EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOT'ON MHXANIKON KAI MHXANIKON TTIOAOTIETON
TOMEAY TEXNOAOTTAY [TAHPO®OPIKHE KAI YTIOAOTIETON

MeAétn tng enldoong

Twv ad-hoc decision-support spwtnudTwy

AIIIAOMATIKH EPrASIA
™me

ANNAXY I'. ANOIIOYAOY

EnBrénwv: Twolénwy Sehic
Kadnyntic E.M.IL

EPrasTHPIO Y YSTHMATON BASEOQN I'NOSEON KAT AEAOMENON
Adrva, TIoohog 2010

Edvix6 Metodfio Ilohuteyveio
Yy ohfy Hhextpordywy Mnyavixay xor Mnyovixcdv Trokoylotody
Topéac Teyvohoyiag ITAnpogopinric xou Trokoylotodv

Epyaotiplo Xuotnudtey Bdoewy I'vioewy xow Acdoyévevy

MeAétn tng enldoong

Twv ad-hoc decision-support spwtnudTwy

AIITAOMATIKH EPTASIA
e

ANNAXY T'. GANOIIOYAOY

EnBrenwv: Tywokénv Yelhie
Konyntic E.M.IL

Evyxptdnxe and v tpiuerr e€etactxnr emtpony| Ty 127 Toukiou 2010.

Tiohéwv Xehifc Iwdvvne Baotheiou I'ewpytog Ltdpou
Kodnyntic E.M.IL Kodmynthc E.M.IL. Aéxtopac E.M.IL

Adrva, TIoohog 2010

ANNA GOANOIIOYAOY

Awmwpatotyog Hiextpohdyog Miyavixdg xou Mryavixdg Trohoyiotov E.M.IL
(© 2010 — All rights reserved

Edvix6 Metodfio Ilohuteyveio
Yy ohfy Hhextpordywy Mnyavixay xor Mnyovixcdv Trokoylotody
Topéac Teyvohoyiag ITAnpogopinric xou Trokoylotodv

Epyaotiplo Xuotnudtey Bdoewy I'vioewy xow Acdoyévevy

Copyright (©—All rights reserved ‘Avva Gavonobiov, 2010.

Me empiiadn Tovtog dxondaTos.

Arnoyopebeton 1 aviiypapr, anolfixeuor xot Stavoun g nopolous epydoiog, €& 0AOXAHpOU
) TUARATOC aUTAS, Yo epmopixd oxond. Emtpénetar n avatinwor, anoVhxeuon xat dlavour
Yol OXOTO WY} XEEOOOXOTUXG, EXTUDEUTIXNC 1 EpELVNTIXNC GUoNG, uTd Ty Tpolnddean va
avagEpeTal 1 TNYT TEOEAEVONE Xou VoL Slatnpeital To mopdy pivupa. Epwtiuata nou agopolv

TN Yenion TS epYaciag Yiol XEpOOOXOTIXG GXOTO TEETEL VAl AneLY)OVOVTAL TPOG TOV GUYYRUGEX.

Euyaplotieg

This thesis was conducted in the research unit DMIR of Inesc-ID, in Instituto Superior
Tecnico in Lisbon, Portugal. I would like to take this space to gratefully thank my su-
pervisors, professora Helena Galhardas and professor Paulo Carreira. Not only did they
happily welcome me and guide me through all the steps of this journey, but also gave me
the motivation to gain insight into the subject and end up loving it.

Ou el enlong va euyaploThow Veppd Tov emBAEROVTA wou and nievpds E.M.IL., xadnynt
x. Twokéovta Mehhr. Xwplc v mohbtiun Bordeld tou, dev Va elya pnopéoet va exnovion
auTthAv TNV gpyacio 6To eEwTEpId.

Téhog, euyaploted TNV OLXOYEVELS pou Yl Bordetor VALY, cuVAIGUNUOTIX XAt AVEXTIUNTY.

ITepiAndm

Ta decision-support epwthpata unofdihoviar and avOTEPA GTEAEYT TOU VENOUY VO AVaX-
Thoouv ototyelor and ula Bdorn BedouEvewY OOTE Vo EVIOTICOUV TG DAYPAPOUEVES TATEL
TWYV OLXOVOUIXDY ATOTEAESUATLVY TNg emtycipnong o va Pondndoldy oty diadixacio Mdng
anogdoewy. Ta epotiuata autd eivon e&onpeTixd Tohimhoxa, dayepilovton yeydio mhidog Be-
dopévwy xat auvilwe utoBdilovta anpoeldonointa, dniud ad-hoc. Suvende, elvon avandpeux-
TO VO Anouto0V TOAD ¥pOVO Yo Vo EXTEAEGTOUY xat var xad{otaton emttaxtixy| 1) Behtiwon g
enidoonc touc. To mp®to BAua mpog authv Tty xatedduvon eivon 1 emAoyr evog GUOTH-
wotog Suayelpnong Baocwy dedouévov. 2tn ouvéyela, Yo npénel va Bedtiwdel 1 entdoon tou
ovothuatog pudpillovtag Ti¢ xatdhhnies noapopétpous. Téhog, Va mpénet va diepeuvniel av
UTAPYEL XATOLOG TEOTOS VAL AMAOUGTEVTEL TO €pY0 TOU BEATIOTONOMNTY EPWTNUATWY, XAV 1
Behtiotonoimon avdyeton o eConpeTind onuavTixd {RTnua dTay To EpwThpaTa eival 1600 Tepl-
mhoxa. ‘Eva yprowo péoo mov Ya unopodoe v yenowonomiel yia TERUUATIONS TRV and
T Mn dhev Ty Tapandve arogdocwy eivar to TPC-H benchmark yio ad-hoc decision
support epwtApaT.

Avty) 7 Bimhwpatix? epyacio xothotd pla tpoondeia epPdduvone otic apyés tou TPC-H
benchmark xot aZlonoinorc tou yia T olyxplon TV GuoTNUdTLY dlayelpnong Bdoewy Be-
dopévwv SQL Server 2008 xor MySQL 5.1. Axéuy, Vo npoonadficouye vo eENyHooupE TS
TUPATNPOVUEVES DIAPORES OTNY ETBOOT TwV 800 CUCTNUATWY, TAPATNEOVTIAS T1) CUUTERLPORY
Toug UTO drapopeTixég puduioeic xou avahlwvtoag T Aoyixy) Tou axohovlel o BedtioTonomTrC

EQPOTNUATWY XdVE CLOTAPATOC.

Aéleic KAcowk

Ad-hoc, Decision-Support, TPC-H, Behtiwor enidoong Pdoewy dedoyévwy, Bektiotonoinor

EPOTNUATWY

Abstract

Decision-support queries are submitted by higher management executives who need to
retrieve data from a database server in order to draw a pattern of the company financial
results and facilitate their decision making process. These queries are highly complex,
handle large amounts of data and are usually submitted unpredictably, or else ad-hoc.
Therefore, it is inevitable that they take a long time to execute and it becomes crucial
to find ways to optimize their performance. The first step would be to choose the most
efficient database management system; then, tune it appropriately; finally, identify any
ways to facilitate the task of query optimization, as optimization becomes extremely im-
portant at such levels of query complexity. A useful tool that could be used to experiment
before making all the above choices is the TPC-H benchmark for ad-hoc decision-support
queries.

This diploma thesis constitutes an attempt to examine the TPC-H database benchmark
in detail and use it to compare the Microsoft SQL Server 2008 and MySQL 5.1 database
systems. Furthermore, we will try to explain the performance differences by observing the
systems behaviour under different configurations, as well as by examining the logic behind

query optimization decisions in each system.

Keywords

Ad-hoc, Decision-Support, TPC-H, Performance Tuning, Query Optimization

Contents

Evyapiotieg

Ilepiindn

Abstract

Contents
List of Figures

List of Tables

Introduction

1.1 Database Benchmarking
1.2 Problem e e
1.3 Solution e
1.4 Contributions e
1.5 Organization e

Related work
2.1 TPC-H as a Scientific Tool

The TPC-H Decision Support Benchmark

3.1 Benchmark Overview o
3.2 The TPC-H Schema s
3.3 The TPC-H Workload

Setting up the Test System

4.1 Database-Data Generation using DBGEN
4.2 Query Generation using QGENo 0oL
4.3 Implementation Decisions oL
4.3.1 Indexes e e e
4.3.2 Constraints
4.3.3 Horizontal Partitioning 0oL

15
15
17
17
18
18

19
19

25
25
26
29

Contents

5 Running the Tests
5.1 The Load Test
5.2 The Performance Test
5.2.1 Power Test
5.2.2 Throughput Test
5.3 Performance Metrics,
5.3.1 Processing Power Metric
5.3.2 Throughput Power Metric
5.3.3 The Composite Query-Per-Hour Performance Metric
5.3.4 The Price/Performance Metric

6 Performance Tuning for Decision Support Workloads
6.1 Performance Tuning basics,
6.1.1 System Tuning
6.1.2 Database Tuning
6.1.3 Application Tuning

6.2 Performance Tuning Issues for Ad-hoc Decision Support Workloads

7 The SQL Server and MySQL Query Optimizers
7.1 Overview of the Main Components of an RDBMS.
7.2 Architecture of a Query Processor
7.3 Overview of the Query Optimization Process
7.3.1 Cost-based Optimization
7.3.2 Heuristic Optimization
7.3.3 Parametric Optimization
7.3.4 Semantic Optimization
7.4 The Microsoft SQL Server Query Optimizer
7.4.1 Query Optimization Process.
7.4.2 Controlling the SQL Server Optimizer
7.5 The MySQL Query Optimizer
7.5.1 Query Optimization Process.
7.5.2 Controlling the MySQL Optimizer

8 Test Results and Analysis

81 Full TPC-H Tests o
8.1.1 Parameters Varied in the Experiments
8.1.2 Full TPC-H Tests in SQL Server
8.1.3 Full TPC-H Tests in MySQL
8.1.4 Comparison of SQL Server and MySQL Overall Performance

8.2 Experiments with the Query Optimizers
8.2.1 Experiments with SQL Server
8.2.2 Experiments with MySQL

Contents 9
9 Conclusions and Future Work 83
9.1 Conclusions e 83
9.2 Future Work 84
A Source code
for Microsoft SQL Server 2008 91
A.1 Database Build Seripts 91
A.2 Refresh Function Definitions 92
A3 Query Streamso e 94
A4 Load Test e e e 108
A5 Performance Test 109
A6 Full Test 110
A.7 Concurrency Handling 110
B Source code
for MySQL 5.1 111
B.1 Database Build Scripts o oo 111
B.2 Refresh Function Definitions 112
B.3 Query Streams 115
B.4 Load Test e 129
B.5 Performance Test 129
B.6 Full Test e 130
B.7 Concurrency Handling 130

List of Figures

3.1 Business environment.0 e e e e e e e
3.2 E-R diagram of the TPC-H Database.
3.3 The TPC-H database schema.

5.1 Steps for the Load Test. L
5.2 Steps for the TPC-H tests.

6.1 The tuning boxes: application performance is bounded by database perfor-

mance which is in turn bounded by system performance.

7.1 Main components of an RDBMS.

8.1 Execution plan for query 9 for total memory size 512 MB and fill factor 90%.

8.2 Execution plan for query 9 for total memory size 16 MB and fill factor 40%.
8.3 Execution plan for query 9in MySQL.
84 Query 9text.
8.5 Execution plan for query 10 for total memory size 512 MB and fill factor

8.6 Execution plan for query 10 for total memory size 16 MB and fill factor 40%.

87 Query 10 text.
8.8 Execution plan for query 11 in MySQL with optimizer_prune_level=0.

8.9 Execution plan for query 11 in MySQL with optimizer_prune_level=1.

8.10 Execution plan for query 11 in SQL Server.
811 Query 11 text.
8.12 Execution plan for query 2 in MySQL with optimizer_search_depth=1. . . .
8.13 Execution plan for query 2 in MySQL with optimizer_search_depth=62.
8.14 Execution plan for query 2 in SQL Server.
8.15 Query 2 text.o

11

36

44

50

67
68
69
70

List of Tables

5.1

8.1
8.2
8.3
8.4
8.5
8.6

Number of query streams(S) (on the right) for a given scale factor(SF) (on
the left). o

Tuning parameters affecting DSS query performance in SQL Server 2008.
Tuning parameters affecting DSS query performance in MySQL 5.1.
TPC-H full test results for increasing memory size in MS SQL Server 2008.
TPC-H full test results for increasing fill factor in MS SQL Server 2008. . .
TPC-H full test results for increasing memory size in MySQIL 5.1.
TPC-H full test results for increasing page size in MySQ1 5.1.

13

59
60
60
61
62
62

Chapter 1

Introduction

1.1 Database Benchmarking

Given the wide offer of computer systems nowadays as well as their great complexity, it
is crucial to determine which is the best choice for one’s needs, in terms of both price
and performance. The obvious answer is that one should choose the system achieving the
required performance level at the minimum cost. Therefore, it would be helpful to realize

a quantitative comparison of computer systems performance.

In order to measure the performance of a computer system, it is necessary to define a
benchmark. A benchmark is a standarized test that aims at comparing the performance
of different systems under the same conditions. It has two majors components: the work-
load specification and the metrics specification. The workload is the assortment of tasks
that the test comprises. The metrics are numeric quantities calculated using the values of
certain parameters measured during the test. After defining the benchmark, we run the

workload on different systems and compare the generated metrics.

Benchmarks need to be domain-specific, since different parameters constitute perfor-
mance indicators in each domain. For instance, in a network system we are interested in
the cost per transaction, while in a database system we usually measure the processing
time and storage space [4]. What is more, benchmarks should meet some specific criteria.
First of all, they should be relevant, that is to say they must include typical operations
of the problem domain and measure the appropriate characteristics. Second, they should
be portable in order to be easy to implement on different systems. Third, they should
be scaleable as to apply both to small and large computer systems. Finally, they should

be simple so that people can easily understand them [2].

In this thesis, the primary focus lies on a specific domain of benchmarking, database bench-
marking. Database benchmarking intends to measure a database management system’s
performance under a carefully chosen workload and specific configurations. Database

benchmarks are further categorised according to the predominant type of transaction

15

16 Chapter 1. Introduction

present in their workload. Some examples include the TPC benchmarks TPC-A (Online
Transaction Processing including a LAN or WAN network) and TPC-B (Online Trans-
action Processing without network), the Wisconsin University’s benchmark Wisconsin
(Relational Queries), Jim Gray’s AS?AP (Mixed Workload of Transactions and Relational
Queries), Patrick O’Neil’s Set Query Benchmark(Complex and Reporting Queries), and
R.G.Cattell’s Engineering Database Benchmark (Engineering Workstation-Server).

There are several standard bodies for defining database benchmarks. The two most promi-
nent are SPEC! and TPC2. SPEC (Standard Performance Evaluation Corporation) is a
consortium of vendors defining benchmarks for the domains of science and workstations.
TPC (Transaction Processing Performance Council) is a consortium of vendors defining

benchmarks for transaction processing and database domains [2].

This thesis is going to include a thorough examination of a TPC benchmark, therefore
it is meaningful to expand a little bit on this benchmark-defining standard body and its
history. TPC has the goal of specifying objective benchmarks in order to support the cus-
tomers in their decision making. It provides appropriate database-system “tests”, aiming
at making it easy for anyone to determine the price/performance ratio of available software
and hardware. According to its mission statement, the Transaction Performance Process-
ing Council(TPC) is a non-profit corporation founded to define transaction processing and
database benchmarks and to disseminate objective, verifiable TPC performance data to the
industry. In other words, this council was formed in order to provide well-documented
benchmarks that are not intended to favor any specific database system. The Council
consists of companies and, as one would expect, mainly computer system ones. Decision
making is ran by the Full Council. Each member-company has one vote and a two-thirds

vote is required to pass any motion.

The first database benchmark was TP1, developed at IBM. However, the credibility of
this test was doubted, as it was believed to favor IBM systems. The first attempt towards
the definition of an objective benchmark was made by Jim Gray in 1985 [5]. His article
outlined a test for Online Transaction Processing which was given the name DebitCredit.
Unlike TP1, it specified a true system-level benchmark where the network and user inter-
action components of the workload were included. Nevertheless, praised as it may have
been for its theoretical value, it was not unanimously adopted as the main database bench-

marking guideline [2].

It was at this moment, in 1988, that the TPC was founded to provide a generally approved
benchmarking standard. The very first benchmarks released were TPC-A3, following the
philosophy of DebitCredit, and TPC-B*, after TP1. In fact, these benchmarks constituted

an attempt to define the TP1 and DebitCredit tests in a more strict way, in order to en-

"http://www.spec.org/
*http://www.tpc.org/
Shttp://www.tpc.org/tpca
“http://www.tpc.org/tpch

1.2 Problem 17

sure their general recognition. After these benchmarks, the Council recognised the need to
publish specific benchmarks for Decision Support systems and On-Line Transaction Pro-
cessing ones. The first benchmark for the former category was TPC-D® and for the latter
TPC-CS. There have been some attempts to replace TPC-C with new benchmarks (such
as TPC-W), but they were not as successful as hoped because this benchmark has proved
to be realistic enough to serve its purpose. On the other hand, TPC-D was successed by
TPC-H” and TPC-R®, both Decision Support benchmarks. Currently, the Council has
been developing a new benchmark called TPC-DS?, which will combine the best features
of both TPC-H and TPC-R and will introduce an even more complex workload in order

to simulate the Decision Support computations more realistically.

1.2 Problem

We would like to determine whether it is possible to achieve a better price/performance
ratio with an open source database management system than with a commercial one, using

the same off-the-shelf hardware.

We are particularly interested in comparing MySQL with Microsoft SQLServer. There
seems to be a lack of bibliography when it comes to comparing these database management
systems using the popular decision support benchmark of TPC-H. Indeed, the TPC-H
official results!® include only one test on MySQL that is executed using special hardware
and software provided by Kickfire!'. There are no results available when testing the two

database management systems under the same conditions.

Furthermore, we are interested in the TPC-H benchmark itself and would like to study
its implementation and find out whether it is really a test that can be easily repeated at

home, in an inexpensive machine and without a team of specialists.

1.3 Solution

We are going to execute the TPC-H test with MySQL 5.1 and SQL Server 2008, on the
same hardware. We will also try to determine which tuning parameters influence the
results for each one of the systems and run the tests while changing their values. In order
to interpret the results, we will divide the TPC-H queries into categories and observe the

performance differences for each database management system.

Shttp://www.tpc.org/tpcd
Shttp://www.tpc.org/tpce
"http://www.tpc.org/tpch
Shttp://www.tpc.org/tper
“http://www.tpc.org/tpcds
Ohttp://www.tpc.org/tpch /results
"http://www kickfire.com/

18 Chapter 1. Introduction

1.4 Contributions

This work will provide us with the following contributions:

1. a description of all the steps necessary to execute the TPC-H test on an open source

and on a commercial database management system
2. an evaluation of the level of expertise required to execute the TPC-H test
3. a full understanding of the TPC-H benchmark

4. study and justification of the effect of certain tuning parameters on the performance

of the two database management systems when executing the TPC-H test
5. comparison of the systems in terms of performance and price/performance ratio

6. insight into the differences of the two query optimizers

1.5 Organization

We begin our discussion with chapter 2, where we will present a short overview of the
scientific uses of the TPC-H benchmark. In chapter 3, we are going to present the main
features of TPC-H. Chapter 4 is about system preparation for the test, including imple-
mentation decisions. Chapter 5 focuses on the exact procedure of running the tests and
obtaining the results. Chapter 6 examines some basic concepts of performance tuning, and
identifies the most influential tuning parameters for decision-support queries. Chapter 7
contains a detailed presentation of query optimization techniques, as well as the philoso-
phies of SQL Server and MySQL query optimizers. Chapter 8 exhibits the results and

interpretates them. Finally, Chapter 9 provides a conclusion with the thesis findings.

Throughout this document, we make reference to the TPC-H Standard Specification [1].

For readability reasons, we are not going to mention it every time.

Chapter 2

Related work

2.1 TPC-H as a Scientific Tool

The TPC-H benchmark is primarily used to compare different hardware, different database
vendor software and different database software releases. One can view such official results
of running the full TPC-H benchmark at the TPC website!. Further than that, there are
some semi-official independent results, such as white papers [17], diploma theses [18] and

small conference presentations [19].

Then again, the TPC-H method can be used, even partially, for the validation of a number
of scientific ventures. There are many papers making such use of TPC-H. We are going

to examine some of them, trying to cover as broad a scientific research area as possible.

We begin with two papers that make use of TPC-H only as a randomly populated database

schema and execute their own workload over it.

First, we have a method of inferring table join plans in the absence of any metadata, such
as attribute domains, attribute names or contraints [30]. The method enumerates the pos-
sible join plans in order of likelihood, based on the compatibility of a pair of columns and
their suitability as join attributes, that is to say their appropriateness as keys. T'wo variants
of the approach are outlined; one highly accurate but potentially time-consuming (exact
method) and one less accurate but considerably more efficient (approximate method). In
order to evaluate the two variants, the research uses the TPC-H schema randomly popu-
lated using the DBGEN utility and a query designed by the writers. The query executes a
self-join of the largest TPC-H table, the table Lineitem, considering that to be the worst-
case two-table-join query for the TPC-H schema. Various horizontal and vertical subsets
of the Lineitem relation were considered, in an attempt to represent different relation
sizes and numbers of candidate join attributes. During these tests, the exact method was

tested for performance (that is to say, execution time) and the approximate for accuracy

"http:/ /www.tpc.org/tpch

19

20 Chapter 2. Related work

(or, correctness of the results set). The results of the experiments led the researchers to
the conclusion that the approximate approach is several orders of magnitude faster than

the exact one, while not being considerably less accurate.

In continuation, let us address the problem of minimizing the cost of exchanges between
database programs and the database system [35]. In order to achieve this, this paper
proposes the use of program summaries, which are graphs describing the sequence of ac-
cesses to the database that will be needed by the program. This way, the optimizer can
manipulate data retrieval as a whole, instead of processing them as a flow of SQL queries
submitted independently to the database system. Thereby, it becomes possible to choose
a global strategy that minimizes the cost of transferring data from the server to the client.
For the evaluation of the approach, the writers used the randomly populated database
schema and executed three multi-query programs of their own design against it. In or-
der to compare the performance difference while using and while not using the program

graphs, the writers measured the total execution time of the programs.

Now let us examine some works in which the TPC-H schema as well as a selection of TPC-
H queries are used to verify the superiority of the proposed technique. The criteria for
choosing only a handful of TPC-H queries vary from paper to paper. A popular practice
seems to be selecting queries that exhibit prevailing scan, join or balanced behavior (more
details on this categorization will be given in chapter 2). Let us examine two papers that
make use of this categorization and, in addition, are primarily interested in measuring the

query execution time.

According to the first of these works, in contrast with common intuition, aggressive
work sharing among concurrent queries does not always improve performance in a multi-
processor environment [34]. In fact, as the number of cores in the system increases, a
trade-off appears between exploiting work-sharing opportunities and the available paral-
lelism. In order to prove the existence of this trade-off, the writers experiment with a
selection of scan- and join-bound TPC-H queries against the TPC-H database schema,
measuring the execution time observed when sharing and when not sharing work amongst
queries. The paper concludes that sometimes it is more efficient to perform the same task

in parallel than to perform it once and then apply it to each client’s needs.

The next research is an attempt to re-examine traditional compute-memory co-location on
a system and it details the design of a new architectural building block, the memory blade
[37]. Memory blades allow memory to be disaggregated across a system and can be used
for memory capacity expansion and for sharing memory across servers. Experiments with
various benchmarks on implementations of this principle demonstrate that memory disag-
gregation provides substantial performance benefits. Among the benchmark experiments

conducted is that of running three TPC-H queries, representing scan- and join-bound as

2.1 TPC-H as a Scientific Tool 21

well as balanced behaviors, against the randomly populated TPC-H database schema. The
experiments aim to measure the total execution time of the queries with or without the

use of memory blades in the system design.

Continuing the presentation of works that select only a few TPC-H queries for their ex-
periments based on the scan/join/balanced categorization, we will summarize two more
papers, only this time the writers are interested in measuring values other than the exe-

cution time.

The first paper highlights the importance of in-page placement for high cache performance
[32]. It shows how traditional techniques fail to utilize cache in an efficient way and pro-
poses a new data organization model called PAX (Partition Attributes Across). This
model significantly improves cache performance by grouping together all values for each
attribute within each page. Because PAX only affects layout inside the pages, it does not
slow down I/O or require more storage space. The approach uses a number of workloads to
experimentally prove its superiority. Among those, two join- and two scan-bound TPC-H
queries are used to corroborate the hypothesis that PAX ensures better cache performance.

To make their point, the writers measure the cache hit ratio during the queries execution.

Carnegie-Mellon researchers have proposed two novel memory system designs to improve
memory hit numbers, called temporal memory streaming and spatial memory streaming.
The first design exploits the fact that memory addresses are temporally-correlated, which
means that previous sequences of misses are likely to repeat. It replays previously ob-
served miss sequences to eliminate long chains of dependent misses. The second design
exploits the fact that memory addresses are spatially-correlated, that is to say local data
tend to be relevant. It predicts repetitive data layout patterns within fixed-size memory
regions. It is obvious that each one of these techniques targets a different subset of misses.
Spatio-temporal memory streaming [33] exploits the synergy between spatial and tempo-
ral streaming. For the evaluation of this technique, many tests are run, including which
the execution of three TPC-H queries that demonstrate intense join or scan behavior, or
a balance between the two. Conclusions are drawn from the number of read misses that

occured during the queries execution.

Now we proceed in examining works that choose to use a number of TPC-H queries fol-

lowing criteria different than the scan/join/balanced categorization.

There has been an effort to implement a simultaneously pipelined relational query en-
gine, called QPipe [28]. The motivation for this new engine was based on the observation
that concurrent queries often exhibit high data and computation overlap, such as ac-

cessing the same relations on disk, computing similar aggregates or sharing intermediate

22 Chapter 2. Related work

results. However, query engines treat queries independently, only making sure that the
available resources are efficiently allocated. This work proposes a query engine that proac-
tively coordinates same-operator execution among concurrent users, thereby exploiting
common accesses to memory and disk as well as common intermediate result computa-
tion, while not incurring additional overhead. The paper experiments with the randomly
populated TPC-H database schema, running the eight TPC-H queries that access exclu-
sively the three largest tables, Lineitem, Orders and Part. The queries are organized into
randomly-sequenced workloads that run against QPipe and an unspecified major com-
mercial database management system. The goal of these experiments is to demonstrate
the difference in total throughput time when applying pipelining techniques to a number
of operators that are dominant in each of these workloads. The justification for using
TPC-H queries to this end is that they spend much time on scans and joins, and they can
be generated using different predicates to provide suitable experimental randomness. The
results reveal a clear throughput difference favoring the QPipe engine and becoming more

pronounced as more clients are added.

The next work is interested in improving performance of column-oriented database sys-
tems, that is to say systems in which each attribute is physically stored as a separate
column allowing queries to load only the required attributes [29]. The challenge for such
implementations is reducing the cost of tuple reconstruction, which corresponds to joining
two or more columns and is prompted by multi-attribute queries. This paper proposes
partial side-ways cracking, a novel design that minimizes the tuple-reconstruction cost
in a self-organizing way. In order to do so, it uses auxiliary self-organizing data struc-
tures called cracker maps which provide a direct mapping between pairs of attributes used
together in queries for tuple reconstruction. Based on the workload, these maps are con-
tinuously kept aligned by being physically reorganized during query compilation phase,
allowing the database system to handle tuple reconstruction using cache-friendly access
patterns. Partial side-ways cracking is implemented on top of an open-source column-
oriented database system dubbed MonetDB, and compared to row-oriented MySQL with
analogous pre-sorting, using the TPC-H database schema randomly populated and a work-
load comprised of the twelve TPC-H queries that have at least one selection of a non-string
attribute (because string cracking is not addressed in this paper). As the workload is run
repeatedly using different values for query predicates each time, the execution time for

each query is significantly reduced for MonetDB but remains constant for MySQL.

Finally, here are some works in which the criteria for choosing only some of the TPC-H

queries are not specified.

Autonomic Tuning Expert is a framework for autonomic database tuning [31]. Autonomic
tuning is aimed in reducing the cost of database administration as well as the possibil-

ity of human error while tuning a system. The paper is first interested in automatically

2.1 TPC-H as a Scientific Tool 23

identifying different types of workloads and problematic scenarios. Then, it formalizes
database administration knowledge about tuning for such cases, proposing tuning plans
for each of them. The writers end up developing a reference system for autonomic tuning
for IBM DB2 and consequently evaluate its performance using TPC-H queries as repre-
sentative decision-support ones and TPC-C queries as representative online transaction
ones. In fact, the workload consists of TPC-C queries running for a fixed amount of time,
interrupted by TPC-H queries that run for the same amount of time and more TPC-C
queries for the same amount of time. Thus, the system performance is not evaluated by
the total execution time rather than by the measurement of values such as the buffer pool

hit ratio and the number of row reads.

Storage fusion is the idea of deep collaboration between storage and database servers [36].
If we elegantly cut some portion of the software functions from the server and put it to
the storage system, the storage system could work much more closely with the server. To
achieve this, the paper proposes two techniques. First, the exploitation of query execution
plans to enable dynamically informed prefetching. This implementation is evaluated by
running TPC-H query number 8 and measuring the execution time with as well as without
prefetching. The reasons for selecting query 8 are not specified. The second technique
is putting autonomic database reorganization into the storage to relieve the management
burdens of the database system. To highlight the importance of such implementation, the
researchers gradually execute a large number of updates against the TPC-H database and
observe the difference in execution time for 10 TPC-H queries after each set of updates.
Thus, they prove the degradation of execution time due to data structural deterioration.
The reasons behind the selection of these ten TPC-H queries are not revealed. Lastly,
the research evaluates the total reorganization time for equally-sized TPC-H database in-
stances in a system using the classic reorganization technique and a system using the new

approach.

Chapter 3

The TPC-H Decision Support

Benchmark

3.1 Benchmark Overview

The TPC-H benchmark was developed by the TPC and officially approved in 1999. A
single-sentence description of this database benchmark would be that it is a decision sup-
port benchmark comprising a suite of business oriented ad hoc queries and a few data
modifications. The keywords here would be decision support and ad hoc . This section

aims at explaining these terms.

The TPC-H benchmark models the activity of an international product supply corpora-
tion. The business environment of such modeled business is divided in two large areas:
the business-operations area and the business-analysis area. The business-operations area
models the operational end of the business environment where transactions are executed
on a real time basis. Benchmarks that measure the performance of systems managing
this area are called online transaction processing (OLTP) benchmarks. Such benchmarks
are TPC-C and TPC-W. On the other hand, the business-analysis area is where busi-
ness trends are computed and refined data are produced to support the making of sound
business decisions. Benchmarks focused on this area are called decision support (DSS)
benchmarks. TPC-H and TPC-R are such benchmarks. Figure 3.1 illustrates the business

environment.

