit_power [list] 
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for {set i 0} {$i < [llength $design_units]} {incr i} { 

    set unit [lindex $design_units $i] 

    set pfile [open "./$design_name.power.report" r] 

    gets $pfile line 

    set line [regsub -all {[ \t]+} [string trim $line] { }] 

    set temp [split $line " "] 

    set hier [split $unit "/"] 

    for {set j 0} {$j < [llength $hier]} {incr j} { 

        while {![eof $pfile] && [lindex $temp 0]!=[lindex $hier $j]} { 

            gets $pfile line 

            set line [regsub -all {[ ]+} [string trim $line] { }] 

            set temp [split $line " "] 

        } 

        if {[eof $pfile]} { 

            puts "Unit $unit not found in floorplan." 

            exit 

        } 

    } 

    set pwr [lindex $temp 5] 

    lappend unit_power [format "%.11f" $pwr] 

    puts "Unit: $unit Power(W): $pwr" 

    close $pfile 

} 

 

set ptrace [open "~/designs/rel_script/HotSpot-4.2/$design_name.ptrace" w] 

set units [expr {[llength $design_units]-1}] 

for {set i 0} {$i <= $units} {incr i} { 

 puts -nonewline $ptrace [lindex $design_units $i] 

 if { $i==$units } { 

  puts $ptrace "" 

 } else { 

  puts -nonewline $ptrace "\t" 

 } 

} 

for {set i 0} {$i <= $units} {incr i} { 

 puts -nonewline $ptrace [lindex $unit_power $i] 

 if { $i==$units } { 

  puts $ptrace "" 

 } else { 

  puts -nonewline $ptrace "\t" 

 } 

} 

close $ptrace 

 

 

 

 

temp_flow.sh: 

 

This script automates the power and consequently the temperature estimation for the 

tool flow. 

 
#!/bin/bash 

 

source ./flow_conf.sh 

 

if [ ! -s "$design_name.fp" -o ! -s "~/designs/rel_script/HotSpot-

4.2/$design_name.flp" ]; then 

 echo " 

 restoreDesign $enc_dat $top_module 

 saveFPlan $design_name.fp 

 exit 

 " > commands.tmp 

 echo "source commands.tmp" | encounter -nowin 

 tclsh floorplan_converter.tcl $design_name 

 rm commands.tmp 

fi 

 

if [ ! -s "$design_name.power.report" ]; then 

 tempvar=`awk '{if ($1=="Guide:") printf("%s ",$2)}' $design_name.fp` 

 echo " 

 restoreDesign $enc_dat $top_module 

 extractRC 

 probePower $tempvar 
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 updatePower -vcd $vcd -vcdTop $vcdtop -noRailAnalysis -report 

$design_name.power.report VDD 

 exit 

 " > commands.tmp 

 echo "source commands.tmp" | encounter -nowin 

 rm commands.tmp 

fi 

 

tclsh power_analysis.tcl $design_name 

 

cd ~/designs/rel_script/HotSpot-4.2 

 

if [ ! -s "$design_name.flp" ]; then 

echo "$design_name.flp is missing" 

exit 

fi 

 

if [ ! -s "$design_name.ptrace" ]; then 

echo "$design_name.ptrace is missing" 

exit 

fi 

 

./hotspot -c hotspot.config -f $design_name.flp -p $design_name.ptrace -o 

unit_temps.ttrace -steady_file $design_name.steady 

cp $design_name.steady $design_name.init 

./hotspot -c hotspot.config -init $design_name.init -f $design_name.flp -p 

$design_name.ptrace -o unit_temps.ttrace 

 

 

flow1.sh: 

 

This script automates the execution of the EM and TDDB tool flow except for the 

SDF file annotation with TDDB and the final static timing analysis to estimate the 

combined impact on delay. 