The term decision support implies that higher management executives would need to re-
trieve data from the database in order to draw a pattern of the company financial results
and facilitate their decision making process. Most commonly, the business analysis is
centered around pricing and promotions, supply and demand management, profit and
revenue management, customer satisfaction studies, market share studies and shipping
management. In order to retrieve this kind of data from the database of a multinational
corporation, one has to execute highly complex queries and deal with a large volume of

data. For instance, one might wish to rank the company’s customers according to various

25

26 Chapter 3. The TPC-H Decision Support Benchmark

Decision Makers

DSS Queries
N * /

Dss
Database

TPC-H Business

Analysis

Business
Operations
< B o
OLTP
Database

Transactions

Figure 3.1: Business environment.

criteria such as the total ordered quantities or the order frequency, in order to reward
the most important clients with a promotional offer. This would imply executing various
predicates against a very large table containing the customers and possibly other tables
containing information on orders. Also, the database has to be available for query execu-
tion on a 24 /7 basis and it has to support multiple end-users as well as data modifications,
since a real-world database is not a one-time snapshot of itself. The TPC-H benchmark
constitutes an attempt to model such a database along with this kind of realistic business

questions.

Both TPC-H and TPC-R are decision support benchmarks and use the same database
schema and test the same queries. However, due to TPC-H’s more realistic approach of
the business DS environment, it has prevailed over TPC-R. This is due to the fact that
the TPC-H benchmark involves an ad-hoc workload. That is to say, it is aimed at un-
predictable query needs or else it does not presume prior knowledge of the queries to be
executed. On the contrary, TPC-R judges predictable data retrieval and extraction, such

as periodic reports. Therefore, TPC-R’s workload is a reporting workload.

In the rest of the chapter, we are going to present the TPC-H schema and workload.

3.2 The TPC-H Schema

As mentioned before, the goal of TPC-H is to portray the activity of a wholesale sup-
plier. However, instead of representing the activity of any particular business segment,
the benchmark models any industry that manages, sells or distributes products worldwide,
such as car rental, food distribution, parts or suppliers. Although the TPC-H specifica-
tion only gives us the schema as a collection of tables, we tried to represent it as an E-R

diagram in Figure 3.2, for best understanding of the model.

3.2 The TPC-H Schema

27

Supplier

WX 0..1

Is Citizen Of

Provides <

Part

Region
1.1
<> Belongs To
1 .. *
Nation 0-1 L.~ Customer
Is Citizen Of
1..1
Places <>
1 .. *
Constituted Of
Lineitem = 11 Order

Figure 3.2: E-R diagram of the TPC-H Database.

28 Chapter 3. The TPC-H Decision Support Benchmark

PART (P PARTSUPP (PS | LINEITEM {L_} ORDERS (0)
SF*200,000 SF*200,000 SF*&,000,000 SF*1,500,000
PARTKEY e | PARTKEY ORDERKEY |l | cROERKEY
NAME —p-| SUPPKEY PARTKEY CUSTKEY
MFGR AVAILOTY SUPFKEY CRDERSTATUS
BRAND SUPPLYCOST LINENUMEER TOTALFRICE
TYPE COMMENT CUANTITY CRDERDATE
SIZE o EXTENDEDFRICE] CRDER-
CUSTOMER (S) FRICRITY
CONTAINER o, T SCAUNE CLERK
CUSTKEY
RETAILPRICE — TAX T
COMMENT RETURNFLAG FRICRITY
ADDRESS
LINESTATUS COMMENRY:
SUPPLIER (5] —me] NATIONKEY
SF*10,000 SHIFDATE
| PHONE
SUPFKEY COMMITDATE
ACCTBAL
NANE RECEIPTDATE
MKTSEGMENT
ARBRESE SHIFINSTRUCT
NATIONKEY [COMMENT SHIPMODE
FHONE ”"‘*T"é"’_“‘ N COMMENT
-
ACCTBAL
NATIONKEY REGION (R_]
COMMENT 5
NAME
REGIONKEY
REGIONKEY -
NAME
COMMENT
COMMENT

Figure 3.3: The TPC-H database schema.

The entity Part stands for an individual piece of product and the entity Supplier
stands for a person or company that supplies the product for our corporation. The
Order entity represents a single order, which has been placed by a customer repre-
sented by the Customer entity. The order has been saved as an invoice, that is to
say a series of lines dedicated to one type of product each, which are represented by
the Lineitem entity. As a result, each order is constituted of lines of items that are
provided from a specific supplier’s collection of parts. Finally, since both suppliers
and customers are people, they are citizens of a particular Nation that belongs to
a particular Region.

This E-R diagram is converted into a relational schema comprised by eight base

tables, as specified by TPC. It is presented in Figure 3.3.

The two largest tables are Lineitem and Orders and contain about 83% of the total
data.

3.3 The TPC-H Workload 29

3.3 The TPC-H Workload

The workload of the benchmark consists of 22 queries and 2 update procedures, all
representing frequently asked decision making questions. The update procedures
are called refresh functions in the TPC-H specification document and we will refer
to them as such in the rest of this document. The 22 queries have a high-level of
complexity and give answers to real-world business questions. Some of the classes
of business analysis that they simulate are pricing and promotion, supply and de-
mand management, profit and revenue management, customer satisfaction study,
market share study and shipping management. The queries include a rich breadth
of operators and selectivity constraints, access a large percentage of the populated
data and tables and generate intensive disk and CPU activity on the part of the
database server. What is more, all queries are different from each other and have
an ad-hoc nature. As we will explain in Chapter 4, each query runs stand-alone to
demonstrate the ability of the test system to use all of the resources for a single user,
as well as in multiple concurrent sessions to demonstrate the ability of the system
to use all of the resources to satisfy concurrent users.

The TPC-H queries can be divided into 3 categories: Scan-bound, Join-bound and
Balanced behavior{3]. This categorization is based on the total time each query
spends on table scans and joins. An estimation of these times can be retrieved
through the execution plan of the query. Scan-bound queries spend over 95% of
their execution time on table scans. Exactly 50% of the TPC-H queries fall under
this category. Such example is query number 1. For Join-bound queries, over 95% of
the execution time is due to joins. About 25% of the TPC-H queries are Join-bound.
Take query number 2, as an example: there are many tables to be joined, which
explains the observed behavior. A query is considered to have Balanced behavior if
75% of its execution time is estimated to be due to table scans and 25% due to joins.
The remaining TPC-H queries are categorized as queries with Balanced behavior.
An example would be query number 17.

Chapter 4
Setting up the Test System

As mentioned in Chapter 1, the main objective of this thesis is to run the TPC-H
benchmark test in order to produce comparable results for two database manage-
ment systems and discuss the reasons behind the performance differences. There
were many decisions to be made concerning the exact characteristics of the test sys-
tem and the tuning of the database management systems. Actually setting up the
test system for each one of the two database management systems includes: (i) cre-
ating the database with the exact schema proposed by the Transaction Performance
Council; (i) adding constraints; (747) generating the flat data files using the DBGEN
tool; (iv) loading the data into the tables using a script in order to measure the load
time; (v) creating indexes and statistics; (vi) generating the workload queries to be
executed using the QGEN tool; and (vii) installing the necessary stored procedures.
Having completed these steps, we will then be able to run the workload and measure

the execution times.

In this chapter, we begin by explaining the process of generating the test data with
DBGEN and the queries with QGEN. Then, we proceed by listing the available
options for implementing the database schema and configuring the system, as well

as the decisions made respectively.

4.1 Database-Data Generation using DBGEN

DBGEN is a data generator provided in the TPC-H package to help fill all tables
with a large amount of appropriate random data. The user selects the scale factor
he prefers: the size of all tables, except for nation and region, scales proportionally

with the scale factor. The available scale factors are:
1, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000

The database size is defined with reference to the scale factor. For instance, choosing

the scale factor to be equal to 1 means there will be generated 1GB of data in total.

31

32 Chapter 4. Setting up the Test System

For each column datatype, DBGEN follows a different grammar. A grammar in
computer science consists of a set of rules for string structure. These rules specify
which type of word (or elements) can be added in which part of a string so that the
latter is valid under this grammar. DBGEN follows the grammar for each datatype,
producing large amounts of random strings of the correct style. The elements come
from a big bank of data containing words and numbers.

Other than table population, DBGEN is also used to produce random used by the
refresh functions when they add lines to already populated tables. The method for
this is the same as before.

4.2 Query Generation using QGEN

The 22 TPC-H queries are in fact defined only as query templates in the specifica-
tion document. That is to say, there is a functional query definition provided by
TPC, defining in SQL-92 the function to be performed by the query. However, this
definition is not complete; there is a need to fill in some substitution parameters in
order to complete the query syntax. The substitution values are generated by the
application QGEN in such a way that the performance for a query with different
substitution values is comparable. QGEN uses a data set of appropriate data types
to fill in the query gaps, in a way similar to the method used by DBGEN. After
running QGEN, we get ready-to-run queries in valid SQL, which have the same basic
structure as the query templates but vary in a random way when it comes to some
predicate parameters.

In order to validate the results of a query, the TPC-H specification accompanies each
query by its validation output data for a specific value of the substitution param-
eters upon a 1GB database. Obviously, this cannot be done for queries generated
with random values in the substitution parameters’ places.

The refresh functions are not strictly defined by TPC, as their role is simply to
ensure that the system under test can execute basic updates in parallel with query
execution. As a consequence, we have some freedom in implementing them, follow-
ing the basic pseudo-code provided. They were implemented as stored procedures.

The corresponding source code can be found in Appendix B.

4.3 Implementation Decisions

As explained in Chapter 2, the TPC-H benchmark (as opposed to TPC-R) involves
an ad-hoc workload; it is aimed at unpredictable query needs. The test designers’

reasoning is this: if you don’t know what the query is going to be, you can’t build

4.3 Implementation Decisions 33

a summary table or an index for it. The TPC-H, therefore, allows indexing only
on primary keys, foreign keys or date columns. This benchmark was designed to
measure the database engine’s ability to cope with queries that are not known in

advance. Therefore, the TPC-H Specification sets strict rules about optimization.

4.3.1 Indexes

TPC allows indexes on one or more columns in no more than one table. These
columns must be either a primary key, or a foreign key, or part of a compound
primary/foreign key, or an attribute of “date” datatype. The reason behind these
restrictions is the fact that the TPC-H method simulates an ad-hoc decision support
workload, as explained in chapter 3. Therefore, wanting to preserve this spirit, we
decided to create all indexes allowed. The complete set of index creation statements

appears in appendices B and C under database build scripts.

4.3.2 Constraints

We defined all primary keys, foreign keys and check constraints allowed by the TPC-
H specification document. Defining primary keys on all tables automatically set off
the creation of the corresponding indexes. In the case of foreign keys however, we
needed a second step in order to create a clustered index for them.

4.3.3 Horizontal Partitioning

According to the TPC-H Specification, horizontal partitioning is allowed as long as
the partitioning key is a primary or a foreign key or a “date” column. However, since
we are running the tests on a single-core machine, we cannot have intra-partition

parallelism and thus we are not going to make use of this option.

Chapter 5
Running the Tests

Running TPC-H comprises two tests: the load test and the performance test. The
former involves loading the database with data and preparing for running the queries.
The latter involves measuring the system’s performance against a specific workload.
Naturally, the load test has to precede the performance test. In this chapter, we
will describe these two tests and then list the metrics used to compare performance

between systems.

5.1 The Load Test

After creating the database and generating the data files using the DBGEN tool,
we can go ahead and execute the load test. This includes all the necessary steps
between database creation and running the performance tests. That is to say, we
have to create the schema as specified by the TPC, load the data from the data
files produced by DBGEN into the tables, add constraints (primary keys, foreign
keys and check constraints) following the restrictions set in the TPC-H specification
document, create the indexes we settled on in the previous chapter, calculate the
statistics for these indexes and install the refresh functions as stored procedures.
The exact steps to be completed for the load test are illustrated in Figure 6.1.

As seen in Figure 6.1, the database load time is the necessary time to complete the
steps of table creation, data loading, constraint addition, index creation, statistics
calculation and stored procedures installation. All these steps are executed using a
single script per database management system. The corresponding source codes are
presented in Appendices B and C. The database load time is an important result to
be reported, as it pictures the database management system’s efficiency in setting

up and populating a database.

35

36 Chapter 5. Running the Tests

Create Flat Data Files

A

Create Database

A 4

Create and Load Tables

A 4

Create Indexes and Constraints

A

Create Statistics

Database load time

Install Refresh functions

Figure 5.1: Steps for the Load Test.

5.2 The Performance Test

As soon as we complete the load test, we proceed with the performance test. It
consists of two runs. Each run is an execution of the power test followed by an exe-
cution of the throughput test. Figure 5.2 illustrates the steps for running a complete
sequence of the two TPC-H tests. The source codes of the scripts that execute the

performance test for each database management system can be found in Appendices
B and C.

In order to define the terms of power and throughput tests, we need to introduce the
concept of sessions. A session is either a query stream, that is to say a sequential
execution of each of the 22 TPC-H queries, or a refresh stream, which is a sequen-
tial execution of a number of pairs of refresh functions. Tests will consist of query
streams and refresh streams.

5.2.1 Power Test

The purpose of the power test is to measure the raw query execution power of the
system when connected with a single active user, that is to say how fast can the
system compute the answer to a single query. This is achieved by running a sin-
gle query stream session, that is to say by sequentially running each one of the 22
queries. The power test also includes running a refresh stream session comprising a

single pair of refresh functions.

5.2 The Performance Test 37

Load Test
. E— v
Power Test 1
=~
8
Throughput Test 1

@ -

3 v

3

= Reboot

g

=

&

oy A

~

Power Test 2
g
B
3 &)
Throughput Test 2

Figure 5.2: Steps for the TPC-H tests.

In particular, there are three steps necessary to implement the power test: (i) ex-
ecution of the refresh function 1 by the refresh stream, (ii) execution of the query
stream and (%i1) execution of the refresh function 2 by the refresh stream. The query
stream executed during the power test is called query stream 00. Correspondigly,
the executed refresh stream is called refresh stream 00. The TPC specifies the exact

execution sequence for the queries in the query stream 00.

5.2.2 Throughput Test

The purpose of the throughput test is to measure the ability of the system to process
the most queries in the least amount of time. In other words, this test is used to
demonstrate the performance of the system against a multi-user workload; we want
to measure exactly how scalable the system is. For that reason, the throughput test
includes at least two query stream sessions. Each stream executes queries serially
but the streams themselves are executed in parallel.

The minimum number of query streams, referred to as S and specified by the TPC,
increases with the increase of the scale factor, as shown in Table 5.1. What is more,
the throughput test must be executed in parallel with a single refresh stream session.
The number of refresh function pairs in this stream has to be equal to S. Each query
stream and refresh function pair in the throughput test has an ordering number
represented as s and ranging from 01 to S.

38 Chapter 5. Running the Tests

Like in the power test, the execution sequence for the queries in a query stream is
pre-defined by TPC and determined by its ordering number s. The purpose of this
is to ensure that the different query streams running in parallel will not be executing
the same query at the same time. The TPC has come up with these sequences using

a algorithm for random numbers generation.

Scale Factor(SF) S(Stream)

1 2
10
30
100
300
1000
3000
10000
30000 10
100000 11

© 00 O O W

Table 5.1: Number of query streams(S) (on the right) for a given scale factor(SF) (on the
left).

5.3 Performance Metrics

While running the power and the performance tests, the scripts will report the time
for each one of the steps. Specifically, in the end we get the results in three forms:
the database load time as discussed, the measurement interval and the timing in-
tervals. The measurement interval represented as T, is the total time needed to
execute the throughput test. The timing interval represented as QI(i,s) for a given
query Q; is the execution time for the query Q; within the query stream s, where s is
0 for the power test and the ordering number of the query stream for the throughput
test. The timing interval RI(j,s) is the execution time for the refresh function RF
within a refresh stream s, where s is 0 for the power test and the position of the pair
of refresh functions in the stream for the throughput test. All these results must be
measured in seconds, as specified by the TPC.

Next, we have to combine these results to produce some global, comparable met-
rics. In order to avoid confusion, TPC-H uses only one primary performance metric
indexed by the database size: the composite query-per-hour performance metric rep-
resented as QphH@Size, where Size represents the size of data in the test database
as implied by the scale factor. For instance, we can have the metric QphHQ1GB
for comparing systems using a 1GB database. This metric equally weights the con-

tribution of the single user power metric and the multi-user throughput metric. We

5.3 Performance Metrics 39

are now going to present in detail each one of them. In the following, SF stands for
scale factor.

5.3.1 Processing Power Metric

For a given database size, the processing power metric represented as Power@Size
is computed using the reciprocal of the geometric mean of the timing intervals
QI(i,0) and RI(j,0), that is to say the execution times for each one of the queries
and the refresh functions obtained during the power test. We remind that the query
and refresh streams in the power test have ordering number s that is equal to 0.

The geometric mean is a type of mean or average that indicates the central tendency
of a set of numbers. It is similar to the most commonly used arithmetic mean, except
that instead of adding the set of numbers and then dividing the sum by the count
of numbers in the set, n, the numbers are multiplied and then the nth root of the
resulting product is taken. For instance, the geometric mean of three numbers 1,
%ulr is the cube root of their product (), which is 3; that is {/1 x 5 x ; . The
geometric mean can also be understood in terms of geometry. The geometrlc mean
of two numbers, a and b, is the length of one side of a square whose area is equal to
the area of a rectangle with sides of lengths a and b. Similarly, the geometric mean
of three numbers, a, b, and c, is the length of one side of a cube whose volume is
the same as that of a cuboid with sides whose lengths are equal to the three given

numbers.

In this case, some of the query execution times are substantially different from the
rest, meaning that they are significantly too long or too short. This fact would
influence the arithmetic mean unduly, therefore is preferable to use the geometric
mean. Let us assume, for instance, that we have only three queries with elapsed
times of 10, 12 and 500 seconds. The arithmetic mean would be 174 seconds while
the geometric one is 39.15 seconds.

The Power@Size metric is defined as:

PowerQSize = 3600 x SF

VT2, Q1G,0) x [T-, RI(,0)

The denominator is the geometric mean of the timing intervals for the 22 queries
and the 2 refresh functions, a total of 24 factors. It represents the effort in seconds
to process a request, that being a query or a refresh function. The numerator 3600
is the number of seconds in an hour. Therefore, the fraction expresses the number
of queries executed per hour. This number is then multiplied by the scale factor to

give us Power@Size, where size is the GB implied by the scale factor. The units of

40 Chapter 5. Running the Tests

the Power@Size metric are queries-per-hour x scale-factor.

5.3.2 Throughput Power Metric

The throughput power metric represented as Throughput@Size is computed as
the ratio of the total number of queries executed within all the query streams of the
throughput test, over the length of the measurement interval T,. In simpler words,
this metric tells us how many queries were executed in the elapsed time.

The Throughput@Size metric is defined as:

S x 22

Throughput@QSize = x 3600 x SF

s
The numerator is the total number of executed queries within all streams (S streams
with 22 queries each) and the denominator is the total time for the test. Therefore,
the fraction represents the number of queries executed per second. Multiplied by
3600 seconds, it gives the number of queries executed per hour. Then we multiply
this result by the scale factor in order to get the Throughput@Size, where size is
the GB implied by the scale factor. The units are queries-per-hour x scale-factor,
same as in the case of Power@Size.

5.3.3 The Composite Query-Per-Hour Performance Metric

The composite query-per-hour performance metric represented as QphH@Size com-
bines the values of the corresponding metrics Power@Size and Throughput@Size.

The QphH@Size metric is defined as:

QphHQSize = \/Power@Size X Throughput@Size

This metric is obtained from the geometric mean of the previous two metrics. By
combining the values of the corresponding metrics, the metric expresses the overall
performance level of the system, both for single-user mode and multi-user mode.

As a last note, since the TPC-H metrics reported for a given system must repre-
sent a conservative evaluation of the system’s level of performance, the reported
performance metrics must be for the run with the lower composite query-per-hour

metric.

5.3.4 The Price/Performance Metric

The price/performance metric represented as Price-per-QphH@Size is the ratio
of the total system price divided by the composite query-per-hour performance met-

5.3 Performance Metrics 41

ric.
The Price-per-QphH@Size metric is defined as:

$

Price-per-QphH@Size = QphH@Size

The symbol $ stands for the total system price in the reported currency. The units
are the currency units, such as $.

This last metric will allow us to make the final price/performance comparison be-
tween the commercial and the open-source database management systems and com-
ment on whether we are getting “our money’s worth” when using the commercial

one.

Chapter 6

Performance Tuning for Decision

Support Workloads

6.1 Performance Tuning basics

Database administration textbooks define performance tuning as the act of cus-
tomizing the available settings and configuration in order to maximize the use of
resources and ensure efficient as well as rapid performance [20] [41]. There are three
areas of tuning: system tuning, database tuning and application tuning. System
tuning is the highest level, which means that system problems causes all databases
and applications to perform poorly. Following the same logic, a database problem
causes related applications to perform poorly. This hierarchy is better illustrated in

Figure 6.1.

6.1.1 System Tuning

System tuning refers to the overall system, comprising the database management
system itself as well as any components and software on which it relies, such as
memory, disk, CPU, the operating system and the networking software. Installa-
tion, configuration and connectivity issues must be resolved appropriately in order
to achieve optimum performance. We are going to work with a given set of hard-
ware and software components, but we can still configure the database management
system in an optimal way. In order to do so, we are going to examine various pa-
rameters that manage memory usage, number of active database agents and locking
configurations.

There are multiple cache memories (or buffers) utilized by the database system to
reduce the cost of I/O by avoiding redundant I/O operationsl. Efficiently allocating
the available memory resources to them is extremely important. Cache memories

include the data cache, the procedure cache, the sort cache and the database log

43

44 Chapter 6. Performance Tuning for Decision Support Workloads

System

Database

Application

Figure 6.1: The tuning boxes: application performance is bounded by database perfor-
mance which is in turn bounded by system performance.

cache.

The data cache (or buffer pool) stores table data pages as they are being read from
disk. The next time an application requests data, the database system looks for it in
the data cache before accessing the disk. If it finds it, we have a hit; otherwise, it’s a
miss. There are ways to measure the data cache hit (or miss) ratio. Since memory
access is much faster than disk access, the less often the database system needs to
read from or write to a disk, the better the performance. Thus, it is beneficial to
have as much memory allocated to the buffer pool as to not oppose to the rest of

the system’s requirements.

The procedure cache stores queries and the corresponding query plans produced by
the optimizer (see chapter 7 for details on optimization). Thus, the, frequently long,
optimization process need not be performed every time a query is run, resulting in
better performance. The administrator should try to allocate enough memory to

this cache to store several recent query plans.

The sort cache stores intermediate sort results. Many operations such as grouping,
ordering and union involve sorting. Therefore, the bigger the sort cache, the more
sorting functionality can be performed in memory and the better the performance
since I/Os are expensive.

The database log cache stores all changes made to the database. Usually, there are
two log caches, one for log writes and one for log reads. The log write cache stores
the changed data, which are over time written asynchronously to disk. Thus, we can
speed up database modifications. The database system specifies a system checkpoint
interval to guarantee that all log records are written safely to disk. The log read
cache is used for rollback or recovery operations, when it is necessary to undo or
reapply database changes. For data safety reasons, it is important to ensure that
there is enough space in the log caches for a large number of recent updates.

Returning to system tuning, the active database agents are database clients cur-

6.1 Performance Tuning basics 45

rently connected with the database system. There is always a configuration option
for setting the number of concurrent active database agents. Setting this option
depends on the usual number of users of the database.

Finally, since database queries undergo processing that breaks them down to individ-
ual operations that require the use of some CPU or I/O component, it is important
to handle correctly the exclusive locking of those resources for one transaction at
a time. This practice ensures consistent data but it can also lead to considerable
execution delays due to lock suspensions, timeouts and deadlocks. lock suspensions,
which occur when a transaction requests a lock to a busy resource, timeouts, which
occur when a transaction is terminated because it has been suspended for longer
than a preset interval and deadlocks, which occur when two or more transactions
cannot continue processing because each is waiting on a resource held by the other.
In order to enhance performance, we have to try to avoid all these causes of delays
and execution fails. For instance, the database system frequently checks for dead-
locks. How often this happens, that is to say the length of the deadlock detection
cycle, is subject to configuration. Setting this length to a small value (that is to say,
frequent checks) guarantees better safety for the running applications; on the other
hand, this check occupies valuable resources and it may interfere with the execution

performance.

6.1.2 Database Tuning

Database tuning includes the physical design of the database as well as close mon-
itoring for performance degradation due to file growth and disorganization. The
most important aspect of database tuning is indexing, that is to say keeping an
alternate path to data in the database sorted according to the value of one or more
table columns. However, since TPC-H imposes specific rules on index creation as
explained in chapter 4, we are going to focus on the rest of the influencing parame-
ters. These include partitioning and reorganization, as well as management of free
space and page size.

Partitioning consists of breaking a table into sections stored in multiple files. This
can be done horizontally (based on the rows) or vertically (based on the columns).
Whenever the files are stored in independent physical devices, partitioning helps to
accomplish parallelism, meaning to allow the same request to split into multiple re-
quests and utilize different CPU or I/O components in parallel. This option makes
a performance difference in multi-core environments that handle data in large rela-

tions and perform frequent scans.

Free space (or fill factor) can be used to leave a portion of a table space empty

and available to store newly added data. Setting a high fill factor provides benefits,

46 Chapter 6. Performance Tuning for Decision Support Workloads

such as lower storage requirements, shorter scans, less I/O operations to access the
data and more content stored in the data cache. Nevertheless, there are also some
disadvantages, such as slower inserts and data splits, suffering concurrency because
more data is unavailable to other users when a page is locked, less space to expand

for variable-length attributes and more complicated reorganization.

Page size (or block size) is a parameter used to specify the appropriate size of data
page to ensure efficient data storage and 1/0. Usually, page size is limited to a
number of choices, such as 4k, 8k, 16k etc. To determine which page size to use,
one should take into account the length of each table row as well as any page or
row preambles. After that, he should also consider the desired amount of free space
in each page. Finally, one might want to choose the page size that saves the most
space. For instance, if the record size together with the equivalent free space is 2500
bytes, the 4K page would hold one record per page, while the 8K page size would
hold three. Specifying a high page size means more data in the buffer pool and,
therefore, better hit ratio and less I/O operations. However, it also means longer
I/O when a miss does occur and inadequate concurrency because more data per
page gets locked.

6.1.3 Application Tuning

Application tuning involves developing efficient SQL code to facilitate optimization
procedure and it is usually the main cause of performance problems. However, in
the case of running TPC-H the SQL queries are already defined, therefore we will
not discuss further this tuning area.

6.2 Performance Tuning Issues for Ad-hoc Decision Sup-
port Workloads

There has been considerable amount of research on the topic of automatically char-
acterising a database workload as OLTP or DSS [8] [9] [10]. Determining whether a
specific workload is of OLTP or DSS nature makes a big difference to the database
administrators (DBAs). In fact, these database experts consider the workload type a
key criterion for their tuning decisions. They apply rules-of-thumb tuning strategies
to handle each workload. Therefore, they must recognise the significant shifts in the
workload and reconfigure the system accordingly in order to maintain acceptable
levels of performance as we cannot optimize for both workloads. Another reason
why automatic characterization of a database workload is so important is to assist
the development of self-tuning database systems that would take into account the

workload type and reconfigure themselves accordingly [11] [12]. Some database ven-

6.2 Performance Tuning Issues for Ad-hoc Decision Support Workloads 47

dors provide recommendations for tuning according to the workload type [13] [14]
[15] [16].

We are interested in the characteristics of ad-hoc DSS workloads and the tuning
parameters that affect them. DSS queries most of times are special requests for
managerial use, such as calculating the top salesperson last month or what products
had the largest gains in sales last quarter. They tend to be highly complex and in-
clude a small number of large queries that involve large data scans, sorts and joins.
On the other hand, they include very few, if any, updates.

First of all, the complexity of DSS queries makes efficient query optimization of
vital importance. We will discuss this in detail in chapter 7. What is more, since
optimizing complex queries is expensive in terms of time and resources, it would
be very beneficial to keep many query plans in the procedure cache. However, by
nature DSS queries are hardly ever repeated and we are examining ad-hoc ones.
Therefore, we will not explore further this option.

Secondly, the fact that these queries deal with large amounts of data within scans,
sorts and joins dictates that the size of the buffer pool and the sort buffer play an
important role. Following the same logic, the fill factor and the page size can also
contribute to having more data in the data cache and should, therefore, influence
performance. Another option that would prove beneficial for large scans of data is
intra-partition parallelism.

Thirdly, since there are very few updates, we can save some memory that would be
allocated to the log buffer and schedule less frequent checkpoints.

Finally, because DSS queries usually include only a small number of queries, we can
reduce the number of active database agents as well as turn off intra-query paral-
lelism. For the same reason, locking management and deadlock detection do not
need to be very strict.

Chapter 7

The SQL Server and MySQL
Query Optimizers

As mentioned in the previous chapter, the performance of DSS workloads is highly
influenced by the query optimization process. For that reason, we are going to
examine this database system component in detail and find the parameters that
affect its behavior in each one of the two systems.

7.1 Overview of the Main Components of an RDBMS

As illustrated in [6], the main components of a relational database management
system are as in Figure 7.1. In order to execute a query, we first have to estab-
lish a connection between the client and the database through the communications
manager. The process manager will then decide whether the system has enough
resources available for the execution. Next, the query is appropriately rewritten and
optimized by the query processor, compiled into an internal query plan featuring spe-
cific operators and executed accordingly. Finally, the transactional storage manager
oversees the data access during execution, by ensuring that the ACID properties are

met and the data is accessed following basic structures, such as tables and indexes.

7.2 Architecture of a Query Processor

The SQL parser is responsible for query parsing and authorization. During parsing,
the SQL statement is checked for syntax correctness and all the table names and
attributes are resolved and checked for existence. Then, the query is converted into
the internal format used by the optimizer.

The query rewriter is responsible for simplifying and rewriting the query into a

49

50 Chapter 7. The SQL Server and MySQL Query Optimizers

Local Client Remote Client

Protocols Protocols Catalog

Manager

Client Communications Manager

Admission
Control

Memory
Query Parsing and Authorization Manager

Query Rewrite |

. Administration,
DDL and Utility Monitoring &

Processing Utilities

|
|
| Query Optimizer |
I

Plan Executor |

Dispatch Replication and
and Relational Query Processor Loading

Scheduling Services

Access Methods Buffer Manager

Batch Utilities

Process
Manager Lock Manager Log Manager Shared

Components
and Utilities

Transactional Storage Manager

Figure 7.1: Main components of an RDBMS.

common format without changing its semantics, operating on its internal represen-
tation. Among others, this step handles view expansion, meaning that it rewrites
the query replacing view references with the corresponding tables and attributes.
It also rewrites the predicates in the simplest way possible and eliminates redudant
table joins. Finally, since most optimizers operate on individual SELECT-FROM-
WHERE blocks and do not optimize across blocks, it is the responsibility of the
rewriter to flatten nested queries when possible in order to maximize optimization

opportunities.