 
#!/bin/bash 

 

source ./flow_conf.sh 

 

rm $wire_report 

rm $deltaR_report 

rm $initial_timing 

rm $em_timing 

rm $tddb_timing 

rm $critical_path 

rm $em_spef 

rm $em_sdf 

rm $tddb_sdf 

 

if [ ! -s "$enc_dat" ]; then 

echo "$enc_dat is missing" 

exit 

fi 

 

if [ ! -s "$initial_spef" ]; then 

echo " 

restoreDesign $enc_dat $top_module 

extractRC 

rcOut -spef $initial_spef 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | encounter -nowin 

fi 

 

if [ ! -s "$verilog" ]; then 

echo " 

restoreDesign $enc_dat $top_module 

saveNetlist $verilog 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | encounter -nowin 
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fi 

 

if [ ! -s "$initial_sdf" ]; then 

echo " 

read_lib $libs 

read_verilog $verilog 

set_top_module $top_module 

read_sdc $sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library $library 

read_spef $initial_spef 

create_clock "$clk_name" -name clk -period $clk_period 

write_sdf -precision 4 $initial_sdf 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | ets -nowin 

 

fi 

 

if [ ! -s "$initial_sdf" ]; then 

echo "Error producing $initial_sdf" 

exit 

fi 

 

echo " 

read_lib $libs 

read_verilog $verilog 

set_top_module $top_module 

read_sdc $sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library $library 

read_sdf $initial_sdf 

create_clock "$clk_name" -name clk -period $clk_period 

report_timing -machine_readable -max_points $paths > $initial_timing 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | ets -nowin 

 

if [ ! -s "$initial_timing" ]; then 

echo "Error producing $initial_timing" 

exit 

fi 

 

tclsh format_path.tcl $initial_timing 

 

if [ ! -s "$critical_path" ]; then 

echo "Error producing $critical_path" 

exit 

fi 

 

echo " 

restoreDesign $enc_dat $top_module 

extractRC 

delayCal 

source extraction_temp_multipath_christos.tcl 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | encounter -nowin 

 

if [ ! -s "$wire_report" ]; then 

echo "Error producing $wire_report" 

exit 

fi 

 

if [ ! -s "$deltaR_report" ]; then 

echo "Error producing $deltaR_report" 

exit 

fi 

 

perl spef_update_christos.pl $initial_spef $em_spef 

 

if [ ! -s "$em_spef" ]; then 

echo "Error producing $em_spef" 

exit 
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fi 

 

echo " 

read_lib $libs 

read_verilog $verilog 

set_top_module $top_module 

read_sdc $sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library $library 

read_spef $em_spef 

create_clock "$clk_name" -name clk -period $clk_period 

write_sdf -precision 4 $em_sdf 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | ets -nowin 

 

if [ ! -s "$em_sdf" ]; then 

echo "Error producing $em_sdf" 

exit 

fi 

 

echo " 

read_lib $libs 

read_verilog $verilog 

set_top_module $top_module 

read_sdc $sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library $library 

read_sdf $em_sdf 

create_clock "$clk_name" -name clk -period $clk_period 

report_timing -machine_readable -max_points $paths > $em_timing 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | ets -nowin 

 

if [ ! -s "$em_timing" ]; then 

echo "Error producing $em_timing" 

exit 

fi 

 

rm commands.tmp 

 

cp $em_sdf delays.sdf 

 

echo "Now run TDDB analysis using delays.sdf and $wire_report, copy back delays.sdf 

(rename to $tddb_sdf) and continue with flow2.sh script." 

 

 

 

flow2.sh: 

 

This script automates the SDF file annotation with TDDB and the final static timing 

analysis to estimate the combined impact on delay. 

 
#!/bin/bash 

 

source ./flow_conf.sh 

 

if [ ! -s "$tddb_sdf" ]; then 

echo "$tddb_sdf is missing" 

exit 

fi 

 

echo " 

read_lib $libs 

read_verilog $verilog 

set_top_module $top_module 

read_sdc $sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library $library 

read_sdf $tddb_sdf 

create_clock "$clk_name" -name clk -period $clk_period 
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report_timing -machine_readable -max_points $paths > $tddb_timing 

exit 

" > commands.tmp 

 

echo "source commands.tmp" | ets -nowin 

 

if [ ! -s "$tddb_timing" ]; then 

echo "Error producing $tddb_timing" 

exit 

fi 

 

rm commands.tmp 

 

 

flow_conf.sh: 

 

This sample file contains examples of values for the variables for the configuration of 

the automated tool flow. 

 
design_name="fir16_sp" 

wire_report="wire.report" #requires changes 

deltaR_report="deltaR.report" #requires changes 

initial_timing="fir16_sp_initial_timing.txt" 

em_timing="fir16_sp_em_timing.txt" 

tddb_timing="fir16_sp_tddb_timing.txt" 

critical_path="critical_paths.txt" #requires changes 

initial_spef="fir16_sp.spef" 

em_spef="fir16_sp_em.spef" 

initial_sdf="fir16_sp_initial.sdf" 

em_sdf="fir16_sp_em.sdf" 

tddb_sdf="fir16_sp_tddb.sdf" 

libs="tcbn45gsbwptc.lib" 

verilog="fir16_sp.v" 

top_module="fir16_sp" 

sdc="fir16_sp.sdc" 

enc_dat="fir16_sp.enc.dat" 

library="tcbn45gsbwptc" 

vcd="fir16_sp.vcd" 

vcdtop="topfir16/fir16_sp" 

clk_name="clk" 

clk_period="2.2" 

paths="1" 

 

 

rhumc.tcl: 

 

The current script is the most important among those implementing the synthesis of 

Leon3-based MP-SoC, as it invokes all the other scripts of the synthesis flow and it is 

modified to fit to the TSMC 45nm standard-cell library used.  

 
source setup_rhumc_old.tcl 

source leon3mp_dc.tcl 

set_scan_configuration -style multiplexed_flip_flop 

source timing_memories.tcl 

 

#ungroup -flatten -simple_names core0/ringosc0/drx 

#ungroup -flatten -simple_names core0/leon3core0/grspw0_0/nrx_clkbuf_0 

 

#ungroup core0/ringosc0/drx  -flatten -simple_names 

#ungroup core0/leon3core0/dsu0/x0  -simple_names 

#ungroup core0/leon3core0/grspw0_0/ram0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/grspwc0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/nrx_clkbuf_0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/rx_clkbuf_0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/rx_ram0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/rx_ram1  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_0/tx_ram0  -flatten -simple_names 

 

#ungroup core0/leon3core0/grspw0_1/ram0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_1/grspwc0  -flatten -simple_names 
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#ungroup core0/leon3core0/grspw0_1/nrx_clkbuf_0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_1/rx_clkbuf_0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_1/rx_ram0  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_1/rx_ram1  -flatten -simple_names 

#ungroup core0/leon3core0/grspw0_1/tx_ram0  -flatten -simple_names 

 

#ungroup core0/leon3core0/leon3ft0_0/tbmem0/ram0_0  -flatten -simple_names 

#ungroup core0/leon3core0/leon3ft0_0/tbmem0/ram0_1  -flatten -simple_names 

 

#current_instance pads0 

#ungroup [find cell "*"] -flatten -simple_names 

#current_instance .. 

#set_dont_touch pads0 

 

#current_instance core0 

#ungroup find(cell, {"clk*"} ) -flatten -simple_names 

#current_instance leon3core0 

#group [find cell {apb* uart* timer* irq* ahb* rst0 dcom* grg* sr* dsu0 ahbjtag0 }]  -

design_name amod -cell_name amod0 

#current_instance leon3ft0_0/p0 

#ungroup -all -flatten -simple_names 

#current_instance ../rf0 

#ungroup -all -flatten -simple_names 

#current_instance ../cmem0 

#ungroup -all -flatten -simple_names 

#current_instance ../fpu0 

#ungroup -all -flatten -simple_names 

#current_instance ../../ahbuart0 

#ungroup -all -flatten -simple_names 

 

#current_instance ../ftmctrl0 

#ungroup -all -flatten -simple_names 

#current_instance .. 