The query optimizer transforms the internal query representation into an efficient
query plan. A query plan can be thought as a dataflow diagram that pipes table
data through a tree of physical operators, such as sorts, joins and loops. In other
words, it is a physical operator tree representing the sequence of operations for the
execution of the query.

The plan executor receives the query plan from the query optimizer and executes the
physical operators. In other words, it compiles the logic into an executable program.

7.3 Overview of the Query Optimization Process

The goal of query optimization is to generate an efficient query plan for the exe-
cution of the given SQL statement. The complexity lies on the fact that there are
more than one query plans for each SQL query. Each query can have many equiva-

lent algebraic representations and each algebraic representation can be implemented

7.3 Overview of the Query Optimization Process 51

using different physical operators with different computational and 1/O costs. The
optimizer is expected to choose the most efficient combination of physical operators
for a given query.

Defining query plan efficiency is another important issue. Some plans may require
fewer resources than others but other plans may run faster. The goal is to discover
the plan that has the least cost and/or runs in the least amount of time. Some-
times one has to sacrifice resource usage for execution time and vice versa, such
as running an application on a small platform with low resource availability or, in

contrast, when there is a need for higher execution throughput.

The first query optimizers were developed for early database systems, such as System
/R [21] and INGRES [22]. The main concepts introduced by these components have
been incorporated in many commercial optimizers and continue to be remarkably
relevant. The traditional query optimization in System /R applies to Select-Project-
Join (SPJ) queries, and requires the definition of a search space, a cost estimation
technique and an enumeration algorithm [7]. However, this relational model was ex-
tended to include object-oriented and distributed database systems, giving birth to
a new class of extensible optimizers such as the Volcano optimizer [23] that formed
the basis for the Microsoft SQL Server optimizer.

The search space is the theoretical set of all possible physical query plans for a
given query. Each system has its own toolset of operators and algebraic transfor-
mations that help it create the search space for each query. There is no system
that considers all possible operators and transformations; thus each system consid-
ers only a subset of the total possible search space. For instance, in System /R

acceptable query plans corresponded to a linear sequence of join operations, such as

Join(Join(Join(A,B),C),D).

The cost estimation technique assigns an approximate cost in terms of resources
or/and time to any partial or complete query plan. It also determines the estimated
size of the output data stream. In order to do so, it collects statistics on tables and
indexes, such as the number of pages in a table or index and the number of distinct
values per column. Subsequently, it applies a number of formulas for estimating the
predicate selectivity, the size of the output data as well as the CPU and I/O costs
for each physical operator. Then, the total cost for the query plan can be obtained
by combining the costs of each of the operator nodes in the tree. Not all systems
adopt the same cost estimation technique which means that, even if they explore

the same search space they do not select the same query plan in the end.

The enumeration algorithm has to explore the search space of cost-estimated query
plans in quest of the most inexpensive one. That is a notoriously difficult search

52 Chapter 7. The SQL Server and MySQL Query Optimizers

problem and many computer science techniques have been employed to solve it ef-
ficiently. Database systems differ on implementing this algorithm too. The System
/R approach made use of dynamic programming and interesting orders. Dynamic
programming refers to solving complex problems by breaking them down into simpler
steps. In this case, the optimizer assumes that in order to obtain an optimal query
plan for a SPJ query consisting of k joins, it suffices to consider only the optimal
sub-plans consisting of (kK — 1) joins. The method of interesting orders ensures that
the system collect information from sub-trees to help make decisions about a higher
point in the tree. For instance, should we have a predicate like R1.a = R2.a = R3.a,
it is smart to use a sort-merge join on the sub-query R1, R2 so as to get the result
of the join sorted on a and thus reduce the cost of the join with R3. Therefore,
even if it is cheaper to use an other type of join (such as nested-loop join) for the

sub-query, it is more beneficial in total to go with the sort-merge one.

The idea of interesting orders was generalized to physical properties and used ex-
tensively in modern optimizers. For example, consider a simple query of the form
selectcoll, col2, max(col3) fromtablelgroupbycoll, col2. Now, if the columns (coll,
col2) make up a unique key on table Tablel, then it is not necessary to do grouping
at all: each group has exactly one row. The max() of a set of size one is the element
itself. So it is possible to remove the group by from the query completely. Applying
this procedure constitutes using a physical property.

Today, there are four primary types of query optimization: cost-based, heuristic,
semantic, and parametric optimization. None of these techniques can guarantee an
optimal query plan. Instead, they constitute different approaches for the common

goal of generating an efficient query plan that guarantees correct results.

7.3.1 Cost-based Optimization

Cost-based optimizers follow the basic philosophy of System /R optimization. Their
goal is to utilize indexes and statistics gathered from past queries to predict the cost
for each possible query plan and then choose the less expensive one. Systems such
as Microsoft SQL Server and Oracle use cost-based optimizers.

7.3.2 Heuristic Optimization

As the hardware improved, differences in execution time per query plan tend to
diminish. In fact, most query plans have been shown to execute with approximately
the same cost. This realization has led some database system implementers to
adopt a query optimizer that focuses on optimizing the query using some well-
known good rules (called heuristics) or practices for query optimization. Thus,

the goal of heuristic optimization is to apply rules that ensure ”good” practices for

7.4 The Microsoft SQL Server Query Optimizer 53

query execution. Systems typically use heuristic optimization as a means of avoiding
the really bad plans rather than as a primary means of optimization, resulting in
optimization technique hybrids. Systems that use purely heuristic optimizers include
POSTGRES and various academic variants. One example of hybrid implementation

is that of the query optimizer of MySQL.

7.3.3 Parametric Optimization

Parametric optimization combines the application of heuristic methods with cost-
based optimization [24]. The resulting query optimizer provides a means of produc-
ing a smaller set of effective query plans from which cost can be estimated, and thus
the lowest-cost plan of the set can be executed. Query plan generation is created
using a random algorithm, called sipR. This permits systems that utilize parametric
query optimization to choose query plans that can include the uncertainty of pa-
rameter changes (such as buffer sizes) to choose optimal plans either formed on the
fly or from storage. The concept of parametric optimization suggests that the use
of dynamic programming algorithms may even not be needed. It was documented
that for small queries, dynamic programming is superior to randomized algorithms,
whereas for large queries the opposite holds true [24].

7.3.4 Semantic Optimization

The goal of semantic optimization is to form query execution plans based on the
semantics of the database. It is assumed that the optimizer has a basic understand-
ing of the database schema. When a query is submitted, the optimizer uses its
knowledge of the system constraints to simplify or to ignore a particular query if it
is guaranteed to return an empty result set [38]. Though not yet implemented in
any commercial database systems as the primary optimization technique, semantic

optimization is currently the focus of considerable research [39] [40] [42].

7.4 The Microsoft SQL Server Query Optimizer

7.4.1 Query Optimization Process

According to Microsoft SQL Server textbook [26], the SQL Server query optimizer
is designed around a classic cost-based optimizer, based on the Volcano/Cascades
optimizer generator [23] [27]. Query optimization in SQL Server 2008 comprises six
steps: (i) query simplification; (ii) search for trivial plan; (i) statistics creation or
update; (iv) exploration/implementation phases; (v) conversion to execution plan;
and (vi) query plan caching. The first step is query simplification. The optimizer
receives the parsed query and breaks it down to operations that need to be com-

54 Chapter 7. The SQL Server and MySQL Query Optimizers

pleted. It stores that information in a syntactically normalized format. Then, it
checks for obvious contradictions in the predicates (i.e. where coll > 0 and coll
< —3); in case of a contradiction, the optimization procedure stops at this point

and the user receives an empty result set.

If applicable, the optimizer now proceeds with the generation of a trivial plan. In
order to speed up simple queries (i.e. OLTP workloads) that do not correspond to
many query tree alternatives, the optimizer quickly generates a trivial plan for them
and concludes the optimization procedure. The reasoning behind this implementa-
tion decision is that the time spent choosing the best among these few query plans
could be longer than the time spent executing the worse of them.

SQL Server 2008 also gives the user the option to force a specific query plan. This
option is considered at this step, thus stopping further optimization.

The next step is the creation or update of the relevant statistics. At this point, the
optimizer creates or updates statistics on the columns that appear at the predicates.
When statistics are created, a number of table or index rows is sampled to collect
statistical information. Statistics are updated when the number of rows that have
been updated is comparable to a fraction of the total rows. The statistics of SQL
Server contain: (i) an histogram of the data distribution per column participating in
the statistics collection; (7i) header information with information such as the number
of rows sampled during the statistics creation; (7ii) trie trees with data distribution
information for string columns; and (iv) density information, which is the average

number of rows returned per unique value.

At the core of the optimization procedure, we have the exploration/implementation
phases. The optimizer starts from the initial query tree and transforms it into many
equivalent logical trees, using specific exploration rules. Consequently, it generates a
number of physical trees from each logical tree, using specific implementation rules.
Then, it calculates the cost of each physical tree and temporarily stores them in
a special memory component called the Memo. Finally, when all query plans have
been generated and their cost has been calculated, the optimizer chooses the cheap-

est plan in the Memo.

In order to speed up less complex queries, the optimizer separates exploration and
implementation rules based on cost and how likely they are to be useful. Therefore,
it executes this step in three phases, each time finding the cheapest plan after ap-
plying a set of rules. If at the end of the first or the second phase the estimated cost
of the cheapest plan found is comparable to the time spent in optimization so far,
this plan is adopted and the optimization procedure is concluded. One of the most
important priorities when applying these rules is to make use of indexes whenever

7.4 The Microsoft SQL Server Query Optimizer 55

it is possible, that is to say whenever a predicate matches a column index.

SQL Server largely bases its costing model on the number of 1/Os. In order to
calculate the cost of each query plan, the optimizer estimates the selectivity of each
predicate by retrieving the sampled information from the statistics and scaling it to
the current table size. Then, based on the selectivity and the average row length,
it calculates the number of data pages that will have to be read from the disk and,
thus, the number of 1/Os. In order to estimate this as realistically as possible, the
optimizer makes assumptions on the number of sequential and random I/Os that
will be necessary, as well as the number of pages that will be cached and read mul-
tiple times.

Since the query plan search is not exhaustive and the costing model is not ideal,
it is not feasible for the optimizer to always find the optimal plan. Therefore, the
user is given the option of overriding the optimizer’s decisions by submitting an op-
timization hint. If the user has chosen to submit such a hint, the optimizer discards
all rules contradictory to the hint and only generates query plans that comply with

it. However, it still looks for the cheapest plan among them.

At the end of the optimization procedure, the cheapest plan that has been found is
converted into an executable version. The query is then saved in procedure cache
together with the selected execution plan. Simple queries and corresponding plans
are saved in a parameterized format, in order to be re-used when similar queries
with different comparison values in their predicates come up. This option cannot be
used for highly complicated DSS queries where even the selectivity of each predicate
makes a difference in the resulting query plan. Some special cases are the stored
procedures whose execution plan is cached before being called by the user and the

bulk inserts whose execution plan is never cached.

7.4.2 Controlling the SQL Server Optimizer

There are two ways to directly override the query optimizer: plan forcing and plan
hinting. Plan forcing means providing the optimizer with a pre-prepared execution
plan to follow; thus, it does not make sense for ad-hoc DSS queries. Plan hinting,
on the other hand, includes table hints that allow the user to force index selection
and join hints that allow the user to specify the type of join strategy used.

Another way to influence the optimization procedure as an experiment would be
creating and updating statistics manually instead of automatically, thus the opti-
mizer would not always have the most up-to-date information for assigning a cost
to each operator. Finally, we could modify the estimated number of I/Os and the

available space for sorting and storing intermediate results which the optimizer takes

56 Chapter 7. The SQL Server and MySQL Query Optimizers

into account, by changing the page fill factor or the buffer pool size.

7.5 The MySQL Query Optimizer

7.5.1 Query Optimization Process

Our presentation of the principles underlying the MySQL query optimizer relies
largely on MySQL textbook [25]. In one sentence, the MySQL optimizer is a hybrid,
combining a cost-based and a heuristic optimizer.

The most important heuristic in MySQL is that it tries to eliminate as many rows
as possible as soon as possible. This might sound a little counter-intuitive, since
the goal of a query is to find rows, not to reject them. However, MySQL developers
recognise that joins are the most expensive and time consuming of all of the relational
operators and therefore it would be better to perform them on a subset of the
original tables or indexes. Therefore, the optimizer identifies the relational algebra
operations to be computed for the execution of the query, and it uses a Restrict-

Project-Join strategy.

First, it performs the Restrictions by evaluating the predicates in the Where clause.
Thus, it reduces the number of rows to work with. During this step, it follows
another important heuristic: it tries to use indexes whenever possible. Then, it
performs the Projections that appear in the Select clause, in order to reduce the
number of columns in the resulting rows. Finally, it performs the Joins in the From
clause as well as the sorts in the Group by and Order by clauses. At this last stage,
the query is optimized by eliminating any known-bad conditions and finding the
cheapest way to compute the joins. In order to do so, it uses a I/O costing method
based on statistics as well as a search method, both very similar in principle to the
SQL Server’s optimizer.

7.5.2 Controlling the MySQL Optimizer

As explained, the optimizer tries to use indexes whenever possible. Nevertheless, the
user has some control over access method selection with the commands "use index’,

force index’ and ’ignore index’.

It is also possible to override the optimizer decisions by forcing a particular join
order with the command ’straight_join’. However, the optimizer is using the restric-
tion heuristic in this case as well: it attempts to order the tables so that the first
table is the one from which the smallest number of rows will be chosen. This is hard
to guess unless we have a very good knowledge of the data distribution; therefore,

forcing a particular join order rarely helps performance.

7.5 The MySQL Query Optimizer 57

In addition, there are two system variables that affect join optimization: opti-
mizer_prune_level and optimizer_search_depth. The first variable tells the optimizer
to skip certain plans based on estimates of the number of rows accessed for each
table. MySQL developers believe that this is an ’educated guess’ that rarely misses
optimal plans, while it speeds up the optimization procedure. The second variable
tells the optimizer how far into the future’ of each incomplete plan it should look
to evaluate whether it should be expanded further. The smaller the value of this
variable, the smaller the complexity of the search algorithm and the smaller the
optimization time. Once again, developers advise that this is set to a low value,
as they believe that, in most of the cases, the performance benefits of executing an
optimal plan do not compensate for the time it takes to find it.

Finally, just like in SQL Server, the cost-based part of the optimization process re-
lies on data statistics. Therefore, their creation and update influences the optimizer

behavior.

Chapter 8
Test Results and Analysis

In chapter 6, we explained that the performance of ad-hoc decision-support work-
loads can be enhanced by tuning a number of system and database parameters. We
also demonstrated the importance of query optimization, thus exploring the param-
eters that affect each query optimizer in chapter 7. In this chapter, we are going to
perform a series of experiments: first, we will run some full TPC-H tests while vary-
ing the tuning parameters from chapter 6 in order to compare the database systems
overall price/performance ratio; then, we will experiment with the parameters from
chapter 7 and observe the behavior of the two query optimizers by examining the
generated query plans.

8.1 Full TPC-H Tests

8.1.1 Parameters Varied in the Experiments

As mentioned in chapter 6, the following tuning parameters influence the perfor-
mance of ad-hoc decision-support queries: (i) buffer pool size; (ii) sort buffer size;
(1) fill factor; (iv) page size; and (v) enabling of intra-partition parallelism. Since
we are running the tests on a single-core machine, we cannot evaluate the effect of
the last parameter; however, we are going to run the full TPC-H test for various
values of the rest of the parameters. Tables 8.1 and 8.2 display the names and values
range of these parameters in Microsoft SQL Server 2008 and in MySQL 5.1.

MS SQL Server 2008
Min Max | Default Parameter Name
Total Server Memory 0 2 PB 0 min server memory
16 MB | 2 PB 2 PB max Server memory
Fill Factor 1 100 | 0 (=100) fill factor
Page Size n/a n/a 8K n/a

Table 8.1: Tuning parameters affecting DSS query performance in SQL Server 2008.

99

60 Chapter 8. Test Results and Analysis
MySQL 5.1
Min Max | Default Parameter Name
Buffer Pool Size | 1 MB | 4 GB 8 MB | innodb_buffer_pool_size
Sort Buffer Size | 32 KB | 4 GB 2 MB sort_buffer_size
Page Size 8KB | 64 KB | 16 KB univ_page_size

Table 8.2: Tuning parameters affecting DSS query performance in MySQL 5.1.

In SQL Server, the user can only set the total size of memory that the DBMS can
use, by setting its minimum and maximum values. Then, the DBMS automatically
allocates the available memory to the various caches, according to the workload
needs. MySQL, on the other hand, allows the user to set a specific size for the
buffer pool and the sort buffer. Furthermore, while SQL Server operates with a
fixed page size of 8 KB, in MySQL the user can set page size to 8, 16, 32 or 64 KB.
Finally, in SQL Server it is possible to specify the fill factor for each page, while
MySQL manages the free space automatically.

In the next pages, we are going to present the results of running the full TPC-H test
in each of the two systems, under various configurations. Apart from performance
in minutes, we will also show the values of the TPC-H metrics for each test. For
these calculations, we considered the hardware cost to be approximately 500$ and
the software cost 898$ for SQL Server 2008 and 0$ for MySQL 5.1.

8.1.2 Full TPC-H Tests in SQL Server

Tables 8.3 and 8.4 show the test results for several configurations of the two systems,

varying the parameters in Table 8.1.

MS SQL Server 2008

total server memory 16 MB 64 MB 128 MB 256 MB 512 MB 768 MB 1024 MB
fill factor 90% 90% 90% 90% 90% 90% 90%
load test 46min 20min 19min 17min 16min 16min 36min
performance test 4h54min 1h13min 1h 52min 41min 40min 1h9min
Power@1GB 30.76gph | 115.75qph | 119.60gph | 138.44gph | 162.35qph | 164.38qph | 117.34gph
Throughput@1GB 11.90gph 53.30gph 68.04qph 75.60gph 105.32gph | 105.67gph 63.08qph
QphHQ@1GB 19.13gph 78.55qph 90.20gph 102.30gph | 130.76gph | 131.80gph | 86.03gph
Price-per-QphH@1GB 73.08% 17.80% 15.49% 13.67% 10.69% 10.61% 16.25$

Table 8.3: TPC-H full test results for increasing memory size in MS SQL Server 2008.

In the first seven tests with SQL Server in Table 8.3, we keep the fill factor at 90%,
which is a realistic value for DSS workloads with few updates, while varying the to-
tal server memory size. Specifically, we set both min server memory and max server
memory parameters at the same value, so that we achieve a fixed memory size. As
we change the value from 16 to 768 MB, the performance improves significantly;

in fact, the performance difference between two consequent values is impressive in

8.1 Full TPC-H Tests 61

MS SQL Server 2008

total server memory 128 MB 128 MB 128 MB 128 MB 128 MB

fill factor 40% 60% 80% 90% 100%

load test 27min 22min 20min 19min 19min

performance test 2h2min 1h9min 1h3min 1h 59min
Power@1GB 24.86gph | 117.41gph | 119.42gph | 119.60gph | 120.01gph
Throughput@1GB 48.13gph 54.64qph 66.83qph 68.04gph 69.89qph
QphHQ1GB 34.59gph | 80.10gph 89.34gph 90.20gph 91.58qph

Price-per-QphH@Q1GB 40.428% 17.45% 15.65% 15.49% 15.23%

Table 8.4: TPC-H full test results for increasing fill factor in MS SQL Server 2008.

the beginning but, as we move towards higher memory values, the effect is not that
dramatic. The system ends up reaching its full potential around 512 MB. After
that, moving to 768 MB does not make much difference; it looks like 512 MB of
memory are just enough to allow the server to keep all useful pages in cache and
store intermediate results. Finally, when we run the test with 1024 MB of server
memory, the performance suffered severely compared to the previous value of 768
MB. The reason for that is that in this case the server uses up all available memory
in the system, thus causing the operating system to perform poorly.

Subsequently, we experimented with the fill factor parameter. At first we attempted
varying the parameter from 40% up to 100%, while keeping the total server memory
at 768 MB. The results were identical and seemed to indicate that the fill factor
does not influence the performance. This was counter-intuitive, since the fill factor
definitely plays a role in the total amount of data that can be held in the buffer
pool: the buffer pool can only hold a specific number of data pages and each one of
these pages carries as much data as the fill factor dictates. Therefore, we decided to
run the tests again with the total server memory set at 128 MB. The results of these
tests are displayed in Table 8.4. Indeed, this time varying the fill factor did have a
major impact on performance. The explanation for this is that a high memory size
permitted the server to keep all necessary pages in the buffer pool, even if a low fill
factor meant more pages and more 1/Os the first time they are fetched. However,
a low memory size means that a limited number of pages can be kept in the cache
and is then substituted by other pages, therefore the amount of data in each page is
significant as it represents the total amount of data kept in the cache and can lead
to fewer I/Os for page substitutions.

In the five tests with 128 MB and different fill factors in Table 8.4, we observe once
again that the performance is improving rapidly in the beginning and stabilizing as
the value increases. Our conclusion is that the server more or less reaches its poten-
tial around 90%, even though the performance deterioration is not that significant
for 80% too. Just like in the case of memory size, the difference in performance

is a result of the server’s ability to keep more data pages in cache, thus avoiding

62 Chapter 8. Test Results and Analysis

expensive 1/0s, and storing larger intermediate results, thus being able to choose
query plans that require such space and might run faster. This last property will
be verified in one of the following experiments. One more reason why the fill factor
significantly influences performance is the fact that DSS queries tend to contain
large table scans with high selectivity. That means that they tend to access the disk
sequentially instead of randomly and, in most of the cases, fetching a data page to
disk means taking advantage of a large portion of its data. Therefore, a higher fill
factor ensures less 1/Os. Moreover, a higher fill factor can cause slower inserts due
to page splits and bad concurrency because more data gets locked with each page;
however, DSS workloads have very few updates and we are running the tests on a
single-core machine, therefore these factors do not cause performance overhead.

As a final note, examining the performance in Tables 8.3 and 8.4 in terms of the
TPC-H price/performance metric, we can claim that increasing the memory size
from 16MB to 512MB is equivalent to a 85.37% cost reduction, while increasing the
fill factor from 40% to 100% is equivalent to a 62.32% cost reduction. Therefore, it
looks like specialized tuning for DSS queries can help us save a lot.

8.1.3 Full TPC-H Tests in MySQL

MySQL 5.1
buffer pool size 12 MB 48 MB 96 MB 192 MB 384 MB 576 MB 768 MB
sort buffer size 4 MB 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
page size 8 KB 8 KB 8 KB 8 KB 8 KB 8 KB 8 KB
load test 48min 23min 20min 16min 16min 14min 57min
performance test 5h32min 1h28min 1h13min 1h2min 56min 54min 1h44min
Power@1GB 30.25gph | 111.52gph | 114.67gph | 118.93qph | 136.52qph | 139.68qph | 103.68qph
Throughput@1GB 10.02gph 51.39gph 55.59gph 67.76gph 78.73qph 79.08qph 48.12gph
QphH@1GB 17.41gph 75.70gph 79.84gph 89.77qph 103.67gph | 105.10gph | 70.63gph
Price-per-QphHQ1GB 28.72% 6.60% 6.26% 5.57% 4.82% 4.76% 7.80%

Table 8.5: TPC-H full test results for increasing memory size in MySQI 5.1.

MySQL 5.1

buffer pool size 96 MB 96 MB 96 MB 96 MB

sort buffer size 32 MB 32 MB 32 MB 32 MB

page size 8 KB 16 KB 32 KB 64 KB

load test 20min 18min 17min 17min

performance test 1h13min 59min 52min 50min
Power@1GB 114.67gph | 122.58qph | 141.73gph | 144.88gph
Throughput@1GB 55.59qph 69.66qph 79.57qph 82.58qph
QphHQ@1GB 79.84gph 92.41gph 106.20gph | 109.38qph

Price-per-QphHQ1GB 6.26% 5.41% 4.71% 4.57%

Table 8.6: TPC-H full test results for increasing page size in MySQI 5.1.

Tables 8.5 and 8.6 hold the results for MySQL. We experimented with different
memory sizes, while keeping the page size at 8 KB and with various page sizes while

8.1 Full TPC-H Tests 63

keeping the sum of the buffer pool and sort buffer sizes at 128 MB. We chose the
page size of 8 KB for the memory tests in order to be able to compare these results
with the ones from SQL Server that features a fixed page size of 8 KB. Following
the same logic, we chose a total size of 128 MB of memory for the page size tests. At
last, we chose to allocate three quarters of the total memory to the buffer pool and
the rest to the sort buffer, following the tuning advice in MySQL documentation.

The results of the MySQL tests in Tables 8.5 and 8.6 illustrate the same patterns
in performance difference for the same reasons as in the SQL Server tests: the more
space the server has for caching data pages and intermediate results from sortings
and other operations, the better the performance. Once again, the performance
improves signiicantly between lower values and the effect becomes less visible as
the values increase. Also, for memory equal to the total available system mem-
ory, the performance suffers. Like in SQL Server, tuning more appropriately leads
to impressive reductions on the cost: 83.22% price/performance metric difference
between the test with 16MB of total memory and that with 512MB; and, 27.00%
difference between page size of 8KB and 64KB.

One could argue that a higher page size should not improve performance, as in
the best case scenario it means the same amount of data in the buffer pool only
differently organized and in the worse case scenario it means more irrelevant data
occupying space in the buffer pool because they were fetched together with relevant
ones leaving no space for new data, and more data getting locked with each page
by concurrent users. This last part we cannot testify upon, since we are running
the tests on a single-core machine. However, as far as the amount of relevant data
brought into cache with every page is concerned, we remind here that DSS queries
tend to access data sequentially with large table scans; thus, it is highly likely that
each page fetched contains many relevant rows. This means that a higher page size
could lead to less I/Os during a scan. What is more, data pages include a page infor-
mation preamble that occupies valuable space. Therefore, the less pages we divide
the buffer pool size into, the less space goes wasted in non-data preambles. Finally,
depending on the size of the records in each table, it is possible that a larger page
size ensures that more data is stored per page: for instance, supposing fill factor
100%, if the record size is 4,5 KB, we can fit only one record in a 8 KB page but
three records in a 16 KB page. This last reason could explain the big performance
difference between the test with page size 8 KB and the one with 16 KB.

8.1.4 Comparison of SQL Server and MySQL Overall Performance

It is important to note here that the test configurations in the two systems are not

equivalent. In fact, total server memory in SQL Server is used for all memory needs,

64 Chapter 8. Test Results and Analysis

the most important of which are the buffer pool, the sort buffer and the procedure
cache. To eliminate the memory consumed by the procedure cache, we configured
the query optimizers not to cache the query plans, since they are not re-used anyway
as we are dealing with ad-hoc highly complex DSS queries. Therefore, we can claim
that, by allocating total server memory size in SQL Server equal to the sum of the
buffer pool and the sort buffer sizes in MySQL, we have configured the memories
as fairly as possible. Another issue is that SQL Server operates on a fixed page size
of 8 KB but gives the user the right to change the page fill factor, while in MySQL
the user has a choice of page sizes but the fill factor of every page is controlled
dynamically by the server leading to pages with a fill factor between 70% and 95%.
By running tests with fill factor 90% in SQL Server and page size 8 KB in MySQ],

we made the tests more or less comparable.

That being said, even if no configuration is equal to another, we can still draw some
conclusions are to how the two systems compare. Examining the first seven tests
in the results tables, we can see that, for the same page size, more or less the same
total memory size, and a fill factor of 90% and automatically controlled respectively,
the performance of MySQL is slightly worse, altough of the same magnitude. This
could mean that the automatic control of the fill factor in MySQL cannot compete
with a user-defined high fill factor in SQL Server, or that there are some more tuning
parameters (other than the major ones that we mentioned in chapter 6 and which
we set fairly) that cause performance deterioration when left in their default values.
Most likely, however, this performance difference indicates the superiority of SQL
Server’s query optimizer, as we are dealing with highly complex DSS queries. This
conclusion is strengthened by the fact that both systems seem to reach their full
potential after 512 MB of total memory as their performance stops depending on
the amount of data in the buffer pool and becomes stable, and at that point SQL
Server is ahead. We will explore the query optimizers performance some more in

the next experiments.

These results lead us also to understand that, for the same total memory size, in-
creasing the page size is more effective for DSS queries than increasing the fill factor.
This makes total sense because, as we discussed, since we have full scans, relevant
data tend to be next to each other; therefore, the more data per page the better
the performance. A high fill factor in SQL Server can only achieve full use of the 8
KB data page, while a 32 or 64 KB page in MySQL will store a lot more data re-
gardless the fill factor automatically assigned by the system. Thus the performance
difference. As users, we can conclude that having control over the page size is a bet-
ter tool for DSS queries performance enhancement than control over the fill factor.
Hence, here the MySQL approach is superior. However, increasing the memory size

has an influence that exceeds both those of increasing the page size or the fill factor.

8.2 Experiments with the Query Optimizers 65

One final conclusion that can be drawn by these results is that, even though the
TPC-H tests run faster in SQL Server, the price/performance metric favours MySQL.
The additional 898$ required to purchase a SQL Server 2008 license do not seem
to be worthy in terms of performance difference. Therefore, there is a trade-off be-
tween high performance with SQL Server and cheaper implementation with MySQL.
Since the performance difference is not that huge, it makes sense that MySQL is
chosen by small businesses. However, for a global corporation with billions of clients
and suppliers, this performance difference can end up cost more than a SQL Server

license.

8.2 Experiments with the Query Optimizers

Back to parameters that affect the performance of DSS workloads, in chapter 6 we
also demonstrated the importance of query optimization. Various parameters af-
fect query optimization in each one of the DBMSs, as presented in chapter 7. In
a nutshell, both optimizers would be influenced by the quality of available updates
and both systems allow optimizer hints. In addition, SQL Server optimizer seems
to be sensitive to changes in cache data potential, while the user can customize the
exhaustiveness of the query plan search of the MySQL optimizer. We will exper-
iment with these factors and observe the influence they exert on the optimization
of TPC-H queries, by examining the query plans that are generated in each case as
well as the total difference in performance. First, we are going to show the effect
of buffer pool size and fill factor on the query plan choice of SQL Server; then,
we will proceed with some experiments with MySQL’s optimizer_search_depth and

optimizer_prune_level.

Let us note here that our initial idea was to experiment with the optimizers when
there are no statistics avaiable, thus intending to observe the optimizer’s behavior
when it does not have realistic selectivity information on each predicate. To this
goal, we proceeded in running tests in SQL Server while not collecting statistics
during the load test and having turned off their automatic creation and update. To
our surprise, however, the two tests took the same time to run and the generated
execution plans were identical! Taking a closer look on statistics collection in SQL
Server, we found out that index creation automatically triggers statistics collection
on them, and these statistics cannot be dropped while the index exists. Therefore,
since we decided to use indexes for the tests, it is impossible to avoid statistics
collection; plus, these statistics remain almost accurate even though they are not
updated, since the workload contains very few updates. Meanwhile, MySQL does
not allow the user to stop creating and updating statistics.

66 Chapter 8. Test Results and Analysis

When statistics are created in the two systems however there is an important differ-
ence: MySQL samples only 8 pages of table data, by default; SQL Server samples a
minimum of 8MB of data (unless the entire table is smaller than that) and processes
the 200 most represented unique values. This means that, even for a page size of
64KB, MySQL would only be sampling 0.5MB as opposed to SQL Server’s 8MB.
Therefore, the statistics in SQL Server are more accurate and can lead to more
precise costing of query plans and better final choices.

__ & Tp 359D

360TQ0 WAIIEWIT 83 [HAIIHITI
zereog asndwog

szeasn[D] WEDE wepup pazsasniy [

i E

% & rase) % L :ason
oy IR % 0 :asep
TZOSTPPWEY EHITHO Hdl" [dIqdo] {urop Isuur)
rereos sandwon
srassniy) mesp xspu peTsasmin [uzop 3BT3R

el E — e

§ T :3E0%

& 0 I3F03

[6605JLTTASEATIAL Luwd ¥4l - [1weal

¢ 9 zasoy
169348658 JANEINYS 31" [330BIu¥4l
[F33332013] WE3F ¥SPuI PSISRSRID [

A

® §T 2503

0406 1010%] [[J pue gIN ¢IG 021 Aromwew (8109 10] ¢ Aronb 107 werd wornosxy :1°g 9InsLj

® 5T :2E0%

[wzap zawar)

(wFap s=wsr)

[Em—

(PRI2380T3) UEDE XSPUI PEISISTID HIATH HETH BITH HETH
[m—— | ——

A

=

E=

% 0 3=o3 8 T aso)
[XIT ETHROIINN 51 - [HITT4405] (uTop zsuur)
(paz@asnijuoy) u=ag xapur
—

B T aE9)
{sa=bazbiy)

HP3TH WSEH | HYIATH HSTH

% 0 izsaD § 0 :3sa3
s a1l zas0
~0JVI0JSSEEIIY MOLIWN 44l - [HOIIWN] (uTop Iawul) e
az0g

& 0 as0D
{sa=Bazbby)

{Paz33sniy) weag xopup paTaaemIy qoa=R gE=H

Q_ e (|

¢ weazag

i

® 0 303
Io313E

E

"040¥ 1010%] [[J pue N 9] 9z1s A1owew (810} 10] ¢ Atonb o] werd uonnooxy :z'g 9Insrq

» o same
~1693LE6FS S4NEINYE ¥4l- [SEnsIEve)
(Pszszsmra) wesg wepur pazsasnin [

A

%z amey
[XQI0TD arvauIquo el - [fEaguol

(Pe3sasniucx) wEsg *ePuI [

= E

& 0 iaseD
amqeng sandmon

® 55 3o
£2100 WAITIHIT ¥41° [KALIAWTTI e

zmresg samdmoy
‘Fa3=mID) uESg Xspul pazsasmTd [

a |

:s:u .:;su .:ssu
[$6A6ILTTICEITOIL IWed W4l -~ [Id¥a) {wTep zauwur) {uTep zauur)
et e oat Sams anee) e satanea e] e
P o e s
M1 ATENGI TEN €] - (WaTTEANE] JEy— P — (sa=Baxbiy)
{Pazassniouey) weop xepur usarh ween | L umamgowses o uosmm weem
-
e | Ee E= E-=

5 0 :asa3 8 0 :asa3 B0 rase)
— - [JCIETLHY ® 0 :3so)
~03VU0DESHEIAY NOLIEN a1 [NOIIWN] (urop awuuy) (=a3=B2286y)

azog o3t

(pa3asni]) weag xepul PaIASNID AT qEEH —— ——— sacheaBby weszag ——

| B £ i E

"TOSAN ur ¢ L1onb 107 ue(d UoOINIOXH :g'Q SINSI

EIHMOIIHN N-uoTjeu-iyads AHUMIHd AHUWIHd uot e AUUWIHd
FANdANS 8§ 2T Tddns "yadg AIHNOIIUN 5 AIHNOILUN 57 AHUMWIHd JaTgddns AHHMW IHd
&E ! AHMdANS §d-ddnsjaed-yoads AHHAANS Sd ! AHMIHUL Sd 7 AHMddNS Sd " AHUWIHA ddnsj.aed AHYMW IHL

1 6ERELT! AIHHAQUO™ 0~ saapao-yady AHUMIHL § AHUWIHd] AHUMIHL
15886FT! AHHIHYd T wajraury ~yadi ATAIHYL T | AIMIHYd T° AIMddNS T~ AHUW IHd WAy T AHYH THd
i ATRAE | TINN TINN AHUWIHd AHUMIH

70 Chapter 8. Test Results and Analysis

selact

nation,

o_year,

sum{amountl) as sum_profit
from

select
n_name as nation,
extract(year from o_orderdate) as o_year,
T_extendedprice * (1 - T_discount) — ps_supplycost ¥ l_guantity as amount
from
part,
supplier,
Tineitem,
partsupp,
orders,
nation
where

and ps_suppkey suppkey
and ps_partkey _partkey
and p_partkey = 1_partkeg

and o_orderkey = 1_order eg
and s_nationkey = n_nationkey
and p_name Tike '%dark%’

s_suppkey = 1_suquey
e

3 as profit
group by
nation,
o_year
order by
nation,
o_wear desc;

Figure 8.4: Query 9 text.

8.2.1 Experiments with SQL Server

During our SQL Server tests with different memory sizes and fill factors, we found
that some of the queries were executed using different query plans. The objective of
the following two experiments is to explain why this occured and how it influenced

performance.

Figures 8.1 and 8.2 present the execution plans generated for the same query (query
9) in SQL Server with high total memory size and fill factor settings, and with low
total memory size and fill factor settings, respectively. Query 9 is a join-bound query
and with this experiment we intend to show how these two parameters influence the
implementation of joins. You can see the query text in Figure 8.4. Reading the
plans from right to left, we see that in Figure 8.1 the join order is

(((((Orders& Lineitem)& Part)& Partsupp)& Supplier)& N ation)
while in Figure 8.2 the join order is

(((((Part& Lineitem)&Orders)&Supplier)& Partsupp)& N ation)

The first two joins in each plan involve the same three tables: Lineitem, Orders
and Part. With scale factor 1, Lineitem has 6.000.000 rows, Orders 1.500.000 and
Part 200.000. Therefore, joining Orders with Lineitem requires a much larger buffer
than joining Part with Lineitem for any kind of join algorithm, not only for the
join operation itself but also for storing the intermediate result. However, it may

be worth it in terms of performance, as both Orders and Lineitem have indexes

8.2 Experiments with the Query Optimizers 71

on the column Orderkey so they can be joined with a merge join, which is less
expensive than a hash join. Hence, we observe that the low settings plan chose a
slower solution because it lacked the means to implement the faster one.

Moving to the next two joins, we see that once again they involve the same tables
(Partsupp and Supplier) but in reverse order. Partsupp has 800.000 rows while
Supplier has only 10.000. So, once again because of limited available memory, the
low settings test chooses to implement the join with Supplier first, thus avoiding to
store large intermediate results.

Query 9 ran in 35 seconds with high settings and in 57 seconds with low settings.
This proves the superiority of the first plan, even though it could not be implemented
in the second case due to space limitations. To verify our theory, we forced the first
plan’s join order under low settings; the query timed out at 5 minutes without
returning results. Thus, the available memory was indeed too small to use this plan.
Finally, we forced the second query plan’s join order under high settings and the
query ran in 49 seconds; hence, the second plan is indeed slower. An extra conclusion
that we can draw from this experiment is that, even for highly complicated queries,
SQL Server’s query optimizer should be able to recognise the optimal join order
and apply it if there are adequate resources. Therefore, forcing the query’s join
order does not seem likely to enhance performance; it is rather a tool developed for

experiments like this one.

Finally, Figure 8.4 shows the execution plan generated by MySQL. This plan does
not change, regardless the buffer pool size and it follows the ’safe path’, that is
to say it is executable even in a small pool. This leads us to believe that the
MySQL optimizer is not memory-sensitive and, therefore, cannot take advantage
of the potential benefits of an increased memory as far as possible query plans are

concerned.

0406 1010%] [[J pue g ¢1G 9z1s Arowewt [e)0) 10] (O Atonb 10j ued wOINOOXY :G'Q 9INII

% ke i3ERD
TWEIIIENIT HAl° IRTITENITI
o) we3af wERUT pa3 33ERlD

o

v oGaEmD
aegeas agndwop

E

% 8T :3%00
“O9ETZNE TOOWYY SHINHO Hal |I5uInyol
{pa3a]EnI]] UEaF SApUL pA3AAJERTD

Lo

| —

“IYES LEYNT MAROIEND. Hal ' hLEwoisno |

ipraaqEnn)

LI L1 IR SRR L1}
frrTop aswrrrl {mehmafifer)
Pa T eEE S Rl e—— CE L LY e—

===

L] b L]
OO0 DEERREAY HOIIYH a4l " IHDII¥H|
AP BIERIO) YIDF X IPUI PRIABIENID

_ﬂvn]

% 0 3Eeg

ABIE FIPUL PIIBIENID

_ﬂm.n |

ELY R e IS BEELLF! s
Lt u.au P §UrTop amurrl (rTop amerr) % 0 :3F0n
das sdong pagean L edoog pageay . JOLTAR

=+
E 2 g E

04 0% 1010%] [[J pue N 9] 9ZIs A1oweu [R10} 10])T Areonb 10] uerd uonnoexy :9°g oInsrg

i LRI
“IEIEDTANT MEIITEHIT w4l IMIITIHITI

aerey E
ipmamaEnTal e wapwr pmamearn o o creE ¥

LI RE LLE]
ITATMIERDT 0l IsuEnun|
I1BIEATOS0H] URIE XIRNT

T

P

SIS LI E] [ARE-LLE]

o 1 LY
o gaynyanyo ol - |swangnl LT SEET 81 i uau B
LEELAS LT AR))) LEELIUEE LT 3328

T E
oy oy e
3 . =

[L1 IR RE-L1F]
sUter 3 awer)

t23e62 36k v EARNO
wiop afame o WRIRR yTEN

O =

“OAVOOIESERRAY MOIIWKS W4l lnoIzvel
fpa3azgqeniol

[BEELLF!
“THEASLENN T MEMOIFAT M4 | [MEROIEND|
fPBIBJENID) ABDE XIPUI PIIBIENID

o

qang

——

% 0 :3%00

ABB5 EIPUL PIIBIENLD

_n_mm.1

% 0 #3800
ivzer asvv)

v O :3EDD
swtep amwer)]

rdooT pags 2 = tdn o pagE A —

ol

% 0 F3%00
I2TTaF

74 Chapter 8. Test Results and Analysis

select

sumf1_extendedprice) / 7.0 as avg_yearly
from

Tineitem,

part
where

p_partkey = 1_parthkey
and p_brand = "Brand#52'

and p_container = 'MED DRUM'
and l_quantity <
select
0.2 % awvgl]_guantity)
from
Tineitem
where

3 1_partkey = p_partkey

Figure 8.7: Query 10 text.

In Figures 8.5 and 8.6, we have the execution plans generated for query 10 running
in SQL Server first under high total memory size and fill factor settings, and then
under low total memory size and fill factor settings. The query text is shown in
Figure 8.7. The purpose of the experiment is to understand the optimizer’s access
path choices when running scan-bound queries under different values of memory size
and fill factor.

Examining the execution plans, we see that their only difference is the method
with which they chose to access the table Orders. The part that is different is
located at the upper-right part of the figures. In order to enter the merge join
with Lineitem, the scan results from table Orders have to be sorted on the Orderkey
column; meanwhile, the scan has to evaluate the date predicates and return columns
Orderkey and Custkey. In cases like this, whenever possible, SQL Server evaluates
the predicate within the scan. Indeed, it did so in the case of high settings. However,
this predicate is too expensive to evaluate in terms of memory resources; therefore,
in the case of low settings, the optimizer chose to use a separate index seek to find
the rows that qualify the date predicates and then use another index in an index
scan as a hash join probe. Of course, after that it had to sort the results to prepare
them for the merge join with Lineitem, all in all resulting in worse performance.
Indeed, the query took 43 seconds to execute in low settings and only 29 in high
settings.

Subsequently, we tried the following: in high server settings, we forced the use of
Orderdate index, thus the optimizer used the second plan instead of the first. This
time the query ran in 34 seconds! This is an interesting case, as it turns out that
the use of as many indexes as the predicates allow does not always lead to better
performance. Evaluating the predicate within a scan can be quicker than using two
indexes and joining the results; especially in this case when we also needed to sort

8.2 Experiments with the Query Optimizers 75

the results in the end. Therefore, when SQL Server chooses not to use an available
index, there might be a good reason for this decision and we should make sure that

manually forcing the use of an index does indeed enhance performance.

‘T=teadr ounad-tozruurydo ypm TOSAN Ul 11 A1enb 10y werd uornoexy :6°g 9INsIq

AIMAANS 5 aaTTddns yods faHddNs 5d AIAdANS 54 nn....mumu.umn AHANDANS
AIMNOILYN N-uoTieu-yody SHHNOILUN 3 | AHHNOILUN 57 AHUMWIHL .nu._”._”nwn_..m AHANDANS
STy I TINN TINN 1§ AHUMIHd .._a.m” Ieu AHANDANS
AIMAANS 5 aaTTddns yods AIHddNS 3d | AIAdANS 34 ddnsjred AHUWIHd

xXaput y AIMNOILYN N-uoTieu-yody AIHNOIIUN S | AFHNOILUN S~ AHUMIHL auﬁﬁwnsm i AHUWIHd i
! 3Jd08aTTF Bursp fhae

a3 Burs fagayn T AHUMIHd AHUWIHd |

AHMddNS” § AT ddns "yady AIAdANS 5d | AIMdANS 5d . AHANbANS
1
adaym BUTsq AAMNOTIIGN §--1aTTddns-yady SHUMIHd | SHUMIHA uoT 3eu AUANDANS

TTINN ! AIHNOILUN 5 ;| ROMMOILUN S*AHUYWIHA darddns AHANGANS

AgHddNs” §-aaTTddns -yads i AHHdANS 5d | ATMdANS 5d i ddnsjaed AHUHIHd

Xaput Butsy AIMNOTIUN N™uoTjeu-yads ! AEHNOILIUN 5 | AHMNOIIUN 5° RHUMWIHA 1ar1ddns AHUWIHA
jdo0saTT § Bursp fAgaedodwan B

fadaym Bursq AHUMIHA AHUMIHA § F

“I0AIG TS Ul 11 L1enb 107 ue(d uonnoexy :07°g 9INSLg

$ Tb 131500
“169J4LE6FS ddNsSIuvd ud]- [ddnsIuvd]

% 0 3500
IeTEDS 831ndwod

(peI231snTd) UEDS XSPUI PRISISNTD [> E—
% 0 :31S0D
[XQI ZTUNOIIYN S] - [9¥FITddns]
(PeI23sSnIJUON) }e25 Xepul
$ 0 359D $ 0 350D $ 8 350D $ T 350D
~0AYA0DISSHFFII¥Y NOITYN ¥dl " [NOII¥N] (uTop IsUUI) (uTop I8uUI) (e1=beabby)
(P2I318NTD) weS§ ¥IpUI PAISISNID sdooT paisaN L= yoaew uysem) UDIBW YSEH [
—_— —_—
$ T¥ 359D
L it $ 0 :359D
L€6%S adnsig¥d 4] - [ddnsidvdl
zeTess eandwo)n
1815NTD) URSS XSpUIl PaILBISNTD [| —
3 0 159D
[XdI AZINOILIYN s] - [¥EI14d05]
(p2I1315NTOUON) X385 Xapul
$ 0 350D $ 0 350D $ § :3soD 3 0 150D
il Zatl $ 0 350D
I0065FF93Y NOII¥N ¥dl ~ [NOTIIWN] (uter Isuur) (uter Isuur) (e1ebeabby) e R
2I215NTD) UBDS XIPUI PaI=aasnId sdooT paasaN e 4 Y21eW YseH) 23ebeabby wesazas — 1

A

[—
o ——y

- 1 E

{

LT sdooT p=siseN ——

% 0 :3s0D
(utop I|UUIL)
: 1108

% T 350D % 0

E

t3so0p
LJETES

78 Chapter 8. Test Results and Analysis

Eelact
ps_partkey,
sumgps_supplycost ¥ ps_availgty) as walue
from
partsupp,
supplier,
natiaon
where v v
ps_suppkey = s_suppkey
and s_nat¥0nkey = n_nationke
and n_name = 'UNITED KINGDOM
group by
ps_partkey having
sumips_supplycost ¥ ps_availgty) = €
select
2 sumgps_supplycost * ps_availgty) % 0.0001000000
rom
partsupp,
supplier use index(primary),
natiaon
where . ’
ps_suppkey = s_suppkey
and s_nat¥0nkey = n_nationke
and n_name = 'UNITED KINGDOM
arder by

value desc;

Figure 8.11: Query 11 text.

8.2.2 Experiments with MySQL

In this experiment, we attempted changing the value of the parameter optimizer_prune
_level in MySQL. This variable controls the heuristics applied during query optimiza-
tion to prune less-promising partial plans from the optimizer search space. In other
words, it tells the optimizer to perform an ’educated guess’ and skip certain plans
based on estimates of the number of rows accessed for each table. By default, this
option is on (the value of the parameter is 1).

In order to test this function, we used the scan-bound query 11. The generated
query plans for MySQL are shown in Figures 8.8 and 8.9, the query plan for SQL
Server in Figure 8.10, and the query text in Figure 8.11.

We can observe that changing the value of optimizer_prune_level influences the join
order of the tables Supplier and Nation within the subquery. In the first case,
MySQL needs to examine 10033+1 = 10034 rows, while in the second 254172 = 197
rows. The fact that in the second case the optimizer took the time to perform a
more exhaustive search, rather than simply follow MySQL’s practice of putting the
largest table first, paid off: in the first case, the query ran in 42 seconds, while in
the second in 36 seconds. Thus, DSS queries could benefit from setting the opti-
mizer_prune_level parameter to 0. Also, if we had eliminated this query and realized
that it would benefit from a change in join order, it would have made sense to use

a join hint, such as straight_join.

Meanwhile, SQL Server’s optimizer came up with essentially the same query plan
as the second case in MySQL. However, it executed the query in 34 seconds, which
may indicate that the optimization procedure itself in SQL Server might be not only
reliable but also quick.

‘z9=11dop yoreas-tozrurydo yym THSAN ur g Lrenb 1oy ueld uornooxy :¢1°Q 9INSIq

T ey Butsy
AIHNOIDHY M- uoTieu-yods AU IHd AU IHd uorBaa AHANDANS LINHANAJHT |
STHNOILYN ™ §-<a1Tddns - yody AHUMIHd & AHHNOIODHY N” AHUMIHd uotrjeu AHANDANS INHANAJHA |
EANAANS 8d -ddnsyaed -yady AHUWIHA AIHNOIIUN S° AHUMIHA darpddns AHANDANS INHANALAT |
RIMIMYd - 3red - yody AHUMIHd | ATALHUL Sd°A3HddNS 8d° AHUMIHA ddnsjaed AHANDANS Hzmnzmmwmznm:ﬁm
AIMIHYL 54 -ddnsiaed-yady AHUMIHA & AHYM IHd Jaed AHUMIHd |
AIHIANS § a1 ddns - yody AHAAANS 5d | AHAIHU Sd7AHALINS Sd”°AHUMIHd ddnsjaed AHUMIHd |
AIHNOTIYN M- uoTjeu-yody SIMNOIIUN S | AIHNOIIUN S° AHUMIHA darpddns AHUMIHA
ATHNOIDTY Y- uoThaa-yads FHHNOIDIN N i FIHNOIDIY N” AHUMIHG uot jeu AHUMIHA

3I05aTTF Burs) fAaedodwusa) Bur s Sadaym Burs
AHYM IHd uorbaa AHUMIH

a-TalM

AIHAANS 5d " ddnsjaed-yady AHUWIHA AHHINOTLYUN S° AHUWIHd wuhl&u darpddns AHANDANS INAANAJAT |

AIM LMD - 3aed-yadsy AHUWIHA AIHIHYd Sd7AIMdANS 547 AHYWMIHL Fad ddnsjyaed AHANDANS Hzmnzmmwmcw
ATHNOIDHY H - uoThaa-yady AHHNOIDHY N AHANOIDHY N” AHUMWIHd Fad uorieu AHANDANS hzmnzmmmm5h
TTNN TINN AHUWIHA : TTH uoThad AHANDANS hzmnzmmmm_r
mmzhmcmlmm.nnﬁmuamn.:unu m:czumm m:czumm W&.IU@ uamn mmczuwm—“

- mem

AIHAINST ST Tddns "yady AHHIANS Sd AHHIHYd Sd°ATMddNS Sd~ AHUMWIHd Fad ddnsjaed AHHWIHd |
AIHNOTIUN M- uoTieu-yady AIHNOIIUN 8 SHANOTLUN S AHUWIHd Fast darpddns AHUWIHd §
AIHNOIDIY H-uoThaa-yady AIHHOIDIH N AIANOIDHH H™ AHUMIHL Fad | uoTieu AHUMIHd §

JI05aTT J Burs fhavdodua) BUTs) & a.daym
AHUW THd AHUWITHd

% £g =3s0D
\E6FS @dnsIidwd xdl - [dansruwal
s1sn1g) yssg ¥spul paIsasnll

ﬂm.ﬂ_

% 25 ‘1500 8 £ “350D

ILTTIS6TTOEL- Luvd Aal - [Iuvd] (utop Isuw)

:s15nT3) uED§ XSPUI PBISISOTD sdoo psassy
[———--

|

~19280Z83% WAITIANS ¥d) - [WITTEEns]

{p=3=3sn1)) uESs ¥spul PSISISOTD

===

“I0AIOS TS Ul g A1onb 10y werd uormnooxy :H1°g oINS

% 0 T3sod
(utep zauur)
urer sbasy

B

4 0 3so) % 0 3803
“OEYO0255FFIAY MOTIYM 4l [NOTIYMI (uTop Isuul)
(psas1sn[D) uEas XIpuUl PIIILSAID Y22EH YsEH
5 0 180D % 0 I3s03 o casen
“WZO¥00IEDE0F3 MOTOTY al~ [NOIOT] (utop zsuuI) Ly

% 0 :asod
EELES

{p733sn[g] ueag ¥spul psIsISOIR yo1=R Hsey

& fe

% 0 :3s0D
LogT1ds

E

8.2 Experiments with the Query Optimizers 81

Eelect
s_accthal,
s_name,
n_name,
pfpgftkey,
p_mtar,
S adgress,
s_phonea,
s_comment
from
part,
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = 33
and p_type Tike '¥STEEL
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EUROPE
and ps_supg?ycost =
splact
mingps_supplycost)
from
partsupp,
supplier,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_natjonkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EURCOPE’

2

order by
s_accthal desc,
n_name,
s_name,
p_partkey

Timit 100;

Figure 8.15: Query 2 text.

In this experiment, we changed the value of the variable optimizer_search_depth,
which controls the maximum depth of search performed by the query optimizer.
In other words, this variable tells the optimizer how far into the ’future’ of each
incomplete plan it should look, to evaluate whether it should be expanded further.
Values larger than the number of relations in a query result in better query plans,
but take longer to generate an execution plan for a query. Values smaller than the
number of relations return an execution plan quicker, but it may be far from being
optimal. By default, this variable is set to 62, thus dictating full depth search.

We chose query 2, a join-bound query involving six tables. The execution plan for op-
timizer_search_depth=1 appears in Figure 8.12, the plan for optimizer_search_depth=62
in Figure 8.13 and the query text in Figure 8.15. Setting the variable equal to 1 in
the first experiment is equivalent to setting the lowest possible search depth. The
second execution plan that required an in-depth exploration of the query tree search
space executed in 342 seconds, whilst the first, naive plan executed in 793 seconds.
Therefore, setting this variable at a high value when executing a highly complex
query can result in greater performance overall, thanks to a more efficient query

plan, even though the optimization process takes longer.

What is more, this query was executed in SQL Server extremely quickly: in only 8
seconds. The execution plan is shown in Figure 8.14. The reason why SQL Server
performed so much better in this case, is because it only accessed the tables once,
satisfying the predicates for both the query and the subquery. SQL Server is able
to spot and take advantage of such opportunities, as it has a special 'normalization’

82 Chapter 8. Test Results and Analysis

process during its query parsing phase. The conclusion is that even the most ex-
haustive search for the optimal join order and index selection in MySQL sometimes
simply cannot compete with the so-much-less query-plan-restrictive philosophy of
SQL Server optimizer.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

First of all, after examining the TPC-H benchmark in detail and having ran the
tests, we can conclude that this is a test that can be performed at home, without a
team of experts. Even though our results cannot be compared to the official results
due to the low scale factor we had to use, we could still observe differences between
different systems and configurations. Therefore, this test is scalable and easy-to-use.

The TPC-H test gave us the motivation to look a little deeper into the factors that
influence the performance of DSS queries. These factors include some tuning op-
tions, as well as parameters that influence query optimization. We experimented
with SQL Server 2008 and MySQL 5.1 while varying such tuning options and pa-

rameters, arriving to some interesting conclusions.

The most influential tuning option is the memory size, namely the buffer pool and
the sort buffer sizes. Increasing the memory allows more data to be available in the
cache, resulting in less need for I/Os, and creates more space for executing large
sorts. Essentially, a larger memory size allows us to host more data pages in the
cache. Going a little further than that, the fact that DSS workloads tend to contain
large scans with high selectivity indicates that it is highly probable that each page
contains a lot of relevant data. This means that we are not only interested in the
number of pages in the cache, but also in the amount of data they host. Hence,
the page size and the fill factor can also play an important role in the performance
of DSS queries; and in that order, since increasing the page size is equivalent to
a more dramatic increase of data per page.Incidentally, increasing the fill factor
does not usually lead to disorganization, as DSS workloads contain few, if any, up-
dates. Both database systems offer options for changing the memory size. However,
MySQL offers the page size option, which prevails against SQL Server’s fill factor

option. Finally, we can use these tuning parameters to enhance performance up to

83

84 Chapter 9. Conclusions and Future Work

a point: once all the data has been loaded into the cache and there is enough space

for sorts, their influence ceases.

Since the two systems do not have identical configuration options, we cannot tune
them fairly. Nevertheless, for similar configurations, MySQL is consistently slower
than SQL Server. Since tuning is most probably not responsible for this difference,
we attribute it to different query optimizer philosophies. In any case, MySQL might
take a little longer to execute the TPC-H tests, yet it has a higher price/performance
ratio thanks to being a freeware. In other words, if you are not going for optimal
performance, it is certainly a viable and cheap alternative.

Next, we examined the query optimizers, observing how the partially-heuristic phi-
losophy of MySQL generates good enough plans almost always. However, in the
case of extremely complex queries like those of TPC-H, SQL Server most of the
times comes up with a better execution plan. A reason for this might be the fact
that, when calculating a plan cost, only SQL Server query optimizer takes into ac-
count the cache size and the fill factor; another reason is that SQL Server samples
more pages during statistics creation, therefore it has more accurate information for
costing. On top of that, the MySQL optimizer features a parameter called opti-
mizer_prune_level that commands it to ignore some query plans for the sake of quick
query optimization. This technique would be useful for OLTP workloads, but it is
dangerous for DSS ones. Similar dangers lurk in setting the optimizer_search_depth
too low, thus limiting how far into the "future’ of each incomplete plan the optimizer
should look. Meanwhile, SQL Server optimizes non-trivial queries in phases, thus
automatically deciding to perform a more exhaustive search if the query is highly
complex. Finally, we can conclude that DSS queries may be expensive to optimize,
yet a good query plan can be highly beneficial for performance. One should monitor
the optimizer behaviour and provide query plan hints if required.

9.2 Future Work

Firtsly, it would certainly be interesting to run the TPC-H test with a higher scale
factor. Such results could be directly compared to the official ones and we could
establish whether it is possible to recreate such performances at home. In addition,
with a larger database we would be able to observe finer differences between different

configurations and reach more conclusions.

Secondly, in chapter 6 we mentioned that DSS queries are influenced by concurrency
options, such as intra-partition parallelism. Running the tests on a multi-core ma-
chine would permit us to explore the performance differences caused by this option.
Furthermore, there could arise a trade-off between increasing the fill factor or the

9.2 Future Work 85

page size in order to keep more data into the cache, and keeping them low so that

fewer data is unavailable when a page is locked.