#ungroup ahbctrl0 -flatten -simple_names 

#ungroup apbctrl0 -flatten -simple_names 

 

#current_instance ../../.. 

 

set compile_auto_ungroup_override_wlm "true" 

set compile_auto_ungroup_count_leaf_cells "true" 

set compile_auto_ungroup_delay_num_cells 100 

set compile_ultra_ungroup_small_hierarchies "false" 

set compile_auto_ungroup_area_num_cells 100 

 

set_max_area 0   

set_max_transition 1.0 leon3mp   

 

source scan.tcl 

 

#compile_ultra -scan -no_boundary_optimization 

#compile_ultra -scan -retime 

set compile_seqmap_propagate_constants false 

link 

compile 

 

#write -f ddc -hier leon3mp -output synopsys/leon3mp.ddc 

 

report_timing 

report_timing > synopsys/timing1.log 

write_sdc synopsys/leon3mp.sdc 

report_area 

report_area -hierarchy > synopsys/area1.log 

report_power 

report_power > synopsys/pow1.log 

report_power -hier > synopsys/pow1h.log 

 

change_names -rules verilog -hierarchy 

###write -f verilog -hier leon3mp -output leon3mp.v 

write -f verilog -hier leon3mp -output leon3mp_newgrlib_new.v 

write_sdf leon3mp_initial.sdf 

 

#write -f vhdl -hier leon3mp -output leon3mp.vhd 

#source timing3.tcl 

source scan2.tcl 

quit 
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The invoked scripts, namely both the leon3mp_dc.tcl and the compile.dc, which 

perform the elaboration of the RTL code in Design Compiler, along with the script of 

the timing constraints, timing_memories.tcl, are given below. 

 

leon3mp_dc.tcl: 

 
sh mkdir synopsys 

set objects synopsys 

set hdlin_ff_always_sync_set_reset true 

set hdlin_ff_always_async_set_reset false 

set hdlin_infer_complex_set_reset true 

set hdlin_translate_off_skip_text true 

set suppress_errors VHDL-2285 

set hdlin_use_carry_in true 

source  compile.dc 

analyze -f VHDL -library work config.vhd 

analyze -f VHDL -library work ahbrom.vhd 

analyze -f VHDL -library work leon3core.vhd 

analyze -f VHDL -library work core.vhd 

analyze -f VHDL -library work pads.vhd 

analyze -f VHDL -library work leon3mp.vhd 

elaborate leon3mp 

 

 

compile.dc: 
 
sh mkdir synopsys 

sh mkdir synopsys/grlib  

define_design_lib grlib -path synopsys/grlib  

analyze -f VHDL -library grlib ../../lib/grlib/stdlib/version.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/stdlib/stdlib.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/sparc/sparc.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/sparc/sparc_disas.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/sparc/cpu_disas.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/modgen/multlib.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/modgen/leaves.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/amba.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/devices.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/defmst.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/apbctrl.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/ahbctrl.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/dma2ahb_pkg.vhd 

analyze -f VHDL -library grlib ../../lib/grlib/amba/dma2ahb.vhd 

sh mkdir synopsys/virage  

define_design_lib virage -path synopsys/virage  

sh mkdir synopsys/atc18  

define_design_lib atc18 -path synopsys/atc18  

sh mkdir synopsys/umc18  

define_design_lib umc18 -path synopsys/umc18  

sh mkdir synopsys/synplify  

define_design_lib synplify -path synopsys/synplify  

sh mkdir synopsys/techmap  

define_design_lib techmap -path synopsys/techmap  

analyze -f VHDL -library techmap ../../lib/techmap/gencomp/gencomp.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/gencomp/netcomp.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/inferred/memory_inferred.vhd 

###analyze -f VHDL -library techmap 

../../lib/techmap/inferred/memory_inferred_newgrlib.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/inferred/ddr_inferred.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/inferred/mul_inferred.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/inferred/ddr_phy_inferred.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/dw02/mul_dw_gen.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/virage/memory_virage.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/atc18/pads_atc18.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/umc18/memory_umc18.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/umc18/pads_umc18.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/allclkgen.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/allddr.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/allmem.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/allpads.vhd 
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analyze -f VHDL -library techmap ../../lib/techmap/maps/alltap.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/clkgen.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/clkmux.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/clkand.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/ddr_ireg.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/ddr_oreg.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/ddrphy.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/syncram.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/syncram64.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/syncram_2p.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/syncram_dp.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/syncfifo.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/regfile_3p.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/tap.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/techbuf.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/nandtree.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/clkpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/clkpad_ds.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/inpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/inpad_ds.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/iodpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/iopad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/iopad_ds.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/lvds_combo.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/odpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/outpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/outpad_ds.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/toutpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/skew_outpad.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grspwc_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grspwc2_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grlfpw_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grfpw_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/mul_61x61.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/cpu_disas_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grusbhc_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/ringosc.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/ssrctrl_net.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/system_monitor.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/grgates.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/inpad_ddr.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/outpad_ddr.vhd 

analyze -f VHDL -library techmap ../../lib/techmap/maps/iopad_ddr.vhd 

sh mkdir synopsys/spw  

define_design_lib spw -path synopsys/spw  

analyze -f VHDL -library spw ../../lib/spw/comp/spwcomp.vhd 

analyze -f VHDL -library spw ../../lib/spw/wrapper/grspw_gen.vhd 

sh mkdir synopsys/eth  

define_design_lib eth -path synopsys/eth  

analyze -f VHDL -library eth ../../lib/eth/comp/ethcomp.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/greth_pkg.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/eth_rstgen.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/eth_ahb_mst.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/greth_tx.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/greth_rx.vhd 

analyze -f VHDL -library eth ../../lib/eth/core/grethc.vhd 

analyze -f VHDL -library eth ../../lib/eth/wrapper/greth_gen.vhd 

analyze -f VHDL -library eth ../../lib/eth/wrapper/greth_gbit_gen.vhd 

sh mkdir synopsys/opencores  

define_design_lib opencores -path synopsys/opencores  

analyze -f VHDL -library opencores ../../lib/opencores/occomp/occomp.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/can/cancomp.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/can/can_top.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/i2c/i2c_master_bit_ctrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/i2c/i2c_master_byte_ctrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/i2c/i2coc.vhd 

analyze -f VERILOG -library opencores ../../lib/opencores/spi/simple_spi_top.v 

analyze -f VHDL -library opencores ../../lib/opencores/ata/ud_cnt.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/ro_cnt.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_dma_fifo.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_dma_actrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_dma_tctrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_pio_tctrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_pio_actrl.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_controller.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/atahost_pio_controller.vhd 

analyze -f VHDL -library opencores ../../lib/opencores/ata/ocidec2_controller.vhd 



140 

 