Bibliography

[1] TPC Benchmark™" H (Decision Support) Standard Specification, Revision 2.3.0

2] Gray, J.,“Database and Transaction Processing Performance Handbook” (2nd
Edition), Morgan Kaufmann 1993

[3] Shao, M., Ailamaki, A., Falsafi, B., “DBmbench: Fast and Accurate Database
Workload Representation on Modern Microarchitectur”, Conference of the Cen-
tre for Advanced Studies on Collaborative Research 2005

[4] Chaudhri, A., Rashid, A., Zicari, R., “XML Data Management: Native XML
and XML-Enabled Database Systems”, Pearson Education 2003

[5] Anon et. al., “A Measure of Transaction Processing Power”, Datamation,
V.31.7, 1985

[6] Hellerstein, J., Stonebraker, M., Hamilton, J., “Architecture of a Database
System”, Foundations and Trends in Databases, Vol.1, No.2, 2007

[7] Chaudhuri, S., “An Overview of Query Optimization in Relational Systems”,

Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, p.34-43, June 01-04, 1998, Seattle

[8] Elnaffar, S., Martin, P., Schiefer, B., Lightstone, S., “Is it DSS or OLTP: au-
tomatically identifying DBMS workloads”, Journal of Intelligent Information
Systems, v.30 n.3, p.249-271, 2008

9] Elnaffar, S., “A methodology for auto-recognizing DBMS workloads”, Proceed-
ings of the 2002 conference of the Centre for Advanced Studies on Collaborative
research, p.2, September 30-October 03, 2002, Toronto

[10] Elnaffar, S., Martin, P., Horman, R., “Automatically classifying database work-
loads”, Proceedings of the eleventh international conference on Information and
knowledge management, November 04-09, 2002, McLean

[11] Chaudhuri | S., Narasayya, V., “Self-tuning database systems: a decade of
progress”, Proceedings of the 33rd international conference on Very large data
bases, September 23-27, 2007, Vienna, Austria

87

88 Bibliography

[12] Wiesel, D., Rabinovitch, G., Reichert, M., Arenswald, S., “Autonomic tuning
expert: a framework for best-practice oriented autonomic database tuning”,
Proceedings of the 2008 conference of the center for advanced studies on collab-
orative research: meeting of minds, session: databases, article 3, 2008, Ontario

[13] “DB2 Universal Database Version 7 Administration Guide: Performance”, IBM
Corporation, 2000

[14] “Oracle9i Database Performance Guide and Reference”, Release 1(9.0.1), Part
A87503-02, Oracle Corp., 2001

[15] Paulsell, K., “Sybase Adaptive Server Enterprise Performance and Tuning
Guide”, Sybase Inc., Adaptive Server Enterprise Version 12, Document ID:
32614-01-1200-01-01/32615-01-1200-01, 1999

[16] Packer, A., “Configuring and Tuning Databases on the Solaris Platform”, Sun
Microsystems Press, ISBN 0-13-083417-3, 2002

[17] Chokshi, D., “Performance Comparison Between ASE 15.0 and MySQL 5.0
White Paper”, Server Performance and Engineering Development Group,
Sybase Inc., 2006

[18] Zhou, J., “Database Performance Analysis and Tuning: A Comparative Study
of TPC-H Benchmark on Oracle and DB2”, Concordia University, 2003, Mon-
treal

[19] Castanhede, T., Dill, S., Padoin, E., “Performance Evaluation of MySQL under
different file systems” (in Portuguese), IV Sulcomp, Santa Catarina, 2008

[20] Mullins, C., “Database Administration: The Complete Guide to Practices and
Procedures”, Addison-Wesley, 2002

[21] Selinger, P., Astraham, D., Lories, R., Price, T., “Access Path Selection in a
Relational Database Management System”, Proceedings of the ACM SIGMOD
International Conference on the Management of Data, p.23-24, Aberdeen, 1979

[22] Stonebraker, M., Wong, E., Kreps, P., “The Design and Implementation of
INGRES”, ACM Transactions on Database Systems 1(3), p.189-222, 1976

[23] McKenna, W., “Volcano Query Optimizer Generator Manual”, University of
Colorado, 1992

[24] Toannidis, Y., Ng, R., Shim, K., Sellis, T., “Parametric Query Optimization”,
The VLDB Journal e The International Journal on Very Large Data Bases, v.6
n.2, p.132-151, 1997

Bibliography 89

[25]

[26]

[27]

[28]

[29]

[31]

32]

33]

[34]

[35]

Bell, C., “Expert MySQL”, Apress, 2007

Delaney, K. et. al., “Microsoft SQL Server 2008 Internals”, Microsoft Press,
2009

Graefe, G., “The Cascades Framework for Query Optimization”, IEEE Data
Eng. Bull. 18(3), p.19-29, 1995

Harizopoulos, S., Shkapenyuk , V., Ailamaki, A., “QPipe: a simultaneously
pipelined relational query engine”, Proceedings of the 2005 ACM SIGMOD
international conference on Management of data,p.14-16, Baltimore, 2005

Idreos, S., Kersten, M., Manegold, S., “Self-organizing tuple reconstruction in
column-stores”, Proceedings of the 35th SIGMOD international conference on

Management of data, Providence, 2009

Acar, A., Motro, A., “Efficient discovery of join plans in schemaless data”,
Proceedings of the 2009 International Database Engineering & Applications
Symposium, p.1-11, Cetraro, 2009

Wiese, D., Rabinovitch, G., Reichert, M., Arenswald, S., “Autonomic tuning
expert: a framework for best-practice oriented autonomic database tuning”,
Proceedings of the 2008 conference of the center for advanced studies on col-
laborative research: meeting of minds, article 3, Ontario, 2008

Ailamaki, A., DeWitt, D., Hill, M., “Data page layouts for relational databases
on deep memory hierarchies”, The VLDB Journal e The International Journal
on Very Large Data Bases, v.11 n.3, p.198-215, 2002

Somogyi, S., Wenisch, T., Ailamaki , A., Falsafi, B., “Spatio-Temporal Mem-
ory Streaming”’, Proceedings of the 36th annual international symposium on
Computer Architecture, p.69-80, Austin, 2009

Johnson, R., Harizopoulos , S., Hardavellas, N., Sabirli, K., Pandis, I., Aila-
maki, A., Mancheril, N.; Falsafi, B., “To share or not to share?”, Proceedings

of the 33rd international conference on Very large data bases, Vienna, 2007

Guehis, S., Goasdoue-Thion, V., Rigaux, P., “Speeding-up data-driven applica-
tions with program summaries”, Proceedings of the 2009 International Database
Engineering & Applications Symposium, p.66-76, Cetraro, 2009

Kitsuregawa, M., Goda, K., Hoshino, T., “Storage fusion”, Proceedings of the
2nd international conference on Ubiquitous information management and com-
munication, p.270-277, Suwon, 2008

90 Bibliography

[37] Lim, K., Chang, J., Mudge, T., Ranganathan, P., Reinhardt, S., Wenisch, T.,
“Disaggregated memory for expansion and sharing in blade servers”, Proceed-
ings of the 36th annual international symposium on Computer architecture,
p.267-278, Austin, 2009

[38] Trigoni, A., Moody, K., “Using Association Rules to Add or Eliminate Query
Constraints Automatically”, 13th International Conference on Scientific and
Statistical Database Management, 2001

[39] Aberer, K., Fischer, G., “Semantic Query Optimization for Methods in Object-
Oriented Database Systems”, Gesellschaft fuer Mathematik und Datenverar-
beitung (GMD), Darmstadt, 1994

[40] Genet B., Dobbie, G., “Is semantic optimisation worthwhile?”, In Proceedingsof
the 21st Australasian Computer Science Conference, p. 2450256, Perth, 1998

[41] Mannino, M., “Database Design, Application Development, and Administra-
tion”, McGraw-Hill, 2004

[42] King, J., “QUIST: a system for semantic query optimization in relational
databases”, Proceedings of the 7th International Conference on Very Large
Databases, p.510-517, Los Angeles, 1981

Appendix A

Source code

for Microsoft SQL Server 2008

A.1 Database Build Scripts

CreateTables.sql

create table PART

(P_PARTKEY int not null,
P_NAME varchar(55) not null,
P_MFGR char(25) not null,
P_BRAND char(10) not null,
P_TYPE varchar(25) not null,
P_SIZE int not null,
P_CONTAINER char(10) not null,
P_RETAILPRICE float not null,
P_COMMENT varchar(23) not null)

create table SUPPLIER
(S_SUPPKEY int not null,

S_NAME char(25) not null,
S_ADDRESS varchar(40) not null,
S_NATIONKEY int not null,
S_PHONE char(15) not null,
S_ACCTBAL float not null,
S_COMMENT varchar(101) not null)

create table PARTSUPP
(PS_PARTKEY int not null,
PS_SUPPKEY int not null,
PS_AVAILQTY int not null,
PS_SUPPLYCOST float not null,

PS_COMMENT varchar(199) not null)

create table CUSTOMER
(C_CUSTKEY int not null,

C_NAME varchar(25) not null,
C_ADDRESS varchar(40) not null,
C_NATIONKEY int not null,
C_PHONE char(15) not null,
C_ACCTBAL float not null,
C_MKTSEGMENT char (10) not null,
C_COMMENT varchar(117) not null)

create table ORDERS
(O_ORDERKEY bigint not null,
0_CUSTKEY int not null,
0_ORDERSTATUS char(1) not null,
O_TOTALPRICE float not null,
O_ORDERDATE date not null,

0_ORDERPRIORITY char(15) not null,

0_CLERK char(15) not null,
O_SHIPPRIORITY int not null,
0_COMMENT varchar(79) not null)

create table LINEITEM
(L_ORDERKEY bigint not null,
L_PARTKEY int not null,
L_SUPPKEY int not null,
L_LINENUMBER int not null,
L_QUANTITY float not null,
L_EXTENDEDPRICE float not null,
L_DISCOUNT float not null,

L_TAX float not null,
L_RETURNFLAG char(1) not null,
L_LINESTATUS char(1) not null,
L_SHIPDATE date not null,
L_COMMITDATE date not null,
L_RECEIPTDATE date not null,
L_SHIPINSTRUCT char(25) not null,
L_SHIPMODE char(10) not null,
L_COMMENT varchar(44) not null)

create table NATION
(N_NATIONKEY int not null,
N_NAME char(25) not null,
N_REGIONKEY int not null,
N_COMMENT varchar(152) not null)

create table REGION
(R_REGIONKEY int not null,
R_NAME char(25) not null,
R_COMMENT varchar(152) not null)

create table TIMES
(QUERY char(25),
START datetime)

create table NEWORDERS

(O_ORDERKEY bigint not null,
0_CUSTKEY int not null,
0_ORDERSTATUS char(1) not null,
O_TOTALPRICE float not null,
O_ORDERDATE datetime not null,
0_ORDERPRIORITY char(15) not null,
0_CLERK char(15) not null,
0_SHIPPRIORITY int not null,
0_COMMENT varchar(79) not null)

create table NEWLINEITEM
(L_ORDERKEY bigint not null,
L_PARTKEY int not null,
L_SUPPKEY int not null,
L_LINENUMBER int not null,
L_QUANTITY float not null,
L_EXTENDEDPRICE float not null,
L_DISCOUNT float not null,

L_TAX float not null,
L_RETURNFLAG char(1) not null,
L_LINESTATUS char(1) not null,
L_SHIPDATE datetime not null,
L_COMMITDATE datetime not null,
L_RECEIPTDATE datetime not null,
L_SHIPINSTRUCT char(25) not null,
L_SHIPMODE char(10) not null,
L_COMMENT varchar(44) not null)

create table OLDORDERS
(O_ORDERKEY int not null)

Constraints.sql

-- For table REGION

92

Appendix A. Source code
for Microsoft SQL Server 2008

ALTER TABLE TPCH.dbo.REGION
ADD PRIMARY KEY (R_REGIONKEY);

-- For table NATION
ALTER TABLE TPCH.dbo.NATION
ADD PRIMARY KEY (N_NATIONKEY);

ALTER TABLE TPCH.dbo.NATION
ADD FOREIGN KEY (N_REGIONKEY)
references TPCH.dbo.REGION;

-- For table PART
ALTER TABLE TPCH.dbo.PART
ADD PRIMARY KEY (P_PARTKEY);

-- For table SUPPLIER
ALTER TABLE TPCH.dbo.SUPPLIER
ADD PRIMARY KEY (S_SUPPKEY);

ALTER TABLE TPCH.dbo.SUPPLIER
ADD FOREIGN KEY (S_NATIONKEY)
references TPCH.dbo.NATION;

-- For table PARTSUPP
ALTER TABLE TPCH.dbo.PARTSUPP
ADD PRIMARY KEY (PS_PARTKEY,PS_SUPPKEY);

-- For table CUSTOMER
ALTER TABLE TPCH.dbo.CUSTOMER
ADD PRIMARY KEY (C_CUSTKEY);

ALTER TABLE TPCH.dbo.CUSTOMER
ADD FOREIGN KEY (C_NATIONKEY)
references TPCH.dbo.NATION;

-- For table LINEITEM

ALTER TABLE TPCH.dbo.LINEITEM
ADD PRIMARY KEY (L_ORDERKEY,
L_LINENUMBER) ;

-- For table ORDERS
ALTER TABLE TPCH.dbo.ORDERS
ADD PRIMARY KEY (O_ORDERKEY);

-- For table PARTSUPP

ALTER TABLE TPCH.dbo.PARTSUPP
ADD FOREIGN KEY (PS_SUPPKEY)
references TPCH.dbo.SUPPLIER;

ALTER TABLE TPCH.dbo.PARTSUPP
ADD FOREIGN KEY (PS_PARTKEY)
references TPCH.dbo.PART;

-- For table ORDERS

ALTER TABLE TPCH.dbo.ORDERS
ADD FOREIGN KEY (O_CUSTKEY)
references TPCH.dbo.CUSTOMER;

-- For table LINEITEM

ALTER TABLE TPCH.dbo.LINEITEM
ADD FOREIGN KEY (L_ORDERKEY)
references TPCH.dbo.ORDERS;

ALTER TABLE TPCH.dbo.LINEITEM

ADD FOREIGN KEY (L_PARTKEY,L_SUPPKEY)
references TPCH.dbo.PARTSUPP;

Indexes.sql

CREATE INDEX S_NATIONKEY_IDX
ON SUPPLIER(S_NATIONKEY);

CREATE INDEX PS_PARTKEY_IDX
ON PARTSUPP (PS_PARTKEY) ;

CREATE INDEX PS_SUPPKEY_IDX
ON PARTSUPP(PS_SUPPKEY) ;

CREATE INDEX C_NATIONKEY_IDX
ON CUSTOMER(C_NATIONKEY);

CREATE INDEX O_CUSTKEY_IDX
ON ORDERS (0_CUSTKEY) ;

CREATE INDEX L_ORDERKEY_IDX

ON LINEITEM(L_ORDERKEY);

CREATE INDEX L_PARTKEY_IDX
ON LINEITEM(L_PARTKEY) ;

CREATE INDEX L_SUPPKEY_IDX
ON LINEITEM(L_SUPPKEY) ;

CREATE INDEX N_REGIONKEY_IDX
ON NATION(N_REGIONKEY) ;

CREATE INDEX O_ORDERDATE_CLUIDX
ON ORDERS (0_ORDERDATE) ;

CREATE INDEX L_SHIPDATE_CLUIDX
ON LINEITEM(L_SHIPDATE) ;

CREATE INDEX L_COMMITDATE_CLUIDX
ON LINEITEM(L_COMMITDATE);

CREATE INDEX L_RECEIPTDATE_CLUIDX
ON LINEITEM(L_RECEIPTDATE);

CREATE CLUSTERED INDEX NEWORDERS_CLUIDX
ON NEWORDERS (0_ORDERKEY) ;

CREATE CLUSTERED INDEX NEWLINEITEM_CLUIDX
ON NEWLINEITEM (L_ORDERKEY);

CREATE CLUSTERED INDEX OLDORDERS_CLUIDX
ON OLDORDERS (O_ORDERKEY) ;

A.2 Refresh Function Defi-

nitions

CreateRF1.sql

CREATE PROCEDURE RF1
Ostartkey INTEGER
AS

BEGIN

DECLARE @loops INTEGER
DECLARE QorderSql NCHAR(1000)
DECLARE @1iSql NCHAR(1000)
DECLARE @success INTEGER

SET QorderSql = N’INSERT INTO ORDERS

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = @startkey’

SET @1iSql = N’INSERT INTO LINEITEM
SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT

FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY = O_ORDERKEY

AND O_ORDERKEY = @startkey’

SET @loops = 124

WHILE @loops > O
BEGIN
INSERT_TRANS:

SET @success = 1
BEGIN TRANSACTION;
BEGIN TRY;

EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
SET @startkey = (@startkey + 1)

EXEC sp_executesql QorderSql,

A.2 Refresh Function Definitions

93

N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1iSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @orderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1iSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1liSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql Q@orderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @orderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1iSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @orderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1iSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @orderSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql @1iSql,
N’@startkey INTEGER’, @startkey;

END TRY

BEGIN CATCH

SET @success = 0

IF (error_number() = 1205) -- deadlock
PRINT ’Insert deadlock - restarting RF1’
ELSE

BEGIN -- not a deadlock

PRINT ’Error - Not a deadlock’

PRINT ERROR_NUMBER ()

PRINT ERROR_SEVERITY()

PRINT ERROR_MESSAGE()

PRINT ERROR_STATE()

PRINT XACT_STATE()

END

IF (@@trancount>0)

ROLLBACK TRANSACTION;

END CATCH

IF (@success = 0) -- deadlock

GOTO INSERT_TRANS

COMMIT TRANSACTION;

SET @startkey = (@startkey + 25)
SET @loops = (@loops - 1)
END

END
GO

CreateRF2.sql

CREATE PROCEDURE RF2
@startkey INTEGER
AS

BEGIN

DECLARE @loops INTEGER
DECLARE @orderSql NCHAR(1000)
DECLARE @1iSql NCHAR(1000)

DECLARE @success INTEGER

SET QorderSql = N’DELETE FROM ORDERS
WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = @startkey)’

SET @1iSql = N’DELETE FROM LINEITEM
WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = @startkey)’

SET Q@loops = 124

WHILE @loops > O
BEGIN
INSERT_TRANS:

SET @success = 1
BEGIN TRANSACTION;
BEGIN TRY;

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

SET @startkey = (@startkey + 1)

EXEC sp_executesql @liSql,
N’@startkey INTEGER’, @startkey;
EXEC sp_executesql QorderSql,
N’@startkey INTEGER’, @startkey;

END TRY

BEGIN CATCH

SET @success = 0

IF (error_number() = 1205) -- deadlock
PRINT ’Insert deadlock - restarting RF1’
ELSE

BEGIN -- not a deadlock

PRINT ’Error - Not a deadlock’

PRINT ERROR_NUMBER ()

Appendix A. Source code
for Microsoft SQL Server 2008

PRINT ERROR_SEVERITY()

PRINT ERROR_MESSAGE()

PRINT ERROR_STATE()

PRINT XACT_STATEQ)

END

IF (@@trancount>0)

ROLLBACK TRANSACTION;

END CATCH

IF (@success = 0) -- deadlock
GOTO INSERT_TRANS

COMMIT TRANSACTION;

SET @startkey = (@startkey + 25)
SET @loops = (@loops - 1)

END

END
GO

A.3 Query Streams

Stream00.sql

-- using 1027173119 as a seed to the RNG

create view revenueO
(supplier_no, total_revenue) as
select

1_suppkey,

sum(1l_extendedprice * (1 - 1_discount))
from

lineitem

where

1_shipdate >= >1996-04-01’

and 1_shipdate < dateadd(month,
+3, ’1996-04-01’)

group by

1_suppkey;

go

insert into TIMES values
(°Str00 start’,getdate());

insert into TIMES values

(’Q14 in Str00 start’,getdate());
select

100.00 * sum(case

when p_type like ’PROMOY%’

then 1_extendedprice * (1 - 1_discount)
else O

end) / sum(l_extendedprice * (1 - 1_discount))

as promo_revenue
from

lineitem,

part

where

1_partkey = p_partkey

and 1_shipdate >= ’1995-08-01’
and 1_shipdate < dateadd(month,
+1, 21995-08-017);

go

insert into TIMES values

(’Q14 in Str00 end’,getdate());

set rowcount 100
go

insert into TIMES values
(’Q2 in Str00 start’,getdate());
select

s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 27

and p_type like ’%TIN’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’MIDDLE EAST’
and ps_supplycost = (

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
ind r_name = ’MIDDLE EAST’
order by

s_acctbal desc,

n_name,

s_name,

p_partkey;

go

insert into TIMES values

(’Q2 in Str00 end’,getdate());

set rowcount O
go

insert into TIMES values

(’Q9 in Str00 start’,getdate());
select

nation,

o_year,

sum(amount) as sum_profit

from

(

select

n_name as nation,

datepart (year,o_orderdate) as o_year,
1_extendedprice * (1 - 1l_discount)
- ps_supplycost * l_quantity as amount
from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = 1l_suppkey

and ps_suppkey = 1_suppkey

and ps_partkey 1_partkey

and p_partkey = 1_partkey

and o_orderkey = 1_orderkey

and s_nationkey = n_nationkey
and p_name like ’Y%dark}’

) as profit

group by

nation,

o_year

order by

nation,

o_year desc;

go

insert into TIMES values

(’Q9 in Str00 end’,getdate());

insert into TIMES values
(’Q20 in Str00 start’,getdate());
select

S_name,

s_address

from

supplier,

nation

where

s_suppkey in (

select

ps_suppkey

from

A.3 Query Streams

95

partsupp

where

ps_partkey in (
select

p_partkey

from

part

where

p_name like ’maroon}’

and ps_availqty > (

select

0.5 * sum(l_quantity)

from

lineitem

where

1_partkey = ps_partkey

and 1_suppkey = ps_suppkey

and 1_shipdate >= ’1997-01-01°
and 1_shipdate < dateadd(year,
+1, ’1997-01-01)

)

)

and s_nationkey = n_nationkey
and n_name = ’FRANCE’

order by

s_name;

go

insert into TIMES values

(’Q20 in Str00 end’,getdate());

insert into TIMES values
(’Q6 in Str00 start’,getdate());
select

sum(1l_extendedprice * 1l_discount) as revenue

from

lineitem

where

1_shipdate >= ’1993-01-01’
and 1_shipdate < dateadd(year,
+1, ’1993-01-017)

and 1_discount between 0.06 - 0.01
and 0.06 + 0.01

and 1_quantity < 25;

go

insert into TIMES values

(’Q6 in Str00 end’,getdate());

insert into TIMES values

(°Q17 in Str00 start’,getdate());
select

sum(1l_extendedprice) / 7.0 as avg_yearly
from

lineitem,

part

where

p_partkey = 1_partkey

and p_brand = ’Brand#52’

and p_container = ’MED DRUM’
and 1_quantity < (

select

0.2 * avg(l_quantity)

from

lineitem

where

%_partkey = p_partkey

go

insert into TIMES values

(°Q17 in Str00 end’,getdate());

set rowcount 100
go

insert into TIMES values
(’Q18 in Str00 start’,getdate());
select

c_name,

c_custkey,

o_orderkey,

o_orderdate,
o_totalprice,
sum(1l_quantity)

from

customer,

orders,

lineitem

where

o_orderkey in (
select

1_orderkey

from

lineitem

group by

1_orderkey having
§um(l_quantity) > 315

and c_custkey = o_custkey
and o_orderkey = 1_orderkey
group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

o_totalprice desc,
o_orderdate;

go

insert into TIMES values
(’Q18 in Str00 end’,getdate());

set rowcount O
go

insert into TIMES values

(°Q8 in Str00 start’,getdate());
select

o_year,

sum(case

when nation = ’RUSSIA’ then volume
else O

end) / sum(volume) as mkt_share
from

select

datepart (year,o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount)
as volume,

n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation nl,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’EUROPE’

and s_nationkey = n2.n_nationkey
and o_orderdate between ’1995-01-01°
and ’1996-12-31°

and p_type = ’SMALL BURNISHED COPPER’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(°Q8 in Str00 end’,getdate());

set rowcount 100
go

insert into TIMES values
(’Q21 in Str00 start’,getdate());
select

s_name,

count (*) as numwait

from

supplier,

lineitem 11,

orders,

nation

where

Appendix A. Source code
for Microsoft SQL Server 2008

s_suppkey = 11.1_suppkey

and o_orderkey = 11.1_orderkey

and o_orderstatus = ’F’

and 11.1_receiptdate > 11.1_commitdate
and exists (

select

*

from

lineitem 12

where

12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)

and not exists (

select

*

from

lineitem 13

where

13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 11.1_suppkey
?nd 13.1_receiptdate > 13.1_commitdate
and s_nationkey = n_nationkey
and n_name = ’UNITED STATES’
group by

s_name

order by

numwait desc,

s_name;

go

insert into TIMES values

(’Q21 in Str00 end’,getdate());

set rowcount O
go

insert into TIMES values

(°Q13 in Str00 start’,getdate());
select

c_count,

count (*) as custdist

from

(

select

c_custkey,

count (o_orderkey)

from

customer left outer join orders on
c_custkey = o_custkey

and o_comment not

like ’Y%unusualjrequests’

group by

c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count

order by

custdist desc,

c_count desc;

go

insert into TIMES values

(°Q13 in Str00 end’,getdate());

set rowcount 10
go

insert into TIMES values

(’Q3 in Str00 start’,getdate());
select

1_orderkey,

sum(1l_extendedprice * (1 - 1_discount))
as revenue,

o_orderdate,

o_shippriority

from

customer,

orders,

lineitem

where

c_mktsegment = ’FURNITURE’

and c_custkey = o_custkey

and 1_orderkey = o_orderkey

and o_orderdate < ’1995-03-30’
and 1_shipdate > ’1995-03-30°
group by

1_orderkey,

o_orderdate,

o_shippriority

order by

revenue desc,

o_orderdate;

go

insert into TIMES values

(°Q3 in Str00 end’,getdate());

set rowcount O
go

insert into TIMES values

(°Q22 in Str00 start’,getdate());
select

cntrycode,

count (*) as numcust,
sum(c_acctbal) as totacctbal
from

(

select

substring(c_phone, 1, 2) as cntrycode,
c_acctbal

from

customer

where

substring(c_phone, 1, 2) in

(J16J’ ;29;’ 7337’ 134:’)26)’ 7227, J31))

and c_acctbal > (

select

avg(c_acctbal)

from

customer

where

c_acctbal > 0.00

and substring(c_phone, 1, 2) in

(J16J’ ;29;’ 7337’ J347’)26)’ 7227’ 131;)
)

and not exists (
select

*

from

orders

where

o_custkey = c_custkey

) as custsale

group by

cntrycode

order by

cntrycode;

go

insert into TIMES values

(°Q22 in Str00 end’,getdate());

insert into TIMES values

(’Q16 in Str00 start’,getdate());
select

p_brand,

p-type,

p_size,

count (distinct ps_suppkey) as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_brand <> ’Brand#10’

and p_type not like ’PROMO ANODIZEDY’
and p_size

in (30, 27, 50, 23, 2, 33, 49, 15)
and ps_suppkey not in (

select

s_suppkey

from

supplier

where

s_comment like ’Y%Customer’,Complaints’

group by

p_brand,

p-type,

p_size

order by
supplier_cnt desc,
p_brand,

p-type,

A.3 Query Streams

97

p_size;

go

insert into TIMES values

(’Q16 in Str00 end’,getdate());

insert into TIMES values

(’Q4 in Str00 start’,getdate());
select

o_orderpriority,

count (*) as order_count

from

orders

where

o_orderdate >= ’1997-09-01°

and o_orderdate < dateadd(month,
+3, ’1997-09-01°)

and exists (

select

*

from

lineitem

where

1_orderkey = o_orderkey

§nd 1_commitdate < 1l_receiptdate
group by

o_orderpriority

order by

o_orderpriority;

go

insert into TIMES values

(’Q4 in Str00 end’,getdate());

insert into TIMES values

(’Q11 in Str00 start’,getdate());
select

ps_partkey,

sum(ps_supplycost * ps_availqty) as value
from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED KINGDOM’
group by

ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty)
* 0.0001000000

from

partsupp,

supPlier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED KINGDOM’

)

order by

value desc;

go

insert into TIMES values

(’Q11 in Str00 end’,getdate());

insert into TIMES values
(’Q15 in Str00 start’,getdate());
select

s_suppkey,

s_name,

s_address,

s_phone,

total_revenue

from

supplier,

revenueO

where

s_suppkey = supplier_no
and total_revenue = (
select

max (total_revenue)

from

revenue0

order by

s_suppkey;

go

drop view revenueO;

go

insert into TIMES values

(’Q15 in Str00 end’,getdate());

insert into TIMES values

(’Q1 in Str00 start’,getdate());
select

1_returnflag,

1_linestatus,

sum(l_quantity) as sum_qty,
sum(1l_extendedprice) as sum_base_price,
sum(1l_extendedprice * (1 - 1_discount))
as sum_disc_price,

sum(1l_extendedprice * (1 - 1_discount)
* (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

count (*) as count_order

from

lineitem

where

1_shipdate <= dateadd(day,

-66, ’1998-12-01’)

group by

1_returnflag,

1_linestatus

order by

1_returnflag,

1_linestatus;

go

insert into TIMES values

(’Q1 in Str00 end’,getdate());

set rowcount 20
go

insert into TIMES values

(’Q10 in Str00 start’,getdate());
select

c_custkey,

c_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue,

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey

and o_orderdate >= ’1993-06-01"
and o_orderdate < dateadd(month,
+3, ’1993-06-01’)

and 1_returnflag = ’R’

and c_nationkey = n_nationkey
group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc;

go

insert into TIMES values

(’Q10 in Str00 end’,getdate());

set rowcount O
go

insert into TIMES values

(’Q19 in Str00 start’,getdate());
select

sum(1l_extendedprice* (1 - 1_discount))
as revenue

Appendix A. Source code

98 for Microsoft SQL Server 2008
from from
lineitem, supplier,
part lineitem,
where orders,
customer,
p_partkey = 1_partkey nation ni,
and p_brand = ’Brand#31’ nation n2
and p_container where

in (°SM CASE’, ’SM BOX’,
and 1_quantity >= 10 and
and p_size between 1 and
and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

’SM PACK’, ’SM PKG’)
1_quantity <= 10 + 10
5

?r
p_partkey = 1_partkey

and p_brand = ’Brand#53’

and p_container

in (°MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)
and 1_quantity >= 17 and 1_quantity <= 17 + 10
and p_size between 1 and 10

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#24’
and p_container

in (°LG CASE’, °LG BOX’, ’LG PACK’, LG PKG’)
and 1_quantity >= 20 and 1_quantity <= 20 + 10
and p_size between 1 and 15

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

go
insert into TIMES values
(°Q19 in Str00 end’,getdate());

insert into TIMES values

(’Q5 in Str00 start’,getdate());
select

n_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’AMERICA’

and o_orderdate >= ’1993-01-01’
and o_orderdate < dateadd(year,
+1, ’1993-01-01’)

group by

n_name

order by

revenue desc;

go

insert into TIMES values
(’Q5 in Str00 end’,getdate());

insert into TIMES values

(’Q7 in Str00 start’,getdate());
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue

from

(

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,
datepart(year,l_shipdate) as 1l_year,
1_extendedprice * (1 - 1l_discount)
as volume

s_suppkey = 1l_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
c_nationkey =

and n2.n_nationkey
and (

(n1.n_name = ’MOROCCO’

and n2.n_name = ’RUSSIA’)

or (nl.n_name = ’RUSSIA’

§nd n2.n_name = ’MOROCCO’)

and 1_shipdate between ’1995-01-01’
and ’1996-12-31°

) as shipping

group by

supp_nation,

cust_nation,

1_year

order by

supp_nation,

cust_nation,

1_year;

go

insert into TIMES values

(’Q7 in Str00 end’,getdate());

insert into TIMES values
(°Q12 in Str00 start’,getdate());
select
1_shipmode,
sum(case
when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1
else O
end) as high_line_count,
sum(case
when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1
else O
end) as low_line_count
from
orders,
lineitem
where
o_orderkey = 1_orderkey
and 1_shipmode in (’RAIL’, °MAIL’)
and 1_commitdate < 1l_receiptdate
and 1_shipdate < 1_commitdate
and 1l_receiptdate >= 21995-01-01°
and 1_receiptdate < dateadd(year,
+1, 21995-01-01°)
group by
1_shipmode
order by
1_shipmode;
go
insert into TIMES values
(’Q12 in Str00 end’,getdate());
o
%nsert into TIMES values
(’Str00 end’,getdate());

go

Stream01.sql
-- using 1027173120 as a seed to the RNG

create view revenuel

(supplier_no, total_revenue) as

select

1_suppkey,

sum(1l_extendedprice * (1 - 1_discount))
from

lineitem

where

A.3 Query Streams

99

1_shipdate >= 21994-07-01°

and 1_shipdate < dateadd(month,
+3, ’1994-07-01)

group by

1_suppkey;

go

insert into TIMES values
(’Str01 start’,getdate());

set rowcount 100
go

insert into TIMES values

(’Q21 in Str01 start’,getdate());
select

s_name,

count (*) as numwait

from

supplier,

lineitem 11,

orders,

nation

where

s_suppkey = 11.1_suppkey

and o_orderkey = 11.1_orderkey
and o_orderstatus = ’F’

and 11.1_receiptdate > 11.1_commitdate
and exists (

select

*

from

lineitem 12

where

12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)

and not exists (

select

*

from

lineitem 13

where

13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 11.1_suppkey
?nd 13.1_receiptdate > 13.1_commitdate
and s_nationkey = n_nationkey
and n_name = ’PERU’

group by

s_name

order by

numwait desc,

s_name;

go

insert into TIMES values

(’Q21 in Str01 end’,getdate());

set rowcount 10
go

insert into TIMES values

(°’Q3 in Str01 start’,getdate());
select

1_orderkey,

sum(1l_extendedprice * (1 - 1_discount))
as revenue,

o_orderdate,

o_shippriority

from

customer,

orders,

lineitem

where

c_mktsegment = ’MACHINERY’

and c_custkey = o_custkey

and 1_orderkey = o_orderkey
and o_orderdate < 21995-03-16"
and 1_shipdate > ’1995-03-16’
group by

1_orderkey,

o_orderdate,

o_shippriority

order by

revenue desc,

o_orderdate;

go

insert into TIMES values
(’Q3 in Str01 end’,getdate());

set rowcount 100
go

insert into TIMES values
(°Q18 in Str01 start’,getdate());
select

c_name,

c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(1l_quantity)

from

customer,

orders,

lineitem

where

o_orderkey in (
select

1_orderkey

from

lineitem

group by

1_orderkey having
fum(l_quantity) > 312

and c_custkey = o_custkey
and o_orderkey = 1_orderkey
group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

o_totalprice desc,
o_orderdate;

go

insert into TIMES values
(°Q18 in Str01 end’,getdate());

set rowcount O
go

insert into TIMES values

(’Q5 in Str0l1 start’,getdate());
select

n_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

and o_orderdate >= ’1994-01-01’
and o_orderdate < dateadd(year,
+1, 21994-01-01’)

group by

n_name

order by

revenue desc;

go

insert into TIMES values

(’Q5 in StrO1 end’,getdate());

insert into TIMES values

(°Q11 in Str01 start’,getdate());
select

ps_partkey,

sum(ps_supplycost * ps_availqty) as value

from
partsupp,
supplier,

Appendix A. Source code

100 for Microsoft SQL Server 2008
nation and 1_quantity < 25;
where go

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’IRAQ’

group by

ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty)
* 0.0001000000

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
ind n_name = ’IRAQ’

order by

value desc;

go

insert into TIMES values

(’Q11 in Str01 end’,getdate());

insert into TIMES values

(’Q7 in Str0l1 start’,getdate());
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue

from

(

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,
datepart(year, l_shipdate) as 1l_year,

1_extendedprice * (1 - 1l_discount) as volume

from

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2

where

s_suppkey = 1l_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(nl.n_name = ’GERMANY’

and n2.n_name = ’KENYA’)

or (nl.n_name = ’KENYA’

and n2.n_name = ’GERMANY’)

and 1_shipdate between ’1995-01-01’
and ’1996-12-31°

) as shipping

group by

supp_nation,

cust_nation,

1_year

order by

supp_nation,

cust_nation,

1_year;

go

insert into TIMES values

(’Q7 in StrOl1 end’,getdate());

insert into TIMES values

(’Q6 in StrO01 start’,getdate());
select

sum(1l_extendedprice * 1_discount)
as revenue

from

lineitem

where

1_shipdate >= 1994-01-01°

and 1_shipdate < dateadd(year,
+1, ’1994-01-01’)

and 1_discount between 0.04 - 0.01
and 0.04 + 0.01

insert into TIMES values
(’Q6 in Str01 end’,getdate());

insert into TIMES values
(’Q20 in Str01 start’,getdate());
select

s_name,

s_address

from

supplier,

nation

where

s_suppkey in (

select

ps_suppkey

from

partsupp

where

ps_partkey in (
select

p_partkey

from

part

where

p_name like ’tomato}’

and ps_availgty > (

select

0.5 * sum(l_quantity)

from

lineitem

where

1_partkey = ps_partkey

and 1_suppkey = ps_suppkey
and 1_shipdate >= ’1996-01-01°
and 1_shipdate < dateadd(year,
;1, ’1996-01-01")

)

and s_nationkey = n_nationkey
and n_name = ’VIETNAM’

order by

s_name;

go

insert into TIMES values

(’Q20 in Str01 end’,getdate());

insert into TIMES values
(’Q17 in Str0l1 start’,getdate());
select

sum(1l_extendedprice) / 7.0 as avg_yearly

from

lineitem,

part

where

p_partkey = 1_partkey
and p_brand = ’Brand#51’
and p_container = ’JUMBO BAG’
and 1_quantity < (
select

0.2 * avg(l_quantity)
from

lineitem

where

1_partkey = p_partkey

go
insert into TIMES values
(’Q17 in StrOl1 end’,getdate());

insert into TIMES values

(°Q12 in Str01 start’,getdate());
select

1_shipmode,

sum(case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1

else O

end) as high_line_count,

sum(case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else O

A.3 Query Streams

101

end) as low_line_count

from

orders,

lineitem

where

o_orderkey = 1l_orderkey

and 1_shipmode in (’AIR’, ’MAIL’)
and 1_commitdate < l_receiptdate
and 1_shipdate < 1l_commitdate
and 1l_receiptdate >= ’1995-01-01’
and 1_receiptdate < dateadd(year,
+1, ’1995-01-01)

group by

1_shipmode

order by

1_shipmode;

go

insert into TIMES values

(°Q12 in Str01 end’,getdate());

insert into TIMES values

(’Q16 in Str01 start’,getdate());
select

p_brand,

p_type,

p_size,

count (distinct ps_suppkey)

as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_brand <> ’Brand#50’

and p_type not like ’SMALL PLATEDY’
and p_size

in (33, 48, 23, 43, 28, 49, 3, 14)
and ps_suppkey not in (

select

s_suppkey

from

supplier

where

s_comment

like ’YCustomer’,Complaintsy’

)

group by

p_brand,

p_type,

p_size

order by

supplier_cnt desc,

p_brand,

p_type,

p_size;

go

insert into TIMES values

(’Q16 in Str0l end’,getdate());

insert into TIMES values
(°Q15 in Str01 start’,getdate());
select

s_suppkey,

s_name,

s_address,

s_phone,

total_revenue

from

supplier,

revenuel

where

s_suppkey = supplier_no
and total_revenue = (
select
max(total_revenue)

from

revenuel

order by

s_suppkey;

go

drop view revenuel;

go

insert into TIMES values

(°Q15 in Str01 end’,getdate());

insert into TIMES values

(°Q13 in Str01 start’,getdate());
select

c_count,

count (*) as custdist

from

(

select

c_custkey,

count (o_orderkey)

from

customer left outer join orders on
c_custkey = o_custkey

and o_comment not

like ’%unusualrequests}’

group by

c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count

order by

custdist desc,

c_count desc;

go

insert into TIMES values

(°Q13 in Str01 end’,getdate());

set rowcount 20
go

insert into TIMES values

(’Q10 in Str01 start’,getdate());
select

c_custkey,

c_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue,

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey

and o_orderdate >= 21994-10-01°
and o_orderdate < dateadd(month,
+3, ’1994-10-01’)

and 1_returnflag = ’R’

and c_nationkey = n_nationkey
group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc;

go

insert into TIMES values

(’Q10 in Str01 end’,getdate());

set rowcount 100
go

insert into TIMES values
(’Q2 in Str0l1 start’,getdate());
select

s_acctbal,

S_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

Appendix A. Source code

102 for Microsoft SQL Server 2008
region else 0
where end) / sum(l_extendedprice * (1 - 1l_discount))

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 15

and p_type like ’JCOPPER’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

and ps_supplycost = (

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

)

order by

s_acctbal desc,

n_name,

s_name,

p_partkey;

go

insert into TIMES values

(’Q2 in Str01 end’,getdate());

set rowcount O
go

insert into TIMES values

(’Q8 in Str0l1 start’,getdate());
select

o_year,

sum(case

when nation = ’KENYA’ then volume
else O

end) / sum(volume) as mkt_share
from

(

select

datepart(year, o_orderdate) as o_year,
1_extendedprice * (1 - 1l_discount)
as volume,

n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation nil,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’AFRICA’

and s_nationkey = n2.n_nationkey
and o_orderdate between ’1995-01-01°
and ’1996-12-31°

and p_type = ’STANDARD BRUSHED COPPER’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(’Q8 in StrOl end’,getdate());

insert into TIMES values

(°Q14 in Str01 start’,getdate());
select

100.00 * sum(case

when p_type like ’PROM0%’

then 1_extendedprice * (1 - 1_discount)

as promo_revenue
from

lineitem,

part

where

1_partkey = p_partkey

and 1_shipdate >= ’1995-08-01’
and 1_shipdate < dateadd(month,
+1, 21995-08-01’);

go

insert into TIMES values

(°Q14 in Str01 end’,getdate());

insert into TIMES values

(’Q19 in Str01 start’,getdate());

select

sum(1l_extendedprice* (1 - 1_discount))

as revenue

from

lineitem,

part

where

(

p_partkey = 1_partkey

and p_brand = ’Brand#42’

and p_container

in (°SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
and 1_quantity >= 5 and 1l_quantity <= 5 + 10
and p_size between 1 and 5

and 1_shipmode in (’AIR’, ’AIR REG’)

§nd 1_shipinstruct = ’DELIVER IN PERSON’

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#43’
and p_container

in (°MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

and 1_quantity >= 18 and 1_quantity <= 18 + 10
and p_size between 1 and 10

and 1_shipmode in (’AIR’, ’AIR REG’)

ind 1_shipinstruct = ’DELIVER IN PERSON’

?r
p_partkey = 1_partkey

and p_brand = ’Brand#22’

and p_container

in (LG CASE’, °LG BOX’, ’LG PACK’, ’LG PKG’)
and 1_quantity >= 28 and 1_quantity <= 28 + 10
and p_size between 1 and 15

and 1_shipmode in (’AIR’, ’AIR REG’)

ind 1_shipinstruct = ’DELIVER IN PERSON’

go

insert into TIMES values

(’Q19 in StrO01 end’,getdate());

insert into TIMES values

(’Q9 in Str01 start’,getdate());
select

nation,

o_year,

sum(amount) as sum_profit

from

(

select

n_name as nation,

datepart(year, o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount)
- ps_supplycost * 1_quantity as amount
from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = 1l_suppkey

and ps_suppkey = 1_suppkey

and ps_partkey = 1l_partkey

and p_partkey = 1_partkey

and o_orderkey = 1_orderkey

and s_nationkey = n_nationkey

A.3 Query Streams

103

and p_name like ’Y%chocolate’
) as profit

group by

nation,

o_year

order by

nation,

o_year desc;

go

insert into TIMES values

(’Q9 in Str0l1 end’,getdate());

insert into TIMES values

(’Q22 in Str01 start’,getdate());
select

cntrycode,

count (*) as numcust,

sum(c_acctbal) as totacctbal

from

(

select

substring(c_phone, 1, 2) as cntrycode,
c_acctbal

from

customer

where

substring(c_phone, 1, 2) in

()317’ 7143, ;19;) ;23;) 7337’ ’28’, :27))
and c_acctbal > (

select

avg(c_acctbal)

from

customer

where

c_acctbal > 0.00

and substring(c_phone, 1, 2) in

)()31), 7143’ J19J’ ;23;) 7337’ 728), ;27))

and not exists (
select

*

from

orders

where

o_custkey = c_custkey

) as custsale

group by

cntrycode

order by

cntrycode;

go

insert into TIMES values

(’Q22 in Str01 end’,getdate());

insert into TIMES values

(’Q1 in Str01 start’,getdate());
select

1_returnflag,

1_linestatus,

sum(1l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(1l_extendedprice * (1 - 1_discount))
as sum_disc_price,

sum(1l_extendedprice * (1 - 1_discount)
* (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

count (*) as count_order

from

lineitem

where

1_shipdate <= dateadd(day,

=74, °1998-12-01’)

group by

1_returnflag,

1_linestatus

order by

1_returnflag,

1_linestatus;

go

insert into TIMES values

(’Q1 in Str01 end’,getdate());

insert into TIMES values
(’Q4 in StrO1 start’,getdate());

select

o_orderpriority,

count (*) as order_count

from

orders

where

o_orderdate >= 21995-11-01’
and o_orderdate < dateadd(month,
+3, ’1995-11-01’)

and exists (

select

*

from

lineitem

where

1_orderkey = o_orderkey

ind 1_commitdate < 1l_receiptdate
group by

o_orderpriority

order by

o_orderpriority;

go

insert into TIMES values

(’Q4 in StrO01 end’,getdate());
o

%nsert into TIMES values
(’Str01 end’,getdate());

go

Stream02.sql

-- using 1027173121 as a seed to the RNG

create view revenue2
(supplier_no, total_revenue) as
select

1_suppkey,

sum(1l_extendedprice * (1 - 1_discount))
from

lineitem

where

1_shipdate >= ’1996-05-01’

and 1_shipdate < dateadd(month,
+3, ’1996-05-01’)

group by

1_suppkey;

go

insert into TIMES values
(’Str02 start’,getdate());

insert into TIMES values

(’Q6 in Str02 start’,getdate());
select

sum(1l_extendedprice * 1_discount)
as revenue

from

lineitem

where

1_shipdate >= >1994-01-01°

and 1_shipdate < dateadd(year,
+1, ’1994-01-01’)

and 1_discount between 0.09 - 0.01
and 0.09 + 0.01

and 1_quantity < 24;

go

insert into TIMES values

(’Q6 in Str02 end’,getdate());

insert into TIMES values

(’Q17 in Str02 start’,getdate());
select

sum(1l_extendedprice) / 7.0 as avg_yearly
from

lineitem,

part

where

p_partkey = 1_partkey

and p_brand = ’Brand#53’

and p_container = ’JUMBO PKG’

and 1_quantity < (

select

0.2 * avg(l_quantity)

from

Appendix A. Source code

104 for Microsoft SQL Server 2008

lineitem and p_brand = ’Brand#21’

where and p_container

1_partkey = p_partkey in (°MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

N and 1_quantity >= 19 and l_quantity <= 19 + 10

go and p_size between 1 and 10

insert into TIMES values and 1_shipmode in (’AIR’, ’AIR REG’)

(’Q17 in Str02 end’,getdate()); §nd 1_shipinstruct = ’DELIVER IN PERSON’

insert into TIMES values or

(°Q14 in Str02 start’,getdate()); (

select p_partkey = 1_partkey

100.00 * sum(case and p_brand = ’Brand#11’

when p_type like ’PROMOY’ and p_container

then 1_extendedprice * (1 - 1_discount) in (°LG CASE’, °LG BOX’, ’LG PACK’, ’LG PKG’)

else O and 1l_quantity >= 24 and 1_quantity <= 24 + 10

end) / sum(l_extendedprice * (1 - 1l_discount)) and p_size between 1 and 15

‘as promo_revenue and 1_shipmode in (’AIR’, ’AIR REG’)

from and 1_shipinstruct = ’DELIVER IN PERSON’

lineitem,)

part go

where insert into TIMES values

1_partkey = p_partkey (’Q19 in Str02 end’,getdate());

and 1_shipdate >= ’1995-03-01’

and 1_shipdate < dateadd(month, set rowcount 20

‘+1, °1995-03-01’); go

go

insert into TIMES values insert into TIMES values

(’Q14 in Str02 end’,getdate()); (’Q10 in Str02 start’,getdate());
select

insert into TIMES values c_custkey,

(’Q16 in Str02 start’,getdate()); c_name,

select sum(1l_extendedprice * (1 - 1l_discount))

p_brand, as revenue,

p_type, c_acctbal,

p_size, n_name,

count (distinct ps_suppkey) as supplier_cnt c_address,

from c_phone,

partsupp, c_comment

part from

where customer,

p_partkey = ps_partkey orders,

and p_brand <> ’Brand#30° lineitem,

and p_type not like ’LARGE POLISHEDY’ nation

and p_size in (7, 23, 19, 11, 10, 41, 48, 44) where

and ps_suppkey not in (c_custkey = o_custkey

select and 1_orderkey = o_orderkey

s_suppkey and o_orderdate >= ’1994-08-01’

from and o_orderdate < dateadd(month,

supplier +3, ’1994-08-01’)

where and 1_returnflag = ’R’

s_comment like ’JCustomerComplaintsy’ and c_nationkey = n_nationkey
group by

group by c_custkey,

p_brand, c_name,

p_type, c_acctbal,

p_size c_phone,

order by n_name,

supplier_cnt desc, c_address,

p_brand, c_comment

p_type, order by

p_size; revenue desc;

go go

insert into TIMES values insert into TIMES values

(’Q16 in Str02 end’,getdate()); (’Q10 in Str02 end’,getdate());

insert into TIMES values set rowcount O

(’Q19 in Str02 start’,getdate()); go

select

sum(1l_extendedprice* (1 - 1l_discount)) insert into TIMES values

as revenue (°Q9 in Str02 start’,getdate());

from select

lineitem, nation,

part o_year,

where sum(amount) as sum_profit

(from

p_partkey = 1_partkey (

and p_brand = ’Brand#41’ select

and p_container n_name as nation,

in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’) datepart(year, o_orderdate) as o_year,

and 1_quantity >= 1 and 1_quantity <= 1 + 10 1_extendedprice * (1 - 1_discount)

and p_size between 1 and 5 - ps_supplycost * 1_quantity as amount

and 1_shipmode in (’AIR’, ’AIR REG’) from

and 1_shipinstruct = ’DELIVER IN PERSON’ part,

) supplier,

or lineitem,

(partsupp,

p_partkey = 1_partkey orders,

A.3 Query Streams

105

nation

where

s_suppkey = 1_suppkey

and ps_suppkey = 1l_suppkey
and ps_partkey = 1_partkey
and p_partkey = 1_partkey

and o_orderkey = 1_orderkey
and s_nationkey = n_nationkey
and p_name like ’%blush’’

) as profit

group by

nation,

o_year

order by

nation,

o_year desc;

go

insert into TIMES values

(’Q9 in Str02 end’,getdate());

set rowcount 100
go

insert into TIMES values

(’Q2 in Str02 start’,getdate());
select

s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 3

and p_type like ’%STEEL’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’AFRICA’

and ps_supplycost = (

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
?nd r_name = ’AFRICA’

order by

s_acctbal desc,

n_name,

s_name,

p_partkey;

go

insert into TIMES values

(’Q2 in Str02 end’,getdate());

set rowcount O
go

insert into TIMES values
(’Q15 in Str02 start’,getdate());

select
s_suppkey,
S_name,
s_address,
s_phone,
total_revenue
from
supplier,
revenue?2

where

s_suppkey = supplier_no
and total_revenue = (
select

max (total_revenue)

from

revenue2

order by
s_suppkey;
go

drop view revenue2;

go

insert into TIMES values

(’Q15 in Str02 end’,getdate());

insert into TIMES values

(’Q8 in Str02 start’,getdate());
select

o_year,

sum(case

when nation = ’FRANCE’ then volume
else O

end) / sum(volume) as mkt_share
from

(

select

datepart(year, o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount) as volume,
n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’EUROPE’

and s_nationkey = n2.n_nationkey
and o_orderdate between ’1995-01-01°
and ’1996-12-31°

and p_type = ’STANDARD POLISHED TIN’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(’Q8 in Str02 end’,getdate());

insert into TIMES values

(’Q5 in Str02 start’,getdate());
select

n_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey

and 1_suppkey = s_suppkey

and c_nationkey s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’

and o_orderdate >= ’1994-01-01°
and o_orderdate < dateadd(year,
+1, ’1994-01-01°)

group by

n_name

order by

106

Appendix A. Source code
for Microsoft SQL Server 2008

revenue desc;

go

insert into TIMES values

(’Q5 in Str02 end’,getdate());

insert into TIMES values

(’Q22 in Str02 start’,getdate());
select

cntrycode,

count (*) as numcust,
sum(c_acctbal) as totacctbal
from

(

select

substring(c_phone, 1, 2) as cntrycode,
c_acctbal

from

customer

where

substring(c_phone, 1, 2) in

(;29), y14:, :307’ 7287’ 731), ;19;) ;337)

and c_acctbal > (

select

avg(c_acctbal)

from

customer

where

c_acctbal > 0.00

and substring(c_phone, 1, 2) in

(;297, :14:’ 7307’ 7287’ 731J’ ;19;) ;337)
)

and not exists (
select
*

from

orders

where

o_custkey = c_custkey

) as custsale

group by

cntrycode

order by

cntrycode;

go

insert into TIMES values

(’Q22 in Str02 end’,getdate());

insert into TIMES values

(°Q12 in Str02 start’,getdate());
select

1_shipmode,

sum(case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’

then 1

else O

end) as high_line_count,

sum(case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else O

end) as low_line_count

from

orders,

lineitem

where

o_orderkey = 1_orderkey

and 1_shipmode in (’REG AIR’, ’MAIL’)
and 1_commitdate < 1l_receiptdate
and 1_shipdate < 1_commitdate

and 1_receiptdate >= ’1995-01-01’
and 1_receiptdate < dateadd(year,
+1, ’1995-01-01’)

group by

1_shipmode

order by

1_shipmode;

go

insert into TIMES values

(’Q12 in Str02 end’,getdate());

insert into TIMES values

(’Q7 in Str02 start’,getdate());
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue
from

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,
datepart(year, 1l_shipdate) as l_year,
1_extendedprice * (1 - 1_discount)
as volume

from

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2

where

s_suppkey = 1l_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(nl.n_name = ’UNITED STATES’

and n2.n_name ’FRANCE’)

or (nl.n_name ’FRANCE’

and n2.n_name ’UNITED STATES’)

and 1_shipdate between ’1995-01-01’
and ’1996-12-31°

) as shipping

group by

supp_nation,

cust_nation,

1_year

order by

supp_nation,

cust_nation,

1_year;

go

insert into TIMES values

(’Q7 in Str02 end’,getdate());

insert into TIMES values

(°Q13 in Str02 start’,getdate());
select

c_count,

count (*) as custdist

from

(

select

c_custkey,

count (o_orderkey)

from

customer left outer join orders on
c_custkey = o_custkey

and o_comment not

like ’%unusual¥%accounts’,’

group by

c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count

order by

custdist desc,

c_count desc;

go

insert into TIMES values

(’Q13 in Str02 end’,getdate());

set rowcount 100
go

insert into TIMES values
(’Q18 in Str02 start’,getdate());
select

c_name,

c_custkey,

o_orderkey,

o_orderdate,
o_totalprice,
sum(l_quantity)

from

customer,

orders,

A.3 Query Streams 107

lineitem insert into TIMES values
where (’Q20 in Str02 start’,getdate());
o_orderkey in (select
select s_name,
1_orderkey s_address
from from
lineitem supplier,
group by nation
1_orderkey having where
sum(1l_quantity) > 314 s_suppkey in (
) select
and c_custkey = o_custkey ps_suppkey
and o_orderkey = 1_orderkey from
group by partsupp
c_name, where
c_custkey, ps_partkey in (
o_orderkey, select
o_orderdate, p_partkey
o_totalprice from
order by part
o_totalprice desc, where
o_orderdate; p_name like ’goldenrodi’
o
%nsert into TIMES values and ps_availqty > (
(’Q18 in Str02 end’,getdate()); select
0.5 * sum(1l_quantity)
set rowcount O from
go lineitem
where
insert into TIMES values 1_partkey = ps_partkey
(’Q1 in Str02 start’,getdate()); and 1_suppkey = ps_suppkey
select and 1_shipdate >= ’1994-01-01’
1_returnflag, and 1_shipdate < dateadd(year,
1_linestatus, +1, ’1994-01-01’)
sum(l_quantity) as sum_qty,)
sum(1l_extendedprice) as sum_base_price,)
sum(1l_extendedprice * (1 - 1_discount)) and s_nationkey = n_nationkey
as sum_disc_price, and n_name = ’IRAN’
sum(1l_extendedprice * (1 - 1_discount) order by
* (1 + 1_tax)) as sum_charge, s_name;
avg(l_quantity) as avg_qty, go
avg(l_extendedprice) as avg_price, insert into TIMES values
avg(l_discount) as avg_disc, (°Q20 in Str02 end’,getdate());
count (*) as count_order
from set rowcount 10
lineitem go
where
1_shipdate <= dateadd(day, insert into TIMES values
-82, ’1998-12-01’) (’Q3 in Str02 start’,getdate());
group by select
1_returnflag, 1_orderkey,
1_linestatus sum(1l_extendedprice * (1 - 1_discount))
order by as revenue,
1_returnflag, o_orderdate,
1_linestatus; o_shippriority
go from
insert into TIMES values customer,
(’Q1 in Str02 end’,getdate()); orders,
lineitem
insert into TIMES values where
(’Q4 in Str02 start’,getdate()); c_mktsegment = ’FURNITURE’
select and c_custkey = o_custkey
o_orderpriority, and 1_orderkey = o_orderkey
count (*) as order_count and o_orderdate < ’1995-03-01’
from and 1_shipdate > ’1995-03-01’
orders group by
where 1_orderkey,
o_orderdate >= ’1993-05-01’ o_orderdate,
and o_orderdate < dateadd(month, o_shippriority
+3, 21993-05-01’) order by
and exists (revenue desc,
select o_orderdate;
* go
from insert into TIMES values
lineitem (’Q3 in Str02 end’,getdate());
where
1_orderkey = o_orderkey set rowcount O
and 1_commitdate < 1_receiptdate go
)
group by insert into TIMES values
o_orderpriority (°Q11 in Str02 start’,getdate());
order by select
o_orderpriority; ps_partkey,
go sum(ps_supplycost * ps_availqty) as value
insert into TIMES values from
(’Q4 in Str02 end’,getdate()); partsupp,

supplier,

Appendix A. Source code

108 for Microsoft SQL Server 2008
nation A.4 Load Test
where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED STATES’
group by

ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty)
* 0.0001000000

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
ind n_name = ’UNITED STATES’
order by

value desc;

go

insert into TIMES values

(’Q11 in Str02 end’,getdate());

set rowcount 100
go

insert into TIMES values

(’Q21 in Str02 start’,getdate());
select

s_name,

count (*) as numwait

from

supplier,

lineitem 11,

orders,

nation

where

s_suppkey = 11.1_suppkey

and o_orderkey = 11.1_orderkey
and o_orderstatus = ’F’

and 11.1_receiptdate > 11.1_commitdate
and exists (

select

*

from

lineitem 12

where

12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)

and not exists (

select

*

from

lineitem 13

where

13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 11.1_suppkey
?nd 13.1_receiptdate > 13.1_commitdate

and s_nationkey = n_nationkey
and n_name = ’INDONESIA’

group by

s_name

order by

numwait desc,

s_name;

go

insert into TIMES values

(’Q21 in Str02 end’,getdate());

set rowcount O
go

insert into TIMES values
(’Str02 end’,getdate());

go

load.cmd

rem Load Test starts

cd SQL_Server_Files
set cwd=Y%cd%

sqlcmd -E -dTPCH -Q"create table LOADTIMES
(STEP char(35) ,TIMESTAMP datetime)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’LOAD begin’,getdate())"

rem Creating the tables

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’Create Tables begin’,getdate())"
sqlcmd -E -e -dTPCH -iCreateTables.sql
sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’Create Tables end’,getdate())"

rem Executing Bulk Imnserts

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’NATION bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert NATION
from ’Y%cd’\nation.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’, tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’NATION end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’REGION bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert REGION
from ’%cd/\region.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’,tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’REGION end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’SUPPLIER bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert SUPPLIER
from ’%cd/\supplier.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’, tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’SUPPLIER end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’PART bulk insert begin’,getdate())"
Sqlcmd -E -e -dTPCH -Q"bulk insert PART
from ’Jcd)\part.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’, tablock)"

sqlcmd -E -dTPCH Q"lnsert into LOADTIMES
values (’PART end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’PARTSUPP bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert PARTSUPP
from ’Ycdl\partsupp.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’,tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’PARTSUPP end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’ORDERS bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert ORDERS
from ’Y%cd/\orders.tbl’

with (FieldTerminator = ’|’,

RowTerminator =’|\n’, tablock)"

sqlcmd -E -dTPCH Q"lnsert into LOADTIMES
values (’ORDERS end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’LINEITEM bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert LINEITEM
from ’Y%cd’%\lineitem.tbl’

with (FieldTerminator = ’|’,

A.5 Performance Test

109

RowTerminator =’|\n’,tablock)"
sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’LINEITEM end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’CUSTOMER bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert CUSTOMER
from ’%cd’%\customer.tbl’
with (FieldTerminator =
RowTerminator =’|\n’ tablock)"

sqlcmd -E -dTPCH Q"lnsert into LOADTIMES
values (’CUSTOMER end’,getdate())"

)|’

sqlcmd -E -dTPCH -Q"insert into LOADTIMES

values (’NEWLINEITEM bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert NEWLINEITEM
from ’Y%cd’\Lineitem.tbl.ul’

with (FieldTerminator = ’|’,

RowTerminator =’\n’,tablock)"

sqlcmd -E -e -dTPCH -Q"bulk insert NEWLINEITEM
from ’Y%cd’%\Lineitem.tbl.u2’

with (FieldTerminator = ’|’,

RowTerminator =’\n’,tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’NEWLINEITEM end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’NEWORDERS bulk insert begin’,getdate())"
sqlcmd -E -e -dTPCH -Q"bulk insert NEWORDERS
from ’%cd’%\Orders.tbl.ul’

with (FieldTerminator = ’|’,

RowTerminator =’\n’ tablock)“

sqlcmd -E -e -dTPCH -Q"bulk insert NEWORDERS
from ’%cd’%\Orders.tbl.u2’

with (FieldTerminator = ’|’,

RowTerminator =’\n’ tablock)”

sqlcmd -E -dTPCH Q"lnsert into LOADTIMES
values (’NEWORDERS end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES

values (’OLDORDERS bulk insert begin’,getdate())"
sqlcmd -E -dTPCH -Q"bulk insert OLDORDERS

from ’J%cd’\Delete.1’
with (FieldTerminator =
RowTerminator =’|’,tablock)"

sqlcmd -E -dTPCH -Q"bulk insert OLDORDERS
from ’J%cd’\Delete.2’
with (FieldTerminator =
RowTerminator =’|’,tablock)"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’OLDORDERS end’,getdate())"

)I),

JI},

rem Creating Constraints

-E -dTPCH -Q"insert into LOADTIMES
(’Creating constraints begin’,getdate())"
-E -e -dTPCH -iConstraints.sql

-E -dTPCH -Q"insert into LOADTIMES
(’Creating constraints end’,getdate())"

sqlcmd
values
sqlcmd
sqlcmd
values

rem Creating Indexes

-E -dTPCH -Q"insert into LOADTIMES
(’Creating indexes begin’,getdate())"
-E -e -dTPCH -ilIndexes.sql

-E -dTPCH -Q"insert into LOADTIMES
(’Creating indexes end’,getdate())"

sqlcmd
values
sqlcmd
sqlcmd
values

rem Collecting Statistics

sqlcmd
values
sqlcmd
sqlcmd
values

-E -dTPCH -Q"insert into LOADTIMES
(’Creating statistics start’,getdate())"
-E -e -dTPCH -Q"sp_createstats"