analyze -f VERILOG -library opencores ../../lib/opencores/ac97/ac97_top.v 

sh mkdir synopsys/gaisler  

define_design_lib gaisler -path synopsys/gaisler  

analyze -f VHDL -library gaisler ../../lib/gaisler/arith/arith.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/arith/mul32.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/arith/div32.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/memctrl/memctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/memctrl/sdctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/memctrl/sdmctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/memctrl/srctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/memctrl/spimctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/leon3.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmuconfig.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmuiface.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/libmmu.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/libiu.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/libcache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/libproc3.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/cachemem.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmu_icache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmu_dcache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmu_acache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmutlbcam.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmulrue.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmulru.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmutlb.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmutw.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmu.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mmu_cache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/acache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/dcache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/icache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/cache.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/cpu_disasx.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/iu3.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/grfpwx.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/mfpwx.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/grlfpwx.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/tbufmem.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/dsu3x.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/dsu3.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/proc3.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/leon3s.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/leon3cg.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/irqmp.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/grfpwxsh.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/grfpushwx.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/leon3/leon3sh.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/can.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/can_mod.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/can_oc.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/can_mc.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/canmux.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/can/can_rd.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/misc.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/rstgen.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/gptimer.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbram.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbdpram.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbtrace.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbmst.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/grgpio.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbstat.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/logan.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/apbps2.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/charrom_package.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/charrom.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/apbvga.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/ahbdma.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/svgactrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/i2cmst.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/i2cmst_gen.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/spictrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/i2cslv.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/wild.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/wild2ahb.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/grsysmon.vhd 
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analyze -f VHDL -library gaisler ../../lib/gaisler/misc/gracectrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/misc/grgpreg.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/net/net.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pci.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pcilib.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pciahbmst.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pcitrace.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pci_target.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pci_mt.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/dmactrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pci_mtf.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pcipads.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/pci/pcidma.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/uart.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/libdcom.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/apbuart.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/dcom.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/dcom_uart.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/uart/ahbuart.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/jtag/jtag.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/jtag/libjtagcom.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/jtag/jtagcom.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/jtag/ahbjtag.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/jtag/ahbjtag_bsd.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/greth/ethernet_mac.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/greth/greth.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/greth/greth_gbit.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/greth/grethm.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/spacewire/spacewire.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/spacewire/grspw.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/spacewire/grspw2.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/spacewire/grspwm.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/usb/grusb.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrrec.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/hs.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ahb_slv.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrctrl.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddr_phy.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrsp.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrsp16a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrsp32a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrsp64a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddrspa.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddr2sp64a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddr2sp32a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddr2sp16a.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ddr/ddr2spa.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/ata.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/ata_inf.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/atahost_amba_slave.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/atahost_ahbmst.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/ocidec2_amba_slave.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/atactrl_nodma.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/atactrl_dma.vhd 

analyze -f VHDL -library gaisler ../../lib/gaisler/ata/atactrl.vhd 

sh mkdir synopsys/esa  

define_design_lib esa -path synopsys/esa  

analyze -f VHDL -library esa ../../lib/esa/memoryctrl/memoryctrl.vhd 

analyze -f VHDL -library esa ../../lib/esa/memoryctrl/mctrl.vhd 

analyze -f VHDL -library esa ../../lib/esa/pci/pcicomp.vhd 

analyze -f VHDL -library esa ../../lib/esa/pci/pci_arb_pkg.vhd 

analyze -f VHDL -library esa ../../lib/esa/pci/pci_arb.vhd 

analyze -f VHDL -library esa ../../lib/esa/pci/pciarb.vhd 

sh mkdir synopsys/fmf  

define_design_lib fmf -path synopsys/fmf  

sh mkdir synopsys/cypress  

define_design_lib cypress -path synopsys/cypress  

sh mkdir synopsys/hynix  

define_design_lib hynix -path synopsys/hynix  

sh mkdir synopsys/micron  

define_design_lib micron -path synopsys/micron  

sh mkdir synopsys/work  

define_design_lib work -path synopsys/work 

 

 

 

set auto_wire_load_selection "true" 
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set_operating_conditions -library tcbn45gsbwptc NCCOM 

#set sys_clk_freq 600.0 

set sys_clk_freq 100.0 

set clock_skew  0.10 

set input_setup  1.8 

#set output_delay 1.66 

set output_delay 10.0 

 

set sys_peri [expr 1000.0 / $sys_clk_freq] 

set input_delay [expr $sys_peri - $input_setup] 

set tdelay  [expr $output_delay + 1] 

 

create_clock "clka" -name clk -period $sys_peri 

set_dont_touch_network clka 

 

set_false_path -from resetn 

set_false_path -from testen 

set_ideal_network testen 

set_false_path -from rxd1 

set_false_path -from dsubre 

set_false_path -from dsuen 

set_false_path -from dsurx 

set_false_path -to dsuact 

 

set_critical_range 2.0 leon3mp 

 

set_max_delay $output_delay -from [all_inputs] -to [all_outputs] 

 

 

 

timing_memories.tcl: 
 
set auto_wire_load_selection "true" 

set_operating_conditions -library tcbn45gsbwptc NCCOM 

set sys_clk_freq 600.0 

set clock_skew  0.10 

set input_setup  1.8 

set output_delay 1.66 

 

set sys_peri [expr 1000.0 / $sys_clk_freq] 

set input_delay [expr $sys_peri - $input_setup] 

set tdelay  [expr $output_delay + 1] 

 

create_clock "clka" -name clk -period $sys_peri 

set_dont_touch_network clka 

 

set_false_path -from resetn 

set_false_path -from testen 

set_ideal_network testen 

set_false_path -from rxd1 

set_false_path -from dsubre 

set_false_path -from dsuen 

set_false_path -from dsurx 

set_false_path -to dsuact 

 

set_critical_range 2.0 leon3mp 

 

set_max_delay $output_delay -from [all_inputs] -to [all_outputs] 

 

runleon3mp_vlog_simulation: 
 

This script is used for the post-layout simulation of the Leon3-based MP-SoC design 

and its commands are executed in ModelSim. 

 
#vlog leon3mp.v -v tcbn45gsbwp_sim2.v 

vlog leon3mp_newgrlib_new.v -v tcbn45gsbwp_sim2.v 

#sdfcom leon3mp_initial.sdf leon3mp.sdf 

 

vlib micron 

vcom -work micron ../../lib/micron/sdram/components.vhd 

vcom -work micron ../../lib/micron/sdram/mt48lc16m16a2.vhd 
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vlib contrib 

vcom -work contrib ../../lib/contrib/devices/devices_con.vhd 

 

vlib gaisler  

vcom -work gaisler ../../lib/gaisler/sim/sram_all_weather.vhd 

 

vlib work 

vcom ../../lib/work/debug/debug.vhd 

vcom ../../lib/work/debug/grtestmod.vhd 

vcom ../leon3-asic/config.vhd 

 

vcom testbench_layout_sram.vhd 

 

vsim -t 1ns -gdisas=1 -do "source wave.do; vcd file dhry_1.vcd; vcd add -r -file 

dhry_1.vcd /testbench/*; vcd on; run -all; quit" work.testbench 

 

leon3mp_px.tcl: 
 

The current script performs the post-layout netlist‟s power analysis in Synopsys 

PrimeTime PX, based on the technology libraries defined in .synopsys_pt.setup.  

 
read_verilog leon3mp_newgrlib_new.v 

current_design leon3mp 

set auto_wire_load_selection true 

link_design 

create_clock "clka" -name clk -period 5 

read_vcd -strip_path testbench/d3 stanford.vcd 

set power_analysis_mode averaged 

update_power 

report_power -hier -levels 7 -nosplit > leon3mp_stanford_1.1V.report 

report_power 

exit 

 

ets.tcl: 

 

This script is used for the extraction of the timing reports regarding the Leon3-based 

post-layout netlist, through the Encounter Timing System (ETS) static timing analysis 

engine. 

 
read_lib tcbn45gsbwptc.lib 

read_lib SRAM32x1024_old.lib 

read_lib SRAM32x128.lib 

read_lib SRAM32x64.lib 

read_lib SRAM32x16.lib 

read_lib SRAM8x128.lib 

read_verilog leon3mp_45nm.v 

set_top_module leon3mp 

read_sdc leon3mp.sdc 

set_analysis_mode -checkType setup 

set_op_cond NCCOM -library tcbn45gsbwptc 

read_sdf leon3mp_45nm_em.sdf 

create_clock "clka" -name clk -period 4.6 

report_timing -net 

report_timing -machine_readable -max_points 10 > leon3mp_em_timing.txt 
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