-E -dTPCH -Q"insert into LOADTIMES
(’Creating statistics end’,getdate())"

rem Installing Refresh Functions
as Stored Procedures

sqlcmd -E -dTPCH -Q"insert into LOADTIMES values
(’Installing refresh functions start’,getdate())"
sqlcmd -E -e -I -dTPCH -iCreateRF1.sql
sqlcmd -E -e -I -dTPCH -iCreateRF2.sql

sqlcmd -E -dTPCH -Q"insert into LOADTIMES values
(’Installing refresh functions end’,getdate())"

sqlcmd -E -dTPCH -Q"insert into LOADTIMES
values (’LOAD end’,getdate())"

cd ..
semaphore -release SEM1
semaphore -release SEM1

exit /B

A.5 Performance Test

run.cmd

cd SQL_Server_Files

rem Power Test

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Power start’,getdate())"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str00 RF1 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF1 40"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str00 RF1 end’,getdate())"

sqlcmd -I -E -dTPCH -iStream00.sql

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str00 RF2 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF2 32"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str00 RF2 end’,getdate())"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Power end’,getdate())"

rem Throughput Test

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Throughput start’,getdate())"

cd ..

start cmd /C RunStreamO1.cmd
start cmd /C RunStream02.cmd
semaphore -wait SEM2

cd SQL_Server_Files

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’StrO1 RF1 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF1 4008"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’StrO1 RF1 end’,getdate())"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’StrO1 RF2 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF2 4000"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str01 RF2 end’,getdate())"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str02 RF1 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF1 7976"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str02 RF1 end’,getdate())"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str02 RF2 start’,getdate())"
0SQL -I -E -dTPCH -Q"exec RF2 7968"
sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Str02 RF2 end’,getdate())"

sqlcmd -I -E -dTPCH -Q"insert into TIMES
values (’Throughput end’,getdate())"

110

Appendix A. Source code
for Microsoft SQL Server 2008

cd ..
semaphore -release SEM1
semaphore -release SEM1

exit /B

RunStreamO1.cmd

cd SQL_Server_Files
sqlcmd -I -E -dTPCH -iStreamO1.sql

cd ..
semaphore -release SEM2

exit /B

RunStream02.cmd

cd SQL_Server_Files
sqlcmd -I -E -dTPCH -iStream02.sql

cd ..
semaphore -release SEM2

exit /B

A.6 Full Test

all_tests.cmd

rem Test start

sqlcmd -I -E -Q"drop database TPCH"
sqlcmd -I -E -Q"CHECKPOINT"

sqlcmd -I -E -Q"DBCC FREEPROCCACHE"
sqlcmd -I -E -Q"DBCC DROPCLEANBUFFERS"
net stop mssqlserver

rem Starting the server

net start mssqlserver

cd SQL_Server_Files

rem Creating database TPCH

sqlcmd -I -E -Q"create database TPCH"

cd ..

start cmd /C load.cmd

semaphore -wait SEM1

sqlcmd -I -E -dTPCH -Q"select * from loadtimes

order by timestamp"
-0 SQL_Server_Results\load.txt -b

start cmd /C run.cmd

semaphore -wait SEM1

sqlcmd -I -E -dTPCH -Q"select * from times
order by start"

-o SQL_Server_Results\performance.txt -b
sqlcmd -I -E -Q"drop database TPCH".
sqlcmd -I -E -Q"CHECKPOINT"

sqlcmd -I -E -Q"DBCC FREEPROCCACHE"

sqlcmd -I -E -Q"DBCC DROPCLEANBUFFERS"

net stop mssqlserver

exit \B

A.7 Concurrency Handling

semaphore.cpp

#define _WIN32_WINNT 0x0400
#include <windows.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>
#include <stdio.h>

#include <assert.h>

int main(int argc, char **argv)

typedef enum {eUnknown, eStart,
eWait, eRelease} OPERATION;
OPERATION e0P = eUnknown;

int i;

HANDLE hSemaphore;

if (_stricmp(argv[1], "-wait") == 0)
e0P = eWait;
else if (_stricmp(argv[l], "-release") == 0)

e0P = eRelease;

if (eOP == eWait)

{

hSemaphore = CreateSemaphore(NULL, O,
2000000000,argv[2]);

for (i=0; i<2; i++)

WaitForSingleObject (hSemaphore, INFINITE);
}

CloseHandle (hSemaphore) ;
}

else if (e0OP == eRelease)

hSemaphore = OpenSemaphore
(SEMAPHORE_MODIFY_STATE, FALSE, argv[2]);
ReleaseSemaphore (hSemaphore, 1, NULL);
gloseHandle(hSemaphore);

return O;

Appendix B

Source code

for MySQL 5.1

B.1 Database Build Scripts

CreateTables.sql

create table LOADTIMES
(STEP char(35) ,TIMESTAMP datetime);

insert into LOADTIMES values
(’LOAD begin’ ,NOW());

insert into LOADTIMES values
(’Create Tables begin’ ,NOW());

create table REGION
(R_REGIONKEY int not null,
R_NAME char(25) not null,
R_COMMENT varchar(152) not null,
PRIMARY KEY (R_REGIONKEY));

create table NATION
(N_NATIONKEY int not null,
N_NAME char(25) not null,
N_REGIONKEY int not null,
N_COMMENT varchar(152) not null,
PRIMARY KEY (N_NATIONKEY),

INDEX (N_REGIONKEY));

create table SUPPLIER
(S_SUPPKEY int not null,

S_NAME char(25) not null,
S_ADDRESS varchar(40) not null,
S_NATIONKEY int not null,
S_PHONE char(15) not null,
S_ACCTBAL float not null,
S_COMMENT varchar(101) not null,
PRIMARY KEY (S_SUPPKEY),

INDEX (S_NATIONKEY));

create table CUSTOMER
(C_CUSTKEY int not null,

C_NAME varchar(25) not null,
C_ADDRESS varchar(40) not null,
C_NATIONKEY int not null,
C_PHONE char(15) not null,
C_ACCTBAL float not null,
C_MKTSEGMENT char(10) not null,
C_COMMENT varchar(117) not null,
PRIMARY KEY (C_CUSTKEY),

INDEX (C_NATIONKEY));

create table PART

(P_PARTKEY int not null,
P_NAME varchar(55) not null,
P_MFGR char(25) not null,
P_BRAND char(10) not null,
P_TYPE varchar(25) not null,
P_SIZE int not null,
P_CONTAINER char(10) not null,
P_RETAILPRICE float not null,
P_COMMENT varchar(23) not null,

111

PRIMARY KEY (P_PARTKEY));

create table PARTSUPP

(PS_PARTKEY int not null,
PS_SUPPKEY int not null,

PS_AVAILQTY int not null,
PS_SUPPLYCOST float not null,
PS_COMMENT varchar(199) not null,
PRIMARY KEY (PS_PARTKEY,PS_SUPPKEY),
INDEX (PS_SUPPKEY),

INDEX (PS_PARTKEY));

create table ORDERS

(O_ORDERKEY bigint not null,
O_CUSTKEY int not null,
0_ORDERSTATUS char(1) not null,
O_TOTALPRICE float not null,
O_ORDERDATE date not null,
0_ORDERPRIORITY char(15) not null,
0_CLERK char(15) not null,
O0_SHIPPRIORITY int not null,
0_COMMENT varchar(79) not null,
PRIMARY KEY (O_ORDERKEY),

INDEX (O_CUSTKEY),

INDEX (O_ORDERDATE));

create table LINEITEM
(L_ORDERKEY bigint not null,
L_PARTKEY int not null,
L_SUPPKEY int not null,
L_LINENUMBER int not null,
L_QUANTITY float not null,
L_EXTENDEDPRICE float not null,
L_DISCOUNT float not null,
L_TAX float not null,
L_RETURNFLAG char(1) not null,
L_LINESTATUS char(1) not null,
L_SHIPDATE date not null,
L_COMMITDATE date not null,
L_RECEIPTDATE date not null,
L_SHIPINSTRUCT char(25) not null,
L_SHIPMODE char(10) not null,
L_COMMENT varchar(44) not null,
PRIMARY KEY (L_ORDERKEY,L_LINENUMBER),
INDEX (L_ORDERKEY),

INDEX (L_LINENUMBER),

INDEX (L_SHIPDATE),

INDEX (L_COMMITDATE),

INDEX (L_RECEIPTDATE));

create table TIMES
(QUERY char(25),
START datetime);

create table NEWORDERS

(0O_ORDERKEY bigint not null,
O_CUSTKEY int not null,
0_ORDERSTATUS char(1) not null,
O_TOTALPRICE float not null,
O_ORDERDATE datetime not null,
0_ORDERPRIORITY char(15) not null,

112

Appendix B. Source code
for MySQL 5.1

0_CLERK char(15) not null,
O_SHIPPRIORITY int not null,
0_COMMENT varchar(79) not null);

create table NEWLINEITEM
(L_ORDERKEY bigint not null,
L_PARTKEY int not null,
L_SUPPKEY int not null,
L_LINENUMBER int not null,
L_QUANTITY float not null,
L_EXTENDEDPRICE float not null,
L_DISCOUNT float not null,

L_TAX float not null,
L_RETURNFLAG char(1) not null,
L_LINESTATUS char(1) not null,
L_SHIPDATE datetime not null,
L_COMMITDATE datetime not null,
L_RECEIPTDATE datetime not null,
L_SHIPINSTRUCT char(25) not null,
L_SHIPMODE char(10) not null,
L_COMMENT varchar(44) not null);

create table OLDORDERS
(0_ORDERKEY int not null);

insert into LOADTIMES values
(’Create Tables end’,NOW());

Inserts.sql

insert into LOADTIMES values

(’NATION bulk insert begin’ ,NOW());

LOAD DATA INFILE "nation.tbl"

INTO TABLE NATION FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’NATION end’ ,NOWQ));

insert into LOADTIMES values

(’REGION bulk insert begin’,NOW());

LOAD DATA INFILE "region.tbl"

INTO TABLE REGION FIELDS TERMINATED BY "|["
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’REGION end’,NOW());

insert into LOADTIMES values

(’SUPPLIER bulk insert begin’,NOW());

LOAD DATA INFILE "supplier.tbl"

INTO TABLE SUPPLIER FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(?SUPPLIER end’,NOW());

insert into LOADTIMES values

(’PART bulk insert begin’ ,NOW());

LOAD DATA INFILE "part.tbl"

INTO TABLE PART FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’PART end’ ,NOW());

insert into LOADTIMES values

(’PARTSUPP bulk insert begin’,NOW());

LOAD DATA INFILE "partsupp.tbl"

INTO TABLE PARTSUPP FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(?PARTSUPP end’,NOW());

insert into LOADTIMES values

(’ORDERS bulk insert begin’,NOW());

LOAD DATA INFILE "orders.tbl"

INTO TABLE ORDERS FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’ORDERS end’ ,NOWQ)) ;

insert into LOADTIMES values

(’LINEITEM bulk insert begin’,NOW());

LOAD DATA INFILE "lineitem.tbl"

INTO TABLE LINEITEM FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’LINEITEM end’,NOW());

insert into LOADTIMES values

(’CUSTOMER bulk insert begin’,NOW());

LOAD DATA INFILE "customer.tbl"

INTO TABLE CUSTOMER FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’CUSTOMER end’,NOW());

insert into LOADTIMES values

(’NEWLINEITEM bulk insert begin’,NOW());

LOAD DATA INFILE "Lineitem.tbl.ul"

INTO TABLE NEWLINEITEM FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

LOAD DATA INFILE "Lineitem.tbl.u2"

INTO TABLE NEWLINEITEM FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’NEWLINEITEM end’,NOW(Q));

insert into LOADTIMES values

(’NEWORDERS bulk insert begin’,NOW());

LOAD DATA INFILE "Orders.tbl.ul"

INTO TABLE NEWORDERS FIELDS TERMINATED BY "|["
LINES TERMINATED BY "\r\n";

LOAD DATA INFILE "Orders.tbl.u2"

INTO TABLE NEWORDERS FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’NEWORDERS end’ ,NOW());

insert into LOADTIMES values

(’OLDORDERS bulk insert begin’,NOW());

LOAD DATA INFILE "Delete.1"

INTO TABLE OLDORDERS FIELDS TERMINATED BY "|["
LINES TERMINATED BY "\r\n";

LOAD DATA INFILE "Delete.2"

INTO TABLE OLDORDERS FIELDS TERMINATED BY "|"
LINES TERMINATED BY "\r\n";

insert into LOADTIMES values

(’OLDORDERS end’,NOW());

CreateStatistics.sql

insert into LOADTIMES values
(’Creating statistics start’,NOW());

ANALYZE TABLE nation;
ANALYZE TABLE region;
ANALYZE TABLE supplier;
ANALYZE TABLE part;
ANALYZE TABLE partsupp;
ANALYZE TABLE orders;
ANALYZE TABLE lineitem;
ANALYZE TABLE customer;

insert into LOADTIMES values
(’Creating statistics end’,NOW());

insert into LOADTIMES values
(’Installing refresh functions start’,NOW());

LoadEnd.sql

use tpch;

insert into LOADTIMES values
(’Installing refresh functions end’,NOW());

insert into LOADTIMES values
(’LOAD end’,NOW());

B.2 Refresh Function Defi-

nitions

CreateRF1.sql

B.2 Refresh Function Definitions

113

DELIMITER //
CREATE PROCEDURE RF1
(IN startkey INT)

BEGIN
DECLARE loops INT;
SET loops = 124;

WHILE loops > O DO

INSERT INTO ORDERS

(O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_ORDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
O_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
O_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_ORDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0O_ORDERKEY, O0_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,

L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,

L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,

L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_ORDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
O_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
O_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_DRDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_ORDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0O_ORDERKEY, O0_CUSTKEY, O_ORDERSTATUS,
0_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O0_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_0RDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
0_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
O0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

114

Appendix B. Source code
for MySQL 5.1

WHERE L_ORDERKEY=0_ORDERKEY
AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0O_ORDERKEY, O0_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_0RDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 1);

INSERT INTO ORDERS

(0_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT)

SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
0_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
0_CLERK, O_SHIPPRIORITY, O_COMMENT

FROM NEWORDERS

WHERE O_ORDERKEY = startkey;

INSERT INTO LINEITEM
(L_ORDERKEY,L_PARTKEY,L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT,

L_SHIPMODE, L_COMMENT)

SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
FROM NEWLINEITEM, NEWORDERS

WHERE L_ORDERKEY=0_ORDERKEY

AND O_ORDERKEY = startkey;

SET startkey = (startkey + 25);
SET loops = (loops - 1);

END WHILE;

END //

DELIMITER ;
GO

CreateRF2.sql

DELIMITER //

CREATE PROCEDURE RF2
(IN startkey INT)
BEGIN

DECLARE loops INT;
SET loops = 124;

WHILE loops > O DO
DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey);

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey);

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey);

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT 0_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey);

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in
(SELECT O_ORDERKEY

FROM OLDORDERS

B.3 Query Streams

115

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT 0_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey);

SET startkey = (startkey + 1);

DELETE FROM ORDERS

WHERE O_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;

DELETE FROM LINEITEM

WHERE L_ORDERKEY in

(SELECT O_ORDERKEY

FROM OLDORDERS

WHERE O_ORDERKEY = startkey) ;
SET startkey = (startkey + 25);
SET loops = (loops - 1);

END WHILE;

END //
GO

B.3 Query Streams

Stream00.sql

use tpch;

create view revenueO

(supplier_no, total_revenue) as
select

1_suppkey,

sum(1l_extendedprice * (1 - 1_discount))
from

lineitem

where

1_shipdate >= date ’1996-04-01°
and 1_shipdate < date ’1996-04-01’
+interval ’3’ month

group by

1_suppkey;

go

insert into TIMES values
(’Str00 start’,NOW());

insert into TIMES values

(’Q14 in Str00 start’,NOW());

select

100.00 * sum(case

when p_type like ’PROMOY%’

then 1_extendedprice * (1 - 1_discount)
else O

end) / sum(l_extendedprice * (1 - 1l_discount))

as promo_revenue
from

lineitem,

part

where

1_partkey = p_partkey

and 1_shipdate >= date ’1995-08-01’
and 1_shipdate < date ’1995-08-01’
+interval ’1’ month

go

insert into TIMES values

(’Q14 in Str00 end’,NOW());

insert into TIMES values
(’Q2 in Str00 start’,NOW(Q));
select

s_acctbal,

s_name,
n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 27

and p_type like ’%TIN’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’MIDDLE EAST’
and ps_supplycost = (

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
?nd r_name = ’MIDDLE EAST’

order by

s_acctbal desc,

n_name,

s_name,

p_partkey

limit 100;

go

insert into TIMES values
(’Q2 in Str00 end’,NOW());

insert into TIMES values

(’Q9 in Str00 start’,NOW());
select

nation,

o_year,

sum(amount) as sum_profit
from

(

select

n_name as nation,
extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - 1l_discount)
- ps_supplycost * 1_quantity as amount
from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = 1l_suppkey

and ps_suppkey = 1_suppkey
and ps_partkey = 1l_partkey
and p_partkey = 1l_partkey

and o_orderkey = 1_orderkey
and s_nationkey = n_nationkey
and p_name like ’%dark’

) as profit

group by

nation,

o_year

order by

nation,

o_year desc;

go

insert into TIMES values

(’Q9 in Str00 end’,NOW(Q));

insert into TIMES values
(’Q20 in Str00 start’,NOW());

Appendix B. Source code

116 for MySQL 5.1
select c_name,
s_name, c_custkey,
s_address o_orderkey,
from o_orderdate,
supplier, o_totalprice,
nation sum(1l_quantity)
where from
s_suppkey in (customer,
select orders,
ps_suppkey lineitem
from where
partsupp o_orderkey in (
where select
ps_partkey in (1_orderkey
select from
p_partkey lineitem
from group by
part 1_orderkey having
where sum(1l_quantity) > 315

p_name like ’maroon}’

and ps_availqty > (

select

0.5 * sum(1l_quantity)

from

lineitem

where

1_partkey = ps_partkey

and 1_suppkey = ps_suppkey

and 1_shipdate >= date ’1997-01-01’
and 1_shipdate < date ’1997-01-01’
+interval ’1’ year

)

and s_nationkey = n_nationkey
and n_name = ’FRANCE’

order by

s_name;

go

insert into TIMES values
(’Q20 in Str00 end’,NOW());

insert into TIMES values

(’Q6 in Str00 start’,NOW());
select

sum(1l_extendedprice * 1_discount)
as revenue

from

lineitem

where

1_shipdate >= date ’1993-01-01’
and 1_shipdate < date ’1993-01-01°
+interval ’1’ year

and 1_discount between 0.06 - 0.01
and 0.06 + 0.01

and 1_quantity < 25;

go

insert into TIMES values

(’Q6 in Str00 end’,NOWQ));

insert into TIMES values
(’Q17 in Str00 start’,NOW());
select

sum(1l_extendedprice) / 7.0
as avg_yearly

from

lineitem,

part

where

p_partkey = 1_partkey

and p_brand = ’Brand#52’
and p_container = ’MED DRUM’
and 1_quantity < (

select

0.2 * avg(l_quantity)

from

lineitem

where

%_partkey = p_partkey

go

insert into TIMES values
(’Q17 in Str00 end’,NOW());

insert into TIMES values
(’Q18 in Str00 start’,NOW());
select

and c_custkey = o_custkey
and o_orderkey = 1_orderkey
group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

o_totalprice desc,
o_orderdate

limit 100;

go

insert into TIMES values
(’Q18 in Str00 end’,NOWQ));

insert into TIMES values

(°Q8 in Str00 start’,NOW());
select

o_year,

sum(case

when nation = ’RUSSIA’

then volume

else O

end) / sum(volume) as mkt_share
from

(

select

extract (year from o_orderdate)
as o_year,

1_extendedprice * (1 - 1_discount)
as volume,

n2.n_name

as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’EUROPE’

and s_nationkey = n2.n_nationkey
and o_orderdate between

date ’1995-01-01’

and date ’1996-12-31°

and p_type = ’SMALL BURNISHED COPPER’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(’Q8 in Str00 end’,NOW());

insert into TIMES values
(’Q21 in Str00 start’,NOW());

B.3 Query Streams 117

select and o_orderdate < date ’1995-03-30’
s_name, and 1_shipdate > date ’1995-03-30’
count (*) as numwait group by
from 1_orderkey,
supplier, o_orderdate,
lineitem 11, o_shippriority
orders, order by
nation revenue desc,
where o_orderdate
s_suppkey = 11.1_suppkey limit 10;
and o_orderkey = 11.1_orderkey go
and o_orderstatus = ’F’ insert into TIMES values
and 11.1_receiptdate > 11.1_commitdate (’Q3 in Str00 end’,NOW(Q));
and exists (
select insert into TIMES values
* (’Q22 in Str00 start’,NOW());
from select
lineitem 12 cntrycode,
where count (*) as numcust,
12.1_orderkey = 11.1_orderkey sum(c_acctbal) as totacctbal
and 12.1_suppkey <> 11.1_suppkey from
) (
and not exists (select
select substring(c_phone, 1, 2) as cntrycode,
* c_acctbal
from from
lineitem 13 customer
where where
13.1_orderkey = 11.1_orderkey substring(c_phone, 1, 2) in
and 13.1_suppkey <> 11.1_suppkey (’16’, ’29°, °33’, ’34’, ’26°, 22, ’31’)
and 13.1_receiptdate > 13.1_commitdate and c_acctbal > (
select
and s_nationkey = n_nationkey avg(c_acctbal)
and n_name = ’UNITED STATES’ from
group by customer
S_name where
order by c_acctbal > 0.00
numwait desc, and substring(c_phone from 1 for 2) in
s_name (’16°, ’29°, °33’, ’34’, ’26°, 22, ’31’)
1limit 100;)
go and not exists (
insert into TIMES values select
(’Q21 in Str00 end’,NOW()); *
from
insert into TIMES values orders
(’Q13 in Str00 start’,NOW()); where
select o_custkey = c_custkey
c_count,
count (*) as custdist) as custsale
from group by
(cntrycode
select order by
c_custkey, cntrycode;
count (o_orderkey) go
from insert into TIMES values
customer left outer join orders on (’Q22 in Str00 end’,NOW());
c_custkey = o_custkey
and o_comment not insert into TIMES values
like ’%unusualyrequests’’ (’Q16 in Str00 start’,NOW(Q));
group by select
c_custkey p_brand,
) as c_orders (c_custkey, c_count) p_type,
group by p_size,
c_count count (distinct ps_suppkey)
order by as supplier_cnt
custdist desc, from
c_count desc; partsupp,
go part
insert into TIMES values where
(’Q13 in Str00 end’,NOW()); p_partkey = ps_partkey
and p_brand <> ’Brand#10’
insert into TIMES values and p_type not like ’PROMO ANODIZEDY’
(’Q3 in Str00 start’,NOW()); and p_size in
select (30, 27, 50, 23, 2, 33, 49, 15)
1_orderkey, and ps_suppkey not in (
sum(1l_extendedprice * (1 - 1_discount)) select
as revenue, s_suppkey
o_orderdate, from
o_shippriority supplier
from where
customer, s_comment
orders, like ’%Customer’Complaintsy’
lineitem)
where group by
c_mktsegment = ’FURNITURE’ p_brand,
and c_custkey = o_custkey p_type,

and 1_orderkey = o_orderkey p_size

Appendix B. Source code

118 for MySQL 5.1
order by select
supplier_cnt desc, max (total_revenue)
p_brand, from
p_type, revenue0
p_size;
go order by
insert into TIMES values s_suppkey;
(’Q16 in Str00 end’,NOW()); go
drop view revenueO;
insert into TIMES values go

(’Q4 in Str00 start’,NOW(Q));
select

o_orderpriority,

count (*) as order_count
from

orders

where

o_orderdate >= date ’1997-09-01°
and o_orderdate < date ’1997-09-01°

+interval ’3’ month

and exists (

select

*

from

lineitem

where

1_orderkey = o_orderkey

and 1_commitdate < 1l_receiptdate

)

group by

o_orderpriority

order by

o_orderpriority;

go

insert into TIMES values
(’Q4 in Str00 end’,NOW());

insert into TIMES values
(’Q11 in Str00 start’,NOW(Q));
select

ps_partkey,

sum(ps_supplycost * ps_availqty)

as value

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED KINGDOM’
group by

ps_partkey having

sum(ps_supplycost * ps_availqty) > (

select

sum(ps_supplycost * ps_availqty)

* 0.0001000000

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED KINGDOM’
)

order by

value desc;

go

insert into TIMES values
(’Q11 in Str00 end’,NOW());

insert into TIMES values
(’Q15 in Str00 start’,NOW(Q));

select

s_suppkey,

S_name,

s_address,

s_phone,
total_revenue

from

supplier,

revenue0

where

s_suppkey = supplier_no
and total_revenue = (

insert into TIMES values
(’Q15 in Str00 end’,NOW(Q));

insert into TIMES values

(’Q1 in Str00 start’,NOW());

select

1_returnflag,

1_linestatus,

sum(1l_quantity) as sum_qty,
sum(1l_extendedprice) as sum_base_price,
sum(1l_extendedprice * (1 - 1l_discount))
as sum_disc_price,

sum(1l_extendedprice * (1 - 1_discount)
* (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

count (*) as count_order

from

lineitem

where

1_shipdate <= date ’1998-12-01’
-interval ’66° day

group by

1_returnflag,

1_linestatus

order by

1_returnflag,

1_linestatus;

go

insert into TIMES values

(°Q1 in Str00 end’,NOW());

insert into TIMES values
(’Q10 in Str00 start’,NOW());
select

c_custkey,

c_name,

sum(1l_extendedprice

* (1 - 1_discount)) as revenue,
c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and o_orderdate >= date ’1993-06-01°
and o_orderdate < date ’1993-06-01°
+interval ’3’ month

and 1_returnflag = 'R’

and c_nationkey = n_nationkey
group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc

limit 20;

go

insert into TIMES values
(’Q10 in Str00 end’,NOW());

insert into TIMES values
(’Q19 in Str00 start’,NOW());
select

sum(1l_extendedprice

B.3 Query Streams

119

* (1 - 1_discount)) as revenue

from

lineitem,

part

where

(

p_partkey = 1_partkey

and p_brand = ’Brand#31°

and p_container

in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
and 1 quantlty >= 10 and 1 quantlty <= 10 + 10
and p_size between 1 and 5

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

)

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#53’

and p_container

in (°MED BAG’, °MED BOX’, ’MED PKG’, ’MED PACK’)

and 1_quantity >= 17 and 1_quantity <= 17 + 10
and p_size between 1 and 10

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

)

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#24’

and p_container

in (LG CASE’, °LG BOX’, ’LG PACK’, ’LG PKG’)
and 1 quantlty >= 20 and 1 quantlty <= 20 + 10
and p_size between 1 and

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

go
insert into TIMES values
(’Q19 in Str00 end’,NOW());

insert into TIMES values

(’Q5 in Str00 start’,NOW(Q));
select

n_name,

sum(1l_extendedprice

* (1 - 1_discount)) as revenue
from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’AMERICA’

and o_orderdate >= date ’1993-01-01°
and o_orderdate < date ’1993-01-01
+interval ’1’ year

group by

n_name

order by

revenue desc;

go

insert into TIMES values

(’Q5 in Str00 end’ ,NOWQ));

insert into TIMES values
(’Q7 in Str00 start’,NOW());
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue

from

(

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,
extract(year from 1_shipdate)
as 1l_year,

1_extendedprice * (1 - 1_discount)
as volume

from

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2

where

s_suppkey = 1l_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(n1.n_name = ’MOROCCO’

and n2.n_name = ’RUSSIA’)
or (nl.n_name = ’RUSSIA’
and n2.n_name = *MOROCCO’)

)

and 1_shipdate between
date ’1995-01-01’

and date ’1996-12-31°

) as shipping

group by

supp_nation,
cust_nation,

1_year

order by

supp_nation,
cust_nation,

1_year;

go

insert into TIMES values
(’Q7 in Str00 end’,NOW());

insert into TIMES values
(’Q12 in Str00 start’,NOW(Q));
select
1_shipmode,
sum(case
when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1
else O
end) as high_line_count,
sum(case
when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1
else O
end) as low_line_count
from
orders,
lineitem
where
o_orderkey = 1_orderkey
and 1_shipmode in (’RAIL’, °MAIL’)
and 1_commitdate < 1l_receiptdate
and 1_shipdate < 1_commitdate
and 1l_receiptdate >= date ’1995-01-01’
and 1l_receiptdate < date ’1995-01-01°
+interval ’1’ year
group by
1_shipmode
order by
1_shipmode;
go
insert into TIMES values
(’Q12 in Str00 end’,NOW());
(]
%nsert into TIMES values
(’Str00 end’,NOW());

go

StreamO01.sql

use tpch;

create view revenuel

(supplier_no, total_revenue) as

select

1_suppkey,

sum(1l_extendedprice * (1 - 1_discount))

Appendix B. Source code

120 for MySQL 5.1
from (’Q3 in Str01 end’,NOW(Q));
lineitem
where insert into TIMES values
1_shipdate >= date ’1994-07-01’ (’Q18 in Str01 start’,NOW());
and 1_shipdate < date ’1994-07-01’ select
+interval ’3’ month c_name,
group by c_custkey,
1_suppkey; o_orderkey,
go o_orderdate,

o_totalprice,
insert into TIMES values sum(1l_quantity)
(’Str01 start’,NOW()); from
customer,
insert into TIMES values orders,
(’Q21 in StrO1 start’,NOW()); lineitem
select where
S_name, o_orderkey in (
count (%) as numwait select
from 1_orderkey
supplier, from
lineitem 11, lineitem
orders, group by
nation 1_orderkey having
where sum(l_quantity) > 312
s_suppkey = 11.1_suppkey)
and o_orderkey = 11.1_orderkey and c_custkey = o_custkey
and o_orderstatus = ’F’ and o_orderkey = 1_orderkey
and 11.1_receiptdate > 11.1_commitdate group by
and exists (c_name,
select c_custkey,
* o_orderkey,
from o_orderdate,
lineitem 12 o_totalprice
where order by
12.1_orderkey = 11.1_orderkey o_totalprice desc,
and 12.1_suppkey <> 11.1_suppkey o_orderdate
) limit 100;
and not exists (go
select insert into TIMES values
* (’Q18 in Str01 end’,NOW());
from
lineitem 13 insert into TIMES values
where (’Q5 in StrO01 start’,NOW(Q));
13.1_orderkey = 11.1_orderkey select
and 13.1_suppkey <> 11.1_suppkey n_name,
and 13.1_receiptdate > 13.1_commitdate sum(1l_extendedprice * (1 - 1l_discount))
) as revenue
and s_nationkey = n_nationkey from
and n_name = ’PERU’ customer,
group by orders,
s_name lineitem,
order by supplier,
numwait desc, nation,
s_name region
limit 100; where
go c_custkey = o_custkey
insert into TIMES values and 1_orderkey = o_orderkey
(’Q21 in Str01 end’ ,NOWQ)); and 1_suppkey = s_suppkey
and c_nationkey = s_nationkey
insert into TIMES values and s_nationkey = n_nationkey
(’Q3 in Stro01l start’,NOW()); and n_regionkey = r_regionkey
select and r_name = ’ASIA’
1_orderkey, and o_orderdate >= date ’1994-01-01’
sum(1l_extendedprice * (1 - 1_discount)) and o_orderdate < date ’1994-01-01°
as revenue, +interval ’1’ year
o_orderdate, group by
o_shippriority n_name
from order by
customer, revenue desc;
orders, go
lineitem insert into TIMES values
where (’Q5 in Str01 end’,NOW(Q));
c_mktsegment = ’MACHINERY’
and c_custkey = o_custkey insert into TIMES values
and 1_orderkey = o_orderkey (’Q11 in StrO01 start’,NOW());
and o_orderdate < date ’1995-03-16’ select
and 1_shipdate > date ’1995-03-16’ ps_partkey,
group by sum(ps_supplycost * ps_availqty) as value
1_orderkey, from
o_orderdate, partsupp,
o_shippriority supplier,
order by nation
revenue desc, where
o_orderdate ps_suppkey = s_suppkey
limit 10; and s_nationkey = n_nationkey
go and n_name = ’IRAQ’

insert into TIMES values group by

B.3 Query Streams

121

ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty)
* 0.0001000000

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
§nd n_name = ’IRAQ’

order by

value desc;

go

insert into TIMES values

(’Q11 in StrO01 end’,NOW(Q));

insert into TIMES values

(’Q7 in Str01 start’,NOW(Q));
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue

from

(

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,
extract(year from 1l_shipdate) as 1l_year,
1_extendedprice * (1 - 1l_discount) as volume
from

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2

where

s_suppkey = 1_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(n1.n_name = ’GERMANY’

and n2.n_name = ’KENYA’)
or (nl.n_name = ’KENYA’
and n2.n_name = ’GERMANY’)

)

and 1_shipdate between
date ’1995-01-01°

and date ’1996-12-31°

) as shipping

group by

supp_nation,
cust_nation,

1_year

order by

supp_nation,
cust_nation,

1_year;

go

insert into TIMES values
(’Q7 in Str01 end’,NOW());

insert into TIMES values

(’Q6 in Str01 start’,NOW(Q));
select

sum(1_extendedprice * 1_discount)
as revenue

from

lineitem

where

1_shipdate >= date ’1994-01-01°
and 1l_shipdate < date ’1994-01-01’
+interval ’1’ year

and 1_discount between 0.04 - 0.01
and 0.04 + 0.01

and 1_quantity < 25;

go

insert into TIMES values

(’Q6 in Str01 end’,NOWQ));

insert into TIMES values
(’Q20 in StrO01 start’,NOW());
select

s_name,

s_address

from

supplier,

nation

where

s_suppkey in (

select

ps_suppkey

from

partsupp

where

ps_partkey in (
select

p_partkey

from

part

where

p_name like ’tomato}’

and ps_availqty > (

select

0.5 * sum(1l_quantity)

from

lineitem

where

1_partkey = ps_partkey

and 1_suppkey = ps_suppkey

and 1_shipdate >= date ’1996-01-01’
and 1_shipdate < date ’1996-01-01’
+interval ’1’ year

)

and s_nationkey = n_nationkey
and n_name = ’VIETNAM’

order by

s_name;

go

insert into TIMES values
(’Q20 in StrO01 end’,NOW());

insert into TIMES values
(’Q17 in StrO1 start’,NOW());
select

sum(1l_extendedprice) / 7.0
as avg_yearly

from

lineitem,

part

where

p_partkey = 1_partkey

and p_brand = ’Brand#51’

and p_container = ’JUMBO BAG’
and 1_quantity < (

select

0.2 * avg(l_quantity)

from

lineitem

where

1_partkey = p_partkey

go
insert into TIMES values
(’Q17 in Str01 end’,NOW());

insert into TIMES values

(’Q12 in StrO01 start’,NOW(Q));
select

1_shipmode,

sum(case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1

else O

end) as high_line_count,

sum(case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else O

end) as low_line_count

from

orders,

lineitem

Appendix B. Source code

122 for MySQL 5.1
where (
o_orderkey = 1_orderkey select

and 1_shipmode in (’AIR’, ’MAIL’)
and 1_commitdate < 1l_receiptdate
and 1_shipdate < 1_commitdate

and 1_receiptdate >= date ’1995-01-01’
and 1_receiptdate < date ’1995-01-01°

+interval ’1’ year

group by

1_shipmode

order by

1_shipmode;

go

insert into TIMES values
(’Q12 in StrO01 end’,NOW());

insert into TIMES values
(’Q16 in Str0l start’,NOWQ));
select

p_brand,

p-type,

p_size,

count (distinct ps_suppkey)

as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_brand <> ’Brand#50°

and p_type not like ’SMALL PLATEDY%’
and p_size

in (33, 48, 23, 43, 28, 49, 3, 14)
and ps_suppkey not in (
select

s_suppkey

from

supplier

where

s_comment like ’%Customer’,Complaints%’

group by

p_brand,

p-type,

p_size

order by

supplier_cnt desc,
p_brand,

p-type,

p_size;

go

insert into TIMES values
(’Q16 in Str01 end’,NOW());

insert into TIMES values
(’Q15 in Str01 start’,NOW(Q));
select

s_suppkey,

s_name,

s_address,

s_phone,

total_revenue

from

supplier,

revenuel

where

s_suppkey = supplier_no
and total_revenue = (
select

max (total_revenue)

from

revenuel

order by
s_suppkey;

drop view revenuel;

go

insert into TIMES values
(’Q15 in Str01 end’,NOW());

insert into TIMES values
(’Q13 in StrO01 start’,NOW(Q));
select

c_count,

count (*) as custdist

from

c_custkey,

count (o_orderkey)

from

customer left outer join orders on
c_custkey = o_custkey

and o_comment not

like ’%unusualyrequests’,’

group by

c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count

order by

custdist desc,

c_count desc;

go

insert into TIMES values

(°’Q13 in Str01 end’,NOW());

insert into TIMES values
(’Q10 in StrO1 start’,NOW());
select

c_custkey,

c_name,

sum(1l_extendedprice

* (1 - 1_discount)) as revenue,
c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and o_orderdate >= date ’1994-10-01°
and o_orderdate < date ’1994-10-01°
+interval ’3’ month

and 1_returnflag = 'R’

and c_nationkey = n_nationkey
group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc

limit 20;

go

insert into TIMES values
(’Q10 in Str01 end’ ,NOW());

insert into TIMES values
(’Q2 in StrO01 start’,NOW(Q));
select

s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 15

and p_type like ’%COPPER’
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

and ps_supplycost = (

B.3 Query Streams

123

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
§nd r_name = ’ASIA’

order by

s_acctbal desc,

n_name,

s_name,

p_partkey

go

insert into TIMES values
(’Q2 in Str01 end’,NOWQ));

insert into TIMES values

(’Q8 in Str01 start’,NOW(Q));
select

o_year,

sum(case

when nation = ’KENYA’ then volume
else O

end) / sum(volume) as mkt_share
from

(

select

extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount)
as volume,

n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation nil,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1l_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’AFRICA’

and s_nationkey = n2.n_nationkey
and o_orderdate between ’1995-01-01’
and ’1996-12-31°

and p_type = ’STANDARD BRUSHED COPPER’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(’Q8 in Str01 end’,NOW());

insert into TIMES values

(’Q14 in StrO01 start’,NOW(Q));

select

100.00 * sum(case

when p_type like ’PROMOY%’

then 1_extendedprice * (1 - 1_discount)
else O

end) / sum(l_extendedprice * (1 - 1l_discount))

as promo_revenue
from

lineitem,

part

where

1_partkey = p_partkey

and 1_shipdate >= date ’1995-08-01’
and 1_shipdate < date ’1995-08-01’
+interval ’1’ month

go

insert into TIMES values

(’Q14 in StrO01 end’,NOW());

insert into TIMES values
(’Q19 in StrO1 start’,NOW());
select

sum(1l_extendedprice

* (1 - 1_discount)) as revenue
from

lineitem,

part

where

(

p_partkey = 1_partkey

and p_brand = ’Brand#42’

and p_container

in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
and 1_quantity >= 5 and 1_quantity <= 5 + 10

and p_size between 1 and 5

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’
)

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#43’
and p_container

in (°MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

and 1_quantity >= 18 and 1l_quantity <= 18 + 10

and p_size between 1 and 10

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’
)

or
(

p_partkey = 1_partkey
and p_brand = ’Brand#22’
and p_container

in (LG CASE’, °LG BOX’, ’LG PACK’, ’LG PKG’)
and 1_quantity >= 28 and l_quantity <= 28 + 10

and p_size between 1 and 15

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’
go

insert into TIMES values

(’Q19 in StrO01 end’,NOW());

insert into TIMES values

(’Q9 in Stro01 start’,NOW(Q));
select

nation,

o_year,

sum(amount) as sum_profit
from

(

select

n_name as nation,
extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount)
- ps_supplycost * 1_quantity as amount
from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = 1l_suppkey

and ps_suppkey = 1l_suppkey
and ps_partkey = 1_partkey
and p_partkey = 1_partkey

and o_orderkey = 1_orderkey
and s_nationkey = n_nationkey
and p_name like ’%chocolate},’
) as profit

group by

nation,

o_year

order by

nation,

o_year desc;

go

insert into TIMES values

(’Q9 in Str01 end’,NOW(Q));

insert into TIMES values

Appendix B. Source code

124 for MySQL 5.1
(’Q22 in Str01 start’,NOW()); lineitem
select where
cntrycode, 1_orderkey = o_orderkey
count (*) as numcust, and 1_commitdate < 1l_receiptdate
sum(c_acctbal) as totacctbal
from group by
(o_orderpriority
select order by
substring(c_phone, 1, 2) as cntrycode, o_orderpriority;
c_acctbal go
from insert into TIMES values
customer (’Q4 in StrO01 end’,NOW(Q));
where go
substring(c_phone, 1, 2) in insert into TIMES values
(31>, ’14°, °19°, °23°, ’33’, ’28’, ’27’) (°Str01 end’,NOW(Q));
and c_acctbal > (go
select
avg(c_acctbal)
from
customer Stream02.sql
where
c_acctbal > 0.00 toch:
and substring(c_phone from 1 for 2) in use tpeh;
(’31>, ’14>, °19°, °23°, ’33’, ’28’, ’27’) .
) create view revenue2
and not exists ((sgppller_no, total_revenue) as
select ie ect
* _suppkey,
from sum(1l_extendedprice * (1 - 1l_discount))
orders f;om.
where lineitem
where

o-custkey = c_custkey 1_shipdate >= date ’1996-05-01°

and 1_shipdate < date ’1996-05-01’

) as custsale +interval ’3’ month

roup b

%ntrgcoge %roup Ey .

order by —Suppxey;

cntrycode; go

go insert into TIMES values

insert into TIMES values

(’Q22 in Str01 end’ NOWQ)); (’Str02 start’,NOW());

insert into TIMES values

(’Q6 in Str02 start’,NOW(Q));
select

sum(1l_extendedprice * 1_discount)
as revenue

insert into TIMES values
(’Q1 in Str01 start’,NOW(Q));
select

1_returnflag,

1_linestatus,

- from
sum(1l_quantity) as sum_qty,] lineitem
sum(1l_extendedprice) as sum_base_price, where

sum(1l_extendedprice * (1 - 1_discount))
as sum_disc_price,

sum(1l_extendedprice * (1 - 1_discount)
* (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

1_shipdate >= date ’1994-01-01°

and 1_shipdate < date ’1994-01-01’
+interval ’1’ year

and 1_discount between 0.09 - 0.01
and 0.09 + 0.01

and 1_quantity < 24;

go
;ﬁﬁﬁt(*) as count_order insert into TIMES values
lineitem (’Q6 in Str02 end’,NOW());
where

insert into TIMES values
(’Q17 in Str02 start’,NOW());
select

sum(1l_extendedprice) / 7.0
as avg_yearly

1_shipdate <= date ’1998-12-01’
-interval ’74’ day

group by

1_returnflag,

1_linestatus

from
order by .
1_returnflag, 1;§:ltem,
1_linestatus; ghere

go
insert into TIMES values
(’Q1 in Str01 end’,NOWQ));

p_partkey = 1_partkey
and p_brand = ’Brand#53’
and p_container = ’JUMBO PKG’

insert into TIMES values and 1_quantity < (

P ; s . select
;eggcin Str01l start’,NOW()); 02 % avg(l_quantity)
o_orderpriority, {?gg.tem
count (*) as order_count inei
from where
orders 1_partkey = p_partkey
where H
o_orderdate >= date ’1995-11-01’ go

insert into TIMES values

and o_orderdate < date ’1995-11-01° (’Q17 in Str02 end’ ,NOWQ));

+interval ’3’ month

and exists (insert into TIMES values

ielect (’Q14 in Str02 start’,NOW());
trom select

100.00 * sum(case

B.3 Query Streams 125
when p_type like ’PROMOY%’ p_partkey = 1_partkey
then 1_extendedprice * (1 - 1_discount) and p_brand = ’Brand#11’
else 0 and p_container
end) / sum(l_extendedprice in (°LG CASE’, ’LG BOX’, ’LG PACK’, LG PKG’)

* (1 - 1l_discount)) as promo_revenue
from

lineitem,

part

where

1_partkey = p_partkey

and 1_shipdate >= date ’1995-03-01’
and 1_shipdate < date ’1995-03-01’
+interval ’1’ month

go

insert into TIMES values

(’Q14 in Str02 end’,NOW());

insert into TIMES values

(’Q16 in Str02 start’,NOW(Q));
select

p_brand,

p_type,

p_size,

count (distinct ps_suppkey)

as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_brand <> ’Brand#30’

and p_type not like ’LARGE POLISHEDY’
and p_size

in (7, 23, 19, 11, 10, 41, 48, 44)
and ps_suppkey not in (

select

s_suppkey

from

supplier

where

s_comment like ’%Customer’Complaints’

group by

p_brand,

p-type,

p_size

order by

supplier_cnt desc,
p_brand,

p_type,

p_size;

go

insert into TIMES values
(’Q16 in Str02 end’,NOW());

insert into TIMES values

(’Q19 in Str02 start’,NOW());

select

sum(1l_extendedpricex (1 - 1l_discount))
as revenue

from

lineitem,

part

where

p_partkey = 1_partkey

and p_brand = ’Brand#41’

and p_container

in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
and 1 quantlty >= 1 and 1 quantlty <=1+ 10
and p_size between 1 and 5

and 1_shipmode in (’AIR’, ’AIR REG’)

?nd 1_shipinstruct = "DELIVER IN PERSON’

or
(

p_partkey = 1_partkey

and p_brand = ’Brand#21’

and p_container

in (°MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

and 1_quantity >= 19 and 1_quantity <= 19 + 10
and p_size between 1 and 10

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

)

or

(

and 1_quantity >= 24 and 1_quantity <= 24 + 10
and p_size between 1 and 15

and 1_shipmode in (’AIR’, ’AIR REG’)

and 1_shipinstruct = ’DELIVER IN PERSON’

go

insert into TIMES values

(’Q19 in Str02 end’,NOW());

insert into TIMES values
(’Q10 in Str02 start’,NOW());
select

c_custkey,

c_name,

sum(1l_extendedprice * (1 - 1_discount))
as revenue,

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and o_orderdate >= date ’1994-08-01°
and o_orderdate < date ’1994-08-01°
+interval ’3’ month

and 1_returnflag = ’R’

and c_nationkey = n_nationkey
group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc

limit 20;

go

insert into TIMES values
(’Q10 in Str02 end’,NOW());

insert into TIMES values
(’Q9 in Str02 start’,NOW(Q));
select

nation,

o_year,

sum(amount) as sum_profit
from

select

n_name as nation,

extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - 1l_discount)

- ps_supplycost * 1l_quantity as amount
from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = 1l_suppkey

and ps_suppkey = 1_suppkey

and ps_partkey = 1l_partkey
and p_partkey = 1_partkey
and o_orderkey = 1_orderkey

and s_nationkey = n_nationkey
and p_name like ’%blush%’

) as profit

group by

nation,

o_year

order by

nation,

126

Appendix B. Source code
for MySQL 5.1

o_year desc;

go

insert into TIMES values
(’Q9 in Str02 end’,NOW(Q));

insert into TIMES values
(’Q2 in Str02 start’,NOWQ));
select

s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and p_size = 3

and p_type like ’%STEEL’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’AFRICA’

and ps_supplycost = (

select

min(ps_supplycost)

from

partsupp,

supplier,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
?nd r_name = ’AFRICA’

order by

s_acctbal desc,

n_name,

s_name,

p_partkey

limit 100;

go

insert into TIMES values
(’Q2 in Str02 end’,NOW(Q));

insert into TIMES values
(’Q15 in Str02 start’,NOW(Q));

select

s_suppkey,

s_name,

s_address,

s_phone,
total_revenue

from

supplier,

revenue?2

where

s_suppkey = supplier_no
and total_revenue = (
select

max (total_revenue)
from

revenue?2

order by
s_suppkey;

drop view revenue2;

go

insert into TIMES values
(’Q15 in Str02 end’,NOW());

insert into TIMES values
(’Q8 in Str02 start’,NOW());
select

o_year,

sum(case

when nation = ’FRANCE’ then volume
else O

end) / sum(volume) as mkt_share
from

(

select

extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation ni,

nation n2,

region

where

p_partkey = 1_partkey

and s_suppkey = 1_suppkey

and 1_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’EUROPE’

and s_nationkey = n2.n_nationkey
and o_orderdate between

date ’1995-01-01°

and date ’1996-12-31°

and p_type = ’STANDARD POLISHED TIN’
) as all_nations

group by

o_year

order by

o_year;

go

insert into TIMES values

(’Q8 in Str02 end’,NOW());

insert into TIMES values

(’Q5 in Str02 start’,NOW(Q));
select

n_name,

sum(1l_extendedprice * (1 - 1l_discount))
as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’

and o_orderdate >= date ’1994-01-01°
and o_orderdate < date ’1994-01-01°
+interval ’1’ year

group by

n_name

order by

revenue desc;

go

insert into TIMES values

(’Q5 in Str02 end’,NOW(Q));

insert into TIMES values
(’Q22 in Str02 start’,NOW());
select

cntrycode,

count (*) as numcust,
sum(c_acctbal) as totacctbal
from

(

select

substring(c_phone, 1, 2) as cntrycode,
c_acctbal

from

customer

where

B.3 Query Streams

127

substring(c_phone, 1, 2) in
(29, ’14°, °30°, ’287,
’31°, ’19°, °33°)

and c_acctbal > (

select

avg(c_acctbal)

from

customer

where

c_acctbal > 0.00

and substring(c_phone from 1 for 2) in

(:297’ ;147’ 7301’ J28J’
’31°, 19, ’33’)
)

and not exists (
select

*

from

orders

where

o_custkey = c_custkey

) as custsale

group by

cntrycode

order by

cntrycode;

go

insert into TIMES values
(’Q22 in Str02 end’,NOW(Q));

insert into TIMES values

(’Q12 in Str02 start’,NOW());
select

1_shipmode,

sum(case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1

else O

end) as high_line_count,
sum(case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else O

end) as low_line_count

from

orders,

lineitem

where

o_orderkey = 1_orderkey

and 1_shipmode in (’REG AIR’, ’MAIL’)

and 1_commitdate < 1_receiptdate
and 1_shipdate < 1l_commitdate

and 1_receiptdate >= date ’1995-01-01’
and 1_receiptdate < date ’1995-01-01°

+interval ’1’ year

group by

1_shipmode

order by

1_shipmode;

go

insert into TIMES values
(’Q12 in Str02 end’,NOWQ));

insert into TIMES values
(’Q7 in Str02 start’,NOW());
select

supp_nation,

cust_nation,

1_year,

sum(volume) as revenue
from

(

select

nl.n_name as supp_nation,
n2.n_name as cust_nation,

extract(year from 1l_shipdate) as 1l_year,
1_extendedprice * (1 - 1l_discount) as volume

from
supplier,
lineitem,
orders,
customer,
nation ni,
nation n2

where

s_suppkey = 1l_suppkey

and o_orderkey = 1_orderkey

and c_custkey = o_custkey

and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and

(nl.n_name = ’UNITED STATES’

and n2.n_name = ’FRANCE’)

or (nl.n_name ’FRANCE’

and n2.n_name ’UNITED STATES’)

and 1_shipdate between
date ’1995-01-01’

and date ’1996-12-31°

) as shipping

group by

supp_nation,
cust_nation,

1_year

order by

supp_nation,
cust_nation,

1_year;

go

insert into TIMES values
(’Q7 in Str02 end’,NOW());

insert into TIMES values
(’Q13 in Str02 start’,NOW(Q));
select

c_count,

count (*) as custdist
from

(

select

c_custkey,

count (o_orderkey)

from

customer left outer join orders on

c_custkey = o_custkey

and o_comment not

like ’%unusual¥%accounts’,’
group by

c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count

order by

custdist desc,

c_count desc;

go

insert into TIMES values
(’Q13 in Str02 end’,NOW());

insert into TIMES values
(’Q18 in Str02 start’,NOW());
select

c_name,

c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(1l_quantity)

from

customer,

orders,

lineitem

where

o_orderkey in (
select

1_orderkey

from

lineitem

group by

1_orderkey having
fum(l_quantity) > 314

and c_custkey = o_custkey
and o_orderkey = 1_orderkey
group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

128

Appendix B. Source code
for MySQL 5.1

o_totalprice desc,
o_orderdate

limit 100;

go

insert into TIMES values
(’Q18 in Str02 end’,NOW());

insert into TIMES values

(’Q1 in Str02 start’,NOW(Q));

select

1_returnflag,

1_linestatus,

sum(l_quantity) as sum_qty,
sum(1l_extendedprice) as sum_base_price,
sum(1l_extendedprice * (1 - 1_discount))
as sum_disc_price,

sum(1l_extendedprice * (1 - 1_discount)
* (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

count (*) as count_order

from

lineitem

where

1_shipdate <= date ’1998-12-01’
-interval ’82’ day

group by

1_returnflag,

1_linestatus

order by

1_returnflag,

1_linestatus;

go

insert into TIMES values

(’Q1 in Str02 end’,NOW());

insert into TIMES values

(’Q4 in Str02 start’,NOWQ));
select

o_orderpriority,

count (*) as order_count

from

orders

where

o_orderdate >= date ’1993-05-01’
and o_orderdate < date ’1993-05-01°
+interval ’3’ month

and exists (

select

*

from

lineitem

where

1_orderkey = o_orderkey

and 1_commitdate < 1l_receiptdate
)

group by

o_orderpriority

order by

o_orderpriority;

go

insert into TIMES values

(’Q4 in Str02 end’,NOW(Q));

insert into TIMES values
(’Q20 in Str02 start’,NOW());
select

s_name,

s_address

from

supplier,

nation

where

s_suppkey in (

select

ps_suppkey

from

partsupp

where

ps_partkey in (

select

p_partkey

from

part

where

p_name like ’goldenrod},’

)

and ps_availqty > (

select

0.5 * sum(l_quantity)

from

lineitem

where

1_partkey = ps_partkey

and 1_suppkey = ps_suppkey

and 1_shipdate >= date ’1994-01-01°
and 1_shipdate < date ’1994-01-01’
+interval ’1’ year

)

and s_nationkey = n_nationkey
and n_name = ’IRAN’

order by

s_name;

go

insert into TIMES values
(’Q20 in Str02 end’,NOW(Q));

insert into TIMES values

(’Q3 in Str02 start’,NOW(Q));
select

1_orderkey,

sum(1l_extendedprice * (1 - 1l_discount))
as revenue,

o_orderdate,

o_shippriority

from

customer,

orders,

lineitem

where

c_mktsegment = ’FURNITURE’

and c_custkey = o_custkey

and 1_orderkey = o_orderkey

and o_orderdate < date ’1995-03-01°
and 1_shipdate > date ’1995-03-01’
group by

1_orderkey,

o_orderdate,

o_shippriority

order by

revenue desc,

o_orderdate

limit 10;

go

insert into TIMES values

(’Q3 in Str02 end’,NOW());

insert into TIMES values
(’Q11 in Str02 start’,NOW());
select

ps_partkey,

sum(ps_supplycost * ps_availqty) as value

from

partsupp,

supplier,

nation

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED STATES’
group by

ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty)
* 0.0001000000

from

supplier,

nation,

partsupp,

where

ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’UNITED STATES’
)

order by

value desc;

go

insert into TIMES values
(’Q11 in Str02 end’,NOWQ));

B.4 Load Test

129

insert into TIMES values

(’Q21 in Str02 start’,NOW());
select

s_name,

count (*) as numwait

from

supplier,

lineitem 11,

orders,

nation

where

s_suppkey = 11.1_suppkey

and o_orderkey = 11.1_orderkey
and o_orderstatus = ’F’

and 11.1_receiptdate > 11.1_commitdate
and exists (

select

*

from

lineitem 12

where

12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)

and not exists (

select

*

from

lineitem 13

where

13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 11.1_suppkey
ind 13.1_receiptdate > 13.1_commitdate

and s_nationkey = n_nationkey
and n_name = ’INDONESIA’
group by

s_name

order by

numwait desc,

s_name

1limit 100;

go

insert into TIMES values
(’Q21 in Str02 end’,NOW());

insert into TIMES values
(’Str02 end’ ,NOW());

£go

B.4 Load Test

load _mysql.cmd

rem Load Test

set mysqlbin=C:\Program Files\MySQL\
MySQL Server 5.1\bin

set mysqldata=C:\Documents and Settings\
A1l Users\Application Data\MySQL\

MySQL Server 5.1\data

set cwd="%cd}"

cd %mysqlbiny

rem Creating Tables, constraints and indexes
mysql tpch < %cwd’\MySQL_Files\CreateTables.sql
rem Executing Bulk Inserts

move "Ymysqldata¥\templ*.x" "Ymysqldata’\tpch"

mysql tpch < %cwd’\MySQL_Files\Inserts.sql
pause

move "/mysqldataZ\tpch*.tbl"
"Ymysqldata,\templ"

move "/mysqldata%\tpch*.ul"
"Ymysqldata,\templ"

move "Y/mysqldatal\tpch*.u2"
"%mysqldata\templ"

move "Y/mysqldata)\tpch*.1"
"%mysqldata\templ"

move "Y/mysqldata)\tpch*.2"

"Ymysqldata’\templ"
rem Creating Statistics

mysql tpch < %cwd’\MySQL_Files\
CreateStatistics.sql

rem Installing Refresh Functions

mysql tpch < %cwd/\MySQL_Files\CreateRF1.sql
mysql tpch < %cwd/\MySQL_Files\CreateRF2.sql

mysql tpch < %cwd%\MySQL_Files\LoadEnd.sql

cd %ewdy
semaphore -release SEM1

exit /B

B.5 Performance Test

run_mysql.cmd

rem Performance Test

set mysqlbin=C:\Program Files\MySQL\

MySQL Server 5.1\bin
set cwd="%cd%"
cd %mysqlbiny,

rem Power Test

mysql < %cwd’\MySQL_Files\RF1Power.sql
mysql < %cwd’%\MySQL_Files\Stream00.sql

mysql < Y%cwd’%\MySQL_Files\RF2Power.sql

rem Throughput Test

cd Y%ewdy,

start cmd /C RunStreamO1MySQL.cmd
start cmd /C RunStream02MySQL.cmd
semaphore -wait SEM2

semaphore -wait SEM2

cd Ymysqlbiny,

mysql < %cwd’\MySQL_Files\
RFsThroughput.sql

cd Y%ewdy,
semaphore -release SEM1

exit /B

RunStream01MySQL.cmmd

cd C:\Program Files\mysql\
mysql Server 5.1\bin

mysql < C:\MySQL_Files\
Stream01.sql

cd C:\
semaphore -release SEM2

exit /B

RunStream02MySQL.cimmd

cd C:\Program Files\mysql\
mysql Server 5.1\bin

mysql < C:\MySQL_Files\
Stream02.sql

Appendix B. Source code
130 for MySQL 5.1

cd C:\ B-6 Full Test

semaphore -release SEM2

exit /B all tests MySQL.cimmd
start cmd /C load_mysql.cmd
RF1Power.cmd semaphore -wait SEM1
use tpch;

cd C:\Program Files\mysql\

insert into TIMES values mysql Server 5.1\bin

(’Power start’,NOW());
mysql -u root -p -D tpch
--tee=MySQL_Results\load.txt -e
"select * from loadtimes

order by timestamp;"

insert into TIMES values
(’Str00 RF1 start’,NOW(Q));

CALL RF1(40);
insert into TIMES values cd C:\

(’Str00 RF1 end’,NOWQ)); start cmd /C run.cmd

h -wait SEM1
insert into TIMES values semaphore ~wait §

(’Str00 start’,NOW()); cd C:\Program Files\mysql\

mysql Server 5.1\bin

mysql -u root -p -D tpch
RF2Power.cmd --tee=MySQL_Results\performance.txt -e
"select * from times

use tpch; order by start;"

insert into TIMES values it /B
(’Str00 start’,NOWQ)); ext

insert into TIMES values
(’Str00 RF2 start’,NOW());

CALL RF2(32); B.7 Concurrency Handling

insert into TIMES values
(’Str00 RF2 end’,NOW());
semaphore.cpp
insert into TIMES values
(’Power end’,NOW());

#define _WIN32_WINNT 0x0400
insert into TIMES values #include <windows.h>
(& Throughput start’, NOW()); #include <string.h>

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

RFSThI‘Oughput #include <assert.h>

use tpch;

insert into TIMES values
(’Str01 RF1 start’,NOWQ);

CALL RF1(4008);

insert into TIMES values
(’Str01 RF1 end’ ,NOWQ);

insert into TIMES values
(’Str01 RF2 start’,NOW();

CALL RF2(4000);

insert into TIMES values
(’Str01 RF2 end’,NOWQ);

insert into TIMES values
(’Str02 RF1 start’,NOW();

CALL RF1(7976);

insert into TIMES values
(’Str02 RF1 end’,NOWQ);

insert into TIMES values
(’Str02 RF2 start’,NOWQ);

CALL RF1(7968);

insert into TIMES values
(’Str02 RF2 end’ ,NOWQ);

insert into TIMES values
(’Throughput end’ ,NOW(Q) ;

int main(int argc, char **argv)

typedef enum {eUnknown, eStart,
eWait, eRelease} OPERATION;
OPERATION eOP = eUnknown;

int i;

HANDLE hSemaphore;

if (_stricmp(argv([1], "-wait") == 0)
e0P = eWait;

else if (_stricmp(argv[1l], "-release") == 0)

e0P = eRelease;

if (eOP == eWait)

{

hSemaphore = CreateSemaphore(NULL, O,
2000000000, argv[2]);

for (i=0; i<2; i++)

WaitForSingleObject (hSemaphore,
INFINITE) ;

}
CloseHandle (hSemaphore) ;
}

else if (e0OP == eRelease)

hSemaphore = OpenSemaphore

(SEMAPHORE_MODIFY_STATE, FALSE, argv[2]);

ReleaseSemaphore (hSemaphore, 1, NULL);
CloseHandle (hSemaphore) ;
}

return O;

